
HONEYWELL 

SUBJECT: 

SPECIAL 
INSTRUCTIONS: 

DATE: October 1, 1968 

OS02 
SM 
7.S969 

Printed in U. S. A. 

HARDWARE 

SERIES 200 

PROGRAMMERS' 
REFERENCE MANUAL 

MODELS 200/1200 
1250/2200 / 4200 

The Central Processor Hardware of Series 200 
Models 200, 1200, 12S0, 2 2 00, and 4200; The 

.Easyc oder Assembly Language; Summary Infor ­
mation concerning Prog ramming Series 200 
Peripheral Devices and the Scientific Unit. 

This edition completely supersedes revision 
of the Seri es 200 Programmers I Referenc e 
Manual (Models 200/1200/2200/42 00), Order No. 
139, dated November 10, 1966, a n d inc orporates 
the information published in Addenda #1 and #2 
to that manual. The portions of this public ation 
containing new and changed informa tion a r e 
indicated on page iii. 

This volume and the manua ls and bulletins per ­
taining to the peripheral components of an in ­
stalled Series 200 system together c onstitute a 
programmers I handbook for that system. 

* FILE NO . : 113. OOOS. 0000. 2-139 

'~ Underscoring denotes Order Number . 



PREFACE 

This manual constitutes for the programmer a reference source of detailed information 

concerning the central processor hardware of Series 200 Models 200, 1200, 1250, 2200, and 

4200. The Easycoder Assembly Language, used with the Series 200/Basic Programming Sys­

tem and the Operating System - Mod 1, is also defined~ In addition, this volume contains sum­

mary information concerning the programming of Series 200 peripheral devices and the scientific 

unit. The hardware information presented herein is equally applicable for the programmer using 

the Series 200/0perating System - Mod 2. However, for this usage it should be supplemented 

by the information contained in Appendix C of the software manual Assembler J (Order No. 432). 

Separate hardware manuals and bulletins contain detailed information about programming 

and operating individual Series 200 peripheral devices. Specific peripheral device publications 

are named in the tables of input/output control characters beginning on page 8-120 of this manual. 

The only prerequisite for a thorough understanding of the information presented herein is 

a familiarity with basic data processing terminology. No previous knowledge of the Series 200 

is as sumed. 

A programmers' handbook may be constructed by combining in a single binder this volume 

and the manuals/bulletins pertaining to the peripheral components of the installed Series 200 

system. This manual and the peripheral device manuals are all published in loose-leaf format 

for ease of rapid updating by means of replacement-page addenda. 

The equipment characteristics reported herein remain subject to change to allow the intro­

duction of design improvements. 

Copyright 1968 
Honeywell Inc. 

Wellesley Hills, Massachusetts 02181 

ii #2-139 



NEW AND CHANGED INFORMA TION 

Extensive functional descriptions and progranuning infornlation for the Model 1250 have 

been added. New infornlation and new peripheral devices for all Series 200 processors have 

been incorporated. Likewise, the infornlation carried over fronl revision 1 has been extensively 

updated to correct technical error s and to enhance its clarity. 

New infornlation and changes added to this publication since the last edition are indicated 

below by page nUnlber and itenl. 

Page Itenl( s) Page Itenl(s) 

1-8 Tables 1-1 and 1-2 8-62 Note 4 
Para. 3 8-63 Para. 3 and Table 8 -15 

1-9 Table 1-3 and 8-64 Note 4 
Para. 2 8-67 Note 2 

1-11 Para. 2 and 3 8-82 Note 3 
1-12 Table 1-7 8-85 Notes 6, 7, and 8 
1-22 Note 5 8-86 All 
1-23 Note 6 and Para. 4 8-87 All 
1-24 All 8-88 All 
2-4 All 8-8.9 All 
2-5 All 8-90 All 
2-6 Para. 1 8-92 Note 7 
2-7 Table 2-2 8-94 All 
2-10 Footnote 2 8-96 Note 3 
2-17 Table 2-4 8-100 Note 4 
5-19 Para. 5 8-111 Table 8-23 
6-8 Para. 3 - Note 8-125 Note 1 
8-15 Note 5 B-9 Table B-9 
8-17 Note 5 C-9 Table C-2 
8-21 Note 4 C-I0 Table C-2 
8-23 Note 4 C-ll Table C-3 
8-24 Note 7 F-4 Table F-l 
8-26 Note 9 F-5 Table F-l 
8-43 Note 3 F-6 Table F-l 
8-55 Exanlple G-2 Para. 5 
8-58 Table 8-12 G-3 Para. 3,4, and 5 
8-60 Notes 4 and 5 Appendix H All 

iii #2-139 



TABLE OF 
CONTENTS 

Section I 

Section II 

Series 200 COIl1.ponents 0 0 00 • 0 0 0 0 0 00000 0 0 0 00 000 0 0 0 000 000000 

Central Processor 00 ••• 0 0 0 • 0 •••••• 0 0 0 0 0 0 • 0 • 0 0 0 0 0 000 0 0 0 

Standard Processing Mode 0 0 0 0 0 • 0 0 •• 0 • 0 • 0 00 0 0 0 0 • 0 • 000 

Interrupt Proces sing Mode 0 •• 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 • 0 • 0 •• 

External Interr'upts . 0 •• 0 0 0 • 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 •• 0 0 0 

Internal Interrupt ..• 0 0 0 •• 0 • 0 0 0 • 0 00. 0 0 0 • 0 000 0 0 0 • 0 0 

Addressing Modes 00 0 •• 0 • 0 0 0 • 0 0 0 0000 • 0 .• 0 0 0 0 00.00 •• 0 • 

IteIl1.-Mark Trapping Mode ... 0 0 • 0 0 • 0 0 0 • 0 0 0 • 0 • 0 0 •• 0 0 0 

Processing P'ower .00 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 • 0 0 0 0 0 00.0 .0 

Peripheral EquipIl1.ent 0 0 0 0 0 0 • 0 •••• 0 • 0 • 0 0 0 •••• 0 •••• 0 0 0 

Peripheral Control o. 0 0 0 • 0 0 0 0 • 0 0 • 0 • 0 • 0 0 • 0 0 ••• 0 • 0 • 0 • 0 

Punched Card EquipIl1.ent . 0 0 0 •••••• 0 0 • 0 • 0 0 • 0 •• 0 • 0 • 0 • 0 

High Speed Printers .•• 0 0 0 • 0 •• 0 ••• 0 0 • 0 • 0 0 0 0 0 • 0 • 0 • 0 • 0 

Print Buffer .. 0 ••• 0 0 0 • 0 •• 0 • 0 0 • 0 • 0 • 0 0 ••• 0 0 • 0 • 0 • 0 • 0 

Magnetic Tape Units 0 0 0 0 • 0 0 0 • 0 • 0 0 0 0 0 ••• 0 • 0 0 0 •• 0 0 0 0 0 0 

1200 BPI Recording Density ... 000 0 • 0 0 •••• 0 • 0 0 .0 0 • 0 

Disk Pack Drives .. 0 0 • 0 •• 0:0 • 0 0 0 000 •• 0 •• 0 0 0 00. 0 •• 0 • 0 

Disk Files ... 0 0 • 0 • 0 0 0 • 0 0 • 0 0 • 0 • 0 0 •• 0 • 0 .. 0 0 0 • 0 • 0 • 0 0 0 0 0 

RandoIl1. Acces s DruIl1.s 0 0 • 0 0 0 •• 0 • 0 •• 0 ••• 0 0 • 0 0 • 0 • 0 0 0 • 0 

High -Speed Dr·uIl1.s ... 0 0 0 •• 0 •• 0 ••• 0 • 0 ••••• 0 0 0 • 0 •• 0 •• 0 

Angular Position Indicator .... 0 0 0 ••• 0 0 0 • 0 0 •• 000 0 •• 0 • 0 

Paper Tape EquipIl1.ent 0 0 • 0 • 0 • 0 0 0 0 0 ••• 0 0 • 0 •• 0 • 0 0 0 • 0 •• 

Data COIl1.Il1.unication EquipIl1.ent 0 •• 0 ••• 0 •••••••••••••• 

Cons ole EquipIl1.ent ... 0 • 0 • 0 0 0 0 • 0 0 0 0 0 0 • 0 • 0 0 0 0 0 •• 0 • 0 0 •• 

Visual InforIl1.ation Projection Devices . 000 0 0 0 0 0 0 0 0 0 0 • 0 

Teller TerIl1.inal Equipment ... 0 •• 0 • 0 0 0 • 0 0 000 0 • 0 0 ••••• 

Additional Peripheral Devices . 0 0 • 0 •• 0 0 .0. 0 0 0 • 0 0 • 0 •• 0 

Peripheral Data Transfer Operation 0 0 • 0 • 0 • 0 0 0 • 0 0 0 0 0 • 0 

Peripheral Addresses and Unit Loads. 0 • 0 0 0 0 0 0 .0 ••• 

Read/Write Channel 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 • 0 0 0 ••••• 0 • 0 

Optional Features o. 0 •• 0 ••••••• 0 0 0 0 0 0 0 000 •••• 0 0 0 ••••••• 

Advanced PrograIl1.Il1.ing 0 0 0 0 0 • 0 • 0 0 0 0 0 0 • 0 0 0 •• 0 0 ••• 0 ••• 

Program Interr'upt . 0 0 0 • 0 •• 0 • 0 • 0 ••• 0 0 • 0 • 0 • 0 • 0 0 ••• 0 0 •• 

Edit Instruction . 0 0 • 0 • 0 0 0 0 • 0 0 • 0 • 0 0 •• 0 0 •••• 0 • 0 0 • 0 0 • 0 • 

Additional Read/Write Channels, Unit Loads, and 
Addres s As signments 0 • 0 0 0 0 • 0 • 0 • 0 •• 0 0 • 0 0 • 0 0 0 • 0 0 0 0 • 0 

Storage Protect 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 ••• 0 0 0 0 0 0 0 • 0 0 0 •• 0 

Extended Multiprogramming and 8-Bit Transfer 0 • 0 • 0 0 

Scientific Unit 0 • 0 0 0 •• 0 0 0 0 0 0 0 0 0 • 0 • 0 0 • 0 • 0 •• 0 • 0 •• 0 • 0 • 0 0 

Feature 0191 . 0 0 0 0 0 • 0 0 0 0 • 0 0 • 0 0 • 0 • 0 0 • 0 0 0 ••• 0 0 0 0 •• 0 •• 0 

The Central Proces sor 0 0 0 0 0 • 0 0 0 0 0 0 0 •• 0 • 0 • 0 000 0 0 0 00. 0 • 0 •• 0 

Main MeIl1.ory 0 .00 0 0 0 0 0 0 0 • 0 • 0 0 • 0 • 0 0 0 0 • 0 • 0 0 0 0 0 0 • 0 0 0 0 0 0 •.•• 

MeIl1.ory Cycle 0 • 0 • 0 • 0 • 0 0 0 0 0 •• 0 0 0 0 0 •• 0 • 0 0 0 0 • 0 0 • 0 • 0 ••• 

Main MeIl1.ory in the Type 4201 Processor 0 00.000.00 ••• 

MeIl1.ory Ac ce s s 0 0 0 • 0 • 0 0 • 0 0 • 0 0 0 0 • 0 •••• 0 0 0 0 • 0 • 0 •• 0 

Proces sing Unit . 0 0 0 0 • 0 0 0 0 0 0 •• 0 0 • 0 ••• 0 0 0 0 0 0 0 • 0 ••• 

MeIl1.ory Controller 0 0 0 0 • 0 0 • 0 • 0 ••• 0 0 • 0 0 0 0 0 0 • 0 ••• 0 • 

iv 

Page 

1-1 
1-1 
1-3 
1-3 
1-4 
1-,4 
1-4 
1-5 
1-5 
1-6 
1-7 
1-7 
1-8 
1-8 
1-8 
1-8 
1-10 
1-10 
1-11 
1-11 
1-11 
1-12 
1-12 
1-14 
1-14 
1-16 
1-16 
1-17 
1-17 
1-18 
1-20 
1-21 
1-22 
1-22 

1-22 
1-23 
1-23 
1-23 
1-23 

2-1 
2-1 
2-3 
2-4 
2-5 
2-5 
2-5 

#2 -139 



Section II (cont) 

Section III 

Section IV 

TABLE OF CONTENTS (cont) 

Page 

Interleaved Addressing........................... 2-5 
Parity Check .......•....•.................•.•... 2 - 6 

Control Menlory .•......•.•..•........ '.' . . . . • . . . . • . . . . . 2-6 
Addres s Register s . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . 2-8 
Read/Write Counters. . . . . . . . . . . . . . . . ... . . . . • . . . • • . . . . 2-8 

Arithnletic Unit .....•..•.•.....•...•..•....•...••....• 
Control Unit ..•.... .' .•.•••..........•......•....•..... 
Input/Output Traffic Control ..•...•...............•..... 

Menlory Cycle Distribution ..•.........•......••..... 
Prinlary and Auxiliary Read/Write Channels .....••.... 
Interlocking Read/Write Channels ..............•..... 
Model 4200 Variable -Speed Read/Write Channels .•..•.. 

2-10 
2-11 
2-12 
2-12 
2-16 
2-16 
2-16 

Data Fornlat . . . • . . . . . . . . . . • . • • • . • . . . . . . • . . . . . • • . . . . • . . . . . 3-1 
Variable Field Length. . . . • • . • • • .. . . • . • . • . . . . . . • . . . • • . . . . 3-1 
Instr'uction Fornlat ...•.••••.••....•....•.•..•..•••.... 3-2 

Operation Code . . . . • . . . • • . . • . . . . • . . . • . . . . . • . . . • • . . • • 3-2 
A and B Addresses. . . • . • • . . • • • • . . . . . . . . . . . . . • • • . . . . . 3-2 
Variant Character .....•.•.......••.•.........•..... 3-3 
S'unlnlary ..............•..•.........•.........•..... 3-3 

Organization of Data in Main Menlory . . • . . • . • . . . . . • • . . • . . 3-4 
Fields . . . . . . • • • • . . . . . . • . . . . . . • • . • . . . • • . . • . • . . • • . . • . 3 -4 
Itenls ..••••......•.....•.•....•..•.•.•..•...•...•. 3 - 5 
Records .•......•.......•......•..•. , ••....•.••.••.. 3-6 
S'unlnlary .......•...•...•.•......•..•........•..... 3 - 6 

Magnetic Tape Data Fornlat ....•..•.•.....••.....•..... 3-7 
P'unched Card Fornlat . . . . . . • . . • . . . . • . . • . . . . . . . . . . . . . . • . 3-8 

Addressing .•.••....•..•......•.•.....•......•....•••.••. 4-1 
Basic Concepts .....•...•.....•..••.•..•...•...•••..... 
Registers Used in Addressing .....•.••...•.••....•••.•.. 

Sequence Register (SR) ..••.•....••••.•..•••..•••.•.• 
Change Sequence Register (CSR) .. -.••..........•••.•.• 
External Interrupt Register (EIR) ........•.....••••••• 
Internal Interrupt Register (IIR) ...................•.. 
A-Address Register (AAR) ..•..•..•.•....•••..••••.•• 
B -Addres s Register (BAR) ....•...•...••...•••.••.•.. 
S'unlnlary ..•...........•.••.•...••••..•••••••••.•.. 

Addressing Modes ..••......•..•.••.•...••.•..•.•••..•. 
Two -Character Addres sing Mode •...•...••.•..•••.•.. 
Three -Character Addres sing Mode •...•.••••..•.•.•.. 
Four-Character Addressing Mode .•.•..•...••.•...•.. 

Address Modification •••••..•.....•••..•...........••.. 
Index Registers ...••....•..•.•.•.•.....•.......•...• 

Index .Register Map ...•.•..•...•.••....•.•..•..•.• 
Three-Character Address ....•...••.••.••.•.•.•.••.. 

Indirect Addressing ...•...•..••.•..•.•..•.•.•••.. 
Indexed Addressing .........•.••......•.••••.•.... 

v 

4-1 
4-3 
4-3 
4-3 
4-3 
4-4 
4-4 
4-4 
4-4 
4-5 
4-5 
4-6 
4-8 
4-8 
4-9 
4-9 
4-10 
4-10 
4-12 

#2-139 



Section IV (cont) 

Section V 

Section VI 

TABLE OF CONTENTS (cont) 

Four -Character Addressing Mode .....•••........•... 
Indirect Addressing .• , .......•.......•.•••..•.•••. 
Indexed Addr e s sing ..•..•....•.•..•......•...•... 

Treatm.ent of Addresses Larger Than A Mem.ory's 
Maxim.um. Address ...•......•.•••.•..•.••.•••.•...•. 

Potential Addresses Within Address Range ...• 0 • o ••• 

Potential Addresses Outside Address 

Page 

4-13 
4-13 
4-14 

4-16 
4-16 

Register Range . . • . . . . • . . • • . • • . . . • • • . • • • . • . . • . • • 4 -16 
Explicit Addressing, Im.plicit Addressing, and Chaining.... 4-17 

Easycoder Program.ITling ...•••..•..•......•••••....••.•..• 
Intr od'uction .....•......•......•••.•....•..•.•..••.•.•• 
The Sym.bolic Lang'uage ...•..•.•.....••••.•.••.•.....•. 
The Assem.blers .••...•...•...••••.•.••••..•.•.••.••.•• 
Coding Form. .••.•.•....•......••.•...•••..•••••.•.•••• 

Card Num.ber (Card Colum.ns 1-5) .•..•.•.........•••.• 
Type (Card Colum.n 6) ••••••••••••••••••••••••••••••• 
Mark (Card Colum.n 7) •••••••••••••••••••••••••••••• 
Location (Card Colum.ns 8 -14) ...•...•.•..•.••.••••••• 
Operation Code (Card Colum.ns 15 -20) .....••.•••......• 
Operands ..•.••••....••....•.••.•....•...••.....••• 
Additional Coding Rules ......•....•....••••••.••.•.• 

Address Codes ...••..•.•.••.....••....•....•..•.•.••.• 
Absolute ...••.•.•.....•......•.•..•.••.•..•••.•••.• 
Sym.bolic ..•••..•..•......•..••..••••.....•••...••.• 
Self Reference .•.•.......•......••.•....••...•.••••• 
Relative .................••....•.•..•.••..••.•..•..• 

5-1 
5-1 
5-3 
5-3 
5-5 
5-5 
5-6 
5-6 
5-8 
5-10 
5-11 
5-12 
5 -12 
5 -13 
5-13 
5-13 
5-14 

Out-of-Sequence .•.....••....•..•..•...•.•.••..•.•••. 5-15 
Blank. . .• . .. .• . . • . . . .. . . . . . .. . • •. . .• • . . . . . •• •. . . • .• 5-15 
Literals ...............................•....•..•... 

Decim.al Literals ........•.....•.•.•..••.•..•.••.• 
Binary Literals ........•....•.........•....••••.• 
Octal Literals ....•..•..•.•.••.....••.•....••••.• 
Alphanum.eric Literals ......•.......•..•••.••.••.• 
Area Defining Literals ..•..•......•.•..••••••••••• 
Addres s Literals ...•..•...•••.•.•.•...•••.••••••. 

Variant Character ..••...•••.....•••••..••.•.••••••• 
Input/Output Control Characters ...••...••.•.•..•.••.• 

Addres s Modification Codes •.•..•.•...••.•.•..•••••••.• 
Indexed ..••....••••.•.•••.•••••.••...•••••.•••••••• 
Indirect ..•..•.••••.•..•••....•.••....••••••.••••••• 

5 -15 
5-16 
5-16 
5-17 
5 -18 
5-19 
5-19 
5-20 
5-21 
5-21 
5-21 
5-23 

Data Form.atting Statem.ents ..•••.•..••••.•.•.•••.•.•••••.. 6-1 
Introduction ..•.•.••••••••.•••..•••.•.•••.••••••.••• 0 • • 6-1 
Define Constant with Word Mark - DCW .. . . . • • . . . • • • • • • • 6-2 

N'um.eric Constants. • • • . . . • • • . . . • . • • . . . . . • . • • • • . • • • • • 6-2 
Decim.al Constants ..•••••.•.•••...••...••.•.••.•• 6-2 
BinaryConstants .•••..•••••.•..•.•.•....•..•.•.•. 6-2 
Octal Constants ••.•••• . . • • • . • . . • • . • . • • • • • • • • • • • . • 6-3 

vi #2-139 



Section VI (cont) 

Section VII 

Section VIII 

TABLE OF CONTENTS (cont) 

Alphanunleric Constants .. 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Blank Constants 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ••••••• 0 

Floating -Point Constants. 0 •• 0 0 0 • 0 • 0 0 0 • 0 • 0 • 0 0 ••• 0 0 0 0 • 0 

Define Constant - DC 0 0 • 0 ••• 0 0 0 0 • 0 • 0 0 0 0 • 0 •• 0 0 •••• 0 ••• 0 

Reserve Area - RESV 0 0 •••••• 0 • 0 • 0 • 0 • 0 0 0 0 • 0 •••••• 0 ••• 0 

Define Symbolic Address - DSA ... 0 0 0 0 •• 0 • 0 •••••• 0 0 • 0 • 0 

Define Area - DA 0 ••• 0 •• 0 • 0 0 • 0 • 0 0 0 0 0 0 0 • 0 • 0 0 •••• 0 • 0 0 0 0 0 

Easycoder Card D Options o. 0 •••• 0 0 • 0 •• 0 • 0 ••••••••• 0 ••• 0 

Assenlbly Control Statenlents o. o •••• 0 • 000. 0 0 • 0 0 ••••••• 0 • 0 • 0 

Introd·uction .• 0 •••• 0 ••••• 0 0 •••• 0 0 • 0 0 0 0 •• 0 • 0 ••••••••• 0 •• 

Progranl Header - PROG o. 0 •• 0 • 0 • 0 0 • 0 • 0 •• 0 • 0 0 •• 0 ••• 0 • 0 

Segnlent Header - SEG .•.• 0 0 • 0 0 •• 0 • 0 • 0 • 0 ••• 0 0 •••• 0 0 0 0 • 

Execute - EX 0 0 0 •••• 0 0 0 ••• 0 0 •••••• 0 •••• 0 •• 0 • 0 •••• 0 • 0 0 • 

Transfer - XFR 0 0 • 0 • 0 0 •• 0 0 • 0 • 0 0 0 0 •• 0 0 • 0 0 ••• 0 •••••••• 0 

Origin· - ORG 0 0 ••••••••• 0 •••• 0 0 • 0 • 0 0 0 0 0 0 0 • 0 •••• 0 •••• 0 

Modular Origin - MORG •• 0 0 • 0 •• 0 • 0 ••• 0 0 • 0 •• 0 •••• 0 0 0 0 0 • 

Literal Origin - LIT ORG o. 0 •••• 0 • 0 0 0 0 0 0 0 0 0 • 0 •••• 0 0 0 0 •• 

Set Address Mode - ADMODE .0.00.00.0 •• 0 0 ••••••• 00 •• 0 

Equals - EQU ... 0 • 0 0 0 0 •• 0 • 0 • 0 0 0 • 0 0 0 •••• 0 0 0 •••••• 0 •••• 0 

Control Equals - CEQU 0 • 0 • 0 0 •• 0 • 0 0 •••• 0 • 0 0 ••••• 0 • 0 0 0 • 0 

Menlory DUnlp - HSM 00 •• 0.0 •••••• 000000.0 •• 0 ••• 00.00. 

Skip - SKIP. 00.0 •• 0.0.0.0.000.0.00 •• 00.00000 ••• 0.000 •• 

Suffix - SFX 0 •••• 0 •• 0 ••• 0 .0. 0 ••• 0 • 0 • 00. 0 • 0 ••••• o •• 0 0 • 0 

Repeat - REP .. 0 0 0 0 • 0 • 0 0 • 0 0 0 ••••• 0 0 0 0 0 0 0 0 •••• 0 • 0 0 • 

Generate - GEN ... 00.0 ••• 0 0 .0 •• 0 ••• 0 •• 0 0 0 • 0 0 •• o. 0 0 • 0 • 

Set Line NUnlber - SET LIN o. 0 0 0 0 0 ••• 0 • 0 0 0 0 0 0 •••• 0 • 0 • 0 0 

Set Out-of-Sequence Base - XBASE .. 00.0.0000 ••• 00.0 ••• 

Clear - CLEAR 0 0 •• 0 0 0 ••••••• 0 0 • 0 0 0 0 0 0 • 0 0 0 •• 0 •• 0 0 0 •• 0 0 

End - END 0.00.00.0.00 ••• 0 •• 00 •• 0 ••• 0.0.0.0 •••• 00.0.0 

Page 

6-4 
6-4 
6-5 
6-5 
6-6 
6-7 
6-7 
6-10 

7-1 
7-1 
7-2 
7-4 
7-4 
7-6 
7-7 
7-9 
7-9 
7-11 
7-12 
7-13 
7-14 
7-15 
7 -15 
7-16 
7-17 
7-18 
7-18 
7-19 
7-20 

Instructions 0 0 0 • 0 0 0 0 ••• 0 • 0 ••• 0 0 0 • 0 0 0 0 0 • 0 ••• 0 •• 0 •••• 0 0 •• 0 •• 8-1 
Introduction ...•.•••..•.•..•.• 0 •••••• 0 •••• 0 0 •••••••••• 0 8 -1 
Arithnletic Operations 0 0 0 •• 0 ••• 0 0 0 0 •••• 0 • 0 0 ....... 0 0 0 0 •• 0 

Binary Addition 0 0 ••• 0 • 0 • 0 • 0 0 0 0 • 0 •• 0 •• 0 •• 0 0 0 •• 0 •• 0 •• 0 

Binary Subtraction 0 0 •• 0 • 0 0 •• 0 0.0 0 • 0 • 0 •••••••••• 0 0 • 0 • 0 

De cinlal Addition. 0 0 0 0 • 0 0 • 0 0 •• 0 0 0 0 0 •••• 0 0 • 0 •••••• 0 ••• 

True Add. 0 0 ••• 0 0 0 ••• 0 ••• 0 • 0 0 • 0 •••• 0 0 ••••• 0 • 0 0 • 0 0 

C onlplenlent Add . 0 •• 0 0 •• 0 • 0 0 • 0 • 0 • 0 ••••••••• 0 • 0 0 • 0 

De cinlal Subtraction 0 0 ••• 0 0 • • 00 0 • 0 0 •• 0 • 0 0 • 0 ••• 0 •• 0 •• 0 

Indicator s 0 0 0 0 • 0 • 0 0 0 ••• 0 • 0 • 0 0 0 0 0 0 0 • 0 • 0 0 • 0 • 0 •• 0 • 0 0 •• 0 

Multiplication. 0 ••••••• 0 0 • 0 0 0 0 • 0 0 • 0 0 0 •••• 0 ••••• 0 0 • 0 0 0 

Division . 0 • 0 0 ••••• 0 •• 0 ••••••• 0 0 • 0 0 0 0 0 0 •••.••••••• 0 0 0 

Add - A 0 0 •••• 0 • 0 0 •• 0 ••• 0 • 0 0 •• 0 • 0 • 0 0 0 0 0 0 0 • 0 ••• 0 • 0 • 0 •• 

S·ubtract - S 0 0 • 0 0 • 0 0 0 0 0 •• 0 •• 0 0 0 0 • 0 • 0 • 0 •• 0 0 ••••••• 0 0 0 • 0 

Binary Add - BA . 0 0 0 0 0 0 •• 0 0 • 0 0 0 ••• 0 0 • 0 •• 0 •• 0 •••• 0 0 0 0 •• 

Binary Subtract - BS ..••. 0 0 0 •• 0 0 0 ••• 0 0 ••• 0 • 0 0 •••• 0 0 0 • 0 

Zero and Add - ZA 0 • 0 0 •• 0 • 0 0 •• 0 0 0 •• 0 0 0 •• 0 0 • 0 ••• 0 0 0 0 •• 0 

vii 

8-4 
8-4 
8-4 
8-7 
8-7 
8-7 
8-8 
8-9 
8-9 
8-11 
8-14 
8-16 
8...:17 
8-19 
8-20 

#2-139 



Section VIII (cont) 

TABLE OF CONTENTS (cont) 

Zero and S·ubtract - ZS .•...•.....•.•.•.....•....•.... 
M·ultiply - M .....••.•.•.....•.•.•.••.•....•.••.•.••. 
Di vide - D .....••......•.........•....•..•••.• 0 •••••• 

Logic ...••.•.•.•.•...•.........•..•..••..•...........• 
Extract - EXT ....•...•......•...•....•..•••.••••••.• 
Half Add - HA .•.•....••.•....•.••.•.•........•.••..•• 
S·ubstitute - SST . 0 •• 0 •••••••••••••••••••••••••••••••• 

COnlpare - C •...•.•..•..•.•....... 0 • 0 ••••••••••••••• 

Branch - B .....•.......•.•.•••......•.••.•.•....•.. 
Branch on Condition Test - BeT ..•..•..•.••.•......... 
Branch on Character Condition - BCC .•................ 
Branch if Character Equal - BCE ..........••..••.....• 
Branch on Bit Equal .- BBE ...•.••••••.•.••••.•••.••.•• 
Control ....•.•.•.....•.........•....•.•........•...•. 
Set Word Mark -SW ...• 0 •••••••••••••• 0 ••••••••••••• 

Set Itenl Mark - SI ....•..•.........•....•.••.•.••.... 
Clear Word Mark - CW ...•.........•.......•••.••••.. 
Clear Itenl Mark - CI .•......•....•.....•..•...... 0 •• 

Halt - H .................•..•......•....•.•. 0 ••••••• 

No Operation - NOP ..•••.......•.•.......••....•...•• 
Move Characters to Word Mark - MCW ..••••.••..•••..• 
Load Characters to A-Field Word Mark - LCA ...•..•.•. 
Store Control Registers - SCR ..••...•..••......•....• 
Load Control Registers - LCR •...•..•.••.•.•.••...•.. 
Change Addressing Mode - CAM ....•..•...•••.•.••..•• 
Change Sequencing Mode - CSM ...••..••.•..•.•..•.•.. 
Extended Move - EXM ...•.......•.••••.••••.•.....•• 
Move and Translate - MAT ...•......••.•..•.••••••.•• 
Move Item. and Translate - MIT ....•.•..••...•.•.••.•• 
Load Index/Barricade Register - LIB ..••...••••..•.••• 
Store Index/Barricade Register - SIB ..•....•..•..•.••• 
Table Lookup - TLU .•.•..••.•.•..•••..•.•••...•.•.•. 
Move or Scan - MOS .....•.•••••..••.•••••.•.•••..•.. 
Interr·upt Control •.•..•••.••.•.•• 0 •••••• 0 •••••••••••••• 

Store Variant and Indicators - SVI ...•.••.•••..•....... 
Restore Variant and Indicators - R VI .••..••.•.....•.•. 
Monitor Call - MC .••.••••....•..•.•.•..••... 0 ••••••• 

Re s·um.e N orm.al Mode - RNM ..•.•...•••.••••.•.•..••• 
Editing ...•..•...•...•.•.......•....••..••.•..•....•.• 
Move Characters and Edit - MCE ..••..••.••••••••••••• 
Input/Outp·ut ......•... 0 ••••••••••••••••••• 0 •••••••••• 0 

Input/Output Control Operations •...•• 0 •••• 0 ••••••• 0 • 0 •• 

Selecting RWC Assignm.ents for Use in PDT Instructions 
Considerations in Selecting RWC Assignm.ents ..••.. 

Device Data Transfer Rate ..•....•.•..•.•.••.. 
The Processor Being Used ....••.••••.•......• 
Input/Output Sector to Which Device is Connected. 

viii 

Page 

8-22 
8-23 
8-25 
8-27 
8-28 
8-29 
8-30 
8-32 
8-34 
8-35 
8-39 
8-42 
8-44 
8-47 
8-48 
8-49 
8-50 
8 -51 
8-52 
-8-54 
8-55 
8-56 
8-58 
8-60 
8-62 
8-66 
8-67 
8-70 
8-74 
8-79 
8-82 
8-83 
8-86 
8-91 
8-92 
8-95 
8-98 
8-99 
8-103 
8-104 
8-109 
8-110 

8-110 
8-110 
8-110 
8-113 
8-114 

#2-139 



Section VIII (cont) 

Appendix A 

Appendix B 

Appendix C 

Appendix D 

Appendix E 

Appendix F 

Appendix G 

Appendix B 

TABLE OF CONTENTS (cont) 

Upward Compatibility ..•.•..•....•....•....•.•. 
Peripheral Data Transfer - PDT ...•..............•••.. 
Peripheral Control and Branch - PCB .......•.•••.....•. 

Types of Test and Control Operations .....•.......•.•. 

Octal Notation ... ' ..•.•••••••.•....•.••••..........•••.•.•. 
Octal-Decimal Conversion Procedure .••.....••.••.....•. 

Miscellaneo'us Tables ...•.•.........•.••.•.......•••..•.•. 

Instruction S'ummary .......•........•..•.•.•..•..•..•.•... 

Interr'upt Proces sing ...•....•................•.....•....•. 
External Interr'upt ..•.........•.........•.........•..•. 
Internal Interr'upt ....•...................•..•........•. 
Interr'upt Programming .......•.•..•......•..•.•...•.•.. 
Peripheral Control Interrupt ............•.....•......••. 

Storage Protect Feature .........••........•.• ' ..........••. 
Index Registers .........••..••..••••.•.•.•......••..••. 
Central Processor Modes .•.••...•..•..•.......•.•.•..•. 
Internal Interrupt ...••.•.......•.•....•.••••.••...••. 0 • 

Violations of Storage Protection .......•..•.•..•.••.•..•. 
Proceed Indicator ....•.•....•...•••••.•....••.••....•• 

Scientific Unit for Models 1200, 1250, 2200, and 4200 ...•.••. 

Page 

8-114 
8-11S 
8-127 
8-128 

A-I 
A-3 

B-1 

C-l 

D-l 
D-l 
D-2 
D-3 
D-S 

E-l 
E-l 
E-l 
E-2 
E .. 3 
E-S 

F-l 
Data Format. . . • • • . . . • . . . . . . . . . • . . . . . . . • . . . . • . . . . . . • • •. F-l 
Floating -Point Registers ...•...••.•.....••........•••.. F-l 
Floating -Point Indicator s ...••.•.•.. . • • . • . . . . . . . . • . . . . • • F-2 
Automatic Formatting in Arithmetic Operations. • . . . . . . . •• F-2 
Symbology............................................ F-2 
Tillling Note s . . . • . • . . . . . . . . . • . • • . • . . . . . • • . . . . . . • • • . . • • . F - 3 

Extended Multiprogralllming and 8 -Bit Transfer for 
Models 1200, 12S0, 2200, and 4200 ••.•..•....•..••..•..•• G-l 

Storage Protection with Base Relocation. . . • • • • • • . • • . . . • • . G-l 
External Interrupt Masking ....•......•...••.•..•.....•. G-2 
Instr'uction Timeout. . . . • . . . . . . . • • • • • . . • • • • . • . . . . • • • • . • . G-2 
8-Bit Transfer Capability. • • • . • . . • . • . • . . . . • . . • • • • . . . . . •. G-3 
Privileged SCR Instruction. . . . . • • • . . . . . . . • . • . . . . . . • . • • •. G-4 

Extended Input/Output Capacity for the Model 4200 ......•..•. 
Feature 1116 .....................•.•..•............... 
Features 4214A and 4214B ..•.•..•....••..••.•.....•.•.• 
Feature 421S .......................................... . 

B-1 
B-1 
B-1 
B-1 

B'uffered Sectors. . . • . • • • • . . • . • . • • . • . • . . • . • . • . . . . • • . • . •. B-2 

ix #2-139 



LIST OF 
ILLUSTRATIONS 

Figure I-I. 
Figure 1-2. 
Figure 1-3. 
Figure 1-4. 
Figure 1-5. 
Figure 1-6. 
Figure 1-7. 

Figure 1-8. 
Figure 1-9. 

Figure 1-10. 
Figure 2-1. 
Figure 2-2. 
Figure 2-3. 
Figure 2-4. 
Figure 2-5. 
Figure 2-6. 

Figure 2-7. 
Figure 2-8. 
Figure 2-9. 
Figure 2 -10. 
Figure 2-11. 
Figure 2 -12. 
Figure 2 -13. 
Figure 3 -1. 
Figure 3 -2. 
Figure 3 -3. 
Figure 3 -4. 
Figure 3 -5. 
Figure 3 -6. 
Figure 3-7. 
Figure 3 -8. 
Figure 3 -9. 
F igur e 3 - 10. 
Figure 3 -II. 
Figure 4-1. 
Figure 4-2. 
Figure 4-3. 
Figure 4-4. 
Figure 4-5. 
Figure 4-6. 
Figure 4-7. 
Figure 4-8. 
Figure 4-9. 
Figure 5-1. 

Type 1201 Control Panel ............•............•.•...•. 
Type 220 -1 Cons ole .•.... 0 ••••••••••••••••••••••••••••••• 

Type 220-3 Console ....................•.......•......... 
Main MeIrlory Size ......... ' .. 0 ••••••••••••••••••••••••••• 

Main MeIrlory Speed ..........•..•.......•........•.....•. 
Peripheral SiIrl'ultaneity ........••........•.....•.•..•.... 
CustOIrler Inquiry Handling via Typical COIrl!ITunications 

Network ........••....•.•....•.........•....•....•...•. 
Basic Input/Output Data Path ......................•.....•. 
Addres s As sigmnents and Unit Loads Available in 

Series 200 Processors ...•.....••...............•...... 0 

Data Path During Card Read Operation .•••..•...••.•.•....• 
Logical Division of Series 200 Central Processor .•.•....... 
Main MeIrlory Functions ...........•.•............•....... 
One MeIrlory Position ....•...........•......... 0 ••••••••• 

Representation of Characters in Magnetic Core Storage ..... . 
Type 4201 MeIrlory SubsysteIrl ...•••.••......• '.' ..•....••. 
Model 4200 MeIrlory Interleaving (Type 4201-9 

Central Processor) ...•.••. 0 ••••• 0 •••••••••••••••••••••• 

Typical Control Register Function ...........••....•.•.. 0 •• 

Data Flow Between Main MeIrlory and ArithIrletic Unit .....•. 
Control Unit Activities ....•....•.•...............•.•.•..• 
Input/Output Traffic Control Activities .....•....••.•.•..... 
Data Transfer Intervals During One Peripheral Operation .... 
Logical Decision PerforIrled by Input/Output Traffic Control 0 • 

SYIrlbolic Representation of Input/Output Traffic Control. •.... 
Conversion of SyIrlbolic Tags to Absolute MeIrlory Addresses. 
Series 200 Instruction ForIrlats ....••..•..••..•..•.•....•.. 
SYIrlbolic Representation of Series 200 Instructions .•.•.. 0 ••• 

Consecutive Storage Locations in Main MeIrlory ....••...••.. 
Data Field ForIrlat in Main MeIrlory ...•.........••....•••. 
Two IteIrl F orIrlats in Main MeIrlory ..•....•...........•... 
Record ForIrlat in Main Menlory .•....•.........•..•..•...• 
SUnlIrlary of Internal Data ForIrlats ..•....•.......•....•••. 
Character Representation on Magnetic Tape ...•...•• 0 •••••• 

Data Fornlat on Magnetic Tape ...•......•..•..•••..•....•. 
P'unched Card Codes .•.•.......••.......•....••.•......•• 
Typical Add Instr'uction .....•..••...•.•••..••.•.••.•...... 
Extraction of Data Fields in Typical Add Instruction ..•..•... 
Series 200 Index Register Map ...••••.•.•••••........••••• 
Extraction of Three-Character Indirect Address ....••.•.•.• 
Extraction of Indexed Address in Three-Character Mode •••.. 
Extraction of Indirect and Indexed Four -Character Addres ses. 
Series 200 Instruction ForIrlat 1 ...•••••.•.•.. 0 •••••••••••• 

Series 200 Instruction ForIrlat 2 ..••••.•..•......•••••...•• 
Series 200 Instruction ForIrlat 3 ..•...••••..••••••.•.•••••. 
Relationship of Source, AsseIrlbler, and Object PrograIrl ..••. 

x 

Page 

1-2 
1-3 
1-3 
1-6 
1-6 
1-6 

1-15 
1-18 

1-19 
1-19 
2-1 
2-2 
2-3 
2-3 
2-4 

2-6 
2-7 
2-11 
2-11 
2-12 
2-13 
2-14 
2-15 
3-2 
3-3 
3-4 
3-4 
3-5 
3-5 
3-6 
3-6 
3-7 
3-8 
3-8 
4-1 
4-2 
4-9 
4-11 
4-13 
4-15 
4-17 
4-18 
4-18 
5-2 

#2-139 



Figure 5-2. 
Figure 5-3. 
Figure 5-4. 
Figure 5-5. 
Figure 5 -6. 

Figure 5-7. 

Figure 5-8. 

Figure 5 -9. 

Figure 8-1. 
Figure 8-2. 
Figure 8-3. 
Figure 8-4. 
Figure 8-5. 
Figure 8-6. 
Figure 8-7. 
Figure 8-8. 
Figure 8-9. 
Figure D-1. 
Figure D-2. 
Figure D-3. 

LIST OF ILLUSTRATIONS (cont) 

Two-Character Address Assembly ....•...•• ~ .••......•... 
Three -Character Addres s As sembly ....••.•....•......... 
Four-Character Address Assembly ....•..•.•..••......... 
Easycoder Coding Form .•.•.•.•....•....•.••.•....•..•.. 
As sembly of Indexed Addres s in Three -Character 

Addressing Mode ..•••..•.•.••.•.••.•..•.••.•..•.•..•... 
Assembly of Indexed Address in Four-Character 

Addres sing Mode .•..•.•.••••..•.•..•.••..•.•.•......•• 
As sembly of Indirect Addres s in Three -Character 

Addres sing Mode .•••••.••............................. 
Assembly of Indirect Address in Four-Character 

Addres sing Mode ........•••.••••...•..••••.•.......••. 
True Add Examples •••••........•...•••......••.......•• 
Complement Add Examples ..••....•••......•••.....•.•.•. 
A and B Fields in Multiply Operation ....•.•..••...•..•...• 
Factor Locations in Divide Operation ..•....••....•••...... 
Changing Addressing Modes via CAM Instruction ....•...... 
MAT Operation ..••..•.••........••••.......•••....•...• 
MIT Operation .•.•.•..•...•.•••.•.•.....••••.......•.... 
T L U Operation ......••••.•.........•.•......•.....•.••.. 
Example of Operation Utilizing Escape Codes ...•....••..... 
Sample Coding for External Interrupt Routine ..•....•...... 
Sample Coding for Internal Interrupt Routine ....••....•..•• 
Interrupt Signal Generated by Peripheral Control .......... . 

xi 

Page 

5-3 
5-4 
5-4 
5-5 

5-22 

5-23 

5-23 

5-24 
8-7 
8-8 
8-10 
8-12 
8-65 
8-73 
8-79 
8-87 
8-114 
D-4 
D-5 
D-6 

• 

#2-139 



LIST OF 
TABLES 

Table I-I. 
Table 1-2. 
Table 1-3. 
Table 1-4. 
Table 1-5. 
Table 1-6. 
Table 1-7. 
Table 1-8. 
Table 1-9. 
Table 1-10. 
Table 1-11. 
Table 1-12. 
Table 1-13. 
Table 1-14. 
Table 1-15. 
Table 2-1. 
Table 2-2. 

Table 2-3. 
Table 2-4. 
Table 4-1. 

Table 4-2. 

Table 4-3. 
Table 4-4. 
Table 5-1. 
Table 5-2. 
Table 6-1. 
Table 7-I. 
Table 8-1. 
Table 8-2. 
Table 8-3. 
Table 8-4. 
Table 8-5. 
Table 8-6. 
Table 8-7. 
Table 8-8. 
Table 8-9. 
Table 8-10. 
Table 8-11. 
Table 8-12. 
Table 8-13. 
Table 8-14. 
Table 8-15. 
Table 8-16. 
Table 8-17. 

. 

Page 

P'unched Card EquiplIlent. • . . • . • . . . . • . . . . . . . . . • . . . • • . . . . . . . 1-8 
High-Speed Printers. . • . . • . • . • . . . . . . . . . • . • • . • • . • • . . . . . • . . . 1-9 
Magnetic Tape Units. . . • . • . . . . • • • • . • . . • . • . . . . . . . . . . • . • . . . . 1-9 
Disk Pack Drives ...••••..•...........•..•.•..•..•....... 1-10 
DiskFiles .•.•.........••.••.•.••••....•...........•..•.. 1-11 
Random Acces s Dr'um Units .•.••.......•......•.....••..•. 
High-Speed Dr'ums ...••...•.......•..••.•••......•..•.... 
Paper Tape Equipment ...••.....••..•.••.•..........•.•... 
Data Communication Equipment ...•....•...............•... 
Console Equipment ..............•....•..............•..•. 
Visual Information Projection Devices .•...••...........•... 
Teller Terminal Equipment ..........•••..•............... 
Additional Peripheral Devices ..........................•. '. 
Series 200 Optional Features .....•........................ 
Model 200 Advanced Programming Feature ................ . 
Memory Configurations for Type 420 1 Processors .......... . 
Size of Control Memory Registers (Models 200 / 1200/ 

1250/2200/4200) , ...............•...........•......•..... 
Control Memory Register s ........•......•....•..•••..•..• 
Summary of Central Processor Characteristics .•..••...••.. 
Number of Index Registers SilTIultaneously Available to 

a Program ..••••...••.........•....•.•....•.......•..•. 
Index Register Addresses in Three-Character 

Addres sing Mode ...•.••......•....•.......•.•.......•.• 
Index Register Addresses in Four-Character Addressing Mode 
Active Address Bits in Series 200 Processors .•..•.•••.•••.. 
Set I Punctuation Indicators ..•.••.•..••..........•.•..•.•. 
Set II Punctuation Indicators (Easycoder C and D Only) ••••••• 
Data Formatting Statements .....•....•.••••..•••.•.••.••.• 
As sembI y Control Statements .••••••.•.•.•.....•.••••.•...• 
Symbology Used in Series 200 Instruction Descriptions ••••.•• 
Series 200 Add and Subtract Operations .•.•.•.•••••••••••••. 
Binary Addition Table ..••••.•••••..••.••••.••.•••.•• ' ••••• 
Algebraic Signs in Decimal Addition .•.•••••••.•.•.•••••.•.. 
Decimal Arithmetic Sign Conventions .•.•..•.••.•.••.••••••. 
Multiply Sign Conventions .•••••••••....•...•..•.•.•••••.•. 
Divide Sign Conventions ...••••.•.•.••.••.•.••.•.•••••••••• 
SENSE Switch Conditions for BCT Instruction ..••.•..•••..•• 
Indicator Test Conditions for BCT Instruction .............. . 
Basic Test Conditions for BCC Instruction .••.•.•.•.•••••.•• 
BCC Test Conditions with Advanced Programming Instructions 
Control Register Contents Stored by SCR Instruction ...••.•.. 
Control Registers Stored by SCR Instruction ..•.•..•.•....•. 
Control Register Contents Loaded by LCR Instruction ••••..•. 
Modes Specified by Variant Character in CAM Instruction .••• 
Extended Move Conditions ...•....•..•••..•••....•...••..•. 
Size of Information Units in MIT Operation ....•••.....••.••. 

xii 

1-11 
1-12 
1-12 
1-13 
1-14 
1-16 
1-16 
1-17 
1-20 
1-21 
2-4 

2-7 
2-8 
2-17 

4-10 

4-12 
4-14 
4-15 
5-7 
5-7 
6-1 
7-1 
8-2 
8-4 
8-4 
8-7 
8-9 
8-10 
8-13 
8-36 
8-37 
8-40 
8-41 
8-58 
8-59 
8-61 
8-63 
8-68 
8-75 

#2-139 



Table 3-18. 
Table 8-19. 
Table 8-20. 
Table 8-21. 
Table 8-22. 
Table 8-23. 

Table 8-24. 
Table 8-25. 
Table 8-26. 

Table 8-27. 
Table 8-28. 
Table 8-29. 
Table 8-30. 

Table 8-3l. 
Table 8-32. 

Table 8-33. 
Table 8-34. 
Table 8-35. 

Table 8-36. 

Table 8-37. 
Table A-I. 
Table A-2. 
Table B-1. 
Table B-2. 
Table B-3. 
Table B-4. 
Table B-5. 
Table B-6. 
Table B-7. 
Table B-8. 
Table B-9. 
Table C-1. 

Table C-2. 
Table C-3. 

Table D-1. 

Table F-1. 
Table H-1. 

LIST OF TABLES (cont) 

Correspondence Between LIB Setting and Barricade Location 
Move or Scan Conditions ...••...................•........ 
Information Stored by SVI Instruction ............•......... 
Information Restored by RVI Instruction ..........•........ 
Special Characters in MCE Instruction .................... . 
Minimum R WC Capacity Requirements for Series 200 

Peripheral Devices ..••..•.........•...........•.....••. 
Description of PDT J/O Control Character Cl ...•••.•..••.. 
Description of PDT I/O Character CE (Escape Code) .•...•.. 
Description of PDT I/O Character C2 (Peripheral Control 

Designation ..•....•.•.••............................... 
Summary of PDT I/O Control Characters .............•.... 
C3 Coding for Type 209 and 209-2 Paper Tape Readers ....•. 
C3 Coding for Type 210 Paper Tape Punch .......•......... 
C3 Coding for Types 206 and 222 Printers and Type 237 

Bill Feed Printer Control •..••.• 0 •••••••••••••••••••••••• 

C3 Coding for Type 270A Random Access Drum ..•.•...••.•. 
Summary of PDT I/O Control Characters for Type 286 

Multi-Channel Communication Control ...•......•......... 
Type 286-1, -2, -3 Line Control Instructions .•.•..•.•....•• 
Summary of PCB I/O Control Characters .•.•.....•...••..• 
Summary of PCB I/O Control Characters for Type 286 

Multi-Channel Communication Control ...•.•...••••....•. 
PCB Control Characters C5 through C15 for Type 286-4, -5 

Line Control Instrouctions .•.•..•.•...••..••.•.•....•••.. 
Description of PCB I/O Character CE ..........•.......... 
Binary-Octal Equivalents .•............•....•.•....•....•• 
Decimal-Octal Conversion Table .......•.............•.••• 
Control Register Designations ..............•.......•..... 
Extended Move (EXM) Conditions ..................•..•.... 
Branch on Condition Test (BCT) SENSE Switch Conditions .••• 
Branch on Condition Test (BCT) Indicator Conditions ...... . 
Branch on Character Condition (BCC) Conditions .•..•.•.... 
Series 200 Character Codes ...........•. 0 •••••••••••••••• 

Binary, Octal, and Decimal Equivalents ....•.......•.....• 
Powers of 2 .......••...••.•.•...•••..•.•.•....••.•...••• 
Move or Scan Variants .•.••.•.•....•.....•.....•.••..••.. 
Instruction Summary - Timing Formulas for Models 200, 

1200, 1250, and 2200 .•••.•..•.•.......•..•.•.•..•.••.•. 
Instruction Timings 'for the Model 4200 ...••.....••.•..•... 
Timings for Decimal Multiply and Divide, Models 200, 

1200, 1250,2200 and 4200 •..•...................•.••••• 
Summary of Interrupt/Allow Function Control and 

Test Operations ...•..•••.•..••......•.•..•....•••.•••.. 
Summary of Scientific Instructions .••..•••.•....•.....•... 
Controls /Devices Connectable to Buffered Sectors .•.•••••.. 

xiii 

Page 

8-80 
8-88 
8-92 
8-96 
8-105 

8-111 
8-116 
8-118 

8-118 
8-120 
8-124 
8-124 

8-125 
8-125 

8-126 
8-126 
8-130 

8-146 

8-148 
8-149 
A-I 
A-2 
B-1 
B-2 
B-3 
B-4 
B-5 
B-7 
B-8 
B-8 
B-9 

C-4 
C-7 

C -11 

D-7 
F-4 
H-2 

*2-139 





SERIES 200 
COMPONENTS 

Honeywell's Series 200 Data Processing Syste:m is a set of :modularly designed, co:mpatible 

:models, five of which - the Models 200, 1200, 1250, 2200, and 4200 - are the subject of this 

:manual. Each :model consists of two basic ele:ments: a central processor, and an array of 

peripheral devices connected to that proces sore The peripheral equipm.ent in the syste:m can be 

attached to any processor, and the nu:mber of connectable devices is limited only by the nu:mber 

of unit power loads and peripheral address as sign:ments available with the particular processor. 

The initial :me:mber of Series 200 was the Model 200. The capabilities of the Model 200 

processor have twice been extended since its introduction. Thus, seven central processors are 

described herein: the three processors of Model 200 (Types 201, 201-1, and 201-2); the Type 

1201; the Type 1251; the Type 2201; and the Type 4201. The processing power of anyone of 

these types can be increased at any ti:me by the addition of peripheral devices and/or optional 

hardware features. This section describes: (1) the two basic ele:ments of a Series 200 :model 

(processor and peripheral devices); (2) the :manner in which these elements co:m:municate with 

one another; and (3) the expansion of processing power that is possible through the addition of 

optional hardware features to a processor. 

CENTRAL PROCESSOR 

The central processor is the co:mputing and 

control center of a Series 200 :model; instructions 

processed within the central processor control 

the operations of the entire co:mputer. A Series 

200 processor is functionally divided into three 

units: storage, control, and arith:metic. The 

storage unit provides :magnetic core storage for 

both the program instructions and the data to be 

processed according to these instructions; it is 

also used to contain the resultant data. The con-

trol unit directs the operation of the entire com­

puter by selecting, interpreting, and controlling 

1-1 #2-139 



SECTION 1. SERIES 200 COMPONENTS 

the execution of all program instructions. It controls not only the flow of info rTIlati on within the 

central processor but also the flow of data between the central processor and all peripheral 

equipment. The arithmetic unit performs such operations as addition, subtraction, multiplica­

tion, division, and comparison, as directed by the control unit. 

Included as a part of the central processor is a control panel (see Figure 1-1) which pro­

vides for easy communication between an operator and the computer. By using various control 

switches, the operator can start and stop the machine and can load and interrogate memory lo­

cations. The control panel also includes from four to eight SENSE switches which may be used 

in conjunction with programmed instructions to stop processing or to select predetermined pro­

gram paths. The use of these switches increases the flexibility of a program, allowing it to be 

used in several different applications. 

RESET mm SYSTEM o I~J [;J [~}[iI ~ 
HOIEYWELL 1200 

lfxTEiiNAL]PiOGRAMfPAAITvTFANl 
I I I I I 

~N!~::~_~~~J:'~~A~.eL~B_J 

Figure 1-1. Type 1201 Control Panel 

SENSE 

Another comm'UIlication medium between the operator and the central processor is the 

Type 220 console, of which two versions are available. The Type 220-1 Console (Figure 1-2) 

contains a typewriter which may be used as a peripheral device, operating under program control. 

or as a logging typewriter by which the operator can make essential notes about the program in 

progress. The central processor control panel remains situated on the processor cabinetry and 

is used for the functions described above. 

In the Type 220-3 Console (Figure 1-3), most of the co~trol panel functions, including that 

of direct access to the processor, are performed by means of the console typewriter. In addition, 

the typewriter can perform the peripheral and logging functions described for the Type 220-1. 

The central processor control panel is replaced by a smaller control panel containing only the 

main power switches, the SENSE switches, and certain check condition indicators which are 

located in the bottom row of the control panel shown in Figure 1,:", 1. The Type 220 -3 control 

panel contains additional indicators used with the Storage Protect Feature (see page 1-23) and 

the additional SENSE switches used with the larger Series 200 processors. 

1-2 #2-139 



SECTION I. SERIES 200 COMPONENTS 

Figure 1-2. Type 220-1 Console Figure 1-3. Type 220-3 Console 

STANDARD PROCESSING MODE 

The central proces sor performs arithmetic and logical operations as directed by the in­

structions of an internally stored program. These instructions are read into memory from an 

input medium such as punched cards, magnetic tape, or punched paper tape. Control circuitry 

within the processor then selects, interprets, and executes these instructions. Normally, the 

instructions are executed sequentially. Branch instructions are provided, however, which make 

it possible to skip over a group of instructions or otherwise c.hange the sequence of the program. 

INTERRUPT PROCESSING MODE 

Sequential instruction execution is changed temporarily whenever the central proc~ssor is 

interrupted. Anyone of four sources can "demand" access to the central processor by generating 

an interrupt signal, which turns on a central proces sor interrupt indicator. Once an interrupt 

indicator is detected as being on, a hardware response is made: information concerning the cur­

rent status of the processor (including the setting of the sequence register) is stored, and a 

branch is made to a stored routine which identifies and services the demand. Thus, programmed 

tests need not be made to detect the presence of an interrupt condition - the entire process of 

detecting and responding to an interrupt signal is an automatic hardware function. After the 

stored service routine has been executed, control is returned to the interrupted routine at the 

point where the interruption occurred and the previous status is restored. Two kinds of inter­

rupts can occur in the system: external interrupts and an internal interrupt. A detailed descrip­

tion of interrupt functions and programming for interrupt processing is presented in Appendix D. 

1-3 #2-139 



SECTION I. SERIES 200 COMPONENTS 

External Interrupts 

The three sources of external interrupts are: 

1. Peripheral Control - The control connected to any Series 200 peripheral 
device can generate an interrupt signal under program control (peripheral 
controls are described on page 1-7; peripheral control interruption is 
described in Appendix D. For instance, a data communication control 
which services one or a number of communication lines and devices may 
generate a real-tim.e demand on central processor time to handle a cus­
tomer inquiry from. a remote terminal. The current operation-s of the 
processor are temporarily interrupted so that the inquiry may be serviced. 
A routine to read the inquiry and to answer the question from. a stored 
customer file is autom.atically executed, and a response is sent back to 
the te rminal. 

2. Operator's Control Panel or Console - The operator can interrupt the 
central processor by pressing the INTERRUPT button on the control panel 
or console. 1 The source of such "on-site" interruptions is m.ade available 
to the program by the execution of a single instruction at the beginning of 
the interrupt service routine. 

3. Program Instruction - One instruction in the Series 200 repertoire, the 
Monitor Call instruction, is used to generate an interrupt condition. 1 
For programming convenience, the activation (or "calling") of the m.onitor 
program can be accomplished by means of this instructiono 

Internal Interrupt 

If a central processor contains the Storage Protect Feature (Types 1201, 1251, 2201, and 

4201 only), an internal interrupt condition, caused by certain violations of a protected memory 

area or attempts to address nonexistent m.emory locations, can also occur. Internal interrup­

tions are of lower priority than external interrupts, so that a processor executing an external 

interrupt service routine does not respond to an internal interruption until the routine is com­

pleted. Processing of internal interrupts is described in Appendix Eo 

ADDRESSING MODES 

Due to the unique binary addressing system. used in referencing the individual core storage 

locations within the central processor, an address portion of a machine-language instruction can 

occupy two, three, or four characters of memory. The number of character positions employed 

is controlled by two instructions: the assembly control instruction ADMODE, and the Change 

Addressing Mode (CAM) instruction. Any core storage address can be referenced in any addre ss­

ing mode by having the central processor prefix the address expressed in the instruction with a 

binary value previously set in an address register. Thus, the programmer has the ability to set 

the address registers to some high module, switch to the two-character addressing mode, and 

still continue to address that module. This utilization of the smallest num.ber of character 

1 
The Type 201 and 201-1 processors cannot be interrupted by sources 2. and 3. above. 

1-4 #2-139 



SECTION I. SERIES 200 COMPONENTS 

positions to expres s any core storage addres s results in a reduction in the amount of memory 

required for a particular program. 

ITEM-MARK TRAPPING MODE 

The item-mark trapping mode, which can be set via the CAM instructIon, causes the pro­

cessor to treat and execute any instruction containing an item-marked op code as if it were a 

Change Sequencing Mode (CSM) instruction, which results in a transfer of control to an instruc­

tion stored at a pre specified location. This processing mode is used extensively in Liberator 

systems and can also be used to control program branching. 

PROCESSING POWER 

The power of any processor within Series 200 can be defined as the sum of its main mem­

ory size, its internal speed, its degree of peripheral simultaneity, and the number of optional 

feature s which may be added to it. 

Main memory size within the Models 200/1200/1250/2200/4200 ranges from a minimum of 

2, 048 character locations (Type s 201 and 201-1) to 524, 288 locations (Type 4201). Figure 1-4 

shows the modular main memory sizes of the seven processor types. 

The internal speed of a processor is measured in terms of a memory cycle (i. e., the time 

required to read and restore the contents of a unit location). The unit location used by proces­

sors other than the Type 4201 is a single, six-bit character location. The unit location of the 

Type 4201 is four successive character locations that contain a four-character word. Memory 

cycle speeds range from two microseconds per character to 750 nanoseconds per four-character 

word (see Figure 1-5). 

Peripheral simultaneity is a key feature of Series 200 processors. Among the processors 

described in this manual, from 3 (Model 200 processors) to 16 (Type 4201 processor) simulta­

neous input/ output operations can be performed concurrently with internal computing (see 

Figure 1-6). 

A number of optional features can be included in the Series 200 processors to provide com­

plete flexibility in specializing anyone proces sor to a user's particular application. Since some 

of these features refer to the peripheral capabilities of a processor, they are sum.marized at the 

conclusion of this section. 

1-5 #2-139 



II BASIC 

II OPTIONAL 

SECTION I. SERIES 200 COMPONENTS 

4201 1 

220i 

1250 

1201 

201-2 

201-i 

201 

1 
The Type 4201 moves four successive 
characters in 750 nanoseconds. Anyone 
of these characters is thereby moved in 
188 nanoseconds. 

Figure 1-5. Main Memory Speed 

4201 

2201 

1251 

1201 

201-2 

201-1 

201 

II BASIC 

I!!;~!~it OPTIONAL 

Figure 1-4. Main Mem.ory Size 
Figure 1-6. Peripheral Simultaneity (Number 

of Read/Write Channels Available to Processors) 

PERIPHERAL EQUIPMENT 

The array of peripheral device s available 

with Series 200 processors includes over 40 units: 

console typewriters, punched card equipment, 

high-speed printers, magnetic tape units, paper 

tape equipment, random access drum units, disk 

devices, MICR reader-sorters, multiple tape 

listers, teller terminals, visual information pro­

jection units, and various data communication 

controls and remote terminals. Also included 

are computer-to-computer adapters, an interval 

1-6 #2-139 



SECTION 1. SERIES 200 COMPONENTS 

ti:mer, a ti:me-of-day clock, and controls for optical source-docu:ment readers, optical journal 

readers, digital plotters, and a bill feed printer. 

Infor:m.ation is transferred between anyone of the se device s and the central proce s sor by 

:means of a single stored-progra:m instruction - the Peripheral Data Transfer instruction de­

scribed in Section VIII. By coding various control characters in this instruction, the program:mer . 
specifies the direction of data transfer (into or out of the proces sor), the specific device involved 

in the transfer, the data path over which information is to be transferred, and any other infor­

mation necessary to define the input/output operation (e. g., the nu:mber of lines to be spaced 

during printer operations). The actual co:mmunication with the central processor is not made by 

the particular peripheral device but by the peripheral control connected to that deviceo 

PERIPHERAL CONTROL 

A peripheral control regulates the transfer of data between a processor and a peripheral 

device. The control compensates for the difference in the data transfer rates of the processor 

and the peripheral device by temporarily storing each character of transmitted information until 

either the processor or the device is ready to receive the character. The control also converts 

each character into the code used by the intended recipient (e. g., the card reader control con­

verts a character fro:m Hollerith code to the internal six-bit code of the central processor). As 

each character is transferred to the control, it is also checked for accuracy by the control. One 

particularly significant feature of the peripheral control is that it operates independently of the 

central processor and requires access to the main memory only when infor:mation transfers are 

performed. In particular, all of the previously mentioned activities of the control - te:mporarily 

storing, converting, and checking the information - do not involve the central processor in any 

way. When each character of information is transferred, one :main :memory cycle is allocated 

for the transfer. 

So:me peripheral devices require one peripheral control per device (e. g., a card reader). 

Other devices can be connected in :multiple fashion to a single peripheral control (e. g., up to 

eight 1 /2-inch magnetic tape units can be directed by a single control). The number of Series 

200 devices connectable to a peripheral control is shown in Tables 1-1 through 1-10 on the fol­

lowing pages. The infor:mation listed under "Unit Loads" and "Address Assign:ments" in these 

tables is used in determining the nu:mber of peripheral controls that can be connected to a Series 

200 processor, as explained on page 1-17. 

PUNCHED CARD EQUIPMENT 

Series 200 includes a wide variety of peripheral devices not only of different kinds, but'also 

on several perfor:mance levels for the same kind. For instance, four different punched card units 

1-7 #2-139 



SECTION I. SERIES 200 COMPONENTS 

are offered: two card readers, a card punch, and one reader /punch. Table 1-1 lists the card 

devices available within Series 200. Note that a card device requires either one or two "unit 

loads, " depending on the number of functions the device performs. 

Table 1-1. Punched Card Equipment 

223 Card Reader 800 cards /minute 1 1 1 

223-2 Card Reader 1050 cards /minute 1 1 1 

214-1 Card Punch 100-400 cards/minute 1 1 1 

214-2 Card Reader /Punch Read: 400 cards /rninute 1 1 2 
Punch: 100-400 cards/ 

minute 

HIGH-SPEED PRINTERS 

Six types of printers (see Table 1-2) produce printed reports, listings, etc., at speeds 

which vary from 450 to 1,300 lines per minute. Processed information is .printed from any pro­

grammer-assigned area in memory. A single program instruction - the Move Character sand 

Edit instruction - allows the programmer to punctuate the output date, suppress zeros, and in­

sert identifying symbols in the data prior to printing. 

Print Buffer 

With the addition of the Print Buffer (Feature 036), the amount of central processor mem­

ory cycles required for data transfer to the printer is reduced to less than 10/0. Thus, more than 

990/0 of the central processor time is available for program execution. This feature is available 

only for the Type 222-3, -4, -5, and -6 Printers. 

MAGNETIC TAPE UNITS 

Magnetic tape is a compact and highly versatile medium for the storage of programs and 

data files. Two complete families of industry-acclaimed tape units are available with Series 200 

processors (see Table 1-3): 1/2-inch tape units (10 types) transfer data at speeds ranging from 

4,800 to 96,000 characters per second; three types of 3/4-inch tape units read/write from 

32, 000 to 88, 800 characters per second. The capability of processing nine-track, 1 /2-inch tape 

is also provided. 

1200 BPI Recording Density 

The l200-bits-per-inch recording density (Feature 054) provides the Type 204B-9 Mag­

netic Tape Unit with the capability of reading and writing data at a density of 1200 bits per inch 

1-8 #2-139 



SEC TION I. SERIES 200 COMPONENTS 

(bpi) on Dupont Crolyn magnetic tape. The 1200-bpi recording density enables the 204B-9 to 

achieve a transfer rate of 144, 000 characters per second. 

Table 1-2. High-Speed Printers 

222-1 (96 print positions) 650-1, 300 lines /minute 1 1 1 

222-2 (108 print positions) 650-1, 300 lines /minute 1 1 1 

222-3 (120 or 132 print 650-1, 300 lines/minute 1 1 
positions) 

222-4 (120 or 132 print 950 -1, 266 lines/minute 1 1 1 
positions) 

222-5 (120 or 132 print 450 lines/minute 1 1 1 
positions) 

222-6 (120 or 132 print 1100 lines/minute 1 1 1 
positions) 

1 . 
400 lines/minute 229 (120 or 132 print 1 1 1 

positions) 

lRestricted to educational institutions. 

Table 1-3. Magnetic Tape Units 

1 /2-Inch Magnetic Tape Units 

204B-l 7,200/20,000 characters/second 1-8 2 2 
204B-2 

204B-3 16,000/44,500 characters/second 1-8 2 2 
204B-4 

204B-5 24,000/66,700 characters/second 1-8 2 2 

204B-7 20, 000/28, 800 (or 7, 200/28, 800) 1-8 2 2 
characters/second 

204B-8 44, 500/64, 000 (or 16, 000/64, 000) 1-8 2 2 
characters/second 

204B-9 66, 700/96, 000 (or 24, 000/96, 000 or 1-8 2 2 
66,700/144,000 or 96,000/144,000) 
characters/second 

204B-ll 4,800/13,300 characters/second 1-4 2 2 
204B-12 

204C-13 28,800 characters/second 1-2 2 2 
204C-14 

1-9 #2-139 



204A-1 

204A-2 

204A-3 

· SECTION I. SERIES 200 COMPONENTS 

Table 1-3 (cont). Magnetic Tape Units 

3/4-Inch Magnetic Tape Units 

32,000 characters/second 

64,000 characters/second 

88,800 characters/second 

1-4 

1-4 

1-4 

DISK PACK DRIVES 

2 

2 

2 

2 

2 

2 

Honeywell disk pack drives combine the desirable features of magnetic tape and magnetic 

disk storage - unlimited shelf storage and fast random access. This is made possible by the 

use of removable disk packs which may be recorded an, stored indefinitely (like magnetic tape), 

and rapidly reinserted in an on-line drive. The various disk pack drives are listed in Table, 1 .. 4. 

Table 1-4. Disk Pack Drives 

258 4. 6 minion characters 208, 333 characters / 1 ... 8 1 2 
second 

259 9. 2 million characters 208, 333 characters / 1-8 1 2 
second 

259A 1 9. 2 million characters 147, 500 charactersl 1 .. 8 1 2 
second 

259B 9. 2 million characters 147,500 characters/ 1-8 1 2 
second 

lUsed in systems with Type 201 and 201-1 Central Processors. 

DISK FILES 

The Iioneywell disk files are fixed-disk storage devices which provide an extremely high 

on-line storage capacity (see Table 1-5). A single disk file subsystem's capacity may amount 

to over 1. 2 billion characters. Anyon-line data track can be located in a maximum time of 120 

m.illiseconds, and data can be transferred at a rate of 190, 000 characters per second. 

1-10 #2-139 



SECTION I. SERIES 200 COMPONENTS 

261 

262 

150 TIlillion character s 

300 TIlillion characters 

RANDOM ACCESS DRUMS 

Table 1-5. Disk Files 

190,000 characters/second 

190,000 characters/second 

1-8 

1-4 

2 

2 

The Series 200 druTIl storage capability features a druTIl control which can direct froTIl one 

to eight magnetic druTIls, each capable of storing 2.6 million characters of inforTIlation (see 

Table 1-6). Thus, a single druTIl subsysteTIl can have a total capacity of over 20 TIlillion charac­

ters. Any record stored on the druTIl can be located in 27 TIlilliseconds (average) and can be 

transferred at the rate of Ill, 000 character s per second. 

Table 1-6. RandoTIl Access DruTIl Units 

270A -1 2.6 TIlillion characters 
through 
270A-8 

HIGH-SPEED DRUMS 

111,000 characters/second 1-8 1 2 

The high-speed druTIls are fixed-head storage devices which offer high speed performance 

with fast access tiTIle. Up to four devices can be -operated with a single drum control, and thus 

a control's capacity may amount to over 16 .. 8 million characterso Any record stored on the 

drums can be located in 8.6 milliseconds (average). 

Angular Position Indicator 

Features 072 and 073 (Angular Position Indicator) proyide for optimum addressing of the 

Type 265/266 and 267 High-Speed Drums, respectively. Information is provided at any given 

time as to the current drum position relative to 360 degrees of rotation. Under heavy load con­

ditions with many demands waiting to be executed, the average access time of the druTIls may be 

substantially reduced. 

1-11 #2-139 



SECTION I. SERIES 200 COMPONENTS 

4. 2 million characters 

4. 2 million character s 

Table 1-7. High-Speed Drums 

300,000 char./second 

1,200,000 char./second 

1-4 

1-4 

1 Used only in systems with Type 1251, 2201, or 4201 Central Processors. 

1 

1 

2 

2 

2Used only in systems with Type 4201 Central Processors equipped with the High-Speed Third 
Sector (Feature 4215). 

PAPER TAPE EQUIPMENT 

Paper tape is an ideal medium for recording data which originates at locations distant from 

a central Series 200 installation and, as such, becomes particularly significant in data commun­

ication networks. A variety of standard commercial codes may be used with this relatively 

inexpensive medium. Two paper tape devices are offered in Series 200 (see Table 1-8). 

Paper Tape Reader 

Paper Tape Punch 

Table 1.,.8. Paper Tape Equipment 

600 characters / second 

120 characters/second 

1 

1 

2 

2 

1 

1 

The total power requirement for the combination of a 209-2 reader and a 210 punch is 3 unit loads 

DATA COMMUNICATION EQUIPMENT 

The immediate and automatic response to an external interrupt by the Series 200 processor 

is described on page 1-3. A common source of external interruption is a communication control. 

These controls allow the Series 200 processor to communicate with distant locations (e. g., 

branch offices, warehouses, etc.) by receiving and transmitting data over toll and leased lines. 

Four kinds of communication controls are available in Series 200: (1) two types of single-channel 

controls transfer entire messages over single lines; (2) three types of multi-channel controls 

transfer messages character-by-character over as many as 63 different lines; (3) two types of 

message-mode multi-channel controls transfer entire messages over a maximum of 63 lines; 

and (4) two types of controls serve as interfaces with the Air Force A UTODIN network. All 

1-12 #2-139 



SECTION I. SERIES 200 COMPONENTS 

controls are adaptable to a broad selection of lines, speeds, and terminal devices. One such 

terminal device is Honeywell's Data Station (see Table 1-9). 

Table 1-9. Data Communication Equipment 

Device 

Communication Controls 

281-1 Single-Channel Controls Up to 5, 100 character s / 1 line 11 2 
and -2 second 

286 -1, Multi -Channel Controls Up to 300 characters / 1-63 lines 2 2 
-2, an second/line 
-3 

286-4, Message-Mode, Multi- Up to 7, 000 characters/ 1-63 lines 2 2 
_52 Channel Controls second (all lines) 

287 A UTODIN Communica- Up to at least 4, 800 1 line 2 2 
tion Control baud 

287-1 (USASCII) AUTODIN Up to at least 4, 800 1 line 2 2 
Communication Control baud 

Remote Terminal Devic 

288-1 Data Station Central 120 characters/second n/a n/a n/a 
Control 

288_3
3 

Data Station Central 300 charac1:ers / second n/a n/a n/a 
Control 

289-2 Data Station Page 10 characters / second n/a n/a n/a 
Printer & Keyboard 

289-2A Keyboard 10 characters/second n/a n/a n/a 

289-3 Data Station Page 40 characters / second n/a n/a n/a 
Printer & Keyboard 

289-4 Data Station Paper 120 characters / second n/a n/a n/a 
Tape Reader 

289-5 Data Station Paper 120 characters/second n/a n/a n/a 
Tape Punch 

289-7 Data Station Card 143 characters/second n/a n/a n/a 
Reader 

289-8 Data Station Optical 50 characters / second n/a n/a n/a 
Bar Code Reader 

289-9
3 

Remote Line Printer 300 characters / second n/a n/a n/a 

1 The Type 281-2 control requires two unit loads. 

2Not available for use on the Type 201 and 201-1 Central Processors. 

3Both required for operation of either unit. 

1-13 #2-139 



SECTION I. SERIES 200 COMPONENTS 

A major requirement of many communication networks (e. g., inquiry handling or ITlessage 

switching applications) is fast access to a stored file. Files may sometimes be stored in main 

memory, but for large files main memory storage is economically unfeasible. File storage units 

(i. e., the disk pack drives or drum units) fulfill the requirements of these applications. 

A typical data communication network is shown in Figure 1-7. The pertinent components 

of this system are: (1) a Type 201-2 processor; (2) a Type 259 Disk Pack Drive; (3) a Type 281 

Communication Control; (4) two data sets 
1

; and (5) a Honeywell Data Station, the remote terminal 

device. Two particular devices connected to the Data Station are used in this example: a key­

board by which the inquiry is transmitted to the central processor, and a page printer which 

prints the answer to the inquiry in readable form. 

CONSOLE EQUIPMENT 

Characteristics of the Type 220 consoles, described previously on page 1-2, are listed 

in Table 1-10. 

Table 1-10. Console Equipment 

Typing Speed (input); or 
10 char. /sec. (output) 

VISUAL INFORMATION PROJECTION DEVICES 

Cathode-ray tube (CRT) display units - for businesses requiring instantaneous visual ac­

cess to data stored in computer files - are available to the Series 200 user. These devices 

operate on line to the computer, either locally via direct physical connection or from remote 

locations via communication facilities. As shown in Table 1-11, the display devices provide a 

variety of keyboard arrangements: numeric, numeric/block alpha, and typewriter. An 8-bit 

code (7-bit USASCII plus parity) is used for synchronous transmission and a 10-bit code (7-bit 

USASCII plus parity and start and stop bits) for asynchronous transmission. 

1 
A data set is required to convert the data signals used by the communication control to signals 
acceptable for transmission over communication lines. 

1-14 #2-139 



PRINTER 

SEC TION 1. SERIES 200 COMPONENTS 

TYPE 288-1 
DATA STATION 
CENTRAL CONTROL 

DATA SET 

DATA SET 

TYPE 281 
COMMUNI­
CATION 
CONTROL 

TYPE 201- 2 PROCESSOR 

TYPE 257 
DISK 
PACK 
DRIVE 
CONTROL 

TYPE 259 
DISK PACK DRIVE 

1. CustoIner inquiry is typed on keyboard in 
form of a coded message. 

2. Message signals are converted to a form 
acceptable for transmission line. 

3. Message is transmitted over transmission 
line. 

4. Message signals are reconverted. 

5. Control generates interrupt signal and trans­
fers incoming message to preassigned 
memory location as directed by interrupt 
service routine. 

6. Store d interrupt service routine interprets 
message and issues instructions to read and 
update the customer 's record in a file stored 
in Type 259 Disk Pack Drive. 

7. Type 257 control directs the execution of the 
instl'uctions issued by the stored interrupt­
program. 

8. Customer's record is read and updated ac­
cording to instructions. Record is read into 
preassigned location in interrupt routine 
(in central processor memory), from which 
the answer to the inquiry is sent back to the 
Data Station. (Answer to inquiry is printed 
by page printer. ) 

Figure 1-7. Customer Inquiry Handling via Typical Communications Network 

1-15 #2-139 



SECTION I. SERIES 200 COMPONENTS 

Table 1-11. Vi sual Information Projection Devices 

303 Display Station 
(Typewriter keyboard) 

311 Display Station (IS-key 
block numeric keyboard) 

312 

304 

Display Station (43-key 
numeric /block alpha 
keyboard) 

Display Station (Navcor 
electronic typewriter 
keyboard) 

317 Display Station 
(no keyboard) 

318 Display Station 
(no keyboard) 

TELLER TERMINAL EQUIPMENT 

1200-2400 baud 

12 for 
basic con­
trol, plus 
12 for 
each ex­
pansion 
module 

n/a n/a 

Honeywell Teller Terminal equipment permits more efficient banking procedures through 

on-the-counter, on-line processing .of all teller-assigned transactions. The Type 370 Teller 

Terminal is used by the teller for all his bank transactions, and a remote transceiver transmits 

transaction information between the Type 370 and the computer. Data is transmitted asynchro­

nously via a modified USASCII-type code permitting combinations of similarly coded peripheral 

devices to share common networks. This code consists of a start bit, seven data bits, an 0dd 

parity bit, and a stop bit. Specifications of the Type 370 are shown in Table 1-12. 

370 Teller Terminal 

Table 1-12. Teller Terminal Equipment 

120 characters/second 1, 2, 6, or 
10 

ADDITIONAL PERIPHERAL DEVICES 

not 
applicable 

not 
applicable 

A number of other peripheral devices are included in the Series 200 line. General charac­

teristics of these devices are shown in Table 1-13. 

1-16 #2-139 



SECTION I. SERIES 200 COMPONENTS 

Table 1-13. Additional Peripheral Devices 

212 On-Line 120, 000 characters I second 1 1 1 
Adapter 

212-1 Central Pro- 167, 000 characters / second 1 2 2 
cessor Adapter 

213-3 Interval Timer Range: 100 microseconds to 1 1 1 
200 milliseconds 

213-4 Time -of-Day Range: 00:00:00.0 to 1 1 1 
Clock 23 :59:59.9 (hours, 

minutes, seconds, 
and tenths of seconds) 

232 MICR Reader- Up to 600 documents /minute 1 1 1 
Sorter and 
Control 

233-2 MICR Reader- Up to 1,560 documents/minute 1 1 1 
Sorter Control 
for Burroughs 
BI03 

234 Plotter Control Plotting Speed: Up to 300 1 1 1 
for Calcomp increments per second (in any 
Plotters of eight directions) 

235 Optical Journal· 26 or 52 line s / second 1 1 1 
Reader Control 

237 Bill Feed 600 lines /minute; or up to 800 1 2 2 
Printer Control cards/minute 

PERIPHERAL DATA TRANSFER OPERATION 

One of the major features of Series 200 is the degree of peripheral simultaneity that can be 

achieved by the various processors. The Model 200 processors (Types 201, 201-1, and 201-2) 

and the Type 1201 processor can perform up to four peripheral operations simultaneously; the 

Type 1251, 2201, and 4201 processors may perform as many as six, eight, and sixteen simul­

taneous peripheral operations, respectively. While all these operations are being executed, the 

central processor continues its internal processing. The ability to perform simultaneous periph .. 

eral operations derives from an internal unit of the central processor - the input/output traffic 

control - which guarantees a peripheral control access to main memory when data is to be trans­

ferred. The manner in which the traffic control does this is explained in Section II. The data 

path used by the traffic control to transfer data (see Figure 1-8) is described below. 

Peripheral Addresses and Unit Loads 

When installed in a Series 200 computer system, peripheral controls (and their associated 

1-17 #2-139 



SECTION 1. SERIES 200 COMPONENTS 

devices) are permanently connected to the system. Each control is assigned one or two ad­

dresses, depending on the number of directions in which it can transfer data. It is by these 

peripheral addresses that the controls are designated in input/output instructions. For example, 

a card reader and its associated control can transfer data in only one direction - into the central 

processor. The reader control is therefore assigned one address by which it is always designated 

in an instruction. A combination card reader/card punch and control can transfer data in two 

directions - into and out of the processor. It is thereby assigned two addresses: one address 

is used to specify an input (card read) operation, while the other is used to specify an output 

(card punch) operation. 

CENTRAL PROCESSOR 

'" PERIPH.ERAL 
INTERFACE 

Figure 1 .. 8. Basic Input/Output Data Path 

The number of peripheral controls which a Series 200 processor can accommodate depends 

upoh four factors: (1) the number of "unit loads" of power required by the controls to be con­

nected; (2) the number of unit loads of power available from the processor; (3) the number of 

peripheral addresses required to operate the controls; and (4)the number of address assignments 

which the processor provides. A peripheral control may require either one or two unit loads of 

power and either one or two addresses. The numbers of unit loads and address assignments 

available with each Series 200 processor are shown in Figure 1-9. The numbers of unit loads and 

address assignments required by each peripheral control are shown in the preceding summary 

tables of the peripheral equipment (Tables 1-1 through 1-13). 

Read/Write Channel 

Note that the permanent connection established in Figure 1-8 is incomplete: there is no 

connection across the peripheral interface. The input/output data path is completed by one or 

more "read/write channels, " inserteq in the data path when the input/output instruction is exe­

cuted. {More than one read/write channel is sometimes necessary in order to accommodate the 

1-18 #2-139 



SEC TION I. SERIES 200 COMPONENTS 

high data transfer rates of some devices.) A read/write channel is not permanently connected 

to any peripheral control but is assigned by the programmer to specify the data path between a 

control and the processor. 

TYPE 

4201 
2201 
1251 

1201 
201-2 
201-1 
201 

48 

OPTIONAL 

Figure 1-9. Address Assignments and Unit Loads Available in Series 200 Processors 

When the program:mer codes an input/output instruction, he specifies among other things 

the address of the peripheral control that is to s'end or receive data and the read/write channel{s) 

over which the data transfer is to take place. When the instruction is executed, the specified 

read/write channel is automatically inserted in the peripheral interface. For example, Figure 

1-10 shows the data path formed during the. execution of an input/output instruction in which the 

programmer specifies that the card reader control is to transfer data over read/write channel 2 

(RWC 2). The specified channel remains in the interface only for the duration of the card read 

operation. When the data transfer terminates, RWC2 is automatically removed from the inter­

face and is available for reassignment by another instruction. 

Read/write channels are the key to the achievable sim1~ltaneity in a Series 200 model: the 

number of read/write channels associated with a particular processor determin~s the number of 

peripheral operations that can be performed simultaneously by that processor (see Figure 1-6). 

CENTRAL PROCESSOR 

Figure 1-10. Data Path During Card Read Operation 

1-19 #2-139 



SECTION 1. SERIES 200 COMPONENTS 

OPTIONAL FEATURES 

Table 1-14 lists the various features that can be added to the Series 200 processors de­

scribed in this manual. This table illustrates the realistic design principle of Series 200: a 

Series 200 model can be specialized to meet the individual user's application; the application is 

not cornpromi sed to meet the de sign of the model. 

Certain features optional with some processors are standard with other larger types. 

This is also part of the realistic approach to system development. Particularly significant is 

the fact that specialization of a Series 200 model can occur at any time (not just at installation 

time) to meet any increased workload or applications shift that might occur. 

A summary description of the optional features is given below. 

Table 1-14. Series 200 Optional Features 

16 ADDITIONAL UNIT LOADS & ADDRESS 
ASSIGNMENTS & 4 ADDITIONAL RWC'S 

1116 16 ADDITIONAL UNIT LOADS & ADDRESS 
ASSIGNMENTS & 8 ADDITIONAL RWC'S 

1118 EXTENDED MULTIPROGRAMMING & 
8-BIT TRANSFER 

1120 

1I21 

EXTENDED MULTIPROGRAMMING & 
8-BIT TRANSFER 

EXTENDED MULT~PROGRAMMING & 
8-BIT TRANSFER 

4214B TWO ADDITIONAL BUFFERED I/O 
SECTORS 

n/a n/a 

n/a n/a 

n/a n/a 

n/a n/a n/a 

n/a n/a n/a 

421 n/a 

1¢iJ?'£1 ' OPTIONA L NOT AVAILABLE 

1-20 #2-139 



SECTION 1. SERIES 200 COMPONENTS 

ADVANCED PROGRAMMING 

Two Advanced Prograrll"Ining Features increase the basic instruction repertoire of the 

Model 200 processors .. Feature 011 is available with the Type 201 and 201-1 processors, and 

Feature 010 can be added to the Type 201-2 processor. Each feature includes the following 

capabilities (see Table 1-15): 

1. Additional program instructions. 

2. The ability to modify instruction addresses via indexed or indirect addressing 
(described in Section IV). -

3. A "read reverse" capability with magnetic and paper tape units. 

Table 1-15. Model 200 Advanced Programming Feature 

Program Instructions Program Instructions 

1. Zero and Add 
2. Zero and Subtract 
3. Branch if Character Equal 
4. Change Sequencing Mode 
5. Change Addressing Mode (expanded version)1 
6. Extended Move 
7. Move and Translate 
8. Branch on Character Condition (expanded 

version) 
9. Branch on Bit Equal 

Address Modification 

1. Indexed addres sing via 6 or 15 index I 

registers 3 

2. Indirect addres sing 

Read Rever se 

1. Zero and Add 
2. Zero and Subtract 
3. Branch if Character Equal 
4. Change Sequencing Mode 
5. Change Addressing Model 
6. Extended Move 
7. Move and Translate 
8. Branch on Character Condition (ex­

panded version) 
9. Load Control Registers 2 

Address Modification 

1. Indexed addressing via 6 or 15 index 
registers3 

2. Indirect addressing 

Read Reverse 

ny Model 200 processor can read paper tape and 1 /2-inch magnetic tapes in a reverse directi 
d transfer the information to the main memory in such a manner that it is oriented in the 
rma1 (forward) direction. 

IThe Change Addressing Mode instruction is available in Type 201 or 201-1 processors which 
include either the Advanced Programming Feature or a main memory capacity greater than 
4, 096 characters. In the Type 201-2 processor, the use of this instruction with 2- and 3-
character addressing is standard; however, its use with 4-character addressing and/or item­
mark trapping requires the presence of the Advanced Programming Instructions. 

2 The Load Control Registers instruction, optional with the Type 201 and 201-1 processors, is 
included in the standard instruction repertoire of the Type 201-2 processor. 

3 The Type 201-1 and 201-2 processors with the Advanced Progranuning Feature contain 6 in­
dex registers in the three -character addressing mode and 15 index registers in the four-char­
acter mode. The Type 201 processor with the Advanced Programming Feature contains six 
index registers, regardless of addressing mode. 

1-21 #2-139 



SECTION 1. SERIES 200 COMPONENTS 

PROGRAM INTERRUPT 

This feature, whose basic functions are described on page 1-3, is an optional feature for 

the Type 201 processor and is standard for all other processors described herein. A detailed 

description of program interruption, including conditions which must be present for an interrupt 

to occur, processor activities which are automatically performed when the interrupt takes place, 

and the programming of interrupt service routines, is given in Appendix D. 

EDIT INSTR UCTION 

A comprehensive instruction - Move Characters and Edit - is optionally available with 

the Model 200 processors and is a standard feature with the Type 1201, 1251, 2201, and 4201 

processors. Processed information is edited before being converted to an output medium (e. g., 

a printed document) by the suppression of unwanted characters and symbols and the insertion of 

identifying symbols such as the dollar sign, decimal point, and asterisk. The Move Character s 

and Edit instruction is described on page 8-104. 

ADDITIONAL READ/WRITE CHANNELS, UNIT LOADS, AND ADDRESS ASSIGNMENTS 

As explained above, the nUITlber of peripheral operations that can be performed simulta­

neously by a processor depends on the number of read/write channels available, and the number 

of peripheral devices connectable to a processor depends on the number of unit loads and address 

assignments associated with the processor. Four optional features allow a user to increase his 

processor's peripheral flexibility by adding the following eleITlents: 

1 

1. Feature 015 - Eight additional unit loads for a Model 200 proce s sor. (The 
address assignITlents required to specify the additional peripheral controls 
enabled by this feature already exist in the basic 200 processors.) 

2. Feature 016 - One additional (auxiliary) read/write channel for a Model 200 
processor. (Auxiliary read/write channels are described on page 2-16.) 

3. Feature 1115 - A second "I/O sector" for the Type 2201 processor. 1 This 
sector consists· of four additional read/write channels, 16 additional unit 
loads, and 16 additional address assignments, thereby matching the pe­
ripheral capabilities of the basic I/O sector. 

4. Feature 1116 - A third I/O sector for the Type 4201 processor. 1 (The 
basic 4201 proce s sor contains two I/O sector s.) The optional sector con­
sists of four additional read/write channels, 16 additional unit loads, and 16 
additional address assignments. In addition to the third sector, Feature 1116 
includes two additional read/write channels to be used with sector 1 and two 
additional channels to be used with sector 2. Feature 116 is described in 

Appendix H. 

5. Feature 4214A and 4214B - Provides the Type 4201 processor with buffered 
I/O sectors for those applications where additional computer time or a higher 
input/output transfer capability is required. Feature 4214A requires the 
installation of Feature 1116, and Feature 4214B requires the installation of 
Feature 4214A. These features are discussed in Appendix H. 

An I/O sector consists of three elements: 4 read/write channels, 16 unit loads, and 16 address 
assignments. 

1-22 #2-139 



SECTION I. SERIES 200 COMPONENTS 

6. Feature 4215 - A high-speed third sector for the Type 4201 proces sor. This 
allows connection of I/O peripheral devices with transfer rates exceeding 
500,000 characters per second to the third sector. Featur,e 4215 requires 
the installation of Feature 1116. These features are discussed in Appendix H. 

STORAGE PROTECT 

Two Storage Protect Features, identical in nature, are offered for the Type 1201/1251, and 

2201 processors as Features 1114 and 1117, respectively. These features allow a programmer­

specified portion of the main memory (and the contents thereof) to be shielded from accidental 

alteration by programs running concurrently in the memory. An attempt to violate the protec­

tion of this area results in an "internal" processor interruption. The program or programs 

running in the protected memory area have 15 additional index registers at their disposal; these 

registers can also be used by programs in the unprotected (or "open") memory area if desired. 

The Storage Protect Features are described in Appendix E. 

EXTENDED MULTIPROGRAMMING AND 8-BIT TRANSFER 

The processing capabilities of the Models 1200, 1250, 2200, and 4200 are greatly extended 

by the addition of the Extended Multiprogramming and 8-Bit Transfer Features. These amplified 

capabilities are available as Features 1120, 1121, and 1118 for the Models 1200/1250, 2200, 

and 4200, respectively. Features 1120 and 1121 require that the Models 1200/1250, and 2200 be 

equipped with Storage Protect (Features 1114 and 1117, respectively); the Storage Protect capa­

bilities are automatically included in Feature 1118 for the Model 4200. In addition to the capa­

bilities supplied by the Storage Protect Features, extended multiprogramming provides storage 

protection with memory address relocation, interrupt masking, and instruction timeout. The 8-

bit transfer capability gives the Models 1200, 1250, 2200, and 4200 increased flexibility by allow­

ing either 8 -bit or 6 -bit information transfers between certain peripheral controls and main 

memory. The Extended Multiprogramming and 8-Bit Transfer Features are described in detail 

in Appendix G. 

SCIENTIFIC UNIT 

The scientific unit adds 14 scientifically oriented instructions to the Series 200 repertoire. 

The two functionally identical unit s - Feature 1100A (available with the Type 1201, 1251, and 

2201 processors) and Feature 1101 (for the Type 4201) - are summarized in Appendix F. 

FEATURE 0191 

Feature 0191, which is available on the 1201, 1251, and 2201 processors and standard on 

the 4201 processor, enhances the instruction repertoire of the processor and affords increased 

compatibility with competitive equipment. This feature provides two additional instructions 

Move or Scan (MOS) and Table Lookup (T LU) - and also includes the "s" (Special) mode of 

1-23 #2-139 



SECTION 1. SERIES 200 COMPONENTS 

processing. The "S" mode of processing, which is implemented by the variant character of the 

Change Addressing Mode (CAM) instruction, enables the processor to manipulate the Add, Sub­

tract, Zero Add, Zero Subtract, and Branch if Character Equal instructions in a special way. 

These instructions are described in Section VIII of this manual. The Move or Scan and Table 

Lookup Instructions, which are assembled by Easycoder Assembler D, are also discussed in 

Section VIII. 

1-24 #2-139 



THE CENTRAL 
PROCESSOR 

A Series 200 central processor is logically divided into five basic units (see Figure 2-1): 

a main memory, a control memory, an arithmetic unit, a control unit, and an input/ output 

traffic control. 

MAIN MEMORV CONTROL MEMORV I/O 
TRAFFIC 
CONTROL 

Figure 2-1. Logical Division of Series 200 Central Processor 

MAIN MEMORY 

The main memory contains from 2, 048 to 524, 288 character locations of magnetic core 

storage which are used to store program instructions and data during a program run (see 

Figure 2-2). Every character location is identified by a unique numeric address. This means 

that an instruction can designate the exact storage locations that contain the data needed for a 

particular operation. 

2-1 #2-139 



SECTION II. THE CENTRAL PROCESSOR 

MAIN MEMORY 

Figure 2-2. Main Memory Functions 

Figure 2-3 shows one character position of memory with the name of each core shown to the 

right. Each core can be individually magnetized to represent either a one or a zero, depending 

upon its polarity. Moving from bottom to top in Figure 2-3, the first six cores are used for data 

storage, the seventh and eighth cores are used to define the limits of storage areas (these two 

cores are frequently referred to as "punctuation" bits), and the ninth core is used for parity 

checking. 

Figure 2-4 shows how typical numeric, alphabetic, and special characters are stored in the 

main memory. Shaded circles represent cores containing I-bits. Bits 1, 2, 4, and 8 in each 

character position can be combined to represent the decimal values zero through nine. This 

four-bit representation of decimal numbers is known as binary-coded decimal (BCD). Alphabetic 

and special characters are represented by a combination of the numeric (1, 2, 4, and 8) and the 

A and B cores. The A and B cores correspond to zone punches on cards: the A bit represents a 

12-punch, the B bit represents an II-punch, a combination of the A and B bits represents a 0-

punch. A listing of the main memory formats for all valid Series 200 characters appears in 

Appendix B. 

The word-mark bit (WM) is used to define logical storage fields in the memory. Informa­

tion is rarely stored in the memory as single, independent characters; instead. adjacent charac­

ter positions are usually grouped to form storage fields. As described in Section III, the word­

mark bit is instrumental in defining the size of such fields. 

2-2 #2-139 



SECTION II. THE CENTRAL PROCESSOR 

PARITY BIT (P) 

ITEM-MARK BIT (1M) } 
PUNCTUATION BITS 

WORD-MARK BIT (WM) 

B BIT} 
ZONE BITS 

A BIT 

8 BIT DATA BITS 

4 BIT NUMERIC 
BITS 

2 BIT 

I BIT 

Figure 2 -3. One MeIllory Position 

B 
I 
T 

C 
o 
N 
F 
I 
G 
U 
R 
A 
T 
I 
o 
N 

1M 0 000 0 0 0 0 
WM 00000000 
Booooe~~o 
Aoooeoeoo 
800eOO~E>O 
40eoo~oo~ 
2000EJOeOG 
00800800 

Figure 2 -4. Representation of Characters 
in Magnetic Core Storage 

Consecutive storage fields are frequently grouped together to forIll a unit of inforIllation 

called an iteIll. As its naIlle iIllplies, the iteIll-Illark bit (1M) is used to define the size of an 

iteIll in the main IlleIllory (see Section III). 

A unit of inforIllation that is to be transferred between the Illain IlleIllory and a peripheral 

device is called a record. A record can be of any length, froIll one character up to virtually the 

IllaxiIlluIll nUIllber of characters in the IlleIllory. Both the word-Illark and iteIll-Illark bits are 

used in defi~ing the size of a record (see Section III). 

The parity bit (P) is used in conjunction with an autoIllatic error-detection technique 

known as parity checking. Every character Illust be represented in the central processor by an 

odd nUIllber of I-bits. (Punctuation bits are excluded froIll this rule except in the Type 4201.) 

Whenever a character is Illoved froIll one location to another it is autoIllatically checked to 

deterIlline if an odd nUIllber of data I-bits has been Illoved. In Figure 2-4, the characters 0, 9, 

B, M, and { are represented by an even nUIllber of ones in the data bit positions. Circuitry 

within the central processor autoIllatically adds a one in the parity bit positions of these 

characters to provide the required odd bit count. 

MEMORY CYCLE 

The tiIlle interval required by a processor to read or write the contents of a unit location 

is terIlled meIllory cycle tiIlle. For the processors described in this Illanual, IlleIllory cycle tiIlle 

ranges from 2 Illicroseconds (Model 200) down to 750 nanoseconds (Model 4200). 

2-3 #2-139 



SECTION II. THE CENTRAL PROCESSOR 

MAIN MEMORY IN THE TYPE 4201 PROCESSOR 

The main memory of the Type 4201 processor consists of from one to four modules of 

core memory and a memory controller (see Figure 2-5). Each module is four characters in 

width and either 16,384 or 32,768 four-character groups in length. Thus, a module contains 

either 65, 536 or 131,072 characters. Data storage capacities of main memory range from 

131,072 to 524,288 characters. 

MEMORY MODULES (/-4) 

Figure 2-5. Type 4201 Memory Subsystem 

Table 2-1 below shows the memory configurations available with the Type 4201 processors. 

Table 2-1. Memory Configurations for Type 4201 Processors 

4201-3 

4201-4 

4201-5 

420l-5A* (2-way 

4201-6 

4201-7 

4201-8 

inte r Ie a ving ) 

4201-9* (4-way 
interleaving) 

131,072 

196,608 

262, 144 

262, 144 

327,680 

393,216 

458,752 

524,288 

*Memory addresses are interleaved across modules in these 
processors. 

2-4 #2-139 



SECTION II. THE CENTRAL PROCESSOR 

Memory Acce s s 

The 4201 processor always reads or writes the contents of four character locations at a 

time; such a four-character grouping is termed a "word." Thus, the Model 4200 has an 

effective memory cycle time of 750/4 or 188 nanoseconds per character. 

Processing Unit 

Although the 4201 processor always reads or writes a four-character word every memory 

cycle, the portion of the accessed word actually available for processing, called a "processing 

unit," varies from one to four characters, depending upon the operation being performed. The 

processing unit for a move instruction is up to four characters, whereas arithTIletic and I/O in­

structions process one character at a time. 

MeTIlory Controller 

The meTIlory controller provides maximuTIl siTIlultaneity of memory operations by its 

ability to transfer data to or from memory TIlodules siTIlultaneously. This is accomplished 

by providing a set of read/write electronics for each memory module, so that access can be 

made to a module independently of all other modules. This ability allows internal processing 

and input/ output operations to proceed independently and simultaneous,ly. Simultaneous acce s s 

occurs as long as the central processor and the I/O controller request access to different 

modules of memory. Whenever their requests are for the same module, the memory controller 

resolves the conflict by giving priority to the input/output controller. 

When memory is addressed, a 4-character group containing the addressed character is 

delivered to either the central processor or the I/O controller. The delivery of four characters 

serves to significantly reduce the number of memory references for TIlany operations and greatly 

increases the operating speed of the system. 

Interleaved Addressing 

In order to achieve optimum utilization of memory, an interleaved addressing scheme has 

been incorporated in two Model 4200 central processors (Types 4201-5A and -9). The use of the 

interleaved memory permits faster program execution by allowing multiple access to separate 

modules of memory to proceed simultaneously. This method of addressing is accomplished by 

assigning successive addresses to different modules so that a program written in a normal 

sequential manner will address different modules as it proceeds. For example, in the Type 

4201-9 Central Processor, there are four rneTIlory TIlodules which perTIlit 4-way interleaving 

of accesses. With four modules, addresses 0, 1, 2, 3 are assigned to the first module; 4, 5, 6, 

7 are assigned to the second module, etc. (see Figure 2-6). 

2-5 #2-139 



MODULE I 

20 21 22 23 

0 1 2 3 

SECTION II. THE CENTRAL PROCESSOR 

MODULE 2 MODULE 3 

24 25 26 27 30 

4 5 6 7 10 11 12 

NOTE: NUMBERS WITHIN MEMORY MODULES 
iNDICATE ADDRESSES (OCTAL) OF 
CHARACTERS IN MEMORY 

13 

MODULE 4 

37 

14 15 16 17 

Figure 2-6. Model 4200 Memory Interleaving {Type 4201-9 Central Processor} 

In addition, interleaved addressing further increases system performance by allowing the 

central processor to overlap many of its memory operations. This is accomplished by a unique 

de sign of the addre s sing circuitry of the Model 4200. Although 750 nanoseconds are required 

to cycle main memory, the addressing and data path circuitry of the processor is used only for 

a portion of the cycle time (approximately 500 nanoseconds). Therefore, the addressing 

circuitry is available for another memory access before the first access is completed. By 

interleaving, the instructions and operands will have been distributed among the available 

modules; therefore, the central processor is able to overlap successive fetches of both operands 

and the characters within an instruction. 

Parity Check 

Unlike the other Series 200 processors, the 4201 includes the punctuation bits in its parity 

check. Whenever a character is moved from one location to another, it is automatically checked 

to determine if an odd number of I-bits in the data and punctuation positions has been moved. 

CONTROL MEMORY 

The control memory is a high-speed storage unit consisting of up to 57 control registers. 

(The number of registers actually available depends on the system configuration.) Normally, 

control registers contain the addresses of instructions and data being processed during a program 

run. One such register, called the A-address register, is illustrated in Figure 2-7. In this 

example, the A-address register contains an address (206) designating a main memory location, 

which in turn contains a unit of information (the decimal digit 7) to be added in the arithmetic unit. 

2-6 #2-139 



ADDRESS 

CONTENTS OF 
LOCATION 206 

SECTION II. THE CENTRAL PROCESSOR 

REGISTER CONTENTS OF 
"'~/~I"·~'" 

Figure 2-7. Typical Control Register Function 

In Series 200 processors, other than the Type 4201, that do not include the Scientific Unit 

(Feature 1100A or 1101), each control register is only as large as it need be to contain the 

largest, or "highest," main memory address in the user's processor. Thus, a processor whose 

main memory capacity i.s 8,192 characters contains control memory registers which are each 

13 bits long (13 bits allows 8,192 addresses), while the control registers of a processor contain­

ing 131,072 characters of memory storage are each 17 bits long (see Table 2-2). In a Type 4201 

processor, all 19 control·register bits are active, regardless of main memory size. When the 

Scientific Unit is included in the system, each control register is 18 bits (three characters) long 

(or 19 bits in the case of the Type 4201). 

Table 2-2. Size of Control Memory Registers (Models 200/1200/1250/2200/4200) 

MAIN MEMORY 4,096 8,192 16,384 32,768 65,536 131,072 262, 144 524,288 
CAPACITY 
(Characters) 

SIZE OF 12 13 14 15 16 17 18 24>:~ 

CONTROL 
MEMORY 
REGISTER (Bits) 

*19 address bits and 5 parity bits. 

Control registers can be addressed either by programmed instruction or from the oper­

ator's control panel or console. For instance, an instruction can change the course of a pro­

gram by manipulating the contents of the control register that governs program sequence; the 

operator can interrogate a control register to determine the exact location at which the program 

has halted, etc. When a register is addressed by programmed instruction, it is specified by 

2-7 #2-139 



SECTION II. THE CENTRAL PROCESSOR 

means of a variant character in the instruction. A register is addres sed from the control panel 

or console by using the register's octal address. The functional name of each register and the 

variant character which specifie s the register are listed in Table 2 -3. 

ADDRESS REGISTERS 

The A- and B-address registers, the two sequence registers, and the interrupt registers 

are used to addre s s main memory during the loading and execution of instructions. A detailed 

description of these registers is presented in Section IV, "Addressing." 

READ/WRITE COUNTERS 

Data is transferred between the main memory and a peripheral device via a read/write 

channel (described in Section I). Associated with a read/write channel are two location counters: 

a starting location counter and a current location counter. When a peripheral transfer is to be 

performed, the addre ss at which the transfer is to begin is stored in both counters. Then, as 

each successive character is transferred, the contents of the current location counter are 

incremented by one so that when the transfer is completed, this counter contains the addre s s of 

the character position immediately following the position that terminated the transfer, i. e., one 

beyond the record-marked location (see Section III). 

The availability of the starting and current addresses associated with an input/output area 

greatly simplifie s the manipUlation of variable -length records. 

AAR 

BAR 

SR 

CLCI 

CLC2 

CLC3 

SLCI 

SLC2 

SLC3 

WRI 

WR2 

WR3 

Table 2-3. Control Memory Registers 

A-Addre ss Register 

B -Addre ss Register 

Sequence Register 

Read/Write Channell 

Read/Write Channel 2 

Read/Write Channel 3 

Current Location Counter 

Cur re nt Loc ation Counte r 

Current Location Counter 

Read/Write Channell - Starting Location Counter 

Read/Write Channel 2 - Starting Location Counter 

Read/Write Channel 3 - Starting Location Counter 

Work Register 11 

Work Register 21 

Work Register 3 1 

2-8 

67 

70 

77 

01 

02 

03 

11 

12 

13 

# 2 -139 



CSR 

EIR 

CLCl' 

SLCI' 

ACO 

ACI 

AC2 

AC3 

WR4 
WR5 
WR6 
WR7 

IIR 

FEATUR 

CLC4 
CLC5 
CLC6 
CLC4' 

SLC4 
SLC5 
SLC6 
SLC4' 

CLC5' 
CLC6' 

SLC5' 
SLC6' 

SECTION II. THE CENTRAL PROCESSOR 

Table 2-3 (cent). Centrol Memory Registers 

FEATURE 010 or 011 (ADVANCED PROGRAMMING) 

Change Sequence Register 

FEATURE 012 (PROGRAM INTERRUPT) 

Read/Write Channel I' - Current Location Counter 

Read/Write Channel I' - Starting Location Counter 

FEATURES IIOOA & 1101 (SCIENTIFIC UNITS) 

Floating-Point Accumulator 0 2 

Floating -Point Accumulator 12 

Floating-Point Accum.ulator 22 

Floating-Point Accum.ulator 32 

REGISTERS STANDARD ON 4201, OTHERWISE NOT AVAILABLE 

Work Register 4 1 

Work Register 51 
Work Register 61 

Work Register 7 1 

TURES 1114, 11 & 1118 (STOR 

Read/Write Channel 4 - Current Location Counter 
Read/Write Channel 5 - Current Location Counter 
Read/Write Channel 6 - Current Location Counter 
Read/Write Channel 4' - Current Location Counter 

Read/Write Channel 4 - Starting Location Counter 
Read/Write Channel 5 - Starting Location Counter 
Read/Write Channel 6 - Starting Location Counter 
Read/Write Channel 4' - Starting Location Counter 

Read/Write Channel 5' - Current Location Counter 
Read/Write Channel 6' - Current Location Counter 

Read/Write Channel 5' - Starting Location Counter 
Rea¢l./Write Channel 6' - Starting Location Counter 

2-9 

64 

66 

05 

15 

21 
22 
23 
25 

31 
32 
33 
35 

26 
27 

36 
37 

#2-139 



SECTION II. THE CENTRAL PROCESSOR 

Table 2-3 (cont). Control Mem.ory Registers 

CLCS Read/Write Channel S - Current Location Counter 00 
CLC9 Read/Write Channel 9 - Current Location Counter 20 

SLGS Read/Write Channel S - Starting Location Counter 10 
SLC9 Read/Write Channel 9 - Starting Location Counter 30 

CLCS' Read/Write Channel S' - Current Location Counter 04 
CLC9' Read/Write Channel 9' - Current Location Counter 24 

SLCS' Read/Write Channel S' - Starting Location Counter 14 
SLC9' Read/Write Channel 9' - Starting Location Counter 34 

CLC2' Read/Write Channel 2' - Current Location Counter 06 
CLC3' Read/Write Channel 3' - Current Location Counter 07 

SLC2' Read/Write Channel 2,' - Starting Location Counter 16 
SLC3' Read/Write Channel 3' - Starting Location Counter 17 

1 
These registers are available only to the processor and m.ust not be addressed by the program.. 

2These registers (accum.ulators) can only be addressed by the instructions included in Features 
1100A or 1101 (see Appendix F). 

ARITHMETIC UNIT 

Arithm.etic and logical operations are perform.ed by a configuration of com.ponents com.m.only 

referred to as the arithm.etic unit. Basically, this unit is com.posed of an adder, capable of per­

form.ing both binary and decim.al arithm.etic, and two operand storage registers. 1 Each one of 

these units is capable of storing a single six-bit character in processors sm.aller than the Type 

4201. The adder and operand storage registers in the 4201 processor can store four characters 

at a tim.e. 2 In general term.s, an arithm.etic or logic operation is perform.ed as follows (see 

Figure 2-S): 

1 

1. An instruction in the stored program. specifies the type of operation to be 
perform.ed and the m.ain m.em.ory storage locations .of the data to be m.anipulated. 

2. The operands are transferred to the operand storage registers a character 
(Models 200, 1200, 1250, and 2200) or a word (Model 4200) at a tim.e, beginning 
with the rightm.ost character in each operand. 

3. In processors other than the 4201, each pair of characters (or, in the Model 
4200, each pair of words) that enters the storage registers is com.bined in 
the adder. The result is stored in the m.ain m.em.ory as specified by the pro­
gram. instruction. If a carry is generated, it is stored in the adder and 
com.bined with the next higher-order pair of characters. 

4. In the 4201 processor, the storage registers and adder are used in the sam.e 
m.anner as in other processors, except when perform.ing address indexing or 

The contents of these registers are not accessible to the program.m.er. 

2When floating point is installed in the 4201, the adder and operand storage registers are exten­
ded to a 6 -character width in order to handle floating point operands 0 

2-10 #2-139 



SECTION II. THE CENTRAL PROCESSOR 

1 
floating-point operations. That is, operations other than these two types are 
performed on a character-by-character basis. However, address indexing and 
floating-point operations take advantage of the full width of the 4201 adder. 

STORAGE 
IX$XXXl } OPERAND. 

t?0222J REGISTERS 
m} AOOER 

Figure 2-8. Data Flow Between Main Memory and Arithmetic Unit 

CONTROL UNIT 

The control unit is the hub of central processor activities (see Figure 2-9). Its major 

function is to select, interpret, and execute all of the instructions in the stored program. In 

carrying out these instructions, the control unit coordinates the various activities of receiving 

data from input devices, transferring data within the central processor, and transferringproc­

essed data to the output units. The main memory addresses used by the control unit in perform­

ing these tasks are stored in the registers of the control memory. 

Figure 2-9. Control Unit Activities 

1 
When floating point is installed in the 4201, the adder and operand storage registers are exten-
ded to a 6-character width in order to handle floating point operands. 

2-11 #2-139 



SECTION II. THE CENTRAL PROCESSOR 

INPUT /OUTPUT TRAFFIC CONTROL 

The input/output traffic control is, as its name implies, the unit which regulates the flow 

(or "traffic") of data transferred during input/output actiVities. It works in. conjunction with the 

central processor control unit to allocate central processor time to input/output operations and to 

identify the peripheral controls which are to use that time to transfer data (see-Figure 2-10). 

The I/O traffic control enables from 3 (Model 200 minimum) to i6 (Model 4200 maximum) 

simultaneou:s input/output operations to occur concurrently with the internal computations of the 

processor. In processors other than the 4201, this simultaneity is achieved by the traffic con­

trol's allocation of consecutive memory cycles to either peripheral controls or the cent,ral 

processor. In the Type 4201 processor, such allocation is not normally necessary, as independent 

cycling of memory blocks allows absolute simultaneity between memory accesses for I/O and 

computing operations (see page 2- 4). Only when I/O and computing operations attempt to gain 

access to the same memory block simultaneously does -the 4201 allocate memory cycles between 

the two types of operations. 

INPUT DEVICE 

Figure 2-10. Input/Output Traffic Control Activities 

MEMORY CYCLE DISTRIBUTION 

Every peripheral data transfer involves some factor which prevents the device being used 

from transferring data at a rate comparable to that of the central processor. Usually this factor 

is mechanical - moving a card through the read station or a magnetic tape or disk past the read/ 

write head - although in data communication it is the bit rate of the communication line. There­

fore, a peripheral device requires access to the central processor to transfer information to or 

from the main memory during only a fraction of the time that the operation is proceeding. The 

2-12 #2-139 



SECTION II. THE CENTRAL PROCESSOR 

periods in which the central processor is actually interrupted for data transfer are spaced over 

the duration of the peripheral operation (see Figure 2-11). 

L-..-____ ....L- CENTRAL PROCESSOR TIME REQUIRED FOR DATA TRANSFER --L _____ -'--____ -..I 

Figure 2-11. Data Transfer Intervals During One Peripheral Operation 

When a peripheral operation is in progress but is not using main memory (the gray areas 

in Figure 2-11), another peripheral control may gain access to the. main memory. This second 

memory acces s can in turn give way to a third acces s by another control before the original 

operation requires access to the memory again, etc. In other words, peripheral operations can 

occur simultaneously with one another. The periods of time in which peripheral controls do not 

require main memory access to transfer data are given to the central processor for its internal 

activities. It is the function of the I/O traffic control to direct the sharing of main memory 

cycles by the various peripheral devices and the central processor. 

It was indicated on page 1-18 that in order for an I/O operation to proceed, the prog'rammer 

must specify a read/write channel in the initiating peripheral instruction. This read/write channel 

completes the path between main memory and the control for the peripheral device being addressed. 

Input/output sectors (see page 1-22}consist of unit power loads, address assignments, and read/ 

write channels. Type 1251 and2201 processors may be equipped with two I/O sectors. Where this 

is the case, the read/write channel as signed to an operation must come from the sector to which the 

device being addressed is connected. Normally, this rule also applies to the 4201, which always 

has at least two sectors, but in that processor it is also possible to reassign RWC's outside of 

their "home" sectors by means of "sector escape codes" (see below). 

The rate at which each peripheral control must transfer data over a programmer-assigned 

read/write channel(s) depends on the mechanical characteristics of the device connected to the 

control. Thus, the transfer intervals shown in Figure 2-11 are spaced according to the device 

being used. For instance, the transfer rate for the disk pack drive is considerably faster than 

that for the card punch; therefore, the disk pack drive will require access to the main memory 

more frequently than the card punch. The I/O traffic control monitors and honors the requests 

for access to the main memory. In processors other than the 4201, it decides how each memory 

cycle should be used - by a read/write channel or by the processor - as shown in Figure 2-13. 

2-13 #2-139 



SECTION II. THE CENTRAL PROCESSOR 

The traffic control offers consecutive ITleITlory cycles to read/write channels, one ITleITlory 

cycle per channel. If there is a deITland on a particular channel when the cycle is offered, the 

channel is granted acces s to the ITlain ITleITlory for one cycle. During this cycle a single charac­

ter is transferred to or froITl meITlory. 1£ the channel does not require the ITleITlory cycle, the 

cycle is given to the central processor for internal data processing. 

In the Type 4201 processor, if an I/O operation requires access to the saITle ITleITlory block 

as the central processor, the I/O operation is given priority and the central processor stalls for 

one ITleITlory cycle. No interference (stall) occurs if the I/O operation and the central processor 

are accessing different ITleITlory blocks (i. e., ITleITlory accesses are siITlultaneous). 

NOTE: In the Type 4201 processor, although a four-character word is ITloved in 
one ITleITlory cycle during internal processor operations, a single six-bit 
character is ITloved during input/output operations. 

GIVE THE CYCLE TO 
THE PROCESSOR FOR 
MAIN MEMORY ACCESS 

PROCEED TO 
NEXT CYCLE 

GIVE THE PRESENT 
YES MEMORY: CYCLE TO 

THE RWC FOR 
DATA TRANSFER 

Figure 2 -12. Logical Decision PerforITled by Input/ Output Traffic Control 

The cyclic offering of ITlemory cycle s to read/write channels is shown in Figure 2 -13. 1£ 

the cha~nel being offered a ITlemory cycle is an optional channel (noted by an asterisk) that is not 
1 

present in the user's systeITl, the cycle is given unconditionally to the central processor. Note 

that every fourth Model 1200 cycle is also given unconditionally to the processor. Note further 

that ITlost channels available with the Models 200,1200, 1250, and2200 are offered main meITlory 

acces s once every six ITlicroseconds. Input/output speeds up to 167, 000 characters per second can be 

1 
There is one exception to thi s statement: if a Model 200 doe s not include RWC I' (Feature 016), 
the cycle is offered to RWC 1. 

2-14 #2-139 



SECTION II. THE CENTRAL PROCESSOR 

PROGRESSION OF TIME 
(IN MICROSECONDS) 

MODEL 200 

MEMORY CYCLES: 

RWC'S: 

MODEL 1200 

MEMORY CYCLES: 

RWC'S: 

MODEL 1250 

MEMORY CYCLES: 

SECTOR 1 RWC'S: 

SECTOR 2 RWC'S: 

MODEL 2200 

MEMORY CYCLES: 

SECTOR f RWC'S: 

SECTOR 2 RWC'S: 

MODEL 4200 

MEMORY CYCLES: 

SECTOR I RWC'S: 

SECTOR 2 RWC'S: 

SECTOR 3 RWC'S: 

(*)cHANNEL AVAILABLE AS AN OPTIONAL FEATURE. 

Figure 2-13. Sym.bolic Representation of Input/Output Traffic Controll 

1This figure is not applicable to 4201 operations em.ploying channel transfer rates higher than the 
minimum. 

2 -15 #2-139 



SECTION II._ THE CENTRAL PROCESSOR 

maintained by accef:)sing memory at these intervals. In processors other than 4201, transfer rates 

higher than those attainable with a single read/write channel can be achieved by interlocking two 

or more read/write channels, as described below. 

Rather than interlocking RWC's, the Model 4200 traffic control offers variable numbers of 

memory cycles per unit of time to each read/ write channel, depending upon the read/write channel 

as signrnent code used in the instruction which initiates the operation. From one to six cycles 

are offered to a read/ write channel every 12 microseconds, giving channel data transfer capacities 

ranging from 83, 300 to 500, 000 characters per second. Effectively, then, the 4201 incorporates 

variable -speed read/write channels. 

PRIMARY AND AUXILIARY READ/WRITE CHANNELS 

RWC1', RWC2', RWC3', RWC4', RWC5', RWC6', RWC8', and RWC9' are called auxiliary 

read/ write channels becaus e of the manner in which they are granted acces s to the main memory 

by the traffic control. For instance, the Model 200 traffic control offers one cycle to RWC1, the 

next cycle to RWC2, the next cycle to RWC3, the next cycle to RWCl " the next cycle to RWC2, 

the next cycle to RWC3, the next cycle to RWC1, etc. In other words, memory cycle allocation 

alternates between a primary channel and its auxiliary channel. 

Read/write channels not accompanied by auxiliary channels (e. g., RWC's 2 and 3 in the 

Model 200) are each guaranteed access to the main memory every six microseconds (giving a 

transfer rate of 167,000 characters per second), as shown in Figure 2-13. Primary channels 

and auxiliary channels are each granted access every 12 microseconds, because access is 

alternated between the two, thus providing a transfer rate of 83, 300 characters per second. 

INTERLOCKING READ/WRITE CHANNELS 

As indicated above, in order to achieve data transfer rates higher than those attainable 

with a single read/write channel, it is necessary to interlock two or more read/write channels 

in proces sors other than the 4201. In this manner, data transfer rates from 167, 000 to 500, 000 

characters per second are possible. The same instruction which initiates the data transfer op­

eration specifies whether or not channels are to be interlocked. When this procedure is used, 

all of the cycles normally offered to the interlocked channels are made available to the single 

data transfer operation. The transfer rate thus provided is equal to the sum of the rates attainable 

individually with the interlocked channels. When the operation is completed, memory cycle 

allocation returns to normal and channels are again offered cycles at the normal intervals. 

Programming procedures for channel interlocking are described beginning on page 8-110. 

MODEL 4200 VARIABLE-SPEED READ/WRITE CHANNELS 

As indicated above, the 4201 is equipped with variable-speed RWC's. No more than two 

2-16 #2-139 



SECTION II. THE CENTRAL PROCESSOR 

RWC's (a primary and the corresponding auxiliary) are ever made busy by a single RWC assign­

ment. However, a single RWC assignment can still command a data transfer capacity of up to 

500,000 characters per second. The most important advantage of this arrangement is that the 

RWC's not made busy by a high;...speed transfer are available for use in other operations. For 

example, in order to handle a 250, OOO-character-per-second I/O transfer, other processors 

would require the interlocking of several channels. In the 4200, only one primary channel will 

be tied up. The other RWC's in the same sector will still be available for use in other operations, 

e. g., three 83, 300-character-per-second transfers. However, in no case can the total data 

transfer rate of a single sector exceed 500,000 characters per second. 

Another feature of the Model 4200 - the "sector escape code" - makes variable-speed 

RWC's even more attractive. An escape code allows an RWC normally restricted to operating 

in one sector to be used for I/O data transfers in another sector. For example, an escape code 

can be used to assign RWC 1, normally used only in sector 1, to sector 2 I/O operation. Pro­

gramming procedures for Model 4200 RWC's are described in Section VIII. 

Table 2 -4. Sununary of Central Processor Characteristics 

PROCESSING UNIT 

INSTRUCTION FORMAT 

ADDRESSING MODES 

MEMOR Y CAPACITY 
(Characters) 

MEMORY CYCLE 
(microseconds) 

5-Digit 
Decimal 
Add 

character 
(A+B+B) 

address mode) 
5-Digit 
Compare 
(A:B) 

PROGRAM CONTROL 

SIMULTANEOUS 
OPERA TIONS POSSIBLE 

Six-bit character. 

Variable. Typical configuration: op code, two address.es, and variant 
character. 

Two-, three-, and four-character addressing. Three- and four-character 
addresses can specify indexed and indirect addressing. 

2,048-
32,768 

48fLs 

38fLs 

3-4 

2,048-
65,536 

48fLS 

38fLS 

3-4 

4,096-
65,536 

48fLs 

38fLs 

3-4 

2-17 

16,384-
131,072 

1.5 

35fLs 

29fLs 

4 

32,768-
262,144 

1.5 

35fLS 

29fLS 

16,384-
262,144 

25fLs 

21fLs 

4-8 

Four­
character 
word. 

131,072-
524,288 

.75/word 
(.188/ 

13fLs 

10fLs 

8-16 

#2-139 





DATA FORMAT 

VARIABLE FIELD LENGTH 

Inforll1ation is stored in the ll1ain mell10ry in groups of characters, which are called fields. 

A field is, by definition, any group of characters that is treated as a unit. Series 200 cOll1puters 

perll1it fields of any length, froll1 one character up to the ll1axill1um nUll1ber of character s in the 

ll1ell1ory. This ll1eans that an instruction or data field occupies only that nUll1ber of core storage 

locations actually needed. 

The use of variable-length fields requires that there be a ll1ethod of indicating the actual 

lengths of instruction fields and data fields. This requirell1ent is fulfilled by the word-ll1ark bit 

ll1entioned in Section 2. The word-ll1ark bit perforll1s the following functions: 

1. It terll1inates the retrieval of an instruction. 

2. It terll1inates the execution of an instruction. 

3. It defines the size of a data field. 

Throughout this ll1anual, the presence of a word ll1ark will be indicated by a circle around 

the character with which it is associated. The following points should be noted regarding the 

use of word marks: 

1 

1. Word ll1arks can be set and cleared by prograll1ll1ed instructions. 

2. Word ll1arks are set by the sall1e routine that loads a prograll1 and data into 
the ll1ain ll1ell1ory. Usually, word-ll1ark assignll1ents rell1ain unchanged 
throughout the execution of a prograll1. 

3. An instruction is terll1inated by a word ll1ark in the storage position ill1ll1ediately 
following its last (rightll1ost) character. 

4. A data field is terll1inated by a word ll1ark associated with its high-order 
(leftll1ost) character. 1 

The footnote on page 3-4 describes an exception. 

3-1 #2-179 



SECTION III. DATA FORMAT 

INSTRUCTION FORMAT 

An instruction is a coded statem.ent which orders the com.puter to perform. a fundam.ental 

operation. A set of instructions suitably com.bined to perform. a specific task is called a program. 

or routine. 

As will be shown in Section V, the task of coding the instructions in a program. is greatly 

sim.plified by the use of the Easycoder sym.bolic program.m.ing system.. The Easycoder Assem.bly 

Program. converts the sym.bolic coding written by the programmer into a m.achine language which 

is acceptable to the internal logic of the machine. 

OPERATION CODE 

Basic to all instructions is an operation code, usually referred to as an op code, that de­

fines the fundam.ental operation to be perform.ed. The program.m.er specifies an op code by using 

a predefined m.nem.onic configuration; e. g., BA is the op code that specifies a "binary add" 

operation, MCW is the op code that specifies a "m.ove characters to word m.ark" operation. The 

Easycoder Assem.bly Program. autom.atically converts a m.nem.onic op code into a single-charac­

ter, m.achine-Ianguage op code and sets the word-mark bit in the character position in which it 

is stored. 

A AND B ADDRESSES 

Most instructions also have two address portions, designated as the A address and the 

B address. The address portions indicate the starting locations of the operand fields in the 

m.ain m.em.ory. Using the Easycoder language, the program.m.er can specify m.em.ory locations by 

m.eans of syrn.bolic addresses or "tags" (see Section V). 

The Easycoder Assem.bly Program. autom.atically assigns absolute m.em.ory addresses to 

the syrn.bolic addresses appearing in a program. (see Figure 3-1). Thus, the program.m.er can 

m.anipulate operands without regard to their actual storage locations in m.em.ory. 

SYMBOLIC ADDR. 
(TAG) 

ABSOLUTE MEMORY 
ADDRESS 

Figure 3 -1. Conversion of Sym.bolic Tags to Absolute Mem.ory Addresses 

3-2 #2-139 



SECTION III. DATA FORMAT 

Because of the modular design of Series 200 computers, the programmer has the facility to 

specify whether a two-, three-, or four-character absolute address will be assigned to each 

~ymbolic address used in the program. In any case, the absolute addresses assigned by the 

assembly program are interpreted as pure binary numbers (see Section IV). 

VARIANT CHARACTER 

The variant character is used to modify the op code of an instruction. For example, the 

op code of a Branch on Condition Test instruction (BeT) specifies the fundamental operation 

"branch if a tested condition is met." The condition or restriction which must be met before the 

branch can occur is specified by the variant character. A table of valid variant characters is 

presented in Appendix B. 

SUMMARY 

Figure 3-2 shows the six basic formats in which machine-language instructions may appear. 

Since the maximum number of characters in an instruction depends upon whether two-, three-, 

or four-character addressing is being used, shaded boxes in the illustration indicate the format 

of an instruction without specifying the number of characters in each part. These formats are 

representative of all instructions except those associated with input/output and translate opera­

tions.
1 

For the sake of direct comparisons, Figure 3-3 illustrates each of the formats defined in 

Figure 3-2 as a symbolic entry on the programmer's coding form~ 

1 

OP CODE I A ADDRESS I I B ADDRESS I VARIANT 
CHARACTER(S) 

2 OP CODE I A ADDRESS I I B ADDRESsl 

3 OP CODE I A ADDRESS I VARIANT 
CHARACTER(S) 

4 OP CODE I A ADDRESS I 
5 OP CODE VARIANT 

CHARACTER(S) 

6 OP CODE 

Figure 3-2. Series 200 Instruction Formats 

The format of an input/output instruction is a modification of format 3 shown in Figure 3-2. 
Specifically, the variant characters of the instruction are replaced by a field of one or more 
control characters which define the input/output operation in terms of data path, direction of 
data flow, control unit designation, etc. The format of a translate instruction is a modification 
of format 1 shown in Figure 3 -2. In Section VIII, Series 200 instructions are described in 
terms of their individual formats. 

3-3 #2-139 



SECTION III. DATA FORMAT 

EASYCODER 
CODING FORM 

PROBLEM ______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD fl~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 213 4 5 6 7 8 1415 2021 6263 80 

I seE p, LA BEL .0.G, I FORMAT 1 
I 

i IA II T E.,~.'- -rOT ~I FORMAT 2 
I I 

, 
I 

i : BeT ISZl<:o •. ~~ FORIMAT 3-.1 
I I 
i SW WORI( FORMAT 4 
i I ,. I 
I 1 ., 'CA,h\ 6.G. FORMAT 5 

10 1 I I 
I I ~ FORMAT 6 

12 I 
I I I 13 

14 1 I 
15 I I 

Figure 3-3. Symbolic Representation of Series 200 Instructions 

ORGANIZATION OF DATA IN MAIN MEMORY 

Data may be stored in the main memory in any of the following variable-length formats: 

• FIELD 

• ITEM 

• RECORD 

FIELDS 

Consider the eight consecutive storage locations shown in Figure 3-4. To indicate to the 

machine that these eight characters are to be treated as a field, their left and right boundaries 

must be defined. The left boundary is normally defined by setting a word mark in position 990. 

The right boundary is normally defined by specifying storage address 997 in the instruction that 

will manipulate the field. 1 The eight-character group shown in Figure 3-5 is thus defined as a field. 

STORAGE ADDRESS 

CONTENTS 

Figure 3-4. Consecutive Storage Locations ih Main Memory 

1 Although this is the conventional method of defining fields, the Extended Move (EXM) instruc­
tion (see Section VIII) permits a field to be defined by a word mark at either the left or'the right 
boundary. The opposite boundary is then specified in the instruction. 

3-4 #2-139 



PROBLEM 

CARD I~I~ LOCATION NUMBER 
I 2 3 4 !5 6 7 8 

I ! 

ITEMS 

SECTION III. DATA FORMAT 

EASYCODER 
CODING FORM 

PROGRAMMER DATE 

OPERATION OPERANDS CODE 

1415 2021 6263 

IA ~~as1'Z. ,'IQ7 

T1:..-----ADDRESS PORTION OF INSTRUCTION 

STORAGE ADDRESS 

CONTENTS 

DATA FIELD -------I~ 

Figure 3-5. Data Field Format in Main Memory 

PAGE OF 

eo 

An item consists of ,one or more consecutive storage locations whose boundaries can be 

defined in either of two ways: 

1. The leftmost character position can be defined in the instruction that will operate 
on the item and the rightmost character position defined by an item mark; or 

2. The rightmost character position can be defined in the instruction that will oper­
ate on the item and the leftmost character position defined by an item mark. 

NOTE: An item mark is illustrated in this manual by underlining the character with 
which it is associated. Fields within an item are defined by word marks. 

There are only two instructions that manipulate items - Move Item and Translate, and 

Extended Move. In the Move Item and Translate instruction, the leftmost character of an item 

is addressed and the rightmost character contains an item mark. In the Extended Move instruc­

tion, several different item boundaries can be specified by the variant character of the instruction. 

Two items, each containing three data fields, are shown in Figure 3 -6. 

ADDRESS PORTION 
OF INSTR UCTION 

STORAGEADDRESS~IiIlIlIlIl~IIIIII~II~II~~~II~IIUlIll 
CONTENTS 

ADDRESS PORTION 
OF INSTRUCTION 

STORAGEADDRESS~IIIIIIIIIIIIII~IIIIII~IIII 
CONTENTS 

ITEM MARK 

14------ ITEM ---------' 

Figure 3-6. Two Item Formats in Main Memory 

3-5 #2-139 



SECTION III. DATA FORMAT 

RECORDS 

A record is any unit of information that is to be transferred between the main memory and 

a peripheral device. A record can be of any length, from one character up to the maximum 

number of characters in the memory. It can contain any number of items and fields. The right­

most limit of a record is defined by a record mark in the character position following the last 

character in the record (see Figure 3-7).1 

NOTE: A record mark is illustrated by combining the word-mark and item-mark 
symbols. The address of the leftmost character in a record is specified 
in the instruction that operates on the record. 1 

STORAGE ADDRESS 

CONTENTS 

ADDRESS PORTION OF INSTRUCTION 

...... ---------- RECORD -------~ 

Figure 3-7. Record Format in Main Memory 

RECORD 
MARK 

SUMMARY 

1 

The foregoing data format conventions are summarized in Figure 3-8. 

FIELD 

ITEM 

RECORD 

Word Mark ® 

Address portion of in­
struction 

Item Mark x 

Address portion of in­
struction 

Address portion of in­
struction 

Item mark x 

Addre s s portion of in­
struction 

Record mark 

(in character position 
following last character 
of record) I 

Figure 3-8. Summary of Internal Data Formats 

Set WordMark 

Set Item Mark 

BOTH Set 
Word Mark 
and Set Item 
Mark 

A record can also be moved internally (i .. e., from one main memory area to another) by means 
of the Extended Move instruction (see Section VIII). In this case, the character containing the 
record mark is considered as part of the record. This instruction can specify either the right 
or left boundary of the record to be moved. 

3-6 #2-139 



SECTION III. DATA FORMAT 

MAGNETIC TAPE DATA FORMAT 

In many applications, a major input and output medium for a Series 200 computer is magnetic 

tape. The standard Series 200 magnetic tape system uses 1/2-inch tape as the recording medi­

um.. A tape system using 3 14-inch tape is also available. 

Information is stored on I 12-inch magnetic tape in variable -length groups of characters 

called records. The tape is divided lengthwise into seven recording channels. A line of bit posi­

tions across the tape, one position for each channel, is called a frame. The seven bits in a 

frame correspond to the six information bits and one parity bit found in a character position in 

the main memory. Notice that no channels are provided for the storage of punctuation bits on 

tape .. Unlike main memory records, which are delimited by record-mark punctuation, tape rec-

0rds are separated from each other by a band of blank tape, which is called an interrecord 

gap. The representation of a memory character position on magnetic tape is shown in Figure 3-9. 

MAIN 
MEMORY 
CHARACTER 
POSITION 

!:'""""· .. ······ .. :·:·· .... ·,:,:":,,::,:,:,:,,,,,:t: ................. ::::.:':::.:.::::::':.:::::.'.':.:::.'.': .. :.:.:::;:' .. :,:.:::;.:,.: .. :,~:::: .. ,:.:.:.:::.: .. , ... :. i::::::::,:······::: .... ····:,:.::::::: ... :.:.:.:.:.,:,.,.:.:.:.:.: ..... : .......... V FRAME 

Figure 3-9. Character Representation on Magnetic Tape 

Characters recorded on magnetic tape are transferred from the main memory without 

parity bits. At the time of recording, the magnetic tape control generates parity bits as 

required. The programmer may specify either odd- or even-p-arity recording: in the odd-parity 

mode the bit count in each frame is odd; in the even-parity mode the bit count is even. 

In addition to parity bits, which are used for frame checking, the magnetic tape control 

also generates a longitudinal check frame which is used for channel checking purpose s. A check 

frame is automatically appended at the end of each record stored on tape. 

Recall that a record stored in memory is delimited by a record mark in the character 

position following the last character in the record. When a record is transferred to tape, the 

3-7 #2-139 



SECTIONllI. DATA FORMAT 

contents of the character position containing the record mark are not included as part of the re­

cord. On the other hand, if a record mark is sensed in memory when information is being read 

in from tape, the record mark will terminate the record and the character position containing 

the record mark will receive a character from the tape. Although data transfer from the tape 

is terminated by the record mark, tape motion continues until an interrecord gap is sensed. 

No punctuation marks are altered in any way as a result of tape read/write operations initiated 

by a program. 

LONGI TUDINAL 
CHECK FRAME 

~ 
INTERRECORD 

GAP 

,11] 
FRAME 

Figure 3-10. Data Format on Magnetic Tape 

PUNCHED CARD FORMAT 

Punched cards provide a convenient means of entering data into the machine. The cards 

used for this purpose are either standard 12-row, 80-column cards or 51-column cards. Each 

card column may contain a decimal digit, an alphabetic character, or a special symbol such as 

a slash or an asterisk (see Figure 3-11). 

ZONE 
PUNCHES 

NUMERIC 
PUNCHES 

0123456789 ABCDEFGHI JKLMNOPQR STUVWXYZ 

111111111 
111111111 III 

00000000 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0000 U U 0 0 0 0 0 011111111 00000000000 0 0 III 0 0 0 0 0 0 0 0 0 0 
1 2 1 4 S 6 7 I 910111113'415 161118 192CZ~ 211324]S26 21182930JI 31JJ ~4 J) J6 1) l8 394(1414? 4144 45 4t' 41 4& ~!'~ ~I 51 SJ~ ~S5651 ~S9606162 6J 64 O~ &66: so 69 10 I, 12 1]1415 16 11 J8 1910 

II I 111 1 11111 111111 11 11 11 1111 1 1111 I 1 111111 11 1 1 11 1 I 11 f 1 I 1111 1 I 1 1 I 1 'II 111 1 111111111 I 

2222222222122222222222222221222222222122222222122212 2 2 2 2 2 2 2222222222222222222222 

33333333333133333333333333331333333333133333333133333333333333133133131333333333 

4444 444 4 4 ~ 4 414 4 4 4 4 4 4 4 4 4 4 4 4 4 4 414 444 4 4 4 <I 414 4 4 4 4 4 4 414 4 4 4 4 4 444 4 4 4 4 414 414 41414 44 4 4 444 

5555555555555155555555555555551555555555155555555155 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 55 5 ~ 5 5 5 5 5 555 

6666666666666616666& 6 6 6 6 6 6 6 6 6 6 616 6 66 fi 6 6 6 61s 6 6 6 6 6 6 61s 6 666 fi 6 6 6 6 6 666666666666666666 

1777111111777111111111 i 7 1 7 11 7 1111111 J J 1 J 1117 111177711177177717171717717777711717 

88888888888888 a 818 8 8 8 8 8 8 8 8 8 8 8 8 8 8 81 8 8 8 88888818888888818888888 S 81181181111s 8 8 8 8 888 

80·COLUMN ___ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~,~ ~ ~~~;~~!~;~';'~;;~;';?~J~ ;,~,~,~,~ ~,;. ;~~~;l~!~;'!;'~~'~~!;'~~'~~'~~s~~~~~~~! ~~ ;;~ ~~~!~! 
SCALE 

Figure 3 - 11 . Punche d Card Code s 

3-8 #2-139 



SECTION III. DATA FORMAT 

Numeric information is represented using the card punch positions labeled zero through 

nine. Alphabetic information is represented by a combination of numeric punches and zone 

punche s. There are three zone punch positions: the 12 zone at the top edge of the card, the 11 

zone just below the l2-zone position, and the zero zone labeled as row zero on the card. Th~ 11 

and 12 zones are not labeled because the top edge of the card is reserved for printed headings. 

In addition to Hollerith code, cards may be punched or read in the direct transcription 

mode as an optional feature. Each punch position on the card is individually significant in this 

mode, a punch representing a one bit and the absence of a punch representing a zero bit. 

The data formats of the media most commonly associated with peripheral device s (viz., 

magnetic tape and punched cards) have been described. However, other media (e. g., paper tape, 

magnetic disks, etc.) also contain unique data formats which are converted to central processor 

format by their respective peripheral controls. These formats are described in the individual 

Serie s 200 publications which define such devices. 

3-9 #2-139 





ADDRESSING 

BASIC CONCEPTS 

The main memory storage locations that contain the instructions and data of a program are 

identified to the machine by their particular main memory addresses. Every character storage 

location in the main memory is directly addressable. 

An instruction is stored in a field of from 1 to 12 characters, depending on the format of 

the instruction and the mode of address assembly (two-, three-, or four-character). Figure 4-1 

illustrates how a typical seven-character Add instruction appears when stored in the main 

memory. (Recall that enclosing a character in a circle indicates that a word mark is associated 

with it. ) 

An instruction is addressed by specifying the op code (leftmost) location of the instructiono 

For instance, the address of the Add instruction in Figure 4-1 is 524. The machine reads an 

instruction from left to right until it senses a word mark. For example, the extraction of the 

Add instruction (Figure 4-1) is stopped by the word mark associated with the op code of the next 

instruction in sequence. 

CONTENTS---- ® 1776 1492 

BAD ESS 
CODE 

~_M_ACHINE READS INSTRUCTIO_N __ ~ 
FROM LEFT TO RIGHT 

Figure 4-1. Typical Add Instruction. 

4-1 

OP CODE OF 
NEXT INSTR. 

#2-139 



SEC TION IV. ADDRESSING 

As mentioned in Section III, a data field is normally defined in the following manner: the 

leftmost location in the field is indicated by a word mark; the rightmost location is specified in 

the A or B address of an instruction. T.he machine reads a data field from right to left until it 

senses the word mark associated with the leftmost character in the field. 1 For example, the A 

and B addresses in the instruction shown in Figure 4-1 could specify the data fields shown in 

Figure 4_2. 2 

ICg~EI A ADDRESS B ADDRESS 

INSTRUCTION 

ADDRESS 

DATA 4 ® 7 2 0 4 ® 

A FIELD 

ADDRESS 

DATA @ 3 7 7 7 3 9 6 ® 

L 
B FIELD 

MACHINE READS DATA FIELD 
FROM RIGHT TO LEFT 

Figure 4-2. Extraction of Data Fields in Typical Add Instruction 

An item is addressed by specifying either its leftmost or its rightmost character location 

in an address portion of an instruction (a variant character in the instruction specifies which 

character is being addressed). If the address of the leftmost character is specified, the rna­

chine reads the item from left to right; if the address of the rightrnost character is specified, 

the machine reads the item from right to left. In either case, the operation terrninates when an 

item mark is sensed. 

A record is addressed by specifying its leftmost character location in an address portion 

of an instruction. The machine reads a record from left to right until it senses a record mark. 1 

Note that the contents of the character position containing a record mark are not considered as 

part of the record, except when the record is moved internally. 

1 
Recall that the Extended Move (EXM) instruction permits the reading of fields t itettls, and rec-
0rds in either direction. 

2 All examples and illustrations in this section are presented in decimal notation. A table of 
decimal and octal equivalents appears in Appendix A. 

4-2 #2-139 



SECTION IV. ADDRESSING 

The direction in which the machine reads any of the above -mentioned groups is compatible 

with the manner in which the contents of the group are manipulated. For instance, a field used 

in an arithmetic operation is read from right to left because such operations combine fields 

character by character, starting with the low-order or "units" position in each field. Similarly, 

an instruction is read from left to right because the machine must interpret the op code before it 

can manipulate the operand(s). 

REGISTERS USED IN ADDRESSING 

The processing of a stored-program instruction consists of two phases: the retrieval (or 

"extraction") of the instruction from main memory storage, and'the execution of the instruction. 

Six control memory registers are used to address the main memory during instruction processing. 

Four registers - SR, CSR, EIR, and IIR - are related to the sequential selection of instructions 

in a program; the other two registers - AAR and BAR - control the transfer of information 

from one storage location to another by containing the address portions of an instruction. 

SEQUENCE REGISTER (SR) 

SR contains the address of the next sequential instruction character to be extracted from 

the memory during a program run. The contents of SR are incremented by one as each instruc­

tion character is extracted, so that SR contains the address of the next instruction's op code 

when one instruction has been completely extracted. 

CHANGE SEQUENCE REGISTER (CSR) 

The address of an op code can be stored in CSR. 1 A Change Sequencing Mode instruction 

(see page 8-'66) will interchange the contents of SR and CSR and thereby cause the program to 

branch to the instruction whose op code address was stored in CSR. At this point in the program 

CSR will contain the address of the op code following the Change Sequencing Mode instruction. 

In order to return to this op code (i. e., to the initial sequence of instructions), another Change 

Sequencing Mode instruction can be issued. 

EXTERNAL INTERRUPT REGISTER (EIR) 

EIR, like CSR, can be used to store the address of an op code. 1 This address and the 

contents of SR will be interchanged automatically when an external interrupt signal is received. 

(Recall that an external interrupt signal can be generated by a peripheral control, by the control 

panel or console, ,or by the Monitor Call instruction.) In order to return to the normal sequence 

of instructions that was interrupted, a Resume Normal mode instruction (see page 8-99) can be issued. 

1 A Load Control Registers instruction can be used to store the desired op code address (see 
page 8-60). 

4-3 #2-139 



SECTION IV. ADDRESSING 

INTERNAL INTERRUPT REGISTER (IIR) 

The address of an op code can also be stored in IIR. 1 When the Type 1201,1251,2201 or 

4201 processor is equipped with the Storage Protect Feature, certain operations are considered 

as "violations" of storage protection (e. g., the attem.pt to initiate a data transfer from a pe­

ripheral control to a starting location in the protected memory area). An internal interrupt signal 

is generated when such a violation occurs, and the contents of IIR and SR are automatically inter­

changed. The Resume Normal Mode instruction is used to return to the interrupted program. 

A-ADDRESS REGISTER (AAR) 

AAR normally contains the A-address portion of an instruction (i. e., the storage address 

of the rightmost character of the A-operand data). This address is loaded into AAR during the 

extraction phase of processing. In the execution of instructions whose operands are fields or 

rightmost-addressed fields or items, the contents of AAR are decremented by one as each char­

acter in the A field is manipulated.2 The contents of AAR are incremented by one as each char­

acter in a:c 
record or leftmost-addressed field or item is extracted. 3 

B-ADDRESS REGISTER (BAR) 

Normally the B -address portion of an instruction is loaded into BAR during the extraction 

phase. During the execution of most instructions, the contents of BAR are decremented by one 

as each character in the B field is extracted. 2 If the B operand is a record or a leftmost-ad­

dressed item, the contents of BAR are incremented by one as each character is extracted. 3 

SUMMARY 

1 

2 

3 

The foregoing information can be summarized as four easily remembered rules: 

1. An instruction is read from left to right. As each character in the instruc­
tion is read, the contents of the sequence register are incremented by one. 

2. A field is read from right to left. 2 As each character in a field is read, 
the contents of the corresponding address register are decreTIlented by one. 

3. A record is read from left to right. 3 As each character in a record is read, 
the contents of the corresponding current location counter are incremented 
by one. 

A Load Control Registers instruction can be used to store the desired op code address (see 
page 8-60). 

A field can also be moved internally from left to right by means of the Extended Move (EXM) 
Instruction (see Section VIII). In this case, the address register is incremented. 

A record can also be moved internally from right to left by means of the Extended Move in-
struction. In this case, the address register is decremented. 

#2-139 



SECTION IV. ADDRESSING 

4. An item can be read either from left to right or from right to left. As 
each character in an item is read, the contents of the corresponding ad­
dress register are incremented by one if reading from left to right, or 
decremented by one if reading from right to left. 

Recall that in all processors except the 4201, a control memory register is only as large 

as it need be to contain the largest main memory address in a user's processor (see Table 2-2), 

so that the size of the user's control registers ranges from 12 to 19 bits in length (control reg­

isters in a 420 1 processor are always 19 bits long). The programmer should keep this fact in 

mind while reading the following description of addressing modes. 

ADDRESSING MODES 

As stated at the beginning of this section, an instruction is stored in a field of from 1 to 12 

characters, depending on the instruction's format and the programmed addressing mode. The 

op code is stored as a single six-bit character •. Variant characters or I/O control characters, 

if any, are each stored as single characters. The number of character locations in which each 

address portion is stored depends on the addressing mode selected by the programmer. This 

selection is made by means of a Change Addressing Mode instruction (see page 8-62), with which 

the programmer specifies the two-, three-, or four-character addressing mode. A significant 

feature of the Series 200 addressing technique is that the entire memory is directly addressable. 

TWO-CHARACTER ADDRESSING MODE 

An operand address written in the two-'character addressing mode is storea in two con­

secutive character locations in memory. The stored address (a continuous 12-bit binary num­

ber) represents the address of a main memory location in the range 0 - 4, 09510 , 

Two-Character Address 

~,--------------~------------_I 12.Bit Ada-ress 

During the extraction phase of instruction processing, the two-character address is placed 

in the rightmost 12 bit positions of the address register (AAR or BAR). Any bits in the register 

to the left of the two-character address are called "bank bits." Previous values in the bank bit 

positions of the register are not disturbed during instruction extraction. 1 

1 The entire contents of an address register (bank bits + two-character address bits) are affected 
during the extraction of an instruction whose extraction path "duplicates A" (described on page 
4-17). Extraction of all other two-character addresses affects only the rightmost 12 bits. 

4-5 #2-139 



SECTION IV. ADDRESSING 

Two-Character Address .. 
(12 Bits) 

r-------
Address Register 
(12 - 19 Bits) 

------------__ .. ~ IX X X X X X L _______ _ 
'~----~v~----~/ 

Bank Bits 
(not disturbed 

during 
extraction) 

When the instruction is executed, the entire contents of the address register are inter-

preted as the operand address. Previous values in the bank bit positions, not disturbed during 

the extraction phase, are used to form the address of the operand during the execution phase. 

Thus, the bank bit values imply a base address to which the 12-bit address is added to form the 

actual operand address. If the bank bit values are all zeros, the 12-bit address is the actual 

operand address. 

For example, a two -character A addres s specifying location 4, 00010 is extracted and 

placed in AAR. The second bank bit in AAR (bit position 14) contains a residual value of "1 ", 

representing a base address of 8, 19210. When the instruction is executed, the entire contents of 

AAR (8,19210 + 4, 00010) specify the address of the A operand - location 12,19210• 

As the contents of the address register are incremented or decremented during "internal" 

execution, bank bits are not disturbed. 1 If the 12-bit address in the rightmost positions of the 

register becomes zero, a borrow from the first bank bit does not occur. Thus, the portion of 

memory which is addressable by a two-character address is the 4,096 -character "bank" speci­

fiedby the base address. 

Indexed and indirect addressing (see below) cannot be performed in the two-character ad­

dressing mode. 

THREE-CHARACTER ADDRESSING MODE 

An operand address written in the three-character addressing mode is stored in three 

consecutive character locations of the memory. The rightmost 15 bits of the stored address 

represent the addres s of a main memory location in the range 0 - 32, 76710 . The leftmost three 

1 
"Internal execution" is defined as the incrementing or decrementing of address register con-
tents during memory cycles allocated to the central processor. When peripheral transfer oper­
ations are performed, using memory cycles allocated to read/write channels, incrementing and 
decrementing of address register contents affect all bits of the register. Thus, addressing 
during peripheral transfer operations is continuous throughout the ~emory. 

4-6 #2-139 



SECTION IV. ADDRESSING 

bits, referred to as the "address modifier, " specify whether the address is direct, indirect, or 

indexed (see "Address Modification, " page 4- 8 ). 

Three-Character Address 

Address 
Modifier 

lS- Bit
V 
Addre s s 

During the extraction phase, the IS-bit address is placed in the rightmost bit positions of 

the operand address register. Any bits in the register to the left of these bit positions are called 

"sector bits." Previous values in the sector bit positions of the register are not disturbed during 

instruction extraction. 1 

Three-Character Address 
(IS Addres s Bits) 

Address Register 
(IS - 1 9 Bits) 

r---
LX_X_X_X 

'---v--" . 
Sector Blts 
(not disturbed 
during ex­
traction) 

When the instruction is executed, the entire contents of the address register are interpre­

ted as the operand address. Previous values in the sector bit positions; not disturbed during the 

extraction phase, are used to form the address of the operand during the execution phase. Thus, 

the sector bit values imply a hase address to which the IS-bit address is added to form the actual 

operand address. If the sector bit values are all zeros, the IS-bit address is the operand address. 

For example, a' three-character A address specifying location 12,000 10 is extracted and 

placed in AAR. The first sector bit in AAR (bit position 16) contains the value "I", representing 

a base address of 32,768 10 • When the instruction is executed, the entire contents of AAR 

{32, 76810 + 12, OOOIO} specify the address of the A operand - location 44,768 10 • 

As the contents of the address registers are incremented. or decremented during "internal" 

execution, sector bits are not disturbed. If the IS-bit address in the rightmost locations of the 

address register becomes zero, a borrow from the first sector bit does not occur. Thus, the 

1 The entire contents of an address register {sector bits + IS-bit address} are affected during the 
extraction of an instruction whose extraction path "duplicates A" {described on page 4- 17}. Ex­
traction of all other three-character addresses affects only the rightmost IS bits in the register. 

4-7 #2-139 



SECTION IV. ADDRESSING 

largest portion of memory which is addressable by a three-character address is the 32, 768-

character "sector" specified by the base address. 

Addressing is continuous throughout the entire memory when a peripheral transfer oper­

ation is performed, as in the two-character mode. 

FOUR-CHARACTER ADDRESSING MODE 

An operand address written in the four-character addressing mode is stored in four con­

secutive character locations. The rightmost 19 bits represent a main memory address in the 

range 0 - 524, 28810. The leftmost five bits - the "address modifier" - specify whether the 

address is direct, indirect, or indexed (see "Address Modification, " below). 

Four-Character Address------~. 

5-Bit 
Address 
Modifier 

19-Bit Address 

The 19 -bit address is placed in the address register during the extraction phase. Thus, 

the entire contents of the address register are affected during the extraction of a four-character 

address. 

Four-Character Address ---------I~ 
(19 Address Bits) 

Address Register -----------------l~ 
(Up to 19 Bits) 

The entire contents of the register are interpreted as the operand address when the instruc­

tion is executed. As the contents of the operand address registers (AAR and BAR) are incre­

mented or decremented during execution, all bits in the register are affected. Thus, addres sing 

is continuous throughout the entire range of available memory (up to 524, 288 locations) in the 

four-character 9-ddressing mode. 

ADDRESS MODIFICA TION 

Indirect and indexed addressing can be used to modify three- or four-character addresses 

in any Model 200 processor containing the Advanced Programming Instructions (Feature 010 or 

011) and in all Type 1201, 1251, 2201, and 4201 processors. These addressing forms are repre­

sented by the configuration of the "addre s s modifier" as de scribed below and are interpreted by tl: 

processor during the extraction phase. 

4-8 #2-139 



SECTION IV... ADDRESSING 

INDEX REGISTERS 

Index registers are used to store values to be used for address modification during instruc­

tion execution. A Series 200 processor can contain up to 120 index registers, depending on the 

type of processor and the optional features included in that processor. Figure 4-3 shows the 

memory areas utilized by the largest possible complement of index registers in a Series 200 

memory. The portion of a processor's index register complement usable by a program at any 

given time varies with the program's location in main memory and the addressing mode in use. 

Table 4-1 summarizes the number of index registers simultaneously available to a program. 

LOCATION 0 

XI-XlS(l )1 XI-X6 I XI-X6 J XI-X6 1 

Sector 0 Sector 1 Sector 2 Sector 3 

XI-X6 I XI-X6 1 XI-X6 1 XI-X6 1 

Sector 4 Sector S Sector 6 Sector 7 

XI-X6 J XI-X6 I XI-X6 I XI-X6 I 
Sector 8 Sector 9 Sector 10 Sector 11 

XI-X6 I XI-X6 I XI-X6 1 XI-X6 I 
YI-YlS(2) 1 

Sector 12 Sector 13 Sector 14 Sector IS 

LOCATION S24, 287 

1 Registers Xl-XIS are not available in: (1) the Type 201 processor; and (2) the 
Type 201-1 or -2 processor not equipped with the Advanced Programming Instruc-
tions. In each of these cases, a group of index registers XI-X6 is located in 
place of Xl-XIS. 

2 
Registers YI-YlS can be positioned, under program control, 'in the first 61 loca-
tions of any 4, 096 -character bank of memory. If these registers are positioned 
in the first bank of a 32, 768-character sector, they replace the group of six index 
registers in that sector. 

Figure 4-3. Series 200 Index Register Map 

Index Register Map (Figure 4-3) 

Registers XI-X6 are available to instructions executed in the three-character mode. These 

registers are located in the first 2S positions (locations 0 through 24) of the 32, 768-character 

4-9 #2-139 



SECTION IV. ADDRESSING 

sector in which the instruction is stored. 1 Since there can be as many as sixteen 32, 768-charac­

ter sectors in a Series 200 main memory, up to 96 index registers are supplied for use in three­

character addressing mode. 

Table 4-1. Number of Index Registers Simultaneously Available to a Program 

201 0 6 n/a 0 6 

201-1 0 15 n/a 0 15 

201-2 0 15 n/a 0 15 

1201 15 n/a1 15 15 30 

1251 15 n/a 
1 

15 15 30 

2201 15 n/a1 15 15 30 

4201 15 n/a1 15 15 30 

1 Advanced Programming is a standard feature on the Type 1201, 1251, 2201, and4201 processors. 

Index registers XI-XI5, located in the first 61 character positions of memory, are avail­

able to instructions executed in the four-character addressing mode. The placement of these 

registers is independent of the location of the instruction whose address{es) is indexed. Registers 

YI-YI5, located in the first 61 positions of a "protected" memory area, are available to all pro­

grams operating in the four-character addressing mode in processors equipped with the Storage 

Protect Feature. 2 The specific bank at which the protected memory area begins is specified by 

use of the Load Index/Barricade Register instruction (see Section VIII). 

THREE-CHARACTER ADDRESS 

The address modifier of a three-character address {i. e., the leftmost three bits of the 

stored address} specifies whether the address is direct (000), indirect (Ill), or indexed {001 

through 110}. 

Indirect Addressing 

In previous examples and illustrations in this section, an address portion of an instruction 

always specifies the address of a data field in the main memory. This manner of addressing an 

1 
These registers are always located in the first 25 locations (locations 0-24) of memory in a 
Type 201 or 201-1 processor. 

2programs operating in the unprotected portion of memory can read the contents of Y 1- Y 15 but 
cannot write into these registers. 

4-10 #2-139 



SECTION IV. ADDRESSING 

operand is commonly referred to as direct, or "first-level, "addressing. In some instances, in­

stead of specifying the location of a data field directly, it is more useful to be able to specify the 

storage location of another address, which in turn specifies the location of the desired data field. 

This manner of locating an operand is referred to as indirect, or "second-level, " addressing. 

A three-character indirect address is specified by an address modifier of all one bits and 

refers to the leftmost storage location of another main mem.ory address. The referenced address 

can itself be direct, indirect, or indexed as specified by its address modifier. Thus, an indirect 

address can specify another indirect address, and so on through any number of levels, or it can 

s·pecify an indexed address. The method of coding an indirect address is illustrated in Section 5. 

Figure 4- 4 shows the extraction of an Add instruction in which indirect addres sing is 

specified in the A address and direct addressing is specified in the B address. Note that the A 

address (indirect) references the leftmost location of another main memory address. This ad­

dress, in turn, specifies the location of the rightmost character in the A field. Note further 

that if the address modifier of location 1027 were not "000", the remainder of the stored address 

would be interpreted as an indexed or indirect address. 

INSTRUCTION 

indicates 
indirect 
address 

A ADDRESS 

ADDRESS-'~~~~~i 
CONTENT 

CONTENTS 

B ADDRESS 

Figure 4-4. Extraction of Three-Character Indirect Address 

4-11 #2-139 



SECTION IV. ADDRESSING 

Indexed Addressing 

When indexed addressing is perform.ed in the three-character m.ode, the rightm.ost IS-bit 

contents of an index register are autom.atically added to the IS-bit address field in an instruction. 

Three variables m.ust be defined in any indexing operation: (l) the index register to be used, (2) 

the address to be m.odified, and (3) the factor (referred to as an augm.ent) to be added to the ad­

dress. The index register to be used is specified in the address m.odifier of an address field 

(see Table 4-2). The address to be m.odified can be stored in the sam.e address field or it can be 

stored in the designated index register. If the address to be m.odified is stored in an address 

field, the augm.ent is stored in the designated index register and vice versa. 

Table 4-2. Index Register Addresses in Three-Character Addressing Mode 

Xl 001 2 - 4 (+n) 4 (+n) 

X2 010 6 - 8 (+n) 8 (+n) 

X3 all 10 - 12 (+n) 12 (+n) 

X4 100 14 - 16 (+n) 16 (+n) 

XS 101 18 - 20 (+n) 20 (+:p.) 

X6 110 22 - 24 (+n) 24 (+n) 

n = first location of the 32, 768-character sector in which the instruction is 
stored. 

The m.odification of an address occurs in its respective address register. For instance 

if the B-address portion of an instruction is indexed, the modification is performed in BAR. 

This means that neither the original instruction stored in the main memory nor the contents of 

the index register is altered in any way. 

Norm.al program.rning, such as a load or a move operation, can be used to store a value 

in an index register. Sim.i1arly, the contents of an index register can be changed by using an 

instruction such as Binary Add or Binary Subtract. Note that since the index registers are lo­

cated in the m.aih m.em.ory, they can be used as norm.al storage locations when they are not 

being used for indexing operations. 

Figure 4-5 illustrates how the Add instruction on page 4- 11 would be extracted if indexed 

addressing were specified in the A-address portion of the instruction. The method of coding an 

indexed address is illustrated in Section V. 

4-12 #2-139 



SECTION IV. ADDRESSING 

A ADDRESS B ADDRESS 

INSTRUCTION 

re ister 3 

INDEX REGISTER 3 

2000 

ADDRESS----1Mi1!Ul7: 

CONTENTS---. ... 

ADDRESS ----INA 

CONTENTS-~ .. 
~~~==~====~~ 

3 6 1 7 

B LD 

Figure 4- 5. Extraction of Indexed Address in Three-Character Mode 

FOUR-CHARACTER ADDRESSING MODE 

The address modifier in a four-character address consists of the leftmost five bits of the 

addres s (see page 4-8). The configuration of these bits specifies whether the address is direct 

(00000), indirect (l0000), or indexed (00001 through 11111, skipping over 10000). 

Indirect Addressing 

Indirect addressing in the four-character addressing :mode is performed similarly to that in 

the three-character mode, except that: 

1. a five-bit address modifier whose configuration is 10000 specifies indirect 
addressing; and 

2. a four-character address is extracted. 

The method of coding a four-character indirect address in Easycoder assembly language is 

identical to that used for a three-character indirect address (see Section V). 

4-13 #2-139 



SECTION IV. ADDRESSING 

Indexed Addressing 

Four-character indexed addresses to be modified by index registers Xl through X15 are 

specified by an address modifier whose configuration is 00001 through 01111, respectively. Index 

registers Yl through Y15, when present, are specified by the configurations 10001 through 11111 

(see Table 4-3). Register locations are shown in Figure 4-3. 

Table 4-3. Index Register Addresses in Four-Character Addressing Mode 

Xl 00001 1-4 4 

X2 00010 5-8 8 
X3 00011 9-12 12 
X4 00100 13-16 16 
X5 00101 17-20 20 
X6 00110 21-24 24 
X7 00111 25-28 28 
X8 01000 29-32 32 
X9 01001 33-36 36 

XIO 01010 37-40 40 
XII 01011 41-44 44 
X12 01100 45-48 48 
X13 01101 49-52 52 
X14 01110 53-56 56 
XIS 01111 57-60 60 

Yl 10001 
Y2 10010 
Y3 10011 
Y4 10100 
Y5 10101 Same as above, only 
Y6 10110 

relative to the 4, 096-
Y7 10111 
Y8 11000 character memory bank 
Y9 11001 

de signated by the Load 
YI0 11010 
Yll 11011 Index/Barricade Register 
Y12 11100 
Y13 11101 instruction (see page 8-79). 

Y14 11110 
Y15 11111 

When indexed addressing is performed in the four-character mode, the contents of the 

specified index register are added to the address field of the instruction. However, only the 

number of active address bits of the index register and the address field are combined (i. e., 

only the number of bit s which are required to addre s s the entire memory of the user's proc­

essor). The number of active address bits corresponds to the size of a control memory reg­

ister (see Table 4-4). In a 4201 processor, all 19 control register bits are active, regardless 

of main memory size. 

4-14 #2-139 



SECTION IV. ADDRESSING 

Table 4-4. Active Address Bits in Series 200 Processors 

32,768 65,536 131,072 262,144 

15 16 17 18 

If the main memory capacity of a user's system lies somewhere between any two figures 

in the top row of Table 4-4, the larger number of active address bits is used. For instance, if a 

processor contains 49,152 characters, there are 16 active address bits in an index register (and 

in a control register). 

The extraction of a Subtract instruction written in the four-character addressing mode is 

shown in Figure 4-6. Indirect addressing is specified in the A address, and indexed addressing 

(via index register X13) is specified in the B address. 

INSTRUCTION 

indicates 
indirect 
address 

CONTENTS 

A ADDRESS 

indicates 
index 

ister X13 

indicates 
direct 

address 

ADDRESS 

CONTENTS 

A FIELD 

INDEX REGISTER X13 

ADDRESS~mliI~~~~ 
CONTENTS 

ADDRESS 

CONTENTS--

B ADDRESS 

B-ADDRESS 
REGISTER 

Figure 4-6. Extraction of Indirect and Indexed Four-Character Addresses 

4-15 #2-139 



SECTION IV. ADDRESSING 

TREATMENT OF ADDRESSES LARGER THAN A MEMORY'S MAXIMUM ADDRESS 

It is possible in some processors to specify in instructions direct addresses which are 

larger than the address of the processor's highest memory location. This condition can exist in 

all 4201 processors smaller than the maximum configuration and in any other Series 200 proc­

essor whose memory capacity is not a power of two. 

Likewise, it is possible in any Series 200 processor, by the use of indexed addressing, to 

specify addresses and address modifiers whose sums are potentially greater than the address of 

the memory's highe st location. For example, consider the case where, in a rn.achine having a 

49, 152-character memory, an instruction contains the address 49, 000 and the address is indexed 

using a register which contains the value 1,000. Obviously, the sum of 49,000 and 1,000 is 

greater than the memory's largest address, 49,151. 

Situations such as the ones just cited are handled differently, depending upon the relation­

ship between the potential address and the memory size involved and whether or not the Storage 

Protect Feature is installed and in effect. In particular, such situations can be categorized 

according to whether the potential address is larger or smaller than the range of addresses 

representable by active address-register bits. 

Potential Addresses Within Address Register Range 

In a 4201 processor without storage protection in effect, encountering.a simple, direct 

address, or the potential sum of an indexed address and index register contents, which lies 

between the address of the highest actual memory location and the address registers' upper 

limit, causes the processor to stop. Results are unspecified for the other Series 200 processors. 

Any Series 200 processor with Storage Protect in effect, upon encountering an addres s of the 

type described above, will perform the following actions: the II address violation indicator is 

set, the instruction is terminated prematurely, and an internal interrupt is generated (see 

Appendix E, page E-2). 

Potential Addresses Outside Address Register Range 

In any Series 200 processor, if a simple direct address, or the potential sum of an indexed 

address and index register contents, is greater than the largest address representable by active 

address-register bits, the resultant address is formed modulo the number of locations addressable 

with the active address bits; i. e., a memory "wrap-around" occurs. For exarn.ple, in a 49K 

Model 2200, a total of 65, 536 locations can be addressed by 16 active address bits. If, in such 

a rn.achine, an address of 48,000 is indexed by the value 27,000, the resultant effective address 

will be 48,000 + 27,000 - 65,536, or 9464. 

4-16 #2-139 



SECTION IV. ADDRESSING 

EXPLICIT ADDRESSING, IMPLICIT ADDRESSING, AND CHAINING 

Consider the three instruction formats illustrated below. 

OP CODE A ADDRESS B ADDRESS 

FORMAT I. __ ~~~ ____ ~~~~ __ ~~~~ __ 

FORMAT 2.. .. 

--------------------------------
FORMAT 3. .. 

Format 1 corresponds to the instructions used in the preceding illustrations. The signifi­

cant feature of this format is that the addresses of both the A and the B data fields are explicitly 

specified in the instruction~ For this reason the data fields are said to be "explicitly addressed. " 

In general, whenever the programmer writes the address of a data field on his coding sheet, he 

is explicitly addressing that data field (see Figure 4-7). 

EXPLICIT ADDRESS 

I 1 
OPCODE A ADDRESS 8 ADDRESS • - -The addresses of both data fields are explicitly specified in 

the instruction. 

Figure 4-7. Series 200 Instruction Format 1 

Format 2 has two possible interpretations (see Figure 4-8): 

FORMAT I 

1. Ten Series 200 instructions coded in format 2 cause the A address to be 
loaded into both AAR and BAR. 1 Thus, although the B-address portion of 
the instruction is omitted, the B field is explicitly addressed by the A­
address portion. The extraction path of these instructions is said to 
"duplicate All (see Appendix C), since the contents of AAR are duplicated 
in BAR. 

2. The A address of 19 instructions is loaded into AAR only, leaving BAR 
undisturbed. An omitted B address in any of these instructions implies 
that the previous contents of BAR will be used as the addres s of the B 
field. For this reason the B field is said to be "implicitly addressed, II 
and the extraction path of these instructions Ilpreserves BII (see Appendix C). 

1 
The entire contents of AAR are loaded into BAR during extraction, so that all bit positions in 
BAR are identical to those in AAR. 

4-17 #2-139 



EXPLICIT ADDRESS 

OP CODE • 

SECTION IV. ADDRESSING 

1 J 
A ADDRESS B ADDRESS __ r---, --L __ ...1 

In ten instructions, the address of both data fields is explicitly 
specified in the instruction. 

IMPLICIT ADDRESS 

EXPLICIT ADDRESS 

OP CODE • 
1 

A ADDRESS -
1 

B ADDRESS J prflvious conlflnls 
r - - -, -'1 of BAR 
L __ ..J 

In 19 instructions, the previous contents of BAR are 
im.plied as the address of the B field. The address 
of the A field is explicitly specified in the instruction. 

Figure 4-8. Series 200 Instruction Form.at 2 

FORMAT 20. 

FORMAT 2b. 

In form.at 3, both data fields are im.plicitly addressed. The previous contents of AAR are 

used as the address of the A field, and the previous contents of BAR are used as the address of 

the B field (see Figure 4- 9). 

Im.plicit addressing is extrem.ely useful in situations where it is desired to perform. a 

series of operations on data fields that are in consecutive storage locations. The use of implicit 

addressing reduces both the tim.e required to perform. the operations and the num.ber of m.em.ory 

locations required to store the instructions. 

IMPLICIT ADDRESS 

OP CODE • 
1 

A ADDRESS 
r---, L_r_...J 

prflvious conlflnls 
of AAR 

1 
B ADDRESS 
r----, 
L __ -.J 

t 
prtIvious contflnt. 
of BAR 

The addresses of both data fields are im.plied in 
the instruction. 

Figure 4-9. Series 200 Instruction Form.at 3 

4-18 

FORMAT 3 

#2-139 



SECTION IV. ADDRESSING 

As an example, assume that tJ::1ree la-character fields stored in sequence are to be added 

to three other sequential fields. First, examine how this operation would be performed using 

explicit addressing. Upon completion of the first instruction, AAR contains 890 and BAR con­

tains 690. These are the same values that appear in the A- and B-address portions of the second 

o o 
0) 

900 

890 

880 

700 

690 

680 

instruction. Similarly, upon completion of the second instruction, AAR and BAR contain 880 and 

680 - the A and B addresses of the third instruction. Since in each case AAR and BAR contain 

the addresses used in the next instruction, it is unnecessary to write these addresses in the in­

struction. In other words, this operation could be performed using implicit addressing in the 

second and third instructions. 

o 
o 
0) 

900 700 

Connecting instructions together so that the contents of AAR, BAR, and the variant reg­

ister (see below) at the conclusion of one instruction satisfy the requirements of the next instruc­

tion is called "chaining." Using explicit addressing in the three-character addressing mode, 21 

storage locations are required to store the instructions above and the operation takes 117 micro­

seconds to complete on a Type 2201 processor. If the instructions were "chained, " nine storage 

locations would be used and 105 microseconds would be required to complete the operation. 

Instructions which require a variant character can also be chained by using the previous 

contents of the variant register. (The variant register is a single-character, internal register 

into which the variant character of an instruction is loaded during extraction.) The extent of 

chaining variant characters (i. e., the number of acceptable instruction formats in which the 

previous contents of the variant register can be used) varies with the processor being used. 

In the Type 201-2, 1201, 1251, 2201, and 4201 processors, variant characters can be 

chained by an instruction coded in any forrnat (i. e., form.at 1, 2, or 3 shown on page 4-17). The 

previous contents of the variant register are not norm.ally distrubed by the processing of an in­

struction which does not contain a variant character (see the instruction Branch, Move Charac­

ters and Edit, and Move and Translate for exceptions). 

4-19 #2-139 



SECTION IV. ADDRESSING 

In the Type 201 and 201-1 processors, the previous contents of the variant register are 

destroyed by the processing of an instruction which contains an address portion. Thus, the only 

instructions which can chain variant characters in these processors are those instructions coded 

without address portions (i. e., format 3 on page 4-17). 

Chaining is not limited to sequential operations having the same op code. The only con­

dition that must be met is that an instruction must leave the contents of AAR, BAR, and, if 

required, the variant register such that they satisfy the addressing requirements of the next 

instruction in sequence. 

To enable the programmer to chain instructions wherever possible, the description of each 

instruction (see Section VIII) includes a table showing the contents of the address registers after 

the instruction has been executed. Also, Appendix C denotes whether each instruction in the 

machine complement can or cannot be chained. 

4-20 #2-139 



INTRODUCTION 

EASYCODER 
PROGRAMMING 

The preparation of Series 200 programs is greatly simplified by the use of Easycoder - a 

concise, easy-to-use programming system. Specifically, Easycoder relieves the programmer of 

many time-consuming duties associated with writing a prograrn in actual machine language. It 

rnakes it unnecessary, for example, to maintain a careful record of the storage address assigned 

to each instruction. In addition, it allows the programmer to employ meaningful syrnbolic tags 

(e. g., TAX, FICA, and TOTAL) to specify data, rather than using absolute memory addresses. 

In situations where a stored program must be relocated or modified, Easycoder can be used to 

perform the required alterations automatically. 

Easycoder includes a number of assembly systems; these systems are: 

• EASYCODER A: Part of the SERIES 200/BASIC PROGRAMMING SYSTEM. 
Easycoder A operates in a system having a rninimum 
main rnemory size of 4, 096 characters. (Additional mern­
ory, however, may be used to advantage.) For additional 
information refer to Easycoder A As sembly System (Order 
No. 490). 

NOTE: A counterpart of Easycoder A - Easycoder A 
(P) - is available for use in a paper tape en­
vironment. The main rnemory requirements 
are identical to those of Easycoder A. See 
Easycoder A{P) Assembly System (Order No. 
695) for more information. 

• EASYCODER B: Also part of the SERIES 200/BASIC PROGRAMMING SYSTEM. 
Easycoder B operates in a system having it minimum rnain 
rnemory size of 8, 192 characters. (Additional memory may 
be used to advantage, however.) See Easycoder B Assernbly 
System (Order No. 011) for additional information. 

• EASYCODER C: Part of the SERIES 200/0PERATING SYSTEM - MOD 1. 
Easycoder C operates in a system having a minimum of 
12,288 characters of main memory. (Additional memory, 
however, may be used to advantage.) For additional infor­
rnation refer to Easycoder As semblers C and D (Order No. 041). 

5-1 #2-139 



SECTION V. EASYCODER PROGRAMMING 

• EASYCODER D: Part of the SERIES 200/0PERATING SYSTEM - MOD l. 
Easycoder D operates in a systern having a rninirnurn of 
16,384 characters of rnain rnernory. (Additional rnernory, 
however; rnay be used to advantage.) For additional infor­
rnation see Easycoder As sernblers C and D (Order No. 041). 

Each assernbly systern includes two basic elernents: the Easycoder syrnbolic language and 

an Easycoder Assernbler. The Easycoder language is used to write the syrnbolic prograrn (the 

source prograrn) while the as sembler translate s the source prograrn into the actual rnachine­

language prograrn (the object prograrn). 

To prepare a prograrn in Easycoder syrnbolic language, the prograrnrner uses an Easycoder 

Coding Forrn (see Figure 5-5) and enters each syrnbolic i+lstruction or definition on a separate 

line. As a general rule, the instructions are written in the order in which they are to be exe­

cuted. (However, the instructions rnust be in the proper sequence prior to assernbly.) After the 

syrnbolic prograrn has been written, each line of symbolic coding is punched into a separate 

source-prograrn.card. These cards are the input data which will be processed by an Easycoder 

as sernbler. 

The assernbler accepts the- source-prograrn cards and autornatically produces a corre­

sponding rnachine-language object prograrne It converts rnnernonic operation codes into rnachine­

language codes, assigns absolute storage addresses to instructions and syrnbolic operand ref­

erences, and cornpletely assernbles the final prograrn, storing it on punched cards or rnagnetic 

tape. Another output of the assernbler rnay be a cornplete printed surnrnary of the syrnbolic 

source prograrn and the corresponding rnachine-language entries. Figure 5-1 illustrates the 

relationship of the source prograrn, assernbler and object prograrn. 

SOURCE PROGRAM 

EASYCODER 
CODING FORM 

SYMBOLIC CODING 
PUNCHED INTO CARDS 

.c51 
• ASSEMBLER 

(TRANSLATES SYM­
BOLIC LANGUAGE INTO 
MACHINE LANGUAGE) 

OBJECT PROGRAM 

MACHINE-LANGUAGE PROGRAM 
STORED ON CARDS OR TAPE 

Cj1]ORQ 
PROGRAM 
LISTING 

~ 

Figure 5-1. Relationship of Source Prograrn, Assernbler, and Object Prograrn 

5-2 #2-139 



SECTION V. EASYCODER PROGRAMMING 

THE SYMBOLIC LANGUAGE 

The Easycoder symbolic language is composed of a set of mnemonic operation codes and a 

set of rules for defining memory areas, addressing operands, and entering constants. The 

mnemonic operation codes are predefined abbreviations for machine-language operation codes 

and, in general, provide an easily remembered description of each instruction. For example, 

SIis the Easycoder mnemonic for the Set Item Mark instruction, and BCC is the rone.monic for 

the Branch on Character Condition instruction. The set of rules includes special mnemonics for 

defining work areas in the main memory and for defining programmer-specified constants. 

The statements used in writing an Easycoder program can be classified into three groups: 

1. Data formatting statements make it possible to reserve areas and store 
constants without regard to their actual locations in memory. Data format­
ting statements are described in Section VI. 

2. Assembly control statements are used by the programmer to control the as­
sembly of his program. Assembly control statements are described in 
Section VII. 

3. Data processing statements are the actual machine instructions to be exe­
cuted in the object program. Section VIII contains a description of the data 
proce s sing statements employed by the Models 200, 1200, 1250, 2200, and 4200. 

THE ASSEMBLERS 

The assembler element of each Easycoder assembly syste:rn. translates the symbolic source 

program (written on the Easycoder Coding Form and subsequently punched into a source-pro­

gram card deck) into machine-language entries, placing the resultant object program on either 

punched cards or magnetic tape. In addition to the object-program output, the assembler may 

also produce a printed listing containing the symbolic source program and the corresponding. 

object-program entries (see Figures 5-2 and 5-3). 

SYMBOLIC 
PROGRAM 
INSTRucrlON 

OPERANDS 
OPERATION 

15 CODE 20 21 

AMT, TOTAL 

/\~ 
OBJECr 
PROGRAM 
INsrRucnON 

_RACTEN-j 3 ' 6 I 
OP CODE 

2A4J.£~S· 0 I 2 A : 1:: 2 I 
(A • .",blllf 
tlulomDfictllly •• ,. word 
mtlrt In 1111. /oCtlilon) 

(Ocltll RtIP,.sllnltlllon of 1250) 

Figure 5-2. Two-Character Address Assembly 

5-3 #2-139 



SECTION V. EASYCODER PROGRAMMING 

SYMBOLIC 
PROGRAM 
INSTRUCTION 

I OPERATION OPERANDS ( 
CODE 15 20 21 

4, A AMT, TOTAL+X4 

- -- - -

ASSEMBLER 

CHARACTeR -I I 'I 2, I 3 ~ 5 I 6 ! 4 7' 2 1 
~~~Ef~M 3 6 O! 0 I 4 4 0 4 ! 0 i 2 3 
INsmucnON ~------~~----~.--------~------~~~----.---------.------~ OP COOE , A AODReSS , B ADDReSS 

(As$(1mblfN ",NDICATeS ",NDICATeS 
oulomoticolly sels DIReCT INDEX 
1:~~~/::'jlt in Ihis ADDReSS ReGISTeR ., 

Figure 5-3. Three-Character Address Assembly 

Figure 5-2 illustrates how an assembler assembles an object-program instruction using 

two-character address assembly. Assume that the tag AMT is assigned to memory location 800 

and that the tag TOTAL is assigned to memory location 1250. Figure 5-3 shows how the assembler 

assembles an object-program instruction using three-character address assembly. Four-char­

acter addresses are assembled as shown in Figure 5-4. Assume that, in Figures 5-3 and 5-4, 

the tags are assigned the same values as in Figure 5-2. 

OPERATION 

15 CODE 20 21 

AMT, (TOTAL) 

.$ 
CHARACTEIi I I I 2 I 3 I " 
7:~~~M3 60 ;0; OO! I 4 
INSTRUCTION 

OP CODe '- A ADDReSS 

(:::::::;' m~~~O'/:,a:~~;"Y ~ INDICATeS 
loco lion) DIReCT 

4 0 

ADDReSS 

OPERANDS 

410 0' 0 ! 2 8

3 

\ 

B AODReSS 

INDICATES 
INDIReCT 

ADDReSSING 

Figure 5-4. Four-Character Address Assembly 

5-4 

, 
4 2 

#2-139 



SECTION V. EASYCODER PROGRAMMING 

CODING FORM 

Programs are written on the Easycoder Coding Form (Figure 5- 5). This form is composed 

of fixed-format fields for coding such entries as card number, location, and operation code, and 

a variable-format field for operand addresses and comments. The numbers associated with each 

subdivision, or field, on the coding form indicate the card columns into which the characters 

written by the' programmer are to be punched. 

EASYCODER 
COOING FORM 

eROBLEM PROGRAMMER CATE PIIIGE OF 

CARD y 
LOCATION 

OPERATION 
OPERANDS NUMBER ~ CODE 

, 2345678 1415 2021 .... 00 

I 
2 I , i i 

I I , : 

· I I 

8 : ?,' 

· I 
0 T 

: 
2 i , I I 

! I , I 

6 I 

! I · I 

· T 
0 I 

I 
2 I , I I 

I I 
, ! 
6' i 

I I 

! · 0 i 

Figure 5- 5. Easycoder Coding Form 

CARD NUMBER (Card Columns 1-5) 

This five-character field is divided into three parts: the first two characters are used for 

page numbering, the next two for line numbering, and the last character for insertions. The page 

entry provides the proper sequencing of coding forms. The line number entry is used for the 

sequential numbering of instructions on each coding form. The single-character insertion entry 

permits one or more lines of coding to be inserted between existing lines. For example, to 

insert a line of coding between lines 16 and 17 of page 8, the following coding could be used. 

CARD NUMBER T 
Y 

PtGE2 I 3L1N~ II~S ~ 
(Il 8 II 61 7 
(Il i 8 I I 6!5 ) 

III 8 I I I 7 I ( 

--

5-5 #2-139 



SECTION V. EASYCODER PROGRAMMING 

NOTE: The number 5, which appears in column 5 above, is optional. An in­
sertion may be made using any decimal, alphabetic, or special character. 
Provided that the characters are in ascending order of value (beginning 
with 0), multiple insertions may be made between any two instructions. 

TYPE (Card Column 6 ) 

For all instructions and constants, this column remains blank. However, the programmer 

can enter lines of descriptive information, called remarks lines, anywhere in the source pro­

gram. Such a line, containing only descriptive data within columns 8 through 80, is identified by 

an asterisk (>:~) in column 6. Information inserted in this manner, while it remains as part of the 

source program, does not appear in the object program; it does, however, appear in the pro­

gram listing. 

EASYCODER 
COOING FORM 

PROBLEM ________________ ~~ ______ PROGRAMMER ______ OATE ______ PAGE_OF_ 

CARD I~I~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

1 213 415 6 7 8 1415 2021 6263 80 

I : * SPECIFY CCNi.ROL COJLSTANT5 
I 

I 

Easycoder C and D Options 

For Easycoder C or D users, this column may also contain the letter T to designate a tem­

porary remarks card, or the letter D to designate a data card. If the programmer wishes to 

enter remarks lines anywhere in the source program but does not want these remarks to become 

a permanent part of the source program, a T instead of an asterisk (>:~) is placed in column 6. 

Remarks lines inserted in this manner are used only on the first assembly (i. e., when the pro­

gram is being "inserted"), and are subsequently deleted from the symbolic program tape by the 

assembler. A temporary (like a permanent) remarks statement, while it appears in the program 

listing, does not appear in the object program. 

A letter D in column 6 indicates a data card. All data cards must be contained in segments 

conSisting only of data cards. In addition, any data card (or group of data cards) must be immedi­

ately preceded by a SEG card and immediately followed by either an EX, XFR, or END card. 

When a data card is encountered by an assembler, columns 8 through 80 are reproduced, un­

altered, on the binary run tape or machine-language punched deck. 

MARK (Card Column 7) 

This field, used in conjunction with data formatting operations (described in Section VI), 

serves to set up required punctuation. Two sets of punctuation indicators are available; set I may 

be employed with all Easycoder assembly systems (A, B, C, and D); set II, however, may only 

be used with the Easycoder C and D. Both punctuation sets are described below. 

5-6 #2-139 



SECTION V. EASYCODER PROGRAMMING 

Set I, consisting of a blank (.t.), an L, and an R, establishes the position of the item mark 

when defining an item (see Table 5-1). Word marking for this first set depends upon the class of 

instruction, as determined by the contents of the op code field. 

~ 

L 

R 

NOTE: When an L is used and the leftmost (high-order) character is automatically 
word marked, a record mark will result. 

Table 5-1. Set I Punctuation Indicators 

Item Mark 

Item Mark 

Set II, designed for use with the Easycoder Assemblers C and D, can be employed in situa­

tions which warrant unusual punctuation requirements. With this set (listed in Table 5-2), any 

one punctuation indicator controls the complete punctuation setting for the particular instruction 

or constant. However, there is no implicit word mark setting as in the first set. In other words, 

this second set of punctuation is not dependent upon the class of instructions. 

Table 5-2. Set II Punctuation Indicators (Easycoder C and D Only) 

A Word Mark ~ 

B Item Mark ~ 

C Record Mark ~ 

D fl Word Mark 

E fl Item Mark 

F ~ Record Mark 

G Item Mark Item Mark 

H Item Mark Word Mark 

I Item Mark Record Mark 

'J Word Mark Item Mark 

K Word Mark Word Mark 

M Word Mark Record Mark 

N fl fl 

P Record Mark Word Mark 

S Record Mark Item Mark 

T Record Mark Record Mark 

5-7 #2-139 



SECTION V. EASYCODER PROGRAMMING 

LOCATION (Card Columns 8-14) 

The location field can contain an absolute memory address or a symbolic tag, or it can be 

left blank. An absolute memory address (expressed as a decimal number) specifies that the in­

struction or data will be stored in that location. No leading zeros are necessary when writing an 

absolute decimal number. Moreover, this type of entry does not affect the allocation of any sub-

sequent instructions. 

Symbolic tags provide simple, meaningful symbolic references for storage locations, con­

stants, and instructions that are referred to elsewhere in the program. All symbolic tags written 

in the location field are assigned absolute addresses during assembly. When an entry is assigned 

a symbolic tag, the contents of the entry can then be referred to by that tag... This means that the 

programmer can refer to data via a symbolic tag and need not be concerned with its actual main 

memory address. One to six characters make up a symbolic tag (Easycoder D, however, can 

process tags of up to ten characters in length; see "Easycoder D Options" below). These charac­

ters can be alphabetic (A to Z) or numeric (O to 9); the first character of the tag, however, must 

be alphabetic. 

If the location field entry is made beginning in column 8, the following rules apply: 

1. An absolute memory address assigned to an instruction refers to the leftmost 
character in the instruction. 

2. An absolute memory address assigned to a constant or reserved area refers 
to the rightmost character in the field. 

3. If a symbolic tag is assigned to an instruction, the address assigned to the 
tag will be the address of the leftmost character in the instruction. 

4. If a symbolic tag is assigned to a constant or reserved area, the address 
as signed to the tag will be the rightmo st character in the field. 

The se addre s s as signment conventions can be reversed by leaving column 8 blank and 

entering the first character in column 9. In this case, the following rules apply: 

1. An absolute memory address assigned to an instruction refers to the right­
mo st character in the instruction. 

2. An absolute memory address assigned to a constant or reserved area refers 
to the leftmost character in: the field. 

3. If a symbolic tag is assigned to an instruction, the address assigned to the 
tag will be the address of the rightmost character in the instruction. 

4. If a symbolic tag is assigned toa constant or reserved area, the address 
assigned to the tag will be the leftmost character in the field. 

5-8 #2-139 



SECTION V. EASYCODER PROGRAMMING 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE _OF_ 

CARD ~~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

1 213 415 6 7 e 1415 2021 i 1 6263 eo 

I I BEe:, IN. IMew F\CA. TAX 
1 

1 Is BE6\ N 
i i DATE Dew ~~ ~j 1 ,9.1. 6 5@ 

·1 1 
I 1 

The first instruction shown above :moves the contents of the field tagged FICA to the field 

tagged TAX. This instruction can be referred to in the operands field of another sy:mbolic pro­

gram entry via the tag BEGIN. For instance, the second instruction cause s the program to 

branch to the MCW instruction by referring to it via its symbolic tag (BEGIN). In other words, 

the address of the operation code of the MCW instruction is inserted in an object-program in­

struction wherever the tag BEGIN appears as an operand in a symbolic-progra:m entry. The third 

instruction defines an alphanumeric constant which can be referred to in the operand field of 

another symbolic-program entry via the tag DATE. In this case, the tag refers to the addre ss 

of the rightmo st character in the constant. 

Easycoder C and D Options 

Users of Easycoder C or D may also include, in the location field, an apostrophe (,)1 fol­

lowed by a decimal number; this procedure serves to indicate an address relative to the out-of­

sequence base (OSB). The out-of-sequence base, a value maintained by the assembler can be 

set by t1;le XBASE instruction (see page 7-18). The assembler assigns to the corresponding 

statement an address equal to the sum of the decimal number and the current value of the OSB. 

(Leading zeros may be omitted from the decimal number.) The allocation of any subsequent 

instructions is not affected. 

If the apostrophe and decimal number are written beginning in column 8, the following 

rule s apply: 

1. An address relative to the out-of-sequence base assigned to an instruction 
refers to the leftmost character in the instruction. 

2. An address relative to the out-of-sequence base assigned to a constant or 
reserved area refers to the rightmost character of the field. 

The se addre ss conventions can be reversed by leaving column 8 blank and entering the 

first character (the apostrophe) in column 9. In this case~ the following rules apply: 

1 
Card code 8, 2 (octal 12). 

5-9 #2-139 



SECTION V. EASYCODER PROGRAMMING 

1. An address relative to the out-oi-sequence base assigned to an instruction 
refers to the rightmost character in the instruction. 

2. An address relative to the out-ot-sequence base assigned to a constant or 
reserved area refers to the leftmost character of the field. 

Assume, for example, that the OSB has been set to the value 500 by the last XBASE in­

struction. The following DCW statement is now encountered. The constant PRM is as signed, 

by the assembler, to locations 648 through 650. (The value of the OSB remains 500). 

EASYCODER 
COOING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD fl~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

1 213 415 6 7 8 1415 2021 I 1 6263 

I : I' /.S,O DeW ~PRM@. 
I 

1 

Easycoder D Options 

Symbolic tags of up to ten characters in length may be employed with Easycoder D. For 

symbolic tags consisting of six characters or less, the standard coding format is used. How­

ever, if tags of from seven to ten characters are used, the location field is modified such that 

80 

it now occupies card columns 8-18. (This alternate format also requires that the operation code 

field and operands field be modified to accommodate the increase in tag size.) The same pro­

gramming conventions which apply to six-character tags apply also to ten-character tags. 

NOTES: 1. The program header (PROG) card is used to denote that the 
alternate format is to be employed. See page 7 - 2 for instruc­
tions on how to employ the PROG card in this mannero 

2. Symbolic tags of more than six characters in length may not 
be used if the input is to be in the form of paper tape. 

OPERATION CODE (Card Columns 15-20) 

This six-character field can contain a mnemonic operation code for a machine instruction, 

an assembly program directive, or a data formatting code (see entries below). These entries 

must be left-justified. Machine-language operation codes (in octal notation) may be used instead 

of mnemonic codes. These octal codes are written in columns 19 and 20 of the operation code 

field, and columns 15 to 18 are left blank. 

5-10 #2-139 



SECTION V. EASYCODER PROGRAMMING 

Easycoder D Options 

If the alternate coding format is used (i. e., the location field contains tags of from seven 

to ten characters in length), the operation code field occupies card columns 19-24. The method 

of coding mnemonic operation codes remains the same. If octal operation codes are used, they 

are written in columns 23 and 24; columns 19-22 are left blank. 

OPERANDS 

The operands field is a variable-format field which can contain a seritfs of entries separate 

by commas and terminated by the first blank following any character other than a comma or a 

blank. In general, the operands field contains such entries as the addresses (either symbolic or 

absolute) of the data to be operated upon by a command in the operation code field, literals, ad­

dress constants, or input/output information. Relative, indexed, and indirect addressing can be 

used in conjunction with absolute or symbolic addresses (see below). 

Easycoder A and B (Operands Field: Card Column 21-62) 

For either of these two assembly systems; column 62 terminates the operands field. Any 

punches appearing in columns 63-80 (of any line other than a remarks line) are ignored and do 

not even appear in the object-program listing. Remarks may be entered following the terminating 

blank. 

Easycoder C and D (Operands Field: Card Columns 21-80) 

For users of Easycoder C or D, the operands field extends to column 80. ReITlarks ITlay 

be entered following the terITlinating blank. One or both operands can be bypassed during as­

seITlbly by writing one or two leading COITlITlas, respectively, in the operands field. Such a 

COITlITla, or, COITlITlas, ITlust be left-justified in the operands field and ITlust be followed iITlITledi­

ately (i. e., without intervening blanks) by any reITlaining entries, other than reITlarks. 

Easycoder D Options 

If the alternate coding format is used (i. e., the location field contains tags of froITl seven 

to ten characters in length), the operands field occupies card coluITlns 25-80. The ITlethod of 

coding entries and reITlarks reITlains the saITle. 

ExaITlples 

The first saITlple instruction causes the contents of the field whose rightmost character is 

stored in ITleITlory location 50 to be added algebraically to the contents of the field designated by 

the tag TOTAL. 

The second instruction tests the indicator specified by variant character 3 and branche s to 

the address tagged EQUAL if the indicator is on. 

5-11 #2-139 



SECTION V. EASYCODER PROGRAMMING 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ OATE _____ PAGE _OF_ 

CARD ~~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

1 213 415 6 7 8 1415 2021 6263 80 

I : IA 5(6,TOTAL 
I 

I 
I I !BeT EQUAL1 ... /t5 
I I 

I : IZA TOTAL .. TMP ... X3 ~. 

I I 

i I IMew ITOTAL-7~X6AGROSS 
i I 

I 1 A IAMTA c'SUM-2,) 
I I 

The third line of coding above shows an instruction in which the B address is indexed. The 

instruction causes the contents of field tagged TOTAL to be placed in the field designated by the 

tag TMP as modified by the contents of index register X3. 

The fourth line of coding shows relative addressing and indexing being performed on the A 

address. The instruction causes the address seven before that tagged TOTAL to be modified by 

the contents of index register X6. The resultant address specifies a field whose contents are then 

placed in the field tagged GROSS. Assuming that TOTAL corresponds to memory location 540 

and index register x6 contains a value of 80, the resultant address of this instruction would be 613. 

The last line of coding above illustrates an instruction with indirect addressing on the B 

address. The contents of the field tagged AMT are added algebraically to the contents of the 

field whose address is stored in the field tagged SUM-2. 

ADDITIONAL CODING RULES 

1. Comments and remarks can appear on any line following the last entry on that 
line and separated from it by a blank space. These notes will be printed on 
the program listing but will not be assembled as object-program entries. As 
mentio~ed prev:i01,lsly, any line of coding containing only comments must be 
designated by an asterisk (*) or the letter T in column 6. 

2. Any number of bl~!lk spaces may be used between the comma which terminates 
the A operand and the first character of the B operand. Similarly, any number 
of sp'aces may be used between the comma that terminates the B operand and a 
variant character. 

ADDRESS CODES 

Several types of address codes are valid in the operands field of an Easycoder statement. 

These codes are defined and illustrated below. 

, .. 
5-12 #2-139 



SECTION V. EASYCODER PROGRAMMING 

ABSOLUTE 

The actual address of a character position in the main memory can be represented as a 

decimal number; leading zeros can be omitted. The sample instruction causes the contents of 

the field whose rightmost character location is 32 to be moved to the field whose rightmost 

character location is 4000. 

EASYCODER 
CODING FORM 

PROBLEM .__ _ ____________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD ~,~ LOCATION 
OPERATION OPERANDS 

NUMBER ~ ~ CODE 

I 213 415 6 7 B 1415 2021 1 -.i 6263 eo 

I : IMew ~21\ 4(lS,00. 
1 

I 

SYMBOLIC 

A symbolic address, or tag, can be used in the operands field only if it appears in the lo­

cation field elsewhere in the sym.bolic program. In effect, a tag must be defined (by writing it 

in the location field of a symbolic entry) in order for it to be used as an operand address. 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD ~l~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 2[3 415 6 7 B 1415 2021 ..l 6263 

I i TOTAL A FICA. TOTAX 
1 

I 

The instruction shown above can be referred to elsewhere in the program via its tag 

(TOTAL). ' It should be noted, however, that this instruction is a valid statement only if the 

symbolic addresses FICA and TOTAX have been defined in the location field elsewhere in the 

source program. 

SELF REFERENCE 

eo 

It is sometimes convenient for an instruction to refer to itself. A self reference is indi-

cated by an asterisk in the operands field of a source-program instruction. The assembler 

automatically replaces the asterisk with the address of the leftmost character of the instruction 

in which it appears. Address modification and relative addressing can be performed on asterisk 

Jperands. 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE _OF_ 

CARD H~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 213 415 6 7 8 1415 2021 1 1 1 1 6263 eo 

I 
t Mcw f*+4 •. WDRk:: 

I 
I " 

I I IMCW ~+9 WORK 
1 

5-13 #2-139 



SECTION V. EASYCODER PROGRAMMING 

In the first sample entry above, the notation )lc+4 addresses the rightmost character of the 

instruction in which it appears (assuming that two-character address assembly has been speci­

fied). Since the function of this instruction is to move the field specified by the A address to that 

specified by the B address, the instruction itself will be moved to the field tagged WORK. 

In the second entry, the notation *+9 refers to the rightmost character of the instruction 

stored immediately to the right of the MCW instruction (assuming that two-character address 

assembly has been specified). The instruction following the MCW instruction will be moved to 

the field tagged WORK when the MCW instruction is executed. 

RELATIVE 

Relative addressing, or address arithmetic as it is frequently called, can be used with all 

absolute addresses. symbolic addresses. and the self-reference symbol ()!<) (these three types of 

address codes are referr~d to as addressing "elements rt ). By using relative addressing, the 

programmer can refer to a source-program entry that is stored a specified number of locations 

away from a particular address. A relative address is specified by appending one or more ad­

dress modifiers, each consisting of a sign and an addressing element, to another addressing ele­

ment. The address modifier designates a memory location relative to the location specified by 

the basic addressing element. For example, the instruction below causes the contents of the field 

100 characters beyond the field tagged INT to be added algebraically to the contents of the field 

10 characters before the sum of the addresses defined by the tags AMTPD and ERROR. 

EASYCODER 
CODING FORM 

PROBLEM ________ --------________ PROGRAMMER ______ DATE ______ PAGE _OF_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

12134I5 6 7 e 1415 2021 6263 80 

I : l4, \NT~1~~.~A.MTPD~ERROR-1¢. 

The number of symbolic tags required to write a program can be greatly reduced by the 

use of relative addressing. The programmer decides how many and which fields in a program 

to tag and which to reference by relative addressing. 

A certain amount of caution is required in the use of relative addres sing. First of all, 

relative addres ses are not automatically corrected as a result of subsequent insertions or dele­

tions in the source program. The programmer must remember to adjust manually the address 

modifiers affected by such changes. Secondly, if relative addressing is used to refer to an 

operand address in another instruction, care must be taken to insure that the address is refer­

enced by its rightmost character. For example, the A address of the instruction shown below 

could be referred to elsewhere in the program as INST+2 or INST+3, depending on whether two­

or three-character address assembly were specified. 

#2-139 



SECTION V. EASYCODER PROGRAMMING 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

I 2' 3 415 6 7 8 1415 2021 I I I 6263 80 

I i IN~T IA f.>.UBT. TOTAL 
T 

I 

OUT-OF-SEQUENCE 

The valid address codes also include the special symbol apostrophe (printer I; keypunch 

8, 2; octal 12). This symbol is an element whose value is equal to the current value of the out­

of-sequence base (OSB). It is followed by an address modifier to specify the address of the de­

sired operand. The OSB is set by means of the XBASE instruction (see page 7-18). 

EASYCODER 
CODING FORM 

PROBLEM - ______________________ PROGRAMMER ______ DATE _____ PAGE _OF_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 213 415 6 7 8 1415 2021 I 6263 80 

I i A IWORK, ' + 1 5 

In the sample statement above, assume that the out-of-sequence base (OSB) has been set 

to 600 (by the XBASE instruction). The data in the field tagged WORK will be added to the data 

in the field whose rightmost location is 615 (600 + 15). The result will then be stored in the field 

whose rightmost location is 615. 

BLANK 

There are two conditions for which a blank operand field is valid: 

1. . The instruction does not require an operand (e. g. , the Halt and No Operation 
instructions ). 

2. The operands are implicitly addressed: the A operand is specified by the 
contents of the A-address register (AAR); the B operand is specified by the 
contents of the B-address register (BAR). 

If either or both operand addresses are to be supplied by other instructions (as illustrated 

below in the description of address literals), the affected operands should be represented by 

zeros; they should not be left blank. 

LITERALSI 

The purpose of a literal is to allow the programmer to write in the operands field of a 

symbolic program statement the actual data (as opposed to the address of the field containing 

1Not available with Easycoder A. 

5-15 #2-139 



SECTION V. EASYCODER PROGRAMMING 

the data) to be operated on by an instruction. 'Easycoder B users can code all literals, except 

binary, with a maximum length of 40 characters; a binary literal can be coded with a maximum 

length of six characters. For users of Easycoder C or D, the maximum length of any literal can 

be 63 characters. 

The assembler automatically assigns a storage field for each literal and inserts its address 

(i. e., the address of its rightmost character) in the operands field of the instruction in which it 

appears. In effect, for every literal appearing in the source program, the assembler generates 

a constant containing the value of the literal, with a word mark in the leftmost character position. 

NOTE: If the constant generated from a literal occupies from one to five storage 
locations, it is assigned a storage address only once in the program, re­
gardless of the number of times the literal appears in the source program. 
{For Easycoder C or D, the constant is assigned a storage address only 
once in the program if it occupies from one to six storage locations.} A 
constant that exceeds five characters (six for Easycoder C or D) is assigned 
a storage address each time the corresponding literal appears in the source 
program. The latter condition can be avoided by using a DCW statement 
(see page 6 - 2) whenever a long literal is to be used more than once in the 
source program. 

Decimal Literals 

Decim.al literals are specified by writing a plus or minus sign followed by the value of the 

literal •. When the literal is assigned to a storage field, the assembler places the sign in the zone 

bits of the units position of the resulting constant. Unsigned decimal values can be coded as 

alphanumeric literals. 

EASYCODER 
CODING FORM 

PROBLEM _____________________ _ PROGRAMMER ______ DATE ______ PAGE _OF_ 

CARD ~~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

1 213 415 6 7 8 1415 2021 6263 80 

I : S +2.4-ACcUM 
1 

1 

I I 
I 1 

The statement above illustrates the use of a decimal literal. The instruction causes the 

value 24 to be subtracted from the contents of the field tagged ACCUM. 

Binary Literals 

A binary literal is represented as a decimal entry in the operands field of a symbolic in­

struction. The assembler automatically converts the decimal entry into a binary value and stores 

It (right-justified) in the storage field. The programmer must specify the number of six-bit 

characters used to store this value. 

5-16 #=2-139 



SECTION V. EASYCODER PROGRAMMING 

A binary literal is coded by writing a # sign, followed by a number which specifie show 

many six-bit characters should be used to store the resulting binary value, followed by the letter 

B, followed by the decimal representation of the desired binary literal. 

NOTE: If the decimal representation of the binary literal is preceded by a minus 
sign, the as sembler will store the binary literal in two's -complement 
form. 

The first instruction below causes the binary equivalent of 50 (expressed as a continuous 

12-bit binary value) to be added to the contents of the field tagged BEGIN+2. The second in­

struction has been included to illustrate how a binary literal can be used in address modification. 

In effect, the first instruction modifies the A address of the second instruction by a value of +50. 

The third instruction causes the binary equivalent of 2,688 (expressed as a 12-bit binary value) 

to be moved to the field tagged IND7. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

1 210 415 6 7 8 1415 2021 L ~ ~ 6260 80 

I 1 8,A 1I'2BS:~"BE6\ ~+2 
I 

I BE6l f\J Mew 'iEMA~ TOTAL 
I 1 
I I Mew ~2B26 88~ 'N 07 
: : 

Octal Literals 

Octal literals are coded in octal notation (see Appendix A). The programmer must specify 

the number of six-bit characters required to store an octal literal. 

NOTE: Since every octal digit can be represented as three bits: each six- bit 
character used to store an octal literal contains two octal digits. For 
example, an octal literal composed of eight octal digits can be stored 
in a four-character field. 

An octal literal is coded in the same format as a binary literal except that the letter Bused 

in the binary literal is replaced by the letter C. The constant stored by the assembler is al­

ways left-justified in the storage field. 

5-17 #2-139 



SECTION V. EASYCODER PROGRAMMING 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I" 213 415 6 7 8 1415 2021 I .1 I 6263 

I : I 1-\ A #~,C 7777.,MA.SK 
1 

1 

The A operand in the above statement is a four-digit octal literal. The assembler will 

store it left-justified in a three-character field, "as 777700. 

Alphanumeric Literals 

80 

An alphanurn.eric literal is specified by writing the @ symbol before and after the value of 

the literal. This type of literal can contain blanks, decirn.al, alphabetic, and special charac­

ters (excluding the @ symbol). 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 213 415 6 7 e 1415 2021. I I I 6263 80 

I : IMew i@>Acco UNTS PAYABLE,~1.~/19/65~.PR'NT 

The statement above illustrates the use of an alphanumeric literal. The instruction causes 

the inforrn.ation contained within the ~ syrn.bols to be moved to the field tagged PRINT. 

EASYCODER C AND D OPTIONS 

In addition to the form specified above, users of Easycoder C or D have available to them 

three other methods of coding alphanumeric literals. 

1. A number sign (#) is followed by a number from 1 through 63 which speci­
fies the number of characters in the literal; this number is, in turn, fol­
lowed by the letter A and the literal. 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE _OF_ 

CARD OPERATION 
NUMBER ~I~ LOCATION CODE OPERANDS 

I 213 415 6 7 8 1415 2021 I 6263 

I 
I 

: Mew If/14A6 LB5 @ 21 ¢JLB,~ PRI t-JT 

In the above example there are 14 characters in the literal. The instruc­
tion causes these 14 characters to be moved to the field tagged PRINT. 

2. If it is desired to set an item mark (in addition to a word mark) in the 
leftmost position of the literal constant field, a number sign (#) is followed 
by a number from 1 through 63 which specifies the number of characters in 
the literal; following this number is the letter L and the literal (see the first 
example below). 

5-18 

80 

#2-139 



SECTION V. EASYCODER PROGRAMMING 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE _OF_ 

CARD OPERATION 
NUMBER 

~I~ 
~ ~ 

LOCATION COOE OPERANDS 

I 213 415 6 7 e 1415 2021 I 1 6263 

I 
1 

i 

: Mew #6L1965./A. STO.RE 
I 
I Mew #6.R 1965./ A. .. STORE 

3. If it is desired to set an item mark in the rightmost position of the literal 
constant field, a number sign (#) is followed by a number from 1 through 63 
which specifies the number of characters in the literal; following this num­
ber is the letter R and the literal (see the second example above). 

NOTE: In form (1), alphanumeric literals of six characters or less are stored 
in a literal table and duplicates are eliminated. The duplicates are 
not, however, eliminated in forms (2) and (3). 

Area Defining Literals 

I 

80 

An area defining literal may be used to define and reserve a working area in memory with­

out using a separate data formatting instruction. The address which defines the area is written 

as a symbolic tag. The size of the area to which the literal address refers is specified as a 

decimal value following the literal address and separated from it by a # symbol. 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER CODE 

I 213 415 6 7 8 1415 2021 62 63 80 

I : IMew IWAG E '\ TEMPI 5 

In the instruction above, the entry TEMP#5 causes the assembler to reserve a blank five­

character area with a word mark set in the leftmost character position. The address of the 

rightmost character in this area is assigned to the tag TEMP. Therefore, TEMP can be used as 

a symbolic address elsewhere in the source program, because both the tag and size of the area 

to which it refers are defined. The sample instruction causes the contents of the field tagged 

W AGE to be moved to the field tagged TEMP. 

Address Literals 

An address literal enables the programmer to specify a symbolic address in the operands 

field of an instruction such that the assembler will use the address as an operand. A symbolic 

address can be used as an address literal only if it is defined elsewhere in the symbolic program. 

The tag used as an address literal must be preceded by a plus sign. The length of the address 

is determined by the current addressing mode (the defined address can be two" three" or four 

characters long). 

5-19 #2-139 



SECTION V. EASYCODER PROGRAMMING 

An address literal (+AMT) is used in the first sample entry below. Assume that AMT has 

been defined elsewhere in the program and has been assigned an absolute address of 800. The 

absolute address of AMT, as opposed to the contents of the field tagged AMT, replaces the ad­

dress literal. The first instruction below causes the value 800 (the absolute address assigned 

to AMT) to be moved to an address three greater than the location tagged MODIF. The second 

entry shows how an operand address can be supplied by another instruction. Specifically, the 

absolute address assigned to the tag AMT is supplied as the A address of the instruction tagged 

MODIF. This instruction causes the contents of the field tagged AMT (i. e., the field whose 

rightmost character is stored in location 800) to be added algebraically to the contents of the 

field tagged TOTAL. 

EASYCODER 
COOING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~~ LOCATION 
OPERATION OPERANDS NUMBER CODE 

I 213 415 6 7 8 1415 2021 I 6263 80 

I i IMew +AMT .. ,MODI F +3 
; I I~o.ol F IA 1<6 TOTAL 
i I 

VARIANT CHARACTER 

A variant character can be expressed as one alphanumeric character, as two octal digits, 

or as a synlbolic tag. 1 It is written following the operand entries and separated from. the last 

entry by a corn.rn.a. Octal representation of valid characters are listed in Appendix B. 

EASYCODER 
COOING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE ______ PAGE _OF_ 

CARD f~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 213 415 6 7 8 1415 2021 6263 

I : IBeT OFLOW,,5,Q}, 
1 

.I IBee NE6 "SU.M I\,QJ6 
j i I 

I I 

The fir st instruction above tests an indicator specified by the variant character. If the 

indicator is on, the instruction causes the program to branch to the address tagged OFLOW. 

80 

As might be expected, the octal digits 50 represent the overflow indicator. The second instruc­

tion causes the single character at the location tagged SUM to be examined for a particular bit 

I A symbolic tag, composed of at least two characters, may be used to represent (1) a variant 
character, or (2) a group of input/output control characters. The number of I/O control char­
acters that rn.ay be represented varies from one to six (using either Easycoder A or B) or from 
one to four (using other Easycoder C or D). The symbolic tag rn.ust be defined before it is used 
in the input/output instruction; the Control Equals statement (CEQU) is generally used for this 
purpose (see page 7-13). 

5-20 #2-139 



SECTION V. EASYCODER PROGRAMMING 

configuration as specified by the variant. In this case the variant 06 specifies that the charac­

ter should be examined for a negative sign. If the desired bit configuration is present, the pro­

gram branches to the address tagged NEG. 

INPUT/ OUTPUT CONTROL CHARACTERS 

Input/ output control characters can be used only in conjunction with input/ output instruc­

tions (see Section VIII). One or more of these characters may be written following the A-address 

entry in an input/ output instruction, each preceded by a comma. Input/ output control characters 

may be coded as single alphanumeric characters, as pairs of octal digits, or as symbolic tags. I 

ADDRESS MODIFICA TION CODES 

In a system equipped with the Advanced Programming Instructions (Feature 010 or 011 in 

Model 200; standard in Models 1200, 1250, 2200, and 4200), two address modification codes are 

valid in the operands field of a source-program statement: indexed and indirect. These codes 

allow the modification of operand addresses without altering the instructions in which the 

addresses appear. This is in direct contrast to the permanent alteration of an instruction that 

results from using a binary arithmetic instruction to modify either or both operand addresses. 

INDEXED 

Indexed addressing is performed by appending to the address being modified a code to indi­

cate which of the index registers is to be used. The code consists of a plus sign followed by an X 

or Y and a decimal number from I to 15. 2 

If an index register is to be specified in the operands field of an instruction for other than 

indexing purposes, it is referred to by its absolute address rather than its symbolic address. 

For instance, absolute address 24 is used instead of the corresponding symbolic address X6. 

However, the programmer may use the symbolic address if he equates it to the absolute address 

using an EQU statement (see page 7-12). 

1 
See footnote, page 5-20. 

2Figure 4-3, page 4-9, pictures the possible locations of Series 200 index registers. Table 4-1, 
page 4-10, indicates the number of index registers simultaneously available to a program. 
Tables 4-2 and 4-3 on pages 4-12 and 4-14, respectively, indicate the address modifier and 
absolute locations corresponding to each symbolic index-register addres s. The number of index 
registers which can be referenced sumbolically also depends on the as sembler being used, as 
described on page 6 - 8. 

5-21 #2-139 



SECTIONV. EASYCODER PROGRAMMING 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD Ii LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

1 213 415 6 7 8 1415 2021 6263 80 

I L C DATA +.X6 ... POS 
I 

I 

I L t~A SToRE 1 .. X\2, 
I I 

, 

I i tMeW Qr- 6+.X, , BUFF t.x.a 

The first instruction above causes the contents of the field designated by the tag DATA as 

modified by the contents of index register X6 to be compared to the contents of the field tagged 

POSe The second instruction causes the contents of the field tagged STORE to be added {in 

binary} to the contents of index register X12. The use of the symbolic designation X12 implies 

that an EQU statement was used to equate it to the absolute address of index register X 12. The 

third instruction illustrates how an indexed address can be coded to generate an effective ad­

dress which is less than the value stored in the specified index register. The zero is used be;.. 

cause an operand address cannot be introduced with a plus or a minus sign. Thus, the effective 

A address of the MCW instruction will be a value six less than that stored in index register Xl 

{i. e., if index register Xl contains 126, the effective A address is 120}. 

Three- or four-character address assembly must be specified {see ADMODE, page 7-11} 

whenever indexed addressing is to be performed. When the assembler translates an indexed 

address into a machine-language entry (see Figures 5-6 and 5-7), the translated index register 

designator is automatically inserted into the address modifier bits of the assembled address. 

21 OPERANDS 

SUB,tllllllll ••••• _ •• _~1 ASSEMBLER 

INDEX 
REGISTER 
DESIGNATOR 

15-BIT REPRESENTATION 
OF ADDRESS ASSIGNED 
TO THE TAG AMNT 

BADDRESS OF 
ASSEMBLED INSTRUCTION 

Figure 5-6. Assembly of Indexed Address in Three-Character Addressing Mode 

5-22 #2-139 



SECTION V. EASYCODER PROGRAMMING 

I:UB._ .O.P.E.R.AN.D.S.\ ••• 1It1 ASSEMBLER 

INDEX 
REGISTER 
DESIGNATOR 

~ 

18- BIT REPRESENTATION 
OF ADDRESS ASSIGNED 
TO THE TAG AMNT l-

B ADDRESS OF 
ASSEMBLED INSTRUCT ION 

Figure 5-7. Assembly of Indexed Address in Four-Character Addressing Mode 

INDIRECT 

An indirect address is specified by enclosing the address (either symbolic or absolute) in 

parentheses. l For example, in the sample instruction below, the parentheses around the tag 

DATA indicate to the as sembler that DAT A refers to the leftmost character of a field containing 

another address. This second address may be a direct, an indexed, or another indirect address. 

If it is direct or indexed, it specifies the rightmost character of a data field. If it is indirect, it 

specifies the leftmost character of a field containing another address. 

EASYCODER 
COOING FORM 

PROBLEM PROGRAMMER DATE PAGE OF -
CARD ~~ LOCATION 

OPERATION 
OPERANDS NUMBER ~ ~ CODE 

1 213 415 6 7 8 1415 2021 i I 6263 80 

I : MtW I(DATA,) .WDR,K 
I 

1 

Three - or four -character addres s as sembly must be specified whenever indirect addres sing 

is to be used. When assembler translates an indirect address into a machine-language entry 

(see Figures 5-8 and 5-9), a binary value of III (three-character mode) or 10000 (four-character 

mode) is automatically inserted into the address modifier bits of the assembled address. 

I 

OPERANDS\ 

1:l=':l=A=GE='I=jj~=::::,.=;]!tl=;I ••••••••• i\ ••• _1 ASSEMBLER 

'-----' 

INDICATES 
INDIRECT 
ADDRESS 

IS-BIT REPRESENTATION 
OF ADDRESS ASSIGNED 
TO THE TAG TEMP 

B ADDRESS OF 
ASSEMBLED INSTRUCTION 

Figure 5-8. Assembly of Indirect Address in Three-Character Addressing Mode 

1The left parenthesis corresponds to keypunch symbol % (card code 0, 8, 4), the right parenthesis 
to keypunch symbol 0 (card code R, 8, 4). 

5-23 #2-139 



SECTION V. EASYCODER PROGRAMMING 

I~ OPERANDS\ 
ASSEMBLER 

IS-BIT REPRESENTATION 
OF ADDRESS ASSIGNED 
TO THE TAG TEMP 

B ADDRESS OF 
ASSEMBLED INSTRUCTION 

Figure 5- 9. Assembly of Indirect Address in Four-Character Addressing Mode 

5-24 #2-139 



INTRODUCTION 

DATA 
FORMATTING 
STATEMENTS 

A value or quantity which m.ust remain fixed or which must be used repeatedly in a program 

is called a constant. A work area is an area in memory which is reserved for input data, cu­

mulative processing, or output data. By employing data formatting statements, constants can 

be stored and work areas can be reserved without regard to their actual locations in memory. 

For instance, the programmer can use a data formatting statement to reserve an 80-character 

card input area and assign it a symbolic address such as CARDIN, without knowing the actual 

address of the field. Similarly, a data formatting statement ITlakes it possible to store a con­

stant, such as 2000, and to refer to it by a sYITlbolic tag, such as CON3, without regard to the 

address at which the constant is stored. Table 6-1 lists the five data formatting statements used 

with Easycoder symbolic language. 

Table 6 -1. Data Formatting Statements 

DCW Define Constant with Word Mark 

DC Define Constant without Word Mark 

RESV Reserve Area 

DSA Define SYITlbol Addre s s 

DA Define Area~:~ 

~:~NOTE: The Define Area statement cannot be eITlployed 
with the Easycoder A AsseITlbly System. 

Although data formatting statements are coded in the same forITlat as most symbolic ma­

chine instructions (data processing statements), they are not treated as instructions by an as­

sembler. Instead they are treated as definitions which cause the asseITlbler to perform certain 

activities but which are not executed during a program run. Since data forITlatting statements are 

not executed during a prograITl run, they should not be written in the body of the sYITlbolic program. 

6-1 #2-139 



SECTION VI. DATA FORMATTING STATEMENTS 

I Define Constant with Word Mark - DCW 

By use of the DCW statement, a constant can be automatically stored in a field reserved 

by the assembler. In storing the constant, the assembler automatically sets a word mark in the 

leftmost character position of the storage field. Item marking may be specified as in Table 5-1 

(page5-7). An L incolurnn 7 thus results in a record mark with a DCW statement. 

NOTE: If Easycoder C or D is being used, and if unusual high- and low-order 
punctuation is required, the programmer may use a set II punctuation 
indicator as shown in Table 5-2 (page 5-7). 

The constant can be assigned a tag. If the tag is left-justified in the location field, it is 

assigned to the address of the rightmost character of the constant. If the tag is indented one 

column, it is assigned to the address of the leftmost character of the constant. 

NUMERIC CONSTANTS 

Numeric constants may take anyone of three forms: binary, octal, or decimal. For 

Easycoder A and B, octal and decimal constants canbe coded with a maximum length of 40 char­

acters, while the coding associated with a binary constant is limited to a maximum of six char­

acters. However, for Easycoder C and D, the maximum length of the storage field :which can be 

occupied by a numeric constant is 63 characters. 

Decimal Constants 

Signed decimal constants are specified by writing a plus or a minus sign in the first column 

of the operands field, followed by the value of the constant. When the constant is assigned to a 

storage field, the assembler places the sign in the zone bits of the rightmost character of the 

constant. 1 Unsigned decimal constants are written left-justified in the operands field. 

EASYCODER 
CODING FORM 

PROBLEM __________ ~ _____________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD ~.~ LOCATION 
OPERATION OPERANDS 

NUMBER CODE 

I 2J 3 41 5 6 7 8 1415 2021 I 6263 80 

I : DE.~ DeW +22 
I 

The statement above shows the decimal value of +22 defined as a decimal constant. 

Binary Constants 

A binary constant is actually written as a decimal entry (maximum value of 999999) which 

1 See the description of sign codes beginning on page 8-7. 

6-2 #2-139 



SECTION VI. DATA FORMATTING STATEMENTS 

is then automatically converted to a binary value by the assembler. The binary value is stored 

(right-justified) in the constant field. 

To code a binary constant the programmer writes the following: (1) a # sign (in the first 

column of the operands field); (2) for Easycoder A or B, a number from 1 to 6 which designates 

the number of six-bit characters needed to store the resulting binary value (for Easycoder C 

or D, a number from 1 to 63); (3) the letter B; and (4) the decimal representation of the desired 

binary constant. Note that if the decimal representation of the binary constant is preceded by a 

minus sign, the assembler stores the binary constant in twos-complement form. 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD t~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 213 4-'5 6 7 8 1415 2021 6263 

I : C~N3 oew 'i'r265"¢ 
1 

The statement above shows the binary equivalent of 50 defined as a binary constant to be 

stored in two consecutive character locations. 

Octal Constant s 

80 

Octal constants are coded in octal notation (see Appendix A). To code an octal constant 

the programmer writes the following: (I) a # sign (in the first column of the operands field); (2) 

a number (not to exceed 20 for Easycoder A and B; not to exceed 63 for Easycoder C and D), 

which specifies the number of six-bit characters required to store the octal constant;l (3) the 

letter C; (4) the constant value. Note that the value stored by the assembler is always left­

justified in the storage field. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD ~Ia LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 2/3 415 617 8 1415 2021 6263 80 

I : I OCT.7 DeW ~2C1777 
I I 

In the statement above, the octal value of 7777 is shown defined as an octal constant to be 

stored in two consecutive character locations. 

1Recall that an octal digit can be represented as three bits; thus each six-bit character used to 
store an octal constant contains two octal digits. For example, an octal constant composed of 
six octal digits can be stored in a three -character field. 

6-3 #2-139 



SECTION VI. DATA FORMATTING STATEMENTS 

ALPHANUMERIC CONSTANTS 

Alphanumeric constants may be coded in one of three ways: 

1. Constants (including special symbols and blanks) may be written with the 
constant value enclosed in @ symbols (see the first entry below). 

2. If the @ symbol is required in the constant, this constant is enclosed in 
any unused character other than blank, +, -, # (and F, for Easycoder D') 
or the digits 0 through 9 (see the second entry below). 

3. A number sign (#) is followed by a number from 1 through 56 which speci­
fies the number of alphanumeric characters contained in the constant; 
this number is, in turn, followed by the letter A and the alphanumeric 
constant (see the third entry below). 1 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE: ______ PAGE_OF_ 

CARD ~~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

1 213 415 6 7 8 1415 2021 6263 

I : COS! 'DeW 1\t.2. , 208 • 6¢@ 
I I 

, 

J L RA1'= 'oew ~SIXDOLL~,~S/HR% 
I I 

: I DATE QC.W c:t:"4AIQ65 
1 1 

NOTE: The maximum number of alphanumeric characters which can be con­
tained in the constant, of course, depends on the number of card col­
umns available in the operands field. Thus it should be remembered 
that methods I and 2, above, require two card columns to format the 
constant, while method 3 requires either three or four columns. 

BLANK CONSTANTS 

80 

The DeW statement may be used to reserve a field of blanks with a word mark in the left­

most character position of the fieldo The programmer writes a # symbol (in the first column) 

followed by a decimal value (from 1 to 40 for Easycoder A or B, from 1 to 63 for Easycoder C 

or D) which indicates the number of blank storage positions desired. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~ ~; 
LOCATION 

OPERATION OPERANDS NUMBER ~~ CODE 

1 213 41s 6 7 8 1415 2021 1 1 1 6263 

I : BlA tJK DeW ~Zl 
1 

I This third method of coding alphanumeric constants is applicable only when using Easyooder 
Cor D. 

80 

6-4 #2-139 



SECTION VI. DATA FORMATTING STATEMENTS 

The DCW statement above defines a 21-character blank field. The address assigned to this 

field by the assembler will be inserted in an object-program instruction whenever the tag BLANK 

appears in another symbolic-program entry. 

FLOATING-POINT CONSTANTS 

A floating-point constant is written as a decimal entry which is then automatically con­

verted by the assembler to a fixed-length floating-point value, viz., a six-character binary 

mantissa followed by a two-character power-of-two exponent. 

To code a floating-point constant the programmer writes the following: 

1. The letter F. 

2. A decimal number, the mantissa which may be signed or unsigned and 
which may contain amaxim.um of 11 digits with or without a decimal point. 

3. The letter E. 

4. A decim.al number, the exponent, which must be between 0 and 616, in­
clusive, and may be signed or unSigned. 

If an exponent of zero is desired, the letter E and the decimal num.ber which follows it are not 

required. 

NOTE: If the m.antissa and/or the exponent is preceded by a minus sign, the 
assem.bler stores the corresponding value in twos-com.plem.ent form.. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD !l LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

1 213 415 6 7 8 1415 2021 6263 

I : FCO~I IQew ~~.3SqE2 
I 

I FCo~e 'oew F + 4- 3 5:, E· I 
I I FeO~3 oew FI 
I I FCO~,4 b,ew F- .d¢,¢1 

: i FCO~5 Dew F- \ E-4 
I I 

The first two entries above (FCONI and FCON2) result in the sam.e floating-point value 
1> 

when converted by the assem.bler. FCONI uses a decimal point while FCON2 arrives at the 

sam.e result by using a negative exponent. This is also true for FCON4 and FCON5. 

I Define Constant - DC 

80 

The DC statem.ent is functionally the same as the DCW statement, the only exception being 

the absence of autom.atic word marking. This statement may thus be used in place of the DCW 

6-5 #2-139 



SECTION VI. DATA FORMATTING STATEMENTS 

statement if a constant is to be stored without a word mark in its leftmost character position. 

The programmer, however, may still specify item m.arking as shown in Table 5-1 (page 5-7). 

NOTE: If Easycoder C or D is being used, and if unusual high- and low-order 
punctuation is required, the programmer may use a set II punctuation 
indicator as shown in Table 5-2 (page 5-7). 

Reserve Area - RESV 

Use of the RESV statement enables the programmer to reserve an area of memory. Un­

like the DC and DCW statements (which cause data to be loaded into an area reserved by the 

assembler), the RESV statement does not normally alter the contents of the area defined. Rather, 

it simply sets aside a storage area to which the programmer can refer by a symbolic tag. The 

reserved area can be cleared to zeros by means of the CLEAR statement (see page 7 -19). The 

number of characters in the reserved area must be specified in the operands field of the RESV 

statement. 

NOTE: When used with Easycoder A or B, the RESV statement must contain 
a nonzero value in the operands field. 

A symbolic tag may be written in the location field. If the tag is left-justified, it is 

assigned to the rightmost location of the reserved area. If the tag is indented one column, it 

is as signed to the leftmost location of the reserved area. 

When used with Easycoder C or D, the RESV statement can not only reserve a specified 

area but can also load that area with a particular character. The character to be loaded into each 

location of the reserved area is coded in the op code field immediately following a comma and the 

mnemonic code. If the mnemonic RESV is followed only by a comma, the reserved area is cleared 

to blanks. 

NOTE: There is no automatic word marking for the reserved areas, nor may­
column 7 of the RESV statement be used with Easycoder A or B to set 
punctuation. However, if Easycoder C or D is being used, the pro­
grammer may use a set I or II punctuation indicator (see page 5-7). 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE _OF_ 

CARD r~ LOCATION 
OPERATION OPERANDS NUMBER CODE 

1 213 415 6 7 8 1415 2021 1 1 6263 80 

I t STORE IRESV ~¢ 
1 

I CARD IRESV .. ~ 80 

The first statement above reserves 30 consecutive character positions that can be addressed 

via the tag STORE. Note that by referring to the reserved area via a symbolic tag, the pro­

grammer need not know its actual location in memory. The second RESV statement, assembled 

by Easycoder C or D, reserves 80 consecutive locations and clears the reserved area to zeros. 

6-6 #2-139 



SECTION VI. DATA FORMATTING STATEMENTS 

Define Symbol Address - DSA 

The DSA statement can be used to store one or two addresses, or two addresses and a 

variant character, as a constant. Any valid addres s can be stored as a constant; the length of 

each address is determined by the current addres sing mode (each address will be two, three, 

or four characters long). 

An item mark may be specified as shown in punctuation set I, page 5-7. In addition, the 

DSA statement automatically places a word mark in the leftmost character position of the con­

stant (thus an L in column 7 results in a record mark in this position). 

NOTE: If Easycoder C or D is being used, and if unusual high- and low-order 
punctuation is required, the programmer may use a set II punctuation 
indicator as shown in Table 5-2 (page 5-7). 

EASYCODER 
CODING FORM 

PROBLEM ____________________ _ PROGRAMMER ______ DATE ______ PAGE _OF_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER t ~ CODE 

1 213415 6 7 8 1415 2021 .l 6263 80 

I 1 CODE IQ5A lTEM-5 
I 

I 

I i STAR. [D,~A. lA.~G,.* • .A 
I ., , 

The first statement above permits the address of the field five characters before the field 

tagged ITEM to be referred to in the program by the tag CODE. 

The second statement allows the stored constant consisting of the address as signed to ARG, 

the address assigned to the self-reference indicator ~~, and the variant character A (i. e., octal 

21) to be referred to by the tag STAR. 

Define Area - DA 1 

A specified area within the main memory can be defined and reserved by using the DA 

statement. In addition to defining an area, the DA statement can also define fields and subfields 

within the reserved area. This statement can also define two or more contiguous areas if these 

areas are identical in format. In other words, the programmer uses a DA statement to provide 

the as s emb1er with the following bas ic information: 

1. The number (n) and size (s) of the reserved area(s). (Both nand s can be 
represented by numbers up to 4,095, depending upon the amount of memory 
available. ) 

2. The index register (Xm or Ym) to be associated with each reference to a 
field or subfield within the reserved area(s) (optional). 

1 The Define Area statement can not be employed with the Easycoder A As sembly System. 

6-7 #2-139 



SECTION VI. DATA FORMATTING STATEMENTS 

3. The character R which will place a record mark one position to the 
right of the rightmost reserved area (optional}. 

NOTE: Additional parameters may be employed with Easycoder 
C and D (see page 6-10). 

A DA statement consists of a heading line which defines an area(s), plus one or more sub­

sequent lines of coding which defines the fields and subfields within the area{s). The heading 

line can contain a symbolic tag in the location field. If this tag begins in column B, it refers to' 

the rightmost location of the entire area, exclusive of the record mark (if present); if the tag 

starts in column 9, it refers to the leftmost location of the entire area. Item marks may be spec­

ified in column 7 of the heading line by using set I punctuation indicators as shown in Table 5-1 

(page 5-7). 

NOTE: The list of punctuation indicators specified in set II (page 5-7) cannot be 
used with DA statements. 

The operands field in the heading line has the following format: 

~xs~_, R ______ 3-
p 

If a single BO-character area is to be defined, the value of nxs is IxBO. If four identical BO­

character areas are to be defined, the value of nxs is 4xBO. 

The DA statement can be indexed by writing an index register designator {from Xl through 

XIS or from YI through YI5)I following the area definition. All references to the field and sub­

fields defined in the DA statement will be automatically indexed by the specified index register, 

but references to the tag assigned to the entire area will not be indexed. For example, the state­

ment on the next page indicates that all references to the fields and subfields in the lI3-charac­

ter area tagged BUFFER will be indexed by the index register X2; references to the tag BUFFER, 

however, will not be indexed. 

Note that the area definition nxs does not include an allowance for the character position 

containing the record mark, although this position (if any) is also reserved. For example 4xBO 

will cause 320 character positions to be reserved. If a record mark is placed one position to the 

right of the last area, a total of 321 character positions is reserved. 

The index register applied to a field or subfield can be changed from that specified in the 

DA statement by designating a different register in the operands field pf an instruction which 

1 
Index registers Xl through X6 are used with Easycoder B, while index registers Xl through 
XIS and Y I through Y IS can be used with Easycoder C or D. 

6-B #2-139 



SECTION VI. DATA FORMATTING STATEMENTS 

references the field or subfield. The effect of indexing on a field or subfield can be cancelled by 

writing XO as the index register designator in the references in which indexing is not wanted. 

As stated above, the heading line may be followed by one or more lines of coding which 

define fields and subfields within the reserved area(s). As many of these lines as necessary 

may be used, and these fields and subfields may be defined in any order desired. Positions 

within each reserved area are numbered sequentially from left to right, starting with one. The 

coding line s which define fields and subfields must have blank op code fields; each such line 

may contain a symbolic tag in the location field, if desired. 

Fields and subfields are specified as follows: 

Fields: The lowest and highest positions of the field are written in that order in 
the operands field, separated by a comma. (If a one-character field is 
desired, its position number must be written twice in the operands 
field, separated by a comma.) A word mark is automatically placed 
in the leftmost position of the field in memory. Item marks may be 
specified as shown in Table 5 -1 (page 5 -7). 

Subfields: For a subfield, only the rightmost position is specified. Word marks 
are not set; however, item marks may be specified as shown in Table 
5-1 (page 5-7). 

NOTE: The list of punctuation indicators specified in set II (page 5-7) _can not be 
used with DA statements. 

The assembler does not normally clear the defined area. However, the programmer has 

the option of clearing the area to a specified character by placing a comma and the desired char­

acter after the mnemonic code DA in the op code field. The presence of only a comma after the 

op code implies that the area win be cleared to blanks. When the defined area is cleared, all 

punctuation is also cleared before setting the "field" punctuation. 

The sample coding below illustrates what a DA statement might look like. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE ____ ~ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

I 213 415 6 7 8 1415 2021 6263 80 

i~ II I SUFFE'R DA ~X~8" X2,. R 
i(DZI 

I NAME" \. 2fJ)-
I, 3i i D,ATE ~,3 29 
1~41 I lA.GE ~,I, t 2,2, 
1~5: i IY~AR 28 
i61 I MON1H 26 

r -r 

6-9 #2-139 



SECTION VI. DATA FORMATTING STATEMENTS 

The heading line specifie s the following information: 

1. Four consecutive, identical areas, each 28 characters' long, will be reserved. 

2. The tags NAME, DATE, AGE, YEAR, and MONTH, when referred to in 
symbolic instructions, will be indexed by index register X2. 

3. A record mark will be set in the rightmost character position of the 
entire 113 -character reserved area. 

4. The entire 113-character area can be referred to via the tag BUFFER. 
(This tag refers to the leftmost position of the area because it is in­
dented. It is not automatically indexed by index register X2.) 

Lines two, three, and four define fields. Word marks will be set in positions 1, 21, and 23 in 

each of the four identical areas. Lines five and six define subfields: position 28 indicates the 

year within the date, while position 26 indicates the month within the date. 

EASYCODER C AND D OPTIONS 

When used with Easycoder C or D, the DA statement may make use of the following pa­

rameters (in addition to the n, s, Xm, and R parameters spedfied on page 6 -8). 

1. The character P: Coding this character in the heading line of a DA state­
ment causes the special character 728' together with an item mark, to be 
placed at the end of each area as an additional character. 

2. The character G: Coding this character in the heading line causes the 
special character 328' together with a record mark, to be placed one 
po sition to the right of the last area. 

3. The character H: Coding this character in the heading line instructs the 
a-ssembler to associate the index register (Xm or Yr:n) with each reference 
to the tag in the location field of the DA statement, as well as with each 
reference to a field or subfield within the reserved area(s). 

NOTE: If a symbolic tag is used, it is not. automatically indexed by 
the specified index register (Xm or Ym) unless parameter H 
is employed. This parameter is meaningless if no index 
regi ster is specified. 

The format of a DA statement heading line employing all parameters is illustrated below. 

EASYCODER 
CODING FORM 

PROBLEM _____________________ . PROGRAMMER ______ DATE ______ PAGE _OF_ 

CARD ~~ LOCATION 
OPERATION OPERANDS NUMBER f ~ CODE 

I 213 415 6 7 8 1415 2021 I I I L 6263 eo 

I : tao DA nXS.)(rn,. R.. P G ,H. 
I .. , / 

6-10 #2-139 



INTRODUCTION 

ASSEMBLY 
CONTROL 
STATEMENTS 

Assembly control statements provide programmer control over the assembly of the source 

program. These statements resemble data formatting statements in that they are treated as 

definitions. They control such functions as the addressing mode to be used in assembling speci­

fied instructions, the assignment of absolute locations to symbolic tags, etc. Used only during 

the assembly process, assembly control statements are never executed as instructions in the 

object program. The precise function of each assembly control statement depends upon the as­

sembly system employed. 

A summary of the assembly control stateITlents available with Easycoder A, B, C, and D, 

together with the page where each stateITlent is defined, may be found in Table 7 -1. In addition, 

the heading of each statement in this section includes a table which indicates the assembly sys­

tems that may use that particular statement. 

Table 7 -1. As sem.bly Control Statements 

Program Header 7-Z2 Program Header 7-2 Program Header 7-3 Program Header 7-3 

Segment Header 7-4 Segment Header 7-4 

Execute 7- 5 Execute 7-5 Execute 7-6 Execute 7-6 

Transfer 7-6 Transfer 7-6 

Origin 7-7 Origin 7-8 Origin 7-8 Origin 7-8 

Modular Origin 7- 9 Modular Origin 7-9 Modular Origin 7-9 Modular Origin 7-9 

Literal Origin 7-10 Literal Origin 7-10 Literal Origin 7-10 

Admode 7-11 Admode 7-11 Admode 7-12 Admode 7-12 

Equals 7- 12 Equals 7-12 Equals 7-13 Equals 7-13 

Control Equals 7- 13 Control Equals 7-13 Control Equals 7-14 Control Equals 7-14 

Memory Dump 7-14 

7-1 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

Table 7 -1 (cont). Assembly Control Statements 

Skip 7-15 Skip 7-15 

Suffix 7-15 Suffix 7-15 

Repeat 7-16 Repeat 7-16 

Generate 7-17 Generate 7-17 

Set Line Number 7-18 Set Line Numbe r 7-18 

Set Out-of- Set Out-of-
Sequence Base 7-18 Sequence Base 7-18 

Clear 7-19 Clear 7-20 Clear 7-20 Clear 7- 20 

End 7-21 End 7- 21 End 7- 22 End 7- 22 

Program Header 

PROG 

The program header must be the first entry in a symbolic program. This statement is 

coded as follows for the various assembly systems. 

EASYCODER A 

The letters PROG must be written in the op code field, and the operands field must contain 

a name which identifies the program. (This name will appear in the program listing.) Optionally, 

an "S" can be placed in column 6; this action specifies that a check is to be made on the card 

number sequence of the input deck. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE _OF_ 

CARD I~I~ LOCATION 
OPERATION 

OPERANDS NUMBER I~ ~ CODE 

I 213 415 6 7 8 1415 2021 6263 80 

I i~ PR06 SERIES 
I 

1 

In the sample statement above, SERIES is specified as the program name, while the letter 

S in column 6 designates that a sequence check is desired. 

EASYCODER B 

The letters PROG must be written in the op code field, and the operands field must contain 

a name which identifies the program. (This name will appear in the program listing.) Optionally, 

an "S" can be placed in column 6; this action specifies that a check is to be made on the card 

number sequence of the input deck. 
7-2 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

In addition, the desired object-program format is specified by the entries in columns 61 

and 62. Blanks in these two columns specify that the machine -language output is to appear in 

the condensed-card self-loading format. Placing the letters BR in these columns specifies that 

the machine -language program is to appear on punched cards in BR T format. (See Easycoder 

B Assembly System, Order No. OIl.) 

NOTE: When BRT format is specified, a segment number of 01 is generated by 
the assembler for the first segment (memory load) following the pro­
gram header. If Execute statements (see page 7 - 5) appear in the sym­
bolic program, subsequent segment names are ,generated by increment­
ing the previous segment number by one. 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

1 213 415 6 7 8 1415 2021 1 1 6263 80 

I : S PROG SER I E~ BR 
1 

I 

The statement above designates SERIES as the program name and specifies that a sequence 

check is to be performed. As columns 61 and 62 contain the letters BR, the output will appear on 

punched cards in BR T format. 

EASYCODER e 
As used in Easycoder C, the program header provides program identification; in addition, 

however, thi s statement serve s as the all-i:rnportant II action director" statement. For thi s 

reason, the programmer should refer to the Honeywell publication Easycoder Assemblers C and 

D, Order No. 041 for a detailed description. 

EASYCODER D 

As used in Easycoder D, the program header provides progra:rn identification; in addition, 

however, this statement serves as the all-i:rnportant "action director" state:rnent. For this 

reason, the programmer should refer to the Honeywell publication Easycoder Assemblers C and 

D, Order No. 041. 

If the programmer desires to use the alternate card format (which allows room for tags 

consisting of up to ten characters, see page 5-10), column 75 of the program header card must 

contain the letter A. The PROG card itself, however, is ~ coded in the alternate format: 

the letters PROG always appear in the op code field (columns 15 through 18), while the name of 

the program always appears beginning in column 21. 

7-3 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

NOTE: If the alternate format is specified, all cards following the program 
header, up to and including the END ~rd, must be coded in the alternate 
format. 

Segment Header A B 

SEG 

Programs written for Easycoder C or D may be divided into two or more segments, each 

of which is loaded into memory and executed as a unit. It is the function of the SEG statement 

to define the beginning of each segment (memory load). Use of the SEG statement is optional, 

however. If used, a SEG statement must follow the program header, each Execute statement 

and each Transfer statement. If it is desired to omit this statement, it must be omitted from 

the entire program; in this case the assembler generates segment identifications (starting with 01). 

EASYCODER C AND D 

The letters SEG must be placed in the op code field, while the operands field must contain 

a two -character segment identification. This segment identification becomes appended to the 

program name to forIn a unique search code. 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE _OF_ 

CARD ~I~ LOCATION 
OPERATIO'N 

OPERANDS NUMBER ~ ~ CODE 

I 213 415 6 7 8 1415 2021 6263 

I : '3EG AA 
I 

1 

In the example above, AA could represent the first segment of a program, in which case 

this entry would follow the program header. 

Execute 

EX 

80 

The end of a memory load is indicated by an EX statement. When the coding inserted by 

the assembler for the EX statement is encountered during the loading process, a branch to the 

location specified in the operands field results. This operation enables portions of the program 

to be executed before the entire program has been loaded. The coding to be executed must ap­

pear prior to the EX statement. 

7-4 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

EASYCODER A 

The letters EX must be written in the op code field; the operands field contains a direct 

address, either absolute or symbolic. (If an EX statement is written with a blank operands field, 

the machine will halt when it encounters the corresponding coding during the loading operation. ) 

To resume the loading operation, the last instruction in the portion of the program exe­

cuted must be a Branch instruction which provides re-entry to the load routine. In addition, 

the first instruction of the executed routine should be an SCR (Store Control Registers) instruc­

tion which stores the contents of the B-address register in the A address of the return Branch 

instruction. 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD ~~ LOCATION 
OPERATION OPERANDS 

NUMBER ~ ~ CODE 

1 2[3 415 6 7 8 1415 2021 I 6263 80 

I I EX SEC3 
1 

I 
i I 
r 

The sample statement above illustrates an EX statement with a symbolic address in the 

operands field. When the corre sponding coding is encountered during the loading operation, pro­

gram loading is tem.porarily halted a~d the portion of the program. beginning at the location tagged 

SEC3 is executed. 

EASYCODER B 

The letters EX m.ust be written in the op code field; the operands field contains a direct 

address, either absolute or sym.bolic. (If an EX statem.ent is written with a blank operands field, 

the m.achine will halt when it encounters the corresponding coding during the loading operation. ) 

To resume the loading operation, the last instruction in the portion of the program. executed 

m.ust be a Branch instruction which provides re -entry to the load routine. In addition, the first 

instruction of the executed routine should be an SCR (Store Control Registers) instruction which 

stores the contents of the B-address register in the A address of the return Branch instructio~. 

Besides causing a branch to the program.m.er I s coding, use of the EX statem.ent causes any 

literals us ed in the m.em.ory load to be loaded and the literal table to be cleared. If a LITORG 

statem.ent (see below) does not precede the EX statem.ent, literals are allocated im.m.ediately 

following the in-line coding for the m.em.ory load. 

7-5 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

NOTES: 1. Following an EX statement, a new segment number is generated as 
explained above in the description of the program header. 

2. With Easycoder B, the total of the numbers of Execute: Lite.ral 
Origin, and End statements must not exceed 31. 

See the sa:mple state:ment given above for Easycoder A. 

EASYCODER C AND D 

The letters EX must be written in the op code field; the operands field must contain a 

direct address, either absolute or s'ymbolic. When used with these assemblers, the EX state­

ment enables a progra:m to be loaded and executed one segment at a time. Each segment except 

the last must end with either an EX or an XFR statement. When an EX state:ment is encountered, 

all literals preceding the EX statement which have not been allocated to me:mory are allocated in 

sequence, and the literal table is cleared. 

Note that it is the responsibility of the programmer to provide re-entry to the load routine. 

The :methods of returning to the applicable loader are described in the pertinent Honeywell publi­

cation - e. g., Card Loader-Monitor B (Order No. 154) or Tape Loader-Monitor C (Order No. 221). 

See the sample statement giyen above for Easycoder A. 

Transfer A B 

XFR 

For Easycoder C and D users, the end of a memory load may be indicated by an XFR state­

ment instead of an EX state:ment. Both statements perform essentially the same functions; the 

one exception is that use of the XFR statement does not result in the allocation of literals or in 

the clearing of the literal table. 

When the coding inserted by the assembler for the XFR state:ment is encountered during 

the loading process, a branch to the location specified in the operands field results. This oper­

ationenables portions of the program to be executed before the entire program has been loaded. 

EASYCODER C AND D 

The letters XFR :must be written in the op code field; the operands field must contain a 

direct add-ress, either absolute or symbolic. Use of this statement enables a program to be 

loaded and executed one segment at a time. Each segment except the last must end with either 

an XFR or an EX statement. 

NOTE: It is the responsibility of the programmer to provide re-entry to the 
load routine. 

7-6 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE _OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 213 415 6 7 8 1415 2021 6263 80 

I 1 XFR SEC4 
1 

I 

The sample statement above illustrates an XFR statement with a symbolic address in the 

operands field. When the corresponding coding is encountered during the loading operation, 

program loading is temporarily halted and the portion of the program beginning at the location 

tagged SEC4 is executed. 

Origin 

ORO 

The ORG statement is used to modify the normal memory allocation process of assembly. 

This statement can be inserted anywhere in the source program to indicate to the assembler 

that all subsequent coding (instructions, constants, work ar,eas, etc.) should be assigned se­

quential memory locations starting with the location whose addres s is specified in the operands 

field. 

A program is normally allocated memory space beginning at location 0. If it is desired to 

assign memory space starting at some location other than 0, an ORG statement m.ust be inserted 

in the program immediately foilowing the program header. 

EASYCODER A 

The letters ORG are written in the op code field, and an address (either absolute or sym­

bolic) is written in the operands field. (If the address is symbolic, the tag must appear in the 

location field of a previous source-program entry.) The address specified in the operands field 

is as signed the tag (if any) in the location field; if this tag appears, it must not- be indented. 

EASYCODER 
CODING FORM 

PROBLEM _________________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

1 2.13 4JS 6 7 8 1415 2021 1 6263 80 

I 1 ORG 75Jl 
1 

J 
I 1 ORe, ORTAG 
I I 

1 1 

7-7 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

The first statement above indicates to the assembler that all subsequent entries should be 

assigned sequential addresses beginning with location 750. The second statement directs the 

asseinbler to assign to all subsequent entries sequential addresses beginning with the address 

that is assigned to the tag ORTAG. (ORTAG must appear in the location field of a previous 

source-program entry~ ) 

EASYCODER B 

The letters ORG are written in the op code field, and an address (either absolute or sym­

bolic) is written in the operands field. (If the address is symbolic, the tag must appear in the 

location field of a previous source-program entry.) The address specified in the operands field 

is assigned the tag (if any) in the location field; if this tag appears, it must not be indented. 

NOTE: When the BRT punched-card format is specified, an ORG statement must 
be included immediately following the PROG statement with an address of 
1, 000 (decimal) or above. 

See the sample statements given above for Easycoder A. 

EASYCODER C AND D 

The letters ORG are written in the op code field, and an address (either absolute or sym­

bolic) is written in the operands field. If the addres s is symbolic, the tag must appear in the 

location field of another (not necessarily previous) source-program entry. A symbolic tag may 

be written in the location field. If this tag begins in column 8, it is assigned to the address 

written in the operands field. If it begins in column 9, the tag is assigned to the location at which 

the next instruction would have begun had the ORG statement not been present. 

NOTE: Care must be taken so that the address in the operands field is a decimal 
number of I, 000 or above if Card Loader-Monitor B is used to load the 
object program. If Tape Loader-Monitor C or Drum Bootstrap-Loader 
C is used, this decimal number must be 1,340 or above. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE ______ PAGE _OF_ 

CARD !I~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

1 213 415 6 7 8 1415 2021 6263 80 

I : 'DENT IQRe, 7a~~ 
I 

1 

In the example above, assume that the instruction preceding the ORG statement was as­

signed to locations 5000 through 5007. The next instruction w,ould normally begin at location 5008. 

The tag IDENT, since it begins in column 9, is thus assigned to location 5008, and the next in­

struction is stored beginning at location 7800. 

7-8 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

Modular Origin 

MORG 

The modular origin statement is similar to the ORG statement described above. The 

MORG statement indicates to the assembler that all subsequent entries should be assigned se­

quential addresses starting with the next available location whose address is a multiple of the 

number written in the operands field of the MORG statement. The entry in the operands field 

must represent a power of two (e. g., 2, 4, 8, 16, 32, •••••• 4,096, etc.). 

EASYCODER A AND B 

The letters MORG are written in the op code field, and a number (a power of two) is placed 

in the operands field. 

EASYCODER 
CODING FORM 

PROBLEM ______ ----'-________________ I>ROGRAMMER ______ DATE ______ PAGE _OF_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

1 2J3 ~5 6 7 B 1415 2021 6263 80 

I : IMORG 2>2 
I 

1 

The statement above indicate s to the as sembler that all subsequent entries should be as­

signed sequential addresses beginning with the next available location whose address is a multiple 

of 32. 

EASYCODER C AND D 

The letters MORG are written in the op code field, and a number (a power of two) is placed 

in the operands field. A symbolic tag may be written in the location field. If this tag begins in 

colurrm 8, it is assigned to the address written in the operands field. If it begins in column 9, 

the tag is assigned to the location at which the next instruction would have begun had the MORG 

statement not been present (see the sample statement given above for the ORG statement). 

Literal Origin 

LITORG 

The literal origin statement is similar to the ORG and MORG statements described above. 

The LITORG statement specifies to the assembler that all previously used literals should be 

assigned sequential memory locations starting with the location specified in the operands field. 

7-9 #2-139 



SECTfON VII. ASSEMBLY CONTROL STATEMENTS 

Care :must be taken to ensure that literals can be referenced by the instructions which use 

the:m; e. go, a literal stored in one 4K bank :may not be addressed in the two-character :mode 

fro:m another bank. 

EASYCODER B 

Tn.e op code field :must contain the letters LITORG, while the operands field contains an 

address (either absolute or symbolic). If a sy:mbolic tag is used, it :must have appeared in the 

location field of a previous entry. Like the EX state:ment, the LITORG statement causes the 

literal table to be cleared. Also, locations below 1,000 (decimal) must not be used when BRT 

punched-card output is specified in the FROG statement. 

A symbolic tag may be written in the location field. If this tag begins in column 8, it is 

assigned to the address written in the operands field. If it begins in column 9, the tag is as­

signed to the location at which the next instruction would have begun had the LITORG statement 

not been present. 

NOTES: 1. In the absence of a LITORG statern.ent, all of the generated coding 
associated with a :memory load is allocated immediately following 
the in-line coding. 

2. With Easycoder B, the total of the number of Execute, Literal 
Origin, and End state:ments :must not exceed 31. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE ___ ~ __ PAGE _OF_ 

CARD ~I! LOCATION 
OPERATION OPERANDS NUMBER CODE 

1 2-' 3 415 6 7 8 1415 2021 I 6263 80 

I : LIT 11.,1 TORG 15$¢ 
! I 

In the LITORG statement above, the assembler is directed to assign sequential addresses 

starting with location 1550 - to all previously encountered literals. This location is also 

tagged LIT, since the tag begins in colu:mn 8. 

EASYCODER C AND D 

The op code field :must contain the letters LITORG, while the operands field contains an 

address (either absolute or symbolic). If a symbolic tag is used, it must have appeared in the 

location field of another, not necessarily previous, entry. Like the EX statement, the LITORG 

state:ment causes the literal table to be cleared. Also, locations below 1,340 (deci:mal) must 

not be used. 

A sy:mbolic tag :may be written in the location field. If this tag begins in column 8, it is 

assigned to the address written in the operands field. If it begins in colu:mn 9, the tag is assigned 

to the location at which the next instruction would have begun had the LITORG statement not 

been present. 

7-10 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

NOTE: In the absence of a LITORG statement, all of the generated coding 
associated with a memory load - except for a memory load termi­
nated by an XFR statement - is allocated immediately following the 
in-line coding. 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE _. ____ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

1 213 415 6 7 8 1415 2021 6263 

I i LIT ILl TORG ~ 750 
I 

I 

i I IDE.NT L I TORG 2000 
I I 
I I 

In the first LITORG statement above, the assembler is directed to assign sequential ad­

dresses, starting with location 1750, to all previously encountered literals. Note that the tag 

80 

for thi s statement, LIT, begins in column 8. As sume, in the second statement above, that the 

instruction preceding the LITORG statement was as signed to locations 450 through 457. The next 

instruction would normally begin at location 458. The tag IDENT, since it begins in column 9, is 

thus assigned to location 458, and previously encountered literals are assigned sequential ad­

dresses starting with location 2000. 

Set Address Mode 

ADMODE 

This statement specifies the addressing mode into which all subsequent instructions are to 

be assembled (i. e., two-, three-, or four-character). (All machine instructions, as well as the 

DSA data formatting statement, are affected by the address mode.) The mode of address as­

sembly specified in this statement remains in effect until another ADMODE statement, specifying 

a different mode of assembly, is encountered. 

Because the ADMODE statement concerns itself only with the source program, it should be 

used in conjunction with the CAM (Change Addressing Mode) instruction (see page 8-62). The 

CAM instruction specifies the addressing mode in which the machine is directed to interpret the 

-address portions of all subsequent object-program instructions. 

EASYCODER A and B 

The letters ADMODE are placed in the op code field. The operands field contains either 

a 2 or a 3 to denote whether all subsequent instructions are to be assembled in the two-character 

7-11 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

or the three-character addressing :mode. If an ADMODE state:ment is not included at the begin­

ning of the source progra:m, asse:mbly begins in the two -character addressing :mode. (It should 

be a general rule, however, to include an ADMODE state:ment at the outset of every progra:m. ) 

EASYCODER 
COOING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

1 213 415 6 7 8 1415 2021 6263 

I 1 IAOMODE2 I 

1 
1 

i i IADMODE3 
I 

The asse:mbler upon encountering the first state:ment above will asse:mble the address 

portions of all subsequent instructions as two-character addresses. The second statement, if 

encountered later in the sa:me source progra:m, will cause the assembler to change to three­

character address asse:mbly. 

EASYCODER C AND D 

80 

The letters ADMODE are placed in the op code field. The operands field contains either 

the nu:mbers 2, 3, 4, or a sy:mbolic tag to denote whether all subsequent instructions are to be 

asse:mbled in the two-, three-, orfour-characteraddressingrnode. !fa symbolic tag is used, it 

:must have been previously defined to have a value of 2, 3, or 4. If an ADMODE statement is not 

included at the beginning of the source progra:m, three-character addressing is assumed by the 

assembler. (It should be a general rule, however, to include an ADMODE statement at the outset 

of every progra:m.) See the sample statements given above for Easycoder A and B. 

Equals 

EQU 

The EQU state:ment assigns the sy:mbolic tag written in the location field to the address 

(absolute or sy:mbolic) written in the operands field. This state:ment thus :makes it possible to 

use different sy:mbolic tags in different parts of the source progra:m to refer to the sa:me :me:mory 

location. 

EASYCODER A and B 

The location field contains a sy:mbolic tag, while the op code field contains the letters EQU. 

The operands field contains the address to which the sy:mbolic tag in the location field is to be 

assigned. (Each sy:mbolic tag written in the operands field :must appear in the location field of 

a previous source-progra:m entry. ) 

7-12 #2-139 



SECTION VlI. ASSEMBLY CONTROL STATEMENTS 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD r~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

1 i [3 415 6 7 8 1415 2021 1 6263 80 

I I TITLE I(QU NAME 
I 

I 

i i QUA.N EQU IAMT-2.0. 

The first EQU statement above causes the assembler to assign the tag TITLE the same 

location as signed the tag NAME. Thus, the programmer can use either of these two tags to refer 

to the contents of this location. The second statement employs relative addressing. The as­

sembler will assign the tag QUAN to the location specified by address arithmetic as AMT-20. 

EASYCODER C AND D 

The location field contains a symbolic tag, while the op code field contains the letters EQU. 

The operands field contains the address to which the symbolic tag is to be assigned. A symbolic 

tag written in the operands field must appear in the location field of another (not necessarily 

previous) source program entry. 

See the sample statement given above for Easycoder A and B. 

Control Equals 

CEQU 

The CEQU statement assigns the symbolic tag w.ritten in the location field to the value 

written in the operands field. It is frequently used to assign a tag (containing a minimum of two 

characters) to a variant character or to a group of input/ output control characters. 

EASYCODER A AND B 

The location field contains a symbolic tag, while the op code field contains the letters 

CEQU. The operands field contains an octal value; this entry is coded as an octal constant and 

may contain up to 12 octal digits. The symbolic tag in the location field is as signed to thi sentry. 

NOTE: A description of octal constants may be found under the heading "Define 
Constant with Word Mark - DCW" (see page 6-2). 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

1 2/3 415 6 7 8 1415 2021 6263 80 

I I OFLOW CEQU ~IC50. 
f 

I BeT SUB2.~ OFLOW 

7-13 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

The sample coding above illustrates how a symbolic tag can be used in place of a variant 

character. The CEQU statement directs the assembler to equate the tag OFLOW to the octal 

value 50. The second line of coding contains a branch instl~uctiun which specifies that a program 

should branch to the location tagged SUB2 if the condition specified by the variant character 

tagged OFLOW is present. 

EASYCODER C AND D 

The location field contains a symbolic tag, while the op code field contains the letter s 

CEQU. The entry in the operands field must be a decimal, binary, octal, or alphanumeric con­

stant (the octal format is most commonly used). Regardless of the constant used, however, the 

resultant value must not exceed four characters in length. 

NOTES: 1. Instructions which refer to the tag defined by the CEQU statement 
must not precede the CEQU statement. 

2. A description of constants may be found under the heading "Define 
Constant with Word Mark - DCW" (see page 6-2). 

See the sample statement given above for Easycoder A and B. 

Memory Dump 

HSM 

BCD 

The HSM statement may be used with Easycoder A to produce a punched card deck con­

taining the Memory Dump routine. This card deck can be loaded into memory to obtain a printed 

listing of the contents of any portion of main memory. This statement must be coded immediately 

preceding the CLEAR and END statements in the source program (see below). 

EASYCODER A 

If the punched card deck {containing the Memory Dump routine} is to be loaded into a spe­

cific memory area, the start of this area can be specified by a tag in the location field of the 

HSM statement. A blank location field causes the Memory Dump routine to be loaded into the 

area following the location assigned to the last character in the object program. The letters 

HSM 1p.ust be written in the op code field. The operands field contains the addresses of the first 

(low) and last (high) locations in the memory area whose contents are to be listed by the Memory 

Dump routine. 

7-14 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE _OF_ 

CARD il~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

1 213 4.l5 6 7 8 1415 2021 i. J 6263 80 

I t H5,M START 3-.S.TOP +8 
I 

1 
, 

The HSM statement above specifies that the area whose contents are to be listed begins at 

the location tagged START and ends three locations beyond the location tagged STOP. As the 

location field is blank, the Memory Dump routine will be stored in the area following the location 

assigned to the last character in the object program. 

~ 
~ 

A B 

Easycoder assemblers normally single...,space an assembly listing and skip to the head of 

the next form when a page becomes filled. The SKIP statement enables the programmer to con­

trol the vertical spacing of the assembly listing by causing as many as 15 lines to be skipped. 

EASYCODER C AND D 

The letters SKIP are placed in the op code field. The operands field contains either a 

number from 1 to 15 (to indicate the total number of line s to be skipped) or the letter H (which 

causes the printer to skip to the heacl of the next form). 

NOTE: The as sembler automatically skips to the head of the form for each 
new segment. 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

1 2J3 ~5 6 7 8 1415 2021 -L 6263 80 

I 1 SKI P 9 
I 

J 

In the sample coding above, the assembler is directed to skip 9 lines on the program listing. 

Suffix A B 

SFX 

The SFX statement directs the assem,bler to append the single-character suffix in the 

7-15 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

operands field to each tag of five characters or less contained in the following coding. This 

technique enables the programmer to assign unique tags for each segment of a program and thus 

guard against double definition of a tag between distinct segments of a program. 

segment referencing within a program is required, six-character tags may be assigned. 

This operation continues until the occurrence of another SFX statement with a blank 

operands field, or until the END statement is encountered. 

EASYCODER C AND D 

The letters SFX are placed in the op code field. A single-character suffix is written in 

the operands field. 

EASYCODER 
COOING FORM 

PROBLEM _________________________ PROGRAMMER ______ OATE ______ PAGE_OF_ 

CARD ~~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

I 213 415 6 7 8 1415 2021 I I _L 6263 

I : SFX E 
1 

I TOTAL A F I C. A+ TOTAX,- 20 

In the above example, the assembler interprets the Add instruction following the SFX 

statement as: TOTALE A FICAE+TOTAXE-20. 

Repeat 

REP 

A B 

80 

This statement directs the assembler to repeat the following data formatting statement the 

number of times specified in the operands field. The nUITlber of tiITles a stateITlent is repeated 

includes the original stateITlent and may not exceed 63. The assembler repeats the statement 

without variation, except that any entry in the location field is not repeated. 

EASYCODER C AND D 

The letters REP are written in the op code field. The operands field designates the num­

ber of times the following statement is to be repeated (including the original statement). 

EASYCODER 
COOING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD l ~I LOCATION 
OPERATION OPERANDS 

NUMBER ~ ~ CODE 

I- 2.13 415 6 7 8 1415 2021 I I 6263 80 

I : R,EP 6 
1 

J OC.TS6 DeW #2C6 

7-16 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

In the sample statement above, REP is employed to define six identical constants of octal 

value 6000. 

Generate A B 

GEN 

This statement directs the assembler to generate the instruction which follows a specified 

number of times, incrementing or decrementing the operands of the instruction as specified by 

the operands field of the GEN statement. The GEN statement can apply to machine instructions 

with formats containing a single address, both addresses, a single address and one variant 

character, or both addresses and one variant character (only one variant character is allowed). 

EASYCODER C AND D 

The letters GEN are written in the op code field. The operands field contains the pa­

rameter specifying the number of times the statement (which follows) is to be generated, includ­

ing the original statement. This number is followed by a modifier for each operand in the model 

statement. These modifiers speci.£y the increment (froIn 0 to +63) or decrement (froIn -63 to 0) 

to be applied to each of the operands each time the statement is generated. There must be a modi­

fier for each operand in the model statement (including the variant character, if any), and the 

modifiers must appear in the same order as the operands. If no modification is desired, 0 is 

~ntered as the modifier. 

EASYCODER 
CODING FORM 

PROBLEM ~~ _______________________ PROGRAMMER ______ DATE __ ---- PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS 

NUMBER ~ ~ CODE 
6263 80 

1 213 415 6 7 8 1415 2021 I ~ 

I : GEN '¢. +4,. +6.0 
I 

I ewe BeE SEL.~ TABLE 8 

I I 
I I TABLE IRE"SV 160 

In the example above, the GEN statement generates a series of 10 instructions that will 

branch to a location SEL, SEL+4, SEL+8, ••••••• or SEL+36, provided that an 8 is present 

in the first character of the corresponding item in a table containing 10 six-character items. 

The tag SWC is assigned to the leftmost character of the first generated instruction. The GEN 

statement itself must not be tagged~ 

NOTE: The second BCE instruction generated by the example is BCE/SEL+4, 
TABLE+6,8; the third instruction generated is BCE/SEL+8, TABLE+IZ,8; 
and so on. The tenth instruction generated is BCE/SEL+36, TABLE+54,8. 

7-17 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

Set Line Number A B 

SETLIN 

This instruction is used to control the generation of line numbers by the assembler. 

EASYCODER C AND D 

The letters SETLIN are written in the op code field, while the first five colunms of the 

operand field contain the de~ired line number. The assembler replaces the contents of the line 

number generation counter with the number in the operands field of the SETLIN statement. This 

statement is effective only when the assembler is generating line numbers. It is important to 

note that all of the first five columns in the operands field must be punched with a decimal num­

ber (i. e., leading zeros are required). 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD t~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I' 2 3 4 5 6 7 8 1415 2021 6263 80 

I : SETLtN 100~8QS. 
I 

1 , 8 (/}0 
i I 
I 

In the example above, the SETLIN statement causes the instruction which follows it (B/OO) 

to be assigned a line number of 00080. 

Set Out-of-Sequence Base 

XBASE 

A B 

The XBASE stateITlent establishes the out-of-sequence base (OSB). As its name implies, 

the OSB is a base address for the storage of out-of-sequence coding. Such coding may be allocated 

or referred to (l) by means of the address code' (apostrophe) in the location field (see page 5-9); 

or (2) by means of the addre,ss code' (apostrophe) in the operands field (see page 5-15). 

EASYCODER C AND D 

The letters XBASE are written in the op code field. The operands field contains the value 

(absolute or symbolic) to which the assembler is directed to set the out-of- sequence base (OSB). 

If a symbolic tag appears in the operands field it must have appeared in the location field of a 

previous source-program entry. 

7-18 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

EASYCODER 
CODING FORM 

PROBLEM. .. ~.~ _______________________ PROGRAMMER ______ DATE _____ PAGE _OF_ 

CARD H~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

1 213 415 6 7 8 1415 tj 2021 1 1 6263 80 

I ~l XBASE 5fJ0 
1 

I '275 oew @CON@ 
1 i 

In the above example, the out-of-sequence base (OSB) is set to 500 by the XBASE state­

ment. When the second entry is encountered, the assembler assigns the rightmost character of 

the constant CON to location 775 (500 + 275). 

Clear 

CLEAR 

The CLEAR statement enables the programmer to specify an area of memory which is to 

be cleared of punctuation before the object program is loaded. The memory area is also cleared 

to zeros or to a given character. It is not necessary to clear areas which will be used to store 

the obj ect program. 

EASYCODER A 

The op code field contains the letters CLEAR, while the operands field contains the ad­

dresses (either absolute or symbolic) of the first (low) and last (high) locations in an area to be 

cleared. If a comma is written immediately following the second address, the character written 

in the column after the comma is loaded into all locations in the cleared area. If two addresses 

are written in the operands field and are not followed by a comma and a character, the specified 

area is cleared to zeros. 

A number of CLEAR statements may be written (in sequence) immediately preceding the 

END statement, provided that the total number of HSM, CLEAR, and END statements doe s not 

exceed 10. 

NOTE: The 80-character loading area specified in the END statement must 
never be cleared. 

EASYCODER 
CODING FORM 

PROBLEM----____________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER ~~ CODE 

1 213 415 6 7 8 1415 2021 6263 80 
I 1 CLEAR CAMT. EAMT 

I 
I 

I i CLEAR aa4 .. o79 ... J 

7-19 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

The first CLEAR statement above specifies that the area beginning at the location tagged 

CAMT and ending at the location tagged EAMT is to be cleared to zeros. The second CLEAR 

statement clears the area beginning at location 3-34 and ending at 379 to 46 Ji S • 

EASYCODER B 

The op code field contains the letters CLEAR, while the operands field contains the ad­

dresses (either absolute or symbolic) of the first (low) and last (high) locations in an area to be 

cleared. If a comma is written immediately following the second address, the character written 

in the column after the comma is loaded into all locations in the cleared area. If two addresses 

are written in the operands field and are not followed by a comma and a character, the specified 

area is cleared to zeros. 

A maximum of nine CLEAR statements may be included in a program. In addition, no 

coding may appear between the last symbolic CLEAR statement and the END statement. 

NOTE: The loading area specified in the END statement must never be cleared. 

See the sample statements given above for Easycoder A. 

EASYCODER C AND D 

The op code field contains the le,tters CLEAR, while the operands field contains the ad­

dresses (either absolute or symbolic) of the first (low) and last (h~gh) locations in an area to be 

cleared. If a comma is written immediately following the second address, the character written 

in the column after the comma is loaded into all locations in the cleared area. If two addresses 

are written in the operands field and are not followed by a comma and a character, the specified 

area is cleared to zeros. As many CLEAR statements as necessary can be included in a pro-

gram. 

NOTE: The programmer must exercise caution in the physical placement of the 
CLEAR statement, as the clearing is performed by the Loader at the 
time the CLEAR statement is encountered. 

See the sample statements given above for Easycoder A. 

fEndl 
~ 

The last source program instruction must be the END statement, which indicates to the 

assembler that the end of the source program has been reached. 

7-20 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

EASYCODER A 

The location field may contain an address (either absolute or symbolic) which specifies the 

initial location in an SO-character loading area. If the lo.cation field is left blank, the asseITlbler 

automatically reserves an SO-character loading area following the location assigned to the last 

character in the object program. 

The op code field contains the letters END. If it is desired to execute the object program 

immediately after loading, the operands field must contain the address (either absolute or 

symbolic) at which the object program is to begin. 

EASYCODER 
COOING FORM 

PROBLEM _________________________ PROGRAMMER ______ DATE ______ PAGE _OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS 

NUMBER ~ ~ CODE 

1 213 4\5 6 7 8 1415 2021 1 I 
6263 80 

I : END OBJE.c:r 

The END statement above specifies that the object program (beginning at the address 

tagged OBJECT) is to. be executed imITlediately after loading. Since the location field is blank, 

the assembler will reserve an SO-character lo.ading area following the location assigned to the 

last character in the object program. 

EASYCODER B 

The ITlethod of coding this statement depends on which output forITlat has been specified in 

the program header stateITlent. 

1. Output in self -loading format: The location field ITlay contain an addres s 
(either absolute o.r sYITlbolic) which specifies the initial location in an 80-
character loading area. If the location field is left blank, the as sembler 
automatically as signs an 80 -character loading area following the location 
assigned to the last character in the object program. 

The op code field contains the letters END, while the operands field 
contains the address (either absolute or symbolic) to which the Loader 
branches when loading has been completed. 

NOTES: 1. The programmer should ensure that the loading 
area does not span two 4K memory banks. 

2. During the loading process, the object program 
must not use the loading area. However, the 
area may be used following program loading. 

3. When literals are used, the programmer must 
specify a loading area that does not coincide 
with the memory area occupied by literals. 

7-21 #2-139 



SECTION VII. ASSEMBLY CONTROL STATEMENTS 

2. Output in BR T format: The op code field contains the letters END, while 
the operands field contains the address (either absolute or symbolic) to 
wnich the Loader branches when loading has been completed. When BR T 
forITlat is specified; all other fields of the END instruction are ignored 
by the asseITlbler. 

NOTES: 1. The loading area is automatically assigned by the Loader. 

2. With Easycoder B, the total of the numbers of Execute, 
Literal Origin, and End stateITlents must not exceed 31. 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD f~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

1 213 415 6 7 8 1415 2021 1 1 I 6263 80 

I : MAL END OBJECT 
1 

I 

I I END OBJECT 

The first example above illustrates the coding which may be used for self-loading format 

output; the coding for BRT-format output is shown in the second example. 

EASYCODER C AND D 

The op code field contains the-letters END. An address must appear in the operands field; 

the Loader will branch to that address (which should be the starting location of the last segment 

of the program). 

NOTE: The loading area is automatically assigned by the Loader. 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD f~ LOCATION 
OPERATION OPERANDS 

NUMBER t ~ CODE 

1 213 415 6 7 8 1415 2021 I 6263 80 

I : iE;Nt> STARTL 

The sample END statement above indicates to the assembler that the end of the source 

program has been reached. This statement is replaced by coding which specifies to the Loader 

that the last (or only) segITlent begins at symbolic address STARTL. 

7-22 #2-139 



INSTRUCTIONS 

INTRODUCTION 

A Series 200 com.puter operates under the direction of instructions in the stored program.. 

For descriptive purposes, these instructions are classified into six functional categorie s: (l) 

Arithm.etic; (2) Logic; (3) Control; (4) Interrupt Control; (5) Editing; and (6) Input/Output. 

All instructions are described in the following standard form.at: 

Title: 

Form.at: 

Function: 

The title describes the instruction. It appears in the left-hand 
margin of a page, along with the m.nem.onic operation code used 
in the Easycoder sym.bolic program.m.ing language. 

If an instruction is included in an optional feature, that feature 
num.ber accom.panies the title. 

This is a tabular representation of all form.ats which m.ay be 
used when coding the instruction. 

The function of the instruction is described in term.s of each 
form.at in which it can be coded. 

Word Marks: The effect of word m.arks with regard to data fields is specified. 

Address 
Registers 
after 
Operation: 

Notes: 

Exam.ples: 

The contents of the address registers are indicated for each of 
the instruction' s form.ats. 

This is additional inform.ation pertaining to the operation. 

Practical applications of the instruction in its various form.ats 
are described and illustrated as sym.bolic program. entries. 

Form.ulas for calculating instruction execution tim.es are presented in Appendix C. 

Table 8 -1 lists the abbreviations and symbols used in the description of the instructions. 

Those sym.bols used only with specific instructions are preceded by the title of the instruction 

to which they pertain. 

8-1 #2-139 



A 

B 

Ni 

Na 

Nb 

Nw 

NXT 

JI 

Ap 

Bp 

(A) 

L 
ta 

SECTION VIII. INSTRUCTIONS 

Table 8-1. Symbology Used in Series 200 Instruction Descriptions 

A addre s s of the instruction 

B address of the instruction 

Number of characters in the instruction 

Number of characters in the A field 

Number of characters in the B field 

Number of characters in the A or B field, whichever is smaller 

Address of next sequential instruction 

Address of next instruction if a branch occurs 

The previous setting of the A -address register (AAR) 

The previous setting of the B -address register (BAR) 

Number of digits in the dividend 

Number of characters translated 

Number of information units translated 

Previous contents of the change sequence regi ster (CSR) 

Number of six-bit character locations occupied by each A-item 
information unit (lor 2) 

Number of six-bit character locations occupied by each B-item 
information unit (lor 2) 

Load Control Registers 

Contents of the field specified by the A address. 

Table Lookup 

The location in the table immediately to the left of the argument 
(or short field) that terminated the search. 

8-2 #2-139 



eADD 

eSUBTRACT 

eBINARY ADD 

eBINARY SUBTRACT 

e ZERO AND ADD 

e ZERO AND SUBTRACT 

eMULTIPLY 

eDIVIDE 

8-3 #2-139 



SECTION VIII. INSTRUCTIONS 

ARITHMETIC OPERATIONS 

Series 200 add operations (binary addition, decimal addition) treat the A operand as the 

augend and the B operand as the addend. The subtract operations (binary subtraction, decimal 

subtraction) treat the A operand as the subtrahend and the B operand as the minuend. The 

result of each operation is stored in the B field. These elements are summarized in Table 8-2, 

where a character enclosed in parentheses indicates the contents of that field. 

BINARY ADDITION 

Table 8-2. Series 200 Add and Subtract Operations 

( B ) 
+ (A) 

( B ) 

( B ) 
- (A) 

( B ) 

The Binary Add instruction combines the corresponding bits of the augend and addend and 

produces a binary sum which is stored in the B field. This process can be most readily analyzed 

on a column-by-column basis. For any column in the addition, three variables are significant 

to the sum: the augend digit, the addend digit, and the carry from the next lower-order column. 

For any column, the result is fully expressed by a sum digit (1 or 0) and either a carry or no 

carry to the next higher-order column.. Table 8-3 lists all the possible combinations of these 

variables. 

Table 8-3. Binary Addition Taple 

0 0 0 0 I 1 I I 

0 I 1 0 0 1 1 o 

0 I 0 1 0 1 o 1 

0 0 1 1 1 1 o o 
0 1 0 0 0 1 1 1 

BINARY SUBTRACTION 

The Binary Subtract instruction performs, in effect, twos-complement arithmetic. 1 When 

this instruction is executed, each six-bit character of the subtrahend is converted to its ones 
2 

complem ent and added to the corresponding character in the minuend, adding from right to left. 

1 
The twos complement of a binary number is formed by subtracting the number from a field of 
all one bits and adding one to the low-order digit of the difference. 

2The ones complement of a binary number is formed by subtracting the number from a field of 
all one bits. 

8-4 #2-139 



SECTION VIII. INSTRUCTIONS 

In the first addition (the addition of the low-order characters of the subtrahend and the minuend) 

a simulated carry is added to the result. All subsequent characters are added with or without a 

carry, depending upon the result of the previous addition. 

The word mark associated with the B field terminates the operation. If the length of the A 

field equals that of the B field, the binary subtraction process continues until the high-order B­

field character has been combined with the high-order A-field character. If the length of the A 

field exceeds that of the B field, the effect is as if there were a word mark in the A-field loca­

tion corresponding to the high-order B-field location (i. e., the process still terminates at the 

B-field word mark). If the length of the A field is less than that of the B field, zeros are insert­

ed where the A field terminates until the last B-field character is processed. Each zero is con­

verted to its ones complement as above and then added to the corresponding B-field character. 

In the following example, locations 294 and 295 contain the value 73 10 in 12-bit binary form, 

while locations 299 and 300 contain the binary equivalent of 8710• 

Note: Locations 294 and 299 contain word marks; the length of the A field therefore 
equals that of the B field in thi s example. 

EASYCODER 
CODING FORM 

PROBLEM ____________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~~ LOCATION NUMBER ~ ~ 
1 213 415 6 7 8 

I i 

LOCATION ... 

CONTENTS ... 
(binary) 

OPERATION OPERANDS 
CODE 

6263 80 
1415 2021 1 

ISs 2qS .. 3~fd 

The six-bit character in location 295 is converted to its ones complement and added to the 

six-bit character in location 300 (see illustration below). Prior to this operation, a simulated 

carry is generated in the adder (see page 2-10). The result of the first addition is the binary 

equivalent of 14 plus a carry. This carry remains in the adder and is added to the sum of the 
10 

contents of locations 294 and 299, resulting in a binary zero plus another carry. This final carry 

remains in the adder and the operation terminates. An overflow condition does not exist since 

the carry remaining at the end of the operation is suppressed; consequently the next memory lo­

cation (location 298) is not disturbed. The result of the ~entire Binary Subtract instruction is 

therefore 14
10

, the true difference between 87 and 73. 

Table 8-3 indicates how the bits in each colunm of the ones-complement subtrahend and 

the minuend are combined. 

8-5 #2-139 



SECTION VIII. INSTRUCTIONS 

LOCATION .... :: 

CONTENTS .... 
~------~~--~------~------~----~------~--~--T 

ones complement 

ADDER 

RESULT 

First Addition 

converted to 
ones complement 

Simulated Carry 
in Adder 

001110--------------------~ 

(plus a carry) 

ADDER Previous 
Carry 

RESULT oooooo------------------~ 

(plus a carry which 
is suppres sed) 

Second Addition 

The result of the operation (1410 ) is stored in the B field as shown below. 

73 10 14
10 

8-6 #2-139 



SECTION VIII. INSTRUCTIONS 

DECIMAL ADDITION 

The Add instruction performs either a true add or a complement add, depending upon the 

algebraic signs of the operands. The sign of an operand is determined by the combination of 

zone bits in the units position of that field. The four possible zone bit configurations and the 

signs they represent are shown in Table 8-4. 

+ 
True Add 

Table 8 -4. Algebraic Signs in Decimal Addition 

o 

I 

o 

o 
I 

1 

I o 

A true add is performed if the signs of the A and B fields are alike. The result of the 

addition is stored in the B field with the same zone bit configuration that was originally in the B 

field (see Figure 8 -1). Zone bits in all B -field locations (except for the units position) are set to 

zeros. A-field zone bits (except for the units position) are ignored. 

(+A) + (+B) = +R 

A OPERAND 

+244 

(-A) + (-B) -R 
A OPERAND 

-077 

Figure 8-1. True Add Examples 

Complement Add 

B OPERAND 
+170 
+244 
+414 = RESULT 

B OPERAND 
-444 
-077 
-521 = RESULT 

If the operand signs are not alike, the instruction performs a complement add: the A 

operand is converted to its tens complement 1 and added to the B operand. The machine automa­

tically initiates a test to determine whether a carry was generated by the high-order addition. 

1 The tens complement of a decimal number is formed by subtracting the number from all nines 
and adding one to the low-order digit of the difference. 

8-7 #2-139 



SECTION VIII. INSTRUCTIONS 

The presence of a carry indicates that the result in the B field is a true answer, and the opera­

tion is terminated with the normalized sign of the B field as the sign of the result (see Figure 

8-2}.1 B-field zone bits (except for the units position.) art:: set to zeros. 

The absence of a carry indicates that the A operand was algebraically larger than the B 

operand and that the result is stored in its tens -complement form. A recomplement cycle is 

performed automatically to convert the result to its true form. The sign of the result is changed 

during this recomplement cycle. Figure 8-2 illustrates complement add operations with and 

without recomplementation. 

(+A) + (-B) = -R 
A OPERAND B OPERAND 

convert to ~ -0090 
+ 0 0 78 ::IIt::)titI})::/I({ttJ tens com pIe m e nt 1ft?? r::::::\::::\:trttt)t\)i:::t):tI~ 9922 

A OPERAND 

+0178 

carry indicates true sum ~ 
(recomplementing is 
unnecessary) 

(+A) + (-B) = +R 

1 -0012 = RESULT 
~ 
sign of B operand 

B OPERAND 

convert to -0090 
tens complement !::::/:::)t:::I\:((::nJ:::::@~ 9822 

no carry i:tadicates sum is stored 
in its tens-complement form; 
recomplementing is necessary 

~ 0 -9912 

I 
recomplement 
and change sign • +0088 = TRUE RESULT 

Figure 8-2. Complement Add Examples 

DECIMAL SUBTRACTION 

The Subtract instruction is analogous to the Add instruction with the exception that before 

the operands are combined, the sign of the A operand is changed. Thus, if the initial sign of the 

A operand is equal to that of the B operand, the operands are combined by a complement add. If, 

on the other hand, the initial sign of the A operand is not equal to that of the B operand, the 

operands are combined by a true add. 

A summary of decimal arithmetic operations is presented in Table 8-5. 

1 Normalized signs are expressed by the following zone bit configurations: plus = 01, minus = 10. 

8-8 #2-139 



SECTION VIII. INSTRUCTIONS 

Table 8 - 5. Decimal Arithmetic Sign Conventions 

+ True + (Bit configuration of B) 
+ Complement Normalized sign of the 

ADD 
operand of greater value 

+ Complement 
(- = la, + = 01) 

True 

True 
+ Complement Normalized sign of the + 

SUBTRACT operand of greater value 

Complement 
(- = la, + = 01) 

+ True + (Bit configuration of B) 

INDICATORS 

Two indicators are set at the completion of every decimal add and subtract operation: the 

overflow indicator and the zero balance indicator. If a carry is generated beyond the limit of the 

B field, the overflow indicator is turned on; if such a carry is not generated, the indicator is 

unchanged. 1 The zero balance indicator signifies either a zero or a non-zero sum. When a 

decimal operation produces a result equal to zero (regardless of sign), the zero balance indi­

cator is turned on; when the result of the operation does not equal zero, the indicator is turned off. 

These indicators are also set by decimal mUltiply and divide operations. The overflow 

indicator is turned on when a Decimal Divide instruction is performed in which the divisor is 

equal to zero. The zero balance indicator is turned on if the product of a decimal multiply 

operation is equal to zero. 

The settings of these indicators can be tested by a Branch on Condition Test instruction 

(see page 8-35). This instruction automatically resets the overflow indicator; the zero balance 

indicator is, not affected by the branch instruction used to test it but is reset only by the next 

decimal arithmetic instruction. 

MULTIPLICATION 

The Multiply instruction causes the signed decimal integer in the A field (the multiplicand) 

1 Only a "true add" operation can turn the overflow indicator on (see Table 8-5). 

8-9 #2-139 



SECTION VIII. INSTRUCTIONS 

to be multiplied by the signed decimal integer (the multiplier) which is stored in the leftmost lo­

cations of the B field. The signed product is stored, right-justified, in the B field. 

The B field must be large enough to insure an adequate number of locations for the develop­

ment and storage of the product. Its length is therefore defined as the number of locations in 

the multiplier, plus the number of locations in the multiplicand, plus one (see Figure 8-3). 

OPERATION: 

aaaa 
X bbb 

LOCATION .... 

CONTENTS.... 0 a a a 

MULTIPLICAND 
(4 locations) 

b b 

MULTIPLIER 
(3 locations) 

Figure 8-3. A and B Fields in Multiply Operation 

Word marks are required in the leftmost locations of the multiplicand and the multiplier. 

All other locations in the B field must not contain word marks. As shown in Figure 8-3, the 

rightmost location of the multiplier is defined as B - Na - 1, where B is the B address and Na 

is the number of locations in the A field. 

The zone bits in the units positions of the multiplier and the multiplicand indicate the signs 

of the operands. The signs of these factors indicate the sign of the product according to the 

algebraic sign conventions shown in Table 8-6. The sign of the product is expressed in its 

normalized form (minus = 10, plus = 01). 

Table 8 -6. Multiply Sign Conventions 

+ + 

+ + 
+ + 

8-10 #2-139 



SECTION VIII. INSTRUCTIONS 

ConsideT the following Decimal Multiply instruction. 

EASYCODER 
CODING FORM 

\ 
PROBLEM ______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD I~I~ LOCATION 
OPERATION OPERANDS NUMBER I~ ~ CODE 

1 213 415 6 7 8 1415 2021 6263 80 

I : 1M 5(l!(6. 7.~1JJ 

Location 500 is the rightmost location of a four-character fieldo Location 700 is the right­

most location of an eight"character field. Location 695 (i. e., 700 - 4 - 1) is the rightmost loca­

tion of the multiplier. 

LOCATION ~ 

CONTENTS ... 

A ADDRESS • B ADDRESS 

• 

The data in the A field is multiplied by the data in the field whose rightmost location is 

695, and the product is stored, right-justified, in the B field. All B-field zone bits are cleared 

to zeros (except in the units position, which contains the sign of the product). At the end of the 

operation, the multiplier is no longer present in the leftmost positions of the B field, since all 

B-field locations to the left of the most significant digit of the product are set to zeros. Thus, 

the multiplier should be preserved in another storage field if it is to be used more than once. 

The result of the multiply operation is shown below. 

LOCA TION ----.. . 

CONTENTS--. 

DIVISION 

A FIELD IS 
NOT DISTURBED 

PRODUCT IS STORED IN B FIELD, RIGHT­
JUSTIFIED. ALL INSIGNIFICANT HIGH­
ORDER CHARACTERS ARE SET TO ZEROS 

-----------------~-----------------PRODUCT 

The Divide instruction causes the signed decimal integer in the A field (the divisor) to be 

divided into the signed decimal integer whose leftmost location is the B address of the instruc­

tion (the dividend). The quotient is developed and stored in the leftmost locations of the B field, 

8-11 #2-139 



SECTION VIII. INSTRUCTIONS 

and the remainder is stored in the rightmost locations of the B field. 1 To insure an adequate 

number of storage locations for the development of the quotient, the length of the B field is 

d6t6:rn1ined by adding 1 to the sum of the number of character locations in the divisor and 

dividend (see Figure 8-4). 

OPERATION: 

xxx)yyyy 

BEFORE EXECUTION 

LOCATION 

CONTENTS 

DIVISOR 
(3 locations) 

AFTER EXECUTION 

LOCATION 

CONTENTS x x 

r B FIELD (3+4+1=8 loc ationS)1' 

B ADDRESS 

B-Na +N dd-2 

DIVIDEND 
(4 locations) 

Figure 8-4. Factor Locations in Divide Operation 

The leftmost location of the dividend is defined by the B address of the Divide instruction. 

The rightmost location (i. e., the units position) is the first character location to the right of 

the B address to have one of its zone bits not equal to zero. As shown in Figure 8-4, all B­

field locations to the left of the dividend must contain zeros prior to the divide operation. 

A word mark is required in the leftmost location of the divisor. The dividend mayor may 

not contain a word mark. 

INote that the B "field" in a divide operation does not define the B operand but is a group of 
storage locations within which the B operand (the dividend) is contained. 

8-12 #2-139 



SECTION VIII. INSTRUCTIONS 

The signs of the operands are indicated by the zone bits in the units positions of the divisor 

and dividend. Algebraic sign control is used to determine the sign of the quotient (see Table 

8-7). The sign of the quotient is expressed in its normalized form (minus = 10, plus = 01). The 

sign of the remainder is always the same as that of the dividend (in value if not in bit configu­

ration); its form is normalized if the sign of the dividend is normalized. 

Table 8 -7. Divide Sign Conventions 

+ + 

+ + 

+ + 

+ + 

Since the pre sence of a signed digit in the dividend specifies its rightmost location, the 

units position of the dividend must contain a normalized sign and the zone bits of all other 

dividend characters must be zero. 

When division is completed, the signed decimal quotient is stored in the leftmost locations 

of the B field; the units position of the quotient is in location B - Na + Ndd - 2, where Na is the 

number of locations in the A field and Ndd is the number of locations in the dividend. The signed 

decimal remainder appears in locations B+Ndd-1, B+Ndd-2, etc. through location B-Na+Ndd. 

The character location separating the quotient and the remainder is cleared to zero (see Figure 8-4). 

In the following example, the divisor is a two-character field whose rightmost location is 

location 450 and the dividend is a four-character integer whose leftmost location is location 950. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

1 213 415 6 7 8 1415 2021 6263 

I i ~ 450,Q,50 
I 

I 
I I 

The contents (+23) of the A field are divided into the contents of the field (+7347) whose 

leftmost location is 950. The rightmost boundary of the dividend is determined by the first 

character location (location 953) to the right of location B whose zone bits are non-zero. This 

units position of the dividend therefore contains the sign of the dividend. 

80 

8-13 #2-139 



~ 

DIVISOR = 
2 CHARACTER 
LOCATIONS 

SECTION VIII. INSTRUCTIONS 

B FIELD = 1+2+4 = 7 ~ 
CHARACTER LOCATIONS I 

B ADDRESS I 

---------------DIVIDEND = 4 
CHARACTER LOCATIONS 

The quotient (+319) is stored in the leftmost character locations of the B field. The units 

position of the quotient (location 950) is equal to B-Na +Ndd-2, or 950-2+4-2. The remainder 

is stored in the rightmost locations of the B field; its leftmost location (location 952) is equal to 

B-Na+Ndd' or 950-2+4; its rightmost location (location 953) is equal to B+Ndd-l, or 950+4-1. 

The result of the operation is shown below. 

FINAL SETTING OF AAR 

FORMAT OP CODE 

o. -b. _ 

c. _ 

FUNCTION 

A ADDRESS -

FINAL SETTING OF BAR 

~ 

QUOTIENT 

B ADDRESS 

Format a: The signed decimal data in the A field is added algebraically to the signed decimal 
data in the B field. The result is stored in the B field. 

Format b: The signed decimal data in the A field is added to itself. The result is stored in the 
A field. 

Format c: The signed decimal data specified by the contents of the A-address register (AAR) is 
added algebraically to the signed decimal data specified by the contents of the B -ad­
dress register (BAR). The result is stored in the B field. 

8-14 #2-139 



SEC TION VIII. INS TR UC TIONS 

WORD MARKS 

Format a: The B operand must have a defining word mark. It is this word mark that terminates 
the operation. The A operand m.ust have a word mark only if it is shorter than the B 
operand. In this case, transmission of data from the A operand stops after the A­
operand word mark is sensed. If the A field is longer than the B field, the high­
order characters of the A field that exceed the field length defined by the B-operand 
word mark are not processed. 

Format b: The A operand must have a defining word mark. 

Format c: The B operand must have a defining word mark. The A operand must have a word 
mark only if it is shorter than the B operand •. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-'Nw B-Nb 

Format b: NXT A-Na A-Na 

Format c: NXT Ap-Nw Bp-Nb 

NOTES 

1. The algebraic sign control for the add operation is shown below. 

Sign of B field 
Normalized sign of A or B 
field, whichever is greater 
(-=10,+=01) 

2. All zone bits in the result field are set to zeros except for the units position. 
(i. e., the sign of the result). 

3. This instruction treats both operands as signed decimal data. It will pro­
duce ambiguous results if used to manipulate non-decimal data. Particularly, 
if the four numeric bits of any character have a binary numeric value of 12 
or more (octal 14, 15, 16, and 17), the character is treated as if it were 
a zero, though its zone bits are retained. (In Type 201 or 201-1 proces sors, 
the zone and numeric bits of octal 14, 15, 16, and 17 are handled as zeros.) 
The two remaining cases (octal 12 and 13) are unspecified. 

4. The overflow and zero balance indicators are set by an add operation. 

5. When the central processor is in the l1Sl1 mode o{processing, the zone bits 
are not changed in any character other than the units position of the B field. 

EXAMPLE 

Add Bond Deductions to Total Deductions. 

Description 

Bond Deductions 

Total Deductions 

8-15 

Tag 

BDED 

TDED 

#2-139 



SECTION VIII. INSTRUCTIONS 

EASYCODER 
CODING FORM 

PROBLEM ______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

I CARD IJI~I i NUMBER I~i~i LOCATION I OP~"06;~O ~ I OPERANDS 
LI ZJ34J5L6J7!8 14[15 20lz1 1 1 6263 

I I 
: " I IA laDE D. TDE' 0 

5 SUBTRACT 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -FUNCTION 

ForITlat a: The signed deciITlal data in the A field is subtracted algebraically froITl the signed 
deciITlal data in the B field. The result is stored in the B field. 

ForITlat b: The signed deciITlal data in the A field is subtracted froITl itself. The result is 
stored in the A field. If the A-field sign is ITlinus, the result is a ITlinus zero. If 
the A-field sign is plus, the result is a plus zero (with norITlalized Sign). 

ForITlat c: The signed deciITlal data specified by the contents of the A-address register (AAR) 
is subtracted algebraically froITl the signed deciITlal data specified by the contents 
of the B-address register (BAR). The result is stored in the B field. 

WORD MARKS 

80 

ForITlat a: The B operand ITlust have a defining word ITlark. The A operand ITlust have a word 
ITlark only if it is shorter than the B operand. In this case, transITlission of data 
froITl the A operand stops after the A-operand word ITlark is sensed. If the A field 
is longer than the B field, the high-order characters of the A field that exceed" the 
field length defined by the B -operand word ITlark are not proces sed. 

ForITlat b: The A operand ITlust have a defining word ITlark. 

ForITlat c: The B operand ITlust have a defining word ITlark. The A operand ITlust have a word 
ITlark only if it is shorter than the B operand. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

ForITlat a: NXT A-Nw B-Nb 

ForITlat b: NXT A-Na A-Na 

ForITlat c: NXT Ap-Nw B -Nb 
P 

8-16 #2-139 



SECTION VIII. INSTRUCTIONS 

NOTES 

1. Algebraic sign control for the subtract operation is smnrnarized below. 

+ 
+ 

Comp Comp 

Normalized sign of 
A or B field, which­
ever is greater 
(- = 10, + = 01) 

+ 
+ 

True True 

Sign of B fleld 

2. All zone bits in the result field are set to zeros except for the units position 
(i. e., the sign of the result). 

3. This instruction treats both operands as' signed decimal data. It will pro­
duce ambiguous results if used to manipulate non-decimal data. Partic­
ularly' if the four numeric bits of any character have a binary numeric 
value of 12 or more (octal 14, 15, 16, and 17), the character is treated as 
if it were a zero, though its zone bits are retained. (In Type 201 or 201-1 
processors, the zone and numeric bits of octal 14, 15, 16, and 17 are 
handled as zeros.) The two remaining cases (octal 12 and 13) are unspecified. 

4. The overflow and zero balance indicators are set by a subtract operation. 

5. When the central processor is in the "S" mode of processing, the zone bits are 
not changed in any character other than the units position of the B field. 

EXAMPLE 

Subtract the contents of the five-character fields starting at location 940, 945, 950, 
and 955 from the contents of the eight-character fields starting at locations 648, 
656, 664, and 672. 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD r~ LOCATION 
OPERATION OPERANDS NUMBER f ~ CODE 

1 213 415 6 7 8 1415 2021 1 62 63 90 

I : S 955 .6.72 
1 

I S 
i I S 
I I S 

I BA I BINARY ADD 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

8-17 #2-139 



SECTION VIII. INSTRUCTIONS 

FUNCTION 

For'mat a: The data in the A field is added in binary fashion, character by character, to the 
data in the B field. The result is stored in the B field. 

Format b: The data in the A field is added, character bycharacter, to itself. The result is 
stored in the A field. 

Format c: The data specified by the contents of the A ... address register (AAR) is added, char­
acter by character, to the data specified by the contents of the B -address register 
(BAR). The result is stored in the B field. 

WORD MARKS 

Format a: The B operand must have a defining word mark. It is this word mark that termi­
nates the operation. The A operand must have a word mark only if it is shorter 
than the B operand. in this case the transmission of data from the A field stops 
after the A-operand word mark is sensed. If the Afield is longer than the B field, 
the high-order characters of the A field that ex!=eed the field length defined by the 
13 -operand word mark are not processed. 

Format b: The A operand must have a defining word mark. 

Format c: The B operand must have a defining word mark. The A operand must have a word 
mark only if it is shorter than the B operand. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Nw B-Nb 

Format b: NXT A-Na ' A-Na 

Format c: NXT Ap-Nw B -Nb 
P 

NOTES 

1. The overflow and zero balance indicators are not set by a binary add 
operation. 

2. Format b of the BA instruction has the effect of doubling the value stored 
in the A field; i. e., it shifts the contents of the A field one bit position 
to the left. 

EXAMPLE 

Modify the B address of the instruction tagged B 7 by the value stored in the location 
tagged TEN (assuming the use of the two-character addressing mode). 

EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER ______ OATE _____ PAGE_OF_ 

CARD ll~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

I 213 415 6 7 8 1415 2021 I I I 6263 80 

I : B,A TEN.~,8 7+.4. 

8-18 #2-139 



SEC TION VIII. INSTR UC TIONS 

BS BINARY SUBTRACT 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

a. - -
b. - ~ 
c. -

FUNCTION 

Format a: Each six-bit character in the A field is converted to its ones complement and added, 
in binary fashion, character by character, to the data in the B field (see page 8-4). 
A simulated carry is added with the characters in the units position. The result is 
stored in the B field. 

Format b: Each six-bit character in the A field is converted to its ones complement and added, 
character by character, to itself. A simulated carry is added with the characters 
in the units position. In effect, this format of the binary subtract instruction re­
places the contents of the A field with zeros. 

Format c: Each six-bit character specified by the contents of the A-address register (AAR) 
is converted to its ones complement and added, character by character, to the data 
specified by the contents of the B-address register {BAR}. A simulated carry is 
added with the characters in the units ,position. The result is stored in the B field. 

WORD MARKS 

Format a: The word mark associated with the B operand terminates the operation. The A 
operand must have a word mark only ii£ it is shorter than the B operand. In this 
case, transmission of data from the A field stops after the A-operand word mark 
is sensed. If the A operand is longer than the B operand, the characters of the A 
operand that exceed the field length defined by the B -operand word mark are not 
processed. 

Format b: The A operand must have a defining word mark. 

Formatc: The B operand must have a defining word mark. The A operand must have a word 
mark only if it is shorter than the B operand. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Nw B-Nb 

Format b: NXT A-N A-N a a 

Format c: NXT A -N 
P w Bp-Nb 

8-19 #=2-139 



SECTION VIII. INSTRUCTIONS 

NOTES 

1. The overflow and zero balance indicators are not set by a binary subtract 
operation. 

2. Formats a. and c. can produce negative results. A negative result is stored 
in the B field in its twos-complement form. In this case, the absolute nu­
merical value of the result can be obtained by recomplementing the result 
stored in the B field. A negative result is detected only if the programmer 
provides appropriate coding to ascertain whether or not operands .will pro­
duce such a result. 

EXAMPLE 

Zero the field starting at location TOTAL. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD fl~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

1 213 415 6 7 8 

I 1 
1415 2021 6263 

~s TOTAL. 

NOTE: Zone bits as well as numeric bits are cleared to zero by this 
operation. 

ZA I ZERO AND ADD I IFEATURES 010 & 011 1 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

FUNCTION 

80 

Format a: The data in the A field is transferred, character by character, right to left, to the 
B field. Zone bits in the B field are set to zero in all positions except the units 
position. The sign of the result field is based on the sign of the A field (see note 1). 
If the high-order character of the A field is transferred before the operation 
term~nates, the remaining B field characters are cleared to zeros. 

Format b: The data in the A field is converted to an all-numeric format; i. e., the zone bits 
of all positions in the field except the units position are set to zero. The result 
remains in the A field. The sign of the A field is not changed by the operation (see 
note 1). 

8-20 #2-139 



SECTION VIII. INSTRUCTIONS 

Format c: The data specified by the contents of the A-address register (AAR) is transferred 
to the field specified by the contents of the B-address register (BAR). Zone bits 
in the B field are set to zero in all positions except the units position. The sign 
of the result field is based on the sign of the A 'field (see note 1). If the high­
order character of the A field is transferred before the operation terminates, the 
remaining B-field characters are cleared to zeros. 

WORD MARKS 

Format a: The B operand must have a defining word mark. The A operand must have a word 
mark only if it is shorter than the B operand. In this case, transfer of data from 
the A operand stops after the A-operand word mark is sensed. If the A field is 
longer than the B field, the high-order characters of the A field that exceed the 
field length defined by the B-operand word mark are not processed. 

Format b: The A operand must have a defining word mark. 

Format c: The B operand must have a defining word mark. The A operand must have a word 
mark only if it is shorter than the B operand. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-N w B-Nb 

Format b: NXT A-Na A-N a 

Format c: NXT A -N P w B p-Nb 

NOTES 

1. A plus sign in the units position of the re suit field is always expre s sed in 
its normalized form (01). 

2. B -field punctuation is not changed by this operation. 

3. This instruction does not set the overflow and zero balance indicators. 

4. When the central processor is in the "S" mode ofprocessing and the four numeric 
bits of any character have a value of 148 or more (128 in the 4200), the character 
is treated as if it were a zero. The zero balance indicator is set or reset accordingly. 

EXAMPLE 

Transfer the contents of the field tagged ORATE to the field tagged NRATE, setting 
a1l zone bits in NRA TE (except in the units position) to zeros. 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAM.MER ______ DATE _____ PAGE _OF_ 

CARD l~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

1 213 415 6 7 8 1415 2021 .L I 6263 80 

I : Z,A ORATE,~NRATE: 
I 

I 
I I 
I I 

1 i 

8-21 #2-139 



SECTION VIII. INSTRUCTIONS 

zs I ZERO AND SUBTRACT I FEATURES 010 & 011 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

FUNCTION 

Format a: The data in the A field is transferred to the B field with the opposite sign. Zone 
bits in the B field are set to zeros in all positions except the units position. If the 
high-order character of the A field is transferred before the operation terminates, 
the remaining B-field characters are cleared to zeros. 

Format b: The data in the A field is converted to an all-numeric format; i. e., the zone bits 
of all positions in the field except the units position are set to zero. The result re­
mains in the A field with its sign reversed. 

Format c: The data specified by the contents of the A-address register (AAR) is transferred 
with the opposite sign to the field specified by the contents of the B -address register 
(BAR). Zone bits in the B field are set to zero in all positions except the units 
position. If the high-order character of the A field is transferred before the oper­
ation terminates, the remaining B -field characters are cleared to zeros. 

WORD MARKS 

Format a: The B operand must have a defining word mark. The A operand must have a word 
mark only if it is shorter than the B operand. In this case, transfer of data from 
the A operand stops after the A-operand word mark is sensed. If the A field is 
longer than the B field, the high-order characters of the A field that exceed the 
field length defined by the B-operand word mark are not processed. 

Format b: The A operand must have a defining word mark. 

Format c: The B ope rand must have a defining word mark. The A operand must have a word 
mark only if it is shorter than the B operand. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Nw B-Nb 

Format b: NXT A-Na A-Na 

Format c: NXT Ap-Nw Bp-Nb 

8-22 #2-139 



SECTION VIII. INSTRUCTIONS 

NOTES 

1. A plus sign in the units position of the result field is always expressed in its 
normalized form (01). 

2. B -field punctuation is not changed by this operation. 

3. This instruction does not set the overflow and zero balance indicators. 

4. When the central processor is in the "S" mode and the four numeric bits of any 
character have a value of 148 or more (128 in the 4200), the character is 
treated as if it were a zero. The zero balance indicator is set or reset accordingly. 

EXAMPLE 

Change the sign of the data in the field tagged PROFIT. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

1 2 3 4 5 6 7 8 1415 2021 I 1 6263 80 

ZS PR.OF IT 

-..1 

M I MULTIPLY I 
FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

FUNCTION 

Format a: The signed decimal integer in the A field is multiplied by the signed decimal integer 
in the leftmost locations of the B field. The product is stored, right - justified, in 
the B field. 

Format b: The signed decimal integer in the A field is multiplied by the signed decimal integer 
in the leftmost locations of the field specified by the contents of the B-address reg­
ister (BAR). The product is stored, right-justified, in the B field. 

Format c: The signed decimal integer in the field specified by the contents of the A-address 
register (AAR) is multiplied by the signed decimal integer in the leftmost locations 
of the field specified by the contents of BAR. The produ.ct is stored, right-justified, 
in the B field. 

WORD MARKS 

Formats a, b, and c: 

Word marks are required in the high-order locations of both the A and B fields. 
All other B-field locations must not contain word marks. 

8-23 # 2-139 



SECTION VIII. INSTRUCTIONS 

\ 
ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: 'll.T"V".,., A-Na B-Nb ~'I..n.. .L 

Format b: NXT A-Na Bp-Nb 

Format c: NXT Ap-Na Bp-Nb 

NOTES 

1. The A address of a Decimal Multiply instruction specifies the units position 
of the multiplicand. The B address specifies a location which is Na +l lo­
cations to the right of the multiplier, since the B field :must contain the 
multiplier plus enough additional locations (to the right of the multiplier) to 
provide for the development of the product. I Thus, the total nu:mber of 
character locations in the B field :must be one greater than the sum of the 
number of characters in the multiplicand and the multiplier. For example, 
in a multiplication operation involving a 3 -character m.ultiplier and a 5-
character multiplicand, 9 positions (5+3+1) m.ust be provided in the B field. 

2. Algebraic sign control for the multiply operation is shown below. The sign 
of the product is expressed in its normalized form (-=10, +=01). 

+ + 
+ + 

+ + 

3. The product is stored (right-justified) in the entire B field, with the unused 
high-order positions of the B field cleared to zeros. As a result of the 
operation, the multiplier (initially stored in the B field) is destroyed. 
Therefore, if the multiplier is to be used more than once, it should be 
preserved in another storage field. 

4. The zero balance indicator is turned ON if the product of the multiply oper­
ation is equal to zero; otherwise, the indicator is turned OFF by the operation. 

f 
5. This instruction treats both operands as signed decimal data. It will pro-

duce ambiguous results if used to manipulate-non-decimal data. Particularly, 
if the four numeric bits of a character have a binary numeric value of 12 or 
more (octal 14, IS, 16, or 17), the character is treated as if it were a 
zero. The two remaining cases (octal 12 and 13) are unspecified. 

6. This instruction is standard on all processors but the Type 201, on which 
it is not available. 

7. If the A & B operands overlap, then the results are unspecified. 

EXAMPLE 

Multiply the five-character field tagged CAND by the three-character field whose 
rightmost character location is six (5+1) less than the location tagged PROD. 
Store the result, right-justified, in PROD. 

8-24 #2-139 



SECTION VIII. INSTRUCTIONS 

EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD '~l~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

1 2/3 415 6 7 8 1415 2021 6263 80 

I : ~ CAND. PROD i 

D DIVIDE 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

FUNCTION 

Form.at a: The signed decim.al integer who se leftm.ost location is B is divided by the signed deci­
m.al integer in the A field. The quotient is stored in the leftm.ost locations of the B 
field; the rem.ainder is stored in the rightm.ost locations of the B field (see page 8-12) •. 

Form.at b: The signed decim.al integer whose leftm.ost location is specified by the contents of the 
B -address register (BAR) is divided by the signed decim.al integer in the A field. 
The quotient is stored in the leftm.ost locations of the B field; the rem.ainder is stored 
in the rightm.ost locations of the B field (see page 8-1Z). 

Form.at c: The signed decim.al integer whose leftm.ost location is specified by the contents of the 
B -address register (BAR) is divided by the signed decim.al integer in the field speci­
fied by the contents of the A-address register (AAR). The quotient is stored in the 
leftm.ost locations of the B field; the rem.ainder is stored in the rightm.ost locations 
of the B field (see page 8-IZ). 

WORD MARKS 

Form.ats a, b, and c: 

The A operand (the divisor) m.ust contain a word m.ark. The B field m.ay contain 
a word m.ark. 

ADDRESS REGISTERS AFTER OPERATION (WHEN DIVISOR IS NOT EQUAL TO ZERO) 

When the divisor is equal to zero, the contents of the address registers are un­
specified (see note I). 

8-Z5 #Z-139 



SECTION VIII. INSTRUCTIONS 

NOTES 

1. If the divisor is equal to plus or minus zero, the overflow indicator is turned 
ON, division is not performed, and no memory locations are changed. 

2. The length of the B field is determined by adding 1 to the sum of the number 
of character locations in the divisor and the dividend (B -field length = 1 + 
length of divisor + length of dividend). 

3. . The A field (divisor) can be signed or unsigned; if it is unsigned, the divisor 
is assumed to be positive. 

4. The dividend must contain a normalized sign (- = 10, + = 01) in the units 
position. The zone bits of all other characters in the dividend must be zeros. 

\ The proper signing of the dividend is therefore insured if the dividend is 
moved into the B field by a Zero and Add instruction (see page 8-20). 

5. All high-order locations of the B field which are not occupied by the dividend 
must contain zeros when division begins. These zeros can be automatically 
inserted if the Zero and Add instruction is used to move the dividend into 
the B field as mentioned above. 

6. The sig;n of the quotient follows algebraic sign rules as shown below·. The 
sign of the remainder is the original sign of the dividend. 

+ + 
+ + 

+ + 
+ + 

7. This instruction treats both operands as signed decimal data. It will pro­
duce ambiguous results if used to manipulate non-decimal data. Particularly, 
if the four numeric bits of a character have a binary numeric value of 12 . 
or more (octal 14, 15, 16, or 17), the character is treated as if it were a 
zero. The two remaining cases (octal 12 and 13) are unspecified. 

8. This instruction is standard on all processors but the Type 201, on which 
it is not available. 

9. If the A & B operands overlap, then the results are unspecified. 

EXAMPLE 

Divide the four-character integer whose leftmost location is location 1000 by the 
three-character field whose rightmost location is location 500. Store the quotient 
in the leftmost locations of the field at 1000, and store the remainder in the right­
most locations of this field. 

Na (number of characters in divisor) = 3 

Ndd (number of characters in dividend) = 4 

B (B address} = 1000 

Units position of quotient (B-Na +Ndd -2) = 1000-3+4-2 = location 999 

Units position of remainder (B+Ndd-l) = 1000+4-1 = location 1003 

EASYCODER 
CODING FORM 

, PROBLEM ______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

1213415 6 7 8 1415 2021 I 6263 
80 

I 1 10 5¢¢ .. 1,0J6.oJ. 
8-26 #2-139 



-EXTRACT 

-HALF ADD 

- SUBSTITUTE 

-COMPARE 

-BRANCH 

_ BRANCH ON CONDITION TEST 

-BRANCH ON CHARACTER CONDITION 

- BRANCH IF CHARACTER EQUAL 

- BRANCH ON BIT EQUAL 

8-27 #2-139 



FORMAT 

EXTRACT 
(Logical Product) 

OP CODE 

o. -
b. -
c. -

FUNCTION 

SECTION VIII. INSTRUCTIONS 

A ADDRESS B ADDRESS -
ForIllat a: The data in the A field is cOIllbined bit-by-bit with the data in the B field. according 

to the following rules. The result is stored in the B field. 

1 1 

o o 

o 1 o 

o o o 

ForIllat b: The data in the A field is cOIllbined bit-by-bit with the data specified by the con­
tents of the B-address register (BAR). according to the rules stated above. The 
re suit is stored in the B field. 

Format c: The data specified by the contents of the A-address register (AAR) is combined 
bit-by-bit with the data specified by the contents of BAR, according to the rules 
stated above. The re suit is stored in the B field. 

WORD MARKS 

ForIllats a, b, and c: 

A word Illark is required for the shorter of the two operands. The operation 
terIllinates when this word Illark is sensed. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

ForIllat a: NXT A-Nw B-Nw 

ForIllat b: NXT A-Nw B -N P w 

ForIllat c: NXT A -N B -N P w P w 

8-28 #2-139 



EXAMPLE 

SECTION VIII. INSTRUCTIONS 

Remove all zone bits in the field tagged BASE by combining the contents of BASE 
with the contents of the field tagged CON. Each character in CON must have the 
following format: 

Bit position 
Contehts 

BA8421 
001111 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION 

NUMBER ~ ~ CODE 

I 213 415 6 7 8 1415 2021 ~ I 

I : EXT co N, BASE 
r 

1 

HA 

FORMAT 

HALF ADD 
(Exclusive Or) 

OP CODE 

o. -
b, -
c, -

FUNCTION 

A ADDRESS -

OPERANDS 
6263 

B ADDRESS 

Format a: The data in the A field is combined bit-by-bit with the data in the B field, accord­
ing to the following rules. The re sult is stored in the B field. 

1 a 
a 

a 1 

a a a 

Format b: The data in the A field is cOITlbined bit-by-bit with the data specified by the con­
tents of the B-address registe'r (BAR), according to the rules stated above. The 
re sult is stored in the B field. 

Format c: The data specified by the contents of the A-addres s register (AAR) is combined 
bit-by-bit with the data specified by the contents of BAR, according to the rules 
stated above. The result is stored in the B field. 

80 

#2-139 



SECTION VIII. INSTRUCTIONS 

WORD MARKS 

ForInats a, b, and c: 

J,A". word :marl~ is required for the The 
terminates when this word mark is sensed. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

ForInat a: NXT A-Nw B-Nw 

Format b: NXT A-N B -N 
w p w 

ForInat c: NXT A -N 
P w 

B -N 
P w 

EXAMPLE 

Clear all the numeric bits in the field tagged SEVEN to zero s by combining the con­
tents of SEVEN with the contents of the field tagged TOO. Do not change the zone 
bits in SEVEN. (The contents of each character in TOO are OOxxxx, where x 
equals the corresponding bit in SEVEN. ) 

EASYCODER 
COOING FORM 

o RAMMER PROBLEM PR G DATE PAGE OF 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

1 213 415 6 7 8 1415 2021 1 1 6263 80 

I I HA TOO .S,EVEN 

SST I SUBSTITUTE I 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. - - -
b. -
c. - -
d. _ 

FUNCTION 

Format a: The single character specified by the A address is compared bit-by-bit with the 
variant character and is moved to the location specified by the B address, accord­
ing to the following rule s: 

8-30 #2-139 



SECTION VIII. INSTRUCTIONS 

1. The A-character bit is transferred to the B address if the corresponding 
variant bit:;: 1. 

2. The B -character bit is preserved if the corre sponding variant bit = O. 

Format b: The sIngle character specified by the A address is compared bit-by-bit with the 
variant character specified in a previous instruction and is moved to the lo­
cation specified by the B address, according to the rules stated above. 

Format c: The single character specified by the A address is compared bit-by-bit with the 
variant character specified in a previous instruction and is moved to the location 
specified by the contents of the B-address register (BAR), according to the rules 
stated above .. 

Format d: The single character specified by the contents of the A-address register (AAR) 
is compared bit-by-bit with the variant character specified in a previous instruc­
tion and is moved to the location specified by the contents of BAR, according to 
the rule s stated above. 

WORD MARKS 

Formats a, b, c, and d: 

Word marks are not required in either field. 

ADDRESS REGISTERS AFTER OPERATION 

Format a: 

Format b: 

Format c: 

Format d: 

NOTE 

SR AAR BAR 

NXT A-I B-1 

NXT A-I B-1 

NXT A-I B -1 
P 

NXT A -1 
P 

B -1 
P 

This instruction can be coded only in formats a. and d. when programming for 
the Type 201 or 201-1 processor. 

EXAMPLES 

1. Move the zone bits from the location tagged STET to the location tagged 
STET +20. A variant character of octal 60 provides the required variant 
bit configuration (i. e., 110 000). 

EASYCODER 
CODING FORM 

PROBLEM ___________________ _ PROGRAMMER ______ DATE _____ PAGE _OF_ 

CARD I~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

1 213 415 6 7 8 1415 2021 , 6263 80 

I I ~ST STET,STET+2¢,6¢ 

8-31 #2-139 



SECTION VIII. INSTRUCTIONS 

2. Move the numeric portion of the character at location 256 to location 656. 
A variant of octal I 7 provides the required variant bit configuration 
(i.e., 001 Ill). 

EASYCODER 
COOING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

1213415 6 7 8 1415 2021 6263 80 

I i I~ST 256.656.17 

c I COMPARE I 
FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
C. -

FUNCTION 

Format a: The data in the B field is compared bit-by-bit with the data in the A field. The com­
parison turns on indicators that can be interrogated by subsequent Branch instruc­
tions. The indicators are reset by the next Compare instruction. 

Format b: The data specified by the contents of the B-address register (BAR) is compared 
bit-by-bit with the data in the A field. This operation turns on indicators which 
can be tested by subsequent Branch instructions. The indicators are reset by the 
next Compare instruction. 

Format c: The data specified by the contents of BAR is compared bit-by-bit with the data in 
the field specified by th.e contents of the A-address register (AAR). The com­
parison turns on indicators that can be interrogated by subsequent Branch instruc­
tions. The indicators are reset by the next Compare instruction. 

WORD MARKS 

Formats a, b, and c: 

The word mark associated with the B operand terminates the operation. The A 
operand must have a word mark only if it is shorter than the B operand. In this 
case, transmission of data from the A field stops after the A-operand word mark 
is sensed, and the remaining characters of the B operand are compared with zeros. 
If the A operand is longer than the B operand, the characters of the A operand that 
exceed the field length defined by the B-operand word mark are not processed. 

8-32 #2-139 



SECTION VIII. INSTRUCTIONS 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Nw B-Nb 

Format b: NXT A-N B -N 
w p b 

Format c: NXT A -N p w Bp-Nb 

NOTES 

1. All characters that can appear in storage can be compared. The ascending 
order of characters is listed in Appendix B. 

2. Both fields must have exactly the same bit configurations to be equal. For 
example, plus zero is not equal to minus zero. 

3. Comparison results and associated branch conditions are listed below. 

EXAMPLE 

B<A 

B=A 

B~A 

B>A 

BfoA 

B~A 

Low C ompar e 

Equal Compare 

Low or Equal Compare 

High Compare 

Unequal Compare 

High 'or Equal Compare 

Compare item number with 4000. If item number equals 4000, continue the program 
in sequence; otherwise, branch to location NITEM. 

Description 

Item Number 

4000 

Tag 

ITEM 

CON4 

EASYCODER 
CODING FORM 

PROBLEM ____________________ _ PROGRAMMER ______ DATE _____ PAGE _OF_ 

CARD ~ ~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

I 213 415 6 7 8 1415 2021 I I ~L I 6263 eo 

I : C CON4. ITEM 
I 

1 BCT N I TEM)45 I I 

8-33 #2-139 



SECTION VIII. INSTRUCTIONS 

B I BRANCH I 
FORlv1..AT 

OP CODE A ADDRESS B ADDRESS VARIANT - -
FUNCTION 

The Branch instruction causes the program to branc.h to the location specified 
by the A address and to store the contents of the sequence register (SR) in the B­
address register (BAR). It is used to interrupt normal program sequence and 
to continue the program at any desired point, without testing for specific con­
ditions. Thus, this instruction is frequently referred to as an "unconditional 
branch." 

WORD MARKS 

Word marks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

NOTES 

SR AAR BAR 

JI (A) A NXT 

1. The A address is placed in AAR during the extraction of this instruction, 
preserving any active high-order bits in AAR. When the instruction is 
executed, the entire contents of AAR specify the address to which the 
prograITl branches. Also, the entire contents of SR are stored in BAR 
during the execution phas e. 

2. The contents of the variant register are unspecified following the execution 
of this instruction. Therefore an instruction requiring a variant character 
ITlust not be chained following a Branch instruction. 

EXAMPLE 

Select the next instruction from the location tagged SUB6. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~~ LOCATION 
OPERATION OPERANDS NUMBER t ~ CODE 

1 213 415 6 7 8 1415 2021 I I 6263 eo 

I : 15 SU86 
I 

I 

I I 
I I 1 

I ! 
I I 
: 1 
1 1 

8-34 #2-139 



SEC TION VIII. INSTR UC TIONS 

I Bel I BRANCH ON CONDITION TEST I 
FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. - - -
b. -

FUNCTION 

Format a: The variant .character specifies a condition indicator or a SENSE switch to be 
tested. If the condition being tested is present, the program branches to the lo­
cation specified by the A address and the contents of the sequence register (SR) 
are stored in the B -address register (BAR). If the condition specified by the 
variant character is not present, the program continues in sequence. Tables 8-8 
and 8-9 list the valid variant characters and the conditions they test~ 

Format b: If the condition specified by the previous variant character is present, the pro­
gram branches to the location specified by the contents of the A-address register 
(AAR) and the contents of SR are stored in BAR. If the condition being tested is 
not present, the program continues in sequence. Tables 8-8 and 8-9 list the valid 
variant characters and the conditions they test. 

WORD MARKS 

Formats a and b: 

Word marks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: JI (A) A NXT BRANCH 
NXT A Bp NO BRANCH 

Format b: JI (Ap) A NXT BRANCH 
NXT AP 

Bp NO BRANCH 
P 

NOTES 

1. If the overflow indicator is tested and an overflow condition exists, the 
indicator is automatically reset as a result of being tested. In all other 
cases, the indicator tested is not reset as a result of the test. 

2. The com.parison indicators are: 

a. set by the Compare instruction; 

b. set by the Table Lookup instruction; 

c. stored (and cleared) by the Store Variant and Indicators instruction; 

8-35 :/1:2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-8. SENSE Switch Test Conditions for BCT Instruction 

00 

01 

02 

03 

04 

05 

06 

07 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 

37 

Unconditional 

SENSE Switch 1 On 

SENSE Switch 2 On 

SENSE Switches 1 and 2 On 

SENSE Switch 3 On 

SENSE Switche s 1 and 3 On 

SENSE Switche s ·2 and 3 On 

SENSE Switches I, 2, and 3 On 

SENSE Switch 4 On 

SENSE Switches 1 and 4 On 

SENSE Switche s 2 and 4 On 

SENSE Switches I, 2, and 4 On 

SENSE Switche s 3 and 4 On 

SENSE Switches I, 3, and 4 On 

SENSE Switches 2, 3, and 4 On 

SENSE Switche s I, 2, 3, and 4 On 

Unconditional 

SENSE Switch 5 On 

SENSE Switch 6 On 

SENSE Switche s 5 and 6 On 

SENSE Switch 7 On 

SENSE Switches 5 and 7 On 

SENSE Switche s 6 and 7 On 

SENSE Switches 5, 6, and 7 On 

SENSE Switch 8 On 

SENSE Switche s 5 and 8 On 

SENSE Switches 6 and 8 On 

SENSE Switches 5, 6, and 8 On 

SENSE Switche s 7 and 8 On 

SENSE Switches 5, 7, and 8 On 

SENSE Switche s 6, 7, and 8 On 

SENSE Switche s 5, 6, 7, and 8 On 

NOTE: When testing for a multiple SENSE switch condition, a branch occurs only 
if all of the specified conditions are met. 

8-36 #2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-9. Indicator Test Conditions for BCT Instruction 

40 Do not branch 

41 B < A (Low Compare) 

42 B =A (Equal Compare) 

43 B~ A (Low or Equal Compare) 

44 B >A (High Compare) 

45 BfA (Unequal Compare) 

46 B~ A (High or Equal Compare) 

47 Unconditional 

50 Overflow 

51 Overflow or B< A 

52 Overflow or B=A 

53 Overflow or B~ A 

54 Overflow or B>A 

55 Overflow ~ BfA 

56 Overflow or B~ A 

57 U nc onditi orial 

60 Zero Balance 

61 Zero Balance or B<A 

62 Zero Balance or B=A 

63 Zero Balance or B~ A 

64 Zero Balance or B>A 

65 Zero Balance or BfA 

66 Zero Balance or B~ A 

67 Unconditional 

70 Overflow or Zero Balance 

71 Overflow or Zero Balance or B< A 

72 Overflow or Zero Balance or B=A 

73 Overflow or Zero Balance or B~A 

74 Overflow or Zero Balance or B >A 

75 Overflow or Zero Balance or BfA 

76 Overflow or Zero Balance or B~A 

77 Unconditional 

NOTE: When testing for a multiple indicator condition, a branch occurs if any ~ 
of the specified conditions is met. 

8-37 #2-139 



SECTION VIII. INSTRUCTIONS 

d. restored by the Restore Variant and Indicators instruction; 

e. restored by the Resume Normal Mode instruction if coming 
out of the external interrupt mode (but not out of internal 
interrupt Ii1.ode); 

f. stored when an external interrupt occurs. 

3. The A addres s (if any) is placed in AAR during the extraction of thi s instruc­
tion' preserving any active high-order bits in AAR. If the instruction causes 
a branch (i. e., if the condition being tested is present), the entire contents 
of AAR specify the address to which the program branches when the instruc­
tion is executed. Also, the entire contents of SR are stored in BAR during 
the execution phase of the instruction. 

4. Consider the variant character in its six-bit form V 6 V5V 4 V 3 V 2 VI. The 
following chart may be used to determine the variant character to be used 

in a BCT instruction. 

00 = Test SENSE 
Switches 1 
through 4 

01 = Test SENSE 
Switches 5 
through 8 

1 = Test 
Zero 
Balance, 
Overflow, 
or Compare 

Zero 
Balance 

SENSE 
Switch 4 

SENSE 
Switch 8 

Overflow 

SENSE 
Switch 3 

SENSE 
Switch 7 

High 
Compare 

SENSE 
Switch 2 

SENSE 
Switch 6 

Equal 
Compare 

SENSE 
Switch 1 

SENSE 
Switch 5 

Low 
Compare 

5. SENSE switche s 5 through 8 are included as a standard feature with the Type 
2201 and 4201 processors and are not available with the Model 200, 1200, or 

1250 processors. 

6. This instruction can be coded only in format a. when programming for the 
Type 201 or 201-1 processor. 

EXAMPLE 

Subtract CREDIT from TOTAL and test for a zero balance. If this condition exists 
branch to BZRO; otherwise continue the program in sequence. 

EASYCODER 
CODING FORM 

PROBLEM ____________________ _ PROGRAMMER ______ DATE _____ PAGE _OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 2\3 415 6 7 8 1415 2021 6263 80 

1 : S ~REDIT.TOT.AL 
I 

I BCT BZRO~q¢ 
1 I· 
1 1 

: : .1 

I 1 

8-38 #2-139 



SECTION VIII. INSTRUCTIONS 

BRANCH ON CHARACTER 
CONDITION 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. - - -
b. -
c. - -
d. -

FUNCTION 

ForITlat a: The single character specified by the B address is exaITlined for the condition 
specified by the variant character. If the condition is present. the prograITl branches 
to the location specified by the A address, and the contents of the sequence reg-
i ster (SR) are stored in the B -addre s s register (BAR). If the condition is not 
present, the prograITl continues in sequence. The valid variant characters and the 
condition each represents are listed in Tables 8-10 and 8-1I. 

ForITlat b: The single character specified by the B address is exaITlined for the condition 
specified by the variant character of a previous instruction. If the condition is 
present, the prograITl branches to the location specified by the A address, and the 
contents of SR are stored in BAR. If the condition is not present, the prograITl 
continues in sequence. The valid variant characters and the condition each rep­

resents are listed in Tables 8-10 and 8-1I. 

ForITlat c: The single character specified by the contents of BAR is exaITlined for a condition 
specified by the variant character of a previous instruction. If the condition is 
present, the prograITl branches to the location specified by the A address, ,and the 
contents of SR are stored in BAR. If the condition is not present, the prograITl 
continues in sequence. The valid variant characters and the condition each re­
presents are listed in Tables 8-10 and 8-11. 

ForITlat d: The single character specified by the contents of BAR is exaITlined for a condition 
specified by the variant character of a previous instruction. If the condition is 
present, the prograITl branches to the location specified by the contents of the A­
address register (AAR), and the contents of SR are stored in BAR. If the condition 
is not present, the prograITl continues in sequence. The valid variant characters 
and the condition each represents are listed in Tables 8-10 and 8-11. Series 200 
processors which are equipped with the advanced prograITlITling instructions (see 
Table 1-11, page 1-18) can interpret any bit configuration of the variant charac­
ter, ranging froITl octal 00 to octal 77:--The valid variant characters which can 
be interpreted with this option are shown in Table 8-11 and expanded in Appendix B. 

8'-39 #2-139 



WORD MARKS 

SECTION VIII. INSTRUCTIONS 

Table 8-10. Basic Test Conditions for BCC Instruction 

00 Unconditional 

02 The B bit of the character at B is 1. 

06 The character at B contains a negative sign (the 
B and A bits are 10). 

10 The character at B contains either a word mark 
or a record mark (the word-mark bit is 1). 

12 The B bit is I and the word-mark bit is 1. 

16 The characte r at B contains a negative sign and 
the word-mark bit is 1. 

20 The character at B contains either an item mark 
or a record mark (the item-mark bit is 1). 

22 The B bit is I and the item-mark bit is 1. 

26 The character at B contains a negative sign and 
the item-mark bit is 1. --

30 The character at B contains a recQ\rd mark (the 
word-mark and item-mark bits are 11). 

32 The character at B contains a record mark and 
the B bit is 1. 

36 The ch~racter at B contains a record mark and a 
negative sign. 

Formats a, b, c, and d: 

Word marks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: JI (A) A NXT BRANCH 
NXT A B-1 NO BRANCH 

Format b: JI (A) A NXT BRANCH 
NXT A B-1 NO BRANCH 

Format c: JI (A) A NXT BRANCH 
NXT A Bp-l NO BRANCH 

Format d: JI (Ap) Ap NXT BRANCH 
NXT Ap B -1 NO BRANCH 

P 

8-40 #2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-11. BCC Te st Conditions with Advanced Programming Instructions 

XO No condition. 

Xl The A bit of the character at B is 1. 

XZ The B bit of the character at B is 1. 

X3 The B and A bits of the character at Bare 11. 

X4 The B and A bits of the character at Bare 00. 

X5 The character at B contains a positive sign (the 
B and A bits are 01). 

X6 The character at B contains a negative sign (the 
B and A bits are 10). 

X7 The B and A bits of the character at Bare 11 
(same as X3 above). 

OX 

IX 

2X 

3X 

4X 

5X 

6X 

7X 

No condition. 

The word-mark bit of the character at B is 1 
(either a word mark or a record mark is present). 

The item-mark bit of the character at B is 1 
(either an item mark or a record mark is present). 

The character at B contains a record mark. 

The character at B contains no punctuation mark. 

The character at B contains a word mark only, not 
an item mark. 

The character at B contains an item mark only, not 
a word mark. 

This is a special case; see note 2. 

NOTES'! 1. An X repre sents any octal digit. If both octal digits specify "no 
condition" (i. e., 00), the branch occurs unconditionally. If only 
one digit is 0, the branch occurs if the condition specified by the 
other digit is met. If both octal digits specify conditions, the branch 
occurs ifboth conditions are met. The variant character 7X is an 
exception to these rules, as described in note 2. 

2. The Type 201 and 201-1 processors interpret a 7X variant as if it 
were a 3X (i. e. , branch to the A addre s s if the character at B 
contains a record mark and the condition specified by X is met). 

All other processors interpret the 7X variant as follows: 

a. If X is 0, the branch is an unconditional branch. 

b. If X is any digit other than 0, the branch occurs if 
either the condition specified by the rightmost digit is 
met or the character at B contains a word mark. 

8-41 #2-139 



SECTION VIII. INSTRUCTIONS 

NOTES 

1. If the octal configuration of the variant character is 00 or 70, the branch 
is unconditional. 

2. The A address (if any) is placed in AAR during the extraction of the BCC 
instruction, preserving any active high-order bits in AAR. If the instruc­
tion causes a branch (i. e., if the condition being tested is present), the 
entire contents of AAR specify the address to which the program branche s 
when the instruction is executed. Also, the entire contents of SR are 
placed in BAR during the execution phase. 

3. This instruction can be coded only in formats a. and d. when programming 
for the Type 201 or 201-1 processor. 

EXAMPLE 

If the location tagged END contains a negative sign, branch to the location tagged 
NFIELD. Otherwise, continue the program in sequence. 

EASYCODER 
CODING FORM 

PROBLEM ______ ----'-_________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~ ~. LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

1 213 415 6 7 8 1415 2021 

I : BCe NFl ELD",END~,~6 

BRANCH IF 
CHARACTER EQUAL 

FORMAT' 

OP CODE 

o. -
b, -
c, -
d. -

FUNCTION 

I FEATURES 010 & 011 

A ADDRESS B ADDRESS -
-

6263 80 

VARIANT -

Format a: The single character specified by the B address is compared to the variant charac­
ter. If the bit configurations of the two characters are equal, the program branches 
to the location specified by the A address, and the contents of the sequence register 
(SR) are stored in tbe B-address register (BAR). If the bit configurations are 
unequal, the program continues in sequence. 

Format b: The single character specified by the B address is compared to the variant charac­
ter specified in a previous instruction. If the bit configurations of the two charac­
ters are equal, the program branches to the location specified by the A addres Sj 

8-42 #2-139 



SECTION VIII. INSTRUCTIONS 

and the contents of SR are stored in BAR. If the bit configurations are unequal, 
the program continues in sequence. 

Format c: The single characte r specified by the contents of BAR is compared to the variant 
character specified in a previous instruction. If the bit configurations of the two 
characters are equal, the program branches to the location specified by the A ad­
dress, and the contents of SR are stored in BAR. If the bit configurations are 
unequal, the program continues in sequence. 

Format d: The single character specified by the contents of BAR is compared to the variant 
character specified in a previous instruction. If the bit configurations of the two 
characters are equal, the program branches to the location specified by the con­
tents of the A-address register (AAR), and the contents of SR are stored in BAR. 
If the bit configurations are unequal, the program continues in sequence. 

WORD MARKS 

Formats a, b, c, and d: 

A word mark in the location tested has no effec~ on the instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: JI (A) A NXT BRANCH 
NXT A B-1 NO BRANCH 

Format b: JI (A) A NXT BRANCH 
NXT A B-1 NO BRANCH 

Format c: JI (A) A NXT BRANCH 
NXT A B -1 

P 
NO BRANCH 

Format d: JI (Ap) Ap NXT BRANCH 
NXT Ap Bp-I NO BRANCH 

NOTES 

1. This instruction can be coded only in formats a. and d. when programming 
for the Type 201 or 201-1 processor. 

2. The A address (if any) is placed in AAR during the extraction of the BCE 
instruction, preserving any active high-order bits in AAR. If the instruc­
tion causes a branch (i. e., if the condition being tested is present), the 
entire contents of AAR specify the address to which the program branches 
when the instruction is executed. Also, the entire contents of SR are 
placed in BAR during the execution phase. 

3. When the central processor is in the "S" mode, execution of the BCE instruc­
tion sets the comparison indicators to show whether B>V, B=V, or B<V. 

EXAMPLES 

1. Determine if the character stored in the location tagged LABEL+3 is equal 
to 6. If so, branch to the location tagged P6; otherwise continue the pro­
gram in sequence. 

8-43 #2-139 



SECTION'VIII. INSTRUCTIONS 

EASYCODER 
CODING FORM 

PROBLEM ______________________ PROGRAMMER ______ OATE _____ PAGE _OF_ 

Ii CARD !~!~!. ""AT'''.' I OPERATION I 
NUMBER I~I~I ......... ,'".. i CODE i OPERANDS 

6263 

II I 1 III IseE IP6 .. LA&EL+3,,, 6 

2. Determine if any character position in the seven-character field tagged 
PAR T contains the letter Q. If so, branch to the location tagged RETRO; 
otherwise continue the program in sequence. 

EASYCODER 
CODING FORM 

80 

PROBLEM ______________________ PROGRAMMER ______ OATE _____ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 2T3 415 6 7 8 1415 2021 6263 

I I IBeE ~6TRO" PART,,, Q 

~ I I&CE 
1 i IBeE. 
I I ISCE 
r 1 BeE 
I I IseE 
I 'I IseE 

I BBE I BRANCH ON BIT EQUAL I IFEATURE 010 I 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. - - -
b, -
c. - -
d. -

FUNCTION 

Format a: The single character specified by the B address is combined bit-by-bit with the 
variant character, according to the rules shown below. If the result (the logical 
product) is not equal to zero, the program branches to the location specified by 
the A address, and the contents of the sequence register (SR) are stored in the B­
address register (BAR). If the result is equal to zero, the program continues in 
sequence. 

80 

8-44 #2-139 



SECTION VIII. INSTRUCTIONS 

1 1 

o o 

o 1 o 
o o o 

Format b: The single character specified by the B address is combined bit-by-bit with the 
variant character specified in a previous instruction, according to the rules shown 
above. If the result is not equal to zero, the program branches to the location 
specified by the A address, and the contents of SR are stored in BAR. If the result 
is equal to zero, the program continues in sequence. 

Format c: The single character specified by the contents of BAR is combined bit-by-bit with 
the variant character specified in a previous instruction, according to the rules 
shown above. If the result is not equal to zero, the program branches to the lo­
cation specified by the A address, and the contents of SR are stored in BAR. If 
the result is equal to zero, the program continues in sequence. 

Format d: The single character specified by the contents of BAR is dpmbined bit-by-bit with 
the variant character specified in a previous instruction, according to the rules 
shown above. If the result is not equal to zero, the program branches to the lo­
cation specified by the contents of the A-address register (AAR), and the contents 
of SR are stored in BAR. If the result is equal to zero, the program continues in 
sequence. 

WORD MARKS 

Formats a, b, c, and d: 

Word marks are not tested by this instruction and have no effect on the operation. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: JI (A) A NXT BRANCH 
NXT A B-1 NO BRANCH 

Format b: JI (A) A NXT BRANCH 
NXT A B-1 NO BRANCH 

Format c: JI (A) A NXT BRANCH 
NXT A Bp-l NO BRANCH 

Format d: JI (Ap) Ap NXT BRANCH 
NXT Ap Bp-l NO BRANCH 

8-45 #2-139 



SECTION VIII. INSTRUCTIONS 

NOTES 

1. The logical product formed by this instruction is tested but is not stored. 
:tvfain rtlelYlory locations are not disturbed by this operation. 

2. The A address (if present) is placed in AAR during the extraction of the 
instruction, preserving any active high-order bits in AAR. If the instruc­
tion causes a branch (i. e., if the logical product does not equal zero), 
the entire contents of AAR specify the address to which the program branches 
when the instruction is executed. Also, the entire contents of SR are placed 
in BAR during the execution phase. 

3. Since this instruction results in a branch if any bit product is not equal to 
zero, only one bit at a time should be tested. Other bits can be checked 
by branching to additional BBE instructions. 

EXAMPLE 

Branch to the location tagged BITS only if the character at the location tagged 
MAR contains a 1 in both the B and the 8 bit positions. Otherwise, continue 
in sequence. This example requires two BBE instructions to test the two 
bits in question; location BIT8 is reached only if both tests are met. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE _OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER f ~ CODE 

I 2T3 415 6 7 8 1415 2021 6263 80 

I T [BSE BI TB._.MAR_.4..fb 
I 

I .< '( 

I I .S S 
I I SITB ISSE B I T8._,MAR .... 1,OS. 
: 1 ( .( <.. 

, 

I I (. ~~ $ 
1 1 BITS - - - - - - - -
i T 
I I 

8-46 #2-139 



• SET WORD MARK 

• SET ITEM MARK 

• CLEAR WORD MARK 

• CLEAR ITEM MARK 

• HALT 

• NO OPERATION 

• MOVE CHARACTERS TO WORD MARK 

• LOAD CHARACTERS TO A-FIELD WORD MARK 

• STORE CONTROL REGISTERS 

• LOAD CONTROL REGISTERS 

• CHA 1\.TSE ADDRESSING MODE 

• CHANGE SEQUENCING MODE 

• EXTENDED MOVE 

• MOVE AND TRANSLATE 

• MOVE ITEM AND TRANSLATE 

• LOAD INDEX/BARRICADE INDICATOR 

• STORE INDEX/BARRICADE INDICATOR 

• TABLE LOOKUP 

• MOVE OR SCAN 

8-47 #2-139 



SECTION VIII. INSTRUCTIONS 

I sw I SET WORD MARK I 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

FUNCTION 

Form.at a: A word m.ark is set at the location specified by each address. The data and item.­
mark bits at each location are undisturbed. 

Form.at b: A word m.ark is set at the location specified by the A address. The data and item.­
mark bits at this location are undisturbed. 

Form.at c: Word m.arks are set at the locations specified by the contents of the A- and B-ad­
dress registers (AAR and BAR). The data and item.-m.ark bits at each location 
are undisturbed. 

WORD MARKS 

Form.ats a, b, and c: 

Word m.arks are set as described above. 

ADDRESS REGISTERS AFTER OPERATION 

Form.at a: 

Form.at b: 

Form.at c: 

NOTE 

SR AAR BAR 

NXT A-I B-1 

NXT A-I A-I 

NXT A -1 p B -1 p 

The extraction of this instruction when coded in form.at a. autom.atically term.inates 
when the last character of the B address is loaded into BAR. Therefore, a word 
mark is not required in the location following the B address. 

8-48 #2-139 



SECTION VIII. INSTRUCTIONS 

EXAMPLE 

Set a word mark in location 435. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD II! LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 2-'3415 6 7 8 1415 2021 I i 6263 

I i SW i4'!15 
I 

I 

I S I SET ITEM MARK I 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

FUNCTION 

Format a: An item mark is set at the location specified by each address. The data and 
word-mark bits at each location are undisturbed. 

80 

Format b: An item mark is set at the location specified by the A address. The data and word­
mark bits at this location are undisturbed. 

Format c: Item marks are set at the locations specified by the contents of the A- and B -ad­
dress registers (AAR and BAR). The data and word-mark bits at each location 
are undi sturbed. 

WORD MARKS 

Formats a, b, and c: 

Word marks are not affected by thi s instruction. 

8-49 #2-139 



SECTION VIII. INSTRUCTIONS 

ADDRESS REGISTERS AFTER OPERATION 

ForIllat a: 

ForIllat b: 

ForIllat c: 

NOTE 

EXAMPLE 

PROBLEM 

SR AAR BAR 

NXT A-I B-1 

NXT A-I A-I 

NXT Ap-l Bp-l 

The extraction of this instruction when coded in format a. automatically terminates 
when the last character of the B addres s is loaded into BAR. Therefore, a word 
mark is not required in the location following the B address. 

Set item marks in the locations tagged ENT and ENT+80 

EASYCODER 
CODING FORM 

. ___________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

,. CARD ~~ OPERATION OPERANDS NUMBER t ~ LOCATION CODE 

1 213 415 6 7 8 1415 2021 6263 80 

I : Sl EN1 ENT +80, 

cw I CLEAR WORD MARK I 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

8-50 #2-139 



SECTION VIII. INSTRUCTIONS 

FUNCTION 

ForlTIat a: The locations specified by the A and B addres ses are cleared of word lTIarks. The 
data and itelTI-lTIark bits at these locations are undisturbed. 

ForlTIat b: The word mark at the location specified by the A address is cleared. The data and 
item-mark bits at this location are undisturbed. 

ForlTIat c: Word marks are cleared at the locations specified by the contents of the A- and 
B-address registers (AAR and BAR). The data and item-mark bits at these lo­
cations are undisturbed. 

WORD MARKS 

ForlTIats a, b, and c: 

Word marks are cleared as defined above. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-I B-1 ' 

ForlTIat b: NXT A-I A-I 

ForlTIat c: NXT A -1 B -1 
P P 

EXAMPLE 

Clear the word marks at locations 400 and 435. 

EASYCODER 
CODING FORM 

PROBLEM _---: _____________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ll~ LOCATION 
OPERATION OPERANDS NUMBER CODE 

1 213 415 6.7 8 1415 2021 1 6263 80 

I : C~ 14~0 A35 
I ,':. 

I 

I C I I CLEAR ITEM MARK I 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

8-51 #2-139 



SECTION VIII. INSTRUCTIONS 

FUNCTION 

Format a: Item marks are cleared from the locations specified in the A and B addresses. 
The data and word~rnark bits at th'ese locations are undisturbed. 

Format b: The item mark at the location specified by the A address is cleared. The data 
and word-mark bits at this location are undisturbed. 

Format c: Item marks are cleared at the locations specified by the contents of the A- and 
B -address registers ,AAR and BAR). The data and word-mark bits at these lo­
cations are undisturbed. 

WORD MARKS 

Formats a, b, and c: 

Word marks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-I B-1 

Format b: NXT A-I A-I 

Format c: NXT A -1 B -1 
P P 

EXAMPLE 

Clear the item mark in location REC. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD Il~ LOCATION 
OPERATION OPERANDS NUMBER eOOE 

I 213 415 6 7 8 1415 2021 I I 6263 80 

I : C,I REC 
I 

IH I HALT I 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT I 

o. -
b. -
c. - - -
d. - - -

8-52 #2-139 



SECTION VIII. INSTRUCTIONS r 

FUNCTION 

Format a: This instruction causes the machine to stop. Pressing the RUN button causes the 
program to resume with the next instruction in sequence. 

Format b: The contents of the sequence register (SR) are stored in the B-address register 
(BAR); the A address of the instruction is transferred to SR; then the machine 
stops. Pressing the RUN button causes the program to resume with the instruc­
tion specified iIi the A address. This format is usually referred to as a "halt 
and branch" instruction. 

Format c: This instruction causes the m.achine to stop. Pressing the RUN button causes the 
program to resume with the next instruction in sequence. The address portions 
can be used to indicate control information such as a halt identification number 
(see note 2). 

Format d: This instruction causes the m.achine to stop. Pressing the RUN button causes the 
program to resume with the next instruction in sequence. The address portions 
and the variant character can be used to indicate control fnformation such as halt 
identification number (see note 2). 

WORD MARKS 

Formats a, b, c, and d: 

Word marks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT Ap B 
P 

Format b: JI (A) A NXT 

Format c: . NXT A B 

Format d: NXT A B 

NOTES 

1. If a Halt instruction (in any format) is executed during a peripheral 
transfer, the transfer continues until it is completed. 

2. Formats c. and d. are useful when a program contains a number of 
halts. By assigning a number or symbol in the A and B addresses to 
each halt, the programmer can later identify a particular halt by dis­
playing the contents of AAR and/ or BAR. Although the contents of the 
variant register cannot be displayed through the console or control 
panel, format d. can be used to store a variant character which can sub­
sequently be used by the program. 

3. The Halt op code is a "privileged" op code that has special significance 
when the Type 1201, 1251, 2201, or 4201 central processor is equipped 
with the Storage Protect Feature (see Appendix E). 

4. This instruction can be coded only in formats a., b., and c. when pro­
gramming ,for the Type 201 or 201-1 processor. 

8-53 #2-139 



SECTION VIII. INSTRUCTIONS 

EXAMPLES 

I. Stop thernachine and specify that when the RUN button is pressed, the 
next in struction will be selected from the location tagged RES. 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 213 415 6 7 8 1415 2021 I I 

I : H RES 

2. Identify the halt at the end of a job as follows: 

A address =9 
B address =9 

EASYCODER 
CODING FORM 

6263 80 

PROBLEM ________________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD ~~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 213 415 6 7 8 1415 2021 _1 I I 6263 

I : ~ 9 .• ~ 

iNopl NO OPERA TION I 

FORMAT 

OP CODE A ADDRESS B ADDRESS -FUNCTION 

This instruction performs no operation. This op code can be substituted for the 
op code of any instruct jon to make that instruction ineffective. 

WORD MARKS 

Program operation resumes at the next op code identified by a word mark. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

NXT 

NOTES 

I. This instruction is commonly used in program modification to cause the 
machine to skip over specific instructions. 

80 

8-54 #2-139 



SECTION VIn. INSTRUCTIONS 

2. Information appearing in an address portion of an instruction for which 

EXAMPLE 

the NOP instruction is substituted is not loaded into the associated operand 
address register. The final character of such information, however, is 
loaded into the variant register. 

Reserve the necessary storage locations for an instruction such as Branch 
(BfA) and substitute the op code NOP in this instruction. When the op code 
B is restored, the NOP instruction will be modified to branch to location SWX. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ OATE _____ PAGE_OF_ 

CARD l~ LOCATION 
OPERATION 

NUMBER ~ ~ CODE 

1 213 415 6 7 8 1415 2021 

I : ,NOP SWX 

[Mew IMOVE CHARACTERS TO [ 
_ _ WORD MARK . 

FORMAT 

OP CODE A ADDRESS 

o. - -
b. -
c. -

FUNCTION 

OPERANDS 
1 6263 

B ADDRESS 

Format a: The data and item-mark bits in the A field are moved to the B field. 

Format b: The data and item-mark bits in the A field are moved to the field specified by the 
contents of the B-address register (BAR). 

80 

Format c: The data and item-mark bits in the field specified by the contents of the A-address 
register (AAR) are moved to the field specified by the contents of BAR. 

WORD MARKS 

Formats a, b, and c: 

A word mark (or record mark) is required in the shorter of the two fields. The 
operation terminate s when this mark is sensed. 

8-55 #2-139 



SECTION VIII. INSTRUCTIONS 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Nw B-Nw 

Format b: NXT A-Nw Bp-Nw 

Format c: NXT Ap-Nw Bp-Nw 

NOTE 

Item marks initially stored in B-field locations will be cleared if the corresponding 
A-field character s do not include item marks. 

EXAMPLE 

Move the following A fields and store them in sequential Bfields as shown. 

Description A field 

Unit Number 150-155 

Rack Number 160-168 

Part Number 173-180 

Pin Number 185-187 

EASYCODER 
CODING FORM 

PROBLEM ____________________ _ PROGRAMMER 

CARD 
NUMBER 

1 213 415 

I : 
1 

I 

J l 
I I 
i I 

~~ LOCATION 
OPERATION 

~ ~ CODE 

6 7 8 1415 2021 

rJ.CW 187 ... 825 
Mew f3.¢." 
Mew \6~ 
MeW \55 

LOAD CHARACTERS TO 
A-FIELD WORD MARK 

I 

FORMAT 

OP CODE A ADDRESS 

o. - -
b. -
c. -

OPERANDS 
I 

B ADDRESS 

8-56 

B field 

800-805 

806-814 

815-822 

823-825 

DATE _____ PAGE_OF_ 

6263 80 

#2-139 



SECTION VIn. INSTRUCTIONS 

FUNCTION 

Format a: The data and punctuation bits in the A field are transferred to the B field. 

Format b: The data and punctuation bits in the A field are transferred to the field specified by 
the contents of the B-address register (BAR). 

Format c: The data and punctuation bits in the field specified by the contents of the A-address 
register (AAR) are transferred to the field specified by the contents of BAR. 

WORn MARKS 

Formats a, b, and c: 

The A operand must have a defining word mark (or record m.ark). The operation 
term.inates when this m.ark is transferred to the B field. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Na B-Na 

Format b: NXT A-Na Bp-Na 

Format c: NXT Ap-Na Bp-Na 

NOTES 

1. This instruction (in any format) is the only instruction that always moves 
both a field and its defining punctuation mark. 

2. All punctuation (word marks, item marks, and record marks) initially 
stored in B-field locations will be cleared if the corresponding A-field 
characters do not include identical punctuation. 

3. The B address must never fall within the A field. The A address :may fall 
within the B field, however, if desired. 

EXAMPLE 

Move both the data bits and the defining word m.ark of the field tagged TWX to the 
field tagged RATE. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD fl~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

I 213 415 6 7 8 1415 2021 I 6263 80 

I i LeA ITWX .. RATE 
1 

1 

8-57 #2-139 



SECTION VIII. INSTRUCTIONS 

I SC R I STORE CONTROL REGISTERS I 
FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. - - -
b. '-c. _ 

FUNCTION 

Forlllat a: The contents of the control lllelllory register specified by the variant character 
are stored in the field whose units position is defined by the A address of this 
instruction. The lllethod of storing these contents depends on the addressing lllode 
being used, as shown in Table 8-12. The valid variant characters and the control 
register each character represents are listed in Table 8-13. 

Table 8-12. Control Register Contents Stored by SCR Instruction 

Two-Character 

Three-Character 

Four - Character 

, Low-order two characters (12 bits). 

Low-order 15 bits; the high-order three 
bits of the field specified by the A address 
are cleared to zeros. 

The entire contents of the control register 
plus sufficient high-order zeros to lllake 
up 18 bits (see page 2-7). For the Type 
4201 processor, the entire 19 bits of the 
control register plus five high-order 
zeros. 2 

lAll bit positions not required to address the largest lllelllory address in a 
user's systelll are set to zeros in the A field. 

2The five high-order bits of the high-order character are reset to zeros 
only in the 4201. In other processors, the entire six bits of the high­
order character relllain unchanged. 

8-58 #2-139 



SECTION VIII. INSTRUCTIONS 

Format b: The contents of the control memory register specified by the variant character in 
a previous instruction are stored in the field whose units position is defined by 
the A address of this instruction. The number of bits stored depends on the ad­
dressing mode being used, as shown in Table 8-12. The valid variant characters 
and the control register each character represents are listed in Table 8-13. 

Format c: The contents of the control memory register specified by the variant character in 
a previous instruction are stored in the field whose units position is defined by 
the contents of the A-address register (AAR). The number of bits stored depends 
on the addressing mode being used, as shown in Table 8-12. The valid variant 
characters and the control register each character represents are listed in 
Table 8-13. 

Table 8-13. Control Registers Stored by SCR Instruction 

00 CLC8 20 CLC9 64 CSR 
01 CLCI 21 CLC4 66 EIR 
02 CLC2 22 CLC5 67 AAR 
03 CLC3 23 CLC6 70 BAR 
04 CLC8' 24 CLC9' 76 IIR 
05 CLCl' 25 CLC4' 77 SR 
06 CLC2' 26 CLC5' 
07 CLC3' 27 CLC6' 
10 SLC8 30 SLC9 
11 SLCI 31 SLC4 
12 SLC2 32 SLC5 
13 SLC3 33 SLC6 
14 SLC8' 34 SLC9' 
15 SLC1' 35 SLC4' 
16 SLC2' 36 SLC5' 
17 SLC3' 37 SLC6' 

WORD--M"A-ltKS-

Formats a, b, and c: 

A-operand punctuation neither affects nor is affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

Formats a, b, and c: 

SR AAR BAR 

NXT 

NOTES 

1. If AAR is specified by the variant character (octal 67), the previous addres s 
in AAR (not the A address retrieved. froIn this instruction) is stored in the 
location specified by the A address. 

2. The control memory register actually designated by the variant character 
678 is a work register (not AAR). During the extraction of an SCR or LCR 

8-59 #2-139 



SECTION VIII. INSTRUCTIONS 

instruction (see below), ARR is used to reference the main memory. 
Prior to this, the previous contents of AAR are stored in the work reg­
ister; at the end of the instruction, the contents of the work register 
are restored in AAR. 

3. This instruction can be coded only in format a. when programming for 
the Type 201 or 201-1 processor. 

4. In a processor equipped with the Scientific Unit (see Appendix F), this 
instruction must not be used to store the contents of the floating-point 
accumulators. 

5. The SCR op code is a "privileged" op code that has special significance 
when the Type 1201, 1251, 2201, or 4201 central processor is equipped 
with the extended multiprogramming feature (see Appendix G). 

EXAMPLE 

Store the contents of BAR in the A address of the Branch instruction tagged EXIT. 
(The processor is assumed to be in the three-character addressing mode. ) 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~I! LOCATION 
OPERATION OPERANDS NUMBER CODE 

I 213 415 6 7 8 1415 2021 6263 80 

I : 
1 

I SlJ.~ SCR EX I:T + 3. 7.rJ 
I I 
I I 

, 
: I ' ( 
I I I 
: I EXlT S ¢ 

I LC R I LOAD CONTROL REGISTERS IIFEATURE 011\ 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

c. - - -
b. -
C. -

FUNCTION 

Format a: The contents of the field specified by the A address are loaded into the control 
register specified by the variant character. The contents of the A field is another 
main memory address. The method of loading this address into the specified 
control register depends on the addressing mode being used, as shown in Table 8-14. 

8-60 #2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-14. Control Register Contents Loaded by LCR Instruction 

Two -Character 

Three -Character 

Four -Character 

Two-character (12 bit) address is loaded 
into the low-order two character locations 
of the register. All other bits in the reg­
ister (if any) are not disturbed (i. e., the 
bank bits are protected). 

15 -bit address is loaded into the low-order 
IS-bit locations of the register. All other 
bits in the register (if any) are not dis­
turbed (i. e., the sector bits are protected). 

For processors other than the Type 4201, 
an address up to 18 bits long is loaded into 
the register; the number of bits loaded 
depends on the size of main memory (s ee 
Table 2-2, page 2-7). The Type 4201 
processor always loads 19 bits. Thus, 
programs written for any other processor 
which are to be compatible with the Type 
4201 must correctly set up the bit to the 
left of the stored 18 -bit addres s before 
executing a 4-character LCR instruction. 

Variant characters and their associated control registers are the same as 
those specified for the Store Control Registers instruction (see Table 8-13). 

Format b: The contents of the field specified by the A address are loctded into the 
control register specified by the variant character in a previous instruction. 
The method of loading the contents of this field (another main memory address) 
depends on the addres sing mode being used, as shown in Table 8 -14. Variant 
characters and their associated control registers are the same as those speci­
fied for the Store Control Registers instruction. 

Format c: The main memory address specified by the contents of the A-address register 
(AAR) is loaded into the control register specified in a previous instruction. 
The method of loading this addres s into the specified register depends on the 
addressing mode being used, as shown in Table 8-14. Variant characters and 
their as sociated control registers are the same as those specified for the 
Store Control Registers instruction. 

WORD MARKS 

Formats a, b, and c: 

A-operand punctuation neither affects nor is affected by this instruction. 

8 ... 61 #2-139 



SECTION VIII. INSTRUCTIONS 

ADDRESS REGISTERS AFTER OPERATION 

Formats a, b, and c: 

SR AAR BAR 

NXT (A) Bp VARIANT = 678 

NXT Ap (A) VARIANT = 708 

(A) Ap Bp VARIANT = 778 

NXT Ap Bp ALL OTHERS 

NOTES 

I. If SR is specified by the variant character (77
8

), the next instruction is 
selected from the location whose address is stored in the field specified 
by the A address of the Load Control Registers instruction. In all other 
cases, the program continues in sequence. 

2. This instruction can be coded only in format a. when programming for 
the Type 201 or 201-1 processor. 

3. The LCR op code is a "privileged" op code which has special significance 
when used with a Type 1201, 1251, 2201, or 4201 processor equipped with 
the Storage Protect Feature (see Appendix E). 

4. In a processor equipped with the Scientific Unit (see Appendix F), this 
instruction must not be used to load the floating-point accumulator. 

EXAMPLE 

Load the address stored in the location tagged SUBI into the change sequence 
register (CSR). 

EASYCODER 
CODING FORM 

PROBLEM ---------_____________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION 

NUMBER ~ ~ CODE OPERANDS 
1 213 415 6 7 8 1415 2021 1 6263 80 

I : LCJ~l SUB 1 .,ti,4, 
1 

I CAM I CHANGE ADDRESSING MOD~ IFEATURE 0 llil 

FORMAT 
OP CODE A ADDRESS B ADDRESS VARIANT 

o. - -
b. -FUNCTION 

Format a: The Change Addressing Mode instruction is used to specify the following conditions, 
as designated by the variant character: 

IThe CAM instruction is included in Type 201 and 201-1 processors whose memory capacities 
exceed 4,096 characters, whether or not Feature 011 is present. 

8-62 #2-139 



SECTION VIII. INSTRUCTIONS 

1. The addressing mode (two-, three-, or four-character) in which the 
processor is to interpret the address portions of all subsequent 
instructions (see note 1). 

2. The processing mode (standard mode or "trap" mode) in which all 
subsequent instructions are to be processed. (See note 3 for a de­
scription of the trap mode. ) 

3. The "S" mode of processing in which several Series 200 instructions 
are defined in a special manner (see note 4). 

The variant characters and the mode(s) each character represents are listed 
in Table 8-15. 

Format b: The variant character in a previous instruction specifie s the addre s sing mode and 
processing mode in which all subsequent instructions are to be processed. The 
variant characters and the mode(s) each character represents are listed in Table 8-15. 

Table 8 -15. Modes Specified by Variant Character in CAM Instruction 

WORD MARKS 

For:mat s a and b: 

20 
00 or 40 

60 

24 
04 or 44 

64 

30 
10 
70 

34 
14 
74 

Two -character, standard mode 
Three-character, standard mode 
Four -character, standard mode 

Two-character, trap mode 
Three-character, trap mode 
Four-character, trap mode 

Two-character, "S" mode 
Three -character, "S" mode 
Four -character, "S" mode 

Two-character, trap, "S" :mode 
Three-character, trap, "S" :mode 
Four-character, trap, "S" :mode 

Word marks are not affected by thi s instruction~ 

ADDRESS REGISTERS AFTER OPERATION 

Formats a and b: 

SR AAR BAR 

NXT 

NOTES 

1. The CAM instruction is used in conjunction with the ADMODE asse:mbly 
control state:ment to specify addressing mode. (See page 7-11 for a 
description of the ADMODE statement.) The ADMODE state:ment directs 
the Assembly Program to assemble the address portions of all subsequent 
source program instructions as two-, three-, or four-character addresses. 
The CAM instruction directs the processor to interpret the address portions 

8-63 #2-139 



SECTION VIII. INSTRUCTIONS 

of all subsequent object program instructions as two-, three-, or four­
character addresses. Thus, an address assembled in the three-character 
addressing mode (via an ADMODE statement) must be processed during 
a program. run as a three-character address for proper execution; the 
processor is placed in the three-character addressing mode during object 
program execution by the CAM instruction. 

2. The ability to change addressing modes within a program makes it pOSSible 
to save both time and memory space and provides greater programming 
flexibility. Extraction and execution time is saved when a smaller ad­
dressing mode is used, due to the elimination of the extra memory cycles 
necessary for a larger address (in characters). Memory space may be 
conserved by storing frequently used subroutines in the two-character ad­
dressing mode (see example). 

The larger addresses are necessary to address larger continuous portions 
of memory. For instance, a two-character address can specify only 
memory locations within a 4, 096-character bank of main memory. A 
three-character address can refer to any location in a 32, 768-character 
sector. A four-character address can directly address any location in the 
entire memory (from location 010 to location 524, 288 10 ), 

3. The "trap" mode of instruction execution is included as part of Feature 010 
for Type 201-2 processor s, even though the CAM instruction is standard. 
In the Type 201 and 201-1 processors, both the CAM instruction and trap 
m.ode are included as part of Feature OIl. When the processor is in the trap 
m.ode of instruction execution, any instruction whose op code contains an 
item mark (or record mark) is both extracted and executed as if it were a 
Change Sequencing Mode instruction (see page 8-66), regardless of the op 
code that is actually present. The A address, B address, and variant char­
acter (if any) of the instruction are delivered to AAR, BAR, and the variant 
register, respectively. The "trapped" op code is not executed; a Change 
Sequencing Mode instruction (CSM) is executed in its place. The CSM in­
struction causes a branch to the location stored in the change sequence 
register (CSR); this location is the beginning of a routine to interpret and 
execute the instruction whose op code was trapped. 

The trap mode is used effectively by the Liberator conversion programs 
(Bridge and Easytran) to replace the seldom used instructions of compet­
itive systems when converting the programs of thes e systems to Series 200 
language. Such instructions are replaced by routines when the trapped op 
codes are executed as CSM op codes. 

4. In addition to specify the standard or trap modes, the CAM instruction 
is used to specify the "S" mode of processing when Feature 0191 is in­
cluded in a 1201, 2201, or 4201 central processor. When the processor 
is in the "S" mode the A, S, ZA, ZS, and BCE instructions are imple­
mented in a special manner. The particular differences that result from 
the "S" mode of processing are indicated in the notes for that instruction. 

5. This instruction can be coded only in format a. when programming for 
the Type 201 or 201-1 proces sor. 

8-64 #2-139 



SECTION VIII. INSTRUCTIONS 

EXAMPLE 

Figure 8-5 shows the coding which provides entry to and exit from a subroutine to 
be executed in the two-character addressing mode. Both an ADMODE statement 
and a CAM instruction must be coded (in either order) at the beginning and end of 
the subroutine. However, only the CAM instructions are stored in the main 
memory. (Since CAM instructions have no address portions, the manner in which 
they are stored is not affected by an ADMODE statement. ) 

MAIN PROGRAM 
( 4-CHARACTER 
ADDRESSING MODE) 

SUBROUTINE 
( 2-CHARACTER 
ADDRESSING MODE) 

LOCATION 

B 

MA'~ 

1 

SUB4-

EX\l 

OPERATION 
CODE 

1415 2021 

I~ SUB4: 
I~ )I.~~~.~X~XX 

.\ 

1. 
J. 
) 

J 
.\. 
) 

I t. ~ 

C,AM 2J6. 
IADMOI)E f 

( 

) 
{ 

IADMoDE. 4- 1 

C~YI. 6~ 
1& MAIN 

Figure 8-5. Changing Addressing Modes via CAM Instruction 

NOTE: The branch frornthe main program to SUB4 in Figure 8-5 could have 
been caused by an item-marked op code (if the processor were in the 
trap mode) instead of by the Branch instruction. In this case, the 
memory location tagged SUB4 would be stored in CSR, so that when 
the item-marked op code was encountered, the contents of SR and CSR 
would be interchanged. The program would automatically branch to 
SUB4 in this case. 

8-65 #2-139 



SECTION VIII. INSTRUCTIONS 

I CSM I CHAN~~~~UENCING IFEATURES 010 & 0111 

FORMAT 

OP CODE A ADDRESS 8 ADDRESS VARIANT 

o. -
b. -
c. - -
d. - - -

FUNCTION 

Format a: The contents of the sequence register (SR) and the change sequence register (CSR) 
are interchanged, and the program branches to the address which was previously 
stored in CSR. 

Format b: The contents of SR and CSR are interchanged, and the program branches to the ad­
dress which was previously stored in CSR. The A address is loaded into the A­
address register (AAR). 

Format c: The contents of SR and CSR are interchanged, and the program branches to the ad­
dress which was previously stored in CSR. The A and B addresses are loaded into 
AAR and BAR, respectively. 

Format d: The contents of SR and CSR are interchanged, and the program branches to the ad­
dress which was previously stored in CSR. The A and B addresses and the variant 
character are loaded into AAR, BAR, and the variant regist~r, respectively. 

WORD MARKS 

Formats a, b, c, and d: 

Word marks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR CSR AAR BAR 

Format a: JI (contents NXT Ap Bp 
of CSR) 

Format b: JI (contents 
of CSR) 

NXT A Bp 

Format c: JI (contents NXT A B 
of CSR) 

Format d: JI (contents NXT A B 
of CSR) 

8-66 #2-139 



SECTION VIII. INSTRUCTIONS 

NOTES 

1. The Load Control Registers instruction (see page 8-60) can be used to 
set up the contents of CSR. 

2. When the "trap" mode of instruction execution is specified by the Change 
Addres sing Mode instruction (see page 8 - 62), any subsequent instruction 
whose op code contains an item mark or a record mark is retrieved and 
executed as if it were a Change Sequencing Mode instruction. An instruc­
tion which is "trapped" in this manner must conform to one of the valid for­
mats of the CSM inst:ruction. 

3. This instruction can be coded only in formats a., b., and c. when programming 
for the Type 201 or 201-1 processor. 

EXAMPLE 

Store the absolute address tagged CHANGE in CSR via a Load Control Registers in­
struction. Later, alter the program sequence by branching to the instruction tagged 
CHANGE. Provide for the ultimate return to normal programming sequence by 
storing the contents of SR in CSR. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD il! LOCATION 
OPERATION OPERANDS NUMBER CODE 

I 2 3 4 5 6 7 8 1415 2021 i 6263 80 

I : I\..CR CHANGE .... 64 
I 

I I 
, 

I I ~ 
I I ) 

~L 

: i I 
I I \ 
l J 
I I (, 
I CSM 

10 
I I 

" i I I I I 

12 

I I i 1 i i I 
13 

14 I I 
15 I I 

I EXM I EXTENDED MOVE IIFEATURES 010 & 011 I 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. - - -
b. -
c. -
o. -

8-67 #2-139 



SECTION VIII. INSTRUCTIONS 

FUNCTION 

Format a: The contents of the A field are moved to the B field in the manner specified by the 
variant character (see Table 8-16). The programmer specifies how the move 
operation is to be performed by selecting the desired conditions from the table 
and encoding the resulting two octal digits as the variant character of the instruc­
tion. 

Format b: The contents of the A field are moved to the B field in the manner specified by the 
variant character of a previous instruction (see Table 8-16). 

Format c: The contents of the A field are moved to the field specified by the contents of the 
B -addre ss register (BAR) in the manner specified by the variant character of a 
previous instruction (see Table 8 -16). 

Format d: The contents of the field specified by the contents of the A-address .register (AAR) 
are moved to the field specified by the contents of BAR in the manner specified by 
the variant character of a previous instruction (see Table 8-16). 

Xl 

X2 

X3 

X4 

X5 

X7 

OX 

IX 

2X 

3X 

Table 8-16. Extended Move Conditions 

Move A-field data bits to corresponding bit posi­
tions in B field. 

Move A-field word-mark bits to corresponding bit 
positions in B field. 

Move A-field data and word-mark bits to corre­
sponding bit positions in B field. 

Move A-field item-mark bits to corresponding 
bit positions in B field. 

Move A-field data and item-mark bits to corre­
sponding bit positions in B field. 

Move A-field word-mark and item-mark bits to 
corresponding bit positions in B field. 

Move A-field data, word-mark and item-mark 
bits to corresponding bit positions in B field. 

Move one character from A to B. The A- and B­
address registers are decremented by one. 

Move one character from A to B. The A- and B­
address registers are incremented by one. 

Move characters from right to left (A and B ad­
dresses specify rightmost characters in operand 
fields). Terminate the operation when the first 
A-field word mark is sensed. 

Move characters from left to right (A and B ad­
dresses specify leftmost characters in operand 
fields). Terminate the operation when the first 
A -field word mark is sensed. 

8-68 #2-139 



4X 

5X 

6X 

7X 

PUNCTUATION MARKS 

Formats a, b, c, and d: 

SECTION VIII. INSTRUCTIONS 

Table 8-16 (cont). Extended Move Conditions 

Move characters from right to left. Terminate 
the operation when the first A-field item mark 
is sensed. 

Move characters from left to right. Terminate 
the operation when the first A-field item mark 
is sensed. 

Move characters from right to left. Terminate 
the operation when the first A-field record mark 
is sensed. 

Move characters from left to right. Terminate 
the operation when the first A-field record mark 
is sensed. 

The A field must have a defining punctuation mark, except when the variant char­
acter specifies a one-character transfer. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Na B-Na VARIANT = (0, 2, 4, or 6)X 
NXT A+Na B+Na VARIANT = (1, 3, 5, or 7)X 

Format b: NXT A-Na B-Na VARIANT = (0, 2, 4, or 6)X 
NXT A+Na B+Na VARIANT = (1, 3, 5, or 7)X 

Format c: NXT A-Na Bp-Na VARIANT = (0, 2, 4, or 6)X 
NXT A+Na Bp+Na VARIANT = (1, 3, 5, or 7)X 

Format d: NXT Ap-Na Bp-Na VARIANT = (0, 2, 4, or 6)X 
NXT Ap+Na Bp+Na VARIANT = (1, 3, 5, or 7)X 

NOTES 

l. This instruction can be coded only in formats a. and d. when program-
ming for the Type 201 or 201-1 processor. 

2. Here is an exa:m.ple of a typical variant bit configuration: V = 110011. 
This configuration, encoded in octal notation as 63, specifies that A-field 
data and word-mark bits are to be moved to the B field from right to left 
until the first record mark is sensed in the A field. 

3. Consider the variant character in its six-bit form, V 6 V 5 V 4 V 3 V 2 VI. If 
VI = 0, A-operand data bits are not transferred and data bits in the B 
field remain unchanged. 

4. If V2 = 0, A-operand word-mark bits are not transferred and B-operand 
word-mark bits remain unchanged. 

8-69 #2-139 



SECTION VIII. INSTRUCTIONS 

5. If V3 = 0, A-operand item-mark bits are not transferred and B-operand 
item-mark bits rernain unchanged. 

6. The character containing the terrninating punctuation is moved in the same 
manner as the rest of the field. 

EXAMPLES 

I. Move the data bits of the single character in the location 26 beyond that tagged 
TEMP to the location tagged WORK# and decrement the A- and B-address registers. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~.~ LOCATION 
OPERATION OPERANDS NUMBER t ~ CODE 

I 213 415 6 7 8 1415 2021 62 63 80 

I i I~X~ TEMPt2.6~ WoRK ,,{6,1 

2. Move only the data bits in the field tagged RESV to the field tagged WORK. 
Move the data froITl right to left, and terminate the operation wJ:1en the 
first item mark in the A field is sensed. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER _----,-____ DATE _____ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER t ~ CODE 

I 213 415 6 7 8 1415 2021 6263 80 

I : E;XM RE sv ... WoR K :,41 

I MATI MOVE AND TRANS LA TE I 
FORMAT 

FEA'TURES 010 & 011 

OP CODE A ADDRESS B ADDRESS VARIANT I VARIANT 2 

o. - - - -OP CODE A ADDRESS B ADDRESS C ADDRESS 

b. - - -FUNCTION 

Format a: The MAT instruction translates characters from one six-bit configuration to another 
by means of a stored "translation table." The instruction can be used to translate 
any number of consecutive characters in the memory. 

The A address specifies the location of the rightmost character in the field to be 
translated. The B address specifies the location into which the translated equivalent 
of the rightmost A-field character will be moved. 

The operation normally terminates when an A-field word rnark is sensed. The 
operation is also terminated if a character is transferred frorn a word-marked lo­
cation within the translation table. 

The address within the translation table which contains the translated equivalent of 
an A-field character is formed by combining the A-field character with the two 

8-70 #2-139 



SECTION VIII. INSTRUCTIONS 

variant characters. The method of combining these three characters depends on 
the addressing mode being used, as described below. 

The leftmost, or base, address of the translation table is form.ed by combining 
variants 1, 2, and a zero character as shown below. If the processor is in the two­
or three-character addressing m.ode, the leftmost three bits of variant 1 are 
ignored and the corresponding bit positions (1. e., the sector bits) in the base ad­
dress (bits 16, 17, 18 and 19) are taken from the contents of the A-address register 
(AAR). If the processor is in the four-character addressing m.ode (see below), 
the entire six-bit contents of variant 1 form bits 13-18 of the base address, while 
the leftmost (nineteenth) bit, if present, is taken from the contents of AAR. 

Two- or Three-Character Addressing Mode 

VARIANT 1 VARIANT 2 

BITS 
16-19 
IN AAR 

-0 

= BASE ADDRESS OF TABLE 

Four-Character Addressing Mode 

VARIANT 1 VARIANT 2 

BIT 19 
IN AAR 
-0 

, , 
o 0 0 0 0 0 = BASE ADDRESS OF TABLE 

A character in the A field is translated when it is appended to the variant characters 
(in place of the zero character) to form a complete, 19-bit address. This complete 
address contains the translated equivalent of the appended A-field charaater (see 
below). 

A -FIELD CHAR. 

COMPLETE, 19-BIT ADDRESS 

TRANSL. EQUIV. OF A-FIELD CHAR. CONTENTS 

Note that because of the positions of variant 1 and variant 2 in the complete address, 
the base address of the table 'will always be a multiple of 64. This is compatible 
with translation requirements since each A-field character can have any of 64 bit 
configurations (see note 5). 

8-71 #2-139 



SECTION VIII. INSTRUCTIONS 

It is a simple task to store the desired equivalent values in a translation table. 
For instance, assume that a character set which is to be translated into Honeywell 
code represents the letter A by the bit configuration 110001. Since this bit con­
figuration represents a binary value of 49, the desired Honeywell equivalent (1. e. , 
010001) should be stored 49 locations beyond the base address of the translation 
table. 

Format b: This is an alternate and simplcr format for coding the MAT instruction. In this 
format, a"C address" replaces the variant characters used in format a. to define 
the base address of the table. Thus, format b. relieves the programmer of dealing 
with modulo-64 addresses and converting to octal notation each time a MAT instruc­
tion is coded. 

The C address is a symbolic tag that is contained in the location field of another 
source-program entry (e. g., a RESV statement). Once the absolute base address 
of the table is defined as described for format a., the C address is equated to that 
address and used in its stead whenever a MAT instruction using the same table is 
coded again in the prograrn.. 

Example 2 shows how a C address can be used to define the base address of the 
translation table. 

WORD MARKS 

Formats a and b: 

The A field must have a defining word rn.ark. It is this word mark that normally 
stops the operation. The operation will also be terrn.inated if a character is trans­
ferred from a word-rn.arked location within the translation table. 

ADDRESS REGISTERS AFTER OPERA TION 

Formats a and b: 

SR AAR BAR 

NXT 

NOTES 

1. This instruction cannot be chained. 

2. The contents of the variant register following a move and translate oper­
ation are unspecified. Therefore, an instruction requiring a variant 
character must not be chained after an MAT instruction. 

3. Item-mark bits as well as data bits are transferred from the trans­
lation table to the B field. 

4. Word rn.arks initially stored in the B field remain unchanged. They 
do not affect the execution of this instruction. 

5. The base address of the translation table must always be a rn.ultiple of 
64. The Easycoder Assembly Program automatically stores the table 
in this rn.anner when directed by a MORG assern.bly control statement 
(see page 7-9) containing an operand of 64. 

8-72 #2-139 



SECTION VIII. INSTRUCTIONS 

EXAMPLES 

1. Figure 8-6 shows how A-field data is moved to the B field via a translation 
table. 

Translate the contents of the field tagged EXCODE using the stored trans­
lation table whose base address is 25610 (=4008). Store the translated 
equivalent in the field tagged EQUIV. 

A Address: EXCODE (absolute value = location 630) 

B Address: EQUIV (absolute value = location 900) 

Variant 1: 00 

Variant 2: 04 base address of table (location 256) 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD OPERATION 
NUMBER 

~i~ 
~ ~ 

LOCATION CODE OPERANDS 

1 213 415 6 7 8 1415 2021 6263 

I i 
1 

It-.1A1 EXCOOE .E.QU tV .(/1,0, ¢4 

Figure 8-6. MAT Operation 

.. TABLE ADDRESS 

.. ENTRY 

2. The following coding shows how the preceding MAT instruction can be coded 
using a C address. The translation table is set up with a base address of 
25610 by means of an ORG statement and two DC statements. The ORG 
statement directs the Assembly Program to load subsequent coding into 
memory locations beginning at location 25610. The fir st DC statement de­
fines an alphanumeric constant 40 characters long (i. e., the maximum size 
of an alphanumeric constant). These characters are the first 40 characters 
of a 64-character translation table. The second DC statement defines the 
remaining 24 characters of the table. 

When the MAT instruction is executed, the absolute address equated to the 
tag MATABI is used as the table's base address as in example 1. 

8-73 

80 

#2-139 



SECTION VIII. INSTRUCTIONS 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD [~[~[ I OPERATION 
NUMBER t ~ LOCATiON CODE OPERANDS 

1 213 415 6 7 8 1415 2021 ~ I I 6263 80 

I : [QRG- 256 .v"'. A. ., 
I 

I IVlAl A.S 1 DC. *A' Z3 456 7i90.! !@:.Al/STUVWX.YZ.A ... l.#E!-J KLMNO P* 
I I OC @QRo$,*ciA~ ABCOE FGH lh. ~ 1.1A@ 
I I ( 

: i l 
I I 1 .) 

" J 1 

1 I ,) 
I I 1M AT EXCODE .E,Q,U IV .M~TABl 
J I , , 

MIT I MOVE ITEM AND TRANSLATE 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT I VARIANT 2 VARIANT 3 

o. - - - - -
OP CODE A ADDRESS B ADDRESS C ADDRESS VARIANT 

b. - - - -
FUNCTION 

Format a: The Move Item and Translate instruction is used to translate any information unit 
(up to 12-bit code) to another information unit of up to 12 bits (e. g., to Series 200 
six-bit character code) by the use of a stored translation table. Any number of 
consecutive information units stored in the memory can be translated. 

The A address is the leftmost address of the item to be translated. The B address 
is the leftmost address of the item into which the translated equivalent of the A 
item will be moved. The MIT instruction translates the data contents in the A 
item and moves the translated results, left to right, to the B item. 

The operation normally terminates when an item mark is sensed in the A item. 
The operation will also be terminated if a word-marked character is encountered 
in the translation table. 

An information unit up to six bits in length is stored in one six-bit character lo­
cation in the memory. Any information unit greater than six bits (7 through 12 
bits) is stored in two successive six-bit character locations. Thus, an information 
unit consisting of up to six bits is considered as a- six-bit character, and a unit of 
from 7 to 12 bits is considered as a "12-bit character. II 

The sizes of the information units involved in the operation are specified by variant 
3, as shown in Table 8-17. 

8-74 #2-139 



SECTION VIII. INSTRUCTIONS 

Table 8 -1 7. Size of Information Unit s in MIT Operation 

00 Translate each six-bit character in the A 
item. Move the translated equivalent to a 
six-bit character location in the B item. 

01 Translate each 12-bit character in the A 
item. Move the translated equivalent to 

02 

03 

a six-bit character location in the B item. 

Translate each six-bit character in the A 
item. Move the translated equivalent to 
two character locations (12 bits) in the 
B item. 

Translate each 12-bit character in the A 
item. Move the translated equivalent to 
two character locations (12 bits) in the 
B item. 

The desired equivalent of an A-item information unit is taken from the stored 
translation table and moved to the B item. Thus, if the desired equivalent is a six­
bit character, each table entry occupies one six-bit character location in the table. 
If the desired equivalent is a 12-bit character, each table entry occupies two con­
secutive six-bit character locations in the table. Consequently, variant 3 implicitly 
specifies the size of each table entry when it explicitly specifies the size of the B­
item information unit. 

The leftmost, or base, address of the translation table is formed by combining 
variants 1, 2, and a zero character as shown below. If the processor is in the 
two- or three-character addressing mode,- the leftmost three bits of variant 1 are 
ignored and the corresponding bit positions (i. e., the sector bits) in the base ad­
dress of the table are taken from the contents of the A-address register (AAR). If 
the processor is in the four-character addressing mode, the entire six-bit contents 
of variant 1 form bits 13-18 of the base address, and the nineteenth bit, if present, 
is taken from the contents of AAR. 

Two- or Three-Character Addressing Mode 

BITS 16-19 
OF AAR 

VARIANT 1 

" 
VARIANT 2 

r----------, 

o 0 0 000 BASE (LEFTMOST) ADDRESS OF TABLE 

8-75 #2-139 



SECTION VIII. INSTRUCTIONS 

Four-Character Addressing Mode 

VARIANT 1 VARIANT 2 

BIT 19 
OFAAR 
0-

, , 
--------. 
o 0 0 0 0 0 = BASE (LEFTMOST) ADDRESS OF TABLE 

The address within the translation table which contains the translated equivalent 
of an A-item character (6- or 12-bit) is formed by superimposing the A-item char­
acter over the base address of the table. The method of superposition depends on 
the size of each table entry (whether 6 or 12 bits), as described below. 1 

If each table entry is a six-bit character (variant 3 = 00 or 01), the 6- or 12-bit A­
item character is superimposed over the rightmost bit positions of the base address. 
The illustration below shows a 12-bit A-item character being superimposed over 
the base address, where A = an A-item bit and X = a base address bit. 

= 12-BIT A-ITEM CHARACTER 

• • Ixlxxxxxxlxxxxxxio 0 000 01 = BASE ADDRESS OF TABLE 

1 

xxxxxx = TABLE ADDRESS WHICH CONTAINS THE 
6-BIT EQUIVALENT OF A-ITEM CHAR­
ACTER 

If each table entry is a 12-bit character {variant 3 = 02 or 03), the 6- or 12-bit A­
item character is first ~d one bit position to the left, forming a 7- or 13-bit 
"character." The rightmost bit position of the character is set to zero. The 
"character" is then superimposed over the base address to form the table address 
of the translated equivalent of the A-item character. The shift operation is used 
to double the referenced table address, since each table entry is stored in two, 
rather than one, six-bit character locations. The resultant address is the ad­
dress of the leftmost of the two successive six-bit character locations in the table. 

The illustration below shows how a 6 -bit A-item character is shifted one bit posi­
tion to the left and then superimposed over the translation table's base address to 
form the table address of its equivalent; A = an A-item bit, and X = a base ad­
dress bit. 

Superposition is performed by placing a 1 bit in every position of the table address in which a 1 
existed in either the A-item. character or the base address or both. This is the "logical in­
clusive OR" function. 

8-76 #2-139 



SECTION VIII. INSTRUCTIONS 

= 6-BIT A-ITEM CHARACTER 

SHIFT LEFT ONE BIT 
POSITION & APPEND ZERO 

= 7-BIT "CHARACTER" 

xxxxxx xxxx = BASE ADDRESS OF TABLE 

xxx xxx XXXXX = TABLE ADDRESS'WHICH 
CONTAINS THE 12-BIT 
EQUIVALENT OF THE A-ITEM 
CHARACTER 

Format b: This is an alternate format for coding the MIT instruction. As in the MA T instruction 
(see page 8-70), a symbolic tag replaces the variant characters used to define the 
base address of the table in format a. The tag is contained in the location field of 
another source-program entry which equates the tag to the base address of the table. 

The second example of coding an MAT instruction (page 8-73) shows the method by 
which a translation table is stored in memory so that the leftmost location of the 
table can be used as a symbolic address. This is identical to the method used for 
format b. of the MIT instructiono 

PUNCTUATION MARKS 

Formats a and b: 

The A item must contain an item mark. It is this punctuation mark that normally 
stops the operation. If the A-item information units are 12-bit characters, the 
terminating item mark may appear in either of the two six-bit character locations. 

The operation will also be terminated if a character (6- or 12-bit) is encountered 
in a word-marked location in the translation table. In this case, neither the word­
marked character nor any subsequent characters are moved to the B item.; instead, 
a sequence change is performed (see note 5). 

ADDRESS REGISTERS AFTER OPERATION 

Formats a and b: 

SR CSR AAR BAR 
ITEM MARK IN A ITEM 

NXT CSRp A+(NAu)(Nut) B+(NBu){NuJ} 
STOPS OPERATION 

JI (contents NXT A+(NAu ) (Nut> B+(NBu ) (Nut)} WORD MARK IN TABLE 
of CSR) STOPS OPERATION 

NOTES 

1. This instruction cannot be chained. 

2. The last six-bit character referenced in the translation table (whether 
word-marked or not) is left in the variant register following the move 
item and translate operation. 

8-77 #2-139 



SECTION VIII. INSTRUCTIONS 

3. Item-mark bits as well as data bits are transferred from the translation 
table to the B item. 

4. Word marks initially stored in the B item remain unchanged. They do 
not affect the execution of this instruction. 

5. A data control character (e. g., a case-shift character in a teletype code), 
rather than a translated equivalent to be transferred to, the B item, can 
be stored in a word-marked location in the table. When this w'ord-marked 
location is sensed, the character in that location is not moved; rather, 
the contents of SR and CSR are interchanged, providing entry to the routine 
whose beginning address was previously stored in CSR. Since the word­
marked character is stored in the variant register (see note 2), that char­
acter can be stored by a Store Variant and Indicators instruction (see 
page 8-92) and subsequently tested for identification in the routine. 

6. The base address of the translation table must be a multiple of at least 
64, due to the positions of variants 1 and 2 in the total 19-bit address. 
This requirement is sufficient only for the translation of 6-bit to 6-bit 
codes. If other than 6-bit codes are involved in the translation, the base 
addres s of the table must be a multiple of X (where X is the product of 
the number of -codes defined by active bits in the A field entries times the 
number of characters in each table entry). In other words, the base ad­
dress of the table must be a multiple of the table size itself. The MORG 
assembly control statement (see page 7-9) can be used to assign memory 
lo.cations to the translation table, starting with th~ next available memory 
location whose address is a multiple of 64, 128, 256, etc., as determined 
by the size of the table. 

7. This instruction is a standard feature on all processors except the Types 
20 1 and 20 1-1, on which it is not available. 

EXAMPLE 

Figure 8-7 shows how eight-bit code is translated to Series 200 six-bit character 
code by means of a stored translation table. Each eight-bit information unit is 
stored in two consecutive six-bit character locations in the A item tagged EIGHT. 

Translate the data contents of the item tagged EIGHT using the translation table 
whose base address is location 51210 (100°8)' Store the translated values (six­
bit characters) in the item tagged SIX. 

A Address: EIGHT (absolute value = location 800) 

B Address: SIX (absolute value = location 650) 

Variant 1: 

Variant 2: 

Variant 3: 

:~ : }the address of table (location 512) 

01 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~~ LOCATION 
OPERATION 

OPERANDS NUMBER t ~ CODE 

1 2L34l5 6 7 8 1415 2021 6263 80 

I : IMIT El G-}\T, •. S.lX ,,~0 .. 1.~, .r1.1 

8-78 #2-139 



BASE ADDRESS 
(0010008 ) 

SECTION VIII. INSTRUCTIONS 

,.._.lIlI __ · ADDRESS 

.B ITEM ......... _ .... - ..... --

Figure 8 -7. MIT Operation 

I LIB I LOAD INDEX/BARRICADE REGISTER 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

ITEM MARK STOPS 
OPERATION 

• TABLE ADDRESS 

.ENTRIES 

- - I FEATURES 1114, 11 1 7 AND 1118 
o. 

b. - I FEATURES 1118, 11 20 AND 1121 

FUNCTION 

Format a: Basic storage protection is provided by this instruction format; the charac­
ter(s) at the location(s) specified by the A address is loaded into the index/ 
barricade register (IBR), specifying the number of 4, 096-character main 
memory banks which are available to a program. The leftmost location of 
the specified bank is the leftmost location of the protected memory area. 
(The rightmost location of the protected area is the rightmost location of mem­
ory.) For processors other than the Type 4201, the single-character contents 
of A are loaded into IBR. For the Type 4201 processor, a seventh bit, the 
rightmost bit of the contents of A-I, is loaded into IBR. The correspondence 
between the number loadeq. into IBR and the position of the barricade is in Table 8-18. 

Format b: Storage protection with bas e relocation is provided by this instruction 
format; the index/barricade register (IBR) is loaded in the same manner 
as for basic storage protection (format a above), but the barricade is 
relocated relative to the base relocation address. Consequently, when 
storage protection is in effect, data cannot be delivered to memory loca­
tions above the barricade or below the bas e relocation addres s unles s 
processing is in the interrupt mode. The character(s) at the location(s) 

8-79 #2-139 



00 
01 
02 
03 
04 
05 
06 
07 
10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 
25 
26 
27 
30 
31 
32 
33 
34 
35 
36 
37 
40 
41 

SECTION VIII. INSTRUCTIONS 

specified by the B addres s is loaded into the base relocation register (BRR). 
specifying the number of 4, 096 -character main memory banks which are 
available to a program. The number of main memory locations so designated 
a'ugl1.1.eiitS all rrleniory references nladc in the standard (norJ.nterr'upt) m.ode. 
For processors other than the Type 4201, the single-character contents of B 
are loaded into BRR. For the Type 4201 processor, a seventh bit, the right­
most bit of the contents of B-1, is loaded into BRR. The character(s) specified 
by the A address is loaded into the index/barricade register (IBR), specifying 
the number of a 4, 096 -character main memory bank. The barricade is es­
tablished to the left of the leftmost location in the specified bank (as augmented 
by the base relocation addres s). For proces sors other than the Type 4201, the 
single -character contents of A are loaded into IBR. For the Type 4201 pro­
cessor, a seventh bit, the rightmost bit of the contents of A-I, is loadedinto 
IBR. The correspondence between the number loaded into IBR and the posi­
tion of the barricade is shown in Table 8 -18. 

Table 8-18. Correspondence Between LIB Setting and Barricade Location 

0 0 42 34 139,264 
1 4,096 43 35 143, 360 
2 8, 192 44 36 147,456 
3 12,288 45 37 151,552 
4 16, 384 46 38 155,648 
5 20,480 47 39 159,744 
6 24, 576 50 40 163,840 
7 28, 672 51 41 167,936 
8 32,768 52 42 172,032 
9 36,864 53 43 176,128 

10 40, 960 54 44 180,224 
11 45, 056 55 45 184, 320 
12 49,152 56 46 188,416 
13 53,248 57 47 192,512 
14 57, 344 60 48 196,608 
15 61,440 61 49 200,704 
16 65,536 62 50 204,800 
17 69, 632 63 51 208,896 
18 73,728 64 52 212,992 
19 77,824 65 53 217,088 
20 81,920 66 54 221, 184 
21 86,016 67 55 225,280 
22 90, 112 70 56 229, 376 
23 94, 208 71 57 233,472 
24 98, 304 72 58 237,568 
25 102,400 73 59 241,664 
26 106,496 74 60 245,760 
27 110,592 75 61 249,856 
28 114,688 76 62 253,952 
29 118,784 77 63 258,048 
30 122,880 1 00 64 262, 144 
31 126, 976 1 01 65 266,240 
32 131,072 1 02 66 270, 336 
33 135,168 1 03 67 274,432 

8-80 #2-139 



SECTION VIII. INSTRUCTIONS 

Table 8 -18 (cont). Correspondence Between LIB Setting and Barricade' Location 

1 04 68 278,528 1 42 
1 05 69 282,624 1 43 
1 06 70 286,720 1 44 
1 07 71 290,816 1 45 
1 10 72 294,912 1 46 
1 11 73 299,008 1 47 
1 12 74 303, 104 1 50 
1 13 75 307,200 1 51 
1 14 76 311, 296 1 52 
1 15 77 315,392 1 53 
1 16 78 319,488 1 54 
1 17 79 323,584 1 55 
1 20 80 327,680 1 56 
1 21 81 331,776 1 57 
1 22 82 335,872 1 60 
1 23 83 339, 968 1 61 
1 24 84 344,064 1 62 
1 25 85 348, 160 1 63 
1 26 86 352,256 1 64 
1 27 87 356,352 1 65 
1 30 88 360,448 1 66 
1 31 89 364,544 1 67 
1 32 90 368,640 1 70 
1 33 91 372,736 1 71 
1 34 92 376,832 1 72 
1 35 93 380,928 73 
1 36 94 385,024 1 74 
1 37 95 389,120 1 75 
1 40 96 393,216 1 76 
1 41 97 397,312 1 77 

WORD MARKS 

Formats a and b: 

Word marks are not affected by thi s instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT 

Format b: NXT 

NOTES 

A-2 

A-2 

B 
P 

B-2 

98 401,408 
99 405,504 

100 409,600 
101 413,696 
102 417,792 
103 421,888 
104 425,984 
105 430,080 
106 434,176 
107 438,272 
108 442,368 
109 446,464 
110 450,560 
III 454,656 
112 458,752 
113 462,848 
114 466,944 
115 471,040 
116 475, 136 
117 479,232 
118 483,328 
119 487,424 
120 491,520 
121 495,616 
122 499, 712 
123 503,808 
124 507,904 
125 512,000 
126 516,096 
127 520,192 

1. The 15 additional index registers which are included in the Storage Protect 
and Extended Multiprogramming Features are located in the first 60 character 
locations to the right of the barricade position specified by this instruction. 
These locations can be used as normal storage locations when they are not 
being used for indexing operations. 

8-81 #2-139 



SECTION VIII. INSTRUCTIONS 

2. The LIB op code is a "privileged" op code which has special significance 
when storage protection is in effect with the Type 1201, 1251, 2201, or 
4201 processor (see Appendix E). 

3. This instruction is intended for use in the interrupt I-ilode alld s110uld nuL 
be issued in the standard Illode. 

4. The LIB instruction is not interpreted by Easycoder A sseIllbler A, B, or C. 

EXAMPLE 

AssuIlling that there are 131,072 storage locations in the main IlleIllory, set up the 
memory in such a way that the "open" memory area consists of locations 0 through 
65,535 and the protected memory area consists of locations 65,536 through 
131,072. The single octal character "20" is contained in the location tagged MP2. 

EASYCODER 
CODING FORM 

PROBLEM _________________ "'--_____ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD Ill! LOCATION 
OPERATION OPERANDS NUMBER CODE 

1 2\3 415 6 7 8 1415 2021 62 63 80 

I i L 'B M\l'l 

I 5 I B I STORE INDEX/BARRICADE REGISTER I 
FORMAT 

OP CODE 

o. -
b. -

FUNCTION 

A ADDRESS --
B ADDRESS 

__ I 
I FEATURES 1114, 1117, AND 1118 

I FEATURES 1118, 1120, AND 1121 

Format a: Basic storage protection is provided by this instruction format; the contents 
(up to seven bits) of the index/barricade register (IBR) are stored in the character 
location(s) specified by the A address. All high-order bit positions in A which 
are not used to specify the contents of the index/barricade register are cleared 
to zeros. In the Type 4201 processor only, the seventh bit in IBR is stored in the 
rightmost bit position of location A-I and the five remaining bit positions in A-I 
are cleared to zeros. 

Format b: Storage protection with bas e relocation is provided by this instruction format; 
the contents of the index/barricade register (IBR) are stored in the same manner 
as for basic storage protection (format a, above); in addition, the contents of the 
base relocation register (BRR) are also stored. The contents (up to seven bits) 
of BRR are stored in the character location(s) specified by the B addres s. All 
high-order bit positions in B which are not used to specify the contents of the 
base relocation register are cleared to zeros. In the Type 4201 ?roces sor only, 
the seventh bit in BRR is stored in the rightmost bit position of location B-1 and 
the five remaining bit positions in B-1 are cleared to zeros. The contents (up to 
seven bits) of the index/barricade register are stored in the character location(s) 
specified by the A address. All high-order bit positions in A which are not used 
to specify the contents of the index/barricade register are cleared to zeros. In 
the Type 4201 processor only, the seventh bit in IBR is stored in the rightmost bit 
position of location A-I and the five remaining bit positions in A-I are cleared to 
zeros. 

8-82 #2-139 



SECTION VIII. INSTRUCTIONS 

WORD MARKS 

Formats a and b: 

Word marks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-2 

Format b: NXT A -2 B-2 

NOTE 

1. The SIB instruction is not interpreted by Easycoder Assembler A, B, or C. 

2. This instruction is intended for use in the interrupt mode and should not be 
issued in the standard mode. 

EXAMPLE 

Store the contents of the index/barricade register in the single character location 
tagged PROT. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ OATE _____ PAGE_OF_ 

CARD ~~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

1 213 415 6 7 8 1415 2021 i 6263 80 

I : SIB PROT 

I TLU ITABLE LOOKUP 1 I FEATURE 0191 1 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. - - -
b. -
c. - -
d. -

FUNCTION 

Format a: A table in memory is a series of fields, each of which normally contains an argu­
ment of a function and the corresponding value of the function (see notes 1 and 2). 
The Table Lookup instruction initiates a search in a stored table for an argument 
which bears a specified relationship to a search argument, which is stated in the 
instruction (see illustration below). 

8-83 #2-139 



SECTION VIII. INSTRUCTIONS 

The B address specifies the rightmost location of the stored table, the A address 
specifies the location of the search argument, and the variant character specifies 
a relationship (equal to, higher than, etco) between the desired argument in the 
table and the search argument. The table is searched. trom rIgnt to lett untll thlS 
relationship is found or until a table field i s found which is shorter than the search 
argument. Then comparison indicators are turned on and the search terminates. 

Format b: Search the table whose rightmost location is specified by B for an argument which 
bears to the search argument specified by A a relationship specified by the variant 
character of a previous instruction. When this relationship is found or when a 
table field is found which is shorter than the search argument, turn on comparison 
indicators and terminate the search. 

Format c: Search the table whose rightmost location is specified by the contents of the B-ad­
dress register (BAR) for an argument which bears to the search argument specified 
by A a relationship specified by the variant character of a previous instruction. 
When this relationship is found or when a table field is found which is shorter than 
the search argument, turn on comparison indicators and terminate the search. 

Format d: Search the table whose rightmost location is specified by the contents of BAR for 
an argument which bears to the search argument specified by the contents of the 
A-address register (AAR) a relationship specified by the variant character of a 
previous instruction. When this relationship is found or when a table field is found 
which is shorter than the search argument, turn on comparison indicators and 
terminate the search. 

WORD MARKS 

Formats a, b, c, and d: 

The A operand (the search argument) must have a defining word mark. Each 
table field must also have a defining word mark. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Na L ta 

Format b: NXT A-N L ta a 

Format c: NXT A-Na L ta 

Format d: NXT Ap-Na L ta 

NOTES 

1. Each value in the table is normally stored immediately to the left of the 
corresponding argument, and each pair (argument plus value) constitutes 
a field in the table. However, if the values in the table are longer than 
three characters, it is advisable to store them in another part of memory 
and to store their 2- or 3-character addresses in the table instead. Since 
the timing of the TLU instruction depends on the number of characters 
searched in the table, it is desirable to minimize the length of the table. 

2. The Branch on Condition Test instruction (see page 8-35) canbe used after 
Table Lookup to branch to a routine which moves the located value to a work 
area. Note that at the completion of the TLU instruction, the B-address 

8-84 #2-139 



SECTION VIII. INSTRUCTIONS 

register (BAR) contains the address of the desired value (or the address of 
a location containing the address of the desired value, in the case where the 
value s are too long for efficient storage in the table). 

3. The variant characters which specify the desired relationships between the 
search argument and the argument to be located in the table are as follows: 

01 

02 

03 

04 

05 

06 

Stored Argument < Search Argument 

Stored Argument = Search Argument 

Stored Argument S Search Argument 

Stored Argument> Search Argument 

Stored Argument f. Search Argument 

Stored Argument ~ Search Argument 

4. The length of each argument in the table must be equal. to the length of the 
search argument. Note that a short table field (e. g., one which contains a 
short argument or which contains no value) can be used to terminate the search, 
which leaves the comparison indicators set to the condition "Stored Argument> 
Search Argument. " 

5. The Table Lookup instruction is not interpreted by Easycoder Assembler A, 
B, or C. 

6. Although the Series 200 hardware will chain the variant character of a Table 
Lookup instruction, the Mod 2 Assembler permits such chaining only if the B 
address of the instruction is also chained. 

7. Easycoder Assembler D and Mod 2 Assembler: 

a. Format a must use the generic op code (TLU) along with an 
explicit variant character. 

b. Format b must use a specific op code (e. g., LEH) in order to 
supply the omitted variant character. 

c. Formats c and d always use the variant character from the 
previous contents of the variant register. Therefore, the op 
code used should agree with the one used previously or be the 
generic form (TLU). 

8. The Table Lookup instruction is used by the Series 200 Mod 2 Assembler to 
implement a number of symbolic statements. The following table indicate s 
the correspondence between the mnemonic op codes for these statements 
and the TLU variants generated by the Mod 2 Assembler. 

LE Lookup Equal 02 

LH Lookup High 04 

LL Lookup Low 01 

LEH Lookup Equal or High 06 

LLE Lookup Low or Equal 03 

LLH Lookup Low or High (Unequal) 05 

8-85 #2-139 



SECTION VIII. INSTRUCTIONS 

EXAMPLE 

1. Figure 8 -8 shows how a stored table is searched for an argument which 
bears a specified relationship to a search argument. 

Search the table tagged TABLEI for the value which corresponds to the argument 
(557) stored in the field tagged ARGMNT. 

A Address: 

B Address: 

Variant 1: 

ARGMNT (absolute value = location 609) 

TABLEI (absolute value = location 149) 

02 = (Stored Argument = Search Argument) 

EASYCODER 
CODING FORM 

PROBLEM ______________ ~ ________ PROGRAMMER ______ DATE _____ PAGE_OF'_ 

CARD i'; LOCATION 
OPERATION 

OPERANDS NUMBER ~~ CODE 

1 213 415 6 7 8 1415 2021 ~ 62 63 

I l TLU ARGMNT , lAB l E 1 .• 02 
1 

I 
i I 

I Nos I MOVE OR SCAN I 1 FEATURE 0191 1 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. - - -
b. -
c. - -
d. -

FUNCTION 

Format a: The contents of the A field are moved to the B field in the manner specified 
by the variant character (see Table 8-19). The programmer specifies how 
the move operation is to be performed by selecting the desired conditions 
from the table and encoding the resulting two octal digits as the variant char­
acter of the instruction. See note Sa. 

Format b: This format is valid in symbolic coding only when a specific op code is used 
to indicate the omitted variant character. The resultant machine-language 
format and functions are the same as those de scribed for format a. 

Format c: The contents of the A field are moved to the field specified by the contents 
of the B-address register (BAR) in the manner specified by the variant char­
acter of a previous instruction (see Table 8 -19). See note 5c. 

Format d: The contents of the field specified by the contents of the A -address register 
(AAR) are moved to the field specified by the contents of BAR in the manner 
specified by the variant character of a previous instruction (see Table 8-19). 
See note 5c. 

8-86 

80 

#2-139 



(X) 

I 
(X) 
-.] 

::jj::: 

N 
I .­

v.> 
-..0 

EQUALITY OF A-FIELD 
'------TO STORED ARGUMENT 

TERMINATES OPERATION 

"SHORT FIELD" WHICH 
'--____ TERMINATES SEARCH IF 

SPECIFIED RELATIONSHIP 
IS NOT FOUND 

'-----B FIELD 

Figure 8-8. TLU Operation 

en 
M 
() 
~ 
1-1 

o 
Z 
<: 
1-1 
1-1 
1-1 

t-
Z 
(J} 

I-j 
~ 
c:: 
() 
I-j 
t-
O 
Z en 



XO 

Xl 

X2 

X3 

X4 

X5 

X6 

X7 

OX 

IX 

2X 

3X 

4X 

5X 

6X 

7X 

SECTION VIII. INSTRUCTIONS 

Table 8-19. Move or Scan Conditions 

No information is moved. The A - and B -addres s registers 
are incremented or decremented in accordance with the 
high-order digit of the variant character. 

Move A -field numeric bits to corresponding bit positions in 
B field. 

Move A -field zone bits to corre sponding bit positions in 
B field. 

Move A -field data and item-mark bits to corre sponding bit 
positions in B field. 

Move A ... field word-mark bits to corre sponding bit positions 
in B field. 

Move A-field numeric and word-mark bits to corresponding 
bit positions in B field. 

Move A-field zone and word-mark bits to corresponding bit 
positions in B field. 

Move A -field data, word-mark, and item-mark bits to cor­
responding bit positions in B field. 

Move one character from A to B. The A- and B-address 
registers are decremented by one. 

Move characters from left to right (A and B addresses 
specify leftmost characters in operand fields). Terminate 
the operation when the first A- or B-field word mark is 
sensed. 

Move characters from right to left (A and B addresses 
specify the rightmost characters in operand fields). Ter­
minate the operation when the first A -field word mark is 
sensed. 

Move characters from left to right. Terminate the opera­
tion when the control character "@" (72

8
) is sensed in the 

A field. 

Move characters from right to left. Terminate the opera­
tion when the first B-field word mark is sensed. 

Move character s from left to right. 
tion when the control character "; " 
if?J sensed in the A field. 

Terminate the opera­
(32

8
) with a word mark 

Move characters from right to left. Terminate the opera­
tion when the first A- or B-field word mark is sensed. 

Move characters from left to right. Terminate the opera­
tion when either the control character ";" (32

8
) with a 

word mark or control character "@" (72
8

) is sensed in 
the A field. 

8-88 #2-139 



SECTION VIII. INSTR UCTIONS 

WORD MARKS 

Formats a, b, c, and d: 

Word marks and control characters affect the operation of the instruction as 
described in the table above. 

ADDRESS REGISTERS AFTER OPERATION 

SR 

Format a: NXT 

NXT 

NXT 

NXT 

NXT 

NXT 

Format b: NXT 

NXT 

NXT 

NXT 

NXT 

NXT 

Format c: NXT 

NXT 

NXT 

NXT 

NXT 

NXT 

Format d: NXT 

NOTES: 

NXT 

NXT 

NXT 

NXT 

NXT 

AAR 

A-I 

A+N 
w 

A-N 
a 

A+N 
a 

A-N
b 

A-N 
w 

A-I 

A+N 
w 

A-N 
a 

A+N 
a 

A-N
b 

A-N 
w 

A-I 

A+N 
w 

A-N 
a 

A+N 
a 

A-N
b 

A-N 
w 

A -1 
P 

A +N 
P w 

A -N 
p a 

A +N 
P a 

A -N 
p b 

A -N 
p w 

BAR 

B-1 

B+N 
w 

B-N 
a 

B+N 
a 

B-N
b 

B-N 
w 

B-1 

B+N 
w 

B-N 
a 

B+N 
a 

B-N
b 

B-N 
w 

B -1 
P 

B +N 
p w 

B -N 
p a 

B +N 
p a 

B -N 
p b 

B -N 
p w 

B -1 
P 

B +N 
P w 

B -N 
P a 

B +N 
p a 

B -N 
p b 

B -N 
p w 

VARIANT = OX 

VARIANT = IX 

VARIANT = 2X 

VARIANT = (3, 5, or 7)X 

VARIANT = 4X 

VARIANT = 6X 

VARIANT = OX 

VARIANT = IX 

VARIANT = 2X 

VARIANT = (3, 5, or 7)X 

VARIANT = 4X 

VARIANT = 6X 

VARIANT = OX 

VARIANT = IX 

VARIANT = 2X 

VARIANT = (3, 5, or 7)X 

VARIANT = 4X 

VARIANT = 6X 

VARIANT = OX 

VARIANT = IX 

VARlANT = 2X 

VARIANT = (3, 5, or 7)X 

VARIANT = 4X 

VARIANT = 6X 

1. This instruction is available only on the 1201, 1251, 2201, and 4201 (standard) 
central processors. 

8-89 #2-139 



SECTION VIII. INSTRUCTIONS 

2~ The character containing the terrninating punctuation and/or control charac­
ters is rnoved or scanned in the sarne rnanner as the rest of the field. 

3. The variant characters and the corresponding :mnemonic op codes \vhich 
they represent are contained in Appendix B. 

4. The Move or Scan instruction is not interpreted by the Easycoder Assernbler 
A, B, or C. 

5. Although the Series 200 hardware will chain the variant character of a Move 
or Scan instruction, the Mod 2 Assernbler perrnits such chaining only if the 
B address of the instruction is also chained. 

6. Easycoder Assernbler D and Mod 2 Assernbler: 

a. Forrnat a rnust use the generic op code (MaS) with an explicit 
variant character. 

b. Forrnat b rnust use a specific op code (MLCW) to supply the 
ornitted variant. 

c. Forrnats c and d always use the variant character frorn the 
previous contents of the variant register. Therefore, the op 
code used should either agree with the one used previously or 
be the generic forrn (MaS). 

7. The Move or Scan instruction is used by the Series 200 Mod 2 Assernbler to 
irnplernent a nurnber of syrnbolic staternents.. Table B-9 in Appendix B in­
dicates the correspondence between the rnnemonic op codes for these state­
ments and the MaS variants generated by the Mod 2 Assernbler. 

EXAMPLE 

Move only the zone bits in'the field tagged TEMP to the field tagged WORK 
frorn right to left, and terrninate the operation when the fir st word rnark 
in the B field is sensed. 

EASYCODER 
CODING FORM 

PROBLEM ________________________ PROGRAMMER ______ DATE _____ PAGE _OF_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ COOE 

I 213 415 6 7 9 1415 2021 6263 eo 

I 1 !lAnA TF"MI> .,l4IaRIL ,42 
I 

1 

, , 

8-90 #2-139 



- STORE VARIANT AND INDICA TORS 

-RESTORE VARIANT AND INDICATORS 

- MONITOR CALL 

- RESUME NORMAL MODE 

8-91 #2-139 



SVI 

SECTION VIII. INSTRUCTIONS 

STORE VARIANT AND 
INDICATORS 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT - -
FUNCTION 

The SVI instruction is used to store information regarding the current status of the 
processor when an interrupt condition occurs. The instruction stores the designated 
information in up to six consecutive locations following its own variant character. 

Each bit in the six-bit variant character (V 6 V 5 V 4 V 3 V 2 VI) represents proces sor 
control registers or indicators whose contents are to be stored in a single character 
location. The programmer specifies the amount of information to be stored by 
selecting the desired entries from Table 8-20 and encoding the resulting bit con­
figuration as two octal digits. 

Table 8-20. Information Stored by'SVI Instruction 

x X X X X 1 The contents of the variant register. 

X X X X 1 X The settings of the arithmetic, comparison, ad­
dress mode, and item-mark trap mode indicators. 
This information is stored in seven bit positions 
of the character location - the six data bit p.osi­
tions and. the item-mark bit position. 

XXXIXX 

XXI XXX 

The arithmetic and comparison indicators are 
cleared when their contents have been stored. 

The contents of the auxiliary indicators register 
(AIR). The contents of the arithmetic, comparison, 
address mode, and item mark trap mode indi­
cators are stored automatically, in this register 
upon the occurrence of an external interrupt. 
Upon executing an RNM instruction to return to 
either standard or internal interrupt mode, the 
specified indicators are reset automatically using 
the contents of this register. The contents of 
this register can be changed by using the R VI 
instruction (see page 8 -95). 

The auxiliary arithmetic and compari son indi­
cators are cleared when their conterits have 
been stored. 

The settings of the indicators associated with the 
scientific unit (see Appendix F) and the sector interrupt 
masks 2 (see Appendix G). The scientific indicators are 
cleared when their cant 

8-92 #2-139 



SECTION VIlle INSTRUCTIONS 

Table 8-20 (cont). Information Stored by SVI Instruction 

X1XXXX 

1XXXXX 

The settings of the protect, 1 proceed, 1 instruction timeout 
allow,2 S-mode, and relocation2 indicators and (if the 
processor is in the external interrupt mode) the setting of 
the internal interrupt (II) mode indicator. 1 

The protect, proceed, and instruction time out allow indi­
cators are cleared when their contents are stored. 

The settings of the interrupt source indicators 1 and the 
instruction time out indicator. The stored settings of the 
interrupt source indicators can be tested to determine the 
status of the processor a's follows: 

1. Whether the proces sor is in the external interrupt 
mode, the internal interrupt mode, or the standard 
processing mode. 

2. The source of the interruption if the proces sor is 
in the external interrupt mode; any of three sources 
can be determined - a peripheral control, the con­
trol panel (or console), or the Monitor Call instruc­
tion (seepage 8-98). 

3. Whether an external interrupt (EI) address violation 
has occurred (if the processor is in the external 
interrupt mode). 

4. Whether an op code violation has occurred (if the 
processor is in the internal interrupt mode). 

5. Whether an internal interrupt (II) address violation 
has occurred (if the processor is in the internal 
interrupt mode). 

The indicators referred to in 3 through 5, above, as well 
as those which identify the control panel (or console) and 
the Monitor Call instruction as the interrupt source, are 
cleared when their contents are stored. 

lThese indicators are included in a Type 1201, 1251, or 2201 processor equipped with the 
Storage Protect Feature (see Appendix E) or a Type 4201 processor equipped with 
the Extended Mu1tipro~gramming and 8-Bit Transfer ~eature (see Appendix G). 

2These indicators are included in a Type 1201,1251, 2201, or 4201 processor equipped 
with the Extended Multiprogramming and 8-Bit Transfer Feature (see Appendix G). 

WORD MARKS 

A word mark is required in the location following the variant character to terminate 
the extraction of the SVI instruction. , Other word marks (if any) in the locations 
in which information is stored are ignored and unaffected. Program operation 
resumes with the next word-marked location following the stored information (the 
next sequential op code). 

8-93 #2-139 



SECTION VIII. INSTRUCTIONS 

ADDRESS REGISTERS AFT1!;R OPERATION 

SR AAR BAR 

NXT 

VI 0 Contents of Variant Register 

Trap- Address mode: Ove Zero A~B.: = B: 

V 2 
mode: 01 =2 -character; l=yes; Balance: l=yes; 1 =yes; 
1 =yes; 00=3-character; O=no. 1 =yes; O=no. O=no. 
O=no. 11 =4-character. ~~ O=no. * ~( * 

V3 Contents of AIR (identical to information stored by V2, above) 

* >:c * >:c 

Extended MPO:* DVC:* EXO:* Sector 0 Sector I Sector 2 

V
4 

I/O Indica- 1 =yes; 1 =yes; 1 =yes; Interrupt Inter Interrupt 

tor O=no. O=no. O=no. Mask: Mask: Mask: 

I = ON; l=on; l:on; 1 = on; 

0= OFF. O=off. O=off. o = off. 

0 Protect In- S mode Proceed Reloc- In external 
indi- struc ... indi- ation interrupt 

Vs 
cator: tion cator: Indi- mode only: 
l=on; Time- l=on; cator: 1 =II indi-
O=off. out O=off. 1 =on; cator on; 
~!< Allow: ~:::: O=off. otherwise, 

l=on; 
O=off.>!c 

Processdr is in external interrupt mode 

0 EI Ad- Monitor Control Periph- 1 II Mode 
dress Call: panel or eral indicator: 
viola- 1 =yes; console inter- l=on; 

V6 lation: O=no. inter- rupt: O=off. 
1 =yes; rupt: 1 =yes; 
O=no. l=yes; O=no. 

>:c * O=no. * 
Processor is in external interrupt mode 

o II Ad- Op code Instruc- 0 o 1 
dress viola- tion 
viola- tion: Timeout 
tion: l=yes; Indicator 
l=yes; O=no. 1 =yes; 
O=no. O=no. 

>.'c * >:~ 

)!c= Indicators that are cleared when their contents are stored. 

NOTES 

1. Only the number of characters specified by the variant character are 
stored. They are stored in the order listed in Table 8-20: the contents 
of the variant register (if specified) are stored in the location immedi-

O. 

8-94 #2-139 



SECTION VIII. INSTRUCTIONS 

ately fo11owing the SVI instruction, etc., using only those locations 
actually required to store the requested inform.ation. 

2. Item.-m.ark and data bit positions which are not used to store infor­
m.ation are cleared to zeros. 

3. The form.at in which inform.ation is stored by the SVI instruction is 
shown in the preceding table. Indica.tors which are cleared (i. e., set 
to zero) when their contents are stored are indicated by an asterisk (>.'<). 

4. Bits corresponding to indicators which are not present in the user's 
processor are stored as zeros. For instance, an SVI instruction 
issued in a processor which does not contain the Storage Protect 
Feature wi11 store zeros in those bit positions which correspond to 
indicators used only with the Storage Protect Feature. 

5. The current status of the arithm.etic, com.parison, address m.ode, 
and trap m.ode indicators are not stored in the auxiliary indicators 
register (AIR) when an internal interrupt occurs. The contents of 
AIR should therefore not be stored by an SVI instruction in the internal 
interrupt m.ode, for the contents of AIR would be m.eaningless at the 
tim.e of internal interruption. 

6. The SVI op code is a "privileged" op code that has special significance 
when issued in a Type 1201, 1251, 2201, or 4201 processor equipped 
with the Storage Protect Feature (see Appendix E). 

7. This instruction is intended for use in the interrupt m.odeand should not 
be issued in the standard m.ode. 

8. This instruction is a standard feature on a11 processors but the Types 
201 and 201-1, on which it is not available. 

9. The m.ethod of coding interrupt service routines is described in 
Appendix D, "Interrupt Processing. " 

10. The contents of the variant register are not altered by the execution of 
this instruction; i. e., the variant character of the SVI instruction is not 
stored therein. 

EXAMPLE 

Store the following inform.ation in the three successive m.em.ory locations which im.m.edi­
ately follow the variant character of the instruction: 

1. The contents of the variant register; 

2. The contents of the auxiliary indicators register (AIR); and 

3. The settings of the interrupt source indicators. 

The op code of the SVI instruction is tagged STORE, so that the locations of the stored 
inform.ation are STORE+2, STORE+3, and STORE+4. 

PROBLEM _______________________ PROGRAMMER ______ OATE _____ PAGE_OF'_ 

CARD 
NUMBER 

1 213 415 

I : 

I~I~ LOCATION 
OPERATION 

I~ ~ CODE 

6 7 8 1415 2021 

STORE sv, 4.5. 

RESTORE VARIANT AND 
INDICATORS 

FORMAT 

OP CODE A ADDRESS 

OPERANDS 

62 63 80 

B ADDRESS VARIANT - -
8-95 #2-139 



FUNCTION 

SECTION VIII. INSTRUCTIONS 

Up to five consecutive characters (previously stored via an SVI instruction) are 
loaded into the processor control registers and/or indicators specified by the 
variant character. Characters are retrieved from. left to right, beginning with 
the character specified by the A address. 

The low-order five bits of the variant character specify the registers and/or 
indicators whose contents are to be restored. The program.m.er specifies the 
am.ount of inform.ation to be restored by selecting the desired entries from. Table 
8-21 and encoding the resulting bit configurations as two octal digits. 

Table 8-2l. Inform.ation Restored by RVI Instruction 

OXXXXI 

OXXXIX 

OXXIXX 

OXIXXX 

01XXXX 

The contents of the variant register. 

The settings of the arithm.etic, com.parison, ad­
dress m.ode, and item.-m.ark trap m.ode indi­
cators. This inform.ation is stored in the six 
data bits and the iteITl-m.ark bit of a character 
location. 

The contents of the auxiliary indicators regis­
ter (AIR). Upon returning from. external in­
terrupt m.ode to either internal interrupt or 
standard ITlode, the contents of this register 
are m.oved autoITlatically to the indicators speci­
fied above for V2 • 

The settings of the indicators associated with the 
scientific unit (see Appendix F) and the sector 
interrupt Illasks2 (see Appendix G). 

The settingsoftheprotect, 1 proceed,l instruction 
tiIlleout allow, 2 S Illode, and relocation2 indicators 
and (if the processor is in the external interrupt 
Illode) the setting of the internal interrupt (II) Illode 
indicator. 1 

IThese indicators are included in a Type 1201,1251,2201, or 4201 processor 
equipped with the Storage Protect Feature (see Appendix E). 

2These indicators are included in a Type 1201, 1251, 2201, or 4201 processor 
equipped with Extended MultiprograIllITling and 8-Bit Transfer Feature (see Appendix G). 

WORD MARKS 

Word ITlarks neither affect nor are affected by this instruction. 

8-96 #2-139 



SECTION VIII. INSTRUCTIONS 

ADDRESS REGISTERS AFTER OPERATION 

SR 

NXT 

NOTES 

AAR 

A 
P 

BAR 

1. Each entry in the righthand column of Table 8-21 is retrieved from a single 
character location. Only the number of characters corresponding to the 
selected table entries are retrieved by the R VI instruction. 

2. The RVI op code is a "privileged" op code that has special significance when 
used with a Type 1201, 1251, 2201, or 4201 processor equipped with the 
Storage Protect Feature (see Appendix E). 

3. This instruction is intended for use in the interrupt mode and should not be 
issued in the standard mode. 

4. The format in which information is stored by an SVI instruction is 
shown in the table on page 8-94. Note that the information contained 
in the last character location is not restored by the R VI instruction. 

5. This instruction is a standard feature on all processors but the Types 
201 and 201 .. 1, on which it is not available. 

6. The method of coding interrupt service routines is described in Appendix 
D, "Interrupt Processing. " 

7. The protect and proceed indicators, when present in the user's system, 
are not turned on automatically by the computer but instead must be turned 
on by programmed instructions, as follows: (1) a I-bit is set in the bit 
position which, when restored by the R VI instruction, indicates the status 
of the indicator; and (2) an R VI instruction with a V 5 bit of 1 in the variant 
character is executed, thereby turning on the appropriate indicator. 

8. Unless the contents of the variant register are explictly restored by this 
instruction, they are not altered by its execution; i. e., the variant charac­
ter of the R VI instruction is not stored in the variant register. 

EXAMPLE 

Restore the contents of the variant register and auxiliary indicators register (AIR) 
that were previously stored by the SVI instruction example on page 8- 95. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~ ~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE -

1 213 415 6 7 8 1415 2021 6263 80 

I I I~\J , STORE t 2_..J/J.S , 
~ 

I 
I 

I I 
I I 

: I 
I I 
I I i 

8-97 #2-139 



SECTION VIII. INSTR UCTIONS 

Mel MONITOR CALL I 

FORMAT 

OP CODE A ADDRESS B ADDRESS -
FUNCTION 

The Monitor Call instruction causes the processor to enter the external interrupt 
m.ode (if the processor is not already in that m.ode). The following activities are 
autom.atically perform.ed: 

1. The EI interrupt source indicators are set to show that the Monitor Call 
instruction is the source of interruption, and the processor enters the 
external interrupt m.ode; 

2. The settings of the arithm.etic, com.parison, address m.ode, and item.­
m.ark trap m.ode indicators are stored in the auxiliary indicators reg­
ister (AIR); 

3. The arithm.etic indicators are cleared; 

4. The contents of the sequence register (SR) and the external interrupt 
register (EIR) are interchanged, and the program. branches to the instruc­
tion whose op code address was previously stored in EIR; 

5. The processor switches to the three-character, non-trap m.ode. 

WORD MARKS 

Word m.arks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR EIR AAR BAR 

JI (con- NXT 
tents 
of EIR) 

NOTES 

1. If this instruction is issued in the external interrupt m.ode, the results are 
unspecified. 

2. The interrupt source indicators can be stored via an SYI instruction 
(see page 8-92). Their stored contents can then be interrogated by 
program.m.ed instruction to determ.ine the interrupt source. 

3. This instruction is a standard feature on all proce s s or s but the Type s 
201 and 201-1, on which it is not available. 

EXAMPLE 

Interrupt the central processor and branch to MONTOR, the location of the m.onitor 
program.. The address tagged MONTOR, was previously stored in EIR. 

8-98 #2-139 



SECTION VIII. INSTR UCTIONS 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD OPERATION 
NUMBER 

~I~ 
~ ~ 

LOCATION CODE OPERANDS 

1 213 415 6 7 8 '1415 2021 6263 

I I SCR MON iOR. ... 6.6. 
I 

I ( 

I I ( 
I I .~ 
: I Me 
I I 

I RNM I RESUME NORMAL MODE I 
FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
C. -

FUNCTION 

Format a: The RNM instruction causes an exit from the program being executed in the 
interrupt mode (external or internal) to the program which was interrupted. The 
activities performed depend on the type of interrupt mode in which the instruction 
is issued. 

When the RNM instruction is issued in the external interrupt mode: 

1. The EI mode indicators are turned off; 

2. The arithmetic, comparison, address mode, and item-mark trap mode 
indicators are restored to the status specified by the auxiliary indicators 
register (AIR); 

3. The A and B addresses of the RNM instruction are stored in the A- and 
B-address registers (AAR and BAR), respectively; and 

4. The contents of the sequence register (SR) and the external interrupt reg­
ister (EIR) are interchanged, and the program branches to the instruc­
tion whose op code address was initially stored in EIR when the external 
interrupt occurred. 

When the RNM instruction is issued in the internal interrupt mode: 

1. The II mode indicator is turned off; 

2. The A and B addresses of the RNM instruction are stored in AAR and 
BAR, respectively; and 

3. The contents of SR and the internal interrupt register (IIR) are inter­
changed, and the program branches to the instruction whose op code ad­
dres s was initially stored in IIR when the internal interrupt occurred. 

80 

8-99 #2-139 

/ 
/ 



SECTION VIII. INSTRUCTIONS 

Format b: This format operates like format a. except that the B address of the RNM instruc­
tion is not stored in BAR. The previous contents of BAR are not changed. 

Format c: This format operates like format a. except that no instruction addres ses are stored. 
The previous contents of AAR and BAR are not affected by this format. 

WORD MARKS 

Formats a, b, and c: 

Word marks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR EIR IIR AAR BAR 

Format a: NXT address of op A B RNM ISSUED 
code following n/a IN EXTERNAL 
RNM instruction INTERRUPT 

MODE 

address of op RNM ISSUED 
NXT n/a code following A B IN INTERNAL 

RNM instruction INTERRUPT 
MODE 

Format b: address of op RNM ISSUED 
NXT code following n/a A Bp IN EXTERNAL 

RNM instruction INTERRUPT 
MODE 

address of op RNM ISSUED 
NXT n/a code following A Bp IN INTERNAL 

RNM instruction INTERRUPT 
MODE 

Format c: address ·of op RNM ISSUED 
NXT code following n/a A B IN EXTERNAL 

RNM instruction 
p p 

INTERRUPT 
MODE 

address of op RNM ISSUED 
NXT n/a code following A Bp IN INTERNAL 

RNM instruction 
p 

INTERRUPT 
MODE 

NOTES 

1. The address of the instruction which follows the RNM instruction is 
stored in the appropriate interrupt register (EIR or IIR) when the RNM 
instruction is executed. This register therefore contains the address 
of the first instruction executed in the interrupt routine when the next 
interrupt of the same type occurs. This instruction should be an SVI 
instruction, which should be the first instruction executed in any 
interrupt service routine. 

8-100 #2-139 



SECTION VIII. INSTRUCTIONS 

2. The method of coding interrupt service routines is described in 
Appendix D, lIInterrupt Processing." 

3. The RNM op code is lIprivileged ll op code which has special significance 
when used with a Type 1201, 1251, 2201, or 4201 processor equipped 
with the Storage Protect Feature (see Appendix E). 

4. This instruction is intended for use in the interrupt mode and should not 
be issued in the standard mode. 

EXAMPLE 

The simplified coding below shows a convenient method of restoring the starting 
address of the external interrupt routine (EXT2) in EIR when the normal program 
sequence is resumed. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD r~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

1 213 415 6 7 8 1415 2021 I I 6263 80 

I : RESUME IR,NM 
I 

1 EX,. 2- SVl .145 
i I I 
I I ) ~ INiE.~RUPT ,ROUT Ir-\,E 
i : ) 

I I ) 

I I la RESUME. 
i I 

8-101 #2-139 





• MOVE CHARACTERS AND EDIT 

8-103 #2-139 



SECTION VIII. INSTRUCTIONS 

I MCE I MOVE CHARACTERS AND EDIT II FEATURE 0131 

FORMAT 

OP CODE A ADDRESS 8 ADDRESS 

o. - -
b. -
c. -

FUNCTION 

Format a: The MCE instruction is used to insert identifying symbols and punctuation and to 
suppress unwanted zeros in a data field. The A field of an MCE instruction con­
tains the information to be edited. The B field contains an edit control word which 
provides a framework for the edit operation. When an MCE instruction is executed, 
the data in the A field is moved to the B field where it is punctuated and formatted 
according to the edit control word already stored in that field. 

NOTE: An LeA instruction can be used to load the control word into the field 
where the edited information will eventually go. For instance, if the edited 
information is to be printed, the control word should be loaded into the print 
image area and the address of this area should be used as the B address of the 
MCE instruction. 

Editing is performed according to the following rules: 

RULE 1. Any character in the Series 200 character set can be used in the edit 
control word. Those characters having special meanings are listed in Table 8-22. 
Any other character, if included in the edit control word, remains in the edited 
result in the position where written. 

, 
RULE 2. A word mark in the high-order position of the B field controls the edit 
operation. . .. 

RULE 3. The number of replaceable characters in the edit control word must be 
at least as large as the number of characters in the A field. 

RULE 4. Data is transferred from the A field character by character, from right 
to left. If a zero suppression symbol is not sensed in the edit control word, the 
edit operation terminates when the B-field word mark is sensed. A zero sup­
pression symbol causes the edited result field to be scanned from left to right. 
During this scan, high-order zeros and commas are automatically replaced by 
blanks (unless an asterisk appears immediately to the left of the zero suppression 
symbol - see rule 5). Zero suppression is terminated by any of the following: 

a. a decimal digit from 1 through 9, 

b. a decimal point, or 

c. the location that initially contained the zero suppression symbol. 

RULE 5. An asterisk immediately to the left of the zero suppression symbol in 
the control word causes high-order zeros and commas to be replaced by asterisks 
instead of blanks in a zero suppression operation. High-order blanks are also 
replaced by asterisks. 

8-104 #2-139 



SECTION VIII. INSTRUCTIONS 

RULE 6. A dollar sign immediately to the left of the zero suppression symbol in 
the control word is replaced with an A-field character and causes the edited result 
to be rescanned following the zero suppression operation. During this scan, the 
dollar sign is IIfloated" to the left of the high-order significant digit in the edited result. 

Table 8-22. 

b (blank) 

o (zero) 

(decimal point) 

, (comma) 

C R , CR (credit) 

6 (minus) 

NOTE: 0 is printed 
as a minus symbol. 

378 

* (asterisk) 

$ (dollar sign) 

Special Characters in MCE Instruction 

Blanks are replaced with A-field characters such 
that the rightmost character in the A field re­
places the rightmost blank in the edit control word 
and all higher-order A-field characters replace 
successively higher-order blanks. 

This symbol specifies zero suppression. Its 10 .. 
cation in the control word is interpreted as the 
rightmost limit of zero suppression. It is re­
placed with an A-field character. 

The decimal point remains in the edited field in 
the position where written. 

Gommas remain in the edited field where written 
unless zero suppression is specified (see rule 4). 
Commas in control word positions to the left of 
the high-order cl:taracter transferred from the 
A field are replaced by blanks. 

The credit or minus symbol is undisturbed if the 
sign in the units position of the A field is negative. 
If the sign is positive, the credit (or minus) sym­
bol is blanked out. A credit (or minus) symbol 
transferred from the A field is not subject to 
sign control. 

An octal 37 is replaced by a blank in the edited 
field. 

The asterisk remains in the edited field in the po si­
tion where written unless it appears immediately 
to the left of the zero suppression symbol (see 
rule 5). 

The dollar sign remains in the edited field in the 
position where written unless it appears immedi­
ately to the left of the zero suppression symbol 
(see rule 6). 

Format b: The data contents of the A field are edited and stored in the field specified by the 
contents of the B-address register (BAR) according to the rules outlined above. 

Format c: The data field specified by the contents of the A-address register (AAR) are 
edited and stored in the field specified by the contents of BAR according to the 
rule s outlined above. 

8-105 #2-139 



SECTION VIII. INSTRUCTIONS 

WORD MARKS 

Formats a , b, and c: 

Both the A field and the B field must have defining word marks. The A-field word 
mark terminates the transfer of data from the A field. The B-field word mark 
terminates the edit operation if no zero suppression symbol is sensed in the edit 
control word or if automatic dollar sign insertion is specified in conjunction with 
zero suppression. The B-field word mark is erased after terminating the edit. 

If zero suppression is specified, a word mark is automatically set in the location 
containing the zero suppression symbol. When this word mark is sensed during 
the reverse scan associated with the zero suppression operation, it is erased 
and, if automatic dollar sign insertion is not called for, the edit operation terminates. 

ADDRESS REGISTERS AFTER OPERA TION 

Uns pecified 
NOTES 

I. The zone bits in the units position of the A field are cleared to zero when 
moved to the B field. Therefore the value of the character in the units 
position in the A field may change when moved to the B field. For example, 
an F in the units position of the A field will appear as a 6 in the result field. 

2. Floating dollar sign insertion and automatic asterisk insertion can not be 
performed in the same edit operation. 

3. The contents of the variant register are unspecified following the execution 
of this instruction. Therefore, an instruction requiring a variant character 
cannot be chained following an MCE instruction. 

EXAMPLES 1 

1 

Data Field (A Field) 

Control Word (B Field) 

Re sult of Edit 

Example I. 

Data Field (A Field) 

Control Word (B Field) 

Result of Edit 

Example 2. 

Data Field (A Field) 

Control Word (B Field) 

Result of Edit 

Example 3. 

@000099 

® bb, bbO. bb&&O 

.99 

@ 5454986 

@bb&bb&bbb 

254 54 986 

@00456 

®b, bbO. bb&CR~.c 

$ 4. 50 ~.c 

The character (37 8 ) is shown as an ampersand (&) in these examples. However, the ampersand 
is not the only equivalent of 378 as shown in Table B-6. 

8-106 #2-139 



SECTION VIII. INSTRUCTIONS 

Data Field (A Field) 

Control Word (B Field) 

Result of Edit 

Example 4. 

Data Field (A Field) 

Control Word (B Field) 

Result of Edit 

Example 5. 

8-107 

@0897445 

®bbb, b$O. bb 

$8,974.45 

@»10450 

@>, b~cO. bb 

***104.50 

#2-139 





.PERIPHERAL DATA TRANSFER 

.PERIPHERAL CONTROL AND BRANCH 

8-109 #2-139 



SECTION VIII. INSTRUCTIONS 

INPUT /OUTPUT CONTROL OPERATIONS 

Effective control over data transfers between the central processor and peripheral units 

and over the peripheral units themselves is maintained by the use of two basic instructions: Pe­

ripheral Data Transfer (PDT), and Peripheral Control and Branch (PCB). The PDT instruction 

is used to initiate data transfer operations and certain other related operations, such as back­

space magnetic tape and advance the printer form. 

The PCB instruction can perform four distinct functions: (1) it initiates strictly mechanical 

(non-data transfer) operations such as magnetic tape rewinds and card rejections; (2) it causes a 

program branch to be performed contingent upon the settings of peripheral condition indicators; 

(3) it changes the operational mode of a peripheral control; and (4) it allows a peripheral control 

to interrupt (or directs the control not to interrupt) the central processor when data transfer is 

completed. 

Detailed programming and operating information for Series 200 peripheral devices is pro­

vided in separate publications. The remainder of this section is a summary of the PDT and PCB 

instructions, based on the assumption that the user is familiar with the contents of the applicable 

documents. In all applicable cases, the coding summary for a device is followed by a reference 

to the specific Honeywell manual or information bulletin where additional information can be found. 

SELECTING RWC ASSIGNMENTS FOR USE IN PDT INSTRUCTIONS 

As described below, the first control character (C1) in a PDT instruction is referred to as 

the "read/write channel assignment." This six-bit character specifies the read/write channel(s) 

selected to complete the data path (see also pages 1-16 and 2-13). When coding a PDT instruction, 

the programmer may enter Table 8-24 to select an RWC assignment. The following discussion 

concerns the considerations involved in selecting RWC assignments and the correspondence 

between achievable data transfer rates and RWC assignments. 

Considerations in Selecting RWC Assignments 

At least four factor s must be considered when selecting an RWC assignment. These factors 

are: (l) the data transfer rate of the device being addressed; (2) the processor being used; (3) 

the I/O sector to which the device is attached; and (4) the necessity of being upward compatible. 

DEVICE DATA TRANSFER RATE 

The first consideration in selecting an RWC assignment is the rated speed at which the de­

vice being addressed transfers data to or from main memory. The one or more RWC's assigned 

to an operation must receive memory accesses often enough to keep up with the I/O data transfer 

8-110 #2-139 



SECTION VIII. INSTRUCTIONS 

rate of the device. For exatnple, the RWC assigntnent used in a PDT instruction which ad­

dresses a Type 258 Disk Pack Drive must designate a data transfer capacity high enough to keep 

pace with the device's 208, OOO-character-per-second transfer rate. 

However, due to mechanical tolerances, some devices tnay transfer data at instantaneous 

rates higher than their notninat transfer rates. In a few such cases, the devices require an 

RWC asslgntnent having a greater data handling capacity than would be required if the nominal 

data transfer rate were maintained. As an example, a Type 204B-5 tape drive using a density 

of 556 bits per inch requires an RWC assignment having a data handling capacity of 167, 000 

characters per second, even though the notninal transfer rate for this device is les s than 

83, 300 characters per second. 

Table 8-23 lists the minitnum RWC capacity requirements for each Series 200 peripheral 

device. 

Table 8-23. Minimum. RWC Capacity Requirements for Series 200 Peripheral Devices 

204A-l Magnetic Tape Unit 

204A- 2 Magnetic Tape Unit 

204A- 3 Magnetic Tape Unit 

204B -1, - 2 Magnetic Tape Units 
200/556bpi 

204B - 3, -4 Magnetic Tape Units 
200/556 bpi 

204B - 5 Magnetic Tape Unit 
200 bpi 
556 bpi 

204B -7 Magnetic Tape Unit 
200/556/800 bpi. 

204B-8 Magnetic Tape Unit 
200/556 bpi 
800 bpi 

204B -9 Magnetic Tape Unit 
200/556 bpi 
800 bpi 

1200 bpi 

204B-11, -12 Magnetic Tape Units 
200/556 bpi 

204C-13, -14 Magnetic Tape Units 

206 Printer 

214-1 Card Punch 

8-111 

83.3 KC 

167 KC 

167 KC 

83.3 KC 

83.3 KC 

83.3 KC 
167 KC 

83.3 KC 

83.3 KC 
167 KC 

83.3 KC 
167 KG 
167 KC 

83.3 KC 

83.3 KG 

167 KC 

83.3 KG 

#2-139 



SECTION VIII. INSTR UCTIONS 

Table 8-23 (cont). Minimum RWC Capacity Requirements for Series 200 Peripheral Devices 

214-2 Card Reader/Punch 
Read 
Punch 1 

222 Printers (All Models) 

223 Card Reader 
223-2 Card Reader 

224-1, -2 Card Reader/Punch 
Read 
Punch 

227 Card Reader-Card Punch 
Read 
Punch 

232 MICR Reader-Sorter and Control 

233-2 MICR Control 

209 Paper Tape Reader 

209-2 Paper Tape Reader 

210 Paper Tape Punch 

212 On-Line Adapter 

212-1 Central Processor Adapt,~r 

213-4 Time-of-Day Clock 

220-1, -2, -3 Consoles 

234 Calcomp Plotter Control 

235 Optical Journal Reader Control 

237 Bill Feed Printer Control 

258 Disk Pack Drive 

259 Disk Pack Drive 

259A Disk Pack Drive 

259B Disk Pack Drive 

261 Di sk File 

262 Disk File 

270 Random Access Drum Storage 
(All Models) 

281 Single -Channel Communication 
Controls 2 (All Models) 

286-1, -2, -3 Multi-Channel Communi­
cation Controls 

286-4, -5 Message-Mode, Multi-C 
Communication Controls3 

287 A UTODIN Communication Control2 

287-1 USASCII AUTODIN Communication 
Control2 

83.3 KC 
83.3 KC 
167 KC 

83.3 KC 
83.3 KC 

83.3 KC 
83.3 KC 

167 KC 
167 KC 
83.3 KC 

83.3 KC 

83.3 KC 

83.3 KC 

83.3 KC 

167 KC 

19 7 KC 

83.3 KC 

83.3 KC 

83.3 KC 

83.3 KC 

167 KC 

250 KC 

250 KC 

167 KC 

167 KC 

250 KC 

250 KC 

167 KC 

83.3 KC 

83.3 KC 

83.3 KC 

83.3 KC 

83.3 KC 

l When a 222-3, -4, -5, or -6 printer is equipped with the Print Buffer (Feature 036), 
the transfer rate must be either 83.3 KC or 167 KC. 

2The 281-2F, 287, and 287-1 controls require exclusive assignment of two 83.3 KC 
RWC's when operating in full-duplex mode. 

3The maximum RWC capacity that can be assigned to a 286-4 or 286-5 is 167 KC. 

8-112 #2-139 



SEC TION VIII. INSTRUCTIONS 

THE PROCESSOR BEING USED 

Each Series 200 processor except the 1201 and 1251 comes with a basic and an expanded I/O 

configuration. These I/O configurations include different numbers of RWC's. Clearly, then, the 

identity of the processor being used and whether or not it is an expanded configuration will help 

to determine what RWC assignments are available for use. For example, in the basic (3-chan­

nell Type 201-2 processor, eight RWC assignments are available. Input/output operations pro­

ceeding at rates up to 167,000 characters per second can be handled on individual channels by 

designating either of two RWC assignments available for each channel. Two RWC assignments 

are provided for interlocking channels to handle rates of up to 333, 000 and 500, 000 characters 

per second, respectively. Adding Feature 016 to a Type 201-2 allows the use of two additional 

RWC assignments: one to increase I/O f1exi"~ility by permitting a fourth simultaneous I/O opera­

tion, and the other to interlock two channels in such a way as to achieve a 250, 000 -character­

per-second transfer rate. Note that the maximum data transfer rate (all channels) achievable 

with the expanded I/O configuration remains 500, 000 characters per second. 

As indicated in Section II, Type 4201 processors are equipped with variable-speed read/ 

write channels. No more than two RWC's (a primary and the corresponding auxiliary) are ever 

made busy by a single RWC assignment. RWC's not made busy by a high-speed transfer are 

available for use in other operations. For example, in a basic 4201, a 250, OOO-character-per­

second transfer from an I/O device in sector 1 can be handled using RWC assignment 558 and 

only RWC 3 will be tied up. The other three sector 1 RWC's will still be available for use in 

other operations, e. g., three 83, 300-character-per-second transfers. 

The" sector escape" code feature of the Type 4201 (used in both PDT and PCB instructions) 

make s variable - speed read/write channels even more attractive. An escape code allows an 

RWC normally restricted to operating in one sector to be used for I/O transfers in another sec­

tor. For example, an escape code can be used to assign RWC 1, normally used only in sector 

1, to a data transfer in sector 2. 

This facility enables the programmer to transfer RWC's temporarily to a sector perform­

ing several low- speed operations from anothe r sector in which one or two operations are using 

the sector's entire data handling capacity. For example, escape codes could be used in a basic 

4201 to perform simultaneously the operations indicated in Figure 8-9. In this example, escape 

codes are used to enable RWC' s 1 and l' to operate in sector 2. 

8-113 #2-139 



SECTION VIII. INSTRUCTIONS 

1 1 167,000 char/sec 2 
2 1 333,000 char/sec 3 
3 2 83,000' char/sec 1 
4 2 83,000 char/sec 1 ' 
5 2 83, 000 char / sec 4 
6 2 83, 000 char / sec 4' 
7 2 83, 000 char / sec 5 
8 2 83,000 char/sec 6 

Figure 8-9. Example of Operation Utilizing Escape Codes 

INPUT /OUTPUT SECTOR TO WHICH DEVICE IS CONNECTED 

Each input/output sector in a Series 200 processor has a maximum total data transfer capacity. 

For Model 200, 1200, 1250, and 2200 processors, this maximum is 500, 000 characters per 

second. Sector 3 of an expanded 4201 processor can handle up to 333,000 characters per second. 

The identity of the I/O sector to which the addressed device is connected also becomes a factor 

when selecting RWC assignments for expanded Type 2201 processors and for all 1251 and4201 proc­

essors. In general, the RWC assigned to an operation should be associated with the sector to 

which the addressed device is connected. However, as indicated above, this rule can be circum-

vented to advantage in 4201 processors by the use of escape codes. 

UPWARD COMPATIBILITY 

Because of the manner in which upward compatibility has been consistently implemented in 

Series 200 processors, very little consideration need be given to this factor when selecting RWC 

assignment codes. The one case where such consideration must be given is when assigning a 

primary RWC for which there is no corresponding auxiliary channel in the processor being pro­

grammed to an operation. faster than 83, 300 characters per second. An example of such a case 

is the assignment of the single channel RWC 1 to a drum read operation (102, 000 characters per 

second) to be performed in a basic (3-channel) Model 200 processor. In the basic processor, 

RWC 1 can handle transfer rates up to 167, 000 characters per second. However, in an expanded 

Model 200, RWC' s 1 and l' can handle only 83, 300 characters per second apiece unless they are 

interlocked. Thus, if the attempt were made to run the basic 200 program on an expanded 200, 

the RW C 1 alone would not be able to handle the drum's transfer rate. 

8-114 #2-139 



SECTION VIII. INSTRUCTIONS 

In order to avoid such problems, the following general rule should l?e followed: 

The RWC assignment in a PDT instruction addressing a device which operates 
between 83, 300 and 167, 000 characters per second should be such that it would 
interlock the primary channel and its auxiliary if the program were run in a 
proce s sor equipped with both channels; i. e., its high-order digit should be 5 or 7. 

Clearly, there is no need to specify the "interlock" assignment if the device runs slower than 

83, 300 characters per second. Rather, in the interest of making more RWC' s available for use 

in other operations, it j s often wise in such case s to specify the single -channel as signITlent. 

I PDT I PERIPHERAL DATA TRANSFERI 

FORMAT 

( I/O CONTROL CHARACTERS) 

OP CODE A ADDRESS CI C2 C3 Cn - - - - r-----., r - - -- --, , , ... , I '- _____ J L ______ J c 

OP CODE A ADDRESS CI CE C2 C3 Cn - - - - - r---- .... r---..., L ___ J"·L ___ J b. 

FUNCTION 

ForITlat a: The PDT instruction causes data to be transferred between a peripheral device and 
the ITlain ITleITlory area whose leftITlost location is designated by the A address. Data 
transfer is terITlinated according to the data ITlediuITl eITlployed. Input/output control 
characters specify the data path through which the transfer is to be accoITlplished, as 
indicated in Tables 8-24 and 8-26. 

ForITlat b: Data is transferred between a peripheral device and the ITlain ITleITlory area who se 
leftITlost location is designated by the A address. Data transfer is terITlinated ac­
cording to the data ITlediuITl eITlployed. Input/output control characters and an escape 
code specify the data path through which the transfer is to be accomplished, as indi­
cated in Tables 8-24, 8-25, and 8-26. 

8-115 #2-139 



Basic 

ith Feature 
016 

Basic 

ith Feature 
016 

Basic 

ith Feature 
1115 

Basic 

With Feature 
1115 

SECTION VIII. INSTRUCTIONS 

Table 8-24. Description of PDT I/O Control Character Cl 
(Read/Write Channel Assignment) 

Type 201, 201-1 Processors 

{ 

167,000 
167,000 
167,000 

83,000 
83,000 

167,000 

Type 201-2 Processor 

{ 

167,000 
167,000 
167,000 
333,000 
500,000 

83,300 
83,300 

167,000 
250,000 

Type 1201 Processor 

1 
2 
'3 
1 

1 ' 
.!.! l' 

1 
2 
3 

2,~ 2 
1, 2, ~ 

1 

Same as Type 201-2 with Feature 016. 

Type 1251 Processor 

Sector 1 

83,300 
83,300 

167,000 
167,000 
167,000 
250,000 
333,000 
500,000 

Sector 2 

83,300 
83,300 

167,000 
167,000 
167,000 
250,000 
333,000 
500,000 

Type 2201 Processor 

1 
T' 
.,!., l' 
2 
3 
T',33 
2,35 

- 3 1, 1', 2, ~ 

4 
4' 
±,4' 
5 
"6 
4\ 64 

5,64 
- 4 4,4', 5, ~ 

Same as Type 201-2 with Feature 016. 

Sector 1 same as Type 201-2 with Feature 016. 

Sector 2 same as Type 1251. 

8-116 

51 
52 
53 

11 
15 
51 

51 
52 
53 
56 
54 

11 
15 
51 
55 

11 
15 
51 
52 
53 
55 
56 
54 

31 
35 
71 
72 
73 
75 
76 
74 

#2-139 



1 

2 

3 

Basic 

With Feature 
1116 

SECTION VIII. INSTRUCTIONS 

Table 8-24 (cont). Description of PDT I/O Control Character Cl 
(Read/Write Channel Assignment) 

Type 4201 Processor 

Sector 1 same as Type 201-2 with Feature 016. 

Sector 2 same as Type 2201 with Feature 1115. 

Sector 1 

83,300 
83,000 
83)000 
83,000 
83, 000 
83,000 

250,000 
167,000 
167,000 
167,000 
250,000 
333,000 
500,000 

Sector 2 

83,300 
83,000 
83,000 
83,000 
83,000 
83,000 

250,000 
167,000 
167,000 
167,000 
250,000 
333,000 
500,000 

Sector 3 

83,300 
83,000 
83,000 
83, 000 

167,000 
167,000 
333,000 

1 
2 
3" 
1 ' 
2' 
3' 
2 
I, l' 
b 2 ' 
~, 3' 
3 
3" 
3 

4 
5 
6 
4' 
5' 
6' 
5 
i" 4' 
5,5' 
6,6' 
6" 
6" 
6 

8 
9 
8' 
9' 
:[,8' 
,2.,9' 
9 

11 
12 
13 
15 
16 
17 
50 
51 
52 
53 
55 
56 
54 

31 
32 
33 
35 
36 
37 
70 
71 
72 
73 
75 
76 
74 

22 
23 
26 
27 
62 
63 
66 

Underlined numbers identify the RWC whose corresponding starting and current location 
counters (SLC and CLC) are used in the operation. 

In proces sors equipped with RWC 1', that channel is also interlocked. 

Uses RWC 3 for address storage during data transfer. 
4 . 

Uses RWC 6 for address storage durIng data transfer. 
Note: RWC 2 cannot be active while RWC 5 is active, nor can RWC 3 be active while 

RWC 6 is active. 

8-117 #2-139 



SECTION VIII. INSTRUCTIONS 

Escape Code (CE) 

The escape code is part of format h. of the PDT instruction. If the second control char ... 

acter is one of the escape codes shown in Table 8-25, the read/write channel(s) designated by Cl 

is assigned to an I/O operation in the sector indicated by the escape code. The addressed device 

must be connected to this sector. 

Table 8-25. Description of PDT I/O Character CE (Escape Code) 

10 
12 
13 

Sector 1 
Sector 2 
Sector 3 

Table 8 .. 26. Description of PDT I/O Control Character C2 (Peripheral Control Designation) 

C2 PERIPHERAL CONTROL DESIGNATION: This six-bit character speci­
fies the logical address of the peripheral control to be used in the data 
transfer. 

C2 

x 

'-----Peripheral Control Address Bits 

~------Sector Bits 

'---------Input /Output Bit 

Input/Output Bit: This bit specifies the direction of data transfer when 
a peripheral control capable of both reading and writing is involved in 
the transfer. When such a bidirectional control is used, 

o = transfer data from memory to the peripheral control (output), 
1 = transfer data to memory from the peripheral control (input). 

Specific communication controls .and the Type 212 On-Line Adapter are 
exceptions to this rule (see Table 8-27). 

The input/output bit can be either zero or one in the logical address of 
unidirectional peripheral control (e. g., a printer). However, if com­
patibility with the Type 8201 proces sor is desired, 1 and 0 must be 
specified,respectively, for input and output devices. 

Sector Bits: These bits apply only to the Models 1250, 2200, and 4200 and 
specify the sector in which the peripheral control is connected. They are 
specified as follows: 

Models 1250 and 2200 Model 4200 

Sector 1 o 0 o 0 
Sector 2 1 0 1 0 
Sector 3 1 1 

8-118 #2-139 



SECTION VIn. INSTRUCTIONS 

Table 8-26 (cant). Description of PDT I/O Control Character C2 

C2 
(cont) 

(Per ral Control De si tion) 

Sector bits must always be zeros in Model 200 and 1200 peripheral ad­
dresses. 

Peripheral Control Address Bits: These three bits, in conjunction with 
the preceding three bits, identify the address of the peripheral control 
involved in the operation. It is recommended that the following octal 
configurations be used for control character C2 in order to provide uni­
formity among Series 200 installations: 

Peripheral Control 

Magnetic Tape Control2 

Paper Tape Reader or Card Reader3 

Paper Tape Punch or Card Punch3 

Printer 
Type 212 On-Line Adapter 
Console 

Disk Control 

Octal Addre s s 1 

00 (output) 
40 (input) 
41 
01 
02 
42 
07 (output) 
47 (input) 
04 (output) 
44 . ut) 

lC2 configurations are made up of (1) the input/output bit and (2) the peripheral control address 
bits. In Series 200 systems in which sector designations apply (viz., the Models 1250, 2200, 
and 4200), the specification of the sector bits may alter these recommended configurations. 

2In Series 200 installations containing both 1 /2-inch and 3/4-inch magnetic tape systems, the 
recommended addresses of 00 and 40 should be assigned to the 1 /2-inch tape control. 

3In Series 200 installations containing a card reader /punch unit, these recommended addresses 
apply. However, if the installation contains a second card reader, the reader portion of the 
card reader/punch should be assigned the address 438 and the second card reader assigned 
the address 41 8 • 

Additional Parameters (C3 through Cn) 

The specific use of these control characters is dependent upon the type of peripheral device 

addressed. A summary of coding for these characters may be found in Tables 8-27 through 8-33. 

PUNCTUATION MARKS 

The execution of this instruction neither affects nor is affected by word marks or 
item marks. However, record marks may terminate the data transfer, depending 
upon the device used and the operation performed (see the specific Honeywell 
publications ). 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

NXT A 

8-119 #2-139 



SECTION VIII. INSTRUCTIONS 

NOTES 

1. If either the read/write channel or the peripheral control (specified by 
Cl and C2, respectively) is found "busy" during the extraction of a 
PDT instruction, the instruction is re -extracted: the contents of SR are 
set back to the address of the PDT op code, and the extraction process 
begins again. This process, which allows the processor to respond to 
interrupt signals that may occur while the PDT instruction is awaiting 
the 'availability of a read/write channel or peripheral control, is not 
performed in the Type 201 and 201-1 processors; PDT extraction in 
these two processors waits until the busy channel or control is available. 

2. The PDT op code is a "privileged" op code when used in a Type 1201,1251, 
2201, or 4201 processor equipped with the Storage Protect Feature (see 
Appendix E). 

3. Format b. of the PDT instruction is applicable only to Type 4201 processors. 

4. Unspecified central processor activity can occur when an attempt is made 
to execute a PDT instruction having a read/write channel assignment (C 1) 
of zero. It is therefore imperative that every PDT instruction contain some 
legal RWC assignment. 

S. Control character C 1 of a PDT instruction is stored in the variant register. 

EXAMPLE 

Read a card into the 80-character image area tagged CREAD. Use RWC2 and 
assume that the card reader control is assigned to the logical address of octal 41. 
Note that the data transfer rate in a card reading operation is less than 83, 300 
characters per second. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_' OF_ 

CARD +I~ LOCATION 
OPERATION OPERANDS NUMBER I~ ~ CODE 

1 213 415 6 7 8 1415 2021 I I 62 63 

I : PD1 ~RE.AD. \,2.4.1 
1 

I 

Table 8-27. Summ.ary of PDT I/O Control Characters 

Type 223 Card Reader (Order No. 504) •. Type 214-1 Card Punch (Order No. 451). Type 214-2 Card Reader/Punch (Order No. 432). Type 224 
Card Reader/Punch (Order No. 506) or Type 227 Card Reader/Punch (Order No. 564) 

xx xx 

xx xx 

See Table 
8-28 (page 
8-124) 

See Table 
8-29 (page 
8-124) 

See Table 
8-30 (page 
8-125) 

none none 

none none none 

none none none 

80 

8-120 #2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-27 (cont). Summary of PDT I/O Control Characters 

READ FORWARD XX Xl.X 6 D3 none none none 
(D=tape dri<re, 
o _ 7)6 

READ REVERSE XX Xl X 2 D4 none none none 
(Feature 010 or 011) (D=tape drive, 

:xl o - 7)6 
u 
~ WRITE XX X2 X 2 DS none none none 

~ (D=tape drive, 
.... o - 7)6 
r.:I 
p.. 

Xl X < SPACE FORWARD XX 4D none none none 
f-4 (D=tape drive, 
U o _ 7)6 
E=: 

~ BACKSPACE XX Xl X OD none none none 
l:J (D=tape drive, 
~ o - 7)6 

ERASE XX X2 X OD none none none 
(D=tape drive, 
o - '7)6 

See: TXfe 204B Series Ma&netic Taee Unit (Order No. 
204C-14 Magnetic Taee Units (Order No. 623) 

503), Txees 204B-11 and 204B-12 Ma&netic Tal2e Units (Order No. 502), or Txe8S 'Z04C-13 and 

READ FORWARD XX Xl X 6 D none none none 
(D=tape drive, 
o - 3) 

II: 
U XX Xl X SD CO none none 
~ (D=tape dri,ve, (C=channel to 
~ o - 3) be suppresseGl) .... 
r.:I XX X2 X 6 D none none none p.. 
< (D=tape drive, 
f-4 o - 3) 
U 
E=: SKIP WRITE XX X2 X r.:I 4D none none none 
Z (D=tape drive, 
l:J 

~ 
o ,. 3) 

BACKSPACE XX Xl X OD none none none 
(D=tape orive, 
o - 3) 

XX Xl X See Table ,0 T T T,I' SS 
8-29 (page v 

9-bit track ad- Sector ad-
8~ 117) dress numbered dress num-

o - 777 (a>atal) bered 0 -
47 (octal) 

XX Xl X. See Table none none none 
8-31 (page 
8-125) 

AND WRITE XX X2 X See Table ,0 T T T/ SS 
8-31 (page v 

9-bit track ad- Sector ad-
8-125) 

dress numbered dress num-
o - 777 (octal) bered 0 -

47 (octal) 

XX X See Table none none none 
8-31 (page 
8-125) 

ADDRESS REGISTER XX Xl X See Table none none none 
8-3l (page 
8-125) 

8-121 #2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-27 (cant). Sum.rn.ary of PDT I/O Control Characters 

WRITE INITIAL XX X2 X o 0 or none none none 
1 0 * 

EXTENDED WRITE INITIAL XX X2 X 20 or none none none 
3 0 * 

WRITE XX X2 X o lor none none 
1 1 * 

EXTENDED WRITE XX X2 X 2 lor none none none 
3 1 * 

SEARCH AND WRITE XX X2 X 02 or none none none 
I 2 * 

EXTENDED SEARCH AND XX X2 X 22 or none none none 
WRITE 32* 

rJ) 

I't1 SEARCH AND WRITE NEXT XX X2 X 03 or none none none 

~ I 3 * 

I't1 
X2 X t:l EXTENDED SEARCH AND XX 23 or none none none 

~ WRITE NEXT 33* 

S 
Xl X SEARCH AND READ XX o 2 or none none none 

I 2 ,~ 

EXTENDED SEARCH AND XX Xl X 22 or none none none 
READ 32* 

SEARCH AND READ NEXT XX Xl X 03 or none none none 

I 3 * 
EXTENDED SEARCH AND XX Xl X 23 or none none none 
READ NEXT 33* 

READ INITIAL XX Xl X 00 or none none none 
I 0 * 

EXTENDED READ INITIAL XX XIX 20 or none none none 
30* 

READ XX Xl X o I or none none none 

~ I * 
EXTENDED READ XX Xl X 2 I or none none none 

3 I * 

* Reading/writing is verified. 

See: Disk Devices and Controls (Order No. 514) 

8-122 #2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-27 (cont). Summary of PDT I/O Control Characters 

~~T';'· nor .. , .. , PDT I/Q "''''''''.' .. ..., ..... rl'of I>."D ~C:TF.R p4 >tVTfOT.: '_nv 
01 02 03' 04 G5 

II READ/WRITE CONTROL UNIT ADDITIONAL ADDITIONAL ' ADDITIONAL 
::.:. ; CHANNEL 'CI>."D PARAMETERS PARAMETERS 

~ 

READ (NO CARRIAGE XX xl X 00 none none none 
RETURN) 

ri! 
Xl X H READ (CARRIAGE RETURN) XX o 1 none none none 

0 
00 
Z WRITE (NO CARRIAGE XX X2 X 00 none none none 0 
U RETURN) 

WRITE (CARRIAGE RETURN) X X2 X o 1 

Control Panels and Consoles (Models 200/1200/1250/2~00) 

TRANSFER ID character to XX XX 4X none none none 
Series 200 memory. (X=unused) 

ACCEPT the H-BOO/1BOO in- XX XX 00 none none none 

~ 

struction, defined in the ID 
register. 7 

ri! 
E-t ACCEPT the H-BOO/1BOO in- XX XX 04 none none none p.. 

~ struction defined in the ID 

< register, and cause the H-BOO/ 

ri! 1BOO to branch to U+3 or U+5. 7 

Z 
:::l DO NOT ACCEPT the H-BOO/ XX XX 1 U none none none 

Z 1BOO instruction defined in the (U = any value 
0 ID register; rather, cause from 1 - 7, octal) 

the H-BOO/1BOO program to 
branch to U+6 or U+7 (read 
or write error). 7 

SET the device busy indicator. 7 XX XX none none none 

Se, Model 212 On-Line Adapter (DSI-274) 

«: :1 
N 

IK.I!A .. l!;lVl!; 

ri!U 
p..U TRANSMIT XX X2 X none none none none 
:><~ 
E-t 

TRANSFER TIME TO XX XX none none none none 

I~ MEMORY 
r..u 
98 
ri!u 
~:>< 
E-t~ 

'p:; TRANSFER DATA XX XX none none none none Uri! 
0E-t 
P:;p.. 
p..< 
HO « 
P:;p:; 
E-tO 
Zoo 
ri!oo 
Uri! 

Type 212-1 Central Adapter 

8-123 #2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-27 (cont). Sununary of PDT I/O Control Characters 

HH 
~g 
p:jE-< 
::>z 
00 
""'u 

RANSFER DA TA Hp:j xx xx none none none none 
<t;~ 
8~ 
E-<<t; 
Ilt~ 
OP:; 

NOTES: 1. 

1 

o 

1 

0 

2. 
3. 
4. 
5. 

6. 

7. 
8. 

The high-order bit must be 1. 
The high-order bit must be O. 

xx See Table none 
8-30 

Odd parity is assumed. If even parity is required, the first octal character should be 7. 
Odd parity is assumed. If even parity is required, the first octal character should be 3. 

none none 

Odd parity and short gap are assumed. The first octal character should be 3 for even parity, short gap; 6 for odd parity, long gap; 
7 for even parity, long gap. 
D (tape drive) " 0-3 when the instruction is issued to the Type 203B-5 Tape Control. D" 0 or 1 when the instruction is issued to the 
Type 203C-7 Tape Control. 
This operation issues initiating and concluding device-ready responses. 
A complete plot can be executed by a single PDT instruction. 

Table 8-28. C3 Coding for Type 209 and 209 ... 2 Paper Tape Readers 

Not used 

Not used 

Not used 

per frame 

Two charac­
ters per frame 

of record 

Do not 
sense end 
of record 

parity 

Check even 
parity 

ead Re­
erse (Fea­
ure 010 
rOIl) 

Increment 
CLC 

Decrement 
CLC 

Table 8-29. C3 Coding for Type 210 Paper Tape Punch 

One character Not used Compute odd 00 = Do not punch pa rity 
per frame parity 

01 = Parity bit in chan-
Two charac- Not used Compute nel six 
ters per frame even parity 

10 Parity bit in chan-
nel seven 

11 = Parity bit in chan-
nel eight 

8-124 #2-139 

"~ 



SECTION VID. INSTRUCTIONS 

Table 8-30. C3 Coding for Types 206 and 222 Printers and Type 237 Bill Feed Printer Control 

C3 

OOnnnn 

01nnnn 

11nnnn 

100011 

101111 

INTERPRETATION 

Print, then space the number of lines 
specified by nnnn (1 - 15). 

Print, then space to the head of the 
form if the end of the form is sensed; 
otherwise, space the number of lines 
specified by nnnn (1 - 15). 

D~ not print; space the nUInber of 
lines specifiedbynnnn(l - 15). 

Print, then space to the head of the 
form. ) 

Do not print; s pac e to the head of 
the forIn. 

C3 

OOnnnn 

01nnnn 

Ilnnnn 

1 o o xxx 
101xxx 

000 
001 
010 

CQ1.}:) 
100 
101 

INTERPRETATION 

Print, then space the number of 
lines specified by nnnn (0 - 15). 

Print, then space to channel one of 
the format tape (HOF) if channel two 
of the format tape (EOF) is sensed; 
otherwise, space the nUInber of 
lines specified by nnnn (0 - 15). 

Do not print; space the nUInber of 
lines specified by nnnn (0 - 15). 

Print, then s pac e to channel xxx. 
Do not print; space to channel xxx. 2 

Channel 3 
Channel 4 
ChannelS 
Channel 1 (Head of form) 
Channel 6 
Channel 7 

110 Channel 8 
III Channel 1 (Head of forIn) 3 

1 
Control characters are the saIne with or without the presence of the Print Buffer (Feature 036) 
in the printer. 

2The basic Type 222-5 Printer can only space to channell; i. e., xxx Inust be 011 or Ill. 
However, when equipped with Feature 1036 (8-channel Vertical ForInat Tape) this printer 

-can space to any of the channels listed. 

3 
In the 237 control, space to head of form if Read PDT has been received. 

Table 8- 31. C3 Coding for Type 270A Random Access DruIn 

1 Override IncreInent druIn This is a Read 
address register Address Regis-

ter instruction Drum file designation 

0 Do not Do not inc r ement . This is not a Read 
0_ - 7 (octal) 

override druIn addres s Address Register 
register instruction 

8-125 #2-139 



u 
u 
u 
~ 
('I") 

I 

N 
I 

... 
0-1 

I 

'" 00 
N 

SECTION VIII. INSTRUCTIONS 

Table 8-32. Summary of PDT I/O Control Characters for Type 286 Multi-Channel 
Communication Control 

RECEIVE DA TA PDT 

TRANSMIT DATA PDT 

LINE CONTROL PDT 

TRANSMIT (Load/test" state 
only) 

RECEIVE (Load/test state 
only) " 

ASSIGN RWC AND LOAD SLC 
(Initialized or off-line state 
only) 

(specifies "line 0" 
in 286) 

LOC+2 
(specifies line ad­
dress in 286) 

LOC+2 
(specifies line ad­
dress in 286) 

LOC 
(specifies address of 
line to be controlled) 

NOTE: The line con­
trol transmission PDT 
instructions are listed 
in Table 8-33, below. 

Leftmost character of 
field from which data 
is transferred. 

Leftmost character of 
field to which data is 
transferred. 

Leftmost character of 
5-character status 
field storing interrupt 
information. 

NOTES: 1. 
2. 

The high-order bit must be 1. 
The high-order bit must be O. 

x X Xl X none 

X X Xl X none 

X X X2 X none 

X X X2 X none 

X X X2 X Section addre s s 
or line number, 
008 - 638 " 

X X X 1 X Section addre s s 
or line number, 
008 - 638. 

XX XX none 

Table 8-33. Type 286-1, -2, -3 Line Control Instructions 

10 

60 

Transmit last 
character 

Receive clear 

Inform the 286 that the last character has 
been sent from the central processor, and 
place the control unit in the receive mode 
for that line (after transmitting last char­
acter). 

Reset the bits of the logic character in the 
286 memory. (This instruction should be 
given when power is first turned on. ) 

8-126 #2-139 



30 

50 

40 

74 

34 

SECTION VIII. INSTRUCTIONS 

Table 8-33 (cont). Type 286-1, -2, -3 Line Control Instructions 

Inhibit 285 (service 
request) 

Transmit idle 
character 

Transmit 

Move Longitudinal 
Redundancy Check 
(LRC) Character 

Special Strobe 

Turn off the interrupt capability of a line that 
is requesting service (either input or output). 

Repeat the previously provided character 
indefinitely, without interrupts. 

Stop the line from repeating character and 
cause an interrupt. 

Move the LRC character from the LRC regi­
ster to the data buffer register (Feature 087). 

Activate the special strobe line to a Type 285 
adapter via the Type 286 control. 

NOTE: The control code is stored in location LOC+l. (The low-order two bits of 
this code must be 0.) 

I PCB IPERIPHERAL CONTROL AND BRANCHI 

FORMAT 
( I/O CONTROL CHARACTERS) 

OP CODE A ADDRESS CI C2 C3 Cn - - - - - ,---.., o. .... I I '- ___ ...J 

b. - -
OP CODE A ADDRESS CI CE C2 C3 Cn 

c. - - - - .---r---, L __ J 

d. - - -

8-127 #2-139 



SECTION VIII. INSTRUCTIONS 

TYPES OF TEST AND CONTROL OPERATIONS 

FUNCTION 

The Peripheral Control and Branch instruction can initiate four types of operations: 
(l) strictly mechanical peripheral device operations; (2) test and branch operations; 
(3) mode change operations; and (4) peripheral interrupt operations. 

1. A mechanical operation is a non-data transfer operation such as rewind 
magnetic tape or seek a disk pack drive cylinder. 

2. A test and branch operation tests the status ofa peripheral control and/ 
or a read/write channel(s). If the condition being tested (e. g., pe­
ripheral control busy, error in last' card punched) is present, a program 
branch is performed. 

3. A mode change operation conditions the addressed peripheral control to 
operate in a specific mode. For instance, the card reader control can 

. be conditioned to reject illegally punched cards, to generate a busy signal 
if illegally punched cards are read, or both, depending upon the control 
characters of the PCB instruction. 

4. A peripheral interrupt operation directs a peripheral control to change 
the setting of an interrupt function or an allow interrupt function (see 
A ppendix D). 

Control character C 1 designate s a read/write channel or combination of channels 
whose busy status is to be tested. If an RWC busy test is not desired, Cl must 
contain zeros. C2 designates the logical address of the peripheral control to be 
tested or actuated. The coding of this character is the same as its coding for a 
PDT instruction (see Table 8-26, page 8-118). 

Control characters C3 through Cn designate the control and test operati~ns. Any 
number of control characters may follow C2, each one designating a different oper­
ation. If control characters within a single instruction designate conflicting opera­
tions (e. g., punch Hollerith code and punch direct transcription mode), the control 
character to the left is cancelled by a conflicting control character to the right 
within the same instruction. If multiple test operations are specified within a single 
instruction, a branch will occur if any of the conditions tested is present. The 
specific use of characters C3 through Cn is dependent upon the type of peripheral 
device addressed. Tables 8-34 through 8-36 summarize the coding of these 
characters. 

Format a: The read/write channel or channel combination specified by Cl is tested for busy 
status. If it is busy, a branch is made to the instruction at A. If the RWC is not 
busy (or if Cl is 008)' the operation(s) specified by characters C3 through Cn is per­
formed on the peripheral control specified by C2. This peripheral control must be 
connected to the input/output sector implied by the value of Cl. 

Format b: The read/write channel or channel combination specified by Cl is tested for busy 
status. If it is busy, a branch is made to A. If the RWC is not busy, the instruction 
following the PCB is executed. 

Format c: The read/write channel or channel combination specified by Cl is tested for busy 
status. Also, the sector designated by CE is interrogated to determine whether or 
not it has currently available sufficient unassigned me'mory acc.esses per unit time 
interval to support the I/O data transfer rate implied by Cl, i. e., the data handling 
capacity of the RWC(s) designated by Cl (see Table 8-24). If the specified RWC is 
not busy and the de signated sector can handle the data rate implied by C 1, the oper­
ation(s) specified by characters C3 through Cn is performed on the peripheral 

8-128 #2-139 



SECTION VIII. INSTRUCTIONS 

control specified by C2, and the prograITl continues in norITlal sequence. Other­
wise, a branch is ITlade to the instruction at A. The CE character must designate 
the I/O sector to which the peripheral control specified by C2 is connected (see 
Table 8-37 page 8-150). 

ForITlat d: The read/write channel or channel cOITlbination specified by C 1 is tested for busy 
status. Also, the sector designated by CE is interrogated to determine whether or 
not it has currently available sufficient unassigned ITleITlory accesses per unit time 
interval to support the I/O data transfer rate iITlplied by C1, i. e., the data handling 
capacity of the RWC(s) designated by C1 (see Table 8-24). If the specified RWC(s) 
is not busy and the designated sector can handle the data rate iITlplied by C 1, the 
program continues in sequence. Otherwise, a branch is ITlade to the instruction at A. 

PUNCTUATION MARKS 

The execution of this instruction neither affects nor is affected by word ITlarks or 
record ITlarks. 

ADDRESS REGISTERS AFTER OPERATION 

NOTES 

SR 

NXT 

JI (A) 

AAR 

A 

A 

BAR 

NO BRANCH 

BRANCH 

1. Formats c. and d. are applicable only to the Type 4201 processor. In order 
to produce a ITleaningful result, C 1 ITlust not be zero in these formats . 

. 2. The PCB op code is a "privileged" op code when used in a Type 1201, 1251, 2201, 
or 4201 processor equipped with the Storage Protect Feature (see Appendix E). 

3. Control character C 1 of a PCB instruction is stored in the variant register. 

EXAMPLE 

PROBLEM 

CARD ~I~ 
NUMBER ~ ~ 

1 213 415 6 7 8 

I 1 
I 

I 

i i 
I I 
1 T 
I I 
T 1 
i T 
1 T 

In the following exaITlple, as SUITle that the logical addres s of the card reader control 
is octal 41. . 

Set the card reader control to read Hollerith code (C 3 :::: 27) and to rej ect autoITlati­
cally all cards with hole-count errors (C4 :::: 21). If the device is inoperable, branch 
to the location tagged STOP. (Note that since an RWC is not to be tested, Cl ITlust 
contain zeros. ) 

EASYCODER 
CODING FORM 

PROGRAMMER DATE PAGE OF 

LOCATION 
OPERATION 

CODE OPERANDS 

1415 2021 1 62 63 80 

PC,B STOP ~~ +1 27 21 

8-129 #2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-34. Summary of PCB I/O Control Characters 

Branch to A address if device busy XX XX 1 0 

Branch to A address if punch-check error XX XX 4 1 

Branch to A address Punch Hollerith XX XX 2 7 
if device unavailable. code4 

If available, set con-
Punch special code XX XX 2 6 trol unit to: 

::r:: Punch direct tran- XX XX 2 5 
U scription code (fea-
Z ture 064) l:l 
Ilt 

Generate busy sig- XX XX 2 3 A 
p::j nal if punch-check 
< error U 
o-f Offset-stack cards XX XX 2 1 f 

~ with punch-check o-f 

N error 
r.£I 
Ilt Offset-stack the XX XX 3 1 
~ 
E-I card currently at 

the punch station 

Turn the control allow function OFF XX XX 7 0 

Turn the control allow function ON XX XX 7 1 

Turn the control interrupt function OFF XX XX 74 

Branch to A address if the control interrupt XX XX 7 5 
function is ON 

See: Type 214-1 Card Punch (Order No. 451) 

Branch to A address if device busy XX X3 X 1 0 

Branch to A address if cycle-check or punch- XX X3 X 4 1 
A::r:: check error 
p::jU 
<z 

Branch to A address if illegal punch X3 X Ul:l XX 42 
NIlt 
1--

X3 X ~p::j Branch to A address Terminate punch-feed XX 2 7 
~r.£I 
r.£IA 

if device unavailable. read operations, op-

Ilt< If available, set con- erate in Hollerith 
~r.£I trol unit to: mode, and accept all E-Ip::j 

other cards 4 

Read or punch special XX X3 X 2 6 
code 

8-130 #2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-34 (cont). Summary of PCB I/O Control Characters 

Read or punch direct XX X3 X 2 5 
transcription code 
(feature 064) -~ X3 X 1=1 Generate busy signal XX 24 

0 
~ if illegal punch 

::r: Generate busy signal XX X3 X 2 3 
U 
Z if cycle -check or 
p punch-check error P-t ....... 

X3 X p:j Offset-stack cards XX 2 2 
P::I with illegal punches 0 
-< Offset-stack cards XX X3 X 2 1 P::I 
p:j with cycle -check or 
0 punch-check error 
p:j 

-< Operate in punch- XX X3 X 2 0 U 
N feed read mode 

I 
~ Offset-stack the card XX X3 X 3 1 r-4 
N currentl y at the 
P::I 
P-t punch station 
:>t 
E-t Turn the control allow function OFF XX X3 X 7 0 

Turn the control allow function ON XX X3 X 7 1 

Turn the control interrupt function OFF XX X3 X 7 4 

Branch to A address if the control interrupt XX X3 X 7 5 
function is ON 

See: Type 214-2 Card Reader /Punch (Order No. 452) 

Branch to A address if device busy XX XX 1 0 

Branch to A address if cycle-check error XX XX 4 1 

N 
p:j I Branch to A address if illegal punch XX XX 4 2 rt'I P::I N 0 N 

., -< Branch to A address Read Hollerith code XX XX 2 7 
rt'I P::I 
N p:j if device unavailable. and accept all error 
N 

P::I 0 If available, set con- cards4 

P-t p:j trol unit to: 
:>t -< Read special code XX XX 2 6 
E-t U 

Read direct trans- X XX 2 5 
cription code (fea-
ture 044) 

Offset-stack cards XX XX 2 1 
with cycle-check error 

8-131 #2-139 



Table 8-34 (cont). Sununary of PCB I/O Control Characters 

- Offset-stack cards XX XX 2 2 +> $:l-
with illegal punches 0 

u -
p:t Generate busy signal XX XX 2 3 
~ if cycle-check error 
~ 
.:c: Generate busy signal XX XX 2 4 
~ 
p:t if illegal punch 
~ Offset-stack the card XX XX 3 1 p:t 
.:c: currently at the read 
U 

station. 
N 

I 
('I") Turn the control allow function OFF XX XX 7 0 
N 
N 

Turn the control allow function ON XX XX 7 1 
('I") 

N 
N Turn the control interrupt function OFF XX XX 7 4 
~ 

Branch to A address if the control interrupt P-t XX XX 7 5 
l>! function is ON 

(Order No. 504) 

Branch to A address if device busy XX X 1 0 

Branch to A address if echo-check or read XX X3 X 4 1 
registration errors 

Branch to A addre s s if illegal punch XX X3 X 4 2 

Branch to A address Terminate punch-feed XX X3 X 2 7 
if device unavailable. read operations, op-

:r: If available, set con- erate in Hollerith 
U trol unit to: mode, and accept all 
Z 

error cards4 ::> 
P-t X3 X 
~ 

Convert to special co XX 2 6 

.:c: Operate in direct XX X3 X 2 5 
U transcription mode "" ~ Feature 064 
~ 
~ Generate busy signal XX X3 X 2 4 .:c: 
~ if illegal punch 
p:t 

~ Generate busy signal XX X3 X 2 3 
~ if echo -check or read .:c: 
U re stration errors 
N X3 X I Reject cards with XX 2 2 .. illegal punches (Fea r-4 

I ture 065) ~ 
N 
N Reject cards with XX X3 X 2 1 
~ echo-check or read P-t 
l>! registration errors 
E-! (Feature 065) 

8-132 12-139 



SECTION VIII. INSTRUCTIONS 

Table 8-34 (cont). Summary of PCB I/O Control Characters 
:.: ...... !>.~ ;~ ~~~;ali:rA ~G T;g'it§,): I OPERATION .. :tut .. ( 

•...••.••...• : ••..• J) .•••••••••• ii .. :.:.: ........ :. IC34>.;'" A'Cn< :.: .... 
.. .... .... : .....< .... ., . ....... :.: .... : .. '"' 

- Operate in punch-feed XX X3 X 2 0 
~ read mode 0 

~ Reject card presently XX X3 X 3 1 
O::r:: 
p:jO in the punch station 
~Z 
0::> Turn the control allow function OFF XX X3 X 7 0 P-t 
~O 

.. p:j Turn the control allow.function ON XX X3 X 7 1 
-~ 
,J.O 

X3 X Np:j Turn the control interrupt function OFF XX 7 4 
N!:it 
!:itO 

Branch to A address if the control interrupt X3 X P-t<t:! XX 7 5 
l>!!:it function is ON E-lp:j 

See: Type 224 Card Reader /Punch (Order No. 506) 

Branch to A address if device busy XX XX 1 0 

Branch to A address if hole-count error XX XX 4 1 

Branch to A address if illegal punch XX XX 4 2 

Branch to A address Terminate punch-feed XX XX 2 7 
if device unavailable. read operations (Fea-
If available, set con- ture 062), if appli-
trol unit to: cable, operate in 

Hollerith mode, and 
p:j accept all error cards4 
!:it 
0 Read special code XX XX 2 6 -< 
!:it Read direct tran- XX XX 2 5 p:j 

0 scription code (Fea-
p:j ture 040) 
-< 
0 Reject cards with XX XX 2 1 
l'- hole-count errors N 
N 

!:it Reject cards with XX XX 2 2 
P-t illegal punches l>! 
E-l 

Generate busy signal XX XX 2 3 
if hole -count error 

Generate busy signal XX XX 24 
if illegal punch 

Place previously read XX XX 3 1 
card in middle stacker 
(Feature 017) 

Place previously read XX XX 3 2 
card in the read eject 
stacker (Feature 017-1) 

8-133 #2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-34 (cont). Summary of PCB I/O Control Characters 

tl:I 
~ 
A 
-< 
~ 
tl:I Turn the control allow function OFF XX XX 7 0 
A 
tl:I_ 
-< ~ 
U § Turn the control allow function ON XX XX 7 1 

r--~ 
Turn the control Interrupt function OFF XX XX 7 4 N 

N 

~ 
Branch to A address if the control interrupt XX 7 5 Il! XX 

:>t function is ON 
f-! 

See: T}:]2e 227 Card Reader/Punch (Order No. 564) 

Branch to A address if device busy XX XX 1 0 

Branch to A address if hole-count error (Fea- XX XX 4 1 
ture 061) 

Branch to A address Terminate punch-fee XX XX 2 7 
if device unavailable. read operations (Fea-
If available, set con- ture 062), if appli-
trol unit to: cable, and punch 

Hollerith code4 

Punch special code XX XX 2 6 

Punch direct tran- XX XX 2 5 
scription code (Fea-

::r: ture 060) 

U Reject cards with XX XX 2 2 Z 
::J illegal punches (Fea-
Ai ture 062) 
A 
~ Reject cards with XX XX 2 1 <: 
U hole-count errors 
r- (Feature 061) 
N 
N 

~ 
Punch-feed read XX XX 2 0 

Ai operations (Feature 
:>t 062) 
f-! 

Place previously XX XX 3 1 
punched card in 
middle stacke r 
(Feature 017) 

Place previously XX XX 3 2 
punched card in the 
punch eject stacker 
(Feature 017 -1) 

Turn the control allow function OFF XX XX 7 0 

Turn the control allow function ON XX XX 7 1 

8-134 #2-139 



SECTION VIne INSTRUCTIONS 

Table 8-34 (cont). Summary of PCB I/O Control Characters 

~ 
~ - 1'::\' ... :':./,.: .. :.,', .. :',::" 

<~ o 0 
U 

f" -

~:r: Turn the control interrupt function OFF 

P::l
0 

~z 
~::> Branch to A addres s if the control interrupt 
t-f ~ function is ON 

See: Type 227 Card Reader/Punch (Order No. 564) 

Branch to A addre s s if device busy 

Branch to A address if parity error 

Branch to A addres s 
if device unavailable. 
If available, set con­
trol unit to: 

Rewind the tape (re­
verse direction) 

Run out the tape (for­
ward direction) 

Turn the control allow function OFF 

Turn the control allow function ON 

Turn the control interrupt function OFF 

Branch to A address if the control interrupt 
function is ON 

xx xx 

xx xx 

xx XX 

XX XX 

XX XX 

XX XX 

XX XX 

XX XX 

XX XX 

XX XX 

See: Types 209, 209-2, and 210 Paper Tape Equipment (Order No. 507) 

Branch to A address if device busy XX XX 

~ Branch to A addre s s if tape -low condition XX XX 
P::l:r: 
~O is true 
<z 
~::> Turn the control allow function OFF XX XX 
;::~ 
NP::l 
P::l~ Turn the control allow function ON XX XX 
~< 
~t-f 

Turn the control interrupt function OFF XX XX t-f 

Branch to A address if the control interrupt XX XX 
function is ON 

See: Types 209, 209-2, and 210 Paper Tape Equipment (Order No. 507) 

...00::; 
o P::l Branch to A addre s s if device busy 
Nt-f 
P::l Z 
~ P2 Branch to A addre s s if print error 
t-f~ 

XX xx 

xx xx 

See: Honeywell Series 200 Equipment Operators' Manual (Order No. 040) 

8-135 

7 4 

7 5 

1 0 

4 0 

3 0 

3 2 

7 0 

7 1 

7 4 

7 5 

1 0 

6 0 

7 0 

7 1 

7 4 

7 5 

1 0 

4 0 

#2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-34 (cont). Summary of PCB I/O Control Characters 
(,; 

See: Type 222 Printers (Order No. 562) 

Notes: PCB instructions with C3 characters 01, 02, 20, and 30 are not applicable to the basic 
222-5 printer. However, the 222-5 ~quipped with Feature 1036 (8-Channel Vertical 
Format Tape) can perform all of theloperations listed. 
Control characters are the same with or without the presence of the Print Buffer 
(Feature 036) in the printer. 

Rewind Xx. 

Rewind and release XX 

X2 X' 

Xl X 

2D 
(D=tape drive, 

o - 7) 

2D 
~ (D=tape drive, 
Z 0 - 7) 

::J Xl X rz1:r: Branch to A address if read busy X X 0 D 
~ U (D=tape drive, 
<G Z 0 - 7) E-il-l 

U ~ ~------------------------~----------------~-----------r--------~----------------~ 1-1 ~ Branch to A addres s if write busy X X X2 X 0 D 
~ ...... (D=tape drive, 
Z 0 - 7) a 
<G Branch to A address if read/write error X X X2 X 4 D 
~ (D=tape drive, 

Branch to A addre s s if beginning of tape XX Xl X 

8-136 

0-7 

6 D 
(D=tape drive, 

o - 7) 

#2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-34 (cont). Summary of PCB I/O Control Characters 

Branch to A address is end of tape 

Turn the control allow function OFF 

Turn the control allow function ON 

Turn the control interrupt function OFF 

Branch to A address if the control interrupt 
function is ON 

xx 

xx X3 X 

xx X3 X 

xx X3 X 

xx X3 X 

6D 
(D=tape drive, 

o - 7) 

7 0 

7 I 

7 4 

7 5 

See: Type 204B Series Magnetic Tape Units (Order No. 503), Types 204B-II and 204B-12 
Magnetic Tape Units (Order No. 502), or Types 204C-13 and 204C-14 Magnetic Tape 
Units (Order No. 623) 

Note: The Type 204B-II and 204B-12 Magnetic Tape Units are limited to tape drive desig­
nations in the range 0-3 and are unable to execute the command "rewind and release. " 
Tape drive designations for the Type 204C-13 and 204C-14 Magnetic Tape Units must 
be either 0 or I; these units cannot execute the "rewind and release" command. 

Rewind 

Release 

Branch to A address if read busy 

Branch to A address if write busy 

Branch to A addres s if read/write error 

Branch to A address if beginning of tape 

Branch to A addre s s' if end of tape 

Branch to A address if "long check" error 
is detected 

8-137 

xx 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

X2 X 

Xl X 

X X 

Xl X 

X2 X 

X2 X 

2D 
(D=tape drive, 

o - 3) 

2D 
(D=tape drive, 

o - 3) 

OD 
(D=tape drive, 

o - 3) 

OD 
(D=tape drive, 

o - 3) 

4D 
(D=tape drive, 

o - 3) 

6D 
(D=tape drive, 

o - 3) 

6D 
(D=tape drive, 

o - 3) 

5X 
(X=unused) 

#2-139 



til 
E-i 
Z 
p-

~ 

SECTION VIII. INSTR UCTIONS 

f.il ~ 
P-t 0 < ~~------------------------------------------~---------+---------4----------------~ 
E-i ~ ~T_u_r_n __ t_h_e __ c_o_n_tr_o_l __ a_l_lo_w __ f_u_n_c_t_io_n __ O __ N ____________ ~---X--X----+_--------+_-------7--1------~ 

8 ~ Turn the control interrupt function OFF X X 7 4 
E-i H ~--------------------~~------------------~---------+---------+----------------~ 

~:± Branch to A address if the control interrupt X X X3 X 7 5 
o ~ function is ON 

~ 
See: Series 200 Equipment Operators' Manual (Order No. 040), Type 204A Series Magnetic 

Tape Units (Order No. 863) 

Branch to A address if device busy5 XX XX o X or 1 X 

~ (X=unused) 
0 

Branch to A address if error indicator is ON XX XX 4X 
§~ 
~.~ 

(X=unused) 

<Q Turn the control allow function OFF XX 
o til Turn the control allow function ON XX £'-tIl 
Nf.il 
f.ilU Turn the control interrupt function OFF XX 
P-tU 
:>t< Branch to A address if the control interrupt XX 
E-i function is ON 

See: Type 270A Random Access Drum and Control (Order No. 009) 

.-f 

, f.il Branch to A addre s s if device busy 
o~ 
~O 

til 
rilZ 
P-to 
:>tU 
E-i 

XX 

XX 

XX 

XX 

XX 

See: Control Panels and Consoles (Models 200/1200/1250/2200), (Order No. 453) 

7 0 

7 1 

7 4 

7 5 

1 0 

Branch to A address if device busy X X X2 X 1 0 
N f.il~------------------------------~----------~---------+---------+----------------~ 
~ ~ 2 
N O~R __ e_s_et __ t_h_e_i_n_t_e_r_r_u_p_t_f_u_n_c_t_i_on __________________ ~r---X--X----+_--X---X--_+--------7--6------~ 
~ ~ X2 X ...... H Branch to A address if the interrupt function X X 7 7 
P-t 0 is ON :>tU 
E-i 
See: Control Panels and Consoles (Models 200/1200/1250/2200), (Order No. 453) 

8-138 #2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-34 (cont). Summary of PCB I/O Control Characters 

Branch to A addres s if device busy XX X2 X 1 0 

~ 
Turn the allow function OFF XX X2 X 7 0 

H 
0 Turn the allow function ON8 XX X2 X tI) 7 1 
Z 
0 

Turn the data termination interrupt XX X2 X l) 7 4 
('f1 function OFF 

I 
0 
N 

X2 X N Branch to A address if data termination XX 7 5 
~ interrupt function is ON 
Pot 
~ 

Turn the manual interrupt function OFF9 E-t XX X2 X 7 6 

Branch to A address if manual interrupt XX X2 X 
function is ON9 

7 7 

See: Control Panels and Consoles (Models 200/1200/1250/2200), (Order No. 453) 

p:; 
~ 
E-t 
Pot 

~ 
<: 
~ 
Z 
1-1 
H 

I 

Z 
0 
N 
~ 

N 

~ 
Pot 
~ 
E-t 

Branch to A address if device busy 

Branch to A address if data transfer is in 
progress 

Branch to A address if error or incomplete 
indicator is set 

Branch to A address if parity error is 
stored 

Branch to A address if incomplete error is 
stored 

Place control character C4 in the ID register 
if data transfer is not in progress 

Branch to A address unconditionally, and 
clear the ID register 

'. See: Model 212 On-Line Adapter (DSI-274) 

Branch to A address 
~ I ra', if specified device is 
~ W 8 busy; otherwise, set 
Cl ~ :> control unit to: 

Seek out the cylinder 
(specified by C5 and 
C6) in the pack 
(specified by C4). 

8-139 

XX X3 X 

XX X3 X 

XX X3 X 

XX X3 X 

XX X3 X 

XX X3 X 

XX X3 X 

XX X2 X 

o X or 1 X 
(X=unused) 

7X 
(X=unused) 

4X 

5X 
(X=unused) 

6X 
(X=unused) 

C3: 2 X 
(X=unused) 

C4: octal char­
acter to be 
placed in 
ID register 

3X 
(X=unused) 

C3: 2 D (D=device 
address, 0-7) 

C4: 00 

#2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-34 (cont). Summary of PCB I/O Control Characters 

C5 and C6: 0000 
to 0143 for 
the Type 258, 
0000 to 0312 
for the Type 
259. 

Restore the specified XX Xl X 3D 
device to cylinder (D=device 
zero. address, 0-7). 

Branch to A address Continue with the next XX Xl X 7D 
if specified device is sequential record the {D=device 
not busy; otherwise, operation (read or address, 0-7). 
set control unit to: write) being per-

formed with the cur-
rent record. 

Branch to A address if XX X2 X 1 0 - Branch to A address if device busy. XX X2 X C3: o D (D=de-~ s:: 
0 vice ad-
2 dress, 0-7) 
r./) 

r:r.l C4: o 0 or 
U 
1-1 another :> 
r:r.l valid C3 
t:) character 
~ 

X2 X r./) Branch to A address if a general exception XX 5 0 1-1 
t:) condition occurred during the preceding PDT 

instruction. 

Branch to A address if the is set. XX X2 X 6 0 

Set control unit to override setting of XX X2 X 4 0 
FORMAT WRITE PERMIT switch. 

Turn control allow function OFF. XX X2 X 7 0 

Turn control aliow function ON. XX X2 X 7 1 

Turn drive allow function OFF. XX X2 X 7 2 

Turn drive allow function ON. XX X2 X 7 3 

Turn control interrupt function OFF. 7 XX X2 X 7 4 

Branch to A address ,if control interrupt XX X2 X 7 5 
function is ON. 

Turn drive interrupt function OFF. XX X2 X 7 6 

8-140 #2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-34 (cont). Summary of PCB I/O Control Characters 

Branch to A address if device busy XX X3 X 1 0 

Branch to A address if parity error XX X3 X 40 

...=1....:1 
Branch to A address if error other than XX X3 X 5 0 

fAO parity error 
Zp:; 
Zf-I 

Branch to A address if the 281 is in trans- XX X3 X 6 0 
~5 mit mode and requesting data for trans-
00 
r.tlZ 

mi s sion onto line 

...:10 
(jl-f Branch to A address if the 281 is in re- XX X3 X 6 1 Zf-l 
...... <t! ceive mode and requesting that central 
VlO 
o-II-f processor take received data 
co Z 
N~ 

~~ Turn the allow function OFF XX X6 X 7 0 
~~ 
~O 

X6 X f-IO Turn the allow function ON XX 7 1 

Turn the interrupt function OFF XX X6 X 7 4 

Branch to A address if allow and interrupt XX X6 X 7 5 
functions are ON 

Branch to A address if device busy (Fea- o 0 X6 X 1 0 
ture 071) 

p:4 Turn the allow function 0 FF o 0 X6 X 7 0 
~ 
~ x6x I-f Turn the allow function ON o 0 7 1 
f-I 
....:I x6x < Turn the allow function ON (Feature 071) o 0 7 3 
:> (C4- C6 specify p:4 
~ 
f-I 

time inte rval) 

Z 
X6 X I-f Turn the interrupt function OFF o 0 7 4 

~ 
I 
~ ..... Branch to A address if interrupt function 
N 

o 0 X6 X 7 5 

~ 
is ON 

A4 
~ Turn the interrupt function OFF (Feature o 0 X6 X 7 6 
f-I 

071 ) 

Branch to A address if interrupt function is o 0 X6 X 7 7 
ON (Feature 071) 

See: Type 213-3 Interval Timer and Feature 071 Interval Selector (Order No. 082) 

8-141 #2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-34 (cont). Summary of PCB I/O Control Characters 

~ 
U 
o 

~H 
~U 
o-l~ 

N ~ Branch to A address if device busy 
~t:l 
Ili~ 
~O 
~ 
::;g 
H 

E-! 

Branch to A address if device busy 

Branch to A address if device busy, and 
reserve 

Branch to A address if reserve action by 
this central processor was not successful 

xx xx 

xx X6 X 

XX X6 X 

XX 

C3: 

C4: 

1 0 

o X or 
1 0 

2 0 

o 0 

C3: 2 0 

C4: 0 0 

C5: 6 1 
H~ 
<~ 
~E-i 
E-i Ili r-----------------------------------------~--------_+----------_r----------------~ 
~ ~ Branch to A address if 212-1 is not set for 
U ,< data transfer (initiator) 

xx X6 X 6 1 

o-l ~ r-----------------------------------------~--------_+----------_r----------------~ 
'0 

N CI) Branch to A address if 212-1 is set for 
o-lCl) 

N ~ data transfer (responder) 
XX X6 X 6 4 

~ Ur_--------------------------------------~--------r_--------_r----------------~ IliO 
~ ~ Turn the allow function OFF xx 7 0 
E-! Ili r----------------------------------------*---------+----------~----------------~ 

Turn the allow function ON 

Turn the interrupt function OFF 

Branch to A address if allow and interrupt 
functions are ON 

XX 

XX 

XX 

See: Type 212-1 Central Processor Adapter (Order No. 239) 

H 
o Branch to A address if control unit busy. XX 

x6x 7 1 

7 4 

X6 X 7 5 

xx 1 0 

~ r-----------------------------------------~--------_+----------_r----------------~ 
Turn the allow function OFF XX xx 7 0 ~E-i 

MZ 
N 0 r-----------------------------------------~--------~----------~----------------~ 
~U Turn the allow function ON XX xx 7 1 
Ili ~r_--------------------------------------~--------r_--------_r----------------~ ~f:il 
E-! E-! Turn the interrupt function OFF XX xx 7 4 

E-! r_----------------------------------------~--------_r----------~----------------~ 
S Ili Branch to A addre s s if interrupt function 

is ON 

See: Type 234 Plotter Control (Order No. 561) 

8-142 

XX XX 7 5 

#2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-34 (cont). Summary of PCB I/O Control Characters 

...:l Branch to A address if device busy XX XX 1 0 

° p::j 
E-! Branch to A address if reader is not set XX XX o 1 

...:l Z 
<0 for data transfer or if control is busy 
U U 
I-t p::j 

Turn the allow function OFF E-! ril XX XX 7 0 
~ 0 
0< 

Turn the allow function ON XX XX 7 1 \.C') ril 
~ p::j 

ril ...:l Turn the interrupt function OFF XX XX 7 4 
~ ~ 
:>-t p::j 

Branch to A address if interrupt function XX XX 7 5 E-! ::> 

° is ON ...., 

Branch to A address if control busy XX XX 1 0 

Select stacker designated; Stacker 0 XX XX 2 0 
Branch to A address if: 

Stacker 1 XX XX 2 1 
1- the reader-sorter is not Stacker 2 XX XX 2 2 

ready; or 

2. the 10-millisecond stacker 
Stacker 3 XX XX 2 3 

U) 
p::j selection period has elapsed; Stacker 4 XX XX 2 4 
P:.l or 
f-i Stacker 5 XX XX 2 5 
p::j 
0 3. the leading edge of the 

Stacker 6 XX XX 2 6 U) document to be sorted has I 
p::j not passed the reading Stacker 7 XX XX 2 7 
ril 
(:) station; or 

Stacker 8 XX XX 3 0 < 
ril 4. the leading edge ha·s passed 

Stacker 9 XX XX 3 1 p::j the reading station and a 
p::j 
U PDT instruction has not yet Stacker X XX XX 3 2 
1-1 been issued; or ~ Stacker Y XX XX 3 3 
N 5. the reader-sorter is per-I Reject XX XX 3 7 ('/") forming an automatic rej ect ('/") Stacker N on the document in question 
rei 
s:l 
cd Start feed. Branch to A address if feed can-

N 
XX XX 3 4 

('/") not be started due to: N 

ril 1- the reader-sorter not being 
~ 
:>-t ready; or 
E-! 

2. proper restart procedures 
not followed 

Stop feed. Branch to A address if sorter- XX XX 3 5 
reader is not ready 

Set pocket-light control. Branch to A XX XX 3 6 
address if: 

8-143 #2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-34 (cont). Summary of PCB I/O Control Characters 

1. the reader -sorter is not ready; or 

2. ~ pocket-light control PCB is already 
in process 

Branch 
to A 
address 
if: 

Amount field error 

Proce s s control field error 

Account field error 

Transit field error 

Auxiliary on-us field error 

Device error 

Pas sed document condition 

Operate in normal mode 

Operate in short-document mode 

Branch to A address if on-us field is 
complete 

Branch to A address if last document was 
a control document 

Branch to A address if end-of-file 

Advance batch counter one digit. Branch 
to A address if the sorter-reader is not 
stopped or the batch counter is currently 
being advanced. 

Turn allow function OFF 

Turn allow function ON 

Turn interrupt function OFF 

Branch to A address if interrupt function 
is ON 

See: Type 233-2 MICR Control (Order No. 464) 

8-144 

xx xx 
xx xx 
xx xx 
xx xx 
xx xx 
xx xx 
xx xx 

xx xx 

xx xx 

xx xx 

xx xx 

xx xx 

xx x 

xx x 

xx x~ 
xx xx 

xx xx 

40'0 

4 1 

4 2 

4 3 

44 

5 0 

5 1 

6 0 

6 

6 2 

6 3 

6 4 

6 5 

7 0 

7 1 

7 4 

7 5 

#2-139 



SECTION VIII. INSTRUCTIONS 

Table 8-34 (cont). Sununary of PCB I/O Control Characters 

• t <;\C.·/.: 5
'l\.·\.L./ 

:'> 
'i .. ······<.i;~ 

"- A. 
. .. 

iii...> ... : .. ··.ii: .. '7. :.: ... : ..... : .... : .: •• '.,. c' 
'ljERS 

i>\ii) ':' ....... '.; i> ·.·.··..i·.·.·.:· .. · .. ··.·'.i\·.:.\: > i' .. '·". i 
.i.?y/. : .. :( .... : ..... :.... ........... > •........ .•.. . .... ....... .' ......... .,: ...• :: .•.. :.... ..: y : .. '::. c; 3 tn1;'o1.lghCn 

Branch Device busy XX X3 X 1 0 

~ to A 
Form is moving XX X2 X 2 0 

~ address 
E-! 

if: Device busy or form is moving XX X3X 3 0 Z 1-1 
~ Print error or read check XX X3 X 4 0 Pot 
~ Validity error XX X3X 4 1 
r.1~ 

X2 X rilO Branch on channel 2 (EOF) of format tape XX o 1 
~o:: 

X2 X ~E-l Branch on channel 8 of format tape XX o 2 
~Z 

XIX 1-10 Turn on validity check indicator XX 2 0 1=0 0 
r-

Turn the allow function OFF XX X X 7 0 ('i") 

N 

ril 
Pot 

Turn the allow function ON XX X X 7 1 

~ Turn the interrupt function OFF XX X X 7 4 
E-l 

Branch to A address if read interrupt 
XIX function is ON XX 7 5 

NOTE: The two operations "Branch to A address if form is moving" and II Turn on 
validity check indicator" are both specified with a C3 character of 208' but 
are distinguished by the high -order bit of C2. 

See: TYEe 237 Bill Feed Printer Control (Order No. 194) 

NOTES: l. The high-order bit must be l. 

2. The high -order bit must be o. 
3. The high-order bit is set to 1 for input operations and to 0 for output operations. 

4. This control character should precede all other control characters that set the 
control to perform a certain action. It is the programmer's responsibility to 
set the control to the desired mode of operation at the beginning of the run. 

5. As the drum control does not permit reading from one drum file while writing 
on another, it is considered busy if either a read or a write operation is in 
progress. (The value of the high-order bit in C2 is thus immaterial in this 
case. ) 

6. The high-order bit is ignored. 

7. The interrupt functions of both the control and the disk device are automatically 
turned on when a Ilnot busy" status is reached by the control or the disk device, 
respectively. 

8. For program interruption in the 201-0 central processor, the processor must 
contain the Program Interrupt Feature (012). 

9. The manual interrupt function is applicable only in those cases where the Type 
220-3 is employed with the 201-0 or 201-1 central processpr; C3 control charac-
ters 76 and 77 perform no operations with other central processors. In those 
cases where the 201-0 or 201-1 is not equipped with the Program Interrupt 
Feature (012), the manual interrupt function can still be tested or turned off. 
Thus although the interrupt button cannot effect a manual interrupt, the corre-
sponding' function can be tested to set up a programmed interrupt. 

8-145 #2-139 



N , 
.-;'p 
'u 
~U 
N~ 
riI(\"'l 
Pi. 
:>-t 
E-t 

p 
U 
U 
~ 
riI 
~ 
0 
~ , 
riI a 
<t: 
f.I) 
f.I) 

riI 
~ 
lC) 

• 
.,; , 
-.0 
co 
N 

riI 
Pi 
:>-t 
E-t 

SECTION VIII. INST RUCTIONS 

Table 8-35. Summary of PCB I/O Control Characters for Type 286 
Multi-Channel Communication Control 

Branch to A address if device busy. If not busy, XX XX 1 0 
set the 286 to stop scanning and continue the pro-
gram in sequence 

. Turn the allow function OFF XX XX 7 0 

Turn the allow function ON XX XX 7 1 

Branch to A address if the interrupt was due to XX XX 7 5 
the 286 requesting service 

Branch to A address if device busy XX XX 1 0 

Branch to A address if parity error XX XX 4 0 

Branch to A address if the interrupt was due to XX XX 7 5 
the 286 requesting service 

Turn the allow function ON XX XX 7 1 

Turn the allow function OFF XX XX 7 0 

Set the 286 to the load/test state XX XX 2 5 

Provide line orientation for load/test operation XX XX 4 1 

Turn the load/test state and line orientation OFF XX XX 2 4 

Turn the interrupt function OFF XX XX 7 4 

Release the RWC(S) assigned to the 286 XX XX 2 7 

Set the halt / continue indicator to halt XX XX 2 0 

Set the halt/continue indicator to continue XX XX 2 1 

Turn the parity error indicator and the parity XX XX 2 6 
error interrupt function OFF 

Request the address of the next transfer that is XX XX 3 6 
to take place from the line designated by C4, and 
branch to the A address 

Abort the present instruction to the line designa- XX XX 3 3 
ted by C4, generate an interrupt, initiate the 
next instruction to the sa:me line, and branch to 
the A addre s s 

A bort the present instruction to the line designa- XX XX 3 2 
ted be C4, initiate the next instruction to the 
same line, and branch to the A address 

Reset synchronization for the line designated by XX XX 3 7 
C4, and branch to the A address 

Activate the special strobe line to the 285 adapter XX XX 3 4 
designated by C4, and branch to the A address 

Deliver to the 286 the information specified by XX XX 3 0 
C5 et seq. for the next instruction to the line 
designated by C4, and branch to the A address 

8-146 

none 

none 

none 

none 

none 

none 

none 

none 

none 

none 

none 

none 

none 

none 

none 

none 

none 

C4: 00 to 77 

C4: 00 to 77 

C4: 00 to 77 

C4: 00 to 77 

C4: 00 to 77 

C4: 00 to 77 
(See Table 8-36 
for C5 et seq.) 

#2-139 



C5 
C6 
C7 

C8 
C9 

SECTION VIII. INSTRUCTIONS 

Table 8-35 (cont). Summary of PCB I/O Control Characters for Type 286 
Multi-Channel Communication Control 

Deliver to the 286 the information specified by 
C5 et seq. for the next instruction to the line 
designated by C4; then abort the present in­
struction to that line, generate an interrupt, 
initiate the next instruction to the same line, 
and branch to the A address 

Deliver to the 286 the information specified by 
C5 et seq. for the next instruction to the line 
designated by C4, then abort the present in­
struction to that line, initiate the next instruc­
tion to the same line, and branch to the A 
address 

xx 

xx 

xx 

xx 

3 3 

3 2 

C4: 00 to 77 
(See Table 8-36 
for C5 et seq.) 

C4: 00 to 77 
(See Table 8 -36 
for C5 et seq.) 

Table 8-36. PCB Control Characters C5 through C15 for Type 286-4, -5 
Line Control Instructions 

C5 C6 

XX 
'--v--' 

C7 

XX 
'--v--' 

XX 
'--v--' 

most significant 
six bits 

middle six bits least significant 
six bits 

C8 

XX 

Bits 6 and 5 specify 
mode-of op~ration of 
the line: 

6 5 

0 0 - Inhibit 
0 1 - Receive 
1 0 - Transmit 
1 1 - Transmit 

Repeat 

Bit 4 is the Allow 
Timer bit 

o - Timer is not 
allowed 

1 - Timer is 
allowed 

C9 

XX 

Bit §. is the response bit 

o - no interrupt is 
allowed at termi­
nation of the in­
struction. 

1 - an interrupt is 
allowed. 

Bits 4 and 5 are not used - -
and must be zero. 

8-147 

Address to be loaded 
into RWC counters (SLC 
and CLC) prior to data 
transfer. 

Control characters 
which specify line 
action; they are loaded 
into the next instruction 
section of memory. 

#2-139 



C8 
C9 

(cont) 

CIa 
CII 

C12 
C13 

SECTION VIII. INSTRUCTIONS 

Table 8-36 (cont). PCB Control Gharacters C5 through CI5 for Type 286-4, -5 
Line Control Instructions 

Bits 2. and ~ specify 
character parity 

3 2 

a a no parity 
a 1 generation or 

checking is 
performed 

I a even parity 
1 1 odd parity 

Bit I is the character 
. transfer bit 

a - one six-bit 
character 
transfer per 
line character 

1 - two six-bit 
character 
transfers per 
line character 

CIa 

xx 

C12 

XX 

CII 

XX 

C13 

XX 

Bit lis the block parity 
bit 

a - block parity is 
not used 

I - block parity is 
used 

Bit 2 is the command 
termination bit 

a - character recog­
nized is the last 
one transferred 

I - one more data 
transfer is made 
to or from the CP 
after the charac" 
ter recognized 
and before com­
mand termination .. 

Bit I defines block parity 
check bit 

a - check bit will be 
the half add sum 
of the parity bit 
of the preceding 
characters in the 
message. 

I - block parity char­
acter will have 
same parity 
generated or 
checked as the 
data characters. 

8-148 

Eight bits (the low­
order two bits of CIa 
and all six bits of C II) 
contain the fir st rec-
0gnition character$ 

Eight bits (the low­
order two bits of C 12 
and all six bits of C13) 
contain the second ~ec­
ognition character. 

#2-139 



C14 
C15 

~ 
SECTION VIII. INSTRUCTIONS 

Table 8-36 (cont). PCB Control Characters C5 through CI5 for Type 286-4, -5 

C14 

XX 

Line Control Instructions . 

CI5 

XX 

Eight bits (the low­
order two bits of C 14 
and all six bits of CIS) 
contain the SIT char­
acter for asynchronous 
lines. 

Table 8-37. Description of PCB I/O Character CE 

10 

12 

13 

8-149 

Sector 1 

Sector 2 

Sector 3 

. #2-139 





APPENDIX 
OC TAL NOT A TION 

A 

Octal notation is a convenient shorthand method of writing pure binary numbers. In Series 

200 programming it is used to represent such binary values as main memory addres ses, variant 

characters, I/O control characters, and constants. 

If a binary value is divided into groups of three bits, proceeding from right to left, each 

group may be replaced by its octal equivalent as indicated in Table A-I. 

Example 1. 

Table A-I. 

000 

001 

010 

011 

100 

101 

110 

III 

The binary value 

011111000101001110 

when divided into three -bit groups 

011 III 000 101001 110 

has an octal equivalent of 

37051 6 

Binary-Octal Equivalents 

A-I 

Example 2. 

o 
1 

2 

3 

4 

5 

6 

7 

The binary value 

1010100111010 

when divided into three -bit groups 

1010 100 III 010, 

has an octal equivalent of 

1 2 4 7 2 

#2-139 



APPENDIX A. OCTAL NOTATION 

Table A-2. Decimal-Octal Conversion Table 

DECIMAL INCREMENT 
o:t: 

0 000 008 016 024 032 040 048 056 064 072 080 096 136 
0 r-

UJCI 088 104 112 120 128 144 152 160 168 176 184 192 0 n 0 0- 1 001. 009 017 025 0.33 041 049 057 065 073 081 089 097 105 113 121 129 137 145 153 161 169 177 185 193 1 -4 ~ 0: 0 
2 002 010 018 026 034 042 050 058 066 074 082 090 098 106 114 122 130 138 146 154 162 170 178 186 194 2 

> 6 O...J r-
'c 3 003 011 019 027 035 043 051 059 067 075 083 091 099 107 115 123 131 139 147 155 163 171 179 187 195 3 0 :0 ~~ '4 004 012 020 028 036 044 052 060 068 076 084 092 100 108 116 124 132 140 148 156 164 172 180 188 196 4 C5 0 0(') 5 005 .013 021 029 037 045 053 061 069 077 085 093 101 109 117 125 133 141 149 157 165 173 181 189 197 

~ 
fT1 ...JO :::j :0 6 006 014 022 030 038 046 054 062 070 078 086 094 102 110 118 126 134 142 150 H* -i6b-i'r.-i8z--i90-1'9s-

7 007 015 023 031 039 047 055 063 071 079 087 095 103 111 119 127 135 143 151 9 -i67-i7s-i8'-ilr-r9~- 7 
0000 0 1 2 3 4 5 6 7 10 11 IZ 13 14 15 16 17 20 ZI 22 Z3 24 25 26 27 30 0000 
0200 31 32 33 34 35 36 37 40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57 60 61 OZOO 
0400 62 63 64 65 66 67 70 71 72 73 74 75 76 77 100 101 102 103 104 105 106 107 110 III 112 0400 
0600 113 114 llS 11.6 117 120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137 140 141 142 143 0600 
0800 -144 145 146 147 150 151 152 153 154 155 156 157 160 161 162 163 164 165 166 167 170 171 172 173 174 0800 
1000 175 176 177 200 201 202 203 204 205 206 207 210 211 212 213 214 215 216 Z17 2Z0 221 2Z2 223 224 225 1000 
1200 226 227 230 231 232 233 234 235 236 237 240 241 242 243 244 245 246 247 Z50 251 252 253 254 255 256 1200 
1400 257 260 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277 300 301 302 303 304 305 306 307 1400 
1600 310 311 312 313 314 315 316 317 320 321 32Z 323 324 3Z5 326 327 330 331 332 333 334 335 336 337 340 1600 
1800 341 342 343 344 345 346 347 350 351 352 353 354 355 356 357 360 361 362 363 364 365 366 367 370 371 1800 
2000 372 373 374 375 376 377 400 401 402 403 404 405 406 407 410 411 412 413 414 415 416 .417 420 421 422 2000 
2200 423 424 425 426 427 430 431 432 433 434 435 436 437 440 441 442 443 444 445 446 447 450 451 452 453 2200 
2400 454 455 456 457 460 461 462 463 464 465 466 467 470 471 472 473 474 475 476 477 500 501 502 503 504 2400 
2600 505 506 507 510 !Hl 512 513 514 515 516 517 520 521 5Z2 523 524 525 526 527 530 531 532 533 534 535 2600 
2800 536 537 540 541 542 543 544 545 546 547 550 551 552 553 554 555 556 557 560 561 562 563 564 565 566 2800 
3000 567 570 571 572 573 574 575 576 577 600 601 602 603 604 605 (;06 607 610 611 612 613 614 615 616 617 3000 
3200 620 621 622 623 624 625 626 627 630 631 632 633 634 635 636 637 640 641 642 643 644 645 646 647 650 3200 
3400 651 652 653 654 655 656 657 660 661 662 663 664 665 666 667 670 671 672 673 674 675 676 677 700 701 3400 
3600 702 703 704 705 706 707 710 711 712 713 714 715 716 717 720 721 722 723 724 725 726 727 730 731 732 3600 
3800 733 734 735 736 737 740 741 742 743 744 745 746 747 750 751 752 753 754 755 756 757 760 761 762 763 3800 
4000 764 765 766 767 770 771 772 773 774 775 776 777 1000 1001 1002 1003 1004 1005 1006 1007 1010 1011 1012 1013 1014 4000 
4200 1015 1016 1017 1020 1021 1022 1023 1024 1025 1026 1027 1030 1031 1032 1033 1034 1035 1036 1037 1040 1041 1042 1043 1044 1045 4200 
4400 1046 1047 1050 1051 1052 1053 1054 1055 1056 1057 1060 1061 1062 1063 1064 1065 1066 1067· 1070 1071 1072 1073 1074 1075 1076 4400 
4600 1077 1100 1101 1102 1103 1104 1105 1106 1107 1110 1111 1112 1113 1114 1115 1116 1117 1120 1121 llZ2 1123 1124 1125 1126 1127 4600 
4800 1130 1131 1132 1133 1134 1135 1136 1137 1140 1141 1142 1143 1144 1145 1146 1147 1150 1151 1152 1153 1154 1155 1156 1157 1160 4800 
5000 1161 1162 1163 1164 1165 1166 1167 1UO 1171 1172 1173 1174 1175 1176 1177 1200 1201 1202 1203 1204 1205 1206 1207 1210 1211 5000 
5200 1212 1213 1214 1215 1216 1217 1220 1221 1222 1223 1224 1225 1226 12Z7 1230 1231 1232 1233 1234 1235 1236 1237 1240 1241 1242 5200 
5400 1243 1244 1245 1246 1247 1250 1251 1252 1253 1254 1255 1256 1257 1260 1261 1262 1263 1264 1265 1266 1267 1270 1271 1272 1273 5400 
5600 1274 1275 1276 1277 1300 1301 1302 1303 1304 1305 1306 1307 1310 1311 1312 1313 1314 1315' 1316 1317 1320 1321 1322 1323 1324 5600 
5800 1325 1326 1327 1330 1331 1332 1333 1334 1335 1336 1337 1340 1341 1342 1343 1344 1345 1346 1347 1350 1351 1352 1353 1354 1355 5800 
6000 1356 1357 1360 1361 1362 1363 Ij64 1365 1366 1367 1370 1371 1372 1373 1374 1375 1376 1377 1400 1401 1402 1403 1404 1405 1406 6000 
6200 1407 1410 1411 1412 1413 1414 1415 1416 1417 1420 1421 1422 1423 14Z4 1425 1426 1427 1430 1431 1432 1433 1434 1435 1436 1437 6200 
6400 1440 1441 1442 1443 1444 1445 1446 1447 1450 1451 1452 1453 1454 1455 1456 1457 1460 1461 1462 1463 1464 1465 1466 1467 1470 6400 
6600 1471 1472 1473 1474 1475 1476 1477 1500 1501 1502 1503 1504 1505 1506 1507 1510 1511 1512 1513 1514 1515 1516 1517 1520 1521 6600 

ci 6800 1522 1523 1524 1525 1526 1527 1530 1531 1532 1533 1534 1535 1536 1537 1540 1541 1542 1543 1544 1545 1546 1547 1550 1551 1552 6800 
0 Z 7000 1553 1554 1555 1556 1557 1560 1561 1562 1563 1564 1565 1566. 1567 1570 1571 1572 1573 1574 1575 1576 1577 1600 1601 1602 1603 7000 fT1 

UJ 7200 1604 1605 1606 1601 1610 1611 1612 1613 1614 1615 1616 1617 1620 16Z1 1622 1623 1624 16Z5 1626 16Z7 1630 1631 1632 1633 1634 7200 £'! en 7400 1635 1636 1637 1640 1641 1642 1643 1644 1645 1646 1647 1650 1651 1652 1653 1654 1655 1656 1657 1660 1661 1662 1663 1-664 1665 7400 3: < 
IrI 7600 1666 1667 1670 1671 1672 1673 1674 1675 1676 1677 1:700 1701 1702 1703 1704 1705 1706 1707 1710 1711 1712 1713 1714 1715 1716 7600 > 

7800 1717 1720 1721 1722 1723 1724 1725 1726 1727 1730 1731 1732 1733 1734 1735 1736 1737 1740 1741 1742 1743 1744 1745 1746 1747 7800' 
r-...J 

C a:J 
::IE 8000 1750 1751 1752 1753 1754 1755 1756 1757 1760 1761 1762 1763 1764 1765 1766 1767 1770 1771 1772 1773 1774 1775 1776 1777 2000 8000 > 

8200 2001 2002 2003 2004 2005 2006 2007 2010 2011 2012 2013 2014 2015 2016 2017 2020 2021 2022 2023 2024 2025 2026 2027 2030 2031 8200 en 
(,) fT1 
UJ 8400 2032 2033 Z034 2035 2036 2037 2040 2041 2042 2043 2044 2045 2046 2047 2050 2051 2052 2053 2054 2055 2056 2057 2060 206i" 2062 8400 
0 8600 2063 2064 2065 2066 2067 2070 2071 2072 2073 2074 2075 2076 2077 2100 2101 2102 210,3 2104 2105 2106 2107 2110 2111 2112 2113 8600 Z 

8800 2114 2115 2116 2117 2120 2121 2122 2123 2124 2125_2126 2127 2130 2131 2132 2133 2134 2135 2136 2137 2140 2141 2142 2143 2144 8800 9 
9000 2145 2146 2147 2150 2151 2152 2153 2154 2155 2156 2157 2160 2161 2162 2163 2164 2165 2166 2167 2170 2171 2172 2173 2174 2175 9000 
9200 2176 2177 Z200 2201 2202 2203 2204 2205 2206 2207 2210 2211 2212 2213 2214 2215 2216 2217 2220 2221 2222 2223 2224 2225 2226 9200 
9400 2227 2230 2231 2232 2233 2234 2235 2236 2237 2240 2241 2242 2243 2244 2245 2246 2247 2250 2251 2252 2253 2254 2255 2256 2257 9400 
9600 2260 2261 2262 2263 2264 2265 2266 2267 2270 2271 2272 2273 2274 2275 2276 2277 2300 2301 2302 2303 2304 2305 2306 2307 2310 9600 
9800 2311 2312 Z313 2314 2315 2316 2317 2320 2321 2322 2323 2324 2325 2326 ~327 2330 2331 2332 2333 2334 2335 2336 2337 2340 2341 9800 

10,000 2342 2343 2344 2345 2346 2347 2350 2351 2352 2353 2354 2355 2356 2357 2360 2361 2362 236'3 2364 2365 2366 2367 2370 2}71 2372 10,000 
10,200 2373 2374 2375 2376 2377 2400 2401 2402 2403 2404 2405 2406 2407 2410 2411 2412 2413 2414 2415 2416 2417 2420 2421 2422 2423 10,200 
10,400 2424 2425 2426 2427 2430 2431 2432 2433 2434 2435 2436 2417 2440 2441 2442 2443 2444 2445 2446 2447 2450 2451 2452 2453 2454 10,400 
10,600 2455 2456 2457 2460 2461 2462 2463 2464 2465 2466 2467 2470 2471 2472 2473 2474 2475 2476 2477 2500 Z501 2502 2503 2504 2505 10,600 
10,800 2506 2507 2510 2511 2512 2513 2514 2515 2516'2517 2520 2521 2522 2~Z3 2524 2525 2526 2527 2530 2531 2532 2533 2534 2535 2536 10,800 
11,000 2537 2540 2541 2542 2543 2544 2545 2546 2547 2550 2551 2552 2553 2554 2555 2556 2557 2560 2561 2562 2563 2564 2565 2566 2567 11,000 
11,200 2570 2571 2572 2573 2574 2575 2576 2577 2600 2601 2602 2603 2604 2605 2606 2607 2610 2611 2612 2613 2614 2615 2616 2617 2620 11,200 
11,400 2621 2622 Z623 2624 2625 2626 2627 2630 2631 2632 2633 2634 2635 2636 2637 2640 2641 2642 2643 2644 2645 2646 2647 2650 265.1 11,400 
11,600 2652 2653 Z654 2655 2656 2657 2660 2661 2662 26.63 2664 2665 2666 2667 2670 2671 2672 2673 2674 2675 2676 2677 2700 2701 2702 11,600 
11,800 2703 2704 2705 2706 2707 2710 2711 2712 2713 2714 2'215 2716 2717 2720 2721 2722 2723 2724 2725 2726 2727 2730 2731 2732 2733 11,800 
12,000 2734 2735 2736 2737 2740 2741 2742 2743 2744 2745 2746 2747 2750 2751 2752 2753 2754 2755 2756 2757 2760 2761 2762 2763 2764 12,000 
12,200 2765 2766 2767 2770 2771 2772 2773 2774 2775 2776 2777 3000 3001 3002 3003 3004 3005 3006 3007 3010 3011 3012 3013 3014 3015 12,200 
12,400 3016 3017 3020 3021 3022 3023 3024 3025 3026 3027 3030 3031 3032 3033 3034 3035 3036 3037 3040 3041 3042 3043 3044 3045 3046 12,400 
12,600 3047 3050 3051 3052 3053 3054 3055 3056 3057 3060 3061 3062 3063 3064 3065 3066 3067 3070 3071 3072 3073 3074 3075 3076 3077 12; 600 
12,800 3100 3101 3102 3103 3104 3105' 3106 3107 3110 3111 3112 3113 3114 3115 3116 3117 3120 3121 3122 3123 3124 3125 3126 3127 3130 12,800 

13,000 3131 3132 3133 3134 3135 3136 3137 3140 3141 3142 3143 3144 3145 3146 3147 3150 3151 3152 3153 '3154 3155 3156 3157 3160 3161 13,000 
13,200 3162 3163 3164 3165 3166 3167 3170 3171 3172 3173 3174 3175 3176 3177 3200 320 I 3202 3203 3204 3205 3206 3207 3210 3211 3212 13,200 
13,400 3213 3214 3215 3216 3217 3220 3221 3222 3223 3224 3225 3226 3227 3230 3231 3232 3233 3234 3235 3236 3237 3240 3241 3242 3243 13,400 
13,600 3244 3245 3246 3247 3250 3251 3252 3253 3254 3255 3256 3257 3260 3261 3262 3263 3264 3265 3266 3267 3270 3271 3272 3273 3274 13,600 
13,800 3275 3276 3277 3300 3301 330Z 3303 3304 3305 3306 3307 3310 3311 3312 3313 3314 3315 3316 3317 3320 3321 33Z2 3323 3324 3325 13,800 

14,000 3326 3327 3330 3331 3332 3333 3334 3335 3336 3337 3340 3341 3342 3343 3344 3345 3346 3347 3350 3351 3352 3353 3354 3355 3356 14,000 
14,200 3357 3360 3361 3362 3363 3364 3365 3366 3367 3370 3371 3372 3373 3374 3375 3376 3371 3400 3401 3402 3403 3404 3405 3406 3407 14,200 
14,400 3410 3411 3412 3413 34143415 3416 3417 3420 3421 342Z 3423 3424 3425 3426 3427 3430 3431 3432 3433 3434 3435 3436 3437 3440 14,400 
14,600 3441 3442 3443 3444 3445 3446 3447 3450 3451 3452 3453 3454 3455 3456 3457 3460 3461 3462 3463 3464 3465 3466 3467 3470 3471 14,600 
14,800 3472 3473 3474 3475 3476 3477 3500 3501 3502 3503 3504 3505 3506 3507 3510 3511 3512 3513 3514 3515 3516 3517 3520 3521 3522 14,800 

15,000 3523 3524 3525 3526 3527 3530 3531 3532 3533 3534 3535 3536 3537 3540 3541 354Z 3543 3544 3545 3546 3547 3550 3551 3552 3553 15,000 
15,200 3554 3555 3556 3557 3560 356l' 3562 3563 3564 3565 3566 3567 3570 3571 3572 3573 3574 3575 3576 3577 3600 36.01 3602 3603 3604 15,200 
15,400 3605 3606 3607 3610 3611 3612 3613 3614 3615 3616 3617 3620 3621 36Z2 3623 3624 3625 3626 3627 3630 3631 3632 3633 3634 3635 15,400 
15,600 3636 3637 3640 3641 3642 3643 3644 3645 3646 3647 3650 3651 3652 3653 3654 3655 3656 3657 3660 3661 3662 3663 3664 3665 3666 15,600 
15,800 3667 3670 3671 3672 3673 3674 3675 3676 3677 3700 3701 3702 3703 3704 3705 3706 3707 3710 3711 371Z 3713 3714 3715 3716 3717 15,800 

16,000 3720 3721 3722 3723 3724 3725 3726 3727 3730 3731 373Z 3733 3734 3735 3736 3737 3740 3741 3712 3743 3744 3745 3746 3747 3750 16,'000 
16,200 3751 3.752 3753 3754 3755 3756 3757 3760 3761 3762 3763 3764 3765 3766 3767 3770 3771 3772 3773 3774 3775 3776 3777 4(100 4001 16,200 
16,400 4002 4003 4004 4005 4006 4007 4010 4011 4012 4013 4014 4015 4016 4017 4020 4021 4022 4023 4024 4025 4026 4027 4030 4031 4032 16,400 

HIGH-ORDER OCTAL DIGITS 

A-2 #2-139 



APPENDIX A. OCTAL NOTATION 

OCTAL-DECIMAL CONVERSION PROCEDURE 

Consider the decimal number to be converted as a base and an increment. Locate the base 

(the next lower number which is evenly divisible by 200) in the margin of the lower chart and the 

increment in the body of the upper chart. The intersection of the row and column thus defined 

contains the high-order digits of the octal equivalent. The low-order digit appears in the mar­

gins of the upper chart opposite the increment. For example, to convert 7958 to octal, the base 

is 7800 and the increment is 158. Locate 158 in the upper chart and read down this column to 

the 7800 row below. The high-order octal result is 1742. Then read out to the margin of the 

upper chart to obtain the low-order digit of 6. Append (do not add) this digit to 1742 for an octal 

equivalent of 17,426. 

To convert an octal number to decimal, locate the high-order digits in the body of the 

lower chart and the low-order digit in the margin of the upper chart. Then perform the conv.erse 

of the above operation. 

A-3 #2-139 



APPENDIX MISCELLANEOUS TABLES 

B 
Table B-l. Control Register Designations 

CLC7 00 

CLCI 01 

CLC2 02 

CLC3 03 

CLC7' 04 

CLCl' 05 

CLC2' 06 

CLC3' 07 

SLC7 10 

SLCI 11 

SLC2 12 

SLC3 13 

SLC7' 14 

SLCl' 15 

SLC2' 16 

SLC3' 17 

CLC8 20 

CLC4 21 

CLC5 22 

CLC6 23 

CLC8' 24 

CLC4' 25 

CLC5' 26 

CLC6' 27 

SLC8 30 

SLC4 31 

SLC5 32 

SLC6 33 

SLC8' 34 

B-1 #2-139 



APPENDIX B. MISCELLANEOUS TABLES 

Table B-1 (cont). Control Register Designations 

SLC4' 35 

SLC5' 36 

SLC6' 37 

ACO 

AC1 

AC2 

AC3 

CSR 64 

EIR 66 

AAR 67 

BAR 70 

IIR 76 

SR 77 

Table B-2. Extended Move (EXM) Conditions 

Type of Move 

1. A-field data bits _ B X X X X X 1 

2. A-field word-mark bits -B X X X X 1 X 
3. A-field item-mark bits---.B X X X X X 

Direction of Move 

1. right to left X X 0 X X X 
2. left to right X X 1 X X X 

Termination of Move 

1. automatic after single-character move 0 0 X X X X 
2. A-field word mark 0 X X X X 
3. A-field item mark 1 0 X X X X 
4. A-field record mark 1 1 X X X X 

B-2 #2-139 



APPENDIX B. MISCELLANEOUS TABLES 

Table B-3. Branch on Condition Test (BCT) SENSE Switch Conditions 

00 

01 

02 

03 

04 

05 

06 

07 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 

37 

Unc onditional 

SENSE Switch 1 On 

SENSE Switch 2 On 

SENSE Switche s 1 and 2 On 

SENSE Switch 3 On 

SENSE Switche s 1 and 3 On 

SENSE Switche s 2 and 3 On 

SENSE Switches 1, 2, and 3 On 

SENSE Switch 4 On 

SENSE Switche s 1 and 4 On 

SENSE Switche s 2 and 4 On 

SENSE Switche s 1, 2, and 4 On 

SENSE Switche s 3 and 4 On 

SENSE Switches 1, 3, and 4 On 

SENSE Switches 2, 3, and 4 On 

SENSE Switches 1, 2, 3, and 4 On 

Unconditional 

SENSE Switch 5 On 

SENSE Switch 6 On 

SENSE Switches 5 and 6 On 

SENSE Switch 7 On 

SENSE Switche s 5 and 7 On 

SENSE Switche s 6 and 7 On 

SENSE Switches 5, 6, and 7 On 

SENSE Switch 8 On 

SENSE Switche s 5 and 8 On 

SENSE Switches 6 and 8 On 

SENSE Switche s 5, 6, and 8 On 

SENSE Switches 7 and 8 On 

SENSE Switche s 5, 7, and 8 On 

SENSE Switche s 6, 7, and 8 On 

SENSE Switche s 5, 6, 7, and 8 On 

NOTE: When testing for a multiple SENSE switch condition, a branch 
occurs only if all of the specified conditions are met. 

B-3 #2-139 



APPENDIX B. MISCELLANEOUS TAB LES 

Table B-4. Branch on Condition Test (BCT) Indicator Conditions 

40 Do not branch 

41 B< A (Low Com.pare) 

42 B=A (Equal Compare) 

43 B!S A (Low or Equal Compare) 

44 B > A (High Compare) 

45 B#A (Unequal Compare) 

46 B ~ A (High or Equal Com.pare) 

47 Unconditional 

50 Overflow 

51 Overflow or B < A 

52 Overflow or B=A 

53 Overflow or B,:5; A 

54 Overflow or B > A 

55 Overflow ~ B#-A 

56 Overflow or B ~ A 

57 Unconditional 

60 Zero Balance 

61 Zero Balance or B <A 

62 Zero Balance or B=A 

63 Zero Balance or B ~A 

64 Zero Balance or B > A 

65 Zero Balance or B#-A 

66 Zero Balance or B 2:.A 

67 Unconditional 

70 Overflow or Zero Balance 

71 Overflow or Zero Balance or B < A 

72 Overflow or Zero Balance or B=A 

73 Overflow or Zero Balance or B ~ A 

74 Overflow or Zero Balance or B> A 

75 Overflow or Zero Balance or B#A 

76 Overflow or Zero Balance or B ~ A 

77 Unconditional 

NOTE: When testing for a m.ultiple indicator condition, a branch 
occurs if anyone of the specified conditions is m.et. 

B-4 #2-139 



APPENDIX B. MISCELLANEOUS TABLES 

Table B-5. Branch on Character Condition (BCC) Conditions 

00 Unc onditional 
01):< A bit is 1 
02 B bit is 1 
03* B and A bits are 11 
04):< B and A bits are 00 

05* _~~~.!LcL.A...1;?"~t§._~:.~_l (Positive sign) 
06 CB and A bits are 1(J\(Negative sign) 
(7):< Band A bits ar-e-rl (same as 03) 

Word-mark bit is 
Word-mark bit is 1, A bit is 1 
Word-mark bit is 1, B bit is 1 
Word-mark bit is 1, B and A bits are 11 

15):c 
16 
17* 

20 
21 1,c 

22 
23* 
24* 
25):< 
26 
27):< 

30 

32 
33):c 
34):< 
35):< 
36 
37* 

41):c 
421,c 

43):c 

44* 
45):( 

46* 
47* 

50):< 

51* 
52):c 
53):< 
54):< 

55* 
56* 
57):c 

B-5 

Word-mark bit is 1, B and A bits are 00 
Word-mark bit is 1, Positive sign 
Word-mark bit is 1, Negative sign 
Word-mark bit is 1, B and A bits are 11 

Item-mark bit is 1 
ItetT,l-mark bit is 1, A bit is 1 
Item-mark bit is 1, B bit is 1 
Item-mark bit is 1, B and A bits are 11 
Item-mark bit is 1, B and A bits are 00 
Item-mark bit is 1, Pos iti ve Sign 
Item-mark bit is 1, Negative Sign 
Item-mark bit is 1, B and A bits are 

Record mark 
Record mark, A bit is 1 
Record mark, B bit is 1 
Record mark, B and A bits are 11 
Record mark, B and A bits are 00 
Record mark, Positive sign 
Record mark, Negative sign 
Record mark, B and A bits are 11 

No punctuation (Word-mark and Item-
mark bits are 00) 

No punctuation, A bit is 1 
No punctuation, B bit is 1 
No punctuation, B and A bits are 11 
No punctuation, B and A bits are 00 
No punctuation, Positive sign 
No punctuation, Negative sign 
No punctuation, B and A bits are 11 

Word mark only 
Word mark only, A bit is 1 
Word mark only, B bit is 1 
Word mark only, B and A bits are 11 
Word mark only, B and A bits are 00 
Word mark only, Positive sign 
Word mark only, Negative sign 
Word mark only, B and A bits are 11 

11 

#2-139 



APPENDIX B. MISCELLANEOUS TABLES 

Table B- 5 (cont). Branch on Character Condition (BCC) Conditions 

60~:C 

61* 
62* 
63~:c 

64~:C 

65~:C 

66~:c 

67~'f. 

70~:ct 

71~:Ct 

72*t 
73*t 
74~:Ct 

75*t 
76~:ct 

77*t 

Item mark only 
Item mark only, A bit is I 
Item mark only, B bit is I 
Item mark only, B and A bits are 11 
Item mark only, B and A bits are 00 
Item mark only, Positive sign 
Item mark only, Negative sign 
Item mark only, B and A bits are 11 

U nc onditi onal 
Word mark or A bit is 1 
Word mark or B bit is 1 
Word mark or B and A bits are 11 
Word mark or B and A bits are 00 
Word mark or Positive sign 
Word mark or Negative sign 
Word mark or B and A bits are 11 

~:cValid only on systems equipped with the Advanced Programming Feature 
(Feature 010 or 011). 

tThe Type 201 and 201-1 processors interpret variants 70 through 77 as 
if they were variants 30 through 37. 

B-6 #2-139 



APPENDIX B. MISCELLANEOUS TABLES 

Table B-6. Series 200 Character Codes 

0 0 000000 00 0 o or - X, 100000 40 
1 1 000001 01 1 J X,1 100001 41 J 
2 2 000010 02 2 K X,2 100010 42 K 
3 3 000011 03 3 L X,3 100011 43 L 
4 4 000100 04 4 M X,4 100100 44 M 
5 5 000101 05 5 N X,5 100101 45 N 
6 6 000110 06 6 0 X,6 100110 46 0 
7 7 000111 07 7 P X,7 100111 47 P 
8 8 001000 10 8 Q X,8 101000 50 Q 
9 9 001001 11 9 R X,9 101001 51 R 

8,2 001010 12 X,8,2 101010 52 # 
# 8,3 001011 13 = $ X~8,3 101011 53 $ 

@> 8,4 001100 14 * X,8,4 101100 54 * Space Blank 001101 15 Blank X,8,5 101101 55 II 

8,6 001110 16 > (2) X,8,6 101110 56 I: (2) 

& 8,7 001111 1.1. <&) - or 0 X or X, 0(1) 101111 57 I/Zor' (l) (3) 
o or & R,O or R(1) 010000 20 + 8,5 110000 60 < (2) 

A R,1 010001 21 A I 0,1 110001 61 I 
B R,2 0100.10 22 B 5 0,2 110019 62 S 
C R,3 010011 23 C T 0,3 110011 63 T 
D R,4 010100 24 D U 0,4 110UO 64 U 
E R,5 010101 25 E V 0,5 110101- 65 V 
F R,6 010110 26 F W 0,6 110110, 66 W 
G R,7 010 III 27 G X 0,7 11eHl-1 67 X 
H R,8 011000 30 H Y 0,8 111000 70 Y 
I R,9 011001 31 I Z 0,9 111001 71 Z 

R,8,2 011010 32 0,8,2 111010 72 @ 
R,8,3 011011 33 0,8,3 111011 73 

0 R,8,4 011100 34 ) % 0,8,4 111100 74 ( 
R,8,5 011101 35 % 0,8,5 111101 75 CR 
R,8,6 011110 36 • 0,8,6 111110 76 0 (2) 

& R or R,O(1) 011111 37 ? (2) 0,8,7 111111 77 ¢ (2) & or 0 

(l)Special Code (for use with H-400/1400 and H-800/ 1800 cards). The second (alternative) 
card code is equivalent to the stated central processor code when control character 26 
is coded in a c'ard read or punch PCB instruction. 

(2)Indicates symbol which will be printed by a printer which has a 63-character drum (Type 
222 printers). 

(3)The exclamation point replaces the one-half symbol on a type roll' containing the Mark II 
character font. 

B-7 #2-139 



APPENDIX B. MISCELLANEOUS TABLES 

Table B-7. Binary, Octal, and Decimal Equivalents Table B-8. Powers of 2 

.'>' 

BIN •.. > OCT. DEC. ,. BIN. OCT. DEC. 
.. 

0 
0 0 0 100000 40 32 

2 
1 1 1 100001 41 33 

2 4 
10 2 2 100010 42 34 

3 8 
11 3 3 100011 43 35 

4 16 
100 4 4 100100 44 36 

5 32 
101 5 5 100101 45 37 

6 64 
110 6 6 100110 46 38 

7 128 
III 7 7 100111 47 39 

8 256 
1000 10 8 101000 50 40 

9 512 
1001 11 9 101001 51 41 

10 024 
1010 12 10 101010 52 42 

11 2 048 
1011 13 11 101011 53 43 

12 4 096 
1100 14 12 101100 54 44 

13 8 192 
1101 15 13 101101 55 45 

14 16 384 
1110 16 14 -tU1110 56 46 

15 32 768 
1111 17 15 101111 57 47 

16 65 536 
10000 20 16 110000 60 48 

17 131 072 
10001 21 17 110001 61 49 

18 262 144 
10010 22 18 110010 62 50 

19 524 288 
10011 23 19 110011 63 51 

20 048 576 
10100 24 20 110100 64 52 

21 2 097 152 
10101 25 21 110101 65 53 

22 4 194 304 
10110 26 22 110110 66 54 

23 8 388 608 
10111 27 23 110111 67 55 

24 16 777 216 
11000 30 24 111000 70 56 

11001 31 25 111001 71 57 

11010 32 26 111010 72 58 

11011 33 27 111011 73 59 

11100 34 28 111100 74 60 

11101 35 29 111101 75 61 

11110 36 30 111110 76 62 

11111 37 31 111111 77 63 

B-8 #2-139 



APPENDIX B. MISCELLANEOUS TABLES 

Table B-9. Move or Scan Variants 

MOVE OPERATION CODES 

MLC Move Left Characters 63 

MLN Move Left NUIllerics 61 

MLW Move Left Word Marks 64 

MLZ Move Left Zone s 62 

MLCA Move Left Characters to A-Field Word Mark 23 

MLCB Move Left Characters to B-Field Word Mark 43 

MLCS Move Left Character Single 03 

MLCW Move Left Characters and Word Marks 67 

MLNA Move Left NUIllerics to A-Field Word Mark 21 

MLNB Move Left NUIllerics to B-Field Word Mark 41 

MLNS Move Left NUIlleric Single 01 

MLNW Move Left NUIllerics and Word Marks 65 

MLWA Move Left Word Marks to A-Field Word Mark 24 

MLWB Move Left Word Mark to B-Field Word Mark 44 

MLWS Move Left Word Mark Single 04 

MLZA Move Left Zones to. A-Field Word Mark 22 

MLZB Move Left Zones to B-Field Word Mark 42 

MLZS Move Left Z one Single 02 

MLZW Move Left Zones and Word Marks 66 

MLCWA Move Left Characters and Word Mark to A-Field 
Word Mark 27 

MLCWB Move Left Characters and Word Mark to B-Field 
Word Mark 47 

MLCWS Move Left Characters and Word Mark Single 07 

MLNWA Move Left NUIllerics and Word Mark to A-Field 
Word Mark 25 

MLNWB Move Left NUIllerics and Word Mark to B-Field 
Word Mark 45 

MLNWS Move Left Numeric and Word Mark Single 05 

MLZWA Move Left Zones and Word Mark to A-Field 
Word Mark 26 

MLZWB Move Left Zones and Word Mark to B-Field 
Word Mark 46 

MLZWS Move Left Zones and Word Mark Single 06 

MRC Move Ri Characters 13 

B-9 #2-139 



APPENDIX B. MISCELLANEOUS TABLES 

Table B-9 (cont). Move or Scan Variants 

MOVE OPERATION CODES 

MRN Move Right Num.erics 11 

MRW Move Right Word Marks 14 

MRZ Move Right Zones 12 

MRCG Move Right Characters to A-Field Group Mark-
Word Mark 53 

MRCM Move Right Characters to A-Field Record Mark or 
Group Mark- Word Mark 73 

MRCR Move Right Characters to A-Field Record Mark 33 

MRCW Move Right Characters and Word Mark to A- or B-
Field Word Mark 17 

MRNG Move Right Num.eric s to A -Field Group Mark-Word Mark 51 

MRNM Move Right Numerics to A-Field Record Mark or 
Group Mark-Word Mark 71 

MRNR Move Right Numerics to A -Field Record Mark 31 

MRNW Move Right Num.erics and Word Mark to A- or B-
Field Word Mark 15 

MRWG Move Right Word Marks to A-Field Group Mark-
Word Mark 54 

MRWM Move Right Word Marks to A-Field Record Mark or 
Group Mark-Word Mark 74 

MRWR Move Right Word Marks to A-Field Record Mark 34 

MRZG Move Right Zones to A-Field Group Mark-Word 
Mark 52 

MRZM Move Right Z ones to A-Field Record Mark or 
Group Mark-Word Mark 72 

MRZR Move Right Zones to A-Field Record Mark 32 

MRZW Move Right Zones and Word Mark to A- or B-Field 
Word Mark 16 

MRCWG Move Right Characters and Word Marks to A-Field 
Group Mark-Word Mark 57 

MRCWM Move Right Characters and Word Marks to A-Field 
Record Mark-Group Mark-Word Mark 77 

MRCWR Move Right Characters and Word Marks to A-Field 
Record Mark 37 

MRNWG Move Right Numerics and Word Marks to A-Field 
Group Mark-Word Mark 55 

MRNWM Move Right Num.erics and Word Marks to A-Field 
Record Mark-Group Mark-Word Mark 75 

B-I0 #2-139 



MRNWR 

MRZWG 

MRZWM 

MRZWR 

SCNL 

SCNR 

SCNLA 

SCNLB 

SCNLS 

SCNRG 

SCNRM 

SCNRR 

APPENDIX B. MISCELLANEOUS TABLES 

Table B-9 (cont). Move or Scan Variants 

Move Right Numerics and Word Marks to A-Field 
Record Mark 

Move Right Zones and Word Marks to A-Field Group 
Mark-Word Mark 

Move Right Zones and Word Marks to A-Field Record 
Mark-Group Mark-Word Mark 

Move Right Zones and Word Marks to A-Field 
Record Mark 

SCAN OPERATION CODES 

Scan Left to A- or B-Field Word Mark 

Scan Right to A- or B-Field Word Mark 

Scan Left to A-Field Word Mark 

Scan Left to B-Field Word Mark 

Scan Left Single Position 

Scan Right to A-Field Group Mark- Word Mark 

Scan Right to A-Field Record Mark or Group 
Mark-Word Mark 

Scan Right to A-Field Record Mark 

B-11 

35 

56 

76 

36 

60 

10 

20 

40 

00 

50 

70 

30 

#2-139 



INSTRUCTION SUMMARY APPENDIX 

c 
INSTRUCTIONS FORMATS AND TIMING 

Each Series 200 instruction is described in terms of its operation code, formats, and timing 

formulas for the Series 200 Models 200/1200/1250/2200 in Table C-l. In addition, reference 

is made in each case to the page where the operations initiated by the instruction are described. 

Preliminary timing formula~ for the Model 4200 are given in Table C-2. Since the internal 

operation of the Model 4200 processor differs from that of the other Series 200 processors in 

that data is moved in groups of four characters (a word) rather than singly, the 4200 timing 

formulas differ considerably from those of the other processors. 

The formulas given in both tables provide execution time in memory cycles. Equivalent 

expressions for symbols used in the tables are as follows: 

SYMBOL 

A 

B 

h 

N 
a 

N 
aw 

N 
cn 

MEANING 

Address of A-operand field. 

Address of B-operand field. 

The sum of the values of the multiplier digits which are 
less than or equal to five, plus the sum of the elevens 
complements of all digits whose values are -greater than 
five. 

Number of characters in the A-operand field. 

Number of words in the A- operand field. 

Number of characters in the B-operand field. 

Number of words in the B- operand field. 

Number of words that the A field occupies in the B field, 
whether or not the operands have been modified by an 
arithmetic operation. 

Number of words in the B- operand field excluding Nb 1. 

Number of control characters in the instruction. 

Number of control characters following control character 
3 (C3). 

Number of digits in the dividend. 

Number 6f character s in the instruction. 

C-l #2-139 



APPENDIX C. INSTRUCTION SUMMARY 

SYMBOL MEANING 

N· J 

N. 
wJ 

N 
ws 

n 

s 

SUM 

v 
w 
W. 

1 

W 
mr 

Xo 

Z 

Zla 

Z 
law 

Number of words in the item to be translated. 

Number of words in the result item. 

Number of translation units (6-bit or 12-bit: characters) 
to be translated. 

Nun;.ber of character locations bypas s ed to reach the 
next sequential op code. 

Number of characters moved. 

Number of digits in the multiplier. 

Number of digits in the quotient (=Ndd-Zld-Na +Zla+l). 

Number of characters referenced. 

Number of characters scanned. 

Number of characters stored. 

Number of characters in the A- or B-operand field, which­
ever is shorter. 

Number of words bypassed to reach the next sequential 
op code. 

Number of words stored. 

Number of items in the table or the number of times the 
A operand is compared against some portion of the 
B operand. 

The value of the "i th" digit of the quotient. 

Sum of all multiplier digits. 

Sum of the upwards-rounded values of all multiplier digits 
divided by 2. 

Variant character. 

Number of memory words used to store the data involved. 

Number of four-character words used to store one more 
than the total number of character s in the instruction. 

Number of words in the multiplier. 

Zero if no second scan (zero suppression); one if the scan 
is performed. 

Zero if no third scan (dollar-sign insertion); one if the 
scan is performed. 

Number of characters scanned during zero suppression. 

Number of leading zeros in the A-operand field. 

Number of words containing leading zeros in the A-operand 
field. 

Number of leading zeros in the dividend 

C-2 #2-139 



APPENDIX C. INSTRUCTION SUMMARY 

SYMBOL MEANING 

Z 
mr 

Z 
ta 

Z 
taw 

Z 
w 

Z 
z 

$ 

$ 
w 

Number of zeros in the multiplier. 

Number of trailing zeros (i. e., consecutive low- order 
zer os) in the A- operand field. 

Number of words containing trailing zeros in the A-operand 
field. 

Number of words scanned during zero suppression. 

Zero if Zla = 0; one if Zla "I- O. 

Number of character s scanned during dollar- sign insertion. 

Number of words scanned during dollar- sign insertion. 

NOTE: The timing formulas presented in Tables C-l, C-2, and C-3 are based 
on the use of direct addressing. If address modification is used, the 
formulas in Tables C-l and C-3 for the Models 200, 1200, 1250, and 2200 
should be modified as follows: 

1. Indirect Addressing - Add one memory cycle for each character 
extracted as a result of indirect addressing. 

2. Indexed Addressing - Add three memory cycles for each indexed 
address. 

Likewise, the use of address modification requires that the formulas 
in Tables C-2 and C-3 for the Model 4200 be modified as follows: 

1. Indirect Addressing - Add 1. 16 memory cycles for each indirect 
address formed plus one memory cycle for each word extracted 
as -a result of indirect addressing. 

2. Indexed Addressing - Add 3. 167 memory cycles if one address is 
indexed, 5. 16 memory cycles if both addresses are indexed. 

C-3 #2-139 



APPENDIX C. INSTRUCTION SUMMARY 

Table C -1. Instruction Summary - Tim.ing Formulas for Models 200, 1200, 1250, 2200~~ 

A 36 8,6 

37 R or R,03 

BA 34 R, 8, 4 

BS 35 R,8,5 

ZA 16 8,6 

ZS 17 8,7 

M 26 R,6 

D 27 R,7 

EXT 31 R,9 

HA 30 R,8 

SST 32 R, 8, 2 

C 33 R, 8, 3 

B 65 0,5 

BCT 65 0,5 

BCC 54 X,8,4 

BCE 55 X, 8, 5 

BBE 56 X,8,6 

sw 22 R,2 

SI 20 R,Oor R3 

cw 23 R,3 

CI 21 R,I 

H 45 X,5 

NOP 40 

MCW 14 8,4 

Decimal Add 

Decimal 

o Binary Add 

Binary Subtract 

Zero and Add 

Zero and Sub­
tract 

F Decimal 

N.+2+N +2N
b 

(no 
r€comp'fement)4 

N;+2+ Nw.+4Nb 4 
(recomp~ment) 

See Table C-3. 

G Decimal Divide See Table C .. 3. 

H 

Extract (Logical N
i
+l+3N

w 
Product) 

Half Add 
(Exclusive Or) 

Substitute 

Compare 

V Branch N
i
+Z

6 

(Unconditional) 

V Branch on 
Condition Test 

Branch on 
Character 
Condition 

Branch if N
i
+4 

Character Equal 

Branch on Bit N
i
+4 

Equal 

Set Item Mark 

C Clear Word 
Mark 

A Clear Item 

N Halt 

No Operation 

a. A/A,B 
b. A/A 

AI 

S/A,B 
b. S/A 

SI 

BA/A, B 
b. BA/A 

BA/ 

Bs/A,B 
b. Bs/A 

BS 

ZA/A,B 
b. ZA/A 

zA/ 

a. ZS/A, B 
b. ZS/A 

zsl 

a. M/A,B 
b. MIA 

MI 

a. D/A,B 
b. D/A 
c. DI 

a. EXT/A,B 
b. EXT/A 

EXTI 

a. HA/A,B 
b. HA/A 

HAl 

a. SST/A,B,Y 
b. SSTI A, B5 

SST/A 
d. SST I 

B/A 

a. BCT/A, y 7 

b. BCTI 

Duplicates operand. A a-operand 
, A. operand only if word mark. 

smaller than B. 

Duplicates 
A. 

B operand. A 
operand only if 
smaller than B. 

B-operand 
word mark. 

Duplicates B operand. A B-operand 
A. operand only if word mark. 

smaller than B. 

Duplicates B operand. A B_operand 
A. operand only if word mark. 

smaller than B. 

Duplicates B operand. A B_operand 
A. operand only if word mark. 

smaller than B. 

Duplicates B operand. A B-operand 
A. operand only if word mark. 

smaller than B. 

Preserves A and B fields. Both word 
B. marks. 

Preserves A operand 
B. (divisor). 

A .. operand 
word mark. 

Preserves Smaller oper.. Word mark 
B. and. of smaller 

operand. 

Preserves Smaller oper .. 
B. and. 

Word mark 
of smaller 
operand. 

Preserves None. Single .. 
B. character 

operation. 

preserves B operand. A B..operand 
B. operand only if word mark. 

smaller than B. 

Bypasses None. n/a 
B. 

Bypasses None. n/a 
B. 

a. Bcci A, B, y5 Preserves None. Single­
character 
operation. 

b. Bccl A, B B. 
c. BCC/A 

a. BCEI A, B, V 5 Preserves None. 
b. BCEI A, B B. 
c. BCE/A 
d. BCEI 

a. BBEI A, B, Y 
b. BBE/A,B 
c. BBE/A 
d. BBEI 

a. SW/A,B 
b. SW/A 
c. swl 

a. S1/A,B 
b. S1/A 

S1/ 

a. CW/A,B 
b. CW/A 

cwl 

CI/A,B 
b. CI/A 

cll 

a. HIll 
b. H/A 
c. H/A,B 
d. H/A,B, Y 

Nopl 

Mcw/A,B 
b. MCW/A 

MCW 

C-4 

Preserves None. 
B. 

Duplicates None. 
A. 

Duplicates None. 
A. 

Duplicates Word marks 
A. are cleared. 

Duplicates None. 
A. 

Preserves None. 
B. 

Bypasses None. 
A and B. 

Preserves 
B. 

Single­
character 
operation. 

Single .. 
character 
operation. 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

Yes. 8-14 

Yes. 8-16 

Yes. 8-17 

Yes. 8-19 

Yes. 8-20 

Yes. 8-22 

Yes. 8-23 

Yes. 8-25 

Yes. 8-28 

Yes. 8-29 

Yes. 8-30 

Yes. 8-32 

No. 8-34 

Yes. 8 
8-35 

Yes. 8-39 

Yes. 
9 8-42 

Yes. 8-44 

Yes. 8-48 

Yes. 8-49 

Yes. 8-50 

Yes. 8-51 

No. 8-52 

No. 8-54 

Yes. 8-55 

#2-139 



APPENDIX C. INSTRUCTION SUMMARY 

Table C-1 (cont). Instruction Summary - Timing Formulas for Models 200, 1200, 1250, 2200* 

Op Code 

Card Key . Tuuctlon Tlml", 1 Format 
'~nemol\il' 'Octal Code' Punch .(Memory Cy.cleo) 

LCA 15 Blank 

SCR 24 R,4 

LCR 25 R,5 

CAM 42 X,2 

CSM 43 X,3 

EXM 10 8 

MAT 60 8,5 

MIT 62 0,2 

LIB 77 0,8,7 

SIB 760,8,6 

TLU 57 R,6 

MOS 13 8,3 

SVI 46 X,6 

RVI 67 0,7 

MC 44 X,4 

RNM 41 X, I 

MCE 74 0,8,4 

PDT 66 0,6 

CONTROL INSTRUCTIONS (cont) 

Space Load Characters N.t ItZN 
to A-Field Word 1 a 
Mark 

D Store Control 
Registers 

E Load Control 
Registers 

K Change Address- Ni+212 
Ing Mode 

L Change Sequenc- N.+3
12 

ing Mode 1 

Extended Move 

Move and 
Translate 

Move Item and 
Translate 

Load Index/ 
Barricade 
Register 

Store Index! 
Barricade 
Rcg~eter 

Move or Scan N
i
+I+3(N

m
) (14)(Move) 

N
i
+I+3(N

sc
) (1200 Scan) 

N
i
+2+2(N

sc
) (2200 Scan) 

a. LCA/A,B 
b. LCA/A 
c. LCAI 

a. SCR/A, V
7 

b. SCR/A 
c. SCR/ 

a. LCR/A, V
7 

b. LCR/A 
LCR/ 

a. CAM/V
7 

b. CAM/ 

a. CSM/ ll 

b. CSM/A 
c. CSM/A, B 
d. CSM/A, B, V 

a. EXM/ A, B, V
5 

b. EXM/A,B 
c. EXM/A 
d. EXM/ 

a. MIT/A,B, 
V

I
,V

2
,V

3 
b. MIT/A,B, C. V I 

a. LIB/A 
b. LIB/A/B 

a. 3IB/A 
b. SIB/A/B 

a. TLU/A,B,V 
b. TLU/A,B 
c. TLU/A 
d. TLU 

a. MOS/A, B, Y 
b. MOS/A,B 
c. MOS/A 
d. MOS 

INTERRUPT CONTROL INSTR UCTIONS 

o Store Variant 
and Indicators 

X Restore 
Variant and 
Indicators 

M Monitor Call 

N.+2+N +N,15 
1 st J 

a. svr/V 

a. RVI/A, V 

a. MC/ 

Resume N
i
+3

16 

Normal Mode 
a. RNM/A,B 
b. RNM/A 

% Move 

w 

Characters 
and Edit 

Peripheral 
Data 
Transfer 

c. RNM/ 

EDITING INSTRUCTION 

a. MCE/A,B
7 

b. MCE/A 
MCE/ 

INPUT/OUTPUT INSTRUCTIONS 

MODEL 200: 
~i+ I + data transfer 
tIme. 

MODELS 1200 and 1250 
~Ni-N +1) + (N

c 
+3) 

mputfoutput cycres + I 
processor cycle + data 
transfer time. 17 

C-5 

r~~; :[4'" . ,~\~ iJ;,';;;~:' : 'i~':' 
Extraction Required Wor!! ,T'rmilia,~e~., ~n In.tr~ct~~~'; ;Xle •• rl.becl. 

PathZ MIIrk,",,"Byf "";"- ~e,p'~ne~r' '\~:P"~eI 

Preserves A operand. 
B. 

Bypasses None. 
B. 

Bypasses None. 
B. 

Bypasses None. 
A and B. 

Preserves None. 
B. 

Preserves See page 8-67 
B. 

See page A operand. 
8-70 

See page None. 
8-74 

Preserves None. 
B. 

Preserves None. 
B. 

Preserves A operand. 
B. 

Preserves 
B 

See page 
8-86 

A-operand 
word mark. 

n/a 

n/a 

n/a 

n/a 

See page 8-6 

Word mark 
in A operand 
or in table. 

A_operand 
item mark or 
word mark in 
table. 

Single­
character 
operation. 

Single­
character 
operation.. 

A-operand 
word mark. 

See page 
8-86 

Bypasses See page 8-93 See page 
A and B. 8-93 

Restores None. Word mark 
A and of next 
bypasses 
B. 

Bypasses None. 
A and B. 

Preserves None. 
B. 

instruction. 

Word mark 
of next 
instruction. 

n/a 

Preserves A operand and See page 
B. B operand 8-106 

(see page 

Bypasses 
B. 

8-106 

None. Record mark 
in memory or 
unit record 
length. 

Yea. 8-56 

Yes.
8 

8-58 

Yes.
8 

8-60 

Yes.
8 

8-62 

Yes.
8 

8-66 

Yes.
8 

8-67 

No. 8-70 

No. 8-74 

Yes. 8-79 

Yes. 8-82 

Yes. 8-83 

Yes, 8-86 

No. 8-92 

No. 8-95 

No. 8-98 

No. 8-99 

No. 8-104 

No. 8-IlS 

#2-139 



APPENDIX C. INSTRUCTION SUMMARY 

Table C-l (cont). Instruction Summary - Timing Formulas for Models 200 1200, 1250, 2200* 

PCB 64 0,4 U ripheral 
Control and 
Branch 

MODEL 200: 
Ni+l {if no branch condi­
tion exists) 

Ni +2 (if a branch occurs) 

MODELS 1200 and 1250: 
(Ni-N

c 
+1) +N

c 
input/ 

output cycles 17 

MODEL 2200: 
(Ni-N

c 
+1) +2N

c 

None. n/a No. 8-127 

*All information given in this table, other than timing formulas, is applicable to the Model 4200. Timing formulas for the 4200 are presented in Table C-2. See Table 
F-l for information concerning Scientific Unit instructions. 

lExcept where otherwise indicated, add one memory cycle to each of these formulas if the instruction is being executed in a Type 2201 processor. 

2The extraction path of the various instructions is defined as follows: 

• Preserves B - The previous contents of BAR are used as the B address when the instruction is coded in the format Op Code/A. 

• Duplicates A - The contents of AAR are used as the B address when the instruction is coded in the format Op Code/A. 

• Bypasses B - The contents of BAR are not used in any format. 

• ByPasses A and B - The contents of AAR and BAR are not used in any format. 

3The second (alternate) card code is in effect when control character 26 is coded in a Card Read or Punch PCB instruction. 

4Subtract one memory cycle from this formula if the instruction is executed in a Type 1201 or 1251 processor. 

5 This instruction can be coded only in formats a. and d. when issued in a Type 201 or 201-1 processor. 

6Add two memory cycles to this formula if the instruction is executed in a Type 2201 processor. 

7This instruction can be coded only in format a. when issued in a Type 201 or 201-1 processor. 

8 This instruction cannot be chained in the Type 201 or 201-1 processor. 

9This instruction can be chained in the Type 201 or 201-1 processor only if the preceding instruction is also a BCE instruction. 

10Subtract one mem.ory cycle from this formula if the instruction is issued in the Type 1201 or 1251 processor in the format Op Code/A, B. 

11 This instruction can be coded only in formats a., b., and c. when issued in a Type 201 or 201-1 processor. 

12Subtract one memory cycle from this formula if the instruction is executed in a Type 1201 or 1251 processor. 

13If the instruction is executed in a Type 2201 processor, do not add the one memory cycle mentioned in footnote 1. 

14This formula applies only to the Type 120 I, 1251, and 2201 processors; this instruction is not available with the Model 200 processors. 

15Subtract one memory cycle from this formula if the instruction is executed in a Model 200 processor. 

16Add two memory cycles to this formula if the instruction is executed in a Type 2201 processor. Subtract one memory cycle from the formula if the instruction 
is executed in a Type 1201 or 1251 processor. 

17 The "processor cycle" is the one memory cycle out of every four which is given unconditionally to the processor for internal operations; the three remaining 
cycles are termed' ut/output s." ' 

C-6 #2-139 



A 

S 

BA 

BS 

ZA 

ZS 

M 

D 

EXT 

HA 

SST 

C 

B 

APPENDIX C. INSTRUCTION SUMMARY 

Table C-2. Instruction Timings for the Model 4200 

Fixed- Point Arithmetic Instructions 

Decimal Add 

Decimal 
Subtract 

Binary Add 

Binary Subtract 

Zero and Add 

Zero and 
Subtract 

No Recomplernent 

W. +N +2N
b 

+2. 5N
b2

+K l 
1 aw 1 

Recomplement 

W
i
+N

aw
+2. 5N

bw
+2N

bl
+2. 5N

b2
+ 

Kl 

No Recomplement 

Recomplement 

W i+Naw +2. 5Nbw +2Nbl +2. 5Nb2 + 

Kl 

2 
Wi + 2 Nb 1 + Nb2 + K 

Decimal Multiply See Table C-3. 

Decimal Divide See Table C-3. 

Logic Instructions 

Extract 

Half Add 

Substitute 

Compare 

Branch 
(unconditional) 

Wi +3Nbl +7 

W.+7.34 
1 

1 
Wi +2Nb 1 +Nb2 +K 

W.+4.5 
1 

C-7 

BC K = 5 
AV K = 6.5 
WC K = 7 

BC K = 5 
AV K = 6.5 
WC K= 7.5 

Nb 1 value is even 
K = 6 

Nb 1 value is odd 
K = 7 

S Mode: Add 2 cycles 

BC K = 5.5 
AV K = 7 
WC K = 8 

#2-139 



BCT 

BCC 

BCE 

BBE 

SW 

SI 

CW 

CI 

H 

NOP 

MCW 

LCA 

SCR 

LCR 

CAM 

APPENDIX C. INSTRUCTION SUMMARY 

Table C-2 (cont). Instruction Timings for the Model 4200 

Logic Instructions (cont) 

Branch on W +4.5 
Condition Te st i 

Branch on W.+6 
Character 

1 

Condition 

Branch on W.+6 
Character Equal 

1 

Branch on W.+6 
Bit Equal 

1 

Control Instructions 

Set Word Mark 

Set Item Mark 

Clear Word Mark 

Clear Item Mark 

Halt 

No Operation 

Move Characters 
to Word Mark 

Load Characters 
to A-field Word 
Mark 

Store Control 
Registers 

Load Control 
Registers 

Change Address-
ing Mode 

W.+5 
1 

W.+5 
1 

W.+5 
1 

W.+5 
1 

W.+5 
1 

W.+4 
1 

W
i

+2N
b1 

+K2 

W.+W+4.33 
1 

W +W+13 

W.+W+4.33 
1 

W·+W+24 

W.+4 
1 

C-B 

Nb 1 value is even 
K = 6 

Nbl value is odd 
K = 7 

Nb1 value is even 
K = 5 

Nb 1 value is odd 
K = 6 

Non-I/O register 

I/O re ister 

Non-I/O register 

#2-139 



CSM 

EXM 

MAT 

MIT 

LIB 

SIB 

TLU 

MOS 

APPENDIX C. INSTRUCTION SUMMARY 

Table C-2 (cont). Instruction Timings for the Model 4200 

Control Instructions (cont) 

Change 
Sequencing Mode 

Extended Move 

Move and 
Translate 

Move Item and 
Translate 

Load Index/Bar-
ricade Register· 

Store Index/Bar ... 
ricade Register 

Table Lookup 

Move or Scan 

W.+4 
1 

W. +1. 67N. +1. 67N +N +6.5 
1 la ib ic 

W. +1. 67N. +1. 67N. +N +6.5 
1 la ib ic 

Basic storage Erotection 
W.+W+4.5 

1 

Storage Erotection with bas e 
relocation 
W.f2W+6 

1 

Basic storage Erotection 
W.+W+4 

1 

Storage Erotection with bas e 
relocation 
W.+2W+5 

1 

W. +n(N )+N
b 

+3n+9 
1 aw w 

W.+3+(3N +1) 
1; m 

C-9 

Nbl value is even K=5 

Nbl value is odd K=6 

If A < 9+B then 
N. = Number of char-

la -----
acters in the i 
to be translated. 

N.
b

= Number of char-
i -----

acters in the 
res ult item. 

If B < 9+A or if the trans 
lation is 6-bit to 12-bit 
(or 12-bit to 6-bit) then 

N. = Number of char-
1a -----

acters in the item 
to be translated. 

N.
b

= Number of char-
i -----

acters in the 
res ult item. 

#2-139 



MC 

SVI 

RVI 

RNM 

MCE 

APPENDIX C. INSTRUCTION SUMMARY 

Table C-2 (cont). Instruction Timings for the Model 4200 

Interrupt Control Instructions 

Monitor Call 

Store Variant and 
Indicators 

Restore Variant 
and Indicators 

Resume Normal 
Mode 

W.+4 
1 

W.+N +N .+8 
1 ws wJ 

W.+7 
1 

W.+4.5 
1 

Edit Instruction 

Move Characters 
and Edit 

W.+N +2.3N
b 

+2Z +2$ +6+X +Y 
1 aw W W woo 

C-IO #2-139 



APPENDIX C. INSTRUCTION SUMMARY 

Table C- 3. Timings for Decimal Multiply and Divide, Models 200, 1200, 1250, 2200, and 4200 

Multiply 

Divide 

200 
1200 
and 

2200 

4200 

200 
1200 
and 

l2S0 

2200 

N.+S+2N +2Z +SN -Z +s(N -Z )+2(N -Z )(N -Z ) 
1 a ta m r m rata a ta m r m r 

N.+8+2N +2Z +SN -Z +sum(N -Z )+3(N -Z )(N -Z ) 
1 a ta m r m rata a ta m r m r 

N - Z ] [ 1. IN - Z +8. 0 mr mr a ta 
W.+2N + 

1 aw 
+2.3Z 

N. +4+2N if divisor = 0 
1 a 

(S)(Na -Zta) 

+13 

N.+17.S+4.SN +IS.5Z l +12.SN
dd

+lSN (Ndd-N +ZI ) if (N -ZI ) ~ 
1 a a a a a a a 

(N
dd

) and divisor F 0 

N.+7+4N if(N -ZI ) > (N
dd

) 
1 a a a 

N.+7+2N if divisor = 0 
1 a 

Ni +9+2Z
z 

+SN
a 

+3Z 1d+N
q 

+ISN
a 

-2Z
1a 

+18. 2S) if (Na -Zla) ~ (N
dd

-Z
1d

) 

and divisor f:. 0 

N 
4200 W.+2N +ZI ~1Q +2)(3N +2)+19 

1 aw aw 1 aw 
i=1 

C-ll #2-139 



APPENDIX 

D 
INTERRUPT PROCESSING 

The executioll of main-program instructions by the proces sor can be interrupted by an 

external interrupt source and, if the processor is a Type 1201, 1251 or 2201 equipped with the 

Storage Protect Feature (see Appendix E) or a Type 4201 equipped with the Extended Multipro­

gramming and 8-Bit Transfer Feature (s.ee Appendix G), by an internal interrupt source. 

EXTERNAL INTERRUPT 

An external interrupt signal can be generated by any or all of three sources: 

1. The operator's control panel or console; 

2. The Monitor Call instruction (see page 8-98); or 

3. A peripheral control. 

The first two sources interrupt the processor directly: in the case of the control panel 

or console, the operator si:mply presses the INTERRUPT button; the Monitor Call instruction 

interrupts the processor when it is executed. However, a peripheral control interrupts program 

sequence as directed by the settings of two programmable storage functions contained within the 

control, as described on page D-5. 

The interrupt signal sets indicators to show the source (whether 1., 2., or 3., above) 

and the type (external) of interruption. These indicators can be stored and then tested by pro­

gra:mmed instruction as described further in this appendix. The processor acts upon the in­

terrupt signal when the following conditions are present: 

1. The proces sor is in the RUN mode (i. e., the processor is executing, 
without :manual intervention, stored-progra:m instructions under 
control of SR). 

2. The processor is not in the external interrupt :mode. 

3. An instruction op code is about to be extracted. 

4. A me:mory cycle is allocated to the processor. 

It should be noted that condition 3. above does not cause an extensive delay if a Type 

201-2, 120~, 2201, or 4201 processor is attempting to extract a Peripheral Data Transfer (PDT) 

instruction and the specified read/write channel or peripheral control is "busy." The atte:mpt 

to is sue a PDT instruction to a busy read/write channel or peripheral control does not" stall" 

the central processor. Rather, the instruction is "re-extracted": SR is set back to the address 

of the PDT op code, so that .condition 3. recurs imm.ediately after the channel or control is found 

busy. 

D-l #2-139 



APPENDIX D. INTERRUPT PROCESSING 

When the central processor is interrupted, it performs the following functions: 

1. Stores the current status of the arithmetic, comparison, address mode, 
and trap mode indicators in the auxiliary indicators register (AIR). 

2. Clears the arithmetic indicators. 

3. Enters the three-character, non-trap mode. 

4. Interchanges the contents of SR and EIR and branches to the instruction 
whose op code address was previously stored in EIR. 

5. Enters the external interrupt mode. 

The interrupt signal is maintained until one of the following steps is taken: 

1. A PDT instruction is issued to the peripheral control. 

2. The Interrupt function for the peripheral control is turned off. 

3. The central processor is initialized. 

INTERNAL INTERRUPT 

An internal interrupt signal is generated only by a Type 1201, 1251, or 2201 processor 

equipped with the Storage Protect Feature or a Type 4201 processor equipped with the Extended 

Multiprogramming and 8-Bit Transfer Feature and is caused by a "violation" of storage protec­

tion. (The nature of storage protect violations - internal interrupt address violation, op code 

violation, etc. - is described in Appendix E.) Processor indicators are set by the internal 
--'7 

interrupt signal to show the ~ (e. g., op code violation) and the ~ (internal) of Jnterruption. 

These indicators can be stored and then tested by programmed instruction as descriped further 

in this appendix. 

The processor reacts to the internal interrupt signal when the conditions described on 

page D-1 are present (i. e., the processor is in the RUN mode, is not in the external interrupt 

mode, is about to extract an op code, and is presently allocated a memory cycle) plus one 

additional condition: the processor must not only not be in the external interrupt mode but also 

must not be in the internal interrupt mode. Thus, the following levels of interrupt priority exist 

in the Type 1201, 1251, 2201, or 4201 processor. 

1. If the processor is in the non-interrupt (standard) mode, normal program 
sequence can be interrupted by either an external or an internal source. 

2. If the proces sor is in the internal interrupt mode, program sequence 
can be interrupted only by an external interrupt source. 

3. If the processor is in the external interrupt mode, program sequence ~ not 
be interrupted. 1 

1 
Interrupt signals generated by any or all of the three external sources (peripheral control, con-
trol panel or console, or Monitor Call instruction) may continue to occur while the processor is 
in the external interrupt mode. The priority in which the interrupts are accommodated is de­
termined by the program (i. e., according to the programmer-established sequence of interrupt 
source tests). 

D-2 #2-139 



APPENDIX D. INTERRUPT PROCESSING 

The processor responds to an internal interrupt signal as follows: 

1. The contents of SR and IIR are interchanged, and the program branches 
to the instruction whose op code address was previously stored in lIR. 

2. The processor enters the internal interrupt mode. 

Note that the status of the arithmetic, comparison, address mode, and trap mode indicators 

are not stored in AIR automatically when the processor responds to an internal interrupt signal. 

The storing (and subsequent restoring) of the contents of these indicators is the responsibility of 

the internal interrupt program. 

INTERR UPT PROGRAMMING 

Three of the four interrupt control instructions (pages 8-92 through 8-101) perform basic 

functions in an interrupt routine: 

1. The Store Variant and Indicators instruction (SVI) stores two types of 
information: (a) inforrn.ation which must be preserved for subsequent 
return to the interrupted program (e. g., indicator settings, variant 
register contents,l etc.); and (b) inforrn.ation required to identify the 
interrupt source. 

2. The Restore Variant and Indicators instruction (RVI) restores the pertinent 
information stored by the SVI instruction before returning to the interrupted 
program. 

3. The Resume Normal Mode instruction (RNM) returns the processor to 
continue sequencing in the interrupted program, unless the sector bits 
of SR have been modified. 

The fourth interrupt control instruction - Monitor Call (MC) - causes an external interruption 

and, therefore, is not coded in the interrupt routine itself • 

. Other instructions are required in the interrupt routine to store and exercise control over 

address register contents, as shown in Figures D-I and D-2. The interrupt routines in these 

figures are assumed to be executed in the same sector as the interrupted prograrn.; if not, or if 

interrupt processing modifies the sector bits in SR, the appropriate sector bits must be stored 

upon entering the routine and restored when exiting. 

For proper re-entry to the interrupted prograrn, the sarne set of indicators stored by the 

SVI instruction should be restored by the RVI. Since the RVI instruction prepares the processor 

to re-enter the interrupted prograrn, it should be followed irn.rnediately by the RNM instruction. 

Note that the A- and B-address register settings at the tirne of the interrupt should also be 

restored before re-entering the interrupted prograrn. The external interrupt coding shown in 

Figure D-I exploits the ability to restore the address registers automatically by storing their 

INa means for storing the variant register contents is provided in the Type 201 and 201-1. 
processors. Therefore, when interrupt prograrnming is used with these processors (optlona1 
on Type 201), variant characters rnust not be chained. 

D-3 #2-139 



APPENDIX D. INTERRUPT PROCESSING 

contents in the address fields of the RNM instruction. This technique requires that variant bit 

V2 of the RVI instruction (see page 8-95) be a zero in order to ensure that the RNM instruction 

is executed in the maximum addres s mode of the machine. In an internal interrupt routine, on 

the other hand, the indicators associated with the V 2 must be stored and restored by the SVI/ 

RVI instructions. Therefore, since the address mode of executing the RNM instruction may 

10 

I 
12 

13 

14 

15 

16 

17 

18 

not be maximum, the address fields of this instruction must not be coded. Instead, the address 

register settings must be stored in memory and restored by means of LCR instructions, as 

shown in Figure D-2. 

EASYCODER 
CODING FORM 

PROBLEM ______________________ PROGRAMMER ______ DATE _____ PAGE _OF_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 
I 2/3 415 6 7 e 1415 2021 ~ I 6263 eo 

I I IAAR CEQ,U \tt:, C67 A- ADDRE~S REG\ STE R 
I I BA,~ I~EQU #'-'C7~ B-~t)ORESS RE<71S1ER 
I I MAX CE~U *nC6~ ~1\'XIMU,t-J) ADD --M.ODE FO,R C .P. IS 4 
I I ALLS CEQU ~1C75 I NPICATIORS Sl'O~ED 

: i ALL R ~E,QU f# lC35 I lNDiCATORS RESTORED .1 

I I IADMODE 4- 1 1 SEJ MAXIIUM M;)t>~LSIS,'NG IMODE 
I RES7\OR IRVI IENl'ER +2ALLR .RESTORE IN D I CAT 0 RS MA ~ \ MUM 
1 

I tXI ;r, tRtiM I¢ .. ,¢ 
, 

.EX \T ~\TH AAR + BAR R£S1"ORE.D 
I I ENTE.R ISVI l1\llS E~ iER ,A.N t> s, Q,RE INDICATORS 

, I DeN ~s I ,REIS ER'JE STOR AGE FOR \ lH> \ C ~ 'TIO.~ S 
I CAM Ml\~ EJt\t.R MAX IM..U-,-~ At>DRESS MODE I 
i SCR IEX\T +4 ... AAR SANE AAR 
I I ~IC.R ,EX \I t S ,BAR SA.'JE B.AR 
1 I I. 

'/ I \ 
I : E~TERNAL 
I I ) 

)0 I ~JERR.\JPT .1 

: I } ROUTINE 
9 I I ·1 I -'- I I 

I I I~ IRESTO,R B.RAN.CH 10 RES1'O.R. ,Al-tD E~ \T 
t-

20 

Figure D-l. Sample Coding For External Interrupt Routine 

The fir st example (see Figure D-l) show s the initial and final coding to be used in an 

external interrupt routine. It is assumed that the address of the location tagged ENTER was 

previously stored in EIR, so that the presence of an external interrupt signal results in the auto­

matic branch to the location tagged ENTER. It is assumed that the four-character addressing 

mode is the maximum addressing mode of the processor for which this routine is written. 

NOTE: If the interrupt routine is not in the maximum addressing mode prior to 
branching to the location tagged RESTOR, a Change Addressing Mode 
instruction - CAM/MAX - must precede the R VI instruction so that 
the complete contents of any necessary control memory locations may 
be restored. 

D-4 #2-139 



APPENDIX D. INTERRUPT PROCESSING 

Figure D-2 shows the initial and final coding written for an internal interrupt routine. 

It is assumed that the address of the location tagged STAR T was previously stored in IIR and 

that the maximim addressing mode of the processor is the four-character mode. 

The initial and concluding instructions in an internal routine are similar to those 

in an external interrupt routine, except that the SVI instruction must store the indicators associ­

ated with bit V2 and must not store the contents of the auxiliary indicators register (AIR). All 

other pertinent indicators are stored by the SVI instruction and are subsequently restored by the 

RVI instruction at the conclusion of the routine. 

EASYCODER 
CODING FORM 

PROBLEM _____________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD +I~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 213 415 6 7 8 1415 2021 L _I i L I 6263 80 

I 1 IAAR C,E,QU ft:1 C6.7, A- ADDRESS. RE G \ ST.E.R 
I I BA..R, CEOU t:t1CJ~L ,B-AOD.RE.SS ,R-E.G I S Tf..R. 

1 IM~I C,EOU. ~1 C.6.0 .MAX IMVN ADD,. MO.D,£' ,F,O,R C,P 1 S 4 
I I IN,OS C,E.QU ~1 C.7.3. ALL BU~ Al R. ttJ D,l CATD,R.S 

INOR CE.QU ":1C33 ALL BUT. A\ R AND "~T. .\ MO,\ C~;tO ~S, 
I 1 ISAV,EA OC.w ~4C ,T,EMPO,RARY, Sl'OR"GE. FOR ,AAR 
i ISA.V,EB DI~W ~4C, ,TEMPoAAR."t 510.R,f\GE FOR ,~R 

I ;.. .. Jruv..)1~ .4 SET MAX,l MUM,' "DDRE 55", N,G M.OO~, 
I I RESTO.R I"",CR SAVEA..AAR Re,sl'ORE. A(:tt..R 

10 ~C.R SA-VEB. RAR REISTORE BA,R 
II !RVl $1A.RT.+2 \ ND,e, RE1S10R.EI ALL BUT "IR ANID I NT 1 ~p,. 
12 RNM 

, 
EX\T 

13 
,. 

I . START I~VI I NOS. EN,TER.AhlD. STORE AtlL ~u;r A\RJ 1 N.D .• -, 
1 I I pew fl:5 S:TOR~G.E FOR AU. aUT A\ R. ,\ ND,. 14 

15 I I t~ MAX ElI:t,ER 1\AX, I MUM, ~O,DRESS \ ,N,G M.ODE 
16 "I : i SICR SAVEAltAAR SAVE. MR 
17 I I 5,CR SAVE,a •. 6AR SAV.E. BA.R 

: , 
J ~ :\ _1 

18 

I I L Ii I I I I 19 

20 I I 1 l ~,\'ERNAL 
i 1 

i I l l~rtE,RQI\P.T, ,ROUl \~E 21 

I I 1 I i I 22 

1 I ) I 23 

I 1 Ie RESTOR B.RA~CH T.O RES1:QR. ANOE"IKtT L i I 24 

Figure D-2. Sample Coding for Internal Interrupt Routine 

PERIPHERAL CONTROL INTERRUPT 

This description pertains to most Series 200 peripheral controls; exceptions are noted in 

the various hardware manuals describing individual peripheral devices. 

Generally, a peripheral control's interrupt facility includes two interrelated functions: 

the Allow function and the Interrupt function. Certain controls have more than one set of func­

tions {e. g., two sets for disk controls, but one set for magnetic tape controls}. When a 

peripheral control becomes ready to accept a PDT instruction {i. e., reaches a "not-busy" 

D-5 #2-139 



APPENDIX D. ~NTERRUPT PROCESSING 

status), it transm.its a signalvto turn on the Interrupt function, but this signal m.ust be com.ple­

m.ented by one from. the Allow function (turned on by a PCB instruction) in order to com.plete the 

interrupt signal for transm.ission to the central processor (see Figure D-3). 1 When the Interrupt 

function is turned on, the interrupt signal is repeated continuously until the central processor is 

interrupted or the signal is turned off. 

.. 

ALLOW 
FUNCTION 

~-ON 

INTERRUPT INTERRUPT SERIES 200 
I--- FUNCTION CENTRAL 

V~ 
ON SIGNAL PROCESSOR 

CONTROL 
STATUS 
NOT-BUSY 

PERIPHERAL CONTROL 

Figure D-3. Interrupt Signal Generated by Peripheral Control 

The interrupt facility for a peripheral control can be activated or deactivated simply by 

turning the Allow function on or off, respectively. If the Allow function is off at the time the 

peripheral control becomes not busy and all error information is stored, the interrupt signal 

can be neither completed nor transmitted. Another method of inhibiting the interrupt facility 

is to turn off the Interrupt function; this function will not be turned on again until the control 

completes another PDT instruction. Note that if an interrupt has occurred and the Al\OW function 

has then been turned off, the Allow function should not be turned on again until either ~ye Inter­

rupt function has been turned off or a PDT instruction has been initiated by the control;: other­

wise, an interrupt occurs immediately. 

There are various methods of turning the Allow or Interrupt function on or off. The Allow 

function can be turned on or off by a PCB instruction; similarly, the Interrupt function can be 

tested or turned off by a PCB instruction. Also, when the peripheral control receives a PDT 

instruction, its Interrupt function is turned off automatically; at completion of the PDT, a pulse 

is sent to turn on the Interrupt function. In any situation, both functions are turned off by initi­

alizing the central processor. 

Specific PC B C 3 characters for individual controls are listed in Tables 8 - 34, through 8 _ 36. 

The C3 character in a PCB instruction may be used wither to control or to test the status of a 

lThis activity does not apply where there is no Allow function, as in the case of the Manual 
Interrupt function in a Type 220-3 Console connected to a Type 201 or 201-1 processor. 

D-6 #2-139 



APPENDIX D. INTERRUPT PROCESSING 

per~pheral control's interrupt facility. The general formats of the C 3 characters relating to in­

terrupt control and test are: 

1110xO - Turn off the Allow function 

1110xl - Turn on the Allow function. 

1111 xO - Turn off the Interrupt function. 

llllxl - Branch to A if the Interrupt function is on. 

The 2-bit, shown here as x, is normally zero if the control being addressed contains only one 

set of Interrupt/Allow functions. If two sets of functions are present, this bit is set to identify 

the particular set being tested or controlled. All of these C3 characters resurt in a branch to 

A if the device addres s ed is not operable. Table D-l summarizes Interrupt/Allow control and 

test operations for most peripheral controls; exceptions are noted in individual device manuals. 

More than one control character can be us ed to specify multiple control and/ or test oper­

ations in a PCB instruction. However, care must be taken in the use of certain combinations of 

these characters. For example, it is entirely possible for an interrupt to occur between ex­

tractions of control characters. In such a case, if control characters for "Branch on Interrupt" 

and "Turn Off Interrupt" were specified (in that order), the Interrupt function might be turned 

off without being acknowledged. 

Table D-l. Summary of Interrupt/Allow Function Control and Test -Operations 

Manual 

INITIALIZE Button 

1 
Program - PCB Control Char. 

70 

71 

74 

75 

Turned off 

Turned off 

Turned on 

None 

None 

None 

Turned off 

None 

None 

Turned off 

Branch to A if on 

Turned off 

Peripheral Control 

Upon receipt of PDT 

When PDT completed None Turned on if Allow on 

lAll of these PCB control characters will result in a branch to A if the device ad­
dressed is not operable. 

D-7 #2-139 



APPENDIX 
STORAGE PROTECT FEATURE 

E 
When the Type 1201/1251 or 2201 processor is equipped with the Storage Protect capability 

(Feature 1114 or 1117, respectively), the main m.em.ory can be logically divided into two distinct 

areas: a pr otected area and an unprotected (or "open") area. When storage protection is in 

effect, the contents of the protected area are shielded from unintentional interference by any 

program. operating in the standard (non-interrupt) m.ode (whether residing in the protected or 

unprotected area). The protected area is specified as follows: 

1. The programmer sets the lower boundary of the area with a Load Index/ 
Barricade Register (LIB) instruction specifying the num.ber of a 4, 096-
character m.em.ory bank (see page 8-79). The LIB instruction places this 
num.ber in the index/barricade register. The lower boundary of the pro­
tected area is the leftmost (lowest) core storage location within this bank. 

2. The upper boundary of the protected area is always the highest location 
in m.a in m.em.ory. 

The loading of the index/barricade register rnerely sets the low-order boundary of the protected 

area. In order to put storage protection into effect, the following conditions m.ust be present: 

1. The programmer must have turned the protect indicator on by issuing a 
Restore Variant and Indicators (RVI) instruction specifying the protect 
indicator (s ee page 8-95). 

2. The processor m.ust be in the standard (non-interrupt) m.ode. 

INDEX REGISTERS 

The Storage Protect Feature provides the user with an addit~onal 15 index registers (Yl 

through YI5), which are located in the leftm.ost 60 locations of the 4, 096-character bank speci­

fied by the current contents of the index/barricade register. Thus, these index registers are 

relocated whenever the contents of the index/barricade register are altered by an LIB instruc­

tion. These 15 registers are usable whenever the index/barricade register is loaded with a 

proper bank num.ber and are not dependent upon whether storage protection is in effect or not. 

Instructions whose address portions are indexed by these registers m.ust be assembled and exe­

cuted in the four-character addressing mode. The high-order bit of the five-bit address 

m.odifier in a four-character address distinguishes index registers Xl through XIS from Yl 

through Y15 (see page 4-14). 

CENTRAL PROCESSOR MODES 

As previously noted, the central processor can operate in anyone of three modes: 

1. The standard m.ode, 

E-l #2-139 



APPENDIX E. STORAGE PROTECT FEATURE 

2. The external interrupt mode (see Appendix D), or 

3. The internal interrupt mode. 

Internal Interrupt 

When storage protection is in effect (i. e., the protect indicator is on and the processor is 

operating in the standard mode), 'Certain operations are defined as violations of that protection. 

These violations are discussed below. A violation causes a violation indicator to be set which, 

in turn, causes an internal interrupt to occur at the next opportunity. The "next opportunity" 

means that moment when all of the following conditions are present: 

1. The processor is in the RUN mode (i. e., automatically executing stored-
program instructions under the control of the sequence register), 

2. The processor is about to extract an op code, 

3. A memory cycle is allocated to the processor, 

4. The processor is in the standard mode (i. e., not in external or internal 
interrupt mode), and 

5. No peripheral or control panel interrupt signal is being received. 

When an internal interrupt occurs, the contents of the sequence register and the internal 

interrupt register are interchanged and the central processor enters the internal interrupt mode. 

The status of the processor indicators are not stored automatically; therefore, the programmer 

must perform this function with a Store Variant and Indicators (SVI) instruction. The SVI in­

struction also clears the violation indicator so that an internal interrupt will not occur when a 

return is made to the standard mode. While in the internal interrupt mode, any external interrupt 

will cause the processor to switch to the external interrupt mode. 

If an external interrupt occurs while the processor is in the internal interrupt mode, the 

I-bit of the character stored by V5 of the SVI instruction indicates the condition. If it is desired 

to revert to the standard rather than the internal interrupt mode after servicing the external 

interrupt, this bit should be changed to 0 before executing the RVI instruction. 

Note that three basic differences exist between the external interrupt mode and the internal 

interrupt mode: 

1. A unique control memory location, the internal interrupt register (IIR), 
contains the address of the subroutine which services the internal interrupt, 

2. The proce.ssor is subject to being interrupted by an external interrupt while 
still in the internal interrupt mode, but the reverse is not true, 

3. No processor indicators are stored or altered (the address mode is not 
changed) upon entering the internal interrupt mode. 

E-2 #2-139 



APPENDIX E. STORAGE PROTECT FEATURE 

VIOLATIONS OF STORAGE PROTECTION 

The following operations, which constitute violations of storage protection, fallinto two 

general categorie s: addre s s violations and op code violations. 

1 

1. An attempt to transfer information internally (i. e., not via a PDT instruc­
tion) to memory locations within the protected area. This includes any 
attempt to modify index registers Yl through Y15. Howeve~r, no violation 
occurs when information is transferred internally from the.protected area 
or when the contents of the index registers are used in add~ess modifi­
cation. An internal transfer violation is detected when all of the following 
conditions are present: 

a. The bank and sector bits in the A- or B-address register follow­
ing instruction extraction are equal to or greater than the corre­
sponding bits stored in the index/barricade register, 

b. The protected location is addre s sed as a re suIt location, 

c. The protect indicator is on, 

d. The program in control is operating in the standard mode, and 

e. The instruction is not a PDT. 

The above conditions are checked as. the instruction is being executed. If 
all of these conditions are met, the internal interrupt address violation 
indicator is set, and the instruction proceeds to normal completion except 
that no information is transferred into memory (i. e., the write cycle is 
inhibited). The next opportunity for the internal interrupt to occur is at the 
extraction of the next op code. After the internal interrupt mode is entered, 
the internal interrupt register contains the address of the op code following 
the instruction which caused the violation, and the A- and B-address regi­
sters continue to increment or decrement, as appropriate. 

2. An attempt to extract a PDT instruction (input £!. output) whose effective A 
address references a protected memory location. Since the PDT instruction 
is one of the operations normally prohibited when storage protection is in 
effect (see 4., below), the proceed indicator (see page E- 5) must be set in 

. order for the instruction to be extracted beyond the op code. Assuming that 
the proceed indicator is set, the starting addres s of the PDT operation is 
examined for address violation. Once it is determined that the effective A 
address references a protected address, no operation is performed (i. e., 
the specified read/write channel is not tested and the specified peripheral 
control is not addressed), the internal interrupt address violation indicator 
is set, the sequence register is advanced to the next op code, and an internal 
interrupt occurs. 

Note that a PDT instruction is checked for possible violation during the ex­
traction phase, while a nonperipheral instruction is checked during its exe­
cution phase (see 1., above). If a PDT instruction passes this test during 
extraction, it is free to be executed and the reby cause data to be trans­
ferred. If the information being transferred extends into the protected area, 
no address violation is detected. To insure that this will not occur, the 
user must set a record mark immediately prior to the protected area. 1 

As mentioned previously, storage protection (and the checking functions re­
lated to it) are in effect only when the processor is operating in the standard 

If communication devices are being used, two consecutive locations should contain record marks. 

E-3 #2-139 



1 

APPENDIX E. STORAGE PROTECT FEATURE 

mode. However, violations of the protected area by PDT instructions exe­
cuted in either of the two interrupt modes can be detected if the proceed 
indicator is set on (see page E-5). 

3. An attempt to read from a main memory location whose address is greater 
than the main memory capacity actually present in the machine but within 
the addressing capacity of the memory address register. 1 Such an address­
ing attempt results in a parity error which normally causes the machine to 
halt. If storage protection is in effect and a parity error occurs, a check is 
made to determine whether the error occurred above the lower boundary of 
the protected area. If so, the storage protect hardware assumes that out­
of-range addressing has been attempted, 2 no halt occurs, nor is data 
transferred; instead, the internal interrupt address violation indicator is 
set, instruction execution is prematurely terminated, and an internal in­
terrupt occurs. 

An attempt to reference an address greater than the addressing capacity of 
the memory address register results in a memory wraparound. 

4. An attempt to execute a privileged op code. A privileged op code is one 
which is (a) not defined for the Series 200; (b) not recognized on the par­
ticular processor; (c) .an instruction format violation in any floating-point 
instruction; or (d) prohibited when storage protection is in effect. The 
privileged op codes in category (d) are: 

a. H (Halt) 

b. LCR (Load Control Registers) 

c. PDT (Peripheral Data Transfer) 

d. PCB (Peripheral Control and Branch) 

e. SVI (Store Variant and Indicators) 

f. RVI (Restore Variant and Indicators) 

g. RNM (Resume Normal Mode) 

h. LIB (Load Index/Barricade Register) 

The above op codes are "privileged" in the sense they are allowed to be exe­
cuted in either of the interrupt modes but are prohibited in the standard 
mode while storage protection is in effect (one exception to this is discussed 
under "Proceed Indicator" below). Such op codes are categorized by the 
fact that they could possibly alter the monitor's knowledge of the status of 
the system or cause some action which is intolerable under certain con­
ditions (e. g., a halt during transfer of data from a communications device). 
Since an undefined op code or one which is not installed on the user's proc­
essor would normally cause a halt due to a program check, such usage has 
the same effect as that of a privileged op code. 

For example, an MAR with 15 active bits can address up to 32, 768 locations; an MAR with 16 
active bits can address up to 65,536 locations. A 49, 152-character memory would require 16 
active bits, thus making it possible to store an address which is beyond the actual memory size. 

2 . 
The final responsibility for checking whether the parity check actually indicates out-of-range 
addressing rests with the programmer. 

E-4 #2-139 



APPENDIX E. STORAGE PROTECT FEATURE 

NOTE: Op code "00" is defined as an Internal Interrupt Call, and falls within 
the category of privileged op codes. 

If a privileged op code is extracted when storage protection is in effect, 
the op code violation indicator is turned on, the sequence register is set 
back to the location of the op code, the operation is terminated, and an 
internal interrupt occurs. Once the internal interrupt mode is entered, 
the programmer has two choices: (1) if he wishes to execute the privileged 
instruction, he must set the proceed indicator (see below) and issue a 
Resume Normal Mode (RNM) cOITlmand; 1 (2) if he wishes to bypass the 
privileged instruction, he must set the internal interrupt register to the 
location of the next sequential op code and issue a Resume Normal Mode 
instruction. 2 

PROCEED INDICA TOR 

The proceed indicator can be turned on by the Restore Variant and Indicator s (RVI) in­

struction. Turning this indicator on permits the execution of one privileged instruction in the 

standard mode without op code checking or item-mark trapping being performed. The indicator 

is turned off following the extraction of any op code in the standard mode. It can also be turned 

off in either of the interrupt mode s by a Store Variant and Indicators (SVI) instruction. 

The proceed indicator can also be used to force the checking of the A address of a PDT 

instruction executed in either the internal or external interrupt mode. Thus, turning on this 

indicator prior to the extraction of a PDT instruction in a nonstandard (interrupt) mode results 

in the same address violation check as though it were extracted in the standard mode with 

storage protection in effect (see 2., page E-3). If the effective A address is found to reference 

a protected area, the actions described below are performed. 

1 

1. When the violation occurs in the internal interrupt mode: 

a. The internal interrupt address violation indicator is set. 

b. Further extraction of the instruction is not performed and the se­
quence register is set to the location of the next sequential op code. 

c. An internal interrupt does not occur since the processor is already 
in the internal interrupt mode. Instead, the condition of the internal 
interrupt address violation indicator must be tested by the program­
mer after he has stored the status of the indicator via an SVI instruc­
tion. The SVI instruction also clear s the indicator so that it will not 
cause an internal interrupt to occur when the standard mode is 
entered later. 

2. When the violation occurs in the external interrupt mode: 

a. The external interrupt address violation indicator is set. 

The instruction will still not be executed if it involves an a¢l.dress violation. 

2 . 
If the internal interrupt register (which is currently set at the location of the privileged op code) 
is not advanced to the next op code, the return to normal mode results in the privileged op code 
again being extracted, thus causing an endless loop. 

E-5 #2-139 



APPENDIX E. STORAGE PROT'ECT FEATURE 

b. Further extraction of the instruction is not performed and the sequence 
register is set to the location of the next sequential op code. 

c. An internal interrupt does not occur since this is impossible while in 
the external interrupt mode. Instead, the condition of the external 
interrupt address violation indicator must be tested by the program­
mer according to the method described in 1. c., above. 

E-6 #2-139 



APPENDIX 
SCIENTIFIC UNIT FOR MODELS 1200, 1250, 2200, AND 4200 

F 
The scientific unit (Featur,e 1100A for the Type 1201, 1251, and 2201 processors, Feature 

1101 for the Type 4201) provides a repertoire of 1.2 floating-point instructions, a binary m.antissa 

shift instruction, and a binary integer m.ultiply instruction. 1 This appendix is a program.m.er's 

working sum.m.ary of both features, which are functionally identical;2 additional inform.ation can 

be found in the hardware bulletin Scientific Unit for Models 1200/1250/2200, Feature 1100 (Order 

No. 126)'. Before referring to this appendix, the program.mer should becom.e fam.iliar with the 

detailed functional and program.m.ing inform.ation contained in the hardware bulletin. 

DATA FORMAT 

The fixed-length floating-point word contains a 36-bit binary m.antissa and 12-bit binary 
. . ±616 

exponent and is capable of expressing num.bers in the approxim.ate range ±10 

CHARACTER A-7 A-G A-5 A-4 A-3 A-2 A-I A 

DDDDDDDD 
BIT B A 84 2 I BIB I BIB I BIB I B I 

'~--------------------------~v~--------------------------J/ '~------~v~------~/ 
MANTISSA EXPONENT 

In control m.em.ory, a floating-point word m.ay occupy any of the four floating-point ac­

cum.ulators. The accum.ulators are addressed as octal digits 0, 1, 2, and 3 in the floating-point 

instructions. Each accum.ulator com.prises three specific 18-bit control m.em.ory registers. 

Only the low-order 12 bits of the rightm.ost register are used to express the exponent. (In the 

Type 4201 processor each accum.ulator com.prises the low-order 18 bits in each of three specific 

19-bit control m.em.ory registers. ) 

19 I I 
BIT 18 18 18 12 

, / , 
V V 

MANTISSA EXPONENT 

FLOATING-POINT REGISTERS 

The four addresssable floating-point accum.ulators have the control m.em.ory addresses 

as shown on page F-2. 

1 None of thes e instructions are interpreted by Easycoder As sem.bler A, B, or C. 

/ 

2 A m.inor exception to this identity is described in connection with the Floating Divide instruction. 

F-l #2-139 



APPENDIX F~ SCIENTIFIC UNIT FOR MODELS 1200, 1250, 2200, AND 4200 

o 
1 
2 
3 

43 
47 
53 
57 

42 
46 
52 
56 

41 
45 
51 
55 

NOTE: In program instructions, the floating-point accumulators may be ad­
dressed only via the octal digits 0, 1, 2, and 3 in the floating-point 
instructions. The instructions LCR and SCR must not be used to ad­
dress these accumulators. At the control panel, the operator may 
address these locations with the addresses in'the above table. 

A normal zero, i. e., a floating-point word of 48 zeros, is stored in the "pseudo ac­

cumulator" for use as a floating-point operand. The pseudo accumulator, which is addressed 

by octal digit 7, may be used only as the source of a normal zero and not as the destination of 

a floating-point result. 

The low-order result register (LOR) in the scientific unit may contain a low-order sum, 

difference, or product, or may contain the remainder of a division operation. 

NOTE: Floating-point instructions do not disturb the contents of the 
variant register. 

FLOATING-POINT INDICATORS 

Exponent 
Overflow: 

Divide 
Check: 

Multiply 
Overflow: 

Activated when a base-2 exponent exceeds +2047. The correct mantissa and an 
exponent which is 4096 less than the correct exponent are delivered. If an ex­
ponent is less than -2048, a normal zero is delivered automatically. 

Activated when a divisor is equal to zero. This indicator causes termination 
of a division operation without accumulator alteration. 

Activated when the product of a Binary Integer Multiply instruction exceeds 24 
bits in length. The low-order' 24 bits are delivered. 

AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONS 

Prenormal­
ization: 

Equali­
zation: 

Postnox­
malization: 

SYMBOLOGY 

A: 

B: 

X: 

Mantissa of divisor (and dividend with Feature 1101) is normalized (left-shifted) 
with adjusted exponent. 

Mantissa of operand with smaller exponent is right-shifted until exponents are 
equal. 

Mantissa of result is normalized with adjusted exponent. 

A address of the instruction. 

B address of the instruction. 

Floating-point accumulator addressed in the high-order three bits of an instruc­
tion variant (usually the source of an operand). 

F-2 #2-139 



APPENDIX F. SCIENTIFIC UNIT FOR MODELS 1200, 1250, 2200,AND 4200 

Y: Floating-point accumulator addressed in the low-order three bits of 
an instruction variant (usually the destination of a result). 

(A): Floating-point word contained in the main memory field from loca-
tion A through location A -7. 

(X) or (Y): Floating-point word contained in accumulator X or Y. 

LOR: Low-order result register. 

(LOR): Floating-point word contained in LOR. 

Ap: Previous setting of A-address register. 

Bp: Previous setting of B-address register. 

D: One if there is a two-bit overflow into LOR; otherwise zero. 

JI: Address of next instruction if branch occurs. 

NXT: Next sequential instruction. 

Nn : Number of bit positions shifted for automatic formatting. 

N 1: Number of binary ones in a multiplier. 

Ns Number of shifts. 

[ ] : "smallest integer greater than" 

W: Number of memory words used to store the data involved. 

X-: In the first variant of an instruction, only the high-order three bits 
specifying accumulator X are significant. 

- Y: In the first variant of an instruction, only the low-order three bits 
specifying accumulator Yare significant. 

SP: Single -preci sion. 

DP: Double-precision. 

SR: Sequence register. 

Ni: Number of characters in an instruction. 

Wi: Number of words in an instruction. 

TIMING NOTES 

All timings shown are based on the use of direct addressing. Three memory cycles should 

be added for each indexed address and one memory cycle should be added for each character 

extracted as a result of indirect addressing. 

NOTES: Floating-point instructions do not disturb the contents of the 
variant register. 

F-3 #2-139 



APPENDIX F. SCIENTIFIC UNIT FOR MODELS 1200, 1250, 2200, AND 4200 

Table F-l. Sum.m.ary of Scientific Instructions 

STORE FLOATING ACCUMULATOR 

Memory to FMA/A, X-, 00 07 (X) is stored in A through A -7. AAR: A-S Ni+ll Ni+l2 W/7 

accumulator or (X) is unaltered. BAR: B 

TAM/A,X-
P 

Accumulator to FAA/XY,OO 06 (X) is loaded into Y. No nor- AAR: A Wi +4·5 

accumulator or malization occurs BAR: BP 

TAA/XY 
P 

LOAD FLOATING ACCUMULA TOR 

Memory to FMA/A, -Y, 02 07 (A) is loaded into Y. No nor- AAR: A-S Ni+ll Ni+l2 WitS 

accumulator or malization occurs. BAR: Bp 

TMA/A, -Y 

Accumulator to FAA/XY,02 06 (X) is loaded into Y. No nor- AAR: Ap Wi+4·5 

accumulator or malization occurs. BAR: Bp 
TAA/XY 

STORE LOW -ORDER RESULT 

Memory to FMA/A, 00, 07 07 (LOR) is stored in A through AAR: A-S Ni+lO Ni+ll WitS 

accumulator or A-7. No normalization BAR: B p 
TLM/A occurs. 

Accumulator to FAA/-y,07 06 (LOR) is stored in Y. No nor- AAR: A Wi+4 

accumulator or malization occurs. BAR: BP 

TLA/-Y 
P 

LOAD LOW -ORDER RESULT 

Memory to FMA/A, 00, 01 07 (A) is loaded into LOR. No AAR: A-S Ni+lO Ni+10 Wi+9 

accumulator or normalization occurs. BAR: Bp 
TML/A 

Accumulator to FAA/X-,Ol 06 (X) is loaded into LOR. No AAR: Ap Wi +4 

accumulator normalization occurs. BAR: Bp 

Memory to FMA/A, XY, 10 07 (A) is added to (X) and the sum AAR: A-S Ni+l3+ Ni+13+ [Nn /4] Wi +lHN,/6 

accumulator or is stored in Y. BAR: Bp [Nn /6 ] 
AMA/A,XY Indicator: Exponent overflow. LOR: Low-order result 

Formatting: Equalization, of operation. Sign 

postnormalization. bit = O. Exponent = 
high-order exponent 
minuS 35. 

Accumulator to FAA/XY,lO 06 (X) is added to (Y) and the sum AAR: A 10+ [Nn /6] 10+ [Nn /4] Wi +8+Nn /6 

accumulator or is stored in Y. BAR: BP 

AAA/XY Indicator: Exponent overflow. LOR: L~w.-order result 

Formatting: Equalization, of operation. Sign 

postnormalization. bit = O. Exponent = 
high-order exponent 
minus 35. 

FLOA TING SUBTRACT 

Memory to FMA/A, XY,ll 07 Twos complement of (A) is AAR: A-S Ni+13+ [Nn /6] Ni+13+ [Nn /4] Wi +l3+Nn /6 

accumulator or added to (X) and the result is BAR: Bp 
SMA/A,XY stored in Y. LOR: Low-order result 

Indicator: Exponent overflow. of operation. Sign 

Formatting: Equalization, bit = O. Exponent = 

postnormalization. high-order exponent 
minus 35. 

Accumulator to FAA/XY,ll 06 Twos complement of (Y) is ad- AAR: A lO+[Nn /6 ] 10+[Nn /4 ] Wi+S+Nn /6 

accumulator or ded to (X) and the result is BAR: BP 

SAA/XY stored in Y. LOR: L~w-order result of 
Indicator: Exponent overflow. operation. Sign bit = 
Formatting: Equalization, O. Exponent = high-
po stnormalization. order exponent minus 

35. 

FLOATING MULTIPLY 

Memory to FMA/A,XY,l3 07 (X) is multiplied by (A). The AAR: A-S Ni+1S+ [NI/6] Ni+2l+ [Nl4] Max=Wi+26+ 

accumulator or high-order product is stored BAR: Bp + [Nn /6] + [Nn /4] +Nn /6 
MAM/A,XY in Y; the low-order product is LOR: Low-order product. 

stored in LOR. Sign bit = o. Ex- Min=Wi+ lS • 5+ 

Indicator: Exponent overflow. ponent = high-order Nn /6 
Formatting: Postnormalization. exponent minus 35. 

Accumulator to FAA/XY,13 06 (X) is multiplied by (Y). The AAR: Ap 15+ [Nl/6]+ 19+[Nl/4]+ Max=Wi +21. 0+ 

accumulator or high-order product is stored BAR: Bp 16] [Nn /4] Nn /6 
MAA/XY in Y; the low-order product LOR: Low-order product. 

is stored in LOR. Sign bit = o. Ex- Min=Wi+l3.5+ 

Indicator: Exponent overflow. ponent = high-order Nn /6 

Po stnormalization. exponent minus 35. 

F-4 #2-139 



APPENDIX F. SCIENTIFIC UNIT FOR MODELS 1200, 1250, 2200, AND 4200 

Table F-1 (cont). Summary of Scientific Instructions 

FLOA TING DIVIDE 

Memory to 
accumulator 

Accumulator to 
accumulator 

FMA/A, XY, 12 
or 

DMA/A,XY 

FAA/XY,I2 
or 

DAA/XY 

DECIMAL TO BINARY 

FMA/A, -Y, 03 
or 

DTB/A, -Y 

BINAR Y TO DECIMAL 

FMA/A, X-, 06 
or 

BTD/A, X-

FLOA TING TEST AND BRANCH ON 
ACCUMULATOR CONDITION 

FMA/A, XC, 04 
Or 

FBA/A,XC 

07 

06 

07 

07 

07 

(A) is divided by (X). The 
quotient is stored in Y; the 
remainder is stored in LOR. 
Indicators: Exponent overflow, 
divide check. 
Formatting: Prenormalization 
of divisor (and of dividend with 
Feature 1101), 
of quotient. 

(Y) is divided by (X). The 
quotient is stored in Y; the re­
mainder is stored in LOR. 
Indicators: Exponent overflow, 
divide check. 
Formatting: Prenormalization 
of divisor (and of dividend with 
Feature 1101), 
of quotient. 

The II-character signed dec­
irnal integer whose low-order 
character is A is converted to 
a 36-bit binary integer. The 
binary integer is stored in the 
mantissa portion of Y; the 
exponent of (Y) is set to +35. 
One- or two-bit mantissa 
overflow is possible. If man­
tissa overflow occurs, the 
low-order one or two bits are 
shifted into LOR. Y then con­
tains the high-order result of 
conversion, with an exponent 
of 36 or 37. Normalization 
only occurs with overflow. 

The mantissa portion of (X) is 
converted from a binary integer 
to a signed decimal integer. 
The decimal integer is stored 
in the II-character main 
memory field whose low-order 
character is location A. The 
exponent portion of (X) is 
ignored and unaltered. 

The mantissa portion of (X) is 
tested for the ·condition specified 
by C, the low-order octal digit 
of variant 1. 

C=O no branch 
C=l (X) = 0 
C=2 (X) < 0 
C=3 (X) SO 
C=4 (X) > 0 
C=5 (X) > 0 
C=6 (X) lo 
C=7 unconditional branch 

If the condition specified by C 
is satisfied, program control 
branches to location A. 
NOTE: (X) must be normalized. 

F-5 

AAR: A-8 
BAR: Bp 
LOR" Remainder. 

Sign = sign of divi­
dend. Exponent = 
exponent of normal_ 
ized dividend minus 
35, and plus one if 
the absolute value of 
the dividend mantis 
is greater than the 
absolute value of the 
mantissa of the nor-
malized divisor. 

AAR: A 21+[ Nn /6 ] 
BAR: BP 

LOR: Rgmainder. 
Sign = sign of divi­
dend. Exponent = 
exponent of normal_ 
ized dividend minus 
35, and plus one if 
the absolute value of 
the dividend manti 
is greater than the 
absolute value of the 
mantissa of the nor­
malized divisor, 

AAR: A-II 
BAR: Bp 
LOR: Low-order result 

of conversion~ 
Sign bit = O. Ex­
ponent = high-order 
eXponent minus 35. 

AAR: A-ll 
BAR: Bp 

A 
BpNO BRANCH 
NXT BRANCH 

SR: NXT NO BRANCH 
JI(A) BRANCH 

Ni+3(NO 

BRANCH) 

Max=Wi+ 25• 5+ 

Nn /6 

Min=Wi+l7t 

Nn /6 

W i +5 

#2-139 



APPENDIX F. SCIENTIFIC UNIT FOR MODELS 1200, 1250, 2200, AND 4200 

Table F-1 (cont). Summary of Scientific Instructions 

FLOA TING TEST AND BRANCH 
ON INDICA TOR 

FMA/A, OD, OS 07 The indicators specified by D, AAR: A Ni+2 (NO Ni+2 Wi +3.8 
or the low-order octal digit of BAR: NXT BRANCH BRANCH) 

Ni+4 Wi+4·3 
FBI/A,OD variant 1, are tested. If~ ~~~~~~~c;.~H of the indicators is set, con- SR: f~~~NCH) 

trol branches to location A. JI(A) BRANCH 

D=O no branch 
D=l Multiply overflow 
D=2 Exponent overflow 
D=3 Exponent or multiplyover-

flow 
D=4 Divide check 
D=S Divide check or multiply 

overflow 
D=6 Divide check or exponent 

overflow 
D=7 Divide check, exponent 

overflow, or multiply 
overflow. 

NOTE: ~ indicator s te sted 
are reset. 

BINAR Y MANTISSA SHIFT 

BMS/XM, V 04 If single-precision, the mantissa AAR: A 7+[N/6 ] 8+[N/4 ] Wi+4·S+N.'6 
of (X) is shifted in the mode BAR: B

P 

specified by M, the low-order 
p 

octal digit of the first variant. 
If double-precision, the mantis 
of (X) and (LOR) are shifted. 
The second variant V (0$ V$ 63) 
specifies the number of positions 
by which bits are shifted. 

M=O left, SP, rotate (end 
around) 

M=4 left, SP, arithmetic 
M=2 left, DP, rotate 
M=6 left, DP, arithmetic 
M=l right, SP, rotate 
M=5 right, SP, arithmetic 
M=3 right, DP, rotate 
M=7 right, DP, arithmetic 
NOTE: The exponents of (X) 

and (LOR) are set to 
zero. In an arith-
metic shift, the signs 
of the mantissas of (X) 
and (LOR) are pre-

BINARY INTEGER MULTIPLY 

BIM/A, B 05 The four-character fields in AAR: A-4 Ni +2l+(Nl /6] Ni +23+[ N/4] Max=W i +21.5 
memory whose low-order char- BAR: B-4 Min=Wi +16.5 
acters are A and B are treated LOR: unspecified 
as 24-bit binary integers. The 
integers are multiplied together; 
the product is stored in the field 
specified by the B address. 
Indicator: Multiply overflow. 

F-6 #2-139 



EXTENDED MULTIPROGRAMMING AND 8-BIT TRANSFER 
FOR MODELS 1200, 1250, 2200, and 4200 

APPENDIX 

G 
The extended multiprogramming and 8-bit transfer capability is available as Feature 1120, 

1121, and 1118011. the Models 1200/1250,2200, and4200, respectively. The models 1200/1250 and 

2200 must be equipped with the Storage Protect Features (1114 and 1117, respectively) before 

Features 1120 and 1121 can be add,ed. 

Extended multiprogramming provides aprocessor with five basic capabilities required in a 

multiprogramming environment and one feature requiredfor upward compatibility. These are: 

1. Bas e relocation, 

2. Storage protection with base relocation, 

3. Interrupt masking, 

4. Instruction timeout, 

5. 8-bit transfer capability, and 

6. Privileged SCR Instructions. 

STORAGE PROTECTION WITH BASE RELOCATION 

In a processor equipped with extended multiprogramming, storage protection operates in 

either of two ways: with or without base relocation. Storage protection without base relocation 

operates as described in Appendix E. 

The storage protection offered by extended multiprogramming is made possible by using 

bas e relocation in conjunction with storage protection. Bas e relocation is in effect when the 

relocation indicator is set (via the SVI and RVI instructions) and the proces sor is in the stand­

ard (non-interrupt) mode. 

Storage protection with base relocation places a barrier above and below the area of 

memory where the active program is to operate, to prevent it from altering the contents of the 

rest of memory. The lower barrier is specified by the contents of the bas e relocation register 

(BRR), which is loaded and stored via Load Index/Barricade Register (LIB) and Store Index/ 

Barricade Register (SIB) instructions. When relocation is in effect, the BRR is loaded with 

the bank address of the lowest memory bank (4,096 characters) available to standard mode 
I 

programs. The BRR is added to each processor memory address transmitted to memory by 

a standard mode progra:m. This prevents a standard mode programfrom writing into a memory 

bank below that specified by the BRR. The upper barrier is specified by the contents of the 

index barricade register (IBR). When storage protection is in effect and an attempt is made to 

G-l #2-139 



APPENDIX G. EXTENDED MULTIPROGRAMMING AND 8 .. BIT TRANSFER FEATURES 

write into memory at an address greater than that stored in the IBR, a protection violation 

occurs resulting in an internal interrupt. The IBR contains the number of 4, 096-character mem­

ory banks which are available to a program. 

A monitor program keeps track of the locations of the various programs stored in memory 

and, via the settings of the BRR and the IBR, can relocate referenc'es to any number of 4, 096-

character banks of memory. Thus, while. there may be any number of programs stored in 

memory, only one program is active at anyone tim.e and all other programs are protected 

from the active program when storage protection is in effect. When, as the result of an 

interrupt, the monitor program activates a different program, it simply alters the settings 

of the BRR and the IBR to make available a different portion of memory. 

Since all memory references are relocated via the BRR when relocation is in effect, 

index registers Xl through X15 effectively reside in the 4, 096-character bank of memory 

specified by the BRR. The location of index registers Yl through Y15 is also dependent on 

the setting of the relocation indicator. When relocation is activated, the Y index registers 

are also located in the 4, 096-character bank specified by the BRR, where they become identical 

to index registers Xl through X15. When relocation is in effect, each program stored, including 

the monitor program, has its own set of 15 index registers when it is the active program. The 

index registers always reside in the memory area occupied by the active program. 

EXTERNAL INTERRUPT MASKING 

Each input I output (1/0) s ector has as sociated with it a I-bit mask. This mask is stored 

and set by Store Variant and Indicators (SVI) and Restore Variant and Indicators (RVI) instruc­

tions, respectively. When the mask for a sector is a zero, interrupts from sources in that 

sector are accepted and processed in the manner specified in Appendix D. When the mask for a 

sector is a one, then interrupts are held until the mask is altered or the interrupt function is 

reset. Control panel and Monitor Call interrupts are never masked. Depression of the 

INITIALIZE button on the control panel causes all mask bits to be reset to zeros. 

INSTRUCTION TIMEOUT 

It is possible for an instruction in a program to enter an infinite extraction or execution 

loop which would prevent a monitor program from servicing an interrupt within a specified time. 

To prevent this from occurring, a timeout function is provided which allows a maximum time 

limit to be placed on the extraction and the execution of anyone instruction when the processor 

is in the standard mode. This function guarantees that a monitor program Will, at some speci­

fied time, regain control of the system. 

G-2 #2-139 



APPENDIX G. EXTENDED MULTIPROGRAMMING AND 8-BIT TRANSFER FEATURES 

The instruction timer is reset to zero and begins timing every time the processor starts 

to extract or execute a new instruction. If the timeout allow function is on, the protect indicator 

is set, and the processor is in the standard mode when the time interval elapses, then the in­

struction being extracted or executed is terminated and an internal interrupt occurs. 

The timeout function is enabled by a timeout allow function which is set and reset by the 

SVI and RVI instructions. Refer to pages 8-92 and 8-95 for SVI and RVI instructions. 

8-BIT TRANSFER CAPABILITY 

This capability allows central processor Types 1201, 1251, 2201, and 4201 to transfer 

data between peripheral controls and merrlOry in either 6- or 8-bit format, as specified in the 

Peripheral Data Transfer (PDT) instruction. 

1. The 6-bit mode is the standard data transfer mode used in Series 200 
central processors. In this mode, only data is transferred between 
memory and peripheral controls. Punctuation is preserved in memory. 

2. The 8-bit mode is used in those applications where an 8-bit transfer is 
desired between the central processor and a peripheral control. In this 
mode of operation, data and punctuation are transferred between the 
central processor and peripheral controls. Record marks in memory do 
not terminate data transfer in this mode. 

When in the 8-bit mode, th~ number of 8-bit character transfers to be performed is 

determined by a 3-character count field in the PDT instruction or by control-characters asso­

ciated with the PDT peripheral controls. 

The high-order bit of the C3 control character in a PDT instruction is a multivariant bit 

which conditions the peripheral control in its interpretation of the remainder of the instruction. 

When this bit is a zero, all additional control characters beyond C3 are ignored by the control. 

When the high-order bit of C3 is a one, additional control characters are present and will be 

accepted by the peripheral control.' In this case, the format of the PDT instruction becomes: 

Op code/A address/C1, C2, C3, C4, C5, C6, C7. 

Control character C4 is always present when the multivariant bit (bit 6 of C3) is a one. 

When the extended bit (bit 5 of C3) is a one, control characters C5, C6, and C7 are present. 

When the extended bit is a zero, control characters C5,C6, and C7 are ignored. The high­

order bit of C4 determines the data transfer mode; one specifies 8-bit mode and a zero specifies 

6 -bit mode. Because 8-bit mode data transfers are not affected by record marks, data transfer 

is delimited by the setting of the extended bit in the C3 control character. If this bit is a zero, 

all data transfers previously terminated by a record mark are now terminated by transferring 

the number of characters specified in the record header area. If it is a one, all data transfers 

G-3 #2-139 



APPENDIX G. EXTENDED MULTIPROGRAMMING AND 8-BIT TRANSFER FEATURES 

previously terminated by a record m.ark are now terminated by transferring the number of char­

acters specified by the count field (C5, C6, and C7) of the PDT instruction. 

PRIVILEGED SCR INSTR UCTION 

When a processor is in the standard mode with the storage protection indicator ON and the 

proceed indicator OFF, the detection of an SCR instruction having a variant character of octal-

00 through octal 37 will set the op code violation indicator and cause an internal interrupt to 

occur at the next opportunity. 

The following status is specified at the con,clusion of the trapped SCR instruction. 

1. The internal interrupt register (IIR) contains the address of the privileged 
op code. 

2. The A -addre s s regi ster (AAR) contains the addres s of the previous instruction. 

3. The main memory locations specified by the A-address are undisturbed. 

4. The variant register contains the variant character of the privileged SCR 
instruction. 

All S CR instructions are identically executed if the proceed indicator is ON. 

G-4 #2-139 



EXTENDED INPUT/OUTPUT CAPACITY FOR THE MODEL 4200 APPENDIX 

H 
An extended input/outpu~ capacity for the Model 4200 is available as Features 1116, 4214A, 

4214B, and 4215. 

FEATURE 1116 

Feature 1116 increases the peripheral flexibility of the Model 4200 by providing a third 

input/output sector. This feature includes eight additional read/write channels for a total of 16, 

and facilities which allow the permanent connection of 16 additional peripheral controls for a 

total of 48. With this expanded system, up to 16 read/write channels can be used simultaneously 

for data transfer operations. 

Sector 3 handles up to four peripheral devices simultaneously and has a maximum data 

transfer rate of 333, 333 characters per second. Thus when feature 1116 is included, the I/O 

controller can accommodate a peak data transfer rate of 1, 333, 333 characters per second. 

FEATURES 4214A and 4214B 

Features 4214A 1 (Two Buffered I/O Sectors) and 4214B2 (Two Additional Buffered I/O Sec­

tors), provide the Model 4200 with buffered I/O sectors for those applications where additional 

compute time or a hi-gher input/output transfer capability is required. When both features are 

included, sectors 1 and 3 remain unchanged but sector 2 is replaced with four buffered sectors. 

Each buffered sector has a data transfer rate of 500, 000 characters per second, can handle up 

to 6 peripheral devices simultaneously, and provides facilities to permanently attach up to 16 

modate a data transfer rate of 2, 833, 333 characters per second and perform a total of 16 simu­

ltaneous input/ output operations. In addition to increasing the I/O capability of the Model 4200, 

Features 4214A and 4214B reduce the usage of available memory cycles by the I/O controller. 

Consequently, the :m.e:m.ory cycles saved are available to the central processor. 

FEATURE 4215
1 

Feature 4215 (High-Speed Third Sector) increases the transfer rate of that sector to 

1, 333, 333 characters per second. This allows connection of I/O peripheral devices with transfer 

rates exceeding 500, 000 characters per second to the third sector. When Feature 4215 is added 

1 
Requires the installation of Feature 1116. 

2Requires the installation of Feature 4214A. 

H-l #2-139 



APPENDIX H. EXTENDED INPUT /OUTPUT CAPACITY FOR THE MODEL 4200 

to the system, the data transfer rate is 2, 333, 333 characters per second. When Feature 4215 

is included as well as Features 4214A and 4214B, the I/O controller can accommodate a peak 

data transfer rate of 3, 833, 333 characters per second. 

BUFFERED SECTORS 

A single buffered sector is equipped with six 4-character buffers. Therefore, up to six 

devices operating concurrently are provided with a 4-character storage area. A buffer accum­

ulates up to 4 characters of data before requiring access to main memory. The buffered sectors 

may be used without their buffer areas (direct mode) but this arrangement results in a slower 

data transfer rate. Table H-l indicates whether or not a control/device can be connected to a 

buffered sector in either the buffered or in the direct mode. 

In order to attain optimum system performance, sectors and their maximum data transfer 

rates should be taken into consideration before permanently connecting peripheral controls to 

particular sectors. 

Table H-l. Controls /Device s Connectable to Buffered Sector s 

Type 203 - Tape Controls (all) 
Type 206 - High-Speed Printer Control 
Type 206A - Printer Control for 822-3 
Type 207 - Card Reader Control (for Type 227) 
Type 208 - Card Punch Control (for Type 227) 
Type 208-1 - Card Punch Control (for 224-1, -2, or 214-1). 
Type 208-2 - Card Read/Punch Control (for 224-1, -2, or 214-2) 

Type 209 } 
Type 209-2 . - Paper Tape Reader and Control 

Type 210 - Paper Tape Punch and Control 
Type 212 - On-Line Adapter 
Type 212-1 - Central Processor Adapter 
Type 213-3 - Interval Timer 
Type 213-4 - Time of Day Clock 
Type 220 -1, - 2, -3 - Console 
Type 222-1, -2, -3, -4, -5, -6 - Printer and Control 
Type 223 - Card Reader and Control 
Type 223-2 - C?;rd Reader and Control 
Type 229 - Printer and Control 
Type 232 - MICR Reader-Sorter and Control 
Type 233-2 - MICR Control 
Type 234 - Plotter Control 
Type 235 - Optical Journal Reader Control 
Type 237 - Bill Feed Printer Control 
Type 238 - Optical Reader Control 
Type 257 - Control for 258, 259 Disk Pack Drives 
Type 257-1 - Control for 258, 259 Disk Pack Drives ( 6.and 8-bit 

transfer) 

H-2 

Yes 
No 
No 
No 
No 
Yes 
Yes 

No 

Yes 
No 
No 
Yes 
Yes 
No 
Yes 
Yes 
Yes 
Yes 

No 
No 
Yes 
Yes 
No 
No 
No 
No 

No 
No 
No 
No 
No 
Yes 
Yes 

Yes 

Yes 
No 
Yes 
Yes 
No 
Yes 
No 
No 
No 
No 
Yes 
Yes 
Yes 
Yes 
No 
No 
No 
No 

#2-139 



APPENDIX H. EXTENDED INPUT /OUTPUT CAPACITY FOR THE MODEL 4200 

Table H-1 (cont). Controls/Devices Connectable to Buffered Sectors 

Type 257A - Control for 259A Disk Pack Drive 
Type 257B - Control for 259B Disk Pack Drive 
Type 257B-l- Control for 259B Disk Pack Drive (-6 and 8-bit 

transfer) 
Type 260 - Control for 26) and 262 Disk Files 
Type 260-1 - Control for 265, 266 High-Speed Drum.s 
Type 260-2 - Control for 267 High-Speed Drum.s 
Type 270A-l, -2, -3 - Random. Access Drum. Storage and Control 
Type 281 - Single -Channel Com.m.unication Controls (all) 
Type 286-1, -2, -3, -4, -5 - Multi-Channel Comm.unicatlon 

Controls (all) 
Type 287 - AUTODIN Comm.unication Control 
Type 287-1 - USASCII A UTODIN Com.m.unication Control 

H-3 

No 
No 
No 

Yes 
Yes 
No 
No 
No 
No 

No 
No 

No 
No 
No 

No 
No 
No 
No 
Yes 
No 

Yes 
Yes 

#2-139 



COMPUTER-GENERAIE~ INDEX 

A-ADDRESS RtGISTER (AAR), 4-4 
A-FItLD WORD MAR~-LCA 

LOAD ~HARACTERS TO A-fIELD wORD MAR~-LCA' 8-56 
AAR 

A-ADDRESS ~EGlST£k (AAR). 4-4 
ABSOLUTE. 5-13 

" MEMORY ADDRESSES, 
CONVtRSION Of SYMBOLIC TAGS TO A~SOLUTE MEMORy 

ADDRESStS. 3-2 
ACCESS 

" DRUM. 
C3 COOING FOR TYPE 270A RANDUM ACCESS DRJM, 

8-125 
RANDOM ACCESS DRUMS, 1-11 

" DRUM UNITS. 
RANDOM ACCES~ DRUM UNITS. 1-11 

MEMURY ACCtSS, 2-~ 
ACTIVE ADDRtSS BITS IN SERIES 200 PROCESSORS. 4-15 
ACfIVITltS 

ADD 

CONTROL UNiT ACTIVITIES. 2-11 
INPUT/OUTPUT TRAFFIC CONTROL ACtIVITIES. 2-12 

COMPLEMENT ADD. 8-7 
" EXAMPLt::S, 

COMPLE~ENT ADD EXA~PLES, 8-8 
TRUE ADD EXAMPLES. 8-7 

II INSTRUCT ION, 
EXTRACTION OF DATA FIELDS iN TYPICAL ADD 

lNSTRUCtION,4-2 
TYPICAL ADD INSTRUCTION. 4-1 

SERIES 200 ADD AND SUBTRACT OPERATIONS. 8-4 
TRUt ADD. B-7 

ADD-A. 8-14 
ADD-SA 

BINARY ADD-BA. 8-17 
ADD .. HA 

HALF ADD-HA. 8-29 
ADD-ZA 

ZERO AND ADD-ZA. 8-20 
ADDll ION 

BINARY ADDITION. 8-4 
DECIMAL ADDITION, 8-7 

ALGEBRAIC SIGNS IN DECIMAL ADDITION. 8-7 
" TABLE. 

BINARY ADDITION TABLE. 8-4 
ADDITIONAL 

II CODING RULES. 5-12 
II PERIPHERAL DEVICES. 1-16. 1-17 
II READ/WRITE CrlANNELS. UNIT LOADS. AN~ ADD~ESS 

ASSIGN~ENTS. 1-22 
ADDRt;:SS 

A AND B AD~RESSES, 3~2 
ABSOLUTE ME~ORY ADDRESSES. 

CONVERSION OF SYMBOLIC TA6S TO A~SOLUTE MEMORY 
ADDRESSE:.S. 3-2 

" ASSE.MBLY. 
FOUR-CHARACTER ADDRESS ASSEMBLY. 5-4 
THREE-CHARACTtR ADDRESS A5SE~clLY. 5-4 
TWO-CHARACTER ADDRESS ASSEMBLY. ~-3 

" ASSIGNMENTS. 
ADDITIONAL READ/WRITE CHANNE.LS. UNIT LOADS. AND 

ADDRESS ASSIGNMENTS. 1-22 
ADDRESS ASSIGN~ENTS AND UNIT LOADS AVAILABL~ IN 

SERIES 200 PROCESSORS. 1-19 
" BITS. 

AClIVE ADDRESS BITS IN SERIES 200 PROCESSORS. 
4 .. 15 

" CODES. 5-12 
INDEX REGISTER ADDRESSES IN FUUR-CHARACTtR 

ADDRESSING MODE. 4-14 
INDE.JC REGISTER ADDRESSES IN THREE .. CrlARACTER 

ADDRESSING MODE. 4-12 
INDEXtD ADDRESS. 

ASSEMBLY OF INDEXED ADDRESS IN FOUR.CHARACTER 
ADDRESSING MODE. 5-23 

ASSEMBLY OF INDEXED ADDRESS IN lHREE-CHARACTtR 
ADDRESSING MODE. 5-22 

EXTRACTION.OF INDEXED ADDRtSS l~ THREE-CHARACTER 
"10DE. 4-13 

INDEXED FOUR-CHARACTER ADDRESSES. 
EXlRACTION OF INDIRECT AND INDEXED 

FOUR-CHARACTER ADDRESSE.S. 4-15 
INDIRE:.CT AvDRESS. 

ASSEMBLY OF INDIRECT ADDRESS IN fOUR~CHARACTtR 
ADDRESSl~G MODE. ~-24 

ASSEMBLY OF INDIRECT ADDRtSS IN IHREE-CHARACfER 
ADDRESSl~G MODE. 5-23 

(CONT.) 

ADDRESS (CONT.) 
" LITERALS. 5~19 
" MODl-ADMODt.. 

SET ADDRESS MODE-ADMODE. 7-11 
" MDDIFICATION. 4-8 
II MODI~ICATION CODES. 5-~1 

PERIPHERAL ADDRESSES AND UNIT LOADS. 1-17 
PDTENTIAL ADDRESSES wITHIN ADDRESS RANGE. ~-16 

" RANut. 
POTENTIAL ADDRESSES wiTHIN ADDRESS RANGE. 4-16 

" REGISfER RANGE. 
POTENTIAL ADDRESSES OUTSIDE ADDRESS REGISTER 

RANGE. 4 ... 16 
" REGISTERS. 2-8 

THREE-CHARACTER ADDRESS. 4-10 
THREE-CHARACTER INDIRECT ADDRESS. 

E:.XTRACTION OF THREE-CHARACTER INDIRECT ADDRESS. 
4-11 

TREATMENT OF ADDRESSES LARGER THAN A MEMORY.S 
MAXIMUM ADDRESS. 4-16 

ADDRESS-DSA 
DEFINE SYMBOLIC ADDRESS-DSA. 6-7 

ADDRESSES UUTSIDE ADDRESS REGISTER RANGE 
POTENflAL ADDRESSES aUf SIDE ADDRESS REGISTER RANGE. 

4-16 
ADDRtSSING. 4-1 

EXPLICIT ADDRESSING. IMPLICIT ADDRESSING. AND 
CHAINING. 4-17 

INDEXED ADDRESSING. 4-12. 4-14 
INDIRECT ADDRESSING, 4-10. 4-13 
INTERLEAVED ADDRESSING, 2-5 

" MODE, 
ADDRESSING MODES, 1-4. 4-5 
ASSEMBLY OF INDEXED ADDRESS IN FOUR.CHARACTER 

ADDRESSING MUDE. 5-23 
ASSEMBLY OF INDEXED ADDRESS IN THREE-CHARACTER 

ADDRESSING MODE. 5-22 
ASSEMBLY OF INDIRECT ADDRESS IN FOUR_CHARACTER 

ADDRESSING MODE. 5-24 
ASSE.MBLY OF INDIRECT ADDRESS IN THREE-CHARACTER 

ADDRESSING MODE. 5-23 
CHANGING ADDRESSING MODES VIA CAM INSTRUCTION. 

8 .. 65 
FOUR-CHARACTER ADDRESSING MODE. 4 .. 13. 4-8 
lNDEX REGISTER ADDRESSES IN FOUR-CHARACTER 

ADDRESSING MODE. 4-14 
INDEX REGISTER ADDRESSES IN THREE-CHARACTER 

ADDRESSING MODE. 4-12 
rHREE-CHARACTER ADDRESSING MODE. 4-6 
lWO-CHARACTER ADDRESSING MODE. 4 .. 5 

" MODE-CAM. 
CHANGE ADDRESSING MODE.CAM. 8-62 

REGISTERS USED IN ADDRESSING. 4-3 
ADVANCED PROGRAMMING. 1.21 

" FEATURE. 
MODEL 200 ADVANCED PROGRAM~ING FEATURE, 1~21 

" INS1KUCTIONS. 
bCC TEST CONDITIONS WITH ADVANCED PROGRAMMIN~ 

INSTRUCTIONS. 8-41 
ALGEBRAIC SIGNS IN DECIMAL ADDITION. 8-7 
ALPHANU"1ER1C 

II CONSIANTS. 6-4 
" LITERALS. 5-18 

ANGULAR POSITION INDICATOR. 1-11 
AREA DEFINING LITERALS~ 5~19 
AREA ... DA 

DEFINE AREA-DA. 6-7 
AREA-RESV 

RESERVE AREA-RESV. 6.6 
ARITHMETIC 

" OPERATIONS, 8-4 
AUTOMATiC FORMATTING IN ARITHMETIC OPERATIONS. 

F-2 
" SIGN CONVENTIONS. 

UECIMAL ARITHMETIC SIGN CONVENTIONS. 8-9 
" UNIT. 2-10 

ASSE~I:lLER 

UATA FLOW BETWEEN MAIN MEMORY AND ARITHMETIC 
UNIT. 2-11 

ASSE~lBLER S. 5 ... 3 
RELATIONSHIP OF SOURCE. ASSEMBLER. AND OBJECT 

PROGRAM. 5-2 
ASSE"1BLY 

" CONTROL STATEMENTS. 7-1 
FOUR-CHARACTER ADDRESS ASSEMBLY, 5-4 

" OF INDEXED ADDRESS IN FOUR.CHARACTER ADDRESSING 
"'lODE. 5-23 
(CONT.) 



ASSEMB~Y (CUNT.) 
" O~ INUEXED ADDRES~ IN THREE-CHARA~T~~ ADDRESSING 

MODE' ;-22 
" O~ INDIRECT ADDRE~S IN fOUR-CHARACTE~ ADDRtSSING 

MODE. 5 ... 24 
" O~ INUIRECr ADDRESS IN THREE-CHARAClER ADDRESSIN6 

MODE. 5-23 
THREE-CHARACTER AUDRESS ASSEM~~Y. '-4 
TWO-CHARACTER ADD~ESS ASSEMB~Y. 5-3 

ASSl(jNMENTS 
AUDRESS ASSIGNMEN15. 

ADDITIONA~ READ/WRITE CHANNE~S. UNIT ~OADS. AND 
ADDRESS ASSIGNMENTS. 1-22 

ADURESS ASSIGNMENTS AND UNIT ~OADS AVAl~A~lE IN 
SERIES 200 PROCESSORS. 1-19 

SELECTING R~C ASSIGNMENTS. 
CONSIDERATION~ IN SEL[CTIN6 RwC ASSlGNMENTS. 

8 ... 110 
SELECTING RwC ASSIGNMENTS fOR USE l~ PDT 

INSTRUCTIONS. 8-110 
AUTOMATIC fORMATTING IN ARITHMETIC OPERA110NS. F-2 
AUXILIARY READ/WRITE CHANNELS 

PRIMA~Y AND AUXILIA~Y READ/wRITE CHANNELS. 2-16 
B-ADDRESS REGISTER (BAR). 4-4 
BAR 

6-ADDRESS REGISTER (BAR), 4-4 
BARRICAUE LOCATION 

CORRESPONDENCE BETwEEN LIB SETTIN~ AND BARRICADE 
LOCATI(,)N. 8-8U 

BASE RELOCATION 
STORA6E PROTECTION WITH BASE RELOCAf40N. G-1 

BASE-X BASE 
SET OUT-Of-SEQUENCE BASE-XBASE' 7-16 

BASIC 

Bee 

BeT 

" CONCEIolTS. 4 ... 1 
" INPUT/OUJP~T DATA PATH. 1_18 
" TEST CONDITIONS fOR Bec INSTRUCTION, 8 ... 40 

BRANCH ON CHARACTER CONDITION (~CC) CONDITIONS. B-5 
" INSTRUCTION. 

BASIC TEST CONDITIONS FOR Bec IN5TRUCTION, 8-40 
n TEST CONDITIONS WITH ADVANCED IolRO~RAMMING 

INSTRUCTIONS. 8-41 

BRANCH ON CONDITION TEST (BCT) IN~ICArOR CONDITIONS. 
B .. 4 

BRANCH ON CONDITION TEST (BCT) SEN5c SWITCH 
CONDITIONS. B-3 

" INSTRUCTION, 
INDICATOR TES1 C'ONDITIONS ~OR eCT INSTRUCTION, 

8 .. 37 
SENSE SWITCH CONDITIONS FOR BCT iNSTRUCTION, 

8 .. 36 
BIL~ FEED PRINTER 

C3 COOIN~ FOR TYPtS 206 AND 222 ~RI~lERS AND TYPE 
2~7 BILL FEED PRINTER. 8-125 

BINARY 
OCTAL. AND DECIMAL EQUIVALENTS. e-~. 

" ADD-BA. 8 ... 17 
" ADOll ION, 8 .. 4 
" ADDITION TABL~. 8-4 
,. CONSTANTS, b-2 
" LITERALS. ~ .. 16 
" SUBTRACT-BS~ 8-19 
" SUBTRACTION. 8-4 

BINARY-OCTAL EQU'VALENTS. A-l 
BIT EQUAL-BBE. 

BRANCH ON BIT EQUAL-BBE. 8-44 
BITS 

ACTIVE ADDRESS BilS IN SERIES 200 PROCESSORS. 4~15 
BLANK, 5"'15 

,. CONSTANTS. 6-4 
BPI RECORDING DENSITY 

1200 BPI RECORDING DENSITY, 1-8 
BRANCH 

" IF CHARACTER EQUAL.BCE. 8_42 
" ON BIT EQUAL-BBE. 8-44 
" ON CHARACTER CONDiTION (BeC) CONDITlONS. 8-5 
" ON CHARACTER CONDITION.BCC. 8~39 
" ON CONDITION TEST (BCT) INDICATOR CUNDITIONS. B ... 4 
" ON CONDITIUN TEST (BCT) SENSE SWITCH CONDI1IONS. B-3 
" ON CONDITION TEST-BCT, 8-35 

BRAN'H .. B. 8-34 
BRANCH .. PCB 

PERIPHERAL CONTROL AND BRANCH-PCB. ~-127 
BUFFER 

PRINT BUfFER. 1-8 
BUfFERED SELTORS. H-2 

C~N1kOLS/DEVICES CONNECTAbLE Ta BUFFERED SECTORS. 
H-2 

CALL-t'IC 
MONITOR CALL-MC. 9-98 

CAM 11115 TRU," TlON 
CHAN~lNG ADDk~S~lNG MOUES VIA CAM INSTRUCTION. 8.65 
MODES SPECIFIED BY VARIANT CHARACTER IN CAM 

lN5TRUCTION. 8-63 
CAPABILITY 

8-611 TRANSFER CAPABILITY. G~3 
CAPACITY 

CARD 

CE 

EXTENDED INPUT/OUTPUT CAPACITY FOR THE MODEL 4200. 
~1-1 

" REQUIREMt:NTS. 
MINIMUM RWC CAPACITY REQUIREMENTS FOR SERIES 200 

pERIpHERAL DtVICES. 8-111 

" CODE~. 
PUNCHED CARD CODES. 3-8 

" COLUMN. 
MARK (CARD COLUMN 7). 5-6 
lYPE (CARD COLUMN 6). 5-6 

" eOlUf'iINS 1-5, 
LARD NUMUER (CARD COLUMNS 1-5), 5~5 

" COLUf'INS 15-20. 
. OPERATION CODE (CARD COLUMNS 15-20). 5-1U 

" COLUf'INS 8 .. 14, 
LOCATIoN (CARD COLUMNS 8-14). 5-8 

EASYCODER CARD D OPTIONS, 6-10 
" EQUII-li'1ENT. 

PUNCHED CARD EQUIPMENT. 1-7. 1-8 
" FORNAT. 

PUNCHED CARD FORMAl. 3-8 
" NUMUER (CARD COLUMNS 1-5). 5-5 
" READ OPERA1ION. 

DATA PATH DURING CARD READ OPERATION. 1.19 

PCB 1/0 CHARACTER CE. 
DESCRIpTION Of PCB I/O CHARACTER CE. 8-149 

PDT I/O CHARACTER CE. 
DESCRIPTION OF PDT I/O CHARACTER CE (ESCAPE 

CODE). 8-118 
CENTRAL pRUCESSOR. 1-1. 2-1 

" CHARACTERISTICS. 
SUMMARY OF CENTRAL PROCESSOR CHARACTERISTICS, 

2 ... 17 
LOGICAL DIVISION OF SERIES 200 CENTRAL PROCESSOR. 

2-1 
MaDEL 4200 MEMORY INTERLEAVING (TYPE 4201 .. 9 CENTRAL 

PROCESSOR),2"6 
" MaDES. E .. 1 

CHAINING 

CHANGE 

EXPLICIT ADDRESSING. IMPLICIT ADDRESSING. AND 
CHAINING, 4-17 

" ADDRt:SSlNG MODE-CAM. 8-62 
" SEQUENC~ REGISTER (CSR). 4-3 
" SEQUENCING MODE-CSM. 8-66 

CHANGING ADDRESSING MODES VIA CAM INSTRUCTION. 8-65 
CHANNEL 

ADDITIONAL RlAD/WRITE CHANNELS. UNIT LOADS. AND 
AUDRESS ASSIGNMENTS. 1-22 

AJX1LIARY READ/WRITE CHANNELS, 
PRIMARy AND AUXILIARY READ/WRITE CHANNELS. 2~16 

INTERLOCKING READ/wRITE CHANNELS, 2~16 
MODEL 4200 VARIABLE-SPEED READ/WRITE CHANNELS. 2-16 
READ/WRITE CHANNEL. 1-18 
TYPE 286 MULTI CHANNEL. 

CHARACTER 
II CE. 

SUMMARY OF PDT I/O CONTROL CHARACTERS FOR TYPE 
286 MULTI CHANNEL. 8-12Q 

VESCRIPTION OF PCB I/O CHARACTER CE. 8~149 
DESCRIPTION Of PDT I/O CHARACTER CE (ESCAPE 

CODE), 8-118 
" CODES. 

SERIES 200 CHARACTER CODES. Bp7 
" CONDiTION. 

BRANCH ON CHARACTER CONDITION (BCC) CONDITIONS. 
8-5 

" CONt) I Tl ON ... BCC. 

" Cl, 

" e2, 

bRANCH ON CHARACTER CONDITION-BCC. 8-39 

DESCRIPllON Of PDTI/o CONTROL CHARACTER C1. 
1:) ... 116 

DESCRIPfiON Of PDT I/o CHARACTER C2 (PERIPHERAL 
((ONT .) 



COMPUfER-GENERATED INDEX 

CHARACTER (LONT.) 
CONTROL DESIGNATION. a-l1b 

" EQUAL-BCE. 
BRANCH If CHARACTER EQ~AL-BCE' 8-42 

INPUT/OUTPJT CONTKOL CHARACTERS. 5-Zl 
LOAU (HA~ACTERS TO A-FIELD WORO MARK-LCA. 8-56 
MOVE CHA~ACTERS AND EDIT-MCE. 8-104 
MOVE CHARACTERS TO WORD MARK-MCW, 8-55 
PCB 110 CONTROL CHARACTERS. 

SUMMARY OF PC~ 1/0 CONTROL CHARALfER5, 8-130 
SUMMARY OF PCB 1/0 CONTROL CHARALTERS FOR TYPE 

286, 8-146 
PDT 1/0 CONTROL CHARACTERS. 

SUMMARY O~ PDl 1/0 CONTROL CHARACTERS, 8.120 
SUMMARY OF PDI I/O CONTROL CHARACTERS FOR TYPE 

286 MULTl CHANNEL, 8-126 
" REPRESENTATION ON MAGNETIC TAPE. 3-7 

REPRESENTION OF CHARACTERS IN MAGNErlC CORE STURAGE' 
2"3 

SPECIAL CHARACTERS IN MCE INSTRUCTIJN, 8-105 
VARlAN1 CHARACTER, 3-3. 5 .. 20 

MODES SPECIFIED BY VARIANT CHARACTER IN CAM 
INSTRUCTION, 8-63 

CHARACTERISTICS 
CENTRAL PROCESSOR CHARACTERISTICS, 

SUMMARY OF CENTRAL PROCESSOR CHARACTERISTICS. 
2-17 

CHARACTERS C5 
PCB CONTRO~ CHARAlTERS C5 THRUUGH C!~ FOR TYPE 

286-4, -5 LINE. 8-148 
CHECK 

CLEAR 
" ITEM MARK-CI, 8-51 
" ~ORD MARK ... CW, 8-50 

CLEAR.CLEAR, 7-19 
CODE 

AODRESS CODES. 5.12 
ADDRESS ~ODIFICATION CODES. 5-21 
DESCRlPTION OF PDT I/O CHARACltR CE (tSCAPE COPE), 

8-118 
OPERATION CODE. 3-2 
OPERAfION COD~ (CARD COLUMNS 15-20), 5-10 
OPERATION JTIlIZING ESCAPE CODES, 

EXAMPLE OF OPERATION UTIL!ZlN~ ~SCAPE CODES, 
6 ... 114 

PUNCHED CARD CODES. 3-8 
SERIE~ 200 CHARACIER CODES. B-7 

CODING 
C3 COOING FOR TYPE 209 AND 209-2 PAPER TAPE READERS, 

8"124 
C3 CODING FOR TYPE 210 PAPER TAPE PUNCH, 8 ... 124 
C3 CODING FOR TYPE 270A RANDOM ACCE~5 DRUM, 8-125 
C3 CODING FOR TYPES 206 AND 222 PRINTERS AND TYPE 

237 BILL FEED PRINTER, 8-125 
" FORM, 5-5 

EASYCODER CODING FORM. 5-5 
" RULES. 

ADDITIONAL COOING RULES, 5-12 
SAMPLE CODING FOR EXTERNAL INTERRUPl ROUTINE. D-4 
SAMPLE CODING FOR INTERNAL INTERRUPI ROUTINE, 0-5 

COLUMN 
MARK (CARD COLUMN 7), 5-6 
TYPE (CARD COLUMN 6), 5-6 

COLUMNS 
" 1-5. 

CARD NUMBER (CARD COLUMNS 1-5). 5-5 
" 15 .. 20. 

OPERATION CODE (CARD COLUMNS 15-20). 5-10 
" 8 .. 14. 

LOCATION (CARO COLUMNS 8-14), 5-8 
COMMUNICATION EQUIPMENT 

DATA COM~UNICATION EQUIPMENT. 1-12' 1-13 
COMMUNICATIONS NETWORK 

CUSTOMER INQUIRY HANDLING VIA TYPICAL COMMUNICATIONS 
NETWOR(. 1-15 

COMPARE"", 8-32 
COMPATIBILITY 

uPWARD COM~ATIBILITY, 8-114 
COMP~EMENT ADD. B ... 7 

" EXAMPLES. 8 .. 8 
COMPONENTS 

SERIE~ 200 COMPON~NTS. 1~1 
CONCEPTS 

BASIC CONCtPTS. 4"'1 
CONDIT ION 

BASIC TEST CONDITIONS FOR BCC INSrRJCIION, 8-40 
(CONT. ) 

COND IT I ON (CON 1.) 
BCC lEST CONDITIONS WITH ADVANCED PROGRAMMING 

INSTRUCIIONS. 8-41 
BRANlH ON CONDITION TE~T (BCT) INDICATOR CONDITIONS. 

B .. 4 
BRANCH ON CONDITION TEST (BCT) SENSE SWITCH 

CONDIT IONS. B .. 3 
CHARACTER CONDITION. 

bRANCH ON CHARACTER CONDITION (sec) CONDITIONS, 
8-5 

EXTENDED MOVE (EXM) CONDITIONS, B-2 
EXTENDED MOV~ CONDITIONS, 8 .. 68 
INDICATOR TEST ~ONDITIONS FOR BCT INSTRUCTION, 8-37 
SCAN CONDITIUNS. 

MOVE OR SCAN CONDITIONS. 8-88 
SENSE SwITCH CONDITIONS FOR BCT INSTRUCTION. 8-36 

It TEST. 
BRANCH ON CONDITION TEST (BCT) INDICATOR 

CONDITIONS. 8-4 
BRANCH ON CONDITION TEST (BCT) SENSE SWITCH 

CONDIT IONS. i:l .. 3 
" TEST-BCT, 

5RANCH ON CONDITION TEST-BCT. 8-35 
CONDITION-BCC 

CHARACTER CONDITION-BCC, 
bRANCH ON CHARACTER CONDITION-Bce. 8-39 

CONFICJURATIONS 
MEMORY CONFIGURATIONS fOR TYPE 4201 PROCESSORS. 2-4 

CONNECTABLE 
CONTROLS/DEVICES CONNECTABLE TO BUFFERED SECTORS. 

H"2 
CONSECUTIVE STORAGE LOCATIONS IN MAIN MEMORY, 3-4 
CONSIDERATIONS IN SELECTING RWC ASSIGNMENTS. 8 ... 110 
CONSOLE 

" EQUIPMENT. 1-14 
TypE 220-1 CQNSOLE, 1-3 
TypE 220 ... 3 CONSOLE, 1-3 

CONSTANT 
ALPHANUMERIC CONSTANTS. 6-4 
BINARy CONSTANTS. 6~2 
BLANK CONSTANTS. 6 .. 4 
DECIMAL CONSTANTS, 6.2 
DEFI~E CONSTANT WITH WORD MARK.DCW, 6.2 
F~OArING-POINT CONSTANIS. 6-5 
NUMERlC CONSTANTS, 6-2 
OCTAL CONSTANTS. 6-3 

eONSTANT ... D<. 
DEFl~E CONSTANT ... DC, 6-5 

CONIE:.NTS 
" LOADf:.D, 

CONTROL REGISTER CONTENTS LOADED BY LCR 
INSTRUCTION. 8 ... 61 

" STORt:.D, 
<'ONTROl REGISTER CONTENTS SToRED BY SCR 

INSTRUCTION, 8-58 
CONTROL, 8-47 

" ACTIVITIES. 
!NPUT/OUTPUT TRAFFIC CONTROL ACTIVITIES, 2-12 

" CHARACTER Cl, 
DESCRIPTION OF PDTIIO CONTROL CHARACTER C1, 

8-116 
" CHARACTERS, 

INPUTIOUTPUT CONTROL CHARACTERS, 5-21 
SUMMARy OF PCB 1/0 CONTROL CHARACTERS. 8-130 
SUMMARY OF PCB I/O CONTROL CHARACTERS FOR TYPE 

286. 8 ... 146 
SUMMARY OF PDT I/O CONTROL CHARACTERS, 8~120 
SUMMARY OF PDT I/O CONTROL CHARACTERS FOR TYPE 

28Q MULTI CHANNEL, B.126 
It CHARACTERS C5. 

PCB CONTROL CHARACTERS C5 THRO~GH C15 FOR TYPE 
266·4. -5 LINE, 8 ... 148 

" DESICJNA lION, 
DESCRIPTION OF PDT I/O CHARACTER C2 (PERIPHERAL 

CONTROL DESIGNATION. 8-118 
" EQUALS.CEQU. 7-13 

INPUJ/OUTPUl TRAFFIC CONTROL. 2-12 
LOGICAL DECISION PERFORMED BY INPUTIOUTPUT 

TRAFFIC CONTROL. 2-14 
~YMBOL'C REPRESENTATION OF INP~T/OUTPUT TRAFFIC 

CONTROL. 2 .. 15 
" INS rRUCTIONS. 

TYPE 286-1. ~2. -3 LINE CONTROL INSTRUCTIONS. 
8 ... 126 

" INTERRUPT, 
PERIPHERAL CONTROL INTERRUPT. D.5 

INTERRUPT CONTROL. 8_91 
(CONT. ) 



CUMPUT~R-GENERATED INDEX 

CONT~OL (COl'll.) 
INTERKJPT/ALLOW FUNCTION CONTROL, 

SU~MARY O~ INIEHRUPT/ALLOW FUNCIIUN CONTROL AND 
lEST OPt~ATIONS, D-I 

" Mt:.MORY, 2-6 
" MEMURY REGISTERS, 2-8 

SIZE OF CONTRUL MEMORy ~E~15rtR~ (MODELS 
200/120U/1250/2200/~2UO). 2-7 

" OPt:.RATIONS. 
INPUr/JJTPUT CONTROL OPlRAIIONS. 8-110 
TYPE~ OF lEST AND CONTROL Up~~ArlONS. 8-128 

" PAN~L. 
TYPE 1201 CONIROL PANEL. 1-2 

PERIPHERAL CONTROL. 1-7 
IN1ERRJPT SIGNAL GENERATED BY PERIPHERAL 

CONTROL. D-6 
PERIPHERAL CONTROL AND BRANCH-PCB. 8-121 

" REGIST~R CONTENTS LOADED BY LCR INSTRUCTION. 8-61 
" REGISTt:.R CONTENTS STORED BY SCR INSIRUCrION. 8-58 
" REGlSTt:.R DESIGNATIONS. B-1 
" REGISTER FJNCTION. 

TYPICAL CONTRUL RE~ISTER ~UNCrIJN. 2-7 
" REGIS1ER5 STORED bY SCR INSTRUCTION. 8-59 
" RtGIS1ER5-LCR. 

LOAD CONTROL REGISTERS-LCR. 8-60 
" REGISTERS-SCR. 

STORE CONTROL REGISTERS-seR. 8-58 
" STATEMENTS. 

ASSEMBLY CONTROL STATEMENTS. 7-1 
" UNIT. 2-11 
" UNIT ACTIVITIES. 2-11 

CONTROLLEI'< 
MEMORY CONTROLLER. 2-5 

CONTROLS/DEVICES CONNEC1ABLE TO BUFfEREU SECTORS. H-2 
CONVENlIONS 

DECIMAL ARITHMETIC SIGN CONVENTIONS. 8-9 
DIVIDE SIGN CONVENTIONS. 8-!3 
MULTIPLY SIGN CONVENTIONS. 8-10 

CONV~RSION 
" OF SYMBOLIC TAGS 10 ABSOLUTE MEMORY ADDRESSES. 3-2 
II PROCEDURE. 

OlTAL-OECIMAL CONVERSION PROCEDvRE. A-3 
II TABLE. 

DECIMAL-OCTAL CONVERSION TABLE. A-2 
CORE STURAGE 

REPRESENTION OF CHARACTERS IN MAGNETIC CORE STURAGE. 
2"3 

COUNTERS 
READIWRITE COUNTERS, 2-8 

CSR 
CHANGE SEQ~ENCE RE~ISTER (CSR). 4-3 

CUSTUMER INWUIRY HANDLIN~ VIA TYPICAL CUMMUNICATIONS 
NETWOR<. 1 ... 15 

CW 

CYCLE 
CLEAR WORD MARK - CW. 8-50 

" 

C1 

C15 

C2 

DISTRIBUTION, 
MEMORY CYCLE DISTRIBUTION. 2-12 

MEMURY CYCLE. 2-3 

PDTI/O CONTROL CHARACTER Cl. 
DESCRIPTION Of PDTIIO CONTROL CHARACTER C1, 

8-116 

PCB CONTROL CHARACTERS (5 THROUGH C15 FOR TYPE 
286-4. -5 LINE. 8-148 

PDT lID CHARACTER C2. 
DESCRIPTION Of PDT 110 CHARACTER (2 (PERIPHERAL 

CONTROL DESIGNATION. 8-118 
C3 CODING 

C5 

DATA 

" FOR TYPE 209 AND 209-2 PAPER TAPE READERS. 8-1Z4 
" FOR TYPE 210 PAPER TAPE PUNCH. 8-124 
" FOR TYPE 270A RANDOM ACCESS DRUM. 8-125 
" FOR TYPES 206 AND 222 PRINTERS ANU TYPE 231 BILL 

FEED PRINTER. 8-125 

PCB CONTROL CHARACTERS C5 THROUGH Cl~ FOR TYPE 
286-~. -5 LINE. 8-1~8 

" COMMUNICATION EQUIPMENT. 1-12. 1-13 
" FIELD FORMAT IN MAIN MEMORY. 3-~ 
" FIELDS. 

EXTRACTION OF DATA FIELDS AN TYPICAL ADD 
INSTRUCI ION, 4-2 

" fLOW bETWEEN MAIN ~EMORY AND ARITrl~ErIC UNIT. 2-11 
" FORMAT. F-l. 3-1 

(CONT.) 

DAIA (C:),,<1.) 
UATA FORMAT ON MAGNETIC TAPE. 3-8 
MAGNETIC TAPE DATA FORMAT. 3-7 
SUMMARY OF INTERNAL DATA FORMATS. 3-6 

" FORMATTING STATEMENTS. 6-1 
ORGANIZATION Of DATA IN MAIN MEMORY. 3~4 

" PATH. 
, bASlC INPUT/OUTPUT DA1A PATH. 1-18 

UATA PATH DURING CARD R~AD OPERATION. 1-19 
" TRAN~FEk l~TtRVALS DURING ONt PERIPHERAL OPERATIoN. 

;::"13 
" TRANSfER OPERATION. 

PERIPHERAL DATA TRANSFER OPERATION. 1-17 
" TRAN~FER RATE. 

UEVICE DATA TRANSFER RATE. 8-110 
" TRAN~FE.R/PDT. 

PERIPHERAL DATA TRANSfER/~DT. 8-115 
DEC!VlAL 

"ADDITION. B-7 
ALGEBRAIC SIGNS IN DECIMAL ADDITION. 8.7 

" ARITHMETIC SIGN CONVENIIONS. 8-9 
" CONS1ANTS. 6-2 
II EQUIVALENTS. 

bINARY. UCTAL. AND DECIMAL EQUIVALENTS. B-8 
" LITt.RALS. 5-16 
" SUBTRACTION. 8-8 

DECI~AL-OCTAL CONVERSION TABLE. A-2 
DECISION 

LOGICAL DECISION PERFORMED BY INPUT/OUTPUT TRAFFIC 
CONTROL. Z-14 -

DEFINE:. 
" AREA-DA. 6-7 
" CONSTANT WITH WORD MARK-DCw. 6-2 
" CONSTANT-DC. 6.5 
" SYMBOLIC ADDRESS-DSA. 6-7 

DEFINING LITERALS 
AREA DEfINING LITERALS, 5-19 

DENSITY 
1200 BPI R~CORDING DENSITY. 1-8 

DESCRIPTION 
" OF PCB 1/0 CHARACTER CE. 8-149 
" OF PDT 1/0 CHARACTER CE:. (ESCAPE CODE). 8-118 
" OF PDT 1/0 CHARACTER C2 (PERIPHERAL CONTROL 

DESIGNATION, 8-118 
" OF PDTI/O CONTROL CHARACTER Cl. 8-116 

SERl~S 200 INSTRUCT(ON DESCRIPTIONS. 
~YMBOLOGy USED IN SERIES 200 INSTRUCTION 

DESCRIPTIONS. 8~2 
DE.Sl:JNATION 

CONTROL REGISTER DESIGNATIONS. B"l 
DESCRIPTION OF PDT 1/0 CHARACTER Cz (PERIPHERAL 

CONTROL DESIGNATION. 8-118 
DEVICE:. 

DISK 

ADDIliONAL PERIPHERAL DEVICES. 1-16. 1-17 
" DATA TRANSFER RATE. 8-110 

INPU1IOUTPUT SECTOR TO WHICH DEVICE IS CONNECTED. 
8-114 

SERI~S ZOO PERIPHERAL DEVICES. 
MINIMUM RWC CAPACITY REQUIREMENTS FOR SERIES 200 

PERIPHERAL D~VICES. 8-111 
VIsUAL INFORMATION PROJECTION DEVICES. 1~14. 1-16 

" fILES. 1-10. 1~11 
" PACK DRIVES. 1-10 

DISTRIBUTION 
MEMORY CYCLE DISTRIBUTION. 2-12 

Dl VJi)E 
" OPERATION, 

fACTOR LOCATIONS IN DlVIDE OPERATION. 8-12 
" SIGN CONVENTIONS, 8-13 

DIVIDE-D. 8-25 
DIVISION. 8 .. 11 

DRIV~S 

DRUM 

LOGICAL DIvISION OF SERIES 200 CENTRAL PROCESSOR. 
2"1 

DISK PACK DRIVES. 1-10 

HIGH·SPEED DRUMS. 1-11. 1-12 
RANDUM ACCESS DRUMS. 1-11 
TYPE 210A RANDOM ACCESS DRUM. 

C3 CODING FOR TYPE 270A RANDOM ACCESS DRUM. 
8-125 

" UNITS. 
RANDOM ACCESS DRUM UNlTS. 1-11 

DUMP-HS~ 
MEMORY DUMP-H5M. 7-14 

EASYCODER 



COMPUTER-GENERATEJ INDEX 

EASYlOD~R (CONT.) 
" CARD D OPTIONS. 6-10 
" CODING FORM, 5-5 
" PROGRAMMIN~. 5-1 

SET 11 PJNCTUATION INDICATORS (EASYCUDER C AND D 
ONLY). 5-7 

EDIT INSTRUCTION. 1-22 
EDIT-MCE 

MOVE lHARACTERS AND EDIT-MCE, 8-104 
EDlIIN:J. 8 .. 103 
EIR 

EXTERNAL INTERRUPI REGISTER (EIR). 4 .. 3 
END-I:.ND. "7-20 
EQUAL-BBE 

BIT EQUAL-6BE. 
BRANCH ON BIT EQUAL-BBE. 8-44 

EQUAL-BCE 
CHARACTER EQ~AL-BtE. 

BRANCH IF CHARACTER EQUAL-BCE. 8-42 
EQUALS .. CEQU 

CONTROL EQUAI,..S-CEuJ. 7-13 
EQUALS-EUU. 7-12 
EQUII->MENT 

CONSOLE EQUIPMENT. 1.14 
DATA COMMUNICATION EQUIPMENT. 1-12. 1-13 
PAPER TAPE EQUIPMI:.NT. 1-12 
PERIPHERAL EQUIPMENT. 1 ... 6 
PUNCHED CARD EQUIPMENT. 1-7. 1-8 
TELLER TERMINAL EQUIPMENT. 1-16 

EQUIVALENTS 
BINARY-OCTAL EQUIVALENTS. A-1 
DECIMAL EQUIVALENTS. 

BINA~Y. OCTAL. AND DECIMAL EQUIVALENTS. B-8 
ESCAPE CODE 

DESCRIPTION OF PDr 1/0 CHARACTER CE (ESCAPE CODE). 
8-118 

EXAMPLE OF OPERATION UTILIZING ESCAPE CODES, 8-114 
EXAMPLE 

COMPLEMENT ADD EXAMPLES. 8-8 
" Of OPERATION UTILIZING ESCAPE CODES. 8-114 

TRUE ADD EXAMPLES. 8-7 
EXECUTE .. EX. 7-4 
EXM 

EXlENUED MOVE (EXM) CONDITIONS. B-2 
EXP~lCIT ADDRESSING. IMPLICIT ADDRESSING. AND 

CHAINING. 4 .. 11 
EXTENDED 

" INpUT/OUfPUT CAPALITY FOR THE MODEL 4200. H-1 
" MOVE (EXM) CONDITIONS. B-2 
" MOVE CONDITIONS. 8-68 
" MOVE-EXM. 8-67 
" MULTI-PROGRAMMING AND 8.BIT TRANSFER, 1-23 
" OF INFORMATION UNITS IN MIT OPERATION. 8w75 

EXTERNAL INrERRUPT. D-l 
EXTERNAL INTERRUPTS. 1-4 

" MASKING. G"2 
" REGISTER (EIR). 4-3 
" ROUTINE. 

SAMPLE CODING FOR EXTERNAL IN1ERRUPT ROUTINE. 
D .. 4 

EXTRACT-EXT. 8-28 
EXTRACTION 

," OF DATA FIELDS IN TYPICAL AOD IN5TR~CTION. 4-2 
" OF INDEXED ADDRESS IN THREE-CHARACTER MODE. 4-13 
" O~ INDIRECT AND INDEXED FOUR.CHARACTER ADDRESSES. 

4"15 
" OF THREE-CHARACTER INDIRECT ADDRESS. 4-11 

FACTOR LOCATIONS IN DIVlDE OPERATION. 8-12 
FEATURE 

MODEL 200 ADVANCED PROGRAMMING FEATJRE. 1-21 
OPTIONAL FEATURES. 1~20 
SERIES 200 OPlIONAL FEATURES. 1-20 
STORAGE PROTECT FEATURE. E-1 

" 0191. 1 .. 23 
" 1116, H .. l 
" 4215. H .. l 

FEATURES 4214A AND 4214~. H-1 
FEED PRINTER 

FIELD 

(3 CODING FOR TYPES 206 AND 222 P~lN1ERS AND TYPt 
237 BILL FEED PRINTER. 8-125 

" FORMAl. 
DATA FIE~D FOR~AT IN MAIN MEMORY. 3-5 

" ~ENGTH. 
VARIABLE FIELD LENGTH, 3-1 

FIELDS. 3"4 
A AND B rIEL~S IN ~ULTIPLY OPERATION. 8-10 

(CONT. ) 

Fl ELDS (CON T .) 
DATA FIELDS. 

EXTRACTION OF DATA FIELDS IN TYPICAL ADD 
IN5TRUCTION, 4~2 

FILES 
DISK FILES, 1·10. 1-11 

FLOATING-PUINT 

F~OW 

FORM 

" CONSTANTS. 6-5 
" INDICATORS. F-2 
" REGISTERS. F-l 

DATA FLOW BETWEEN MAIN MEMORY AND ARITHMETIC UNIT. 
2-11 

CODING FORM. 5-5 
EASYLODER CODING FORM, 5-5 

FORMAT 
DATA FIELD FORMAT IN MAIN MEMORY, 3-5 
DATA FORMAl. F .. l. 3-1 
DATA FORMAT ON MAGNETIC TAPE. 3-8 
INSTRUCTION FORMAT, 3-2 
INTERNAL DATA FORMATS. 

SUMMARY OF INTERNAL DATA FORMATS, 3-6 
ITEM FORMAT S. 

lWO ITEM FORMATS IN MAIN MEMORY. 3.5 
MAGNETIC TAPE DATA FORMAT, 3-7 
PUNCHED CARD FORMAT. 3.8 
RECORD FORMAT IN MAIN MEMORY. 3-6 
SERIES ZOO INSTRUCTION FORMAT 1. 4-17 
SERIES 200 INSTRUCTION FORMAT 2. 4-18 
SERIES ZOO INSTRUCTION FORMAT 3. 4-18 
SERIES 200 INSTRUCTION FORMATS. 3-3 

FORMATTING 
AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONS, F~2 

" STATEMENTS. 
OATA FORMATTING STATEMENTS, 6-1 

FORMULAS MODELS ZOO 
INSTRUCTION SUMMARY-TIMING FORMULAS MODELS 200, 

1200. 1250. AND 2200. C~4 
FOUR-CHARAC.TER 

" ADDRESS ASSEMBLY. 5-4 
" ADDRESSES, 

EXTRACTION OF INDIRECT AND INDEXED 
FOUR_CHARACTER ADDRESSES, 4-15 

" ADDRESSING MODE. 4 .. 13, 4-8 

FUNCTION 

ASSEMBLY OF INDEXED ADDRESS IN FOUR-CHARACTER 
ADDRESSING MODE. 5-23 

ASSEMBLY OF INDIRECT ADDRESS IN FOUR_CHARACTER 
ADDRESSING MODE. ~-24 

INDEX REGISTER ADDRESSES I~ FOUR-CHARACTER 
ADDRESSING MODE. 4-14 

" CONTROL, 
SUMMARY OF INTERRUPTIALLOW FUNCTION CONTRoL AND 

TEST OPERATIONS, D-7 
MAIN MEMORY FUNCTIONS. 2-2 
TYPICAL CONTROL REGISTER" FUNCTION, 2-7 

GENERATE-GEN. 7-17 
GENERATED 

INTERRUPT SIGNAL GENERATED BY PERIPHERAL CONTROL, 
1)"6 

HALF ADD_HA. 8-29 
HALT-H. 8 .. ~2 
HANDLIN:J 

CUSTOMER INQUIRY HANDLING VIA TYPICAL COMMUNICATIONS 
NETWORK. 1 .. 15 

HE.ADER-PROe:; 
PRoGRAM HEADER~PROG, 7-2 

HEADER .. SEG 
SEGMENT HEADER~5EG. 7-4 

HIGH·SPEED 
" DRUM5. 1-11, 1 .. 12 
" PRINIERS, 1 .. 9 

1/0 CHARACTER 
" CE, 

" C2. 

~ESCRIPTION OF PCB 1/0 CHARACTER eE. 8-149 
~ESCRIPT10N OF PDT 1/0 CHARACTER CE (ESCAPE 

CODE). 8 ... 118 

DESCRIPTlON OF PDT 1/0 CHARACTER (2 (PERIPHERAL 
CONTROL DESIGNATION. 8-118 

1/0 CONTRO~ CHARACTERS 
SUMMARY OF PCB 1/0 CONTROL CHARACTERS. 8-130 
SUMMARY OF PCB 1/0 CONlROL CHARACTERS FOR TYPE 286. 

8-14b 
SUMMARY OF PDT 1/0 CONTROL CHARACTERS, 8-120 
SUMMARy OF PDT. 1/0 CONTROL CHARACTERS FOR TYPE 286 

(CONT.) 



COMPUTtR-GENERATEJ INDEX 

I/O CONTRoL CHARACTERS (CONT.) 
MULTI ~rlANNEL. 8-126 

I I R 
INIt,RNAL INTERRUf>1 REGISTER (llR). 4-4 

IMPLICIT ADURE~Sl~G 
. EXf>LICIT ADDRlSSINS. IMPLICIT AUDRE~~ING, AND 

CHAINIIIIG. 4-11 
INDEX REGISIER 

II Al)l)RE!)SES, 
INDEX ~EGISTfH ADDRESSES IN FUJ~-lHARAC1ER 

AvDRESSING MODE. 4-14 
INDEX REGISTER ADDRESSES IN TrlR~t-CHARACTER 

ADDRESSING MODE. 4-1, 
" '-lAP, 4-9 

SlRIES 200 INDEX REGISTER MAP, 4-9 
INDEX REGlSTE.R~, l-l, 4-9 

" SIMULlANEOJSLY, 
NU'-lBER Of INDEX REGISTERS !)1~~LrANEOUSLY 

AvAILABLE TO A PROGRAM. 4-10 
INDEX/BARRICADE 

" REGISTER-UB. 
LOAD I~Dt,X/BARRICADE REGl~IER-Ll~, 8-79 

" REGISfER-SIB, 
STORE IIllDEX/BARRICADE REG1STER-~lB. H-8, 

INDEXED. 5-21 
" AI)DRESS. 

ASSEMBLY OF INDEXED ADDRESS IN rOJR-CHARACTER 
ADDRESSlNG MODE. 5-23 

ASSEMBLy Of INDEXED ADDRESS IN IHREE-CHARACTER 
ADDRESSIIIIG MODE. 5-22 

EXTRACIION OF INDEXED ADDRESS I~ rHREE-CHARACTER 
1v\ODEt 4-13 

" ADDRE!)SING, 4-12. 4-14 
" FOUR-CHARACTER ADD~ESSES, 

INDl<':ATOR 

EXIRACTION OF INDIRECT ANI) INDEXED 
FOUR-CHARACTER ADDRE~S~~. 4-15 

ANGULAR PO~lTION INDICATOR. 1-11 
" CONDITIONS. 

BRANCH ON CONDITION TEST (~CT) INUICATOR 
CONDITIONS. B-4 

FLOATING-POINT INDICATORS. F-~ 
INDICATORS. 1:1-9 
PROCEED INDICATOR. E-5 
PUNCTUATION INDICATORS. 

SET 1 PJNCTUATION INDICATORS. ~-, 
SET 11 PUNCTUATION INDICArORS ItASYCODER C AND D 

ONL.Y), ':>-7 
" TEST <':ONDITIONS FOR BCT INSTRUCriON. 8-37 

INDICATORS .. KVI 
RESTOKE VARIANT AND INDICATORS-RVI. 8-95 

INDICATORS-SVI 
STORE VA~IANT AND INDICATORS-SVI. 8-92 

INDIRECT, 5 .. 23 
" AI)DRESS, 

ASSE~8LY OF INDIRECT ADDRES~ IN rOUR-CHARACTlR 
ADDRESSING MODE. 5-24 

ASSEMBLY OF INDIRECT ADDRESS IN IHREE-CHARACIER 
ADDRESSING MODE. 5-23 

EXTRACIION OF THREE-CHARACTtR INDIRECT ADDRESS, 
4 .. 11 

" ADDRESSING. 4 .. 10. 4-13 
EXfRAlTION or INDIRECT AND INDEXED fUUR-lHAHACTEH 

AUDRESSES, 4"15 
INFORMATION 

" PROJE<':TION DEVICES. 
VISUAL INfORMATION PROJECTION DEVICES. 1-14, 

1 .. 1b 
" RESTORED BY RVI INSTRUCTION. 8 .. 9b 
" STORED BY SVI INSIRUCTIONS. 8-92 
" UNITS. 

EXTENDED OF INFORMATION UNIT~ IN ~IT OPERATION. 
S .. 75 

INPUT/OUTPUT. 1:1-109 
" CAPAClTY. 

EXTENDED INPUT/OUTPUT CAPA<.:lTY fOR THE MODEL 
4200. H-l 

" CONTROL. CHARACTERS, 5-21 
" CONTROL OPERATIONS. 8-110 
" DATA PATH, 

BASIC INPUT/OUTPUT DATA PATH. 1-18 
" SECTOK TO ~HICH DEVICE IS CONNE<.:TEU, 8-114 
" TRAFFIC CONT~OL. 2-12 

LOGICAL DECISION PERFORMED BY I~PJT/OUTPUT 
TRAFFIC CONTROL. 2-14 

SYMBOLIC REPRESENTATION Of INf>JI/OUTPUT TRAFrlC 
CONTROL, 2-15 

(CONT.) 

INPU1/OUTPl,JJ (COI~I.) 
" TRAF~IC CO~TkOL ACTIVITI~S. 2-12 

1 NQU 1 RY HAI~LlLI NG 
CUST0M~R INwuIHY HANDLING VIA TYPICAL COMMUNICATIONS 

1~£TwORK. 1-15 
INST~UCTl(JN 

ADVANCED PROGRAMMING INSTRUCTIONS, 
beC TE~r CONDITIONS w1TH ADVANCED PROGRAMMING 

INSTRUCTIONS. 8-41 
BCC lNSTRUCl10N. 

bASIC rlST CONDITIONS FOR BCC INS1RUCTION, 8-40 
BCT iNS1RUCTION. 

INDICAToR T~ST CONDITIONS FOR BCT INSTRUCTION. 
8-37 

SENSE SWITCH CONDITIONS FOR BCT INSTRUCTION. 
8-~b 

CAM INS1RUCTION, 
CHANGING ADDRESSING MUDES vIA CAM INSTRUCTION. 

8-b5 
MODES SP~CIFIED BY VARIANT CHARACTER I~ CAM 

INSTRUCTION. 8-63 
" DE.SCk I PT IONS, 

SYMBOLOGY USED IN SERltS 200 INSTRUCTION 
DESCRIPTIONS. 8-2 

EDIT INSTRUCIION. 1-22 
" FORI"1AT, 3-2 

SERIES 200 INSTRUCIION FORMAT 1, 4-11 
SERIES 200 INSTRUClION FORMAT 2. 4-18 
~ERIES 200 INSTRUCTION FORMAT 3. 4-18 
SERIES 200 INSTKUCIION FORMAlS. 3-3 

INSTRUCTIONS. 8-1 
LCR 11~STRUCT ION, 

(ONTROL. REGISTER CONTENTS LOADED BY LCR 
INSTRUCTION. 8-b1 

LINE CONTROL INSTRUCTIONS, 
lYPE 2&6 .. 1. -2. -3 LINE CONTROL INSTRUcTIONS, 

8"'126 
MCE lNSTRUCllON, 

!)PECIAL CHARACTERS IN MCE INSTRUCTION, 8-105 
PDT INSTRUCrIONS. 

SELECTING RWC ASSIGNME.NTS FOR USE IN PUT 
INSTRUCTIONS. 8-110 

PRIVILEGED SCR INSTRUCTION. G-4 
RvI INSTRUCT ION, 

INFORMATION RESToRED BY RVI INSTRUCTION. 8-96 
SCIENTIFIC INSTRUCTIONS. 

SUMMARY OF SCIENTIFIc INSTRUCTIONS, F-4 
SCR INSTRUCTION. 

CONTROL REGISTER CONTENTS STORED BY SCR 
INSTRUCTION, 8-58 

CONTROL REGISTERS STORED BY SCR INSTRUCTION. 
8 .. 59 

SERI~S 200 INSTRUCTIONS. 
SYMBOLIC REPRESENTATION OF SERIES 200 

INSTRUCTIONS. 3-4 
" SUMMARY-TIMING fORMULAS MODELS 200. 1200. 1250, AND 

~200. (-4 
SVI INSlRUCTIONS, 

lNFORMATION STORED BY SVI INSTRUCTIONS. 8-92 
" TIMEOUT, G .. 2 
" TIMINGS FOR THE MODEL 4200. C-l 

TypICAL ADD INSTRUCTION, 4~1 
~XTRACTION OF DATA FIELDS IN TYPICAL ADD 

INSTRUCTION, 4-2 
INTERLEAVED ADDRESSING, 2-5 
INlERLEAVING 

MODEL. 4200 MEMORY INTERLEAVING (TYPE 4201-9 CENTRAL 
PROCESSOR), 2 .. b 

INTERLOCKING READ/wRITE CHANNELS. 2-1b 
INTE~NAL 

" DATA FORMATS. 
SUMMARY OF INTERNAL DATA FORMATS. 3-b 

" INTERRUPT. D-2. E-2. 1-4 
" INTtRRUPT RE~ISTER (11k). 4-4 
" INTERRUPT ROUTINE. 

INTERRUPT 

SAMPLE CODING FOR INTERNAL INTERRUPT ROUTINE, 
D-':> 

" CONTROL. 8-91 
lXTERNAL INTERRUPT. Dpl 
EXTERNAL INTERRUPTS. 1-4 
INTE.RNAL INTERRUPT. D-2. E-2, 1-4 

" MASK!NG. 
EXTERNAL INTERRUPT MASKING. G-2 

PERIPHERAL CONTROL INT~RRUPT, D-5 
" PROC~SSING. D-1 

(CONT. ) 



CO~~UTER-GENERATED INDEX 

INTERRuPT (lONT.) 
» PROCESSING MODE, 1-3 
PRO~RA~ INTERRUPT, 1-22 

» PRO~RAMMING, Dw3 
" REGISIER, 

EXTE~NAL INTE~RUpr REGISTtR (EIRJ, 4-3 
INTERNAL INTERRUPT REGIST~R (lj~). 4-4 

" ROUTINE, 
SA~PLE CODING FOR EXTERNAL lNTERRUPT ROUTINE. 

D ... 4 
SAMPLE CODING FOR INTERNAL INrERRUPT ROUTINE. 

D .. 5 
" SIGNAL GENERATED bY PERIPHERAL CONTROL, D-6 

INTERRUPT/ALLOw FJNCTION CONTROL 
SUMMARY OF INTERRUPT/ALLOW FUNCTION CONTROL ANU lEST 

OPERATIONS, D-7 
INTERVALS 

DATA rRANSFER INTtRVALS DURIN~ 
O~ERATlON' 2-13 

INTRODUCTION. 5-1. 6-1, 7-1, 8-1 

aNt PERIPHERAL 

ITEM 
" FORMATS, 

TWO ITEM FORMATS IN MAIN MEMORY. 3-5 
ITEMS. 3-5 

" MARK-CI, 
CLEAR ITEM MARK-CI. 8-51 

"MARK-51, ' 
StT ITEM MARK-51, 8-49 

MOVE ITEM AND TRANSLATE-MIT' 8-14 
ITEM-MARK TRAPPING MODE, 1-5 
LANGUAGE 

SYMbOLIC LANGUAGE, 5-3 
LCR INSTRUC1ION 

CONTROL RE~lSTER CONTENTS LOADED bY LCR INSTRUCTION, 
8-61 

LENGTH 
VARIAbLE FIELD LENGTH. 3-1 

LIB SEllING 

LINE 

CORRESPONDtNCE BET~EEN LIB SEITINb AND BARRICADE 
LOCA Tl~)N, 8 .. 80 

" CONTROL INSTRUCTIONS, 
TYPE 286~1. -2. -3 LINE CONTRUL INSTRUCTIONS, 

8 .. 126 
" NUMBER .. SETI..IN, 

StT LINE NUMBER-SETlIN, 7·18 
PCB CONTROl.. CHARACTERS C5 THROUGH Cl~ FOR TYPE 

2B6-4, -5 LINE, 8-148 
LITERAl.. ORIGIN-LITORG, 1-9 
l.ITERAI..5, 5-15 

l.OAD 

ADDRESS LITERALS, 5-19 
ALPHANUMERIC LITERALS, 5-18 
AREA DEFINING LITERALS, 5-19 
BINARY LITtRALS, ~-16 
DECIMAL LITERALS. 5-16 
OCTAL LITERALS, 5-17 

" CHARA~TE~S TO A-FIELD WORD MARK-LeA, 8-56 
" CONTROL REGISTERS~LCR' 8-60 
" INDEX/BARRICADE REGISTER-LIB. 8-79 

l.OADED 

LOADS 

CON1ROL REGISTER CONTENTS LOADED bY LCR INSjRUCTION, 
8-61 

ADDITIONAL READ/WRITE CHANNtLS, UNIT LOADS. AND 
ADDRESS ASSIGN~ENTS, 1-22 

UNIT LOADS, 
ADDRESS ASSIGNMENTS AND UNIT LOADS AVAILABI..E IN 

SERIES 200 PROCESSORS, 1-19 
PERIPHERAL ADDRESSES AND UNIT LJADS, 1-17 

LOCATION 
" (CARD COLUMNS 8 .. 14), 5-8 

BARRICADE LOCATION. 
CURRESPONDENCE BETWEEN Ll~ SETT1NG AND BARRllADE 

1..0CATlON, 8-80 
CONSECUTIVE STORA~E LOCATIONS IN MAlN MEMORY, 3-4 
FACTOR LOCATIONS IN DIVIDE OPERATION. 8-12 

LOGIC, 8-27 
LOGICAl.. 

" DECISION PERFORMED BY INPUT/OUTPUT TRAFFIC CONTROL, 
2-14 

" DIVISION OF SERIES 200 CENTRAL PROCESSOR, 2 .. 1 
LOOKUp .. TLU 

TABLE LOOKJP-TLU, 8-83 
~AGNETlC 

" CORE STO~AGE, 
REPRESENT ION OF CHARACTERS IN MAGNETIC COR~ 
(CONT.) 

MAGN~TIC (lONT.) 
5 TORAGE. 2-3 

" TAPL, 
CHARACTER REPRESENTATION ON MAGNETIC TAPE. 3~7 
DATA FORMAT ON MAGNETIC TAPE, 3-8 

" TAPE DATA ~ORMAT. 3~7 
" TAPE UNITS, 1-8, 1-9 

MAIN MEMORy, 2-1 

MAP 

MARK 

CONSlCUTIVE STORAGE LOCATIONS IN MAIN MEMORY, 3~4 
DATA FIELD FORMAT IN MAIN MEMORY. 3-5 
DATA FLOW BETWEEN MAIN. MEMORy AND ARITHMETIC UNIT, 

~-ll 
" F:JNCIIONS, 2-2 
" IN THE TYPE 4201 PROCESSOR. 2-4 

ORGANIZATION OF DATA IN MAIN MEMORy. 3-4 
RECORD FORMAT IN MAIN MEMORY, 3-6 

" 5IZE. 1-6 
" SPEED. 1-6 

T~O If EM FoRMATS IN MAIN MEMORY, 3-5 

INDEX REGISTER MAP, 4-9 
SERI~5 200 INDEX REGISTER MAP. 4_9 

II (CARD COLUMN 7),5-6 
CLEAR WORD MARK .. CW, 8-50 

MARK-CI 
CLEAR ITEM MARK-CI. 8-51 

MARK-DO'" 
wORD MARK-DCw. 

DEFINE CONSTANT wITH WORD MARK-DCw, 6-2 
MARK-LCA 

A-FIELD WORD MARK-LCA. 
LOAD CHARACTERS TO A-FIELD WoRD MARK-LeA, 8-56 

MARK-MC~ 
WORD MARK-MCw, 

MOVE CHARACTERS TO WORD MARK_MCW. 8-55 
MARK-51 

SET ITEM MARK-51, 8-49 
MARK-SW 

SET WORD MARK-SW. 8-48 
MASKING 

EXTERNAL INTERRUPT MASKING, G-2 
MAT OPERATION, 8-73 
MAX I '~UM ADDRESS 

TREATMENT of ADDRESSES LARGER THAN A MEMORY.S 
MAXIMUM ADDRESS, 4-16 

MCE INSTRUC.TION 
SPECIAL CHARACTERS IN MCE INSTRUCTION, 8-105 

MEMORY 
" ACCESS. 2"'5 
" ADDRESSES, 

CONVERSION OF SYMBOLIC TAGS TO ABSOLUTE MEMORY 
ADDRESSES, 3-2 

" CONFIGURATIONS FOR TYPE 4201 PROCESSORS, 2-4 
CONTROL MEMORY. 2-6 

" CONTROLLER. 2-5 
" CYCL.E., 2-3 
II CYCLt DISTRIBUTION, 2-12 
" DUMP-HSM, 7-14 
" FUNCTIONS, 

MAIN MEMORY FUNCTIONS, 2-2 
" INTERLEAVING, 

MODEL. 4200 MEMORY INTERLEAVING (TYPE 4201_9 
CENTRAL pROCESSOR), 2-6 

MAIN MEMORY, 2-1 
CONSECuTIVE STORAGE L.OCATIONS IN MAIN MEMORY, 

3 ... 4 
~ATA FIELD FORMAT IN MAIN MEMORY. 3-5 
DATA FLOW BETWEEN MAIN MEMORY AND ARITHMETIC 

UNiT. 2 .. 11 
URGANIZATI0N OF DATA IN MAIN MEMORY. 3-4 
RECORD FORMAT IN MAIN MEMORY, 3-6 . 
lWO ITEM FORMATS IN MAIN MEMORY. 3-5 

MAIN MEMORY IN THE TYPE 4201 PROCESSOR. 2-4 
" POSIIION, 

ONE MEMORY POSITION, 2 .. 3 
" REGISTERS, 

CONTROL MEMORY REGISTERS, 2-8 
SIZE OF CONTROL MEMORY REGISTERS (MODELS 

200/l200/1250/2200/4200), 2-7 
II SIzE. 

MAIN MEMORY SIZE, 1 ... 6 
" SPEEu, 

MAIN MEMORY SPEED, 1-6 
II SUBSYSTEM, 

lYPE 4201 MEMORY SUBSYSTEM, 2-4 
MEMORY,S MAXIMUM ADDRESS 

(CONT. ) 



COMPUT~R-GENERATE~ INDEX 

ME~OHY.S MAXIM~M ADDRESS (CONT.) 
TR~ATMENT JF ADDR~SSES LARGLR THAN A MEMORY.S 

~AXI~U~ ADDRE~S. 4-16 
MINIMUM RWC CAPACITY REWJIREMENTS rUR SERI~5 200 

PERI~HERAL DlVICES. 8-111 
MIT OPERATION. 8-79 

MODE 
EXTENDED OF INFoRMATION UNITS IN Mlf OPERATION. 8-75 

ADDRESSING MODES. 1-4. 4-5 
CENTRAL PROCESSOR MODES. E-1 
CHANGING A~DRESSIN3 MODES VIA CAM 1~SIRUCT10N. 8-65 
FOUR-CHARACTER ADDRESSING MODE. 4-13. 4-8 

ASSEMBLY OF INDEXED ADDRESS IN FOUR-CHARAClER 
ADDRESSING MODE. 5-23 

ASSE~BLY OF INDIRECT ADDRESS IN ~OUR-CHARACTER 
ADDRESSING MODE. 5-24 

INDEX REGISTER ADDRESSES IN ~OU~-CHARACTER 
ADDRESSING MODE. 4-14 

INTERRUPT PROCESSING MODE. 1-3 
ITEM-MARK TRAPPIN~ MODE. 1-5 
MODES SPECIFIED BY VARIANT CHARACTE~ IN CAM 

INSTRUCTION. 8.63 
STANDARD PROCESSIN~ MODE. 1-3 
THREE-CHARACTER AUDRESSING MOUE, 4-0 

ASSE~BLY OF INDEXED ADDRESS IN THREE-CHARACTER 
ADDRESSING MODE. 5-22 

ASSE~BLY OF INDIRECT ADDRESS IN rHRE~-CHARACTER 
ADDRESSING MODE. 5p Z3 

INDEX REGISTER ADDRESSES IN lH~El-CHARACTER 
ADDRESSING MODE. 4-12 

THREE-CHARACTER MODE. 
EXTRACTION OF INDEXED ADDRESS IN fHREE-CHARACTER 

"10D~. 4.13 
TWO-CHARACTER ADDRESSING MODE. 4-5 

MODE .. ADMODE 
SET ADDRESS MODE~ADMODE. 7-11 

MODE-CAM 
CHANGE ADDRESSING "10DE-CAM. 8~62 

MODE .. CSM 
CHANGE SEOJENCING MODE-CSM. 8-66 

MODE .. RNM 
RESUME NORMA~ MODE_RNM, 8-99 

MODEL 
" ZOO ADVANCED PROGRAMMING FEATURE. 1-21 
" 4200. 

EXTENDED INPUT/OUTPUT CAPACITY FOR THE MODE~ 
4200. H ... l 

INSTRUCTION TIMINGS FOR THE MODEL 4200,C-7 
" 4Z00 MEMORY INTERLEAVING (TYPE 4201-9 CENTRAL 

PROCESSOR), 2"'6 
" 4200 VARIABLE-SPE~D READ/WRITE CHANNELS. 2-16 

MODELS 
" 1200, 

II ZOO. 

SCIENTIFIC UNIT FOR MODELS 1200. 1250, 2200. AND 
4200, F-1 

INSTRUCTION SU"1MARY .. TIMING FORMULAS MODELS 200. 
1200. 1250. AND 220Q. (-4 

" 200/1200/125U/2200/4200. 
51lE OF CONTROL MEMORy REGJSIER~ (MODELS 

200/1200/1250/2200/4200),2-7 
MOOIF I CA TlON 

ADDRESS MODIFICATION. 4-8 
" CODES-. 

ADDRESS MODIFICATION CODES. 5-21 
MODULAR ORIGIN-MORG, 7-9 
MONITOR CALL-MC. 9-98 
MOVE 

" AND TRANSLATE-MAT. 8-70 
" CHARACTERS. 

MOVE CHARACTERS AND EDIT-MCE. 8-104 
MOVE CHARACTERS TO WORD MARK-MC~. 8-55 

" CONDITIONS. 
EXTENDED MOVE CONDITIONS. 8-68 

EXTENDED MOVE (EXM) CONDITIONS. B~2 
" ITEM AND TRANSLAT~-MIT, 8-74 
" OR SCAN CONDITIONS. 8-88 
" OR SCAN VARIANTS. B-9 
" OR SCAN-MO~, 8-86 

~OVE-EXM 
EXTENDED MOVE-EX~. 8-67 

MULTI CHANNEL 
SUMMARY OF PDT I/O CONTROL CHARACTEKS FOR TYPE 286 

MULTI CHANNEL. 8-126 
~ULTI-PROGRAMMING 

EXTENDED MvLTI-PROGRAMMING AND 8-BIT TRANSFER. 1-23 
MULTIPLICATION' 8-9 
MULTlPLY (CONT.) 

MULTIPLY 
" OPLRA Tl ON. 

A AND ~ FIELDS IN MULTIPLY OPERATION. 8-LO 
" SIGN CONVENTIONS, 8-10 

MULTIPLY-M. 8-23 
Nf.I WORK 

TYPI~AL COMMUNICATIONS NETWORK, 
tUS10M~R INQUIRY HANDLING VIA TYPICAL 

COMMUNICATIONS NETWOQK. 1-15 
NORMAL MODE-RNM 

RESUME NORMAL MODE-RNM. 8-99 
NOTATiON 

OCTAL NOTATION. A-1 
NUMBER 

CARD NUMBER (CARD COLUMNS 1-5). 5-5 
" OF INDEX RE~lSTERS SIMULTANEOUSLY AVAILAbLE TO A 

PRO~RAM. 4-10 
NUMBER-SEllIN 

SET LINE NUMBER-SETLIN. 1-18 
NUMERIC CONSTANTS. 6-2 
OBJECT PRO<:JRAM 

OCTAL 

RELATIONSHIP OF SOURCE. ASSEMBLER. ANO OBJECT 
PROGRAM. 5-2 

BINAkY. OCTAL. AND DECIMAL EQUIVALENTS. B-8 
" CONSTANTS. 6-3 
" LITERALS. 5-17 
" NOTATION, A-l 

OCTAL-DECIMAL CONVERSION PROCEDURE. A~3 
OPERANDS. 5"11 
OPERA T1 ON 

ARITHMETIC OPERATIONS, 8-4 
AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONS. 

F-2 
CARD READ OPERATION. 

DATA PATH DURING CARD READ OPERATION, 1-19 
" CODE. 3-2 

OPERATION CODE (CARD COLUMNS 15-20). 5-10 
CONTROL OPERATIONS. 

lYPES OF TEST AND CONTROL OPERATIONS. 8-128 
DIVIDE OPERATION. 

fACTOR LOCATIONS IN DIVIDE OPERATION. 8-12 
INPU1/OUTPUT CONTROL OPERATIONS. 8.110 
MAT OPERATION, 8-73 
MIT OPERATION, 8-79 

EXTENDED OF INFORMATION UNITS IN MIT OPERATION. 
8 .. 75 

MJLTlPLY OPERATION. 
A AND B FIELDS IN MULTIPLY OPERATION. 8-10 

PERlPHERAL DATA TRANSFtR OPERATION. 1-17 
PERIPHERAL OPERATION. 

DATA TRANSFER INTERVALS DURING ONE PERIPHERAL 
OPERATION. 2-13 

SJBTRACT OPERATIONS. 
SERIES 200 ADO AND SUBTRACT OPERATIONS. 8~4 

TE.ST. OPt;:RAT IONS. 
SUMMARY OF INTERRUPT/ALLOw FUNCTION CONTROL AND 

lEST OPERATIONS. 0-7 
TLU UPERATION. 8-81 

" UTILIZING ESCAPE CODES. 
EXAMPLE OF OPERATION UTILIZING ESCAPE CODES. 

ij-114 
OPERATION-NOP 

NO OPERATION-NQP, 8-54 
OPTIONAL FEATURES. 1-20 

SERILS 200 OPTIONAL FEATURES. 1~20 
OPTIJNS 

EASYCODER CARD 0 OPTIONS. 6-10 
ORGANIZATION OF DATA IN MAIN MEMORY. 3-4 
OR I G 1 N-L ITORG 

LITERAL ORIGIN-LIToRG. 7-9 
ORIGIN-MOR<J 

MODULAR ORIGiN-MORG. 7-9 
ORIGIN-ORG. 7 .. 7 
OUT-JF-SEQUENCE. 5-15 

" BASE-XBASE, 
SET OUT-OF.SEQUENCE BASE-XBASE. 7-18 

. OUTSIDE ADDRESS REGISTER RANGE 
POTENTIAL AUURESSES OU1SIDE ADDRESS RE<:JISTER RANGE. 

4-16 
PACK DRIVES 

DISK PACK DRIVES. 1-10 
PANEL 

lYPl 1201 CONTROL PANEL. 1-2 
PAPE~ TAPE 

" EQUIPMENT, 1-12 
" PUNCH. 

(CONT.) 



COMPUT~R-GENERATE~ INDEX 

PAPER TAPE (CONT.) 
C3 CODING FOR TYPE 2.10 PAPtR TAJ-ll;. ~UN01' 8-124 

" READERS, 
C3 CODING FOR TYPE 209 AN~ 209-2 PAPER TAPE 

READERS. 8-124 
PARITY CHECK, 2-6 
PATH 

PCB 

PDT 

BASIC INPUT/OUTPUT DATA PATH. 1-18 
DATA PAT~ ~URING tARD READ OPERATIO~, 1-19 

" CONTROL CHARACTERS (5 THROUGH C1~ ~OR TYPE 286-4. -5 
LINE' 8-148 

" I/O CHARACTER CE. 
DI;.S(RIJ-lTION Of PCB I/O CHARACTE~ CE. 8-149 

" I/O CONTROL CHARACTERS, 
SU~MARY OF PC~ I/O CONTROL CHARACTERS, 8-130 
SUMMARY OF PCB I/O CONTROL CHARACTERS fOR TYPE 

Z86. 8-146 

" I/O CONTROL CHARACTERS, 
SUMMARY OF PDl I/O CONTROL CHARACTERS, 8-1Z0 
SUMMARY OF PDT I/O CONTROL CHARACTERS FOR TYPE 

286 MULTI CHANNEL, 8-126 
" INSTRUCTIONS. 

St.LECTING RWC ASSIGNMENTS fOR USE IN PDr 
INSTRUCfIONS, 8-L10 

PDT I/O CHARACTER 
" CE, 

DI;.SCRIPTION Of PDT I/O CHARACTI;.R CE (ESCAPE 
CODE>, 8-118 

" C2, 
DESCRIPTION Or PDT I/O CHARACTER C2 (PERIPHERAL 

CONTROL DESIGNATION, 8-116 
PDTI/O CONTROL CHARACTER C1 

DESCRIPTION Of PD1IIO CONTROL CHARACTER C1, 8-116 
PERIPHERAL 

" ADDRESSES AND UNII LOADS, 1-17 
II CONTROL, 1-7 

INTERRJPT SIGNAL GENERATE~ BY PERIPHERAL 
CONTROL, D-6 

PtRIPHERAL CONTROL AND BRANCH-PCB. 8-127 
" CONTRUL DESIGNATION, 

DESCRIPTION OF PDT I/O CHARACTER C2 (PERIPHERAL 
CONTROL DESIGNATION. 8-118 

" CONTROL INTERRUPT, D-5 
" DATA TRANSFER OPERATION, 1-17 

I, DEVICES. 
ADDITIONAL PERIPHERAL DEVICES, 1-16, 1-17 
MINIMU~ RWC CAPACITY REQUIREMENTS FOR SERIES ZOO 

PERIPHERAL DEVICES. 8-111 
" EQUIPMENT, 1-6 
" OPERATION, 

DATA TKANSFER INTERVALS DURIN~ ONE PERIPHERAL 
OPERATION, 2-13 

" SIMUL1ANEITY, 1-6 
POSITION 

" INDICATOR, 
ANGULAR POSITION INDICATOR, 1-11 

MEMORY POSITION. 
ONE ~EMORY POSITION, 2-3 

POTENTIAL ADDRESSES 
II OUTSIDE ADDRESS R~GISTER RAN, 

POTENTIAL ADDRESSES OUTSIDE ADDKE5S REGlSTER 
RANGE, 4 .. L6 

" wITHIN ADDRESS RANGE, 4-16 
POWER 

POWERS OF 2. B .. 8 
PROCESSING POWER, 1-5 

PRIMARY AND AUXILIARY READ/WRITE CHANNELS, Z~16 
PRINT BUFFER, 1-8 
PRINTER 

HIGH-SPEED PRINTERS, 1 .. 9 
SPEED PRINTERS, 

HIGH SPEED PRINTERS, 1-8 
TYPE ,37 BILL FEED PRINTER, 

C3 CODIN~ FOR TYPES 206 AND 222 PRINTERS AND 
TYPE 237 BILL FEED PRINTER, 8 .. 125 

PRIVILE~ED SCR INSTRUCTION, G-4 
PROCEDURE 

OCTAL-DECIMAL CONVERSION pROCEDURE' A .. 3 
PROCEED INDICATOR, E-5 
PROCESSING 

INTERRUPT PROCESSING, D-L 
" MODE. 

INTERRJPT PROCESSING MODE, 1-3 
STANDARD PROCESSING MODE, 1-3 
ICONT. ) 

PRUCESSING (CONT.) 
" POWER, 1-5 
" UNIT, 2-5 

PROCI:.SSOR 
BEINb USED, 8-113 
(ENTRAL PROCESSOR, 1-1. 2-1 
CHARACTERISTICS, 

SUMMARY of CENTRAL PROCESSOR CHARACTERISTICS. 
2-17 

MODEL 4200 MEMORY INTERLEAVING (TYPE 4201-9 CENTRAL 
PROCESSOR), 2 .. 6 

MODES. 
'ENTRAL PROCESSOR MODES, E-l 

SERIES 200 CENTRAL PROCESSOR, 
LOGICAL DIvISION OF SERIES 200 CENTRAL 

PROCESSOR, 2-1 
SERIES ZOO PROCESSORS, 

ACTIVE ADDRESS BITS IN SERIES 200 PROCESSORS, 
4 ... 15 

~DDRESS ASSIGNMENTS AND UNIT LOADS AVAILABLE IN 
SERIES 200 PROCESSORS, 1-19 

TYPE 4201 PROCESSOR, 
MAIN MEMORY IN THE TYPE 4201 PROCESSOR, 2-4 

TYPE 4Z01 PROCESSORS, 
MEMORY CONFIGURATIUNS FOR TYPE 4201 PROCESSORS. 

2-4 
PROGRAM 

" HEADER.PROG. 7-2 
" INTERRUPT, 1-22 

NUMBER OF INDEX REGISTERS SIMULTANEOUSLY AVAILABLE 
10 A PROGRAM, 4-10 

OBJECT PROGRAM, 
RELATIONSHIP OF SOURCE, ASSEMBLER. AND OBJECT 

PROGRAM. 5-2 
PROGRAMMING 

ADVA~CED PROGRAMMING, 1-21 
EASYCODER PROGRAMMING, 5-1 

" FEATlJRE, 
MODEL ~OO ADVANCED PROGRAMMING FEATURE. 1-21 

" INS TRUCTI ONS, 
BCC TEST CONDITIONS WITH ADVANCED PROGRAMMING 

INSTRUCTIONS, 8-41 
INTERRUPT PROGRAMMING, 0-3 

PROJECTION DEVICES 
VISUA~ INFORMATION PROJECTION DEVICES, 1-14, 1~16 

PROTECT 
" FEATURE, 

STORAGE PROTECT FEATURE, E .. 1 
STORAGE PROTECT. 1-23 

PROTECTION 
STORAGE PROTECTION, 

VIOLATIONS OF STORAGE PROTECTION, E-3 
STORAGE PROTECTION WITH BASE RELOCATIoN, G-1 

PUNCH 
TYPE 210 PAPER TAPE PUNCH, 

(3 CODING FOR TYPE 210 PAPER TAPE PUNCH, 8-124 
PUNCHED CARD 

" CODEs, 3-8 
" EQUIPMENT. 1-7, 1-8 
" FORt-lAT, 3-8 

PUNCTUATION INDICATORS 
SET 1 PUNCTUATION INDICATORS. 5~7 
SET 11 PUNCTUATION INDICATORS (EASYCODER C AND D 

ONL y>, 5 .. 7 
RANDOM ACCESS DRUM 

C3 CODING FOR TYPE 270A RANDOM ACCESS DRUM. 8~125 
RANDOM ACCESS DRUMS. 1 .. 11 

" UNITS. 1-11 
RANGE 

RATE 

ADDRESS RANGE, 
POTENTIAL ADDRESSES WITHIN ADDRESs RANGE, 4~16 

POTENTIAL ADDRESSES OU1SIDE ADDRESS REGISTER RANGE. 
4-16 

DEVICE DATA TRANSFER RATE, 8-110 
READ OPERATION 

DATA PATH DURING CARD READ OPERATION, 1-19 
READ/WRITE 

" CHANI'lEL, 1 ... 18 
ADDITIONAL READ/wRITE CHANNELS, UNIT LuADS, AND 

ADDRESS ASSIGNMENTS, 1-22 
INTERLOCKING READ/WRITE CHANNELS, 2-16 
MODEL 42UO VARIABLE-SPEED READ/WRITE CHANNELS, 

2 .. 16 
PRIMARY AND AUXILIARY READ/WRITE CHANNELS. 2-16 

" COUNTERS, 2-8 
READERS 

(CONT.) 



CO~PUT~R-GENERATE~ INDEX 

READt:RS (CONT.) 
209-2 PAPER TAPE READERS. 

C3 CODING FOR TYPE 209 ANU 209-£ PAPER lAPe 
READERS. 8-124 

RECOKD rOK~AT IN ~AIN Me~ORY, 3-6 
RECORDIN~ DENSITY 

1200 ~PI RECORDIN~ DENSITY, I-B 
RECORD~. 3-6 
REFERENCE 

SELf HeFEReNCE, 5-13 
REGISTER 

A-AUDRESS REGISTER (AAR). 4-4 
AUUHESS RE~ISTERS, 2-8 

" AUURESSES, 
INUEX ~EGISTEH ADDRESSES IN f~J~-CHARACTER 

ADDRESSING MODE. 4-14 
INDEX ~EGISTER ADDRESSES IN THREE-CHARACTER 

ADDRESSING MODE. 4-12 
8-ADDRESS REGISTER (BAR). 4-4 
CHANGE SEQJENCE REGISTER (C5R), 4-3 

" CONTENTS LOADED. 
CONTROL REGISTER CONTENTS LOADEU 8Y LCR 

INSTRUCTION, 8-61 
" CONTENTS STORED. 

CONTROL REGISJER CONTENTS SfOREU 8Y SCR 
INSTRUCTION. 8-58 

CONTROL ~E~ORY RE~ISTERS. 2-8 
SIZE OF CONTROL MEMORY RE~ISTERS (MODELS 

200/1200/1250/2200/4£00), 2-1 
" DESIGNATIONS. 

CONTROL REGISTER DESIGNATIONS. 8-1 
EXTERNAL INTERRUPl REGISTER (tIR). 4-3 
FLOATING-POINT RE~ISTERS. F-1 

" FUNCTION, 
TYPICAL CONTROL REGISTER fUNCfI0N. 2-7 

INUEX REGISTERS. e-l, 4-9 
INlERNAL INTERRUPt REGISTER (IIR). 4-4 

" MAIJ, 
INDEX REGISTER MAP, 4-9 
SeRIES 200 INUEX REGISTER MAP. 4-Y 

" RANGE, 
POTENTIAL ADDRESSES OUTSIDE AUUR~SS REGISTER 

RANGE. 4-16 
REGISTERS JSED IN ADDRESSING. 4-3 
SEUUENCE REGISTER (SR). 4-3 

REGISTER-LI~ 
LOAD INDEX/BARRICADE REGISTER-LIB. 8-19 

REGISTER-SI8 
STORE INDEX/BARRICADE REGISTER-SI8. B-82 

REGISTERS 
" SIMULTANEOJSLY, 

NU~BER Of INDEX REGISTERS S!MJLTANEOUSLY 
AVAILABLE TO A PROGRAM, 4-10 

" STORED, 
CONTROL REGISTERS STORED 8Y StR INSTRUCTION, 

8 .. 59 
REGISTERS-LCR 

LOAD lONfROL REGISTERS .. LCR, 8-60 
REGISTERS-SlR 

STORE CONTROL REGISTERS-SCR, 8-5B 
RELATIONSHIP Of SOURCE. ASSEMBLER, AND UBJECT PROGRAM, 5-2 
RELATIVE, 5-14 
RELOCATION 

BASE RELOCA Tl ON. 
STORAGE PROTECTION WITH BASE RELOCATION. G-l 

REPEAT-REP, 1-16 
REPHESENTA Tl ON 

CHARACTER REPRESENTATION ON MAGNE11C rAPE, 3-7 
SYMBOLIC REPRESENTATION OF INPUJ/OUrpUT TRAFFIC 

CONTROL, 2-15 
SYMBOLIC REPRESENTATION OF SERIE~ 200 INSTRUCTIONS, 

3 .. 4 
REPRESENT ION Of CHARACTeRS IN MAGNErlC (ORE STORAGE, 2-3 
REQUIREMENTS 

MINIMU~ RWC CAPACITY REQUIREM~NTS fOR SERIES 200 
PERIPHERAL DEVICES, 8-111 

RESERVE AREA-RESV, 6-6 
RESTORE VARIANT AND INDICATORS-RVI, 8-95 
RESTORED 

INFORMATlON RESTORED BY RVI II~STRJc.:r!ON. 8-96 
RESUME NOR~AL ~ODE-RNM. 8-99 
ROUTINE 

EXTERNAL INTERRUPI ROUTINE. 
SAMPLE CODING FOR EXTERNAL INJE~RUPT ROUTINE, 

J.)~4 

INT~RNAL INTERRUPI ROUTINE. 
SA~PLE CODING FOR INTERNAL INTEKRUPT ROUTINE, 
(CONT.> 

ROUTINE'. (CUiH.) 

RULE~ 
ADDIIIONAL CODINu RULE~, ~-12 

RVI INSTRUCTION 

RWC 
INFOkMATION HESTORED BY RVI INSTRUCTION, 8-96 

II ASSI(.jN~1ENTS. 

CONSIDERATIONS IN SELECTING RWC ASSIGNMENTS. 
8-110 

SELECTING RWC ASSIGNMENTS FOR JSE IN PDT 
INSTRUCTIONS. 8-110 

" CAPACITY REQUIREMENTS. 
MINIMUM RWC CAPACITY REQUIREMENTS FOR SERIES 200 

PERIpHERAL DEVICES, 8-111 
SAMPLE CODING 

SCAN 

" FOR EXTERNAL INTERRUPT ROUTINE. D-4 
" FOR INTERNAL INTERRUPT ROUTINE. D-5 

" COND1TiONS. 
MOVE OR ~CAN CONDITIONS, 8-88 

" VARIANTS, 
MOVE OR SCAN VARIANTS. 9-9 

SCAN-"IOS 
MOVE OR SCAN-MOS. 8-86 

SCIENTIFIC 
" INSTRUCTIONS, 

SUMMARY OF SCIENTIfIC INSTRUCTIONS, F-4 
" UNIT, 

sCIENTIFIC UNIT. 1-23 
SCIENTIFIC UNIT FOR MODELS 1200. 1250. 2200. AND 

4200. Fool 
SCR INSTRUCTION 

CON1ROL REGISTER CONTENTS STORED ~Y SCR INSTRUCTION, 
b-58 

CONTHOL REGl~TERS STORED BY SCR INSTRUCTION. 8-59 
PRIV1LEGED SCR INSTRUCTION, G-4 

SECTOR 
BUFFERED SECTORS. H-2 

CONTROLS/DEVICES CONNECTABLE TO BUFFERED 
SECTORS. H .. 2 

INPUT/OUTPUT SECTOR TO WHICH DEVICE 15 CONNECTED. 
ij"1l4 

SEGMENT HEADER .. SEG. 7p4 
SELECTING RWC ASSIGNMENTS 

CONSIDERATIONS IN SELECTING RWC ASSIGNMENTS, 8~110 
~ FOR USE IN PDT INSTRUCTIONS, 8.110 

SELF REFERENCE. 5-13 
SENSE SWITCH CONDITIONS 

BRANCH ON CONDITION TEST (BCT) SENSE SWITCH 
CONDITIONS. B-3 

" FOR BCT INSTRUCTION. 8-36 
SEQUENCE REGISTER 

" (SR). 4-3 
CHAhbE SEQUENCE REGISTER (CSR), 4-3 

SEUUENCING MODE-CSM 
CHAN~E SEQUENCING MODE·CSM. 8-66 

SERIES 200 

SET 

" ADD AND SUBTRACT OPERAlIONS, 8.4 
" CENTRAL PROCESSOR. 

LOGICAL DIvISION Or SERIES 200 CENTRAL 
PROCESSOR. 2 ... 1 

" CHARACTER COPES. B-7 
" COMPONENTS, 1-1 
" INDEX REGISTER MAP, 4·9 
" INSTRUCTION DESCRIPTIONS, 

~YMBOLOGY USED IN SERIES 200 INSTRUCTION 
DESCRIPTIONS, 8-2 

" INSTRUCTION FORMAT, 
SERIES 200 INSTRUCTION FOR~AT 1. 4.17 
5ERIES 200 INSTRUCTION FORMAT 2, 4-18 
SERIES 200 INSTRUCTION FORMAT 3, 4~18 
SERIES 200 INSTRUCfION FORMATS, 3~3 

" INSTRUCTIONS, 
SYMBOLIC REPRESENTATION OF SERIES 200 

INSTRUCTIONS, 3~4 
" OPTIONAL FEATURES. 1-20 
" PERIPHERAL UEVICES, 

MINIMUM RWC CAPACITy REQUIREMENTS FOR SERIES 200 
PERIPHERAL DEVICES, 8.111 

II PROCESSORS. 
ACTIVE ADDRES~ BITS IN SERIES 200 PROCESSORS, 

4-15 
ADDRESS ASSIGNMENTS AND UNIT LOADS AVAILABLE IN 

SERIES 200 PROCESSORS, 1-19 

" ADDRE5s MODE-ADMODE. 7-11 
(CONT.> 



COMPUTER~GENERAIED INDEX 

SET (CON r.) 
" ITEM MAR(-Sl. 8-4~ 
" LINE NUMBE~-SETLIN, 7-18 
" OUT-Of-SEQJENCE BASE-XBASE, 7-18 
" WORD MAR("'Sw, 8-48 
" 1 PUNCTUATION INDICATORS. 5-7 
" 11 PUNCTJAflON INDICATORS (EASyeUDER C AND D ONLY>, 

5"'7 
SETT INCJ 

LW S!:.lTIN~. 
CORRESPONDENCt BETwEEN LIB SEITING AND BARRICADE 

LOCATION, 8 ... 80 
SIGN CONVENT IONS 

DECIMAL ARITHMETIC SIGN CONVENTIONS, 8-9 
DIVIDE SIGN CONVENTIONS, 8-13 
MULTIPLY SIGN CONVENTIONS, a ... 10 

SIGNAL C,t:.NERATED 
INTERRUPT SIGNAL bENERATED BY PERIPrlERAL CONTROL. 

D~6 

SIGNS 
ALGEBRAIC SIGNS IN DECIMAL ADDllI0N. 8-1 

SIMUL.TANEITY 
PERIPHERAL SIMULTANEITY, 1-6 

SI"1ULTANEOUSLY 

SIZE 

INDEX REGISTERS SI~ULTANEOUSLY. 
NUMBER OF INDt:.X REGISTERS SIMJL.JANEOUSLY 

AVAILABL.E TO A PROGRAM. 4-10 

MAIN MEMORY SIZE. -1-6 
" Of CONTROL MEMORY REGISTERS (MODEL.S 

200/1200/1250/2200/4200).2-7 
SK IP-SK IP. 7 .. 15 
SOURCE 

RELATIONSHIP OF SOJRCE. ASSEMBL.ER. AND OBJECT 
PROGRA"1. 5-2 

SPECIAL CHARACTERS IN MeE INSTRUCTION. 8-105 
SPEEI) 

SR 

MAIN MEMURY SPEED. 1-6 
" PRIIHtRS. 

HIGH SPEED PRINTERS. 1-8 

SEQUENCE REGISTER (SR). 4-3 
STANDARD PROCESSING MODE, 1-3 
STATtMENTS 

ASSt:;;M~LY CONTROL STATEMENTS. 7-1 
DATA FOR~ATTING STATEMENTS. 6-1 

STORAGE 
II LOCATlON5, 

CONSECUTIVE STORAGE LOCATION~ IN MAIN MEMORY. 
3 .. 4 

MAGNETIC CORE STORAGE. 
R£PRESENTION OF CHARACTER~ IN MAGNETlC CORE 

STORAGE. 2 ... 3 
"PROTECT. 1-23 
" PROTECT FEATURE. E.1 
" PROTECTION,' 

STORE 

STORAGE PROTECTION WITH BASE RELOCATION, G-l 
VIOLATIONS OF STORAGE PROIEeTIUN, £-3 

" CONTRUL REGISTERS-SCR, 8-58 
" INDEXIBARRICADE REGISTER-SIB, 8-82 
" VARIANT AND INDICATORS-SVI. 8-92 

STORED 
CONTROL RE~ISTER CONTENTS STORED BY SCR INSTRUCTION. 

8 .. 58 
CONTROL. REGISTERS STORED BY S'R INS1HUCTION. 8-59 
INfORMATION STORED BY SVI INSTRUCTIONS. 8-92 

SUBSTITUTt:.~SST' 8-30 
SUBSYSTEM 

TYPE 4201 MEMORY SUBSYSTEM. 2-4 
SUBTRACT UPERATIONS 

SERIES 200 ADD ANI) SUBTRACT OPERATIONS. 8-4 
SUBTRACT"'~S 

BINARY SUBTRACT-BS. 8-19 
SUBTRACT-S. 8 .. 16 
SUBTRACT .. ZS 

ZERO AND SUBTRACT-ZS. 8-22 
SUBTRACTION 

BINARY SUBTRACTION. 8-4 
DECIMAL SU8TRACTION, 8-8 

SUFflX .. SFX, 7 .. 15 
SUMMARY. 3-3. 3 ... 6. 4 .. 4 

INSTRUCTION SUMMARY, C-1 
" OF CENTRAL PROCES~OR CHARACTERISTICS, 2-17 
" Of INTERNA~ DATA FORMATS. 3-6 
" OF lNTERRUPT/ALLOW fUNCTION CONTROL AND TEST 

OPERATIONS. D-7 
(CONT.) 

SUMMARY (CUNT.) 
" OF PCS 1/0 CONTROL CHARACTERS FOR TYPE 286. 8-146 
" OF PCB 1/0 CONTROL CHARACTERS. 8-130 
" OF P~T 110 CONTROL CHARACTERS FOR TYPl 286 MULTI 

CHANNEL. 8-126 
" OF PDT 1/0 CONTHOL CHARACTERS, 8~120 
" OF SCIENTIFIC INSTRUCTIONS. F-4 

SUMMARY-TIMING FORMULAS MODELS 200 
INSTRUCTION SUMMARY-TIMING FOR~ULAS MODELS 200. 

1200, 12~0. AND 2200. C.4 
SVI INSTRUCTIONS 

INFORMATION STORED BY 5VI INSTRUCTIONS. 8-92 
SWITCH CONDITIONS 

BRANCH ON CONDITION TEST (BCT) SENSE SwITCH 
CONDITIONS. B-3 

SENSE SWITCH CONDITIONS FOR BCT INSTRUCTION. 8-36 
SYMBOLIC. ~"13 

" ADDRESS .. I.)SA. 
DEFINE SYMBOLIC ADDRESS-DSA. 6-7 

" LANGUAGE. 5 ... 3 
" REPRESENTATION. 

SYM~OLIC REPRESENTATION OF INPUT/OUTPUT TRAFFIC 
COIHROL. 2-15 

SYMBOLIC REPRESENTATION OF SERIES 200 
INSTRUCTIONS. 3-4 

" TAGS. 
CONVERSION OF SYMBOLIC TAGS TO ABSOLUTE MEMORY 

ADDRESSES. 3 .. 2 
SYMBOLOGY. F .. 2 

" USED IN SERIES 200 INS1RUCTION DESCRIPTIONS. 8-2 
TABU:: 

TAGS 

TAPE 

BINARY ADDITION TABLE. 8-4 
DECIMAL-OCTAL CONVERSION TABLE. A-2 

" LOOKUP~TLU. a ... 83 
MISCELLANEOUS TABLES. 8-1 

SYMBOLIC TAGS, 
CONVERSION OF SYMBOLIC TAGS TO ABSOLUTE MEMORY 

ADDRESSES. 3 ... 2 

" DATA FORMAT. 
MAGNETIC TAPE DATA FORMAT. 3-7 

" EGlUIPMENT, 
PAPER TAPE EQUIPMENT. 1-12 

MAGNUIC TAPE, 
CHARACTER REPRESENTATION ON MAGNETIC TAPE. 3-7 
DATA FORMAT ON MAGNETIC TAPE. 3-a 

" PUNCH. 
C3 CODING FOR TYPE 210 PAPER TAPE PUNCH, 8-124 

" READERS. 
C3 CODING FOR TYPE 209 AND 209-2 PAPER TAPE 

READERS. 8 .. 124 
" UNIl~. 

MAGNETIC TAPE UNITS. 1-8. 1-9 
TELLER TERMINAL EQUIPMENT. 1~16 
TERMINAL EWUIPMENT 

TEST 
TELLER TERMINAL EQUIPMENT, 1"16 

CONDI TION n:ST, 
BRANCH ON CONDITION Tt:.ST (BCT) INDICATOR 

CONDITIONS. 8 .. 4 
bRANCH ON CONDITION TEST (BCT) SENSE SWITCH 

CONDITIONS. 8-3 
" CONDlTIONS. 

bASIc TEST CONDITIONS FOR BCC INSTRUCTION. 8~40 
Bec TEST CONDITIONS wITH ADVANCED PROGRAMMING 

INSTRUCTIONS. 8-41 
INDICATOR lEST CONDITIONS FOR BeT INSTRUCTION. 

8-37 
" OPERATIONS. 

SUMMARY OF INTERRUPT/ALLOW FUNCTION CONTROL AND 
TEST OPERATIONS. D.7 

TYPES OF TEST AND CONTROL OPERATIONS. 8.128 
TEST-BCT 

CONDITION TEST.BCT, 
BRANCH ON CONDITION TEST-BCT. 8-35 

THREE-CHARACTER 
" ADDR~5SING MODE. 4.6 

ASSEMBLY OF INDEXED ADDRESS IN THREE-CHARACTER 
ADDRESSING MODE. 5-22 

ASS~MBLY OF INDIRECT ADDRESS IN THREE.CHARACTER 
ADDRESSING MODE. 5-23 

INDEX REGISTER ADDRESSES IN THREE.CHARACTER 
ADDRESSING MODE, 4-12 

" INDIRECT ADDRESS. 
EXTRACTION OF THREE-CHARACTER INDIRECT ADDRESS. 

4 ... 11 
(CONT.) 



COMPUTER-GENERATED INDEX 

THREE-CHARAlTE~ (CONT.) 
" ~ODE, 

EXTRACTION OF INDEXED ADURESS 1~ 'HR~E-CHARAlTER 
"1:JDE, 4-13 

THREE-CHARACTER ADDRESS, 4-10 
" ASSE~t:3LY. 5 .. 4 

TI ~EOUl 
INSTRUCTION TIMEOUT, G-2 

TIMING 
INSTRUCTION TIMIN~5 FOR THE MUDEL 4200. C-7 

" NOTES. F"'3 
TLU OPERATION. 8-81 
TRAft" I C CONTROL 

" ACTIVITIE.S. 
INPUT/OUTPUT T~AFFIC CONTROL ACriVITIES, 2-12 

INPUT/OUTPUT TRAF~IC CONTROL. 2-12 
LO~1CAL DECISION PERFORMED bY INPuT/OUTPUT TRA~FIC 

CONTROL. 2-14 
SYMBOLIC REPRESENTATION OF INPUT/OUTPUT TRAFFIC 

CONTROL. 2-15 
TRANSFER 

" CAPABILITY. 
8-BIT TRANSFER CAPABILITY. G-3 

" INTERVALS, 
DATA TRANSFER INTERVALS DURIN~ JNE PERIPHERAL 

OPERATIO"!, 2-13 
" OPERATION, 

PERIPHERAL DAfA TRANSFER OPERATION. 1-17 
" RATE. 

DEVICE DATA TRANSFER RATE. 8-L10 
8-BIT TRANSFER. 

EXTENDED MULTI-PROGRAMMIN~ ANV ti-BIT TRANS~ER. 
1-23 

TRANSFER-XFR. 7-~ 
TRANSFER/PDI 

PERIPHERAL DATA TRANSFER/PD1. 8-1l5 
TRANSLATE-MAT 

MOVE AND TRANSLATE-MAT, 8-70 
TRANSLATt:-MIT 

MOVE ITEM AND TRANSLATE-MIT. 8-74 
TRAPPING MODE 

ITEM.MARK TRAPPING MODE. 1~5 
TREATMENT O~ ADD~ESSES LARGER THAN A MEMO~Y.S MAXIMUM 

ADDRESS. 4-16 
TRUE ADD. 8 .. 1 

" EXAMPLES. 8 .. 7 
TWO"CHARACTER 

TYPE 

" ADDRESS ASSEMBLY, 5-3 
" ADDRESSING MODE. 4-5 

" (CARD COLUMN 6). ~-6 
TYPES OF TEST AND CONTROL OPERATIONS. 8-128 

" 1201 CONTROL PANEL. 1-2 
" 209, 

C3 CODING FOR TYPE 209 AND 209-2 PAPER TAPE 
~EADERS. 8 .. 124 

" 210 PAPER TAPE PUNCH, 
C3 CODING FOR TYPE 210 PAPER TAPE PUNCH. 8-124 

" 220-1 CONSOLE. 1 .. 3 
" 220-3 CONSOLE. 1-3 
" 237 BILL FEED PRI~TER, 

C3 CODING FOR TYPES 206 AND 222 PRINTERS AND 
TYPE 237 BILL FEED PRINTER. 8-125 

" 270A RANDOM ACCESS DRUM. 

" 28~, 

C3 CODING FOR TYPE 270A RANDOM ACCESS DRUM. 
8 .. 125 

SUMMARY Of PC~ 1/0 CONTROL CrlARACTERS FOR TYPE 
286. 8-146 

" 286 ~ULTI CHANNEL. 
SUMMARY OF PDT I/O CONTROL CHARACTERS fOR TYPE 

28~ MULlI CHANNEL. 8-12~ 
" 28~-1 ... 2, -3 LINE CONTROL INSTRUCTION5, 8-126 
" 28~ ... 4. 

PCB CONTROL CHARACTERS C~ THROJ~H C15 FOR TYPE 
286-4. -5 LINE. 8-148 

" 4201 MEMORY SUBSY~TEM, 2-4 
" 4201 PROCESSOR. 

MAIN MEMORY IN THE TYPE 4201 PROCE5S0R~ 2-4 
MEMORy CONFIGURATIONS FOR TYPE 4201 PROCESSORS. 

2-4 
" 4201-9 CENTRAL PROCESSOR. 

MODEL 4200 MEMORY INTERLEAVIN~ (TYPE 4201-9 
CENTRAL PROCESSOR). 2-6 

TYPES 206 
C3 CODING FOR TYPES 206 AND 222 PRI~IERS AND TYPE 

237 BILL FEED PRINTER. 8-425 
TYPICAL (CONT.) 

TYPICAL 

UNIT 

" ADD hlSTRUCl iON. 4-1 
LXTRACTION OF DATA FIELDS IN TYPICAL AUD 

lI~!:)TRUCTION. 4-2 
" COMMUNICATIO~S NETWORK. 

CUSTOMER INQUIRY HANDLING VIA TYPICAL 
COMMUNICATIONS NETWORK. 1-15 

" CONTkOL REGISTER FUNCTION. 2-7 

" ACTIVITIES, 
CONTROL UNIT ACTIVITIES. 2~11 

ARITHMETIC UNIT. 2-10 
UATA FLOW ~ETWEEN MAIN MEMORY AND ARITHMETIC 

UNIT. 2-11 
CJNTHOL UNIT, 2-11 
INFORMATION UNITS. 

~XT~NDED OF INFORMAl ION UNITS IN MIT OPERATION, 
8-i5 

II LDAU!;) , 
ADDITIONAL READ/WRITE CHANNELS. UNIT LOADS. AND 

ADDRESS ASSIGNMENTS. 1-22 
ADDRESS ASSIGN~ENT~ AND UNIT LOADS AVAILABLE IN 

SERIES 200 PROCESSORS. 1-19 
PERIPHERAL ADDRESSES AND UNIT LOADS. 1-17 

MAGNETIC TAPE UNITS, 1-8. 1-9 
PRoCESSING UNIT. 2-5 
RANDOM ACCESS DRUM UNITS. 1-11 
SCIE~TIFIC UNIT. 1-23 
SCIENTIFIC UNIT FOR MODEL!:) 1200. 1250. 2200, AND 

4200. F-1 
uPWARD COMPATIBILITY. 8-114 
UTILIZING ESCAPE CODES 

EXAM~lE OF OPERATION UTILIZING ESCAPE CODES. 8-114 
VARIABLE fIELD LENGTH. 3-1 
VARIABLE-SPEED READ/WRITE CHANNELS 

MODEL 4200 VARIABLE-SPEED READ/WRITE CHANNELS. 2-16 
VARIANT 

" CHARACTER. 3-3. 5-20 
MODES SPECIFIED BY VARIANT CHARACTER IN CAM 

INSTRUCTION. 8-63 
RESTORE VARIANT AND INDICATORS.RVI. 8~95 
SCAN VARIANTS. 

MOVE OR SCAN VARIANTS. B.9 
STORL VARIANT AND INDICATORS-SVI. 8 .. 92 

VIOLATIONS OF STORAGE PROTECTION. E .. 3 
VISuAL INFORMATION PROJECTION DEVICES. 1-14, 1-16 
wORD 

ZERO 

0191 

1 .. 5 

1116 

1200 

II MARK, 
(LEAR WORD MARK .. CW. 8-50 

MARK-DCW'; 
DEFINE CONSTANT WITH WORD ~ARK-DCW. 6-2 

II MARK-LCA. 
LOAD CHARACTERS TO A-fIELD WORD MARK-LCA. 8-56 

" MARK-MCw. 
MOVE CHARACTERS TO WORD MARK-MCW. 8-55 

" IviARK-Sw. 
~ET WORD MARK-SW. 8-48 

" AND ADD-ZA. 8-20 
" AND SUBTRACT-ZS. 8-22 

FEATURE 0191, 1-23 

CARD NUMBER (CARD COLUMNS 1-5), 5-5 

FEATURE 1116. H-1 

II BPI RECORDING DENSITY. 1-8 
INSTRUCTION SUMMARY-TIMING FOR~ULAS MODELS 200, 

1200. 1250. AND 2200. C-4 
MODELS 1200. 

SCIENTIFIC UNIT FOR MODELS 1200. 1250, 2200. AND 
4200. Fool 

1201 CONTROL PANEL 

1250 

200 

TYPE 1201 CONTROL PANEL. 1-2 

INSTRUCTION SUMMARY-TIMING FORMULAS MODELS 200. 
1200. 1250. AND 2200. (-4 

SCIENTIFIC UNIT FOR MODELS 1200. 1250. 2200, AND 
4200. Fool 

OPERATION COOt: (CARD COLUMNS 15-20). 5-10 

" ADD. 
SERIES 200 ADD AND SUBTRACT OPERATIONS. 8~4 

II ADvANCED PROijRAMMING FEATURE. 
MODEL ZOO ADVANCED PROGRAMMING FEATURE, 1_21 
(CONT.) 



COMPUf~R-G~NERATED INDlX 

200 (CONT.> 
".CENTRAL ~ROCE5S0R, 

LOGICAL OIVlSI~N Of SERIES 200 ~ENTRAL 
PROCESSOR. 2-1 

" CHARACTER CODES, 
S~RIES ZOO CHARACTER COUE5, B-7 

" COMPONENTS. 
SERl~S ZOO COMPONENTS, 1-1 

" INU~X REGISTER MAP, 
SERIES 200 INDEX REGISTER MAP, 4-9 

" INSTRUCTION DESCRIPTIONS. 
SYMBOLOGY USED IN SERIES 200 IN~rRUCIION 

DESCRIPTIONS. 8.2 
" INSTRUCTION FORMAT. 

SERIES ZOO INSTRUCTION FORMAT 1. 4-17 
SERIES ZOO INSTRUCTION FORMAT 2. 4-18 
SERIES ZOO INSTRUCTION FORMAT 3. 4-18 
SERIES 200 INSTRUCTION FORMATS. 3-3 

INSTRUCTION SUMMARY-TIMING FORMULAS MODELS 200. 
1200. lZ50. AND 2200, C-4 

" INSTRUCTIONS. 
SYMBOLIC REPRESENTATION Of SERIES 200 

INSTRUCTIONS. 3-4 
" OPTIONAL FEATURES. 

S~RIES 200 OP110NAL FEATURES. 1-20 
" PERIPHERAL DEVICES, 

MINIMUM RwC CAPACITY REQUIREMENfS FOR SERIES 200 
PERIPHERAL DEVICES. 8-111 

" PROCESSORS. 
ACTIVE ADDRESS BITS I~ SERIES 200 PROCESSORS. 

4 ... 15 
ADDRESS ASSIGN~ENTS AND UNIT LOADS AVAILABLE IN 

SERlES 200 PROCESSORS, 1-19 
200/1200/1250/2200/4200 

206 

209 

SIZE OF CONTROL MtMORY REGISTERS (MODELS 
20 0 /1200/1250/2200/4200),2-7 

TYPES 206. 
C3 CODING FOR TYPES 206 AND 222 PRINTERS AND 

TYPE 237 BILL FEED PRINTER. 8-125 

TYPE 209. 
C3 COOING FOR TYPE 209 AND209~2 PAPER TAPE 

READERS. 8-124 
209.2 PAPtR TAPE READERS 

C3 COUING FOR TYPE 209 AND Z09-2 PAPEK TAPE REAvERS, 
8-124 

210 PAPER TAPE PJNCH 
C3 CODING FOR TYPt 210 PAPER TAPE PJNCH. 8-124 

220 .. 1 C;:ONSOLE 
TYPE 220wl CONSOL~. 1-3 

220-3 CONSOLE 

2200 
TYPE 220-3 CONSOLE, 1~3 

INSTRUCTION SUMMARY-TIMING FORMULAS MODELS 200. 
1200. 1250. AND 2200. C~4 

SCIENTIFIC UNIT FOR MODELS 1200. 1250. 2200, AND 

4200. F-l 
222 PRINTERS 

C3 CODl~G FOR TYPES 206 AND 222 pRINTERS AND TYPE 
237 BILL FEED PRINTER. 8-125 

237 BILL FEED PRINTER 
(3 CODING FOR TYPES 206 AND 222 pRINTERS AND TYPE 

~37 BILL FEED PRINTER. 8-125 
270A RANDOM ACCESS DRUM 

286 

4200 

4201 

C3 CUDING FOR TYPE 270A RANDOM ACCESS DRUM. 8-125 

" MJLTI CHANNEL. 
SUMMARY OF PDT 1/0 CONTROL CHARACTERS FOR TYPE 

286 MULTI CHANNEL. 8-126 
TYPE 286. 

SUMMARY OF PCB 110 CONTROL CHARACTERS FOR TYPE 
286. 8-146 

TYPE 286-1. -2. -3 LINE CONTROL INSTRUCTIONS. 8-126 

TYpE 286-4. 
PCB CONTROL CHARACTERS C5 THROUGH (15 FOR TYPE 

286~4. -5 LINE, 8~148 

" MEMORY INTERLEAVING. 
MODEL 4200 MEMORY INTERLEAVING (TYPE 4201.9 

CENTRAL PROCtSSOR). 2-6 
MODEL 4200. 

lXTENOED INPUTIOUTPUT CAPACITY FOR THE MODEL 
4200, H-l 

INSTRUCTION TIMINGS FOR THE MODEL 4200, C.7 
SCIENTIFIC UNIT FOR MODELS 1200, 1250, 2200. AND 

4200, F-l 
" VARIABLE-SPEED READ/WRlTE CHANNELS. 

MODEL 4200 VARIABLE-SPEED READIWRITE CHANNELS. 
2 ... 16 

" MEMORY SUBSYSTEM, 
TYPE 4201 MEMORY SUBSYSTEM. 2~4 

" PRoCESSOR, 
MAIN MEMORY IN THE TYPE 4201 PROCESSOR. 2"4 
MEMORY CONFIGURATIONS FOR TYPE 4201 PROCESSORS, 

2-4 
4201-9 CENTRAL PROCESSOR 

4214A 

4214B 

4215 

a-BIT 
" 

8-14 

MODEL 4200 MEMORY INTERLEAVING (TYPE 4201-9 CENTRAL 
PROCESSOR). 2 ... 6 

FEA1URES 4Z14A AND 42148. H--l 

FEATURES 4214A AND 42148. H .. l 

FEATURE 4215. H~l 
TRAN5FER 
CAPAEiILITY. (J-3 
EXTeNDED MULTI.PROGRAMMING AND 8-BIT 

LOCATION (CARD COLUMNS 8-14).5-8 





Honeyw-ell 
, , 



'I 
I 
I 
I 
I 
I 
I 
I 

HONf.YWt.LL 

TECHNICAL PUBLICATIONS REMARKS FORM 

TITLE: SERIES 200 DATED: OCTOBER; 1968 
PROGRAMMERS' REFERENCE MANUAL 
(MODELS 200/1200/1250/2200/4200) FILE NO: 113.0005. 0000. 2~139 

ERRORS NOTED IN PUBLICATION: 

Folef 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION: 

Folef 

(Please Print) 

FROM: NAME ____________ ....--___ _ DATE ____ _ 

COMPANY ____________________ __ 

TITLE __________________ __.__. 

ADDRESS _________________ _ 



----------------,~-------------------------------------

AlliN: MAR)<EllNGiINFOlMATIONSERVlCES; MS 251 

PERMIT NO. 39531 

NEWTON HIGHLANDS 

MASS. 

------------~~~-~~-~--~~--~-~------------------~-----

Honeywell 


