HONEYWELL

SUBJECT:

SPECIAL
INSTRUCTIONS:

DATE: October 1, 1968

0502

5M

7.5969
Printed in U.S. A.

HARDWARE

SERIES 200

PROGRAMMERS®
REFERENCE MANUAL
MODELS 200/1200
1250 /2200/4200

The Central Processor Hardware of Series 200
Models 200, 1200, 1250, 2200, and 4200; The
Easycoder Assembly Language; Summary Infor-
mation concerning Programming Series 200
Peripheral Devices and the Scientific Unit.

This edition completely supersedes revision 1

of the Series 200 Programmers' Reference
Manual (Models 200/1200/2200/4200), Order No.
139, dated November 10, 1966, and incorporates
the information published in Addenda #1 and #2
to that manual. The portions of this publication
containing new and changed information are
indicated on page iii.

This volume and the manuals and bulletins per-
taining to the peripheral components of an in-
stalled Series 200 system together constitute a
programmers' handbook for that system.

*
FILE NO.: 113.0005.0000.2-139

*Underscoring denotes Order Number,

PREFACE

This manual constitutes for the programmer a reference source of detailed information
concerning the central processor hardv&are of Series 200 Models 200, 1200, 1250, 2200, and
4200. The Easycoder Assembly Language, used with the Series 200/Basic Programming Sys-
tem and the Operating System — Mod 1, is also defined. In addition, this volume contains sum-
rhary information concerning the programming of Series 200 peripheral devices and the scientific
unit, The hardware information presented herein is equally applicable for the programmer using
the Series 200/Operating System — Mod 2. However, for this usage it should be supplemented

by the information contained in Appendix C of the software manual Assembler J (Order No. 432).

Separate hardware manuals and bulletins contain detailed information about programming
and operating individual Series 200 peripheral devices. Specific peripheral device publications

are named in the tables of input/output control characters beginning on page 8~120 of this manual,

The only prerequisite for a thorough understanding of the information presented herein is
a familiarity with basic data processing terminology. No previous knowledge of the Series 200

is assumed.

A programmers' handbook may be constructed by combining in a single binder this volume
and the manuals/bulletins pertaining to the peripheral components of the installed Series 200
system. This manual and the peripheral device manuals are all published in loose-leaf format

for ease of rapid updating by means of replacement-page addenda.

The equipment characteristics reported herein remain subject to change to allow the intro-

duction of design improvements.

Copyright 1968
Honeywell Inc.
Wellesley Hills, Massachusetts 02181

ii #2-139

NEW AND CHANGED INFORMATION

Extensive functional descriptions and programming information for the Model 1250 have
been added. New information and new peripheral devices for all Series 200 processors have
been incorporated. Likewise, the information carried over from revision 1 has been extensively

updated to correct technical errors and to enhance its clarity.

New information and changes added to this publication since the last edition are indicated

below by page number and item,

Page Item(s) Page Item(s)
1-8 Tables 1-1 and 1-2 8-62 Note 4

Para, 3 8-63 Para, 3 and Table 8-15
1-9 Table 1-3 and 8-64 Note 4

Para. 2 8-67 Note 2
1-11 ‘ Para., 2 and 3 8-82 Note 3
1-12 Table 1=-7 8-85 Notes 6,7, and 8
1-22 Note 5 8-86 All
1-23 Note 6 and Para. 4 8-87 All
1-24 All ~ 8-88 All
2-4 All 8-89 All
2=5 All 8-90 All
2-6 Para, 1 8-92 Note 7
2=-7 Table 2-2 8-94 All
2=-10 Footnote 2 8-96 Note 3
2-17 Table 2-4 8-100 Note 4
5-19 Para, 5 8-111 Table 8-23
6-8 Para. 3 - Note 8-125 Note 1
8-15 Note 5 B-9 Table B-9
8-17 Note 5 C-9 Table C=-2
8-21 Note 4 C-10 Table C-2
8-23 Note 4 C-11 Table C=-3
8-24 Note 7 F-4 Table F-1
8-26 Note 9 F-5 Table F-1
8-43 Note 3 F-6 Table F-1
8-55 Example G-2 Para, 5
8-58 Table 8-12 G-3 Para. 3,4, and 5
8-60 Notes 4 and 5 AppendixH All

iii #2-139

TABLE OF
CONTENTS

Page

Section I Series 200 Components ...
Central Processoreeieseroesceosssssossssascanes
Standard Processing Mode . ..vvvivvreronncnnnn
Interrupt Processing Mode00c00vunn.
External Interrupts ittt ces ettt
Internal Interrupt .. c.iiiorterieeeneeervsnnnosas
Addressing Modes .v.vueeerenrvecencsnns
Item-~-Mark Trapping Mode ,....cceieeerecncncecnnnas
Processing POWET . .vveeitesnsensensssensacsnssssancns
Peripheral Equipment.....oveiteereesesseossssenns .
Peripheral Control00ttt rieereeronsecnnas
Punched Card Equipment Cerereces et ean
High Speed Printers ..oveiieeeneeeecoocansnsssons
Print Buffer.....ciuiuiiiiiiiiiiiiiieeiinnennenans
Magnetic Tape Units ..o eoreesveeeossnsocsasonnosnns
1200 BPI Recording Density...cveeuireeeeesenscesnns
Disk Pack Drives ...ieeeeieeeeercecssnesesonnans
Disk Files tiuitiiiiiieeeennnseeacsosonssnossesanons
Random Access Drums cviveereeeoesosarsnsoasessnas
High-Speed Drums.......... ettt ceeeene 1-11
Angular Position Indicatorceviviiiiieeeanne., 1-11
Paper Tape Equipment 1-12
Data Communication Equipmentcvevevevnnn e 1-12
Console Equipment....... e eeteeree e ceeesaas 1-14
Visual Information Projection Devicesccvtvvennn. 1-14
Teller Terminal Equipmentvvvveeocessssseseness 1-16
Additional Peripheral Deviceseevevuneeecaaneasss 1-16
Peripheral Data Transfer Operation....... cesenvrnans 1-17
Peripheral Addresses and Unit Loads ...vcvveereons 1-17
Read/Write Channel .vvvoivveeesesnosnscosssssnacsss 1-18
Optional FeatUres .v.iueeeeeseesostesssseessocssanossonss 1-20
Advanced Programming Ceceetsosesaeneasesoan 1-21
Program Interrupt . . o. e vivierertioroscesssnsenennns 1-22
Edit Instructioneiiieeiiinnieeriencennenncssans 1-22
Additional Read/Write Channels, Unit Loads, and
Address Assignmentsuveveeotencsocssocosancoess 1-22
Storage Protect P X
Extended Multiprogramming and 8-Bit Transfer +..... 1-23
Scientific Unit.uveesereeeeeoeesconassscsseassssasesss 1-23
Feature 0191 ...ttt eereeieeeossososnsorssssansscos 1-23

e o e s e e

s e s o000

]
b= 00 00 00 00 =1 ~] O~ Ul UL B W W -

o

R A A I IR B)

o

[S T A e T e e e T e e R e
1

.
.
—
]
—
—

Section II The Central ProCesSSOr v.ooveeeeersssosssesosssssassessanes 2=1
Main MeImMOTY ¢ v veeenesssoraestssssanssosssssssssnssaas 2=l
Memory Cycle...veieineneenns o |
Main Memory in the Type 4201 Processor.....seeee... 2-4
Memory AcCcCess ...uvveueans eeciissncccsecsnnesss 2=
Processing Unit eeeeeceiateicssaasesanas 2-5

2-5

Memory Controller ettt eecoesaneanssenas

iv #2-139

TABLE OF CONTENTS (cont)

Section II (cont) Interleaved Addressing
Parity Check ...iviieirieenennnnnsnn
Control MemMoOTY c oo veeetsreneosseeeosasssnsostsonsonssss
Address Registers . ..vveeveereoesertietnsosensasensans
Read/Write Counters.......cvee...
Arithmetic Unit ..., ..ttt iiiinnecenns
Control Unit ...t viirieieniieeetnsioeeesansennsancans
Input/Output Traffic Control . ..ve et tiivevesesansnesaans
Memory Cycle Distributioncviiiieieiiiinanans,
Primary and Auxiliary Read/Write Channels...........
Interlocking Read/Write Channelsc.cuoeveueenn -
Model 4200 Variable-Speed Read/Write Channels.......

Section III Data Format...o.ieee et eeenseessssosssssseosessnsonnas
Variable Field Length . .. et ciiinvieienineseeencesoneans

Instruction Formatc.viiiiieiieiiiininneennencanns

Operation Code ... u.etinrineeerorennnssccessnoanosas

Aand B Addresses ...uoueeeeersnnneatsssssaisssacoees

Variant Character caeaeens ceesecaraaans

SUIMIMATY & ittt eeeeeesaacacascasoesoessesaesnssasaess

Organization of Data in Main Memory....veeeesecoccnsons

T -

I eINS v i ittetteneeeesessacoesasoeeorssssosnsasnsnssos

Records
SUMIMATY v veterosetoasonssessstosassessssssssnssssses
Magnetic Tape Data Formatciieuieieiiieeeieeeeennns
Punched Card Format...ciieeeereineenanocssonasas

Section IV Addressing . .uviririe ittt iiietrterttetttetteiieconneens
Basic Concepts . .vveuttiirieiinreescsssssnesssssscnnans
Registers Used in Addressingceoeeeeenosssscsocenns

Sequence Register (SR) .c.vvvennn..
Change Sequence Register (CSR) .. vevternreecsnansnns
External Interrupt Register (EIR)...vvitioeeronsocsans
Internal Interrupt Register (ITR) .. .cn vt intnnenaannnan
A-Address Register (AAR)evtveeeeoasosossnsnanes
B-Address Register (BAR) .. vcveveeecroesssoasssasons
SUMIMATY st eeetoeenetstossoascesoecsesssoossseasosnss
Addressing ModesS 4 vveeretieereecsossesoscsssossonannssas
Two-Character Addressing Modevvvieeererocnnses
Three-Character Addressing Modeccooteensscens
Four-Character Addressing Modecvoeeeveecnons
Address Modificationceeeveerooessnssenonsoananens
Index RegistersS . vieeeerieeeneeosaescassosnesoaaanoaas
Index Register Map...ccovseees. cecs ettt
Three-Character Addresscveeeesrevoonssocsscans
Indirect Addressingvveveenneeserocnnscannans
Indexed Addressing et

v

W WWwWwWwWwwwwwww
1

w
]]

1
= = OO 0O CNUTULR R DA R WWWWRERER O0O00C0 KRB WWNDNDN -

N O O

1

1] 1 1 1 1 1 1 1

ST NG NG N N O N N N Y N O N N N N S N N T PO oS
1

#2-139

Section IV (cont)

Section V

Section VI

L

TABLE OF CONTENTS (cont)

Four-Character Addressing Modeeceeveencssasss
Indirect Addressingceceeseesseessconsoassaens

Indexed Addres

SINE v vevveeeeseesotsascncssnancnsas

Treatment of Addresses Larger Than A Memory's
Maximum Address.....oveeeas Ceeeseens ceeesesi e
Potential Addresses Within Address Rangeo.044.
Potential Addresses Outside Address
Register Range . .iveeteeenncsescsssoccsansnnccnens

Explicit Addressing,

Implicit Addressing, and Chaining....

Easycoder Programmingoeeeeeeeeeaess ceeeeenan ceeeans

Introduction........

ooooooooooooooooooooooooooooooooooo

The Symbolic Languagec..oveeeeeeocees ceevesenannan

The Assemblers....
Coding Form.......
Card Number (Car

d Columns 1-5)......... ceeeeen PO

Type (Card Column 6) .. .vuvvreevnereneocorananncenns
Mark (Card Column 7) v.vveereeeeeneoononses ceseaane
Location (Card Columns 8-14)....... ceeereceereesesne
Operation Code (Card Columns 15-20)ecieeeeeccenn

Operands

...................................

Additional Coding Rulesc.cveeenneanneens ceeens

Address Codes
Absolute
Symbolic........

Self Reference.,.... Cee i eeeneas cesenaas ceeeees

Relative.........

...................................

OUt-0f-SEQUENCE .t vururtnneennenenneeneneansoseannnns

Blank......v.o0.

Binary Literals

Octal Literals

e 6o e 0 s s 00 0000000 DR A I R R BN

Alphanumeric Literals...... e ceeseen cesrane
Area Defining Literals..... ceeree
Address Literalsiiviiiinerrinneerneeanncennas

Variant Character

oooooooooooooooooooooooooooooooooo

Input/Output Control Characters........ ceresesnacenna

Address Modification
Indexed
Indirect.........

Codes tveeeennonns

Data Formatting Statementscc000.. csecenss ceessessensan

Introduction........

Numeric Constants i vveeeiieeeeerenenesssscoscncnsone
Decimal Constantscce... ceeesarase e
Binary Constants......iivieieeinioceeeteosnscenas

Octal Constants

vi

Page
4-13
4-13
4-14

4-16
4-16

[S IO I, BS, WT, BT IS, NG, IS T, BTN N
| I SR N A RN R R A B | 1 1
~ 00 ON ON U1 UT W W k= b et e
o -~ o

Section VI (cont)

Section VII

Section VIII

TABLE OF CONTENTS (cont)

Alphanumeric Constants Ceseeeae
Blank Constantsc00euvennn Ceeesseseesaannons
Floating -Point Constants

Define Constant — DC
Reserve Area — RESV

.

.

L A N I I IR RN

Define Symbolic Address — DSA
Define Area — DAttt erenns
Easycoder Card D Optionseveses

Assembly Control Statements ceeus

Introduction ...cecvu..

Program Header — PROG
Segment Header — SEG ..., .00 unes
Execute — EX ... vieeiinernennnns
Transfer — XFR ... iueeecreennns .
Origin — ORG C et e et aeea et e annsen
Modular Origin — MORG0v0n
Literal Origin — LITORG004
Set Address Mode — ADMODE oo
Equals — EQU. ... iiiitierenrenonnnns i eeeeeen et
Control Equals —CEQU

Memory Dump — HSM
Skip — SKIP.........

D N I RN R AT

..

s e s e e 00000

D R R I N N R R A A A I
............ s e 0 s 00
s e 0 s e s s 0 s e s 000 s e

SUfix = SFE X i ittt tiiereeneeenarenennnns i rec e

Repeat — REP

Generate — GENt ieeereenenns

Set Line Number — SETLIN

Set Out-of-Sequence Base — XBASE .

Clear — CLEAR .. ittt ocaosasnnnns

End — END

Instructions .. oeveeeeonn .
Introductionev0.
Arithmetic Operations ,

Binary Addition
Binary Subtraction .
Decimal Addition...

True Add

Complement Add .
Decimal Subtraction .)
Indicatorsc.veeieeenneennnanns ceetserennetenan .

Multiplication......
Divisione0444

Add — A Ceeierei et

Subtract — S ...

Binary Add — BA........ Cerereeaan

Binary Subtract — BS .
Zero and Add — ZA...

vii

tese v e et
terecsersns e PRSI

.............. ceeae
teee st s esse et aees
I T P T A
cteses e s esecreoane
tecesssccessaen e
0000.00000‘00. LI
........... et e ee e
teseescnscans co e
ceseesrsseseesesanan

Page

o~
1 I
=3 ~] O~ U1 U i N

o

o~ O O
] 1 1

1

NN o000
L | '

1
—0 O ~ O~ RN

NN N N A D Y
1
—

~3
1

—

[\V]

7-13
7-14
7-15
7-15
7-16
7-17
7-18
7-18
7-19

3
1
[y
o

0 00 00 o
1 [I S B |
NI RN BN BN A L]

o 00 0 0 00 00 O
i

[e}e]
1
— =
B

8-16

[e]
.
—
3

8-19
8-20

#2-139

TABLE OF CONTENTS (cont)

Page

Section VIII (cont) Zeroand Subtract — ZS ... ittt ittt ittt eneconn ceees 8-22
Multiply — M et e et st e et ass et e st e s aeanas 8-23
Divide — D ceeeaee cerr e 8-25
LiOgiC it sinonseeesesoeecesssacosnossssssssesensanss . 8-27
Extract — EX T ..ttt iierorenssossssssssssessssssssses 8-28
Half Add — HAt ererecannnas e eeeaas 8-29
Substitute — SST ... iieteeerenossesssssesessscsssasssns 8-30
Compare — C ...ccvun e, ceoeses s e e ceeo 8-32
Branch — B ...ttt irsocsesasassosnes see e 8-34
Branch on Condition Test — BCTttt neavososanns 8-35
Branch on Character Condition — BCC evenenenae 8-39
Branch if Character Equal — BCE.......... Beseneneaans 8-42
Branch on Bit Equal — BBEc0teirnans heaeeeaes 8-44
Control00v. Ch et e s eeeses et seteseanenans 8-47
Set Word Mark — SW 8-48
Set Item Mark — SI cee e e Ceeceeereanaeaeeas 8-49
Clear Word Mark — CW ...ttt iirtietennsossosecssnsns 8-50
Clear Item Mark — CI ...ivivvenens se e teterscsenons 8-51
Halt — Hviinennoanens et etesesereresetetoaeeenes 8-52
No Operation — NOP 8-54

Move Characters to Word Mark — MCWiviovecennoes 8-55
Load Characters to A-Field Word Mark — LCA.......... 8-56

Store Control Registers — SCR . ..iviierrnnsecncnosaons 8-58
Load Control Registers — LCRivteeiierennesannns 8-60
Change Addressing Mode — CAM....... e 8-62
Change Sequencing Mode — CSM ...t iverrecsorocsnonss 8-66
Extended Move — EXM . ..utiiereresnsssrconsiosnssnns 8-67
Move and Translate — MATcc00eue cetecerteneeaan 8-70

Move Item and Translate — MIT (.0 eevienrneoncocancns 8-74
Load Index/Barricade Register — LIB...vvvivversvocane 8-79

Store Index/Barricade Register — SIB ...veecosnonnns e 8-82
Table Lookup — TLU teceserecrosatacenteeennans 8-83
MoveQrScan-—MOS........‘...........o 8-86
Interrupt Control.....vevvrnvncene eeretetinsetsesenonan 8-91
Store Variant and Indicators -— SVI..... ceeeasssessssnnn 8-92
Restore Variant and Indicators — RVI Ceeeae .. 8-95
Monitor Call — MC ..vuvevennnn. e, 8-98
Resume Normal Mode —— RNMoceueenenne 8-99
Editing ...veeeeeoeecoes crtte et aenn Cesessesesaes 8-103
Move Characters and Edit — MCE. 8-104
Input/Output...vovevevnnnenn. Crteterecesseceerenesaess 8-109

Input/Output Control Operations ...vevveeernosenosscasns 8-110
Selecting RWC Assignments for Use in PDT Instructions 8-110

Considerations in Selecting RWC Assignments 8-110
Device Data Transfer Rate 8-110
The Processor Being Usedoceeeerecsnsnns 8-113

Input/Output Sector to Which Device is Connected. 8-114

viii #2-139

Section VIII (cont)

Appendix A

Appendix B
Appendix C
Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

TABLE OF CONTENTS (cont)

Upward Compatibilityccieviieiiieenernnens

Peripheral Data Transfer — PDT0iitiiriernnnans
Peripheral Control and Branch — PCB......... cesisseens
Types of Test and Control Operationscv00evee. cees

Octal Notation .veeseesvssessesreceseessssososnnsns
Octal-Decimal Conversion Procedure Ceseesensans
Miscellaneous Tables . vveeeerrenserencssessosseessncansans
Instruction Summary......... Cereeeseaas Cerei et ceeees
Interrupt Processingcveveteieenonosnsenns ceeeen cee s oo
External Interrupt cesreeasen sesetreaneenas .
Internal Interrupt ... iiiinreniernvnnans et seaseeas .o
Interrupt Programmingoveeeveeeesnens Ceceseeeennens
Peripheral Control Interruptt inronncnnannns . e
Storage Protect Feature .. viveveeeeeocnsensas Ceerensnens .o
Index RegistersS .vveeieeeessocosesosecsssssssnnsosansocas
Central Processor Modes . ivvvierersnnonenesasossannanse
Internal Interrupto0oeuueenn
Violations of Storage Protection Cecreseiresseseans
Proceed Indicator +.ieevesieieeesseacasossscasssososas .
Scientific Unit for Models 1200, 1250, 2200, and 4200........
Data Format. ...ooietereeiiennneseannss Geeesecnanan cees
Floating -Point Registers ...veveveeeecens e oo
Floating-Point Indicators ..c.viiiireiereineienereneennnens
Automatic Formatting in Arithmetic Operations
Symbology c.eievnn choerersenan cecernenanen Cesees s
Timing Notes ...iieireietetereosossocsssscsnsas et ecens

Extended Multiprogramming and 8-Bit Transfer for

Models 1200, 1250, 2200, and 4200 ...0eceveeeennn csccnesens
Storage Protection with Base Relocation....... cececrsaoae
External Interrupt Maskingcccvevn.n Ceseesaanene .o
Instruction Timeout oii ittt neeennns
8-Bit Transfer Capability..... Ceceeeisaaan Cetearseeeeae
Privileged SCR Instruction......ccoeeuveens teecssesennenes

Extended Input/Output Capacity for the Model 4200...........
Feature 1116oivvviiinnecnnnnns Ce et et
Features 4214A and 4214Bcc0cvvvens ceceneans ceene
Feature 4215 ettt seieseite e eesetesanans
Buffered Sectors............. et eeriaceetesacaaenaonas

ix

Q
]

1

]
WD = e Ul W I = e Ol W IV =

I:Ifltljt:jt*jmtlfj gpguououg

Wy b rg g by e
]

I
N = === D WN N e

#2-139

LIST OF
ILLUSTRATIONS

Page

Figure 1-1 Type 1201 Control Paneloutuninnrieirrrironenenasseess 1-2
Figure 1-2 Type 220-1 Console tviveioeerireorenssssossssesencasonens 1-3
Figure 1-3. Type 220-3 Console ... vviveennnnnneeannns e ceeseeenn 1-3
Figure 1-4, Main Memory Size bt e et e e .. 1-6
Figure 1-5 Main Memory Speed i v ieeneriesesestosennsscennncnss .. 1-6
Figure 1-6 Peripheral Simultaneity e s e reaaes 1-6
Figure 1-7 Customer Inquiry Handling via Typical Communications

NetWorK s oveereseersenseseesssossonesss B N
Figure 1-8. Basic Input/Output Data Pathcccviinnrennnnnss e .. 118
Figure 1-9. Address Assignments and Unit Loads Available in

Series 200 ProCeSSOrS tveueeeseeosecseoesosssanssssncassaes 1-19
Figure 1-10. Data Path During Card Read Operationviiernerersrssns 1-19
Figure 2-1 Logical Division of Series 200 Central Processorooou.. 2-1
Figure 2-2, Main Memory Functionscceivveeneineenenonn cesacans 2-2
Figure 2-3 One Memory Position ... eeieeeeeeseenseseoseasonsnsansns 2-3
Figure 2-4 Representation of Characters in Magnetic Core Storage 2-3
Figure 2-5 Type 4201 Memory Subsystem e r e e eeaeans 2-4
Figure 2-6. Model 4200 Memory Interleaving (Type 4201-9

Central Processor) ceeaeeceaenresieranaan ceeees 26
Figure 2-7. Typical Control Register Functionvieeeereeesocescons 2-7
Figure 2-8. Data Flow Between Main Memory and Arithmetic Unit «...... 2-11
Figure 2-9. Control Unit Activities ceeeeees et teirene cenene 2-11
Figure 2-10. Input/Output Traffic Control Actlvunes 2-12
Figure 2-11. Data Transfer Intervals During One Peripheral Operation.... 2-13
Figure 2-12. Logical Decision Performed by Input/Output Traffic Control .. 2-14
Figure 2-13, Symbolic Representation of Input/Output Traffic Control.. 2-15
Figure 3-1, Conversion of Symbolic Tags to Absolute Memory Addresses . 3-2
Figure 3-2. Series 200 Instruction Formats..... Chteeseeeenns ceeesseeas 3-3
Figure 3-3. Symbolic Representation of Series 200 Instructions 3-4
Figure 3-4. Consecutive Storage Locations in Main Memory «..oeeeene... 3-4
Figure 3-5, Data Field Format in Main MemoTy ...cvvreceerontccosnsss 3-5
Figure 3-6, Two Item Formats in Main Memory ..uoveveeeeenesnenns eees 3-5
Figure 3-7. Record Format in Main Memory....o.oeeeeeeenn. ceeeseieses 3-6
Figure 3-8, Summary of Internal Data Formats Cereeaesaeae cee. 3-6
Figure 3-9, Character Representation on Magnetic Tape ...voesvsossosss 3-7
Figure 3-10. Data Format on Magnetic Tape ..oeevvene ceeeen ceeeeseseess 3-8
Figure 3-11. Punched Card Codesuivuierierennneesansssssnoacennsns 3-8
Figure 4-1, Typical Add Instruction..... Cecesseenn eeeteeer e eesenene 4-1
Figure 4-2. Extraction of Data Fields in Typical Add Instruction 4-2
Figure 4-3. Series 200 Index Register Map ..c.eerreerorcnncncecancnnssn 4-9
Figure 4-4. Extraction of Three-Character Ind1rect Address ceeso 4-11
Figure 4-5, Extraction of Indexed Address in Three-Character Mode 4-13
Figure 4-6. Extraction of Indirect and Indexed Four-Character Addresses. 4-15
Figure 4-7. Series 200 Instruction Format 1iciiiiroeroroncnssnnnns 4-17
Figure 4-8. Series 200 Instruction Format 2 ..ccveeennecanecenonns ceees 4-18
Figure 4-9. Series 200 Instruction Format 3 - 2 £
Figure 5-1, Relationship of Source, Assembler, and Object Program..... 5-2

x #2-139

Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.

Figure 5-7,
Figure 5-8.
Figure 5-9.

Figure 8-1,
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure 8-8,
Figure 8-9.
Figure D-1.
Figure D-2,
Figure D-3.

LIST OF ILLUSTRATIONS (cont)

Two-Character Address Assembly

Three-Character Address

Four-Character Address Assembly

Assembly .

ooooooooo

ooooooooo

Easycoder Coding FOrmM ...cveeeeerersacecscsecnsasasenans
Assembly of Indexed Address in Three-Character

Addressing Mode. .

ooooooo 00 e e

Assembly of Indexed Address in Four-Character
Addressing Modevieieerenenssasensnnsisosocanassanes
Assembly of Indirect Address in Three-Character

Addressing Mode

Assembly of Indirect Address in Four -Character
Addressing Modeiieieeeieenneesenenssscacancnannns

True Add Examples

Complement Add Examples .veeeeasss

A and B Fields in Multiply Operation ..
Factor Locations in Divide Operation

Changing Addressing Modes via CAM Instruction ..
MAT Operation ...viieeeeesesesorssssassssassassesasansnns

MIT Operation cocvveeeeens
TLU Operation...... cee e
Example of Operation Utilizing Escape Codes cecereae

Sample Coding for External Interrupt Routine
Sample Coding for Internal Interrupt Routine
Interrupt Signal Generated by Peripheral Control ..

xi

oooooooooooooooooooooo

#2-139

LIST OF
TABLES

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table 8-

Page

Punched Card Equipmentoueiivernroneersiesnonneconanas 1-8
High-Speed Printers ..cuiveeeesseeesesssscasarsosasnnasassas 1-9
Magnetic Tape Units..eoeeeen. e eeetereenossasecettaananns 1-9
Disk Pack Drives ..veeeerecceseacenenes teeeseeeeacsoennnns 1-10
Disk FileS.oueueossoseess e teeeeoeeetassoeacnesaeaenenn oee 1-11
Random Access Drum Units ...veveieneeceeeneneronnns ceees 1-11
High-Speed Drums e eeeecenttsea e et eennn 1-12
Paper Tape Equipment.......... ettt eeetse et 1-12
Data Communication Equipmentcoiviieivoesnsannsnnns 1-13
Console Equipmentceeeneeass Ceesiseesanasees e anas 1-14
Visual Information Projection Devices v vvevr et nnnavooas 1-16
Teller Terminal Equipment ettt tteeer e 1-16
Additional Peripheral Devices ..vierieeerneeianssocsscacnss Lo 1-17
Series 200 Optional Featuresicvveiviieeerneneenssonss 1-20
Model 200 Advanced Programming Feature0... 1-21
Memory Configurations for Type 4201 Processors 2-4
Size of Control Memory Registers (Models 200/1200/

1250/2200/4200) covvevnennnn et Ceresireeeaes 2-7
Control Memory Registers .v.vieeesveresanenns e eeseeeans 2-8
Summary of Central Processor Characteristicsc0000n. 2-17
Number of Index Registers Simultaneously Available to

a Program teceerassseenans cee ettt ee s eeee. 4-10
Index Register Addresses in Three-Character

Addressing Modeiiiierionenenernnsecnessnconnnns) ¥
Index Register Addresses in Four-Character Addressing Mode 4-14
Active Address Bits in Series 200 ProcessorsS cveveeevecsesss 4-15
Set I Punctuation Indicatorsccevevvienenreseasennns e 5-7
Set II Punctuation Indicators (Easycoder C and DOnly) 5-7
Data Formatting Statements Ceteeer e seanessnns 6-1
Assembly Control Statements.....coveeeseees.n B £ |
Symbology Used in Series 200 Instruction Descriptions 8-2
Series 200 Add and Subtract Operations......veo0veseese ceee. 8-4
Binary Addition Table ..ueceiietoersnsesssssssocncnasasnns . 8-4
Algebraic Signs in Decimal Addition..cveevvetionsovessossss 8-7
Decimal Arithmetic Sign Conventionsvvvueeeessas eeeees 8-9
Multiply Sign Conventionseveesevcss et eseeesseseeannn 8-10
Divide Sign Conventions ..o cveeeecscsscsconsas thereensseseans 8-13
SENSE Switch Conditions for BCT Instruction ceesssaaes 8-36
Indicator Test Conditions for BCT Instruction e 8-37
Basic Test Conditions for BCC Instruction cvvievveeereoaases 8-40

BCC Test Conditions with Advanced Programming Instructions 8-41
Control Register Contents Stored by SCR Instruction 8-58
Control Registers Stored by SCR Instructionvovveuen .. 8-59
Control Register Contents Loaded by LCR Instruction 8-61
Modes Specified by Variant Character in CAM Instruction 8-63
Extended Move Conditions ...cveeeeiiiinenenieneennnns ve... B-68

xii #2-139

Table
Table
Table
Table
Table
Table

Table
Table
Table

Table
Table
Table
Table

Table
Table

Table
Table
Table

Table

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table
Table

Table

Table
Table

3-18,
8-19.
8-20.
8-21.
8-22.
8-23.

8-24.
8-25.
8-26.

Q0 QUUUEHUEBODWwEWE PP

L L I L A T T D T D |
=0 0 ~JONUT I WY =N =

w
~J

W N

-

.

LIST OF TABLES (cont)

Correspondence Between LIB Setting and Barricade Location
Move or Scan Conditionsovuiiii i ineeennennneneennns
Information Stored by SVI Instruction00... cercasnaan
Information Restored by RVI Instructioncvvieeeeesons
Special Characters in MCE Instruction.......vceeeeeeneeoss
Minimum RWC Capacity Requirements for Series 200
Peripheral Devices i i ivuiiereeeroseasossvsssssosscsssssnssnns
Description of PDT 1/O Control Character Clevvveue..
Description of PDT I/O Character CE (Escape Code) v.o.0vu.o
Description of PDT I/O Character C2 (Peripheral Control
Designation. . oueeeeeostesessoeeeseesososesasssasassosss
Summary of PDT I/O Control Characters ...eeeeeeeeonacaes
C3 Coding for Type 209 and 209-2 Paper Tape Readers
C3 Coding for Type 210 Paper Tape Punchccveveennrans
C3 Coding for Types 206 and 222 Pr1nte1~s and Type 237
Bill Feed Printer Control « o vviiotienetnrenneneneocsannns
C3 Coding for Type 270A Random Access Drum. cesreean
Summary of PDT I/0 Control Characters for Type 286
Multi-Channel Communication Control.........covvvvennn.
Type 286-1, -2, -3 Line Control Instructions...ceeeeeeessas
Summary of PCB I/O Control Characters ...ooeessessonsass
Summary of PCB I/0O Control Characters for Type 286
Multi-Channel Communication Control et ienreas
PCB Control Characters C5 through C15 for Type 286-4, -5
Line Control Instructionsc.ceiiioeiinoneeereennnoas

Description of PCB I/O Character CEvveereosssecsoons
Binary-Octal Equivalents...ccvevuveenn Ceceeerestetesannae
Decimal-Octal Conversion Tableiviieereeeeececennnns
Control Register Designationsceceecessesccsacacsons
Extended Move (EXM) Conditions . veeeeseeeessscosanosonoces
Branch on Condition Test (BCT) SENSE Switch Conditions....
Branch on Condition Test (BCT) Indicator Conditions
Branch on Character Condition (BCC) Conditionsceeeee.
Series 200 Character Codes teosesessessasesane
Binary, Octal, and Decimal Equivalents cedeaes
PowWers Of 2 ..ttt ieeeeeoeeesoanosoosesoassssesssasssocans
Move or Scan Variants .v.ieeeereeeeocsssosscssnsacsnsossnasse

Instruction Summary - Timing Formulas for Models 200,

1200, 1250, and 2200 . .iutieenenreennsnnaoncnnnnnnncanans
Instruction Timings for the Model 4200ccivvonnnnns
Timings for Decimal Multiply and Divide, Models 200,

1200, 1250, 2200 2nd 4200ivieneenrnnnnnaennn ceeenes
Summary of Interrupt/Allow Function Control and

Test Operations vveeeeeereeeesescsseeosssescsoncnssocnes
Summary of Scientific Instructionsoo0eeeievenann oo
Controls/Devices Connectable to Buffered Sectors

Page

8-80
8-88
8-92
8-96
8-105

8-111
8-116
8-118

8-118
8-120
8-124
8-124

8-125
8-125 .

8-126
8-126
8-130

SERIES 200
COMPONENTS

Honeywell's Series 200 Data Processing System is a set of modularly designed, compatible
models, five of which — the Models 200, 1200, 1250, 2200, and 4200 — are the subject of this
manual, Each model consists of two basic elements: a central processor, and an array of
peripheral devices connected to that processor. The peripheral equipment in the system can be
attached to any processor, and the number of connectable devices is limited only by the number

of unit power loads and peripheral address assignments available with the particular processor.

The initial member of Series 200 was the Model 200, The capabilities of the Model 200
processor have twice been extended since its introduction. Thus, seven central processors are
described herein: the three processors of Model 200 (Types 201, 201-1, and 201-2); the Type
1201; the Type 1251; the Type 2201; and the Type 4201, The processing power of any one of
these types can be increased at any time by the addition of peripheral devices and/or optional
hardware features., This section describes: (1) the two basic elements of a Series 200 model
(processor and peripheral devices); (2) the manner in which these elements communicate with
one another; and (3) the expansion of processing power that is possible through the addition of

optional hardware features to a processor.
CENTRAL PROCESSOR

The central processor is the computing and
control center of a Series 200 model; instructions
processed within the central processor control
the operations of the entire computer, A Series
200 processor is functionally divided into three
units: storage, control, and arithmetic. The
storage unit provides magnetic core storage for
both the program instructions and the data to be
processed according to these instructions; it is

also used to contain the resultant data, The con-

trol unit directs the operation of the entire com-

puter by selecting, interpreting, and controlling

1~1 #2-139

SECTION I. SERIES 200 COMPONENTS

the execution of all program instructions., It controls not only the flow of information within the
central processor but also the flow of data between the central processor and all peripheral
equipment. The arithmetic unit performs such operations as addition, subtraction, multiplica-

tion, division, and comparison, as directed by the control unit,

Included as a part of the central processor is a control panel (see Figure 1-1) which pro-
vides for easy’communication between an operator and the computer. By using various control
switches, the operator can start and stop the machine and can load and interrogate memory lo-
cations. The control panel also includes from four to eight SENSE switches which may be used
in conjunction with programmed instructions to stop processing or to select predetermined pro-
gram paths. The use of these switches increases the flexibility of a program, alldwing it to be

used in several different applications.

RHWD
CLEAR ATEM 'ORD 4 2 1 4 2 1
's - DISPLA NTER
mﬂ . ’ ’ yy L
CLEAR 4 2 4 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1 ﬁ
. DISPLAY ENTER

RESET SYSTEM
AC ONAC OFF DC ONDC OFF STOP INITIALIZE BOOTSTRAP CLEAR INSTRUCT RUN INTERRUPT ADDRESS MODE
EXTERNAL PROGRAM! PARITY FAN !
2 3|4 !
INTERNAL | PROTECT | VOLTAGE, CB__,
HHHEYWEll lz"n o

Figure 1-1. Type 1201 Control Panel

Another communication medium between the operator and the central processor is the
Type 220 console, of which two versions are available., The Type 220-1 Console (Figure 1-2)
contains a typewriter which may be used as a peripheral device, operating under program control,
or as a logging typewriter by which the operator can make essential notes about the program in
progress. The central processor control panel remains situated on the processor cabinetry and

is used for the functions described above.

In the Type 220-3 Console (Figure 1-3), most of the control panel functions, including that
of direct access to the processor, are performed by means of the console typewriter, In addition,
the typewriter can perform the peripheral and logging functions described for the Type 220-1,

The central processor control panel is replaced by a smaller control panel containing only the
main power switches, the SENSE switches, and certain check condition indicators which are
located in the bottom row of the control panel shown in Figure 1-1, The Type 220-3 control
panel contains additional indicators used with the Storage Protect Feature (see page 1-23) and

the additional SENSE switches used with the larger Series 200 processors.

1-2 #2-139

SECTION I. SERIES 200 COMPONENTS

BRI AL

Figure 1-2. Type 220-1 Console Figure 1-3. Type 220-3 Console

STANDARD PROCESSING MODE

The central processor performs arithmetic and logical operations as directed by the in-
structions of an internally stored program. These instructions are read into memory from an
input medium such as punched cards, magnetic tape, or punched paper tape. Control circuitry
within the processor then selects, interprets, and executes these instructions, Normally, the
instructions are executed sequentially. Branch instructions are provided, however, which make

it possible to skip over a group of instructions or otherwise change the sequence of the program,

INTERRUPT PROCESSING MODE

Sequential instruction execution is changed temporarily whenever the central processor is
interrupted., Any one of four sources can ''demand'' access to the central processor by generating
an interrupt signal, which turns on a central processor interrupt indicator. Once an interrupt
indicator is detected as being on, a hardware response is made: information concerning the cur-
rent status of the processor (including the setting of the sequence register) is stored, and a
branch is made to a stored routine which identifies and services the demand., Thus, programmed
tests need not be made to detect the presence of an interrupt condition — the entire process of
detecting and responding to an interrupt signal is an automatic hardware function, After the
stored service routine has been executed, control is returned to the interrupted routine at the
point where the interruption occurred and the previous status is restored., Two kinds of inter-
rupts can occur in the system: external interrupts and an internal interrupt. A detailed descrip-

tion of interrupt functions and programming for interrupt processing is presented in Appendix D.

1-3 #2-139

SECTION I. SERIES 200 COMPONENTS

External Interrupts

The three sources of external interrupts are:

1. Peripheral Control — The control connected to any Series 200 peripheral
device can generate an interrupt signal under program control (peripheral
controls are described on page 1-7; peripheral control interruption is
described in Appendix D. For instance, a data communication control
which services one or a number of communication lines and devices may
generate a real-time demand on central processor time to handle a cus~
tomer inquiry from a remote terminal. The current operations of the
processor are temporarily interrupted so that the inquiry may be serviced.
A routine to read the inquiry and to answer the question from a stored
customer file is automatically executed, and a response is sent back to
the terminal.

2. Operator's Control Panel or Console — The operator can interrupt the
central processor by pressing the INTERRUPT button on the control panel
or console.” The source of such "on-~site' interruptions is made available
to the program by the execution of a single instruction at the beginning of
the interrupt service routine,

3. Program Instruction — One instruction in the Series 200 repertoire,_the
Monitor Call instruction, is used to generate an interrupt condition,
For programming convenience, the activation (or '""calling') of the monitor
program can be accomplished by means of this instruction,

Internal Interrupt

If a central processor contains the Storage Protect Feature (Types 1201, 1251, 2201, and
4201 only), an internal interrupt condition, caused by certain violations of a protected memory
area or attempts to address nonexistent memory locations, can also occur. Internal interrup-
tions are of lower priority than external interrupts, so that a processor executing an external '
interrupt service routine does not respond to an internal interruption until the routine is com-

pleted. Processing of internal interrupts is described in Appendix E,

ADDRESSING MODES

Due to the unique binary addressing system used in referencing the individual core storage
locations within the central processor, an address‘portion of a machine-language instruction can
occupy two, three, or four characters of memory. The number of character positions employed
is controlled by two instructions: the assembly control instruction ADMODE, and the Change
Addressing Mode (CAM) instruction. Any core storage address can be referenced in any address=-
ing mode by having the central processor prefix the address expressed in the instruction with a
binary value previously set in an address register, Thus, the programmer has the ability to set
the address registers to some high module, switch to the two-character addressing mode, and

still continue to address that module. This utilization‘ of the smallest number of character

I .
The Type 201 and 201-1 processors cannot be interrupted by sources 2. and 3. above.

1-4 #2-139

SECTION I, SERIES 200 COMPONENTS

positions to express any core storage address results in a reduction in the amount of memory

required for a particular program.

ITEM-MARK TRAPPING MODE

The item-mark trapping mode, which can be set via.the CAM instruction, causes the pro-
cessor to treat and execute any instruction containing an item-marked op code as if it were a
Change Sequencing Mode (CSM) instruction, which results in a transfer of control to an instruc-
tion stored é,t a prespecified location. This processing mode is used extensively in Liberator

systems and can also be used to control program branching.

PROCESSING POWER

The power of any processor within Series 200 can be defined as the sum of its main mem-
ory size, its internal speed, its degree of peripheral simultaneity, and the number of optional

features which may be added to it.

Main memory size within the Models 200/1200/1250/2200/4200 ranges from a minimum of
2, 048 character locations (Types 201 and 201-1) to 524, 288 locations (Type 4201). Figure 1-4

shows the modular main memory sizes of the seven processor types.

The internal speed of a processor is measured in terms of a memory cycle (i.e., the time
required to read and restore the contents of a unit location). The unit location used by proces-
sors other than the Type 4201 is a single, six-bit character location. The unit location of the
Type 4201 is four successive character locations that contain a four-character word., Memory
cycle speeds range from two microseconds per character to 750 nanoseconds per four-character

word (see Figure 1-5),

Peripheral simultaneity is a key feature of Series 200 processors. 'Among the processors
described in this manual, from 3 (Model 200 processors) to 16 (Type 4201 processor) simulta-

neous input/output operations can be performed concurrently with internal computing (see

Figure 1-6).

A number of optional features can be included in the Series 200 processors to provide com-
plete flexibility in specializing any one processor to a user's particular application. Since some
of these features refer to the peripheral capabilities of a processor, they are summarized at the

conclusion of this section.

1-5 #2-139

SECTION I. SERIES 200 COMPONENTS

1The Type 4201 moves four successive
characters in 750 nanoseconds, Anyone
of these characters is thereby moved in
188 nanoseconds.

Figure 1-5, Main Memory Speed

BASIC

201~ OPTIONAL

201

201 20141 201-2 1201 1254 2201

Figure 1-6, Peripheral Simultaneity (Number

Figure 1-4. Main Memory Size of Read/Write Channels Available to Processors)

PERIPHERAL EQUIPMENT

The array of peripheral devices available
with Series 200 processors includes over 40 units:
console typewriters, punched card equipment,
high-speed printers, magnetic tape units, paper
tape equipment, random access drum units, disk
devices, MICR reader-sorters, multiple tape
listers, teller terminals, visual information pro-

jection units, and various data communication

controls and remote terminals., Also included

are computer-to-computer adapters, an interval

1-6 #2-139

SECTION I. SERIES 200 COMPONENTS

timer, a time-of-day clock, and controls for optical source-document readers, optical journal

readers, digital plotters, and a bill feed printer.

Information is transferred between any one of these devices and the central processor by
means of a single stored-program instruction — the Peripheral Data Transfer instruction de-
scribed in Section VIII, By coding various control characters in this instruction, the programmer
specifies the direction of data transfer (into or out of tl:le processor), the specific device involved
in the transfer, the data path over which information is to be transferred, and any other infor-
mation necessary to define the input/output operation (e.g., the number of lines to be spaced
during printer operations). The actual communication with the central processor is not made by

the particular peripheral device but by the peripheral control connected to that device.

PERIPHERAL CONTROL

A peripheral control regulates the transfer of data between a processor and a peripheral
device, The control compensates for the difference in the data transfer rates of the processor
and the peripheral device by temporarily storing each character of transmitted information until
either the processor or the device is ready to receive the character. The control also converts
each character into the code used by the intended recipient (e.g., the card reader control con-.
verts a character from Hollerith code to the internal six-bit code of the central processor). As
each character is transferred to the control, it is also checked for accuracy by the control. One
particularly significant feature of the peripheral control is that it operates independently of the
central processor and requires access to the main memory only when information transfers are
performed. In particular, all of the previously mentioned activities of the control — temporarily
storing, converting, and checking the information — do not involve the central processor in any
way. When each character of information is transferred, one main memory cycle is allocated

for the transfer.

Some peripheral devices require one peripheral control per device (e.g., a card reader),
Other devices can be connected in multiple fashion to a single peripheral control (e.g., up to
eight 1/2-inch magnetic tape units can be directed by a single control). The number of Series
200 devices connectable to a peripheral control is shown in Tables 1-1 through 1-10 on the fol-
lowing pages. The information listed under "Unit Loads' and ""Address Assignments' in these
tables is used in determining the number of peripheral controls that can be connected to a Series

200 processor, as explained on page 1-17.

PUNCHED CARD EQUIPMENT

Series 200 includes a wide variety of peripheral devices not only of different kinds, but also
on several performance levels for the same kind. For instance, four different punched card units

1-7 #2-139

SECTION I. SERIES 200 COMPONENTS

are offered: two card readers, a card punch, and one reader /punch, Table 1-1 lists the card
devices available within Series 200. Note that a card device requires either one or two "unit

loads, " depending on the nurnber of functions the device performs.

Table 1-1. Punched Card Equipment

Card Reader 800 cards/minute 1 1
223-2 Card Reader 1050 cards/minute 1 1 1
214-1 Card Punch 100-400 cards/minute 1 1 1
214-2 Card Reader/Punch Read: 400 cards/minute 1 1 2
Punch: 100-400 cards/
minute

HIGH-SPEED PRINTERS

Six types of printers (see Table 1-2) produce printed reports, listings, etc., at speeds
which vary from 450 to 1, 300 lines per minute, Processed information is printed from any pro-
grammer-assigned area in memory. A single program instruction — the Move Characters and
Edit instruction — allows the programmer to punctuate the output date, suppress zeros, and in-

sert identifying symbols in the data prior to printing.

Print Buffer
With the addition of the Print Buffer (Feature 036), the amount of central processor mem-
ory cycles required for data transfer to the printer is reduced to less than 1%, Thus, more than

99% of the central processor time is available for program execution. This feature is available

only for the Type 222-3, -4, -5, and -6 Printers.

<

MAGNETIC TAPE UNITS

Magnetic tape is a compact and highly versatile medium for the storage of programs and
data files. Two complete families of industry-acclaimed tape units are available with Series 200
processors (see Table 1-3): 1/2-inch tape units (10 types) transfer data at speeds ranging from
4,800 to 96,000 characters per second; three types of 3/4-inch tape units read/write from

32,000 to 88, 800 characters per second. The capability of processing nine-track, 1/2-inch tape

is also provided,

1200 BPI Recording Density

The 1200-bits-per-inch recording density (Feature 054) provides the Type 204B-9 Mag-
netic Tape Unit with the capability of reading and writing data at a density of 1200 bits per inch
1-8 #2-139

SECTION I. SERIES 200 COMPONENTS

(bpi) on Dupont Crolyn magnetic tape. The 1200-bpi recording density enables the 204B-9 to

achieve a transfer rate of 144, 000 characters per second,

Table 1-2. High-Speed Printers

222-1 (96 print positions) 650-1, 300 lines/minute 1 1 1

222-2 (108 print positions) 650-1, 300 lines/minute 1 1 1

222-3 (120 or 132 print 650-1, 300 lines/minute 1 1 1
positions)

222-4 (120 or 132 print 950-~1, 266 lines/minute 1 1 1
positions)

222-5 (120 or 132 print 450 lines/minute : 1 1 1
positions) ‘

222-6 (120 or 132 print 1100 lines/minute 1 1 1
positions)

2291 (120 or 132 print 400 lines/minute 1 1 1

positions)
1Re stricted to educational institutions.

Table 1-3. Magnetic Tape Units

1/2-Inch Magnetic Tape Units
204B-1 7,200/20, 000 characters/second 1-8 2 2
204B-2
204B-3 16,000/44, 500 characters/second 1-8 2 2
204B-4 :
204B-5 24,000/66, 700 characters/second 1-8 2 2
204B-7 20, 000/28, 800 (or 7,200/28, 800) 1-8 2 2
characters/second
204B-8 44,500/64, 000 {(or 16, 000/64, 000) 1-8 2 2
characters/second
204B-9 66, 700/96, 000 (or 24, 000/96, 000 or 1-8 2 2
'66,700/144, 000 or 96,000/144, 000)
characters/second
204B-11 4,800/13,300 characters/second 1-4 2 2
204B-12 ‘
204C-13 28, 800 characters/second 1-2 2 2
204C-14

1-9 #2-139

-SECTION I. SERIES 200 COMPONENTS

3/4-Inch Magnetic Tape Units
204A -1 32,000 characters/second 1-4 2 2
204A-2 64,000 characters/second 1-4 2 2
204A-3 88, 800 characters/second ' 1-4 2 2

DISK PACK DRIVES

Honeywell disk pack drives combine the desirable features of magnetic tape and magnetic
disk storage = unlimited shelf storage and fast random access, This is made possible by the
use of removable disk packs which may be recorded on, stored indefinitely (like magnetic tape),

and rapidly reinserted in an on-line drive., The various disk pack drives are listed in Table 1-4,

Table 1-4, Disk Pack Drives

258 4,6 million characters k 208, 333 characters/ 1-8 1 2
second

259 9.2 million characters | 208,333 characters/ 1-8 1 2
second

259A1 9. 2 million characters 147, 500 characters/ 1-8 1 2
second

259B | 9.2 million characters 147, 500 characters/ 1-8 1 2
second

1Used in systems with Type 201 and 201-1 Central Processors.

DISK FILES

The Honeywell disk files aré fixed-disk storage devices which provide an extremely high
on-line storage capacitjr (see Table 1-5). A single disk file subsystem's capacity may amount
to over 1.2 billion characters, Any on-line data track can be located in a maximum time of 120

milliseconds, and data can be transferred at a rate of 190, 000 characters per second.

1-10 #2-139

SECTION I. SERIES 200 COMPONENTS

Table 1-5, Disk Files

3 . Data Transf
261 150 million characters 190, 000 characters/second 1-8 1
262 300 million characters 190, 000 characters/second 1-4 1 2

RANDOM ACCESS DRUMS

The Series 200 drum storage capability features a drum control which can direct from one
to eight magnetic drums, each capable of storing 2.6 million characters of information (see
Table 1-6). Thus, a single drum subsystem can have a total capacity of over 20 million charac-
ters. Any record stored on the drum can be located in 27 milliseconds (average) and can be

transferred at the rate of 111, 000 characters per second,

Table 1-6. Random Access Drum Units

270A-1(2.6 million characters | 111, 000 characters/second 1-8 1 2

through
270A -8

HIGH-SPEED DRUMS

The high-speed drums are fixed-head storage devices which offer high speed performance
with fast access time. Up to four devices can be ‘operated with a single drum control, and thus
a control's capacity may amount to over 16,8 million characters, Any record stored on the

drums can be located in 8,6 milliseconds (average).

Angular Position Indicator

Features 072 and 073 (Angular Position Indicator) provide for optimum addressing of the
Type 265/266 and 267 High-Speed Drums, respectively. Information is provided at any given
time as to the current drum position relative to 360 degrees of rotation. Under heavy load con-
ditions with many demands waiting to be executed, the average access time of the drums may be

substantially reduced,

1-11 #2-139

SECTION I. SERIES 200 COMPONENTS

Table 1-7, High-Speed Drums

: o
: s
] Sk n o =

300, 000 char. /second

2. 1 million characters 2
2661 4, 2 million characters 300, 000 char. /second 2
2.672 4, 2 million characters 1, 200, 000 char, /second 2

1Used only in systems with Type 1251, 2201, or 4201 Central Processors.,

zUsed only in systems with Type 4201 Central Processors equipped with the High-Speed Third
Sector (Feature 4215),

PAPER TAPE EQUIPMENT

Paper tape is an ideal medium for recording data which originates at locations distant from
a central Series 200 installation and, as such, becomes particularly significant in data commun-
ication networks, A variety of standard commercial codes may be used with this relatively

inexpensive medium, Two paper tape devices are offered in Series 200 (see Table 1-8).

Table 1-8, Paper Tape Equipment

Paper Tape Reader 600 characters/second

Paper Tape Punch 120 characters/second

lThe total power requirement for the combination of a 209~2 reader and a 210 punch is 3 unitloads

DATA COMMUNICATION EQUIPMENT

The immediate and automatic response to an external interrupt by the Series 200 processor
is described on page 1-3. A common source of external interruption is a communication control.
These controls allow the Series 200 processor to communicate with distant locations (e.g.,
branch offices, warehouses, etc.) by receiving and transmitting data over toll and leased lines.

Four kinds of communication controls are available in Series 200: (1) two types of single-channel

1

‘_controls transfer entire messages over single lines; (2) three types of multi-channel controls

transfer messages character-by-character over as many as 63 different lines; (3) two types of

message-mode multi-channel controls transfer entire messages over a maximum of 63 lines;

and (4) two types of controls serve as interfaces with the Air Force AUTODIN network, All

1-12 #2-139

SECTION 1,

SERIES 200 COMPONENTS

controls are adaptable to a broad selection of lines, speeds, and terminal devices,

terminal device is Honeywell's Data Station (see Table 1-9),

Table 1-9, Data Communication Equipment

281-1
and -2

286-1,
-2, and
-3

286 -4,
.52
287

287-1

288-1
288-33
289-2

289-2A
289-3

289-4
289-5
289-7
289-8

289-93

Single-Channel Controls

Multi-Channel Controls

Message-Mode, Multi-
Channel Controls

AUTODIN Communica-
tion Control

(USASCII) AUTODIN
Communication Control

Data Station Central
Control

Data Station Central
Control

Data Station Page
Printer & Keyboard

Keyboard

Data Station Page
Printer & Keyboard

Data Station Paper
Tape Reader

Data Station Paper
Tape Punch

Data Station Card
Reader

Data Station Optical
Bar Code Reader

Remote Line Printer

. . £
Communication Controls

Up to 5, 100 characters/
second

Up to 300 characters/
second/line

Up to 7, 000 characters/
second (all lines)

Up to at least 4, 800
baud

Up to at least 4, 800
baud

Remote Terminal Devicel

120 characters/second
300 characters/second
10 characters/second

10 characters/second

40 characters/second
120 characters/second
120 characters/second
143 characters/second
50 characters/second

300 characters/second

1 line

1-63 lines

1-63 lines

1 line

1 line

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

One such

n/a
n/a
n/a

n/a

n/a
n/a
n/a
nfa
n/a

n/a

lThe Type 281-2 control requires two unit loads.

3
Both required for operation of either unit,

2No’c available for use on the Type 201 and 201-1 Central Processors,

1-13

#2-139

SECTION I. SERIES 200 COMPONENTS

A major requirement of many communication networks (e.g., inquiry handling or message
switching applications) is fast access to a stored file. Files may sometimes be stored in main
memory, but for large files main memory storage is economically unfeasible. File storage units

(i.e., the disk pack drives or drum units) fulfill the requirements of these applications.

A typical data communication network is shown in Figure }l-7, The pertinent components
of this system are: (1) a Type 201-2 processor; (2) a Type 259 Disk Pack Drive; (3) a Type 281
Commuﬁication Control; (4) two data setsl; and (5) a Honeywell Data Station, the remote terminal
device. Two particular devices connected to the Data Station are used in this example: a key-
board by which the inquiry is transmitted to the central processor, and a page printer which

prints the answer to the inquiry in readable form,

CONSOLE EQUIPMENT

Characteristics of the Type 220 consoles, described previously on page 1-2, are listed

in Table 1-10.

Table 1-10. Console Equipment

220-1,{ Operator's Console Typing Speed (input); or 1 1 2
-3 10 char, /sec. (output)

VISUAL INFORMATION PROJECTION DEVICES

Cathode-ray tube (CRT) display units — for businesses requiring instantaneous visual ac=-
cess to data stored in computer files — are available to the Series 200 user., These devices
operate on line to the computer, either locally via direct physical connection or from remote
locations via communication facilities. As shown in Table 1-11, the display devices provide a
variety of keyboard arrangements: numeric, numeric/block alpha, and typewriter. An 8-bit
code (7-bit USASCII plus parity) is used for synchronous transmission and a 10-bit code (7~bit

USASCII plus parity and start and stop bits) for asynchronous transmission,

1 R . : . .
A data set is required to convert the data signals used by the communication control to signals
acceptable for transmission over communication lines,

1-14 , #2-139

SECTION I.

SERIES

200 COMPONENTS

KEYBOARD m—
TYPE 288- : ‘e :
DATA SZTETIE)N 1. Customer inquiry is typed on keyboard in
CENTRAL CONTROL form of a coded message.
PRINTER
DATA SET
2. Message signals are converted to a form
acceptable for transmission line.
3. Message is transmitted over transmission
line.
DATA SET 4. Message signals are reconverted.
l 5. Control generates interrupt signal and trans-
TYPE 28I fers incoming message to preassigned
g%.”:g:"" memory location as directed by interrupt
CONTROL service routine.
TYPE 20t-2 PROCESSOR
5161616, 616106 6. Stored interrupt service routine interprets
. message and issues instructions to read and
T M update the customer's record in a file stored
N in Type 259 Disk Pack Drive.
TYPE 257 7. Type 257 control directs the execution of the
DISK
PACK instructions issued by the stored interrupt-
DRIVE .
CONTROL program
8. Customer's record is read and updated ac~
cording to instructions. Record is read into
TYPE 259 preassigned location in interrupt routine
DISK PACK DRIVE (in central processor memory), from which
the answer to the inquiry is sent back to the
Data Station. (Answer to inquiry is printed
by page printer.)
Figure 1-7. Customer Inquiry Handling via Typical Communications Network

1-15

#2-139

SECTION I.

SERIES 200 COMPONENTS

303
311
312

304

317

318

Table 1-11. Visual Information Projection Devices

Display Station
(Typewriter keyboard)

Display Station (15-key
block numeric keyboard)

Display Station (43-key
numeric /block alpha
keyboard)

Display Station (Navcor
electronic typewriter
keyboard)

Display Station
(no keyboard)
Display Station
(no keyboard)

1200-2400 baud

12 for
basic con-
trol, plus
12 for
each ex-
pansion
module

n/a

n/a

TELLER TERMINAL EQUIPMENT

Honeywell Teller Terminal equipment permits more efficient banking procedures through

The Type 370 Teller

on-the-counter, on-line processing of all teller~assigned transactions,

Terminal is used by the teller for all his bank transactions, and a remote transceiver transmits

transaction information between the Type 370 and the computer,

Data is transmitted asynchro-

nously via a modified USASCII-type code permitting combinations of similarly coded peripheral

devices to share common networks.,

parity bit, and a stop bit. Specifications of the Type 370 are shown in Table 1-12,

Table 1-12,

This code consists of a start bit, seven data bits, an odd

Teller Terminal Equipment

370

Teller Terminal

120 characters/second| 1, 2, 6, or
10

not

applicable

not
applicable

ADDITIONAL PERIPHERAL DEVICES

A number of other peripheral devices are included in the Series 200 line, General charac-

teristics of these devices are shown in Table 1-13,

#2-139

SECTION I. SERIES 200 COMPONENTS

Table 1-13, Additional Peripheral Devices

212 On-Line 120, 000 characters/second 1 1 1

Adapter
212-1 Central Pro- 167,000 characters/second 1 2 2
cessor Adapter
213-3 | Interval Timer Range: 100 microseconds to 1 1 1
200 milliseconds
213-4 Time=-of-Day Range: 00:00:00,0 to 1 1 1
Cleck 23:59:59.9 (hours,

minutes, seconds,
and tenths of seconds)

232 MICR Reader- Up to 600 documents/minute 1 1 1
Sorter and
Control

233-2 | MICR Reader- Up to 1, 560 documents/minute 1 1 ' 1

Sorter Control
for Burroughs

B103

234 Plotter Control Plotting Speed: Up to 300 1 1 1
for Calcomp increments per second (in any
Plotters of eight directions)

235 Optical Journal’ 26 or 52 lines/second 1 1 1

Reader Control

237 Bill Feed 600 lines/minute; or up to 800 1 2 2
Printer Control cards/minute

PERIPHERAL DATA TRANSFER OPERATION

One of the major features of Series 200 is the degree of peripheral simultaneity that can be

achieved by the various processors, The Model 200 processors (Types 201, 201-1, and 201-2)
and the Type 1201 processor can perform up to four peripheral operations simultaneously; the
Type 1251, 2201, and 4201 processors may perform as many as six, eight, and sixteen simul-
taneous peripheral operations, reépectively. While all these operations are being executed, the
central processor continues its internal processing. The ability to perform simultaneous periph=
eral operations derives from an internal unit of the central processor — the input/output traffic
control — which guarantees a peripheral control access to main memory when data is to be trans-
ferred, The manner in which the traffic control does this is explained in Section II. The data

path used by the traffic control to transfer data (see Figure 1-8) is described below,

Peripheral Addresses and Unit Loads

When installed in a Series 200 computer system, peripheral controls (and their associated

1-17 #2-139

SECTION I. SERIES 200 COMPONENTS

devices) are permanently connected to the system. Each control is assigned one or two ad-
dresses, depending on the number of directions in which it can transfer data. It is by these
peripheral addresses that the controis are designated in input/output instructions. For example,
a card reader and its associated control can transfer data in only one direction — into the central
processor. The reader control is therefore assigned one address by which it is always designated
in an instruction. A combination card reader/card punch and control can transfer data in two
directions ~ into and out of the processor. It is thereby assigned two addresses: one address

is used to specify an input (card read) operation, while the othér is used to specify an output

{card punch) operation.

CENTRAL PROCESSOR

- MAIN
MEMORY

PERIPHERAL
INTERFACE

Figure 1-8. Basic Input/Output Data Path

The number of peripheral controls which a Series 200 processor can accommodate depends
upon four factors: (1) the number of ''unit loads' of power required by the controls to be con-
nected; (2) the number of unit loads of power available from the processor; (3) the number of
peripheral addresses required to c}perate the controls; and (4) 'the number of address assignments
which the :proycessor provides. A peripheral control may require either one or two unit loads of
power and either one or two addresses. The numbers of unit loads and address assignments
available with each Series 200 processor are shown in Figure 1-9. The numbers of unitloads and
address assignments required by each peripheral control are shown in the preceding summary
tables of the peripheral equipment (Tables 1-1 through 1-~13).

Read/Write Channel

Note that the permanent connection established in Figure 1-8 is incomplete: there is no
connection across the peripheral interface. The input/putput data path is completed by one or
more "read/write channels, " inserted in the data path when the input/output instruction is exe-
cuted. (More than one read/write channel is sometimes necessary in order to accommodate the

1-18 #2-139

SECTION I. SERIES 200 COMPONENTS

high data transfer rates of some devices.) A read/write channel is not permanently connected

to any peripheral control but is assigned by the programmer to specify the data path between a

control and the processor.

TYPE ADDRESS ASSIGNMENTS UNIT LOADS
4201 48
2201
1251
1201 16
201-2 16
. 201-1 16
201 16
- OPTIONAL

Figure 1-9. Address Assignments and Unit Loads Available in Series 200 Processors

When the programmer codes an input/output instruction, he specifies among other things
the address of the peripheral control that is to send or receive data and the read/write channel(s)
over which the data transfer is to take place. When the instruction is executed, the specified
read/write channel is automatically inserted in the peripheral interface. For example, Figure
1-10 shows the data path formed during the execution of an input/output instruction in which the
programmer specifies that the card reader control is to transfer data over read/write channel 2
(RWC 2). The specified channel remains in the interface only for the duration of the card read
operation. When the data transfer terminates, RWC2 is automatically removed from the inter-

face and is available for reassignment by another instruction.

Read/write channels are the key to the achievable simultaneity in a Series 200 model: the
number of read/write channels associated with a particular processor determines the number of

peripheral operations that can be performed simulfaneously by that processor (see Figure 1-6).

CENTRAL PROCESSOR

MAIN

MEMORY

Figure 1-10. Data Path During Card Read Operation

1-19 | #2-139

SECTION I. SERIES 200 COMPONENTS

scribed in this manual.

OPTIONAL FEATURES

Table 1-14 lists the various features that can be added to the Series 200 processors de-

This table illustrates the realistic design principle of Series 200: a

Series 200 model can be specialized to meet the individual user's application; the application is

not compromised to meet the design of the model,

Certain features optional with some pyrocessors are standard with other larger types.

This is also part of the realistic approach to system development. Particularly significant is

the fact that specialization of a Series 200 model can occur at any time (not just at installation

time) to meet any increased workload or applications shift that might occur.

A summary description of the optional features is given below.

Table 1-14. Series 200 Optional Features

011 ADVANCED PROGRAMMING n/a n/a n/a

012 PROGRAM INTERRUPT

013 EDIT INSTRUCTION

015 8 ADDITIONAL UNIT LOADS |

016 AUXILIARY READ/WRITE CHANNEL

0191 OPTIONAL INSTRUCTION PACKAGE n/a n/a

1100A | SCIENTIFIC UNIT n/a n/a n/a

1101 SCIENTIFIC UNIT n/a n/a n/a

1114 STORAGE PROTECT n/a n/a n/a

1115 16 ADDITIONAL UNIT LOADS & ADDRESS n/a n/a n/a
ASSIGNMENTS & 4 ADDITIONAL RWC'S

1116 16 ADDITIONAL UNIT LOADS & ADDRESS n/a n/a n/a
ASSIGNMENTS & 8 ADDITIONAL RWC'S

1117 STORAGE PROTECT n/a n/a n/a

1118 EXTENDED MULTIPROGRAMMING & n/a n/a n/a
8-BIT TRANSFER

1120 EXTENDED MU_LTIPROGRAMMING & n/a n/a n/a
8-BIT TRANSFER

1121 EXTENDED MULTIPROGRAMMING & n/a n/a n/a n/a n/a
8-BIT TRANSFER

4214A | TWO BUFFERED I/0 SECTORS n/a n/a n/a n/a n/a

4214B | TWO ADDITIONAL BUFFERED 1/0 n/a n/a n/a n/a n/a
SECTORS :

4215 HIGH-SPEED THIRD SECTOR n/a n/a n/a nfa n/a

FF] STANDARD " OPTIONAL n/a] NOT AVAILABLE
1-20 #2-139

SECTION I. SERIES 200 COMPONENTS

ADVANCED PROGRAMMING

Two Advanced Programming Features increase the basic instruction repertoire of the
Model 200 processors, Feature 0l1 is available with the Type 201 and 201-1 processors, and
Feature 010 can be added to the Type 201-2 processor. Each feature includes the following
capabilities (see Table 1-15):

1. Additional program instructions.

2. The ability to modify instruction addresses via indexed or indirect addressing
(described in Section IV),

3. A '"read reverse'' capability with magnetic and paper tape units.,

Table 1-15. Model 200 Advanced Programming Feature

Program Instructions Program Instructions
1. Zero and Add 1. Zero and Add
2. Zero and Subtract 2. Zero and Subtract
3. Branch if Character Equal 3. Branch if Character Equal
4. Change Sequencing Mode 4, Change Sequencing Mode
5. Change Addressing Mode (expanded version)1 5. Change Addressing Model
6. Extended Move 6. Extended Move
7. Move and Translate 7. Move and Translate
8. Branch on Character Condition (expanded 8. Branch on Character Condition (ex-
version) panded version)
9. Branch on Bit Equal 9. Load Control Regi sters?
Address Modification Address Modification
1. Indexed addressing via 6 or 15 index 1. Indexed addressing via 6 or 15 index
registers3 _ registers3
2. Indirect addressing 2. Indirect addressing
Read Reverse Read Reverse

Any Model 200 processor can read paper tape and 1/2-inch magnetic tapes in a reverse direction
and transfer the information to the main memory in such a manner that it is oriented in the
normal (forward) direction.

1The Change Addressing Mode instruction is available in Type 201 or 201-1 processors which
include either the Advanced Programming Feature or a main memory capacity greater than
4,096 characters. In the Type 201-2 processor, the use of this instruction with 2~ and 3-
character addressing is standard; however, its use with 4-character addressing and/or item-
mark trapping requires the presence of the Advanced Programming Instructions.

2
The Load Control Registers instruction, optional with the Type 201 and 201-1 processors, is
included in the standard instruction repertoire of the Type 201-2 processor.

3The Type 201-1 and 201-2 processors with the Advanced Programming Feature contain 6 in-
dex registers in the three-character addressing mode and 15 index registers in the four-char-
acter mode. The Type 201 processor with the Advanced Programming Feature contains six
index registers, regardless of addressing mode.

1-21 #2-139

SECTION I. SERIES 200 COMPONENTS

PROGRAM INTERRUPT

This featur;e, whose basic functions are described on page 1-3, is an optional feature for
the Type 201 procéssor and is standard for all other processors described herein. A detailed
description of program interruption, including conditions which must be present for an interrupt
to occur, processor activities which are automatically performed when the interrupt takes place,

and the programming of interrupt service routines, is given in Appendix D.

EDIT INSTRUCTION

A comprehensive instruction — Move Characters and Edit — is optionally available with
the Model 200 processors and is a standard feature with the Type 1201, 1251, 2201, and 4201
processors, Processed information is edited before being converted to an output medium (e. g.,
a printed document) by the suppression of unwanted characters and symbols and the insertion of
identifying symbols such as the dollar sign, decimal point, and asterisk. The Move Characters

and Edit instruction is described on page 8-104.

ADDITIONAL READ/WRITE CHANNELS, UNIT LOADS, AND ADDRESS ASSIGNMENTS

As explained above, the number of peripheral operations that can be performed simulta-
neously by a processor depends on the number of read/write channels available, and the number
of peripheral devices connectable to a processor depends on the number of unit loads and address
assignments associated with the processor. Four optional features allow a user to increase his
processor's peripheral flexibility by adding the following elements:

1. Feature 015 — Eight additional unit loads for a Model 200 processor. (The
address assignments required to specify the additional peripheral controls
enabled by this feature already exist in the basic 200 processors.)

2. Feature 016 — One additional (auxiliary) read/write channel for a Model 200
processor., (Auxiliary read/write channels are described on page 2-16.)

3. Feature 1115 — A second "I/O sector" for the Type 2201 processor., 1 This
sector consists of four additional read/write channels, 16 additional unit
loads, and 16 additional address assignments, thereby matching the pe-
ripheral capabilities of the basic I/O sector.

4. Feature 1116 — A third I/O sector for the Type 4201 processor.l (The
basic 4201 processor contains two I/O sectors.) The optional sector con=-
sists of four additional read/write channels, 16 additional unit loads, and 16
additional address assignments. In addition to the third sector, Feature 1116
includes two additional read/write channels to be used with sector 1 and two
additional channels to be used with sector 2. Feature 116 is described in
Appendix H.

5, Feature 4214A and 4214B — Provides the Type 4201 processor with buffered
I/O sectors for those applications where additional computer time or a higher
input/output transfer capability is required. Feature 4214A requires the
installation of Feature 1116, and Feature 4214B requires the installation of
Feature 4214A, These features are discussed in Appendix H.

An I/0 sector consists of three elements: 4 read/write channels, 16 unit loads, and 16 address
assignments. 1-22 #2-139

SECTION I. SERIES 200 COMPONENTS

6. Feature 4215 — A high-speed third sector for the Type 4201 processor. This
allows connection of I/O peripheral devices with transfer rates exceeding
500, 000 characters per second to the third sector. Feature 4215 requires
the installation of Feature 1116. These features are discussed in Appendix H.

STORAGE PROTECT

Two Storage Protect Features, identical in nature, are offered for the Type 1201/1251, and
2201 processors as Features 1114 and 1117, respectively. These features allow a programmer~
specified portion of the main memory (ana the contents thereof) to be shielded from accidental
alteration by programs running concurrently in the memory. An attempt to violate the protec-
tion of this area results in an '"internal" processor interruption. The program or programs
running in the protected memory area have 15 additional index registers at their disposal; these
registers can also be used by programs in the unprotected (or '"open'') memory area if desired.

The Storage Protect Features are described in Appendix E,

EXTENDED MULTIPROGRAMMING AND 8-BIT TRANSFER
The processing capabilities of the Models 1200, 1250, 2200, and 4200 are greatly extended

by the addition of the Extended Multiprogramming and 8-Bit Transfer Features. These amplified
capabilities are available as Features 1120, 1121, and 1118 for the Models 1200/1250, 2200,

and 4200, respectively. Features 1120 and 1121 require that the Models 1200/1250, and 2200 be
equipped with Storage Protect (Features 1114 and 1117, respectively); the Storage Protect capa-
bilities are automatically included in Feature 1118 for the Model 4200, In addition to the capa-
bilities supplied by the Storage Protect Features, extended multiprogramming provides storage
protection withmemory address relocation, interrupt masking, and instruction timeout. The 8-
bit transfer capability gives the Models 1200, 1250, 2200, and 4200 increased flexibility by allow-
ing either 8-bit or 6-bit information transfers between certain peripheral controls and main
memory. The Extended Multiprogramming and 8-Bit Transfer Features are described in detail

in Appendix G,

SCIENTIFIC UNIT

The scientific unit adds 14 scientifically oriented instructions to the Series 200 repertoire.
The two functionally identical units — Feature 1100A (available with the Type 1201, 1251, and

2201 processors) and Feature 1101 (for the Type 4201) — are summarized in Appendix F,

FEATURE 0191

Feature 0191, which is available on the 1201, 1251, and 2201 processors and standard on
the 4201 processor, enhances the instruction repertoire of the processor and affords increased
compatibility with competitive equipment, This feature provides two additional instructions —

Move or Scan (MOS) and Table Lookup (TLU) — and also includes the "S'" (Special) mode of

1-23 #2-139

SECTION I. SERIES 200 COMPONENTS

processing. The "S'" mode of procés sing, which is implemented by the variant character of the
Change Addressing Mode (CAM) instruction, enables the processor to manipulate the Add, Sub-
tract, Zero Add, Zero Subtract, and Branch if Character Equal instructions in a special way.,
These instructions are described in Section VIII of this manual. The Move or Scan and Table
Lookup Instructions, which are assembled by Easycoder Assembler D, are also discussed in

Section VIII.

1-24 #2-139

THE CENTRAL
PROCESSOR

A Series 200 central processor is logically divided into five basic units (see Figure 2-1):

a main memory, a control memory, an arithmetic unit, a control unit, and an input/output

traffic control.

MAIN MEMORY CONTROL MEMORY | | 1/

"ARITHMETIC UNIT

Figure 2-1. Logical Division of Series 200 Central Processor

MAIN MEMORY

The main memory contains from 2, 048 to 524, 288 character locations of magnetic core

storage which are used to store program instructions and data during a program run (see

Figure 2-2). Every character location is identified by a unique numeric address. This means

that an instruction can designate the exact storage locations that contain the data needed for a

particular operation.

#2-139

SECTION II. THE CENTRAL PROCESSOR

MAIN MEMORY

STORED;
PROGRAM
AND/OR DATA

SOOI
SRRRRRKER

AN

Figure 2-2. Main Memory Functions

Figure 2-3 shows one character position of memory with the name of each core shown to the
right. Each core can be individually magnetized to represent either a one or a zero, depending
upon its polarity. Moving from bottom to top in Figure 2-3, the first six cores are used for data
storage, the seventh and eighth cores are used to define the limits of storage areas (these two
cores are frequently referred to as 'punctuation' bits), and the ninth core is used for parity

checking.

Figure 2-4 shows how typical numeric, alphabetic, and special characters are stored inthe
main memory. Shaded circles represent cores containing 1-bits. Bits 1, 2, 4, and 8 in each
character position can be combined to represent the decimal values zero through nine. This
four-bit representation of decimal numbers is known as binary-coded decimal (BCD). Alphabetic
and special characters are represented by a combination of the numeric (1, 2, 4, and 8) and the
A and B cores. The A and B cores correspond to zone punches on cards: the A bit represents a
12-punch, the B bit represents an 11-punch, a combination of the A and B bits represents a 0-
punch. A listing of the main memory formats for all valid Series 200 characters appears in

Appendix B,

The word-mark bit (WM) is used to define logical storage fields in the memory. Informa-
tion is rarely stored in the memory as single, independent characters; instead, adjacent charac-
ter positions are usually grouped to form storage fields. As described in Section III, the word-

mark bit is instrumental in defining the size of such fields.

2-2 v #2-139

SECTION II. THE CENTRAL PROCESSOR

[e) PARITY BIT (P) ' P 1O O @) @)
© ITEM-MARK BIT (M) }Puncwmou BITS ? w1 O O O O O O O O
(@) WORD-MARK BIT (WM) TIw]lOIO[O]OIO|O]OO
C

0 | Y i] ¢ [*1oJo]o[0 O
O | aer 112]O0]0O|O O
(@) 8 BIT) DATA BITS R | O O O O O
(@) 4BIT g:#rgemc ? 4 O O O O
O | zerm V2 OO0 O O
L %) I BIT) OO O |0 OO
Figure 2-3. One Memory Position Figure 2-4. Representation of Characters

in Magnetic Core Storage

Consecutive storage fields are frequently grouped together to form a unit of information
called an item. As its name implies, the item-mark bit (IM) is used to define the size of an

item in the main memory (see Section III).

A unit of information that is to be transferred between the main memory and a peripheral
device is called a record. A record can be of any length, from one character up to virtually the
maximum number of characters in the memory. Both the word-mark and item-mark bits are

used in defining the size of a record (see Section III).

The parity bit (P) is used in conjunction with an automatic error-detection technique
known as parity checking. Every character must be represented in the central processor by an
odd number of 1-bits. (Punctuation bits are excluded from this rule except in the Type 4201.)
Whenever a character is moved from one location to another it is automatically checked to
determine if an odd number of data 1-bits has been moved. In Figure 2-4, the characters 0, 9,
B, M, and (are represented by an even number of ones in the data bit positions. Circuitry
within the central processor automatically adds a one in the parity bit positions of these

characters to provide the required odd bit count.

MEMORY CYCLE

The time interval required by a processor to read or write the contents of a unit location
is termed memory cycle time. For the processors described in this manual, memory cycle time

ranges from 2 microseconds (Model 200) down to 750 nanoseconds (Model 4200).

2-3 ‘ ‘ #2-139

SECTION II. THE CENTRAL PROCESSOR

MAIN MEMORY IN THE TYPE 4201 PROCESSOR

The rriain memory of the Type 4201 processor consists of from one to four modules of
core memory and a memory controller (see Figure 2-5)., Each module is four characters in
width and either 16,384 or 32,768 four-character groups in length. Thus, a module contains
either 65,536 or 131,072 characters. Data storage capacities of main memory range from

131,072 to 524,288 characters.

MEMORY MODULES (I-4)

CENTRAL {PROCESSOR 1/0 CONTROLLER

Figure 2-5. Type 4201 Memory Subsystem

Table 2-1 below shows the memory configurations available with the Type 4201 processors.

Table 2-1. Memory Configurations for Type 4201 Processors

4201-3 131, 072

4201-4 196, 608

4201-5 262,144

4201-5A% (2-way 262, 144
interleaving)

4201-6 327,680

4201-7 393,216 -

4201-8 458, 752

4201-9% (4-way 524,288
interleaving)

*Memory addresses are interleaved across modules in these
processors. ‘

2-4 . #2-139

SECTION II. THE CENTRAL PROCESSOR

Memory Access

The 4201 processor always reads or writes the contents of four character locations at a
time; such a four-character grouping is termed a "word.'" Thus, the Model 4200 has an
effective memory cycle time of 750/4 or 188 nanoseconds per character.

"

Processing Unit

Although the 4201 processor always reads or writes a four-character word every memory
cycle, the portion of the accessed word actually available for processing, called a ""processing
unit, ' varies from one to four characters, depending upon the operation being performed. The
processing unit for a move instructioﬁ is up to four characters, whereas arithmetic and I/0 in-

structions process one character at a time.

Memory Controller

The memory controller provides maximum simultaneity of mémory operations by its
ability to transfer data to or from merriory modules simultaneously. This is accomplished
by providing a set of read/write electronics for each memory module, so that access can be
made to a module independently of all other modules. This ability allows internal processing
and input/output operations to proceed independently and simultaneous‘ly. Simultaneous access
occurs as long as the central processor and the I/O controller request access to different
modules of memory. Whenever their requests are for the same module, the memory controller

resolves the conflict by giving priority to the input/output controller.

When memory is addressed, a 4-character group containing the addressed character is
delivered to either the central processor or the I/O controller. The delivery of four characters
serves to significantly reduce the number of memory references for many operations and greatly

increases the operating speed of the system.

Interleaved Addressing

Iri,order to achieve optimum utilization of memory, an interleaved addressing scheme has
been incorporated in two Model 4200 central processors (Types 4201-5A and -9). The use of the
interleaved memory permits faster program execution by allowing multiple access to separate
modules of memory to proceed simultaneously. This method of addressing is accomplished by
assigning successive addresses to different modules so that a program written in a normal
sequential manner will address different modules as it proceeds. For example, in the Type
4201-9 Central Processor, there are four memory modules which permit 4-way interleaving
of accesses. With four modules, addresses 0, 1, 2, 3 are assigned to the first module; 4, 5, 6,

7 are assigned to the second module, etc. (see Figure 2-6).

2-5 #2-139

SECTION II. THE CENTRAL PROCESSOR

MODULE I MODULE 2 MODULE 3 : MODULE 4
20 | 2122 |23 24 |25 |26 |27 30 37
o[1]2]3 4 |56 |7 10 |1 l1213 4 115 (e |17

NOTE: NUMBERS WITHIN MEMORY MODULES
INDICATE ADDRESSES (OCTAL) OF
CHARACTERS IN MEMORY

Figure 2-6. Model 4200 Memory Interleaving (Type 4201-9 Central Processor)

In addition, interleaved addressing further increases system performance by allowing the
central processor to overlap many of its memory operations. This is accomplished by a unique
design of the addressing circuitry of the Model 4200. Although 750 nanoseconds are requiréd
to cycle main memory, the addressing and data path circuitry of the processor is used only for
a portion of the cycle time (approximately 500'nanoseconds). Therefore, the addressing
circuitry is available for another memory access before the first access is completed. By
interleaving, the instructions and operands will have been distributed among the available
modules; therefore, the central processor is able to overlap successive fetches of both operands

and the characters within an instruction.

Parity Check

Unlike the other Series 200 processors, the 4201 includes the punctuation bits in its parity
check., Whenever a character is moved from one location to another, it is automatically checked

to determine if an odd number of 1-bits in the data and punctuation positions has been moved.

CONTROL MEMORY

The control memory ié a high-speed storage unit consisting of up to 57 control registers.
(The number of registers actually available depends on the system configuration.) Normally,
control registers contain the addresses of instructions and data being processed during a program
run. One such register, called fhe A-address register, is illustrated in Figure 2-7. In this
example, the A-address register contains an address (206) designating a main memory location,

which in turn contains a unit of information (the decimal digit 7) to be added in the arithmetic unit.

2-6 #2-139

SECTION II. THE CENTRAL PROCESSOR

REGISTER CONTENTS OF
A-ADDRESS REGISTER

ADDRESS

CONTENTS OF
LOCATION 206

Figure 2-7. Typical Control Register Function

In Series 200 processors, other than the Type 4201, that do not include the Scientific Unit
(Feature 1100A or 1101), each control register is only as large as it need be to contain the
largest, or '"highest,' main memory address in the user's processor. Thus, a processor whose
main memory capacity is 8,192 characters contains control memory registers which are each
13 bits long (13 bits allows 8,192 addresses), while the control registers of a processor contain-
ing 131, 072 characters of memory storage are each 17 bits long (see Table 2-2). In a Type 4201
processor, all 19 control register bits are active, regardless of main memory size. When the
Scientific Unit is included in the system, each control register is 18 bits (three characters) long

(or 19 bits in the case of the Type 4201).

Table 2-2. Size of Control Memory Registers (Models 200/1200/1250/2200/4200)

MAIN MEMORY 4,096 | 8,192 | 16,384 | 32,768 | 65,536 | 131,072 | 262,144 | 524,288
CAPACITY
(Characters)

SIZE OF 12 13 14 15 16 17 18 24%
CONTROL
MEMORY
REGISTER (Bits)

*19 address bits and 5 parity bits.

Control registers can be addressed either by programmed instruction or from the oper-
ator's control panel or console. For instance, an instruction can change the course of a pro-
gram by manipulating the contents of the control register that governs program sequence; the
operator can interrogate a control register to determine the exact location at which the program

has halted, etc. When a register is addressed by programmed instruction, it is specified by

2-17 #2-139

SECTION II. THE CENTRAL PROCESSOR

means of a variant character in the instruction. A register is addressed from the control panel
or console by using the register's octal address. The functional name of each register and the

variant character which specifies the register are listed in Table 2-3.

ADDRESS REGISTERS

The A- and B-address registers, the two sequence registers, and the interrupt registers
are used to address main memory during the loading and execution of instructions. A detailed

description of these registers is presented in Section IV, “Addressing.'*

READ/WRITE COUNTERS

Data is transferred between the main memory and a peripheral device via a read/write
channel (described in Section I). Associated with a read/write channel are two location counters:
a starting location counter and a current location counter. When a peripheral transfer is to be
performed, the address at which the transfer is to begin is stored in both counters. Then, as
each successive character is transferred, the contents of the current location counter are
incremented by one so that when the transfer is completed, this counter contains the address of
the character position immediately following the position that terminated the transfer, i.e., one

beyond the record-marked location (see Section III).

The availability of the starting and current addresses associated with an input/output area

greatly simplifies the manipulation of variable-length records.

Table 2-3. Control Memory Registers

REGISTERS STANDARD IN ALL PROCESSORS
AAR | A-Address Register 67
BAR B-Address Register 70
SR Sequence Register 77
CLCl1 Read/Write Channel 1 — Current Location Counter 01
CL.C2 Read/Write Channel 2 — Current Location Counter 02
CLC3 Read/Write Channel 3 — Current Location Counter 03
SLC1 Read/Write Channel 1 — Starting Location Counter 11
SLC2 Read/Write Channel 2 — Starting Location Counter 12
SLC3 Read/Write Channel 3 — Starting Location Counter 13
WR1 Work Register 11 -
WR2 Work Register 2. -
WR3 Work Register 31 -

2-8 ~ #2-139

SECTION II. THE CENTRAL PROCESSOR

Table 2-3 (cont). Control Memory Registers

FEATURE 010 or 011 (ADVANCED PROGRAMMING) |
CSR Change Sequence Register 64
FEATURE 012 (PROGRAM INTERRUPT)
EIR External Interrupt Register 66
FEATURE 016 (AUXILIARY RWC)
CLCI' Read/Write Channel 1' - Current Location Counter 05
SLC1' Read/Write Channel 1' - Starting Location Counter 15
FEATURES 1100A & 1101 (SCIENTIFIC UNITS)
ACO Floating~Point Accumulator 02 -
ACl Floating-Point Accumulator 12 -
AC2 Floating -Point Accumulator 22 -
AC3 Floating-Point Accumulator 32 -
REGISTERS STANDARD ON 4201, OTHERWISE NOT AVAILABLE
WR4 Work Register 41 -
WR5 Work Register 51 -
WR6 Work Register 6 -
WR7 Work Register 71 -
FEATURES 1114, 1117, & 1118 (STORAGE PROTECTION)
IIR Internal Interrupt Register 76
FEATURE 1115 (SECOND INPUT /OUTPUT SECTOR) - (STANDARD ON 1251 AND 4201)
CLC4 Read/Write Channel 4 - Current Location Counter 21
CLC5 Read/Write Channel 5 - Current Location Counter 22
CLC6 Read/Write Channel 6 - Current Location Counter 23
CcLC4! Read/Write Channel 4' - Current Location Counter 25
SLC4 Read/Write Channel 4 - Starting Location Counter 31
SLC5 Read/Write Channel 5 - Starting Location Counter 32
SL.C6 Read/Write Channel 6 - Starting Location Counter 33
SL.C4! Read/Write Channel 4' - Starting Location Counter 35
FEATURE 1116 (THIRD INPUT/OUTPUT SECTOR FOR 4201)
CLC5! Read/Write Channel 5' - Current Location Counter 26
CLC6! Reéad/Write Channel 6' - Current Location Counter 27
SLC5! Read/Write Channel 5' - Starting Location Counter 36
SLC6!' Read/Write Channel 6' - Starting Location Counter 37

2-9

#2-139

SECTION II. THE CENTRAL PROCESSOR

Table 2-3 (cont). Control Memory Registers

CLC8 Read/Write Channel 8 - Current Location Counter 00
CLC9 Read/Write Channel 9 - Current Location Counter 20
SLC8 Read/Write Channel 8 - Starting Location Counter 10
SLC9 Read/Write Channel 9 - Starting Location Counter 30
CcLC8! Read/Write Channel 8' - Current Location Counter 04
CLC9! Read/Write Channel 9' - Current Location Counter 24
SLCs! Read/Write Channel 8' - Starting Location Counter 14
SLC9! Read/Write Channel 9' - Starting Location Counter 34
cLcz2! Read/Write Channel 2' - Current Location Counter - 06
CLC3! Read/Write Channel 3' - Current Location Counter 07
SsLC2! Read/Write Channel 2' - Starting Location Counter 16
SLC3! Read/Write Channel 3! - Starting Location Counter 17
1These registers are available only to the processor and must not be addressed by the program.
2These registers (accumulators) can only be addressed by the instructions included in Features
1100A or 1101 (see Appendix F),
D

ARITHMETIC UNIT

Arithmetic and logical operations are performed by a configuration of components commonly
referred to as the arithmetic unit, Basically, this unit is composed of an adder, capable of per-
forming both binary and decimal arithmetic, and two operand storage registers. 1 Each one of
these units is capable of storing a single six-bit character in processors smaller than the Type
4201. The adder and operand storage registers in the 4201 processor can store four characters
at a time.2 In general terms, an arithmetic or logic operation is performed as follows (see
Figure 2-8):

1. An instruction in the stored program specifies the type of operation to be
performed and the main memory storage locations .of the data to be manipulated.

2. The operands are transferred to the operand storage registers a character
(Models 200, 1200, 1250, and 2200) or a word (Model 4200) at a time, beginning
with the rightmost character in each operand.

3. In processors other than the 4201, each pair of characters (or, in the Model
4200, each pair of words) that enters the storage registers is combined in
the adder. The result is stored in the main memory as specified by the pro-
gram instruction. If a carry is generated, it is stored in the adder and
combined with the next higher-~order pair of characters.

4. In the 4201 processor, the storage registers and adder are used in the same
manner as in other processors, except when performing address indexing or

1The contents of these registers are not accessible to the programmer,

2Wh‘en floating point is installed in the 4201, the adder and operand storage registers are exten-
ded to a 6-character width in order to handle floating point operands.

2-10 | #2-139

SECTION II. THE CENTRAL PROCESSOR

floating-point operations. ! That is, operations other than these two types are
performed on a character-by-character basis. However, address indexing and
floating -point operations take advantage of the full width of the 4201 adder.

m OPERAND .
STORAGE ADDER
m REGISTERS

Figure 2-8. Data Flow Between Main Memory and Arithmetic Unit

CONTROL UNIT
The control unit is the hub of central processor activities (see Figure 2-9). Its major
function is to select, interpret, and execute all of the instructions in the stored program. In
carrying out these instructions, the control unit coordinates the various activities of receiving
data from input devices, transferring data within the central processor, and transferringproc-
essed data to the output units. The main memory addresses used by the control unit in perform-

ing these tasks are stored in the registers of the control memory.

Figure 2-9. Control Unit Activities

1
When floating point is installed in the 4201, the adder and operand storage registers are exten-
ded to a 6-character width in order to handle floating point operands.

2-11 #2-139

SECTION II. THE CENTRAL PROCESSOR

INPUT/OUTPUT TRAFFIC CONTROL

The input/output traffic control is, as its name implies, the unit which regulates the flow
{or "traffic") of data transferred during input/output activities. It works in conjunction with the
central processor control unit to allocate central processor time to input/output operations and to

identify the peripheral controls which are to use that time to transfer data(see Figure 2-10).

The I/0 traffic control enables from 3 (Model 200 minimum) to 16 (Model 4200 maximum)
simultaneous input /output operations to occur concurrently with the internal computations of the
processor. In processors other than the 4201, this simultaneity is achieved by the traffic con-
trol's allocation of consecutive memory cycles to either peripheral controls or the centlra‘l

processor. In the Type 4201 processor, such allocation is not normally necessary, as independent

cycling of memory blocks allows absolute simultaneity between memory accesses for I/O and
computing operations (see page 2-4). Only when I/O and computing operations attempt to gain
access to the same memory block simultaneously does-the 4201 allocate memory cycles between

the two types of operations.

INPUT DEVICE
(TLIIRI LT
CRRIRELL

ORI
| #6%%% %% e

/0
TRAFFIC
CONTROL §

OUTPUT DEVICE

Figure 2-10. Input/Output Traffic Control Activities

MEMORY CYCLE DISTRIBUTION

Every peripheral data transfer involves some factor which prevents the device being used
from transferring data at a rate comparable to that of the central processor. Usually this factor
is mechanical — moving a card through the read station or a magnetic tape or disk past the read/
- write head — although in data communication it is the bit rate of the communication line. There-
fore, a peripheral device requires access to the central processor to transfer information to or

from the main memory during only a fraction of the time that the operation is proceeding. The

2-12 #2-139

SECTION II. THE CENTRAL PROCESSOR

periods in which the central processor is actually interrupted for data transfer are spaced over

the duration of the peripheral operation (see Figure 2-11).

TIME REQUIRED TO COMPLETE PERIPHERAL OPERATION

CENTRAL PROCESSOR TIME REQUIRED FOR DATA TRANSFER

Figure 2-11. Data Transfer Intervals During One Peripheral Operation

When a peripheral operation is in progress but is not using main memory (the gray areas
in Figure 2-11), another peripheral control may gain access to the main memory. This second
memory access can in turn give way to a third access by another control before the original

operation requires access to the memory again, etc. In other words, peripheral operations can

occur simultaneously with one another. The periods of time in which peripheral controls do not
require main memory access to transfer data are given to the central processor for its internal
activities, It is the function of the I/O traffic control to direct the sharing of main memory

cycles by the various peripheral devices and the central processor.

It was indicated on page 1-18 that in order for an I/O operation to proceed, the proérammer
must specify a read/write channel in the initiating peripheral instruction. This read/write channel
completes the path between main memory and the control for the peripheral device being addressed.
Input/output sectors (see page 1-22)consist of unit power loads, address assignments, and read/
write channels. Type 1251and 2201 processors may be equipped with two I/O sectors, Where this
is the case, the read/write channelassignedtoan operation must come from the sector to whichthe
device being addressed is connected. Normally, this rule also applies to the 4201, which always
has at least two sectors, but in that processor it is also possible to reassign RWC's outside of

their '"home!" sectors by means of "sector escape codes' (see below).

The rate at which each peripheral control must transfer data over a programmer-assigned
read/write channel(s) depends on the mechanical characteristics of the device connected to the
control. Thus, the transfer intervals shown in Figure 2-11 are spaced according to the device
being used. For instance, the transfer rate for the disk pack drive is considerably faster than
that for the card punch; therefore, the disk pack drive will require access to the main memory
more frequently than the card punch. The I/O traffic control monitors and honors the requests
for access to the main memory. In processors other than the 4201, it decides how each memory

cycle should be used — by a read/write channel or by the processor — as shown in Figure 2-13.

2-13 #2-139

SECTION II. THE CENTRAL PROCESSOR

The traffic control offers consecutive memory cycles to read/write channels, one memory
cycle per channel. If there is a demand on a particular channel when the cycle is offered, the
channel is granted access to the main memory for one cycle. During this cycle a single charac-
ter is transferred to or from memory. If the channel does not require the memory cycle, the

cycle is given to the central processor for internal data processing.

In the Type 4201 processor, if an I/O operation requires access to the same memory block
as the central processor, the I/O operation is given priority and the central processor stalls for
one memory cycle. No interference (stall) occurs if the I/O operation and the central processor

are accessing different memory blocks (i.e., memory accesses are simultaneous).
NOTE: In the Type 4201 processor, although a four-character word is moved in
one memory cycle during internal processor operations, a single six-bit
character is moved during input/output operations.

GIVE THE PRESENT
MEMORY CYCLE TO
THE RWC FOR
DATA TRANSFER

1S THERE A
DEMAND ON AN
RWC ?

GIVE THE CYCLE TO
THE PROCESSOR FOR
MAIN MEMORY ACCESS

PROCEED TO
NEXT CYCLE

Y
Figure 2-12. Logical Decision Performed by Input/Output Traffic Control

The cyclic offering of memory cycles to read/write channels is shown in Figure 2-13. If
the channel being offered a memory cycle is an optional channel (noted by an asterisk) that is not
present in the user's system, the cycle is given unconditionally to the central processor. 1 Note
that every fourth Model 1200 cycle is also given unconditionally to the processor. Note further
that most channels available with the Models 200, 1200, 1250, and 2200 are offered main memory

access once every six microseconds, Input/output speeds upto 167, 000 characters per secondcanbe

1
There is one exception to this statement: if a Model 200 does not include RWC1' (Feature 016),
the cycle is offered to RWCI1.

2-14 #2-139

SECTION II. THE CENTRAL PROCESSOR

PROGRESSION OF TIME 8 10 12
(IN MICROSECONDS)
MODEL 200 | ! |
MEMORY CYCLES: 5 6
s i & .
RWC'S: 1 2 3 1 OR1'® 2 3

MODEL 1200

MEMORY CYCLES:

PROC-

RWC'S: 3 ESSOR

MODEL 1250

MEMORY CYCLES!

SECTOR 1 RWC'S:

SECTOR 2 RWC'S:

oo
i

T

s

MODEL 2200

MEMORY CYCLES:

SECTOR { RWC'S:

SECTOR 2 RWC'S:

MODEL 4200

MEMORY CYCLES: 13114 |15 |16

, T30R
SECTOR | RWC'S: § 3%

e . sOR] B OR|
SECTOR 2 RWC'S: . lsw| £ lew

SECTOR 3 RWC'S:

(*)JCHANNEL AVAILABLE AS AN OPTIONAL FEATURE.

Figure 2-13. Symbolic Representation of Input/Output Traffic Controll

1This figure is not applicable to 4201 operations employing channel transfer rates higher than the
minimum.

2-15 #2-139

SECTION II. THE CENTRAL PROCESSOR

maintained by accessing memory at these intervals. In processors other than 4201, transfer rates
higher than those attainable with a single read/write channel can be achieved by interlocking two

or more read/write channels, as described below.

Rather than interlocking RWC's, the Model 4200 traffic control offers variable numbers of
memory cycles per unit of time to each read/write channel, depending upon the read/write channel
assignment code used in the instruction which initiates the operation. From one to six cyclés
are offered to a read/write channel every 12 microseconds, giving channel data transfer capacities
ranging from 83, 300 to 500, 000 characters per second. Effectively, then, the 4201 incorporates

variable -speed read/write channels.

PRIMARY AND AUXILIARY READ/WRITE CHANNELS
RWCI1', RWC2', RWC3', RWC4', RWC5', RWC6', RWC8', and RWC9' are called auxiliary

read/write channels because of the manner in which they are granted access to the main memory
by the traffic control. For instance, the Model 200 traffic control offers one cycle to RWCI, the

next cycle to RWC2, the next cycle to RWC3, the next cycle to RWCI1', the next cycle to RWC2,

the next cycle to RWC3, the next cycle to RWCI1, etc. In other words, memory cycle allocation

alternates between a primary channel and its auxiliary channel.

Read/write channels not accompanied by auxiliary channels (e.g., RWC's 2 and 3 in the
Model 200) are each guaranteed access to the main memory every six microseconds (giving a
transfer rate of 167,000 characters per second), as shown in Figure 2-13. Primary channels
and auxiliary channels are each granted access every 12 microseconds, because access is

alternated between the two, thus providing a transfer rate of 83, 300 characters per second.

INTERLOCKING READ/WRITE CHANNELS

As indicated above, in order to achieve data transfer rates higher than those attainable
with a single read/write channel, it is necessary to interlock two or more read/write channels
in processors other than the 4201. In this manner, data transfer rates from 167,000 to 500, 000
characters per second are possible. The same instruction which initiates the data transfer op-
eration specifies whether or not channels are to be interlocked. When this procedure is used,
all of the cycles normally offered to the interlocked channels are made available to the single
data transfer operation. The transfer rate thus provided is equal to the sum of the rates attainable
individually with the interlocked channels. When the operation is completed, memory cycle
allocation returns to normal and channels are again offered cycles at the normal intervals.

Prograrhming procedures for channei interlocking are described beginning on page 8-110,

MODEL 4200 VARIABLE-SPEED READ/WRITE CHANNELS

As indicated above, the 4201 is equipped with variable-speed RWC's. No more than two

2-16 #2-139

SECTION II. THE CENTRAL PROCESSOR

RWC's (a primary and the corresponding auxiliary) are ever made busy by a single RWC assign-
ment. However, a single RWC assignment can still command a data transfer capacity of up to
500,000 characters per second. The most important advantage of this arrangement is that the
RWC's not made busy by a high-speed transfer are available for use in other operations. For
example, in order to handle a 250, 000-character-per-second I/O transfer, other processors
would require the interlocking of several channels. In the 4200, only one primary channel will

be tied up. The other RWC's in the same sector will still be available for use in other operations,
e.g., three 83,300~-character-per-second transfers. However, in no case can the total data

transfer rate of a single sector exceed 500,000 characters per second.

Another feature of the Model 4200 — the "sector escape code' — makes variable-speed
RWC's even more attractive. An escape code allows an RWC normally restricted to operating
in one sector to be used for I/O data transfers in another sector. For example, an escape code
can be used to assign RWC 1, normally used only in sector 1, to sector 2 I/O operation. Pro-

gramming procedures for Model 4200 RWC's are described in Section VIII.

Table 2-4. Summary of Central Processor Characteristics

I T ot . g . s
e i

MAIN MEMORY

PROCESSING UNIT Six-bit character. . Four-
character
word.

INSTRUCTION FORMAT Variable. Typical configuration: op code, two addresses, and variant

character.

ADDRESSING MODES Two=-, three-, and four-character addressing. Three~ and four-character

addresses can specify indexed and indirect addressing.

MEMORY CAPACITY 2, 048- 2, 048- 4,096~ 16,384~ 32,768~ 16, 384- 131,072~

(Characters) 32,768 65,536 65,536 131, 072 262, 144 262, 144 524,288

MEMORY CYCLE 2 2 2 1.5 1.5 1 .75 /word

(microseconds) (. 188/
character)

INDEX REGISTERS 0-6 0-15 0-15 15-30 15-30 15-30 15-30

CONTROL MEMORY

MEMORY CAPACITY 12-16 13-16 13-16 16-29 16-37 16-37 28-57

(Control Registers)

ACCESS TIME (Nanoseconds) 270 270 270 185 185 185 125

ARITHMETIC UNIT

OPERATIONS Decimal arithmetic, binary arithmetic, logical operations,

TYPICAL . s

OPERATING | D&% ‘

SPEEDS (3- AZ:‘;‘ @ 483 48ps 48us 35us 35us 25us 13us

character (A+B+B

address mode))

5-Digit

Compare 38ps 38us 38ps 29us 29us 2lps 10ps

(A:B)

CONTROL UNIT
CHECKING One parity bit with each character.
PROGRAM CONTROL Sequential selection, interpretation, and execution of all stored-program
instructions,
INPUT/OUTPUT TRAFFIC CONTROL

‘READ/WRITE CHANNELS 3-4 3-4 3-4 4 8 4-8 8-16

ADDRESS ASSIGNMENTS 16 16 16 16 32 16-32 32-48 N

UNIT LOADS 8-16 8-16 8-16 16 32 16-32 32-48

SIMULTANEOUS

OPERATIONS POSSIBLE 3-4 -4 3-4 4 & +-8 8-16

2-17 #2-139

DATA FORMAT

VARIABLE FIELD LENGTH

Information is stored in the main memory in groups of characters, which are called fields.
A field is, by definition, any group of characters that is treated as a unit. Series 200 computers
permit fields of any length, from one character up to the maximum number of characters in the
memory. This means that an instruction or data field occupies only that number of core storage

locations actually needed.

The use of variable-length fields requires that there be a method of indicating the actual
lengths of instruction fields and data fields. This requirement is fulfilled by the word-mark bit
mentioned in Section 2. The word-mark bit performs the following functions:

1. It terminates the retrieval of an instruction.

2. It terminates the execution of an instruction.

3. It defines the size of a data field.

Throughout this manual, the presence of a word mark will be indicated by a circle around
the character with which it is associated. The following points should be noted regarding the
use of word marks:

1. Word marks can be set and cleared by programmed instructions.

2. Word marks are set by the same routine that loads a program and data into
the main memory. Usually, word-mark assignments remain unchanged
throughout the execution of a program.

3. An instruction is terminated by a word mark in the storage position immediately
following its last (rightmost) character.

4. A data field is terminated by a word mark associated with its high-order
(leftmost) character. 1

1
The footnote on page 3-4 describes an exception.

3.1 #2-139

SECTION III, DATA FORMAT

INSTRUCTION FORMAT

An instruction is a coded statement which orders the computer to perform a fundamental
operation. A set of instructions suitably combined to perform a specific task is called a program

or routine.

As will be shown in Section V, the task of coding the instructions in a program is greatly
simplified by the use of the Easycoder symbolic programming system, The Easycoder Assembly ,
Program converts the symbolic coding written by the programmer into a machine language which

is acceptable to the internal logic of the machine.

OPERATION CODE

Basic to all instructions is an operation code, usually referred to as an op code, that de-
fines the fundamental operation to be performed. The programmer specifies an op code by using
a predefined mnemonic configuration; e.g., BA is the op code that specifies a '"binary add"
operation, MCW is the op code that specifies a '"move characters to word mark' operation. The
Easycoder Assembly Program automatically converts a mnemonic op code into a single-charac-
ter, machine-language op code and sets the word-mark bit in the character position in which it

is stored.

A AND B ADDRESSES

Most instructions also have two address portions, designated as the A address and the
B address. The address portions indicate the starting locations of the operand fields in the
main memory. Using the Easycoder language, the programmer can specify memory locations by

means of symbolic addresses or 'tags" (See Section V),

The Easycoder Assembly Program automatically assigns absolute memory addresses to
the symbolic addresses appearing in a program (see Figure 3-1). Thus, the programmer can

manipulate Opefands without regard to their actual storage locations in memory.

[S YMBOLIC ADDR.

ABSOLUTE MEMORY
(TAG) ADDRESS

Figure 3-1. Conversion of Symbolic Tags to Absolute Memory Addresses

3-2 #2-139

SECTION III. DATA FORMAT

Because of the modular design of Series 200 computers, the programmer has the facility to
specify whether a two-, three-, or four-character absolute address will be assigned to each
symbolic address used in the program. In any case, the absolute addresses assigned by the

assembly program are interpreted as pure binary numbers (see Section IV),

VARIANT CHARACTER ¢

The variant character is used to modify the op code of an instruction., For example, the
op code of a Branch on Condition Test instruction (BCT) specifies the fundamental operation
"branch if a tested condition is met.'" The condition or restriction which must be met before the
branch can occur is specified by the variant character. A table of valid variant characters is

presented in Appendix B.

SUMMARY

Figure 3-2 shows the six basic formats in which machine-language instructions may appear,
Since the maximum number of characters in an instruction depends upon whether two-, three-,
or four-character addressing is being used, shaded boxes in the illustration indicate the format
of an instruction without specifying the number of characters in each part. These formats are
representative of all instructions except those associated with input/output and translate opera-
tions.l For the sake of direct comparisons, Figure 3-3 illustrates each of the formats defined in

Figure 3-2 as a symbolic entry on the programmer's coding form.

VARIANT
| OP CODE A ADDRESS B ADDRESS CHARACTER(S)
2 [OP CODE l LA ADDRESS] | B ADDRESSI

VARIANT
3 OP CODE A ADDRESS CHARACTER(S)
4 OP CODE A ADDRESS
VARIANT
S I OP CODE 1 ICHARACTER(S)
6 OP CODE

Figure 3-2, Series 200 Instruction Formats

1The format of an input/output instruction is a modification of format 3 shown in Figure 3-2.
Specifically, the variant characters of the instruction are replaced by a field of one or more
control characters which define the input/output operation in terms of data path, direction of
data flow, control unit designation, etc. The format of a translate instruction is a modification
of format 1 shown in Figure 3-2. In Section VIII, Series 200 instructions are described in
terms of their individual formats.

3-3 #2-139

SECTION III. DATA FORMAT

EASYCODER

CODING FORM

PROBLEM PROGRAMMER DATE PAGE ____OF ___

v Eﬁ LocaTioN | OPEON OPERANDS

1 2|3 als]e][7]e | 195, 20[21 L. | ot e o L, efes . . . 80
e . BCE . P6 ,LABEL @G, G0 . [FORMAT %,
2 I 1 S 1 1 1 1 n Ly " | IR 1 " 1 L 1l PR SR T S T | PSRN S T 1
] L. A TEM, TOTAL .. . vy, FORMAT 2]
4 oy I 1 Il ,| 1 1 1 | I S L | i P S R | a1 "
] .. [BeT . [BZRO, 8% . , e .. [FORMAT 3 . .
s I SR § — 1 4 1 1 1 b 1 1 1 1] FU 1 —_
7 l o] —— sw WOKK 1 1 Il | 1 1 1 - F.onRIM:A.T‘ 141 1 —_
8 ALI l 1. n 1) | N - -y ~L — | 1 1 SRR W SR PR 1 1 L
°] ! A L QAM 6¢ I 1 - 1. 1 1 ! - F.O.RlM.A.T .5| Loy
o ! | I L] ! L L ' t ' ! PR R L
" i 1] | . S 1 L 1 M | 1 1 | 1 . FORIMAT JG_L Lo o
12 i ' e 1 L 1) 1 1 | I ST SO | 1 1 | . . r——
13 I l 1 1 PR | PR B I - ol I -] 1 I IR S Los 1
1 Ilil Il S 1 L — 1 - . i | - A r— 1 | PRI P
s | 4 1 1 1 Il 1 1 1 A 1 ! ad o0

Figure 3-3. Symbolic Representation of Series 200 Instructions

ORGANIZATION OF DATA IN MAIN MEMORY

Data may be stored in the main memory in any of the following variable-length formats:

e FIELD
e ITEM
¢ RECORD

FIELDS

Consider the eight consecutive storage locations shown in Figure 3-4. To indicate to the
machine that these eight characters are to be treated as a field, their left and right boundaries
must be defined. The left boundary is normally defined by setting a word mark in position 990.
The right boundary is normally defined by specifying storage address 997 in the instruction that

will manipulate the field. 1 The eight-character group shown in Figure 3-5is thus definedas a field.

STORAGE ADDRESS

CONTENTS —»

Figure 3-4, Consecutive Storage Locations in Main Memory

1
Although this is the conventional method of defining fields, the Extended Move (EXM) instruc-
tion (see Section VIII) permits a field to be defined by a word mark at either the left or the right
boundary. The opposite boundary is then specified in the instruction.,

3-4 #2-139

SECTION III. DATA FORMAT

CODING FORM
PROBLEM PROGRAMMER PAGE . OF
WSaro (X[B] LocaTion]°”Ec"o“o"°" l OPERANDS
1 2]3 al5]6]7]e . _i4]is, B L | f | p seles L, 50
L . h In@n 997 . e e . .

L—ADDRESS PORTION OF INSTRUCTION

(D] 3 6 5 2 9 .

WORD |

MARK ’
DATA FIELD

Data Field Format in Main Memory

STORAGE ADDRESS
CONTENTS

Figure 3-5,
ITEMS

An item consists of one or more consecutive storage locations whose boundaries can be
defined in either of two ways:

1. The leftmost character positioncanbe defined inthe instructionthat will operate

on the item andthe rightmost character positiondefinedbyanitem mark; or

2. The rightmost character position canbe definedin the instruction thatwill oper-

ate on the item andthe leftmost character position defined by an item mark

NOTE: An item mark is illustrated in this manual by underlining the character with
which it is associated. Fields within an item are defined by word marks.

There are only two instructions that manipulate items — Move Item and Translate, and
Extended Move. In the Move Item and Translate instruction, the leftmost character of an item

is addressed and the rightmost character contains an item mark. In the Extended Move instruc-

tion, several different item boundaries can be specified by the variant character of the instruction.

Two items, each containing three data fields, are shown in Figure 3-6

ADDRESS PORTION
OF INSTRUCTION

STORAGE ADDRESS

CONTENTS @ 7 | 6 @ 3 | 9. 7M 4 ”2m§ ITEM

) MARK
tDATA FIELD-I‘—DATA FIELD—®4-DATA FIELD—

[ITEM

ADDRESS PORTION
OF INSTRUCTION

STORAGE ADDRESS -

CONTENTS —
ITEM MARK I‘> DATA ATA DATA
FIELD FIELD FIELD
ITEM

Figure 3-6. Two Item Formats in Main Memory

3-5 #2-139

SECTION IIL

DATA FORMAT

RECORDS

A record is any unit of information that is to be transferred between the main memory and

a peripheral device.

number of characters in the memory.

It can contain any number of items and fields.

A record can be of any length, from one character up to the maximum

The right-

most limit of a record is defined by a record mark in the character position following the last

character in the record (see Figure 3-7).1

NOTE: A record mark is illustrated by combining the word-mark and item-mark
The address of the leftmost character in a record is specified
in the instruction that operates on the record, ! '

symbols.

STORAGE ADDRESS

CONTENTS —»

ADDRESS PORTION OF INSTRUCTION

RECORD

RECORD
MARK

SUMMARY

The foregoing data format conventions are summarized in Figure 3-8,

Figure 3-7. Record Format in Main Memory

FIELD Word Mark X Address portion of in- Set Word Mark
struction
Address portion of in- Item mark X
ITEM struction Set Item Mark
Item Mark X Address portion of in-)
struction
. . : . BOTH Set
RECORD Atddri‘ss portion of in- Record mark ® Word Mark
struction and Set Item
(in character position Mark
following last character
of record)1

Figure 3-8.

Summary of Internal Data Formats

A record can also be moved internally (i.e., from one main memory area to another) by means

of the Extended Move instruction (see Section VIII),

In this case, the character containing the

record mark is considered as part of the record. This instruction can specify either the right
or left boundary of the record to be moved.

3-6

#2-139

SECTION III, DATA FORMAT

MAGNETIC TAPE DATA FORMAT

In many applications, a major input and output medium for a Series 200 computer is magnetic
tape. The standard Series 200 magnetic tape system uses 1/2-inch tape as the recording medi-

um. A tape system using 3/4-inch tape is also available.

Information is stored on 1/2-inch magnetic tape in variable-length groups of characters
called records. The tape is divided lengthwise into seven recording channels. A line of bit posi-
tions across the tape, one position for each channel, is called a frame. The seven bits in a
frame correspond to the six information bits and one parity bit found in a character position in
the main memory. Notice that no channels are provided for the storage of punctuation bits on
tape. ' Unlike main memory records, which are delimited by record-mark punctuation, tape rec-
ords are separated from each other by a band of blaﬁk tape, which is called an interrecord

gap. The representation of a memory character position on magnetic tape is shownin Figure 3-9.

PUNCTUATION
TERMINAT

<«+—[NTERRECORD GAP

MAIN
MEMORY
CHARACTER

POSITION
MAGNETIC
TAPE

Figure 3-9. Character Representationon Magnetic Tape

Characters recorded on magnetic tape are transferred from the main memory without
parity bits. At the time of recording, the magnetic tape control generates parity bits as
required. The programmer may specify either odd- or even-parity recording: in the odd-parity

mode the bit count in each frame is odd; in the even-parity mode the bit count is even.

In addition to parity bits, which are used for frame checking, the magnetic tape control
also generates a longitudinal check frame which is used for channel checking purposes. A check

frame is automatically appended at the end of each record stored on tape.

Recall that a record stored in memory is delimited by a record mark in the character

position following the last character in the record. When a record is transferred to tape, the

3-7 #2-139

SECTION III, DATA FORMAT

contents of the character position containing the record mark are not included as part of the re-
cord. On the other hand, if a record mark is sensed in memory when information is being read
in from tape, the record mark will terminate the record and the character position containing
the record mark will receive a character from the tape. Although data transfer from the tape
is terminated by the record mark, tape motion continues until an interrecord gap is sensed.
No punctuatibn marks are altered in any way as a result of tape read/write operations initiated

by a program.

LONGITUDINAL
CHECK FRAME INTERRECORD

VARIABLE- LENGTH FRAME
RECORDS

Figure 3-10. Data Format on Magnetic Tape

PUNCHED CARD FORMAT

Punched cards provide a convenient means of entering data into the machine. The cards
used for this purpose are either standard l12-row, 80-column cards or 51l-column cards. Each
card column may contain a decimal digit, an alphabetic character, or a special symbol such as

a slash or an asterisk (see Figure 3-11).

0123456789 ABCDEFGHI JKLMNOPQR STUVWXYZ B X-S%/,%#d
ZONE / 1R ns

PUNCHES e (11}
B B A A L A e
RERRRRRRY IR RN R R R RN Al IR AR R R RN EEA RN R RN A RN RN RN R R SRR RRNERRY ANRRARRRERRN
222272222282222222222222222022222222208222222220222222222222222222222222222222222
J 33333333333033333333333333330333333333033333333033333333333333833033M3M333333333
NUMERIC a844¢448454404a0040400084440aBa0asa400a0aa4s4adalataaada0assa4BeaRealelocansss
PUNCHES 5555555555555055555555555555550555555555M555555550555555555555555555555555555555
66666666666666066666656666666660666666666@66666666N66666A666566666656666666666666
AR R AR R AR RE R RN R R R R RN R R RN E] AR RRI AR R RN RN R RENE]
) 8s888ss8688880nslosnassassssasssalonsnscasslensssassBassacsasollalNallllscssssss
socomv___—_L, mnnnupnntuminptnntuntinnnn g

Figure 3-11. Punched Card Codes

3-8 #2-139

SECTION IIl. DATA FORMAT

Numeric information is represented using the card punch positions labeled zero through
nine. Alphabetic information is represented by a combination of numeric punches and zone
punches. There are three zone punch positions: the 12 zone at the top edge of the card, the 11
zone just below the 12-zone position, and the zero zone labeled as row zero on the card. The 11

and 12 zones are not labeled because the top edge of the card is reserved for printedheadings.

In addition to Hollerith code, cards may be punched or read in the direct transcription
mode as an optional feature. KEach punch position on the card is individually significant in this

mode, a punch representing a one bit and the absence of a punch representing a zero bit.

The data formats of the media most commonly éssociated with peripheral devices (viz.,
magnetic tape and punched cards) have been described. However, other media (e.g., paper tape,
magnetic disks, etc.) also contain unique data formats which are converted to central processor
format by their respective peripheral controls. These formats are described in the individual

Series 200 publications which define such devices.

3-9 #2-139

ADDRESSING

BASIC CONCEPTS

The main memory storage locations that contain the instructions and data of a program are
identified to the machine by their particular main memory addresses. Every character storage

location in the main memory is directly addressable.

An instruction is stored in a field of from 1 to 12 characters, depending on the format of
the instruction and the mode of address assembly {two-, three~-, or four-character). Figure 4-1
illustrates how a typical seven-character Add instruction appears when stored in the main
memory. (Recall that enclosing a character in a circle indicates that a word mark is associated

with it,)

An instruction is addressed by specifying the op code (leftmost) location of the instruction.
For instance, the address of the Add instruction in Figure 4-1 is 524, The machine reads an

instruction from left to right until it senses a word mark. For example, the extraction of the

Add instruction (Figure 4-1) is stopped by the word mark associated with the op code of the next

instruction in sequence.

STORAGE ADDRESS

CONTENTS—» @& 1776 1492

]

1)
O‘P A ADDRESS B ADDRESS OP CODE OF
CODE NEXT INSTR.

MACHINE READS INSTRUCTION
FROM LEFT TO RIGHT '

Figure 4-1. Typical Add Instruction

4-1 ‘ #2-139

SECTION IV. ADDRESSING

As mentioned in Section III, a data field is normally defined in the following manner: the
leftmost location in the field is indicated by a word mark; the rightmost location is specified in
the A or B address of an instruction. The machine reads a data field from right to left until it
senses the word mark associated with the leftmost character in the field,! For example, the A
and B addresses in the instruction shown in Figure 4-1 could specify the data fields shown in

Figure 4-2. 2

OoP
lCODEl A ADDRESS B ADDRESS

INSTRUCTION-»] @ | 1776 | 1492]

ADDRESS

DATA

ADDRESS

DATA—»

B FIELD

MACHINE READS DATA FIELD
jf———————
FROM RIGHT TO LEFT

Figure 4-2, Extraction of Data Fields in Typical Add Instruction

An item is addressed by specifying either its leftmost or its rightmost character location
in an address portion of an instruction (a variant character in the instruction specifies which
character is being addressed). If the address of the leftmost character is specified, the ma-
chine reads the item from left to right; if the address of the rightmost character is specified,
the machine reads the item from right to left. In either case, the operation terminates when an

item mark is sensed.

A record is addressed by specifying its leftmost character location in an address portion
of an instruction. The machine reads a record from left to right until it senses a record mark. 1
Note that the contents of the character position containing a record mark are not considered as

part of the record, except when the record is moved internally.

1
Recall that the Extended Move (EXM) instruction permits the reading of fields, items, and rec-
ords in either direction.

2) :
All examples and illustrations in this section are presented in decimal notation. A table of
decimal and octal equivalents appears in Appendix A,

4-2 #2-139

SECTION IV, ADDRESSING

The direction in which the machine reads any of the above-mentioned groups is compatible
with the manner in which the contents of the group are manipulated. For instance, a field used
in an arithmetic operation is read from right to left because such operations combine fields
character by character, starting with the low-order or "units" position in each field, Similarly,
an instruction is read from left to right because the machine must interpret the op code before it

can manipulate the operand(s).

REGISTERS USED IN ADDRESSING

The processing of a stored-program instruction consists of two phases: the retrieval (or
"extraction') of the instruction from main memory storage, andthe execution of the instruction.
Six control memory registers are used to address the main memory during instruction processing.
Four registers — SR, CSR, EIR, and IIR — are related to the sequential selection of instructions
in a program; the other two registers — AAR and BAR — control the transfer of information

from one storage location to another by containing the address portions of an instruction.

SEQUENCE REGISTER (SR)

SR contains the address of the next sequential instruction character to be extracted from
the memory during a program run. The contents of SR are incremented by one as each instruc-
tion character is extracted, so that SR contains the address of the next instruction's op code

when one instruction has been completely extracted.

CHANGE SEQUENCE REGISTER (CSR)

The address of an op code can be stored in CSR.l A Change Sequencing Mode instruction
(see page 8~66) will interchange the contents of SR and CSR and thereby cause the program to
branch to the instruction whose op code address was stored in CSR. At this point in the program
CSR will contain the address of the op code following the Change Sequencing Mode instruction.
In order to return to this op code (i.e., to the initial sequence of instructions), another Change

Sequencing Mode instruction can be issued.

EXTERNAL INTERRUPT REGISTER (EIR)

EIR, like CSR, can be used to store the address of an op code.l This address and the
contents of SR will be interchanged automatically when an external interrupt signal is received.
{Recall that an external interrupt signal can be generated by a peripheral control, by the control
panel or console, or by the Monitor Call instruction.) In order to return to the normal sequence

of instructions that was interrupted, a Resume Normal mode instruction (see page 8-99) can be issued,

1
A Load Control Registers instruction can be used to store the desired op code address (see
page 8-60). '

4-3 #2-139

SECTION IV. ADDRESSING

INTERNAL INTERRUPT REGISTER (IIR)

The address of an op code can also be stored in IIR. 1 When the Type 1201, 1251,2201 or
4201 processor is equipped with the Storage Protect Feature, certain operations are considered
as ''violations'' of storage protection (e.g., the attempt to initiate a data transfer from a pe-
ripheral controlto a starting locationin the protected memory area). An internal interrupt signal
is generated when sucha violation occurs, andthe contents of IIR and SR are automatically inter -

changed. The Resume Normal Mode instruction is used to return to the interrupted program.

A-ADDRESS REGISTER (AAR)

AAR normally contains the A-address portion of an instruction (i.e., the storage address
of the rightmost character of the A-operand data), This address is loaded into AAR during the
extraction phase of processing, In the execution of instructions whose operands are fields or
rightmost-addressed fields or items, the contents of AAR are decremented by one as each char-
acter in the A field is manipulated. 2 The contents of AAR are incremented by one as each char-

acter in aL record or leftmost-addressed field or item is extracted. 3

B-ADDRESS REGISTER (BAR)

Normally the B-address portion of an instruction is loaded into BAR during the extraction ‘
phase., During the execution of most instructions, the contents of BAR are decremented by one
as each character in the B field is extracted.? If the B operand is a record or a leftmost-ad-

dressed item, the contents of BAR are incremented by one as each character is exl:racted.3

SUMMARY ’
The foregoing information can be summarized as four easily remembered rules:

1. An instruction is read from left to right. As each character in the instruc-
tion is read, the contents of the sequence register are incremented by one.

2. A field is read from right to left.2 As each character in a field is read,
the contents of the corresponding address register are decremented by one.

3. A record is read from left to right.3 As each character in a record is read,
the contents of the corresponding current location counter are incremented
by one.

A Load Control Registers instruction can be used to store the desired op code address (see
page 8-60).

2
A field can also be moved internally from left to right by means of the Extended Move (EXM)
Instruction (see Section VIII). In this case, the address register is incremented,

3
A record can also be moved internally from right to left by means of the Extended Move in-
struction. In this case, the address register is decremented.

4«4 #2-139

SECTION IV. ADDRESSING

4. An item can be read either from left to right or from right to left. As
each character in an item is read, the contents of the corresponding ad-
dress register are incremented by one if reading from left to right, or
decremented by one if reading from right to left.

Recall that in all processors except the 4201, a control memory register is only as large
as it need be to contain the largest main memory address in a user's processor (see Table 2-2),
so that the size of the user's control registers ranges from 12 to 19 bits in length (control reg-
isters in a 4201 processor are always 19 bits long), The programmer should keep this fact in

mind while reading the following description of addressing modes.

ADDRESSING MODES

As stated at the beginning of this section, an instruction is stored in a field of from 1 to 12
characters, depending on the instruction's format and the programmed addressing mode. The
op code is stored as a single six-bit character. Variant characters or I/O control characters,
if any, are each stored as singlé characters, The number of character locations in which each
address portion is stored depends on the addressing mode selected by the programmer. This
selection is made by means of a Change Addressing Mode instruction (see page 8-62), with which
the programmer specifies the two-, three-, or four-character addressing mode, A significant

feature of the Series 200 addressing technique is that the entire memory is directly addressable,

TWO-CHARACTER ADDRESSING MODE

An operand address written in the two-character addressing mode is stored in two con-
secutive character locations in memory. The stored address (a continuous 12-bit binary num-

ber) represents the address of a main memory location in the range 0 - 4, 09510.

Two-Character Address

12.Bit Address

During the extraction phase of instruction processing, the two-character address is placed
in the rightmost 12 bit positions of the address register (AAR or BAR). Any bits in the register
to the left of the two-character address are called '"bank bits.' Previous values in the bank bit

positions of the register are not disturbed during instruction extraction. 1

1The entire contents of an address register (bank bits + two-character address bits) are affected
during the extraction of an instruction whose extraction path 'duplicates A' (described on page
4-17). Extraction of all other two-character addresses affects only the rightmost 12 bits.

4-5 ‘ #2-139

SECTION IV. ADDRESSING

Two-Character Address
(12 Bits)

Address Register
(12 - 19 Bits)

-
Bank Bits
(not disturbed
during
extraction)

When the instruction is executed, the entire contents of the address register are inter-

preted as the operand address. Previous values in the bank bit positions, not disturbed during
the extraction phase, are used to form the address of the operand during the execution phase.
Thus, the bank bit values imply a base address to which the 12-bit address is added to form the
actual operand address. If the bank bit values are all zeros, the 12-bit address is the actual

operand address.

For example, a two-character A address specifying location 4, 000, is extracted and
placed in AAR., The second bank bit in AAR (bit position 14) contains a residual value of ''1",
representing a base address of 8,192;3. When the instruction is executed, the entire contents of

AAR (8,1921¢9 + 4, 000;) specify the address of the A operand — location 12,192;.

As the contents of the address register are incremented or decremented during '"internal
execution, bank bits are not disturbed.! If the 12-bit address in the rightmost positions of the
register becomes zero, a borrow from the first bank bit does not occur. Thus, the portion of
memory which is addressable by a two-character address is the 4, 096-character '"bank" speci-

fied by the base address.

Indexed and indirect addressing (see below) cannot be performed in the two-character ad-

dressing mode.

THREE-CHARACTER ADDRESSING MODE

An operand address written in the three-character addressing mode is stored in three
consecutive character locations of the memory. The rightmost 15 bits of the stored address

represent the address of a main memor\y location in the range 0 - 32, 7671 o+ The leftmost three

l"Interna.l execution'' is defined as the incrementing or decrementing of address register con-
tents during memory cycles allocated to the central processor. When peripheral transfer oper-
‘ations are performed, using memory cycles allocated to read/write channels, incrementing and
decrementing of address register contents affect all bits of the register. Thus, addressing
during peripheral transfer operations is continuous throughout the niemory.

4-6 #2-139

SECTION IV. ADDRESSING

bits, referred to as the "address modifier, " specify whether the address is direct, indirect, or

indexed (see '"Address Modification, ' page 4-8).

Three-Character Address — g

\ N /

3-Bit 15-Bit Address
Address
Modifier

During the extraction phase, the 15-bit address is placed in the rightmost bit positions of
the operand address register. Any bits in the register to the left of these bit positions are called

"sector bits.'" Previous values in the sector bit positions of the register are not disturbed during

instruction extraction. 1

Three-Character Address ——— o
(15 Address Bits)

Address Register
(15 - 19 Bits)

Sector Bits
(not disturbed
during ex-
traction)

When the instruction is executed, the entire contents of the address register are interpre-

ted as the operand address. Previous values in the sector bit positions, not disturbed during the
extraction phase, are used to form the address of the operand during the execution phase. Thus,
the sector bit values imply a base address to which the 15-bit address is added to form the actual

operand address. If the sector bit values are all zeros, the 15-bit address is the operand address.

For example, a three-character A address specifying location 12, 000, is extracted and
placed in AAR. The first sector bit in AAR (bit position 16) contains the value ''1'"', representing
a base address of 32, 76810. When the instruction is executed, the entire contents of AAR

(32,768;¢9 + 12,000; () specify the address of the A operand — location 44, 768 .

As the contents of the address registers are incremented or decremented during "internal’
execution, sector bits are not disturbed. If the 15-bit address in the rightmost locations of the

address register becomes zero, a borrow from the first sector bit does not occur. Thus, the

1The entire contents of an address register (sector bits + 15-bit address) are affected during the
extraction of an instruction whose extraction path ''duplicates A' (described on page 4-17). Ex-
traction of all other three-character addresses affects only the rightmost 15 bits in the register.

4-7 #2-139

SECTION IV. ADDRESSING

largest portion of memory which is addressable by a three-character address is the 32, 768-

character ''sector' specified by the base address.

Addressing is continuous throughout the entire memory when a peripheral transfer oper-

ation is performed, as in the two-character mode.

FOUR-CHARACTER ADDRESSING MODE

An operand address written in the four-character addressing mode is stored in four con-
secutive character locations. The rightmost 19 bits represent a main memory address in the
range 0 - 524, 288)9. The leftmost five bits — the '""address modifier' — specify whether the

address is direct, indirect, or indexed (see "Address Modification, ' below).

Four-Character Address —— >

5-Bit b 19-Bit Address
Address
Modifier

The 19-bit address is placed in the address register during the extraction phase. Thus,
the entire contents of the address register are affected during the extraction of a four-character

address.

Four-Character Address
(19 Address Bits)

Address Regis’cer
(Up to 19 Bits)

The entire contents of the register are interpreted as the operand address when the instruc-
tion is executed. As the contents of the operand address registers (AAR and BAR) are incre-
mented or decremented during execution, all bits in the register are affected. Thus, addressing
is continuous throughout the entire range of available memory (up to 524, 288 locations) in the

four-character addressing mode.

ADDRESS MODIFICATION

Indirect and indexed addressing can be used to modify three- or four-character addresses
in any Model 200 processor containing the Advanced Programming Instructions (Feature 010 or
011) and in all Type 1201, 1251, 2201, and 4201 processors. These addressing forms are repre-

sented by the configuration of the "address modifier' as described below and are interpreted by tk

processor during the extraction phase.

4-8 #2-139

SECTION IV. ADDRESSING

INDEX REGISTERS

Index registers are used to store values to be used for address modification during instruc-
tion execution., A Series 200 processor can contain up to 120 index registers, depending on the
type of processor and the optional features included in that processor. Figure 4-3 shows the '
memory areas utilized by the largest possible complement of index registers in a Series 200
memory. The portion of a processor's index register complement usable by a program at any

given time varies with the program's location in main memory and the addressing mode in use,

Table 4-1 summarizes the number of index registers simultaneously available to a program,

LOCATION 0
x1-x15(1) X1-X6 X1-X6 X1-X6
Sector 0 Sector 1 Sector 2 Sector 3
X1-X6 X1-X6 X1-X6 X1-X6
Sector 4 Sector 5 Sector 6 Sector 7
X1-X6 X1-X6 . X1-X6 X1-X6
Sector 8 Sector 9 Sector 10 Sector 11
X1-X6 X1-X6 X1-X6 X1-X6
v1-v15(2)
Sector 12 Sector 13 Sector 14 Sector 15

LOCATION 524, 287

1Registers X1-X15 are not available in: (1) the Type 201 processor; and (2) the
Type 201-1 or -2 processor not equipped with the Advanced Programming Instruc-
tions. In each of these cases, a group of index registers X1-X6 is located in
place of X1-X15,

2Registers Y1-Y15 can be positioned, under program control, 'in the first 61 loca-
tions of any 4, 096 -character bank of memory. If these registers are positioned
in the first bank of a 32, 768-character sector, they replace the group of six index
registers in that sector,

Figure 4-3. Series 200 Index Register Map

Index Register Map (Figure 4-3)

Registers X1-X6 are available to instructions executed in the three-character mode. These

registers are located in the first 25 positions (locations 0 through 24) of the 32, 768-character

4-9 #2-139

SECTION 1V. ADDRESSING

sector in which the instruction is stored.! Since there can be as many as sixteen 32, 768-charac-
ter sectors in a Series 200 main memory, up to 96 index registers are supplied for use in three-

character addressing mode,

Table 4-1. Number of Index Registers Simultaneously Available to a Program

201 0 6 » n/a . 0 6
201-1 0 15 n/a 0 15
201-2 0 15 n/a 0 15
1201 15 n/al 15 15 30
1251 15 n/a1 15 15 30
2201 15 n/al 15 15 30
4201 15 n/al 15 15 30
1Advanced Programmingis a standard feature onthe Type 1201, 1251, 2201, and 4201 processors.

Index registers X1-X15, located in the first 61 character positions of memory, are avail-
able to instructions executed in the four-character addressing mode., The placement of these
registers is independent of the location of the instruction whose address(es) is indexed, Registers
Y1-Y15, located in the first 61 positions of a "'protected' memory area, ére available to all pro-
grams operating in the four-character addressing mode in processors equipped with the Storage
Protect Feature, 2 The specific bank at which the protected memory area begins is specified by

use of the Load Index/Barricade Register instruction (see Section VIII).

THREE-CHARACTER ADDRESS

The address modifier of a three-character address (i.e., the leftmost three bits of the

stored address) specifies whether the address is direct (000), indirect (111), or indexed (001

through 110).

Indirect Addressini

In previous examples and illustrations in this section, an address portion of an instruction

always specifies the address of a data field in the main memory. This manner of addressing an

lThese registers are always located in the first 25 locations (locations 0-24) of memory in a
Type 201 or 201-1 processor.

Programs operating in the unprotected portion of memory can read the contents of Y1-Y15 but
cannot write into these registers.

4-10 #2-139

SECTION IV. ADDRESSING

operand is commonly referred to as direct, or "first-level, " addressing. In some instances, in-
stead of specifying the location of a data field directly, it is more useful to be able to specify the
storage location of another address, which in turn specifies the location of the desired data field.

This manner of locating an operand is referred to as indirect, or '""second-level, " addressing.

A three-character indirect address is specified by an address modifier of all one bits and
refers to the leftmost storage location of another main memory address. The referenced address
can itself be direct, indirect, or indexed as specified by its address modifier. Thus, an indirect
address can specify another indirect address, and so on through any number of levels, or it can

specify an indexed address. The method of coding an indirect address is illustrated in Section 5.

Figure 4-4 shows the extraction of an Add instruction in which indirect addressing is
specified in the A address and direct addressing is specified in the B address. Note that the A
address (indirect) references the leftmost location of another main memory address. This ad-
dress, in turn, specifies the location of the rightmost character in the A field. Note further
that if the address modifier of location 1027 were not '""000'", the remainder of the stored address

would be interpreted as an indexed or indirect address.

OP
CODE

INSTRUCTION—] @ | 111 1027

A ADDRESS I B ADDRESS |

415 |

indicates
indirect
address

ADDRESS

CONTENTS—] ooolL 1620

indicates
direct
address |

ADDRESS 617
CONTENTS—» @
hamen—

ADDRESS 1
CONTENTS—™ (D

B FIELD

Figure 4-4. Extraction of Three-Character Indirect Address

4-11 #2-139

SECTION IV. ADDRESSING

Indexed Addressing

When indexed addressing is performed in the three-character mode, the rightmost 15-bit
contents of an index register are automatically added to the 15-bit address field in an instruction.
Three variables must be defined in any indexing operation: (1) the index register to be used, (2)
the address to be modified, and (3) the factor (referred to as an augment) to be added to the ad-
dress. The index register to be used is specified in the address modifier of an address field
(see Table 4-2). The address to be modified can be stored in the same address field or it can be
stored in the designated index register. If the address to be modified is stored in an address

field, the augment is stored in the designated index register and vice versa.

Table 4-2. Index Register Addresses in Three-Character Addressing Mode

X1 001 2 - 4 (+n) 4 (+n)
X2 010 6 - 8 (+n) 8 (+n)
X3 011 10 - 12 (+n) 12 (+n)
X4 100 14 - 16 (+n) 16 (+n)
X5 101 18 - 20 (+n) 20 (4n)
X6 110 22 - 24 (+n) 24 (+n)
n = first location of the 32, 768-character sector in which the instruction is

stored.

The modification of an address occurs in its respective address register. For instance
if the B-address portion of an instruction is indexed, the modification is performed in BAR.
This means that neither the original instruction stored in the main memory nor the contents of

the index register is altered in any way.

Normal programming, such as a load or a move operatidn, can be used to store a value
in an index register. Similarly, the contents of an index register can be changed by using an
instruction such as Binary Add or Binary Subtract. Note that since the index registers are lo-
cated in the main memory, they can be used as normal storage locations when they are not

being used for indexing operations.

Figure 4-5 illustrates how the Add instruction on page 4-11 would be extracted if indexed
addressing were specified in the A-address portion of the instruction. The method of coding an

indexed address is illustrated in Section V.

4-12 #2-139

SECTION 1V. ADDRESSING

OoP
lCODE' A ADDRESS B ADDRESS
INSTRUCTION—»| @ [o11i 1027 |000; 415 |
indicates indicates
index direct

address

register 3

INDEX REGISTER 3

ADDRESS®| 1027 | , A-ADDRESS
EGISTE
CONTENTS»xxxi +2000 REGISTER
| : 3027

address type
indicator is

ignored|
ADDRESS
CONTENTS —»
A FIELD
ADDRESS 4 2} 4
CONTENTS—»{ D | 9 3 1 7 6
B FIELD

Figure 4-5, Extraction of Indexed Address in Three-Character Mode

FOUR-CHARACTER ADDRESSING MODE

The address modifier in a four-character address consists of the leftmost five bits of the
address (see page 4-8), The configuration of these bits specifies whether the address is direct

(00000), indirect (10000), or indexed (00001 through 11111, skipping over 10000).

Indirect Addres sing

Indirect addressing in the four-character addressing mode is performed similarly to that in
the three-character mode, except that:

1. a five-bit address modifier whose configuration is 10000 specifies indirect
addressing; and

2. a four-character address is extracted.
The method of coding a four-character indirect address in Easycoder assembly language is

identical to that used for a three-character indirect address (see Section V).

4-13 #2-139

SECTION IV. ADDRESSING

Indexed Addressing

Four-character indexed addresses to be modified by indexregisters X1 through X15 are
specified by an address modifier whose configuration is 00001 through 01111, respectively., Index
registers Y1 through Y15, when present, are specified by the configurations 10001 through 11111

(see Table 4-3). Register locations are shown in Figure 4-3.

Table 4-3. Index Register Addresses in Four-Character Addressing Mode

1-4

X2 00010 5.8 8

X3 00011 9-12 12

X4 00100 13-16 16

X5 00101 17-20 20

X6 ’ 00110 21-24 24

X7 00111 25-28 28

X8 01000 29-32 32

X9 01001 33-36 36
X10 01010) 37-40 40
X11) 01011 41-44 44
X12 01100 45-48 48
X13 01101 49-52 52
X14 01110 53-56 56
X15 01111 57-60 60

Y1 10001

Y2 10010

Y3 10011

Y4 10100

Y5 10101 Same as above, only

;{(7) igii(l) relative to the 4, 096-

Y8 11000 character memory bank

Y9 11001 .
Y10 11010 designated by the Load
Y11 11011 Index/Barricade Register
3Y(ig iiig? instruction (see page 8-79).
Y14 11110
Y15 11111

When indexed addressing is performed in the four-character mode, the contents of the
specified index register are added to the address field of the instruction. However, only the
number of active address bits of the index register and the address field are combined (i.e.,
only the number of bits which are required to address the entire memory of the user's proc-
essor). The number of active address bits corresponds to the size of a control memory reg-

ister (see Table 4-4). In a 4201 processor, all 19 control register bits are active, regardless

of main memory size.

4-14 #2-139

SECTION IV.

ADDRESSING -

Table 4-4. Active Address Bits in Series 200 Processors

32,768

65, 536

131,072

262,144

15

16

17 18

If the main memory capacity of a user's system lies somewhere between any two figures

in the top row of Table 4-4, the larger number of active address bits is used. For instance, if a

processor contains 49, 152 characters, there are 16 active address bits in an index register (and

in a control register).

The extraction of a Subtract instruction written in the four-character addressing mode is

shown in Figure 4-6.

(via index register X13) is specified in the B address.

Indirect addressing is specified in the A address, and indexed addressing

OoP
ICODE , A ADDRESS | B ADDRESS ‘
INSTRUCTION®] ® | 10000: 42800 [01101, 55055 |
\] [—
indicates indicates
indirect index
address register X13
ADDRESS
CONTENTS—» 00000
indicates
direct
address
ADDRESS
CONTENTS @ 0
A FIELD
INDEX REGISTER X13
ADDRESS . 55055
CONTENTS w + 150 | B-ADDRESS
""‘m REGISTER
ADDRESS
CONTENTS
B FIELD
Figure 4-6. Extraction of Indirect and Indexed Four-Character Addresses

4-15

#2-139

SECTION IV. ADDRESSING

TREATMENT OF ADDRESSES LARGER THAN A MEMORY'S MAXIMUM ADDRESS

It is possible in some processors to specify in instructions direct addresses which are
larger than the address of the processor's highest memory location. This condition can exist in
all 4201 processors smaller than the maximum configuration and in any other Series 200 proc-

essor whose memory capacity is not a power of two.

Likewise, it is possible in any Series 200 processor, by the use of indexed addressing, to
specify addresses and address modifiers whose sums are potentially greater than the address of
the memory's highest location. For example, consider the case where, in a machine having a
49, 152-character memory, an instruction contains the address 49, 000 and the address is indexed
using a register which contains the value 1, 000, Obviously, the sum of 49, 000 and 1,000 is

greater than the memory's largest address, 49,151,

Situations such as the ones just cited are handled differently, depending upon the relation-
ship between the potential address and the memory size involved and whether or not the Storage
Protect Feature is installed and in effect. In particular, such situations can be categorized
according to whether the potential address is larger or srﬁaller than the range of addresses

representable by active address-register bits,

Potential Addresses Within Address Register Range

In a 4201 processor without storage protection in effect, encountering a simple, direct
address, or the potential sum of an indexed address and index register contents, which lies
between the address of the highest actual memory location and the address registers' upper
limit, causes the processor to stop. Results are unspecified for the other Series 200 processors.
Any Series 200 processor with Storage Protect in effect, upon encountering an address of the
type described above, will perform the following actions: the II address violation indicator is
set, the instruction is terminated prematurely, and an internal interrupt is generated (see

Appendix E, page E-2).

Potential Addresses Outside Address Register Range

In any Series 200 processor, if a simple direcf address, or the potential sum of an indexed
address and index register contents, is greater than the largest address representable by active
address-register bits, the resultant address is formed modulo the number of locations addressable
with the active ad&ress bits; i.e., a memory ""wrap-around' occurs. For example, in a 49K
Model 2200, a total of 65, 536 locations can be addressed by 16 active address bits. If, in such

a machine, an address of 48,000 is indexed by the value 27, 000, the resultant effective address

will be 48,000 + 27,000 -~ 65,536, or 9464.

4-16 #2-139

SECTION IV. ADDRESSING

EXPLICIT ADDRESSING, IMPLICIT ADDRESSING, AND CHAINING

Consider the three instruction formats illustrated below.

OP CODE A ADDRESS B ADDRESS
FORMAT I,] []
FORMAT 2, |
FORMAT 3. []

Format 1 corresponds to the instructions used in the preceding illustrations. The signifi-
cant feature of this format is that the addresses of both the A and the B data fields are explicitly
specified in the instruction. For this reason the data fields are said to be "explicitly addressed."
In general, whenever the programmer writes the address of a data field on his coding sheet, he

is explicitly addressing that data field (see Figure 4-7).

EXPLICIT ADDRESS FORMAT |

| !

OP CODE A ADDRESS 8 ADDRESS

The addresses of both data fields are explicitly specified in
the instruction. .

Figure 4-7. Series 200 Instruction Format 1

Format 2 has two possible interpretations (see Figure 4-8):

1. Ten Series 200 instructions coded in format 2 cause the A address to be
loaded into both AAR and BAR. ! Thus, although the B-address portion of
the instruction is omitted, the B field is explicitly addressed by the A-
address portion. The extraction path of these instructions is said to

"duplicate A" (see Appendix C), since the contents of AAR are duplicated
in BAR.

2. The A address of 19 instructions is loaded into AAR only, leaving BAR
undisturbed. An omitted B address in any of these instructions implies
that the previous contents of BAR will be used as the address of the B
field. For this reason the B field is said to be "implicitly addressed, "
and the extraction path of these instructions '"preserves B'' (see Appendix C).

The entire contents of AAR are loaded into BAR during extraction, so that all bit positions in
BAR are identical to those in AAR.

4-17 #2-139

SECTION IV. ADDRESSING

EXPLICIT ADDRESS 1 FORMAT 2a.

OP CODE A ADDRESS B ADDRESS

H -

In ten instructions, the address of both data fields is explicitly
specified in the instruction.

IMPLICIT ADDRESS FORMAT 2b.
EXPLICIT ADORESS ——j
OP CODE A ADDRESS 8 ADDRESS previous contents

E s

In 19 instructions, the previous contents of BAR are
implied as the address of the B field, The address
of the A field is explicitly specified in the instruction.

Figure 4-8. Series 200 Instruction Format 2

In format 3, both data fields are implicitly addressed. The previous contents of AAR are
used as the address of the A field, and the previous contents of BAR are used as the address of

the B field (see Figure 4-9).

Implicit addressing is extremely useful in situations where it is desired to perform a
series of operations on data fields that are in consecutive storage locations. The use of implicit
addressing reduces both the time required to perform the operations and the number of memory

locations required to store the instructions.

IMPLICIT ADDRESS l 1 FORMAT 3
OP CODE A ADDRESS B ADDRESS
- C-”3 CIZ3
I | - J
previous contents previous contfents

of AAR of BAR

The addresses of both data fields are implied in
the instruction.

Figure 4-9. Series 200 Instruction Format 3

4-18 #2-139

SECTION IV. ADDRESSING

As an example, assumethat three 10-character fields stored in sequence are to be added
to three other sequential fields. First, examine how this operation would be performed using
explicit addressing. Upon completion of the first instruction, AAR contains 890 and BAR con-

tains 690. These are the same values that appear in the A- and B-address portions of the second

(:) 900 700
@ 890 690
(:) 880 680

instruction. Similarly, upon completion of the second instruction, AAR and BAR contain 880 and
680 — the A and B addresses of the third instruction. Since in each case AAR and BAR contain
the addresses used in the next instruction, it is unnecessary to write these addresses in the in-
struction. In other words, this operation could be performed using implicit addressing in the

second and third instructions.

900 700

GEE

Connecting instructions together so that the contents of AAR, BAR, and the variant reg-
ister (see below) at the conclusion of one instruction satisfy the requirements of the next instruc-
tion is called ''chaining.' Using explicit addressing in the three-character addressing mode, 21
storage locations are require‘d to sfore the instructions above and the operation takes 117 micro-
seconds to complete on a Type 2201 processor. If the instructions were ''chained, ' nine storage

locations would be used and 105 microseconds would be required to complete the operation.

Instructions which require a variant character can also be chained by using the previous
contents of the variant register. (The variant register is a single-character, internal register
into which the variant character of an instruction is loaded during extraction.) The extent of
chaining variant characters (i.e., the number of acceptable instruction formats in which the

previous contents of the variant register can be used) varies with the processor being used.

In the Type 201-2, 1201, 1251, 2201, and 4201 processors, variant characters can be
chained by an instruction coded in any format (i.e., format 1, 2, or 3 shown on page 4-17). The
previous contents of the variant register are not normally distrubed by the processing of an in-
struction which does not contain a variant character (see the instruction Branch, Move Charac-

ters and Edit, and Move and Translate for exceptions).

4-19 #2-139

SECTION IV. ADDRESSING

In the Type 201 and 201-1 processors, the previous contents of the variant register are
destroyed by the processing of an instruction which contains an address portion, Thus, the only
instructions which can chain variant characters in these processors are those instructions coded

without address portions (i.e., format 3 on page 4-17).

Chaining is not limited to sequential operations having the same op code. The only con-
dition that must be met is that an instruction must leave the contents of AAR, BAR, and, if
required, the variant register such that they satisfy the addressing requirements of the next

instruction in sequence.

To enable the programmer to chain instructions wherever possible, the description of each
instruction (see Section VIII) includes a table showing the contents of the address registers after
the instruction has been executed. Also, Appendix C denotes whether each instruction in the

machine complement can or cannot be chained.

4-20 #2-139

EASYCODER
PROGRAMMING

INTRODUCTION

The preparation of Series 200 programs is greatly simplified by the use of Easycoder — a
concise, easy-to-use programming system. Specifically, Easycoder relieves the programmer of
many time-consuming duties associated with writing a program in actual machine language. It
makes it unnecessary, for example, to maintain a careful record of the storage address assigned
to each instruction. In addition, it allows the pi‘ogrammer to employ meaningful symbolic tags
(e.g., TAX, FICA, and TOTAL) to specify data, rather than using absolute memory addresses.
In situations where a stored program must be relocated or modified, Easycoder can be used to

perform the required alterations automatically.

Easycoder includes a number of assembly systems; these systems are:

® EASYCODER A: Part of the SERIES 200/BASIC PROGRAMMING SYSTEM.
Easycoder A operates in a system having a minimum
main memory size of 4, 096 characters. (Additional mem-
ory, however, may be used to advantage.) For additional
information refer to Easycoder A Assembly System (Order
No. 490).

NOTE: A counterpart of Easycoder A — Easycoder A
(P) — is available for use in a paper tape en-
vironment. The main memory requirements
are identical to those of Easycoder A, See
Easycoder A(P) Assembly System (Order No.
695) for more information.

® EASYCODER B: Also part of the SERIES 200/BASIC PROGRAMMING SYSTEM.
Easycoder B operates in a system having a minimum main
memory size of 8,192 characters. (Additional memory may
be used to advantage, however.) See Easycoder B Assembly
System (Order No, 011) for additional information.

® EASYCODER C: Part of the SERIES 200/OPERATING SYSTEM - MOD 1.
Easycoder C operates in a system having a minimum of
12, 288 characters of main memory. (Additional memory,
however, may be used to advantage.) For additional infor-
mation refer to Easycoder Assemblers C and D (Order No. 041).

5-1 #2-139

SECTION V. EASYCODER PROGRAMMING

® EASYCODER D: Part of the SERIES 200/OPERATING SYSTEM - MOD 1.
: Easycoder D operates in a system having a minimum of
16, 384 characters of main memory. (Additional memory,
however; may be used to advantage.) For additional infor-
mation see Easycoder Assemblers C and D (Order No. 041).

Each assembly system includes two basic elements: the Easycoder symbolic language and
an Easycoder Assembler. The Easycoder language is used to write the symbolic program (the

source program) while the assembler translates the source program into the actual machine-

language program (the object program).

To prepare a program in Easycoder symbolic language, the programmer uses an Easycoder
Coding Form (see Figure 5-5) and enters each symbolic instruction or definition on a separate
line. As a general rule, the instructions are written in the order in which they are to be exe-
cuted. (However, the instructions must be in the proper sequence prior to assembly.) After thev
symbolic program has been written, each line of symbolic coding is punched into a separate
source~-program.card. These cards are the input data which will be processed by an Easycoder

assembler,

The assembler accepts the source-program cards and automatically produces a corre~
sponding machine-language object program. It converts mnemonic operation codes into machine-
language codes, assigns absolute storage addresses to instructions and symbolic operand ref-
erences, and completely assembles the final program, storing it on punched cards or magnetic
tape. Another output of the assembler may be a complete printed summary of the symbolic
source program and the corresponding machine-language entries, Figure 5-1 illustrates the

relationship of the source program, assembler and object program,

SOURCE PROGRAM OBJECT PROGRAM

SYMBOLICCODING
PUNCHED INTO CARDS

EASYCODER MACHINE-LANGUAGE PROGRAM
CODING FORM ‘ STORED ON CARDS OR TAPE
ASSEMBLER

(TRANSLATES SYM- PROGRAM
BOLIC LANGUAGE INTO LISTING
MACHINE LANGUAGE) '

Figure 5-1. Relationship of Source Program, Assembler, and Object Program

5-2 #2-139

SECTION V. EASYCODER PROGRAMMING

THE SYMBOLIC LANGUAGE

The Easycoder symbolic language is composed of a set of mnemonic operation codes and a
set of rules for defining memory areas, addressing operands, and entering constants, The
mnemonic operation codes are predefined abbreviations for machine-language operation codes
and, in general, provide an easily remembered description of each instruction. For example,
SI'is the Easycoder mnemonic for the Set Item Mark instruction, and BCC is the mnemonic for
the Branch on Character Condition instruction. The set of rules includes special mnemonics for

defining work areas in the main memory and for defining programmer-specified constants,

The statements used in writing an Easycoder program can be classified into three groups:

1. Data formatting statements make it possible to reserve areas and store
constants without regard to their actual locations in memory. Data format-
ting statements are described in Section VI.

2. Assembly control statements are used by the programmer to control the as-
sembly of his program. Assembly control statements are described in
Section VII.

3. Data processing statements are the actual machine instructions to be exe-
cuted in the object program. Section VIII contains a description of the data
processing statements employed bythe Models 200, 1200, 1250, 2200, and 4200.

THE ASSEMBLERS

The assembler element of each Easycoder assembly system translates the symbolic source
program (written on the Easycoder Coding Form and subsequently punched into a source~-pro-
gram card deck) into machine-language entries, placing the resultant object program on either
punched cards or magnetic tape. In addition to the object-program output, the assembler may
also produce a printed listing containing the symbolic source program and the corresponding.

object-program entries (see Figures 5-2 and 5=3).

r OPERATION

srusoLic & |15 CODE 20|z
INSTRUCTION A AMT,TOTAL

OPERANDS

-

ASSEMBLER

LN TS

oBsEC CHARACTER — ! 2 ! 5
VECT
PROGRAM : 3 6 i 4 0 2 314 2
INSTRUCTION L
0P CODE A ADDRESS 8 ADDRESS
(Assembler
automatically sets word (06tal Representotion of 800) (Octal Representation of 1250)
mork in this location)

Figure 5-2. Two-Character Address Assembly

5-3 ‘ #2-139

SECTION V., EASYCODER PROGRAMMING

OPERATION
symBoLIC 4 15 CODE 0] 24 OPERANDS 4
PROGRAM ‘
msraucrion) | A AMT,TOTAL+X4
ASSEMBLER
CHARACTER — / 5 & »
08UECT T
PROGRAM 3 6 41012 3 4 2
INSTRUCTION
0P COOE \ A ADDRESS \ 8 ADDRESS
027::;;"'2’:;/ sors INDICATES /NDICATES
icolly so DIRECT INDEX
word mark in this
location) ADDRESS REGISTER 4

Figure 5-3. Three-Character Address Assembly

Figure 5-2 illustrates how an assembler assembles an object~-program instruction using

two-character address assembly. Assume that the tag AMT is assigned to memory location 800

and that the tag TOTAL is assigned to memory location 1250. Figure 5-3 shows how the assemble:r

assembles an object-program instruction using three-character address assembly. . Four-char-
acter addresses are assembled as shown in Figure 5-4. Assume that, in Figures 5-3 and 5-4,

the tags are assigned the same values as in Figure 5-2.

OPERATION
OPERANDS
15 CODE o0lp))
A AMT, (TOTAL) /
- P e
~ ASSEMBLER
CHARACTER ’° 1? i 3 + ¢ : 5 s L 7y &8 4 #
OBJECT T ¥ t +
INSTRUCTION | l - 1 R | L
0P CODE A ADDRESS B AODRESS
(Assembler automatically
sets word mork in this INDICATES INDICATES
location) DIRECT INDIRECT
ADDRESS ADDRESSING

Figure 5-4., Four-Character Address Assembly

5-4 #2-139

SECTION V., EASYCODER PROGRAMMING

CODING FORM
Programs are written on the Easycoder Coding Form (Figure 5-5). This form is composed
of fixed-format fields for coding such entries as card number, location, and operation code, and
a variable-format field for operand addresses and comments. The numbers associated with each
subdivision, or field, on the coding form indicate the card columns into which the characters

written by the programmer are to be punched,

EASYCODER
CODING FORM
+ROBLEM DATE .. PAGE ___OF
Noes [Ha] tocaTion ["”i’;‘n}”"i OPERANDS $ J
[X610 RRRSC) e n . . . - " - G T " . %)
! [s s L L - . ' . I L L L L
2 L
+— . e n s . . . ,
: \ ‘ L - L 1 ol 1 1 1
‘ l l — L L 1. N P — 1 1.
s T
L L 1 L n 1 L 1 1
¢ ! , : . A L N . . .
T - i1 - - . 2 sk 1 1
s 1 i i L 1 1 1 1 o L
® I i 1 L. 1 . . 1 L A ad 1L
o L 1 1 el L 1 1 . 1 1
" L 1 1. 1 . al 1 L . 1 2
2 1 1 1 1 1 L 1 L 1 1 . 1. 1
2 s L) . s L L ' L 1 I L .
" ; . 1 Il L 1. 1 1 1 1 1 i L 1. .
fd B \ L L o L) .) ; L
o |)
v I L 1 I 1 1 1 1 A 1
e 1 1 1. - . 1 1 1 P al 1. .
" L o L L L L L . . L i i L L
20 1 Il . S e . L 1 1 L 1 1 1
2 i 1 I i] 1 1 1 Il 1 a 1. 1
22 1 1 1 1 L 1 i I 1 1 -l 1 1
2 L L 1 1 A 1 L . -3 L i
b 1 1 i 1 1 1 i L i 1 1 1
b4 1 1 . 1 1 e I 1 - - - J. L
26 i s 1 1 1 I3 L 1 1 1 s 1 1
27 1 1 1 1 - ol 1 1 1 sl el L 1
af T T . . , . . , . ; \ , .
ol L L . A Y ‘ . . !
| | |
L.l . 0 L i o - .

Figure 5-5. Easycoder Coding Form

CARD NUMBER (Card Columns 1-5)

This five-character field is divided into three parts: the first two characters are used for
page numbering, the next two for line numbering, and the last character for insertions. The page
entry provides the proper sequencing of coding forms. The line number entry is used for the
sequential numbering of instructions on each coding form. The single-character insertion entry
permits one or more lines of coding to be inserted between existing lines. For example, to

insert a line of coding between lines 16 and 17 of page 8, the following coding could be used.

CARD NUMBER v
PAGE | LINE |INs|P
I 213 4l5s
T

g,811 ,6 ;
g, 811 615)
1 | I W |

;
¢|8|1L7| S
S -

5-5 #2-139

SECTION V. EASYCODER PROGRAMMING

NOTE: The number 5, which appears in column 5 above, is optional. An in-
sertion may be made using any decimal, alphabetic, or special character.
Provided that the characters are in ascending order of value (beginning
with 0), multiple insertions may be made between any two instructions.

TYPE (Card Column 6)

For all instructions and constants, this column remains blank. However, the programmer
can enter lines of descriptive information, called remarks lines, anywhere in the source pro-
gram. Such a line, containing only descriptive data within columns 8 through 80, is identified by
an asterisk (%) in column 6. Informatioﬁ inserted in this manner, while it remains as part of the
source program, does not appéar in the object program; it does, however, appear in the pro-

gram listing,

EASYCODER

CODING FORM
PROBLEM - PROGRAMMER = OATE________ PAGE___OF __
NOMBER El| vocarion | PO OPERANDS
1 23 als[el7]s N 1a]15, 20]21 | | T . seeles NN L. ., 80
i | ¥ ISPEC I FYICONTROL CONSTANTS e . \ e
2 ‘l"[‘!, - 1 1 1 SRRV P S | IUST R S SUPIS SO T ST I S TRt | - | P 1 .

Easycoder C and D Options

For Easycoder C or D users, this column may also contain the letter T to designate a tem-
porary remarks card, or the letter D to designate a data card. If the programmer wishes to
enter remarks lines anywhere in the source program but does not want these remarks to become
a permanent part of the source program, a T instead of an asterisk (%) is placed in column 6.
Remarks lines inserted in this manner are used only on the first assembly (i.e., when the pro-
gram is being "inserted"), and are subsequently deleted from the symbolic program tape by the
assembler, A temporary (like a permanent) remarks statement, while it appears in the program

listing, does not appear in the object program.

A letter D in column 6 indicates a data card. All data cards must be contained in segments
consisting only of data cards. In addition, any data carci (or group of data cards) must be immedi-
ately preceded by a SEG card and immediately followed b'y either an EX, XFR, or END card.
When a data card is encountered by an assembler, columns 8 through 80 are reproduced, un-

altered, on the binary run tape or machine-language punched deck.

MARK (Card Column 7)

This field, used in conjunction with data formatting operations (described in Section VI),
serves to set up required punctuation. Two sets of punctuation indicators are available; set I may
be employed with all Easycoder assembly systems (A, B, C, and D); set II, however, may only

be used with the Easycoder C and D. Both punctuation sets are described below,

5-6 ' #2-139

SECTION V. EASYCODER PROGRAMMING

Set I, consisting of a blank (4), an L, and an R, establishes the position of the item mark
when defining an item (see Table 5-1), Word marking for this first set depends upon the class of
instruction, as determined by the contents of the op code field.

NOTE: When an L is used and the leftmost (high-order) character is automatically
word marked, a record mark will result,

Table 5-1.

Set I Punctuation Indicators

A A A
L Itemm Mark A
R A Item Mark

Set II, designed for use with the Easycoder Assemblers C and D, can be employed in situa-

tions which warrant unusual punctuation requirements.

With this set (listed in Table 5-2), any

one punctuation indicator controls the complete punctuation setting for the particular instruction

or constant.

However, there is no implicit word mark setting as in the first set.

this second set of punctuation is not dependent upon the class of instructions,

Table 5-2,

Set II Punctuation Indicators (Easycoder C and D Only)

A Word Mark

B Item Mark A

C Record Mark A

D A Word Mark
E A Item Mark

F A Record Mark
G Item Mark Item Mark

H Item Mark Word Mark

I Item Mark Record Mark
"J Word Mark Item Mark

K Word Mark Word Mark
M Word Mark Record Mark
N A A

P Record Mark Word Mark

S Record Mark Item Mark

T Record Mark Record Mark

In other words,

#2-139

SECTION V. EASYCODER PROGRAMMING

LOCATION (Card Columns 8-14)

The location field can contain an absolute memory address or a symbolic tag, or it can be
left blank. An absolute memory address (expressed as a decimal number) specifies that the in~
struction or data will be stored in that location. No leading zeros are necessary when writing an
absolute decimal number. Moreover, this type of entry does not affect the allocation of any sub=-

sequent instructions.

Symbolic tags provide simple, meaningful symbolic references for storage locations, con-
stants, and instructions that are referred to elsewhere in the program. All symbolic tags written
in the location field are assigned absolute addresses during assembly., When an entry is assigned
a symbolic tag, the contents of the entry can then be referred to by that tag. This means that the
programmer can refer to data via a symbolic tag and need not be concerned with its actual main
memory address. One to six characters make up a symbolic tag (Easycoder D, however, can
process tags of up to ten characters in length; see "Easycoder D Options'' below). These charac-
ters can be alphabetic (A to Z) or numeric (0 to 9); the first character of the tag, however, must

be alphabetic.

If the location field entry is made beginning in column 8, the following rules apply:

1. An absolute memory address assigned to an instruction refers to the leftmost
character in the instruction.

2. An absolute memory address assigned to a constant or reserved area refers
to the rightmost character in the field.

3. Ifa symbolic tag is assigned to an instruction, the address assigned to the
tag will be the address of the leftmost character in the instruction.

4, If a symbolic tag is assigned to a constant or reserved area, the address
assigned to the tag will be the rightmost character in the field,

These address assignment conventions can be reversed by leaving column 8 blank and
entering the first character in column 9. In this case, the following rules apply:

1. An absolute memory address assigned to an instruction refers to the right-
most character in the instruction.

2. An absolute memory address assigned to a constant or reserved area refers
to the leftmost character in the field.

3, If a symbolic tag is assigned to an instruction, the address assigned to the
tag will be the address of the rightmost character in the instruction.

4. If a symbolic tag is assigned to a constant or reserved area, the address
assigned to the tag will be the leftmost character in the field.

5-8 #2-139

SECTION V, EASYCODER PROGRAMMING

EASYCODER

CODING FORM -
PROBLEM . PROGRAMMER ____ =~ OATE.____ . ___ __ PAGE _OF____
R E§ Location | PGt OPERANDS
1 2]3 4l5(s]7]8 N 14li5, 202} | N L L L | eeles L, %O
L T IREGAN MW FICA,TAX. . e . . e
N B BEGIN, . . . l e el
3 I DA.T:E D.CW @1¢/1:9/65@ 1 L 1 dos s ooy U S N I a1 1
4 i } 1 1 1 1 . 1 1 s I i 1 1 PRSI B PR

The first instruction shown above moves the contents of the field tagged FICA to the field
tagged TAX. This instruction can be referred to in the operands field of another symbolic pro-
gram entry via the tag BEGIN. For instance, the second instruction causes the program to
branch to the MCW instruction by referring to it via its symbolic tag (BEGIN). In other words,
the address of the operation code of the MCW instruction is inserted in an object-program in-
struction wherever the tag BEGIN appears as an operand in a symbolic-program entry. The third
instruction defines an alphanumeric constant which cén be referred to in the operand field of
another symbolic-program entry via the tag DATE. In this case, the tag refers to the address

of the rightmost character in the constant,

Easycoder C and D Options

Users of Easycoder C or D may also include, in the location field, an apostrophe (')1 fol-
lowed by a decimal number; this procedure serves to indicate an address relative to the out-of-~
sequence base (OSB). The out-of-sequence base, a value maintained by the assembler can be
set by the XBASE instruction (see page 7-18). The assembler assigns to the corresponding
statement an address equal to the sum of the decimal number and the current value of the OSB.
(Leading zeros may be ornittéd from the decimal number.) The allocation of any subsequent

instructions is not affected.

If the apostrophe and decimal number are written beginning in column 8, the following
rules apply:

1. An address relative to the out-of-sequence base assigned to an instruction
refers to the leftmost character in the instruction.

2. An address relative to the out-of-sequence base assigned to a constant or
reserved area refers to the rightmost character of the field.

These address conventions can be reversed by leaving column 8 blank and entering the

first character (the apostrophe) in column 9. In this case, the following rules apply:

1Card code 8, 2 (octal 12).

5-9 #2-139

SECTION V. EASYCODER PROGRAMMING

1. An address relative to the out-of-sequence base assigned to an instruction
refers to the rightmost character in the instruction.

2. An address relative to the out-of~-sequence base assigned to a constant or
reserved area refers to the leftmost character of the field.

Assume, for example, that the OSB has been set to the value 500 by the last XBASE in-
struction. The following DCW statement is now encountered. The constant PRM is assigned,

by the assembler, to locations 648 through 650, (The value of the OSB remains 500),

EASYCODER

CODING FORM
PROBLEM PROGRAMMER _______ OATE_ . _______ PAGE___OF___
NUMBER E|g| Location o one OPERANDS
1 2]305678 | 14]15, 20]21 1 1 Il L | N L 1 L t N] 62|63 1 N Lo [80|
! ! ’ /50 ch PRM@I x A 1 —_) Vl At Aoaao a1 i L PRI N S SRR RS
2 ! \ i 1. ! 1 1 —_—t 1 J - 1 R L —_— L bk PN R | n J -

Easycoder D Optidns

Symbolic tags of up to ten characters in length may be employed with Easycoder D. For
symbolic tags consisting of six characters or less, the standard coding format is used. How-
ever, if tags of from seven to ten characters are used, the location field is modified such that

it now occupies card columns 8-18. (This alternate format also requires that the operation code

field and operands field be modified to accommodate the increase in tag size.) The same pro-
gramming conventions which apply to six-character tags apply also to ten-character tags.

NOTES: 1. The program header (PROG) card is used to denote that the
alternate format is to be employed. See page 7~2for instruc-
tions on how to employ the PROG card in this manner.

2. Symbolic tags of more than six characters in length may not
be used if the input is to be in the form of paper tape.

OPERATION CODE (Card Columns 15-20)

This six-character field can contain a mnemonic operation code for a machine instruction,
an assembly program directive, or a data formatting code (see entries below). These entries
must be left-justified. Machine-language operation codes (in octal notation) may be used instead
of mnemonic codes. These octal codes are written in columns 19 and 20 of the operation code

field, and columns 15 to 18 are left blank.

OPERATION
CODE

14is; 2021
SCR
ORG

PN

N~

17

i

5-10 #2-139

SECTION V. EASYCODER PROGRAMMING

Easycoder D Options

If the alternate coding format is used (i, e., the location field contains tags of from seven
to ten characters in length), the operation code field occupies card columns 19-24. The method
of coding mnemonic operation codes remains the same. If octal operation codes are used, they

are written in columns 23 and 24; columns 19-22 are left blank,

OPERANDS

The operands field is a variable-format field which can contain a series of entries separate
by commas and terminated by the first blank following any character other than a comma or a
blank, In general, the operands field contains such entries as the addresses (either symbolic or
absolute) of the data to be operated upon by a command in the operation code field, literals, ad-
dress constants, or input/output information. Relative, indexed, and indirect addressing can be

used in conjunction with absolute or symbolic addresses (see below).

Easycoder A and B (Operands Field: Card Column 21-62)

For either of these two assembly systéms,‘ column 62 terminates the operands field. Any
punches appearing in columns 63-80 (of any line other than a remarks line) are ignored and do
not even appear in the object-program listing. Remarks may be entered following the terminating

blank.

Easycoder C and D (Operands Field: Card Columns 21-80)

For users of Easycoder C or D, the operands field extends to column 80. Remarks may
be entered following the terminating blank. One or both operands can be bypassed during as-
sembly by writing one or two leading cofnmas, respectively, in the operands field. Such a
comma, or commas, must be left-justified in the operands field and must be followed immedi-

ately (i.e., without intervening blanks) by any remaining entries, other than remarks.

Easycoder D Options

If the alternate coding format is used (i.e., the location field contains tags of from seven
to ten characters in length), the operands field occupies card columns 25-80. The method of

coding entries and remarks remains the same.

Examples
The first sample instruction causes the contents of the field whose rightmost character is
stored in memory location 50 to be added algebraically to the contents of the field designated by

the tag TOTAL,

The second instruction tests the indicator specified by variant character 3 and branches to

the address tagged EQUAL if the indicator is on.

5-11 #2-139

SECTION V., EASYCODER PROGRAMMING

EASYCODER

CODING FORM

PROBLEM PROGRAMMER _____~~ DATE__ . PAGE.__ OF___

R E'g LocaTion | OPERATION : OPERANDS

1 2]3 als]e[7]e X 1alis 2021 | | i | L | o | 6263 |) | 80
! % l I A 5@\ TolTAL- I 1 —) — 1 1 ST I 1 1 1 e
z

l L 1 L | " B S I R 1 1 1) I L 1

3 l { BCT EQUALQ_Qa L 1 1 1 1 ol et J N | [
4 | I L e L 1 n L . L 1 - L L
st] [ZA [TOTAL,TMP+X3 \ L e
¢l ! I L L " L 1 L L t PRI B! 1 L I ST PR |
T L. [McW | [TOTAL-7+X6,6R0S8S . . ., . T . . L
s
° ' IL I A. AMT2 (ASUM'ZJ t i 1 1 1 1 1 TR—

The third line of coding above shows an instruction in which the B address is indexed. The
instruction causes the contents of field tagged TOTAL to be placed in the field designated by the
tag TMP as modified by the contents of index register X3,

The fourth line of coding shows relative addressing and indexing being performed on the A
address. The instruction causes the address seven before that tagged TOTAL to be modified by
the contents of index register X6. The resultant address specifies a field whose contents are then
placed in the field tagged GROSS., Assuming that TOTAL corresponds to memory location 540

and index register X6 contains a value of 80, the resultant address of this instruction would be 613,
The last line of coding aboveillustrates an instruction with indirect addressing on the B

address. The contents of the field tagged AMT are added algebraically to the contents of the
field whose address is stored in the field tagged SUM-2.

ADDITIONAL CODING RULES

1. Comments and remarks can appear on any line following the last entry on that
line and separated from it by a blank space. These notes will be printed on
the pr'ogramvlist‘ing but will not be assembled as object-program entries. As
mentioned previously, any line of coding containing only comments must be
designated by an asterisk (*) or the letter T in column 6.

2. Any number of blank spaces may be used between the comma which terminates
the A operand and the first character of the B operand. Similarly, any number
of spaces may be used between the comma that terminates the B operand and a
variant character.

ADDRESS CODES

Several types of address codes are valid in the operands field of an Easycoder statement.

These codes are defined and illustrated below.

5-12 #2-139

SECTION V, EASYCODER PROGRAMMING

ABSOLUTE

The actual address of a character position in the main memory can be represented as a
decimal number; leading zeros can be omitted. The sample instruction causes the contents of
the field whose rightmost character location is 32 to be moved to the field whose rightmost

character location is 4000.

EASYCODER

CODING FORM

PROBLEM PROGRAMMER _____~ ~ DATE_____.__ _ PAGE___OF ___

cAarRD [V OPERATION

NOMBER [F[g| LOCATION pol OPERANDS

1 2]3alslel7]s | 1alis 20[21 N T e L L8288 L Ly, %
ot . MCW . . |32,4808 . . . e L ! e .
2 | l . 1 N —_ —_ - o1 1 L 1 n N U | | -
SYMBOLIC

A symbolic address, or tag, can be used in the operands field only if it appears in the lo-
cation field elsewhere in the symbolic program. In effect, a tag must be defined (by writing it

in the location field of a symbolic entry) in order for it to be used as an operand address.

EASYCODER

CODING FORM

PROBLEM PROGRAMMER DATE____ . PAGE___OF___

cARD [V OPERATION

Numeer |F[g| LocaTion R OPERANDS

1,23 als]e]7]8 . 145, 20021 4 ' b Ll i L1 828 L P

|
Lt p I ToTAL A . FICA, TOTAX, . . e . . e
2 1
1 L 1 1 L 1 1 i L " 1 " 1 1 PO WSS S SN S B U S 1

The instruction shown above can be referred to elsewhere in the program via its tag
(TOTAL). . It should be noted, however, that this instruction is a valid statement only if the
symbolic addresses FICA and TOTAX have been defined in the location field elsewhere in the

source program.

SELF REFERENCE

It is sometimes convenient for an instruction to refer to itself. A self reference is indi-
cated by an asterisk in the operands field of a source-program instruction. The assembler
automatically replaces the asterisk with the address of the leftmost character of the instruction

in which it appears. Address modification and relative addressing can be performed on asterisk

operands,
CODING FORM
PROBLEM PROGRAMMER DATE___ . PAGE___OF __
I

NOMBER E[g| vocaion e OPERANDS

1 2’3 4:5 6(7(8 | 14115, 20)21 L 1 | . L 1 N 1 N i L] ®e|e3 0 i N 80
! li } 1 cw * +4 ;_.MOR K " 1 L N n 1 L L1 Ll L
2 I ! L I e 1 . - I 1 1 n Ly SN R W ST S Lo
3 1 I L MCW t + 9 ;NORK L L L —t PR . " L i1 M 1

5-13 , #2-139

SECTION V. EASYCODER PROGRAMMING

In the first sample entry above, the notation *+4 addresses the rightmost character of the
instruction in which it appears (assuming that two-character address assembly has been speci-
fied). Since the function of this instruction is to move the field specified by the A address to that

specified by the B address, the instruction itself will be moved to the field tagged WORK.

In the second entry, the notation *+9 refers to the rightmost character of the instruction
stored immediately to the right of the MCW instruction (assuming that two-character address
assembly has been specified). The instruction following the MCW instruction will be moved to

the field tagged WORK when the MCW instruction is executed.

RELATIVE

_ Relative addressing, or address arithmetic as it is frequently called, can be used with all

absolute addresses, symbolic addresses, and the self-reference symbol (*) (these three types of
address codes are referréd to as addressing '"elements''). By using relative addressing, the
programmer can referrto & source-program entry that is stored a specified number of locations
away from a particular address. A relative address is specified by appending one or more ad-
dress modifiers, each consisting of a sign and an addressing element, to another addressing ele-
ment. The address modifier designates a memory location relative to the location specified by
the basic addressing element. For example, the instruction below causes the contents of the field
100 characters beyond the field tagged INT to be added algebraically to the contents of the field

10 characters before the sum of the addresses defined by the tags AMTPD and ERROR.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER =~ DATE__ =~ PAGE___ OF ___
CARD [y R
NUMBER ErgrLOCATION OPERATRON OPERANDS
1 2]3 al5(6{7]8 | 14(15, 2021 A | L - . L | | 6263 R L. . 80|
i
! I:] L | . \NT+1|@.¢qAMTPD+51RROR—|4¢. I L s " I ot SR B 1

. The number of symbolic tags required to write a program can be greatly reduced by the
use of relative addressing. The programmer decides how many and which fields in a program

to tag and which to reference by relative addressing.

A certain amount of caution is required in the use of relative addressing. First of all,
relative addresses are not automatically corrected as a result of subsequent insertions or dele-
tions in the source program. The programmer must remember to adjust manually the address
modifiers affected by such changes. Secondly, if relative addressing is used to refer to an
operand address in another instruction, care must be taken to insure that the address is refer-
enced by its rightmost character., For example, the A address of the instruction shown below
could be referred to elsewhere in the program as INST+2 or INST+3, depending on whether two-
or three-character address assembly were specified.

5-14 #2-139

SECTION V. EASYCODER PROGRAMMING

EASYCODER

CODING FORM
PROBLEM PROGRAMMER = DATE__ . PAGE___OF___
NUMBER ETE] rocarion | *gioe®™ OPERANDS
| 2]3 alslel7]s [1415, 202 ; | | L | ., | | , s62les) . L L. 89
i INST 1A SUBT, TOTAL, : . : . . : A L
2 : ! . I — il_g I 1 . | - 1 " 1 1 | U S | L L

OUT-OF -SEQUENCE

The valid address codes also include the special symbol apostrophe (printer '; keypunch
8, 2; octal 12), This symbol is an element whose value is equal to the current value of the out-
of -sequence base (OSB). It is followed by an address modifier to specify the address of the de-
sired operand. The OSB is set by means of the XBASE instruction (see page 7-18).

EASYCODER

CODING FORM
PROBLEM PROGRAMMER OATE .. PAGE__OF____

CARD [
NUMBER [P
6

1 23 als 8 . 14115, 20|21

] A WORK,P*48

LocaTiON | OPRATION OPERANDS

B |

80

In the sample statement above, assume that the out-of-sequence base (OSB) has been set
to 600 (by the XBASE instruction). The data in the field tagged WORK will be added to the data
in the field whose rightmost location is 615 (600 + 15). The result will then be stored in the field

whose rightmost location is 615,

BLANK
There are two conditions for which a blank operand field is valid:
1. "The instruction does not require an operand (e. g. , the Halt and No Operation
instructions).

2. The operands are implicitly addressed: the A operand is specified by the
contents of the A-address register (AAR); the B operand is specified by the
contents of the B-address register (BAR).

If either or both operand addresses are to be supplied by other instructions (as illustrated
below in the description of address literals), the affected operands should be represented by

zeros; they should not be left blank.

LITERALS!

The purpose of a literal is to allow the programmer to write in the operands field of a

symbolic program statement the actual data (as opposed to the address of the field containing

1
Not available with Easycoder A.

5-15 ‘ #2-139

SECTION V. EASYCODER PROGRAMMING

the data) to be operated on by an instruction. Easycoder B users can code all literals, except
binary, with a maximum length of 40 characters; a binary literal can be coded with a maximum
length of six characters, For users of Easycoder C or D, the maximum length of any literal can

be 63 characters.

The assembler automatically assigns a storage field for each literal and inserts its address
(i.e., the address of its rightmost character) in the operands field of the instruction in which it
appears. In effect, for every literal appearing in the source program, the assembler generates
a constant containihg the value of the literal, with a word mark in the leftmost character position.

NOTE: If the constant generated from a literal occupies from one to five storage
locations, it is assigned a storage address only once in the program, re-
gardless of the number of times the literal appears in the source program,
(For Easycoder C or D, the constant is assigned a storage address only
once in the program if it occupies from one to six storage locations.) A
constant that exceeds five characters (six for Easycoder C or D) is assigned
a storage address each time the corresponding literal appears in the source
program, The latter condition can be avoided by using a DCW statement
(see page 6-2) whenever a long literal is to be used more than once in the
source program,

Decimal Literals s

Decimal literals are specified by writing a plus or minus sign followed by the value of the
literal, When the literal is assigned to a storage field, the assembler places the sign in the zone
bits of the units position of the resulting constant, Unsigned decimal values can be coded as

alphanumeric literals.

EASYCODER

CODING FORM
PROBLEM PRO R DATE ___ . PAGE___OF____
CARD [V OPERATION
NUMBER [p|B| LOCATION CODE OPERANDS
1.2]3.aTs]e]7]e L 1415 20021 1 L S I R | . I | F2(63 | | P S SR
|
o . S, +24 ACCUM , ., e e . N . _
LT 9
N ! 1 1 _— 1 n 1 1 4 3 . PR 1 L 1 U EPYST N R | L
3 l 1 4 1 L 1 L L PR ST | L L IS U S S 1
a |

The statement above illustrates the use of a decimal literal. The instruction causes the

value 24 to be subtracted from the contents of the field tagged ACCUM,

Binary Literals

A binary literal is represented as a decimal entry in the operands field of a symbolic in-
struction. The assembler automatically converts the decimal entry into a binary value and stores
it (right-justified) in the storage field. The programmer must specify the number of six-bit

characters used to store this value.

5-16 ‘ #2-139

SECTION V. EASYCODER PROGRAMMING

A binary literal is coded by writing a # sign, followed by a number which specifies how
many six-bit characters should be used to store the resulting binary value, followed by the letter

B, followed by the decimal representation of the desired binary literal.

NOTE: If the decimal representation of the binary literal is preceded by a minus

sign, the assembler will store the binary literal in two's-complement
form.

The first instruction below causes the binary equivalert of 50 (expressed as a continuous
12-bit binary value) to be added to the contents of the field tagged BEGIN+2. The second in-
struction has been included to illustrate how a binary literal can be used in address modification.
In effect, the first instruction modifies the A address of the second instruction by a value of +50.

The third instruction causes the binary equivalent of 2, 688 (expressed as a 12-bit binary value)

to be moved to the field tagged IND?7.

EASYCODER

CODING FORM
PROBLEM PRO! R OATE . PAGE.__OF ___
CARD OPERATION
NUMBER Eg LOCATION CODE OPERANDS
1 23 alslel7(s | 1afis, 20[21 | L | T . 1 | e2fes | L) 80|
ot . BA WORS@BEGA\Nt2 el
ol . || BEGIN_ MeW [\TEMA,TOTAL .. . e ol
3 | 1 1 i - 1 1 1 1 A e L —_— L 1 AR I 1 .
4 1 l 1 MLC’W 2526188 LY |N|DT Lo at Lot L 1 1 P - 1 i
5 ! I
| L L | L i L L L £ i+ il Al Ll 0

Octal Literals

Octal literals are coded in octal notation (see Appendix A). The programmer must specify

the number of six-bit characters required to store an octal literal.

NOTE: Since every octal digit can be represented as three bits, each six-bit
character used to store an octal literal contains two octal digits. For

example, an octal literal composed of eight octal digits can be stored
in a four-character field.

An octal literal is coded in the same format as a binary literal except that the letter B used

in the binary literal is replaced by the letter C. The constant stored by the assembler is al-

ways left-justified in the storage field.

5-17 #2-139

SECTION V. EASYCODER PROGRAMMING

EASYCODER

CODING FORM

PROBLEM . PROGRAMMER DATE . PAGE ___OF___
T
v ng Location | OPERTION OPERANDS
123.4Ts]el7]e ! 1415, 20[21 I | L1 P SN | PO L A SR | L 20
T
! : I L HA i #3C77|77-MA15K 3 U S - 1 1 P IV EEPU PR
2 } | a1 I L L il 1 N L I PP . L I B S T SR L i

The A operand in the above statement is a four-digit octal literal. The assembler will

store it left-justified in a three-character field, as 777700.

Alphanumeric Literals

An alphanumeric literal is specified by writing the @ symbol before and after the value of
the literal. This type of literal can contain blanks, decimal, alphabetic, and special charac-

ters {excluding the @ symbol].

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE ... PAGE___OF____
NUMBER Erg Location | G OPERANDS
1 213 alsle]7]s | 14]15, 20|21, | L | 1 L | | 6263 | | K . ! - 80|
N 1 MCW . |@ACCOUNTS PANABLE,18/19/65@, PRINT . e

The statement above illustrates the use of an alphanumeric literal. The instruction causes

the information contained within the @ symbols to be moved to the field tagged PRINT.

EASYCODER C AND D OPTIONS
In addition to the form specified above, users of Easycoder C or D have available to them
three other methods of coding alphanumeric literals.

1. A number sign (#) is followed by a number from 1 through 63 which speci-
fies the number of characters in the literal; this number is, in turn, fol-
lowed by the letter A and the literal,

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE __ OF
T
NN R E[g| Locamion | oPON OPERANDS
12134:5579 N 20[21 | | L L L | .| .23 L L L., 80
AR o MCW . #14A6 LBS @ 21€/IBLPRINT
In the above example there are 14 characters in the literal. The instruc-
tion causes these 14 characters to be moved to the field tagged PRINT,
2. If it is desired to set an item mark (in addition to a word mark) in the

leftmost position of the literal constant field, a number sign (#) is followed
by a number from 1 through 63 which specifies the number of characters in
the literal; following this number is the letter L and the literal (see the first
example below).

5-18 #2-139

SECTION V. EASYCODER PROGRAMMING

EASYCODER

CODING FORM
PROBLEM PROGRAMMER =~ DATE____ _ _ PAGE.__OF____
CARD [V
NUMBER |E[g| LOCATION oo OPERANDS
| 23 4ls5]6]7]s | 14]15, 20]21 | | L L. N | sles L L., 89
N | . MCW [6L1965/AMSTOR& e . e
2 1 | " 1 1 1 1 1 A i 1 n 1 i 1 YN TR S T W T | n 1
RN . MCW __#6R1965/ A, STORE, . e el .

3. If it is desired to set an item mark in the rightmost position of the literal
constant field, a number sign (#) is followed by a number from 1 through 63
which specifies the number of characters in the literal; following this num-
ber is the letter R and the literal (see the second example above).

NOTE: In form (1), alphanumeric literals of six characters or less are stored
in a literal table and duplicates are eliminated. The duplicates are
not, however, eliminated in forms (2) and (3).

Area Defining Literals

An area defining literal may be used to define and reserve a working area in memory with-
out using a separate data formatting instruction. The address which defines the area is written
as a symbolic tag. The size of the area to which the literal address refers is specified as a

decimal value following the literal address and separated from it by a # symbol.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER ____~ OATE____ . PAGE___ OF___
CARD | OPERATION
NUMBER [E[R LOCATION CODE OPERANDS
1213 als]6]718 L 1808, 20j2! | | Lot T | A LN A L L.y, 80
T
! ! ' 1 MCW WAGE '\4TE\MP#|5 L L " f I L S| 1 1 . 1 1 P

In the instruction above, the entry TEMP#5 causes the assembler to reserve a blank five-
character area with a word mark set in the leftmost character position. The address of the
rightmost character in this area is assigned to the tag TEMP. Therefore, TEMP can be used as
a symbolic address elsewhere in the source program, Because both the tag and size of the area
to which it refers are defined. The sample instruction causes the contents of the field tagged

WAGE to be moved to the field tagged TEMP.

Address Literals

An address literal enables the programmer to specify a symbolic address in the operands
field of an instruction such that the assembler will use the address as an operand. A symbolic
address can be used as an address literal only if it is defined elsewhere in the symbolic progi‘am.
The tag used as an address literal must be preceded by a plus sign. The length of the address
is determined by the current addressing mode (the defined address can be two, three, or four

characters long).

5-19 #2-139

SECTION V. EASYCODER PROGRAMMING

An address literal (+AMT) is used in the first sampie entry below. Assume that AMT has
been defined elsewhere in the program and has been assigned an absolute address of 800. The
absolute address of AMT, as opposed to the contents of the field tagged AMT, replaces the ad-
dress literal. The first instruction below causes the value 800 (the absolute address assigned
to AMT) to be movedtoanaddress three greater than the location tagged MODIF. The second
entry shows how an operand address can be supplied by another instruction. Specifically, the
absolute address assigned to the tag AMT is supplied as the A address of the instruction tagged
MODIF. This instruction causes the contents of the field tagged AMT (i.e., the field whose
rightmost character is stored in location 800) to be added algebraically to the contents of the

field tagged TOTAL.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER _DATE . PAGE._OF___
CARD [} OPERATION
NUMBER |g|5| “OCATION CoDE _ OPERANDS

273 alslsl7]s | 1alis, 20]2 | . R L . . R . K L .
i . MCW . . [+AMT,MODIF+3 e L . e
o MODIF. . A fé,TOT.AL R B

|
3 J | P A

L L AP TP U I S S SO S N YO S S S S n 1 1 1a) PR

VARIANT CHARACTER

A variant character can be expressed as one alphanumeric character, as two octal digits,
or as a symbolic tag. 1 It is written following the operand entries and separated from the last

entry by a comma. Octal representation of valid characters are listed in Appendix B.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER ______ DATE___. PAGE ___OF___
T
NW:ER @ Location | OO OPERANDS

1 2]3 als]e|7(s | 1415, 20[21 | L . L

N T BCT loFLOW,58 .

F . BeC NEG,SUM.P6 . ., . e N D
| \ .
| 1

L 82083 PR T

A 1 PSS S U T T | PR Il

! i 1 1 1 A PO " T

& W~ -

1 . 1 ! 1 1 L " L i

4
+

The first instruction above tests an indicator specified by the variant character. If the
indicator is on, the instruction causes the program to branch to the address tagged OFLOW.
As might be expected, the octal digits 50 represent the overflow indicator. The second instruc-

tion causes the single character at the location tagged SUM to be examined for a particular bit

1A symbolic tag, composed of at least two characters, may be used to represent (1) a variant
character, or (2) a group of input/output control characters. The number of I/O control char-
acters that may be represented varies from one to six (using either Easycoder A or B) or from
one to four (using other Easycoder C or D). The symbolic tag must be defined before it is used
in the input/output instruction; the Control Equals statement (CEQU) is generally used for this
purpose (see page 7-13).

5-20 #2-139

SECTION V. EASYCODER PROGRAMMING

configuration as specified by the variant. In this case the variant 06 specifies that the charac-
ter should be examined for a negative sign. If the desired bit configuration is present, the pro-

gram branches to the address tagged NEG.

INPUT/OUTPUT CONTROL CHARACTERS

Input/ output control characters can be used only in conjunction with input/output instruc-
tions (see Section VIII). One or more of these characters may be written following the A-address
entry in an input/output instruction, each preceded by a comma. Input/output control characters

may be coded as single alphanumeric characters, as pairs of octal digits, or as symbolic tags. 1

ADDRESS MODIFICATION CODES

In a system equipped with the Advanced Programming Instructions (Feature 010 or 011 in
Modell 200; standard in Models 1200, 1250, 2200, and 4200), two address modification codes are
valid in the operands field of a source-program statement: indexed and indirect. These codes
allow the modification of operand addresses without altering the instructions in which the
addresses appear, This is in direct contrast to the permanent alteration of an instruction that

results from using a binary arithmetic instruction to modify either or both operand addresses.

INDEXED
Indexed addressing is performed by appending to the address being modified a code to indi-
cate which of the index registers is to be used. The code consists of a plus sign followed by an X

or Y and a decimal number from 1 to 15,2

If an index register is to be specified in the operands field of an instruction for other than
indexing purposes, it is referred to by its absolute address rather than its symbolic address.
For instance, absolute address 24 is used instead of the corresponding symbolic address X6.

- However, the programmer may use the symbolic address if he equates it to the absolute address

using an EQU statement (see page 7-12).

1See footnote, page 5-20.

2Figure 4-3, page 4-9, pictures the possible locations of Series 200 index registers, Table 4-1,
page 4-10, indicates the number of index registers simultaneously available to a program.
Tables 4-2 and 4-3 on pages 4-12 and 4-14, respectively, indicate the address modifier and
absolute locations corresponding to each symbolic index-register address. The number of index
registers which can be referenced sumbolically also depends on the assembler being used, as
described on page 6-8.

5-21 #2-139

SECTION V, EASYCODER PROGRAMMING

EASYCODER

CODING FORM

PROBLEM PRO! MMER ODATE . ___ PAGE.___OF____

womeer [b[g] LocaTion | N OPERANDS

1 2[3 alse]7]s | 14]1s, 20[21 | | ol ees L L ., . 8o
! ; —"L L CI DATA ‘hxts 9 POJS n | L P P T |) L i
2 .

——t 1 ! i 1 1 e | TR B T S) ST SR N YN DR UT S O N | .

3 L 1 BA. STOREI}X‘Z] 1 1 1 P 1 PR) H I3 1 — a1
4 i l 1 1 1L PR P 1 i P PR Wt P 1 1 n P n Il
5 L.y L Mcﬂ "ej'lel.BuFiFfl.34 L P S SN | P T B i

The first instruction above causes the contents of the field designated by the tag DATA as
modified by the contents of index register X6 to be compared to the contents of the field tagged
POS. The second instruction causes the contents of the field tagged STORE to be added (in
binary) to the contents of index register X12. The use of the symbolic designation X12 implies
that an EQU statement was used to equate it to the absolute address of index register X12. The
third instruction illustrafes how an indexed address can be coded to generate an effective ad-
dress which is less than the value stored in the specified index register. The zero is used be-
cause an operand address cannot be introduced with a plus or a minus sign. Thus, the effective
A address of the MCW instruction will be a value six less than that stored in index register X1

(i. e., if index register X1 contains 126, the effective A address is 120).

Three- or four-character address assembly must be specified (see ADMODE, page 7-11)
whenever indexed addressing is to be performed. When the assembler translates an indexed
address into a machine-language entry (see Figures 5-6 and 5-7), the translated index register

designator is automatically inserted into the address modifier bits of the assembled address.

INDEX 15-BIT REPRESENTATION
REGISTER OF ADDRESS ASSIGNED
DESIGNATOR TO THE TAG AMNT

2 OPERANDS \

AssewsLeR |

B ADDRESS OF
ASSEMBLED INSTRUCTION

Figure 5-6. Assembly of Indexed Address in Three-Character Addressing Mode

5-22 #2-139

SECTION V. EASYCODER PROGRAMMING

INDEX 18- BIT REPRESENTATION
REGISTER OF ADDRESS ASSIGNED
DESIGNATOR TO THE TAG AMNT

2 OPERANDS \ L l

ASSEMBLER

B ADDRESS OF
ASSEMBLED INSTRUCTION

Figure 5-7. Assembly of Indexed Address in Four-Character Addressing Mode

INDIRECT
An indirect address is specified by enclosing the address (either symbolic or absolute) in

parentheses.1 For example, in the sample instruction below, the parentheses around the tag

DATA indicate to the assembler that DATA refers to the leftmost character of a field containing

another address. This second address may be a direct, an indexed, or another indirect address.
If it is direct or indexed, it specifies the rightmost character of a data field. If it is indirect, it

specifies the leftmost character of a field containing another address.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE ___. PAGE ___OF ___
cARD [¥ OPERATION
NUMBER [p[R| LOCATION CoDE OPERANDS
1203 alslel7le L 145, 202! i L 1 R S B T | T L A TS S Lo, 89
I .
I \ MCW . [(DATAD.,WORK ., e ey . e
2 T
} ! 1 L 4. P, I i TS Il - Lo " it W | " 1

Three=- or four-character address assembly must be specified whenever indirect addressing
is to be used. When assembler translates an indirect address into a machine-language entry
(see Figures 5-8 and 5-9), a binary value of 111 (three-character mode) or 10000 (four-character

mode) is automatically inserted into the address modifier bits of the assembled address.

v INDICATES
. INDIRECT ‘
ADDRESS

-

15-BIT REPRESENTATION
OF ADDRESS ASSIGNED
TO THE TAG TEMP

OPERANDS |

* ASSEMBLER

21

WAGE

B ADDRESS OF
ASSEMBLED INSTRUCTION

Figure 5-8. Assembly of Indirect Address in Three-Character Addressing Mode

1 .
The left parenthesis corresponds to keypunch symbol % (card code 0, 8, 4), the right parenthesis

to keypunch symbol [J(card code R, 8, 4).
5-23 #2-139

SECTION V. EASYCODER PROGRAMMING

OPERANDS\

I

INDICATES 18-BIT REPRESENTATION
INDIRECT OF ADDRESS ASSIGNED
ADDRESS TO THE TAG TEMP

' i

-

B ADDRESS OF
ASSEMBLED INSTRUCTION

Figure 5-9. Assembly of Indirect Address in Four-Character Addressing Mode

#2-139

DATA
FORMATTING
STATEMENTS

INTRODUCTION

A value or quantity which must remain fixed or which must be used repeatedly in a program

is called a constant. A work area is an area in memory which is reserved for input data, cu-

mulative processing, or output data., By employing data formatting statements, constants can
be stored and work areas can be reserved without regard to their actual locations in memory.
For instance, the programmer can use a data formatting statement to reserve an 80-character
card input area and assign it a symbolic address such as CARDIN, without knowing the actual
address of the field. Similarly, a data formatting statement makes it poséible to store a con- |
‘stant, such as 2000, and to refer to it by a symbolic tag, such as CON3, without regard to the
address at which the constant is stored. Table 6-1 lists the five data formatting statements used

with Easycoder symbolic language.

Table 6-1. Data Formatting Statements

DCW Define Constant with Word Mark
pc Define Constant without Word Mark
RESV Reserve Area
DSA Define Symbol Address
DA Define Area™
*NOTE: The Define Area statement cannot be employed
with the Easycoder A Assembly System.

Although data formatting statements are coded in the same format as most symbolic ma-
chine instructions (data processing statements), they are not treated as instructions by an as-
sembler. Instead they are treated as definitions which cause the assembler to ‘perform certain
activities but which are not executed during a program run. Since data formatting statements are

not executed during a program run, they should not be written in the body of the symbolic program.
6-1 #2-139

SECTION VI. DATA FORMATTING STATEMENTS

Define Constant with Word Mark - DCW

By use of the DCW statement, a constant can be automatically stored in a field reserved
by the assembler. In storing the constant, the assembler automatically sets a word mark in the
leftmost character position of the storage field, Item marking may be specified as in Table 5-1
(page5-7)s An L in column 7 thus results in a record mark with a DCW statement,

NOTE: If Easycoder C or D is being used, and if unusual high- and low-order
punctuation is required, the programmer may use a set II punctuation
indicator as shown in Table 5-2 (page 5-7).

The constant can be assigned a tag. If the tag is left-justified in the location field, it is

assigned to the address of the rightmost character of the constant. If the tag is indented one

column, it is assigned to the address of the leftmost character of the constant.

NUMERIC CONSTANTS

Numeric constants may take any one of three forms: binary, octal, or decimal. For

- Easycoder A and B, octal and decimal constants can be coded with a maximum length of 40 char-
acters, while the coding associated with a binary constant is limited to a maximum of six char-
acters, However, for Easycoder C and D, the maximum length of the storage field yvhich can be

occupied by a numeric constant is 63 characters.

Decimal Constants

Signed decimal constants are specified by writing a plus or a minus sign in the first column
of the operands field, followed by the value of the constant. When the constant is assigned to a
storage field, the assembler places the sign in the zone bits of the rightmost character of the

constant. ! Unsigned decimal constants are written left-justified in the operands field,

EASYCODER

CODING FORM
PROBLEM PROGRAMMER _____ DATE __.__ PAGE__._OF___
=
NfJAlngR EQ Location | OPERETION OPERANDS
1 2[3.4aT5]e]7]e L Jals, 20121 I 1) I s Lo L L8283 Ly L ...
! { ! DEC\ chw P +22 1 i i 1 L L L i 1 1 - I 1 T N —
- I N

The statement above shows the decimal value of +22 defined as a decimal constant.

Binary Constants

A binary constant is actually written as a decimal entry (maximum value of 999999) which

1See the description of sign codes beginning on page 8-7.

6-2 #2-139

SECTION VI. DATA FORMATTING STATEMENTS

is then automatically converted to a binary value by the assembler. The binary value is stored

(right-justified) in the constant field.

To code a binary constant the programmer writes the following: (1) a # sign (in the first
column of the operands field); (2) for Easycoder A or B, a number from 1 to 6 which designates
the number of six-bit characters needed to store the resulting binary value (for Easycoder C
or D, a number from 1 to 63); (3) the letter B; and (4) the decimal representation of the desired
binary constant. Note that if the decimal representation of the binary constant is preceded by a

minus sign, the assembler stores the binary constant in twos-complement form.

EASYCODER

CODING FORM
PROBLEM PROGR, R DATE .. PAGE___OF____
CARD V¥ OPERATION
NUMBER [[5| LOCATION CObE OPERANDS
'2|3‘1567°) 185 20)21 L 1 | L L I) 82083 4, .t L, 89
! ; L1l IcoN3 IoCW |, 2B5g, s e . e
2

The statement above shows the binary equivalent of 50 defined as a binary constant to be

stored in two consecutive character locations.

Octal Constants

Octal constants are coded in octal notation (see Appendix A). To code an octal constant
the programmer writes the following: (1) a # sign (in the first column of the operands field); (2)
a number (not to exceed 20 for Easycoder A and B; not to exceed 63 for Easycoder C and D),
which specifies the number of six-bit characters required to store the octal (:ons‘cant;1 (3) the
letter C; (4) the constant value. Note that the value stored by the assembler is always left-

justified in the storage field.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER ______ DATE____ .~ PAGE___OF
T
NUMBER [F|5| LOCATION | O°TEO OPERANDS
1 213 alslel7]s | 1415, 20]21 { { L o ! . § . L . !) 82063, . T [
|
| : (11 OCT7 DCwW. ®2C1777 . l e .) L]
? '

In the statement above, the octal value of 7777 is shown defined as an octal constant to be

stored in two consecutive character locations.

1 . . .
Recall that an octal digit can be represented as three bits; thus each six-bit character used to
store an octal constant contains two octal digits. For example, an octal constant composed of
six octal digits can be stored in a three~character field.

6-3 #2-139

SECTION VI.

DATA FORMATTING STATEMENTS

ALPHANUMERIC CONSTANTS

Alphanumeric constants may be coded in one of three ways:

l.

2.

PROBLEM

Constants (including special symbols and blanks) may be written with the
constant value enclosed in @ symbols (see the first entry below).

If the @ symbol is required in the constant, this constant is enclosed in
any unused character other than blank, +, -, # (and F, for Easycoder D)
or the digits 0 through 9 (see the second entry below). ‘

A number sign (#) is followed by a number from 1 through 56 which speci-
fies the number of alphanumeric characters contained in the constant;
this number is, in turn, followed by the letter A and the alphanumeric
constant (see the third entry belovv).1

EASYCODER

CODING FORM
PROGRAMMER

DATE ___.

PAGE __OF ___

CARD
NUMBER

o (Mo~
~ |=0;

LOCATION

OPERATION
CODE

OPERANDS

| 273 4ls

4]is,

20

Lo b o

B SO S B S

Lo

1 82

€3 L. L N

cosT

DCW

U WU S,

I

B

. —_ | B

Iﬁﬁg\ée.ed@

I TV DR

T

PR

IFEINE DETUNS T A T B

RATE

DCW

SIXDOLLARS/HR% . .~

PR B

PO ES BPUD S S S B .

P D TSI R L

DATE

DEW

F4A1965 .

1

- - -+ O+ OF

P e W~ -
[Sy

——

NOTE: The maximum number of alphanumeric characters which can be con-
tained in the constant, of course, depends on the number of card col-
umns available in the operands field. Thus it should be remembered
that methods 1 and 2, above, require two card columns to format the
constant, while method 3 requires either three or four columns.

BLANK CONSTANTS

The DCW statement may be used to reserve a field of blanks with a word mark in the left-

most character position of the field. The programmer writes a # symbol (in the first column)

followed by a decimal value (from 1 to 40 for Easycoder A or B, from 1 to 63 for Easycoder C

or D) which indicates the number of blank storage positions desired.

EASYCODER

CODING FORM

PRO MMER

PROBLEM

DATE _ .

PAGE._._OF __

CARD
NUMBER

1.2|3 415

=
Y18 LocaTioN

~ x>

OPERATIO
CODE

N

OPERANDS

1415,

20l , |

l It

BLANK

DCW |

|

- l

1. :
This third method of coding alphanumeric constants is applicable only when using Easycoder
Cor D. '

6-4

#2-139

SECTION VI. DATA FORMATTING STATEMENTS

The DCW statement above defines a 21-character blank field. The address assigned to this
field by the assembler will be inserted in an object-program instruction whenever the tag BLANK

appears in another symbolic-program entry.

FLOATING-POINT CONSTANTS

A floating-point constant is written as a decimal entry which is then automatically con-

verted by the assembler to a fixed-length floating-point value, viz., a six-character binary

mantissa followed by a two-character power-of-two exponent.

To code a floating-point constant the programmer writes the following:
1. The letter F.

2. A decimal number, the mantissa which may be signed or unsigned and
which may contain a maximum of 11 digits with or without a decimal point.

3. The letter E,

4, A decimal number, the exponent, which must be between 0 and 616, in-
clusive, and may be signed or unsigned.

If an exponent of zero is desired, the letter E and the decimal number which follows it are not
required.

NOTE: If the mantissa and/or the exponent is preceded by a minus sign, the
assembler stores the corresponding value in twos-complement form,

EASYCODER

CODING FORM

PROBLEM PROGRAMMER DATE . PAGE __OF ____

v grg LocATiON | OPERATION OPERANDS

213 als5]6l7]8 | 1afis, 2021 | T L L N T eeles . | . 80|
o U [[|Fconi locw . [F4.359€2 . . e e
el , |llFcone Jocw [F+43S9E-V e e
3 l FCOIN3 chw F' 1 1 L L 1 L ol P . PR | 1 i i
- l CoN4 | DCW F-.94081 . . P S . R I
s | l FCO,L\S ch F-‘E-A' 1 1 1 L . " L1 ol P BTSRRI B |
'3 | 1

The first two entries above (FCONI and FCONZ2) result in the same floating-point value
when converted by the assembler, FCONI uses a decimal point while FCON2 arrives at the

same result by using a negative exponent. This is also true for FCON4 and FCONS5.

Define Constant - DC

The DC statement is functionally the same as the DCW statement, the only exception being

the absence of automatic word marking, This statement may thus be used in place of the DCW

6-5 #2-139

SECTION VI. DATA FORMATTING STATEMENTS

statement if a constant is to be stored without a word mark in its leftmost character position.
The programmer, however, may still specify item marking as shown in Table 5-1 (page 5-7).

NOTE: If Easycoder C or Dis being used, and if unusual high- and low-order
punctuation is required, the programmer may use a set Il punctuation
indicator as shown in Table 5-2 (page 5-7).

Reserve Area - RESV

Use of the RESV statement enables the programmer to reserve an area of memory. Un-
like the DC and DCW statements (which cause data to be loaded into an area reserved by the
assembler), the RESV statement does not normally alter the contents of the area defined. Rather,
it simply sets aside a storage area to which the programmer can refer by a symbolic tag. The
reserved area can be cleared to zeros by means of the CLEAR statement (see page 7-19). The

number of characters in the reserved area must be specified in the operands field of the RESV

statement.

NOTE: When used with Easycoder A or B, the RESV statement must contain
a nonzero value in the operands field.
A symbolic tag may be written in the location field. If the tag is left-justified, it is
assigned to the rightmost location of the reserved area. If the tag is indented one column, it

is assigned to the leftmost location of the reserved area.

When used with Easycoder C or D, the RESV statement can not only reserve a specified
area but can also load that area with a particular character. The character to be loaded into each
location of the reserved area is coded in the op code field immediately following a comma and the
mnemonic code. If the mnemonic RESV is followed only by a comma, the reserved area is cleared
to blanks.

NOTE: There is no automatic word marking for the reserved areas, nor may
column 7 of the RESV statement be used with Easycoder A or B to set
punctuation, However, if Easycoder C or D is being used, the pro-
grammer may use a set I or II punctuation indicator (see page 5-7).

EASYCODER

CODING FORM
PROBLEM PRO R DATE . PAGE ___OF____
T
D R E[g| Location o OPERANDS
1 2]3 al5(6]7]8 , 1415, 2021 Lo L | | . L . e2es | L . 80|
|

‘| 1 I [|ISTORE [RESV. 3¢ ‘ . . e e T
2 IL ! CARP IRIESV 3 ¢PQ 1 1 - | ! B 1 1 i 1 1 . al il

The first statement above reserves 30 consecutive character positions that can be addressed
via the tag STORE. Note that by referring to the reserved area via a symbolic tag, the pro-
grammer need not know its actual location in memory. The second RESV statement, assembled

by Easycoder C or D, reserves 80 consecutive locations and clears the reserved area to zeros.

6-6 #2-139

SECTION VI. DATA FORMATTING STATEMENTS

Define Symbol Address - DSA

The DSA statement can be used to store one or two addresses, or two addresses and a
variant character, as a constant. Any valid address can be stored as a constant; the length of
each address is determined by the current addressing mode (each address will be two, three,

or four characters long).

An item mark may be specified as shown in punctuation set I, page 5-7. In addition, the
DSA statement automatically places a word mark in the leftmost character position of the con-
stant (thus an L in column 7 results in a record mark in this position).

NOTE: If Easycoder C or D is being used, and if unusual high- and low-order
punctuation is required, the programmer may use a set II punctuation
indicator as shown in Table 5-2 (page 5-7).

EASYCODER

CODING FORM)
PROBLEM PROGRAMMER =~ DATE__ . PAGE___OF ___
CcARD [V OPERATION
NUMBER |E|R LOCATION CODE OPERANDS
1,2]3 aTs]e]7]e f 14]15) 2021 L L [SN S, NP | S2[63 L L. %0
! l CODrE SAA._. ‘TEM-Is) i P PR T L L PV Ll L

PO B It PO E VN U B N B T B Ly

STAR _ IDSA _ PRGH,A

!

il

et

L]
I

The first statement above permits the address of the field five characters before the field

tagged ITEM to be referred to in the program by the tag CODE.

The second statement allows the stored constant consisting of the address assigned to ARG,
the address assigned to the self-reference indicator *, and the variant character A (i.e., octal

21) to be referred to by the tag STAR.

Define Area - DA1

A specified area within the main memory can be defined and reserved by using the DA
statement. In addition to defining an area, the DA statement can also define fields and subfields
within the reserved area. This statement can also define two or more contiguous areas if these
areas are identical in format. In other words, the programmer uses a DA statement to provide
the assembler with the following basic information: |

1. The number {n) and size (s) of the reserved area(s). (Both n and s can be

represented by numbers up to 4,095, depending upon the amount of memory
available.)

2. The index register (Xm or Ym) to be associated with each reference to a
field or subfield within the reserved area(s) (optional).

1The Define Area statement can not be employed with the Easycoder A Assembly System.

6-7 #2-139

SECTION VI. DATA FORMATTING STATEMENTS

3. The character R which will place a record mark one position to the
right of the rightmost reserved area (optional).

NOTE: Additional parameters may be employed with Easycoder
C and D (see page 6-10).

A DA statement consists of a heading line which defines an area(s), plus one or more sub-
sequent lines of coding which defines the fields and subfields within the area(s). The heading
line can contain a symbolic tag in the location field. If this tag begins in column 8, it refers to
the rightmost location of the entire area, exclusive of the record mark (if present); if the tag
starts in column 9, it refers to the leftmost location of the entire area. Item marks may be spec-
ified in column 7 of the heading line by using set I punctuation indicators as shown in Table 5-1
(page 5-7).

NOTE: The list of punctuation indicators specified in set II (page 5-7) cannot be
used with DA statements. ’

The operands field in the heading line has the following format:

=

nxs, Xm,R 2
e e e e e’

If a single 80-character area is to be defined, the value of nxs is 1x80. If four identical 80-

character areas are to be defined, the value of nxs is 4x80.

The DA statement can be indexed by writing an index register designator (from X1 through
X15 or from Y1 through v15)! following the area definition. All references to the field and sub-
fields defined in the DA statement will be automatically indexed by the specified index register,
but references to the tag assigned to the entire area will not be indexed. For example, the state-
ment on the next page indicates that all references to the fields and subfields in the 113-charac-
ter area tagged BUFFER will be indexed by the index register X2; references to the tag BUFFER,

however, will not be indexed.

Note that the area definition nxs does not include an allowance for the character position
containing the record mark, although this position (if any) is also reserved. For example 4x80
will cause 320 character positions to be reserved. If a record mark is placed one position to the

right of the last area, a total of 321 character positions is reserved.

The index regis’cei' applied to a field or subfield can be changed from that specified in the

DA statement by designating a different register in the operands field of an instruction which

1
Index registers Xl through X6 are used with Easycoder B, while index registers X1 through
X15 and Y1 through Y15 can be used with Easycoder C or D.

6-8 #2-139

SECTION VI. DATA FORMATTING STATEMENTS

references the field or subfield. The effect of indexing on a field or subfield can be cancelled by

writing X0 as the index register designator in the references in which indexing is not wanted.

As stated above, the heading line may be followed by one or more lines of coding which
define fields and subfields within the reserved area(s). As many of these lines as necessary
may be used, and these fields and subfields may be defined in any order desired. Positions
within each reserved area are numbered sequentially from left to right, starting with one. The
coding lines which define fields and subfields must have blank op code fields; each such line

may contain a symbolic tag in the location field, if desired.

Fields and subfields are specified as follows:

Fields: The lowest and highest positions of the field are written in that order in
the operands field, separated by a comma. (If 2 one-character field is
desired, its position number must be written twice in the operands
field, separated by a comma.) A word mark is automatically placed
in the leftmost position of the field in memory. Item marks may be
specified as shown in Table 5-1 (page 5-7).

Subfields: For a subfield, only the rightmost position is specified. Word marks
are not set; however, item marks may be specified as shown in Table
5-1 (page 5-7).

NOTE: The list of punctuation indicators specified in set II (page 5-7).can not be
used with DA statements. ‘

The assembler does not normally clear the defined area. However, the programmer has
the option of clearing the area to a specified character by placing a comma and the desired char-
acter after the mnemonic code DA in the op code field. The presence of only a comma after the
op code implies that the area will be cleared to blanks., When the defined area is cleared, all
punctuation is also cleared before setting the ''field" punctuation.

The sample coding below illustrates what a DA statement might look like,

EASYCODER

CODING FORM

PROBLEM PROGRAMMER ____ =~ DATE___ . __ . PAGE_OF____

R R E 5| Location OPERATION OPERANDS

i 2]305678 N 14[15, 20|21 1 L | - L 1 Y Il | 62163 | L N 1 80
Hel! BUFFERDA . 14X28,X2,R . . e . N N e .
2192 | || INAME . \,2¢6 . . s e . . e .
g3 ||| pATE . 23,28 . e e] N . .
bt ¢4|l i GEI i 2 I] 22\ 1 1 1 . 1 1 . 1 1 1 L
sigs, | || [YEAR . 28 e) . . ol . .
sigol | [MONTH [26 . , L . ‘ . e
_ 7

6-9 #2-139

SECTION VI. DATA FORMATTING STATEMENTS

The heading line specifies the following informations:
1. Four consecutive, identical areas, each 28 characters long, will be reserved.

2. The tags NAME, DATE, AGE, YEAR, and MONTH, when referred to in
symbolic instructions, will be indexed by index register X2.

3. A record mark will be set in the rightmost character position of the
entire 113-character reserved area.

4. The entire 113-character area can be referred to via the tag BUFFER.
(This tag refers to the leftmost position of the area because it is in~
dented. It is not automatically indexed by index register X2.)

Lines two, three, and four define fields. Word marks will be set in positions 1, 21, and 23 in
each of the four identical areas. Lines five and six define subfields: position 28 indicates the

year within the date, while position 26 indicates the month within the date.

EASYCODER C AND D OPTIONS
When used with Easycoder C or D, the DA statement may make use of the following pa~

rameters (in addition to the n, s, Xm, and R parameters specified on page 6-8).

1. The character P: Coding this character in the heading line of a DA state-
ment causes the special character 72g, together with an item mark, to be
placed at the end of each area as an additional character.

2. The character G: Coding this character in the heading line causes the
special character 32g, together with a record mark, to be placed one
position to the right of the last area.

3. The character H: Coding this character in the heading line instructs the
assembler to associate the index register (Xm or Ymn) with each reference
to the tag in the location field of the DA statement, as well as with each
reference to a field or subfield within the reserved area(s).

NOTE: If a symbolic tag is used, it is not automatically indexed by
the specified index register (Xm or Ym) unless parameter H
is employed, This parameter is meaningless if no index
register is specified.

The format of a DA statement heading line employing all parameters is illustrated below.

EASYCODER

CODING FORM
PROBLEM PRO R DATE ___ . PAGE__OF____
CARD | OPERATION
NUMBER ’é“é LOCATION CODE OPERANDS
1213315161718 A 14115 2021 | I Lan 0o 1 - Lo [L 82i63 , | s L o L, 8
I 1
! ! i qu' DnA nxs.y‘ch\P G‘Hu Lo L L N L P SRS P -
R f J = 3 F= Dy Ty

6-10 #2-139

ASSEMBLY
CONTROL
STATEMENTS

INTRODUCTION

Assembly control statements provide programmer control over the assembly of the source
program. These statements resemble data formatting statements in that they are treated as
definitions. They control such functions as the addressing mode to be used in assembling speci-
fied instructions, the assignment of absolute locations to symbolic tags, etc. Used only during
the assembly process, assembly control statements are never executed as instructions in the
object program. The precise function of each assembly control statement depends upon the as-

sembly system employed.

A summary of the assembly control statements available with Easycoder A, B, C, and D,
together with the page where each statement is defined, may be found in Table 7-1. In addition,
the heading of each statement in this section includes a table which indicates the assembly sys-

tems that may use that particular statement.

Table 7-1. Assembly Control Statements

Program Header | 7-22| Program Header | 7-2 Program Header |7-3 Program Header |7-3

Segment Header 7-4 Segment Header 7-4

Execute 7-5 |t Execute 7-5 || Execute 7-6 | Execute 7-6
Transfer 7-6 Transfer 7-6
Origin 7-7 || Origin 7-8 Origin 7-8 Origin 7-8
Modular Origin 7-9 | Modular Origin 7-9 [Modular Origin 7-9 || Modular Origin 7-9
Literal Origin 7-10 || Literal Origin 7-10 (| Literal Origin 7-10
Admode 7-11 |} Admode 7-11 || Admode 7-12 [Admode 7-12
Equals 7-12} Equals 7-12 || Equals 7-13 || Equals 7-13
Control Equals 7-13|| Control Equals 7-13 || Control Equals 7-14 || Control Equals 7-14

Memory Dump 7-14

7-1 #2-139

SECTION VII. ASSEMBLY CONTROL STATEMENTS

Table 7-1 (cont). Assembly Control Statements

Skip 7-15 ||Skip 7-15
Suffix 7-15 [|Suffix 7-15
Repeat 7-16 [[Repeat 7-16
Generate 7-17 ||Generate 7-17

Set Line Number 7-18 ||Set Line Number 7-18

Set Out-of- Set Out-of -

Sequence Base 7-18 ||Sequence Base 7-18
Clear 7-19 |[[Clear 7-20 | Clear 7-20 ||Clear 7-20
End 7-21 [|End 7-21 { End 7-22 [|[End 7-22

Program Header
PROG

The program header must be the first entry in a symbolic program. This statement is"

coded as follows for the various assembly systems.

EASYCODER A

The letters PROG must be written in the op code field, and the operands field must contain
a name which identifies the program. (This name will appear in the program listing.) Optionally,
an "'S" can be placed in column 6; this action specifies that a check is to be made on the card

number sequence of the inputAde'ck.

EASYCODER

CODING FORM
PROBLEM . PROGRAMMER ________ DATE__ . PAGE___ OF ____
CARD VM| OPERATION
NUMBER |B[f| LOCATION CopE OPERANDS
) 2[3 4lsfel7ls] 1415, 20|21 | L 1 FRE— | P I Lo i | 52063 | | L - | I 80/
I . 5
! , il S 1 PIROG SER| Eni 1) L I s 3) ST P [N
2 | 1 X
J| + L L L L Il 1 Lo TR 1 L IS SR R S O SR VI s

In the sample statement above, SERIES is specified as the program name, while the letter

S in column 6 designates that a sequence check is desired.

EASYCODER B

The letters PROG must be written in the op code field, and the operands field must contain

a name which identifies the program. (This name will appear in the program listing.) Optionally,
an ""S" can be placed in column 6; this action specifies that a check is to be made on the card

number sequence of the input deck.
7-2 : #2-139

SECTION VII. ASSEMBLY CONTROL STATEMENTS

In addition, the desired object-program format is specified by the entries in columns 61
and 62. Blanks in these two columns specify that the machine-language output is to appear in

the condensed-card self-loading format. Placing the letters BR in these columns specifies that

(See Easycoder

the machine -language program is to appear on punched cards in BRT format.

B Assembly System, Order No. 011.)

NOTE: When BRT format is specified, a segment number of 01 is generated by
the assembler for the first segment (memory load) following the pro-
gram header. If Execute statements (see page 7-5) appear in the sym-
bolic program, subsequent segment names are . generated by increment-
ing the previous segment number by one.

EASYCODER

CODING FORM

PROBLEM

PROGRAMMER

DATE ___ .

PAGE __OF ___

CARD
NUMBER

T

B LOCATION

OPERATION
CODE

OPERANDS

| 2]3 a5

7] ,

4

15, 20

21

! |

I
|

o [[rro=<-|

PROG

i
SERIES

1

2 I
I
T

L

!

The statement above designates SERIES as the program name and specifies that a sequence
check is to be performed. As columns 61 and 62 contain the letters BR, the output will appear on

punched cards in BRT format.

EASYCODER C

As used in Easycoder C, the program header provides program identification; in addition,
however, this statement serves as the all-important ""action director'' statement. For this

reason, the programmer should refer to the Honeywell publication Easycoder Assemblers C and

D, Order No. 041 for a detailed description.

EASYCODER D

As used in Easycoder D, the program header provides program identification; in addition,
however, this statement serves as the all-important '"action director' statement. For this
reason, the.programmer should refer to the Honeywell publication Easycoder Assemblers C and

D, Order No. 041.

If the programmer desires to use the alternate card format (which allows room for tags
consisting of up to ten characters, see page 5-10), column 75 of the program header card must
contain the letter A, The PROG card itself, however, is never coded in the alternate format:
the letters PROG always appear in the op code field (columns 15 through 18), while the name of

the program always appears beginning in column 21,

7-3 #2-139

SECTION VII. ASSEMBLY CONTROL STATEMENTS

NOTE: If the alternate format is specified, all cards following the program
header, up to and including the END card, must be coded in the alternate
format.

Segment Header A|lB|C|D
SEG

Programs written for Easycoder C or D may be divided into two or more segments, each
of which is loaded into memory and executed as a unit. It is the function of the SEG statement
to define the beginning of each segment (memory load). Use of the SEG statement is optional,
however. If used, a SEG statement must follow the program header, each Execute statement
and each Transfer statement. If it is desired to omit this statement, it must be omitted from

the entire program; in this case the assembler generates segment identifications (starting with 01).

EASYCODER CAND D

The letters SEG must be placed in the op code field, while the operands field must contain

a two-character segment identification. This segment identification becomes appended to the

program name to form a unique search code.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER = DATE___ . PAGE___OF

CARD
NUMBER

1 2[3 al5(e]|7]8) 14[15, 20[a1 R | T s . L . L
L . SEG . |AA . . . N

H L . Lo PO TSP SRS | PR
A_TLE L 1

LocaTion | OPERTION OPERANDS

@ rro=<|
<D:

PO

In the example above, AA could represent the first segment of a program, in which case

this entry would follow the program header.

Execute

EX

The end of a memory load is indicated by an EX statement. When the coding inserted by
the assembler for the EX statement is encountered during the loading process, a branch to the
location specified in the operands field results. This operation enables portions of the program
to be executed before the entire program has been loaded. The coding to be executed must ap-

pear prior to the EX statement.

7-4 : #2-139

SECTION VII. ASSEMBLY CONTROL STATEMENTS

EASYCODER A

The letters EX must be written in the op code field; the operands field contains a direct
address, either absolute or symbolic. (If an EX statement is written with a blank operands field,

the machine will halt when it encounters the corresponding coding during the loading operation.)

To resume the loading operation, the last instruction in the portion of the program exe-
cuted must be a Branch instruction which provides re-entry to the load routine. In addition,
the first instruction of the executed routine should be an SCR (Store Control Registers) instruc-

tion which stores the contents of the B-address register in the A address of the return Branch

instruction.
CODING FORM
PROBLEM PROGRAMMER DATE . . PAGE____OF____
CARD [V OPERATION
NUMBER |p[g| LOCATION CODE OPERANDS
1 2(3 4ls5]6[7[8 | 1af1s, 20{2! L | L L | se2le3 NN L) .89
NN l EX SEC3, ‘ . e . e
2 -[J 1 1 I . _— 1 - 1. | . 1 — Lo n 1 P IR W R | 1
b
3 i l 1 1 1 L] i1 A | e el n 1 | FRETERT I BT i
(I

The sample statement above illustrates an EX statement with a symbolic address in the
operands field. When the corresponding coding is encountered during the loading operation, pro-
gram loading is temporarily halted and the portion of the program beginning at the location tagged

SEC3 is executed.

EASYCODER B

The letters EX must be written in th‘e op code field; the operands field contains a direct
address, either absolute or symbolic. (If an EX statement is written with a blank operands field,

the machine will halt when it encounters the corresponding coding during the loading operation.)

To resume the loading operation, the last instruction in the portion of the program executed
must be a Branch instruction which provides re-entry to the load routine. In addition, the first
instruction of the executed routine should be an SCR (Store Control Registers) instruction which

stores the contents of the B-address register in the A address of the return Branch instruction.

Besides causing a branch to the programmer's coding, use of the EX statement causes any
literals used in the memory load to be loaded and the literal table to be cleared. If a LITORG
statement (see below) does not precede the EX statement, literals are allocated immediately

following the in-line coding for the memory load.

7-5 ‘ 42-139

SECTION VII. ASSEMBLY CONTROL STATEMENTS

NOTES: 1. Following an EX statement, a new segment number is generated as
explained above in the description of the program header.

2. With Easycoder B, the total of the numbers of Execute, Literal
Origin, and End statements must not exceed 31.

See the sample statement given above for E‘a;sycoder A,

EASYCODER C AND D

The letters EX must be written in the op code field; the operands field must contain a
direct address, either absolute or symbolic. When used with these assemblers, the EX state-
ment enables a program to be loaded and executed one segment at a time. Each segment except
the last must end with either an EX or an XFR statement. When an EX statement is encountered,
all literals preceding the EX statement which have not been allocated to memory are allocated in

sequence, and the literal table is cleared.

Note that it is the responsibility of the programmer to provide re-entry to the load routine.
The methods of returning to the applicable loader are described in the pertinent Honeywell publi-
cation ~ e.g., Card Loader-Monitor B (Order No. 154) or Tape Loader-Monitor C (Order No, 221).

See the sample statement given above for Easycoder A.

Transfer A

XFR

For Easycoder C and D users, the end of a memory load may be indicated by an XFR state-
ment instead of an EX statement. Both statements perform essentially the same functions; the
one exception is that use of the XFR statement does not result in the allocation of literals or in

the clearing of the literal table.
When the coding inserted by the assembler for the XFR statement is encountered during
the loading process, a branch to the location specified in the operands field results. This oper-

ation enables portions of the program to be executed before the entire program has been loaded.

EASYCODER C AND D

The letters XFR must be written in the op code field; the operands field must contain a
direct address, either absolute or symbolic. Use of this statement enables a program to be
loaded and executed one segment at a time. Each segment except the last must end with either
an XFR or an EX statement,

NOTE: It is the responsibility of the programmer to provide re-entry to the

load routine.

7-6 #2-139

SECTION VII. ASSEMBLY CONTROL STATEMENTS

EASYCODER

CODING FORM

PROBLEM PROGRAMMER ___ DATE__ . PAGE__ OF___
carD [7[¥ OPERATION NDS
NUMBER |p|g| LOCATION CODE OPERAND

1 2]3 als[e[7]s f 1415, 2021 L | L) L PPN 1 L 52083, N L L 80|

LT , XFR___[SEC4 . ‘ .

+

f
z]
T

1 1 1 i 1 1 Loss i ! PR B NP TR | L

The sample statement above illustrates an XFR statement with a symbolic address in the
operands field, When the corresponding coding is encountered during the loading operation,
program loading is temporarily halted and the portion of the program beginning at the location

tagged SEC4 is executed.

Origin
ORG

The ORG statement is used to modify the normal memory allocation process of assembly.
This statement can be inserted anywhere in the source program to indicate to the assembler
that all subsequent coding (instructions, constants, work areas, etc.) should be assigned se-

quential memory locations starting with the location whose address is specified in the operands

field.

A program is normally allocated memory space beginning at location 0. If it is desired to
assign memory space starting at some location other than 0, an ORG statement must be inserted

in the program immediately following the program header.

EASYCODER A

The letters ORG are written in the op code field, and an address (either absolute or sym-
bolic) is written in the operands field. (If the address is symbolic, the tag must appear in the
location field of a previous source-program entry.) The address specified in the operands field

is assigned the tag (if any) in the location field; if this tag appears, it must not be. indented.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER =~ DATE___ . PAGE__OF ___

CARD [OPERATION PERANDS
NUMBER |E|g| LOCATION CoDE OPERA
©

1,2]3 als 8 s [d LY 2021 ! I | ST B R T |]

!] 1 QRGA 75¢ L P Y FE.] 1 s 1 1 1 1 4| 1 Lo
|

~ | RXDpZ|

1 1

|

| s . . AT I
| . ORG__ ORTAG, e e e .
|

[

]

L 1 1 P Lo 1 | I 1 | 1 P B P Il

L

L i 1 { L 1 IR | | 1 P B L L

7-7 #2-139

SECTION VII. ASSEMBLY CONTROL STATEMENTS

The first statement above indicates to the assembler that all subsequent entries should be
assigned sequential addresses beginning with location 750. The second statement directs the
assembler to assign to all subsequent entries sequential addresses beginning with the address
that is assigned to the tag ORTAG. (ORTAG must appear in the location field of a previous

source-program entry.)

EASYCODER B

The letters ORG are written in the op code field, and an address (either absolute or sym-

.

bolic) is written in the operands field.

(If the address is symbolic, the tag must appear in the

location field of a previous source-program entry.) The address specified in the operands field

is assigned the tag (if any) in the location field; if this tag appears, it must not be indented.
NOTE: When the BRT punched-card format is specified, an ORG statement must

be included immediately following the PROG statement with an address of
1, 000 (decimal) or above.

See the sample statements given above for Easycoder A,

EASYCODER C AND D

The letters ORG are written in the op code field, and an address (either absolute or sym-
bolic) is written in the operands field. If the address is symbolic, the tag must appear in the
location field of another (not necessarily previous) source-program entry. A symbolic tag may
be written in the location field. If this tag begins in column 8, it is assigned to the address
written in the operands field. If it begins in column 9, the tag is assigned to the location at which

the next instruction would have begun had the ORG statement not been present.

NOTE: Care must be taken so that the address in the operands field is a decimal

} number of 1, 000 or above if Card Loader~Monitor B is used to load the
object program. If Tape Loader-Monitor C or Drum Bootstrap-Loader
C is used, this decimal number must be 1, 340 or above.

EASYCODER

CODING FORM

PROBLEM

PROGRAMMER

DATE .

PAGE __OF ___

CARD

NUMBER

LOCATION

OPERATION
CODE

OPERANDS

\ 2[3 als

o Jrro<|
RIEET

415, 20]

21 |

6263

L 89

']

IDENT

ORG,

804

1

2 T
I
T

|
|

In the example above, assume that the instruction preceding the ORG statement was as-

signed to locations 5000 through 5007. The next instruction would normally begin at location 5008.
The tag IDENT, since it begins in column 9, is thus assigned to location 5008, and the next in-

struction is stored beginnihg at location 7800.

7-8 #2-139

SECTION VII. ASSEMBLY CONTROL STATEMENTS

Modular Origin
MORG

The modular origin statement is similar to the ORG statement described above. The ‘
MORG statement indicates to the assembler that all subsequent entries should be assigned se-
quential addresses starting with the next available location whose address is a multiple of the
number written in the operands field of the MORG statement. The entry in the operands field

must represent a power of two (e.g., 2, 4, 8, 16, 32, ve.... 4,096, etc.4).

EASYCODER A AND B

The letters MORG are written in the op code field, and a number (a power of two) is placed

in the operands field.

EASYCODER

CODING FORM
PROBLEM PRO R DATE ____ . PAGE_OF.__._.

carD Y% OPERATION
NUMBER ||8| LOCATION CoDE OPERANDS
6

1 2]3 4l5[6]7]8 | 14lis, 20[21 L i K .)
| .. MORG, (32 ., l , . . ,

f t
2 { j[L i 1 L L L L . L 1 s L .t

3

The statement above indicates to the assembler that all subsequent entries should be as-
signed sequential addresses beginning with the next available location whose address is a multiple

of 32,

EASYCODER C AND D

The letters MORG are written in the op code field, and a number (a power of two) is placed

in the operands field. A symbolic tag may be written in the location field. If this tag begins in
column 8, it is assigned to the address written in the operands field. If it begins in column 9,
the tag is assigned to the location at which the next instruction would have begun had the MORG

statement not been present (see the sample statement given above for the ORG statement).

Literal Origin
LITORG

The literal origin statement is similar to the ORG and MORG statements described above.

The LITORG statement specifies to the assembler that all previously used literals should be

assigned sequential memory locations starting with the location specified in the operands field.

7-9 #2-139

SECTION VII. ASSEMBLY CONTROL STATEMENTS

Care must be taken to ensure that literals can be referenced by the instructions which use
them; e.g., a literal stored in one 4K bank may not be addressed in the two-character mode

from another ba;pk.

EASYCODER B

The op code field must contain the letters LITORG, while the operands field contains an
address (either absolute or symbolic). If a symbolic tag is used, it must have appeared in the
location field of a previous entry. Like the EX statement, the LI'fORG statement causes the
literal table to be cleared. Also, locations below 1, 000 (decimal) must not be used when BRT

punched-card output is specified in the PROG statement.

A symbolic tag may be written in the location field. If this tag begins in column 8, it is
assigned to the address written in the operands field. If it begins in column 9, the tag is as-
signed to the location at which the next instruction would have begun had the LITORG statement
not been present.

NOTES: 1 In the absence of a LITORG statement, all of the generated coding
associated with a memory load is allocated immediately following
the in-line coding.

2. With Easycoder B, the total of the number of Execute, Literal
Origin, and End statements must not exceed 31,

EASYCODER

CODING FORM
PROBLEM _ PROGRAMMER OATE . . PAGE.___OF __
carD ¥ OPERATION
NUMBER [B[8 LOCATION CODE OPERANDS
1.2]34ls]e]7(s L 14115 20[21 | L L FRSR WSO B L (82083 4 L L 80
I

! : - LlTI L|T0R6‘55¢| L T T L 1 ! [P S B
2 v

In the LITORG statement above, the assembler is directed to assign sequential addresses
— starting with location 1550 — to all previously encountered literals. This location is also

tagged LIT, since the tag begins in column 8.

EASYCODER C AND D

The op code field must contain the letters LITORG, while the operands field contains an
address (either absolute or symbolic). If a symbolic tag is used, it must have appeared in the
location field of another, not necessarily previous, entry. Like the EX statement, the LITORG

statement causes the literal table to be cleared. Also, locations below 1, 340 (decimal) must

not be used.

A symbolic tag may be written in the location field. If this tag begins in column 8, it is
assigned to the address written in the operands field. If it begins in column 9, the tag is assigned
to the location at which the next instruction would have begun had the LITORG statement not

been present.

7-10 : ' #2-139

SECTION VII. ASSEMBLY CONTROL STATEMENTS

NOTE: In the absence of a LITORG statement, all of the generated coding
associated with a memory load — except for a memory load termi-
nated by an XFR statement — is allocated immediately following the
in-line coding.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER ____ _ DATE _ e PAGE__OF___
T
NUMBER Erg rocarion | e OPERANDS
i 23 als]e[7 14115 20[2i | | Lol Ll Lo L R L S L ! L, 90
L "

;' LT, LITORGN 750 . , A . . , . . ‘ e

1 1 L L ! L Lo - P 1 P IS L

L

}

I 1 1 PR I n " i PR 2 i A, 1
| IDENT |L| TORGI260 | . . . e . e .
| .

I

In the first LITORG statement above, the assembler is directed to assign sequential ad-
dresses, starting with location 1750, to all previously encountered literals. Note that the tag
for this statement, LIT, begins in column 8. Assume, in the second statement above, that the
instruction preceding the LITORG statement was assigned to locations 450 through 457. The next
instruction would normally begin at location 458, The tag IDENT, since it begins in column 9, is
thus assigned to location 458, and previously encountered literals are assigned sequential ad-

dresses starting with location 2000.

Set Address Mode
ADMODE

This statement specifies the addressing mode into which all subsequent instructions are to
be assembled (i.e., two-, three-, or four-character). (All machine instructions, as well as the
DSA data formatting statement, are affected by the address mode.) The mode of address as-
sembly specified in this statement remains in effect until another ADMODE statement, specifying

a different mode of assembly, is encountered,

Because the ADMODE statement concerns itself only with the source program, it should be

used in conjunction with the CAM (Change Addressing Mode) instruction (see page 8-62). The
CAM instruction specifies the addressing mode in which the machine is directed to interpret the

address portions of all subsequent object-program instructions.

EASYCODER A and B

The letters ADMODE are placed in the op code field. The operaﬂds field contains either

a 2 or a 3 to denote whether all subsequent instructions are to be assembled in the two-character

7-11 #2-139

SECTION VII. ASSEMBLY CONTROL STATEMENTS

or the three-character addressing mode. If an ADMODE statement is not included at the begin-
ning of the source program, assembly begins in the two-character addressing mode. (It should

be a general rule, however, to include an ADMODE statement at the outset of every program.)

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE . PAGE_OF___
R E Bl Locarion | OPERON OPERANDS
i 2]3 als]e[7(s N 1415, 2021 |) T O L L . .. 8
! ! 1 1 ADMODEZ 1 L L L 1 . 1 l I PAUU DU S RS B
2 ‘;7 ! 1 i i i L L i i | S Y | R i aa) TR | 1
IR ____|ADMODER . . . R R ‘

The assembler upon encountering the first statement above will assemble the address
portions of all subsequent instructions as two-character addresses. The second statement, if
encountered later in the same source program, will cause the assembler to change to three-

character address assembly.

EASYCODER C AND D

The letters ADMODE are placed in the op code field. The operands field contains either
the numbers 2, 3, 4, or a symbolic tag to denote whether all subsequent instructions are to be
assembled in the two-, three~, or four-character addressingmode. Ifa symbolic tag is used, it
must have been previously defined to have a value of 2, 3, or 4. If an ADMODE statement is not
included at the beginning of the source program, three-character addressing is assumed by the
assembler, (It should be a general rule, however, to include an ADMODE statement at the outset

of every program.) See the sample statements given above for Easycoder A and B.

Equals
EQU

The EQU statement assigns the symbolic tag written in the location field to the address
(absolute or symbolic) written in the operands field. This statement thus makes it possible to
use different symbolic tags in different parts of the source program to refer to the same memory

location.

EASYCODER A and B

The location field contains a symbolic tag, while the op code field contains the letters EQU.
The operands field contains the address to which the symbolic tag in the location field is to be
assigned. (Each symbolic tag written in the operands field must appear in the location field of

a previous source-program entry.)

7-12 #2-139

SECTION ViI. ASSEMBLY CONTROL STATEMENTS

EASYCODER

CODING FORM

PROBLEM PRO MER DATE . PAGE ___OF __

CARD OPERATION i

NUMBER gp LOCATION CODE OPERANDS

| 2'3 als]e[7(s | 1415, 20(21 1 1 | L i . I T L | 62i63 | N L Lo, 80
o L JI]ITITLE [EQU INAME , ol
2 T

1 ! I " 1 PP | 1 1 I [T Loaoa ol [il) L

S {1 |QUAN EQU = AMT-22 . . . A I R S .

The first EQU statement above causes the assembler to assign the tag TITLE the same
location assigned the tag NAME. Thus, the programmer can use either of these two tags to refer

to the contents of this location. The second statement employs relative addressing. The as-

sembler will assign the tag QUAN to the location specified by address arithmetic as AMT-20.

EASYCODER C AND D

The location field contains a symbolic tag, while the op code field contains the letters EQU.
The operands field contains the address to which the symbolic tag is to be assigned. A symbolic
tag written in the operands field must appear in the location field of another (not necessarily

previous) source program entry.

See the sample statement given above for Easycoder A and B.

Control Equals
CEQU

The CEQU statement assigns the symbolic tag written in the location field to the value
written in the operands field. It is frequently used to assign a tag (containing a minimum of two

characters) to a variant character or to a group of input/output control characters.

EASYCODER A AND B

The location field contains a symbolic tag, while the op code field contains the letters
CEQU. The operands field contains an octal value; this entry is coded as an octal constant and
may contain up to 12 octal digits. The symbolic tag in the location field is assigned to this entry.

NOTE: A description of octal constants may be found under the heading "Define
Constant with Word Mark — DCW'" (see page 6-2).

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE _ . PAGE ____OF ___
M .
NumgER [plg| LocATION | PR OPERANDS
| 213 alsle]7]e K 1alis, 2021 N . ; - X <l - — —%
[T TJoFLoW [eEQU_ #ic5g , , e , . ———
N . BCT . lbuB2,.0FLOW , , . . } ‘
7-13 #2-139

SECTION VII. ASSEMBLY CONTROL STATEMENTS

The sample coding above illustrates how a symbolic tag can be used in place of a variant
character. The CEQU statement directs the assembler to eqﬁate the tag OFLOW to the octal

value 50. The second line of coding contains a branch instruction which specifies that a program

Q.

should branch to the location tagged SUB2 if the condition specified by the variant character

tagged OFLOW is present.

EASYCODER C AND D

The location field contains a symbolic tag, while the op code field contains the letters
CEQU. The entry in the operands field must be a decimal, binary, octal, or alphanumeric con-
stant (the octal format is most commonly used), Regardless of the constant used, however, the
resultant value must not exceed four characters in length,

NOTES: 1. Instructions which refer to the tag defined by the CEQU statement
must not precede the CEQU statement,

2. A description of constants may be found under the heading '"Define
Constant with Word Mark — DCW!'' (see page 6-2).

See the sample statement given above for Easycoder A and B.

Memory Dump

HSM

The HSM statement may be used with Easycoder A to produce a punched card deck con-

taining the Memory Dump routine. This card deck can be loaded into memory to obtain a printed

listing of the contents of any portion of main memory. This statement must be coded immediately

preceding the CLEAR and END statements in the source program (see below).

EASYCODER A

If the punched card deck (containing the Memory Dump routine) is to be loaded into a spe-
cific memory area, the start of this area can be specified by a tag in the location field of the
HSM statement. A blank location field causes the Memory Dump routine to be loaded into the
area following the location assigned to the last character in the object program. The letters
HSM must be written in the op code field. The operands field contains the addresses of the first
(low) and last (high) locations in the memory area whose contents are to be listed by the Memory

Dump routine.

7-14 #2-139

SECTION VII. ASSEMBLY CONTROL STATEMENTS

EASYCODER

CODING FORM
PROBLEM PROGRAMMER —____~ DATE____ .~ PAGE__ _OF __
CARD [} OPERATION
NUMBER [P B LOCATION CODE OPERANDS
123 4ls]ef7]e L 1805, 202! I I I e -) L] A N ..
|
! ! | i HLSM STARTI\ SIOPAiLa) PO S RN I ! ISR B - N
2 LI
: L 1 1 L L 1 L - [E—— L - . 1 Ll PR | [

The HSM statement above specifies that the area whose contents are to be listed begins at
the location tagged START and ends three locations beyond the location tagged STOP. As the
location field is blank, the Memory Dump routine will be stored in the area following the location

assigned to the last character in the object program..

Skip A
SKIP

Easycoder assemblers normally single-space an assembly listing and skip to the head of
the next form when a page becomes filled. The SKIP statement enables the programmer to con~

trol the vertical spacing of the assembly listing by causing as many as 15 lines to be skipped.

EASYCODER C AND D

The letters SKIP are placed in the op code field. The operands field contains either a
number from 1 to 15 (to indicate the total number of lines to be skipped) or the letter H (which
causes the printer to skip to the head of the next form).

NOTE: The assembler automatically skips to the head of the form for each
new segment.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER _____ DATE __ . _ _ PAGE___OF __
CARD [} OPERATION
NUMBER EQ LOCATION | CODE OPERANDS
1 273 as]e]7]e) 1808, 2021 I i 1 N L I] sy | 82063 s o Ly, 80
|
! ! 1 L s|'<l P 9 - . 1 L I L Lt 1 N PR | L .
—
2 1 l 1 | 1. 1 It L 1 1 L " 1 1 dend. FUNT S | i 1
——t 1

Suffix A
SFX

The SFX statement directs the assembler to append the single-character suffix in the

7-15 #2-139

SECTION VII. ASSEMBLY CONTROL STATEMENTS

operands field to each tag of five characters or less contained in the following coding. This

technique enables the programmer to assign unique tags for each segment of a program and thus

guard against double definition of a tag between distinct segments of o program. When inter-
segment referencing within a program is required, six-character tags may be assigned.

This operation continues until the occurrence of another SFX statement with a blank

operands field, or until the END statement is encountered.

EASYCODER C AND D

The letters SFX are placed in the op code field, A single-character suffix is written in

the operands field,

EASYCODER

CODING FORM
PROBLEM PROGRAMMER . DATE____ . PAGE___OF._.__
- .
NOMBER [F|g| LocaTion | PGgeo OPERANDS
| 2]3 als]s]7]s | 14115, 2020 L | L L seles L) 80
|

! Ifll n SAFXA. E L i 1 L S T IR B . PR L
e ([l |ToTAL A FICA+TOTAX-28 . A L . = . —

In the above example, the assembler interprets the Add instruction following the SFX

statement as: TOTALE A FICAE+TOTAXE-20.

Repeat A
REP

This statement directs the assembler to repeat the following data formatting statement the
number of times specified in the operands field. The number of times a statement is repeated
includes the original statement and may not exceed 63. The assembler repeats the statement

without variation, except that any entry in the location field is not repeated.

EASYCODER C AND D

The letters REP are written in the op code field. The operands field designates the num-

ber of times the following statement is to be repeated (including the original statement).

EASYCODER

CODING FORM
PROBLEM PROGRAMMER _____ DATE__ . PAGE__OF __
NUMBER TWCAT'ON o one OPERANDS
I 2)3 alslel7]s | 14]15, 20|21 1 1 L L 4 [| N) T4 G N L Lot 80|
! ! I A RIEP 6 L 1 S, i L " 1 1 1 | PR 1 .
d[1 []locTse [bew . #2ce 1 . L) . e L

SECTION VII. ASSEMBLY CONTROL STATEMENTS

In the sample statement above, REP is employed to define six identical constants of octal

value 6000.

Generate A

GEN

This statement directs the assembler to generate the instruction which follows a specified
number of times, incrementing or decrementing the operands of the instruction as specified by
the operands field of the GEN statement. The GEN statement can apply to machine instructions
with formats containing a single address, both addresses, a single address and one variant

character, or both addresses and one variant character (only one variant character is allowed).

EASYCODER C AND D

The letters GEN are written in the op code field, The operands field contains the pa-
rameter specifying the number of times the statement (which follows) is to be generated, includ-
ing the original statement. This number is followed by a modifier for each operand in the model
statement. These modifiers specify the increment (from 0 to +63) or decrement (from -63 to 0)
to be applied to each of the operands each time the statement is generated. Theremustbea modi~
fier for each operand in the model statement (including the variant character, if any), and the
modifiers must appear in the same order as the operands. If no modification is desired, 0 is

entered as the modifier,

EASYCODER

CODING FORM
PROBLEM PROG! R OATE ___ . PAGE____OF ___
NﬁﬁgER M 8 LOCATION °PEC';‘$°" OPERANDS
1 2]3 4ls5[6]7]8), 1415, 2021 L 1 | L | R | | | 6263 |) . 80|
1N L GEN [\®,t4,+6.8 . . e e .
o T {lllewe, |BCE [SEL,TABLE,8 e N D ,
3 i 1) 1 1 1 1 1 I | S 1 1 1 1 1
«f T T[]]| TABLE [RESV. l6g . . e e
T T

In the example above, the GEN statement generates a series of 10 instructions that will
branch to a location SEL, SEL+4, SEL+8, or SEL+36, provided that an 8 is present
in the first character of the corresponding item in a table containing 10 six-character items.
The tag SWC is assigned to the leftmost character of the first generated instruction. The GEN
statement itself must not be tagged.

NOTE: The second BCE instruction generated by the example is BCE/SEL+4,

TABLE+6, 8; the third instruction generated is BCE/SEL+8, TABLE+12, 8;
and so on. The tenth instruction generatedis BCE/SEL+36, TABLE+54, 8.

7-17 #2-139

SECTION VII. ASSEMBLY CONTROL STATEMENTS

Set Line Number A
SETLIN

This instruction is used to control the generation of line numbers by the assembler.

EASYCODER C AND D ,
The letters SETLIN are written in the op code field, while the first five columns of the

operand field contain the desired line number. The assembler replaces the contents of the line
number generation counter with the number in the operands field of the SETLIN statement. This
statement is effective only when the assembler is generating line numbers. It is important to
ﬁote that all of the first five columns in the operands field must be punched with a decimal num-~

ber (i.e., leading zeros are required).

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF ___
NOMOER IE E Location | OPERATON OPERANDS
" 2[3 als]e]7]e N N 20[21 | | . L, L G)
o , SETL |N@@des, . . . e e
: { ¢ L B QQ i L 1 bea, S 1 Lo 1 PR WO W S S Y 1
3 ! I j I 1 I 1 1 1 . — e 1 1 1 PRI S 1

In the example above, the SETLIN statement causes the instruction which follows it (B/00)

to be assigned a line number of 00080.

Set Out-of-Sequence Base A
XBASE

The XBASE statement establishes the out-of-sequence base (OSB). As its name implies,
the OSB is a base address for the storage of out-of-sequence coding. Such coding may be allocated
or referred to (1) by means of the address code ! (apostrophe) in the location field (see page 5-9);

or (2) by means of the address code ! (apostrophe) in the operands field (see page 5-15).

EASYCODER C AND D

The letters XBASE are written in the op code field. The operands field contains the value
(absolute or symbolic) to which the assembler is directed to set the out-of-sequence base (OSB).
If a symbolic tag appears in the operands field it must have appeared in the location field of a

previous source-program entry.

7-18 #2-139

SECTION VII. ASSEMBLY CONTROL STATEMENTS

EASYCODER

CODING FORM
PROBLEM _. PROGRAMMER DATE PAGE ___OF ____
CARD [V |M] OPERATION
NUMBER [B|g| LOCATION GoDE OPERANDS
1 2]3 als]e[7]s | 14115, n - 20[2l | | L . L. L | | 6263 | o L., 80
e . XBASE 1900 . . . e I D
ol 111’275 [pew [@con@ . e e . e e
-t
3 l | 1 L 1 L 1 1 i " J F| n 1 . Pl Fa—— | 1

In the above example, the out-of-sequence base (OSB) is set to 500 by the XBASE state-
ment. When the second entry is encountered, the assembler assigns the rightmost character of

the constant CON to location 775 (500 + 275).

Clear
CLEAR

The CLEAR statement enables the programmer to specify an area of memory which is to
be cleared of punctuation before the object program is loaded. The memory area is also cleared
to zeros or to a given character. It is not necessary to clear areas which will be used to store

the object program.

EASYCODER A

The op code field contains the letters CLEAR, while the operands field contains the ad-
dresses (either absolute or symbolic) of the first (low) and last (high) locations in an area to be
cleared. If a comma is written immediately following the second address, the character written
in the column after the comma is loaded into all locations in the cleared area. If two addresses

are written in the operands field and are not followed by a comma and a character, the specified

area is cleared to zeros.

A number of CLEAR statements may be written (in sequence) immediately preceding the

END statement, provided that the total number of HSM, CLEAR, and END statements does not

exceed 10.

NOTE: The 80-character loading area specified in the END statement must
never be cleared.

EASYCODER

CODING FORM .
PROBLEM PROGRAMMER DATE PAGE ____OF ___
NOMBER ErngOCATION o OPERANDS
1 2]3 als]e|7]s | 1415, 20|21 | | L . | | L, seles L L., 80
o 1 CLEAR [CAMT,EAMT . . , l
2 { ! i L 1 ! 1 1 Il Lo L 1 1 L 1]
3 JF l L Cll-E AR 334 | 5I79 ? J 1 1 1 1 1 1 1 L 1 i

SECTION VII. ASSEMBLY CONTROL STATEMENTS

The first CLEAR statement above specifies that the area beginning at the location tagged
CAMT and ending at the location tagged EAMT is to be cleared to zeros. The second CLEAR

statement clears the area beginning at location 334 and ending at 379 to 46 J's.

EASYCODER B

The op code field contains the letters CLEAR, while the operands field contains the ad-
dresses (either absolute or symbolic) of the first (low) and last (high) locations in an area to be
cleared. If’a comma is written immediately following the second address, the character written
in the column after the comma is loaded into all locations in the cleared area. If two addresses
are written in the operands field and are not followed by a comma and a character, the specified

area is cleared to zeros.

A maximum of nine CLEAR statements may be included in a program. In addition, no

coding may appear between the last symbolic CLEAR statement and the END statement.

NOTE: The loading area specified in the END statement must never be cleared.
See the sample statements given above for Easycoder A,

EASYCODER C AND D

The op code field contains the letters CLEAR, while the operands field contains the ad-
dresses (either absolute or symbolic) of the first (low) and last (high) locations in an area to be
cleared. If a comma is written immediately following the second address, the character written
in the column after the comma is loaded into all locations in the cleared area. If two addresses
are written in the operands field and are not followed by a comma and a character, the specified
area is cleared to zéros. As many CLEAR statements as necessary can be included in a pro-
gram.

NOTE: The programmer must exercise caution in the physical placement of the

CLEAR statement, as the clearing is performed by the Loader at the
time the CLEAR statement is encountered.

See the sample statements given above for Easycoder A.

End
END

The last source program instruction must be the END statement, which indicates to the

assembler that the end of the source program has been reached.

7-20 #2-139

SECTION VII. ASSEMBLY CONTROL STATEMENTS

EASYCODER A

The location field may contain an address (either absolute or symbolic) which specifies the

initial location in an 80-character loading area. If the location field is left blank, the assembler
automatically reserves an 80-character loading area following the location assigned to the last

character in the object program.,
The op code field contains the letters END. If it is desired to execute the object program

immediately after loading, the operands field must contain the address (either absolute or

symbolic) at which the object program is to begin.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE . PAGE ____OF
CARD [y OPERATION
NUMBER |BIB LOCATION CODE OPERANDS
} 2‘3 4[5 6178 1 |4|51 2021 1 1 | JR) . L L I n 1 A6283 Lt L 1 1 80
I . END . . [oBJECT . ., . e R

The END statement above specifies that the object program (beginning at the address
tagged OBJECT) is to be executed immediately after loading. Since the location field is blank,

the assembler will reserve an 80-character loading area following the location assigned to the

last character in the object program.

EASYCODER B

The method of coding this statement depends on which output format has been specified in
the program header statement.

1. Output in self-loading format: The location field may contain an address
(either absolute or symbolic) which specifies the initial location in an 80-
character loading area. If the location field is left blank, the assembler
automatically assigns an 80-character loading area following the location
assigned to the last character in the object program.

The op code field contains the letters END, while the operands field
contains the address (either absolute or symbolic) to which the Loadekr
branches when loading has been completed,

NOTES: 1. The programmer should ensure that the loading
' area does not span two 4K memory banks.

2. During the loading process, the object program
must not use the loading area. However, the
area may be used following program loading.

3. When literals are used, the programmer must
specify a loading area that does not coincide
with the memory area occupied by literals,

7-21 C #2-139

SECTION VII. ASSEMBLY CONTROL STATEMENTS

2. Output in BRT format: The op code field contains the letters END, while
the operands field contains the address (either absolute or symbolic) to
wnich the Loader branches when loading has been completed. When BRT
format is specified, all other fields of the END instruction are ignored
by the assembler,

NOTES: 1. The loading area is automatically assigned by the Loader.

2. With Easycoder B, the total of the numbers of Execute,
Literal Origin, and End statements must not exceed 31,

EASYCODER

CODING FORM
PROBLEM PRO! ER DATE PAGE __OF ____
CARD [V OPERATION
NUMBER |B|R LOCATION CODE OPERANDS
1 23 als]el7]s N 1a]15, 20721 | 1 L R 1 s2e3 L L ... 8ol
I
! ; | MALx ElND N OBJEQ,T L L - L 1 ! | 1 P s L .
2 JI ! i 1 1 1 1 I L 1 Il 1 S| SRR L o} . .
3 ! I L ElND BJECIT 1 1 1 1 1 1 1 1 1 1

The first example above illustrates the coding which may be used for self-loading format

output; the coding for BRT-format output is shown in the second example.

EASYCODER C AND D

The op code field contains the letters END. An address must appear in the operands field;

the Loader will branch to that address (which should be the starting location of the last segment

of the program).

NOTE: The loading area is automatically assigned by the Loader.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER. DATE PAGE ___OF ___
CARD [} OPERATION
NUMBER |p[| LOCATION S ODE OPERANDS
1 2]3.4Ts]e]7]s) 1815, 2021 ¢ I L) N L 1 P N L T
T
! ! | I EIND STAKT,L, 1 NN s - 3 N) L 1 TP DA

The sample END statement above indicates to the assembler that the end of the source
program has been reached. This statement is replaced by coding which specifies to the Loader

that the last (or only) segment begins at symbolic address STARTL.

1-22 #2-139

INSTRUCTIONS

INTRODUCTION

A Series 200 computer operates under the direction of instructions in the stored program.

For descriptive purposes, these instructions are classified into six functional categories: (1)

Arithmetic; (2) Logic; (3) Control; (4) Interrupt Control; (5) Editing; and (6) Input/Output.

All instructions are described in the following standard format:

Title:

Format:

Function:

Word Marks:

Address
Registers
after
Operation:

Notes:

Examples:

The title describes the instruction. It appears in the left-hand
margin of a page, along with the mnemonic operation code used
in the Easycoder symbolic programming language.

If an instruction is included in an optional feature, that feature
number accompanies the title.

This is a tabular representation of all formats which may be
used when coding the instruction.

The function of the instruction is described in terms of each
format in which it can be coded.

The effect of word marks with regard to data fields is specified.

The contents of the address registers are indicated for each of
the instruction's formats.

This is additional information pertaining to the operation,

Practical applications of the instruction in its various formats
are described and illustrated as symbolic program entries.

Formulas for calculating instruction execution times are presented in Appendix C.

Table 8-1 lists the abbreviations and symbols used in the description of the instructions.

Those symbols used only with specific instructions are preceded by the title of the instruction

to which they pertain.

8-1 #2-139

SECTION VIII. INSTRUCTIONS

Table 8-1. Symbology Used in Series 200 Instruction Descriptions

A A address of the instruction
B B address of the instruction
N; Number of characters in the instruction
N, Number of characters in the A field
Ny, Number of characters in the B field
Ny Number of characters in the A or B field, whichever is smaller
NXT Address of next sequential instruction
JI Address of next instruction if a branch occurs
Ap The previous setting of the A-address register (AAR)
Bp The previous setting of the B-address register (BAR)
Divide
Ngg Number of digits in the dividend
i Move and Translate
ot Number of characters translated
Move Item and Translate
Nut Number of information units translated
CSRp Previous contents of the change sequence register (CSR)
NA, Number of six~bit character locations occupied by each A-item
information‘ unit (1 or 2)
NB, Number of six-bit character locations occupied by each B-item
information unit (1 or 2)
Load Control Registers
I (A) Contents of the field specified by the A address.
I Table Lookup
l ta The location in the table immediately to the left of the argument

(oi' short field) that terminated the search.

8-2 #2-139

® ADD

e SUBTRACT

¢ BINARY ADD

¢ BINARY SUBTRACT

® ZERO AND ADD

e ZERO AND SUBTRACT
e MULTIPLY

®DIVIDE

#2-139

SECTION VIII, INSTRUCTIONS

ARITHMETIC OPERATIONS

Series 200 add operations (binary addition, decimal addition) treat the A operand as the
augend and the B operand as the addend. The subtract operations (binary subtraction, decimal
subtraction) treat the A operand as the subtrahend and the B operand as the minuend. The
result of each operation is stored in the B field. These elements are summarized in Table 8-2,

where a character enclosed in parentheses indicates the contents of that field.

Table 8-2. Series 200 Add and Subtract Operations

BINARY ADDITION

The Binary Add instruction combines the corresponding bits of the augend and addend and
produces a binary sum which is stored in the B field. This process can be most readily analyzed
on a column-by-column basis., For any column in the addition, three variables are significant
to the sum: the augend digit, the addend digit, and the carry from the next lower-order column,
For any column, the result is fully expressed by a sum digit (1 or 0) and either a carry or no
carry to the next higher-order column, Table 8-3 lists all the possible combinations of these

variables..

Table 8-3. Binary Addition Table

ol ol o of 1| 1| 1] 1

o 1| 1| ool 1] 1]o0

ol t{ ol 1lof 1[o] 1

ol ol 1| 1| 1] 1]o0] o0

o 1] o] oo 1] 1] 1
—

BINARY SUBTRACTION

.1
The Binary Subtract instruction performs, in effect, twos-complement arithmetic., = When
this instruction is executed, each six~bit character of the subtrahend is converted to its ones

2
complement and added to the corresponding character in the minuend, adding from right to left,

The twos complement of a binary number is formed by subtracting the number from a field of
all one bits and adding one to the low-order digit of the difference.

The ones complement of a binary number is formed by subtracting the number from a field of
all one bits.

8-4 \ #2-139

SECTION VIII. INSTRUCTIONS

In the first addition (the addition of the low-order characters of the subtrahend and the minuend)
a simulated carry is added to the result. All subsequent characters are added with or without a

carry, depending upon the result of the previous addition.

The word mark associated with the B field terminates the operation. If the length of the A
field equals that of the B field, the binary subtraction process continues until the high-order B-
field character has been combined with the high-order A-field character. If the length of the A
field exceeds that of the B field, the effect is as if there were a word mark in the A-field loca-
tion corresponding to the high-order B-field location (i.e., the process still terminates at the
B-field word mark). If the length of the A field is less than that of the B field, zeros are insert-
ed where the A field terminates until the last B-field character is processed. Each zero is con-

verted to its ones complement as above and then added to the corresponding B-field character.

In the following example, locations 294 and 295 contain the value 7310 in 12-bit binary form,
while locations 299 and 300 contain the binary equivalent of 8710

Note: Locations 294 and 299 contain word marks; the length of the A field therefore
equals that of the B field in this example.

EASYCODER

CODING FORM
PAGE ___OF ___
PROBLEM PRO! VER DATE
CARD [V OPERATION OPERANDS
nomaer |p[g| LOCATION CODE i
1,2)3.415/6]7]8 J 18015, 20[2! I 1 R N R NP | }2(63 - Ly L
‘I { I} as 1 qu\ 3I¢¢ 1 1 1 L 1 1 i J - 1 1 U B PR Ly

LOCATION »

CONTENTS f 000001 001001 001101 011011 011110 000001 010111
(binary) : .

The six-bit character in location 295 is converted to its ones complement and added to the
six-bit character in location 300 (see illustration below). Prior to this operation, a simulated
carry is generated in the adder (see page 2-10). Theresult of the first addition is the binary
equivalent of 141 plus a carry. This carry remains in the adder and is added to the sum of the
contents of locations 294 and 299, resulting in a binary zero plus another carry. This final carry
remains in the adder and the operation terminates. An overflow condition does not exist since
the carry remaining at the end of the operation is suppressed; consequently the next memory lo-
cation (location 298) is not disturbed. The result of the entire Binary Subtract instruction is

therefore 1410, the true difference between 87 and 73.

Table 8-3 indicates how the bits in each column of the ones-complement subtrahend and

the minuend are combined.

8-5 #2-139

SECTION VIII. INSTRUCTIONS

7310 8710

LOCATION -»

CONTENTS » 000001 001001 001101 011011 011110 000001 010111

converted to
ones complement
N

| 110110} 010111

imulated Carry

in Adder
RESULT = 001110

ADDER

(plus a carry)

First Addition

000001 001001 001101 011011 011110 000001 001110

converted to Y

Qones complement

)
| 111110}— 000001 I

ADDER 1|, Previous

'

RESULT = 000000
(plus a carry which
is suppressed)

Second Addition

The result of the operation (1410) is stored in the B field as shown below.

7310 1410

000001 001001 001101 011011 011110 000000 001110

8-6 #2-139

SECTION VIII. INSTRUCTIONS

DECIMAL ADDITION

The Add instruction performs either a true add or a complement add, depending upon the

algebraic signs of the operands. The sign of an operand is determined by the combination of
zone bits in the units position of that field. The four possible zone bit configurations and the

signs they represent are shown in Table 8-4.

Table 8-4. Algebraic Signs in Decimal Addition

True Add
A true add is performed if the signs of the A and B fields are alike. The result of the

addition is stored in the B field with the same zone bit configuration that was originally in the B
field (see Figure 8-1). Zone bits in all B-field locations (except for the units position) are set to

zeros. A-field zone bits (except for the units position) are ignored.

(+A) + (+B) = +R
A OPERAND B OPERAND
+170
+244 +244
¥414 = RESULT
(-A) + (-B) = -R
A OPERAND ' B OPERAND
-444
-077 -077

-521 = RESULT

Figure 8-1. True Add Examples

Complement Add

If the operand signs are not alike, the instruction performs a complement add: the A
operand is converted to its tens complement1 and added to the B operand. The machine automa-

tically initiates a test to determine whether a carry was generated by the high-order addition.

- , :
The tens complement of a decimal number is formed by subtracting the number from all nines
and adding one to the low-order digit of the difference. ‘

8-7 #2-139

SECTION VIII. INSTRUCTIONS

The presence of a carry indicates that the result in the B field is a true answer, and the opera-

tion is terminated with the normalized sign of the B field as the sign of the result (see Figure

8-2).1 B-field zone bits (except for the units position) are set to zeros.

The absence of a carry indicates that the A operand was algebraically larger than the B

operand and that the result is stored in its tens-complement form. A recomplement cycle is

performed automatically to convert the result to its true form. The sign of the result is changed

during this recomplement cycle. Figure 8-2 illustrates complement add operations with and

without recomplementation,

(+A) + (-B) = -R
A OPERAND B OPERAND
-0090
9922

convert to

+0078 tens complement

(recomplementing is A

(+A) + (-B) = +R

A OPERAND B OPERAND
convert to -0090
+0178 | 9822

tens complement

no carry indicates sum is stored } 0 -9912
in its tens-complement form;
recomplementing is necessary

recomplement
and change sign

carry indicates true sum) 1-0012 = RESULT

unnecessary) sign of B operand

10088 = TRUE RESULT

Figure 8-2. Complement Add Examples

DECIMAL SUBTRACTION

The Subtract instruction is analogous to the Add instruction with the exception that before

the operands are combined, the sign of the A operand is changed. Thus, if the initial sign of the

A operé,nd is equal to that of the B operand, the operands are combined by a complement add. If

H

on the other hand, the initial sign of the A operand is not equal to that of the B operand, the

operands are combined by a true add.

A summary of decimal arithmetic operations is presented in Table 8-5.

1 . .
Normalized signs are expressed bythe following zone bit configurations: plus = 01, minus

8-8

= 10.

#2-139

SECTION VIII. INSTRUCTIONS

Table 8-5. Decimal Arithmetic Sign Conventions

True + (Bit configuration of B)
* - Complement Normalized sign of the
ADD ?E)il‘?l;d ifzggi)ater value
+ Complement ?
) - True -
- True -
* + Complement Normalized sign of the
SUBTRACT operand of greater value
- Complement (- =10, +=0D)
B + True + (Bit configuration of B)
INDICATORS

Two indicators are set at the completion of every decimal add and subtract operation: the
overflow indicator and the zero balance indicator. If a carry is generated beyond the limit of the
B field, the overflow indicator is turned on; if such a carry is not generated, the indicator is
unchanged. 1 The zero balance indicator signifies either a zero or a non-zero sum. When a
decimal operation produces a result equal to zero (regardless of sign), the zero balance indi-

cator is turned on; when the result of the operation does not equal zero, the indicator is turned off.

These indicators are also set by decimal multiply and divide operations. The overflow
indicator is turned on when a Decimal Divide instruction is performed in which the divisor is
equal to zero. The zero balance indicator is turned on if the product of a decimal multiply

operation is equal to zero.

The settings of these indicators can be tested by a Branch on Condition Test instruction
(see page 8-35), This instruction automatically resets the overflow indicator; the zero balance
indicator is not affected by the branch instruction used to test it but is reset only by the next

decimal arithmetic instruction.

MULTIPLICATION

The Multiply instruction causes the signed decimal integer in the A field (the multiplicand)

1Only a "true add'" operation can turn the overflow indicator on (see Table 8-5).

8-9 #2-139

SECTION VIII. INSTRUCTIONS

to be multiplied by the signed decimal integer (the multiplier) which is stored in the leftmost lo-

cations of the B field. The signed product is stored, right-justified, in the B field.

The B field must be large enough to insure an adequate number of locations for the develop-
ment and storage of the product. 1Its length is therefore defined as the number of locations in

the multiplier, plus the number of locations in the multiplicand, plus one (see Figure 8-3).

OPERATION:
aaaa
X bbb

WA FIELD — la«—B FIELD (4+3+1 = 8 locations)——

A ADDRESS B ADDRESS

LOCATION -»

CONTENTS -»

MULTIPLICAND MULTIPLIER
(4 locations) (3 locations)

Figure 8-3. A and B Fields in Multiply Operation

Word marks are required in the leftmost locations of the multiplicand and the multiplier,
All other locations in the B field must not contain word marks. As shown in Figure 8-3, the

rightmost location of the multiplier is defined as B - N, -1, where B is the B address and N

is the number of locations in the A field.

The zone bits in the units positions of the multiplier and the multiplicand indicate the signs
of the operands. The signs of these factors indicate the sign of the product according to the

algebraic sign conventions shown in Table 8-6. The sign of the product is expressed in its

normalized form (minus =10, plus = 01).

Table 8-6. Multiply Sign Conventions

8-10 ’ #2-139

SECTION VIII. INSTRUCTIONS

Consider the following Decimal Multiply instruction.

EASYCODER

CODING FORM \
PROBLEM PROGRAMMER DATE PAGE __OF _____
| caro ¥ OPERATION
NomBER [E[g| LocaTion | OPERANDS
1,2]3 alslel7]e8 14015 20f2! | | NN —— L T T Ly 5
! Il 1 'M 5 7 1 1 L —] n L n 1 A1 FURETEE SNSr R PR T SR T DY SR ST

Location 500 is the rightmost location of a four-character field, Location 700 is the right-

most location of an eight-character field. Location 695 (i.e., 700 - 4 - 1) is the rightmost loca-

tion of the multiplier.

A ADDRESS B ADDRESS
v v

LOCATION —— |
CONTENTS —— | (3) | 3
~————
MULTIPLICAND MULTIPLIER

The data in the A field is multiplied by the data in the field whose rightmost location is

695, and the product is stored, right -justified, in the B field. All B-field zone bits are cleared

to zeros {except in the units position, which contains the sign of the product). At the end of the

operation, the multiplier is no longer present in the leftmost positions of the B field, since all
B-field locations to the left of the most significant digit of the product are set to zeros. Thus,

the multiplier should be preserved in another storage field if it is to be used more than once.

The result of the multiply operation is shown below.

A FIELD IS PRODUCT IS STORED IN B FIELD, RIGHT-
NOT DISTURBED JUSTIFIED, ALL INSIGNIFICANT HIGH-
ORDER CHARACTERS ARE SET TO ZEROS

LOCATION —
CONTENTS —» @

PRODUCT

DIVISION
The Divide instruction causes the signed decimal integer in the A field (the divisor) to be

divided into the signed decimal integer whose leftmost location is the B address of the instruc-

tion (the dividend). The quotient is developed and stored in the leftmost locations of the B field,

8-11 #2-139

SECTION VIII. INSTRUCTIONS

and the remainder is stored in the rightmost locations of the B field. 1 To insure an adequate

number of storage locations for the development of the quotient, the length of the B field is

1. 1

by adding 1 to the sum of the number of character locations in the divisor and

dividend (see Figure 8-4).

OPERATION:
xxxJyyyy

BEFORE EXECUTION

<« A FIELD » '« B FIELD (3+4+1=8 locations)—ss|

A ADDRESS B ADDRESS

LOCATION
CONTENTS -»

DIVISOR DIVIDEND
(3 locations) ‘ (4 locations)

AFTER EXECUTION

LOCATION
CONTENTS

QUOTIENT REMAINDER

Figure 8-4. Factor Locations in Divide Operation

The leftmost location of the dividend is defined by the B address of the Divide instruction.
The rightmost location (i.e., the units position) is the first character location to the right of
the B address to have one of its zone bits not equal to zero. As shown in Figure 8-4, all B-

field locations to the left of the dividend must contain zeros prior to the divide operation.

A word mark is required in the leftmost location of the divisor. The dividend may or may

not contain a word mark.

1Note that the B 'field" in a divide operation does not define the B operand but is a group of
. storage locations within which the B operand (the dividend) is contained.

8-12 #2-139

SECTION VIII. INSTRUCTIONS

The signs of the operands are indicated by the zone bits in the units positions of the divisor
and dividend. Algebraic sign control is used to determine the sign of the quotient (see Table
8-7). The sign of the quotient is expressed in its normalized form (minus = 10, plus = 01). The
sign of the remainder is always the same as that of the dividend (in value if not in bit configu-

ration); its form is normalized if the sign of the dividend is normalized.

Table 8-7. Divide Sign Conventions

+ + - -
+ - + -
+ - + -
+ - - +

Since the presence of a signed digit in the dividend specifies its rightmost location, the
units position of the dividend must contain a normalized sign and the zone bits of all other

dividend characters must be zero.

When division is completed, the signed decimal quotient is stored in the leftmost locations
of the B field; the units position of the quotient is in location B - Na + Ngq - 2, where Na is the
number of locations in the A field and Ngq is the number of locations in the dividend. The signed
decimal remainder appears in locations B+Ngq-1, B+Ndd-2, etc. through location B-Na+Ndd.

The character location separating the quotient and the remainder is clearedto zero (see Figure 8-4).

In the following example, the divisor is a two-character field whose rightmost location is

location 450 and the dividend is a four-character integer whose leftmost location is location 950.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE . OF

LocaTion | OFERATION OPERANDS

b4

c

=

@

m

2
& [mro<-|
~ XD

I ST S RO DO SO S R ST T .- . A TP S B L 80

N b 4sg9se

) t ol L P L | SR S U U R SR S VR B | Il

The contents (+23) of the A field are divided into the contents of the field (+7347) whose
leftmost location is 950. The rightmost boundary of the dividend is determined by the first
character location (location 953) to the right of location B whose zone bits are non-zero. This

units position of the dividend therefore contains the sign of the dividend.

8-13 #2-139

SECTION VIII. INSTRUCTIONS

B FIELD = 1+2+4 = 7 ;
CHARACTER LOCATIONS ~

I B ADDRESS
h 4

DIVISOR = DIVIDEND = 4
2 CHARACTER CHARACTER LOCATIONS
LOCATIONS

N

Th_e quotient (+319) is stored in the leftmost character locations of the B field. The units
position of the quotient (location 950) is equal to B-N_+Ny4-2; or 950-2+4-2. The remainder
is stored in the rightmost locations of the B field; its leftmost location (location 952) is equal to
B-Ny+Ngg, or 950-2+4; its rightmost location (location 953) is equal to B+Ngg-1, or 950+4-1,

The result of the operation is shown below.

FINAL SETTING OF AAR ’ FINAL SETTING OF BAR

QUOTIENT REMAINDER
A ADD
FORMAT OP CODE A ADDRESS B ADDRESS
a. I I
b [] I
c —
FUNCTION

Format a: The signed decimal data in the A field is added algebraically to the signed decimal
data in the B field. The result is stored in the B field.

Format b: The signed decimal data in the A field is added to itself. The result is stored in the
A field.

Format c: The signed decimal data specified by the contents of the A-address register (AAR) is
added algebraically to the signed decimal data specified by the contents of the B-ad-
dress register (BAR). The result is stored in the B field.

8-14 , #2-139

SECTION VIII, INSTRUCTIONS

WORD MARKS

Format a: The B operand must have a defining word mark. It is this word mark thatterminates
the operation. The A operand must have a word mark only if it is shorter than the B
operand. In this case, transmission of data from the A operand stops after the A-
operand word mark is sensed. If the A field is longer than the B field, the high-
order characters of the A field that exceed the field length defined by the B-operand
word mark are not processed.

Format b: The A operand must have a defining word mark.

Format ¢: The B operand must have a defining word mark. The A operand must have a word
mark only if it is shorter than the B operand.

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-N, B-Np
Format b: NXT A-N, A-Ny
Format c: NXT Ap'Nw BP -Ny,
NOTES
1. The algebraic sign control for the add operation is shown below.
¥ [— + —
+ [= - +
True True Comp Comp
Normalized sign of A or B
Sign of B field field, whichever is greater
(- =10, +=01)
2. All zone bits in the result field are set to zeros except for the units position,
(i.e., the sign of the result).
3. This instruction treats both operands as signed decimal data. It will pro-
duce ambiguous results if used to manipulate non-decimal data. Particularly,
if the four numeric bits of any character have a binary numeric value of 12
or more (octal 14, 15, 16, and 17), the character is treated as if it were
a zero, though its zone bits are retained. (In Type 201 or 201l-1 processors,
the zone and numeric bits of octal 14, 15, 16, and 17 are handled as zeros.)
The two remaining cases (octal 12 and 13) are unspecified.
4. The overflow and zero balance indicators are set by an add operation.
5. When the central processor is in the '"'S'" mode of.processing, the zone bits
are not changed in any character other than the units position of the B field.
EXAMPLE

Add Bond Deductions to Total Deductions.

Description Tag
Bond Deductions BDED
Total Deductions TDED

8-15 #2-139

SECTION VIII, INSTRUCTIONS

EASYCODER

Format a:

Format b:

Format c:

CODING FORM
PROBLEM PRO AER DATE PAGE ___OF ___
M [al~] 0N
NUMBER |F[g| LOcATION | “Cooe™ OPERANDS
1 2[3 als(el7(s N 1415, 20§21 \) L R L . | 6263 | e 1 L ., , 8o
I . A BDED, TDED | . e . ol e
S | SUBTRACT
FORMAT
OP CODE A ADDRESS B ADDRESS
o L BN
b L]
. -
FUNCTION

The signed decimal data in the A field is subtracted algebraically from the signed
decimal data in the B field. The result is stored in the B field.

The signed decimal data in the A field is subtracted from itself. The result is
stored in the A field, If the A-field sign is minus, the result is a minus zero. If
the A-field sign is plus, the result is a plus zero (with normalized sign).

The signed decimal data specified by the contents of the A-address register (AAR)
is subtracted algebraically from the signed decimal data specified by the contents
of the B-address register (BAR). The result is stored in the B field.

WORD MARKS

Format a:

Format b:

Format c:

The B operand must have a defining word mark. The A operand must have a word
mark only if it is shorter than the B operand. In this case, transmission of data
from the A operand stops after the A-operand word mark is sensed. If the A field
is longer than the B field, the high-order characters of the A field that exceed the
field length defined by the B-operand word mark are not processed.

The A operand must have a defining word mark.

The B operand must have a defining word mark. The A operand must have a word
mark only if it is shorter than the B operand,

ADDRESS REGISTERS AFTER OPERATION

Format a:

- Format b:

Format c:

SR AAR BAR
NXT A-N,, B-Np,
NXT A-N, A-N,
NXT Ap-Ny B -N,

8-16 » #2-139

SECTION VIII. INSTRUCTIONS

NOTES
1. Algebraic sign control for the subtract operation is summarized below.)
Comp | Comp True True
Normalized sign of Sign of B field
A or B field, which-
ever is greater
(- =10, + =01)
2. All zone bits in the result field are set to zeros except for the units position
(i. e., the sign of the result).
3. This instruction treats both operands as signed decimal data. It will pro-
duce ambiguous results if used to manipulate non-decimal data. Partic-
ularly, if the four numeric bits of any character have a binary numeric
value of 12 or more (octal 14, 15, 16, and 17), the character is treated as
if it were a zero, though its zone bits are retained. (In Type 201 or 201-1
processors, the zone and numeric bits of octal 14, 15, 16, and 17 are
handled as zeros.) The two remaining cases (octal 12 and 13) are unspecified.
4. The overflow and zero balance indicators are set by a subtract operation.
5. When the central processor is in the ""S" mode of processing, the zone bits are
not changed in any character other than the units position of the B field.
EXAMPLE
Subtract the contents of the five-character fields starting at location 940, 945, 950,
and 955 from the contents of the eight-character fields starting at locations 648,
656, 664, and 672.
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE __ OF___
NUMBER Eﬁ rocation | PEore™ OPERANDS
T 203 alslel7]e | 1415, 20]21 | | L K . . | | e2es K Lo) R 80|
S , S, 955,672 ., . . RN e
o . S R
3 l L SL Il 1 1 PO | L PR UR T ST WO WO T N S SN PR Y P | PR | L
hd 3 l 1 SI 1 1 Lo o | B 1 ke . 2L | 1 L il 1
BA | BINARY ADD
FORMAT
OP CODE A ADDRESS B ADDRESS

" .

8-17 #2-139

SEC TION VIII. INSTRUCTIONS

FUNCTION

Format a:
Format b:

Format c:

The data in the A field is added in bina.ry fashidn, character by character, to the
data in the B field, The result is stored in the B field,

The data in the A field is added, character bycharacter, to itself. The result is
stored in the A field,

The data specified by the contents of the A-address register (AAR) is added, char-
acter by character, to the data specified by the contents of the B-address register
(BAR). The result is stored in the B field.

WORD MARKS

Format a:

Format b:

Format c:

The B operand must have a defining word mark. It is this word mark that termi-
nates the operation. The A operand must have a word mark only if it is shorter
than the B operand., In this case the transmission of data from the A field stops
after the A-operand word mark is sensed. If the A field is longer than the B field,
the high-order characters of the A field that exceed the field length defined by the
B-operand word mark are not processed.

The A operand must have a defining word mark.

The B operand must have a defining word mark.
mark only if it is shorter than the B operand.

The A operand must have a word

ADDRESS REGISTERS AFTER OPERATION

Format a:
Format b:

Format c:

SR AAR BAR
NXT A-Ng, B-Np
NXT A-N,’ A-N,
NXT Ay-Ny B ,~Ny,

NOTES
1. The overflow and zero balance indicators are not set by a binary add
operation.
2. Format b of the BA instruction has the effect of doubling the value stored
in the A field; i.e., it shifts the contents of éhe A field one bit position
to the left. '
EXAMPLE
Modify the B address of the instruction tagged B7 by the value stored in the location
tagged TEN (assuming the use of the two-character addressing mode).
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE . PAGE . OF
NUMBER ER LocaTion | OPERATION OPERANDS
1 2]3 4Is]s[7]e | 1a]15, 20[2i N | L Ty | e2(63 . 80
I ... BA . |TEN.B7+4 . . e . e
8-18 #2-139

SECTION VIII. INSTRUCTIONS

BS BINARY SUBTRACT

FORMAT

FUNCTION

Format a:

Format b:

Format c:

OP CODE A ADDRESS B ADDRESS

A,LI

Each six-bit character in the A field is converted to its ones complement and added,
in binary fashion, character by character, to the data in the B field (see page 8-4).
A simulated carry is added with the characters in the units position. The result is
stored in the B field.

Each six-bit character in the A field is converted to its ones complement and added,
character by character, to itself. A simulated carry is added with the characters
in the units position. In effect, this format of the binary subtract instruction re-
places the contents of the A field with zeros.

Each six-bit character specified by the contents of the A-address register (AAR)
is converted to its ones complement and added, character by character, to the data
specified by the contents of the B-address register (BAR). A simulated carry is
added with the characters in the units position. The result is stored in the B field.

WORD MARKS

Format a:

Format b:

Format c:

The word mark associated with the B operand terminates the operation. The A
operand must have a word mark only if it is shorter than the B operand. In this
case, transmission of data from the A field stops after the A-operand word mark
is sensed. If the A operand is longer than the B operand, the characters of the A
operand that exceed the field length defined by the B-operand word mark are not
processed.

The A operand must have a defining word mark.

)

The B operand must have a defining word mark. The A operand must have a word
mark only if it is shorter than the B operand.

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-NW B-Nb
Format b: NXT A—Na A—Na
Format ¢: NXT Ap—NW Bp-Nb

8-19 #2-139

SECTION VIII. INSTRUCTIONS

NOTES
1, The overflow.and zero balance indicators are not set by a binary subtract
operation.
2. Formats a. and c. can produce negative results. A negative result is stored
in the B field in its twos-complement form. In this case, the absolute nu-
merical value of the result can be obtained by recomplementing the result
stored in the B field. A negative result is detected only if the programmer
provides appropriate coding to ascertain whether or not operands will pro-
duce such a result,
EXAMPLE
Zero the field starting at location TOTAL.,
CODING FORM
PROBLEM PROGRAMMER ___ DATE_ . PAGE__ OF __
owge |HB| Locamion | G OPERANDS |
1 213 4156|718 | 1415, 20021 | - L . L Lo L1 6283 | . IO ST
by ... [BS TOTAL, : . . e N

NOTE: Zone bits as well as numeric bits are cleared to zero by this
operation,

ZA | zZERO AND ADD| |FEATURES 010 & 011

FORMAT

OP CODE A ADDRESS B ADDRESS

o

FUNCTION

Format a: The data in the A field is transferred, character by character, right to left, to the
B field., Zone bits in the B field are set to zero in all positions except the units
position. The sign of the result field is based on the sign of the A field (see note 1).
If the high-order character of the A field is transferred before the operation
terminates, the remaining B field characters are cleared to zeros.

Format b: The data in the A field is converted to an all-numeric format; i.e., the zone bits
of all positions in the field except the units position are set to zero. The result
remains in the A field. The sign of the A field is not changed by the operation (see
note 1),

8-20 #2-139

SECTION VIII. INSTRUCTIONS

Format c:

The data specified by the contents of the A-address register (AAR) is transferred
to the field specified by the contents of the B-address register (BAR). Zone bits
in the B field are set to zero in all positions except the units position. The sign
of the result field is based on the sign of the A field (see note 1). If the high-
order character of the A field is transferred before the operation terminates, the
remaining B-field characters are cleared to zeros,

WORD MARKS

Format a:

Format b:

Format c:

o B W N -

The B operand must have a defining word mark. The A operand must have a word
mark only if it is shorter than the B operand. In this case, transfer of data from
the A operand stops after the A-operand word mark is sensed. If the A field is
longer than the B field, the high-order characters of the A field that exceed the
field length defined by the B-operand word mark are not processed,

The A operand must have a defining word mark.

The B operand must have a defining word mark. The A operand must have a word
mark only if it is shorter than the B operand.

ADDRESS REGISTERS AFTER OPERATION

Format a:
Format b:

Format c:

SR AAR BAR
NXT A-N_ B-Ny
NXT A-N, A-N_
NXT ANy B,-N,

NOTES
1. A plus sign in the units position of the result field is always expressed in
its normalized form (01).
2. B-field punctuation is not changed by this operation.
3. This instruction does not set the overflow and zero balance indicators,
4. When the central processorisinthe ''S"" mode of processing and the four numeric
bits ofanycharacter have a value of 14g or more (12ginthe 4200), the character
istreatedasifitwerea zero, The zerobalanceindicatoris setor resetaccordingly.
EXAMPLE
Transfer the contents of the field tagged ORATE to the field tagged NRATE, setting
all zone bits in NRATE (except in the units position) to zeros.
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE . PAGE __OF ___
IR E@T LocaTion | OFERATON OPERANDS
1 273 als5]e(7]s | 14]15, 2021) | L L. . | eeles . B9
L ZA .. |ORATE,NRATE
+——+

|
|
Lo
T
|

il

L L 1 .

1 It

[L
1

L
L L
L i 1

8-21 #2-139

SECTION VIII. INSTRUCTIONS

YA ZERO AND SUBTRACT FEATURES 010 & 011
FORMAT
OP CODE A ADDRESS B ADDRESS

FUNCTION

Format a:

Format b:

Format c:

The data in the A field is transferred to the B field with the opposite sign. Zone
bits in the B field are set to zeros in all positions except the units position. If the
high-order character of the A field is transferred before the operation terminates,
the remaining B-field characters are cleared to zeros.

The data in the A field is converted to an all-numeric format; i.e., the zone bits
of all positions in the field except the units position are set to zero. The result re-
mains in the A field with its sign reversed.

The data specified by the contents of the A-address register (AAR) is transferred
with the opposite sign to the field specified by the contents of the B-address register
(BAR). Zone bits in the B field are set to zero in all positions except the units
position., If the high-order character of the A field is transferred before the oper-
ation terminates, the remaining B-field characters are cleared to zeros.

WORD MARKS

Format a:

Format b:

Format c:

The B operand must have a defining word mark. The A operand must have a word
mark only if it is shorter than the B operand. In this case, transfer of data from
the A operand stops after the A-operand word mark is sensed. If the A field is
longer than the B field, the high-order characters of the A field that exceed the
field length defined by the B-operand word mark are not processed.

The A operand must have a defining word mark.

The B operand must have a defining word mark. The A operand must have a word
mark only if it is shorter than the B operand.

ADDRESS REGISTERS AFTER OPERATION

Format a:

Forrhat b:

Format c:

SR AAR BAR
NXT A-N_, B-N,
NXT A-N, A-N_
NXT A,-Ny B,-Ny,

8-22 #2-139

SECTION VIII. INSTRUCTIONS

NOTES
1. A plus sign in the units position of the result field is always expressed in its
normalized form (01).
2. B-field punctuation is not changed by this operation.
3. This instruction does not set the overflow and zero balance indicators.
4, When the central processor is in the "S'" mode and the four numeric bits of any
character have a value of 148 or more (12g in the 4200), the character is
treated as if it were a zero. The zero balance indicator is set or reset accordingly.
EXAMPLE
Change the sign of the data in the field tagged PROFIT.
EASYCODER
CODING FORM
PROBLEM PROGRAMMER =~ DATE___ ___ _ PAGE__OF___
CARD M OPERATION PERANDS
NUMBER [E[F| LOCATION CODE 0 ND
. | 2§13 4)5}6]7|8 o 14[15, 20[21 1 L 1 L 1 L 1t (L | N [N L., 89
! L ZS 2 PROFlIT 1 1 I USSR SN N R 1 1 | 1 I .
2
. T T N
4 . L 1 g 1 1 X n 1 P S L 1 n | |
| M| muLTiPLY
FORMAT
OP CODE . A ADDRESS B ADDRESS
o [I
b L |
. -
FUNCTION

Format a:

Format b:

Format c:

The signed decimal integer in the A field is multiplied by the signed decimal integer
in the leftmost locations of the B field. The product is stored, right-justified, in
the B field.

The signed decimal integer in the A field is multiplied by the signed decimal integer
in the leftmost locations of the field specified by the contents of the B-address reg-
ister (BAR). The product is stored, right-justified, in the B field.

The signed decimal integer in the field specified by the contents of the A-address
register (AAR) is multiplied by the signed decimal integer in the leftmost locations
of the field specified by the contents of BAR. The product is stored, right-justified,
in the B field.

WORD MARKS

Formats a, b, and c:

»

Word marks are required in the high-order locations of both the A and B fields.
All other B-field locations must not contain word marks.

8-23 ' #2-139

SECTION VIII. INSTRUCTIONS

3
ADDRESS REGISTERS AFTER OPERATION

Format c:

NOTES
1.

7.

EXAMPLE

SR AAR BAR
NXT A-Ny B-Np
NXT A-Nj B,-Np,
NXT AN, B,-Np

The A address of a Decimal Multiply instruction specifies the units position
of the multiplicand. The B address specifies a location which is Na+1 lo-
cations to the right of the multiplier, since the B field must contain the
multiplier plus enough additional locations (to the right of the multiplier) to
provide for the development of the product. Thus, the total number of
character locations in the B field must be one greater than the sum of the
number of characters in the multiplicand and the multiplier. For example,
in a multiplication operation involving a 3-character multiplier and a 5-
character multiplicand, 9 positions (5+3+1) must be provided in the B field.

Algebraic sign control for the multiply operation is shown below. The sign
of the product is expressed in its normalized form (-=10, +=01).

The product is stored (right-justified) in the entire B field, with the unused
high-order positions of the B field cleared to zeros. As a result of the
operation, the multiplier (initially stored in the B field) is destroyed.
Therefore, if the multiplier is to be used more than once, it should be
preserved in another storage field.

The zero balance indicator is turned ON if the product of the multiply oper-
ation is equal to zero; otherwise, the indicator is turned OFF by the operation.

This instruction treats both operands as signed decimal data. It will pro-
duce ambiguous results if used to manipulate non-decimal data. Particularly,
if the four numeric bits of a character have a binary numeric value of 12 or
more (octal 14, 15, 16, or 17), the character is treated as if it were a

zero. The two remaining cases (octal 12 and 13) are unspecified.

This instruction is standard on all processors but the Type 201, on which
it is not available.

If the A & B operands overlap, then the results are unspecified.

Multiply the five-character field tagged CAND by the three-character field whose
rightmost character location is six (5+1) less than the location tagged PROD.
Store the result, right-justified, in PROD.

8-24 #2-139

SECTION VIII. INSTRUCTIONS

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE ___. PAGE ___OF ____
T
NUMBER E@ vocation | Fgore™ OPERANDS
\ 2]3 415,6/718 . 1415, 2021 . ! T] — — - D T 0
1
! Ll I ﬂ cAND’q.PROD I 1 L L L L a1 1 1 N I
[D | pvipe |
FORMAT
OP CODE A ADDRESS B ADDRESS
a. . I
. EEE
c
FUNCTION '

Format a:

Format b:

Format c:

The signed decimal integer whose leftmost location is B is divided by the signed deci-
mal integer in the A field. The quotient is stored in the leftmost locations of the B
field; the remainder is stored in the rightmost locations of the B field (see page 8-12).

The signed decimal integer whose leftmost location is specified by the contents of the
B-address register (BAR) is divided by the signed decimal integer in the A field.

The quotient is stored in the leftmost locations of the B field; the remainder is stored
in the rightmost locations of the B field (see page 8-12).

The signed decimal fnteger whose leftmost location is specified by the contents of the
B-address register (BAR) is divided by the signed decimal integer in the field speci-
fied by the contents of the A-address register (AAR). The quotient is stored in the
leftmost locations of the B field; the remainder is stored in the rightmost locations

‘of the B field (see page 8-12),

WORD MARKS

Formats a,

b, and c:

The A operand (the divisor) must contain a word mark. The B field may contain
a word mark.

ADDRESS REGISTERS AFTER OPERATION (WHEN DIVISOR IS NOT EQUAL TO ZEROQO)

Format a:

Format b:

Format c:

SR AAR BAR
NXT A-N, B-N,+Ngq- 3
= Tens position of quotient field
NXT A-N, Bp'Na+Ndd‘3
NXT Ap'Na Bp'Na+Ndd"3

When the divisor is equal to zero, the contents of the address registers are un-
specified (see note 1).

8-25 #2-139

SECTION VIII. INSTRUCTIONS

NOTES

1.

If the divisor is equal to plus or minus zero, the overflow indicator is turned
ON, division is not performed, and no memory locations are changed.

The length of the B field is determined by adding 1 to the sum of the number
of character locations in the divisor and the dividend (B-field length = 1+
length of divisor + length of dividend).

"The A field (divisor) can be signed or unsigned; if it is unsigned, the divisor

is assumed to be positive.

The dividend must contain a normalized sign (- = 10, + = 01) in the units

position. The zone bits of all other characters in the dividend must be zeros.

The proper signing of the dividend is therefore insured if the dividend is
moved into the B field by a Zero and Add instruction (see page 8-20).

5. All high-order locations of the B field which are not occupied by the dividend
must contain zeros when division begins. These zeros can be automatically
inserted if the Zero and Add instruction is used to move the dividend into
the B field as mentioned above.

6. The sign of the quotient follows algebraic sign rules as shown below. The
sign of the remainder is the original sign of the dividend.

+ + - -
+ - + -
+ - + -
+ - - +

7. This instruction treats both operands as signed decimal data. It will pro-
duce ambiguous results if used to manipulate non-decimal data. Particularly,
if the four numeric bits of a character have a binary numeric value of 12
or more (octal 14, 15, 16, or 17), the character is treated as if it were a
zero. The two remaining cases (octal 12 and 13) are unspecified.

8. This instruction is standard on all processors but the Type 201, on which
it is not available.

9. If the A & B operands overlap, then the results are unspecified.

EXAMPLE
Divide the four-character integer whose leftmost location is location 1000 by the
three-character field whose rightmost location is location 500. Store the quotient
in the leftmost locations of the field at 1000, and store the remainder in the right-
most locations of this field. ‘
N, (number of characters in divisor) = 3
Ngq (number of characters in dividend) = 4
B (B address) = 1000
Units position of quotient (B-Na+Ndd-2) = 1000-3+4-2 = location 999
Units position of remainder (B+Ndd—l) = 1000+4-1 = location 1003
EASYCODER
, CODING FORM
* PROBLEM PROGRAMMER DATE . PAGE__OF .
R gﬁ LocaTion | OPERTION OPERANDS
1 2[3 al5]ef7(8 | iali5, 20[2) | L L L . . s2le3 L L 2
A ... B 508,180, . . . 1 e . . L :
8-26 #2-139

¢ EXTRACT

sHALF ADD

¢SUBSTITUTE

¢ COMPARE

e BRANCH

¢ BRANCH ON CONDITION TEST

¢ BRANCH ON CHARACTER CONDITION
¢ BRANCH IF CHARACTER EQUAL

¢« BRANCH ON BIT EQUAL

#2-139

SECTION VIiI. INSTRUCTIONS
EXTRACT
EXT (Logical Product)
FORMAT
OP CODE A ADDRESS B ADDRESS
a. [I .
b. []
-
FUNCTION

Format a: The data in the A field is combined bit-by-bit with the data in the B field, according
to the following rules.

The result is stored in the B field.

1 1 1
1 0 0
0 1 0
0 0 0

Format b:

Format c:

The data in the A field is combined bit-by-bit with the data specified by the con-

tents of the B-address register (BAR), according to the rules stated above.

result is stored in the B field.

The

The data specified by the contents of the A-address register (AAR) is combined
bit-by-bit with the data specified by the contents of BAR, according to the rules

stated above.

WORD MARKS

Formats a,

b, and c:

ADDRESS REGISTERS AFTER OPERATION

The result is stored in the B field.

A word mark is required for the shorter of the two operands.

Format a:

Format b:

SR AAR BAR
NXT A-N B-N,
NXT A-N B -

Format c:

NXT A
P

terminates when this word mark is sensed.

The operation

#2-139

SECTION VIII. INSTRUCTIONS

EXAMPLE

Remove all zone bits in the field tagged BASE by combining the contents of BASE
with the contents of the field tagged CON. Each character in CON must have the
following format:

Bit position B A 8421

Contehnts 001111

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF ___
T
i ’érg Location | OPERATION | - OPERANDS
1 23 als]el7]8 | 14]15, 2021 | | L L. . \ | 6263 |] N . 80
o . EXT . [CON,BASE l e . 1 e .
2 [
1 |] 1 1 L i i 1 Tt 1 1 1 il 1 1 1
et
HA HALF ADD
(Exclusive Or)
FORMAT
OP CODE A ADDRESS B ADDRESS
a] I
b [|
. -
FUNCTION

Format a: The data in the A field is combined bit-by-bit with the data in the B field, accord-
ing to the following rules. The result is stored in the B field.

1 1 0
1 0 1
0 1 1
0 0 0

Format b: The data in the A field is combined bit-by-bit with the data specified by the con-
tents of the B-address register (BAR), according to the rules stated above. The
result is stored in the B field.

Format c: The data specified by the contents of the A-address register (AAR) is combined
bit-by-bit with the data specified by the contents of BAR, according to the rules
stated above. The result is stored in the B field.

8§29 #2-139

SECTION VIII, INSTRUCTIONS

WORD MARKS

Formats a, b, and c:

A wwrard mark ig v or the shorter anf +h
43 WOIG MarK 18 T o < i W

1T LU L VoL Us il

[¢]

£
terminates when this word mark is sensed.

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-NW B—NW
Format b: NXT A-N B_-N
ool ik w P W
Format c: NXT ApNy, BNy
EXAMPLE

Clear all the numeric bits in the field tagged SEVEN to zeros by combining the con-
tents of SEVEN with the contents of the field tagged TOO. Do not change the zone
bits in SEVEN. (The contents of each character in TOO are 00xxxx, where x
equals the corresponding bit in SEVEN,)

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE __OF
T
v IE 5| vocamon | oG OPERANDS
) 213 als{s[7]s | alis, 2021 ! L L T L. I , | . L 80
1
g + 1 H]A TO.°,$EVEN| 1 1 PR 1 " 1 L PR 1 al " I 1 .

SST | suBSTITUTE

FORMAT
OP CODE A ADDRESS B ADDRESS VARIANT

o

FUNCTION

Format a: The single character specified by the A addressis compared bit-by-bit with the
variant character and is moved to the location specified by the B address, accord-
ing to the following rules: '

8-30 #2-139

SECTION VIII,

INSTRUCTIONS

1. The A-character bit is transferred to the B address if the corresponding
variant bit = 1. '

2. The B-character bit is preserved if the corresponding variant bit = 0.

Format b:

The single character specified by the A address is compared bit-by-bit with the

variant character specified in a previous instruction and is moved to the lo-
cation specified by the B address, according to the rules stated above.

Format c:

The single character specified by the A address is compared bit-by-bit with the

variant character specified in a previous instruction and is moved to the location
specified by the contents of the B-address register (BAR), according to the rules
stated above.

Format d:

The single character specified by the contents of the A-address register (AAR)

is compared bit-by-bit with the variant character specified in a previous instruc-
tion and is moved to the location specified by the contents of BAR, according to

the rules stat

WORD MARKS

Formats a, b, ¢, and d:

ed above.

Word marks are not required in either field.

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-1 B-1
Format b: NXT A-1 B-1
Format c: NXT A-1 Bp-l
Format d: NXT Ap-l Bp-l
NOTE
This instruction can be coded only in formats a. and d. when programming for
the Type 201 or 201-1 processor.
EXAMPLES
1. Move the zone bits from the location tagged STET to the location tagged
STET +20. A variant character of octal 60 provides the required variant
bit configuration (i.e., 110 000).
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE _OF ___
R E? LocaTion | OPERSTION OPERANDS
E3EYC1 53 0 €2 CO walis, - 20a L | | | - R . 20|
3 . SST. . [STET,STET+28,60, L . - : N
8-31 #2-139

SECTION VIII. INSTRUCTIONS

2. Move the numeric portion of the character at location 256 to location 656.
A variant of octal 17 provides the required variant bit configuration
(i.e., 001 111).

EASYCODER

CODING FORM

PROBLEM PROGRAMMER DATE PAGE ___OF ___

N R ER’ Location | OPERATION OPERANDS

1 2|3 4ls5|sl7|8 1 1415, 20|21 1 L 1 L 1 Lo L .] | 62[63 L Lo Loy 80!
I .. |SST . [256,656,17. . . e , ol

C COMPARE
FORMAT

OP CODE A ADDRESS B ADDRESS

o

FUNCTION

Format a: The data in the B field is compared bit-by-bit with the data in the A field. The com-
parison turns on indicators that can be interrogated by subsequent Branch instruc-
tions. The indicators are reset by the next Compare instruction.

Format b: The data specified by the contents of the B-address register (BAR) is compared
bit-by-bit with the data in the A field. This operation turns on indicators which
can be tested by subsequent Branch instructions. The indicators are reset by the
next Compare instruction.

Format c: The data specified by the contents of BAR is compared bit-by-bit with the data in
the field specified by the contents of the A-address register (AAR). The com-
parison turns on indicators that can be interrogated by subsequent Branch instruc-
tions. Theindicators are reset by the next Compare instruction.

WORD MARKS

Formats a, b, and c:

The word mark associated with the B operand terminates the operation. The A
operand must have a word mark only if it is shorter than the B operand. In this
case, transmission of data from the A field stops after the A-operand word mark

is sensed, and the remaining characters of the B operand are compared with zeros.
If the A operand is longer than the B operand, the characters of the A operand that
exceed the field length defined by the B-operand word mark are not processed.

8-32 #2-139

SECTION VIII. INSTRUCTIONS

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-N, B-Ny
Format b: NXT A-N B_-N
_— W p b
Format c: NXT Ap—NW Bp-Nb
NOTES
1. All characters that can appear in storage can be compared. The ascending
order of characters is listed in Appendix B.
2. Both fields must have exactly the same bit configurations to be equal. For
example, plus zero is not equal to minus zero.
3. Comparison results and associated branch conditions are listed below,
B<A Low Compare
B=A Equal Compare
B<A Low or Equal Compare
B> A High Compare
BEA Unequal Compare
B= A High or Equal Compare
EXAMPLE
Compare item number with 4000, If item number equals 4000, continue the program
in sequence; otherwise, branch to location NITEM.
Description Tag
Item Number ITEM
4000 CON4
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE ____OF ___
Nomies [E[f| LocaTion | TN OPERANDS
i\ 213 alsle]7]8 L 14]15, 2021 N ; . L L | L eles L N , 80
Y C, CON&, | TEM ‘ ‘ , e , . \
I .. BCT NITEM,45 . . , . . e 1

8-33 #2-139

SECTION VIII. INSTRUCTIONS

OP CODE A ADDRESS B ADDRESS VARIANT

FUNCTION

The Branch instruction causes the program to branch to the location specified
by the A address and to store the contents of the sequence register (SR) in the B-
address register (BAR). It is used to interrupt normal program sequence and
to continue the program at any desired point, without testing for specific con-
ditions. Thus, this instruction is frequently referred to as an '"unconditional
branch. "

WORD MARKS

Word marks are not affected by this instruction.

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
JI (A) A NXT
NOTES
1. The A address is placed in AAR during the extraction of this instruction,
preserving any active high-order bits in AAR. When the instruction is
executed, the entire contents of AAR specify the address to which the
program branches. Also, the entire contents of SR are stored in BAR
during the execution phase.
2. The contents of the variant register are unspecified following the execution
of this instruction. Therefore an instruction requiring a variant character
must not be chained following a Branch instruction.
EXAMPLE
Select the next instruction from the location tagged SUB6.,
' CODING FORM .
PROBLEM § PROGRAMMER DATE PAGE __OF __
Nonger LA Locarion [oPon OPERANDS
1 213 aTsle]7]s | 1415, 20[21 | 1 L . | | eeles . L ., 8ol
! J : L. 5 SUB6 L 4 1 1 e S 1 1 1 1 i Il
2 I
!r - 1 i1 1 A 1 T — | - 1 L L A | L
3 l L 1 1 i A 1 1 J - | . A H 1 1
4 4[{ L L L - 1o . L. a1l 1 1 PR 1
5 I | 1 i L i L L I 1 1 P SR S Y I
s J , i 1 1 L i L 1 1 1 A ol Lo s o L
7 r T 1 1 i L 1 1 1 1 1 ol Al 1 1
e i T 1 —_ 1 1L] 1 i i) r— L 1 S P a— S I

8-34 #2-139

SECTION VIII, INSTRUCTIONS

BCT | BRANCH ON CONDITION TEST

FORMAT

OP CODE A ADDRESS B ADDRESS VARIANT

. BN . -

FUNCTION

Format a: The variant character specifies a condition indicator or a SENSE switch to be
tested, If the condition being tested is present, the program branches to the lo-
cation specified by the A address and the contents of the sequence register (SR)
are stored in the B-address register (BAR). If the condition specified by the
variant character is not present, the program continues in sequence. Tables 8-8
and 8-9 list the valid variant characters and the conditions they test.

Format b: If the condition specified by the previous variant character is present, the pro-
gram branches to the location specified by the contents of the A-address register
(AAR) and the contents of SR are stored in BAR. If the condition being tested is
not present, the program continues in sequence. Tables 8-8 and 8-9 list the valid
variant characters and the conditions they test.

WORD MARKS

Formats a and b:

Word marks are not affected by this instruction.

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: JI (A) A NXT BRANCH
NXT A Bp NO BRANCH
Format b: JI (Ap) A NXT BRANCH
NXT Ap B, NO BRANCH
NOTES
1. If the overflow indicator is tested and an overflow condition exists, the
indicator is automatically reset as a result of being tested. In all other
cases, the indicator tested is not reset as a result of the test.
2. The comparison indicators are:

a. set by the Compare instruction;
set by the Table Lookup instruction;

c. stored (and cleared) by the Store Variant and Indicators instruction;

8-35 #2-139

SECTION VIII. INSTRUGCTIONS

Table 8-8. SENSE Switch Test Conditions for BCT Instruction

i

00 Unconditional

01 SENSE Switch 1 On

02 SENSE Switch 2 On

03 SENSE Switches 1 and 2 On

04 SENSE Switch 3 On

05 SENSE Switches 1 and 3 On

06 SENSE Switches -2 and 3 On

07 SENSE Switches 1, 2, :a_@_ 3 On

10 . SENSE Switch 4 On

11 SENSE 8witches 1 and 4 On

12 SENSE Switches 2 and 4 On

13 SENSE Switches 1, 2, and 4 On

14 SENSE Switches 3 and 4 On

15 SENSE Switches 1, 3, and 4 On

16 SENSE Switches 2, 3, and 4 On

17 SENSE Switches 1, 2, 3, and 4 On

20 , Unconditional

21 SENSE Switch 5 On

22 SENSE Switch 6 On

23 SENSE Switches 5 and 6 On

24 SENSE Switch 7 On

25 SENSE Switches 5 and 7 On

26 SENSE Switches 6 and 7 On

27 SENSE Switches 5, 6, and 7 On

30 7 SENSE Switch 8 On

31 SENSE Switches 5 and 8 On

32 SENSE Switches 6 and 8 On

33 SENSE Switches 5, 6, and 8 On

34 SENSE Switches 7 and 8 On

35 SENSE Switches 5, 7, and 8 On

36 SENSE Switches 6, 7, and 8 On

37 SENSE Switches 5, 6, 7, and 8 On
NOTE: When testing for a multiple SENSE switch condition, a branch occurs only

if all of the specified conditions are met.

8-36 | #2-139

SECTION VIII. INSTRUCTIONS

Table 8-9.

Indicator Test Conditions for BCT Instruction

40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77

Do not branch

B<A (Low Compare)
B=A (Equal Compare)
B< A (Low or Equal Compare)
B>A (High Compare)
B+#A (Unequal Compare)
B2 A (High or Equal Compare)
Unconditional

Overflow

Overflow or B<A
Overflow or B=A
Overflow or BSA
Overflow or B>A
Overflow or B#A
Overflow or BZA
Unconditional

Zero Balance

Zero Balance or B<A
Zero Balance or B=A
Zero Balance or BSA
Zero Balance or B>A
Zero Balance or B#A
Zero Balance or B2 A
Unconditional

Overflow or Zero Balance

Unconditional

Overflow or Zero Balance or B<A
Overflow or Zero Balance or B=A
Overflow or Zero Balance or BSA
Overflow or Zero Balance or B>A
Overflow or Zero Balance or B#A

Overflow or Zero Balance or B2A

NOTE: When testing for a multiple indicator condition, a branch occurs if any one

of the specified conditions is met,

8-37

#2-139

SECTION VIII. INSTRUCTIONS

restored by the Restore Variant and Indicators instruction;

restored by the Resume Normal Mode instruction if coming
out of the external interrupt mode (but not out of internal

3 - ey e g g AY
interrupt modej;

f. stored when an external interrupt occurs.

The A address (if any) is placed in AAR during the extraction of this instruc-
tion, preserving any active high-order bits in AAR. If the instructioncauses
a branch (i.e., if the condition being tested is present), the entire contents
of AAR specify the address to which the program branches when the instruc-
tion is executed. Also, the entire contents of SR are stored in BAR during
the execution phase of the instruction.

Consider the variant character in its six-bit form VgVgV,4V3V,V,. The

following chart may be used to determine the variant character to be used
in a BCT instruction.

00 = Test SENSE SENSE SENSE SENSE SENSE
Switches 1 Switch 4 Switch 3 Switch 2 Switch 1
through 4
01 = Test SENSE SENSE SENSE SENSE SENSE
Switches 5 Switch 8 Switch 7 Switch 6 Switch 5
through 8
1 = Test
Zero Zero Overflow High Equal Low
Balance, Balance Compare Compare Compare
Overflow, .
or Compare

5.

EXAMPLE

SENSE switches 5 through 8 are included as a standard feature with the Type
2201 and 4201 processors and are not available with the Model 200, 1200, or

1250 processors.
This instruction can be coded only in format a. when programming for the
Type 201 or 201-1 processor.

Subtract CREDIT from TOTAL and test for a zero balance. If this condition exists

branch to BZRO; otherwise continue the program in sequence.

EASYCODER

CODING FORM

PROBLEM PROGRAMMER DATE PAGE __OF ____

o R E@ LocATION | OPERATION OPERANDS

, 2]3 als5(e[7]e N 1a]is, 20]21 : | L e . ee[e3 | | .. 89
N 1S .. CREDIT,TOTAL ., e T et
S . BcT BZRO,68 ., . . R D ,
3 j . L. L L L L 1 L AT L il] L
¢ +- ! | . 1 L L . 1 _. s 1 R L L
® 1] L) L L L L 1 NN el L S | 1 M
6 ‘!\ ! L. 1 1 el I 1 1 1 J I | B 1 1 P 1

8-38 #2-139

SECTION VIII. INSTRUCTIONS

BCC BRANCH ON CHARACTER

Format a:

Format b:

Format c:

Format d:

CONDITION
FORMAT
OP CODE A ADDRESS B ADDRESS VARIANT
o I @ IS S .
. I $IEE
. I .
@ -
FUNCTION

The single character specified by the B address is examined for the condition
specified by the variant character. If the condition is present, the program branches
to the location specified by the A address, and the contents of the sequence reg-
ister (SR) are stored in the B-address register (BAR). If the condition is not
present, the program continues in sequence. The valid variant characters and the
condition each represents are listed in Tables 8-10 and 8-11.

The single character specified by the B address is examined for the condition
specified by the variant character of a previous instruction. If the condition is
present, the program branches to the location specified by the A address, and the
contents of SR are stored in BAR. If the condition is not present, the program
continues in sequence. The valid variant characters and the condition each rep-
resents are listed in Tables 8-10 and 8-11.

The single character specified by the contents of BAR is examined for a condition
specified by the variant character of a previous instruction. .If the condition is
present, the program branches to the location specified by the A address, and the
contents of SR are stored in BAR. If the condition is not present, the program
continues in sequence. The valid variant characters and the condition each re-
presents are listed in Tables 8-10 and 8-11.

The single character specified by the contents of BAR is examined for a condition
specified by the variant character of a previous instruction., If the condition is
present, the program branches to the location specified by the contents of the A-
address register (AAR), and the contents of SR are stored in BAR. If the condition
is not present, the program continues in sequence. The valid variant characters
and the condition each represents are listed in Tables 8-10 and 8-11. Series 200
processors which are equipped with the advanced programming instructions (see
Table 1-11, page 1-18) can interpret any bit configuration of the variant charac-
ter, ranging from octal 00 to octal 77. The valid variant characters which can

be interpreted with this option are shown in Table 8-11 and expanded in Appendix B.

8-39 #2-139

» SECTION VIII. INSTRUCTIONS

Table 8-10. Basic Test Conditions for BCC Instruction

00
02
06

10

12
16

20

22
26

30

32

36

Unconditional
The B bit of the character at B is 1.

The character at B contains a negative sign (the
B and A bits are 10).

The character at B contains either a word mark
or a record mark (the word-mark bit is 1).

The B bit is 1 and the word-mark bit is 1.

The character at B contains a negative sign and
the word-mark bit is 1.

The character at B contains either an item mark
or a record mark (the item-mark bit is 1).

The B bit is 1 and the item-mark bit is 1.

The character at B contains a negative sign and
the item-mark bit is 1.

The character at B contains a record mark (the
word-mark and item-mark bits are 11).

The character at B contains a record mark and
the B bit is 1.

The chajracter at B contains a record mark and a
negative sign.

WORD MARKS

Formats a, b, ¢, and d:

Word marks are not affected by this instruction.

ADDRESS REGISTERS AFTER OPERATION

Format a: JI (A)

Format b: JI (A)

Format c: JI (A)

Format d: JI (A

SR AAR BAR
A NXT BRANCH
NXT A B-1 NO BRANCH
A NXT BRANCH
NXT A B-1 NO BRANCH
A NXT BRANCH
NXT A By-1 NO BRANCH
o) A, NXT BRANCH
NXT A, B,-1 NO BRANCH

8-40

#2-139

SECTION VIII. INSTRUCTIONS

Table 8-11. BCC Test Conditions with Advanced Programming Instructions

X0 No condition.

X1 The A bit of the character at B is 1.

X2 The B bit of the character at B is 1.

X3 The B and A bits of the character at B are 11.
X4 The B and A bits of the character at B are 00.
X5 The character at B contains a positive sign (the

B and A bits are 01).

X6 The character at B contains a negative sign (the
B and A bits are 10).

X7 The B and A bits of the character at B are 11
(same as X3 above).

0X No condition.

1X The word-mark bit of the character at B is 1
(either a word mark or a record mark is present).

2X The item-mark bit of the character at B is 1
(either an item mark or a record mark is present).

3X The character at B contains a record mark.

4X The character at B contains no punctuation mark.

5X The character at B contains a word mark only, not

an item mark,
6X The character at B contains an item mark only, not
a word mark,

X This is a special case; see note 2.

NOTES: 1. AnXrepresentsanyoctaldigit. Ifbothoctaldigits specify ''no
condition' (i.e., 00), the branch occurs unconditionally. Ifonly
one digitis 0, the branch occurs if the condition specified by the
other digitis met. Ifbothoctaldigits specify conditions, the branch
occurs if both conditions are met. The variant character 7Xisan
exception—mhe se rules, as describedinnote 2.

2. The Type 201land201-1processorsinterpreta 7X variantas ifit
were a 3X (i.e., branchtothe Aaddress if the character at B
contains a record mark and the condition specified by X is met).

All other processors interpret the 7X variant as follows:
a. If Xis 0, the branchisan unconditional branch.

b. If X is any digit other than 0, the branch occurs if
either the condition specified by the rightmost digit is
met or the character at B contains a word mark.

8-41 #2-139

SECTION VIII. INSTRUCTIONS

NOTES

1. If the octal configuration of the variant character is 00 or 70, the branch
is unconditional.

2. The A address (if any) is placed in AAR during the extraction of the BCC
instruction, preserving any active high-order bits in AAR, If the instruc-
tion causes a branch (i.e., if the condition being tested is present), the
entire contents of AAR specify the address to which the program branches
when the instruction is executed. Also, the entire contents of SR are
placed in BAR during the execution phase.

3. This instruction can be coded only in formats a. and d. when programming
for the Type 201 or 201-1 processor,

EXAMPLE

If the location tagged END contains a negative sign, branch to the location tagged
NFIELD. Otherwise, continue the program in sequence.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF ___
CARD [V LOCATION OPERATION : ’
NUMBER |B|R CODE OPERANDS
1 2]3 alsfs]7]s R 1415, 20[21 | | Lo b ol e e | | 6283 | . | K 80)
o . BCC . INFIELD,END,Z6 N
BCE BRANCH IF FEATURES 010 & 011
CHARACTER EQUAL
FORMAT
OP CODE A ADDRESS B ADDRESS VARIANT
a. L I ||
b || I
2 [I
o _—
FUNCTION

Format a: The single character specified by the B address is compared to the variant charac-
ter. If the bit configurations of the two characters are equal, the program branches
to the location specified by the A address, and the contents of the sequence register
(SR) are stored in tbe B-address register (BAR). If the bit configurations are
unequal, the program continues in sequence.

Format b: The single character specified by the B address is compared to the variant charac-
ter specified in a previous instruction. If the bit configurations of the two charac-
ters are equal, the program branches to the location specified by the A address,

8-42 #2-139

SECTION VIII. INSTRUCTIONS

and the contents of SR are stored in BAR. If the bit configurations are unequal,
the program continues in sequence.

Format c¢c: The single character specified by the contents of BAR is compared to the variant
character specified in a previous instruction. If the bit configurations of the two
characters are equal, the program branches to the location specified by the A ad-
dress, and the contents of SR are stored in BAR, If the bit configurations are
unequal, the program continues in sequence.

Format d: The single character specified by the contents of BAR is compared to the variant
character specified in a previous instruction. If the bit configurations of the two
characters are equal, the program branches to the location specified by the con-
tents of the A-address register (AAR), and the contents of SR are stored in BAR.
If the bit configurations are unequal, the program continues in sequence.

WORD MARKS

Formats a, b, ¢, and d:

A word mark in the location tested has no effect on the instruction.

ADDRESS REGISTERS AFTER OPERATION

SR AAR ~ BAR
Format a: JI (A) A NXT BRANCH
NXT A B-1 NO BRANCH
Format b: JI (A) A NXT BRANCH
NXT A B-1 NO BRANCH
Format c: JI (A) A NXT BRANCH
NXT A Bp-l NO BRANCH
Format d: JI (Ap) Ap NXT BRANCH
NXT Ap Bp-1 NO BRANCH
NOTES
1. This instruction can be coded only in formats a. and d. when programming

for the Type 201 or 201-1 processor.

2. The A address (if any) is placed in AAR during the extraction of the BCE
instruction, preserving any active high-order bits in AAR, If the instruc-
tion causes a branch (i.e., if the condition being tested is present), the
entire contents of AAR specify the address to which the program branches
when the instruction is executed. Also, the entire contents of SR are
placed in BAR during the execution phase.

3. When the central processor is in the '"S" mode, execution of the BCE instruc-
tion sets the comparison indicators to show whether B>V, B=V, or B<V.
EXAMPLES

1. Determine if the character stored in the location tagged LABEL+3 is equal
to 6. If so, branch to the location tagged P6; otherwise continue the pro-
gram in sequence.

8§-43 #2-139

SECTION VIII.

INSTRUCTIONS

EASYCODER

Format a:

variant character, according

address register (BAR).
sequence.

to the rules shown below.

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF ___
Ry Iﬁ‘g‘ wocation | PN OPERANDS
| 2]3 als5]e[7]e | 1a]is, 20|21 | | | 1 1. o oL, | 2|63 | L | 80|
! ! 1 ECE P64LABEL+LA§._L | 1 " Lo s 1 PR 1 1 L i
2. Determine if any character position in the seven-character field tagged
PART contains the letter Q. If so, branch to the location tagged RETRO;
otherwise continue the program in sequence.
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE . PAGE __OF____
R EIE‘ Location | OPERATION OPERANDS
1 .2]3 alsle]7]s | 14]15, 20[21 ' | Lol Lo L | | 62[63) —— t 80|
I . BCE . RETRO, PART,Q . ., . e . . . e
I . BCE, e L
3 I 1 acE' 1 1 1 1.4 n 1 IS WU NN G S ST § 1 1 L 1
e I I 1 &CE 1 1 1 1 1 L 1 L 1 1 1
s : I N aCE 1 i 1 1 i L i 1 L 1 1
& |’ I L BCE 1 1 1 1 1 n L 1 1 1 a1 1
T ; ! el BCE ! 'l 1 1 L 1 1 L 1 1 1
BBE BRANCH ON BIT EQUAL| [FEATURE 010
FORMAT
OP CODE A ADDRESS B ADDRESS VARIANT
o - I [
= ’i N .
b [L N]
S
d. I
FUNCTION

The single character specified by the B address is combined bit-by-bit with the

If the result (the logical
product) is not equal to zero, the program branches to the location specified by
the A address, and the contents of the sequence register (SR) are stored in the B-

If the result is equal to zero, the program continues in

#2-139

SECTION VIII. INSTRUCTIONS

1 1 1
1 0 0
0 1 0
0 0 0

Format b:

Format c:

Format d:

The single character specified by the B address is combined bit-by-bit with the
variant character specified in a previous instruction, according to the rules shown
above. If the result is not equal to zero, the program branches to the location
specified by the A address, and the contents of SR are stored in BAR. If the result
is equal to zero, the program continues in sequence.

The single character specified by the contents of BAR is combined bit-by-bit with
the variant character specified in a previous instruction, according to the rules
shown above. If the result is not equal to zero, the program branches to the lo-
cation specified by the A address, and the contents of SR are stored in BAR. If
the result is equal to zero, the program continues in sequence,.

The single character specified by the contents of BAR is combined bit-by-bit with
the variant character specified in a previous instruction, according to the rules
shown above. If the result is not equal to zero, the program branches to the lo-
cation specified by the contents of the A-address register (AAR), and the contents
of SR are stored in BAR. If the result is equal to zero, the program continues in
sequence.

WORD MARKS

Formats a, b, ¢, and d:

Word marks are not tested by this instruction and have no effect on the operation.

ADDRESS REGISTERS AFTER OPERATION

Format a:

Format b:

Format c:

Format d:

SR AAR BAR
JI (A) A NXT BRANCH
NXT A B-1 NO BRANCH
JI (A) A NXT BRANCH
NXT A B-1 NO BRANCH
JI (A) A NXT BRANCH
NXT A By,-1 NO BRANCH
JT (Ap) A, NXT BRANCH
NXT Ap B,-1 NO BRANCH

8-45 #2-139

SECTION VIII. INSTRUCTIONS

NOTES

1. The logical product formed by this instruction is tested but is not stored.
Main memory locations are not disturbed by this operation.

2. The A address (if present) is placed in AAR during the extraction of the
instruction, preserving any active high-order bits in AAR, If the instruc-
tion causes a branch (i.e., if the logical product does not equal zero),
the entire contents of AAR specify the address to which the program branches
when the instruction is executed. Also, the entire contents of SR are placed
in BAR during the execution phase.

3. Since this instruction results in a branch if any bit product is not equal to
zero, only one bit at a time should be tested. Other bits can be checked
by branching to additional BBE instructions.

EXAMPLE

Branch to the location tagged BIT8 only if the character at the location tagged
MAR contains a 1 in both the B and the 8 bit positions. Otherwise, continue
in sequence. This example requires two BBE instructions to test the two
bits in question; location BIT8 is reached only if both tests are met.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ____OF
CARD [} OPERATION
NUMBER E!} LOCATION CODE OPERANDS
1 213 al5(el7]s | alis, 20l | | R | . I | e2l63 \ L. ., 69
T -
! ! ﬁ[L BBE BlTB-uMARqM L 1 2 Lo P 1 [E— PR IO
2] g 7 7
! 1 i q 1 1 " 1 4 bk 1 i SRR SN ST R BT 1 a1 Lot) 1o
» | ‘ ki 9 . . . N
LT eiTe Teme RiTaMaRM8 L
5] | _A(_L |((4 1 L 1 L 1 P L ! - [1
s A._Al I 2l lg § 1 1 1 L e L a1 1 1 1 . 1 —_—
7 Ij BI Tla L= - T A 1 L 1 n Lt L) I I
8 i [
" 1 PR 1 1 1 1 1 | S Er— 1 1. 1 1 1 1
9 ! l 1 _— 1 A 1 1 1 1L 1 1 i L 1 L

8-46 C $2-139

SET WORD MARK
SET ITEM MARK

CLEAR WORD MARK

CLEAR ITEM MARK

HALT

NO OPERATION

MOVE CHARACTERS TO WORD MARK

LOAD CHARACTERS TO A-FIELD WORD MARK
STORE CONTROL REGISTERS

LOAD CONTROL REGISTERS

CHANGE ADDRESSING MODE

CHANGE SEQUENCING MODE

EXTENDED MOVE

MOVE AND TRANSLATE

MOVE ITEM AND TRANSLATE

' LOAD INDEX/BARRICADE INDICATOR

STORE INDEX/BARRICADE INDICATOR

TABLE LOOKUP

MOVE OR SCAN

8-47

#2-139 .

SECTION VIII. INSTRUCTIONS

SW| SET WORD MARK

FORMAT

OoP CODE A ADDRESS B ADDRESS

o

FUNCTION

Format a: A word mark is set at the location specified by each address. The data and item-
mark bits at each location are undisturbed.

Format b: A word mark is set at the location specified by the A address. The data and item-

mark bits at this location are undisturbed.

Format ¢c: Word marks are set at the locations specified by the contents of the A- and B-ad-
dress registers (AAR and BAR)." The data and item-mark bits at each location
are undisturbed.

WORD MARKS

Formats a, b, and c:

Word marks are set as described above.

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-1 B-1
Format b: NXT A-1 A-1
Format ¢: NXT Ap-l Bp-l

NOTE

The extraction of this instruction when coded in format a. automatically terminates
when the last character of the B address is loaded into BAR. Therefore, a word
mark is not required in the location following the B address.

8-48 ’ #2-139

SECTION VIII. INSTRUCTIONS

EXAMPLE
Set a word mark in location 435.
CODING FORM

PROBLEM PRO R DATE PAGE ___OF __

emmaen [wocamion | " OPERANDS

| 2]3.4l5]6{7]8 | 1415, 2021 | | Lo [N | | s2l63 | L L 80
L . W 435, . . . 1 . . 1 . e
2 I)

1 I 1 1 L 1 1 i | TR S L n 1 n 1 PR SN TR R T | 1 .

S1 | sET 1TEM MARK

FORMAT
OP CODE A ADDRESS B ADDRESS

o

FUNCTION

Format a: An item mark is set at the location specified by each address. The data and
word-mark bits at each location are undisturbed.

Format b: An item mark is set at the location specified by the A address. The data and word-
" mark bits at this location are undisturbed.

Format c: Item marks are set at the locations specified by the contents of the A~ and B-ad-
dress registers (AAR and BAR). The data and word-mark bits at each location
are undisturbed. :

WORD MARKS

Formats a, b, and c:

Word marks are not affected by this instruction.

8-49 #2-139

SECTION VIII. INSTRUCTIONS

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-1 B-1
Format b: NXT A-1 A-1
Format c: NXT Ap-l Bp-l

NOTE
The extraction of this instruction when coded in format a. automatically terminates
when the last character of the B address is loaded into BAR. Therefore, a word
mark is not required in the location following the B address.
EXAMPLE
Set item marks in the locations tagged ENT and ENT+80
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE ____OF____
Nf,‘:fgmég LocATION | OPERATION OPERANDS
213 al5l6l7]8 , 1alis, 20[2i L | N _|_s2[e3 L e
N ... 8t ENT, ENT 30 . , s . .
CW |CLEAR WORD MARK
FORMAT
OP CODE A ADDRESS B ADDRESS
a. L M
b. | |
8-50 #2-139

SECTION VIII. INSTRUCTIONS

FUNCTION

Format a: The locations specified by the A and B addresses are cleared of word marks., The
data and item-mark bits at these locations are undisturbed.

Format b: The word mark at the location specified by the A address is cleared. The data and
item-mark bits at this location are undisturbed.

Format ¢c: Word marks are cleared at the locations specified by the contents of the A- and
B-address registers (AAR and BAR). The data and item-mark bits at these lo-
cations are undisturbed.

WORD MARKS

Formats a, b, and c:

Word marks are cleared as defined above.

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-1 B-1"~
Format b: NXT A-1 A-1
Format c: NXT Ap-l Bp-l
EXAMPLE

Clear the word marks at locations 400 and 435.

EASYCODER

CODING FORM
PROBLEM : PROGRAMMER DATE PAGE ____OF____
T -
NUMBER Eg rocaTion | *7 o™ OPERANDS
1 2]3 4alsfel7]s | 14(15, 20[21 L | L . e eRles L. ., 89
1

! % u il CM S W)&35 L L P W L 1 1 R S B
2 | l 1 1 1 PR (S - T 1 . S — L 1l PR R | 14

C] |CLEAR ITEM MARK

FORMAT

OP CODE A ADDRESS B ADDRESS

o

8-51 #2-139

SECTION VIII. INSTRUCTIONS

FUNCTION

Format a: Item marks are cleared from the locations specified in the A and B addresses.
The data and word-mark bits at these locations are undisturbed.

Format b: The item mark at the location specified by the A address is cleared. The data
and word-mark bits at this location are undisturbed.

Format c: Item marks are cleared at the locations specified by the contents of the A- and
B-address registers {AAR and BAR). The data and word-mark bits at these lo-
cations are undisturbed.

WORD MARKS

Formats a, b, and c:

Word marks are not affected by this instruction.

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-1 B-1
Format b: NXT A-1 A-1
Format ¢c: NXT Ap-l Bp-l
EXAMPLE

Clear the item mark in location REC.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ____OF
T
NUMBER E”é— LocaTion | TR OPERANDS
1 213 alsle[7]s | 1a]15, o L | L . |) e2[63 | L L ., 89
!

! { } I cxl - 'REC L) L L 1 1 L L 1 I
|H |BaLT

FORMAT

OP CODE A ADDRESS B ADDRESS VARIANT |

o

8-52 #2-139

SECTION VIII. INSTRUCTIONS r

FUNCTION

Format a: This instruction causes the machine to stop. Pressing the RUN button causes the
program to resume with the next instruction in sequence.

Format b: The contents of the sequence register (SR) are stored in the B-address register
(BAR); the A address of the instruction is transferred to SR; then the machine
stops. Pressing the RUN button causes the program to resume with the instruc-
tion specified in the A address. This format is usually referred to as a '"halt
and branch' instruction.

Format c: This instruction causes the machine to stop. Pressing the RUN button causes the
program to resume with the next instruction in sequence. The address portions
can be used to indicate control information such as a halt identification number
(see note 2).

Format d: This instruction causes the machine to stop. Pressing the RUN button causes the
program to resume with the next instruction in sequence. The address portions
and the variant character can be used to indicate control information such as halt
identification number (see note 2).

WORD MARKS

Formats a, b, ¢, and d:

Word marks are not affected by this instruction.

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A B
_— p p
Format b: JI (A) A NXT
Format c: " NXT A B
Format d: NXT A B
NOTES

1. If a Halt instruction (in any format) is executed during a peripheral
transfer, the transfer continues until it is completed.

2. Formats c¢. and d. are useful when a program contains a number of
halts. By assigning a number or symbol in the A and B addresses to
each halt, the programmer can later identify a particular halt by dis-
playing the contents of AAR and/or BAR. Although the contents of the
variant register cannot be displayed through the console or control
panel, format d. can be used to store a variant character which can sub-
sequently be used by the program.

3. The Halt op code is a "privileged' op code that has special significance
when the Type 1201, 1251, 2201, or 4201 central processor is equipped
with the Storage Protect Feature (see Appendix E).

4, This instruction can be coded only in formats a., b., and c. when pro-

gramming for the Type 201 or 201-1 processor.

8-53 #2-139

SECTION VIII. INSTRUCTIONS

EXAMPLES

1.

Stop the machine and specify that when the RUN button i

]
next instruction will be selected from the location tagged

EASYCODER

. CODING FORM
PROBLEM PRO! WMMER DATE PAGE —_OF ___
T
NUMBER [p[5| LocaTIoN | “TEGR" OPERANDS
| 2]3 alsle|7s | 14}15, 20[ar | | . N] L | | | eeles o .., 8ol
T
! IIL! ot Hl RES) L R PR) | 1, 1 | P R B
2. Identify the halt at the end of a job as follows:
A address =9
B address =9
CODING FORM
PROBLEM - PROGRAMMER ==~ DATE____.__ PAGE__OF ___
T
N R {5 ocaion OPERATRON OPERANDS
} 213 4l5]6l7]8 | 1415, 2021 | | L . R . L | e2es | R L T
! |L 1 H 9\9 1 1 1 2 B i !] PRV DU SRS T N e PR
NOP| NO OPERA TION
FORMAT
OP CODE A ADDRESS B ADDRESS
FUNCTION

This instruction performs no operation. This op code can be substituted for the
op code of any instruction to make that instruction ineffective.

WORD MARKS

Program operation resumes at the next op code identified by a word mark.

ADDRESS REGISTERS AFTER OPERATION

NOTES

SR AAR BAR

NXT A B
P p

This instruction is commonly used in program modification to cause the
machine to skip over specific instructions.

8-54 #2-139

SECTION VIII. INSTRUCTIONS

2. Information appearing in an address portion of an instruction for which
the NOP instruction is substituted is not loaded into the associated operand
address register, The final character of such information, however, is
loaded into the variant register,

EXAMPLE

Reserve the necessary storage locations for an instruction such as Branch
(B/A) and substitute the op code NOP in this instruction. When the op code
B is restored, the NOP instruction will be modified to branch to location SWX,

EASYCODER

CODING FORM

PROBLEM PROGRAMMER DATE PAGE __OF

Nomaer [E[g| LocaTion | o OPERANDS

1 2]3 4ls]e]7]s K 14]15, 20[21 | | L , L | e2les] L ., 80
A T T e Cl , L

MOVE CHARACTERS TO
MCW WORD MARK
FORMAT
OP CODE A ADDRESS B ADDRESS

o

FUNCTION
Format a: The data and item-mark bits in the A field are moved to the B field.

Format b: The data and item-mark bits in the A field are moved to the field specified by the
contents of the B-address register (BAR).

Format c: The data and item-mark bits in the field specified by the contents of the A-address
register (AAR) are moved to the field specified by the contents of BAR.

WORD MARKS

Formats a, b, and c:

A word mark (or record mark) is required in the shorter of the two fields. The
operation terminates when this mark is sensed.

8-55 #2-139

SECTION VIII.

INSTRUCTIONS

ADDRESS REGISTERS AFTER OPERATION

8-56

SR AAR BAR
Format a: NXT A-Ng B-N,
Format b: NXT A-Ng, Bp-Nw
Format c: NXT Ap—NW Bp-Ny
NOTE
Item marks initially stored in B-field locations will be cleared if the corresponding
A-field characters do not include item marks.
EXAMPLE
Move the following A fields and store them in sequential B .fields as shown.
¥ Description A field B field
Unit Number 150-155 800-805
Rack Number 160-168 806-814
Part Number 173-180 815-822
Pin Number 185-187 823-825
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE OF
I % LoCATION | OPERATION OPERANDS
1 2[3 als]e[7]s | 1a]15, 20]2i)) |) | R | | 62/63 | | 80|
N L. MCW . 187,825 . 1 . . ‘ ‘ .
d Lo . MCW_ [13@° , 1 . ‘ . . 1 .
3 l 1 Mcw ‘68 1 - i L 1] 1 1 1 | 1
.t . MCW . [155 . . . 1 . . l ‘
5 ! f
[L T i 1 1 : L 1 | I I L
LC A LOAD CHARACTERS TO
A-FIELD WORD MARK
FORMAT
OP CODE A ADDRESS "B ADDRESS
o L I
b.. [I
. -

#2-139

SECTION VIII. INSTRUCTIONS

FUNCTION J
Format a: The data and punctuation bits in the A field are transferred to the B field.

Format b: The data and punctuation bits in the A field are transferred to the field specified by
the contents of the B-address register (BAR).

Format c: The data and punctuation bits in the field specified by the contents of the A-address
register (AAR) are transferred to the field specified by the contents of BAR.

WORD MARKS

Formats a, b, and c:

The A operand must have a defining word mark (or record mark). The operation
terminates when this mark is transferred to the B field.

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-N, B-N,
Format b: NXT A-N, Bp-Na
Format c: NXT Ap-Na Bp-Na
NOTES
1. This instruction (in any format) is the only instruction that always moves
both a field and its defining punctuation mark.
2. All punctuation (word marks, item marks, and record marks) initially

stored in B-field locations will be cleared if the corresponding A-field
characters do not include identical punctuation.

3. The B address must never fall within the A field. The A address may fall
within the B field, however; if desired.

EXAMPLE
Move both the data bits and the defining word mark of the field tagged TWX to the
field tagged RATE,
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE __OF___
WOARD g? Location | *TETEOM OPERANDS
i 23 al5ls[7]s | 1415, 202/ | | | R \ | | e2fe3 | I 80|

] — LCA _ [TWX,RATE . S N

L t L i { L 1 L Il L il PERTER " Lot

8-57) #2-139

SECTION VIII. INSTRUCTIONS

SCR

STORE CONTROL REGISTERS

FORMAT
OP CODE A ADDRESS B ADDRESS VARIANT
. -
FUNCTION
Format a: The contents of the control memory register specified by the variant character

are stored in the field whose units position is defined by the A address of this
instruction. The method of storing these contents depends on the addressing mode
being used, as shown in Table 8-12. The valid variant characters and the control
register each character represents are listed in Table 8-13,

Table 8-12. Control Register Contents Stored by SCR Instruction

Two-Character ~Low-order two characters (12 bits). .

Three-Character Low-order 15 bits; the high-order three
bits of the field specified by the A address
are cleared to zeros.

Four-Character " The entire contents of the control register
plus sufficient high-order zeros to make
up 18 bits (see page 2-7). For the Type
4201 processor, the entire 19 bits of the
control register plus five high-order
zeros.

1All bit positions not required to address the largest memory address in a

2The five high-order bits of the high-order character are reset to zeros

user's system are set to zeros in the A field.

only in the 4201, In other processors, the entire six bits of the high-
order character remain unchanged.

8-58 ' #2-139

SECTION VIII. INSTRUCTIONS

Format b: The contents of the control memory register specified by the variant character in

Format c:

a previous instruction are stored in the field whose units position is defined by
the A address of this instruction. The number of bits stored depends on the ad-

dressing mode being used, as shown in Table 8-12. The valid variant characters

and the control register each character represents are listed in Table 8-13.

The contents of the control memory register specified by the variant character in

a previous instruction are stored in the field whose units position is defined by

the contents of the A-address register (AAR). The number of bits stored depends

on the addressing mode being used, as shown in Table 8-12. The valid variant

characters and the control register each character represents are listed in
Table 8-13.

Table 8-13, Control Registers Stored by SCR Instruction

00 CLC8 20 CLC9 64 CSR
01 CLCl 21 CLC4 66 EIR
02 CLC2 22 CLC5 67 AAR
03 CLC3 23 CLC6 70 ‘ BAR
04 CcLCS8! 24 CLC9! 76 IIR
05 cLC1! 25 CcLC4' 77 . SR
06 cLc2! 26 CLC5!

07 CLC3! 27 CLC6!

10 S1C8 30 SLC9

11 SLC1 31 SLC4

12 SLC2 32 SLC5

13 SLC3 33 SLC6

14 SLC8! 34 SLC9!

15 SLC1! 35 SLC4!

16 sLC2! 36 SLC5!

17 SLC3! 37 SLC6!

WORD MARKS

Formats a, b, and c:

ADDRESS

A-operand punctuation neither affects nor is affected by this instruction.

REGISTERS AFTER OPERATION

Formats a, b, and c:

SR AAR BAR

NXT A B

NOTES

If AAR is specified by the variant character (octal 67), the previous address
in AAR (not the A address retrieved from this instruction) is stored in the
location specified by the A address.

The control memory register actually designated by the variant character
678 is a work register (not AAR). During the extraction of an SCR or LCR

8-59

#2-139

SECTION VIII. INSTRUCTIONS

instruction (see below), ARR is used to reference the main memory.
Prior to this, the previous contents of AAR are stored in the work reg-
ister; at the end of the instruction, the contents of the work register
are restored in AAR,

3. This instruction can be coded only in format a. when programming for
the Type 201 or 201-1 processor,

4, In a processor equipped with the Scientific Unit (see Appendix F), this
instruction must not be used to store the contents of the floating-point
accumulators.

5. The SCR op code is a ''privileged' op code that has special significance
when the Type 1201, 1251, 2201, or 4201 central processor is equipped
with the extended multiprogramming feature (see Appendix G).

EXAMPLE

Store the contents of BAR in the A address of the Branch instruction tagged EXIT.
(The processor is assumed to be in the three-character addressing mode.)

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF ___
Al T
D E[g| Locarion e OPERANDS
1.2]34ls5/6]7]8 L 1405, 2021 ol 1 Lo ol el L bl § ®283 | 4 - Ly %0
T =
|]
b 1 ! s Lo L ! TR Loy) 1 L I ! L
—
2 L] Sus SCR EX1T+3,74 . L R . 1 L .
3 | L R | L 1 1 L 1 L 1 -t 1 L
4 t PR l\ (1 1 L 1 1 L 1 1 1 I L
s | i 1({ L L I L L L I i 1 1
s ! | L 11) L A L L L L I n N L 1
T I ‘[Ex ‘)T 5 ¢ 1 L ! L It o L L st ! !

V-

[LCR | LOAD CONTROL REGISTERS | [FEATURE 011

FORMAT
OP CODE A ADDRESS B ADDRESS VARIANT

o

FUNCTION

Format a: The contents of the field specified by the A address are loaded into the control
register specified by the variant character. The contents of the A field is another
main memory address. The method of loading this address into the specified
control register depends on the addressing mode being used, as shown in Table 8-14.

8-60 #2-139

SECTION VIII. INSTRUCTIONS

Table 8-14, Control Register Contents Loaded by LCR Instruction

Two-Character Two-character (12 bit) address is loaded
into the low-order two character locations
of the register, All other bits in the reg-
ister (if any) are not disturbed (i.e., the
bank bits are protected).

Three-Character 15-bit address is loaded into the low-order
15-bit locations of the register. All other
bits in the register (if any) are not dis-
turbed (i.e., the sector bits are protected).

Four-Character For processors other than the Type 4201,
an address up to 18 bits long is loaded into
the register; the number of bits loaded
depends on the size of main memory (see
Table 2-2, page 2-7). The Type 4201
processor always loads 19 bits. Thus,
programs written for any other processor
which are to be compatible with the Type
4201 must correctly set up the bit to the
left of the stored 18-bit address before
executing a 4-character LCR instruction.

Format b:

Format c:

Variant characters and their associated control registers are the same as
those specified for the Store Control Registers instruction (see Table 8-13),

The contents of the field specified by the A address are lodded into the

control register specified by the variant character in a previous instruction.
The method of loading the contents of this field (another main memory address)
depends on the addressing mode being used, as shown in Table 8-14, Variant
characters and their associated control registers are the same as those speci-
fied for the Store Control Registers instruction.

The main memory address specified by the contents of the A-address register
(AAR) is loaded into the control register specified in a previous instruction.
The method of loading this address into the specified register depends on the
addressing mode being used, as shown in Table 8-14. Variant characters and
their associated control registers are the same as those specified for the
Store Control Registers instruction.

WORD MARKS

Formats a, b, and c:

A -operand punctuation neither affects nor is affected by this instruction,

8-61 #2-139

SECTION VIII. INSTRUCTIONS

ADDRESS REGISTERS AFTER OPERATION

Formats a, b, and c:

SR AAR BAR
NXT (A) B, VARIANT = 67g
NXT A, (A) VARIANT = 70g
(A) Ap B, VARIANT = 77,
NXT Ap Bp ALL OTHERS

NOTES

1. If SR is specified by the variant character (77_,), the next instruction is
selected from the location whose address is s?ored in the field specified
by the A address of the Load Control Registers instruction. In all other
cases, the program continues in sequence.

2. This instruction can be coded only in format a. when programming for
the Type 201 or 201-1 processor.

3. The LCR op code is a "privileged' op code which has special significance
when used with a Type 1201, 1251, 2201, or 4201 processor equipped with
the Storage Protect Feature (see Appendix E),

4, In a processor equipped with the Scientific Unit (see Appendix F), this
instruction must not be used to load the floating-point accumulator,
EXAMPLE

Lioad the address stored in the location tagged SUBI into the change sequence
register (CSR).

EASYCODER

CODING FORM
PROBLEM PROGRAMMER _ DATE . PAGE ___OF
CARD OPERATION
NUMBER Eﬁ LOCATION CODE OPERANDS

| 2[3 als{6l7]8 . 14[15, 20|21

| . LCR _|suel,.es ., ..

1

CAM |CHANGE ADDRESSING MODE| |FEATURE 011

FORMAT
OP CODE A ADDRESS B ADDRESS VARIANT

b.

FUNCTION

Format a: The Change Addressing Mode instruction is used to specify the following conditions,
as designated by the variant character:

IThe CAM instruction is included in Type 201 and 201-1 processors whose memory capacities
exceed 4, 096 characters, whether or not Feature 011 is present.

8-62 #2-139

SECTION VIII. INSTRUCTIONS

1, The addressing mode (two=-, three-, or four-character) in which the
processor is to interpret the address portions of all subsequent
instructions (see note 1).

2. The processing mode (standard mode or 'trap' mode) in which all
subsequent instructions are to be processed., (See note 3 for a de-
scription of the trap mode.)

3. The "S" mode of processing in which several Series 200 instructions
are defined in a special manner (see note 4).

The variant characters and the mode(s) each character represents are listed
in Table 8-15.

Format b: The variant character in a previous instruction specifies the addressing mode and
processing mode in which all subsequent instructions are to be processed. The
variant characters and the mode(s) each character represents are listed in Table 8-15.

Table 8-15, Modes Specified by Variant Character in CAM Instruction

20 Two-character, standard mode
00 or 40 Three-character, standard mode
60 Four-character, standard mode
24 Two-character, trap mode
04 or 44 Three-character, trap mode
64 Four-character, trap mode
30 Two-character, '"S' mode
10 Three-~-character, ''S" mode
70 Four-character, "S'" mode
34 Two-character, trap, ''S'"' mode
14 Three-character, trap, ''S'" mode
74 Four-character, trap, "S'" mode

WORD MARKS

Formats a and b:

Word marks are not affected by this instruction,

ADDRESS REGISTERS AFTER OPERATION

Formats a and b:

SR AAR BAR
NXT A B

NOTES

1. The CAM instruction is used in conjunction with the ADMODE assembly
control statement to specify addressing mode. (See page 7-11 for a
description of the ADMODE statement.) The ADMODE statement directs
the Assembly Program to assemble the address portions of all subsequent
source program instructions as two=-, three-, or four-character addresses.
The CAM instruction directs the processor to interpret the address portions

8-63 #2-139

SECTION VIII. INSTRUCTIONS

of all subsequent object program instructions as two-, three-, or four-
character addresses. Thus, an address assembled in the three-character
addressing mode (via an ADMODE statement) must be processed during

A ame ey aan meaas +L T + A4 £ 3 « th
a program Iuil a8 a uaree-cnaracicr adlress ior proper execution; the

processor is placed in the three-character addressing mode during object
program execution by the CAM instruction.

The ability to change addressing modes within a program makes it possible
to save both time and memory space and provides greater programming
flexibility. Extraction and execution time is saved when a smaller ad-
dressing mode is used, due to the elimination of the extra memory cycles
necessary for a larger address (in characters). Memory space may be
conserved by storing frequently used subroutines in the two-character ad-
dressing mode (see example),

The larger addresses are necessary to address larger continuous portions
of memory. For instance, a two-character address can specify only
memory locations within a 4, 096~character bank of main memory. A
three-character address can refer to any location in a 32, 768-character
sector. A four-character address can directly address any location in the
entire memory (from location 010 to location 524, 288).

The "trap' mode of instruction execution is included as part of Feature 010
for Type 201-2 processors, even though the CAM instruction is standard.

In the Type 201 and 201-1 processors, both the CAM instruction and trap
mode are included as part of Feature 011. When the processor is in the trap
mode of instruction execution, any instruction whose op code contains an
item mark (or record mark) is both extracted and executed as if it were a
Change Sequencing Mode instruction (see page 8-66), regardless of the op

"code that is actually present, The A address, B address, and variant char-

acter (if any) of the instruction are delivered to AAR, BAR, and the variant
register, respectively. The 'trapped'" op code is not executed; a Change -
Sequencing Mode instruction (CSM) is executed in its place. The CSM in-
struction causes a branch to the location stored in the change sequence
register (CSR); this location is the beginning of a routine to interpret and
execute the instruction whose op code was trapped.

The trap mode is used effectively by the Liberator conversion programs
(Bridge and Easytran) to replace the seldom used instructions of compet-
itive systems when converting the programs of these systems to Series 200
language. Such instructions are replaced by routines when the trapped op
codes are executed as CSM op codes.

In addition to specify the standard or trap modes, the CAM instruction

is used to specify the ''S" mode of processing when Feature 0191 is in-
cluded in a 1201, 2201, or 4201 central processor. When the processor
is in the '"'S" mode the A, S, ZA, ZS, and BCE instructions are imple-
mented in a special manner. The particular differences that result from
the "'S'" mode of processing are indicated in the notes for that instruction.

This instruction can be coded only in format a. when programming for
the Type 201 or 201-1 processor.

8-64 #2-139

SECTION VIII,

INSTRUCTIONS

EXAMPLE

Figure 8-5 shows the coding which provides entry to and exit from a subroutine to
be executed in the two-character addressing mode.
and a CAM instruction must be coded (in either order) at the beginning and end of

the subroutine.
memory.

Both an ADMODE statement

they are stored is not affected by an ADMODE statement.)

However, only the CAM instructions are stored in the main
(Since CAM instructions have no address portions, the manner in which

MAIN PROGRAM LocATION | OFERATION
(4-CHARACTER s ; alis, 20/2 | |
ADDRESSING MODE)) B RTY .
MAI N X AXAK, G XAXX,
L L f ST
- 1 1 1
L i (A L
i 1) P 1
AL I / . 1
1 o 1 L\ P P RN
1 1) A L
1 1 r A 1
D e B SUB4 CAM 2.¢ e e
Lo o AJDLMODE 2 i |
- 1 (1 -

SUBROUTINE
(2-CHARACTER ~r~+J—L+*—_**%L~*—rh*ﬂ—“L***k*J
ADDRESSING MODE) . : A
ADMODE |4 . .
CAM 6f . .
B L MAINC N
Figure 8-5. Changing Addressing Modes via CAM Instruction

NOTE: The branch from the main program to SUB4 in Figure 8-5 could have

been caused by an item-marked op code (if the processor were in the
trap mode) instead of by the Branch instruction.
memory location tagged SUB4 would be stored in CSR, so that when

the item-marked op code was encountered, the contents of SR and CSR

In this case, the

would be interchanged. The program would automatically branch to
- SUB4 in this case,

8-65

#2-139

SECTION VIII, INSTRUCTIONS

MODE

CHANGE SEQUENCING
CSM Q

[FEATURES 010 & 011]]

FORMAT

OP CODE

A

ADDRESS B ADDRESS VARIANT

o

FUNCTION

Format a: The contents of the sequence register (SR) and the change sequence register (CSR)
are interchanged, and the program branches to the address which was previously

stored in CSR.

Format b: The contents of SR and CSR are interchanged, and the program branches to the ad-
dress which was previously stored in CSR. The A address is loaded into the A-
address register (AAR).

Format c: The contents of SR and CSR are interchanged, and the program branches to the ad-
dress which was previously stored in CSR. The A and B addresses are loaded into
AAR and BAR, respectively.

Format d: The contents of SR and CSR are interchanged, and the program branches to the ad-
dress which was previously stored in CSR. The A and B addresses and the variant

character are loaded into AAR, BAR, and the variant register, respectively.

WORD MARKS

Formats a, b, ¢, and d:

Word marks are not affected by this instruction.

ADDRESS REGISTERS AFTER OPERATION

Format a: JI (contents

Format b: JI (contents

Format c: JI (contents

SR CSR AAR BAR
NXT A B
of CSR) P P
NXT A By,
of CSR)
NXT A B
of CSR)
NXT A B

Format d: JI (contents
of CSR)

8-66

#2-139

SECTION VIII. INSTRUCTIONS

NOTES
1. The Load Control Registers instruction (see page 8-60) can be used to
set up the contents of CSR.
2. When the "trap'" mode of instruction execution is specified by the Change
Addressing Mode instruction (see page 8-62), any subsequent instruction
whose op code contains an item mark or a record mark is retrieved and
executed as if it were a Change Sequencing Mode instruction. An instruc-
tion which is '"trapped" in this manner must conform to one of the valid for-
mats of the CSM instruction,
3. This instruction can be coded only in formats a., b., and c. when programming
for the Type 201 or 201-1 processor.
EXAMPLE
Store the absolute address tagged CHANGE in CSR via a Load Control Registers in-
struction. Later, alter the program sequence by branching to the instruction tagged
CHANGE. Provide for the ultimate return to normal programming sequence by
storing the contents of SR in CSR.
CODING FORM
PROBLEM v PROGRAMMER DATE PAGE ___OF __
R Eg Location | OFERSRON 1 OPERANDS
1 273 alsfe | 14015, 2021 | L . e | 8263 N L L 80)
3 : LCR |CHANGE 64 . - . ; . L :
2 i | | |‘ y A .) | L L L L - L | L
3 i L 1 R 1 1 1 I 1 N 1 1 L 1 1
4 1 I 1 1 \ 1 PR 1 L L 1 1 1. 1 1o i
s : ! J 1 / 1 H 1 1 1 I3 1 1] | S 1
N ! | 1 1 \ 1 1 1 1 1 1 i - 1) - 1
7] | 1 1 / 1 L 1 1 1 i | - 1 - 1 !
8]I | 1 1 (i 1 1 1 1 1 t 1) . Lo 1
s ; ! 1 cISM 1 1 1 L 1 i L B - 1 1 1
' Ir i L s N o S L L I 1. 1 L Lo 1
"] I L 1 i | 1 1 | L Lt | !
12 I l 1 1 1 1 1 B 1 L 1 a1 1 i -
2 l I l 1 1 1 1 1 1 1 1 1 it 1]
' : | 1 1 i 1 1 1 L L 1 1 - Il 1 "
'8 | !l L TN L L L 1 Loy . - L I 1 -
EXM EXTENDED MOVE [[FEATURES 010 & 011
FORMAT
A ADDRESS B ADDRESS VARIANT
o | [
. E—

O
o
(2]
o
o
m

8-67 #2-139

SECTION VIII. INSTRUCTIONS

FUNCTION

Format a: The contents of the A field are moved to the B field in the manner specified by the
variant character (see Table 8-16). The programmer specifies how the move
operation is to be performed by selecting the desired conditions from the table
and encoding the resulting two octal digits as the variant character of the instruc-
tion.

Format b: The contents of the A field are moved to the B field in the manner specified by the
variant character of a previous instruction (see Table 8-16).

Format c: The contents of the A field are moved to the field specified by the contents of the
B-address register (BAR) in the manner specified by the variant character of a
previous instruction (see Table 8-16).

Format d: The contents of the field specified by the contents of the A-address register (AAR)
are moved to the field specified by the contents of BAR in the manner specified by
the variant character of a previous instruction (see Table 8-16).

Table 8-16. Extended Move Conditions

X1 - Move A-field data bits to corresponding bit posi-
tions in B field, :

X2 Move A-field word-mark bits to corresponding bit
positions in B field.

X3 . Move A-field data and word-mark bits to corre-
sponding bit positions in B field.

X4 Move A-field item-mark bits to corresponding
bit positions in B field.

X5 Move A-field data and item-mark bits to corre-
sponding bit positions in B field.

- X6 Move A-field word-mark and item-mark bits to
corresponding bit positions in B field.

X7 Move A-field data, word-mark and item-mark
bits to corresponding bit positions in B field.,

0xX Move one character from A to B. The A- and B-
address registers are decremented by one.

1X Move one character from A to B. The A- and B-
address registers are incremented by one.

2X Move characters from right to left (A and B ad-

dresses specify rightmost characters in operand
fields). Terminate the operation when the first

A-field word mark is sensed.

3X Move characters from left to right (A and B ad-
dresses specify leftmost characters in operand
fields). Terminate the operation when the first
A -field word mark is sensed.

8-68 #2-139

SECTION VIII. INSTRUCTIONS

Table 8-16 (cont). Extended Move Conditions

4X Move characters from right to left. Terminate
the operation when the first A-field item mark
is sensed.

5X Move characters from left to right. Terminate
the operation when the first A-field item mark
is sensed.

6X Move characters from right to left. Terminate

is sensed.

7X Move characters from left to right. Terminate

is sensed.

the operation when the first A-field record mark

the operation when the first A-field record mark

PUNCTUATION MARKS

Formats a, b, ¢, and d:

The A field must have a defining punctuation mark, except when the variant char-

acter specifies a one-character transfer.

ADDRESS REGISTERS AFTER OPERATION

Format a:
Format b:
Format c:

Format d:

SR AAR BAR

NXT A-Ng B-N, VARIANT = (0, 2, 4, or 6)X
NXT A+Ng B+N, VARIANT = (1, 3, 5, or 7)X
NXT A-N, B-N, VARIANT = (0, 2, 4, or 6)X
NXT A+N, B+N, VARIANT = (1, 3, 5, or 7)X
NXT A-Ng Bp'Na VARIANT = (0, 2, 4, or 6)X
NXT A+N, Bp+Na VARIANT = (1, 3, 5, or 7)X
NXT AP—Na Bp-Na VARIANT = (0, 2, 4, or 6)X
NXT Ap+Na Bp+Na VARIANT = (1, 3, 5, or 7)X

This instruction can be coded only in formats a. and d. when program-
ming for the Type 201 or 201-1 processor,.

Here is an example of a typical variant bit configuration: V =110011.
This configuration, encoded in octal notation as 63, specifies that A-field
data and word-mark bits are to be moved to the B field from right to left
until the first record mark is sensed in the A field.

Consider the variant character in its six-bit form, V6V5V4V3V2V1. If
Vi = 0, A-operand data bits are not transferred and data bits in the B
field remain unchanged. '

If V, =0, A-operand word-mark bits are not transferred and B-operand
word-mark bits remain unchanged.
8-69

#2-139

SECTION VIII. INSTRUCTIONS

5. If V3 = 0, A-operand item-mark bits are not transferred and B-operand
item-mark bits remain unchanged.

6. The character containing the terminating punctuation is moved in the same
manner as the rest of the field.

EXAMPLES

1. Move the data bits of the single character in the location 26 beyond that tagged
TEMP to the location tagged WORK, and decrement the A- and B-address registers.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE __OF
NOMSER E|5| Locamion | PG . OPERANDS
1 2]3 4als]e[7]s , 1415, zolai | |) | L L e2les N L ... s8ol
] ____[EXM__ |[TEMP426 WORK g%, ., . N
2. Move only the data bits in the field tagged RESV to the field tagged WORK.
Move the data from right to left, and terminate the operation when the
first item mark in the A field is sensed.
CODING FORM
PROBLEM PROGRAMMER : DATE PAGE ___OF___
N2 ‘T’rgT LocaTion | OPERATION OPERANDS
i 2]3 alsle[7]s R 1415, 2021 R | Lo L. . L, .23 R L., 80
Y 1 EXM_ . |RESY,WORK 41 . . e L

MAT |MOVE AND TRANSLATE FEATURES 010 & 011

FORMAT
OP CODE A ADDRESS B ADDRESS VARIANT | VARIANT 2
OP CODE A ADDRESS B ADDRESS C ADDRESS

FUNCTION

Format a: The MAT instruction translates characters from one six-bit configuration to another
by means of a stored '"translation table.' The instruction can be used to translate
any number of consecutive characters in the memory.

The A address specifies the location of the rightmost character in the field to be
translated. The B address specifies the location into which the translated equivalent
of the rightmost A-field character will be moved.

The operation normally terminates when an A-field word mark is sensed. The
operation is also terminated if a character is transferred from a word-marked lo-
cation within the translation table. '

The address within the translation table which contains the translated equivalent of
an A-field character is formed by combining the A-field character with the two

8-70 ' #2-139

SECTION VIII. INSTRUCTIONS

variant characters. The method of combining these three characters depends on
the addressing mode being used, as described below.

The leftmost, or base, address of the translation table is formed by combining
variants 1, 2, and a zero character as shown below. If the processor is in the two-
or three-character addressing mode, the leftmost three bits of variant 1 are
ignored and the corresponding bit positions (i.e., the sector bits) in the base ad-
dress (bits 16, 17, 18 and 19) are taken from the contents of the A-address register
(AAR). If the processor is in the four-character addressing mode (see below),

the entire six~bit contents of variant 1 form bits 13-18 of the base address, while
the leftmost (nineteenth) bit, if present, is taken from the contents of AAR.

Two=- or Three-Character Addressing Mode

VARIANT 1 VARIANT 2

= BASE ADDRESS OF TABLE

Four-Character Addressing Mode

VARIANT 1 VARIANT 2

= BASE ADDRESS OF TABLE

A character in the A field is translated when it is appended to the variant characters
(in place of the zero character) to form a complete, 19-bit address. This complete
address contains the translated equivalent of the appended A-field character (see
below).

A-FIELD CHAR.

COMPLETE, 19-BIT ADDRESS

TRANSL. EQUIV. OF A-FIELD CHAR. CONTENTS

Note that because of the positions of variant 1 and variant 2 in the complete address,
the base address of the table will always be a multiple of 64, This is compatible
with translation requirements since each A-field character can have any of 64 bit
configurations (see note 5).

8-71 #2-139

SECTION VIII. INSTRUCTIONS

Format b:

It is a simple task to store the desired equivalent values in a translation table.
For instance, assume that a character set which is to be translated into Honeywell
code represents the letter A by the bit configuration 110001. Since this bit con-
figuration represents a binary value of 49, the desired Honeywell equivalent (i.e.,
010001) should be stored 49 locations beyond the base address of the translation
table.

This is an alternate and simpler format for coding the MAT instruction, In this
format, a ""C address'' replaces the variant characters used in format a. to define
the base address of the table. Thus, format b. relieves the programmer of dealing
with modulo-64 addresses and converting to octal notation each time a MAT instruc-
tion is coded.,

The C address is a symbolic tag that is contained in the location field of another
source-program entry (e.g., a RESV statement). Once the absolute base address
of the table is defined as described for format a., the C address is equated to that
address and used in its stead whenever a MAT instruction using the same table is
coded again in the program.,

Example 2 shows how a C address can be used to define the base address of the
translation table.

WORD MARKS

Formats a and b:

The A field must have a defining word mark. It is this word mark that normally
stops the operation. The operation will also be terminated if a character is trans-
ferred from a word-marked location within the translation table,

ADDRESS REGISTERS AFTER OPERATION

Formats a and b:

NOTES

SR AAR BAR

NXT A-Ngy B-Ng;

This instruction cannot be chained.

The contents of the variant register following a move and translate oper-
ation are unspecified. Therefore, an instruction requiring a variant
character must not be chained after an MAT instruction.

Item -mark bits as well as data bits are transferred from the trans-
lation table to the B field. ’

Word marks initially stored in the B field remain unchanged. They
do not affect the execution of this instruction.

The base address of the translation table must always be a multiple of
64. The Easycoder Assembly Program automatically stores the table
in this manner when directed by a MORG assembly control statement

(see page 7-9) containing an operand of 64.

8-72 #2-139

SECTION VIII. INSTRUCTIONS

EXAMPLES
1. Figure 8-6 shows how A-field data is moved to the B field via a translation
table.
Translate the contents of the field tagged EXCODE using the stored trans-
lation table whose base address is 2567((=400g). Store the translated
equivalent in the field tagged EQUIV.
A Address: EXCODE (absolute value = location 630)
B Address: EQUIV (absolute value = location 900)
Variant 1: 00 =
Variant 2: 04 = base address of table (location 256)
EASYCODER
CODING FORM
PROBLEM PRO AER DATE PM%E — OF
NUMBER ErgT rocarion | *ne" OPERANDS
2]3 als]e]7]8 | 1415, 20! | ' T L) S P
N ... MAT _ [EXCODE EQU\V 0B .64 N P

BASE ADDRESS
(0004008)

WORD MARK
STOPS OPERATION

< TABLE ADDRESS
<« ENTRY

< ADDRESS
<« B FIELD

Figure 8-6. MAT Operation

The following coding shows how the preceding MAT instruction can be coded
using a C address. The translation table is set up with a base address of
25610 by means of an ORG statement and two DC statements. The ORG
statement directs the Assembly Program to load subsequent coding into
memory locations beginning at location 2561g. The first DC statement de-
fines an alphanumeric constant 40 characters long (i. e., the maximum size
of an alphanumeric constant). These characters are the first 40 characters
of a 64-character translation table, The second DC statement defines the
remaining 24 characters of the table.

When the MAT instruction is executed, the absolute address equated to the
tag MATABI is used as the table's base address as in example 1.

#2-139

SECTION VIII. INSTRUCTIONS

EASYCODER

CODING FORM
PROBLEM PRO AER DATE PAGE ___OF
caro [YI¥T . __._ . [oeeraTion P
| NUMBER [p|B] LULATIUN CODE OPERANDS
B 4:5 6(7]s | 14]15, 20]ar | | L L. . | EEE R , .., &
! : 1 L QRG 256 ! ! a1 &b L n RL X 1 | - 1 1
sl 1|1 MATABIDC. . #A123466789¢13@ A5 /STUVWXYZA, §#28-JKLMNOPK . .
L] . DC . (@QRS$xainIABCDEFGHIAZ3A@ ", N
4 |
. JI I Il (A1 1 1 1 1 S P ! 1 1 1
[1 n L L ' L L | I I))
s 1 I 1 l) A1 S . 14 PN NPT G S S G 1 1 1 iy 1
v l I 1 1 1 1 A 1 1 PR] 1 i P B 'y ‘AI_L ‘ L A
JRN L. MAT . [EXCODE ,EQU.IV ,MATABL , A e . L

MIT |MOVE ITEM AND TRANSLATE

FORMAT

OP CODE A ADDRESS B ADDRESS VARIANT | VARIANT 2. VARIANT 3

OP CODE A ADDRESS B ADDRESS C ADDRESS VARIANT

FUNCTION

Format a:

The Move Item and Translate instruction is used to translate any information unit
(up to 12-bit code) to another information unit of up to 12 bits (e.g., to Series 200
six-bit character code) by the use of a stored translation table. Any number of
consecutive information units stored in the memory can be translated.

The A address is the leftmost address of the item to be translated. The B address
is the leftmost address of the item into which the translated equivalent of the A
item will be moved. The MIT instruction translates the data contents in the A
item and moves the translated results, left to right, to the B item.

The operation normally terminates when an item mark is sensed in the A item.
The operation will also be terminated if a word-marked character is encountered
in the translation table.

An information unit up to six bits in length is stored in one six-bit character lo-
cation in the memory. Any information unit greater than six bits (7 through 12
bits) is stored in two successive six-bit character locations. Thus, an information
unit consisting of up to six bits is considered as a six-bit character, and a unit of
from 7 to 12 bits is considered as a ''12-bit character."

The sizes of the information units involved in the operation are specified by variant
3, as shown in Table 8-17.

8~74 - " : #2-139

SECTION VIII. INSTRUCTIONS

Table 8-17. Size of Information Units in MIT Operation

00 Translate each six-bit character in the A
item. Move the translated equivalent to a
six-bit character location in the B item.

01 Translate each 12-bit character in the A
item. Move the translated equivalent to
a six-bit character location in the B item.

02 Translate each six-bit character in the A
item. Move the translated equivalent to
two character locations (12 bits) in the

B item.,

03 Translate each 12-bit character in the A
item. Move the translated equivalent to
two character locations (12 bits) in the
B item.

The desired equivalent of an A-item information unit is taken from the stored
translation table and moved to the B item. Thus, if the desired equivalent is a six-
bit character, each table entry occupies one six-bit character location in the table.
If the desired equivalent is a 12-bit character, each table entry occupies two con-
secutive six-bit character locations in the table. Consequently, variant 3 implicitly
specifies the size of each table entry when it explicitly specifies the size of the B-
item information unit.

The leftmost, or base, address of the translation table is formed by combining
variants 1, 2, and a zero character as shown below. If the processor is in the
two- or three-character addressing mode, the leftmost three bits of variant 1 are
ignored and the corresponding bit positions (i.e., the sector bits) in the base ad-
dress of the table are taken from the contents of the A-address register (AAR). If
the processor is in the four-character addressing mode, the entire six-bit contents
of variant 1 form bits 13-18 of the base address, and the nineteenth bit, if present,
is taken from the contents of AAR.

Two- or Three-Character Addressing Mode

VARIANT 1 VARIANT 2

BITS 16-19
OF AAR
<

00000 0= BASE (LEFTMOST) ADDRESS OF TABLE

8-75 #2-139

SECTION VIII. INSTRUCTIONS

Four-Character Addressing Mode

VARIANT 1 VARIANT 2

= BASE (LEFTMOST) ADDRESS OF TABLE

The address within the translation table which contains the translated equivalent

of an A-item character (6- or 12-bit) is formed by superimposing the A-item char-
acter over the base address of the table. The method of superposition depends on
the size of each table entry (whether 6 or 12 bits), as described below.

If each table entry is a six-bit character (variant 3 = 00 or 01), the 6- or 12-bit A-
item character is superimposed over the rightmost bit positions of the base address.
The illustration below shows a 12-bit A-item character being superimposed over

the base address, where A = an A-item bit and X = a base address bit.

= 12-BIT A-ITEM CHARACTER

XIX XX XX XIXXXXXX|000O0 0 0f=BASE ADDRESS OF TABLE

[Xlx XXXXX = TABLE ADDRESS WHICH CONTAINS THE
6-BIT EQUIVALENT OF A-ITEM CHAR-

ACTER

If each table entry is a 12-bit character (variant 3 = 02 or 03), the 6- or 12-bit A-
item character is first shifted one bit position to the left, forming a 7- or 13-bit
“character.' The rightmost bit position of the character is set to zero. The
"character' is then superimposed over the base address to form the table address
of the translated equivalent of the A-item character. The shift operation is used
to double the referenced table address, since each table entry is stored in two,
rather than one, six-bit character locations. The resultant address is the ad-
dress of the leftmost of the two successive six-bit character locations in the table.

The illustration below shows how a 6-bit A-item character is shifted one bit posi-
tion to the left and then superimposed over the translation table's base address to
form the table address of its equivalent; A = an A-item bit, and X = a base ad-
dress bit.

1
Superposition is performed by placing a 1 bit in every position of the table address in which a 1
existed in either the A-item character or the base address or both., This is the ''logical in-
clusive OR" function.

8-76 #2-139

SECTION VIII. INSTRUCTIONS

6-BIT A-ITEM CHARACTER

SHIFT LEFT ONE BIT
POSITION & APPEND ZERO

"

7-BIT "CHARACTER"

XIXXXXXX|XXXXXX|000000 BASE ADDRESS OF TABLE

TABLE ADDRESS WHICH
CONTAINS THE 12-BIT
EQUIVALENT OF THE A-ITEM
CHARACTER

XX XX XXX

Format b: This is an alternate format for coding the MIT instruction. As in the MAT instruction
(see page 8-70), a symbolic tag replaces the variant characters used to define the
base address of the table in format a. The tag is contained in the location field of
another source-program entry which equates the tag to the base address of the table.

The second example of coding an MAT instruction (page 8-73) shows the method by
which a translation table is stored in memory so that the leftmost location of the
table can be used as a symbolic address. This is identical to the method used for
format b, of the MIT instruction.

PUNCTUATION MARKS

Formats a and b:

The A item must contain an item mark. It is this punctuation mark that normally
stops the operation. If the A-item information units are 12-bit characters, the
terminating item mark may appear in either of the two six-bit character locations.

The operation will also be terminated if a character (6- or 12-bit) is encountered
in a word-marked location in the translation table. In this case, neither the word-
marked character nor any subsequent characters are moved to the B item; instead,
a sequence change is performed (see note 5).

ADDRESS REGISTERS AFTER OPERATION

Formats a and b:

SR CSR AAR BAR ITEM MARK IN A ITEM
NXT | CSR,, A+HNAL)(N,,) B+(NBu)(Nut)} STOPS OPERATION
JI (contents NXT A+(NA,) (Ny¢) B+(NBu)(Nu’c)} WORD MARK IN TABLE
of CSR) STOPS OPERATION
NOTES
1. This instruction cannot be chained.
2. The last six-bit character referenced in the translation table (whether

word-marked or not) is left in the variant register following the move
item and translate operation.

8-177 #2-139

SECTION VIII. INSTRUCTIONS

3. Item-mark bits as well as data bits are transferred from the translation
table to the B item.

4, Word marks initially stored in the B item remain unchanged. They do
not affect the execution of this instruction.

5. A data control character (e.g., a case-shift character in a teletype code),
rather than a translated equivalent to be transferred to the B item, can
be stored in a word-marked location in the table. When this word-marked
location is sensed, the character in that location is not moved; rather,
the contents of SR and CSR are interchanged, providing entry to the routine
whose beginning address was previously stored in CSR. Since the word-
marked character is stored in the variant register (see note 2), that char-
acter can be stored by a Store Variant and Indicators instruction (see
page 8-92) and subsequently tested for identification in the routine.

6. The base address of the translation table must be a multiple of at least
64, due to the positions of variants 1 and 2 in the total 19-bit address.
This requirement is sufficient only for the translation of 6-bit to 6-bit
codes. If other than 6-bit codes are involved in the translation, the base
address of the table must be a multiple of X (where X is the product of
the number of codes defined by active bits in the A field entries times the
number of characters in each table entry). In other words, the base ad-
dress of the table must be a multiple of the table size itself. The MORG
assembly control statement (see page 7-9) can be used to assign memory
locations to the translation table, starting with the next available memory
location whose address is a multiple of 64, 128, 256, etc., as determined
by the size of the table.

7. This instruction is a standard feature on all processors except the Types
201 and 201-1, on which it is not available.

EXAMPLE

Figure 8-7 shows how eight-bit code is translated to Series 200 six-bit character
code by means of a stored translation table. Each eight-bit information unit is
stored in two consecutive six-bit character locations in the A item tagged EIGHT.,

Translate the data contents of the item tagged EIGHT using the translation table
whose base address is location 5125 (1000g). Store the translated values (six-
bit characters) in the item tagged SIX.

A Address: EIGHT (absolute value = location 800)
B Address: SIX (absolute value = location 650)

Variant 1: 00 =
the address of table {(location 512)

Variant 2: 10
Variant 3: 01

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE __OF ___
T
i E? LocaTiON | OPERATION OPERANDS
L 2lzalslelr]s, 1415 20[2!] ! M bttt | P NN L Lo, 80
i L MLY L EVGHT,SIX,@EAE, B

8-78 #2-139

SECTION VIII. INSTRUCTIONS

] « ADDRESS

BASE ADDRESS <A ITEM

(0010004)

ITEM MARK STOPS
OPERATION

«¢-TABLE ADDRESS
<ENTRIES

“* ADDRESS

Figure 8-7. MIT Operation

LIB | LOAD INDEX/BARRICADE REGISTER

FORMAT
OP CODE A ADDRESS B ADDRESS
. — — IFEATURES 1114, 1117 AND 1118]
b, - — — IFEATURES 1118, 1120 AND 1121 l
FUNCTION

Format a: Basic storage protection is provided by this instruction format; the charac-
ter(s) at the location(s) specified by the A address is loaded into the index/
barricade register (IBR), specifying the number of 4, 096-character main
memory banks which are available to a program. The leftmost location of
the specified bank is the leftmost location of the protected memory area,
(The rightmost location of the protected-area is the rightmost location of mem-
ory.) For processors other than the Type 4201, the single-character contents
of A are loaded into IBR. For the Type 4201 processor, a seventh bit, the
rightmost bit of the contents of A-1, is loaded into IBR. The correspondence
between the number loaded into IBR and the position of the barricade is in Table 8-18.

Format b: Storage protection with base relocation is provided by this instruction
format; the index/barricade register (IBR) is loaded in the same manner
as for basic storage protection (format a above), but the barricade is
relocated relative to the base relocation address. Consequently, when
storage protection is in effect, data cannot be delivered to memory loca-
tions above the barricade or below the base relocation address unless
processing is in the interrupt mode. The character(s) at the location(s)

8-79 #2-139

SECTION VIII. INSTRUCTIONS

00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
4]

specified by the B address is loaded into the base relocation register (BRR),
specifying the number of 4, 096-character main memory banks which are
available to a program. The number of main memory locations so designated

P PSR IR | IR, ¥ - 5 3 z P e
augments all memory references made in the standard {(noninterrupt) mode,

For processors other than the Type 4201, the single-character contents of B
are loaded into BRR. For the Type 4201 processor, a seventh bit, the right-
most bit of the contents of B-1, is loaded into BRR. The character(s) specified
by the A address is loaded into the index/barricade register (IBR), specifying
the number of a 4, 096 -character main memory bank. The barricade is es-
tablished to the left of the leftmost location in the specified bank (as augmented
by the base relocation address). For processors other than the Type 4201, the
single-character contents of A are loaded into IBR. For the Type 4201 pro-
cessor, a seventh bit, the rightmost bit of the contents of A-1, is loaded into
IBR. The correspondence between the number loaded into IBR and the posi-
tion of the barricade is shown in Table 8-18.

Table 8-18. Correspondence Between LIB Setting and Barricade Location

0 42 34 139, 264

0
1 4,096 43 35 143, 360
2 8,192 44 36 147, 456
3 12, 288 45’ 37 151,552
4 16, 384 46 38 155, 648
5 20, 480 47 39 159, 744
6 24,576 50 40 163, 840
7 28, 672 51 41 167,936
8 32, 768 52 42 172,032
9 36, 864 53 43 176,128

10 40, 960 54 44 180, 224

11 45, 056 55 45 184, 320

12 49, 152 56 46 188, 416

13 53, 248 ‘ 57 47 192,512

14 57, 344 60 48 196, 608

15 61, 440 61 ' 49 200, 704

16 65, 536 62 50 204, 800

17 69, 632 63 51 208, 896

18 73,728 64 52 212,992

19 77,824 65 53 217, 088

20 81, 920 66 54 221,184

21 86,016 67 55 225,280

22 90,112 70 56 229, 376

23 94, 208 71 57 233,472

24 98, 304 72 58 237,568

25 102, 400 73 59 241, 664

26 106, 496 74 60 245,760

27 110, 592 75 61 249,856

28 114, 688 76 62 253, 952

29 118, 784 77 63 258, 048

30 122, 880 1 00 64 262, 144

31 126, 976 1 01 65 266,240

32 131, 072 1 02 66 ~ 270, 336

33 135, 168 103 67 274, 432 _

8-80 #2-139

SECTION VIII. INSTRUCTIONS

Table 8-18 (cont). Correspondence Between LIB Setting and Barricade Location

04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41

Pt el femt el ped fed e e e e et el et fed e ped el et e e et b el et ped fed e e e et

68 278, 528 142 98 401, 408
69 282, 624 143 99 405, 504
70 286, 720 1 44 100 409, 600
71 290, 816 1 45 101 413, 696
72 294, 912 146 102 417,792
73 299, 008 147 103 421,888
74 303, 104 150 104 425, 984
75 307, 200 151 105 430, 080
76 311,296 152 106 434,176
77 315, 392 153 107 438,272
78 319, 488 154 108 442, 368
79 323, 584 155 109 446, 464
80 327, 680 156 110 450, 560
81 331, 776 157 111 454, 656
82 335,872 160 112 458, 752
83 339, 968 161 113 462,848
84 344, 064 162 114 466, 944
85 348, 160 163 115 471, 040
86 352, 256 1 64 116 475, 136
87 356, 352 165 117 479, 232
88 360, 448 166 118 483, 328
89 364, 544 167 119 487,424
90 368, 640 170 120 491, 520
91 372, 736 171 121 495,616
92 376, 832 172 122 499,712
93 380, 928 173 123 503, 808
94 385, 024 1 74 124 507, 904
95 389, 120 175 125 512, 000
96 393,216 176 126 516, 096
97 397,312 177 127 520, 192

WORD MARKS

Formats a and b:

Word marks are not affected by this instruction.

ADDRESS REGISTERS AFTER OPERATION

Format a:

Format b:

NOTES

SR AAR BAR
NXT A-2 B

P
NXT A-2 B-2

The 15 additional index registers which are included in the Storage Protect
and Extended Multiprogramming Features are located in the first 60 character
locations to the right of the barricade position specified by this instruction.
These locations can be used as normal storage locations when they arenot
being used for indexing operations.

8-81 #2-139

SECTION VIII. INSTRUCTIONS

2. The LIB op code is a "privileged" op code which has special significance
when storage protection is in effect with the Type 1201, 1251, 2201, or

4201 processor (see Appendix E).
2 This ins

T
2. 4 4415 IR

tr
be issued in the standard mode.

4, The LIB instruction is not interpreted by Easycoder Assembler A, B, or C.

EXAMPLE

‘Assuming that there are 131, 072 storage locations in the main memory, set up the
memory in such a way that the ''open' memory area consists of locations 0 through
65, 535 and the protected memory area consists of locations 65,536 through

131,072. The single octal character '"20'" is contained in the location tagged MP2.

EASYCODER

CODING FORM
PROBLEM B PROGRAMMER DATE PAGE . OF ___
WSaro Y Locarion | oPERaTow OPERANDS
i 23 alsie|7le | 1415, 20}21 . | | o] R L, | | se2063 Lo L 80
' ! E il LI‘B IMPZ Fl] Il 1 " 1 i 1 1] 1 1 e PR Y 1
S IB |STORE INDEX/BARRICADE REGISTER
FORMAT
OP CODE A ADDRESS B ADDRESS
. - — FEATURES 1114, 1117, AND 1118
b, e I FEATURES 1118, 1120, AND 1121

FUNCTION

Format a: Basic storage protection is provided by this instruction format; the contents
(up to seven bits) of the index/barricade register (IBR) are stored in the character
location(s) specified by the A address. All high-order bit positions in A which
are not used to specify the contents of the index/barricade register are cleared
to zeros. In the Type 4201 processor only, the seventh bit in IBR is stored in the
rightmost bit position of location A-1 and the five remaining bit positions in A-1
are cleared to zeros.

Format b: Storage protection with base relocation is provided by this instruction format;
the contents of the index/barricade register (IBR) are stored in the same manner
as for basic storage protection (format a, above); in addition, the contents of the
base relocation register (BRR) are also stored. The contents (up to seven bits)
of BRR are stored in the character location(s) specified by the B address, All
high-order bit positions in B which are not used to specify the contents of the
base relocation register are cleared to zeros. In the Type 4201 processor only,
the seventh bit in BRR is stored in the rightmost bit position of location B-1 and
the five remaining bit positions in B-1 are cleared to zeros. The contents (up to
seven bits) of the index/barricade register are stored in the character location(s)
specified by the A address. All high-order bit positions in A which are not used
to specify the contents of the index/barricade register are cleared to zeros. In
the Type 4201 processor only, the seventh bit in IBR is stored in the rightmost bit
position of location A-1 and the five remaining bit positions in A-1 are cleared to
zeros.

8-82 #2-139

SECTION VIII. INSTRUCTIONS

WORD MARKS

Formats a and b:

Word marks are not affected by this instruction. -

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-2 Bp
Format b: NXT A -2 B-2

NOTE

1. The SIB instruction is not interpreted by Easycoder Assembler A, B, or C.

2. This instruction is intended for use in the interrupt mode and should not be
issued in the standard mode. '

EXAMPLE
Store the contents of the index/barricade register in the single character location
tagged PROT.
CODING FORM
PROBLEM PROGRAMMER DATE PAGE . OF ___
M
Nﬁﬁé’m ’E' §| LOCATION OPERITION OPERANDS
) 2]3 4als]e[7]s | 14(15, 20)21 L i P A P Loy Ly L | 62/63 1 L 80|
! A sl‘ B PROT 1 1 1 Il 1 1] 1) - L A

TLU |TABLE LOOKUP | [FEATURE 0191

FORMAT

OP CODE A ADDRESS B ADDRESS VARIANT

o

FUNCTION

Format a: A table in memory is a series of fields, each of which normally contains an argu-
ment of a function and the corresponding value of the function (see notes 1 and 2).
The Table Lookup instruction initiates a search in a stored table for an argument
which bears a specified relationship to a search argument, which is stated in the
instruction (see illustration below).

8§~83 #2-139

SECTION VIII. INSTRUCTIONS

The B address specifies the rightmost location of the stored table, the A address
specifies the location of the search argument, and the variant character specifies
a relationship (equal to, higher than, etc.) between the desired argument in the
table and the search argument. The table is searched from right to left until this
relationship is found or until a table field is found which is shorter than the search
argument. Then comparison indicators are turned on and the search terminates.

Format b: Search the table whose rightmost location is specified by B for an argument which
bears to the search argument specified by A a relationship specified by the variant
character of a previous instruction. When this relationship is found or when a
table field is found which is shorter than the search argument, turn on comparison
indicators and terminate the search,

Format c: Search the table whose rightmost location is specified by the contents of the B-ad-
dress register (BAR) for an argument which bears to the search argument specified
by A a relationship specified by the variant character of a previous instruction.
When this relationship is found or when a table field is found which is shorter than
the search argument, turn on comparison indicators and terminate the search.

Format d: Search the table whose rightmost location is specified by the contents of BAR for
an argument which bears to the search argument specified by the contents of the
A-address register (AAR) a relationship specified by the variant character of a
previous instruction. When this relationship is found or when a table field is found
which is shorter than the search argument, turn on comparison indicators and
terminate the search. '

WORD MARKS

Formats a, b, ¢, and d:

The A operand (the search argument) must have a defining word mark. Each
table field must also have a defining word mark.

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-N, Lta
Format b: NXT A-N L,
s a a
Format c: NXT A-N, L.,
Format d: NXT Ap-Na L,
NOTES
1. Each value in the table is normally stored immediately to the left of the
corresponding argument, and each pair (argument plus value) constitutes
a field in the table, However, if the values in the table are longer than
three characters, it is advisable to store them in another part of memory
and to store their 2- or 3-character addresses in the table instead. Since
the timing of the TLU instruction depends on the number of characters
searched in the table, it is desirable to minimize the length of the table.
2. The Branch on Condition Test instruction (see page 8-35) can be used after

Table Lookup to branch to a routine which moves the located value to a work
area. Note that at the completion of the TLU instruction, the B-address

, 8-84 #2-139

SECTION VIII. INSTRUCTIONS

register (BAR) contains the address of the desired value (or the address of
a location containing the address of the desired value, in the case where the
values are too long for efficient storage in the table).

The variant characters which specify the desired relationships between the
search argument and the argument to be located in the table are as follows:

01 Stored Argument < Search Argument
02 Stored Argument = Search Argument
03 Stored Argument < Search Argument
04 Stored Argument > Search Argument
05 Stored Argument # Search Argument
06 Stored Argument 2 Search Argument

The length of each argument in the table must be equal to the length of the
search argument. Note that a short table field (e.g., one which contains a
short argument or which contains no value) can be used to terminate the search,
which leaves the comparison indicators set to the condition ""Stored Argument >
Search Argument."

The Table Lookup instruction is not interpreted by Easycoder Assembler A,
B, or C.

Although the Series 200 hardware will chain the variant character of a Table
Lookupinstruction, the Mod 2 Assembler permits such chaining only if the B
address of the instruction is also chained.

Easycoder Assembler D and Mod 2 Assembler:

a. Format a must use the generic op code (TLU) along with an
explicit variant character.

b. Format b must use a specific op code {(e.g., LEH) in order to
supply the omitted variant character.

c. Formats ¢ and d always use the variant character from the

previous contents of the variant register. Therefore, the op
code used should agree with the one used previously or be the
generic form (TLU).

The Table Lookup instruction is used by theSeries 200 Mod 2 Assembler to
implement a number of symbolic statements. The following table indicates
the correspondence between the mnemonic op codes for these statements
and the TLU variants generated by the Mod 2 Assembler,

LE Lookup Equal , 02
LH Lookup High 04
LL Lookup Low 0l
LEH Liookup Equal or High 06
LLE Lookup Low or Equal 03
LLH Lookup Low or High (Unequal) 05

8-85 #2-139

SECTION VIII. INSTRUCTIONS

EXAMPLE

1. Figure 8-8 shows how a stored table is searched for an argument which
bears a specified relationship to a search argument,

Search the table tagged TABLEI for the value which corresponds to the argument
(557) stored in the field tagged ARGMNT.,.

A Address: ARGMNT (absolute value = location 609)
B Address: TABLE] (absolute value = location 149)
Variant 1: 02 = (Stored Argument = Search Argument)

EASYCODER

CODING FORM

PROBLEM PROGRAMMER DATE PAGE.___OF

NOMBER [E(g| LocATION | OPEIOM OPERANDS

1 2]3 alsfe[7]s | 14]15, 20]21 4 | T N N | g2163 |, 1y TP
QI . TLU . ARGMNT TABLE1,0200 ooone o iy
2 1 I - 1 . i i Y T) TV T 1 n 1 PR NS W T W | . |
3 —ir I 1 1 L S A L 1 1 P | DU S T S SRS 1 a1l 2 L . _

BF MOVE OR SCAN FEATURE 0191

MOS

FORMAT

OP CODE A ADDRESS B ADDRESS VARIANT

(2]

FUNCTION

Format a: The contents of the A field are moved to the B field in the manner specified
by the variant character (see Table 8-19), The programmer specifies how
the move operation is to be performed by selecting the desired conditions
from the table and encoding the resulting two octal digits as the variant char-
acter of the instruction. See note 5a,

Format b: This format is valid in symbolic coding only when a specific op code is used
to indicate the omitted variant character. The resultant machine-language
format and functions are the same as those described for format a.

Format c: The contents of the A field are moved to the field specified by the contents
of the B-~address register (BAR) in the manner specified by the variant char-
acter of a previous instruction (see Table 8-19). See note 5c.

Format d: The contents of the field specified by the contents of the A-address register
(AAR) are moved to the field specified by the contents of BAR in the manner
specified by the variant character of a previous instruction (see Table 8-19).
See note 5c.

8-86 #2-139

L8-8

6STI-2#

B FIELD

EQUALITY OF A-FIELD
TO STORED ARGUMENT
TERMINATES OPERATION

"SHORT FIELD'" WHICH
TERMINATES SEARCH IF
SPECIFIED RELATIONSHIP
IS NOT FOUND

Figure 8-8. TLU Operation

‘TITA NOILDAS

SNOILDONYLSNI

SECTION VIII. INSTRUCTIONS .

Table 8-19, Move or Scan Conditions

X0

X1

X2

X3

X4

X5

X6

X7

0X

1X

2X

3X

4X

5X

6X

X

No information is moved. The A- and B-address registers
are incremented or decremented in accordance with the
high-order digit of the variant character.

Move A-field numeric bits to corresponding bit positions in
B field. '

Move A-field zone bits to corresponding bit positions in
B field.

Move A-field data and item-mark bits to corresponding bit
positions in B field.

Move A-field word-mark bits to corresponding bit positions
in B field.

Move A-field numeric and word-mark bits to corresponding
bit positions in B field.

Move A-field zone and word-mark bits to corresponding bit
positions in B field.

Move A-field data, word-mark, and item-mark bits to cor-
responding bit positions in B field.

Move one character from A to B. The A- and B-address
registers are decremented by one,

Move characters from left to right (A and B addresses
specify leftmost characters in operand fields)., Terminate
the operation when the first A- or B-field word mark is
sensed.

Move characters from right to left (A and B addresses
specify the rightmost characters in operand fields), Ter-
minate the operation when the first A-field word mark is
sensed. ‘

Move characters from left to right. Terminate the opera-
tion when the control character "@" (728) is sensed in the
A field.

Move characters from right to left. Terminate the opera-
tion when the first B-field word mark is sensed.

Move characters from left to right, Terminate the opera-
tion when the control character ™; " (32_) with a word mark
. : X 8 —_—
is; sensed in the A field. .

Move characters from right to left, Terminate the opera-
tion when the first A- or B-field word mark is sensed,

Move characters from left to right. Terminate the opera-
tion when either the control character ';" (32_) with a
word mark or control character "@" (728) is sensed in
the A field.

8-88 ' 42-139

R

SECTION VIII. INSTRUCTIONS

WORD MARKS

Formats a, b, ¢, and d:

Word marks and control characters affect the operation of the instruction as
described in the table above.

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a; NXT A-1 B-1 VARIANT = 0X
NXT A+N_ B+N_ VARIANT = 1X
NXT A-N_ B-N_ VARIANT = 2X
NXT A+N_ B+N_ VARIANT = (3, 5, or 7)X
NXT A-N B-N VARIANT = 4X
NXT A-N B-N VARIANT = 6X
w w
Format b: NXT A-1 B-1 VARIANT = 0X
NXT AN B+N_ VARIANT = 1X
NXT A-N_ B-N_ VARIANT = 2X
NXT A+N_ B+N_ VARIANT = (3, 5, or 7)X
NXT A-N B-N, VARIANT = 4X
NXT A-N B-N VARIANT = 6X
W w
Format c: NXT A-1 Bp-l VARIANT = 0X
NXT A+N B +N VARIANT = 1X
w P W
NXT A-N_ Bp-Na VARIANT = 2X
NXT A+N_ Bp+Na VARIANT = (3, 5, or 7)X
NXT A-N. Bp-Nb VARIANT = 4X
NXT A-N B -N VARIANT = 6X
w P W
Format d: NXT AP-I Bp-l VARIANT = 0X
NXT A +N B +N VARIANT = 1X
P W P W
NXT A -N B -N VARIANT = 2X
p a P a
NXT AP+Na Bp+Na VARIANT = (3, 5, or 7)X
NXT A - B -N VARIANT = 4X
p b p b
NXT A - B -N VARIANT = 6X
I P W

NOTES:

1. This instruction is available only on the 1201, 1251, 2201, and 4201 (standard)
central processors.

8-89 #2-139

SECTION VIII. INSTRUCTIONS

EXAMPLE

PROBLEM

The character containing the terminating punctuation and/or control charac-
ters is moved or scanned in the same manner as the rest of the field.

The variant characters and the corresponding mnemonic op which

4l Cllala 2330 LIS zTcsponcl

they represent are contained in Appendix B.

The Move or Scan instruction is not interpreted by the Easycoder Assembler
A, B, or C.

Although the Series 200 hardware will chain the variant character of a Move
or Scan instruction, the Mod 2 Assembler permits such chaining only if the
B address of the instruction is also chained,

Easycoder Assembler D and Mod 2 Assembler:

a. Format a must use the generic op code (MOS) with an explicit
variant character,

b. Format b must use a specific op code (MLCW) to supply the
omitted variant.

C. Formats ¢ and d always use the variant character from the
previous contents of the variant register, Therefore, the op
code used should either agree with the one used previously or
be the generic form (MOS).

The Move or Scan instruction is used by the Series 200 Mod 2 Assembler to
implement a number of symbolic statements., Table B-9 in Appendix B in-
dicates the correspondence between the mnemonic op codes for these state-
ments and the MOS variants generated by the Mod 2 Assembler,

Move only the zone bits in the field tagged TEMP to the field tagged WORK
from right to left, and terminate the operation when the first word mark -
in the B field is sensed.

EASYCODER

CODING FORM

PROGRAMMER DATE PAGE ___OF ___

CARD

NUMBER |E

T

LocaTion | OPTSTION OPERANDS

1 2]3 als]e

<
Pl

L 18115) 20]2) L L1 N PR 1 L 82183 N -

I

:
2 I
!
T

|
|

8-90

#2-139

¢ STORE VARIANT AND INDICATORS

¢ RESTORE VARIANT AND INDICATORS
¢« MONITOR CALL

e RESUME NORMAL MODE

8-91 #2-139

SECTION VIII. INSTRUCTIONS

STORE VARIANT AND
SVI

INDICATORS
FORMAT
OP CODE A ADDRESS B ADDRESS VARIANT
FUNCTION

The SVI instruction is used to store information regarding the current status of the
processor when an interrupt condition occurs. The instruction stores the designated
information in up to six consecutive locations following its own variant character.

Each bit in the six-bit variant character (VgV5V4V3V,V]) represents processor
control registers or indicators whose contents are to be stored in a single character
location. The programmer specifies the amount of information to be stored by
selecting the desired entries from Table 8-20 and encoding the resulting bit con-
figuration as two octal digits.

Table 8-20. Information Stored by SVI Instruction

XXXXX1 ' The contents of the variant register.
l ‘ XXXX1X The settings of the arithmetic, comparison, ad-
dress mode, and item-mark trap mode indicators.

This information is stored in seven bit positions
of the character location — the six data bit posi-
tions and the item-mark bit position.

The arithmetic and comparison indicators are
cleared when their contents have been stored.

XXX 1XX The contents of the auxiliary indicators register
(AIR). The contents of the arithmetic, comparison,
address mode, and item mark trap mode indi-
cators are stored automatically in this register
upon the occurrence of an external interrupt.
Upon executing an RNM instruction to return to
either standard or internal interrupt mode, the
specified indicators are reset automatically using
the contents of this register. The contents of
this register can be changed by using the RVI
instruction (see page 8-95),

The auxiliary arithmetic and comparison indi-
cators are cleared when their contents have
been stored.

XX1 XXX The settings of the indicators associated with the
- scientific unit (see Appendix F) and the sector interrupt
masks? (see Appendix G). The scientific indicators are

- cleared when their contents havée been stored.

8-92 #2-139

SECTION VIII. INSTRUCTIONS

Table 8-20 (cont). Information Stored by SVI Instruction

X1XXXX The settings of the protect, 1 proceed, 1 instruction timeout
allow, 2 S-mode, and relocation? indicators and (if the
processor is in the external interrupt mode) the setting of
the internal interrupt (II) mode indicator. 1

IXXXXX The protect, proceed, and instruction time out allow indi-
cators are cleared when their contents are stored.

The settings of the interrupt source indicatorsl and the
instructiontime out indicator. The stored settings of the
interrupt source indicators can be tested to determine the
status of the processor a’s follows:

o 1. Whether the processor is in the external interrupt
mode, the internal interrupt mode, or the standard
processing mode.

2, The source of the interruption if the processor is
in the external interrupt mode; any of three sources
can be determined — a peripheral control, the con-
trol panel (or console), or the Monitor Call instruc-
tion (see page 8-98).

3. Whether an external interrupt (EI) address violation
has occurred (if the processor is in the external
interrupt mode).

4. Whether an op code violation has occurred (if the
processor is in the internal interrupt mode).

5. Whether an internal interrupt (II) address violation
has occurred (if the processor is in the internal
interrupt mode).

The indicators referred to in 3 through 5, above, as well
as those which identify the control panel (or console) and
the Monitor Call instruction as the interrupt source, are
cleared when their contents are stored. ’

1 o : . '

These indicators are included in a Type 1201, 1251, or 2201 processor equippedwith the
Storage Protect Feature (see Appendix E) or a Type 4201 processor equipped with

the Extended Multiprogramming and 8-Bit Transfer Feature (see Appendix G).

2 s . .
- Theseindicators are included in a Type 1201, 1251, 2201, or 4201 processor equipped
with the Extended Multiprogramming and 8-Bit Transfer Feature (see Appendix G).

WORD MARKS

A word mark is required in the location following the variant character to terminate
the extraction of the SVI instruction. Other word marks (if any) in the locations

in which information is stored are ignored and unaffected. Program operation
resumes with the next word-marked location following the stored information (the
next sequential op code).

8-93 ' #2-139

SECTION VIII.

INSTRUCTIONS

ADDRESS REGISTERS AFTER OPERATION

SR AAR

BAR

NXT

Vi 0 Contents of Variant Register
Trap- Address mode: Overflow: Zero A<B: |A =B:
v mode: 0l=2-character; |l=yes; Balance:| l=yes; |1l=yes;
2 l=yes; 00=3-character; {0O=no. l=yes; O=no. O=no.
O=no. 11=4-character. * O0=no. * * *
V3 Contents of AIR (identical to information stored by V3, above)
* * * %
Extended MPO: *| DVC:* |EXO:* Sector 0 |Sector1 |Sector 2
v I/0 Indica-| 1=yes; l=yes; l=yes; Interrupt {Interrupt] Interrupt
4 tor O=no. 0=no. 0=no. Mask: Mask: Mask:
I = ON; 1=on; l=on; 1 = on;
O= OFF. 0 =off. 0=o0ff, 0 = off.

0 Protect| In- S mode Proceed |Reloc- |In external
indi- struc- indi- ation interrupt
cator: | tion cator: Indi- mode only:

v . g
5 1=on; “Time- 1=on; cator: 1=II indi~
0=off. out 0=off, 1=omn; cator on;
* Allow: * 0=off, otherwise, 0.
l1=on;
O=off *
Processor is in external interrupt mode

0 EI Ad-] Monitor|Control Periph- 1 II Mode
dress Call: panel or eral indicator:
viola- l=yes; |console inter- 1=on;

Ve lation: 0=no. |inter- rupt: 0=ofif.
l=yes; rupt: l=yes;
O=no. l=yes; O=no.
% ® O=no. *
Processor is not in external interrupt mode

0 II Ad- | Op code|Instruc- 0 0 1
dress viola- |tion
viola- tion: Timeout
tion: l=yes; [Indicator
l=yes; 0=no. l=yes;
0=no. O=no.

sk ES sk
"= Indicators that are cleared when their contents are stored.

NOTES

1. Only the number of characters specified by the variant character are
stored. They are stored in the order listed in Table 8-20: the contents

of the variant register (if specified) are stored in the location immedi-

8-94 #2-139

SECTION VIII. INSTRUCTIONS

ately following the SVI instruction, etc., using only those locations
actually required to store the requested information.

2. Item-mark and data bit positions which are not used to store infor-
mation are cleared to zeros.

3. The format in which information is stored by the SVI instruction is
shown in the preceding table. Indicators which are cleared (i.e., set
to zero) when their contents are stored are indicated by an asterisk (¥).

4, Bits corresponding to indicators which are not present in the user's
processor are stored as zeros. For instance, an SVI instruction
issued in a processor which does not contain the Storage Protect
Feature will store zeros in those bit positions which correspond to
indicators used only with the Storage Protect Feature.

5. The current status of the arithmetic, comparison, address mode,
and trap mode indicators are not stored in the auxiliary indicators
register (AIR) when an internal interrupt occurs. The contents of
AIR should therefore not be stored by an SVI instruction in the internal
interrupt mode, for the contents of AIR would be meaningless at the
time of internal interruption.

6. The SVI op code is a '"'privileged' op code that has special significance
when issued in a Type 1201, 1251, 2201, or 4201 processor equipped
with the Storage Protect Feature (see Appendix E).

7. This instruction is intended for use in the interrupt mode ‘and should not
be issued in the standard mode,

8. This instruction is a standard feature on all processors but the Types
201 and 201-1, on which it is not available,

9. The method of coding interrupt service routines is described in
Appendix D, '"Interrupt Processing."

10. The contents of the variant register are not altered by the execution of

this instruction; i.e., the variant character of the SVI instruction is not
stored therein.

EXAMPLE

Store the following information in the three successive memory locations which immedi-
ately follow the variant character of the instruction:

1. The contents of the variant register;
2. The contents of the auxiliary indicators register (AIR); and
3. The settings of the interrupt source indicators.,

The op code of the SVI instruction is tagged STORE, so that the locations of the stored
information are STORE+2, STORE+3, and STORE+}4.

PROBLEM

PROGRAMMER DATE PAGE __OF
Neoen [EJg| tocamion | o*Eon OPERANDS
1,213 4TsTe[7Te . 14115, 20]21 . 1 L [| L e L5283 Lo ey 0
! STORE SV, .. 145, . B . . \ :
RV' RESTORE VARIANT AND
INDICATORS
FORMAT
OP CODE A ADDRESS B ADDRESS VARIANT

8-95 #2-139

SECTION VIII. INSTRUCTIONS

FUNCTION

Up to five consecutive characters (previously stored via an SVI instruction) are
loaded into the processor control registers and/or indicators specified by the
variant character. Characters are retrieved from left to right, beginning with
the character specified by the A address.

The low-order five bits of the variant character specify the registers and/or
indicators whose contents are to be restored. The programmer specifies the

amount of information to be restored by selecting the desired entries from Table

8-21 and encoding the resulting bit configurations as two octal digits.

Table 8-21.

0XXXX1

Information Restored by RVI Instruction

The contents of the variant register.,

0XXX1X

The settings of the arithmetic, comparison, ad-~-
dress mode, and item-mark trap mode indi-
cators. This information is stored in the six
data bits and the item-mark bit of a character
location.

0XX1XX

The contents of the auxiliary indicators regis-
ter (AIR). Upon returning from external in-
terrupt mode to either internal interrupt or
standard mode, the contents of this register

are moved automatically to the indicators speci-
fied above for V. '

0X1XXX

The settings of the indicators associated with the
scientific unit (see Appendix F) and the sector
interrupt masks? (see Appendix G).

01 XXXX

The settings of the protect, 1 proceed,1 instruction
timeout allow, 2 S mode, and relocation? indicators
and (if the processor is in the external interrupt
mode) the setting of the internal interrupt (II) mode
indicator. ! ‘

1 s . . .
These indicators are included in a Type 1201, 1251, 2201, or 4201 processor
equipped with the Storage Protect Feature (see Appendix E).

2 s 1k . .
These indicators are included in a Type 1201, 1251, 2201, or 4201 processor
equipped with Extended Multiprogramming and 8-Bit Transfer Feature (see Appendix G).

WORD MARKS

Word marks neither affect nor are affected by this instruction.

8-96 #2-139

SECTION VIII. INSTRUCTIONS

ADDRESS REGISTERS AFTER OPERATION

NOTES

EXAMPLE

~ o 0 & & N -

PROBLEM

SR AAR BAR

NXT A B
p p

Each entry in the righthand column of Table 8-21 is retrieved from a single
character location. Only the number of characters corresponding to the
selected table entries are retrieved by the RVI instruction,

The RVI op code is a "privileged'" op code that has special significance when

used with a Type 1201, 1251, 2201, or 4201 processor equipped with the
Storage Protect Feature (see Appendix E).

This instruction is intended for use in the interrupt mode and should not be
issued in the standard mode.

The format in which information is stored by an SVI instruction is
shown in the table on page 8-94. Note that the information contained
in the last character location is not restored by the RVI instruction.

This instruction is a standard feature on all processors but the Types
201 and 201-1, on which it is not available.

The method of coding interrupt service routines is described in Appendix
D, "Interrupt Processing.'

The protect and proceed indicators, when present in the user's system,
are not turned on automatically by the computer but instead must be turned
on by programmed instructions, as follows: (1) a 1-bit is set in the bit
position which, when restored by the RVI instruction, indicates the status
of the indicator; and (2) an RVI instruction with a Vg bit of 1 in the variant
character is executed, thereby turning on the appropriate indicator.

Unless the contents of the variant register are explictly restored by this
instruction, they are not altered by its execution; i.e., the variant charac-
ter of the RVI instruction is not stored in the variant register.

Restore the contents of the variant register and auxiliary indicators register (AIR)

that were previously stored by the SVI instruction example on page 8-95,

EASYCODER

CODING FORM

PRC AER DATE PAGE _._OF ___

CARD
NUMBER

=

Location | OPERAION OPERANDS

V213 4l5

@ Mo
~ [X0}

i 14115 2021 L eees

+—

. RVI STORE t2,85 . Y

Y S S S

]

|
ol
L L " Loy TP B | N
1
1
1
1
PR

F
LEEFEEEL

4 4

8-97

#2-139

SECTION VIII. INSTRUCTIONS

MC | MONITOR CALL

FORMAT
OP CODE A ADDRESS B ADDRESS
FUNCTION

The Monitor Call instruction causes the processor to enter the external interrupt
mode (if the processor is not already in that mode). The following activities are
automatically performed:

1. The EI interrupt source indicators are set to show that the Monitor Call
instruction is the source of interruption, and the processor enters the
external interrupt mode;

2. The settings of the arithmetic, comparison, address mode, and item-
mark trap mode indicators are stored in the auxiliary indicators reg-
ister (AIR); .

3. The arithmetic indicators are cleared;

4, The contents of the sequence register (SR) and the external interrupt
register (EIR) are interchanged, and the program branches to the instruc-
tion whose op code address was previously stored in EIR;

5. The processor switches to the three-character, non-trap mode.

WORD MARKS

Word marks are not affected by this instruction,

ADDRESS REGISTERS AFTER OPERATION

SR EIR AAR BAR
JI (con~ NXT A B
P p
tents
of EIR)
NOTES
1. If this instruction is issued in the external interrupt mode, the results are
unspecified,
2. The interrupt source indicators can be stored via an SVI instruction
(see page 8-92), Their stored contents can then be interrogated by
programmed instruction to determine the interrupt source.
3. This instruction is a standard feature on all processors but the Types
201 and 201-1, on which it is not available.
EXAMPLE

Interrupt the central processor and branch to MONTOR, the location of the monitor
program. The address tagged MONTOR, was previously stored in EIR.

8-98 #2-139

SECTION VIII. INSTRUCTIONS

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF ___
= -
v Elg| vocarion OPERATION OPERANDS
1 2[3 als5(ej7]8 | "ah5, 2021 | | L L, | elea | ., eo
L ... SCR . MONTOR 66 , . e ol
2 L ’
) ! " 1 (L 1 L 1 1 1 1 A a1 1l i T
3 AJ 1 1 (1 1 —_ 1 | I Il a4 -] 1 TR 1
h il | i 1 { 1 1 1. I L 1 i 1 1 £
= L L
s [L MC L ‘ L ' L L el L L1 Il 1
3 [.
1 1 L 1 L 1 - [[1 P NP A L
RNM| RESUME NORMAL MODE
FORMAT
OP CODE A ADDRESS B ADDRESS

o

FUNCTION

Format a: The RNM instruction causes an exit from the program being executed in the
interrupt mode (external or internal) to the program which was interrupted. The
activities performed depend on the type of interrupt mode in which the instruction
is issued.

When the RNM instruction is issued in the external interrupt mode:

1. The EI mode indicators are turned off;

2. The arithmetic, comparison, address mode, and item-mark trap mode
indicators are restored to the status specified by the auxiliary indicators
register (AIR);

3. The A and B addresses of the RNM instruction are stored in the A- and
B-address registers (AAR and BAR), respectively; and

4. The contents of the sequence register (SR) and the external interrupt reg-
ister (EIR) are interchanged, and the program branches to the instruc-
tion whose op code address was initially stored in EIR when the external
interrupt occurred.

When the RNM instruction is issued in the internal interrupt mode:

1. The II mode indicator is turned off;

2. The A and B addresses of the RNM instruction are stored in AAR apd
BAR, respectively; and .

3. The contents of SR and the internal interrupt register (IIR) are inter-
changed, and the program branches to the instruction whose op code ad-
dress was initially stored in IIR when the internal interrupt occurred.

8-99 #2-139

SECTION VIII.

INSTRUCTIONS

Format b: This format operates like format a. except that the B address of the RNM instruc-
tion is not stored in BAR. The previous contents of BAR are not changed.

Format c:

This format operates like format a. except that no instruction addresses are stored.

The previous contents of AAR and BAR are not affected by this format.

WORD MARKS

Formats a, b, and c:

Word marks are not affected by this instruction.

ADDRESS REGISTERS AF TER OPERATION

SR EIR IIR AAR BAR
Format a: NXT address of op A B RNM ISSUED
code following n/a IN EXTERNAL
RNM instruction INTERRUPT
MODE
address of op RNM ISSUED
NXT n/a code following A B IN INTERNAL
' ' RNM instruction INTERRUPT
MODE
Format b: address of op RNM ISSUED
NXT code following n/a A Bp IN EXTERNAL
RNM instruction INTERRUPT
MODE
address of op RNM ISSUED
NXT n/a code following A Bp IN INTERNAL
RNM instruction INTERRUPT
MODE
Format c: address of op RNM ISSUED
NXT code following n/a A B IN EXTERNAL
RNM instruction P P INTERRUPT
MODE
address of op RNM ISSUED
NXT n/a code following A Bp IN INTERNAL
RNM instruction P INTERRUPT
MODE
NOTES
1. The address of the instruction which follows the RNM instruction is

stored in the appropriate interrupt register (EIR or IIR) when the RNM
instruction is executed. This register therefore contains the address
of the first instruction executed in the interrupt routine when the next

interrupt of the same type occurs.

This instruction should be an SVI

instruction, which should be the first instruction executed in any
interrupt service routine.

8-100 #2-139

SECTION VIII. INSTRUCTIONS

2. The method of coding interrupt service routines is described in
Appendix D, '"Interrupt Processing.'

3. The RNM op code is '"privileged'" op code which has special significance
when used with a Type 1201, 1251, 2201, or 4201 processor equipped
with the Storage Protect Feature (see Appendix E).

4, This instruction is intended for use in the interrupt mode and should not
be issued in the standard mode,

EXAMPLE
The simplified coding below shows a convenient method of restoring the starting
address of the external interrupt routine (EXT2) in EIR when the normal program
sequence is resumed.
EASYCODER
CODING FORM
PROBLEM PROGRAMMER ...~ DATE.... ... PAGE___OF ___
NOMBER Epg] Location | OPERTION OPERANDS
1 2]3 alsfel7]s | 4[5, 20[21 | | L | L, | | | 82{63 L L L 80|
U [[RESUME [RNM | .). . . e N .
o v 1 [l[exT2 svi_ . las . . e l , , .
3 | 1 1 (i 1 1 i L 1 PR L 1 1 1 1
o .) . INTERRUPT ROUTINE
s : { L L) 1 L 1 1 1 i 1 1 I 1 1
s ! I L 1) 1 1 1 L TS Y o4 1 1 1 1 1
T ! I 1 & RESUME Z1 1 1 1 Lot o o 1 1 1 1 1
e J' ! i i 1. L 1 1 1 L i] 1 i 1 1 1 1 - 1 1L

8-101 #2-139

¢ MOVE CHARACTERS AND EDIT

8-103 #2-139

SECTION VIII. INSTRUCTIONS

IAAC'E | MOVE CHARACTERS AND EDIT | [FEATURE 013

FORMAT

OP CODE A ADDRESS B ADDRESS

o

FUNCTION

Format a: The MCE instruction is used to insert identifying symbols and punctuation and to
suppress unwanted zeros in a data field. The A field of an MCE instruction con-
tains the information to be edited. The B field contains an edit control word which
provides a framework for the edit operation. When an MCE instruction is executed,
the data in the A field is moved to the B field where it is punctuated and formatted
according to the edit control word already stored in that field.

NOTE: An LCAinstructioncan be used to load the control word into the field
where the edited information will eventually go. For instance, if the edited
information is to be printed, the control word should be loaded into the print
image area and the address of this area should be used as the B address of the
MCE instruction.

Editing is performed acéording to the following rules:

RULE 1. Any character in the Series 200 character set can be used in the edit
control word. Those characters having special meanings are listed in Table 8-22,
Any other character, if included in the edit control word, remains in the edited
result in the position where written.

RULE 2. A word mark in the high-order position of the B field controls the edit
operation. h

RULE 3. The number of replaceable characters in the edit control word must be
at least as large as the numbeér of characters in the A field.

RULE 4. Data is transferred from the A field character by character, from right
" to left. If a zero suppression symbol is not sensed in the edit control word, the
edit operation terminates when the B-field word mark is sensed. A zero sup-
pression symbol causes the edited result field to be scanned from left to right.
During this scan, high-order zeros and commas are automatically replaced by
blanks (unless an asterisk appears immediately to the left of the zero suppression
symbol — see rule 5). Zero suppression is terminated by any of the following:

a. a decimal digit from 1 through 9,
b. a decimal point, or
c. the location that initially contained the zero suppression symbol.

RULE 5. An asterisk immediately to the left of the zero suppression symbol in
the control word causes high-order zeros and commas to be replaced by asterisks
instead of blanks in a zero suppression operation. High-order blanks are also
replaced by asterisks.

8-~104 #2-139

SECTION VIII. INSTRUCTIONS

RULE 6. A dollar sign immediately to the left of the zero suppression symbol in
the control word is replaced with an A-field character and causes the edited result
to be rescanned following the zero suppression operation. During this scan, the
dollar signis ''floated' tothe left of the high-order significantdigitinthe edited result.

Table 8-22, Special Characters in MCE Instruction

b (blank) Blanks are replaced with A-field characters such
that the rightmost character in the A field re-
places the rightmost blank in the edit control word
and all higher-order A-field characters replace
successively higher-order blanks.

0 (zero) This symbol specifies zero suppression. Its lo-
cation in the control word is interpreted as the
rightmost limit of zero suppression. It is re-
placed with an A-field character.

(decimal point) The decimal point remains in the edited field in
the position where written.

, {(comma) Commas remain in the edited field where written
unless zero suppression is specified (see rule 4).
Commas in control word positions to the left of
the high-order character transferred from the

A field are replaced by blanks.

CR’ CR (credit) The credit or minus symbol is undisturbed if the
_ sign in the units position of the A field is negative.
0 (minus) If the sign is positive, the credit (or minus) sym-

bol is blanked out. A credit (or minus) symbol
transferred from the A field is not subject to
sign control.

NOTE: 0 is printed
as a minus symbol.

37g An octal 37 is replaced by a blank in the edited
field. »
%* (asterisk) The asterisk remains in the edited field in the posi-

tion where written unless it appears immediately
to the left of the zero suppression symbol (see
rule 5).

$ (dollar sign) The dollar sign remains in the edited field in the
position where written unless it appears immedi-
ately to the left of the zero suppression symbol

(see rule 6).

)

Format b: The data contents of the A field are edited and stored in the field specified by the
contents of the B-address register (BAR) according to the rules outlined above.

Format c: The data field specified by the contents of the A-address register (AAR) are
edited and stored in the field specified by the contents of BAR according to the
rules outlined above.

8-105 #2-139

SECTION VIII. INSTRUCTIONS

WORD MARKS

Formats a, b, and c:

Both the A field and the B field must have defining word marks. The A-field word
mark terminates the transfer of data from the A field. The B-field word mark
terminates the edit operation if no zero suppression symbol is sensed in the edit
control word or if automatic dollar sign insertion is specified in conjunction with
zero suppression. The B-field word mark is erased after terminating the edit.

If zero suppression is specified, a word mark is automatically set in the location
containing the zero suppression symbol. When this word mark is sensed during

the reverse scan associated with the zero suppression operation, it is erased

and, if automatic dollar sign insertion is not called for, the edit operation terminates.

ADDRESS REGISTERS AFTER OPERA TION

Unspecified
NOTES

1. The zone bits in the units position of the A field are cleared to zero when
moved to the B field. Therefore the value of the character in the units
position in the A field may change when moved to the B field., For example,
an F in the units position of the A field will appear as a 6 in the result field.

2. Floating dollar sign insertion and automatic asterisk insertion can not be
performed in the same edit operation.

3. The contents of the variant register are unspecified following the execution
of this instruction. Therefore, an instruction requiring a variant character
cannot be chained following an MCE instruction.

EXAMPLES!

Data Field (A Field) (0000099
Control Word (B Field) (®) bb, bb0, bb& &0
Result of Edit .99 T
Example 1.

Data Field (A Field) @) 5454986
Control Word (B Field) (®) bbabb&bbb
Result of Edit 254 54 986
Example 2,

Data Field (A Field) @ 004506
Control Word (B Field) ® b, bb0. bb&CR*
Result of Edit $ 4.50 *
Example 3.

1The character (378) is shown as an ampersand (&) in these examples. However, the ampersand
is not the only equivalent of 37_ as shown in Table B-6.

8
8-106 #2-139

SECTION VIII. INSTRUCTIONS

Data Field (A Field) (0 0897445
Control Word (B Field) (®bbb, b$0. bb
Result of Edit $8,974.45
Example 4.

Data Field (A Field) (0010450
Control Word (B Field) (Bb, b*0.bb
Result of Edit *%%104, 50
Example 5.

8-107 #2-139

«PERIPHERAL DATA TRANSFER
¢ PERIPHERAL CONTROL AND BRANCH

8-109

#2-139

SECTION VIII. INSTRUCTIONS

INPUT/OUTPUT CONTROL OPERATIONS

' Effective control over data transfers between the central processor and peripheral units
and over the peripheral units themselves is maintained by the use of two basic instructions: Pe-
ripheral Data Transfer (PDT), and Peripheral Control and Branch (PCB). The PDT instruction
is used to initiate data transfer operations and certain other related operations, such as back-

space magnetic tape and advance the printer form.

The PCB instruction can perform four distinct functions: (1) it initiates strictly mechanical
(non-data transfer) operations such as magnetic tape rewinds and card rejections; (2) it causes a
program branch to be performed contingent upon the settings of peripheral condition indicators;
(3) it changes the operational mode of a peripheral control; and (4) it allows a peripheral control
to interrupt (or directs the control not to interrupt) the central processor when data transfer is

completed.

Detailed programming and operating information for Series 200 peripheral devices is pro-
vided in separate publications. The remainder of this section is a summary of the PDT and PCB
instructions, based on the assumption that the user is familiar with the contents of the applicable
documents. In all applicable cases, the coding summary for a device is followed by a reference

to the specific Honeywell manual or information bulletin where additional information can be found.

SELECTING RWC ASSIGNMENTS FOR USE IN PDT INSTRUCTIONS

As described below, the first control character (Cl) in a PDT instruction is referred to as
the "read/write channel assignment." This six-bit character specifies the read/write channel(s)
selected to complete the data path (see also pages 1-16 and 2-13). When coding a PDT instruction,
the programmer may enter Table 8-24 to select an RWC assignment. The following discussion
concerns the considerations involved in selecting RWC assignments and the correspondence

between achievable data transfer rates and RWC assignments.

Considerations in Selecting RWC Assignments

At least four factors must be considered when selecting an RWC assignment. These factors
are: (1) the data transfer rate of the device being addressed; (2) the processor being used; (3)

the I/O sector to which the device is attached; and (4) the necessity of being upward compatible.

DEVICE DATA TRANSFER RATE ‘
The first consideration in selecting an RWC assignment is the rated speed at which the de-
vice being addressed transfers data to or from main memory. The one or more RWC's assigned

to an operation must receive memory accesses often enough to keep up with the I/O data transfer

8-110 ' #2-139

SECTION VIII. INSTRUCTIONS

rate of the device. For example, the RWC assignment used in a PDT instruction which ad-
dresses a Type 258 Disk Pack Drive must designate a data transfer capacity high enough to keep

pace with the device's 208, 000-character-per-second transfer rate.

However, due to mechanical tolerances, some devices may transfer data at instantaneous
rates higher than their nominal transfer rates. In a few such cases, the devices require an
RWC assignment having a greater data handling capacity than would be required if the nominal
data transfer rate were maintained. As an example, a Type 204B-5 tape drive using a density
of 556 bits per inch requires an RWC assignment having a data handling capacity of 167, 000
characters per second, even though the nominal transfer rate for this device is less than

83, 300 characters per second.

Table 8-23 lists the minimum RWC capacity requirements for each Series 200 peripheral

device,

Table 8-23. Minimum RWC Capacity Requirements for Series 200 Peripheral Devices

T

204A-1 Magnetic Tape Unit 83.3 KC
204A-2 Magnetic Tape Unit 167 KC
204A-3 Magnetic Tape Unit 167 KC
204B-1, -2 Magnetic Tape Units

200/ 556 bpi 83.3 KC
204B-3, -4 Magnetic Tape Units

200/556 bpi 83.3 KC
204B-5 Magnetic Tape Unit

200 bpi 83.3 KC

556 bpi 167 KC
204B-7 Magnetic Tape Unit

200/556/800 bpi 83.3 KC
204B-8 Magnetic Tape Unit

200/556 bpi 83.3 KC

800 bpi . 167 KC
204B-9 Magnetic Tape Unit :

200/556 bpi 83.3 KC

800 bpi 167 KC

1200 bpi 167 KC

204B-11, -12 Magnetic Tape Units

200/556 bpi 83.3 KC
204C-13, -14 Magnetic Tape Units 83.3 KC ‘
206 Printer 167 KC
214-1 Card Punch 83.3 KC

8-111 #2-139

SECTION VIII. INSTRUCTIONS

Table 8-23 (cont). Minimum RWC Capacity Requirements for Series 200 Peripheral Devices

214-2 Card Reader/Punch : v
Read 83.3 KC
Punch 1 83.3 KC

222 Printers (All Models) 167 KC

223 Card Reader 83.3 KC

223-2 Card Reader 83.3 KC

224-1, -2 Card Reader/Punch
Read 83.3 KC
Punch 83.3 KC

227 Card Reader-Card Punch
Read 167 KC
Punch 167 KC

232 MICR Reader-Sorter and Control 83.3 KC

233-2 MICR Control 83.3 KC

209 Paper Tape Reader 83.3 KC

209-2 Paper Tape Reader ‘ 83.3 KC

210 Paper Tape Punch 83.3 KC

212 On-Line Adapter 167 KC

212-1 Central Processor Adapt‘er 167 KC

213-4 Time-of-Day Clock 83.3 KC

220-1, -2, -3 Consoles 83.3 KC

234 Calcomp Plotter Control 83.3 KC

235 Optical Journal Reader Control 83.3 KC

237 Bill Feed Printer Control 167 KC

258 Disk Pack Drive 250 KC

259 Disk Pack Drive 250 KC

259A Disk Pack Drive 167 KC

259B Disk Pack Drive 167 KC

261 Disk File 250 KC

262 Disk File ’ 250 KC

270 Random Access Drum Storage _ 167 KC
(All Models)

281 Single-Channel Communication 83.3 KC
Controls? (All Models)

286-1, -2, -3 Multi-Channel Communi- 83.3 KC
cation Controls :

286-4, -5 Message-Mode, Multi-ChanneH 83.3 KC
Communication Controls

287 AUTODIN Communication Control? 83.3 KC

287-1 USASCII AUTODIN Communication 83.3 KC
Control?

lWhen a 222-3, -4, -5, or -6 printer is equipped with the Print Buffer (Feature 036),
the transfer rate must be either 83,3 KC or 167 KC.

2The 281-2F, 287, and 287-1 controls require exclusive assignment of two 83,3 KC
RWC's when operating in full-duplex mode.

3The maximum RWC capacity that can be assigned to a 286-4 or 286-5 is 167 KC.

8-112 #2-139

SECTION VIII. INSTRUCTIONS

THE PROCESSOR BEING USED

Each Series 200 processor except the 1201 and 1251 comes with a basic and an expanded I/O
configuration. TheseI/O configurations include different numbers of RWC's. Clearly, then, the
identity of the processor being used and whether or not it is an expanded configuration will help
to determine what RWC assignments are available for use. For example, in the basic (3-chan-
nel) Type 201-2 processor, eight RWC assignments are available. Input/output operations pro-
ceeding at rates up to 167,000 characters per second can be handled on individual channels by
designating either of two RWC assignments available for each channel. Two RWC assignments
are provided for interlocking channels to handle rates of up to 333, 000 and 500, 000 characters
per second, respectively. Adding Feature 016 to a Type 201-2 allows the use of two additional
RWC assignments: one to increase I/O flexibility by permitting a fourth simultaneous I/O opera-
tion, and the other to interlock two channels in such a way as to achieve a 250, 000-character-
per-second transfer rate. Note that the maximum data transfer rate (all channels) achievable

with the expanded I/O configuration remains 500, 000 characters per second,

As indicated in Section II, Type 420l processors are equipped with variable-speed read/
write channels., No more than two RWC's (a primary and the corresponding auxiliary) are ever
made busy by a single RWC assignment. RWC's not made busy by a high-speed transfer are
available for use in other operations. For example, in a basic 4201, a 250, 000-character-per-
second transfer from an I/O device in Sectbr 1 can be handled using RWC assignment 55g and
only RWC 3 will be tied up. The other three sector 1 RWC's will still be available for use in

other operations, e.g., three 83, 300-character-per-second transfers.

The "sector escape' code feature of the Type 4201 (used in both PDT and PCB instructions)
makes variable-speed read/write channels even more attractive. An escape code allows an
RWC normally restricted to operating in one sector to be used for I/O transfers in another sec-
tor. For example, an escape code can be used to assign RWC 1, normally used only in sector

1, to a data transfer in sector 2.

This facility enables the programmer to transfer RWC's temporarily to a sector perform-
ihg several low-speed operations from another sector in which one or two operations are using
the sector's entire data handling capacity, For example, escape codes could be used in a basic
4201 to perform simultaneously the operations indicated in Figure 8-9. In this example, escape

codes are used to enable RWC's 1 and 1' to operate in sector 2.

8-113 #2-139

SECTION VIII. INSTRUCTIONS

ot

167,000 char/sec
333,000 char/sec
83, 000 char/sec
83,000 char/sec
83,000 char/sec
83,000 char/sec
83, 000 char/sec
83,000 char/sec

OO0Vt WD~
NNV IVNDNDNVDN = =
B == W

Figure 8-9. Example of Operation Utilizing Escape Codes

INPUT/OUTPUT SECTOR TO WHICH DEVICE IS CONNECTED
Each input/output sector ina Series 200 processor has a maximum total data transfer capacity.
For Model 200, 1200, 1250, and 2200 processors, this maximum is 500, 000 characters per

second. Sector 3 of an expanded 4201 processor can handle up to 333, 000 characters per second.

The identity of the I/O sector towhichthe addressed deviceis connectedalsobecomes a factor
when selecting RWC assignments for expanded Type 2201 processors and fe;)r alll25] and 4201 proc-
essors. In general, the RWC assigned to an operation should be associated with the sector to
which the addressed device is connected. However, as indicated above, this rule can be circum-

vented to advantage in 4201 processors by the use of escape codes.

UPWARD COMPATIBILITY

Because of the manner in which upward compatibility has been consistently implemented in
Series 200 processors, very little consideration need be given to this factor when selecting RWC
assignment codes. The one case where such consideration must be given is when assigning a
primary RWC for which there is no corresponding auxiliary channel in the processor being pro-
grammed to an operation.faster than 83, 300 characters per second. An example of such a case
is the assignment of the single channel RWC 1 to a drum read operation (102, 000 characters per
second) to be performed in a basic (3~channel) Model 200 processor. In the basic processor,
RWC 1 can handle transfer rates up to 167, 000 characters per second. However, in an expanded
Model 200, RWC's 1 and 1' can handle only 83, 300 characters per second apiece unless they are
interlocked. Thus, if the attempt were made to run the basic 200 program on an expanded 200,

the RWC 1 alone would not be able to handle the drum's transfer rate.

8-114 #2-139

SECTION VIII. INSTRUCTIONS

In order to avoid such problems, the following general rule should be followed:

The RWC assignment in a PDT instruction addressing a device which operates
between 83, 300 and 167, 000 characters per second should be such that it would
interlock the primary channel and its auxiliary if the program were runina
processor equipped with both channels; i.e., its high-order digit should be 5o0r 7.

Clearly, there is no need to specify the ''interlock' assignment if the device runs slower than

83, 300 characters per second. Rather, in the interest of making more RWC's available for use

in other operations, it is often wise in such cases to specify the single-channel assignment.

PDT IPERIPHERAL DATA TRANSFEE{J

FORMAT

(1/0 CONTROL CHARACTERS)

OP CODE A ADDRESS Cl Cc2 C3 Cn

1 gmm———n ===]
[S — J4 | SR]

OP CODE A ADDRESS Cl CE c2 - C3 Cn

FUNCTION

Format a:

Format b:

m———— ===

The PDT instruction causes data to be transferred between a peripheral device and
the main memory area whose leftmost location is designated by the A address. Data
transfer is terminated according to the data medium employed. Input/output control
characters specify the data path through which the transfer is to be é,ccomplished, as
indicated in Tables 8-24 and 8-26,

Data is transferred between a peripheral device and the main memory area whose
leftmost location is designated by the A address. Data transfer is terminated ac-
cording to the data medium employed. Input/output control characters and an escape
code specify the data path through which the transfer is to be accomplished, as indi-
cated in Tables 8-24, 8-25, and 8-26.

8-115 ’ #2-139

SECTION VIII. INSTRUCTIONS

Table 8-24. Description of PDT I/O Control Character Cl
(Read/Write Channel Assignment)

Type 201, 201-1 Processors

With Feature
1115

Sector 1 same as Type 201-2 with Feature 016.

Sector 2 same as Type 1251,

167, 000 1 51
Basic (167, 000 2 52
167,000 3 53
83,000 1 11
[With Feature 83, 000 l‘ 15
016 167, 000 1,1 51
Type 201-2 Processor
167, 000 1 51
167, 000 2 52
Basic 167,000 3 53
333,000 2,3 2 56
500, 000 1,2,3 54
83,300 1 11
. < 83,300 1! 15
[/ ith F eature 167, 000 I1 51
250, 000 1,3 55
Type 1201 Processor
Same as Type 201-2 with Feature 016.
Type 1251 Processor
Sector 1
[83,300 1 11
83,300 1! 15
167, 000 L1 51
|167,000 2 52
Basic < |167,000 3 3 53
250, 000 14,3 55
333, 000 2,33 56
500, 000 1,1,2,33 54
Sector 2
83,300 4 31
83,300 4! 35
With Feature <167,000 4, 4! 71
1115 167,000 5 72
167, 000 6 73
250, 000 4,64 75
333,000 5, 6% 76
500, 000 4,9,5,6% 74
Type 2201 Processor
Basic Same as Type 201-2 with Feature 016,

8-116

#2-139

SECTION VIII, INSTRUCTIONS

Table 8-24 (cont)., Description of PDT I/O Control Character Cl
(Read/Write Channel Assignment)

Type 4201 Processor
Basic Sector 1 same as Type 201-2 with Feature 016,
Sector 2 same as Type 2201 with Feature 1115.
" Sector 1
83, 300 1 11
83, 000 2 12
83,000 3 13
83, 000 1! 15
83, 000 2! 16
83, 000 3! 17
250, 000 2 50
167, 000 1,1! 51
167,000 2, 2! 52
167,000 3,3 53
250, 000 3 55
333, 000 3 56
500, 000 3 54
Sector 2
83, 300 4 31
83, 000 5 32
With Feature 83, 000 6 33
1116 < 83, 000 4! 35
83, 000 5! 36
83, 000 6' 37
250, 000 5 70
167, 000 4, 4' 71
167, 000 5, 5! 72
167, 000 6,6 73
250, 000 6 75
333, 000 6 76
500, 000 6 74
Sector 3
83, 300 8 22
83, 000 9 23
83, 000 8! 26
83, 000 9! 27
167, 000 8, 8! .62
167, 000 9,9 63
333,000 9 66
1Un‘derlined numbers identify the RWC whose corresponding starting and current location
counters (SLC and CLC) are used in the operation.
2In processors equipped with RWC 1', that channel is also interlocked.
3Uses RWC 3 for address storage during data transfer.
4Uses RWC 6 for address storage during data transfer.
Note: RWC 2 cannot be active while RWC 5 is active, nor can RWC 3 be active while
RWC 6 is active,

8-117 #2-139

SECTION VIII. INSTRUCTIONS

Escape Code (CE)

The escape code is part of format b. of the PDT instruction. If the second control char~
acter is one of the escape codes shown in Table 8-25, the read/write channel(s) designated by Cl
is assigned to an I/O operation in the sector indicated by the escape code. The addressed device

must be connected to this sector.

Table 8-25., Description of PDT I/O Character CE (Escape Code)

10 Sector 1
12 Sector 2
13 Sector 3

Table 8-26, Description of PDT I/O Control Character C2 (Peripheral Control Designation)

Cc2 PERIPHERAL CONTROL DESIGNATION: This six~-bit character speci-~
fies the logical address of the peripheral control to be used in the data
transfer.

C2

XXX XXX|

Peripheral Control Address Bits

Sector Bits .

Input/Output Bit

Input/Output Bit: This bit specifies the direction of data transfer when
a peripheral control capable of both reading and writing is involved in
the transfer., When such a bidirectional control is used,

0 = transfer data from memory to the peripheral control (output),
1 = transfer data to memory from the peripheral control (input).

Specific communication controls and the Type 212 On-Line Adapter are
exceptions to this rule (see Table 8-27).

The input/output bit can be either zero or one in the logical address of
unidirectional peripheral control (e.g., a printer). However, if com-
patibility with the Type 8201 processor is desired, 1 and 0 must be
specified, respectively, for input and output devices.

Sector Bits: These bits apply only to the Models 1250, 2200, and 4200 and
specify the sector in which the peripheral control is connected. They are
specified as follows:

Models 1250 and 2200 Model 4200
Sector 1 00 00
Sector 2 . 10 10
Sector 3 _—— 11

8-118 : #2-139

SECTION VIII. INSTRUCTIONS

Table 8-26 (cont). Description of PDT I/O Control Character C2
(Peripheral Control Designation)

C2 Sector bits must always be zeros in Model 200 and 1200 peripheral ad-
(cont) dresses.

Peripheral Control Address Bits: These three bits, in conjunction with
the preceding three bits, identify the address of the peripheral control
involved in the operation. It is recommended that the following octal
configurations be used for control character C2 in order to provide uni-
formity among Series 200 installations:

Peripheral Control " Octal Address!

Magnetic Tape Control2 00 (output)
40 (input)

Paper Tape Reader or Card Reader3 41

Paper Tape Punch or Card Punch3 0l

Printer 02

Type 212 On~Line Adapter 42

Console . 07 (output)
47 (input)

Disk Control 04 (output)

’ 44 (input)

1

C2 configurations are made up of (1) the input/output bit and (2) the peripheral control address
bits. In Series 200 systems in which sector designations apply (viz., the Models 1250, 2200,
and 4200), the specification of the sector bits may alter these recommended configurations.

2In Series 200 installations containing both 1/2-inch and 3/4-inch magnetic tape systems, the
recommended addresses of 00 and 40 should be assigned to the 1/2-inch tape control.

In Series 200 installations containing a card reader/punch unit, these recomimended addresses

apply. However, if the installation contains a second card reader, the reader portion of the
card reader/punch should be assigned the address 43g and the second card reader assigned

the address 418.

Additional Parameters (C3 through Cn)

The specific use of these control characters is dependent upon the type of peripheral device

addressed. A summary of coding for these characters may be found in Tables 8~27 through 8-33.

PUNCTUATION MARKS

The execution of this instruction neither affects nor is affected by word marks or
item marks. However, record marks may terminate the data transfer, depending
upon the device used and the operation performed (see the specific Honeywell
publications).

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR

A B
NXT p

8-119 #2-139

SECTION VIII. INSTRUCTIONS

NOTES

1. If either the read/write channel or the peripheral control (specified by
Cl and C2, respectively) is found '"busy" during the extraction of a
PDT instruction, the instruction is re-extracted: the contents of SR are
set back to the address of the PDT op code, and the extraction process
begins again. This process, which allows the processor to respond to
interrupt signals that may occur while the PDT instruction is awaiting
the-availability of a read/write channel or peripheral control, is not
performed in the Type 201 and 201-1 processors; PDT extraction in
these two processors waits until the busy channel or control is available.

2. The PDT op code is a "'privileged' op code when used in a Type 1201, 1251,
2201, or 4201 processor equipped with the Storage Protect Feature (see
Appendix E),

3. Format b. of the PDT instruction is applicable only to Type 4201 processors.

4. Unspecified central processor activity can occur when an attempt is made
to execute a PDT instruction having a read/write channel assignment (C1)
of zero., It is therefore imperative that every PDT instruction contain some
legal RWC assignment. :

5. Control character Cl of a PDT instruction is stored in the variant register.

EXAMPLE

Read a card into the 80-character image area tagged CREAD. Use RWC2 and
assume that the card reader control is assigned to the logical address of octal 41.
Note that the data transfer rate in a card reading operation is less than 83, 300
characters per second,

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE __-OF
aro 1Y §| Location oelia OPERANDS
I 213 415(6(7(8 ¢ l@la N 20{2i N 1 Lo a 1 P . 1 N | 62|63 | N N 1l 80
g . PDT . . CREAD, 12 41 . R N
Bl I : L) L el L R R NP I -

Table 8-27. Summary of PDT I/O Control Characters

READ XX XX none none none none
PUNCH XX XX none none none none

e: Type 223 Card Reader (Order No, 504), Type 214-1 Card Punch (Order No. 451), Type 214-2 Card Reader/Punch (Order No, 432), Type 224
Card Reader/Punch (Order No. 506) or Type 227 Card Reader/Punch (Order No. 564)

CARD

w
3

READ XX XX See Table none none none,
&) g !
A& 8-28 (page
< -
= 8-124)
[+ PUNCH XX XX See Table none none none
[E‘, 8-29 (page
E 8-124)
Spse: Types 209, 209-2, and 210 Paper Tape Equipment (Order No. 507)
B TPRINT X X X X See Table hone none nonie
g 8-30 (page
E 8-125)

See: Tge'zzz Printers (Order No. 562)

8-120 “ #2-139

SECTION VIII.

INSTRUCTIONS

Table 8-27 (cont).

Summary of PDT I/O Control Characters

READ FORWARD XX xlx [none none none
(D=tape drive,
0-17)
READ REVERSE XX x! x 2 D4 none none none
{Feature 010 or 011) (D=tape drive,
o 0-7)
2
= |WRITE XX X2 x 2 D® none none none
Q (D=tape drive,
- 0-7)
'Bi
< |SPACE FORWARD X X x1 x 4D none none none
B (D=tape drive,
O 0-7)
H
% BACKSPACE XX x! x 0D none none none
0] . .
{D=tape drive,
é 0 - 7)
ERASE XX X2x 0D none none none
(D=tape drive,
0 - 7)

See: Type 204B Series Magnetic Tape Unit (Order No. 503), Types 204B-11 and 204B-12 Magnetic Tape Units (Order No. 502), or Types 204C-13 and
204C-14 Magnetic Tape Units (Order No. 623))
READ FORWARD XX x! x 6 D none none none

(D=tape drive,
0 - 3)
oo}
Y |READ SUPPRESSING XX x! x 5D co none none
Y |CHANNEL {D=tape driyve, {(C=channelto
3 0 -3) be suppressed)
L2l
E WRITE XX X2 x 6 D none none none
< (D=tape drive,
b 0 - 3)
%))
3
@ |sKkiP WRITE XX X2 x 4D none none none
5 (D=tape drive,
é 0 - 3)
BACKSPACE XX X1 X oD none none none
(D=tape drive,
0 -3)
See: Honeywell Series 200 Equipment Operators' Manual (Order No, 040), or Type 204A Series Magnetic Tape Units (Order No. 863)
SEARCH AND READ XX x! x ‘See Table 0T T T, SS
2-21917(;3age 9-bit track ad- Sector ad-
i dress numbered dress num-
0 - 777 (octal) bered 0 -
47 (octal)
;E; READ XX xl x See Table none none none
"Q‘ 8-31 (page
7)) 8-125)
2
U |SEARCH AND WRITE XX X2 x See Table 0T TT sSs
O -
< ; iés()tmge 9-bit track ad- Sector ad~
3 - dress numbered dress num-
Q 0 - 777 {octal) bered 0 -
Z 47 (octal)
< g
& |WRITE X X X¢ X See Table none none none
8-31 (page
8-125)
READ ADDRESS REGISTER X X xlx See Table none none none
8-31 (page
8.125)

See: Type 270 Random Access Drum and Control {Order No. 009)

8-121 #2-139

SEC'TION VIII.

INSTRUCTIONS

Table 8-27 (cont).

Summary of PDT I/O Control Characters

DISK DEVICES

LOAD ADDRESS REGISTER XX X¢x 04 none none none

STORE ADDRESS REGISTER XX x! x 04 none none none

WRITE INITIAL X X x2x 00or none none none
10 %

EXTENDED WRITE INITIAL XX XZ X 20or none none none
30%

WRITE XX x2 X - 01or none none none
11 %

EXTENDED WRITE XX X2 X 21or none none none
31 %

SEARCH AND WRITE XX X2 x 0Z2or none none none
12%

EXTENDED SEARCH AND XX x2 X 2 2or none none none

WRITE 32

SEARCH AND WRITE NEXT XX x% x 0 3or none none none
13

EXTENDED SEARCH AND XX X2 x 230r none none none

WRITE NEXT 33

SEARCH AND READ XX x! x 02or none none none
12%

EXTENDED SEARCH AND X X x1 x 2 2o0r none none none

READ 32%

SEARCH AND READ NEXT XX x! x 03or none none none
13 %

EXTENDED SEARCH AND XX x! x 23or none none none

READ NEXT 33 %

READ INITIAL XX x! x 00or none none none
10=*

EXTENDED READ INITIAL XX x! x 2 0or none none none
30

READ XX x! x 01or none none none
11%*

EXTENDED READ XX x! x 2lor none none none
31 %

See:

* Reading/writing is verified.

Disk Devices and Controls (Order No. 514)

8-122

#2-139

SECTION VIII.

INSTRUCTIONS

Table 8-27 (cont).

Summary of PDT I/O Control Characters

T

UTPUT OPERATION

PDT 1/O CONTROL CHARACTER'

I C1 c2 L C3 - C4 c5]
i Il READ/ WRITE | CONTROL UNIT ADDITIONAL. ADDITIONAL * ADDITIONAL
; | 3
| | CHANNEL PARAMETERS | .PARAMETERS PARAMETERS
READ (NO CARRIAGE XX x1 x 00 none none none
RETURN)
9 1
é READ (CARRIAGE RETURN) XX X' X 01 none none none
S | WRITE (NO CARRIAGE X X X2 X) none none none
§] RETURN)
WRITE (CARRIAGE RETURN) XX X2 x 01 none none none
See: Control Panels and Consoles (Models 200/1200/1250/2200), (Order No, 453)
TRANSFER 1D character to XX XX 4X none none none
Series 200 memory. (X=unused)
| ACCEPT the H-800/1800 in- XX XX 00 none none none
struction, defined in the ID
M register. 7
0]
E: ACCEPT the H-800/1800 in- XX XX 04 none none none
E struction defined in the ID
< |register, and cause the H-800/
[| 1800 to branch to U+3 or U+5.7
4
:li DO NOT ACCEPT the H-800/ XX XX 1U none none none
Z | 1800 instruction defined in the (U = any value
o ID register; rather, cause from 1 - 7, octal)
the H-800/1800 program to
branch to U+6 or U+7 (read
or write error).
SET the device busy indicator. 7 XX XX 3X none none none
(X=unused)
See:; Model 212 On-Line Adapter (DSI-274)
g RECEIVE XX x! x none none none none
Q
5]
:n; 8 TRANSMIT XX X2 X none none none none
0
=
TRANSFER TIME TO XX XX none none none none
' v | MEMORY
B
29
g0
B
a
TRANSFER DATA XX XX none none none none

ENTRAL PROC-
SSOR ADAPTER

C
E

®
@
e

: Type 212-1 Central Processor Adapter (Order No. 239)

8-123

#2-139

SECTION VIII. INSTRUCTIONS

Table 8-27 (cont). Summary of PDT I/0O Control Characters

)
&
2 TRANSFER DATA XX XX none none none none
(o]
7]

232 and
233-2

See: Type 233-2 MICR Control (Order No. 464)
2 o

PLOT XX XX none none none . none

TRANSFER DATA XX XX none none none none

OPTICAL JOURNAL { PLOTTE
READER CONTROL |CONTRO

PRINT XX XX See Table none none none
8-30

PRINTER
CONTROL

BILL FEED

See: Type 237 Bill Feed Printer Control (Order No. 194)

NOTES: 1. The high-order bit must be 1.
2. The high-order bit must be 0. '
3. Odd parity is assumed. If even parity is required, the first octal character should be 7.
4, Odd parity is assumed. If even parity is required, the first octal character should be 3,

5. Odd parity and short gap are assumed, The first octal character should be 3 for even parity, short gap; 6 for odd parity, long gap;
7 for even parity, long gap.

6. D (tape drive) = 0-3 when the instruction is issued to the Type 203B-5 Tape Control. D = 0 or 1 when the instruction is issued to the
Type 203C-7 Tape Control.
7. This operation issues initiating and concluding device-ready responses.,
8. A complete plot can be executed by a single PDT instruction.
Table 8-28. C3 Coding for Type 209 and 209-2 Paper Tape Readers R
-
e
N
RO

1 Not used Qne character Sense end Check odd Read Increment
per frame of record parity Forward CLC
0 Not used Two charac- Do not Check even |Read Re- Decrement
ters per frame sense end parity verse (Fea- CLC
of record '{c)ul.'rgloll)o

Table 8-29, C3 Coding for Type 210 Paper Tape Punch

1 Not used One character Not used Compute odd | 00 = Do not punch parity
er f ity
: per lrame parity 01 = Parity bit in chan-
0 Not used Two charac- Not used Compute nel six
ters per frame even parity 10 = Parity bit in chan-
\ nel seven
11 = Parity bit in chan-
nel eight

8-124 ‘ #2-139

SECTION VIII. INSTRUCTIONS

Table 8-30. C3 Coding for Types 206 and 222 Printers and Type 237 Bill Feed Printer Control

C3 INTERPRETATION C3 INTERPRETATION

00nnnn Print, then space the number of lines | 00nnnn | Print, then space the number of
specified by nnnn (1 - 15). lines specified by nnnn (0 - 15).
Olnnnn Print, then space to the head of the Olnnnn | Print, then space to channel one of
form if the end of the form is sensed; the format tape (HOF) if channel two
otherwise, space the number of lines of the format tape (EOF) is sensed;
specified by nnnn (1 - 15). otherwise, space the number of
lines specified by nnnn (0 - 15).
1lnnnn Do not print; space the number of 1lnnnn | Do not print; space the number of
lines specified by nnnn (1 - 15). [lines specified by nnnn (0 - 15).
100011 Print, then space to the head of the 100xxx | Print, then space to channel xxx, é
form. - 101xxx | Do not print; space to channel xxx.
101111 Do not print; space to the head of 000 | Channel 3
the form. 001 | Channel 4

010 | Channel 5
(011 | Channel 1 (Head of form)
100 | Channel 6
101 | Channel 7
110 Channel 8
111 | Channel 1 (Head of form)3

1Control characters are the same with or without the presence of the Print Buffer (Feature 036)
in the printer.

2
The basic Type 222-5 Printer can only space to channel 1; i. e., xxx must be 011 or 111,
_— However, when equipped with Feature 1036 (8-channel Vertical Format Tape) this printer
*Z. ..} Tan space to any of the channels listed.

3In the 237 control, space to head of form if Read PDT has been received.

Table 8-31. C3 Coding for Type 270A Random Access Drum

i

1 Override | Increment drum This is a Read
address register Address Regis-
ter instruction Drum file designation
0 Do not Do not increment | This is not a Read 0 - 7 (octal)
override | drum address Address Register
register instruction

8-125 , #2-139

SECTION VIII. INSTRUCTIONS

Table 8-32. Summary of PDT I/O Control Characters for Type 286 Multi-Channel
Communication Control

FIRST DATA TRANSMISSION PDT LocC
(specifies '"line 0" X x|[x!x none
in 286)
Q | RECEIVE DATA PDT LOC+2 x x|x!x none
[$) (specifies line ad-
p= dress in 286)
)
! TRANSMIT DATA PDT LOC+2 X x|[x2x none
o (specifies line ad-
! dress in 286) '
7 | LINE CONTROL PDT LOC X X|X2 X none
*® (specifies address of
[line to be controlled)
& NOTE: The line con- .
) trol transmission PDT
instructions are listed
in Table 8-33, below.
8 TRANSMIT (Load/test state Leftmost character of X X | X2 X |Section address
n only) field from which data or line number,
0
a = is transferred. 00g - 63g.
E [S RECEIVE (Load/test state Leftmost character of X X | X! X |Section address
<« g only)’ field to which data is or line number,
Bé b.:‘ transferred. 00g - 63g.
: U | ASSIGN RWC AND LOAD SLC Leftmost character of XX|XX none
&) ﬁ (Initialized or off-line state 5-character status
& Eﬁ only) field storing interrupt
S information.
NOTES: 1. The high-order bit must be 1.
2. The high-order bit must be 0,

10

Table 8-33, Type 286-1, -2, -3 Line Control Instructions

Transmit last
character

acter).

Inform the 286 that the last character has
been sent from the central processor, and
place the control unit in the receive mode
for that line (after transmitting last char-

60

Receive clear

286 memory.

Reset the bits of the logic character in the
(This instruction should be
given when power is first turned on,)

8-126

#2-139

SECTION VIII. INSTRUCTIONS

Table 8-33 (cont).

Type 286~1, -2, -3 Line Control Instructions

30 Inhibit 285 (service Turn off the interrupt capability of a line that
request) is requesting service (either input or output).
50 Transmit idle Repeat the previously provided character
character indefinitely, without interrupts. ‘
40 Transmit Stop the line from repeating character and
cause an interrupt.
74 Move Longitudinal Move the LRC character from the LRC regi-
Redundancy Check ster to the data buffer register (Feature 087).
(LRC) Character
34 Special Strobe Activate the special strobe line to a Type 285
adapter via the Type 286 control.
NOTE: The control code is stored in location LOC+1. (The low-order two bits of

_ this code must be 0.)

| PCB JPERIPHERAL CONTROL AND BRANCH]

FORMAT

OP CODE

A ADDRESS

(1/0 CONTROL CHARACTERS)
Cl c2 Cc3 Cn

OP CODE

A ADDRESS

B

Cl CE ca2 Cc3 Cn

H I N
I .

8-~127 #2-139

SECTION VIII. INSTRUCTIONS

TYPES OF TEST AND CONTROL OPERATIONS

The Peripheral Control and Branch instruction can initiate four types of operations:
(1) strictly mechanical peripheral device operations; (2) test and branch operations;
(3) mode change operations; and (4) peripheral interrupt operations.

1. A mechanical operation is a non-data transfer operation such as rewind
magnetic tape or seek a disk pack drive cylinder.

2. A test and branch operation tests the status of a peripheral control and/
or a read/write channel(s). If the condition being tested (e.g., pe-
ripheral control busy, error in last card punched) is present, a program
branch is performed. ‘

3. A mode change operation conditions the addressed peripheral control to
operate in a specific mode. For instance, the card reader control can
_be conditioned to reject illegally punched cards, to generate a busy signal
if illegally punched cards are read, or both, depending upon the control
characters of the PCB instruction.

4, A peripheral interrupt operation directs a peripheral control to change
the setting of an interrupt function or an allow interrupt function (see
Appendix D),

Control character Cl designates a read/write channel or combination of channels
whose busy status is to be tested. If an RWC busy test is not desired, Cl must
contain zeros. C2 designates the logical address of the peripheral control to be
tested or actuated. The coding of this character is the same as its coding for a
PDT instruction (see Table 8-26, page 8-118). ,

Control characters C3 through Cn designate the control and test operations. Any
number of control characters may follow C2, each one designating a different oper-
ation., If control characters within a single instruction designate conflicting opera-~
tions (e.g., punch Hollerith code and punch direct.transcription mode), the control
character to the left is cancelled by a conflicting control character to the right
within the same instruction. If multiple test operations are specified within a single
instruction, a branch will occur if any of the conditions tested is present. The
specific use of characters C3 through Cn is dependent upon the type of peripheral
device addressed. Tables 8-34 through 8-36 summarize the coding of these
characters.

FUNCTION

Format a: The read/write channel or channel combination specified by Cl is tested for busy
status. If it is busy, a branch is made to the instruction at A, If the RWC is not
busy (or if Cl is 00g), the operation(s) specified by characters C3 through Cn is per-
formed on the peripheral control specified by C2. This peripheral control must be
connected to the input/output sector implied by the value of Cl.

Format b: The read/write channel or channel combination specified by C1 is tested for busy
status. If it is busy, a branch is made to A. If the RWC is not busy, the instruction
following the PCB is executed. ’

Format c: The read/write channel or channel combination specified by Cl is tested for busy
status. Also, the sector designated by CE is interrogated to determine whether or
not it has currently available sufficient unassigned memory accesses per unit time
interval to support the I/O data transfer rate implied by C1, i.e., the data handling
capacity of the RWC(s) designated by Cl (see Table 8-24), If the specified RWC is
not busy and the designated sector can handle the data rate implied by Cl1, the oper-
ation(s) specified by characters C3 through Cn is performed on the peripheral

8-128 #2-139

SECTION VIII. INSTRUCTIONS

Format d:

control specified by C2, and the program continues in normal sequence. Other-
wise, a branch is made to the instruction at A. The CE character must designate
the I /O sector to which the peripheral control specified by C2 is connected (see
Table 8-37 page 8-150).

The read/write channel or channel combination specified by Cl is tested for busy
status. Also, the sector designated by CE is interrogated to determine whether or
not it has currently available sufficient unassigned memory accesses per unit time
interval to support the I/O data transfer rate implied by C1, i.e., the data handling
capacity of the RWC(s) designated by C1 (see Table 8-24). If the specified RWC(s)

is not busy and the designated sector can handle the data rate implied by C1, the
program continues in sequence. Otherwise, a branch is made to the instruction at A.

PUNCTUATION MARKS

The execution of this instruction neither affects nor is affected by word marks or
record marks.

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
NXT A B p NO BRANCH
JI (A) A NXT BRANCH
NOTES
1. Formats c. and d. are applicable only to the Type 4201 processor. In order
to produce a meaningful result, Cl must not be zero in these formats.
2. The PCB op code is a ''privileged' op code when used in a Type 1201, 1251, 2201,
or 4201 processor equipped with the Storage Protect Feature (see Appendix E).
3. Control character Cl of a PCB instruction is stored in the variant register.
EXAMPLE
In the following example, assume that the logical address of the card reader control
is octal 41. '
Set the card reader control to read Hollerith code (C3 = 27) and to reject automati-
cally all cards with hole-count errors (C4 = 21). If the device is inoperable, branch
to the location tagged STOP. (Note that since an RWC is not to be tested, Cl1 must
contain zeros.)
EASYCODER
CODING FORM
PROBLEM PROGRAMMER ____ DATE_ . PAGE___OF __
cArRD [V LOCATI OPERATION
NUMBER B[R ON CODE OPERANDS

1 23 4ls5]6f7]8

L 418 2021 1 Lot by L s 5203

+

RCB . [STOP..20 &1, 27.24..

1 s
1 1 1 1 - 1 IR TR
1 1
1 1

1
i 1
1

® N & A b @ N -

1
1
1
- . L L ! PR RPN | 1
L
1

....._P

|
|
|
r
T
[
|
|
|
t

8-129 © #2-139

SECTION VIII. INSTRUCTIONS

Table 8-34. Summary of PCB I/0O Control Characters

Branch to A address if device busy XX XX 10
Branch to A address if punch-check error XX XX 41
Branch to A address Punch Hollerith XX XX 27
L if device unavailable, code4
I ava,11‘ab1e, set con- Punch special code XX XX 26
trol unit to: '
T Punch direct tran- XX XX 25
O scription code (fea~
g ture 064)
g Generate busy sig- XX XX 23
~ nal if punch-check
<
O error
o Offset-stack cards XX X X 21
X with punch-check
™ error
i ,
& Offset-stack the XX XX 31
B card currently at
the punch station
Turn the control allow function OFF X X XX 70
Turn the control allow function ON X X XX 71
Turn the control interrupt function OFF XX XX 74
Branch to A address if the control interrupt XX XX 75
L function is ON
I See: Type 214-1 Card Punch (Order No. 451)
Branch to A address if device busy XX X3 x 10
Branch to A address if cycle-check or punch- XX X3 x 41
2 7 | check error
O
<
O % Branch to A address if illegal punch XX X3 X 42
N
1 2 -
Y % | Branch to A address Terminate punch-feed XX x3x 27
™ g if device unavailable. read operations, op=-
E < | If available, set con- erate in Hollerith
el E trol unit to: mode, and accept all
& 4
other cards
Read or punch special || X X x3 x 26
code
8-130 #2-139

SECTION VIII,

INSTRUCTIONS

Table 8-34 (cont).

Summary of PCB I/O Control Characters

with cycle-check error

Read or punch direct X X x3 x 25
transcription code
(feature 064)
g Generate busy signal XX x3 x 24
K if illegal punch
(m) Generate busy signal XX x3 x 23
Zz if cycle-check or
E punch-check error
E Offset-stack cards XX x3 X 22
g with illegal punches
:j Offset-stack cards XX x3x 21
~ with cycle-check or
2 punch-check error
8 Operate in punch- X X x3 X 20
~ feed read mode
1
) Offset-stack the card || X X x3 x 31
™ currently at the
E punch station
>
® | Turn the control allow function OFF X X X3 X 70
Turn the control allow function ON X X x3 x 71
Turn the control interrupt function OFF XX x3 x 74
Branch to A address if the control interrupt XX X3 X 75
function is ON ’
See: Type 214-2 Card Reader/Punch (Order No. 452)
Branch to A address if device busy XX XX 10
Branch to A address if cycle-check error XX XX 41
N
- 51 Branch to A address if illegal punch XX XX 42
N
A
N
« & |Branch to A address Read Hollerith code XX XX 27
=]
N & |if device unavailable. and accept all error
@ A If available, set con~- cards
f A [trol unit to:’ .
- 6} Read special code XX X X 26
B
Read direct trans- X XX 25
cription code (fea-
ture 044)
Offset-stack cards XX XX 21

8-131

#2-139

WILU L IWUIN VLlle LINODLRUULILLIVND

Table 8-34 (cont). Summary of PCB I/O Control Characters

:";‘ Offset-stack cards

9 with illegal punches

; Generate busy signal XX XX 23
E if cycle-check error

é Generate busy signal XX XX 24
[if illegal punch

g Offset-stack the card X X XX 31
g currently at the read

N station.

34 Turn the control allow function OFF XX XX 70
~

o Turn the control allow function ON XX XX 71
S Turn the control interrupt function OFF XX X X 74
=

R Branch to A address if the control interrupt X X XX 75
: function is ON

See: Type 223 Card Reader (Order No. 504)

Branch to A address if device busy XX X? X 10
Branch to A address if echo-check or read X X X3 x 41
registration errors
Branch to A address if illegal punch XX x3 x 42
Branch to A address Terminate punch-feed || X X X3 X 27
if device unavailable. read operations, op-
If available, set con- .erate in Hollerith
trol unit to: mode, and accept all
error cards
Convert to special code|f| X X X3 X 26
Operate in direct X X x3 x 25
transcription mode
(Feature 064)
3

Generate busy signal || X X x> X 24
if illegal punch

Generate busy signal XX x3 x 23
if echo-check or read
registration errors

Reject cards with XX X" X 22
illegal punches (Fea -
_ture 065)

Reject cards with X X X3 X 21
echo-check or read ‘
registration errors

(Feature 065)
Y

TYPE 224-1, -2 CARD READER/CARD PUNCH

8~132 ' #2-139

SECTION VIII. INSTRUCTIONS

Table 8-34 (cont). Summary of PCB I/O Control Characters

= Operate in punch-~feed X X X3 x 20
5 read mode
0
E Reject card presently XX X3 x 31
g O in the punch station
Z
<
O a Turn the control allow function OFF XX x3 x 70
N
1A
- Eé Turn the control allow .function ON XX x3 x 71
]
(®)
<t
QN | Turn the control interrupt function OFF XX x3 x 74
=
=
& 91; Branch to A address if the control interrupt XX x3 x 75
= § function is ON
See: Type 224 Card Reader/Punch (Order No. 506)
Branch to A address if device busy XX XX 10
Branch to A address if hole-count error XX XX 41
Branch to A address if illegal punch XX X X 4 2
Branch to A address Terminate punch-feed XX XX 27
if device unavailable, read operations (Fea-
If available, set con- ture 062), if appli-
trol unit to: cable, operate in

Hollerith mode, and

g accept all error cards4
2 Read special code XX X X 26
2 Read direct tran- XX XX 25
a scription code (Fea-
sﬂd ture 040)
© Reject cards with X X XX 21
E hole-count errors
= Reject cards with XX XX 22
o illegal he:
- gal punches '
e Generate busy signal XX XX 23
if hole-count error
Generate busy signal XX XX 2 4

if illegal punch

Place previously read XX XX 31
card in middle stacker
(Feature 017)

Place previously read | X X XX 32
card in the read eject
stacker (Feature 017-1)

8-133 ' #2-139

SECTION VIII. INSTRUCTIONS

Table 8-34 (cont). Summary of PCB I/0O Control Characters

~
K]
a
<
9]
‘”Q‘ Turn the control allow function OFF X X X X
= A
8 a Turn the control allow function ON XX X X
o
0
§ = | Turn the control Interrupt function OFF X X X X 4
&) :
[a B Branch to A address if the control interrupt X X X X
: function is ON
See: Type 227 Card Reader/Punch (Order No. 564)
Branch to A address if device busy XX XX
Branch to A address if hole-count error (Fea- X X XX
ture 061)
Branch to A address Terminate punch-feed|| X X XX
if device unavailable. read operations (Fea-
If available, set con- ture 062), if appli-
trol unit to: cable, and punch
Hollerith code?
Punch special code XX XX
Punch direct tran- XX XX
scription code (Fea-
- ture 060
i ur)
O Reject cards with XX XX
Z
] illegal punches (Fea-
g“ ture 062)
~ Reject cards with XX XX
< J
(@) hole-count errors
5 (Feature 061).
o Punch-feed read X X X X
gj operations (Feature
[062)
Place previously XX XX
punched card in
middle stacker
(Feature 017)
Place previously XX XX 2
punched card in the
punch eject stacker
(Feature 017-1)
Turn the control allow function OFF XX XX 0
Turn the control allow function ON XX XX

8-134

#2-139

SECTION VIII. INSTRUCTIONS

Table 8-34 (cont). Summary of PCB I/O Control Characters

Turn the control interrupt function OFF XX XX 74

PUNCH (cont)

Branch to A address if the control interrupt XX XX 75
function is ON

TYPE 227 CARD

See: Type 227 Card Reader/Punch (Order No. 564)

Branch to A address if device busy XX XX 10
Branch to A address if parity error XX XX 40
Branch to A address Rewind the tape (re- X X XX 30
if device unavailable. verse direction)

If available, set con-

trol unit to: Run out the tape (for- X X X X 32

ward direction)

TYPE 209 and 209-2
PAPER TAPE READERS

Turn the control allow function OFF XX XX 70
Turn the control allow function ON XX X X 71
Turn the control interrupt function OFF XX XX 74
Branch to A address if the control interrupt XX XX ‘ 75

function is ON

See: Types 209, 209-2, and 210 Paper Tape Equipment (Order No. 507)

Branch to A address if device busy X X XX 10
E‘J Branch to A address if tape-low condition X X XX 60
0 T |lis true '
<2
Ay
o E Turn the control allow function OFF XX XX 70
- 5
N
&) % Turn the control allow function ON X X XX 71
R
=
J E Turn the control interrupt function OFF XX X X 74
Branch to A address if the control interrupt XX XX 75

function is ON

[0}
o
[¢)

Types 209, 209-2, and 210 Paper Tape Equipment (Order No, 507)

Branch to A address if device busy XX XX 10

Branch to A address if print error XX XX 40

TYPE 206
PRINTER

See: Honeywell Series 200 Equipment Operators' Manual (Order No. 040)

L

8-135 #2-139

SECTION VIII. INSTRUCTIONS

Table g-34 (cont). Summary of PCB I/O Control Characters

ﬁ Branch to A address if device busy
B
E Branch to A address if print error XX XX 40
~ : ‘
?c: Branch to A address if paper is moving XX XX 20
1
v | Branch to A address if busy or paper is XX XX 30
' |moving
¥ \

. | Branch to A address if end of form XX XX 01
o -

1

. | Branch to A address if channel eight 7 X X X X 02
N

]
| Turn the control allow function OFF XX XX 70
]

($V)

N Turn the control allow function ON XX XX 71
2]
& Turn the control interrupt function OFF XX XX 74
(] ' '

Branch to A address if the control interrupt XX XX 75
function is ON

See: Type 222 Printers (Order No. 562)

Notes: PCB instructions with C3 characters 01, 02, 20, and 30 are not applicable to the basic
222-5 printer. However, the 222-5 equipped with Feature 1036 (8-Channel Vertical
Format Tape) can perform all of the;doperations listed,

Control characters are the same with or without the presence of the Print Buffer
(Feature 036) in the printer.

Rewind XX X2 X 2D
(D=tape drive,
0-17)

Rewind and release X X xl x 2D
(D=tape drive,
0-7)

Branch to A address if read busy XX x! x 0D
(D=tape drive,
0-7)
Branch to A address if write busy v XX x2 X 0D
~J (D=tape drive,
, “' 0-7)
|Branch to A address if read/write error XX X2 X 4 D
(D=tape drive,
0 -7)
Branch to A address if beginning of tape XX Xlx 6 D
(D=tape drive,
0-7)

MAGNETIC TAPE UNITS
I/2-INCH

8-136 #2-139

SECTION VIII. INSTRUCTIONS

Table 8-34 (cont). Summary of PCB I/O Control Characters

Branch to A address is end of tape XX X

) X 6 D
[8 (D=tape drive,
i 2o
H (z) Turn the control allow function OFF XX x3 x 70
E'L-'_). Z Turn the control allow function ON XX X3 x 71
% = | Turn the control interrupt function OFF X X X3 X 74
2]
§ B | Branch to A address if the control interrupt XX x3x 75
% function is ON

See: Type 204B Series Magnetic Tape Units (Order No. 503), Types 204B-11 and 204B-12
Magnetic Tape Units (Order No. 502), or Types 204C-13 and 204C-14 Magnetic Tape
Units (Order No. 623)

Note: The Type 204B-11 and 204B-12 Magnetic Tape Units are limited to tape drive desig=-
nations in the range 0-3 and are unable to execute the command '"rewind and release."
Tape drive designations for the Type 204C-13 and 204C-14 Magnetic Tape Units must
be either 0 or 1; these units cannot execute the '"rewind and release' command.

Rewind X X X2 X 2D
(D=tape drive,
0 - 3)

Release X X Xl X 2D
' (D=tape drive,
0 - 3)

Branch to A address if read busy XX xlx 0D
(D=tape drive,
0 - 3)

Branch to A address if write busy XX x2% x 0D
(D=tape drive,
0 - 3)

Branch to A address if read/write error XX X X 4D
(D=tape drive,
0 - 3)

Branch to A address if beginning of tape XX X1 x 6 D
(D=tape drive,
0~ 3)

v

MAGNETIC TAPE UNITS 3/4-INCH

Branch to A address if end of tape XX X2 X 6 D
(D=tape drive,
0 - 3)

Branch to A address if 'long check' error XX X2 x 5 X
is detected - (X=unused)

8-137 #2-139

SECTION VIII.

INSTRUCTIONS

0
B
g
g
i
E S Turn the control allow function OFF
ﬁ E Turn the control allow function ON XX 71
E % Turn the control interrupt function OFF XX 74
) -~
E i Branch to A address if the control interrupt XX 75
U ™ [function is ON
See: Series 200 Equipment Operators' Manual (Order No. 040), Type 204A Series Magnetic
Tape Units (Order No. 863)
Branch to A address if device busy® XX XX 0Xorl1lX
S . (X=unused)
8 Branch to A address if error indicator is ON XX X X 4 X
g g (X=unused)
< g Turn the control allow function OFF XX XX 70
e % Turn the control allow function ON X X X X 71
N [
E 8 Turn the control interrupt function OFF XX XX 7 4
E":' < |Branch to A address if the control interrupt XX X X 75
function is ON
See: Type 270A Random Access Drum and Corntrol (Order No., 009)
N [] |Branch to A address if device busy XX X2 X 10
Qd
3
QN4
m o
0 0
I See: Control Panels and Consoles (Models 200/1200/1250/2200), (Order No. 453)
N g Branch to A address if device busy XX X2 X 10
N |
I 8 Reset the interrupt function XX x% x 76
N 0
K Z |Branch to A address if the interrupt function XX X% X 77
£ Slis on
=

See: Control Panels and Consoles (Models 200/1200/1250/2200), (Order No. 453)

8-138

#2-139

SECTION VIII. INSTRUCTIONS

Table 8-34 (cont). Summary of PCB I/O Control Characters

Branch to A address if device busy X X X2 X 10
@ Turn the allow function OFF XX X2 X 70
é Turn the allow function ON8 ‘ X X X2 X 71
8 Turn the data termination interrupt XX X2 X 74
« | function OFF
§ Branch to A address if data termination XX X2 x 75
E interrupt function is ON
E Turn the manual interrupt function OFF’ X X X2 X 76
Branch to A address if manual interrupt XX X2 X 77

function is ON?

See: Control Panels and Consoles (Models 200/1200/1250/2200), (Order No, 453)

Branch to A address if device busy X X X3 x 0XorlX
(X=unused)

Branch to A address if data transfer is in XX x3 x 7 X

E‘J progress (X=unused)

B

% Branch to A address if error or incomplete XX X3 X 4X

A | indicator is set

<

E Branch to A address if parity error is X X x3 X 5 X

| stored (X=unused)

1

% Branch to A address if incomplete error is XX x3 x 6 X

~ | stored {X=unused)

L}

N

{3 | Place control character C4 in the ID register X X x3 x C3: 2 X

gj if data transfer is not in progress {X=unused)

& C4: octal char-|

acter to be
. placed in
IDregister

Branch to A address unconditionally, and XX X3 x 3X
clear the ID register {(X=unused)

See: Model 212 On-Line Adapter (DSI-274)

Branch to A address Seek out the cylinder XX X2 X C3: 2 D (D=device
lif specified device is (specified by C5 and address, 0-7)
busy; otherwise, set C6) in the pack ‘ c4: 00

control unit to: (specified by C4).)

DISK
DE-
VICES

8-139 #2-139

SECTION VIII. INSTRUCTIONS

Table 8-34 (cont). Summary of PCB I/O Control Characters

C5 and C6: 0000
to 0143 for
the Type 258,
0000 to 0312
for the Type
259,
Restore the specified || X X x1 x 3D
device to cylinder (D=device
zZero. address, 0-7).
Branch to A address Continue with the next XX xl x 7D
if specified device is sequential record the {D=device
not busy; otherwise, operation (read or address, 0-7).
set control unit to: write) being per-
formed with the cur-
v rent record.
Branch to A address if control busy. XX X2 X _ 10
:g Branch to A address if device busy. . XX X2 x C3: 0 D (D=de-
S vice ad-
; dress, 0-7)
3 C4: 00 or
N another
= valid C3
2 character
2 Branch to A address if a general exception XX x2 X 50
A condition occurred during the preceding PDT
instruction,
Branch to A address if the TLR flag is set. X X x% x 60
Set control unit to override setting of XX X2 X 40
FORMAT WRITE PERMIT switch.
Turn control allow function OFF. X X X2 x 70
Turn control allow function ON. XX X2 X 71
Turn drive allow function OFF. XX X2 X 72
Turn drive allow function ON, XX X2 X 73
Turn control interrupt function OFF. 7 X X X2 X 74
Branch to A address if control interrupt XX X2 X 75
function is ON.
Turn drive interrupt function OFF. X X X2 X 76
I

8-140 #2-139

SECTION VIII. INSTRUCTIONS

Table §-34 (cont). Summary of PCB 1I/O Control Characters

Branch to A address if device interrupt

% ' (J function is ON,

= =

QA X

See: Disk Devices and Controls (Order No., 514)
L Branch to A address if device busy X X x3 x 10

Branch to A address if parity error XX X3 x 40

a4 Branch to A address if error other than XX x3 x 50

] O | parity error

f:

é z | Branch to A address if the 281 is in trans- X X x3 X 60

5 8 mit mode and requesting data for trans-

oz mission onto line

39

S | Branch to A address if the 281 is in re- XX x3x 61

s g ceive mode and requesting that central

- E processor take received data

)

NP

5 § Turn the allow function OFF X X X6 X 70

> O

B O | Turn the allow function ON XX x6 X 71
Turn the interrupt function OFF XX x6 x 74
Branch to A address if allow and interrupt XX X6 X 75
functions are ON '
Branch to A address if device busy (Fea- 00 x6 x 10
ture 071)
Turn the allow function OFF 00 %0 x 70
Turn the allow function ON 00 X6 x 71
Turn the allow function ON (Feature 071) 00 x6 X 73

(C4 - C6 specify
time interval)

TYPE 213-3 INTERVAL TIMER

Turn the interrupt function OFF 00 x® x 74
Branch to A address if interrupt function 00 x6 x 75
is ON '

Turn the interrupt function OFF (Feature 00 x6 x 76
071)

Branch to A address if interrupt function is 00 X6 X 77

ON (Feature 071)

See: Type 213-3 Interval Timer and Feature 071 Interval Selector (Order No. 082)

8-141 ' #2-139

SECTION VIII. INSTRUCTIONS

Table 8-34 (cont). Summary of PCB I/O Control Characters

X
O
o]
¥ -
o ©
=
Sg Branch to A address if device busy X X XX 10
B,
5o
ol
=
-
=
Branch to A address if device busy X X x6 x : 0 Xor
10
, Branch to A address if device busy, and X X xb X C3: 20
reserve ' Ca: 00
Branch to A address if reserve action by XX x6 x C3: 20
e this central processor was not successful Ca: 00
<8 c5: 61
[T
5 E Branch to A address if 212-1 is not set for XX x6 X 61
O < |data transfer (initiator) '
~ ~
& @ |Branch to A address if 212-1 is set for X X x6 X 64
0
N @] |data transfer (responder)
G O]
a0 . 6
> ¢ {Turn the allow function OFF X X X X 70
B
Turn the allow function ON XX x6 x 71
Turn the interrupt function OFF X X x6 x 74
Branch to A address if allow and interrupt XX X6 X 75
functions are ON '
See: Type 212-1 Central Processor Adapter (Order No. 239)
6] Branch to A address if control unit busy. X X XX 10
&
¥ ; Turn the allow function OFF XX XX 70
N Q
E O ITurn the allow function ON XX X X 71
o
ol
& & |Turn the interrupt function OFF _ XX XX 74
o :
~ |[Branch to A address if interrupt function XX XX 75
A lis oN
See: Type 234 Plotter Control (Order No. 561)

8-142 #2-139

SECTION VIII. INSTRUCTIONS

Table 8-34 (cont). Summary of PCB I/O Control Characters

6] Branch to A address if device busy XX XX 10
4
e E Branch to A address if reader is not set XX XX 01
< 8 for data transfer or if control is busy
Q
[
3 | Turn the allow function OFF X X X X 70
()
0]
0 é Turn the allow function ON XX XX 71
-4
N
Q] = Turn the interrupt function OFF XX XX 74
o 2
>
3] g Branch to A address if interrupt function XX XX 75
Olis ON
)
Branch to A address if control busy XX XX 10
Select stacker designated; Stacker 0 XX XX 20
Branch to A address if: Stacker 1 X X X X 5 1
1. the reader-sorter is not Stacker 2 X X X X 22
ready; or
0 2. the 10-millisecond stacker Stacker 3 XX XX 23
~ selection periodhas elapsed; | Stacker 4 XX XX 2 4
a p
b or Stacker 5 X X X X 25
O |3. the leading edge of the
w document to be sorted has | or2ckeT 6 XX XX 26
5 not passed the reading Stacker 7 XX XX 27
9 station; or Stacker 8 X X X X 30
l'é 4, the 1ead1.ng edge. haspassed Stacker 9 X X X X 31
the reading station and a
g PDT instruction has not yet | Stacker X XX XX 32
- : .
= been issued; or Stacker Y X X X X 33
N - i -
x 5. the r.eader sorter 1:5 per. Reject X X < X 37
P forming an automatic reject
N . . Stacker
o on the document in question
g
S |Start feed. Branch to A address if feed can-| X X X X 34
% [|not be started due to:
E 1. the reader-sorter not being
> ready; or
=
2. proper restart procedures
not followed
Stop feed, Branch to A address if sorter- XX XX 35
reader is not ready
Set pocket-light control. Branch to A XX XX 36
address if:

8-143 #2-139

SECTION VIII.

INSTRUCTIONS

Table 8-34 (cont). Summary of PCB I/O Control Characters

1. the reader-sorter is not ready; or
2. 3 pocket-light control PCB is already
in process
Branch | Amount field error X X X X 40 >
to A Process control field error XX XX 41
address
if: Account field error X X XX 42
5 Transit field error X X X X 43
o
S Auxiliary on-us field error X X X X 44
0
g Device error X X X X 50
> Passed document condition X X X X 51
o
o]
:1; Operate in normal mode XX XX 60 (/
=
9(: Operate in short-document mode XX XX 61
K
A |Branch to A address if on-us field is XX XX 62
M | complete
O
-1
E Branch to A address if last document was XX XX 63
&2 control document
o
5 |Branch to A address if end-of-file X X X X 6 4
a b4
IS
~ [Advance batch counter one digit. Branch XX 2{X X 65
Q [to A address if the sorter-reader is not
[0 |stopped or the batch counter is currently
& being advanced.
M .
Turn allow function OFF X X XX 70
\
Turn allow function ON XX }g>(71
Turn interrupt function OFF X X XX 74
Branch to A address if interrupt function XX XX 75
is ON
See: Type 233-2 MICR Control (Order No. 464)
R S ~

.:52'\

8-144

#2-139

SECTION VIII. INSTRUCTIONS

Table 8-34 (cont). Summary of PCB I/O Control Characters

Branch | Device busy XX x3x 10
g [to A Form is moving X X X2 X 20
ﬁ address
= if: Device busy or form is moving X X x3 x 30
Lo |
& Print error or read check X X x3x 40
p“ I
2 Validity error X X x3 x 41
E 8 Branch on channel 2 (EOF) of format tape X X X2 X 01

o ,

j ; Branch on channel 8 of format tape XX x?% x 02
m 3 |Turn on validity check indicator X X x! x 20
@ |Turn the allow function OFF X X X X 70
E Turn the allow function ON XX X X 71
P! |Turn the interrupt function OFF X X X X 74

Branch to A address if read interrupt

function is ON X X xlx 75
NOTE: The two operations "Branch to A address if form is moving'" and "Turn on

validity check indicator' are both specified with a C3 character of 208, but
are distinguished by the high-order bit of C2.
See: Type 237 Bill Feed Printer Control (Order No. 194)
NOTES: The high-order bit must be 1.
The high-order bit must be 0.

1
2
3. The high-order bit is set to 1 for input operations and to 0 for output operations.
4

This control character should precede all other control characters that set the
control to perform a certain action. It is the programmer's responsibility to
set the control to the desired mode of operation at the beginning of the run.

5. As the drum control does not permit reading from one drum file while writing
on another, it is considered busy if either a read or a write operation is in
progress. (The value of the high-order bit in C2 is thus immaterial in this
case.)

6. The high-order bit is ignored.

7. The interrupt functions of both the control and the disk device are automatically
turned on when a "not busy'' status is . reached by the control or the disk device,
respectively.

8. For program interruption in the 201-0 central processor, the processor must
contain the Program Interrupt Feature (012).

9. The manual interrupt function is applicable only in those cases where the Type
220-3 is employed with the 201-0 or 201-1 central processpr; C3 control charac-
ters 76 and 77 perform no operations with other central processors. In those
cases where the 201-0 or 201-1 is not equipped with the Program Interrupt
Feature (012), the manual interrupt function can still be tested or turned off.
Thus although the interrupt button cannot effect a manual interrupt, the corre-
sponding function can be tested to set up a programmed interrupt.

8-145 #2-139

SECTION VIII, INSTRUCTIONS

Table 8-35. Summary of PCB I/O Control Characters for Type 286
Multi-Channel Communication Control

e e e ot ettt

Branch to A address if device busy, If not busy,

R set the 286 to stop scanning and continue the pro-

~ 15 | gram in sequence

BC;’\ 8 - Turn the allow function OFF XX XX 70 none

% E Turn the allow function ON XX XX 71 none

> ' Branch to A address if the interrupt was due to XX XX 75 none

£ the 286 requesting service
Branch to A address if device busy XX X X 10 none
Branch to A address if parity error XX XX 40 none
Branch to A address if the interrupt was due to XX XX 75 none
the 286 requesting service
Turn the allow function ON XX XX 71 none .
Turn the allow function OFF XX XX 70 none
Set the 286 to the load/test state XX | XX 25 none
Provide line orientation for load/test operation XX | XX | 41 none
Turn the load/test state and line orientation OFF | X X XX 24 none
Turn the interrupt function OFF XX XX 74 none
Release the RWC(S) assigned to the 286 XX XX 217 none
Set the halt/continue indicator to halt XX | XX |20 none
Set the halt/continue indicator to continue XX XX 21 none
Turn the parity error indicator and the parity XX XX 26 none
error interrupt function OFF
Request the address of the next transfer that is XX XX 36 C4: 00 to 77

to take place from the line designated by C4, and
branch to the A address

Abort the present instruction to the line designa- || X X XX 33 C4: 00 to 77
ted by C4, generate an interrupt, initiate the
next instruction to the same line, and branch to
the A address

TYPE 286-4, -5 MESSAGE-MODE MCCU

Abort the present instruction to the line designa- || X X XX 32 C4: 00 to 77
ted be C4, initiate the next instruction to the
same line, and branch to the A address

Reset synchronization for the line designated by XX XX 37 C4: 00 to 77
C4, and branch to the A address

Activate the special strobe line to the 285 adapter || X X XX 34 C4: 00 to 77
designated by C4, and branch to the A address

Deliver to the 286 the information specified by X X XX 30 C4: 00 to 77

C5 et seq. for the next instruction to the line (See Table 8-36
designated by C4, and branch to the A address for C5 et seq.)

8-146 #2-139

SECTION VIII, INSTRUCTIONS

Table 8-35 (cont).

Multi-Channel Communication Control

Summary of PCB I/0O Control Characters for Type

286

[.TIJ Deliver to the 286 the information specified by C4: 00 to 77
&) C5 et seq, for the next instruction to the line (See Table 8-36
% designated by C4; then abort the present in- for C5 et seq,)
ﬁ __ | struction to that line, generate an interrupt,
S E | initiate the next instruction to the same line,
ey § and branch to the A address
< 8 Deliver to the 286 the information specified by XX XX 32 C4: 00 to 77
o U | C5 et seq, for the next instruction to the line (See Table 8-36
% = | designated by C4, then abort the present in- for C5 et seq,)
[@ | struction to that line, initiate the next instruc-
g 8 tion to the same line, and branch to the A
~ S | address

Table 8-36, PCB Control Characters C5 through C15 for Type 286-4, -5

Line Control Instructions

Bits 6 and 5 specify

6 5 Bit 6 is the response bit
mode of operation of

the line:
6 5 0 - no interrupt is
0 0 - Inhibit allciwed at te1:m1-
R nation of the in-

0 1 - Receive struction

1 0 - Transmit :

1 1 - Transmit 1 - an interrupt is

Repeat allowed.,

Bit 4 is the Allow
Timer bit

Bits il_ and é_ are not used
and must be zero,

0 - Timer is not
allowed

1 - Timer is
allowed

C5 C5 Cé6 c7 Address to be loaded
Cé6 XX XX XX into RWC cotlnters (SLC
Cc7 —— — and CLC) prior to data
most significant middle six bits least significant transfer,
six bits six bits
C8 c8 Cc9 Control characters
Cc9 <X XX which specify line

action; they are loaded '
into the next instruction
section of memory.

8-147

#2-139

SECTION VIII. INSTRUCTIONS

Table 8-36 (cont), PCB Control Characters C5 through C15 for Type 286-4, -5
' Line Control Instructions

Bit 3 is the block parity

Cc8 ' Bits 3 and 2 specify
(03 character parity bit
(cont) 3 2 0 - block parity is
. not used
0 0 mo parlt.y 1 - block parity is
0 1 generation or
s s used
checking is
performed
1 0 even parity
1 1 odd parity
Bit 1 is the character Bit 2 is the command
‘transfer bit termination bit
0 - one six-bit 0 - character recog-
character nized is the last
transfer per one transferred
line character 1 - one more data
1 - two six~bit transfer is made
character | to or from the CP
transfers per after the charac=
line character ter recognized

and before com-
mand termination,

Bit 1 defines block parity
check bit

0 - check bit will be
the half add sum
of the parity bit
of the preceding
characters in the
message.

1 - block parity char-
acter will have
same parity
generated or
checked as the
data characters.,

cl1o C1l0 Cll1 ‘ Eight bits (the low-
Cll1 order two bits of C10
and all six bits of C11)
contain the first rec-
ognition character,

Cclz clz Cl3 Eight bits (the low-
Cl3 order two bits of Cl2
and all six bits of C13)
contain the second rec-
ognition character.

8-148 #2-139

S¢5E/)CTION VIII. INSTRUCTIONS

Table 8-36 (cont), PCB Control Characters C5 through C15 for Type 286-4, -5
Line Control Instructions

Cl4 Cl4 Ccli5 Eight bits (the low-
Cl5 order two bits of Cl4

XX XX and all six bits of C15)

contain the SIT char-
acter for asynchronous
lines.

Table 8-37, Description of PCB I/O Character CE

10 Sector 1
12 Sector 2

13 Sector‘ 3
)

8-149 , - #2-139

APPENDIX

OCTAL NOTATION

Octal notation is a convenient shorthand method of writing pure binary numbers. In Series

200 programming it is used to represent such binary values as main memory addresses, variant

characters, 1/0O control characters, and constants.

If a binary value is divided into groups of three bits, proceeding from right to left, each

group may be replaced by its octal equivalent as indicated in Table A-1.

Table A-1. Binary-Octal Equivalents

000
001
010
011
100
101
110
111

~N O W NN = O

Example 1.
The binary value
011111000101001110
when divided into three-bit groups
011 111 000 101 001 110
has an octal equivalent of

370516

A-1l

Example 2.
The binary value
1010100111010
when divided into three-bit groups
1 010100111 010,
has an octal equivalent of

12472

#2-139

APPENDIX A. OCTAL NOTATION

Table A-2. Decimal-Octal Conversion Table
DECIMAL INCREMENT
x = o r
w35 0] 000 008 016 024 032 040 048 056 064 072 080 088 096 104 112 120 128 136 144 152 160 168 176 184 192 |0 a0
o3 1| 00L 009 017 025 033 041 049 057 065 073 08F 089 097 105 113 121 129 137 145 153 161 169 177 185 193 |1 > =
gg o 2| 002 010 018 026 034 042 050 058 066 074 082 090 098 106 114 122 130 138 146 154 162 170 178 186 194 |2 - o
? 2 3| 003 01l 019 027 035 043 051 059 067 075 083 091 099 107 115 123 131 139 147 155 163 171 179 187 195 |3 o X
Z = 4| 004 012 020 028 036 044 052 060 068 076 084 0952 100 108 116 124 132 140 148 156 164 172 180 188 196 |4 a8
S 8 51 005 013 021 029 037 045 053 061 069 077 085 093 101 109 117 125 133 141 149 157 165 173 181 189 5 =3
6| 006 ol4 022 030 038 046 054 062 070 078 086 094 102 110 118 126 134 142 150 [158] 186 ~174 ~ 183 150" 195 "¢ =
7| 007 015 023 031 039 047 055 063 071 079 087 095 103 111 119 127 135 143 151 1867 =178 T8y 13T T
0000 o 1 2 3 4 5 6 7 10 1 12 13 14 15 16 17 20 21 22| 23] 24 25 26 27 30 |oo00
0200 | 31 32 33 34 35 36 37 40 41 42 43 44 45 46 47 50 51 52 53| s4] 55 s6 s7 60 61 |o0200
0400 | 62 63 64 65 66 67 70 71 72 73 74 75 76 77 100 101 102 103 104| 105| 106 107 110 111 112 | 0400
0600 [113 114 115 116 117 120 121 122 123 124 125 126 127 130 131 132 133 134 135] 136] 137 140 141 142 143 | 0600
0800 | 144 145 146 147 150 151 152 153 154 155 156 157 160 161 162 163 164 165 166| 167] 170 171 . 172 173 174 | o800
1000 | 175 176 177 200 201 202 203 204 205 206 207 210 211 212 213 214 215 216 217 220| 221 222 223 224 225 | 1000
1200 | 226 227 230 231 232 233 234 235 236 237 240 241 242 243 244 245 246 247 250| 251| 252 253 254 255 256 | 1200
1400 | 257 260 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277 300 301) 302) 303 304 305 306 307 | 1400
1600 | 310 311 312 313 314 315 316 317 320 321 322 323 324 325 326 327 330 331 332| 333| 334 335 336 337 340 | 1600
1800 | "341 342 343 344 345 346 347 350 351 352 353 354 355 356 357 360 361 362 363| 364| 365 366 367 370 371 | 1800
2000 | 372 373 374 375 376 377 400 401 402 403 404 405 406 407 410 411 412 413 414]| 415| 416 417 420 421 422 | 2000
2200 | 423 424 425 426 427 430 431 432 433 434 435 436 437 440 441 442 443 444 445| 446| 447 450 451 452 453 | 2200
2400 | 454 455 456 457 460 461 462 463 464 465 466 467 470 471 472 473 474 475 476| 477| 500 501 502 503 504 | 2400
2600 | 505 506 507 510 511 512 513 514 515 516 517 520 521 522 523 524 525 526 527| 530| 531 532 533 534 535 | 2600
2800 | 536 537 540 541 542 543 544 545 546 547 550 551 552 553 554 555 556 557 560| 561| 562 S63 564 565 566 | 2800
30001 567 570 571 572 573 574 575 576 577 600 601 602 603 604 605 606 607 610 611 612| 613 614 615 616 617 | 3000
3200 [620 621 622 623 624 625 626 627 630 631 632 633 634 635 636 637 640 641 642| 643] 644 645 646 647 650 | 3200
3400 | 651 652 653 654 655 656 657 660 661 662 663 664 665 666 667 670 671 672 673 674] 675 676 677 700 701 | 3400
3600 | 702 703 704 705 706 707 710 711 712 713 714 715 716 717 720 721 722 723 724| 725| 726 727 730 731 732 | 3600
3800 | 733 734 735 736 737 740 741 742 743 744 745 746 747 750 751 752 753 754 755| 756] 757 760 761 762 763 | 3800
4000 (764 765 766 767 770 771 772 773 774 775 776 777 1000 1001 1002 1003 1004 1005 1006 |1007|1010 1011 1012 1013 1014 | 4000
4200 | 1015 1016 1017 1020 1021 1022 1023 1024 1025 1026 1027 1030 1031 1032 1033 1034 1035 1036 1037 [1040|1041 1042 1043 1044. 1045 | 4200
4400 | 1046 1047 1050 1051 1052 1053 1054 1055 1056 1057 1060 1061 1062 1063 1064 1065 1066 1067.1070 [1071|1072 1073 1074 1075 1076 | 4400
4600 | 1077 1100 1101 1102 1103 1104 1105 1106 1107 1110 1111 1112 1113 1114 1115 1116 1117 1120 1121{1122{1123 1124 1125 1126 1127 | 4600
4800 | 1130 1131 1132 1133 1134 1135 1136 1137 1140 1141 1142 1143 1144 1145 1146 1147 1150 1151 1152 |1153}1154 1155 1156 1157 1160 | 4800
5000 | 1161 1162 1163 1164 1165 1166 1167 1170 1171 1172 1173 1174 1175 1176 1177 1200 1201 1202 1203 [1204{1205 1206 1207 1210 1211 | 5000
5200 | 1212 1213 1214 1215 1216 1217 1220 1221 1222 1223 1224 1225 1226 1227 1230 1231 1232 1233 1234 [1235[1236 1237 1240 1241 1242 | 5200
5400 | 1243 1244 1245 1246 1247 1250 1251 1252 1253 1254 1255 1256 1257 1260 1261 1262 1263 1264 1265|1266{1267 1270 1271 1272 1273 | 5400
5600 | 1274 1275 1276 1277 1300 1301 1302 1303 1304 1305 1306 1307 1310 1311 1312 1313 1314 1315 1316 [1317{1320 1321 1322 1323 1324 | 5600
5800 | 1325 1326 1327 1330 1331 1332 1333 1334 1335 1336 1337 1340 1341 1342 1343 1344 1345 1346 1347 [1350{1351 1352 1353 1354 1355 | 5800
6000 | 1356 1357 1360 1361 1362 1363 1364 1365 1366 1367 1370 1371 1372 1373 1374 1375 1376 1377 1400 |1401{1402 1403 1404 1405 1406 | 6000
6200 | 1407 1410 1411 1412 1413 1414 1415 1416 1417 1420 1421 1422 1423 1424 1425 1426 1427 1430 1431)1432]1433 1434 1435 1436 1437 | 6200
6400 | 1440 1441 1442 1443 1444 1445 1446 1447 1450 1451 1452 1453 1454 1455 1456 1457 1460 1461 1462 |1463]1464 1465 1466 1467 1470 | 6400
6600 | 1471 1472 1473 1474 1475 1476 1477 1500 1501 1502 1503 1504 1505 1506 1507 1510 1511 1512 1513 1514|1515 1516 1517 1520 1521 | 6600
o 6800 | 1522 1523 1524 1525 1526 1527 1530 1531 1532 1533 1534 1535 1536 1537 1540 1541 1542 1543 1544 /1545|1546 1547 1550 1551 1552 | 6800 o
Z 7000 [1553 1554 1555 1556 1557 1560 1561 1562 1563 1564 1565 1566, 1667 1570 1571 1572 1573 1574 1575 [1576]1577 1600 1601 1602 1603 | 7000 m
W 7200 | 1604 1605 1606 1607 1610 1611 1612 1613 1614 1615 1616 1617 1620 1621 1622 1623 1624 1625 1626 |1627]|1630 1631 1632 1633 1634 | 7200 Q
@ 7400 | 1635 1636 1637 1640 1641 1642 1643 1644 1645 1646 1647 1650 1651 1652 1653 1654 1655 1656 1657 |1660|1661 1662 1663 1664 1665 | 7400 2z
@ 7600 | 1666 1667 1670 1671 1672 1673 1674 1675 1676 1677 1700 1701 1702 1703 1704 1705 1706 1707 1710 17111712 1713 1714 1715 1716 | 7600 2
- 7800 {1717 1720 1721 1722 1723 1724 1725 1726 1727 1730 1731 1732 1733 1734 1735 1736 1737 1740 1741 [1742]1743 1744 1745 1746 1747 [7800] ©
;E 8000 | 1750 1751 1752 1753 1754 1755 1756 1757 1760 1761 1762 1763 1764 1765 1766 1767 1770 1771 1772 1773 1774 1775 1776 1777 2000 | 8000 >
= 8200 | 2001 2002 2003 2004 2005 2006 2007 2010 2011 2012 2013 2014 2015 2016 2017 2020 2021 2022 2023 2024 2025 2026 2027 2030 2031 | 8200 @
O 8400 | 2032 2033 2034 2035 2036 2037 2040 2041 2042 2043 2044 2045 2046 2047 2050 2051 2052 2053 2054 2055 2056 2057 2060 2061 2062 | 8400 2
© 8600 | 2063 2064 2065 2066 2067 2070 2071 2072 2073 2074 2075 2076 2077 2100 2101 2102 2103 2104 2105 2106 2107 2110 2111 2112 2113 | g6oo F3
8800 | 2114 2115 2116 2117 2120 2121 2122 2123 2124 2125.2126 2127 2130 2131 2132 2133 2134 2135 2136 2137 2140 2141 2142 2143 2144 | gaoo :
9000 | 2145 2146 2147 2150 2151 2152 2153 2154 2155 2156 2157 2160 2161 2162 2163 2164 2165 2166 2167 2170 2171 2172 2173 2174 2175 | 9000
9200 | 2176 2177 2200 2201 2202 2203 2204 2205 2206 2207 2210 2211 2212 2213 2214 2215 2216 2217 2220 2221 2222 2223 2224 2225 2226 | 9200
9400 { 2227 2230 2231 2232 2233 2234 2235 2236 2237 2240 2241 2242 2243 2244 2245 2246 2247 2250 2251 2252 2253 2254 2255 2256 2257 | 9400
9600 | 2260 2261 2262 2263 2264 2265 2266 2267 2270 2271 2272 2273 2274 2275 2276 2277 2300 2301 2302 2303 2304 2305 2306 2307 2310 | 9600
9800 | 2311 2312 2313 2314 2315 2316 2317 2320 2321 2322 2323 2324 2325 2326 2327 2330 2331 2332 2333 2334 2335 2336 2337 2340 2341 | 9800
10,000 | 2342 2343 2344 2345 2346 2347 2350 2351 2352 2353 2354 2355 2356 2357 2360 2361 2362 2363 2364 2365 2366 2367 2370 2371 2372 | 10, 000
10,200 | 2373 2374 2375 2376 2377 2400 24012402 2403 2404 2405 2406 2407 2410 2411 2412 2413 2414 2415 2416 2417 2420 2421 2422 2423 | 10, 200
10,400 | 2424 2425 2426 2427 2430 2431 2432 2433 2434 2435 2436 2437 2440 2441 2442 2443 2444 2445 2446 2447 2450 2451 2452 2453 2454 | 10, 400
10,600 | 2455 2456 2457 2460 2461 2462 2463 2464 2465 2466 2467 2470 2471 2472 2473 2474 2475 2476 2477 2500, 2501 2502 2503 2504 2505 | 10, 600
10,800 | 2506 2507 2510 2511 2512 2513 2514 2515 25162517 2520 2521 2522 2523 2524 2525 2526 2527 2530 2531 2532 2533 2534 2535 2536 | 10, 800
11,000 | 2537 2540 2541 2542 2543 2544 2545 2546 2547 2550 2551 2552 2553 2554 2555 2556 2557 2560 2561 2562 2563 2564 2565 2566 2567 | 11,000
11,200 | 2570 2571 2572 2573 2574 2575 2576 2577 2600 2601 2602 2603 2604 2605 2606 2607 2610 2611 2612 2613 2614 2615 2616 2617 2620 | 11,200
11,400 | 2621 2622 2623 2624 2625 2626 2627 2630 2631 2632 2633 2634 2635 2636 2637 2640 2641 2642 2643 2644 2645 2646 2647 2650 2651 | 11, 400
11,600 | 2652 2653 2654 2655 2656 2657 2660 2661 2662 2663 2664 2665 2666 2667 2670 2671 2672 2673 2674 2675 2676 2677 2700 2701 2702 | 11,600 3
11,800 | 2703 2704 2705 2706 2707 2710 2711 2712 2713 2714 2715 2716 2717 2720 2721 2722 2723 2724 2725 2726 2727 2730 2731 2732 2733 | 11,800
12,000 | 2734 2735 2736 2737 2740 2741 2742 2743 2744 2745 2746 2747 2750 2751 2752 2753 2754 2755 2756 2757 2760 2761 2762 2763 2764 | 12, 000
12,200 | 2765 2766 2767 2770 2771 2772 2773 2774 2775 2776 2777 3000 3001 3002 3003 3004 3005 3006 3007 3010 3011 3012 3013 3014 3015 | 12,200
12,400 | 3016 3017 3020 3021 3022 3023 3024 3025 3026 3027 3030 3031 3032 3033 3034 3035 3036 3037 3040 3041 3042 3043 3044 3045 3046 | 12. 400
12,600 | 3047 3050 3051 3052 3053 3054 3055 3056 3057 3060 3061 3062 3063 3064 3065 3066 3067 3070 3071 3072 3073 3074 3075 3076 3077 | 12,600
12,800 | 3100 3101 3102 3103 3104 3105 3106 3107 3110 3111 3112 3113 3114 3115 3116 3117 3120 3121 3122 3123 3124 3125 3126 3127 3130 | 12, 800
13,000 | 3131 3132 3133 3134 3135 3136 3137 3140 3141 3142 3143 3144 3145 3146 3147 3150 3151 3152 3153 ‘3154 3155 3156 3157 3160 3161 | 13,000
13,200 | 3162 3163 3164 3165 3166 3167 3170 3171 3172 3173 3174 3175 3176 3177 3200 3201 3202 3203 3204 3205 3206 3207 3210 3211 3212 | 13,200
13,400 | 3213 3214 3215 3216 3217 3220 3221 3222 3223 3224 3225 3226 3227 3230 3231 3232 3233 3234 3235 3236 3237 3240 3241 3242 3243 | 13, 400
13,600 | 3244 3245 3246 3247 3250 3251 3252 3253 3254 3255 3256 3257 3260 3261 3262 3263 3264 3265 3266 3267 3270 3271 3272 3273 3274 | 13,600
13,800 | 3275 3276 3277 3300 3301 3302 3303 3304 3305 3306 3307 3310 3311 3312 3313 3314 3315 3316 3317 3320 3321 3322 3323 3324 3325 | 13,800
14,000 | 3326 3327 3330 3331 3332 3333 3334 3335 3336 3337 3340 3341 3342 3343 3344 3345 3346 3347 3350 3351 3352 3353 3354 3355 3356 | 14,000
14,200 | 3357 3360 3361 3362 3363 3364 3365 3366 3367 3370 3371 3372 3373 3374 3375 3376 3377 3400 3401 3402 3403 3404 3405 3406 3407 | 14,200
14,400 | 3410 3411 3412 3413 3414 3415 3416 3417 3420 3421 3422 3423 3424 3425 3426 3427 3430 3431 3432 3433 3434 3435 3436 3437 3440 | 14, 400
14,600 | 3441 3442 3443 3444 3445 3446 3447 3450 3451 3452 3453 3454 3455 3456 3457 3460 3461 3462 3463 3464 3465 3466 3467 3470 3471 | 14 600
14,800 | 3472 3473 3474 3475 3476 3477 3500 3501 3502 3503 3504 3505 3506 3507 3510 3511 3512 3513 3514 3515 3516 3517 3520 3521 3522 | 14,800
15,000 | 3523 3524 3525 3526 3527 3530 3531 3532 3533 3534 3535 3536 3537 3540 3541 354Z 3543 3544 3545 3546 3547 3550 3551 3552 3553 | 15 000
15,200 | 3554 3555 3556 3557 3560 3561 3562 3563 3564 3565 3566 3567 3570 3571 3572 3573 3574 3575 3576 3577 3600 3601 3602 3603 3604 | 15,200
15,400 | 3605 3606 3607 3610 3611 3612 3613 3614 3615 3616 3617 3620 3621 3622 3623 3624 3625 3626 3627 3630 3631 3632 3633 3634 3635 | 15, 400
15,600 | 3636 3637 3640 3641 3642 3643 3644 3645 3646 3647 3650 3651 3652 3653 3654 3655 3656 3657 3660 3661 3662 3663 3664 3665 3666 | 15, 600
15,800 | 3667 3670 3671 3672 3673 3674 3675 3676 3677 3700 3701 3702 3703 3704 3705 3706 3707 3710 3711 3712 3713 3714 3715 3716 3717 | 15, 800
16,000 | 3720 3721 3722 3723 3724 3725 3726 3727 3730 3731 3732 3733 3734 3735 3736 3737 3740 3741 3742 3743 3744 3745 3746 3747 3750 | 16,000
16,200 | 3751 3752 3753 3754 3755 3756 3757 3760 3761 3762 3763 3764 3765 3766 3767 3770 3771 3772 3773 3774 3775 3776 3777 4000 4001 | 16, 200
16,400 | 4002 4003 4004 4005 4006 4007 4010 4011 4012 4013 4014 4015 4016 4017 4020 4021 4022 4023 4024 4025 4026 40Z7 4030 4031 4032 | 16, 400
HIGH-ORDER OCTAL DIGITS
A-2 #2-139

APPENDIX A. OCTAL NOTATION

OCTAL-DECIMAL CONVERSION PROCEDURE

Consider the decimal number to be converted as a base and an increment. Locate the base

(the next lower number which is evenly divisible by 200) in the margin of the lower chart and the
increment in the body of the upper chart. The intersection of the row and column thus defined
contains the high-order digits of the octal equivalent. The low-order digit appears in the mar-
gins of the upper chart opposite the increment. For example, to convert 7958 to octal, the base
is 7800 and the increment is 158, Locate 158 in the upper chart and read down this column to
the 7800 row below. The high-order octal result is 1742, Then read out to the margin of the
upper chart to obtain the low-order digit of 6. Append (do not add) this digit to 1742 for an octal

equivalent of 17, 426.

To convert an octal number to decimal, locate the high-order digits in the body of the

lower chart and the low-order digit in the margin of the upper chart. Then perform the converse

of the above operation.

#2-139

APPENDIX MISCELLANEOUS TABLES

Table B-1l. Control Register Designations

B-1 #2-139

APPENDIX B, MISCELLANEOUS TABLES

Table B-1 (cont). Control Register Designations

SLC4! 35
SLC5! 36
SLC6' 37
ACO -
ACl --
AC2 --
AC3 --
CSR ' 64
EIR 66
AAR 67
) BAR 70
IIR 76
SR 77

Table B-2. Extended Move (EXM) Conditions

Type of Move
1, A-field data bits—sB X X X X X 1
2. A-field word-mark bits —eB X X X X 1 X
3. A-field item-mark bits —esB X X X 1 X X
Direction of Move
1. right to left X X 0 X X X
2. left to right X X 1 X X X
Termination of Move
1. automatic after single-character move 0 0 X X X X
2. A-field word mark 0 1 X X X X
3. A-field item mark 1 0 X X X X
4, A-field record mark 1 1 X X X X

B-2 #2-139

APPENDIX B. MISCELLANEOUS TABLES

Table B-3. Branch on Condition Test (BCT) SENSE Switch Conditions

37

Unconditional

SENSE Switch 1 On

SENSE Switch 2 On

SENSE Switches 1 and 2 On
SENSE Switch 3 On

SENSE Switches land 3 On
SENSE Switches 2 and 3 On
SENSE Switches 1, 2, E._tﬁ 3 On
SENSE Switch 4 On

SENSE Switches 1 and 4 On
SENSE Switches 2 and 4 On
SENSE Switches 1, 2, ﬂl_(i 4 On
SENSE Switches 3 and 4 On
SENSE Switches 1, 3, and 4 On
SENSE Switches 2, 3, E.rii. 4 On

SENSE Switches 1, 2, 3, and 4 On

Unconditional

SENSE Switch 5 On

SENSE Switch 6 On

SENSE Switches 5 Eﬁ(l 6 On
SENSE Switch 7 On

SENSE Switches 5 and 7 On
SENSE Switches 6 and 7 On
SENSE Switc‘hes 5, 6, 3112 7 On
SENSE Switch 8 On

SENSE Switches 5 and 8 On
SENSE Switches 6 a_mi 8 On
SENSE Switches 5, 6, and 8 On
SENSE Switches 7 and 8 On
SENSE Switches 5, 7, 31_12 8 On
SENSE Switches 6, 7, and 8 On

SENSE Switches 5, 6, 7, and 8 On

NOTE: When testing for a multiple SENSE switch condition, a branch

occurs only if all of the specified conditions are met.

#2-139

APPENDIX B. MISCELLANEOUS TABLES

Table B-4. Branch on Condition Test (BCT) Indicator Conditions

40 Do not branch
41 B< A (Low Compare)
42 B=A (Equal Compare)
43 B< A (Low or Equal Compare)
44 B > A (High Compare)
45 B#A (Unequal Compare)
46 B > A (High or Equal Compare)
47 Unconditional
50 Overflow
51 Overflow or B<A
52 Overflow or B=A
53 Overflow or B A
54 Overflow or B > A
55 Overflow or BZA
56 Overflow or B> A
57 Unconditional
60 Zero Balance
61 Zero Balance or B<A
62 Zero Balance or B=A
63 Zero Balance or B<A
64 Zero Balance or B >A
65 Zero Balance or B#A
66 Zero Balance or B 2A
67 Unconditional
70 Overflow or Zero Balance
71 Overflow or Zero Balance or B<A
72 Overflow or Zero Balance or B=A
73 Overflow or Zero Balance o_i' B=<A
74 Overflow or Zero Balance or B> A
75 Overflow or Zero Balance or B¥A
76 Overflow or Zero Balance or B> A
77 Unconditional
NOTE: When testing for a multipie indicator condition, a branch
occurs if any one of the specified conditions is met.

B-4 #2-139

APPENDIX B. MISCELLANEOUS TABLES

Table B-5. Branch on Character Condition (BCC) Conditions

00 Unconditional

01 A bit is 1

02 B bit is 1

03% B and A bits are 11

04 B and A bits are 00

05% B and A bits are 01 (Positive sign)

06 (B and A bits are 10 (Negative sign)

07 B and A bits aré 11 (same as 03)

10 Word-mark bit is 1

11% Word-mark bit is 1, A bit is 1

12 Word-mark bit is 1, B bit is 1

13% Word-mark bit ijs 1, B and A bits are 11

14 Word-mark bit is 1, B and A bits are 00

15% Word-mark bit is 1, Positive sign

16 A Word-mark bit is 1, Negative sign

17% Word-mark bit is 1, B and A bits are 11

20 Item-mark bit is 1

21% Item-mark bit is 1, A bit is 1

22 Item-mark bit is 1, B bit is 1

23% Item-mark bit is 1, B and A bits are 11

24% : Item-mark bit is 1, B and A bits are 00

25% Item-mark bit is 1, Positive Sign

26 Item-mark bit is 1, Negative Sign

27% Item-mark bit is 1, B and A bits are 11

30 Record mark

31% Record mark, A bit is 1-

32 Record mark, B bit is 1

33k Record mark, B and A bits are 11

34% Record mark, B and A bits are 00

35% Record mark, Positive sign

36 Record mark, Negative sign

37% Record mark, B and A bits are 11

40% - No punctuation (Word-mark and Item-
mark bits are 00)

41% No punctuation, A bit is 1

42% No punctuation, B bit is 1

43% No punctuation, B and A bits are 11

44% No punctuation, B and A bits are 00

45% No punctuation, Positive sign

46% No punctuation, Negative sign

47% No punctuation, B and A bits are 11

50% Word mark only

51% Word mark only, A bit is 1

52% " Word mark only, B bit is 1

53% Word mark only, B and A bits are 11

B4 Word mark only, B and A bits are 00

55% Word mark only, Positive sign

56% Word mark only, Negative sign

57% Word mark only, B and A bits are 11

B-5 ' 42-139

APPENDIX B. MISCELLANEOUS TABLES

Table B-5 (cont)s Branch on Character Condition (BCC) Conditions

60% Item mark only

61% Item mark only, A bit is 1

62% Item mark only, B bit is 1

63% Item mark only, B and A bits are 11
64 Item mark only, B and A bits are 00
6 5% Item mark only, Positive sign

66% Item mark only, Negative sign

67% Item mark only, B and A bits are 11
70%t Unconditional

71%xt Word mark or A bit is 1

72%t Word mark or B bit is 1

73%t Word mark or B and A bits are 11
T4%t Word mark or B and A bits are 00
75%t Word mark or Positive sign

76%t Word mark or Negative sign

TT#¢ Word mark or B and A bits are 11

% Valid only on systems equipped with the Advanced Programming Feature
(Feature 010 or 011),

tThe Type 201 and 201-1 processors interpret variants 70 through 77 as
if they were variants 30 through 37.

#2-139

APPENDIX B. MISCELLANEOUS TABLES

Table B-6. Series 200 Character Codes

0 0 000000 00 0 for-|X, 0o0r X(l) 100000 40 -
1 1 000001 o1 1 J X,1 100001 41 J
2 2 000010 02 2 K X,2 100010 42 K
3 3 000011 03 3 L X,3 100011 43 L
4 4 000100 04 4 M X, 4 100100 44 M
5 5 000101 05 5 N X,5 100101 45 N
6 6 000110 06 6 (o] X, 6 100110 46 (o]
7 7 000111 07 7 P X,7 100111 47 P
8 8 001000 10 8 Q X,8 101000 50 Q
9 9 001001 11 9 R X,9 101001 51 R
8,2 001010 12 ! X,8,2 101010 52 #
8,3 001011 13 = $ X,8,3 101011 53 $
@ 8,4 001100 14 : * X,8,4 101100 54 *
Space Blank 001101 15 Blank X,8,5 101101 55 "
8,6 001110 16 > (2) X,8,6 101110 56 £ (2)
& 8,7 001111 1z & | -ord|Xorx,0) | 101111 57 |1/20r1(2)(3)
o or & |R,0 or R | 010000 20 + 8,5 110000 60 < (2)
A R,1 010001 21 A / 0,1 110001 61 /
B R, 2 010010 22 B s 0,2 110010 62 S
C R,3 010011 23 C T 0,3 110011 63 T
D R,4 010100 24 D U 0,4 110100 64 U
E R,5 010101 25 E v 0,5 110101. 65 v
F R, 6 010110 26 F w 0,6 110110, 66 w
G R,7 010111 27 G X 0,7 110111 67 X
H R, 8 011000 30 H Y 0,8 111000 70 Y
I R,9 011001 31 I VA 0,9 111001 71 zZ
R,8,2 011010 32 H 0,8,2 111010 72 @
. R,8,3 011011 33 . , 0,8,3 111011 73 ,
0 R,8,4 011100 34) % 0,8,4 111100 74 (
R,8,5 011101 35 % 0,8,5 111101 75 Cr
R,8,6 011110 36] 0,8,6 111110 76 | O (2)
&or o |Ror R0 | 0111m 37 2(2) 0,8,7 111111 77 | ¢ (2
(I)Specia.l Code (for use with H-400/1400 and H~800/1800 cards). The second (alternative)
card code is equivalent to the stated central processor code when control character 26
is coded in a card read or punch PCB instruction.
(Z)Indicates symbol which will be printed by a printer which has a 63-character drum (Type
222 printers),
(3)The exclamation point replaces the one~half symbol on a type roll containing the Mark II
character font,

B-7 #2-139

APPENDIX B.

MISCELLANEOUS TABLES

Table B-7. Binary, Octal, and Decimal Equivalents

BN, |oct. | pEC. || BIN. |ocT.|DEC.
0 0 0 100000 | 40 32
1 1 1 100001 | 41 33
10 2 2 100010 | 42 34
11 3 3 100011 | 43 | 35
100 4 4 100100 | 44 36
101 5 5 100101 | 45 37
110 6 6 100110 | 46 38
111 7 7 100111 | 47 39
1000 | 10 8 101000 | 50 40
1001 | 11 9 101001 | 51 41
1010 | 12 10 101010 | 52 42
1011 | 13 11 101011 | 53 43
1100 | 14 12 101100 | 54 44
1101 | 15 13 101101 | 55 45
1110 | 16 14 |-ro1110 | 56 46
1111 | 17 15 101111 | 57 47
10000 | 20 16 110000 | 60 48
10001 | 21 17 110001 | 61 49
10010 | 22 18 110010 | 62 50
10011 | 23 19 110011 | 63 51
10100 | 24 20 110100 | 64 52
10101 | 25 21 110101 | 65 53
10110 | 26 22 110110 | 66 54
10111 | 27 23 110111 | 67 55
11000 | 30 24 111000 | 70 56
11001 | 31 25 111001 | 71 57
11010 | 32 26 111010 | 72 58
11011 | 33 27 111011 | 73 59
11100 | 34 28 111100 | 74 60
11101 | 35 29 111101 | 75 61
11110 | 36 30 111110 | 76 62
11111 | 37 31 111111 | 77 63

Table B-8.

Powers of 2

O © N9 o0 WDV~ O

[T o T N B o T N v T VO T e
B W NV = O O 0N 0 W YN =~ O

b

® » N

16

—

o N

16

32

65
131
262
524
048
097
194
388
777

—

o N

16

32

64
128
256
512
024
048
096
192
384
768
536
072
144
288
576
152
304
608
216

#2-139

APPENDIX B. MISCELLANEOUS TABLES

Table B-9., Move or Scan Variants

MOVE OPERATION CODES

MLC Move Left Characters 63
MLN Move Left Numerics . 61
MLW © Move Left Word Marks 64
MLZ Move Left Zones 62
MLCA Move Left Characters to A-Field Word Mark 23
MLCB Move Left Characters to B-Field Word Mark 43
MLCS Move Left Character Single 03
‘MLCW Move Left Characters and Word Marks 67
MLNA Move Left Numerics to A-Field Word Mark 21
MLNB Move Left Numerics to B-Field Word Mark 41
MLNS Move Left Numeric Single 01
MLNW Move Left Numerics and Word Marks 65
MLWA Move Left Word Marks to A-Field Word Mark 24
MLWB Move Left Word Mark to B-Field Word Mark 44
MLWS Move Left Word Mark Single 04
MLZA ‘ Move Left Zones to. A-Field Word Mark 22
MLZB Move Left Zones to B-Field Word Mark 42
MLZS Move Left Zone Single 02
MLZW Move Left Zones and Word Marks 66
MLCWA Move Left Characters and Word Mark to A-Field

Word Mark 27
MLCWB Move Left Characters and Word Mark to B-Field

Word Mark 47
MLCWS Move Left Characters and Word Mark Single 07
MLNWA : Move Left Numerics and Word Mark to A-Field

Word Mark 25
MLNWB Move Left Numerics and Word Mark to B-Field

Word Mark 45
MLNWS Move Left Numeric and Word Mark Single 05
MLZWA Move Left Zones and Word Mark to A-Field

Word Mark 26
MLZWB Move Left Zones and Word Mark to B-Field

Word Mark 46
MLZWS Move Left Zones and Word Mark Single 06
MRC Move Right Characters 13

B-9 #2-139

APPENDIX B. MISCELLANEOUS TABLES

MRCR
MRCW

MRNG
MRNM

| MRNR
MRNW

MRWG
MRWM

MRWR
MRZG

MRZM

MRZR
MRZW

MRCWG
MRCWM
MRCWR
MRNWG

MRNWM

Table B-9 (cont). Move or Scan Variants

MOVE OPERATION CODES

Move Right Numerics
Move Right Word Marks
Move Right Zones

Move Right Characters to A-Field Group Mark-
Word Mark

Move Right Characters to A-Field Record Mark or
Group Mark-Word Mark

Move Right Characters to A-Field Record Mark

Move Right Characters and Word Mark to A- or B-
Field Word Mark

Move Right Numerics to A-Field Group Mark-Word Mark

Move Right Numerics to A-Field Record Mark or
Group Mark-Word Mark

Move Right Numerics to A-Field Record Mark

Move Right Numerics and Word Mark to A- or B-
Field Word Mark

Move Right Word Marks to A-Field Grodp Mark-
Word Mark

Move Right Word Marks to A-Field Record Mark or
Group Mark-Word Mark

Move Right Word Marks to A-Field Record Mark

Move Right Zones to A-Field Group Mark-Word
Mark

Move Right Zones to A-Field Record Mark or
Group Mark-Word Mark

Move Right Zones to A-Field Record Mark

Move Right Zones and Word Mark to A- or B-Field
Word Mark

Move Right Characters and Word Marks to A-Field
Group Mark-Word Mark

Move Right Characters and Word Marks to A-Field
Record Mark-Group Mark-Word Mark

Move Right Characters and Word Marks to A-Field
Record Mark

Move Right Numerics and Word Marks to A-Field
Group Mark-Word Mark

Move Right Numerics and Word Marks to A-Field
Record Mark-Group Mark-Word Mark

14
12

53

73
33

17
51

71

31

15

54

74
34

52

72
32

16

57

77

37

55

75

B-10

#2-139

APPENDIX B. MISCELLANEOUS TABLES

Table B-9 (cont). Move or Scan Variants

MOVE OPERATION CODES

g %

MRNWR Move Right Numerics and Word Marks to A-Field

Record Mark » 35
MRZWG Move Right Zones and Word Marks to A-Field Group

Mark-Word Mark 56
MRZWM Move Right Zones and Word Marks to A-Field Record

Mark-Group Mark-Word Mark v 76
MRZWR Move Right Zones and Word Marks to A-Field

Record Mark 36

SCAN OPERATION CODES

SCNL Scan Left to A- or B-Field Word Mark 60
SCNR . Scan Right to A- or B-Field Word Mark 10
SCNLA Scan Left to A-Field Word Mark 20
SCNLB Scan Left to B-Field Word Mark 40
SCNLS Scan Left Single Position 00
SCNRG Scan Right to A-Field Group Mark-Word Mark 50
SCNRM Scan Right to A-Field Record Mark or Group 70
Mark-Word Mark
SCNRR Scan Right to A-Field Record Mark 30

B-11 : #2-139

INSTRUGTION SUMMARY APPENDIX

INSTRUCTIONS FORMATS AND TIMING

Each Series 200 instructionis described interms of its operation code, formats, and timing
formulas for the Series 200 Models 200/1200/1250/2200 in Table C-1. In addition, reference

is made in each case to the page where the operations initiated by the instruction are described.

Preliminary timing formulas for the Model 4200 are given in Table C-2. Since the internal
operation of the Model 4200 processor differs from that of the other Series 200 processors in
that data is moved in groups of four characters (a word) rather than singly, the 4200 timing

formulas differ considerably from those of the other processors.

The formulas given in both tables provide execution time in memory cycles. Equivalent

expressions for symbols used in the tables are as follows:

SYMBOL MEANING
A Address of A-operand field.
B ‘ Address of B-operand field,
h The sum of the values of the multiplier digits which are

less than or equal tofive, plus the sum of the elevens
complements of all digits whosevalues are greater than

five.

Na Number of characters in the A-operand field.

Na.w Number of words in the A-operand field,

Nb Number of characters in the B-operand field.

wa Number of words in the B-operand field.

Nbl Number of words that the A fiéld occupies in the B field,
whether or not the operands have been modified by an
arithmetic operation.

sz Number of words in the B-operand field excluding Nbl'

Nc Number of control characters in the instruction,

N Number of control characters following control character

cn
3 (C3).
Ndd Number of digits in the dividend.
N Number of characters in the instruction.

c-1 : #2-139

APPENDIX C. INSTRUCTION SUMMARY

SYMBOL

Nja
Nip
Njc

Nj

Z
8

Z
8
H

2

Z Z Z
w ' w H
o+ 0

Z
4

Z

wj

N

la

law

1d

MEANING
Number of words in the item to be translated.
Number of words in the result item.

Number of translation units (6-bit or 12-bit characters)
to be translated.

Nun:lberb of character locations bypassed to reach the
next sequential op code.

- Number of characters moved.

Number of digits in the multiplier,

Number of digits in the quotient (=Ndd'zld"Na+'Zla+1).
Number of characters referenced.

NumBer of characters scanned.

Number of characters stored.

Number of characters in the A- or B-operand field, which-
ever is shorter.

Number of words bypassed to reach the next sequential
op code.

Number of words stored.

Number of items in the table or the number of times the
A operand is compared against some portion of the
B operand.

The value of the ”ith” digit of the quotient,
Sum of all multiplier digits.

Sum of the upwards~rounded values of all multiplier digits
divided by 2.

Variant character.
Number of memory words used to store the data involved.

Number of four-character words used to store one more
than the total number of characters in the instruction.

Number of words in the multiplier.

Zero if no second scan (zero suppression); one if the scan
is performed.

Zero if no third scan (dollar-sign insertion); one if the
scan is performed.

Number of characters scanned during zero suppression,
Number of leading zeros in the A-operand field.

Number of words containing leading zeros in the A-operand
field.)

Number of leading zeros in the dividend

#2-139

APPENDIX C. INSTRUCTION SUMMARY

NOTE:

SYMBOL MEANING
Zmr Number of zeros in the multiplier.
Zta Number of trailing zeros (i, e., consecutive low=-order

zeros) in the A-operand field.

Z Number of words containing trailing zeros in the A-operand
taw .
field.
Zw Number of words scanned during zero suppression.
z Zeroif Z, =0; oneif Z # 0.
z la la

Number of characters scanned during dollar-sign insertion.

$ Number of words scanned during dollar-sign insertion.

The timing formulas presented in Tables C-1, C-2, and C-3 are based
on the use of direct addressing. If address modification is used, the
formulas in Tables C-1 and C-3 for the Models 200, 1200, 1250, and 2200
should be modified as follows:

1, Indirect Addressing — Add one memory cycle for each character
extracted as a result of indirect addressing.

2. Indexed Addressing — Add three memory cycles for each indexed
address. : '

Likewise, the use of address modification requires that the formulas
in Tables C-2 and C-3 for the Model 4200 be modified as follows:

1. Indirect Addressing — Add 1. 16 memory cycles for each indirect
address formed plus one memory cycle for each word extracted
as-a result of indirect addressing.

2. Indexed Addressing — Add 3.167 memory cycles if one address is
) indexed, 5.16 memory cycles if both addresses are indexed.

#2-139

APPENDIX C.

INSTRUCTION SUMMARY

Table C-1.

Instruction Summary — Timing Formulas for Models 200, 1200, 1250, 2200%

ARITHMETIC INSTRUCTIONS
A 36 |R,8,6 Decimal Add N+24N_+2N, (o a. A/A,B Dupli B op . A [Beop Yes, 8-14
recomp‘fement) b. A/A A, operand only if | word mark.
N.+2+N_+4N c. A/ smaller than B,
i 4
(Fecomplemeént)
s 37 |Ror R;0° Decimal Subtract| N #2+N_+2N, (no a. S/A,B Duplicates | B operand. A | B-operand Yes. 8-16
récomplement)* b. S/A . operand only if ;word mark.
N.+2+N_+4N, c. S/ * smaller than B,
i w4
{recomplgment)
BA 34 |R,8,4 Binary Add NN 2N, a, BA/A,B Duplicates |B operand. A |B-op Yes. 8-17
v b. BA/A A. operand only if |word mark.
c. BA/ smaller than B.
BS 35 |R,8,5 Binary Subtract | N +I+N_+2N, a. BS/A,B Duplicates | B operand. A | B~operand Yes. 8-19
b. BS/A A, operand only if |word mark.
¢ BS smaller than B,
za 16 8,6 Zeroand Add | NFI4N_+N a. ZA/A,B Duplicates |B operand. A | B-operand Yes. 8-20
‘b, ZA/A . operand only if |word mark.
c. 2a/ smaller than B,
zs 17 8,7 Zeroand Sub- | N +I4N_+N, a. 2zS/A,B Duplicates |B operand. A |B-operand Yes. 8-22
tract b, zS/A . operand only if |word mark.
c. zs/ smaller than B.
M 26 |R,6 Decimal Multiply| See Table C-3. a. M/A,B Preserves |A and B fields. | Both word Yes. 8-23
b. M/A . marks.
c. M/
D 27 |R,7 Decimal Divide |See Table C-3. a. D/A,B Preserves [A operand A-operand Yes. 8-25
b, D/A B. (divisor). word mark.
c. D/
LOGIC INSTRUCTIONS
EXT 31 |R,9 Extract {Logical| N.+1+3N, a. EXT/A,B Preserves | Smaller oper- | Word mark Yes. 8.28
Product) b v b. EXT/A 3 and. of smaller
c. EXT/ operand.
HA 30 |R,8 Half Add N3N a. HA/A,B Preserves | Smaller oper- | Word mark Yes. 8-29
(Exclusive Or) b, HA/A B. and. of smatler
c. HA/ operand.
ssT 32 [R,8,2 Substitute N4 a. SST/A,B,V Preserves |None. Single- Yes. 8-30
b, SST/A,BS B. character
c. SST/A operation.
d. sST/
c 33 |R,8,3 Compare NyF24N 4N, 6 a. C/AB Preserves |B operand. A | B.operand Yes. 8-32
b. C/A. B. operand only if |word mark.
c. C/ smaller than B,
B 65 [0,5 Branch Ni+26 2. B/A Bypasses |None. ala No. 8-34
(Unconditional) 3
BCT | 65 |0,5 Branch on Ni+26 a. BCT/A, V' Bypasses |None. nla Yes. 8 8-35
Condition Test b. BCT/ B.
BCC 54 [X,8,4 Branch on Ni+4 a. BCC/A,B,V° | Preserves |None. Single- Yes. 8-39
Character b. BCC/A,B B. character
Condition c. BCC/A operation.
BCE 55 |X,8,5 Branch if N +4 a. BCE/A,B,V®| Preserves |None, Single- Yes.” 8-42
Character Equal | ' b. BCE/A,B B. ’ character
c. BCE/A operation.
d. BCE/
BBE 56 |X,8,6 Branch on Bit | N.+4 a. BBE/A,B,V Preserves |None. Single- Yes. 8-44
Equal b, BBE/A,B 3 character
¢. BBE/A operation.
d. BBE/
CONTROL INSTRUCTIONS
sw 22 |R,2 Set Word Mark N‘+3l° a. SW/A,B Duplicates | None. n/a Yes. 8-48
b, SW/A .
c. SW/
st 20 |R,0 or R® Set Item Mark | N;+3'° a. SI/A,B Duplicates | None. nla Yes. 8-49
b, SI/A .
c. SI/
cw 23 |R,3 Clear Word N+3 a. CW/A,B Duplicates | Word marks n/a Yes. 8-50
Mark b. CW/A A, are cleared.
c. CW/
cr 21 |R,1 Clear Item Mark|N.+3 a. CU/A,B Duplicates | None. n/a Yes. 8-51
: b. CI/A A,
e CU
6 11
H 45 1X,5 Halt N.+2 a. H/ Preserves | None, n/a No. 8-52
b. H/A B.
c. H/A,B
d. H/A,B,V
nop | 40 No Operation [N.42'2 a. NOP/ Bypasses |None. nla No. 8-54
A'and B,
MCW | 14 {8,4 Move Characters| N;+1+2N a. MCW/A,B Preserves |Smaller Word mark Yes. 8-55
to Word Mark b. MCW/A B. operand. of smaller
c. MCW operand.

Cc-4

#2-139

APPENDIX C,

INSTRUCTION SUMMARY

Table C-1 (cont).

Instruction Summary — Timing Formulas for Models 200, 1200, 1250, 2200%

Op Code] R R
. Card Key ' Function Timing 1 Format Extraction Raqulred Worg! an
Mnomonig[Octal| ~ Code™ | Punch (Memory Cycles) Path? Marks |)
CONTROL INSTRUCTIONS (cont)
LCA | 15 |Blank Space | Load Characters| N+ 142N, a. LCA/A,B Preserves |A operand. A-operand Yes. 8-56
to A-Field Word [' b. LCA/A B. word mark.
Mark c. LCA/
SCR | 24 |R,4 D |Store Control |N.+5° a. SCR/A,V' Bypasses |None. n/a ves. 8-58
Registers ' b. SCR/A B.
c. SCR/
6 7 8
LCR 25 |R,5 E |Load Control N +5 a, LCR/A,V Bypasses |None. nl/a Yes. 8-60
Registers * b. LCR/A B.
c. LCR/
12 7 8
cAaM | 42 [x,2 K [Change Address-(N.+2 a. CAM/V! Bypasses |None. n/a Yes. 8-62
ing Mode I b, CAM/ Aand B,
csm | a3 |x,3 L |Change Sequenc-|N +3'2 a. csm/M! Preserves |None. nla Yes, ® 8-66
ing Mode h b, CSM/A
c. CSM/A,B
d, CSM/A,B,V
EXM | 10 |8 8 |Extended Move |N+1t2N a. EXM/A,B,V’ | Preserves |See page 8-67 | See page 8-67 ves. ® 8-67
2 b, EXM/A,B B. .
¢. EXM/A
d. EXM/
MAT | 60 (8,5 Move and N3 12 a. MAT/A,B,V,V, See page {A operand. Word mark No. 8-70
Translate e b, MAT/A,B,& 8-70 in A operand
or in table.
MIT | 62 [0,2 5 |Move tem ana [nen san, 1 a. MIT/A, B, See page |None. A-operand No. 874
Translate Vi Vye Vy 8-74 item mark or]
word mark inf
b. MIT/A.B,C.Vl table.
L1B 77 [0.8,7 Load Index/ N;j+3 a. LIB/A Preserves |None. Single- Yes. 8-79
Barricade N;+5 b. LIB/A/B B. character
Register operation,
sIB 76 10,8,6 Store Index/ Nj+3 a. SIB/A Preserves |None. Single- Yes. 8-82
Barricade Nj+5 b. SIB/A/B 3 character
Register operation.
TLU | 57 |R,6 F | Table Lookup Ni+l+n(Na)+Nb“ a. TLU/A,B,V | Preserves |A operand. A-operand Yes. 8-83
b, TLU/A,B B. word mark,
c. TLU/A
4. TLU
MOS 13] 83 # | Move or Scan N3) M ove) | a. MOS/A,B,Y | Preserves |See page See page Yes 8-86
- b. MOS/A,B B 8-86 8-86
NH43(N,) (1200 Scan) [c. MOS/A
d. MOS
N#242(N_) (2200 Scan)
INTERRUPT CONTROL INSTRUCTIONS .
SVI 46 |X,6 O |Store Variant Ni+Z+NM+N.l5 a. SVI/vV Bypasses |See page 8-93 | See page No, 8-92
and Indicators J A and B. 8-93
RVI 67 [0,7 X |Restore N+2en * a. RVI/A,V Restores |None. Word mark No. 8-95
Variant and N r A and of next
Indicators bypasses instruction.
MC 44 1X,4 M |Monitor Call Ni+24 a. MG/ Bypasses |None. Word mark No. 8-98
Aand B, of next
instruction,
RNM | 41 |X,1 J |Resume N.+3'6 | a. RNM/A,B Preserves |None. n/a No. 8-99
Normal Mode ' b, RNM/A B.
c. RNM/
EDITING INSTRUCTION
MCE | 74 |0,8,4 % |Move N{FIHN 12N, 422428 a. MCE/A,B" Preserves |A operand and | See page No. 8-104
Characters H b, MCE/A B. B operand 8-106
and Edit <. MCE/ (see page
8-106
INPUT/OUTPUT INSTRUCTIONS
pDT | 66 |0,6 W |Peripheral MODEL 200: a. PDT/A,C,,.C_| Bypasses [None. Record mark No. 8-115
Data N1+ data transfer n B. in memory or|
Transfer time. unit record
length,
MODELS 1200 and 1250 ere
(N-N_+1) + (N__+3)
input/Sutput cy&les + 1
processor cycle + data
transfer time.
MODEL 2200:
(N-N_+1) + 2N_ + data
transfer time.

#2-139

APPENDIX C, INSTRUCTION SUMMARY

Table C-1 (cont). Instruction Summary — Timing Formulas for Models 200 1200, 1250, 2200%

Required Word | Terminated | Can Instruction |
Marks: - - By: . |1 "Be Chained?

INPUT/OUTPUT INSTRUCTIONS (cont)

PCB 64 0,4 U {Peripheral MODEL 200: a. PCB/A, Cl' .. Cn Bypasses | None. n/a No. 8-127
Control and Nifl {if no branch condi- B.
Branch tion exists)

N,1+2 (if 2 branch occurs)
MODELS 1200 and 1250:
<N _+1) + i
o Nc) Nc input/
output cycles 17

MODEL 2200:
(N,-N _+1) +2N
i'¢c c

*All information given in this table, other than timing formulas, is applicable to the Mcdel 4200. Timing formulas for the 4200 are presented in Table C-2. See Table
F-1 for information concerning Scientific Unit instructions.

lExz:ept where otherwise indicated, add one memory cycle to each of these formulas if the instruction is being executed in a Type 2201 processor.

zThe extraction path of the various instructions is defined as follows:
e Preserves B — The previous contents of BAR are used as the B address when the instruction is coded in the format Op Code/A.
® Duplicates A — The contents of AAR are used as the B address when the instruction is coded in the format Op Code/A,
* Bypasses B — The contents of BAR are not used in any format.

® Bypasses A and B — The contents of AAR and BAR are not used in any format.
3The second (alternate) card code is in effect when control character 26 is coded in a Card Read or Punch PCB instruction.
4Subtract one memory cycle from this formula if the instruction is executed in a Type 1201 or 1251 processor.

sTh:is instruction can be coded only in formats a. and d. when issued in a Type 201 or 201-1 processor.
[3

Add two memory cycles to this formula if the instruction is executed in a Type 2201 processor.
7This instruction can be coded only in format a. when issued in a Type 201 or 201-1 processor.
This instruction cannot be chained in the Type 201 or 201-1 processor.
gThis instruction can be chained in the Type 201 or 201-1 processor only if the preceding instruction is also a BCE instruction.
wSubtract one memory cycle from this formula if the instruction is issued in the Type 1201 or 1251 processor in the format Op Code/A, B.
“This instruction can be coded only in formats a., b., and c. when issued in a Type 201 or 201-1 processor.
leubtract one memory cycle from this formula if the instruction is executed in a Type 1201 or 1251 processor.
13If the instruction is executed in a Type 2201 processor, do not add the one memory cycle mentioned in footnote 1.

14This formula applies only to the Type 1201, 1251, and 2201 processors; this instruction is not available with the Model 200 processors.

Subtract one memory cycle from this formula if the instruction is executed in a Model 200 processor.
l()Add two memory cycles to this formula if the instruction is executed in a Type 2201 processor.
is executed in a Type 1201 or 1251 processor.
17

The "processor cycle' is the one memory cycle out of every four which is given unconditionally to the processor for internal operations; the three remaining
cycles are termed ''input/output cycles. "

Subtract one memory cycle from the formula if the instruction

C-6 , #2-139

APPENDIX C.

INSTRUCTION SUMMARY

Table C-2.

Instruction Timings for the Model 4200

Fixed-Point Arithmetic Instructions

A Decimal Add No Recomplement
el
W.+N +2N, +2.5N, _+K BC K=5
ioaw bl b2 AV K= 6.5
Recomplement We K =7
N +2. + .
Wi Naw 2 5wa 2Nb1+2 5Nb2+
k!l
S Decimal No Recomplement
Subtract W +N__+2N_ +2.5N, _+K"
i aw bl "7 b2
Recomplement
Wi+NaW+2' 5NbW+ZNbl+2. 5Nb2+
k!l
BA Binary Add Wi+Naw+2Nbl+2' 5Nb2+K1 BC K=5
AV K=6,5
BS Binary Subtract | W_+N__+2N__+2.5N _+K! WeC K=1.5
i aw bl b2
2 .
ZA Zero and Add Wi+2Nbl+Nb2+K Nbl value is even
K=6
ZS Zero and W'+2Nb1+Nb2+K2 Nbl value is odd
Subtract ! K'= 7
S Mode: Add 2 cycles
Decimal Multiply | See Table C-3.
D Decimal Divide See Table C-3.
Logic Instructions
EXT Extract W.+3N. _+7
i bl
HA Half Add Wi+3Nb1+7
SST Substitute Wi+7' 34
C Compare W'+2Nb1+Nb2+Kl BC K=5,5
! AV K=7
WC K=8
B Branch Wi+4' 5
(unconditional)
Cc-7 #2-139

APPENDIX C.

INSTRUCTION SUMMARY

Table C-2 (cont). Instruction Timings for the Model 4200

Logic Instructions (cont)

BCT Branch on W . +4.5
Condition Test 1
BCC Branch on W, +6
Character !
Condition
BCE Branch on W.+6
Character Equal !
BBE Branch on W.+6
Bit Equal !
Control Instructions
SW Set Word Mark wi+5'
SI Set Item Mark Wi+5
Ccw Clear Word Mark Wi+5
Cl Clear Item Mark Wi+5
H Halt Wi+5
NOP No Operation Wi+4
MCW Move Characters W'+2Nbl+K2 Nbl value is even
to Word Mark : K=6
N, . value is odd
kP2 7
LCA Load Characters Wi+2Nbl+K2 Nbl value is even
to A-field Word K=5
Mark Nbl value is odd
K=6
SCR Store Control Wi+W+4. 33 Non-I/0 register
Registers W.tW+13 1/0 register
LCR Load Control Wi+W+4. 33 Non-1/O register
Registers
cgis Wi +w+24 1/0 register
CAM Change Address-| W_+4
. i
ing Mode
Cc-8 #2-139

APPENDIX C.

INSTRUCTION SUMMARY

Table C-2 (cont).

Instruction Timings for the Model 4200

Control Instructions (cont)
CSM Change W.+4
Sequencing Mode !
EXM Extended Move Wi+2Nb1+K2 Nbl value is even K=5
Nbl value is odd K=6
MAT Move and W.+1.67N, +1.67N__ +N, +6.5 If A< 94B then
Translate : a ib e N. = Number of char-
acters in the item|
, to be translated.
Ni = Number of char-
acters in the
result item.
MIT Move Item and W, +1.67TN, +1. 67N'b+N' +6.5 If B<9+4+A or if the trans 4
Translate ' 2 t ic lation is 6-bit to 12-bit
(or 12-bit to 6-bit) then
N. = Number of char-
acters in the item
to be translated.
Ni = Number of char-
acters in the
result item.
LIB Load Index/Bar- Basic storage protection
ricade Register" Wi+W+4' 5
Storage protection with base
relocation
Wi+2W+6
SIB Store Index/Bar- Basic storage protection
ricade Register Wi+W+4
Storage protection with base
relocation
Wi+2W+5
TLU Table Lookup W.+n(IN_)+N. +3n+t9
i aw bw
MOS Move or Scan W.-1+3+(3Nm+1)

#2-139

APPENDIX C. INSTRUCTION SUMMARY

Table C-2 (cont). Instruction Timings for the Model 4200

Interrupt Control Instructions

MC Monitor Call Wi+4
SVI Store Variant and | W,+N +N +8
. i ws wj
Indicators
RVI Restore Variant Wi+7)
and Indicators
RNM Resume Normal W.+4.5
i
Mode

Edit Instruction

MCE Move Characters Wi+Naw+2' 3N

+27 +2$ +6+X +Y
and Edit w w w ° o

b

C-10 #2-139

APPENDIX C. INSTRUCTION SUMMARY

Table C-3. Timings for Decimal Multiply and Divide, Models 200, 1200, 1250, 2200, and 4200

200 N,+542N_+2Z_+5N__-Z _+s(N_-Z_)42(N -Z.)N -2)
1200 i a ta mr mr a ta a ta mr mr
and
Multiply (1230
2200 N.+8+2N 427 +5N -Z +sum(N_-Z,)+3(N -Z NN -Z)
i a ta mr mr a ta a ta mr mr
W+N _+ [N -2z 1.IN -z +8.0 |+l (s)(N -2z
4200 i "aw mr mr a ta k) a ta)
+2. 3Zmr+ztaW+13
N.+4+2N if divisor = 0
200 1 a
1200 - i - <
290 N, +17.5+4.5N_+15.5Z | +12.5N HI5N_ (N, -N_+Z) if (N 2,0 <
1250 (N,) and divisor # 0
dd
I S
NATHN i (N -2) > (N)
N.+7+2N if divisor = 0
i a
- i - Y < -
N#942Z 5N 437 N HISN_-2Z +18.25) if (N,-Z) € (N, -2)
2200 and divisor # 0
Divide .
Ni+9+2Na+2Ndd if Na > Ndd and (Na-Zla.) > (Ndd-Zld)
i > - > -
N HLOHN 43N, i N 2 N, and (N -Z) > (N -Z,)
N
4200 W 42N +Z. TAQ +2)(3N_ +2)+19
i aw law 1 aw
’ i=1

C-11 #2-139

APPENDIX

INTERRUPT PROCESSING

The execution of main-program instructions by the processor can be interrupted by an
external interrupt source and, if the processor is a Type 1201, 1251 or 2201 equipped with the
Storage Protect Feature (see Appendix E) or a Type 4201 equipped with the Extended Multipro-

gramming and 8-Bit Transfer Feature (see Appendix G), by an internal interrupt source.

EXTERNAL INTERRUPT

An external interrupt signal can be generated by any or all of three sources:
1. The operator's control panel or console;v

2. The Monitor Call instruction (see page 8~98); or

3. A peripheral control.

The first two sources interrupt the processor directly: in the case of the control panel
or console, the operator simply presses the INTERRUPT button; the Monitor Call instruction

interrupts the processor when it is executed. However, a peripheral control interrupts program

sequence as directed by the settings of two programmable storage functions contained within the

control, as described on page D-5,

The interrupt signal sets indicators to show the source (whether 1., 2., or 3., above)
and the type (external) of interruption. These indicators can be stored and then tested by pro-
grammed instruction as described further in this appendix, The processor acts upon the in-
terrupt signal when the following conditions are present:

1. The processor is in the RUN mode (i.e., the processor is executing,
without manual intervention, stored-program instructions under
control of SR).

2. The processor is not in the external interrupt mode.
3. An instruction op code is about to be extracted. ’\
4, A memory cycle is allocated to the processor,

It should be noted that condition 3. above does not cause an extensive delay if a Type

201-2, 1201, 2201, or 4201 processor is attempting to extract a Peripheral Data Transfer (PDT)
instruction and the specified read/write channel or peripheral control is ""busy." The attempt
to issue a PDT instruction to a busy read/write channel or peripheral control does not "stall"
the central processor. Rather, the instruction is '""re-extracted'': SR is set back to the address
of the PDT op code, so that condition 3. recurs immediately after the channel or control is found
busy.

D-1 , #2-139

APPENDIX D, INTERRUPT PROCESSING

When the central processor is interrupted, it performs the following functions:

1. Stores the current status of the arithmetic, comparison, address mode,
and trap mode indicators in the auxiliary indicators register (AIR).

2. Clears the arithmetic indicators.
3. Enters the three-character, non-trap mode,.
4. Interchanges the contents of SR and EIR and branches to the instruction

whose op code address was previously stored in EIR,

5. Enters the external interrupt mode,

The interrupt signal is maintained until one of the following steps is taken:

1. A PDT instruction is issued to the peripheral control,
2. The Interrupt function for the peripheral control is turned off,
3. The central processor is initialized.

INTERNAL INTERRUPT

An internal interrupt signal is generated only by a Type 1201, 1251, or 2201 processor
equipped with the Storage Protect Feature or a Type 4201 processor equipped with the Extended
Multiprogramming and 8-Bit Transfer Feature and is caused by a ''violation' of storage protec-
tion. (The nature of storage protect violations = internal interrupt address violation, op code
violation, etc, — is described in Appendix E.) Processor indicators are set by the internal
interrupt signal to show the cause (e.g., op code violation) and the type (internal) of‘-/"nterruption.

These indicators can be stored and then tested by programmed instruction as described further

in this appendix,

The processor reacts to the internal interrupt signal when the conditions described on
page D-1 are present (i.e., the processor is in the RUN mode, is not in the external interrupt
mode, is about to extract an op code, and is presently allocated a memory cycle) plus one
additional condition: the processor must not only not be in the external interrupt mode but also
must not be in the internal interrupt mode. Thus, the following levels of interrupt priority exist
in the Type 1201, 1251, 2201, or 4201 processor.

1. If the processor is in the non-interrupt (standard) mode, normal program
sequence can be interrupted by either an external or an internal source,

2. If the processor is in the internal interrupt mode, program sequence
can be interrupted only by an external interrupt source.

3. If the processor is in the external interrupt mode, program sequence can not
be interrupted. 1

1Interrupt signals generated by any or all of the three external sources (peripheral control, con-
trol panel or console, or Monitor Call instruction) may continue to occur while the processor is
in the external interrupt mode., The priority in which the interrupts are accommodated is de-
termined by the program (i.e., according to the programmer-established sequence of interrupt
source tests).

D-2 #2-139

APPENDIX D. INTERRUPT PROCESSING

The processor responds to an internal interrupt signal as follows:

1, The contents of SR and IIR are interchanged, and the program branches
to the instruction whose op code address was previously stored in IIR,

2. The processor enters the internal interrupt mode,
Note that the status of the arithmetic, comparison, address mode, and trap mode indicators
are not stored in AIR automatically when the processor responds to an internal interrupt signal.
The storing (and subsequent restoring) of the contents of these indicators is the responsibility of

the internal interrupt program.

INTERRUPT PROGRAMMING

Three of the four interrupt control instructions (pages 8=-92 through 8-101) perform basic

functions in an interrupt routine:

1, The Store Variant and Indicators instruction (SVI) stores two types of
information: (a) information which must be preserved for subsequent
return to the interrupted program (e.g., indicator settings, variant
register contents,l etc.); and (b) information required to identify the
interrupt source,

2. The Restore Variant and Indicators instruction (RVI) restores the pertinent
information stored by the SVI instruction before returning to the interrupted
program.

3. The Resume Normal Mode instruction (RNM) returns the processor to

continue sequencing in the interrupted program, unless the sector bits
of SR have been modified,

The fourth interrupt control instruction — Monitor Call (MC) — causes an external interruption

and, therefore, is not coded in the interrupt routine itself,

_Other instructions are required in the interrupt routine to store and exercise control over
address register contents, as shown in Figures D-1 and D-2. The interrupt routines in these
figures are assumed to be executed in the same sector as the interrupted program; if not, or if
interrupt processing modifies the sector bits in SR, the appropriate sector bits must be stored

upon entering the routine and restored when exiting.

For proper re-entry to the interrupted program, the same set of indicators stored by the
SVI instruction should be restored by the RVI. Since the RVI instruction prepares the processor
to re-enter the interrupted program, it should be followed immediately by the RNM instruction.
Note that the A- and B-address register settings at the time of the interrupt should also be
restored before re-entering the interrupted program. The external interrupt coding shown in

Figure D-1 exploits the ability to restore the address registers automatically by storing their

1No means for storing the variant register contents is provided in the Type 201 and 201-1))
processors. Therefore, when interrupt programming is used with these processors (optiona

on Type 201), variant characters must not be chained.

D-3 #2-139

APPENDIX D.

INTERRUPT PROCESSING

contents in the address fields of the RNM instruction,

This technique requires that variant bit

V5 of the RVI instruction (see page 8-95) be a zero in order to ensure that the RNM instruction

is executed in the maximum address mode of the machine.

In an internal interrupt routine, on

the other hand, the indicators associated with the V, must be stored and restored by the SVI/

RVI instructions.

not be maximum, the address fields of this instruction must not be coded.

Therefore,

since the address mode of executing the RNM instruction may

Instead, the address

register settings must be stored in memory and restored by means of LCR instructions, as

shown in Figure D-2,

EASYCODER
CODING FORM

PROBLEM PROGRAMMER DATE PAGE ___OF _____

Nﬁﬁ;’m\é - Location - | OPRRTEOM ‘ OPERANDS

| 2]3 als5]6[7]8 . 14]15, 2021 5 | e | e2l63 | | | 80|
T T AAR CEQU ®1C67, . A- ADDRESS REGISTER A) L
[] |BAR CEQU [#1CT7g, . B-ADDRESS REGISYER
: 111 MAX CEQU _ [#1C64 .. MAXIMUM ADD ,MODE FOR C.P.\S 4, .. .,
sf 1 VI]IALLS CEQU 1CTs, , INDICATORS STORED, . . L
s 1 TITIMULR — ICEQU #1C35 INDICATORS RESTORED L ,
s 11 ... IADMODE |4 _ SET MAXIUM ADDRESS.ING. MODE
1 1 TTTIRESTOR RV1 EN‘\’EK+2 ALLR RESTORE. INDICATORS. MAXIMUM . , .
of 1 TTTIEXLT . IRNM 77 TEXAT. WLTH _AAR + BAR RESTORED. | | e
s TTTIENTER SV ALLS . . ENTER AND STORE INDICATORS B . ,
of 1 . DCW W5 | RESERVE STORAGE FOR INDICATORS . | ,
ol . CAM _ MAX_ ENTER MAXIMUM ADDRESS MODE , |,
el fo] . SCR . [T +4, AAR _ SAVE AAR o e .
3 { . SCR _ [EX1T+8,BAR . SAVE BAR . . e l , b
14 i l/ i 1 i) . 1 i] 1 1 1 1
's ; ! i T\ 1 . | L Lo L t L L 1 | L
o 1) . A . | EXTERNAL f , , . s .
M . AL ¢ ANTERRUPT ., .. ., N D .
ol] . . ; . | . ROUTINE .., L
o .. |B RESTOR BRANCH T0 RESTOR AND EX\T. .. . [., ..., 1

Figure D-1. Sample Coding For External Interrupt Routine

The first example (see Figure D-1) shows the initial and final coding to be used in an

external interrupt routine,

It is assumed that the address of the location tagged ENTER was

previously stored in EIR, so that the presence of an external interrupt signal results in the auto-

matic branch to the location tagged ENTER,

It is assumed that the four-character addressing

mode is the maximum addressing mode of the processor for which this routine is written.

NOTE:

If the interrupt routine is not in the maximum addressing mode prior to
branching to the location tagged RESTOR, a Change Addressing Mode
instruction — CAM/MAX — must precede the RVI instruction so that
the complete contents of any necessary control memory locations may
be restored.

#2-139

APPENDIX D. INTERRUPT PROCESSING

Figure D-2 shows the initial and final coding written for an internal interrupt routine.
It is assumed that the address of the location tagged START was previously stored in IIR and

that the maximim addressing mode of the processor is the four-character mode.

The initial and concluding instructions in an internal routine are similar to those
in an external interrupt routine, except that the SVI instruction must store the indicators associ-
ated with bit V) and must not store the contents of the auxiliary indicators register (AIR). All
other }Sertinent indicators are stored by the SVI instruction and are subsequently restored by the

RYVI instruction at the conclusion of the routine.

EASYCODER
CODING FORM

PROBLEM PROGRAMMER DATE PAGE ___OF____

NUMBER E 5| Location | PR OPERANDS

1\ 213 alse]7]s RN 2021 1 Ly R | | o263, | . 80
! ADR CEQY **1C67u. A- ADDRESS KEIG\STE.R RN N .
dl 1 I[BAR. . ICEQU #1C20 ... B-ADDRESS REGISTER |., A
3 1 1] MAX, CEQU _ #1C68 .. MAXIMUN ADD., MODE, FOR CP IS 4 . . o oo
L. L 111lINDS | ICEQU . #1C73 .. ALL BUT AIR INDICATORS | .. . ,
| TTT/INDR _ ICEQU #1C33 L. ALL BUT AIR_AND INT.. INDICATORS
s 1| SAVEA . DCW I#4C ... TEMPORARY. STORAGE, FOR AAR ., . | !
L TISAVER . DCW . [*®ac .. TEMPORARY. STORAGE FOR BMR. ., . |.,
. 1N ... |ADMODE|4 ... SET MAXIMUM ADDRESSING, MODE, . e
) 'i RESTOR [LCR SA_gA AAR . RESTORE. AMR , e
ol oy .. ACR SAVEB,BAR , _RESTORE BAR ,, Lo
vl . RV, . . START+2,\NDR RESTORE ALL BUT AR AND_INT. [ND.. . e
12 J J A M " 1 . 4 EXL\T PR RS " " N 3 i a L i Pt
N START . 18V INDS. _ENTER AND STORE ALL BUT AR AND. . o\
o L PCW s .. STORAGE, FOR ALL. BUF AIR IND. [., |
s | ' AM AX ., L ENTER MAXIMUM ADDRESSI\NG MODE) T .
‘e | AL sl(:R AYEAMMRA i %{VE AAIR P | 1 1L P 1 Lo L
i !ﬁ . s.c;z SAVEB.BAR , . SAVE BAR . . .\ ...\ .oy L
'8 | H L I M 1 t 1 1 1 : 1 1 1 Il Lo L
e i i - T‘ 1 1 1 PR ISP U S Y B | I L L 1 1
20 : l 1 o 1 1 1. l_NTE{RNAL 1 1 1 1 I T 1 I
2 Jr J i 1 L . L ! ‘NTElRRupTx ROUT \“E 1 3 1 1 P i1
22 *I JI 1 - TL 1 1) L 1 -;L L o 1 PO | L M.
23 ! i A . 11 1 " Jl 1 i - 1 ST W S 1
al] L. B RESTOR BRANCH 10 RESTOR AND EXIT. .. | . L

Figure D-2. Sample Coding for Internal Interrupt Routine

PERIPHERAL CONTROL INTERRUPT

This description pertains to most Series 200 peripheral controls; exceptions are noted in

the various hardware manuals describing individual peripheral devices.

Generally, a peripheral control's interrupt facility includes two interrelated functions:
the Allow function and the Interrupt function. Certain controls have more than one set of func-
tions (e.g., two sets for disk controls, but one set for magnetic tape controls). When a

peripheral control becomes ready to accept a PDT instruction (i.e., reaches a ''not-busy"

D-5 #2-139

APPENDIX D. INTERRUPT PROCESSING

status), it transmits a signalito turn on the Interrupt function, but this signal must be comple-~
mented by one from the Allow function (turned on by a PCB instruction) in order to complete the
interrupt signal for transmission to the central processor (see Figure D-3), 1 When the Interrupt
function is turned on, the interrupt signal is repeated continuously until the central processor is

interrupted or the signal is turned off.

ALLOW

FUNCTION

ON
INTERRUPT INTERRUPT SERIES 200
FUNCTION »| CENTRAL
ON SIGNAL PROCESSOR

CONTROL

STATUS

NOT-BUSY

PERIPHERAL CONTROL

Figure D-3. Interrupt Signal Generated by Peripheral Control

Th‘e interrupt facility for a peripheral control can be activated or deactivated simply by
turning the Allow function on or off, respectively. If the Allow function is off at the time the
peripheral control becomes not busy and all error information is stored, the interrupt signal
can be neither completed nor transmitted, Another method of inhibiting the interrupt facility
is to turn off the Interrupt function; this function will not be turned on again until the control
completes another PDT instruction., Note that if an interrupt has occurred and the Allow function
has then been turned off, the Allow function should not be turned on again until either the Inter-
rupt function has been turned off or a PDT instruction has been initiated by the control; other-

wise, an interrupt occurs immediately.

There are various methods of turning the Allow or Interrupt function on or off. The Allow
function can be turned on or off by a PCB instruction; similarly, the Interrupt function can be
tested or turned off by a PCB instruction. Also, when the peripheral control receives a PDT
instruction, its Interrupt function is turned off automatically; at completion of the PDT, a pulse
is sent to turn on the Interrupt function. In any situation, both functions are turned off by initi-

alizing the central processor.

Specific PCB C3 characters for individual controls are listed in Tables 8-34, through 8-36.

The C3 character in a PCB instruction may be used wither to control or to test the status of a

1This activity does not apply where there is no Allow function, as in the case of the Manual ‘
Interrupt function in a Type 220-3 Console connected to a Type 201 or 201-1 processor,

D-6 #2-139

APPENDIX D. INTERRUPT PROCESSING

peripheral control's interrupt facility. The general formats of the C3 characters relating to in-
terrupt control and test are:

1110x0 - Turn off the Allow fuunction

1110x1 - Turn on the Allow function.

1111x0 - Turn off the Interrupt function.

1111x1 - Branch to A if the Interrupt function is on.
The 2-bit, shown here as x, is normally zero if the cpntrol being addressed contains only one
set of Interrupt/Allow functions. If two sets of functions are present, this bit is set to identify
the particular set being tested or controlled. All of these C3 characters result in a branch to
A if the device addressed is not operable. Table D-1 summarizes Interrupt/Allow control and

test operations for most peripheral controls; exceptions are noted in individual device manuals.

‘ More than one control character can be used to specify multiple control and/or test oper-
ations in a PCB instruction. However, care must be taken in the use of certain éombinations of
these characters. For example, it is entirely possible for an interrupt to occur between ex-
tractions of control characters. In such a case, if control characters for "Branch on Interrﬁpt”
and "Turn Off Interrupt' were specified (in that order), the Interrupt function might be turned

off without being acknowledged.

Table D-1, Summary of Interrupt/Allow Function Control and Test Operations

Manual

INITIALIZE Button Turned off Turned off

Program - PCB Control Char. !

70 Turned off None

71 Turned on None
74 None Turned off

75 None Branch to A if on

Peripheral Control

Upon receipt of PDT None Turned off
When PDT completed None Turned on if Allow on

1All of these PCB control characters will result in a branch to A if the device ad-
dressed is not operable.

D-7 ' #2-139

APPENDIX

STORAGE PROTECT FEATURE

When the Type 1201/1251 or 2201 processor is equipped with the Storage Protect capability
(Feature 1114 or 1117, respectively), the main memory can be logically divided into two distinct
areas: a protected area and an unprotected (or ''open'') area. When storage protection is in
effect, the contents of the protected area are shielded from unintentional interference by any
program operating in the standard (non-interrupt) mode (whether residing in the protected or
unprotected area). The protected area is specified as follows:

1. The programmer sets the lower boundary of the area with a Load Index/
Barricade Register (LIB) instruction specifying the number of a 4, 096~
character memory bank (see page 8~79). The LIB instruction places this
number in the index/barricade register., The lower boundary of the pro-
tected area is the leftmost (lowest) core storage location within this bank.

2. The upper boundary of the protected area is always the highest location
in main memory,

The loading of the index/barricade register merely sets the low-order boundary of the protected
area. In order to put storage protection into effect, the following conditions must be present:

1. The programmer must have turned the protect indicator onby issuing a
Restore Variant and Indicators (RVI) instruction specifying the protect
indicator (see page 8-95).

2. The processor must be in the standard (non-interrupt) mode.

INDEX REGISTERS

The Storage Protect Feature provides the user with an additional 15 index registers (Y1

through Y15), which are located in the leftmost 60 locations of the 4, 096-character bank speci-
fied by the current contents of the index/barricade register. Thus, these index registers are
relocated whene{rer the contents of the index/barricade register are altered by an LIB instruc-
tion, These 15 registers are usable whenever the index/barricade register is loaded with a
proper bank number and are not dependent upon whether storage protection is in effect or not,
Instructions whose address portions are indexed by these registers must be assembled and exe-
cuted in the four-character addressing mode. The high-order bit of the five-bit address
modifier in a four-character address distinguishes index registers Xl through X15 from Y1

' through Y15 (see page 4-14),

CENTRAL PROCESSOR MODES

As previously noted, the central processor can operate in any one of three modes:

1. The standard mode,

E-1 ‘ #2-139

APPENDIX E, STORAGE PROTECT FEATURE

2. The external interrupt mode (see Appendix D), or

3. The internal interrupt mode.

Internal Interrupt

When storage protection is in effect (i.e., the protect indicator is on and the processor is
operating in the standard mode), certain operations are defined as violations of that protection.,
These violations are discussed below. A violation causes a violation indicator to be set which,
in turn, causes an internal interrupt to occur at the next opportunity. The '""next opportunity"
means that moment when all of the following conditions are present:

1. The processor is in the RUN mode (i.e., automatically executing stored-
program instructions under the control of the sequence register),

2. The processor is about to extract an op code,
3. A memory cycle is allocated to the processor,
4, The processor is in the standard mode (i.e., not in external or internal

interrupt mode), and

5. No peripheral or control panel interrupt signal is being received.

When an internal interrupt occurs, the contents of the sequence register and the internal
interrupt register are interchanged and the central processor enters the internal interrupt mode,
The status of the processor indicators are not stored automatically; therefore, the programmer
must perform this function with a Store Variant and Indicators (SVI) instruction. The SVI in-
struction also clears the violation indicator so that an internal interrupt will not occur when a
return is made to the standard mode. While in the internal interrupt mode, any external interrupt

will cause the processor to switch to the external interrupt mode,

If an external interrupt occurs while the processor is in the internal interrupt mode, the
1-bit of the character stored by V5 of the SVI instruction indicates the condition. If it is desired
to revert to the standard rather than the internal interrupt mode after servicing the external

intérrupt, this bit should be changed to 0 before executing the RVI instruction.

Note that three basic differences exist between the external interrupt mode and the internal
interrupt mode:

1, A unique control memory location, the internal interrupt register (IIR),
contains the address of the subroutine which services the internal interrupt,

2. The processor is subject to being interrupted by an external interrupt while
still in the internal interrupt mode, but the reverse is not true,

3. No processor indicators are stored or altered (the address mode is not
changed) upon entering the internal interrupt mode.

E-2 #2-139

APPENDIX E. STORAGE PROTECT FEATURE

VIOLATIONS OF STORAGE PROTECTION

The following operations, which constitute violations of storage protection, fall into two
general categories: address violations and op code violations,

1. An attempt to transfer information internally (i.e., not via a PDT instruc-
tion) to memory locations within the protected area. This includes any
attempt to modify index registers Y1 through Y15, However, no violation
occurs when information is transferred internally from the protected area
or when the contents of the index registers are used in address modifi-
cation. An internal transfer violation is detected when all of the following
conditions are present:

a. The bank and sector bits in the A- or B-address register follow-
ing instruction extraction are equal to or greater than the corre-
sponding bits stored in the index/barricade register,

b. The protected location is addressed as a result location,

c. The protect indicator is on,

d. The program in control is operating in the standard mode, and
€. The instruction is not a PDT,

The above conditions are checked as. the instruction is being executed, If
all of these conditions are met, the internal interrupt address violation
indicator is set, and the instruction proceeds to normal completion except
that no information is transferred into memory (i.e., the write cycle is
inhibited). The next opportunity for the internal interrupt to occur is at the
extraction of the next op code, After the internal interrupt mode is entered,
the internal interrupt register contains the address of the op code following
the instruction which caused the violation, and the A- and B-address regi-
sters continue to increment or decrement, as appropriate.

2, An attempt to extract a PDT instruction (input or output) whose effective A
address references a protected memory location, Since the PDT instruction
is one of the operations normally prohibited when storage protection is in
effect (see 4., below), the proceed indicator (see page E-5) must be set in
‘order for the instruction to be extracted beyond the op code. Assuming that
the proceed indicator is set, the starting address of the PDT operation is
examined for address violation. Once it is determined that the effective A
address references a protected address, no operation is performed (i.e.,
the specified read/write channel is not tested and the specified peripheral
control is not addressed), the internal interrupt address violation indicator
is set, the sequence register is advanced to the next op code, and an internal
interrupt occurs.

Note that a PDT instruction is checked for possible violation during the ex-
traction phase, while a nonperipheral instruction is checked during its exe-~
cution phase (see 1., above)., If a PDT instruction passes this test during
extraction, it is free to be executed and thereby cause data to be trans-
ferred. If the information being transferred extends into the protected area,
no address violation is detected. To insure that this will not occur, the
user must set a record mark immediately prior to the protected area. 1

As mentioned previously, storage protection (and the checking functions re-
lated to it) are in effect only when the processor is operating in the standard

1_..
If communication devices are being used, two consecutive locations should contain record marks.

£o3 #2-139

APPENDIX E. STORAGE PROTECT FEATURE

mode., However, violations of the protected area by PDT instructions exe-
cuted in either of the two interrupt modes can be detected if the proceed
indicator is set on (see page E-5).

3. An attempt to read from a main memory location whose address is greater
than the main memory capacity actually present in the machine but within
the addressing capacity of the memory address‘reg;ister.'1 Such an address-
ing attempt results in a parity error which normally causes the machine to
halt. If stoi‘age protection is in effect and a parity error occurs, a checkis
made to determine whether the error occurred above the lower boundary of
the protected area. If so, the storage protect hardware assumes that out-
of-range addressing has been attempted, 2 no halt occurs, nor is data
transferred; instead, the internal interrupt address violation indicator is
set, instruction execution is prematurely terminated, and an internal in-
terrupt occurs.

An attempt to reference an address greater than the addressing capacity of
the memory address register results in a memory wraparound.

4, An attempt to execute a privileged op code. A privileged op code is one
which is (a) not defined for the Series 200; (b) not recognized on the par-
ticular processor; (c) an instruction format violation in any floating-point
instruction; or (d) prohibited when storage protection is in effect. The
privileged op codes in category (d) are:

a. H (Halt)

b. LCR (Load Control Registers)

C. PDT (Peripheral Data Transfer)

d. PCB (Peripheral Control and Branch)
e, SVI (Store Variant and Indicators)

f. RVI (Restore Variant and Indicators)
g RNM (Resume Normal Mode)

h, LIB (Load Index/Barricade Register)

The above op codes are ''privileged' in the sense they are allowed to be exe-
cuted in either of the interrupt modes but are prohibited in the standard
mode while storage protection is in effect (one exception to this is discussed
under ""Proceed Indicator' below). Such op codes are categorized by the
fact that they could possibly alter the monitor's knowledge of the status of
the system or cause some action which is intolerable under certain con-
ditions (e.g., a halt during transfer of data from a communications device).
Since an undefined op code or one which is not installed on the user's proc-
essor would normally cause a halt due to a program check, such usage has
the same effect as that of a privileged op code.

1
For example, an MAR with 15 active bits can address up to 32, 768 locations; an MAR with 16
active bits can address up to 65, 536 locations. A 49, 152-character memory would require 16
active bits, thus making it possible to store an address which is beyond the actual memory size.

2 . 1 i . -
The final responsibility for checking whether the parity check actually indicates out-of-range
addressing rests with the programmer.

E-4 #2-139

APPENDIX E, STORAGE PROTECT FEATURE

NOTE: Op code "00'" is defined as an Internal Interrupt Call, and falls within
the category of privileged op codes.

If a privileged op code is extracted when storage protection is in effect,

the op code violation indicator is turned on, the sequence register is set
back to the location of the op code, the operation is terminated, and an
internal interrupt occurs. Once the internal interrupt mode is entered,

the programmer has two choices: (1) if he wishes to execute the privileged
instruction, he must set the proceed indicator (see below) and issue a
Resume Normal Mode (RNM) c:omma.nd;1 (2) if he wishes to bypass the
privileged instruction, he must set the internal interrupt register to the
location of the next sequential op code and issue a Resume Normal Mode
instruction. 2

PROCEED INDICATOR

The proceed indicator can be turned on by the Restore Variant and Indicators (RVI) in-
struction. Turning this indicator on permits the execution of one privileged instruction in the
standard mode without op code checking or item-mark trapping being performed. The indicator
is turned off following the extraction of any op code in the standard mode. If can also be turned

off in either of the interrupt modes by a Store Variant and Indicators (SVI) instruction.

The proceed indicator can also be used to force the checking of the A address of a PDT
instruction executed in either the internal or external interrupt mode, Thus, turning on this
indicator prior to the extraction of a PDT instruction in a nonstandé,rd (interrupt) mode results
in the same address violation check as though it were extracted in the standard mode with
storage protection in effect (see 2., page E-3), If the effective A address is found to reference

a protected area, the actions described below are performed.

1, When the violation occurs in the internal interrupt mode:
a. The internal interrupt address violation indicator is set.
b. Further extraction of the instruction is not performed and the se-

quence register is set to the location of the next sequential op code.

c. An internal interrupt does not occur since the processor is already
in the internal interrupt mode, Instead, the condition of the internal
interrupt address violation indicator must be tested by the program-
mer after he has stored the status of the indicator via an SVI instruc~-
tion, The SVI instruction also clears the indicator so that it will not
cause an internal interrupt to occur when the standard mode is
entered later,

2. When the violation occurs in the external interrupt mode:
a. The external interrupt address violation indicator is set.

1 . . i .
The instruction will still not be executed if it involves an address violation.

2
If the internal interrupt register (which is currently set at the location of the privileged op code)
is not advanced to the next op code, the return to normal mode results in the privileged op code
again being extracted, thus causing an endless loop.

E-5 #2-139

APPENDIX E. STORAGE PROTECT FEATURE

Further extraction of the instruction is not performed and the sequence
register is set to the location of the next sequential op code.

An internal interrupt does not occur since this is impossible while in
the external interrupt mode. Instead, the condition of the external
interrupt address violation indicator must be tested by the program-
mer according to the method described in 1l.c., above,

#2-139

APPENDIX

SCIENTIFIC UNIT FOR MODELS 1200, 1250, 2200, AND 4200

The scientific unit (Feature 1100A for the Type 1201, 1251, and 2201 processors, Feature
1101 for the Type 4201) provides a repertoire of 12 floating-point instructions, a binary mantissa
shift instruction, and a binary integer multiply instruction.1 This appendix is a programmer's
working summary of both features, which are functionally identical ;2 additional information can

be found in the hardware bulletin Scientific Unit for Models 1200/1250/2200, Feature 1100 (Order

No. 126). Before referring to this appendix, the programmer should become familiar with the

detailed functional and programming information contained in the hardware bulletin.

DATA FORMAT

The fixed-length floating-point word contains a 36-bit binary mantissa and 12-bit binary
+616

exponent and is capable of expressing numbers in the approximate range £10

CHARACTER A-7 A-6 A-5 A-4 A-3 A-2 A-1 A
+ +
BIT BA8421 B | B | B | B |] | B | B8 |
\ 7\ /
W V
MANTISSA EXPONENT

In control memory, a floating-point word may occupy any of the four floating-point ac-
cumulators. The accumulators are addressed as octal digits 0, 1, 2, and 3 in the floating-point
instructions. Each accumulator comprises three specific 18-bit control memory registers.
Only the low-order 12 bits of the rightmost register are used to express the exponent. (In the
Type 4201 processor each accumulator comprises the low-order 18 bits in each of three specific

19-bit control memory registers.)

+
BIT 18 | 18 | |
\ / \ S
v N
MANTISSA EXPONENT

FLOATING-POINT REGISTERS

The four addresssable floating-point accumulators have the control memory addresses

as shown on page F-2,

1
None of these instructions are interpreted by Easycoder Assembler A, B, or C.

A minor exception to this identity is described in connection with the Floating Divide instruction.

F-1 #2-139

APPENDIX F, SCIENTIFIC UNIT FOR MODELS 1200, 1250, 2200, AND 4200

NOTE: In program instructions, the floating-point accumulators may be ad-
dressed only via the octal digits 0, 1, 2, and 3 in the floating-point
instructions. The instructions LCR and SCR must not be used to ad-
dress these accumulators. At the control panel, the operator may
address these locations with the addresses in the above table.

A normal zero, i.e., a floating-point word of 48 zeros, is stored in the '"pseudo ac-

cumulator' for use as a floating-point operand. The pseudo accurmulator, which is addressed

by octal digit 7, may be used only as the source of a normal zero and not as the destination of

a floating-point result.

The low-order result register (LOR) in the scientific unit may contain a low-order sum,

difference, or product, or may contain the remainder of a division operation,

FLOATING -

NOTE: Floating-point instructions do not disturb the contents of the

variant register.

POINT INDICATORS

Exponent
- Overflow:

Divide
Check:

Multiply
Overflow:

Activated when a base-2 exponent exceeds +2047. The correct mantissa and an
exponent which is 4096 less than the correct exponent are delivered. If an ex-
ponent is less than -2048, a normal zero is delivered automatically.

Activated when a divisor is equal to zero. This indicator causes termination
of a division operation without accumulator alteration.

Activated when the product of a Binary Integer Multiply instruction exceeds 24
bits in length. The low-order 24 bits are delivered.

AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONS

Prenormal- Mantissa of divisor (and dividend with Feature 1101) is normalized (left-shifted)
ization: with adjusted exponent,

Equali- Mantissa of operand with smaller exponent is right-shifted until exponents are
zation: equal.

Postnor-~ Mantissa of result is normalized with adjusted exponent.

malization:

SYMBOLOGY

A: A address of the instruction.

B: B address of the instruction.

X Floating-point accumulator addressed in the high-order three bits of an instruc-

tion variant (usually the source of an operand).

F-2 #2-139

APPENDIX F. SCIENTIFIC UNIT FOR MODELS 1200, 1250, 2200,AND 4200

Y: Floating-point accumulator addressed in the low-order three bits of
an instruction variant (usually the destination of a result),

(A): Floating-point word contained in the main memory field from loca-
tion A through location A-7.

(X) or (Y): Floating-point word contained in accumulator X or Y.

LOR: Low-order result register.

(LOR): Floating-point word contained in LOR,

Ap: Previous setting of A-address register,

Bp: Previous setting of B~address register.

D: One if there is a two-l‘ait overflow into LOR; otherwise zero.
JI: Address of next instruction if branch occurs,

NXT: Next sequential instruction.

N, Number of bit positions shifted for automatic formatting.

Nj: ‘ Number of binary ones in a multiplier.

Ny Number of shifts.

[] : ""smallest integer greater than'"

W: Number of memory words used to store the data involved.,
X-: In the first variant of an instruction, only the high-order three bits

specifying accumulator X are significant.

-Y: In the first variant of an instruction, only the low-order three bits
specifying accumulator Y are significant.

SP: Single-precision.

DP: Double-precision,

SR: Sequence register.

Ni: Number of characters in an instruction,
Wy Number of words in an instruction.

TIMING NOTES

All timings shown are based on the use of direct addressing. Three memory cycles should

be added for each indexed address and one memory cycle should be added for each character
extracted as a result of indirect addressing. v

NOTES: Floating~-point instructions do not disturb the contents of the
variant register. '

F-3 #2-139

APPENDIX F., SCIENTIFIC UNIT FOR MODELS 1200,

1250, 2200, AND 4200

Table F-1.

Summary of Scientific Instructions

DATA MOVING INSTRUCTIONS
STORE FLOATING ACCUMULATOR
Memory to FMA/A, X-, 00 07 {X) is stored in A through A-7. AAR: A-8 Ni+ll N,+12 W.+7
accumulator or (X) is unaltered. BAR: B : N
TAM/A, X- P
Accumulator to FAA/XY, 00 06 (X) is loaded into Y. No nor- AAR: A 7 8 W;+4.5
P 1
accumulator or malization occurs BAR: B
TAA/XY P
LOAD FLOATING ACCUMULATOR
Memory to FMA/A, -Y, 02 07 (A) is loaded into ¥, No nor- AAR: A-8 Ni+l.1 Ni+12 Wi+8
accumulator or malization occurs. BAR: Bp
TMA/A, -Y
Accumulator to FAA/XY, 02 06 (X) is loaded into Y. No nor- AAR: AP 7 8 W;+4.5
accumulator or malization occurs. BAR: Bp
TAA/XY
STORE LOW-ORDER RESULT
Memory to FMA/A, 00,07 07 {LOR) is stored in A through AAR: A-8 N;+10 N;+1L W.+8
accumulator or A-7. No normalization BAR: B
TLM/A occurs. P
Accumulator to FAA/-Y,07 06 {LOR) is stored in Y. No nor- AAR: A 6 7 Wit4
accumulator or malization occurs. BAR: BP
TLA/-Y P
LOAD LOW-ORDER RESULT
Memory to FMA/A, 00,01 07 {A) is loaded into LOR. No AAR: A-8 N;+10 Ni+10 Wi+9
accumaulator or normalization occurs. BAR: BP
TML/A
Accumulator to FAA/X-,01 . 06 (X) is loaded into LOR. No AAR: Ap 6 6 Wits
accumulator or normalization occurs. BAR: Bp
TAL/X-
FLOATING POINT ARITHMETIC INSTRUGTIONS
-FLOATING ADD
Memory to FMA/A, XY, 10 07 (A) is added to (X) and the sum | AAR: A-8 N;+13+ N3N, /4] | WiHIBN,/6
accumulator or is stored in Y. BAR: D [N /6
AMA/A,XY Indicator: Exponent overflow. LOR: Low-order result n]
Formatting: Equalization, of operation. Sign
postnormalization. bit = 0. Exponent =
high-order exponent
minus 35,
Accumulator to FAA/XY, 10 06 (X) is added to (¥) and the sum | AAR: A 10+ [ané] 10+ [Nn/4] W 84N, /6
accumulator or is stored in Y. BAR: Bl;
AAA/XY Indicator: Exponent overflow. LOR: Low~order result
Formatting: Equalization, of operation. Sign
postnormalization. bit = 0, Exponent =
high~order exponent
minus 35,
FLOATING SUBTRACT
Memory to. FMA/A,XY,11 07 Twos complement of (A) is AAR: A-8 N;+13+ [ans] N;+13+ [Nn/4] Wi+13+Nn/6
accumulator or added to (X) and the result is BAR: Bp
SMA/A, XY stored in Y. LOR: Low-order result
Indicator: Exponent overflow, of operation. Sign .
Formatting: Equalization, bit = 0. Exponent =
postnormalization, high-order exponent
minus 35.
Accumulator to FAA/XY, 11 06 Twos complement of (Y) is ad- | AAR: A 10+[Nn/6] 10+[Nn/4] W, +8+N_/6
accumulator or ded to (X) and the result is BAR: B, * n
SAA /XY stored in Y. LOR: Low-order result of
Indicator: Exponent overflow. operation. Sign bit =
Formatting: Equalization, 0. Exponent = high-
postnormalization, order exponent minus
35,
FLOATING MULTIPLY
Memory to FMA /A, XY, 13 07 (X) is multiplied by (A), The AAR: A-8 N;+18+ [NI/6] Njr2lt [N1/4] Max=W,;+26+
accumulator or high-order product is stored BAR: B + N [N /4] N
MAM/A, XY in Y; the low-order product is LOR: ng-order product. [n/6] [o/] 11/6
stored in LOR. Sign bit = 0. Ex- Min=W;+18. 5+
Indicator: Exponent overflow. ponent = high-order N./6
Formatting: Postnormalization. exponent minus 35, n
Accumulator to FAA/XY, 13 06 (X) is multiplied by (Y). The | AAR: A, 15+ [N1 /6]+ 19+ [N, /4]+ Max=W;+21. 0+
accumulator or high-order product is stored BAR: BP N /6 N, /4 N./6
MAA /XY in Y; the low-order product LOR: Low-=-order product. [n] [n] n
is stored in LOR. Sign bit = 0. Ex- Min=W;+13. 5+
Indicator: Exponent overflow. ponent = high-order Nn/6
Formatting: Postnormalization. exponent minus 35.

#2-139

APPENDIX F. SCIENTIFIC UNIT FOR MODELS 1200, 1250, 2200, AND 4200

Table F-1 (cont).

Summary of Scientific Instructions

FLOATING POINT ARITHMETIC INSTRUCTIONS (cont)
FLOATING DIVIDE
Memory to FMA/A,XY, 12 07 (A) is divided by (X). The AAR: A-8 Ni+25+ﬁ\ln/6] Ni+3l+[Nn/4] Max=W;+30. 54
accumulator or quotient is stored in Y; the BAR: B, N./6
DMA/A, XY remainder is stored in LOR. LORz Remainder, n
Indicators: Exponent overflow, Sign = sign of divi- Min=W, +22+
divide check. dend. Exponent = N,/6
Formatting: Prenormalization exponent of normal-
of divisor (and of dividend with ized dividend minus
Feature 1101), postnormalization 35, and plus one if
of quotient, the absolute value of
the dividend mantissa
is greater than the
absolute value of the
mantigsa of the nor-
malized divisor,
Accumulator to FAA/XY, 12 06 (Y) is divided by (X). The AAR: A 21+[Nn/6] 29+, /4] Max=W+25. 5+
accumulator or quotient is stored in Y; the re- BAR: Bp N./6
DAA/XY mainder is stored in LOR. LOR: Remainder. n
Indicators: Exponent overflow, Sign = sign of divi~ Min=W;+17+
divide check. dend, Exponent = N./6
Formatting: Prenormalization exponent of normal. n
of divisor (and of dividend with ized dividend minus
Feature 1101), postnormalization| 35, and plus one if
of quotient. the absolute value of
the dividend mantissa|
is greater than the
absolute value of the
mantissa of the nor-
malized divisor,
CONVERSION INSTRUCTIONS
DECIMAL TO BINARY
FMA/A, -Y, 03 07 The 1l-character signed dec~ AAR: A-11 Ni+20+D N;+24 Wi+l7.5
or imal integer whose low-order BAR: B
DTB/A, -Y character is A is converted to LOR: Low-order result
a 36-bit binary integer. The of conversion,
binary integer is stored in the Sign bit = 0, Ex-
mantissa portion of Y; the ponent = high-order
exponent of (Y) is set to +35. exponent minus 35.
One- or two-bit mantissa
overflow is possible, If man-
tissa overflow occurs, the
low-order one or two bits are
shifted into LOR. Y then con-
tains the high-order result of
conversion, with an exponent
of 36 or 37, Normalization
only occurs with overflow.
BINARY TO DECIMAL
FMA/A, X-, 06 07 The mantissa portion of (X) is AAR: A-11 Ni+21 N;+24 Wi+12+W
or converted from a binary integer | BAR: B
BTD/A, X- to a signed decimal integer. P
The decimal integer is stored
in the ll-character main
memory field whose low-order
character is location A. The
exponent portion of (X) is
ignored and unaltered.
) CONTROL INSTRUCTIONS
FLOATING TEST AND BRANCH ON
ACCUMULATOR CONDITION
FMA /A, XC, 04 07 The mantissa portion of (X) is IAAR: A Ni+3 (NO Nj+3 Wi+4.3
or tested for the condition specified |BAR: Bp NO BRANCH RANCH!
FBA/A, XC by C, the low-order octal digit NXT BRANCH BRANCH)
of variant 1. SR: NXT NO BRANCH N;+4 Ni+5 Wi+5
C=0 no branch JUA) BRANCH (BRANCH)
C=1 (X)=0
C=2 (X)<0
C=3 (X)<0
C=4 (X) >0
C=5 (X) 0
C=6 (X)#0
C=7 unconditional branch
If the condition specified by C
is satisfied, program control
branches to location A,
NOTE: (X) must be normalized.

#2-139

APPENDIX F. SCIENTIFIC UNIT FOR MODELS 1200, 1250, 2200, AND 4200

Table F-1 (cont).

Summary of Scientific Instructions

CONTROL INSTRUCTIONS (cont)

FLOATING TEST AND BRANCH
ON INDICATOR

FMA/A, 0D, 05
or
FBI/A, 0D

07

The indicators specified by D,
the low=~order octal digit of
variant 1, are tested. If any
of the indicators is set, con-
trol branches to location A.

=0 no branch
=1 Multiply overflow
D=2 Exponent overflow
D=3 Exponent or multiply over-
flow
4 Divide check
5 Divide check or multiply
overflow
D=6 Divide check or exponent
overflow
=7 Divide check, exponent
overflow, or multiply
overflow,
NOTE: All indicators tested
are reset.

AAR: A
BAR: NXT BRANCH
B, NO BRANCH
SR: Ng(T NO BRANCH
JI(A) BRANCH

Nj+2 (NO
BRANCH)

N;+3
(BRANCH)

N;+2
N;+4

Wi+3. 8
Wi+4. 3

BINARY MANTISSA SHIFT
BMS/XM, V

04

If single-precision, the mantissa
of {X) is shifted in the mode
specified by M, the low-order
octal digit of the first variant.

If double-precision, the mantissasj
of (X) and (LOR) are shifted.

The second variant V (0SV<63)
specifies the number of positions
by which bits are shifted.

M=0 left, SP, rotate (end
around)

4 left, SP, arithmetic

2 left, DP, rotate

6 left, DP, arithmetic

1 right, SP, rotate

5 right, SP, arithmetic

3 right, DP, rotate

7 right, DP, arithmetic

T

2
Q
54
I~
3
[
®
g
o
8
@
g
w
o
N
B

and (LOR) are set to
zero. In an arith-
metic shift, the signs
of the mantissas of (X)
and (LOR) are pre-
served.

AAR: A
BAR: Bp

7+[Ns/6]

8+[Ns/4]

W+4.54N_/6
1)

BINARY INTEGER ARITHMETIC INSTRUCTIONS

BINARY INTEGER MULTIPLY
BIM/A, B

05

The four-character fields in
memory whose low-order char-
acters are A and B are treated
as 24-bit binary integers. The
integers are multiplied together;
the product is stored in the field
specified by the B address.
Indicator: Multiply overflow,

AAR: A-4
BAR: B-4
LOR: unspecified

Ni+21+[N1/6]

N;+234[N, 4]

Max=W;’
Min=W;+16.5

+21.5

#2-139

APPENDIX
EXTENDED MULTIPROGRAMMING AND 8-BIT TRANSFER

¥FOR MODELS 1200, 1250, 2200, and 4200

The extended multiprogramming and 8-bit transfer capability is available as Feature 1120,
1121, and 1118 on the Models 1200/1250, 2200, and 4200, respectively., The models 1200/1250 and
2200 must be equipped with the Storage Protect Features (1114 and 1117, respectively) before
Features 1120 and 1121 can be added.

Extended multiprogramming provides a processor with five basic capabilities required in a
multiprogramming environment and one feature requiredfor upward compatibility, These are:
1. Base relocation,
Storage protection with base relocation,
Interrupt masking,
Instruction timeout,

8-bit transfer capability, and

o v A wN

Privileged SCR Instructions.

STORAGE PROTECTION WITH BASE RELOCATION

In a processor equipped with extended multiprogramming, storage protection operates in
either of two ways: with or without base relocation. Storage protection without base relocation

operates as described in Appendix E.

The storage protection offered by extended multiprogramming is made possible by using
base relocation in conjunction with storage protection, Base relocation is in effect when the
relocation indicator is set (via the SVI and RVI instructions) and the processor is in the stand-

ard (non~-interrupt) mode.

Storage protect{on with base relocation places a barrier above and below the area of
memory where the active program is to operate, to prevent it from altering the contents of the
rest of memory. The lower barrier is specified by the contents of the base relocation register
(BRR), which is loaded and stored via Load Index/Barricade Register (LIB) and Store Index/
Barricade Register (SIB) instructions. When relocation is in effect, the BRR is loaded with
the bank address of the lowest memory bank (4, 096 characters) availa%ble to standard mode
programs. The BRR is added to each processor memory address transmitted to memory by
a standard mode program. This prevents a standardmode programfrom writing into a memory
bank below that specified by the BRR. The upper barrier is specified by the contents of the

index barricade register (IBR). When storage protection is in effect and an attempt is made to

G-1 #2-139

APPENDIX G. EXTENDED MULTIPROGRAMMING AND 8-BIT TRANSFER FEATURES

write into memory at an address greater than that stored in the IBR, a protection violation
occurs resulting in an internal interrupt. The IBR contains the number of 4, 096-character mem-

‘

ory banks which are available to a program.

A monitor program keeps track of the locations of the various programs stored in memory
and, via the settings of the BRR and the IBR, can relocate refereﬁc-es to any number of 4, 096-
character banks of memory. Thus, while there may be any number of programs stored in
memory, only one program is active at any one time and all other programs are protected
from the active program when storage protection is in effect. When, as the result of an
interrupt, the monitor program activates a different program, it simply alters the settings

of the BRR and the IBR to make available a different portion of memory.

Since all memory references are relocated via the BRR when relocation is in effect,
index registers X1 through X15 effectively reside in the 4, 096-character bank of memory
specified by the BRR. The location of index registers Y1 through Y15 is also dependent on
.the setting of the relocation indicator. When relocation is activated, the Y index registers
é,re also located in the 4, 096-character bank specified by the BRR, where they become identical
to index registers X1 through X15. When relocation is in effect, each program stored, including
the monitor program, has its own set of 15 index registers when it is the active program. The

index registers always reside in the memory area occupied by the active program,

EXTERNAL INTERRUPT MASKING

Each input/output (I/0) sector has associated with it a 1-bit mask. This mask is stored
and set by Store Variant and Indicators (SVI) and Restore Variant and Indicators (RVI) instruc-
tions, respectively, When the mask for a sector is a zero, interrupts from sources in that
sector are accepted and processed in the manner specified in Appendix D. When the mask for a
sector is a one, then interrupts are held until the mask is altered or the interrupt function is
reset. Control panel and Monitor Call interrupts are never masked. Depression of the

INITIALIZE button on the control panel causes all mask bits to be reset to zeros.

INSTRUCTION TIMEOUT

It is possible for an instruction in a program to enter an infinite extraction or execution
loop which would prevent a monitor pfogram from servicing an interrupt within a specified time.
To prevent this from occurring, a timeout function is provided which allows a maximum time
limit to be placed on the extraction and the execution of any one instruction when the processor
is in the standard mode. This function guarantees that a monitor program will, at some speci-

fied time, regain control of the system.

G-2 #2-139

APPENDIX G. EXTENDED MULTIPROGRAMMING AND 8-BIT TRANSFER FEATURES

The instruction timer is reset to zero and begins timing every time the processor starts
to extract or execute a new instruction. If the timeout allow function is on, the protect indicator
is set, and the processor is in the standard mode when the time interval elapses, then the in-

struction being extracted or executed is terminated and an internal interrupt occurs.

The timeout function is enabled by a timeout allow function which is set and reset by the

SVI and RVI instructions. Refer to pages 8-92 and 8-95 for SVI and RVI instructions.

8-BIT TRANSFER CAPABILITY

This capability allows central processor Types 1201, 1251, 2201, and 4201 to transfer
data between peripheral controls and memory in either 6- or 8-bit format, as specified in the

Peripheral Data Transfer (PDT) instruction.

1. The 6-bit mode is the standard data transfer mode used in Series 200
central processors. In this mode, only data is transferred between
memory and peripheral controls. Punctuation is preserved in memory.

2. The 8-bit mode is used in those applications where an 8-bit transfer is
desired between the central processor and a peripheral control. In this
mode of operation, data and punctuation are transferred between the
central processor and peripheral controls. Record marks in memory do
not terminate data transfer in this mode.

When in the 8-bit mode, the number of 8-bit character transfers to be performed is
determined by a 3-character count field inthe PDT instruction or by control characters asso-

ciated with the PDT peripheral controls.

The high-order bit of the C3 control character in a PDT instruction is a multivariant bit
which conditions the peripheral control in its interpretation of the remainder of the instruction.
When this bit is a zero, all additional control characters beyond C3 are ignored by the control,
When the high-order bit of C3 is a one, additional control characters are present and will be
accepted by the peripheral control. In this case, the format of the PDT instruction becomes:

Op code/A address/C1, C2, C3, C4, C5,C6, C7.

Control character C4 is always present when the multivariant bit (bit 6 of C3) is a one.
When the extended bit (bit 5 of C3)-is a one, control characters C5, C6, and C7 are present.
When the extended bit is a zero, control characters C5, Cb6, and C7 are ignored. The high-
order bit of C4 determines the data transfer mode; one specifies 8-bit mode and a zero specifies
6-bit mode. Because 8-bit mode data transfers are not affected by record marks, data transfer
is delimited by the setting of the extended bit in the C3 control character. If this bit is a zero,
all data transfers previously terminated by a record mark are now terminated by transferring

the number of characters specified in the record header area, If it is a one, all data transfers

G-3 » #2-139

APPENDIX G. EXTENDED MULTIPROGRAMMING AND 8-BIT TRANSFER FEATURES

previously terminated by a record mark are now terminated by transferring the number of char-

acters specified by the count field (C5, Cé6, and C7) of the PDT instruction.

PRIVILEGED SCR INSTRUCTION

When a processor is in the standard mode with the storage protection indicator ON and the

proceed indicator OFF, the detection of an SCR instruction having a variant character of octal.
00 through octal 37 will set the op code violation indicator and cause an internal interrupt to

occur at the next opportunity.

The following status is specified at the conclusion of the trapped SCR instruction..

1. The internal interrupt register (IIR) contains the address of the privileged
op code. :
2, The A-address register (AAR) contains the address of the previous instruction.
3. The main memory locations specified by the A-~address are undisturbed.
4. The variant register contains the variant character of the privileged SCR
instruction.

All SCR instructions are identically executed if the proceed indicator is ON,

G-4 , #2-139

EXTENDED INPUT/OUTPUT CAPACITY FOR THE MODEL 4200 APPENDIX

An extended input/output capacity for the Model 4200 is available as Features 1116, 4214A,
4214B, and 4215,

FEATURE 1116

Feature 1116 increases the peripheral flexibility of the Model 4200 by providing a third
input /output sector. This feature includes eight additional read/write channels for a total of 16,
and facilities which allow the permanent connection of 16 additional peripheral controls for a
total of 48, With this expanded system, up to 16 read/write channels can be used simultaneously

for data transfer operations.

Sector 3 handles up to four peripheral devices simultaneously and has a maximum data
transfer rate of 333, 333 characters per second. Thus when feature 1116 is included, the I/O

controller can accommodate a peak data transfer rate of 1,333, 333 characters per second.

FEATURES 4214A and 4214B
Features 4214A1 (Two Buffered I/O Sectors) and 4214B2 (Two Additional Buffered I/O Sec-

tors), provide the Model 4200 with buffered I/O sectors for those applications where additional
compute time or a higher input/output transfer capability is required. When both features are
included, sectors ! and 3 remain unchanged but sector 2 is replaced with four buffered sectors.
Each buffered sector has a data transfer rate of 500, 000 characters per second, can handle up
to 6 peripheral devices simultaneously, and provides facilities to permanently attach up to 16
modate a data transfer rate of 2, 833,333 characters per second and perform a total of 16 simu-
ltaneous input/output operations. In addition to increasing the I/O capability of the Model 4200,
Features 4214A and 4214B reduce the usage of available memory cycles by the I/O controller,

Consequently, the memory cycles saved are available to the central processor.

FEATURE 421 5l

Feature 4215 (High-Speed Third Sector) increases the transfer rate of that sector to
1,333,333 characters per second, This allows connection of I/O peripheral devices with transfer

rates exceeding 500, 000 characters per second to the third sector. When Feature 4215 is added

1
Requires the installation of Feature 1116.

2Requires the installation of Feature 4214A,

H-1 #2-139

APPENDIX H. EXTENDED INPUT/OUTPUT CAPACITY FOR THE MODEL 4200

to the system, the data transfer rate is 2; 333,333 characters per second, When Feature 4215
is included as well as Features 4214A and 4214B, the I/O controller can accommodate a peak

data transfer rate of 3, 833, 333 characters per second,

BUFFERED SECTORS

A single buffered sector is equipped with six 4-character buffers. Therefore, up to six
devices operating concurrently are provided with a 4-character storage area, A buffer accum-
ulates up to 4 characters of data before requiring access to main memory. Thebuffered sectors
may be used without their buffer areas (direct mode) but this arrangement results in a slower
data transfer rate. Table H-1 indicates whether or not a control/device can be connected to a

buffered sector in either the buffered or in the direct mode.

In order to attain optimum system performance, sectors and their maximum data transfer
rates should be taken into consideration before permanently connecting peripheral controls to

particular sectors,

Table H-1. Controls/Devices Connectable to Buffered Sectors

Type 203 — Tape Controls (all)
Type 206 ~ High~Speed Printer Control
Type 206A — Printer Control for 822-3
Type 207 — Card Reader Control (for Type 227)
Type 208 — Card Punch Control (for Type 227)
Type 208-1 — Card Punch Control (for 224-1, -2, or 214-1) Yes Yes
Type 208-2 — Card Read/Punch Control (for 224-1, -2, or 214-2j Yes Yes
¥§g: ;gg_z}-Paper Tape Reader and Control No Yes
Type 210 —'Paper Tape Punch and Control Yes Yes
Type 212 — On-Line Adapter No No
Type 212-1 — Central Processor Adapter No Yes
Type 213-3 — Interval Timer Yes Yes
Type 213-4 — Time of Day Clock Yes No
Type 220-1, -2, -3 — Console No Yes
Type 222-1, -2, -3, -4, -5, ~6 — Printer and Control Yes No
Type 223 — Card Reader and Control Yes No
Type 223-2 — Card Reader and Control Yes No
Type 229 — Printer and Control Yes No
Type 232 — MICR Reader-Sorter and Control No Yes
Type 233-2 — MICR Control No Yes
Type 234 — Plotter Control Yes Yes
Type 235 — Optical Journal Reader Control Yes Yes
Type 237 — Bill Feed Printer Control No No
Type 238 — Optical Reader Control No No
Type 257 — Control for 258, 259 Disk Pack Drives No No
Type 257-1 — Control for 258, 259 Disk Pack Drives (6-and 8-bit No No
transfer) '

H-2 #2-139

APPENDIX H. EXTENDED INPUT/OUTPUT CAPACITY FOR THE MODEL 4200

Table H-1 (cont), Controls/Devices Connectable to Buffered Sectors

Type 257A — Control for 259A Disk Pack Drive No No
Type 257B = Control for 259B Disk Pack Drive No . No
Type 257B-1— Control for 259B Disk Pack Drive (-6 and 8-bit No No
transfer)
Type 260 — Control for 261 and 262 Disk Files Yes No
Type 260-1 — Control for 265, 266 High-Speed Drums Yes No
Type 260-2 — Control for 267 High-Speed Drums No No
Type 270A-1, -2, -3 — Random Access Drum Storage and Control No No
Type 281 — Single-Channel Communication Controls (all) No Yes
Type 286-1, -2, -3, -4, -5 — Multi-Channel Communication No No
Controls (all)
Type 287 — AUTODIN Communication Control No Yes
Type 287-1 — USASCII AUTODIN Communication Control No Yes
S

H-3 #2-139

COMPUTER~GENERATED INDEX

A=ADDRESS REGISTER (AAR)y 4=4
A=FIELD WORD MARK~LCA
LOAD CHARACLTERS TO A=FIELD WORD MARK=LCAs 8-=56
AAR
A-ADDRESS REGISTER (AAR) s 4=4
ABSOLUTEs 5-13
" MEMORY ADDRESSES
CONVERSION OF SYMBOLIC TAGS TO ABSOLUTE MEMORY
ADDRESSESs 3=2
ACCESS
" DRUMs
C3 CODING FOR TYPE 270A RANDUM ACCESS "DRUMy
8~125
RANDOM ACCESS DRUMS, 1~-11
" DRUM UNITS»
RANDOM ACCESS DRUM UNITSs 1-11i
MEMURY ACCESSs 2=5
ACTIVE ADDRESS BITS IN SERIES 200 PROCESSORSe 4=15
ACTIVITIES
CONTROL UNIT ACTIVITIES, 2-1il
INPUT/0UTPUT TRAFFIC CONTROL ACIIVITIES, 2=-12
ADD .
COMPLEMENT ADDe 8=7
" EXAMPLES
COMPLEMENT ADL EXAMPLESs 6-8
TRUE ADD EXAMPLESe 87
" INSTRUCTION,
EXTRACTION OF DATA FIELDS IN TYPICAL ADD
INSTRUCIIONy 4=2
TYPICAL ADD INSTRUCTIONs 4-1
SERIES 200 ADD AND SUBTRACT OPERATIONSe 8-4
TRUE ADDe 8~7
ADD=Ay 8=14
ADD=BA
BINARY ADD=BA, 8~17
ADD~HA
HALF ADD=HA+ 8-29
ADD=ZA
ZERO AND ADD=ZAs 8=20
ADDITION
BINARY ADDITIONs Bed
DECIMAL ADDITIONy 8=7
ALGEBRAIC SIGNS IN DECIMAL ADDITIONs 8=-7
" TABLE»
BINARY ADDITION TABLEs 8=4
ADDITIONAL
" CODING RULESy 5=~12
" PERIPHERAL DEVICESs 1=lé6s L=17
" READ/WRITE CHANNELSs UNIT LOADSs AND ADDRESS
ASSIGNMENTSy 1-22
ADDRESS
A AND B ADVRESSESs 3wm2
ABSOLUTE MEMORY ALDRESSES,
CONVERSION OF SYMBOLIC TAGS TO ABSOLUTE MEMORY
ADDRESSESs 3=2
" ASSEMBLY s
FOUR=CHARACTER ADDRESS ASSEMBLYs 5-4
THREE«CHARACTER ADDRESS ASSEMBLY s 5-4
TWO~CHARACTER ADDRESS ASSEMBLYs 5=3
" ASSIGNMENTS
ALDDITIONAL READ/WRITE CHANNELSs UNIT LOADSe AND
ADDRESS ASSIGNMENTSe 1=22
ADDRESS ASSIGNMENTS AND UNIT LOADS AVAILABLE IN
SERIES 200 PROCESSORSe 1-19
" BITS»
ACTIVE ADDRESS BITS IN SERIES 200 PROCESSORSe
4=15
" CODESe 5-12
INDEX REGISTER ADDRESSES IN FOUR=CHARACTER
ADDRESSING MOULEs 4=14
INDEX REGISTER ADURESSES IN THREE=-CAARACTER
ADDRESSING MODEs 4=12
INDEXED ADDRESSe
ASSEMBLY OF INDEXED ADDRESS IN FOUR=-CHARACTER
ADDRESSING MODE, 5=23
ASSEMBLY OF INDEXED ADDRESS IN IHREE=CHARACTER
ADDRESSING MODE, 5+22
EXTRACTION .OF INDEXED ADDRESS IN THREE=CHARACTER
N MODEs 4=-13
INDEXED FOJUR~CHARACTER ADDRESSES+s
EXTRACTION OF INDIRECT AND [NDEXED
FOUR=CHARACTER ADDRESSESs 4=15
INDIRECT ADDRESSs
ASSEMBLY OF INDIRECT ADDRESS IN FOUR~CHARACTER
ADDRESSING MODE, 5=24
ASSEMBLY OF INDIRECT ADDRESS IN THREE=-CHARACTER
ADDRESSING MODE, 5=2¢3
(CONT,)

ADDRESS (CUNT)
LITERALSs 5=19
MODE=ADMODE ¢
SET ADDRESS MODE=ADMODEs 7-11
MOCIFICATIONS 4=8
MODIFICATION CODES,y 5-¢1
PERIPHERAL ADDRESSES AND UNIT LOADSs 1=17
POTENTIAL ADDRESSES WITHIN ADDRESS RANGE, 4«16
" RANGE s
POTENTIAL ADDRESSEb WITHIN ADDRESS RANGEs 4=16
REGISTER RANGE
POTENTIAL ADDRESSES OUTSIDE ADDRESS REGISTER
RANGE s 4=l6
REGISTERSy 2-8
THREE=CHARACTER. ADDRESSy 4«10
THREE~CHARACTER INDIRECT ADDRESS+s
EXTRACTION OF THREE=-CHARACTER INDIRECT ADDRESS,
4=11
TREATMENT OF ADDRESSES LARGER THAN A MEMORY S
MAXIMUM ADDRESSs 4=~l6
ADDRESS=DSA
DEFINE SYMBOLIC ADDRESS~DSAs 6=7
ADDRESSES OUTSIDE ADDRESS REGISTER RANGE
POTENTJAL ADDRESSES OUTSIDE ADDRESS REGISTER RANGE,
4=16
ADDRESSINGy 41
EXPLICIT ADDRESSINGs IMPLICIT ADDRESSING, AND
CHAININGy 4=17
INDEXED ADDRESSINGy 4=124 4=1l4
INDIRECT ADDRESSINGs 4=~10s 4«13
INTERLEAVED ADDRESSINGy 2«5
Y MODE
ADDRESSING MODESs l=4y 4=5
ASSEMBLY OF INDEXEL ADDRESS IN FOUR=CHARACTER
ADDRESSING MODEs 5-23
ASSEMBLY OF INDEXED ADDRESS IN THREE=CHARACTER
ADDRESSING MODEs 5-22
ASSEMBLY OF INDIRECT ADDRESS IN FOUR-CHARACTER
ADDRESSING MODEs 5-24
ASSEMBLY OF INDIRECT ADDRESS IN THREE—CHARACTER
ADDRESSING MODEs 5=-23
CHANGING ADDRESSING MODES VIA CAM INSTRUCTIONs
8=65
FOUR~CHARACTER ADDRESSING MODEs 4=134 4m8
INDEX REGISTER ADDRESSES IN FOUR=CHARACTER
ADDRESSING MOUDEs 4-14
INDEX REGISTER ADDRESSES IN THREE~CHARACTER
ADDRESSING MODEy 4m=12
[HREE=CHARACTER ADDRESSING MODEs 4=6
TWO=CHARACTER ADDRESSING MODEs 4=5
" MODE=-CAMy
CHANGE ADDRESSING MODE=CAM,. 862
REGISTERS USED IN ADDRESSINGs 4m=3
ADVANCED PROGRAMMINGs 1=-21
" FEATURE s
MODEL 200 ADVANCED PROGRAMMING FEATUREs 1wm21
" INSTRUCTIONS»
BCC TEST CONDITIONS WITH ADVANCED PROGRAMMING
INSTRUCTIONS s 8=4]
ALGEBRAIC SIGNS IN DECIMAL ADDITIONy 8w7
ALPHANUMERIC
" CONSTANTSy 6=4
" LITERALSy 5~18
ANGULAR POSITION INDICATORy 1l=il
AREA DEFINING LITERALSy 5=19
AREA=DA
DEFINE AREA=DAy 6=7
AREA=RESY
RESERVE AREA=~RESVs 6=6
ARJITHMETIC
" OPERATIONSs 8=4
AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONSs
F=2
" SIGN CONVENTIONSSs
VECIMAL ARITHMETIC SIGN CONVENTIONSes 8=9
" UNITe 2-10
PATA FLOW BETWEEN MAIN MEMORY AND ARITHMETIC
UNITy 2=-11

[l

ASSEMBLER
ASSEMBLERSs 5-3
RELATIONSHIP OF SOURCEs ASSEMBLERs AND OBJECT
PROGRAMs 5-2
ASSEMBLY
" CONTKOL STATEMENTSs 7=l
FOUR=CHARACTER ADDRESS ASSEMBLYs 5~4
" OF INDgEXED ADDRESS IN FOURWCHARACTER ADDRESSING
MODEy 5=23
(CONT)

COMPUTER-GENERATED INDEX

ASSEMBLY (CONT))
" OF INDEXED ADDRESS IN THREE=CHARACTER ADDRESSING
MODEs 5=22
" OF INDIRECT ADDRESS IN FOUR=CHARACTER ADDRESSING
MODEY S5w2é
® OF INDIRECT ADDRESS IN THREE=CHARACTER ADDRESSING
MODEe 5=23

THREE=CHARACTER ADDRESS ASSEMBLYs 5=4
TWO~CHARACTER ADDRESS ASSEMBLYs 5=3
ASSIGNMENTS
ADDRESS ASSIGNMENISY
ADDITIONAL READ/WRITE CHANNELSs UNIT LOADSs AND
ADDRESS ASSIGNMENTSs 1=-22
ADUDRESS ASSIGNMENTS AND UNIT LOADS AVAILABLE IN
SERIES 200 PRUCESSORS, 1=-19
SELECTING RWC ASSIGNMENTSs
CONSIDERATIONS IN SELECTING RWC ASSIGNMENTS,
8«110
SELECTING RWC ASSIGNMENTS FOR USE InN PDT
INSTRUCTIONSs 8~110
AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONS, Fw2
AUXILIARY READ/WRITE CHANNELS
PRIMARY AND AUXILIARY READ/WRITE CHANNELSs 2-16
B=ADURESS REGISTER (BAR) s+ 4~-4
BAR
BeAUDRESS REGISTER (BAR)»s 4=4
BARRICADE LOCATION
CORRESPONDENCE BETWEEN LIB SETTING AND BARRICADE
LOCATIONy 8«80
BASE RELOCATION
STORAGE PROTECTION WITH BASE RELOCATION,y G-l
BASE~XBASE
SET OUT~OF=SEQUENCE BASE=XBASEs 7~18
BASIC
" CONCEPTSe 4-l
INPUT/OUTPJT DATA PATHs 1=-18
" TEST CONDITJONS FOR BCC INSTRULTIONs 8=-40

BCC
BRANCH ON CHARACTER CONDITION (BCC) CONDITIONSy B=-5
" INSTRUCTION
BASIC TEST CONDITIONS FOR BCC INSTRUCTIONs 8=40
" TEST CONDITIONS WITH ADVANCED PROGRAMMING
INSTRUCTIONSs B8-41
BCT

BRANCH ON CONDITION TEST (BCT) INDICATOR CONDITIONS,
Bed
BRANCH ON CONDITION TEST (BCT) SENSE SWITCH
CONDITIONSs B=3
INSTRUCTION,)
INDICATOR TEST CONDITIONS FOR BCT 'INSTRUCTIONS
8.37
SENSE SWITCH CONDITIONS FOR BCT INSTRUCTION,
8-36
BILL FEED PRINTER
C3 CODING FOR TYPES 206 AND 222 PRINTERS AND TYPE
237 BILL FEED PRINTER, 8-125

BINARY
® OCTALs AND DECIMAL EQUIVALENTSs B=8
" ADD=BAy 8=-17
" ADDITIONs 8e4
" ADDITION TABLEs 8-4
" CONSTANTSy 6=2
" LITERALSY 5~16
" SUBTRACT=BSs 8=19
" SUBTRACTIONs 8=4
BINARY=OCTAL EQUIVALENTS, A=l
BIT EQUAL~BBE
BRANCH ON BIT EQUAL=BBEs 8=44
BITS
ACTIVE ADDRESS BITS IN SERIES 200 PROCESSORSs 4=15
BLANKy 5«15
" CONSTANTSs 6=4
BPI RECORDING DENSITY
1200 BP] RECORDING DENSITYs 1=8
BRANCH
" JF CHARACTER EQUAL~BCE+ Bw=42
" ON BIT EQUAL~BBEs B~44
" ON CHARACTER CONDITION (BCC) CONDITIONSs B=b
" ON CHARACTER CONDITION~BCCs 8=39
" ON CONDITION TEST (BCT) INDICATUR CONDITIONSs Be4
" ON CONDITION TEST (BCT) SENSE SWITCH CONDITIONSs B=-3
" ON CONDITION TEST=8CTs 8»35
BRANCH=Bs 8=34
BRANCH=PCB
PERIPHERAL CONTROL AND BRANCH=PCBs &=127
BUFFER
PRINT BUFFERe 1=8
BUFFERED SECTORSs Hw2

CONTKROLS/DEVICES CONNECTABLE 7O BUFFERED SECTORS,
H=2
CAL.L=MC
MONITOR CALL=~MC» 9-98
CAM INSTRUCTION
CHANGING ADDRESSING MOVES VIA CAM INSTRUCTION, 8«65
MODES SPECIFIED BY VARIANT CHARACTER IN CAM
INSTRUCTIONe 8-63
CAPABILITY
8«-B1T TRANSFER CAPABILITYs G»3
CAPACITY
EXTENDED INPUT/OUTPUT CAPACITY FOR THE MODEL 42004
H=1
" REQUJREMENTS»
MINIMUM RWC CAPACITY REQUIREMENTS FOR SERIES 200
PERIPHERAL DEVICESs 8w1ll
CARD
" CODES
PUNCHED CARD CODESs 3-8
COLUMN,
MARK (CARD COLUMN 7))y 5w=6
TYPE (CARD COLUMN 6)y 5=6
COLUMNS 1«59
CARD NUMBER (CARD COLUMNS 1=5)9y 5-5
COLUMNS 15~=20¢
OPERATION CODE (CARD COLUMNS 15=20)s 5=10
COLUMNS g-1414
LOCATION (CARD COLUMNS B=l4), 5«8
EASYCODER CARD D OPTIONSy 6«10
EQUIPMENT »
PUNCHED CARD EQUIPMENTy l=74 l=8
FORMAT o
PUNCHED CARD FORMATs 38
" NUMBER (CARD COLUMNS 1=5)4 5«5
" READ OPERATION,
DATA PATH DURING CARD READ OPERATION, 1el19

[l

CE
PCB 1/0 CHARACTER CE»s
PESCRIPTION OF PCB 1/0 CHARACTER CEy 8~149
PDT 1/0 CHARACTER CEs
DESCRIPTION OF PDT I/0 CHARACTER CE (ESCAPE
CODE)» 8=118
CENTRAL PROCESSORs l=ls 2-1
" CHARACTERISTICSy
SUMMARY OF CENTRAL PROCESSOR CHARACTERISTICS,

2=17 .
LOGICAL DIVISION OF SERIES 200 CENTRAL PROCESSOR,
2=1
MODEL 4200 MEMORY INTERLEAVING (TYPE 4201~9 CENTRAL
PROCESSOR) ¢ 2~6
" MODESe E-l
CHAINING
EXPLICIT ADDRESSINGs IMPLICIT ADDRESSINGe AND
CHAININGy 4=17
CHANGE
" ADDRESSING MODE~CAMy B8=62
" SEQUENCE REGISTER (CSR)s 4=3
" SEQUENCING MODE~CSMs B=66
CHANGING ADDRESSING MODES VIA CAM INSTRUCTIONs 8=65
CHANNEL
ADDITIONAL READ/WRITE CHANNELSe UNIT LOADSe AND
ADDRESS ASSIGNMENTSs 122
AUXILIARY READ/WRITE CHANNELS,
PRIMARY AND AUXILIARY READ/WRITE CHANNELS, 2-1l6
INTERLOCKING READ/WRITE CHANNELS, 2~16
MODEL 4200 VARIABLE=SPEED READ/WRITE CHANNELSs 2=-16
READ/WRITE CHANNELs 1-18.
TYPE 286 MULTI CHANNEL»
SUMMARY OF PDT I/0 CONTROL CHARACTERS FOR TYPE
286 MULTI CHANNEL»s 8126
CHARACTER
" CE,
VESCRIPTION OF PCB 1/0 CHARACTER CEs 8=149
DESCRIPTION OF PDT 1/0 CHARACTER CE (ESCAPE
CODE)+ 8~118 :
" CODES»
SERIES 200 CHARACTER CODESs B»7
" CONDITIONY
BRANCH ON CHARACTER CONDITION (BCC) CONDITIONS,
B=5
" CONDITION=BCCo
BRANCH ON CHARACTER CONDITION=BCCe 8~39
" Cly
DESCRIPTION OF PDTI/0 CONTROL CHARACTER Cls
B-ll6
" 2y
DESCRIPTION OF PDT 1/0 CHARACTER C2
(CONTe)

(PERIPHERAL

COMPUTER-GENERATED INDEX

CHARACTER (CONT,)
CONTROL DESIGNATIONs 8-118
" EQUAL=BCE
BRANCH IF CHARACTER EQUAL=BCEs 8=42
INPUT/0UTPJT CONTROL CHARACTERS, 5=21
LOAD CHARACTERS TU A=FIELD WORD MARK=LCAs 8-56
MOVE CHARACTERS AND EDIT~MCEs 8=104
MOVE CHARACTERS TO WORD MARK=MCWs 8-5%
PCB 1/0 CONTROL CHARACTERSS
SUMMARY OF PCB 1/0 CONTKOL CHARACTERSs 8=130
SUMMARY OF PCB I/0 CONTROL CHARACTERS FOR TYPE
286y 8=146
PDT 1/0 CONTROL CHARACTERSS
SUMMARY QF PDT 1/0 CONTROL CHARACTERSs 8-120
SUMMARY OF PDI 1/0 CONTROL CHARACTERS FOR TYPE
286 MULTI CHANNELs 8=126
" REPRESENTATION ON MAGNETIC TAPEs 3=7
REPRESENTION OF CHARACTERS IN MAGNETIC CORE STURAGE+
23
SPECIAL CHARACTERS IN MCE INSTRUCTIONs 8-105
VARIANT CHARACTERe 3=34 5.20
MODES SPECIFIED BY VARIANT CHARACTER IN CAM
INSTRUCTIONs 8-63
CHARACTERISTICS
CENTRAL PROCESSOR CHARACTERISTICSs
SUMMARY OF CENTRAL PROCESSOR CHARACTERISTICS
2-17
CHARACTERS €5
PCB CONTROL CHARALTERS €5 THROUGH C15 FOR TYPE
2864y =5 LINEs 8-148
CHECK
PARITY CHECK»s 2-6
CLEAR
" ITEM MARK=CIy 8«51
" WORD MARK = CWs B8=50
CLEAR=CLEARY 7-19
CODE
ADDRESS CODESs 5el12
ADDRESS MODJFICATION CODESy 5-21
DESCRIPTION OF PDT 1/0 CHARACIER CE (ESCAPE CODE) s
8=118
OPERATION CODEs 32
OPERATION CODE (CARD COLUMNS 15=20)s 5~10
OPERATION JTILIZING ESCAPE CODESS
EXAMPLE OF OPERATION UTILIZING ESCAPE CODES,
8~114
PUNCHED CARD CODESy 3-8
SERIES 200 CHARACIER CODESs B=7
CODING
C3 COVING FOR TYPE 209 AND 209=2 PAPER TAPE READERS
8=12¢4
C3 CODING FOR TYPE 210 PAPER TAPE PUNCHy 8-124
C3 CODING FOR TYPE 270A RANDOM ACCESS DRUMs 8=125
C3 CODING FOR TYPES 206 AND 222 PRINTERS AND TYPE
237 BILL FEED PRINTER, 8-125
" FORMy 5=5
EASYCODER CODING FORM, 5=5
" RULESS
ADDITIONAL CODING RULESy 5=12
SAMPLE CODING FOR EXTERNAL INTERRUPT ROUTINEs D=4
SAMPLE CODING FOR INTERNAL INTERRUPT ROUTINEs D=$
COLUMN
MARK {CARD COLUMN 7)y 5-6
TYPE (CARD COLUMN 6)y S=b6
COLUMNS .
" 1m5y
CARD NJMBER (CARD COLUMNS 1=5)% 5=5
" 15=200
OPERATION CODE (CARD COLUMNS 15-20)s 5-10
" Beléy
LOCATION (CARD COLUMNS 8-14)s 5=8
COMMUNICATION EQUIPMENT
DATA COMMUNICATION EQUIPMENTs 1-129 1~13
COMMUNICATIONS NETWORK
CUSTOMER INQUIRY HANDLING VIA TYPICAL COMMUNICATIONS
‘ NETWORKy 1=15
COMPARE~Cy 8232
COMPATIBILITY)
UPWARD COMPATIBILITY, 8-114
COMPLEMENT ADDs B-7
¥ EXAMPLESY Be8
COMPONENTS
SERIES 200 COMPONENTSs 1-1
CONCEPTS
BASIC CONCEPTSs 4-1
CONDITION
BASIC TEST CONDITLIONS FOR BCC INSTRJCIIONs 8~40
(GONTW)

CONDITION (CONT)
BCC TEST CONDITIONS WITH ADVANCED PROGRAMMING
INSTRUCTIONSs 8m41
BRANCH ON CONDITION TEST (BCT)
Bes
BRANCH ON CONDITION TEST (BCT) SENSE SWITCH
CONDITIONSy B~3
CHARACTER CONDITIONY
BRANCH ON CHARACTER CONDITION (BCC) CONDITIONS,
. B=5 . -
EXTENDED MOVE (EXM) CONDITIONS. B=2
EXTENDED MOVE CONDITIONS, 8-68
INDICATOR FEST GONDITIONS FOR BCT INSTRUCTION, 8-37
SCAN CONDITIUNSy .
MOVE OR SCAN CONDITIONSs 8-88
SENSE SWITCH CONDITIONS FOR BCT INSTRUCTIONe 8=36
" TESTy
BRANCH ON CONDITION TEST
CONDITIONSy B=4
BRANCH ON CONDITION TEST (BCT) SENSE SWITCH
CONDITIONSs B=3
" TEST=BCT»
BRANCH ON CONDITION TEST=BCTs 8=35
CONDITION=BCC
CHARACTER CONDITION=BCCy
BRANCH ON CHARACTER CONDITION=BCCs 8~39
CONFIGURATIONS
MEMORY CONFIGURATIONS FOR TYPE 4201 PROCESSORSs 2=4
CONNECTABLE
CONTROLS/DEVICES CONNECTABLE TO BUFFERED SECTORS,
H=2
CONSECUTIVE STORAGE LOCATIONS N MAIN MEMORY, 3e4
CONSIDERATIONS IN SELECTING RWC ASSIGNMENTSs 8110
CONSOLE
" EQUIPMENTs 1=l4
TYPE 220~1 CONSOLE, 1=3
TYPE 220~3 CONSOLE, 1-3
CONSTANT
ALPHANUMERIC CONSTANTS» 6=4
BINARY CONSTANTSe 6=2
BLANK CONSTANTSy 6=4
DECIMAL CONSTANTSy 6=2
DEFINE CONSTANT WITH WORD MARK=DCWy 6w2
FLLOATING=POINT CONSTANIS, 6»5
NUMERIC CONSTANTSs 6=2
OCTAL CONSTANTSe 6=-3
CONSTANT-DC
DEFINE CONSTANT=DCy 65
CONTENTS
" LOADED,
CONTROL REGISTER CONTENTS LOADED BY LCR
INSTRUCTION 8-61

INDICATOR CONDITIONS.

(BCT) INDICATOR

" STORED,
CONTROL REGISTER CONTENTS STORED BY SCR
INSTRUCTIONy 8-58
CONTROLy 8=47
" ACTIVITIES
INPUT/0OUTPUT TRAFFIC CONTROL ACTIVITIESs 2=12
" CHARACTER Cly
DESCRIPTION OF PDTI/0 CONTROL CHARACTER Cls
8-116
CHARACTERS y
INPUT/OQUTPUT CONTROL CHARACTERSs 5=21
SUMMARY OF PCB 1/0 CONTROL CHARACTERS. 8-130
SUMMARY OF PCB I/0 CONTROL CHARACTERS FOR TYPE
2869 8ml46
SUMMARY OF PDT I1/0 CONTROL CHARACTERSs 8=120
SUMMARY OF PDT I/0 CONTROL CHARACTERS FOR TYPE
286 MULTI CHANNELs 8=126
CHARACTERS €59
PCB CONTROL CHARACTERS €5 THROUGH C15 FOR TYPE
286=4y =5 LINEy 8~148
" DESIGNATIONY
VESCRIPTION OF PDT I,/0 CHARACTER C2 (PERIPHERAL
CONTROL DESIGNATION, 8=118
" EQUALS-CEQUs 7-13
INPUJ/QUTPUT TRAFFIC CONTROLs 2-12
LOGICAL DECISION PERFORMED BY INPUT/OUTPUT
TRAFFIC CONTROLy 2w14
SYMBOLIC REPRESENTATION OF INPUT/OUTPUT TRAFFIC
CONTROLy 2=15
" INSTRUCTIONS»
TYPE 286=ly =29 =3 LINE CONTROL INSTRUCTIONS,
8=126
" INTEKRUPT
PERIPHERAL CONTROL INTERRUPT, D=5
INTERRUPT CONTROLs 8-91
(CONT)

. COMPUTER=-GENERATED INDEX

CONTROL (CONT)
INTERRKUPT/ALLOW FUNCTION CONTROLS
SUMMARY OF INTERRUPT/ALLOW FUNCIION CONTROL AND
TEST OPLRATIONSy D=7

" MEMORYy 2«6
MEMORY REGISTERSs 2-8

SiZE OF CONTROL MEMORY REGISTERS (MODELS

200/1200/1250/2200/4200) v 2=7
" OPERATIONSS
INPUT/OJTPUT CONTROL OPERAILONSs 8-110
TYPES OF TEST AND CONTROL OPERATIONSs 8=-128
" PANEL
TYPE 1201 CONITROL PANELy l=2
PERIPHERAL CONTROLy 1=7
INTERRJPT SIGNAL GENERATED BY PERIPHERAL
CONTROL»s D=6
PERLIPHERAL CONTROL AND BRANCH=PCBs 8=127
" REGISTER CONTENTS LOADED BY LCR INSTRUCTIONs 8=61
REGISTER CONTENTS STORED BY SCR INS{RUCTIONs 8-58
REGISTER DESIGNATIONSs B=}
REGISTER FUNCTIONS»

TYPICAL CONTROL REGISTER FUNCTIONs 2=-7
REGISTERS STORED BY SCR INSTRUCTIONs 8=59
REGISTERS=LCRY

LOAD CONTROL REGISTERS=LCRs 8-60
REGISTERS=SCRy

STORE CONTROL REGISTERS=SCRy 8=58
" STATEMENTS»

ASSEMBLY CONTROL STATEMENTSs 7=l
UNITe 2-11

" UNIT ACTIVITIESe 2~11
CONTROLLER

MEMORY CONTROLLERs 2=-5
CONTROLS/DEVICES CONNECTABLE TO BUFFEREVD SECTORSs He2
CONVENTIONS
PDECIMAL ARITHMETIC SIGN CONVENTIONSy 8=9
DIVIDE SIGN CONVENTIONSs 8-13
MULTIPLY SIGN CONVENTIONS,s 8«10
CONVERSION
" OF SYMBOLIC TAGS 10 ABSOLUTE MEMORY ADDRESSESs 3-2
" PROCEDURE s
OCTAL=-DECIMAL CONVERSION PROCEDUREs A-3
" TABLEY
DECIMAL=-OCTAL CONVERSION TABLEs A=2
CORE STURAGE
REPRESENTION OF CHARACTERS IN MAGNETIC CORE STOURAGES
2»3

COUNTERS
READ/WRITE COUNTERSy 2-8
CSR
CHANGE SEQUENCE REGISTER (CSR)s 4=3
CUSTOMER INWUIRY HANDLING VIA TYPICAL COMMUNICATIONS
NETWORKs 1«15

CwW
CLEAR WORD MARK = CWs Ba50
CYCLE
" DISTRIBUTION»
MEMORY CYCLE DISTRIBUTIONs 2-12
MEMORY CYCLEs 2-3
C1
PDT1/0 CONTROL CHARACTER Clo
DESCRIPTION DF PDTI/O CONTROL CHARACTER Clo
8=-116
C15
PCB CONTROL CHARACTERS €5 THROUGH C15 FOR TYPE
286=4y =5 LINEs 8~148
c2
PDT 1/0 CHARACTER (29
DESCRIPTION OF PDT 1/0 CHARACTER €2 (PERIPHERAL
CONTROL DESIGNATIONe 8-118
C3 CODING
" FOR TYPE 209 AND 209-2 PAPER TAPE READERSs 8~124
" FOR TYPE 210 PAPER TAPE PUNCHs 8=124
" FOR TYPE 270A RANDOM ACCESS DRUMs 8125
" FOR TYPES 206 AND 222 PRINTERS AND TYPE 237 BILL
FEED PRINTERe 8~125
c5
PCB CONTROL CHARACTERS C5 THROUGH Cl5 FOR TYPE
28b=4y =5 LINLy 8~148

COMMUNICATION EQUIPMENT, 1-12s 1=13
" FIELD FORMAT IN MAIN MEMORYs 3-5
" FIELDS»
EXTRACTION OF DATA FIELDS IN TYPICAL ADL

» INSTRUCTIONs 4=2
" FLOW BETWEEN MAIN MEMORY AND ARITHMETIC UNITs 2-11
" FORMATs Faly 3l
(CONT.)

Y

DATA (CONTe)

UATA FORMAT ON MAGNETIC TAPE, 3=8

MAGNETIC TAPE DATA FORMATy 3=7

SUMMARY OF INTERNAL DATA FORMATSe 3-6
FORMATTING STATEMENTSe 6~1
ORGANIZATION QF DATA IN MAIN MEMORYs 3=4
" PATHY

BASIC INPUT/OUTPUT DATA PATH, l=l18

VATA PATH DURING CARD READ OPERATION, 1=19
TRANSFEK INTERVALS DURING ONE PERIPHERAL OPERATION,

2=13
TRANSFER OPERATION,

PERIPHERAL DATA TRANSFER OPERATIONy 117
TRANSFER RATEs

VEVICE DATA TRANSFER RATE, 8«110
TRANSFER/PDT

PERIPHERAL DATA TRANSFER/BDT, 8-115

DECIVAL
" ADDITIONs 8=7
ALGEBRAIC SIGNS IN DECIMAL ADDITIONe 8w7
ARITHMETIC SIGN CONVENTIONSe 8~9
" CONSTANTSs 6=2
" EQUIVALENTSS
BINARYs OCTALs AND DECIMAL EQUIVALENTSs B8
" LITERALS, 5-16
" SUBTRACTION 8-8
DECIMAL~-OCTAL CONVERSION TABLE, A=2
DECISION
LOGICAL DECISION PERFORMED BY INPUT/OUTPUT TRAFFIC
CONTROL s 214

DEF INE
" AREA=DAs 6-7
" CONSTANT WITH WORD MARK=DCWs 6=2
" CONSTANT=DCs 6=5
" SYMBOLIC ADDRESS=DSAs 6=7
DEFINING LITERALS
AREA DEFINING LITERALSs 5=19
DENSITY
1200 BPI RECORDING DENSITY, la-8
DESCRIPTION
" OF PCB 1/0 CHARACTER CEs 8~149
" OF PDT 1,0 CHARACTER CE (ESCAPE CODE)+ 8-118
" OF PDT 170 CHARACTER C2 (PERIPHERAL CONTROL
DESIGNATIONe 8=-118
" OF PDTI/O CONTROL CHARACTER Cl, 8~116
SERIES 200 INSTRUCTION DESCRIPTIONS»
SYMBOLOGY USED IN SERIES 200 INSTRUCTION
DESCRIPTIONSy 8-2
DESIGNATION
CONTROL REGISTER DESIGNATIONSs Bwl
DESCRIPTION OF PDT 1/0 CHARACTER C2 (PERIPHERAL
CONTROL DESIGNATIONs 8-118
DEVICE
ADDITIONAL PERIPHERAL DEVICESy 1=16s 1l=17
" DATA TRANSFER RATEs 8-110
INPUT/0UTPUT SECTOR TO WHICH DEVICE IS CONNECTED
8=114
SERIES 200 PERIPHERAL DEVICES,
MINIMUM RWC CAPACITY REQUIREMENTS FOR SERIES 200
PERIPHERAL DEVICESy g-111
VISUAL INFORMATION PROJECTION DEVICESe lelée 1-l6
D1SK
" FILESy 1109 l=ll
" PACK DRIVESs 1-10
DISTRIBUTION
MEMORY CYCLE DISTRIBUTIONs 2=12
DIVIDE
" OPERATION»
FACTOR LOCATIONS IN DIVIDE OPERATION, 8~12
" SIGN CONVENTIONSs 8=13
DIVIDE=Dy 8-25
DIVISION, 8=11
LOGICAL DIVISION OF SERIES 200 CENTRAL PROCESSORs

2=l
DRIVES
DISK PACK DRIVESs 1-10
DRUM
HIGH=SPEED DRUMSs 1~1ls 1~12
RANDUM ACCESS DRUMSs 1-11
TYPE. 270A RANDOM ACCESS DRUM,
C3 CODING FOR TYPE 270A RANDOM ACCESS DRUM,
§=125
" UNITS» .
RANDOM ACCESS DRUM UNITSs 1=11
DUMP=HSM
MEMORY DUMP=HSMs 7-14
EASYCODER .

(CONTe)

COMPUTER=GENERATED INDEX

EASYCODER (CONT.)
* CARD D OPTIONSe 6=10
" CODING FORMy 5=5
® PROGRAMMINGy 5=1
SET 11 PJUNCTUATION INDICATORS (EASYCUDER C AND D
ONLY)y 5=7
EDIT INSTRUCTIONs 1w22
EDIT~MCE
MOVE CHARACTERS AND EDITwMCEes B~104
EDITINGy 8-~103
EIR
EXTERNAL INTERRUP| REGISTER (EIR)y 4=3
END~ENDs 7-20 :
EQUAL=BBE
BIT EQUAL=~BBEs
BRANCH ON BIT EGUAL=BREs B=b4
EQUAL=BCE
CHARACTER EQUAL=BCE
BRANCH IF CHARACTER EQUAL=BCEs 8=42
EQUALS=CEQU
CONTROL EQUALS=CEWUs T=13
EQUALS=EQUs T=12
EQUIPMENT
CONSOLE EQUIPMENTs 1w14
DATA COMMUNICATION EQUIPMENTs 1-12s 1=13
PAPER TAPE EQUIPMENTs lel2
PERIPHERAL EQUIPMENTs 1wb
PUNCHED CARD EQUIPMENTy l~7s 1=8
TELLER TERMINAL EQUIPMENT, l=l6
EQUIVALENTS
BINARY=OCTAL EQUIVALENTSs Aml
DECIMAL EQUIVALENTS,
BINARYs OCTALs AND DECIMAL EQUIVALENTSs Be8
ESCAPE CODE .
DESCRIPTION OF PDT 1/0 CHARACTER CE (ESCAPE CODE)
8~118
EXAMPLE OF OPERATION UTILIZING ESCAPE CODESy 8=114
EXAMPLE
COMPLEMENT ADD EXAMPLES, g=8
v OF OPERATION UTILIZING ESCAPE CODESs 8114
TRUE ADD EXAMPLESy 87
EXECUTE=EXs =6
EXM
EXTENVED MOVE (EXM) CONDITIONSs B=2
EXPLICIT ADDRESSINGy IMPLICIT ADDRESSINGs AND
CHAININGs 4=]7
EXTENDED
» INPUT/OUTPUT CAPACITY FOR THE MODEL 4200y Hwl
" MOVE (EXM) CONDITIONSy Be2
® MOVE CONDITIONSy 8-68
" MOVE=EXMs 8=67
" MULTI=PROGRAMMING AND 8-BIT TRANSFERs 1=23
" OF INFORMATION UNITS IN MIT OPERATIONs 8=75
EXTERNAL INTERRUPTs D=1
EXTERNAL INTERRUPTSy 14
" MASKINGes G™2
" REGISTER (EIR)y 4=3
" ROUTINE,
SAMPLE CODING FOR EXTERNAL INTERRUPT ROUTINE»
Ded
EXTRACT=EXTs 8=~28
EXTRACTION ‘
" OF DATA FIELDS IN TYPICAL ADD INSTRUCTIONs 4=2
" OF INDEXED ADDRESS IN THREE=CHARACTER MODEs 4=13
" OF INDIRECT AND INDEXED FOUR~CHARACTER ADDRESSESs
4=15
" QF THREE~CHARACTER INDIRECT AUDRESSs 411
FACTUR LOCATIONS IN DIVIDE OPERATIONs 8=12
FEATURE
MODEL 200 ADVANCED PROGRAMMING FEATURE, le2l
OPTIONAL FEATURESs 1~20
SERIES 200 OPTIONAL FEATURESs 1-20
STORAGE PROTECT FEATUREs Ewl
" 0191y 123
" 11164 Hel
" 4215y Hel
FEATURES 4214A AND 4214Be+ H-l
FEED PRINTER
€3 CODING FOR TYPES 206 AND 222 PRINTERS AND TYPE
237 BILL FEED PRINTERs 8=125
FIELD
" FORMAT s
DATA FIELD FORMAT IN MAIN MEMORYjs 35
" OLENGTH,
VARIABLE FIELD LENGTHy 3=1
FIELDSs 3=4
A AND B FIELDS IN MULTIPLY OPERATIONs 810
(CONT,)

FIELDS (CORNTS)
DATA FIELDSs
EXTRACTION OF DATA FIELDS IN TYPICAL ADD
INSTRUCTIONY 4=2
FILES
DISK FILESy 1«10y 1-11
FLOATING=PUINT
" CONSTANTSy 6«5
" INDICATORSy F=2
" REGISTERSs Fe~l
FLOW
DATA FLOW BETWEEN MAIN MEMORY AND ARITHMETIC UNIT,
2-11
FORM
CODING FORMy 5-5
EASYCODER CODING FORMe 5e5
FORMAT
DATA FIELD FORMAT [N MAIN MEMORY, 3=5
DATA FORMATs F=ls 3=]
DATA FORMAT ON MAGNETIC TAPEs 3=8
INSTRUCTION FORMAT, 3=2
INTERNAL DATA FORMATS9
SUMMARY OF INTERNAL DATA FORMATSs 3w6
ITEM FORMATS,
TWO ITEM FORMATS IN MAIN MEMORYs 3«5
MAGNETIC TAPE DATA FORMAT, 3=7
PUNCHED CARD FORMATs 3-8
RECORD FORMAT IN MAIN MEMORYy 3=6
SERIES 200 INSTRUCTION FORMAT 14 4=17
SERIES 200 INSTRUCTION FORMAT 2, 4=18
SERLES 200 INSTRUCTION FORMAT 34 4=18
SERJES 200 INSTRUCTION FORMATS, 3=3
FORMATTING
AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONS, Fm2
" STATEMENTS,
DATA FORMATTING STATEMENTSs 6-1
FORMJLAS MODELS 200
INSTRUCTION SUMMARY=TIMING FORMULAS MODELS 2009
1200y 12504 AND 22004 Cwé4
FOUR=CHARACTER
" ADDRESS ASSEMBLYs 5=4
" ADDRESSES,
EXTRACTION OF INDIRECT AND INDEXED
FOUR-CHARACTER ADDRESSESs 4+~15
" ADDRESSING MODEy 4wl3y 4«8
ASSEMBLY OF INDEXED ADDRESS IN FOUR~CHARACTER
ADDRESSING MODEs 5=23
ASSEMBLY OF INDIRECT ADDRESS IN FOUR-CHARACTER
ADDRESSING MODEs 5e24
INDEX REGISTER ADDRESSES IN FOUR~CHARACTER
ADDRESSING MODEs 4=14
FUNCTION
® CONTROL
SUMMARY OF INTERRUPT/ALLOW FUNCTION CONTROL AND
TEST OPERATIONSe D=7
MAIN MEMORY FUNCTIONSs 2=2
TYPICAL CONTROL REGISTER FUNCTIONs 2=7
GENERATE~GENs Tw17
GENERATED
INTERRUPT SIGNAL GENERATED BY PERIPHERAL CONTROL.

Les
HALF ADD=HAs 8-29
HALT=Hy 8=52
HANDLING
CUSTOMER INQUIRY HANDLING VIA TYPICAL COMMUNICATIONS
NETWORKs 1=15
HEADER=PRQOG
PROGRAM HEADER~PROGY 7=2
HEADER=SEG
SEGMENT HEADER~SEGy 7=4
HIGH~SPEED
" DRUMSy lwlls lel2
" PRINTERSs 1=9
I/0 CHARACTER
" CEy .
DESCRIPTION OF PCB I/0 CHARACTER CEs 8m149
DESCRIPTION OF PDT 1/0 CHARACTER CE (ESCAPE
CODE) s 8=118

v

L CZ'
DESCRIPTION OF PDT I/0 CHARACTER C2 (PERIPHERAL
CONTROL DESIGNATIONs 8-118
1/0 CONTROL CHARACTERS

SUMMARY OF PCB 1/0 CONTROL CHARACTERS, 8~130

SUMMARY OF PCB 1/0 CONTROL CHARACTERS FOR TYPE 286,
B=146

SUMMARY OF PDT I/0 CONTROL CHARACTERS, 8~120

SUMMARY OF POLT.1/0 CONTROL CHARACTERS FOR TYPE 286
(CONT.)

COMPUTER=-GENERATED INDEX

170 CONTROL CHARACTERS (CONT.)
MULTI CHANNELs 8~126
1IR
INTERNAL INTERRUPI REGISTER (lIR)s 4=4
IMPLICIT ADDRESSING
EXPLICIT ADDRESSINGy IMPLICIT ADDRESSINGs AND
CHAININGs 4=17
INDEX REGISIER
" ADDRESSESs
INDEX REGISTER ADDRESSES IN FOUR=CHARACTER
ADDRESSING MODEs 4-l4
INDEX REGISTER ADDRESSES IN THREE=CHARACTER
ADDRESSING MODE, 4=-12
" MAP+ 4~9 .
SERIES 200 INDEX REGISTER MAPs 4=9
INDEX REGISTERSs E~le 4=9
" SIMULTANEOUSLY
NUMBER OF INDEX REGISTERS SIMULTANEQUSLY
AVAILABLE TO A PROGRAMs 4=10
INDEX/BARRICADE
" REGISTER=~LIBY
LOAD INDEX/BARRICADE REGISIER=LIBy 8=79
" REGISTER=SIB»
STORE INDEX/BARRICADE REGISTER=31B, 8B=82
INDEXEDs 5-21
" ADDRESS,
ASSEMBLY OF INDEXED ADDRESS IN FOJR=CHARACTER
ADDRESSING MODEs 5=23
ASSEMBLY OF INDEXED ADDRESS IN I1HREE=CHARACTER
ADDRESSING MODEs 5=22
EXTRACTION OF INDEXED ADDRESS InN THREE=CHARACTER
MODEs 4~13
" ADDRESSINGs 4«12y 4wl4
" FOUR~CHARACTER ADVRESSES+s
EXIRACTION OF INDIRECT AND INDEXED
FOUR=CHARACTER ADDRESSESY 4=15
INDICATOR .
ANGULAR POSITION INDICATORs 1=11
- " CONDITIONSS
BRANCH ON CONRITION TEST (BCT)
CONDITIONSs B=4
FLOATING=POINT INDICATORS, F=-24
INDICATORSs B8-9
PROCEED INDICATORs E=5
PUNCTUATION INDICATORS
SET 1 PUNCTUATION INDICATORSe 5=7
SET 11 PUNCTUATION INDICATORS (EASYCODER C AND D
ONLY) s 57
" TEST CONDITIONS FOR BCT INSTRUCTIONe 8~37
INDICATORS=RV]
RESTORE VARTJANT AND INDICATURS~RVIe 8=95
INDICATORS=5SVI
STORE VARJANT AND INDICATORS=SVIie 8=92
INDIRECT 5=23
" ADDRESS,
ASSEMBLY OF INDIRECT ADDRESS IN FOUR=-CHARACTER
ADDRESSING MODE, 5=24
ASSEMBLY OF INDIRECT ADDREDS IN THREE=CHARACIER
ADDRESSING MODEs 5=23 '
EXTRACIION OF THREE=CHARACTER INDIRECT ADDKRESS,
4=11
" ADDRESSINGY 4=10¢ 4=13
EXTRACTION OF INDIRECT AND INDEXED FOUR=-CHARACTER
ADDRESSESs 4=15
INFORMATION
" PROJECTION DEVICES,
VISUAL INFORMATION PROJECTION DEVICESs 1=14y
l~l6
" RESTORED BY RVI INSTRUCTIONs 8=96
" STORED BY SVI INSIRUCTIONSe 8=92

INDICATOR

" UNITSy
EXTENDED OF INFORMATION UNLITOS IN MIT OPERATION,
B8=75
INPUT/OUTPUT s B=109
" CAPACITY
EXTENDED INPUT/OUTPUT CAPACLTY FOR THE MODEL
42004 H-1

" CONTROL CHARACTERSy 5=21
" CONTROL OPERATIONSs 8~110
" DATA PATH.
BASIC INPUT/OUTPUT DATA PATHs 1=18
" SECTOR TO WHICH DEVICE IS CONNECTEDsy 8-ll4
" TRAFFLC CONTROLs 2~12
LOGICAL DECISION PERFORMED BY INPUT/QUTPUT
TRAFFIC CONTROLy 2~14
SYMBOLIC REPRESENTATION OF INPJI/OUTPUT TRAFFIC
CONTROLy 2-15
(CONTW)

INPUYZ70UTPUT (CONT)
" TRAFFIC CONTROL ACTIVITIES, 2-12
INQUIRY HANDLING
CUSTUMER INWUIRY HANDLING VIA TYPICAL COMMUNICATIONS
NETWORKs 1-15
INSTRUCT L ON
ADVANCED PROGRAMMING INSTRUCTIONSS
BCC TEST CONDITIONS wlTH ADVANCED PROGRAMMING
INSTRUCTIONSs 8=41
BCC INSTRUCTIONS
BASIC TEST CONDITIONS FOR 8CC INSTRUCTION, 8=40
BCT LNSTRUCTIONS
INDICATOR TEST CONDITIONS FOR BCT INSTRUCTIONS
=37
SENSE SWITCH CONDITIONS FOR BCT INSTRUCTIONS
g=36
CAM INSTRUCTIONY
CHANGING ADLRESSING MODES VIA CAM INSTRUCTIONs
8=6%
MODES SPECIFIED BY VARIANT CHARACTER In CAM
INSTRUCTIONs 8«63
DESCRIPTIONS
SYMBOLOGY USED IN SERIES 200 INSTRUCTION
DESCRIPT1ONSy 8=2
EDIT INSTRUCTIONs 1=22
FORMATy 3=2
SERIES 200 INSTRUCTION FORMAT 1l 4=17
SERIES 200 INSTRUCTION FORMAT 24 4~18
SERIES 200 INSTRUCTION FORMAT 34 4=~18
SERIES 200 INSTRUCTION FORMATSy 3=3
INSTRUCTIONSy 8=1
LCR {NSTRUCTIONY®
CONTROL REGISTER CONTENTS LOADED BY LCR
INSTRUCTIONy 8=61
LINE CONTROL INSTRUCTIONSSs
1YPE 266=1y =24 =3 LINE CONTROL INSTRUCTIONS,
8m126
MCE LNSTRUCTION»
SPECIAL CHARACTERS IN MCE INSTRUCTIONs 8~105
PDT INSTRUCTIONS»
SELECTING RWC ASSIGNMENTS FOR USE IN POT
INSTRUCTIONSy 8=110
PRIVILEGED SCR INSTRUCTIONs Ge4
RVI INSTRUCTIONSs
INFORMATION RESTORED BY RVI INSTRUCTIONs 8«96
SCIENTIFIC INSTRUCTIONS,
SUMMARY OF SCIENTIFIC INSTRUCTIONSy F=é
SCR INSTRUCTIONY
CONTROL REGISTER CONTENTS STORED BY SCR
INSTRUCTIONs 8=58
CONTROL REGISTERS STORED By SCR INSTRUCTIONs
8=59
SERIES 200 INSTRUCTIONS)
SYMBOLIC REPRESENTATION OF SERIES 200
INSTRUCTIONSy 3-4
" SUMMARY=TIMING FORMULAS MODELS 200+ 1200+ 12509 AND
€200y C=4
SVI INSTRUCTIONSs
INFORMATION STORED BY SVI INSTRUCTIONSs 8~92
TIMEOUTs G=2
TIMINGS FOR THE MODEL 42004 C=7
TYPICAL ADD INSTRUCTIONs 4wl
EXTRACTION OF DATA FIELDS IN TYPICAL ADD
INSTRUCTIONy 4=2
INTERLEAVED ADDRESSINGy 25
INTERLEAVING
MODEL 4200 MEMORY INTERLEAVING (TYPE 4201-9 CENTRAL
PROCESSOR) 4 2«6
INTERLOCKING READ/WRITE CHANNELS, 2~16
INTERNAL
" DATA FORMATS,
SUMMARY OF INTERNAL DATA FORMATSs 36
" INTERRUPTs D=2y E=29 l=4
" INTERRUPT REGISTER (1IR),y 44
" INTERRUPT ROUTINE
SAMPLE CODING FOR INTERNAL INTERRUPT ROUTINE.
D=5

INTERRUPT

" CONTROL+ 8=91
EXTERNAL INTERRUPTs D=1l
EXTERNAL INTERRUPTSy 1=4
INTERNAL INTERRUPTs D=29 E=24 1=-4
MASKING o

EXTERNAL INTERRUPT MASKINGs G2
PERIPHERAL CONTROL INTERRUPTy Dw5
PROCESSINGy D=1

(CONTe)

COMPUTER=-GENERATED INDEX

INTERRUPT (CONT)
" PROCESSING MODEs 1-3
PROGRAM INTERRUPTs 1=22

" PROGRAMMINGy D=3

" REGISTERS
EXTERNAL INTERRUPT REGISTER (EIR)s 4-3
INTERNAL INTERRUPT REGISTER (1IR)s 4=4

" ROUTINES,
SAMPLE CODING FOR EXTERNAL INTERRUPT ROUTINE

SAMPLE. CODING FOR INTERNAL INTERRUPT ROUTINEs
D=5
" SIGNAL GENERATED BY PERIPHERAL CONTROLs D=6
INTERRUPT/ALLON FUNCTION CONTROL
SUMMARY OF INTERRUPT/ALLOW FUNCTION CONTROL AND FEST
OPERATIONSs D=7
INTERVALS
DATA TRANSFER INTERVALS DURING ONt PERIPHERAL
OPERATIONy 2-13
INTRODUCTIONs S=1s 6=le 7=1s 8~]
I1TEM
" FORMATS,
: TWO ITEM FORMATS IN MAIN MEMORYe 3=5
ITEMSs 3-5
" MARK=CIy
CLEAR ITEM MARK~-CIe 8«51
MARK=51
SET ITEM MARK=SIs 849
MOVE ITEM AND TRANSLATE-MITs 8=74
ITEM=MARK TRAPPING MODEs 1=5
LANGUAGE
SYMBOLIC LANGUAGEs 5=3
LCR INSTRUCTION
CONTROL REGISTER CONTENTS LOALED BY LCR INSTRUCTIONS
8=61

LENGTH
VARIABLE FIELD LENGTHs 3=]
LIB SETTING
CORRESPONDENCE BETWEEN LIB SEITING AND BARRICADE
LOCATIONs 8-80
LINE
" CONTROL INSTRUCTIONS,
TYPE 286=19 =24 =3 LLINE CONTROL INSTRUCTIONS»
8el26
¥ NUMBER~SETLIN
SET LINE NUMBER=SETLINs 7-18
PCB CONTROL CHARACTERS C5 THROUGH Clb FOR TYPE
286=44 =5 LINEy 8~148
LITERAL ORIGIN=LITORGs 7«9
LITERALSe 5=15
ADDRESS LITERALSs 5=19
ALPHANUMERIC LITERALSy 5~18
AREA DEFINING LITERALSs 5-19
BINARY LITERALS: 5-16
DECIMAL LITERALSs 5~-16
OCTAL LITERALSy 5-17
LOAD)
" CHARACLTERS TO A-F1ELD WORD MARK~LCAs 8=56
" CONTROL REGISTERS«=LCRy 8«60
" INDEX/BARRICADE REGISTER~LIBs 8=79
LOADED
CONIROL REGISTER CONTENTS LOADED BY LCR INSTRUCTION,
8=61
LOADS :
ADDITIONAL READ/WRITE CHANNELSs UNIT LOADSs AND
ADDRESS ASSIGNMENTS, 1~22
UNIT LOADS»
ADDRESS ASSIGNMENTS AND UNIT LDADS AVAILABLE IN
SERIES 200 PROCESSORSs 1=~19
PERIPHERAL ADURESSES AND UNIT LOADS, 1~-17
LOCATION
" (CARD COLUMNS 8=l4)y 5=8
BARRICADE LOCATION,
CURRESPONDENCE BETWEEN LIB SETTING AND BARRICADE
LOCATIONy 8=80
CONSECUTIVE STORAGE LOCATIONS IN MALN MEMORYs 3-4
FACTOR LOCATIONS IN DIVIDE OPERATIONe 8=-12
LOGICy 8=27
LOGICAL
" DECISION PERFORMED BY LINPUT/OUTPUT TRAFFIC CONTROL,
2=14
" DIVISION OF SERIES 200 CENTRAL PROCESSORs 2-1
LOOKUP=TLU
TABLE LOOKJP=TLUs 8=83
MAGNETIC
U CORE STORAGEs
REPRESENTION UF CHARACTERS IN MAGNETIC CORE
(CONTW)

MAGNETIC (CONTS)
STORAGEs 2-3
" TAPL»
CHARACTER REPRESENTATION ON MAGNETIC TAPE, 3«7
) DATA FORMAT ON MAGNETIC TAPE. 3-8
" TAPE DATA FORMAT4e 3=7
" TAPE UNITSe 1=8+ 1=9
MAIN MEMORYs 2=-1
CONSECUTIVE STORAGE LOCATIONS IN MAIN MEMORYs 3-4
DATA FIELD FORMAT IN MAIN MEMORY, 3=5
DATA FLOW BETWEEN MAIN. MEMORY AND ARITHMETIC UNIT,
Z2=11
FUNCTIONSy 2=2
IN THE TYPE 4201 PROCESSOR, 2=4
ORGANIZATION OF DATA IN MAIN MEMORYs 3~4
RECORD FORMAT IN MAIN MEMORY, 3=6

" SIZEy le6
" SPEEDs 1-6
o TWO LITEM FORMATS IN MAIN MEMORYs 3=5
MA
INDEX REGISTER MAP, 4=~9
SERIES 200 INDEX REGISTER MAP, 4m=9
MARK
" (CARD COLUMN 7)9 5«6
CLEAR WORD MARK = CWe 8=50
MARK=C]
CLEAR ITEM MARK~CIly 8=51
MARK =DCW
WORD MARK~DCW
DEFINE CONSTANT WITH WORD MARK=DCWs 6m=2
MARK=LCA -
A=F1ELD WORD MARK={CAs .
LOAD CHARACTERS TO A=FIELD WORD MARK=LCAs 8-56
MARK =MCW
WORD MARK=MCW ¢
MOVE CHARACTERS TO WORD MARK=MCWy 8~55
MARK =51)
SET ITEM MARK=~SIs 8-49
MARK = SW
SET WORD MARK=SWs 8=48
MASK ING

EXTERNAL INTERRUPT MASKING, G=2
MAT OPERATIONy 8=73
MAXIMUM ADDRESS
TREATMENT OF ADDRESSES LARGER THAN A MEMORY S
MAXIMUM ADDRESSs 4=16
MCE INSTRUCTION
SPECIAL CHARACTERS IN MCE INSTRUCTIONs 8~105
MEMORY .
" ACCESSs 2#5
" ADDRESSES»s
CONVERSION OF SYMBOLIC TAGS TO ABSOLUTE MEMORY
: ADDRESSESe 3=2
" CONFIGURATIONS FOR TYPE 4201 PROCESSORS, 2-4
CONTROL MEMORYs 26
" CONTROLLERy 2=5
" CYCLEy 2-3
CYCLE DISTRIBUTIONy 2=12
DUMP=HSMy 714
FUNCTIONS
MAIN MEMORY FUNCTIONSy 2e2
INTERLEAVING
MODEL 4200 MEMORY INTERLEAVING (TYPE 4201-9
CENTRAL PROCESSUR) s 2«6
MAIN MEMORYs 2-1
CONSECUTIVE STORAGE LOCATIONS IN MAIN MEMORYs
3m4
DATA FIELD FORMAT IN MAIN MEMORYs 3=s
DATA FLOW BETWEEN MAIN MEMORY AND ARITHMETIC
UNITe 2-11
ORGANIZATION OF DATA IN MAIN MEMORYs 34
RECORD FORMAT IN MAIN MEMORYs 3=6 ’
TWO ITEM FORMATS IN MAIN MEMORYs 3=5
MAIN MEMORY IN THE TYPE 4201 PROCESSOR, 24
POSITION,
UNE MEMORY POSITIONs 2-3
REGISTERS)
CONTROL MEMORY REGISTERSs 2-8
SI1ZE OF CONTROL MEMORY REGISTERS (MODELS
200/1200/1250/2200/4200) s 2-7

" SIZE»

MAIN MEMORY SIZEs 1l=6
" SPEEDy

MATN MEMORY SPEEDs 1-6
" SUBSYSTEMs

TYPE 4201 MEMORY SUBSYSTEMs 2~4
MEMORY sS MAXIMUM ADDRESS

(CONT»)

COMPUTER=GENERATED INDEX

MEMORY ¢5 MAXIMUM ADDRESS (CONT)
TREATMENT OF ADDRESSES LARGER THAN A MEMORY4S
MAXIMUM ADDRESSs 4=16
MINIMUM RwC CAPACITY REWJIREMENTS FUR SERIES 200
PERIPHERAL DEVICESs 8e111
MIT OPERATIONy 8=79
EXTENDED OF INFORMATION UNITS IN MII OPERATIONy 8-75
MODE
ADDRESSING MODESe l=éy 4=5
CENTRAL PROCESSOR MODESs E-l
CHANGING AVDDRESSING MODES VIA CAM INSTRUCTIONs 8=65
FOURCHARACTER ADDRESSING MODEs 4«13 48
ASSEMBLY OF INDEXED ADDRESS IN FOUR=CHARACTER
ADDRESSING MODE, 5=23
ASSEMBLY OF INDIRECT ADDRESS IN FOUR=-CHARACTER
ADDRESSING MODE,s 5=24
INDEX REGISTER ADDRESSES IN FOUR=CHARACTER
ADDRESSING MODEs 4=l4
INTERRUPT PROCESSING MODE, 1=3
ITEM=MARK TRAPPING MODEs 1~5
MODES SPECIFIED BY VARIANT CHARACTER IN CAM
INSTRUCTIONs B+63
STANDARD PROCESSING MODEs 1=3
THREE=CHARACTER ADDRESSING MQULEs 4=6
ASSEMBLY OF INDEXED ADDRESS IN VHREE=CHARACTER
ADDRESSING MODE, 5=-22
ASSEMBLY OF INDIRECT ADDRESS IN VTHREE-CHARACTER
ADDRESSING MODE,. 5=23
INDEX REG]ISTER ADDRESSES IN THREE-CHARACTER
ADDRESSING MODE, 4=12
THREE=CHARACTER MODE
EXTRACTION OF INDEXED ADDRESS IN THREE-CHARACTER
MODEs 4~13
TWO=CHARACTER ADDRESSING MODEs 4=5
MODE=ADMODE
SET ADDRESS MODE~ADMODEs 7=11
MODE=CAM
CHANGE ADDRESSING MODE=CAMy 862
MODE~CSM
CHANGE SEQJENCING MODE=CSMe 8=66
MODE~RNM
RESUME NORMAL MODE=RNMe 8-99
MODEL
" 200 ADVANCED PROGRAMMING FEATUREs l=-21
" 4200, '
EXTENDED INPUT/OUTPUT CAPACITY FOR THE MODEL
4200¢ H=1
INSTRUCTION TIMINGS FOR TrE MODEL 4200y -C=7
" 4200 MEMORY INTERLEAVING (TYPE 4201~9 CENTRAL
PROCESSOR) s 2w6
" 4200 VARIABLE~SPEED READ/WRITE CHANNELSs 2-16
MODELS
" 1200,
SCIENTIFIC UNIT FOR MODELS 1200 12509 2200+ AND
4200y Fe=1
" 200,
INSTRUCTION SUMMARYTIMING FORMULAS MODELS 200,
1200 12504 AND 2200+ C=4
" 200/1200/1250/2200/4200,
SIZE OF CONTRO|. MEMORY REGISTERS (MODELS
200/1200/125072200/4200)y 2=7
MODIFICATION
ADDRESS MODIFICATIONe 4w8
" CODES»
ADDRESS MODIFICATION CODESe 5-21
MODULAR ORIGIN=MJRGy 7»9
MONITOR CALL=MCy 9~98
MOVE
" AND TRANSLATE«MATs 8=70
" CHARACTERSY
MOVE CHARACTERS AND EDIT=MCEe 8=104
MOVE CHARACTERS TO WORD MARK=MCwe 8=55
CONDITIONS» ,
EXTENDED MOVE CONDITIONSs 8=-68
EXTENDED MOVE (EXM) CONDITIONSs B=2
" ITEM AND TRANSLATE=MITs 8«74
" OR SCAN CONDITIONS, B=88
" DR SCAN VAR]JANTSs B=9
" QR SCAN-MQSy 8=86
MOVE=EXM
EXTENDED MOVEwEXMes 8~67
MULTI CHANNEL
SUMMARY OF PDT 1/0 CONTROL CHARACTERS FOR TYPE 286
MULTI CHANNELs 8=126
MULT1»PROGRAMMING .
EXTENDED MULT]«~PROGRAMMING AND 8«BIT TRANSFERs =23
MULTIPLICATIONs 8=9
MULTIPLY (CONTW)

MULTIPLY

" OPLRATION,

A AND B FIELDS IN MULTIPLY OPERATION, 8-10

" SIGN CONVENTIONSe g=10
MULTIPLY=Ms 8=-23
NETWORK

TYPICAL COMMUNICATIONS NETWORK,
CUSTOMER INQUIRY HANDLING VIA TYPICAL
COMMUNICATIONS NETWORK, 1=15
NORMAL MOQUE~RNM
RESUME NORMAL MODE=RNMy 8«99
NOTATION
OCTAL NOTATIONy A=}
NUMBER
CARD NUMBER (CARD COLUMNS 1=5), 5-5
" OF INDEX REGISTERS SIMULTANEQUSLY AVAILABLE TO A
PROGRAMY 4~-10
NUMBER=SETLIN
SET LINE NUMBER«SETLINy 7-18
NUMERIC CONSTANTSs 6=-2
0BJECT PROGRAM
RELATIONSHIP OF SOURCEs ASSEMBLERs AND OBJECT
PROGRAM 5-2
OCTAL
BINARY, OCTALs AND DECIMAL EQUIVALENTS, B=8

" CONSTANTSs 6=-3

* LITERALSs 5=17

* NOTATIONs A=l
OCTAL=DECIMAL CONVERSION PROCEDUREs A=3
OPERANDSy 5~11
OPERATION
ARTTHMETIC OPERATIONSy 8=4

AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONS,

Fe2
CARD READ OPERATIONs

DATA PATH DURING CARD READ OPERATION, 1l=1l9
CODEs 3e2

OPERATION CODE (CARD COLUMNS 15=20) ¢ 5=10
CONTROL OPERATIONS,

TYPES OF TEST AND CONTROL OPERATIONS, 8-128
DIVIDE OPERATIONs

FACTOR LOCATIONS IN DIVIDE OPERATION, 8~12
INPUT/OUTPUT CONTROL OPERATIONSs 8-110
MAT OPERATIONs 8+~73
MIT OPERATIONs 8=79

EXTENDED OF INFORMATION UNITS IN MIT OPERATION,

8=75
MULTIPLY OPERATION,

A AND B FIELDS IN MULTIPLY OPERATION, 8~10
PERIPHERAL DATA TRANSFER OPERATIONs 1=17
PERIPHERAL OPERATIONs

DATA TRANSFER INTERVALS DURING ONE PERIPHERAL

OPERATIONy 2+~13
SUBTRACT OPERATIONSe

SERIES 200 ADD AND SUBTRACT OPERATIONSs 8e4
TEST. OPERATIONS s

SUMMARY OF INTERRUPT/ALLOW FUNCTION CONTROL AND

1EST OPERATIUNSe D=7
TLU OPERATIONe 887
" UTILIZING ESCAPE CODESs
EXAMPLE OF OPERATION UTILIZING ESCAPE CODESs
=114

OPERATION=NOP
NO OPERATION-NQOPy 8=54
OPTIONAL FEATURESs 1=-20
. SERIES 200 OPTIONAL FEATURESs 1=20
OPTIONS
EASYCODER CARD D OPTIONSs 610
ORGANIZATION OF DATA IN MAIN MEMORYs 3e4
ORIGIN=LITORG
LITERAL ORIGIN=LITORGY 7«9
OR1GIN=MQORG
MODULAR ORIGIN=-MORGs 79
ORIGIN=DRGY 7=7
OUT=OF=SEQUENCEs 5«15
" BASE~XBASE
SET OUT=OF=SEQUENCE BASE=XBASEs 7=-18

. OUTSIDE ADDRESS REGISTER RANGE

POTENTIAL ADDRESSES OUTSIDE ADDRESS REGISTER RANGE.
4=16
PACK DRIVES
DISK PACK DRIVESs 1~10

PANEL
TYPE 1201 CONTROL PANELs 1w2
PAPER TAPE
" EQUIPMENTy i~12
" PUNCH»

(CONT.)

COMPUTER-GENERATED INDEX

PAPER TAPE (CONTs)
C3 CODING FOR TYPE 210 PAPER TAPE PUNCHs 8=124
" READERS,
C3 CODING FOR TYPE 209 AND 209=2 PAPER TAPE
READERSs 8~124
PARITY CHECKy 2=6
PATH
BASIC INPUT/OUTPUT DATA PATHs 1~18
DATA PATH DURING CARD READ OPERATIONs 1=19
pCB
" CONTROL CHARACTERS €5 THROUGH C15 FOR TYPE 286=4s =5
LINEs 8el148
" J/0 CHARACTER CEy
DESCRIPTION OF PCB 1/0 CHARACIER CEs 8-149
"]/0 CONTROL CHARACTERSS
SUMMARY OF PCB I/0 CONTROL CHARACTERSs 8~130
SUMMARY OF PCB 1/0 CONTROL CHARACTERS FOR TYPE
2869 8=146
POT
" J/0 CONTROL CHARACTERS,
SUMMARY OF PDT 1/0 CONTROL CHARACTERSs 8~120
SUMMARY OF PDT 1/0 CONTROL CHARACTERS FOR TYPE
286 MULTI CHANNELy 8=126
" INSTRUCTIONS
SELECTING RWC ASSIGNMENTS FOR USE IN PDT
INSTRUCTIONSs 8-il0
PDT 1/0 CHARACTER
" CE»
DESCRIPTION OF PDT 1/0 CHARACTER CE (ESCAPE
CODE} s 8~118
" C2y
DESCRIPTION OF PDT 1/0 CHARACTER C2
CONTROL DESIGNATIONs 8-118
PDTI/0 CONTROL CHARACTER Cl
DESCRIPTION OF PD11/0 CONTROL CHARALTER Cly 8=116
PERIPHERAL
" ADDRESSES AND UNI1
" CONTROLs 1=7
INTERRJPT SIGNAL GENERATED BY PERIPHERAL
CONTROLs D=6
PERIPHERAL. CONTROL AND BRANCH=PCBy 8=127
" CONTROL DESIGNATIONS ’
DESCRIPTION OF PDT 1/0 CHARACTER €2 (PERIPHERAL
CONTROL DESIGNATIONs 8~118
CONTROL INTERRUPTs D=5
DATA TRANSFER OPERATIONy 1~17

(PERIPHERAL

LOADSy 1=-17

PRUCESSING (CONTe)

" POWERs 1a-5
" UNITs 2~5
PROCESSOR

" BEING USEDy &~113
CENTRAL PROCESSORs l=ls 2=
" CHARACTERISTICSy :
SUMMARY OF CENTRAL PROCESSOR CHARACTERISTICS.
2=17 :
MODEL 4200 MEMORY INTERLEAVING (TYPE 4201-9 CENTRAL
PROCESSOR) » 2=6
MODES »
CENTRAL PROCESSOR MODESs E=-1
SERIES 200 CENTRAL PROCESSOR+s
LOGICAL DIVISION OF SERIES 200 CENTRAL
PROCESSORs 2=-1
SERIES 200 PROCESSORS»
ACTIVE ADDRESS BITS IN SERIES 200 PROCESSORS,
4=15
ADDRESS ASSIGNMENTS AND UNIT LOADS AVAILABLE IN
SERIES 200 PROCESSORSy 1-19
TYPE 4201 PROCESSORy
MAIN MEMORY IN THE TYPE 4201 PROCESSORs 2=4
TYPE 4201 PROCESSORS,
MEMORY CONFIGURATIONS FOR TYPE 4201 PROCESSORS,
2=4

PROGRAM
" HEADER=PROGe 7=2
" INTERRUPTy 1=-22
NUMBER OF INDEX REGISTERS SIMULTANEOUSLY AVAILABLE
10 A PROGRAMs 4~10
0BJECT PROGRAM,y
RELATIONSHIP OF SOURCE, ASSEMBLERs AND OBJECT
PROGRAMy 5~2
PROGRAMMING
ADVANCED PROGRAMMINGs 1w21
EASYCODER PROGRAMMINGsy 5=~
" FEATURE
MODEL 200 ADVANCED PROGRAMMING FEATUREs 1~21
" INSTRUCTIONSs
BCC TEST CONDITIONS WITH ADVANCED PROGRAMMING
INSTRUCTIONSy 8=41
INTERRUPT PROGRAMMINGs D=3
PROJECTION DEVICES
VISUAL INFORMATION PROJECTION DEVICESs lelé4s 1l=l6
PROTECT

DATA—TRANSFER7PDTY B=11%
DEVICES,
ADDITIONAL PERIPHERAL DEVICESs l=164 l=l7
MINIMUM RWC CAPACITY REQUIREMENTS FOR SERIES 200
PERIPHERAL DEVICESs 8111
EQUIPMENT s l=6
" OPERATION
DATA TRANSFER INTERVALS DURING ONE PERIPHERAL
OPERATIONy 2«13
" SIMULTANEITYs 1=6
POSITION
" INDICATORY
ANGULAR POSITION INDICATORs 1=11
MEMORY POSITION
ONE MEMORY POSITION, 2=3
POTENTIAL ADDRESSES
" QUTSIDE ADDRESS REGISTER RANy
POTENTIAL ADDRESSES OUTSIDE ADDRESS REGISTER
RANGEs 4~16
" WITHIN ADDRESS RANGEs 4=16
POWER
POWERS OF 24 B=8
PROCESSING POWERs 1=5
PRIMARY AND AUXILIARY READ/WRITE CHANNELSe 2-16
PRINT BUFFERy l=8
PRINTER
H1GH=SPEED PRINTERSs 1l=9
SPEED PRINTERSY
HIGH SPEED PRINTERS, 1~8
TYPE 237 BILL FEED PRINTERS
C3 CODING FOR TYPES 206 AND 222 PRINTERS AND
TYPE 237 BILL FEED PRINTERs 8=125
PRIVILEGED SCR INSTRUCTIONs Gu4
PROCEDURE
OCTAL=DECIMAL CONVERSION PROCEDUREs A=~3
PROCEED INDICATORy E=5
PROCESSING
INTERRUPT PROCESSINGs Dml
" MODE»s .
INTERRYPT PROCESSING MODEs 1=3
STANDARD PROCESSING MODEy 1«3
(CONTe?

" FEATURE»
STORAGE PROTECT FEATUREs E=l
STORAGE PROTECTs 1-23
PROTECTION
STORAGE PROTECTION,
VIOLATIONS OF STORAGE PROTECTIONy E~3
. STORAGE PROTECTION WITH BASE RELOCATIONs Gml
PUNCH
TYPE 210 PAPER TAPE PUNCH,
C3 CODING FOR TYPE 21Q PAPER TAPE PUNCHy 8=l124
PUNCHED CARD
" CODESy 3-8
" EQUIPMENTe 1=7s 1~8
" FORMATy 3=8
PUNCTUATION INDICATORS
SET)} PUNCTUATION INDICATORS+ 5=7
SET 11 PUNCTUATION INDICATORS (EASYCODER C AND D
ONLY) s 5«7
RANDOM ACCESS DRUM
C3 CODING FOR TYPE 270A RANDOM ACCESS DRUMs 8ml125
RANDOM ACCESS DRUMSs 1=11
" UNITSy l-ll
RANGE
ADDRESS RANGE s
- POTENTIAL ADDRESSES WITHIN ADDRESS RANGEs 4-16
POTENTIAL ADDRESSES OUTSIDE ADDRESS REGISTER RANGE,
4=16
RATE
DEVICE DATA TRANSFER RATEs 8-110
READ OPERATION
DATA PATH DURING CARD READ OPERATIONy 1=19
READ/WRITE
" CHANNEL s 1-18
ADDITIONAL READ/WRITE CHANNELSs UNIT LOADSy AND
ADDRESS ASSIGNMENTSs 1-22
INTERLOCKING READ/WRITE CHANNELSs 2-16
MODEL 4200 VARIABLE~SPEED READ/WRITE CHANNELS
2=16
PRIMARY AND AUXILIARY READ/WRITE CHANNELS, 2=16
" COUNTERS, 2-8
READERS
(CONT)

COMPUTER=GENERATED INDEX

READERS (CONT,)
209-2 PAPER TAPE READERSs
C3 CODING FOR TYPE 209 AND 209=2 PAPER JAPE
READERSs 8=124
RECORD FORMAT IN MAIN MEMORYs 3.6
RECORDING DENSITY
1200 BP1 RECORDING DENSITYs 1-8
RECORDSy 3=6
REFERENCE
SELF REFERENCEs 5-13
REGISTER
A=ADDRESS REGJSTER (AAR)s 4=4
ADURESS REGISTERSs 2-8
ADDRESSES
INVEX REGISTER ADDRESSES IN FOUR=CHARACTER
ADDRESSING MODEs 4~14
INDEX REGISTER ADDRESSES IN THREE-CHARACTER
ADDRESSING MODEe 4~12
B=ADDRESS REGISTER (BAR) . 4=4
CHANGE SEQUENCE REGISTER (CSR) s 4=3
CONTENTS LOADEDs
CONTROL REGISTER CONTENTS LOADEV BY LCR
INSTRUCTIONs 8-61
CONTENTS STOREDs
CONTROL REGISTER CONTENTS STORED BY SCR
INSTRUCTIONs 8=58
CONTROL MEMORY REGISTERSs 2~8
S1ZE OF CONTROL MEMORY REGISTERS (MODELS
200/1200/1250/72200/4200) s 2-7
" DESIGNATIONSS
CONTROL REGISTER DESIGNATIONSy B-1
EXTERNAL INTERRUP1 REGISTER (ELR)y 4=3
FLOATING~POINT REGISTERSs F=l
" FUNCTIONs
TYPICAL CONTROL REGISTER FUNCTIONs 2=-7
INDEX REGISTERSs Emls 4=9
INTERNAL INTERRUPT REGISTER (1IR)e 4=4
" MAP
INDEX REGISTER MAPs 4«9
SERIES 200 INDEX REGISTER MAPy 4=9
" RANGE
POTENTIAL ADDRESSES OUTSIDE AVDURESS REGISTER
RANGEs 4=16
REGISTERS USED IN ADDRESSINGs 4=3
SEQUENCE REGISTER (SR)s 4-3
REGISTER~LIB
LOAD INDEX/BARRICADE REGISTER~LIBs B8~79
REGISTER=-SIB
STORE INDEX/BARRICADE REGISTER=SIBe 8=82
REGISTERS
" SIMULTANEQUSLYs
NUMBER OF INDEX REGISTERS SIMULTANEQUSLY
AVAILABLE TO A PROGRAMs 4=10

" STORED»
CONTROL REGISTERS STORED BY SCR INSTRUCTION,
8~59
REGISTERS=LCR

LOAD CONTROL REGISTERS-LCRs 860
REGISTERS=SCR
STORE CONTROL REGISTERS~-SCRs 8-58
RELATIONSHIP OF SQURCEs ASSEMBLERs AND UBJECT PROGRAMs 5.2
RELATIVEs 5=14
RELOCAT ION
BASE RELOCATIONS
STORAGE PROTECTION WITH BASE RELOCATIONs G-}
REPEAT-REPy 7=16
REPRESENTATION
CHARACTER REPRESENTATION ON MAGNETIC FAPEs 3=7
SYMBOLIC REPRESENTATION OF INPUT/OUTPUT TRAFFIC
CONTROL 2-15
SYMBOLIC REPRESENTATION OF SERIES 200 INSTRUCTIONS,
324
REPRESENTION OF CHARACTERS IN MAGNETIC CORE STORAGEs 2=3
REQUIREMENTS
MINIMUM RWC CAPACKTY REQUIREMENTS FOR SERIES 200
PERIPHERAL DEVICESs 8-111
RESERVE AREA-RESVy b6m6
RESTORE VARIANT AND INDICATORS-RVIs 8~95
RESTORED
INFORMATION RESTORED BY RVI INSTRUCTIONs 8-96
RESUME NORMAL MODE=-RNM»s 8-99
ROUTINE
EXTERNAL INTERRUPT ROUTINES,
SAMPLE CODING FOR EXTERNAL INTERRUPT ROUTINES
Dete
INTERNAL INTERRUPIT ROUTINES
SAMPLE CODING FOR INTERNAL INTERRUPT ROUTINES
(CONT4)

ROUTINE (CONT)
D=5
RULES
ADDIIIONAL CODING RULESs b-12
RVI INSTRUCTION
c INFOKMATION RESTORED BY RVI INSTRUCTIONs 8«96
RW :
" ASSIGNMENTSs
CONSIDERATIONS IN SELECTING RWC ASSIGNMENTS
=110
SELECTING RWC ASSIGNMENTS FOR JSE IN PDT
INSTRUCTIONSy 8-110
" CAPACITY REWUIREMENTSs
MINIMUM RWC CAPACLTY REQUIREMENTS FOR SERIES 200
PERIPHERAL DEVICESs 8=111
SAMPLE CODING
" FOR EXTERNAL INTERRUPT ROUTINE, D=4
" FOR INTERNAL INTERRUPT ROUTINEs D=5
SCAN
" CONDITIONS
MOVE OR SCAN CONDITIONSs 8-88
" VARIANTS,
MOVE OR SCAN VARIANTSs B=9
SCAN=MOS
MOVE OR SCAN«MOSs 8-86
SCLENTIFIC
" INSTRUCTIONS»
SUMMARY OF SCIENTIFIC INSTRUCTIONS, Faeé4
" UNIT»
SCIENTIFIC UNITy 1-23
SCIENTIFIC UNIT FOR MODELS 1200e 12504 2200+ AND
4200y F=1
SCR INSTRUCTION
CONTROL REGISTER CONTENTS STORED BY SCR INSTRUCTION,
8=58
CONTROL REGISTERS STORED BY SCR INSTRUCTIONs 8~59
PRIVILEGED SCR INSTRUCTIONy G4
SECTOR
BUFFERED SECTORSs H=2
CONTROLS/DEVICES CONNECTABLE TO BUFFERED
SECTORSs H=2
INPUT/OUTPUT SECTOR TO WHICH DEVICE IS CONNECTED,
B=114
SEGMENT HEADER~SEGs 7+4
SELECTING RWC ASSIGNMENTS
CONSIDERATIONS IN SELECTING RWC ASSIGNMENTSe 8=110
" FOR USE IN PDT INSTRUCTIONSs 8110
SELF REFERENCEs 5-13
SENSE SWITCH CONDITIONS
BRANCH ON CONDITION TEST (BCT) SENSE SWITCH
CONDITIONS, B-3
" FOR BCT INSTRUCTIONs 8-36
SEQUENCE REGISTER
" (SR) s 4=3
CHANGE SEQUENCE REGISTER (CSR),y 4=3
SEQUENCING MODE=-CSM
CHANGE SEQUENCING MODE~CSMy 8=-66
SERIES 200
" ADD AND SUBTRACT OPERATIONSe 8«4
" CENTRAL PROCESSOR»
LOGICAL DIVISION OF SERIES 200 CENTRAL
PROCESSORy 2~1
CHARACTER CODESs B=7
COMPONENTSs 1=1
INDEX REGISTER MAPy 4=9
INSTRUCTION DESCRIPTIONS,
SYMBOLOGY USED IN SERIES 200 INSTRUCTION
DESCRIPTIONSs B8=2
INSTRUCTION FORMAT,
SERIES 200 INSTRUCTION FORMAT ls 4=17
SERIES 200 INSTRUCTION FORMAT 29+ 4=18
© SERIES 200 INSTRUCTION FORMAT 34 4m=18
SERIES 200 INSTRUCTION FORMATSy 3e3
INSTRUCTIONS ¢
SYMBOLIC REPRESENTATION OF SERIES 200
INSTRUCTIONS s 3e~4
OPT[UNAL FEATURESs 1«20
PERIPHERAL DEVICES,
MINIMUM RWC CAPACITY REQUIREMENTS FOR SERIES 200
PERIPHERAL DEVICESs 8=111
PROCESSORS »
ACTIVE ADDRESS BITS IN SERIES 200 PROCESSORS.

4e15
ADDRESS ASSIGNMENTS AND UNIT LOADS AVAILABLE IN
SERIES 200 PROCESSORSs 1-19
SET

ADDRESS MOLE=ADMODEs 7-11
(CONT o)

COMPUTER=-GENERATED INDEX

SET (CONI.)

ITEM MARK=S[9s 8«49

LINE NUMBER=SETLINy 7-18

OUT~0OF~SEQJENCE BASE~XBASEs 7~18

WORD MARK=Swe 8«48

" 1 PUNCTUATION INDICATORSe 5=7

" 11 PUNCTJATION INDICATORS (EASYCODER C AND D ONLY),
5=7

SETTING
L18 SETTING.
CORRESPONDENCE BETWEEN LIB SEITING AND BARRICADE
LOCATION, 8=80
SIGN CONVENTIONS
DECIMAL ARITHMETIC SIGN CONVENTIONSy 8=9
DIVIDE SIGN CONVENTIONSy 8=13
MULTIPLY SIGN CONVENTIONS, 8=i0
SIGNAL GENERATED
INTERRUPT SIGNAL GENERATED BY PERIPAERAL CONTROL»
D=6
SIGNS
ALGEBRAIC SIGNS IN DECIMAL ADDITIONs 8=7
SIMULTANEITY
PERIPHERAL SIMULTANEITY, 1=~6
SIMULTANEOUSLY
INDEX REGISTERS SIMULTANEOQUSLYs
NUMBER OF INDEX REGISTERS SiMULTANEOUSLY
AVAILABLE TO A PROGRAMs 4=-10

SIZE
MAIN MEMORY SIZEs -1=6
" OF CONTROL MEMORY REGISTERS (MODELS
200/1200/1250/2200/4200) ¢ 2=7
SKIP=SKIPs 7=15
SOURCE
RELATIONSHIP OF SOJRCEs ASSEMBLERs AND OBJECT
PROGRAMy 5=2
SPECIAL CHARACTERS IN MCE INSTRUCTIONs 8-105
SPEED
MAIN MEMORY SPEEDs 1~6
" PRINTERS®
HIGH SPEED PRINTERSy 1=8
SR
SEQUENCE REGISTER (SR)s 43
STANDARD PROCESSING MQODE, 1=3
STATEMENTS
ASSEMBLY CONTROL STATEMENTSs 7-1
DATA FORMATTING STATEMENTS, 6-1
STORAGE
" LOCATIONS
CONSECUTIVE STORAGE LOCATIONS IN MAIN MEMORYs
3e4
MAGNETIC CORE STORAGEs
REPRESENTION OF CHARACTERS IN' MAGNETIC CORE
STORAGEY 2~3
PROTECTs 1-23
PROTECT FEATUREs E-l
PROTECT ION»
STORAGE PROTECTION WITH BASE RELOCATIONs G=1
VIOLATIONS OF STORAGE PROTECTIONs te3

STORE
" CONTROL REG]STERS=SCRs 8=-58
" INDEX/BARRICADE REGISTER~SIBy 8-82
" VARIANT AND INDICATORS=SVIs 8=92
STORED
CONTROL RESISTER CONTENTS STORED 8Y SCR INSTRUCTION,
B=58
CONTROL REGISTERS STORED BY SCR INSTRUCTIONy 8+59
INFORMATION STORED BY SVI INSTRUCTIONSs 8-92
SUBSTITUTE=SSTs 8~30
SUBSYSTEM
TYPE 4201 MEMORY SUBSYSTEMs 2=4
SUBTRACT OPERATIONS
SERIES 200 ADD AND SUBTRACT OPERATIONSs 8=4
SUBTRACT=~BS
BINARY SUBTRACT=BSs 8=19
SUBTRACT=S, B«l6
SUBTRACLT=ZS
ZERO AND SUBTRACT=ZSe 8=22
SUBTRACTION
BINARY SUBTRACTIONy 8=-4
DECIMAL SUBTRACTIONs 8-8
SUFFIX=SFXy 7«15
SUMMARY s 3=34 3=6y 4=4
INSTRUCTION SUMMARYs C=1
" OF CENTRAL PROCESSOR CHARACTERISTICSs 2-17
" OF INTERNAL DATA FORMATSs 3=6
" OF INTERRUPT/ALLOW FUNCTION CONTROL AND TEST
OPERATIONSs D=7
(CONTS)

SUMMARY (CONT)
OF PCB 1/0 CONTROL CHARACTERS FOR TYPE 2864 8ml46
OF PCB [/0 CONTROL CHARACTERSs 8-130
" OF PUT 1/0 CONTROL CHARACTERS FOR TYPE 286 MULTI
CHANNEL» 8-126
OF PLT 1/0 CONTROL CHARACTERS, 8w120
" OF SCIENTIFIC INSTRUCTIONS, Fe4
SUMMARY=TIMING FORMULAS MODELS 200
INSTRUCTION SUMMARY=TIMING FORMULAS MODELS 2009
12004 12504 AND 22004 Cw4
SVI INSTRUCT1ONS
INFORMATION STORED BY SVI INSTRUCTIONSy 8«92
SWITCH CONDITIONS
BRANCH ON CONDITION TEST (BCT) SENSE SWITCH
CONDITIONSy B=3
SENSE SWITCH CONDITIONS FOR BCT INSTRUCTION, 8-36
SYMBOLICs 5-13
" ADDRESS«DSA»
DEFINE SYMBOLIC ADDRESS=DSAs 6=7
" LANGUAGEy 5-3
" REPRESENTATION,
SYMBOLIC REPRESENTATION OF INPUT/QUTPUT TRAFFIC
CONTROLy 2-15
SYMBOLIC REPRESENTATION OF SERIES 200
INSTRUCTIONS 34

" TAGSy
CONVERSION OF SYMBOLIC TAGS TO ABSOLUTE MEMORY
ADDRESSESy 3-2
sYMBOLOaYo Fm2
" USED IN SERIES 200 INSTRUCTION DESCRIPTIONS, g=2
TABLE
BINARY ADDITION TABLE+s 8m4
DECIMAL=OCTAL CONVERSION TABLEs A=2
LOOKUP~-TLUy 8-83
MISCELLANEOUS TABLESs B=1

TAGS
SYMBOLIC TAGS»
CONVERSION OF SYMBOLIC TAGS TO ABSOLUTE MEMORY
ADDRESSESy 3=2
TAPE

DATA FORMAT »
MAGNETIC TAPE DATA FORMAT, 3.7
" EQUIPMENT o
PAPER TAPE EQUIPMENT, 1-12
MAGNETIC TAPE
CHARACTER REPRESENTATION ON MAGNETIC TAPE, 3a7
DATA FORMAT ON MAGNETIC TAPE, 3-8
" PUNCHY
C3 CODING FOR TYPE 210 PAPER TAPE PUNCHy 8-124
READERS
C3 CODING FOR TYPE 209 AND 209~2 PAPER TAPE
READERS+ 8-124

" UNITSs
MAGNETIC TAPE UNITSs 1-8s 1»9
TELLER TERMINAL EQUIPMENTs 1-16
TERMINAL EGUIPMENT
TELLER TERMINAL EQUIPMENTs lwlé
TEST ’
CONDITION TEST,
BRANCH ON CONDITION TEST (BCT)
CONDITIONSs Be=g
BRANCH ON CONDITION TEST (BCT) SENSE SWITCH
CONDITIONSs B3
" CONDITIONS
BASIC TEST CONDITIONS FOR BCC INSTRUCTION. 8=40
BCC TEST CONDITIONS WITH ADVANCED PROGRAMMING
INSTRUCTIONSs 8«41
INDICATOR TEST CONDITIONS FOR BGT INSTRUCTIONS
8=37
" OPERATIONS»
SUMMARY OF INTERRUPT/ALLOW FUNCTION CONTROL AND
TEST OPERATIONSs D=7
TYPES OF TEST AND CONTROL OPERATIONSs 8=128
TEST=BCT
CONPITION TEST-BCT,
BRANCH ON CONDITION TEST=BCTs 8-35
THREE~CHARACTER
" ADDRESSING MODEs 4=6
ASSEMBLY OF INDEXED ADDRESS IN THREE~CHARACTER
ADDRESSING MODEy 5=22
ASSEMBLY OF INDIRECT ADDRESS IN THREE~CHARACTER
ADDRESSING MODEs 5«23
INDEX REGISTER ADDRESSES IN THREECHARACTER
ADURESSING MODEs 4el2
" INDIRECT ADDRESSs
EXTRACTION OF THREE~CHARACTER INDIRECT ADDRESS,
4=11
(CONT)

INDICATOR

COMPUTER~-GENERATED INDEAX

THREE=CHARACTER
" MODE
EXTRACTION OF INDEXED ADURESS IN THREE=~CHARACTER
MODEs 4=-13
THREE=CHARACTER ADDRESSy 4=10
" ASSEMBLYs 5«4
TIMEOUT
INSTRUCTION TIMEOUTs G=2
TIMING
INSTRUCTION TIMINGS FOR THE MODEL 4200+ C=7
" NOTESe F=3
TLU OPERATIONy 8~87
TRAFFIC CONTROL
" ACTIVITIESY
INPUT/OUTPUT TRAFFIC CONTROL ACTIVITIESs 2m12
INPUT/0UTPUT TRAFFIC CONTROLs 2=~12
LOGICAL DECISION PERFORMED BY INPUT/OUTPUT TRAFFIC
CONTROLs 2=-14
SYMBOLIC REPRESENTATION OF INPUT/OUTPUT TRAFFIC
CONTROLs 2=~15
TRANSFER
" CAPABILITY
8=BIT TRANSFER CAPABILITYs G=3
" INTERVALS,
DATA TRANSFER INTERVALS DURING ONE PERIPHERAL
OPERATIONe 2-13

(CONT)

" QPERATION,
PERIPHERAL DATA TRANSFER OPERATIONs 1«17
" RATE
DEVICE DATA TRANSFER RATEs 8-110
8=BIT TRANSFER}
EXTENDED MULTI~PROGRAMMING AND 8-BIT TRANSFER,

l=23
TRANSFER=XFRy T=b6
TRANSFER/PDT
PERIPHERAL DATA TRANSFER/PDTs 8=115
TRANSLATE=MAT
MOVE AND TRANSLATE=MATs 8-70
TRANSLATE=~MIT

MOVE 1TEM AND TRANSLATE«MITs 8+-74
TRAPPING MODE
ITEM=MARK TRAPPING MODEs 15
TREATMENT OF ADDRESSES LARGER THAN A MEMORY S MAX1MUM
ADDRESSy 4=16
TRUE ADDs 8-7
" EXAMPLESe 8~7
TWO=~CHARACTER
" ADDRESS ASSEMBLYs 5~3
" ADDRESSING MODEs 4=5 ‘

TYPE
"

(CARD COLUMN 6)9 5=6
TYPES OF TEST AND CONTROL OPERATIONSs 8-128
" 3201 CONTROL PANELs 1=2
" 209
C3 CODING FOR TYPE 209 AND 209=2 PAPER TAPE
READERSs 8=124
" 210 PAPER TAPE PUNCH,
C3 CODING FOR TYPE 210 PAPER TAPE PUNCHy 8~124
" 220~1 CONSOLEs 1~3
" 220-3 CONSOLEs 1=3
237 BILL FEED PRINTER»
C3 CODING FOR TYPES 206 AND 222 PRINTERS AND
TYPE 237 BILL FEED PRINTERs 8-125
270A RANDOM ACCESS DRUM, »
C3 CODING FOR TYPE 270A RANDOM ACCESS DRUMs
8-125

" 286,
SUMMARY OF PCB [/0 CONTROL CHARACTERS FOR TYPE
2869 B=146
" 286 MULTI CHANNELs
SUMMARY OF PDT 1/0 CONTROL CHARACTERS FOR TYPE
286 MULTI CHANNELs 8-126
" 286=1v =2y =3 LINE CONTROL INSTRUCTIONSs 8~126
" 286wbs
PCB CONTROL CHARACTERS Cb THROJGH C15 FOR TYPE
2864y =5 LINEy 8=148
" 420) MEMORY SUBSYSTEM»s 24
" 4201 PROCESSOR.
MAIN MEMORY IN THE TYPE 4201 PROCESSORs 2-4
MEMORY CONFIGURATIONS FOR TYPE 4201 PROCESSURS,
2-4
" 4201-9 CENTRAL PROCESSOR)
MODEL 4200 MEMORY INTERLEAVING (1YPE 4201-9
CENTRAL PROCESSOR) v 26
TYPES 206
C3 CODING FOR TYPES 206 AND 222 PRINTERS AND TYPE
237 BILL FEED PRINTER, 8=125
TYPICAL (CONTS)

1116

TYPICAL
" ADD InNSTRUCTIONe 4=1
EXTRACTLION OF DATA FIELDS IN TYPICAL ADD
INSTRUCTIONY 4«2
" COMMUNICATIONS NETWORK s
CUSTOMER INQUIRY HANDLING VIA TYPICAL
COMMUNICATIONS NETWORKs 1=15
" CONTROL REGISTER FUNCTIONs 2=7
UNIT
" ACTIVITIES
CONTROL UNIT ACTIVITIESs 2=~11
ARITHMETIC UNITs 210
DATA FLOW BETWEEN MAIN MEMORY AND ARTTHMETIC
UNITs 2~11
CONTROL UNIT» 2-11
INFORMATION UNITSs
EXTENDED OF INFORMATION UNITS IN MIT OPERATION,
8=75
" LOADDSY
ADDITIONAL READ/WRITE CHANNELSs UNIT LOADSs AND
ADDRESS ASSIGNMENTSs l=22
ADDRESS ASSIGNMENTS AND UNIT LOADS AVAILABLE IN
SERIES 200 PROCESSORSs 1~19
PERIPHERAL ADDRESSES AND UNIT LOADS, 1=17
MAGNETIC TAPE UNITSs 1=8y 1=9
PROCESSING UNITy 2«5
RANDOM ACCESS DRUM UNITS,y 1~11
SCIENTIFIC UNITs 1=23
SCIENTIFIC UNIT FOR MODELS 12004 12504 22004+ AND
42004 F~1
UPWARD COMPATIBILITYy B=11l4
UTILIZING ESCAPE CODES
EXAMPLE OF OPERATION UTIL1ZING ESCAPE CODESs 8=1l14
VARIABLE FlELD LENGTHsy 3=l
VARIABLE=-SPEED READ/WRITE CHANNELS
MODEL 4200 VARIABLE~SPEED READ/WRITE CHANNELS, 2-1l6
VARTANT
" CHARACTERs 3=3, 5-20
MODES SPECIFIED BY VARIANT CHARACTER IN CAM
INSTRUCTIONs 8=63
RESTURE VARIANT AND INDICATORS~RVIs 8«95
SCAN VARIANTS»
MOVE OR SCAN VARIANTSs B=9
STORE VARIANT AND INDICATORS=SVI, 8+92
VIOLATIONS OF STORAGE PROTECTIONy Ew3
VISUAL INFORMATION PROJECTION DEVICESs l=l4s 1=-16
WORD
" MARK ¢ .
CLEAR/WORD MARK = CWy 8+50
" MARK=DCW s
DEFINE CONSTANT WITH WORD MARKm=DCWoe w2
MARK=LCA
LOAD CHARACTERS TO A~FIELD WORD MARK«LCAs 8=56
MARK=MCW ¢
MOVE CHARACTERS TO WORD MARK«MCWs 8«55
MARK=SwW e
SET WORD MARK=SWs 8~48

ZERO
" AND ADD=zAs 8-20
AND SUBTRACT~ZS5s 8-22

0191

FEATURE 0191y 1=23 .
1=5

CARD NUMBER (CARD COLUMNS 1w5)4 5=5

FEATURE 1116+ H-1
1200
L

BP1 RECORDING DENSITYs 1=8
INSTRUCTION SUMMARY-TIMING FORMULAS MODELS 200+
12004 1250, AND 22004 C~=4
MODELS 1200+ .
SCIENTIFIC UNIT FOR MODELS 1200+ 1250 2200+ AND
4200y F=l
1201 CONTROL PANEL
TYPE 1201 CONTROL PANELsy 1e2
1250
INSTRUCTION SUMMARY=TIMING FORMULAS MODELS 2004
12004 12504 AND 22004 C=4
SCIENTIFIC UNIT FOR MODELS 1200y 12504 22009 AND
4200y F=1
15-20
OPERATION CODE (CARD COLUMNS 15-20)9 5~10
200
" ADD’
SERIES 200 ADD AND SUBTRACT OPERATIONS. 8-4
" ADVANCED PROGRAMMING FEATURE
MODEL 200 ADVANCED PROGRAMMING FEATUREs l=21
(CONTS)

COMPUTER~GENERATED INDEX

200 (CONT,)
" . CENTRAL PROCESSORs
LOGICAL DIVISION OF SERIES 200 CENTRAL
PROCESSORy 2-1
¥ CHARACTER CODES+w
SERIES 200 CHARACTER CODLESs B~7
COMPONENTS»
SERIES 200 COMPONENTS, 1-i
INDEX REGISTER MAP,
SERIES 200 INDEX REGISTER MAPs 4=-9
INSTRUCTION DESCRIPTIONS,
SYMBOLOGY USEL IN SERIES 200 INSTRUCIION
DESCRIPTIONSs 8~2
INSTRUCTION FORMAT,
SERIES 200 INSTRUCTION FORMAT ls 4~17
SERIES 200 INSTRUCTION FORMAT 21 4~18
SERIES 200 INSTRUCTION FORMAT 3y 4-18
SERIES 200 INSTRUCTION FORMATSs 3-3
INSTRUCTION SUMMARY=TIMING FORMULAS MODELS 200
12009 12509 AND 22004 C=4
INSTRUCTIONS
SYMBOLIC REPRESENTATION OF SERIES 200
INSTRUCTIONS» 3=4
OPTIONAL FEATURES»
SERIES 200 OPTIONAL FEATURES,
PERIPHERAL DEVICESs
MINIMUM RWC CAPACITY REQUIREMENTS FOR SERIES 200
PERIPHERAL DEVICESs 8~111
PROCESSORS e
ACTIVE ADDRESS BITS IN SERIES 200 PROCESSORSs
4=15
ADDRESS ASSIGNMENTS AND UNIT LOADS AVAILABLE IN
SERIES 200 PROCESSORSs 1=19
200/1200/1250/2200/4200
SIZE OF CONTROL MEMORY REGISTERS (MODELS
200/1200/1250/2200/4200) v 2=7

1=20

206
TYPES 206y
C3 CODING FOR TYPES 206 AND 222 PRINTERS AND
TYPE 237 BILL FEED PRINTERs 8-125
209
TYPE 2099
C3 CODING FOR TYPE 209 AND .-209~2 PAPER TAPE
READERSs 8-124
209=2 PAPER TAPE READERS
C3 CODING FOR TYPE 209 AND 209~2 PAPER TAPE READERS)
8=124
210 PAPER TAPE PJNCH
C3 CODING FOR TYPE 210 PAPER TAPE PUNCHy 8~124
220~1 CONSOLE
TYPE 220»1 CONSOLE, 1-3
220=3 CONSOLE
TYPE 220~3 CONSOLEs 1~3
2200
INSTRUCTION SUMMARY~TIMING FORMULAS MODELS 200
12009 12504 AND 22004+ Cmé4
SCIENTIFIC UNIT FOR MODELS 12004 1250y 2200y AND

4200y F=1
222 PRINTERS
C3 CUDING FOR TYPES 206 AND 222 PRINTERS AND TYPE
237 BILL FEED PRINTERs 8=125
237 BILL FEED PRINTER
C3 CODING FOR TYPES 206 AND 222 PRINTERS AND TYPE
¢37 BILL FEED PRINTERy 8=125
270A RANDOFM ACCESS DRUM
C3 CUDING FOR TYPE 270A RANDOM ACCESS DRUMs 8125

286
" MULT) CHANNELs
SUMMARY OF PDT 1/0 CONTROL CHARACTERS FOR TYPE
286 MULTI CHANNELs 8=-126
TYPE 286y
SUMMARY OF PCB]/0 CONTROL CHARACTERS FOR TYPE
2869 8~146
286-1

TYPE 286wly =24 =3 LINE CONTROL INSTRUCTIONSs 8=~126
286=~4
TYPE 286=4,
PCB CONTROL CHARACTERS C5 THROUGH C15 FOR TYPE
286m4y =5 LINEsy 8-148

4200
" MEMORY INTERLEAVINGs
MODEL 4200 MEMORY INTERLEAVING (TYPE 42019
CENTRAL PROCESSOR)y 2-6
MODEL 42009
EXTENDED INPUT/OUTPUT CAPACITY FOR THE MODEL
4200y H=1
INSTRUCTION TIMINGS FOR THE MODEL 4200e Cw7
SCIENTIFIC UNIT FOR MODELS 1200, 1250, 2200, AND
4200y F=]
" VARIABLE~SPEED READ/WRITE CHANNELS,
MODEL 4200 VARIABLE~-SPEED READ/WRITE CHARNNELS»
2=16

4201
[

MEMORY SUBSYSTEM
TYPE 4201 MEMORY SUBSYSTEM, 2-4

PROCESSOR s
MAIN MEMORY IN THE TYPE 4201 PROCESSORs 2wé
MEMORY CONFIGURATIONS FOR TYPE 4201 PROCESSORS,

2-4

4201-9 CENTRAL PROCESSOR

MODEL 4200 MEMORY INTERLEAVING (TYPE 4201~9 CENTRAL
PROCESSOR) » 2+6

FEATURES 4214A AND 4214Bs Hwl
FEATURES 4214A AND 4214By H=l

FEATURE 4215+ H=l
8=BIT TRANSFER
" CAPABILITYs G-3
EXTENDED MULTI~PROGRAMMING AND 8«BIT TRANSFERs 1w23
8=14
LOCATION (CARD COLUMNS 8m=14)y 5-8

Honeywell

HONEYWELL
TECHNICAL PUBLICATIONS REMARKS FORM

TITLE: SERIES 200 DATED: OCTOBER, 1968

PROGRAMMERS' REFERENCE MANUAL FILE NO- |
(MODELS 200/1200/1250/2200/4200) : 113.0005.0000.2-139

ERRORS NOTED IN PUBLICATION:

Fold

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:

A (Please Print)
FROM: NAME , DATE

COMPANY

TITLE

ADDRESS

FIRST CLASS
PERMIT NO. 39531
NEWTON HIGHLANDS
MASS.

HONEYWELL
151 NEEDHAM STREET

NEWTON HIGHLANDS, MASS. 0216

