

lNI-UNPAGED PAGE TABLES

The page tables for init and temp segments are kept here.
It gets an initial value through template_slt_ and is managed by
the various segment creation routines. Once make_segs_paged is
runJ no unpaged segments exists whose page tables are here. So,
we delete this segment. The page table for this segment is
contained within it.

jJLCONFIG QAIA

The inter-relationship between peripheralsJ mpc's and 10m's
is described in io_config_data. It contains a set of arraysJ one
each for devicesJ channelsJ controllers and ioms. Each entrYJ
besides giVing the name of each instance of said objectsJ gives
indexes into the other tables showing the relationship between it
and the rest. (That iSJ for exampleJ each device shows the
physical channels going to it; each channel shows the mpc for itJ
etc.)

jJLPAGE. TABLES

The page tables referenced by a paged mode iOm for ioi_
operations are found in io_page_tables. It is a abs-wired
segmentJ maintained by ioi_page_table. It starts with a lock and
indexes of the start of free page table lists. The header ends
with the size and in_use flags for each page table. The page
tables themselves are either 64 or 256 words long; each page
table of length N starts at a 0 mod N boundary and does not cross
a page boundary within the segment.

-
iOi_data contains information pertinent to ioi_ (the i/o

interfacer). It holds ioi's data itself (ioi_data), as well as
group channel and device entries for ioi handled devices.
ioi_data contains counts of groups, channels and devices,
reconfiguration 10ckJ some flags, and then the channel, group and
device entries. A channel/device group entry describes a group
of devices available through a channel. It contains a lock,
subsystem identifier. various flags describing the device groupJ
the number of devices and some counters. A channel table entry
describes the state of a channel. It holds status flags, the
io_manager index for the channel. and a place for detailed
status. A device table entry holds the wired information for an
ioi device. Besides pointers linking it to the group and channel
entriesJ it contains various status bitsJ workspace pointer,
ringJ process_id and event channels for communication with the
outer ring caller, timeout and other time limits, offsets into

B-6 AN70-01

the user's workspace for status storage~ and the idcw J pCWJ tdcw
and status areas.

iom_data describes data in use by io_manager. It starts
with IpwJ dew. scw and status area for stopping arbitrary
channels. This is followed by various metersJ such as
invalid_interrupts. Following this. for each iom are various
pieces of state informationJ on-line. paged modeJ etc. It
concludes with more meters and ending with devtab entry indices.
For each device j a status are is followed by various flags
(in_use)J channel identificationJ pCWJ lpw and sCWJ status queue
ptr J and various times and meters.

l.!ltL MAl LBOX

This segment is another hardware known and fixed segment.
It is used for communication with the various ioms. The segment
is split into the imw area, which contains a bit per channel per
iom per interrupt level indicating the presence of an interruptJ
followed by the mailboxes for sending information to the ioms and
receiving status back.

~ (K~OWN SEGMENT TABLE)

The known segment table is a per-process segment that keeps
track of hierarchy segments known in a process. Hardcore
segments do not appear in the kst. The kst effectively provides
the mapping of segment number to pathname for a process. It is
the keeper of the description of segments that are initiated but
not active Within a process (as well as those that are active).
The Initializer'skst is initialized by init_root_dir. .It starts
with a header providing the limits of the kst J as well as
information such as the number of garbage collections, pointers
to the free list J what rings are pre-linkedJ the 256k segment
enable flag J a uid hash table J the kst entries and finally a
table of private logical volumes connected to this process. Each
kst entry contains a used list thread, the segment number of the
segmentJ usage count per ring, uidJ access information. various
flags (directorYJ transparent usage~ etc)J an inferior count for
directories or the Iv index for segments and the pointer to the
containing directory entry. It is this pointer that allows the
name of the segment to be found. Also, the segment number of the
directory entry pointer allows us to find the kst entry for the
containing directorYJ etc' J allowing us to walk up the hierarchy
to find the pathname of a segment.

8-7 AN70-01

~ (LOGICAL ~OLUME TABLE)

The logical volume table consists of an array of entries
that describe the various logical volumes. It starts with a
count of entries as well as a maximum count limit. Following
this is a relative pointer to the first entry and a hash table
for hashing Ivid (logical volume ids) into Ivt entries. The
entries that follow~ one per logical volume, contain a relative
pointer to the threaded list of pvt entries for the logical
volume, the Ivid. access class info for the volumes and then
various flags like public and read_only. It is initialized by
init_lvt to describe the rlv and maintained by
logical_volume_manager,

NAME TABLE

The name_table contains a list of all of the various names
by which the segments in the sIt (see below) are known. This
table is used by the sIt management routines but especially by
the various pre-linkers. who use it to resolve references to
initialization modules. It is generated from template_slt_ and
by the s 1 t management rOtJt i nesJ who read in the names from
entries on the system tape.

oc_data describes data used by ocdcm_ to handle consoles.
It starts with the required tockJ version. device counts. etc.
Various flags are kept. such as crash on recovery failure. The
prompt. discard notice are kept here. Status pointers. times.
etc. are followed by information on the process handling message
re-routing. Following this are indices into queues of entries
followed by the queues. An entry exists for priority i/o (syserr
output. which always forces a wait until complete). one for a
pending read. and 8 for queued writes. After this are meters of
obscure use. The segment ends with an entry for each configured
console followed by an entry for each element of a event tracing
queue. Each console entry provides its name. state. type,
channel, status, etc. Each i/o queue entry provides room for the
input or output text J time queued, flags (alert. input/output.
etc). and status.

PHYSICAL RECORD BUFFER

The physical_record_buffer is a wired area of memory used
by collection O's and collection "s MST tape reading routine for
i/o buffers.

AN70-01

~ (PHYSICAL VOLUME IABLEJ

One of the disk describing tablesJ the physical volume
table contains an entry for each configured disk drive. It can
in some ways be considered the master disk describing table in as
much as performing i/o to a disk drive requires the pvtx (pvt
index) of the drive (the index number of the entry in the pvt for
that drive). The pvt entry contains the physical and logical
volume id for the driveJ various comparatively static flags about
the drive .(such as storage_system J being_demounted,
device_inoperative j etc')J information for the volume dumper and
information about the size, fullness J volmaps and stocks (both
record and vtoc) of the drive. This table is allocated by
get_io_segsJ and built by init_pvt. The various brothers in a
logical volume are chained together in a list by the
logical_volume_managerso that the vtoc_man can have a set of
disks from which to select a target for a new segment. During
initializationJ make_sdw$thread_hcp (for init_root_vols) uses
these threads (before the disk_table is accessed) to form the
list of drives which contain hardcore partitions (those eligible
to contain hardcore segments).

~ (SYSIEM CONIROLLER APDRESSING SEGMENI)

This is a very curious pseudo-segment J built by scas_init
out of page table words generated into scs. It contains one
pseudo-page for each memory controller (and another page for each
individual store other than the lowest). The address of the page
is the base address of the store/controller, This segment makes
references to it of the form n*1024 to form an absolute address
to controller n. ThusJ instructions like rscr (read system
controller register) can use this segment (as indeed they do
inside privileged_mode_ut) to reference the desired system con
troller registers.

SCAVENG~R QAIA

scavenger_data contains information of interest to the
volume scavenger. Its header is initialized by
init_scavenger_data. The segment starts with the usual lock and
wait event. Following this is the pointer to the scavenger
process table. Then come the meters. The scavenger process
tableJ which followsJ describes the processes performing
scavenging operations. Each entry contains a process id of a
scavenging process, the pvtx of the drive being scavengedJ and
indices of scavenger blocks in use. Scavenger blocks contain
record and overflow blocks used to keep track of pages of a disk
(its claiming vtoce and its state).

8-9 AN70-01

~ (SYST~ POMMUNICATION~ ~EGMENT)

The scs is a hodge-podge of information about configuration
and communication between active elements. It contains informa
tion about the scus and the cpus. It contains the cow's (connect
operand words) needed to connect to any g~ven cpu/jom. the
interrupt masks used to mask/unmask the system. the various smic
patterns (set memory interrupt cells)~ instructions to clear
associative memories and the cache. connect and reconfiguration
locks. various trouble flags/messages used for keeping track of
pending communication of faults to bce. cyclic priority switch
settings. port numbers for controllers. configuration data from
the controllers, processor data switch values/masks. controller
sizes. and the scas page table (see scas).

~ (SEGMENT LOADING TABLE)

One of the most significant initialization data bases. the
sIt describes each initialization segment. It is built initially
from template_slt_ J an alm program that not only builds the
appropriate slt entries for collection 0 segmentsJ but also
generates the dseg for collection O. Each entry in the sIt
contains: pointers into name_table of the names and the final
storage system pathname (and acl), if anYJ for the segment;
access modes. ringsJ etc. for the segment; various flags used
for generation/loading 0' the segment. such as
abs/init/temp/supervisor segment. wired/paged. etc.; the length
and bit_countJ etc. It is maintained by bootload_slt_manager and
slt_manager. who build entries based on information on the MST.
These entries are maintained so that the various pre-linkers
(bootload_linker and pre_Iink_hc) can find the target segments of
the various references.

~ {SYSTEM SEGMENT TAeL.E;l

The sst (which contains the active segment table) is one of
the most important tables in Multics. It is the keeper of active
segments. Each active segment has an entry describing it (its
aste). The aste contains information used by segment control and
communicated with page control on the state of a segment. The
most important part of the entry is the page table words (ptws)
describing the disk/mernory location of each page. There are four
pools of astes of different lengths to hold page tables of four
possible maximum lengthS: 4, 16J 64 and 256 ptws. The entries
are threaded into various lists. The free entries of the various
pools are threaded into lists. Active segments have their own
lists. Separate lists are generated for temp and init (supervi
sor) segs. Aside from these threads. each aste also contains
threads used to link segments to their parents and their trailer
seg entry. Status information includes: the segment's uidJ the
current length, maximum length and records used J the pvtx and

B-10 AN70-01

vtocx of the segment (which couple with the ptws to find the
pages of the segment) I various status bits of more obscure useJ

and finally the quota computation information. init_sst origi
nally builds this table. The page table words are maintained by
page control. The entries themselves are maintained by segment
control.

~NAr1ES

The sst_names_ segment contains the names of paged segments
described by the sst. It is initialized by init_sst_name_seg
during collection 2 and maintained by segment control only if the
astk parm appears. It starts with information describing the.
four aste poots followed by the paged segment primary names.

STACK Q....M.I8.

stack_O_data contains information keeping track of the ring ° stacks (stack_O.nnn) that are shared between processes (one per
el igible process). It is initial ized by init_stack_O. It has a
lock used to control threading of a pool of such stacks. Each
entry contains a list threadJ a relative pointer to the aste for
the segment. a relative pointer to the apte for the holding
processJ and the sdw for the stack. When this stack is given to
a process J this sdw is forced into its dseg; the acl of the stack
is kept as a null acl.

STOCK §.EQ.

stock_seg contains the record and vtoce stocks J a part of
the reliable storage system. Whenever a new page or vtoce is
needed for a drive J it is obtained from these stocks. The stocks
are filled by pre-withdrawing a number of records or vtoces from
the drive. This mechanism is used so that J upon a crash J it is
guaranteed that any records or vtoces being created were marked
in the record or vtoc maps as in use. This prevents re-used
addresses.

aIlLSEG (SYSTEl1 IBAILER ~EGMENT)

The str_seg is a paged segment used by segment control to
perform setfault functions. It is initialized into a list of
free entries by init_str_seg. Each entry contains the usual
backward and 'or~ard threads forming a list of trailers for a
given segment (the list itself is found by a relative pointer in
the aste for the segment). When needing to fault a segment J this
list shows all processes containing the segment. The entry shows
the segment number J for a process with this segment activeJ of

B-11 AN70-01

the segment and a relative pointer to the aste for the dseg of
that process (which is where we need to fault the sdw).

sys_info is a keeper of all sorts of information about the
state of the system. The most important entries to
initialization are sys_info$initialization_stateJ which takes on
values of'J 2, 3 and 4 corresponding to whether we are running
initialization collection 1J 2J 3 or whether we are running
service (beyond collection 3), and sys_info$collection_1_phase.
which takes on values defined in cOllection_l_phases. incl.pl1
corresponding to running early. re_early. boot, bce_crash. ser
vice and crash passes through collection 1. Also included are
key things like: the scu keeping the current timeJ the current
time zone J various limits of the storage systemJ and some ips
signal names and masks. The variable "max_seg_size" records the
maximum length of a segment. This value is changed during bce
operation to describe the maximum length of a bce paged temp
segment. This allows various Multics routines to work without
overf low i ng segments. Also in sys_ info is II bce_max_seg_si zen J
this bce maximum segment length. This is available for any user
ring programs who desire to limit the size of objects they
prepare for the bce file system.

~BOOT illBl

See boot load_info, above.

The syserr_data segment is part of the syserr logging
mechanism. syserr actually just writesme$seges into this
segment and not to the paged log to avoid problems of paging
during possible system trouble. It is up to the syserr hproc to
move these messages from syserr_data to the log.

The paged abs-seg syserr_log, which describes the log
partition of disk. is used to hold the syserr log. It is mapped
onto the log partition by syserr_log_init. The syserr mechanism
involves putting syserr messages into syserr_data <which are
possibly written to the console) and then waking up the syserr
hproc which copies them into the paged partition. This is done
so that page faults are taken by the hproc. not by the syserr
caller who may be in trouble at the time. It starts with a
header providing the length of the segment, a lock, relative
pointers to the first and last messages placed there and also

8-12 AN70-01

copied out (by the answering service)J the threshold that shows
how full the partition can get before the answering service is
notified to copy out the messagesJ the event channel for
notification (of the answering service) and the event for
locking. Following this are entries for the various syserr
messages. Each message is threaded with the others; it has a
time stampJ id number, and the text and optional data portions of
the message ..

tc_data contains information for the traffic controller.
The most obvious entry list herein is the list of aptes (active
process table entries). There is one apte for every process.
The apte lists activation information for the processJ such as
its dbrJ its state (blocked/running/stopped/etc')J various
per-process meters (such as cpu usage)J its work classJ and other
per-process scheduling parameters. Following the apt is the itt
(inter-process transmission table)J maintained by pxss (the
traffic controller) to hold wakeups not yet received by a target
process. The call to hcs_$wakeup (or its pxss equivalent) places
an entry in the itt containing the target process id J the event
channel, the message data, etc. The next call to
hcs_$read_events obtains the events waiting for the target
process. Also present in tc_data is various meters (tcm. incl)
and other flags. Imbeded within this is the wct (work class
table) which keeps track of the status of scheduling into work
classes. tc_init builds these tables (see tC_dats_header).

l.C-DATA HEARER

This is a trick initialization segment. tc_data_header is
allocated wired storage by tc_init to hold the real tc_data.
tc_datsJ originally build just from a cds segment and therefore
just describing the header of tc_dats J is copied in. The sdws
for tc_data and tc_data_header are then swapped. As suchJ the
initialization segment tc_dats_hesder (which describes the read
in tc_data) is deletedJ but tc_data (now mapped onto the
allocated tc_data_header area) remains.

TOEHOLP

The toehold is another area for Multics/bootload Multics
communication. (In particular J the flagbox is contained within
it.) The toehold is a small program capable of getting to
bootload Multics from a crashing/shuting down Multics service.
(Its name is meant to suggest holding on by one's toes, in this
case to bootload Multics.) init_toehold builds a dcw (device
control word) list that J when used by the toehold program, can
write the first 512k of memory (those used by boatload Multics)

8-13 AN70-01

out to the bce partition and read in bootload Multics (saved in
the bce partition by init_toehold). The program runs in absolute
mode. It is listed here because it contains the flagbox and the
all important dcw lists.

Terminal control blocks (tcb's) are allocated in tty_area.
It is initialized to an area by fnp_init and managed by the
various communication software.

The tty_buf segment containsJ obviously enough, the tty
buffers used for manipulating data communicated with the fnp. It
contains various meters of characters processedJ number of calls
to various operationsJ echo-negotiation, etc., trace control
information and timer information. Following this is the
tty_trace data, if present, and the tty_buffer_block'sJ split
into free blocks and blocks with various flags and characters in
chains. The layout of this segment into empty areas is done by
fnp_ in i t.

I.I:L.. !ABLES

tty_tables is an area in which tables (conversion and the
like) are allocated. It has the usual lock and lock event. It
is initialized by fnp_init.

UNPAGED PAGE TABLES

All permanent non-per-process unpaged segments have their
page tables in unpaged_page_tables. The page table for this
segment is also within it. It is generated initially by
template_slt_ and added to by the various segment creation
routines. The header of unpaged_pege_tables contains the abso
lute address extents of all hardcore segments that contain page
tables~ these are unpaged_pags_tables, int_unpaged_page_tables
and sst_seg. Dump analyzers look here to resolve absolute
addresses from sdws into virtual addresses of page tables.

VTOC BUFFER .§.EG.

vtoc buffers live in the vtoc_buffer_seg. The segment is
allocated and initialized by init_vtoc_man. It starts with the
usual global lock and wait event. Following this are various
parameters of the amount and usage of the vtoc buffers. including
information about the vtoc buffer hash table. Then comes the

8-14 AN70-01

vtoc_man meters.
descriptors (pvtx
themselves.

Finally comes the hash
- vtocx infoJ etc.)

Wl-LINKAGE (WIRED 1N!I LINKAGE)

tableJ the vtoc buffer
and the vtoc buffers

This initialization segment corresponds to area. linker for
wired initialization segments. It is built by the MST loading
routines.

WIRED HARDCORE QAIA

Another collection of data for hardcore useJ this segment
is permanent. It contains the stze of a page, the amount to wire
for temp-wiring applications, the history register control flagJ
the trap_invalid_masked bitJ a flag specifying the need for
contiguous i/o buffers (if a non-paged 10m exists)J the debg card
optionsJ the fim fault_counters and the bce abort_request flag.

~LINKAGE ~En SUPERVISOR LINKAGE)

This wired hardcore segment J shared between processes,
corresponds to area. linker for wired hardcore programs. It is
built by the MST loading routines.

8-15 AN70-01

APPENDIX C

MEMORY LAYOUT

In the memory layout charts belowJ the starting absolute
address and length f'or each data area is gi ven (i n octal). When
a number appears in brackets ([])J this means that it is really a
part of' the segment listed above it.

The memory layout af'ter the running of' collection 0 (the
loading of' collection 1) f'ollows.

start
- -- --

0
1200
3400

10000
12000
24000

[24000J
[24000]
[30000J

46000
52000
54000
56000
60000
66000
70000

100000
104000
106000

1777777

length

60Q
2200
3000
2000

10000
22000
[4000]
[2000]

[n]
4000
2000
2000
2000
6000
2000

10000
4000
2000

and up

and down

contents
~-------

f'ault_vector
i om_ma i 1 box
dn355_ ma i 1 box
bos_toehold
conf'ig_deck
bound_bootload_O

[(boot load Multics) toehold]
[f'lagbox (overlays the toehold)]
[bootload_early_dump]
toehold_data
unpaged_pege_tables
int_unpaged_page_tables
breakpoint_page
physical_record_buf'f'er
dseg
name_ table
slt
lot
wired segments
fabricated segments
all other segments

The absolute addresses of' most of these segments is
arbitrary. Hardware known data bases must be at their proper
places J though; also J the toeholds are placed at addresses known
to operators. Except for these exceptions J the segments may be
moved. Their addresses are contained in bootload_equs. incl.aim.

C-l AN70-01

All programs refering to this include file must be reassembled if
these addresses are changed. Certain interdependencies exist
that one must be aware of. First of all J the toehold is placed
at a 0 mod 4 page address. physical_record_buffer must be the
last of the fixed memory address segments. The length of all
segments is an integral number of pages. The two unpaged page
tables segments must be large enough to meet the demands on them;
refer to announce_chwm. Also J the length given for
bound_bootload_O must hold the text thereof.

After collection 1 has finished, segments have been made
paged and collection 1 temp segments have been deleted, the
memory layout is as follows,

start

0
1200
3400

10000
12000
24000

[24000J
46000
52000
56000
60000

high mem

length

600
2200
3000
2000

10000
4000

[2000J
4000
2000
2000

and up

contents

fault_vector
i om_ma i 1 box
dn355_ ma i I box
bos_toehold
conf i g_deck
toehold (boot load Multics)

[flagbox (overlays the toehold)J
toehold_data
unpaged_page_tables
breakpoint_page
paging area
sst_seg

C-2 AN70-01

INDEX

A

aborting bce requests
see bce J aborting requests

abs-seg 3-10 J 3-13 J 3-16 J

3-17 J 3-18 J 3-19, 4-3 J

4-5 J 4-16 J 4-18 J 6-8 J A-1 J

B-2

absolute mode 2-2

active init linkage
see a i _ 1 i nkage

active segment table
see sst

active supervisor linkage
see as_linkage

announce_chwm 3-8

appending simulation 4-4
see also bce_dump and

bce_probe

area. linker
see linkage sections

i - 1

aste pools 3-12 J B-10

B

bce 1-3J A-1
aborting requests 3-18 J 4-6 J

4-11
alert messages 4-4
area usage 4-2
command level 4-10 J 4-15

bce_crash 3-2
boot 3-1
crash 3-1
early 3-1

command processing 4-2 J 4-9 J

4-11
communication with Multics

B-5
config_deck manipulation

4-17
data B-1
disk accessing 4-3 J 4-16
error reporting 4-2. 4-8
exec_com 4-9
facilities 4-1
file system 3-16 J 4-3 J 4-16 J

4-18
firmware

loading 4-10
i/o switches 4-2 J 4-7 J 4-18 J

B-1
in i t i a1 i zat i on 4-1 J 4-18
invocation upon a crash

B-14

AN70-01

bee (eont)
machine state 5-2
paged programs 3-16
partitions

creation 3-6 J 3-9, 3-13
usage 3-16 J 4-1, 4-3,

4-16, 4-17 J 4-18
probe 4 - 7 J 4 - 8 J 4 - 1 0, 4 - 11 ,

4-14 J 4-15
current address 4-13 J

4-14
question asking 4-2, 4-14
ready messages 4-15
reinitialize 4-10
request processing 4-2 J 4-6
request table 4-15
restrictions 4-3
temp segments 4-3, 4-17

bee_ abs_ seg 4 - 4

bee_alert 4-4

bee_appending_simulation 4-4 J

4-8 J 4-14

bee_crash bee command level
see bee J command level J

bee_crash

bee_esd 4-9

i -2

bee_fwload 3-16, 4-10

bee_probe 4-11
see also bee, probe

bee_ query 4-14

bee_ready 4-15

bee_reloeate_instruction_
4-15

bee_severity 4-15

bce_shutdown_state 4-15

boot
cold 3-13, 6-4 J 6-7 J A-1
cool A-2
from bee 4-10
from BOS 2-1
from disk A-6
from iom 2-1
from tape A-2
initial A-l
warm A-6

AN70-01

boot bee command level
see bceJ command level J boot

bootload command environment
see bee

bootload command environment
data

see bee_data

bootload Multics 1-'. A-1

bootload_O 2-3

boo"\:.load_1 3-8

bootload_console 2-4

bootload_dseg 2-4~ 8-1

bootload_error 2-5

bootload_Taults 2-5

bootload_file_partition 4-16 J

4-18

bootload_flagbox 2-6

bootload_formline 2-6

bootload_info B-1

bootload_io 2-6

bootload_linker 2-7

bootload_loader 2-7, 8-1

bootload_qedx 4-17

i -3

60S
getting to from bee 4-7
presence of 2-7

breakpoints 3-15 J 3-16 J 3-17 J

4-12,4-13,4-14,5-2
see also breakpoint_page

breakpoint_page 2-7 J 3-9 J

3-16 J 3-17 J 3-18J A-5
see also breakpoints

c

central processor
see cpu

channel table entry 7-2 J 6-6

chantab B-3

clock
setting .3-12

cold boot
see bootJ cold

collection 1-1. A-2

collection 0 1-2, 2-1
console support 2-4
data 6-1
error handling 2-5
input/output 2-6
interrupts 2-6
main driver 2-3
programming in 2-2

co 1 1 ect i on 1 1 - 2, 3- 1
bce_crash pass 3-2, 3-7

AN70-01

collection 1 (cont)
boot pass

sequence 3-2
bootload Multics pass 3-1
crash pass 3-1, 3-7
early pass 3-1

sequence 3-5
passes summary 3-1
re_early pass 3-2. 3-7
see also bce
service pass 3-1

sequence 3-4
shut pass 3-1, 3-7

c911ectjQn 2 1-3
loading 3-20
pre-linking 3-18
sequence 6-1

collection 3 1-3 J 7-1

conditions
signalling 3-15

configuration
data

see config_deck and scs
initialization sequence

8- 11
memory 8-5

config_deck 3-10 J B-2
changes to 4-10
editing 4-17
initial generation 3-12
setup 3-5

connect operand words 3-20

console
collection 0 2-4
driver

see ocdcm_
locating 2-4

i -4

contiguous A-2

cool boot
see boot, cool

core high water mark 3-8

core_map 3-14, 3-17, 8-13,
B-2

cow
see connect operand words

cpu
data 6-10
description 8-4
initialization of data 3-20
starting 6-9, 7-3

crash A-2
early in
handler
handl ing
image

initialization
3-1. 3-3

1-4, 5-1

access 4-4
restarting 4-7, 5-2

machine state 5-1
memory saving 5-1
memory state 6-13
memory swapping 6-13

crash bce command level
see bee, command level,

crash

cte
see channel table entry

o

data

5-1

about active segments 6-10
about bce B-1
about bootload tape B-1
about collection 0 6-1

AN70-01

data (cont)
about configuration

see config_deck and scs
see io_config_data

about core frames B-2
about cpus B-10
about hardcore segments

8-10
about processes B-13
about rpv B-2
about storage system 8-12
about system controllers

B-10
about system state 6-12

data bases B-1

dbm_man 6-4

dbr B-4

deciduous segments
see segments~ deciduous

delete_segs 3-9

demount_pv 9-5

deposit A-3

descriptor segment
see dseg

descriptor segment base
register

see dbr

device table entry 7-2 J B-6

devtab B-3

directory
locking B-3

disk
accessing 3-19 J A-1 J B-9
i/o posting B-3
storage system

acceptance 6-3
demounting 9-5

disk queue B-3

disktab B-3

disk_emergency 9-5

disk_reader 3-9

dn355_data B-4

dseg 2-8 J 3-17 J A-3 J B-4

dte
see device table entry

dump
early 2-5 J A-3
to disk 4-8 j A-3
to tape A-3

dumper bit map seg
see dbm.,...seg

E

early bce command level
see bce J command level J

early

early initialization
dumps 2-5
see initializationJ early

emergency shutdown 4-9

i-5 AN70-01

emergency shutdown (cont)
see shutdown. emergency

emergency_shutdown 9-5

errors
handl i ng

in bce 3-14
in collection 0 2-5

reporting
bce 4-8
syserr 8-12

see also failures

esd
see shutdown. emergency

execute interrupt cell
register 8-8

execute interrupt mask
register 8-9

F

fai 1 ures
of boot initialization 3-2
of Multics A-2
of service initialization

3-2
see also errors

fast connect code 3-18

firmware
loading

general mpcs 3-11
in bce 4-10
into boot tape controller

2-8
non-bootload disk mpcs

3-3. 3-16
rpv disk mpc 3-6. 3-8

location 4-10
for boot tape mpc 2-3

naming 2-3

flagbox 8-5
management 2-6 J 4-7. 4-10

fnp_init 6-4

fsout_vol 9-6

G

gates
initialization 6-6
linkages 8-15

getuid 6-5, 8-14

group table .entry 7-2. B-6-

gte
see group table entry

fau 1 t_ vector 2- 5 H
see also vectors

fim 5-2

4-18

3-10

i -6

hardcore A-3 J A-5
address space 6-1

hardcore partition
accessing 3-13
allocation from 3-17.
amount of utilization
locating 3-13
usage 6-8. 8-2. A-2.

6-3
6-3

A-4

AN70-01

hardcore segments
creation 8-1
numbering 6-8 J 8-15

hardware
configuration 8-5
inter-connection 8-3
inter-module communication

8-7

hproc 6-10J A-3

I

idle loop 6-7

idle process 6-9 J 6-10 J 8-16

init segments 3-9
see segments J init

initialization A-3
bce 4 - 1 J 4 - 1 8
boot failure 3-2
configuration 8-3

sequnce 8-11
directory control 6-1 J 8-14
disk control 3-3
early A-3
file system 1-3
gates 6-6
hardware 8-3
link i ng of A- 4
page control 1-2J 3-3 J 8-13
pl/l environment 1-2
rpv 3-14
scu 3-14
segment control
service failure
storage system
summary 1-1

6-1.
3-2

6-1

8-14

traffic control 3-21 J 6-1 J

8-16

initialization_state 6-12

initializer 3-15

initializer stack
see stackJ initialization

initialize_faults 3-15, 6-9

init_branches 6-5 J A-2

init_clocks 3-12

init_partitions 3-13. 8-14

i -7 AN70-01

input/output
in collection 0 2-6

inter-process transmission
table

see itt

interrupt mask assignment
register 8-9

interrupt vectors
see vectors, interrupt

interrupts
collection 0 2-6
mask assignment 8-9
mask operations 8-10
mask values 8-11

int_unpaged_page_tables
see segments, unpaged

i nzr _stkO
see stack~ initialization

ioi_ 7-2

ioi_data 3-11, 8-6

ioi_init 7-2

iom
description 8-4

iom_mai lbox 8-7

i -8

i 0_ page_ tab 1 es
see page tables, paged mode

iom

itt 8-13

K

known segment table
see kst

kst 6-9 1 8-14, A-4 J 8-7

L

let 6-4

linkage sections 2-7, 3-20 J

8-1 J 8-15
hardcore gates finding 6-6

linking
see pre-linking

loading
of collection 0
of collection 1
of collection 2
of collection 3

2-1
2-7
3-20
7-3

load_.disk_mpcs 3-16

locking
directories 6-4

logical channel table
see let

logical volume table
see lvt

AN70-01

M

mailboxes
datanets B-4
iom 3-16, B-7

make_segs_paged 3-17 J A-5~
B-6

memory
accessing A-l
allocation 3-11
allocation from sIt 3-3,

3- 11, 8- 2
extent of usage 3-9
freeing 3-9, 3-17
layout A-2

after collection 0 C-1
after make_segs_paged C-2
announcing 3-8
placement 3-17
required placement C-l

paging use 3-9
requirements for boot load

3-4

MST 3~16J 3~20J A-4
disk reading 3-9
tape reading 3-8, 3-21

multi-programming

Multics system tape
see MSi

N

6-10

nondeciduous segments
see segments, nondeciduous

i -9

o

ocdcm_
data

3-18, 4-6 J 4-7
8-8

oc_data B-8
see also ocdcm_ J data

page table word
see pt..w

p

page table word associative
memory

see ptwam

page tables
absolute to virtual

addresses 8-14
active segments 8-10
paged mode iom 7-2 J 8-6
seas 8-10
see also unpaged page tables
unpaged segments

see segments, unpaged

paging
of bce segments 3-16 J 4-1
of initialization segments

3-17

partition A-4
see bceJ partitions
see hardcore partition

pathname associative memory
6-7

physical volume
see disk

physical volume table
see pvt

pll environment
setup 3-8

AN70-01

prds_init 3-18

pre-linking 2-1. A-4
initialization A-4
of collection 0 2-1
of collection 1 2-7
of collection 2 3-18

pre-withdrawing B-11

pre_ 1 i nk_hc 3-18

probe
see bce, probe 4-7

ptw A-4

ptwam A-4, A-5

pvt 3-11. 3-13. 8-13. A-4.
8-9

R

real_initializer 3-19

reinitialize 4-10

reload 7-1

request table
see bce. request table

ring 1 command level

root dir
activation 6-7
creation 6-4. 6-7

root physical volume
see rpv

rpv A-5
initialization 3-12
layout 3-10

7-1

rpv (cont)
locating 3-10

s

safe_config_deCK 3-3

salvaging 6-3. 6-5. 6-8

save_handler_mc 5-2

scas 3-20. A-5. 8-9

scas_init 3-20

scavenger 9-6

scavenger_data 6-7, 8-9

scs 3-20. A-5. 8-10

scs_and_clocK_init 3-20.

SCU
addressing 8-6
data 8-10

8-11

description 8-3
initialiZation of data 3-20
register access 8-9

sdw 2-4. 8-2. A-5. 8-4
creation 3-16

segment descriptor word
see sdw

segment descriptor word
associative memory

see sdwam

segment loading table
see slt

segments
activation information B-7
deactivation 9-4

i -1 0

deciduous 6-5. 8-3. 8-15.
9-4. A-2

hardcore
data 8-10

AN70-01

segments (cont)
hardcore

permanent
numbering 8-15

hierarchy
numbering 8-15

init 3-9J A-3
numbering 8-15

nondeciduous A-4
numbering

fixed 8-15
outer ring B-7

synchronized 6-6, B-4
temp 3-9J A-5

numbering 8-15
unpaged A-5 J B-6, B-14

segment_loader 3-20

setfault B-11

shutdown 9-1 J 9-6 J A-5
emergency 4-9 J 9-3, 9-5J

A-3
part 1 9-2

normal 9-7

shutdown_state 9-6

sIt 2-7 J 2-8 J 3-21 J A-5 J 6-8J
B-10

memory allocation from
see memorYJ allocation

from sIt

slt_manager 3-21

ss t 3 - 1 4 J 3 - 1 7 J 8 - 1 3, 8 - 1 4,
B-11

stack
collection 0 2-2
initialization 6-5
ring 0 6-7 J 8-11
segment numbering
shutdown 9-4 J 9-6,

8-15
9-7 J 8-5

stocks 3-11 J 8-13 J 9-6 J 6-9 J

6-11

stock... seg 8- 11

stop on switches 3-20

supervisor
see hardcore

swi't.ches
i/o

see bce J i/o switches

switch_shutdown_file_system
9-7

synchronized segments
see segments J synchronized

system communications segment
see scs

system controller
see scu

system controller addressing
segment

see scas

system segment table
see sst

system trailer segment
see str_seg

sys_info 8-12

i - 1 1 AN70-01

sys_info$bce_max_seg_size
4-18

T

tcb 6-14

tc_shutdown 9-7

temp segments 3-9
see segments J temp

template_slt_ 2-8, 8-1 J 6-5~
6-6, 6-8, 6-10 J 6-14

terminal control blocks
see tcb

toehold 2-5, 5-1 J 8-1, 6-13
entry points 5-1

traffic control
data 6-13
initialization

see initialization,
traffic control

shutdown 9-7

u

uid 6-5, 8-14, A-5

unique identifier
see uid

unpaged page tables 2-7 J 2-8,
3-8 J 3-11, 8-2

unpaged segments
see segments, unpaged

v

vectors
fault 6-5
initialization 3-15

collection 2 6-9
interrupt 6-5
see also fault_vector
setup 2-5

volmap_seg 6-8

volume table of contents
see vtoc

vtoc A-6
accessing 6-8
updating 9-5 J 9-6

vtoce A-6
accessing 6-3. 6-9 J 8-14
buffers 6-9, 9-7, 6-14
creation

deciduous segments 6-5,
8-3 .

initial 3-14
root ell r 6- 4

deactivation 9-5
dumper bit 6-3
scavenger 6-9
specifying number 3-13
stock 9-6 J 6-9, 6-11
updating 6-8, 9-1, 9-4
updating for partition

creation 3-9

w

wakeups 6-13

i-12 AN70-01

warm boot
see boot. warm

wi red A-6

wired init linkage
see wi_linkage

wired supervisor linkage
see ws_ linkage

wired_shutdown 9-7

withdraw A-6

i-13 AN70-01

