

the user's workspace for status storage, and the idcw, pcw, tdcw
and status areas.

1OM DATA

iom_data describes data in use by io_manager,. It starts
with 1lpw, dew, scw and status area for stopping arbitrary
channels. This 1is followed by various meters, such as
invalid_interrupts. Following this, for each iom are various
pieces of state information, on-lineg, paged mode, etc, It
concludes with more meters and ending with devtab entry indices,
For each device, a status are is followed by various flags
(in_use), channel identification, pcw, 1pw and scw, status guecue
ptr, and various times and meters.

I10M MALLBGOX

This segment ig another hardware known and fixed segment,
It is used for communication with the various ioms. The segment
is split intoe the imw area, which contains a bit per channel per
iom per interrupt level indicating the presence of an interrupt,
followed by the mailboxes for sending information to the ioms and
receiving status back.

KST (KNOWN SEGMENT TABL.E)

The known segment table is a per-process segment that keeps
track of hierarchy segments knowh in a process. Hardcore
segments do nhot appear in the kst. The kst effectively provides
the mapping of segment number to pathname for a process, It is
the keeper of the description of segments that are initiated but
not active within a process {(as well as those that are active).
The Initializer's kst is initialized by init_reoot_dir. . It starts
with a header providing the 1limits of the kst, as well as
information such as the number of garbage collections, pointers
to the free 1list, what rings are pre-linked, the 2568k segment
enable Fflag, a uid hash table, the kst entries and finally a
table of private logical volumes connected to this process, Each
kst entry contains a used list thread, the segment number of the
segment;, usage count per ring, wuid, access information, various
flags (directory, transparent usage, etc), an inferior count for
directories or the 1lv index for segments and the pointer to the
containing directory entry. It is this pointer that allows the
hame of the segment to be found. Also, the segment number of the
directory entry pointer allows us to find the kst entry for the
containing directory, etc., allowing us to walk up the hierarchy
to find the pathname of a segment.

B-7 AN70-01

LVT (LOGICAL VOLUME TABLE)

The logical wvolume table consists of an array of entries
that describe +the various logical volumes, It starts with a
count of entries as well as a maximum count limit. Following
this is a relative pointer to the first entry and a hash table
for hashing 1lvid (logical volume ids) into 1lvt entries, The
entries that follow, onhe per legical volume, contain a relative
pointer to the threaded 1list of pvt entries for <the logical
volume, the 1vid, access class info for the volumes and then
various flags like public and read_only. It is initialized by
init_lvt to describe the riv and maintained by
logical_volume_manager.

The name_table contains a list of all of the various names
by which the segments in the slt (see below) are known. This
table is used by the sl1t management routines but especially by
the various pre-linkers, who wuse it to resolve references to
initialization modules. 1t is generated from template_slit_ and
by the slt management routines, who tead in the names from
entries on the system tape.

gC_DATA
oc_data describes data used by ocdcm_. to handle consoles,

It starts with the reduired lock, version, device counts, etc.
Various flags are kept, such as crash on recovery failure, The

prompt, discard notice are kept here, Status pointers, times,
etc. are followed by information on the process handling message
re-routing. Following this are indices into gueues of entries

folleoewed by the gueuss, An entry exists for pricority i/o (syserr
output, which always forces a wait until completel, one for a
pending read, and 8 for queued writes. After this are meters of
obscure use. The segment ends with an entry for each configured
console followed by an entry for each element of a event tracing
gueue. Each console entry provides its name, state, type,
channel, status, etc. Each i/0 gueue entry provides room for the
input or output text, time gqueued, flags (alert, input/output,
etc), and status,

PHYSI1CAL. RECORD PBUFFER
The physical_record_buffer is & wired area of memory used

by collection Q's and collection 1's MST tape reading routine for
i7o buffers.

B-8 AN70-01

PYT (PHYSICAL VOLUME TABLE)

One of +the disk describing tables, the physical volume
table containg an entry for each configured disk drive. It can
in some ways be considered the master disk describing table in as
much as performing i/co to a disk drive requires the pvtx (pvt
index) of the drive (the index number of the entry in the pvt for
that drive). The pvt entry contains the physical and logical
volume id for the drive, various comparatively static flags about
the drive (such as storage_system, being_demounted,
device_inoperative, etc.), information for the volume dumper and
information about the size, fullness, volmaps and stocks {both
record and vtoc) of the drive. This table is allccated by
get_io_segs, and built by init_pvt. The various brothers in a
logical volume are chained together in a list by the
logical_volume_manager so that the vtoc_man can have a set of
disks from which to select a target for a new segment. Dur ing
initialization, make_sdw$thread_hcp (for init_root_vols) uses
these threads (before the disk_table is accessed) to form the
list of drives which contain hardcore partitions (those eligible
to contain hardcore segmentsl.

SCAS (SYSTEM CONTROLLER ADDRESSING SEGMENT)

This is a very curiocus pseudo-segment, built by scas_init
out of page table words generated inte scs. It contains one
paseudo-page for each memory contreller (and another page for each
individual store other than the lowest). The address of the page
is the base address of the store/controller. This segment makes
references to it of the form N¥x1024 to form an absolute address
to controllier n. Thus, instructions like rscr (read system

controller register) can use this segment (as indeed they do
inside privileged _mode_ut) to reference the desired system con-
troller registers.

SCAVENGER DATA

scavenger_data contains information of interest to the
volume scavenger. Its header is initialized by
init_scavenger_data. The segment starts with the usual lock and
wait event. Following this is the pointer to the scavenger
process table. Then come the meters, The scavenger process
table, which follows, describes the processes performing

scavehging operations, Each entry contains a process id of a
scavending process, the pvtx of the drive being scavenged, and
indices of scavenger blocks in use. Scavenger blocks contain
record and overflow blocks used to keep track of pages of a disk
(its claiming vtoce and its state).

B-9 AN70-01

SCS (SYSTEM COMMUNICATIONS SEGMENT)

The scs is a hodge-podge of information about conficuration
and communication between active elements. It contains informa-
tion about the scus and the cpus. It contains the cow's (conhect
operand words) needed 10 conhnect to any given cpu/iom, the
interrupt masks used to mask/unmask the system, the various smic
patterns (set memory Iinterrupt cells), instructions to clear
associative memories and the cache, connect and reconfiguration
locks, varicus trouble flags/messages used for keeping track of
pending communication of faults to bce, cyclic priority switch
settings, port numbers for controliers, configuration data from
the controllers, processor data switch values/masks, controiler
sizes, and the scas page table (see scas).

SLT (SEGMENT LEADING TABLE)

Bne of the most sighificant initialization data bases, the
slt describes each initialization segment. [t is built initially
from template_slt_, an alm program that not only builds the

appropriate slt entries for collection 0 segments, but also
generates the dseg for collection 0, Each entry in the slt
contains: pointers into name_table of the names and the final

storage system pathname (and acl), if any, for the segment;
access modes, rings, etc. for the segment; various flags used
for generation/ loading of the segment, such as

abs/init/temp/supervisor segment, wired/paged, etc.; the length
and bit_count, etc. It is maintained by bootload_slt_manager and
slt_manager, who build entries based on information on the MST.
These entries are maintained so that the varicus pre-linkers
{bootload_linker and pre_link_hc) can find the target segments of
the variocus references.

The sst (which contains the active segment tablel)l is one of
the most important tables in Multics. It is the keeper of active
segments, Each active segment has an entry describing it (its
aste). The aste contains information used by segment control and
comnunicated with page control on the state of a segment. The
most important part of the entry is the page table words (ptws)
describing the disk/memory location of each page. There are four
pools of astes of different lengths to hold page tables of four

possible maximum lengths: 4, 16, B84 and 256 ptws. The entries
are threaded into various lists, The free entries of the various
pools are threaded inte lists. Active segments have their own

lists, Separate lists are generated for temp and init (supervi-
sor) segs. Aside from thess threads, each aste also contains
threads used to link segments to their parents and their trailer
seg entry. Status information includes: the segment’'s uwid, the
current length, maximum length and receords used, the pvtx and

B-10 AN70-01

vitocx of the segment (which couple with the ptws to find the
pages of the segment), various status bits of more ckhscure use,

and finally the quota computation information, init_sst origi-
nhally builds this table. The page table words are maintained by
page control, The entries themselves are maintained by segment
control,
SST_NAMES

The sst_names_ segment contains the names of paged segments
described by the sst, It is initialized by init_ssi_name_seg
during collection 2 and maintained by segment control only if the
astk parm sppears. It starts with information describing the

four aste pools followed by the paged segment primary names.

STACK O DATA

stack_0O_data contains information keeping track of the ring
0 stacks (stack_0.nnn) that are shared between processes (ohe per
eligible process)., It is initialized by init_stack_0. It has a
lock used to contrel threading of a pool of such stacks. Each
entry contains a list thread, a relative pointer to the aste for
the segment, a relative pointer to the apte for the heolding
process, and the sdw for the stack. When this stack is given to
a process, this sdw is forced into its dseg; the acl of the stack
is kept as a null acl.

STOCK SEG

stock_seg contains the record and vitoce stocks, a part of
the reliable storage system. Whenever a hew page or vitoce is
needed for a drive, it is obtained from thase stocks. The stocks
are filled by pre-withdrawing a number of records or vtoces from
the drive. This mechanism is used so that, upon a crash, it is
guaranteed that any records or vitoces being created were marked

in the record or vtoc maps as in use, This prevents re-used
addresses.
STR SEG (SYSTEM TRAILER SEGMENT)

The str_seg is a paged segment used by segment control to
perform setfault functions. It is initialized inteo a list of
free entries by init_str_seg. Each entry contains the usual

backward and forward threads forming a list of trailers for a
given segment {the list itself is found by a relative pointer in
the aste for the segment). When needing to fault a segment, this
list shows all processes containing the segment. The entry shows
the segment number, for a process with this segment active, of

B-11 AN70-01

the segment and a relative pointer to the aste for the dseg of
that process (which is where we need to fault the sdw).

SYS INFO

sys_info is a keegper of all sorts of information about the
state of the system, The most important entries to
initialization are sys_infosinitialization_state, which takes on
values of 1, 2, 3 and 4 correspending tc whether we are running
initialization collection 1, 2, 3 or whether we are running
service (beyond cecllection 382, and sys_info$colliection_i_phase,
which takes on values defined in collection_1_phases. incl.pll
corresponding to runhing early, re_early, boot, bce_crash, ser-
vice and crash passes through collection 1. Alse included are
key things like: the scu keeping the current time, the current
time 2zone, various limits of the storage system, and some ips
signal names and masks. The variable "max_seg_size" records the
max imum length of a segment, This value is changed during bce
operation to describe the maximum length of a bce paged temp
segment. This allows various Multics routines to work without
overflowing segments. Also in sys_info is "bce_max_seg_size",
this bce maximum segment length, This is available for any user
ring programs who desire to 1limit the size of objects they
prepare for the bce file system.

8YS BOCT INFO

See bootload_info, above.

SYSERR_DATA

The syserr_data segment is part of the syserr logging
mechanism. syserr actually just writes messages into this
segment and not to the paged log to avoid problems of paging
during possible system trouble. It is wp to the syserr hproc to

move these messages from syserr_data 1o the log.

SYSERR LOG

The paged abs-seg syserr_log, which describes the log
partition of disk, is used to hold the syserr log. It is mapped
onto the log partition by syserr_log_init, The syserr mechanism
involves putting syserr messages into syserr_data (which are
possibly written to the console) and then waking up the syserr

hproc which copies them into the paged partition. This is done
so that page faults are taken by the hproc, not by the syserr
caller who may be in trouble at the time. It starts with a

header providing the length of the segment, a lock, relative
pointers 1o the first and last messages placed there and also

B-12 AN70-01

copied out (by the answering service), the threshold that shows
how full the partition can get before the answering service is
notified to copy out the messages, the event channel for
notification (of tThe answering servicel and the event for
locking. Following this are entries for the various syserr
messages. Each message is8 threaded with the others:; it has a
time stamp, id number, and the text and optional data portions of
the message.,

JC DATA

tc_data containsg information for the +Lraffic controllse.
The most obvious entry list herein is the 1list of aptes (active

process table entries). There is one apte for every process.
The apte lists activation information for the process, such as
its dbr, its state (blocked/running/stopped/etc.), var ious
per-process meters (such as cpu usage), its work class, and other

per-process scheduling parameters. Follewing the apt is the itt
(inter-process transmission table), maintained by pxss (the
traffic controller) to hold wakeups not yvet received by a target
process, The call to hcs_Swakeup (or its pxss equivalent) places
an entry in the itt containing the target process id, the event

channel, the message data, etc, The next call to
hcs_$read_events obtains the events waiting for the targe:
process, Also present in tc_data is wvarious meters (tcm. incl)
and other flags. Imbeded within this is the wect (work class

table) which keeps track of the status of scheduling into work
classes, tc_init builds these tables (see tc_data_header).

JC DATA HEADER

This is a trick initialization segment. tc_data_header is
allocated wired storage by tc_init to hold the real tc_data,
tc_data, originally build just from a cds segment and therefore
just describing the header of tc_data, is copied in. The sdws
for tc_data and tc_data_header are then swapped. As such, the
initialization segment tc_dats_header (which describes the read
in tc_data) is deleted, but tc_data (now mapped onto the
allocated tc_data_header arca) remains,

TOEHGLD

The toehold is another area for Multics/bootload Multics -
communication, (IA particular, the flagbox is contained within
it.) The toechold is a small program capable of getting to

bootload Multics from a crashing/shuting down Multics service.
(Its name is meant to suggest holding on by one's toes, in this
case to bootload Multics.) init_toehold builds a dcw (device
control word) list that, when used by the toehold program, can
write the first 512k of memory (those used by bootload Multics)

B-13 AN70-01

out to the bce partition and read in bootload Multics (saved in
the bce partition by init_toehold). The program runs in absolute
mode. It is listed here because it contains the flaghox and the
all important dcw lists.

ITY AREA
Terminal control blocks {(tch's) are allocated in tty_area.

It is (initialized to an area by fnp_init and managed by the
various communication software.

ITY BUF

The tTty_buf segment contains, cbviously enough, the tity
buffers used for manipulating data communicated with the fnp. It
contains various meters of characters processed, number of calls
to various operations, echo-negotiation, etc. , trace control
information and timer information. Following this is the
tty_trace data, if present, and the tty_buffer_block's, split

into free blocks and blocks with various flags and characters in
chains. The layout of this segment into empty areas is done by
fnp_init.

ITY TABLES
tty_tables is an area in which tables (conversion and the

like) are allocated. It has the usual lock and lock event. It
is initialized by frnp_init.

UNPAGED PAGE TABLES

All permanent nhon-per-process unpaged segments have their
page tables in unpaged_page_tables. The page table for this
segment is also within it. It is generated initially by

template_slt. a2and added to by the various segment creation
routines, The header of unpaged_page_tables contains the abso-
lute address extents of all hardcore segments that contain page
tables; these are unpaged_page_tables, int_unpaged_page_ tables
and s8st_sed. Dump analyzers 1look here to resolve abscolute
addresses from sdws into virtual addresses of page tables,

VIGC BUFFER SEG

vtoc buffers live in the vtoc_buffer_segq. The segment is
allocated and initialized by init_vtoc_man. It starts with the
usual gleobal lock and wait event, Following this are various
parameters of the amount and usage of the wvtoc buffers, including
information about the vtoc buffer hash table, Then comes the

B-14 AN70-~01

vtoc_man meters. Finally comes the hash table, the vtoc buffer
descriptors (pvtx - vitocx info, etc.) and the vtoc buffers
themselves,

WI LINKAGE (WIRED INIT LINKAGE)

This initialization segment corresponds to area. linker for
wired initialization segments. It is built by the MST loading
routines,

WIRED HARDCORE DATA
Another collection of data for hardcore use, this segment
is permanent, 1t contains the size of a page, the amount to wire

for temp-wiring applications, the history register control flag,
the trap_invalid_masked bit, a flag specifving the nead for
contiguous i/o buffers (if a non-paged iom exists), the debg card
options, the fim fault_counters and the bce abort_request lag.

WS LINKAGE (WIRED SUPERVISCR LINKAGE)

This wired hardcore segment, shared between processes,
corresponds 1o area.linker for wired hardcore programs, It is
buiit by the MST loading routines.

B-15 AN70-01

APPENDIX C

MEMCORY LAYOUT

In the memory layout charts below, the starting absolute
address and length for each data area is given (in octall, When
a number appears in brackets (L[]), this means that it is really a
part of the segment listed above it,

The memory layout after the running of collection 0 (the
loading of collection 1) follows,

start length contents
4] 600 fault_vector
1200 2200 iom_mailbox
3400 3000 dn355_mai lbox
10000 2000 bos_toehold
12000 10000 conf ig_deck
24000 22000 bound_bootload 0O
[240001 [40001 Eibootlioad Multics) toesholdl
[240001] [20001] [flagbox (overlays the toehold)]
[300001 inl [bootlocad_ecarly_dumpl
46000 4000 toehold_data . . _
52000 2000 unpaged_page_tables
54000 2000 int_unpaged_page_tables
56000 2000 breakpoint_page
60000 o000 physical_record_buffer
66000 2000 dseg
70000 10000 name_table
100000 4000 slt
104000 2000 lot
106000 and up wired segments
fabricated segments
1777777 and down all other segments
The absolute addresses of most of these segments is
arbitrary. Hardware known data bases must be at their proper
places, though; also, the tochclds are placed at addresses known
to operators. Except for these exceptions, the segments may be

moved, Their addresses are contained in bootload_egus, incl.aim.

Cc-1 AN70-01

All programs refering to this include file must be reassembled if
these addresses are changed. Certain interdependencies exist
that one must be aware of. First of all, the tochold is placed
at a 0 mod 4 page address. physical_record_buffer must be the
last of the fixed memory address segments. The length of all
segments is an integral number of pages. The two unpaged page
tables segments must be large ehough to meet the demands on them;
refer to announce_chwm. Also, the length given for
bound_boottoad_0 must hold the text thereof.

After collection 1 has finished, segments have been made
paged and collection 1 temp segments have beenh deleted, the
memory lavout is as follows.

start length contents
0 600 fault_vector

1200 2200 iom_mailbox

3400 3000 dn355_mai lbox

10000 2000 bos_toehold

12000 10000 conf ig_deck ‘
24000 4000 toehold {(bootload Multics)
[240001 E20001 [flagbox (overlays the toechold}l
46000 4000 tochold_data

52000 2000 ‘ unpaged_page_tables

56000 2000 breakpoint_page

60000 and up paging area

high mem sst_segd

c-2 AN70-01

INDEX

aborting bce requests
see bece, aborting requests

abs-seg 3-10, 3-13, 3-186,

: 3-17, 3-18, S8-19, 4-3,
4-5, 4-16, 4-18, 6-8, A-1,
B-2

absolute mode 2-2

accept_fs_disk 6-3

accept_rpv 6-3, B-14
active init linkage
see ai_linkage

active segment table
see sst

active supervisor linkage
see as_linkage

ai_linkage 2-7, 3-20, B-1

announce_chwm 3-8
appending simulation 4-4
see alsoe bce_dump and

bece_probe

area, linker
see linkage sections

assume_config_deck 2-7

aste pools

as_1inkage

bce

3-12, B-10

2-7, 3-20, B-1

B
1-3, A-1
aborting requests 3-18, 4-6,
4-11
alert messages 4-4
area usage 4-2
command level 4-10, 4-15

bce_crash 3-2
boot 3-1
crash 3-1
early 3-1
command processing 4-2, 4-9,
4-11
communication with Multics
B-5
config_deck manipulation
4-17
data B-1
disk accessing 4-3, 4-186
error reporting 4-2, 4-8
exec_com 4-9
facilities 4-1
file system 3-16, 4-3, 4-16,
4-18
firmwvare
loading 4-10
i‘o switches 4-2, 4-7, 4-18,
B-1
initializastion 4-1, 4-18
invocation upon a crash
B-14

AN70-01

bce (cont)
machine state 5-2
paged programs 3-186
partitions
creation 3-6, 3-8, 3-13
usage 3-16, 4-1, 4-3,
4-186, 4-17, 4-18

bce_execute_command._. 4-9
bce_exec_com_. 4-9
bce_exec_com_input 4-8

bce_fwload 3-16, 4-10

probe 4-7, 4-8, 4-10, 4-11,
4-14, 4-15 bece_get_flagbox 4-10
current address 4-13,
4-14 bce_get_to_command_level 4-10
guestion asking 4-2;, 4-14
ready messages 4-15 bce_inst_length_. 4-10
reinitialize 4-10
request processing 4-2, 4-6 bece_listen_ 4-11
request table 4-15
restrictions 4-3 bce_list_requests_ 4-11
temp segments 4-3, 4-17
bce_map_over_requests_ 4-11

bce_abs_seg 4-4

bce_name_to_segnum_ 4-11
bce_alert 4-4

bece_probe 4-11
bce_alm_die 4-4 see also bce, probe
bece_appending_simulation 4-4, bce_probe_data 4-14

4-8, 4-14

bce_query 4-14
bece_check_abort 4-6

bce_ready 4-15
bce_command_processor_ 4-6

bece_relocate_instruction_

bce_console_io 4-7 4-15
bce_continue 4-7 bce_request_table_ . 4-15
bece_crash bce command level bece_severity 4-195
see bce, command level,
bece _crash bee shutdown_state 4-15

bece_data 4-7, B-1 bce_state 4-18
bce_die 4-7 boot

cold 3-13, 6-4, 6-7, A-1
bce_display_instruction_ 4-7 cool A-2

from bce 4-10
bece_display_scu_ 4-8 from BGOS 2-1

from disk A-6
bce_dump 4-8 from iom 2-1

from tape A-2
bce_error 4-8 initial A-1

warm A-8
bce_esd 4-9

i-2 AN70-01

booct bce command level

see bce, command level, boot

bootload command environment
see bce

bootload command environment
data
sce bece _data

bootload Multics 1- A1

b,
bootlocad_ 0 2-3
bootload 1 3-8
bootload_abks_mode 2-2
bootload_console 2-4
bootload_disk_post 4-18
boqtload_dseg 2-4, 8-1
bootload_earliy_dump 2-5

bootload_error 2-5

bootload_faults 2-5

bootload_file_partition 4-16,

4-18
bootload_flagbox 2-6
bootload_formline 2-6
bootload_fs_. 4-16
bootload_+s_cmds_ 4-17
bootload_info B-1
bootload_io 2-6
bootload_linker 2-7
bootload_loader 2-7, 8-1
bootload_gedx 4-17

bootload_slit_manager 2-7

bootload_tape_fw 2-8

bootload_tape_label 2-1, 8-1

beot_rpv_subsystem 3-8
boot_tape_io 3-8

BGS
getting to from bce
presence of 2-7

4-7

bound_kootload 0 2-1, 8-1
breakpeoints 3-15, 3-1g, 3-17,
4-12, 4-13, 4-14, 5-2
see also breakpoint_page

breakpoint_page 2-7, 3-9,
3-18, &-17%, 3-18, A-5
see also breakpoints

c

central processor
see cpu

channel table entry 7-2, B-6"
chantab B-3

clock
_setting 3-12

cold boot
see boot, cold

collection 1-1, A

collection 0 1-2,
console support
data B-1
error handling 2-5
input/output 2-6
interrupts 2-6
main driver 2-3
programming in

-2
2-1
2-4

2-2

1-2, 3-1
2-2, 3-7

collection 1
bce_crash pass

AN70-01

collection 1 {(cont)
boot pass

sequence 3-2

bootload Multics pass 3-1
crash pass 3-1, 3-7
early pass 3-1

sequence 3-5
passes summary 3-1
re_early pass 3-2, 3-7

see also bce

service pass
seguaence

shut pass

3-1
3-4
3-1, 3-7
collection 2 1-3

loading 3-20

pre-linking 3-18

sequence 6-1

collection 3 1-3, 7-1

collection_1_phase B-12
collect_free_core 3-9

conditions _
signalling 3-15

configuration
data
see config_deck and scs
initialization sequence
8-11
memory 8-95

config_deck 3-10, B-2
changes to 4-10
editing 4-17

initial generation 3-12

setup 3-5
config_deck_data_ 4-17
config_deck_edit_ 3~-10, 4-17

cohhect operand words 3-20

console
collection 0 2-4
driver
see ocdom_
locating 2-4

contigucus A-2
cool boot
see boot, cool

core high water mark 3-8

core_map 3-14, 3-17, 8-13,
B-2

cow
see connect cperand words

cpu
data B-10
description 8-4
initialization of data
starting 6-9, 7-3

3-20

crash A-2
early in
handler
handl ing
image

access 4-4

restarting 4-7, 5-2
machine state 5-1
memery saving 5-1
memory state B-13
memory swapping B-13

initialization 5-1
3-1, 3-8
1-4, 5-1

crash bce command level
see bce, command level,
crash
create_root_dir 6-4

create_root_vtoce 6-4

create_rpv_partition 3-9
cte
see channel table entry

data
about
about
about
about

active segments B-10
bce B-1
bootload tape B-1

collection 0 B-1

AN70-01

data (cont)
about configuration
see config_deck and scs
see io_conhfig_data
about core frames B-2
about cpus B-10
about hardcore segments
B-10
" about processes B-13
about rpv B-2
about storage system B-12
about system controllers
B-10
about system state B-12

data bases B?1

dbm_man 6-4

dom_seqg 6-4, B-3

dor B-4
deactivate_for_demount 9-4
deciduous segments

see segments, deciducus

delete_segs 3-9
demount_pv 9-5
deposit A-3

descriptor segment
see dseg

descriptor segment base
register
see dbr
device table entry 7-2, B-8
devtab B-3

directory
locking B-3
dir_lock_init -4, 8-14

dir_lock_seg 8-4, B-3

disk
accessing 3-19, A-1,
iZo posting B-3
storage system
acceptance 6-3
demounting 9-5

B-9

disk queue B-3
disktab B-3
disk_data B-3

disk_emergency 9-5

disk_post_queue_seg B-3

disk_reader 3-9

disk_seg 3-11, B-2
dm_Jjournal_seqg_ 6-5, B-4
dn355_data B-4
dn355_mailbox 6-5, B-4

dseg 2-8, 3-17, A-3, B-4

dte
see device table entry

dump
early 2-5, A-3
to disk 4-8, A-3
to tape A-3

dumper bit map seg
see dbm_seg

early bce command level
see bce, command level,
early

early initialization
dumps 2-5
see initialization, early

emergency shutdown 4-9

AN70-01

emergency shutdown (cont)

see shutdown, emergency
emergency_shutdown 9-5
errors
handling
in bce 3-14

in collection 0 2-5
reporting

bce 4-8

syserr B-12
see also failures

esd _ . .
see shutdown, emergency

establish_config_deck 3~10

establish_temp_segs 4-8, 4-17
execute interrupt cell
register 8-8

execute interrupt mask
register 8-9

failures
of boot initialization
of Multics A-2
of service initialization
3-2
see also ertrors

3-2

fast conhect code 3-18

fault_vector 2-5
see also vectors

fill_vol_extents_ 3-10
fim 5-2
find_file_partition 4-18

find_rpv_subsystem 3-10

firmware
loading
general mpcs
in bce 4-10
into boot tape controller

3-11

2-8
non-bootload disk mpcs
3-3, 3-16

rpv disk mpe 3-6, 3-8
location 4-10

for boot tape mpc 2-3
naming 2-3

flagbox B-5
management 2-6, 4-7, 4-10

fnp_init 6-4

fsout_wvol ©-6

gates
initialization:
linkages 8-15

6-6

getuid 6-5, 8-14

get_io_segs 3-11

get_main 3-11, &-2

group tabkle entry 7-2, B-6.

gte
seg group table entry

hardcore A-3, A-5
address space 6-1

hardcore partition
accessing 3-13
allocation from 3-17, 6-3
amount of utitization 6-3
locating 3-13
usage ©-8, 8-2, A-2, A-4

AN70-01

hardcore segments
creation 8-1
nhumbering 6-8, 8-15

hardware

' configuration 8-5

inter-connection 8-3

inter-module communication
8-7

he_losd_mpe 3-11

hproc 8-10, A-3

idle loop 8-7
idle process 6-9, 6-10, 8-16

3-9
init

init segments
see segments,
initialization A-3
bce 4-1, 4-18
boot failure 3-2
configuration 8-3
sequnce 8-11
directory control
disk contrel 3-3
early A-3
file system
gates 6-6
hardware 8-3
linking of A-4
page control 1-2, 3-3, 8-13
pl/1 environment 1-2
rpvy 3-14
scu 3-14
segment contreol ©-1,
service failure 3-2
storage system 6-1
summary 1-1
traffic control
8-16

6-1, 8-14

1-3

8-14

3-21, 6-1,

initialization_state B-12

initializer 23-15

initializer stack
see stack, initialization

initialize_faults 3-15, B6-9
initialize_faults_data 3-15
initial_error_handier 3-14
init_aste_pools 3-12
init_bce 4-18
init_branches 6-5, A-2
init_cfocks. 3-12
init_dm_Jjournal_seg 6-6
init_early_config 3-12
init_empty_root 3-12

init_hardcore_gates B-6

init_hc_part 3-13

init_lvt 6-6, 8-14
init_partitions 3-13, 8-14
init_proc 7-1
init_processor 6-86, 8-18
init_pvt 3-13, 8-13
init_root_dir 6-7, 8-14
init_root_vols 3-13, 8-13

init_scavenger_data 6-7
init_scu 3-14
init_sst 3-14, &-13
init_sst_name_seg 6-7
init_stack_0 6-7

init_str_seg 6-8, 38-14

AN70~01

init_sys_var 6-8

init_toehold 5-1, 5-2, B-13

init_volmap_seg 6-8

init_vol_header 3-14

init_vtoc_man 6-9, 8-14
input/output
in collection 0 2-6

inter-process transmission
_ table
see ittt

interrupt mask assignment
register 8-9

interrupt wvectors
see vectors, interrupt

interrupts

collection 0O 2-8
mask assignment 8-9
mask operations 8-10
mask values 8-11

int_unpaged_page_tables
see segments, unpaged

inzr_stkO

see stack, initialization

ioi_ 7-2

ici_data 3-11, B-86
ioi_init 7-2
ioi_page_table 7-3

iom
description 858-4

iom_data 3-11, 3-186, B-7

iom_data_init 3-16, 8-11
iom_mailbox B-7

io_config_data 3-11, 7-2, B-6

‘1oad‘disk_mpcs

io_config_init 7-2

io_page_tables
see page tables,
iom

paged mode

itt B-13

khnown segment table
see kst

kst 6-9, 8-14, A-4, B-7

kst_util 6-9

let B-4

linkage sections
B-1, B-15
hardcore gates finding 6-6

2-7, 38-20,

linking
sec pre-linking

loading
of collection O
.of cellection 1
of collection 2
3
3_

of collection

o \!(JIDNN
WN -
o

1
lead_mst 3-16
load_system 7-3

locking
directories 6-4

logical channel table
see lct

logical volume table
see 1vt

AN70-01

mai lboxes
datanets B-4
iom 3-18, B-7
make_sdw 3-18, 3-21, 8-2
make_segs_paged 3-17, A-5,
B-6

memory
accessing A-1
allocation 3-11
allocation from slt
3-11, 8-2
extent of usage 3-9
freecing 38-9, 3-17
layout A-2
after collection 0 C-1
after make_segs_paged C-2
anhouncing 3-8
placement 3-17
required placement
paging use 3-8
requirements for bootload
3-4

3-3,

c-1

move_non_perm_wired_segs 3-17

MST 3-16, 3-20, A-4
disk reading 3-9
tape reading 3-8, 3-21
multi-programming 6-10

Multics system tape
see MST

hame_table 2-8, B-8

nondeciduous segments
see segmenhts, nohdeciduous

o]
ocdem_ 3-18, 4-8, 4-7
data B-8
oc_data B-8

see alsc ocdcem_, data

page table word
see piw

page table word associative
memory
see ptwam

page tables
absolute to virtual
addresses B-14
active segments B-10
paged mode iom 7-2, B-8
scas B-10
see also unpaged page tables
unpaged segments
see segments, unpaged
paging
of bce segments 3-16, 4-1
of initialization segments
3-17

partition A-4
see bece, partitions
see hardcore partition

pathname associative memory
6-7

physical volume
see disk

physical volume table

see pvt
physical_record_buffer B-8
pll environment
setup 3-8
AN70-01

prds_init 3-18
pre-linking 2-1, A-4
initialization A-4
of collection O 2-1
of collection 1 2-7
2 3-18

of collection

pre-withdrawing B-11

pre_link_hc 3-18
probe
see bece, probe 4-7
ptw A-4
ptwam A-4, A-5
pvt 3-11, 3-13, 8-138, A-4,
B-8 :

read_disk 3-19, 8-13

read_disk_label 3-18, 8-13
read_early_dump_tape 2-5
real_initiaslizer 3-19

reinitialize 4-10

reload 7-1

request tabte

see bce, request table
ring 1 command level 7-1
root dir

activation
creation

6-7
6-4, 6-7

root physical volume
see rpv

rpv A-5
initiatlization
layout 3-10

3-12

rev {cont)
locating 3-10

S

safe_config_deck 3-3
salvaging 6-3, 6-5, 6-8
save_handler_mc 5-2
scas 3-20, A-5, B-9
sdés_init 3-20
scavenger 98-8

scavenger_data 6-7, B-9

scs 3-20, A-5, B-10
scs_and_clock_init 3-20,
SCcuU

addressing 8-6

data B-10

description 8-3

8-11

initialization of data 3-20

register access B-8

sdw
creation

2-4, 8-2, A-5, B-4
3-186

segment descriptor word
see sdw

segment descriptor word
associative memory
see sdwam

segment loading table
see sit

segments
activation
deactivation
deciduocus
9-4, A-2

hardcore
cdata B-10

information
a-4

i-10

6-5, 8-3, 8-

B~-7

135,

AN70-01

segments (cont) start_cpu 6-9, 8&-16
hardcore

permanent : stocks 3-11, 8-13, 9-6, B-9,
numbering 8-15 B-11
hierarchy
numbering 8-15 stock_seg B-11
init 3-9, A-3
numbering 8-195 stop on switches 3-20
nondeciducus A-4
humber i g str_seg 6-8, B-11
fixed 8-15
outer ring B-7 supervisor
synchronized 6-8, B-4 see hardcore
temp 3-9, A-5
numbering 8-15 switches
unpaged A-5, B-8, B-14 iZo

sce bece, i/0 switches

segment_loader 3-20
switch_shutdown_file_system

setfault B-11 a-7
shutdown 9-1, 9-8, A-5 synchronized segments
emergency 4-9, 9-3, 9-5, see segments, synchronized
A-3
rart 1 2 syserr_data B-12

9_
normal 8-7
syserr_log 6-9, B-12
shutdown_file_system 9-7
syserr_log_init 6-9
shutdown_state 9-8
system communications segment

slt 2-7, 2-8, 3-21, A-5, B-8, see scs
B-10
memory allocation from system controliler
see memory, allocation see scu
" from sl1t

system controller addressing
slt_manhager 3-21 segment
see scas
sst 3-14, 3-17, 8-13, 8-14,
B-11 system segment table
see 85t
sst_hames_ 6-7, B-11
system trailer segment

stack see stir_seg
collection 0 2-2
initialization B-5 system_type 2-7
ring 0 86-7, B~11
segment numbering 8-15 sys_boot_info B-1

shutdown 9-4, 9-5, 9-7, B-BS
sys_info B-12
stack_O_data B-11

i-11 AN7Q-01

sys_info$Sbce_max_seg_size
4-18

tape_reader 3-21
tcb B-14
tc_data 3-21, B-13

tc_data_header B-13

tc_init 3-21, 6-10, 7-3, 8-16

tc_shutdown 9-7

temp segments 3-9
see segments, temp

template_slt_ 2-8, 8-1,
B-6, B~-8, B-10, B-14

B-5,
terminal control blocks
see tch

tochold 2-5, 5-1,
entry points 5-1

8-1, B-13

traffic control
data B-13
initialization
see initialization,
" traffic control
shutdown 9-7

tty_area 6-4, B-14

tty_buf 8-4, B~14

tty_tables 6-5, B-14
U

uid 8-5, 8-14, A-5

unigue identifier
see uid

i-12

unpaged page tables 2-7, 2-8,
3-8, 3-11, 8&-2

unpaged segments

see segments, uhpaged
14
veciors
fault B-5

initialization 3-15
collection 2 6-9

interrupt B-S5

see also fault_vector

setup 2-5

volmap_seg 6-8

volume table of contents
see vtoc

vitoc A-O
accessing ©6-8
updating 9-5, 9-6

vtoce A-8
accessing 6-3, 6-9, 8-14
buffers 6-9, 8-7, B-14
creation
deciduous segments
8-3 '
initial 3-14
~ root dir 6-4
deactivation 8-5
dumper bit B-3
scavenger B-9
specifying number 3-13
stock 9-6, B-8, B-11
updating 6-8, 9-1, 9-4
updating for partition
creation 3-9

6-5,

vtoc_buffer_seg B-14

W

wakeups B-13

AN70-01

warm
see

wired

wired
see

wired
see

wired
wired
withd
wi_11i

ws_ 11

boot
boot, warm

A-B

init linkage
wi_linkage

supervisor 1inkage
ws_1linkage

_hardcore_data B-15
_éhutdown Q-7

raw A-6

nkage 2-7, 3-20, B-15

nkage 2-7, 3-20, B-15

i-13

AN70-01

