

Thus, all data and state manipulation in page control was redesigned c,nd
reimplemented to make the following statements true at every point (at all
times):

1. If page control is interrupted at this point, a procedure running at
ESD time can compute distinctly, fully deterministically, a valid
state of the entire data base of page control, reflecting its state
either before or after a database change that was interrupted
completed or would have completed.

2. If page control (or the disk or bulk store DIM) is interrupted at this
point by a system crash, a procedure running at ESD time can
regenerate any 1/0 that was queued, in progress, or in the process of
being queued, posted, or performed, without fear of the original ::/0
ever being posted.

The "procedure running at ESD time" is pc_recover_sst in
bound_page_control, also well worth time reading. This procedure places the
entire page control data base (the SST) in a consistent state before any paging
or page control operations are attempted by ESD.

The fundamental truth that allows this technique to operate is that very
little of page control is actually changing the data base, or therefore, the
state of page control. Most of page control is making decisions, and call:Lng
subroutines. It is only at the very lowest level, almost entirely in ALM page
control that the data base is changed. Most of PL/I page control is simply
making decisions and mapping the actions of ALM page control over segments.
Thus, in order to recompute the consistent state of interrupted page control, we
need not know what decisions were being made, or what segment-wide operations
were being performed. All low-level page control operations involve only one
page of one segment; when one page replaces another in memory, this is rea:_Iy
two operations: an eviction and a paging-in. Between the two operations, the
main memory frame is distinctly free. During the eviction, or during the pag:.ng
in, the page under consideration is either in main memory or not: there is no
inconsistency involving two pages. Other page control operations are comparably
defined. .

Typical of the operations under consideration that may be interrupted and
must have their state recomputed are:

1. Binding a page of a segment to main memory (paging-in),
2. Unbinding them �(�e�v�i�c�t�i�~�n�)�,�

3. Binding a frame of PD .. 0 a page of a �s�f�~�m�e�n�t� (PD Migration),
4. RWS initiation,
5. RWS completion, and
6. Unbinding a page from a PD record, either at RWS completion time or

during PD Housekeeping.

Each of these operations involves the establishment or revocation of
bindings between at most one page of one segment, one main memory frame, and one
PD record. As a matter of fact, each such operation consists of �~�h�e�
establishment or revocation of at most one (usually bilateral) binding. Each
such bilateral binding is usually two values that designate each other. For
instance, the binding between a page of a segment and a page of main memory is
expressed by the fact that a PTW has a main-memory type address in it,
designating a CME that has the address of the PTW in it. The binding between a
page of a segment and a record of paging device (PD) is expressed by the page of
the segment (PTW pointer) being in the PD map entry, and the PD address being in
either the PTW or CME, depending on whether or not the page is in main �m�e�m�o�;�~�y�.�

During a Read-Write Sequence (RWS), a similar bilateral binding between a PD
record and a main memory frame exists in crossing pointers in the CME and PJME
involved. Therefore, the establishment or revocation of any binding �i�n�v�o�l�v�'�~�s�,�
in essence, the setup of two (perhaps conceptual) pOinters. Bindings of objects
are never changed (except in one case in evict_page, which is quite special)

9/78 A-8 AN61A

from "bound to this" to "bound to that", but only fr6m "free" to "bound to this"
or vice versa. Thus, every page control object can be viewed as "bound to
something" or free at any instant, by looking at some critical pointer or field
in it. For instance, if a CME has a nonzero cme.ptwp (or mcme.pdmep), it may be
considered to be bound to that page of a segment (or PDMAP entry during an RWS),
or else none. If a PTW has a main-memory type devadd in it, then that page is
bound to that frame of main memory, or else none. The presence of a PD-type
devadd in a PTW or CME (which itself is bound to some page (PTW») says that that
page is bound to that PD record, or else none. The presence of pdme.used in a
PDMAP entry says that that PD record is bound to the page whose PTW is
designated by pdme.ptwp, or else none.

Thus, certain critical fields determine distinctly, at any real time
instant, whether or not a given object is bound to some other kind of object
(and if so, which one). Before an object is marked a bound to some other
object, all other fields except the critical field are filled in to their final
values. If page control is interrupted before the critical field is filled in,
pc_recover_sst finds the critical field not filled in (usually zero, see last
par'agraph), and the noncritical fields are essentially garbage; the binding is
considered not to have started at all. If the critical field is found filled
in, all other fields must be valid, and the binding was entirely complete.

The problem is therefore reduced to consistency between halves of a
bilateral binding. This is accomplished by simply stating an order in which
halves of bilateral binding are accomplished, the unbinding being accomplished
in the opposite order. Thus, if pc_recover_sst finds two valid bindings, which
are halves of a bilateral binding, the entire bilateral binding must be
complete. If it finds one half of such a binding complete (after determining
cOffipleteness by the rules of the last paragraph), it can either complete the
binding or complete the unbinding, without regard to whether a binding or
unbinding was in progress at the time page control was interrupted.

9/78

The following rules govern the establishment of bilateral bindings:

Pages to main memory frames, and vice versa:
when binding (reading-in), first bind the CME to the PTW, then change
the PTW to designate main memory. When evicting, do the opposite.

Pages to PD records, and vice versa:
When binding (PD migrating--always happens when page in main memory),
first bind the PDME to the PTW, and then change the CME to the PDME.
When performing PD eViction, either at the completion of an RWS or a
pure eviction during PD housekeep, do the opposite (i.e., first change
the PTW or CME, then free the PDME). At all of these times
(migration, RWS complete, pure eviction, and in-core PD eviction in
pc.pI1) the copy of the page on disk or in main memory is, or is the
same as, the most recent.

PD records to main memory frames, and vice versa (during RWS):
First bind the PDME to the CME, and then the CME to the PDME. At RWS
complete time, do the opposite.

A-9 AN61A

The handling of 1/0 in progress at the time of the crash is made trivial by
the action of page$esd_reset, which calls entries in the disk DIM and the Bulk
store DIM to throwaway the entire contents of their queues, and reinitialize
their data bases. Thus, any page that is seen as out-of-service by
pc_recover_sst may be simply evicted if it was a read in progress, knowing that
the read is not actually in progress (the system crashed), and is not posted
(the queues are flushed). If a write was going on, the modified bit is turned
back on when this is done, because the action of initiating the write caused the
modified bit to be turned off by write_page (the latter knowing that the page
would be written). The modified bit is not turned back on, however, a page that
is being updated as pure ("nypd write") to the paging device. The bit
cme.pd_upflag, reclaimed for this purpose, indicates during a write that this is
the case.

The routine pc_recover_sst can tell if the above rules have been violated,
due either to bug, processor or memory malfunction, or damage to the page
control data base by other parts of the operating system. Even in this case, it
attempts to make the page control data bases consistent so that ESD can succeed.
When such unexplained damage (i.e., inconsistency that cannot happen by virtue
of the above rules) is detected, segments are marked as damaged and involved
pages zeroed where appropriate.

The flushing of DIM queues at ESD time substantially simplifies the ESD
strategy of the VTOC manager (see Section III, "ESD Strategy"). The VTOC
manager can now decide distinctly that no IIOs queued before the crash are ever
going to be posted. The bit b.ioq is now superfluous.

PAGE CONTROL ERROR POLICY

Release 6.0 makes radical changes to the handling of disk errors as
detected by page control. First of all, errors are not reported to the operator
console or the syserr log unless a"page is actually damaged. The disk DIM has
already reported all device error information for any 1/0 operation involved. A
differentiation is made between device errors that affect a particular record
gone bad, and those that are an indication of a device problem. In the latter
case, it is almost always true that the operator can re-ready the device, or it
will re-ready itself, or some nonautomatic remedial action can be taken. Thus,
in any of these cases, it is unwise to perform irreversible action such as
damaging a segment, or even wasting syser~ log space with messages. The 1isk
vIti differentiates between the device error case and other cases in the value of
the error code at posting time. Errors readirlg pither therefore replace the
disk address in the PTW with a nUll address or not (as the disk error was a
per-record error or a device error) before setting ptw.er. When such a page
fault is restarted, a successful page fault either pages in zeros or t~e correct
page, respectively.

Write errors determined to be due to an inoperative device cause the
posting to cause the modified bit of the page to be turned back on (disk writes
only--bulk store cannot be inoperative by this standard), and the core frame to
be threaded back in as MRU. This means that the replacement algorithm will
reissue the write again when it comes around. If the call side started the
write, it calls in again to write it again, as it comes back to see that the
page is still modified (or yet modified) when it is notified. Similarly,
device-inoperative errors on the write cycle of an RWS cause the PD record not
to be freed, but placed back in the PD used list (its modified bit was never
turned off), and the free-or-being-freed count (sst.pd_free) decremented. The
PD replacement algorithm retries that record at a later time.

The system no longer signals page_fault_error on a read if the cause of the
read error is an inoperative device (as opposed to a bad page). This is to
avoid signalling errors that might we~l terminate an absentee process or the
initializer in cases where the operator!s readying of a disk could allow all

9/78 A-10 ANS1A

so~tware to proceed without error if the supervisor cooperated. Other
problematic cases of signalling page_fault_error, such as on a descriptor
segment which goes offline during a setfaults operation, are avoided in this way
as well.

Instead of signalling page_fault_error, processes that seek to read pages
on inoperative devices are made to wait upon a global event, in ring zero,
"144163153176"b3, being "dskw" in ASCII, until any disk coming back online
notifies this event. The disk DIM performs this notification, and now maintains
the bit pvte.device_inoperative, previously used only for drive-test operations,
as a copy of its "broken" bit for a given device, notifying this event whenever
such a bit is turned off. Any time such a bit is turned on the disk DIM has
beeped a "Device requires attention" message to the operator.

The maintenance of pvte.device_inoperative has several implications: when
a disk goes off line, the VTOC manager can see that at once, and reject a
requested write forthwith, without wasting hot VTOC buffers where not necessary.
The create_vtoce primitive can avoid creating segments on inoperative devices.
More critically, update_vtoce must be prepared to handle error codes from
vtoc_man for inoperative disks, realizing that the vtoce-parts requested were
not even put in hot buffers. For this reason, update_vtoce$deact now has an
error-code argument.

The implementation of this "disk-offline waiting" feature is facilitated by
the fact that all callers of page-reading primitives must obtain the event to be
waited on from the primitive in question, because volume-map paging issues
preclude any other routine from deducing the wait event. Thus, page reading
primitives can now return this global disk offline event, and cause any number
of mechanisms to wait and retry on this event. There are exactly three
interfaces that call read_page: the page_fault handler, the PL/I-side interface
page$pread, and evict_page$abs_wire. These primitives all now check for the
presence of ptw.er from a previous read before calling read_page. ThUS, if a
page read error is posted by the "done" side, an immediate notify causes one of
those three interfaces to be reinvoked (via repeated page fault or call-side
retry protocol), notice ptw.er, and take special action.

This special action consists of calling page_fault$disk_offlinep to
determine if the reason for this error is the disk being offline or some other
reason. This is determined by inspecting the PVTE bit set by the disk DIM
(there is a window here--it might have been inoperative at one time, but
operative now--this is acceptable). If the answer is that the disk is offline,
the process page-faulting, call-side (or process-loading-side) reading, or
abs-wiring is made to wait on the global disk-offline event. The bit ptw.er is
turned OFF at this time, before the process is set waiting, so that when the
disk comes back online, a retry of the page faultlreading is made as though no
error happened, instead of the detection of the previously set error bit (which
this time would be guaranteed to find the disk not inoperative, and thus signal,
which is precisely what we are trying to avoid).

If page_fault$disk_offlinep determines that the disk is not offline, an
alternate return is made. The page fault handler Signals in the way it always
used to in this case, and the other two entries just retry desperately and
hopelessly as they used to do. (This is the case of a descriptor segment page
going bad or similar--an unsolved problem as of this time.).

The call-side wait coordinator, and the notify-requested bit setter in
wired_plm (process loading) have been made cognizant about global paging events.

9/78 A-11 AN61A

LARGE VOLUME MAP SPACE

In releases 4.0 and 5.0, the single paged unwired segment fsdct held al:
volume maps. This was an unreasonable space limitation. Volume maps are now in
segments fsmap_segO to fsmap_seg15, created dynamically by init_pvt at boot load
time, as many as are necessary to contain the volume maps for all configured
drives. The segment fsdct now contains only what used to be the fsdct header;
it is small, unpaged, and wired now.

The code in free store that returns a PTW pOinter and an ASTE pOinter to
read_page now deduces these quantities from the SDWs of the fsmap_seg, rather
than from a fixed pointer in the SST.

Therefore, all references to "FSDCT Paging" in this document should now be
read as "Volume map paging".

DAMAGED SEGMENTS

A new VTaC attribute (see Section II, "VTOC Attributes"), thus an ASTE and
VTOCE bit, called the "damaged switch", has been introduced (aste.damaged and
vtoce.damaged). Although settable and reset table by user-invoked file system
calls, the intended function of this bit is to inform the user that page control
or the physical volume salvager has either perpetrated or detected damage to
this segment. The segment fault handler observes this bit when connecting a
process to an ASTE (i.e., constructing an SDW for a segment in a process), and
causes "seg_fault_error" with the error code of error_table_$seg_busted to be
signalled if it is on. As with other VTOC attributes, the bit is activated and
deactivated with the segment., The segment fault handler does not make this
check for directories, or in the initializer process (so that the system might
always be bootable).

The physical volume salvager and page control construct a standard format
binary syserr message (see segdamage_msg.incl.pll) whenever damage to a segment
is created, and log a message with it. This message identifies the segment
involved via physical volume ID, LVID, UID, and UID pathname, with other
infcrrnatjon (e.g., page number) when appropriate.

The physical volume salvager C0nstructs this information from a VTOCE being
processed, the UID pathname beinf copied from the third vtoce-part. Page
contrul deduces it from AST entries, chasing up the AST parent pointers to
develop the UID path (this logic is in ~he module page_error). The physical
volume salvager "damages" segments whenever any VTOCE inconsistency is
discovered: the case where segment control deliberately introduces an
inconsistency during VTOCE update before a fatal crash is particularly important
here. Page control damages a segment when a disk error on reading or writing
occurs that is due to a bad record as opposed to a bad device.

The counter sst$damaged_ct is incremented whenever such a binary message is
logged. The answering service!s accounLing-update metering program (as_meter_)
inspects this variable at each accounting update. If it has increased (since
the last update, or boot load time, initially), the syserr log is scanned for
such messages. They are read out, the UID pathnames in them converted to ASCII
pathnames, and the interpreted messages logged in the answering service log.

9/78 A-12 AN61A

QUOTA VALIDATOR

Reimplementation of what had been the salvager in release 5.0 and earlier,
for this release removed the function of computing quota-used from it.
Quota-used computation was the only part of the salvager that could not be done
by a top-down hierarchy scan; one cannot compute correct quota-used for a
directory until correct quota-used totals have been computed for inferior
dir~ctories; this severely limits the implementation flexibility of salvaging
fun~tions. What is more, the algorithms up to now for correcting quota-used
reqJired the entire hierarchy to be quiescent: thus crashes for which ESD has
failed (almost guaranteed to create quota-used inconsistencies see below),
required a «long salvage" while no one was logged in (the only way the salvager
could be run).

The discovery of an algorithm to compute correct quota-used totals in a
nonquiescent hierarchy has obsoleted all of this, and is now the only way that
quota-used is corrected. The hierarchy salvager is now nothing more than a
program that reformats a single directory, optionally cross-checking VTOCEs.
Conventional ring-4 programs are used to map the salvager over subhierarchies.
Quota and quota-used are now out of its domain.

In order to understand the on-line correction algorithm, it is necessary to
understand how quota-used inconsistency arises. A subhierarchy is said to have
inconsistent quota-used if any directory in it has inconsistent quota-used. A
directory is said to have inconsistent quota-used if its quota-used figures (for
seg~ents or directories) are anything but what they should be. The (directory
or segment) quota-used figure of a directory should be the sum of the (directory
or segment) quota-used figures of all immediately inferior directories that do
not have terminal (directory or segment) quota accounts, plus the sums of the
records-used of all immediately inferior directories or segments. This is
dependent upon all subhierarchies being quota-used consistent.

A directory becomes quota-used inconsistent in the following way: a
segment is deleted. or some pages are created. Several directories have their
quota-used figures adjusted by page control (in the ASTE) at the time this
happens. At some later time, the VTOCE for one of the directories is updated;
perhaps the lower one is deactivated, or the AST trickle updates one of them.
The VTOCEs now reflect an inconsistent quota-used situation, for the VTOCE of
one directory claims records charged to it, but the other does not. If the
system shuts down successfully there is not problem, as all VTOCEs are updated.
Before the system shuts down, anyone . who wants to know the quota-used figures
goes to VTOCE or ASTE as appropriate, and the inconsistency of the VTOCEs is not
a problem. However should the system crash and not shut down, the next bootload
relies solely on VTOCE information, and a quota-used inconsistency results.

It may be seen that quota-used inconsistency is not the result of a
supervisor malfunction, but rather a misfeature of fatal (no ESD) crashes. They
are a consequence of not stopping the entire system to update disk-resident data
every time a page is created or destroyed. Quota-used inconsistencies do not
develop while the system is running.

Ine on~1ne correction algorithm is based upon the fact that quota used for
a given directory is either right or wrong at any time. If it is right to start
with, it cannot go wrong while the system runs. If it was wrong to start with,
the amount by which it is wrong is a constant from the time the system was
boot loaded to the time it is fixed. It cannot get more or less wrong by its own
volition.

The task of the quota valida tor is thus to determine exactly how much (if
at all) a given quota-used figure is wrong and fix it. It can fix it at any
time after it determines by how much it is wrong--a certain number is to be
added or subtracted. The quota-used figure is not just replaced.

9/78 A-13 AN61A

9/78

--...,.----------------------------
04-- Segments in 0 cannot be activated or truncated

"tl
:P
C)
m
-I
:P

--r-- - --- - -----

--+--r-'- - -~ - +----- - --- - ----+- ---------TO
2
:lj
m
(")
-I o
:lj

-<
)2

en
r o
(")
A
m
o

:P
fJ)
-I
C;;
r o
(")
A
m
o

m No pages can
r be created
o
(")
A
m
o

c
o
-I
:P
OJ
r
m
m
X
rJ)

-I
rJ)

Figure A-2. Quota Validator

A-14

No segments can
be deactivated

Read vtoces of
segments not in table
(not active at TO)

TIME

AN61 A

To understand this more fully, hypothesize that there were a tool available
that corrected quota used, say set quota used <dirname>. A system administrator
might want to figure out the correct number, and set it. However, this would be
inordinately difficult to use, because even the wrong number is constantly
changing. Thus, the only kind of tool that would be of value is one that added
or subtracted its argument from the quota-used figure, regardless of what it
was--a tool that added or deleted phantom segments.

The quota validator operates precisely in this way. The entry
vtoc attributes$correct qused performs precisely the function of adding a signed
difference to a quota-used total for a directory, either in a VTOCE or in an
ASTE, once the correct difference has been determined. The determination of the
value of this difference is a very intricate operation, involving several
locking games. We can approach this algorithm by successive refinement.

Given our choice, we would quiesce the entire subhierarchy of the directory
(which we will call D) whose quota-used is being computed. We would lock the
page-table lock and the AST lock, read all the VTOCEs and AST entries for
immediately inferior segments and directories, adding their page totals and
quota-used figures (for directories), from the AST for active segments and from
the VTOCEs for nonactive segments. Comparing that total to the current
quota-used gives us the difference we seek. However, we cannot randomly go
locking locks like that, or quiesce the subhierarchy in this way. We therefore
choose one moment in time for which we will strive to compute D's correct
quota-used total. For any given instant, we can quiesce all of page control
activity (creating and deleting pages of active segments in particular) by
locking the page table lock. Call that instant TO. We choose such an instant,
and lock the page table lock before it. At that instant, with the page table
lock locked, we compute the sum of the records-used totals of segments
immediately inferior to D, that subset of them that is active at TO, plus the
surn of the quota-used figures of immediately inferior (nonterminal) directories,
that subset of them that was active at TO. This figure is an approximation to
the correct sum of records-used plus inferior quota-used for this directory at
TO. It is inaccurate by precisely-the sum of the records-used plus nonterminal
quota used of exactly that set of immediately inferior segments and directories
that were not active at TO. Thus, once the page table lock is unlocked, we need
on~y add up the figures for these segments. However, we do not wish to read all
the VTOCEs, or scan D with the page table locked. If we unlock the page table
lock, other segments may be activated or deactivated, and we would have no way
or determining which segments were active at TO and which were not.

Pages are created only by touching them, and since only pages of active
segments can be touched, no pages can be created for inactive segments if we
prevent them from being activated. Similarly, pages can be destroyed by two
means: manipulations on active segments (truncations, page zeroings), and
file-system calls (truncate, delete) on inactive segments. Thus, if we prevent
new segments in D from being activated between TO and the time quota-used of D
is corrected, and prevent file system operations on segments in D in this
interval at well, we can be sure that the quota-used subtotal for segments
inactive at TO will not change between TO and the time quota-used of D is
corrected. It turns out that locking D prior to the start of this whole
operation accomplishes precisely this.

With this in mind, we know that no segments that were not active at TO can
be activated after the page table lock is unlocked. What is more, they cannot
be otherwise affected (e.g., truncated). So at this stage of development, our
algorithm is to unlock the page table, scan D, and check each segment in it for
aC'~ivity at time TO (it couldn't be active now if it wasn't active then) and add
its quota-used or records-used to the total from time TO. This does not work
because segments can get deactivated between the time the page table lock was
unlocked and the time we check the AST to see if it was counted in the total at
time TO. Segments can be prevented from being deactivated by having locked the
AST after first locking D, but before locking the page table lock. Thus, when

9/78 A-15 AN61A

we scan D, the AST will still be locked, and the set of active inferiors of this
directory will not have changed since time TO.

The deficiency here is that one may not touch a directory with the AST
locked (see the general considerations of the locking algorithm in "Locking
Conventions", Section II). To determine which segments were active at time TO
we lock the AST lock before locking the page table lock, and unlock the AST lock
after unlocking the page table lock. But before unlocking the AST lock (at a
time when the set of active segments cannot have changed since TO), we build a
little table of the UIDs of all active inferiors of this directory in automatic
storage. It is with this table that we check while scanning the directory
adding up quota and records figures from VTOCEs.

Having added the active and
value of the quota-used figure of
the finite and invariant error.
quota-usecd figure of D.

inactive figures, they are compared with the
this directory read at time TO to determine

It is this error that is deducted from the

This
quotaw$rvq
table lock.

algorithm is
performs the

implemented in the
manipulations and

program correct_qused. The entry
quota cell readings under the page

The bottom-up walking features of do_subtree (or walk_subtree) are used to
drive the tool fix_quota_used (the ring 4 interface to the quota validator)
bottom-up.

SUPPORT OF HIERARCHY SALVAGER

The mechanism used by the hierarchy salvager to activate, deactivate, and
access segments, dating from the time that the salvager had its own tape, is
entirely gone in release 6.0. The entire activation/file map mechanism
described in "Services on Behalf on the Hierarchy Salvager" in Section IV has
been removed. The hierarchy salvager is now a directory-control program that
operates on one directory at a time, given its pathname. It initiates
directories and takes segment faults upon them, as any other directory control
program in Multics. It has no more involvement with segment control. Tts
removed interaction with segment control had been a major source of bugs.

Ine central control program ul the hierarchy salvager, salv_directory, is
usually driven by ring-4 subtree walk. It does not recurse.

The hierarchy salvager no longer uses abs-segs or any abs-seg mechanism; it
no longer checks, validates, or corrects quota or quota-used.

The hierarchy salvager retains a "VTOCE-checking" feature, used to check
for (forward) connection failure, optionally delete branches suffering this, and
correct part III (permanent attributes) information. These functions are
provided in the program salv_check_vtoce, which is not even called if VTOCE
checking was not specified to the hierarchy salvager. The prog~am
salv_check_vtoce calls vtoc_man$get_vtoce to obtain a VTOCE image! to check JID
match and part III information. If information need be corrected in the VTOCE,
the entry "salv_update" in vtoc_attributes is called to correct and write back
information to be updated. As usual, vtoc_attributes is cognizant of all rules
regarding directory and AST locks for such operations (see Section II). Thus!
the hierarchy salvager no longer directly writes VTOCEs in any case.

9/78 A-16 AN61A

To delete branches suffering forward connection failures, salv check vtoce
calls a special entry in directory control's "delentry" primitive: that-which
deletes branches.

The hierarchy salvager makes use of the
described above and in Section IV to cause
scratch and directory-copy segments.

LIMITED UPDATE BACKLOG

grab_aste/prewithdraw mechanism
semi-permanent activation of its

The 6.0 storage system tries to enforce an upper bound on the time the AST
trickle takes to circumnavigate each AST used list (see Section II). By placing
an upper bound on this time, file map changes cannot stay in the AST (not be
reported to the VTOCE) for longer than this maximum time. This is done solely
as a hedge against fatal crashes under light load. In these cases, it has often
been reported that a segment modified hours before the crash appears empty (all
zeros) at the next bootload. This was because of failure to update its VTOCE
within a reasonable period of time. in release 6.0, the initializer calls into
get_aste$flush_ast_pool with a pool index every accounting update if it has been
determined that fewer steps in that pool than the number of entries in it were
taken since the last such update (the accounting update routinely inspects
meters in the SST). The entry get_aste$flush_ast_pool circumnavigates the
specified AST list one entire time, calling update_vtoce on each ASTE whose file
map has changed (aste.fmchanged). This fairly expensive action is invoked if
and only if load is so light that there was not a reasonable number of AST steps
in the last accounting interval.

A similar attempt is made to set an upper bound on the amount of time a
page may stay in main memory and not be written out. This, again a hedge
against fatal crashes, is to guard against the phenomenon where a
heavily-modified page remains in memory under light load, and does not get
written out, and appears zero or nonexistent at the next boatload. A page is
written out if load is light, i.e., the circulation speed of sst.usedp is slow,
and continual use and modification biases the replacement algorithm against
writing this page out.

The new entry pc$flush_core, and the new CME bit cme.phm_hedge implement
this facility. The entry pc$flush_core is called five minutes before every
accounting update (by the initializer) to call page$pwrite on all pages not
written out since the last such call. The five-minute interval is to make sure
that the accounting update that follows, calls get_aste$flush_ast_pool, is able
to report new page creations to VTOCES, i.e., to ensure that writes started
complete successfully before VTOCE updating is attempted (see "Address
Management Policy" in Section VII for why the VTOCE can't be updated until
successful completion of writes is acknowledged). The entry pc$flush_core scans
the core map for all in-core pages that need to be written out, and calls
page$pwrite, multiplexing activity in the normal page control manner (see
Sections VIII and IX). These pages are identified by the presence of the flag
cme.phm_hedge. This bit is turned on by pc$flush_core for every in-core page
having ptw.phm OD. that it is not calling page$pwrite to write out. Page
control (page$pread and the "write" side of the interrupt side, page$done_) turn
this bit off any time a page is read into this frame, or a successful write is
completed from it. Thus, if pc$flush_core finds (the next time it is called)
that this bit is still on, it can deduce that this frame had a modified page in
it one accounting interval ago, and has not been evicted or written out since.
This is precisely the condition for issuing a write for the page in that frame.

9/78 A-17 AN61A

PARTIAL SHUTDOWN

Page and segment control primitives called at shutdown time (Emergency O~
Regular) have been changed to check the PVTE bit pvte.device_inoperative before
attempting to update a VTOCE (including calling pc$cleanup), flush a main memory
page or initiate an RWS. All drives are tested at the time shutdown is started
(earlier still in ESD), in the procedure disk_emergency (in
bound_disk_util_wired). By calling the standard drive-testing primitive
(read_disk$test_drive, see "Explicit Disk Reading, Writing, and Testing" in
Section XIV) the operative/inoperative status of all drives is determined. What
is more, the interrupt sides of page control and of the VTOC manager call an
entry in disk_emergency which evaluates whether or not to set
pvte.device_inoperative whenever they receive a "device-inoperative"-type error
from the disk DIM. The program disk_emergency sets the bit only during
shutdown; otherwise, the disk DIM maintains it. At shutdown time,
disk_emergency also notifies the Operator about disks which went offline during
(or before the start of) shutdown.

Thus, during shutdown, all drives not inoperative are completely shut down.
The complete shutdown of the RPV is not indicated unless all other drives were
shut down; this is to force a hardcore directory salvage and. paging device flush
on the next bootload. All packs not shut down will be salvaged the next time
they are accepted, as is usual.

The code and variables of Emergency Shutdown have been so reorganized that
ESD may be attempted any number of times after a partial shutdown, if drives can
be brought back up. If the drives have indeed become operative (all drives are
tested afresh each time), a completely successful ESD will be attained.
~nflushable contents of the paging device and main memory will be kept around
until this is the case.

The avoidance of complete shutdown of the RPV causes the next bootload to
take cognizance of the unflushed paging device, which is necessary.

OTHER CONSIDERATIONS

In Section VI, cme.devadd now points to the PDME during the entire RWS.

The variable "did" in pxss_page_stack (the ALM page
stack frame) has justly and finally been renamed "pvtx",
meant since release 4.0.

control environment
which is what it had

A fairly baroque error-message generating facility has been built into
page_error.alm, taking advantage of the new macro processor in the ALM
assembler. Incorporated in this facility is the logging of binary syserr
messages indicating segment damage. The page_error program includes a system of
macros for declaring variables and generating PL/I-like calls automatically, and
is worth investigation by those interested in ALM or assembler technology.

In Section VIII, the "second trace facility", or "disk_meters" has been
totally removed.

9/78 A-1S AN61A

The subroutine cleanup_page is now the only agency in the system (outside
of pc_recover_sst, that is a highly special case) that evicts pages. The
routines in pc.p11 have been changed to call it, as page$pcleanup. Consistency
required by pc_recover_sst motivated this change.

In Section X, some reorganization of utility subroutines, particularly in
pd_util, was performed.

A (privileged) user-callable facility to entry-hold a segment and wire its
pages via calls to pc_wired has been provided.

The updating of time-page product to a directory's parent at the time of
its deletion was found to be lacking in Releases 4.0 and 5.0. This function was
added in delete_vtoce, which, in the case of a directory with terminal quota
being deleted, performs several VTOCE manipulations under the AST lock to update
this VT~CE-resident quantity from the directory being deleted up.

Reused and unprotected disk addresses, as well as bad VTaC threads, no
longer cause the system to crash. Volumes suffering these symptoms are placed in
a state (pvte.nleft = 0) where no new allocations can take place on these
volumes, and scheduled for salvage (pvte.vol_trouble = "1"b). These new
policies are due to a belief in the current stability of the supervisor: that
such symptoms can not occur as a result of a software malfunction in the current
boatload, but are more likely symptoms of disk malfunction or bad data from a
previous bootload.

The "PD Writeahead" experimental feature has been removed.

The disk record allocator has been recoded to be more straightforward: the
remnants of older schemes have been replaced by code which has the same effect,
but by explicit design.

The disk-reading primitive (read_disk, Section XIV) is now used by volume
backup in many processes, and thus can no longer use the unshareable supervisor
ASTE (PTW-level abs-seg) read_disk_seg in all processes. It continues to use
this ASTE if running in the initializer process, initialization, or shutdown.
in any other process, an ASTE is gotten via normal means (get_aste) to use a an
abs_seg.

The VTaC attribute array for record quoia (aste.quota, vtoce.quota) is
redefined as seg_vtoce.usage_count and seg_aste.usage_count, a count of page
faults on a segment maintained by page control, for nondirectory segments. A
file system call through mhcs_ is available to obtain this VTaC attribute. It
is not in hcs_ because the observing of this datum constitutes an AIM write-down
path, and discretionary access control to this meter may be desired at some AIM
sites.

9/78 A-19 AN61A

LU
Z
....J
e,:)
Z
o
....J
<t
I
:::l
U

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

SERIES 60 (LEVEL 68)
TITLE MULTICS STORAGE SYSTEM

PROGRAM LOGIC MANUAL
ADDENDUM A

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required_ Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here_ D

FROM: NAME ------------------------------------
TITLE _____________________________ __

COMPANY --------
ADDRESS _____________________________ __

GRGER NO·IAN61A, REV. a

DATED I SEPTEMBER 19781

DATE ____________ __

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honey",ell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I.

I
I
I

I
I
I
I
I
I
I
I
I

-c.
I
I
I
I
I
I
I

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Smith Street. MS 486. WaHham. Massachusetts 02154
In Canada: 2025 S!'leppard Avenue East. Willowdale. Ontario M2J 1 W5

In Mexico: Avenida Nuevo Leon 250. Mexico 11. D.F.

18684, 7.5C877, Printed in U.S.A. . AN61, Rev. 0

