USER'S GUIDE

DATA COMMUNICATIONS

DPS 7 GCOS

Communications Processing Facility

Volume 3: MCS

Software

Subject

Special Instructions

Software Supported

Date

This manual deals with all the programming aspects of communications in MCS COBOL
and GPL.

It describes how MCS processes data, how the system implements the line procedures
and how to program terminals.it also deals with the QMAINT utility.

This manual belongs to a set of three volumes which deal with the subject
«Communications Processing Facility», namely,

.47 A2 01UC Communications Overview

.47 A2 02UC Network Generation

.47 A2 03UC MCS User’'s Guide

Change bars indicate technical modifications or additions, while asterisks indicate
deletions.

GCOS 7-LS, GCOS 7-MS Release V 1

August 1984 ' N

Bull CEDOC - CELOG

Boite Postale 110 Parc Industriel d'INCARVILLE :
27100 Ensemble Urbain du VAUDREUIL - FRANCE 47 A2 O3AIC REVN

© BULL SYSTEMES 1984
Dépot légal
3éme trimestre 1984

Printed in France

Suggestions and criticisms concerning the form, content, and presentatic?n of this manual are
invited. A form is provided at the end of this manual for this purpose.

This document is issued for information purposes only. It does not involve BULL SYSTEMES's
responsability in case of damage resulting from its implementation. Corrections or modifica-
tions will be made without prior notice and brought to the knowledge of subscribers by

appropriate updatings.

<€

PREFACE

This manual is the third of three volumes dealing with the subject "Communications
Processing Facility'.

The MCS User Guide deals with all programming aspects of communications in GPL and
MCS COBOL, which includes not only the communications elements but also the use of
run-time packages. It treats the system implementation of the line procedures and
gives examples of how to program terminals. The manual deals with the utility
QMAINT, which enables the user to perform maintenance on disk and memory queues
defined for the network at CNC generation.

In the three volumes of "Communications Processing Facility", the term "64/DPS 7"
is synonymous with 'DPS 7", the prefix '"64' being a "carry-over" from previous re-
leases. The keyword "HL64' designates the DPS 7 as a CPU-terminal in the URP local
network and appears in the CNC declaration described in the Network Generation Ma-
nual.

The term 'MAM" (Message Access Method) is used only in the context of MAM as a sy-
stem module of GCOS 7, such as MAM Error Messages in the Job Occurrence Report. O-
therwise, the term '"MCS" (Message Control System) which groups MAM with QMON, is
used to qualify user-defined communications applications.

For the current release, synchronous links for terminals of the VIP line procedure
are directly supported via a URP packet link over the TRANSPAC secondary network.
These synchronous links are provided by

« DCU7010 convertor for VIP-type terminals : VIP7001/ 7700/ 7760, TTS7800 & TTU8221
. TCU7022 / 7043 terminal concentrators for QUESTAR terminals : DKU7007 / 7107 / 7211.

TRANSPAC refers specifically to the public data network in France, the use of
which is contracted by PTT subscription.

This manual is intended for the systems engineer and programmer/analyst for speci-
fying and writing an MCS application for DPS 7 communications systems. The DPS 7
communications system is set up and tailored by the use of the CNC utility, see
the Network Generation Manual.

Section I introduces the essential user-visible interface with the communications
network. This section which leads on to the user-facilities provided by MCS, be-
gins with a synopsis of "Communications Overview'" which also serves as a reference
to Distributed Systems Architecture as implemented by the DPS 7.

Section II describes MCS in terms of a user-queue access method shared at system
level allowing the exchange of messages to and from the terminals. It explains the
structure of the MCS load-module and the means of linking mono- and multi-process
load-modules. It also gives the run-time JCL for the MCS application.

Section III deals with MCS data processing, in particular, the symbolic represent-
ation of data, and the various ways that MCS deals with data formats. It also
gives details of representing data in the form of graphic symbols that take into
account national language options.

iii

Section IV describes the dynamics of establishing the connection between users,
represented by terminals and applications, the connection interface between local
and remote users being handled by MCS. It deals with the various types of conmect:
ions available over the DPS 7 network. :

Section V deals with the line procedures supporting transmission protocols for
terminals available to MCS. It describes these procedures implemented at system
level and, apart from BSC2780, ‘are not user visible. ‘Inithe case of BSC2780, cer-
tain reserved control codes must not be used by the application.

Section VI gives examples of how to program terminals according to their funct-
ional characteristics and line procedures. This information concerns the program-
ming interface for both MCS as well as TDS. The difference in these two subsys-
tems is that symbolic representation of data is not available for TDS.

Section VII deals with QMAINT through which the user maintains the queues de-
clared at network generation. These disk and memory queues can be systematically
updated, that is, purged or redefined, at the end of the communications session.
In addition, QMAINT allows the listing of queue status within the network.

Section VIII describes the events occurring during a communications session in
terms of the parts played by the user and the system. Dynamics of communications
is a detailed account of the network enviromment in which the various software
components interact to enable message exchange and allocation of resources.

Appendix A gives an example of an MCS application written in MCS COBOL and GPL,
testing the TWA option, in which the operator must key in the required reply.

Appendix B lists the QMAINT sysout report which enables the user to ensure that
maintenance functions specified on the queues have been executed.

Appendix C lists and explains MAM error messages in the Job Occurrence Report, {
QMAINT error messages in the sysout report and the JOR, and the 'return-codes'.

Appendix D lists and explains the communications status keys, in terms of the
conditions in which they occur for the five communications verbs.

The other two volumes dealing with "Communications Processing Facility" are,
« 47A2 01UC Communications Overview
. 47A2 02UC Network Generation.

The Communications Overview Manual describes how DPS 7 network processing imple-
ments DSA techniques. It treats both primary and secondary networks and explains
how both are supported by GCOS 7 communications components. A description is also
given on the TRANSPAC X. 25 link.

The Network Generation Manual deals with the Communications Network Configurator
(CNC) utility and is a reference document for the CNC commands used to generate
the primary, secondary and TRANSPAC networks. Until the current release, the only
primary network supported was the DPS 7 functioning as a "host" accessing its
remote systems through the intermediary of its '"front-end'" system, the DN7100.
For the current release, the primary network configuration has been extended to
the DPS 7 functioning as '"satellite' thereby directly accessing its remote sys-
tems.

iv

The following publications give further details to the topics mentioned in this
manual,
° For DPS 7 implementation of DSA concepts in a networking enviromment,

o« 47A2 01UC Communications Overview

° For a reference to the CNC commands when generating the DPS 7 network,
o 47A2 O2UC Network Generation

° For coding MCS applications,
o 47A2 35UL GPL Language Reference Manual
o 47A2 36UL GPL User Guide '
o 47A2 37UL GPL System Primitives
« 47A2 O1UL COBOL 74 Language Reference Manual
o« 47A2 O2UL COBOL 74 User Guide

° For information on linking compile units,
o 47A2 O1UP LIBMAINT Reference Manual
o 47A2 O2UP LIBMAINT User Guide
o 47A2 10UP Linker User Guide

© For file allocation when using disk queues,
o 47A2 OSUF Data Management Utilities User Guide

° For $QASSIGN and run-time JCL,
« 47A2 1103 JCL Reference Manual
« 47A2 12UJ JCL User Guide

° For GCOS 7 communications operator interface affecting transmission modes,
o 4T7A2 O4UC Terminal Operations
o 47A2 O5UC Network Control Terminal Operations

© For GCOS 7 console operator interface for modifying scheduling,
. 47A2 01UU System Operator's Guide '

° For a description of catalog access rights,
o 47A2 01US System Administrator's Manual

° For general information on DPS 7 installatioms,
» 30A1 8265 Functional Characteristics for DPS 7/x0
o 93A1 8695 Functional Characteristics for DPS 7/x5
o 47A2 O4UG System Cverview '

~ © For a résumé of all aspects of networking applicable to the DPS 7,
o 47A2 0O9UC Telecommunications Reference Card
° For formatting the DKU7007, DKU7107, DKU7211, VIP7700 (VIP7001 and VIP7700),
VIP7760 and IBM3270 screens in a TDS environment,
. 47A2 10UT TDS/FORMS User Guide

Suggestions and criticisms concerning the form, content and purpose of this manu-
al are invited.

A Technical Publications Remarks Form is included at the end of the manual for
this purpose.

Each section of this document is structured according to the heading hierarchy
shown below.

Each heading indicates the relative level of the text which follows it.

Level Heading Format
1 (highest) ALL CAPITAL LETTERS, UNDERLINED
2 ' Initial Capital Letters, Underlined
3 ‘ ALL CAPITALS, NOT UNDERLINED
4 | Initial Capital Letters, Not Underlined
5 (lowest) ALL CAPITAL LETTERS FOLLOWED BY COLON :

text begins on the same line

vi

CONTENTS

Section I Introduction eseececcsccecencsccsscsvescsssosscsosscnsncsncnce
Access to MCS over FNPS/DN7100 csceecesccccccscsscosccccsce
Access to MCS over BTINS/URP ccesccessssccoccsceccscccccccce
Networking Environment eeeecececccccssccescececscsssscsscnsscs
Coﬁmunications Components eceesecoscssescsosssscscssccccecccee

Message Control System 2000000000000000000000000000000000080
Message Access Method ceseseccsceccoscsccccssssssscssscos
Queue MONitoOr scocscossssnscscecesscecsvsscoseescsoscacoco
MCS Data FOrmatsS cecsccceseceesecssccnssescesesnsocoscnsccos
Programning TerminalsS ceececccssescsosecccscoesssccocnccne

Queue Maintenance ssoceceocecececsesossscessscsecesssscoscccac

Section II Message Control System €00 000C0000000000000000000000030000806000

Communications Elements scececovssceceececsssscscccssccsces
Communications Description Area of the Application cecoce
Communications VerbsS sceecocececcescecssscsceccscscsscccoeo
Message Delimiters ccocessccsecscssececcscsavsessesccncoons

From the Terminal to the Application ee000eeceercessceo
From the Application to the Terminal ceceesccscssccacce
Communication between Applications ece008000ss000000000

Queue Correspondence 2000000000000 00000000000000000000000608
Physical Queues 0000 000000000000000000000000000000000000
Terminal-Queue 000 C0000000000000000060000000000000000000
Program-Queue ©09005000000000000000C0CE000000000000000009
SymbO].iC Queues 0000000000000 00000080600%36000000000000000
Relating Physical Queues to SYIﬂbOliC Queues eeeceesceccce
Symbolic Input Q\Jeues 000000000 0000000060000000000000000@
Symbolic Output Queues 000800000020 0000000000000085¢0000
Explicit Definition sseecescscceccecsccossosssscsscsso
Implicit Definition scececcscescsscscecescscsnscocsscs
SymbO].iC Input/Output QueueS 9000005030080 00000000000609

Device Handling and Message Editing ©0200000000800000006000006
Control Messages 8000000000 00000600000000000000000000800000@
Status Changes 9060000000006 0008000¢0000000608009080000080000
Data Flow Control cesscscsccosecesescessssosscsscsssesscco

Input without Terminal cscececccsescscessossssccsscsscccse
Input with Terminal cececsseoccccesssscccescescscssccne

output 0000090000000 000Q0000000000003000000000000000009080

vii

1-01
1-01
1-01
1-03

2-10

Section II (continued)

Dialog Handling 0000000000000 000000000000000000000000000000
Non-Interactive Applications e0e0000ces 0000000000000 00 00
Data Entry 00 0000000000000000000000000000000000000 00000
Batch PrOCESSing ©00000000000000c00000c0000000000000000
Data Distribution cececcsccecocccscecccsccosccsccsscoccs
Interactive Applications 000000000000 000000c00 00000000000
With TWA Option esesessenesssessesercececsenosessenesee
Without TWA Option e90 0000000000000 c00000000000000 0000

Declaring an Application MAUtomaticC! ceccosccsccecscoccscnce

Data Integrity 0000000000000 0000000000 00000000000 COCOESIEROITOCTS
Retention of Messages in Terminal-Queues cecceocecoscsces
Retention of Messages in Program-Queues cecececesscccccesns
CheCkPOint and Restart Facility eeecsccescccccoeeccsccecs e

ISSUing Checkpoints 0000000000000 0000000000c00000000 000
Implementing ChECprintS S
Conditions for ReStart seecceceveccoscscccccscscsccsccocoes
Restart after Step ADOTt cecececevccoevsceccossccscesn
Restart after System Crash ceceeccccssoccoscececcccnce
Restart at MAM Initialization seececccocccccccececcss
Control of Message and Queue Overflow seececeecccscccces
Message overflow 000 00 0 Q000 000 00T 00CRIGSLONOEOINPOINORPNOIEPOCEOSETOTIDPIPOITTITOES
Queue OVEerflow ececeveccsccoseccccssccscoscscoscscncosnccns

structure of an MCS Load"Module e0000000000c0sc0 000000000 S
Monoprocess Load-Module cececccectsccccccccosoccceccncsee
Multiprocess Load-Module cececccccesccsscscacsscscsnssscse

Communication between Local Applications ccececsccoscoscccese
Application-to-Application Communication eceocceccvvccece
Application Communicating with Itself ceceososececcnccnse
Communication between Processes of a Multiprocess

Application 9 000 0000000000000 0000000000000 00 0000000000

Communication between Remote Applications escesesccceccccss
Implementation 000 00000000000 0000000000008000 0000000000000
Nature of Communication sececeeescscccsocsoscsccsccscaces
Interactive Communication cecececccccsosscccsscscscocsce
Unidirectional Communication seececssccccsescescescccsce
Recovery Protocol ceecevececcececscccsccsssscenvecsoscece
Recovery on the Emission Side eceescccevsceccscccccccscecs
Taking ChECprints 0000000000000 000000000C0c0000000000
Sending Control Messages 0000000000000 00c00000c00000 00
Restarting after a Step Abort or SyStem Crash cececesee
Restarting after a Line Failure cesevececoecoccccccccase
Recovery on the Reception Side ecceescscecevesccccoccenee
Taking Checkpoints 0000000000000 0000000000 00000000000
Receiving "Restart" Control MessSagesS seccececevcsecccee
Restarting the Application 0000000000000 00 0000000000000

Executing MCS Applications ©000000000000000c00000000 0000000
Preallocating a Disk Queue File s00e0cce0s0seccsvccesccce
Linking MCS Applications ooooouooocooooo;ooooooooctoooooo

Linking a Monoprocess MCS Load-Module sececcecccceccese
Linking a Multiprocess MCS Load-Module eccoecececcvocoses

viii

2-14
2-14
2-14
2-14
2-14
2-16
2-16
2-16

2-18

2-19
2-19
2-20
2-20
2-21

2=-21

2-23
2-23
2-23
2-24
2-25
2-25
2-26

2-27
2-27
2-27

2-28
2-28
2-28

2-30

2-31
2-31
2-33
2-33
2-33
2-33
2-36
2-36
2-36
2-37
2-37
2-41
2-41
2-41
2-42

2-43
2-43
2-45
2-47
2-47

Section II (continued)

Format and Syntax of $QASSIGN Statement cceescscceccsscscse
Definition of $QASSIGN 0000000000000 000000000000000000000
Rules for Using $QASSIGN 00000000000 c00c0000000000000000 0
Example of Run-time JCL with *QASSIGNS ®ececcscsssccsocoe

Optimizing MCS Applications ©000000000000000000 000000000000
_Issuing RECEIVE (H_RECEIVE) 000000000000 00c00000000000C00
Not Qualified by a '""No Data'" Clause s00c0000c00000000000e
SPECified with a '"No Data'" Clause s 00cscecoscc0sssccse
Issuing ACCEPT (H;MSGCNT) 0000000000000 0c0000000000000080
Handling Several Program-Queues 00000t cssccssecssessessee

Section III MCS Data Formats ©000

Symbolic Representation ©0 000 000000000000000000000000000 000
Control Code in Mark Form 0000000000000 00000000000000000
Character-Encoded Form ©00000000000000000000000000c000000

Transmission MoOdeS esececoscccescoccscsscscscscsccssssossccne

MCS Data PrOCGSSing ©0000000000000000000000°0000006000000000
Processing on Input ©0000000000000000000000000000COGGIOCOCICIOS
Input Marked Mode esecsccesccscccsccoseccoscscscesssccece
Mode Entry 000000000000 00000000000000°000000800000060¢0
Treatment Of Data ceccececsscescoososescecsssoscsoscccs
Input Normal Mode eeceeceveecescesscoescocscesscconsone
Mode Entry 0002000000000 000000000000000000006000000600F0
Treatment of Data 920 0000000000000 00600000000220000000
Input Unedited Mode cocececoccosssccssceosssscsccsosocae
Mode Entry 000 000000000000000000000000000000000000060
Treatment of Data 99 0002000032009 0000000000006000000000
Processing on Output © 00000000000 0000ETP00C00C000CCCICROICETD
Output Normal Mode, TC & TTY Line Procedures sesssescse
Output Normal Mode, BSC2780 & VIP Line Procedures ecoeee
Output Normal Mode, BSC3270 Line Procedure csscssceccccse
Mode Entry 0000000000009 000000000000000800000000000800
Treatment Of Data eecesscecocsscscsscscncececcesesnce
Output Unedited Mode eccesscesccscescecscsscsssssocsscse
Mode Entry 0000000000000 0000020000000006000000000000000
Treatment Of Data eeecceccscocecesccescscscosscssssces

Data Representation 00000000000 000000 0000000000000 00080OCOREGS
Graphic SymbOIS ©00000000000000000000000000000000200000080
Type Of Device soecececsoccnccecrccccscecocscsoscsssssccos
National Language Options 000000000000000000006000000000
Special Characters ceseeccsececsessccesssssccescssescscse
Example of Using Special CharactersS escoceesccesesscsss
Representing Graphic Symbols 6600000008000600000000000000
Direct Use of Graphic SYmbOlS 0000000000006 000000000000
Numeric Values sscceceesossccsesscsoceessesssessscssescoss
National Language Option Using Numeric Value ceesecss
‘Mark FOYmM seecccoeecsssessesssssccsscceeccscsssccscecnoese
Control CodeS ecoccocesecsccscesssecssscssscescscscscscscsse
After Advancing Page 0000000000000 000000000c0c0000000TC
MCS Automatic Editing 0000000000000 0000000000000 00000

ix

LI R I |
Uubhbnunin v n
oo, LN

h)h)h)h)h)?) NN

3-01

3-02
3-04
3-04

3-05

3-08
3-10
3-12
3-12
3-12
3-14
3-14
3-14
3-16
3-16
3-16
3-18
3-19
3-20
3-21
3-22
3-22
3-24
3-24
3-24

3-26
3-26
3-26
3-26
3-27
3-27
3-30
3-30
3-30
3-30
3-32
3-34
3-34
3-36

Section III (continued)

Representing ContrOl COdes ooocoboooooyno‘ool.oootoco'o eo0e0e
Numeric Values 0 00000000000000000000000000000000000000 0

Mark Form 000 0000000000000000000000000000000000000 00080

Section 1V Connection Handling 99 00000000000 0000600000000 60000000000 000 00

Connection Request from a Local Terminal ceccecoceccccnsssse
Manual Logon from a Local Terminal to a Local
Application 000000000000 000000000000000c00000COIGVIOIOOICIROGTD
Logon from an Automatic Dedicated Terminal to a Local
Application 00 000
Logon from an Automatic Terminal to the QMON Mailbox «...
‘Manual Logon to a '"Blank'" Destination or to the QMON
Mailbox 00 8008000000000 00000600000 0600000000000 0000c00000
Logon from one Local Terminal to another Local

Terminal cececceccccoocscecsesccsevsocscsessososcscscccnes

Connection Request from a Local Application ceceeeecsceccnes
Connection Request from a Local Application to a Local
Terminal ooootoccooocooooooocooo.co;oco-oocooooo.colooo
Connection Request from a Local Application to a Remote
Application 2000000000060 000000000000 000000CRIOEOIOENITVIOTOITSTDS
CNC Generation and Link-up 00000 cscssscsssRO00OOsOOOOE
Run-time JCL and Execution ecesecscecscecsscscessccscoce

Connection Request from a Remote Application sseeececccsses

Section V Line ProceduresS ecocseescecccverscesosscsaccsscsssvssnsssccsscensese

BSC2780 Line Procedure cscecccrscccscocscsscssscsscessscsnsnce
Link States €00 00 00000000000000000000000000000000000000 00
Disconnected State eececsvesccsoscessssssocscsscossessvnce
Control State cececevccvosccessessscccesvsrscssscsssscnce
Absence of TransmiSSiOn eesecesccecocsensccsccsesccces
Initialization of TransmisSSion ececcessecescsccoccsce
Message Transfer State secscvesccscscssccscscssoscscccsne
LOgon Procedure cecesevecccoccsccecesccsscsccsscessscsscecs
Encoding Data evevecsvesececsosecssscscscssvsssccscescnnses
TeXt ecevecevscoccececossosoccsescsccoscrcsoscccosccscossoce
Normal Mode ceecsvsesvossesssvrsocccsssoosscccccscnsncsse
Ttansparent MOde ecveoccesccsessscscecorscecsocsasscces
Heading 0600000000000 000000000000000000000000006000000000
General Format of Data Messages ®ve0s0c0000ce0sc0vsc00ces e
Explanation of Control CodeS eceecessecsosscssscccocsone
Message Structure Seen b’y BTNS sc0e0seccsscssnsececvsvcee
Message Structure seen by the Application cececcccocees
Management of Data Transfer by the Application seeecscces
EmisSSion ecececesescccccscsccscccccsccvccosscsosvocccccces
Reception $00000000000000008000000000 0000000000000 0cs00e

Reverse Interrupt .ocooouoooogo'otcoooo.oc’;oonoo.ocooco

ReceiVing RVI cecceccvcscovcccacsscncscesssesossscsscscoas |

Sending RVI I XN EFENNNSENEENNENENENESR EENNENENENENNERNESEERESN N X

Retaining the Communication secececscesessvececescecoces

3-36
3-36
3-38

4-01:. &

4-04
4-04

4-06
4-06

4-06

4-08
4-10

4-10

4-12
4-12
4-13

4-14

Section V

Section VI

BSC2780

Line Procedure (continued)

Contents of User Messages 000000000 0000000000000000CLIOIEGETS
Treatment of Text in Normal Mode coecovecceccocsccscses
Treatment of Text in Transparent Mode ccccevevscssesses
SUDDlOCKS ccsscccoscecoscsssccsecssccoscovsnosssccancene
-Handling of Text on EmiSSion eseeccceccesscccsccccecses
Handling of Text on Reception 0000006000000 00000000000 ¢

TC Line

Procedure coeeeccvsccscocssesscssconesecconscosceses

Message Format as seen by BTNS eccccocesecssccenccccsssaes
Message Terminating Characters seeceecocscesssscsososesse
Erasing FunctionS ececsecseseccssvsceccsscsssssscsscocescscee

TTY Line Procedure @00 P00 PCPP0IPE0E0800000CR00000000S0080GCGSGS
Message Handling on Input $000000000500000000000000000000
Message Handling on Output 0600006000000 0000000000000C00DO0SE

Error

Handling ©00000000000000000000000000000060000606060060

VIP Line Procedure eseecosscscsecosossesssscsescscesescsescnssce
Message Format as seen by BINS cso0ecscossoecosssesccsssscs
‘VIP Header ececcescoceossecosecscssososeccoscsoccscesscssnse
VIP Message TrailersS eeeececescscscoososscessconoscscssassee
VIP Erasing FunctionsS sececececcescscesssenescccsesscccsssce

Programming Terminals ccevececsossosccccscscsssscccscssssssscss

M832/AJ833 2000006020600 0000000000002 6000000020060000°000800800

DKU7007
DTU7171
IBM3270

00003230060 @CAC 00N ISCIOOOOCOOND2000000RIOP0C00CO0ODOS
.0.0.000900..'.....O.‘OO..O...0.0900..0.0..’.900..'0

20009000300 CICORE9000000P0SPCOEIOECOOOOCOISDOEEOIOGSSOS

KDS7255/K.DS7275 P00CISO0COEDEOPOOOPDOSEOC0000006000000COCDSIES
MTS?SOO/MES7508 PP OGOV 000000000000 C2006000%200PDOCOOIOOGSIOSIOSOEIODS

STS2840

2089000 0CIPOP0P090 0039000200000 0306008930000P00CQFIGSEE®IDOS

TN300/TN1200 00000 0OPPOOCIODCOPNIOCIOEO0CPOCESS980020200000080

TTS7800

000908 C00RCREODGCO0CPOOOR0C0000000EO00000300209C063009 00

TTUSlZl}/TTU8126 00090 EOPOETOIGAIGIVOCG000P000C0000B033200006068000

TTU8221

0B PP IPIOOODP00 030300200000 S90DPSO00VNISCECPOIISPROSOCEIONTTES

TTYBB/TTYaS 90909 0SIVOD 000G S 0PSSO0 0OO0OENIROISSISPIOIOCOIS

VIP7001
VIP7100
ViP7200
VIP7700
VIP7760
ViP7802
VIP7804

PEC0 0000000200000 003200200000000000020000300800600600006 00
22309200000 C000000000000000060000020200000200600300000e0
2900000009000 0C00P00 0000000 ROEOPSEIOGBOORPDOESPOSOEOCEOCEOESNEGEDID
9920003090 P000C0CEP0P 0000000006060 00600008032060600000000
2000000606900 3000000000000060000000000600000800006006c0000
P9 020000000090 0000000000200600000000600008000006060800000

0300 000G 9CEOCRAGE0P000066000CO0003000000006030600000

xi

5-18
5-18
5-18
5-19
5-20
5-20

5-21
5-21
5-21
5-22

5-23
5-23
5-24
5-24

5-25
5-25
5-26
5-26
5-26

6-01

6-03
6-05
6-09
6-11
6-21
6-23
6-29
6-31
6-33
6-37
6-39
6-43
6-45
6-49
6-51
6-53
6-57
6-61
6-65

Section VII

Section VII

Queue Maintenance ©9000000000000000000000000000000000000 00000
Input Data 0‘00'00000000000;oo.o.ooo'0000.0...’0000000.0000
Output Data cceesecccsveccscccncscesosecscescosesscccscconss

Commands 900.‘.:-000.0oooocooooocoooooooo.oocoooooc.ooooooo
Symb°1i¢ Convention seeeecescssscsssssssccccscccscssoscnoes
Command Descripticﬁﬁ-’é"‘ln.c070oco.ooooo'aooooooc.ooooooobobn

COMM cevvovcocsccovrsscsccsccccccsscscosscccccoccccecscsss
PRINT cecececcacoscocrsccscoccosccescocccoscocoosccsonces
PURGE cesvscococcscovscsccccessoovessorsesccocscsoccssssss
QSTATUS 0000000 00000000000000000000000000O0CRCOCRGEOIOCEOIOEOCSH
SEND ©0000000000000000000000000000000000 0000000000000 00

STATUSr.0.....C.'O..‘Q.O‘....Q....‘OO.....IQ.Q.........

Executing WAINT 00 0000000000000 0000000060000000000000000000
Run-time PrerequiSites 90000000000 000000000RRCIORCOIOOCROIOIOOIETS

Run-time JCL ..Q'.............OOQ......0........"..‘.0..’

Dynamics of Communicafiohs eseecssesssssssssnececsesssnccrers
Execution Chronology of the Software Components sesceeseccee
Levels of Simultaneities for CommunicationsS eceecececccecscone
Optimum Priorities for Software Components seececccccocsccses

Data Flow during Message EXChange ss0cevscscssco0cscrrecres
Example of Exchange between an MCS Application and a
Terminal USing a MMOTY"QUSUQ 60000 ec000000000000000 000
Example of Exchange between an MCS Application and a
Terminal USing a Disk-Queue se0000cs0secsccssssese0000 0
Example of Exchange between a VCAM Subsystem and a

Terminal seecececccccccnsncessscrocccsosesssonccsscnscanses

Allocating Memcry RESOUTCES ceeesesscnccsscscsscscccassoncse
AllOCQting Memory to MCS Applications essescsovesccrvrne
EstabliShing the DWS SiZe ececveossescscoscccesccrsosces
Guaranteeing Memory ©e0e00 0000000000000 COIOCIOIGIEOIRNROEOROIOITOTC
Allocating Memory to MAM and VCAM cececocesssccovscsccscsse
Allocating Memory to BTNS, FNPS and QMON es0s0cccencvcnse

xii

7-01
7-01
7-01

7-02
7-02
7-03
7-04
7-05
7-07
7-08
7-11
7-14

7-15
7-15
7-15

8-01
8-01
8-03 |
8-05
8-06

8-07
8-08

8-09

8-10
8-11
8-11
8-11
8-12
8-12

Appendix A

Appendix B

"Appendix C

Appendix D

MCS Application Example 0000000000 0000000000000000000006000000
MCS Application Example in MCS COBOL ccececceccssccccscacocs
MCS Application Example in GPL cescscecoseccccecccscccsccss

QMAINT Sysout Report 9000000000000 000000000000000600000000000F
Header Line cceccesccecvosccecoscsceossossscssocosscsssnnces
Header Banner cccecocsccessocsccsccocecsesesscosecoseescsscsecsss
Error Summary 29000000000000600000000000000000000000006000 00
QMAINT Run=time JCL soccocso0ceosecsecscesscescssccosccscssccae
QMAINT Execution Report: 0000000000000 00000000060000000000080

MAM and QM‘AINT Error Messages $0000000600000000000000000000080
Format of Error Messages 065000060000000000000000006000000000
MAM JOR Error Messages ©00000000000000000080000000000000C0C0
Return CodeS cecevcccseseseoncssecesseeosesssscossensssesssnse
QMAINT JOR Error Messages 200080000000000000000000060000600000
QMAINT Sysout Error Messages ©00000000000000000000000000008

Communications Status Key Conditions ecescccesescecseescccscoss

xiii

mw??ﬁww
gOOOOO
WRNN P

[]
:88000

N p=d 2

GOOC")OO

D-01

SECTION I

INTRODUCTION

MCS applications, written in either MCS COBOL or GPL, require access through
queues to the communications network. These queues are defined by the user.

In this respect, such user-defined applications differ from the communications
services, collectively termed VCAM subsystems. VCAM allows direct communication
between these subsystems and terminals, and between the subsystems themselves.
The user is not concerned with queues.
The user interface to the communications network is described in terms of

. networking environment

« communications components

- MCS

« QMAINT,

ACCESS TO MCS OVER FNPS/DN7100

The DN7100 software release concurrent with Release V1 of GCOS7 is DNS B2
(V2.6). Configurable connections over the DN7100 supported for the current re-
lease are as follows, :

The DN7100 terminal manager supports both TWA and TWS session protocols, the
latter allowing VIP KCT terminals, which include QUESTAR, to connect over the
DN7100 to access MCS in the DPS 7 host.

Session control in both the DN7100 and the DPS 7 supports TWS protocol, there-
by allowing the link-up of MCS applications residing in the DPS 7 host (local)
and in its configured remote systems.

ACCESS TO MCS OVER BTNS/URP

For the secondary network, BTNS allows all standard terminals of the differ-
ent line procedures to access MCS in the DPS 7, For as long as the line pro-
cedure is supported in the DPS 7, there a2re no connection.restrictions.

For the primary network, the TNS function of BTNS/HDLC allows the link-up of
MCS applications residing in the DPS 7 satellite (local) and in its configured
remote systems.

1-01

Interlinked Systems
in 64/DPS 7
Networking Environment

local
secondary
network

DCU7010

ViP

DSA
system

TCU7022.

QUESTAR

000

.. network
'« private

DN7100

FNPS

64/DPS 7

64/DPS 7
hﬁés afpiic&tiéns‘
comunscations s
QMON
VCAM
BTNS TNS FNPS
BTNS | HDLC PSI
DN7100

secondary
network

URP

TNS

64/DPS 7

1-02

NETWORKING ENVIRONMENT

GCOS software allows remote users, such as terminal operators and applications loc-
ated in other systems, to access

. user-defined applications which can be
- MCS applications which are the subject of this manual
- transaction programs, written in either COBOL or RPG, under TDS control
. GCOS communications services, otherwise known as VCAM subsystems, which are
- RBF6 / FTF6, Remote Batch Facility / File Transfer Facility from/ to the Mini 6
- DJP / DFT, Distributed Job Processing / DSA File Transfer facility l
- IOF including the "pass-through" function operating under IOF
- TDS, Transaction Driven Subsystem
- CARDLESS, also known to the system as READER
- TILS, Transactional and Interactive Load Simulator

- OLTD, On-Line Tests and Diagnostics.

From a transmission standpoint, access to GCOS is through
. either the Data Communications Controller of the URP
o or the DN7100 functioning as a front-end processor.

In both cases, the URP and the DN7100 handle communications over secondary networks
composed of local; leased and switched lines connected in a tree structure.

For the current release, the primary network can be configured with the DPS 7 func-
tioning

. either as the "host" accessing the remote systems through the intermediary of its
front-end processor, the DN7100

. or as the '"'satellite' accessing the remote systems directly through its URP.

The URP, in conjunction with TNS, a function of BTNS/HDLC, allows access to

. the TRANSPAC secondary network and the BTNS local network

. and, a DSA primary network linked either by virtual circuits over TRANSPAC or by
point-to-point HDLC lines.

The DN7100, in conjunction with FNPS, can handle communications over

. secondary networks, like those supported over the URP

. and, such types of primary networks as, DSA high level networks and public net-
works; such as TRANSPAG,

The diagram opposite shows the extent of the communications interfaces in the DPS 7

networking enviromment.

For the network control operator's interface with the GCOS communications system,
see the Network Control Terminal Operations Manual.

For the system and operations interfaces for terminals connected through the BTNS/
URP secondary network, including TRANSPAC, see the Terminal Operations Manual.

1-03

p

COMMUNICATIONS COMPONENTS

GCOS communications architecture is structured around the following three main
DSA layers, namely

In

the transport/mnetwork - link layer(s) occupied by communications management
which comprises the following modules

- BTNS for managing the terminals“in' the URP local network

- TNS, a function of BTNS/HDLC
« for managing the terminals in the TRANSPAC/URP secondary network accessed
either directly over synchronous links or over PAD
. and, for providing the direct interface over the DCC of the DPS 7 to the
primary network thereby enabling the DPS 7 to function as a '"satellite"

- FNPS for interfacing at transport level with the DN7100 as front-end proces-
sor to the DPS 7 thereby enabling the DPS 7 to function as a "host'" in the
primary network :

the session layer occupied by VCAM for providing the interface between the
communications management on the one side, and the application layer on the
other side, such as

- handling connection and dialog functions

- and, allowing direct access to terminals and applications without their be-
ing aware of the communications path or mechanism used for establishing
their connection

the application layer occupied by

- communications services, otherwise known as VCAM subsystems, which include
MCS, being QMON operating with MAM

- and, user applications which execute under either MCS or TDS, namely
o MCS applications, which are the subject if this manual
« TDS transaction programs
. and, batch entries to TDS over the VCAM interface.

"Schematic Interfaces of DPS 7 Communications Components!'',

communications management and VCAM are shown attached together since they com-
plement each other's functions to operate jointly as the network management
component

ADM/NASF (ADM file server) are mutually exclusive to each occurrence of the
FNPS service corresponding to the DN7100 configured on the DPS 7 system, that
is, for a given DN7100 either service functions are performed on it through
ADM/NASF (ADM file server) or normal operations are executed on it when its
associated FNPS service is started

the NASF component providing LOG and ASF services functions as follows

- the LOG service functions like any of the other communications services,:
such as TDS or MCS or IOF

- the ASF service, however, functions as a communications process group which
includes all components of communications management and QMON

the NAD status table is a list of entries for each communications process
group

tables and pools which can be defined by the user through the CNC utility are
shown where appropriate.

1-04

Schematic Interfaces
of DPS 7
Communications Components

MCS
- application
1

o*s

200000

MCS
> application
n

1-05

MESSAGE CONTROL SYSTEM

MCS

MCS

is a GCOS communications service whose functions. are provided by

MAM which interfaces user-defined applications written in MCS COBOL or GPL
with MCS queues '

QMON which ensures the interface between the queues and VCAM, being the com-
mon unique interface between all GCOS communications services and remote u-

sers.
allows the MCS application to communicate with
terminals connected over secondary networks such as
- the URP local and TRANSPAC/URP secondary networks
- the FNPS/DN7100 secondary network

other MCS applications located in either the same DPS 7 or in other DPS 7's in
the following types of networks

- either through the BSC2780 link over the BTNS/URP secondary network

- or over the primary network accessed by the DPS 7 local system through ei-
ther the TNS/URP interface or the FNPS/DN7100 interface, see page 1-01.

Details of connection handling are treated in Section IV.

Message Access Method

MAM

provides such functions as,

compatibility through MCS with standard communications language elements,
namely, [$H_Jcp, [$H_]ENABLE, [$H_]D1SABLE, [$H_]SEND, [$H_]RECEIVE and
ACCEPT/$H_MSGCNT verbs, shown in the form of MCS COBOL and GPL

access to memory and disk queues, with 4 levels of queue available for input
checkpoint/restart capability for disk queues

allocating queues to the user application

message editing according to the terminal type

end-to-end protocol between the terminal operator and the user applicationm,
as provided either by control messages generated by MAM or by the communica-
tions status generated by BTNS

communication between process groups, that is, communications load modules,
and between processes, that is, tasks

multitasking within the user application from 1 through 6 user processes.

A detailed description of MCS is given in Section II.

1-06

Queue Monitor

The QMON service workstation is the set of all user-mailboxes handling MCS queues,
each queue having its own mailbox and bearing the same name.

The QMON service mailbox is known to GCOS by the system name QMONMBX.

QMON is in charge of establishing the logical connection
o between the application-mailbox, associated with the program-queue for input

o and the terminal-mailbox, associated with the terminal-queue for output.

Once the connection is established, data exchange takes place as follows,

o QMON receives the data from the terminal-queue and forwards it to the corres-
ponding mailbox

. data forwarded to the application-mailbox is placed by QMON into the program
queue.
In addition to connection handling, QMON performs other functions, such as,

o the transformation of data into and from mark form representation according
to the transmission mode options specified for the terminal-queue

o automatic editing on messages sent to the terminal-mailbox according to the
editing options specified for the terminal-queue, and which affect

- message length, beyond which the message is truncated
- blocking by line and by page.
Transmission mode and editing options specified for the terminal-queue at network

generation through the QUEUE command can be overridden by the [$*$ MTE network
control or terminal operator command during the communications session.

MCS Data Formats

MCS provides the means of representing data in a number of ways, which frees the
user from the constraints of terminal hardware capability, for example, the user
can specify lower-case letters through symbolic representation, although the ter-
minal that he uses for data entry does not have the lower-case option.

In addition, the ability to encode control codes in mark form enables the MCS ap-
plication to deal with the appropriate functions to be generated for a given ter-
minal.

Data processing by MCS is treated in detail in Section IIIL.

1-07

Programming Terminals

Terminals operate on a line procedure, which is used to establish transmission
protocols over the link.

Transmission protocols ‘are seen only at system level and do not affect the ‘user.

User visibility in managing terminals of the network is limited to programming
their control codes by which they function.

In Section VI, "Programming Terminals', the control codes are given in mark form
instead of numeric values, for ease of mnemonic recognition and arrangement in
alphabetical order.

QUEUE MAINTENANCE

QMAINT is a system utility used exclusively for MCS applications for executing
maintenance actions on memory and disk queues.

It performs such functions as,
o printing the contents of the queue
o displaying the status of the queue
« purging the queue
o filling the queue with defined data.

For details of QMAiNT, see Section VII and Appendix B.

1-08

The

MCS
‘MCS

SECTION II

MESSAGE CONTROL SYSTEM

Message Control System is the interface
between MCS applications and terminals accessed over BTNS and FNPS

between MCS applications residing in the local and remote systems accessed
either through FNPS or TNS, a function of BTNS/HDLC.

functions are provided by MAM and QMON, as follows,

MAM provides a user-queue access method shared at system level allowing the
exchange of messages to and from the terminals or applications

QMON ensures the interface between MCS queues and the basic commnnicatlons
functions provided by VCAM.

applications can be written in either MCS COBOL or GPL.
is described in terms of

communications elements

queue correspondence

device handling and message editing

dialog handling

data integrity

structure of a MCS load module

communication between local applications

communication between remote applications

executing MCS applications.

2-01

COMMUNICATIONS ELEMENTS

The communications elements are

. the communications description area of the application

« the communications verbs

. the message delimiters.

Communications Description Area of the Application

The CD specifies the interface area between MCS and the user application.

These interface areas contain information about the queues, terminals and mess-
ages on input as well as on output.

The MCS application must have at least one CD area either for input or for out-

put.

If the application requires messages to be sent and received, then at least two
CD areas must be present, one for input and the other for output.

CD entries are defined as follows,

« in MCS COBOL, in the Communication Section

. in GPL, by the system primitive H_CD.

Communications Verbs

The 5 following communications verbs provide the user interface between MCS on
the one hand and either the application or the terminals on the other.

The status of the MCS interface is denoted by key codes described in Appendix D.

‘ GPL
MCS COBOL primitive function

ACCEPT H_MSGCNT ascertains the number of messages in a symbolic queue
identified by the symbolic queue in the input CD area
of the application.

DISABLE H_DISABLE | terminates the logical comnection with specified sour-
ces or destinations for data transfers to and/or from
the terminals.

ENABLE H_ENABLE establishes the logical connection with specified
sources or destinations for data transfers to and/or
from the terminals.

RECEIVE H_RECEIVE | requests a message from a specified symbolic queue
jdentified by the symbolic queue in the input CD area
of the application.

SEND H_SEND directs a message to a specified symbolic queue iden-
tified by the symbolic destination in the output CD
area of the application.

2-02

Message Delimiters

A message is delimited by the END KEY which has the following values
o "1" for ESI, "end-of-segment'" indicator
. "2" for EMI, '"end-of-message' indicator

. 3" for EGI, "eﬁd-of-group" indicator.

The message delimiter is coded in its mnemonic form as follows

. in MCS COBOL, by the statement SEND WITH { ESI | EMI | EGI }

. in GPL, by the primitive $H_SEND ENDCHAR= { ESI | EMI | EGI }

The following examples denote the way in which message delimiters are applied,
namely,

» from the terminal to the application, in input mode

« from the application to the terminal, in output mode

. communication between applications.

FROM THE TERMINAL TO THE APPLICATION

° For a non-BSC terminal, the message is delimited by an END KEY value of "3" or
EGI.

° For a BSC terminal,

. each block is terminated by the control code "ETB', 'end-of-transmission-
block', and is treated by the application as being the END KEY value of "2"
or EMI

o the final block terminating the message text is delimited by the control code
WETX", "end-of-text', and is treated by the application as being the END KEY
value of "3" or EGI

. where the message is of ''zero' length, the END KEY value can be either "2' or
"3"-

In this case, after issuing a RECEIVE (H_RECEIVE), the programmer should test
the values of the following parameters before deciding if there is a message
to be processed, namely,

- STATUS KEY
- TEXT LENGTH
- END KEY.

2-03

FROM THE APPLICATION TO THE TERMINAL

" 9For a non-BSC terminal,

. message segments may be indicated within the message‘by an END KEY value of
"i" or ESI, in which case, each indicator appears on the terminal as a "new-
line" or '"line-feed" sequence

» the message can be delimited by an END KEY value of '"2" or EMI, or, "3" or
EGI

« where the QUEUE is declafed with the TWA option at network generation, the
END KEY value of "3" or EGI is necessary to allow for dialog.

% For a BSC terminal,

« the message is transmitted in blocks, the maximum size of which is dependent
on the type of the receiving terminal

. a SEND (H_SEND) with EMI results in the transmission of a data block termina-
ted by the control code "ETB" .

o« a SEND with EGI results in the transmission of a data block terminated by the
control code "ETX",

COMMUNICATION BETWEEN APPLICATIONS
The ESI, EMI and EGI delimiters are transmitted by MCS and converted into the ap-

propriate END KEY values of '1', '"2" and "3" respectively, in the destination CD
area when a RECEIVE (H_RECEIVE) is issued.

2-04

QUEUE_CORRESPONDENCE

A queue is a container in which messages are stored and from which messages can
then be retrieved for later processing on a first-in-first-out basis.

Depending on application requirements, the queue can be specified either in main
memory or on a disk file.

Queue correspondence involves
o the definition of the physical queue
« the definition of the symbolic queue
. relating the physical queue to the symbolic queue.

Physical Queues

Physical queues are defined by QUEUE commands at CNC generation, and are identi-
fied by external-queue-names.

The physical queue can be
» either a terminal-queue

« Or a program-queue.

TERMINAL QUEUE

The terminal-queue is an output queue through which a message is sent to the

terminal.

The term '"'terminal-queue" throughout this manual refers to one of the following,
o the name of the terminal declared in the TERMNL command for a local terminal

. the name of a DSA-terminal-queue of the format <system-name.mailbox-name>
declared in the QUEUE command for an application connected either over the
secondary network or to a remote System

« the name of a userid-queue declared in the QUEUE command for a terminal not
deciared with the AUTO option in the TERMNL command.

PROGRAM QUEUE

The program-queue is an input queue through which a message is sent to the MCS
application.

The name of the program-queue is the name of the application specified during
the log-on of the termimnal.

2-05

Symbolic Queues

Symbolic queues are logical queues defined as follows,
. in MCS COBOL, 'in data-name-1 of the CD area (input and output)
. in GPL, by QUEUE_NAME in either H_CDIN or H_CDOUT.
The queue can be
o either input, for message reception
o or output, for message dispatch.

In the case of the symbolic input queue, further partitioning into up to 3 levels
of subqueues can be done as follows,

« in MCS COBOL, by data-name-2, data-name-3 and data-name-4 of the input CD area
« in GPL, by SUBQUEUE_NAME, SUBQUEUE2_NAME and SUBQUEUE3_NAME in H_CDIN.

Relating Physical Queues to Symbolic Queues

The $QASSIGN statement defines the symbolic queue or subqueue and establishes
its correspondence with the physical queue identified by its "external-queue-name"
in the QUEUE command at network generation, this correspondence being unique.
The $QASSIGN statement also defines the processing mode for each type of queue,
« symbolic input queues
. Symbolic output queues
. symbolic input/output queues.

SYMBOLIC INPUT QUEUES
A symbolic input queue must be defined for each program-queue from which messa-
ges are to be received by the application.
The IN parameter of the $QASSIGN statement serves
o to identify the symbolic queue as an input queue
. to allocate the program-queue to the current step until step termination.

No other MCS application may issue a RECEIVE (H_RECEIVE) to the program-queue
thus allocated.

2-06

SYMBOLIC OUTPUT QUEUES

Each terminal to receive output has an associated terminal queue for which a
symbolic output queue is defined.

The two ways of defining the symbolic output queue are

o explicitly, through the $QASSIGN statement
o implicitly, at terminal log-on.

Explicit Definition :

The OUT parameter of the $QASSIGN statement serves
« to explicitly identify the symbolic queue as an output queue
o to allocate the terminal queue to the current step until step termination.

The terminal is known to the MCS application exclusively by its explicitly de-
fined symbolic output queue.

When a message is received from this terminal, the symbolic source field of
the input CD (H_CDIN) is updated with the symbolic output queue-name by MCS.

No other MCS application may issue a SEND (H_SEND) to this terminal queue and
the terminal cannot be connected to another MCS applications

Implicit Definition :

-The symbolic output queue is defined implicitly through the log-on procedure

of the destination terminal.

When a message is received from the terminal, the symbolic source field of the
input CD (H_CDIN) is updated by MCS with the name of the associated terminal
queue.

The symbolic source name will be used as the symbolic output queue to which
messages are sent.

This method cannot be used if no message is sent from the terminal to the ap-

plication unless the program-queue is defined with the BREAK option, in which

case, the logon of the terminal is notified to the application with the status
key 9D upon RECEIVE (H_RECEIVE).

SYMBOLIC INPUT/OUTPUT QUEUES

A symbolic 1/0 queue is a program queue and does not have subqueues.

The INOUT parameter of the $QASSIGN statement serves

. to identify the symbolic queue as an input/output queue
o« to allocate the program queue to the current step until step termination.

No other MCS appiication may issue a SEND (H_SEND) or RECEIVE (H_RECEIVE) to the
program queue thus allocated.

2-07

Example
of
Queue Correspondence

terminal program ’ symbolic symbolic
queues queues subqueues - queues
application
, TELE
== — s
T1 ' - :
q—‘z__ [1 [I™] f---- __INQUIRIES INPUT
T2 .
¢« - L_Rsv | g---- + RESERVATIONS|
<t—__| BRID | ~---cemmmmmmomcbomocdomceaet PR1
PRTD , '
<t— PRTN . | --=-c-commmmmmofomood e PR2
PRIN
application
com
q Z | Tn I
Tn . [_sToc] t----p--=---- R INPUT
, e I T B B PR
PRTH -

Application TELE queue relationship

o each of the program-queues is related to a corresponding symbolic sub-
queue, i.e., ORD to ORDERS, INQ to INQUIRIES, and RSV to RESERVATIONS,

o the symbolic subqueues ORDERS, INQUIRIES and RESERVATIONS are associated
with the symbolic queue INPUT which means that when a RECEIVE (H_RECEIVE)
is issued to INPUT, its subqueues are scanned until a message is found in
1 of them, e.g., INQUIRIES, if say, either T1 or T2 is logged on to INQ.

« the symbolic output queues PR1 and PR2 are related to their respective
terminal-queues PRTD and PRTN associated with printers.
Application COMM queue relationship

o the direct correépondence of the program-queue STOC to the symbolic queue
INPUT means that input is received from any terminal logged on to STOC

« the symbolic output queue PR is related to the terminal-queue PRTH asso-
ciated with a printer.

2-08

DEVICE HANDLING AND MESSAGE EDITING

An MCS application is.capable of such control functions as,
. sending control messages
« being notified of status changes

. controlling data flow.

Control Messages

Control messages are commands or status indicators affecting the MCS applica-
tion-to-terminal interface, and can be passed between the application and QMON.

The application views the command like any other message that it sends to the
terminal.

The format of the command is :

><CTLxxx, where xxx is a 3~-character mnemonic variable for the command

The types of commands are,
.« BRK : interrupt request
o CNT : 1indicates the terminal has been connected
. DIS : indicates the terminal has been disconnected

o PRG : application request to QMON to purge all existing messages in a ter-
minal queue;
this command is given top priority in the queue by QMON

« RVI : application request to issue a ''reverse interrupt' to a BSC line

procedure terminal related to the specified output queue;
this command is stored in the queue and processed in sequence

« SHT : request to application to shutdown.

When a control message arrives in the destination queue, the count of available
messages in the queue is incremented by 1.

The message type is detected by the '"receiver' and reflected by a specific val-
ue of the STATUS KEY code.

On completion of a RECEIVE (H_RECEIVE), both parameters TEXT LENGTH and END KEY
will be 0.

The particular use of the commands is as follows,

o BRK, CNT and DIS commands should only be used for terminal simulation pur-

posesSe
These commands when sent to the terminal will be received by the terminal

but will have no effect,
The application, on receiving these commands, will be notified by the cor-
responding STATUS KEY code in the input CD area

s SHT command can also be sent by the BT network control command of the form-
at : BT program-queue-name ><CTLSHT.

2-09

Status Changes

If the program-queue has been defined with the BREAK option in the QUEUE command
at CNC generation, 'status changes of the terminal or of the system will be pass-
ed to the application through the STATUS KEY of the input CD area as a result of
a RECEIVE (H_RECEIVE).

The symbolic source identifies the related terminal.

If BREAK has not been specified, then the application will not be notified of a-
ny events occurring when a RECEIVE (H_RECEIVE) is issued.

STATUS KEY codes are explained in detail in Appendix D.

Data Flow Control

The control of data flow between MCS and the terminals is through the ENABLE
(H_ENABLE) and DISABLE (H_DISABLE) verbs functioning as follows,

+ input without terminal
o input with terminal

. Outputo

INPUT WITHOUT TERMINAL

° Enable Input :

It is coded as follows,
. in MCS COBOL, by the statement ENABLE INPUT
« in GPL, by the primitive $H_ENABLE INPUT.

The related program-queue specified in the input CD area is '"enabled", i.e.,
+ connection requests from the terminals can now be accépted

« terminals defined with AUTO and ASSIGNed to one of the queues or subqueues
will be immediately connected when the RT network control command is issu-
ed, if required.

° Disable Input :

It is coded as follows,
. in MCS COBOL, by the statement DISABLE INPUT
. in GPL, by the primitive $H_DISABLE INPUT.

The related program-queue specified in the input CD area is "disabled'", that
is,

. no more connections to the queue can be accepted
. any terminals previously connected are now disconnected.

The application may continue to empty the queue through RECEIVEs (H_RECEIVEs)
and when the queue is empty, the STATUS KEY is flagged as 'disabled'.

2-10

INPUT WITH TERMINAL

° Enable Input with Terminal :

It is coded as follows,
o in MCS COBOL, by the statement ENABLE INPUT TERMINAL
o in GPL, by the primitive $H ENABLE INPUT TERMINAL.

The terminal whose name is specified as the symbolic source in the input CD a-
rea can start or resume input to the queue to which it was connected.

° Disable Input with Terminal :

It is coded as follows,
- in MCS COBOL, by the statement DISABLE INPUT TERMINAL
o in GPL, by the primitive $H_DISABLE INPUT TERMINAL.

The terminal whose name is specified as the symbolic source in the input CD a-
rea can no longer transmit in input mode.

OUTPUT

Y"Enable output' and "'disable output" only apply to terminal queues.
If either verb is applied to program-queues, no action results.

° Enable Output :

It is coded as follows,
+ in MCS COBOL, by the statement ENABLE OUTPUT
o in GPL, by the primitive $H_ENABLE OUTPUT.

The related terminal-queue specified in the output CD area is ''enabled", that
is, output flow will be resumed to the terminal whose name is specified in the
~output CD area.

© Disable Output :

It is coded as follows,

« in MCS COBOL, by the statement DISABLE OUTPUT

o in GPL, by the primitive $H DISABLE OUTPUT.
The related terminal-queue specified in the output CD area is "“disabled', that
is, ' ;

. output flow from the queue to the terminal is suspended

» the application may continue to send messages to the queue.

2-11

Examples

of

ENABLE

[— .
—={

ENABLE INPUT

ENABLE INPUT with input CD area
specifying the related program
queue QA.

The queue QA is '"enabled", whereby
» connection requests from termi-
nals to QA and its subqueues

are accepted

. terminals with AUTO and ASSIGN
are immediately connected to QA
and its subqueues when the RT
network command is issued.

A A LA

LR L I B N N

MCS

\

- @

ENABLE INPUT TERMINAL

ENABLE INPUT TERMINAL with input
CD area specifying the terminal Tn
as the symbolic source.

The terminal whose name is speci-

fied as the symbolic source in the
input CD area can start or resume

input to the queue QA to which it

was connected.

Other terminals continue to remain
in their original states.

—— T1 queue

T2 queue

MCS

T3 queue

A
't

— Tn queue

ENABLE OUTPUT:

“"ENABLE OUTPUT with output CD speci-

fying the terminal Tn as the desti-
nation of the output flow from its
related queue.

Data flow ‘can now resume from the
queue specified in the output CD a-
rea to its related terminal.

Both the terminzl and its related
queue bear the same name, this cor-
respondence béing unique.

2-12

Examples
of
DISABLE

MCS

QA

DISABLE INPUT

DISABLE INPUT with input CD area

specifying the related program
queue QA.

The queue QA is '"disabled", where-

by

» NO more connections to the
queue can be accepted

» any terminals previously con-
nected are now disconnected.

MCS

DISABLE INPUT TERMINAL

DISABLE INPUT TERMINAL with input
CD area specifying the terminal Tn
as the symbolic source.

The terminal whose name is speci-
fied as the symbolic source in the
CD area can no longer transmit in
input mode to the queue QA to
which it is connected.

Other terminals continue to remain
in their original states.

© 09020900060

A

MCS

T1 queue
T2 queue

T3 queue

X\Tn queue

DISABLE OUTPUT

DISABLE OUTPUT with output CD spe-
cifying the terminal Tn as the
destination of the output flow
from its related queue.

The related queue Tn is 'disabled"

. output flow from the queue to
the terminal is suspended

o the application may continue to
send messages to the queue.

2-13

DIALOG HANDLING

Dialog between the application and the terminal is handled according to the type '
of application, namely,

« non-interactive-applications

« interactive applications.

Non-interactive Applications

A typical non-interactive application invélves the following stages,
'+ data entry
o batch processing
. data distribution.

These stages are independent of each other, and the only relationship they bear
to each other is that they are consecutive in the order shown.

 The dialog between the terminals and their related queues, and between the ap-
plication and the data entry queues is not restricted, that is, data flow is
permitted in either direction.

DATA ENTRY
The application may be absent at the time when data is collected from the termi-
nals into the program-queues.

Only the communications components, BINS or FNPS, and QMON, need be present in
system and the terminals need be connected to the program-queues, for data entry
to take place.

In order to allow the terminal to enter data without the application being pre-
sent, the program-queue must be defined as a data entry queue, that is, the TWA
option must be omitted from the QUEUE command at CNC generation.

BATCH PROCESSING
When all the data has been entered, the application can begin processing during
off-peak hours, say, late at night,.

Processing involves updating files and preparing output data to be placed into
the terminal queues.

'QMON plays no part in batch processing and is therefore absent from the system.

DATA DISTRIBUTION

QMON empties the output data in the terminal-queues to the respective terminals
when these terminals are activated.

The application plays no part in data distribution and is therefore absent from
the system.

2-14

Example
of
Non-interactive Application

@9 Q9o 9020

=)
=)

WA

DATA ENTRY

MCS

e

data entry queue

All terminals can enter data at will
to the data entry queue which is a

N\

program-queue declared without the
TWA option.

Only BTNS or FNPS, and QMON need be
present in the system

The application does not need to be

terminal X .
e queue present in the system since the data

entered is not immediately process-
ed.

data entry queue

BATCH PROCESSING

RECEIVE

-

e~y
A

terminal queue

Data collected from the terminals
previously entered at the 'data en-
try' stage can now be processed at a

ettra time when the terminals have ceased
MCSy | data| transmission.
appl base Processing involves updating files

and preparing output data to be put
into the terminal queues for later
dispatchs

QMON is absent from the systems

3
o

3
(X)

g seccveecos 8

F 7V

A\

N

MCS

DATA DISTRIBUTION

data entry queue

When the terminals are activated,
QMON outputs the results to the res-

pective terminals,

The application plays no part in da-
ta distribution and can therefore be
absent from the systems '

N

v,

The dialog between the terminals and

terminal queue their queues, and between the appli-

cation and.the data entry queues is
not restricted.

2-15

Interactive Applications

Typical interactive applications are either transactional or inquiry-response
applications. ' ‘

The TWA option of the QUEUE command when declared -at CNC generation for the ass- -
ociated queue determines the way in which the dialog is handled by the system

An example of an MCS application testing the TWA option is given in Appendix A.

WITH TWA OPTION

The program-queue defined with the TWA option enables dialog between the appli-
cation and the terminal on a message basis.

On connection, the terminal has the '"turn", that is, the right to transmit.

A message transmitted by the terminal is delimited by the END KEY value of "3",
denoting EGI.

The system, on detecting EGI in the terminal message, then transfers the ''turn"
to the application.

The application can then transmit using the SEND (H_SEND) verb.
Transmission by the application is performed as follows,

. several messages delimited by the END KEY value of "2", denoting EMI, can be
transmitted and the '"turn'" is still retained by the application

. a message delimited by EGI transfers the '"turn" to the terminal.

The terminal's "turn'" can be overridden at any time by the application.

WITHOUT TWA OPTION

The program-queue defined without the TWA option enables the terminal to trans-
mit messages at will.

In this case, the program-queue acts like a data entry queue.

2-16

Example of

Interactive Application

with TWA Option

o _at] PROLL |
/| s
CS \'4
< |m mcg)
Tn queue
PROLL
SEND
Tn MCS with MCS
EMI appl
1o queue
PROLL
SEND
<]\ [Mcs with MCS
\\\\ ECI appl
\\\\
Tn queue

Terminal Tn enters a message
into the program-queue PROLL
which has been declared with
the TWA option at CNC gener-
ation.

The message is delimited by

an END KEY value of "3" de-

noting EGI.

The message is RECEIVEd by
the MCS application for pro-
cessinge

In the meanwhile, the '"turn®
is given to the application.

After the MCS application
has processed the message,
it can SEND several messages
delimited by EMIs to the
terminal queue Tn.

For as long as messages from
the application are delimit-
ed by EMIs, the application
retains the "turn'.

Messages from the terminal
are discarded.

MCS starts transmission to
the terminal Tn.

The last message in the
stream to be sent by the ap-
plication is delimited by
EGI.

Although EGI transfers the
“turn'" to the terminal Tn,
the application can still
override the terminal.

When the terminal Tn receiv-
es the last message, it can
then enter another message
to the application.

1f overridden, the terminal
Tn can transmit later.

2-17

DECLARING AN APPLICATION "AUTOMATIC'

An automatic application is one which is-éutomatically'started‘ ,

. if MCS finds that its associated queues contain data still to be processed

. and, if the application, for whatever reason, is no longer executing.

The fgéility'for declaring an application "automatic" is indicated at network gen-
eration by both the following CNC options,

. the INIT parameter of the QUEUE command specifying the name of the application

. and, the APPLIB parameter of the GENQMON command specifying the cataloged lib-
rary of application JCL subfiles, of which the referenced application is a mem-
ber. ‘

At run-time, if any queue of such an application declared "eutomatic! contains da-
ta for processing, and if the application has stopped executing, QMON

o identifies the application of the queue concerned from the argument of its INIT
parameter

. retrieves the JCL subfile of the referenced application from the cataloged lib-
rary specified as the argument of the APPLIB parameter

. and, starts the application.

The advantages of declaring an application "automatic' are that ,
. the application does not depend on the system console operator to be submitted

. and, even if the application were abnormally terminated either through a TJ sys-
tem console command or as the result of a system failure, the application will
be automatically resubmitted without further intervention of the operator.

The "automatic" facility is useful for an '"interactive' application which must be
present in the system for data to be entered and dispatched.

2-18

DATA INTEGRITY :) o

The safeguard features in MCS to protect against the loss of data are,
« retention of messages in terminal-queues
« retention of messages in program-queues
» checkpoint and restart facility

» control of message and queue overflow.

Retention of Messages in Terminal Queues

When an MCS application issues a SEND (H_SEND), a STATUS KEY assigned to the act-
ivity is set to a value which can be tested by the user as follows,

o« if the STATUS KEY denotes an incident, the message is not released

» if the STATUS KEY denotes normal conditions, then the message is released to
the terminal queue under the charge of the systems

When the receiving terminal and its related communications path, over either
BTNS or FNPS, are active, MCS attempts to transmit the message from the terminal
queue to the corresponding terminal in the following way,

o if transmission is successful, the message is deleted from the terminal
queue ’

o if transmission is not successful, several retries are attempted, according
to the number specified by the user

. if transmission is persistently unsuccessful, the terminal queue is 'closed"
but the message is retained in the queue.

The message is retained in the queue until one of the following occurs,

o it is ultimately and successfully transmitted along the communications path
to the terminal

. a shutdown is effected, whereby the message will be lost if the terminal
queue is a memory queue or disk queue specified without the RESTART option

» a CNC step is executed, in which case, the message will be lost, even if the
terminal -queue is specified with the RESTART option

o ISL with REFORMAT option is performed, in which case, the message will still
be lost, even if the terminal-queue is specified with the RESTART option.

Message retention in terminal-queues applies under such conditions as,
QMON "'abort'

+ system crash.

2-19

Retention of Messages in Program-Queues

A message which is Successfuily placed in a program-queue is retained until one
of the following events occurs, '

« it is successfully retrieved by the application for processing

« a shutdown is ‘effected, whereby the message will be lost if the program-
queue is a memory queue or a disk queue specified without the RESTART option

« a CNC step is executed, in which case, the message will be lost, even if the
program-queue is specified with the RESTART option

o ISL with REFORMAT option is performed, in which case, the message will still
be lost, even if the program-queue is specified with the RESTART option.

Checkpoint and Restart Facility

The facility allows the following functions,

o disk queues, which can be eitherﬂprogram-queues or terminal-queues, specified
with the RESTART option, are journalized and therefore can be "rolled back"
to allow for recovery, as follows,

- the head-of-queue of a program-queue is '"rolled back'" to the last valid
checkpoint '

- the head-of-queue of a terminal-queue is "rolled back' to the last un-
transmitted message :

. disk terminal-queues specified with the CTLRST option allow for controlled
“'restart'" for retransmission

+ the user application specified with the REPEAT option in the $STEP statement
can be restarted,

The conditions for which the facility is used are,
. Step abort
» System crash.

The purpose of the facility is to ensure that the queues, the application, and
all user files are in the same state when restart takes place, as they were at
the last checkpoint,

If checkpoints have not taken place, then restart is at the beginning of the
step.

The checkpoint and restart facility is dealt with under the following topics,
o issuing checkpoints
o implementing checkpoints

» conditions for restart.

2-20

ISSUING CHECKPOINTS
Only MCS monoprocess application with disk queues can issue checkpoints, as foll-
ows, ‘

» in MCS COBOL, by the declaratioms,

- RERUN ON CHECKPOINT FILE entry in the I-O-CONTROL paragraph, through
which checkpoints are taken at specified intervals of records processed
for a particular file

- CALL statements to the H_CK_UCHKPT run-time package, by which checkpoints
are taken at appropriate places in the application

o« in GPL, by the primitives,

- $H_FD specifying the CKPTLIM keyword, whereby checkpoints are taken at
specified intervals of records processed for a particular file

- $H_CHKPT which allows checkpoints to be taken at appropriate places in’
the application.

The program-queue is journalized if it has been specified as follows,
» with the RESTART option in the corresponding QUEUE command at CNC generation

+ as an input queue, by either the IN or INOUT parameters of the corresponding
$QASSIGN statement.

Journalization is performed on the disk queue itself and no additional file space
needs to be allocated.

A journal is considered “active" for a given program-queue only for the duration
of the MCS application step.

Checkpoints have no effect on terminal-queues except for terminal-queues corres-
ponding to anHL64 CPU, to be discussed later on in '"Communication between Remote
Applications', see page 2-31.

IMPLEMENTING CHECKPOINTS

For program-queues described with the RESTART option, disk space related to mess-
ages will be released only at checkpoint time or on termination of the MAM appli-
cation.

The user must take this mechanism into account,

o when defining the size of such program-queues in the corresponding QUEUE com-
mands at CNC generation

« when deciding the frequency of checkpoints in his application.

When reading messages from a program-queue, the ‘head-of-queue'' marker points to
the next message to be RECEIVEd by the applicatione

The "checkpoint' marker points to the position of the '"head-of-queue' marker at
the time of the last checkpoint.

In the case of application '"restart', the "head-of-queue' marker is then restored
to the '"checkpoint'" value.

2-21

Queue Status
after
Taking Checkpoints

TO ‘ At time TO, both "checkpoint' and
: “thead-of -queue' markers point to mes-

M1 ~ sage M1,
®|0|®

It is assumed that the queue holds 4

messages, and that at the start of

"'"checkpoint" "head-of-queue" the application, it is occupied by
marker marker messages M1, M2, M3 and M4,

T1

RECEIVE

/@ 2 @) | ' MCS

application

"checkpoint" "~ '"head-of-queue"
marker marker

At time T1, the situation concerning the queue status is,
+» the messages RECEIVEd by the MCS application are M1 and M2
« the "head-of-queue'" marker has moved from message M1 to point to message
M3 '
» the '"checkpoint" marker has not moved and still points to message Mi.

T2

RECEIVE

/@ @) | MCS

application

ncheckpoint' Yhead-of -queue"
marker marker

At time T2, when the MCS application has successfully processed messages M1
and M2, and taken a checkpoint, the situation concerning the queue status is,
. the '"checkpoint'" marker has moved from message M1 to point to message M3
. messages M5 and M6 now arrive in the queue displacing messages M1 and M2

« the MCS application has now RECEIVEd messages M3 and M4
« the "head-of-queue' marker has moved from message M3 to point to message
M5. '

If an abort occurs, the queue status at restart will be,

« the "head-of-queue' marker will be 'rolled back' to the position of the
ncheckpoint' marker pointing to message M3

. the "checkpoint" marker, however, still points to message M3

« the messages to be RECEIVEd by the MCS application will be M3 through M6.

2-22

CONDITIONS FOR RESTART

A job step can only be restarted if the $STEP statement contains the REPEAT para-

meter.

In this

case, the job step can be restarted either at the beginning of the step

or from the latest checkpoint taken.

© Restart after Step Abort :

Queues assigned to the step with the RESTART option, are ''rolled back'" to the
previous checkpoint if the step is restarted. 7

Otherwise, they are left in the state they were at the time of the abort, in
which case, they can be printed out by the use of the QMAINT utility for de-
bugging purposes.

All

other queues are left unchanged.

© Restart after System Crash :

Queues assigned to the step are treated as follows,

The

terminal and program-queues specified without the RESTART option are re-
initialized

terminal-queues defined with the RESTART option are restarted from the
next message following the last message successfully transmitted.

"If the crash occurred during transmission, the queue is restarted with

the message that was being transmitted at the time.

Restart of terminal-queues with the CTLRST option, is dealt with in
"Communication between Remote Applications'', see page 2-31

program-queues with an active journal are '‘rolled back' to the last
checkpoint taken or to the beginning of the step

program-queues with the RESTART option but without an active journal,
that is, queues not assigned to the MCS application at the time of the
system crash, are restarted from their current state.

programming techniques to consider for restart after a system crash are,

the MCS application restarted from the latest checkpoint will process
the first message in the symbolic queue.

This message may have been already processed and caused the delivery of
an output message.

In this case, the output message will be duplicated.

if the application wants a terminal to be aware of its checkpoint, it can
now send a message to the terminal indicating the checkpoint number.

On restart from checkpoint "i'", the application should send a message to
the terminal indicating restart from checkpoint "i'*, so that the terminal
operator is aware of the repetition of messages.

2-23

© Restart after System Crash (continued)

. messages being transmitted at the time of the crash should be retrans-
mitted by the terminal operator at restart.

~The application should check for redundant inessages by ensuring that all
input messages should include sequence numbers.

o if the program-queue needs to be purged following a restart, the appli-
cation may do so by issuing as many RECEIVEs as the message count.

© Restart at MAM initialization :

The choice of action for the system console operator when starting up MAM in
the case where disk queues existed for the previous session are,
. MAM=YES
- all queues without the RESTART option are purged

- terminal-queues with the RESTART option commence following the mess-
age successfully transmitted or at the message being transmitted

- program-queues with the RESTART option commence from

o either the '"head-of-queue' marker for normal termination of the
session

. or the last "checkpoint" marker, if the following conditions are
fulfilled, ’

- the queues have an '"active' journal

- the session terminated abnormally.

« MAM=NO

This action is taken in cases where MAM is not required to save start-up
time and space in system resident memory.

- unless a new CNC session is run to generate the network, MAM is not
available

- the contents of the disk queues remain in the state they were at the
time when the session terminated. ’
o MAM= REFORMAT

- MAM start-up operations are performed whereby all queues are reini-
tialized

- the disk queue file is reformatted using the copy of the communica-
tions system tables in backing store.
The programming techniques to consider for restart at MAM initialization

are,

o program-queues can be filled during a session when no MCS applications
are active

o the contents of such queues can then be retrieved in subsequent sessions
when MCS applications are executed.

2-24

Control of Message and Queue Overflow

When the message size limit or queue capacity is exceeded, an overflow condition
results which causes the STATUS KEY of the CD entry to be updated with the appro-
priate return code to inform the user.

The list of STATUS KEY codes is given in Appendix D.
CD entries are defined as follows,

« in MCS COBOL, in the Communication Section

o in GPL, by the system primitive H_CD.

MESSAGE OVERFLOW

The maximum message length is restricted to 3053 bytes.

Although the default value for QDBLKSZ is 400 bytes, it is advisable to declare
at least 500 bytes when preallocating the disk queue file.

Specifying a QDBLKSZ value of less than 400 bytes results in.a warning at CNC
execution time and the value is then overridden by the default value of 400 bytes.

See '"Preallocating a Disk Queue File' -on page 2-43.

When message length, including control codes as hexadecimal values or in mark
form, is exceeded, the excess portion of the message is truncated to 2432 bytes.

The STATUS KEY code setting is as follows,
« 94, MSGOV "message overflow'" for the sender
e 94, NOTALL for the receiver.

The maximum message size should be defined by the application according to,
s the size of the terminal display

o the allowance to be made for transmission errors.

2-25

QUEUE OVERFLOW

When there is insufficient space in a queue to contain a message sent to it or to
handle I/0 transfers, the message is discarded and the STATUS KEY is set to the
appropriate value,

When a queue overflow condition occurs on a SEND (H_SEND), the applicatlon sh0u1d
issue a "call" to the timer before attempting to re-execute that SEND.

The "call" to the timer is performed as follows,
o in MCS COBOL, by the statement CALL to the run-time package H_TM USETTM
e in GPL, by the system primitive H_SETELT.

STATUS KEY code setting for the relevant condition indicating the type of queue
overflow is,

« 91, SPACENAV, space not available, for the sender to be notified of the lack
of space in the disk queue

« 92, BUFNAV, buffer not available, for the sender and the receiver to be noti-
fied that there is insufficient memory space to handle a disk I/O operation
during a message transfer

» 95, NOTALL for the sender to be notified that the number of memory blocks is
insufficient.

2-26

STRUCTURE OF AN MCS LOAD-MODULE

An MCS load-module ;omprises 1 through 6 user processes which are basically equi-
valent to tasks and are linked together by the Static Linker, see "Executing MCS
Applications',

Each process is associated with an application or '"run-unit'.

The system handling of the MCS load-module depends on whether the module is mono-
process or multiprocess.

Monoprocess Load-Module

The system executes a call to the entry point of the monoprocess load-module
specified by the user.

On termination of the process, a call is made to MCS to perform housekeeping
functions, whether the process terminates normally or abnormally.

The program is terminated as follows,
+ in MCS COBOL, by the EXIT PROGRAM statement
e in GPL, by the RETURN statement.

Multiprocess Load-Module

The system procedure STUSERS starts each of the STUSERn processes, where n ranges
from 1 through 6,

Each STUSERn executes a call to the application through a user-specified entry
point at linkage time.

On termination of the process, STUSERn calls MCS. to perform housekeeping func-
tions before returning control to STUSERS.

When all the processes have terminated, and all housekeeping functions have been
performed, STUSERS terminates automatically.

The constraints for the multiprocess load-module are, .

' the programmer must synchronize accesses to shared files, see '"Communication
between Local Applications®

o the checkpoint and restart facility is not available

. only one process can execute the ACCEPT (H_GET) and DISPLAY (H_PUT) verbs to
gain access to the standard SYSIN and SYSOUT files.

In GPL, the user has the option of either using STUSERS as a system procedure or
coding his own procedure whereby he can explicitly declare the start of each pro-
cess.

This facility enables the GPL user to initiate secondary tasks not containing MCS
primitives.

This topic is treated under "Executing MCS Applications', see page 2-43.

2-27

COMMUNICATION BETWEEN LOCAL APPLICATIONS

The term '"local' means

that the applications are in the same central processor,

whereby communication is established by manipulating program-queues.

The program-queue whose name is to appear:in:the symbolic source of the-destina-
tion input CD area is specified by the keyword REPLY in $QASSIGN OUT.

The ENABLE (H_ENABLE) and DISABLE (H_DISABLE) verbs are not effective.

The 3 types of local communication are,

« application-to-application communication

« application communicating with itself

« communication between processes of a multiprocess application.

Application-to-Application Communication

The assignments in the

Application A

» the symbolic queue
that is, specified

o the symbolic queue
that is, specified
Application B

« the symbolic queue
that is, specified

« the symbolic queue
that is, specified

$QASSIGN statements required to allow such exchanges are,

INPUT must correspond to the program-queue QA for input,
with IN

OUTPUT must correspond to the program-queue QB for output,
with OUT and REPLY=QA

INPUT must cdrrespond to the program-queue QB for input,
with IN ' :

OUTPUT must correspond to the program-queue QA for output,
with OUT and REPLY =QB.

Application Communicating with Ttself

The assignment in the $QASSIGN statement required to allow such an exchange is,

« the symbolic queue INPUT to correspond to the program-queue QA for input as
well as output, that is, to be specified with INOUT and REPLY =QA,

The application will then communicate with itself in the following stages,

o it will act as a terminal to fill the program-queue QA

o« it will then RECEIVE messages from the same program-queue QA exactly as it
would RECEIVE messages from any terminal connected to it.

2-28

Examples
of

Communication between Local Applications

Application-to-Application
symbolic program symbolic Communication
queues | ——| queues |_———] queues | Application A receives as input
RECEIVE.\\ SEND messages supplied by B, and
INPUT QA OUTPUT| | vice versa.
For Application A, the symholic
appl appl queue OUTPUT must be specified
A B with REPLY =QA.
For Application B, the symbolic
OUTPUT QB INPUT | | queue OUTPUT must be specified
SEND RECEIVE with REPLY =QB.
Application Communicating
with Itself
program |Application| symbolic Application acts as a terminal
queue queue to fill the program-queue QA.
A‘V’,,»” SEND ‘5\\\\S¥' It then receives the messages
from QA in the same way as it
QA INPUT receives messages from any ter-
’,’,’;, minal connected to ite
\\\\\~_ RECEIVEL—— The symbolic queue INPUT must
be specified with REPLY =QA to
allow for such an exchange.

program symbolic
queue queue
Lo

RECEIVE A
® \//
e /B

STORE FILE ||/

\v/\/ E

SEND

process

Communication between Processes
of a Multiprocess Application

Process A issues a RECEIVE to
program-queue STORE through the
symbolic queue FILE.

When acknowledged, Process A can
access the "'shared" file.

Process A then SENDs a message
to STORE to notify Process B
that the 'shared" file is free.

Process B can access the file.

Communication between Processes of a Multiprocess Application

Such communication involves essentially the sharing of a file or files between
processes of the same application.

The
the

The
for

The

assignment in the $QASSIGN ‘statement réquired to regulate exchanges between
processes accessing a 'shared" file is,

the symbolic queue FILE to correspond to the program-queue STORE for input as
well as output, that is, to be specified with INOUT,

programmer is responsible for synchronizing all accesses to the ''shared'" file
multiprocess applications.

same mechanism can also be applied to a queue providing access to several ap-

plications belonging to different steps by specifying the SHARE option in the re-
levant QUEUE command at CNC generation.

The

stages in implementing file sharing are,

at step execution, the application must first prime the program-queue STORE
with a message which serves to notify the first process wishing to access the
"shared!" file that is available-

the first process, process A, say, can then issue a RECEIVE (H_RECEIVE) to
the program-queue STORE through the symbolic queue FILE,

When the message is RECEIVEd, process A has access to the '"shared" file.

when process A has finished with the '"shared'" file, it SENDs a message to the
program-queue STORE to notify any other process, process B, say, wishing to
access the ''shared" file that it is now available.

2-30

COMMUNICATION BETWEEN REMOTE APPLICATIONS

The term '"remote' means that the applications are in different central processors
which are either linked through a BSC line procedure over the BTNS/URP interface
in the secondary network, or comnected in the primary network over either the
TNS/URP interface or the FNPS/DN7100 interface through the HDLC X. 25 link.

The implementation of the BSC2780 line procedure is treated in detail in Section
V "Line Procedures'\

Information on the TNS/URP and FNPS/DN7100 interfaces is given in detail in Sec-
tion IV "Connection Handling'.

The following text is a description of how the BSC2780 link is handled.

Communication is established at any given time by only two applications at either
site by means of describing the other site as a BSC terminal with the following
attributes in the respective TERMNL command at CNC generation,

« terminal-type being CPU
o AUTO

o ASSIGN =program-queue, for which a QUEUE command bearing the name of the ‘'pro-
gram-queue' must be declared in the same CNC generations

Communication between remote applications is described in terms of
o implementation
o recovery on the emission side

» recovery on the reception side

Implementation

The operation of the BSC link-up depends on such factors as,
» the nature of the communication, that is,
- either interactive communication
- or unidirectional communication
.o‘the recovery protocol.
The implementation of the link-up is achieved by
o the CNC description of the network
o the run-time JCL

» the message flow between the sender and receiver applications.

2-31 .

Setting up
Communication
between Remote Applications

Site 1

' Queue Structure

Site 2

Application A (sender)
symbolic physical

Application B (receiver)
" physical symbolic

queues queues MCS M queues queues
Eama Pt oY
rogram LN ; /A\ rogram
m Laa] [m]QV]E BIV]Q [] I
A M|C|T T|CIM
M O|lA|N NJA}O
terminal NS S \5/ N terminal -
OUT1 [TT8] OUT2
CNC Description for BSC Link-up
Site 1 Site 2

LINE LNnn CLOSE ;
STATN STAl1 1;

TERMNL TB HL64& CPU ASSIGN=QA
AUTO ;

QUEUE QA ... RESTART;
QUEVE TB ... CTLRST;

LINE LNnn CLOSE ;
STATN STA2 23

TERMNL TA HL64 CPU ASSIGN=QB
AUTO ;

QUEUE QB eee RESTART H
QUEUE TA +.o CTLRST;

Run-~time JCL

Site 1

Site 2

QASSIGN IN1 QA 1IN;

QASSIGN OUT1 TB OUT;

QASSIGN IN2 QB IN;

QASSIGN OUT2 TA OUT;

NATURE OF COMMUNICATION

© Interactive Communication :
Exchanges of data will take place in both directions successively from the
sender to the receiver, and vice versa, the applications reversing roles.

However, before the applications can be started up, the link-up must first
be established.

© Unidirectional Communication :
As in the case of file transfer, the sender application can be started up
first, provided that
. its output queue is on disk

o and that the disk has enough space to contain the entire file to be
transferred.

In some cases, the rate at which the data is sent exceeds the rate at which
it is received.

This condition happens when the rate at which the output queue is being fill-
ed in by the sender application is greater than the rate at which the same
output queue is being emptied to the receiver application.

When this occurs, as in the case of file transfer from magnetic tape, the
sender application will encounter 'queue-overflow'" incidents.

To avoid such incidents, the sender application should issue a call to a sys-
tem procedure to temporarily suspend transmission of data for a specified
lapse of time before attempting to issue another SEND to the output queue.

In the meanwhile, transfers of data from the output queue to the receiver
application can proceed unaffected.

A "loop" on the SEND (H _SEND) has the effect of a temporary suspension, al-
though this method is not advised as it takes up too much CPU time.

RECOVERY PROTOCCL

Where the link-up between two remote applications involves a one-way transfer,
recovery protocol uses the system checkpoint and restart facility.

The sender application emits a recovery mark each time it takes a checkpoint.

When the receiver application receives the recovery mark in the form of a control
message, it, in turn, takes a checkpoint.

Restart is always initiated by the sender application.

In order to implement the restart facility, the following options must be de-
clared in the appropriate QUEUE commands at CNC generation,

s program-queues must be defined with the RESTART option
» terminal-queues must be defined with the CTLRST option.

2-33

Communication between Remote Applications
Programming Message Flow
between Sender and Receiver

Site 1

Site 2

Application A (sender)

= Application B (receiver)

(:)STARI ¢ Call checkpointe
Test value of MODE.
[$u_JsEND (""><CTLCKPOO") EMI

before SENDing data, A takes first
checkpoint to SEND control message
showing checkpoint numbered '"00'"
(zero).

MODE = 00

(@ [$H_]SEND (data) §EMI|EGI}

A SENDs 1 or more files terminated
by the appropriate indicator..

(:)Call checkpoint.
Test value of MODE.
[$8_]JSEND (''><CTLCKPnn") EMI

A takes sequentially numbered
checkpoints to SEND as control
messages.

MODE = 00

'

(:)[$H_]SEND (data) zEMIIEGIQ

A continues to SEND data in a
stream.

(:)Call checkpoint.
Test value of MODE
[$H_]sEND ("><CTLCKPnn") EGI

A takes final checkpoint and
SENDs the control message termi-
nated by EGI.

MODE = 00

(:)End of normal transmission.

[$4_]RECEIVE
Call checkpointe

first message RECEIVEd is check-
point "0O'; B takes its own check-
point; both checkpoints have init-
ial values ''00'.

(® [$1_]RECEIVE

B RECEIVEs data from A as a streams

(© [$H4_]RECEIVE

Call checkpoint.

When B RECEIVEs successive check-
points, it takes its own check-
points. The result is that the
sets of checkpoints of A and B
match 1-for-1,

(@ [$5_]JRECEIVE

B continues to RECEIVE data.

(e [$4_]RECEIVE

Call checkpoint.

When B RECEIVEs EGI, it takes its
final checkpoint.

2-34

Recovery on the Emission Side
Example of
Restart of Application on Incident

Site 1
Application A (sender)

Site 2

o Application B (receiver)

Transmission has so far been normal and free of errors, but has not yet ter-

minated.

@ [$u_]sEND (data) {EMI|EGI}

A continues to SEND data in a
streams

(:)Call checkpointe
Test value of MODE. N
$i_ SEND ("><CTLCKP(ii)") EMI

MODE = 00

@[‘H,]SEND (data) JEMI|EGI{

step abort
or
system crash
occurs

'

(:)Test value of MODE.

MODE # 00

J .
[$H_]SEND ("><CTLRST(i1)") EMI
The number of the ''restart' con-

trol is the same as the last va-
1id checkpoint,

(® [$1_]SEND (data) imxlmxi

[$H_]RECEIVE

B continues to RECEIVE data.

(® [$H_]RECEIVE
Call checkpointe

The number of the checkpoint ta-
ken by B is also "ii'%

(© [$H_]RECEIVE

At the time of step abort or sys-
tem crash, the data RECEIVEd by
B is in an indeterminate state.

(@ [$H_JRECEIVE

When B RECEIVEs the '"'restart' con-
trol, it sets the STATUS register
to 10,000 to denote ''step abort"
or ''system crash'’.

EXIT PROGRAM : MCS COBOL
RETURN : GPL
(® [$H_JRECEIVE

2-35

Recovery on the Emission Side

Recovery of transmission on the emission side involves,
. taking checkpoints
» sending control messages
. restarting after a step abort or system crash

« restarting after a line failure.

TAKING CHECKPOINTS

Each transmission is started with a checkpoint call.
On return of the call, the output parameter MODE is tested as follows,
« MODE=00, for normal error free transmission
o MODE #00, when a step abort or system crash has occurred.
Taking checkpoints is performed as follows,
+ in MCS COBOL, by a call to the H CK UCHKPT run-time package
o« in GPL, by the system primitive’H_CHKPT.

SENDING CONTROL MESSAGES

Control messages of the format "><CTLCKPnn'' are used to head data flow.

During a session, one or several files can be transmitted, each file being termi-
nated with an EGI. '

To allow for recovery, the sender application takes checkpoints at suitable and
regular intervals, and checks that the value of MODE is zero in order to continue
with normal transmission.

The checkpoint is then sent as a control message to head the next stream of data
flow.

When the checkpoint and the accompanying data stream are completely received with
out error, the system will release the disk space related to all the messages
sent since the last valid checkpoint.

The maximum number of disk blocks which can be retained between 2 checkpoints on
emission is given by the algorithm,

(QDBLKSZ - 4)
n=

2

where QDBLKSZ is the size of the disk bléck in bytes, declared in the
GENCOM command at CNC generation

2-36

SENDING CONTROL MESSAGES (continued)
For transparent mode, the sender application must only take a checkpoint at the
start of tramsmitting a file and not during transmission.

In this case, "><U06" must head the stream of data flow, see BSC2780 line proce-
dure, page 5-13.

RESTARTING AFTER A STEP ABORT OR SYSTEM CRASH

The '"restart' control message can be emitted from one of two sources,
» either from the sender application in the case of a step abort
« or from the system, in the case of a system crash for remote communications.

The ''restart'" control message serves to warn the receiver application that all
messages Sent since the last valid checkpoint will be re-transmitted.

The receiver application must therefore be programmed to avoid the dupliecation of
messagesSs)

If at the time of system restart, the sender application is also to be restarted,
then the receiver application will see two restart phases in the following se-

quence,
o firstly, it will receive the "restart" control message from the system

o then, it will receive the ''restart" control message from the sender applica-
tion.

RESTARTING AFTER A LINE FAILURE

A line is closed by the system if failure occurs
« either due to a malfunction in the link-up
» or at the receiver site, for whatever reason.

When the failure has been rectified, the line can be re-opened by the network
control command RT LNnn, where nn specifies the line.

The effects of this command on a BSC line are,
o the line will be reactivated
. the control message "><CTLRSTnn" (ETB) will be sent

o the terminal -queue will be restarted from the last valid checkpoint indicated
by nn of the ''restart' control message. :

Transmission will resume on successful emission of the ''restart' control message.

Operator intervention at both sender and receiver sites may be required.

2-37

Schematic Example
of
Sending "><CTLCKPnn" Control Messages

DATA DIVISION.

01 MESSAGE.
02 MES1 PIC X(8).
VALUE "><CTLCKP" .
02 MES2 PIC XX.

COMMUNICATION SECTION.
CD CD-OUT OUTPUT

MCS only user-initialized CD-output parameters are shown
COBOL DESTINATION COUNT COUNT-OUT
- TEXT LENGTH LENGTH-OUT
DESTINATION DESTINATION-OUT «

PROCEDURE DIVISION.

MOVE 1 TO COUNT-OUT .
MOVE 10 TO LENGTH-OUT.
- MOVE destination TO DESTINATION-OUT.
- dynamic updating of current checkpoint nn by the user
MOVE nn TO MES2.,
SEND CD-OUT FROM MESSAGE WITH JEMI|EGI} .

$H_CD OUTPUT , PREFIX = 'USER_' ;

only user-initialized CD-output parameters are shown
USER_DESTINATION_COUNT =1 ;

USER_TEXT_LENGTH =10 ;

USER_QUEUE_NAME ="destination'

GPL DCL MESSAGE CHAR(10) INIT('><CTLCKPOO") ;
dynamic updating of current checkpoint nn by the user

SUBSTR (MESSAGE 9,2) =nn;

$H_SEND 'ADDR(USER_OUTPUT_CD)' , INADDR = 'ADDR(MESSAGE)' ,
' ENDCHAR = EMI ; |

$H_SEND 'ADDR(USER_OUTPUT_CD)' , INADDR= 'ADDR(MESSAGE) ' ,
ENDCHAR=EGI ;)

2-38

Example
of
Taking Checkpoints

MCs
COBOL

DATA DIVISION.
01 MODE COMP-2.
01 CKINF PIC X(32).
PROCEDURE DIVISION.
CALL '"H_CK_UCHKPT" USING MODE CKINF .

GPL

DCL VARIABLE1 FIXED BIN(31);
DCL VARIABLE2 CHAR(32) ;
$H_CHKPT MODE=VARIABLE1 , CKINF = VARIABLE2 ;

Example
of
Setting STATUS

MCS
COBOL

DATA DIVISION.
01 STATUS COMP-1.

PROCEDURE DIVISION.

MOVE 10000 TO STATUS.
CALL "H_CBL_USETST" USING STATUS.

GPL

use

either form

of
coding

$H_SETST 10000 ;

DCL STATUS FIXED BIN(15) ;
STATUS = 10000 3
$H_SETST STATUS ;

- 2-39

Recovery
on the
Emission Side

Sender Application Absent

Situation at Failure

"><CTLCKP 1 "><CTLCK.P "

lus Ma4 Msl@ @‘\ -

current 1st message after

end—of -queue head-of -queue "> CTLCKP 1-1"

Situation at Restart

" ><CTLCKP, " "><01;'ch<1= " "><cnins'ri_1"

ins M4 M3.M2) | l——»

[}
current restart message
end- of-queue head-of ~-queue heads transmission

Sender Application Present

Situation at Failure

. " ><CTLCKP 1 " ><CTLCK.P "
SEND

application p——————pp M6 I M5 | M4 MI@ @ e

)
last message current 1st message after

in queue head-of-queue "><CTLCKP1_1"

Situation at Restart

"><CTLRST 1 " "><CTLCICP 1 ‘ f'><CT'IJCKPi" "><CT'LRS'I‘1_1"

3PP1:Lcation-————>I M6 I M5 | M4 | M3 ! M2 L@ l——>

restart from restart current restart message
(:.heckpc:inti_’_1 message - head-of-queue heads transmission

2-40

Recovery on the Reception Side

Recovery of transmission on the reception side involves,
o taking checkpoints
o receiving ''restart' control messages

. restarting the application.

TAKING CHECKPOINTS
Whenever the receiver application receives the control message '"><CTLCKPnn" from
the sender application, it takes its own checkpoint.

The checkpoint taken by the receiver application has the same sequence number as
the checkpoint from the sender application that triggered it.

No control message is generated by the receiver application, instead, the check-
point serves only as a recovery marke
RECEIVING '""RESTART'' CONTROL MESSAGES

"Restart' is indicated by the control message '""><CTLRSTii" sent by the sender
application to the receiver application.

The receiver application, in order to determine whether '"restart'" is possible or
‘noty will perform the following decisions on the sequence number "ii' of the 're- -

start" control message, namely,

o if ii#nn, where nn is the sequence number of the last checkpoint taken by
the receiver application, then the control message '"><CTLCKPnn+1'" must have
been lost along with its accompanying messages in the stream of data flow.

~In this case, no recovery is possible, and transmission must be reinitiated
from the very beginninge

o if ii=nn, then the receiver application must resume from its current check-
point.

To do this, the application must proceed as follows,
- in MCS COBOL, by the program coding,

o issuing a call to the H_CBL USETST run-time package to set the STATUS
register to an abnormally high value, say 10,000

.o issuing a STOP RUN to return control immediately to the systems
- in GPL, by the program coding,

o issuing a H_SETST system primitive to set the STATUS register to an
abnormally hlgh value, say 10,000

» issuing a RETURN to return control immediately to the system.

The receiver application will terminate abnormally, and the system operator
will then have to restart the application,

RESTARTING THE APPLICATION

When it has been determined that‘"restart" is possible, then the receiver appli-
cation is restarted from its previous checkpoint.

"Restart'" does not. affect the sender application.

The following events take place on system restart after a step abort or system
crash, namely,

o the system will reset the receiver application and its program-queues to
their previous checkpoint state

» the terminal-queue related to the BSC link is empty

o the line is reactivated by the network control command RT LNnn, where nn spe-
cifies the line. .

Operator intervention at both sites may be required to reactivate the line.

2-42

EXECUTING MCS APPLICATIONS

Preparing and executing communications applications involve
. preallocating a 6isk‘queue file
o linking MCS applications
. executing the communications step

« optimizing MCS applications.

Preallocating a Disk Queue File

If queues are to be held on disk, a file must be preallocated on a disk. Unless
otherwise stated in the QUEUE command at CNC generation, disk queueing is the de-
fault option.

Preallocating a disk file is performed
» by using the file level utility PREALLOC

» before the CNC utility is executed, since the disk queue file must be prefor-
matted as a result of the network generation.

If the file is to be modified, for example, altering the file size, the following
procedure is performed in the sequence shown,

o the file is deallocated by

- either using the file level utility DEALLOC

- or declaring MAM=NO at system initialization
. the file is then preallocated through PREALLOC

o the CNC utility is then executed to update the system tables with the new
file information.

The disk file cannot be deallocated
o if it is already defined for a network currently in use

« if MAM=YES or MAM =REFORMAT was declared at system initialization, thereby
- allocating the file to a system process groups

The file level utilities PREALLOC and DEALLOC are to be found in the Data Man-
agement Utilities manual.

Example
of
Preallocating a Disk Queue File

$J0B ALLOCDQ USER=UNAME PROJECT =WAGE ;

PREALLOC DQUEUE EXPDATE =365 DEVCLASS =MS/M452
GLOBAL = (MEDIA =VOL1 SIZE=5)
BFAS = (SEQ= (BLKSIZE=500 RECSIZE =500)) ;

$ENDJOB ;

Syntax concerning the parameters in the file level utility PREALLOC :

o the external-file-name DQUEUE must be specified in a $ASSIGN
statement at CNC execution

. the size of the file specified in the example as 5 cylinders is
subject to the limits of the device class, see Network Generation
manual

o a disk queue file must be a single-volume file for which the
starting cylinder cannot be specified, hence GLOBAL must be used

o the parameter group BFAS = (SEQ=(BLKSIZE=500 RECSIZE= 500))
must be specified as indicated.

o the values of BLKSIZE and RECSIZE will be overridden by CNC with
values specified for QDBLKSZ in the GENCOM command.

2-44

Linking MCS. Applications

An MCS application is compiled as follows,
o in MCS COBOL, by the $COBOL statement, see COBOL User Guide
o in GPL, by the $MACPROC and $GPL statements, see GPL User Guide.

The compile units, cu's, of the MCS application are then linked by the LINKER
statement to form communications load-modules.

In "Outline of JCL Statements for Linking an MCS Application', the syntax for the
JCL is as follows, o

o $LIB statement (for details of parameters, see Library Maintenance Ref. Man.)

- specifies the system library SYS.HCULIB containing the MAM run-time pack-
age

- specifies the libraries containing the user cu's to be linked
- describes the search path to the Static Linker.

o $LINKER statement (for details of parameters, see Linker manual)

- OUTLIB specifies the library in which the load-module is to be stored.

If the argument TEMP is chosen, then linking and load-module execution
takes place within the same job.

- parameters applicable to a monoprocess load-module :
o ENTRY specifies the entry point to the application.
The default entry point is the name of the load-module.
o COMFAC identifies the application as a monoprocess load-module.
- parameters applicable to a multiprocess load-module :

o COMFILE names the input enclosure required to link a multiprocess
load-modules

- » input enclosure statements :

The information given applies in the case where the system procedure
- STUSERS is used.

An MCS application written in GPL has the choice of either using the system
procedure STUSERS or a user-defined ENTRY procedure, see "Example of user-
defined ENTRY Procedure'', page 2-49,

- ENTRY and LINKTYPE must be entered exéctly as indicated with the parame-
ters given

- TASK statement :

o USERn is used by MCS. to-start the indicated task in the order from
USER1 through USER6, where appropriate

« START =STUSERn indicates the entry point of the associated task USERn
- REPLACE statement :

+ cu-namen is the entry point in the application to be linked to the
task USERn

« CU=STUSERn indicates the compile-unit of the associated task USERn.

2-45

Outline of JCL Statements
for
Linking an MCS Application

$J0B job-name USER=user-name PROJECT =project-name ;

SYS. HCULIB
LIB CU INLIB1= ¢ TEMP
(simple-file-description)
TEMP }

INLIB2 = { (simple-file-description)

i TEMP }T

INLIB5 = { (simple-file-description)

e

LINKER load-module-name [EN’I‘RY = cu-name]

TEMP }
(simple-file-description)

{ COMFAC }
COMFILE =*input-enclosure-name

OUTLIB ={

’

The following input enclosure is to link a multiprocess load-module
where COMFILE is specified.

The enclosure is bypassed where COMFAC is specified.

$INPUT input-enclosure-name ;
ENTRY = STUSERS ,
LINKTYPE = BMAM ,
TASK = (USER1 START = STUSER1) ,
REPLACE = (DUMMY cu-namel CU=STUSER1) ,
TASK = (USER2 START = STUSER2) ,
REPLACE = (DUMMY cu-name2 CU=STUSER2) ,

TASK = (USER6 START = STUSERS) ,
REPLACE = (DUMMY cu-name6 CU=STUSERS) ,
$ENDINPUT ;

$ENDJOB ;

2-46

LINKING A MONOPROCESS MCS LOAD-MODULE
In "Example of Linking a Monoprocess Load-Module", the syntax for the JCL is as
follows, d
‘« $LIB statement :
- UCULIB is the cu-library on volume VOL1 containing the user application.
o JLINKER statement :

- MAM1 is the name of the load-module and is also the entry point to the
user application

- ULMLIB is the user load-module library on the volume VOL1l in which the
load-module is to be stored.

LINKING A MULTIPROCESS MCS LOAD-MODULE

Linking a multiprocess MCS load-module can be done
s either by using the system procedure STUSERS

« or, in the case of a GPL, by creating a user-defined ENTRY procedure and us-
ing it in place of STUSERS.

°© Using the System Procedure STUSERS :
In “"Example of Linking a Multiprocess Load-Module", the syntax for the JCL
is as follows,
» $LIB statement :

- UCULIB1 and UCULIB2 are the cu-libraries on the volume VOL1 con-
taining the user application.

» $LINKER statement :

- ULMLIB is the user load-module library on the volume VOL1 in which
the multiprocess load-module MAM2 is to be stored.

o input enclosure statements (sequence of statements is not significant)

- DATCOLL is an entry point to the user application which is to be
linked to the task USER2

- INQRESP is an entry point to the user application which is to be
linked to the task USERIi.

2-47

Examples
of
Linking MCS Applications

Linking a
Monoprocess
Load-Module

$JOB LINK1 USER=UNAME PROJECT =ACCT ;

LIB CU INLIB1=SYS.HCULIB
INLIB2 = (UCULIB DEVCLASS =MS/M452 MEDIA =VOL1) ;

LINKER MAM1 .
"OUTLIB= (ULMLIB DEVCLASS =MS/M452 MEDIA=VOL1)
COMFAC ;

$ENDJOB ;

" Linking a
Multiprocess
Load-Module

$J0B LINK2 USER=UNAME PROJECT =WAGE ;

LIB CU INLIB1=SYS.HCULIB
INLIB2 = (UCULIB1 DEVCLASS =MS/M452 MEDIA =VOL1)
INLIB3 = (UCULIB2 DEVCLASS =MS/M452 MEDIA =VOL2) ;

LINKER MAM2
OUTLIB= (UIMLIB DEVCLASS =MS/M452 MEDIA=VOL1)
COMFILE = *LINK ;

$INPUT LINK;
ENTRY = STUSERS ,
LINKTYPE = BMAM ,
TASK = (USER1 START = STUSER1) ,
TASK = (USER2 START = STUSER?) ,
REPLACE = (DUMMY DATCOLL CU=STUSER?) ,
REPLACE = (DUMMY INQRESP CU=STUSER1) ,
$ENDINPUT ;
$ENDJOB ;

2-48

LINKING A MULTIPROCESS -LOAD-MODULE (continued)
© Using a user-defined ENTRY Procedure :
In GPL, the user has the choice of specifying and managing his own tasks and
subtasks by the means of the H_BEGTSK and H _WAITSK primitives, whereby
» the name of the procedure in the ENTRY command is user-defined

. the names of the tasks in the TASK commands are user-defined

. the entry points, however, invoked by the above primitives are referenced
by STUSERn, n ranging from 1 through 6, such that

- each STUSERn executes a '"call' to the user application through a user
defined entry point specified at linkage time

- each STUSERn invokes MCS to perform housekeeping functions before
terminating the associated task.

An additional advantage of the user-defined ENTRY procedure is that other
tasks not containing MCS primitives can be included.

MAIN
@) $H_BEGTSK
/ $H_WAITSK
................................... .
STUSER1| STUSER2 ' STUSER6

"call'

@ |RETURN
FIRSTTASK SECONDTASK

JRETURN' /@ lRETURN

The secondary tasks identified by FIRSTTASK and SECONDTASK are user-defined
and contain MCS primitives.

1 $H_BEGTSK directive is issued to STUSER1

2 This results in a '"call" to the user-defined secondary task FIRSTTASK
3 After FIRSTTASK is performed, control is returned to STUSER1
4

MAM is now invoked to perform housekeeping functions.

2-49

Example of
user-defined ENTRY Procedure
(the name of the user-defined procedure is MAIN)

Example of Programming

MAIN in GPL
MAIN: PROC 3
DCL 1 STRUC2 ees 3
- up to 6 "tasks"
. . may be declared
$H_BEGTSK NAME = "FIRSTTASK" OPTIONS =STRUC1 H
$H_BEGTSK NAME = "'SECONDTASK" OPTIONS =STRUC2 | 3

$H_WAITSK NAME = "FIRSTTASK" ;
$H WAITSK NAME = "SECONDTASK" ;

RETURN ;
END ;

Linking Multiprocess Load-Module
using MAIN

$JOB LINK2 USER=UNAME PROJECT =WAGE ;

LIB CU INLIB1=SYS.HCULIB
INLIB2 = (UCULIB1 DEVCLASS =MS/M452 MEDIA =VOL1)
INLIB3 = (UCULIB2 DEVCLASS =MS/M452 MEDIA =VOL2) ;

LINKER MAM2 OUTLIB= (ULMLIB DEVCLASS =MS/M452 MEDIA=VOL1)
COMFILE =*LINK;

$INPUT LINK;
ENTRY =MAIN ,
LINKTYPE =BMAM ,
TASK = (FIRSTTASK START = STUSER1) ,
TASK = (SECONDTASK START = STUSER2) ,
REPLACE = (DUMMY DATCOLL CU=STUSER2) ,
REPLACE = (DUMMY {NQRESP CU=STUSER1) ,
$ ENDINPUT ;
$ENDJOB;

2-50

Format and Syntax
of
$QASSIGN Statement

QASSIGN symbolic-queue-name [. symbolic-subqueuel-name
‘ [. symbolic-subqueue, -name

[. symbolic-sabqueue3-name]]]

external-queuel-namg
IN [{ LIN }] .
vy ACCESS ={ =—=—
INOUT RR [REPLY==external-queuez-name]
OUT

SITE= system-name] 3

Description of Parameters

external-queue-name
- ranges from 1 through 12 alphanumeric characters and is the name of the cor-
responding QUEUE command at network generation,

symbolic-queue-name
- identifies the logical queue defined as follows
. in MCS COBOL, in data-name-i of the CD area (input and output)
- in GPL, by QUEUE_NAME of H_CDOUT or H_CDIN.

symbolic-subqueue~-name
- applicable only for input queues for partitioning the logical queue as follows
. in MCS COBOL, in data-name-2, data-name-3 & data-name-4 of the input CD area
« in GPL, by SUBQUEUE_NAME, SUBQUEUE2_NAME and SUBQUEUE3_NAME of H_CDIN.

ACCESS
- applicable only to input queues if partitioned into subqueues, to specify how
the subqueues are to be scanned on ‘'receive' as follows
« LIN: "linear', the search starts at the first subqueue specified, default
« RR : '"round-robin', the search resumes at the subqueue immediately following
the subqueue that provided data on the last ''receive'ls

IN
- "input mode', applicable only to program-queues, default.

INOUT
- "ipput/output mode", applicable only to program-queues and must not be speci-
fied for subqueues.

ouT
- Youtput mode', must not be specified for subqueues.

REPLY
- applicable only to "application-to-application' communication and must not be
specified with the IN 'processing mode'’. :

SITE
- identifies a DSA system which can be either 'lsys' or 'rsys' being DPS 7's.

2-51

DEFINITION OF $QASSIGN

The $QASSIGN statement performs the following,

L]

defines the symbolic queues and, where applicable, the subqueues to be used on
input :

establishes the correspondence between the symbolic queue and its associated
subqueue(s), if the.queue is to be.used for input, and the external queue spec-
ified in the QUEUE command at network generation

identifies the 'processing mode'" of the queue with respect to 'send's'" and ''re-
ceive's"

allocates the queues to the job step.

RULES FOR USING $QASSIGN

The following rules govern the use of the $§QASSIGN statement,

the order of the list of subqueues within a symbolic input queue is determined
by the order of $QASSIGN statements within the step enclosure

the maximum number of $QASSIGN statements permitted within the step enclosure
is 26

the ACCESS parameter is only relevant in the first $QASSIGN statement defining
a queue structure, that is, subqueues within the queue

a $QASSIGN statement is mandatory for each input queue associated with the ap-
plication

$QASSIGN statements for output queues are optional

REPLY defines another ''program-queue' which is identified as the source of in-
put messages in the destination application's input CD area (H_CDIN), such that
the destination application can answer back, using in its turn, the '"program-
queue'" thus defined as the ''destination"

on output queues where the REPLY option is not specified, an implicit REPLY
(towards the first input queue among the $QASSIGN statements) is provided if
any such queue exists

where disk queuesvarg used, no $ASSIGN statement is required because the file
is opened at system level and is therefore sharable by all process groups.

2-52

Example of
Run-time JCL
with $QASSIGNs

$JOB TELECOM USER=UNAME PROJECT =ACCT CLASS=H;
STEP MAM3 (ULMLIB DEVCLASS =MS/M452 MEDIA =VOL1) ;

a : defines INQ queue structurey b : defines terminal queues

QASSIGN INQ.SUB1 PRG1 ACCESS=RRj}
QASSIGN INQ.SUB2 PRG2 ; ‘

a
QASSIGN INQ, SUB3 PRG3 ;
QASSIGN INQ. SUB4 PRG4 3
. ' QASSIGN OUTQ TRM1 OUT;
QASSIGN OUTW TRM2 OUT;

ENDSTEP ;

$ENDJOB ;

EXAMPLE OF RUN-TIME JCL WITH $QASSIGNS
In "Example of Run-time JCL with $QASSIGNs", the syntax of the statements is as
follows,

» $JOB statement :.

- CLASS=H is recommended for a communications step to ensure adequate res-
ponse time in a multiprogramming environment

. $STEP statement

- MAM3 is the multiprocess load-module linked and stored in a previous ses-
sion in the user load-module library ULMLIB

o« $QASSIGN statement :

- group a , each symbolic-subqueue corresponds to a unique extermal-queue-
name, that is, SUBn maps on to PRGn, specified in the associated
QUEUE commands at CNC generation, and will be scanned in "round-
robin' in the order specified

_ = group b , the symbolic-output-queues OUTQ and OUTW are associated with
their respective terminal-queues TRM1 and TRM2.

2-53

Optimizing MCS Applications

General recommendations for optimizing MCS applications involve the use of the
"timer" which is set accordingly as follows,

in MCS COBOL, by the: statement CALL to the run-time package H_TM_USETTM
in GPL, by the system primitive $H_SETELT.

"“"timer" is set under the following conditions,

when issuing a RECEIVE (H_RECEIVE) with 'no data"

when issuing an ACCEPT (H_MSGCNT)

when handling several program-queues.

ISSUING RECEIVE (H_RECEIVE)

The

(4]

2 conditions for issuing a RECEIVE (H_RECEIVE) are,
when not qualified by a 'mo data'" clause

when specified with a ''no data" clause.

Not Qualified by a '"No Data" Clause :

One of the following 2 conditions will occur,

o« if at least 1 message is queued, then it will be delivered into the user-
specified working area, before control is given back to the application
to determine what next to do

o« if the queue is empty, MCS suspends the application until a message ar-
rives in the queue,

When a message arrives, it is delivered into the user-specified working
area, and control is again returned to the application.

Specified with a "No Data" Clause :
RECEIVE (H_RECEIVE) with '"no data" is used to scan a queue while executing
another process or while awaiting the occurrence of other events.

If a message is available in the queue, the '"no data' condition is bypassed
and the resulting action is the same as for a RECEIVE (H_RECEIVE).

If no message is available in the queue, the 'mo data'" condition is entered
and the application will loop on this condition until a message arrives,
thereby causing the application

« to occupy all the CPU time not used by BTNS, FNPS or GCOS
« to prevent the execution of any batch program
« to reduce the throughput of the systems

In order to avoid the degradation in system performance, setting the 'timer"
in the "no data'" loop allows the application to be suspended for a user-
specified time before being re-activated.

2-54

Schematic Example
of
RECEIVE with '"mno data"

MCS
COBOL

DATA DIVISION.
01 BUFFER PIC X(nn) .

COMMUNICATION SECTION.
Ch CD-IN INPUT
TEXT LENGTH LENGTH-IN

PROCEDURE DIVISION.
MOVE nn TO LENGTH-IN.
RECV ,

RECEIVE CD-IN MESSAGE INTO BUFFER NO DATA

SETTIMER .
set timer
GO TO RECV.

GO TO SETTIMER.

GPL"

$H_CD INPUT PREFIX='FIRST_';
DCL BUFFER CHAR(nn) ;

RECV s ;

7 ,‘“$§-__-B‘ECEIVE "ADDR(FIRST_INPUT_CD)' , OUTADDR= 'ADDR(BI}FFER) L

LENGTH=nn , NWAIT ;

IF $H_T>ESTRC EMPTY ; THEN GO TO SETTIMER;

SETTIMER ; 3
set timer
GO TO RECV:

Example of
Setting Timer

(nn is specified in milliseconds)

MCS
COBOL

DATA DIVISION,
01 DELAY-TIME COMP-2.

PROCEDURE DIVISION,
MOVE nn TO DELAY-TIME.

CALL "H_TM USETTM" USING DELAY-TIME.

GPL

DCL DELAY TIME FIXED BIN(31);
DELAY TIME=nn;
$H_SETELT MILSEC =DELAY TIME;

2-55°

ISSUING ACCEPT (H_MSGCNT)
ACCEPT (H_MSGCNT) is used to ascertain the number of messages in a queue while
executing another process or while awaiting the occurrence of other events.

If the message count is not zero, that is, there is at least 1 message in the
queue, the application will continue normal processing.

If the message count is zero, the application will loop on this condition until
a message arrives in the queue to update the message count to non-zero, thereby
causing the application

« to occupy all the CPU time not used by BTNS, FNPS or GCOS
« to prevent the execution of any batch program
o to reduce the throughput of the system.

In order to avoid the degradation in system performance, setting the '"timer" in
the "message count =zero'" loop allows the application to be suspended for a user-
specified time before being re-activated.

2-56

Example of
Setting Timer with
ACCEPT (H_MSGCNT)

MCS
COBOL

DATA DIVISION.
01 DELAY-TIME COMP-2.

COMMUNICATION SECTION.
CD CD-IN INPUT
MESSAGE COUNT MSG-CNT

PROCEDURE DIVISION.
ACCPT .

ACCEPT CD-IN MESSAGE COUNT .
IF MSG-CNT=0 GO TO SETTIMER.

SETTIMER. -

MOVE nn TO DELAY-TIME.
CALL "H_TM USETTM" USING DELAY-TIME.

GO TO ACCPT.

GPL

$H _CD INPUT PREFIX ='FIRST_';
DCL DELAY TIME FIXED BIN(31);

ACCPT : 3
$H_MSGCNT 'ADDR(FIRST_INPUT_CD)' ;
IF FIRST MSG_CNT=0 THEN .GO TO SETTIMER;

SETTIMER : ;
DELAY TIME=nn; _
$H_SETELT MILSEC=DELAY TIME ;
GO TO ACCET;

2-57

HANDLING SEVERAL PROGRAM-QUEUES

As a general rule, most applications handle only 1 program-queue which is the
"point-of-entry'" for all data received.

In some cases, the application may have to handle several program-queues under
the following conditions,

« an order of priority is to be established between more than 1 source of mes-
sages so that 1 particular source can be selected at a given time

. the application is to communicate with a complex of terminals, and with eith-
er or both

- a process of the same application

- another application.

Problem :

How to scan 3 program-queues Ql, Q2 and Q3 in which an applica-
tion is to receive messages.

Solution 1 :

Each of the 3 queues is defined by a separate $QASSIGN statement,
whereby each is unrelated to the others.

The application can then establish the order of priority in which
the queues are to be scanned, say, Ql having the lowest priority and
Q3, the highest, by performing the following,

« looping on RECEIVE (H_RECEIVE) with "no data'" successively for
each queue starting with Q3, since Q3 has the highest priority

o setting the "timer' in the 'no data" loop to suspend the éppli-
cation until a message eventually becomes available in the queue
concerned.

The drawbacks of this solution are,

« by establishing priority among the queues, the application is
unnecessarily suspended if, say, Q3 which has the highest prior-
ity is empty, and pending the arrival of a message in Q3, the

other queues Q1 and Q2 are left unscanned.

This unnecessary suspension can be avoided if all the queues are
scanned and if no message is present in any of the queues, to
set the '"timer" before rescanning the queues.

o the "timer" is arbitrarily set and therefore is difficult to
optimize, giving rise to the following situatioms,

- if the "wait-time" is too large, the '"turn-around" time for
processing becomes too slow

- if the ''wait-time'" is too small, the appiication will loop
on itself until a message becomes available in the queue
concerned, thereby defeating the purpose of the "timer'.

2-58

Solution 2 : Each of the 3 queues can be defined as subqueues of the queue, say,
QIN, such that the $QASSIGN statements for the 3 queues represent
an interrelated hierarchy, as shown in the diagram following,

queue
QIN
subqueue subqueue subqueue
Q1 Q2 Q3

In this case, the application has only to issue a RECEIVE
(H_RECEIVE) not qualified by a "no data' clause to the queue QIN,
without having to specify the individual subqueues Ql, Q2 and Q3.

As will be seen later on, the priority to be given to the subqueue
is resolved when the 'received" message is to be processed.

The advantages of this solution are,

o« from the point of view of the scanning mechanism, the 3 queues
Q1, Q2 and Q3 represent a single queue, QIN, and the likeli-
hood for all 3 subqueues to be empty at the same time is small
and therefore there is no need to specify the '"no data'" condi-
tion

o if no message is available in any of the 3 subqueues, MAM will
suspend the application, and processing will resume only as
soon as a mesSage arrives in any of the subqueues.

« the RECEIVE (H_RECEIVE) will indicate in the input CD (H_CD)
from which subqueue the message has been 'received'.
The application can then place whatever priority it wants on
processing the message. In this case, for consistency, the
messages from subqueue Q3 will be processed first, even if
there are other messages preceding it from the subqueues Q1
and Q2¢

The method of scanning the queues is dealt with in the description
of the ACCESS parameter of the $§QASSIGN statement on page 2-51.

2-59

SECTION III

MCS DATA FORMATS

This section deals with the format of data sent to and received from a terminal
by an MCS application.

The data is held in the working area defined as the user buffer and accessed by
the SEND (H_SEND) and RECEIVE (H_RECEIVE) communications verbs.
Data comprises,
. graphic symbols, which are,'
- numeric characters
- alphabetic characters, both upper and lower case

- special characters, such as; punctuation, mathematical and currency
symbols

« control codes, which provide terminal management functions, such as,

- editing or service functions, for example, carriage-return, tabulation
and cursor positioning

- auxiliary device commands, such as, to the cassette handler

- timing functions, such as, "time-fill's" to allow for slow mechanical
functions on a printer

- message delimiters, such as, VIP headers, 'end-of-transmission-block",
and trailers.
This section is dealt with in terms of,
. symbolic representation
. transmission modes
.« MCS data processing

o data representation.

3-01

. SYMBOLIC REPRESENTATION

On keyboards where the graphic symbol or control code is present, pressing the
respective key results in the transmission of a 1-byte hexadecimal value from
the terminal to the user buffer.

However, not all terminals are equipped with the set of graphic symbols énd
control codes as shown in the "ASCII'" and "EBCDIC" tables.

In the absence of such graphic symbols and control codes, another means must be
found to represent these, namely, by using the graphic symbols >< to denote

. the character-encoding mark ><Cxy, where xy represents 2 hexadecimal-
digits corresponding to the EBCDIC value of the graphic symbol or: control
code

. the mark form representation ><ccc, where ccc represents the 3- character
mnemonic of the control code, see "Control Codes"

o the repeat mark ><Rab, where ab represents 2 decimal-digits, being the
number of times the graphic symbol, and in some cases, the control code, is
to be repeated

« the VIP header of the form ><UO3 preceding the 'status' and "function-
code's'.

This symbolic representation of data is a feature provided by MCS at user pro-
gram level. ,

In the '"ASCII" table, values greater than hexadecimal 80, are not represented
either-by control codes or graphic symbols.

These "unreserved'" codes can therefore only be symbolically represented, and
when specified in unedited mode, both on input and output, can be used for spe-
cific user-defined functions.

3-02

CONTROL CODES

List of Common Control Codes

(for specific control codes, see Section VI'Programming Terminals')

control code

ACK acknowledge

BOl1 advance 1 page

= FFV

BO3 advance 1 line

= CRVLFV

BEL bell

for VIP terminals, BEL
generates BLK

BLK blink

BSV backspace

CAN cancel

CRV carriage return

DC1 device control 1

DC2 device control 2

for VIP terminals, DC2
generates forward space

DC3 device contrel 3
DC4 device control &
DEL delete

DLE data link escape
EMV end of medium

ENQ enquiry

EOT end of Cranémission

ESC escape

EBCDIC
ASCII
COBOL

2E

2F

5F
16
18
oD
11

12

13
3C
07
10
19
2
37

27

0oC

07

5E
08
18
oD
11

12

13
14
7F
10
19

05

1B

47

13

48

20
61

08

control code

ETB end of transmission
block

ETX end of text

FFV form feed
= BO1

FSV file separator

GSV group separator

HTV horizontal tabulation

LFV line feed
NAK negative acknowledge

NLV new line (BSC3270)
= CRVLFV

null

RSV record separator
shift in

shift out

start éf header
STX start of text
SUB substitute
SYN synchronous idle ‘

USV unit separator

VIV vertical tabulation

COBOL denotes "collating sequence"
abbreviated to COBOL C/S in tables

26

03

oC

1C
iD
05
25
3D

15

00
1E
OF
OE
01
02
3F
32
1F

OB

EBCDIC

ASCII
COBOL

17139

03 |04

0Cj13

1G{29
1D|30
09-06
OA]38
15162

85]22

00|01
9|21
OF |16
OE|15
01|02
02|03
14|64
16{51
1F|32

0OB| 12

3-03

Control Code in Mark Form

Where a touch-key representing a control code is absent on the keyboard, the on-
ly means of entering the control code is using its mnemonic form preceded by the
symbols ><.

Using the table '"Control Codes', which lists the common codes known by their
mnemonic form to the ''stream processor'", the sequence ><ESC can be keyed in, if
for example, the touch-key representing ESC is not present on the keyboard.

On output, however, control codes are treated according to their applicability
to the line procedure, namely, in the output normal mode,

. those codes applicable on output are translated into 1-byte hexadecimal val-
ues

. mnon-applicable codes pass unchanged in their original mark form.

The following control codes in mark form pass unchanged to the terminal in out-
put normal mode, and are deleted if preceded by the '"repeat' function.

line procedure control codes not applicable on output
BSC2780 ><ACK ><ENQ ><RSV ><SOH ><SYN
BSC3270 ><CAN ><ETB ><S1V ><STX ><usv
VIP ><DLE ><NAK ><sov ><SuB >VIV
.TC/TTY ><BLK

Character-Encoded Form

Character-encoding is used to enter 2 hexadecimal-digits preceded by the mark
><C, and is a means of representing such data as,

. control codes for which no touch-key representing their function exists on
the keyboard

+ graphic symbols which have no displayable equivalents on the submitter ter-
minal but which can be displayed on the receiver terminal, see 'Processing
on Output'.

In input normal and marked modes, the character-encoded mark ><C passes the
following 2 hexadecimal-digits as a 1-byte hexadecimal value to the user buffer.

In output normal mode, character-encoding is used to represent control codes
not applicable for output for the line procedure concerned, see the individual
tables for the different line procedures under "Output Normal Mode'.

The non-applicable control code, is treated like a non-displayable graphic sym-
bol, and is translated from its 1-byte hexadecimal value into character-encoded
form and transmitted to the terminal.

3-04

TRANSMISSION MODES

Except for BSC2780-like terminals, the transmission from a terminal to the Level
64 is in ASCII code.

The translation of the ASCII code to EBCDIC code, which is the internal code of
the DPS 7, is performed by means of the TCT, by either the URP or by the DN7100,
depending on whether BTNS or FNPS is involved.

BSC2780-1like terminals transmit in EBCDIC code, so further translation is not
required.

The EBCDIC code is interpreted by the ''stream processor' of QMON for the type of
conversion according to the transmission mode specified by the user.

The data, having been suitable treated, then passes to the user buffer for pro-
cessing by the MCS application.

On output, the process in reverse operates. Transmissions to the terminal which
correspond to neither a displayable graphic symbol nor to a valid control code,
result in temporizing "time-fill's', .
The mechanism of the "time-fill" is a useful feature when programming for non-
standard terminals.

The transmission mode can be declared at network generation and dynamically
changed during the course of the communications session.

For both input and output, normal and unedited transmission modes are available.
However, for input, an additional transmission mode, the marked mode is avail-
able.

In the following examples of transmission modes, the conventions used are,

. .indicates a 1-byte EBCDIC hexadecimal value
CRY indicates the transmission of a control code as a 1-byte hexadecimal
° value activated by the ''carriage-return' control key
D indicates.the transmission of a graphic symbol as a 1-byte hexadeci-
* mal value activated by a touch-key, in this case, 'D"
wpo N indicates the 1-byte EBCDIC hexadecimal value and is used to show
° the conversion from/to 2 hexadecimal-digits preceded by ><C

indicates any data not affected by the ''stream processor"

indicates the direction of transfer either from the terminal to the
user buffer or vice versa

indicates the string-grouping of characters as processed by the
'stream processor"

For the normal output transmission mode, certain control codes and graphic sym-
bols do not apply for specific line procedures.
"Output Normal Mode'" tables are provided for each line procedure supported.

For input, the table '"Input Marked Mode" treats all the common control codes in
mark form and passes all other data unchanged to the Level 64.
In the input normal, single control codes, except for HTV and ESC, are deleted.

3-05

ASCII

ASCII
EBCDIC

COBOL C/S

Code: Symbol -+

ASCII
NUL EBCDIC
SOH COBCL C/S
STX Code: Symbol

ETX ASCII

denotes that no control code
or graphic symbol is present

56 [EOT @ 34{F4|245] 4 EBCDIC
46 |ENQ F512461 5 COBOL C/S COBCL C/S denotes ''collatin "
L S) g sequence'l,
47|ACK @36 1F61247) 6 Code: Symbol obtained from the decimal conversion of
O7|2F| 48|BEL@37|F7/248] 7 ASCII the E3CDIC hexadecimal value, then add 1
0816 23|BSVR38|F8{249] 8 84(133| d § EBCDIC '
09{os| 6|HTVR39|F9|250f 9 85(134] e COBOL C/S
oal25] 38|LFviR3al7al123] : 86|135| £ Codz: Symbol
osloB| 12|vrvg33|5E| %5] ; 87]136| g eI
ocjoc| 13{FFv3clac] 77| < 88{137| h [EBCDIC
jopjop| 14|{cRV@3D|7E|127] = 89{138| i COBOL _C/S
OE|OE| 15|sov@3E|6E|111]| > 91146 ; Code: Symbol
OF |OF| 16 |SIVE3F|6F|112] ? 92{147| k et T
10{10| 17|DLE g40|7C|125| @ 93(148] 1 EBCDIC
1111| 18{pc1s1]c1{194] A 941149 m COBOL C/S
12{12| 19|{pc242ic2{195| B 95/150| n Code: Symbol
13{13| 20{pc3 Q43ic3{19]| ¢ %151 o
14|3c| 61{pcs Was|cal197| D B 70[97|152| p
15|3D| 62|{NaK W 45|c5i198| E P 71|98{153| q
16 (32| 51|{synQa6ice|199] F B72[|99{154] r
17{26| 39(ETBR47{C7|200] ¢ R73]a2{163] s
18[18| 25|can@s8{cs{201| H W74la3|164] ¢
19119 26 |EMV@49(c9|202] 1 R75|as]165] u
1a{3F| 64|suB fsaiDp1|210| J QP76|as|166] v
1B|27| 40lEsc §4B(D2{211| K R77]a6(167] w
Riclic| 29|FsvsciD3|212] L 168 x
10|1D| 30{csv@4D|Daf213]| M 169| vy
1E{1E| 31|RSV4E|D5[|214| N 170| 2
1F{1F| 32|{usv 4F|D6|215] 0 {
20{s0] 65 v [Rso|p7|216]| P !
21|oF| go|: | @s1/p8|217f Q }
22|7F{128| » Rs52{Dp9{218| R ~
23|78|124| # RW53|E2{227] S
24|58] 92| 5 Ws4lE3|228] T
2s5i6ci109| = W55|E4(229]| U
26|50| 81| & HMse6|E5|230{ v
27{m 126 * @57|E6|231| W
28{4D| 78| (WS8|E7[232] X
29{5p| 94|) W59{E8|233| Y
2a|5¢c| 93| * WsalE9|234f z
2B|4E| 79| + R@sBlsal 75([¢
2c|6s|108| , Jsc|eo{225|\
2p[60| 97| - Wspfsal 91{]
2E{4B| 76| « PSE|SF| 96[* ™
2Fj61| 98| / WSF{6D|110| _
30{Fol241| O R60|75]122] *
31{F1|242| 1 P61|s1|130| a
32|F2{243| 2 P62|82{131] b
33|F3|264] 3 R63(83{132] ¢

3-06

EBCDIC

EBCDIC
ASCI1I
COBOL_C/S

Code: Symbol

EBCDIC
00|00 NUL ASCII____
01/01 SOH COBOL C/S

STX Code: Symbol
ETX

denotes that no contrel code
EBCDIC cr graphic symbol is present
ASCII
COBOL _C/S COBOL C/S denotes 'collating sequence",
Code:S mbo} obtz2ined from the decimzl conversion of

DEL 37|04 EBGDIC the EBCDIC hexadecimz2l vzlue, then add 1

ASCII

CCBOL C/S

. Code: Symbol
OB|OB| 12|VTVHE 3B|9B EBCDIC

ocloc| 13|Frvf3c|is ASCII

op|op| .14|crvE 3D|15 ; o ; COBOL C/S

OE|0E| 15|SovM 3E|9E E ; ' Code: Symbol
ofF |oF| 16|s1V[3F|1a ‘ RBCDIC

16|10| 17|DLE 40|20 ASCII
R11/11] 18|DC1@41]A0 B COBOL C/S
12|12} 19{DC2R@42]A1 Code: Symbol
?

O

w

Q

w
OOV PWN =

18118 | 25({CAN @ 48|A7

1C|1C| 29|FSVR@4C|3C
1D|1D| 30|GSVg4D|28
1E|1E| 31|RSVE4LE|2B
1IF|1F| 32|USVR@4F |21

N XE<a H®;

H I O™ OO W~

D P

20(60 & B7claol12s a6l75(165] u
21181 82E v
22|82 8 w
23|83 8 X
24184 . 8 y
25]0a| 38[LFv R 55/an| 8 a 0
26117 39|ETB @56 |AE| 8 b F1]31]242} 1
27|18| so|esc §57|aF| sl ¢ D0|7D209| | Wrol351543] 2
p1lsal210| J -

28|88 : 8 d F3133)244} 3
28158 s ¢ p2|sB|211| x Wra|3a|265] &
e e p3|ac|212| L WFs|3s|246] 5
2218 va|sp|213| M @rel36(247] 6

8 p5|4E|214] N WF7|37(248] 7
2ctac h D6 |4F|215] 0
2D|05| 46 [ENG f5D|29| 94 § p7|s0|216| p [ES|38|249| 8
2E|106| 47|ACKRSE|3B]| 95 ’

pg|s1|217] @

or |07/ 48 |peL §5F|5E] 9% bt POt Eotd BN
301]¢90 :
31|91

3-07

MCS DATA PROCESSING

On output, the characteristics of the line procedure are important, since cer-
tain control codes and, in some cases, graphic symbols, are not applicable, see
the tables of individual line procedures under ""Output Normal Mode'. ‘

For this reason the table 'MCS Data Processing" is based on the BSC2780/VIP line
procedure. The principles that govern the handling of data formats on output for
the BSC2780/VIP line procedure, must be applied accordingly to other line proce-
dures.

The EBCDIC values chosen for illustrating MCS data processing are,

. "OC'" corresponding to the control code FFV which is valid for all line pro-
cedures

« "32" corresponding to the control code SYN which does not apply in output
mode for the BSC2780/VIP line procedure

« "G7" corresponding to the letter G which is a typ1ca1 example of a display-
able graphic symbol

. MFD" having no equivalent either as a control code or a graphic symbol in
any line procedure.

The points to be noted in the table, are

o Control codes in mark form, which are applicable to the line procedure, are
translated as 1-byte hexadecimal values on output

» Control codes in mark form, which are not applicable to the line procedure,
pass unchanged on output, and are deleted if preceded by ''repeat"

o Character-encoded hexadecimal values are processed in exactly the same man-
ner, irrespective of the fact whether these values correspond to control
codes, graphic symbols or to neither

o 1-byte hexadecimal values on input are handled accordingly as follows,

- if representing control codes, are processed in exactly the same manner,
with the notable exceptions of HTV and ESC which in normal mode pass un-
changed as "05'" and "27" respectively

- otherwise, they are processed regardless as graphic symbols

. 1-byte hexadecimal values on output are handled differently in normal mode,
where no '"repeat' precedes the value, namely,

- if representing control codes, applicable to the line procedure, or if
corresponding to a displayable graphic symbol, are passed unchanged

- otherwise, they are translated into character-encoded hexadecimal val-
ues.

The 1-byte hexadecimal value is generated by the activation by a touch-key, re-
presented either as a control code or graphic symbol on the keyboard. For this
reason the value "FD'" shown in the table in input mode is only meaningful when
considered as a non-standard code, for example, for national keyboard options.

VIP headers and trailers are dealt with in detail under each of the process
modes.,

3-08

e

MCS Data Processing
(based on BSC2780/VIP line procedure)

Data from INPUT OUTPUT
Terminal or
in Buffer Normal Marked Unedited Normal Unedited
><FFV ><FFV ><FFV ><FFVY nocn ><FFV
><R0O2 ><ZFFV delete delete ><RO2><FFV "ococ ><R02><FFV
><SYN ><SYN - ><SYN ><SYN ><SYN ><SYN
><R02>< SYN delete delete ><R02><SYN delete ><R02>< SYN
><coc nocy noc ><coc nocy ><coc
><R02 ><C0OC "ococ "ococ ><R02><C0C "Ococ ><R02 ><COC
><C32 32 32 ><C32 32 ><C32
><R02><C32 "3232" 113232 ><R0O2><LC32 n3232" ><R02><C32
><ce7 ngn nemm ><cC7 ng7n ><CcC7
><R02 ><CC7 ngc7c7" ng7cm ><R02><CC7 ngc7Cc7" ><R0O2 ><LCC7
><CFD WED WED ><CFD wEDY ><CFD
><R02><CFD YFDFD" YFDFD" ><R0O2 ><C_«FD - "FDFD" ><R02 ><CFD
"ogn delete ><FFV nogn nocH nocn
not HTV/ESC
><RO2"'OC" "OCoc! "ococy ><RO2OC" "ococ ><RO2"0C"
132 delete ><SYN n3an ><C32 w32
><R0O2%132" 13232" 132320 ><RO2132" "3232" ><RO2"32"
"C?" HC7'| "C?" "c7|l "c7ll "C?H
><RO2"CT" nCc7C7" nwc7cT7n ><RO2"CT7Y "C7C7"A ><RO2VCT"
"gp" WEDY WEDY ngEpn ><CFD "WED©
><RO2"FD" "FDFDY YWFDFD" ><RO2V'FD" "FDFD" ><RO2"FD"

3-09

, Processing on Input

The 3 transmission modes for processing on input are,
. input marked mode ‘
.« input normal mode
o input unedited mode.
The table "Input Marked Mode' is applicable for all line procedures, and gives

the complete list of control codes known to the ''stream processor' in their mark
form

These control codes in mark form, when appearing singly, pass unchanged to the
user buffer in all the 3 input modes.

The 2 control code exceptions in input normal mode are HTV and ESC, which unlike
the other control codes, are not deleted from the user buffer.

All other values, which are not control codes, are treated as graphic symbols,
whether or not a displayable symbol exists, and pass unchanged, when appearing
singly, to the user buffer.

The input unedited mode passes all data unprocessed to the user buffer, and all
verification of data must be performed by the MCS application.

3-10

INPUT MARKED MODE

§ EBCDIC Value

Code : Symbol

EBCDIC Value or
Character String

EBCDIC Value

ALL LINE PROCEDURES

g O0|NUL| ><NUL Code : Symbol
01|SOH| ><SOH EBCDIC Value or
j 02]STX | ><STX Character String

denctes that no ccntrol code
or graphic symbol is present

EBCDIC Value

Code : Symbol

EBCDIC Value or
Character String

EBCDIC Value

64 E 64 Coce : Symbol
65 65 EBCDIC Value or
: 66 6¢ Character String
67 67 EBCDIC Value
§ 66§ 68 90 Code : Symbol
69 69 91| j 91 B EBCDIC Value or
6A 6A 92| k 92 Character String
465 68 @93 1| 93 s EBCDIC Valie
6G 6C 94 B9 Code : Symbol
6D 6D 95 BA EBCDIC Value or
6E 6E 96 BB Character String
6F 6F 97
BC
o) 70 9¢ BD gf_ gf.
71 71 99 BE g0l EG
816 |BSY| ><BsSV] 46 46 72 72 94 BF plEmE o,
17§ 17 47 47 73 73 9B co| | co Y - £2
18 |can| ><cani@ us 48 74 YA 9C ci| A c1 E3| T E3
19| EMV| ><EMVE 49 49 75 75 9D c2| B c2
E4| U E&4
14 sa|[¢| oA 76 76 9E c3| ¢ c3 £s| v £S
1B 4B . 4B 77 77 9F AN C4
sl E cs E6| W E6
1c|FsV| ><Fsvsc| < 4C 78 78 AO E7| X E7
1D|GSV| ><csv @ 4D| (4D 79 79 Al c6| F cé Es| Y E3
1E|RSV| ><RSVR 4E| + 4E 7A| : 7A A2 c7| ¢ c7 E9| 2 E9
1F|usV|><usvisr|! || 4F 7B| #| 7B A3 cs| H cs
: | ¢ Basl u| as gz L gi
’
7D A5| v A5 CB CB
= 72 RA6| w A6
" 77 PAT| x A7 cc cc
so Bas|y | as gg gg
§ 25 |LFV| ><LFV a 81 aA9| 2 A9 oF oF Fo| o)
26 |ETB| ><ETB b 82 AA po| | o F1| 1 F1
27 |ESc| ><ESC c 83 AB o1l 3 D1 F2| 2 F2
a| sa AC F3f 31 F3
. 85 AD p2| K | D2 F4| &4 F&4
: 56 A P3| L D3 F5| 5 F5
. 57 Ar BP4| M D4 F6| 6 F6
8 D5| N D5 F7| 7 F7?
e h 88 BO D6| 0 D6
8 2D [ENQ| ><ENQ i | 89 31 Q7| P | D7 :.g g 1;2
2E[ACK| ><AcK § 8a B2 p8| Q b8
2F |BEL| ><BEL § 8B B3 po| R DS
6 B el .
8D BS DB
8E B6 DC
8F B7 DD

3-11

Input Marked Mode

Mode Entry

The input marked mode is entered

at network generation by the QUEUE command pertaining to the terminal
queue specifying the parameter IM=MK

during the communications session to override whatever input mode has
been declared at network generation

- either by the network control command MTE specifying the terminal
and the IMARK parameter

- or by the terminal operator command $*$MTE specifying IMARK.

Treatment of Data

e VIP-headers are translated into mark form and passed to the user buffer.

header generated by termi-

logical header a b nal in VIP line procedure

l

data transmitted to buffer

e Control codes and trailers are translated into mark form and passed to
the user buffer,

message keyed in on terminal

data transmitted
to user buffer

3-12

Input Marked Mode
Treatment of Data
(continued)

e Control codes and trailers in mark form are passed unchanged to the user
buffer,

message keyed in
>I<]VE]| S <|lEjloO]lT on terminal
(K { i K

data transmitted
> <|E S < E 0T to user buffer

e The character-encoding mark ><C passes the following 2 hexadecimal-digits
as a 1-byte hexadecimal value to the user buffer,

message keyed in on terminal

data transmitted to buffer

e The repeat mark ><R repeats the graphic symbol, character-encoded hexa-
decimal value or control code, as a 1l-byte hexadecimal value.

><R02@><RO3>_|_<CFD

@ | @ |"FD"["FD"|"FD" " data transmitted to buffer

message keyed in on terminal

data transmitted to buffer

e The sequence of the repeat mark followed by a control code in mark form
is deleted from the user buffer.

message keyed in
on terminal

>|I<|RJO}|S5]|>|<]E|S]|C

data transmitted

deleted to user buffer

e All other character strings are passed unchanged to the buffer, notably,
. ><Cxy, where xy is not a hexadecimal value
» ><Rab, where ab is not a decimal value.

3-13

Input Normal Mode

Mode Entry

The input normal mcde is entered
. at network generation by the QUEUE command pertaining to the terminal
queue 4
- either not specifying the IM parameter, that is, ''mormal" is the
default input mode

- or specifying the parameter IM=NL

+ during the communications session to override whatever input mode has
been declared at network generation

- either by the network control command MTE specifying the terminal
and the INORM parameter ‘

- or by the terminal operator command $*§MTE specifying INORM.

Treatment of Data

o VIP-headers are deleted from the user buffer.

' header generated by termi-
logical header . a . nal in VIP line procedure
e ——— T
deleted

data transmitted to buffer

e Except for HTV and ESC, all control codes are deleted from the buffer.

|

ESC message keyed in on terminal

deleted

deletedl

@ data transmitted to buffer

3-14

Input Normal Mode
Treatment of Data
(continued)

e Control codes and trailers in mark form are passed unchanged to the user
buffer. .

<lelolr message keyed in

>|<]E S c on terminal .= . .

IR

data transmitted
<|E 01T to user buffer

e The character-encoding mark ><C passes the following 2 hexadecimal-digits
as a l-byte hexadecimal value to the user buffer.

message keyed in on terminal

data transmitted to buffer

e The repeat mark ><R repeats the graphic symbol, character-encoded hexa-
decimal value or control code, as a l-byte hexadecimal value.

St<lirlolsls|>l<lrlol2]>l<]cls]:z

N ————— TN e

L3l g rsamgmns2n data transmitted to buffer

message keyed in on terminal

data transmitted to buffer

e The sequence of the repéat mark followed by a control code in mark form
is deleted from the user buffer.

message keye&iin

>|<lIRrRjO}l & >|<|DJ|J]C]1 on terminal

\—___—-_-—* N paa SO

data transmitted
to user buffer

.deleted

e All other character strings are passed unchanged to the buffer, notably,
. ><Cxy, where xy is not a hexadecimal value
. ><Rab, where ab is not a decimal value.

Input Unedited Mode

Mode Entry

The input unedited mode is entered

. at network generation by the QUEUE command pertaining to the terminal
queue specifying the parameter IM=UN

« during the communications session to override whatever input mode has
been declared at network generation

- either by the network control command MIE specifying the terminal
and the INEDT parameter

- or by the terminal operator command $*$MIE specifying INEDT.

Treatment of Data

e VIP-headers are translated into mark form and passed to the user buffer.

header generated by termi-

logical header a b e nal in VIP line procedure

data transmitted to buffer

e Control codes and trailers are passed unchanged to the user buffer.

message keyed in on terminal

data transmitted to buffer

3-16

Input Unedited Mode
Treatment of Data
(continued)

e Control codes and trailers in mark form are passed unchanged to the user
buffer.

>|<|EJ|S <lelolr message keyed in
on terminal
R Pt
data transmitted
1< : i <|E OfT to user buffer

e The character-encoding mark ><C, even if followed by 2 hexadecimal-
digits, does not perform the 'character-encoding" function and is passed
unchanged to the user buffer.

message keyed in on terminal

data transmitted to buffer

o The repeat mark ><R, even if followed by 2 decimal-digits, does not per-
form the "repeat" function and is passed unchanged to the user buffer.

>I<]IRI1IJ2]>IK<}|Cc]1]D|>|<|R}jO]|S4

LR N O T T O O I OO O

>I<IRrRl1}j2]>|<]cj1|D|>|<L<]|R]JO}JG&G}/

e The sequence of the repeat mark followed immediately by a control code,
either as a 1-byte hexadecimal value or in mark form, is passed unchanged
to the user buffer.

® All data is treated as character strings and passed unchanged to the user
buffer.

3-17

Processing on Output

The 2 transmission modes for processing on output are,
« output normal mode
. output-unedited mode.
For output normal mode, tables are given for each line procedure, since the way

in which certain control codes are handled, depends on whether they are appli-
cable to the line procedure.

In addition, certain graphic symbols are treated as non-standard, since the re-
ceiving terminsl, like the IBM3270, cannot display them.
For the IBM3270, the following graphic symbols are not displayed,

. 79=" s open single quote

. A1=", tilde

« CO= { s open brace

« DO= } s close brace

. EO= \ , back-slash.
In addition, 7D displays as an apostrophe (') and not as a close single quote (’).
In each of the output normal mode tables, control codes that are not applicable
for output for the line procedure, are shown in character-encoded form.

In this respect, non-applicable control codes are treated in the same way as
transmissions for which no graphic symbol exists.

3-18

OUTPUT NORMAL MODE

EBCDIC Value

Code : Symbol

EBCDIC Value .or
Character String

® EBCDIC Value
Code : Symbol

EBCDIC Value or
Character String

EBCDIC Value

Code : Symbol

TC &TTY LINE PROCEDURES

denotes that no centrol code
cr graphic symbol is present

denotes exceptions specific

><C64
><C65
><Cc66
><C67

><c68

><C69
6A
6B

CRV
Sov
SIV

30 O O O OWD

EBCDIC Value or
Character String

f EBCDIC Value

to TC & TTY line procedures

Code : Symbol

e

3-19

EBCDIC Value or
Character String

EBCDIC Value

EBCDIC Value or
Character String

EBCDIC Value

Code : Symbol

EBCDIC Value or
Character String

><CDE
><CDF
EO
><CE1
E2
E3

E4

O T MO O W P>~

FO} © FO
F1} 1 F1
F2| 2 F2
F3| 3 F3
F4| &4 F&4
F5| 5 F5
F6| 6 F6

7

'8

9

WO WOZIHR G~

OUTPUT NORMAL MODE

EBCDIC Value

o e BSC2780 & VIP LINE PROCEDURES

Character String

B EBCDIC Value

Code : Symbol

EBCDIC Value or
Character String

EBCDIC Value

Code : Symbol

EBCDIC Value or.
Character String

EBCDIC Value

Code : Symbol

EBCDIC Value or
Character String

EBCDIC Value

denotes that no control code
cr graphic symbol is present

T 8r

denotes exceptions specific te
BSC2780 & VIP line procedures

EBCDIC Value or
Character String

EBCDIC Value

Code : Symbol

EBCDIC Value or
Character String

><CDE
><CDF
EO
><CE1
E2
E3

(<]
>
TOTM MO OW P~

' 00 FM® O OO D
VWO YoV PLWN=O

WO "MOoOZXR -

32 ><C32

& ><C33
— ;

3-20

OUTPUT NORMAL MODE

R EBCDIC Value.

Code : Symbol

EBCDIC Value or
Character String

EBCDIC Value

O0|NUL 00 Code : Symbol
01|SOH 01 EBCDIC Value or
02|STX 02 Character String

EBCDIC Value

BSC3270 LINE PROCEDURE

denotes that no control code
or grzphic symbol is present

Code

: Symbol ~ =4 denotes exceptions specific

><Cco4
><C65
><c66
><Cc67

><c68
><C69
6A
6B

©
w
= 2 A= N1 O o PR o T o i)

EBCDIC Value or ; to the BSC3270 line procedure
Character String

EBCDIC Value

Code : Symbol

EBCDIC Value or
Character String

EBCDIC Value

EBCDIC Value or
92 ' Character String

f EBCDIC Value
Code : Symbol

EBCDIC Value or
Character String

1 ><CDE
><CDF
>LCEO
><CE1

E2
E3

TOT mMUOW P

WP NV PWLWNORO

WO WOZRE R

3-21

Output Normal Mode

Mode Ehtry

The output normal mode is entered

. at network generation by the QUEUE command pertaining to the terminal
queue A
- either not specifying the OM parameter, that is, ''normal' is the
default output mode
- or specifying the parameter OM=NL
o during the communications session to override the "unedited' mode de-
clared at network generation

- either by the network control command MTE specifying the terminal
and the ONORM parameter

- or by the terminal operator command $*$MTE specifying ONORM.

Treatment of Data

® VIP-headers can be provided in mark form to be passed to the terminal.
The system provides trailers where none are specified by the user.

>I<lulof3]a data composed in user buffer

trailer supplied by

transmission header a system to terminal

e Control codes, applicable to the line procedure for output, are passed
unchanged to the terminal.

data composed in user buffer

message sent to terminal

e Control codes, not applicable for output, are translated into character-
encoded form. and sent to the terminal.

The example follows the

BSC2780 line procedure data composed in buffer

3-22

Output Normal Mode
Treatment of Data
(continued)

e l-byte hexadecimal values, for which no graphic symbol or control code
exists, are translated into character-encoded form.

data in user buffer

!

—— R ™™t s I,
< C.T F|F

e Applicable control codes in mark form translate as 1-byte hexadecimals.
Non-applicable control codes in mark form pass unchanged.

Example follows the

VIP line procedure

<|E|T]| B

e The character-encoding mark ><C passes the following 2 hexadecimal-digits
as a 1-byte hexadecimal value to the terminal.

data in user buffer

message sent to terminal

£

e The repeat mark ><R repeats the graphic symbol or character-encoded hexa-
decimal value, as a 1-byte hexadecimal value.

> <|RJ]O 4 A >1< R] O 2 >1<]c cClA
/\\l/\’-‘li —

z |2 | 2| z |"cA"|"CA"| message sent to terminal

e The repeat mark ><R repeats applicable control codes as 1l-byte hexadeci-
mzls ; non-applicable control codes are deleted. '

>|<|R}]O

Example follows
BSC3270

e All other character strings are passed unchanged to the terminal, notably,
» ><Cxy, where xy is not a hexadecimal value
» ><Rab, where ab is not a decimal value.

3-23

Output Unedited Mode

Mode Entry

The output unedited mode is entered

« at network generation by the QUEUE command pertaining to the terminal
queue specifying the parameter OM=UN

o during the communications session to override the ''mormal'' mode de-
clared at network generation

- either by the network control command MTE specifying the terminal
and the ONEDT parameter

- or by the terminal operator command $*$MTE specifying ONEDT.

Treatment of Data

o VIP-headers can be provided in mark form to be passed to the terminal.
The system provides trailers where none are specified by the user.

data composed in buffer

|y

trailer supplied by

transmission header a vb c system to terminal

data sent to terminal

3-24

Output Unedited Mode
Treatment of Data
(continued)

e Control codes and trailers in mark form are passed unchanged to the ter-
minal.

TEJITI|B|>I<|E|]T] X | data in user buffer

<lEJT|B|>|<]|E|T]|X| data sent to terminal

"® The character-encoding mark ><C, even if followed by 2 hexadecimal-
digits, does not perform the ''character-encoding' function and is passed
unchanged to the terminal.

<l]c|3 data composed in user buffer
<|lc]|3 data sent to terminal

e The repeat mark D><R, even if followed by 2 decimal-digits, does not per-
form the "'repeat" function and is passed unchanged to the terminal.

T T T T T T T T i i iy

>I<|RJlOJ4G4]I>I<}|Cc]|Bl&4]|>|<]|R|]1]2

o The sequence of the repeat mark followed immediately by a control code,
either as a 1-byte hexadecimal value or in mark form, is passed unchanged
to the terminal.

®» All data is treated as character strings and passed unchanged to the ter-
minal.

3-25

DATA REPRESENTATION

GCOS offers the programmer several ways of representing data depending on such
factors as, ‘

. the type of terminal used, which may involve a special character set
. the complexity of control functions to be activated

o the provisions to be made for the transition of the MCS application to TDS
with the minimum of modifications.

Graphic Symbols .

In the 2 examples 'Data Representation Using Graphic Symbols", the data cited is
valid for any transmission code. '
Variations in representing graphic symbols are caused by,

« type of device

« national language options

. special characters.

TYPE OF DEVICE

The character set available to the user, depends on the type of the device that
is used for data entry, for example,

o if the data is entered in the form of cards, the only character set nossible
is standard EBCDIC, or part of that set allowed on the keypunch, sin:c ’ower
case letters are not represented

. if, however, the data is entered under I0F, from a terminal having upper and
lower case capability, that is, having the "shift-in/shift-out'" function,
the character set is greatly extended.

Conversely, characters are displayed according to the type of the device used to
display them, namely, the line printer will only display upper case letters,
even if the data is entered in lower case letters from, say, a VIP7760 terminal.

NATIONAL LANGUAGE OPTIONS

The different graphic symbols used for national language options come within the
category of special characters, with the one basic difference, namely,

» special characters are used as conventional symbols, primarily,
- to delimit text, such as punctuation signs
- to qualify text, such as monetary signs to indicate currency

. national language options, however, are symbols used in the context of read-
able text in a particular language, for example, @ for Danish.

The user, in order to ensure correct processing of national language options,
must specify their equivalents in his applicztion, see "Special Characters' and
"Numeric Values'.

3-26

SPECIAL CHARACTERS

The DPS 7 CPU internal code is EBCDIC, the graphic representation of which is
used by local unit record devices, such as, the system console, the card reader
and/or punch, and the line printer.

Most terminals, however, use the ISO ASCII code in which the graphic representa-
tion of special characters differs in some cases from that of EBCDIC.

This means that the user, in order to display certain special characters on his
terminal, must specify their equivalents®* in his appliocation.

In the ASCII and EBCDIC tables, where 2 graphic symbols appear against the code,
the graphic symbol on the right is the EBCDIC representztion.

Example of Using
Special Characters

e Example of special characters rendered differently :

EBCDIC graphic, used by GCOS internally : ¢ | ! -

ISO ASCII graphic, used by VIP terminals : [!] *

o Text to be displayed on VIP terminal :

VERSION DATED : [80/03/29]

e What the user must declare in the MCS application:

MCS | DATA DIVISION.
COBOL 77 VERS PIC X(28) VALUE '"VERSION DATED : ¢ 80/03/29 !".

GPL DCL VERS CHAR(28) INIT ("VERSION DATED : ¢ 80/03729 1

% The term 'equivalent" need not necessarily mean the graphic symbol equivalent.

Numeric values of the special character or national language option are used
in such cases where there are no graphic symbol equivalents

o either on the device for data entry or display

o or in the standard character set recognized by GCOS.

3-27

Data Representation
Using
Graphic Symbols

To send the text * HERE IS DATA-ENTRY (80/03/29 VERSION) *

MCS
COBOL

DATA DIVISION.

77 START PIC X(41) VALUE "* HERE IS DATA-ENTRY
(80/03/29 VERSION) *,

 COMMUNICATION SECTION.

CD CD-OUT OUTPUT.
only user-initialized CD-output parameters are shown
DESTINATION COUNT COUNT-OUT
TEXT LENGTH LENGTH-OUT
DESTINATION DESTINATION-OUT .

PROCEDURE DIVISION.

MOVE 1 TO COUNT-OUT.

MOVE 41 TO LENGTH-OUT.

MOVE destination TO DESTINATION-OUT.
SEND CD-OUT FROM START WITH EMI.

GPL

$H_CD OUTPUT , PREFIX = 'USER ' ;

only user-initialized CD-output parameters are shown
USER_DESTINATION_COUNT =1 ; '
USER_TEXT_LENGTH =413

USER_QUEUE_NAME ="destination" ;

L]
L]
.

DCL START CHAR(41)
INIT (' HERE IS DATA-ENTRY (80/03/29 VERSION) *m);

$H_SEND 'ADDR(USER_OUTPUT CD)', INADDR='ADDR(START)',
ENDCHAR = EMI ;

3-28%

Data Representation
Using
Graphic Symbols

To receive the message STOP requesting ""end-of-application"

DATA DIVISION.

01 1INBUF.

02 INB1 PIC X(2000) .
02 1INB2 REDEFINES 1INBl.
03 INB21 PIC X(4).

03 INB22 PIC X(1996).

COMMUNICATION SECTION.

MCS CD CD-IN INPUT

COBOL only user-initialized CD-input parameters are shown
i TEXT LENGTH LENGTH-IN

PROCEDURE DIVISION.

MOVE 2000 TO LENGTH-IN.
RECEIVE CD-IN MESSAGE INTO INBUF.,
IF INB21=7"STOP" GO TO TERM-PROG.

TERM=-PROG »
®
b

$H_CD INPUT PREFIX ='USER_';
DCL INBUF CHAR(2000) ;
LENGTH = 2000 ;

GPL
' IF SUBSTR(INBUF,1,4) ="STOP" THEN GO TO TERM-PROG;

TERM=-PROG ¢ 3

LN M.CQ

$H_RECEIVE 'ADDR(USER_INPUT CD)' , OUTADDR= 'ADDR(INBUF)',

3-29

Representing Graphic Symbols

The 3 ways of representing graphic symbols are,
. direct use of graphic symbols
. numeric values

» mark form.

DIRECT USE OF GRAPHIC SYMBOLS

Without exception, all numeric characters and alphabetic capitals are entered
directly, since these are valid for any transmission code, and for any keying-in
and receiving devices.,

The previous 2 examples 'Data Representation Using Graphic Symbols' illustrate
the direct use of graphic symbols, both on output as well as on input to the
application. '

NUMERIC VALUES
Representing the graphic symbol by its numeric value enables the programmer to
define any code, whether displayable or not.

By this means, special characters and national language options can be specified
even at installations where these are not aveilable.

Application development, therefore, is not restricted in any way.
The numeric value is specified according to what is expected by the compiler,
namely,
o for the MCS COBOL compiler, the decimal value of the COBOL collating sequence
o for the GPL compiler, the hexadecimal EBCDIC value.

National Language Option
Using Numeric Value

e To represent the character @ :

1. Refer to the appropriate terminal manual giving the QWERTY layout for
the national keyboard options of Demmark or Norway.

2. The ASCII value of § is 5C.

3. The stzndard graphic symbol for ASCII 5C is \.

4, The numeric value for ASCII 5C is,
o 225, being the COBOL collating sequence value in decimal
« EO, being the hexadecimal EBCDIC value.

e Declare the appropriate numeric value in the MCS COBOL or GPL application
respectively, if the standard graphic symbol \ is not available.

3-30

Data Representation
Using
Numeric Values

To send text Date containing upper and lower case letters

1. Refer to the EBCDIC table for the COBOL collating sequence
values for the graphic symbols required.

D=197 a=130 =164 e=134
Mcs | .
2. Declare in the DATA DIVISION either form of coding :
COBOL :
77 DAT PIC X(4) VALUE '"D"130,164,134",
77 DAT PIC X(&) VALUE ""197,130,164,134",
1. Refer to the EBCDIC table for the EBCDIC values of the
graphic symbols.
D=C4 a=81 t =A3 e=85
GPL

2. Code the constant character-string in EBCDIC values be-
tween double-quotes followed by the letter H :

DCL AB CHAR(4) 3
AB ="C481A385'"H ;

3-31

MARK FORM

Data in mark form is a general facility of MCS, by which any type of data can be
represented in an easy-to-use symbolic form, see '"Symbolic Representation' at the
start of the section.
For graphic symbols, the 2 types of mark form dealt with are,

« ><C, denoting character-encoding

o ><R, denoting the "repeat'" function.
The choice of entering graphic symbols either in their character-encoded form or

as their numeric values, depends on the transmission mode which, in turn, is de-
termined by what the MCS application expects to process.

As a general rule, where the graphic symbol exists for the code, MCS processes
both forms in the same manner, translating the code into its numeric value.

A numeric value, not corresponding to a displayable code, is output in normal
mode to the terminal in character-encoded form.

The "repeat!" function is performed where the character-encoding marks specify 2
valid hexadecimal digits, and in both cases, that is, character-encoded form and
numeric value, the code is repeated in its numeric value.

3-32

Data Representation
Using Mark Form
(Character-Encoding & Repeat)

To send text Date and a string of 80 asterisks *

Refer to the EBCDIC table for the EBCDIC values of the characters.

D=C4 a=8l1 t=A3 e=85 % =5C

a. For 'Date', use either form of coding :

77 DAT PIC X(16) VALUE 'D><C81><CA3><C85",

77 DAT PIC X(20) VALUE "><CC4><C81><CA3><C85".
MCS
COBOL

b. For string of 80 asterisks, use either form of coding :

77 AST PIC X(6) VALUE '"><R80*",

77 AST PIC X(10) VALUE "><R80><C5C".

a. For '"Date', use either form of coding :

DCL DAT CHAR(16) INIT ("D><C81><CA3><C85") ;

DCL DAT CHAR(20) INIT ("><CC4><C81><CA3DLCES")

GPL

b. For string of 80 asterisks, use either form of coding :

DCL AST CHAR(6) INIT ('"><R80%*");

DCL AST CHAR(10) INIT ("><R80><C5C") ;

3-33

Control Codes

Control codes are generated by the terminal when the touch-key representing the
appropriate control function is pressed.

- The programmer, hbwaver, encodes these control functions to send to the terminal
in order to activate certain terminal management functions.

While in the majority of cases, the contrel function is associated with a single
control code, other more complex control functions are implemented by a control
code sequence, represented by a combination of control codes and/or graphic sym-
bols.

If the user is not concerned with control codes .generated by the terminal and
only wants to activate basic editing functions when sending messages to the ter-
minal, he should specify the normal mode for both input and output transmission.

On input, all control codes will be suppressed from the message text by MCS.
On output, the user may activate basic editing functions by specifying,

. the AFTER "advancing" PAGE clause of the [$H_]SEND verb

« MCS automatic editing functions.

AFTER ADVANCING PAGE

When the AFTER "advancing" PAGE clause is used with the last [$H_]SEND which
terminates the message with either EMI or EGI, MCS then automatically generates
control codes for insertion before and after the message text according to

. the type of the device receiving the message

» the control function for the type of terminal management requested.
In the programming example facing the page, the following actions are performed
on a VIP7700 terminal,)

o to build the screen line by line

« to generate a "form-feed" function on the last line of the message.

The following considerations are to be taken into account when coding, namely,

+ the VIP7700 automatically performs a '"mew-line'" function at the end of each
line _

. the AFTER "advancing' PAGE in the last line of the message generates the
"form-feed'" function, a service provided for by MCS.

The text referred to, to be moved into the output buffer OUTBUF, can be any
text either for formatting the screen or for displaying form entries.

Alternative forms of programming are given in both MCS COBOL and GPL examples,
both of which cater for £illing in the entire standard screen of the VIP7700,
being 24 lines of 80 characters.

3-34

DATA DIVISION.
77 OUTBUF PIC X(80).
77 1DX COMP-1.
COMMUNICATION SECTION,
CD CD-OUT OUTPUT
only user-initialized CD-output parameters are shown
DESTINATION COUNT COUNT-OUT
TEXT LENGTH LENGTH-OUT
DESTINATION DESTINATION-OUT .
PROCEDURE DIVISION.
MOVE O TO 1IDX.
MOVE 1 TO COUNT-OUT.
MOVE 80 TO LENGTH-OUT.

MCS MOVE destination TO DESTINATION-OUT.,
COBOL move text into OUTBUF and use either form of coding following
LOOP23 .

SEND CD-OUT FROM OUTBUF .

ADD 1 TO IDX.

IF IDX < 23 GO TO LOOP23.

SEND CD-OUT FROM OUTBUF WITH EMI AFTER ADVANCING PAGE.

LOOP24 .
SEND CD-OUT FROM OUTBUF »
ADD 1 TO IDX.
IF IDX < 24 GO TO LOOP24.
SEND CD-OUT WITH EMI AFTER ADVANCING PAGE.

DCL OUTBUF CHAR(80) ;

DCL IDX FIXED BIN(15);

$H_CD OUTPUT , PREFIX='FIRST_ '3

USER_DESTINATION_COUNT =1 ;"

USER_TEXT_LENGTH =80 ;

USER_QUEUE_NAME = ""destination";

IDX=03 :

move text into OUTBUF and use either form of coding following

DO IDX=1 TO 23;

GPL || $H_SEND 'ADDR(FIRST_OUTPUT_CD)', INADDR= 'ADDR(OUTBUF)' ;

END ;

$H_SEND ‘ADDR(FIRST_OUTPUT_CD)', INADDR= 'ADDR(OUTBUF)'
ENDCHAR=EMI , AFTER , PAGE;

DO IDX=1 TO 24;

$H_SEND 'ADDR(FIRST_OUTPUT_CD)', INADDR= 'ADDR(OUTBUF)'

END ;

$H_SEND 'ADDR(FIRST_OUTPUT_CD)', INADDR= 'NULL()'
ENDCHAR=EMI , AFTER , PAGE;

MCS AUTOMATIC EDITING

Automatic editing functions provided for by MCS are activated through the foll-
owing parameters of the QUEUE command which apply specifically to the terminal-
queue and are declared at network generation, namely,

« BLOCKING MCS keeps track of the logical line-length specified by LLENGTH
in order to generate automatically a new-line or carriage-return/
line-feed before the first line of each output message or at the
start of a new logical line

« LLENGTH Specifies the number of characters in the logical terminal line
length to be used for automatic editing when BLOCKING is speci-

fied

Defines the number of logical lines to be accepted in each mess-
age sent to the terminal declared, where the number of characters
for each logical line is determined by LLENGTH.

» NBLOCKS

If the message is greater than NBLOCKS x LLENGTH, the characters in excess are
truncated,

Representing Control Codes

Control codes are represented by
. numeric values

« mark form.

Control code sequences are a combination of control codes and/or graphic symbols.

NUMERIC VALUES
In the example opposite, the numeric values for the control codes CRV and LFV are
specified in accordance with what is expected by the compiler, namely,
+ for the MCS COBOL compiler, the decimal value of the COBOL collating sequence
. for the GPL compiler, the hexadecimal EBCDIC value.
In GPL, no intermixing between graphic representation and hexadecimal values is
allowed, and for that reason, control codes to be filled in must first be init-
ialized as spaces.in the constant character string.
The example also shows the formatting of the VIP-header and its parameter codes.

The mark form ><UO3 is the invariable VIP-header and can be regarded as a speci-
al case of the control code in mark form, which is,

. delivered on input in front of the message text from the terminal
o provided on output in front of the message text by the user

o allowed in the unedited mode, both on input and output, in order for the pro-
grammer to access the status and function codes.

3-36

Control Code
Sequence
Using Numeric Values

BOOKINGS

To send to the VIP7700 printer the text format NUMBERS :

1. To address the VIP7700 printer, use the following values for the VIP-
header,

STA=3F (EBCDIC value)
=64 (COBOL Collating Sequence)

FC1 and FC2 to be left initially as spaces

The format of the VIP header is { > | <] U | O | 3 [STA|FC1|FC2

2. To position the hard copy for the second line of text, use the values:

CRV=0D (EBCDIC value)
=14 (COBOL Collating Sequence)

LFV=25 (EBCDIC value)
=38 (COBOL Collating Sequence)

3. In the MCS application, code as appropriate :

For MCS COBOL, use the GCOBOL collating sequences
MCS DATA DIVISION.,

COBOL| .5 uEAD PIC X(26) VALUE "><U03"64"'YVBOOKINGS"14"
"38"NUMBERS: "' »
For GPL, use the EBCDIC values
DCL . HEAD CHAR(26) INIT (''><UO3VVVBOOKINGSVVNUMBERS:'") ;
GPL

SUBSTR(HEAD,6,1) ="3F'H ;
SUBSTR(HEAD, 17,2) ="0D25"H

) 3-37

MARK FORM
The mark form enables any control code, known to the '"stream processor', to be
entered in its mnemonic form.
This easy-to-use symbolic representation of control codes is a general facility
of MCS. .
For the control code sequence, the 2 types of mark form dealt with are,

o ><ccc, where ccc represents the 3-character mnemonic of the control code

o ><C, denoting character-encoding for the EBCDIC numeric value to follow,

thereby completing the control code sequence.

The "repeat" function is not treated here, since the processing of 'repeated"
control codes, in whatever form, is specific to the line procedure, see 'Control
Code in Mark Form' and "Character-Encoded Form' on page 3-04.

The choice of entering control codes either in their character-encoded form or
in their mnemonic mark form, depends on the type of control code.

In general the control code or the control code sequence is expressed in charac-
ter-encoded form, under the following conditionms,

« when the control code is not defined as standard, see '"Control Codes'"

. when the control code sequence is composed of data which individually is
neither control codes nor graphic symbols, and therefore, cannot be speci-
fied in any other form.

3-38

Control Code
Sequence
in Mark Form

To position the cursor of the VIP7700 screen on line 11 at column 37,

1. Refer to the VIP7700 terminal manual for the format of the command to
position the cursor.

command is DC3ab, where, a is the line number

b is the column position

2. Refer to the ASCII table to determine the values for line and column.

To determine the EBCDIC value for line 11, proceed as follows,
. Start from ASCII code 20 which is a ''space"
» Count 11 codes from the ASCII code 20
« The ASCII code arrived at is 2A or graphic *
« The EBCDIC equivalent is 5C

To determine the EBCDIC value for columm 37, proceed as follows,
« Start from ASCII code 20 which is a ''space"
o Count 37 codes from the ASCII code 20
« The ASCII code arrived at is 44 or graphic D
o The EBCDIC equivalent is C4

3. In the MCS application, use either coding:

MCS 77 CONT PIC X(7) VALUE "><DC3*D",
COBOL 77 CONT PIC X(15) VALUE "><DC3><C5C><CC4",

DCL CONT CHAR(7) INIT ("><DC3*D") ;
DCL CONT CHAR(15) INIT ('"><DC3><C52><CC4") ;

GPL

3-39

SECTION IV

CONNECTION HANDLING

Connection handling describes the dynamics of establishing the connection between
users, represented by terminals and applications.

The connection interface between both local and remote users, is assured by the
Message Control System, whose functions are provided by MAM and QMON.

Once the connection has been established, data exchange can then take place.

Whereas the connection in the case of VCAM subsystems is direct, the connection
in the case of MCS applications is logical, in order to allow for the following
conditions,

. the application can be connected to an output queue whose destination termi-
nal is not active

o the terminal can be connected to an input queue whose associated application
is not executing.

The term "local terminal" refers to a terminal connected over secondary networks,
that is, both the local and the TRANSPAC secondary networks accessed over BTNS.
The logon for terminals configured over these secondary networks is treated in
detail in the Terminal Operations Manual.

The term "“remote application" refers to an application executing in a machine oth-
er than the DPS 7 local system. This other machine can be connected to the local
DPS 7 either over the secondary network through the BSC2780 line procedure or over
the primary network. In the case of the primary network, the local DPS 7 acts ei-
ther as the "host" over the FNPS/DN7100 interface or as the "satellite'" over the
TNS/URP interface.

A comprehensive description of Distributed Systems Architecture and DPS 7 networks
is given in the Communications Overview Manual.

This section is intended to describe how the various types of network connections
are handled and the effects of the $QASSIGN statements in each case. For details
on $QASSIGN, see pages 2-05 through 2-53.

The conventional symbols in the text are as follows,

GCOS process (:)' terminal mailbox as "end-point"
- BTNS and FNPS :
- QMON - @ application mailbox as '"end-point"
GCOS access method A\ Mcs queues .
- MAM - T terminal-queue ; P program-queue
- VCAM ‘ - Nx. Py DSA-queue <system. queue>

Communications Links
supported by the
Message Control System

Machine C : System NC

©)

Machine A : System NA

The diagram shows the relationship between
the various types of queues constituting
the communications links supported by MCS.

Mailboxes are omitted for reasons of sim-
plicity and are treated in detail for each
individual case of connection handling.

Case ¢ is a particular example of terminal
handling in the URP local network where
Machine B is a CPU connected to Machine A
using the BSC2780 line procedure.

Case d shows connection handling over the
primary network using the FNPS/DN7100 in-

terface of Machine A and the TNS/URP interface of Machine C.

References in the text following, are

(a) see '"Manual Logon from a Local Terminal to a Local Application"

(b) see '"Logon from one Local Terminal to another Local Terminal"

(c) see "Communication between Remote Applications', Section II

(d) see "Connection Request from a Local Application to a Remote Application"

4-02

The term "machine'" refers to the DPS 7 either as a system in a DSA primary net-
work or as an HL64 CPU terminal in a secondary network.

The term "applicétion" is used to group together VCAM subsystems and MCS“éppliga-
tions. 2

During the logon of a general-purpose terminal, the operator keys in, in response
to APPL, either the name of the VCAM subsystem or the name of the program-queue
denoting the MCS application, see '"Logon Procedures', Telecommunications Ref. Card.

Besides local applications communicating in the same machine, the Message Control
System supports other communications links, shown in the diagram opposite, which
are the following, in relation to the machine in which they occur,

. over the BINS/URP interface in a secondary network

(a) Machine A : » ,
- between the application PA, represented by the program-queue PA
- and the terminal T2, represented by the terminal-queue T2

“(b) Machine A : A
- between the terminal T1l, represented by the terminal-queue T1
- and the terminal T2, represented by the terminal-queue T2

(c) Machine A linked up to Machine B, using the BSC line procedure :

- between the BSC terminal T3, represented by Machine A, and the ap-
plication PB, situated in Machine B

- and, between the BSC terminal T4, represented by Machine B, and the
application PA, situated in Machine A

o in a primary network using the FNPS/DN7100 interface of Machine A on the one
side, and the TNS/URP interface of Machine C on the other side.

(d) Machine A linked up to Machine C, as systems in a DSA network, where A
and C are respectively the systems NA and NC :. ’

- between the DSA-terminal-queue NC.PC, representing Machine A as sys-
tem NA, and the application PC situated in Machine C as system NC

- and, between the DSA-terminal-queue NA, PA, representing Machine C as
system NC, and the application PA situated in Machine A as system NA

Connection handling is dealt with in terms of
» connection request from a local terminal
o connection request from a local application

« connection request from a remote applicatiomn.

For local applications, see ''Communication between Local Applications', see
Section 1II.

4-03

CONNECTION REQUEST FROM A LOCAL TERMINAL

The cases considered for connection requests from a local terminal are,
. manual logon from a local terminal to a local application
¢ logon from an automatic-dedicated ‘terminal to:a local application
s+ logon from an automatic terminal to the QMON mailbox
« manual logon to a '"blank" destination or to the QMON mailbox

« logon from a local terminal to another local terminal.

Manual Logon from a Local Terminal to a Local Application

The local terminal referred to in this instance is a general-purpose termihal,
that is, declared at network generation with neither AUTO nor ASSIGN.

Such a general-purpose terminal can communicate with any MCS application through
a program-queue defined at network generation.

The connection is rejected if the following anomalies occur,

« CCO4 LOGON DENIED : SECURITY CHECKS FAILED
- one or more of the specified catalog parameters, for a validated GCOS
site-catalog, given in reply to the CCOl1 message is incorrect.
« CCO4 LOGON DENIED : APPL REJECT

- the specified MCS program-queue has neither been defined nor enabled, or
is saturated at the time of the connection request.

- one of the following terms has not been defined,
« a terminal-queue bearing the same name as the terminal-mailbox
o a userid-queue bearing the same userid of the terminal operator.

- the terminal-queue or userid-queue is not available since some executing
application has a $QASSIGN OUT on the terminal concerned but does not
have a $QASSIGN IN on the designated program-queue.

4-04

Manual Logon
from a Local Terminal
to a Local Application

l | |
MCS

BINS QON application
term
queue

ot |

< - O = m— EJ::
] term @

o = A I -
T mbx \\>ﬁk queue

P P

,//’//”;;;;\\\\\\\\,//”’//’;;;\\\\\‘\\‘

JCL for the MCS application, if executing at logon time, must contain :.
o $QASSIGN IN on the program-queue P
« and, optionally, $QASSIGN OUT on the terminal-queue T

l.a

1.b

l.d
2.

3.

Terminal T requests connection through manual logon to the MCS. program-
queue P, specifying P as the application.

The BTNS terminal handler initiates the logical connection between the
terminal-mailbox T and the application-mailbox P, which has the same
name as the MCS program-queue P.

The connection is accepted by QMON when all conditions are satisfied,
that is, -

o if catalog access rights have been validated
o if the program-queue P is defined, enabled and not saturated
o« if the terminal-queue or userid-queue is defined and available,

Data exchange can now take place.

Messages sent by the terminal T are placed by QMON into the program-
queue P and from there retrieved by the MCS application for processing.

Messages sent by the MCS application are placed in the tefminal—queue T
and from there are retrieved by QMON for transmission to the terminal T.

While the connection is established, any assign request on the terminal-
or userid-queue through $QASSIGN OUT, will be rejected.

4-05

&ggdn from an Automatic Dedicated Terminal to a Local Application

Anbautomatic-dedicated terminal is one where both the AUTO and ASSIGN options
have been declared at network generation.

The connection request is. automatically handled by the BINS terminal manager
which acts on behalf of the terminal as soon as the terminal is powered on and
no HT network control command has been previously issued to the terminal or to
any component of the link.

The userid generated by the secohdary network controller for the terminal has
the syntax <gencom-name><terminal-name> or <lsys-name><terminal-name>.

In order for catalog access rights to be established for such a terminal, the
project of this userid must specify in its CRP command of the CATMAINT utility,
the program-queue in its APPLIST, see System Management Guide.

The only logondialogis inthe case where the terminal is connected over a switch-
ed line and declared with the IDSEQ command at network generation.

The BTNS ‘secondary network controller then sends the message CCOO ID?, to which
the operator replies with the appropriate id, specified in the IDSEQ command.

Logon from an Automatic Terminal to the QMON Mailbox

An automatic terminal is one where only AUTO has been declared, and not ASSIGN.

Such a terminal will be placed in the "logged' state by the BINS terminal manager
and will then be available for allocation to any application which requests it.

Before being placed in the '"logged" state, however, the comnection request is
addressed by BTNS to QMON, to check if there is any output available in the ter-
minal-queue.

If the terminal-queue has data, and is enabled, the connection is then establish-
ed between the terminal-mailbox and the QMON-service-mailbox, QMONMEX.

Once all data has been released to the terminal, and if no $QASSIGN OUT is pend-
ing on the terminal-queue, the connection is broken, and the terminal is set back
to the "logged'" state.

1f, however, the conditions for output to the terminal are not satisfied, the
terminal will immediately be placed in the 'logged" state.

As in the case of the automatic-dedicated terminal, the only logon dialog occurs
for a terminal connected over a switched line and declared with the IDSEQ com-
mand at network generation.

The BINS secondary network controller then sends the message CCOO ID?, to which
the operator replies with the appropriate id, specified in the IDSEQ command.

Manual Logon to a '""Blank' Destination or to the QMON Mailbox

The difference between this case and the preceding automatic terminal, is
. while the terminal is set to the '"logged'" state, if no output is available,
o the terminal is set to the "idle" state, after data has been output to it.

4-06

Manual Logon
to a '"blank' Destination
or to the QMON Mailbox

VCAM MAM

BTNS QMON
term

//425 qu;ue

4 os—1-{/
. term | @

tem;_.mal mbx QMON

T serv

mbx

\/

This type of connection is initiated by one of the following operator actionms,

. where no application has been specified

. where QMONMBX, being the system reserved name of the QMON service-mailbox,
has been specified as the applicatioms

1. Where no application has been specified at logon, the connection between
the terminal-mailbox T and the QMON service-mailbox, QMONMBX, will be es-
tablished, when both conditions are fulfilled, namely,

o if a default application has not been specified for the project
« if there are messages available in the terminal-queue T.

Where QMONMBX has been specified as the application, the connection will
be established when the second condition is fulfilled.

2. Once the connection is established, messages are transmitted from the ter-
minal-queue T to the Lerminal T, '

The connection is terminated, when all messages have been sent to the ter-
minal, and no $QASSIGN OUT on the terminal-queue T is pending.

4-07

Logon from one Local Terminal to another Local Terminal

Logging a terminal onto another enables data to be exchanged between the two ter-
minals concerned.

The terminal-queue of the terminal receiving the data becomes the input queue for
the terminal sending the data.

In the diagram opposite, the terminals have the following attributes,

« Tl is a general-purpose terminal, which at logon, is able to specify T2 in
reply to the option APPL

+« T2 is either an automatic or automatic-dedicated terminal, which at logon is
set to the "logged'" state, in order to receive the data placed in its termi-

nal-queue by Ti.

4-08

Logon
from one Local Terminal
to another Local Terminal

/CNAAM\

BINS QMON

A term

| queue
T1 T1

ter$§nal torm @\ ©)
i >@‘\

ST |

. term

<;1 serv \\ECS queue
terminal ——"”/ term

T2 mbx

AUTO
"logged" state

Conditions : a. Terminal-queues T1 and T2 must both be defined and available.

b. There must be no $QASSIGN OUT pending on either terminal-
queue, Tl or T2.

¢» Terminal T2 must be in the ''logged" state.

1. At logon, terminal T1 specifies T2 as the application, where T2 also
serves to identify the terminal-mailbox as well as terminal-queue.

2. The first connection is made between the terminal-mailbox T1 and QMONMBX,
being the system reserved name of the QMON service mailbox.

If terminal T2, at this stage is not "logged", only this first conmection
is made, thus allowing terminal Ti to send messages to terminal-queue T2.

3. The second connection is then made between QMONMBX and the terminal-mail-
- box T2, if terminal T2 is '"'logged", when the first message is sent from
Tl to T2

4, Once these 2 connections have been established, data submitted by terminal
T1 into terminal-queue T2, will be retrieved by QMON for transmission to
terminal T2.

4-09

CONNECTION REQUEST FROM A LOCAL APPLICATION .

The comnection between two local applications is dealt with in Section II, which
outlines the communication between two applications in the same central processor,
namely, '

« application-to-application communication

o application communicating with itself

. communication between processes of a multiprocess application.
In this section, the two cases considered for connection requests from a local
application are,

« to a local terminal

« to a remote application.

Connection Request from a Local Application to a Local Terminal

The network prerequisites are that the terminal T, its terminal-queue T and the
program-queue P must be declared by the TERMNL and QUEUE commands, one for each
queue, respectively, during network generation (CNC).

The connection is established between the terminal-mailbox T and the application-
mailbox P, when all events occur,

o the application P sends the first message to the terminal-queue T

. the terminal-queue is enabled

. the terminal is in the '"logged" state, for one of the following reasons,

- it is either an automatic or automatic-dedicated terminal, which at logon
will be set to "logged"

- it is a general-purpose terminal '"logged'" on to either a 'blank' destina-
tion or to the QMON-service-mailbox, QMONMBX.

Data transfer can only occur when the connection is established.
Messages will be placed by the application into the terminal-queue, and will re-
main in the terminal-queue, if the connection cannot be made for either reason,

. the terminal-queue was disabled, in which case, the connection attempt will
be made when a ($H_)ENABLE OUTPUT is executed on the terminal-queue

o the terminal was not in the "logged" state, in which case, the connection at-
tempt will be made when the terminal is set to '"logged" from any unapplicable
state, such as '"powered-off', '"held" or "idle'".

Disconnection will take place when one of the following conditions occur,

. at the request of the tarminal, namely, logoff

. on the failure of any component constituting the physical link

. on termination of the application and when the terminal-queue has released
all its messages to the terminal,

4-10

~"Connection Request
from a Local Application
to a Local Terminal

| I I
MCS
BINS QMON application
term
o |
S — o= =N
terminal t
ermne nzfm appl N\\\‘\\ prog
T X mb @ \
T Px /\ | queue
P

e

JCL for the MCS application must contain
o $QASSIGN OUT on the terminal-queue T
o and, optionally, $QASSIGN IN on the program-queue P, see 1l.b and 3.b.

1.a

L.b

20

3ea

3.b

The connection between the application-mailbox P and the terminal-mail-
box T is established for data transfer where both conditions defined
above are fulfilled.

1f, however, no $QASSIGN IN has been declared on the program-queue P,
the connection will instead be established between the QMON service mail
box QMONMBX and the terminal-mailbox T.

Messages sent by the MCS application are placed in the terminal-queue T
and from there are retrieved by QMON for transmission to the terminal T.

If the connection described for 1.a has been established, messages sent
by the terminal T are placed by QMON into the program-queue P,

I1f the connection deséribed for 1.b has been established, the terminal
T functions as a '‘receive-only'" terminal.

4-11

Connection Request
from a Local Application to a Remote Application
(CNC Declaration and Link-up)

[r2] [N2.P2
DN7100
DPS 7 DPS 7
F DSA 01:02
system : N . PSI |system : N1
01:01 | primary e FLOSST] 0p:02
: network DITS :
N2TS D1
system ¢
Y
CNC Declaration for System N2 CNC Declaration for System N1
QUEUE P2.es H QUEUE N2.P2eee H
QUEUE Nl.Pl... 3 QUEUE Pleees
LSYS N2 Iﬁggs sgirj =02:02;
LSC SCID=01:01 TS=N2TS; ¢ ?
' . FNP F1 CCO1;
RSYS D1
) - . FSYS D1;
RSC D1 SCID=01:02 TS=DI1TS; FSC D1 SCID=01:02 FNP=F1;
RSYS N1; RSYS N2;
RSC N1 SCID=02:02 TS=DITS; RSC N2 SCID=01:01 FNP=F1;

° The conditions for the connection request to be successful are,

« For System N1,
- its front-end processor must be "loaded" and its FNPS service must be

activated through the '"MTF D1 AUTO" network control command
- its program-queue P1 and DSA-qpeue N2, P2 are both '"enabled"

. For System N2,
- TNS of its BTNS/HDLC service must be activated through the ST command

- its program-queue P2 and DSA-queue N1.Pl are both '"enabled'.

¢ Where the connection is unsuccessful, either application can issue a repeat-
ed sequence of ($H_)DISABLE OUTPUT - ($H_)ENABLE OUTPUT verbs to the DSA-

queue of its correspondent.
© The connection remains active until terminated by either correspondent,
. on "holding'" its program-queue through the HT network contrci command
. on execution of ($H_)DISABLE INPUT without TERMINAL on its program-queue

. on termination of the application and when its DSA-queue has released all
its messages to the other application of its correspondent.

4-12

Connection Request -
from a Local Application to a Remote Application
(Run~time JCL and Execution)

N2 N1
system system

,/’/;;;\\\\,/’/;:Z;\\\\ 1///;;;;\\\N,/’/;;;\\\\

1 Y Y 1 Y Y
MCS MCS
appl QMON TNS FNPS QMON appl

P2 A‘ A w22 P2
\\\\ oA @ "//
. ¢, O——==
N -
C) plug N—" plug
/,/’/’a%fn naﬁfh\\\\
mbx mbx
NLP1| N g vl BN VN 31

Conditions : e For system N1, the JCL for the MCS application Pl must contain
» $QASSIGN IN on program-queue P1
o $QASSIGN OUT on DSA-queue N2.P2,

e For system N2, the JCL for the MCS aﬁplication P2 must contain
o $QASSIGN IN on program-queue P2
° $QASSIGN OUT on DSA-queue N1. Pi.
1. QMON in both systems N1 and N2 establish the "link-up" between the applica-
tion-mailbox Pl in system N1 and the application P2 in system N2,
The commnection between the 2 mailboxes in both systems enables data trans-
fers, described in 2 and 3.
2. The MCS application in system N1 sends data from its DSA-queue N2. P2 to
system N2.
QMON in system N2 then places the data received into the program-queue P2,

3. The MCS application P2 in system N2 does likewise in the reverse direction.

QMON in system N1 then places the data received into the program-queue Pl.

4-13

CONNECTION REQUEST FROM A REMOTE APPLICATION

Connection handling is the same as that for the connection request from a local
application to a remote application.

In this case, however, it is the remote:application that initiates the connection
request, and as a consequence, the program-queue and the DSA-queue of the local
application must be enabled in order for the connection to be successful.

Where the connection is unsuccessful, it is the remote application that must
issue a repeated sequence of ($H_)DISABLE OUTPUT - ($H_)ENABLE OUTPUT verbs to
its DSA-queue in order to reinitiate the connection request to the local applica-
tion.

4-14

SECTION V

LINE PROCEDURES

Line procedures are used to establish transmission protocols over the link,-
which comprises the network support for the logical connection of two end-users,
namely,

o between the DPS 7 as the local system

. and terminals of the secondary network.
Terminals supported by GCOS are divided into groups, each group corresponding
to its specific line procedure.
Terminals within a group are compatible with each other since they conform to a
common transmission protocol.
A terminal can, in some cases, be supported by more than one line procedure, for

example,

+ DTU7171, TN1200 and TTU8124 are supported by the TTY line procedure with the
reverse channel version, TTY-R, as an alternative

o BTT7300 is supported by the synchronous and asynchronous versions of the VIP
line procedure

o HL64 is supported by both the BSC2780 and the HDLC line procedures.

Terminals are compatible when they function as follows,
» from the point of view of hardware and firmware,
- they share the same TCT, translation code table

- they are connected over the same multipoint line when using the "poll/
select" facility

o from the point of view of the application,
- they share the same controls for formatting the character image.
In this section, the information regarding transmission control codes is as foll-
ows,

. .where the mnemonic form does not appear in the list of ''Control Codes' on
page 3-03, the EBCDIC value is given, see pages 5-06 and 5-07

. where the control code is internal to the line procedure, it is shown coded
in mark form, acceptable to MCS, see pages 5-13 and 5-17

. where the control code is shown in mark form and is present in the list of
""Control Codes', its corresponding EBCDIC value can also be used instead, see
“TTY Line Procedure™ and Section VI.

5-01

The line procedure to which the terminal belongs, determines its operability,
namely, :

« the controls used to terminate the message
. the special characters used to erase message text.
For this information, see Terminal Operations Manual.

In the following section, "Programming Terminals', the line procedure supporting
each terminal is indicated in the heading,

User visibility in programming the terminals listed in Section VI, is limited to
the control codes by which the terminals function.

Apart from the BSC line procedure, transmission protocol is seen only at system
level.

In the BSC line procedure, the user has access to the transmission control codes
in formatting his message. :

5-02

BSC2780

The following processors, known by their CNC declarations as underlined in the
list, operate on the BSC2780 line procedure with the DPS 7,

. HL61 for 61/DPS
» HL62 for DPS 4
. HL64 for DPS 7/x0 and DPS 7/x5, where x is a decimal digit
. HL66 for DPS 8/88
o IBM370 for IBM360 and IBM370
» IBM3741.
GCOS communications software provides the user with the facility for dat# ex-

change between the DPS 7 local system and any of the central processors listed
above, over

« private or leased point-to-point lines, using the BSC1 version of protocol
. switched point-to-point lines, using the BSC2 version of protocol.

The link provides the facility for applications to communicate with each other,
see Section IV, "Connection Handling',

As the facility only concerns application-to-application communication, this line
procedure does not include automatic processing of end-to-end control codes de-
fined for the BSC2780 IBM-type terminal, namely,

« ESC escape, output device selection

o HT horizontal tabulation, positioning

« EM end-of-medium, variable data length delimiter.
Since these control codes appear within the user text, they can be handled di-
rectly by the MCS application.
The procedure is described in terms of

o link states

» logon procedure

» encoding data

o general format of data messages

. management of data transfer by the application

« contents of user messages.

5-03

- BSC2780
continued

LINK STATES

Except where explicitly defined, the state of the link is completely controlled
by the system through BTNS and the URP firmware. The state of the link between

two stations using a common communications facility determines their connection
and data exchange,

The link can be in one of the following states,
o disconnected state
. control state

. message transfer state.

Disconnected State

The link can be in the disconnected state only in a switched network environment.
This state prevails when

. the physical path is not currently established over the network

« the dial-up procedure is in progress but not yet completed

+ the "disconnect" control sequence DLE EOT has been issued when the link has
been idle for longer than the inactivity time-out.

The disconnected state is entered from one of the other two states. However, when
leaving the disconnected state, the link always enters the control state.

Control State

The link is in the control state when the corresponding physical data path is
present but no data transmission is taking place.

The physical data path is established after the successful completion of the con-
nection phase at line initialization.

In the control state, one of the two conditions can occur,
. absence of transmission

o initialization of transmission..

ABSENCE OF TRANSMISSION.

When transmission does not take place, the link is idle and the way in which the
link is configured in the network determines
+ how the network handles the idle condition

« the action taken by the DPS 7.

5-04

BSC2780
continued

If the link is supported by a permanent point-to-point type connection, the idle
condition persists until the transmission phase is initialized.

When this transmissionphase is started, the DPS 7 monitors the line for as long
as the link stays open.

If the link is operated over a switched network, the idle condition will be en-
tered from the disconnected state on successful completion of the dial-up proce-
dure.

The DPS 7 will then monitor the line until a "disconnect' control sequence is is-
sued for inactivity time-out.

INITIALIZATION OF TRANSMISSION

The initialization and termination phases of transmission, between which infor-
mation exchange takes place, are executed in the control state.

Information exchange involves the transmission of control blocks and reply blocks
between two stations,

Contention between two point-to-point stations arises when both bid for the line
at the same time in order to transmit.

The station wishing to transmit bids for the line by sending the ENQ control code
as a transmit request to the other statiomns

If the request is accepted, the link is brought into the message transfer state
and the requesting station can then transmit. Otherwise, the link remains in the
control state.

If the request is rejected, bidding for the line is retried up to three times.

BTNS, in its turn, starts bidding for the line each time a new output request is
made to it while the line is idle.)

I1f the line is in the logical '"open'" state, BTNS accepts a transmit request over
it.

In order to resolve contention, one of the stations is designated the "primary"
station, while the other is designated the 'secondary'" statiom.

Attributes of designating priority to the stations are as follows,
o if simultaneous line bids occur, the 'primary" station transmit first

» at each bidding, the "primary" station can retry up to three times, and will
persist to bid until it receives an appropriate reply : any ENQ control code
received by the ''primary' station once it has taken action to request the
line will be ignored

. the "secondary'" station must respond to all valid END control codes that it
receives

» before re-issuing the transmit request, the "primary' station has a shorter
time-out when waiting for a reply than the ''secondary' station, thus forcing
both stations out of contention.

According to the URP firmware generation, the HL64 can be defined either as a
Yprimary" or ''secondary' station.

5-05

BSC2780
continued

INITIALIZATION OF TRANSMISSION (continued)

The functions applicable to the control state for initializing transmission are,

ACKO able to receive, also used for line "turn-around"
EBCDIC 1070

ACK1 able to receive, also used for line "turn-around"
EBCDIC 1061

ENQ can you accept transmission? : also used for line "turn-around"
EOT no synchronization
NAK unable to receive, also used for line "turn-around"

PAD time-fill
EBCDIC FF

RVI you stop transmitting and accept my messages
EBCDIC 107C

SYN start synchronizing, also used as ''discard'" character

TID transmission to begin later, respond with NAK or WACK
EBCDIC 022D

WACK request later and wait until acknowledged, also used for line "turn-around"
EBCDIC 106B

Message Transfer State

The message transfer state is a dynamic state which prevails as long as messages
and the replies they generate are transferred over the line.

The state is entered at the start of the first message by the start control se-
quence SOH STX or DLE STX and will be maintained throughout the entire trans-
mission until the last message ended with ETX has been successfully transferred,
An end-of-transmission control code EOT is then issued to reset the link to its
control state.

The return to the control state can be achieved by the MCS application through
KCO or BCO. .

In the message transfer state, the station can function in one of two ways,

+ as a "master'" station, which transmits control codes and block-check's con-
taining redundant information for verification purposes

o as a "'slave" station, which receives data and transmits replies.

Station functions are interchangeable and are maintained for as long as the link
stays in the message transfer state. v

For error free transmission, the 'master' station is responsible for resetting
the link on termination.

However, if an error condition occurs, whereby transmission can no longer pro-
ceed, either station can reset the link to discontinue dialog.

5-06

BSC2780
continued

The functions applicable to the message transfer state during transmission are,

ACKO
ACK1
DLE

ENQ

EOT
ETB

IRS

ITB

PAD

RVI

SOH
STX
SYN
TTD

WACK

even block received OK, also used for line "turn-around"
EBCDIC 1070

odd block received OK, also used for line '"turn-around"
EBCDIC 1061

start-of -transparent-mode

enquiry, also used for line "turn-around"
» if between blocks, repeat last response
« if at the end of block, ignore block and respond with NAK

cease synchronizing and return to control state, text invalid
end-of-block, also used for line '"turn-around"
end-of-text, also used for line "turn-around"

end-of-intermediate~record
EBCDIC 1C

end-of-intermediate-record
EBCDIC 1F

block does not check, retransmit, also used for line "turn-around"

time-£fill
EBCDIC FF

message received OK : I would like to transmit
EBCDIC 107C

start-of-block header
start-of-text, starts the first block
start synchronizing, also used as ''discard'" character

transmission to continue later, respond with NAK or WACK

- EBCDIC 022D

current block received OK : request later and wait until acknowledged,
also used for line "turn-around”
EBCDIC 106B

5-07

BSC2780
continued

LOGON PROCEDURE

An easy way to establish the logical connection between a remote station and a
program-queue is to dedicate the station to the queue, that is, the correspond-
ing TERMNL command describing the remote station must be declared with AUTO, for
automatic logon, and ASSIGN, for dedication to the program-queue, at network
generation.

The connection is then established as soon as the line is in the control state
and remains until the line returns to the disconnected state.
For an HL64-to—HL64»connection, the link-up may be established on both sides.

If the user wants the remote station to be connected to different applications,
that is, to different program-queues, the corresponding TERMNL command describ-
ing the remote station must only be declared with AUTO.

In this case, once the remote station is "logged", it will be available for al-
location to any application which requests it.

ENCODING DATA

Functionally the BSC2780 line protocol allows two categories of user-provided da-
ta to be exchanged over the line, namely,

. text, comprising data to be processed

. heading, containing information for end-to-end control.

Text

Although ASCII encoding is a function of the BSC2780 line procedure provided
through the TCTNM parameter of the appropriate LINE command, exchanges between
Series 60 processors are performed in EBCDIC code, this internal code being the
default option.

For more efficient recovery purposes, text may be split into subblocks separated
by sequences of control codes irrespective of the mode of transmission.

Depending on the requirements of the application, text may be transmitted in one
of the following modes, '

. normal mode

. transparent mode.
NORMAL MODE

Text transmitted must not contain any control codes or control sequences used by
the protocol of the BSC2780 line procedure.

5-C8

BSC2780
continued

TRANSPARENT MODE -

The text may contain unrestricted coding of data since all control codes includ-
ing the '"escape' control code DLE must be preceded by DLE in order to be recog-
nized as a control function.

The control functions that can be specified in transparent mode are,
DLE DLE transmits the control code DLE in transparent mode

DLE ENQ forward abort, to denote end-of-transparent-mode

DLE ETB end-of-transmission-block, to denote end-of-transparent-mode
DLE ETX end-of-text, to denote end-of-transparent-mode

DLE ITB end-of-intermediate-block, to denote end-of-transparent-mode
DLE STX start-of-text, to denote start-of-transparent-mode

DLE SYN synchronous idle.

The transparent mode is used when the transmission involves,
o binary data
o floating point numbers
« packed decimal data
» specialized or foreign codes

. computer programs in machine code,

Heading

Heading data is control information used by the applicatioﬁ for end-to-end con-
trol related to the text data blocks following it.

This control information which is separated from the text in the message, can on-
ly be transmitted in normal mode, in one of the following ways,

. embedded within the message containing any type of text, either normal or
transparent

. alone in a message, without text to follow it.

5-09

BSC2780
continued

GENERAL FORMAT OF DATA MESSAGES

e The format of the data message for transmitting normal text is :

SYN|SYN|SYN|SYN|STX |n-text | ETB|BCC|PAD
SYN|SYN|SYN|SYN|STX|n~text | ETX | BCC|PAD
SYN|SYN|SYN|SYN|STX|n~text | ITB|BCC|SYN|SYN|n-text | ITB|BCC|SYN|SYN|n-text |ETB
BCC|PAD
SYN|SYN|SYN|SYN|STX |n-text | ITB|BCC|SYN|SYN|n-text | ITB|BCC|SYN|SYN|n-text |ETX
BCC|PAD
e The format of the data message for transmitting transparent text is :
SYN|SYN|SYN|SYN|DLE STX |t -text |DLE ETB|BCC|PAD
SYN SYNLSYN SYN|DLE STX [t -text |DLE ITB|BCC|SYN{SYN{DLE STX|t~-text | DLE ETB|BCC
PAD
SYN|SYN|SYN|SYN|DLE STX|t~-text |DLE ETX|BCC|PAD
SYN|SYN|SYN|SYN|DLE STX|t~-text {DLE ITB|BCC|SYN|SYN|DLE STX|t~-text [DLE ETX|BCC
PAD

e The format of the data message for transmitting the heading is :

SYN

SYN

SYN

SYN

SOH|heading

ETB|BCC

PAD

SYN

SYN

SYN

'SYN

SOH|heading

STX

normal text]ETX

BCC

PAD

SYN

SYN

SYN

SYN

SOH |heading

DLE STX

transparent text

DLE ETX | BCC

PAD

5-10

BSC2780
continued

Explanation of Control Codes

SYN

STX

SYN SYN SYN

to establish and maintain synchronization.

The number of SYN control codes to be inserted by the URP is defined through
the ININS parameter of the LINE command at network generation.

The default number of SYN control codes is 4.

to denote that the character following is part of the transmitted text.

n-text

text transmitted in normal mode

t-text

ETB

BCC

PAD

ETX

ITB

DLE

SOH

text transmitted in transparent mode

to denote the end of the block and to retain the direction of transmission.
If the current block is correctly received, another block ended by ETB or ETX
must follow.

block check control used by URP firmware for checking or generating accumu-
lated parity.

used for temporizing between transmissions.
The number of PAD control codes is defined through the PADNB parameter of the
LINE command at network generation.

to denote the end of transmission and to allow the reversal in the direction
of transmission if EOT ending the last message was correctly received.

to denote the end of the subblock and that more subblocks are to follow.

data-link-escape used to provide

. supplementary line control codes in combination with other graphic symbols
Example : DLE @ is interpreted as RVI (reverse-interrupt)

o recognition of control functions specified in the transparent mode, see
"Transparent Mode''s

to define the start of control information between
o SOH and STX or ETB in normal mode
o SOH and DLE STX in transparent mode.

5-11 -

'BSC2780
continued

Message Structure seen by BTNS

A text message exchanged between the BTNS message processing routines and the URP
firmware can take one of three formats, namely,

e User-defined header message :

STI | TRI | SOH | heading | ETB/ ETX

e Message partitioned into blocks :

STI | TRI | SOH | heading | STX | normal text | ETB/ ETX

~=— optional —=

e Transparent message text in which non-standard control codes are accepted :

STI | TRI | SOH | heading | DLE STX | transparent text | DLE ETB / DLE ETX

~s— optional —s

STI
- station index defined by the STATN command at network generation, and set to
1, see Network Generation Manual.

TRI .
- terminal index, provision for multipoint handling

SOH
- to define the start of control information

heading
- control information defined and provided by the user

STX :
- to denote the start of transmission in normal mode, if not prefixed by DLE.

ETB
- to denote the end of the block transmitted in normal mode, if not prefixed by
DLE, and to retain the direction of transmission. :

ETX
- to denote the end of transmission in normal mode, if not prefixed by DLE, and
to allow the reversal in the direction of transmission

DLE
- to denote transmission in transparent mode, see accompanying codes.

5-12

BSC2780
continued

Message Structure seen by the Application

The control codes shown in mark form are translated by the MCS stream processor
into their corresponding hexadecimal values and transmitted over the line.

e Format of header on emission and on reception in either mode :

> <|JUj O] 4| heading [> |<|JU]JO] S5

e Format of emission in normal mode :

> <] K!IC] O normal text |ETX] > 1 < | B! €| 0| normal text [ETX

e Format of emission in transparent mode :

>I<ju]lo]é6|>|<|K]|]C]| O] transparent text |ETX

>1< | BJ] C|] O] transparent text [ETX

e Format of message structure on reception @

> <|JU|lO} 4| heading | >|<|JU|J O] S text

— optional -

uo4 .
- to denote start of heading in the form of user-defined control information.

uos
- to denote end of heading, and the start of text transmission.

Uoé
- to denote that the text following is transmitted in transparent mode.

BCO
- communication is "broken", allowing reversal in the direction of transmission

after sending the next end-of-file block terminated by ETX

KCO ‘

- communication is 'kept'", that is, retained, after sending the next end-of-
file block terminated by ETX.

text
- user-defined message shown as block transmission terminated by ETX.

5-13

BSC2780
continued

MANAGEMENT OF DATA TkANSFER BY THE APPLICATION

Once the link has been established and set in the correct state to transmit data,
the station whose turn it is to send data, retains its turn under the following
conditions,

« as long as it sends message blocks terminated by [DLE]ETB

. until it sends a block terminated by [DLE]ETX, in which case, the link state
can be

- either retained in the message transfer state so that a new line bid is .
not necessary for resuming transmission in the same direction

- or returned to the control state by sending EOT after the last block

« unless RVI has been issued by the receiving station to request the reversal
in the direction of transmission.

Unlike other line procedures for which BINS manages the control codes, the user
application, in the case of the BSC2780 line procedure, can control such func-
tions affecting line usage through the MCS interface.

Emission
The user application can control the turn through the EMI and EGI delimiters of
the [$H_]SEND verb, as follows,

. any message sent with EMI is dispatched by BINS over the line with [DLE]ETB,
thereby retaining the turn

. any message sent with EGI is dispatched by BTNS over the line with [DLE]ETX,
thereby signifying the end of the current transmission.

Although the size of the physical block is determined by the buffering capacity
of the receiving station, the user application is not concerned with this con-
straint since BTNS automatically splits messages longer than the buffering capa-
city by doing the following,

. sending intermediate blocks of the message text with [DLEJETB

. sending the last block with either [DLE]ETB or [DLE]ETX according to whether
EMI or EGI was specified in the application.

The physical block size is 512 characters, except in the case of the Level 61,
which is restricted to 450 characters.

Reception

Enqueuing of blocks depends on the control code terminating 1t, namely,

+ a block received with [DLE]ETB is enqueued by BTNS with EMI, thereby setting
the ENDKEY field of the input CD of the block to 2

o a block received with [DLE]ETX is enqueued by BTNS with EGI, thereby setting
the ENDKEY field of the input CD of the block to 3.

5-14

BSC2780
continued

For message processingvon reception, see 'Message Delimiters', pages 2-03 and
2-0b.

Reverse Interrupt

RVI provides the means by which the receiving station indicates to the sending
station that

o the last block sent with [DLE]ETB has been correctly received
o transmission must terminate as soon as possible because
- the receiving station cannot accept any more data

- the receiving station requires the turn to transmit a message of a higher
priority than the message it is currently receiving,

RECEIVING RVI
The actions taken by BTNS when it receives an RVI in the progress of current
transmission are,

» the next block is transmitted with [DLE]ETX, whatever the delimiter of the
corresponding message is, that is whether EMI or EGI

o the corresponding terminal-queue from which the block was sent is ''disabled"

. the control message ><CTLRVI is sent to the program-queue to which the sta-
tion is connected if the queue was declared with the BREAK option

» the line is set to "input" to receive data from the requesting stations
To detect RVI, the application needs to check the following status keys,

o value "10", for a 'disabled" terminal-queue

.« value "9B", for a null-length message as contents of the program-queue.
When such an event is detected, the application must

. either restart transmission by issuing [$H_]ENABLE OUTPUT to the terminal-
queue if the status key value is "10"

. and/or purge the terminal-queue with the message ><CTLPRG with EGI.

SENDING RVI

If the DPS 7 application receiving messages wants to stop the sending stationm,

it sends the control message ><CTLRVI into the corresponding terminal-queue.
After the reception of every block ending with DLE ETB, BTNS performs as follows

o checks the corresponding terminal-queue if RVI has been requested by the re-
ceiving application

o i1f RVI has been requested, informs the sending station immediately.

5-15

BSC2780
continued

Retaining the Communication

The normal sequence of events in transmission is as follows,

. as a default option, BTNS sends EOT after the last block of a transfer spe-
cified with [DLEJETX

o« the link then returns to the control state

. the line, as a consequence must be bidden for, in order for a new transfer
to take place. :

In order to keep the link in the message transfer state, the default option by
which BTNS sends EOT, can be overridden.

If several transfers are to take place in the same direction, the application
can specify that EOT must not be systematically sent by BTNS by using the foll-
owing control functions,

« KCO is specified with the first block of a transfer in order to inform BTNS
not to send EOT after the last blocks of the following transfers until a new
transfer is initiated with a 'break"

« BCO is then specified with the first block of the last transfer in order to
inform BTNS that after the last block of the current transfer, it is to send
EOT in order to "break'" connection and thereby allow the reversal of direct-
ion in transmission.

5-16

BSCZ780
continued

The sequence of transmission at the level of the file, where several files are
concerned, is maintained for as long as the turan is kept.

e The 1st file is transferred with KCO specified in the first block :

> < | K] C] O |first block of file 1] ETB

intermediate blocks ETB

last block of file 1| ETX

e The 2nd file is transferred immediately after the ETX transmitted at the end
of the 1st file :

first block of 2nd file| ETB

intermediate blocks ETB

last block of file 1| ETX

e All subsequent files are transmitted identically to the 2nd file,

e The nth file is the last file to be transferred and therefore is specified with
BCO in the first block :

>SI i B C| O |first block of file n| ETB

intermediate blocks ETB

last block of file n}| ETX

EOT

e EOT is sent only after the last file has been transferred, and until then, the
link is still in the message transfer state.

5-17

BSC2780
continued.

CONTENTS OF USER MESSAGES

The application may send and/or receive heading data alone or heading data foll-
owed by the message text. ’

In either case, the heading character string, limited to 15 characters, is loca-
ted at the start of the message in the following format.

><U04 heading | ><U05 optional normal / transparent message text

The treatment of the message text depends on the mode of transmission.

Treatment of Text in Normal Mode

There is no special format or processing for the text except for the processing
of standard marks, such as control codes in mark form, according to

o the IM and OM options declared in the QUEUE command at network generation

. the options issued in the [$*$]MTE network control or terminal operator com-
mand during the communications session to override the IM and OM optionms,
respectively.

See Section III, "MCS Data Formats'’

Treatment of Text in Transparent Mode

The application receives transparent data in the same way as it receives normal
data, except that no processing of standard marks is done, whatever the IM op-
tion specified for the corresponding queue.

To send in transparent mode, the user must ensure that the text of each message
is preceded by ><U06, in which case, the following actions are taken,

+» MCS does not process standard marks

« BINS provides the appropriate control sequence by prefixing control codes
specified in the text by DLE.

The BCS2780 line procedure supports the transmission of files in mixed normal
and transparent modes.

5-18

BSC2780
continued

Subblocks

Messages are split into subblocks in order to provide a more efficient means of
error checking,

Retransmission of the subblock is at the level of the line protocol and as such,
is not visible to the application.

BTNS and the URP firmware ensure that the intermediate control codes separating
the subblocks are handled as follows, for error detection and recovery,

o« checked for retries
. inserted for emission
« deleted on reception.

The ability to use the subblock facility over a line is configured at URP firm-
ware generation and is available in both normal and transparent modes of trans-
mission.

The format of the subblock separators depends on the mode of transmission.

e subblock separators in normal mode :

subblock n ITB BGC SYN SYN subblock n+1
LS S

e synchronization

block check control

L»- intermediate transmission block

e subblock separators in transparent mode :

‘'subblock n DLE ITB BCC SYN SYN DLE STX subblock n+1
L i

restart
transparent mode

L= synchronization

Le= block check control

e intermediate transmission block

5-19

BSC2780
continued

Handling of Text on Emission

The following considerations must be taken into account,

. message blocks are split into subblocks according to the SBKLG parameter of
the appropriate TERMNL command, the default value being 80

« the maximum number of subblocks for each message is 16

« a line configured without the subblock option at URP firmware generation
cannot use this facility

« even if the subblock option has been specified at URP firmware generation,
the facility would not be of much use if the value defined for the SBKLG
parameter is greater than any single block sent over the line because, in
this case, only 1 subblock per block is defined.

e Blocking of message text on emission :

text of 190 characters mess?ge sent by
N X application

| L

\ Y
‘ message sent by
STX|subblock 1 subblock 2 subblock 3|ETB/ETX BTNS and URP firm-
ware over the line

Le— 30 characters

subblock separators

.~ 80 characters

-» subblock separators
Le- 80 characters

Handling of Text on Reception

All subblock separators are deleted and the subblocks are handled as contiguous
data in the user buffer on [$H_]JRECEIVE.

The handling of text on reception is the reverse of that on emission.

5-20

TC

The Olivetti TCV260 operates on the TC line procedure when linked to the DPS 7.

Only general information concerning this terminal is treated.

MESSAGE FORMAT AS SEEN BY BTNS

A message text exchanged between the BTNS message processing routines and the
URP firmware has the following format :

STI STX RFE ADR message-text ETB/ETX

STI station index byte, that is, the station address as specified in the STATN
command at CNC generation

STX start-of-text
RFE reserved for future extension, based on terminal cabling

ADR address of auxiliary output device, that is, the '"terminal-subtype', at-
tached to the terminal

ETB end-of-transmission-block

EBCDIC 26, COBOL Collating Sequence 39

ETX end-of-text
EBCDIC 03, COBOL Collating Sequence &

MESSAGE TERMINATING CHARAGTERS

The control codes, shown in mark form, ><ETB and ><ETX are used interchange-
ably to indicate the termination of the message text.

The characters are affixed automatically when the "transmit" key is pressed.

"Some devices are equipped with ETB and ETX control keys, and when pressed, gen-
erate the appropriate control codes. ’

5-21

TC
continued

ERASING FUNCTIONS

Since the terminals are buffered, erasing functions are performed locally through
available editing keys, such as 'backspace', before the message is transmitted.

TERMINAL SPECIFICS

Refer to respective product manuals.

5-22

TTY

The following terminals, known by their CNC declarations, operate on the TTY line
procedure when linked to the DPS 7,

. AJ832 . TN1200 « TTY33 . VIP7100
. DTU7171 . TTU8124 o TTY35 « VIP7200
. OLIV318 . TTU8126 o TTY37 « VIP7802
« TN300 » TTY38

These terminals using the TTY line procedure have limited functions in that they
have no specific control codes.

Communication is performed through a character-by-character mode over a point-to-
point line with the DPS 7.

Messages seen by BTNS contain,
. message text

o one trailer control code on input, in some cases.

MESSAGE HANDLING ON INPUT

On input, messages are terminated when any of the following control codes, shown
in mark form, are received, namely,

><CRV carriage-return, automatically suppressed by the URP firmware and not re-
ceived by BTINS

><DC3 paper tape reader stop
><EOT end-of-transmission, with the following considerations,
. automatically suppressed by the URP firmware and not received by BTNS

o available only on terminals equipped with '‘reverse channel" option
and connected over a 1200 bps line, namely,

- DTU7171
- TN1200
- TTU8126
><LFV line feed
><SUB substitute, automatically suppressed by the URP firmware and not received
by BTNS
The following editing functions are,

. graphic \ = ASCII 5C, used to erase the previous character of the message
text, if the LINE connecting the terminal has been de-
clared with the ERCAP option

» graphic @ = ASCII 40, used before '"carriage-return'" in order to delete the
complete line, and hence no message is delivered to the
application

5-23

TTY
continued

MESSAGE HANDLING ON OUTPUT

On output, messages are terminated on exhaustion of the message length or are
edited into fixed length lines, according to the following parameters declared
in the QUEUE command,

« LLENGTH
« NBLOCKS
« BLOCKING.

These parameter values can be altered during the communications session either
by the network control operator or by the terminal operator, see Terminal Opera-
tions Manual.

Other messages are edited by the application before they are submitted to BTNS.

ERROR HANDLING

A limited error recovery capability is possible with terminals using the TTY line
procedure.

When the message "RECV ERROR PLEASE REENTER'" appears on the terminal, the oper-
ator keys in the message text againe

Certain terminals replace invalid characters received from the host computer by
a dedicated graphic symbol, e.g., TTU8124 uses the graphic symbol(k

Further recovery procedures must be supported by the application.

5-24

VIP

ollowing terminals, known by their CNC declarations, operate on the VIP line

The £ ,

procedure when linked to the DPS 7,
« BTT7300 « MTS7500 . TTU8221 » VIP7001
. DKU7007 « MTS7508 o VIP765 « VIP7700
» HL6 o STS2840 - VIP775 o VIP7760

« KDS7255/ 7275 . TTS7800 o VIP785 o VIP7804

MESSAGE FORMAT AS SEEN BY BTNS

A mes
URP £

sage text exchanged between the BTNS message processing routines and the
irmware has the following format :

STI

SOH | ADR | STA | FC1 | FC2 | STX message-text ETB/ETX | EOT

STI1

SOH

STA

FC1
FC2

STX

ETB

ETX

EOT

station index byte, that is, the station address as specified in the STATN
command at CNC generation

start-of -header
EBCDIC 01, COBOL Collating Sequence 2

terminal address as specified in the TERMNL command at CNC generation

status-code, used as follows,
o STA=EBCDIC 00=NUL, for text only
o STA=EBCDIC 3F=PRT, for print message text

function-code-1
function-code-2

start-of-text

EBCDIC 02, COBOL Collating Sequence 3

end-of-transmission-block, only used for loading BTT7300
EBCDIC 26, COBOL Collating Sequence 39

end-of-text
EBCDIC 03, COBOL Collating Sequence 4

end-of -transmission
EBCDIC 37, COBOL Collating Sequence 56

5-25

VIP
continued

VIP HEADERS

The header of each message sent to or from a VIP terminal contains 3 bytes of in-
formation which may be useful to the MCS application.
These 3 bytes are STA, FC1 and FC2. BTINS has no effect on FC1 and FC2, and as a

~ consequence, both these function codes are unedited either on input or on output.
The URP firmware uses the TCT, terminal control table, for transcoding them.

The VIP header is visible to the application when one of the following occurs,
o the TERMNL command is specified with either IM=MK or IM=UN

« the network control command MTE specifying the terminal and either IMARK or
INEDT is issued

o the terminal operator command $*$MIE specifying either IMARK or INEDT is
issued.

The control codes received by the application when one of the above conditions is
met, are of the format ><U03abc, where

. a represents STA, the status code
« b represents FC1, function code 1
« c represents FC2, function code 2.

The user can also include message headers of the same format in output messages
in normal or unedited mode.

See page 3-37, for programming example of the VIP header.

VIP MESSAGE TRAILERS

Terminals of the VIP line procedure use the sequence ><ETX><EOT to denote mes-
sage termination. ‘

*

Some terminals are equipped with ETX and EOT keys which, when pressed, generate
the appropriate control code.

VIP ERASING FUNCTIONS

VIP terminals are buffered. All editing and erasing functions can be performed
locally before entering a transmission request.

Trailing blanks are suppressed from transmitted messages. Most VIP terminals do
not transmit empty messages.

When coding applications, the user should disregard empty messages.

5-26

SECTION VI

PROGRAMMING TERMINALS

The information concerns the programming interface for terminals functioning with
MCS applications. ‘ '

For details of transmission modes and program coding in MCS COBOL and GPL, see
Section III, 'MCS Data Formats'%

Control codes are shown in mark form, acceptable to MCS, for ease of recognition
when listed in alphabetical order according to their mnemonic form. Where the con-
trol code is not present in the list of control codes on page-3-03, its EBCDIC va-
lue and corresponding graphic symbol, where applicable, are given, for example,
the control codes CSI, DAQ and SGR for DKU7007 on page 6-06.

Advice on program coding in this section, deal only with MCS COBOL, for example,
SEND AFTER ADVANCING for MTS7500/7508 on page 6-26 and the mention of COBOL for
LINE and PAGE for VIP7001 on page 6-45. In both these cases, the GPL equivalent
is to be found on page 3-34 "AFTER ADVANCING PAGE'.

" Terminals are listed in order of their CNC names, that is, the name declared at
network generation.

*

Each terminal is headed by the line procedure on which it operates. Transmission
protocol implemented at system level is dealt with in Section V.

For details of terminal performance specifications and special functional charac-
teristics, such as the controller for DKU7007, consult the appropriate product
manual.

Programming Terminals in TDS

The rules for programming terminals in TDS are as follows,

° Symbolic representation cannot be used in TDS, except for the VIP header
><U03, which can be output to the VIP-type terminal, see page 3-02.

© I1f the VIP "status" and ""function codes' are to be passed to the transac-
tion program, the corresponding TERMNL command for the VIP-type terminal
must be declared with IM=UN, see Network Generation Manual.

© Only the numeric form of the control code is acceptable, e.g., page 3-37,
o for the COBOL TPR, the COBOL Collating Sequence as a decimal value
» for the RPG transaction, the EBCDIC hexadecimal value within apostrophes
in the O-spec to the WORKSTN file, with the file-type in the F-spec
(col 15) specifying C for the '“master" terminal.

6-01

Only common terminals are treated in this section. Terminals of the same line pro-
cedure, having common characteristics can emulate each other. An example of this
emulation is the DKU7001 which functions equally as efficiently declared under
DKU7001 as under VIP7200, as was the case in the previous release.

6-02

AJ832

AJ832 operates on TTY line procedure

The AJ832 is a printer with the optional attachments,
» paper tape unit
. cassette handler.

The keyboard can send any of the 128 ISO codes.

The character set for the printer comprises 96 graphic symbols. The number in
this character set excludes the 'space™ but includes the control codes FSV and

GSV in the ISO graphic set, according to the type of printing wheel mounted on
the printers

The product manual gives the graphic correspondence and equivalence between the
various types of printing wheels.

Characters received when a parity error occurs, are signalled as follows when
the PAR CHK switch is on,

» an acoustic signal is sounded
- the appropriate character is printed with an %,

Line length depends on the model type and the PITCH switch. The maximum line
length, however, is 158 characters.

CONTROL CODES

The following terminal control codes in mark form apply to normal mode and as-
sume ASCII graphics as well as the $*$NAPL / $*$napl communications optionm,

><BEL acoustic signal to the operator

><BSV same line, one position to the left

><CRV reset print position to programmed left margin

><ESCO (zero), reset to initial state

><ESC1 set horizontal tabulation stop at current print position
><ESC2 clear horizontal tabulation stop at current print position
><ESC5 set vertical tabulation stop at current print line

><ESC6 clear vertical tabulation stop at current print line
><ESC7 backspace paper one line down, i.e., reverse line throw
><ESC8 backspace paper half a line down, i.e., reverse half-line throw
><ESC9 advance paper half a line up

><ESC><BSV clear all horizontal tabulation stops

><ESCD clear all vertical tabulation stops

6-03

AJ832
continued

CONTROL CODES (continued)

><ESCJ see ><SIV

D><ESCK see ><SOV

><ESCL set left margin at current print position
><ESCM clear margins at positions 1 and 132
><ESCN set to normal mode

><ESCR set right margin at current print position
><ESC= set right margin at current physical limit
><FFV throw paper to top-of-page

><FSV
><GSV
><HIV move print to next tabulation stop or end-of-line

graphics according to the type of printing wheel

><LFV advance paper one line up, switch selectable at 3 or 6 lines per inch
><SIV stop printing

><SOV resume printing

><VIV advance paper to next vertical tabulation stop or top-of-page

Other Control Codes

A number of control codes are available for,
o page format control
» plotting of diagrams or drawing curves.

Such codes are to be found in the product manual.

6-04

DKU7007
*

DKU7007 operates on VIP line procedure

DKU7007 DISPLAY/KEYBOARD

The screen is organized in 25 lines of 80 characters, the last line being reserv-
ed for operator information. Including the '"space', 95 different graphic symbols,
basically ISO/ASCII set with national options, can be displayed. An entry marker
is displayed as an aid in formatting the screens

The FORMGEN utility is available for formatting the screen. The FORMRTP utility,
the Forms run-time package, is then executed.

Text for Display

The control sequences for tabulation, entry marker control and message boundaries
are the same as for the VIP7700, with functions additional to the VIP7760-2A, see
"Define Area Qualification (DAQ)'" and '"Select Graphic Rendition (SGR)'".
Blinking and blanking are supported as options. 4

FORMS MODE

The following terminal control codes in mark form set the terminal either in
forms mode or in normal mode. Forms are defined when in normal mode.

><ESCM enters the terminal into forms mode
D><ESCN resets the terminal into normal mode

><FSV defines the start of a fixed field, must not be specified with DAQ com-
mands

><GSV defines the start of a variable field, followed by a value, as follows,

O the field is right-justified, non-repeated and alphanumeric, to be
transmitted and printed

1 inhibits printing
2 inhibits transmission
4 numeric-only field
8 indicates a number of a line field to be repeated
16 the field is left-justified
Must not be specified with DAQ commands.
><RSV terminates a repetitive line field, followed by'a repetition code

‘'value of repetition code : add 64 to the number of times that the line
field is to be repeated.

6-05

DKU7007
continued

Define Area Qualification .

DAQ commands can only be issued in normal mode. When issued in forms mode, the
commands are ignored and no operation results.

Format of command : (values are in EBCDIC, with corresponding graphic symbols)

ESC csI P1 ; P2 ; ; Pn DAQ
27 LA 5E 5E SE %
><esc [¢ ; 5 ; 0
parameter parameter parameter

The following authorized parameters can be declared in any order and are in the
sequence of EBCDIC values, shown with their corresponding graphic symbols,

4 < field entirely filled in by the operator
4CF3 <3 printable field
6E > pure decimal numeric field, O through 9

7E = field that must be filled in by the operator

7EF1 =1 field filled in by the badge reader

FO 0 variable and transmittable field, default parameter if none is speci-
fied in the DAQ command

F1 1 fixed and non-transmittable field, being the only authorized parameter
for fixed fields

F3 3 decimal numeric field and computational operators, O through 9, +, -,
ey $

F5 5 right-justified field.

Select Graphic Rendition

SGR commands can be issued in forms as well as normal mode.

Format of command : (values are in EBCDIC, with corresponding graphic symbols)

ESC CSI P1 3 P2 H H Pn SGR

27 LA 5E 5E 5E 94

><es¢c [¢ ; ; 3 o
parameter parameter » parameter

The SGR command occupies a one ''spuce' position on the screen, hence the entry
marker moves forward by one position on :cwpletion of the command.

The number of SGR, blink and blank commanis is limited to 15 per line.

6-06

DKU7007
continued

The following authorized parameters can be declared in any order in the SGR com-
mand and are in the sequence of EBCDIC values, shown with their graphic symbols,

FO O normal intensity, default parameter if none is specified in the SGR

command
F2 2 half intensity
F4 4 underlined by a continuous line
F5 5 blinking
F7 = 7 reverse video
F8 8 security.

DKU7007 PRINTER

The printer must be defined by a separate TERMNL command declaring the "terminal-
subtype' as PRT at CNC generation. Text for printing can only be sent to the
printer address.

The three printing modes are treated as follows,
+ transparent mode
» display image mode
o forms mode.

In forms and display image modes, printer control functions and "tlme fills" are
automatically generated by the controller.

In transparent mode, however, the user must ensure that the "time-fill'' count is
adequate for proper printer synchromization.

To define the '"time-£fill" count in transparent mode, proczed as follows,
‘ o Determine the value to be given for the number of "time-fills", say, 6
- Start from ASCII code 20 which is a ''space', using the ASCII table
- Count 6 codes from ASCII code 20 inclusive
- The ASCII code arrived at is 25
- The EBCDIC equivalent is 6C or graphic %

o In the MCS application, send a control sequence in one of the formats :

><USV% wusing the graphic symbol

><USV><C6C using the EBCDIC value in control character form

6-07

DKU7007
continued

DKU7007 PRINTER (continued)

Transparent Mode

Method of addressing is as follows,
. either address the printer with STA=3F in the VIP header
o or address the printer
- with STA=00 in the VIP header
- and, precede the text with ><ESCZ.

The message is printed as it is. The text in the message must contain all the ne-
cessary control codes specific to the printer and for formatting the text, see
"Text for Display',

"Time-fill'" control codes for the proper mechanical synchronization of the print-
er should also be included in the message text.

><USV defines the "time-fill" count, in the case where the printer is used for
hard copy, and where the proper synchronization of the printer mechanism
is required, see the previous page for programming the "“time-fills'’

Display Image Mode

Method of addressing is as follows,
« address the printer with STA=00 in the VIP header
. and, terminate the message text with ><ESCN.,
The message text may optionally begin with ><ESCX or ><ESCY.

The text is formatted automatically on the printer according to the display char-
acteristics of the format,

Printer control functions and "time-fills" are automatically generated by the
controller,

Forms Mode

Method of addressing is as follows,

. address the printer with STA=00 in the VIP header

. and, terminate the message text with ><ESCM.
If the text begins with ><ESCX, only the variable fields will be printed.
If the text begins with ><ESCY, both fixed and variable fields will be printed.
If the text is not preceded by ><ESCX or ><ESCY, it will not be printed.
Variable fields defined as "inhibit-printing" will not be printed.

The controller automatically generates‘printer control functions and '"time-fills',

6-08

DTU7171

DTU7171 operates on TTY line procedure

The display terminal unit is equipped with a keyboard and display screen.

The screen buffer size is organized as follows,
o 480 characters composed of 12 lines of 40 double sized characters
o+ 960 characters composed of 12 lines of 80 characters
o 10220 characters composed of 24 lines of 80 characters

Depending on an operator activated switch on the terminal, excess characters can
either be overprinted on the last line or 'rolled-up',

The character set contains 64 different graphic symbols or 95, if the lower case

option is present. The types of graphic symbols are determined by the national
options available.

A printer for hard copy can be attached to the terminal and is controlled by de-
vice function codes sent to the DTU7171 in output messages addressed to it.

DTU7171 DISPLAY

The information listed is a summary description and does not explain behavior
near the screen boundaries.

The current entry position is marked by the position of the cursor,
><ACK position the cursor according to character position and line number
><B03 next line, first character positiomn

><BSV same line, one position to the left

><BEL acoustic signal to the operator

><CAN same line, next character position

><CRV same line, first character position

><DC2 turn on cursor and enable/resume printing

><DC4 turn off cursor and suppress printing

><EMV same as ><BSV

><GSV first line, first character position, top left or 'home"

><HIV same as ><BO3

><LFV next line, same character position

><NLV same as ><BO3 ,

><RSV erase all characters from cursor position to the end of the line
><SUB previous line, same character position

><USV erase all characters from cursor position to the end of screen
>XVIV same as ><LFV

6-09

DTU7171
continued

To position the cursor, proceed as follows using the ASCiI table

o Determine the value to be given for the character position, say, 37
- Start from ASCII code 20 which is a ''space"
- Count 37 codes from ASCII code 20 inclusive
- The ASCII code arrived at is 44
- The EBCDIC equivalent is C4 or graphic D

» Determine the value to be given to the line number, say, 11
- Use exactly the same method as above for character position
- The EBCDIC equivalent is 5C or graphic *

« In the MCS application, send a control sequence in one of the formats :

><ACKD* using graphic symbols

><ACK>LCC4><LC5C using EBCDIC values in control character form

DTU7171 PRINTER ATTACHMENT

To resume printing, the cursor must be restored in one of two ways,

+ by activating the CTR and R control keys, this action being done by the op-
erator

+ by sending the control code ><DC2, this action being done by the applica-
tion.

The other control codes applicable to printer operations are,
><DC4 turn off cursor and suppress printing
><DLE start simultaneous printing and display

><ETB print contents of screen

6-10 -

IBM3270

;IBM3270 operates on BSC3270 line procedure

L 4

The IBM3270 identifies the following components,
« 3271 Model 2 control unit in general poll mode
o 3277 Model 2 display station
o 3284 Model 2 printer.

The control unit has a 1920-character buffer capacity and can be configured with
up to 32 display stations and printers.
At least 1 display station is needed for the control unit.

The display station comprises a screen with keyboard, capable of displaying 1920
characters per screen in 24 rows of 80 characters.

The screen can display the 64 standard ASCII characterse.

The cursor indicates where the next character will appear on the screen and is
represented by an underscore ().

The printer has a 1920-character buffer, a 40-cps print rate and allows a choice
of 120, 126 or 132 print positions per line.

The displayable characters on the screen can be reproduced as hard copy on the
printer,

CNC DECLARATION

All display stations and printers configured to the same control unit are de-
clared by individual TERMNL commands under one STATN command, as follows,

o each display station is declared as IBM3270 with the terminal-subtype KCT

. the printer associated with the display station immediately follows it and is
declared as SLAVE with the terminal-subtype PRT

» the parameter ADD is mandatory for each TERMNL command declared, introducing
values which are determined at the time of installation and are obtainable
from the Field Engineering Service.

Associated with each TERMNL command is a QUEUE command in which the unedited mode
is mandatorily declared as follows,

o for the terminal-subtype KCT, IM=UN, OM=UN
« for the terminal-subtype PRT, OM=0UN.

In unedited mode, symbolic representation must not be used, see page 3-02.

TDS ENVIRONMENT

The Forms utility, comprising FORMGEN and FORMRTP, is used to format the screen.

6-11

IBM3270
continued

COMMANDS : formats give EBCDIC values and, where applicable, the equivalent gra-

phic symbol
e Write / Erase and Write : referred to in the text as 'write! operations
ESC "write" wce order | see "Orders'";
i : this byte can also be used for
L_. . the start of data, consult the
27 write control .
character set available
character
. . see '"Processing on Output',
wWrite— : erase and write age 3-18
F1 F5 P
1 5 see "Output Normal Mode',
page 3-21

Programming points to observe,
« if commands are chained, "write" operations with the ''start printer" bit

set, must be the last in the chain

the printout format bits are honored only if the '"'start printer" bit is set
in the same WCC

if a "write" operation includes data chained from a previous 'write' opera-
tion, an SBA order must immediately follow the WCC to define the "start"
address at which data entry is to commence.

Write Control Character
for decoding, see "I/O Codes"

Bit

Explanation

2-3

printout format, defined as follows,

= 00 , NL and EM control codes in the data stream determine print line
length; provides a 132-print position line when no control codes
are present

01 , specifies a 40-character print line

10 , specifies a 64-character print line

11 , specifies an 80-character print line

start printer : when set to 1, initiates a printout operation on comple-
tion of a "write" operation

sound alarm : when set to 1, sounds an audible alarm at the selected de-
vice at the end of an operation

keyboard restore : when set to 1, restores the functioning of the key-
_board by resetting the INPUT INHIBITED on the screen; also resets the
AID byte on termination of an I/0 command ’

reset MDT : when set to 1, all MDTs in the data contained in the buffer
of the selected device are reset before any further data is written or
any orders, executed

6-12

IBM3270
continued

COMMANDS (continued) -

e Copy
STX ESC copy "sender" ETX
o'z ' 2'7 F7 6'3

"from" device address
copy control character

Programming points to observe,
o "Copy" should not be chained from a 'write" operation
. If the "start printer" bit is set and commands are being chained, 'copy'" must
be the last in the chain
o Once the data stream has been sent to the printer, the user program should
send the following data stream to the display station that requested the copy,
whereby the WCC in the data stream is to restore the keyboard :

STX ESC "write" wWCC ETX

Copy Control Character
for decoding, see "I/O Codes"

Bit | Explanation

2-3 | printout format, defined as follows,

= 00 , NL and EM control codes in the data stream determine print line
length; provides a 132-print position line when no control codes
are present

01 , specifies a 40-character print line

10 , specifies a 64-character print line

11 , specifies an 80-character print line

4 start printer : when set to 1, initiates a printout operation at the
"receiver" printer once buffer transfers are completed

5 sound alarm : when set to 1, sounds an audible alarm at the selected
"receiver" device once buffer transfers are completed

6-7 | data type, defined for copying as follows,

00 , only attributes are to be copied

01 , attributes and unprotected alphanumeric fields are to be copied;
protected fields are substituted for '"null's"

10 , attributes and protected alphanumeric fields are to be copied;
unprotected fields are substituted for '"nullt's"

11 ; entire contents of the storage buffer are to be copied

o

6-13

IBM3270 |
continued

COMMANDS (continued)

e Erase All Unprotected data
EBCDIC 6F, Graphic Symbol ?

The EAU command performs 5 functions at the addressed device,

+ clears all unprotected character locations to 'null's"

resets the MDT bit for each unprotected field to zero, see WCC of '"write"
.unlocks the keyboard attached to the display

resets the AID byte, see AID of "read modified"

repositions the cursor to the 1st character location in the 1st unprotected
field of the buffer; if no unprotected fields exist, the cursor is posi-
tioned to buffer location 0.

The EAU commandishould not be chained to a 'write!' operation or to a '‘copy"
command.

e Read Modified
The '"read modified" command is executed during the general polling sequence.

The format of the 'read" data stream is as follows,

"read' heading 1stmodified field ' nthmodified field
PR e

row | col }data

AID | row | col | SBA| row | col |data

I P @

L buffer address of 1st
character position in
first modified field
(attribute address +1)

"set buffer address'", see '"Orders"

L=~ cursor address

e attention identification

In the 'read" heading, the AID byte, being the 1st byte in the data stream,
identifies the function key activated at the keyboard by the operator. The user
program can test the value of the AID code, and accordingly can perform the
type of intervention required.

Successive modified fields follow on after the '"read" heading.

As a field is modified by the operator, the MDT bit is set in the "attribute"
byte for that field. Successive '"attributes" are scanned for the set MDT bit,
and when found, the data in the corresponding field is read, with "null's"
suppressed, before the next "attribute'" is examined.

The SBA order code serves as a delimiter for the end of data of the preceding
field and the start of the buffer address of the field following.

If no fields have been modified, only the nread" heading will appear.

6-14

IBM3270
continued

COMMANDS (continued)

o Read Modified (continued)

"Short' read denotes that no modified fields follow.

Attention Identification

Gp=group resultant transfer EB=EBCDIC value GrS =graphic symbol
Gp|Function Key(s) EB| GrS| '"'read" Gp|Function Key(s) EB|GrS|"read"
PF 13 Cl| A |modified
no AID generated 60] - |modified PF 14 C2! B |modified
a | (display station) PF 15 C3| C [modified
no AID generated N I PF 16 C4| D |modified
(printer) PF 17 C5| E {modified
: B PF 18 C6| F |modified
e o PF 19 C7| G |modified
ENTER and & , “|PF 20 C8| H |modified
lect difi
Se cctor pen /D~ modified § ooy c9| 1 |modified
PF 22 4a|[¢ |modified
PF 1 Fl] 1 |modified PF 23 4B| « |modified
PF 2 F2| 2 |modified PF 24 4C| < |modified
PF 3 F3| 3 |modified
PF 4 F4| 4 Imodified
B|PF 5 F5| 5 |modified selector pen)
PF 7 F7| 7 |modified space nu
-|PF 8 F8| 8 |modified
PF 9 F9| 9 [modified PA 1 6C| % |short
PF 10 7A| : |modified p |PA2 (CNCL) 6E| > |short
PF 11 7B| # |modified PA3 6B| , |short
PF 12 7C| @ [modified CLEAR 6D| _ |short

A : field addresses and text in modified fields are transferred

B : the AID code, cursor address, SBA order, attribute address-+1 and text
for each modified field are transferred;
"null's" are suppressed

C : the AID code, cursor address and field addresses are transferred;
- no data is transferred

D : only the AID code is transferred

6-15

IBM3270
continued

DEVICE ADDRESSES

Device addresses used in the '"copy" command are hardware configured and are de-
termined at the time of installatiomn.

These values, like those of the ADD parameter declared at network generation, are
obtainable from the Field Engineering Service.

The '"to'" device identifies the '"receiver'" while the "from'" device identifies the
"'sender'.

I/0 CODES
I/0 codes represent the decoding of bits set by the user in the following parame-
ters,
« WCC, write control character of 'write' operations
. CCC, copy control character of the '"copy" command
« Mattribute'" of the SF, start field order.
Bits O and 1 are omitted, since their values are not defined by the user but are

instead reserved for use by the IBM3270. -
Their settings do not affect the decoding of the byte to be specified.

I/0 Codes
2 through 7 denote bits set by user; GrS=graphic symbol; EB =EBCDIC value

23 4567 |GrS|EB§23 4567 |Grs|EBf§23 4567 |GrS|EBf23 4567 | GrS| EB
00 0000| V |40fo1 0000| & |50f10 0000| - |60f11 0000 O |FO
00 0001| A |c1f§o1 ooo1| J |Dp1}10 0oo001| / |61f11 0001| 1 |F1
00 0010| B |c2jo1 oo10| K [D2fJ10 0010| s |E2f11 0010 2 |F2
00 0011| c|c3fjo1 0oo11| L |[D3f10 0011 T [E3f11 0011 3 |F3
00 0100| D |csafo1 o100| M |Dsaf10 0100| U |E4fJ11 0100 &4 |F&
00 0101| E [csfo1 o101| N|D5Q10 o101| v |[ESf11 0101 5 |F5
0o 0o110| F|cejo1 o110 o|{D6f10 0o110| W [E6J11 0110 6 |F6
0o o111| 6 |c7jo1 o111| P D710 0111 X |E7f11 0111| 7 |F7
00 1000| H |c8fjo1 1000| Q |D8j10 1000 Y |E8}11 1000| 8 |F8
00 1001| 1 |c9fjo1 1001 |_R (D910 1001| z |E9f11 1001| 9 |F9
00 1010|[¢/safo1 1010]) 1|s5af10 1010| ! |6af11 1010]| : [7a
00 1011 . |4Bjo1 1011 ¢ |5Bf10 1011 , [6Bf11 1011 | #|7B
00 1100| < |4cfo1 1100 * [5cf10 1100| % |6C§11 1100| @ |7C
00 1101 (|4pfjo1r 1101) |sDf10 1101| _|6pDf11 1102| * |7D
oo 1110| + |4EQo1 1110| ; |5Ef10 1110| S|{6Ef11 1110 = |7E
Joo 1111 ||arfot 1111 |~ sFf10 1111 2 |6Ff11 1111 | 7F

6-16

IBM3270
continued

ORDERS : formats give EBCDIC values

e IC - Insert Cursor :
repositions the cursor to the location specified by the current buffer
address.

EBCDIC 13

e PT - Program Tabulation :
advarices the current buffer address to the address of the 1st character
position of the next unprotected field.

EBCDIC 05
® SF - Start Field :

notifies the control unit that the next byte is an attribute in the
'"write' data stream to be stored at the current buffer address.

. SF attribute

{

iD

Start Field Attribute
for decoding, see "I/O Codes"

Bit | Explanation

2 O =unprotected
i =protected
3 0 =alphanumeric
i =numeric only, causes automatic upper-case shift in data entry key-
board

4-5| 00=display / not selector-pen detectable

| 01=display/ selector-pen detectable -
10=intensified display / selector-pen detectable

i1=nondisplay, nonprint, not selector-pen detectable

. must be zero

MDT (modified data tag) : identifies modified fields during "read modi-

fied" commands, as follows,

O0=field has not been modified

1=field has been modified by the operator; can also be set by the appli-
cation in the data streams

6-17

IBM3270
continued

ORDERS (continued)

e SBA - Set Buffer Address :
specifies a new buffer address from which '"write! operations are to start
or continue; can precede all other orders in the data stream to indicate
various areas of the buffer.

SBA row column

e ™

J&

= "start" address, see '"Cursor Positioning"

e RA - Repeat to Address :
stores a specified character repetitively starting at the current buffer
address and ending, but not including, the specified '"stop' address.

RA row column character
W
I

= 'stop' address, see ""Cursor Positioning'

e EUA - Erase Unprotected to Address :
inserts 'null's" in all unprotected buffer locations, starting at the
current buffer address and ending, but not including, the specified
"stop'" address; attributes remain unaffected.

EUA row column
' e s ™™
12

e 'stop'"’ address, see '"Cursor Positioning"

To position the cursor, proceed as follows using the "Cursor Positioning'
table opposite

. Determine the co-ordinates of the cursor, say row 7, column 64

« Row 7 has the EBCDIC value C7 only up to column 32; between columns 33
and 80, row 7 has the value C8.
Since the column required is 64, the value for row 7 is therefore C8.

o Column 64 lies in the range between columns 59 and 66, with the corres-
ponding consecutive EBCDIC values ranging from 5A through 61,

By pairing the columns with their corresponding EBCDIC values, the value
for column 64, shown unshaded, is 5F.

« The buffer address of the cursor at row 7, column 64 is 'C8'"'5F'\

6-18

IBM3270

Cursor Positioning :
for 3277 Model 2 Display Station

R, C denote "row" and '‘column" respectively of the cursor, being the co-ordinates to reference the cursor.
R, C are the corresponding EBCDIC values for R, C respectively.

Intervening columns are omitted if their corresponding EBCDIC vzlues are consecutive within a given range.
Rows are not repeated if their values remain unchanged from the initial value fur a given range in the row.

RlclricBr|chr|clrlclr|clr]clrlchr|clzlcBr|clr|cHr]chr|cBr|clr|clr]c
o1 o1kl off o3| solcs |os b N S Py ER sofo|n1 14127450100 1710104 LOR 1 oo 2137
o2} et 32] |eF 2] |eF 32

| ssb 1oof [ob 1ol 1] ISR 18] PR 1) [roll [} | 18] [P |ss

1o |coff [so] |saf 1P’ IF sol [saf |3 sol [saf |3
T B B BT T B BN B R IR AT B Y R R BE

¢ ¢ a3t 1A 17} |50 43f 1A 17§ |50 43

17} |50 B Iy R BB RE RE I I] Y

T IR DR EA DR BT AR IR YRS IR Y B e A KN e

L1 1R el 16 Roelesfer|sof (28] [ooR 7] [EaBeloofor(eol [26] oo} |71 |52 Mz2|es

=B B B R B R B R B RG BE R B B
SO LR sl IR 3] o1l %} 4°°R (s8] oo [le:§:- 3‘.’! TR |ss
ouforfeslrol [5o] [sall 350 [e2Kiz]orfen|roll [so] [4aB [35] |2f20]otfor]|ro] |50

35 E2)) .)

¢ 0] |ro 6’5 s‘o : a‘z 39 b 139 6‘5 s‘o a‘z 15‘9 1‘0 F9 e‘s
1l i 66] |p1 43 lea 1l | 66] [p1 a3l |ea ul | 66
43f lea) [}
¢ 4 16 7‘? 7‘4 D‘9 4‘8 6':-' 1'6 7‘? 7‘& D9 a‘e G‘F 1‘6 ';'F 7‘4

o4 |17§cs jao 5A 49 |rol12]|17}sEls0 75§ |sa 4of |roff20{17}psa0 75
Y I T { S BN BT BNt R A WO el (s S
s8] |9 | .. jeo) JsFR |58} |F9 i (N PRLE PE B B) TR .80
ssl 10 151 (G Ror[oferleo] 1] 1R 12 1S Res]otforleo] |3 7£ 1 o R0
KA K 1 \ oz2f fe1ff [esf |7F 7 i i 02
: 33] |so 03] |e2Bo9(6s)snlao fos |40 33] |so 03
onjesyeriiof al o | LLR lesl ot all 3] [{4
66 c‘x () [} 10 E9 [} 1 [} 1 [) 10
7“‘ & 42f oo 11] |ea 74 c9 42] oo 11
; a3 |sa D i 75 4A
Af‘ [16 6F ‘p
sof le1 17] |Fo oF
80 &F [} :
4R, S 2R 16) [o
o2jo1fci]so) i
ped | ss] |E9 278 |
2 D1 6A [}]
DY ot Y s R Y
ul s 66} |orRo7)33fcs a0 ul sa
o B B B EL B R R
18} |61 18} Je1
A) 428 |co
ol |2 7‘5 " 43 a‘a 1‘9 E2
268 |E9% 1ol |oFR lao] [sof |28 IF°
27} |eaRd o R ot sol Ip1 278 lea
{ Ros|o1fcs]eo " Y [
2k (PR Il [ss] Ioof 2] |€F
33] |ro | 33} |ro
)) 10
u2) Iro 1
of % 1
' 17
4} 18
oz]eofc2 J4o ¥
sof e 26
27
58 c9)
sof fea 34
[} { 35
6sf Iso)
668 [D1 42
¢ 43
74 D%) []
< lE 48] |erRos|i7)ce
sof . |sF 49 o 18
o3jotfcz2lecl 128} |FOR |*

oof |z2fosfests|rp |3
os] |eof] |34
iof |eoff (1 |°S
11 6‘A [} 1 42
16] |eF ;’; © “2
vl (od (7] | 50
RS WE L B
27l | Bos|orfos[sof |ss
e Y D)
32 F [} { [)] [} [)
o3{33kc3laol 1ol IooR les} [erRii|sskofsof (10} [ooR [et] [erR1s|33fo7|sof [1o] ook les
E7 MY IR INER BT B T Rt IS R ES ECE LS BT T R EEY e
[} { [}]) [} { {) [)
S IOl 1l [l el |FoR [a2] |oR lis] |61B 17e] [Foll |2} [coR e} [e:R |7
wl aal o] 2B 175l |74 B la3l |aall {iod [e2B [75] [2aB 3] |aaB |1o] e 75
j N BB BE o1 14 ¢

I

6'A
6F
FO
F9
7A
]
7F
40
c1

R
-5 B0 23 ¥ -2 B8 3

IBM3270
continued

TERMINAL SPECIFICS

Refer to the appropriate product manual.

6-20

KDS7255, 7275

KDS7255 and KDS7275 operate on VIP line Procedure

The KDS7255 identifies the KDS7255/7256, while the KDS7275 identifies both the
KDS7265/7266 and the KDS7275/7276.

From the point of view of programming and operation, all versions of KDS confi-
gured on the DPS 7 are identical.
The KDS is a data-capture system operating in the following sequence,

» data is entered on the keyboard, and is checked and formatted locally

. it is then transcribed onto the diskette

. once the KDS is connected to the DPS 7, the data on the diskette is avail-

able for deferred transfer.

The visibility from the application is limited to a receive-only display and two
diskette units.

KDS DISPLAY
The KDS display must be declared at network generation by a separate TERMNL com-
mand specifying the following mandatory parameters,

« CRT as the '"terminal-subtype"

« ASSIGN, specifying either an input-queue as a 'dummy" assignment or TDS

» AUTO, for logon to be performed by the communications software, since the KDS

keyboard is not interactive.

The network control operator can modify the assignment during the communications
session.

The screen is organized in 4 lines of 32 characters. Including the ''space", 64
different graphic symbols can be displayed.

Display is limited to the first 128 characters of each message text.

Page overflow occurs when a message text exceeds 960 characters.

The only control code for managing the screen is ><FFV which serves to reset the
screen before the message is displayed.

KDS7255, 7275
~continued

KDS DISKETTE UNIT

The KDS diskette unit must be declared at network generation by a separate
TERMNL command specifying DSK as the '"terminal-subtype'.

Messages with STA=00 in the VIP header can be exchanged between the application
and the unit.

The characteristics of the data are,
. maximum size of the message is 960 characters, being the page size

. the size of the records on the diskette is determined by the diskette label,
however, the presence of ><CRV or ><CRV><LFV in a message sent to the
diskette uni: forces an end to the current record and data following it be-
gins a new record.

The following control code sequences in mark form enable the operational hand-
ling of the diskette unit,

><EOF end-of-file, with no characters following to close the file
><ESCE><ESCR read data from diskette unit 1

><ESCF><ESCR read data from diskette unit 2

><ESCE><ESCS followed by data, write data to diskette unit 1
><ESCE><ESCS >XFFV><DELEOF end-of-file to be written to diskette unit 1
><ESCF><ESCS followed by data, write data to diskette unit 2
><ESCF><ESCS><FFV><DELEOF end-of-file to be written to diskette unit 2

TERMINAL SPECIFICS

Refer to respective product manuals.

6-22

MTS7500, 7508

MIS7500/ 7508 operate on VIP line procedure

The MTS7500 and MIS7508 are multifunction terminal systems equipped with,
. a programmable processor with central memory
o a keyboard and a disr'ay screen with full ISO capability
o auxiliary terminals, such as,
- diskette subsystem
- printer.

The difference between the MI'S7500 and the MI'S7508 is that only the MTS7500 can
be configured with a cassette unit comprising two cassette handlers.
The visibility of the multifunction terminal systems to the host is that of a
VIP7700 with a printer and with

. either a diskette system, in the case of both MTS7500 and MTS7508

o Or two cassette handlers, in the case of MIS7500.

MTS7500/ 7508 DISPLAY/KEYBOARD

The screen is organized in 12 lines of 80 characters. Including the "space', 95

different graphic symbols, comprising both upper and lower case, can be display-
ed,

A cursor is displayed as an aid in formatting the screens

Local software controls the data format.

Header for Display,Keyboard

The 3 parameters in the VIP header have the following values,

« STA=EBCDIC 00=COBOL Collating Sequence 1
+ FCi=1last function code entered on the keyboard or echo to the application
o« FC2=1last but one function code entered or echo to the application.

Text for Display

ENTRY MARKER :
The following terminal control codes in mark form alter the current entry po-
sition,
><BO1 as for ><DC4, with display memory cleared, i.e., Screen erased
><B03 equivalent to the sequence ><CRV><LFV
><BSV same line, 1 character position to the left
><CRV same line, leftmost character position

><DC1 one line up, same character position, i.e., reverse line feed

6-23

MTS7500, 7508
continued

ENTRY MARKER (continued) :

><DC2 same line, 1 character position to the right, i.e., forward space
><DC3 position cursor according to line number and character position
><DC4 uppermost line, leftmost character position, i.e., page return
><DEL follows ><HITV, ><FFV, ><BO1l as a "time-fill"

><FFV same as ><BO1

><HTV same line, first tabulation to the right

><LFV one line down, same character position

><NLV same as ><B03

To position the cursor, proceed as follows using the ASCII table
o Determine the value to be given for the line number, say, 11

Start from ASCII code 20 which is a ''space"

Count 11 codes from ASCII code 20 inclusive
The ASCII code arrived at is 2A
The EBCDIC equivalent is 5C or graphic *

. Determine the value to be given for the character position, say, 37
- Use exactly the same method as above for the line number
- The EBCDIC equivalent is C4 or graphic D

o In the MCS application, send a control sequence in one of the formats :

><DC3*D using graphic symbols

><DC3 ><C5C><CC4 using EBCDIC values in control character form

6-24

MTS7500, 7508
continued

PAGE OVERFLOW :

detection

a message OVERFLOW is displayed on the screen, if an attempt is made to send
data greater than either 12 lines or 960 data characters.

' cause
o result of a programming error

o result of an operator error in failing to clear the screen

correction
o press KEYBOARD control key and H simultaneously
. send the command $*$RDY

o if overflow occurs again as a result of message -length, send the command
$*$RDY STRONG to cancel the message.

The following functions for text for display are not supported, namely,
« blanking -
» blinking
o forms mode

» tabulation

6-25

MTS7500, 7508
continued

MTS7500/ 7508 DISKETTE UNIT

The diskette unit must be defined by a separate TERMNL command declaring the
"terminal-subtype' as DSK at CNC generatiomn.

Messages with STA=00 in the VIP header can be exchanged between the application
and the diskette unit.

The characteristics of the data are,

maximum size of block is 960 characters, i.e., a maximum of 984 characters
in 12 lines of 80 data characters plus the control codes CRVLEV

maximum size of record is 249 characters, including the mandatory end-of-
record control sequence ><CRV><SLFV

maximum size of last record in a block is 248 characters, including the man-
datory end-of-block control sequence ><CRV

with the LOW SPEED option, data can only be received by the host processor
as separate records

with the HIGH SPEED option, only complete files can be read from or written
to the diskette unit.

The control sequences for a diskette unit are,

><EOF end-of-file, with no characters following to close the file

><ESCR '"read" command, issued once in the message to the diskette unit
><ESCS 'write'" command, followed by a block of records

To generate end-of-record control codes, do NOT use either COBOL facility,
. SEND AFTER ADVANCING clause
« BLOCKING option.

Either method will generate the control sequence ><CRV><LFV in front of
the record, thus making it an empty first record which is not acceptable to
the MTS7500/7508.

When reading from the diskette unit, EOF denotes that the end-of-file has
been reached.

When writing to the diskette unit, EOF followed by either ><CRV><LFV or
><CRV is considered a normal record.

6-26

MTS7500, 7508
continued

MTS7500 CASSETTE UNIT

The MTS7500 cassette unit must be defined by a separate TERMNL command declaring
the "terminal-subtype' as CAS at CNC generation.

Messages with STA=00 in the VIP header can be exchanged between the application
and the cassette unit.

The characteristics of the data for the MIS7500 cassette unit are the same as
those which apply to the MTS7500 diskette unit.

Messages sent to the cassette unit must contain the following information, in
the sequence as shown,

« selection of the cassette unit, whether front or rear
. type of command

. message text, where applicable.

SELECTION :
The following terminal control codes in mark form enable the selection of the
cassette unit, in the sequence shown,
><ESCE selects the rear cassette handler , followed by ><ESCX

S<ESCF selects the front cassette handler, followed by ><ESCX
><ESCX empty text

COMMAND :
The following terminal control codes in mark form enable the operation of the

cassette handler selected,

><ESCP rewind to the start of cassette tape, followed by ><ESCX

><ESCR '"read" command, issued once in the message to the cassette handler
.D><ESCS "write" command, followed by a block of records

.

The 'backspace' function ><ESCD is not supported and must not be sent.

The MTS7500 disconnects the line when the control sequence ><ESCD is
issued.

6-27

MTS7500, 7508
continued

MTS7500/ 7508 PRINTER

Printable text is defined between the control codes in mark form ><STX, to de-
note “'start-of-text' and, either ><ETX or ><EMV, to denote ''end-of-text'l

Text output to the printer does not appear on the screen.

© Method of addressing (1) :
» address the display/keyboard with STA=00 in the VIP header.
The keyboard is locked during printing.

The message is printed as it is. The text in the message must contain all nec-
essary control codes for formatting the text, which are the same as for posi-
tioning the entry marker for display on the screen.

Like display on the screen, '"time-fills'" are required to ensure proper Syn-
chronization of the printer mechanism. Any control code which causes movement
of the printer mechanism, such as 'carriage-return'" and "line-feed'", must be
immediately followed by a sequence of '"time-fills",><DEL, before any text is
sent to be printed. Full line size capability is obtained by this method.

© Method of addressing (2) :

o define the printer by a separate TERMNL command declaring the ''terminal-
"~ subtype as PRT at CNC generation
. address the display/keyboard with STA=00 in the VIP header.

The keyboard is not locked and may be used to enter data into the screen and
to-transmit the data while printing proceeds.

"Time-fills'" may be needed to ensure proper synchronization of the printer.

Full line size capability is obtained by this method.

© Method of addressing (3) :

o define the printer by a separate TERMNL command declaring the "terminal-
subtype" as PRT at CNC generation
. address the display/keyboard with STA=3F in the VIP header.

The keyboard is not locked and may be used to enter data into the screen and
to transmit the data while printing proceeds.

The message is printed as it is. The text in the message must contain all nec-
essary control codes for formatting the text, which are the same as for posi-
tioning the entry marker for display on the screen.

Like display on the screen, "time-fills' are required to ensure proper syn-
chronization of the printer mechanism. Any control code which causes movement
of the printer mechanism, such as 'carriage-return" and "line-feed", must be
immediately followed by a sequence of "time-fills", ><DEL, before any text is
sent to be printed: Full line size capability is obtained by this method.

STS2840

 STS2840 operates on VIP line procedure

STS2840 is a generic name for a cluster of stations seen as a multipoint VIP

line.

Each STS2840 station can contain up to 3 terminals, namely,

« a display with keyboard

o a printer

» a diskette unit.

STS2840 DISPLAY/KEYBOARD

The screen is organized in 16 or 24 lines of 80 character positions.

96 different graphic symbols can be displayed, their types depending on nation-
al optionms.

A marker line is displayed as an aid in formatting the screene

Text for Display

The following terminal control codes in mark form enable the operational hand-
ling of the display,

>LCRVSLLFV or ><LFV, see ><ESCS

><ESCA
><ESCC
><ESCD
><ESCG
><ESCH
><ESCI
><ESCJ

><ESCK
><ESCL
><ESCN
><ESCO
><ESCQ
><ESCS
><ESCT

resume expanded message format

start companion hard copy on the printer

request nsend"

acoustic signal to the operator and display "ALARME 31"
move cursor one position to the left on the same line
move cursor to the next tabulation stop on the right

erase end-of-line, and move cursor to the next line at first character
position :

move cursor one line down at the same character position
move cursor to the first line at first character position
start of protected field

start of unprotected field

move cursor one line up at the same character position
move cursor to the next line at first character position

access protected area

6-29

*

STS2840
continued

><ESCW erase end-of-line and any subsequent lines

><ESCX clear screen, and reset cursor in "home" position, i.e., at leftmost
character position at the top of the screen

><ESCY erase field

><ESC) call "screen-format" from companion diskette, the 4 characters identi-
fying the name of the "screen-format" must follow on immediately.

This control sequence must form a complete message in itself,’
><ESC@® start compressed message format
><ESC\ display graphic symbol =
><ESC] display one blank
><ESC* subfield delimiter
><ESC_ move cursor one position to the right on the same line
><DC1 request screen dump
><DC2 position the cursor according to line number and character position
><DC4 position the cursor after display of the current message is completed
><FFV see ><ESCX

><GSV field delimiter, followed by an attribute character identifying the
field

To position the cursor, proceed as follows using the ASCII table

+ Determine the value to be given for the line number, say, 11
- Start from ASCII code 20 which is a ''space"
- Count 11 codes from ASCII code 20. inclusive
- The ASCII code arrived at is 2A
- The EBCDIC equivalent is 5C or graphic *

o Determine the value to be given for the character position, say, 37
- Use exactly the same method as above for the line number
- The EBCDIC equivalent is C4 or graphic D

o In the MCS application, send a control sequence in one of the formats :

><DC2*D using graphic symbols

><DC2><C5C><CC4 using EBCDIC values in control character form

6-30

TN300, 1200

“TN300/ 1200 operate on TTY line procedure

. The TN300 and TN1200 are printers with the options,
o keyboard
. paper tape attachment
o cassettes

The keyboard can send any of the 128 ISO codes.

The character set for the printer comprises 94 graphic symbols (excluding the
"space') according to the national options available.

Characters received with parity error are treated as follows,

o if TN300, an “interrupt" condition is set up at the terminal

» if TN1200, the erroneous character is printed with the graphic symbol .
Line length depends on the model and the options available, namely,

o« if TN300, 118 character positions

o if TN1200, either 80 or 120 character positionse

CONTROL CODES

Unless specifically stated, the control codes in mark form pertain to both TN300
and TN1200.

><BEL sounds an alarm

><BSV moves print one position to the left

>D<CRV resets print position to first tabulation stop or leftmost column
><DC1 starts paper tape reader forwards, optionally used for cassette
><DC2 starts paper tape punch, optionally used for cassette

><DC3 stops paper tape reader, optionally used for cassette

><DC4 stops paper tape punch, optionally used for cassette

><ESCO starts paper tape reader backwards, optionally used for cassette
><ESC1 sets horizontal tabulation stop at current print position

><ESC2 clears all tabulation stops

><ESC3 applicable only for TN1200, selects red printing option

><ESC4 applicable only for TN1200, selects black printing option

><ESCH turns on printer motor

><ESCJ turns off printer motor

6-31

TN300, 1200
continued

CONTROL CODES (continued)

><ESCK turns on auxiliary device

><ESCL turns off auxiliary device

>_<ESC:- resumes printing

><ESC; stops printing, allows transmission

><FFV applicable only for TN1200, throws paper to top-of-page
(option : fixed setting to 8, 8.5 or 11 inches)

><HIV moves print to next tabulation stop or end-of-line

><LFV advances paper depending on model,
« if TN300, one or two lines up (switch selectable)
o if TN1200, one line up (switch selectable, 3 or 6 lines per inch)

><VIV applicable only for TN1200, advances paper to next vertical tabulation
stop or top-of-page

TERMINAL SPECIFICS

Refer to respective product manuals.

6-32

TTS7800

TTS7800 operates on VIP line procedure

TTS7800 DISPLAY/KEYBOARD

The screen is organized in 12 or 24 lines of 80 character positions,
The optional plasma screen is organized in 6 or 12 lines of 40 characters.

The keyboard has 64 keys and is organized a follows,
o an alphanumeric pad adaptable for national key layout options
+ a numeric pad g
+ a selection of 13 fixed function-keys
« a selection of 8 variable function-keys,

Variable function-keys are used in conjunction with the fixed function-keys to
select transactions via a menu.

Header for Display/Keyboard

The 3 parameters in the VIP header have the following values,
o« STA=EBCDIC O0=COBOL Collating Sequence 1
» FCl1=1last function code entered on the keyboard or echo to the application

o FC2=1last but one function code entered or echo to the application.

Text for Display

BLANKING :

><CAl1 displayed as a "space" or graphic ~ starts a character string which is
blanked out on display.
A "space'" or end-of-line ends the blanking.

BLINKING :

><BEL or ><BLK or graphic ~'are displayed as graphic * and starts a blinking
character strings
A V'space' or end-of-line ends the blinkings

COBOL s

LINE and PAGE keywords have the same effect as ><B0O3 and ><BO1 respectively,
when used in a clause with the SEND verb. ,

6-33

TTS7800
continued

ENTRY MARKER :
The following terminal control codes in mark form alter the current entry po-
sition,
><BO1 as for ><DC4, with display memory cleared, i.e., screen erased
><B03 equivalent to the sequence ><CRV><LFV
><BSV same line, 1 character position to the left
><CRV same line, leftmost character position
><DC1 one line up, same character position, i.e., reverse line feed
><DC2 same line, 1 character position to the right, i.e., forward space
><DC3 position cursor accordihg to line number and character position
><DC4 uppermost line, leftmost character position, i.e., page return
><DEL follows ><HTVY, ><FFV, ><BOl as a "time-fill"
><FFV same as ><BO01
><HTV same line, first tabulation to the right
><LFV one line down, same character position
><NLV same as ><BO3

To position the cursor, proceed as follows using the ASCII table
o Determine the value to be given for the line number, say, &4
Start from ASCII code 20 which is a ''space

Count 4 codes from ASCII code 20 inclusive
The ASCII code arrived at is 23
The EBCDIC equivalent is 7B or graphic #

o Determine the value to be given for the character position, say, 15

- Use exactly the same method as above for the line number
- The EBCDIC equivalent is 4B or graphic .

« In the MCS application, send a control sequence in one of the formats :

><DC3#. wusing graphic symbols

><DC3><C7B><KC4B using EBCDIC values in control character form

6-34

TTS7800
continued

FORMS MODE :

The following terminal control codes in mark form set the terminal either in
forms mode or in normal mode.

Forms are defined while in normal mode.

><ESCM enters the terminal into forms mode

><ESCN resets the terminal into normal mode

><FSV defines the start of a fixed field

><GSV defines the start of a variable field, followed by a value, as follows

O the field contains a character to be transmitted and printed
1 inhibits printing

2 inhibits transmission

After the forms definition is completed, the terminal is entered into
forms mode to allow protected operation under forms control.

MESSAGE BOUNDARIES :

In normal mode, message boundaries can be controlled by the application using
the following control codes,
><ESCT start of message boundary

><ESCU end of message boundarys

TABULATION :

The following terminal control codes in mark form set the tabulat‘ion,

><ESC1 sets the tab stops at the current entry marker position
><ESC2 resets all the tab stops.

6-35

TTS7800
continued

TERMINAL SPECIFICS

Refer to the appropriate product manual.

6-36

TTU8124, 8126

TTU8124/8126 operate on TTY line procedure

The TTU8124 and TTU8126 terminals are printers with the optional features,
o keyboard
» front feed mechanism for inserting single Single sheets
o paper loop for mechanically setting vertical tabulation and form lengths

The character set for the printer consists of 63 graphic symbols, or 94, if the
lower case option is present, according to the national options available,

The print line has a maximum capacity of 132 characters, or 80, as an optiomn.
Characters received with a parity error are printed with the graphic symbol 0.

When the last column position in a line is passed, an automatic new line move-
ment OCCursS.
In the case of the TTU8126, the new line movement can be suppressed.

"Paper out' condition leads to disconmnection for a switched line.

CONTROL CODES

The following terminal control codes in mark form enable the operational hand-
ling of the printer, .

><BEL sounds an alarm

><BSV moves printer head one position to the left

><CRV resets printer head to leftmost column or first tabulation stop
><ESCO followed by page length character, sets the page length for form feed

><ESC1 sets a horizontal tabulation at current print position
(10 positions to the inch; 16 tabulations stops, maximum)

><ESC2 clears all horizontal tabulations during operation
(horizontal tabs are automatically cleared at power-on)

><ESC3 sets a vertical tabulation at current line count
(6 lines to the inch; 10 tabulation stops, maximum)

><ESC4 clears all vertical tabulations during operation
(vertical tabs are automatically cleared at power-on)

><FSV ejects single sheets, automatically performed when less than 1 inch
from bottom of the sheet

><GSV position single sheet to first print position, about half inch from top
of the sheet

><HIV moves printer head to next horizontal tabulation or end-of-line
><LFV advances paper one line

><VIV advances paper to next vertical tabulation or top-of-page

6-37

TTU8124, 8126
continued

TERMINAL SPECIFICS

Refer to the respective product manuals.

6-38

TTU8221

" TTU8221 operates on VIP line procedure

The TTU8221 is equipped with a keyboard and a printer with a buffer capacity of

90

characters.

95 different graphic symbols can be printed, basically the full ISO ASCII set,
with variations depending on national keyboard options.

Its

visibility to the host is that of a VIP7700 terminal with limited functionms.

TTU8221 KEYBOARD/PRINTER

The

page is organized according to parameters entered either by the operator or

from the application.

Data entered on the keyboard is placed in a buffer, where editing can be carried

out

by the operator before the data is transferred to the host.

Printer and medium specifications are,

o

a page is composed of from 10 to 90 lines

a line contains from 38 to 132 characters, the default value being 132 cha-
racters

paper width varies from 4" (10 cms) to 15'" (38 cms)
characters are 10 to the inch
lines are 6 to the inch

the minimum margin between the sprocket hole and the first character is %',

‘measured from center-to-center,

Header for Keyboard/Printer

The

3 parameters in the VIP header have the following values,

STA=EBCDIC 3F=COBOL Collating Sequence 64,
- when sent by the terminal
- and, as foreced by BINS

STA =EBCDIC 00=COBOL Collating Sequence 1,
- as received by the application

FCi=value as received by the application or overridden by the terminal
operator)

FC2="9Y", when the last character has been printed on fanfold paper

FC2='1% when the last character has been printed on single forms.

6-39

TTU8221
continued

Control Codes

The following terminal control codes in mark form perform the mechanical func-
tions of the printer,

><BO1 new page, or form feed
><B03 new line
><CRV><LFV see ><BO3

><DC2 if preceding the following control codes in mark form, will perform a
double paper movement for fanfold, namely,

- ><BO1

- ><FFV

- ><LFV

- ><XVIv
><DC3 set page dimensions according to the number of lines and characters/line
><ESC1 set horizontal tabulation, up to 10 tab stops may be set in a line
><ESC2 clear all horizontal tabulation ‘'stops
><ESC5 set vertical tabulation, up to 10 tab stops may be set in a page
><ESC6 clear all vertical tabulation stops
><FFV see ><BO3
><G2F sound a short acoustic signal
><HTV move print head to next horizontal tab stop, end-of-line is tab stop
><NLV see ><BO3 ‘
><VTV skip paper to next horizontal tab stop, top-of-form is tab stop

6-40

TTU8221
continued

To set the page dimensions, proceed as follows using the ASCII table

o Determine the value to be given for the number of lines, from 10 to 90,
inclusive, say the number required is 55 lines

Subtract 9 from the number of lines required, that is (55 - 9) =46

Start from ASCII code 20 which is a "space"
- Count 46 codes from ASCII code 20 inclusive
The ASCII céde arrived at is 4D

The EBCDIC equivalent is D4 or graphic M

]

o Determine the value to be given to the number of characters per line,
from 38 to 132 inclusive, say the number required is 80 characters/line

- Subtract 37 from the number of characters/line, i.e., (80 -37) =43
- Use exactly the same method as above for the number of lines
- The EBCDIC equivalent is D1 or graphic J

o« In the MCS application, send a control sequence in one of the formats :

><DC3MJ] using graphic symbols

><DC3><CD4><CD1 using EBCDIC values in control character form

6-41

TTU8221
continued

TTU8221 FRONT FEED

When the option is present, single sheets may be inserted from the front between
the guides independent of the tractor mechanism.

Printer and medium specifications are,

o the vertical print area is 9 less than the total number of lines defined for
the sheet

« the number of characters per line is set at 40, 48, 72 or 80.

The header for the normal traction printer as described previously, also applles
to the '"front-feed'" printer.

Control Codes

The control codes listed for the normal traction printer as described previously
also apply to the "front-feed" printer.

The additional control codes in mark form which apply specifically to the "front-
feed" printer are, '

><DC2 1if preceding the following control codes in mark form, will perform a
double paper movement for single sheet, namely,

- ><BO1
- ><FFV
- ><LFV
- ><VIvV g

><ESC3 select single sheet for printing and move head to first print position
on single sheet

><ESC4 select fanfold for printing and move head to first print position on fan-
fold.

This is selection by default at "power-on" and is only resorted to after
the single sheet is ejected by '"form-feed" or by excessive paper skips.

6-42

TTY33, 35, 37, 38

TTY33/35/37/38 operate on TTY line procedure

The TTY33, TTY35, TTY7 and TTY38 are printers with the options,
+ keyboard

. paper tape attachment.

The keyboard can send either 96 or 128 ISO codes, depending on the model.

The character set for the printers comprises 63 graphic symbols, or 94 for the
TTY37 and TTY38.

Line length is either 72 or 86 characters.

CONTROL CODES

The applicability of the control codes shown in mark form depends on the model
and the installed options.

><BEL
><BSV
><CRV
><DC1
. ><DC2
><DC3
><DC4
><ESC1
><ESC2
><ESC3
><ESC4
><ESC5
><ESC6
><ESC7
><ESC8
><ESC9
><FFV
><HTV
><LFV

rings a bell

moves print position one character to the left:
resets print position to leftmost margin

starts paper tape reader

starts paper tape punch

stops paper tape reader

stops paper tape punch

sets horizontal tabulation at current print position
clears all horizontal tabulations during operation *
selects printing in red

selects printing in black

sets vertical tabulation at line count

clears all vertical tabulations during operation *’
rolls back paper one line

rolls back paper half a line

advances paper half a line

advances paper to top-of-page (next page) _
moves print position to next tabulation stop on the same line

advances paper one line (3 or 6 lines to the inch)

* At power-om, all vertical and horizontal tabulations are automatically cleared.

6-43

TTY33, 35, 37, 38 |
continued

TERMINAL SPECIFICS

Refer to the respective product manuals,

6-44

VIP7001
*

VIP7001 operates on VIP line procedure

VIP7001 DISPLAY/KEYBOARD

The screen is organized in 12 or 24 lines of 80 characters. An option is avail-
able for 22 lines of 46 characters. Including the ''space'", 64 different graphic
symbols, or 95 with lower case option, can be displayed. The types of graphic
symbols depend on national options. An entry marker is displayed as an aid in
formatting the screen.

The FORMGEN utility is available for formatting the screen. The FORMRTP utility,
the Forms run-time package, is then executed.

Header for Display/Keyboard

The 3 parameters in the VIP header have the following values,
« STA=EBCDIC 00=COBOL Collating Sequence 1
» FCl=last function code entered on the keyboard or echo to the application

o FC2=last but one function code entered or echo to the application.

Text for Display

BLANKING ¢

><CAl1 displayed as a '"space' or graphic ~ starts a character string which is
blanked out on display, _
A ''space'" or end-of-line ends the blanking.

BLINKING :

><BEL or ><BLK or graphic 7! are displayed as graphic ® and starts a blinking
character string.
A "'space" or end-of-line ends the blinking.

COBOL 2

LINE and PAGE keywords have the same effect as ><BO3 and ><BO1 respectively,
when used in a clause with the SEND verb.

VIP7001
continued

ENTRY MARKER :

The following terminal control codes in mark form alter the current entry po-
sition,
. ><BO1 as for ><DC4, with display memory cleared, i.e., screen erased
><BO3 equivalent to the sequence ><CRV><LFV

><BSV same line, 1 character position to the left

><CRV same line, leftmost character position

><DC1 one line up, same character position, i.e., reverse line feed
><DC2 same line, 1 character position to the right, i.e., forward space
><DC3 position cursor according to line number and character position
><DC4 uppermost line, leftmost character position, i.e., page return
><DEL follows ><HIV, ><FFV, ><BO1l as a "time-fill"

><FFV same as ><BO1

D><HTV same line, first tabulation to the right

><LFV one line down, same character position

><NLV same as ><B0O3

To position the cursor, proceed as follows using the ASCII table

. Determine the value to be given for the line number, say 12
- Start from ASCII code 20 which is a 'space'
- Count 12 codes from ASCII code 20 inclusive
- The ASCII code arrived at is 2B
- The EBCDIC equivalent is 4E or graphic +

. Determine the value to be given for thevcharacter position, say, 6
- Use exactly the same method as above for the line number
- The EBCDIC equivalent is 6C or graphic %

o In the MCS application, send a control sequence in one of the formats :

><DC3+% using graphic symbols

><DC3><C4E><KCO6C using EBCDIC values in control character form

VIP7001
continued

FORMS MODE :
The following terminal control codes in mark form set the terminal either in
forms mode or in normal mode.

Forms are defined while in normal mode.

><ESCM enters the terminal into forms mode

><ESCN resets the terminal into normal mode

><FSV defines the start of a fixed field

><GSV defines the start of a variable field, followed by a value, as follows
O the field contains a character to be transmitted and printed
1 inphibits printing
2 inhibits transmission

After the forms definition is completed, the terminal is entered into
forms mode to allow protected operation under forms control.

°

MESSAGE BOUNDARIES :

In normal mode, message boundaries can be controlled by the application using
the following control codes,
><ESCT start of message boundary

><ESCU end of message boundary

PAGE OVERFLOW

°0

detection o ERROR indicator on the terminal lights up.

‘cause . result of a programming error

» result of operator error in failing to clear the screen.

correction . press CTR and CLEAR control keys simultaneously
e send the command $*$RDY

o i1f overflow recurs, send $*$RDY STRONG to cancel the message.

TABULATION :

The following terminal control codes in mark form set the tabulation,
><ESC1 sets the tab stop at the current marker position
><ESC2 resets all the tab stops.

6-47

VIP7001
continued

VIP7001 PRINTER

Printable text is defined between the control codes in mark form ><STX, to de-
note '"'start-of-text" and, either ><ETX or ><EMV, to denote "end-of-text'.
Text output to the printer does not appear on the screen.

°© Method of addressing (1) :
. address the display/keyboard with STA=3F in the VIP header.
The keyboard is locked during printing.

The message is printed as it is. The text in the message must contain all nec-
essary control codes for formatting the text, which are the same as for posi-
tioning the entry marker for display on the screen.

Like display on the screen, 'time-fills' are required to ensure proper syn-
chronization of the printer mechanism. Any control code which causes movement
of the printer mechanism, such as ''carriage-return" and 'line-feed'", must be
immediately followed by a sequence of '"time-fills", ><DEL, before any text is
sent to be printed. Full line size capability is obtained by this method.

o Method of addfessing (2) :

. define the printer by a separate TERMNL command declaring the ''terminal-
subtype' as PRT at CNC generation
. address the display/keyboard with STA=00 in the VIP header.

The keyboard is not locked and may be used to enter data into the screen and
to transmit the data while printing proceeds.

Data is printed according to the standard VIP7001 hard copy format with a max-
imum line length of 80 characters. Print format controls, such as 'carriage-
return'" and "line-feed", are generated automatically by the terminal controll-
er.

© Method of addressing (3) :

o define the printer by a separate TERMNL command declaring the 'terminal-
subtype'" as PRT at CNC generation
. address the display/keyboard with STA=3F in the VIP header.

The keyboard is not locked and may be used to enter data into the screen and
to transmit the data while printing proceeds.

The message is printed as it is. The text in the message must contain all nec-
essary control codes for formatting the text, which are the same as for posi-
tioning the entry marker for display on the screen.

Like display on the screen, '"time-fills'" are required to ensure proper Syn-
chronization of the printer mechanism. Any control code which causes movement
of the printer mechanism, such as ''carriage-return' and '"line-feed", must be
immediately followed by a sequence of '"time-fills", ><DEL, before any text is
sent to be printeds Full line size capability is obtained by this method.

6-48

VIP7100

VIP7100 operates on TTY line procedure

The VIP7100 is a keyboard/display terminal.

Entry of data in the display starts at the bottom line and on completion, the
line is "rolled up'" if the new line function has been provided for.

Otherwise, excess characters overprint the rightmost character position, that is,
position 80.

The "home'' position defines the leftmost character position of the bottom line.
A cursor is displayed to facilitate data entry,

Screen capacity is 12 lines of 80 characters, with an option available for 24
lines.

The character set for the display consists of 63 graphic symbols, or 94, if the
lower case option is presente.

The keyboard can send any of the 128 ISO codes; however, if only the upper case
is present, the set is reduced to 94.

CONTROL CODES

The following terminal control codes in mark form enable the operational hand-
ling of the display,

><BEL sounds an alarm
><BSV moves cursor one position to the left

><CRV resets cursor at the left margin, without affecting characters already
displayed on the line

><DC2 moves cursor one position to the right
><FFV resets cursor to the left margin for erasing the screen

><LFV 'rolls up" lines by one line in order to allow data entry into the bot-
tom line

6-49

VIP7100
continued

TERMINAL SPECIFICS

Refer to the appropriate product manual.

6-50

- VIP7200

_’VIP7200 operates on TTY line procedure

The VIP7200 is a keyboard/display terminal.

A cursor is displayed to indicate the current entry position. The screen is
filled from the top, progressing line by line to the bottom. When the last line
at the bottom is filled, the contents of the screen are automatically '"rolled
up" by one line in order to allow further data entry.

Screen capacity is 24 lines of 80 characters.

The character set for the display consists of 63 graphic symbols, or 94, if the
lower case option is present.

The keyboard can send any of the 128 ISO codes.

CONTROL CODES

The following terminal control codes in mark form enable the operational hand-
ling of the display,

><BEL acoustic signal to the operator

><CRV reset cursor at left margin on the same line

><ESC3 set normal intensity for screen illumination

><ESC4 set low intensity for screen illumination

><ESCA move cursor one line up but at the same character position
><ESCB move cursor one line down but at the same character position
><ESCC move cursor one character position to the right on the same line
><ESCD move cursor one character position to the left on the same line

><ESCH reset cursor in "home" position, i.e., at leftmost character position
at the top of the screen

><ESCJ erase text display from current cursor position to the end-of-page
><ESCK erase text display from current position to the end-of-line
><ESC' reset terminal to initial state, as follows,

. erase the screen

. set cursor to "home' position

» set normal intensity for screen illuminatiom.

The equivalent control sequence is ><ESC><C79.

><ESCf position the cursor according to character position and line number

><ESCi send data from the start-of-line or start-of-page, depending on switch
setting, to the current cursor position

6-51

VIP7200
continued

CONTROL CODES (continued)

><ESCn terminal to indicate its cursor position according to the format given
in ><ESCf

><LFV move cursor one line down; if the cursor is on the bottom line, 'roll
up" will occur :)

To position'the cursor, proceed as follows using the ASCII table
. Determine the value to be given for the character position, say, 37

Start from ASCII code 20 which is a ''space"

Count 37 codes ffom ASCII code 20 inclusive
The ASCII code arrived at is 44
The EBCDIC equivalent is C4 or graphic D

« Determine the value to be given to the line number, say, 11
- Use exactly the same method as above for character position
- The EBCDIC equivalent is 5C or graphic *

. In the MCS application, send a control sequence in one of the formats :

><ESCfD* using graphic symbols

><ESCEf ><CC4><C5C using EBCDIC values in control character form

6-52

VIP7700

VIP7700 operates on VIP line procedure

VIP7700 DISPLAY/KEYBOARD .

The screen is organized in 12 or 24 lines of 80 characters. An option is availa-
ble for 22 lines of 46 characters. Including the '"space", 64 different graphic
symbols, or 95 with lower case option, can be displayed. The types of graphic
symbols depend on national options. An entry marker is displayed as an aid in
formatting the screen.

The FORMGEN utility is available for formatting the screen. The FORMRTP utility,
the Forms run-time package, is then executed.

Header for Display/Keyboard

The 3 parameters in the VIP header have the following values,

o« STA=EBCDIC 00=COBOL Collating Sequence 1
» FCi=1last function code entered on the keyboard or echo to the application
o FC2=last but one function code entered or echo to the application.

Text for Display

BLANKING :

><CA1 displayed as a '"'space™ or graphic ~ starts a character string which is
blanked out on display.
A "space” or end-of-line ends the blanking.

BLINKING :

><BEL or ><BLK or graphic 7' are displayed as graphic * and starts a blinking
character string.
A "space'" or end-of-line ends the blinking.

COBOL :

LINE and PAGE keywords have the same effect as ><BO3 and ><BO1 respectively,
when used in a clause with the SEND verb.

6-53

VIP7700
continued

ENTRY MARKER :

The following terminal control codes in mark form alter the current entry po-
sition,

><BO1 as for ><DC4, with display memory cleared, i.e., Screen erased
><BO3 equivalent to the sequence ><CRV><LFV

><BSV same line, 1 character position to the left

><CRV same line, leftmost character position

><DC1 one line up, same character position, i.e., reverse line feed
><DC2 same line, 1 character position to the right, i.e., forward space
><DC3 position cursor according to line number and character position
><DC4 uppermost line, leftmost character position, i.e., page return
><DEL follows ><HIV, ><FFV, ><BOl as a "time-fill"

><FFV same as ><BO1

><HTV same line, first tabulation to the right

><LFV one line down, same character position

><NLV same as ><BO3

To position the cursor, proceed as follows using the ASCII table

o Determine the value to be given for the line number, say, 11
- Start from ASCII code 20 which is a ''space"
- Count 11 codes from ASCII code 20 inclusive
- The ASCII code arrived at is 2A
- The EBCDIC equivalent is 5C or graphic *

o Determine the value to be given for the character position, say, 37
- Use exactly the same method as above for the line number

- The EBCDIC equivalent is C4 or graphic D

« In the MCS api)lication, send a control sequence in one of the formats :

.

><DC3*D using graphic- symbols

><DC3><C5C><CC4 using EBCDIC values in control character form

6-54

VIP7700
continued

FORMS MODE :

The following terminal control codes in mark form set the terminal either in
forms mode or in normal mode.

Forms are defined while in normal mode.
><ESCM enters the terminal into forms mode
><ESCN resets the terminal into normal mode

><FSV defines the start of a fixed field
><GSV defines the start of a variable field, followed by a value, as follows

O the field contains a character to be transmitted and printed
1 inhibits printing

2 inhibits transmission

After the forms definition is completed, the terminal is entered into
forms mode to allow protected operation under forms control.

MESSAGE BOUNDARIES :
In normal mode, message boundaries can be controlled by the application using
the following control codes,

><ESCT start of message boundary
><ESCU end of message boundary

PAGE OVERFLOW :
detection : ERROR indicator on the terminal lights up.

cause ¢ Either one of the following conditions has occurred
« a result of a programming error
o a result of an operator error in failing to clear the screen

~ correction : Perform the following sequence of operations

o press CTR and CLEAR control keys simultaneously
- send the command $*$RDY

o if overflow occurs again as a result of message length, send the
command $*$RDY STRONG to cancel the message.
TABULATION :

The following terminal control codes in mark form set the tabulation,

><ESCi sets the tab stop at the current entry marker position
><ESC2 resets all the tab stops.

6-55

VIP7700

continued
*
VIP7700 PRINTER

Printable text is defined between the control codes in mark form ><STX, to de-
note '"'start-of-text" and, either ><ETX or ><EMV, to denote "end-of-text'’

Text output to the printer does not appear on the screen.

° Method of addressing (1) :

+ address the display/keyboard with STA=3F in the VIP header.
The keyboard is locked during printing.

The message is printed as it is, The text in the _message must contain all nec-
essary control codes for formatting the text, which are the same as for posi-
tioning the entry marker for display on the screen.

Like display on the screen, '"time-fills" are required to ensure proper syn-
chronization of the printer mechanisms Any control code which causes movement
of the printer mechanism, such as '"carriage-return" and "line-feed", must be
immediately followed by a sequence of "time-fills", ><DEL, before any text is
sent to be printed. Full line size capability is obtained by this method.

© Method of addressing (2) :

+ define the printer by a separate TERMNL command declaring the 'terminal-
subtype" as PRT at CNC generation

. address the display/keyboard with STA=00 in the VIP header.

The keyboard is not locked and may be used to.enter data into the screen and
to transmit the data while printing proceeds.

Data is printed according to the standard VIP7700 hard copy format with a max-
imum line length of 80 characters. Print format controls, such as '"carriage-

return'" and '"line-feed", are generated automatically by the terminal controll-
er.

© Method of addressing (3) :

. define the printer by a separate TERMNL command declaring the 'terminal-
subtype' as PRT at CNC generation

o address the display/keyboard with STA=3F in the VIP header.

The keyboard is not locked and may be used to enter data into the screen and
to transmit the data while printing proceeds.

The message is printed as it is. The text in the message must contain all nec-
essary control codes for formatting the text, which are the same as for posi-
tioning the entry marker for display on the screen.

Like display on the screen, 'time-fills'" are required to ensure proper syn-
chronization of the printer mechanisms Any control code which causes movement
of the printer mechanism, such as ''carriage-return" and '"line-feed', must be
immediately followed by a sequence of "time-fills', ><DEL, before any text is
sent to be printed. Full line size capability is obtained by this method.

6-56

VIP7760

.VIP7760 operates on VIP line procedure

VIP7760 DISPLAY/KEYBOARD

The screen is organized in 12 or 24 lines of 80 characters. Including the "space"

95 different graphic symbols, basically .ISO/ASCII set with national options, can
be displayed. An entry marker is displayed as an aid in formatting the screen.

The FORMGEN utility is available for formatting the screen. The FORMRTP utility,
the Forms run-time package, is then executed.

Text for Display

The control sequences for tabulation, entry marker control and message boundaries

are the same as for the VIP7700. Blinking and blanking are supported as options.

FORMS MODE

The following terminal control codes in mark form set the terminal either in
forms mode or in normal mode. Forms are defined when in normal mode.

><ESCM enters the terminal into forms mode

><ESCN resets the terminal into normal mode

><FsV
><GSV

><RSV

defines the start of a fixed field

defines the start of a variable field, followed by a value, as follows

0

1
2
4
8

16

the field is right-justified, non-repeated and alphanumeric, to be
transmitted and printed

inhibits printing

inhibits transmission

numeric-only field

indicates a number of a line field to be repeated

the field is left-justified

terminates a repetitive line field, followed by a repetition code

value of repetition code : add 64 to the number of times that the line
field is to be repeateds

6-57

VIP7760
continued

VIP7760 PRINTER

The printer must be defined by a separate TERMNL command declaring the "terminal-
subtype" as PRT at CNC generation. Text for printing can only be sent to the prin-
ter address. The three printing modes are treated as follows,

TRANSPARENT MODE

Method of addressing : Either
. address the printer with STA=3F in the VIP header

Or
o address the printer with STA=00 in the VIP header
« and, precede the text with ><ESCZ.

The message is printed as it is. The text in the message must contain any neces-
sary format control codes, see '"Text for Display', and any other control codes
specific to the printer.

"Time-fill" control codes for the proper mechanical synchronization of the prin-
ter should also be included in the message text.

><USV defines the "time-fill" count, in the case where the printer is used
for hard copy, and where the proper synchronization of the printer me-
chanism is required,

To define the "time-fill'" count, proceed as follows using the ASCII table
+ Determine the value to be given for the number of "time-fills", say, &4
- Start from ASCII code 20 which is a '"'space"
- Count 4 codes from ASCII code 20 inclusive
- The ASCII code arrived at is 23
- The EBCDIC equivalent is 7B or graphic #

o In the MCS application, send a control sequence in one of the formats :

><USV# using the graphic symbol

><USV><KC7B using the EBCDIC value in control character form

6-58

VIP7760
continued

VIP7760 PRINTER (continued)

DISPLAY IMAGE MODE :

Method of addressing :

. address the printer with STA=00 in the VIP header
. and, end the message text with ><ESCN.

The message text may optionally begin with ><ESCX or ><ESCY.

The text is formatted automatically on the printer according to the display
format characteristics.

Printer control functions and "time-fills' are generated automatically by the
VIP7760 systems

FORMS MODE :

Method of addressing :

. address the printer with STA=00 in the VIP header
. and, end the message text with ><ESCM.

If the message text begins with ><ESCX, only the variable fields will be prin-
tedo .

If the n;essage text begins with ><ESCY, both the fixed fields and the variable
fields will be printeds

If the message text is not preceded by either ><ESCX or ><ESCY, it will not
be printed.

Variable fields defined as "inhibit-printing'" will not be printed.
The printer is controlled. automatically by the VIP7760 system.

6-59

VIP7760
continued

VIP7760 DISKETTE

The diskette unit must be defined by a separate TERMNL command declaring the
"terminal-subtype' as DSK at CNC generation.

Messages with STA=00 in the VIP header can be exchanged between the application
and the unit, where the appropriate control sequence indicates that the message
that would otherwise appear on the screen is destined for the diskette unit.

The diskette is used for forms management in the following ways,

o« a form is stored by transmitting the form data, for formatting the screen,
together with the necessary ''dataset" name and form label, and the 'diskette-
write" control sequence, ><ESCW

o during a communications session, a form is retrieved, for dynamically format-
ting the screen, by transmitting the ''dataset' name and form label, and the
"diskette-read" control sequence, ><ESCV

« a form is deleted by transmitting the ''dataset' name and the form label, and
the '"diskette-erase" control sequence, ><ESCQ.

The diskette control sequences must be placed after ><STX in the text portion of
the message, but are not initiated until ><ETX received.

Control Code Sequences

In the following explanation of control sequences, it is assumed that
« the diskette is operatiomal
o the '"dataset' name is valid and has been entered before the control sequence

. the form name is not identical to one listed in the catalog.

The control sequences are listed in order of their functions,

><ESCW initiates the storage of a form under the specified 'dataset' name and
form label

><ESCV retrieves a local form and initiates the transmission of the form con-
tents to the host, under the specified 'dataset'" name and form label

For both the ><ESCV and ><ESCW control sequences, the keyboard remains
locked.

><ESCQ erases a single form or forms from a 'dataset' as follows,
. a single form is erased, if both the ''dataset' name and form label
are specified
+ forms are deleted from the "dataset', if the ''dataset' name is spec-
ified, and then followed by the keyword $ALL '

><ESCB enables the local display without transmit of a form under the specified
"dataset'" name and form label. .

6-60

The
The

VIP7802

" VIP7802 operates on TTY line procedure

VIP7802 identifies the VIP7801 and VIP7802.

screen is formatted in 24 lines of 80 characters, plus a 25th 80-character

status line. This status line serves as a constant indicator of the terminal op-
erating conditions, such as, terminal mode, terminal status and cursor position.

The

The

keyboard is capable of producing 139 displayable characters, of which,

95 are standard ASCII characters, including the '"space'" and the lower-case
option

33 are graphic symbols used in "communications display' mode
11 are line graphic symbols for line drawings, histograms and form outlines.

position of the character to be displayed is indicated by the current posi-

tion of the cursor which can be selected either as an 'underscore'" (_) or as a
block.

The

VIP7801/7802 transmits in three modes,

character mode, in which information is transmitted as it is being keyed in,
character at a time

text mode, in which the terminal transmits from either the 1st character en-
tered since the last transmission or a pre-defined position set by the Level
64, to the current cursor position

forms mode, in which data to be transmitted is determined by the forms attri-
butes qualifying each field.

ATTRIBUTES

The

following control code sequences in mark form indicate the specific attribute

to be stored at the current cursor positiomn.

><ESC s "visual', screen display in normal intensity

:NiESC=;{Ala} “forms', restricts entry to alpha-characters and normal punctua-

tion marks for editing

>N<ESCg;{BIb} "yisual', data and underscore to blink; inverse video is not

affected

><ESC s{Dld} "forms", restricts entry to decimal digits and "space"

negates ><ESCs { Nln}

><ESC S{Ele} "forms", entry required before tabbing from the field
><ESCs{F|f} "forms", field must be completely filled before tabbing
>N<ESCS{fq14- "wisual", data entered is not to be displayed, inverse video and

underscore are not affected

6-61

VIP7802
continued

ATTRIBUTES (continued)

><ESCs{1|i} 'visual", inverse video
><ESCS{J|j} "forms", field entry to be right justified
><ESC s{Lll} "visual', screen display in low intensity

XESCS{Mlm} "forms'", field to be transmitted only if its contents is changed
negates ><ESCs{T|t} , sets D<ESCs {U]u}

><ESC s{N'n} "forms'", restricts field to signed decimals and value indicators
negates ><ESCs{D|d} :

><ESC s{PIp "forms', defines Trotected field without changing other attributes

modifies ><ESCs Mlm and ><ESCs{U|u}

><ESC s{RIr} "restore', negates attributes set for a field without altering the
field assignment

"forms'", transmits the contents of a protected field

"forms', defines unprotected field whereby data is to be systema-

><Escs{T|t
tically transmitted and made accessible to the operator

><ESC s {U]u

><ESCs ._ "forms'", display underscore

To set up a form, proceed as follows,

. send ><ESC' ><ESC [h to clear the 'screen and set terminal in forms mode
. position cursor at start of 1st field to enter "attribute', then contents
« repeat same procedure for all fields until the form is completed.

To delete any attribute, send the control code sequence ><ESC[Q

KEYBOARD

><ESC[X 1locks keyboard, disables all keyboard functions except for RIS, RES,
AUTO-LF, LOCAL and BREAK

><ESC[W unlocks keyboard, negates ><ESC[X

TABULATION : also see '"Cursor"

><ESC p sets tab stop at current cursor position; invalid in forms mode
><ESC[g clears tab stop, negates ><ESCp; invalid in forms mode

><ESC [N clears all tabs irrespective of cursor position; invalid in forms mode
><ESC[Z moves cursor backwards to the previously defined tab position

><HIV moves cursor forwards to next character position at which the tab was
' set; if in forms mode, cursor moves to start of next unprotected field

6-62

CURSOR

><BSV

><CRV
><ESCA

><ESC B
><ESCC
><ESC D

><ESC f
><ESCH
><ESCn

><LFV

VIP7802
continued

also see. '"Tabulation™

moves cursor 1 character position backwards on same line, regardless
of fields transversed; cursor does not move out of position 1

reset cursor at left margin, character position 1, on same line

moves cursor upwards by 1 line, same character position; when in line
1, cursor moves to line 24

moves cursor downwards by 1 line, same character position; when in
line 24, cursor moves to line 1

moves cursor forwards by 1 character position along same line; when
out of position 80 of line 24, cursor moves to '"home' position

moves cursor backwards by 1 character position along same line; when
out of "home'" position, cursor moves to position 80 of line 24

positions cursor according to character position and line number
moves cursor to the 'home' position

terminal to indicate its cursor position in the status line, accord-
ing to the format given in ><ESCf

moves cursor downwards by 1 line; if cursor is already in line 24,
+ in 'roll" mode, data is rolled up by 1 line
¢« in "non-roll' mode, cursor does not move and '"data-overflow" occurs

To position the cursor, proceed as follows using the ASCII table

- Determine the value to be given for the character position, say, 37

. Determine the value to be given to the line number, say, 11

o In the MCS application, send a control sequence in one of the formats :

Start from ASCII code 20 which is a '"space"
Count 37 codes from ASCII code 20 inclusive
The ASCII code arrived at is 44

The EBCDIC equivalent is C4 or graphic D

- Use exactly the same method as above for character position

- The EBCDIC equivalent is 5C or graphié *

><ESCfD* using graphic symbols

><ESCE ><CC4><C5C using EBCDIC values in control character form

6-63

VIP7802
continued

EDITING

><ESCJ

><ESCK

><esc [

(]

><Esc [
><esc[L

(4

><esc[M
><esc[p

MODE

><ESCF
><ESC G

><ESC 1

><ESC k
><ESC q
><ESCr
><esc [E

erases to end of page starting from current cursor position, tabs
and attributes remaining unaffected; in forms mode, only unprotected
data is erased

erases to end of field starting from current cursor position; not
valid if cursor is already in character position 80

allows characters to be inserted at current cursor position; data
surpassing line width is truncated

negates ><ESC [1

inserts single blank line at line indicated by cursor; invalid in
forms mode or when cursor is in the status line

deletes line in which cursor is located, including all attributes

deletes character within a line whereby all text is closed up to the
left, tabs and attributes remaining unaffected

resets the line graphics mode, negates ><ESCG

sets terminal in line graphics mode, in which any of the 11 line
graphic symbols can be used

causes terminal to transmit next block when in block transmission
mode .

sets terminal in character mode

resets the roll mode, negates ><ESCr

~sets terminal in roll mode unless terminal is in forms mode

resets the block transmission mode

><ESC [blockl block2 block3 block4 F

><esc[h

><esc [1
><ESG

sets terminal in block transmission mode according to the block-size
designated; invalid if terminal is in character mode

sets terminal in forms mode, whereby data can only be entered in un-
protected fields

sets terminal in text mode, whereby data can be entered anywhere

resets screen to initial state as follows,
erase the screen

set cursor to '"home'" position

set text mode

clear all attributes

set normal intensity for screen illumination

L] . . . L]

6-64

VIP7804

NIP7804 operates on VIP line procedure

The VIP7804 identifies the VIP7804 and VIP7805.

The screen is formatted in 24 lines of 80 characters, plus a 25th 80-character
status line. This status line serves as a constant indicator of the terminal op-
erating conditions, such as, terminal mode, terminal status and cursor position.

The keyboard is capable of producing 139 displayable characters, of which,

« 95 are standard ASCII characters, including the '"space' and the lower-case
option

e 33 are graphic symbols used in '"communications display' mode
+ 11 are line graphic symbols for line drawings, histograms and form outlines.

The position of the character to be displayed is indicated by the current posi-

tion of the cursor which can be selected either as an '"underscore' (_) or as a
block.

The VIP7804/7805 transmits in two modes,

o text mode, in which the terminal transmits from either the 1lst c¢haracter en-
tered since the last transmission or a pre-defined position set by the Level
64, to the current cursor position

o« forms mode, in which data to be transmitted is determined by the forms attri-
butes qualifying each field.

Data buffering in the printer adapter allows printing to take place simultaneous-
ly with screen display. The adapter provides maximum buffering for up to 100
lines of 132 characters per line. The adapter also provides for the control, tim-
ing and status monitoring of the printer,

User visibility in addressing printer functions is restricted to ESC control code
sequences which activate the printer,

ATTRIBUTES

The following control code sequences in mark form indicate the specific attribute
to be stored at the current cursor position.
><ESC s "wisual', screen display in normal intensity

>ﬂ<ESG:s{AIa} "forms", restricts entry to alpha-characters and normal punctua-
tion marks for editing

><ESC s{ Blb} "wyisual', data and underscore to blink, inverse video is not
affected '

><ESC s{ Dld} "forms'', restricts entry to decimal digits and '"space"
negates ><ESC s{Nln}

><ESC s{ Ele} "forms'", entry required before tabbing from the field

6-65

VIP7804
continued

ATTRIBUTES (continued)

><ESC s{Flf} "forms'", field must be completely filled before tabbing

><ESC

s{th} "visual', data entered is not to be displayed, inverse video and
underscore are not affected

><EsCs{1|i} "visual", inverse video
><ESC s Jlj} "forms", field entry to be right justified

><ESC s{ Lll} "wisual', screen display in low intensity

><ESC s{Mlm} "forms", field to be transmitted only if its contents is changed
negates ><ESCs{T|t} , sets ><ESC s {U|u}

><ESC s{ Nln} "forms'", restricts field to signed decimals and value indicators
‘negates ><ESC s{ D]d}

><ESC s{ Olo} "printer", suppresses printing, also see "Printer"

><ESC s{Plp} "forms', defines protected field without changing other attributes
modifies ><ESCsfM|m} and ><ESCs{U|u}

><ESC s{ er} "restore', negates attributes set for a field without altering the
field assignment

><ESC s{T|t} "forms", transmits the contents of a protected field

><ESC s{ Ulu} "forms", defines unprotected field whereby data is to be systema-
tically transmitted and made accessible to the operator

><ESCs _ "forms'", display underscore

To set up a form, proceed as follows,

Clear the screen by sending the control code sequence ><ESC‘

Set the terminal in forms mode by the sequence ><ESC[h

Position the cursor at the start of the 1st field, see "Cursor"

Enter the "forms" attribute and then the contents of the field

Position the cursor at the start of the next field

Repeat the operation of entering the '"forms' attribute, then the contents

Continue the same procedure until the form is completed.

To delete any attribute, send the control code sequence ><ESC[Q

6-66

VIP7804

continued
CURSOR : also see "Tabulation"
><BSV moves cursor 1 character position backwards on same line, regardless

of fields transversed; cursor does not move out of position 1
><CRY reset cursor at left margin, character position 1, on same line

><ESC A moves cursor upwards by 1 line, same character position; when in line
1, cursor moves to line 24

><ESC B moves cursor downwards by 1 line, same character position; when in
line 24, cursor moves to line 1

><ESC C moves cursor forwards by 1 character position along/same line; when
out of position 80 of line 24, cursor moves to "home'" position

><ESCD moves cursor backwards by 1 character position along same line; when
out of "home' position, cursor moves to position 80 of line 24

><ESC £ positions cursor according to character position and line number
><ESCH moves cursor to "home" position

><ESCn terminal to indicate its cursor position in the status line, accord-
ing to the format given in ><ESCf

><LFV moves cursor downwards by 1 line; if cursor is aleady in line 24,
o in "roll" mode, data is rolled up by 1 line
« in '"non-roll' mode, cursor does not move and "data-overflow'" occurs

To position the cursor, proceed as follows using the ASCII table

o Determine the value to be given for the character position, say, 14
- Start from ASCII code 20 which is a ''space'
- Count 14 codes from ASCII code 20 inclusive
-~ The ASCII code arrived at is 2D
- The EBCDIC equivalent is 60 or graphic -

- Determine the value to be given to the line number, say, 20
- Use exactly the same method as above for character position
- The EBCDIC equivalent is F3 or graphic 3

» In the MCS application, send a control sequence in one of the formats :

><ESCf -3 \ising graphic symbols

><ESCf ><C60><CF3 using EBCDIC values in control chcracter form

6-67

VIP7804
continued

EDITING

><ESCJ ~ erases to end of page starting from current cursor position, tabs
and attributes remaining unaffected; in forms mode, only unprotected
data is erased

><ESC K erases to end of field starting from current cursor position; not
valid if cursor is already in character position 80

><ESC[I allows characters to be inserted at current cursor position; data
surpassing line width is truncated

><ESC [J negates ><Esc[1

><ESC[L inserts single blank line at line indicated by cursor; invalid in
forms mode or when cursor is in the status line

><ESC[M deletes line in which cursor is located, including all attributes

><ESC[P deletes character within a line whereby all text is closed up to the
left, tabs and attributes remaining unaffected

KEYBOARD

><ESC[X locks keyboard, disables all keyboard functions except for RIS, RES,
AUTO-LF, LOCAL and BREAK

><ESC[W unlocks keyboard, negates ><ESC[X

TABULATION : also see "Cursor"

><ESC p sets tab stop at current cursor position; invalid in forms mode
><ESC[g clears tab stop, negates ><ESCp; invalid in forms mode

><ESC[N clears all tabs irrespective of cursor position; invalid in forms mode
><ESC[Z moves cursor backwards to the previously defined tab position

><HTV moves cursor forwards to next character position at which the tab was
set; if in forms mode, cursor moves to start of next unprotected field

6-68

MODE

><ESCF
><ESC G
><ESC1I
><ESC q

><ESC r
><esc [E

VIP7804
continued

resets the line graphics mode,
negates ><ESCG

sets terminal in line graphics mode, in which any of the 11 line
graphic symbols can be used

causes terminal to transmit next block when in block transmission
mode

resets the roll mode,
negates >D<ESCr

sets terminal in roll mode unless terminal is in forms mode

resets the block transmission mode

><ESC [blocki block2 block3 blocké4 F

><esc [j

><esc [1
><Esc [s

><esc[T
><ESC *©

sets terminal in block transmission mode according to the block-size
designated

sets terminal in forms mode, whereby data can only be entered in un-
protected fields

sets terminal in text mode, whereby data can be entered anywhere

transmits successive blocks of data automatically when in block tran-
smission mode after the previous block has been ACKed

allows transmission of the block only on receipt of ><ESCI

resets screen to initial state as follows,
erase the screen

set cursor to "home' position

set text mode

clear all attributes

set normal intensity for screen illumination

6-69

VIP7804
continued

PRINTER

><esc[op

><esc [2p
><esc [3p

><esc [4p

causes data space to be printed in both transmission modes;
areas to be suppressed are selected by ><ESCs 30|o$ "printer"
attribute;

control codes and timings are provided by the printer adapter

terminates printing

prints data stream without affecting screen or data space;
control codes ><FFV, ><VIV, ><LFV and ><CRV are provided
by the user, with the printer adapter inserting the appropriate
"time-fills'" for the corresponding codes;

><BSVand ><HTV must not be sent

prints transparent data without affecting screen or data space;
used for control codes other than ><FFV, ><VIV, ><LFV and
><CRV ;

"time-fills" for control codes are provided in the form of
><ESC[?nnnp, where nnn is a 3-digit decimal value

><gsc [5{o]1}p

><esc [7np

><esc [<p
><esc [=cp

sets print mode, as follows,
« if O, only unprotected fields are printed
o« if 1, both protected and unprotected fields are printed

specifies the number of copies to be printed, where n is a 1-
digit decimal value

indicates the end of data stream

sets the control code to be used by the printer, where ¢ is the
graphic symbol, from O through ?, representing the following
control code combinations,

0 start CR end CR 8 start CR end CR-FF
1 CR-LF CR 9 CR-LF CR-FF
2 CR-FF CR : CR-FF CR-FF
3 CR-VT CR H CR-VT CR-FF
4 CR CR-LF < CR CR-VT
5 CR-LF CR-LF = CR-LF CR-VT
6 CR-FF CR-LF > CR-FF CR-VT
7 CR-VT CR-LF ? CR-VT CR-VT

6-70

SECTION VII

QUEUE MAINTENANCE

The queue maintenance utility is described in terms of
« Input Data
o Output Data
» Commands
« Executing QMAINT

INPUT DATA

Input data to QMAINT is in the form of QMAINT commands which are introduced
» either on cards forming an input enclosure in a deck of JCL statements

s or as a subfile retrieved from a source library.

If the QMAINT commands are used repeatedly for such functions as displaying or
purging the contents of the queues systematically at the end of a communications
session, they should be stored as a member of a library.

OUTPUT DATA

Output data from QMAINT is in the form of print-out reports which are

» SYSOUT reporf which provides the following

- lists the QMAINT commands

- lists the actions resulting from each command in the order listed in the
run-time JCL

- indicates any errors detected during the execution of the QMAINT step

» JOR, job occurrence report, which contains messages defining
- system errors for which the job has aborted
- user errors for which the job has halted abnormally.

7-01

COMMANDS

QMAINT commands are dealt with in terms of
« Symbolic Convention

o Command Description

Symbolic Convention

The following rules define the QMAINT symbolic convention,

o Keywords for command names and parameters are written in capitals in the
texte.

o The following symbols must not be specified in user-defined values,

s comma / slash (open parenthesis
V space = equals) close parenthesis
$ semi-colon * asterisk " double quotation

« Utility-reserved keywords must not be specified as user-defined terms.

« A command can span more than 1 card, for as long as the last card containing
the end of the command is terminated by a semi-colon.

¢ Individual parameters of a command may be separated by commas, spaces, or
commas and spaces. '

o Blank cards and ''comment' cards are not processed.

o A user-supplied value exceeding the range of permitted values is disallowed
_and flagged as an error.

7-02

Command Description

Each command is described in terms of

o definition, giving the purpose and function of the command

o format of command, indicating mandatory, positional and optional parameters

o description of parameters, describing the use and restrictions of each para-

meter

« command report, which lists all the actions performed by QMAINT as a result

of the command execution.

QMAINT
Command Description

Command Definition Page

comM defines a "'comment' and may appear anywhere in the sequence | 7-04
of commands.

PRINT prints out, without altering, the contents of one, several 7-05
or all of the queues defined within the network.

PURGE destroys all or part of the messages that are completely 7-07
queued in a given queue.

QSTATUS | lists the current status and the generation parameters of 7-08
one, several or all of the queues within the network.

SEND sends user-defined messages to the queues. 7-11

STATUS continues or suspends the processing of QMAINT commands 7-14
when an error has previously occurred.

7-03

COMM

Definition

The COMM command defines a comment and may appear anywhere in the sequence of
commands.

Format of Command

COMM ‘''string"

Description of Parameter

string
- a character string enclosed within double quotation marks that must be
opened and closed on the same card.

The string cannot be spawned on more than 1 card, i.e., the double quota-
tion mark closing the string must be on the same card as the double quot-
ation mark opening the string.

A maximum of 72 characters can be specified for each COMM command.

If a comment is longer than 72 characters, the excess number of charact-
ers must appear on the next COMM command.

Command Report

Only on command listing.

7-04

PRINT

Definition
The PRINT command is used to print out, without altering, the contents of one,
several or all of the queues defined within the network.

The contents of a queue is the set of messages that are completely queued, that
is, not in the transitional state of being sent or received.

The messages are printed out on the order that they would be received from the
queue concerned by an application or by BTNS,

Format of Command

queue-name-1 [, queue-name=2 oo queue-name-n]
PRINT

5
%

Description of Parameters

queue-name
- ranges from 1 through 12 alphanumeric characters and is the external name of
the queue as specified in the corresponding QUEUE command, see Network Gen-

eration Manual.

queue-name-1. . s queue~-name-n
- defines the list of queues and the order in which messages are to be prlnt-
ed out.

*

- requests the print-out of the contents of all the queues defined within the
given network.

The order in which the messages are to be printed out will be the order in
which the queues were declared at network generation.

7-05

PRINT
continued

Command Report

for each queue

QUEUE NAME

queue-name

NUMBER OF COMPLETE MESSAGES : aaaaaa

for each message

MESSAGE NUMBER : bbbbbb
MESSAGE STATUS : OK

: NOTALL
MESSAGE LENGTH : cccece
MESSAGE CONTENTS : text-of -message

queue-name
- ranges from 1 through 12 alphanumeric characters and is the external name of
the queue as specified in the corresponding QUEUE command.

aaaaaa
- number of complete messages in the queue that have been printed.

bbbbbb
- number of the message ranking in the queue.

cceecee
- length of the message in characters,

OK
- complete text for the message has been printed.

NOTALL
- partial text for the message has been printed.

7-06

PURGE

Definition

The PURGE command‘destroys all or part of the messages that are completely
queued in the referenced queue.

Format of Command

ALL

wo

PURGE queue-name
I NUMBMSG = nnnnn

Description of Parameters

queue-name

- ranges from 1 through 12 alphanumeric characters and is the external name of

the queue as specified in the corresponding QUEUE command, see Network Gen-
eration Manual.

ALL
- specifies that all the messages present in the queue are to be destroyed.

NUMBMSG
- specifies the number of messages in the queue to be destroyed,

The number of messages ranges from 1 through 99999,

Command Report

QUEUE NAME : ' queue-name
NUMBER OF DELETED MESSAGES : aaaaaa
queue-name

- ranges from 1 through 12 alphanumeric characters and is the external name of
the queue as specified in the corresponding QUEUE command.

aaaaaa
- number of messages destroyed, see ALL and NUMBMSG above.

7-07

Definition
The QSTATUS command lists the current status and the generation parameters of

one, several or all of the queues within the networks

Format Qf Command

queue-name-1 [s queue-name=-2 eeo queue-name-rl]

1)

QSTATUS
: %

Dgsqrigtioh of Parameters

queue-name
- ranges from 1 through 12 alphanumeric characters and is the external name of
‘the queue as specified in the corresponding QUEUE command, see Network Gen-
eration Manual.

queue-name-l...queue name-n
- defines the list of queues and the order in which their status and genera-
tion parameters are to be listed.

.
= requests the listing of the current status and generation parameters of all
,the queues defined within the network.

. The order in which this information is listed will be the order in which
the queues were declared at network generations

7-08

QSTATUS

continued
Command Report
for each queue
QUEUE NAME : queue=-name
NUMBER OF COMPLETE MESSAGES : aaaaaa
NUMBER OF MESSAGES IN SEND PHASE : bbbbbb
NUMBER OF MESSAGES IN RECEIVE PHASE : ccecee
i . 9
NUMBER OF BLOCKS ALLOCATED TO THIS QUEUE : dddddd
NUMBER OF BLOCKS USED FOR THIS QUEUE : eeeeee
MAXIMUM NUMBER OF BLOCKS IN THE POOL £EEEEE
 NUMBER OF BLOCKS USED FROM THE POOL : 228888
PROGRAM QUEUE g
TERMINAL QUEUE
QUEUE ATTRIBUTES : {CORE}
DISK
[/BRrEAK]
[/rESTART]
f/mval

queue-name
- ranges from 1 through 12 alphanumeric characters and is the external name of
the queue as specified in the corresponding QUEUE command.

aaaaaa
- number of messages completely queued in the current state.

~ bbbbbb

- number of messages partially sent to the queue, that is, messages not ter-
minated by either EMI or EGI.

7-09

QSTATUS
continued

Command Report (continued)

ccecec
- number of messages partially received from the queue.

dddddd : -
- number of memory or disk blocks allocated to the queue at network genera-
tion through the respective parameters of the corresponding QUEUE command,
o NUMBLK : number of memory blocks to be used as the memory queue pool
e NUMREC : number of blocks to be used as the disk queue file.

NUMBER OF BLOCKS ALLOCATED TO THIS QUEUE appears for memory queues not de-
fined with QCPOOL and for disk queues defined with NUMREC.

eeeeee
- number of used blocks among the ''dddddd" blocks reserved, see above.

NUMBER OF BLOCKS USED FOR THIS QUEUE appears for memory queues not defined
with QCPOOL and for disk queues defined with NUMREC.

fEEEEE
- total number of memory blocks of the memory queue pool to be shared by all
queues qualified by the QCPOOL option in their respective QUEUE commands.
The total number of memory blocks is defined by the QCPOOL parameter of
the GENCOM command.

MAXIMUM NUMBER OF BLOCKS IN THE POOL appears for memory queues defined
with QCPOOL and for disk queues not defined with NUMREC.

888888
- number of used memory blocks from the "ffffff'" blocks reserved, see above.

- NUMBER OF BLOCKS USED FROM THE POOL appears for memory queues defined with
QCPOOL and for disk queues not defined with NUMREC.

BREAK ,
- applicable only to program-queues, see QUEUE command of Network Generation
Manual. ‘

CORE
l - if NUMBLK or QCPOOL are specified in the QUEUE command.

DISK
- if NUMBLK and QCPOOL do not appear in the QUEUE command.

RESTART .
- applicable only to disk-queues, that is, program-queues.and terminal-
queues, see QUEUE command of Network Generation Manual.

TWA .
- applicable only to program-queues, see QUEUE command of Network Generation
Manual.

7-10

SEND

Definition

The SEND command sends user-defined messages to the queue.

The text of the message to be sent immediately follows the command and can ap-
pear on several cards, each card spanning from column 1 through column 80,

This function is used to simulate terminals and for debugging MAM applications.

Format of Command

SEND queue-name [, ENDMSG="end-of-message-string"][, LENGTH=nrmn] H

Description of Parameters

queue-name
- ranges from 1 through 12 alphanumeric characters and is the external name of
the queue as specified in the corresponding QUEUE command, see Network Gen-
eration Manual.

ENDMSG
- ranges from 1 through 5 alphanumeric characters enclosed within double
quotation marks and denotes the "marker' to be used to specify the end of
the text of the message to be sent to the queue.

If ENDMSG is omitted, the message text must be terminated by a //EOM card.
Either ENDMSG or //EOM must be used.
LENGTH
- defines the length of the message in characters to be sent to the queue.

If the length specified conflicts with the number of data cards after the
command; a warning ERROR QC 0306 is displayed by QMAINT, see Appendix C.

7-11

SEND
continued

Command Report

QUEUE NAME : queue-name
OK
MESSAGE STATUS : NOTALL g
MESSAGE LENGTH : aaaaaa
MESSAGE CONTENTS : text-of -message

queue-name
- ranges from 1 through 12 alphanumeric characters and is the external name of
the queue as specified in the corresponding QUEUE command.

aaaaaa
- number of characters in the message sent to the queue.

OK
- the number of characters in the 'text-of-message' matches the number speci-
fied by '"aaaaaa'.

NOTALL
- the number of characters in the "text-of-message' is less than the number
specified by ' aaaaaa's

text-of -message

- the text of the message sent to the queue is edited in a maximum of 110
characters per line.

7-12

SEND

continued
Example 1
LENGTH not specified
1. a 1.b
/END ///EOM
/ADVISE TERMINAL SHUTDOWN /ADVISE TERMINAL SHUTDOWN
ﬁEND Q1,ENDMSG = "END'; ’ /SEND Ql;

In 1.a and 1.b, the message to be sent to queue Ql will be 80 characters,
despite the fact that the actual message contains only 24 characters.

ADVISE TERMINAL SHUTDOWNV _ 56 spaces v

P

This is because the LENGTH parameter in the SEND command was not specified
and therefore the entire 80 columns of the card containing the message text
after the SEND command is sent to the queue.

Example 2
LENGTH specified

20 a 20 b
/ END // /EOM
ADVISE TERMINAL SHUTDOWN /ADVISE TERMINAL SHUTDOWN
/SEND Q1, ENDMSG = "END'', LENGTH = 243 /SEND Q1, LENGTH = 24;

In 2.a and 2. b, the message to be sent to queue Q1 will be 24 characters.

"ADVISE. TERMINAL SHUTDOWN

Using this method of specifying the LENGTH parameter, the message can be
"tailored'" exactly and no space is therefore wasted in the queue.

7-13

STATUS

Definition

The STATUS command continues or suspends the processing of QMAINT commands
when an error has previously occurred.

Format of Command

ONLY
STATUS EVEN
RESET

Description of Parameters

ONLY

- this is the default, whereby the commands are only executed provided that
no error has occurred. '

EVEN
- only the following command is executed when an error has occurred.

RESET
- resets the error count to zero.

Command Report

Only on command listing.

7-14

EXECUTING QMAINT

Executing QMAINT is dealt with in terms of,
o Run-time Prerequisites

« Run-time JCL

Run-time Prerequisites

All the following prerequisites must be met to execute QMAINT, namely,

o A previous CNC session describing all the queues referenced by the QMAINT
commands must have been successfully run.

o Each program-queue referenced by a QMAINT command must be available, namely,
- it must not be allocated to any application in IN, INOUT or OUT modes
- it must not have any terminals connected to it

o Each terminal-queue referenced by a QMAINT command must be available, that
is, the queue must not be currently allocated to any application

- either explicitly through a $QASSIGN statement

- or implicitly through the terminal connection to the application.

Run-time JCL

The syntax for QMAINT run-time JCL is as follows,

« STEP statement

- H_QMAINT is the system load-module in the system load-module library
called SYS,HLMLIB and must be specified as showns

o ASSIGN statement

- H CR is the system-reserved internal-file-name for the file containing
the QMAINT commands, either as an input enclosure or as a source library
member, and must be specified as showns

In the "Example of QMAINT Execution'!,

» the job QDISP performs actions on the queues specified within the current
network

the maintenance actions to be performed are described by the QMAINT commands
in the input enclosures

For detailed explanation, see Appendix B.

7-15

QMAINT
Run-time JCL

commands retrieved
from an input enclosure

$JOB job-name , USER=user-name , PROJECT =project-name ;
STEP H_QMAINT , SYS. HLMLIB ;
ASSIGN H_CR, *input-enclosure-name ;
ENDSTEP 3
$INPUT input-enclosure-name [, 'I’YPE=DATASSF] H
QMAINT
commands

$ENDINPUT ;

$ENDJOB ;

commands retrieved
from a source library member

$JOB job-name , USER =user-name , PROJECT =project-name ;
STEP H_QMAINT , SYS.HLMLIB ;

ASSIGN H_CR, external-file-name , SUBFILE =member-name ,
DEVCLASS =device-class-name , MEDIA =media-name ;

ENDSTEP ;

$ENDJOB ;

7-16

QMAINT Run-time JCL
(continued)

Example
of
QMAINT Execution

$JOB QDISP , USER =UNAME , PROJECT =WAGE ;
STEP H_QMAINT , SYS, HLMLIB ;

ASSIGN H_CR, *QINP

ENDSTEP 3

$INPUT QINP;

COMM "SPECIFIED QUEUES ARE Q1,Q2,Q3,Q4";

COMM "'DISPLAY STATUS OF ALL THE QUEUES' ;

QSTATUS *

COMM "PURGE Q1 (ALL MESSAGES) AND Q2 (ONLY 5 MESSAGES)" ;
PURGE Q1 , ALL;

PURGE Q2 , NUMBMSG =5 ;

COMM "CONTINUE EVEN IF WRONG RESULT FROM PURGE' ;
STATUS EVEN ; |
COMM "PRINT CONTENTS OF QUEUE Q3'';

PRINT Q33

COMM “SEND ONE .17 CHARACTER MESSAGE TO Q4" ;

SEND Q4 , ENDMSG = "ENDMS" , LENGTH = 17 ;

TERMINAL TO LOGON ‘

ENDMS

$ENDINPUT ;

$ENDJOB 3

7-17

SECTION VIII e

DYNAMICS OF COMMUNICATIONS

Events occurring during a communications session are governed both by the user
and the systems
The determining factors are,

« Execution chronology of the software components

o Levels of simultaneity for communications

» Optimum priorities for the software components

. Data flow during message exchange

o Allocating- memory resources.

EXECUTION CHRONOLOGY OF THE SOFTWARE COMPONENTS

Before any communications session can take place, the network environment must
first be created, using the CNC utility. '

The network is successfully created if no errors occur during generation.

BTNS and FNPS can be started to allow VCAM subsystems to execute. QMON can then
be started to allow, in turn, MCS applications to execute. QMON runs as a sepa-
rate service job from both BTNS and FNPS.

Whenever backing store is destroyed, the fallowing actions must be performed,
. the CNC utility must be rerun

o the option MAM=YES or MAM=REFORMAT must be specified at system initializa-
tion if disk queueing is involved (MAM=YES is the default).

Backing store is destroyed for one of following reasoms,
+ either through a disk failure
« or when the CLEAN option is specified at restart.

Further constraints in determining the order in which the software components
are executed, are

o the CNC utility cannot be run when any communications component is currently
executing, and vice versa

» BTNS cannot be run when another occurrence of BTINS is currently executing

o an MCS application step with a $QASSIGN statement specifying a queue current-
ly allocated to another step .cannot be run.

8-01

Failure to comply with any of the contraints listed on the previous page, will
lead to a step abort. ‘

Up to 4 occurrences of the FNPS service can be started to execute simultaneously.

Each occurrence is identified by its associated "fnp-name' declared in the FNP
command of the CNC generation. A maximum of 4 FNP commands can be so declared.

8-02

LEVELS OF STIMULTANEITY FOR COMMUNICATIONS

Within the limits of operability as previously defined, communications components
can be started and terminated for as long as the maximum system multiprogramming
level is not exceeded.

The following occurrences illustrate the levels of simultaneity for a communica-
tions session over the BTNS/URP secondary network,

1. A data collection MCS application DATCOLL starts.
Its function is to empty disk input queues filled by BTNS during a prev-
ious session.

Number of simultaneities : 1

2. A data distribution MCS application DATDIST starts.
Its function is to distribute to output queues, messages generated by a
batch program during a previous session.

Number of simultaneities : 2

3. A TDS job is started.
Connections from the network are not yet possible, although TDS is avail-
able to batch entries. ’

Number of simultaneities : 3

4, A TDS batch entry starts.
The batch entry requests connection to TDS to execute file updates.

Number of simultaneities : &

5. DATDIST has completed distributing all messages to output queues and termi-
nates.

Number of simultaneities : 3

6. A file enquiry MCS application FILEINQ starts.
The application awaits requests to be received into its input queues.

Number of simultaneities : &

7. BTNS now starts, which results in the following,

the BINS/URP secondary network is initialized through the "ST gencom-
name'" system console command

QMON is then activated through the "ST QMON'" network control command.

log-on requests from terminals to connect to defined input queues and
TDS are accepted

the distribution of data enqueued by DATDIST to the terminals connected
to input queues is now started.

Number of simultaneities : 4

Although BTNS and QMON run as separate service jobs, they do not occupy any
level of simultaneity.

8. DATCOLL has completed emptying the disk queues and terminates.

Number of simultaneities : 3

8-03

9. The TDS batch entry, see step 4, has updated its files and terminates.
Number of simultaneities : 2

10, TDS now terminates as it is no longer required.
Number of simultaneities : 1

11. FILEINQ has accepted all enquiries from the input queues and terminates.
Number of simultaneities : O

12, BTNS is retained in the system to fill the disk queues.
This operation would be continued in a following session by starting up
the application DATCOLL, see step 1.

Number of simultaneities : O
13. A shutdown is issued.

BTNS terminates and the communications session ends.

8-04

OPTIMUM PRIORITIES FOR SOFTWARE COMPONENTS

In order to maintain efficient response times, appropriate dispatching priorities
for the various communications components must be selected.

Batch jobs are given low priorities as they are not subject to real-time con-

straints.

The user specifies a job class which determines the following for the job:

o its scheduling priority

. its dispatching priority

o its associated level of multiprogramming, being the number of jobs executable
at one time.

An example of such considerations is the following situation:

+ CNC and QMAINT utilities, being normal batch jobs, are not subject to any res-
ponse times and can therefore be executed as jobs of class, say, P

« However, an MCS application step and the TDS service, when executed concurrent-
ly, that is, both being available in the system at the same time, should have
the same dispatching priority.

While the programmer has no control over VCAM queues for the TDS service, the
transactions themselves can be written in such a way as to optimize multitask-
ing, see TDS Documentation. '

For the MCS application, in order not to degrade system performance, unnecessa-

ry scanning of the program-queue should be avoided, examples of such indiscrim-

nate scanning are

- a RECEIVE (H_RECEIVE) with "no data'

- an ACCEPT (H_MSGCNT) instead of building a suitable queue structure and using
one of the scanning techniques recommended.

By specifying J as the job class for the TDS service and H for that of the MCS
application, the scheduling and execution priorities are 6 and O, respectively,

These values are the recommended defaults for the DPS 7 installation.

o in this case, the level of multiprogramming for the job classes specified for
the TDS service and the MCS application is 1, however, this value can be modi-
fied by the MS system console command, see System Operator's Guide.

For a description of the use of job class, see System Administrator's Manual.

DATA FLOW DURING MESSAGE EXCHANGE

Message exchange follows a prescribed path and involves the following types,
. exchange between an MCS application and a terminal using-a memory queue
. exchange between an MCS application and a terminal using a disk queue

. exchange between a VCAM subsystem (communications service) and a terminal.

8-05

Example of Exchange
Between an MCS Application and a Terminal
Using a Memory Queue

1.

2.

4o

Se

6.

7o

8.

%
10.

MCS
BINS VCAM QMON MAM application
® ®
©) Py
input input input input
buffer |1 N work memory work
pool area queue area
output output output output
buffer pw 4| work memory work
pool (:) area queue area
~]
@

\/

When the line is polled, the terminal sends a message which is stored in
the BTNS buffer pool.
BTNS dynamically allocates buffer units to contain the whole message.

The message is sent by BTNS to QMON via VCAM,

Control characters and marks are translated by QMON according to termi-
nal type and data format for input.

QMON stores the message in the memory input queue to which the terminal
is connected by issuing a call to the MCS ''send" procedure.

When the application issues a '"'receive' to the symbolic input queue, the
message or a part of it, is moved into the application's input work area.
As many ''receive's' as necessary are issued to collect the whole message.

When the message is to be sent to the terminal, the application issues a
"send" to the symbolic output queue,

The message is transferred from the application's output work area to the
memory output queue associated with the terminal.

When the output request is located, QMON issues a call to the MCS "rec-
eive" procedure to store the message in the QMON area.

Control characters and marks are translated by QMON according to termi-~
nal type and data fovmat for output.

The message is sent by QMON to BTINS via VCAM,
The message is transferred from the BTNS buffer pool to the terminal.

Example of Exchange
Bétween an MCS Application and a Terminal
Using a Disk Queue

MCS
BTNS VCAM QMON ,f”iiﬁ?\‘~\ application

o | O o &

(:) | input ,”’——__-_h\‘\\ input input
buffer work work
pool area area
output output output
buf fer work work
pool area area

The example shows input from the terminal to the MCS application.
The procedure is identical in reverse from the application to the terminal.

1. When the line is polled, the terminal sends a message which is stored in
the BTNS buffer pool.
BTNS dynamically allocates buffer units to contain the whole message.

2. The message is sent by BINS to QMON via VCAM.

3, Control characters and marks are translated by QMON according to termi-
nal type and data format for input.

4, When QMON issues a call to the MCS ''send" procedure to store the message
in the disk input queue to which the terminal is connected, the follow-
ing events take place,

. the message is first moved to the disk I/0 buffer pool

. the message is then written to the disk queue file.
Disk access for QMON is asynchronous which means that QMON does not have
to wait for the completion of an I/0 operation.

S. When the application issues a ‘'receive to the symbolic input queue, the
following events occur,
. the message is read from the disk queue file into the disk I/0 buffer
pool
o the message is then moved into the application's input work area
Disk access for the application is synchronous which means that the appli-
cation must wait for the completion of an I/0 operation.

8-07

Example of Exchange
Between a VCAM Subsystem and a Terminal

<q work
area

1.

2.

3.

4,

5.

VCAM

BINS VCAM
subsystem

(:) input
e buffer
pool

f)
Y

output

N~ buffer
(:) pool

= ®

GCOS Cdmmunications Services, collectively termed VCAM subsystems, are,

- RBF6/FTF6, Remote Batch Facility & File Transfer Facility, Mini 6-DPS 7
- DJP/DFT, Distributed Job Processing and DSA File Transfer, DPS 7-to-DPS 7
.- I0F, Interactive Operatér Facility

- TDS, Transaction Driven Subsystem

- CARDLESS, known to the system as READER

- TILS, Transactional and Interactive Load Simulator

- OLTD, On-Line Tests and Diagnostics

A message is sent by the terminal to be stored in the BINS buffer pool,
occupying as many buffer units as required.

The message is moved to the work area designated by the VCAM subsystem.

The message is handled by the VCAM subsystem.
In the case of TDS, for example, the message activates or is processed by
a transaction program or a set of transaction processing routines.

A reply to the terminal is moved from the VCAM subsystem work area to the
output buffer pool.

The message is transferred from the BINS buffer pool to the terminal.

8-08

ALLOCATING MEMORY RESOURCES

Multiprogramming in a virtual memory environment may lead to an overload situa-
tion where several applications compete for memory resourcess

The

The

The

effects on the communications session are

that the segments of its components not currently executing may be swapped
with batch programs

that these segments, when needed to process a message on arrival;, must be
reloaded, causing

- a tremendous increase in system overhead
- a considerable increase in response time
- a degradation of overall throughput.
problems to be solved are
avoiding memory overload of the system:

The sum of the "working-sets' of applications executing concurrently must
not exceed the physical memory size available.

guaranteeing the minimum memory resources:

In order to ensure rapid '“turn-around', segments of communications compo-
nents needed to process specific data, must be retained in memory even if
inactive over long periods.

solutions are
using the SIZE statement:

‘The SIZE statement declares the "‘working-set' of the aﬁplication for the
purpose of controlled scheduling to avoid memory overload.

using the MAXMEM and MINMEM parameters of the STEP statement, as follows,

MAXMEM:
Used for tuning the "working -set" and should be discontinued when the
optimal size has been determineds
This facility ensures that

- the amount of memory allocated will never be less than the DWS spe-
cified in the SIZE statement

- the system will not attempt to execute the step if the amount of
physical memory available is not greater than or equal to the DWS,
even if the step could be run on less.’

The step does not benefit by the gradual release of memory resources
as the system load decreases.

MINMEM: :
Used after the optimal DWS has been determined to allocate permanently
to the step a memory resource equal to the DWS whatever the load of the
system may be.
This facility is used when "'turn-around" times for the communications
session are slow, indicating that the components needed for processing
are absent in memory. By guaranteeing 'minimum-memory'' requirements, all
communications components needed for the session will be present in me-
mory until termination. L

8-09

o using the PMM console command:

In order to ensure the presence of system functions, the PMM command can
be used to "lock" these segments in memory so that these become permanent-
ly available.

Allocating memory resources is dealt with in regard to
. MCS applications
» MAM and VCAM
I . BINS (which includes TNS), FNPS and QMON.

Allocating Memory to MCS Applications

The way to determine how memory resources are to be allocated to MCS applications
is as follows,

« establishing the size of the DWS

« guaranteeing memory By declaring the DWS as the minimum resource required.

ESTABLISHING THE DWS SIZE

The first time that the step is executed, the dws-value specified for the SIZE
statement is calculated from the linkage listing of the application and declared
as MAXMEM in the STEP statement.

The JOR listing at the end of the job step will indicate the number of missing
segments, if any.

The general rule in tailoring the dws-value specified in units of K bytes is

« if few missing segments are indicated, a smaller dws-value can be specified
until such a time when an increase in missing segments occurs

o if many missing segments are indicated, a proportionately higher dws-value
should be specified, until such time that the first condition is reached.

Successive executions of the job step will ultimately give an optimum dws-value.

GUARANTEEING MEMORY

The "optimum'" dws-value is then specified for the SIZE statement and declared
as MINMEM in the STEP statement.

By this means, the step is "guaranteed" the minimum memory resource before it is
started by the system.

--run=-time JCL for DWS

e |
MINMEM
SIZE dws-value ¢ee 3

-e

STEP ...{

8-10

Allocating Memory to MAM and VCAM

Both MAM and VCAM are system functions which can be ""locked' in memory by the
PMM console command, the format and function being as follows,

o PMM VCAM : VCAM segments are ''locked"
. PMM MAMM : MAM segments managing memory queues are "locked"
+ PMM MAMD : MAM segments managing disk queues are ''locked'.

After the PMM command specifying the function to be ''locked' is issued, the
function remains in memory until the CMM command specifying the function is iss-
ued making the function eligible for swapping out of memory.

Allocating Memory to BTNS, FNPS and QMON

All three service jobs run automatically under MINMEM when initialized by the ST
network control command, ’

They communicate to the system the memory size needed according to the configu-
ration present.

No user intervention is required to ensure the presence of BTNS, FNPS and QMON.

8-11

. e s e e e R .

APPENDIX A

MCS. APPLICATION EXAMPLE

This is a test program for the 'two-way-alternate' option, in which the applica-
tion sends the message "ENTER M OR G" to the console operator.

The console operator, on receipt of this message, can then reply

o M, in which case the application, by delimiting transmission with EMI, re-
tains the turn to transmit

o« G, in which case the application delimits transmission with EGI, thereby
giving the turn to transmit to the operator

o E, in which case the application then terminates.

This application is part of a test package for communications software, and
serves as an example of the user interface with MCS.

A detailed explanation of the TWA option used with interactive applications is
given on page 2-16.

A-01

MCS Application Example
in
MCS COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID . TEST_TWA.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. LEVEL-64.
OBJECT-COMPUTER. LEVEL-64 .

DATA DIVISION.

WORKING-STORAGE SECTION.
01 ACO1REPLY PIC X.
01 MSGEMI PIC X(90) VALUE ALL "“EMI".
01 MSGEGI PIC X(90) VALUE ALL "EGI".
01 BUFIN PIC X(2000) .

COMMUNICATION SECTION.
CD CDIN FOR INPUT QUEUE CDIN-QUEUE-NAME.
CD CDOUT FOR OUTPUT.
01 CDOUT-SPECIF.
02 CDOUT-DESTINATION-COUNT PIC 9(4) VALUE 1.

02 CDOUT-TEXT-LENGTH PIC 9(4) VALUE 90.

02 FILLER PIC XX.

02 FILLER PIC X.

02 CDOUT-DESTINATION PIC X(12) VALUE "INTQOUT".
PROCEDURE DIVISION.

BEGIN.
ENABLE INPUT CDIN KEY "PASW"
ENABLE OUTPUT CDOUT KEY "PASW"
MOVE "INTQIN" TO CDIN-QUEUE-NAME .

LOOP .
DISPLAY "ENTER M OR G'" UPON CONSOLE
ACCEPT ACO1REPLY FROM CONSOLE

IF ACO1REPLY='M"
SEND CDOUT FROM MSGEMI WITH EMI.

IF ACO1REPLY="G"
MOVE 90 TO CDOUT-TEXT-LENGTH
SEND CDOUT FROM MSGEGI WITH EGI.

IF ACO1REPLY="E"
GO TO TERM

ELSE GO TO LOOP.

TERM .
RECEIVE CDIN MESSAGE INTO BUFIN
STOP RUN.

end of test for the two-way-alternate option.

A-02

MCS Application Example

in
GPL
TEST_TWA : PROC ;
/* DECLARATIONS */
DCL H_BUFIN CHAR(2000) 3
DCL A_PO4CDOUT PTR;
DCL A_PO4CDIN PTR;
DCL A_PO4MESI PTR;
DCL A PO4MESO PTR;
DCL MSGEMI CHAR(90) STATIC INIT((30)"EMI')
DCL MSGEGI CHAR(90) STATIC INIT((30)"EGI") ;

DCL A _CO1REPLY CHAR(1) STATIC;

DCL A_F15MOP FIXED BIN(15) STATIC INIT(12); °

DCL A_Ci2MsG CHAR(12) STATIC INIT("ENTER M OR G");
DCL A F15MXL FIXED BIN(15) STATIC INIT(1);

$H_CD INPUT , PREFIX = 'CDIN_' , ATTRIB='STATIC INTERNAL') ;
$H CD OUTPUT , PREFIX = 'CDOUT_' , ATTRIB = 'STATIC INTERNAL' ;

/* PROCESS */

BEGIN 3
A_PO4LCDOUT = ADDR(CDOUT_OUTPUT_CD) ;
A_PO4CDIN = ADDR(CDIN_INPUT_CD) ;
A_PO4MEST = ADDR(H_BUFIN) ;
CDOUT_DESTINATION_GOUNT =13
CDOUT_QUEUE_NAME(T) = "INTQOUT" ;
CDIN_QUEUE_NAME(1) = "INTQIN'" 3

$H_ENABLE A_PO4CDIN , INPUT ;
$1_ENABLE A_PO4CDOUT , OUTPUT ;

LOOP 3

$H_SENDOR REPLY =A_CO1REPLY , MAXLEN=A F15MXL , MESSAGE=A_C12MSG ,
LENGTH=A FlSMOP MAIN;

IF A COIREPLY="M' THEN BEGIN ;
A__PO&MESO = ADDR(MSGEMI) 3
CDOUT_TEXT_LENGTH = 903
$H_SEND A _PO4CDOUT , INADDR =A PO4MESO , ENDCHAR = EMI ;
END g

IF A _CO1REPLY ="G" THEN BEGIN;
A _PO4MESO= ADDR(MSGEGI) ;
CDOUT _TEXT_LENGTH =90 ;
$H_ SEND A PO&CDOUT INADDR =A_ PO4MESO , ENDCHAR =EGI ;

END 3
IF A_CO1REPLY ="E" THEN GOTO TERM; ELSE GOTO LOOP;
TERM 3
$H_RECEIVE A_PO4CDIN , OUTADDR =A_PO4MEST , LENGTH—ZOO H
END ;

END TEST_TWA 3
end of test for the two-way-alternate option.

A-03

—

APPENDIX B

QMAINT SYSOUT REPORT

The results of running the QMAINT utility are,

« QMAINT error messages, see Appendix C

o the QMAINT sysout report.
The purpose of the report is to enable the user to ascertain that the mainte-
nance functions on the contents of his memory and disk queues are correctly car-
ried out.
The structure of the QMAINT sysout report is as follows,

» the header line, which appears as the first line of the report and has the
standard format for any GCOS utility

o the header banner
» run-time JCL, containing the listing of QMAINT commands provided by the user

. execution report, providing a detailed report of each QMAINT command in the
order listed in the run-time JCL, and any error messages as a result of
QMAINT execution

o error summary, being a statistical report for each severity.

In the following example, QMAINT executes actions on
« Ql, Q5 and Q6, which are disk queues

» Q2 and Q3, which are memory queues.

B-01

Header Line

QMAINT 20. 00 X15.1 TEST TELE COUNT1 ADMIN 15:43:10 AUG9, 1980 |PAGE 1]

> billing-name

Le~ job-name from $JOB

~»-name and version of QMAINT utility

|
page nn in
the report

date of execution

> time of execution

L»project-name from $JOB

from $JOB

L~ user-name from $JOB

L—job and step-number of execution

Header Banner

GCOS L64

QMAINT VERSION: 20. 00 AUG 9, 1980

EXECUTION REPORT

* k ok Kk k Kk ok Kk ok kK ok Kk k k ko kR Kk k Kk ok kK k ke ok khkkhhk ok kR k k%

QMAINT Run-time JCL
Execution Report

see pages following

Error Summary

ERROR QCO314 SEVERITY 00O TOTAL NUMBER OF ERRORS : ' 0000000000

* ERROR QC0315 SEVERITY O1 NUMBER OF ERRORS OF SEVERITY 1: 0000000000

% % ERROR QCO316 SEVERITY 02 NUMBER OF ERRORS OF SEVERITY 2: 0000000000
* % * ERROR QCO317 SEVERITY O3 NUMBER OF ERRORS OF SEVERITY 3: 0000000000

B-02

QMAINT Run-time JCL

$JOB TEST , USER =TELE , PROJECT =ADMIN , BILLING = COUNT1 ;
STEP H_QMAINT , SYS. HLMLIB ;

ASSIGN H_CR , * QMAINT ;

ENDSTEP ;

$INPUT QMAINT , TYPE =DATASSF ;

SEND Q1 , ENDMSG ="//FIN" , LENGTH = 160 ;

AAAAAAAAAAAAAAAAAA AAAAAAAAALLL
AAAAAAAAAAAAAAAA‘ sample printout AAAAAAAAAAAAAA
AAAAAAAAAAAAAA of contents AAAAAAAAAAAAALLL
AAAAAAAAAAAA AAAAAAAAAAAAAAATLLL
//FIN

SEND Q1 , LENGTH=1603;

BBBBBBBBEBBBBBBBBBB BBBBBBBBBBB2
BBBBBBBBBBBBBBBB sample printout BBBBBBBBBBBBB2
BBBBBBBBBBBBEB of contents BBBBBBBBBBBBBBBB
BBBBBBBBBBBB BBEBBBBBBBBBBBBBBB
//EOM

QSTATUS * ;

PRINT *;

PRINT Qi ;

PRINT Q&3

PRINT Q5 3

PRINT Q6 3

PURGE Q1 , NUMBMSG=1 ;
PURGE Q1 , NUMBMSG=1 ;
QSTATUS *;

PURGE Q2 , ALL ;
QSTATUS Q1 , Q23

PRINT Q1,Q3,Q5, Q6
PURGE Q1 , NUMBMSG=1 3
PURGE Q3 ,; ALL;

PURGE Q&4 , NUMBMSG=3 3
PRINT Q33

$ENDINPUT 3

$ENDJOB ;

B-03

QMATINT
Execution Report

SEND Q1 , ENDMSG="//FIN", LENG;I'H= 1603

QUEUE NAME :
MESSAGE STATUS
MESSAGE LENGTH :
MESSAGE CONTENTS :

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAA sample printout
AAAAAAAAAA of contents
AAAAAAA

SEND Q1 , LENGTH= 160

QUEUE NAME
MESSAGE STATUS :
MESSAGE LENGIH :
MESSAGE CONTENTS :

BBBBBBBBBBBBBBBB

BBBBBBBBBBBBB sample printout
BBBBBBBBEB) of contents
BBBBBBB

Q1
OK
000160

AAAAL1Ll

AAAAAAAAAATLL
AAAAAAAAAAAAATLL

Q1
OK
000160

BBBBBB2
BBBBBBBBB2
BBBBBBBBBBBBB
BBBBBBBBBBBBBBBB

B-04

QSTATUS *

QUEUE NAME :

NUMBER OF COMPLETE MESSAGES :

NUMBER OF MESSAGES IN SEND PHASE :
NUMBER OF MESSAGES IN RECEIVE PHASE :
MAXIMUM NUMBER OF BLOCKS IN POOL :
NUMBER OF BLOCKS USED FROM POOL
PROGRAM QUEUE

QUEUE ATTRIBUTES :

QUEUE NAME :

NUMBER OF COMPLETE MESSAGES :

NUMBER OF MESSAGES IN SEND PHASE :
NUMBER OF MESSAGES IN RECEIVE PHASE :
NUMBER OF BLOCKS ALLOCATED TO THIS QUEUE
NUMBER OF BLOCKS USED FOR THIS QUEUE :
PROGRAM QUEUE

QUEUE ATTRIBUTES :

QUEUE NAME :

NUMBER OF COMPLETE MESSAGES :

NUMBER OF MESSAGES IN SEND PHASE :
NUMBER OF MESSAGES IN RECEIVE PHASE
NUMBER OF BLOCKS ALLOCATED TO THIS QUEUE
NUMBER OF BLOCKS USED FOR THIS QUEUE :
PROGRAM QUEUE

QUEUE ATTRIBUTES :

QUEUE NAME s

NUMBER OF COMPLETE MESSAGES :
NUMBER OF MESSAGES IN SEND PHASE
NUMBER OF MESSAGES IN RECEIVE PHASE
MAXIMUM NUMBER OF BLOCKS IN POOL
NUMBER OF BLOCKS USED FROM POOL ¢
PROGRAM QUEUE

QUEUE ATTRIBUTES :

QUEUE NAME :

NUMBER OF COMPLETE MESSAGES
NUMBER OF MESSAGES IN SEND PHASE :
NUMBER OF MESSAGES IN RECEIVE PHASE
MAXIMUM NUMBER OF BLOCKS IN POOL 3
NUMBER OF BLOCKS USED FROM POOL :
PROGRAM QUEUE

QUEUE ATTRIBUTES :

QUEUE NAME :

NUMBER OF COMPLETE MESSAGES
NUMBER OF MESSAGES IN SEND PHASE
NUMBER OF MESSAGES IN RECEIVE PHASE
MAXIMUM NUMBER OF BLOCKS IN POOL :
NUMBER OF BLOCKS USED FROM POOL :
PROGRAM QUEUE .

QUEUE ATTRIBUTES :

a0

Q1

000002
000000
000000
032767
000000

DISK

Q2

000000
000000
000000
000040
000000

CORE

Q3

000000
000000
000000
000040
000000

CORE

Q4

000000
000000
000000
032767
000000

DISK

Q5

000000
000000
000000
032767
000000

DISK

Q6

000000
000000
000000
032767
000000

DISK

B-05

PRINT *;

QUEUE NAME :
NUMBER OF COMPLETE MESSAGES

MESSAGE NUMBER '
MESSAGE STATUS
MESSAGE LENGTH

ee oo o

- MESSAGE CONTENTS :

PRINT Q1

AAAAAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAA

AAAAAAA
MESSAGE NUMBER
MESSAGE STATUS
MESSAGE LENGTH
MESSAGE CONTENTS :
BBEBBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBB

BBBBBBB

QUEUE NAME
NUMBER OF COMPLETE MESSAGES

QUEUE NAME :
NUMBER OF COMPLETE MESSAGES

QUEUE NAME
NUMBER OF COMPLETE MESSAGES

QUEUE NAME :
NUMBER OF COMPLETE MESSAGES

QUEUE NAME :
NUMBER OF COMPLETE MESSAGES

ee oo .eo

QUEUE NAME : ‘

NUMBER OF COMPLETE MESSAGES
MESSAGE NUMBER
MESSAGE STATUS
MESSAGE LENGTH
MESSAGE CONTENTS :
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAA
AAAAAAA

MESSAGE NUMBER
MESSAGE STATUS
MESSAGE LENGTH
MESSAGE CONTENTS :
BBBBBBRBBEBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBB

BBBBBBB

es o0 oo

sample printout
of contents

sample printout
of contents

sample printout
of contents

sample printout
of contents

Q1
000002
000001
OK
000160

AAAA111

AAAAAAAAAA

AAAAAAAAAALLL
AAAAAAAAAAAAATILL
000002

OK
000160

BBBBBB2
BBBBBBBBB2
EBBBBBBBBBBBB
BBEBBBBBBBBBBBBB

Q2
000000

Q3
000000

Q4
000000

Q5
000000

Q6
000000

Q1
000002
000001
OK
000160

AAAAl11l
AAAAAAAAAA
AAAAAAAAAALILL
AAAAAAAAAAAAALILL

000002

OK

000160

BBBBBB2
BBBBBBBBB2
BBBBBBBBBBBBB
BBBBBBBEBBBBBBBB

B-06

QMAINT Execution Report

(continued)

PRINT Q&

QUEUE NAME Q4

NUMBER OF COMPLETE MESSAGES @ 000000
PRINT Q53

QUEUE NAME : Q5

NUMBER OF COMPLETE MESSAGES 000000
PRINT Q6 ;

QUEUE NAME Q6

NUMBER OF COMPLETE MESSAGES 000000
PURGE Q1 , NUMBMSG=1 ;

QUEUE NAME Q1

NUMBER OF DELETED MESSAGES 000001
PURGE Q1 , NUMBMSG =1

QUEUE NAME » Qt

NUMBER OF DELETED MESSAGES : 000001

B-07

QSTATUS *;

QUEUE NAME :

NUMBER OF COMPLETE MESSAGES :
NUMBER OF MESSAGES IN SEND PHASE :
NUMBER OF MESSAGES IN RECEIVE PHASE :
MAXIMUM NUMBER OF BLOCKS IN POOL :
NUMBER OF BLOCKS USED FROM POOL :
PROGRAM QUEUE :

QUEUE ATTRIBUTES :

QUEUE NAME - :

NUMBER OF COMPLETE MESSAGES :

NUMBER OF MESSAGES IN SEND PHASE :
NUMBER OF MESSAGES IN RECEIVE PHASE :
NUMBER OF BLOCKS ALLOCATED TO THIS QUEUE
NUMBER OF BLOCKS USED FOR THIS QUEUE :
PROGRAM QUEUE

QUEUE ATTRIBUTES :

QUEUE NAME :

NUMBER OF COMPLETE MESSAGES :

NUMBER OF MESSAGES IN SEND PHASE :
NUMBER OF MESSAGES IN RECEIVE PHASE :
NUMBER OF BLOCKS ALLOCATED TO THIS QUEUE
NUMBER OF BLOCKS USED FOR THIS QUEUE :
PROGRAM QUEUE

QUEUE ATTRIBUTES :

QUEUE NAME :

NUMBER OF COMPLETE MESSAGES :
NUMBER OF MESSAGES IN SEND PHASE :
NUMBER OF MESSAGES IN RECEIVE PHASE
MAXIMUM NUMBER OF BLOCKS IN POOL
NUMBER OF BLOCKS USED FROM POOL :
PROGRAM QUEUE

QUEUE ATTRIBUTES :

QUEUE NAME :

NUMBER OF COMPLETE MESSAGES :
NUMBER OF MESSAGES IN SEND PHASE :
NUMBER OF MESSAGES IN RECEIVE PHASE
MAXIMUM NUMBER OF BLOCKS IN POOL :
NUMBER OF BLOCKS USED FROM POOL :
PROGRAM QUEUE

QUEUE ATTRIBUTES :

QUEUE NAME :

NUMBER OF COMPLETE MESSAGES :
NUMBER OF MESSAGES IN SEND PHASE :
NUMBER OF MESSAGES IN RECEIVE PHASE
MAXIMUM NUMBER OF BLOCKS IN POOL :
NUMBER OF BLOCKS USED FROM POOL :
PROGRAM QUEUE

QUEUE ATTRIBUTES :

3

Q1

000000
000000
000000
032767
000002

DISK

Q2

000000
000000
000000
000040
000000

CORE

Q3

000000
000000
000000
000040
000000

CORE

Q4

000000
000000
000000
032767
000000

DISK

Q5

000000
000000
000000
032767
000000

DISK

Q6

000000
000000
000000
032767
000000

DISK

B-08

PURGE Q2 , ALL ;

QUEUE NAME : Q2
NUMBER OF DELETED MESSAGES : 000000

QSTATUS Q1 ,Q2;

QUEUE NAME : Q1
NUMBER OF COMPLETE MESSAGES : 000000
NUMBER OF MESSAGES IN SEND PHASE : 000000
NUMBER OF MESSAGES IN RECEIVE PHASE : 000000
MAXIMUM NUMBER OF BLOCKS IN POOL : 032767
NUMBER OF BLOCKS USED FROM POOL : 000002
PROGRAM QUEUE

QUEUE ATTRIBUTES : DISK
QUEUE NAME : Q2
NUMBER OF COMPLETE MESSAGES : 000000
NUMBER OF MESSAGES IN SEND PHASE : 000000
NUMBER OF MESSAGES IN RECEIVE PHASE : 000000
NUMBER OF BLOCKS ALLOCATED TO THIS QUEUE : 000040
NUMBER OF BLOCKS USED FOR THIS QUEUE : 000000
PROGRAM QUEUE :
QUEUE ATTRIBUTES : CORE

PRINT Q1,Q3,Q5,Q6;

QUEUE NAME : Q1
NUMBER OF COMPLETE MESSAGES : 000000
QUEUE NAME : . Q3
NUMBER OF COMPLETE MESSAGES : 000000
QUEUE NAME : Q5
NUMBER OF COMPLETE MESSAGES : 000000
QUEUE NAME : Q6

NUMBER OF COMPLETE MESSAGES 000000

PURGE Q1 , NUMBMSG=1 ;
QUEUE NAME : Q1

NUMBER OF DELETED MESSAGES : 000000
PURGE Q3 , ALL;
- QUEUE NAME : ‘ Q3
NUMBER OF DELETED MESSAGES 000000

PURGE Q4 , NUMBMSG =3 ;
QUEUE NAME Q4

‘'NUMBER OF DELETED MESSAGES ¢ 000000
PRINT Q3

QUEUE NAME : Q3

NUMBER OF COMPLETE MESSAGES : ' 000000

APPENDIX C

MAM AND QMAINT ERROR MESSAGES

Error mésséges output after the execution of an MCS application appear in the
JOR (job occurrence report).

Error messages output after the execution of the QMAINT utility are,

°

those which are written to the SYSOUT file
those which appear in the JOR

FORMAT OF ERROR MESSAGES

The format of the SYSOUT error message is,

ERROR QC nnnn SEVERITY’C) error-message-text

The format of the JOR error message is,

QCnn error-message-text

where,

QC denotes that the source
- in the case of the SYSOUT error message is the QMAINT utility
- in the case of the JOR error message can be either an MCS application or
the QMAINT utility
nnnn and nn, respectively are the number of .the message
s is the severity of the error condition as follows,
- 2 : warning
- 3 : fatal, leading to a. QMAINT abort but allows a complete syntax ana-
lysis .

- 4 : fatal, leading to a QMAINT abort and may prevent syntax analysis
error-message-text gives the error condition and may be accompanied by the
return code of the format
RC= XXXXXXXX~>YYYYYYVYY s 22222222

- xxxxxxxx : hexadecimal contents of the RC register
- yyyyyyyy : name of the SIU (system integration unit) procedure
- zzzzzzzz :. return code

Cc-01

MAM JOR
00-05

QCOO BMAM NOT AVAILABLE

syntax : as in text
cause : the step attempted has aborted because
o« CNC utility has not yet been run to create the network
o« CONC utility is currently executing
« the step itself is multiprocess and was not linked with the
option LINKTYPE = BMAM
action : either generate the network or wait until the current CNC session
has terminated or link the step, before retrying the job

QCO1 MAXIMUM NUMBER OF QASSIGN STATEMENTS IS EXCEEDED

syntax : as in text v

cause : the step attempted has aborted due to more than 26 QASSIGN state-
ments in the step enclosure

action : correct the JCL statements and retry the job

QCO2 external-queue-name UNKNOWN EXTERNAL QUEUE NAME

syntax : as in text : _ :

cause : the step attempted has aborted because a QASSIGN statement speci-
fies an "external-queue-name' that has not yet been defined in the
network

action : regenerate the network using CNC utility and retry the job

QCO03 external-queue-name QUEUE NOT AVAILABLE

syntax
cause

as in text

the step attempted has been aborted because a QASSIGN statement
specifies an "external queue" currently allocated to another step
action : retry the job later when the other step has terminated

.
.
.
.

QCO4 symbolic-queue-name DUPLICATE SYMBOLIC QUEUE NAME

syntax : as in text .

cause : the step attempted has aborted because a QASSIGN statement speci-
fies a "symbolic-queue-name" that has already been assigned in
another QASSIGN statement of the same step

action : correct the JCL statements and retry the job

QCO5 external-queue-name DUPLICATE EXTERNAL QUEUE NAME

syntax : as in text

cause : the step attempted has aborted because a QASSIGN statement speci-
fies an "external-queue-name" that has already been assigned in
another QSSIGN statement of the same step

action : correct the JCL statements and retry the job

C-02

QCo7

QCO8

QCo9

QC10

QC11

MAM JOR
07-14

BMAM : ABORT USER RC= XXXXXXXX->YYYYYYYY » Z222Z2ZZ

syntax :
cause

action @

the contents of RC specifies the system error

the step attempted has zborted due to an error condition at run-
time

see "Return Codes"

process-nzme : UNABLE TO START USER PROCESS

syntax :
cause

action s

applicable only to a2 multiprocess step

the step attempted has aborted because a user process identified
by 'process-name'" cannot be started

check the report of the linking process for the load-module and
correct the linking as necessary, and retry the job

UNABLE TO OPEN CTVF FILE RC= XXXXXXXX--VYYYYYYYY s 22222222

syntax
cause

ce oo

action

o6

the contents of RC specifies the error and system primitive

the system file containing the network description is unable to be
opened due to a system error

perform ISL with "clean restart', regenerate the network and rerun
the job

CNC SESSION IN PROGRESS

syntax
cause
action

ee oo oo

as in text

the CNC utility is currently executing

wait until the current CNC session has terminated before retrying
the j ob.

QUEUES FILE MEDIA BUSY/NOT AVAILABLE RC = XXXXXXXX~>YYYYYYYY s 22222222

syntax :
cause

action 3

as in text

the disk queue file is not available for processing or has not
been mounted '

retry the job or mount the disk queue file and rerun the job

QC12 MAXIMUM NUMBER OF MAM PROCESS GROUPS EXCEEDED

QC14

syntax :
cause

action 3

as in text '

the number of process groups has exceeded the number specified by
the MAMNB parameter of the GENCOM command

correct the GENCOM command, regenerate the network using CNC uti-
lity and retry the job

external-queue-name’': INVALID KEYWORD REPLY IN QASSIGN

syntax :
cause

action @

as in text

a QASSIGN statement has a "reply" keyword which does not relate to
a program queue

correct the JCL statements and retry the job

C-03

MAM JOR
17- 26

QC17 keyword : SYNTAX ERROR. INVALID KEYWORD IN CONTEXT

syntax : "keyword' specifies the mismatch between the queue type, either in-
put or output, and the associated parameters in $QASSIGN

cause : see syntax

action : correct the JCL statements, and retry the job.

QC23 external-queue-name ZERO LENGTH QUEUE/SUBQUEUE NAME

syntax : as in text
cause : the step has aborted because the ''symbolic-queue-name" of $QASSIGN
has been partitioned into ''subqueues' of the wrong format, for ex-
ample, a missing '.'" or 2 contiguous '.''s.
action : correct the format of the ''symbolic-queue-name' of the $QASSIGN,
and retry the job.
QC24 symbolic-subqueue,-name : '"'SYMBOLIC SUB-QUEUE-1" FIELD IS BEING FORCED TO

1 SPACES

syntax : as in text

cause : during a RECEIVE, only the "symbolic-queue'" represented by either
"data-name-1'"" or QUEUE_NAME is to contain the data.
All other levels of 'subqueues' starting with either ''data-name-2"
or SUBQUEUE_NAME corresponding to 'SYMBOLIC SUB-QUEUE-1'" are not
used and must be set to spaces.

action : correct either the program or the "symbolic-queue-name' in $QASSIGN.

QC25 symbolic-subqueuez-name ¢ "SYMBOLIC SUB-QUEUE-2'* FIELD IS BEING FORCED TO
SPACES

syntax : as in text

cause : during a RECEIVE, only the ''SYMBOLIC QUEUE" and '‘SYMBOLIC SUB-
QUEUE-1" represented by either 'data-name-1" and '"data-name-2'" or
QUEUE_NAME and SUBQUEUE_NAME are to contain data.
All other levels of '"subqueues' starting with either 'data-name-3"
or SUBQUEUE2_NAME corresponding to '""SYMBOLIC SUB-QUEUE-2'" are not
used and must be set to spaces.

action : correct either the program or the '"symbolic-queue-name' in $QASSIGN.

QC26 symbolic subqueue3-name : "SYMBOLIC SUB-QUEUE-3'"' FIELD IS BEING FORCED TO
SPACES

syntax : as in text

cause : during a RECEIVE, only the '"SYMBOLIC QUEUE", ''SYMBOLIC SUB-QUEUE-1#
and "SYMBOLIC-SUB-QUEUE-2'" represented by either ''data-name-1",
""data-name-2" and "data-name-3" or QUEUE_NAME, SUBQUEUE_NAME and
SUBQUEUE2_NAME are to contain data.
The "'subqueue' defined by either 'data-name-4'" or SUBQUEUE3_NAME
corresponding to '""SYMBOLIC SUB-QUEUE-3" is not used and must be set
to spaces.

action : correct either the program or the '"symbolic-queue-name' in $QASSIGN.

Cc-04

MAM JOR
37

QC37 QMON ABORTS AT ADDRESS address RC=return-code

syntax

cause

action

"return-code'" is of the format RC = XXXXXXXX—+ YYYYYYYY s 2222222Z
where

- xxxxxxxx ¢ hexadecimal contents of the RC register

- yyyyyyyy : name of the SIU (system integration unit) procedure

- zz22zzz2z : return-code '
QMON has aborted because of a system error as indicated by the
Y'return~-code'!

consult the list of general '"return-codes' in the Error Messages
and Return Codes Reference Manual, and if this message occurs fre-
quently on the job report, call the field engineering service and
transmit the return code(s), as applicable.

Note : The network control operator is advised to issue "ST QMON"
to restart QMON in order to continue the execution of the
MCS application(s).

C-05

RETURN CODES

AB - EX

ABTPRC
definition:
action :

CONFLICT
definition:
action :

COUNTOV
definition:
action :

CPERR
definition:
action H

CPOV
definition:
action H

EXTERR
definition:
action :

an invalid internal condition, such as, invazlid data or data out
of range, has been detected during processing a disk I/0 request
resulting in discontinuation of file processing

take a dump and call the field engineering service

BTNS has been started for a network generated without LINE defi-
nition
insert the appropriate LINE command(s) and rerun CNC utility

the threshold of 1/0 errors defined at initialization has been

exceeded resulting in the non-execution of the pending I/O oper-

ation and subsequent shut-down

« either try to copy the file affected and retry the job

« or, if the file fails to be copied, preallocate a new file,
reinitialize the system, regenerate the network and retry the
job

a channel program error or hardware malfunction has occurred
retry; if the same condition occurs, call the field engineering
service

an internal error while trying to start multiple channel pro-
grams simultaneously has occurred
call the field engineering service

a request has been made to read or write a record outside the
limits of the allocated file

retry; if the same condition occurs, call the field engineering
service

C-06

MDNAV
definition:
action H

MSGOV
definition:
action H

NEXPDERR
definition:
action -

TABOV
definition:
action H

RETURN CODES
MD-TA

the file was not in the ''ready'" state when accessed by an I/0
operation

set the file in the 'ready" state either using the same drive or
a different drive, and retry the job with the option MAM=YES

a disk I/0 request specifying an invalid number of records, such
as less than O or greater than 5, has been attempted
take a dump and call the field engineering service

either VCAM or MAM has been preloaded and locked in memory
thereby preventing the execution of CNC utility

use the CMM command to cancel the locked segment and rerun CNC
utility

an internal system error has occurred
call the field engineering service

C-07

The rest of the QC messages apply for the QMAINT utility only.

C-08

QCo0

QCO7

QC0o9

QC10

QC11

QC15

QMAINT JOR
00 -15

BMAM NOT AVAILABLE

syntax
cause

action

as in text
QMAINT utility has aborted because
o CNC utility has not yet been run to create the network
o ONC utility is currently executing
either generate the network or wait until the current CNC session
has terminated, before rerunning QMAINT utility

BMAM : ABORT USER RC= XXXXXXXX~>YYYYYYYY s Z2ZZZZZZZ

syntax
cause
action

UNABLE

syntax
cause

action

UNABLE

syntax

cause

action

QUEUES

syntax
cause

action

UNABLE

syntax
cause

action

the contents of RC specifies the system error
QMAINT utility has aborted due to an error condition at run-time
see "Return Codes"

TO OPEN CTVF FILE RC= XXXXXXXX==YYYYYYYY s 22222ZZZ

o0 oo

23

the contents of RC specifies the error and system primitive

the system file containing the network description is unable to be
opened due to a system error

perform ISL with "clean restart', regenerate the network and rerun
QMAINT utility '

TO ACCESS CTVF FILE RC= XXXXXXXX—>YVYYYYYYY s 2222222Z

the contents of RC specifies the error and system primitive

the system file containing the network description cannot be ac-
cessed due to a system error

perform ISL with "'clean restart', regenerate the network and rerun
QMAINT utility

FILE MEDIA BUSY/NOT AVAILABLE RC= XXXXXXXX~>YYYYYYYY s 22222222

as in text

the disk queue file is not available for processing or has not
been mounted '

retry QMAINT utility later or mount the disk queue file and rerun
QMAINT utility :

TO ACCESS SYSOUT RC= XXXXXXXX--YYYYYYYY s ZZZZZZZZ

o0

o0

the contents of RC specifies the reason for the abort and the sys-
tem primitive

QMAINT processing was aborted due to an error in accessing the
SYSOUT file

retry; if the same condition occurs, call the field engineering
service

Cc-09

QMAINT SYSOUT

103 -302

e ERROR QC

0103 | SEVERITY (4) ILLEGAL SYNTAX

syntax -
cause

action :

e ERROR QC

* denotes the element in error
one or a combination of the following,
» wrong command name, keyword or argument
« violation of QMAINT reserved syntax
correct the command(s) and rerun QMAINT utility

0110 | SEVERITY (%) END OF MESSAGE STRING MISSING

syntax :
cause :

action :

e ERROR QC

as in text
a message to be sent to a2 queue must be terminated
in one of the following ways
+ either by the ENDMSG ortion in the SEND command
« or by a card delimiter after the last message
text card specifying //EOM starting at column 1
correct the message string by either method and re-
run QMAINT utility

0113 | SEVERITY (3) MESSAGE SENT TOO LONG -

syntax
cause

action ¢

e ERROR QC

as in text
an attempt has been made to send a message longer
than the maximum acceptable to MAM, resulting in

overflow; the maximum is 3053 bytes.

truncate the message to be sent and rerun QMAINT u-
tility

0201 | SEVERITY (%) UNABLE TO ACCESS SYSIN

syntax :

cause :
action

e ERROR QC

RC= XXXXXXXX-~>YYYYYYYY s 2Z22Z222Z

the contents of RC specifies the reason for the a-
bort

system error

check JCL statements and retry the job; if the same
condition occurs, call the field engineering ser-
vice

0302 | SEVERITY (2) INVALID NAME LENGTH : name

syntax

cause

action

"name'" specifies the external queue used in the
QMAINT command concerned
the "external-queue-name'" must obey the following
rules,

o limited to up to 12 alphanumeric characters

» specified previously in an associated QUEUE

command : v

correct the "external-queue-name" in the appropri-
ate QMAINT command and rerun QMAINT utility

C-10

e ERROR QC

e ERROR QC

e ERROR QC

e ERROR QC

® ERROR QC

0304

0306

0307

0308

0405

SEVERITY

syntax

" cause

action

SEVERITY

syntax
cause

action :

QMAINT SYSOUT
304 - 405

(3 DUPLICATE KEYWORD

as in text

a keyword has occurred more than one in a command
correct the appropriate command and rerun QMAINT u-
tility

(@ INVALID LENGTH PARAMETER

as in text

error in the syntax of the SEND command : the LENGTH
value conflicts with the actual length of the mess-
age bounded by the string specified in ENDMSG
correct the LENGTH value and rerun QMAINT utility

SEVERITY (2) QUEUE UNKNOWN : name

syntax :
cause :

action :

"name' specifies the external queue used in the
QMAINT command concerned

the '"external-queue-name'" has not been defined in
the network declared

correct the 'external-queue-name' in the appropri-
ate QMAINT command and rerun QMAINT utility

SEVERITY (2) QUEUE NOT AVAILABLE : name

syntax :

cause :

action

""name" specifies the external queue used in the
QMAINT command concerned

the "“external-queue-name'" identifies either a pro-
gram queue currently allocated to another applica-
tion or having active connections, or a terminal-
queue to which a terminal is still logged

wait until the queue identified becomes available
and rerun QMAINT utility '

SEVERITY (%) FATLED TO CREATE SEGMENT : segment-name
RC= XXXXXXXX~>VYYYYYYY » ZZ2ZZZZZ

syntax ¢

cause
action

9o oo

"'segment-name'' specifies the internal name of a
work segment that QMAINT utility was unable to cre-
ate; the contents of RC specifies the reason for
the abort

system error

retry; if the same condition occurs, call the field

engineering service

C-11

QMAINT SYSOUT

409 - 412
e ERROR QC | 0409
e ERROR QC | 0412

SEVERITY (3) ABNORMAL RECEIVE FROM QUEUE : name
RC= XXXXXXXX->YYYYYYYY s Z2Z2Z22Z

syntax : '"name" specifies the external queue to which a
RECEIVE was issued; the contents of RC specifies
the reason for the abort

MCS error

retry; if the same condition occurs, call the field
engineering service

cause
action

SEVERITY (3) ABNORMAL SEND TO QUEUE : name
RC= XXXXXXXX-=YYYYYYYY s 22222222

syntax : ''name' specifies the external queue to which a SEND
was issued; the contents of RC specifies the reason
for the abort

cause : MCS error

action : retry; if the same condition occurs, call the field
engineering service

C-12

APPENDIX D

COMMUNICATIONS STATUS KEY CONDITIONS

The CD entries specify the interface area between MCS and the application, and
define the parameters required, as follows, e

« between MCS and the application,

- ACCEPT (H_MSGCNT) ¢ which ascertains the number of messages in a sym-
bolic queue identified by the name of the input
CD area of the application

00

- RECEIVE (H_RECEIVE) which requests a message from a specified symbo-

lic queue identified by the name of the input CD
area of the application

- SEND (H_SEND) which directs a message to a specified symbolic
queue identified by the name of the output CD a-

rea of the application
. between MCS and the terminals,

oo

- DISABLE (H _DISABLE) : which terminates the logical connection with spe-
cified sources or destinations for data transfers
to and/or from the terminals

- ENABLE (H_ENABLE) : which establishes the logical connection with
specified sources or destinations for data trans-
fers to and/or from the terminals.

The CD entries are defined as follows,

. in MCS COBOL, in the Communication Section

s in GPL, by the system primitive H_CD.

The status of this MCS interface is given by a set of status key codes, each u-

niquely defined by 2 alphanumeric characters denoting the status of each of the

parameters, that 'is, the "x'" in the appropriate column of the table denotes the
parameter specified.

The parameters listed are in alphabetical order and include all the functions of
DISABLE (H_DISABLE) and ENABLE (H_ENABLE).

The status key codes from 9A through 9E are only applicable if the appropriate
program-queue on which the application will receive control messages concerning
events and the change in terminal status, has been defined with the BREAK option
in the QUEUE command at mnetwork generation.

D-01

COMMUNICATIONS STATUS

* unknown means that symbolic

queue is not defined in JCL

Labels and locations
are specified in COBOL

no error detected, action completed

1 or more destinations disabled, action completed

1 or more queues/subqueues unknown *, no action taken

source unknown %*, no action taken

no action taken for 1 or more destinations unknown %,
action taken for known destinations,
data-name-4, ERROR KEY, indicates known or unknown *

DESTINATION COUNT invalid, no action taken

password invalid, no enable/disable action taken

character count > length of sending field, no ac-

partial segment with O character count or no
sending area specified, no action taken

message data not transferred to queue due to un-

message data not transferred due to unavailabili-

no data can be input from the terminal to the
queue to which a (§H_)DISABLE has been issued

all message data not transferred because maximum
message size exceeded, message truncated

message ‘too long, truncated to maximum size spe-
cified .

Communications Status Key Conditions
$H MSGCNT
($H)DISABLE INPUT TERMINAL
($H)DISABLE INPUT
Key ($H)DISABLE OUTPUT
Code H)ENABLE INPUT TERMINAL
($H)ENABLE INPUT
($4)ENABLE OUTPUT
($H)RECEIVE
$H)SEND
00 x[x xix|x E E
10 l =
x x H l
x x l l
20
30 b 4 I E
40 X|x x|x|x I I
30 IH tion taken
91 .
availability of mass storage
92 H H ty of memory space
03 H l
% l H
95 ' H l

message discarded due to queue allocation overflow

D-02

COMMUNICATIONS STATUS

Communications Status Key Conditions
(continued)

ACCEPT ($H MSGCNT

($H_)DISABLE INPUT TERMINAL * unknown means that symbolic
($H)DISABLE INPUT queue is not defined in JCL
(§4)DISABLE OUTPUT

($H)ENABLE INPUT TERMINAL
($H)ENABLE INPUT
($H)ENABLE OUTPUT

R ($H)RECEIVE
' ($H)SEND

message data returned but at least 1 previous
message has been lost

Labels and locations
are specified in COBOL

identifier-2 in ($H_)SEND # "Ou, "1v, "2 or "3"

message data not transferred due to 1/0 error on
disk file

access to queue in conflict with JCL definition

BREAK has been detected, queue corresponding to
symbolic source has been disabled

RVI has been detected, queue corresponding to
symbolic source has been disabled

terminal corresponding to symbolic source ‘-has
been disconnected

terminal corresponding to symbolic source has
been connected

shutdown is announced, application is required
to terminate ‘

access: to queue in conflict with JCL definition,
or related terminal not logged on to application

message not transferred, checkpoint should be ta-
ken before attempting further data transfers,
applicable to queues with CTLRST option

D-03

T

Vos remarques sur ce document/Technical publications remarks form
Titre / Title :

Data Communications DPS 7 GCOS Communications Processing Facility User’s Guide

£

N° Reférence / Reference No. :

Date/ Dated :

47 A2 03UC REVO August 1984

ERREURS DETECTEES / ERRORS IN PUBLICATION

AMELIORATIONS SUGGEREES / SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

cf A97n ~ 28k Blﬂt’s‘

D Vos remarques et suggestions seront attentivement examinées.
Si vous désirez une réponse écrite, veuillez indiquer ci-aprés votre adresse postale compléte

P Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, furnish your complete mailing address below.

NOM/NAME :

DATE :

SOCIETE/COMPANY :
ADRESSE/ADDRESS :

B Remettez cet imprimé & un responsable BULL ou envoyez le directement 3 :

W Please give this technical publications remarks form to your BULL representative or mail to :

Bull CEDOC-CELOG
Boite Postale 110

| o JEUNONE DN RN i N4 STl B - LV E I I

