SERIES 60 (LEVEL 64)
COBOL USER GUIDE

SUBJECT

Description of the Compilation and Execution of COBOL Programs under
GCOS Level 64

SPECIAL INSTRUCTIONS

For users of Release 0400 this manual replaces Revision 0 dated July 1977
which remains valid for Release 0300 users. Because of extensive revision,
change bars have not been used

SOFTWARE SUPPORTED
Level 64 GCOS Release 0400

ORDER NUMBER
AQ63, Rev. 1 September 1978

Honeywell

PREFACE

This manual describes how the user can compile and execute COBOL
programs under Level 64 GCOS.

This manual complements the Level 64 COBOL Reference Manual. The
Reference Manual contains formal specifications of COBOL. The User Guic
on the other hand, discusses those aspects of COBOL whose implementatic
in Level 64 needs further explanation. It also discusses certain oper-
ational aspects such as the JCL and utilities needed to input, compile,
link, execute and debug COBOL programs. In discussing these aspects
there are some areas of overlap with the Job Control Language Referenct
Manual, Job Control Language User Guide, Library Maintenance Reference
Manual and Library Maintenance User Guide. The programmer is cross
referred to these manuals for details when necessary.

Certain self contained COBOL topics are not discussed in this manual
because they are the subject of separate manuals. These topics are:

- I/0 using the UFAS, BFAS and HFAS file access systems.
- Data base processing using IDS/II.

- Communications and transaction driven programming using TDS/64
and VCAM.

This manual is divided into two parts. Part 1 describes the develop-
ment of a coded COBOL source program into a working load module.
Section I describes methods of introducing source programs

into a Level 64 system and maintaining source programs in a disk
library. Sections II and III describe the compilation and linkage of
COBOL programs. Section IV describes debugging techniques and gives
hints on how to deal with abnormal program terminations.

Part 2 of this manual discusses COBOL program interfaces with the
system; programming techniques are described which lead to efficient
use of the system. Section V discusses the representation of data in
memory. Section VI discusses calling and called programs. Section VII
discusses segmentation for Level 64 Virtual Memory Management.
Section VIII describes various programming techniques for reducing
the size and increasing the execution speed of COBOL programs.
Section IX discusses various general aspects of file usage. Section X
describes the standard record formats accepted by Level 64 Data
Management. Section XI describes the use of unit record files.
Section XII contains a number of miscellaneous programming topics.

The reader of this User Guide is assumed to be familiar with the
Level 64 COBOL language and with the basic functions of the Level 6
GCOS Operating System and JCL.

PREFACE

This manual provides the information about Level 64 COBOL and the
Level 64 system needed by a programmer to develop working COBOL
programs which will execute efficiently in a Level 64 system.

This manual complements the COBOL Language Reference Manual. The
reference manual contains a formal specification of the COBOL
programming language. The COBOL User Guide, on the other hand,
discusses those aspects of COBOL whose implementation in Level 64
needs further explanation.

The COBOL User Guide also discusses certain operational aspects

such as the JCL and utilities needed to input, compile, link, execute
and debug COBOL programs. In discussing these aspects there are some
areas of overlap with the Job Control Language (JCL) Reference
Manual, Job Control Language (JCL) User Guide, Library Maintenance
Reference Manual, and Library Maintenance User Guide. The programmer
is cross referenced to these manuals for details when necessary.

Certain self contained COBOL topics are not discussed in this manual
because they are the subject of separate manuals. These topics are:

- I/0 using the UFAS, BFAS and HFAS file access systems.
- Data base processing using IDS/II.

- Communications and transaction driven programming using TDS/64
and VCAM.

This manual is divided into two parts. Part 1 describes the
development of a coded COBOL source program into a working load
module. Section I describes methods of introducing source programs
into a Level 64 system and maintaining source programs in a disk
library. Sections II and III describe the compilation and linkage of
COBOL programs. Section IV describes debugging techniques and gives
hints on how to deal with abnormal program terminations.

Part 2 of this manual discusses some of the COBOL program's inter-
faces with the system; programming techniques are described which
lead to efficient use of the system. Section V discusses the repre-
sentation of data in memory. Section VI discusses calling and called
programs. Section VII discusses segmentation for Level 64 Virtual
Memory Management. Section VIII describes various programming
techniques for reducing the size and increasing the execution speed
of COBOL programs. Section IX discusses various general aspects of
file usage. Section X describes the standard record formats accepted
by Level 64 Data Management. Section XI describes the use of unit
record files. Section XII contains a number of miscellaneous pro-
gramming topics.

iii

The reader of this User Guide is assumed to be familiar with the
Level 64 COBOL language and with the basic functions of the
Level 64 GCOS Operating System and JCL. The following manual may
be used as background material:

- System Overview Manual, Order No. AQ98.

The following manuals should be referred to in conjunction with the

present manual:

- COBOL Language Reference Manual, Order No. AQ64

- Job Control Language (JCL) Reference Manual, Order No. AQlO0

- Job CTontrol Language (JCL) User Guide, Order No. AQll

- Library Maintenance User Guide, Order No. AQ87

- Error Messages and Return Codes Manual, Order No. CQ31l

The following notation conventions are used in this manual when
describing the syntax of JCL and COBOL:

UPPERCASE
lowercase

[item]

iteml
1tem2}

item3

()

“The keyword item is coded exactly as shown.
Indicates a user-supplied parameter value.
An item within square brackets is optional.

A column of items within braces means that one
value must be selected if the associated
parameter is specified.

Note the way in which underlining is used in COBOL
and JCL syntax descriptions. An underlined word in
COBOL syntax descriptions is a word which must be
used. An underlined parameter in JCL syntax
descriptions is the parameter assumed if none is
specified.

Parentheses must be coded if they enclose more
than one item.

An ellipsis indicates that the preceding item may
be repeated one or more times.

Each section of this document is structured according to the heading
hierarchy shown below. Each heading indicates the relative level of
the text that follows it.

Level

1 (highest)
2

3

4

5 (lowest)

Heading Format
ALL CAPITAL LETTERS, UNDERLINED

Initial Capital Letters, Underlined
ALL CAPITAL LETTERS, NOT UNDERLINED
Initial Capital Letters, Not Underlined

ALL CAPITAL LETTERS FOLLOWED BY COLON:
Text begins on the same line.

The Level 64 Document Set follows. Many of the manuals may be
referenced in the text.

iv

Order
Number
AQO02
AQO3
AQO04
AQO05
AQO09
AQ10
AQ11
AQ13
AQ14
AQ18
AQ20
AQ21
AQ22
AQ26
AQ27
AQ28
AQ40
AQ49
AQ50
AQ52
AQ53
AQ55
AQ56
AQ57
AQ59
AQ63
AQ60
AQ64
AQ65
AQ66
AQ67
AQ68
AQ69
AQ72
AQ73
AQT7
AQ82
AQ83
AQ84
AQ85
AQ86
AQS87
AQS88
AQ89
AQ90
AQ92
AQ93
AQ94
AQ98
CQ31
Q35

LEVEL 64 DOCUMENT LIST

Title

Series 100 Program Mode Operator Guide
Series 10G Conversion Guide

Series 200/2000 Conversion Guide

System 360/370 Conversion Guide

System Management Guide

Job Control Language (JCL) Reference Manual
Job Control Language (JCL) User Guide
System Operation Operator Guide

System Operation Console Messages

Operator Reference Manual

Data Management Utilities Manual

Series 200/2000 Program Mode User Guide
Series 200/2000 Program Mode Operator Guide
Series 100 File Translator

Series 200/2000 File Translator

Library Management Manual

System 3 Conversion Guide

Network Control Terminal Operation Manual
Terminal Operations Manual

Program Checkout Facility Manual
Communications Processing Facility Manual
TDS/64 Standard Processor Site Manual
TDS/64 User Guide

TDS/64 Processor Programmer Reference Manual
Unit Record Devices User Guide

COBOL User Guide

Interactive Operation Facility

COBOL Language Reference Manual
FORTRAN Language Reference Manual
FORTRAN User Guide

FORTRAN Mathematical Library

RPG Language Reference Manual

RPG User Guide

Series 200/2000 COBOL to Level 64 COBOL Translator
IBM COBOL Translator

File Translation Manual

BFAS User Guide

HFAS User Guide

UFAS User Guide

Sort/Merge Manual

Catalog Management Manual
Library Maintenance User Guide
I-D-S/IT User Guide, Volume 1
I-D-S/II User Guide, Volume 2
COBOL Reference Card
Operator’s Reference Card

RPG Reference Card
FORTRAN Reference Card
System Overview Manual

Error Messages and Return Codes Manual

Remote Batch Facility

ACKNOWLEDGMENT

This acknowledgment has been reproduced from the CODASYL COBOL
Journal of Development, 1973 as requested in that publication,

prepared and published by the CODASYL Programming Language
Committee.

"Any organization interested in reproducing the COBOL standard and
specifications in whole or in part, using ideas from this document
as the basis for an instruction manual or for any other purpose, is
free to do so. However, all such organizations are requested to
reproduce the following acknowledgment paragraphs in their entirety
as part of the preface to any such publication. Any organization
using a short passage from this document, such as in a book review,
is requested to mention "COBOL" in acknowledgment of the source, but
need not quote the acknowledgment.

COBOL is an industry language and is not the property of any

company or group of companies, or of any organization or group
of organizations.

No warranty, exeressed or implied, is made by any contributor
or by the CODASYL COBOL Committee as to the accuracy and
functioning of the programming system and language. Moreover,
no responsibility is assumed by any contributor, or by the
committee, in connection therewith.

The authors and copyright holders of the copyrighted material
used herein

FLON-MATIC (trademark of Sperry Rand Corporation},
Programming for the Univac (R) I and II, Data Automation
Systems copyrighted 1958, 1959, by Sperry Rand
Corporations IBM Commercial Translator Form No. F 28-8013,
copyrighted 1959 by IBMs FACT DSI 27A5260-2760,
copyrignted 1960 by Minneapolis-Honeywell,

have specifically authorized the use of this material in whole
or in part, in the COBOL specifications. Such authorization
extends to the reproduction and use of COBOL speci fications in
programming manuals or similar publications."

vi

TABLE OF CONTENTS

PART 1

Section | Input and Maintenance of Source Programs .ceccececcecesse
Inp'ut Enclosures ® 9 8 6 0 &0 2000 OO OE P OO OO 0PSSO PELETS PSS
Source Librarles c.ececscsccccesssccosccenscocsoca

Creating a Library from Cards .cecescecccsse
Creating a Member InteractivelY.o:eesccsscee
Updating the Source Memberceceecscccencsee
C()B()L ReferenCe Format ® S 6 5 5 G ¢ 0O PO OB QOO OO e
Punched Card Format ..ccecceeccecesnnscccaces
Library Member Text Format . cececcecececcoe
Interactive Terminal Line Format .e.eceeeesse
Source Files ® 6 9 & & 6 8 5 0 0P % O O ST P S B VS GO PPN NS

Section Il Compilation ceececescsscecsscsoscscocsesscscnscscocsnnscsnccas
Job Control Language .s.eceecescccescccccocssscas
SOURCE,INFILE,COMFILE,INLIB and INLIBn
Parameters ceees cecoccecscsnccccacscecnsccsssns
CARDID,NCARDID, and DCARDID Parameters
- CASEQ and NCASEQ Parameters .cescceccecccoe
CKSEQ and NCKSEQ Parameters ecececceecccccccecs
CODAPND and NCODAPND Parameters ceecceecesess
CULIB Parameter ® 0 9 0 ¢ 0 5O 0 20 C O 0SSO O P OB OO e
DCLXREF and NDCLXREF Parameters seececscssa
DEBUG and NDEBUG Parameters eeeeeoscaccecces
DEBUGMD ,NDEBUGMD and DDEBUGMD Parameters ..
DIAGIN and NDIAGIN Parameters ccececesoecees
DSEGMAX and PSEGMAX Parameters ceececocecs o
EXPLIST and NEXPLIST Parameters eeeceeececses
LEVEL Parameter ecoeecescecessscocccsccccesss
LIST,NLIST and NCLIST Parameters eceocssseee
MAP and NMAP Parameters ® 6 0 08 00 06 60 0 0 0 9 0 0
0BJ and NOBJ Parameters .eccecececccscccccsss
()BSERV andNOBSERV Pal"ametel"s o0 0 000000 00
PRTFILE Parameter ® 0 8 060 0 000 00 080 00 0PI SN
PRTLIB Parameter .cceccsessecsscesvescsosnnsase
STEPOPT Parameter ecececccccccscccccccassans
SUBOPT and. NOPT Parameters ceeecescececeses
WARN and NWARN Parameters e.cescceconcescecs
WORK1, WORK2 and WORK3 Parameters .ccececsee
XREF and NXREF Parameters ..cccececcccscsns
JCL Status 2 0 0 0 80 08 0000 50 0P 00T Rt OO N L s
Libraries Referred to in the COPY Statement

vii

1=01
1-01
1-02
1-02
1-03
1-04
1-04
1-05
1-07
1-10
1-10

2=01
2-01

2-04
2=-06
2-08
2-08
2-08
2-08
2=-09
2-09
2=-09
2=-10
2=10
2-10
2=10
2-11
2=-11
2=11
2=11
2-12
2=12
2-13
2-13
2=13
2=13
2=15
2-15
2-16

The Alter Facility ® 0 06048 0063025 00060806000 e e R
Serial COmpilation L B B I A B IR K R AR B K DR B R I K N B B N B I)
Compiler Limits ® @ 02 0 080 0 TPV P EP PN BP0 E O CEs s

Compiling Level 62 PI"OQTamS 8% ¢ e W B SP L OELOEELINOLEL GBS TBES
()bJECt Code ® 4 & 8 69 00 0T PO SO P O E O OO SN e

printed ()[Jtput ® S P 9 S 8 5 00 B 0P S P OGS e o s T 6+ p 0
Banner Paqe ® 9 0 % 0 0 P 00O B 00V B BN S S eSS
Program ® 0 6 0 8 ¢ 5 S P F O O ES T B S ES OS2 OY ODeS

User and Project .sieeevecossenrevcennss
Date and TIMe sevevvvneesossnoarocensns
Compiler Version seeececscecacscccnnnss
User Options and Active Optinns
Compilation Level civeeeeeeesesensoaens
Compiler INPUL seieeeseeesococnnsscacaans
Program Listing sceeevevscncneercannnnnnnan
Headings eceeeecesesscnensosssnsassancnsa
Source LINES teeeeecererncsnsvaconascas
Diagnostic Error Messages .eeeesccesses

Map Listings and Cross—Reference Listings .
Data Map and Proc. Definition Listing .
Cross—Reference Listing (Decl.Order) ..
Cross—-Reference Listing (Alpha.Order) .
Procedure Map Listing ceeeevececscocsas
PERFORMALTER Bucket Listing .eeeeecens
SUMMArY Page ceeececscvsssscocsosacscassncsas
SUMMAry of Errors eceeeeceosccecasce s .o

CU Produced seeeeeessccascssssnnscssans
Segment List seeececescsseccccssscsccas
Run-Time Package Procedures ..eececeess

Job (Jccurrence Report SUMMArY ceesocvocecces
Abnormal Compiler Termination .eeeveececccascas

Section III Linking @ 6 08 600905 0 0 00 0 OO P RL S OSSOSO BBt e O NS SE eDN
Job Control Language e.ecesevosscceccsosesceneass

Load=module—name Parameter ..eeeeecessceeaes

ENTRY Parameter .cvesceccscceccsscscccassoaces

()UH‘IB Parameter ® 9 9 ¢ & 08 0 058 P S 00 PSS OGNS e 0
COMMAND and COMFILE Parameters .ececcovceocss

ENTRY Command 8 @ 00 0 58000 0000 eV OB IE DS S

INCLUDE Command ® 6 9 5 0 0 " 8 9P S E I ST OO S PSS
VACSEG Command ® 0 @ 80 9 S 08 8268 PO PLETT SNBSS

STEP()pT Parameter ® 0 09 00 % 0690 0 9 S50 B L eSO S
Library searCh pathccccoo'-vtcuovn--ooooouo

! . Serial Linkaqe.........-o........... s seos s 000000

()peration Of SlaINKER ® 09 0 000 9 0600 NOL L e e s 000

Printed ()Utput ® 0 O 00 0 00 O T OSSO OO DA O S PO E O I SEES O e
Banner Page and S$SLINKER Commands Listing ..

InCIUded Compile Units o 00 OeeP OO OB RIS o

TaSk LLStinq ® ® 8 & 0O O QP O O PP OO OO PSRN e e
Group INformatiOn seeecescsesssosssscscncccs

Linkage Report and End Page .c.eieeeescecens
Error Messages ® 0 9 0 9 O O 08 P PO POV e

viii

Section Iv EXBCUtion © 06 0400000006000 0600900000008 0000000006000 4-01
Program Debquing 9 0200800000000 000000020 0 4-0‘
Debugging COde €0 000000 0 00000000 s e0stacse 4=Q }
Program Checkout Facility ..cvececescsesces 4-03
Dump AnalYSIS 0 0 e PP eI PP EBLELRNRIOCLIOEIENIE BOEGLIOIEOEEOES 4-04
Structure Of the DUmp Listing 50690 090683005 020 4-05

The Sta8CK ceeessccescssscsssssasoscsssssaas 4=06
Data Division Variables +s.cevececcesceecees 4=12
General Information sseececsevsocsorcsonnes 4=13

Job Execution MeS580ES seeees covecssnasocssnace 4=15
Messages Output by the System ..iececeecees 4=15
Messages Output by COBOL .iieeeeeveconesess 4=16
Exception MeSSAgesS seecececsssccscssccscnsses 4=16
Format of Exception Messages ceecesesees 4=17
Exception 09-01 Illegal vecimal Data .. 4-18
Exception 17-02 Out of Array Range 4-19
Exception 06-00 (Out of Segment Bounds.. 4-=19
Unexpected Return Code ceeeevessscncees 4=19

PART 2

Section V Representation Of Dala@ seeeescccecsscscssscscescsscsss -0l
Format of Data in Memory.eeeeeces cocecocssesases 5=01
DISPLAY Data ItemS © 2 00 S0 00000000 st P OGO EOETS 5‘02
paCKed DeCimal NUMberS © 0 60000000 g0 et eees o0 5‘03
Fixed=Point Binary NumbersS.ccceeecseccecscccesssss 95-05
Floating=Point Binary NumbersS.ccececccecscssees 5=05
INDEX Data Item 000600600 0000600000000 0060c0000s00a 5-06

Section VI Calling and Called Programs .ececececccscscccsccesscecses 06~01
rl"anSfer Of Contl"Ol ® 0000000000000 0000003000000 6-()2
LINKAGE SECTION and USING Phrase ..cceceseeeee. 6-03
The EKTERNAL PRArase ceeeesccscecscscscssscsencnas 6~-04
CALL Ldentifiercovooooooooo-.ooooooo-cucuocooo- 6"05
The CANCEL Statement e e s e 0s 00000 s 0000000000000 6-05
Interface With FORTRAN Programs .eeececeoccecccss 6-06 I
Constraints .cececeeccseccceccccnscsascscsssses =07
USing Files DR R IR N S AN N B A B B A S S I I IR SO SR Y) 6_08
Report Writer $ 0600860000 0000000000000 OOCELIEOGES 6-08

G'uidelines ® 0 © 00 00 00 OO0 0SSOSO P OO L SO N EC OB S S OP NS O 6-08

Section VII Segmentation .eececcecececccccccscsscsscesccecsssscas (=0l
Metfbds Of Segmentation es s 00000 e0ccssr0 00000 7—02

Control of Segmentation by the Programmer /=02
PROCEDURE DIVISION Segmentation ce.ceceeeees. =02

DATA DIVISION Segmentation ceecececscaassee =05

Preferred Segment Size ® 6 8 8600 600 ¢ ¢ PP OSSP OO 7-0_6
Automatic Segmentation ® 5 & 06 006 000 OSSO S sSSP O 7‘-0/

Data Segments 8 00 00 08 608 00580 0SSOSR E LIS 7-08

procedure Segments ® 0 & 0 9 0 9 60 0 0 SO SN SO OO e 7-IO
Internal Segment NUMbErs ..ceessescesssessnssee =10

DeClared Working Set.....-............a..-..... 7-]‘ .

ix

Section'VIII Efficiency ® 9 9 5 5 S & 5 O B O S S TP PSSR Nt P T OO eSS OSSN e 8—01
Data Manipulation Techniques ..i ceoececesccecssass 8=0lI
Data Description Technigques .ieveeesecssncessas 8-03

Section IX Files @ B & 0 & ¢ 0O B O H S 6 SN O B O S e SO e ST ST S C SN eSO EE eSS e 9—01
Files Names S 9 99 60 3 6 8 QPP PSS SN BTN GO OSSP ER L PN 9"0'

Data Management Overriding RuUleS .eceecocssasse 9-02

()ptional Files ® 9 8 08 & 0 00 0 9 PP OO G OSSO B OO R OIS 2 Q-(.)4

Close With LOC‘(2 2 5 85 6 2 00 9 00000809 00080 09 0 s L00 S0 9-()H

The SP()()L Statement ® ® 00 0 0 O 6P 6o e St S S BB e 9 9“08

Multivolume Files ceeeeccetccccsnncrsscsnsccnnaes 909

MUlti Logical Unit Files IR EEEEE NN I I I AN A A AN 9-()9

Multiple File Tape VolumesS seeeeevensososencess I=1l

File Concatenation ® 6 9 60 9 60 0 002600000 0ESLOLOLIIEOSECELES ()""2

UFAS, BFAS and HFAS tieeevvcaccncccaanasosanssas 913

ORGANIZATION teeeeesoessseovccccsassnsesasa 9—14

APPLY NO=SORTED=INDEX .eeevceevecevescssnsnas 14

APPLY NO=RESIDENT=INDEX ceseveeoccsnoescees 9—14

Error HandlinNg eceececesccccccccssssssossonseas 9-15

FIIE STATUS ticeeecreccenssnssssacsossassassss 9=15

RetuUrn Code .eeeceresovesenscsnscsnssscsses IO

Restrictions on Certain File Organizations 9-17

I ReCOI‘d SiZe.................................... 9""7
The ACTUAL KEY Phrase@eeecsceccseascccerscesssoseass 9=18

Section X Standard Record Formats ceeeeececsccecscsocsssnsssaccsss 10=01
System Standard Format (S5F) cevevecasceconceans 10-02
The Stream Reader, SLIBMAINT and the
C()B()L Compiler [EEEEEEE I I I I W NN N N I NN Y IO‘\)2
Reading SSF Files in COBOL Programs 10-04
Writing SSF Files in COBOL Programs 10-05
Standard Access Record Format (SARF) ceeeeesees 10=-05H
The Stream Reader, SLIBMAINT and the
C()B()L Compiler ® 22 0P 00 FE GG LT OLOIIECESIOIILOEOIESTIOLTONE TOD lU"O")
Reading SARF Files in COBOL Programs 10=06
Writing SARF Files in COBOL Programs .,,.... 10-07
General Points concerning SSF and SARFe.. 10-07
The Output Writer ceeeecescececccsccscasonas 10-07
Summary of Rules for the SELECT Clause 10-07

Section XI Using Unit Record FileS ceeveascessesccsccsscsssnnsneas I1=01
Pl"inting ® 9 0 0 0 0 ¢ 0T G 080 CE B OO0 G SR EE DSOS O USSP SRS SO OEDN 'I—L)I
Using SYSOUT Files for Printing.eseceseeees 11=01
Printing Directly ceeeeececsesscsacccsnness 11=05H
l FOl”m COHtI‘Ol...........-................... 'l-L)S
The LINAGE ClaAUSCeeseesssccsccssncsacocncssse 11-06
Reading Cards ® 9 90 506 9 ¢ 60 00 B P SO PO 4088 S S SO 0P se e II"()7
Using Standard SYSIN Subfiles .ieenesveeees 11=07
Reading Cards DirectlyY teeeessessssscasesss 11=-08
PUnChing Cards ® O ¢ 5 0 5 P O P ¢ O PO P P O S e O T PO Ie NS P ']-()9
Using SYSOUT Files for CArds ceeeseecesesss 11=09
Punching Cards Directly ceveevecasssnssoess 11=-10
ACCEPT,DISPLAY and STOP Literal ceeeesesasecssss 1=11
The ACCEPT Statement ccveescocsesccscaceees 11=11
The DISPLAY Statement MR EEREEE R X II—IB‘

SelECtion Of I/O DeViCeoooo-oo-oooooocooooo ll"'5.
The ST()P Litel’al Statement s eeev s0ecs 00000 s ,l-lé

U51ng Ca'ssettes....c-.-....'........-...-.-.... 11—17
Types of Cassette Filleeeeeeoesesoecsoasseese 11-17
GCAOS 64 Standard Cassette Fileseesesesesess 11-18
GCOS 62 Standard Cassette FilCevessecennees 11-18

Foreign Cassette FlleSeesesesccocesossceass 11-19

Secticn XII MiSCellaneous eescesessenc ssoncccsscsssercsssssscscss |2=01
.Sorting and Merging P I I S A S R A A A A N N A RN X]2’0'
Comparison of COBOL SORT/MERGE and
SS()RT/sMERGE © 600000000000 sOSOIENOCIEGIESIGIEOGEOIETCOEEOTS '2‘0'
JCL fOI‘ C()B()L S()RT LI I IR A R R B N N N B IS 12-02
User JCL StatUS LR I R R R A I I I I B R R e A I B Y]2-03
SW1tChes esessscssessesssssssssensensscecccesscse |2=-04
Checkpoint, Restart and Journalization ceeeee.. 12=05
Alphabets 9 56062 98000200 PVLLELEENOOCIOAINLTOEEESIEPOTOES]2-06
PROGRAM COLILATING SEQUENCE ecceeeccccsnnceas 12=08
SORT and MERGE COLLATING SEQUENCE ..ieeseee 12=08
C()DE“SET © @69 ¢ 000 000000020 0ES S80I RGN SEETOIOGTETLE '2"()8
HIGH-VALUE LOW-VALUE esee e s 00t 0 00000000]2-09
SSTEP OPTIONS 9% 6 0000200000000 0000000 20 s ’2"0
The Report Writer.ice cececeecscsessccscsacssceacsaas 12=11
General Concepts...-.............-......... 12-1!
The DATA DIVISIONO...!.00‘..0.'0.00'O'.O..0 12=12
The PROCEDURE DIVISION.O..O..O'0.00."‘00..]2-l2
REPORT Clause In FDeveeevovesoocennnconsoas 1213
Summimg TechnNiQUESeesecseesecscssssssscenoas 12=13
Tm Use of SUMoooo.oooo-oooooono esses 00 e 12-14
SUM ROUtineSo-.coooooooooouooooo.'oo.oococc 12—15
Page Breaks............-........o..........-‘2“7
WITH CODE ClauSe.ieecseecccesscccscscscaroee 12=17
Control Footings and Page Formst.eeceeeesss 12-18
Floating First Detail RUlE.seevasensceccass 12=19
Report Writer RoutineS.ieceececceccscesceesess 12=20
Table Handling..........-...................... '2"20
SUbSCl"iptS....-........o.-....-......'.....v '2_20
The SET Statement.......................... 12-20

The SEARCH Statement....eeeceescoseccnsaces 12=23
BUildinq Tables..‘.....l.'..".‘....’..'..l lz-zb

Intermediate ReSUltS .ceceesccscosscnsscssssasnses 12=26

Length of Intermediate Result Fields....... 12—27
Fixed Binary Data ItemSQQQQOQQDOo‘.otoooooo |2-29

C()B()L Run-time Package..............-...... '2"’29

Tm ()N SIZE EPR()R Phrase.......-......-.... '2"2()
Communications ProgramSooooonuatoooooooocoo-o.o l2_29

INSPECT and EXA"{INEQCQ‘O......I...‘...‘..'..... IZ-JO

xi

Appendix A Sample C()B()L Program @ @ ¢ 6 5 0860 00 90 2 5 OO 00Ot OO SO O PO A_O]
Appendix B SCOBOL Error MeSSAQgeS esececsscscssssscsssssscsssssss D=0l
IAppendixC SLINKER Error MesSageS.eececcccccsscsscsesacsssssnss C=0l

Index ® 0 08 00 ¢ 60 4 0 8P S0 OO C OO OO OB NN O C PN OSSE SO OE SN e s i-()l'

ILLUSTRATIONS

Figure 2=1. S$COBOL Statement Format ..ceeececcessacsceascacacss 2-02
Figure 2‘2. Sample Bannel‘ Paqe S 00 0000 EL LS tOeOLLOEIBLIOELEOLTLI O 2—2()
Figure 2-3. Sample Alter Listing eeeececeeccescesececcanscseeass 2-30
Figure 2-4c Sample SOUI’CG LiSting 90 000000000000 se0t s b0 se e 2"3‘
Figure 2-5. Sample Expanded Source [isting eeceeeeecscesnceaees. 2-32
Figure 2-6. Sample Data Map and Procedure Definition liisting . 2-40
Figure 2-7. Sample Cross—Reference Listing (Declaration Order) 2-4i
Figure 2-8. Sample Cross—-Reference Listing (Alphabetic Order). 2-42
Figure 2-9. Sample Procedure Map Listing and Perform/Alter
BUCket Listinq * @ 6 9 ® N 000 VG N PP T OGN OGSO I LSS PE RN 2-44
Figure 2-10. Sample SUMMAry PAJe ccceescesosccscssssssassassasss 2-45
Figure 3—-1. SLINKER Statement Format .eeeececccscccossscacnses 3=02
Figure 3-2. Structure of a Linked Program ..eeeeesessessscases 3-07
Figure 3-3. Sample Banner Page and S$LINKEPR Commands Listina .. 3-0v
Figure 3-4. Sample 'raSk Listing L R N A I I I N A A S B AR A A I I I I A 3"‘0 1
Figure 3-5. Sample Group Information Listing .ceccecccceceeaes 3=134
Figure 3-6. Sample Linkage Report and End Page .ecveecesceeces 3=1H
Figure 4"’1. Fil"St Page Of Dumo 88 06 0 869 0008 S 0CL s E B OELGEOESEBSIBIGEE 4"0/
Fig‘]re 4"2- Stal"t Of PCS Dl.’mp R R R EE R E R I I I N S BN S SN A) 4“0’5
Figure 4-3. Ring 3 User StaAck sceeececososcscccossnesooassnesces A=0Y
Figure 4-4, Sample Stack Frame 00l DUMP ceevvessosensasssanses 4=10
Figure 4-5. Sample SLINKER Segment List ...ceececccccncsrsnnes 4=1l
Figure 4-6. Segment DUMD tiieieeeeessasecasscnssnassscnsssssnss 4—14
l Figure 7-1. PROCEDURE DIVISION Segmentation.iceeeececeesssanas [=05
Figure 7-2. DATA DIVISION SegmentatioNescececcccsceesssonsesnss [=0A
Figure 9-1. The Use of Optional Files ieeeeseencrccctsscssecases 9=07
lFiqure 12-1. Sample GROUP INDICATE ClauSe€..eeeees sosssnsassenss 12=171
Figure 12-2. Sample Table lLayout in MemoOry .ceceecescsceccssanaes 12=22
Figure 12-3. Rules for the SET Statement...cceevcecccceasasness 12=22

xii

TABLES

Table l-lo C()B()L Reference Format 2080000600023 99000000 ORGETsES l'Ob
Table I‘-Zo PunChed Card Formats © 00683 8006060600000 0000008 PLEES]"O()
Table]_30 Format Of SYSIN ReCordS 4 @ 05 5 0500 000 PSS S S OC O PSIOOEE SDS l-oé
Table 1-4, Library Member Record FormatsS ceeeeescesssssceasess =08
Table 1-5, Language Types of COBOL Programs ..ceceeessscsssese 1=0Y
Table 2-1. The Effects of Using CARDID, NCARDID and DCARDID.. 2-0/
Table 2-2. Sever ity Values Set by the Compiler .ceececencecas 2=15
Iable 2"3- Compilel" Limits 9 00 00 00 0020 20O ESSOPSOELLOIEOSOEOIEOLEITEEY 2—21
Table 5-1, Data Representation in Level 64 System H=04
Table 6-1. Data Formats in FORTRAN Called Programs ..eeeeeses A=05
Table 9-1. Specification and Applicability of

File Chal‘aCter‘iStiCS © 0 0 06 0280 0000000 eP eSS COEBTOEOTLIDIOE 9"05
Table v-2. Permitted File Organizations ..eeeececescsesencsnes =09
Table 9-3. Features Not Available with Certain File

Organizat ioNS seeeeaerscessccsoscnssscssscsosesssnsaes =11
Table 10-1, Summary of Rules for the SELECT Clause0000... 10-08
Table 11-1, Methods of Producing SYSOUT Print FiieS esceeeeese. 11=03
Table 11=-2., Methods of Producing SYSOUT Punch Files ..eeeeeees '1=10
Table .11-3, Variables Governing the Selection of I/0 Devices.. 1i-15 [
Table 12-1. High Values and Low VAlUES sieeecssccscccscsneassos |2=09
Table 12-2. lLength of Intermediate Result FieldS.icieceeeceses I2-28I
Table 12-3. Comparison of INSPECT and EXAMINC ceeceeoonsceanees 12=30

xiii

SECTION 1

INPUT AND MAINTENANCE OF SOURCE PROGRAMS

The COBOL compiler accepts input from a sequential file (usually an
input enclosure) or a library member. Input enclosures and library
members are both subfiles, but input enclosures are handled by the
user as sequential files. The compiler can alsc read input from
other sequential files e.g. tape files. An input enclosure must be
part of a batch job. A library member, however, may be created or
updated during a batch job, or during an interactive job run via the
Interactive Operation Facility. If a library member is created it
may be updated later using Library Maintenance facilities.

The use . of input enclosures, libraries and files for source programs
is discussed in the following paragraphs.

INPUT ENCLOSURES

The use of an input enclosure as direct input to the compiler is
shown in the following example.

sJ()B 200

COBOL SOURCE = *PROG!, CULIB = RES.CULIB3
SINPUT PROG! 3

000100 INDENTIFICATION DIVISION.

000200 PROGRAM-ID. PROGI,

SENDINPUT$
$ENDJOB3

In this example the input enclosure is held in SARF format (TYPE =

DATA is the default option on the SINPUT statement). SARF format is
described in Section X.

It 1s recommended that where possible the same name be used
throughout program development for the following ¢

-0l

- Input-enclosure-name.
- Program—-name in the PROGRAM-=ID of the IDENTIFICATION DIVISION.

- Comp%le—unit-name (taken by the compiler from the program
name).

- Load-module-name

This minimizes any confusion that may arise from having several
names for the same program at various stages of development. In the
above example the program name and input-enclosure-name are both
PROG!. The compiler will generate a compile unit of the same name
even 1 f the input enclosure name is different.

SOURCE LIBRARIES

Using an input enclosure in the above manner means that the source
prcgram must be re-read from cards each time the compilation is
eXecuted. To avold this the source program may be loaded into a
library. The program may then be repeatedly updated and compiled
without being re-read from cards. The use of libraries is discussed
in the followiny paragraphs (for more detalls refer to the Library
Maintenance User Guide).

Creating a Library Member from Cards

The rtollowing example shows the use of the utilities SLIBALLOC and
SLIBMAINT to create a library named SL.LIB containing source
language members PROG! and PR0OG2. An input enclosure is used
containing a $LIBMAINT MOVE command and the source program. This
input enclosure is read by SLIBMAINT.

s\!()B LR N 3

LIBALLOC SL, (SL.LIB, SIZE = 5),MEMBERS = 1003
LIBMAINT SL, LIB = SL.LIB, COMFILE = *SLENC3
SINPUT SLENC3

MOVE COMFILE s PROGI,TYPE = COBOLX:

000100 IDENTIFICATION DIVISION.

000200 PROGRAM=-ID. PROGI1.

/7/E0D

MOVE COMFILE ® PROG2, TYPE = COBOLX3
000100 IDENTIFICATION DIVISION,
000200 PROGRAM=ID. PROG2.

7/E0D
SENDINPUT
SENDJOB3

1-02

The SLIBALLOC utility will set up a library, SL.LIB, with a size of
5 cylinders (this utility need not be used if the library already
exists). The MOVE command of the SLIBMAINT utility will then create
two library members, PROG1 and PR0G2, each containing one.of the
programs in the input enclosure.

The TYPE = COBOLX option in the MOVE command indicates that the
sequence number and card ldentifier fields will not be included in
the library member text. The use of this option is disc'issed in a
later paragraph.

The following paragraphs explain how to create a library member
using the EDIT command of SLIBMAINT under the control of the
Interactive Operation Facility. Note that the EDIT command can be
used in a similar way to create a library member from cerds in a
batch Job. See the Library Maintenance User Guide for details.

Creating a Library Member Interactively

The Interactive Operation Facility (IOF) may be used to create a
source language library member durirg an interactive job. I0OF does
not use input enclosures. Instead the source language is entered
under the control of the SLIBMAINT command EDIT.

The following example illustrates the use of the EDIT command at an
interactive terminal. Program PROG! is entered under the control of
the EDIT command, and then written to an existing source library
SL.LIB. Sequence numbers are generated in the SSF headers (RENUMBER)
and. the program is printed (PRINT). A detailed description of this
process is given below.

St $JOB...

Ss LIBMAINT SL, LIB = SL.LIB3
>>> 09328 LIBMAINT 20.04 21
Cs EDITs

Rs A

Is IDENTIFICATION DIVISION,
I+ PROGRAM-ID. PROG!.

Is F

Rt W (CBX) PROGI

Rt Q

Cs RENUMBER PROGI13

Cs PRINT PROGI

000010 IDENTIFICATION DIVISION.
000020 PROGRAM-ID. PROGT,

C: QUiT
<<< 09:30
Ss

The prompt St is output by the system. Following this prompt the
user can enter any JCL statemsnt at the job enclosure level. #When
the SLIBMAINT statement is entored, $LIBMAINT ouputs a heading (>>>
etc.), containing the time, followed by the C: prompt which invites

1-03

the user to enter a SLIBMAINT command. The user then enters the EDIT
command after which SLIBMAINT outputs the R: prompt. This invites
the user to enter an EDIT request. The user enters an append data
request (A) after which $LIBMAINT outputs the It prompt. This ‘
invites the user to enter input data until the escape sequence is
encountered. The user then enters the source program. When the user
enters the F sequence SLIBMAINT again ouputs the Rt prompt and
waits for a request. The response "W (CBX) PROGI" requests that the
source program Jjust entered be written to a library member named
PROGI. The Q request then terminates the EDIT session. SLIBMAINT
outputs the Ct¢ prompt and walts for a new command .

The (CBX) option used in the W request is equivalent to the (YPE =
COBOLX option in the MOVE command discussed earlier. Using this
option the line sequence numbers are not entered (but the indicator
area is entered). They must be generated after input by using the
command RENUMBER PROG!, as shown in the example. This command
generates a sequence number in the SSF header of each record (see
Section X) but does not insert a sequence number into the COBOL
text.

The new member is then printed using the PRINT PROG! command, and
SLIBMAINT execution is terminated by a QUIT command. SLIBMAINT
outputs the time (e.g. 09230) immediately before terminating. The
system then outputs-an St prompt and the user may enter further ICL
statements at the job enclosure level.

UPDATING THE SOURCE MEMBER ‘

A source program can be updated in a batch job using the SLIBMAINT
command UPDATE. This command allows the user to insert, replace or
delete speci fic lines which he identifies by giving the line
sequence numbers., If more complex alterations are to be made to the
memper (e.g. Search ror a character string and replace by another
string) the EDIT command should be used.

The UPDATE command is normally used with an input enclosure
containing program updates. Since input enclosures are not used bv
the Interactive Operation Facility, the EDIT command should be tsed
when updating source programs interactively (it may also be used in
batch mode).

A full description of the use of the UPDATE and EDIT commands is

COBOL REFERENCE FORMAT

The COBOL reference format describes the line of COBOL text in terms
of character positions in a record on an input medium. The ANS
standard is shown in Table 1-1.

1-04

Table 1-1. COBOL Reference Format

Characters Used for
}=6 Sequence number area
d Indicator area
g-11 Area A
12 to the ‘
end of Area B
the record

The length of area B depends upon the actual record length of the
storage medium used for the program and whether the optional eight
character card identifier area is included. (The traditional card
identifier area is not part of the ANS standard and is therefore not
mentioned in the COBOL re ference format). On all storage media
except cards the sequence number area can optionally be excluded
from the record. The use of the sequence number area and the card
identi fler area can be controlled by specifying the language type.of

the COBOL program, and by using the CARDID or NCARDID parameters of
the SCOBOL statement.

The use of the COBOL reference format with the language types DATA,
COBOL, COBOLX, and DATASSF for punched cards, library member records
and interactive terminal lines is discussed in the following
paragraphs.

NOTEt The meaning of the term "record format" will be limited to
that used in Section X, Standard. Record Formats. The term
Ytext format" will be used in the following paragraphs to
refer to the format of the COBOL source text (with or without

sequence number area or card identifier sarea) in a library
member record.

Punched Card Format

A program may be punched onto cards in one of the formats shown in
. Table 1-2 (unless the CONTCHAR option is used in the $INPUT
statement - see below).

1-05

Table 1-2. Punched Card Farmais

With card identifier area Without card identi fier area
Columns|Used for Columns | Used for
1-6 |Sequence number area -6 Sequence number area
7 Indlcétor area 7 Indicator area
8-1l |Area A 8-11 Area A
12=-72 |Area B 12-80 Area B
73-80 |Card identifier area

On punched cards the sequence number area must always be present.
However, the card identifier area may be excluded, in which case
area B extends to column 80.

The way in which a program on punched cards is processed from an
input enclosure is controlled by the TYPE parameter of the SINPUT
statement 3

DATA
TYPE = "{COBOL
DATASSF

The Stream Reader will copy each card in the input enclosure to a
temporary subfile of the system file SYS.IN according to the rules
shown in Table 1-3. Subfiles in the system file SYS.IN are known as
WSYSIN subfiles".

Table 1-3. Format of SYSIN Records

TYPE parameter | Format of record | Card columns
in SINPUT in SYSIN copled to
statement (see Section X) SYSIN
e |
DATA SARF 1-80
CoBOL SSF 7-80.
DATASSF SSF 1-80

=06

If the input enclosure is read directly by the compiler (via SYSIN)
the last eight columns will be ignored, unless the NCARDID option is
specified (see Section II,. Compilation). If however, the source
program is moved to a library by $LIBMAINT, columns 73-80 should be -
removed from each record (see below), in which case the compiler
will treat the last eight columns of the resulting record as COBOL
text.

An input enclosure containing a source program to be moved to a
library will contain SLIBMAINT commands iIn addition to the source
program. In order to preserve the first 6 columns of such commands
the TYPE parameter of the $INPUT statement should not specify COBOL.
It is recommended that the TYPE parameter be omitted from the $INPUT
statement, in which case a TYPE of DATA will be assumed.

The text format of library member records is disscussed in the
following paragraphs.

The card formats shown above do not apply when the CONTCHAR option
of the SINPUT statement is used. This option requests the Stream
Reader to concatenate the data held on several cards wherever a
continuation character (-) is encountered as the last non-blank
character on a card. When the option is used, area B extends
throughout every continuation card up to column 80. of the last A
continuation card in a record (or column 72 if the card identi fier
area is present). The sequence number area, indicator area and area
A only occur in the first card of a record. See the Job Control
Language Re ference Manual for more details.

Library Member Text Format

COBOL text in a library member record is held in one of the formats
shown in Table 1-4. (Library member records are variable length,
therefore the last character position given for area B or the card
identifier area is a maximum value.)

1-07

Table 1-4. Library Member Record Formats

With sequence With card-id Neither ares

number area and area only (language
card-id area (language type COBOLX)
(language type type COBOL)

DATASSF) |
Character Used Character Used Character Used
positions |. for positions for positions for

sequence
1-6 number - - - -
area 74
Indi- Indi- Indi-
7 cator) cator 1 cator
area area area
8~11 Area A | 2-5 Area A 2=5 Area A
From Area B - From Area B From
position 12 position 6 position 6
to 8 to 8 to the end
positions positions of the record
before the before the ({.e. area B
end of the end of the can extend
record (i.e. record (i.e. up to cHarac-
area B can area B can ter position
extend up to extend up to 255)
character character
position 247ﬂ position 247)
Last 8 Card Last 8 Card
Characters iden—- Characters . 1den~- - -
tifier tifier

The text format of a library member 1is specified when the member is
created by the TYPE parameter of the MOVE command or the W request
of the EDIT command (see TYPE = COBOLX and W (CBX) PROG! in the
above examples). The values which can be specified in the MOVE

command and W request and which are applicable to COBOL programs are
shown in Table 1-5.

1-08

Table 1-5. Language Types of COBOL Programs

TYPE parameter Type parameter of
of MOVE command W Request
(i.e. language type)

DATASSF DAT
COBOL COB
COBOLX ' "~ CBX

The effect of using these parameters is shown in Table 1-4.

It is recommended that the same language type be used for all COBOL
library members in the user’s installation. This avoids any
confusion that might arise concerning the text format of programs
which the user intends to update. The recommended language type is
COBOLX. It has the following advantages 3

- The sequence number area is removed from the COBOL text (it is
stored in the SSF header). -This means that the user does not

have to space over a redundant sequence number area when
updating the program at an interactive terminal.

- The card-identifier area is removed. This area is redundant
after the program has been stored in a library. The retention
of a card-identifier area in library member text can lead to
confusion when updating the program (e.g. when the SUBSTITUTE
request of SLIBMAINT EDIT is used).

= All trailing spaces to the right of the COBOL Lext are
suppressed in each library member record (this is not the case
with DATASSF). This fact, together with the suppression of the
sequence number area and card-identi fier area results in a
compact record which occupies a minimimum of disk space.

If, as recommended, the COBOLX language type is used for the library
member, the language type should not be specified in the S$INPUT
statement of the input enclosure to be read by S$LIBMAINT (TYPE =
DATA will be assumed). COBOLX should be specified in the TYPE

parameter of the MOVE command or in the W or Z request of the EDIT
command.

It is recommended that a sequence number be present if the source
program is input from cards. This number will be included in the SSF
header when the cards are moved to a library member by SLIBMAINT, 1if
the language type of the member is COBOL or COBOLX. The compiler,
unless asked not to, will check that these numbers are in non
descending sequence and will report any descending sequences.

The programmer can also refer to sequence numbers in the SSF headers

when updating a library member using the EDIT or UPDATE commands. If
required, the source program can be given a set of sequence numbers

1-09

on input by means of the NUMBER option of the MOVE command. However,
if this is done the compiler will not be able to check the original
sequence. of the card deck (this should be done via the CHECK
parameter of the MOVE command). An existing library member can be
given a new set of sequence numbers at any time by means of the
RENUMBER command.

Interactive Terminal Line Format

The format of a line of COBOL text entered under the EDIT command at
an Interactive terminal is the same as that shown in Table 1-4
except that the siZe.of area B is determined by the number of
characters entered by the user on one line (including continuation
lines if the continuation character (=) is used).

The COBOL lines (updates or original programs) should be entered in
exactly the same text format as they are to be held in the library
member record. That is, i f a language type of COBOLX is being used,
the first character in the line is the indicator area, and area B
extends to the end of the line 3 the program or updated text should
be written to the library member with a W or Z request which
specifies language type CBX.

SOURCE FILES

In addition to the library members mentioned above, the user can
store source programs on sequential files. These files can be
generated using the SCREATE or SLIBMAINT utilities and can be read
directly into the compiler by using the INFILE parameter of the
$COBOL statement.

On the other hand the program may already exist on a sequential
file. For example, the program may have been written to a
sequential file by a program generator, or the program may have been
dumped from a library to magnetic tape at a different installation
for compilation at the user’s installation. These files can normally
be read directly into the compiler using the INFILE parameter.

1-10

SECTION I1
COMPILATION

This section describes the use. . of the COBOL compiler. The necessary
JCL and the output of the compiler are described in detail.

JOB CONTROL LANGUAGE

The extended JCL statement S$COBOL is used to execute the COBOL
compiler. The compiler will normally generate a compile unit and
listinge The compile unit can be stored in a temporary file or in a
permanent library. The linking and execution of the program must be
requested by the user in subsequent job steps. The listing can also
be stored in a temporary or permanent library or file.

Figure 2-1 shows the format of the $COBOL statement. Note that the
parameters which are underlined in Figure 2-1 are the de fault values
assumed by the compiler when no alternative parameter is chosen.

For example, 1f the NCKSEQ parameter is not specified in the $COBOL
statement the CKSEQ parameter will be assumed by the compiler.
Default parameters are therefore redundant in the $COBOL statement.
However, they may be used in cénjunction with the COMFILE parameter
when serial compilation of a set of source programs is being carried
out. In such a case they may be used to override the parameters in
the $COBOL statement. See the Alter Facility, below.

2=01

COBOL

SOURCE = *input-enclosure-name
{*1nput-enclosure-name }
+COMFILE = (sequential-file~description)

SOURCE = member—name

[[INLIB = (library-file-description)
o) INLIBI
INLIB2
INLIB3
[*input-enclosure—name }
+COMFILE = (sequential~-file-description)

SOURCE = (member—name[,member-namel...)
INLIB = (library-file-description)
» JINLIBI
JINLIB2
INLIB3

SOURCE = (“asterisk—name’[,”’asterisk-name’J...)
INLIB = (library-file-description)|
» JINLIBI1
INLIB2
INLIB3

{*input-enclosure—name }
INFILE = \(sequential-file-description)
) *input—-enclosure-name }
[}COMFILE = (sequential-file—description)]

*input-enclosure—name
COMFILE = |(sequential-file-description)
(,INLIB = (library-file-description)]

p

: DEBUGMD
’ {DCLXREF } ,{DEBUG } + { NDEBUGMD
NDCLXREF NDEBUG DDEBUGMD) |

CARDID _
» {NCARDID ,{CASEQ } .{cxsso }
i DCARDID | NCASEQ NCKSEQ
:{CnDAPND }. i {(library-rile-description)
| INCODAPND +CULIB = |TEMP

1

Figure 2-1., $COBOL Statement Format

2-02

:{DIAGIN } [,DSEGMAX - nnnntKl] [.PSEGMAX = nnnn[KJJ
| \NDTAGIN
- -
L64
L62 LIST
GCoS [.{EXPLIST }] o JNLIST
+LEVEL = ANS] ANEXPLIST NCLIST
NBS4
NBE3
"NBS2 {MAP } {ggg }
NBSI + L NMAP +1NOBJ
r{oBSERv } _ {PRTFILE = (sequential-file-description)}
v NOBSERV yPRTLIB = (library-file-description)
STEPOPT = (step-parameters)] SUBOPT || {NARN }
d L{NOPT h » \NWARN

+WORK! = (library-file-description) '{xREF }
WORK2 = (library-file-description) v NXREF § '

+WORK3 = (library-file-description)

Figure 2-1. $COBOL Statement Format (cont.)

As the SCOBOL statement is an extended JCL statement it must not
appear. inside a step enclosure. The following example 1llustrates
the use.of this statements

$JOB...

LIBALLOC CU, (CU,LIB, SIZE = 5), MEMBERS = 1003
COBOL SOURCE = *PROGI, CULIB = CU.LIB3$

$INPUT PROGI1$

000100 IDENTIFICATION DIVISION.

000200 PROGRAM=ID. PROGI,

SENDINPUT 3
SENDJOB$

The SLIBALLOC CU statement is used to create a library, CU.LIB, with
a size of 5 cylinders. Normally, the library already exists and this
utility need not be used. The compiler will read the source program
from the input enclosure PROG] (via SYSIN) and will store the
compile unit {in the compile unit library CU.LIB.

The followi paragraphs describe the parameters which may be used
in the S$COBOL statement. :

2-03

SOURCE, INFILE, COMFILE, INLIB and INLIBn Parameters

These parameters are used to specify the name and location of the
program or programs to be compiled. COMFILE is also used for
specifying modifications to the source program. See The Alter
Facility, below (note that this has no connection with the COBOL
ALTER statement). A series.of programs may be compiled during a
single execution of the compiler. See Serial Compilation, below.

At least one .of the parameters SOURCE, INFILE and COMFILE must be
specified in a SCOBOL statement. All of the remajning parameters are
optional. SOURCE may appear in the same SCOBOL statement as COMFILE,
and INFILE may appear in the same statement as COMFILE. However,
SOURCE and INFILE may not appear in the same statement.

The simplest use of these parameters occurs when the source program
is held in an input enclosure. In this instance the following
statement will suffices

COBOL SOURCE = *input-enclosure-names

where input—-enclosure-name is the name of an input enclosure
contained in the same job.

If the source program is held in a library, the name of the member
and the name of the library are both specified in the $COBOL
statement as followss

COBOL SOURCE = member-name, INLIB = (library-file-description):

However, one or more libraries can also be specified in a separate
SLIB statement as follows?

LIB SL,INLIBI = (library-file-description)
[,INLIB2 = (library-file-description)]
[, INLIB3 = (library-file-description)ls

COBOL SOURCE = member-names;

The SLIB statement defines a "search path" for the compiler. The
compiler will search for the source program specified by member-name
first in the INLIB! library, then in the INLIB2 library and finally
in the INLIB3 library .The first member found will be compiledi any
others of the same name will be ignored. Note that the SLIB
statements shown in this section do not contain all possible
parameters. See the Library Maintenance Re ference- Manual for further
details.

If source programs of the same name occur in more than one of the
libraries included in the SLIB statement, the library to be used can

(

2-04

be specified by the INLIBn parameter of the $COBUOL statement. In
this case the normal search path is overriden by the INLIBn
parameter. The statement format is as followss

LIB SL,INLIBl = (liorary-file-description)

(,INLIB2 = (library-file-description)]
[(,INLIB3 = (library-file-description)l]s
(INLIB1]
COBOL SOURCE = member-name, INLIB2; 3
INLIB3

The three methods of specifying a member-name and library described
above may also be used when a series of source programs is to be
compiled in a single execution of the compiler. In this case the
SOURCE parameter must specify a series of member—names. For examples

COBOL SOURCE = (member—-namel,member-namel...),
INLIB = (library-file-description)s

The chosen search path (given by INLIB or $LIB) may be modified for
individual source programs by using the COMFILE parameter. The
COMFILE parameter specifies an input enclosure, library member or
sequential file containing commands which control the compilation of
a serles of source programs. The use of the COMFILE parameter is
described in detail in The Alter Facility, below. The following JCL
statements illustrate the use of COMFILE?®

COBOL SOURCE = member-name,
INLIB = (library-file-description),
*input-2nclosure-name
COMFILE = j(sequential-file-description)(s}

[$INPUT input-enclosure-names}

COMFILE commands

| SENDINPUT;

Source programs may also be read from a sequential file on disk or
magnetic tape (this may, for example, be a tape file written by
SLIBMAINT using the OUTFILE option) The INFILE parameter is used
for this purpose as followss:

COBOL INFILE = (sequential-file-description)s

2-05

The file specified in the INFILE parameter can conteain one or
several source programs. Ihe COMFILE parameter can be used together
with the INFILE parameter to specify which source programs in the
file are to be compiled.

As an alternative to specifying a list of member names in the SOURCE ‘
parameter a range of member names can be specified using the
"asterisk convention" (same as the star convention used by

SLIBMAINT). The following statement format is useds

LIB SL, INLIBl = (library-file-description)
[, INLIB2 = (library-file-description)]

[LINLIB3 = (library-file-description)]ls
INLIB = (library-file-
COBOL SOURCE = (asterisk-name description)
{,asterisk-namel...), {INLIBI $
INLIB2
\INLIB3

Note that the library to be used must be speci fied in the $COBOL
statement i.e. no library search is carried out. The SLIB statement
can be omitted if a library-file-description is included in the
INLIB parameter. Using the asterisk convention all the library
member names in the specified library having certain common
characteristics can be excluded from compilation. Conversely, all
names having certain common characteristics can be selected for ‘
compilation. The asterisk convention works in exactly the same way
as the SLIBMAINT star convention. For a description of the star
convention, see the Library Management Manual. The COMFILE
parameter cannot be used if the asterisk convention is used.

Both the SOURCE and INFILE parameters can be excluded from the
SCOBOL statement. If this 1s done the COMFILE parameter must be used
in conjunction with an input enclosure or sequential file containing
commands which speci fy the members to be compiled. COMFILE is
discussed in The Alter Facility, below.

CARDID, NCARDID and DCARDID Parameters

These parameters control the treatment of the last eight character
positions of COBOL text in each record of the source program. CARDID
causes the compiler to ignore the last eight character positions
(i.e. they are treated as a card identifier area). NCARDID causes
the compiler to treat the last eight character positions as COBOL

text (l.e. no card identifier area exists, area B extends to the end
of the record).

If DCARDID is specified or if none of the card identifier parameters
is specified the compiler assumes the following de fault valuest

2-06

- CARDID where the language type is COBOL or DATASSF.

= NCARDID where the language type is COBOLX.

The effects of using CARDID, NCARDID or :DCARDID with the language

types DATASSF, COBOL and COBOLX is shown in Table 2-1,

Table 2-i. The Effects of Using

CARDID,

NCARDID and DCARDID

rightmost eight
character posi-
tions.

WARNING: This
will result in
incorrect compi-
lation because
the card-iden-
tifier area has
already been
removéd by
SLIBMAINT

i

rightmost eight
character posi-
tions as COBOL
text.

The card-
identi fier area
has already
been removed by
SLIBMAINT.

Language type | Effect of using |[Effect of using | Effect of
of member CARDID NCARDID specifying
DCARDID
or no
parameter
DATASSF The compiler The compiler Same as
ignores the treats the CARDID
rightmost eight |rightmost eight
character posi+ |[character posi-
tions tions as COBOL
text.

COBOL The compiler The compiler Same as
ignores the treats the CARDID
rightmost eight |[rightmost eight
character posi- |character posi-
tions. tions as COBOL

text.

COBOLX The compiler The compiler Same as

ignores the treats the NCARDID

The CARDID, NCARDID and DCARDID parameters should normally be

omitted from the $COBOL statement. CARDID and NCARDID should be used
only to compensate for any errors in the loading or the updating of
a source library member. These errors will become apparent if the
compiler falls to process the end of a source line. Such errors can
occur vhen storing a library member (e.g. using the EDIT Z request)
if the original languages type is not used. Such errors should be

corrected by SLIBMAINT.

2=07

CASEQ and NCASEQ Parameters

CASEQ requests that all small letters which are not included in a
non—-numeric literal are processed as if they were capital letters
(de fault parameter).

NCASEQ requests that small letters are diffsrent from capital
letters, except for the words whose spelling is the same as that of
a reserved word (in other words, reserved words may be written in
small or capital letters, or both). Thus the user-word "abC" is
different from the user-word "aBC", whereas "move® is the same
reserved word as "“MOVE". '

The letters a,b,c,d,e,p,rys,vyx and z in PICTURE character strings
are always taken to be their corresponding capital letters,
irrespective of whether the NCASEQ parameter is used. The remaining
lower case letters are never processed In PICTURE character strings
as upper case letters, even when the CASEQ-parameter is used.

CKSEQ and NCKSEQ Parameters

The NCKSEQ parameter requests the compiler not to carry out any
sequence check on the input source lines. If the CKSEQ parameter is
specified the compiler will check that the line numbers are in non
descending sequence (default parameter). The check is done on the
line number in the SSF header.if the program is in SSFr format (TYPE
= COBOL, COBOLX or DATASSF) or on the line number in the source line
if the program is in SARF format.

CODAPND and NCODAPND Parameters

CODAPND requests that, if there is only one generated code segment,
an attempt is made to put it in the same segment as the linkage
segment. NCODAPND means that the linkage segment will contain no
generated code (default parameter). Note that small, single segment
proyrams make the most efficient Transaction Processing Routines
(TDS) as this reduced the amount of disk activity required for
nrogram loading.

CULIB Parameter

Tne CULIB parameter specifies the library in which the resulting
compile unit is to be stored. A library-file-description or the word
TEMP may be used in the CULIB parameter.

If a library is specified, it must have been allocated previously
by, for example, the SLIBALLOC utility, unless the
library-file-description specified in the CULIB parameter contains
the SIZE parameter (see the Library Maintenance Reference Manual).
If TEMP is specified, the compile unit will be written as a
temporary member of a system library. The member-name given to the

2-08

compile-unit will be the same as the program-name in the PROGRAM=-ID
paragraph of the source program.

If the CULIB parameter is omitted this is equivalent to CULIB =

When linking temporary compile units produced with no CULIB
parameter, or with CULIB = TEMP, the compile unit library TEMP
should normally be present in the SLIB search path that precedes the
SLINKER statement (e.ge. SLIB CU, INLIB! = TEMP, INLIB2 = ...).
However, 1 f TEMP is the only input compile unit library, no SLIB CU
is required to define the search path.

DCLXREF and NDCLXREF Parameters

The DCLXREF parameter produces a cross reference listing in
declaration order. The format of this listing is described in Cross
Re ference Listing (Declaration Order), below.

NDCLXREF means that no such cross reference listing is required
(de fault parameter).

DEBUG and NDEBUG Parameters

The DEBUG parameter requests the compiler to build a table of all
the source names in the program with an indication of name type
(data-name, paragraph-name etc) and the generated segment addresses.
This table is stored in the compile unit. The program may, after
linking, be executed under the control of the Program Checkout
Facility. See Section IV.

NDEBUG is the de fault parameter assumed 1f DEBUG is not speci fied.

If DEBUG is not specified the Program Checkout Facility may only be
used with effective addresses.

DEBUGMD, NDEBUGMD and DDEBUGMD Parameters

DEBUGMD means that the compilation is done as if the WITH DEBUGGING
MODE clause were present in the ENVIRONMENT DIVISION, even though it
is absent.

NDEBUGMD means that the compilation is done as if the WITH DEBUGGING
MODE clause were absent in the ENVIRONMENT DIVISION even though it
is present.

DDEBUGMD means that the presence or absence of the WITH DEBUGGING
MODE clause in the ENVIRONMENT DIVISION is meaningful. That is, it

operates as specified in the COBOL Reference Manual (de fault
parameter).

2=-09

DIAGIN and NDIAGIN Parameters

DIAGIN specifies that all errors are embedded in the alter, source
.and/or expanded listings (default parameter).

NDIAGIN specifies that alter errors are embedded in the alter

listing, but that other (purely COBOL) errors are listed after the
source and/or expanded listing.

DSEGMAX and PSEGMAX Parameters

These parameters permit the user to specify (in units of 1024 bytes)
the preferred maximum size of data and procedure segments In the
object program. If these parameters are not speci fied, the maximum
segment size {s that specified (in bytes) in the MAXIMUM DATA
SEGMENT SIZE and/or MAXIMUM PROCEDURE SEGMENT SIZE phrases in the
SOURCE-COMPUTER paragraph of the ENVIRONMENT DIVISION. These phrases
are not part of the ANS standard..If neither is specified the
compiler assumes a default.of 4K bytes (K = 1024),

The use of DSEGMAX and PSEGMAX is discussed in detail in Section
VII, Segmentation.

EXPLIST and NEXPLIST Parameters

EXPLIST specifies that an expanded source listing is to be produced.
The source listing, . if produced, includes COPY and REPLACE
statements. In the expanded source listing COPY and REPLACE
statements are not printed and replaced and/or deleted words are
actually replaced or deleted according to the REPLACE statement or
the REPLACING clause. See Program Listing, below.

NEXPLIST specifies that an expanded listing is not to be produced
(default parameter).

LEVEL Parameter

The LEVEL parameter specifies that the compilation level is full
Level 64, Level 62, GCOS level, full ANSI 74 standard, high NBS
level, high intermediate NBS level, low intermediate NBS level, or
low NBS level. All features beyond the specified level are flagged
as fatal errors (x*%x), No object code 1s then produced. This
parameter is not accepted if the level specified is above the
maximum level specified for the installation. Unless modi fied by
the Fleld Engineering, the default level is ANSI 74, and the maximum
level for the installation is L64.

The COBOL facilities which are available in each level of the

compiler are listed in an appendix of the COBOL Language Re ference
Manual.

2-10

Computer—-names other than LEVEL-64, but starting with LEVEL-6 cause
a warning message (%), When SOURCE-COMPUTER is LEVEL-62 the default
device for ACCEPT and DISPLAY is CONSOLE, the de fault meaning of
COMPUTATIONAL is DISPLAY, so called hexadecimal embedded literals
are accepted according to Level 62 COBOL syntax, and compilation
level is restricted to GCOS.

LIST, NLIST and NCLIST Parameters

NLIST specifies that the source program listing is not to be
produced. However, unless NDIAGIN has been specified, the lines for
which an error message is to be produced will be printed. NCLIST
means the same as NLIST but only applies to lines included in the
source program as the result of a COBOL COPY statement. LIST means
that the complete program will be listed ,. including copied lines
(de fault parameter). '

MAP and NMAP Pa:ameters

The MAP parameter produces a data map and procedure definition
listing (unless one of the cross-reference listings has been
requested), a procedure map listing and a perform/alter bucket
listing. The format of these listings is specified in Map Listings
and Cross Re ference Listings, below.

NMAP means that no such listings are required (default option). Note
that the cross-reference listing produced by the DCLXREF parameter
contains all of the information in the data map listing. The XREF
parameter produces the same information in alphabetic order.

OBJ and NOBJ Parameters

The compiler normally generates a compile unit in the library
specified in the CULIB parameter (or, by default, in a temporary
library). If NOBJ is used, no compile unit 1is output. The summary
page printed at the end of the compilation listing indicates whether
a compile unit has been produced.

0OBJ is the de fault parameter assumed if NOBJ is not speci fied.
OBSERV and NOBSERV Parameters

The NOBSERV parameter suppresses all observation diagnostic messages
in the program listing. However, the number of observation messages
is printed in the compilation summary page and in the Job (Occurrence
Report. If errors of this type are detected by the compiler and
neither warning, nor serious, nor fatal errors are found, the JCL
status value will be set to 100 (SEV1) at the end of the
compilation., See JCL Status, below.

OBSERV 1s the de fault assumed if NOBSERV is not specified.

2-11

PRTFILE Parameter

This parameter requests that the compilation listing be appended to
a permanent SYSOUT file for printing or processing at a later stage
by, for example, S$SYSOUT, SWRITER or any text handling program or
utility. Otherwise, the listing is printed at the end of the job and
no permanent copy is kept. For example, the user could specify
output to tapes

$JOBas.

COBOL

SOURCE = *COBSOURCE,

CULIB = CU.LIB,

MAP,

XREF,

PRTFILE = (COBFILE, DEVCLASS = MT/T9/D1600, MEDIA = ATAPE)3

L]

In this case, only the Job Occurrence Report will be printed at the
end of job execution. (Note that the Job Occurrence Report is
una ffected by the PRTFILE parameter.)

If the PRTFILE parameter is used, the compiler adds the program
listing to the SYSOUT file in append mode. The PRTLIB parameter, on

the other hand, replaces any previous listing of the same name (see
below) .

When serial compilation occurs, all listings are stored in a single
file.

If the SYSOUT file is full, the compilation terminates with the
following message in the Job Occurrence Reports

CBLO1.ERROR WHILE COMPILING program—id. LISTING FILE EXHAUSTED
The size of the file should be increased and the compilation should

be started again.

PRTLIB Parameter

This parameter is similar to PRTFILE except that the listing will be
stored in a member of the library specified in the PRTLIB parameter.
If several programs are compiled in series, the listing for each
program will be stored in a separate library member. Each library
member will be given the program-name specified in the PROGRAM-ID
paragraph or the source program, suffixed by "_L"., It replaces any
member of the same name. If the library is not large enough to
contain the listing, error message CBLO! is printed in the Job
Occurrence Report. See PRTFILE Parameter, above,

2=12

STEPOPT Parameter

The STEPOPT parameter can be used to specify one or more of the
parameters included in the $STEP statement (see the Job Control
Language (JCL) Reference Manual). However, the following may not
be included in the STEPOPT parameter for $COBOL:

load-module-name3;

- TEMP, SYS or library-file-descriptions

the ALL option of the DUMP parameters

the OPTIONS parameter.

SUBOPT and NOPT Parameters

The SUBOPT parameter requests the compiler to optimize subscripted
and indexed references to reduce the time taken to execute such

re ferences. Note that under certain circumstances, optimization will
‘result in the removal of array bound protection. The NOPT parameter
requests no optimization (default parameter). See Section VIII,
Efficiency, for more information on the use of SUBOPT.

NARN and NWARN Parameters

The NWARN parameter suppresses all warning and observation
diagnostic messages in the program listing. However, if errors of
this type are detected by the compiler, the number of each type of
error is printed in the compilation summary page and in the Jab
Occurrence Report, and the severity value is set to SEVI or SEV2,
unless serious or fatal errors are found (see JCL Status below).

WARN is the default parameter assumed if NWARN is not specified.

WORKI, WORK2 and WORK3 Parameters

The compiler does not normally use files for its work areas 3
instead it works directly in backing store. When the backing storg
cannot accomodate the required work areas, a fatal error message 1s
printeds

*kkk 9-56 BACKING STORE IS FULL. USE WORK FILES FOR LARGE PROGRAMS
Using the WORKn parameters reduces the risks of backing store

saturation that may arise from a high level of multi-programming or
from the compilation of very large programs. In such cases it may be

2-13

advisable either to reduce the total machine load, or to use
temporary work files, reserved for the compilation by the WORKI,
NORK2, and WORK3 parameters.

The first two work files each require a capacity of upto 150 bhytes
per source line 3 the third requires up to 300 bytes per source
line.

Example of the use of temporary work filess

coBoL

WORK1 = (MYFILE!, FILESTAT = TEMPRY, SIZE = 20),
NORK2 = (MYFILE2, FILESTAT = TEMPRY, SIZE = 20),
WORK3 = (MYFILE3, FILESTAT = TEMPRY, SIZE = 40),

SOURCE = MYPROGRAM3

In this example, the compiler will use MYFILEl, MYFILE2 and MYFILER
which will be allocated temporarily to the job with a size of 20, 20
and 40 cylinders on the RESIDENT disk pack. If this size is not
large enough for the compilation, for any of the files, it will be
increased automaticaly by units of 1 cylinder.

The SIZE parameter is not mandatory in this example. In fact, for
temporary files, a default value of 4 cylinders 1is taken, and files
which happen to be full are incremented by units of | cylinder.

The advantage of specifying a SIZE is that the compilation will not
be started if space is not available on the RESIDENI disk pack to
contain the 3 work files. If SIZE is not specified, the compilation
will start with 4 cylinders for each file, and it could happen that
enough space is not available for the compilation. The user can also
request that the work files be put on another disk pack by
specifying DEVCLASS and MEDIA in the WORKn parameter. In that case,
if SIZE is not specified, the compilation will start with one
cylinder for each file. If the work files specified are too small a
fatal error message is printed:

kkkk 9-55 WORKn IS FULL

Permanent work files can be used for WORKI, WORK2 and WORK3 if
desired. They should be preallocated in the following wav.

PREALLOC external-file-name,
BFAS = (LINKQD = (TYPE = NONE,
BLKSIZE = nnnnn,
RECSIZE = nnnnn,
RECFORM = FB,
NODEL)),
FILESTAT = CAT,
DEVCLASS = device-class,
GLOBAL = (MEDIA = media-1list),
SIZE = nnnnns

2-14

The values.of BLKSIZE and RECSIZE must both be 4240 for WORK! and
WORK2., They must both be 2046 for WORK3. The DEVCLASS, MEDIA and
SIZE parameters are explained in the Data Management Utilities
Manual under the PREALLOC utility. The above example preallocates a
catalogued file, but uncatalogued files may also be used.

The use of permanent work files has two advantagest the cost of
dynamic formatting is avoided, and only one compilation using a
given set of work files can be active at a glven moment (useful for
queuing compilations submitted from an IOF terminal).,

Compilation time will increase by about 3% if the WORKn parameters
are used,

XREF and NXREF Parameters

The XREF parameter produces a cross reference listing in alphabestic
order. The format of this listing is described in Cross Reference
Listing (Alphabetic Order), below. NXREF means that no such cross
re ference listing is required (default parameter)}.

JCL Status

At the end of the compilation, subsequent job processing may bhe
determined by testing with the SJUMP statement a severity value set
by the compiler or by the system. Severity values are printed in the
Job Occurrence Report. The possible values are shown in Table 2-2.

Table 2-2. Severity Values Set by the Compiler.

Severity |Status | Flag Meaning

Value

SEVO 0 no error

SEV1 100 * | observation
SEV2 1000 *k warning

SEV3 | 10000 *x* | serious error

SEV4 20000 *kkk fatal error

SEV5S 50000 compilation killed by operator (TJ)

SEV6 60000 abort requested by system (exception)

2=15

The following example shows how the severity value mav he tested to
decide whether to link a program which has just been compileds

sJ()B. L]

COBOL

SOURCE = *COMPST
JUMP ABNOR, SEV,GR,23
LINKER

COMPST,

COMFILE = *LKCOR3
ABNORS, .,

L]

See User JCL Status, Section XII, for more details.

Librarjes Referred to in the COPY Statement

Text to be included in a COBOL program via the COPY statement is
stored as a normal library member. The COPY statement mnst specifv
the name of the library member in which the text 1s stored. As a
result of a COPY statement the entire contents of the sneci fliad
library member will be included in the orogram.

When compniling a program which includes a COPY statement, the
library from which the text is to be copied muyst be snecifie:l either

in the SCOBOL statement or in an earllier SLIB statement. For
examplet

LIB SL, INLIBI
COBOL SOURCE

MY_LIBRARY:
MY_MEMBERS

If the SLIB statement is not used, then the S$COBOL statement must

include an INLIB = (library-file-description) in acdditinn tna a
SOURCE or COMFILE parameter. For examnles

COBOL SOURCE = MY_MEMBER, INLIB = MY_LIBRARY;

The COPY statement may contain an optional OF/IN INLIR.

It the SLIB statement is used, and the INLIRB =
(library-file~description) parameter is not included in the SCNH3OL
statement, the COPY statement may opticonally contain OF/IN
INLIBIZINLIB2/INLIB3. In this case the text to be conied Is in the
speci fied library in the SLIB statement.

2-16

For examples

COBOLs
COPY MY-TEXT OF INLIB2.
JCLs :
LIB SL, INLIBI MY_LIBRARY_A,

INLIB2
INLIB3

MY_LIBRARY_B,
MY_LIBRARY_C3

it HH

In this example MY-TEXT is copied from library MY_LIBRARY_B. The
other libraries specified in the $LIB statement could also contain a
member called MY-TEXT, but these libraries will be ignored.

If the OF/IN INLIBn option is omitted the compiler will search the
libraries specified in the SLIB statement. INLIB! will be searched
first, then INLIB2 and then INLIB3,

If the SLIB statement is used, and the INLIB =
(library-file-description) parameter is included in the $COBOL
statement, the COPY statement may optionally contain OF/IN INLIB or
OF/IN INLIBIZINLIB2/INLIB3. In this case the text will be copied
from the specified library of the $COBOL or SLIB statement. If the
OF/IN option is omitted, the compiler will search first in the
library specified as INLIB in the $COBOL statement and will then
search in the library specified as INLIBI in the SLIB statement
followed by INLIB2 and INLIB3. For examplet?

COBOLs
COPY MY-TEXT.
COPY OTHER-TEXT OF INLIB.
COPY NEXT-TEXT OF INLIB2.

JCL+*

LIB SL, INLIBI MY_LIBRARY_A,
INLIB2 MY_LIBRARY_B,
INLIB3 MY_LIBRARY_C3

COBOL SOURCE = MY_MEMBER, INLIB = MY_LIBRARY;

hun

In this example MY-TEXT is searched for in MY_LIBRARY, MY_LIBRARY_A,
MY_LIBRARY_B and MY_LIBRARY_C in that order. OTHER-TEXT is searched
for in MY_LIBRARY and NEXT-TEXT is searched for in MY_LIBRARY_B.

Alternatively, an actual library name can be specified in the OF/IN
clause. This library name must also be specified in the library
description of the INLIB parameter of $COBOL or in the INLIBn
parameters of SLIB. The libraries whose names would be INLIB,
INLIB!, INLIB2 or INLIB3 may not be referenced by their actual name.

Note that the INLIB or INLIRn parameter in the $COBOL statement and
the R INLIB/INLIBn request in conjunction with the COMFILE parameter
of the $COBOL statement do not affect the search path used for
coplied text. See The Alter Facility, below, for details of the R
request.

2-16.1

THE ALTER FACILITY

The alter facility allows the user to compile modi fied source

programs without actually modifying the source library, file or ‘
input enclosure. The alter facility should be distinguished from the
COBOL ALTER statement. The alter facility is in no way connecterd

with the ALTER statement, and the two should not be confused.

The modifications to be applied to a program are specified in an
input enclosure, library member or sequential file known as a
"command file". The command file comprises the followings

- a "COMPILE" command

- editor requests

For example, one could submit a compilation of MY_PROGRAM where the
lines 12 and 16 would be deleted, without changing the source
library. The submission deck could be as followss

2=-16,2

LIB SL, INLIB1 = (MY_LIBRARYy.ee)3

COBOL COMFILE = *MY_ALTER}

$ INPUT MY_ALTERs
COMPILE$

R MY_PROGRAM

12D

16D

Q

SENDINPUT$

The command file 1s normally specified in the COMFILE parameter of
the SCOBOL statement. However, {f there is no COMFILE parameter, and
the first line of source starts with the word COMPILE (possibly
preceded by at most 6 blanks), the file i1s considered to be the
command file. Note that a command file must be in SARF format, or in

SSF format with a language type DATASSF.

The COMPILE command consists of the word “COMPILE®", optional $COBOL
parameters and a mandatory semi-colon ("i"). The command may occupy
more than one line but a parameter may not be split between two
lines. The allowed parameters are as follows:

CARDID
CASEQ
CKSEQ
CODAPND
DCLXREF
DEBUG
DEBUGMD
DIAGIN
EXPLIST
LIST
MAP

0BJ
OBSERV
SUBOPT
WARN
XREF

NCARDID
NCASEQ
NCKSEQ
NCODAPND
NDCLXREF
NDEBUG
NDEBUGMD
NDIAGIN
NEXPLIST
NLIST
NMAP
NOBJ
NOBSERV
NOPT
NWARN
NXREF

DCARDID

DDEBUGMD

"NCLIST

These parameters override default as well as explicit JCL

parameters.

The COMPILE command may also contain the SKIP parameter, 'in which
case no other parameter 1s permitted. This parameter means that the

next program in the source file or member is not to be compiled. See
Serial Compilation, below.

Permissible editor requests are a subset of the standard S$LIBMAINT
EDIT requests, namelys

A append
C change
D delete
I insert

2=17

no request
quit

read member
substitute
comment

TUHOOZ

Apart from Q and R, the above editor requests work in exactly the
same way as In the EDIT command of SLIBMAINT. The di fferences for Q
and R are explained below.

The Q request is not mandatory for the COBOL compiler. It can be
ommitted in all cases, but the programmer may wish to include the Q
request so that the command file can later be input to SLIBMAINT
without modification.

The R request identifies the program to be compiled. Its format is
as follows:

INLIBI

R INLIB2({ & | member—-name
INLIB3
INLIB -

This request is di fferent from the R request of SLIBMAINT EDIT. A
series of R requests input to the EDIT command of $SLIBMAINT will
cause the specified set of members to be concatenated. This does not
happen when a series of R requests is input to the compiler. Each R
request will result in a separate compilation.

INLIBl, 2 or 3 specifies that the member whose name is member-name,
is to be searched for in the library specified in the SLIB statement
under the INLIBI, 2 or 3 parameters respectively. INLIB means that
the member is to be searched for in the library specified in the
INLIB = (library-file-description) parameter of the $COBOL
statement. In the absence of these keywords, member—name is searched
for first in the libraries specified in the $LIB statement,
according to the implied searching rules, then in the INLIB library.
If member—-name is absent, the program to be compiled is the next in
the current member or file, or the first in the specified member or
file when it is the first "R" request. See Serial Compilation,
below.

The address forms wnhich may be used in editor requests are:?
regular expression
A (first line)
$ (last line)
. (current line)
SSF line number
possibly modified by an expression of the forms

+ relative~number-of-lines

2-18

Address ranges with the addresses separated by commas or semi-colons
are allowed. Compound addresses are allowed except in address
ranges.

Addresses must be given in such an order that they refer to
successive lines of the source. They cannot refer to lines inserted
as the result of an A, C or I request.

When successive programs of a member (see Serial Compilation, below)
are referred to, the " 1" address refers to the first line of the
first program.

Upper and lower case letters are equivalent in the COMPILE command
and as request identifiers.

SERIAL COMPILATION

The compiler can compile a series of programs during a single
execution. Two levels of ¥serlality" are available.

The lower level is as follows. There may be several programs in a
single member, or in a file. They must all be terminated by a line
containing the character string “END COBOL" only, somewhere in area
A or B (the last “END COBOL" line in a member or file is not
mandatory). Each program is compiled in its turn.

The upper level may be at the level of the SOURCE parameter of the
$COBOL statement. This parameter may specify more than one member.
In that case, all programs contained in the first specified member
are compiled, then, all programs contained in the second specified
member, and so on.

The upper level may also be specified in the COMPILE command and any
associated R request in the command file. Thus?

COBOL SOURCE = (MEMBER-1, MEMBER=2.¢¢) ese
could also be writtens

COBOL COMFILE = *ALTER...
SINPUT ALTER:

COMPILEs

R MEMBER-1

COMPILE3s

R MEMBER-2

$ENDINPUT 3

Note that SOURCE or INFILE can be used in the same $COBOL statement
as COMFILE.

The command file is necessary if the source program is to be
modified before compilation. For examples

2=19

$INPUT ALTER;

COMPILES.

R MEMBER-1

3

, $S/MOVE/ADD/

COMPILE3$

R MEMBER=2

“NO MODIFICATION APPLIED TO MEMBER-2
$ENDINPUT

If MEMBER-! contains more than one program, say 3, only the first
one will be compiled with the above command file. If all of them are
to be compiled, the command file should be as follows?

$INPUT ALTER3
COMPILES

R MEMBER-I
COMPILEs

R

COMPILE:

R

COMPILEs

R MEMBER=-2
SENDINPUT 3

If the second program of MEMBER-1 was to be skipped (not compiled)
the command file becomess

$ INPUT ALTER3
COMPILESs

R MEMBER-1
COMPILE SKIP3
COMPILEs

R

COMPILE}S

R MEMBER-2
SENDINPUT 3

Obviously, when the R request does not specify a member-name, or
when the SKIP parameter is used with the COMPILE command, there must
be another program in the current member. This means that the name
of the current member must be established by an "R" request (as
shown in the previous examples).

However the name of the first member may also be specified in the
$COBOL statements

COBOL SOURCE = MEMBER-1, COMFILE = *ALTER...
SINPUT ALTER;

COMPILE 3

R

“"COMPILE THE FIRST PROGRAM OF MEMBER-1
COMPILES

R

2-20

In the same way, a source file may also be speci fieds

COBOL INFILE = (SOURCE,...), COMFILE = *ALTER...
$INPUT ALTER3

goMPILE&

"COMPILE THE FIRST PROGRAM OF SOURCE

COMPILE SKIPs

COMPILES

D

WCOMPILE THE THIRD PROGRAM OF SOURCE

Hhen a command file is specified, the seriasl compilation is
controlled by the contents of that command file. Therefore, the
possible SOURCE parameter of the $COBOL statement must not specity
serial compilation.

The MOVE function of SLIBMAINT can store more than one subfile in a
sequential file. This sequential file may then be submitted to the
compiler. The contents of each subfile will be handled as if it was
separated from the next subfile by END COBOL. Each subfile can
itself contain programs separated and/or terminated by END COBOL.

A serial compilation can be restarted, if necessary, simply by
changing the JCL to exclude those programs which have alreadv been
compiled successfully. The compiler will not restart in the middle
.0f a partially compiled program.

COMPILER LIMITS

The COBOL compiler has the limits shown in Table 2-3.

Table 2-3. Compiler Limits

Variable Limit
Number of user-names (data, filler, paragraphs) 28000
Size of numeric item (ANS standard is 18) 30 digits
Size of numeric literal (ANS standard is 18) 30 digits
Size of non-numeric literal (ANS standard is 120) 256 digits
Maximum size of a code segment 32000 bytes
Maximum size of an edited item - 256 char.

Limits which are in excess of the ANS standard are available only if
the LEVEL = 164 parameter is included in the $COBOL statements
otherwise the ANS standard limits apply.

2-21

COMPILING LEVEL 62 PROGRAMS

Level 62 COBOL programs may be submitted to the Level 64 COBOL
compiler for compilation and execution on the Level 64 computer.
Programs are compiled as Level 62 programs by the compiler when the
two following conditions are mets

- The SOURCE-COMPUTER paragraph speci fies LEVEL-62 as
computer-name, and

- The compilation is requested with the LEVEL = L62 parameter in
the SCOBOL statement.

The program will not compile if any of the following conditions
exXxistss

~ The Level 62 communications feature is used.
- The Level 62 extended indexed organization is used.

- A file is referenced in the PROCEDURE DIVISION USING...header
or as a CALL argument.

- OPEN REVERSED 1s used.

- A non-numeric comparison re ferences operands of different
usages.

The program will compile but may not execute correctly if any of the
following conditions existst

- The commercial at sign (@) is used in column 7 (it is processed
as an asterisk).

= The JOB-LINKAGE SECTION header is used (the compiler processes
items described in that section as WORKING-STORAGE SECTION
items).

- RERUN... EVERY condition-name and its related SET

condition—name is used (the compiler ignores this clause and
statement).

~ USE AFTER... ON DATA or PROGRAM ERROR is used (the compiler
ignores these sections).

- STATUS KEYs are used that do not have the same meaning in both
implementations.

- An attempt is made to read a record of an indexed file that has
been written in the same run (it will be retrieved in Level 64,
whereas it would not in Level 62).

There may also be cases where the precision of intermediate results
differs from one machine to the other.

2=-22

If none.of the above conditions exists the program will compile and
execute correctly in spite of options or defaults that are Level-62
speci fic. In some circumstances, the option is ignored, and will
have to be replaced by appropriate JCL statements. The special
actions taken by the compiler when compiling in the Level-62 mode
ares

- DEBUG-ITEM-ERR is accepted as a group item subordinate to the
DEBUG-ITEM special register.

- The format of so-called "embedded hexadecimal values within
nonnumeric literals" is that of Level 62 (and there fore, the
Level 64 format is not allowed).

= The LITERAL-WITHIN clause is ignored (but the Level 64 compiler
accepts the apostrophe as well as the quote as a nonnumeric
literal delimiter).

- The OPTIONAL phrase of the SELECT clause is allowed for any
file organization.

- The BLOCK FORMAT and BLOCK LENGTH phrases of the SELECT clause
are ignored.

- NEW INDEXED is accepted as equivalent to INDEXED.

- The default file organization is LEVEL-62 instead of UFF
-~ RERUN-FILE is accepted as the checkpoint file name.

- The APPLY MARK SENSE clause is ignored.

- USAGE IS COMP is equivalent to USAGE IS DISPLAY.

- Unsigned COMP-3 items are allocated with a sign position (i.e.
behave as Level 64 COMP-8 items).

- The REDEFINES clause need not reference the first redefined
item.

- The default device for ACCEPT and DISPLAY is CONSOLE.

= The internal-file-name suffixes are accepted 3 those whose
first two characters are "PR" are processed as PRINTER 3 when
the suffix 1s REPORT, it is processed as SYSOUT.

When the above actions are based on syntax (i.e. are not the result
of default application) they are shown by appropriate diagnostics.
The fact that the program is processed as a Level 62 program is
shown in the banner page of the compilation listing.

2-23

0OBJECT CODE

The following PROCEDURE DIVISION extract shows 4 COBOL statements on
lines 22, 24, 30 and 31!,

20 PROCEDURE DIVISION,

21 DEBUT.

22 OPEN INFUT Fi.

23 LEC.

24 READ F! AT END GO TO FIN.
29 FIN.

30 CLOSE Fl1.

31 STOP RUN.

The corresponding procedure map extract (in line number order)
givess

22 2:0000C 24 23:0007A 24 2300096 —— mme————
------ - 30 2:000CE 31 23:0010A — mm———

Thus the first COBOL statement starts at address C. There is object
code that occurs before the first COBOL line which is known as the
"Prologue". The Prologue is executed at the start of the program and
carries out certain housekeeping functions.

Each COBOL statement included in the PROCEDURE DIVISION is compiled
into object code together with a note of its source line number. If
a line of source COBOL contains more than one statement or if one
statement is used which is equivalent to several simple verbs (e.g.
MOVE CORRESPONDING) there will be several sets of compiled code for
that line. In this case the procedure map contains several entries
for the line (line 24).

OPEN,CLOSE,(OCCURS DEPENDING,ON etc. use subroutines which are

generated at the end of the main object code in what 1is called the
"Epilogue", .

PRINTED OUTPUT

The following pafagraphs describe the printed output produced by the
compiler. The output is described in the order in which it 1is
produced, under the following headings?

2=24

-~ Banner page
- Program listing

- Map and cross-re ference listings

Summary page

Banner Page

A sample banner page is shown in Figure. 2-2, The information
appearing on this page is discussed in the following paragraphs.

PROGRAM

This shows the program-name taken from the PROGRAM=ID paragraph of
the source program. If there is no PROGRAM-ID paragraph in the
program the compiler assigns a name to the program based upon the
current date and times

yyddd-hhmmss

wheret vyy is year

ddd is day

hh is hour

mm are minutes

Ss are seconds.
This program—-name 1s used in forming the name of the listing file
when a permanent SYSOUT file is being used.
USER AND PROJECT
These items show the USER and PROJECT specified in the $JOB
statement.

DATE AND TIME

These items show the system date and time at which the compilation
was done.

2=25

92~

ebed JIsuueg o1dwes °g-g o1nbl.

coBoL V=-50,2 X93.1 LISTING BOURGAIN BOURGAIN 13:42:36 MAR 31, 1978 PAGE 1

AERARRNNER AR AR N R AR NN ARNA N RARN R AR AR NARN AN R AR TR R R AR ARA KRR R R AN AR AR AN R AR R AR AR R AR AR AR RA R R R ARRRARARNRARNA NN AN A AR N RN NN Ak &
AR AR NN AR TR AR RN AR AR A AR AR AR A AR A RA R A AR AR RNk A AR AR AR R AR AR N AR R AR AR AR A AR AR A AN RN PR R AR AR AR R AR RN AR RN R R R R ARk & AN &

*xad GCOS L64 -k
hhk C [o] B 0 L) * Ak &
LA A VERSION: 50 DATED: MAR 10, 1978 wexx

KRR AN KRN R RN AN AR A AR AR R A AR R AR R AR R RN R AR A AR AR R IR AR AR R AN R AR A RN A A RN AR ANA R AN RRN A ARRA AN ARAANNR D KR ARANNR AN AR AR N A RANN & k&
LI 2RSS RS SRR R R R 2R R R X222 R Rtk A R L Rl s RSl AR RERESE 2RISR SRRRRRRR2RLRRRRRRRRARER 21N

PROGRAM: FIND-DAY

USER: BOURGAIN

PROJECT: BOURGAIN

SATE: 03/31/78

TIME: 13:42:36

COMPILER VERSION: L64 COBOL V-50.2

USER OPTIONS: COMFILE LIB=1 LEVEL=L64 DCLXRE I XREF EXPLIST

ACTIVE OPTIONS: 0BJ, NDEBUG, WARN, OBSERV. NPMAP, DCLXREF, XREF, LIST, EXPLIST, CKSEQ, CARDID, CASEQ, DIAGIN,
NCODAPND, NOPT, DDEBUGMD, PSEGMAX=4(96(BYTES), DSEGMAX=4096(BYTES).

COMPILATION LEVELé L64

COMPILER INPUT:

ALTER FILE

RSTR (H_ALTER) .

€D=01/23/78 CT=10:35:24 MD=01/23/78 MT=1(:35:24 SL=DAT MN=200 NM=ALTER-DAYS
SOURCE FILE

FIND-DAY IN RSTR (H_INLIB1)

CD=01/23/78 CT=10:35:24 MD=03/07/78 MT=123:16:12 SL=DAT MN=11 NM=FIND~DAY
COPY FILE (COPIED TEXT ON LINES 38 THROUGH 49)

DAYS IN RSTR (H_INLIBT)

Cp=01/23/78 CT=10:35:24 MD=01/23/78 MT=1(235:24 SL=DAT MN=00 NW=DAYS

COMPILER. VERSION
This shows the version of the compiler being used and the patches
which have been applied to it. For examples

COMPILER VERSION s L64 COBOL V=50

If patches have been applied to the compiler the relative number of ,
the latest series of patches applied appears after the version Co
number. For examples

COMPILER VERSION : L64 COBOL V=50.6

If one or more patches prior to the latest patch have not been
applied then the number of non-applied patches follows the latest
patch number. For examples

COMPILER VERSION s L64 COBOL V-50,6-2

In such a case the numbers of the missing patches are listed in the
following ways

COMPILER VERSION 3 L64 COBOL V-50,6-2
COMPILER VERSION ADDITIONAL INFORMATION 3
001 004

where 001 and 004 are the numbers of the missing patches.

USER OPTIONS AND ACTIVE OPTIONS

USER OPTIONS lists the parameters specified by the user in the
$COBOL statement. ACTIVE OPTIONS lists all of the compiler default
parameters in addition to those specified by the user,

'COMPILATION LEVEL

This shows the level of COBOL which is expected by the compller and
is derived from the LEVEL parameter in the $COBOL statement and the
SOURCE-COMPUTER paragraph in the source program. The possible values
ares 164, L62, GCOS, ANSI, NBS4, NBS3, NBS2 or NBSI.

2=27

COMPILER INPUT

This identifies the file and subfile from which the source program
was read. The command file (see The Alter Facility, above) is also
identified 1f it 1s used.. If the source program contains a COPY {
verb, the file from which text is copied is also identified.

A two or three line identification is printed for each type of file.
The first line identifies the type of filet SOURCE FILE, COMMAND
FILE or COPY FILE. If the file is a COPY FILE the line numbers of
the copied lines are also specified. For examplet

COPY FILE (COPIED TEXT ON LINES 21 THROUGH 26)

The second line gives the file name, subfile-name (if a subfile is
being used) and the internal-file-~name used by the compiler, in the
following way:

subfile-name IN file~name (internal-file-name).
The third line appear only if the file is an SSF file. It glves

information taken from the type 101 control record. It contains the
following list of mnemonics and values 3

CD = creation date

CT = creation time

MD = date last modi fied

MT = time last modi fied

SL = source language type (DAT, CBL, CBX)

MN = modification number. This is zero for a new file or
subfile and is augmented by one for each update.

NM = name (normally the same as the subfile name.)

Program Listing

The program listing may be printed in one two or three sections.

Alter listing (Figure 2-3).
- Source listing (Figure 2-4).
- Expanded source listing (Figure 2-5).
. - Error listing.
The alter listing 1s a listing of the contents of the command file
(note that this listing has no connection with the ALTER statement).

The alter listing 1s always produced when a command file is used. It
is printed before the source listing and expanded source listing.

2-28

The source listing is printed if there is no NLIST parameter

speci fied in the $COBOL statement. The listing incorporates any
alterations specified in a command file and (if there is no NCLIST
parameter in the $COBOL statement) any text referred to in COPY
statements. However, the effects of a REPLACE statement in the
CONTROL DIVISION or a REPLACING clause in a COPY statement are not
shown. That is, the specified words are listed in their original
form, with an indication of the first and last word replaced or
f‘A]e+bf"

UT & LA N 3

The expanded source listing is only produced if the EXPLIST
parameter is specified in the SCOBOL statement. It is printed after
the source listing. The expanded listing has the following
differences from the source listing.

~ COPY and REPLACE statements are not printed.

- The effects of a REPLACE statement or REPLACING clause are
showns that is, the specified words are listed in their new
form,

If both the source and the expanded listings are reguested but there
is neither a COPY statement nor a REPLACE statement in the nrogram,
only one listing is output.

The internal line numbers of alter listings, source listings and
expanded listinys are distinguished In the following way.

- Alter listing. The internal line numbers in an alter listing
are always prefixed by "A." . For example A.101, A.102, A.103.

- Source listing. If there is an expanded listing as well as a
source listing, the Internal line numbers in the source listing
:re prefixed by "S." ., However, if there 1s no expanded listing
this prefix is not printed.

~ Expanded source listing. The internal line numbers of expanded
source listings are not pre fixed.

Trh- .ove prefixes are also used in the summary of errors on the
sumnary page of the compiler listing.

2=29

0t=¢

bUT3STT 4831y oTdwes °*g-g 8InbBTJ

FIND-DAY

>>>>>>>
[DR I A)

« 1 1=

owv ™

‘copbot V-50.2 x93 .1 LI STING BOURGAIN BOURGAIN 13:42:36
ALTER LISTING

—————) COMPILE,
R: R FIND-DAY
Re /DATA/S/DIVISION/E./

R: /01 OITWEEK-TAB/.,/SUIMDAY/C COMMENT

1
44 TEXT FOLLOWS THE *A', *C', *I' (R 'G' COMMAND ON THE LINE. TEXT IS IGNORED.

I: COPY DAYS
I: REPLACIN(== PIC X(8) == BY == PIC X(10) ==,
I: ¢F

MAR 31,

1978

PAGE

1=

BbuilsyIT @24anog 9rdwesg *p-z 8INBTY

FIND=DAY
ILKN

e 6 8 3 5 3 8 0 s NN ONLLULOOONO WL

[Y S G S e A I T

2O VOO NOVMDWNL2O0RNOIVWN 2

VLUV

NN
WA -

Sa.24
§.25
S.26
$.27
$.28
5429
$.30
Se31
S.32
$.33
S.34
$.35
S.36
$.37
$.38
$.39
$.40
S.41
S.42
S.43
Seb4

1 1-
-33

21

S.45
Seab6
S.47
1ab8
S.49

copoL v=50.2
SOURCE LISTING

32

XLN TEXT

-
QOB NV HWN =

-
-

«12

W WWWWWWNNONNONNNONDN NN @ - oo
NOVBWNSDSOORINOWVMEWN=0O0R N WS W

el
asl
ool
aal
eed

FIRST WORD OF 'TEX

LAST WORD OF

)
ee?
ee8
a9
«e10

7-10--—==---20~-

X

93.1

LI STING BOUR

-=-30

IDENTIFICATION ODIVISION.

*
*

PROGRAM=-1ID,

*

THIS
THE D
DATE

FIND- [AY,

ENVIRONMENT DIV ISIJON.
CONFIGURATION SECTION,

SOURCE=~COMPUTER .
OBJECT-COMPUTER.

*

DATA DIVISION.

*

LEVEL-64
LEVEL-64.

WORKING-STORAGE S ICTION.

*
01
01

-

01

01

01

01

TEXT

GAIN BOURGAIN 13:42:36 MAR 31, 1978 PAGE
-==40 ~=50~—=-==~- 60==== oo P01 ceiaraa<m
ROUTINE, STARTING FRON A DATE, GIVES <-

AY IN THE WEEK CORRESPONDING TO THE

RARIES
NUMBER OF DAYS PRECEDING THE MONTH
N BY ITS ORODINAL NUMBER IN THE LIST)

E YEAR

0.
31.
59.
90.

120.
151.
181.
212.
243,
273.
304.
334,
PREC-D-TAB.

PRECEDING~DAYS PIC 999 OCCURS 12.

TEMPO
X PICTURE 9(1 0.
Y PICTURE 9(5).

TOTAL

(SHOW

IN TH
PREC-D~TAB,.
02 FILLER PI(999 VALUE
02 FILLER PL:(999 VALUE
02 FILLER PI.(999 VALUE
02 FILLER PIC 999 VALUE
02 FILLER PIC 999 VALUE
02 FILLER PIC 999 VALUE
02 FILLER PIC 999 VALUE
02 FILLER PI(999 VALUE
02 FILLER PI:{ 999 VALUE
02 FILLER PI.C 999 VALUE
02 FILLER PI.(999 VALUE
02 FILLER PIC 999 VALUE
PREC-D—TAB~RE:l REDEF INES
02

TABLE

WEEK
COPY DAYS

GIVING THE NAME OF THE DAYS IN THE

REPLACING =: PIC X(8) == BY == PIC X(10) ==,
THER-UNUSE Do
FILLER PIC X.
FILLER COMF~1 SYNC.
TWEEK-TAB.
FILLER PI.(X(8) VAL

1 2
'EPLACED (OR DELETED).
IPLACED (OR ([FIETED).
FILLER PI ¢ (10) VAL
FILLER PIC (10) VAL
FILLER PIC (10) VAL
FILLER PL.t ..(10) VAL
FILLER PIC X(10) VAL

N v v e

UE “LUNDI "o

UE "MARDI “a
UE "MERCREDI".
UE “JEUDI "o
UE "VENDREDI".
UE “SAMEDI ".

cE-~¢

fuT3sSI] ©294nog popuedxy afdwes °g-z 81nbHT4

FIND~DAY
ILN

V0NN W -

conoL

XLN

-
-

*12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
.ol
sl
o3

-
OO0 @® N NS WA~

v=-50.2 X93.1 LI $TING BOURGAIN BOURGAIN 13:42:36 MAR 31, 1978 PAGE
EXPANDED SOURCE LISTING
TEXT 7-10=-=--==-=) -=—mem - 30~ ——=mmm- 40-—=m== = =50 ~m=mm———— 60~——-=-m- 70-~ceeeenaal
IDENTIFICATION DIVISION.
* THIS ROUTINE, STARTING FROM A DATE, GIVES <=
* THE DAY IN THE WEEK CORRESPONDING TO THE
. DATE
PROGRAM=1D. FIND- AY.
*
ENVIRONMENT DIVIS JON.
CONF IGURATION SECTION.
SOURCE-COMPUTER. LEVEL—64 .
OBJECT-COMPUTER. LEVEL—64.
*
DATA DIVISION, <=
-
WORKING-STORAGE S ICTION.
" TEMPORARIES
01 X PICTURE 9(10).
01 Y PICTURE 9(S5).
* TOTAL NUMBER OF DAYS PRECEDING THE MONTH
* (SHOWN BY 1TS ORDINAL NUMBER IN THE LIST)
* IN THE YEAR
01 PREC-D-TAB.
02 FILLER PI.(999 VALUE 0.
02 FILLER PIIt 999 VALUE 31.
02 FILLER PIC 999 VALUE 59.
02 FILLER PIIt 999 VALUE 90.
02 FILLER PIIt 999 VALUE 120.
02 FILLER PIC 999 VALUE 151.
02 FILLER PI.(999 VALUL 181.
02 FILLER PIC 999 VALUE 212.
02 FILLER PI (999 VALUE 243,
02 FILLER PI:{ 999 VALUE 273.
02 FILLER PI C 999 VALUE 304.
02 FILLER PI (999 VALUE 334,
01 PREC-D-TAB-RE!| REDEF INES PREC-D-TAB.
02 PRECEDING -DAYS PIC 999 OCCURS 12.
* TABLE GIVING THE NAME OF THE DAYS IN THE
N WEEK
01 OTHER-UNUSED.
02 FILLER PIC X.
02 FILLER COMF-1 SYNC.

« 1 2-199 A 1 BYTE TYPE 2 FILLER WAS ALLO:(ATED TO ALIGN THIS SYNCHRCNIZED ITEM (SEE REFERENCE MANUAL).

eol
*.e5
*..5
«eb
“e
.8
-9
- 10
-1
~-46

01

01

DITWEEK-TAB.

02

02
02
02
02
02
02

FILLER

FILLER
FILLER
FILLER
FILLER
FILLER
FILLER

Pl
Pl
Pl
281

(
C
(
C

PIit

Pl

(

x(10)
xXC10)
XxX(1
X(10)
x(10)
x(10)

PIC XC10) <=-

VALUE "LUNDI "

VALUE "MARDI "
VALUE "MERCREDI".
VALUE "JEUDI "
VALUE "VENDREOI".
VALUE "SAMEDL .
VALUE "DIMANCHE".

DITWEEK~TAD-R ED REDEFINES DITWEEK-TAR.

No source listing will be produced when the NLIST parameter is
specifled in the $COBOL statement and no COPY text will be printed
when the NCLIST parameter is specified. An error listing is printed
whenever the NLIST and/or NDIAGIN parameters are specified. When the
NLIST parameter is specified and NDIAGIN is not specified the error
listing contains any diagnostic error messages generated by the
compiler, together with the relevant lines of source program. When
the NDIAGIN parameter 1is specified (with or without NLIST) the error
listing contains any diagnostic error messages generated by the
compiler, but does not contain any lines of source program. Instead
the line number and column number of the spurious source code is
printed with each error message.

The layout of the source listing and expanded source listing is
described in the following paragraphs.

HEADINGS

The first two lines of headinyg are self explanatory. The meaning of
the third line.of heading is as follows:

ILN - Internal line number, used by the compiler to identify
lines of source code. This is independent of the external
line number (XLN).

XLN - External line number, taken from the source input file.,

TEXT - The first column of source code starts under the T of TEXT.
Columns 7, 10, 20, 30, 40, 50, 60, and 70 are marked along
the line. The specified column appears under the least
significant digit of each number. Columns 73 to 80 are
marked by periods, followed by <- in columns 8! and 82 to
mark the end of the traditional 80 column line.

SOURCE LINES
The components of a line of source code are as followss

ILN - The ILN starts at one for the first line printed from the
source input file and increases by one for each subsequent
line from this file, including lines which are copied into
the source program using the COPY statement or are included
as a result of an A, I or C request in a command file.

XLN - This is the line number taken from the SSF header on each
source record in the input file. If the input file is not
in SSF format the XLN is taken from the first 6 character
positions of the record. A single period to the left of the
external line number indicates that the line has been
included as the result of an A, I or C request of the
command file. A double period to the left of the external
line number indicates that the line has been included as
the result of a COPY statement. An asterisk to the left of
the external line number indicates that the line has been

modified as the result of an S request of the command file,
or, for lines following COPY statements, when the part of
the line following a COPY statement is repeated. A minus
sign to the left of the external line number indicates that
lines have been deleted from the source before that line as
the result of a C or D request in the command file (lines
deleted at the end of the program are not shown). In the
expanded source listing, periods, asterisks and minus signs
have the same meaning as aboves in addition, the asterisk
means that the line has been modified as the result of the
application of the REPLACE statement of the CONTROL
DIVISION, or of the REPLACING clause of a COPY statement.

TEXT - Columns | to 6 of the text may contain a line sequence
number. This number corresponds to the sequence number
which may be punched in columns | to 6 if the program is
input to the system on cards. There will be no such
sequence number if the source input file has a language
type COBOL or COBOLX.

In both the source and expanded source listings, whenever a
line is not in 80 column format (with source from columns 8
to 72) an arrow <- is printed at the right of the line. The

arrow appears in the two columns following the card
identifier area.

DIAGNOSTIC ERROR MESSAGES

Diagnostic messages are generated when the compiler detects
incorrect or inconsistent code in the source program. A complete
list of error messages 1s given in Appendix B. Diagnostic messages
are also generated when the compiler detects incorrect or
inconsistent requests in the alter file. These messages normally
appear embedded in the source and expanded source listings. However,
i1f the NDIAGIN parameter is specified in the SCOBOL statement, all
errors will be listed after the source and/or expanded source

listing, except for the errors in the command file which are always
embedded 1In the alter listing.

The format of a diagnostic message is as followss

aaaa o p-nnn message-text...
where?
aaaa can be one, two, three or four asterisks, indicating
the severity of the message. * is an observation, **
is a warning, ***x is a serious error and *¥%kxx is a
fatal error.

o} is a number from | to 9 indicating the order of the
message, when it refers to a specific piece of text
in the line.

p=nnn is the number given to the error which has occurred.
message-text is a plain English explanation of the error.

Each part ot the message is described in turn in the following
paragraphs.

An observation message (one asterisk) indicates the action taken by
the compiler where this may not be clear from the source code.
Observation messages can be suppressed by specifying the NOBSERV or
NWARN parameter in the $COBOL statement. The following example
contains an observation message?

14 FD FI

15 LABEL RECORD STANDARD
16 DATA RECORD. Al A2.

17 01. Al PIC X(80).

18 01 A2 PIC X(80).

19 01 A0 PIC X(80).

* | 3-191 RECORD DESCRIPTION ASSUMED TO BE DATA RECORD
FOR PRECEDING FD.

A warning message (two asterisks) indicates a possible error. The
source statement is compiled but the results may be different from
those intended by the programmer. Warning messages can be suppresssed
by specifying the NWARN parameter in the $COBOL statement. The
following example contains a warning messages

20 WORKING-STORAGE SECTION.
21 Ol AA PIC X(8).

22 , 01 BB PIC X(6).

23 PROCEDURE DIVISION.

24 Pl.

25 MOVE AA TO BB.

]
**x | 5-148 THIS RECEIVING ITEM MAY BE TRUNCATED ON RIGHT

A serious error message (three asterisks) indicates a major error in
the program. The compiler continues to check the source code but
does not generate a compile unit., The message “NO CU PRODUCED" will
be printed on the summary page of the compiler listing. The
following example contains a serious error message?

10 FD F! LABEL RECORD OMITTED.
11 01 AI PIC X(80).
20 WORKING-STORAGE SECTION,
21 Ol RECEP PIC X(4).
22 PROCEDURE DIVISION.
23 S1 SECTION 1. _
24 Pl. .
WRITE Atl, (Al instead of Al)

1
*kk | 6~2 ITEM NOT DECLARED
* | 5-164 SYNTAX CHECK DISCONTINUED

2-35

The "SYNTAX CHECK DISCONTINUED" observation message indicates that
the compiler has interrupted analysis from this point, until it
encounters a recognizable sequence (point, paragraph, section,

etc.)., The compiler then resumes its analysis indicating "SYNTAX
CHECK RESUMED",.

A fatal error message (four asterisks) indicates that an error has
occurred whicht

- prevents the compilation from continuing its analysis. It may
be a system error (e.g. unable to read a source file), a
compiler error (e.g.unrecoverable difficulty), a compiler limit
(e.g. too many operands in the REPLACING phrase of a COPY
statement), a user error (e.g. absence of the speci fied source
member from the specified input library or libraries)s or

- prevents the compilation from generating object code (e.g. use
of a feature not included in the level of compilation
explicitly or implicitly specified by the LEVEL parameter of
the SCOBOL statement).

The following example contains a serious error message:?

52 520 03 DATA-ITEM PIC X VALUE ’X”.
1
* 1 1=-100 THE APOSTROPHE IS USED INSTEAD OF THE QUOTE TO DELIMIT
LITERALS IN THIS PROGRAM.
*kxx | 1-26 THIS FEATURE IS A LEVEL-64 SPECIFIC FEATURE, NOT

INCLUDED IN THE CURRENT COMPILATION LEVEL.

In this example the compilation has been requested without the LEVEL
= L64 parameter in the $COBOL statement. Should this parameter have
been included, only the first message would have been issued.

I'nere may be several error messages for the same line of source
code. In this case, the error order number, which is printed after
the asterisks in the message, 1is used to relate the messages to the
errors in the source line. This number is also printed under each
error in the source line as shown in the following example?

565 586 PERFORM L UNTIL A9 EQUAL TO B9.<-
l 2 3
* 5-165 SYNTAX CHECK RESUMED.
%%k Kok 5-162 THIS FEATURE IS A NBS HIGH INTERMEDIATE FEATURE, NOT

1
2
INCLUDED IN THE CURRENT COMPILATION LEVEL.
*%k 3 6-2 ITEM NOT DECLARED.
* 3 5-164 SYNTAX CHECK DISCONTINUED.

The error under PERFORM results from an error on a previous line.
The error under UNTIL results from LEVEL = NBS2 used in the $COBOL
statement. The arrow at the end of the line indicates that there is
no blank character after the terminating period. Therefore, the last
eight characters are ignored and the compiler recognized EQUA
instead of EQUAL. Hence the error messages.

2=36

Map Listings and Cross—Re ference Listings

Depending on the parameters specified by the user in the SCUOBOL
statement, some or all the following memory map listings and
cross~re ference listings may be produceds

- data map and procedure definition listing

- cross-reference listing (declaration order)

- cross-reference listing (alphabetic order)

- procedure map listing

- perform/alter bucket listing.
These listings are always printed in the order shown above. However,
if a data map/procedure definition listing and cross reference
listing (declaration order) are both requested by the user they are
combined in a single listing (i.,e. only the cross-reference listing
is produced).

The parameters which must be specified in the $COBOL statement to
obtain map and cross-reference listings are as followss

= MAP produces a data map/procedure definition listing, procedure
map listing and perform/alter bucket listing.

- DCLXREF produces a cross-reference listing (declaration order).
= XREF produces a cross-reference listing (alphabetic order).
Each of the above listings is described in the following paragraphs.
DATA MAP AND PROCEDURE DEFINITION LISTING
The data map and procedure definition listing comprises a list of
all the identifiers in the DATA DIVISION, printed in the order in
which the identifiers are de fined.
For each identififier the following information is printed:
- level number (if applicable)
- name
- parameter number (if applicable)
- memory address (if applicable)
- usage
- picture string (if applicable)

- internal line number of the line in which the identifier is
de fined.

2=37

A sample data map and procedure definition listing is shown ir
Figure 2-6. The contents of this listing are described below.

The parameter-number is listed under the heading PN. It is used only
for identi fiers which are included in the USING clause of the
PROCEDURE DIVISION header or their subordinate, redefining or
renaming data items, and specifies the position of the parameter
within the USING clause.

The memory address of the object generated for each data item is
shown under the ADDRESS heading. The address is of the form isnssra,
where 1sn 1s the internal segment number (decimal) and sra is the
address (hexadecimal) relative to the start of the internal segment

(for

an explanation of segment numbers see Section III, L .iking).

Under USAGE there is a description of the type of object to which
the identifier refers. This description may be one of the followings

GROUP indicates a group item composed of subordinate group or
elementary items.

DISP (Display) indicates an elementary item with (usually by
de fault) USAGE IS DISPLAY.

CoMP, COMP-1, etc. indicate items defined with one of the
COMPUTATIONAL options.

INX-DATA indicates an index data item.

ALPH-NM indicates an alphabet-name.

MNEM=-NM indicates a mnemonic-name.

REPORT indicates a report-name

INX indicates an INDEXED file.

REL indicates a RELATIVE file.

SEQ indicates a sequential file,

e ++—=SEQ where the ACCESS MODE IS SEQUENTIAL clause is used.
+««=DYN where ACCESS MODE IS DYNAMIC.

«<+=RAN where ACCESS MODE IS RANDOM.

SORT indicates a sort-file (SD appeared under LN).

INDX~NM indicates an index-name declared by use of the INDEXED
BY clause in a table description.

UNDEFINED indicates a data—-name or paragraph-name which 1is
referenced, but never declared.

2-38

Under the PIC-STRING heading there is a simpli fied version of the
explicit or implicit picture clause. When the picture string
includes editing symbols, only the word EDITED is printed.

Under the heading DEF the internal line number at which the
identi fier is defined is shown.

The data map and procedure definition listing also contains a list
of all paragraph—names and SECTION names (NAME) together with the
internal line numbers at which these names are defined (DEF). This
list appears at the end of the data map listing and is in the
sequence in which the paragraph or section names are defined. See
Figure 2-6 for an example. The type of name is indicated under USAGE
by PARA-NM or SECT-NM. This list is used in conjunction with the
procedure map listing. The procedure map listing contains memory
adresses and internal line numbers. These internal line numbers can
be related to the containing paragraph or SECTION using this
listinge.

CROSS-REFERENCE LISTING (DECLARATION ORDER)

A cross—reference listing in declaration order contains all the
information included in .a data map listing. In addition to this, for
each identi fier, there is a list of iInternal line numbers for those
lines which refer to the identifier. See Figure 2-7 for an example.

This listing is printed In the same sequence and has the same format
as the data map listing, except that the additional information is
printed under the heading REF.LINES. More than one re ference to the
same identifier on a single line is shown by a plus sign following
the internal line number. An ellipsis (...) indicates that some
referencing lines are missing.

CROSS-REFERENCE LISTING (ALPHABETIC ORDER)

The cross—re ference listing in alphabetic order contains all the
information in the cross-reference listing in declaration order
except that the lines are sorted into alphabetic identifier order.
See Figure 2-8 for an example.

An additional piece of information in the cross-~reference listing in
alphabetical order is the 0l level data-name which appears in
parenthesis after each non-01 level data-name. This shows
record—-name to which each data-name belongs.

2-39

ov-¢
fUTaASTT UoT3TUlFeQ eanpedold pue dey ejeqg atdues °*9-g 81nbI4

coBOL v-50.2 X93.4 LISTING BOURGAIN BOURGAIN 13:49:48 MAR 31, 1978 PAGE 10
CALENDAR DATA MAP AND PROCEDURE DEF INITION LISTING
LN NAME PN /.DDRESS USAGE P1C~STRING DEF.
02 DIGIT~EIGHT 1 200254 DISP X27) 78
02 DIGIT-NINE 1 :0026F plsp xX(27) 79
01 HEADER-DIGITS—R 1 :0017¢C GROUP x(270) 80
02 DIGITS 1 :0017¢ GROUP X(27) 81
@3 DIGIT 1 :0017¢ DISP X¢3) 82
01 MONTH~STATUS 1 :00294 GROUP X(96) 84
01 MONTH-STATUS-R 1 100294 GROUP X(96) 99
MONTH 1 :002F8 INDX~NM 100
FIRST-MONTH 1 :00300 INDX=-NM _ 100
02 MONTH-ST. 1 200294 GROUP X(8) 100
03 DAY-OF 1 300294 pISP 9¢1) 101
03 MONTH-DAY 1 200295 DISP 9¢2) 103
03 MAX—MONTH-DAY 1 200297 ©oISP 9(¢2) 1Cs
03 YEAR-DAY 1 :00299 DISP 9(3) 107
01 WEEK-DAYS-I 1 :00308 GROUP X¢70) 110
01 WEEK-DAYS—R 1 :00308 GROUP xX(70) 119
02 WEEK=-DAY 1 :00308 DISP x€10) 120
01 L 1 0 :00000 compP-2 FIX BIN- (31) 125
01 0 2 0 ;00000 ©DISP VARI ABLE 126
INIT PARA=NM 129
EXIT=-P PARA~NM 143
STOP-R PARA-NM 145
YEAR=-CALENDAR PARA-NM 150
INIT-MONTHS PARA-NM 161
TITLES PARA=NM 178
YEAR-TITLE~LINES PARA=NM 197
NORMAL-LINES PARA-NM 213
NORMAL-LINE PARA=NM 219

iv=2C

(49pl() uolIeIB[O9(]) DUTISTT @oUBIdJBY~-SSOI) 8Tdwes °*/-2 8anbT 4

coooL

FIND-DAY

LN

77
01
01
01

01

01
01

01
02

01
02
02
03
03
03

01

01

01

01
01

NAME

TALLY

X

Y
PREC-D-TAB

PREC-D-TAB-RED
PRECEDING-DAYS

OTHER=-UNUSED
DITWEEK~TAB

DITWEEK-TAB-RED
DAY=IN-THE~WEEK

SPLIT-DATE
CENTURY
SHORT-DATE
MONTHR
DAY~OF—MONTH
DAY=OF=FONTH=X
YEAR
DAYS~IN-THE=-ERA
FULL-DATE
DAY=-OF-THE-WEEK
DAY-ITSELF

BEGIN
THE~END

V=50.2 X93.1

PN

LI STING

#DDRESS

11: 00010
1: 000646
11200070
1200078

1:00078
1:00078

11:000A0
1200044

11200044
) :000A4

1:000F0
1:000F0
1:000F2
1:000F4
1:000F6
1:000F6
113000F0
1: 000F8

Q0000

00000

00000

BOURGAIN BOURGAIN
CROSS—REFERENCE LISTING (D ECLARAT ION ORDER)

USAGE

bISP
DISP
oIsP
GROUP

GROUP
DISP

GROUP
GROUP

GROUP
DISP.

GROUP
01sP
GROUP
pISP
o1sP
DISP
vISP
bISP
DISP
0ISP
DISP

PARA-NM
PARA-NM

PIC=STRING

9(S)
9(10)
9(5)
X(36)

X(36)
9¢(3)

X¢4)
X(70)

x(70)
X¢10)

X(8)
9(2)
X(6)
9(2)
9(2)
x(2)
9(4)
9¢10)
X(8)
9N

x€10)

DEF.

16
17
21

34
35

38

41

7
74
76

80
112

13:42:36 MAR 31, 1978 PAGE

REF. LINES

NOREF
95 96 97 98 99 100 105
105 106 107 109 110 111
NOREF

NOREF
89

NOREF
NOREF

NOREF
111

81 83

84

83

89 94

88

82

90 94+ 95 97 99
87 96 98 100 105
78 81

78 110

78 11

NOREF
NOREF

Zy-¢

(19pa(o138qeydiy) DUTISTT ©ouUadld) 94-~-Ss01) afdueg °g-z 81nbBI4

USAGE

PARA-NN
DISP
DISP
DISP
ISP
DISP
DISP
DISP
GROUP
GROUP
DISP
DISP
GROUP
GROUP
GROUP
DISP
GROUP
GROUP
DISP
PARA-NM
DISP
DISP

cosoL v-50.2 LI STING
FIND=-DAY CROSS—REFERENCE LISTING (ALPHABETIC ORDER)
LN NAME JODRESS
BEGIN
02 CENTURY (SPLIT-DATE) 11:000F0
02 DAY-IN~THE-WEEK (DITWEEK~TAB=RED) 1:000A4
01 DAY~ITSELF 00000
03 DAY-OF-MONTH (SPLIT-DATE) 1:000F6
03 DAY-OF-MONTH-X (SPLIT-DATE) 1:000F6
01 DAY—-OF-THE-WEEK 00000
01 DAYS—IN-THE-ERA 12 000F8
01 DITWEEK-TASB 17:000A4
01 DITWEEK-TAB-RED 11:000A4
01 FULL-DATE 00000
03 MONTHR (SPLIT-DATE) 1:000F4
01 OTHER-UNUSED *1:000A0
01 PREC-D—-TAB 1:00078
01 PREC-D-TAB-RED 1: 00078
02 PRECEDING-DAYS (PREC—D~TAB—RED) 1:00078
02 SHORT-DATE (SPLIT-DATE) t1: 000F2
01 SPLIT-DATE 1:000F0
77 TALLY 11:00010
THE-END
01 x 1:00064
01 v 1:00070
01 YEAR 1:000F0

DISP

BOURGAIN BOURGAIN

PIC~STRING

9(2)
X(10)
X(10)
9(2)
X(2)
9¢1)
9¢10)
X(70)
X(70)
x(8)
9C2)
X(4)
X(36)
X(36)
9(3)
X(6)
X(8)
9(5)

9010)
9¢(5)
9C4)

DEF.

80
55
S1
76
59
60
74
65
41
50
71
58
38
21
34
35
56
54

112
16
17
61

13:423:36 MAR 31, 1978

REF. LINES

NOREF

84

LR

78 111

88

82

78 110

87 96 98 100 105
NOREF

NOREF

78 81

89 94

NOREF

NOREF

NOREF

89

83

81 83

NOREF

NOREF

95 96 97 98 99 100 105
105 106 107 109 110 111
90 94+ 95 97 99

PAGE

10

PROCEDURE MAP LISTING

The procedure map listing consists of a table of PROCEDURE DIVISION
internal line numbers and the corresponding starting memory
addresses for the generated object code. See Figure 2-9 for an
example.

The memory address is of the form isntsra, where isn is the internal
relative to the start of the internal segment. The listing is
printed in memory address order so that the user can quickly obtain
an internal line number from a corresponding memory address. This is
necessary when a user program terminates abnormally and a memory
address 1s printed in the Job Occurrence Report.

A memory address 1is printed for each statement in the PROCEDURE
DIVISION. Therefore there will be several memory address for the
same internal line number if there is more than one statement on a
source line or if the statement implies several simpler statements
(e.g. MOVE CORRESPONDING) .

Internal line numbers will normally be in ascending order in the
procedure map listing. However, if the user has segmented the
program using COBOL segment numbers, the object code may be
rearranged by the compiler. If this occurs, internal line numbers in
the procedure map listing will not be in ascending order. In this
case the complete procedure map listing is repeated in internal line
number order. That is, two listings are produced, one in memory
address order and one in internal line number order.

PERFORM/ALTER BUCKET LISTING.

The information in the perform/alter bucket listing may be used in
conjunction with a load module dump to trace the flow of control
through the load module which occurred prior to an abnormal
termination. (Note that this listing has no connection with the
alter listing or alter facility). The listing contains the following
information?

- The start address of the 4-byte bucket associated with each
paragraph or SECTION that is the last in a sequence of
paragraphs or SECTIONs referenced in a PERFORM statement. At
execution time, if a paragraph or SECTION is being per formed,
this bucket will point to the instruction following the PERFORM
statement which last performed the paragraph or SECTION. If the
paragraph or SECTION is not being pdr formed, the bucket will
contain the address of the next paragraph.

- The start address of the 4-byte bucket associated with each
paragraph re ferred to in an ALTER statement. At execution time
this bucket will point to an address corresponding to the’
current value of the GO TO in the ALTER paragraph.

2-43

vv-2

*BUT3ISTT 38)ong JA83Ty/wloglad pue
but3ls1] deny @aanpaesold atdueg *g-z 8InHBT4

cosoL v-50.2 X93.4 LISTING BOURGAIN BOURGAIN 13:49:48 MAR 31, 1978 PAGE 1
CALENDAR PROCEDURE MAP LISTING

BEGIN LINE BEGIN LINE BEGIN LI INE BEGIN LINE BEGIN LINE BEGIN LINE

2: 00024 130 2:000¢4E 131 2:00056 ‘132 2:00160 135 2:0016¢C 135 2:00174 136

2:00194 137 2:00198 138 2:0020¢ t139 2:00240 162 2:0027¢C 144 2:00298 146

2:0024A4 151 2:00284 152 2:002¢€8 1154 2:002F 6 155 2:002FE 156 2:00324 157

2:00332 158 2:0033A 159 2:00364 162 2:00376 163 2:0037€ 164 2:0038A 165

2:00382 167 2:0030B€E 168 2:003CA 169 2:00306 171 2:003pE 172 2:003€EA 173

2:0041€ 176 2:0042€E 179 2:0043A 180 2:00470 181 2:004A4 183 2:004AE 184

2:004C2 189 2:00402 193 2:00508 194 2:00514 195 2:00552 198 2:0055€E 199

2:00568 200 2:00578 201 2:00596 02 2:005A0 203 2:00580 204 2:005CE 205

2:00508 206 2:005€E8 207 2:00606 «08 2:00610 209 2:00620 210 2:0063E 211

2:00678 214 2:00688 215 2:006%94 216 2:0060A 218 2:00714 220 2:00724 221

2:00730 222 2:00746 223 2:0076E 24 2:00796 225 2:007AA 226. 2:0078 A 228

2:007C6 229 2:00702 230 2:007€2 31 2:007F2 232 2:007FE 233 2:00808 233

2:00824 126 2:0083A 126 2:00840 1126

cosoL vV=50.2 X93.4 LI STING BOURGAIN BOURGAIN 13:49:48 MAR 31, 1978 PAGE 12
CALENDAR PERFORM/ALTER BUCKET LISTIIIG '
LINE BEGIN LINE BEGIN LINE BEGIIP LINE BEGIN L INE BEGIN- LINE BEGIN
150 1:00362 161 1:00366 178 1:00 16A 197 1:0036E 213 1:00372 219 1:00376

For each such address, the internal line number of the relevant
paragraph or SECTION is given. before the address in ascending
internal line number order.

See Figure 2-9 for an example.

Summary Page

A sample summary page is shown in Figure 2-10. The information
contained on this page is discussed in the following paragraphs.

cosoL v=-50.2 X93.1 LI.{TING BOURGAIN BOURGAIN 13:42:36 -MAR 31, 1978 PAGE
FIND-DAY COMPILATION SUMMARY

SUMMARY OF ERRORS

ON LINES A.7 40 t.44 83
ON LINES 83 110

> * & ¥

COwwWm

* » »

CU PRODUCED ON LIBRARY 2000093.TEMP.CULID

SEGMENT NAME TYPE"® SIZE (IN BYTES)
FIND-DAY.O el 99
FIND-DAY.1 <Da 278
FIND-DAY.2 Cee 434

. STACK 68

RUN TIME PACKAGE PROCEDURES INVOKED

NONE

Figure 2-10., Sample Summary Page

SUMMARY OF ERRORS

This shows the number of observation (%), warning(**), serious error
(*%*) and fatal error (**%x) conditions detected by the compiler.
The internal line number of the first 10 lines for which the
compiler has output a message is shown for each type of message.
When necessary the internal line number is prefixed by "A." or "S."
to differentiate between the alter listing, source listing and
expanded source listing.

2-45

CU PRODUCED

If a compile unit has been produced by the compiler the message CU
PRODUCED ON LIBRARYs ... 1s printed. If no compile unit has been
produced the compiler prints NO CU PRODUCED.

SEGMENT LIST

The segment list contains a list of the internal segments produced
by the compiler. For each internal segment the type and size is
given. The type can be code (C..), data (.D.), linkage (..L) or code
and linkage (C.,L). In addition, when COBOL segment numbers are used
in SECTION headers of the PROCEDURE DIVISION, the COBOL segment
number from the COBOL SECTION header is printed.

The name of an internal segment is the program—name followed by a
period and the internal segment number. Extra segments are generated
when the DEBUG parameter is included in the $COBOL statement (for
Program Checkout Facility). The names of these segments include
"_PCF" at the end of the program—name. Tables generated as a result
of a USE FOR DEBUGGING statement also form an extra segment whose
name is the program-name suffixed by "_DBG". For an explanation of
segment numbers see Section III, Linking.

At the end of the segment list the initial size of the ring 3 stack
is given. This size does not include the standard part of a stack
frame, nor the parameter area. [he size of each segment is also
glven to help in segmenting the program (see Section VII) and
calculating working set requirements.

RUN-TIME PACKAGE PROCEDURES

A list of the run—-time package procedures referenced by the compiled
object code is printed.

Job Occurrence Report Summary

A summary of the compilation (message CBLO2) 1is printed in the Job
Occurrence Report.. This summary contains the program name, the
number of error messages of each type and an indication whether the
compile unit was produced. An example of this summary is as followss

CBLO2. SUMMARY FOR FIND-DAY %32 #%%x34 CU PRODUCED.

Note that if there was no PROGRAM=ID paragraph in the program or {f
the source program could not be found by the compiler, the
program—-name in the Job (Occurrence Report summary would be generated
by the compiler according to the current system date and time. -This
type of program—name is described in Banner Page, above.

2-46

ABNORMAL COMPILER TERMINATION

Abnormal termination of the compiler occurs when the compiler
detects an abnormal situation. The most frequent errors are
associated with an abnormal return code generated while per forming a
system function.

For such errors, a fatal diagnostic is printed out in the
compilation listing, and an error message is written in the Job
Occurrence Report with the following formats

CBLOI. ERROR [AT address] WHILE COMPILING [LINE xxx OF] program—id
[RETURN CODE IS rc FROM siuic (G4 = xxxxxxxx)] [ON file]

The diagnostic in the compilation listing specifies which kind of
error was encountered. For examples

B=92 CULIB IS FULL.

8-93 'I/0 ERROR ON CULIB.

9-55 WORKn IS FULL.

9-45 UNRECOVERABLE DIFFICULTY DUE TO SYSTEM ERROR.

Another error message can be written in the Job Occurrence Renort
without a corresponding diagnostic in the compilation listings

CBLOl. ERROR WHILE COMPILING program-id. LISTING FILE EXHAUSTED.
This means that the file on which the compilation listing is written
(either a standard SYSOUT subfile, or a PRTFILE sequential file or a
PRTLIB library) is full.

It is possible that, in unusual situations, the compiler will detect
an internal problem and will issue a fatal diagnostic identifying
this problem. For examples

9-nn COMPILER ERROR. text.
ors

x=nn IMPLEMENTATION RESTRICTION. text.
or possiblys

9-nn UNRECOVERABLE DIFFICULTY

2-47

SECTION III
LINKING

SLINKER is a Level 64 utility which builds an executable load module
from a set of compile units. These compile units may result from the
compilation of programs written in different source languages.
SLINKER resolves all references between compile units and sets up
links to COBOL run-time package procedures and system procedures
which are resolved at run-time.

Notes The system recognizes three forms of segment number during
compilation, linking, program loading and execution. To avoid
confusion in this and later sections these forms of segment number
are explained below?

- COBOL Segment Number. This is the segment number specified by
the programmer in the section header of a COBOL program. The
COBOL segment number is included in the segment list produced
by the COBOL compiler.

- Internal Segment Number. This is the segment number generated
by the COBOL compiler to identify the segments within a compile
unit. It is this number which appears to the left of the colon
in the SCOBOL data map, cross-reference and procedure map
listings. Internal segment numbers are also included in the
segment lists produced by the COBOL compiler and by S$LINKER.

- SLINKER Segment Number. This is the segment number generated by
SLINKER to uniquely identify sach segment in the load module.
It is formed from a concatenation of segment table number and
segment table entry (stn.ste). SLINKER segment numbers are
included in the segment list produced by SLINKER and in the
memory dump listing.

JOB CONTROL LANGUAGE

T?elextended JCL statement SLINKER is used to execute the SLINKER
utility.

$LINKER generates a load module and a listing. The load module may,
optionally, be stored in a temporary or a permanent library.

301

Figure 3-1 shows the format of the S$LINKER statement.,

LINKERsload~module—name
] (* |

[,ENTRY = compile-unit-name]

\(library-file-description)
JOUTLIB = (TEMP

e

+\COMMAND = linker-command [,linker-commandl...”
COMFILE = *input-enclosure—name
(library-file-description,SUBFILE=member-name)
[sSTEPOPT = (step-parameters)]

Figure 3-1., SLINKER Statement Format

As the SLINKER statement is extended JCL, it must not appear inside
a step enclosure. The following example illustrates the use of this
statements

SJ()B. LK]
LIBALLOC LM, (LM.LIB, SIZE = 5), MEMBERS = 1003
LIB CU INLIBI = CU.LIBj
LINKER PROGA4,
ENTRY = PROGI,
OUTLIB = LM.LIB}
SENDJOB3

The SLIBALLOC LM statement is used to create a library, LM.LIB, with
a size of 5 cylinders (this utility need not be used if the library
already exists). The SLIB statement is used to set up a "search
path" for SLINKER to enable it to find the referenced compile units.
SLINKER will look in CU,LIB for a compile unit with a member-name
PROGI (specified in ENTRY = PROG!), This is used as the starting
point for building the load module. The resulting load module will
be stored in library LM.LIB with the name PROG4.

The following paragraphs describe the parameters which may be used
in the SLINKER statement.

Load=module-~name Parameter

This parameter is used to specify the name of the load module
created by SLINKER.

If there is no ENTRY parameter in the S$LINKER statement, the main
compile unit (at which linking starts) is assumed to have the same
name as the load module. During the development of a program it is
advisable to use the same name for the source program, the compile
unit and the load module. It should therefore be normal practice to
omit the ENTRY parameter from the $LINKER statement.

3-02

It is not possible to use the same name in this way if calling and
called programs are used (see Section VI) because there will be
several source programs and compile units for a single load module.
However, it is advisable to adopt a systematic convention for
program naming. For examplet

- Load module INV comprises compile units INV-A, INV-B and INV-C
which were compiled from source programs INV-A, INV-B and INV-C
respectively.

-~ Load module UPDATE comprises compile units MAIN-UPDATE and
ADMIN-UPDATE which were compiled from source programs
MAIN-UPDATE and ADMIN-UPDATE respectively.

indicates that a series of load modules is to be linked during a

An asterisk () may be specified instead of load-module-name. This
single execution of SLINKER. See Serial Linkage, below.

ENTRY Parameter

This parameter specifies the (main) compile unit to be used as the
starting point when building the load module. It can be omitted if
the name of the main compile unit is the same as load-module-name.

When the ENTRY parameter is used the COMMAND parameter must be
omitted.

OUTLIB Parameter

The OUTLIB parameter specifies the library in which the resulting
load module is to be stored. A library-file-description or the
keyword TEMP may be used in the OUTLIB parameter.

If a library is specified, it must have been allocated previously by
~the SLIBALLOC LM utility (see the Library Maintenance Reference
Manual) unless the SIZE parameter is used in the
library-file-description of OUTLIB. If TEMP is specified, the load
module will be written as a member of a temporary system library.

If the OUTLIB parameter is omitted, this is equivalent to
OUTLIB = TEMP.

3-03

The load module is stored in a library according to the following
ruless

- If a load module of the same name is not already present in the
library, and there is no fatal SLINKER error, the load mondule
is stored in the library with the load=-module-name given in the
SLINKER statement.

- If a load module with the same name (normally a former version
of the load module) is in the library and there is no fatal
linking error, the old load module is deleted and the new nne
replaces it. If there is a fatal error during the linkage no
load module is stored$ the old load module 1is still usable.

When an old version exists in the load module library, it is good
practice to use a new load-module-name for storing the new load
module to assure retaining the old and new versions together until
the new one is proven executable. Once the new load module is
debugged, the old version can be deleted and the new one renamed
with the old name. Deletion and renaminy are done using SLIBMAINT

Manual.

Alternatively, the user can maintain a "stable" and a "develonmant"
library. The stable library should contain a workinyg version of each
program. The development library should contain the latest version
of each program currently being developed and tested. Once
successfully tested, programs can be moved from the development
library to the stable library.

COMMAND and COMFILE Parameters

The COMMAND and COMFILE parameters allow the user to specify a set

~of commands to be obeyed by SLINKER during the linkage process.

Several different commands may be specified, but the only ones of
interest to the COBOL programmer are the ENTRY, INCLUDE and VACSEG
commands. These commands are described in the fnllowing paragraohs.
The COMMAND and COMFILE parameters may also be used to specify a
series of load modules to be linked during a single execution of
SLINKER. See Serial Linkage, below,

3-04

ENTRY COMMAND
The format of the ENTRY command ist

ENTRY = member-name

This command has exactiy the same function as the ENTRY parameter.
When the COMMAND parameter is used in the SLINKER statement the

ENTRY parameter cannot be used. The ENTRY command should be used
instead.

INCLUDE COMMAND

The format. of the INCLUDE command is as followst

member—namel,member—-namel...
INCLUDE = INLIBn

This command is used to specify a list of compile units which are to
be included in the load module as if they had been referred to by
another compile unit. If the INLIBn option is used then all compile
units.of the library specified by INLIBn are included in the load
module. INLIBn refers to the library specified in the corresponding
INLIBn parameter in the SLIB statement preceding the $LINKER
statement. "n" may have a value from | to 4.

The INCLUDE command is used to incorporate compile units referred to
in the COBOL "CALL identifier" statement. This form of the statement
does not specify a program name at compilation time, so $LINKER
cannot automatically incorporate the required compile unit into the
load module. This has to be done by the programmer by using the
INCLUDE command, which names all the compile units which may
possibly be named in the data item referenced by CALL.

VACSEG COMMAND

The format. of the VACSEG command is as followst
VACSEG = (SHARE = +a)

This command must be used if "multi logical unit files" are to be

used in the COBOL program. See Section IX for an explanation of how
to calculate the value of "a",

3~-05

STEPOPT Parameter

The STEPOPT parameter can be used to specify one or more of the
parameters included in the $STEP statement (see the Job Control
Language Re ference Manual). However, the following cannot be
included in the STEPOPT parameter for S$LINKERs

- load-module=names

~ TEMP, SYS or library-file-descriptions
= the ALL option of the DUMP parameters}
- the OPTIONS parameter.

Library Search Path

A SLIB CU statement may precede the SLINKER statement to define a
search path for the compile units to be linked. Up to four compile
unit libraries can be specified in the search path. If no $LIB CU

statement 1is active, SLINKER will search the TEMP compile unit
library.

User compile units may be created in the same Job as the SLINKER
execution. If so, compile units may be in the system compile unit
library specified by TEMP in the $COBOL CULIB parameter. In such a
case TEMP must be included in the search path of $LINKER (unless all
compile units involved in the linking are in TEMP). For example?

LIB CU, INLIBI

USER.LIB,
INLIB2

TEMP3

nu

SERIAL LINKAGE

SLINKER can link a series of load modules during a single execution.
In order to do this an asterisk (%) is specified in the SLINKER
statement instead of load-module-name. The only other parameter
which is permitted in such a SLINKER statement is either COMMAND or
COMFILE. The COMMAND or COMFILE parameter is used to specify a set
of parameters for each load module to be linked.

3-06

For example:

LINKER *,

COMMAND = #LOAD-MODULE=-1, ENTRY = ALPHA, 3~
LOAD~MODYLE=2, 3~
LOAD-MODULE-3, ENTRY = BETA,$*

LINKER *, |
~ COMFILE = *CMD3
$INPUT CMD3

LOAD-MODULE-1, ENTRY = ALPHA,3

LOAD-MODULE=2, 3

LOAD-MODULE-3, ENTRY = BETA, 3

SENDINPUT;

Note that there must be a comma after each parameter including the
final parameter for each load module (i.e. immediately before the
semi-colon). Also, when the COMMAND parameter is used, the
parameters for each load module except the last must be followed by
a hyphen (i.e. the semi-colon must be followed by =).

OPERATION OF SLINKER

The way in which SLINKER builds a load module will be shown by
discussing a particular example.

Suppose that a COBOL program comprises a main program, MAINPAY,
which calls a program EDITION, which in turn calls a program GETDATE
(see Section VI, Calling and Called Programs). The relationships

between these programs and the run-time package and the system
routines might be as shown in Figure 3-2.

User compile units COBOL run-time System procedures
package procedures

|

E yH_DFPRE_UOPF
|

]

|
-»H CBL_UOPEN———————JPH_TIMER_UGTI

MALNPAY g %H_TIMER_UGTD
| | A—bH CBL UDISPL———————JPH_OPRTR USDO

AJPH CBL UCLOSE———~———1PH_DFPRE_UCFM
EDITION ->H CBEiLDMRC-——————-ﬁPH_CK UCHKPT
GETDATE i {DH_TIMER_UGDT

i

Figure 3-2. Structure of a linked program

3-07

The procedures named in this linkage are of three origins:
~ User compile units resulting from COBOL compilations;

- Run-Time Package® a group of procedures used by COBOL programss

they are available in memory in a single copy and are not built
into the load modules

- System procedurest the parts of the system handling user 1/0
requests etcs they are not built into the load module.

SLINKER, starting with the main compile unit (MAINPAY) scans the
object code for all unresolved external references. After
incorporating each compile unit that resolves such a reference
SLINKER descends to the next level in the hierarchy and resolves the
‘references made in the incorporated compile units. This procedure
continues until all external references which can be resolved are
resolved. References to the COBOL run—-time package and some svstem
procedures are not resolved until run—time.

PRINTED OUTPUT

The following paragraphs describe the printed output produced by
SLINKER. The output 1is described in the order in which it is
produced under the following headingss

- Banner page and SLINKER commands listing.

= Included compile units (if any).

- Task listing.

~ Group information.

- Linkage report and end page.

Banner Page and SLINKER Commands Listing

An example banner page and an example SLINKER commands listing are
shown together in Figure 3-3. All commands included in the COMMAND
parameter of the SLINKER statement are listed in the $LINKER
commands listing.

3-08

Included Compile Units

Details are printed for each compile unit included in the load
module as a result of using the INCLUDE command. The format of this
listing is similar to the Task Listing (see Figure 3-4.)

The heading for each compile unit shows the compile unit name, the
library from which the compile unit was taken, the date and time at
which the compile unit was created and the name (i.e. language) and
version.of the compiler which generated the compile unit.

For each compile unit a list.of symbolic references (SYMREFS) is
printed. A symbolic reference is a reference to an entry point or
data item in another compile unit. Such a reference remains in
symbolic form (i.e. in the form of a label) because it cannot be
converted into an address at compile time. The following information
is printed for each symbolic references

- SYMREFS The labels which are being referenced.

- TYPE The type of reference. DATA indicates a refarence
to a data item. PROC indicates a reference to a
compile unit entry point.

= LOCATION The location at which the symbolic reference was
made. This is in the form stn.ste.sra. where stn
is the segment table number, ste is the segment
table entry and sra is the address relative to the
start of the segment.

= MATCH.DEF.IN The compile unit in which the referenced label was
found by $LINKER and the address of this label in
the form stn.ste.sra. If the referenced label
could not be found in any compile unit in the
library search path (defined by $LIB CU), the
comment **NOLINK** is printed instead of the
compile unit and address.

Symbolic references which begin H_ are not listed unless there is an
error report for that reference.

Task Listing

There is a task listing for each task in the load module. An example
task listing is shown in Figure 3-4,

A load module will contain more than one task only if it contains
two or more sequences of program code which may be executed
asynchronously. This type of processing is not possible in load
modules written entirely in COBOL (unless the Message Control System
is being used). For this reason there will normally only be one task
1isting for a COBOL program. This listing starts with the heading
TASK = MAIN,

3-08. 1

The first item in the task listing concerns the task entry-point
(the point at which execution begins). The name of the entry point
and the name of the containing compile unit are printed. For COBOL
programs these names are identical. The location of the entry-point
is shown in the form stn.ste.sra.

The remainder of the task listing consists of a list of all the
compile units in the task together with details of the symbolic
references in each compile unit. This part of the task listing has a
format similar to the list of included compile units described
above. Compile units which are listed in the list of included
compile units are not repeated in the task listing. Symbolic
references which begin H_ are not listed unless thare is an error
report for that reference.

3-08.2

LE]

7912IN=AYLN]

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ B ¥ ¥ ¥ ¥ ¥ 3 N ¥ ¥ X N ¥ ¥ ¥ ¥

SINIWILVIS TOUINOD YIANIT » » » » » » ¥ » » % » »

9L2IN ¢ W

(74 39vd 8261 750 AvVW 01220361 160) 7LeIN eoLetx 0L°0s YINNIT

43TA

IR IR IR R R R R R R R R R R R R R R R R R R L R R R R R R R E R R R R R R R R R R R R R R N N E R R RS E RS R R RN Y R YREE ¥
ﬁ’.ﬁ"”lCC!C“"*.!C*(‘I',CCOF C’f'i"*4"”‘*“’1”!‘!CC&CC!ili*ﬁi"ll’(*""‘dCCIIC‘CCCICCCCCCCCC!CCCC(CCXI.\FNUZ‘(CC‘
¥exy 2261710 23Q :@¢3i1va OL°0S :*NOISH¥3IA “xxxy
¥y¥¥ ¥

¥ 3 XN T
¥n N

*r¥ry

997 S0)9 *w¥x

L R L R R R R RS R R L R R L R R R R L R L R R S P R NS R RS N NN R
LR E R R I R R R R R R RS R R R LR R R EE R R L R R R R IR R L R A R P R RN AR AR L SR RN R SR RN RS

g2 39vd 8261 ‘€0 AVW 0L:20261¢t 1402 YJIATAV W YL2IN ZTLeux CL*0S HINNI

Figure 3-3. Sample Banner Page and SLINKER Commands Listing

3-09

Ol=-¢t

Burys1] Jse] erdwes °*p-f£ 81nbT4

LINKER

LM : CALENDAR

h k A K *

ENTRY

0.cu=

=SYMR
1.PRT
T«H_C

* & h &

POINT =

CALENDAR

EFS

BL_UOPEN

*4xk% WARNING 2604

1.H_CBL_UCLOSE

*akad WARN
T.H_C
ke ks WARN
1.FIN

1.

(CALENDAR ~

ING 2604
pL_usToP
ING 2604
D=DAY

*

CALENDAR

*

CU= FIND-DAY

~SYMREFS
T-H_CBL_UDMRC(

®axk WARN

ING 2604

50.10 X93.5

LI STING

BOURGAIN BOURGAIN

ok ok ok %k ok Ak A w ATASKEMAIN® & & & % % & % & % «

FROM:INLIBI

LOCATION:

CREA IED

TYPE LOCATION

DATA 08.0C.00 (0454

PROC 08.0c.00(070

UNRESOLVED REFERENCE
PROC 08.0C.00(078

UNRESOLVED REFEFENCE
PROC 08.0C.001(080

UNRESOLVED REFERENCE
PROC 03.0€.000092 FIND~DAY/08.11.000008

FROMzINLIB1 (REAT

CONT' D)

TYPE LOCATION
PROC 08.0C.00(0C2 **NOLINK=**
UNRESOLVED REFERENCE

ON

HA

*h

3/731/78 AT 13:49:48 BY:

TCH. DEF IN

--BLANK**/08.10.000000

*& NOLINK**

ANOLINK®«

A* NOLIMNK#**

ED

ON 3/31/78 AT 13:47:24

MATCH. DEF IN

13:50:17 MAR 31, 1978 PAGE

A ok A &k A & & k *k Kk X A& A Ak ¥ * & K

08.0C. C0O0008 IN CU: CALENDAR

coBotL 50.2

BYy: €o0B0OL 50.2

* k & &

Group Information

A sample group information listing is shown in Figure 3-5. This
listing contains information concerning the entire process grotp
(i.e. the entire load module). The listing is in two parts:

- Global segment list.
- Segment list.

Global segments are data segments which can be referenced from more
than one procedure segment. They contain records which have been
declared EXTERNAL in the COBOL source program (see Section VI). The
global segments listing contains the segment name and the SLINKER
segment number {(stn.ste) for each global segment. Also listed are
the data—names and internal-file-names within each global segment
and their corresponding segment relative addresses (sra).

The. segment list, on the other hand, contains an entry for each
segment in the load module (including global segments but =zxzcluding
segments with a name beginning H_). The segment list is the most
useful part of the SLINKER listing for the following reasonst

— The SLINKER segment number and internal segment number are

- shown for each segment generated directly from user source
code. The relationship between these segment numbers has to be
known when tracing the origin of abnormal step terminations and
in analyzing memory dump listings (see Section IV).

- The size of each segment in bytes is shown. This may be useful
when segmenting a COBOL program (see Section VII) and when
estimating working set requirements for program execution.

The headings and information in the segment list are as follows:
SEG.# SLINKER segment number in the form stn.ste

IN CU: The name of the segment as it appears in the segment
list of the COBOL summary page. Segments which are
generated directly from user source code have a name of
the form cun.isn where cun is the compile unit name and
isn is the internal segment number.

TYPE This indicates that the segment contains code (C..),
data (.D.) or linkage information (..L). Combinations of
these types are also possible (e.g. C.L when the CODAPND
parameter is specified in $COBOL).

3=

SH This indicates the shareability of the segment. It can
have the following values

I The segment can be shared between certain process
groups in the system.

2 The segment can be shared between all the processes
of the process group.

3 The segment is private to a process.
RF This indicates the residence factor of the segment.

RD,WNR,EX These indicate the minimum protection ring values which
other segments must have in order to read from, write to
or execute the current segment.

WP, EP W or E under these headings indicates that the segment
may be written to (modified) or executed.

G,S G or S under these headings indicates that the segment
is a gate or semaphore segment .

SIZE This indicates the size of the segment, in bytes.

MAXSIZE This indicates, in the case of a variable length
segment, the maximum size of the segment, in bytes. Note
that SIZE and MAXSIZE values are needed for working set
calculaticns. The calculation of working sets is
described in the System Management Guide.

CONT.P. Names processes which "contain" the segment. An asterisk
(*) under this heading indicates that all processes in
the process group have access to the segment. Since most
COBOL programs consist of only one process, an asterisk
will normally be found under CONT.P.

Linkage Heport and End Page

An example linkage report and an example end page are shown together
in Figure 3-6.

The first line of the linkage report contains either “ERRORS
DETECTED"™ or “NO ERRORS DETECTED". If no errors have been detected
the linkage report ends immediately after printing the line "OUTPUT
MODULE PRODUCED ON LIBRARY library-name". However, if errors have

been detected a summary of errors is now printed.

3-12

gl-€
6uT3sST] uojjewlogul dnoly oTAWRS °*G-f 3INBTY

LINKER 50.10 X93.5 LISTING BOURGAIN BOURGAIN 13:50:297 MAR 31, 1978 PAGE 3
LM 2 CALENDAR

2 = 2 s = s 3 2 2 3% 2 3 sx = == = GROUP INFORMATION = = = =z = 2 2 2 2 X = = % 2 2 2 % 2 3 % S =2 Z 2 T = 2 = & &8 X &

GLOBAL SEGMENTS

SEGNAME SEG NUM CONTAINS:

H_U_BIFN 09.08 LOCATION LOCATION
H_CBL_DRTP (2 000000 H_CBL_D_CSP 000034

H_CBL_DRTP 08.0F LOCATION LOCATION
H_CBL_DORTP (1 000000

-=BLANK 08.10 LOCATION LOCATION
PRT 000000

SEGMEN 1 LIST

SEG.# IN CU: TYPE SH RF RD WR EX WP EP G S SIZE MAXSIZE CONT.P,
08.0C CALENDAR.OD el 3 ! 3 3 3 208 *
08.00 CALENDAR.? 0. 3 2 3 3 3 W 1408 *
08.0E CALENDAR.2 C.. 3 3 3 3 3 € 2256 *
08.0F H_CBL_DRTP «be 3 ! 3 3 3 W 608 8192 »
08.10 __BLAMK Do 3 ! 3 3 3 W 16 *
08.11 FIND-DAY.O esk 3 !} 3 3 3 12 .
08.12 FIND=DAY.1 «0o 3 2 3 3 3 W 288 *
08.13 FIND-DAY.2 Cea 3 : 3 3 3 E 480 *
09.00 pPncs €b. 2 * 3 0 3 W E 1232

09.04 TERMINATION «be 2 3 3 0 0O M S 96

09.0B H_U_B1FN «Da 2 2 3 3 3 W 320

09.0€ SEN N, POOL e 2 3 3 1 1 W S 464

The summary of errors comprises one or more of the following liness:

WARNINGS (SEV.1)
ERRORS SEVERITY 2
ERRORS SEVERITY 3
ERRORS SEVERITY 4

“w w e e
3333

where "n" is the number of errors in each category. If there are any
errors of severity 4 (fatal) an output load module will not be
produced and the linkage report will end with the line "NO OUTPUT
MODULE PRODUCED", If there are no errors of severity 4 the linkage
report will end with the line "OUTPUT MODULE PRODUCED ON LIBRARY
library-name".

The end page simply contains the percentage of the total library
space used by all load modules currently present in the library.

Error Messages

Each error detected at linkage time saves at least one test
eXxecution of the user program. In order to detect as many errors and
inconsistencies as possible, $LINKER carries out checks on the
interface between linked procedures. For example, the arguments of a
calling and called procedure must be compatible in number and
attributes 3 external data declared in different procedures must
have consistent attributes. A complete list of SLINKER error
messages 1s given in Appendix C.

When an error 1s detected, SLINKER outputs a message at the point in
the listing at which the error occurred. Error messages have one of
the following formatss

*x%k*x WARNING nnnn message—text
*xkk ERROR nnnn SEVERITY s message—-text

where "nnnn" is the message number, "s" is the severity and
"messaye-text" is an explanation of the situation. Severity "s" may
have a value of 2, 3 or 4. (Severity | corresponds to a WARNING).
Severity 4 is fatal and no load module will be output. The total
number of error messages of each severity is given in the linkage
report.

NOTEs When building a load module from COBOL compile units SLINKER
will almost always output several error messages with a
message number 2604, If these messages refer to symbolic
re ferences beginning H_ they can be ignored by the user. These
messages simply mean that references to COBOL run-time package
procedures and certain system procedures have not been
resolved. These references will be resolved at execution-time.

314

MAR 31+ 1978 PAGE

13:50:17

BOURGAIN BOURGAIN

50.10 X935 LI STING

LINKER

CALENDAR

LM

-4 & * LINKAGE REPORT % % % & % % & & & & % % & % & & & & & & & & & % & & &

LR L K IR B N S JNE TN IR NN N N SN N L BN BN BN N B

ERRORS DETECTED (w)

[d
« % x nw Q x
x ® % - ®
x ® % * *
« x % x *
w
® % *x v * x
<
x % % a * *
« & % x x
* x % © * *
~
* x4 o x *
-
x x % = =
)
x ¥ x - L x
"
x % x * x
3
* ®« x < * *
x
x & & - x
* %= ~ * *
-
x & % [x -
o
* % x wn * *
o0
x & x (2] x L 3
. -
(-4 « x * *
2
© x x % * *
(%]
(=) * ¥ % * *
> * 4 = ' # *
w
x x & x *
-
-« x * x
w
« « x @ « «
w
x x % % * *
=] =z
2 x® X % - x *
W e oy <
WO X % % o = *«
< o o
< *x e =) — *
axEE o (7]
. % ¥ -] 7] x
woo w
TZ= « x % z (7] x
- o< -
o T « %« < w «
- - v o
-~ < * 4 & 3 *
x ~uow = a
] [« ¥ % =} 4 «
. =z o u
-8 W * %X % «
= - X
w - . % X (L * *
- - 2
. -Z2 x ® ¥ L * -
(2] - [ond
- - « v g e - -
= sz z : - - .
~ o - A x & % - - *
o = |
o * | * 3 x * =
S ax |
w3 3 * % x *
o v
~ [- - ¥ * x Ll * B
- W - .
* [] € ¥ & " « *
> > a2 o
w -3 x x > * «
nw < woo
> @ - x « x x *
o 2 X X
N - - x % ¥ * x
- < <<
ot wE E € x %] -
- Z o - o
Z o < ww x ® K - * *
o« @ e *)
< o nac<g * x & Q * w *
= w 3 w [
=4 o> wn LR N D *
t =] e wE
a @ T w * x % * w *
(=] (TR ©
x - x x x * < *
o o -3 a
2 O £+ % w xwn x
w < Z x
- - * x % 4 * w *
> [[- ©
o o o * x % - x *
Q z - w
= - L IR * W x
< “ <
- @ = *xx x = *
b= < o Zz B
a x o x x % * w x
- ©
2 ~ x % & * x x
(=] * w
] i x & % * o *

Figure 3-6. Sample Linkage Report and End Page

3-15

oA ok ok o k& kA & & A A N ok ok kA X K kW

* *

* & & * N K &

* ok k& * & A ok A & ok ok kR ok ok kA ok kR k&

* k o h k
i.ﬁ_ﬁi

* ok ok

* * A K

*x k&

LIS I I A B R I B 2R D N B U I R I N B T O A D UL S N AN B DR I

B I

* Kk
A ok kA kA K K Kk k Kk & X & ¥ * ¥

PER . T T T

[2N R JNE R B B R A I L DN N 2N B BN R TN DN B NN NS L N A N R NN B

XN BN N I B 2 2 AN
Ak A K Kk K Kk K k k Kk k * X & k KX * * F & Kk & & &k * * A * &k X A & K &
* & k kK ok ok Kk & k& Kk k k Kk * & Kk * & & Kk &

L2

L2 T S SN BN R B UL R S TN S BN NN T DN SN NS S BN S AR B

* Ak k & K &k A B Kk A & & * k * & & Kk k& k X & & Kk & k ¥ * &

4k k w* k * A & &

SECTION IV
EXECUTION

This section introduces the Level 64 debugging facilities and the
use of these facilities for program testing. The analysis of user
program memory dumps is also discussed. Various types of abnormal
step termination are described and hints are provided to help the
programmer diagnose their cause.

Notes For an explanation of COBOL segment number, internal segment
number and S$LINKER segment number, see Section III, Linking.

PROGRAM DEBUGGING

The programmer has two tools at his disposal for program debuggingt
= The insertion of debugging code into the COBOL source program.
This is a purely COBOL tool and does not rely upon any facillity
external to the COBOL program.
- The use of the Program Checkout Facility. This is a facility
external to COBOL and does not have to be requested within the
COBOL program.

The use of these tools is discussed in the following paragraphs.

Debugging Code

The following types of debugging code can be inserted in the COBOL
programs

= One or more debugging SECTIONs in the PROCEDURE DIVISION
DECLARATIVE. Such a SECTION includes a USE FOR DEBUGGING
statement which specifies the data-names, procedure—names etc.
that are to be monitored by the remainder of the SECTION. The
remainder of the debugging SECTION contains normal PROCEDURE
DIVISION statements, typically DISPLAY, which are executed when
the data-names, procedure—-names etc. are referenced. Debugging
SECTION code can access a special register, DEBUG-ITEM, that
contains information such ass the internal line number of the

4-01

line for which the USE FOR DEBUGGING SECTION is invoked, the
value and data-name, procedure-name etc. of the data item,
altered paragraph etc. Note that, among other things, a USE FOR
DEBUGGING SECTION can be invoked each time a data—-name is
referenced; this facility i1s not available when using the
Program Checkout Facility alone.

- One or more debugging lines anywhere in the program after the
OBJECT-COMPUTER paragraph. Such a line is identified by a "D"
in the indicator area (column 7). A frequent practice is to
insert, in the PROCEDURE DIVISION, DISPLAY statements which
will display the contents of significant variables at various
stages of program execution. In fact, any COBOL procedures may
be coded as debugging liness the only requirement is that the

program be logically consistent both with and without such
code.

If the WITH DEBUGGING MODE clause is present in the SOURCE-COMPUTER
paragraph of the program, the debugging code will be compiled as
normal program code. If the WITH DEBUGGING MODE clause is absent the
debugging code will be treated as comment and will not be compiled.

The presence or absence of the WITH DEBUGGING MODE clause can be
overridden by the $COBOL statement varameters DEBUGMD and NDEBUGMD.
If DEBUGMD is specified the program is compiled as if a WITH
DEBUGGING MODE clause was included in the program. 1f NDEBUGMD is
speci fied any WITH DEBUGGING MODE clause is ignored and debugging
code 1s not compiled.

However, 1f the debugging code 1is compiled, the USE FOR DEBUGGING
SECTIONs will only be executed if the DEBUG parameter is included in
the $STEP statement. [If the DLEBUG parameter is absent the USE FOR
DEBUGGING SECTIONs have no erfect upon program execution. The
presence or absence of the DEBUG parameter has no effect upon
debugying lines (containing a "D" column 7).

When a load module consists of more than one COBOL program and the

DEBUG parameter in used in the S$STEP statement, all USE FOR

DEBUGGING SECTIONs of all programs are activated. However, one can

deactivate the SECTIONs of one or more of these programs by using
B the Program Checkout Facility (PCF) command CHANGE (C)3

Cystn.ste.30 = “OO0a"X3

. A full explanation of the CHANGE command can be found in the Program
Checkout Facility Manual. "stn.ste" gives the segment table number
and the segment table entry corresponding to internal segment number
0 of the compile unit whose USE FOR DEBUGGING SECTIONs are to be
deactivated. stn and ste comprise the SLINKER segment number which
is defined in Section III together with the internal segment number.
The relationship between the SLINKER segment number and the internal
segment number is described under Dump Analysis, below.

4-02

"a" must be zero for complete deactivation of the USE FOR DEBUGGING
SECTIONSs,.

The USE FOR DEBUGGING SECTIONs may be partially activated. In this
case the above PCF command must be used with "a" taking a value.of |
or 2. These values have the following significance:

1 = The USE FOR DEBUGGING SECTIONs are activated only "ON
procedure—names".

2 - The USk FOR DEBUGGING SeCTIONs are activated only "ON
identi fiers, cd—-names and file-names".

Programs which are not referenced in the above commands have all
their USE FOR DEBUGGING SECTIONs activated when the DEBUG parameter
is used in the $STEP statement,

USE FOR DEBUGGING SECTIONs tan be activated, partially activated or
deactivated dynamically by using the "AT" and/or "IF% options of the
above PCF commands . Full activation of all USE FOR DEBUGGING
SECTIONs in all programs can be achieved by using the above PCF
command with "a" having a value of 3. Note that if the DEBUG
parameter is used in the $STEP statement then, unless commands
speciry otherwise, all USE FOR DEBUGGING SECTIONs are activated in
all orograms when execution starts.

Program Checkout Facility

The Proyram Checkout Facility (PCF) is a diagnostic system which (if
requested) is executed in parallel with a user program being tested.
PCF may be used to monitor the user program in the following wayss

- The flow of program control can be traced through specified
points in the program. Each time control passes through such a
noint, PCF records this fact.

- The values of specified data items can be changed when control
reaches speci fied points within the program.

- The values of specified data items can be dumped when control
reaches speci fied points within the program.

- Procedures and data can be re ferred to using symbolic or
e ffective addressing.

- Commands can be applied to selected compile units.

- Commands can be made conditional upon the value of speci fied
data items.

The type of monitoring to be done by the PCF is specified by the

programmer in a file of PCF commands. The commands used to request
the above monitoring for example are TRACE, CHANGE and DUMP.

4-03

The use of the PCF will not be described further in the current
manual. See the Program Checkout Facility Manual for further
details. However, the following paragraphs discuss the JCL required
in order to run the PCF.

The PCF is requested by including the DEBUG parameter in the $STEP

statement of the user program. In addition a sequential file of PCF
commands must be created and must be assigned to the job step with

an internal-file-name H_DB.

In addition to the above JCL it is advisable to include the DEBUG
parameter (not to be confused with the DEBUGMD parameter) in the
SCOBOL statement. This parameter causes the compiler to build a
table of all the source names in the program, with a record of the
name type (data—-name, paragraph-name etc.) and the generated segment
acldress. This table is then stored in the compile unit and is
incorporated in the load module by SLINKER. It is possible to use
the PCF in the absence of this table. However, if this is done the
user must specify the actual memory addresses when referring to the
code and data in the load module (effective addressing). The
presa=nce 0f the table enables the programmer to refer to data and
code by the names used In the COBOL source program (symbolic
addressing). However, the size of these tables should be born in
mind (about 60 bytes per source line). A segment containing these
tables is generated for each 200 lines of source code
(anproximately).

Tha O:3UG narameter in the SSTEP statement, in addition to
reyissting tne PCF, has a special effect on two exceptions (see
wrecention Messayes helow). These are:

EXO!1.EXCEPTION 09-01 ¢ ILLEGAL DECIMAL DATA...
EXOV.=XCEPTION 17-02 ¢ OUT OF ARRAY RANGE...

wren the DEBUG parameter is used together with the PCF commands
RECOVER TLLDEC and RECOVER SUBSCRIPT these exceptions disappear and
tne step 15 not Aabnormally terminated. Instead, the error is
reported in the PCF report and action is taken to compensate for the
error. lhese two exceptions usually occur more often than any others
during proyram debugging and their suppression can avoid numerous
unproductive test executions,

NDUMP ANALYSIS

A memory dump of the user program can be obtained ir the DUMP
parameter is included in the $STEP statement. The dump is only
printed if the program terminates abnormally.

4-04

It is recommended that the DATA option be used with the DUMP
parameter. For example?

STEP PROG!, TEMP,
DUMP = DATAs

The DATA option will produce a dump of data segments onlys code and
iinkage segments will not be dumped. They are not required for user
programs.

Structure.of the Dump Listing

The dump listing is divided into two parts. The first part contains
the segments shared by all processes of the process group. The first
segment in this part is the Process Group Control Structure for the
step. It is preceded by the following heading:

%%k deddedk koo dok ok

* %5k P GC Sk dhhk
dedede dek dedek ke k

See Figure 4-1 for an example.of the first page of a dump. Each
segment in the dump has a two line header similar to the followings

/J=02/P=00/ /STN=09%9/ STE=01/ SEGMENT DESCRPT: 9800F81B 42000000
SEGM.HEADR: OOOF8170 O00F81C0O. 00000200 000IDDCB. 01032E41 01098901,
The only items of interest to the user programmer are the values
shown for STN (segment table number) and STE (segment table entry).
The segments in first part of the dump listing include the
following?

- File buffers.

- Physical channel program segments.

- Data Management control structures.

- Job control structures.

The only segments of interest to the user programmer in this part of
the dump listing are those containing file buffers.

The second part.of the dump listing contains the segments which are
private to the process. The first segment in this part is the
Process Control Structure for the process. It is preceded by the
following headings

% ke Jede dede Fede dedede

*hkkkPCSkdkk
% % dede Yok Jede dekek

4-05

See Figure 4-2 for an example of this heading. The Process Control
Structure contains the Process Control Block which contains a dump
of the stacks used by the process. One of these stacks is of great
interest to the programmer and can be used to isolate the part of
the user program that was active when the abnormal termination
occurred,

The dump of the Process Control Block starts with the following
headings?

Fedkk %%k PC B *kk hkx

The remainder of the second part of the dump listing contains the
data segments (and code and linkage segments {f DUMP = ALL was
.specified) which make up the COBUL program proper.

The Stack

For each protection ring in each process there is a “stack”. For a
normal program there are three stacks. The stack is used each time
the COBOL program executes a CALL statesment. At that time the
addresses of arguments, the contents of registers and the contents
of the instruction counter are loaded onto the stack. The stack is a
last-in—-first-out data structure. This means. that data pertaining to
the last CALL statement executed is at the lcgical top of the stack.
Data pertaining to the last-but-one CiLL statement executed is next
in the stack, and so on. The stack i{s also used in the same manner
when an exception occurs or when the cecde ¢genarated by the compiler
or contained within C0B0L run-time nackage procedures sxecutes an
instruction equivalent t2o a COBCL Call statemsnt.

There fore, after an akbnormal termina*!fon the relevant stack will

point either to the instruction follewing the last CALL (or
equivalent) executed or the instructien at which an exception

occurred,
The stack for each ring starts with 2 heading such as3?

RING 3 STACK STN=03 STE=00 SEGDESCR 9C00B935 FEOCOC7F

The ring 3 stack is the one relevant to the user program. See Figure
4-3 for an example of such a stack.

4-06

LO-V

dung Jjo abed qs.ug *|-¥ 31nbT4

AA K R A A AR A

Wk kAR AL A A

*
L]
Prea 605 L4
ok k S
L I
*
*

[E R TR RN NN

L dRA ARk

(€)Y V1wie,

punp J=04

LI R R T I NE B I

AN AP, e

LR N I A

(=000
SEGMMLALR:

gone
otk
00460
006U
[{ILF RV
COAU
GOLh
ooLo
0100
01720
0140
0160
01,0
01410
01c0
0110
02 0n
a2eon

Net?iLl
hebvnt
Jearer
Ceared
noarong
Gl 2
Dranal
{ehaol
(U
Ledho Al
Lo en
Dbt b
Deh
DA
n,ohoan
24000
11,04 Y4
Ueh It

AAd e

kA

NN

b aa

p=nG

/S1:=09/

ULl

NCFEOEZ0
u00atcn
NGHGEGEON
NLOCH200

GOt

096Nt 0

OOninggn
(AITAITA Y
[N AT
[ER RN AN
Oap s rn
(g, 31
A PAENITAL PA
Doannenn
it dn
TaVIAND

310

C N N RN

LI A N R

RN R NI

Ahh AR N AN

CII=aiubLYWFLL 3ULL

TERM.MSG

STE=00/
NGH256A0

01032478
FFELOFFD
TFFIFFFF
1620274
GOQEETOE0
azaeoono
FFIFFFFF
0000 0n0
EDADEONG
(04022405
1430074
annnoern
nooRueGYR
nnnennn
0000
AN LA
BN g

res

FFV

DO 2T 0NN

e
e

* b
L

EIEY

R

R

LR

[T IS Y

RN R R R

IR R RN E RN

LR R R R RENEN]
LERE RN NE RN N]

20n2040C5

SELALNT
nonanaon

I0S4005A
QLAGOELO
110entne
GLGDHONON0
poscanan
non2an2c
CAHTUFF DY
0651 FC
annannan
JCotnein
01400 3N
0N 72NN0
N2 ¢
0NN ap
0NN
B INRIINENN]
1N
[EE A RYAR Y

nESCRAT 3
nNNN24nsn

nnpaNInn
Nt 2442720
rFx20150
nnnnaer 2
MNARINT A
rnnannnsy
nmranian
TANINNAN
A2 399NN
N149)9029
N1 NN
MM 2n
nnaanngn
nnnayannn
nnn ayannn
iy nnn
W e
RHBRULE

pladlL

Col

10:53:07

GAY 11, 1973 PAGE 1

IR R A S e N e N e A R R R A R R R R NN RS RN

N N N L R R RN NS

VERSION:

LR RN]
IR R

JB_30 DATED: MAY 11, 1978 ##sn

Ah kk vk okh bk d ok d Ak R b bk h ok ok ok kAR ko k kR b Ak kA AR AR Rk AR R AR AN Rk AR A A R Ak

‘ﬁﬂ.tlihﬂﬁhﬂ‘ﬁﬂﬂ‘ﬂiﬁ'htQﬂk.ikﬁtlﬁiﬁﬁt.ﬂﬁﬁtﬁﬁti..ﬁﬂiﬁ.t‘.‘l..'ﬁﬁﬂih'ﬂﬁ.t

270026473
NnnO4AGY

07200740
02040008
AO0D264E9
00060900
ou1n10ne
TA0D0000
FFOOO?210
000NN 0
3E06000
A210486
0o 1Founn
1726 AR
NOAN0)00
1002314
6002574
4009700
nDCIBhED
03061000

CFOO0OFT
0a000G06

ou0n0100
FFFFFFFF
(2912900
DEFLLIFOD
82A04005
0Gc060000
35801100
n7ZA20000
nonoe6o0o
aJ000nno
02000000
Quauenono
12260078
04aNnp2497
69002415
annonnnn
rennnnzr
0nncoyenn

00NDO00F1

00000014A
09020000
03020000
00000000
83034005
TFFELODS
02230000
poooaoz9
4906060640
01400000
0A490000
noudA000
00000000
n1N20280
FENI0290
2CO0A5A8
nonnonoo
10178601

00000000

0noooo0n
84305000
o0o00c00
00000000
00104100
FFFFFFIFF
0nnooooo
50000000
07000000
01800000
0201109C
00n0000¢
nnuoooo1
01002499
Franl3tae
0200208 F
a0n00000
420640000

230NN D!3-20ddd a2V
20uddd3000 VTV IVIRIIIDIIIINA
020" 09000 2903 EAIIVIVIV IV D AAD
39V ddWD VIVIT VDDA D60 dAI DI A
30dNFnddad*dddda iddadddd A WD I
9039029073079 " TAINIEID
0 0ddd N dNd0RddANAINARI IV D DD
300N DR dIIIDddIVIAIL AR
W ACADIVINA IV AVA-ADVdwddd IV
2d0RdddAd>Add Fddddadddadn DI
J02d 939 9391 IIAVIVAIIII DD
9003809000 09AdAINANIRNDIAINADID
A0ddY IV VDI ddddaddvaddddd ddd
VIV WVVII IV dI N AAIDI WD DDA
dAddaAINDI RNV VANV I QDD
330dP0dddd VI ARIVIVN VDI I DD AD D
A" NI "2JadD " VIR IDD
Jddd=NldddddrKddddddddaddddad ddddd

80-v

dung S04 o 3deis *g-y 9anbi4

Loy

060 7124300

LR N A

LR R RGNS R K

AR kA h AR AR

/d=0¢a/r=00/

“ LR P]

uartnao

/310=08/

pirp

000u
0020
Co40

G247t 0
624300
Q2648240
COAD V24 340U
0050 u26&cU
00AQ {24880
00CC D245A0
O0EOD Ce4ECn
0100 024&LC
0120 026500
0140 224920

noocn2oon
ONGIFLCE
05040010
FFFFEFFF
0anunn0.)
nannNnns
N7002493
n1ceonon
OACONI0
U000
nanponng

AAAAAMPCLAAKN R &

RING)
*STACLK
*WRAARLA
4130

*SAV AREA
t13¢

HR RS

N Y

t14:)

RN

STACK
FAE

[ACIEN
ASHO:
ICwW:
RO
R4 :

GRO:

$TA=01
31

0 HEGI4ANY

SAM=
s 0=-7
GRG=7
i =T

Sy

[O AN O

0Cnouhuo

STE=00/

Jh_30

18280334
20850000
n3000c¢00
FFFFFFFT
Q0030000
ID7EE0GO0
03002495
132F001¢C
(82F0634
0000000
06000000

ade06000
07012493
1A8CU008
132FC61C
030000E0
(R2FO6 354
182FJ568
Q0000004

206294C5
STC=01

0F400270

GFFFFFIOD
01400110
HO30U30)
AL267T0
0044 041)

[INNE R

(YR IRKATRIEN I3

SEGHENT

X744

00000000
G0scu0an
croz2enac
U&10FF 0
20007204
20000000
OCOEOQTD
J82F0A34
60000000
3000004cC
c0nd00u0

PHMWY
ASWT:
Shwd:
R
R 5
GR1:
GRS
XR 1z

XKk 5

SEGDRESCR

0149

Granpt gn
4020000
TR AN

bl

nNeaINAN

[SN IS R VRN BTSN NN B

NESERPT: 9CN0247E €C2000014
CREACTDI MIGHILL cuBL
nnaAnec??2 00000900 OEF44L1FO
nnNa3InNzA 00101000 82A040605
€NNIINNT 1A000000 00000000
01F37130 FFODDO210 3580FF00
nNo39NNN 09000011 36270000
16523000 ROEQ6000 0000OOOOU
N32FICFO 140407926 00000000
nn27nn7R 132f02C3 080G000ED
132 FN5AN TE2FO56E 182F0N568
0nNNNINNR NAA70008 2086204CS

nanaInnan

11079000 PiW2: 490t£0210
n3N1149S EXxW: 0C6EQ010
n14 39900 Suwl: 018C00020
N32F1634 R2: - 0p27007R
110 3INL3F YR6: 182F061C
n1n19an GRZ: 132F056A
0N 5A GR6: N0000001
09904 € ARZ2: GLOCIGOA

A0 914¢C

aennAse A

9N InIIn
AN ngn
AN Yy s

XR&: FFFFFFFR

V26GONABF

JUAE)AL
BEVYANIVI
Jan7iaak

09350000
Judnn o

tabaf6lby

00030000
83004005
?7FFEBO6DS
02200000
0000007A
490€0210
01400000
180804 3E
0000006A
3300016¢C

PMW3:
SKW3
SBW2:
BR3:
BR7:
GR3:
GR7:
XR3:

XR7:

awuhba Lo

10

00000000
00106000
FFFFEFFF
ooooo0000
48470000
07000000
01800000
182F061C
00003001
FFFFFFF8

07000000
082F2634
01¢00000
182FJ2C3
0ABCO010
182FJ56E
00000000
OAA73008

0C000000

(P R AV R R VIV RO VIV AVAY)

ddddaoddad dadawd

RNV R AT

:53:07 MAY 11, 1978 PAGE 29

2RIV RATIIIARII402IRD WA
994070902 *Add3d tdJdadddd D JID @
90200003392 00020 ddadRddI"dINDIDI
2732903d233 2030033322 add39330D I
90300007003 7IRIIIIIIIIIIAAI:D QD
100090003039 '!930a~vdudddddII I
0203500 d> dddd6dd0dadddddad JAI I I
233030030333 030032029393C203333932ddd
3073002330702 3ddd>dINIdIII DA
123392002000 d<VIVddIIVIEIDI%IDDE
9ddddddadd dDIND D

diddd I

0BE4DO04B 01400110 0C170010
00NH3I0N00 00UNDJ0M

00000002

QU0 QuuNIV04 FFFFFFF8 00000000

60~V

CREACTDB MIGHILL COBL 10353:07 MAY 11, 1978 PAGE 30

080NNONO 02000000 00350000 0BE4004B 01400070 0A880010
330NN16C 00000000 ~w#+www+ 00000000 00000301 00000000
00nnnnna 38180026 000002F1 00000004 FFFFFFF8 00000000

893€Ea3aX

080210000 08180026 03000100 03000000 0BE3D20A 0BE40010
nononNnNac 00000C02 wes+wwaxx 00000000 FFFFFFFD 00000400
030010000 38180026 000002F1 Q0000004 FFFFFFF8 00000002

na0pNOON 08120000 FFFFFFFF 08000000 33000088 20003933392999330009200a93030000

0000NN20 09080000 7FFFFDS5 00000000 00000000 300333393033 33330333"3a933330 990

0nnnn000 00000000 00000000 00000000 00000000 9000230330993303030033348939390000
333

080nN000 08120166 08120000 08120000 0816098A 080C0010
0nnonNnnNi12 59041000 82051820 020CC606 FFFFF3F0 FFFFFFFF
NNENNANNN 00001510 00000008 00000058 00000006 00000002

nannncn? 03000000 FFFFFFFF 00080C00 08000000 9393333333 32392333333333303a3d99

N3NCNINR 03000000 FFFFFFFF 08000000 00000000 0C220008

DUMP JB_30 X7 .4
00AS8 SAM= OFFF7FFD
00AC BRO-7: 01400070 01400090
00ccC GRO-7: 00000000 00000000
0UES XRO-7: 00024760 00024890
0108 STR: 00000000
010¢ PTV: 014000A8
0110 PSA: 014000A8
0114 1CC: OAB3040A
*COMAREA
0118 NBP= 00020014
- 011¢ 01400096 0AB80024 0AB80028 DA83INN77? 0A880077
b~ *STACK FRAME 003
O *WRKAREA
c *PAGE=082F0000
- 0000 208204C5 3300016¢C
@ *«SAVAREA
0008 SAM= OFFF7FFO
ﬁr 000¢ BRO-73: 3300016C 01400000
w oo2c GRO-7: 208204CS 00000C02
by 0048 XRO-7: 38180026 0400002
0068 STR: 80000000
= 006¢ PTV: 01400008
pose 0070 PSA: 01400008
o 0074 1CC: OBE4O46A
Q *COMAREA
w 0078 NBP= 00000014
007¢ 0BE40047 01400000 GBE4O04S 01400004 0BE4O04B
&
[41] ING 3 STACK STN=03 STE=Q0 SEGDESCR 9CONDOFD FEDOOO?FI
~ tT!TIt?‘TFTﬂE oo
*WRKAREA
&Q 009¢ OFFFFFFO 33000088 0300009¢C
N 0os¢C 080c0010 03000000 J0N0000E
a oope¢ 0000000A 00000000 00000000
~ 0OF ¢ 00000000
«SAVAREA
0100 SAM= OFFFFFFO
0104 BRO-7: 33000088 0300009¢C
0124 GRG-7: 00000000 00000011
0144 XRO-7: 00023710 50000299
0164 STR: ?7E000000
D168 PTV: 03000100
016¢C PSA: 03000100
0170 1CC: 38180026
*COMAREA
0174 NBP= 00000010
0178 000002F1 04000C02 03000000 04F11819
*STACK FRAME 002
*WRKAREA
+«PAGE=33000000
06920 009G0000 FFFFFFFF 38180026
* SAVAREA
0020 SAM= OFFF7FFD
0024 BRO-7: 33000000 03000000
0044 GRO-7: 03000000 D0000DNE

NNNI1%20 09080000 #w»»*x»x» 00000000 00000300 0000000A

The stack is separated into stack frames by headings such ass

*STACK FRAME 00l

Each frame 1s associated with an individual CALL statement (or
equivalent) or with an exception. The data for the latest CALL or an
exception is in stack frame 00! of the ring 3 stack. In this stack
frame the value.of the instruction counter is printed in the
*SAVAREA next to the characters "ICC:", See Figure 4-4 for a sample
stack frame 00!,

*STACK FRAME 001
*NRKAREA
*PAGE=33000000
0000 000G0000 FFFFFFFF 38170130 02000000 00000000 FFFFFFFF
*SAVAREA
0020 SAM= OFFF 7FFO
0024 BRO-T73 33000000 03000000 08000008 03000000 FFFFFFFF
0044 GRO-73 03000000 00000000 00000020 09080000 *kkkik kkk
0060 XRO=-72 00000000 00000000 00000000 00000000 00000000

0080 STRs 3E0Q00000

0084 PTVs 03000020

0088 PSAs 03000020

008C ICC: 380EOQO9E
*COMAREA

0090 NBP= 00000010

0094 O00002F1 02000000 00000000 04F10000

Figure 4-4, Sample Stack Frame 00! Dump

In this example the line containing the instruction counter is 4
lines from the end of the stack frame and reads as followss

008C ICCs 380EO009E

The instruction counter is of the form rneeaaaa, wheres

r is not relevants

n is the segment table number (stn)s

ee is the segment table entry (ste)s

aaaa 1s the address reletive to the start of the segment (sra).
The stn, ste and sra point to the machine instruction which was
‘executing when the program terminated. Normally, the stn, ste and
sra will also be printed in an exception message in the Job
Occurrence Report (see Exception Messages, below). [his is useful
when no dump has been produced. Even if there is a dump the stn, ste
and sra can be found more conveniently from the exception message.

The machine instruction indicated by the stn, ste and sra normally
corresponds to a COBOL statement in the source program. The
following paragraphs explain how to find the line in the source
listing which was being executed when the program terminated. Note
that the stn, ste and sra might not point to an instruction in the
source listing. This is the case when the program terminates while
executing an instruction in the prologue or the epilogue of the
COBOL program or in one of the procedures of the COBOL run-time
package.

4-10

The segment table number and segment table entry when written in the
form stn.ste make the SLINKER segment number shown in the segment
list produced by SLINKER. For example, the instruction counter in
the above example gives a SLINKER segment number 8.0E. From the
SLINKER segment list in Figure 4-5 it can be seen that the segment
with this SLINKER segment number (SEG#) is a code segment (TYPE IS
Ce. In listing) from internal segment number 4 of the compile unit
COBOLTEST.,

SEGMENT LIST
SEG.# IN CUs TYPE SH RF RD WR EX WP EP G S SIZE
08,.,0C COBOLTEST.O L 3 3 3 3 3 80
08.0D COBOLTEST. | «De 33 3 3 3 N 880
08.0E COBOLTEST.4 Ceo 3 3 3 3 3 E 576
08.0F __BLANK «De 3 3 3 3 3 N 144
09.00 PGCS . CD. 2 3 3 0 3 KW E 1120
09.04 TERMINATION «D. 2 3 3 0 0O W S 96
09.0B COBOLTEST.2. .D. 2 3 3 3 3 N 4000
09.0C COBOLTEST.3 «De 2 3 3 3 3 N 176
09.0E SEMPH. POOL «De 2 3 3 1 1 W S 192

Figure 4-5. Sample SLINKER Segment List

The procedure map listing produced by $COBOL for the indicated
compile unit (in this example COBOLTEST) should be consulted in
order to find the internal line number of the COBOL source line
following the relevant CALL or that at which the exception occurred
(see Exception Messages, below). The addresses in the procedure map
listing are formed by concatenating the internal segment number
(suffixed to the compile unit name of the SLINKER segment list) with
the sra obtained from the instruction counter. For example, the
SLINKER segment number 8.0E in the above example indicates internal
segment number 4 of compile unit COBOLTEST. The internal segment
number (4) should be concatenated with the sra (009E) from the
instruction counter. Thus the address to look for in the procedure
map listing is 43009E. This address will normally lie between two of
the addresses shown on the procedure map listing. The earlier
address should be used as this is the start address of the compiled
object code.

Information concerning parameters specified in a CALL (or
equivalent) is printed in the *COMAREA section of the ring 3 stack
frames. See Figure 4-4., The first word of the *COMAREA contains the
number of bytes (hexadecimal) in the list of parameter addresses
which follows. The addresses are of the same form as the instruction
counter (stn.ste.sra.). These addresses point to the locations in
the dump at which each parameter starts (the number of bytes in each
parameter is not given). The method of finding these locations in
the dump is described below (Data Division Variables).

4-11

In order to find the data—-name of a parameter for which an address
is given the following should be done. The internal segment number
should be obtained from the stn and ste, as described above, and
should be concatenated with the sra. The resulting address should be
searched for in the data map or cross-re ference listing fo find the
data-name.

Data Division Variables

The value of any DATA DIVISION data item at the time of an abnormal
termination can be found from the dump listing.

In order to do this a SCOBOL listing is needed which includes at
least one of the following (see Section Il for the associated $COBOL
parameters):

- cross-reference listing (alphabetic order);
- cross-reference listing (declaration order)s
- data map and procedure definition listing.
The address of the data item may be found in one of the above

listings by referring to the associated data-name. Consider the
following line from a data map listings

LN NAME PN ADDRESS USAGE PIC-STRING DEF.
- 02 A-KRBAB (KR-KRBAHEADER) 1$000EC DISP 9(1) 84

The address of data item A-KRBAB in this listing is 13000EC, where |
is the internal segment number of the segment containing the data
item and OOOEC is its address relative to the start of the segment
(sra).

To find the address of the data item in the dump the internal
segment number must be converted into a SLINKER segment number.

The SLINKER segment list of the abnormally terminated load module
must be consulted. See the sample segment list Iin Figure 4-5. From
this sample it can be seen that the $LINKER segment number (SEG.#)
corresponding to internal segment number 1 is 8.0D. One can veri fy
that this segment 1s a data segment from the TYPE which is ".,D.".

4-12

This SLINKER segment number comprises a segment table number (stn)
and segment table entry (ste) in the form stn.ste. That is, if the
SLINKER segment number is 8.0D the stn is 8 and the ste is D. The
segment containing the required data item can be found by looking
for the segment header containing the correct stn and ste.

A sample segment with a header containing stn = 08 and ste = 0D is
shown in Figure 4-6. Each line of a segment dump shows the values
held in 8 consecutive words of memory. (A word comprises 4 eight bit
bytes.) The first part of the line shows the hexadecimal ;
representation of each word. The second part of the line shows the
EBCDIC representation. At the extreme left of each line are two
columns of memory addresses. The first column is the address
relative to the start of the segment (sra). The second column is
the address relative to the start of memory.

The addresses in the first column should be searched, for the
address of the data item as specified in the $COBOL data map or
cross-re ference listing. In the above example this address is EC.
The addresses In the segment dump are those of the leftmost word on
each line so the last digit of this address is always zero. So {f
the address EC is being looked for, the line beginning OOEO should
be selected and the byte with address EC will be the first byte in
the fourth word from the left (i.e. the 13th byte from the left).

General Information

The following information may also be of interests

- the segment whose name is program-name.l! (usually pointed to by
BR2) contains?
a) at offset 18 (hexadecimal) the program-name.
b) at offset 36 (hexadecimal) the version of the compliler used

to compile the program.

c) at offset 4F (hexadecimal) the date of compilation.
d) at offset 57 (hexadecimal) the time of compilation.
These items can be checked to ensure that the $COBOL and
SLINKER listings used to analyze the dump correspond with the
dump listing.

- When PERFORM and ALTER statements are used in the program, it
1s advisable to determine which of them is active. This can be
done by requesting that a “perform/alter backet listing" be
printed by the compiler (MAP parameter in $COBOL). This listing
1s explained in Section II.

4-13

vi-v

dung juawbeg *9-f auanbBI4

/J=C4a/r=0u/ ‘/?TH:P“/

SEGMJHLADK:

ooue
00e¢
o0t

006G
[SJ¢RARE
Al

0640

w7 R0l
0757C0
0735980
TN,
GPAA2(
(AN YA

[ENAF SO

D73AF0
N751 00
075120

OS5

A75¢00
173070
g7o3can
N75060
d75¢30
u7s50aAl
araccer
nricet
73600
Qrine0n
n7icst
(730460
075080
O75DAL
nzioce
J750F0
A7l
N7it2l
G73C4l
7ichl
D7IERG
J7YEACG

) D735€ECO

G7 EEU
J73F0OC
Jrif2u
N72F40
7ol
aririh
Cr7ian
nvipch
(st

St
STF=LD/]
LA 5RO Q076200
FLart51) 06LTL3N3
CHEZLE 540 40436040

FYh0 SN
Faplaxnp
U2ty
DUNZOUAA
N 15021A
LA LL 0L

UREYACYANTRY|
05310500
O31506CA
0810 ACH
Q7160 bAD
(170430
217978 A
O0170AA0
[(EAENIEINY
Yo 1 ph 2
DICHL2R A4
cinhcaco
D7ct0UES
00000C6
DIFLIGCS
FrTaG(ans
DIACIEY
DAHFSLOCT
E26D9CS
CACHCLRCS
0560505
CoADINGNC
C10%C%40
EXESCRCAH
E2LLANT
DSCRECGLY

3400607
C1e20140
O4nLEIL0
4950070¢
ESCHD 2R3
606060660
505C40C1
CLb4UCHDT
Lvit ol e
CHDCLALS
NS nok 2
(E1G09NC
Chatrg et
Fanru/(h
CCbanse

LYFCFOLO
(e2fR00
8130038
U31360t 6
02120250
4GLILDAN

LO4DL0LD
0814601544
031507606
08150 2R
CR17507¢
03170400
93170850
JR17GAD2
(%180DpDR
G2190D34
D3ILIF1OR
c9n3csa
D2O5ELQD
DS4dCIC?
10505006
E4DSCLCD
CSCI1E3CS
C3E3C9Ch
E2E4D3ES
E2E2C6HEG
LOL3I60C3
0103p7C
F2ELC3CR
CIC72C5FO
€5c440C3
CID6DLDT7
L3ICS40CS
D506E340
COHDHELDLS
014ACS50D3
€CSch60Ce
60636040
CACHLCHCh
D6DLLOCS
F1F1F0FD
caenNaun
Fepabect
018CFOFC
DLLHER2ED
0540614
CHcsC1C4h

X oh

SEGHINT
I BIEHATARIT

LU GG
GGusfien
ARSI
RIS RN 4
Gr1u3914
DI1300E4
DF SR
LOLanan

Guangpar
1605726
dJF1a802
3C16001: 7R
ner7onro
CE1705 50
nErzosoe
JE1700DA
U1 N30
081vQL b2
CSC2EaDS
cerc2g3ny
De1C0n10
LODIESF?
FI40L2C5
C1050506
C4000070
L0305 AN
E2640€E2ED
L1000 a0
C1d5SC3C5
bOC540EL
€5C2c2Co
FOFTFOSC
L6LGaD7C?
CADRLNCh
BLUTCSFD
CEDHELDS
CLDPCS5ER2
CSEACH 4
C5C6nHL?
4040505C
aleduasy
PSCALOSC
CaChC7Cn
GUEFTEOED
LeLs6ng
OH7ThoChH A
Lapicing
(D76 S
CRpane 0

LA SO VIS

NESEROT .
04070

nanecanin
L0469 480460
LaL4LrN
NAE 55902
nnng4nan
179N
NAYNE24LDN

Fgraanan

L6064 0
N3t 495a(C
a%5159387r1
%1 4NctE
(%1 2914 6
atnnN1fEn
N1 299%F
NR1TINCF 4
n31 3935 ¢
N310r1a
€37 207CS
C1C3R3nh
CINZ2ENFDN
FAC3610h
c1r44ncy
F3403D7
120NN N
cactreic
NANICSCA
1FCSF7CS
D3LINAF 4
FOHOTCACH
FAan3ann
nIcaedr3
N34 csct
c1Ir3c1ai
FIFIFRP2F2
CANSCSF6h
EANJT LN
LNCCR0AH
CRanNsecnc
SCLNCREP
Cs5nsna4an
S5C5CH3INA
NSNSCEINS
cle2erp?
CALIACHND
NACHE?NA
rofie1c?
corsrten
NCHORNET

Vot L

DO T IOAN
0115204

FFOOI)R2
R ERIRAC
FOa61101 3
05 16010
VO 025300
031371 8A
404514040
WL0AUGL0

40404040
U3 16050 A
3000174
aynNen1uo
3179212
AL1705FEF
N31720727C
05170CFC
UH190474
NG130062
C2F4NIETD
D6OIL2DT7
FRFSNONO0
DSDAEE3LD
60CHC5C1
C5C1L3CsS
1CO09100
69C2CTE2
30010010
CIEAE3CY
F3D7F4ES
E2L2C6HES
uaTLEcse?
CroInion
£3C140D05
DS DY 34N
DALICSCAH
A0CSHTT7CS
coc9203CS
DHNICS60
S5CCINGDHG
£105¢7¢C5
SC5CL5C40
bAL7CIDY
C764006C6
DICICIFDS
DIDAnIEL
DOBPCSLN
E2r A0
DICHCICA
Cibnilth

Lol

FOoGH106
GY178301

C8aCcUAQA
4DAGUL3FO
o1F7FRFT
08110018
OOCrpOsSa
031301AL
L0404 0CL0
LD40.6040

N30e0154
G&81605F8
031630984
03000104
81702 AC
8170692
08170A32
G6170E1A
08190480
C3pénp6LD7
FIE3CSES
norzeocm
001cOBIF
040D02F8
C6L509Ca
40cacs5c
1pO0UBL
€50500640
C3noubd4n?
D&DS40CT
406000
DIDPNRAOD
CSC3E4LL]
oocutrcon
DEEILOCH
CODHELDS
LOCSET7CS
C3L4E3CS
LQCcs50407
5C5CNARCD
D7C1DOC?
CLLUF 36
LULOSCSHC
CS40E 3C1
LOL2DGEG
40C3D9CY
LODSLOES
cresonap
CILiecl
C705¢8 340
COD%7¢ 800

nounaonon

E340C3C2
F4LOC3D6
FO7AF2FD
Ge180620
£218003¢C
08130102
40606040
40624040

08000158
J8140616
081609F4
IB1600D7A
290c0D84
08170736
08170A52
38180112
08190864
C50305CS
E3C4Cc202
08000208
0o08c3né
40E260C8
€5C1C4CS
C4CS5D9C8
0GOLE3ICS
D7C509046
C1Dp9CYE2
C206080D
03220008
N3FAE240
COv6DSL0
0e2s0008
DOLELDSCA
cacrceel
CIELE3CY
D6LSOROD
E3ERFOFQ
04FASCSC
E2V6DSFT
405C5C5¢C
5C40C4CS
£2nics540
DOCISCS40
C1E30800D
ANCH6LOES
OSFAFOLO
DYCH5CIES
360407
DODY7ALO

1058007 “ar 1, Vlein Faut b4

00000u00

D36JCIED
C206D 340
PTAF2FALFO
03180028
00013800
081331F6
404036040
40406040

0816J49A
090ca042
08160456
U81630DC
0817238¢C
08173798
08170A74
081895FE
081908E8
E2E4D3E3
CSEB7EC3S
0800026 C
D4D7C9D3
C5C1¢4cCsS
D94ODSO 6
€5C1C4CS
E2E340D5
€C1D5C505
D6DSL OE R
03Ra080D
c3p6p4D7
C30604D7
€1C2060D9
08260008
LELLCFOFO
£309C1C3
DGDSANCA
04p4080D
F1F14060
5C40C905
FO0606060
40460605C
D3CSE3CS
DGESCSDY
DSPSE3LO
05HADROD
bSCLF 200
D7CRCIER
C506E4F9
C903C1ES
p709D6C 7

0dvadalewdd dndadaddvaadadlddT-CAL-CT
EST L64& CO30L
Vv-50.26 05/703/7815:20:246
4)dddddRda dddWidDdaddaddDdIAAI A D
QA2 DoaddddUdddd dAdIdddHdNIIDID AR Q
JdduddNaad0UdID/ddaddddad dadKaddab
daadadldadadedas

doddadddaa ddd
3dddd03dD 9DV IIIINNANEEAIIRDADD
dddddadddaddaaldaddidadddddaddbaddad
202022070330 2:ddd 0NNV DIDD
duddddrl=da d(dadaddidadddddddd ada
FuIdwdaldd ddddd 0330 INIVDIA DI D
DN DEdD 2000 0ddId=Qdd ARV AD ¢
90020233 KI2 30094V IVD DI I DIR
00 daduddile 0dddddddddddaadddd)adY
00033030 dd VK dJIIVCOMPILRESULT
RESULTTIRESULT2RESULT3TESTDBKEY=C
ARDFILEABSTRACTWORKPddaddddadaddadadad
PY-WKOUndaadAP(0953dxaaddalOMPIL
JdaFN ABORTZ29CANNOT ddauB S-HEADE
ROOCANNOT READ C~HEADERHEADER NO
T FOUNDCANNOT CREATE HEADERHEADE
R CREATEDAJdAddddNdddrRdddddTEST N
OT ACTIF IN DATA-BASENO PERMANEN
T RESULTS STOREDQQ@aaCOMPARISON S
UCCESSFULDJQAEXECUTION ABOQdaaaddad
GaNNOT CANCEL OUTPUTDQadadnaalC OMP
ILQ@d3dPARE SUCCESSFULRaQAT COMP
ARE SUCCESSFULDAQQEXECUTION ABOR
TVIDAGEOO1O*LISTALLIAAIddddadadda
STORED COMPIL DATA NOT FOUND#++400
NEW COMPIL DATA NOT FOUNDABSTRAC
T FILE EMPTYT1STORED EXECUTION D
ATA NOT FOUNDNEW EXECUTIONDARaaad
dd T FOUNDRESULT FILE EvMPTYJO011

*AJACELETED BEFORE ##*aaaess [N
SERTED BEFORE *#«COMPAKISON1J~-~
------- **x CHANGED TO #ax *
% AODDED TO END #wax xxx DELETE
D FROM END «#++«COMPARE TABLE OVER
FLOWIYITODBEGINNING OF SOURCE NOT
FOUND TO0ARSTRACT (REATQDIARA
dARSUMMARY OF FRRORS NOT FOUND29®
ddd@a@dU2PRE-LEXMORE THIDAAD 2 HAS
£ NAMESTOTALOOADBSTRACT CREATEOU9
SOPEN OUTPUTINTOREADGET COMPILAT
10N HEADFRwe#+es GCOSVERSION: PROG

JOB EXECUTION MESSAGES

Messages may be output to the Job Uccurrence Report from the
following sourcess?

- the systems

~ COBOL run-time package procedures.

The types of messages output from these sources are described in the
following paragraphs.

Me ssages Output by the System

The general format of messages output by the system in the Job
Occurrence Report is as followss

ccnn.text

where cc is a two letter classification code and nn is the number of
the message within its class. The messages are classified according
to the nature of the system function which generated the message.
Some of the more common classi fication codes and corresponding
system functions ares

CK Checkpoint/Restart
DV Device Management
EX Exception Handling
IFP File Open/Close

NDepending on the error class, the text following the code may be a
brief explanation of the cause of the error or else a further
numerical classification followed by a return code speci fication. A
complete list of classification codes, messages and return codes 15
given in the Error Messages and Return Codes manual.

The message may be prefixed by WARNING, FATAL or SYSTEM. The
significance of these prefixes is as followss

- WARNING : Processing conditions are inconsistent with the
expected conditions but the inconsistency is not severe enough
to prevent the program execution from continuing.

- FATAL t This is caused by a serious user, operator or system
error. Usually, program execution cannot continue and the step
is abnormally terminated.

- SYSTEM & This is probably caused by some mal function of the
system. Normally the message comprises simply a message class
and number with no, text. Unlike WARNING and FATAL messages, the
meaning of SYSTEM messages will not be self-evident and should
be referred to Field Engineering.

4-15

Me ssages Output by COBOL

The following messages may be output by the COBOL run-time package?

CBL11.DISPLAY console_displayed_string
CBL12.IFNtifn RELATIVE KEY CANNOT BE USED
CBL13.ACCEPT console_accepted_string
CBL14.IFN2ifn ORGANIZATION OVERRIDEN

CBL15.IFNsifn RECORD LENGTH CONFLICT ([ACCEPTED IN INPUT]
(length ON FILE)

CBL16. {CALL } program-name RC = xxxxxxxx siuic,
CANCEL retcode AT ADDRESS stn.ste.sra.

CBL17.STOP literal

CBLI8B8.IFNstifn RC = xxxxxxxX siuic, retcode Al ADDRESS
stn.ste.sra program-name [ILN =
internal-line [XLN=external-1linel]

CBL19.IFNsifn CONTROL RECORD 101 TRUNCATED
CBL20.USETST RC = xxxxxxxx siuic, retcode

CBL2!l .IFNsifn DUMMY FILE NOT DECLARED OPTIONAL IN SOURCE,
FILE STATUS 91 NEXT RELEASE.

CBL11, CBLI3 and CBLI17 are simply DISPLAY, ACCEPT and STOP literal
messages which are echoed in the Job (Occurrence Report when they are
directed to or from a CONSOLE, ALTERNATE CONSOLE or TERMINAL (see
Section XI). The remaining messages indicate that an inconsistency
has been detected. The step will be abnormally terminated if the
message is CBL16. If the message is CBLI8B the step will be
abnormally terminated only if the return code indicates a serious
error (see the Error Messages and Return Codes manual for a full
list of return codes). Abnormal termination will not occur for
message CBLI5 1f the file is an input file. Abnormal termination
will not occur for message CBL14 if overriding is permitted.

Exception Messages

Most abnormal step terminations result from the detection of an
"exception" by the system. An exception is an error condition
detected during the execution of an instruction (e.g. illegal
operation code, illegal decimal data). The system outputs an
exception message in the Job Occurrence Report whenever an exception
is detected. Exception messages have a classi fication code EX. There
are four possible exception messagess EXOl, EXO3 which are normally
fatals and EX02, EX04 which are non fatal.

4-16

FORMAT OF EXCEPTION MESSAGES

The formats of the exception messages are as followss

EXO1 .EXCEPTION cc—tt s message-text {(message-parameter)]
IN TASK name.nnn {AT ADDRESS ! stn.ste.sra
RETURNED BYf
EXO2.EXCEPTION cc~tt 3 messaGe-text [{message-parameter)]

IN TASK name.nnn AT ADDRESS stn.ste.sra

EXO3.{UNEXPECTED RETURN CODE {mnemonic) GOT
ABNORMAL RETURN CODE (mnemonic) SET]
IN TASK name.nnn AT ADDRESS stn.ste.sra

EXO4.MAXIMUM EXPECTED WARNING COUNT EXHAUSTED

wheres
cc is the class of exception (decimal).
tt is the type of exception (decimal).

message—-text is a plain English explanation of the error.

message—parameter is an optional value to help diagnosis,

name is the task name rrom the SLINKER listing
(normally MAIN).

nnn is the task occurrence number (decimal).

stn is the segment table number.

ste is the segment table entry.

sra is the segment relative address.

mnemonic is a character string equivalent to the return code. A
list of return codes and nmemonics i{s given in the
Error Messages and Return Codes manual.

4-17

Notess
- stn.ste.sra are discussed in Dump Analysis, above.
- EXO! and EXO3 are normally fatal. £X02 and EX0O4 are non-fatal.

- An EXO3 message specifying "UNEXP=CTED RETURN CODE®™ indicates
that the COBOL run—time package has received an unexpected
return code from Data Management. An EXC3 message speci fying
WABNORMAL RETURN CODE" indicates that the COBOL run-time
package has requested abnormal termination of the step.

- EX03 need not be fatal if the COBOL program contains a USE
AFTER ERROR PROCEDURE SECTION in the DECLARATIVES for the
relevant file (See Section IX).

- EXO4 is printed when more than 99 EX02 messages have been
printed for the current step. After EX0O4 no futher EXO02
messages will be printed.

Four of the more common exception messages are?

EXO! .EXCEPTION 09-01 s ILLEGAL DECIMAL DATA...
EXOl.EXCEPTION 17-02 & OUT OF ARRAY RANGE...
EXOl .EXCEPTION 06-00 s OUT OF SEGMENT BOUNDS...
EXO3.UNEXPECTED RETURN CODE ..

These exceptions are discussed in the following paragraphs. A full
list of exception messages is given iIn the Error Messages and Return
Codes manual.

EXCEPTION 09-01 ILLEGAL DECIMAL DATA

This exception occurs when a non-decimal value 1s moved to a data
item which is described as numeric or is involved in computation or
is used as a subscript. The following example shows how this can
happen?

KORKING-STORAGE SECTION.

77 ZONE PIC 9(4).

PROCEDURE DIVISION.

PI.
MOVE HIGH=VALUE TO ZONE.
STOP RUN.

*

*

ZONE is a numeric data item. In the native collating sequence
(EBCDIC), the figurative constant HIGH-VALUE corresponds to
hexadecimal ¥“FF", with all bits set to |. This configuration is not
decimal, hence the exception. ’

4-18

This exception disappears {f the DEBUG parameter is included in the
$STEP statement and the RECOVER ILLDEC command is given to the PCF,
Instead the error is reported in the PCF report. See the Program
Checkout Facility manual for details. See Section V of the current
manual for the format of decimal data.

EXCEPTION 17-02 OUT OF ARRAY RANGE

This is caused by attempting to access a data item outside the upper
or lower limits of a table.

This exception disappears If the DEBUG parameter is included in the
$STEP statement and the RECOVER SUBSCRIPT command is given to the
PCF. If this 15 done the error is reported in the PCF report.

EXCEPTION 06-00 OUT OF SEGMENT BOUNDS

This is caused by attempting to access a data item outside the
memory areas allocated to the segments of the executing program.

This exception can occur if the SUBOPT parameter is used in the
$COBOL statement. Under certain circumstances this parameter can
result in no array bound checks being performed. Thus the program
may attempt to access data outside the array, and possibly outside
the program segments. It is advisable only to use the SUBOPT
parameter after the program has been debugged. At this stage the
program should be unlikely to access data beyond array bounds.

UNEXPECTED RETURN CODE

This is caused either by a user error or by a system difficulty.
Some return codes are specific to COBOL programs. They aret

USER 0, RPWUNBUN attempt to use the COBOL Report Writer
when it is not included in the set
of features delivered with the system,

USER 0,ALREADY attempt to INITIATE an already initiated
report (Report Writer).

USER O,NOINIT attempt to execute a Report Writer
statement when the involved report
is not in the INITIATEAd state (no INITIATE
has been executed for the report that has
not been followed by a TERMINATE).

USER 0O,LNERR the data item referenced in the DEPENDING
ON option of an OCCURS or a PICTURE

clause lies outside the limits specifled
in that clause.

4-19

USER 0,JUMPERR

USER 0,SEQERR

COBOL 1,RECERR

COBOL 1 ,KEYERR

COBOL 1 ,NRONGORG

COBOL 6,NAMEERR

any other

attempt to execute a GO TO statement
without procedure-name, before it is
altered.

the flow of control attempts to go beyond
the end of the program.

the maximum record size of the file 1is
not the same as that specified in the
program.See Record Size, Section IX.

the number of record keys of the indexed
file, their position relative to the
beginning of the record, their

length and/or the permissible duplicate
keys are not the same as those

specified in the program.

the file assigned has an organization that
cannot override that specified in the
programe.

identifier in a "CALL identifier" statement
does not contain a program—name.

abnormal code returned by the system, e.g.
by Data Management if no USE procedure is
used, by the Message Control System, by the
sort routines... Refer to the Error

. Messages and Return Codes manual for a

description of these return codes.

4-20

COBOL 1,KEYERR

COBOL 1, KRONGORG

COBOL 6,NAMEERR

any other

Note?

the number of record keys of the indexed
file, their position relative to the
beginning of the record, their

length and/or the permissible duplicate
keys are not the same as those

speci fied in the program.

the file assigned has an organization that
cannot override that specified in the
program.

identifier in a “CALL identifier® statement
does not contain a program—name.

abnormal code returned by the system, e.g.
by Data Management {f no USE procedure is
used, by the Message Control System, by the
sort routines..., Refer to the Error
Messages and Return Codes manual for a
description of these return codes.

For the COBOL 1,RECERR, the record length "specified in the program"

is one of the followingt

- For a report file?

a) If the RECORD CONTAINS clause is present, the specified
record length is augmented by 8.

b) If the RECORD CONTAINS clause is not present, the record
length is assumed to be 140.

- For the other filest

Unless one of the following conditions exists the record length
is taken to be the length of the largest record defined for the
file. If one of the following conditions exists this length is

augmented by 8. .

a) The internal-file-name in the SELECT clause is suffixed by
-PRINTER or -SYSOUT and WITH ASA or WITH SARF i{s not

speci fied.

b) With SSF 1s specified in the SELECT clause.
c) The LINAGE clause is specified in the File Description

entry.

d) The file is referenced in a WRITE statement with the
BEFORE/AFTER ADVANCING phrase.

4-21

SECTION V
REPRESENTATION OF DATA

This section describes the way in which data descriptions are
interpreted by the Level 64 COBOL compiler and the way in which data
is held in memory in a COBOL program.

The value of a numeric item may be represented in either binary or
decimal forme. In addition there are several ways of expressing
decimal. The selection of radix is dependent upon factors included
in clauses such as USAGE.

The types of data supported by Level 64 COBOL are listed in Tabhle
5-1, according to factors included in the USAGE and PICTURE clauses,
The usage. of an item spcifies the format of the data item in
computer storage . Note that only the usages DISPLAY, COMPUTATIONAL
and INDEX are part of the ANS standard. The following paragraphs
describe how each data type is represented in internal memorv.

FORMAT OF DATA IN MEMORY

The basic element of information in Level 64 memory which is handled
by instructions is the byte (eight bits). A group of two consecutive
bytes forms a halfword. Four consecutive bytes form a word. An
address defines the location of a byte in main storage. The location
of a group of bytes (e.g., hal fword, word) is defined by the address
of the left-most byte. Consecutive bytes from left to right are
defined by consecutive increasing addresses. A group of bytes is
called halfword-, word-, or doubleword-aligned, if its address 1is a
multiple of two, four, or eight, respectively.

The bits forming a byte are defined from left to right and are
numbered zero through seven. Byte format is represented as fnllows:

5-01

DISPLAY DATA ITEMS

Character-strings are defined, explicitly or impmlicitly, by a USAGE
IS DISPLAY clause. Character-strings, represented in EBCDIC code,
are stored in memory in contiguous bytes with one character per
byte. These character-strings may be non-numeric data as well as
unpacked decimal numbers.

An unpacked decimal number (PIC 9 or PIC S9) has the following
format. Note, for PIC 9 the sign position is merely a zone.

zone digit zone digit zone digit zZone digit

byte byte byte byte
Each digit occupies the rightmosttfour bits of each bytes
=~ Values from O (0000) to 9 (1001) are legal.

= Values from A (1010) to F (1111) are illegal and produce an
exception,

Zone values are not checked by decimal instructions.
The sign occupies the four left most bits of the last byte:
- Values from A to F (1010 to 1111) are legal.

- Values from O (0000) to @ (1001) are illegal and produce an
exception.

Signs are interpreted by instructions in the following manners3

Sign Encoding Sign
1010 +
1011 -
1100 +
1101 -
1110 +
111 +

Instructions which use the encoded sign put the sign into the result
field in the following manners ’

Sign Sign Encoding
+ 1100
- 1101

5-02

The code 1111 is put in all zones in the result fields. The length

De¢imal instructions do not examine the zones of source operands.
.of an unpacked decimal number may be from one to thirty one digits. l

PACKED DECIMAL NUMBERS

A packed decimal number (USAGE IS COMP, COMP-3 or COMP-8) is
represented as a series of contiguous bytes, each containing twn
4-bit encoding portions, except for the rightmost byte. The le ftmost
four bits.of this byte represent a digit, while the rightmost four
bits define a sign. However, if the USAGE is COMP or COMP-3 and the ¥*
PICTURE character string does not have a sign, the rightmost four
bits represent the rightmost digit. Unsigned COMP and COMP-3 items
should be avoided, if possible, for efficiency reasons (see Section
VIII, Efficlency Techniques).

A signed packed decimal number (COMP, COMP-3 or COMP-8) has the
following format:?

digit digit digit digit digit digit digit sign

byte ‘byte byte ' byte

Each digit occupies four bits:
- Values from O (0000) to ¢ (1001) are legal.

- Values from A (1010) to F (1111) are illegal, and produce an
eXception.

The sign, if present, occupies the last digit position:

- Values from A to F are legal (A,C,E,F =+ § B,D = -).

- Values from O (0000) to 9 (1001) are illegal and produce an
exception.

Signs are interpreted by instructions in the following manners

Sign Encoding Sign_
1010 +
1011 -
1100 +
1101 -
1i1o +
1111 +

5-03

Signs put in result fields by instructions are aencoded in the
following manners

Sign Sign Encoding
+ 1100
- 1101

A packed decimal number may occupy from one to sixteen bytes. The
length, L, of a packed decimal number, is specified in digits. The
number of bytes occupied is determined in the following manner.

Type Number of bytes
L even L7 2+ 1
L odd L + 1

2

When L is even, the leftmost digit position must be zero.

Table 5-!. Data Representation in Level 64 System

USAGE MACHINE DESCRIPTION PICTURE

DISPLAY EBCDIC byte R

or unpacked decimal

*COMPUTATIONAL Packed decimal (possibly R

or COMP without sign position

depending on PICTURE)
COMPUTATIONAL-1 **16-bit fixed-point binary NR
or COMP-1
COMPUTATIONAL~2 32-bit fixed-point binary NR
or COMP-2

*COMPUTATIONAL-3 Packed decimal (possibly R

or COMP-3 without sign position

depending on PICTURE)
COMPUTATIONAL-8 Packed decimal (always R

' with sign position)

COMPUTATIONAL=-9 Floating=point binary NA
or COMP~-9 single precision
COMPUTATIONAL~-10 Floating-point binary NA
or COMP-10 double precision
INDEX 6 bytes NA

5-04

Notes for Table 5-13
R = PICTURE clause required in data description entry;s

NR. = PICTURE clause not required in data description entrys

NA.= PICTURE clause not allowed in data description entrys

*These items have the same meaning, unless specified otherwise in
the DEFAULT SECTION.of the CONTROL DIVISIONS

**k[f the PICTURE clause speci fles more than 4 digits, a 32 bit
fixed=point binary data item is used.

FIXED-POINT BINARY NUMBERS

Fixed-point binary data can be specified as either 16-bit binary
(USAGE IS COMP-1 and no PICTURE, or a PICTURE showing less than 5
digits) or 32 bit binary (USAGE IS COMP-2 or COMP-1 with a PICTURE
showing more than 4 digits). The short binary data item consists of
two contiguous bytess the long binary data item, of four contiguous
bytes. In both types of data, a decimal point is assumed to be to
the right of the least significant bit. Negative values are stored
in two’s complement form.

FLOATING=POINT BINARY NUMBERS

Floating-point binary data can be specified either as 32-bit binary
(USAGE IS COMP-9) or 64-bit binary (USAGE IS COMP-10)., The short
floating-point binary data item gives single precision (a precision
of approximately 7 decimal digits). The long floating-point binary

data item gives double precision (a precision of approximately 16
decimal digits).

The value of a floating-point binary number, V, is defined by the
following equations

S E
V= (=1) x 16 x M

Where £E = C-64

S is the sign, E is the exponent, C is the characteristic, and M is
the mantissa of the floating~-point binary number.

The value zero is represented by a floating-point binary number with

mantissa equal to zero. A value of true zero is represented by a
floating=point binary number with all bits equal to zero.

5-05

A short floating=point binary number nccupies four bytes.
The format 1s as follows?

SIGN CHARACTER- MANTISS5A M
[STIC .
M B s
S C
(VA 7 8 2

A long floating=point binary number occupies =sight bytes,
The format is as follows?

SIGN CHARACTEK MANTISHA M
‘ ISTIC
S C
U | 78 2
MANTISSA 4
-
32 A3

The sign S of a rleoating=-pnint binary number is contained in bit O,

S

o~

»l

U positive siyn
I negative sign

woll

I'he characteristic C of a floating-point binary number is contained
in bits | through 7. Its range is O throuch 127,

The exnonent, t, is the power to which 16 is raised in calculating
the value or the floating-roint binarv number, I'he oxponent i i3
equal to C - 04,

I'ne mantissa 4 is the hexadecimal nunber contained in hifts # Fhroog
31 for a snhort rloating-point hinary number, or in vits 83 throun &3
for a long floating-roint binary number. lhe radix roint is »t the
left or the high-order digit position.

INDEX DALTA T1lL#M

An INDEX data item (USACGE IS INOEX) ¢nnsists of 48 pits (six hvhaa)
of binary datat tne Tirst four bytes (COMP=-2) contain the relative
displacement from the beginning o the table and the last twn hvtes
(COMP=1) contain the occurrence number oI the table slement.

X%

H=00

SECTION VI
CALLING AND CALLED PROGRAMS

An application can be divided into several separately compiled
programs. [hese programs can later be linked together by the SLINKER
utility to form a single executable load module. Control is

trans ferred between programs by the CALL and EXIT PROGRAM
statements.

The use of calling and called programs has the following advantagest®

- A called program can be written and compiled and stored in a
compile unit library. This program can be called by other
programs and can thus be included in several different load
modules without having to be compiled each time.

- Programs written in languages other than COBOL (e.g., FORTRAN)
can call or be called by COBOL programs.

- Programs can be written by several programmers and can later be
combined into a single load module.

However, the use of calling and called programs may increase
execution time slightly.

The following ANS standard COBOL language facilities are used in
calling and called programss

- the CALL and EXIT PROGRAM statements and optionally the CANCEL
statement;

- the LINKAGE SECTION3

- the USING phrase of the PROCEDURE DIVISION header.
The EXTERNAL phrase is available as an alternative or complement to
the LINKAGE SECTION and USING phrase. However, this facility is not
part of the ANS standard. The use.of all the above facilities is
discussed in the following paragraphs.

Notet For an explanation of COBOL segment number, internal segment
number and SLINKER segment number see Section III, Linking.

6-01

TRANSFER OF CONTROL

The transfer of control between COBOL programs is achieved by using
the CALL and EXIT PROGRAM statements.

The CALL statement passes control to the program with the specified
PROGRAM-ID value. For examples

CALL "pROG2".

In this example control will transfer to the program whose name is
PROG2., (All programs which are to be linked into a single load
module must have names which are unique within that load module).
Control is handed to the first non declarative statement in the
PROCEDURE DIVISION of the called program.

It is important to note the distinction beween calling programs and
called programs. A calling program contains a CALL statement which
re fers to a sSeparately compiled program. A called program is the
subject of a CALL statement in a separately compiled program. Called
programs may also be calling programs. That is, they may call other
programs. However, a load module contains only one program which is
not a called program. This is the "main program" which i{s specified
in the ENTRY parameter of SLINKER. Step execution commences from the
Tirst non declarative statement in the PROCEDURE DIVISION of the
main program.

The EXIT PROGRAM statement returns control from a called program to
the calling program at the point immediately following the CALL
statement. An EXII PROGRAM statement which is not in a called
program (i.e. it is in the main program) is ignored when the program
is executed. The main program should be terminated by a STOP RUN
statement. This statement may also appear in any called program. A
STOP RUN statement in any program of a load module will cause
execution of the load module to be terminated immediately.

Any program may be used in more than one load module. Such a program
may sometimes act as a main program and sometimes as a subordinate

program. In this case the program should be terminated by an EXIT
PROGRAM statement followed immediately (in the next paragraph) by a
STOP RUN statement. When the program is a main program the EXIT
PROGRAM statement will be ignored and load module execution will be
terminated by the STOP RUN statement. When the program is not a main
program the EXIT PROGRAM statement will hand control back to the
calling program.

The transfer of control between COBOL programs and non COBOL
programs is covered later in this section.

6-02

LINKAGE SECTION AND USING PHRASE

A calling program may provide data for a called program to process.
Similarly, the called program may return processed data to the
calling program. This exchange of data is achieved using the LINKAGE
SECTION and the USING phrase of the PROCEDURE DIVISION header. An
alternative or additional method of exchanging data, using the
EXTERNAL phrase, is discussed under a later heading.

Data to be passed to a called program is specified in tha USING
phrase of the CALL as shown in the following example:

CALL "PROG3"™ USING QUANTITY, PRICE, VALU.

In this example let us assume tnat QUANTITY and PRICE are elementary
items on an input file and that VALU is an elementary item in the
WORKING-STORAGE SECTION. The called program must contain a LINKAGE
SECTION which contains three data items each of which has the same
picture and usage as one of the data items specified in the USING
phrase of the CALL statement. In addition these three items must be
mentioned in the USING phrase.of the PROCEDURE DIVISION header in
the same order in which they appear in the CALL statement. For
examples

PROGRAM=-ID. PROG3.

LINKA&E SECTION,

o1 VALUE-L PIC...
77 PRICE-L PIC...
77 QUANT-L PIC...

PROCEDURE DIVISION USING QUANT-L, PRICE-L, VALUE-L.

MULTIPLY QUANT-L BY PRICE-L GIVING VALUE-L.

EXIT-PARA.
EXIT PROGRAM.

The data items described in the LINKAGE SECTION are not allocated
any storage space in the data segment(s) of the called programs
instead data names in the LINKAGE SECTION are associated with
locations in the data segment or segments of the calling program.

6-03

The purpose of the LINKAGE SECTION is to enable the programmer to
speci fy the pictures of the data items which are to be processed in
the called program or are to receive results from the called
program. Another purpose of the LINKAGE SECTION is to enable the
programmer to give local names to the data items to be processed.
These data names need not be the same as those used in the calling

- program, nor need the data items be described in the same order as
they appear in the calling program. However, the order of data names
in the PROCEDURE DIVISION header and in the CALL statement must be
the same.

The code generated by the compiler when a reference is made to a
data item in the LINKAGE SECTION is based on the data descriptinns
contained in the LINKAGE SECTION. However, the generated code
actually refers to the storage areas allocated in the calling
program. If the data description in the LINKAGE SECTION is nnt
identical to that In the calling program the results are
unpredictable.

THE EXTERNAL PHRASE

The EXTERNAL phrase may be included in the 0! or 77 level of any
data description in.the WORKING-STORAGE SECTION or the CONSTANT
SECTION (the CONSTANT SECTION is not part of the ANS standard). The
effect of this phrase is to make the constituent data items
available to every program in the load module which describes that
record. The EXTERNAL phrase is used as an alternative or complement
to the LINKAGE SECTION and USING phrase. It is not part of the ANS a

standard. The use of this phrase in a calling program is shown in
the following examples

NORKING-STORAGE SECTION.

Ol SHARED-DATA EXTERNAL.
02 QUANTITY PIC...
02 PRICE PIC...
02 VALU PIC...

PROCEDURE DIVISION.,

CALL "PROG3".

6-04

If the called program has to refer to the data items in the record
SHARED-DATA it must contain an identical record description
(including identical data=-names). For examples

PROGRAM=ID. PROG3.

WORKING-STORAGE SECTION,

Ol SHARED-DATA EXTERNAL.
02 QUANTITY PIC..,
02 PRICE PIC...
02 VALU PIC...

*

PROCEDURE DIVISION.

MULTIPLY QUANTITY BY PRICE GIVING VALU.

EXIT-PARA.
EXIT PROGRAM,

Identical record descriptions which contain an EXTERNAL phrase and
which occur in more than one program in a load module are all
allocated the same storage space in memory. The code generated by
the compiler when any program in a load module makes a reference to
a particular external data item always refers to the same data
segment address. If a calling program and a called program both use
an external record which has the same record name but different
descriptions for the elementary items, the results are
unpredictable.

CALL IDENTIFIER

The "CALL identifier" statement enables the program to call
dirfferent programs with the same CALL statement. The name of the
called program is stored in "identifier" and can be changed during
step execution. If the CALL identifier statement is used, the called
compile units must be specified to SLINKER in the INCLUDE command.
See Section III, Linking.

THe CANCEL STATEMENT

The CANCEL statement may be used in a calling or called program. The
main function of this statement is to initialize the state of the
specified program or programs. For example?

6-05

CANCEL "PROG4w,

In this example the variables in the program PROG4 are set to the
values which existed when the load module began execution (including

PERFORM return and ALTER buckets - see Per form/Alter Bucket Listing
Section II).

Note that the ANS standard specifies that cancelled programs are
removed from memory and are initialized when returned to memory.

Removal from memory is unnecessary under Virtual Memory Management,
so the program is simply initialized.

INTERFACE WITH FORTRAN PROGRAMS

Programs written in FORTRAN can be called by COBOL programs. These
programs are called as if they were COBOL programs containing a

LINKAGE SECTION. That is, they are called with the USING phrase of
the CALL statement.

Called FORTRAN programs must be in the form of a normal FORTRAN
subroutine. For example:

SUBROUTINE FORSUB (A,B,C...)

RETURN

The arguments A,B,C etc. must have the same data format and must be
in the same sequence as the data items named in the USING phrase of
the COBOL CALL statement. The COBOL data formats which are
recognized by FORTRAN are shown in Table 6-1. No other data formats
are permitted.

Table 6-1. Data Formats in FORTRAN Called Programs

Data Format COBOL Data FORTRAN
Description Declaration

Alphabetic, PIC A

alphanumeric PIC X CHARACTER*n

or edited. PIC $9.9 etc

One word binary. CoMpP=1 PIC S$99999.. ! INTEGER
CNOMP-2

Single word floating CoMP=-9 REAL

point.

Double word floating { COMP=-10 DOUBLE

point. J PRECISION

606

COMP=9 and COMP-10 items may only be used in MOVE, INITIALIZE
(conversion), PROCEDURE DIVISION USING..., and CALL USING... They
nave been Introduced for communication with FORTRAN programs.

The following example shows a COBOL program calling a FORTRAN
programs

WORKING=STORAGE SECTION,

77 ANGLE CoMP-10.

PROCEDURE DIVISION,

CALL “COSINESQ® USING ANGLE.

The called FORTRAN program may be as follows:?

SUBROUTINE COSINESQ (ARG)

DOUBLE PRECISION ARG, WORK

WORK = COS (AKG)
ARG = NORK**2

RETURN

Programs written in COBOL can also be called by FORTRAN programs.
The PROCEDURE DIVISION header in the COBOL program must contain a
USING phrase. The arguments specified in this phrase must be in the
same format and must have the same sequence as in the FORTRAN CALL
statement. The data formats which can be used for arguments have
been shown above.

CONSTRAINTS

The following paragraphs describe some constraints which must be
observed when writing calling and called programs.

6-017

Using Files

A file which is used in more than one program of a load module must
be described in each program in which it is used. The descriptions
must specify identical file parameters, though the actual data names
used need not be the same. The SELECT clause in each program must
contain an EXTERNAL phrase (not ANS standard). The
internal-file-name used in the SELECT clause of each program must be
the same, though the COBOL file-names may be different.

Conversely, internal-file—-names must be different for files which
are not EXTERNAL (i.e. not to be used in more than one program)
though the COBOL file-names may be the same (in different programs).

Note that.record areas are local to the program in which they are
described. That is, if program A reads a record from a file, this
record is not automatically available to program B when it is called
$ even though program B contains an identical description (including
EXTERNAL) for this file.

Report Writer

A report description (RD) is local to a program. Therefore, Report
Writer statements used in a particular program can refer only to a
report description in the same program.

However, more than one program in a load module can produce reports
using the Report Writer. If these reports are produced concurrently
on the same (EXTERNAL) file and the CODE clause is used, the report
code for each report must be unique within the load module.

For more information on the use of the Report Writer see Section
XII.

GUIDELINES

The benefits of calling and called programs have been listed at the
beginning of this section. If none of these benefits applies to a
particular program, then calling and called programs need not be
used.

Programs should normally be "structured". That is, they should be
divided into logical units or modules of source code. However, this
can be done without the use of calling and called programs. The
“ransfer of control between source modules can be made using the

-RFORM statement rather than the CALL and EXIT PROGRAM statements.
:ne PERFORM statement is more efficient than the CALL and EXIT
PROGRAM statements. See Section VII for more details of the use of
structured programming with the PERFORM statement.

6-08

SECTION VII
SEGMENTATION

Segmentation is the process of physically dividing a program into
segments which can be located in main memory or on disk

independently of each other during load module execution. The

process of moving program segments between main memory and disk
(swapping) is not the responsibility of the user program. It is
handled by the system component "Virtual Memorv Management®., For a '
description of Virtual Memory Management see the System Management
Guide.

However, the programmer can influence the way in which the program
is divided into segments. Good program segmentation will achieve the
followings

-~ The number of times segments must be swapped between main
memory and disk will be reduced. This has three benefitss
first, the reduced rate of 1/0 minimizes queuing for the disk
drivess second, the elapsed time of the program is reduced
because waiting for segments to be loaded from disk is avolded
as far as posssiblet third, the CPU time consumed by Virtual
Memory Management is minimized.

- Execution of a load module can begin when only part of the load
module is in main memory. T'his has two benefitst first, large
load modules do not have to wait for a large amount of memory
to become available at one time: second, large load modules
that would be too large to fit into the available memorv in one
plece can be executed in segments.

The remainder of this section provides guidelines for efficient
program segmentation.

Notet For an explanation of COBOL segment number, internal segment
number and SLINKER segment number see Section III, Linking.

7-01

METHODS ()OF SEGMENTATION

Programs may be segmented in one or both of the following ways:

- COBOL segment numbers can be used on the SECTION headers of the
PROCEDURE DIVISION. This technique applies only to the
PROCEDURE DIVISION. The DATA DIVISION can be segmented by using
the DSEGMAX parameter of the $COBOL statement. This parameter
controls the automatic segmentation done by the compiler.

= Segmentation will be done automatically by the compiler
whenever the size of a data or procedure segment exceeds the
preferred segment size. The preferred segment size has a
default value of 4K bytes (K = 1024)., This value can be
modi fied by parameters in the $COBOL statement or by clauses in
the OBJECT-COMPUTER paragraph (described below).

CONTROL OF SEGMENTATION BY THE PROGRAMMER

Segmentation should be viewed as a tool by which a user programmer
can take advantage of Virtual Memory Management. The user program
should be segmented according to the logical structure nf the
program, This will enable Virtual Memory Management to hold in
memory a minimum number of segments, thus minimizing the memory
requirement and reducing the amount of swapping.

If the programmer does not explicitly segment his nrogram in this
way, the compiler will automatically divide the program into
segments (see Automstic Segmentation, below). However, the compiler
does not have enough information about the program logic to optimize
automatic segmentation. Therefore, the programmer should segment his
program explicitly (unless the program is very small, in which case
no automatic segmentation will be done by the comniler). The ways in
which the programmer can influence segmentation to ensure efficient
use of Virtual Memory are described below.

PROCEDURE DIVISION Segmentation

By specifying segment numbers in the SECTION headers of the
PROCEDURE DIVISION the programmer can control the segmentation of
the PROCEDURE DIVISION. (These segment numbers are called "COBOL
segment numbers" in this manual to differentiate them from "internal
segment numbers" and “$LINKER segment numbers" - see Section III,
Linking).

7-02

. COBOL segment numbers can have a value from O to 99 inclusive. For
each set of SECTIONs with the same COBOL segment number, provided
this number is greater than the SEGMENT-LIMIT value, the comniler
generates object code in a single segment. One segment 1s generated
for each segment number greater than the SEGMENT-LIMIT. SECTIONs can
be grouped into separat® segments in this way irrespective of
whether they are physically contiguous in the PROCEDURE DIVISION,
SECTIONs whose segment numbers are less than the SEGMENT-LIMIT are
all grouped into a single segment. All of the above segments mav be
further subdivided by the compiler if the segment size exceeds the
preferred procedure segment size (see below).

According to the ANS standard, a segmented COBOL program can contain
three types of segments

- Fixed Permanent Segmentst these are identified by a COBOL
segment number from zero up to but not including a value
speci fied as the SEGMENT-LIMIT (given in the OBJECT COMPUTER
paragraph)s

- Fixed Overlayable Segments: these are identified by a COBOL
segment number from the SEGMENT-LIMIT to 49 inclusives if
overlaid, such segments are returned to memory in the state
they had when last used (in particular, the results of ALTER
and PERFORM statements are retained)s

- Independent Segments: these are variable overlavable segments,
identified by a segment number from 50 to 993 thev are in thelir
original state (as compiled), each time they enter memorv.

For Level 64, Virtual Memory Management eliminates the distinction
between "permanent" and "“overlayable" segmentst both are of the same
type, and both are swappable. Only the distinction between fixed and
independant segments is significant, determining the handling of
ALTER, PERFORM, MERGE and SORT statements.

If the programmer does not use COBOL segment numbers it is unlikely
that the compiler will segment the PROCEDURE DIVISION in an ontimal
manner. In the absence of COBOL segment numbers, the compller may
segment in the middle of a frequently used iterative sequence of
code (i.e. a loop). This can impair program nerformance by
increasing unnecessarily the swapping or memory requirement during
execution. It is important, therefore, that the programmer carefully
control the segmentation of the PROCEDURE DIVISION.

In order to use COBOL segmentation effectively, the PROCEDURE
DIVISION should be divided into a set of code "modules". These
modules should represent logically discrete steps in the overall
processing and should be reasonably self-contained. The modules
should be organized into a tree structure or hierachy. In other
words, the program should be "structured". The subject nf structured
programming will not be discussed further in this manual. The reader
is recommended to consult one of the many publications on this
subject for more details.

7=-03

Each PROCEDURE DIVISION module should be written as a separate
SECTION and should be activated by a PERFORM,. SECTIONs which are
closely related and which are normally executed at the same stage of
program execution should be grouped in the same segment by being
given the same COBOL segment number. For example consider a program
in which there are five SECTIONs and COBOL segment numbers 40, 41,42
and 43 are used together with a SEGMENT-LIMIT less than 40

- Segment 40 contains a.SECTION to open files and initialize data
items.

- Segment 41 contains two SECTIONst a file processing SECTION and
a record processing SECTION. .

— Segment 42 contains a SECTION to close files and terminate the
program.

- Segment 43 contains a SECTION to handle error situations
detected in any other segment.

Segments 40 and 42 are each used once only at different times during
program execution. Therefore, thay are separate segments. Segment 4]
contains two SECTIONs which comprise the most frequently used
instruction sequences in the program. This segment is the only one
that needs to be in memory during most of the program execution.
Segment 43 is activated whenever an error situation 1s detected in
one of the other segments. This segment might never be executed,
but, if 1t is executed, it will execute at the same time as one of
the other segments. This segmentation is depicted in Figure 7-1.

Figure 7-1 also shows an example of bad segmentation. The main
processing sections (2 and 3) are here split over three segments
(40, 41 and 42). This means either that sections | and 4 will be {n
main memory even though they are not being used or that segments 40
and 42 will be swapped each time a flle is referenced or a record lis
processed.

Note that there are ANS standard restrictions on the use of the
following statements in programs that are segmented using the CHBROL
segment number in SECTION headers:

- ALTER
- PERFORM
SORT
MERGE

t

Manual.

7-04

Good Original Bad
Segmentation Program Sagmentation

—— e
———— -
——— -_—

Section I-
Segment 40 Open files & Sagment 40
initialize
Tm==-—_.___ |data items

b e e e e ———————— e T

File
Processing

Segment 41 Section 3= Segment 41
Record

Processing

_________ Section 4~

Close files &
Segment 42 terminate S
program

D

gment 42

— Section 5- ~~
Error

handling
Segment 43 - ~ Segment 43

Figure 7-1. PROCEDURE DIVISION Segmentatinn

DATA DIVISION Segmentation

The programmer does not have much control over the segmentation of
the DATA DIVISION. The main method of controlling this is via the
preferred data segment size (see below). However, the following
points should be remembered:

= Group into a single segment all data likely to be used At A
given time by the same statement, and if possible bv the same
sequence of statements, bearing in mind that file record areas
are always in the first segment, and/or:

~ Describe all frequently used data at the start of the DATA
DIVISION so that this data will all be incliuded in a singla

segment (provided that the preferred data segment size is high
enough) .,

Examples of good and bad DATA DIVISION Segmentation are given '
in Figure 7-2.

Good Segmentation

Bad Segmentation

gty

=== :-_'-:.-:-..-:.a - p= s o= \
Data e e e m o Data \:--_::::::_:.':..:.
Segment | R — Segment | [T IIIII
Procedurel Procedure
Segment | — Segment |
Data Procedure Data Procedure
Segment 2 Segment 2| Segment 2 Segnent 2]

Figure 7-2. DATA DIVISION Segmentation

Figure 7-2 shows an example of good segmentation in which all data
referenced by a given procedure segment is in a single data segment
(provided this segment is not too large). Also shown is an example
of bad segmentation in which a procedure segment references data in
more than one data segment. However, such segmentation cannot always
be avoided. It may be more efficient in certain cases to segment in
the "bad" way shown above in order to reduce the number of segments
and produce a set of segments of approximately the same size.

Preferred Segment Sizes

As mentioned above, segments derived from the PROCEDURE DIVISION and
DATA DIVISION can be further subdivided by the compiler if the
actual segment size exceeds the preferred segment size. Preferred
segment sizes can be specified in the following wayss

- In the OBJECT-COMPUTER paragraph using the MAXIMUM PROCEDURE
SEGMENT SIZE and MAXIMUM DATA SEGMENT SIZE clauses.

- In the SCOBOL statement using the PSEGMAX and DSEGMAX
parameters,

The use of the $COBOL parameters is recommended, as the MAXIMUM
PROCEDURE SEGMENT SIZE and MAXIMUM DATA SEGMENT SIZE clauses are not
part of the ANS standard.

If preferred segment sizes are not specified, the compiler will
assume a default value of 4K bytes (K = 1024). In most cases the
default segment size will be acceptable and a size need not be
specified by the programmer. However, the following points should be
remembered when deciding upon the optimum preferred segment sizes?

7-06

- Performance will be improved if all segments in the load module
are of approximately the same size.

- Large segments tend to be used (i.e. referenced) more often
than small ones. For this reason Virtual Memory Management
usually allows them to remain in memory for a longer time than
small segments. On the other hand, once a large segment has
been swapped out of memory considerable rearrangement of memory
contents might be necessary in order to provide a large enough
area of memory for it to be swapped back into.

- Conversely, smaller segments tend to remain in memory for A
shorter time. The CODAPND parameter of the $SCOBOL statement can
be used to merge linkage and code segments when the code
segment is small (see Section II, Compilation).

AUTOMATIC SEGMENTATION

The compile unit generated by the COBOL compiler normallv comprises
a minimum of three segments as shown in the following segment list
printed by the compiler:

1C206.0 «oL 101
1C206.1 .D. 1342
1C206.2 C.. 1946

The meaning of L,D and C is as followss

- L indicates a linkage segment. This segment, during execution,
will contain all the pointers required for the calls and
branches in the program. It also contains certain constants.
There 1s only one linkage segment in each compile unit and it
always has an internal segment number zero.

- D indicates a data segment. There may be one or more data
segments in a compile unit. These segments contain the record
areas defined in the program FDs together with the contents of
the WORKING-STORAGE, CONSTANT and COMMUNICATION SECTIONs.
Certain compiler generated data is also stored in the data
segments,

- C indicates a code segment. Theres may be one or more code

segments in a compile unit. These segments contain the object
code generated from the statements in the PROCEDURE DIVISION.

7-07

If the CODAPND parameter is used in the SCOBOL statement, and the
total size of the code segment and the linkage segment together {is
not larger than the preferred procedure segment size, the linkage
segment and code segment will be merged. The above example segment
list would thus appear as follows:

[C206.0 C.L 2047
[C206.1 Do 1342

If the preferred data segment size or procedure segment size is
exceeded the compiler will divide the data or code into one or more
segments. Circumstances under which this "automatic" segmentation
takes place are described below.

Data Segments

Data segments are generated according to the following rules:

- Record areas for the program’s files are located at the start
of the user data in the first data segment.

- 01 level data items are added one by one to the data segment
until the preferred data segment size is reached. At this point
a new segment is started. Ol level data items are not split
between two segments.

- If an Ol level data item is, individually, greater than the
preferred data segment size it is not subdivided but forms a
data segment on its own.

- If the compiler has generated any incomplete data segment (less
than the preferred data segment size) it will try to insert
later O1 level data items into the earlier segment until the
preferred data segment size is reached.

The application of these rules can be observed in the following
example. In this example segment 1 contains two record areas (80x2),
the group item MAN (80) and three elementary items (1000x3) or about
3240 bytes. Segments 2 and 4 each have a length of exactly 4000
bytes. However, segment 2 1is composed of three contiguous data items
{DD,EE,FF) and one data item which is not contiguous with the others
(HH). This is because a data item of 5000 bhytes (GG) occurs between
FF and HH. This item is assigned the whole of segment 3. Segment 4
has a length of only 3000, since the next level Ol item is ton big,
and forms a segment on its own, as does the last level Ol item,

7-08

The source program 1s as followss

DATA DIVISION,
FILE SECTION,

FD LIST
LABEL RECORD STANDARD
DATA RECORD ARTOUT.
01 ARTOUT PIC X(80).
FD CARD
LABEL RECORD STANDARD
DATA RECORD ARTIN,
Ol ARTIN PIC X(80).
WORKING-STORAGE SECTION,
0l MAN.
02 CODNB PIC 9.
02 L1 PIC X(10).
02 L2 PIC X(69).
Ol AA PIC X(1000).
01 BB PIC X(1000).
Ot _¢cC PIC X(1000).
01 DD PIC X(1000).
01 EE PIC X(1000).
0F FF PIC X(1000).
01 GG PIC X(5000).
Ol HH PIC X(1000).
o1 II PIC X(1000).
o1 JJ PIC X(1000).
01 KK PIC X(1000).
0l LL PIC X(1000).
01 MM PIC X(1000).
Ol NN PIC X(1000).
O 00 PIC X(1000).
01 PP PIC X(3000).
oI QQ PIC X(3000).

PROCEDURE DIVISION,

Nt N

-

[ot A e N e,

Internal

Internal

Internal
Internal

Internal

Internal

Internal
Internal

seq.

seg.

seq.
seqg.

no
no

seqg.

seq.

no

Seg.
Seg.

no
no

The corresponding segment list printed by compiler is as

SEGLIMOI .0
SEGLIMOI .1
SEGLIMO1 .2
SEGLIMOI.3
SEGLIMO1 .4
SEGLIMOI1 .5
SEGLIMO!.6
SEGLIMO1.7
SEGLIMO1.8
SEGLIMO1 .9

SEGL IMOI

.10

SEGLIMOI . 11

..L
.D'
.D.
.D.
'DO
.D.
.D.
.D.
C..
C..
C.‘
C.'

7-09

176
3296
4000
5000
4000
3008
3008
3424

144

464

352

592

N

(cnnt.)

follnws:?

»*

Procedure Segments

The PROCEDURE DIVISION is divided automatically into segments accord-
ing to the preferred procedure segment size. As mentioned above

this can cause the object code for a frequently used interactive
sequence of code (a loop) to be divided between two segments. In the
worst case this can result in both segments being swapped each time
the loop is executed (if this happens, there is memory overload).

The procedure map listing printed by the comniler may help in
determining the preferred procedure segment size. This listing can

be used to find the source line number at which a new segment
begins.

INTERNAL SEGMENT NUMBERS

A COBOL compile unit can have no more than 128 internal segment
numbers (ISN). The ISN is the number assigned to each internal

segment Iin a compile unit. These numbers are assigned in the
following way?

- 4 ISNs are allocated to special segments not generated directly
from the PROCEDURE DIVISION or DATA DIVISION.

= Each data segment generated from the DATA DIVISION is given an
ISN,

- Each procedure segment generated from the PROCEDURE DIVISION is
given an ISN,

- The linkage segment is given an ISN unless this segment is
merged with the code segment (CODAPND parameter in the SCOBOL
statement).

- Each file in the program uses two [SNs.

- If the Program Checkout Facility is to be used (DEBUG parameter
in SCOBOL) one segment is generated in the comnile unit for
each 200 lines (approximately) in the snurce nrogram, One ISN
1s given to each segment.

- If the program contains a USE FOR DEBUGGING SECTION and the
DEBUGMD parameter of the S$SCOBOL statement is active, one or

more additional segements are generated. One ISN is given to
each segment.

- If a program has EXTERNAL files, one ISN is used for each
EXTERNAL file.

= kEach EXTERNAL data item with a VALUE clause is given one ISN,

7-10

- Each translation table (used for alnhabet-name, THRANSFORM...)
is given one SN,

If more than 128 ISNs are needed during a compilation the comniler
will print the fatal error message 8-94 and will then terminate.

DECLARED WORKING SET

To avoid memory overlocad situations, the amonnt of memoryv reqguired
for each job step should be specified by use of the $SI7E statement.
The amount of memory required is known as the declared working set
(DWS). If no DWS is specified, the program will be allocated 3K of
main memory.

An explanation of DWS together with a descrintion or how to
calculate the DiS value for a program is given in Section VII of the
System Management Guide.

=11

SECTION VIII

EFFICIENCY TECHNIQUES

The following techniques are recommended to obtain e fficient COBOL
object programs. Consideration is given to data manipulation and
data description techniques. See Section VII, Segmentation, for
guldelines on efficient segmentation., See the UFAS User Guide, 3FAS
User Guide and HFAS User Guide for guidelines on the efficient use
of files.

Some of the suyyestions are designed to reduce memory needs, some

are meant to save time, and some will do both. Each recommendation
is tollowed by the designators (T) for time saving, (S) for snace

saving, or (T and S) for time saving and space saving, to indicate
the anticipated type of efficiency.

lote that some of the suggestions recommend the use of language
features that are not part of tne ANS standard (e.g. COMP-1,

COMNP~d e e) .

DATA MANIPULATION TECHNIQUES

= Avold using the CORRESPONDING option when a simple MOVE
statement would suffice. MOVE CORRESPONDING results in a series
of moves of individual itemss a simple MOVE is instead
optimized for the group or record as a whole. Never use MOVE
COKRRESPONDING for such purposes as transmitting a master file
record from the input buffer to the outnut buffer. Use MOVE
CORRESPONDING when it will in fact cause selected items to be
moved, or when editing or rormat conversion is needed on the
respective items. (T and S)

- MYanipulate a yroup item or record as a whole whenever possible,
rather tnan manipulating its elementary items separately. This
riule is especially® important for tables of data itemsi MOVE or
clear a table as a whole wnenever possible.

8-01

For example, technique a (pelow) is quite efficient, while b is
less sot

a. MOVE SPACES TO TABLE.

D. MOVE | TO I.
LOOr. MOVE SPACES TO TABLE-ITEM (I).
ADD + To I.
IF T NOT > TABLE-SIZE GO TO LOOP.

(T and 3)

IT a data item is to be used in several subscripts without a
change in value, either make it a COMP-1 or COMP-2 item or elrce
move it to a temporary area in working-storage (described as
COMP=1 or COMP-2) and use the working-storage -data item in the
subscripts. (1 and S)

IT the length of the repeating data item in a table is a power
of 2, use the SUBOPT parameter of the SCOBOL statement. This
will enable the compiler t» use shift rathter than multiolv and
bound check when calculating the displacement, However, see
Zxception 06-00 Out of Segment Bounds, Sectinn IV, for a
restriction on the use of SUROPT. (T and S)

[f a subscripted i{tem is to be referred to more than once with
tne same subscript value(s), consider moving it to a temnorary
workiny—storaye area once ror all processing. Ors

[f a subscripted {tem is to be referred to more than once, SET
an INDEX for this element and use this INDEX as a subscript, Ir
this is done the displacement of tne element need not be
calculated for each reterence. (T and S)

i-or MOVEs, conditions, addition, and subtraction, give the
items similar PICIUREs and USAGEs whenever possible. (1)

In the UNTIL option of the PERFORM statement, use the simnlest
possible condition to terminate the loor. If necessary, acnieve
such simplicity by preceding the PERFORM with explicit MOVEs
and COMPUTEs. [If numeric items are involved in the condition,
Jive them similar PICTUREs and the same usage. ([)

lend to use procedural literals rather than constant values in
AORKING~-STORAGE. The compiler can optimize the rormat of
procedural literals, but must resort to dynamic format
conversions in the object proyram if WORKINC-STORAGE items are
not ideally formatted. However, dunlicate literals do result in
extra memory space requirements, (1)

Use GO TO...DEPENDING for decisions whenever ponssible. In any
anplication for which GO TO...DEPENDING can be used, more
efficient object coding can be generated than by using a
succession of IF statements. (T and S)

ADD 1 TO A is equivalent to COMPUTE A = A+l but MULTIPLY A RY B
may be better than COMPUTE B = A%xB, (T)

8-02

DATA

When the result of a computation is stored in one nf the
operands of the computation, ADD, SUBTRACT etc may be more
efficient than COMPUTE. ror example ADD A TO B may be more
efficient than COMPUTE B = A+B. (1)

If possible use the DIVIDE statement rather than 7/ in the
COMPUTE statement. The compiler will convert operands and
intermediate results into rloating point decimal whenever
division or exponentiation occurs in the COMPUIE statemnnt
(unless the division is the last operation in the statement).
This is time consuming and can be avoided for division by using
the DIVIDE statement. However, COMPUTE must he used for
exponentiation (**x). The effects of converting into floating
point decimal can be minimized by ensuring that division or
exponentiation are the last operations to be performed in a
COMPUTE statement. For example:

COMPUTE T
COMPUTE R

AxxB,
T+C.

({1}

is more efficient thans
COMPUTE R = AxxB+(C

In the first method a temporary data item T is used to hold the
result of the exponentiation. C is added to T in a separate
COMPUTE which is performed in fixed point decimal. In the
second method both the exponentiation and the addition are

per formed in following point decimal. Note the followinyg
example also:

COMPUTE R = {A%B)/C
1s more efficient thant

COMPUTE R = (A/C)*B
In the first method the intermediate result may be in fixedd
point decimal. In the second method it will be in floatiny
point decimal for the whole computation because the division is

the first operation to be per formed. (1)

Avold using the / operator in an arithmetic expression nf A
relation condition.

DESCRIPTION TECHNIQUES

Use COMP, COMP-3 or COMP-8 for non—integer data items and for
data items which interact with other COMP, COMF~3 or COMP-R
data items. COMP, COMP-3 or COMP-8 must be used if fractional
results are required. (1)

8-03

Do not use unsigned COMP or COMP-3 data items in computations.
In Level 64 the righthand 4 bits of a packed decimal item
represent the sign. When an unsigned COMP or COMP-3 data item
is used in a computation the run-time package must add a dummy
sign position to the data item be fore computation can be
started. (T and S)

Use COMP-1 or COMP-2 for integer data items which are not
involved arithmetically with data items of other usages. (T)

Specify COMP-1 or COMP-2 for a data item that will be used as a
subscript or that will be a DEPENDING item in a GO TO statement
or in an OCCURS clause., This rule is important if the item will
be mentioned as a "subscript-name" in PERFORM... VARYING or in
any such loop. Again, consider moving the item explicitly to a
COMP-1 or COMP-2 area in WORKING-STORAGE 1if other
considerations dictate USAGE DISPLAY. (However, INDEX is a
standard and possibly more efficient method of describing
subscripts used in PERFORM..VARYING.) (T)

USAGE COMP-! or COMP-2 is also recommended for identifier-?
data items in WRITE...ADVANCING statements to avoid unnecessary
conversions. (T)

If a record contains COMP(-n) and/or SYNCHRONIZED data items,
place single-word items and double-word items together whenever
possibig. Savings 1In memory space can be obtained; this rule is
most applicable for records in a file. (S)

It is often necessary to organize files in a highly efficient
space—-saving manner, even though it is also desired to save
time while processing the data. In this case, describe each
record in both the FILE SECTION and in the WORKING-STORAGE
SECTION. In the FILE SECTION, pack the data as closely as
possible, without regard to processing efficiencys in the
WNORKING-STORAGE SECTION, do exactly the opposite., Avoid using
READ. ., INTO and WRITE...FROM. Instead, READ each record and
determine whether the record is to be involved in detaliled
pProcesssing. If detailed processing is required, employ the
MOVE...CORRESPONDING statement to unpack either the entire
record or the significant group(s) within it to the
NORKING-STORAGE area and re fer to the data in that location for
all detalled processing. Similarly, use MOVE,..CORRESPONDING as
appropriate to construct (or reconstruct) the output record.
Per form a simple MOVE from input buffer to output buffer if
detailed processing is not required. (T and S)

If reports are generated without using the Report Ariter
facility, use skeleton lines in WORKING-STORAGE, with constant
information initialized via the VALUE clause rather than by
MOVE statements in the PROCEDURE DIVISION. (T and S)

There 1s some benefit in having COMP-1, COMP-2, COMP-9, COMP-10
and INDEX items word-aligned. However, it is not worth using
SYNC to achieve this if it cannot be done hy arranging the
order of other data items (T).

8~-04

This

SECIION IX
rILES

section contains information which is relevant for all tvrmes of

files. In addition, the use of unit record files is discussed in
detail in Section XI.

FILE

NAMES

Each

file is known by three different namess

COBOL file-name, used to identify the file throughout the COBOL
programs

internal-file-name (ifn), used to connect the COBOL file-name
and the external-file-name via the COBOL SELECT clause and the
JCL SASSIGN statements

external-file-name (efn), the name by wnich the file is known
to the systemi it is recorded in the file label and possibly in
a catalog.

The relationship between these three file names 1s shown in the
following diagrams

COBOLs SELECT ASSIGN TO sufﬁx. .e

JCLs ASSIGN 1fn|, fnh ...
‘)

The advantayge of assigning the efn to the ifn is that different
files can be processed with the same COBOL program, merely bv
modi fying the SASSIGN statement each time the job is to be run.

The format and content of each type of file name are different. They
are as follows:

- ANS standard calls for COBOL file-names of not more than 30

characters chosen from the set A...Z, 0...9, and hvphen (=),
and containing at least one alphabetic character.

9-01

- Internal-file-names may be up to 8 characters in length, chosen
from the set A...Z, 0...9. They must begin with an alphabetic
character and may NOT contain a hyphen (except for H-SORT,
which may be used only as the internal-file-name of a
sort/merge file). The character "_" (underscore) 1is not an ANS ‘
standard COBOL character. It can occur in an internal-=file-name
only if it begins with the characters H_.. It is reserved for
system files, for example H_RD and H_PR (used for ACCEPT from
SYSIN and DISPLAY upon SYSOUT). Note that this definition of an
internal-file-name only applies to COBOL and is more
restrictive than the definition in the Job Control Language (JCL)
Reference Manual.

- The rules for external-file-names are different for cataloged
files, uncataloged files and temporary files. See the Job Control
Language (JCL) Reference Manual Section III for details of external-
file-names.

The following suffixes may be used on internal-file-names in the
COBOL SELECT clauses

=PRINTER
-=MSD
=CARD—-READER
=CARD~-PUNCH
-TAPE
—SYSIN
=SYSOUT

No other suffix may be used. However, only =PRINTER, =-SYSIN, =SYSOUT
and -TAPE have a significance other than documentation. The
significance of ~PRINTER and -SYSOUT is explained in Writing SSF
Files in COBOL Programs, Section X. =TAPE is only significant for
H-2000 files. For these files -TAPE means that the CHARACTERS option
of the BLOCK CONTAINS clause implies variable length records. The
only siynificance of -SYSIN is that the associated file can be
opened when it is already open. Note that the suffix is NOT part of
the i fn, and does not appear in the corresponding SASSIGN statement,

DATA MANAGEMENT OVERRIDING RULES

The source program normally defines the basic file characteristics.
However, a number of file parameters (e.g.. file organization,
blocksize, device class) can be specified and recorded at different
places in the system and at various stages in the creation of the
file. Table 9-1 shows where these parameters are specified and where
they apply.

9-02

Table 9-1. Specification and Applicability or File Characteristics

fhere specified Where Applicable
i At system generation Throughout the job
In source program Comnilation time
In JCL (SASSIGH & DEFINE) Job transla£ion time
File label File OPEN time

Overriding rules specify the action to be taken by iata manaoamant
when there is an absence, or multiplicityv, of parameters. Iheoy
define the final values to be used for rile nrocessing and deatect
violations (FATAL when a choice cannot be made, or «“ARNING whera the

decision is made by Data Management).
Data Management overriding rules may be summarized &s followes

- Basic file parameters are specified in the COROL orogram, and
override (and/or complement) any system values that annlv Hv
default.

- File parameters specified in the COBOL program are overridien
by any JCL parameters.

- File parameters specified in the JCL are overridden hvy
parameters in the file label if the file exists at OPEN time,

For a detailed description of Data Management overriding rules ses
the UFAS User Guide, BFAS User Guide or HFAS User Guide.

Opening a file in a COBOL program provides checks on the record
length which are additional to the general Data Management
overriding rules. These checks are discussed in the following
paragraphs.

The maximum record length of the file must be the same as the
maximum record length declared in the program that opens the file
(apart from the exceptions listed below) otherwise the following
message appears Iin the Job Occurrence Report:

CBL15.IFNsifn RECORD LENGTH CONFLICT (length ON ILE)
followed by the EXO3.UNEXPECTED RETURN CODE message showing the

mnemonic "CORBOL 1,RECERR". The file status "95" is returned to the
program.,

9-03

If however the program bypasses this error through a USE procedure,
the result is somewhat unpredictable when records are actually
larager than the record area specified in the program. In general,
records will be truncated, and the following may hanpent

= on a READ statement, a file-status "OU" is returned

- on a WRITE statement, a file-status "92" is returned if the
file is a variable length file, but "00" is returned if the
file is a fixed length file.

The exceptions ares
- The file is assigned to SYS.IN or 35YS.0OUT: no checking is done

- The ifn in the SELECT clause for the file is suffixed bv
=5YSOUT: no checking is done

- The file is neither H=2000 KEYED, nor H-2000 IKDEXED, and it is
openaed in input by a orogram compiled with the current versinn
of the comnilert the following message appears in the Job
Occurrence Report:

CBLIS IFNsifn RECORD LENGTH CONFLICT ACCEPTED IN INPUT
(length ON FILE)

A normal ("00") file-status is returned to the proaram. [T 2

record is read whose Aactual length is greater than the lenath
of the largest record described in the projgram, the record is
truncated, and a file-status "9U" is returned to the progra=.

{he actual file organization that may be associated with a file i=
shiown in Table 9-2.

iror A file whose ORGANIZATION IS INDEXED in the program, the number
n1 record keys, their position relative to the beginning of the
record, and tneir length must be the same for the file and the
progyram,

OPLTONAL FILES

An optional file is one which may be absent at execution time, aven
though OPEN, CLOSE, READ, WRITE etc... may be attempted for the
rile.

9-04

Table 9-2. Permitted File Organizations

ﬂ

ORGANIZATION

Type of File

in COBOL
program

UFAS

BFAS

HFAS

Seq

Rel

Ind || Seq

—

Dir | Ind

Que

SEQUENTIAL

no quali fier
UFF

LEVEL-64
H=200

Seg

Ind | Rrand

RELATIVE

no qualifier
UFF

LEVEL-64

INDEXED

no qualified
Uik

LEVEL-64
H-200

- H=200 KEYED

Notes for Table 9=2

(1) allowed.

(2) allowed if the file is OPENed in INPUT or

(3) allowed when ACCESS IS SEQUENTIAL if it is a disk file that is
OPENed in INPUT or 1-0, or, when ACCESS IS RANDOM or DYHAXIC,
if it is a disk file that is OPENed in INPUT (START cannot be

°
.

used 1f the RELATIVE KEY clause is used).

(4)
INPUT,

allowed when ACCESS

IS SEQUENTIAL if the file is OPENed in

1-00

From the point of view of ANS standard COROL, any optional file
(i.e., the OPTIONAL parameter is present in the SELECT clause) must
be of sequential organization, and must be used for input onlv
(i.e., only OPEN INPUT, READ and CLOSE may re fer to such a file).
From the system point of view, all files may be ontional. A
distinction is made between those which are declared absent when the
execution JCL is written, and those which are declared absent by the

operator.

9-05

Files whicnh are declared optional in the COBOL nrogram must have A
corresponding SASSIGN statement in the execution JCL, ragardlass of
whether the file is to be used or not. The $A5S5IGN statement will
normally include a DUMMY or OPTIONAL parameter (discussed below). [t
neither of these parameters 1Is present in the SASSIGH statement, tiw
OPTIONAL parameter in the COBOL SELECT clause is ignored and thes
file is processed normally. On the other hand, if either DUMMY or
OPTIONAL is specified in the $ASSIGN statement and the OPTIONAL
phrase is not oresent in the corresponding COBOL SELECT clause, the
message CBL2! is output in the Job Occurrence Report and the nroaram
behaves as i f OPTIONAL was present in the SELECI clause. Howaver,
the user should normallvy include the OPIIONAL phrase in the SELEZCT
clause. In a future release of the comniler a file <tatus 61 will ha
generated if the OPTIONAL nhrase is omitted for an onticnal Tile.

[f the DUMMY or OPTIONAL parameter is snecitied in the $ASSGIGH
statement of a file which is not a sequential Input file, a status
91 is returned to the program and the situation mav ha handlad Hv a
USE AFTER ERROR PROCEDURE SECTION (see irror Handling, helow),
The DUMMY and OPTIONAL parameters are used in the followinag wave

- JCL declaration using the FASSIGN statement DUHMY naramater:

ASSIGN ifn, DUMMY;

I'his specifies that the file is absent and all reforesnces tn
the file should be ignored.

- JCL declaration with operator intervention:

The JCL provides ror the possibility of file abrence by the
SASSIGN statement OPTIONAL parameter. bor example:

ASSIGN ifn,ern, DEVCLASS..., MiiDIA..., OPTIONALS

In this case, at step execution the system searches the vnlume
named in MEDIA for this file. If the volume is ahsent, 2 HOUNY
request is sent to the operator. If the operator re fuses MOUHT
(CR MS...), or If the file is absent from the volume mounte.?,
the file is considered as DUMMY and processed as descrinnd
above. If the media 1s mounted and the file exists, the file is
processed as normal.

The use of optional files is summarized in Figure 9-1.

9-06

SASSICN

ith OPTIONA
?

Volume
already
mounted-?

Operat\Y

<—N-Qcceptq mhnt
27

Is file
present on
olume

Input
Sequential
file ?

s OPTIONAL OQutput message
in SELECT CBL21 in.JOR

<f§

le status
on OPEN

oI\ (AT END on)
first READ J

€

normally

rocess ile)

Figure 9-1. The Use of Optional Files

9-07

CLOSE wITH LOCK

If the WITH LOCK option is used to CLOSE a file, Data Management
assumes that no further processing of the file is to take place in
the current program. Data Management will there fore orohibit
reopening of this file in the same STEP. The resources associated
with the file will be returned to the system and may be assigned by
another job. Nevertheless, if an OPEN is executed, file status 9o
(IFN NOT ASSIGN) 1is returned to the user, and the step is terminated
(unless there is a USE AFTER ERROR PROCEDURE SECTION in the
DECLARATIVES).

[HE $POOL STATEMENT

Normally, access to a pmarticular file on a device is granted
exclusively to @ nprcgram for the duration of a job step. Supnose,
however, that an executing COBOL program contains the following
statements?

SELECT FILE! ASSIGN TO k1,
SELECT FILE2 ASSIGN TO F2.

OPEN INPUT FILEL,

CLOSE FILel wITH LOCK.
OPEN INPUT FILEZ2,

In this examnle file FILE] is completely processed before processing
begins on rile FILE2. Therefore it would be possible to use the same
devica ror rl and F2. The user can inform the system that this is
possinle by using the SPOOL statement in conjunction with the POOL
parameter in SASSIGN:

' OOL 1%M5/M4023%
ASSIGN F1, MAX.Z, POOL, FIRST,...
ASSIGH 2, BMY.I, POOL, NEXT, ...

Thus only one #MSU0402 will be reserved ror the use of the pooled
riles.

#hen a program closes a file, the system is able to free the device
assigned to the file for the use of another volume in the ponl . In
the above COBOL example, the file FILE! itself has been deassigned
by the inclusion of WITH LOCK in the CLOSE statement. This action is
not necessary for the purposes of the device pool, but it ensures
that FILEl cannot be re-opesned in the same job step and therefore

9-08

the corresponding file can be assigned immediately, if necessary, to
another job.

For further information on the use of the SPOOL statement see the
Job Control Language (JCL) User Guide.

MULTIVOLUME FILES

If a file is too big to fit on a single disk or tape volume, it can
be stored on more than one volume. Such a file is called a
multivolume file. The following paragraphs are applicable to
sequential multivolume files only. Each part of such a file, Aisk or
tape, 1is known as a "physical unit",

In the case of disk volumes which contain other files also, only
part of each volume will be occupied by a physical unit of the
multivolume file. The space for disk files is allocated using the
SPREALLOC utility (see the Data Management Utilities Manual). Only
one SASSIGN statement is needed for a multivolume disk file or
multitape file. The volume-names must be listed in the MEDIA
parameter of the $SASSIGN statement or recorded in the catalog entry
for the file.

Boundaries between volumes in a multivolume file are usually
invisible to the COBOL proyram which nrocesses such a file. The
COBOL program does not have to contaln any special code to handle
multivolume files: when the end of one volume 1s reached the system
automatically switches to the next volume of the fille. However, an
end-of-volume condition (i.e. end of physical-unit) can be forced
during sequential input or output by using the CLOSE REEL or CLOSE
UNIT statement. These statements both have the same effect. They E
cause processing of the current volume to cease and the next volume
to be opened. This works only for multivolume tape files, and for
multivolume HFAS sequential disk and tape files.

The end of "physical unit" is also visible to the COBOL nrogram when
a RERUN ON CHECKPOINT-FILE EVERY END OF REEL/UNIT references the
file. Under these circumstances the end of a physical unit causas a
checkpoint to be taken. This works only for multivolume tape files,
for multivolume HFAS sequential files and, if the MOUNT=l parameter
is used (or implied) in the $ASSIGN statement, for multivolume BFAS
sequential files.

Language (JCL) User Guide.

MULTI LOGICAL UNIT FILES

A COBOL program can process several files during a single executin:
using a single SELECT clause and FD for all the files. Each file n

have a different organization (sequential, relative etc.) and may
use a di fferent access system (UFAS, BFAS, HFAS). Each such
individual file is called a "logical unit" of the COBOL file defined
in a single SELECT clause and FD.

units is seen as a single file. From the system point of view, =aach
logical unit is a complete monovolume or multivolume file. If a
logical unit occuples several volumes this may be because the
logical unit is a "multivolume file" (see above) or because "file
concatenation" 1is being used (see below). The use of multi logical
unit files is described in the following paragraphs.:

l From the point of view of the COBOL program this set of logical

There 1s no need to explicitly OPEN and CLOSE each logical unit in a
multi iogical unit file. Each logical unit is opened and closed
automatically in a manner analogous to multivolume file processing.
Alternatively, the COBOL program can swap logical units by using the
CLOSE REEL or CLOSE UNIT statement. This causes the current lngical
unit to be closed before the end has been reacheds the next logical
unit is then opened immediately. Note that, when using multi logical
unit files, the CLOSE REEL and CLOSE UNIT statements cannot he used
to close physical units (i.e., volumes). When a RERUN ON
CHECKPOINT-FILE EVERY END OF REEL/UNIT references the file, the end
of a logical unit causes a checkpoint to be taken. For such files.
physical units, as described above, are not visible from the COBOL
program.

There must be a $ASSIGN statement in the JCL for each lngical unit
to be processed. There may also be a $POOL statement to allocate a
single device for all the logical units being processed. For

3¢ examples

COBOL:
SELECT INPUT-FILE ASSIGN TO IFILE...

JCLs
POOL MTI/T9s
ASSIGN IFILE-1, E.FILEA, POOL, FIRST...
ASSIGN IFILE-2, E.FILEB, POOL, NEXT...
ASSIGN IFILE-3, E.FILEC, POOL, NEXT...

In this example the internal-file-name is suffixed with a hyphen
followed by the sequence .number of the logical unit within the file
(without leading zeros). Note that the internal-file-name spacified
in the COBOL SELECT clause must be short enough to permit the
addition of the suffix. The maximum length of an internal-file-name
including suffix 1s B characters.

If only one logical unit is to be processed by the COBOL program a
normal SASSIGN statement must be used with no suffix on the
¢ internal—file-name. For example?

ASSIGN IFILE, E.FILE,...

9-10

It a COBOL program is to process multi logical unit files the VACSEG
(vacant segment) parameter must be used with SLINKER. The format of
this command ist

VACSEG = (SHARE = +a)

where "a" i{s calculated as follows. For each multi logical unit file
in the program the maximum number of logical units is multiplied by
2 and one is added. The resulting values for each multi logical unit
file are added together and augmented by 2 to give "a". See Saction
III for detalls of SLINKER.

MULTIPLE FILE TAPE VOLUMES

Several self-contained files may be written to or read from s single
magnetic tape by a COBOL program (only one file may be open at one *
time).

There must be a SELECT clause in the FILE-CONTROL paragraph and

a $ASSIGN statement in the JCL for each file in a multiple file tape
volume. There may also be a S$POOL statement in the JCL to allocate a
single device for the magnetic tape. The FSN (file sequence number)
parameter must be used in each SASSIGN statement to specify the
position numbers of the files. The DEVCLASS and MEDIA must be the
same for all the files. For examples

COBOLs
SELECT FILEA ASSIGN TO IFILEA.
SELECT FILEB ASSIGN TO IFILEB.
SELECT FILEC ASSIGN TO IFILEC.

JCLs
POOL MT/T93
ASSIGN IFILEA,E.FILEA,DEVCLASS=MT/T9,MEDIA=TAPEA,FSN=1,POOL,FIRST}
ASSIGN IFILEB,E.FILEB,DEVCLASS=MT/T9,MEDIA=TAPEB,FSN=2,P0O0OL,NEXT?
ASSIGN IFILEC,E.FILEC,DEVCLASS=MT/T9,MEDIA=TAPEC,FSN=3,P0OOL,NEXT3$

The same internal-file-name can be used for all files in a multiple
file tape volume if desired. However, in this case, a MULTIPLE FILE
TAPE clause must be present in the I-0-CONTROL paragranh in the
COBOL program. For examplet

COBOL s
SELECT FILEA ASSIGN TO IFILE...
SELECT FILEB ASSIGN TO IFILE...
SELECT FILEC ASSIGN TO IFILE...

MULTIPLE FILE TAPE FILEA 20SITION 1, FILEB POSITION 2,
FILEC POSITION 12,

JCL1

POOL MT/TO3

ASSIGN IFILE~!,E.FILEA,DEVCLASS=MI/T9,MEDIA=TAPEA,
FSN=1,POOL,FIRST3

ASSIGN IFILE-2,E.FILEB,DEVCLASS=MT/T9,MEDIA=TAPEB,
FSN=2 ,POOL,NEXT$

ASSIGN IFILE-12,E.FILEL,DEVCLASS=MT/T9,MEDIA=TAPEC,
FSN=12,POOL,NEXT3

In this example the internal-file-name IFILE is used for each of the
files. However, the internal-file-names in the S$ASSIGN statemants
must be suffixed with a hyphen followed by the position number of
the respective file within the multiple tape file volume. The
compiler will output a message in the program listing for each
internal-file—name, showing the suffix which must be used in the
$ASSIGN statement. Note that the internal-file-name specified in the
COBOL SELECT clause must be short enough to permit the addition of
the suffix. The maximum length of an internal-file-name (in a COBOL
program) including suffix 1is 8 characters. The DEVCLASS and MEDIA
mdst be the same for all of the files. Finally, the FSN parameter
must also be used to specify the position numbers of the files.

If the same internal-file-name is used for all the files In a
multiple file tape volume but only one of these files is to be read
during a particular program execution, then the position nimber
suffix need not be used in the $ASSIGN statement, though it can be
used if desired. A position number suffix can also be specified even
when all the internal-file—-names are unique.

The files in a multiple file tape volume can be specified in the
MULTIPLE FILE TAPE clause.of the I-0-CONTROL paragraph in the COROL
program, even if a different ifn is used for each file in the tape.
For examples

MULTIPLE FILE TAPE FILEA POSITION 1, FILEB POSITION 2,
FILEC POSITION 12.

This clause is not essential (except when the same {fn {s used for
all files) and any values specified in the clause will be overridden
by the JCL values described above. For more details of this clause
see the COBOL Language Reference Manual.

FILE CONCATENATION

File concatenation should be distinguished from the concepts of
multivolume files, multi logical unit files and multiple file tape
volumes which have been discussed above.

Several UFAS or BFAS sequential tape files may be accessed in
sequence by means of file concatenationi the files are treated by
~the program as if they are one logical sequential file. Boundaries
between concatenated files are invisible to the COBOL program that

9=12

processes such files. Nhen the end of one file 1Is reached, the
system automatically switches to the next file. The CLOSE REEL and
CKOSE UNIT statements work in a manner similar to multivolume files.
These statements cause the next volume to be opened. This volume may
be the next volume in a multivolume file or the first volume of the
next concatenated file. RERUN on CHECKPOINT-FILE EVERY END OF
REEL/UNIT also operates on end of volume.

File concatenation may also be used with cassette files. File
concatenation is per formed by the specification of the respective
$ASSIGN statements, in the required sequence, with the omission of
the internal-file—-name on 411 but the first SASSIGN statement. It is
strongly recommended that the $POOL statement be used to allocate a
single device for all the files to be concatenated. For examplet

POOL MT/T93

ASSIGN 1fn,MY.FILE!,DEVCLASS=MT/T9,MEDIA=Al ,POOL,FIRSTs
ASSIGN ,MY.FILE2,DEVCLASS=MT/T9,MEDIA=A2,POOL,NEXT3
ASSIGN (MY.FILE3,DEVCLASS=MT/T9,MEDIA=A3,POOL,NEXT3

In the above example, the three tape files are regarded as a single
sequential file, starting at MY.FILEl and finishing at MY.FILE3.
Note that the concatenated files must all have the same RECFORM,
BLKSIZE and RECSIZE parameters and must have the same device class
and device attributes.

One or more of the files to be concatenated may be a multivoliume
file if required. Furthermore, file concatenation can be used in a
multi logical unit file. One or more of the SASSIGN statements for a
multi logical unit file can use the file concatenation facility.

UFAS, BFAS AND HFAS

The following file access systems are available with Level 64:
= UFAS - Universal File Access System.

- BFAS - Basic File Access System
- HFAS - H200/2000 File Access System.

UFAS is the primary file access system. It is used by IDS/II for
data base management. It offers a wide range of facilities and
provides considerable device independence.

BFAS is an alternative to UFAS. BFAS is a relatively device
dependent file access system which may offer better performance for
certain types of application.

HFAS reads and writes files in H200/2000 formats. This file access
system should be used for compatibility only.

9-13

UFAS and BFAS are the Level 64 native file access systems, They are
completely compatible. For magnetic tape, the file access system
used is irrelevant because UFAS and BFAS tapes have exactly the same
format. Sequential and indexed HFAS files are compatible in certain
respects with UFAS and BFAS files.

Some notes concerning UFAS, BFAS and HFAS are given below. For

further information refer to the UFAS User Guide, BFAS User Guide, or
HFAS User Guide.

QRGANIZATION

The selected file access system may be indicated in the ORGANIZATION
IS clause of the FILE-CONTROL paragraph. The following values may be
used in this clauses

- UFF (specifies UFAS)t this is the default when no ORGANIZATION
1s specified.

- LEVEL-64 (specifies BFAS).
= H=-2000 (specifies HFAS).

However, this option is not part of the ANS standard and is
significant only in the following circumstancess

- The file is an output disk file.
- A SPREALLOC statement has not been used for the file.
It is recommended that S$PREALLOC be used for all permanent output

disk flles. SPREALLOC provides a centralized and visible method of
specifying file attributes.

APPLY NO-SORTED-INDEX

The APPLY NO-SORTED-INDEX clause of the I-0-CONTROL paragraph can be
used to speed up the creation of a UFAS indexed file with ALTERNATE
KEYS by not sorting the alternate (secondary) key-indexes. The
alternate indexes can be sorted after program execution by using the
utility SSORTIDX. See the Data Management Utilities Manual for
detalls of $SORTIDX.

Note that the APPLY NO-SORTED-INDEX clause is not part of the ANS
standard.

APPLY NO-RESIDENT-INDEX

Unless otherwise specified, the cylinder index tables of BFAS
indexed sequential files are automatically loaded into memory. As a
result, access times are reduced, particularly where access 1is
RANDOM.

9-14

However, the user may have some reason (e.g.the Indexes are very
large) for wanting the indexes to be non-resident. In this case the
APPLY NO-RESIDENT-INDEX clause must be used in the I-0-CONTROL
paragraph for the relevant file.

Note that the APPLY NO-RESIDENT-INDEX clause is not part of the ANS
standard.

The S$DEFINE statement parameters NRESIDX and RESIDX can be used

instead of the APPLY NO-RESIDENT-INDEX clatise . $NDEFINE can also be

used to override the APPLY NO-RESIDENT-INDEX clause.

ERROR HANDLING

If a system procedure returns to the COBOL program an abnormal
return code as a result of an 1/0 operation, the step is abnormally
terminated and an exception report is printed in the Job Occurrance
Report. Abnormal termination can be avoided if the COBOL pnrogram
contains a USE AFTER ERROR PROCEDURE SECTION in the DECLARATIVES for
the relevant file. This SECTION can then diagnose the error nsing
the FILE STATUS associated with the file or the system return code
obtained by calling the routine H_CBL_UGET4. These subjects are
discussed in the following paragraphs.

The FILE STATUS

The following example shows the way in which a USE AFTER ERROR
PROCEDURE SECTION and FILE STATUS can be useds

FILE-CONTROL.
SELECT FILEA ASSIGN TO FILEA
FILE STATUS IS FSi2...

WORKING=-STORAGE SECTION.
01 FsSt2 PIC XX.

PROCEDURE DIVISION.
DECLARATIVES.,
FILEA-ERROR SECTION.
USE AFTER ERROR PROCEDNURE ON FILEA.

Pl.

DISPLAY “STATUS = "™ FS12,
EX-IT.

EXIT.

END DECLARATIVES.
MAIN SECTION,
DEBUT.

OPEN INPUT FILEA.

9-15

If an 170 operation on FILEA results in an abnormal system return
code being generated, control will be handed to paragraph Pl. The
FILE STATUS FS12 (specified in the SELECT clause for FILEA) is
displayed. The EXIT then hands control back to the instruction
following the I/0 request. See the COBOL Language Reference Manual
for a full description of USE AFTER ERROR.

The FILE STATUS data item (two characters) is set by a COBOL
run-time package procedure according to the return code obtained
from the system Data Management procedures. The meanings of the
values to which FILE STATUS can be set are given in the COBOL
Language Reference Manual.

when a USE AFTER ERROR PROCEDURE SECTION is invoked for the first
time from a given point in the program, the following message is
output in the Job Occurrence Report.

CBL18 IFNtifn rc AT ADDRESS addraess [ILN=iln (XLN=xlnl]

Return Code

The FILE STATUS facility is part of ANS standard COBOL and is de-
scribed in the COBOL Language Reference Manual. The information pro-
vided in the FILE STATUS item is normally sufficient to diagnose

most I/0 errors. However, the full return code generated by Data
Management can be obtained and analyzed by the COBOL program. This is
done by calling the procedure H_CBL UGET4 in the COBOL run-time pack-
age. This facility is not part of the ANS standard and for this
reason should be avoided whenever FILE STATUS provides sufficient
information. The following example shows the use of H _CBL UGET4:

WORKING-STORAGE SECTION.

77 RET-CODE-1 USAGE COMP-1,
77 RET-CODE-2 USAGE COMP-1.,
77 RET-CODE-1X PIC S9(5).

17 RET=CODE-2X PIC S9(5).

PROCEDURE DIVISION.
DECLARATIVES.
FILEA-ERROR SECTION
USE AFTER ERROR PROCEDURE ON FILEA.

Pl.
CALL "H_CBL_UGET4" USING RET-CODE-1 RET-CODE-2.
MOVE RET-CODE-1 TO RET-CODE-1X.
MOVE RET-CODE-2 TO RET-CODE-2X.
DISPLAY "RET.CODE = " RET-CODE-1X RET-CODE-2X.
EXIT.

END DECLARATIVES.
MAIN SECTION,
DEBUT.

OPEN INPUT FILEA.

9-16

The return code is a hexadecimal value. The significance of each
return code value is given in the Error Messages and Return Cndas
Manual.

RESTRICTIONS ON CERTAIN FILE ORGANIZATIONS

Some features, though described in the COBOL Language Reference

Manual, are not avallable for certain file organizations. These are
listed in Table 9-3.

Table 9-3. Features Not Available with Certain File Organizations.

Feature not available File organization
—eeeee—— |

Physical units UFAS disk sequential
BFAS disk sequential

RERUN EVERY UFAS sequential

END OF UNIT

Variable length records BFAS indexed and relative
HFAS sequential(disk)indexed,
and keyed.

Creation of files when ACCESS| HFAS indexed
IS RANDOM and keys are
not in ascending order

ALTERNATE RECORD KEY BFAS indexed

HEFAS indexed
START subkey HFAS indexed
START > , START NOT < BFAS relative

When such a feature is used for a file organization where it is not
available, it generally results in a file states "30" returned to
the program and a return code mnemonic FUNCNAV reported in the Job
Occurrence Report.

RECORD SIZE

The maximum record size used on a file is determinated according to
the following criterias

9=-17

~ For a report files
a) If the RECORD CONTAINS clause is present, the specified
record lenygth is augmented by 8.
b) If the RECORD CONTAINS clause is not present, the record
length is assumed to be 140,

- For the other filest

Unless one of the following conditions exists, the record length

is taken to be the length of the largest record defined for the

file. If one of the following conditions exists, this length 1is

augmented by 8.

a) The internal-file-name in the SELECT clause is suffixed hy
=-PRINTER or -SYSOUT and WITH ASA or WITH SARF is not
specli fied.

b) WITH 5SF 1s specified in the SELECT clause.

c) The LINAGE clause is specified in the File Descriptionn
entrvy.

d) The file is referenced in a WRITE statement with the
BEFOREZAFTER ADVANCING phrase.

The ACTUAL KEY Phrase

By using the OUTPUT command of the $SORT utility a sequential file
of disk addresses can be produced. This contains, in sorted order,
the disk addresses of the records input to $SORT. The address file
can later be read into a COBOL program and can be used to read, in a
sorted sequence, the records of the data file input to the SSORT.
That is, the data file is not actually sorted hy $SORT, but it can
be read in the sorted sequence by a COBOL program, using the address
file produced by S$SORT.

In order to read the data file in the sorted sequence the SELECT
clause for the data file must contain an ORGANIZATION RELATIVE
phrase and an ACTUAL KEY phrase (instead of RELATIVE KEY). The
address file, on the other hand, must be read as a sequential file,
Each record on the address file will contain a disk address in the
first five bytes. As each record of the address file {s read, the
address must be moved to the 5 byte data item snecified in the
ACTUAL KEY phrase of the data file. The next READ statement executed

on the data file will then input the next data record in the sorted
sequence.

The ACTUAL KEY phrase can only be used if the LEVEL=L64 parameter is
specified in the SCOBOL statement when the program is comniled. Note

that the ACTUAL KEY phrase is not part of the ANS Standard.

$SORT will only write an address file if one of the values ANNDROUT,
ADDATA or KEYADDR is specified in the OUTPUT command. In addition,
if the ADDRFORM parameter 1s present in the SSORT statement it must
contain the value TTRDD (this is the default value) which specifies
the format of the address.

9-18

SECTION X
STANDARD RECORD FORMATS

There are four standard record formats recognized by Level 64 Data
Management. These formats may be used in magnetic tape or disk
files. They aret?

- Standard Access Record Format (SARF)
In this format each record is composed exclusively of normal
data without any special heading information. This is the
format normally used in data files or subfiles which are passed
between COBOL programs.

- System Standard fFormat (SSF)
In this format each record comprises on eight byte header
followed by normal data. The function of this header 1is to make
the file or subfile device-independent: a file or subfile in
system standard format may be routed from the disk on tape to
any kind of I/0 device. This format provides the Stream Reader,
compilers, SLIBMAINT and Output Writer with a standard method
of handling their input and output data.

- American Standards Association Format (ASA)
In this format each record consists of a one byte header
followed by normal data. The header may be thought of as
containing a subset of the information held in an SSF header.
ASA files however are not device independents they may only
contain data to be printed. ASA files should be used for
compatibility with other computer systems. They should not
normally be used for print files wnich are to be processed
solely within the Level 64 system. In order to use this format,
the programmer must specify WITH ASA in the SELECT clause for
the file. The programmer is responsible for the contents of the
first character of the record, which contains the skip
information.

- Device Oriented Format (DOF)
In this format each record comprises an eight byte header
followed by normal data. The header contains device oriented
control information in the form used by the various unit record
devices. This format is only used by Level 64 "Program Mode"
PM100 and PM200 systems.

ASA and DOF are rarely used by the COBOL programmer and will not be

discussed further in this section. The remainder of this section
discusses SSF and SARF.

10=-01

Notes Whenever the word “files" is used in the remainder of this
section it should be taken to mean *files or subfiles".

SYSTEM STANDARD FORMAT (SSF)

SSF records include an eight-byte header in addition to the normal
data. The main components of this header aret

- Record type. This indicates whether the record is a control
record or a normal data record. Control records are added to
the file by the system or by the Report Writer (if used) to
control the handling of the file and the production of page
headings etc.

- Header type. If the record is a control record this speci fies
the type of control record.

- Truncation value. This specifies the number of space characters
which have been truncated at the rightmost end of the record.
Truncation (packing) occurs only in records which were created
with a language type .of COBOL or COBOLX,

- Line number. This contains the sequence number of the record
within the file. It may be derived from the data cards used
when the file was read into the systemi it may also be
generated by the NUMBER option of the SLIBMAINT command MOVE or
by the SLIBMAINT command RENUMBER.

~ Form control. This specifies the paper movement required when
printing the record.

If the first record in an SSF file 1s a control record with a header
type 101 and WITH SARF is not specified in the SELECT clause for the
file, then the file is handled by the system as if all records in
the file are in SSF format. If the file does not have such a record
at the beginning then it is handled as if all records are in SARF
format., If the type 10l control record is present it contains an
indication of the language type specified when the file was created
(e.g. TYPE = COBOLX in the MOVE command of SLIBMAINT), COBOL
automatically outputs a type 10l control record {f the file is
implicity or explicity specified as SSF.

The following paragraphs discuss the relationship between SSF and

the Stream Reader, SLIBMAINT, the COBOL compiler, COBOL programs and
the Output Writer.

‘he Stream Reader, $LIBMAINT and the COBOL Compiler

sn SSF file can be created from cards contained in an input
enclosure. If TYPE = COBOL or TYPE = DATASSF 1is specified in the
$INPUT statement the Stream Reader will create a temporary subfile
in the system file SYS.IN and the cards will be read into this

10-02

subfile as a series of SSF records. This 1s known as a standard
SYSIN subfile and it exists only for the duration of the job.

The standard SYSIN subfile may then be read by any job step or
utility. For example it can be read by $LIBMAINT and moved to a user
library?

$JOB., ..
LIBALLOC SL, (SSF.LIB,SIZE=2),MEMBERS = 133
LIBMAINT SL,LIB=SSF.LIB,COMFILE = *SSFENC3
$INPUT SSFENC,TYPE = DATASSF3
MOVE COMFILE ¢ SSFMEMB,TYPE = COBOLX:
SENDINPUT 3
$ENDJOB3

In this example a resident source library SSF.LIB is set up by
$LIBALLOC with a size of two cylinders. Card images from the input
enclosure ‘are then moved from the standard SYSIN subfile to the
library SSF.LIB by the MOVE command of SLIBMAINT. A new member
SSFMEMB is created in library SSF.LIB to contain the data. The TYPE
= COBOLX parameter has a special effect on the format of the records
in the library member. This is discussed in Section I, Input and
Maintenance of Source Programs.

An SSF library member may be read by a user program. Alternatively,
a user program may read an input enclosure directly from the
standard SYSIN subfile. However, this 1is normally done only when
TYPE = DATA is specified in the $INPUT statement, or if there 1is no
EYPE parameter. In this case the records will be held in SARF
ormat.

The EDIT and UPDATE commands of SLIBMAINT may be used to alter the
contents of SSF library members. With these commands the user may
specify the lines of the library member to be altered by specifying
the line numbers held in the SSF headers.

The creation and updating of SSr library members is discussed in
detail in Section I and will not be discussed further in the current
section.

If the SSF library member contains a COBOL program it can be
processed by the COBOL compiler. The compiler will check the line
numbers in the SSF headers. and report on any descending seguences in
the member. The use of the compiler 1s covered in Section II.

If the SSF library member contains JCL it can be used by a S$INVOKE,
SEXECUTE or S$RUN statement (see Job Control Language (JCL) User
Guide).

10-03

Reading SSF Files in COBOL Programs

In a COBOL program any input file may be SSF or SARF irrespective of
the way 1in which it is described in the COBOL SELECT clause. The
presence or absence of a type 101l control record at the start of the
file indicates the format of the file. Level 64 Data Management
checks for the existence of this record and processes the file
accordingly.

A COBOL program can receive SSF records from Data Management either
with or without the SSF header. If the WITH SARF phrase 1is included
in the SELECT clause of the file, the complete SSF record including
the header will be passed to the COBOL program. If the WITH SSF
phrase is included in the SELECT clause, or if there is no WITH
phrase, the SSF header will be stripped from the record before it is
passed to the COBOL program and control records will not be passed
to the COBOL program. Note that the phrases WITH SSF and WITH SARF
are not part of the ANS Standard and should be avoided unless they
are essential.

The following example illustrates the use of an SSF input file on
magnetic tape. In this example the WITH SARF phrase is used which
will cause the SSF headers and control records to be passed to the
COBOL program.

COBOLs
SELECT INFILE ASSIGN TO F1 WITH SARF.

JCLs
ASSIGN Fl, SSF.FILE, DEVCLASS=MT/T9/D1600, MEDIA=TAPEI 3

The next example shows the use of an SSF library member on disk. The
SSF headers will be stripped from the records before they are passed
to the COBOL program. In this example the WITH SSF phrase is
redundant and serves as documentation only.

COBOLs
SELECT INMEMBER ASSIGN TO F2 WITH SSF.

JCL:s
ASSIGN F2,S5SF.LIB, SUBFILE=SSFMEMB, DEVCLASS=MS/M450,MEDIA=DISK! 3

The final example 1llustrates the use of an SSF input enclosure
(which is a temporary subfile of the system file SYS.IN). No WITH
phrase is used. However, the SYS,IN subfile will begin with a tyne
101 control record so it will be treated as an SSF file by Data
Management. As there is no WITH SARF phrase the headers will be
stripped from the records before they are passed to the COBOL
program,

10-04

COBOLs
SELECT INCLOSE ASSIGN TO F3.

JCLs
ASSIGN F3, *SSFENC}s
$ INPUT SSFENC, TYPE = DATASSF3

SENDINPUT

If the SSF header contains a nonzero truncation wvalue, that is,

when blanks have been truncated at the end of a record, the blanks
are not restored when the record i{s read. The record length, in such
casesydoes not include the truncation value and only refers to the
length of the record on the 1/0 medium. Truncation values are
generated when, for example, the file has been created by SLIBMAINT
with a language type of COBOL or COBOLX.

In fact, unless this input enclosure was needed in SSF form for
another step.of the same job, it would be better to hold the data in
SARF form. In this case the $INPUT statement should not have a TYPE
parameter (DATA would be assumed, indicating SARF format) but the
SELECT clause would remain unchanged.

Ariting SSF Files in COBOL Programs

An output file is in SSF format if the WITH SSF phrase is included
in the SELECT clause of the file, or 1f the ADVANCING phrase is used
in an associated WRITE statement, or if the FD contains the REPORTS
clause or LINAGE clause or, unless otherwise specifiled, 1f the
internal-file—name in the SELECT clause has a suffix —-PRINTER or
-SYSOUT. For examples

SELECT OUTFILE ASSIGN TO F1! WITH SSF.
SELECT QUTFILE ASSIGN TO FI1-PRINTER.
SELECT OUTFILE ASSIGN TO F1-SYSOUT.

However, under certain circumstances, such a file will be output as
Yedited SYSOUT" instead of SSF. This is explained in Section XI,
Using Unit Record Files.

Output SSF files are usually print or punch files or subfiles. The

use.of print and punch files is described in Section XI and will not
be discussed in the present section.

STANDARD ACCESS.RECORD FORMAT (SARF)

SARF records have no special header but are composed exclusively of
user data. This 1is the format normally used in data files which are

10-05

passed between COBOL programs. However, SARF files may also be
handled by the Steam Reader, $LIBMAINT, the compllers and the Output
Writer. The following paragraphs discuss the use of SARF format.

-The Stream Reader, SLIBMAINT and the COBOL Compiler

A SARF library member can be created from cards contained in an
input enclosure. Normal practice should be to omit the TYPE
parameter from tre $INPUT statement (equivalent to TYPE=DATA). If
this is done, the Stream Reader will create a temporary subfile in
the system file SYS.IN and the cards will be read into this subfile
as a serles of SARF records. That is, a standard SYSIN subfile will
be created for the duration.of the job.

The standard SYSIN subfile may then be read by the SLIBMAINT utility
and may be moved to a user library. The following example
illustrates this sequence 3

$JOB...

LIBALLOC SL,(SARF.LIB,SIZE=2),MEMBERS=13;
LIBMAINT SL,LIB=SARF.LIB,COMFILE=*SARFENC3}
$INPUT SARFENC3

MOVE COMFILE*SARFMEMB, TYPE=DATA}

*

SENDINPUT 4
SENDJOB

In this example, a resident source library SARF.LIB is set up by
SLIBALLOC with a size of two cylinders. The card images from the
input enclosure are then moved from the standard SYSIN subfile to
the library SARF.LIB by the MOVE command of SLIBMAINT. A new member
SARFMEMB is created in library SARF.LIB to contain the data.

The EDIT and UPDALE commands of SLIBMAINT cannot be used to alter
the contents of SARF library members. However, 1f the SARF library
member contains a COBOL program, it can be processed by the COBOL
compiler. The use of the compiler is covered in Section Il. If the
SARF library member contains Job Control Language it can be used by
a $INVOKE, SEXECUTE or S$RUN statement (see Job Control Language
(JCL) User Guide).

Reading SARF Files in COBOL Programs

As mentioned previously, a COBOL program may read any file in SSE or
SARF format without specifying WITH SSF or WITH SARF.

The user must not, implicitly or explicitly, specify WITH SSF in the

SELECT clause of SARF input files. Otherwise, the first eight
characters of each record will not be passed to the user program and

10-06

some complete records will not be passed to the user program. On the
other hand, if neither WITH SSF nor WITH SARF is specified and {f
the rirst record on the file happens to look like a type 101 control
record, Data Management will incorrectly assume that the file is in
SSE format.

1o read a SARF file successfully, either the WITH phrase should be
omitted entirely or the WITH SARF phrase should be specified.
Note that the phrases WITH SSF and WITH SARF are not part of the ANS

P

Writing SARF Files in COBOL Programs

An output file may be in SARF format if the WITH SARF phrase is
speci fied in the SELECT clause of the file or if the WITH phrase is
omitted entirely and none of the options implying WITH SSF is used
tor the file (see above). However, under certain circumstances, such
a file will be output as "edited SYSOUT" instead of SARF. This is
~explained in Section XI, Using Unit Record Files.

GENERAL POINTS CONCERNING SSF AND SARF

The Output wnriter

The Output wnriter can print or punch any SSF or SARF file. It is
called by the statements $SYSOUT and $WRITER. The Output Writer is
normally used to output print or punch files produced by user
programs. tlowever, it can also print or punch files which have not
been specially formatted for output, such as a library member
containing a COBOL proyram or @ normal disk or tape file containing
data 0

The use of the Output sdriter for print and punch files is discussed
in Section XI.

summary of Rules for the SELECT Clause

Table 10-1 summarizes the rules concerning the COBOL SELECT clause
when using SARF or SSK files.

10-07

Table 10-1, Summary of Rules for the SELECI Clause

Type of 1/0 Type of SELECT Statement Options

Hequired rile Used NotetWITH SSF/SARF are not ANS standard

= =

Input with SSk WITH SSF (this is the default If

header and the input file is SSF, and should be

control records omitted).

removed

Input with SSF WITH SARF (must be specified).

header and Note thet the record description

control records must have an eight byte FILLER

intact at the start.

Output SSE WITH SSF, or WRITE with the ADVANCING

or kdited | phrase, or FD containing the REPORT
SYSOUT clause or LINAGE clause or -PRINTER
sufrix or -SYSOUT suffix on internal
~file-name (one of these
must be specified).

Input SARF WITH SARF (this is the default if the
input file is SARF, and should be
omitted). WITH SSF must not be used for
SARF files.

Output SARF WITH SARF (default for all

or ktdited output files and should be omitted).
SYSOUT

10-08

SECTION XI
USING UNIT RECORD FILES

This section describes the way in which the following unit record
files are usedt

- Print filess

= Punched card filess3

= ACCEPT, DISPLAY and STOP literal "files" (strictly speaking,
from a COBOL point of view, these are not files because they
have no FD)3

*

- Cassette files.
PRINTING
Printing can be done in the following wayst

- Data can be stored in a SYSOUT file for printing later by the

Output Writer.

- Data can be sent direct to the printer.
Print data should normally be output to a SYSOUT file. The direct
use.of printers slows down program execution and reduces the
throughput .of the printer.
See The Report Writer, Section XII, for information concerning
printed reports produced using the Report Writer facility.

Using SYSOUT Files for Printing

The following types of SYSOUT file can be used to store data to be
printeds

- Standard SYSOUT subfilee.
- Permanent SYSOUT file.

11-01

The standard SYSOUT file (SYS.0OUT) is a system file. The SYSOUT file
is created at system generation and 1s located on a resident disk.
For each step, one or more subfiles is assigned for each unit record
output file defined in the step. During execution of each step, data
to be printed or punched is sent to subfiles of the standard SYSOUT
files No SASSIGN need be made for a standard SYSOUT subfile.
Standard SYSOUT subfiles exist until the data in them has been
printed or punched. When output processing is finished, the subfiles
are automatically deleted.

A permanent SYSOUT file is a sequential disk or tape file or source
library member which is not automatically deleted after Output
Nriter activity, or a permanent magnetic tape file (useful for large
volumes of output). A permanent SYSOUT file must be assigned by the
user.

SYSOUT files are normally written in a format known as "edited
SYSOUT". This is done automatically If certain conditions, described
below, are met. This has the following effect on output data:

- Records are formatted for the output device.

- The page is formatted (page headers, numbers etc).
= Trailing blanks are suppressed.

An edited SYSOUT file cannot be handled as a normal SSF, SARF or ASA
fi leo

If the record size of the SYSOUT file is less than 600 bytes
(specified when the file is allocated using the $PREALLOC statement
or later in the S$DEFINE statement) it will be written as an SSF,
SARF or ASA file. If the record size is greater than or equal to
600 bytes the file will be In edited SYSOUT format. SSF, SARF or ASA
files which are to be printed will be edited subsequently by the
OQutput Writer. Note that the use of a record size of 600 does not
imply storage inefficiency, since the RECFORM will be VB (variable).
However, editing of SSF, SARF or ASA files during printing, rather
then when the file is written, is relatively inefficient and should
be avoided. See the Job Control Language (JCL) User Guide for more
information about SYSOUT files and the Output Writer.

There are certain situations in which a SYSOUT file should not be in
edited SYSOUT format. If the SYSOUT file is to be processed before
printing (e.g. by another COBOL program or by SLIBMAINT), it should
not be written in edited SYSOUT format. Also, SYSOUT files produced
by the COBOL Report Writer using the report selection facility
should not be written in edited SYSOUT format. Note that a standard
SYSOUT file is always an edited SYSOUT file.

The rules for writing SSF, SARF and ASA files. are given in Section
X, Standard Record Formats.

The method of producing permanent and standard SYSOUT files with or
without edited SYSOUT format is summarized in Table 11-1.

11-02

Table 11-1. Methods of Producing SYSOUT Print Files

TYPE OF SYSOUT FILE CREATED

JCL

COBOL

SASSIGN| sSYSOUT

=SYSOUT

PART 1

A standard SYSOUT file is assigned
by the system. The file is written
in edited SYSOUT format. The file
is printed. WNHEN=DEFER in the
$SYSOUT statement will be ignored.
This parameter is used only with
permanent SYSOUT files.

NO

YES

OPTIONAL

NO

OPTIONAL

YES

PART 2

The step is abnormally terminated
when the file is opened because no
implicit or explicit file assign-
ment has been made{RC=IFNNASG).

NO

NO

NO

PART 3

A permanent SYSOUT file is written.
The file will be in edited SYSOUT
format 1 f the record size 1is at
least 600 bytes. The file is prin-
ted by the Output Writer unless the
WHEN=DEFER parameter is speci fied
in the $SYSOUT statement.

YES

YES

NO

PART 4

A permanent SYSOUT file is written.
The file will be in edited SYSOUT
format if the record size is at
least 600 bytes. The file is not
printed by the Output Writer. A
SWRITER statement must be given to
print the file.

YES

NO

YES

PART 5

A permanent SYSOUT file is written.
The file will not be in edited
SYSOUT format, irrespective of the
record size. The file is not
printed by the Output Writer. A
SWRITER statement must be given to
print the file.

YES

NO

NO

11-03

The following notes explain the headings used in Table 11-13

SASSIGN is a SASSIGN of a permanent SYSOUT file to be
included in the JCL (YES or NO) ?

$SYSOUT is a $SYSOUT of the SYSOUT file to be included in the
JCL (YES, NO or OPTIONAL) ?

~-SYSOUT is the =SYSOUT suffix to be used after the
internal-file-name in the COBOL SELECT clause (YES,
NO or OPTIONAL) ?

In part | of Table 11-1 a standard SYSOUT subfile is automatically
assigned by the system. As can be seen from the table, this only
happens when the user does not explicitly assign a SYSOUT file and
when one or both of the following conditions apply:?

- The $SYSOUT statement 1s used.
- The =SYSOUT suffix in the COBOL SELECT clause is used.

If neither $SYSOUi1 nor -SYSOUT is specified, the user must assign a
permanent SYSOUT file using the $ASSIGN statement. This is done in
part 5 of the table. In part 2 of the table the user doess not assign
a permanent SYSOUT file and the step 1s abnormally terminated.

In part I of the table the SYSOUT file will be written in edited
SYSOUT format. This will also be the case Iin parts 3 and 4 {f the
SYSOUT file has been preallocated with a record size greater than or
equal to 600 bytes. In all other cases the SYSOUT file will not be
in edited SYSOUT format. This is the case in part 5 of the table.

Standard SYSOUT files are always printed automatically by the Outout
Nriter. They cannot be held for later orinting by using the WHEN =
DEFER parameter of the $SYSOUT statement (see part | of the table).
Permanent files are printed automatically only if there is a $SYSOUT
statement in the job step JCL and {f this statement does not contain
the NHEN = DEFER parameter (see part 3 of the table). In 8ll other
cases the permanent SYSOUT file should be printed in a separate job
step by using the SWRITER statement (see parts 4 and 5 of the table)

All the SYSOUT files written according to the rules in Table I1-1
will have an SSF record format or an edited SYSOUT format. SSF
format includes an eight byte header in each record which enables
form control information to be stored for each print line. As a
result, WRITE ADVANCING options can be used when writing these
files. This is also true for edited SYSOUT files.

SYSOUT files can also be written in SARF format, {f the SSF phrase
is neither specified nor implied, or simply by including the WITH
SARF phrase in the COBOL SELECT clause. However, the use of SARF
files is not recommended because WRITE ADVANCING options cannot be
used when printing these files.

11-04

Printing Directly

When the printer is used directly, a $ASSIGN statement must bhe
present at execution time which links the internal-file-name used
for the printer to the output device. For examples

COBOLs
SELECT PRINTOUT ASSIGN TO LISTING-PRINTER.

JCLs
ASSIGN LISTING, DEVCLASS = PR, MEDIA = 1200013
DEFINE LISTING, MARGIN = 103

The use of $DEFINE is optional. See the Job Control Language (JCL)
Reference Manual for details of the relevant S$DEFINE parameters.

Form Control

A "vertical format tape" is a punched tape loop often used in
printers to control vertical paper movement. Since Series 60
printers do not use a vertical format tape, vertical paper movement
1s controlled by a software simulated vertical format unit (VFU).
This VFU works in the same way as a standard 12-channel vertical
format tape, with a limitation of 20 stop levels per form, shared
among the 12 channels.

A COBOL program can use the VFU to control vertical paper movement
by specifying a mnemonic-name in the ADVANCING clause of the WRITE
statement. This mnemonic-name must be specified in the CHANNEL-p IS
mnemonic—name clause of the SPECIAL NAMES paragraph. CHANNEL-p
indicates the channel of the VFU that is to control vertical paper
movement for the current WRITE operation.

VFUs are stored in a system file called SYS.URCINIT., The user can
add new VFUs to this file or modify existing ones using the utility
$URINIT. This process 1is described in the Upit Record Devices User
QGuide. Also stored in SYS.URCINIT are the form height, margin, head
of form, full form | and printing density. All this information is
associated with a form number. This form number can be specifled iIn
the MEDIA parameter in $ASSIGN, SOUTVAL, $SYSOUT and $WRITER in
order to ensure that the correct VFU, form height etc. are used when

"Manual for details of the MEDIA parameter in $ASSIGN, SOUTVAL,
SSYSOUT and $SWRITER.

The VFU, form height, margin, head of form, full form 1 and printing
density stored in SYS.URCINIT can be overridden at execution time by
‘parameters specified in a $DEFINE statement. See the Job Control

" Language (JCL) Reference Manual for details.

Note that all form control parameters specified in SYS.URCINIT and
in $DEFINE for a given file are ignored at execution time if either
the LINAGE clause or the Report Writer is used with that file.

11-05

The LINAGE Clause

The LINAGE Clause can be used in an FD statement to describe the
vertical format of a logical page as follows:

- number of lines of text on the page (LINAGE),
- line number at which the footing zone begins (FOO[ING),

- number of lines In the top margin (T0OP),

number of lines in the bottom margin (BOTTOM).

A WRITE statement with an AT END=OF-PAGE phrase can then be used on
such a file. When the page being printed reaches the footing zone,
the imperative statement following the AT END-OF-PAGE phrase is
obeyed. This enables the program to print totals, summaries, banners
etc. before the next page is started. At the end of each page the
program can change the values of LINAGE, FOOTING, TOP and BOTTOH,
Thus, the format of the page can change dynamically during program
eXecutione.

LINAGE-COUNTER is a field automatically defined by the compiler
whenever the LINAGE clause is used in an FD statement. LINAGE-
COUNTER contains the line number at which the printer is positioned
within the current page. Therefore, the programmer need not keep A
record of the current line number. The value of LINAGE-COUNTER can
be referenced in the COBOL program (qualified if necessary by tne
file-name) but cannot be modified,

In the followiny paragraphs note that the END-OF-PAGE imperative is
eXecuted after the associated WRITE statement and the LINAGE-COUNTIR

B may thus point to the next logical pnage (instead of to the current

footing area) when the imperative is obeyed.

When the compiler encounters an ADVANCING nn LINES it first
calculates the sum of LINAGE-COUNTER and nn. Subsequent actions
depend on the value or this sum, as followss

Situation | - If the advance would be within the body of the
current logical page, (i.e. the value is not
greater than the establisihed LINAGE value):s
a. Ihe WRITE is done either hefore or after advancing

nn lines, as specified in the proyram.

b. LINAGE-COUNTER 1is increased by nn.

c. If FOOTING was specified and the advance worild
be within the footing area (i.e. greater than
or equal to the established footing value), the
END=-OF-PAGE imperative is obeyed, if one was
specified.

Situation 2 - If the advance would go beyond the body of the current

logical page, (i.e. the value is greater than the
established LINAGE clause)s

11=06

a. A new value is set-up for LINES AT TOP, 1if the
COBOL program has changed this value.

b. The WRITE is done either before or after (as
specified in the program) the device is
positioned at the first line of the next
logical page.

¢. LINAGE-COUNTER 1is set to 1.

d. New values are set-up for LINAGE, FOOTING and
LINES AT BOTTOM, if the COBOL program has
changed these values,

e. [he END-OF-PAGE imperative is obeyed, 1f one
was speci fied.

Note that the CHANNEL-p IS mnemonic-name clause of the SPECIAL-NAMES
paragraph cannot be associated with a file for which the LINAGE
clause has been specified. Also, any form control information
specified in the JCL statements for such files 1s ignored when the
files are written. See Form Control, above.

READING CARDS

Cards can be read in the following ways:

- from a standard SYSIN subfile containing a series of card
images which have been spooled by the Input Readers

- directly from the card reader.
Cards should normally be read from a SYSIN subfile. The use of the

card reader directly, slows down program execution and reduces the
throughput of the card reader.

Using Standard SYSIN Subfiles for Cards

The standard SYSIN file (SYS.IN) is a system file. It is created at
system generation and is located on a resident disk. Whenever an
input enclosure is defined in a job, the Stream Reader creates a
temporary subfile in the standard SYSIN file. This subfile is known
as a standard SYSIN subfile. Cards images are then read Into this
subfile. However, the subfile exists only for the duration of the
job. ’

For each input enclosure to be read by a COBOL program there must be
a SELECT clause and an associated file description. There must also
be a SASSIGN statement for each input enclosure to be read. The
SASSIGN statement specifies the internal-file—name contained in the
COBOL SELECT clause and the input—enclosure-name used in the $INPUT
statement. The -input-enclosure-name must be prefixed by an asterisk
in the $ASSICN statement. The fcllowing example {llustrates the
necessary COBOL and JCL3

11=-07

COBOLs
SELECT CAKD ASSIGN TO CARDFILE.

JCLs
ASSIGN CARDFILE, *INDECK;:
$ INPUT INDECKs

SENDINPUT3

If it is necessary to retain a card file on disk, this can be done
using the utilities SLIBMAINT or $CREATE. The file may then be read
in subsequent Jobs as a normal sequential file or subfile.

The user can choose to read cards from the standard SYSIN file or
from a permanent sequential file or even directly from the card
reader, simply by changing the JCL at execution time. The COBOL
program remains unchanged. The suffixes -~CARD-READEK and =S5YSIN on
the internal-file-names of SELECT clauses are for documentation
only. They are ignored by the compiler.

Reading Cards Directly

To read cards directly from the card reader, there must be a $A5GSIGN
statement in the execution JCL that links the internal-file-name
used for the card reader to the input device. For examples

COBOL s
SELECT CARD ASSIGN TO CARDFILE.

JCL+¢
ASSIGN CARDFILE, DEVCLASS = CD/R, MEDIA = INDECK;
DEFINE CARDFILE, OFFSET;

CONSOLE MESSACE:
* hh.mm MOUNT INDECK FOR ron

wheret
hhemm is the current time in hours and minutes.
ron is the run occurrence number.

The use of $DEFINE is optional. See the Job Control Language (JCL)
Reference Manual for details of the relevant S$DEFINE parameters.

The name specified in the MEDIA parameter is displayed on the
operator’s console at step initiation. This name should also be
written on the card deck so that the operator can see clearly which
card deck is to be used. The card deck must not be part of a job
stream. It must be a separate deck and the last card must be a SEOS
statement followed by at least one blank card. The card deck should
be mounted in the card reader and the card reader should be switched
to "ready?",

11-08

PUNCHING CARDS

Punched cards can be output in the following wayss
- to a SYSOUT files

- directly to the card punch.

Cards should normally be output to a SYSOUT file. Direct use of the
card punch slows down program execution and reduces the throughput

of the card punch. In either case, serious consideration should be

given to use of a more compact and less fragile storage medium.

Using SYSOUT Files for Cards

Both standard SYSOUT and permanent SYSOUT files may be used to store
data to be punched. They have the same characteristics as the
printer SYSOUT files described in Table 11-1.

The JCL and COBOL are the same as that shown in Table 1l-1 excent
that $SYSOUT 1s mandatory in all cases shown Iin part | of the table
(otherwise the file will be printed instead of punched).

The $SYSOUT statement used in parts | and 3 of Table 11-1 should
speci fy a card punch device class. For example?

SYSOUT PUNCHER, DEVCLASS = CD/P, MEDIA = PUNCHOUT:

The SWRITER statement, used to punch the files as shown in parts 4
and 5 of Table 1l1-1, must also specify a card-punch device-class.
For example:

WRITER C.PUNCHER, DEVCLASS = CD/P, MEDIA = PUNCHOUT3

As shown in parts 1,3 or 4 of Table 11-1, SYSOUT files may be
produced in edited SYSOUT format. That is, the files are edited as
if they are going to be printed. When the files are actually punched
by the Output Writer they are again edited into a format suitable
for the card punch. So editing is performed twice. This will not be
a problem.if a small number of cards are to be output. However,
should large card decks be output it might be advisable to handle
such SYSOUT files, which are to be punched but not printed, in one
of the following wayss

= As shown in part 5 of Table 11-1.
- As shown in parts 3 or 4 of Table I1-1 provided that the
permanent SYSOUT file has a record size of less than 600 hytes

(it has to be at least 600 bytes for the file to be written in
edited SYSOUT format).

11=09

Note that standard SYSOUT subfiles are always written in edited
SYSOUT format. It is therefore better to use permanent SYSOUT files
for all card punch output. In fact, if a SYSOUT file is not to be
printed it can be output as a normal permanent sequential file and
Table 11-1 can be simplified as shown in Table 11-2.

Table .11-2 Methods of Producing SYSOUT Punch Files

TYPE OF SYSOUT FILE CREATED JCL COBOL
(RECORD SIZE<600 BYTES)
k, $ASSIGN [$SYSOUT | -SYSOUT

A permanent SYSOUT file is
created. The file will not be YES YES NO
in edited SYSOUT format because
the record size is less than
600 bytes.

The file is punched by the
Output Writer unless the
WHEN=DEFER parameter is
gspecified in $SYSOUT.

A permanent SYSOUT file is
created. The file will not be 1In YES NO NO
edited SYSOUT format because the
record size is less than 600 bytes.
The file is not punched by the
Output Writer. A SWRITER statement
must be given to punch the file.

Punching Cards Directly

To punch cards directly on the card punch, there must be a SASSIGN
statement in the execution JCL that links the internal-file—-name
used. for the card punch to the output device. For example?

COBOL s
SELECT CARD ASSIGN TO CARDFILE.

JC_.
ASSIGN CARDFILE, DEVCLASS = CD/P, MEDIA = OUTDECK3
DEFINE CARDFILE,OFFSET3$

CONSOLE MESSAGE:
* hh.mm MOUNT OUTDECK FOR ron

wheret
hh.mm is the current time in.hours and minutes.
ron is the run occurrence number.

=10

The use of $DEFINE is optional. See the Job Control Language (JCL)
Re ference Manual for details of the relevant $DEFINE parameters.

The name specified in the MEDIA parameter is displayed on the
operator”’s console at step initiation. A deck of blank cards should
be mounted in the card punch and the card punch should be switched
to "ready".

ACCEPT, DISPLAY AND STOP LITERAL

The COBOL ACCEPT and DISPLAY statements are used to input and output
small volumes of data. The STOP literal statement is used to suspend
execution of the program until the operator enters a value which
enables the program to continue. The use of these statements is’
described in the following paragraphs.

The ACCEPT Statement

The format of the ACCEPT statement to be dicussed is as followss

ACCEPT identifier [FROM mnemonic—name]

The standard options DATE, DAY, TIME and MESSAGE COUNT of the ACCEPT
statement are not used for unit record 1/0 and will not be discussed
here (see the COBOL Language Re ference Manual). The options SYSIN,
COMSOLE, TERMINAL and ALTERNATE CONSOLE may be used for unit record
I/0 but they are not part of the ANS standard. It is recommended
that the standard option "FROM mnemonic-name" be used instead of
SYSIN, CONSOLE, TERMINAL or ALTERNATE CONSOLE.

Mnemonic~name is defined in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION as follows:

SYSIN
CONSOLE IS mnenonic—name
LTERNATE CONSOLE

Al
TERMINAL

The above format of the ACCEPT statement and SPECIAL-NAMES paragraph
can be used to input data from the operator’s console or from any
sequential-file in SSF or SARF format. If the "FROM mnemonic-name"
option is not used SYSIN is normally assumed to be the input device.
However, CONSOLE is assumed if SOURCE-COMPUTER is LEVEL-62 and if

the LEVEL = L62 parameter is used in the $COBOL statement. These
de faults can be overridden by using the ACCEPT IS phrase in the
DEFAULT SECTION (not part of the ANS standard).

11=11

.If mnemonic-name specifies SYSIN, a special $ASSIGN statement must
be used when the program is executed. This statement assigns the
internal=file—name "H_RD" to the sequential input file. The input
file may be a standard SYSIN subfile or a user file. If a standard
SYSIN subfile is being read the input enclosure name must be
specified in the $ASSIGN statement., For examplet

ASSIGN H_RD, *INCARDS3

If a user file is being read the file name must be specified in the
$ASSIGN statement. For example?

ASSIGN H_RD, INFILEs

In this example INFILE is a catalogued sequential file.

When data 1s being accepted with a mnemonic-name SYSIN, as many
records as necessary are read to fill up the receiving item. The
last such record 1s truncated if necessary and the truncated bytes
are lost. However, if the first record in the SYSIN file for a given
ACCEPT begins with an ampersand (&) and is followed by spaces, the
“console input method" is used (see below). That 1is, input continues
until a record not ending with ampersand is read. This feature is
useful when the number of cards to be read by a single ACCEPT
statement 1s variable. If the ampersand is used, it is not necessary
to pad the input with blank cards.

If mnemonic-name specifies CONSOLE, no SASSIGN is needed. The
following message will be displayed on the operator’s main console
when the program is executed?

nn/hhsmm ron progid ACCEPT WAITING

wheres
nn is a message number which the operator must
enter when replying to this message.

hh:mm is the time at which the message was
displayed.

ron is the run—-occurrence—-number.

progid 1is the program—-id specified in the COBOL
program,

The operator must then enter the message number, one space and then
up to 64 characters of input data. If more than 64 characters of
input data are to be input, each group of 64 characters must be
terminated with an ampersand (&). An "ACCEPT WAITING CONTINUED"
message will then be displayed and the input can be continued. This
feature is useful on an interactive terminal. If it is used, the
full 64 characters do not have to be entered on every line of input.

=12

For example, the following pair of entries is equivalent to entering
one line comprising XYZ, 61 blanks and a carriage returnt

iy

Each ACCEPT dialog which occurs on the console will be echoed in the
Job Occurrence KReport prefixed by a report code "CBLI13",

If mnemonic-name specifies ALTERNATE CONSOLE, data will be accepted
from the alternate operator's console specified in the $CONSOLE

no SCONSOLE statement is used data will be accepted from the console
which submitted the program. If the submitting console is no longer
logged, execution stops with the following message in the Job
Occurrence Report:

EXO3. UNEXPECTED RETURN CODE OPRTR 14 CNSLUNKN

The format of the console dialog is the same as that on the main
console.

If mnemonic-name specifies TERMINAL the ACCEPT will behave as if
mnemonic-name specified ALTERNATE CONSOLE. However, in a future
release of the COBOL compiler, it is intended to implement the
following. . If mnemonic-name specifies TERMINAL and the load module
is interactively executed from a terminal under the Interactive
Operation Facility, data will be accepted from the terminal being
used. If the load module is not executed from a terminal but is
executed as a batch job, the ACCEPT will behave as 1T mnemonic—name
specifies ALTERNATE CONSOLE.

Note that all data entered on a console or terminal will be stored
in the user program as if the receiving item had a DISPLAY usage,
even if the declared usage of the receiving fields is not DISPLAY.
That is, no data conversion is performed.

The DISPLAY Statement

The format of the DISPLAY statement is as followst

DISPLAY identi fier-1 yidenti fier-2 . _
4literal~l ,literal-2 e oo| UPON mnemonic—name

The options SYSOUT, CONSOLE, TERMINAL and ALTERNATE CONSOLE may be
used for unit record I/0 but they are not part of the ANS standard.
It is recommended that the standard ontion “FROM mnemonic—-name" be
used instead of SYSOUT, CONSOLE, TERMINAL or ALTERNATE CONSOLE.

11=-13

Mnemonic-name can be defined in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION as follows?

SYSOUT
CONSOQLE IS mnemonic-name

ALTERNATE CONSOLE
TERMINAL

The above format of the DISPLAY statement and SPECIAL-NAMES
paragraph can be used to output data to the operator’s console or to
any sequential-output-file in SSF format. If the "UPON
mnemonic—-name" option is not used SYSOUT is normally assumed to be
the output device. However, CONSOLE is assumed 1f SOURCE-COMPUTER IS
LEVEL-62 and if the LEVEL= L62 parameter 1is used in the $COBOL
statement. These defaults can be overriden by using the DISPLAY IS
phrase in the DEFAULT SECTION (not part of the ANS standard).

If mnemonic-name specifies SYSOUT the output file may be a standard
SYSOUT subfile or a permanent SYSOUT file. If the output file is a
standard SYSOUT subfile no $ASSIGN statement Is needed when the
program is executed . However, 1f the output file is a permanent
.SYSOUT file a SASSIGN statement must be used to assign the
internal-file-name “H_PR" to the SYSOUT file. For example?

ASSIGN H_PR,OUTFILE,DEVCLASS=MS/M402,MEDIA=DISPOUT,FILESTAT=UNCAT:

In this example OUTFILE is an uncatalogued sequential disk file.

For a standard SYSOUT subfile, records are output as a sequence of
120 column lines. For a permanent SYSOUT file the number of output
records 1s variable and depends upon the maximum record length of
the file.

IT mnemonic-name specifies CONSOLE no $ASSIGN is needed. The
following message will be displayed on the console when the program
1s executed:

hhtmm ron progid user-data...

wheres
hh s mm is the time at which the message was
displayed.
ron is the run-occurrence-number.

progid 1is the program—id speci fied in the COBOL
program.

user-data
is the data displayed by the user program.

Nata will be displayed at 64 characters per line. Each display which

is made on the console will be echoed In the Job Occurrence Renort
orefixed by the report code "CBLII",

=14

Data 1s displayed as in memory, without conversion. If the text to
be displayed contains an unprintable character, and the DERUG
parameter 1s included in the $SIEP statement when the program is
executed, the hexadscimal value of this character is nrinted on the
two lines below the erroneous character.

If mnemonic—name specifies ALTERNATE CONSOLE, data will be disnlaved
on the alternate operator's console specified in the $CONSOLE state-
ment (see the Job Control Language (JCL) Reference Manual). If no
SCONSOLE statement is used cata will be displayed on the consols
which submitted the program. If the submitting console 1s no longer
logged the message is stored in the users mail box. The format nf
the console dialog 1s the same as that on the main console.

[f mnemonic—name specifies TERMINAL, the DISPLAY will beshave as {°*
mnemonic~name specified ALTERNAIE CONSOLE. However, in a future
reiease of the COBOL compiler it is intended to implement the
following. If mnemonic-name specifies TERMINAL and the load module
1s interactively executed from a terminal under the Interactive
Operation Facility, data will be displaved upon the terminal being
used. If the load modules is not executed from a terminal but is
exacuted as part of a batch job the DISPLAY will behave as ir
mnemonic-name specifies ALTERNATE CONSOLE.

Selecticn of the [/0 Device

The variables governing the selection of the 1/0 device to be used
for ACCEPT and DISPLAY statements are summarized in Table 11-3,

Table 11-3, Variables Governing the Selection of I/0 Devices

Device speciTied by Is there a Type of Job submission
mnemonic-name in SCONSOLE -
ACCEPT or DISPLAY statement in Batch ROF I10F
the job step?
do M M W
CONSOLE
Yes M M i
ALTERNATE o M NG T
CONSOLE
Yes user- user- useyr—
name name name
No M T I
TERMINAL
Yes user-— user-— user-—
name name name

=15

Notes for Table 11-32
M - The main system console is used for 1[/0:

User-name - The terminal identified by user-name in the
SCONSOLE statement {s used for I/03

T - The terminal which submitted the program for execution
is used for I1/0;

(1) = The main system console is used for I/0 if the
submitting ROF terminal is no longer logged.

Note that the use of TERMINAL is to be preferred to ALTERNATE
LUNSOLE for interactive jobs submitted via IOF,

The STOP Literal Statement

The format of the STOP literal statement ist
STOP literal

This statement is used to suspend execution of the COBOL program.
When this occurs the following message is displayed on the main
operator’s console?

nn/hhsmm ron progid STOP literal

where?
nn is a message number which the operator must
enter when replying to this message.

hhsmm is the time at which the message was
diSplayed.

ron is the run-occurrence number.

progid is the program-id specified in the COBOL
program

In order to restart the program the operator must enter the message
number, one space and carriage-return.

Each STOP literal will be echoed in the Job Occurrence Report
prefixed by the report code "CBLI7",

11=16

Note that the effect of the STOP literal statement is the same

as a DISPLAY literal UPON mnemonic-name statement followed by

an ACCEPT dummy-data-name FROM mnemonic-name statement. Associat-
ing mnemonic-name with ALTERNATE CONSOLE or TERMINAL enables the
program to direct such a simulated STOP literal statement to the
desired device, if it is not the main operator's console.

*®

USING CASSETTES

files. See the UFAS User Guide or BFAS User Guide for details. Some

In a COBOL program, cassette files are handled as UFAS or BFAS tape I
additional rules for cassette files are given below.

11-17

Types of Cassette File

The following types of cassette file can be handled by a COBOL
programs

- GCOS 64 standard cassette files

- GCOS 62 standard cassette files

- Foreign cassette file.

Cassette files can contaln standard or nonstandard labels. Such
cassettes may be processed as GCOS 64 or GCOS 62 standard cassette
files or they may be processed as foreign cassette files.,

When a cassette with nonstandard labels 1s read as a standard
cassette file the LABEL = NSTD or LABEL = NONE parameter must be
used in the $ASSIGN statement. Any labels on the cassette will be
passed to the COBOL program as normal data records. An "AT END"
condition will be generated when the first tape mark following the
first block on the cassette is read. Note that a cassette file may
be opened in I-0 mode only if the LABEL = NATIVE parameter 1is used.

A SASSIGN statement for each cassette file must be included in the
$STEP JCL. DEVCLASS = CS must be specified in each such statement.
Note that no repositioning of cassettes will be carried out by the
system during a restart,

GCOS 64 Standard Cassette File

A GCOS 64 standard cassette file is created under a GCOS 64 system.
The FILEFORM = NSTD parameter must not be used in the S$DEFINE
statement for this type of file. No distinction is made between UFAS
and BFAS cassette files.

The cassette volume may be prepared by the $VOLPREP utility (see
Data Management Utilities Manual) be fore a GCOS 64 standard cassette
file is written. SVOLPREP will write a volume label on the cassette.
In this case, the file will also be written with labels. A GCOS 64
standard cassette file may also be created without labels. This is
the case if SVOLPREP is not used or if the LABEL = NONE parameter is
used with SVOLPREP.

GCOS 64 standard cassette filles may reside on one or more volumes
and may be written with native or compact labels. The type of label
is specified in the LABEL parameter of the $ASSIGN statement. When a
GCOS 64 standard NATIVE labelled cassette file is written, the
RECFORM, RECSIZE, BLKSIZE and NBSN (if required) parameters are
recorded Iin the label. Consequently the user does not have to
specify these parameters when the file is being read (INPUT or I-0
mode). These parameters will be ignored by the system if they are
specified. However, compact labels do not contain the RECFORM,

" RECSIZE, BLKSIZE and NBSN parameters. Therefore, these parameter
must be supplied in the COBOL program FD (RECORD CONTAINS, BLOCK
CONTAINS) or in a $DEFINE statement. Note that for compact standard
labelled cassette files, RECFORM can only be F, FB or U.

11-18

GCOS 64 standard cassette files must have a minimum BLKSIZE of 2
bytes. The maximum value for BLKSIZE when writing to a cassette
labelled NATIVE or COMPACT is 800 bytes including block header and
BSN (if any).

-

GCOS 62 Standard Cassette File

A GCOS 62 standard cassette file is created under a GCOS 62 system
using the sequential GCOS 62 access method.

The RECFORM; RECSIZE, BLKSIZE and NBSN (if required) parameters must

be specified for GCOS 62 standard cassette files Iin the COBOL
program’s FD statement or in a $DEFINE statement.

Foreign Cassette Files

A foreign cassette file is a cassette file created under any system
other than GCOS 64 or a cassette Tile created under GCOS 64 with the
FILEFORM = NSTD parameter specified in the SNDEFINE statement. The
only exception is a GLOS 62 standard cassette file (see above).

A foreign cassette file has a data structure which cannot be
accessed by the standard access methods of a GCOS 64 system. Ihis
situation results from one or more of the following:

- Nonstandard labels exist on the files

- Tape marks are embedded between data blockss

- Block and record structure is nonstandards

~ Recording mode is nonstandard (pack, depack, datacode).

Nhen a foreign cassette file is read by a COBOL program, either a
data block or a label block or a tape mark is handed to the orogram
each time a READ statement is encountered. Similarly, each time a
WRITE statement is encountered, either a data block or a label block
or a tape mark will be written from the COBOL program to the
cassette. End of file will not be detected by the system on input
and the AT END clause will not be obeyed. When a foreign cassette
file is opened, the cassette is positioned at the begimning of the
tape and it is the user’s responsibility to read or write labels,
data and tape marks.

After each read operation, the identifier specified in the DEPENNINC
ON option of the RECORD CONTAINS clause will contain the length of
the block read (in bytes). A tape mark or a long gap will have a
length of one byte. A tape mark will appear as FF (hexadecimal) in
the first byte of the record area. A long gap will appear as 00
(hexadecimal) in the first byte of the record area.

Before each write operation the length of the block to be written
must be specified (in bytes) in the identifier specified in the
DEPENDING ON option. A tape mark must be coded as Fi (hexadecimal)
in the first byte of the record area and must be given a length of
one byte,

11-19

Ihe maximum blocksize may be specitied in the COBOL program in the
BLOCK CONTAINS clause. All other parameters must be specified in the
JCL. The BLKSIZE parameter must be specified in the COBOL program’s
FD statement or in a SDEFINE statement. A foreign cassette may nave
standard labels. If this is not the case, the LABEL = NONE parameter
must be specified in the SASSIGN statement. A S$DEFINE statement with
the parameter FILEFORM = NSTD is mandatory for foreign cassette
files. The maximum value for RILKSIZE when writing to a cassette

labelled NSID or NONE is 256 bytes including block header and Bsil
(if anv).

11-20

SECTION XII
MISCELLANEOUS

This section includes various topics which are not discussed at
length in this manual and therefore do not warrant individual
sections.

SORTING AND MERGING

The following paragraphs compare the use of the COBOL SORT and MERGE
statements with the $SORT and $MERGE utilities. For further details
concerning the use of $SORT and $MERGE see the Sort/Merge Manual.

By using the OUTPUT command in $SORT a sequential file of disk
addresses can be output. This file can later be read by a COBOL
program and can be used to access the file that was input to $SORT.
This 1s discussed in The ACTUAL KEY Phrase, Section IX.

Comparison of COBOL SORT/MERGE and $SORT/S$MERGE

The choice between using the COBOL SORT/MERGE statements Aand
executing $SORT/SMERGE as separate utilities is basicaly the chnice

between flexibility and performance. The following points amplify
this.

- Execution of $SORT as a utility rather than as a COBOL

statement saves up to half the centrsl processor time.
However, the MERGE statement in COBOL execites faster than the
corresponding S$MERGE utilicty.

- The commands available with S$SORT/SMERGE are not as powerful
and flexible as COBOL statements.

- Using input and output procedures with the COBOL SORT and MERGE
statements makes it possible to combine the first and last
phases of the sort or merge with processing of the released or
returned record (e.g., record selection, editing).

12-01

Therefore, $SORT should be used whenever one of the following
conditions is fulfilleds

- The input and output files do not need to be processed
immediately before or after the sort, OR,

= Processing of the input and output files can be done using the
$S0RT commands. ’

If these conditions are not fulfilled, the processing of the input
and output files and the sorting of the file should be combined in a
single program. File processing could, of course, be carrled out in
two separate COBOL programs separated by the S$SORT utilitv. However,
if these three operations are done in a single program, two file
passes are saved?! the intermediary files between the COBOL programs
and $SORT do not have to be written or read.

The above rules for using SORT and $SORT can be applied to MERGE Aand

$MERGE except that processing of input files (INPUT PROCEDURE) is
not possible when merging.

JCL for COBOL SORT

The following paragraphs describe the JCL for COBOL programs which
use the SORT statement. The JCL for the COBOL MERGE statement is not
discussed, as this only involves assigning the input and output
files.

In the SELECT clause for the sort file in the COBOL program, the
internal—-file-name H-SORT 1is usually used. Nnte that the
ORGANIZATION, ACCESS MODE, RESERVE, FILE STATUS and RECORD KEY
phrases cannot be used in the SELECT clause for a sort flle. This
file may be assigned in the JCL to the external file name H_SRTAKD
using the S$SORTWORK statement in the same job step. It is used as a
work file by the sorting routines. The format of the S$SORTWORK
statement is as follows:

(WKTAPE[S] = (NBDV=n,DEVCLASS=device-class)
external-file-name}
NKDISKIS) = (}SIZE = nnn
{CAT }
SORTWORK JFILESTAT = UNCAT
[,CATALOG = n]

RESIDENT

+« DEVCLASS= device-class
JMEDIA =({WORK }))
volume-namel,.ee.] /

12-02

The $SORTWORK statement can be used to assign the sort file to
tape(s) or disk(s) but not to both.

If the sort is to be tape based the WKTAPE[S] keyword should be
used. The number of devices to be assigned is specified in the NBDV
= n parameter. A minimum of three devices and a maximum of six may
be used. Note that a tape sort normally has a much longer elapsed
execution time that a disk sort. However, for iInput files that have
relatively few records out of sequence, a tape sort usually has an
elapsed time close to that of a disk sort. Moreover, elapsed time
reduces with any increase in the number of devices used, in the
record-blocking factor, and in the recording density.

If the sort is to be disk based the WKDISKI[S] kayword should be
used. The parameters which can be used with the WKDISKIS] keyword
have the same significance as in the $AGSIGN and SALLOCATE
statements.

I[f the $SORTWORK parameter 1is not used, a temporary file of 10
cylinders will be allocated on a resident volume, with the name
H_SRTWKD. In a multiprogramming environment the use of a resident

disk for the work file can cause a considerable increase in arm
movement. It is therefore preferable to preallocate a permanent file
(of sufficient size, but on a single volume) on a disk other than

that used for input and output files, and, if possible, on a disk

not used concurrently by another job step. See the Sort/Merge II
Manual, Appendix D, for more information about $SORTWORK.

The size of the declared working set can be changed for a COBOL SORT
by the keyword SORTMEMORY in the $STEP statement OPTIONS string. By
increasing this value (which varies from 8K to 512K, with a default
value of 28K), elapsed time is reduced. The format of the OPTIONS
parameter containing SORTMEMORY ist

OPTIONS = 7 ,..SORTMEMORY = nnn...”
Nhere nnn is the number of bytes in units of 1024. User options may
accompany the SORTMEMORY option (see below, $STEP OPTIONS), If the

options string is passed to the user orogram, the SORTMEMORY option
is passed to the program with any other options which are used.

USER JCL STATUS

The system sets a status value, which can be used by S$JUMP in the
event of an abnormal step termination (STATUS = 60000), or an
operator-requested end of step (STATUS=50000). The COBOL comopiler
also sets the status value at the end of compilation, according to
errors detected (see Sections II, The Compiler).

The user may also set the status value in his COBOL program,
transmitting it to the run-time package routine H_CBL_USET.'T via a
fleld described in the WORKING-STORAGE SECTION with USAGE COMP-1,
Since COMP-! is a binary hal f~w>rd the user status value has a limit
of 32768.

12-03

The following example shows how the status value can be set in a3
COBOL programs

WORKING-STORAGE SECTION.
Ol STATE COMP-1.

o

PROCEDURE DIVISION.

MOVE 64 TO STATE.
CALL “H_CBL_USETST" USING STATE.

L 4

Execution of the job stream can then be modified by testing this
status values

$JOB...

STEP TESTOl, TEMP,

DUMP=ALL;

ENDSTEP 3

JUMP LAB! ,STATUS,EQ,643

SEND “STATUS DIFFERENT FROM 6473
COMMENT “STATUS DIFFERENT FROM 6473
JUMP LAB23

LAB1 3 SEND “STATUS = 6473

COMMENT “STATUS = 6473

LAB2: SEND “END OF TEST”Z:

COMMENT “END OF TEST’;j

SENDJOB3S

The Job Occurrence Report will then show:

PROCESS GROUP TERMINATED STATUS = 64

SWITCHES

Each COBOL program has access to 32 switches contained in the switch
word assigned to the job in which the program 1is executed.

Switches are declared in SPECIAL-NAMES, where they may be assonciated
with mnemonic~names as well as with condition-names for ON STATUS
and OFF STATUS.

A switch, once declared, may be turned ON or OFF by the SET
statement, while its current status may be tested using the
assocliated condition—-name.

COBOL programs can use switches to communicate with steps that
follow in the job, as well as with the job itself. JCL can also tnrn

12~04

switches on and off (SLET) and test them ($JUMP), The operator may
set switches when starting a job via the Start Job (SJ) command, or
while the job is in execution via the Modify Job (MJ) command. The
inftial setting of the switch word is all zeros (i.e. all switches
off) at the beginning of the job. If the Job is initiated by
operator action (RJ or SJ) or by another job ($RUN) the SW parameter
permits the switch word to be set to some other initial value.

The use of switches is shown in the following examples

CONFIGURATION SECTION.

SPECIAL-NAMES.
SWITCH=2 IS SW2 ON STATUS IS CND2.

PROCEDURE DIVISION.

SET SW2 TO ON.

IF CNéZ DISPLAY “SWITCH-2 ON",

CHECKPOINT, RESTART AND JOURNALIZATION

The RERUN clause in the [-0-CONTROL paragraph allows the user to
speci fy the frequency with which checkpoints are to be taken during
program execution, in terms of the number of records read or written
in a specified file. This value is communicated to Data Management,
which decrements the value by one for each record processed. When
the value reaches zero, a special return code is sent to the COROL
run-time package.)

The COBOL run—time package then calls the system procedure to

per form the checkpoint. Checkpoint data are placed in Backing Store.
If the program aborts or there is a system crash, and the $STEP
statement contains the REPEAT parameter, the operator may call for
the program execution to be restarted. If he does so, the program
i1s restored to its state at the last checkpoint and execution
continues from there. The REPEAT parameter of the $JOB statement can
be used to request the restart of an entire job.

The user can also request checkpoints at other times (e.g. at the

end of each tape or disk volume). See the $DEFINE statement in the
Job Control Language Re ference Manual.

12-05

At the price of introducing a non-standard element into his source
program, the user may also directly call the system checkpoint
procedure H_CK_UCHKPT, giving two parameters. For example?

CALL "H_CK_UCHKPT" USING RMODE, INFO.

RMODE is a user-de fined USAGE COMP-2 field which indicates whether

the current execution of the program is the first execution (RMODE =

Zero) or if the program has been restarted (RMODE not = zero). In
the latter case, RMODE contains the JCL status value for the

gbnormal step temination, which also appears in the Job Occurrence
eport.

INFO is a user-defined group item consisting of 32 one-character
elements, Where all elements are zero after a checkpoint, the
checkpoint was correctly executed. If not, those elements with the
value | indicate what went wrong.

Regardless of whether a checkpoint is taken as a result of the RERUN
clause or a programmed CALL, these values can be checked by coding?

CALL "H_CK_UMODE" USING RMODE INFO.
where RMODE and INFO have the same meaning as for H_CK_UCHKPT. This
CALL also introduces a non-standard element into the user’s source
program, which will require alteration to run on any system other
than Level 64.
Assoclated with checkpointing is "journalization". This is a
facility offered by Data Management which keeps a record of all file

updates so that files can be reconstituted before a rerun is
performed.

DPetails of the use of the above facilities are given in the System
Management Guide.

ALPHABETS

The following COBOL Language elements are discussed belows

= In the SPECIAL-NAMES paragraph

alphabet-~name IS EBCDIC

user—speci fied-alphabet

12=-06

= In the OBJECT-COMPUTER paragraph

alphabst—name
STANDARD-1
NATIVE

PROGRAM COLLATING SEQUENCE ISQ ASCII
- ¢ EBCDIC
HBCD

= In the FILE SECTION

CODE-SET IS EBCDIC

= in the SORT and MERGE statements

alphabet-name

STANDARD—1

NATIVE

ASCII
COLLATING SEQUENCE IS BCDIC

B

= Xpm

L]

m|2|ssl :
Qo

Note that ASCII,. EBCDIC, HBCD, IBCD, JIS and GBCD are not part of
the ANS standard for the OBJECT-COMPUTER paragraph, FILE SECTION or
SORT and MERGE statements. They are standard for the SPECIAL NAMES
paragraph only. See the COBOL Language Re ference Manual for an
explaggtlon of STANDARD-1, NATIVE, ASCII, EBCDIC, HBCD, IBCD, JIS
and GBCD.

The alphabet-name clause provides a means of relating a name to a
speci fled character code set and/or collating sequence. When
alphabet-name is referenced in the PROGRAM COLLATING sequence clause
of the OBJECT-COMPUTER paragraph or the .COLLATING SEQUENCE phrase of
a SORT or MERGE statement, the alphabet-name clause specifies a
collating sequence. When alphabet—-name is referenced in a CODE-SET
clause in a file description entry, it specifies a character code
set.

The collating sequence of each alphabet is given in an appendix of
the COBOL Language Re ference Manual. This appendix shows the
hexadecimal value, graphic symbol and symbolic character number for
each character in the alphabet.

12=-07

Whichever alphabet is specified, non-numeric data is always stored
in memory in NATIVE (EBCDIC) form. If another alphabet 1s speci fied

for comparison, collating or I1/0, code conversion is carried out (by
software). The circumstances under which code conversion is carried
out are discussed below.

PROGRAM COLLATING SEQUENCE

PROGRAM COLLATING SEQUENCE in the OBJECT-COMPUTER paragraph
indicates the collating sequence to be used for non—-numeric
comparisons of the following types

identifier-] IS [NOT) GREATER THAN}|identifier-2
literal-l IS [NOT] LESS THAN literal-2
arithmetic-expression-1] (IS [NOT] > arithmetic-expression-2
IS [NOT] <
EXCEEDS

The data to be compared is converted into the collating sequence
indicated by PROGRAM COLLATING SEQUENCE before the comparison is
made. PROGRAM COLLATING SEQUENCE has no effect on non-numeric
comparisons of the following type:?

identi fier-1 IS ENOT] EQUAL TO | |identi fier-2

literal-| IS [NOT) = literal-2

arithmetic-expression=1} }IS UNEQUAL TO arithmetic-expression=2
EQUALS '

These comparisons are made without prior conversion.

SORT AND MERGE COLLATING SEQUENCES

COLLATING SEQUENCE in the SORT and MERGE statements has an effect
similar to PROGRAM COLLATING SEQUENCE described abovet the sort and
merge keys will be converted according to the specified collating
sequence before key comparison is made. This does not affect the
record stored in the COBOL program.

CODE-SET

The CODE-SET clause enables data to be input from or output to files
in code sets other than NATIVE (EBCDIC). This facility can be used
only with sequential files and, if CODE-SET is equated to HBCD, for
non-sequential H-2000 files. These files must contain display items
only and all signs must be speci fied as separate, CODE-SET operates
in the following way.

~ Immediately after a record is read. the record is converted
from the code specified in CODE-SET into NATIVE code.

12-08

- Immediately before writing or rewriting a record, it is
converted from NATIVE code into the code specified by the
CODE-SET clause.

- The CODE-SET clause is. ignored at execution time when code

conversion is done by hardware (e.g., for cards or ANS magnetic
tape) .

HIGH-VALUE LOW-VALUE

The character with the highest ordinal position in the PROGRAM
COLLATING SEQUENCE 1s used for the figurative constant HIGH-VALUE.
The character with the lowest ordinal position in the PROGRAM
COLLATING SEQUENCE is used for the figurative ,constant LOW-VALUE.
These characters are shown in Table 12-1.

Table 12-1. High Values and Low Values

COLLATING SEQUENCE [HIGH-VALUE | LOW-VALUE
| STANDARD- (ASCII)| mu256mm g e
NATIVE (EBCDIC) nup54 NN nun
HBCD. ng " S To Ll
IBCD nown " n
JIs LPLTAL nouu
GBCD niu nom

Notes for Table 12-13

non is zero

non is nine

"¢ 1s cent

uiu 1s exclamation mark
wn is blank

wejwn is hexadecimal 00

nuassn {5 hexadecimal FF

Values contained in two sets of quotation marks are
“symbolic-character numbsrs“. That is, they specify a particular
hexadecimal value In the relevant collating sequence.

12-09

$STEP OPTIONS

The OPTIONS parameter of the $STEP statement enables a character
string to be passed to a load module at the start of execution.

The COBOL program accesses the character string from the OPTIONS
parameter by including a LINKAGE SECTION in the main program of the
load module. (The main program is the one named in the ENTRY
parameter of SLINKER.) The way in which the COBOL program should be
written is shown in the following example.

*

NORKING-STORAGE SECTION.

o1 IDI PIC 999.

ot OPTI PIC X(20).
o1 0PT2 PIC X(20).
Ol OPT3 PIC X(20).
01 OPT4 PIC X(20).
01 0OPT5 PIC X(20).

LINKAGE SECTION,
01 LONG COMP-2.
ol TEXT.
02 ELEM PIC X OCCURS 1| TO 256 DEPENDING ON LONG.

PROCEDURE DIVISION USING LONG TEXT.

DEBUT.
MOVE SPACE TO OPTI OPT2 OPT3 OPT4 OPT5.
UNSTRING TEXT DELIMITED BY "," INTO OPTI
OPT2 OPT3 OPT4 OPTS.

L]

Suppose that the character string "123456,ABCDEFG,HIJKY {s to ba
passed to the COBOL program. The SSTEP statement would bet

$STEP...OPTIONS = “123456,ABCDEFG,HIJK’ 3

The above program has been written so that it can receive up to 5
twenty—-character options with commas as delimiters. With the above
$STEP statement this program will receive the following valuest

OPT13 123456

OPT2s ABCDEFG
OPT33 HIJK

If the SORTMEMORY option (used with the COBOL SORT statement) is
present it is passed to the user program with the user options.

12=-10

THE REPORT WRITER

The following paragraphs briefly describe the function of the Report
Writer and provide advice on the use of Report Writer facilities.
For a definition of the Report wWriter statements see the COBOL

Language Reference Manual. See also The Report Writer in Section VI
of the current manual,

The Report Writer enables the programmer to produce reports by
specifying the physical appearance of a report rather than by
specifying the detailed procedures necessary to produce that reoort.

A hierarchy of levels 1s used in specifying the logical organization
of a report. Each report is divided into report groups, which in
turn are divided into sequences of items. Such a hierarchical
structure enables explicit reference to other levels In the
hierarchy. A report group contains one or more items to be output on
one or more lines.

General Concepts

LINE-COUNTER is a special register that is generated for each report
description (RD) entry in the REPORT SECTION of the DATA DIVISION.
The implied description is that of an unsigned integer that must be
capable of holding a range of values from O through 999999. The
usage is COMP-2. The value in LINE=COUNTER is maintained by the
Report Writer, and is used to determine the vertical positioning of
a report. The value in LINE-COUNTER may be accessed by PROCEDURE
DIVISION statements$ however, only the Report Writer may change the
value of LINE-COUNTER.

The reserved word PAGE-COUNTER is a name for a special register that
is generated for each report descrintion entry in the REPORT SECTION
of the DATA DIVISION. The implicit description is that of an
unsigned integer that must be capable of representing a range of
values from | to 999999. The usage is DISPLAY. The value in
PAGE-COUNTER is maintained by the Report Writer and is used to
number the pages of a report. The value in PAGE-COUNTER may be
altered by PROCEDURE DIVISION statements.

In the REPORT SECTION, neither a sum counter nor the special
registers LINE~COUNTER and PAGE-COUNTER can be used as a subscript.

A report file is a sequential file and is subject to the following
restrictions. An OPEN statement, specifying either the OUTPUT or
EXTEND phrase, must have been executed prior to the execution of the
INITIATE statement, and a CLOSE, without the REEL or UNIT phrase,
must be eXecuted for this file subsequent to the execution of the

TERMINATE statement. No other input/output statement may be executed
for this file.

12-11

Note that the CHANNEL=-p IS mnemonic-name clause of the SPECIAL-NAMES
paragraph cannot be associated with files written by the Report
Writer. Also, any form control information specified in JCL
statements for such files 1s ignored when the files are written. See
Form Control, Section XI.

The DATA DIVISION

A REPORT clause 1s required in the FD entry to list the names of the
reports to be produced.

In the REPORT SECTION the description of each report must begin with
a report description entry (RD entrv) and be followed by the entries
that describe the report groups within the report.

In addition to naming the report, the RD entry defines the format of
each page.of the report by specifying the vertical boundaries of the
region within each type of report group may be printed. The RD
entry also specifies the control data items. When the report is
produced, changes in the values of the control data items cause the
detall information of the report to be processed in groups called
control groups.

Each report named in the REPORTS clause of an FD entry in the FILE
SECTION must be the subject of an RD entry in the REPORT SECTION,
Furthermore, each report in the REPORT SECTION must be named in one
and only one FD entry.

The report groups that will comprise the report are described
following the RD entry. The description of each report group begins
with a report group description entrys thet is, an entrv that has a
Ol level number and a TYPE clause. Subordinate to the report group
description entry, there may appear group and elementary entries
that further describe the characteristics of the report groun.

The PROCEDURE DIVISION

The INITIATE statement causes the Report Writer to begin the
processing of a report.

The GENERATE statement directs the Report Writer to produce a report
in accordance with the report description that was specified in the
REPORT SECTION. of the DATA DIVISION,

The SUPPRESS statement causes the Report Writer to inhibit the
presentation of a report group.

12=12

The USE statement specifies PROCEDURE DIVISION statements that are
executed Jjust before a report group named In the REPORT SECTION of
the DATA DIVISION 1is produced.

The TERMINATE statement causes the Report Writer to complete the
orocessing of the specified report.

REPORT Clause in EFD

A given report-name must appear in one and only one file descriontion
entry. The SELECT clause of a report file can only specify an SSF
record format. If WITH SSF is not specified, it will be assumed. If
neither VLR nor FLR is qppcified, WITH VLR is assumed. The RECORD
CONTAINS clause in the FD entry of a report file is used to sneci fy
its record length. The default record length is 132 characters. For
examples

ENVIRONMENT DIVISION.
SELECT FILE-1 ASSIGN FI WITH SSF FLR.
SELECT FILE-2 ASSIGN F2.

DATA DIVISION.

FD FILE-1 LABEL RECORD IS STANDARD
RECORD CONTAINS 121 CHARACTERS
REPORT IS REPORT-A.

FD FILE-2 LABEL RECORD IS STANDARD
REPORT IS REPORT-B.

-

In the above example FILE-2 is implicitly an SSF VLR file. The
records for REPORT-A and REPORT-B will be written on FILE-1 and
FILE-2 respectively. REPORT-A and REPORT-B cannot describe any line
longer than 121 and 132 characters respectively.

Summing Techniques

The examples below show two coding techniques for the REPORT SECTION
of the DATA DIVISION. Example 2 uses more complex statements than
example | and will result in more efficient (faster) object code.
The report description entry is as follows?

RD...CONTROLS ARE YEAR MONTH WEEK DAYE

12-13

Example 13

01 TYPE CONTROL FOOTING YEAR.
05 SUM COST.

01 TYPE CONTROL FOOTING MONTH.
05 SUM COST.

o]! TYPE CONTROL FOOTING WEEK.
05 SUM COST.

01 TYPE CONTROL FOOTING DAYE.
05 SUM COST.

Example 21

01 -TYPE CONTROL FOOTING YEAR.
05 SUM A.

01 TYPE CONTROL FOOTING MONTH.
05 A SUM B,

01 TYPE CONTROL FOOTING WEEK.
05 B SUM C.

0l TYPE CONTROL FOOTING DAYE.
05 C SUM COST.

In example 2, one addition will be made for each day, one more for
each week, and one for each month. In example 1, four additions will
be made for each day.

The Use of SUM

Unless each identifier is the name of a SUM counter in a TYPE
CONTROL FOOTING report group at an equal or lower position in the

control hierarchy, the identifier must be defined in the FILE,
NORKING-STORAGE or LINKAGE SECTION. A SUM counter is algebraically

incremented .by the value of a SUM operand under the following
circumstances.

- If the SUM operand is not a SUM counter and it is not
associated with an UPON phrase, then the SUM counter is
incremented just be fore the presentation of any TYPE DETAIL
report group.

- If the SUM operand is not a SUM counter and it appears on the
SUM clause with an UPON phrase, then the SUM counter is
incremented just be fore the presentation of any TYPE DETAIL
report group specified in the UPON phrase.

- If the SUM operand is a SUM counter, it is incremented just

before presentation of the TYPE CF report group which contains
this SUM counter.

12=14

In the following example, SUBTOTAL is incremented only when DETAIL~I
is generated.,

FILE SECTION.

-

05 QO—PURCHASES PIC 99.

REPORT SECTION.
RD. o e
Ol DETAIL-1 TYPE DETAIL.
05 COLUMN 30 PIC 99 SOURCE NO-PURCHASES.

Ol DETAIL-2 TYPE DETAIL.

Ol DAYE TYPE CONTROL FOOTING LINE PLUS 2.

-

05 SUBTOTAL COLUMN 30 PIC 999
SUM NO-PURCHASES UPON DETAIL-I.

01 MONTH TYPE CONTROL FOOTING
LINE PLUS 2 NEXT GROUP NEXT PAGE.

SUM Routines

A SUM routine is generated by the Report Writer for each report. The
SUM operands which are included for summing in this routine are

those which are not SUM counters and which are associated with no
UPON phrase.

A SUM routine is generated by the Report Writer for a DETAIL reoort
group whose name is specified in at least one UPON phrase. [he SUM
operands included for summing in this routine are those which are

associated with an UPON phrase which references this DETAIL report
group.

A SUM routine is generated by the Report Writer for a CF report
group which contains a SUM counter which is referenced in a SUM
clause.

When a GENERATE detail-name statement is executed, the SUM routines
for the report and the detail report group are executed in their
logical sequence. When a GENERATE report-name statement is executed
and the report contains one detail report group, the SUM routines
are executed for the renort and then for the DETAIL report groun.

12-15

The following examples show the SUM routines which are generated by
‘the Report Writer. In example | only one SUM routine is generated
which 1is associated with the report. Example 2 illustrates how
operands are selected when the UPON datail-name option is specified.

Example 13
The following statements are in the REPORT SECTION.
Ol DETAIL-! TYPE DE...

Ol DETAIL-2 TYPE DE...

L]

Ol DETAIL-3 TYPE DE..

Ol TYPE CF...
05 TOTAL-1...SUM A, B, C.

Ol TYPE CF...
05 TOTAL-2...SUM B.

One SUM routine is generated for the report as followss
ADD A TO TOTAL-1.
ADD B TO TOTAL-1.
ADD C TO TOTAL-1.
ADD D TO TOTAL-2.

Example 23

In this example the same coding is used as in examnle |, with
one exceptiont the UPON detail-name option is used for
TOTAL-1, as follows.

Ol TYPE CF...
05 TOTAL-1...SUM A, B, C UPON DETAIL-2.

The following SUM routines would be generated instead of those
resulting from the calculations in example |.

SUM routine for DETAIL-2:
ADD A TO TOTAL-1.
ADD B TO TOTAL~1.,
ADD C TO TOTAL-1,

SUM routine for the report:

ADD B TO TOTAL-2.

12=-16

Page breaks

The Report rriter page break procedure aperates independently of the
procedures that are executed after any control breaks (except that a
page break will occur as the result of a NEXT PAGE option).
Therefore, the programmer should be aware of the following:?

= A control heading is not printed after a page heading except
for first generation. If it is neccessary to have the
equivalent of a control heading at the top of each page, the
information to be printed must be included as part of the vage
heading. However, as only one page heading may be specified for
each report, the inclusion of control heading information in
page headings should be done with care. This "control heading"
will be the same for each page and may be printed at
inopportune times.

- GROUP INDICATE items are printed after page and control breaks.
Figure 12=1 contains a GROUP INDICATE clause and shows the
run-time output.

REPORT SECTION

01 6ETAIL-LINE TYPE IS DETAIL LINE NUMBER IS PLUS 1,
05 COLUMN IS 2 GROUP INDICATE PIC A(9)
SOURCE IS MONTHNAME OF RECORD-AREA (MONTH).

(execution output)

FEBRUARY 15 AQC...
AOZODO

PURCHASES AND COST...

FEBRUARY 21 AOD3...
AO3...

Figure 12-1, Sample GROUP INDICATE Clause

WITH CODE Clause

When more than one report is being written on a file and these
reports are to be selectively written, a unique two-character code
known as the record identification code must be assigned to each of
these reports. This is done using the WITH CODE clause. Note that if
a report is written using the WITH CODE clause, this report should
not be written in "edited SYSOUT" format (see Section XI) and should
not be output directly to the printer.

12-17

When the WITH CODE clause is used, the code will be written as the
first two characters of each record in the file. When the programmer
wishes to print a report from tnis file, he must use a SWRITER

statement specifying the desired code (see the Job Control Language
(JCL) Reference Manual.

The following example shows how to create and print a report with a
code. A Report Writer program contains the following statements.

L

ENVIRONMENT DIVISION.

DATA DIVISION.

FILE SECTION.

FD RPT-OUT-FILE RECORD CONTAINS 122 CHARACTERS :
LABEL RECORD STANDARD REPORTS ARE REP-FILE-1 REP-FILE-2.

REPORT SECTION.
RD REP-FILE=1 CODE "AA"...

RD REP-FILE-2 CODE "BB"...

The RPT-OUT-FILE must be written on a tape or disk. A SWRITER
statement could then be used to print only the report with code
WAAY, as follows.

WRITER (report-file-description), REPORT=AA, NAL'AFORM=SSF3

Control Footings and Page Format

Depending on the number and length of control footings (as well as
the page depth of the report), it is possible that some of the
specified control footings will not be printed on the same page if a
control break occurs for a high level control. When a page—break
condition is detected before all required control footings have been
printed, the Report Writer will print the page footing (1if
specified), skip to the next page, print the page heading (if

speci fied), and then continue to print control footings.

If it is necessary to print all the control footings on the same
page the page must be formatted in the RD-level entry for the reoort
(by setting the LAST DETAIL integer to a sufficiently low line
number) to allow for the necessary space.

12-18

Note also the following example.

RD EXPENSE-REPORT CONTROLS ARE LAST, MONTH, DAYE.

01 TYPE CONTROL FOOTING DAYE LINE PLUS |
NEXT GROUP NEXT PAGE.

01 TYPE CONTROL FOOTING MONTH LINE PLUS I
NEXT GROUP NEXT PAGE.

*

L]

(execution output)

EXPENSE REPORT

MARCH 3l eeeeensessl36.40
(output for CF DAYE)
MARCH TOTAL .. e 00 ee..220.90

(output for CF MONTH)

In the above example, the NEXT GROUP NEXT PAGE clause for the
control footing DAYE is not activated.

Floating First Detail Rule

The first presentation of a body group (CH, CF or DE) that contains
a relative line as its first line, will have its relative line
spacing suppressed and the first line will be printed on the line
indicated either by FIRST DETAIL or INTEGER PLUS 1 of a NEXT GROUP
clause from the preceding page. For example?

- I f the body group shown below was the last to be printed on a
page

01 TYPE CF NEXT GROUP NEXT PAGE.
then the following body group
Ol TYPE DE LINE PLUS 5,

would be printed on value of FIRST DETAIL (in PAGE clause).

12=19

- If the following body group was the last one to be nrinted on a
page

01 TYPE CF NEXT GROUP LINE 12,

and after 1t was printed the value of LINE-COUNTER was 40, then
the body group

Ol TYPE DETAIL LINE PLUS 5.

would be printed on line 12 + | (i.e., line 13},

Report Writer Routines

At the end of the analysis of a report description entry (RD), the
Report Writer routines are generated, according to the contents of
the RD. Each routine refers to the contents of the
compiler—generated internal line number of its own respective RD.

TABLE HANDLING

Subscripts

If a subscript is a constant, tne location of the subscrinpted data
item within the table is resolved at compilation time.

If a subscript is held in a data item the locatinn is resolved at

- eXxecution time. The value contained In a data item used as a
subscript is an integer that represents an occurrence number within
a table. Every time & subscripted data item is referred to in a
program the compiler generates several instructions to calculate the
correct displacement. Therefore, subscripts should be used with care
to avoid an inefficient object program. See Section VIII for
details. However, the compiler does optimize the calculation of
displacements. If a subscripted data item is referred to more than
once in the same statement, the displacement is calculated once only
and is used each time the data item is referred to in that
statement,

The SET Statement

The SET statement is used to assign values to index data items and
index~names.

The SET statement can assign to an index-name the value of a

literal, an identifier or an index-name from another table element,.
When this occurs, the index—-name is set to an actual displacement

12-20

from the start of the table element that corresponds with an
occurrence number indicated by the second operand in the SET
statement. The compiler performs all the required calculations., If
the SET statement is used to assign an index-name to another
index—-name for the same table element, the compiler does not have to
calculate the actual displacement value contained in the second
operand,

However, when an index data item is set to another index data 1item
or to an index-name, or when an index-name is sst to an index data
item, the cofpiler cannot changs any existing displacement value
because an index data item is not part of any table. Therefore, no
conversion of values can be done. If the programmer forgets this,

programming errors can occur. For example, sunpose that a table has
been defined ast

o1 A.
02 B O0OCCURS 2 INDEXED BY A1, A5.
03 C OCCURS 2 INDEXED BY A2, A6.
04 D OCCURS 3 INDEXED BY A3, A4,
05 E PIC X(20).
05 F PIC 9(5).

Figure 12-2 shows how the table is laid out in main memorv. Suppose
it is necessary to reference D (2, 2, 3). The following steps wnuld
be incorrects?

SET A3 TO 2.

SET INDX=-DATA-ITM TO A3, INCORRECT EXAMPLE
SET A2, Al TO INDX=DATA-ITM. correct version
SET A3 UP BY 1. shown below

MOVE D (A1, A2, A3) TO WORKAREA.

The value contained in A3 following the first SET statement is 25,
which represents the starting point (in bytes) of the second
occurrence of D. When the second SET statement is obeyed, the value
25 1is stored in INDX-DATA-ITM, and the third SET statement stores
the value 25 in A2 and Al. The fourth SET statement augments the
value in A3 to 50. The calculation of the address of D (Al, A2, A3)
would then be as follows?

(address of D (1, 1, 1)}425+25450 = (address of I (1, |, 1))+100

where D (1, 1, 1) represents the first occurrence of D. This is not
the address of D (2, 2, 3).

The following steps will determine the correct addresst

SET A3 To 2.
SET A2, Al TO A3,
SET A3 UP BY 1.

In this case the first SET statement stores the value 25 in A3. ..
Since the compiler can calculate the lengths of B and C, the second
SET statement stores the value 75 1In A2 and the value 150 in Al.

12=-21

I'ne tnird SET statement stores the value 50 in A3. The correct

E address calculation will bes

(address of N (1, 1, 1))+150+75+50 = (address of D (1, 1, 1))+275
The rules for the SET statement are shown in Figure 12-3.
Bvta No.
9]
D, 1y 1) [E F
. 9
cC 1y, 1) D iy, 1, 2) |E F
3 50
D¢, t, 3) |E =
B (1) ™
D, 2, 1 |E F
O
c (1, 2) D ¢, 2, 2)Y |[E F
125
D, 2, 3) |E F
A < I Ho
D2, t, 1) |E F
{8
c (2, 1) D2, 1, 2y |E F
; 200
D2, 1, 3) |E 3
B (2) 275
D (2, 2, 1) |k t
250
C (2, 2) % D (2, 2, 2) |E F
275
D2, 2, 3 |E F
300
Figure 12-2. Sample Table Layout in Memory
Sending Identifiar
Recelving\|Index-name Index Data Item or Literal
Index—-name ||Set to value Move without Set to valie
lcorrecponding conversion corresponding
to occurrence to occurrence
1rumber (note A) numbher
Index Data [Move without Move without Not anplicable
[tem conversion conversion
Identifier |Set to occur-
ence number Not applicahle Not amplicable
represented by
index-name
Note A3 If the index—-names refer to the same table element
the move is made without conversion.

Figure 12-3,

Rules for the

12=-22

SET Statement

The SEARCH Statement

Only one level of a table (a table element) can be referenced in one
SEARCH statement. Note that SEARCH statements cannot be nesteds: an
imperative statement must follow the WHEN condition and the SEARCH
statement is itself conditional.

The SEARCH statement has two formats.

Format | SEARCH statements carry out a serial search of a table
element. If the programmer knows that the " found" condition will
occur after some intermediate point in the table element, to speed
up execution the SET statement can be used to set the index-names at
that point and search only part of the table element. If the table
element 1s large and must be searched from the first occurrence 1o
the last, the use of Format 2 (SEARCH ALL) is more efficient than
Format 1, as it uses a binary search techniques however the table
must then be ordered.

In Format 1 the VARYING phrase allows the programmer to?

- Vary an index-name other than the index-name stated for this
table element. So, with two SEARCH statements each using a
different index—-name, reference can be made to more than one
value in the same table element for comparisons etc.

= Vary an index—name from another table element. In this case,
the first index—name specified for this table element is used
for the search and the index-name specified in the VARYING
phrase is incremented at the same time. Thus it is possible to
step through two table elements at once.

In Format 1, the WHEN conhdition can be any relation condition and
can be multiple. If multiple WHEN conditions are specified, the
implied logical connective is OR. That is, if any one of the WHEN
conditions is satisfied, the imperative statement following the WHEN
condition is executed. If it is necessary that all conditions of the
SEARCH statement be satisfied, a compound WHEN condition with an AND
logical connective must be used.

In Format 2 (SEARCH ALL) the table must be ordered on the key(s)
named in the OCCURS clause. Any key can be named in the WHEN
condition, but all preceding names in the KEY phrase must also be
tested. The test must be an "equal to" (=) condition and the KEY
data-name must either be the subject or the object of the condition,
or the name of a conditional variable with which the tested
condition-name is associated. The WHEN condition can also be a
compound condition, consisting of one of the simple conditions
listed above, with AND as the only logical connective. The key and
its object of comparison must be compatible.

12-23

To write a series of statements that will search the three
dimensional table discussed undar "The SET Statement" above, the
programmer could write the followings

17 COMPARANDI PIC X(5).
77 COMPARAND2 PIC 9(5).
0l A.
05 B OCCURS 2 INDEXED BY Al A5.
10 C OCCURS 2 INDEXED BY A2 A6.
15 D OCCURS 3 INDEXED BY A3 A4,
20 E PIC X(%).
20 F PIC 9(5),

*

(set~up values for COMPARAND! and COMPARAND2)

PERFORM SEARCH-TEST! THRU SEARCH-EXITI
VARYING Al FROM 1 BY 1 UNTIL Al GREATER THAN 2
AFTER A2 FROM 1 BY | UNTIL A2 GREATER THAN 2.
ENTRY-NOENTRY1,
GO TO ERROR-RECOVERY!.

SEARCH-TESTI .
SET A3 TO 1.
SEARCH D WHEN E (A1, A2, A3)
AND F (A1, A2, A3)
SET A5 TO Al
SET A6 TO A2
SET A2 TO 3
SET Al TO 3
ALTER ENTRY-NOENTRY! TO PROCEED T0O ENTRY-PROCESSINGI,
SEARCH-EXIT!.
EXIT.

COMPARAND!I
COMPARAND2

nnu

ERROR-RECOVERY1.

ENTRY~PROCESSING .
MOVE E (A5, A6, A3) TO OUT-AREAI.
MOVE F (AB. A6, A3) TO OUT=AREA2.

The PERFORM statement varies the indexes (Al and A2) associated with
table elements B and C. The SEARCH statement varies A3, which is
associated with table element D.

The values of Al and A2 that satisfy the WHEN conditions of the

1] SEARCH statement are stored in AS and A6. Al and A2 are then set to
‘§ 3 via the SET statement, so that when returning from the SEARCH

§ statement control will fall through the PERFORM statement to the GO
TO statement.

12-24

Later references to the desired occurrence of table elements £ and F
use the index-names A5 and A6 in which the correct value was stored.

For example, suppose that the following table was de fineds

0l TABLEA.

05 ENIRY-IN-TABLEE OCCURS 90 TIMES
ASCENDING KEY1, KEY2
DESCENDING KEY3
INDEXED BY INDEX-A.
10 PART-1 PIC 99.
10 KEY-1 PIC 9(5).
10 PART-2 PIC 9(6).,
10 KEY=-2 PIC 9(4),
10 PART-3 PIC 9(33).

10 KEY-3 PIC 9(b).
A search of the entire table could be made with the followings

SEARCH ALL ENTRY-IN-TABLEE AT END GO TO NOFIND
WHEN KEY-1 (INDEX-A) = VALUE-I
AND KEY=2 (INDEX-A) = VALUE-2
AND KEY-3 (INDEX-A) = VALUE-3
MOVE PART—1 (INDEX-A) TO OUTPUT-AREA.

These instructions will result in a search on the above table TABLEA
which contains 90 elements of 55 bytes and 3 keys. The primary and
secondary keys (KEY-1 and KEY~2) are in ascending order but the
least significant key (KEY-3) is in descending order. If an entry is
found in which the three keys are equal to the given values
(VALUE-1, VALUE-2, VALUE-3) PART-1 of that entry will be moved to
OUTPUT-AREA. If no matching key is found iIn any of the entries in
TABLEA, the NOFIND routine is entered.

If there is a match between a table entry and the given values, the
index (INDEX-A) is set to a value indicating the relative position
within the table of the matching entry. If a match is not found, the
final value of the index is unpredictable.

Note that if KEY entries within the table do not contain valid
values, the results of the binary search will be unpredictable.

Building Tables

When reading in data to build an internal table the following points
should be born in mind.

- Ensure that the data does not exceed the space allocated for
the table.

12-25

- If the data must be in sequence, check the sequence in the
program.

= If the data contains a subscript determining its position in
the table, check that the subscript does not exceed the bnunds
of the table.

nhen testing for the end of a table, use a dats item containing the
item count, rather than use a literal. Then, i f the table must be
expanded, only one value need be changed, instead of all references
to the literal (in addition to changing the number of occurrences in
the OCCURS clause). Both changes can be effected using the REPLACE
statement of the CONTROL DIVISION. The REPLACE statement is not part
of ANS standard COBOL.

INTERMEDIATE RESULTS

The compiler breaks down arithmetic statements into a succession of
simpler operations and reserves locations in memory to contain the
results of these operations. The handling of these "intermediate
results" is discussed in the following paragraphs.

For an arithmetic statement containing only one pair of operands, no
intermediate result is generated. Intermediate results may be
generated in the following cases.

- In an ADD or SUBTRACT statement which contains several operands
immediately following the verb.

- In a COMPUIE statement which specifies a series of arithmetic
operations.

- In arithmetic expressions which are contained in IF or PERFORM
statements.

In such cases, the compiler treats the statement as a series of
operations. For example, the following statement:?

COMPUTE Y = A + B* C - D /7 E + F **G

is replaced by

%k BY G GIVING ir!
MULTIPLY B BY C GIVING ir2
DIVIDE E INTO D GIVING {r3
ADD A To ir2 GIVING ir4
SUBTRACT ir3 FROM ir4 GIVING ir5
ADD irb5 TO 1irl GIVING Y

Where irl through ir5 are successive intermediate results.

12-26

In the following discussion "decimal floating-point format" is
referred to. In this format 18 most significant digits are retained
(31 if the LEVEL = L64 parameter is included in the COBOL
statement).

Length of Intermediate Result rields

Based upon the length of the operands or intermediate results to he
operated upon, the compiler allocates intermediate result fields of
a particular lenyth. The algorithm for <doing this is explained
below. The following abbreviations are used in this explanation.

ip = the number of integer places to be stored in the
intermediate result.

id = the number of decimal places to be stored In the
intermediate result.

dmax = eithert the maximum number of decimal places defined for any
operand,
or, the number of decimal places neesded for the final
result field (plus 1 1f rounding is reguired),
whichever 1s larger in a particular statement.

opl ~ the first operand in a generated arithmetic statement.
op2 - the second onerand in a generated arithmetic statement.
dl,d2 - the number of decimal places specified for opl and on2.

ir - the intermediate result produced by an arithmetic operation.
irt, ir2 etc. represent successive intermediate results,

The compiler calculates the number of integer places in an ir in the
following way. The maximum value that an ir can contain is
determined by per forming the statement in which the ir occurs:

- If an operand in the statement is a data—-name, the valrie 1nsed
for this operand is the largest value that can be stored in the
data item. For example, PIC 9V99 would result in a value 9.99,

- If an operand is a literal the actual value of the literal is
used.

- If an operand 1s an intermediate result, the value determined
for the intermediate result in a nrevious calculation is 1sed.

- If the operation is divisions
a. If op2 is a data-name, the value used for op2 is the

smallest non-zero value that can be stored in the data item.
For example, PIC 9V99 would result in a value of 0.0i.

12=27

b. If op2 is an intermediate result, the smallest non-zero
value that can be stored in the intermediate result field is
used.

c. If a further divide, multiply or exponentiation is to be
per formed for the same COBOL statement, decimal
floating=point format will be used.

- If the operation is exponentiation and op2 has a literal value
of 2 or 3 normal multiplication will be performed. Otherwise
decimal floating-point format will be used.

When the maximum value of an ir is determined in the above manner,
ip is set equal to the number of integers in this value.

The compiler calculates the number of decimal places in an ir in the
following ways

Operation Necimal Places
+ or - d! or d2, whichever is greater.
* dl + d2
/ dl = d2 or dmax, whichever 1s greater.
*% dmax {f op2 1s non integral or a data-names

d * op2 if op2 is an integral literal.

[f the number of digits in ir is greater than 3!, decimal
floating-point format will be used.

Table 12-2 indicates the length allocated to ir based upon the
values calculated for in and dp.

Table 12-2. Length of Intermediate Result Fields

Value of Value of Length allocated
ip + dp ip + dmax for 1ir
< 32 Any ip integer places and dp decimal
value places are ailocated for ir.
> 31 < 32 ip integer places and 31 - ip
decimal nlaces are allocated for 1ir,
> 3| decimal floating-point format is
used.

12-28

Fixed Binary Data Items

If an operation involving fixed binary operands requires an
intermediate result greater than the equivalent of 10 decimal
digits, the operands are converted into packed decimal before

per forming the operation. If the result field is fixed binary, the
result will then be converted from packed decimal into binarv.

If an intermediate result will not be greater than the equivalent of

9 decimald digits, the operation will be per formed most e fficiently
on fixed binary data fields.

COBOL Run~Time Package

If a decimal multiplication requires an intermediate result greater
than 31 decimal digits, a COBOL run-time package procedure is used

to perform the calculation. The most significant 31 decimal digits

of the result of this multiplication are kept.

A COBOL run—-time package procedure will be used to per form division
if the number of decimal places of the dividend plus the number of
decimal places of the quotient plus the number of integer places of
the quotient is greater than 31.

If an arithmetic operation requires an intermediate result greater
than 3! decimal digits, decimal floating—-point format will be used
for the operation., The number of digits in this intermediate result
is given by the TEMP IS clause of the CONTROL DIVISION (the CONTROL
DIVISION is not part of the ANS standard) the default value is 31 if
LEVEL = L64 is specified in the $COBOL statement, otherwise the

de fault value 1is 18.

The ON SIZE ERROR Phrase

Apart from division by zero, the ON SIZE ERROR phrase aopplies only
to final results and not to intermediate results, i.e., it apnlies
only when the final results are stored in the receiving data items.

COMMUNICATIONS PROGRAMS

Communications programming is not discussed in this manual. This
subject is covered in the Communications Processing Facility Manual,
which includes a discussion of the following Message Control System
verbs.

12=~29

SEND
RECEIVE
ACCEPT
DISABLE
ENABLE

INSPECT AND EXAMINE

the ANS standard,
in all new programs.

replace a single character).

are shown in Table 12-3.

Table

The maln advantages of INSPECT are as follows:

12-3. Comparison of INSPECT and LEXAMIN

The INSPECT statement has been added to the COBOL language standard
to replace the EXAMINE statement. As EXAMINE has been removed from
it is advisable to use INSPECT rather than FEXAMINE

- Uroups of characters can he tallied and/or replaced by a single
INSPECT statement (the EXAMINE statement can only tally anid/or

-~ Several different groups of characters can be tallied and/or
replaced in a single INSPECT statement.

- INSPECT can tally and/or raplace groups of characters before or
after a specified group of characters.

Examples of EXAMINE statements and an equivalent INSPECT statement

REPLACING FIRST B RY C,
LEADING 2 BY 3.

Value of X Value |[Valua |Valuye
INSPECT or EXAMINE statement of of nf
Before After ITALLYUPTOA JONES
i o
| EXAMINE X TALLYING UNTIL FIRST A. [21BA2AR| same 3 - -
£ | EXAMINE X TALLYING ALL 1. 21BA2AB]| sama | - -
EXAMINE X REPLACING FIRST B BY C. |21BA2AB|21CA2AH] same - -
EXAMINE X REPLACING LEADING 2 BY3., |21CA2AB [31CA2AR same - -
INSPECT X TALLYING UPTOA
FOR CHARACTERS
BEFORE INITIAL A,
ONES FOR ALL 1, 2IBA2ARI3ICA2AR - 2 1

Further examples of the use of the INSPECT
the COBOL Language Reference Manual.

12=-30

statement are given

in

APPENDIX A
EXAMPLE COBOL PROGRAM

A-0l

co-v

coBoL V=50.2 X86.1 LI STING BOURGAIN BOURGAIN 133522348 MAR 31, 1978 PAGE ‘ 1

I R X R R 21 F T E 2SR SRR AR ARSI RI SRR RIAT a2 AL R Rl Rl 2 R R AR RLd AR AR R RS RS2SR ST
R SRR AN R A AN R R R R AR AR AN A A AN A AR A DA A AR R AR DR RN AR A NN AR AR AR A AN A S AR AN A ARG N AN AR AN AR RN A AR A ANN A AR AR NG AR A ANRA RSN R A AN N E RO NS S0 &

wwnxd GCOS LO&64 [X TR}
1123 ¢ 0 8 0 "anw
T2 VERSION: SO DATED: MAR 10, 1978 wnana
T ImnmnInImMmIIImIImI T I I e I s I I I I NN ImIIIIY NAE N ARG AN AR SRR N AANS R ah

AR AT RN AN R A SRR R AR A AN SN A AR R AN AR R AN A AN AR RN AR AR AR AR E RRA R D RA VS AN AR AR N R A N AN AR AN AR N SRS AN R A RA R R R AN ARSI AN DRSNS RANT R RN SRR o

PROGRAM: FIND—-DAY

USER: BOURGAIN

PROJECT: BOURGAIN

DATE: 03/31/78

TIME: 13:322:48

COMPILER VERSION: L64 COBOL V=-50.2

USER OPTIONS: COMFILE L18=1 LEVEL=LA4 DCLXREF XREF EXPLIST

ACTIVE OPTIONS: 08J, NDEBUG, WARN, OBSERV, N MP, DCLXREF., XﬁEF& LIST, EXPLIST, CKSEQ, CARDID, CASEQ, DIAGIN,
NCODAPND, NOPT, DDEBUGMD, PSEGMAX34(96(BYTES), DSEGMAX=4L096(BYTES),

COMPILATION LEVEL: Lé4

COMPILER INPUT:

ALTER FILE

"RSTR (H_ALTER) .

C0=D1723/78 CT=10:35224 MD=01/23/78 NY=1(:35:24 SLsDAT MNs(Q0 NMaALTER-DAYS
SOURCE FILE ‘

FIND=DAY IN RSTR (H_INLIB1)

¢D=01/23/78 CT=10335:24 MD=03/072/78 MI=1233162:12 SL=DAT MN=11 NM=F IND~DAY
COPY FILE (COPIED TEXT ON LINES 38 THROUGH 49)

DAYS IN RSTR (H_INLIB1)

C0=01/723/78 CT=10:35:24 MD=01/23/778 AT=1 (3135324 SL=DAT MN=00 NM3DAYS

coaoL v=-50,2 X86,1 LISTING BOURGAIN BOURGAIN 13322348 MAR 31, 1978

FIND=-DAY ALTER LISTING
Aol =====> COMPILE?
A.2
A3 Rt R FIND-DAY
Ak
AS R: /DATA/S/DIVISION/R./
A6
A7 Rs /01 DITWEEK~-TAB/,/SUNDAY/C COMMENT
1

* 1 1=44 TEXT FOLLOWS THE °*A‘', °C', °I' (R *Q" COMMAND ON THE LINE. TEXT IS IGNORED.

A.8 13 COPY. DAYS
A.9 Is REPLACING == PIC X(8) == BY == PIC X(10) ==,
A.10 1: ¢F

g0~V

PAGE

2

14002

FIND

cosoL

V‘SO;Z %86.1 LISTING BOURGAIN BOURGAIN 13:22:48 MAR 31, 1978 PAGE
SOURCE LISTING
TEXT 7=10=——==—=20==-=——==30=—===—={(mmm=mm ==§)= 60 70— ccenaeas

"
L]
-

]

*

*

L]

L]
-

IDENTIFICATION DIVISION.
THIS ROUTINE, STARTING FROM A DATE, GIVES <=
THE DAY IN THE WEEK CORRESPONDING TO THE

PROGRAM-ID. FIND- LAY,

ENVIRONMENT DIVIS ION,
CONF IGURATION SECTION,

SOURCE-COMPUTER .
OBJECT-COMPUTER.

DATA DIVISION,

DATE

LEVEL-64
LEVEL-64.

WORKING~STORAGE S ECTION,
TEMPORARIES

01
01

01

01

01

01

X PICTURE 9(1.0.

Y PICTURE 9(S).

PREC-D~TAB.

TOTAL

NUMBER OF DAYS PRECEDING THE MONTH

(SHOWN 8Y ITS ORDINAL NUMBER IN THE LIST)
IN THE YEAR

0.
3.
59.
90.

120.
151.
181,
212,
243,
273.
304.
334.
PREC-b-TAB .

PRECEDING—~DAYS PIC 999 OCCURS 12.

02 FILLER PI.(999 VALUE
02 FILLER PIC 999 VALUE
02 FILLER PI(999 VALUE
02 FILLER PI1.{ 999 VALUE
02 FILLER PIC 999 VALUE
02 FILLER PIL 999 VALUE
02 FILLER PIC 999 VALUE
02 FILLER PL(999 VALUE
02 FILLER PIL.(999 VALUE
02 FILLER PIC 999 VALUE
02 FILLER PIC 999 VALUE
02 FILLER PL:(999 VALUE
PREC-D—TAB~RE.I REDEF INES
02

TABLE

WEEK
COPY DAYS

OTHER-UNUSE D,
02.FILLER PIC X,
02 FILLER COMP-1 SYNC.
DITWEEK-TAB.

02

FILLER PI:(X(8)

1

2

GIVING THE NAME OF THE DAYS IN THE

REPLACING =% PIC X(8) == By == PIC X(10) ==,

VALUE "LUNDI "

FIRST WORD OF TEXT REPLACED (OR DELETED).

=33 LAST WORD OF TEXT REPLACED (OR [ELETED).

-DAY
ILN XLN
S.1 1
S.2 2
Se3 3
S.4 4
S5 b)
S.6 6
S.7 7
5.8 8
$.9 9
s.10 10
s.11 11
S.12 *12
$.13 13
S.14 14
S$.15 15
S.16 16
S.17 17
5,18 18
$.19 19
S.20 20
S.21 21
$.22 2
$.23 23
S.24 24
§.25 25
S.26 26
S.27 27
$.28 28
S.29 29
S.3C 30
S.31 31
$.32 32
$.33 33
S.34 34
$.35 35
$.36 36
$.37 37
$.38 -
$.39 -
S.40 el
Se 61 el
$.42 ee3
$.43 aeb
S.44 eed
1 1-32
2 1
$.45 «eb
S.46 eel
S.47 .
S.48 ae?

02
02
02
02

FILLER
FILLER
FILLER
FILLER

PIC XC1Q)
PIC XC10)
PIC X(10)
P C XC1DD

VALUE “MARDI "
VALUE “"MERCREDI".
VALUE “JEUDI "
VALUE “VENDREDI".

s0-v

FIND=DAY
ILN

§.50
$.51
$.52
$.53
S$.54
$.55
$.56
S$.57
$.58
$.59
S$.60
$.61
$.62
$.63
$.64
$.65
$.66
3.67
$.68
$.69
$.70
S.71
$.72
$.73
S.74
S$.75
$.76
S.77

cosoL
XLN

eall
-46
47
48
49
50
51
52
53
54
55
56
5?7
58
59
60
61
62
63
64
65
66
&7
68
69
70
"
72

V=50,2 X86,.1 LISTING BOURGAIN BOURGAIN 13322348 MAR 31, 1978 PAGE

SOURCE LISTING

TEXT 7-10-
02

20 30-—mer === 40= w5 Qe mm === §0mm === === 704 e e 0w ua el

FILLER PIC X(10) VALUE “DIMANCHE",

01 DOITWEEK-TAB-RID REDEFINES DITWEEK~TAB,

02 DAY-IN-THE-WEEK PIC X(10) OCCURS 7 TIMES.
* AREA FOR DATE SPLITTING INTO YEAR, MONTYH,
* AND DAY
01 SPLIT-DATE.

02 CENTURY PIC 99,

02 SHORT-DAT &,

03 FILLER PIC 99.

03 MONTH PIC 99.

03 DO0AY-OF-MOIMTH PIC 99. .

03 . DAY-OF—MO'MTH~X REDEFINES DAY-OF—~MONTH PIC XX.

01 YEAR REDEFINES SPLIT-DATE PIC 9(&).

*
L
*

ORDINAL NUMBER OF THE DAY. TAKEN INTO
CONSIDERATION WITHIN THE DAYS OF THE
CHRISTIAN ERA

01 DAYS-IN-THE=ERA PIC 9€10).

LINKAGE SECTION.

]
*
*

DATE FOR MHICH THE DAY OF WEEK IS LOOKED
FOR, UNDER THE FORM YYYYMMDD OR YYMMDDBSB
CWHERE B MEANS BLANK

01 FULL-DATE PIC X(8).

*
*

RETURNED ORDINAL NUMBER OF THE DAY IN THME
WEEK (1 IS MONDAY, 2 TUESDAY ...)

01 OAY-OF-THE~WE tK PIC 9.

*

RETURNED DAY IN THE WEEK ITSELF

01 DAY-ITSELF PL(C X(10).

90-vV

FIND-DAY
ILN

$.78
S.79
S.80
$.81
5.82
$.83
S.84
S.85
S.846
S.87
$.88
$.89
$.90
$.91
$.92
$.93
S.94
S.95
S.96
$.97
$.98
S.99
$.100
S.101
$.102
$.103
S.104
5.105
$.106
$.107
$.108
$.109
s.110
S.111
S.112
$.113
S.114

coBoL

XLN

73
74
75
76
77
78
79
80
81
82
83
84
8s
86
87
88
39
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

V=50.2 X86.1 LI STING BOURGAIN BOURGAIN 13:22:48 MAR 31, 1978
SOURCE LISTING
TEXT 7-10-- 20— 30— 40 " -=50 .."60'---“"'70_. eesses st~
7
PROCEDURE DIVISIOM USING FULL—DATE DAY-OF-THE~-WEEK DAY-ITSELF.
L]
BEGIN.
MOVE FULL-DATE TO SPLIT-DATE,
IF DAY-OF-MONTH-X = SPACE
MOVE SPLIT= IATE TO SHORT-DATE
HOVE 19 TO .(ENTURY.
* LET US COMPUTE THE NUMBER OF DAYS SPENT
* SINCE THE BEGINNING OF THE CHRISTIAN ERA
COMPUTE DAY S= IN-THE-ERA =
DAY=O0F~MONTH
+ PRECED ING-DAYS (MONTH)
+ (YEAR ~ 1) « 345,
* LET US ADD 1 FOR EACH LEAP-YEAR, INCLUDING
- THE YEAR OF THE PROCESSED ODATE IF THE
* MONTH 1S LATER THAN FEBRUARY
1F MONTH < 3 (OMPUTE YEAR = YEAR - 1,
DIVIDE YEAR B 4 GIVING X.
ADD X TO DAYS-IN=-THE-ERA.
DIVIDE YEAR BY 100 GIVING X.
SUBTRACT X FR(M DAYS—IN-THE-ERA.
DIVIOE YEAR BY 1000 GIVING X.
ADD X TO DAYS~IN-THE—ERA.
. NOW THE REMAINDER OF THE DIVISION BY 7 OF
* THE DAYS—~IN-THE-ERA, AUGMENTED OF THE
] PROPER CONSTANT, IS THE ORDINAL NUMBER OF
* THE DAY IN THE WEEK
DIVIDE DAYS-IMTHE-ERA BY 7 GIVING X REMAINDER Y.
1F Y > &
SUBTRACT 4 .IROM Y
ELSE
ADD 3 TO Y.
MOVE Y TO DAY-OF~-THE-WEEK.
MOVE DAY-IN~T HE-WEEK (Y) TO DAY-ITSELF.
THE-END.

EXIT PROGRAM.

PAGE

LO=Y

FIND=DAY

ILN

N b b od od b mb od b b ’
OOVRNOVMIMUWN=SOVEB®NOVNDUNS

~N
-t

NN
waln

WhWbwuwuwuwn N
ONOVEUN=S2OVORNO

oW
oo

coBoL

XLN

®
b —h b
Nt OO NN WN =

N od) b od b b
OOV NOWVL W

NN N A NN
O N VSN

w N
(=1

[P RV RV RV RV
VIS W~

W
-~ O

ael

LI)
L]
W

13322348

NG FROM A DATE, GIVES

CORRESPONDING TO THE

PRECEDING THE MONTH
L NUMBER IN THE LIST)

E OF THE DAYS IN THE

v=-50,2 X861 LI STING BOURGAJIN BOURGAIN
EXPANDED SOURCE LISTING
TEXT 7-10 20--—~ 30- ~==40 -=50
IDENTIFICATION DIVISION.
* THIS ROUTINE, STARTI
» THE DAY IN THE WEEK
* DATE
PROGRAM~1D., FIND— (AY.
L 3
ENVIRONMENT DIV IS 10N,
CONFIGURATION SECIION,
SOURCE-COMPUTER. LEVEL-64
OBJECT-CCMPUTER. LEVEL—64.
*
DATA DIVISION.
E 4
WORKING~STORAGE S ECTION.
* TEMPORARIES
01 X PICTURE 9(¢(10.
01 Y PICTURE 9(5).
" TOTAL NUMBER OF DAYS
* CSHOWN BY ITS ORDINA
* v IN THE YEAR
01 PREC-D-TAB.
02 FILLER P1(999 VALUE 0.
02 FILLER PI.(999 VALUE 31,
02 FILLER PI(999 VALUE S9.
02 FILLER PLIt 999 VALUE 90.
02 FILLER PIC 999 VALUE 120.
02 FILLER PI:(999 VALUE 151,
02 FILLER PIIt 999 VALUE 1381, W
02 FILLER PI.(999 VALUE 212, 2 A%
02 FILLER PLC 999 VALUE 243.
02 FILLER PIIt 999 VALUE 273.
02 FILLER PI(999 VALUE 304.
02 FILLER PI(999 VALUE 334,
01 PREC-D-TAB-RE { REDEF INES PREC-D-TAB.
02 PRECEDING~DAYS PIC 999 OCCURS 12,
" TABLE GIVING THE NANM
" WEEK
01 OTHER-UNUSED.
02 FILLER PIC X.

02 FILLER COMP-1 SYNC.

1

MAR 31, 1978

"‘60“‘“""'70—0 eescocal~

&=

1 2-199 A 1 BYTE TYPE 2 FILLER WAS ALLOG(ATED TO ALIGN THIS SYNCHRONIZED ITEM (SEE REFERENCE MANUAL).

41

42
43
44
45
46
47
48
49
50

ek
*.os
*ea3d
eeb
P
ea8
«e10
eelt
=46

01

01

DITWEEK-TAB.

02 FILLER PIC Xx(
VALUE "LUNDI "e
02 FILLER PIC X(10) VALUE “"MARDI "a
02 FILLER PL(X(10) VALUE "MERCREDI",
02 FILLER PI'C X(10).VALUE "JE§DI "
02 FILLER PIC X(10) VALUE "VENOREDI™,
02 FILLER PIC X(10) VALUE “SAMEDI °,
02 FILLER PICU X¢(10) VALUE "DIMANCHE",

DITWEEK-TAB—-RED REDEFINES DITWEEK-TAB,

10) <-

PAGE

80~V

FIND-DAY
ILN

St
52
53
54
55
56
3¢
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

cosoL
XLN

47
48
49
50
51
52
<t
S4
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

v-50.2

X86,1 LI {TING BOURGAIN BOURGAIN 13322348 MAR 31, 1978 PAGE

EXPANDED SOURCE LISTING

TEXT

7-10

L]
*
L]

-

»

]
*

*

01

20 ——-30- -——40 —e§0 v mmm e flrm e == 70t e e e s ne ™

02 DAY-IN-THE-WEEK PIC X(10) OCCURS ? TIMES,
AREA FOR DATE SPLITTING INTO YEAR, MONTH,

AND DAY
SPLIT-DATE.
02 CENTURY PIC 99.
02 SHORT-DATE.
03 FILLER PI1C 99.
[V BETIN PIC 99.

03 DOAY-0F-MOIITH PIC 9Y.
03 DAY-OF-MOATH-X REDEFINES DAY-OF-MONTH PIC XX,

01 YEAR REDEFINES SPLIT-DATE PIC 9(4).

01

ORDINAL NUMBER OF THE DAY TAKEN INTO
CONSIDERATION WITHIN THE DAYS OF THE
CHRISTIAN ERA

DAYS-IN-THE-EFRA PIC 9(10).

LINKAGE SECTION.

01

01
o

DATE FOR WHICH THE DAY OF WEEK IS LOOKED
FOR, UNDER THE FORM YYYYMMDD OR YYMMODESB
(WHERE B MEANS BLANK
FULL-DATE PIC X(8).
RETURNED ORDINAL NUMBER OF THE DAY IN THE
WEEK (1 IS MONDAY, 2 TUESDAY ...)
DAY-=OF-THE~-WE LK PIC 9.
RETURNED DAY IN THE WEEK ITSELF
DAY-ITSELF PIC X(10 .

LA

60-Y

FIND~-

DAY
ILN

77
78
79
80
81
82
83

coBoOL

XLN

73
74
75
76
77
78
79

V=50,2

EXPANDED SOURCE LISTING
TEXT 7-10- 20

/

*

X86.1 LI STING BOURGAIN BOURGAIN 13:22:48 MAR 31, 1978

30~ 40 S0 -==60

4 o JUPRPRP S

PROCEDURE DIVISION USING FULL-DATE DAY-OF-THE-WEEK DAY-ITSELF.

BEGIN.

MOVE FULL-DATE TO SPLIT-DATE.
IF DAY=O0F~MONTH=X = SPACE
MOVE SPLIT-(ATE TO SHORT-DATE

1

1 5-148 THIS RECEIVING 1TEM MAY BE TRUN(ATED ON RIGHY
*% 1 5-264 SENDING AND RECEIVING. FIELDS OVIIRLAP
* 1 5-184 THIS IS A GROUP MOVE AND OPERANDS DO NOY HAVE THE SANE SI2E,

.k

84
as
86
8?7
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
10

80
81
82
83
84
a5
86
87
88
89
90
91
92
93
94
95
96
97
93
99

100

101
102
103
104
105
106

*

L 2 N I J

MOVE 19 TO .(ENTURY., .
~ LET US COMPUTE THE NUMBER OF DAYS SPENT
: SINCE THE BEGINNING OF THE CHRISTIAN ERA
COMPUTE DAYS— IN~THE~ERA =
‘DAY=O0F=MONTH
+ PRECEDING-DAYS (MONTH)
+ C(YEAR = 1) =+ 365, .
LET US ADD 1 FOR EACH LEAP-YEAR, INCLUDING
THE YEAR OF THE PROCESSED DATE IF THE
MONTH 1S LATER THAN FEBRUARY
IF MONTH <. 3 .(OMPUTE YEAR = YEAR - 1,
DIVIDE YEAR BY & GIVING X,
ADD X TO DAYS—IN-THE—ERA,
DIVIOE YEAR.B)Y 100 GIVING X.
SUBTRACT X FRCH DAYS—IN-THE-ERA.
DIVIDE VEAR BY 1000 GIVING X.
ADD X TO BAYS~IN-THE-ERA. .
NOW THE REMAINODER.OF THE OIVISION BY 7 OF
TME DAYS—IN-THE-ERA, AUGMENTED OF THE ,
PROPER CONSTANT,- IS THE ORDINAL NUMBER OF
THE DAY IN THE WEEK
DIVIDE DAYS~IM~THE~ERA BY 7 GIVING X REMAINDER Y.
1F Y > 4 :
SUBTRACT 4 FROM Y
ELSE
ADD 3 Y0 vV, :
MROVE Y TO DAY~OF-THE—-WEEK.

1

1 5~156 POSSIBLE LEFT TRUNCATION

m
112
113

107
108

109

MOVE DAY-IN~T RE-WEEK (Y) T0 DAY=ITSELF.

'“E‘;"’o

EXIT PROGRANM,

PAGE

8

ol-v

cosoL v=50,2 286,41 LISTING BOURGAIN BOURGAIN 13322348 MAR 31, 1978 PAGE

FIND=DAY CROSS~REFERENCE LISTING (D ECLARAYION ORDER)
LN NAME PN JDDRESS US AGE PIC-STRING DEF, REF. LINES
77 TALLY 1:00010 DISP 9(5) NOREF
01 x 11:00064 DISP 9¢10) 16 95 96 97 98 99 100 105
01 vy 1:00070 bIsSP 9(s5) 17 105 106 107 109 110 111
01 PREC-D-TAB 1: 00078 GRQUP X(36) 21 NOREF
01 PREC-D-TAB-RED 11200078 GROUP X(36) 34 NOREF
02 PRECEDING=DAYS 1:00078 bISP 9(3) 35 89
01 OTHER-UNUSED 11: 00040 GROUP XC4) 38 NOREF
01 DITWEEK~-TAB 113000 A4 GROUP x¢70) 41 NOREF
01 DITWEEK~TAB-RED 1:000A4 GROUP X€70) 50 NOREF
02 DAY=IN-THE-WEEK 1: 00044 o1sp X€10) 51 111
01 SPLIT-DATE 1:000F0 GROUP X(8) 54 81 83
02 CENTURY 1:2000F0 DISP 9(2) 55 84
02 SHORT-DATE 1:000F2 GROUP X(6) 56 83
03 NMONTHR 1:000F4 bIsSe 9(2) 58 89 94
03 DAY—=OF-MONTH 1:000F6 b1ISP 9(2) 59 88
03 OAY=OF—=NMONTH-X 1:000F6 DISP x(2) 60 82
01 YEAR ‘13000F0 0ISP 9¢4&) 61 90 94+ 95 97 99
01 DAYS—IN-THE—-ERA 1:000F8 D1SP 9(10) 65 87 96 98 100 105
01 FULL=DATE 1 00000 bisep 'X(8) n 78 81
01 DAY-OF-THE—-WEEK 2 00000 b1sSeP 9(1) % 78 110
01 DAY-ITSELF 3 00000 b1sp xX€(10) 76 78 111
BEGIN PARA-NN 80 NOREF

THE-END PARA-=NM 112 NOREF

=y

FIND~DAY

coaoL v=-50,2

LN NANE

BEGIN
CENTURY (SPLIT-DATE)

- ODAY=IN-THE~WEEK (DITWEEK-TAB-RED)

DAY-1ITSELF

DAY=0F=MONTH (SPLIT-DATE)
DAY=0F=NONTH=X (SPLIT-DATE)
DAY=0F-THE-WEEK
DAYS=1IN-THE-ERA
DITWEEK~TAB
OITWEEK-TAB-RED
FULL~-DATE

MONTHR (SPLIT~DATE)
OTHER~UNUSED

PREC-D~TAB
PREC—-O-TAB-RED

. PRECEDING-DAYS (PREC—-D~TAB—-RED)

SHORT=DATE (SPLIT=DATE)
SPLIT-DATE

TALLY

THE-END

X

Y

YEAR

X86.1

ADDRESS

113000F0
1:000A4
00000
13000°F6
13000¢6
00000
1:000F8

-)73000A4

1300044
00000
1:000F4
1300040
1300078
1:00078
1300078
+13000F2
*13000F0
1300010

1300064
1200070
3°3000F0

USAGE

PARA~NM
01IsP
b1sP
bIse
01ISP
b1SP
013pP
p1sp
6ROUP
6ROUP
bIsSP
b1sp
6ROUP
GROYP
G6ROUP
p1se
GROUP
GROUP
bIsp
PARA=NM
b1sp
DISP
p1se

LISTING BOURGAIN BOURGAIN
CROSS~REFERENCE LISTING (A LPHABETIC ORDER)
PIC~-STRING

9(2)
x(10)
X€10)
9(2)
X(2)
9(1)
(1)
X(70)
X(70)
X(8)
9(2)
X(4)
X(36)
X¢36)
9(3)
x(6)
X(8)
9(35)

9¢10)
99U
92¢4)

DEF.

80
3S
51
76
59
60
74
65
41
50
71
58
38
21
34
35
56
S4

112
16
17
61

13322148 MAR 31, 1978

REF. LINES

NOREF

78 110

87 96 98 100 105

NOREF)
NOREf

78 8%

"9 94

NOREF

NOREF

NOREF

89

83

81 383

NOREF

NOREF

95 96 97 98 99 100 105
105 106 107 109 Y10 111
90 94¢ 95 97 99

PAGE

10

=y

coBoL v=50.2 X86.1 LI STING BOURGAIN BOURGAIN
FIND-DAY COMPILATION SUMMARY

SUMMARY OF ERRORS

ON LINES A.7 40 $.44 83
ON LINES 83 110

. »

LN 3N 2
LN B A
OoOCcww

CU PRODUCED ON LIBRARY >000086.TENP.CULIB

SEGNENT NAME TYPE SIZE (IN BYTES)
FIND=DAY.O .ol 99
FIND=DAY.1 «D. 278
FIND-DAY,2 C.e 434
STACK 68

RUN TIME PACKAGE PROCEDURES INVOKED

NONE

13:22:48 MAR 31, 1978

PAGE

n

APPENDIX B
$COBOL ERROR MESSAGES

B-0l

—

_— el D P d -

-10
-11
-12
-13
-14
-15
-16
-17
-18
-19
-20

=21
=22

=25

SN N S W

W W

ILLEGAL CHARACTER., REPLACED BY B3LANK.

TOO LONG PICTURE CHARACTER STRIWG. PICTURE CHARACTEK

STRING IS TRUNCATED. A

END DELIMITER MISSING IN A LITERAL. DELIMITER

IS ASSUMED.

TOO LONG LITERAL. LITERAL IS TRUNCATED.

ILLEGAL CONTINUATION OF A NOWN-NUMERIC LITERAL, COLUMN

7 IGNORED.

DEBUGGING LINE DISALLOWED IN PSEUDO-TEXT PRECEDING

"8Y", LINE ACCEPTED.

SEQUENCE ERROR OR NON-NJMERIC LINE NUMBER. LINE IS
ACCEPTED.,

AREA A IS IGNORED IN A CONTIJNUATION LINE,
CONTINUATION LINE NOT ALLOWED AFTER DEBUGGING OR

COMMENT LINE, WITHIN A COMMENT ENTRY OR AS FIRST LINE

OF SOURCE OR COPIED TEXT., COLUMN 7 IS IGNORED,

FIRST WORD IS NEITHER "CONTROL'™ NOR "IDENTIFICATION",

OR IT DOES NOT BEGIN IN AREA A,

SYNTAX CHECKING DISCONTINUED.

SYNTAX CHECKING RESUMED.

IMPLEMENTATION RESTRICTION., NOT ENOUGH ROOM TO

ACCOMODATE "REPLACE", "COPY ... REPLACING ..." AND/OR
STATEMENT SCANNING.

ZERO LENGTH OR TOO LONG WORD AFTER REPLACEMENT,

REPLACEMENT DID NOT TAKE PLACE.

THIS "BY" PHRASE WILL NOT PARTICIPATE TO REPLACEMENT

BECAUSE OF A PREVIOUS "3Y" PHRASE.

"COMPILE"™ COMMAND OR TERYMINATING SEMI-COLON THEREOF
ASSUMED TO BE MISSING. IS REPROCESSED.

EMPTY PSEUDO-TEXT TO THE LEFT OF "BY". THIS "8Y"
PHRASE WILL NOT PARTICIPATE TO REPLACEMENT.

ILLEGAL CHARACTER IN COLJMN 7. LINE IS IGNORED.

NO "COMPILE"™ COMMAND FOJUND IN THE ALTER FILF,
DUPLICATE OR OUT OF SEQJENCE DIVISION HEADER,

-~ DIVISION MISSING.

ILLEGAL DELIMITER FOR THE REGULAR EXPRESSIONS OF AN

"S" COMMAND.

THIS WORD IN AREA A IS NOT A USER-DEFINED WORD.

THIS WORD IS RESERVED FOR FUTURE IMPLEMENTATION,
ILLEGAL CHARACTER IN SYMBOLIC CHARACTER. END OF
LITERAL IS IGNORED,

THIS FEATURE IS A -~ FEATURE., NOT INCLUDED IN THE
CURRENT COMPILATION LEVEL.

THE USE OF THIS RESERVED WORD HAS BEEN RESTRICTED BY
THIS INSTALLATION,

TOO COMPLEX SUBSTITUTE STRING.

ZERO LENGTH PICTURE CHARACTER STRING, "PICTURE X" IS
ASSUMED.,

ZERO LENGTH NON-NUMERIC OR BOOLEAN LITERAL., SPACE OR
ZERO IS ASSUMED, RESPECTIVELY.

TOO LONG A SOURCE LINE., LINE IS TRUNCATED,

FIRST WORD OF TEXT REPLACED (OR DELETED).

LAST WORD OF TEXT REPLACED (OR DELETED).

WORD REPLACED (OR DELETED).

LINE TOO LONG AFTER ALTER SUBSTITUTION.

UNKNONN OR ILLEGAL ALTER COMMAND.

B-02

- B D —h

— e d D D D ad ed =D e wd D D D

-37

-38

-39
-40
=41

=42
=43
=44

-45
=46

-47
-48

-49 -

=50
=51
=52
=53
=54
=55
=56
=57
-58
-59
=60
-61

-62

=63

-64
=65

=66
=67
-68
=69
-70
-71
~-72
-73
=74
=75
-76
-77
-78
=79

o~

~

~

(VUV}

£ W

N

[S Y

N =N W WWW S

THE FIRST COMMAND OF THE ALTER ENCLOSURE IS NOT AN

"R" COMMAND WITHOUT ADDRESS EXPRESSION.

AN "R" COMMAND IS ALLOWED ONLY AS THE FIRST COMMAND

OF AN ALTER ENCLOSURE.

ADDRESS EXPRESSION MISSING BEFORE "," OR ";",

ADDRESS EXPRESSION MISSING AFTER ", OR ",",

ADDRESS RANGE IS NOT FOLLOWED BY A "C", A "D" OR AN

"S" COMMAND,

END OF COMMAND MISSING IN ALTER LINE,

RELATIVE ADDRESS VALUE MISSING IN ALTER COMMAND.
TEXT FOLLOWS THE "A", "C", "1I" OR "Q" COMMAND

ON THE LINE. TEXT IS IGNORED.

DOLLAR MUST NOT BE THE FIRST ADDRESS OF AN ADDRESS

RANGE,

DOLLAR MUST NOT BE FOLLOWED BY A RELATIVE ADDRESS.
SYNTAX ERROR IN REGULAR EXPRESSION.

NUMERIC ADDRESSES ARE MEANINGFUL ONLY WITH SOURCE

PROGRAM IN SSF FORMAT,

OPERAND FOLLOWING "BY"™ IS ILLEGAL OR MISSING.
IMPOSSIBLE TO NOTE ON -~ WHERE TO START FROM AT NEXT

COMPILATION,

IMPOSSIBLE TO RECOGNIZE THE LAST LINE IN -,

"< IS REFERENCED, BUT IT IS NOT ASSIGNED.
IMPOSSIBLE TO OPEN =,

IMPOSSIBLE TO OPEN =.

IMPOSSIBLE TO INITIATE NEW COMPILATION.

REPOSITIONNING ON = CANNOT BE DINE.

DEBUGGING LINES ARE ALLOWED ONLY AFTER THE
'OBJECT-COMPUTER' PARAGRAPH. LINE IS IGNORED.

"COMPILE"™ COMMAND NOT RECOGNIZED. FIRST GROUP OF

CONTISUOUS NON BLANK CHARACTERS IS IGNORED,

TEXT FOLLOWS SEMI-COLON. TEXT IS IGNORED.

OPTION CANNOT BE RECOGNIZED. OPTION IS IGNORED.

SEMI-COLON MISSING AT THE END OF THE "COMPILE"

COMMAND,

"S", THOUGH SPECIFIED AS AN INPUT LIBRARY, DOES NOT

CONTAIN TEXT.

=~ (CONSOLE MESSAGE)

ILLEGAL COBOL OPTION STRING.,

TOO MANY PERCENT LINES. LINE IS IGNORED.

"R" COMMAND DOES NOT SPECIFY A SOURCE PROGRAM, AND
NONE IS WAITING FOR THIS COMPILATION.

TEXT FOLLOWS "R"™ COMMAND. TEXT IS IGNORED,

LIBRARY-NAME SPECIFIED IN "R™ COMMAND IS TO0O LONG.

MEMBER-NAME MISSING IN "R" COMMAND.

MEMBER-NAME SPECIFIED IN "R"™ COMMAND IS TOO LONG.

UNDEFINED REGULAR EXPRESSION,

MAXIMJM REGULAR EXPRESSION LENGTH EXCEEDED.

COPY TEXT IN =~ NOT EXHAUSTED.

ALTER TEXT IN - NOT EXHAUSTED.

MORE THAN ONE LIBRARY MAY MATCH "-".

MORE THAN ONE LIBRARY MAY MATCH "=",

SYNTAX ERROR IN REGULAR EXPRESSION,

ILLEGAL CONTINUATION OF A NAME. COLUMN 7 IS IGNORED. .

LEVEL-64 SPECIFIC SYSTEVM NAME,
THE REPLACING PHRASE OF THIS COPY STATEMENT DOES NOT

B-03

-

-

-80
-81
-82
-83
-84
-85
-86
-87

-838
-89

-90
-91
-92

-73
-94

-05
-946
-97
-98
-99
-100
-101
-102
-103
-104
-105
-106
-107
-108
-109
-110

-111
-112

(]

(Y2 B S BV, RV

N N

- NN

NW W

(V]

£SO v

APPLY TO THE COPIED 'REPLACE' STATEMENT.

ILLEGAL CHARACTER IN A 300LEAN LITERAL. CHARACTER IS
IGNORED.,

IMPOSSIBLE TO CLOSE =.

ILLEGAL OR MISSING SYMBOLIC CHARACTER IN A

NON-NUMERIC LITERAL. THE HIGHEST POSITION OF THE

NATIVE COLLATING SEQUENCE IS ASSUMED.

RIGHT-M0ST CHARACTER MISSING IN SYMBOLIC CHARACTER.,
ZERO 1S ASSUMED.,

IMPOSSIBLE TO CLOSE -.

SEPARATOR MISSING BEFORE THE WORD. BLANK IS ASSUMED.

REFERENCED LINE NOT FOUND OR ALREADY PASSED.

PUNCTUATION CHARACTER IS NOT FOLLOWED BY A BLANK.

MISSING BLANK IS ASSUMED.

ILLEGAL CONTINUATION OF A WORD. COLUMN 7 IS IGNORED.
ILLEGAL CONTINUATION OF A NON-NUMERIC LITERAL.

MISSING QUOTE IS ASSUMED.

END QUOTE MISSING IN A NON-NUMERIC LITERAL. MISSING

QUOTE IS ASSUMED.

TOO LONG A NUMERIC LITERAL. INTEGRAL PART IS

TRUNCATED.

TOO LONG A NUMERIC LITERAL. FRACTIONAL PART IS

TRUNCATED.

ERROR WHILE PURGING =.

SOME ERRORS ON THIS LINE MAY INDEED APPLY TO THE FIRST

LINE FOLLOWING THE CURRENT COPIED TEXT (IF ANY),

THE END OF THIS LINE IS 40T PROCESSED FROM THIS POINT

ON. IT IS REPEATED AFTER THE COPIED TEXT (IF ANY).
TOO SHORT A RECORD ON -~ TO BE AN SSF RECORD. LINE IS
IGNORED AND IS NOT SHOWN IN THE LISTING.

PICTURE "CHARACTER STRING ENDS WITH A PERIOD OR A

COMMA. THE PERIOD(S) AND/OR COMMA(S) TERMINATING THE

PICTURE CHARACTER STRING ARE IGNORED.

TOO LONG NAME. NAME IS TRUNCATED.

NAME TERMINATES WHITH AN HYPHEN,

THE APOSTROPHE IS USED IWSTEAD OF THE QUOTE TO
DELIMIT LITERALS IN THIS PROGRAM,

PERIOD MISSING AFTER THE REPLACE STATEMENT,

NESTED COPY STATEMENT. COPY STATEMENT IS NOT APPLIED.
TEXT-VAME MISSING IN COPY STATEMENT. COPY PARSE IS

TERMINATED.,

LIBRARY=-NAME MISSING IN COPY STATEMENT, "IN" OR "OF"
ARE IGNORED. _

PERIOD MISSING AFTER THIS COPY STATEMENT,

PERIOD MISSING AFTER THIS COPY STATEMENT. THOUGH NOT
REPEATED BELOW IN THE SOURCE LISTING, THE WORD

FOLLOWING THE STATEMENT WILL BE PROPERLY TAKEN CARE OF.

UNEXPECTED SSF CONTROL RECORD IN -, RECORD IS IGNORED
AND IS NOT SHOWN ON THE SOURCE LISTING.

TOO LONG A RECORD IN ~ TO BE AN INPUT LINE. RECORD

IS IGNORED AND IS NOT SHOWN ON THE SOURCE LISTING.
ABNORMAL TERMINATION OF THE SOURCE WHILE PROCESSING
AN ALTER INSERT, CHANGE OR APPEND ENCLOSURE,

END OF LINE CONSIDERED AS COMMENT.

NO ALTER DATA AVAILABLE. = IS EMPTY.

THE ALTER ENCLOSURE IN =~ DOES NOT CONTAIN DATA,

B-04

B S N T Y —

— —

END OF SOURCE PROGRAM REACHED WHILE SEEKING FOR A

-113 3
LINE SPECIFIED IN AN ALTER COMMAND,

=114 & "= NOT FOUND IN ASSIGNED OR SPECIFIED INPUT LIBRARIES,

=115 3 "=" NOT FOUND IN ASSIGNED OR SPECIFIED INPUT LIBRARIES,

=116 4 NONE OF THE SPECIFIED INPUT LIBRARIES IS "-".

=117 3 NONE OF THE SPECIFIED INPUT LIBRARIES IS "a",

=118 4 "= NOT ASSIGNED.

=119 3 "~" NOT ASSIGNED.

=120 & "=" NOT ASSIGNED.

=121 4 =~ NOT FOUND.

=122 3 - NOT FOUND. : |

-123 & SSF FORMAT FOR -~ MUST BE EITHER COBOL, OR COBOLX, OR
DATASSF.

=124 3 SSF FORMAT FOR -~ MUST BE EITHER (C0OB80L, OR COBCLX, OR
DATASSF.

-125 4 SSF FORMAT FOR -~ MUST BE DATASSF.

=126 3 EMPTY CONTINUATION LINE. LINE IS IGNORED.

=127 3 MISSING CLOSING BRACKET IN IDENTIFIER. THIS "BY"
PHRASE WILL NOT PARTICIPATE TO REPLACEMENT,

-128 3 QUALIFIER MISSING IN IDENTIFIER. THIS "BY"™ PHRASE
WILL NOT PARTICIPATE TO REPLACEMENT,

=129 3 "BY" PHRASE MISSING.

-130 & ERROR WHILE READING =,

=131 3 EXPECTED WORD WAS "BY",

-132 3 SUBSCRIPT MISSING IN IDENTIFIER. THIS "BY" PHRASE

WILL NOT PARTICIPATE TO REPLACEMENT,

=133 3 RELATIVE INDEX MISSING IN IDENTIFIER., THIS "BY"
PHRASE WILL NOT PARTICIPATE TO REPLACEMENT.

=134 NO SOURCE PROGRAM AVAILABLE. -~ IS EMPTY,

-135 4 NO SOURCE PROGRAM AVAILABLE, = (SPECIFIED IN THE "R"
COMMAND). IS EMPTY,

~

=136 2 ENDING PSEUDO-TEXT DELIMITER MISSING. THIS "BY"
PHRASE WILL NOT PARTICIPATE TO REPLACEMENT,

=137 3 ILLEGAL OR MISSING EXPOVENT, ZERO IS ASSUMED.

=138 3 SEARCH FOR SUBSTITUTION FAILED.

=139 4 NEXT (OR FIRST) SOURCE IN -~ CANNOT BE ACCESSED.

=140 3 COPY WORD FOUND WITHIN A COPY OR A REPLACE STATEMENT,

=141 3 SOURCE TEXT IN -~ NOT EXHAUSTED.

=142 4 THE "¢B" REQUEST IS NOT INCLUDED IN THE SET OF

ALTER COMMAND.

=143 4 "=" IS ASSUMED TO BE AN EXTERNAL FILE-NAME AND AS SUCH
IS NOT ALLOWED IN AN "R" COMMAND. ONLY "INLIB1",
"INLIB2", "INLIB3"™ AND "LIB"™ ARE ALLOWED AS SUBFILE
QUALIFIER.

=144 4 ONLY THE SEMI-COLON IS ALLOWED IN A RANGE WHOSE FIRST
ADDRESS IS A COMPOUND ADDRESS.

=145 2 PUNCTUATION CHARACTER IS NOT FOLLOWED BY A BLANK.
MISSING BLANK IS ASSUMED.

=146 3 COPY STATEMENT. NOT FULLY CONTAINED IN A DEBUGGING LINE.

=147 3 THIS OPTION IS LEVEL-62 SPECIFIC. THE ENTIRE
SECTION IS SCANNED OFF.

-148 3 A USE FOR DEBUGGING ON ALL PROCEDURES HAS BEEN
PREVIJUSLY MET,

-149 1 -

-150 1 =

=151 1 ERROR MESSAGES ABOUT THE CURRENT COPY STATEMENT

B-05

—

JEE N I |

—

~d —d el D

-152

-153
-154

=155
-156
-157
-15%

-159

=162

-161

-162 _

-163

~164

-165
-165
-167
-168%

w N

N TN -

N

NN —

HAVE BEEN LOST FROM THIS POINT ON,

ERROR MESSAGES ABOUT THE CURRENT COPY STATEMENT

HAVE 3EEN LOST FROM THIS POINT ON,

THIS FEATURE IS A LEVEL-62 SPECIFIC FEATURE,

THIS ITEM MAY ONLY BE REFERENCED IW A PARAGRAPH OF A
USE FOR DEBUGGING SECTIOi.

A LINE MAY BE LOST.

LEVEL-62 SPECIFIC DEBUG-ITEM REFERENCE,

-~ IS ASSUMEL TO BE IN SSF FORMAT,

LEVEL-62 SPECIFIC COLUMN 7. THE LINE IS PROCESSED AS A
COMMENT LINE; I.E. IS IGHORED.

THIS FEATURE (NON CONTIGUOUS SECTIONS OF THE SAMF
PRIORITY) IS A - FEATURE, NOT INCLJDED IN THE CURRENT
COMPILATION LEVEL.

EXCESS NUMBER OF CHARACTERS IS SPECIFIED IN PICTURE
CHARACTER STRING, IT MUST WNOT EXCEED 37,

ILLEGAL CHARACTER IS SPECIFIED IN THE PICTURE
CHARACTER STRING. :
ILLEGAL COMBINATION OF CHARACTERS IS SPECIFIED IN THE
PICTURE CHARACTER STRING.

THE LENGTH OF THE EDITING CHARACTER STRING MUST NOT
EXCEED 256 CHARACTERS.

NO RECEIVING CHARACTER IS5 SPECIFIED IN THE PICTURE
CHARACTER STRING.

- DIVISION MISSING,

ILLEGAL DATA TYPE IN "Z" REQUEST.

UNARLE TO PROVIDE ALTERED SOURCE.

THE SYNTAX AND BEHAVIOR OF THE CO3J0L "ZI" REQUEST May
DIFFER FROM THOSE OF LI3HMAINT,

B-06

NN NN NN

~nN

NN NN N NN NN NN NN Ny NN ~NN Y

NN NN NN

N NN

~n

NIV NN N

-9
-10
=11

-12
=13
-14
=15
-16
=17
-18
-19
=20
=21
=22
=23
=24
=25
=26
=27
=28
=29
-30
=31

-32
-33
=34
=35
=36
=37

-38
-39
=40

-4

=42
=43
=44
=45
=46
-47
-48

N WWWWINND NN WD N NN WWWNW N W

— N WKW WD

w NN

NN WWW W W

W N W

o~

W N W WWW-=-

THIS RESERVED WORD SHOULD BEGIN IN AREA A.

THE RESERVED WORD DIVISION SHOULD APPEAR HERE,
MISSING PERIOD.

THE RESERVED WORD PROGRAM-ID SHOULD APPEAR HERE.

THE PROGRAM NAME IS MISSING OR INCORRECTLY SPECIFIED.
A DIVISION, SECTION, OR PARAGRAPH HEADER IS MISSING.
THIS IDENTIFICATION DIVISION PARAGRAPH HAS APPEARED
PREVIOUSLY.

IDENTIFICATION DIVISION PARAGRAPHS APPEARED IN
INCORRECT ORDER; ANSI REWUIRES THE CORRECT ORDER.
CONFLICTING CLAUSES IN THIS SELECT STATEMENT: =
INVALID COMPUTER NAME.

A MNEMONIC NAME HAS BEEN SPECIFIED PREVIOUSLY FOR THIS
WORD.

THE RESERVED WORD SECTION SHOULD APPEAR HERE.

THE WORD DEBUGGING OR SUPERVISOR SHOULD APPEAR HERE.
THE RESERVED WORD MODE SHOULD APPEAR HERE.

THE RESERVED WORD SUPERVISOR SHOULD APPEAR HERE.
THIS CLAUSE HAS ALREADY APPEARED.

AN INTEGER SHOULD APPEAR HERE.

THE MEMORY SIZE IS INCORRECTLY SPECIFIED.

THE SPECIFIED SIZE OF MEMORY IS LARGER THAN AVAILABLE.
THE SEGMENT-LIMIT CLAUSE HAS APPEARED PREVIOUSLY.
THE RESERVED WORD IS SHOULD APPEAR HERE,

THE SEGMENT LIMIT CANNOT BE GREATER THAN 49.

INVALID SEGMENT-LIMIT CLAUSE.

INVALID ASSIGN CLAUSE.

THE CURRENCY SIGN LITERAL IS INVALID.

THE RESERVED WORD COMMA SHOULD APPEAR HERE.

THE STATUS OF THIS SWITCH WAS NOT SPECIFIED.

THE STATUS JOF THIS SWITCH HAS ALREADY SEEN SPECIFIED.
INVALID CONDITION-NAME,

THIS FILE HAS BEEN SELECTED PREVIOUSLY.

THE ASSIGN CLAUSE IS MISSING FROM THIS SELECT
STATEMENT.

FILE INCORRECTLY ASSIGNED.

THE WORD REEL OR UNIT S40ULD APPEAR HERE,

AN INTEGER SHOULD APPEAR HERE.

INVALID PADDING LITERAL.

PADDING CANNOT BE APPLIED ON THIS FILE.

DUPLICATE PADDING CLAUSE FOR THIS FILE, FIRST CLAUSE
ACCEPTED.

INVALID BANNER CHARACTER.

A BANNER CHARACTER CANNDT BE APPLIED ON THIS FILE.
THE ORGANIZATION QUALIFIER IS INCOMPATISLE WITH THE
ORGANIZATION.

THIS FEATURE IS A =~ FEATURE NOT INCLUDED IN THE
CURRENT COMPILATION LEVEL.

THE COMPUTER NAME SHOULD BE "LEVEL=-64" OR "GCOS".
INVALID OPTION IN A SELECT PHRASE.

DUPLICATE CHARACTER IN ALPHABET NAME SPECIFICATION.
INVALID RECORD PREFIX.

INVALID INPUT-OUTPUT TECHNIQUE.

INVALID KEY NAME.

INVALID FILE NAME.

B-07

[AVEE S RVLV I AN I AV AV I AV}

~ny NN

[AVINAV I\ V]

~N

[aVIRAN BNV N AV N4V o N NN

AN IR AV RNV AN) [aV N AV RSV INRN |

~J

N

NN NN NN N NN

=49
=50
=51
=52
-53
=54
=55
=56
-57
-58

-59
=60
-61

-62

-63
=64
=65
-66
-67

-68
-69
-70
-71
_72

-73
-7¢
-75
-76

-77
-78
-79
-2N

-81
-33

-84
=35
-86
-37
-88
-89
-90
-91
-92
-93

-94

WINWWW N WN

- N W

W N

[ASIR VIRV VRV — NN N W

NN P A

N [a¥] N —

N (NN = W)W N W W

N

THE RESERVED WORD ON SHOULD APPEAR HERE.

INVALID DEVICE.

THE RESERVED WORD CHECKPOINT-FILE SHOULD APPEAR HERE
INVALID CONDITION-NAME.

NUMBER OF ALTERNATE KEYS IS LIMITED TO A MAXIMUM OF 15,
NUMBER OF SECONDARY KEYS IS LIMITED TO A MAXIMUM OF 8.
THE FILE REFERENCED IN THE RERUN EVERY END OF REEL/UNIT
IS NOT ACCESSED SEQUENTIALLY

INVALID RERUN CLAUSE. ,
ONLY ONE FILE NAME WAS SPECIFIED IN THIS SAME CLAUSE.
NO SYNTAX CHECKING FROM THE LAST DIAGNOSTIC TO THIS
POINT.

INVALID MNEMONIC-NAME.

THE RESERVED WORD FILE SHOULD APPEAR HERE.

THIS FILE NAME HAS APPEARED IN A PREVIOUS SAME AREA
CLAUSE.

THIS FILE NAME HAS APPEARED IN A PREVIOUS SAME RECORD
AREA CLAUSE.

ANOTHER FILE 1S ASSIGNED TO THE SAME IFN AS THIS FILE.
INVALID ACCESS MODE.

THE RESERVED WORD SEGMENT SHOULD APPEAR HERE.

INVALID FILE NAME IN THIS SELECT CLAUSE.

INCORRECT ORDER OF CLAUSES IN THIS SELECT

STATEMENT.

THE RESERVED WORD MULTIPLE SHOULD APPEAR HERE.
INVALID ORGANIZATION CLAUSE.

THE RESERVED WORD STATUS SHOULD APPEAR HERE,

INVALID FILE STATUS HNAME,

DUPLICATE BANNER CLAUSE FOR THIS FILE, FIRST CLAUSE
ACCEPTED.

NO-RESIDENT-INDEX CANNOT BE APPLIED ON THIS FILE,
DUPLICATE NO-RESIDENT-INDEX CLAUSE FOR THIS FILE.

A KFY CLAUSF IS REQUIRED FOR THIS FILE.

THIS 1-0 TECHNIQUE IS INCOMPATIBLE WITH A TECHNIGUE
PREVIQUSLY SPECIFIED FOR THE SAME FILE.

INCORRECT ORDER OF I-0-CONTROL CLAUSES.

INCORRECT ORDER OF OBJECT-COMPUTER CLAUSES.

INCORRECT ORDER OF SPECIAL-NAMES CLAUSES.

MISPLACED DECIMAL-POINT CLAUSE HAS AFFECTED LEXICAL
ANALYSIS OF PROGRAM,

THE FILE WAS ALREADY REFERENCED IN A PREVIOUS RFFUN
CLAUSE, FIRST CLAUSE ACCEPTED

THIS FILE HAS ALREADY APPEARED IN A MULTIPLE FILE
CLAUSE.

A PREVIOUSLY SELECTED FILE IS ASSIGNED TO SYS-WRITE,
INVALID QUALIFIER ON KEY QR FILE STATUS NAME,

INVALID IMPLEMENTOR-NAME.

INVALID COLLATING SEQUENCE CLAUSE.

THE RESERVED WORD RECORD SHOULD APPEAR HERE,

INVALID DUPLICATES CLAUSE.

INCORRECT ORDER OF SOURCE-COMPUTER CLAUSES.

INVALID SEGMENT SIZE CLAUSE.

INVALID ADDRESS FORMAT,

THE SPECIFIED ADDRESS FORMAT CANNOT BE APPLIED ON THIS
FILE,

DUPLICATE ADDRESS FORMAT CLAUSE FOR THIS FILEs FIRST

B-08

NN NN N NN N

[AVIREN]

~no

NN

(NSRRI A SR VANV I A B AV IS [aV]

[aN]

N NN

NN VNN

AV ARV N

NN NN

-95
-96
-97
-98
-99
-100
-101
-102

-1N7

LR)

-104

-105
-106

-107
-108
-109

-119
-1

-112
-113
-114
-115

-11%6
-117
-113
-119

-121
-122
-123

-12¢
=125
-126
-127
-128

-127

-131
-131

-132
-150
-151
-152

NN NN NN NN W

W N

VOV VIR V2 R o B BV Y.] ~N W

N

NN W

SN

EVY

N W N

CLAUSE ACCEPTED,

DEFAULT CLAUSE CANNOT BE RECOGNIZED

PROGRAM=-NAME EXCEEDS 12 CHARACTER IN LENGTH

THIS CLAUSE CANNOT BE RECOGNIZED

THE RESERVED WORD SELECT SHOULD APPEAR HERE

THIS FEATURE IS NOT IMP_EMENTED

NON STANDARD "IFN" SUFFIX

THIS CLAUSE IS USED FOR DOCUMENTATION ONLY

THIS FEATURE WILL NOT BE ALLOWED WITH THE NEXT RELEASE
SYNTAX ERROR

THE SPECIFIFIED SIZE MAY NOT EXCEED 32K BYTES FOR
PROCEDURE SEGMENTS OR 4v BYTES FOR DATA SEGMENTS.
ALPHA3ET-NAME ALREADY DECLARED

THE ALPHABET-NAME REFERENCED IN THE PROGRAM COLLATING
SEQUENCE CLAUSE IS NOT DECLARED HEREAFTER

THE SUBSTITUTION SECTION HAS NOT BEEN EXECUTED
DUPLICATE DEFAULT FOR SYMABOLIC QUEUE CLAUSE

DUPLICATE DEFAULT FOR TEMP CLAUSE, FIRST CLAUSE
ACCEPTED

DUPLICATE DEFAULT FOR ACCEPT CLAUSE, FIRST CLAUSE
ACCEPTED v

DUPLICATE DEFAULT FOR DISPLAY CLAUSE, FIRST CLAUSE
ACCEPTED

THE RESERVED WORD IDENTIFICATION SHOULD APPEAR HERE
SPECIFIED ORGANIZATION IS ILLEGAL

DEFAU.T FOR TEMP MUST BE BETWEEN 18 AND 30 INCLUSIVELY.
COMPILFR ERROR : SUBROUTINE STACK OVERFLOW.

INDEX FILE IS INCORRECTLY SPECIFIED.

INVALID FILE FOR MULTIPLE FILE CLAUSE.

"S" IS THE IFN GIVEN TO THIS FILE,

THE MEMBERS OF A MULTIP.E FILE MUST HAVE THE SAME
DEVICE AND ORGANIZATION CLAUSE.

MORE THAN ONE MEMBER OF A MULTIPLE FILE ARE GIVEN THE
SAME POSITION.

THE RESERVED WORD 'INDEX' SHOULD APPEAR HERE.
OPTIONAL FILE MUST BE ORGANIZATION SEQUENTIAL.

NON. SEQUENTI AL ORGANIZATION OPTIONAL FILE IS A LEVEL=-62
SPECIFIC FEATURE.

THIS MAY BE A LEVEL-62 INTERNAL DEVICE DESIGNATOR.
THIS IS A LEVEL-62 SPECIFIC FEATURE.

THIS LEVEL=-42 SPECIFIC FEATURE IS IGNORED.

THE RESERVED WORD CONSOLE SHOULD APPEAR HERE,

THIS FEATURE (OPTIONAL DR EMPTY SECTION OR PARAGRAPH)
IS A _EVEL-64 FEATURE NOT INCLUDED IN THE CURRENT
COMPILATION LEVFEL. ’

A LEVEL-62 SWITCH STATUS NAME ASSUMED, THE RERUN CLAUSE

IS IGNORED,

THIS LEVEL-6? SPECIFIC FEATURE IS NOT IMPLEMENTED.
THE INTERACTIVE MODE IS NOT AVAILABLE ON YOUR SITE,
PLEASE CONTACT SUPPLIER.

CONFLICTING CLAUSES IN THIS SELECT STATEMENT: =
UNEQUAL SIZE REDEFINES.

BLOCK SIZE MUST EQUAL MAXIMUMA RECORD SIZE.

THE SPECIFIED BLOCK SIZE IS TOO SMALL TO CONTAIN THE
LARGEST RECORD OF THIS FILE; THE BLOCK CLAUSE WILL 3t
IGNORED.

B-09

(AN NN NN [AV]

[AVIRAN)

~n) [AV]

N o)

[AS IV

-153
-154
-155%5
=156
-157
-158
-159
=160
-161
=162

-163

-164-

-165
=166
-167
-168

=163
-170

-171

-172
-173

=174

-175

=176
=177

-178
-179
-180
-181

-182

no N W N W

N (N

THE RECORD FORMAT FOR THIS FILE IS PERMITTED ONLY ON
TAPE.

THE RECORD FORMAT FOR THIS FILE IS PERMITTED ONLY ON
TAPE OR DISK.

A RECORD CONTAINS... DEPENDING... CLAUSE IS NOT
PERMITTED WITH THIS RECORD FORMAT,

A DATA RECORD FOR THIS FILE IS TOO LARGE FOR THE
SPECIFIED DEVICE.

INVALID RECORD FORMAT FOR CPL FILE.

RECORD PREFIX INCOMPATI3LE WITH DISPLAY TO SYSOUT.
LEVEL-568 IS ALLOWED ONLY IN LEVEL-68 COBOL.

UNBANNERED APPLIES TG H-2000 ODD PARITY TAPE FILES
ONLY.

DUPLICATE I-0 TECHNIQUES APPLIED TO THIS FILE; FIRST
CLAUSE ACCEPTED.

THE INTERNAL-FILE-NAME MUST BE H_SORT AS RANDOM APPLIES
ONLY TO SORT FILFS.

INVALID CATALOGUE-NAME,

THE RESERVED WORD TEMPORARY OR PERMANENT SHOULD APPEAR
HERE.

NO-SORTED-INDEX APPLIES ONLY TO INDEXED FILES

DESCRIBED WITH ALTERNATE KEYS. ,
DUPLICATE DISPLAY SIGN IS CLAUSE, THE FIRST CLAUSE WAS
ACCEPTED.

LEADING OR TRAILING MUST BE SPECIFIED IN THE DISPLAY
SIGN IS CLAUSE. _

DUPLICATE DEFAULT FOR CJOMP CLAUSE, THE FIRST CLAUSE WAS
ACCEPTED. ,

THE DEFAULT FOR COMP CLAUSE IS IMPROPERLY STATED.

A FIL_ER IS MISSING TO ACCOMODATE SYNCHRONIZED IN THE
CURRENT REDEFINITION: FILLER IS PROVIDED

THE SYNCHRONIZATION CANNOT BE ACCOMODATED FOR ALL
OCCURRENCES OF THIS ITEM

THIS FEATURE IS NOT IMPLEMENTED

THE SIZE OF THE 01 OR 77 LEVEL ITEM EXCEEDS THE
SPECIFIED OR IMPLIED MAXIMUM SEGMENT SIZE
IMPLEMENTATION RESTRICTION: TOO MANY ITEMS SUBORDINATE
TO THIS ITEM OR REDEFING IT, SPACE IS ONLY ALLOCATED
FOR THE SIZE OF THE REDEFINED 01 OR 77 LEVEL ITEM

THE O1 LEVEL ITEM HAS NOT THE SAME LENGTH AS THE (D IT
IMPLICITELY REDEFINES

THE VALUE CLAUSE HAS BEEN DISREGARDED BECAUSE OF THE
INITIAL ATTRIBUTE OF THE CDs THOUGH PART OF IT MIGHT BE
SIGNIFICANT

A VALUE CLAUSE CANNOT BE SPECIFIED FOR A 01 LEVEL ENTRY
THAT DOES NOT IMMEDIATELY FOLLOW A CD ENTRY IN THE
COMMUNICATION SECTION

THE SIZE OF THE RECORD MIGHT BE TOO SMALL IF THE FILE
IS ASSIGNED TO A TAPE

IMPLEMENTATION RESTRICTION: TOO LARGE 01 OR 77 LEVEL
ITEM

THE LENGTH OF THIS RECORD IS GREATER THAN THE MAXIMUM
SPECIFIED IN THE RECORD CONTAINS CLAUSE

THE LENGTH OF THIS RECORD IS NOT EQUAL TO THE SPECIFLED
IN THE RECORD CONTAINS CLAUSE

THE ORGANIZATION OF THIS FILE CONTRADICTS THE VARIABLE

B-10

N N

[AS V]

~NJ N NN N ~NJ

n

N N

=192

-193

-194
=195

=207
-203

(RS Y]

~J

—

ANV AN RN RV

RECORD FORMAT IMPLIED BY THE FOLLOWING DEFINITION

THE SPECIFIED CODE=-SET IS NOT ALLOWED WITH THE FILE

ORGANIZATION

THE SPECIFIED CODE-SET(ISCD) IS MEANINGFUL ONLY IF THE
FILE ACTUALLY ASSIGNED AT OBJECT-TIME IS A TAPE FILF

THE SPECIFIED CODE=-SET IS NOT IMPLEAENTED

THE NUMBER OF CHARACTERS SPECIFIED IM THE BLOCK CONTAIN
CLAUSE IS NOT A MULTIPLE OF THE RECORD SIZE

LINAGE CLAUSE MAY ONLY 3E USED FOR AN SSF FILF

THIS SYNTAX OF THE RECORD PREFIX PHRASE WILL NCT BE

ACCEPTED AFTER THIS RELEASE

THE CODE=-SET IS IB3CD CLAUSE 9“AY O4LY 3E USED FOR A TAPE
FILE WHEN ITS ORGANIZATION IS A-2000 SEQUENTIAL

THE LONGEST RECORD OF AN SSF FILE “UST BE AT LEAST 71

CHARACTERS IN LENGTH,

IMPLEMENTATION RESTRICTION : "INDEXED B8Y" MUST NOT 3E

USED WHEN EITHER THE ELEMENT SIZE OR THE REPEATITION

NUMBER IS GREATER THAN 65535,

THE CODE-SET CLAUSE IS NOT ALLOWED WITH THE FILE

ORGANIZATION,

NO SPACE AVAILABLE TO PROCESS THE SYNCHRONIZED

ATTRI3SUTE.

INTERVAL FILE NAME "H-SORT" IS RESERVED FOR SORT FILES.

THE SELECT CLAUSE FOR A SORT FILF CAN ONLY CONTAIN

THE ASSIGN(MANDATORY) CLAUSE AND 4ON=-STANDARD

FLR/VLR OPTION.

THE INTERNAL FILE NAME SIVEN FOR THIS FILE IS NOT

ALLOWED FOR A SORT FILE.

THE FILLER INSERTED FOR SYNCHROYIZATION WAS NOT TAKEN

CARE OF IN THE REDEFINITION.

A ~ TYPE 1 FILLER WAS ADDED AT THE END OF THIS ITEM
(SEE REFERENCE MA.JUAL).

A -~ TYPE 2 FILLER WAS ALLOCATED TO ALIGN THIS

SYNCHRONIZED ITEM (SEE REFERENCE “ANUAL).

THIS "SELECT™ HAS NO CORRESPINDING "FD".

THIS FILE HAS BEEN OPENED BUT NOT CLOSED.

THIS FILE HAS BEEN CLOSED SUT NOT OPENED.

THIS FILE WAS NOT OPENED IN INPUT OR I[-0 MODE THOUGH IT

IS REFERENCED IN A "READ” OR A "START" STATEMENT,

THIS FILE WAS NOT OPENED IN THE PROPER MODE TQ BE

REFERENCED IN A "WRITE"™ STATEMENT.

THIS FILE WAS NOT OPENED IN I-0 MODE THOUGH IT IS

REFERENCED IN A "REWRITE” OR A "DELETE"™ STATEMENT.

TRIS FILE IS NOT REFERENCED IN A "READ"” STATEMENT

THOUGH IT IS REFERENCED IN A "REWRITE"™ OR A "DELETE"

STATEMENT, AND IT IS IN SEQUENTIAL ACCESS.

ONLY INPUT FILES CAN BE OPTIONAL.

THE (MAXIMUM) SIZE IN THE RECORD CONTAINS CLAUSE IS

GREATER THAN THE SIZE OF THE LARGER RECORD DESCRIBED

FOR THIS FILE; IT WILL 3E TAKEN CARE OF, FROM THE NEXT

RELEASE ON, IN DETERMING THE RECORD (AREA) SIZE.

N N W W

NN W NN N W W N W NN W

NN N

(N N

-19

-2 1

-33

-34
-35

-36

-37

W NN

NN NN W NN NN 2 W NN (%]

W

NN

NN

(V)

UNRECOGNIZABLE SECTION SPECIFICATION HAS OCCURRED.
RESERVED WORD SECTION IS MISSING.

PERIOD IS MISSING.

REDUNDANT FILE SECTION HAS DETECTED, ONLY ONE FILE
SECTION IS ALLOWED PER PROGRAM.

SECTIONS PRECEDENCE SYNTAX ERROR IS DETECTED, CHECK
COBOL MALUAL FOR CORRECTION.

UNRECOGNIZASLE FILE SECTION LEVEL INDICATOR HAS
OCCURRED, IT MUST BE FD, SD.

THE RECO&D NAME OF THIS FILE IS IN ERROR.

RECORD HAS FATAL SYNTAX ERROR,» SYNTAX ANALYSIS OF THIS
RECORD IS NOT COMPLETED.

IN THE PRESENT DATA ENTRY- THE FOLLOWING DATA
PROPERTIES ARE INCONSISTENT WITH =

FILE NAME IS NOT DEFINED IN ENVIRONMENT DIVISION.
UNRECOGNIZABLE FD CLAUSES ARE ENCOUNTERED.

LABEL CLAUSE IS MISSING IN CURRENT FD ENTRY.

RECORD DESCRIPTION IS MISSING .

FILE RECCRDING CODE NAME IS IN ERROR.

CHARACTERS OPTION IS ASSUMED FOR THE BLOCK CLAUSE.
MAXIMJM RLOCK SIZE INTESER IS MISSING.

MAXIMJM RECORDS SIZE INTEGER IS MISSING.,

RESERVED WORD RECORD IS MISSING.

RESERVFD WORD OF IS MISSING.

DATA NAME IS MISSING OR IN ERROR.

LITERAL OR DATA NAME IS MISSING.

REDUNDENT TOP PHRASE IS SPECIFIED FOR LINAGE CLAUSE.
LINAGE SPECIFICATION IS IN ERROR.

SO DESCRIPTION COMNTAINS FATAL SYNTAX ERROR, SYNTAX
ANALYSIS IS NOT COMPLETED.

LITERALCINTEGER) IS MISSING.

AREA CLAJSE IS MISSING.

REDUNDANCY OF WORKING_STORAGE SECTION IS DETECTED, ONLY
ONE IS ALLOWED PER PROGRAM.

UNRECOGNIZABLE LEVEL OR SECTION INDICATOR HAS OCCURRED.
REDEFINES CLAUSE WHEN USFD MUST IMMEDIATLY FOLLOW THE
SUBJECT OF REDEFINES .

DD CLAUSE HEADER IS IN ERROR.

THE OCCURS DEPENDING ON ITEM MUST BE THE LAST GROUP OR
ELEMENTARY ITEM IN THE RECORD, IT CANNOT BE FOLLOWED BY
AN ITEM OF EQUAL OR LESS LEVEL WU“BER.

THE OBJECT OF REDEFINES DATA ITEM IS NOT FOUND AT EQUAL
LEVEL, OR IS ITSELF THE SUBJECT OF REDEFINES.

VALUE OF THE 88 CONDITIOH ITEM IS INCONSISTENT WITH THE
OICTURE .

.THE 65 RENAMES ITEM CANNOT FOLLOW A 77 LEVEL ITEM,

AN UNRECOGNIZABLE DATA ATTRIBUTE IS ENCOUNTERED, OR
PERIOD IS MISSING.

THE CONDITION NAME MUST IMMEDIATLY FOLLOW THE 88 LEVEL
NUMBER .

THE VALUE SPECIFIED FOR THE CONDITION NAME IS IN
ERROR,

THE LEVEL NUMBER FOR THIS DATA ITE™M IS IMPROPER, IT
SHOULD BE 77, OR Q1.

88 CONDITION NAME ITEM CANNOT BE ASSOCIATED WITH A 66

B-12

i

i

NN

N

N

N Ll NN

N

N

~64

=65

=66

-57

=53

N

]

N

N LA N

o~

2

N

NN AN

2

LEVEL ITEM, :

88 CONDITION ITEM CANNOT BE ASSOCIATED WITH AN INDEX
DATA ITEM, .

THE LITERAL VALUE AFTER THE THRJ MUST BE GREATER THAN
THE LITERAL VALUE BEFORE THRY,

THE OBJECT OF REDEFINES DATA HAME IS NOT SPECIFIED.
REDUNDANT REDEFINES CLAUSE IS DETECTED, ONLY ONE IS
ALLOWED PER DATA ITEM.

REDUNDANT PICTURE CLAUSZ IS ODETECTED, ONLY ONE IS
AtLOWED PER DATA ITEM.
REDUNDANT USAGE CLAUSE IS DETECTED, ONLY ONE IS ALLOWED
PER ITEM,

REDUNDANT VALUE CLAUSE IS DETECTED, ONLY OWE 1S ALLOWED
PER ITEM,

OCCURS CLAUSE CANNOT 3E DECLARED ON A LEVEL 1 OR 77
ITEM, NOR CAN IT 3E REDJNUDENT,

REDUNDANT JUST CLAUSE IS DETECTED, ONLY ONE IS ALLOWNED
PER ITEM,

REDUNDANT BLANK WHEN ZEXO CLAUSE IS DETECTED, ONLY JNE
[S ALLOWED PER DATA ITEW,

REDUNDANT SYNC CLAUSE IS DETECTED, ONLY ONE IS ALLOWNED
PER DATA ITEM,

REDUNDANT SIGN CLAUSE IS DETECTED, ONLY OUE IS ALLJWED
PER DATA ITEM,

REDUNDANT RENAMES CLAUSE IS DETECTED, ONLY ONE IS
ALLOWED PER ITEM,

SIGN IS LEADING OR TRAILING IS NOT SPECIFIED,

THE 03JECT J3F REDEFINES +AY HOT HAVE AN OCCURS CLAUSE.
28J5CT OF REDEFINES DATA HAME CAMNOT BE AN ITEM OF
VARIASLE LENGTH,

THF 0O3JECT OF REDEFINES DATA NAME IN FILE SECTION OR
COMMUNTICATION SECTION CANNOT BE AW 271 LEVEL ITEM,THE
REDEFINITION IS IMPLIED,

THZ SJ3JECT OF REDEFINES DATA ITEM CANNOT SE OF
VARIABLE LENGTH,

COMPILER LIMIT : TOO "MANY VALUES IN 83 ENTRY.

THE SUBJECT OF RENAMES IS NOT SPECIFIED.

THe RENAMES CLAUSE IS MISSING FOR THE 66 LEVEL ITEM,
THE O3JECT OF RENAMES DATA NAME CANNOT BE FOUND IN THE
PREVIJUS RECORD.

A 66 _EVEL ENTRY CANMNOT RENAME ANOTHER &4, 01, 22, OR
77 LEVEL DATA ITEM,

THE O3JECT OF RENAMES DATA ITE™ CANHNOT CONTAIN AN
OCCURS CLAUSE, NOR CAN IT BE SU3QORDINATE TO AN

ITEM WHICH CONTAINS AN JCCURS CLAJSE.

RESERVED WAORD THRU IS MISSING.

LABEL CLAUSE I3 MISSING IN THE CURRENT FD ENTRY,

THE PICTURE CHARACTER STRING IS MISSING.

REPORT CLAUSE AND DATA RECORD CLAUSE ARE AUTUALLY
EXCLUSIVE,

THE INITIAL VALUE IS REDUNDANTLY SPECIFIED, WHEN THE
GROUP [TEM ALREADY HAS INITIAL VALUE SPECIFIEDTHE
SUBORDINATE ITEM CANNOT HAVE ADDITIONAL INITIAL VALJE,
THE INITIAL VALYE IS INCONSISTENT WITH THE PICTURE OF
THE DATA ITEHM,

THE USAGE OF A SUBORDINATE ITEYM MYST BE CONSISTENT WITH

B-13

W N

W N

N N W

N W W W W

(2]

(]

N

NN NN IN W

-71

-73
-74
-75
-75
-77
-78

-79

-9
]

-31
-82
-83
-84
-85
-36

-87
-83

-39
-90

-91
-92
-93
-94
-95
-96
-97
-98
-99
-100
-101
-102

-103

(9] W W W W

w

N W WM~ W ~N

N

THAT JOF THE GROUP ITEM,

WHEN THE GSROUP DATA ITEM HAS INITIAL VALUE,THE
SUBORDINATE ITEM CANNOT HAVE USAGE NOTHER THAN DISPLAY,
JUST RIGHT IS ASSUMED.

JHEN THE GROUP DATA ITEM HAS INITIAL VALUE,THE
SUBORDINATE ITEM

SYNC RIGHT 1S ASSUMED.

WHEN THE GROUP DATA ITEM HAS INITIAL VALUE,THE
SUBORDINATE ITEM CANNOT CONTAIN SYNC CLAUSE,

JUST CLAUSE '

THIS FEATURE IS A -~ FEATURE {OT INCLUDED IN THE
CURRENT COMPILATION LEVEL.

THE SIGN CLAUSE IS REDUNDANTLY SPECIFIED, WHEN THE
GROUP ITEM HAS SIGN CLAJSE IT IS IMPLIED TO THE
SUBORDINATE ITEM,

COMPILER ERROR : WORKING SPACE EXHAUSTED.

RESERVED WORD ZERO IS MISSING.

WHEN THE GROUP DATA ITEYd IS ASSOCIATED WITH 3%
CONDITION ITEMS, THE SU3ORDINATE ITEMS CANNOT CONTAIN
JUST CLAUSE.

WHEN THE GROUP ITEM IS ASSOCIATED WITH 33 CONDITION
ITEMS, THE SUBORDINATE ITEMS CANNOT CONTAIMN SYNC CLAUSE
WHEN THE GROUP ITEM IS ASSOCIATED WITH 88 CONDITION
ITEMS, THE SUBORDINATE ITEMS CAiNOT HAVE USAGE OTHER
THAN DISPLAY,

THE DIMENSION OF OCCURS CANNOJOT EXCEED 3,

THE OCCURRENCE TIMES IS NOT SPECIFIED,

THE OCCURRENCE TIMES CANNOT BE I,

THE MAXIMUM OCCURRENCES “UST BE GREATER THAN THE
MINIMJUM OCCURRENCES.,

REPORT CLAUSE AND LINAGE CLAUSE ARE MUTUALLY EXCLUSIVE,
WHEN THE GROUP ITEM CONTAINS OCCURS CLAUSE., THE
SUBORDINATE ITEM CANNOT BE OF VARIABLE LEMNGTH.

THE INDEX NAME IS MISSING.

MIXED INDEXING IS NOT ALLOWED, WHEN A TABLE ITEM HAS
ONE LEVEL INDEXED, ALL LEVELS MUST ALSO BE INDEXED.
THE SIGN TYPE OF A SUBORDIWATE ITEM MUST BE CONSISTENT
WITH THAT OF THE GROUP ITEM.

REDUNDANT INDEXED BY CLAUSE IS DETECTED, ONLY ONE IS
ALLOWED PER DATA ITEM.

THE QUALIFICATION OF OBJECT OF REDEFINES DATA HNAME IS
FOR DOCUMENTATION ONLY.

COMMUNICATION SECTION PRECEDENCE ERROR

CD OUTPUT DESTINATION TABLE INDEX NAME OVER FLOW,

THE O3JECT OF REDEFINES DATA NAME MAY BE IN ERROR.
LEVEL INDICATOR CD IS MISSING OR IH ERROR

CD NAME IS MISSING

INPUT OR OUTPUT OPTION MUST BE SPECIFIED FOR EACH CD
ENTRY '

ONLY ONE INITIAL CLAUSE IS ALLOWED IN THE COMMUNICATION
SECTION ‘

WHEN NEITHER OPTION IS JSED, THE CO ENTRY MUST BE
FOLLOWNED BY ONE OR MORE 01 RECORD DESCRIPTIONS.

EXCESS DATA NAMES ARE SPECIFIED FOR THE CURRENT -CD
ENTRY,

AN UNRECOGNI ZABLE CD LEVEL INDICATOR OR SECTION HEADER

B-14

LS VY IRV I VYN I VY BV R Y R VY IR UN R Y NN IS N VN R G R)

AN N N LN Ul N N W N

(AN

N

(N

()

W N N AW

AN W W W NN W W

W W

-104
-105
-106
-107
_103
-109
-110
-111
-112
-113
114
-115
-115
-117

-113

-119
-127
-121
-122
-127%
-124
=125
-126
-127
-123

-131

=132
-133

-134
=135
-134
-137
-133

-139
140
141
142
-143
-144
=145
146
-147

-143
=149

RN LA N W W N W N N N W N W N

NN LN W N NN

NN N

w N

W N NV

N LN N W N W W

W

IS ENCOUNTERED.

UNRECOGNIZABLE CD CLAJS:Z IS EWNCOUNTERED

REDUNDANT CD INPUT SYMBOLIC SUBJIUEUE-1 CLAYSE
REDUNDANT CD INPUT SYMBOLIC SUBQUEUE~-2 (CLAUSE.
REDUNDANT CD INPUT SYMBOLIC SUBQUEUE-3 (CLAUSE
REDUNDANT CD INPUT SYMBOLIC QUEJE CLAUSE

REDUNDANT CC INPUT MESSAGE DATE CLAUSE

REDUNDANT (D INPUT MESSAGE TIME CLAUSE

REDUNDANT CD INPUT TEXT LEWNGTH CLAUSE

REDUNDANT CD INPUT END KEY CLAUSE

REDUNDANT CD INPUT STATJS KEY CLAUSE

REDUNDANT CD INPUT QUEUE DEPTH CLAJSE

REODUNDANT CD INPUT SYMOLIC SOURCE CLAUSE

REODUNDANT CD INPUT MESSAGE COUNT CLAUSE.
UNRECOGNIZABLE CD QUTPUT ATTRIBUTE IS ENCOUNTERED

THE MAXINUM OCCURRENCE NUM3ER MUST BE NUMERIC INTEGER
GREATER THAN 0O,

REDUNDANT (D OUTPUT DESTIHNATION COUNT CLAUSE
REDUNDANT CD OUTPUT TEXT LENGTH CLAUSE

REDUNDANT (D OUTPUT STATJS KEY CLAYSE

REDUNDANT COD OUTPUT DESTINATION TABLE CLAUSE
REDUNDANT CD OUTPIT ERRIOR KEY CLAUSE

REDUNDANT CD OUTPUT SYMBOLIC DESTINATION CLAUSE

THIS €D 01 RECORD HAS FATAL ERROR

(D INPUT RECORD LENGTH MuST BE 37 CHARACTERS

(D RECORD NAME ERROR

(D OUTPUT RECORD LEMGTH 1UST 8% GREATER THAN 22
CHARACTERS '

WORKING_STORAGE SECTION +HAS FATAL SYNTAX £RROR, PARSING
IS NOT COMPLETED.

THIS FEATURE (LESS THAN 11 DATA HAAES) IS A LEVEL-64
SPECIFIC FEATURE NOT INCLUDED IMN THE CURRENT
COMPILATION LEVEL.

REDUNDANT LINKAGE SECTIOW IS DETECTED, ONLY ONEIS
SLLOWED PER PROGRA%,

CODE-SET CLAUSE TLLEGAL ON d0H SEWUENTIAL FILE.
REDUNDANT CONSTANT SECTION IS DETECTED, OHLY ONE IS
ALLOWED PFR PROGRAM,

CODE-SET CLAUSE TLLEGAL O NON SEGUENTIAL FILE.

THE USAGE SPECIFIED IS UNRECOGNIZASLE,

CODE-SET CLAUSE ILLEGAL 0N NON SFQUENTIAL FILE,
CODE-SET CLAUSE REDUNDANT ON FD OR ILLEGAL 0! SD.

THE DESCRIPTION OF THIS 66 REHAMES ENTRY HAS FATAL
SYNTAX ERROR, PARSING OF THIS EHNTRY IS NOT COMPLETED.
RECORDING MODE CLAUSE REDUNDANT OM FD OR ILLEGAL ON SD.
BLOCK CONTAINS CLAUSF REDUJNDANT 3HM FD OR ILLEGAL ON SD.
RECORD CONTAINS CLAUSE REDUMNDANT ON FD OR SD.

LABEL RECORD CLAUSE REDJIDANT ON Fo OR ILLEGAL ON SD.
VALUE OF CLAUSE REDUNDANT ON FD OR ILLEGAL “ON SD.
DATA RECORD CLAUSE REDUNDANT ON FD QR SD.

REPORT IS CLAUSE REDUNDANT ON FD OR ILLEGAL ON 5D.
LINAGE IS CLAUSE REDUNDANT OW FD OR ILLEGAL O4Y SD.
REDUNDANT DEPENDI'NG ON CLAUSE IS DETECTED, ONLY .ONE IS
ALLOWED,

THE SPECIFICATION FOR LASEL RECORD IS UNRECOGNIZABLE,
DUPLICATE NAME IN REPORT CLAUSE.

B-15

N W

N W

N W

N L (N N NN N

(V)

N

NN LN N N NN

NN N

()

Cad

L2

-159
=151

-152

-153%

=154
-155

-156

-157

-158
-159

-169
-161
~162
-163

-164
-145

=166

-167
-168

=169

-171
-171
-172
-173
-174
-175
=176

=177

-178
-179

-182

-183

=184

-185

N W

W N -2 N

N

—

W ON N N NN N

[VIERV, |

THE CJRRENT SECTION IS ASSUMED TO BE FILE SECTION.
THE CJRRENT SECTION IS ASSUMED TO BE WORKING STORAGE
SECTION PLEASE DISREGARD THE IRRELEVANT DIAGNOSTICS IF
ANY,

SYNTAX ERROR IS ENCOUNTERED AT THIS POINT, PARSING IS
DISCONTINUED.

A DUMMY RECORD NAME IS SUPPLIED, SYNTAX CHECKING IS
RESUMED.

SYNTAX CHECKING IS RESUMED AT THIS POINT,

A REPORT FILE MUST NOT HAVE THE DEPENDING OPTION INH
THE RECORD CONTAINS CLAJSE.

RECORD DESCRIPTION IS MISSING, SYNTAX CHECKING IS
RESUMED AT THIS POINT,

A LINAGE OR REPORT CLAUSE CANNOT APPLY TO A FILE WHOSE
ORGANIZATION IS NOT SEQUENTIAL,

A REPJRT FILE SHOULD WOT HAVE RECORD DESCRIPTION.

THE DATA DESCRIPTION CLAUSES IN THIS ENTRY HAS FATAL
ERROR,

RESERVED WORD KEY IS MISSING.

SSF IS ASSUMED WITH A LINAGE OR A REPORT (CLAUSE.

THE LITERAL FOLLOWING THE THRU OPTION IS MISSING.

THE 65 RENAMES ENTRY IS NOT PROPERLY POSITIONED, IT
MUST IMMEDIATLY FOLLOW THE LAST DATA ENTRY OF THE
LOGICAL RECORD.

AREA NAME IS NOT DEFINED.

SD NAME IS NOT DEFINED.

THE RECORD DESCRIPTION FOR THE ABOVE FILE DESCRIPTION
ENTRY IS MISSING.

FILE NAME IS MISSING OR IN ERROR.

THE RECORD PREFIX SPECIFIED IN THE SELECT PHRASE
CONFLICTS WITH A LINAGE OR REPORT CLAUSE.

WHEMN THE GROUP DATA ITEWM IS ASSOCIATED WITH LEVEL 3%
ITEMS, THE SUBORDINATE ITENS MUST 8SE USAGE DISPLAY,
UNRECOGNIZABLE ATTRIBUTE IN CD ENTRY IS ENCOUNTERED
RW TIMES IS MISSING

RW KEY IS MISSING

RW LENGTH IS MISSING

RW TOP OR BOTTOM IS MISSING.

REDUNDENT BOTTOM PHRASE IS SPECIFIED FOR LINAGE CLAUSE.
REDUNDENTFOOTING °HRASE IS SPECIFIED FOR LINAGE
CLAUSE.

A NON ZERO UNSIGNED INTEGER SHOULD APPEAR HERE,

RW FOOTING IS MISSING.

THE FOOTING INTEGER MUST NOT BE GREATER THAN THE BODY
INTEGER IN LINAGE CLAUSE

THE SUBJECT OF REDEFINES MUST NOT BE A FILLER ITEM

IN THE GIVEN VALUE CLAUSE, SECOND VALUE IS NOT GREATER
THAN FIRST,

IN THE GIVEN VALUE CLAUSE, VALUE MAY BE LONGER THAN
LENGTH OF DATA ITENM,

IN THE GIVEN VALUE CLAUSE, UNSIGNED ITEM HAS SIGNED
VALUE.

IN THE GIVEN VALUE CLAUSE, NUMERIC DATA ITEM HAS
NON-NUMERIC VALUE.

IN THE GIVEN VALUE CLAUSE, WNON-WUMERIC DATA ITEM HAS
NUMERIC VALUE.

B-16

N W

W

N N

N

W NN NN W W N W N W W

N

W N W

-186
-187
-188
-189
-190
=191
-192
-193
-194
=195
=196
-197
=193
-199
-200
=20
-202
=202
=204
-205
=206
=207
=208
=209
=210
=211
=212
=213
-214
=215
=216
=217
=213
=219

=220

N (N —

W NNV NN

n

W NN

INVALID CODE-SET SPECIFIED.

AN UNSIGNED INTEGER SHOULD APPEAR HERE,

WHEN FD HAS JIS CODE-SET, SIGNED NUMERIC DATA MUST HAVE
SIGN IS SEPARATE CLAUSE.

RECORD CONTAINS...DEPENDING ON IS SPECIFIED IN FD, 3UT
FILE-CONTROL ENTRY SPECIFIES FLR.

THE SIGN CLAUSE MUST BE ASSOCIATED WITH AT LEAST ONE
NUMERIC ITEM WITH PICTURE CONTAINING S.

RECORD DESCRIPTION ASSUMED TO BE DATA RECORD FOR
PRECEDING FD.

A LABEL RECORD SPECIFIED IN THE FILE SECTION WAS NOT
DEFINED BY A RECORD DESCRIPTION ENTRY.

A DATA RECORD. SPECIFIED IN A DATA RECORD CLAUSE WAS NOT
SUBSEQUENTLY DEFINED BY A RECORD DESCRIPTION ENTRY.
LABEL RECORDS FOR H=-RD, H-PR MUST BE STANDARD AND ARE
SO ASSUMED,

OVERFLOW IN HIERARCHY TABLE: PROCESSING OF DATA
DIVISION CEASES HERE!

OVERFLOW IN INDEXNAME TABLE: PROCESSING OF DATA
DIVISION CEASES HERE!

RW "DEPENDING"™ MISSING.

IN COMPLIANCE WITH STANDARD: CODE-SET CLAUSE ON FD
SHOULD BE ACCOMPANIED BY SIGN IS SEPARATE FOR

SIGNED NUMERIC DATA,

WHEN FD HAS JIS CODE-SET, DATA MUST BE USAGE IS
DISPLAY.

IN COMPLIANCE WITH STANDARD: CODE-SET CLAUSE ON FD
SHOULD BE ACCOMPANIED BY ALL DATA USAGE IS DISPLAY.
ONLY NUMERIC LITERALS ARE ALLOWED IN THE LINAGE

CLAUSE FOR AN EXTERMNAL FILE.

DESTINATION TABLE MAY ONLY OCCUR 1 TIME IN THIS
IMPLEMENTATION. _

A RESERVED WORD HAS BEEN USED AS A USER WORD OR
DATA-NAME IS MISSING.

REMAINDER OF VALUE OF CLAUSE IS SCANNED OFF

ALL MAY NOT BE USED WITH A NUMERIC LITERAL.

THIS RELEASE REQUIRES SEPARATE SIGN FOR SIGNED NUMERIC
ITEMS.

NOT SUPPORTED IN THIS RELEASE, WILL BE IGNORED.

THIS RELEASE REQUIRES THAT DEFAULT COMP BE DISPLAY.
THIS FEATURE IS NOT IMPLEMENTED.

LABEL RECORD FORMAT NOT SUPPORTED B8Y THIS RELEASE.

TOO MANY RECORD-NAMES IN DATA RECORDS.

RESERVED WORD DIVISION IS MISSING.

LEVEL NUMBER HIERARCHY INCORRECT

THE NUMBER OF DIGIT PORTIONS SPECIFIED FOR THIS ITEM
EXCEEDS THE MAXIMUM ALLOWED.

THE RECORD CONTAINS CLAUSE SPECIFIES TOO LARGE A RECORD
SIZE

INCONSISTENT VALUES IN THE RECORD CONTAINS CLAUSE
INCONSISTENT VALUES IN THE BLOCK CONTAINS CLAUSE

USAGE IS COMP~1 OR COMP-2 DOES NOT ALLOW A PICTURE
CHARCTER STRING WITH A SCALING FACTOR

ONLY USAGE DISPLAY IS ALLOWED WHEN ORGANIZATION IS
H-2000 OR ANSI,

SIGN CLAUSE CANNOT APPLY TO ANY CONTAINED NUMERIC

B-17

N NN

W N N

N W

=221

=222
=223
=224

-225
-226
-227

=223
=229

-239

S NW NN

N N

DISPLAY ELEMENTARY ITEM (IF ANY).

THE SIGN CLAUSE MUST BE ASSOCIATED WITH USAGE DISPLAY
AND PICTURE CONTAINING S.

THE INITIAL VALUE SPECIFIED IS UNRECOGNIZASLE.

THE VALUE IS NOT IN THE RANGE ALLOWED FOR THE ITEM,

TOO MANY ITEMS SUBORDINATE TO CONDITIONAL VARIABLE:
VALUE SIZE WILL NOT BE CHECKED,

THIS LEVEL-62 SPECIFIC FEATURE IS NOT IMPLEMENTED.

THIS IS A LEVEL-62 SPECIFIC FEATURE.

THIS FEATURE (FILLER AT GROUP LEVEL) IS A LEVEL-64
FEATURE NOT INCLUDED IN THE CURRENT COHMPILATION LEVEL.
COMP-8 IS ASSUMED FOR THIS LEVEL-62 COMP-3 ITEHM,
REDUNDANT EXTERNAL CLAUSE IS DETECTED, ONLY ONE IS
ALLOWED PER DATA ITEHNM,

ONLY WORKING=-STORAGE OR CONSTANT SECTIONS 01 QORkR 77
ENTRIES WITHOUT REDEFINES CAN HAVE THE EXTERNAL CLAUSE.
THIS FEATURE (MISSING DATA NAME) IS A LEVEL~-64 FEATURE
NOT INCLUDED IN THE CJURIRENT COMPILATION LEVEL.,

THIS LEVEL=-62 SPECIFIC FEATURE IS NOT IMPLEMENTED.,
SUBSEQUENT ENTRIES ARE ASSUMED TO S3E WORKING-STORAGE.
THE VALUE CLAUSE CANNOT BE USED TO DESCRIBE A FLOATING
POINT NUMBER.

A FLOATING POINT NUMBER CANNOT BE A CONDITIONAL
VARIABLE,

THE REPORT WRITER IS NOT AVAILABLE ON YDUR SITE, PLEASE
CONTACT SUPPLIER,

THE SPECIFIED CODE-SET IS NOT ALLOWED WJITH THE FILE
ORGANIZATION,

THE CODE-SET IS IBCD CLAUSE MAY ONLY BE USED FOR A TAPE
FILE AHEN ITS ORGANIZATION IS H~2037 SEGQUENTIAL,.

B-18

EABR AN S R SR SR LR A I O B R T R AR AP Y SR S AN AT 28

£~

Y A N N N N N 3 2N S

S~

£~

~ s

-31

=32
-40
=41
=42
-51
=52
=53
=54
=55
-57
=60

-61
=62
=63
-70
-71

=73
-80

-81
-82

SN W WHWIWN W HWHWWWW WKW W WD N NN N

NN

~n

&~

NN N W N N NS W W W

[aV] NN N W

W N W

EXPECTED WORD IS "SECTION".

PERIOD IS MISSING.

RD ENTRY IS NOT GIVEN FOIR A REPORT SPECIFIED IN REPORT
CLAUSE IN FD,

LEVEL INDICATOR "RD'" OR LEVEL HWUMBER 01" SHOULD BEGIN
FROM A AREA. :

THIS ITEM SHOULD BE WRITTEN IN AREL &,

SYNTAX CHECK OISCONTINUED FROM THIS ITFEM,

SYNTAX CHECK IS RESUMED.

END OF DATA DIVISION WAS DETECTED,

NO SECTION CAN FOLLOW REPORT SECTION,

LEVEL INDICATOR "RD"™ IS MISSING.

LEVEL NUMBER "O1" IS MISSING.

LEVEL NUMBER OR LEVEL INDICATOR IS EXPECTED AFTER ".".
ILLEGAL LEVEL NUMBER,

LEVEL NUMBER UNMATCH,

THIS CLAUSE IS ALREADY SPECIFIED,

ILLEGAL WORD IN RD ENTRY.

ILLEGAL WORD IN 31 ENTRY.

ILLEGAL WORD IN REPORT ITEM DESCRIPTION.

NON SIGNED INTEGER IS EXPECTED.

QUALIFIER IS MISSING AFTER "IH"/"3f",

")" IS MISSING.

INTEGER IS MISSING Il RELATIVE INDEXING.

SUBSCRIPTED REFERENCE IS NOT ALLOWED.

REPORT NAME CANNOT BE GJALIFIED,

REPORT GROUP DESCRIPTION SHOULD BE WITHIN 3 LEVELS.

NO SPACE AVAILABLE TO ACCOMODATE THIS REPORT
DESCRIPTION,

IMPLEVMENTATION LIMIT - NOT ENOUGH SPACE AVAILABLE 7O
ACCOMODATE THIS REPOKT D&ESCRIPTION,.

THIS FEATURE IS NOT IMPLEMENTED.

OPERAND OF CONTROL CLAUSE IS ¥ISSING.

DUPLICATE OPERAND IN CONTROL CLAUSE.

FINAL SHOULD BE THE FIRST CONTROL.

SYNTAX ERROR IN PAGE CLAUSE.

"DETAIL"™ IS MISSING,

INTEGER IS MISSING IN PAGE LIMIT CLAUSE.

INTEGER IS MISSING.

ILLEGAL INTEGER. i

RELATION BETWEEN INTEGERS WITHIN PAGE CLAUSE IS ILLEGAL
REPORT WITH CODE CLAUSE AND REPORT WITHOUT CODE CLAUSE
ARE MUTUALLY EXCLUSIVE AITHIN A FILE.

THIS REPORT SHOULD HAVE THE CODE CLAUSE TCO.

CODE LITERAL IS MISSING.

LITERAL OF CODE CLAUSE SHOULD BE OF LENGTH 2,

SYNTAX ERROR IN USAGE CLAUSE.

NO PRINTABLE ITEM SUBORDINATE TO THIS ITEM WITH THE
USAGE CLAUSE,

ELEMENTARY RPEPORT ITEM AITH THE USAGE CLAUSE SHOULD BE
PRINTABLE ITEM,

SYNTAX ERROR IN TYPE CLAUSE.

"HEADING'™ OR "FOOTIHNG" IS MISSING.

PH OR PF REPORT GROUP IS NOT ALLOWED FOR A REPORT
WITHOUT PAGE CLAUSE.,

B-19

E e o

PO S A A 2

e~ o~ P S Fal £~ e~

Hos

~

£~

I~

FN I SN N N S SN N P N

-93

-95
-96
-97
-100
-101

=102
-103
-104

-105

-106

-107

-173

-111
-111
-112

-112
-114

-115

-129
=121

-122
-123
-124
=125
-126
-127
-130
=131
=132
-133
=134
=135

N

(Nl AN W W N W W W WWW N

(NN N

N

N NN ININ W W NN N WA

RH, PH, PF OR RF REPORT GROUP SHOULD BE DEFINED AT MOST

ONCE.

DATA NAME OR "FINAL" IS MISSING WITHIN TYPE CLAUSE FOCR
TYPE CH/CF REPORT GROUP.

TYPE CH/CF REPORT GROUP SHOULD NOT APPEAR IN A REPORT
WITH NO CONTROL CLAUSE.

CONTROL LEVEL CANNOT 3E DEFINED FOR THIS GROUP.

CH OR CF FOR A CONTROL LEVEL CAN BE DEFINED AT MOST
ONCE,

"GROUP™ IS MISSING.

REPORT GROUP WITHOUT LINE MAY HAVE NO NEXT GROUP
CLAUSE.

SYNTAX ERROR IN NEXT GROUP CLAUSE.

ABSOU_TE NEXT GROUP CLAJSE MAY NOT APPEAR IN REPORT
WITHOUT PAGE CLAUSE.

SYNTAX ERROR IN NEXT GROUP INTEGER.

NEXT GROUP CLAUSE MAY NOT APPEAR IN PH OR RF,

NEXT GROUP CLAUSE MAY NOT APPEAR IN PF,.

SYNTAX ERROR IN LINE CLAUSE.

ABSOULTE LINE CLAUSE MAY NOT APPEAR IN REPORT WITHOJUT
PAGE CLAUSE.

ILLEGAL LINE INTEGER,

ABSOLUTE LINE CLAUSE SHOULD BE IN ASCENDING ORDER.
ABSOLUTE LINE CLAUSE SHOULD PRECEDE RELATIVE LINE
CLAUSE.

LINE CLAUSE WITH NEXT PAGE SHOULD 3E THE FIRST LINE
CLAUSE IN A GROUP.

LINE ITEM SHOULD NOT B8E SUBORDINATE TO LINE ITEM.

PF SHOULD BEGIN WITH ABSOLUTE LINE.

LINE CLAUSE WITH NEXT PAGE MAY APPEAR ONLY WITHIN 30DY
AND RF.

SYNTAX ERROR IN PICTURE CLAUSE.

ILLEGAL CHARACTER IN PICTURE STRING.

JUSTIFIED CLAUSE CONFLICTS WITH OTHER CLAUSE WITHIN
THIS ITEM,

"ZERQO"™ IS MISSING AFTER '"BLANK".

BLANK WHEN ZERO CONFLICTS WITH OTHER CLAUSE WITHIN
THIS ITEM,

GROUP INDICATF CONFLICTS WwITH OTHER CLAUSE WITHIN THIS
[TEM,

COLUMN INTEGER IS MISSING.

COLUNMN ITEM WITHOUT LINE CLAUSE SHOULD BE SUBORDINATE
TO LINE ITEM.

THIS ITEM OVERLAPS PREVIOUS ITEM,

REPORT RECORD HAS INSUFFICIENT SIZE TO PRINT THIS ITEM,
SOURCE OPERAND IS MISSING.

"VALUE OPERAND IS MISSING.

LITERAL AFTER "ALL"™ IS MISSING.

VALUE OPERAND IS INCONSISTENT WITH ITEM CLASS.

SUM OPERAND IS MISSING.

SUM CLAUSE SHOULD BE SPECIFIED WITHIN CF,.

UPON JDPERAND IS MISSING,

RESET OPERAND IS MISSING.

RESET CONTROL LEVEL CANNOT BE DEFINED FOR THIS ITEM,
SUM OPERAND SHOULD NOT 3E REPORT ITEM OTHER THAN SUM
COUNTER.

B-20

F

~ o

E P o

A N N N N NNV ST N N SIS

~ o

=136

-137
-138

-139
-140

-150
=151
=152
=160
-161
=162
-163
-164
=165
=166
-171
=172
-173

-174
-175

W W

N WWKWWNINWWNWW WKW N W

W W

SUM COUNTER OPERAND IN SUM CLAUSE SHOULD BE DEFINED AT

LOWER OR SAME CONTROL LEVEL.

UPON OPERAND SHOULD BE DETAIL GROUP WITHIN SAME REPORT.

RESET CLAUSE SHOULD SPECIFY HIFHER OR SAME CONTROL
LEVEL.

MULTI-DEFINED DATA NAME WITHIN SUM OR UPON OPERAND,
SUM OPERAND FOR SUM CLAJSE WITH "UPON"™ SHOULD NOT BE
SUM COUNTER,

REPORT NAME IS MISSING.

REPORT NAME IS NOT DEFINED IN ANY FD,

DUPLICATE REPORT DESCRIPTION.

TYPE CLAUSE IS MISSING IN REPORT GROUP DESCRIPTION,
NO REPORT GROUP FOLLOWED AFTER RD ENTRY,

NO BODY GROUP APPEARED WITHIN THIS REPORT,

THIS REPORT GROUP VIOLATES UPPER LIMIT RULE FOR =,
THIS REPORT GROUP VIOLATES LOWER LIMIT RULE FOR =,
THIS = GROUP CANNOT BE PRESENTED ON 1 PAGE.

THIS REPORT GROUP VIOLATES NEXT GROUP RULE FOR =,
NO SU3ORDINATE ITEM FOR FORMAT-2 ITEM,

NO OPTIONAL CLAUSE WITHIN FORMAT-2 ITEM,

FORMAT~3 ITEM MAY HAVE ONLY ONE OF '"SOURCE"™ / '"sumn”
"VALUE".

FORMAT-3 ITEM WITHOUT MANDATORY CLAUSE.

NO ITEM CAN BE SUBORDINATE TO FORMAT-3 ITEM,

B-21

/

(VA RNV, BV, IV, |

VARV, IRV, IV, | \n

vV WY oo v wn (VA IRV IR, IRV, IRV, |

Wy

N

(G IRV, IRV, |

(VL RV, RV, IRV, RV, IV, IRV, BV, IRV, IV, RV, RV, IRV, BV, IV,]

-1
-2

-3
-4

-19
=20
=21
=22
=23

=24
=25

=26

-27
-23
=29

-30

=31
=32
=33
=34
=35
=36
-37
-38
-39
-40
=41
~42
~-43
-44
~45

(%] N W - N NN NN W W W W W ~N W N W W

N

W W N W

NN NN NN W NI N NN W NN

EXPECTED WORD WAS "PROCEDURE",

EXPECTED WORD WAS "DIVISION".

EXPECTED WORD WAS "_," OR "USING".

"USING" NOT ALLOWED WITH "INITIAL" CLAUSE IN DATA
DIVISION. '

ITEM IS NOT 01 OR 77 LEVEL DATA ITEM DEFINFD IN THE
LINKAGE SECTION .
NUMBER OF USING PARAMETZRS NOT EQUAL TO LINKAGE SECTION
COUNT,

PERIOD EXPECTED AFTER THE PREVIOUS WORD

SECTION HEADER EXPECTED HERE

EXPECTED WORD WAS "USE"

EXPECTED WORD WAS "BEFORE","AFTER","FOR" OR "RANDOM"
EXPECTED WORD WAS '"INPUT'", "“QUTPUT", "I-0", "EXTEND",
OR A FILENAME.

ITEM HAS "LABEL OMITTED" CLAUSE.

EXPECTED WORD WAS "LABEL"

ITEM IS NOT REPORT SECTION DATA-NAME

ALPHASET=-NAME IS UNKNOWN

THIS FEATURE IS NOT IMPLEMFNTED YET. IT HAS BEEN
SCANNED OFF

"END COBOL"™ IN WRONG PLACE.

THIS JDPTION IS NOT MEANINGFUL IN LEVEL=-64. IT HAS BEEN
SCANNED OFF,

SUBSCRIPT VALUE IS OUT OF RANGE

ITEM IS NOT PARAGRAPH OR SECTION DECLARATION

ITEM IS NOT IDENTIFIER

RECEIVING FIELD FOR THIS ITEM IS ALPHABETIC

EXPECTED WORD WAS "SYSIN", "CONSOLE", "DATE", DAY",
"DAY-DF-WEEK" OR MNEMONIC-NANE ’

ITEM IS NOT ELEMENTARY NUMERIC

ITEM IS NOT ELEMENTARY NUMERIC OR IS NOT "TO" OR
"GIVING".

ITEM IS NOT ELEMENTARY NUMERIC OR EDITED ELEMENTARY
NUMERIC

ITEM IS NOT ALTERABLE PROCEDURE NAME

ITEM IS NOT "TO"

ITEM IS NOT NON-NUMERIC LITERAL OR IDENTIFIER

ITEM IS NOT 01 OR 77 ITEM IN FILE, WS, COMMUNICATION.,
OR LINKAGE SECTIONS

ITEM IS NOT NON-SORT FILENAME

ITEM IS NOT "REWIND". .

ITEM IS NOT "FROM™, "=", OR "EQUALS".

ITEM IS NOT "INPUT" OR "OUTPUT".

ITEM IS NOT AN OUTPUT CDNAME

ITEM IS NOT AN INPUT CDNAME

ITEM IS NOT "KEY".

ITEM IS NOT ALPHANUMERIC IDENTIFIER OR LITERAL

ITEM IS NOT IDENTIFIER OR LITERAL

ITEM IS NOT PROPER DEVICE

EXPECTED WORD WAS "INTO"™ OR "BY".

"INVALID KEY" SHOULD NOT BE USED FOR THE FILE.

ITEM CANNOT BE USED IN A '"GENERATE"™ STATEMENT.

ITEM IS NOT PROCEDURE NA1E OR "DEPENDING".

ITEM IS NOT ELEMENTARY NUMERIC INTEGER

B-22

VARV, IV, IV, BV, RV, IV, | (Vo IV, BV, IRV, IRV, BV, BV, |

i

[V, IRV, IV, IV, IRV, IV, IV, IRV, [NV, IRV, IRV, IV, IV, IV, RV, IV, BV, BV, IV, IV, }

AVAIRV, BV, R VLIV, IRV, IRV, | [V, IRV, RV, IRV, IRV, |

wr Lo

-46
=47
-48
=49
-50
-51
=52

=53
=54
=55
=56
=58
=59
=60

-61

=62
=63
-64
=65
=66
=67
-68

=69

-70
-71
=72
-73
-74
-75
-76
=77
-78
-79
-80
-81

-82
-83
-84
-85
-86

-87
-88
-89
-90
-91
-92
-93

-94
-%5
-96

NN N W N N W

NN W NN NN

(V]

N WV NN WWNIN N W LW W W NN W NN W W

NN NN W W WM NNHWW W

W W W

ITEM IS NOT DECLARATIVE SECTION NANE

ITEM IS NOT REPORT NAME .

ITEM IS NOT IDENTIFIER WITH "USAGE IS DISPLAY"™ CLAUSE.
ITEM IS NOT "TALLYING"™ DR "REPLACING".

ITEM IS NOT "FOR".

ITEM IS NOT "™ALL", "LEADING'" OR "CHARACTERS".

CITEM IS NOT NON NUMERIC LITERAL OR ELEMENTARY DATA ITEM

WITH "USAGE IS DISPLAY"™ CLAUSE.

ITEM IS NOT "ALL", "LEADING" OR "FIRST",

ITEM IS NOT "BY".

ITEM IS NOT "SEQUENCE".

ITEM SIZE IS NOT EQUAL TO ITEM REPLACED

ITEM IS NOT "GIVING".

ITEM IS NOT "INPUT", "OUTPUT"™ OR "I-0",

FILE IS NOT SINGLE REEL/UNIT WITH SEQUENTIAL
ORGANIZATION,

WRITE ADVANCING MNEMONIC-NAME MUST NOT BE USED FOR A
FILE DESCRIBED WITH THE "LINAGE"™ CLAUSE.

ITEM IS NOT REFERENCE PROCEDURE NAME

ITEM IS NOT "TIMES".

ITEM IS NOT ELEMENTARY NUMERIC ITEM OR INDEX NAME
ITEM IS NCT "FROM",

ITEM IS NOT "™UNTIL".

NOT ACCEPTED IN DECLARATIVES,

ITEM IS NOT "CONVERSION".

FILE CANNOT HAVE VARIABLE SIZF RECORDS

ITEM IS SAME AREA AS FILE NAME

ITEM IS NOT "MESSAGE'™ OR "SEGHENT".

ITEM 1S NOT "INTO".

ITEM IS NOT RECORD NAVME IN ASSOCIATED FILE

ITEM IS NOT WITHIN SORT INPUT PROCEDURE RANGE

ITEM IS NOT WITHIN SORT QUTPUT PROCEDURE MMAME

ITEM IS NOT ASSOCIATED SORT FILF

ITEM IS NOT "ALL" OR IDEWNTIFIER.

ITEM IS NOT IDENTIFIER OR INDEX NAME

ITEM IS NOT "WHEN".

THIS REFERENCE SHOULD BE A SECTION REFERENCE,

ITEM IS NOT NON-SUBSCRIPTED AND NON-INDEXED WITH BOTH
OCCURS AND INDEXED BY CLAUSE

ITEM DOES NOT HAVE "KEY IS" CLAUSE

EXPECTED WORD WAS "EOP", ;

ITEM IS NOT "ESI"™, "EMI", "EGI'", OR IDENTIFIER
MISPLACED REPORT VERB WITH REGARD TO DECLARATIVES,
RULES FOR TRANSFER OF CONTROL BETWEEN PROCEDURFS
ARE VIOLATED,

ITEM IS NOT INDEX NAME IDENTIFIER OR POSITIVE INTEGER
ITEM IS NOT INDEX DATA NAME OR ELEMENTARY INTEGER
ITEM IS NOT INTEGER

ITEM IS NOT SORT FILE.

ITEM IS NOT "ASCENDING"™ 2R "DESCENOING™.

ITEM IS NOT DATA NAME IN ASSOCIATED FILE

ITEM IS NOT "ON", "DESCEHNDING"™, "ASCENDING", "INPUT",
"USING"™ OR DATA NAME.

ITEM IS NOT "OUTPUT"™ OR "GIVING".

ITEM DOES NOT HAVE "USAGE IS DISPLAY™ CLAUSE.

ITEM IS NOT NON-NUMERIC IDENTIFIER OR LITERAL OR

B-23

LAV, BV, B R A BV, BV BV BV, BV BV BV I VA B I, IV,) (U2 W, BV, SRV, |

1 (VA IRV,

(Vs

[Wa BV BEW, BV

AW, BV, BV, IRV, BV,)

(V)

(V2 IRV, BV, BV, BV, BV, IV,] (¥

wi

=133
=134

-135
-136
-137
-138
-139
-140
=141

=142

NN W WWKWWWNWWWHWW NN W W W NN N

VTN

N N

[IV, BV Y]

[NV IRV

NN NN NN W W

NN NN W LW

[V

"DELIMITED". :

ITEM IS NOT NON-NUMERIC IDENTIFIER OR LITERAL OR "SIZE"
ITEM IS NOT FIXED LENGTH WITH "USAGE IS DISPLAY" CLAUSE
ITEM IS NOT IDENTIFIER OR NON NUMERIC LITERAL OR "INTO"
ITEM SHOULD BE ELEMENTARY WITH NO EDIT AND WITH "USAGE
IS DISPLAY"™ CLAUSE.

ITEM IS NOT ELEMENTARY NUMERIC INTEGER DATA ITEM

ITEM IS NOT NUMERIC IDENTIFIER OR LITERAL

ITEM IS NOT NUMERIC IDENTIFIER OR LITERAL OR "FROM"..
PROGRAM SHOULD END WITH A ".".

ITEM IS NOT ALPHANUMERIC '

ITEM IS NOT "INTO"™ OR "DELIMITED".

ITEM CAN NOT BE USED WITHOUT "DELIMITED".

ITEM IS NOT RECORD NAME IN NON SORT FILE

ITEM IS NOT IDENTIFIER INTEGER OR MNEMONIC NAME
"LINAGE" CLAUSE IS MISSING IN ASSOCIATED FILE.

NO "USE™ APPLICABLE- SO "AT END" OR "INVALID"™ MANDATORY
EXPECTED WORD WAS ("

EXPECTED WORD WAS)"

ITEM IS NOT A PROPER SUBSCRIPT

ITEM SHOULD BE INDEX NAME

ITEM IS NOT AN INDEX NAME OR NOT CORRECT INDEX NAME
ITEM IS NOT AN UNSIGNED INTEGER

THE SIZE OF THE COMPOSIT OF OPERANDS EXCEEDS THE
ALLOWED MAXIMUM IN THIS ARITHMETIC. VERB.

EXPECTED WORD WAS "ALL", "LEADING" OR "UNTIL".

ITEM IS NOT SINGLE CHARACTER LITERAL OR IDENTIFIER WITH
"USAGE IS DISPLAY™ AND CLASS CONSISTENT WITH IDENTIFIER
EXPECTED WORD WAS "ALL'™, "LEADING", "UNTIL"™ OR "FIRST".
EXPECTFD WORD WAS "FIRST"

ILLEGAL COMPARISON(NON-NUMERIC RELATION).

INDEX-DATA ITEMS MAY ONLY BE COMPARED WITH INDEXES

OR INDEX-DATA ITEM4S,

THIS POINT CAN NEVER BE REACHED DURING EXECUTION

THIS STATEMENT MAY HNOT 3E REACHED DUE TO THE PREVIOUS
"STOP RUN", "EXIT PROGRAM"™ QR "GO TO".

ITENN IS NOT "RUN" OR LITERAL

ITEM IS NOT IMPERATIVE VERB

EXPECTED WORD WAS "SECTION" COMPILER ERROR

SYNTAX ERROR. CHECK AGAINST THE REFERENCE FORMAT,
PARAGRAPH (OR SECTION) NAME MISSING

MISSING SECTION HEADER AT BEGINNING OF "PROCEDURE
DIVISION",

ONLY PARAGRAPH (OR SECTION) NAME OR VERB ALLOWED HERE
SENTENCE MUST BE IMPERATIVE, THIS ITEM MAKES IT
CONDITIONAL

"EXPECTED WORD WAS "OVERFLOW"

EXPECTED WORD WAS "ERROR"

EXPECTED WORD WAS "DATA",

THE ONLY ALLOWED LANGUAGE-NAME IS "ESCAPE".
EXPECTED WORD WAS "END"

EXPECTED WORD WAS "cCOBOL".

ITEM IS NOT CDNAME, IDENTIFIER, PROCEDURE NAME,
FILENAME OR "ALL"

ITEM ILLEGAL IN THE SCOPE OF AN "ENTER ESCAPE"
STATEMENT.

B-24

(V) RV, IRV, BV, RN |

v

A%}

(VAR VL IRV, SRV, BV, IV, BV, IV, | w

wn

[V IRV, BV, RV, |

(W IRV, BV, SRV, IRV, |

(V2 BV, BV,]

w

w

v i

=179

-180
-181

-182

-183

NN NN

W

N N AN NN W W N W= W SN NN NN N Y W WN N

N N N

N W

EXPECTFD WORDT JAS "SIZE"

EXPECTED WORD WAS "NO" JR "LOCK".

SENTEVCE MUST BE IMPERATIVE NOT CONDITIONAL

THIS VERB MUST BE PRECEDED BY PROCEDURE DEFINITION.
OVERLAPPING MAY OCCUR BETWEEN THIS RECEIVING ITEM AND
SENDING ITEM

THIS RECEIVING ITEM MAY BE TRUNCATED ON RIGHT

NUMERIC NON-INTEGER SENDING FIELD NOT ALLOWED WITH
ALPHANUMERIC RECEIVING FIELD

SIGN OF SENDING ITEM WILL NOT BE MOVED TO THIS ITEM
NUMERIC SENDING FIELD NOT ALLOWED WITH ALPHABETIC
RECEIVING FIELD.

ALPHABETIC SENDING FIELD NOT ALLOWED WITH NUMERIC
RECEIVING FIELD.

ALPHANUMERIC EDITED SENDING FIELD NOT ALLOWED WITH
NUMERIC RECEIVING FIELD

NUMERIC EDITED SENDING FIELD NOT ALLOWED WITH NUMERIC
RECEIVING FIELD

POSSI3SLE RIGHT TRUNCATION

POSSIBLE LEFT TRUNCATION

EXPECTED WORD WAS '"NO".

EXPECTED WORD WAS "REWIND".

ITEM IS NOT PART OF A CONDITION

THIS RESULT MAY BE LEFT TRUNCATED.

ILLEGAL RELATION BETWEEN INDEX AND EXPRESSION,

THIS FEATURE = FEATURE, NOT INCLUDED IN THE CURRENT
COMPILATION LEVEL.

EXPECTED WORD WAS "INTO"™ OR "END"

SYNTAX CHECK DISCONTINUED

SYNTAX CHECK RESUMED

"USE'™ NOT PERMITTED IN NON DECLARATIVE SECTION

DATA VAMES AND INDICES VOT ALLOWED TOGETHER AS
SUBSCRIPTS,

IMPERATIVE VERB OR “NEXT SENTENCE'™ EXPECTED HERE.
FILE ODRGANIZATION SHOULD BE INDEXED-EXT.

FILE IS NOT INDEXED

COMPILER ERROR

EXPECTED WORD WAS FIGURATIVE CONSTANT OR ALPHANUMERIC
LITERAL

ITEM IS NOT ALTERABLE IDENTIFIER

EXPECTED WORD WAS "POQOINTER"™.

ITEM IS NOT INDEX NAME, INDEX DATA ITEM, OR ELEMENTARY
ITEM DESCRIBED AS AN INTEGER

EXPECTED WORD WAS "TO0", "UP", "DOWN"™ OR AN INDEX NAME
EXPECTED WORD WAS "COMP_'" OR "COMPLEMENTARY",

JOTEM IS NOT INDEX NAME, INDEX DATA ITEM, INTEGER.
GREATER THAN ZERO OR ELEMENTARY ITEM DESCRIBED AS AN
INTEGER

ITEM IS NOT INTEGER 02 IS NOT ELEMENTARY ITEM DESCRIBED

AS A NUMERIC INTEGER

EXPECTED WORD WAS '"WHEN", "AT" OR "END",

ITEM IS NOT ELEMENTARY ALPHABETIC, ALPHANUMERIC, OR
NUMERIC EDITED OR A GROJUP ITEM

ITEM IS NOT FIGURATIVE CONSTANT, NONNUMERIC LITERAL OR
IDENTIFIER

COMPILER ERROR SUBROUTINZ STACK OVERFLOWED

B-2t

wv o

w

(VAN IV, IRV, IRV, IRV, BV, AV, IV, IV, [V, |

(A RV, IRV, RV, IV, IV, RV, RV, RV, IRV, |

Vi

v o

vy N

wy

~-184

-185
-186
=187

-188

-1893
-190
-191
=201
=202
-203
=204
-205
-206
-207
-208.

-209
-210
=211
=212
=213
=214
=215
=216
-217
-218

=219
-220
=221
=222
=223
=224
-225

=226
=227

=223

=229

-230

=23

=232

-233

W W W

W~

NN NN NN W W N W W

WWWWWWKWWWWW

W W N NN NN NN

W N

THIS IS A GROUP MOVE AND OPERANDS DO NOT HAVE THE
SAME SIZE.

ITEM IS NOT DATA-NAME ,

FILE IS NOT SEQUENTIAL ACCESS OR DYNAMIC ACCESS
ITEM IS NOT A ONE CHARACTER INTEGER WITHOUT AN

OPERATIONAL SIGN

DECLARATIVE PORTION CAN NOT BE REFERENCED BY
NON-DECLARATIVE PORTION AND VICE-VERSA

EXPECTED WORD WAS "DUPLICATES".

EXPECTED WORD WAS "REMOVAL".

EXPECTED WORD WAS OUTPUT CD-NAME

RELATION EXPECTED HERE

THIS OPERAND SHOULD BE NUMERIC IDENTIFIER

RELATION OR OTHER CONDITION OPERATOR EXPECTED HERE.
")" MATCHING THIS "(" IS LACKING.

"(" MATCHING THIS ")" IS LACKING

NON NUMERIC IDENTIFIER SHOULD PRECEDE THIS OPERATOR
CD NAME EXPECTED HERE

THIS OPERAND SHOULD BE NON-ALPHABETIC DISPLAY
IDENTIFIER OR GROUP ITEM WITHOUT A SIGNED ELEMENT.
ILLEGAL RELATION (BETWEEN TWO LITERALS).

THIS ELEMENT IS NOT VALID BEGINNING OF CONDITION
ITEM SHOULD BE A KEY OF THE FILE.

VERB OR "NEXT SENTENCE"™ EXPECTED ERROR.

EXPECTED WORD WAS "." OR "ELSE".

OPERAND MISSING '

SUBJECT OF COMPARISON MISSING

EXPECTED WORD WAS "SENTENCE",

THIS ELEMENT IS NOT VALID CONDITION

EXPECTED WORD WAS DATA-NAME (OR "TO"™ OR "THAN" IF
APPROPRIATE) .

"DELETE" CANNOT BE APPLIED TO A SEQUENTIAL FILE.
EXPECTED WORD WAS IDENTIFIER OR INPUT CD-NAME
EXPECTED WORD WAS "COUNT".

"WITH CONVERSION" IS AP>LICABLE ONLY TO ELEMENTARY

NUMERIC DATA.

ITEM DOES NOT REFERENCE INPUT DEVICE

ITEM DOES NOT REFERENCE OUTPUT DEVICE

THIS "CONSTANT SECTION"” ITEM MIGHT BE MODIFIED BY THE

CALLED PROCEDURE.

EXPECTED WORD WAS "LESS" OR."<",

FILE MUST BE RELATIVE WITH A RELATIVE KEY CLAUSE OR
INDEXED AND MUST HAVE SEQUENTIAL OR DYNAMIC ACCESS
EXPECTED WORD WAS "EQUAL'", "GRATER"™ OR "NOT".
EXPECTED ITEM WAS THE DATA NAME SPECIFIED IN THE
RELATIVE KEY PHRASE OF THE ASSOCIATED FILE-CONTROL
ENTRY

ADDRESS OF THIS ITEM IS NOT THE SAME AS THE ADDRESS OF
THE RECORD KEY

EXPECTED ITEM WAS "INITIAL" OR A NON NUMERIC LITERAL OR
ELEMENTARY DATA ITEM WHDSE USAGE IS DISPLAY

THIS "MOVE" WILL ABORT JDBJECT CODE (SENDING

LITERAL NOT DIGITS).

EXPECTED ITEM WAS "BY", "ALL", NON-NUMERIC LITERAL,
ALPHANUMERIC DATA ITEM OR ANY FIGURATIVE CONSTANT

EXCEPT "ALL".

B-26

W W

wn

w

wvi v N

(VIR V, IRV, IV, IRV, IV, IRV, IRV, BV, IV, | N

w w w

(VORV, RV, RV,] w

w

-234
=235

-236
=237

-238
=239

-240
-241

=242

=247

-248
=249
=250

=256
=257
=258
=259
=260
=261
=262
=263
~264
=265

~266
=267
-268
=269
=270
=271
=272
=273

-274

W W W W

W

NN

SN IWINWWWND RN 2 w

(¥} &~

W

W

W W W W

EXPECTED ITEM WAS "OR" OR "INTO",

THIS IDENTIFIER DOES NOT CONFORM TO THE COMPLEX RULES
OF THE LANGUAGE STANDARD

INTEGER QOUT OF RANGE FOR ONE OR MORE INDEX NAMES

THE RECORD NAME IN THIS STATEMENT MUST HAVE AN
ASSOCIATED RECORD PREFIX OF "SSF'".

EXPECTED WORD WAS NON-NJMERIC LITERAL

BOTH PROCEDURE-NAMES MUST BE IN THE SAME DECLARATIVE
SECTION

EXPECTED WORD WAS AN INDEX-NAME, A POSITIVE INTEGER OR
AN ELEMENTARY NUMERIC INTEGER DATA ITEM

EXPECTED WORD WAS A NON-ZERO INTEGER OR AN ELEMENTARY
NUMERIC INTEGER DATA IT:EM

EXPECTED WORD WAS AN INDEX-NAME, LITERAL OR AN
ELEMENTARY NUMERIC DATA ITEHM

EXPECTED WORD WAS AN ELEMENTARY NUMERIC DATA ITEM OR A
NON-ZERO LITERAL '
THE IDENTIFIER FOLLOWING VARYING MUST BE AN ELEMENTARY
NUMERIC INTEGER DATA IT:ZH

SECTIONS IN THE DECLARATIVES MUST CONTAIN SEGHENT
NUMBERS LESS THAN 50

THIS PERFORM STATEMENT DOES NOT CONFORM TO THE COMPLEX
RULES OF THE LANGUAGE STANDARD FOR SEGMENTATION

THE SEGMENT NUMBER MUST BE AN INTEGER RANGING IN VALUE
FROM 0 THRU 99

THIS IDENTIFIER MAY NOT BE A CONSTANT SECTION ITEM,

A USE PROCEDURE ALREADY EXISTS FOR THIS FILE

A USE PROCEDURE HAS ALREADY BEEN ASSOCIATED WITH THIS
PROCESSING MODE

RECORD SIZE OF THIS FILE NOT COMPATIBLE WITH

RECORD SIZE OF THE "SbD".

LENGTH OVER 31 CHARACTERS .,

EMBEDDED BLANKS HAVE BEEN SKIPPED.

FILE ORGANIZATION SHOULD BE SEQUENTIAL.

FORBIDDEN USAGE OF ABBREVIATED RELATION,

THIS FEATURE IS NOT IMPLEMENTED

ITEM IS NEITHER '"PROCEDJRES" NOR A DATA-NAME.

THE FILE IS DESCRIBED WITHOUT SUBORDINATE 01 ENTRY
EXPECTED WORD WAS "."

SENDING AND RECEIVING FIELDS OVERLAP

IMPLEMENTATION RESTRICTION: TOO MANY NESTED IF
STATEMENTS AND COMPOUND CONDITIONS

"IMPLEMENTATION RESTRICTION: TOO MANY NESTED ARITHMETIC

EXPRESSIONS,

THE WORD "T0" OR AN INTEGER NUMERIC DATA ITEM OPERAND
WAS EXPECTED.

THE WORD "TO0", AN INDEX DATA ITEM OPERAND OR AN INTEGER
NUMERIC DATA ITEM OPERAND WAS EXPECTED.,

THE ITEM SHOULD BE EITHER AN INDEX DATA ITEM OR AN
INDEX.

ITEM IS NEITHER '"ON"™ NOR "OFF",

ITEM IS NOT A SWITCH NAME

ITEM SHOULD BE "WHEN", ", OR "ELSE".

ITEM IS NEITHER "+", "=-", "(", A NUMERIC LITERAL

OR A NUMERIC ELEMENTARY DATA ITEM,

START STATEMENT CONTRADICTS FILE ORGANIZATICN AND

B-27

wvi W wn

(93] (WA IRV, BV, BV, IRV, IRV, | w

WAV, NV, |

W W

=275
-276
=277

-278
=279
-2380
-281

-282
-283
-284
=285
-286
-287
-288
-289
-293
-291

=292

=293
-294

W W W

ACCESS

ALTER VIOLATES SEGMENTATION RULES

THIS ITEM SHOULD BE A KEY OF THE SEARCH TABLE

THIS XEY HAS ALREADY BEEN REFERENCED IN THIS

"SEARCH ALL".

AT LEAST ONE KEY REFERENCE IS MISSING IN THE "WHEN
PHRASE"™ OF A "SEARCH AL.".

THIS IDENTIFIER DOES NOT COMPLY TO THE RULE ON USAGE
OF FIRST INDEX IN A "SEARCH ALL" CONDITION. .
H_2C000 RANDOM FILES SHOULD NOT BE OPEN IN OUTPUT MODE
WHEN THE ACCESS IS SEQUENTIAL

ITEM IS NOT "OF",

"SSF'" IS IMPLIED FOR THE CORRESPONDING FILE,
COMPARISON BETWEEN NUMERIC AND NONNUMERIC ITEMS.
MOVING NONNUMERIC TO NUMERIC.

NEITHER "STOP RUN" NOR "EXIT PROGRAM" WAS MET.
PREVIOUS CALLS 70 THE SAME PROGRAM HAD A DIFFERENT
NUMBER OF ARGUMENTS.

ABNORMAL ARGUMENTS IN A "CALL"™ TO "H_CBL_UGETG4"

(2 MANDATORY COMP-1 ARGJMENTS) .

OLD TEMPORARY PRINTER CHANNEL SPECIFICATION USED
INSTEAD OF MNEMONIC NAME.

THIS FEATURE IS LEVEL-62 SPECIFIC. THE ITEM IS IGNORED.

LEVEL 62 SPECIFIC FEATURE, NOT IMPLEMENTED.

THE RESULT IS UNPREDICTABLE WHEN A FILE THAT IS NOT
EXTERNAL IS PASSED AS ARGUMENT.

THE USE OF "TERMINAL"™ IS NOT AVAILABLE ON YOUR SITE,
PLEASE CONTACT SUPPLIER.

EXPECTED WORD WAS "CONSOLE".

COMP-3 OR COMP-10 ITEM SHOULD NOT APPEAR IN THIS
CONTEXT.

B-28

[o 0o e N ¢ SN o

o~

o> >0

>

6

=

Cr

NN D

[I N NS e N

G

-1
-2

<

-3

-5

-10

[

|
—
(N

1
-
(V2]

RO]

[}
=

id

]
[ACTERS BN
I

=36

-37
-38

-39

W W W W

(V]

N Ll NN N

N

2

w4

~J

AN

(W B AU R U2 I AV R U7 R B W AR Y e |

(WY IY]

N

AMBIGUOUS UNGUALIFIED REFERENCE.

ITEM NOT DECLARED.,

AMBIGIOUS QUALIFIED ITEM

PARAGRAPH N&ME NOT FOUND IN THE CURRENT SECT
PARAGIAPH NAME MULTIPLY DECLARED WITHIN ITS
SECTION.

QUALIFIED NAME MULTIPLY DECLARED WITHIN ITS CONTAINING
GROUP ITEM,

BAD COMPONENT IN SUBSCRIPT.

NMUMERIC LITERAL, DATANAME, OR INDEX NAME EXPECTED HERE.
NUMERIC LITERAL EXPECTED HERE.

INCOMPLETE GQGUALIFICATION. DATA NAME EXPECTED HERE.
TOO MANY GUALIFIERS IN THIS REFERENCE,

COMPILER ERROR, NAME-STACK OVERFLOA FOR THIS
REFERFNCE.

COMPILER ERROR, SUBSCRIPT~STACK OVERFLOW AT THIS ITEM,
AM IDENTIFIER MUST NOT APPEAR ™MORE THAN OMNCE IN A USING
PHERASE.,

IDENTIFIER MUST HAVE AN OCCURS CLAUSE IN ITS
DESCRIPTION,

IDENTIFIER MUST HAVE AN IHNDEXED BY CLAUSE IN ITS
DESCRIPTION,

ICENTIFIER MUST HAVF A <Y IS CLAUSE IN ITS
DESCRIPTION,

IDENTIFIER EXPECTFD HERE.

RFEPLACEMENT ABORT, NAME TABLE BUFFER CONTAINS NO NEW
ENTRIES FOR TWO CONSECUTIVE LOADS.

MJST SE AN UNSIGNED INTEGER

ANSI FORBIDS REL «%Y BE_ONG T3 A RECORD OF THE FILE TC
WHICH IT IS A KEY

MUST 3E ALPHANUNMERIC & NAOT VARIABLE LENGTH

HUST 3ELONG TO A RFCORD ASSOCIATED TO THE FILE

STATUS CAN ONLY B8F 2 Ch ALPHANUAIFRIC & NOT IN FILE.,
CONSTANT, LINKAGE SECTIJHS

STATUS KEY 2 ITEM IS NOT CONFORMED TO ANSI STANDARD.
RENANZ OBJECT CANMOT HAVE AN OCCURS CLAUSE IN ITS DATA
DESCRIPTION NOR CAN IT 3FE SU3ORDINATE TO ONE

A 66 _EVFL ENTRY CANNOT RENAMNE ANOTHER 66 LEVEL ENTRY
NOR CAN IT RENAME A 77, 88, OR 01 LEVEL ENTRY

RENAME OBJECT? AND OBJECT2 AREA RANGE CONFLICT

KEY FIELD IS TOO SHALL

KEY LIC VALUE TO00 LARGE

KEY LOC IS OUTSIDE OF THt RECORD AREA

CLASS NOT ALPHANUMERIC

ITEM NOT ELEMENTARY

FIELD TOO SHORT FOR RELATIVE KEY

FIELD TOO LONG FOR RELATIVE KEY

THE DATA-NAME REPLACED IN THE DEPENDING ON CLAUSE OF
NCCURS MUST NOT TO 3E SPECIFIED IN THE RANGE OF THE
0CCURS

ILLEGAL REFERENCE

ALTERNATE KEY CAWNNOT HAVE THE SAME OFFSET AS THAT OF
THE RECCORD KEY OR ANY OTHER ALTERNATE KEYS

THIS REPORT GROUP HAS A_READY RBEEN SPECIFIED IN
PREVIJUS "USE BEFORE Rt®)IRTING" CLAUSE.

ou
"

I -
CONTATINING

B-29

o> fe S e

o O

[

oo O O

Sy

-453
=44

-L7
=48

=69
=50
-51
-52

[RV RV RV

LWV RV

Lol W

CONTROL ITEM MUST BE DATA HANE.

CONTROL ITEM CANNOT BE JF YARIASLE LENGTH,
CONTROL ITEM CANNQT KAVE AW OCCURS (LAUSRE NOR BE
SURBORDINAYED TO A GROU® wWHICH CONTAINS AN $CCURS
CLAUSE,

REPORT ITEM CAN ONLY BE JSED FOR SJ™ COUNTER
REFERENCE GUALIFICATION,

THIS FEATURE IS A =~ FEATURE MOT INCLUDED IN THE
CURRENT COMPILATION LEVEL.,

SECONDARY KEY EXCEEDS 33 CHARACTER,

SECONCARY KEY CANNOT MAVE THE SANE OFFSET AS THAT
REACORD KEY,

INVLID CONTROL ITEM,

USE FDR DEBUGGBING MUST NOY REFERENCE A USE FOR
DEBUGGING PROC NAWE,

NMAMED MORE THAM OMCE IN USE FOR DEBUGGING.
ILLEGAL KEY REFERENCE

ONLY GATA-NAME IS ALLOWED AS A PARAMETER.,

TO0 LOWG LITERAL,

DF

~4 g~

~g N~

-3

=4 8

-4~

e B B e R B B

-3

-238

wd b Lo YRR RY

£

£~ A

L V]

PV BN IR VR VRV RV RV

£~

CORRESFPONDING OPTIGN RESULYS A HNULL MATIH., ITEMS
ARE 46, 88 0fF WHICH CINTALN 0OR SUAORDINATE REDE
JLCURS OR USAGE IS INOFEX ARE MNOT (ONSIDERFL,

ITEM YOT =

EXPECTED WORD "a" -

DATANAMES AND INDEXNAMES HOT ALLOWED TOGETHIR AS
SUBSCRIPTS ‘

ITEM IS NOT ELEMENTARY NUMERIC INTEGER,

ITEM 1S NOT ALTERARBLE IJENTIFIER,

WHEN EXECUTING I CDEBUGSGING HMODbz» THE SU

IN DERUG ITEM WILL BE THAT AFTER THFE ST
EXELUTED.

THIS FEATURE IS A LEVEL-od4 FEATURE NOT INCLUDEDL [4E
CURRENT COMPILATION LEVEL.

DATANARYME DESCRIPTIOM CONTAINS ="

COMPILER ERROR: UNMNEXPECTED TOKEN 1Y CORRESPINDING
OPERAND.

HIERARCHY ERROR IN CORRESPONDING JIPERAND

COMPILER ERROR: PREMATURE END J3F FILE DURING [0ORR SRR g
INITIALIZE STATEHMENT

QPERAND OF CORRESPONDING MUST 3E GROUP NANE

ITEM IS NOT POSITIVE INTEGER LITERAL,

RELATIVE INDEXING REQUIRES UNSIGHNED [NTEGER LITERAL
QPERAND OF INITIALIZE MAY HWOT HAVE OCCURS DEPENDING ON.
ILLEGAL OPERAND It THE REPLACING CLAUSE OF IulITIALIZE,
INITIALIZE STATEMERT RESULTS IN NO MATCH,

INITIGLYIZE SENDING OPERAUND NOT LFGAL CATEGORY
IMPLEVENTATION RESTRICTION: TOD MANY JPERANDS FOR THIS
STATEMENT,

IMPLEMENTATION RESTRICTION: THIS STRUCTURF HAS TOO

MANY DATA DESCRIPTIONS SUSCRDIMNATE TO 1T,

X .
i A TR

4 ¥

INE S,

il
e

[pe]
b+

>
i

I ¥

[4 YY)
H RS

(3
143
EN

(£]

-
15

S
ATEN

g
L7 B

f

B~31

(o]

OB OO QO OO O 0 oI 0 DDV 0COMMDOICOCOM L O OO O M

[+

o0 o0 oo (0

A 0o 00 0o ob

=21
-22
=23
=24
=25
=26
=27
-28
=29
-30
-31
=32
-33
-4
=35
-36
=37
-38
-39
=40
=41
=42
-43
-4 4
-45
48
=61
=62
-63

=66

-91
=972
-9z

=94
-95
-96
-97
-98

-99
=100

—

WW N W N NN N N W W W U W W N W W W

£~ St NNY Y W

N~

PRINT PHASE WORKING SPACE EXHASTED, PARY OF DIAG
MESSEGES WILL NOT BE PROCESSED.

NOT YET IMPLEMENTED,

TOKEN AREA OVERFLOW,

ALTER AREA OVERFLOW,

PERFORM TABLE OVERFLOW.

ALLOC-TABLE OVERFLOW.

EGADG ERROR.

EGADG1 ERROR,

EGSTOS ERROR,

EGBUTA ERROR.

LITERALS WILL NOT BE COMPARED.

ALTER ALLOCATION ERROR.

BAD NJMBER OF PARAMETERS IN H_CBL_UGETG4,
UNEXPECTED COMPARISON.

ABBREVIATED CONDITION ERROR.

EGGDBG ERROR.,

PERFORM ALLOCATION ERROR,

PERFORM ERROR.

3R LOCK ERROR.

ALL REGISTERS LOCKFD.

VARIABLE LENGTH ERROR.

MOVE ERROR.,

GR ALLOCATION ERROR,

FLGR ERROR =~.

GR LOCK ERROR =,

SEGMENT NUMBER ERROR.

ERRONEOUS NUMBER OF PARAMETERS.

WORK SPACE NOT AVAILABLE TO BUILD PCF TABLFES.

TOO MANY DATA/PROCEDURE HNAMES TO BUILD PCF TABLES.
COMPILER ERROR: UNKNOWN COMPILER GENERATED DATA-NAME:
SEGMENT NUM3ER LIMIT OF 128 HAS BEEN EXCEEDED FOR CODE
SEGMENTS. GATHER SECTIONS.

CULIE IS NOTYT A CU LIBRARY,.

cuLlip IS FULL.

1/0 ERROR ON CULIB.

SEGMENT NUMBER LIMIT OF 128 ISN'S HAS BEEN EXCEEDED,
INCREASE SEGMENT SIZE.

IMPLEMENTATION RESTRICTION. NO ROOM ENOUGH TO HOLD
- TAGS,.

IMPLEMENTATION RESTRICTION. HO ROOM ENOUGH TO HOLD
SORT TABLE. INCREASE DATA SEGMENT SIZE.

COMPILER ERROR. INVALID TAG NUMBER -,

COMPILFR FRROR. DUPLICATE DEFINITION FOR TAG NUMRER =,

‘COMPILER ERROR, IHNVALID EQUIVALENCE OF TAGS =.

COMPILER ERROR., TAG NUM3ER = NOT DEFINED.

B-32

Vo JRVe IEVS IRV JVe BV JE¥e Ve JER o Ve Y6 JKTe Ve IV @ V4 JVe IEVe Vo BE @ BV o Ve JRVo BV o o U L o Ve Lo IV IRV Ve IR @ Ve BVe BV JiEVe BEVo BV @ B e IV Ve BEV'e BV BUVo BV o BVe Vo BL O IR o B 0 }

)0 O 0

SN NSNS N WS BN NN N S S

N A N ol I ST T Al AT 2N ST S T SN S N N O N S S N NP R S N

&~

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFLICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE ODIFFICULTY

UNRECJIVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECIVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECIVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRFCOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY

UNRECOVERABLE DIFFICULTY,

UNRECOVERABLE DIFFICULTY.

ILLEGAL DSEGMAX OPTION : 'S',

ILLEGAL PSEGMAX OPTION : '-',

SPECIFIED DSEGMAX OPTION EXCEEDS 4M BYTES.
SPECIFIED PSEGMAX OPTION EXCEEDS 32K BYTES.
ILLEGAL RESTRICT OPTIOHN: *-'.

UNRECOVERABLE DIFFICULTY DUE TO SYSTEM ERROR.
IMPOSSIBLE TC OPEN =,

IMPOSSIBLE T0 CLOSE -.

UNRECOVERABLE DIFFICULTY DUE TO SYSTEM ERROR.,
COMPILER ERRGCR: ON SEQUENTIAL =-~., FILE IS OPENED INPUT.
COMPILER ERROR: ON SEQUENTIAL =, FILE IS OPENED OUTPUT,
COMPILER ERROR: ON SEQUENTIAL =~. FILE IS CLOSED.
COMPILER ERROR: ON SEJQUENTIAL =-~, FILE IS EXHAUSTED.

‘COMPILER ERROR: ON SEQUENTIAL =~. INVALID FILE POINTER.

COMPILER ERROR: ON SEQUENTIAL PUT. INVALID LENGTH(-~).
-~ IS FULL.

BACKING STORE IS FULL. JSE WORK FILES FOR LARGE
PROGRAMS.,

1/0 ERROR ON COMPILER wORK FILES.

COMPILER ERROR OM DIRECT =~, FILE IS OPENED.

COMPILER ERROR ON DIRECT -, FILE IS CLOSED.

COMPILER ERROR ON DIRECT =, FILE IS EXHAUSTED.,

B-33

OVOVOOVODVOVD 0¥ VOO VDLW

-6 3

-7
-71
-72
~-73
=74
-73
-76

"~ o~~~

'

f

P N N 'S

COMPILER ERROR ON UDIRECT SPUT, INVALID LEWGTH(~),
COMPILER ERROR ON COMMON FILE. INVALID KEY NUMEFR{-),
IMPLEMENTATION RESTRICTION, TOOH MANY NAYE IN AW 01,
COMPILER ERROR ON DIRECT FILE, UHA3LE TO PERFORM 1/)
BEFORE FIRST BLOCK.

COMMON FILE OVERFLOW,

UNRECOVERABLE DIFFICULTY DUE TO SYSTE4 ERROR,
COMPILER ERROR ON DIRECT FILE, 3LOCK MUMBER =~ ALREADY
BLOCKED.

COMPILER ERROR ON DIRECT UNELOCK. FILE IS XOT 4LOCKED,
BACKING STORE IS FULL. TJ0 MANY JOHS RUNNING
CONCURRENTLY, ,

1/0 ERROR ON DIRECT FILES.

COMPILER ERROR ON DIRECT =, INVALID FILE POINTER.
COMPILER FRROR ON DIRECT SGET. IHVALID LENGTH(-),
COMPILER ERROR ON DIRECT LPUT, INVALID LENGTH(-).
COMPILER ERROR ON DIRECT DGET. INVALID LEMGTH(-).
COMPILER ERROR ON DIRECT DREAD. INVALID LENGTH(A),
INVALID =~ FILE, '

B-34

APPENDIX C
SLINKER ERROR MESSAGES

ERROR MESSAGES ISSUED BY THE STATIC LINKER

108 ERROR IN LMNAME PAPAMETER? When a lmname is *, the
WHEN COMFILE OR COMMAND IS MISSING Imname’s are listed in a
command or comfile parameter.

112 ERROR IN COMFILE PARAMETER?
COMFILE MAY NOT APPEAR IN THE PRESENT
CONTEXT (WHEN COMFILE IS PRESENT)

112 ERROR IN COMFAC PARAMETER?
COMFAC MAY NOT APPEAR IN THE PRESENT
CONTEXT (WHEN COMFILE OR COMMAND IS PRESENT)

112 ERROR IN ENTRY PARAMETERS
ENTRY MAY NOT APPEAR IN THE PRESENT
CONTEXT (WHEN COMFILE OR COMMAND IS PRESENT)

112 ERROR IN PRTLIB PARAMETER?
PRTLIB MAY NOT APPEAR IN THE PRESENT
CONTEXT (WHEN PRTFILE IS PRESENT)

201 MORE THAN 4 FATAL ERRORS ONLY THE FIRST 4 FATAL ERRORS ARE DISPLAYED!
202 LINKER TABLE INITIALIZATION

FAILURE RC=00000000 PTR=XXXXXXXX
203 ERROR DURING OPEN RC=XXXXXXXX (LIBRARY TYPE)
204 BUILD 1
205 OPENS IN i
206 OPEN OUT ’s
207 OPEN UPDATE ot
208 PUTX ’”
209 CLOSES ’’
210 NOTE 4
211 POINT 14
212 GET i
213 PUT ’’
214 CLOSE 1

215 MORE THAN 64 PROCESSES

216 SYNTAX ERROR IN LM NAME

217 ENTRY POINT NOT FOUND

218 LINKER TABLE OVERFLOW RC=00000000 PTR=XXXXXXXX

219 SEGMENT TABLE OVERFLOW

220 ERROR DURING CHANGE NAME RC=XXXXXXXX (LIBRARY TYPE)

221 CU INCORRECTLY FORMATIED RC=(REC#)(LIB) UNEXPECTED NB OF RECORDS

222 ENTRY SEGMENT OVERFLOW NO MORE ENTRIES ARE AVAILABLE IN THE ENTRY
(IMPLEMENTATION RESTRICTION) SEGMENT. THE ENTRY SEGMENT IS LIMITED TO
256 ENTRIES

223 NO VALID SM NAME HAS BEEN THE SM WHERE THE LKU IS TO BE STORED IS NOT
FOUND DEFINED

224 NO VALID LKU ENTRY-POINT

225 CONFLICT BETWEEN LKU AND THE LINKER TRIES T0O REPLACE A LKU NOT DES-
EXISTING SUBFILE CRIBED IN THE SM SUBFILE

C=02

226

227

228

N
N
o

230

231

232

233

401

402

403

404

405

406

407

408

1001

OUTPUT LIBRARY OVERFLOW

SM DOES NOT EXIST, PLEASE

SPECIFY ITS STIN AND ESSTE

INPUT LIBRARY NOT
A CULIB

OUTPUT LIBRARY NOT
A LMLIB

OUTPUT LIBRARY NOT
A SMLIB

PRTLIB LIBRARY NOT

A SL LIBRARY

SM ALREADY EXIST
PLEASE DOES NOT
SPECIFY ITS STN/ESSTE

ACCESS VIOLATION TO
SYS.HSMLIB

UNKNOWN KEYWORD

ILLEGAL MULTIPLE PARAMETER

SYNTAX ERROR

PARAMETER ERROR

OPTION ALREADY APPEARED

CU NOT FOUND IN LIBRARIES

THE SPECIFIED CULIB IS
NOT ASSIGNED

ILLEGAL PARAMETER ACCORDING

TO LINKTYPE

TOO MANY VACANT ENTRIES
REQUESTED

NOT ENOUGH SPACE IN THE OUTPUT LIBRARY TO
STORE THE PRODUCED MODULE.

AN ASSIGNED INPUT LIBRARY IS NOT
A CULIB (TYPE, RECFORM, RECSIZE)
(SEE LIBMAINT GUIDE)

THE ASSIGNED OUTPUT LIBRARY IS NOT
A LMLIB (TYPE, RECFORM, RECSIZE)
(SEE LIBMAINT GUIDE)

THE ASSIGNED OUTPUT LIBRARY IS NOT
A SMLIB (TYPE, RECFORM, RECSIZE)
(SEE LIBMAINT GUIDE)

SELF EXPLANATORY

SELF EXPLANATORY

IT IS FORBIDDEN TO LINK IN
SYS.HSMLIB

UNEXPECTED OPTION OR UNKNOWN KEYWORD...
THIS TLLEGAL STATEMENT IS IGNORED.

A STATEMENT SUCH AS ENTRY,REALLSEG... HAS
APPEARED MOTE THAN ONCE: THE FIRST SPECI-
FICATION IS USED

SYNTAX ERROR ON A STATEMENT DURING SYNTAX
ANALYSISSILLEGAL CHARACTERS FOR A PARAMETER
«.THE STATEMENT IS IGNORED.

ERROR IN A PARAMETERSINTEGER VALUE INSTEAD
OF AN IDENTIFIER, ILLEGAL VALUE, IMCOMPATI-
BILITY WITH A PRECEEDING VALUE...

THIS SPECIFICATION IS IGNORED.

TWO PARAMETERS CONCERN THE SAME OBJECT IDEN-
TIFICATION (MSEGAT,PLACE...) OR THE SAME
FIELD (STACKI...) THE IST SPECIF. IS USED

A STATEMENT SUCH AS GATE, MSEGAT... REFERS
TO A CU THAT DOES NOT EXIST IN CU LIBRA-
RIES (IMPLICIT OR SPECIFIED VIA SLINKER).
THE STATEMENT IS IGNORED.

A STATEMENT, SUCH AS REPLACE OR FETCH OR INCLUDE

SPECIFIES A CU LIBRARY THAT IS NOT ASSIGNED.

THE SPECIFIED PARAMETER CANNOT BE USED WITH
THIS TYPE OF LINKAGE (ELM OR LKU) EXs
LKUENT CANNOT BE USED WITH LINKTYPE=USER

THE USER (THRU DATA MANGMT OR VACSEG) ASKS
FOR MORE VACANT ENTRIES THAN THERE ARE
AVAILABLE ENTRIES LEFT IN SEG. TABLE.
REMEMBER THAT AN ST IS LIMITED TO 256
ENTIRIES.

C-03

1002

1003

1004

1401

1402

1403

1404

1405

1406

1407

1408

1601

1602

1603

1605

1606

1607

1801
1802

1803

INITSIZE IN SOME SEGMENT
EXCEEDED MAXSIZE
SYMBMAP RECORD > 32K

NOLINK AND INCLEXT FOR A
GLOBAL DATA,

PRIVPECT?
NO MATCHING DEF

PRIVPECTs
MATCHING DEF IS A SYSDEF

PRIVPECT?s
INVALID MATCHING DEF

PRIVPECT?
IMPROPER MATCHING DEF

EXCEPTIONS
NO MATCHING DEF

EXCEPTIONS
MATCHING DEF IS A SYSDEF

EXCEPTIONS

INVALID MATCHING DEF
INCLUDE 3

NO MATCHING DEF

ENTRYs
NU MATCHING DEF

ENTRY 3
MATCHING DEF IS A SYSDEF

ENTRY s .
[MPROPER MATCHING DEF

ENTRYt
REALLOC RULES VIOLATION

ENTRY s
INVALID MATCHING DEF

ENTRY ALREADY USED IN ENTRY
SEGMENT

LARGE SEGMENT

SHARE LEVEL INCONSISTENT
WITH ASSIGNMENT

SHRLEVEL=3 FOR NOT ASSIGNED
INCLUDED SEGMENT

INCLEXT IGNORED

AT LEAST ONE SEGMENT HAS BEEN DECLARED WITH

AN INITSIZE GREATER THAN MAXSIZE. THE MAXSIZE
IS ADJUSTED TO INITSIZE

SYMBOLIC PATCHING IMPOSSIBLE.

THE NAME REFERENCED IN PRIVPECT PARAMETER
HAS NOT BEEN FOUND IN LIBRARIES.

THE NAME REFERENCED IN PRIVPECT PARAMETER
IS A SYSTEM NAME.

THE FETCHED SYMDEF HAS NO SIN,STE,D VALUE
ASSIGNED BECAUSE ERROR OCCURRED WHEN
PROCESSING IT.

NAME REFERRED IN PRIVPECT STATEMENT IS
NEITHER A PROCEDURE NAME NOR A SEMAPHORE
NAME.

THE MAME REFERENCED IN EXCEPTION
PARAMETER HAS NOT BEEN FOUND IN LIBRARIES.

THE NAME REFERENCED IN EXCEPTION
PARAMETER IS A SYSTEM NAME.

THE FETCHED SYMDEF FOR EXCEPTION EITHER
HAS NO SIN,STE,D VALUE ASSIGNED OR
IS NCT A PROCEDURE DESCRIPTOR SYMDEF.

THE NAME REFERENCED IN INCLUDE PARAMETER
HAS NOT BEEN FOUND IN LIBRARIES.

TASK ENTRY POINT HAS BEEN FOUND
IN LIBRARIES.

THE NAME DEFINED AS AN ENTRY POINT IS A
SYSTEM NAME,

THE SYMDEF FOUND FOR ENTRY POINT IS A
DATA SY'DEF.

ENTRY POINT IS IN A PROCESS PRIVATE SEGMENT.

THE SYMDEF FOUND FOR ENTRY POINT HAS
NO SIN,STE,D VALUE ASSIGNED BECAUSE AN
ERROR OCCURRED WHILE PROCESSING THE
SYMDEF OR JCL PARAMETERS.

THE ENTRY SPECIFIED IN ESINDEX IS ALREADY
USED.

C=-u4

1804

1805

2001

2201

2202

2203

2204

2205

2206

2207

2401

2402
2403

2404

2405

ATTEMPT TO ASSIGN PROC.PRIV
ATE SEG. AMONG INCLUDED SEGS

ALREADY USED ENTRY IN
ASSIGNMENT

SOME INIT.VALUE RECORDS
NOT USED

SEG REFERRED TO THRU ISN
AND NAME IN JCL

INVALID SHARE LEVEL

SIZE INCONSISTENT WITH
A PREVIOUS DEFINITION

ATTRIBUTES INCONSISTENT
WITH A PREVIOUS DEFINITION

égL GATE FOR NON GATEABLE

SHARE LEVEL CONFLICT (AFTER
PREV. USE OF PLACE)

SIZE SPECIFICATION (MSEGAT)
EXCEEDED

EXISTS AS SYSDEF

REALLOC RULES VIOLATION

A PREVIOUS REF FOR THIS
DATA STATEDs DEF CANNOT
EXIST

ATIRIBUTES INCONSISTENT
WITH A PREVIOUS DEFINITION

ALL ENTRY POINTS MSUT BE SI-
MULTANEOUSLY DECLARED NOLINK

THE CU CONTAINS MORE INITIALIZATION VALUES
THAN THE NEEDS EXPRESSED BY THE SYMDEFS.

THE USER HAS DEFINED TWO SETS OF ATTRI-
BUTES FOR A SEGMENT IN JCL. IN THE 1ST,
THE SEGMENT HAS BEEN REFERENCED THRU

ISN, IN THE SECOND, IT HAS BEEN REFERENCED
THRU NAME. WHEN THE SAME ATTRIBUTE

APPEARS IN 30TH DEFINITIONS, THE LAST
DEFINED VALUE IS USED.

THE SHARABILITY LEVEL FOR A SEGMENT
IS EQUAL TO O OR 1.

THE SEGMENT DEFINITION IN THE CURRENT

CU SPECIFIES AN (INITIAL) SIZE OR A MAXIMUM
S1ZE, BUT THE CURRENT SIZE OF THE SEGM:ENT
(SUM OF THE SIZES OF DATA ALREADY ALLOCATED
IN THE SEGMENT) IS GREATER THAN THIS
SPECIFIED SIZE.

A GLOBAL SEGMENT HAS BEEN DEFINED IN
TWO CU’S WITH DIFFERENT ATTRIBUTES.

A JCL “GATE" COMMAND EXISTS FOR A CU
WHOSE 1ST SEGMENT HAS NO GATE DOUBLE
WORD PREFIX.

AN ANTICIPATED PLACEMENT OCCURRED FIRST
WITH SEG(DEFAULT) ATTRIBUTES CONFLICTING
WITH THE CURRENT DESCRIPTION.

THE SIZE SPECIFICATION FOR A HARDWARE
PROTYPE IS LESS THAN ITS SIZE VALUE IN
THE DESCRIPTION.

THE DATA DECLARED IN THE CURRENT CU

IS ALSO A SYSDEF. THE SYSDEF IS USED
IN SYSLINK ENVIRONMENT OR IF THE 1ST
REFERENCE DID NOT HAVE INITIALIZATIONSs
ELSE THE SYMDEF IS USED.

AN INITIALIZATION APPEARS FOR A DATA
WHEREAS ANOTHER DECLARATION FOR THE
SAME DATA HAS SAID: DATA CANNOT BE
INITIALIZED.

THE DATA DECLARED IN THE CURRENT CU HAS
ATIRIBUTES DIFFERENT FROM THE ONE SPECI-
FIED IN ANOTHER CU FOR THE SAME DATA.

A CU CONTAINS SEVERAL ENTRY POINTS, SOME
OF THEM ARE SPECIFIED IN A NOLINK PARAME-
TER,OTHERS ARE NOT. THUS SOME REFERENCES
TO THIS PROCEDURE STAY UNRESOLVED.

=05

2407

2409

2410

2411

2602

2603

2604

2802
2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

3001

3002

SUBITEM CANNOT BE LINKED IF
ITEM IS NOLINK

NAME ALSO USED FOR A
DIFFERENT ENTITY

THIS CATALOGED ENTITY
ALREADY EXISTS

INVALID SHARE LEVEL
MULTIPLE INITIALIZATION
FOR PTR

REALLOC RULES VIOLATION
UNRESOLVED REFERENCE

REALLOC RULES VIOLATION
CATALOGED MATCHING DEF
I MPROPER MATCHING DEF

ILLEGAL MATCHING ,
NO SYMDEF SHOULD EXIST

INVALID MATCHING DEF

CONFLICT BETWEEN REF-DEF
ATTRIBUTES

CONFLICT BETWEEN REF-DEF
ATTRIBUTES
CONFLICT BETWEEN REF-DEF
ATTRIBUTES

ILLEGAL MATCHING

A DATA SYMDEF MATCHES A
NON DATA SYMDEF OR A SYSDEF
OR A SUBITEM SYMDEF

NAME ALSO USED FOR A
DIFFERENT ENTITY

NO MATCHING DEF

REALLOC RULES VIOLATION

A DATA SPECIFIED IN A NOLINK PARAMETER CON-
TAINS SUBITEM EXTERNALLY KNOWNs REFERENCES
TO THIS SUBITEM STAY UNRESOLVED.

TYPE 3 SLFICB SEGMENT.

AN ENTRY VARIABLE IN AN EXTERNAL DATA
HAS BEEN INITIALIZED IN DIFFERENT CUS
WITH DIFFERENT VALUES.

THE REFERENCE MAY BE DYNAMICALLY RESOLVED
IN A SM.

USED FOR WANT OF A GLOBAL DATA.

A REFERENCE TO DATA LEADS TO
A PROCEDURE DEFINITION.

THE CURRENT REFERENCE STATES: SYNDEF
CANNOT EXIST, BUT A SYMDEF HAS BEEN
ALREADY FOUND FOR THIS DATA.

THERE ALREADY EXISTS A DEFINITION FOR
THIS DATA BUT NO STN,STE,D VALUE IS ASSO-
CIATED TO IT BECAUSE ERROR (OCCURRED WHILE
PROCESSING THE 1ST DEFINITION.

A PREVIOUS DECLARATION OF THIS DATA SPECI-
FIED A DIFFERENT VALUE FOR DATA LENGTH.

A PREVIOUS DECLARATION FOR THIS DATA SPE-
FIED A DIFFERENT VALUE FOR DATA ATIRIBU-
TES.

A PREVIOUS DECLARATION FOR THIS DATA SPE-
CIFIED A DIFFERENT CONTAINING SEGMENT.

CONTRADICTION BETWEEN THE CURRENT REFE-
RENCE SAYINGs SYMDEF MIGHT EXIST, AND
A PREVIOUS REFERENCE (TO THE SAME DATA)
SAYINGs SYMDEF CANNOT EXIST.

FOR INSTANCE,A FORTRAN LABELED COMMON
SYMDEF MATCHES A SYMDEF THAT DOES NOT
CORRESPOND TO A BLOCK DATA.

A REFERENCE IS MADE TO A DEFINITION WHICH
DOES NOT EXIST IN LIBRARIES.

3005

3006

3007

3008

3009

3010

3401

3402

3403

3404
3405

3801

3802

3803

3804

CONFLICT BETWEEN REF-DEF
ATIRIBUTES

INVALID MATCHING DEF

CONFLICT BETWEEN REF-DEF
ATTRIBUTES

CONFLICT BETWEEN REF -DEF
ATTRIBUTES

CONFLICT BETWEEN REF=DEF
ATTRIBUTES
I MPROPER MATCHING DEF

GLOBAL DATA SEGMENT
OVERFLOW

INCORRECT CIS NUMBER

SIZE SPECIFICATION(MSEGAT)
EXCEEDED

REALLOC RULES VIOLATION
SIZE INCONSISTENT WITH A
PREVIOUS DEFINITION

CROSS REFERENCE LIST HAS
BEEN ABORTED (OVERFLOW)

CU REFERENCED IN JCL
HAS NOT BEEN LINKER

REFERENCE NEVER OCCURRED

THIS STATEMENT HAS NOT
BEEN USED

REFERENCE TO A PROCEDURE WITH A NUMBER
OF ARGUMENTS DIFFERENT FROM THE NUMBER OF
PARAMETERS DEFINED IN THE PROCEDURE.

THE SYMDEF FETCHED HAS NO STN,STE,D VALUE
ASSIGNED BECAUSE ERROR OCCURRED WHILE
PROCESSING IT.

THE DATA LENGTH (FOR DATA) OR

ARGUMENTS SIZES (FOR PROCEDURES)

SPECIFIED IN THE REFERENCE ARE DIFFERENT
FROM THE ONES SPECIFIED IN THE DEFINITION.

THE ATTRIBUTES SECIFIED FOR THE DATA
OR THE ARGUMENTS IN THE REFERENCE ARE
DIFFERENT FROM THE ONES IN THE DEFINITION.

A REFERENCE TO DATA LEADS T(O A PROCEDURE
OR A NON CATALOGUED DATA.OR A REFERENCE
TO PROCEDURE LEADS TO A DATA DEFINITION.

THE DATA CURRENTLY PROCESSED CANNOT BE
ENTIRELY STORED IN THE GLOBAL SEGMENT
EITHER BECAUSE THE DATA SIZE IS GREATER
THAN THE MAXIMUM SIZE FOR MULTIPLE
SEGMENTS, OR BECAUSE THE SUM OF SIZES
OF DATA ALLOCATED IN SEGMENT BECOMES
GREATER THAN THE LIMIT SIZE FOR NON-
MULTIPLE SEGMENTS.

A GLOBAL DATA IS SAID TO BE CONTAINED
IN A SEGMENT WHICH IS NOT A GLOBAL
SEGMENT (SEGMENT “TO BE INVENTED"

BY THE LINKER).

THE CURRENT SIZE BECOMES GREATER THAN
THE SIZE SPECIFICATION FOR THIS GLOBAL
SEGMENT.

A MAXIMUM SIZE HAS BEEN SPECIFIED WHICH IS
ALREADY EXCEEDED BY THE CUMULATED SIZES OF
DATA ALLOCATED IN THE SEGMENT.

WARNINGt THE CROSS REFERENCE LIST
CAUSED A LINKER TABLE OVERFLOW.

A CU HAS BEEN REFERENCED IN A JCL STATE-
MENT BUT THIS CU NEVER APPEARED DURING
THE LINKAGE PROCESSING (NO REFERENCE TO
THE PROCEDURE HAS BEEN MADE).

THE JCL ASKED FOR THE REPLACEMeNT OF A
REFERENCE TO A BY A REFERENCE TO B,
BUT NO REFERENCE TO A APPEARED IN

THE SCOPE OF REPLACE.

THE ENTITY INVOLVED IN A PLACE OR

MSEGAT OR FETCH COMMAND NEVER APPEARED
DURING THE LINKAGE.

c-07

3805

4401

4402

5201

5202

5601

TASK DEFINITION NEVER
OCCURRED

SEG DEFINED ONLY BY PLACE
STAT.

ZERO "LENGTH SEGMENT CONTAINS
DATA

REFERENCE NOT FOUND IN CU

MSEGAT/CU. SEG NOT USED

MORE THAN 9 ERRORS FOR
THAT ENTITY

THE JCL TOLD ABOUT A TASK BUT HAS NEVER
DEFINED IT.

THE JCL ASKED FOR A PLACEMENT IN A
SEGMENT FOR WHICH NO DESCRIPTION WAS
FOUND IN ANY CU.

THE JCL ASKED FOR THE REPLACEMENT OF A
REFERENCE TO A BY A REFERENCE TO B IN
A GIVEN CU, BUT NO REFERENCE TO A
APPEARED IN THE CU.

A SEGMENT OF A GIVEN CU REFERENCED IN
JCL PARAMETERS THRU SEGMENT NAME OR IN-
TERNAL SEGMENT NUMBER DOES NOT EXIST

IN CUs OR PARAMETERS THRU GLOBLSEG WERE
PREFERRED TO.

THE LINKER ONLY DISPLAYS THE FIRST NINE
ERRORS DISCOVERED WHEN PROCESSING AN
ENTITY.

C=-08

INDEX

NOTESs Main references are underlined. Entries beginning with
nonalphabetic characters are classified according to the
first alphabetic character of each entry.

A

Abnormal compiler termination 2-47
ACEPT statement 1i-11

Alphabet 12-06

Alter facility 2-16.2

Alter listing 2-28

ALTERNATE KEYS 9-14

American Standards Assoc. Format 10-0]
ANSI 74 2-10

APPLY NO-RESIDENT-INDEX clause 9-14
APPLY NO-SORTED-INDEX clause 9-14
ASA 10-01

SASSIGN statement 9-01

Asterisk convention 2-06

B
Backing store 2-13
Banner page 3-08
BFAS 9-13
BOTIOM 11-06
C

CALL IDENTIFIER statement 6-05
CALL statement 4-06, 6-01, 6-03
Called program 6-0l

Calling program 6-01

CANCEL statement 6-01, 6-~05
Card identifier 2-06

Card punching 11-09

Card reading 11-07

CARDID parameter 1-05, 2-06
CASEQ parameter 2-08

Cassettes 1i-17

i-01

Checkpoint/restart 12~0%

CKSEQ parameter 2-08

CLOSE REELZUNIT statements 9-09, 9-10
CLOSE WITH LOCK statement 9-08
SCOBOL statement 2-0Ql

COBOL file-name 6-08, 9-0I

COBOL segment number 3-01, 7-02
CODAPND parameter 2-u8, 7-06, 7-07
CODE SET clause 12=07

COLLATING SEQUENCE phrase 12-07
COMFILE parameter 2-04, 2-17, 3-04
Command file 2-16.2

COMMAND parameter 3-04
Communications 12-29

Compilation 2-01

COMPILE command 2-17, 2-19
CONTCHAR parameter 1-07

Control record 10-02

COPY statement 2-10, 2-16, 2-2v
Cross-re ference listing 2-09, 2-37, 4-12
CULIB parameter 2-0R

D

Data map and proc.def.listing 2=11, 2-37, 4-12
Data types 5-01

DCARNDID parameter 2-06

DCLXREF parameter 2-09

DDEBUGMD parameter 2-09

DEBUG parameter 2-09, 4-02, 4-04
DEBUG-ITEM 4-0l

Debuyying code 4-01

DEBUGMD parameter 2-09, 4-02
DECLARATIVE 4-01

Device oriented format 10-01
DIAGIN parameter 2-10, 2-11
Diagnostic 2-34, 3-14

DISPLAY data items 5-02

DISPLAY statement 11-11, 11-13
DOF 10-01

DSEGMAX parameter 2-10, 7-06
NDUMMY parameter ¥-06

Dump analysis 4-04

DUMP parameter 4-04

E

Edited sysout format 11-02, 11-09, 12-18
kEditor request 2-16.2

Efficiency 8-0l

ENTRY command 3-05

ENTRY parameter 3-03, 6-02

Epilogue 2-24

Error message Z2-34, 3-14, 4-16

EXAMINE statement 12-30
Exception 4-006

Exception messaye 4-16

Execution 4-0l

EXIT statement 6-01

Expanded source listing 2-28
EXPLIST parameter 2-10, 2-29
External line number 2-33
EXTERNAL pnrase 6-01, 6-04, 6-U8
External-file—-name 9-01

File concatenation 9-12
File names 9-01

File organization 9-04
FILE SECTION 12-07

FILE STATUS 9-15
Fixed=point bhinary 5=-05
Floating-point binary 5-05
FOOTING 11-06

Form control 11-0b
FORTRAN programs 6-06
FSN parameter 9-11

OENERATE statement 12-12
Group information listing 3-08

H-2000 9-14
HFAS 9-13
HIGH-VALUE 12-09

[-0-CONTROL paragraph 12-05

INCLUDE command 3-05

Included compile units listing 3-08
INDEX data item 5-06

Indicator area 1-06

INFILE parameter 1-10, 2-04
INITIATE statement 12-12

INLIB parameter 2-04

INLIBn parameter 2-04, 2-16.1

Input enclosure 1-01

INSPECT statement 12-30

Instruction counter 4-10
Interactive operation facility 1-03

i-03

Interactive terminal line format 1-10

Intermediate results 12-26

Internal line number 2-29, 2-33

Internal segment number 3-01, 3-11, 4-11, 4-12, 7-10
Internal-file-name 6-08, 9-0l

IOF 1-03

JK

JCL STATUS 12-03

Job occurrence report 4-15

Job occurrence report summary 2-46
Journalization 12-05

SJUMP 2-15, 12-03, 12-05

Language type 1=05, 2-07

SLET 12-05

LEVEL parameter 2-10, 2-21
LEVEIL. 62 2-22

LEVEL 64 9-14

sLIB 2-04, 2-16, 3-02, 3-06
$LIBALLOC 1-Q02, 3-02

SLIBMAINT 1-02, 2-04, 10-02, 10-06
Library 2-i6.

Library member text format 1-07
Limits 2-2I

LINAGE clause 11-06
LINE-COUNTER 12-11

Linkage report 3-08

LINKAGE SECTION 6-01, 6-03
SLINKER statement 3-01

SLINKER segment number 3-0], 4-12
Linking 3-01

LIST parameter 2-11

Listings ($SCOBOL) 2-24

Listings (SLINKER) 3-08
Load-module-name parameter 3-02
LOWN-VALUE 12-09

Main program 6-02

Map listing 2-37

MAP parameter 2-11

Maximum data segment size 2-10, 7-06

Maximum procedure segment size 2-10, 7-06
SMERGE 12-01

MERGE statement 12-01, 12-07
Multi logical unit files 9-0¢9
Multiple file tape volumes 9-1]
Multivolume files 9-09

1-04

Naming convention -0}, 3-02
NCARDID parameter 1-05, 2-06
NCASEQ parameter 2-08

NCKSEQ parameter 2-08
NCLIST parameter 2-11
NCODAPND parameter 2-08
NDCLXREF parameter 2-09
NDEBUG parameter 2-09
NDEBUGMD parameter 2-09, 4-02
NDIAGIN parameter 2-10
MEZXPLIST parameter 2-10
NLIST parameter 2-11

NMAP parameter 2-11

NOBJ parameter 2-11

NOBSERV parameter 2-11

NOPT parameter 2-13

NRESIDX parameter 9-15

NAAHN parameter 2-13

NXREF parameter 2-15

0

0OBJ parameter 2-11

Object code 2-24
OBJECT-COMPUTER paragraph 12-07
OBSERV parameter 2-11

ON SIZZ ERROR 12-29

Jptional files 9-04

OPTIONAL parameter 9-06
OPTIONS parameter 12-03, 12-10
ORGANIZATION clause 9-14
OUTLIB parameter 3-03

Qutput writer 10-07, 11-0l
Overriding rules 9-02

PQ

Packed decimal 5-03
PAGE-CQUNTER 12-1]

PCF 4-03

Per form/alter bucket listing 2-11, 2-37
Per formance 8-0l

PICTURE clause 5-0I

$POOL statement 9-08, 9=10, 9=11, 9-13
Printed output (SLINKER) 3-08

Printed output (SCOBOL) 2-24

Printing 11-01

Procedure map listing 2-11, 2-37, 4-1}|
Process control block 4-06

Process control structure 4-05

Process group control structure 4-05

=05

Program checkout facility 2-09, 4-0!, 4-03

PROGRAM COLLATING SEQ.clause 12-07
Prologue 2—-24

Protection ring 4-06

PRTFILE parameter 2-12

PRTLIB parameter 2-12

PSEGMAX parameter 2-10, 7-06
Punched card format 1-~05

R
Record length 9-03
Re ference format 1-~04
REPEAT parameter 12-05
REPLACE statement 2-10, 2-29
Report writer 6-08, 12-11
Representation of data 5=-0I
RERUN clause 12-05
RESIDX parameter 9-1%
Return code 9-15
Run-time package 12-29

S
SARF 10U-01
Search path 2-04, 3-02, 3-06
SEARCH statement =23
Segment 2-08
Segment list 2-46, 3-11, 4-11
Segment number 3-0l
Segment table entry 4-05
Segment table number 4-05
SEGMENT-LIMIT 7-03
Segmentation 7-0I
Sequence number 1-06, 10-02
Serial compilation 2-19
Serial linkage 3-06
SET statement 12-20
Severity value 2-1b
SSORT 12-01
SORT statement 12-01, 12-07
$SORTIDX =14
$SSORTWORK 12-02
Source library 1-02
Source listing 2-28
SOURCE parameter 2-04, 2-19
SPECIAL-NAMES paragraph 11-11, 11-14,
Sra 4-11
SSF 10-01
Stack 4-06

Stack frame 4-10

Standard access record format 10-01
STATUS 2-15

Ste 4-05, 4-11

{26

12-04,

12-06

STEPOPT parameter 2-13, 3-06

Stn 4-05, 4-11

STOP LITERAL statement 11-11, 11-16
STOP RUN statement 6-02

Stream reader 1-06, 10-02, 10-06, 11-07
Structured programming 7-03

SUBOPT parameter 2-+3, 8-02
Subscripts 12-20

Summary page 2-45

SUPPRESS statement 12-12

Swapping 7-0l

Switches 12-04

SYMREF 3-08.1

SYSIN 1-06, 10-02, 10=-06, 11=-07
SYSOUT 2-12, 11-01, 11=09

$SYSOUT 10-07, 11-04, 11-09

System standard format 10-0l

Table handling 12-20

Task listing 3-08

1TDs 2-08

TEMP 2-08

TERMINATE statement 12-13

TopP 11-06

Transaction processing routine 2-08
TYPE parameter 1-06, 1-08, 10-02

UFAS 9-13

UFF 9-14

Unit record files 11-01

Unpacked decimal 5-02

Updating source program 1-04
SURINIT 11-05

USAGE clause 5-01I

USE AFTER ERROR PROCEDURE SECTION ©o-15
USE FOR DEBUGGING statement 4-01
USE statement 12-12

USING phrase 6-01, 6-=03

VACSEG command 3-05

Vertical format unit 11-05%
SVOLPREP 11=-20

VEU 11-05

Virtual memory management 7-0!

i-07

WXYZ

W REQUEST 1-U8

WARN parameter 2-13

WITH CODE clause 12-18

WITH DEBUGGING MODE clause 2-09, 4-02
WITH SARF phrase 10-04

WITH SSF phrase 10-04

WORKN parameter 2-13

SWRITER 10-07, 11-04, 11-09

1-08

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

SERIES 60 (LEVEL 64) GCOS
7iTLe | COBOL User Guide
Addendum A

ERRORS IN PUBLICATION

ORDER NO.

AQ63-01A

DATED

JUNE 1979

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

and action will be taken as required. If you require a written reply, check here D

and furnish complete mailing address below.

D Your comments will be promptly investigated by appropriate technical personnel

FROM: NAME

TITLE

COMPANY

ADDRESS

DATE

PLEASE FOLD AND TAPE-—
NOTE: U. S. Postal Service will not deliver stapled forms

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

