
SUBJECT

SERIES 60 (LEVEL 64)
COBOL USER GUIDE

Description of the Compilation and Execution of COBOL Programs under
GCOS Level 64

SPECIAL INSTRUCTIONS

For users of Release 0400 this manual replaces Revision 0 dated July 1977
which remains valid for Release 0300 users. Because of extensive revision,
change bars have not been used

SOFTWARE SUPPORTED

Level 64 GCOS Release 0400

ORDER NUMBER

AQ63, Rev. 1 September 1978

Honeywell

PREFACE

This manual describes how the user can compile and execute COBOL
programs under Level 64 GCOS.

This manual complements the Level 64 COBOL Reference Manual. The
Reference Manual contains formal specifications of COBOL. The User Guic
on the other hand, discusses those aspects of COBOL whose implementati<
in Level 64 needs further explanation. It also discusses certain oper
ational aspects such as the JCL and utilities needed to input, compile,
link, execute and debug COBOL programs. In discussing these aspects
there are some areas of overlap with the Job Control Language ReferencE
Manual, Job Control Language User Guide, Library Maintenance Reference
Manual and Library Maintenance User Guide. The programmer is cross
referred to these manuals for details when necessary.

Certain self contained COBOL topics are not discussed in this manual
because they are the subject of separate manuals. These topics are:

- I/O using the UFAS, BFAS and HFAS file access systems.

- Data base processing using IDS/II.

- Communications and transaction driven programming using TDS/64
and VCAM.

This manual is divided into two parts. Part 1 describes the develop
ment of a coded COBOL source program into a working load module.
Section I describes methods of introducing source programs
into a Level 64 system and maintaining source programs in a disk
library. Sections II and III describe the compilation and linkage of
COBOL programs. Section IV describes debugging techniques and gives
hints on how to deal with abnormal program terminations.

Part 2 of this manual discusses COBOL program interfaces with the
system; programming techniques are described which lead to efficient
use of the system. Section V discusses the representation of data in
memory. Section VI discusses calling and called programs. Section VII
discusses segmentation for Level 64 Virtual Memory Management.
Section VIII describes various programming techniques for reducing
the size and increasing the execution speed of COBOL programs.
Section IX discusses various general aspects of file usage. Section x
describes the standard record formats accepted by Level 64 Data
Management. Section XI describes the use of unit record files.
Section XII contains a number of miscellaneous programming topics.

The reader of this User Guide is assumed to be familiar with the
Level 64 COBOL language and with the basic functions of the Level 6
GCOS Operating System and JCL.

PREFACE

This manual provides the information about Level 64 COBOL and the
Level 64 system needed by a programmer to develop working COBOL
programs which will execute efficiently in a Level 64 system.

This manual complements the COBOL Language Reference Manual. The
reference manual contains a formal specification of the COBOL
programming language. The COBOL User Guide, on the other hand,
discusses those aspects of COBOL whose implementation in Level 64
needs further explanation.

The COBOL User Guide also discusses certain operational aspects
such as the JCL and utilities needed to input, compile, link, execute
and debug COBOL programs. In discussing these aspects there are some
areas of overlap with the Job Control Language (JCL) Reference
Manual, Job Control Language (JCL) User Guide, Library Maintenance
Reference Manual, and Library Maintenance User Guide. The programmer
is cross referenced to these manuals for details when necessary.

Certain self contained COBOL topics are not discussed in this manual
because they are the subject of separate manuals. These topics are:

I/O using the UFAS, BFAS and HFAS file access systems.

Data base processing using IDS/II.

Communications and transaction driven programming using TDS/64
and VCAM.

This manual is divided into two parts. Part 1 describes the
development of a coded COBOL source program into a working load
module. Section I describes methods of introducing source programs
into a Level 64 system and maintaining source programs in a disk
library. Sections II and III describe the compilation and linkage of
COBOL programs. Section IV describes debugging techniques and gives
hints on how to deal with abnormal program terminations.

Part 2 of this manual discusses some of the COBOL program's inter
faces with the system; programming techniques are described which
lead to efficient use of the system. Section V discusses the repre
sentation of data in memory. Section VI discusses calling and called
programs. Section VII discusses segmentation for Level 64 Virtual
Memory Management. Section VIII describes various programming
techniques for reducing the size and increasing the execution speed
of COBOL programs. Section IX discusses various general aspects of
file usage. Section X describes the standard record formats accepted
by Level 64 Data Management. Section XI describes the use of unit
record files. Section XII contains a number of miscellaneous pro
gramming topics.

iii

The reader of this User Guide is assumed to be familiar with the
Level 64 COBOL languag_e and with the basic functions of the
Level 64 GCOS Operating System and JCL. The following manual may
be used as background material:

System Overview Manual, Order No. AQ98.

The following manuals should be referred to in conjunction with the
present manual:

COBOL La·n·gua·ge Ref·e·rence· Manual, Order No. AQ64
·Job co·ntr·o1 L·an·guag·e {JCL')' Re·fe·rence Ma·nual, Order No. AQlO
Job Cot1tr·o1 Lan·g"ua·ge ~JCL') · us·e·r· Guide, Order No. AQll
L.ihr·a·ry Mainte·n·a1tc·e Man·u·a1, Order No. AQ28
L.ibr·a·cy Maintenanc·e us·e·r· Guide, Order No. AQ87
Error Mes·sages and Return Codes Manual, Order No. CQ31

The following notation conventions are used in this manual when
describing the syntax of JCL and COBOL:

UPPERCASE

lowercase

[item]

{
item!}
item2
item3

()

"The keyword item is coded exactly as shown.

Indicates a user-supplied parameter value.

An item within square brackets is optional.

A column of items within braces means that one
value must be selected if the associated
parameter is specified.

Note the way in which underlining is used in COBOL
and JCL syntax descriptions. An underlined word in
COBOL syntax descriptions is a word which must be
used. An underlined parameter in JCL syntax
descriptions is the parameter assumed if none is
specified.

Parentheses must be coded if they enclose more
than one item.

An ellipsis indicates that the preceding item may
be repeated one or more times.

Each section of this document is structured according to the heading
hierarchy shown below. Each heading indicates the relative level of
the text that follows it.

Level
1 (highest)

2

3

Heading Format
ALL CAPITAL LETTERS, UNDERLINED

Initial Capital Letters, Uhderlihed
ALL CAPITAL LETTERS, NOT UNDERLINED

4 Initial Capital Letters, Not Underlined

5 (lowest) ALL CAPITAL LETTERS FOLLOWED BY COLON:
Text begins on the same line.

The Level 64 Document Set follows. Many of the manuals may be
referenced in the text.

iv

Order
Number

AQ02
AQ03
AQ04
AQ05
AQ09
AQlO
AQll
AQ13
AQ14
AQ18
AQ20
AQ21
AQ22
AQ26
AQ27
AQ28

AQ40
AQ49
AQ50
AQ52
AQ53
AQ55
AQ56
AQ57
AQ59
AQ63
AQ60
AQ64
AQ65
AQ66
AQ67
AQ68
AQ69
AQ72
AQ73
AQ77
AQ82
AQ83
AQ84
AQ85
AQ86
AQ87
AQ88
AQ89
AQ90
AQ92
AQ93
AQ94
AQ98

CQ31
CQ35-

LEVEL 64 DOCUMENT LIST

Title

Series 100 Program Mode Operator Guide
Series 100 Conversion Guide
Series 20012000 Conversion Guide
System 3601370 Conversion Guide
System Management Guide
Job Control Language (JCL) Reference Manual
Job Control Language (JCL) User Guide
System Operation Operator Guide
System Operation Console Messages
Operator Reference Manual
Data Management Utilities Manual
Series 20012000 Program Mode User Guide
Series 20012000 Program Mode Operator Guide
Series 100 File Translator
Series 20012000 File Translator
Library Management Manual
System 3 Conversion Guide
Network Control Terminal Operation Manual
Terminal Operations Manual
Program Checkout Facility Manual
Communications Processing Facility Manual
TDS/64 Standard Processor Site Manual
TDS/64 User Guide
TDS/64 Processor Programmer Reference Manual
Unit Record Devices User Guide
COBOL User Guide
Interactive Operation Facility
COBOL Language Reference Manual
FORTRAN Language Reference Manual
FORTRAN User Guide
FORTRAN Mathematical Library
RPG Language Reference Manual
RPG User Guide
Series 20012000 COBOL to Level 64 COBOL Translator
IBM COBOL Translator
File Translation Manual
BFAS User Guide
HF AS User Guide
UFAS User Guide
Sort/Merge Manual
Catalog Management Manual
Library Maintenance User Guide
1-D-SIII User Guide, Volume 1
1-D-S/II User Guide, Volume 2
COBOL Reference Card
Operator's Reference Card
RPG Reference Card
FORTRAN Reference Card
System Overview Manual
Error Messages and Return Codes Manual
Remote Batch Facility

v

ACKNOWLEDGMENT

This acknowledgm_f3nt has been reproduced from the CODASYL COBOL
Journal of Develolment, 1973 as requested in that publication,
prepared and pub! shed by the CODASYL Programming Langw~ge
Committee.

"Any organization interested in reproducing the COBOL standarrf And
specifications in whole or.in part, using ideas from this documP.nt
as the basis for an instruction manual or for any other purpose, is
free to do so. However, all such organizations are requested to
reproduce the following acknowledgment paragraphs in their entirety
as part of the preface to any such publication. Any organization
using a short passage from this document, such as in a book review,
is requested to mention "COBOL" in acknowledgment of the source, but
need not quote the acknowledgment.

COBOL is an industry language and is not the property of ;:my
company or group of companies, or of any organization or qroup
of organizations.

No warranty, expressed or implied, is made by any contributor
or by the CODASYL COBOL Committee as to the accurflcy and
functioning of the programming system and language. Moreover,
no responsibility is assumed by any contributor, or by th~
committee, in connection therewith.

The authors and copyright holders of the copyrighted material
used herein

FLOvt-MATIC <trademark of Sperry Rand Corporation>,
Programming for the Univac CR> I and II, Data Automntion
Systems copyrighted 1958, 1959, by Sp~rry Rand
Corporation; IBM Commercial Transl~tor Form No. f 28-8013,
copyrighted 1959 by IBM• FACT DSI 27A5260-2760,
copyrignted 1960 by Minneapolis-Honeywell,

have specifically authorized the use of this material in whole
or in part, in the COBOL specif !cations. Such authorization
extends to the reproduction and use ot COBOL specifications in
programming manuals or similar publications."

vi

TABLE OF CONTENTS

PART I

Sect ion J Input and Maintenance of Source Pr.ograms • • • • • • • • • • • • • .1-.0 J
Input Enclosures •••••••••••••••••• •••••••••••• I-OJ
Source Libraries •••••••••••••••••••••••••••••• J-02

Creating a Library from Cards ••••••••••••• 1-02
Creating a Member Interactively •••••••••••• 1-03

Updat Ing the Source Member • 1-04
COBOL Reference Format•••••••••••••••••••••••• 1-04

Punched Card Format ••••••••••••••••••••••• 1-05
Library Member Text Format • • • • • • • • • • • • • • • • 1-07
Interactive Terminal Line Format •••••••••• 1-10

Source Files •••••••••••••••••••••••••••••••••• 1-10

Section II Compilation ••••••••••••••••••••••• •••••••••••••••••• 2-0J
Job Control Language •••••••••••••••••••••••••• 2-01

SOURCE,INFILE,COMFILE,INLIB and INLIBn
Parameters ••••••••••••••••••••••••••••••••
CARDID,NCARDfD, and DCARDID Parameters ••••
CASEQ and NCASEQ Parameters ••••••••••••• ~.
CKSEQ and NCKSEQ Parameters •••••••••••••••
CODAPND and NCODAPND Parameters •••••••••••
CULIB Parameter •••••••••••••••••••••••••••
DCLXREF. and NDCLXREF Parameters •••••••••••
DEBUG and NDEBUG Parameters •••••••••••••••
DEBUGMD,NDEBUGMD and DDEBUGMD Parameterc; ••
DIAGIN and NDIAGIN Parameters •••••••••••••
DSEGMAX and PSEGMAX Parameters ••••••••••••
EXPLIST and NEXPLIST Parameters •••••••••••
LEVEL Parameter ••••••••••• • •••••••••••••••
LIST ,NLIST and NCLIST Parameters ••••••••••
MAP and NMAP Parameters •••••••••••••••••••
OBJ and NOBJ Parameters •••••••••••••••••••
OBSERV and NOBSERV Parameters •••••••••••••
PRTF I LE Parameter
PR1LI B Parameter
STEPOPT Parameter •••••••••••••••••••••••••
SUBOPT and. NOPT Parameters ••••••••••••••••
WARN and NWARN Parameters •••••••••••••••••
WORK I , VWRK2 and WORK3 Parameters
XREF and NXREF Parameters
JCL Status ••••••••••••••••••••• •••••••••••
Librarie:s Referred to in the COPY Statement

vii

2-04
2-06
~-08

2-08
2-08
2-08
2-09
2-09
?.-09
2-10
2-10
2-10
2-10
2-J I
2-J l
2-11
2-11
2-1 2
2-12
2-13
2-J 3
2-1 3
2-1]
2-15
'.2-1 ')
'--1 f)

Section

•

The Alter Facility ••••••••••••••••.•••••••••••
Serial Compilation ••••••••••••••••••••••••••••
Co mp i l er I~ 1 m i t s • . • ••
Compiling Level ·62 Programs •••••••••••••••••
Object Code ••••
Printed Output •••••••••••••••••••••••••

Banner Page •••••••••••••••••••••••••••.
Program ••••••••••••••••••••••••••.. o

User and Project •••.••••••••••••••.•••
Date and Time •••••••••••••••••••••••••
Compiler Version ••••••••••••••••••••••
User Opt ions and Act i VP, Ort if>n.c:; •••••••
Compilation Level •••••••••••••••••..
Compiler Input •••••••••••••••••.••••..

.Program L is t ing
Head 1 ngs •
Source Lines ••••••••••••••••••••.•.
Diagnostic Error Messages ·······~·····

Map Listings and Cross-Reference Listinry~
Data Map and Proc. Definition Listing
Cross-Reference Listing CDecl.Order>
Cross-Reference Listing l Alpha.Order>
Procedure Map Listing •••••••••••••••••
PERFORMIALTEfl Bucket Listing ••••••••••

Su rnrna ry Page ••••••••••••••••••••••••••••••
Summary of Errors •••••••••••••••••••••
CU Produced •••••••••••••••••••••••••••
Segment List ••••••••••••••••••••••••••
Run-Time Package Procedures •••••••••••

Job Occurrence Report Summnry •••••••••••••
Abnormal Compiler Termination •••••••••••••••••

III Linking
Job

••
Control Language •••••••••••••••••••••••
Load-module-name Par ::.imet er •••••••••••••
ENTRY Parameter ••••••••••••••••••••••••
OUil.. I B Parameter ••••••••••••••••••••••••••
COMMAND and COMFll.E Parameters ••••••••••••

ENTRY Command •••••••••••••••••••••····
INCLUDE Command •••••••••••••••••••••••
VACSEG Command••••••••••••••••••••••••

STEPOPT Parameter •••••••••••••••••••••••••
Library Search Path ••••••••••••••••••••••••

Serial Linkage ••••••••••••••••••••••••••.••••••
Operation of SLINKER ••••••••••••••••••••••••••
Pr 1 n t.ed Output ••••••••••••••••••••••••••••••••

Banner Page and SLINKEq Cornmrinrls L 1.st inq
Included Compile Units ••••••••••••••••••
Task .L~s ting •••••••••••••••••••••••••••.••
Group In formation ••••••••••••••••••••••••.
Linkage Report and End Page ••••••••••••••.
Error Messages •••••••••••••••••••••.••••••

vi ii

2-J6.?
2-19
2-21
2-:~2
2-24
2-24
2-25
2-25
.?-2 5
2-25
2-27
2-21
2-27
2-?8
2-2R
2-.~J
2-33
2-34
2-31
2-37
2-39
2-3<1
2-43
2-43
2-45
2-45
2-46
2-46
2-46
2-46
2-47

3-0 I
3-0 I
3-l) 2
3-03
3-tJJ
3-04
3-05
3-05
3-05
3-06
3-06
3-u6
3-07
3-08
3-08
3-0A. I
J-08. 1
3-11'
3-12
3-14

Section IV Execution •••••••••••••••••••••••••• •••••••••••••••••
Program Debugging •••••••••••••••••••••••••••••

Debugging Code ••••••••••••••••••••••••••••
Program Checkout Facility •••••••••••••••••

PART 2

Dump An a l y s 1 s •
Structure of the Dump Listing •••••••••••••
The Stack •••••••••••••••••• • ••••••••••••••
Data Division Variables •••••••••••••••••••
General Information •••••••••••••••••••••••

Job Execution Messages ••••••••••••••••••••••••
Messages Output by the Systefll •••••••••.•••
Messages Output by COBOL ••••••••••••••••••
Except ion Mes.sages

Format of Exception Messages ••••••••••
Exception 09-01 Illegal UecimAl Dntr1 ••
Except ion I l-02 Out of Array Range ••••
Except ion 06-00 Out of Segment Bounds ••
Unexpected Return Code ••••••••••••••••

Section V Representation of Data •••••••••••••••••••••••••••••••
Format of Data in Memory •••••••••••••••••••••••
DISPLAY Data Items ••••••••••••••••••••••••••••
Packed Dec ima 1 Numbers ••••••••••••••••••••••••
Fixed-Point Binary Numbers •••••••••••••••••••••
Floating-Point Binary Numbers ••••••••••••••••••
INDEX Data Item .

Section VI Calling and Called Programs •••••••••••••••••••••••••
Transfer of Control •••••••••••••••••••••••••••

Sect 10.-n VI I

LINKAGE SECTION and USING Phrase ••••••••••••••
The E"'TERNAL Phrase •••••••••••••••••••••••••••
CALL Identifier ••••••••••••••••••• • •••• • • • • • • • •
The CANCEL Statement ••••••••••••••••••••••••••
Interface With FORTRAN Programs •••••••••••••••
Constraints •••••••••••••••••••••••••••••••••••

Using Files •••••••••••••••••••••••••••••••
Report Writer •••••••••••••••••••••••••••••

Q,uidelines ••••••••••••••••••••••••••••••••••••

Segmentation .
Methods of Segmentation •••••••••••••••••••••••
Control of Segment at ion by the Progr~mmer •••••

PROCEDURE DIVISION Segmentation •••••••••••
DATA DIVISION Segmentation ••••••••••••••••
Preferred Segment Size ••••••••••••••••••••

Automatic Segmentation ••••••••••••••••••••••••
Data Segments ••••••••••••••••••••••••••••.
Procedure Segments ••••••••••••••••••••••••

Internal Segment Numbers ••••••••••••••••••••••
Declared Working Set •••••••••••••••••••••••••••

ix

4-01
4-01
4-0 J
4-03
4-04
4-05
4-06
4-J 2
4-1 3-
4-15
4-15
4-16
4-16
4-17
4-J 8
4-19
4-19
4-19

5-01
5-0J
5-02
5-03
5-05
5-05
~-06

6-01
6-02
6-03
6-04
6-05
6-05
6-06
6-07
6-08
6-08
6-08

7-01
7-02
7-02
7-02
7-05
7-06
7-07
7-08
7-10
7-10
7-J J

.I

•

I

I

Sect ion ·v I I I E ft ic iency ••
Data Manipulation Techniques ••••••••••••••••••
Data Des er 1p t ion Tee hn ique s •••••••••••••••••••

Section IX Files ...
Files Names ••••••••••••••• ••••••••••••••••••••
Data Management Overr id inq Rules ••••••••••••••
C>pt ion al F 1 les ••••••••••••••••••••••••••••••••
Close With Lock •••••••••••••••••••••••••••••••
The SPOOL Statement •••••••••••••••••••••••••••
Multivolume Files •••••••••••••••••••••••••••••
Multi Logical Unit Files ••••••••••••••••••• ,. ••
Multiple File Tape Volumes ••••••••••••••••••••
File Concatenation ••••••••••••••••••••••••••••
UFAS, BFAS and HFAS •••••••••••••••••••••••••••

ORGANIZATION ••••••••••••••••••••••••••••••
AP.PLY N o-SC>RTED- INDEX •••••••••••••••••••••
A PPL Y NO- RESIDENT- IN DEX •••••••••••••••••••

Error Handling ••••••••••••••••••••••••••••••.•
FILE STATUS .
Ret.t1rn Code ••••••••••••••••••••••••••. • ••••

Restrictions on Certain File Or0aniv1ti.ons
Record Size ••••••••••••••••••••.•••.•••••••.•••
The ACTUAL KEY Phr.=:ise ••••••••••••••••••••••••••

Section X Standard Record Formats ••••••••••••••••••••••••••••••

Sect ion XI Using

Sys t em S t and a rd Format < SS F > • • • • • • • • • • • • • • • • ••
The Stream Reader, SLIBMAINT nnd the
COBOL Compiler ••••••••••••••••••••••••••••
Reading SSF Fi le s in COBOL Pro9rams •••••••
Writing SSF Files in COBOL Programs •••••••

Standard Access Record Format CSARF> ••••••••••
The St re am Reader, $LI BMA INT and the
COBOL Comp 11 er ••••••••••••••••••••••••••••
Reading SARF Files in COBOL Programs ••••••
Wr 1 ting SARF F 11 es in COBOL ~rograms ••••••

General Points concerning SSF And SARF ••••••••
The Output Writer •••••••••••••••••••••••••
Summary of Rules for the SELt:::CT C lfmse ••••

Unit Record Files •••••••••••••••••••••••••••••
Printing ••••••••••••••••••••••••••••••••••••••

Using SYSOUT Files for Printing ••••••••••••
Printing Directly •••••••••••••••••••••••••
Form Control ••••••••••••••••••••••••••••••.
Ihe LINAGE Clause ••••••••••••••••••••••••••

Reading Cards •••••••••••••••••••••••••••••••••
Using Standard SYSIN Subfiles •••••••••••••
Re ad 1 ng Ca rd s D 1 re ct 1 y • • • • • • • • • • • • • • • • • • ••

Punching Cards ••••••••••••••••••••••••••••••••
Us 1 n g SYS o UT F 11 e s for C ., rd s • • • • • • • • • • • • • •
Punching Cards Directly •••••••••••••••••••

A CC E P T, 0 I SPLAY and STOP L it e r a l • • • • • • • • • • • • • ••
The ACCEPT Statement ••••••••••••••••••••••
The DI.SPLAY Stat em en t •••••••••..••••••••••

x

8-01
8-01
8-03

9-0J
9-0 J
9-02
<;-04
9-0H
9-08
9-09
9-0Y
9- I
9- 2
9- 3
9- 4
"..)- 4

9- 4
~- 5
9- 5
9- 6
9- 7
9- 7
9- >3

I 0-l) I
10-0?.

I 0-i.)2
10-04
10-05
1 o-os

10-06
10-06
10-07
10-07
10-07
I 0-~)7

1 J-\) I
11-01
11-0 J

11-05
I 1-05
11-06
11-07
11-07
11-0R
I J-()9

11-09
I 1-10
11-11
I 1-1 I
I J-1 3

Section XII

Selection of I/O Device ••• ~ ••••••••••••••••
The STOiJ Literal Statement ••••••••••••••••

Using .ca·ssettes ••••••••••••••••••••••••••••••••
Types of Cassette File •••••••••••••••••••••
GCOS 64 Standard Cassette File •••••••••••••
GCOS 62 St and a rd Cassette Fi ie •••••••••••••
Foreign Cassette Files •••••••••••••••••••••

Miscellaneous ••••••••••••••••••••••••••••••••••••••
.Sort 1 ng and Merging •••••••••••••••••••••••••••

Comparison of COBOL SORT/~~ERGE and
.SS.ORT/SMERGE
JCL for COBOL SORT ••••••••••••••••••••••••

User JCL Status •••••••••••••••••••••••••••••••
Switches ••••••••••••••••••••••••••••••••••••••
Checkpoint, Restart and Journalization ••••••••
Alphabets •••••••••••••••••••••••••••••••••••••

PROGRAM COLLA TI NG SEQUENCE ••••••••••••••••
SORT and MERGE COLLATING SEQUENCE •••••••••
CODE-SET
HIGH-VALUE LO~l-VALUE ••••••••••••••••••••••

$ STEP OPT I ON S ••••••
T he Rep o r t W r i t e r •

General Concepts •••••••••••••••••••••••••••
The DATA DIVISION ••••••••••••••••••••••••••
Th e P RC >C E 0 UR E D I V I S I c > N •
REPORT Clause in FD ••••••••••••••••••••••••
Summimg Techniques •••••••••••••••••••••••••
Tt1e Use of SUM •••••••••••••••••••••••••••••
SUM Routines •••••••••••••••••••••••••••••••
Page Breaks ••••••••••••••••••••••••••••••••
WI TH CODE Cl aus.e •••••••••••••••••••••••••••.
Control Footings and Page Format •••••••••••
Floating First Detail Rule ••••••••••••••• ~.
Rep o rt t"I r i t e r Ro u t 1 n e s •

Table Handling •••••••••••••••••••••••••••••••••
Subscripts •••••••••••••••••••••••••••••••••
T he SET St at e men t •
The SEARCH Statement •••••••••••••••••••••••
Building Tables ••••••••••••••••••••••••••••

Intermediate Results •••••••••••••••••••••••••• ~
Length of Intermediate Result Fields •••••••
Fixed Binary Data Items ••••••••••••••••••••
COBOL Run-time Package •••••••••••••••••••••
The ON SIZE ERROR Phrase •••••••••••••••••••

Communications Programs ••••••••••••••••••••••••
INSPECT and EXAMINE ••••••••••••••••••••••••••••

xi

11-15 I
J 1-16

*

11-17 I 11-17
11-18
11-18
11-19

12-0J
12-01

12-0 I
12-02
12-03
12-04
12-05
t 2-06
12-08
12-08
12-0H
J 2-09
12-10
12-J J

12-1 I
12-12
12-1 2
t 2-1 3
12-1 .3
12-14
12-15

. I 2-1 7
12-17
12-18
12-19
12-.20·
12-20
12_20
12-20
12-2 3
12-25
12-26
I 2-27
12-29
I 2-?.Y
t 2-29
12-29
12-JO

Append ix A
Appendix B

I Append ix C

Index

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

I Figure
Figure
Figure

I Figure
Figure
Figure

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.

2-1 o.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
7-1.
7-2.
9-1.
12-1.
12-2.
12-3.

Samp 1 e COBOL P roqram •••••••••••••••••••••••••••••••
SCOBOL Error Mess ages ••••••••••••••••••••••••••••••
SLINKER Error Messages ••••••••••••••••••••••••••••••

..

ILLUSTRATIONS

SCOBOL Statement Format ••••••••••••••••••••••••••
Sample Banner Page •••••••••••••••••••••••••••••••
S amp 1 e A 1 t er L 1 s t i ng •
S amp 1 e Sour c e L is t 1 n g •
Sample Expanded Source Li sting •••••••••••••••••••
Sample Data Map and Procedure Definition Listing •
Sample Cross-Reference Listing <Declaration Order>
Sample Cross-Reference Listing (Alphabetic Order>.
Sample Procedure Map Listing and Perform/Alter
Bucket Listing •••••••••••••••••••••••••••••••••••
Sample Summary t'a~e ••••••••••••••••••••••••••••••
SLINKER Statement Format •••••••••••••••.••••••••••
Structure of a Linked 1-'rogrAm ••••••••••••••••••••
SAmple Banner Page and SLINKEP. Commnnd~ Listin~ ••
Sample Task Listing ••••••••••••••••••••••••••••••
Sc:imole Group Information Listing ••••••••••••••.••
Sample Linkage Report and End PAge •••••••••••••••
First Page of Dump
Start of PCS Dump
Ring 3 User Stack ••••••••••••••••••••••••••••••••
Sample Stack Frame 001 Dump
Sample SLINKER Segment List •••••••••••••••••••.••
Segment D11mp •••••••••••••••••••••••••••••••••••••
PROCEDURE DIVISION Segmentation •••••••••••••••••••
DATA DIVISION Segmentation ••••••••••••••••••••••••
The Use of Optional Files •••••••••••••••••••••.••
S amp 1 e GROUP I ND I CATE C lfm s e •
Sample Table Layout in Memory •••••••••••••••••••••
Rules for the SET Statement •••••••••••••••••••••••

xii

A-OJ
B-0 I
c-o l

i-0) 4

2-02
.2-26
2-30
2-31
2-32
2-40
2-41
2-42

2-44
2-45
3-02
J-07
.3-09
3-10
3-13
1-1 ~)
4-0l
4-0B
4-09
4-10
4-11
4-14
7-(b
1-()f.i
'-J-0/

I 2-11
12-2~
1 ~-22

Table I- J •
Table 1-2.
Table 1-3.
Table J--4.
Table 1-5.
Table 2-1.
Table 2-2.
Table -2-3.
Table 5-1.
Tnble 6-1.
Table 9-1.

Table 9-2.
Table 9-3.

Table I 0-J •
Table I t-1 •
Table 11-2.
Table . I 1·-3.
Table 12-).
Table 12-2.
Table 12-3.

TAdLES

COBOL Reference Format •••••••••••••••••••••••••••
Punched Card Formnts •••••••••••••••••••••••••••••
Format of SYSIN Records ••••••••••••••••••••••••••
Library Member Record Formats ••••••••••••••••••••
Language Types of COBOL Programs •••••••••••••••••
The Effects of Using CARDID, NCARDID and UCARDID ••
Severity Values Set by the Compiler ••••••••••••••
Compiler Limits ••••••••••••••••••••••••••••••••••
Data Representation in Level 64 System ••••••••.••
Data Formats in FORTRAN CAlled Progrr~ms ••••••••••
Specification ~nd Applicability of
F 11 e Character is t 1 cs •••••••••••••••••••••••••••••
Permitted File Organizations •••••••••••••••••••••
Features Not Available with Certain File
<>rgBn izat ions ••••••••••••••••••••••••••••••••••••
Summary of Rules for the SELECT Clnuse ••••••••.••
Methods of Producinq SYS.OUT Print Fi1e~ •••••••.••
Methods of t>roducing SYS.OUT Punch Files •••••••••.
Variables Governinq the Selection of I/O Device~ ••
High Values and Low Values •••••••••••••••••••••••
Length of Intermediate r~e.sul t Fields •••••••••••.••
Comparison of INSPECT and EXAMIN~ ••••••••••.•••.••

xii 1

1-0:>
1-06
1-06
1-08
J-OY
2-01
2-b
2-21
5-04
f)-0~

9-0J
9-05

;}-I/

10-0d
! 1-0,1
1 1-10

J 1-15 I
1 ~-ov
12-281
I ?.-JO

SECTION I

INPUT AND MAINTENANCE OF SOURCE PROGRAMS

The COBOL compiler accepts input from a sequential file <usually an
input enclosure> or a library member. Input enclosures and library
members are both subfiles, but input enclosures are handled by the
user as sequential files. The compiler can also read input from
other sequential files e.g. tape files. An input enclosure must be
part of a batch job. A library member, however, may be created or
updated during a batch Job, or during an interactive Job run via the
Interactive Operation Facility. If a library member is created it
may be updated later using Library Maintenance facilities.

The use.of input enclosures, libraries and files for source programs
is discussed in the following paragraphs.

INPUT ENCLOSURES

The use of an input enclosure as direct input to the compiler is
shown in the following example.

$JOB •••
COBOL SOURCE= *PROGi, CULIB = RES.CULIB;
S INPUT PROGi;
000100 INDENTIFICATION DIVISION.
000200 PROGRAM-ID. PROG1 •

SENDINPUTf
SENOJOBI

•
•

In this example the input enclosure is held in SARF format <TYPE =
DATA is the default option on tne $INPUT statement>. SARF format is
described in Section x.
It is recommended that where possible the same name be used
throughout program development for the following •

1-0J

- Input-enclosure-name.

- Program-name in the PROGRAM-ID of the. IDENTIFICATION DIVISION.

- Compile-unit-name <taken by the compiler ~om the program
name>.

- Load-module-name

This minimizes any confusion that may arise from having several
names for the same program at various stages of development. In the
above example the program name and input-enclosure-name are both
PROG1. The compiler will generate a compile unit of the same name
even if the input enclosure name is different.

SOURCE LIBRARIES

Using an input enclosure in the above manner means that the source
program must be re-read from cards each time the compilation is
executed. To avoid this thA source program may be loaded into a
library. The program may then be repeatedly updated and compiled
without being re-read from cards. The use of libraries is discussed
in the following paragraphs Cfor more details refer to the Library
M~intenance User Guide).

Crentin~ a Library Member from Cards

The tollowing example shows the use of the utilities SLIBALLOC and
SLIGMAINT to create a library named SL.LIB containing source
lnnc;uac.Je members PrWGI and PROG2. An input enclosure is used
contnining n SLIRMAINT MOVE command and the ~ource program. This
innut Anclosure is read by SLIBMAINT.

SJOU •••
LIHALLOC SL, <SL.LIB, SIZE = 5) ,MEMBERS = 1 OO;
LIBMAINT SL, LIB = SL.LIB, COMFILE = *SLENC;
SINPUT SLENC;
MOVE COMfILE 1 PROGl,TYPE = COBOLX;
000100 IDENTifICATION DIVISION.
000200 PROGRAM-ID. PROGi •

•
//I::OD
MOVE COMFILE 1 PROG2, TYPE = COBOLX;
000100 IDENTIFICATION DIVISION.
0002 00 PROGRAM- ID. PROG2 •

•
//EOD
SENDINPUT;
$ENf)JOB;

1-02

The SLIBALLOC ut 111 ty wi 11 set up a library, SL. LI 8, with a s 1 ze o t
5 cylinders (this utility need not be used if the library already
exists>. The MOVE command of the 'L!BMAINT utility will then create
two library members, PROGl and PROG2, each containin9 one.of the
programs in the input enclosure.

The TYPE = COBOLX option in the MOVE command indicates that the
sequence number and card 1dent.1f1er fields will not be included in
the library member text. The use of this opt ion is d isc~rssed in a
later paragraph.

The following paragraphs explain how to create a library member
using the EDIT command of SLIBMAINT under the control of the
Interactive Operation Facility. Note that the EDIT command can be
used in a similar way to create a library member from c~rds in a
batch Job. See the Library Maintenance User Guide for details.

Creating a Library Member Interactively

The Interactive Operation Faci 11 ty (IOF> may be used to create a
source language library member during an interactive job. IOF doe~
not use input enclosures. Instead the source language is entered
under the control of the SLIBMAINT command EDIT.

The fo 11.owing example illustrates the use o t the EDIT commanrl at an
interactive terminal. Program PHOG1 is entered under the control of
the EDIT command, and then written to an existing source librnry
SL.LIB. Sequence numbers are generated in the SSF headers <RENUMBER>
and. the program is printed <PRINT>. A detailed description of this
process is given below.

Ss $JOB •••
S• LIBMAINT SL, LIB = SL.LIB;
>>> 09J28 LIBMAINT 20.04 21
c I ED IT;
RI A
I 1 IDENTIFICATION DIVISION.
I 1 PROGRAM- ID. PFWG 1 •

•
Is F
Ra W CCBX> PROGi
Ra Q
C • RENUMBER PROG 1 ;
Ca PR I NT PROG 1 ;
000010 IDENTIFICATION DIVISION.
000020 PROGRAM-ID. PROG 1 •

•
Ca QUIT
<<< 09•30
SI

•

II

The prompt Ss is output by the system. Following this prompt th8
user can enter any JCL statem~nt at the job 1=rnclostire !Pvel. t~hen
the SLIBMAINT statement is ent"'red, SLIBMAINT ouput~ a hending (>>>I
etc.>, containing the time, followed by the Cs promrt which invites

1-03

the user to enter a $LIBMAINT command. The usP-r then enters th~ EOIT
command after which SLIBMAINT output~ the Ra prompt. This invit~s
the user to enter an EDIT request. The user enters an RppAnd rl~t~
request CA> after which SLIBMAINT outnuts the It prompt. This
invites the user to enter input data unt 11 the escape ~equence is
encountered. The user then enters the source program. When the u5er
enters the F sequence $LIBMAINT again ouputs th~ Ht prompt and
waits for a request. The response "W CCl:3X) PROG1" requests th~t thP
source program just entered be written to ~ library member named
PRC~I. The Q request then terminates the EDIT sAs~ion. SLIBMAINT
outputs the Ca prompt and waits for a new command •

The CCBX> option used in the W request is equivalent to the iYPE =
COBOLX option in the MOVE command discussed earlier. Using thi~
option the line sequence numbers are not entered (but the indicnt'ff
area is entered). They must be generated after input by using thP
command RENUMBER PROGi, as shown in the example. This commanrl
generates a sequence number in the SSF header of each r~cord (sqe
Section X> but does not insert a sequence number into the COBOL
text.

The new member is then printed using the PRINT PROGl corn!"land, anrf

I $LIBMAINT execution is terminaterl by a QUIT corn~nnd. SLIRMAINT
outputs the time Ce.g. 09.130) immediately before terminating. ThA
system then outputs- an St prompt and the user may enter fllrthAr JCI.
statements at the job enclosure level.

UPDATING THE SOURCE MEMBER

A source program can be updated in a batch jnb uc:;ing thP SLHWAINT
command UPDATE. This command allows the USPr to insert., n~plACP. or
delete specific lines which he identifies by giving the li~e
sequence numbers. If more complex altArAtions are to b~ mArlP tn the
member Ce.g. search tor a character string nnd replace by anothPr
string) the EDIT command should be used.
The UPDATE command 1 s normally userl with an input enc losun~
containing program updates. Since input enclosun~s are not uc: 0 rl hv
the Interactive Operation Facility, the EDIT corrinurnd shoulrl hP 1.Jc::Pd

when updating source programs interactively Cit rnf\y also h~ usPd in
batch mode>.

A full description of the use of the UPDATE and EDIT commands is
given in the Library Man·a·gement Manual and the Libra·ry Malhteb·ance
Use·r Gulde.

COBOL REFERENCE FORMAT

The COBOL re fe re nee format des er !bes the line of COBOL t P.Xt 1 n t errn~
of character positions in a record on an input rnerfium. The ANS
standard is shown in Table 1-1.

1-04

Table 1-1. COBOL Reference Format

Characters Used tor

1-6 Sequence number area

] Indicator area

e-H Area .&

I I\

12 to the
end of Area B

the record

The length of area B depends upon the actual record length of the
storage medium used for the program and whether the optional eight
character card identi.fier area is included. <The traditional card
identifier area is not part of the ANS standard and is there.tore not
mentioned in the COBOL reference format). On a 11 storage media
except cards the sequence number area can optionally be excluded
from the record. The use of the, sequence number area and the card
identifier area can be controlled by specifying the language type.of
the COBOL program~ and by using the CARDID or NCARDID parameters of
the SCOBOL statement.

The use of the COBOL reference format .with the language types DATA,
COBOL, COBOLX, and DATASSF for punched cards, library .member records
and interactive terminal lines is discussed 1n the following
paragraphs.

NOTE1 The meaning of the term "record format" wi 11 be 11m1 ted to
that used in Section X, Standard .. Record Formats. The term
"text format" wi 11 be used in the following paragraphs to
re fer to the format of the COBOL source text C with. or without
sequence number area or card 1dentifier'8rea> in a library
member record.

Punched Card Format

A program may be .punched onto cards in one of the formats shown in
Table 1-2 <unless the CONTCHAR option is used in the $INPUT
statement - see below>.

J-05

Table 1-2. Punched Card Formats

With card ide.ntif iar area Without card ldent 1 tier area

Columns Used tor Columns Used tor

1-6 Sequence number area 1-6 Sequence number area

7 Indicator area 7 Indicator area

8-11 Area A 8-11 Area A

12-72 Area B 12-80 Area B

73-80. Card 1dent1f tar area

On punched cards the sequence number area must always be present.
However, the card identifier area may be excluded, in which case
area B extends to column 80.

The way in which a program on punched cards is processed from an
input enclosure is controlled by the TYPE parameter of the SINPUT
statement s

1
DATA ~ TYPE • · COBOL
DATASSF

The Stream Reader will copy each card in the input enclosure to a
temporary subfile of the system tile SYS.IN according to the rules
shown in Table 1-3. Subf 1les in the system file SYS.IN are known as
"SYSIN subfiles".

Table 1-3. Format of SYSIK Records

TYPE parameter Format ot record Card·columns
in SINPUT in SYSIN copied to

statement <see Sect ion X> SYSIN

DATA SARF 1-80

COBOL SSF 1-.80.

DATASSF SSF 1-80

1-.06

It the input enclosure is read directly by the compiler <via SYSIN>
the last eight. columns will be 19nored, unless the NCARDID option is
specif 1ed Csee Section Il, ... Compi.lation>. If however, the source
program is moved to a library by $LIBMAlNT, columns 73-80. should be
removed from each record Csee below>, in. which case the compiler
will treat the l~st eight columns of the resulting record as COBOL
text.

An input enclosure containing a source pr09ram to be moved to a
library will contain SLIBMAINT commands in add1.t1on t.o the source
program. In order to preserve the first 6 columns. of such conmands
the TYPE parameter of the $INPUT statement should not spec! fy COBOL.
It is recommended that the TYPE parameter be omitted from the $INPUT
statement, in which case a TYPE.of DATA will be assumed.

The text format of library member records is d1sscussed in the
following paragraphs.

The card formats shown above do not apply when the CONTCHAR option
of the SINPUT statement is used. This option requests the Stream
Reader to concatenate the data held on several cards wherever a
continuation character <-> is encountered as the last non-blank
character on a card. When the option is used, area B extends
throughout every continuation card up to column 80. of the last
continuation card in a record Cor column 72 1.f the card identi tier
area is present>. The sequence number area, indicator area and area
A ·only occur in the first card of a, record. See the Job Control
Language Reference Manual for more details •.

Library Member Text Format

COBOL text in a library member record is held in one of the_ formats
shown in Table 1-4. <Library member records are variable length,
therefore the last chara.cter position 91.ven for area B or the card
identifier area is a maximum value.)

1-.07

i

:

Tabla J-4. Library Member Record Formats

With sequence With card-id Ne 1 t her are.a
number area and area only Clangua9e

card-id area <language I type C.OBOLX l
Cla1l9uage type type COBOL) I

DATASSF>

Character Used Character Used Character Used
positions tor positions tor positions for

sequence
1-6 number - - - -

area
1 ,

Ind!- Indi- Indl-
7 ca.tor J ca tor 1 cat or

area area area

8-1.J Area A 2-5 Area A 2-5 Area A

From Area B From Area B From
position 12 position 6 position 6

to 8 to 8 to the end
positions positions bf the. record
before the be.fore the Ci.e. area B
end of the end ot the can extend

record <1.e. record ct.a. lip to cHarac-
area B can area B can lter position

extend up to extend up to 255)
chara.c.ter character

posit ion 24 7> position 247>

Last 8 Card Last 8 Card
Characters lden- .Chara.cters . Iden- - -

ti tier t.if ier

The text format of a library .member is specified when the member is
created by the TYPE parameter of the MOVE command or the W request
ot the EDIT command- <see TYPE • COBOLX and W CCBX> PROGl 1n the
above examples>. The values which can be speci.fied in the MOVE
command and W request and which are applicable to COBOL programs are
shown in Table 1-5.

J·-08

Table 1-5 .• Language Types of COBOL Programs

TYPE parameter Type parameter of
o t MOVE· command W Request

<1.e. language type>

DATASSF DAT
·-

COBOL COB
I

COBOLX CBX

The effect of using these parameters is shown in Table 1-4.

It is recommended that the same language type be used for ~11 COBOL
library members in the user~s installation. This avoids any
confusion that might arise concerning the text format of programs
which the user intends to update. The recommended language type is
COBOLX. It has the following advantages .. a

- The sequence number area is removed from the COBOL text Cit is
stored in the SSF header>. 0 This means that the user does not
have to space over a redundant sequence number area when
updating the program at an interactive terminal.

- The card-identifier area is removed. This area is redundant
a~er the program has been stored in a library. The retention
of a card-1dent1f 1er area in library member text can lead to
confus.ion when updating the program <e.g. when the SUBSTITUTE
request of $LIBMAINT EDIT is used>.

- All tra111ng spaces to the right of the COBOL •text are
suppressed in each library member record <this is not the case
with DATASSF>. This fact, together.with the suppression of the
sequence number area and card-identifier area results in a
compact record which occupies a min1m1mum of disk space.

If, as re.commended, the COBOLX language type is used for the library
member, the langua9e type should not be spec 1f1ed in the .$INPUT
statement of the input enclosure to be read by $LIBMAINT <TYPE =
DATA will be assumed). COBOLX should be spec! tied in the TYPE
parameter ot the MOVE command or in the.W or Z request of the EDIT
command.

It is recommended that a sequence number be present if the· source
program is input from cards. This number will be included in the SSF
header when the cards are moved to a library member by SLIBMAINT, if
the language type of the member is COBOL or COBOLX. The compiler,
unless asked not to, will check that these numbers are in non
descenQing sequence and will report any descending sequenoes.

The programmer can also refer to sequence numbers in the SSF headers
when upda_ting a libra.ry member using the EDIT or UPDATE commands. If
required, the source program can be given a set of sequence numbers

l-09

on input by means of the NUMBER option of the MOVE command. However,
if this is done the compiler will not be able to check the original
sequence.of the card deck <this should be done via the CHECK
parameter of the MOVE command>. An existing library member can be
given a new set of sequence numbers at any time by means of the
RENUMBER command.

Interactive Terminal Line Format

The format of a ·line of COBOL text entered und.er the EDIT command at
an interactive terminal is the same as that shown in Table 1-4
except that the size.of area Bis. determined by the number of
characters entered by the user on one line .(including continuation
lines if the continuation character <-> is used>.

The COBOL lines <updates or orig_!nal programs> should be entered in
exactly the same text format as they are to be held in the library
member record. That is, if a language type of COBOLX is being used,
the f 1rst character in the line is the indicator area, and area B
extends to the end of the line ; the program or updated text should
be written to the library member with a W or Z request which
specif !es language type CBX.

SOURCE FILES

In addition to the library members mentioned above, the user can
store source programs on sequential files. These files can be
generated using the SCREATE or SLIBMAINT utilities and can be read
directly into the compiler by using the INFILE parameter of the
$COBOL statement.

on the other hand the program may already exist on a sequential
file. For example, the program may have been written to a
sequential file by a program generator, or the program may have been
dumped from a library to magnetic tape at a different installation
for compilation at the user~s installation. These files can normally
be read directly into the compiler usinQ the INFILE parameter.

1-10

SECTION II

COMPILATION

This section describes the use. ot the COBOL compiler. The necessary
JCL and the output of the compiler are described in detail.

JOB CONTROL LANGUAGE

The extended JCL statement $COBOL is used to execute the COBOL
compiler. The compiler will normally generate.a compile unit and
11-st1n9. The comp1 le unit can be stored in a temporary tile or in a
permanent library. The linking and execution of the program must be
requested by the ~ser in subsequent job ste·ps. The listing can also
be stored in a t.emporary .or permanent library or tile.

Figure 2-1 shows the format of the $COBOL statement. Note that the
parameters which are underlined in Figure 2-1 are the de tau.It values
assumed by the comp! ler when no al ternat,1 ve parameter 1s chosen.
For example, if the NCKSEO parameter ls not specified in the SQ>BOL
statement the CKSEQ parameter will be assumed by the compiler.
Default parameters are therefore redundant in the $COBOL statement.
However, they may be used in c•njunction with the COMFILE parameter
when serial compilation of a set of source programs is being carried
out. In such a case they may be used to override the parameters in
the $COBOL statement. See the Alter Fact 11 ty., below.

2~.01,

COBOL

SOURCE • •input-enclosure-name

[{*input-enclosure-name }]
,COMFILE • C sequential-ti le-description>

SOURCE • member-name

[IINLIB • Cl1brary-f1le-descript1on>IJ
, INLIB1

INLIB2
INLIB3

[{
•input-enclosure-name }]

,COMFILE =- Csequential-flle-description>

SOURCE .• <member-name C',mernber-name l ••• >
. [)INLIB • C 11brary-f1le-descr1pti.on>I] , INLIBI

. INLIB2
INLIB3

SOURCE • (-'asterisk-name' C ,··'aster isle-name"' J ••• >

IINLIB = Clibrary-file-description>I·
, INLIBl

INLIB2
INLIB3

{
*input-enclosure-name }

INFILE • <sequential-tile-description>

[
· {·*input-enclosure-name }]

,COMFI LE = C sequential-ti le-descr 1pt ion>

{
-*input-enclosure-name }

COMF ILE = <sequent ia 1-f 1 le-description>
C,INLIB = Clibrary-file-descrlptionll

~ ~~~~g~~o~] t locARDID~
f,{CODAPND }] l NCOOAPND

f. {DCLXREF }].
L NDCLXREF

f.{CASEQ }] l NCASEC

[,CULIB =

[
,{DEBUG }]

NOE BUG

f,{CKSEQ }] L NCKSEQ

{< library-t1le-descr1ption>}]
TEMP

[~ DEBUGMD ~]
, .. _NDEBUGMD

DDEBUGMD .

Figure 2-1. $COBOL Statement Format

2-02

f. {DIAGIN }].
[NDIAGIN

[.osEGMAX - nmnCKJ J [,PSEGMAX. nnnnCKl]

[,{EXPLIST }]
. NEXPLIST [~ l:m ~] , NLIST

NCLIST ,LEVEL•

l J [.{~}]

[.{ ~~~;:~v}] [{PRTFILE • Csequential-tile-descrip,~ion>}]
, PRTLIB • <11brary-file-descr1pt1on>

(,STEPOPT • <step-parameters>)
[{ SUBOPT }]
, NOPT

~ "<>RKI • Cl ibrar.y-fi le-desc.ript ion>]
WORJC2 • <library-ti le-desc.ription>
WORKJ • <library-file-description>

Figure ~-1. SCOBOL Statement Format <cont.>

'

As the $COBOL statement is an extended JCL statement it must not
appear. inside a step enclosure. The following example illustrates
the use.of this statement•

$JOB •••
LIBALLOC CU, CCU.LIB, SIZE• 5>, MEMBERS= 1001
COBOL SOURCE• *PROGi, CULIB • CU.LIBI
$INPUT PROG1 I
000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. PROO 1 •

•
•

SENDINPUTI
$ENDJ.OBJ

The ,$LIBALLOC CU statement is used to create a library, CU.LIB, with
a size ot 5 cylinders. Normally, the library already exists and this
utility need not be used. The compiler will read the source program
from the input enclosure PROG,J <via SYSIN> and wi 11 store the
compile unit in the compile unit library CU.LIB.

The following paragraphs describe the parameters. which maY. be used
.in the $COBOL statement.

2-03

SOURCE, INFILE, COMFILE, INLIB and INLIBn Parameters

These param.e.ters are used to speci ty the name and location of the
program or programs to be compiled. C<>MFILE is also used tor
specifying mod1f icat1ons to the source program. See The Alter
Facility, below <note that this has no connection with the COBOL
ALTER statement>. A series .ot programs may be compiled during a
single execution of the compiler. See Serial Compilation, below.

At least one.of the parameters SOURCE, INFILE and COMFILE must be
specified in a $COBOL statement. All of the rematning parameter5 are
optional. SOURCE may appear in the same $COBOL statement as COMFILE,
and INFILE may appear in the same statement as COMFILE. However,
SOURCE and INFILE may not appear in the same statement.

The simplest use of these parameters occurs when .the source program
is held in an input enclosure. In this instance the following
statement will suffices

COBOL SOURCE = *input-enclosure-namel

where input-enclosure-name is the name of an input enclosure
contained in the same job.

If the source program is held in a library, the name ot the member
and the name of the library are both spec1t1ed in the $COBOL
statement as follows•

COBOL SOURCE = member-name, INLIB = Clibrary-tile-descrlption>1

However, one or more libraries can also be specified in a separate
$LIB statement as follows•

LIB SL,INLIBI = .Cl1brary-f1le-descript1on)
C,INLIB2 = <11brary-f1le-descr1ption>J
C,INLIB3 = <11brary-file-description>1f

COBOL SOURCE = member-name;

The $LIB statement defines a "search path" for the compiler. The
compiler will search for the source program specified by member-name
first in the INLIB1 library, then in the INLIB2 library and finally
in the I NLI 83 library • The first member found will be compiled' any
others of the same name will be ignored. Note that the $LIB
statements shown in this section do not contain all·possible
parameters. See the Library Maintenance Reference· Manual for further
details.

If source programs of the same name occur in more than one. of the
libraries included in the SLIB statement, the library to be used can

2.-04

be specified by the INLIBn parameter of the SCOBOL statement. In
this case the normal search path is overriden by the INLIBn
parameter. The statement format is as follows•

LIB SL,INLIBJ = Cliorary-file-description>
C,INLIB2 = Clibrary-file-description>l
C,INLIB3 = <library-file-description>];

COBOL SOURCE = member-name, ~
'INLIBli'
INLIB2. ;
INLIB3

The three methods of specifying a member-name and library describ~d
above may also be used when a series of source orograms is to be
compiled in a single execution of the compiler. In this case the
SOURCE parameter must specify a series of member-names. -For example•

COBOL SOURCE= Cmember-nameC,member-namel ••• >,
INLIB = <library-file-description>;

The chosen search path <given by INLIB or SLIB> may be modified for
individual source programs by using the COMFILE parameter. The
COMFILE parameter spec if ies an input enclosure, library member or
sequential file containing commands which control the compilation of
a series of source programs. The use of the_COMFILE parameter is
described in detail in The Alter Facility, below. The following JCL
statements 1 llustrate the use of COMFILEa

COBOL SOURCE = member-name,

*input-~nclosure-name l ~
INLIB = (library-file-description>,

COMFILE = <sequential-file-description>~•

$INPUT input-enclosure-name;
•
•
COMFILE commands
•
•
SEND INPUT;

Source programs may also be read from a sequential tile on disk or
magnetic tape <this may, for example, be a tape file written by
SLIBMAINT using the OUTFILE option> The INFILE parameter is used
for this purpose as follows•

COBOL INF ILE = C sequential-fl le-description> I

2-05

•

The file specified in the INFILE parameter can contain one or
several source programs. The COMFILE parameter can be used together
with the INF ILE parameter to soeci fy which source programs in the
file are to be compiled.

As an alternative to specifying a list of member names in the SOURCE ~
parameter a ranye of member names can be specified using the

I "asterisk convention" <same as the star convention used by
SLIBMAINT>. The following statement format is used•

LIB SL, INLIBJ = Clibrary-file-descriotion)
C,INLIB2 = Clibrary-file-rlescription>l
C,INLIB3 = <library-file-descr1pt1on>l1

COBOL SOURCE = (asterisk-name
[,asterisk-name] •••),

INLIB = <library-file
description>

INLIBI f
INLIB2

\I NL I B 3

Note that the library to be used must be speci tied in the $COBOL
statement i.e. no library search is carried out. The SLIB statement
can be omitted if a library-file-description is included in the
INLIB parameter. Using the asterisk convention all the library
member names in the specified library having certain common
characteristics can be Axcluded from·compilation. Conver5ely, all
names having certain common characteristics can be selected for

I compilation. The asterisk convention works in exactly the same way
as the $LIBMAINT star convention. For a description of the star
convention, see the Library Management Manual. The COMFILE
parameter cannot be used if the asterisk convention is used.

Both the SOURCE and INFILE parameters can be excluded from the
SCOBOL statement. If this is done the COMFILE parameter must be used
in conjunction with an input enclosure or sequential file containing
commands which speci ty the members to be comp! led. COMFILE is
discussed in The Alter Facility, below.

CARDID, NCARDID and DCARDID Parameters

These parameters control the treatment of the last eight character
positions of COBOL text in each record of the source program. CARDID
causes the compiler to ignore the last eight character positions
Ci.e. they are treated as a card identifier area>. NCARDID CAuses
the compiler to treat the last eight character positions as COBOL
text Ci.e. no card identifier area exists, area B extends to the end
of the record>.

If DCARDID is specified or if none of the card identifier parameters
is specified the compiler assumes the following default values•

2-06

- CARDID where the language type is GOBOL or DATASSF.

- NCARDID where the language type is COBOLX.

The effects of using CARDID, NCARDID or:DCARDID witn the language
types DATASSF, COBOL and COBOLX is shown in Table 2-1.

Tabie 2-i. The Effects of Using CARDID, NCARDID and DCARDID

Language type Effect of using Effect of using Effect of
of member CARD ID NCARDID specifying

DCARDID
or no

parameter
~

DATASSF The compiler The compiler Same as
ignores the treats the CARD ID
rightmost eight rightmost eight
character pos1 character posi-
tions tions as COBOL

text.

COBOL The compiler: The compiler Same as
ignores the treats the CARD ID
rightmost eight riQhtmost eight
character posi- character posi-
tions. t1ons as COBOL

text.

COBOLX The compiler The compiler Same as
ignores the treats the NCARDID
rightmost eight rightmost .. eight
character pos 1- character pos1-
tions. tions as COBOL
WARNING• This text.
will result in The card-
incorrect comp!- identifier area
lation because has already
the card-iden- been removed by
~:f: f1~r: area has SLlflMAINT.
already been
remov~d by
SLl~MAINT

..J.

The CARD ID, NCARDID and DCARDID parameters should norma Uy be
omitted from the $COBOL statement. CARDID and NCARDID should be used
only to compensate for any errors in the loading or the updating of
a source library member. These errors will become apparent if the
comp! !er fails to process the end of a source line. Such errors can
occur when storing a library member (e.g. using the EDIT Z request>
if the. original language type is not used4' Such errors should be
corrected by SLIBMAINT.

2-07

CASEQ and NCASEQ Parameters

CASEQ requests that all small letters which are not included in a
non-numeric literal are processed as if they were capital letters
C de tau 1 t parameter>.

NCASEQ requests that small letters are different from capital
letters, except for the words whose spelling is the same as that of
a reserved word Cin other words, reserved words may be written in
small or capital letters, or both>. Thus the user-word "abC" is
different from the user-word "aBC", whereas "move·" is the !1ame
reserved word as "MOVE".

The letters a,b,c,d,e,p,r,s,v,x and z in PICTURE character strings
are always taken to be their corresponding capital letters,
irrespective of whether the NCASEQ parameter is used. The remaining
lower case letters are never processed .in PICTURE character strings
as upper case letters, even when the CASEQ-parameter is used.

CKSEO and NCKSEQ Parameters

The NCKSEQ parameter requests the compiler not to carry out any
sequence check on the input source lines. If the CKSEQ parameter is
specified the compiler will check that the line numbers are in non
descending sequence <default parameter>. The check is done on the
line number in the SSF header. if the program is in SSF format <TYPE
= conoL, COBOLX or DATASSF > or on the 11 ne number in the source 11 ne
if the program is ~n SARF format.

CODAPND and NCODAPND Parameters

CODAPND requests that, if there is only one generated code segment,
an attempt is made to put it in the same segment as the linkage
segment. NCODAPND means that the linkage segment will contain no
generated code <default parameter>. Note that small, single segment
pro9rams make the most efficient Transaction Processing Routines
<TDS> as this reduced the amount of disk activity required for
rirovram loading.

CULIB Parameter

The CU LIB parameter spec! fies the library in which the resulting
compile unit is to be stored. A library-file-description or the word
TEMP may be used in the CULIB parameter.

If a library is specified, it must have been allocated previously
by, for example, the SLIBALLOC utility, unless the
library-file-description specified in the CULIB parameter contains
the SIZE parameter Csee the Library Maintenande Reference Manual>.
If TEMP is specified, the compile unit will be written as a
temporary member of a system library. The member-name given to the

2-08

compile-unit will be the same as the program-name in the PROGRAM-ID
paragraph ot the source program.

If the CULIB parameter is omitted this is equivalent to CULIB =
TEMP.

When linking temporary compile units produced with no CULIB
parameter, or with CULIB = TEMP, the compile unit library TEMP
should normally be present in the $LIB search path that precedes the
SLINKER statement <e.g. SLIB'CU, INLIB1 =TEMP, INLIB2 = ••• >.
However, if TEMP is the only 1nput compile unit library, no SLIB CU
is required to define the search path.

DCLXREF and NDCLXREF Parameters

The DCLXREF parameter produces a cross reference listing in
declaration order. The format of this listing is described in Cross
Reference Listing <Declaration Order>, below.

NDCLXREF means that no such cross reference listing is required
(de fau 1 t parameter>.

DEBUG and NDEBUG Parameters

The DEBUG parameter requests the compiler to build a table of all
the source names in the program with an indication of name type
<data-name, paragraph-name etc> and the generated segment addresses.
This table is stored in the compile unit. The program may, after
linking, be executed under the control of the Program Checkout
Facility. See Section IV.

NDEBUG is the de fault parameter assumed if DEBUG is not specified.
If DEBUG is not specif led the Program Checkout Facility may only be
used with effective addresses.

DEBUGMD, NDEBUGMD and DDEBUGMD Parameters

DEBUGMD means that the comp! lat ion 1 s done as 1 f the WITH DEBUOOING
MODE clause were present in the ENVIRONMENT DIVISION, even though it
is absent.

NDEBUGMD means that the compilation is done as .if the WITH DEBUGGING
MODE clause were absent in the ENVIRONMENT DIVISION even though it
is present. ·

DDEBUGMD means that the presence or absence of the WITH DEBUG3ING
MODE clause in the ENVIRONMENT DIVISION is meaningful. That is, it
operates as specified in the COBOL Reference Manual (default
parameter>.

2·-09

DIAGIN and NDIAGIN Parameters

DIAGIN specif !es that all errors are embedded in the alter, source
.and/or expanded listings <default parameter>.

NDIAGIN specifies that alter errors are embedded in the alter
listing, but that other Cpurely COBOL) errors are listed after the
source and/or expanded listing.

DSEGMAX and PSEGMAX Parameters

These parameters permit the user to specify Cin units of 1024 bytes>
the preferred maximum size.of data and procedure segments in the
object program. If these parameters are not specified, the maximum
segment size is that specified Cin bytes) in the MAXIMUM DATA
SEGMENT SIZE and/or MAXIMUM PROCEDURE SEGMENT SIZE phrases in the
SOURCE-COMPHTER paragraph of the ENVIRONMENT DIVISION. These phrases
are not part of the ANS standard •. If neither is specified the
compiler assumes a default.of 4K bytes <K = 1024).

The use of DSEGMAX and PSEGMAX is discussed in detail in Section
VII, Segmentation.

EXPLIST and NEXPLIST Parameters

EXPLIST specifies that an expanded source listing is to be produced.
The source listing, .if produced, includes COPY and REPLACE
statements. In the expanded source listing COPY and REPLACE
statements are not printed and replaced and/or deleted words are
actually replaced or deleted according to the REPLACE statement or
the REPLACING clause. See Program Listing, below.

NEXPLIST specifies that an expanded listing is not to be produced
<default parameter>.

LEVEL Parameter

The LEVEL parameter specifies that the compilation level is full
Level 64, Level 62, GCOS level, full ANSI 74 standard, high NBS
level, high intermediate NBS level, low intermediate NBS level, or
low NBS level. All features beyond the specified level are flagged
as fatal errors (****>. No object code is then produced. This·
parameter is not accepted if the level specified 1s above the
maximum leve 1 spec 1 fled tor the installation. Unless modi. fled by
the Field Engineering, the default level is ANSI 74, and the maximum
level for the installation is L64.

The COBOL facilities which are available in each level of the
compiler are listed in an appendix. o.f the- COBOL Language Fe ference
Manual•

2-10

Computer-names other than LEVEL-64, but starting with LEVEL-6 cause
a warning message <**>. When SOURCE-COMPUTER is LEVEL-62 the de fault
device for ACCEPT and DISPLAY is CONSOLE, the default meaning ot
COMPUTATIONAL is DISPLAY, so called hexadecimal embedded literals
are accepted according to Level 62 COBOL syntax, and compilation
level is restricted to ocos.

LIST, NLIST and NCLIST Parameters

NLIST specif !es that the sourc~ program listing is not to be
produced. However, unless NDIAGIN has been specif led, the lines for
which an error message is to be produced will be printed. NCLIST
means the same as NLIST but only applies to lines included in the
source program as the result of a COBOL COPY statement. LIST means
that the complete program wi 11 be listed , . including copied lines
C de tau 1 t parameter>.

MAP and NMAP Parameters

The MAP parameter produces a data map and procedure definition
listing <unless one of the cross-reference listings has been
requested>, a procedure map l i s_t in9 and. a per form/alter bucket
listing. The format of these listings is specified in Map Listings
and Cross Reference Listings, below.

NMAP means that no such listings are required (default option>. Note
that the cross-reference listing p.roduced by the DCLXREF parameter
contains all of the information in the data map listing. The XREF
parameter produces the same information in alphabetic order.

OBJ and NOBJ Parameters

The compiler normally generates a compile unit in the library
specif led in the CULIB parameter <or, by default, in a temporary
library>. ·If NOBJ is used, no compile unit is output. The summary
page printed at the end of the compilation listing indicates whether
a compile unit has been produced.

OBJ is the de fault parameter assumed if NOBJ is not spec! tied.

OBSERV and NOBSERV Parameters

The NOBSERV parameter suppresses all .observation diagnostic messages
in the program listing. However, the number of observation messages
is printed in the compilation summary page and in the Job Occurrence
Report. If errors of this type are detected by the compiler and
neither warning, nor serious, ·nor fatal errors are found, the JCL
status value will be set to 100 CSEVJ> at the end of the
compilation. See JCL Status, below.

OBSERV 1s the default assumed if NOBSERV is not specified.

2-11

PRTFILE Parameter

This parameter requests that the compilation listing be appended to
a permanent SYSOUT f 1le for printing or processing at a later stage
by, for example, SSYSOUT, $WRITER or any text handling program or
utility. Otherwise, the listing is printed at the end of the Job and
no permanent copy is kept. For example, the user could specify
output to tape•

$JOB •••
COBOL
SOURCE = *COBSOURCE,
CULIB = CU.LIB,
MAP,
XREF,
PRTFILE = CCOBFILE, DEVCLASS = MT/T9/DJ600, MEDIA= ATAPE>;
•
•

In this case, only the Job Occurrence Report w 111 be printed at the
end of job execution. <Note that the Job Occurrence Report is
unaffected by the PRTFILE parameter.>

If the PRTFILE parameter is used, the compiler adds the program
listing to the SYSOUT file in append mode. The PRTLIB parameter, on
the other hand, replaces any previous listing of the same name Csee
be low>.

When serial compilation occurs, all listings are stored in a single
tile.

If the SYSOUT file is full, the compilation term:lnates with the
following message in the Job occurrence Report•

CBL01 .ERROR •"'HILE COMPILING program-id. LISTING FILE EXHAUSTED

The size of the file should be increased and the compilation should
be started again.

PRTLIB Parameter

This parameter is similar to PRTFILE except that the listing will be
stored in a member of the library specified in the PRTLIB parameter.
If several programs are compiled in series, the listing for each
program will be stored in a separate library member. Each library
member will be given the program-name specified in the PRC>GRAM-ID
paragraph of the source program, suffixed by 11 _L 11

• It replaces any
member of the same name. If the library is not large enough to
contain the listing, error message CBLOt is printed in the Job
Occurrence Report. See PRTFILE Parameter, above.

2-12

STEPOPT Parameter

The STEPOPT parameter can be used to specify one or more of.the
parameters included in the $STEP statement (see the· Job C'ohtr·o1
L·anguage ·cJcL·) Re·ference Manu·a1). However, the following may not
be included in the STEPOPT parameter for $COBOL:

- load-module-name;

- TEMP, SYS or library-f1le-descr1pt1on;

- the ALL option of the DUMP parameter;

- the OPTIONS parameter.

SUBOPT and NOPT Parameters

The SUBOPT parameter requests the compiler to optimize sub~cripted
and indexed references to reduce the time taken to execute such
re~rences. Note that under certain circumstances, optimization will
result in the removal of array bound protection. The NOPT pBrrtmP.tAr
requests no optimization {default pnrnmeter>. See Section VIII,
Efficiency, for more information on the use of SUBOPT.

WARN and NWARN Parameters

The NWARN parameter suppresses all warning and observation
diagnostic messages in the program listing. However, if errors of
this' type are detected by the compiler, the number of each typ~ of
error is printed in the compilation summary page and in the Joh
Occurrence Report, and the severity value is set to SEV1 or SEV2,
unless serious or fatal errors are found <see JCL Status below).

WAHN is the default parameter assumed if NWARN is not specified.

WORKI, WORK2 and WORK3 Parameters

The compiler does not normally use tiles for its work areas ;
instead it works directly in backing store. When the backing ~torP.
cannot accomodate the required work areas, a fatal error mes.si:ige is
printed•

**** 9-56 BACKING STORE IS FULL. USE ~10RK FILES FOR LARGE PROGRAMS

Using the WORKn parameters reduces the risks of backing store
saturation that may arise from a high level of multi-programming or
from the compilation of very large programs. In such c~5P.S it may bP.

2-13

advisable either to reduce the total machine load, or to use
temporary work files, reserved for the compilation by the ~WRK1,
WORK2, and WORK3 parameters.

The first two work files each require a capaci~y of upto 150 hytAs
per source line ; the third requires up to 300 bytes per source
line.

Example of the use of temporary work files•

COBOL
WORK1 = CMYFILE1, FILESTAT = TEMPRY, SIZE= 20>,
WORK2 = CMYFILE2, FILESTAT = TEMPRY, SIZE= 20>,
WORK3 = CMYFILE3, FILESTAT = TEMPRY, SIZE = 40),
SOURCE = MYPROGRAM'

In this example, the compiler wi 11 use MYFILEI, MYFILE2 and MYFILE.1
which will be allocated temporarily to the Job with a size of 20, 20
and 40 cylinders on the RESIDENT disk pack. If this size is not
large enough for the compilation, for any of the files, it will he
increased automaticaly by units of 1 cylinder.

The SIZE parameter is not mandatory in this PXample. In fact, for
temporary files, a default value of 4 cylinders is t~ken, anrl filP.~
whictl happen to be full are incremented by uni t.c:; of I cylindP.r.

The advantage. ot spec! fying a SIZE is that the compi lntion wi 11 not
be started if space is not available on the RESIDENT disk pack to
contain the 3 work files. If SIZE is not specified, the comril~tion
will start with 4 cylinders for each file, and it could hapr0n th~t
en.ough space is not available for the comp1 l~t ion. The user cnn A l~;o
request that the work files be put on another disk pack by
specifying DEVCLASS and MEDIA in the WORKn pcirameter. In th8t case,
if SIZE is not specified, the compilation will start with one
cylinder for each file. If the work files specified are too smell A

fatal error message is printed1

**** 9-55 WORKn IS FULL

Permanent work fl les can be used for WORK 1 , \A40RK2 and WORKJ if
desired. They should be preallocated in the following way.

PREALLOC external-file-name,

BFAS = CLINKcm = <TYPE = NONE,
BLKS IZE = nnnnn,
RECS IZE = nnnnn,
RECFORM = FB,
NODEL >},

FILESTAT
DEV CLASS
GLOBAL
SIZE

= CAT,
= device-class,
= <MEDIA= media-list>,
= nnnnni

2-14

The values .of BLKSIZE and RECSIZE must both be 4240 for WORKI and
WORK2. They must both be 2046 for WORK3. The DEVCLASS, MEDIA and
SIZE parameters are explained in the Data Management Utilities
Manual under the PREALLOC utility. The above example preallocates a
catalogued file, but uncatalogued files may also be used.

The use of permanent work files has two advanta9es1 the cost of
dynamic formatting is avoided, and only one compilation using a
given set of work files can be active at a given moment Cusefr1l for
queuing comRilat1ons submitted from an IOF terminal>.

Compilation time will increase by about 3% if the WORKn parameters
are used.

XREF and NXREF Parameters

The XREF parameter produces a cross reference listing in olph~b~tic
order. The format of this listing is described in Cross Re.ferP.ncA
Listing <Alphabetic Order>, below. NXREF means that no such cro5s
reference listing is required (default parameter>.

JCL Status

At the end of the compilation, subsequent Job processing may be
determined by testing with the $JUMP statement a severity vallle ~et
by the compiler or by the system. Severity values are printerl in the
Job Occurrence Report. The possible values are shown in Tahle 2-2.

Table 2-2. Severity Values Set by the Compiler.

Severity Status Flag Meaning
Value

SEVO 0 no error

SEVJ I 00 * observation

SEV2 J 000 ** warn! ng

SEV3 I 0000 *** serious error

SEV4 20000 **** fatal error

SEV5 50000 compilation killed by operator CTJ>

SEV6 60000 abort requested by system <exception>

2-15

The following exainple shows how the ~e.v~rity valu~ mav he te.'ltPd to
decide whether to 11 nk 8 rrogrem which has 'Just been compi lP.'11

$JOB •••
COBOL
SOURCE = *COMPST
JUMP AHNOR, SEV,UR,2;
LINKER
COMPST,
COMF ILE = ·*LKCOR;
ABNOR t •••
•
•

See User JCL Status. Sectinn XII, for more detail5.

Libraries ~e ferr~d to in the COPY Statement

Text to be includP.d in a COHOL program vic:t thP COPY striternP.nt I"
stored as a normal libr.::iry member. Th~ COPY c:tatP.mPnt m11st sp"ctfv
the name of the librarv mP.rnbPr in which the text is ston~rl. As ;~
result of a COPY statement the entirP contPnts of thP. ~pPci ftP.d
librrffy member will be includPd in the oroqpm.

~h~n comoiling a program which inclu,fas '3 COPY ~tr-1t,:•ment. t.hP
library from which the text is to be cnpiPd rnu5t b~ soec if if~:.f Pi t.hPr
in the SCOBOL stAterrt~nt or in an e~r l lPr SLI n stntP.m~nt. For
examplA•

LIB SL, INLIBI = MY_LI~RARY;
COBOL SOURCE = MY_MEMBER:

If the SLIB statP.m~nt 1~ not used, thP.n thP, $COBOL stt'.ltP.!'YlPnt r111c:;t
include an INLIH = < llbrr1ry-file-descripti0n> in ~ddltinn t(') (-1

SOURCE or COMFILE p~rametPr. For PXFHnnlP, 1

COBOL SOURCE = MY _MEMRt: R. I NL I B = MY _LI RR ARY;

The COPY statement mrty contain an optional OF=/IN INL.IB.

It the SI..IB statPment is used, and th~ INLIH =
Clibrary-tile-descriotion> parar11eter is not incl11df:ld in tht;\ ~C'noL
statement, the COPY statement 1w~y optionnllY cont~in OF/IN
INLIAl/INLIB2/INLIBJ. In tt,is case the tPxt to hi::a cnni~")d 1~ in thP
specified library in the SLIB ~tatement.

2-16

For example•

COBOL•
COPY MY-TEXT OF INLIB2.

JCL•
LIB SL, INLIBJ = MY_LIBRARY_A,

INLIB2 = MY_LIBRARY_B,
INLIB3 = MY_LIBHARY_C;

In this exampl~ MY-TEXT is copied from library MY_LIBRARY_B. The
other libraries speci tied in the $LIB state~ment could also contain A
member called MY-TEXT, but these libraries will be ignored.

It the OF/IN INLIBn option is omitted the compiler will search the
libraries specified in the SLIB statement. INLIB1 will be searched
first, then INLIB2 and then INLIB3.

It the sLIB st~tement ls used, and the I~~IB =
<library-file-description> parameter is included in the SCOBOL
statement, the COPY statement m'3y optionally contnin OF/IN INLIR or
OF/IN INLIBJ/INLIB2/INLIB3. In this case the text wi 11 be copi~rl
from the specified library of the $COBOL or SLIB statemf»nt. If the
OF/IN option is omitted, the compiler wi 11 search first in the
library specified as INLIB in the SCOBOL statement and wi 11 thP.n
search in the library .specified as INLIBJ in the SLIB statern~nt
followed by INLIB2 and INLIB3. For example•

COBOL1
COPY
COPY
COPY

JCLt

MY-TEXT.
OTHEH-TEXT OF INLIB.
NEXT-TEXT OF INLIB2.

LIB SL, INLIBJ = MY_LIBRARY_A,
INLIB2 = MY_LIBRARY_B,
INLIB3 = MY_LIBRARY_C;

COBOL SOURCE = MY_MEMBER, INLIB = MY_LIBRARY;

In this example MY-TEXT is searched for in MY_LIBRARY, ,~Y_LIRRAHY_A,
MY_LIBRARY_B and MY_LIBRARY_C in that order. OTHER-TEXT is SP-orched
for in MY_LIBRARY and NEXT-TEXT is searched for in MY_LIBRARY_B.

Alternatively, an actual library name can be specified in thP OF/IN
clause. This library name must also be specified in the library
description of the INLIB parameter of SCOBOL or in the INLIBn
parameters of SLIB. The libraries whose names would be INLIR,
INLIBI, INLIB2 or INLIBJ may not be referenced by their actw=tl name.

Note that the INLIB or INLIBn parameter in the $COBOL statPment anrl
the R INLIB/INLIBn request in conjunction with the ccmFILE para~eter
of the $COBOL statement do not affect the search path used for
copied text. See The Alter Facility, below, for details of the R
request.

2-1 6. I

THE ALTER FACILITY

The alter facility allows the user to compile modified source
programs without actua Uy modi tying the source library, file or ~
input enclosure. The alter facility should be distinguished from the
COBOL ALTER statement. The alter facility is in no way connectPri
with the ALTER statement, and the two should not be confused.

The modifications to be applied to a program are specified in an
input enclosure, library member or ~equential file known as R
"command file". The command file comprises the following•

- a "COMPILE" command

- editor requests

For example, one could submit a compilation of MY_PROGRAM where thP.
lines 12 and 16 would be deleted, without changing the sourcP.
library. The submission deck could be as follows•

2-16.2

LIB SL, INLIB1 • <MY_LIBRARY, ••• >1
COBOL COMFILE • ·•MY_ALTERf
$INPUT MY_ALTERI
COMPILE I
R MY_PROGRAM
120
160
Q

$ENDINPUTI

The command file is normally specified in theCOMFILE parameter of
the $COBOL statement. Howe var, . 1 t there ls no COMF ILE parameter, and
the first line of source star.ts wt th the word COMPILE <possibly
preceded by at most 6 blanks>, the file is considered to be the
command tile. Note that a command file must be in SARF format, or in
SSF format with a language type DATASSF.

The COMP ILE command consists o t the word -11COMP ILE", optional SCOBOL
parameters and a mandatory semi-colon <11 111 >. The command may occupy
more than one line but a parameter may not be split between two·
lines. The allowed parameters are as follows•

CARD ID
CASEQ
CK SEQ
CODAPND
DCLXREF
DEBUG
DEBUGMD
DIAG.IN
EXPLIST
LIST
MAP
OBJ
OBS ERV
SU BO PT
WARN
XREF

NCARDID
NCASEQ
NCKSEQ
NCODAPND
NDCLXREF
NDEBUG
NDEBUGMD
ND I AGIN
NEXPLIST
NLIST
NMAP
NOBJ
NOB SE RV
NOPT
NWARN
NXREF

DCARDID

DDEBUGMD

NCLIST

These parameters override default as well as explicit JCL
parameters.

The COMPILE command may also contain the SKIP parameter,··in which
case no other parameter 1s permitted. This parameter .means that the
next program in the source file or member is not to be compiled. See
Serial Compilation, below.

Permissible editor requests are a subset of the standard SLIBMAINT
EDIT requests, namely•

A
c
D
I

append
change
delete
insert

2-17

N
a
R
s
II

no request
quit
read member
substitute
comment

Apart from Q and R, the above editor requests work in exactly the
same way as in the EDIT command of SLIBMAINT. The differences for Q
and R are explained below.

The Q request is not mandatory for the COBOL compiler. It can be
ommitted in all cases, but the programmer may wish to include the Q
request so that the command file can later be input to SLIBMAI~f
without modification.

The R request identifies the program to be. compiled. Its format is
as to llows t

R [~~~ti ~1 1] member-name]
INLIB3
INLIB .

This request is different from the R request of SLIBMAINT EDIT. A
series of R requests input to the EDIT command of SLIBMAINT will
cause the specified set of members to be concatenated. This does not
happen when a series of R requests is input to the compiler. Each R
request will result in a separate compilation.

INLIBI, 2 or 3 specifies that the member whose name is member-name,
is to be searched for in the library specified in the SLIB statement
under the INL1B1, 2 or 3 parameters respectively. INLIB means that
the member is to be searched for in the library specified in the
INLIB = <library-file-description> parameter of the $COBOL
statement. In the absence of these keywords, member-name is searched
for first in the libraries specified in the SLIB statement,
according to the implied searching rules, then in the INLIB library.
It member-name is absent, the program to be compiled is the next in
the current member or file, or the first in the specified member or
file when it is the first 11 R11 request. See Serial Compilation,
below.

The address forms which may be used in editor requests area

regular -,
$

•
SSF line

expression
< ti rs t 11 ne >
<last line>
<current line>

number

possibly modified by an expression of the form•

+ relative-number-of-lines

2-18

Address ranges with the addresses separated by commas or semi-colons
are allowed. Compound addresses are allowed except in address
ranges.

Addresses must be given in such an order that they refer to
successive lines of the source. They cannot refer to lines inserted
as the result of an A, C or I request~

When successive programs of a member Csee Serial Compilation, below>
are referred to, the ".," address refers to the first line o t the
first program.

Upper and lower case letters are equivalent in the COMPILE command
and as request identifiers.

SERIAL COMPILATION

The compiler can compile a series of pro9rams during a single
execution. Two levels of Mseriality" are available.

The lower level is as follows. There may be several programs in a
single member, or in a file. Th~y must all be terminated by a line
containing the character string 11 END COBOL" only, somewhere in area
A or B Cthe last "END COBOL" line in a member or file is not
mandatory>. Each program is compiled in its turn.

The upper level may be at the level of the SOURCE parameter of the
SCOBOL statement. This parameter may specify more than one member.
In that case, all programs contained in the first spec.if led member
are compiled, then, all programs contained in the second specified
member, and so on.

The upper level may also be specif led in the COMPILE command and any
assoc lated R request in the command file. Thus•

COBOL SOURCE= <MEMBER-1, MEMBER-2 ••• > •••

could also be written•

COBOL COMFILE = *ALTER •••
SINPUT ALTER;
COMPILE I
R MEMBER-I
COMPILE I
R MEMBER-2
$ENDINPUTI

Note that SOURCE or INFILE can- be used in the same SCOBOL statement
as COMFILE.

The command file is necessary if the source program is to.be
modified before compilation. For example•

2-19

$INPUT ALTER;
COMPILE1.
R MEMBER-1
1
, $5/MOVE/AOD/
COMPILE;
R MEMBER-2
·"NO MODIFICATION APPLIED TO MEMBER-2
$ENDINPUT;

If MEMBER-I contains more than one program, say 3, only the first
one will be compiled with the above command file. If all of them are
to be compiled, the command file should be as follows•

$INPUT ALTER•
COMPILE;
R MEMBER-I
COMPILE I
R
COMPILE;
R
COMPILE;
H MEMBER-2
$ENDINPUT;

It the second program of MEMBER-I was to be skipped <not compiled)
the command file becomes•

$INPUT ALTER;
COMPILE;
R MEMBER-I
COMPILE SKIP;
COMPILE I
R
COMPILE;
R MEMBER-2
SENDINPUT;

Obviously, when the R. request does not spe£1 fy a member-name, or
when the SKIP parameter is used with the COMPILE command, there must
be another program in the current member. This means that the name
of the current member must be established by an "R" request Cas
shown in the previous examples>.

However the name of the first member may also be specified in the
$COBOL statement•

COBOL SOURCE= MEMBER-1, COMFILE =*ALTER •••
$INPUT ALTER;
COMPILE;
R
"COMPILE THE FIRST PROGRAM OF MEMBER-1
COMPILE;
R
•
•

2-20

In the same way, a source file may also be specifierl•

COBOL INFILE = <SOURCE, ••• >, COMFILE =*ALTER •••
$INPUT ALTER;
COMPILE;
R
·"COMPILE THE FIRST PROGRAM OF SOURCE
COMPILE SKIP;
COMPILE;
n
n

·"COMPILE THE THIRD PROGRAM OF SOURCE
•
•

When a command file is specified, the serial compilation is
controlled by the contents of that command file. Therefore, the
possible SOURCE parameter.of the $COBOL statement must· not spAc 1 fy
serial compilation.

The MC>VE function of SLIBMAINT can store mor~ than one ~uhf ilA in a
sequential file. This sequential file may then be submitte<i to the
compiler. The contents of each subfile will be h8ndled as if it WA~
separated from the next subfile by END COBOL• Each subfilA can
itself contain programs separated and/or terminated by END COBOL.

A serial compilation can be restarted, if necessary, simply hy I
changing the JCL to exclude those programs which have already bAPn
compiled successfully. The compiler will not restart in the mirldlP.

.of a partially compiled program.

COMPILER LIMITS

The COBOL compiler has the 11m1 ts shown in Table 2-3.

Table 2-3. Compiler Limits

Variable Limit

Number of user-names <data, filler, paragraphs> 2AOOO

Size of numeric item CANS standard is) 8) 30 digits

Size of numeric literal CANS standard is 18) 30 digits

Size of non-numeric literal CANS standArd is 120) 256 diqits

Maximum size of a code segment 32000 bytes

Maximum size of an edited item 256 char.

Limits.which are in excess of the ANS standard are available only if
the LEVEL = L64 parameter is included in the $COBOL statement;
otherwise the ANS standard limits apply.

2-21

COMPILING LEVEL 62 PROGRAMS

Level 62 COBOL programs may be submitted to the Level 64 COBOL
compiler for compilation and execution on the Level 64 computer.
Programs are compiled as Level 62 programs by the compiler when the
two following conditions are meta

- The SOURCE-COMPUTER paragraph specifies LEVEL-62 as
computer-name, and

- The compilation is requested with the LEVEL = L62 parameter in
the SCOBOL statement.

The program will not compile if any of the following conditions
exists•

- The Level 62 communications feature is used.

- The Level 62 extended indexed organiz~tion is used.

- A file is referenced in the PROCEDURE DIVISION USING ••• he~dfff
or as a CALL argument.

- OPEN REVERSED is used.

- A non-numeric comparison references operands of different
usages.

The program will compile hut may not execute correctly if any of the
following conditions exists&

- The commercial at sign <~> is used in column 7 <it is proce~c;ed
as an asterisk>.

- The JOB-LINKAGE SECTION header is used <the compib~r proce.~SP.5
items described in that section as WORKING-STORAGE SECTION
1 terns>.

- RERUN ••• EVERY condition-name and its related SET
condition-name is used <the compiler ignores this clause And
statement>.

- USE AFTEH ••• ON DATA or PROGRAM ERROR is used Cthe compiler
ignores these sections>.

- STATUS KEYs are used that do not have the sAme meaning in both
implementations.

- An attempt is made to read a record of an indexed file that has
been written in the same run Cit will be retrieved in L~vPl 64,
whereas it would not in Level 62>.

There may also be cases where the precision of intermediatA result~
differs from one machine to the other.

2-22

If none.of the above conditions exists the program will compile and
execute correctly in spite of options or de~ults that are Level-62
specific. In some circumstances, the option is. ignored, and will
have to be replaced by appropriate JCL statements. The special
actions taken by the compiler when compiling in the Level-62 mode
are•

- DEBUG-ITEM-ERR is accepted as a group itP.m subordinate to the
DEBUG-ITEM speciai register.

- The format ot so-called "embedded hexadecimal values within
nonnumeric 11 terals·" is that of Level 62 <and there fore, the
Leve 1 64 format is n.ot a! lowed> •

- The LITERAL-tHTHIN clause is ignored Cbut the Level 64 compiler
accepts the apostrophe as well as the. quote as a nonnumeric
literal delimiter>.

- The OPTIONAL phrase of the SELECT clause is a !lowed for any
file organization.

- The BLOCK FORMAT and BLOCK LENGTH phrases of the SELECT clause
are ignored.

- NE~ INDEXED is accepted as. equ1 va lent to INDEXED.

- The default file organization is LEVEL-62 instead of UFF

- RERUN-FILE is ~ccepted as the checkpoint file name.

- The APPLY MARK SENSE clause is ignored.

- USAGE IS Ccmp is equivalent to USAGE IS DISPLAY.

- Unsigned COMP-3 items are allocated with a sign position Ci.e.
behave as Level 64 COMP-8 items>.

- The REDEFINES clause need not reference the first redefined
item.

- The default device for ACCEPT and DISPLAY is CONSOLE.

- The internal-file-name suffixes are accepted ' those whose
first two characters are "PR" are processed as PRINTER ' when
the su ffiX is REPORT, 1 t is processed as SYSOUT.

When the above actions are based on syntax Ci.e~ are not the result
of de fault application> they are shown by appropriate diagnostics.
The fact that the program is processed as a Level 62 program is
shown in the banner page of the compilation listing.

2-23

OBJECT CODE

The following PROCEDURE DIVISION extract shows 4 COBOL statements on
lines 22, 24, 30 and 31.

20
21
22
23
24

29
30
31

PROCEDURE DIVISION.
DEBUT.

LEC.

•
•
FIN.

OPEN INFUT Fl.

READ Fl AT END GO TO FIN.

CLOSE Fl.
STOP RUN.

The corresponding procedure map extract Cin line number order>
gives•

22 21ooooc 24 2t0007A
30 2tOOOCE

24 2 • 00096
31 2 •001 OA

Thus the first COBOL statement starts at address c. There is object
code that occurs be fore the first COBOL line which is known as the
"Prologue". The Prologue is executed at the start of the program and
carries out certain housekeeping functions.

Each COBOL statement included in the PROCEDURE DIVISION is compiled
into object code ~ogether with a note of its source line number. If
a line.of source COBOL contains more than one statement or if one
statement is used which is equivalent to several simple verbs (e.g.
MOVE CORRESPONDING> there will be sevP-ral sets of compiled code for
that line. In this case the procedure map contains several entries
for the line Cline 24).

OPEN,CLOSE,OCCUHS DEPENDING,ON etc. use subroutines which are
generated at the end of the main object code in what is called the
11 Ep11 ogue 11 •

PRINTED OUTPUT

The following paragraphs describe the printed output produced by the
compiler. The output is described in the order in which it is
produced, under the following headingss

2-24

- Banner page

- Program listing

- Map and cross-reference listings

- Summary page

Banner Page

A sample banner page is shown in Figure.2-2. The information
appearing on this page is discussed in the following paragraphs.

PROGRAM

This shows the program-name taken from the PROGRAM-ID paragraph of
the source program. It there is no PROGRAM-ID paragraph in the
program the compiler assigns a name to the program based upon the
current date and timea

where• yy is year
ddd is day
hh is hour
mm are min.utes
ss are seconds.

yyddd-hhmmss

This program-name is used in forming the name of the listing file
when a permanent SYSOUT file is being used.

USER AND PROJECT

These items show the USER and PROJECT specified in the $JOB
statement.

DATE AND TIME

These items show the system date and time at which.the compilation
was done.

2-25

.,,

.....
'° c:
"1
<D

l\J
I

l\J
•
Ul
Qt

"' a
I "O

l\J t-

°' <D

OJ
O>
:J
:J
CD
"1

"'O
Q)

'° <D

COBOL V-50.2 X93.1 LI HING BOUR GAIN BOURGA IN 13:42:36 HAR 311 1978 PAGE

~'
'*******•••1••··•tt•
**** GCOS L64
•••• ••••

C 0 B 0 L
VE RSI ON: 50

***********************************••··••2

* •• *
• **.

DATED: MAR 10, 1978 **"'*

***•"**

PROGRAM: FINO-DAY

USER: BOUR GAIN

PROJECT: BOURGAIN

DATE: 03/31/78

TIME: 13:42:36

COMPLLER VER~ION: L64 CO~OL V-50.2

USER OPTIONS: COMFILE LIB•1 LEVEL•L64 DClXRE.1 XREF EXPLIST

ACTIVE OPTIONS: OBJ, NOEBUG1 WARNi OBSERV1 N~AP1 DCLXREF1 XREF1 LIST, EXPLISJ, CKSEQ, CARDID1 CASEQ, DIAGIN1
NCODAPN01 NOPT1 DOEBUGMD1 PSEGMAX•4C96<BYTES), OSEGHAX=4096(8YTES).

COMPILATION LEVEL: L64

C OM P IL E R I NP UT :
ALTER FILE

RSTR (H_ALTER)
CD•01/23/78 CT=10:35:24 M0•01/23/78 MT•1 C:35:24 SL•DAT MN:sOO NM=ALTER-OAYS

SOURCE FILE
FIND-DAY IN RSTR (H_IHL181)
CD=01/23/78 CT•10:35:24 MD=03/07/78 MT•1~:16:12 SL•DAT MN=11 NM=FIND-DAY

COPY FILE (COPIED TEXT ON LINES 38 THROUGH 49)
DAYS IN RSTR (H_INLIB1)
C0•01/23/78 CT•10:35:24 MD•01/23/78 HTs1 (:35:24 SL•OAT HN•OO NM=DAYS

.......

COMPILER VERSION

This shows the version of the compiler being used and the patches
which have been applied to it. For example•

COMPILER VERSION a L64 COBOL V-50

If patches have been applied to the compiler the relative number of
the latest series of patches applied appears after the version
number. For example•

COMPILER VERSION • L64 COBOL V--50.6

If one or more patches prior to the latest patch have not been
applied then the number of non-applied patches follows the lntest
patch number. For example•

COMPILER VERSION a L64 COBOL V-50.6-2

In such a case the numbers of the missing patches are listed in the
to !lowing ways

COMPILER VERSION a L64 COBOL V-50.6-2
COMPILER VERSION ADDITIONAL INFORMATION a

001 004

where 001 and 004 are the numbers of the missing patches.

USER OPTIONS AND ACTIVE OPTIONS

USER OPTIONS lists the parameters specified by the user in the
$COBOL statement. ACTIVE OPTIONS lists all of the compiler default
parameters in addition to those specified by the user.

COMPILATION LEVEL

This shows the level of COBOL which is expected by the compiler and
is derived from the LEVEL parameter in the $COBOL statement and the
SOURCE-COMPUTER paragraph in the source program. The possible values
ares L64, L62, GCOS, ANSI, NBS4, NBS3, NBS2 or NBS1.

2·-21

COMPILER INPUT

This identities the file and subfile trom which the source program
was read. The command file <see The Alter Facility, above> is al~o
identlf ied if it is used •. If the source program contains a COPY
verb, the file from which text is copied is also 1dent1f 1ed.

A two or three line identification is printed for each type of file.
The f 1rst line identities the type of f ilet SOURCE FILE, COMMAND
FILE or COPY FILE. If the file is a COPY FILE the line numbers of
the copied lines are also specified. For examplet

Cc'>PY FILE <COPIED TEXT ON LINES 21 THROUGH 26)

The second line gives the file name, subfile-name Cif a subfile is
being used> and the internal-tile-name used by the compilP.r, in the
following wayi

subfile-name IN file-name <internal-tile-name>.

The third line appear only if the file is an SSF file. It gives
information taken from the type 101 control record. It contains th~
following list of mnemonics and values •

CD = creation date
CT = creation time
MD= date last modified
MT= time last modified
SL m source language type COAT, CBL, CBX>
MN = modification number. This is zero for a new file or

subfile and is augmented by one for each update.
NM= name <normally the same as the subfile name.>

Program Listing

The program listing may be printed in one two or three sections.

- Alter listing <Figure 2-3>.

- Source listing <Figure 2-4>.

- Expanded source listing <Figure 2-5>.

I - Error listing.

The alter listing is a listing of the contents of the .command fl le
<note that this listing has no connection with the ALTER statement>.
The alter listing is always produced when a command file is used. It
is printed before the source listing and expanded source listing.

2-28

The source listing is printed if there is no NLIST parameter
specified in the $COBOL statement. The listing incorporates any
alterations specified in a command file and (if there is no NCLIST
parameter in the SCOBOL statement> any text referred to in COPY
statements. However, the effects of a REPLACE statement in the
CONTROL DIVISION or a REPLACING clause in a COPY statement are not
shown. That is, the specified words are listed in their original
form, with an indication of the first and last word replaced or
deleted.

The expanded source listing is only produced if the EXPLIST
parameter is speci tied in the $COBOL statement. It is printed after
the source listing. The expanded listing has the following
differences from the source listing.

- COPY and REPLACE statements are not printed.

- The effects of a REPLACE statement or REPLACING clause are
shown; that is, the specified words are listed in their nAw
form.

It both the source and the expanded listings are requested but there
is neither a COPY statement nor a REPLACE statem~nt in th~ f)rograni,
only one listing is output.

The internal line numbers of alter listings, source listings anrl
expanded listinys are distinguished in the following way.

- Alter listing. The internal line numb~rs in an alter listing
are always prefixed by "A.". For example A.101, A.102, A.10.i.

- Source listing. If there is an exp8nded listing as well as a
source listing, the internal line numbers in the source listing
.~re pre fixed by 11 S. 11

• However, if there is no expanded 1ist1ng
this prefix is not printed.

- Expanded source listing. The interna 1 line numbers of expanded
source listings are not prefixed.

T~~ -~ve prefixes are also used in the summary of errors on th~
su111111ary page of the compiler listing.

2-29

-ri ...
'° c
"1
<1)

"' I
VJ
•
Ul
Q)

3
"O

"'
I <1)

w
0 >

t+
<1)

'1

r-.....
::n
t+
::>

IQ

·coooL
FIND-DAY

A.1 ----->
A.2
A.3
A.4
A.5
A.6
A.7

V-50.2 X93.1 LI ~TWG BOURGAIN OOURGAIN 13:42:36 MAR 31, 1978
Al TER LISTI NG

COMPILE;

R: R FIND-DAY

R: /OATA/S/DIVISION/&./

R : I 01 D IT WEE K-T AB/ , I S Ult DAY I C COMMENT

• 1 1-44 TEXT FOLLOWS THE 'A', 'C', 'I' CR 'Q' C0"1MAND ON THE LINE. TEXT IS IGNORED.

A.8
A.9

A.10 CF

COPY DAYS
RE PL AC IN C = = P J C X (8) = • B Y = • P I C X (1 0) • •.

PAGE 2

COBOL V-50.2 X93.1 LI HING llOURGAIN OOURGAIN 13:42:36 MAH 31, 1978 PAGE 3
FINO-DAY S OU R C E LIST I N G

ILN XLN TEXT 1-1o--------20----·---30-------40--------50-------60---- ---- 10-- •••••••• <-

s.1 1 IDENTIFICATION OI~ISION.

s.2 2 * THIS ROUTINE, STARTING FROM A DATE, GIVES <-
S.3 3 * THE OAY IN THE WEEK CORRESPONDING TO THE
S.4 4 * DATE
S.5 5 PROGRAM-ID. FINO- lAY.
s.6 6 *
S.7 7 ENVIRONMENT OlV ISIJON.
S.8 8 CONFIGURATION SECTION.

'Tl S.9 9 SOURCE-COMPUTER. LEVEL-6 4

..... s.10 10 OBJECT-COMPUTER • LEVEL-64.

'° s.11 11 ..
c s.12 •12 DAT A 0 IV IS I ON. <-
'1 S.13 13 * m s. 1 4 14 WORKING-STORAGE S lCTION.

"'
S,.15 15 * TEMPORARIES

I s.16 16 01 X PICTURE 9(1().

~ S.17 1 7 01 Y PICTURE 9(5).

• S.18 18 * TOTAL NUMBER Of DAYS PRECEDING THF. MONTH
S.19 19 * <SHOWN BY ITS ORDINAL NUMBER IN THE LIST)

CJ) s.20 20 * IN THE YEAR Q)
s.21 21 01 PRE C-0-TA B. 3

-0 S.22 22 02 FILLER PI C 999 VALUE o.

"' S.23 23 02 F l L LE R P I; C 9 9 9 V ALU E 31.
I ct S.24 24 02 FILLER PI· C 999 VALUE 59. w s. 2 5 25 02 FlLLER PI C 999 VALUE 90.

CJ) s.26 26 02 FILLER Pl C 999 VALUE 120.
0 s.21 21 02 FllLER Pl C ?99 VALUE 151. c:
'1 S.28 28 02 F IL LE R Pl C 9 9 9 V AL U E 181.
n s~29 29 02 FILLER PI C 999 VALUE 212.
(1> S.30 30 02 FilLfR PJ;(999 VALUE 243.

r- s. 31 31 02 FILLER PI·< 999 VALUE 27 3.
S.32 32 02 FlLLER PJ. (999 VALUE '304.
s. 33 33 02 FllLER Pl C 999 VALUE 334. en

t+ s. 34 34 01 PREC-0-TAB-RE: I RE DEF INES PR EC-D-TAB,. S.35 35 02 PRECEDING-DAYS PIC 999 OCC~RS 12.
:J s.36 36 * TABLE GIVING THE NAME OF THE DAYS IN THE

'° s.37 37 .. WEEK
S.38 . COPY DAYS
S.39 . REPLACING = 1 PIC X (8) == BY =• PIC XC10) ::1.

S.40 •• 1 01 THER-UNUSE D.
s.41 •• 2 FILLER PIC X.
S.42 •• 3 f ILLER COM f-1 SYN(•
S.43 •• 4 01 TWEEK-TAD.
s.44 •• 5 FllLER Pf.(X(8) VALUE "LUNDI

1 2
1 1-32 FIRST WORD OF TEX :EPLACED (OR DELETED>.
2 1-33 LAST WORD Of HXT :PLACED (QR cr.1 ETED).

S.45 •• 6 FILLER Pl C (10) VALUE "MARDI
S.46 •• 7 FILLER PIC (10> VALUE "MERCREOI" •
c;. 4 7 •• 8 FILLER PI C (10) VALUE "JEUDl "•
;. 48 •• 9 FILLER Pld .• C1 O> VALUE "VENDRED I" •
S.49 •• 10 0 2 F 1l L E R P I C X (1 OJ VA L U E "S A M E 0 I "

,,
.....
'° c
°"1
co
l\J
I

1..11
•
(/)
Q>
3

"O
CD

m
><

I\) "O
I QJ

VJ ::>
l\J a.

CD
a.
(/)
0
c
°"1
n
(1)

r
ti)

rt
::>

'°

conoL
FlrJO-OAY

IUI XUJ

, 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

1 0 10
11 11
1 2 •12
13 13
, 4 14
1 5 1 5
, 6 16
1 7 17
13 18
19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26
27 27
28 28
29 29
30 30
31 31
32 32
33 33
34 34
35 35
36 36
37 37
38 • • 1
39 •• 2
40 •• 3

V-50.2 X?3.1 LI ~THJG BOURGAliJ OOURGAIN 13:42:36 MAR 31, 1978
EXPANDED SOURCE LISTI~G

TEXT 7-1 0-- --- --- 20-- ------ 3 0- ------- 40------ - -5 0--------60-------- 7 0--•••••••• <-

*

IDENTIFICATION Dl\ISION.

PROGRAM-ID. F HJD- CAY.

THIS ROUTINE, STARTING FROM A DATE, GIVES
THE DAY IN THE WEEK CORRESPONDING TO THE
DATE

EllVIRONMENT DIVIS JON •
CONFIGURATION SEC llON.
SOURCE-COMPUTER. LEVEL-6L.
OOJECT-COMPUTER. lEVEL-64.

DAT A DIVIS I Oil.

WORKING-STORAGE S•ICTION.
TEMPORARIES

01 X PICTURE 9<1 (}.
a1 Y PICTURE 9<5>.

* TOTAL NUM13ER Of DAYS PRECEDING THE MONTH
(SHOWN BY ITS ORDINAL NUMBER IN THE LIST>
IN THE YEAR

01 PRE C - D- TA £1.
02 FILLER Pl.(999 VALUE o.
02 flll[R Piii ?99 VALUE 31.
02 FILLER Pl C 999 VALUE 5 9.
02 FILLER PIIC 999 VALUE 90.
02 FILLER PllC 999 VALUE 12 o.
02 FILLER Pl C 99? VALUE 151.
02 FILLER Pl.(999 VALUE 181.
02 FILLER PI C 999 VALUE 21 2.
02 FILLER PI (999 VALUE 243.
02 FILLER PI:c 999 VALUE 27 3.
02 FILLER PI C 999 VALUE 304.
02 FILLER PI C 999 VALUE 334.

01 PREC-0-TAB-RE: I RE DEF INES PREC-D-TAB.
02 PRECEOING·DAYS PIC 999 OCCURS 12.

• TABLE GIVING THE NAME Of THE DAYS IN THE
WEEK

01 OTHER-UNUSED.
02 FILLER PIC X.
02 FILLER COMF-1 SYNC •

1

<-

<-

* 1 2-199 A 1 BYTE TYPE 2 FILLER WAS ALL~lATEO TO ALIGN THIS SYNCHRCNIZEO ITEM (SEE REFERE~CE MANUAL>.

41 •• 4 01 OITWEEK-TAO.
42 ••• 5 02 FILLER PIC X(10) <-
43 ••• 5 VALUE "LUNDJ " .
4" •• 6 02 FI Llf R PlCXC10> VALUE "MAR DI " .
45 • • 7 02 FILLER PI C X(10> VALUE "MERCRED l" •
L.6 •• 8 02 FILLER PI (X<10> VALlJ E "JEUOI
47 •• 9 02 FILLER r l C x < 1 O> VALUE "VENDREOI".
L.8 •• 10 02 FILLER Piii XC10> VAL lJ E "SAMEDl
49 • • 1 1 02 FILLER Pl (X(10> VALUE "I> I MANCii E" •
50 -46 01 OITWHK-TAB-R ED REDEFINES 0 ITWE o::-r An.

PAGE 6

No source listing will be produced when the NLIST parameter is
specified in the $COBOL statement and no COPY text will be printed
when the NCLIST parameter is specified. An error listing is printed
whenever the NLIST ~hd/or NDIAGIN parameters are specified. Wnen the
NLIST parameter is specified and NDIAGIN is not specified the error
listing contains any diagnostic error messages generated by the
compiler, together with the relevant lines of source program·. When
the NDIAGIN parameter is specified (with or without NLIST> the error
listing contains any diagnostic error messages generated by the
compiler, but does not contain any lines of source program. Instead
the line number and column number of the spurious source code is
printed with each error message.

The layout of the source listing and expanded source listing is
described in the following paragraphs.

HEADINGS

The first two lines of heading are self explanatory. ·rhe meaning of
the third line.of heading is ns follows:

ILN - Internal line number, used by the compiler to identify
lines of source code. This is independent of the external
line number CXLN>.

XLN - External line number, taken from the source input file.

TEXT - The first column of source code starts under the T of TEXT.
Columns 7, l O, 20, 30, 40, 50, 60, and 70 are marked along
the line. The specified column appears under the least
significant digit of each number. Columns 73 to 80 are
marked by periods, followed by <- in columns 81 and 82 to
mark the end of the traditional 80 column line.

SOURCE LINES

The components of a line of source code are as followsa

ILN - The ILN starts at one for the tirst line printed from the
source input file and increases by one for each subseqw~nt
line from this file, including line5 which are copied into
the source program using the COPY statement or are included
as a result of an A, I or C request in a command file.

XLN - This is the line number taken from the SSF header on each
source record in the input file. If the input file is not
in SSF format the XLN is taken from the first 6 character
positions of the record. A single period to th?. left of the
external line number indicRtes that the line has been
included as the result of an A, I or C request of the
command file. A double period to the left of the externRl
line number indicates that the line has been included "95

the result of a COPY statement. An nsteri sk to the le ft o t
the external line number indicates that the line has been

2-33

modified as the result of an S request of the command file,
or, tor lines following COPY statements, when the part of
the line followil)g a COPY statement is repeated. A minus
sign to the left of the external line number indicates that
lines have been deleted from the source before that line as I
the result of a C or D request in the command file Clines
deleted at the end of the program are not shown>. In the
expanded source listing, periods, asterisks and minus signs
have the same meaning as above; in addition, the asterisk
means that the line has been modified as the result of the
application of the REPLACE statement of the CONTROL
DIVISION, or of the REPLACING clause of a COPY statement.

TEXT - Columns I to 6 of the text may contain a line sequence
number. This number corresponds to the sequence number
which may be punched in columns 1 to 6 if the program is
input to the system on cards. There will be no such
s eque nee number i t thP. source 1 nput f 11 e has a languag~
type COBOL or COBOLX.

In both the source and expanded source listings, whenever a
line is not in 80 column format <with source from columns 8
to 72> an arrow <- is printed at the right of the line. The
arrow appears in the two columns following the card
identifier area.

DIAGNOSTIC ERROR MESSAGES

Diagnostic messages are generated when the compiler detects
incorrect or inconsistent code in the source program. A complete
list of error messages is given in Appendix B. Diagnostic messages
are also generated when the compiler detects incorrect or
inconsistent requests in the alter file. These messages normally
appeAr embedded in the source and expanded source listings. However,
if the NDIAGIN parameter is spec if ied in the SCOBOL statement, A 11
errors wi 11 be listed after the source and/or expanded source
listing, except tor the errors in the command file which are always
embedded in the alter listing.

ThP format of a diagnostic message is as follows•

aaaa o p-nnn message-text •••
where a

aaaa can be one, two, three or tour asterisks, indicating
the severity of the message. * is An observation, **
is a warning, *** is a serious error and **** is a
fatal error.

o is a number from 1 to 9 indicating the order of the
message, when it refers to a specific piece of t~xt
in the line.

p-nnn is the number given to the error which has occurred.
message-text is a plain English explanation of the arror.

Each part of the message is described in turn in the following
paragraphs.

2-34

An observation message Cone as.terisk> indicates the action taken by
the compiler where this may not be c leer from the source code.
Observation messages can be suppressed by specifying the NOBSERV or
NWARN parameter in the $COBOL statement. The following example
contains an observation messages

14
15
16
17
18
19

FD Fl
LABEL RECORD STANDARD
DATA RECORD. Al A2~

Ol Al PIC XC80).
01 A2 PIC XC80).
01 AO PIC XCRO>.

I
* 1 3-191 RECORD DESCRIPTION ASSUMED TO BE DATA RECORD

FOR PRECEDING FD.

A warning message Ctwo asterisks> indicates a possible error. The
source statement is compiled but the results may be dif.ferent from
those intended by the programmer. Warning messages can be supprsssed
by specifying the NWARN parameter in the $COBOL statement. The
following example contains a warning messaget

20
21
22
23
24
25

WORKING-STORAGE SECTION.
OJ AA PIC XCB).
01 BB. PI C X C 6 > •
PROCEDURE DIVISION.
Pl •

MOVE AA TO BB.

1
** 1 5-148 THIS RECEIVING ITEM MAY BE TRUNCATED ON RIGHT

A serious error message Cthree asterisks> indicates a major error in
the program. The compiler continues to check the source code but
does not generate a compile unit. The message "NO CU PRODUCED" will
be printed on the summary page of the compiler listing. The
following example contains a serious error messages

10
I I
20
21
22
23
24

*** I 6-2 ITEM NOT DECLARED

FD Fl LABEL .RECORD OMITTED.
01 A I PI C X C 80 >.
WORKING-STORAGE SECTlON.
01 RECEP PIC XC4).
PROCEDURE DIVISION.
S 1 SECTION I.
Pl.

WRITE A 1. CAI instead of Al>

* I 5-164 SYNTAX CHECK DISCONTINUED

2-35

The "SYNTAX CHECK DISCONTINUED" observation message indicates that
the compiler has interrupted analysis from this point, until it
encounters a recognizable sequence <point, paragraph, section,
etc.>. The compiler then resumes its analysis indicating "SYNTAX
CHECK RESUMED".

A ~tal error message (four asterisks) indicates that an error has
occurred which•

- prevents the compilation from continuing its analysis. It may
be a system error Ce.g. unable to read a source file>, a
compiler error Ce.g.unrecoverable difficulty>, a compiler limit
<e.g. too many operands in the REPLACING phrase of a COPY
statement>, a user error Ce.g. absence of the specified source
member from the specified input library or libraries); or

- prevents the compilation from generating object code Ce.g. use
of a feature not included in the level of compilation
explicitly or implicitly specified by the LEVEL parameter of
the $COBOL statement>.

The following example contains a serious error messages

52 520 03 DATA-ITEM PIC X VALUE 'X'.

1
* 1-1 00 THE APOSTROPHE IS USED INSTEAD OF THE QUOTE TO DEL IM IT

LITERALS IN THIS PROGRAM.
**** 1-26 THIS FEATURE IS A LEVEL-64 SPECIFIC FEATURE, NC>T

INCLUDED IN THE CURRENT COMPILATION LEVEL.

In this example the compilation has been requested without the LEVEL
= L64 parameter in the $COBOL statement. Should this parameter have
been included, only the first message would have been issued.

fhere may be several error messages for the same line of source
code. In this case, the error order number, which is printed after
the asterisks in the message, is used to relate the messages to the
errors in the source line. This number is also printed under each
error in the source line as shown in the following example•

565 586 PERFORM L UNTIL A9 EQUAL To 89. <-

I 2 3

* I 5-165 SYNTAX CHECK RESUMED.

**** 2 5-162 THIS FEATURE IS A NBS HIGH INTERMEDIATE FEATURE, NOT
INCLUDED IN THE CURRENT COMPILATION LEVEL.

*** 3 6-2 ITEM NOT DECLARED.
* 3 5-164 SYNTAX CHECK DISCONTINUED.

The error under PERFORM results from an error on a previous line.
The error under UNTIL results from LEVEL = NBS2 used in the $COBOL
statement. The arrow at the end of the line indicates that there is
no blank character after the terminating period. Therefore, the last
eight characters are ignored and the compiler recognized EQUA
instead of EQUAL. Hence the error messages.

2-36

Map Listings and Cross-Reference Listings

Depending on the parameters speci tied by the user in the $COBOL
statement, some or all the following memory map listings and
cross-reference listings may be produced•

- data map and procedure definition listing

- cross-reference listing <declaration order>

- cross-reference listing <alphabetic order>

- procedure map listing

- perform/alter bucket listing.

These listings are always printed in the order shown above. However,
if a data map/procedure definition listing and cross reference
listing <declaration order> are both requested by the user they are
combined in a single listing <1.e. only the cross-reference listing
is produced>.

The parameters which must be specified in the $COBOL statement to
ob ta in map and cross-reference listings are as fo I lows•

- MAP produces a data map/procedure definition listing, procedure
map listing and perform/alter bucket listing.

- DCLXREF produces a cross-reference listing (declaration order>.

- XREF produces a cross-reference listing <alphabetic order>.

Each of the above listings is described in the following paragraphs.

DATA MAP AND PROCEDURE DEFINITION LISTING

The data map and procedure definition listing comprises a list of
all the identifiers in the DATA DIVISION, printed in the order in
which the identifiers. are defined.

For each identififier the following information is printed•

- level number (if applicable>

- name

- parameter number Cif applicable>

- memory address Cif applicable>

- usage

- picture string (if applicable>

- internal line number of the line in which the identifier is
de fined.

2-37

A sample data map and procedure definition listing is shown ir,
Figure 2-6. The contents of this listing are described below~

The parameter-number is listed under the heading PN. It is used only
tor identifiers which are included in the USING clause of the
PROCEDURE DIVISION header or their subordinate, redefining or
renaming data items, and specifies the position of the parameter
within the USING clause.

The memory address of the object generated for each data item is
shown under the ADDRESS heading. The address is of the form isn:sra,
where isn is the internal segment number <decimal> and sra is the
address <hexadecimal) relative to the start of the internal segment
(for an explanation of segment numbers see Section I II, L ' .. iking>.

Under USAGE there is a description of the type of object to which
the identifier refers. This description may be one of the following•

- GROUP indicates a group item composed of subordinate group or
elementary items.

- DISP <Display> indicates an elementary item with <usually by
de fault> USAGE IS DISPLAY.

- COMP, COMP-I, etc. indicate items defined with one of the
COMPUTATIONAL options.

- INX-DATA indicates an index data item.

- ALPH-NM indicates an alphabet-name.

- MNEM-NM indicates a mnemonic-name.

- REPORT indicates a report-name

- INX indicates an INDEXED file.

- REL indicates a RELATIVE file.

- SEQ indicates a sequential file~

- ••• -SEQ where the ACCESS MODE IS SEQUENTIAL clause is used •

••• -DYN where ACCESS MODE IS DYNAMIC.

- ••• -RAN where ACCESS MODE IS RANDOM.

- SORT indicates a sort-file <SD appeared under LN>.

- I NDX-NM indicates· an index-name dee la red by use of the INDEXED
BY clause in a table description.

- UNDEFINED indicates a data-name or paragraph-name which 1s
referenced, but never declared.

2·-38

Under the PIC-STRING heading there is a s1mp1i fied version of the
explicit or implicit picture clause. When the picture string
includes editing symbols, only the word EDITED is-printed.

Under the heading DEF the internal line number at which the
identi tier is de fined is shown.

The data map and procedure definition listing also contains a list
cf all paragraph-names and SECTION names (NAME) together with 'tne
internal line numbers at which these names are defined CDEF>. This
list appears at the end of the data map listing and is in the
sequence in which the paragraph or section names are defined. See
Figure 2-6 tor an example. The type of name is indicated under USAGE
by PARA-NM or SECT-NM. This list is used in conjunction with the
procedure map listing. The procedure map listing contains me~ory
adresses and internal line numbers. These internal line numb~rs can
be related to the containing paragraph or SECTION u~ing this
listing.

CROSS-REFERENCE LISTING CDECLARATION ORDER>

A cross-reference listing in declaration order contains all the
infOrmatton included in.a data map listing. In addition to this, for
each identifier, there is a list of internal line numbers for those
lines which refer to the identifier. See Figure 2-7 for an example.

This listing is printed in the same sequence and has the same format
as the data map listing, except that the additional information is
printed under the heading REF.LINES. More than one reference to the
same !dent! tier on a single line is shown by a plus sign following
the internal line number. An ellipsis< ••• > indicates thnt ~ome
referencing lines are missing.

CROSS-REFERENCE LISTING <ALPHABETIC ORDER>

The cross-reference listing in alphabetic order contain5 a 11 the
information in the cross-reference listing in declaration order
except that the lines are sorted into alphabetic identifier order.
See Figure 2-8 for an example.

An additional piece of information in the cross-reference listing in
alphabetical order is the 01 level data-name which appears in
parenthesis after each non-01 level data-name. This shows
record-name to which each data-name b~longs.

2-39

,, ...
'° c
"1
(I)

l\J COBOL v-so.2 X93.i, LISTING OOURGAIN BOURGAIN 13:1,9:1,8 MAR 311 1978 PAGE 10
I CALENDAR DATA MAP AND PROCEOURE DEF JNITION LISTING

°' LN NAME PN '.ODRESS USAGE P IC-STRING 0 EF •
•
U> 02 D I G IT- E I G HT 1 : 002 54 DI SP X(27> 78
O> 02 DIGIT-NINE 1 :0026F 0 t SP XC27) 79
51

"O 01 HEADER-OIGITS-R 1 : 001 7C GROUP XC270> 80 02 DIGITS 1 : 0017C GROUP .X(27> 81
(I) W DIGIT 1 : 001 7C DI SP XO> 82

0 01 M 0 NT H- S TA TU S 1 :00294 GROUP x (96) 81, Q)

c+

°' 01 MONTH-STATUS-R 1 :002 94 GROUP XC96 > 99

le:
lllfONTH 1 :002F8 l NOX-NM 100
FIRS T-HONTH 1 : 00 300 IN OX-NM 1 00

°' 02 MONTH-ST 1 :00294 GROUP x (8) 100 "O
03 DAY-OF 1 :00294 DJ SP 9(1) 1 01

°' 03 MONTH-DAY 1 :00295 DI SP 9(2) 1 03
P\) :J 03 MAX-MONTH-DAY 1 :00297 DISP 9(2) 1 C5
I a. 03 YEAR-DAY 1 :00299 DISP 9(.3) 1 07 .,...

0 "'O
"'1 01 WEEK-DAYS-I 1 :00308 GROUP x (70) 110

0
0 01 WEEK-DAYS-R 1 : 00308 GROUP XC70) 119 • 02 WEEK-DAY 1
0.

: 00308 DI SP x (10) 1 20

c 01 l 1 0 : 00000 COMP-2 F lX BIN· (31> 1 25 "'1
<D

01 0 2 0 :00000 DI SP VAR I ABLE 1 26

0 • INIT PA RA..;.NM 1 29
~ EXIT-P PA RA-N11 11.3,_

ST OP-R PA RA-NM 1 45 :J YEAR-CALENDAR PARA-NM 1 50 ..,.
C"t' INIT-HONTHS PA RA-Nl'I 161
..... TITLES PARA-NM 1 78
0 YEAR-TI Tl E-ll NES PARA-N .. 197
:J NORMAL-LINES PA RA-NM 213

r- N ORHAL-l I NE PAR A-NM 219
.....
CA
C"t' ...
~

....-...

"TI
\C
c
~
CD

CUUOL V-50.2 X93.l LI ~TltJG OOURGAIN BOURGAIN 13:42:36 MAR 311 1978 PAGE 9
l\J FINO-DAY CROSS-REFERENCE LISTI~G (0 ECLARAT ION ORDER)
I LN NAME PN JOOR ESS US AGE PI C- STRING DEF. REF. LINES

.....J
•
(/)

77 TALLY 11:00010 01 SP 9 (5) NOREF O>
3
1J 01 x 1:00064 0 ISP 9 (10) 1 6 95 96 97 98 99 100 10:5
~

CD 01 y 11:00070 0 I SP 9(5) 1 7 1 05 106 107 109 110 1·11

n •
~ 01 PREC-D-TAIJ 1:00078 GROUP x <36) 21 NO REF

0
tn 01 PREC-0-TAB-RED 1: 000 78 GROUP x (36) 34 NOREF
tn
I

02 PRECEDING-DAYS 1:00078 0 I SP 9(3) 35 89

:0 01 OTHER-UNUSED •1:000AO GROUP XC4) 38 NOREF Q)
t-tl
CD 01 DITWEEK-TAB 1 :OOOA4 GROUP X(70) 41 NOREF
~
m 01 OI TWEEK-TAB-RED '1:000A4 GROUP x (70) 50 NOREF

N :J 02 OAY-IN-THE-WEEK > :OOOA4 DISP x c 10) 5 1 111
I n • CD

01 SPLIT-DATE 1: 000 FO GROUP x (8) 54 81 83

r 02 CENTURY 1:000FO OlSP 9(2) 55 84 ... 02 SHORT-DATE 1:000FZ GROUP x< 6> 56 83
Ul 03 MONT HR hOOOF4 OI SP 9(2) 58 89 94
r+ 03 OAY-OF-1'0NTH 1:000F6 01 SP 9(2) 59 88 ... 03 DAY-OF-~ONTH-X 1:000F6 DI SP XC2) 60 82 :J
~

·01 YEAR 11: OOOFO DI SP 9(4) 61 90 94+ 95 97 99 -i 01 DAYS-IN-THE-ERA 1:000F8 DJ SP 9<10) 65 87 96 98 100 105

n 01 F Ull-DA TE 1 QOOOO 01 SP X(8.) 71 78 81
CD
~ 01 DAY-OF-THE-WEEK 2 00000 01 SP 9(1) 74 78 110
Q)
r+ 01 DAY-ITSELF 3 00000 I> I SP x (10) 76 7 8 111
0 BEG IN PA RA-NM 80 NOREF
:J

THE-EUD PARA-NM 112 NOREF --a
CD
"1 -

'Tl
~
c:
"1
CD

I\)
I

(X>
•
(J')
m
9

COOOL v- so. 2 X93.1 U ~TING OOURGAIN BOURGAIN 13:42:36 MAR 31, 1978 PAGE 10
FIND-DAY CROSS-REFERENCE LISTING <ALPHABETIC ORDER)
Ul NAME PN JO DRESS US AGE PIC-STRING DEF. REF. LINES

'O
CD BEGIN PA

0

RA-NM 80 NOREF
02 CENTURY C SPLIT-DATE) 11:000FO DI SP 9 (2> 55 84

()
"1
0
lft
lft
I

02 DAY-IN-THE-WEEK COITWEEK-TAO-REO) 1: OOOA4 DI SP x (10) 5 1 111
01 D A·Y- ITSELF 3 00000 0 I SP x (10) 76 78 111
03 DAY-OF-MONTH (SPLIT-DATE> 1:000F6 DISP 9(2) 59 88
03 OAY-OF-MONTH-X <SPLIT-DATE> 1:000F6 DI SP x (2) 60 82
01 DAY-OF-THE-WEEK 2 00000 DISP 9(1) 74 7 8 110

X1
CD

01 DAYS-IN-THE-ERA 1:000F8 DI SP Q (10) 65 8 7 96 98 100 105
01 DITWEEK-TAB 1~:000114 GROUP x (70) 4 1 NOREF

~
"1

I\) CD
t ::J

01 OITWEEK-TAO-RED •1:000A4 GROUP x (70) 50 NOREF
01 FULL-DATE 1 00000 D l SP x (8> 71 78 81
03 MONTHR.C SPLIT- D,ATE) 1:000F4 DI SP 9(2) 58 89 94
01 OTHER-UNUSED . ·1:000AO GROUP x (4) 38 NOREF

~ n 01 P R E C- D- TA B 1:00078 GROUP x (36) 2 1 NOREF
I\) CD 01 PREC-D-TAB-REO 1:00078 GROUP XC36) 34 NORE F

r
tn
r+

02 PREC"EDING-DA-YS CPREC-D-TAB-REO) 1:00078 0 I SP 9(3) 35 89
02 SHORT-DATE <SPLIT-DATE) •1:000F2 GROUP x (6) 56 83
01 SPLIT-DATE 1:000FO GROUP x (8) 54 81 8.3
77 TALLY 11:00010 D 1 SP 9< SJ NOREF THE-END PA RA-NM 112 NORE F.

:;:,

'°
01 x 1 00064 DI SP 9(10) 1 6 95 96 97 98 99 100 105
01 y 1 00070 DI SP 9(5) 1 7 1 05 106 107 109 110 111

- 01 YEAR 1 OOOFO DI S-P 9 (4) 61 90 94+ 95 97 99

>
"'C

i"
er
<D
r+
n -:::;
0.
CD
"1 -

PROCEDURE MAP LISTING

The procedure map listing consists of a table of PROCEDURE DIVISION
internal line numbers and the corresponding starting memory
addresses tor the generated object code. See Figure 2-9 for an
example.

The memory address is of the form isn•sra, where 1sn is the internal
segment number (decimal> and sra is the address (hexadecimal>
relative to the start of the internal segment. The listing is
printed in memory address order so that the user can quickly obtain
an internal line number ~om a corresponding memory address. This is
necessary when a user program terminates abnorm~lly and a memory
address is printed in the Job Occurrence RP.port.

A memory address is printed for each state·ment in the PROCEDURE
DIVISION. Therefore there wi 11 be several memory address for the
same internal line number if there is more than one statPment on a
source line or if the statement implies several simpler statements
Ce.g. MOVE CORRESPONDING) •

Internal line numbers will normally be in ascending order in th~
procedure map listing. However, if the user has segmented the
program using COBOL segment numbers, the object code may bP.
rearranged by the compiler •. If ·this occurs, internal line numbers in
the procedure map listing will not be in ascending order. In this
case the complete procedure map listing is rPpeated in internal linP
number order. That -is, two listings are produced, one in memory
address order and one in internal line number order.

PERFORM/ALTER BUCKET LISTING.

The information in the perform/alter bucket listing may be used in
conjunction with a load module dump to trace the flow of control
through the load module which occurred prior to an abnormal
termination. CNote that this listing has no connection with the
alter listing or alter facility>. The listing contains the following
in formation a

- The start address of the 4-byte bucket associated with each
paragraph or SECTION that is the last in a sequence of
paragraphs or SECT-IONs referenced in a PERFORM statement. At
execution time,· if a paragraph or SECTION is being performed,
this bucket wi 11 point to the instruct ion following the PERFORM
statement which last performed the paragraph or SECTION. If the
paragraph or SECTION is not being p~r formed, the bucket wi 11
contain the address of the next paragraph.

- The start address of the 4-byte bucket associated with each
paragraph referred to in an ALTER statement. At execution t.ime
this bucket will point to an address corresponding to the·
current value of the GO TO in the ALTER paragraph.

2-43

COl:JOL V-50.2 X93.4 LISTING DOURGAIN BOURGAIN 13:49:48 MAR 31, 1978 PAGE 11
CALENDAR PROCEDURE MAP LISTING

BEGIN LI NE BEGIN LINE BEGIN LI JNE 0 EGIN LINE BEG l N LINE BEGIN LI NE
'Tl
'° 2: 00024 130 2:0004E 131 2: 0005 6 '132 2:00160 135 2:0016(135 2:00174 1 36 c:

OJ ~ 2:00194 , 37 2:00198 138 2:0020C 1139 2:00240 142 2:0027C 144 2:00298 1 46

::> <D 2:002A4 151 2:00264 152 2:002(8 j 15 4 2:002F6 155 2:002FE 156 2: 0032 4 1 57
Q. 2: 00332 158 2:0033A 159 2 :00361. 162 2 :0037 6 163 2:0037E 164 2: 0038 A 165

rv 2:003B2 167 2 :003BE 168 2:003CA I ~69 2:003D6 171 2:003DE 172 2:003EA 173
"O I 2:0041E 176 2:0042E 179 2:0043A 180 2 :00470 181 2:004A4 183 2:004AE 1 84

<D '° 2:004C2 189 2:00402 193 2: 00508 194 2:00514 195 2:00552 198 2:0055E 199
~.

2:00568 zoo 2:00578 201 2 :00596 c02 2:005AO 203 2:00580 204 2:005CE 205 ""h
0 U> 2: oo5.o8 206 2:005E8 207 2 :00606 c08 2 :0061 0 209 2:00620 210 2:0063E 211
~ O> 2:00678 214 2:00688 215 2 :00694 216 2 :006 DA 218 2:00714 220 2:00724 221
33 2:00730 222 2:00746 223 2:0076E c24 2:00796 225 2:007AA 226. 2: 0078 A 228 ''O 2:007C6 229 2:00702 2 30 2 :007E2 (31 Z :007 F 2 232 2:007FE 233 2: 00808 233 >.- 2:0082"4 126 2:0083A 1 26 2: 0084 0 1126

"" <D
I t+
~ <D .,,
~ ~~

0
tp 0
c <D
n Q.
~c:
<D ~
t+ ti>

r3::
..... O>
CA '"O
t+ COBOL v-so.2 X93.4 Ll HING BOURGAIN BOURGAIN 13:49:48 MAR 31, 1978 PAGE 12
.-r CALENDAR PERFORM/ALTER BUCKET LISTllfG

'8 :; LINE BEGIN LINE BEGIN LINE 8 E G II P LINE BEGIN LINE BEGIN LINE BEGIN

• tT
150 1 :00362 , 61 1 :00366 178 1: 00 .!6A 1 97 1:0036E 213 1:00372 219 1 :00376 ::>

t(l

For each such address, the internal line number of the relevant
paragraph or SECTION is given.before the address in ascending
internal line number order.

See Figure 2-9 for an example.

Summary Page

A sample summary page is shown in Figure 2-10. The information
contained on this page is discussed in the following paragraphs.

COOOL v-so.2 X93.1 LI.HING BOURGAIN BOURGAIN 13:42:36 ·MAR 31, 1978 PAGE
FIND-DAY COMPILATION SUMMARY

SUMMARY OF ERRORS

*
* •

* • *
* * • *

5
3
0
0

ON LINES A.7 4 0 !.44 83
ON LINES 83 11 0

CU PRODUCED ON LIBRARY ;000093.TEMP.CULlD

SEGMENT NAME TYPE' SIZE CIN BYTES>

F I rm - D A y • 0 •• L 99
F HID-DAY .1 • D. 278
FIND-DAY.2 c •• 434

STACK 68

RUN TIME PACKAGE PROCEDURES INVOKED

NONE

Figure 2-10. Sample Summary Page

SUMMARY OF ERRORS

This shows the number of observation <*>, warning<**>, serious error
C***> and fatal error <****> conditions detected by the compiler.
The internal line number of the first 10 lines for which the
compiler has output a message is shown for each type of message.
r"4han necessary the internal line number is pre fixed by "A. 11 or "S."
to differentiate between the alter listing, source listing and
expanded source listing.

2-45

CU PRODUCED

If a compile unit has been produced by the compiler the message CU
PRODUCED ON LIBRARY• • •• is printed. It no compile unit has been
produced the compiler prints NO CU PRODUCED.

SEGMENT LIST

The segment list contains a list of the internal segments produced
by the compiler. For each internal segment the type and size is
given. The type can be code CC •• >, data C.D.>, linkage c •• L> or code
and linkage CC.L>. In addition, when COBOL segment numbers are used
in SECTION headers of the PROCEDURE DIVISION, the COBOL segment
number from the COBOL SECTION header is printed.

The name of an internal segment is the program-name followed by a
period and-'the internal segment number. Extra segments are generated
when the DEBUG parameter is included in the $COBOL statement (for
Program Checkout Facility>. The names of these segments include
-"_PCF" at the end of the program-name. Tables generated as a result
of a USE FOR DEBUGGING statement also form an extra segment whose
name 1 s the program-name suffixed by 11 _DBG". For an explanat 1 on of
segment numbers see Section III, Linking.

At the end of the segment list the initial size of the ring 3 stack
is given. This size does not include the standard part of a stack
frame, nor the parameter area. The size _of each segment is also
given to help in segmenting the program <see Section VII> and
calculating working set requirements.

RUN-TIME PACKAGE PROCEDURES

A list of the run-time package procedures referenced by the compiled
object code is printed.

Job Occurrence Report Summary

A summary of the compilation (message CBL02> is printed in the Job
Clccurrence Report.- This summary contains the program.name, the
number of error messages of each type and an indication whether the
compile unit was produced. An example ot this s_ummary is as to !lows•

CBL02. SUMMARY FOR FIND-DAY *'2 **'4 CU PRODUCED.

Note that if there was no PROGRAM-ID paragraph in the program or 1 f
the source program could not be found by the compiler, the
program-name in the Job C>ccurrence Report sum~ary would be generated
by the- compiler according to the current system date and time.. ·This
type of program-name is described in Banner Page, above.

2-46

ABNORMAL COMPILER TERMINATION

Abnormal termination of the compiler occurs when the compiler
detects an abnormal situation. The most frequent errors are
associated with an abnormal return code generated while performing a
system function.

For such errors, a fatal diagnostic is printed out in the
compilation listing, and an error message is written in the Job
Occurrence Report with the following formats

CBLOJ. ERROR CAT address] WHILE COMPILING CLINE xxx OFl program-id
[RETURN CODE IS re FROM siuic CG4 = xxxxxxxx> l [ON file l

The diagnostic in the compilation listing specifies which kind of
error was encountered. For example•

8-92 CULIB IS FULL.

8-93 . I/O ERROR ON CULIB.

9-55 WORKn IS FULL.

9-45 UNRECOVERABLE DIFFICULTY DUE TO SYSTEM ERROR.

Another error message can be written in the Job Occurrence Reoort
without a corresponding diagnostic in the compilation listings

CBLOI. ERROR WHILE COMPILING program-id. LISTING FILE EXHAUSTED.

This means that the file on which the compilation listing is written
<either a standard SYSOUT subfile, or a PRTFILE sequential file or a
PRTLIB library> is full.

It is possible that, in unusual situations, the compiler will detect
an internal problem and will issue a fatal diagnostic identifying
this problem. For examples

9-nn COMP ILER ERHOR. text.

ors

x-nn IMPLEMENTATION RESTRICTION. text.

or possibly•

9-nn UNRECOVERABLE DIFFICULTY

2-47

SECTION II I

LINKING

SLINKER is a Level 64 utility which builds an executable load modl1le
from a set of compile units. These compile units may result from the
compilation of programs written in different source languages.
SLINKER resolves all references between compile units and sets up
links to COBOL run-time package procedures and system procedures
which are resolved at run-time.

Notea The system recognizes three forms of segment number during
compilation, li~king, program loading and execution. To avoid
confusion in this and later sect ions these forms of segment number
are explained below•

- COBOL Segment Number. This is the segment number specified by
the programmer in the section header of a COBOL program. The
COBOL segment number is included in the segment list produced
by the COBOL compiler.

- Internal Segment Number. This is the segment number generated
by the COBOL compiler to identify the segments within a comrile
unit. It is this number which appears to the left" of the colon
in the $COBOL data map, cross-reference and procedure m:1p
listings. Internal segment numbers are also included in the
segment lists produced by the COBOL compiler and by SLINKER.

- SLINKER Segment Number. This is the segment number generated by
$LINKER to uniquely identify each segment in the load morlule.
It is formed from a concatenation of segment tabl~ number :~nrl
segment table entry (stn. ste). SLINKER segment numhers an~
included in the segment list produced by SLINKER and in the
memory dump listing.

JOB CONTROL LANGUAGE

The extended JCL statement SLINKER is used to execute thP. SL! NKEf~
utility.

$LINKER generates a load module and a listing. The load module may,
optionally, be stored in a temporary or a permanent library.

3-0J

II

Figure 3-1 shows the format of the SLINKER statement.

LINKER ~!oad-module-name !
[,ENTRY = compile-unit-name]

[
\c11brary-file-description>l]

,OUTLIB = ?TEMP ~

r ~
COMMAND = '11 nker-command £,!inker-command 1 ••• ' ~
COMFILE = *input-enclosure-name - j l Clibrary-file-description,SUBFILE=member-n~me)~

[,STEPOPT = <step-parameters>] ;

Figure 3-1. SLINKER Statement Format

As the SLINKER statement is extended JCL, it must not appeAr inside
a step enclosure. The following example illustr~tes the use of this
statement•

$JOB •••
LIBALLOC
LIB CU
LINKER

SENOJOB;

LM, CLM.LIB, SIZE= 5>, MEMBERS= IOO;
INLIBJ = CU.LIB;
PROG4,
ENTRY = PROG 1 ,
OUTLIB = LM.LHH

The SLIBALLOC LM statement is used to create a library, LM.L.IB, with
a size of 5 cylinders Cthis utility need not be used if the library
already exists>. The SLIB statement is used to set up a "search
path" for $LINKER to enable it to find the referenced compile units.
SLINKER will look in CU.LIB for a compile unit with ~ member-nam~
PROGi Cspeci tied in ENTRY = PROGi >. This is used as the starting
point for building the load module. The resulting load module will
be stored in library LM.LIB with the name PROG4.

The to !lowing paragraphs describe the parameters which may bP us~rl
in the SLINKER statement.

Load-module-name Parameter

This parameter is used to specify the name of the load module
created by SLINKER.

It there is no ENTRY parameter in the SLINKER statement, the mAin
compile unit Cat which linking starts> is assumed to have thP. sam~
name as the load module. During the development of ~ program it 1~
advisable to use the same name for the source program, the compile
unit and the load module. It should therefore be normal practic~ to
omit the ENTRY parameter from the SLINKER statement.

3-02

It is not possible to use the same name in this way if calling nnrl
called programs are used <see Section VI) because there will bA
several source programs and compile units for a single load modnle.
However, it is advisable to adopt a systematic convention for
program naming. For examples

- Load module INV comprises compile units INV-A, INV-R and INV-C
which were compiled from source programs INV-A, INV-B anrl INV-C
respectively.

- Load module UPDATE comprises compile units MAIN-UPDATE and
ADMIN-UPDATE which were compiled from source programs
MAIN-UPDATE and ADMIN-UPOATE respectively.

An asterisk <*> may be specified instead of load-module-name. Thi~ I
indicates that a series of load modules is to be linked during R

single execution of SLINKER. See Serial LinkAge, below.

ENTRY Parameter

This parameter specifies the <main) compile unit to be userl AS the
starting point when building the load module. It can be omitterl if
the name of the main compile unit is the same as load-module-name.

When the ENTRY parameter is used the COMMAND parameter must be
omitted.

OUTLIB Parameter

The OUTLIB parameter specifies the library in which the resulting
load module is to be stored. A library-file-description or the
keyword TEMP may be used in the OUTLIB parameter.

It a library is specified, it must have been allocated previou~ly by
the SLIBALLOC LM utility <see the Library Maintenance Reference
Manual> unless the SIZE parameter is used in the
library-file-description of OUTLIB. If TEMP is specified, the lo;:,d
module will be written as a member of a temporary system library.

If the OUTLIB parameter is omitted, this is equivalent tn
OUTLIB = TEMP.

3-03

The load module is stored in a library according to the following
rules•

- It a load module of the same name is not already pre~ent in the
library, and there is no fatal SLINKER error, the load module
is stored in the library with the load-module-name given in the
SLINKER statement.

- If a load module with the same name <normally a formPr version
of the load module) is in the lihrary and there is no fatal
linking error, the old load module is deleted and the new nne
replaces it. If there is a fatal error rluring the linkage no
load module is stored; the old load module is still usable.

When an old version exists in the load modul,., library, 1 t 1-s good
practice to use a new load-module-name for storing the new load
module to assure retaining the old and new version~ together {Jntil
the new one is proven executable. Once the nflw load module is
debugged, the old version can be deleted and the new one renRmerl
with the old name. Deletion and renaminy are done using SLIRMAINT
LM. Details of $LIBMAINT LM are given in the Libr·ary Mari-agement
Manual.

Alternatively, the user can maintain a "stable" and a 11 devP.loorn~nt"
library. The stable library should contain a working version of Aach
program. The development library should contain the latest v0rsinn
of each program currently being developed and tested. Once
successfully tested, programs can be moved from the development
library to the stable library.

COMMAND and COMFILE Parameters

The COMMAND and COMF ILE parameters a !low thP. user to spAc i fy a set
of commands to be obeyed by SLINKER during the linkage proce~s.
Several different commahds may be specified, but thA only on~~ nf
interest to the COBOL programmer are the ENTRY, INCLUDE and VACSFG
commands. These commands are described in the following p~ragrRoh~.

I The COMMAND and COMFILE parameters may also be used to sru~r.1 fy .=i

series of load modules to be linked during a singlP. execution of
SLINKER. See Serial Linkag?,, below.

3-04

ENTRY COMMAND

The format of the ENTRY command is•

ENTRY = member-name

This command has exactly the same function as the ENTRY parameter.
When the COMMAND parameter is used in the SLINKER statement thA
ENTRY parameter cannot be used. The ENTRY command should be used
instead.

INCLUDE COMMAND

The format.of the INCLUDE command is as followsa

~member-name[,member-nameJ ••• l
INCLUDE = (INLIBn ~

This command is used to specify a list of compile units which are to
be included in the load module as if they had been referred to by
another compile unit. If the INLIBn option is used then all c0mpile
units.of the library specified by INLIBn are included in the load
module. INLIBn refers to the library specified in the corresponding
INLIBn parameter in the SLIB statement preceding the SLINKER
statement. "n" may have a value from I to 4.

The INCLUDE command .is used to incorporate compile units referred to
in the COBOL ·"CALL identi tier" statement. This form of the stAtemAnt
does not specify a ~rogram name at compilation time, so $LINKER
cannot automatically incorporate the required compile unit into the
load module. This has to be done by the programmer by using the
INCLUDE command, which names a 11 the compile uni ts which may
possibly be named in .the data item referenced by CALL.

VACSEO COMMAND

The format. of the VACSEG command is as follows•

VACSEG a <SHARE = +a>

This command must be used if "multi logical unit file.s" are to be
used in the COBOL program. See Section IX for an explanation of how
to calculate the value of Ma".

3-05

STEPOPT Parameter

The STEPOPT parameter can be used to specify one or more of the
parameters included in the SSTEP statement C~ee the Job Control
Language Reference Manual). However, the following cannot be
included in the STEPOPT parameter for SLINKER•·

- load-module-name;

- TEMP, SYS or library-tile-description;

- the ALL option of the DUMP parameter;

- the OPTIONS parameter.

Library Search Path

A SLIB CU statement may precede the SLINKER statement to define a
search path for the compile units to be linked. Up to four compil~
unit. libraries can be specified in the search path. If no SLIB CU
statement is active, $LINKER will search the TEMP comoile unit
library.

User compile units may be created in the same Job as the SLINKE~
execution. If so, compile units may be in the system compile unit
library specified by TEMP in the $COBOL CULIB rarameter. In such n
case TEMP must be included in the search path of $LINKER C unlP. ss a 11
compile units involved in the linking are in TEMP>. For exam~lRt

LIB CU, INLIBI = USER.LIB,
INLIB2 = TEMP;

SERIAL LINKAGE

$LINKER can link a series of load modules during a single execution.
In order to do this an asterisk <*> is specified in the SLINKER
statement instead of load-module-name. The only other parAmeter
which is permitted in such a SLINKER statement is either COMMAN!l or
COMFILE. The COMMAND or COMFILE parameter is used to specify a set
ot parameters for each load module to be linked.

3-06

For example:

LINKER ·*•
COMMAND = ·'LOAD-MODULE-1, ENTRY = ALPHA,,_

L<>AD-MODWLE-2, ;-
LOAO-MODULE-3, ENTRY = BETA,;·'

LINKER •,
COMFILE = •CMDf

$INPUT CMDI
LOAD-MODULE-I, ENTRY= ALPHA,;
LOAO-MODULE-2,;
LOAD-MODULE-3, ENTRY = BET A, ;

$ENDINPUT;

Note that there must be a comma after each parameter including the
final parameter .. for each load module <i.e. immediately before the
semi-colon>. Also, when the COMMAND parameter is used, the
parameters for each load module except the last must be followed by
a hyphen Ci.e. the .semi-colon must be followed by->.

OPERATION -<lF $LINKER

The way in which SLINKER builds a load module will be shown by
discussing a particular example.

Suppose that a COBOL program comprises a main program, MAINPAY,
which calls a program EDITION, which in turn calls a program GETDATE
<see Section VI, Calling and Called Programs>. The relationships
between these programs and the run-time package and the system
routines. might be as shown in Figure 3-2.

User compile units COBOL run-time
package procedures

I I

System procedures

! _
1

-------=i••H_DFPRE_UOPF

-

1
------~1!9"•H_CBL_UOPEN ~H_TIMER_UGTI

I I ~li_TIMER_UGTD

lMA INF------:~rH_CBL_UD I SPL ~li_OPRTR_USDO
l•H_CBL_UCLOSE ~H_DFPRE_UCFM

I ~. I
EDITION------.1•H_CBL_UDMRC l•H_CK_UCHKPT
~ 1 I
GETDATE : rH_TIMER_UGDT

I i

Figure 3-2. Structure of a linked program

3-07

The procedures named in th-is linkage are of three origins•

- User compile units resulting from COBOL compilations;

- Run-Time Package• a group of procedures used by COBOL programs;
they are av~ilable in memory in a single copy and are not built
into the load modulel

- System procedures• the parts of the system handling user I/O
requests etcl they are not built into the load module.

$LINKER, starting with the main compile unit CMAINPAY> scans the
object code for·all unresolved external references. After
incorporating each compile unit that resolves such a reference
SLINKER descends to the next level in the hierarchy and resolves the
references made in the incorporated compile units. This procedure
continues until all external references which can be resolverl Are
resolved. References to the COBOL run-time package and some systf!m
procedures are not resolved until run-time.

PRINTED OUTPUT

The fo !lowing paragraphs describe the printed output produced by
$LINKER. The output is described in the order in which it is
produced under the following headings•

- Banner page and SLINKER commands listing.

- Included compile units (if any>.

- Task listing.

- Group information.

- Linkage report and end page.

Banner Page and SLINKER Commands Listing

An example banner page and an example SLINKER commands listing ~re
shown together in Figure 3-3. A 11 commands included in the COMMAND
parameter of the SLINKER statement are listed in the SLINKER
commands listing.

3-08

Included Compile Units

Details are printed for eBch compile unit included in the load
module as a result of using the INCLUDE .command. The format of this
listing is similar to the Task Listing Csee Figure 3-4.>

The heading for each compile unit shows the compile unit name, the
library from which the comp! le unit was taken, the date and time at
which t.he compile unit was created and the name <i.e. language> and
version.of the compiler which generated the compile unit.

For each compile unit a list.of symbolic references CSYMREFS> is
printed. A symbolic reference is a reference to an entry point or
data item in another compile unit. Such a reference remains in
symbolic form Ci.e. in the form of a label> because it cannot be
con.verted into an address at comp! le time. The fo !lowing in formRt 1 on
is printed for each symbolic references

- SYMREFS

- TYPE

- LOCATION

The labels which are being referenced.

The type of reference. DATA indicates a reference
to a data item. PROC indicates a reference to a
compile unit entry point.

The location at which the symbolic reference was
made. This is in the form stn.ste.sra. where stn
is the segment table number, ste is the segment
table entry and sra is the address relative to the
start of the segment.

- MATCH.DEF.IN The compile unit in which the referen~ed label was
found by $LINKER and the address of this label in
the form stn.ste.sra. If the. re.ferenced label
could not be found in any compile unit in the
library search path (defined by SLIB CU>, the
comment **NOLINK** is printed instead of the
compile unit and address.

Symbolic references which begin H_ are not listed unless there is an
error report tor that reference.

Task Listing

There is a task listing for each task in the load module. An example
task listing is shown in Figure 3-4.

A load module will contai.n more than one task only if it contains
two or more sequences of program code which may be executed
asynchronously. This type of processing is not possible in load
modules written entirely in COBOL <unless the Message Control System
is being used) •. For this reason there wi 11 normally only be one task
listing for a COBOL program. Th.is listing starts with the heading
TASK • MAIN.

3-08. l

The first item in the task listing concerns the task entry-point
<the point at which execution begins>. The name of the entry poi_nt
and the name of the containing compile unit are printed. For co~oL
programs these names are identical. The location of the entry-point
is shown in the form stn.ste.sra.

The remainder of the task listing consists of a list of all the
compile units in the task together with details of the symbolic
references in each compile unit. This part of the task listing has a
format similar to the list of included compile units described
above. Compile units which are listed in the list of included
compile units are not repeated in the task listing. Symbolic
references which begin H_ are not listed unless there is an error
report for that reference.

3-08.2

a
N

w
I.!)

<
a..

' "' 0

0

,..._
0

..J
c:::i
0

>
<
:;::-

('\)

'-'
z

N

x

n
0
II'\

« « « « «
.. «
« « « « « « «
« « « « « « «
« « « «
« « « «
.. « ,..._ .. « ,..._
.. .. °' « """"'
.. « '
.. « 0 «.. « «
« «
« «
« «

« «
« ..
.. «
«.
«
« «
.. «
« ..
«
« «
« ..
.. «
.. «

.
«.
• «

..... « «
w « «
0
Q ~ ...
w « «
..... « «
< « «
0 « «

« «
.. «

0
.... « «

• .. «
oo «
II'\.- ..

.
z « «
0 « ..

«
Vl ...
a:: .. «
w ...
>

« ..
.. «
.. «

« « •• «..
.. «
« « «.
...
... «. •
• « ••

ex • •
« • • •
• « • «
... :..::
• ... :z ••
• « ••
• • ..j
• • ... «
.. «
...
.. .. «
.. .. « ..
c
.... c
.. • .. « «..
• .. • «
.. « ~
.. « '° :..: •
« « ..J I«
.. .. -3 ..
.... V')

• • 0 N ..
u ..

..... \.!) z
« --
......... «
• «

....
N

' ,.,.,
0

0

..J
c:l
0

a::
w

>
<
::i;:::

N
u
z

N

x

0

0
II'\

a::
w
:..::
z

N
'-'
z

..

Vl
1-
z
w
~
w
I
<
U)

..J
0
a::
z
0

a::
w
:..::
z -..j

..

N
u
z
II
>
a::
1-
z
w

Figure 3-3. Sample Banner Page and SLINKER Commands Listing

3-09

'TI
~

'° c:
to'(
CD

w
I
~
•
CJ)
Q>

3
w "'C

• - CD
0

~
O>
tA
;.ioi;"

r
~

:.n
('1"
.....
:J

'°

LM
LINKER

CALENDAR
50.10 X93.S ll5TltJG BOURGAIN BOURGAIN 13:50:17 MAR 311 1978 PAGE 2

* *TASK =MA IN* * * * * * * * * *. * * * * • * * * * * * * * * * * * * * * * * *

ENTRY POINT

a.cu= CALENDAR

-SYMREFS
1.PRT
1.H_CBL_UOPEN

**** WARNING 2604
1.H_CBL_UCLOSE

**** WARNING 2604
1.H_COL_USTOP

**** WARNING 2604
1. F ltJ 0-D AY

CALENDAR

1~CU= FIND-DAY

(CALENDAR - CONT'D)
- S YMR E FS
1.H_CBL_UDMRC

**** WARNING 2604

LO CAT ION: 08. DC. COOOOB l N CU: C Al ENO AR

FROM:INLIB1 CREA lEO ON 3/31/78 AT 13:49:48 BY: COBOL 50.2

TYPE LOCATION MATCH. DEF IN
DATA 08.0C.OOC044 ••_BLANK••/08.10.000000
PROC 08.0C.00(070 ••NOLINK**
UNRESOLVED REFERENCE
PROC 08.0C.00(078 ••NOLINK**
UNRESOLVED REFEFENCE
PROC 08.0C.00(080 **NOLINK**
UNRESOLVED REFERENCE
PROC 08.0C.000092 Fl~D-DAY/08.11.000008

FR 0 M: I NL I B 1 CREA T ED 0 N 3131 / 7 8 A T 1 3 : 4 7: 2 4 BY : C 0 B 0 L 5 0. 2

TY PE LOCA Tl O~J MATCH. DEF IN
PROC 08.0C.OOCOC2 ••NOLINK**
UNRESOLVED REFERENCE

Group Information

A sample group information listing is shown in Figure :~-5. Thi~
listing contains information concerning the entire process grotto
c1.e. the entire load module>. The listing is in two parts•

- Global segment list.

- Segment list.

Global segments are data segments which can be referenced from more
than one procedure segment. They contain records which have been
declared EXTERNAL in the COBOL source program <see Section VI>. The
global segments listing contains the segment name and thF- SLINKER
segment number <stn.ste> for each global segment. Also li~terl are
the data-names and internal-file-names within each global segment
and their corresponding segment relative addresses <sra>.

The. se~ment list, on the other hand, contains an entry for each
segment in the load module C including global. ~egments but 2;<cluding
segments with a .name beginning H_>. The segment list is the mo5t
useful part of the SLINKER listing for the following reasonst

- The SLINKER segment number and internal segment number are
shown for each segment generated directly from user sotJrce
code. The relationship between these segment numbers has to be
known when tracing the origin of abnormAl stP-p termination~ and
in analyzing memory dump listings <see Se~tion IV>.

- fhe size of each segment in bytes is shown. This may be us?.ful
when segmenting a COBOL program Cs ee Sect ion VI I> and when
estimating working set requirements for program execution.

The headings and information in the segment list are as follow~=

SEG.#

IN CU1

TYPE

SLINKER segment number iA the form stn.ste

The name of the segment as it appears in the segment
list of the COBOL summary page. Segments which are
generated directly from user source code have a name of
the form cun .1 sn where cun is the comp 11 e unit name anrl
isn is the internal segment number.

This indicates that the segment contains code <C •• >,
data <.D.> or linkage infprmation < •• L>. Combination~ of
these types are also possible Ce.g. C.L when the CODAPNO
parameter is speci tied in $COBOL).

3- I 1

SH This indicates the shareab111ty of the segment. It can
have the following value•

The segment can be shared between certain process
groups in the system.

2 The segment can be shared between all the orocesses
of the process group.

3 The segment is private to a process.

RF This indicates the residence factor of the segment.

RO,~H,EX These indicate the minimum protection ring values which
other segments must have in order to read trom. write to
or execute the current segment.

V~P, EP

G,S

SIZE

~ or E under these headings indicates that the segment
may be written to <modified) or executed.

G or S under these headings indicates that the segment
is a gate or semaphore segment •

This indicates the size of the segment, in bytes.

MAXSIZE This indicates, in the case of a variable length
segment, the maximum size of the .segment, in bytes. Note
that SIZE and MAXSIZE values are needed for working set
calculations. The calculation of working sets is
described in the System Management Guide.

CONT.P. Names processes which "contain" the segment. An asterisk
<*> under this heading indicates that all processes in
the process group have access to the segment. Since most
COBOL programs consist of only one orocess, an asteri5k
wi 11 normally be found under CONT. P.

Linkage Report and End Page

An example linkage report and an examole end page are shown together
in Figure 3-6.

The first line of the linkage report contains eith_er "ERRORS
DETECTED" or 11 NO ERRORS DETECTED ... If no errors have been detected
the linknge report ends immediately after printing the line "OUTPUT
MODULE iJFWDUCED ON LIBRARY library-name". However, 1 f errors have
been detected a summary of errors is now printed.

3-12

"11
'° LINKER so.10 X93.5 LI ~UNG BOURGAJN BOURGAJN 13: 50: 17 MAR 311 '1978 PAGE 3 c LN : CALENDAR '1
CD

~ • • • • • • • • • • • • • • • • .• • • GROUP IN FOR MA TJON •

U1
• GLOB AL SEGMENTS

(/)
SEGNAME SEG NUM CON TAJ NS: &»

:a H_U_BlFN 09.0B LOCATION LOCAT Jt)N ,, H_CBL_DR TP 12 000000 H_CBL_ o_csP 0000.54 H_CBL_DRTP 08.0F LOCATION LOCAT ll)N
CD H_CBl_OR TP 11 000000

C)
__ BLANK 08.10 LOCATION LOCAT lf)N

'1 PRT 000000
w 0
I c - ,, SE GM EN 1 LIST

VJ
11-4 SEG.# JN CU: TYPE SH Rf RD WR EX WP EP G s SIZE MAX SIZE CONT. P.
:J
t-tl
0

08.0C CALENOAR.O 3 ? 3 3 3 208 '1 •• l *
Si 08.00 CALENDAR.1 • D. 3 ? 3 3 3 w 1408 * Cb 08.0E CALENOAR.2 c •• 3 3 3 3 3 E 2256
('t" 08.0F H_CBL_ORTP .o • 3

, 3 3 3 w 608 8192 08.10 __ BLAt.K .D. 3
,

.3 3 3 w 16 * 0 -
:J 08.11 FIND-DAY .O •• L 3 ? 3 3 3 112 *

08.12 FIND-DAY .1 .D. 3 ? 3 .3 3 w 288 * r 08.13 FI ND-DAY .2 c •• 3
, 3 3 3 E 480 *

"' 09.00 pr;r:s co. 2 ~ 3 0 3 w E 1 2.32
C'1" 09 .04 TER"lINATlON • D. 2 3 3 0 0 w s 96

09.08 H_U_BlFN .D. 2 1 3 3 3 w 320 :J -
'° 09.0E SEil~ "· POOL • D. 2 ~ 3 1 1 w s 464

The summary of errors comprises one or more of the following 11nesa

- WARNINGS CSEV.I) 1 n
- ERRORS SEVERITY 2 a n
- ERRORS SEVERITY 3 a n
- ERRORS SEVERITY 4 t n

where 11 n11 is the number of errors in each category. If there are any
errors of severity 4 <fatal> an output load module will not be
produced and the linkage report wi 11 end with the line "NO OUTPUT
MODULE PRJ>DUCED0 •. If there are no errors of severity 4 the linkage
report will end with the line "OUTPUT MODULE PRODUCED ON LIBRARY
library-name·".

The end page simply contains the percentage of the total library
space used by all load modules currently present in the library.

Error Messages

Each error detected at linkage time saves at least one test
execution of the user program. In order to detect as many errors and
inconsistencies as possible, $LINKER carries out checks on the
interface between linked procedures. For example, ttie arguments of a
calling and called procedure must be compatible in number and
attributAs ; external data declared in different procedures must

I have consistent attributes. A complete list of SLINKER Arror
messages is given in Appendix c.
~hen an error is detected, SLINKER outputs a message at the point in
the listing at which the error occurred. Error messages have one of
the fo !lowing formats s

**** WARNING nnnn message-text

**** EHROR nnnn SEVERITY s message-text

where 11 nnnn° is the message number, "s" is the severity and
"message-text" is an explanation of the situation. Severity "s" may
have a value of 2, 3 or 4. <Severity J corresponds to a WARNING>.
Severity 4 is fatal and no load module will be output. The total
number of error messages of each severity is given in the linkage
report.

:~OTE• When building a load module from COBOL compile units SLINKER
will almost always output several error messages with a
message number 2604. It these messages refer to symbolic
references beginning H_ they can be ignored by the user. These
messages simply mean that references to COBOL run-time package
procedures and certain system procedures have not been
resolved. These references will be resolved at execution-timA.

3-14

er
\J'1

'TI
~
c:
"1
t'D

1'
~
•
(/)
Q)

9
"O
CD

r.....
:;:,
~
O>

'° Q)

~
(])

'O
0
"1
c-t

Q)
:J
a.
m
:J a.
"'O
OJ

'° (I)

LM
LINKER

CALENDAR
50.10 X93.5 LI HING BOURGAIN BOURGAIN 13:50:17 MAR 311 1978 PAGE 4

* · • * * LINKAGE REPORT * • * * • • * *

ERRORS DETECTED (•)

- WARNINGS (SEV.1l: 4

-OUTPUT MODULE PRODUCED ON LIBRARY :0000~3.TEMP.LMLIB

C•) W.6RNINGS AND ERRORS ARE INTERSPERSED WITit LISTlf\G1AT THE PLACE WHERE THEY OCCUR.
. THEY ARE'HARKED WITH "****" IN THE LEFTHAND MARGIN.

CONFLICTING ITEMS ARE MARKED WITH "--->" IN THE LEFTHAND MARGIN.

..
• * * * * * • * * • * • * • * * •• * * • * ·f * • ·• * * * * * ... * * * • * * * * •• * * • * * * * * * * ·• * * * * * *
**********************"'**********************"****"***"*****

LINKER 50.10 X93 •. 5 LI HING BOURGAIN BOURGAIN 13:50:17 MAR 31, 1978 PAGE s

* * * * * * * * * •• * * * * •• * * * ••.• *.
PERCENTAGE OF SPACE USED

END OF SESSION * LAST

* * •·• * •• * •• * * * •• * * *. * * •.• * * * * * * * *. * •• *. *. * * * * * *. * * *. * * * *. *. * * *

··················~···················j\····················· • • • * • * * *· * * * * ··* ·~. * * • * * * * • • • • • * * * * * • * • * *··· • * • * * * * * * * • * * * * • *' ,.• * * * * * *
* * * • * * * * * * * * * * * * * * * * * * ·f * •• * * * * * * * * * • * * • *
** ********************** •••••••••••••••• ., •••••••••••••••••••••

SECTION IV

EXECUTION

This section introduces the Level 64 debugging facilities and the
use of these facilities for program testing. The analysis of user
program memory dumps is also discussed. Various types of abnormal
step termination are described and hints are provided to help the
programmer diagnose their cause.

Note• For an explanation of COBOL segment number, internal segment
number and SLINKER segment number, see Section III, Linking.

PROGRAM DEBUOOING

The programmer has two tools at his disposal for program debuggingt

- The insertion of debugging code into the COBOL source program.
This is a purely COBOL tool and does not rely upon any facility
external to the COBOL program.

- The use of the Program Checkout Facility. This is a facility
external to COBOL and does not have to be requested within the
COBOL program.

The use of these tools is discussed in the following paragraphs.

Debugging Code

The following types of debugging code can be inserted in the COBOL
program•

- One or more debugging SECTIONs in the PROCEDURE DIVISION
DECLARATIVE. Such a SECTION includes a USE FOR DEBUOOING
statement which specifies the data-names, procedure-names etc.
that are to be monitored by the remainder of the SECTION. The
remainder of the debugging SECTION contAins normal PROCEDURE
DIVISION statements, typically DISPLAY, which are executed when
the data-names, procedure-names etc. are referenced. Debugging
SECTION code c.an access a special register, DEBUG-ITEM, that
contains information such asi the internal line number of the

4-01

line for which the USE H>R OEBUGGI NG SECT ION is invoked, the
value and data-name, procedure-name etc. of the data item,
altered paragraph etc. Note that, among other things, a USE FO!i
DEBUGGING SECTION can be invoked each time a data-name is
referenced; this facility is not available when using the
Program Checkout Facility alone.

- One or more debugging lines anywhere in the program after the
OBJECT-COMPUTER paragraph. Such A line is identified by a "D"
in the indicator area <column 7). A frequent practice is to
insert, in the PHOCEDURE DIVISION, DISPLAY statements which
will display the contents of significant variables at various
stages of program execution. In fact, any COBOL procedures may
be coded as debugging lines; the only requirement is that the
program be logically consistent both with and without such
code.

If the WITH DEBUGGING MOOE clause is present in the SOURCE-COMPUTER
paragraph of the program, the debugging code will be compiled as
normal program code. If the WITH DEBUGGING MODE clause is absP.nt the
debugging code w i 11 be treated as comment and wi 11 not be comp 11 ed.

The presence or absence of t:he v.JITH DEBUGGING MODE clause can be
overriddf=m by the $COBOL statement oarameters DEBUGMD and NDEBUGMD.
If DEBUGMD is specified the program is compiled as if a WITH
DEBUGGING MODE clause was included in the program. If NDEBUGMD is
specified any VHTH DEBUGGING MOOE clause is ignored and debugging
code is not compiled.

However, 1 f the debugging code is compiled, the USE FOR DEBUGGING
SECTIONs will only be executed if the DEBUG parameter is included in
the SSTEP statemP.nt. If the DEBUG parameter is absent the USE FOR
DEBUGGING SECTIONs have no erf~ct upon program execution. The
presence or absence of the DEBUG parameter has no effect upon
debugging lines <containing a 11 0 11 column 7>.

~hen a load module consists of more than one COBOL program and the
DEBUG parameter in used in the SSTEP statement, all USE FOH
DEBUGGING SECTIONs of all programs are activated. However, one can
deactivate the SECTIONs of one or more of these programs by using

I the Program Checkout Facility <PCF> command CHANGE <C>1

C,stn.ste.30 = ·"OCX>a"X;

I A full explanation of the CHANGE command can be found in the Program
Checkout Facility Manual. "stn.ste" gives the segment table number
and the segment table entry corresponding to internal segment number
0 of the compile unit whose USE FOR DEBUOOING SECTIONs are to be
deactivated. stn and ste comprise the SLINKER segment number which
is defined in Section III together with the internal segment number.
The relationship between the $LINKER segment number and the internal
segment number is described under Dump Analysis, below.

4-02

"a" ;;iust be zero for complete deactivation of the USE FOR DEBUOOING
SECTio;Is.

The USE fOR DEBUGGING SECTIONs may be partially activated. In this
case the above PCF command must be used with "a 11 taking a value.of
or 2. These values have the following significance:

1 - The USE FOr? DEBUGGING SECTIONs are activated only 11 0N
procedure-names".

2 - The USt: FOR DEBUGGING St:CTIONs are activated only "ON
identi fiP.rs, cd-names and file-names".

Programs which are not referenced in the above commands have all
their USE FOR DEBUGGING SECTIONs activated when the DEBUG parameter
is used in the SSTEP statement.

USE FOt~ DEt3UGGING SECTIONs Can be activated, partially activated or
deactivated dynamicr1lly by using the "AT" and/or "IF" options of the
above PCF cor.1mands • Full ~ctivation of all USE FOR DEBUGGING
SECTIONS in all programs can be achieved by using the above PCF
co rnrnn nd w i th 11 a 11 tvw i ng a v a I u e of 3 • Note t ha t i f the DEBUG
parameter is used in the SSTEP statement then, unless commands
specity otherwise, all USE FOR DEBUGGING SECTIONs are activated in
all _crogrAms when execution starts.

Program Checkout Facility

The Pro0ra~ Checkout Facility CPCF> is a diagnostic system which (if
requested> is executed in parallel with a user program being tested.
PCF may be used to monitor the user proyram in the following ways•

- ·rhe flow of program control can be traced through specified
points in the program. Each time control passes through such a
ooint, PCF rAcords this fact.

- The values of specified data items can be changed when control
r8aCh8s specified points within the program.

- The values of specified data items can be dumped when control
reaches specified points within the program.

- Procedures and data can be referred to using symbolic or
effective addressing.

- Commands can be applied to selected compile units.

- Commands can be made conditional upon the value of specified
data items.

The type of monitoring to be done by the PCF is specified by the
programmer in a file of PCF commands. The commands used to request
the above monitoring for example are TRACE, CHANGE and DUMP.

4-03

The use of the PCF will not be described further in the current
manual. See the Program Checkout Facility Manual for further
details. However, the following paragraphs discuss the JCL required
in order to run the PCF.

The PCF is requested by including the DEBUG parameter in the SSTEP
statement of the user program. In addition a sequential file of PCF
commands must be created and must be assigned to the Job step with
an internal-file-name H_DB.

In addition to the above JCL it is advisable to include the DEBUG
parameter C not to be con fused with the DEBUGMD parameter> in the
SC01:30L statement. This parameter causes the compiler to build a
table ot all the source names in the program, with a record of the
name type (data-name, paragraph-name etc.> and the generated segment
address. This table is then stored in the compile unit and is
incorporated in the load module by SLINKER. It is possible to use
the PCF in the absence of this table. However, if this is done the
user must specify the actual memory addresses when referring to the
code and data in the load module Ce ffect 1 ve addressing). The
prps2nce of the table enablPs the programmer to refer to data and
codP by the names used in the COBOL source program <symbolic
nddressing>. However, the size of these tables should be born in
r:ii nd C about 60 bytes per source line>. A segment containing these
tal)l es is ~Je nerated for ea ch 2 00 lines of source code
(n0proximnte ly).

Th-::- r't::!HJ(:; narameter in the SSTEP statement, in addition to
rfqqn3ting tne t-'CF, has a special effect on two exceptions Csee
:.: ~t :: P n t j_ on Me s s ages be l ow } • The s e a re :

EXOJ.EXCEPTION 09-01 1 ILLEGAL DECIMAL DATA •••
E;<O 1 • ~:xcEPT ION 1 7-02 I OUT OF ARRAY RANGE •••

r•ren tiv:? DEBUG parameter is used together with the PCF commands
m.:coVE!? ILLDEC and RECOVER SUBSCRIPT these exceptions disappear and
tn0 ~tep is not ~bnormally terminated. Instead, the error is
rerorted in the PCF report and action is taken to compensate for the
error. These two exceptions usually occur more often than any others
during proyram debugging and their suopression can avoid numerous
unp1-oducti V8 test executions.

DUMP ANALYSIS

A memory dump of the user program can be obtained if the DUMP
parameter is included in the SSTEP statement. The dump is only
printed if the program terminates abnormally.

4-04

It is recommended th.at the DATA option be used with the DUMP
parameter. For examples

STEP PROGi, TEMP,
DUMP = DATAI

The DATA option will produce a dump of data segments onlyi code and
linkage segments will not be dumped~ They are not required fur user
programs.

Structure-of the Dump Listing

The dump listing is divided into two part~. The first part contains
the segments shared by all processes of the process group. The first
segment in this part is the Process Group Control Structure for the
step. It is preceded by the following heading:

****PGCS.****

See Figure 4-1 for an example-Of the first page of a dump. Each
segment in the dump has a two line header similar to the followings

/J=02/P=OO/ /STN=09/

SEGM.HEADRs OOOF8170

STE~01/ SEGMENT DESCRPT• 9800F818 420doooo

OOOF81 CO. 00000200 0001 DDC8. OJ 032E41 01098901.

The only items of interest to the user programmer are the values
shown for STN <segment table number> and STE <segment table entry>.
The segments in first part of the dump listing include the
to llowingt

Fi le buffers.

Physical channel program segments.

Data Management control structures.

Job control structures.

The only segments of interest to the user programmer in this part of
the dump listing are those containing file buffers.

The second part.of the.dump listing 6ontains the segments which are
private to the process. The first segment in this part is the
Process Control Structure for the process. It is preceded by the
following headingi

**********·* ****PCS****

4-05

See Figure 4-2 for an example of this heading. The Process Control
Structure contains the Process Control Block which contains a dump
of the stacks used by the process. One of these stacks is of great
interest to the p_rogrammer and can be used to isolate the part of
the user pr?gram tha.t was active when the abnormal termination
occurred.

The dump of the Process Control Block starts with the following
headings

******PCB******

The remainder of the second part of the dump listing contains the
data segments <and code and linkage segments if DUMP: ALL was
specifiedl which make up the COBOL program proper.

The Stack

For each protection ring in each process there is a Mstack•. For a
normal program there are three stacks. The stack is used each time
the COBOL program executes a CALL statement. At that time the
addresses of arguments, the contents of registers and the contents
of the instruction counter are loaded onto the stack. The stack is a
last-in-first-out data structure. This. means.that data pertaining to
the last CALL statement executed is at the logical top of the stack.
Data pertaining to the last-but·w·ol).;.- C."~!..'.~ s'tflt~m~nt execu't?d !s next
in the stack, and so on. The stack is also used in the same manner
when an except ion occurs ·:Jr when thl3 cede gt:rnn.n~ted by the comp! ler
or conte.ined within COB~;:_ run-time ~.gckaqe p::·cci;,rl.ures execu:gs an
instruction equivalent tc a COBCL CALL staternt-'""lt.,

Therefore, after an abnormal terrnina~!on th~ relevant stack will
point either to the instruction following the la~t CALL <or
equivalent> executed or the instruction at which an exception
occurred.

The stack for each ring starts with a heading such as•

RING 3 STACK STN=03 STE=OO SEGDESCP. 9C008935 FEOCOC7F

The ring 3 stack is the one relevant to the user program. See Figure
4-3 tor an example of such a stack.

4-06

~
I

0
-J

~
'° c
"1
(1)

~
I

• ,,
.....
"1
tA
r+

-0
D>

'° (1)

0
~

0
c
3

"O

I. •'' ' ~ -, . r . > 1 " l , : l L L C •,1 '' L 1 Ll: 5 5: :J I ·i A Y 1 1 , 1 -I 1 :~ r A., f

1' A**• t 'II .. It••• It 4 I• it• i1r •It It* It #t •II*•• f • il 4 • t "/Ir•• It It tr• 4r * * • * • 4r • * llr .. t • • * *. * • • • •.•.•• •• It• It* fr• ••• ** ••• *.*** •• * t. •. * ifr •• • • • • • * * •• * * *. ** *
*••*It it Ii it ••It Ir It 'I\ it il It It• II* It Ir It•'~• It•*•• /Ir It••*•• tr• 4tr•1'r •*•"*It*••••"-* A*,,_ Ir It It lllr 1't It**•• t\ 1'r ****A•*•******** It Ir*** it*•***********••*** It It** i1r *
• • • • r, C 1 l S L ··J. [l 'J 1 f' * * * •

VERSION: JB_30 DATED: MAY 11, 1978 ****
'' •••••• ' ••• '**'** ••
• * ••••••••••••••••••••••••• * ; ••••••••••• * ••••••••••••• * ••• *. * •• * * * ••••• * * *. * * *. * ••••••• * * * * •••••

(c) 1 '1 l (,, c I I - I I) I! Ly',; F L L 'Ju LL

DU:.~ P J = r t, P = l)r, T [Ji "l. M !':> G 2 r: :." 2 n '· c 1

••• *
••• * p t.J f ~) ••••

• • • il '

/J =l..,t.11'=\:CI/ /Sl~;-=(,9/ STF=C10/ s E 1; -n rn f)r. S (f1PT : 'JCOIJl.473 CFOOOOFi

SE (,M.11 l A tit~: l)lj\)('t,3111 11\Jfl256ll0 fl '>f1(1()4 IJ(l nnri ~ 1,.,., n onrJU.t..AG9 OOOllOGOG oorJOOOF1 00000000

o o r i c n ;· '· 7 : .. r r1 (' F I (l f ('(I 01()('1,7(.) (, ~' '· (J(I 5 l\ n11(, ·l 'l 1 ri n 07?.i)ll740 ouono1un onoooo1A 00000000 @@@@@@@@@@@!@-@~@@al @(i.@@@@@@@ ~~@

Ol1Zl: 11 ;:4 ·11.r• lJ ,>(d'!ll'C n r r f 1 or F Ci :1 [,{) (t(J(\ [u n 11 P : 1, 1, 7 n l)'}(ll,lJ()IJ!'I FF FF ff FF 0 ?'12 0000 8 430$ 00 0 @@w@@@@O@@@@@~@@@@@@@@@@@@@@@@@@

004il l1;'1,;·cr '1 f;n1 ;fi l:O fl 7FFrffH I I 04 rl1 ll2 rr~"'n1"n (,()(l:J?L.f.9 (,9 () 1 2 0 [)(] 03o:JOOOO 00000000 @@ iil@" @@@@cil @@@iil(i1 F.@@,\)@@@tiJ@@@al @@al@@

0011 ll c ~''• ;· !· l !l(,1 11 (:cf.Jll 1 1-; ;'I ~J :, ?, 4 :i (.UiiUO ~Jl.l ()fllll)'lC?? 1J()(lliW1UO 0EF441FO noonuooo OOOOOuOO @@@~@~@iiJ@@@@@@@@@@~@@4@0al@@@@@@@

on~u r1; 1.1 rir (..(111rli'i (J(lrf'.'0l'0 [1 (1 'i ((l(I 'I() ·1n1, 1ri117" oo 101 nnu 82A(l400'.i 830:J4005 00104 [100 @@@N@@@@al*@@@@~:@@@@@i @@@ Q)@@ ii)

00 All (. ,' t, ~ ;! ((1.J1 1/, (1r)1 (J o ~~ lll• u on o [1'1 li2 ilO ;? C r: 1111 '1 nnn > 111 ll!JOOCJO OOO!JO 000 7FFEl>005 FFfFFrFF @@ u:i @ai iii@ @ ai iil iil@ iil @al @@ ill iil Cil @QI QI Cil "~@ r~@ iii il iil
0 () t (1 ~1 ;.·I, I, t, I I I I I I r r I rFrFHH ['I, 1 :1 ff [j1J 'l1 r 'l 'I 1 -o; n FF ll\1 fl (1 0 3')HIH I no 022'.JClOOO oonooooo i@~iiliiJiil@@~i@@@O@iil@i@@Ql~@Cil@@iilwCilill@@

0(1 L fl l 1; '• ;.(,((l(•'1i•il(1!JI) f)f)l1l.J(l (11 I() Jlflfi',lFC .., l\n ·)fl'l'ln llllfliJ1Hl1 (1 ll7A2flf100 00000079 5(10(0000 @@~@@@@~@i@@:i@~fu~@@@@Q)@@@@@&@@@

01 fl (I (l ;•I,~ '.~I !If 111; 1f •(14 A i: D :'. '.' F.(l () n '.") l}ll I} l)fJ ')(! 1)1\ ;' I 'l'lll n :);) (' 1)(,11('10 nonr1r. ooo t. 904 (iO 4 0 07000()00 @@@C@@~Qlii@@@@ill~@@-@@~~ill@@@ iil@il@
01 ;'IJ Ii ,'I,; /\ ('' lJ / (I; I;' i, I) ·~ (1 ''~(lJ ,"'I, I'> ~1 Ud. fl!) HI 1111,•)')'1'1<\ fl/\ ·J 1 i11, B6 OUlll'Onfl(I 01400000 01~00000 @@@@@@~@@>@@@ @@@@@@@al@@@ @@@@@@

01 4 'I [I • 1 .. Cfi r 1 1 , I 1 1 1t ll 1f 1 1 1 1 '· :1 fl n 1 t. (l 1 4 'l(lll 1ri rl'l1 :n'PI\ IJr>1t'llFlll o ?. 1JO n u on o A '· ? o o on 02011 r•9G @QI@@@ @@@ ~@@~@@~@@@@@@@@@@@@@@@

01 r,11 '.i ,'I,,.(f, fl,\ I• .. J '1 / :·1 :1 n11ono r n :11 111 l :111 •)() ·inn·Jq•pn 1 'J l(, .l i) .~ 8 1H1110 cH1 on o o u~ .,o no 00000 rm c @OCil@@@@O@@@@@~i@@@@@@@@@@@@i@@il@

01 "U (l ,· 1, ·" 11 · I I!" i! •I, 1. ~ '> IJl)\l(}(Jli'(3) 111)1 il!l'l? (l)f11)"1 11'l'lll •)(l ')')I)•)[)() 10?{,()(lAI\ 011lJOOO\JO 00000001 @QIQl@@@@@@i@@@@@ill@@wi@i~iNiilal@@@@iaJ

01 (, (l ;1 ,'I,'>,' I; , .. ,,..,li•.l•)/, ")rlfl()(ll1'10 ') : ~ '1 'lf 1 'i : l I' 1)(1'1)'lf)')'l 111 f)rlll,1 ;\!) 01,11t1z1,?7 n10:10280 01002t.99 @@@@@@@@@iQl@@@~@@~~~j~@@@@ciJi@@iil@

(l 1 f (I :1 ,'I,•: I, 11 i) I l'l'lll f.(ll) I) l)1) ilf 1(.11)11 ;J11flllilillll1 '1'111) ')Ill) fl ";'i 11'1 Z ·<?A (1 11!1 r)?. 4 ll'i r rrnn21J11 r nm J ~ 1 u @@~@@i~@@~@~@~;~@ii@@iil@iil@~~@~@iiliil

011 ll '.l .'t, ·1,,11 r 1 •11i11 ·i':>:1 :11,'J') ') '· 1 ~t :'J:111,J11.J1)il •f·)r) }');)J111 ;) \llol')')()l) 1H111nn11 rir1 ? C llO A 'i 1, B 02no:JOBF @@~ill@~NilliilCiliilill~~@~@@@~@illi@iil@~iil@iiliiliil

0(> l!(I ll ,'i, 1 ·111 'J :, ·I': ii' 11
/ 'I ·,.,.J'l1111t'r 1 (I}: I (11) I)11 ' ''1 1 ; '1 1 r 'If 111111 ti r D r 1 11r~n11 7 r fl WHl OD llO (l(ll)[)(l 1100 iii@ ill iil ;~ iil ~" a1 i ;])@iii ~1 ~1 "~ ciJ ill Cil@ 11 iii " iil i@ @ii @iil iil

(I;>,• d Ii,./, I/,! I ' J (' I : I) '• ~ t I.· (' ;"' 1)t) I) I) 1 /1 ''lllfl."1 1, ·'1: ,, , ! l) 'l'l ') 1 () ~ Ill 1 ' l:) (l i) lll1(;11,)(1tlil 1 (), 78(,(l1 4 ?lit. 0 ()() 0 illiil~=UWillilli@@~K~i~iilcilillilJ@~~ciliil@illiil@~~iil

,,
.....
'° c
"'1
CD

~
I

"" •
Ul
c+

~ Q)

I "'1
0 c+
CD

0

'"""
\J
(')
Ul

0 c
3

"O

l, L ., ; ' ' I I I I. I ... i I l I I I l I ~.. I I I ; l ' \ I ' f I I i ' I I I I

Ol6U :-121 •. Sf·(' (JIJ'll'l IJ(/(I UCf.1(J{J(dJ(l (1IJfl'llHJ,)lJ ()f)(1o11nnn

......... ,.,\

..... p (. .:i •••• ' ' .

·I 1 1 l<,;I l•1f ;f ,,i• t •11,ifl,flJ •ot1t,.l:ii,1Jll

/J:('4/r:.L(l/ /:>l:1::::(1f/ SlE=80/ ~.U.d·1UJT ~r:.r: 1H'T: 9(00247(C2000CJ14

I~ J ,.J I • I l.1 I I ; ; l J \ I l '' I I ,) l J I J '• l J It ' I 't • : •• \ •

iiliil alci!0!111iilololal Q)Q:@i\iuJ Ql

011'•11' J [1_ 3J X?.4 C :"l r: I\ C TD i3 ;.1 I r; H I L L C {J f-1 L 10:53:07 MAY 11, 1?78 PAGE 29

OU OU r_, 2 4 n (] n(111(11200 1F:?rQBI, o u n u .:i o o u n ri n VJ c ? ?. 000fJIJ9(JQ OEF4111FO ouo:JOOUO oouooooo @@~@@@@@@@@@@~@@@@@@@4@0@@@@@111@@

OG?G r•?.4,;LI) lF'li1F4lE ~)(ldlWOt.10 (;[J)((IQIJO fJ'll,1'1n?A 00101000 H2A04G05 83004005 00104000 @@4@@@@@@•@@@@@:@@Ql@o)Ql @@@ @@@ @
U04ll oz1,r,?1; o ·~ rv, c 0 1 a o :rn n u r· o o ::: n1 2 r. n .~ c crin 'l1Wn 1AOODooo oonnonoo 7 FFEB6D5 FFFFFFFF @@@Ql@@@@@@@@@~@@@O!Ql@@@~al"@@N@al@@

0 0 6 u 1.1 l 4 ·~ :, Li FrFFFFFF FFFFFFFr u41nrr·10 n1r.111~ri FFfl00210 3580FFOO 02200000 00000000 @@@@@@~@@@@@@0@@@@@~@@@@@@@@@@@@

0 0 ::: (J I J .? 4 E 0 1j n Jn(1n fJ(H or1nanooo ::i uou n ll4 O'l" 1'Fl!ln oorioon11 36270000 oonooo7A 4 84r 0 00 0 @@~@@@@@@@@@R@@@@@@@@@@@@@@:@I@@

u o Ml c ? :. r:. r r, n u:.inrJ r: s 1 3D7EfUOO ~OOOUOJO 1 /1 r, ' mn n 80E06000 DOCJOOOOU 490E0210 07000000 @@~@@=@@@@@@@!@@@@-@@@~@@@@@~@@@

0 () cu '.) (4 0 .. \(' r• 7 1 I() 2 4 'J 3 ll.~ (1 !12 4 ') 5 (I ((, E 0 0 1 f) n 1 ;:' F ;) c F 0 1AD~0796 00000000 01400000 01800000 @@@@@@@@@>@@@@@@@Q@@@@@@@ @@@@@@

OlHO (' .'.'.Hl n 01c~onon 1~2F061C '.182F01:>34 r)f)? ..,,Fl?~ 132Fll2C3 030l100EO 1 BCB043E 1 82 F 0 61 C @@@@@@@@@@@@@@@@@@@(@@@@@@@@@@@@
0100 0?4?.£.C 01\: ((J010 (j.~2f()631. [)lJQ[JfJ01.HJ 1\?F'lVil\ 1Pi2F1) 5 6 E 18ZF056R 0000006A 0000) 001 @@~@@~@@@@@@@@@~@@@>@@@@@@~@@@@@

u 1 2 0 lJ ,> 4 ·; 0 0 nu• oor1uo uc1oouuo4 :inoono4c nnr 11 ·1nr1 R t1AA71J008 20&204C5 3300016(FFFFFFF8 @@w@@@@@@@@<@@@@@~@@@@~E@@@X@@@8

01 4 0 ;) "'·?? (\ nc1 IHH10iJ OfiOOOCJOO OODiJOOlJJ IJ'Hl l'lnrin @@@@@@@@@@Ql@@@@@

• • • • • • f. C I .. * • • • * •

R UJG J ST I\ CK
*ST Al K F 11\ •11:
•WRl\·FI~·\

'.! 1 5 ')
• s ii v I\·~ 11\

(I 1 S (
;1]t,1j

:• 1 11;
11;)
'l \·1

f'IHln: 60E06000 PMW 1: 1rin1qnnn P1'11a: 490[0210 PMW3: 07000000

AS \:(1: C.1 70)249.S AS l.J 1 : /")')(') 1 '.f, I") c; EXW: DC6E0010 SKW: 082F::l634

IC W: 1AliC\J068 S [,W:): n14 1'l'lOO SuW 1: 018COOIJO S 13W 2: 0 1C 0 0 OD 0

l!fH1: 1:12FC61C l' R 1 : () i:? F 1r'1 ~ 4 ~J f? 2 : 0027007~ Bid: 182FJ2C3

I! Ill. : 030Cl0 0 EO Ill? j: 1 ·1 r l fJ l. ~ F ~l H 6 : 1.'\2F061C UR 7: 0ABC0u10

G t?O: (• g 2 FU 6 34 GP 1: I) ')fl 11)1)') () (j ll 2 : 132F056A GR3: 182FJ56E

l) I(4: 1~2FJ51J,~, r; R r): ·J 'ln l Jll'i .a. :,116: 00000001 GR7: 00000000

x 1<0: Q(l(\Q(J004 XR I: 11·1"1·J ·1111, c x I< 2: UU\Jl.'.JCO~ X R 3: 0AA7)008

x ll4: C (I[; 2 lj 4 (5 rn 'i: "i ~n l ·l 1 '1 c XR6: FFfFFFFR X R 7: 00000000

ST'l=(l1 ST [= ll 1 S l G ll r: S C !~ 0 r 'l 1) ''i4 I. U2 lifliJOll F
•.1')1

IJ 11: ()Ji, f) 'l 0 F !.(JO] 7 ~1 Cl 1 t, '] a)ii)Qlii)Q) Q)@@

.) 1\ :·l :: U F F F F F f IJ
s.i'.1-7: illl.ll'. 1 11'."J :,;11.nu1 ~IJ w: 11111·1111 J11rif-J,J:;c 0:.1:.iSL11JIJC 01JE4004!J 01£.00110 OC170010

1 ,:i'i-7: ()(1d:1~1[1S,J [;!, l,1{1/,.ltl 1 ll'lJ•V1'J(] \).1;1?·J')t)~; ;l\l()flJ)(J(i1 uonrnooo UOUiJOJ01 UOOOOOOJ
,,..~i'-7: '.lf·•_f?t,7•11 11~1;>t,\l,i 1'1'1 1)1'1''. ;J.;1\?'Jd•J!'. D!!1JL·IJL)(1(! 0UU 1lJU04 FFFFFFF8 00000000

" I I.' : fJ r 14 ') '• '.l 4 i)

DUMP JB_30 x7.4 C~~'CTDB "IGHILL COt:tL 10153:07 MAY 11, 1978 PAGE 30

00A8 SAH• 0FFF7FFO
OOAC aR0-7: 01400070 01400090 OROO~ono 02000000 00350000 0BE4004U 01400070 0A880010
oocc GR0-7: 00000000 00000000 ~3~nn16C 00000000 ******** 00000000 00000)01 00000000
0CJE8 Xk0-7: 000247EO 00024890 oonnoonR 38180026 000002F1 00000004 FFFFFFF8 00000000
0108 STR: 00000000
010C PTV: 014000A8
0110 PSA: 014000A8
0 114 ICC: 0A86040A

•COHAREA
0118 NBP• 00000014 ,, 011C 01400096 OA880024 OA880028 0A8l0077 OA 880077

..... •STACK FRAME 003

'° •WRK AREA
c * PAG E•08 2 FOO 00
"1 0000 208204C5 3300016C HiEHU
(I) *SAVAREA

0008 SAH• 0FFF7FFO

t oooc ~R0-7: 3300016C 01400000 ORO~nooo 08180026 03000100 03000000 0BE3020A OBE40010

w 002C GR0-7: 208204C5 OOOOOC02 nooonnoc OOOOOC02 ******** 00000000 FFFFFFFD 00000400
• 0048 XR0-7: 38180026 04000C02 03000000 38180026 000002F1 00000004 FFFFFFF8 00000002

006i3 STR: 80000000
z 006C PTV: 01400008 0070 PSA: 01400008

.f::i.. :J 0074 ICC: OBE4046A
I '° *COMAR EA

0 0078 NBP• 00000014 -0 w 007C 08E40047 01400000 OBE40045 01400004 0BE4004B
c: ua
<D tING 3 STACK STN•63 STE•OO SEGDESCR 9C00DOFD FE00007F
"1 •sfAck FRAME 001

*WRKAREA
(J) 009C OFFFFFFO 33000088 0300009C n~oonoon 08120000 FFFFFFFF 08000000 33000088 aaaoaaaaaaaaaaaaaaaaaaaaaaaaaaaa
rt OOBC 080C0010 03000000 OOOOOOOE ooo~nO?.O 09080000 7FFFF055 00000000 00000000 iiiiiiiiiiiiiiiiiiii"iiiiiiiiiii
O> oooc oooooooA 00000000 00000000 nnnnnooo 00000000 00000000 00000000 00000000 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii n
~ OOFC 00000000 aiii

•SAVAREA
0100 SAM• OFFFFFFO
0104 BR0-7: 33000088 0300009C 080~0000 08120166 08120000 08120000 081609BA 080C0010
0124 GRG-7: 00000000 00000011 ononon12 59041000 82051820 020CC606 FFFFF3FO FFFFFFFF
0144 XR0-7: 000)3710 00000299 OOEOnnon 00001510 00000008 00000058 00000006 00000002
0164 STR: 7EOOOOOO
0168 P TV: 030001 00
016C PSA: 03000100
0170 ICC: 38180026

*COMAR EA
0174 NBP• 00000010
0178 000002F1 04000C02 03000000 04F11R19

•STACK FRA.'4E 002
•WRKAREA
•PAGE=33000000

0000 00000000 FFFFFFFF 38180026 04000cn? 03000000 FFFFFFFF 00080C00 08000000 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
•SAVAREA

0020 SAMz 0FFF7FF0
Ou24 BR0-7: 33000000 03000000 n~ncoOOR 03000000 FFFFFFFF 08000000 00000000 OC220008
0Ci4 4 GR0-7: 03000000 OOOOOOOE nnn011?.o 09080000 ******** 00003000 00000300 OOOOOOOA

The stack is separated into stack frames by headings such as•

•STACK FRAME 001

Each frame is associated with an individual CALL statement (or
equivalent> or with an exception. The data for the latest CALL or an
exception is in stack frame 001 of the ring ~ stack. In this stack
frame the value.of the instruction counter is printed in th~
*SAVAREA next to the characters ·11 ICC1 11 • See Figure 4-4 for a sample
stack frame 00 I.

*STACK FRAME 001
*WRKAREA
-*PAGE=33000000

0000 00000000
*SAVAREA

0020
0024
0044
0060
0080
0084
0088
008C

*COMAR EA
0090
0094

SAM=
BH0-7•
GR0-71
XR0-71

STR1
PTVa
PSAa
ICC•

NBP=
000002FI

FFFFFFFF 381 70130 02 000000 00000000 FFFFFFFF

OFFF 7FFO
33000000 03000000 08000008 03000000 FFfFFFfF
03000000 00000000 00000020 09080000 ********
00000000 00000000 00000000 00000000 00000000
3EOOOOOO
03000020
03000020
380E009E

00000010
02000000 00000000 04FIOOOO

Figure 4-4. Sample Stack Frame 001 Dump

In this example the line containing the instruction counter is 4
lines from the end of the stack frame and reads as follows•

008C ICC I 380E009E

The instruction counter is of the form rneeaaaa. wheret
r is not relevant;
n is the segment table number <stn>;
ee is the segment table entry Cste>;
aaaa is the address relative to the start of the segment Csra>.

The stn, ste and sra point to the machine instruction which was
executing when the program terminated. Normally, the stn, ste and
sra will also be printed in an exception message in the Job
Occurrence Report <see Exception Messages, below>. This is useful
when no dump has been produced. Even if there is a dump the stn. ste
and sra can be found more conveniently from the exception message.

The machine instruction indicated by the stn, 5te and sra normally
corresponds to a COBOL statement in the source program. The
following paragraphs explain how to find the line in the source
listing which was being executed when the program terminated. Note
that the stn, ste and sra might not point to an instruction in the
source listing. This is the case when the program terminates while
executing an instruction in the prologue or the epilogue of the
COBOL program or in one of the procedures of the COBOL run-time
package.

4-10

The segment table number and segment table entry when written in the
form stn.ste make the SLINKER segment number shown in the segment
list produced by $LINKER. For example, the instruction counter in
the above example gives a $LINKER segment number 8.0E. From the
$LINKER segment list in Figure 4-5 it can be seen that the segment
with this SLINKER segment number <SEO#) is a code se9ment <TYPE IS
c •• in listing> from internal segment number 4 of the compile unit
COBOLTEST.

SEGMENT LIST

SEG.# IN CU: TYPE SH RF RD WR EX WP EP G s SIZE

08.0C COBOLTEST.O • .L 3 3 3 3 3 80
08.0D COBOLTEST.1 .D. 3 3 3 3 3 w 880
08.0E COBOLTEST.4 c •• 3 3 3 3 3 E 576
08.0F _BLANK .o. 3 3 3 3 3 w 144

09.00 PGCS co. 2 3 3 0 3 w E I 120
09.04 TERMINATION .D. 2 3 3 0 0 w s 96
09.0B COBOLTEST.2 .o. 2 3 3 3 3 w 4000
09.0C COBOLTEST.3 .D. 2 3 3 3 3 w 176
09. OE SEMPH. PCX>~ .D. 2 3 3 I) w s 192

Figure 4-5. Sample SLINKER Segment List

The procedure map listing produced by $COBOL .for the indicated
compile unit (in this example COBOLTEST> should be consulted in
order to find the internal line number of the a>B<>L source line
following the relevant CALL or that at which the exception occurred
Csee Exception Messages, below>. The addresses in the procedure map
listing are formed by concatenating the internal segment number
<suffixed to the compile unit name of the $LINKER segment list> with
the sra obtained from the instruction counter. For example, the
SLINKER segment number 8.0E in the above example indicates internal
segment number 4 of compile unit COBOLTEST. The internal segment
number C4) should be concatenated with the sra <009E> from the
instruction counter. Thus the address to look for in the procedure
map listing is 4•009E. This address will normally lie between two of
the addresses shown on the procedure map listinge The earlier
address should be used as this is the start address of the compiled
object code.

Infurmation concerning parameters specified in a CALL Cor
equivalent> is printed in the •COMAREA section of the ring 3 stack
frames. See Figure 4-4. The first word of the -*COMAREA contains the
number of bytes Chexadecimal> in the list of parameter addresses
which follows. The addresses are ot the same form as the instruction
counter C stn. ste. sra.) .. These addresses point to the locations in
the dump at which each parameter starts Cthe number of bytes in each
parameter is not given>. The method of finding these locations in
the dump is described below <Data Division Variables).

4-11

In order to find the data-name of a parameter for which an address
is given the following should be done. The internal segment number
should be obtained from the stn and ste, as described above, and
should be concatenated with the sra. The resulting address should be
searched for in the data map or cross-reference listing fo find the
data-name.

Data Division Variables

The value of any DATA DIVISION data item at the time of an abnormal
termination can be found from the dump listing.

In order to do this a $COBOL listing is needed which includes at
least one of the following <see Sect ion II for the associated $COBOL
parameters>a

- cross-reference listing (alphabetic order>;

- cross-reference listing (declaration order>;

- data map and procedure definition listing.

The address of the data item may be found in one of the above
listings by referring to the associated data-name. Consider the
to !lowing line from a data map listing a

LN NAME PN ADDRESS USAGE PIC-STRING DEF.

02 A-KRBAB <KR-KRBAHEADER> I •OOOEC DISP 9 (1) 84

The address of data item A-KRBAB in this listing is ltOOOEC, where
is the internal segment number of the segment containing the data
item and OOOEC is its address relative to the start of the segment
Csra>.

To find the address of the data item in the dump the internal
segment number must be converted into a SLINKER segment number.

The SLINKER segment list of the abnormally terminated load module
must be consul.ted. See the sample segment list in Figure 4-5. From
this sample it can be seen that the ~LINKER segment number CSEG.#)
corresponding to internal segment number 1 is 8.0D. One can verify
that this segment is a data segment from the TYPE which is ".0. 11 •

4-12

This SLINKER segment number comprises a segment table number Cstn>
and segment table entry Cste> in the form stn.ste. That is, if the
SLINKER segment number is a.OD the stn is 8 and the ste is D. The
segment containing the required data item can be found by looking
for the segment header containing the correct stn and ste.

A sample segment with a header containing stn = 08 and ste = OD is
shown in Figure 4-6. Each line of a sAgment dump shows the values
held in 8 consecutive ~ords of memory. CA word comprises 4 eight bit
bytes.> The first part of the line shows the hexadecimal
representation of each word. The second part of the line shows the
EBCDIC representation. At the extreme left of each line are two
columns of memory addresses. The first column is the address
relative to the start of the segment Csra>. The second column is
the address relative to the start of memory.

The addresses in the first column should be searched, for the
address of the data 1 tern as speci tied in the $COBOL data map or
cross-reference listing. In the above example this address is EC.
The addresses in the segment dump are those.of the leftmost word on
each lirie so the last digit.of this address is always zero. So if
the address EC fs being looked for, the line beginning OOEO should
be selected and the byte with address EC will be the first byte in
the fourth word from the left Ci.e. the 13th byte from the. left>.

General Information

The following information may also be of interest•

- the segment whose name is program-name.1 (usually pointed to by
BR2> contains•
a> at offset ·is <hexadecimal> the program-name.
b) at offset 36 <hexadecimal) the version of the compiler used

to compile the program.
c> at offset 4F <hexadecimal> the date of compilation.
d) at offset 57 (hexadecimal) the time of compilation.
These items can .be checked to ensure that the $COBOL and
SLINKER listings used to analyze the dump correspond with the
dump 11 sting.

- When PERFORM and ALTER statements are used in the program, it
is advisable to determine which of them is active. Th1s can be
done by requesting that a "perform/alter backet listing" be
printed by the compiler CMAP parameter in SCOBOLl. This listing
is explained in Section II.

4-13

~
I

~

,,
.....
'° c
~
CD

~
I

°' •
Ul
CD

'° 3
CD
:J
c+

0
c
3

"'O

J I ~_I ;..,· .:. ' -: \ 1 1 .J •! ; I' ·Ii I l l. ·Ji I. 1 (i : s) : _, 1 ·. ;.., (1 1 , 1 ' i ', F .~ :J l j I

/J=lJ!,/f=fli/ @r·,=f·h/~r=r_;D/j ~.fC"lfi;T f'r~r'i"T: ·J(1i•ri'3ru1 Fr:11[if)1flfi

Sf(;:·1.Hr:,[.,.:: r··~.'1/.:Jt,fl(J ur1,71,9~1(J ~t.:1:;(11, Hr ll·l'~..,t,'\fl~~ L•11·;;•,<t.1 (,117i:~l11 fJ(Jl)J0101 OOlJ(JOUOO

00 (1[' ' 1 7 ".'.'I\ (

00,'C !17;1c 1 1

QI) 4 f I (I j ','if'. f i

0 0 {, (1 ': i ~ A I : "

001'1_1 :,7_-,f,?C
OU/\ (I 11 i _·, 1\ 4 l1

o n c r · i • 1 '· r, [, 1:
EmITI :; 7 1, :, :) { :

0 1 '· u :J 1 ,, F (I
01 ()(' 1 7 f [I (1

01 ;,u 'l I Ii:: I 1

01 l\ n :·, l r r, r
01 ((\ ') (I' 1_.(

(J1 f (' \:i' '.i ,(l

0? iJ('i 7 i ,\ n
O?;'f1 ;1n1·Cf
02 t,(; fr I il•f· (I

026(1 l/ 7,("Jr1
0~' P,(J 1 ;· '• {. (- (•

O?J\f1 unrr.r1
02 co n nu,r:
0 2 [u 1] 7 ~ (:) r:
0 3 (ju IJ 7 ·; l ,, (•
03?.n J7',ccr
0 5 f, lJ f) 7 ~ c :: (.
036() '.1 i..\l)[)(j

03.)(l [)7~[;;,'(l

0 3 A lJ r. 7 ~ [' '· (I

03Cli lli')f1l,C
03[(1 1)7.:il.if.f;

c 4 (J 0 11 7 -~ D " (I
U42fl rinocr:
04 1.c 01..;oFG
0 4 6 (J Cl 7 7

• l !j (

G 4 ~HJ 1.J 7 .:i ~ 2 f.
C 4 .A (l (j 7 5 [4 (1

at.ell un[6l1
0 4 E 0 'J 7:; E. ') C
0 5 0 0) 7 ~ [A f1
o s 2 o o 7 -~ E c n
0540 ul'·EE:U
0 5 (1 U ~) f .~ F (_I f

05110 J15f211
0 5 A fl fl (', f l, n
Q 5 ((i [I l ', f (1 11

osru :1i'~.r1.r1

06fJQ (, i' 1 ff\ (I

06 7 (I [I;·~ I l (1

06 '·'' (1,. .'1 fl (

r'..;1'r 11 or;VJL3:i3 l:·1q,(-1r: n;nc 11111n
() [:_- r 4 • J {, () t, :J {, () I, J I, 1 J i, I I {, f 1 4 fJ I, 'l f, ') I, "'! {, (1

r "1 '• .. 1 F q 4 ,, r 2 F 0 t. n r, r 1 r. r, 1, 11 r., i r, IJ r, · i 1, • 1 r ri
Ffd!l(i.''nD (()r_,2:"~(\(J 1Lr10 7.{.1/ nf11· 1, 1)'l'I.~

u .:. 1 I (r l(! -~ I) [I f. 1 ·~ ~1 [1 3f', Ci .r 1 : I 7, 'J JI. n If n ~ r, 'l I l ()

f) l.J \ :· 11 t),'\ ,\ U .~ 1) IJ U f lJ ;1 [1 3 [) <> F t, t1 ..,, 1 "; '11 r; r

n~1·:r.,"'1A n.0.1:.IJ:_~[: 1 ur-,:,t1: 1 ·111 rY111r-:?1..n
1,11:.111.111,r) t.(;4JCJt,n 1.r,1,pr,f14'1 E'.:Jr.:1r,r1r.!1

t. 't.t·4d'·;1 t.n4~J4U4J t.t:1.r1L.t:r. 1 1 r,'lr, 111,·11,n

o 11.f.•,nn os1-,r 0 c;r,1-, J~1(d''.;">r, n~1 11J<;qc

IJ. 1•,f 1 l1Cll c;.311J[l?t16 :P 11)r;1:112 '1<;1 '1rJ"."lr
n 1 ". r r .f\ ((J (1 i\ 1 (.; f • [: ; ii J f' 1 till I· ! !1 'l :->, 1 'i I') r 1 r:
\I ''. 1 '.I) ! ,\ [r L ~ 1 7 :I 0 7 r ~· 1- 1 7 (I [I r (I (I 'I 1 ' ') 1 '· (,

IJ l 1 7 Pr, 3 0 fl ·\ 1 7 0 4 D 4 C (. 1 7 W> S l• W\ n '> 01 r ()
fi''17•.l7FA :J317(Jf,)0 [l[-17n~;Di' n'~1 ?')7H
() ~. 1 7 r I A A 6 ~l q 1 7 GA D 2 '.')(1 7 (JI 1 D fl n r, 1 ·1 fl r r r,
(J~1>.:l)f A (il)1tl8DDR ,Ji',1 /1151() rn1)')''.'.C

o "' 1 ·, r· [> t. 2 C1 01 ~DD~ 11 n f. 1 you D-:- n;,) ri r 1 "
[' ; C '1 L 2 [4 0 3 l ~ F 1 :>? C 5 C 2 E 1, 0 3 ['. r ., •1 'JC 5
C i fl ', C '· C 1, C '} n 3 C 5 C 1 l (C .' E 3 [1 '> C 1 C S r: \ r. 1,

D7c:: .. c,'.Jf:.6 r12t>5E40J fJ('.1COf11Q C1t'l?Fnrn
n,: 1 r (1 n c 6 D 5 4 Jc 1 c? [) f, D ; r ~ F 2 r '1 c '<: 1 o r;
DHC1rGc3 C11>51..15D6 f1.4(J[.1'}(5 r:irr,t,1)[7.
f 7.t.(,U,fi6 E4DSC4C3 C1DS05iJ{, fi;t,•)(7.0')
D'(',H3ll'f C5C1E3C5 C4\l:)(JO•l0 ir:nnw1rin
o 1, ~ 5 4 Pc , c 3 E 3C 9 c 6 4 r1 t ? D 'i 1, n u. c i r: H i
I: 5 4 °1 f' 'IC 5 [2E 4 D 3 E 5 f ?. t, 0 E2 E) 0 fi fl '1 (<; C I,
[t,(HliC5 E2C2C6t4 !J'.OfHJ('•)fl 1Fr'ir-?r<;
O~:lFl'SO'i !J6L340C3 C1il5C3C5 o~t,·)1>1,rt,

c 'i ll ~; I I r, f) c [I 1 CJ~ [> 7 c 1 (i '! c 5 {, u F: 2 F '· r ' r: 7. c r;
CD';()t,iJ E2E4C3C3 r~'CZUC1i f 1tf'l)•Jf'l•l0
f7.1='iC'f(f• C1C7C)F) f(lflF!l'iC rJH<lr.;>r)
E?C~~6D7 CSC440C3 rG04DlC7n,41Ct.C1
D c; c c; f (· t. fJ c ~. r, 6 fJ 4 o 7 c 9 r• 5 r, 11 c '· r 1 r i; i: 1 '· n
E :;, .', r: (6 (? l> 3 c ') 4 0 c 5 [J '· tJ 7 [_s F :·~ F 1 F 1 r:? F lj
C 1 i: ~- C 1 '• 0 D S D 6 I- ~ 4 0 C {: D .'1 [t, D 'i (/, n 'i (t, f:' 6
(J '·'IL l 3 4 (] c 6 D '> E 4 l> 5 (4 l> ') c 'i E?. 1: 1, fl s r~ ~ 4 n
I, '.J'> ([~ ?() C (11 4 J\ (5 [J -~ ('i [-~ 0 (I, I, 'l (") ("; f. Ii

E 2 c 'j 1.1 J t) c 5 c '• 4 a c 2 c '..i c (, r1 f, o ') r. 'i r, n 'i r_ r; r
6 o 6 '~ r, u 6 o f1 o 6 J 6 o 1, o 1, C· '• o" c s c 'i r t, q c ~ r. r
5C5C4JC1 C4C4C5C4
C t, t, •JC 6 D 9 i> 6 n 4 4 0 C 5
Uv.Hor ti 11r1fUFJ
(.' .. PC-l4D) (t,t..140l.0

'l s 111 r · o ~ 2 r t. t! 4 D " c 1
p i.: 11, r1 r; n c o 1 F c r o r 2
(11 /, i I [·) (1 [1 {, (1

J [2 f .lj

r -, 111 u / c ., [1 •, l. 1f'61 t.
t c. 111, r' •. 4 o c 6 r •, c 1 c r,

I, (' E. ·5 [) [, I, ') ('i [> r> (I, 1, n
f\5C4405C 5r'iCt:lin6
C~CSC7C? n'in'ir')o<;
1, r r 1 F fJ f n c: 1 r ., c: -i r .. ,
L· r, L c~ l. l) [\ (, f 11 I, 1 C ') I') ·')

fJ i' r> 9 c r; 'i r, I') 'r ·; 1: 7 n 1,

c 7, c 1 '' ~ r n f JJ r 1 r ."'
f\i'f/.J i ('lf'"irlffl
l• •1•,1 ·, c •, r •, r_ 1, · l r i

rFf'l1,1 1J:i:.2 C-8~1((.'AQt, E31'iJC3C2 D36CJC3E3

u 4 r 1 .'.. 1 1 '· l I t. O i.ti u H ti F t. 4 o c 3 D 6 c 2 D 6 D 3 t. U
F 'i (, 1 I : J f ~ I) 1 r 7 r R r 1 F) 7 (\ F 2 F 0 7 A f 2 F 4 F 6
(1:':1f•'"l1lJ (11111.0018 GP.1fl(l020 0.~1EJOU28

u::i1_1.?:i'\011 or1crtit1SR 0818003c 00013800
ii'\ .1:) '11 8 fl [l ,=\ 13 () 1 Al 0 g 13 0 1 D 2 031 3) 1F 6

'• Cl r, '. ~ '· ;1 '· o 4 o '· n 4 ~ i. o 4 o '· o '· ri '· o t. u t. J i.. o 4 o
4 :i 4 n" ll 4 n '· '.'J t, r. t.. or, n t. n t.J 4 o 4 o t. 04 o 4 o 4 o

t.f]t,:)t,(Jt..0 DiHlD0154 08000158 0816J49A
u.~1f)il'jDI\ Gfl1605F8]8160616 090(J(lt.2
:J'F111i)1 '}/, o:J1 uJ'J1.l>' 0.516U9F4 08160A56
Ll ~l n r· I) 1 ll J 0 8 n D n 1 fl'· J I\ 1 6 0 D 7 A u 8 1 6 J fl D (
fl :~ 1 7 iJ ? 12 0 f, 1 70 2 A C Q 9 0 C 0 0 8 4 0 81 7 J .3 8 C
tlF.171)'jf'[(l(\170(.,92 08170736 0817)798
() :1 1 7 (J ') 7 [0 S 1 7 0 A 3 2 0 8 1 7 0 A 5 2 0 8 1 7 0 A 7 A
o '.; 1 7 11 c r c n r, 1 7 n E i A J e 1 g o 1 1 ?. o 8 1 8 J s F E
u;;1<1;11,?t, OP.190400 08190864 0819::l8E8
n(;nr~c62 C3D6Dl,D7 C9D3D9C5 E2Et.D3E3
l2r:4r>H~ F3L3C5C2 E3C4C2D2 CSE87EC3
[J6D'lo;>o7 IJ07E.IJC(l1 080D02U8 080D02EI(
F9F5f1000 001C0ll1F 0008C3D6 D4D7C9D3
D5f'!l·E340 OildD02FR 40f260C8 C5C1Ct.CS
60U.C'iC1 C4l509C0 C5C1 C4C5 D940D5D6
C5C1L3C5 t.OC8CSC1 C4C5D9C8 C'.:iC1Ct.C5
icriD'nriu 1onou1114 oooencs E2E34UDS
(1fJUC1E:2 C5D5D6l.0 D7CSD9D4 C1DSC5DS
O\J 111CJD1D C3D0Dt.D.7 C1D9C9E2 D6D540E2
C 3 E t, E 3 C 9 D 6 D 5 4 (1 C 1 C 2 D 6 0 f, 0 D (l 3 A A 0 8 0 D
f'3D7ft,r:.5 cr .. 1JOLOLl(J 0822CJ008 C3D6Dt.l>7
E2L2C6Et. D3D9080D 03FAE340 C3D604D7
U}1LC5L7 C5C3E4l3 C9DbD5t.0 C1C2D6D9
C1 f\3f'l.'i(llJ OOt:r11 Cf'll OP.250008 08260008
E 3 C 1 ,_, 1) D 5 fl 6 I' 3 4 0 C 6 D fJ E 4 D 5 C t. 4 E t. [F 0 F 0
D ') f\ 11 ~: 3 4 fJ C 6 C> 6 E t, fl 5 C 4 C 1 C 2 E 2 E 3 D 9 C 1 C 3
D~Ci~C3C4 t.nc5E7C5 C3E4E3C9 D6DS40C4
t,QC'>UC5 C3L4[3C9 D61>5080D 0t.IJA080D
C (1 C 9 ;.> 3 C 5 4 0 C 5 D t, C> 7 E 3 E P, F 0 F 0 r 1 F 1 4 0 4 0
D~n?r~4n 5C5C08Cfl 04FJ\5C5C 5Ct.OC9fl5
5CC7iDuD4 D7C1D9('1 E206DSF1 F0606060
C 1 [J 5 C7 C 5 (4 I, U E 3 ll f, 4 0 5 (5 CS (4 Qi, 0 4 0 5 C
5c5r~C4U 4U40SC5C 5C4DC4C5 D3C~E3C5
[)t,[>7C1D9 CS4UfH1 C20H540 D6ESCSD9
c 7 4 r) i) () (6 4 n L ? [l (i r: 4 D 9 (3 (5 4 0 D 5 fl ~ E 3 {, 0
0 7 C 1 l H .\ 4 [) r 3 D <) C "j C 1 £)(lfHJ D 0 SH AU ~:HJ D
[1?r1.•,11·ir,? t.!Jfl'.il..i(if~ t,fJC6D6E4 05Ct.F('00
D I J[J 'IC '> {, () l ' U\ 0 r. n Ll ll 5 r flF 0 4 0 [l 7 C8 c H 2
l?f_~o/C.:1 C3L:~t.('C' D9C'iC:1E3 C:)D6E4F9
I> '.I < ') r 1C I, C7 <) I -~ 4 (l (3 [) 6 D 4 0 7 C 9 D 3C 1E 3
C ~ !Jr, i (I •, l 1

J (1 'I f (' C 'J D 6 0) 7 A t, 0 D 7 D 9 D f1 C 7

O@~@@@C@@@@@cil~~@cil~~@@@w@T-CRL-CT

EST L6l. C030L
v-50.26 05/03/7815:?0:246
4Jwwiil@@@cil~w@cil~~@@@w@@@@@@@@@@@@@

@@~@@@iil@@~~@@@ i@cil@@@H@@@@@@@@@@
@@@@@@@~i@OU@@@:@@@@@@@@@@@K@@@6

@@@@@@@@@@@@@~S

@ii)ji'.]) Q.l@@@Q.I Q)@@
fu@cl@@@@@@@@@@@@@@@cil@@@i8@@@@@@@@
@@cilwi>.lw@@@@@@@~@i@@@@@@@@@@@t.@cil@@

@@@@@@@@@@@:@~i~@@@@@i@@@@@:@@@@

@@@@@cil~=@~@O@i@ru@i~cilcili>.l@cilwi>.l@w@@cil@

@@~cil@@@M@@w@@.])@0@@@@@@@@@@@@@@@@

@@@@@@@&@@~Q@@@@@a1@=@@@@@@@@@@@:

@@Q.l@@@@K@~@@@@@t.@@@@@@@@@@@@@@@@

@@@@fu@wG@~~@@~@@@@@@@@fu@@@@@~@@Y

@@@@i@@@@@@K@~~@@@@fu(QMPILRESULT

RESULT1RE:SULT2RESlJLT3TESTD!3KEY=C
ARDFILEAOSTRACTWOR~P@@@@@@@@@@@@

PY-WKOU@@@@@AP0095@a@~@@@@CO~PIL

@@@FN ABORT29CANNOT @@@8 S-HEADE
ROOCANNOT RtAD C-HEADERllEAlJER NO
T FOUNDCJ\tJNOT CREATE llEADERHEADE
R CREATED@@@@@@@@@~@@@@@@@TEST N

0 T AC T I F I N Ll fl T A- 8 AS UJ 0 PER MANE N
T RESULTS STORED@@@@COMPARISON S
UCCESSFUL@@@@EXECUTION ABO@@@@@@
~@NtJOT CANCEL OUTPUTD@@@@@@@COMP
IL@@@@P/\RE SUCCESSFULR@@@@T COMP
ARE SUCCESSFUL@@@@EXECUTION ABOR
TVIDAGE0010•LlSTflLL@@@@@@@@@@@@@
STORED COMPIL DATA NOT FOUND++OO
NEW CO~PIL DATA NOT FOUNDAOSTRAC
T FILE EMPTY11STORED EXECUTIJN D
ATA NOT FOUNDNEW EXECUTION@@@@@@
@@T FOUNDR ES ULT FILE E~PTYJ011

•@@@CELFTED Of FORE ••:ilcil@@••• IN
SERTED BEFORE •••COMPAkISON1J---

------- *** CHANGED TO •••
** ADDED TO ENO ••• ••• DELETE
D FROM END •••COMPARE TABLE OVER
FLOW1100AEGINNING or SOURCE ~OT

FOUND 100A~STRACT CREAT@@~@@@

@@RSUMMARY OF FRRORS NOT FOU~D2@

@alciliilii'@U2PRE-UXMORE Tll:il;)@@O =>HAS
[NA"1E5TOTAL00AOSTRllCT CREATEOU9
s 0 p (. ti 0 u r p u r I N 1 (l R E A D G f T (0.., p I L A T
I 0 N H E A Ll F R ** .. c; C 0 5 VE RS I 0 N : P R 0 G

JOB EXECUTION MESSAGES

Messages may be output to the Job Occurrence Reoort from the
following sources•

- the system;

- COBOL run-time

The types of messages output from these sources are described in the
following paragraphs.

Messages Output by the System

The general format of messages output by the system in the Job
Occurrence Report is as to llows 1

ccnn.text

where cc is a two l~tter classification code and nn is the number of
the message within its class. The messages are classified according
to the nature of the system function which generated the message.
Some of the more common classification codes' and correspohding
system functions area

CK Checkpoint/Hestart
DV Device Management
EX Exception Handling
FP File Open/Close

DP.pending on the error class, the text following the code may be a
brief explanation of the cause of the error or else a further
numerical classification followed by a return code spec! ficat1on. A
complete list of classification codes, messages and return codes is·
given in the Error Messages and Return Codes manual.

The message may be prefixed by ~~ARNING, FATAL or SYSTEM. The
significance of these pre fixes is as follows•

- ~ARNING a Processing conditions are inconsistent with the
expected conditions but the inconsistency is not severe enough
to prevent the program execution from continuing.

- FATAL 1 This is caused by a serious user, operator or system
error. Usually, program execution cannot continue and the step
is abnormally terminated.

- SYSTEM a This is probably caused by some malfunction of the
system. Normally the message comprises simply a message class
and number with no.text. Unlike WARNING and FATAL messages, the
meaning of SYSTEM messages will not be self-evident and should
be referred to Field Engineering.

4-15

Messages output by COBOL

The following messages may be output by the COBOL run-time oncknge:

CBL11.DISPLAY

CBL12.IFN•ifn

CBLl 3. ACCEPT

CBLl 4. IFN• i tn

CBL15. IFNlifn

CBL16. {CALL }
CANCEL

console_displayed_string

RELATIVE KEY CANNOT BE USED

console_accepted_string

ORGANIZATION OVERRIDEN

RECORD LENGTH CONFLICT (ACCEPTED IN INPUTl
<length ON FILE>

program-name RC = xxxxxxxx siuic,
retcode AT ADDRESS stn.ste.sra.

CBLI 7. STOP 11tera1

CBL18.IFN•ifn

CBL19.IFN•ifn

CBL20.USETST

CB L2 1 • I F N ' i fn

RC = xxxxxxxx siuic, retcode Al ADDRESS
stn.ste.sra program-name CILN =
internal-line CXLN=external-linel

CONTROL RECORD 101 TRUNCATED

RC = xxxxxxxx siuic, retcode

DUMMY f ILE NOT DECLARED OPTIONAL IN SOURCE,
FILE STATUS 9I NEXT RELEASE.

CBL11, CBLJ3 and CBL17 are simply DISPLAY, ACCEPT and STOP literal
messages which are echoed in the Job Occurrence Report when they are
directed to or from a CONSOLE, ALTERNATE CONSOLE or TERMINAL Csee
Section XI>. The remaining messages indicate that an inconsistency
has been detected. The step will be abnormally terminated if the
message is CBL16. If the message is CBL18 the step will be
abnormally terminated only if the return code indicates a serioYJs
error C see the Error Messages and Return Codes manua 1 for a tu 11
list of return codes>. Abnormal termination will not occur for
message CBL15 if the file is an input file. Abnormal termination
will not occur for message CBL14 if overriding is permitted.

Exception Messages

Most abnormal step terminations result from the detection of an
"exception" by the system. An exception is an error condition
detected during the execution of an instruction <e.g. illegal
operation code, illegal decimal data>. The system outputs an
exception message in the Job Occurrence Report whenever an exception
is detected. Exception messages have a classification code EX. ·There
are four possible exception messages• EX01, EX03 which are normally
fatalt'and EX02, EX04 which are non fatal.

4-16

FORMAT OF EXCEPTION MESSAGES

The formats of the exception messages are as follows•

EXOl .EXCEPTION cc-tt • message-text C<message-parameter>]
IN TASK name.nnn {AT ADDRESS

1
1 stn.ste.sra

RETURNED BY

EX02.EXCEPTION cc-tt i message---text Umessage=parameterl]
IN TASK name.nnn AT ADDRESS stn.ste.sra

EX03.{UNEXPECTED RETURN CODE (mnemonic) GOT~
ABNORMAL RETURN CODE (mnemonic> SET1
IN TASK name.nnn AT ADDRESS stn.ste.sra

EX04.MAXIMUM EXPECTED WARNING COUNT EXHAUSTED

where•

cc

tt

is the class of exception (decimal>.

is the type of exception <decimal>.

message-text is a plain English exolanation of the error.

message-parameter is an optional value to help diagnosis.

name

nnn

stn

ste

sra

mnemonic

is the.task name from the SLINKER listing
C normally MA IN) •

is the task occurrence number <decimal>.

is the segment table number.

is the segment table entry.

is the segment relative address.

is a character string equivalent to the return code. A
li~t of return codes and nmemonics is given in the
Error Messages and Return Codes manual.

4-17

Notes•

- stn.ste.sra are discussed in Dumo Analysis, above.

- EX01 and EX03 are normally fatal. EX02 and EX04 are non-fatal.

- An EX03 message specifying uuNEXPECTEu RETURN CODE" indicates
that the COBOL run-time package has received an unE~xpected
return code from Data Management. An EX03 message specifying
u ABNORMAL RETURN COOP' 1ndice te s that the COBOL run-time
package has requested abnormal termination of the step.

- EX03 need not be fatal if the COBOL program contains a USE
AFTER ERROR PROCEDURE SECTION in the DECLARATIVES for the
relevant file <See Section IX>.

- EX04 is printed when more than 99 EX02 messages have been
printed for the current step. After EX04 no fut her EX02
messages will be printed.

Four of the more common exception messages ares

EXOl .EXCEPTION 09-01 s ILLEGAL DECIMAL DATA •••
EXO 1 • EXCEPT ION 1 7-02 s OUT OF ARRAY RANGE •••
EXOl.EXCEPTION 06-00 I our OF SEGMENT BOUNDS •••
EX03.UNEXPECTED RETURN CODE •••

These exceptions are discussed in the following paragraphs. A full
list of exception messages is given in the Error Messages and Return
Codes manual.

EXCEPTION 09-01 ILLEGAL DECIMAL DATA

This exception occurs when a non-decimal value is moved to a data
item which is described as numeric or is involved in computation or
is used as a subscript. The following example shows how this can
happens

•
~ORKING-STORAGE SECTION.
77 ZONE PIC 9(4).
PROCEDURE DIVISION.
p 1 •

•
•

MOVE HIGH-VALUE TO ZONE.
STOP RUN •

ZONE is a numeric data item. In the native collating sequence
<EBCDIC>, the figurative constant HIGH-VALUE corresponds to
hexadecimal 11 FF 11 , with all bits set to I. This configuration is not
decimal, hence the exception. ·

4-18

This exception disappears_ if the DEBUG parameter is included in the
SSTEP statement and the RECOVER ILLDEC command is given to the PCF.
Instead the error is reported in the PCF report. See the Program
Checkout Facility manual fo.r details. See Section V of the current
manual for the format of decimal data.

EXCEPTION 1 7-02 OUT OF ARRAY RANGE

Th c.. f II!!' ,.l!llo••~-....t ""'" a++ a-""+ c ""'-
~ I I .r. ;;I .r. ;;I ~ g U .;a gu IJ y Q \o \o llltJ \o .&. I ay to access a item outside upper
or lower limits of a table.

This exception d.isappears if the DEBUG parameter is included in the
$STEP statement and the RECOVER SUBSCRIPT command is given to the
PCF. If this is done the error is reported in the PCF report.

EXCEPTION 06-00 OUT OF SEGMENT BOUNDS

This is caused by attempting to access a data item outside the
memory areas allocated to the segments of the executing program.

This exception can occur if the SUBOPT parameter is used in the
$COBOL statement. Under certain circumstances this parameter can
result in no ar.ray bound checks being performed. Thus the program
may attempt to access data outside the array, and possibly outside
th<! program segments. It is advisable only to use the SUBOPT
parameter after the program has been debugged. At this stage the
program shou.l.d be unlikely to access data beyond array bounds.

UNEXPECTED RETURN CODE

This is caused either by a user error or by a system difficulty.
Some return c.odes are specific to COBOL programs. They ares

USER O,RPWUNBUN

USER O,ALREADY

USER O,NOINIT

USER O,LNERR

attempt to use the COBOL Report Writer
when it is not included in the set
of features delivered with the syst~m.

attempt to INITIATE an already initiated
report <Report Writer>.

attempt to execute a Report Writer
statement when the involved report
is not in the INITIATEd state Cno INITIATE
has been executed for the report that has
not been followed by a TERMINATE>.

the data item referenced in the DEPENDING
ON option of an OCCURS or a PICTURE
clause lies outside the limits specif led
in that clause.

4-19

USER O,JUMPERR

USER o, SEQE RR

COBOL 1,RECERR

I
COBOL I ,KEYERR

COBOL l,WRONGORG

COBOL 6,NAMEERR

any other

*

attempt to execute a GO TO statement
without procedure-name, before it 1s
altered.

the flow of control attempts to go beyond
the end of the program.

the maximum record s 1 ze of the file 1 s
not the same as that specified in the
program.See Record Size, Section IX.

the number of record keys of the indexed
file, their position relative to the
beginning of the record, their
length and/or the perm1~s1ble duplicate
keys are not the same as those
specified in the progrAm.

the file assigned has an organization that
cannot override that specified in the
program.

1dentif ier in a "CALL 1dentif 1er" stRtement
does not contain a program-name.

abnormal code returned by the system, e.g.
by Data Management if no USE procedure 1~
used, by the Message Control System, by the
sort routines ••• Refer to the Error
Messages and Return Codes manual for a
description of these return codes.

4-20

.COBOL 1,KEYERR the number of record keys of the indexed
file, their position relative to the
beginning of the record, their
length and/or the permissible duplicate
keys are not the same as those
specified in the program.

COBOL 1,WRONGORG the file assigned has an organization that
cannot override that specif led in the·
program.

COBOL 6, NAM EERR identifier in a .ucALL identi.fier" statement
does not contain a program-name.

any other abnormal code returned by the system, e.g.
by Data Management if no USE procedure is
used, by the Message Control System, by the
sort routines ••• Refer to the Error
Messages and Return Codes manual for a
description of these return codes.

Note•

For the COBOL J ,RECERR, the record length 11 spec1.fied in the prOQrant11

is one of the following•

- For a report file•
a) If the RE<;ORD CONTAINS clause is present, the speci.fied

record l.ength is augmented by 8.
b) If the RECORD CONTAINS clause is not present, the record

length is assumed to b~ t40.

- For the other files•
Unless one of the following conditions exists the record length
is taken to be the length of the largest record defined for the
file. If one of the following conditions exists this length is
augmented by 8.
a> The internal-file-name in the SELECT clause is suffixed by

-PRINTER or -SYSOUT and WITH ASA or WITH SARF is not
spec 1 fled.

b} With SSF is specified in the SELECT·clause.
c> The LINAGE clause is specified in the File Description

entry.
d) The file is referenced in a WRITE statement with the

BEFORE/AFTER ADVANCING phrase.

4-21

SECTION V

REPRESENTATION OF DATA

This section describes the way in whi~h data descriptions are
interpreted by the Level 64 COBOL compiler and the way in which data
is held in memory in a COBOL program.

The value of a numeric item may be represented in either binRry or
decimal form. In addition there are several ways of expressing
decimal. The selection of radix is dependent upon factors incl11dP.d
in clauses such as USAGE.

The types of data supported by Level 64 COBOL are listed in Tnble
5·-1, according to factors included in the USAGE and PICTURE clausAs.
The usage. of an i tern spci fies the format of the data 1 tern in
computer storage • Note that only the usages DISPLAY, COMPUTATION.AL
and INDEX are part of the ANS standarrl. The following perRgraphs
describe how each data type is represented in internal memory.

FORMAT OF DATA IN MEMORY

The basic element of information in Level 64 memory which is trnnrlled
by instructions is the byte (eight bits>. A group of two cons~cutive
bytes forms a halfword. Four consecutive bytes form a word. An
address defines the location of a byte in main storage. The location
of a group of bytes C e.g., halfword, word> is de fined by the nddre ss
of the left-most byte. Consecutive bytes from left to right ~re
defined by consecutive increasing addresses. A group of bytes is
called halfword-, word-, or doubleword-Aligned, if its address is a
multiple of two, four, or eight, respectively.

The bi ts forming a byte are de fined from lP ft to right and an~
numbered zero through seven. Byte format is represented as fnll0ws:

x x x x x x x x

0 2 3 4 5 6 7

5-01

DISPLAY DATA ITEMS

Character-strings are defined, explicitly or imolicitly, by a USAGE
IS DISPLAY clause. Character-strings, represented in EBCDIC code,
are stored in memory in contiguous bytes with one character per
byte. These character-strings may be non-numeric data as well as
unpacked decimal numbers.

An unpacked decimal number <PIC 9 or PIC 59> has the following
format. Note, for PIC 9 the sign position is merely a zone.

zone l digit zone 1 digit zone l digit zone 1 digit ..

byte byte byte byte

Each digit occupies the rightmost four bits of each bytet

- Values from 0 <OOOO> to 9 CIOOJ) are legal.

- Values from A < 1010) to F C 1111 > are 1 llf~gal and produce an
exception.

Zone values are not checked by decimal instructions.

The sign occupies the four left most bits of the last byte:

- Values from A to F <1010toJ111) are legal.

- Values from 0 < 0000) to 9 < 1001 > are i llega 1 and producP. t=in
exception.

Signs are interpreted by instructions in the following manner•

Sign Encoding Sign

JOJO +
J 011
1 J 00 +
1101
I J J 0 +
1 I 1 1 +

Instructions which use the encoded sign put the sign into the rP.sult
field in the following manner• •

+

5-02

Sign Encoding

1100
11 0 J

Decimal instructions do noc examine the zones of source operands. I
The code I 111 is put in a 11 zones in the result f 1 elds. The len9th
of an unpacked decimal number may be from one to thirty one digit~.

PACKED DECIMAL NUMBERS

A pac.ked decimal number <USAGE IS COMP, COMP-3 or COMP-8) is
represented as a series of contiguous bytes, each containing tw0
4-bit encoding portions, except for the rightmost byte. The leftmost
four bits.of this byte represent a digit, while the rightmost four
bits define a sign. However, if the USAGE is COMP or COMP-J and the *
PICTURE character string does not hc:ive a sign, the rightmost four
bits represent the rightmost digit. Unsigned COMP and COMP-3 iterns
should be avoided, if possible, for efficiency reasons (sPe Section
VIII, Efficiency Techniques>.

A signed packed decimal number (COMP, COMP-3 or COMP-8> has the
to !lowing format a

digit I digit digit l dig 1 t digit I digit digit l
byte byte byte byte

Each digit occupies four bits•

- Values from 0 C 0000) to 9 <I OOJ) are lega 1.

sign

- Values from A <1010) to F < 1111 > are illegal, and produce ~n
exception.

The sign, if present, occupies the last digit positiona

- Values from A to F are legal CA,C,E,F = + ; B,D = ->.

- Values from O C 0000) to 9 C 1001 > are 1llega1 and produce an
exception.

Signs are interpreted by instructions in the following manner•

Sign Encoding

I 010
J 01 I
1100
I I 0 I
I 11 0
I I 1 J

5-03

+

+

+
+

Signs put in result fields by instructions are encoded in the
following manners

+

Sign Encoding

1 J 00
.1 J OJ

A packed decimal number may occupy from one to sixteen bytes. The
length~ L, of a packed decimal number, is specified in digits. The
number of bytes occupied is determined in the following manner.

Type Number of bytes

L even L I 2 + 1

L odd L + 1
2

When L is even, the leftmost digit position must be zero.

Table 5-J. Data Representation in Level 64 System

USAGE MACHINE DESCRIPTION PICTURE

DISPLAY EBCDIC byte R
or unpacked decimal

*COMPUTATIONAL Packed decimal <possibly R
or COMP without sign position

depending on PICTURE>

COMPUTATIONAL-] **16-bit fixed-point binary NR
or COMP-1

COMPUTATIONAL-2 32-bi t fixed-point binary NR
or COMP-2

*COMPUTATIONAL-3 Packed decimal <possibly R
or COMP-3 without sign position

depending on PICTURE>

COMPUTATIONAL-8 Packed decimal <always R
with sign position>

COMPUTATIONAL-9 Floating-point binary NA
or COMP-9 single precision

COMPUTATIONAL-JO Floating-point binary NA
or COMP-10 double precision

INDEX 6 bytes NA

5-04

Notes tor Table 5-J ,·

R = PICTURE clause required in data description entry;

NR = PICTUHE clause not required in data description entry;

NA.= PICTURE clause not allowed in data description entry;

*These items have the same meaning, unless specified otherwise in
the DEFAULT SECTION.of the CONTROL DIVISION;-

**If the PICTURE clause specifies more than 4 digits, a 32 hit
fixed-point binary data item is used.

FIXED-POINT BINARY NUMBERS

Fixed-point binary data can be specified as either 16-bit binary
CUSAGE IS COMP-t and no PICTURE, or a PICTURE showing less Uvm 5
digits> or 32 bit binary <USAGE IS COMP-2 or COMP-1 with a PICTURE
showing more than 4 digits>. The short binary data item consists of
two contiguous bytes; the long binary data item, of four contiguous
bytes. In both types of data, a decimal point is assumed to be to
the right of the least significant bit. Negative values ar~ ~tored
in two's complement form.

FLOATING-POINT BINARY NUMBERS

Floating-point binary data can be specified either as 32-bit hinAry
<USAGE IS COMP-9) or 64-bit binary <USAGE IS COMP-10>. The sh0rt
floating-point binary data item gives single precision Ca prP.cision
of approximately 7 decimal digits>. The long floating-point binary
data item gives double precision Ca precision of approximately 16
decimal digits>.

The value of a floating-point binary number, V, is defined by the
following equations

S E
V = C-J) x 16 x .M

V'ihe re E = C-64

Sis the sign, Eis the exponent, C is the characteristic, anrf)~is
the mantissa of the floating-point binary number.

The value zero is represented by a floating-point binary number with
mantissa equal to zero. A value of true zero is reoresentP.d by a
floating-point binary number with all bits equal to zero. ·

5-05

I

A short floatin':J-pOint binMry nimbr=n .. 0cc1.1riee') four byte~.
The format is as follows•

SIGN CHARACTEH-
\ IST~C

isl c l
0 I 7 8

A lon9 tloating:;..point binary nurnber occr1pies ei·Jht t)yte~-:.
The tormnt is as to I lows:

SI UN CHM?ACTt:H
\ I ST IC

lsC c >-I
U I 7 H

1-==
.3?.

S = 0 positive sign
S = I negative si0n

I

·-~ '

The cnan1ctP.ristic c of i1 floating-oi)int birv~rv nurnbP.r is coryt:Fij r)'.)'·~

i n b i t s I th ro u CJ h "1 • I t s nm 9 e i s O t h r or 1 c~ h 1 2 7.

The P x Done n t • t: , i s tt) e pow e r t o w hi c n I () i s r A i s ,.) d i n c: r1 l c 1 JJ ? ti n q
t l H~ v -3 l u '-~ o J l he f l of:' t i n 9-no i n t hi n A r v nu m her • f!"w <~ x o o rw n t i::. i. ::;
8qual to C - o4.

r h P. m ;:i n t i s s a M i s U 1 8 n A x a de c i ni a 1 nun b P r c n n t a i n (:V'f i n t .. d t s ?-i t·. r 1 r r; ' 11 : r ,
31 tnr a short flr)Atin::;-roi.nt f:lin0ry nirrrilwr, or in utt~~ H tl'ir,"'11 :r' C3
tor a lonq Ho-1tin9-noint binary n11mb~r. H10 radix r0int is -·~t thr:,
l P, t t 0 r th(~ hi !.) h-0 rd e r rii g i t p 0 s it i ('In •

INDf.:X DArA ll't:M

An I N !.H.: x rl At a i t e rn (u s AGE I s 1 N r H: x) c r) n .s i st c:; 0 t 4 H h i t _c; (s 1 x h \/ !-. (~ j

ot binary data: tt"lP first four !·)ytes (C\JMtJ-2) cont;iin tt)P ;pJ1·civ,,~
rlisplnCP-mAnt frorn thP bo.9inninq OT ttv=~ cable r1nd thP ln~t t1t10 r-,·d;0'~
(COMP- I) con ta in ttw o cc tJr renc e numhj':~; or t tw tr-1h le A .l 0 rn(;) nt.

SECTION VI

CALLING AND CALLED PRC~RAMS

An application can be divided into several separately compiled
programs. These programs can later be linked together by the SLINKER
utility to form a single executable load module. Control is
transferred between programs by the CALL and EXIT PROGRAM
statements.

The use of calling and called programs has the following advantages•

- A called program can be written and compiled and stored in a
compile unit library. This program can be called by other
programs and can thus be included in several different load
modules without having to_ be compiled each time.

- Programs written in languages other than COBOL <e.g., FORTRAN>
can ca 11 or be ca 11 ed by COBOL programs.

- Programs can be written by several programmers and can later be
combined into a single load module.

However, the use of calling and called programs may increase
execution time slightly.

The following ANS standard COBOL language facilities are used in
calling and called programs•

- the CALL and EXIT PROGRAM statements and optionally the CANCEL
statement;

the LINKAGE SECTION;

- the USING phrase of the PROCEDURE DIVISION header.

The EXTERNAL phrase is available as an alternative or complement to
the LINKAGE SECTION and USING phrase. However,. this fac111 ty is not
part of the ANS standard. The use.of all the above facilities is
discussed in the following paragraphs.

Note• For an explanation of COBOL segment number, internal segment
number and SLINKER segment number see Se_ction III, Linking.

6-01

TRANSFER OF CONTROL

The trans fer of control between COBOL programs is achieved by using
the CALL and EXIT PROGRAM statements. .

The CALL statement passes control to the program with the specified
PROGRAM-ID value. For example•

CALL "PROG2".

In this example control will transfer to the program whose name 1~
PROG2. <All programs which are to be linked into a single load
module must have names which are unique withln that load module>.
Control is handed to the first non declarative statement in the
PROCEDUHE DIVISION of the called program.

It is important to note the distinction beween calling programs and
called programs. A calling program contains a CALL statement which
re ters to a separately compiled program. A called program is the
subject of a CALL statement in a separately compiled program. Called
programs may also be calling programs. That is, they may call other
proyrams. Howe~er, a load module contains only one program which is
not a ca !led program. This is tne "main program" which is speci tied
in tne ~NTRY parameter of SLINKER. Step execution commences from the
tirst non declarative statement in the PROCEDURE DIVISION of the
raain program.

The EX Il PrWGHAM statement returns control from a called program to
the calling proyram at the point immediately following the CALL
statement. An EXIf PROGRAM statement which i~ not in a called
program <i.e. it is in the main program> is ignored when the program
is executed. The main program should be terminated by a STOP RUN
statement. This statement may also appear in any called program. A
STOP RUN statement in any orogram of a load module will cause
execution of the load module to be terminated immediately.

Any program may be used in more than one load module. Such a program
may sometimes act as a main program and sometimes as a subordinate
progra~. In this case the program should be terminated by an EXIT
PliOGt?AM statement to llowed immediately (in the next paragraph) by a
STOP RUN statement. ~hen the program is a main program the EXIT
PROGRAM statement w i 11 be ignored and load module execution wi 11 · be
terminated by the STOP RUN statement. When the prQgram is not a main
program the EXIT PROGRAM statement will hand control back to the
ca 111 ng program.

The transfer of control between COBOL programs and non COBOL
programs is covered later in this section.

6-.02

LINKAGE SECTION AND USING PHRASE

A calling program may provide data for a called program to process.
Similarly, the called program may return processed data to the
calling program. This exchange of data is achieved using the LINKAGE
SECTION and the USING phrase of the PROCEDURE DIVISION header. An
alternative or additional method of exchanging data, using the
EXTERNAL phrase, is discussed under a later heading.

Data to be passed to a called program is specified in the LSING
phrase of the CALL as shown in the following example•

CALL "PROG3 11 USING QUANTITY, PRICE, VALlJ.

In this example let us assume tnat QUANTITY and PRICE are elementary
itams on an input file and that VALU is an elementary item in the
WORKING-STORAGE SECTION. The called program must contain a LINKAGE
SECTION which contains three data items each of which has thP. same
picture and usage as one of the data items specified in the USING
phrase of the CALL statement. In addition these three items must be
mentioned in the USING phrase .of the PROCEDURE DIVISION header in
the same order in which they appear in the CALL statement. For
example a

PROGRAM-IO. PROG3 •

•
LINKAUE SECTION.
01 VALUE-L
77 PRICE-L
77 QUANT-L

•

P IC •••
P IC •••
P IC •••

PROCEDURE DIVISION USING QUANT-L, PRICE-L, VALUE-L.
•
•
MULTIPLY QUANT-L BY PHICE-L GIVING VALUE-L •
•
•

EXIT-PARA.
EXIT PROGRAM.

The data items described in the LINKAGE SECTION are not allocated
any storage space in the data segment<s> of the called programl
instead data names in the LINKAGE SECTION are associated with
locations in the data segment or segments of the calling program.

6-03

The purpose of the LINKAGE SECTION is to enable the programmar to
specify the pictures of the data items which are to be processe~ in
the called program or are to receive results from ·the called
program. Another purpose of the LINKAGE SECTION is to enable the
programmer to give local names to the data items to be proce~spi.
These data names need not be the same as those used in the calling
program, nor need the data items be described in the same ordP.r n~
they appear in the calling program. However, the order of datA nnme~
in the PROCEDURE DIVISION header and in the CALL statement must be
the same.

The code generated by the compiler when a reference is made to a
data item in the LINKAGE SECTION is based on the data descriotions
contained in the LINKAGE SECTION. However, the generated cod?.
actually refers to the storage areas allocated in the calling
program. If the data description in the LINKAGE SECTION is nnt
identical to that in the calling program the results are
unpred!ctable.

THE EXTERNAL PHRASE

The EXTERNAL phrase may be included in the 01 or 77 level of nny
data description in.the WORKING-STORAGE SECTION or the CONSTANT
SECTION (the CONSTANT SECTION is not part of the ANS strindarrl>. The
effect of this phrase is to make the constituent data items
available to every proyram in the load modul~ which describe~ thAt
record. The EXTERNAL phrase is used as an alternative or complem~nt
to the LINKAGE SECTION and USING phrase. It is not part of the ANS a
standard. The use of this phrase in a calling progrnm is ~hewn in
the following example•

•
•

r"40RKING-STORAGE SECTION •
•
•

OJ SHARED-DATA EXTERNAL.
02 QUANflTY PIC •••
02 PRICE PIC •••
02 YALU PIC •••

•
•

PROCEDURE DIVISION •
•
•
CALL "P.ROG3" •
•
•

6-04

It the called program has to refer to the data items in the record
SHARED-DATA it must contain an identical record description
(including identical data-names). For example1

PROGRAM-ID. PROG3 •
•
•

WORKING-STORAGE SECTION •
•
•

OJ SHARED-DATA EXTERNAL.
02 QUANTITY PIC •••
02 PRICE Pre •• ;
02 VALU PIC •••
•
•

PROCEDURE DIVISION •
•
•
MULTIPLY QUANTITY BY PRICE GIViNG VALU •
•
•

EXIT-PARA.
EXIT PROGRAM.

Identical record descriptions which contain an EXTERNAL phrase and
which occur in more than one program in a load module are all
allocated the same storage space in memory. The code generated by
the compiler when any program in a load module makes a reference to
a particular external data item always refers to the same data
segment address. If a ca !ling program and a -ca !led program both use
an external record which has the same record name but different
descriptions for the elementary items, the results are
unpredictable.

CALL IDENTIFIEH

The 11 CALL identifier" statement enables the program to ca 11
different programs with the same CALL statement. The name of th~
called program is stored in "identifier" and can be changed during
step execution. If the CALL identifier statement is used, tne called
compile units must be specified to SLINKER in the INCLUDE command.
See Section III, Linking.

THE CANCEL STATEMENT

The CANCEL statement may be used in a calling or called progrr~m. The
main function of this statement is to initialize the st~te of tha
specified program or programs. For example•

6-05

CANCEL 11 PROG4".

In this example the variables in the program PROG4 are set to the
values which existed when the load module began execution (including
PERFOHM return and ALTER buckets - see Perform/Alter Bucket Listing
Section II>.

Note that the ANS standard specifies that cancelled programs are
removed from memory and are initialized when returned to memory.
Removal from memory is unnecessary under Virtual Memory Management,
so the program is simply initialized.

I INTERFACE rHTH FORTRPN PROGRAMS

Programs written in FORTRAN can be called by COBOL programs. ThesA
programs are called as if they were COBOL programs containing a
LINKAGE SECTION. That is, they are called with the USING phrase of
the CALL statement.

Called FORTRAN programs must be in the form of a norma 1 FORTRAN
subroutine. For exa~ple1

SUBROfffINE FORSUB CA,B,C •••)
•
•

RETURN

The arguments A,B,C etc. must have the same data format and must be
in the same sequence as the data items named in the USING phrase of
the COBOL CALL statement. The COBOL data formats which are
recognized by FORTRAN are shown in Table 6-1. No other data. formats
are permitted.

Table 6-1. Data Formats in FORTRAN Called Programs

Data Format COBOL Data FOliTRAN
Description Declaration

Alphabetic, PIC A
alphanumeric PIC X CHARACTER*n
or edited. ,ore S9.9 etc

One word binary. COMt:>-l P IC 599999 •• INTEGER
COMP-2

-
Single word floating COM?-9 HEAL
point.

-t· COMP-I 0 Double word floating DOUBLE
point. I PRECISION

I --- -

6..,.06

COMP-9 and COMP-10 items may only be used in MOVE, INITIALIZE
(conversion>, PROCEDURE DIVISION USING ••• , and CALL USING ••• They
have been introduced for communication with FOHTRAN programs.

The following example shows a COBOL program calling a FORTRAN
programs

•
•

WORKING-STORAGE SECTION •
•
•

77 ANGLE COMP-IO.
•
•

PROCEDURE DIVISION •
•
•
CALL 11COSINESll11 USING ANGLE •
•
•

The ca !led fOtffi-(AN program may be as follows:

•
•
SUBHOUTINE COSINi:SQ CARG>
•

DOUBLE PRECISION ARG, ~mHK
•
•
r-WRK = COS (AkG)
MW = ~ORK **2
•
•
RETURN

Programs written in COBOL can also be called by FORTH AN programs.
The PROCEDURE DIVISION header in the COBOL program must contain a
USING phrase. The arguments specified in thi~ phrase mu~t he in the
same format and must have the same 5equence AS in the FORTHAN CALL
statement. The data formats which can be used for arguments have
been shown above.

CONSTRAINTS

The following paragraphs describe some constraints which must be
observed when writing calling and called programs.

6-07

Using Files

A file which is used in more than one program of a load module must
be described in each program in which it is used. The descriptions
must specify identical file parameters, though the actual data names
used need not be the same. The SELECT clause in each program must
contain an EXTERNAL phrase <not ANS standard>. The
internal-tile-name used in the SELECT clause of eRch program must be
the same, though the COBOL file-names may be different.

Conversely, internal-file-names must be different for files which
are not EXTERNAL Ci.e. not to be used in more than one program>
though the COBOL t 11 e-names may be the same C 1 n different programs>.

Note that.record areas are local to the program in which they are
described. That is, if program A reads a record from a file, this
record is not automatically available to program B when it is called
I even though program B contains an identical desc.ription C including
EXTERNAL> for this file.

Report Writer

A report description <RD> is local to a program. Therefore, Report
Writer statements used in a particular program can refer only to a
report description in the same program.

However, more than one program in a load module can produce reports
using the Report ~riter. If these reports are produced concurrently
on the same <EXTERNAL> file and the CODE clause is used, the report
code for each report must be unique within the load module.

I For more information on the use of the Report Writer see Section
XI I.

GUIDELINES

The benefits of calling and called programs have been listed at the
beginning of this section. If none of these benefits applies to a
particular program, then calling and called programs need not be
used.

Programs should normally be "structured". That is, they should be
divided into logical units or modules of source code. However, this
can be done without the use of calling and called programs. The
~ransfer of control between source modules can be made using the

:RFORM statement rather than the CALL and EXIT PROGRAM statements.
'.ne PERFORM statement is more efficient than the CALL and EXIT

PROGRAM statements. See Sect ion VI I for more deta 1 ls o t the use of
structured programmin~ with the PERFORM statement.

6-08

SECTION VII

SEGMENTATION

Segmentation is the process of physically dividing a program intn
segments which can be located in main memory or on disk
independently of each other during load module execution. Thi?.
process of moving program segments between main mamory And disk
<swapping> is not the responsibility of the user program. It i~
handled by the system component "Virtual Mernnry Management u. For a I
description of Virtual Memory ManagernP.nt see the System Manag~mP.nt
Guide.

However, the programmer can in flue nee the way in which the rrngrAm
is divided into segments. Good program segmentation wi 11 Achievq the
to llow ing a

- The number of times segment5 must be swApped between main
memory and disk will be reduced. This has three benPfit~•
first, the reduced ratP. of l/O minimize5 queuing for thP rlisl(
drives; second, the elapsed time of the program is reducP.d
because waiting for segments to be loaded from disk is ~voidFH~
as far as posssiblei third, the CPU time consumed hv Virtu~l
Memory Management is minimized.

- Execution of a load module can bPgin when only part of thP loAd
module is in main memory. fhis has two benP.fits• first. lArqP.
load modules do not have to wait for a l~rge amount of memory
to become available at one timP.: ~econd. large load modules
that would be too iarge to fit into the availablP. mP.morv in one
piece can be executed in segments.

The remainder ot this section providP.~ guidelines for eff iciPnt
program segmentation.

Note 1 For an exp lanat 1 on of COBOL segment number, interna 1 Sf:)gm~nt
number and SLINKER segment number see Section III, Linking.

7-01

METHODS OF SEGMENTATION

Programs may be segmented in one or both of the following ways•

- COBOL segment numbers can be used on the SECTION headers of the
PROCEDURE DIVISION. This technique applies only to the
PROCEDURE DIVISION. The DATA DIVISION can b~ segment~d hy using
the DSEGMAX parameter of the $COBOL statement. This paramP.ter
controls the automatic segmentation done by the compiler.

- Segmentation will be done automatically by the compiler
whenever the size of a data or procedtire segment excP.eds the
preferred segment size. The preferred sAgmP.nt size has a
default value of 4K bytes CK= 1024). This value can be
modified by parameters in the $COBOL statement or by clnu~e~ in
the OBJECT-COMPUTER para9raph <described below>.

CONTROL OF SEGMENTATION BY THE PROGRAMMER

Se9mentation should be viewed as a tool by which a user orogrammer
can take advantage of Virtual Memory Management. The usAr program
should be segmented according to the logical structure 0f the
program. This will enable Virtual Memory Management to hold in
.memory a minimum number of segments, thus minimizing the memory
requirement and reducing the amount of swapping.

It the programmer does not explicitly segment his progrAm in this
way, the compiler will automatically divide the rrogram into
segments {see Automatic Segmentation, helow>. However, the compiler
does not have enough information about the program logic to nntimize
automatic segmentation. Therefore, the progrAmmer should segment his
program explicitly <unless the program is very small, in which cAse
no automatic segmentation will be done by the compiler>. The WAY~ in
which the programmer can 1 nf luence segmentat 1 on to ensun~ eff i c lent
use of Virtual Memory are described below.

PROCEDURE DIVISION Segmentation

By specifying segment numbers in th~ SECTION headers of the
PROCEDURE DIVISION the programmer can control the segmentation 0f
the PROCEDURE DIVISION. <These segment numbers ~re called "COBOL
segment numbers" in this manua 1 to differentiate them from "1nterna 1
segment numbers" and ·11 $LINKER segment numbers" - see Section I II,
Linking>.

7-02

, COBOL segment numbers can have a value from 0 to 99 incln~ivP. For
each set of SECTIONs with the same COBOL segment number, nrovlrlerf
this number is greater than the SEGMENT-LIMIT v~lue, thP compiler
generates object code in a single segment. One segment is genP.r~ted
for each segment number greater than the SEGMENT-LIMIT. SECTICJN~ can
be grouped into separat~ segments in this way 1rrespect1VP of
whether they are physically contigunu~ in the PROCEDURE DIVISION.
SECTIONs whose segment numbers are less than the SEGMENT-LIMIT ~re
all grouped into a single segment. All of the Above se9rr11mts may h~
further subdivided by the compiler if the segment size exceerl~ thP
preferred procedure segment size Csee below>.

According to the ANS standard, a segmented COBOL progn:im c19n cnntain
three types of segments

- Fixed Permanent Segments• these ;:ire identified hy ~ COROL
segment number from zero up to but not includin9 a valtJP
specified as the SEGMENT-LIMIT (given in thP. OBJECT COMPUTER
paragraph>;

- fixed Overlayable Segments: thesP. ~re identified hy A CORO[~
segment number from the SEGMENT-LIMIT to 49 inclusiv~; if
overlaid, such segments are returned to memory in the sUtte
they had when last used Cin particular, th~ rPsult~ of ALTER
and PERFORM statements are retained);

- Independent Segments• these are VnriablP ovPrlnyablP seg~Pnt~.
!dent! tied by a seqment number from 50 to 99; they are in their
original state <as compiled), each timP they Pnt?.r rnPmorv.

For Level 64, Virtual M~mory Management eliminates the rlistinction
between 11 permanent" and 11 overlayable" segmPnts s both Are o t thP ~nme
type, and both are swappable. Only the rlistinction betw~P.n fixed And
indeoendant segments is significant, determining the hanrlling of
ALTEH, PER~ORM, MERGE and SORT statements.

It the programmer does not use COBOL c:egment numbers it is un l 11<r.d y
that the compiler will segment the PROCEDURE DIVISION in An nntim;:il
manner. In the absence of COBOL segrnent numbers, the compilP.r may
segment in the middle of a frequently used iterative sP.quenCA ('lf
code Ci.a. a loop>. This can impair program DPrformance hy
increasing unnecessarily the swapping or memory rP.quirPment dtrring
execution. It is important, there fore, that the programmer c;:ff Pft11 Jy
control the segmentation of the PROCEDURE OIVISION.

In order to use COBOL segrrlentation eff Pctively, the PHOCEOURE
DIVISION should be divided into a set of cqde "modules". ThesP
modules should represent logically rliscretP st~os in the ovPrAll
processing and should be reasonably self-contained. The morlules
should be organized into a tree structure or hierachy. In ()ther
words, the program should be "structun=~rf". The suhJect of str•rctr1rpd
programming wi 11 not be discussed further 1 n this ma mm 1. Th~ r~FJdP.r
is recommended to consult one of the many publications 0n this
subject for more detAils.

7-0.1

Each .PROCEDURE DIVlSION module should be writtAn as a 5eparate
SECTION and should be acttveted by a PERFORM. SECTIONs which are
closely related and which are normally executed at the same stAge of
program execution should be grouped in the same segment by being
given the same COBOL segment number. For example consider a program
in which there are five SECTIONs and COBOL segment numbers 40, 41, 42
and 43 are used together with a SEGMENT-LI MIT le s~ than 40·•

- Se9ment 40 contains a.SECTION to open files and initialize data
items.

Segment 41 contains two SECTIONs• ri file proce5sing SECTION 8nd
a record processing SECTION.

·- Segment 42 contains a SECTION to close files and terminatP the
program.

Segment 43 contains a SECTION to handle error situations
detected in any other segment.

Segments 40 and 42 are each used once only at different times during
program execution. There.fore, thay Rre 5eparRte 5egments. Segment 41
contains two SECTIONs which comprise the most frequently use<i
instruction sequences in the program. This segm~nt is the only one
that needs to be in memory during most of thP program execution.
Segment 43 is activated whenever an error situation is detected in
one of the other segments. This segment might never be executed,
but, if it is executed, it will execute at the same time as one of
the other segments. This segmentation is depicted in Figure 7-1.

Figure 7-1 also shows an example of bad segment~tlon. The main
processing sections C2 and 3> are here split over three segmPnts
(40, 41 and 42). This means either that section~ 1 anrl 4 will be in
main memory even though they are not being used or that segments 40
and 42 will be swapped each time a tile is referenced or a r~cnrd is
processed.

Note that tnere are ANS standard re5triction5 on the use of the
following statements in programs that are 5egmented using the C~>ROL
segment number in SECTION headers•

- ALTER
- PERFORM

SORT
MERGE

These restrictions are described in the COBOL Language· Re·fe·rence
Manual.

7-04

QQQQ
Segmentation

Segment 40

Original
Program

---------~---Section 1-
0pen fi !P.s &
initialize

Bad
S~gmP.ntAtlon

s~gmF-rnt 40

------ -:_-=_-_-..::--=-=~ data 1 terns ---
t-----------~--

C:::ort-i"'n ?-l"""v"" ""'"""'Jll «-

File
Processing

!Section 3-
Record

Segment 41 Segment 41

ProcP.ssing
1---------- t-::: ---
Section 4-
Close files &

Segment 42 terminate Segment 42
program

......

Section 5-
Error

-----~· - ----~-- -_:-.:-=--=-----r-----------
"'._,_ ------------.............. _____ _

handling .- -Segment 4] --- -------------J.----
- Segment 41

.................

................ ~------

r: i g u re 7-1 • PROCEDURE DI V I S ION Se g 111 ~rn tat i rm

DATA DIVISION Segmentation

The programmer does not have much control over the segmentation nf
the DATA DIVISION. The main method of controlling this 1~ vi::t thP.
preferred data segment size (see below>. HnwevPr. the following
points should be remembered1

- Group into a ~ 1 ng le segrnent a 11 data 1 ikfdy to be u5erl rlt A

given time by the same statement, And if pag~iblP hv thQ ~a~P.
SPqUpncA of statemPnts, b~ar1ng in minrl that file record arAA~
are alwAys in the first ~egment, and/orr

- Describe all frequAntly usAd datR At thP ~tart of thA DATA
DIVISION so that th15 data wi 11 111 be incl11dAd in a 5inql~
segment (provided that the preferred datn segMent ~iZP. is hiqh
enough>.

Examples of good and bad DATA DIV IS ION s~gmPntFlt ion ~n~ q 1 vpn I
in Figure 7-2.

7-05

Oood Segmentation

-- -
Data

Segment 1

Data
Segment 2

:.-::.-::::::::.-:. ----------

Procedure
Segment 1

Procedure
~~2~-~!:'-~ __ ?

-------------- ----------

Dat~
Segment 1

Data
Segment 2

Bad Segmentation

Proc~dure
Segment I

Procedure
~-~9-~~ !'~ __ ?_

Figure 7-2. DATA D.IYISION Segmentation

Figure 7-2 shows an example of good segmentation in which all rlatA
re.ferenced by a given procedure segment is in a sing le data sAgment
<provided this segment is not too large>. Al~o shown is an example
of bad segment at ion in- which a procedure segment re terences data 1 n
more than one data segment. However, c;uch segmentation cAnnot always
be avoided. It may be more efficient in certain cases to segment in
the "bad·" way shown above in order to reduce the number of segmP.nts
and produce a set of segments of approximately the same size.

Preferred Segment Sizes

As mentioned above, segments derived from the PROCEDURE DIVISION and
DATA DIVISION can be further subdividAd by the compiler if thP.
actuAl segment size exceeds the preferred segment size. Preferred
segment sizes can be specified in the follnwing wAysa

- In the OBJECT-COMPUTER paragraph using the MAXIMUM PROCEDU~E
SEGMENT SIZE and MAXIMUM DATA SEGMENT SIZE clAuses.

- In the SCOBOL statement using the PSEGMAX and DSEUMAX
parameters.

The use of the SCOBOL parameters is recommended, as the MAXIMUM
PROCEOUliE SEGMENT SIZE and MAXIMUM DATA SEGMENT SIZE clRuses are not
part of the ANS standard.

If preferred segment sizes are not specified, the compiler will
assume a default value of 4K bytes CK = 1024). In most cases the
defat1lt segment size will be acceptable and a size need not be
specified by the programmer. However, the following points should be
remembered when deciding upon the optimum preferred segment sizes•

7-06

- Performance w 111 be improved 1 f a 11 segments in the 1 OArf morlu le
are of approximately the same size.

- Large segments tend to be used (i.e. referenced) more often
than small ones. For this reason Virtual Memory MAnAgemP.nt
usually allows them to remain in memory for a longer tine thAn
small segments. On the other hand. once a large segment hAs
been swapped out of memory considerable rearrangem~nt of m~mory
contents might be necessary in order t0 provide a large enough
area of memory for it to be swapped bnck into.

- Conversely. smaller segments tend to remain in memory for a
shorter time. The COOAPND parameter of the $COBOL stRterne.nt cnn
be used to merge linkage and code segments when th~ code
segmant is small <see Section II, Compilatinn>.

AUTOMATIC SEGMENTATION

The compile unit generated by the COBOL compiler normally comprises
a minimum of three segments as shown in the following segment li~t
printed by the compileri

IC206.0
IC206. 1
IC206.2

• • L
• D.
c ..

The meaning of L,D and C is as follows•

101
1142
1946

- L indicates a linkage segment. This .!!iegment. during execution,
will contain all the oointers required for the. calls anrl
branches in the program. It also contains certain con~t1nt5.
There is only one linkage segment in each compile unit and it
always has an internal segment number zero.

- D indicates a data segment. Ther~ may be. one or more datn
segments in a compile unit. These segments contain the record
areas defined in the program FDs together with the. contents of
the WORKING-STORAGE, CONSTANT ~nrl COMMUNICATION SECTIONs.
Certain compiler generated data is also stored in the d?.tR
segments.

- C indicates a code segment. Ther~ May be one or more code
segments in a compile unit. These segments contain th~ ob_1~ct
code generated from the statements in the PROCEDURE nIVISION.

7-07

It the CODAPND parametAr ts 11~ed in the SCOROL statement, and thA
total size of the code segment and the linkagP segment togpth~r 1~
not larger than the preferred nrocedure segmP-nt size, the linka9e.
segment and code segment will b~ merged. The above example se9ment
list would thus appear as followsi

IC206.0
IC206.1

C.L
.o.

204 7
1342

If the preferred data segment size or procedure segment size 1~
exceeded the compiler will divide the data or code into one or more
segments. Circumstances under which this 0 automat1c" segmentation
takes place are described below.

Data Segments

Data segments are generatpd according to the following rules•

- Record areas for the program's files are located at the ~t~rt
of the user data in the first data segment.

- 01 level data items are added one by one to the data segmPnt
until the preferred data 5egment size is reached. At this point
a new segment is started. 01 lewd data i terns are not split
between two segments.

- I f an O I le v e 1 data 1 t em 1 s , ind 1 v id u a 11 y , gr ea t er than t hP.
preferred data segment size it is not subdivided but form~ R
data segment on its own.

- It the compiler has generated any incomplete data SPgment <lPss
than the preferred data segment size) it will try to 1n5ert
later 01 level data items into the Aarlier segment until th~
preferrP.d data segment size is reached.

The application of these rules can be observed in the following
example. In this example segment 1 contains two record areas <ROx2>,
the group item MAN <BO> and three elementary items Cl000x3> or about
3240 bytes. Segments 2 and 4 each have a length of exactly 4000
bytes. However, segment 2 is composed of three contiguous data items
<DD,EE,FF> and one data item which is not contiguous with the othP.r!=i
CHH>. This is because a data 1 tern of 5000 bytes CGG) occurs betwP-en
FF and HH. This item is assigned the whole of segment 3. Segment 4
has a length of only 3000, since the next level 01 item ls too big~
and forms a segment on its own, as do~s the last level OJ 1·tem.

7-08

The 5ourc~ program is as follows a

DATA DIVISION.
FILE SECTION.
FD LIST

LAA EL RECORD STANDARD
DATA RECORD ARTOUT.

01 ARTOUT PIC XCAO>.
FD CARO

~ LABEL RECORD STANDARD
DATA RECORD ART IN.

01 ART IN PI C X C 80 >. Internal seg. no 1
WORKING-STORAGE SECTION.
01 MAN.

02 CODNB PIC 9.
02 Ll PIC XClO>.
02 L2 PIC XC69).

01 AA P I C X C 1 000 > •
01 BB P IC X < 1 000 > •
01 cc PIC X (I 000).
01 DD P IC X (I 000 > • ! 01 EE P IC X (1 000 > • Internal c;eg. n0 2
01 FF P IC X C 1 000 > •

01 GG PIC x (5000). ll Internal seg. no 1
01 HH PIC x (1 000). Internal c;eg. nn 2 (C'1nt.)
01 II P IC X C I 000) •

~ 01 JJ PI C X < 1 000 > • Internal se.g. no 4
OJ KK P IC X < I 000 > o

01 LL P IC X < 1 000) •
01 MM P IC X < 1 000) • ! 01 NN PIC X (I 000). Internal seg. no 5
01 00 P IC X < 1 000 > •
01 PP PIC XC3000). ll Internal 5 e.g. no 6
01 00 P IC X C 300 0 > • Internal seg. no 7
PROCEDURE DIVISION.

The corresponding segment list printed by compilAr is a~ fol lnwc; 1

SEGLIMOI .o •. L 176
SEGLIM01. 1 .o. 3296
SEGLIMOI .2 .o. 4000
SEGLIMOl.3 .o. 5000
SEGLIMOl • 4 .o. 4000
SEGLIMOI .5 .D. ~008
SEGLIMOI .6 .o. 300B
SEGLIM01.7 .D. 3424
SEGLIM01.R c .• I 44
SEGLIM01 .9 c .. 464
SEGLIMOI .10 c .. .352
SE GL I M 0 I • I 1 c .. 592

•
7-09

Procedure Segments

The PROCEDURE DIVISION is divided automatically into segments accord
ing to the preferred procedure segment size. As mentioned above
this can cause the object code for a frequently used interactive
sequence of code Ca loop) to be divided betwPen two segments. In the
worst case this can result in both segments being swapperl Pach time
the loop is executed C if this happens, there i 5 m~morv 0verlonrl).

The procedure map listing printed by the comoiler may heln in
determining the preferred procedure sP.gmPnt size. This listing can
be u~ed to find the source lin~ number nt which a new sP.gment
begins.

INTERNAL SEGMENT NUMBERS

A COBOL compile unit can have no more than 128 internal segment
numbers CISN>. The !SN is the number assigned to each internAl
segmPnt in a compile unit. These numbers an~ Assignr:~rl in the
following wayz

- 4 ISNs ~re allocated to special segments not generAted dir~ctly
from the PHOCEOURE DIVISION or DATA DIVISION.

- Each data segment generated from the DATA DIVISION 1~ given ;:,n
ISN.

Each procedure segm,:rnt generatArl from the PROCEDURE DIVISION is
given an ISN.

- The linkage segment is given an ISN unl~ss this segm~rnt is
merged with the code segment CCOT1APNJJ parameter in the SCOBOL
statement>.

- Each file in the program uses two ISN~.

- If the Program Checkout ~ac111ty is to he used CDEBUG pAn~mete.r
in SCOBOL> one segment is -}enen~ted in the c0mo1le unit for
each 200 lines <approximately> in the s0urce program. on~ ISN
is given to each segment.

- If the nrogram contains a USE FOR DEBUGGING SECTION And th~
DEB.UGMD parameter of the SCOBOL ~tatement i~ activ~. onP or
more additional segements are generated. One ISN is giv~rn to
each segment.

- If a program has EXTERNAL files, one ISN ic; u~erl f(')r e::ich
EXTERNAL file.

- Each EXTERNAL data item with a VALUE clausA is givPn on~ ISN.

7-10

- Each translation tAble <11s8d fnr alnhatwt-n1mP. H<ANSFOf?M •••)
is givAn onA iSN.

If more thAn 128 ISNs arP. needed during n cornoil~tinn thP corinil~r
wi 11 print the fatal error message R-94 ;mri wi 11 th~n terr.iin.::ib).

DECLARED VUH~K I NG SET

To avoid memory overload s.ituati0ns. thA arnormt of niernnrv rPquirPrl
for ~ach job st8p should be ~peci fiP.d by use of the SSIZE ~t,qtprri0nt.
The Amount of memory required is known ~s the rlPclarPrl wor~i~q set
C Dv"JS). If no IMS is specified, th~ rrr1grnm wi 11 hP al locAtP.d 'i5K of
rnAin memory.

An explanation of D~S together with a de~cri~tinn or how to
calculate the DrvS value for A progr~rn is qiv(.ln in Sectinn VII 0f t.hP
Sy st P. m M ;rn., g P. me n t Gu i d P •

7-11

SECTION VIII

EFFICIENCY TECHNIQUES

The following techniques are recommended to obtain efficient COBOL
object programs. Consideration is given to data manipulation and
data description techniques. See Section VII, Segmentation, for
guidelines on efficient segmentation. See the UFAS User Guide, BFAS
User Guide and HfAS User Guide for guidelines on the efficient use
ot tiles.

Some of the SU..J':lestions are designed to reduce memory needs, some
are meant to savA time, and some will do both. Each recommendation
is rollowed by the designators CT) for time saving, <S> for !·mace
saving, or CT and S> for time saving and space saving, to indicate
th~ nnticir~tcri type of efficiency.

ffote that some of the suggestions recommend the use of langu3ge
features that are not part ot tne ANS standard <e.g. COMP-1,
C CJ:,;. P- ~ • • • > •

DATA !J\AN I PU LAT I ON TECHN I OUES

- Avoid using the COHRESPONnING option when a simple MOVE
statement would suffice. MOVE CORHESPONDING results in a series
of rrioves of individual items; a simple MOVE is insteAd
optimized for the group or record as a whole. Never use MOVE
COl-WESl-"ONDING for such purposes as transmitting a master file
record from the input buffer to the outnut buffer. Use MOVf
COHHESPONDING when it wi 11 in fact cause selected i terns to b~
moved, or wt·1en editing or tormat conversion is needed on the
respective items. CT and S)

- Manipulate R yroup item or record as a whole whenever possible,
rather tnan manipulatiny its elementary items separately. This
r<Jle is especially· important for t.3bles of data items; MOVE or
clear a table as a whole wt1enever possible.

8-01

For example, tectmique a (oelow> is quite efficient, whilP b is
lP.SS soz

c1 • MOVE SPACES TO TABLE.

o. MOVE I TO I.
LOO~. MOVE SPACcS IO TABLE-ITfM CI>.

ADD 1 TO I.
IF I IJO'f > TAHLE-S lZE UO TO LOOP.

Cf and S>

- It a data item is to he used in several subscripts without A
cnange in value, either make it fl COMP-I or COMP-2 itP.m or el:-P
move it to a temporary area in working-storage (dP,scribPrl as
COMP-I or COMP-2> and use the working-storaye data itFHn in the
subscripts. CT and S>

- It tne length ot the repeating dnta item in a tablP i.s a p0wpr
of 2, use the SUbOPT parameter of the SCOROL .5tatem~nt. ·f rii s
wi 11 enable the compiler t') use shift rt~tLer ttlCHl rnr.11 t ir.lv anri
bound ch8ck when calculating the dispV1cem~nt. How~vPr, .s~e
~xception U6-00 Out of Segment Bounds, SP.ctinn IV, f0r ,
restriction on tt1e use of :JUHOPT. CT 2nd S>

- If a subscript0d item is t.-:) be rPferred to more them once .,.,ith
tne same sub.script value(s), conc;ider f10ving it to A tAm~'JrFffY
workin0-storaye areA nncP ror all processing. ors
If a subs er irtP.ci i tern i.s to be referred to mon~ than oncA, SET
a n I rJ u £:: X t or tt 1 i s ~ l em en t d nd u s e t hi s I N D t: X a s a ~ uh s c r 1 rt. I r
this is donP the ciisplacement of the element nAed nnt be
c a l cu la t e iJ tor ea ch re t ere n c e • (T a nd 5 >

i=or MOVEs, conditions, addition, and ~uhtn~ction, qive the
i terns similar PICfUREs and USAGEs whenever possible. CT>

- I.1 the U NT I l or t i on o f the PER F o RM st a t em en t , use the s i mo .l P ~ t
possibl~ condition to terminate thA lnor.. If neces5ary, AcniAVP.

such simplicity by precediny the PERH>RM with explicit !WYE~
and COMt->UTEs. It numeric i terns are involved in thP condition.
;.;ive tt1em similar PICTUHEs and the same usage. Cf>

Tend to use procedural literals rather thnn constant valu~s in
1WRKING-STORAGE. The como i ler can oot imi ze the rormat of
procedural literals, but' must resort to dynamic formAt
conversions in the object proyram if ~WHKir~C-STORAGt: it8"15 an~
not ideally formatted. However, dunlicnte literals rlo n~~ult in
extra memory space require~ents. Cf>

- Use GO To ••• DEPENDING for decisions whenev~r rossiblP.. In anv
aDplication for which GO To ••• DEPENDING can be useci, mon~
efficient object coding can be generated than by u~ing a
succession ot IF statements. CT nnd S>

- ADD J TO A is equivalent to COMPUTE A = A+l but MULTIPLY A HY B
may be better than COMPUTE B = A*B. CT)

8-02

- v~hen the result of a computation is ston~d in one nf the
operands of the computation, ADD, SUBTUACT etc may bP more
efficient than S<>MPUTE. for example Ann A To B may bP morn
efticient than COMPUTE B = A+B. CT>

- If possible use th8 DIV IDE statement rather than I in Uv~
COMPUTE statemAnt. The comp i 1 er wi 11 · convPrt openmds And
intermediate results into floating point decimal whenc~v(~r
divisi·on or exronentiation occurs in the COMPUTC: stat0mPnt:
Cunless the division is the last operation in th~ ~tRternPnt>~
This is time consuming c:rnd con be avoidPd for division by 11sjn9
the DIVIDE statement. However, COMPUTE must hP. used for
exponentiation (**>. The effects of converting into floating
point decimal can be minimized by ensuring that division nr
exponentiation are the last operations to be perform~rl in A

COMPUTE statement. for examples

COMPUT!: T = A**B.
COMPUTE k = T+C.

is more efticiP.nt than1

COMPUTC: H = A**8+C

In the first method a temporary data itPm T is usP.d to hold the
result of the exponentiation. C is added to T in a separAte
COMPUTE which is performed in fixed point d~cim0l. In thP
second method both the exponentiation nnrf the addition arP
perform~d in following point decimal. Note thA followinJ
example also:

COMPUTE R = \A*B)/C

is more etticient than:

COMPUTE R = CA/C)*B

In the first method the intermediate n~sult may be in fixe..-!
point decimal. In the second method it will ho in flontin.J
point decimal for the whole computation bP.CAUSP thP rlivisj0n ls
the first ope rat ion to be per formed. en

Av o id u s 1 ng t he I opera t o r i n A n a r it h met i c 0 x p r c s s i n n n f n
relation condition.

DATA DESCHIPTION TECHNIOUES

- Use COMP, COMP-] or COMP-8 for non-integer cfata i terns Anri tor
data i terns which interact with oUv~r COHP, COMP-3 or COf..~p-:.:~

data items. COMP, COMP-J or COMP-8 must .be used if fraction~l
res u 1 ts are re q u i red • en

8-03

- Do not use unsigned COMP or COMP-3 data items in computation5.
In Level 64 the righthand 4 bits of a pack~d decimal it~m
represent the sign. When an unsigned COMP or COMP-3 data item
is used in a computation ... the run-time package must add a dummy
sign position to the data item before computation can be
started. CT and S)

- Use COMP-I or COMP-2 for integer data items which nre not
involved arithmetically with data items of other usages. CT>

- Specify COMP-1 or COMP-2 for a dAta i tern that w111 be used as ci

subscript or that wi 11 be a DEPENDING item in a GO To stf~tement
or in an OCCURS clause. This rule is imnortant 1 f the i tern wi 11
be mentioned as a "subscript-name" in PERFORM ••• VARYING or in
any such loop. Again, consider moving the item explicitly tn A

COMP-1 or COMP-2 area in V'IORK I NG-STORAGE 1 t other
considerations dictate USAGE DISPLAY. <However, INDEX is a
standard and possibly more efficient method of describing
subscripts used in PERFOf?M •• VARYING.) CT>

- USAGE COMP-1 or COMP-2 is also recommended for identifier-?.
data items in WRITE ••• ADVANCING statements to avoirl nnnACPssAry
conversions. CT>

- If a record contains COMPC-n> and/or SYNCHl-WNIZED data itP-rns,
place s:ngle-word items and double-word 1t~ms together whenever
possible. Savings in memory space can be obtained; this rt1lP. is
most applicable for records in a file. CS>

- It is often necessary to organize files in a highly effic18nt
space-saving manner, even though it is also desired to snve
time while processing the data. In this case, describe each
record in both the FILE SECTION ;:rnd in the WOHKING-STCH?AGE
SECTION. In the f ILE SECTION, pack the data as closely AS

possible, without regard to processing efficiency; in the
VH>HKING-STORAGE SECTION, do exactly the opoosite. Avoid using
READ ••• INTO and ~RITE ••• FROM. Instead, READ P-nch record ::,nd
determine whether the record is to be involved in detail~d
processsing. If detailed processing is required, employ the
MOVE ••• CORRESPONOING statement to unpack either the ~nun~
record or the significant group(s) within it to the
VWRKING-STORAGE area and re fer to the cic:tta in that locati(m for
all detailed processing. Similarly, use MOVE ••• CORRESPONDI:m f's
appropriate to construct <or reconstruct> the outrut rec0rd.
Per form a simple MOVE from input bu ffP.r to output buff P-r if
detailed processing is not required. CT and S>

- If reports are generc:tted without using the f?eport ~~riter
tac 11 i ty, use s ke let on 11 nes in ~~ORK I NG-STORAGE, with cnn st Ant
information initialized via the VALUE clause rather thcrn by
MOVE statements in the PROCEDURE DIVISION. CT And S>

There is some benefit in having COMP-1, cm~P-2, COMP-9, COMP-JO
and INDEX items word-aligned. However, it 1.5 not worth 11~in9
SYNC to achieve this if it cannot be done by 8rrnnging thP
order of other data items CT>.

8-04

SECTION IX

f ILES

This section contains information which is ndevant for -911 tvnes of
files. In addition, the use of unit p~coni files is discussed in
detail in Section XI.

f ILE NAMES

Each file is known by three different names:

- COBOL file-name, used to identify the file throughoirt th~ COROL
program;

- internal-ti le-name (1 fn), used to connect the COBOL f i le-nFtrne
and the external-file-name via the COROL SELECT clAUSP anrl thP
JCL $ASSIGN statement;

- external-file-nRme Cefn>, the name by wnich the file is known
to the sys t P. rn ; i t i s rec o rd e d i n the f i 1 e 1 ab e l and nos s 1 b 1 v i n
a catalog.

The relationship betweAn thesA threA file names is shown in the
following diayram:

• • • • • • • • • I • • • • • • • • • I .
COBOL• SELECT ftile.:namef ASSIGN StJ f fi X. • •

JCL• ASSIGN 1 :n ,~ ...
• I • I •

The adv ant aye of assigning the e fn to the i fn is that d 1 ff en~nt
tiles can be processed with th?. same Cor30L program, men~ ly bv
modifying the SASSIGN statement each time thP- Joh i~ to hA nm.

ThP. format and content o t each type of file name ore different. They
are as followsi

ANS standarrl calls for COf30L file-names of not more than 30
characters chosen from the set A ••• Z, 0 ••• 9, and hvnhAn <->,
and containing at least one alphr:tbetic character.··

9-01

- Internal-file-names may be up to 8 characters in length, chosen
from the set A ••• z, o ••• 9. They must begin with an alphabetic
chara..cter and may NOT contain a hyphen <except for H-SORT,
which may be used only as the internal-file-name of a
sort/merge file>. The character '"-" <underscore> is not Rn ANS
standard COBOL character. It can occur in an internal-file-name
only if it begins with the characters H_. It is reserved for
.system files, for example H_RD and H_PR (used tor ACCEPT from
SYSIN and DISPLAY upon SYSOUT.>. Note that this definition of An
internal-file-name only applies to COBOL and is more
restrictive than the definition in the Job Control' L·angua·ge· (JCL)
Reference Manual·.

- The rules for external-file-names are different for cataloged
files, uncataloged files and temporary files. See the· J'ob Control
Language (JCL) Reference Manual Section III for details of external
file-names.

The following suffixes may be used on internal-file-names in the
COBOL SELECT clauses

-PRINTER
-MSD
-CARD-READER
-CAHO-PUNCH
-TAPE
-SYSIN
-SYSOUT

No other suffix may be used. However, only -PRINTER, -SYSIN •. -SYSOUT
and -TAPE have a significance other than documentation. The

I sign! ficance of -PRINTER and -SYSOUT is explained in f4ri ting SSF
Files in COBOL Programs, Section X. -TAPE is only significant for
H-2000 files. For these files -TAPE means that the CHARACTERS option
of the BLOCK CONTAINS clause implies variable length records. The
only siynificance of -SYSIN is that the associaterl file can be
opened when it is already open. Note that the suffix is NOT part of
the ifn, and does not appear in the corresponding SASSIGN statement.

DATA MANAGEMENT OVERRIDING RULES

The source program normally defines the basic file characteristic~.
However, a number of tile parameters <e.g •. file organization,
blocksize, device class) can be specified and recorded 8t different
places in the system and at various stages in the creation of th~
file. Table 9-1 shows where these parameters are specified and where
they apply.

9-02

Table 9-1. Specification and Applicability of Fil~ Charactnristics

VJ he re specified 1~Jhere Apr l icahl·~
l
I

At system generation Throu9hout t hP. job

In source proqram Cornn i lat j_ on t j_ ITH:~

In JCL CSASSIGN & DEFINE> Job tran~lAtion ti~P

File label file OPEN time
i

j

Overriding rules spP.cify the action to he -t2kPn hy UAta rn,·=mfl·>~rn.:":'nt
when there is an absence, or multiplicity, of D.irarnE~t£~rs. fh(,v
de fine-- the final values to L"e u~ecf for tile nrocessint;; nnd ci(·\t0ct
violations <FATAL when a choice cannot be mc:vj~, or .-u\:~NINc; wh':·>.r·~ th~\
decision is made by Data ManagPment>.

Data ManagernP.nt overriding rules may he sumnarizPd as fol10wc:::

- Basic file oarameter~ are specifiPd in ttw COUCH_ or-0~1nv:"1, :::nv!
override (and/or complement) any .systr~rn vnl11ps thAt: annlv :_1v

default.

- File parameter'5 specified in the COBOL pro1~;ram nn~ ov0rri. r'f-1nn
by any JCL parameters.

File parameters specified in the JCL Pn~ ov0rridcfon hv
parameters in the file lab(d if thA ti le cxi~t.-_:; nt OPE!-! t i~0.

For a detailed description of Data MancH..Jement overridinq r1Jl(~s c::p0

the UfAS User Guide, BFAS User Guide or HFAS User Guidn.

Opening a file in a COBOL program provides chec!·:s on the rPcnrd
length which are additional to the 9enpral Deta ~.~.,nagem0nt
overriding ru 1 es. Tt1e se checks q re discussed in t hP to 11 nw in(J
paragraphs.

The maximum record length of the tile must be the snme as thP
maximum record length declared in the proqram that onens the fili~
{apart from the exceotions listed below) btherwise the followinq
message appears in the Job Occurrence neport: ·-

CBL15.IFN:ifn RECOHD LENGTH CONFLICT Cl~ngth ON i-·ILE)

to llowed by the EX03 .UNEXPECTED HETURN CODE message showing the
mnemonic "COBOL 1, RECERR". The file st At us "95" is returnNf to th8
program.

9-03

It however the program bypasses this error through a USE procedure,
the re~ult is somewhAt unpredictable when records are actually
largAr than the record Area ~pAcified in the program. In gen~rRl,
records will be truncated, and the following may happens

- on a F?EAD statE1ment, a f 1 le-status "9U" is returned

- on a r-VH ITE statement, a fi 1 e-statu s "92" 1 s returrn=~d i f the
f i 1 e i s a v a r L=l b 1 e 1 e ny t h t 11 e , but " 00" i s r ei t urn e. d 1 f t he
file is A fixed length file.

The exceptions ares

- The file is assigned to SYS.IN or SYS.Olff: no checking i~ done

- The if n in the SELECT clause for the file is su f fi x.ed by
-SYSOUT: no ch0ckin9 is done

- The filP- is neith~r H-2000 KEYED, nor H-2000 HWEXED, an1 it i~
opened in input by a orogram cornoiled with the current v~r~10n
of thP comri l~rz th~ fo1lm'1in9 message app~;,rs in the Joh
Occurrence Report z

CHLl~).IfN:ifn kECcrnn LENGTH CONFLICT ACCEPTE[) IN INPUT
Clen9th ON FILE)

A normdl (11 00") f'ile-statos is returned to thP- oroarc~rn. It~
record i s r t:l ad who s P. Act u a l 1 e nq t h i ~ 9 re at P. r t ha n the 1 P n :; t ~-;
of the laryP~t record d~scribed in the proJram, the rPc".1rr~:! fc:
truncated, Rf!d A f ile-stAtus "9U" is returnP,d to the prngr.1~.

Uin 0stual filA 0rganizat1on that may bA associAtP.d with a filt) i~

shovm in Table 9-2.

1~or ;-1 file whose OHGANIZATION IS INDEXED in the oro~:}ram, the nr.Ji118~r
or r 0 cord keys, their oosition relative to the beginninq of t~~
n;cord, and tne i r 1 engt h mu.st bP. the same for the file ~nrl th'?
;)ro .. Jram.

D ,_, i' I Of-JAL F IL ES

An ootional file is one which may be absent Rt execution tim~, ev~n
th')uqh OPEN, CLOSE, r-H.:AD, ~'~RITE etc ••• rnay bl=! attempted for the
fi lP •

9-04

I

Table 9-2. Perm! tted File Organizations

Type of File
ORGANIZATION

in COBOL UFAS BFAS HFAS
program

Seq Hel Ind Seq Dir Ind Que Seq Ind r?an'i

SEQUENTIAL I I I I no qualifier

I I UFF I 2 2 1 2 2 1 ! 2
LEVEL-64
H-200

RELATIVE
no qualifier
UFf 3 1 3 1 4 3 3 4
LEVEL-64

I NDcXED
no qualified
UFf 1 .I 1
LEVEL-64
H-200

H-2 00 Kl:YED 1

Notes for fable 9-2 :

(1) allowed.

(2) allowed if the file is OPENed in Ii'-lPUT or 1-0.

C3) allowed when ACCESS IS SEOUENTIAL if it is a disk file that is
OPE Ned 1 n INPUT or 1-0, or, when ACCESS IS RANDOM or DYNMAI C,
if it is a rlisk file that is OPENed in INPUT CSTAHT cann0t bP.
used if the RELATIVE KEY clause is used).

(4) allowed when ACCESS IS SJ:OUENTIAL if the file is OPENed in
INPUT.

From the point of view of ANS standard COBOL, any optiomd file
<i.e., the OPTIONAL parameter is present in the SELECT clausP) 'Tl1Jst
be of sequential organization, and must be used for input onlv
(i.e., only OPEN INPUT, READ and CLOSE may refer to such n file>.
from the system point of view, all files may be optional. A
distinction is mAde between those which are declared absent when the
execution JCL is written, and t11ose which are rlec lared ab~ent hy thP
operator.

9-05

Files whicn are dP.c la red oot iona 1 in the COBOL orogram rnust hav~ rl

corr~soondin9 SASSIGN statement in the execution JCL, rAc;Jr-:ircil~c:s or
whetner the file is to be used or not. ·rhe SASSIGN statement will
normally include a DUMMY or OPTIONAL parameter Cdiscus~~d bi?lnw). rt
neither of these parameters is present in thi:> SASSIGU ~tatP.ment, t.~"7'
OPTIONAL parameter in the COBOL SELECT claus8 is ignor~d an0 th:~
file is proce~sed normally. On the other hand, if f'ith~r Dl.HPW nr
OPTIONAL is specified in the SASSIGN statern0nt and the OPTIONAL
phrase is not prPsent in the corresponding COBOL ~:>EU:CT clAtrs~, the
message CBL2 1 is output in the Job Occu rnrnce ~<~rort and ttv.') Drl(i!rW'

behaves as if OPTIONAL was rn~s0nt in thA SELECT c.l;:i11se. !·frw:~"v 0 r,
the us er s hou lri norrna llv incl tJde the 011 rr ON A.I.. phr a Sf~ in th(> c;r: U:t~T
c la us e • I n a tu tu r e re l e -3 s e of t he c om p i le r .3 f i 1 0 ~ t A t w:: 9 l i.;i 1 1 f·· t~
generated it thP. OPTIONAL :'hrasR is OITlitted for An nptinnril fil0.

If the DUMMY or OPTIONAL Prtrr~met8r is sn~c1 ti.nd in the $;\~)~,;rc;t·J
statement of a file which is not a c;f~quentiAl 1n;>flt filP, a -=t~t11s
9I is returned to the program nnd the situntion rn.1y h•~ hnndl~d ~J'! ::i

USE AFTER t:imof? PfWCEDURE SECTION (SP.A Error ifa 11c1l in':.J, hfdov').

ASSIGN ifn, DUMMY;

fnis speci Ties that the ti le is Absent nnrl All r'-~t·~n")nc 0 s t0
the file should be ignored.

- JCL declaration with nper2tor intArvention:

The JCL providP,s for the possibility of ti lP, r:ih::encP bv th·-:i
$ASSIGN statement OPTIONAL oaramPt~r. t·fJr AX;·1rr1r.:ilf~:

A SS I GN if n, et n, OEVCLA SS ••• , ME n I/, ••• , OPIJ ON 1\L;

In this ca5e, at step execution the svst.C!rn SP~r<:hP..i:: tlw v0Ju.-.,n
named in MEDIA for this file. If trH~ volurriA is Ab~('.)nt, 1 r10Lr·L.·
re q u es t i s sent to the operator • I f the op~ r Ator n~ f1 1 <) P ~ ~.< o U ti r
CCR MS ••• >, or if the file is Abc;~nt frnn the volun1e rnorint~·~,
the file is consid~red as DUMMY and proce~~ed as rl0scrih0rl
above. It the mediB is mountP-d snrl the fil~ PXtst~~, thP ti.lri Js
processed as normal.

The us e o t opt 1 on a 1 f i 1 e s i s s urn ma r 1 z e rl 1 n F i g tir P. 9- I •

9-06

status
on OPEN

Start

y

N_. ~

y ~

N Out put me ssng e
CBL21 in.JOH

Figure 9-1. The Use of Optional Files

9-07

CLOSE rHTH LOCK

If the VdTH LOCK option is used to CLOSE a file, Data Management
assumes that no further processing of the file is to take placA in
the current program. Data Management will therefore prohibit
reopening of this file in the same STEP. The re5ources associated
with the file will be returned to the system and may be assignerl hy
another Job. Nevertheless, if an OPEN is executed, tile status 9"4
(IFN NOT ASSIGN> is returned to the user, and the step is terminated
(unless there is a USE AFTER ERROR PROCEDURE SECTION in the
DECLAHATIVfS).

fHE SPOOL STATEMl::NT

Normally, access to a particular file on a device is grRnted
exclTJsively to a prcgram for the duration or a Joh step. Surmo~~,
r1owpvpr, that an ex~~cuting COBOL program contains thP. follo\&'ing
st2tPments•

SfLECT FIU:l ASSIGN TO Fl.
sr::u:c·1· FIU:2 ASSIGN TO F2 •
•

OPLN INPUT F IIX I •

.
CLOSE FI Lt I r'dTH LOCK.
OPEN INPUT FILE2.

in this examnle filr~ l-ILEI is completely procP.ssed before processing
beqins on tile FILE;~. ThP.n~fore it would be rossible to use th~ same
devic~ ror ~1 and f2. The user can inform the system that this 15
possL1le by using the SPOOL statement ln con_junction with the POOL
pnrameter in $ASSIGN:

1.100L 1 *!AS/!.14U~~;
ASSIGN ~·1, MAX.Z, f.'OOL, FIRST, •••
ASS IuiJ l-2, BMY. I. POOL, NEXT, •••

·rhus only one M~U0402 will be resArved tor the use of the pooled
filP.S.

i~tl~n a program closes a file, the system is able to free the rl~vice
assiqned to tt1e file for the use of another volume in the pool • In
the nbove COBOL examole, the file FILE1 itself has been deassigned
by the inclusion of WITH LOCK in the CLOSE statement. This action is
not n8cessary for the purroses of the device pool, but it ensures
that FILEl cannot bP. re-opo.ned in the same _job step and there fon~

9-08

the corresponding file can be assigned immediately, if necessary, to
another Job.

For further in format ion on the use of the SPOOL statemf:rnt see the
Job Control Language (JCL) User Guide.

MULTIVOLUME FILES

If a file is too big to fit on a single disk or tape volume, it cRn
be stored on more than one volume. Such a file is called a
multivolume file. The following paragraphs are applicablP. to
sequential multivolume files only. Each part of such a file, riic;k or
tape , 1 s known as a "phys 1 ca 1 u n it " •

In the case of disk volumes which contain other files also, only
part of each volume wi 11 be occupied by a physicAl unit of the
multivolume file. The space for disk files is allocated using the
$PREALLOC utility <see the Data Management Utilities Manual>. Only
one $ASSIGN statement is needed for a mu 1 ti volume disk file nr
multitape file. The volume-names must be listed in the MEDIA
parameter of the SASSIGN ~tatement or recordPd in the catalog Rntry
for the file.

Boundaries between volumes in a multivolumP fi lP are U5tJnllv
invisible to the COBOL proi;;ram which nrocessPs such a fll~.-ThP
COBOL program does not have to cont A 1 n any spec ia 1 c odP tn hPn'ilP
multivolume filesz when the end of onB volume is reach~d the ~v~tPm
automatically switches to the next volume of the file. HowevPr, an
end-of-v.olume condition (i.e. end of physical-unit) can be forcPrf
during sequential input or output by using the CLOSE REEL or CUlSE
UNIT statement. These statements both have the same effect. Th~y I
cause processing of the current volttmP. to cease and tne nPxt volurnP ·
to be opened. This works only for multivolumP, tApP filP,c:;, nnrl f~r
multivolume HFAS sequential disk and tape files.

The end o.f "physical unit" is also visiblA to the COBOL nrngrn!Tl whRn
a RERUN ON CHECKPOINT-FILE EVERY END OF REEL/UNIT refer~nces thP.
file. Under these circumstances the end of a physical unit c~us~s a
checkpoint to be taken. This works only for multivolume tc:1p~ filPs,
for multivolume HFAS sequential files and, if the MOUNT=l f\An~rnetPr
is used Cor implied) in the $ASSIGN statement, for multivoltrne BFAS
sequential files.

For more information about multivolume files see the Joh c·ontrol
Language (JCL) User Guide.

MULTI LOGICAL UNIT FILES

A COBOL program can process several files during a single exf?cutir.,
using a single SELECT clause and FD for all the files. Each filP ·n

9-09

have a different organization (sequential, rAlative etc.> and may
use a different access .system CUFAS, BFAS, HFAS>. Each such
individual file is called a "lo~1cal unit" of the COBOL file rfef1ned
in a single SELECT clause and FD.

I From the point of view of the COBOL program thi.s set of logical
units is seen as a single file. From the system point of view. ARCh
logical unit is a complete monovolume or multivolume file. If r::t

logical unit occupies several volumes this may be because the
logical unit is a ·"multivolume file11 Csee above> or becAuse "file
concatenation11 is being used Csee below>. The U!;e of multi logicnl
unit files is described in the following paragraphs •.

There is no need to explicitly OPEN and CLOSE each logical unit in a
multi logical unit file. Each logical unit is opened and clo~Arl
automatically in a manner analogous to multivolume file proc~ss1ng.
Alternatively, the COBOL program can swap logic~! units by using thP.
CLOSE REEL or CLOSE UNIT statement. This causes the current 10gicBl
unit to be closed before the end has been reached; the next logical
unit is then opened immediately. Note that, when using multi 10gical
unit files, the CLOSE REEL and CLOSE UNIT stAtements cnnnot he u~P-d
to close physical units Ci.e., volumes). When a RERUN ON
CHECKPOINT-FILE EVERY END OF REEL/UNIT references the fill~, the enrl
of a logical unit causes a checkpoint to bf:! taken. For ~uch fl l~s.
physical units, as described above, are not visible from the COROL
program.

There must be a $ASSIGN statement in the JCL for each logical unit
to be processed. There may also be a SPOOL statem0nt to allocatP. a
sin9le device for all the logical units being processed. For :* example•

•

COBOL•
SELECT INPUT-FILE ASSIGN TO .IFILE •••

JCL•
POOL
ASSIGN
ASSIGN
ASSIGN

MT/T91
IFILE-1, E.FILEA, P<X>L, FIRST •••
IF I LE-2, E. FI LEB,_ PCXlL, NEXT •••
IFILE-3, E.FILEC, PCX>L, NEXT ...

In this example the internal-file-name is suffixed with a hyphen
followed by the sequence .number of the log1c8l unit within tha f 1 lP
<without leading zeros>. Note that the 1nternal-f1le-namA spqci fierl
in the COBOL SELECT clause must be short enough to permit the
addition of the suff 1x. The maximum length of an 1nternnl-filP.-na~P
including suffix is 8 characters.

It .only one logical unit is to be procec;sed hy the COBOL program A

normal $ASSIGN statement must be used with no suffix on the
internal-file-name. For example•

ASSIGN IFILE, E.FILE, •••

9-10

If a COBOL program is to process multi logiull unit filPs the Vl\CSEG
CvacAnt segment> parameter must be 11~e.rl with SLINKER. ThP, format of
this command 1s1

VACSEG = <SHARE = +a>

where na-11 is calculated as follows. For each multi logical unit file
in the program the maximum number of logical uni ts is m11 lt i p li Pd by
2 and one is added. The resulting values for each multi logical unit
file are added together and augmented by 2 to give ua". SP-e s~cti<:"'n
III for details of SLINKER.

MULTIPLE FILE TAPE VOLUMES

Several self-contained files may be written to or read from a single
magnetic tape by a COBOL program Conly one ti le may be npen at one
ti me> •

There must be a SELECT clause in the FILE-CONTROL paragraph anrl
*

a $ASSIGN statement in the JCL for each file in a multiplA tile tape
volume. There may also be a SPCX>L statement in the JCL to allocate a I
s 1ngl e device for the magnetic tape. The FSN < fi l~ s equ~mce numbPr >
parameter must be used in each SASSIGN statement to specify thA
position numbers of the files. The DEVCLASS and MEDIA must bP- the
same for all the tiles. For example•

COBOL•
SELECT FILEA ASSIGN TC> IFILEA.
SELECT FILEB ASSIGN TO IFILER.
SELECT FILEC ASSIGN TO IFILEC.

JCL•
POOL MT/T9;
ASSIGN IFILEA,E.FILEA,DEVCLASS=MT/T9,MEDIA=TAPEA,FSN=l ,PCXJL,FIRST;
ASSIGN IFILEB,E.FILEB,OEVCLASS=MT/T9,MEDIA=TAPEB,FSN=2,PCXJL.NEXTi
ASSIGN IF I LEC, E. FI LEC, DEVCLA SS=MT/T9, MED I A=T APEC, t= SN=.1, POOL, NEXT t

The same internal-file-name can be used for oll files in c=t multiple
file tape volume if desired. However, in this case, a MULTIPLE FILE
TAPE clause must be present in the I-0-CONTROL paragranh in the
COBOL program. for example•

COBOL•
SELECT FILEA ASSIGN TO !FILE •••
SELECT FILEB ASSIGN TO !FILE •••
SELECT FILEC ASSIGN TO !FILE •••

•
•

MULTIPLE FILE TAPE FILEA ?OSITION 1, FILEB POSITION 2,
FILEC POSITION 12.

9-11

JCL•
POOL MT/T9;
ASSIGN IFILE-1 ,E.FILEA,DEYCLASS=MT/T9,MEDIA=TAPEA,

FSN= J , POOL,.F I RST•
ASSIGN IFILE-2,E.FILEB,DEVCLASS=Mf/T9,MEDIA=TAPEB,
F SN =2 , P c X> L, NEXT ;

ASSIGN IFILE-12,E.FILEL,DEVCLASS=MT/T9,MEDIA=TAPEC,
FSN=l2,POOL,NEXT;

In this example the internal-tile-name !FILE is used for P,ach of the
files. However, the internal-file-names in the $ASSIGN statements
must be suffixed with a hyphen followed by the position number of
the respective file within the multiple tape file volume. The
compiler will output a message in the program listing for each
internal-file-name, ·showing the suffix which must be used in thl9
$ASSIGN statement. Note that the internal-file-name specified in the
COBOL SELECT clause must be short enough to permit the addition of
the suffix. The maximum length of an internal-filA-namf? Cin A COROL
program> including suffix is 8 charActers. The OEVCLASS and MEDIA
mdst be the same for all of the files. Finally, the FSN param~tP.r
must also be used to specify the position numbers of thA filAs.

If the same internal-file-name is used for all thA filA5 in a
multiple file tape volume but only onA. of thP.se files is to he read
during a particular program execution, then the position n'fmber
suffix need not be used in the SASSIGN statement, though it c~n ha
used if desired. A position number 5uffix can also be specified P.VP.n
when a 11 the internal-ti le-names are unique.

The f 1 les in a multiple file tape vol1.1me can be spec if ied in thn
MULTIPLE FILE TAPE clause.of the 1-0-CONTROL paragraph in the COROL
program, even if a different ifn is used for ~ach file in thP t~pP..
For example•

MULTIPLE FILE TAPE FILEA POSITION 1, FILER POSITION 2,
FILEC POSITION 12.

This clause is not essential C except when thP. same 1 fn is us~d for
all files> and any valu~s specified in the clause will be OVP.rrirlrlPn
by the JCL values described above. For more detRils of this cl~11sP.
see the COBOL Language Reference Manual.

FILE CONCATENATION

File concatenation should be distinguished from the concepts of
multivolume files,. multi logical unit files and multipl~ file tApe
volumes which have been discussed above.

Several UFAS or BFAS sequential tape files may be accessed in
sequence by means of file concatenation; the files are treated by

I the program as if they are one logical sequent1Rl file. Boundarie~
between concatenated files are invisible to the COBOL program that

9-12

processes such files. ~hen the end of one file is reached, the
system automatically switches to the next file. The CLOSE REEL and
CLOSE UNIT statements work in a manner similr.:tr to multivolumP fi!As.
These statements cause the next volume to be opened. This volllmP. m8y
be the next volume in a rnultivolume file or the first volume of the
next concatenated flle. RERUN on CHECKPOINT-FILE EVERY END OF
REEL/UNIT also operates on end of volume.

File concatenation may also be used with cassette files. File
concatenation is performed by the specification of the respective
$ASSIGN st"'atements, in the required sequence, with the omic:;sion of
the internal-tile-name on ~11 but the first SASSIGN statement. It is
strongly recommended that the SPCXlL statement be used to allocate a
single device for all the files to be concatenated. For exAmrler

POOL MT/T9;
ASSIGN ifn,MY.FILE1,0EVCLASS=MTIT9,MEDIA=A1 ,POOL, FIRST:
ASSIGN ,MY.FILE2,DEVCLASS=MT/T9,MEDIA=A2,POOL,NEXT;
ASSIGN , MY.FI LE 3, DEVCLASS=MT /T9, MED I A=A.1, PClClL, NEXT:

In the above example, the three tape files are regArded as a ~i~gle
sequential file, starting at MY.FILEI and finishing at MY.fILEl.
Note that the concatenated fl les mw;t a 11 have the same RECFOR~(,
BLKSIZE and RECSIZE parameters and mu~t have the ~ame device cl~s~
and device attributes.

One or more of the files to be concatenated may be a mu 1t1 vo I ume
file if required. Furthermore, file concat,:rnfltion can be used in ~
multi logical unit file. One or more of the $ASSIGN statements for a
multi logical unit file can use the file concatenation facility.

UFAS, BFAS AND HFAS

The following tile access systems are available with Level 64:

- UFAS - Universal File Access System.

- BFAS - Basic File Access System

- HFAS - H200/2000 File Access System.

UFAS is the primary file access system~ It is used by IDS/II for
data base management. It offers a wide range of facilitie~ and
provides considerable device independence.

BFAS is an alternative to UFAS. BFAS is a relatively devicP
dependent tile access system which mAy offer better performancP- for
certain types of application.

HFAS reads and writes files in H200/2000 formats. This filA 0ccP.~~
system should be used for compatibility on1y.

9-13

UFAS and BFAS are the Level 64 native file access system~. They ATP.
completely compatible. For magnetic tape, the file access system
used is irrelevant because UFAS and BFAS tapes have exactly the same
format. Sequential and indexed HFAS files are comoat1ble in certain
respects with UFAS and BFAS files. ·

Some notes concerning UFAS, BFAS and HFAS are given below. For
further information refer to the UFAS User Guide, BFAS User ~JfdP., or
HFAS User Guide.

ORGANIZATION

The selected file access system may be indicated in the ORGANIZATION
IS clause of the FILE-CONTROL paragraph. The following values may bA
used in this clauset

- UFF <specifies UFAS).1 this is the default when no ORGANIZATION
is specified.

- LEVEL-64 <specifies BFAS>.

- H-2000 (specifies HFAS>.

However, this option is not part of the ANS standard and is
si9nificant only in the following .circum5tancesr

- The file is an output disk tile.

- A SPREALLOC statement has not bP.en used for the file.

It is recommended that SPREALLOC be used for a 11 permanent output
disk files. SPREALLOC p.rovides a centralized and visiblP. m~tho<i of
specify 1ng f 11 e attributes.

APPLY NO-SORTED-INDEX

The APPLY NO-SORTED-INDEX clause of the I-0-CONTROL paragraph can be
used to speed up the crAation of a UFAS indexed file with ALTERNATE
KEYS by not .sorting the alternate (secondary) key-indexPs. The
alternate indexes can be sorted after program execution by using thP.
utility .SSORTIDX. See the Data Management Utilities Manual for
details of $SORTIDX.

Note that the APPLY NO-SORTED-INDEX clause is not oart of the ANS
standard.

APPLY NO-RESIDENT-INDEX

Unless otherwise specified, the cylinder index tables of BFAS
indexed sequential files are automatically.loaded into memory. As a
result, access times are reduced, particularly where access 15
RANDOM.

9-1 4

However, the user may have some reason Ce.g.the indexes nre v?.ry
large) for wanting the inrlexes to be non-resident. In this case the
APPLY NO-RESIDENT-INDEX clause must be used in the 1-0-CONTROL
paragraph for the relevant tile.

Note that the APPLY· No-RESIDENT-INDEX clause is not part of th?. ANS
standard.

The SDEFINE statement parameters NRESIDX and RESIDX can he u~~d
instead of the APPLY NO-RESIDENT~INDEX clause • $DEFINE cBn also he
used to override the APPLY NO-RESIDENT-INDEX clause.

ERROR HANDLING

If a system procedure returns to the COBOL program an ahnormnl
return code as a result of an I/O op~ration, the ~tep i~ ahnormRlly
terminated and an exception rerort is printed in the Joh Occurrn.nr 0

Report. Abnormal termination can be avoiderl if the COBOL progrFlrri
contains a USE AFTER ERROR PROCEDURE SECTION in the OECL~RATIVES fnr
the relevant file. This SECTION can then diagnosP. th~ Prror 1 r<1in9
the FILE STATUS associated with the filP. or thA systP.rn return coriP.
obtained by caLliny the routine H_CBL_UGET4. ThesP. subjects :1r~
discussed in the following paragraphs.

The FIU: STATUS

The following example shows the way in which a USE AFfER E~ROF?
PROCEDURE SECTION and FILE STATUS can he u~ed:

FILE-CONTROL.
SELECT FILEA ASSIGN TO FILEA

FILE STATUS IS FS12 •••

{WRKING-STORAGE SECTION.
01 FS12 PIC XX.

PROCEDURE DIVISION.
DECLARATIVES.
FILEA-ERRO~ SECTION.

USE AFTER E~?ROR PHOCEDURE ON FILEA.
Pl.

DISPLAY "STATUS= II FS12.
EX-IT.

EXIT.
END DECLARATIVES.
MAIN SECTION.
DEBUT.

OPEN INPUT FILEA •
•

9-1:>

If an l/O operation on FILEA results in an abnormnl system return
code being generated, control will be handed to paragraph Pt. ThP.
FILE STATUS FSl2 <specified in the SELECT clause for FILEA> is
displayed. The EXIT then -hands control back to the instruction
following the I/O request. See the COBOL Language Refe·rence· Man·ual
for a full description of USE AFTER ERROR.

The FILE STATUS data item <two characters> is set by a COBOL
run-time package procedure according to the return code obtained
from the system Data Management procedures. The meaninqs of the.
values to which FILE STATUS can be set are given in the COBOL
Language Ref·erence Manual.

When a USE AFTER ERROR PROCEDURE SECTION 1 s 1 nvokerl for the first
time from a given point in the program, the following me~~Rge is
output in the Job Occurrence Report.

CBL18 IFN•ifn re AT ADDRESS addrAss CILN=iln CXLN=xlnJ l

Return Code

The FILE STATUS facil1ty is part of ANS standard COBOL and is de
scribed in the COBOL Language Reference Manual. The information pro
vided in the FILE STATUS item is normally sufficient to diagnose
most I/O errors. However, the full return code generated by Data
Management can be obtained and analyzed by the COBOL program. This is
done by calling the procedure H CBL UGET4 in the COBOL run-time pack
age. This facility is not part of the ANS standard and for this
reason should be avoided whenever FILE STATUS provides sufficient
information. The following example shows the use of H CBL UGET4:

WORKING-STORAGE SECTION.
77 RET-CODE-1 USAGE COMP-1 •
77 RET-CODE-2 USAGE COMP-1.
77 RET-CODE-1 X PI C S9 C 5 > •

77 RET-CODE-2X PIC S9C5> •
•
•
PROCEDURE DIVISION.
DECLARATIVES.
FI LEA-ERROR SECT I ON

USE AFTER ERROR PROCEDURE ON FILEA.
p I •

CALL "H_CBL_UGET4" USING RET-CODE-1 RET-CODE-2.
MOVE RET-CODE-1 TO RET-COOE-1X.
MOVE RET-CODE-2 TO REf-COOE-2X.
DISPLAY "f?ET.CODE = 11 RET-CODE-1X RET-CODE-2X.

EX-IT.
EXIT.

END DECLARATIVES.
MAIN SECTION.
DEBUT.

OPEN INPUT FILEA.

9-16

The return code is a hexadecimal value. The signi ficanc~ of e.;ch
return code value is given in the Error Me~sages Rnd Return C0d"s
Manual.

RESTRICTIONS ON CERTAIN FILE ORGANIZATIONS

Some features, though described 1n the COBOL Language Referenc~
Manual, are not available for certain file organizations. The~P nrP
listed in Table 9-3.

Table 9-3. Features Not Available with Certain File C>rganizations.

Feature not available File organization

Physical units UFAS disk sequential
BFAS disk sAquential

RERUN EVERY UFAS sequential
END Of UNIT

Variable length records BFAS indexe.rl and relative
HFAS sequentialCdisk>indexed,
and keyed.

Creation of files when ACCESS HFAS indexed
IS RANDOM and keys are
not in ascending order

ALTERNATE RECORD KEY BFAS indexed
HFAS indexed

START subkey HFAS indexed

START > t START NOT < BFAS relative

When such a feature is used for a file organization where it 15 not
avai !able, 1 t generally results in a file states 11 3011 return~d to
the program and a return code mnemonic FUNCNAV reported in the Joh
Occurrence Report.

RECORD SIZE

The maximum record size used on a file is determinated according to I
the following criteria•

9-17

- For a report f ile.1
a> If the RECORD CONTAINS clause is present, the specif1Prl

record length is augmented by 8.
b) If the RECORD CONTAINS clause is not prec:;~rnt, the n~corrf •

length is assumed to bA 140. ~

- For the other files•
Unless one of the following condition5 exists, the record lP.ngth
is taken to be the length of the largest recnrd defined f0r the
file. If one of the following conditions exist~, this lPngth is
augmented by 8.
a) The internal-tile-name in the SELECT clause is c;uffixPrl hy

-PRINTER or -SYSOUT and WITH ASA or WITH SAHF is not
specified.

b) WITH SSF is specified in the SELECT clause.
c> The LINAGE clause is ~neci fied in the File Descrip_tinn

entry.
d) fhe file is referenced in a WRITE statement with the

BEFORE/AFTER ADVANCING phrase.

The ACTUAL KEY Phrase

By using the OUTPUT command of the $SORT utility a sequPntial filP
of disk addresses can be produced. This contains, in sorted orrler,
the disk addresses of the records input to SSORT. The addrA~s fi lP
can later be read into a COBOL progrr~m and CRn be used to rearl, in a
sorted sequence, the records of the data ti le input to thP SS<HH.
That is, the data file is not actually sorterl hy SSORT, but it cAn
be read in the sorted sequence by a COBOL program, using the arldrP c;s
file produced by SSORT.

In order to read the data file in the sorted seqw-rnce the SELECf
clause for the data file must contain an ORGANIZATION RELATIVE
phrase and an ACTUAL KEY phrase (instP.ad of RELATIVE KEY>. ThP
address file, on the other hand, must bP. rearl AS A seqw=rntial filn.
Each n~cord on the address file wi 11 contain a disk adciress in thP.
first ti ve bytes. As each record of the address fi 1'~ 1~ read, thP.
address must be moved to the 5 byte data itAm snecified in the
ACTUAL KEY phrase o t the data ti le. The next READ statement P-Xecuted
on the data file wi 11 then input the next data record in the c:;nrtr~d
sequence.

The ACTUAL KEY phrase can only be used if the LEVEL=L64 oararneter i~
specified in the $COBOL statement when the rrogn:lrn i!=i cornpilRd. NotP.
that the ACTUAL KEY phrase is not part of the ANS Standard.

SSORT will only write an address file if one of the values AODWlUT,
ADDATA or KEYADDR is sp~ci fled in the OUTPUT command. In Arlditinn,
if the AODHH>RM parameter is present in the SSORT statement it rT111c:;t

contain the value TIRDD <this is the default value) which sp(.)cifiP,~
the format of the address.

9-1 8

SECTION X

STANDARD RECORD FORMATS

There are four standard record formats recognized by Level 64 Data
Management. These formats may be used in magnetic tape or disk
files. They are.•

- Standard Access Record Format CSARF>
In this format each record is composed exclusively of normal
data without any special heading information. This is the
format normally used in data files or subfiles which are passed
between COBOL programs.

- System Standard Format <SSF>
In this format each record comprises on eight byte header
followed by normal data. The function of this header is to mnke
the file or subfile device-independents a file or subfile in
system standard format may be routed from the disk on taoe to
any kind of I/O device. This format provides the Stream Reader,
compilers, SLIBMAINT and Output Writer with a standard method
of handling their input and output data.

- American Standards Association Format CASA>
In this format each record consists of a one byte header
followed by normal data. The header may be thought of as
containing a subset of the in formation held in an SSF header.
ASA files however are not device independent• they may only
contain data to be printed. ASA f Iles should be used for
compatibility with other computer systems. They should not
normally be used for print files which are to be processed
solely within the Level 64 system. In order to use this format,
the programmer must specify WITH ASA in the SELECT clause fcir
the file. The programmer is responsible for the contents of the
first character of the record, which contains the skip
information.·

- Device Oriented Format CDOF)
In this format each record comprises an eight byte header
followed by normal data. The header contains device oriented
control information in the form used by the various unit record
devices. This format is only used by Level 64 "Program Mode"
PM 100 and PM200 systems.

ASA and D<>F are rarely used by the COBOL programmer and wl 11 n<;>t be
discussed further in this section. The remainder of this section
discusses SSF and SARF.

10~01

Notes Whenever the word ·"files·" is used in the -remainder of this
sect ion 1 t should be taken to mean ·"f 1 les or subf 1 les".

SYSTEM STANDARD FORMAT CSSF>

SSF records include an eight-byte header in addition to the normal
data. The main components of this header are•

- Record type. This indicates whether the record is a control
record or a normal data record. Control records are added to
the file by the system or by the Report Writer Cif used> to
control the handling of the file and the production of page
headings etc.

- Header type. If the record is a control record this specifies
the type of control record.

- Truncation value. This specifies the number of space characters
which have been truncated at the rightmost end ot the record.
Truncation <packing> occurs only in records which were created
w 1th a language type . of COBOL or COBOLX .•

- Line number. This contains the sequence number of the record
within the file. It may be derived from the data cards used
when the file was read into the system; it may also be
generated by the NUMBER option of the SLIBMAINT command MOVE or
by the SLIBMAINT command RENUMBER.

- Form control. This specif !es the paper movement required when
printing the record.

If the first record in an SSF file is a control record with a header
type 101 and WITH SARF is not specified in the SELECT clause for the
file, then the file is handled by the system as if all records in
the file are in SSF format. If the file does not have such a record
At the beginning then it is handled as 1 t all records are in SARF
format. If the type IOJ control record is present it contains an
indication of the language type specified when the file was created
Ce.g. TYPE = COBOLX in the MOVE command of SLIBMAINT>. COBOL
automatically outputs a type IOI control record if the file is
implicity or explicity specified as SSF.

The following paragraphs discuss the relationship between SSF and
the Stream Reader, SLIBMAINT, the COBOL compiler, COBOL programs and
the Output f1riter •

. ~he Stream Reader, SLIBMAINT and the COBOL Compiler

.·~n SSF tile can be created from cards contained in an input
enclosure. It TYPE ::: COBOL or TYPE = DATASSF is spec! tied in the
$INPUT statement the Stream Reader will create a temporary subfile
in the system file SYS.IN and the cards will be read into this

10-02

subfile as a series.of SSF records. This is known as a standard
SYSIN subfile and it exists only for the duration of th0 job.

The standard SYSIN subfile may then be read by any job step or
utility. For example it can be read by SLIBMAINT and moved to a user
library•

$JOB •••
LIBALLOC
LIBMAINT

SINPUT
MOVE
•
•

SEND INPUT;
$ENDJOB;

SL~CSSF.LIB,SIZE=2>,MEMBERS = 13;
SL,LIB=SSF.LIB,COMFILE - *SSFENC;
SSFENC,TYPE = DATASSF;
COMFILE t SSFMEMB,TYPE = COBOLX;

In this example a resident source library SSF.LIB is set up by
SLIBALLOC with a size of two cylinders. Card images from the input
enclosure ·are then moved from the standard SYSIN subfile to the
library SSF.LIB by the MOVE command of SLIBMAINT. A new member
SSFMEMB is created in library SSF.LIB to· contain the data. The TYPE
= COBOLX parameter has a special effect on the format of the records
in the library member. This is discussed in Section I, Input and
Maintenance of Source Programs.

An SSF library member may be read by a user program. Alternatively,
a user program may read an input enclosure directly from the
standard SYSIN subfile. However, this is normally done only wh~n
TYPE = DATA is specified in the $INPUT statem~nt, or 1 f tht~re. is no
TYPE parameter. In this case the records will be held in SARF
format.

The EDIT and UPDATE commands of SLIBMAINT may be used to altAr the
contents of SSF library members. With these commands the user may
spec! fy the lines of the library member to be altered. hy ~reci fytng
the line numbers held in the SSF headers.

The creation and updating of SSF library members is discussed in
detail in Section I and will not be discussed further tn the current
section.

It the SSF library member contains a COBOL progn~m 1 t can he
processed by the COBOL compiler. The compiler wi 11 check the. line
numbers in the SSF headers and report on any descending sequences in
the member. The use of the compiler is covered in Section II.

If the SSF library member contains JCL it can be used by a $INVOKE,
$EXECUTE or $RUN statement {see Job Control Language (JCL) User
Guide) .

10-03

I

Reading SSF Files in COBOL Programs

In a COBOL program any input tile may be SSF or SARF irrespective of
the way in which it is described in the COBOL SELECT clause. The
presence or absence of a type 101 control record at the start of the
file indicates the format of the file. Level 64 Data Management
checks for the existence of this record and processes the file
accordingly.

A COBOL program can receive SSF records from Data Management eithPr
w1 th or without the SSF header •. It the ~HTH SARF ohrase ls included
in the SELECT clause of the file, the complete SS~ record including
the header wi 11 be passed to the COBOL program. If the WITH SSF
phrase is included in the SELECT clause, or if there is no WITH
phrase, the SSF header will be stripped from the record before it is
passed to the COBOL program and control records wi 11 not be passed
to the COBOL program. Note that the phrases WITH SSF and \~ITH SARF
are not part of the ANS Standard and should be avoided unless they
are essential.

The following example illustrates the use of an SSF input file on
magnetic tape. In this example the WITH SARF phrase is used which
will cause the SSF headers and control records to be p~ss~d to thP
COBOL program.

COBOL•
SELECT INFILE ASSIGN TO F1 rflTH SAHF.

JC Lt
ASSIGN Fl, SSF.FILE, DEVCLASS=MT/T9/DJ600, MEDIA=TAPEI;

The next example shows the use of an SSF library member on disk. The
SSF headers wi 11 be stripped from the records before they arc pc:ts.sNi
to the COBOL program. In this example the WITH SSF phrase is
redundant and serves as documentation only.

COBOL a
SELECT INMEMBER ASSIGN TO F2 WITH SSF.

JCLt
ASSIGN F2,SSF.LIB,SUBFILE=SSFMEMB,DEVCLASS=MS/M450,MEDIA=DISK1;

The final example illustrates the use of an SSF input enclosure
(which is a temporary subfile of the system file SYS.IN>. No ~HTH
phrase is used. However, the SYS.IN subfile will begin with a typP
JOI control record so it will be treated as An SSF file by Data
Management. As there is no WITH SARF phrase the headers will bA
stripped from the records before they are passed to the COBOL
~::>rogram.

10-04

COBOL•
SELECT INCLOSE ASSIGN TO F 3.

F 3, *SSF5NC c
JC Lt

ASSIGN
$INPUT SSFENC, TYPE = DATASSFI
•
•
$ENDINPUT1

If the SSF header contains a nonzero truncation value, that is,
when blanks have been truncated at the end of a record, the blanks
are not restored when the record is read. The record length, in such
cases,does not include the truncation value and only refers to the
length of the record on the l/O medium. Truncation values are
generated when. for example, the file has been crested by SLIBMAINT
wt th a language type o t COBOL or COBOLX.

In fact, unless this input enclosure was needed in SSF form for
ano.ther step.of the same Job, it would be better to hold the data in
SARF form. In this case the $INPUT statement should not have a TYPE
parameter CDATA would be assumed, indicating SARF format> but the
SELECT clause would. re.main unchanged.

Writing SSF Files in C.OBOL Programs

An output file is in SSF format if the WITH SSF phrase is included
in the SELECT clause.of the file, or if the ADVANCING phrase is used
in an ass.ociated WRITE statement, or it the FD contains the REPORTS
clause or LINAGE clause or, unless otherwise spec 1 fied, 1 f the
internal-file-name in the SELECT clause has a suffix -PRINTEH or
-SYSOUT. For example•

SELECT
SELECT
SELECT

OUTFILE
OUTFILE
OUTFILE

ASSIGN
ASSIGN
ASSIGN

TO
TO
TO

Fl WITH SSF.
Fl-PRINTER.
Fl-SYSOUT.

However, under certain circumstances, such a file will be output as
·"edited SYSOUT" instead of SSF. This is explained in Section XI,
Using Unit Record Files.

output SSF files are usually print or punch files or subfiles. The
use.of print and punch files is described in Section XI and will not
be discussed in the present section.

STANDARD ACCESS,RECORD FORMAT CSARF>

SARF records have no special header but are composed exclusively of
user data. This is the format normally used in data files which are

10-05

I

passed between COBOL programs. However, SARF tiles may also be
handled by the Steam Header, $LIBMAINT, the compilers and the Outout
Writer. The following paragraphs discuss the use of SARF format.

The Stream Reader, SLIBMAINT and the COBOL Compiler

A SARF library member can be created from cards contained in an
input enclosure. Normal practice should be to omit the TYPE
parameter from tr9 $INPUT statement (equivalent to TYPE=DATA>. If
this is done, the Stream Reader will create a temporary subfile in
the system ti le SYS. IN and the cards w 111 be read into this sub f1 le
as a series of SARF records. That is, a standard SYSIN subfile will
be created for the duration.of the Job.

The standard SYSIN subfile may then be read by the SLIBMAINT utility
and may be moved to a user library. The following example
illustrates this sequence 1

$JOB •••
.LIBALLOC
LIBMAINT

SINPUT
MOVE
•
•

SENDINPUTI
$ENDJOBI

SL,CSARF.LIB,SIZE=2>,MEMBERS=J3;
SL, LI B=SARF"' LI 8, COMF ILE=*SARFENC;
SARFENC;
COMFILEtSARFMEMB,TYPE=DATA;

In this example, a resident source library SARF.LIB is set up by
SLIBALL<~ with a size of two cylinders. The card images from th~
input enclosure are then moved from the standard SYSIN subfile to
the library SARF.LIB by the MOVE command of $LIBMAINT. A new memb~r
SARFMEMB 1 s created in library SARF. LIB to cont a in the data.

The EDIT and UPDAIE commands of SLIBMAINT cannot be used to alter
the contents of SARF library members. However, if the SARF library
member contains a COBOL program, it can be processed by the COBOL
compiler. The use of the compiler is covered in Section II. If the
SARF library member contains Job Control Language it can be t1sed by
a $INVOKE, $EXECUTE or $RUN statement (see Job Control Language
(JCL) User Guide) .

Reading SARF Files in COBOL Programs

As mentioned previously, a COBOL program may read any file in ssr: or
SARF format without specifying ~ITH SSF or WITH SARF.

The user must not, implicitly or explicitly, specify ~flTH SSF in the
SELECT clause. of SARF input tiles. Otherwise, the first eight
characters of each record will not be passed to the user progrA~ And

10-06

some complete records wi 11 not be passed to the· user program. On the
other hand, 1 t neither WITH SSF nor WITH SARF is speci tied and if
the first record on the file ·happens to look like a type 101 control
record, Data Management will incorrectly assume that the file is in
SSf format.

·ro read a SARF tile successfully, either the WITH phrase should be
omitted entirely or the WITH SARF phrase should be specified.
Note that the phrases WITH SSF and WITH SARF are not oart of the ANS
standard and should be avoided unless they are essential.

V~riting SARf Files in COBOL Programs

An output file may be in SARF format 1 t the WITH SAHF phrase is
specified in the SELECT clause of the file or if the WITH phrase is
omitted entirely and none of the options implying WITH SSF is used
tor the f i ~- e (see above). However, under certain circumstances, such
a file Will be output as "edited SYSOUT 11 instead of SARF. This is
explained in Section XI, Using Unit Record Files.

GENERAL POINTS CONCERNING SSF AND SARF

The Output t~ri ter

The Output t1ri ter can pr int or punch any SSF or SARF file. It is
called by the statements SSYSOUT and SWRITER. The Output Writer is
normally useci to output print or punch files produced by user
programs. However, it can also print or punch files which have not
been specially formatted for output, such as a library member
conb:iining a COBOL program or a normal disk or tape file containing
data.

The use of the Output ~~riter for print and punch files is discussed
in Section XI.

Summary of Hules for the SELECT Clause

Table lU-1 summarizes the rules concerning the COBOL SELECT clause
when using SARF or SSF files.

10-07

Table 10-1. Summary of Rules for the SELECT Clause

Type of IIO Type of
Required File Used

Input with SSF
header and
control records
removed

Input with SSF
neader and
control records
intact

nut put SSf
or Edited

SY SO UT

Input SARF

Output SARF
or Edited

SY SO UT

SELECT Statement Options
Note•WITH SSF/SARF i1re not ANS standard

WI TH SSF Ct his is the de fault 1 t
the input file is SSF, and should be
omitted).

WITH SARF <must be specified>.
Note thet the record description
must have an eight byte FILLER
at the start.

WITH SSF, or WRITE with the ADVANCING
phrase, or FD containing the REPORT
clause or LINAGE clause or -PRINTER
suftix or -SYSOUT suffix on internal
-tile-name Cone of these
must be specified).

~-.ITH SMff <this is the de fault if the
input file is SAHF, and should be
omitted>. ~ITH SSF must not be used for
SARF files.

WITH SARF (default for all
output files and should be omitted>.

J0-08

SECTION XI

USING UNIT RECORD FILES

This section describes the way in .which the following unit record
files are used•

- Print files;
- Punched card filesl
- ACCEPT, DISPLAY and STOP 11tera1 11 fi les 11 Cs tr ictly speaking,

from a COBOL point of view, these are not files because they
have no FD>;

- Cassette files.

PRINTING

Printing can be done in the following ways•

- Data can be stored in a SYSOUT file for printing later by the
Output Writer.

- Data can be sent direct to the printer.

Print data should normally be output to a SYSOUT file. The direct
use.of printers slows down program execution and reduces the
throughput.of the printer.

*

See The Report Writer, Section XII, for information concerning I
printed reports produced using the Report Writer facility.

Using SYSOUT Files for Printing

The following types of SYSOUT file can be used to store data to be
printed•

- Standard SYSOUT subfile.
- Permanent SYSOUT file.

1 J -01

The standard SYSOUT file CSYS. OUT> is a system t 11 e. The SYSOUT file
1s created at system generat16n and is located on a resident disk.
For each step, one or more subfiles is assigned for each unit record
output file defined in the step. During execution of each step, data
to be printed or punched.is sent to subfiles of the standard SYSOUT
f! le. No $ASSIGN need be made for a standard SYSOUT subfile.
Standard SYSOUT subfiles exist until the data in them has been
printed or punched. When output processing is finished, the subfiles
are automatically deleted.

A permanent SYSOUT file is a sequential disk or tape file or source
library member which is not automatically deleted after Output
Writer activity, or a permanent magnetic tape file Cuseful for large
volumes of output>. A permanent SYSOUT file must be assigned by the
user.

SYSOUT files are normally written in a format known as "edited
SYSOUT 11 • This is done automatically if certain conditions, described
below, are met. This has the following effect on output data1

- Records are formatted for the output device.

- The page is formatted Cpage headers, numbers etc).

·- Trailing blanks are suppressed.

An edited SYSOUT file cannot be handled as a normal SSF, SARF or ASA
ti le.

If the record size of the SYSOUT file is less than 600 bytes
Cspec.ified when the file is allocated using the SPREALLOC statement
or later in the $DEFINE statement> it will be written as an SSF,
SARF or ASA file. If the record size is greater than or equal to
600 bytes the file will be in edited SYSOUT format. SSF, SARF or ASA
files which are to be printed will be edited subsequently by the
Output Writer. Note that the use of a record size of 600 does not
imply storage inefficiency, since the RECFORM will be VB CvariablP.).
However, editing of SSF, SARF or ASA files during printing, rather
then when the f 11 e 1 s wr 1 t ten , 1 s re 1at1 v e 1 y 1 ne ff i c 1 e n t and s ho u 1 d
be avoided. See the Job Control Language (JCL) User Guide for more
information about SYSOUT files and the Output Writer.

There are certain situations in which a SYSOUT file should not be in
edited SYSOUT format. If the SYSOUT file is to be processed before
printing <e.g. by another COBOL program or by SLIBMAINT), it shoulrl
not be wr1 tten in edited SYSOUT format. Also, SYSOUT files produced
by the COBOL Report Writer using the report selection facility
should not be written in edited SYSOUT format. Note that a standard
SYSOUT file is always an edited SYSOUT file.

r.l-h~ rules for writing SSF, SARF and ASA files. are given in Section
X, Standard Record Formats.

The method of producing permanent and standard SYSOUT files with or
without edited SYSOUT format is summarized in Table 11-1.

1 J-02

Table 11-1. Methods. of Producing SYSOUT Print Files

TYPE OF SYSOUT FILE CREATED

) PART
1 A standard SYSOUT f 1le is assigned

by the system. The file is written
in edited SYSOUT format. The file
is printed. WHEN=DEFER in the
SSYSOUT statement will be ignored.
This parameter is used only with
permanent SYSOUT files.

PART 2
The step is abnormally terminated
when the tile is opened because no
implicit or explicit file assign
ment has been madeCRC=IFNNASG>.

PART 3
A permanent SYSOUT file is written.
The file wi 11 be in ed1 ted SYSOUT
format if the record size is At
least 600 bytes. The file is prin
ted by the Output •~ri ter unless the
~HEN=DEFER parameter is specified
in the SSYSOUT statement.

PART 4
A permanent SYSOUT file is written.
The file wi 11 be in edited SYSOUT
format if the record size is at
least 600 bytes. The file is not
printed by the Output Writer. A
StlRITER statement must be given to
print the f 1le.

PART 5
A permanent SYSOUT file is written.
The tile will not be in edited
SYSOUT format, irrespective of the
record size. The file is not
printed by the Output ~~ri ter. A
SWRITER statement must be given to
print the file.

11-03

JCL COBOL

$ASSIGN SSYSOUT -SYSOUT

I NO YES I OPTIONAL I
j

NO OPTIONAL YES I

NO NO NO

YES YES NO

YES NO YES

YES NO NO

The following notes explain the headings used in Table 11-1•

SASSIGN

SSYSOUT

-SYSOUT

is a SASSIGN of a permrJnent SYSOUT file to be
included in the JCL <YES or NO> ?

1 s a SSYSOUT of the SYSOUT file to be included in the
JC L < YE S , No or o PT I ON AL > ?

is the -SYSOUT suffix to be used after the
interna 1- file-name in the COBOL SELECT clause C YES,
NO or OPTIONAL> ?

In part 1 of Table JI-I a standard SYSOUT subfile is automatically
assigned by the system. As can be seen from the table, this only
happens when the user does not explicitly assign a SYSOUT filP. and
when one or both of the following conditions aprlyt

- The SSYSOUT statement is used.

- The -SYSOUT suffix in the COBOL SELECT clause is used.

If neither SSYSOUJ. nor -SYSOUT is spec! tied, the user must assign a
permanent SYSOUT file using the SASSIGN statement. This is done in
part 5 of the table. In part 2 of the table the user doAs not assign
a permanent SYSOUT ti le and the step is abnormally terminated.

I n part I o t the t a_b 1 e the SYS o UT f 1 1 e w i 11 be w r 1 t t en in ed 1 t e d
SYSOUT format. This wi 11 also be the case in parts 3 and 4 1 f the
SYSOUT file has been preallocated with a record size greater than or
equa 1 to 600 bytes. In a 11 other cases the SYSOUT t 1 le wi 11 not be
in edited SYSOUT format. This is the case in part 5 of the table.

Standard SYSOUT files are always printed automatically by the Outout
firiter. They cannot be held for later printing by using the ~~HEN =
DEFER parameter o t the SSYSOUT statement <see part I of the tab le>.
Permanent files are printed automatically only if there is a SSYSOUT
statement in the job step JCL and if this statement does not contain
the WHEN= DEfER parameter (see part 3 of the table>. In all other
cases the permanent SYSOUT file should be printed in a separate Job
step by using the SWRITER statement (see parts 4 and 5 of the tab!A)

A 11 the SYSOUT files written according to the ru 1 es in Tab le J 1-1
wi 11 have an SSF record format or an edited SYSOUT format. SSF
format includes an eight byte header in each record which enables
form control information to be stored for each print line. As a
result, WRITE ADVANCING options can be used when writing these
files. This is also true for edited SYSOUT files.

SYSOUT files can also be written in SARF format, it the SSF phrase
is neither specified nor implied, or simply by including the WITH
SARF phrase in the COBOL SELECT clause. However, the use of SARF
files is not recommended because WRITE ADVANCING options cannot be
used when printing these files.

1 J-04

Printing Directly

When the printer is used directly, a SASSIGN statement must ba
present at execution time which links the internal-file-name used
for the printer to the output device~ For example•

COBOL•
SELECT PRINTOUT ASSIGN TO LISTING-PRINTER.

JCL•
ASSIGN LISTING, DEVCLASS = PR, MEDIA = 120001 I
DEFINE LISTING~ MARGIN = 10;

The use of $DEFINE is optional. See the Job Control La:ngu·age "(JCL)
Referen·ce Manual for details of the relevant $DEFINE parameters.

Form Control

A 0 vert1cal tormat tape" is a punched tape loop of ten used in
printers to control vertical paper movement. Since Series 60
printers do not use a vertical format tape, vertical paper movement
is controlled by a software simulated vertical format unit CVFU>.
This VFU works in the same way as a standard 12-channel vertical
format tape, with a limitation of 20 stop levels per form, shared
among the 12 channels.

A COBOL program can use the VFU to control vertical paper movement
by specifying a mnemonic-name in the ADVANCING clause of the WRITE
statement. This mnemonic-name must be specif fed in the CHANNEL-p IS
mnemonic~name clause of the SPECIAL NAMES paragraph. CHANNEL-p
indicates the channel of the VFU that is to control vertical paper
movement for the current WRITE operation.

VFUs are stored in a system file called SYS.URCINIT. The user can
add new VFUs to this file or modify existing ones using the utility
$URINIT. This process is described in the UJJ!t Record Devices User
Guide. Also stored in SYS.URCINIT are the form height, margin, head
ot form, full form 1 and printing density. All this information is
associated with a form number. This form number can be specified in
the MEDIA parameter in $ASSIGN, SOUTVAL, SSYSOUT and $WRITER in
order to ensure that the correct VFU, form height etc. are used when
the file is printed. See the J·ob Control Language "(JCL")" Re·fe·rence

·Manual for details of the MEDIA parameter in $ASSIGN, $0UTVAL,
$SYSOUT and $WRITER.

The VFU, form height, margin, head of form, full form 1 and printing
density stored in SYS.URCINIT can be overridden at execution time by
parameters specified in a $DEFINE statement. See the· Joh Control

· Language · (JCL) · Reference· Manual for details.

Note that all form control parameters specified in SYS.URCINIT and
in $DEFINE for a given file are ignored at execution time if either
the LINAGE clause or the Report Writer is used with that file.

I l-05

I

The LINAGE Clause

The LINAGE Clause can be used in an FD statement to describe the
vertical format of a logical page as follows:

- number of lines of text on the page <LINAGE>,

- line number at which the footing zone be9inc; (FOOfING>,

- number of lines in the top margin CTOPJ,

- number o t 11 nes in the bot tom margin (BOTfOM).

A WRITE statement with an AT END-OF-PAGt phrase can then be used on
such a file. When the page being printed reaches the foot"ing zone,
the 1 mp era t 1 ve statement follow 1 ng the AT END-OF-PAGE phrase is
obeyed. This enables the program to print totals, summaries, banners
etc. before the next page is started. At the end of each page the
program can change the values of LINAGE, FOOTING, TOP anrl BOTTOM.
Thus, the format of the page can change dynamically during program
execution.

LINAGE-COUNTER is a field automatically defined by the compiler
whenever the LINAGE clause is used in an FD ~tatement. LINAGE
COUNTEH contnins the line number at which the printer is positionerf
within the current page. Therefore, the programmer need not kt:>eo A

record of the current line number. Th~ value of LINAGE-COUNTEf? can
be referenced in the COBOL program (qualified if necessary by tn0
file-name> but cannot be modified.

In the followiny paragraphs note that the END-OF-PAGE imperative is
executed after the associated WRITE statement and the LINAGE-cour·JTEH
may thus point to the next logical page (instP.Ad of to thP. c1irn~nt
footing area> when the imperative is obeyed.

When the compiler encounters an ADVANCING nn LINES it first
ca lcu lat es the sum of LI NAGE-COUNTEr-? and nn. Subsequent act ions
depend on the value ot this sum, as follows&

Situation J - If the advance would be within the body of the
current logical page, <1.e. the value is not
greater than the established LINAGE value) s
a. The WHITE 1 s done either be fon~ or a ft er ndvanc i ng

nn lines, as specified in thA oroyram.
b. LINAGE-COUNTER is increased by nn.
c. If FOOTING was specif led and the advance wo11ld

be within the footing area Ci.e. greater th~n
or equal to th~ established footing VF.llue>, tho
END-OF-PAGE 1 mperat i ve is obeyed, if one was
specif fed.

Situation 2 - If the advance would go beyond the body of the current
log 1 ca l page , C i • e • the v a 1 u e i s great er t ha n t h ~
established LINAGE clause)&

11-06

a. A new value is set-up for LINES AT TOP, if the
COBOL program has changed this value.

b. The WRITE is done either befote or after Cas
specif led in the program> the device is
positioned at the first line of the next
logical page.

c. LINAGE-COUNTER is set to 1.
d. New values are set-up for LINAGE, FOOTING and

LINES AT BOITOM, 1 f the COBOL program has
changed these values.

e. The ENO-OF-PAGE imperative is obeyed, if one
was speci tied.

Note that the CHANNEL-p IS mnemonic-name clause of the SPECIAL-NAMES
paragraph cannot be associated with a file for which the LINAGE
clause has been specified. Also, any form control information
specified in the JCL statements for such files is ignored when the
files are written.. See Form Control, above.

READING CARDS

Cards can be read in the· following waysa

- from a standard SYSIN subfile containing a series of card
images which have been spooled by the Input Reader;

- directly from the card reader.

Cards should normally be read from a SYSIN subfile. The use of the
card reader directly, slows down program execution and reduces the
throughput.of the card reader.

Using Standard SYSIN Subfiles for Cards

Th~ standard SYSIN file <SYS.IN> is a system file. It is created at
system generation and is located on a resident disk. Whenever an
input enclosure is def !ned in a job, the Stream Reader creates a
temporary subfile in the standard SYSIN file. This subfile is known
as a standard SYSIN subfile. Cards images are then read into this
subfile. However, the subfile exists only for the duration of the
Job.

For each input enclosure to be read by a COBOL program there must be
a SELECT clause and an associated file description. There must also
be a $ASSIGN statement for each input enclosure to be read. The
$ASSIGN statement specifies the internal-file-name contained in the
COBOL SELECT clause and the input-enclosure-name used in the $INPUT
statement. The -input-enclosure-name must be prefixed by an asterisk
in the $ASSIGN statement. The fc llowing example illustrates the
necessary COBOL and JCL•

11-07

COBOL•
SELECT CAfiD ASSIGN TO CARDFILE.

JCL•
ASSIGN CARDFILE, *INDECK;
$INPUT INDECK;
•
•
SENDINPUT;

.It it is necessary to retain a card file on disk, this can be done
using the utilities SLIBMAINT or SCHEATE. The file may then be read
in subsequent Jobs as a normal sequential file or subfile.

The user can choose to read cards from the standard SYSIN file or
from a permanent sequential file or even dirPctly from the card
reader, simply by changing the JCL at execution time. The COBOL
program remains unchanged. The suffixes -CAHD-READEk and -SYSIN on
the internal-file-names of SELECT clauses are for documentation
only. They are ignored by the compiler.

Heading Cards Directly

To read cards di re ct ly from the ca rd reader, then~ must be a s ASSIGN
statement in the execution JCL that links thP int~rnal-f ile-name
used for the card reader to the input device. For examples

CObOLa
SELECT CAHD ASSIGN TO CAHDf ILE.

JCL1
ASSIGN CARDFILE, DEVCLASS = CD/f?, MEDIA = INDECK;
DEFINE CARDFILE, OFFSET;

CONSOLE MESSAGE:
* hh.mm MOUNT INDECK FOR ron

where t
hh.mm is the current time in hours and minutes.
ron is the run occurrenc8 numbAr.

The use of $DEFINE is optional. See the Job Control· L·an·guag·e· · (JCL)
Reference Manual for details of the relevant $DEFINE parameters.

The name specified in the MEDfA parameter is displayed on th~
operator's console at step initiation. This name should also be
written on the card deck so that the operator can see clearly which
card deck is to be used. The card deck must not be part of a Job
stream. It must be a separate deck and the last card must be a SEOS
statement followed by at least one blank card. The card deck should
be mounted in the card reader and the card reader shoulrl be switched
to 11 ready 11 •

11-08

PUNCHING CARDS

Punched cards can be output in the following waysa

- to a SYSOUT file;

directly to the card punch.

Cards should norms lly be output to a SYSOUT file. Direct use of the
card punch slows down program execution and reduces the throuyhput
of the card punch. In either case, serious consideration 5hould be
given to use of a more compact and less fragile storage medium.

Using SYSOUT Files for Cards

Both standard SYSOUT and permanent SYSOUT files may be usP.r.f to store
data to be punched. They have the same characteristics as the
printer SYSOUT files described in Table 11-1.

The JCL and COBOL are the same as that shown in Table 11-1 except
that SSYSOUT is mandatory in a 11 cases shown 1 n part I of the table
<otherwise the file will be printed instead of punched).

The $SYSOUT statement used in parts 1 and 3 of Table 11-1 should
specify a card punch device class. For example:

SYSOUT PUNCHER, DEVCLASS = CD/P, MEDIA = PUNCHOUT;

The SWRITEH statement, used to punch the files as shown in parts 4
and 5 of Table 11-1, must also specify a card-punch device-class.
For examples

•1RITER C.PUNCHER, DEVCLASS = CDIP, MEDIA = PUNCHOUT;

As shown in parts 1 , 3 or 4 of Table 11-1 , SYSOUT f 11 es may be
produced in edited SYSOUT format. That is, the files are edited A5

if they are going to be printed. When the files are actually punchP-d
by the Output Writer they are again edited into n format suitable
for the card punch. So editing is performed twice. This will not be
a problem.if a small number of cards are to be output. However,
should large card decks be output it might be advisable to handl?.
such SYSOUT files, which are to be punched but not printed, in onP,
of the following ways&

- As shown in part 5 of Table 11-1.

- As shown in parts 3 or 4 of Table J 1-1 provided that the
permanent SYSOUT file has a record size of less than 600 hytes
(it has to be at least 600 bytes for the. file to be written in
edited SYSOUT format>.

11-09

Note that standard SYSOUT subfiles are always written in editorl
SYSOUT format. It is therefore better to use oermane nt SYSOUT f 11 es
tor all card punch outpu~. In fact, 1 t a SYSOUT file is not to be
printed it can be output as a normal permanent sequent1Al file anr.f
Table 11-1 can be simplified as shown in Table 11-2.

Table .. 11-2 Methods of Producing SYSOUT Punch Files

TYPE OF SYSOUT FILE CREATED JCL COBOL
<RECORD SIZE<600 BYTES>

$ASSIGN SSYSOUT -SYSOUT

A permanent SYSOUT file is
~rested. The file will not be
1-n edi tad SYSOUT format because
the record size is less than
600 bytes.
The file is punched by the
Output Writer unless the
WHEN=DEFER pnrameter is
specified in $SYSOUT.

A permanent SYSOUT file is
created. The file will not be in
edited SYSOUT format because the
record size is less than 600 bytes.
The file is not punched by the
Output Writer. A SWRITER statement
must be given to punch the tile.

Punching Cards Directly

YES YES NO

YES NO NO

To punch cards directly on the card punch, there must be a SASSIGN
statement in the execution JCL that links the internal-f ile-namA
used-for the card punch to the output device. For examrier

COBOL a
SELECT CARD ASSIGN TO CARDFILE.

JC~·
ASSIGN CARDFILE, DEVCLASS = CD/P, MEDIA = OUTOECK;
DEFINE CARDFILE,OFFSET;

CONSOLE MESSAGE•
* hh.mm MOUNT OUTDECK FOH ron

where a
hh.mm is the current time in.hours and minutes.
ron is the run occurrence number.

1J-10

The use of SOEFINE is optional. See the Job Control Language)(JCL)
Reference Manual for details of the relevant $DEFINE parameters.

The name specified in the MEDIA parameter is displayed on thP.
operator's c.onsole at step initiation. A deck of blank cards should
be mounted in the card punch and the card punch should be switched
to "ready0 •

ACCEPT, DISPLAY AND STOP LITERAL

The COBOL ACCEPT and DISPLAY statements are used to input and output
small volumes of data. The STOP literal statement is used to susoend
execution of the program unt 11 the operator enters a value which.
enables the program to continue. The use of these statements is·
described in the following paragraphs.

The ACCEPT Statement

The format of the ACCEPT statement to be dicussed is as follows•

ACCEPT ident 1f1 er [FROM mnemonic-name J

The standard options DATE, DAY, TIME and MESSAGE COUNT of thP. ACCEPT
statement are not used for unit record IIO and will not be discu~sed
here C see the COBOL Language Reference Manual>. The options SYSIN,
CONSOLE, TERMINAL and ALTERNATE CONSOLE may be used for unit record
IIO but they ar.e not part of the ANS standard. It is recommended
that the standard option "FROM mnemonic-name" be used instead of
SYSIN, CONSOLE, TERMINAL or ALTERNATE CONSOLE.

Mnemonic-name is defined in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVIS I ON as fo 11 ows t

SYS IN
CONSOLE
ALTERNATE CONSOLE
TERMINAL

IS mnenonic-name

The above format of the ACCEPT statement and SPECIAL-NAMES paragrnph
can be used to input data from the operator'~ console or from nny
sequential-file in SSF or SARF format. It the 11 FROM mnemonic-name"
option is not used SYSIN is normally Assumed to be the input device.
However, CONSOLE is assumed 1 t SOURCE-COMPUTEH is LEVEL-62 and if
the LEVEL = L62 parameter is used in the $COBOL statement. These
defaults can be overridden by using the ACCEPT IS phrase in the
DEFAULT SECTION (not part of the ANS standard).

1 J -11

.If mnemonic-name specifies SYSIN, a special $ASSIGN statement must
be used when the program is executed. This statement assigns the
internal-file-name "H_RD" to the sequential input file. The input
file may be a standard SYSIN subfile or a user file. It a standard
SYSIN subfile is being read the input enclosure name must be
specified in the SASSIGN statement. For example•

ASSIGN H_RD, *INCAROS;

If a user file is being read the file name must be specified in the
$ASSIGN statement. For example•

ASSIGN H_RO, INFILE;

In this example INFILE is a catalogued sequential file.

When data is being accepted with a mnemonic-name SYSIN, as many
records as necessary are read to fill up the receiving item. The
last such record is truncated if necessary and the truncated bytes
are lost. However, if the first record in the SYSIN file for a given
ACCEPT begins with an ampersand c&> and is followed by spaces, the
"console input method" fs used <see below>. That is, input continues
until a record not ending with ampersand is read. This feature is
useful when the number of cards to be read by a single ACCEPT
statement is variable. If the ampersand is used, it is not necessary
to pad the input with blank cards.

If mnemonic-name specifies CONSOLE, no $ASSIGN 1 s needed. The
following message will be displayed on the operator's ma1n· console
when the program is executeda

nn/hhtmm ron progid ACCEPT WAITING

where 1

nn is a message number which the operator must
enter when replying to this message.

hh•mm is the time at which the message was
displayed.

ron is the run-occurrence-number.

progid is the program-id spec 1.f ied in the COBOL
program.

The operator must then enter the message number, one space and then
up to 64 characters of input data. If more than 64 characters of
input data are to be input, each group of 64 characters must be
terminated with an ampersand<&>. An "ACCEPT WAITING CONTINUED"
message will then be displayed and the input can be continued. This
feature is useful on an interactive terminal. If it is used, the
fu 11 64 characters do not have to be entered on every line of input.

J 1-12

For example, the following pair of entries is equivalent to entering
one line comprising XYZ, 61 blanks and a carriage returns

& fR)
xvY@

Each ACCEPT dialog which occurs on the console will be echoed in the
Job Occurrence Heport pre fixed by a report code 11 CBL 13°.

If nmemonic-name specifies ALTERNATE CONSOLE, data will be accepted
from the alternate operator's console specified in the $CONSOLE
statement (see the Job ControT Language (JCL) Refe·rehce Manual). If
no $CONSOLE statement is used data will be ·accepted from the console
which submitted the program. If the submitting console is no longer
logged, execution stops with the following message in the Job
Occurrence Report:

EX03 .• UNEXPECTED RETURN CODE OPRTR 14 CNSLLJNKN

The format of the console dialog is the same as that on the main
console.

It mnemonic-name specifies TERMINAL the ACCEPT will behave as if
mnemonic-name specif led ALTERNATE CONSOLE. HowevP.r, in a future
release of the COBOL compiler, it is intended to implement the
following •. It mnemonic-name specifies TERMINAL and the load module
is interactively executed from a terminal under the Interactive
Operation Facility, data will bB accepted from the terminal being
used. If the load module is not executed from e terminal but is
executed as a batch job, the ACCEPT w111 behave As if mnemonic-name
specifies ALTERNATE CONSOLE.

Note that all data entered on a console or terminal will be stored
in the user program as if the receiving item had a DISPLAY usage,
even if the declared usage of the receiving fields is not DISPLAY.
That is, no data conversion is performed.

The DISPLAY Statement

The format of the DISPLAY statement is as followsa

DISPLAY ~identifier-lt [,identifier-2] [] ·Pi teral-1 ~ , 11 ternl-2 ••• ·UPON mnemonic-name

The options SYSOUT, CONSOLE, TEHMINAL and ALTERNATE CONSOLE may b~
used for unit record I/O but they are not part of the ANS standard.
It is recommended that the standard ootion 11 FROM mnemonic-name" be
used instead of SYSOUT, CONSOLE, TERM.,INAL or ALTERNATE CONSOLE.

11-1 3

Mnemonic-name can be defined in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DI VI SI ON as fo !lows a

SY SO UT
CONSOLE
ALTERNAIE CONSOLE
TERMINAL

IS mnemonic-name

The above format of the DISPLAY statement and SPECIAL-NAMES
paragraph can be used to output data to the operator~s console or to
any sequential-output-file in SSF format. It the "UPON
mnemoni c-name·11 opt ion is not used SYSOUT is norma 1 ly assumed to be
the output device. However, CONSOLE is assumed if SOURCE-COMPUTEH IS
LEVEL-62 and 1 f the LEVEL= L62 parameter is used in the $COBOL
statement. These defaults can be overriden by using the DISPLAY IS
phrase in the DEFAULT SECTION <not part of the ANS standard>.

If mnemonic-name specifies SYSOUT the output file may be a standard
SYSOUT subfile or a permanent SYSOUT f 11 e. It the output file is a
standard SYSOUT subfile no $ASSIGN statement is needed when the
program is executed. However, if the output file is a permanent

.SYSOUT file a $ASSIGN statement must be used to assign the
internal-file-name 11 tLPR" to the SYSOUT file. For example•

ASSIGN H_PR,OUTFILE,DEVCLASS=MS/M402,MEDIA=DISPOUT,f'ILESTAT=UNCAT;

In this example OUTFILE is an uncatalogued sequential disk file.

For a standard SYSOUT subfile, records are output r:is a sequence of
120 column lines. For a permanent SYSOUT file the number of output
records is variable and depends upon the maximum record length of
the file.

If mnemonic-name specifies CONSOLE no SASSIGN is needed. The
following message will be displayed on the console when the program
is executedi

hhimm ron progid user-data •••

where:
hhtmm is the time at which the message was

displayed.

ron is the run-occurrence-number.

progid is the program-id specified in the COBOL
program.

user-data
is the data displayed by the user program.

~ata will be displayed at 64 characters per line. Each display which
is made on the console will be echoed in the Job Occurrence Renort
Jrefixed by the report code "CBL11".

J 1-1 4

Data is displayE~d as in memory, withoirt convE~rsion. If thP u~xt to
be displayed contains an unprintable character, and the DEHUU
par am e t er i s i n c 1 ud e d i n t he $ STEP st r~ t em en t w h 8 n the program i s
executed, the hexadecimal value of this chan'lct1?r is rrintPd on the
two lines below the erroneous c11ar0cb'~r.

If mnemonic-·name .specifies ALTEHNATE CONSOLE, data wi 11 b0 r"fJsolAyed
on the alternate operator's console specified in the $CONSOLE state
ment (see the Job Control Language (JCL) Referenc·e· Ma.nti'al). If no
SCONSOLE statement is usea dat:a w111 be 01sp1ayer'i on tnA crrnc::;oJP
which submitted tiw program. If the .submitting console is no lnnqer
109CJ<:d the messa9e is ston~d in the users mail box. The forrn:it 0f
the console dialog is the same as that on thp mr:iin consolP.

If mnernonic-narne specifies TEf?MINAL, the DISPLAY wi 11 bAh(We 1.s .i. t
mnemonic-name specified ALTEHNAfE CONSOLE. HowevP.r, in a futurA
re lease of the CObOL compiler it is intended to irnnl ement th0
following. If mnemonic-name .specifi0s Tt:HMINAL an(:t" the load rnndule
is interactively executed from a tP-rminal rmd0r the Intoractivr~
Oper,1tion Facility, data wi 11 be disrlayed ur.10n ttw terminal t)einq
used. If the load modulr.~ is not execut8d frorn a terminal but is
~xecuted as part of a batch job the DISPLAY •,.rj_ 11 hehav0 r-:1s i I'
mnemonic-name specifies ALTERNATE CON50LE.

Selectic:a of the l/O Device

Tho v r1 r i ab 1 e s ·;; o v e r n 1 n 9 U10 s e 1 c ct i on o f t he I IO rl e v i c e to h P us e d
for ACCEPT awl DISPLAY statem(~nts are summ1-1rized in Table 11-J.

Tnble 11-3 .. Vr.wiables Governing the S(!lection 0f I/O DevicP.s

Device spe ci tied by Is ttiere a Type of Job submission
mnemon i c-namt:i in $CONSOLE
ACCEPT or DISPLAY statement .in Rat ch HOF IOF

thA job .ster?

l~O M M M
CONSOLE

Yes M M M

ALTEHNATE rfo M TC 1) r
CONSOLE

Yes US Hr- USP,r- llSPr-
name l)ElMf? namP

No M T r
TtRMINAL

Yes USl?.r- user- U.'3 P.r-
name name nnme

It -15

Notes for Table 11-31

M - The main system console is used for l/O;

User-name - The terminal identified by user-nrrne in the
$CONSOLE statement is used for I/O;

T - The terminal which submitted th0 prNJram tor exAcution
is used for I /CH

< 1 > - The main system console is used for I/O if the
submitting ROF terminal is no longer loqged.

Note that the use of TERMINAL is to be preferred to ALTERNATE
Ll)NSOLE for interactive jobs submitted via I Of.

The STOP Literal Statement

The format of the STOP 1 i teral statement is 1

STOP literal

This statement is used to suspend execution of the COBOL program.
When this occurs the following message is displayed on the main
operator's console:

nn/hhamm ron progid STOP literal

where 1

nn is a message number w1·1ich the operator must
enter when replying to this messagf=?.

hh 1 mm 1 s the t i me at w h 1 c h t he me s s age was
displayed.

ron is the run-occurrence number.

progid is the program-id specified in the COBOL
program

In order to restart the program the operator must enter the messagp,
number, one space and carr iage·-return.

Each STOP literal will be echoed in the Job Occurrence Report
prefixed by the report code "CBL17".

11-1 6

Note that the effect of the STOP literal statement is the same
as a DISPLAY literal UPON nmemonic-name statement followed by
an ACCEPT dunnny-data-name FROM mnemonic-name statement. Associat
ing mnemonic-name with ALTERNATE CONSOLE or TERMINAL enables the
program to direct such a simulated STOP literal statement to the
desired device, if it is not the main operator's console.

USING CASSETTES

In a COBOL program, cassette files are handled as UFAS or BFAS tape I
files. See the UFAS User Guide or BFAS User Guide for details. Some
additional rules for cassette files are given below.

11-17

Types o t Cass e t t e Fi le

The following types of cassette fl le can be handled by a COBOL
program•

- GCOS 64 standard cassette file I
- GCOS 62 standard cassette filef
- Foreign cassette file.

Cassette files can contain standard or nonstandard labels. Such
cassettes may be processed as GCOS 64 or GCOS 62 standard ca~sette
files or they may be processed as foreign cassette tiles.

When a cassette with nonstandard labels is read as a standard
cassette f !le the LABEL = NSTD or LABEL = NONE parameter must be
used in the SASSIGN statement. Any labels on the cassette will be
passed to the COBOL program as normal data records. An "AT END"
condition will be generated when the first tape mark following the
first block on the cassette is read. Note that a cassette file may
be opened in I-o mode only if the LABEL = NATIVE parameter is used.

A $ASSIGN statement for each cassette file must be included in the
$STEP JCL. DEVCLASS =CS must be specified in each such statement.
Note that no repositioning of cassettes will be carried out by the
system during a restart.

GCOS 64 Standard Cassette File

A GCOS 64 standard cassette file ls created under a GCOS 64 system.
The FILEFORM = NSTD parameter must not be used in the $DEFINE
statement for this type of file. No distinction is made between UFAS
and BFAS cassette files.

The cassette volume may be prepared by the SVOLPREP utility <see
Data Management Utilities Manual) be fore a GCOS 64 standard cassette
file is written. SVOLPREP wi 11 write a volume labe 1 on the cassette.
In this case, the file will also be written with labels. A GCOS 64
standard cassette file may also be created without labels. This is
the case if SVOLPREP is not used or if the LABEL = NONE parameter is
used with SVOLPREP.

GCOS 64 standard cassette files may residB on one or more volumes
and may be written with native or compact labels. The type of label
is specified in the LABEL parameter of the $ASSIGN statement. When a
GCOS 64 standard NATIVE labelled cassette file is written, the
RECFORM, RECSIZE, BLKSIZE and NBSN Cif required) parameters are
recorded in the label. Consequently the user does not have to
specify these parameters when the f1 le is being read C INPUT or 1-0
mode>. These parameters wi 11 be ignored by the system 1 t they are

_specified. However, compact labels do not contain the'RECFORM,
·· RECS I ZE, BLKSI ZE and NBSN parameters. Therefore, these parameter

must be supplied in the COBOL program FD <RECORD CONTAINS, BLOCK
CONTAINS> or in a $DEFINE statement. Note that for compact standard
labelled cassette files, RECFORM can only be F, FB or U.

11-18

GCOS 64 standard cassette files must have a minimum HLKSIZE of 2
bytes. The maximum value for BLKSIZE when writing to a cassette
labelled NATIVE or COMPACT is 800 bytes including block headP.r and
BSN Cif any).

GCOS 62 Standard Cassette file

A GCOS 62 standard cassette file is created under a GCOS 62 system
using the sequential GCOS 62 access method.

The RECFORM, RECSIZE, BLKSIZE and NBSN Cit rP.quired) parameters must
be spec! tied for GCOS 62 standard cassette files in the COBOL
program'~ FD statement or in a SOEFINE statement.

Foreign Cassette Files

A foreign cassette file is a cassette file crRated under any system
other than GCOS 64 or a cassette file createrl under GCOS 64 1 ... 1ith the
FI LE FORM = NSTD parameter spec i tied in the snEF I NE statement. The
only exception is a GCOS 62 standard cassettP. file (see abov0).

A foreign cassette file has n data structure 111hich cannot be
accessed by the standard access methods of a GCOS 64 system. fhi.s
situation results from one or more of the followingz

- Nonstandard labels exist on th8 file;
- Tape marks are embedded between dnta blocks;
- B 1 o ck and record structure i s non s tc:mrl n rd ;
- Recording mode is nonstandard <pack, depRck, datacorle}.

When a foreign cassette file is rearl by a COBOL program, eithAr a
data block or a label block or a tape mark is handed to the orogram
each time a READ stAtement is encountered. Similarly, each timP a
~RITE statement is encountered, either a data block or a lAbel block
or a tape mark will be written from the COBOL program to the
cassette. End ot file wi 11 not be det~ cted by the system on input
and the AT ENO clause wi 11 not be obeyed. When fl foreign cassette
file is opened, the cassette is positioned At the beginning nf the
tape and it is the user's responsihility to read or write lab~ls,
data and tape marks.

After each read operation, the identifier spPcified in the DEPENnING
ON opt ion of the HECOHD CONT AI NS clause -wi 11 contain the length o t
the block read (in bytes). A tape mark or a long gap will have 8

length of one byte. A tape mark wi 11 appear as FF (hexadecimal> in
the first byte or the record area. A long 9ap will appeFlr as 00
(hexadecimal) in the first byte of the recorrl area.

Before each write operation the length of the block to be writt~n
must be spec if i e d (i n byte s) i n the id en t i f i Ar s p e c i fie d i n t h P-
0 E PE ND ING ON option. A tape mark must be coded as FF (hexadecimal)
in the first byte of the record area and mu~t be given a length of
one byte.

11-19

The maximum blocksize may be speci tiP.r:i in the COBOL proqram in thr.
BLOCK CONTAINS clause. All other parameters must be spP.ci tied in the
JCL. The BLKSIZE parameter must be .specifind in the COROL proqram's
FD statement or in a $DEFINE statement. A foreign cassettP rMv 1vwP
standard labels. If this is not the case, thP LAF3EL = iWNE rv1n~ineter
must be speci tied in the SASSIGN statem8nt. A $DEFINE: statement with
the parameter -FILEFOF?M = NSTD is mandatory for foreign r:Assett0
files. The maximum value for BLKSIZE when writinq to A cAssFitte
label.led NSTD or J~ONE is 2:)6 bytes including block neader and H:)JJ
(i f Any).

11-20

SECTION XII

MISCELLANEOUS

This section includes various topics which arA not discu5sed at
length in this manual and therefore do not warrant individual
sections.

SORTING AND MERGING

The fo !lowing paragraphs compare the use.of the COBOL SORT and MERGE
statements with the SSORT and $MERGE utilities. For further details
concerning the use of $SORT and $MERGE see the Sort/Me·r·ge Manual.

By us 1 ng the OUTPUT command in s SORT a sequent ia 1 file of disk I
addresses can be output. This file can later be read by a COBOL
program and can be used to access the f1 le that was input to SSORT.
This is discussed in The ACTUAL KEY Phrase, Section IX.

Comparison of COBOL SORT/MERGE and SSORT/SMERGE

The choice between using the COBOL SORT/MEHGE statements rind
executing SSORT/SMERGE as separate utilities is basicaly the ch0icP
between flexibility and pP.rformance. The following points nmplify
this.

- Execution of $SORT as a utility rather than as a COBOL
statement saves up to half the central processor time.
However, the MERGE statement in COBOL execr1tes faster th.~n thP
corresponding SMERGE utility.

- The commands available with SSORT/SMERGE are not a~ powprful
and flexible as C.OBOL statements.

- Us Ing input and output proc edtff P.5 with the COBOL SORT and MERGE
statements makes it possible to combinA the first And lRst
phases of the sort or merge with processing of the relARsed or
returned record Ce.g., record selection, ~diting>.

12-01

Therefore, $.SORT should be used whenever one of the following
conditions is fultilledi

- The input and output files do not need to be processed
immediately before or after the sort, OR,

- Processing of the ir\put and output files can be done using the
$SORT commands. ·

If these conditions are not fulfilled, the processing of the ino•.1t
and output f 1les and the sorting of the file should be combined in a
single program. File processing could, of course, be carried out in
two separate COBOL programs separated by the SSORT utility. However,
if these three operations are done in a single program, two filA
passes are saved• the intermediary files between- the COBOL progrnrns
and $SORT do not have to be written or read.

The above rules for using SORT and ssoRf can be applied to MERGE .::md
$MERGE except that processing of input files CINPUT PROCEDURE> i~
not possible when merging.

JCL for COBOL SORT

The to llow ing paragraphs des er ibe the JCL for COBOL progn:ims which
use the SORT statement. The JCL for the COBOL MERGE statem~nt is n0t
discussed, as this only involves assigning the input and output
files.

In the SELECT clause for the sort file in th11 COBOL program, thF).

I internal-file-name H-SORT is usually used. N0te that the
ORGANIZATION, ACCESS MODE, RESEHVE, FILE STATUS and RECORD KEY
phrases cannot be used in the SELECT clause for a ~ort f11P. This
file may be assigned in thA JCL to the extPrnal file name H_SRT~Kn
using the SSORT~ORK statement in the same Job step. It is used 1~ a
work file by the sorting routines. The format of the sscrnnrnRK
statement is as follows•

WKTAPECSJ

WKDISKCSl

SORTWORK

= CNBDV=n,DEVCLASS=device-class)

{
external-file-name}

= < SIZE = nnn

[.FILESTAT = {ii~~Ar}]
[•CATALOG = n]
RESIDENT

, DEVCLASS= device-class
ftMEDIA =C {WORK }>] L volume-namer, •••]

12·-02

The SSORTWORK statement can be used to assign the sort file to
tapeCs> or disk<s> but not to both.

If the sort ls to be tape based the WKTAPECSJ keyword should be
used. The number of devices to be assigned is specified in the NROV
= n parameter. A minimum of three devices and a maximum of slx may
be used. Note that a tape sort normally has a· much longer elnpser:f
execution time that a disk sort. However, for input files that have
relatively few records out of sequence, A tane sort usually has an
elapsed time close to that of a disk sort. Moreover, elnpseo timA
reduces with any increase in the number of devices usP.d, in the
record-blocking factor, and in the recording density.

If the sort is to be disk based the WKDISKCS] kAyword should be
used. The parameters Which can be used with the WKDISKCSJ keyword
have the same significance as in the $ASSIGN and $ALLOCATE
statements.

It the SSORTWORK parameter is not used, a temporary file of 10
cylinders wi 11 be a !located on a resident volume, with the name
H_SRTWKD. In a multipr.ogramming environment the use of a resident
disk for the work file can cause a considerable increase in arm
movement. It is therefore preferable to preallocate a permanent file
(of sufficient size, but on a ~ingle volume> on a disk other th~n
that used for input and output files, and, if pos~ible, on a disk
not used concurrently by another Job step. See the Sort/Merge I
Manual, Appendix D, for more 1 nformation about $SORTWORK.

The size of the declared working set can be changed for a COBOL SORT
by the keyword SORTMEMORY in the .$STEP statement OPTIONS string. By
1 n c re a s 1 ng t hi s v a 1 u e C w h 1 ch var 1 e s fr om 8 K to 5 1 2 K, wit h a de fa u 1 t
value of 28K>, elapsed_ time is reduced. The format of the OPTIONS
parameter containing SORTMEMORY iss

OPTIONS = ·' ••• SORTMEMORY = nnn ••• '

Where nnn is the number of bytes in units of 1024. User options mRy
accompany the SORTMEMORY option <see below, SSTEP OPTIONS). If the
options string is passed to the user program, th~ SORTMEMORY 0pti0n
is passed to the program with any other options which are us0d.

USER JCL STATUS

The system SAts a status value, which can be used by SJUMP in the
event of an abnormal step termination CSTATUS = 60000), or an
.operator-requested end of step C SfATUS=50000). The COBOL compi 1A1

also sets the status value at the end of compilation, according tn
errors detected <see Sections II, The Compiler>.

The user may also set the .status value in his COBOL program,
transmitting it to the run-time package routine fLCBL_USET..~T vin rt
field described in the WORKING-STORAGE SECTION with USAGE COMP-1.
Since COMP-J is a binary hal t-w)rd the user status value has a 1 imit
of 32768.

12-03

The following example shows how the status vAlu~ can bf~ set in 1

COBOL programs

r'WRK I NG-STORAGE SECT I ON.
01 STATE COMP- J •

Pi~OCEDURE DIVISION.

MOVE 64 TO STATE.
CALL 11 H_CBL_USETSTu USING STATE •

•
Execution of the job stream can then bR modifierl hy testing_ thi~
status values

$JOB •••

STEP TESTOI, TEMP.,
OUMJ-'=ALL;
ENDSTEP;
JUMP LABI ,STATUS,E0,64;
SEND 'STATUS DIFFERENT FROM 64'&
COMMEN'f "STATUS DIFFERENT FROM 64-';
JUMP LAB2;
LAB1 I SEND 'STATUS= 64";
COMMENT ·'STATUS = 64·';
LAB2 a SEND 'END OF TEST';
COMMENT 'END OF TEST';
$ENDJOB;

The Job Occurrence Report will then show:

PROCESS GROUP TERMINATED STATUS = 64

SV1ITCHES

Each COBOL program has access to 32 switches contained in thA switch
word assigned to the job in which the program is execut~rl.

Switches are declared in SPECIAL-NAMES, wherP they may b~ a~s0ciAtAd
with mnemonic-names as well as with condition-nf'rnes for ON STA.TU~·)
and OFF STATUS.

A switch, once declared, may he. turned ON or OFF by the SET
statement, while its current status may be tested using the
associated condition-name.

COBOL programs can use switches to corrirnunicate with steps thnt
to llow 1 n the job, as we 11 as with th?. Job itself. JCL cAn R lso tt1rn

12-04

switches on and off C$LET> and test them ($JUMP>. The operator may
set switches when starting a Job via the Start Job CSJ> command, or
while the job is in execution via the Modify Job <MJ) command. The
initial setting. of the switch word is all zeros Ci.e. all switche~
off) at the beginning of the job. If the job is initiated by
operator action CRJ or SJ) or by another Job ($RUN> the SW parameter
permits the switch word to be set to some other initial VAlue.

The use of switches is shown in the following examples

•
•

CONFIGURATION SECTION •
•
•

SPECIAL-NAMES.
SWITCH-2 IS SW2 ON STATUS IS CND2 •

•
•

PROCEDURE DIVISION •
•
•

SET SW2 TO ON •
•
•

IF CND2 DISPLAY 11 SWITCH-2 ON" •
•
•

CHECKPOINT, RESTART AND JOURNALIZATION

The RERUN clause in the 1-0-CONTROL paragraph allows the user to
specify the frequency with which checkpoints are to be taken during
program execution, in terms.of the number of records read or written
in a specified file. This value is communicated to Data Management,
which decrements the value by one for each record processed. When
the value reaches zero, a special re~urn code is sent to the CC>~C>L
run-time package. ,

The COBOL run-time package then calls the system procedure to
perform the checkpoint. Checkpoint data are placed in Backing Store.
If the program aborts or there is a system crash, and the $STEP
statement cont~ins the REPEAT parameter, the .operator may call for
the program execution to be restarted. If he does so, the program
is restored to its state at the last checkpoint and execution
continues from there. The REPEAT parameter of the $JOB statement can
be used to request the restart of an entire Job.

The user can also request checkpoints at other times Ce.g. at the
end of each tape or disk volume>. See the $DEFINE statement in the
Job Control Language Reference Manua 1.

12-05

At the price of introducing a non-standard element into his source
program, the user may also directly call the system checkpoint
procedure H_CK_UCHKPT, giving two parameters. For example•

CALL 11 H_CK_UCHKPT" USING RMODE, INFO.

RMODE is a user-defined USAGE COMP-2 field which indicates whether
the current execution of the program is the first execution <RMODE =
zero> or if the program has been restarted <RMODE not = zero>. In
the latter case, RMODE contains the JCL status value for the
abnormal step temination, which also appears in the Job Occurrence
Report.

INFO is a user-defined group item consisting of 32 one-character
elements. Where all elements are zero after a checkpoint, the
checkpoint was correctly executed •. If not, those elements with the
value J indicate what went wrong.

Hegardless of whether a checkpoint is taken as a result of the RERUN
clause or a programmed CALL, these values can be checked by codings

CALL "H_CK_UMODE" USING RMODE INFO.

when~ RMODE and INfo have the same meaning as tor H_CK_UCHKPT. This
CALL also introduces a non-standard element into the user's source
program, which wi 11 require alteration to run on any system other
than Level 64.

Associated with checkpointing is ttjournalization". This is a
facility offered by Data Management which keeps a record of 111 file
updates so that f 1 les can be rec on st ituted be fore a rerun is
performed.

Details of the use of the above facilities are given in the SystP-m
Management Guide.

ALPHABETS

The following COBOL Language elements are discussed belows

- In the SPECIAL-NAMES paragraph

alphabet-name IS

12-06

STANDARD-I
NA1 IVE
ASCII
EBCDIC
HBCD
IBCD
JIS
GBCD
user-spe.c 1 tied-alphabet

- In the OBJECT-COMPUTER paragraph

alphabet-name
STANOARD-1
NATIVE

PROGRAM COLLATING SEQUENCE IS ASCII
EBCDIC

.HBCD
~
JIS
DBCD

- In the FILE SECTION
J

alphabetic-name
STANDAR0-1
NATIVE

CODE-SET IS

·- 1n the SORT and MERGE statements

COLLATING SEQUENCE IS

ASCII
EBCDIC

'.HBCD
.. IBCD
JIS
OBCD

alphabet-name
STANDAR0-1
NATIVE
ASCII
EBCDIC
HBCD
IBCD
JIS
OBCD

Note that ASCII,. EBCDIC, HBCD, !BCD, JIS and GBCD are n0t part of
the ANS standard for the OBJECT-COMPUTER paragraph, FILE SECTION or
SORT and MERGE statements. They are standard f.or the SPECIAL NAMES
paragraph only. See the COBOL Language Reference Manual tor an
explanation ot STANDARD-I, NATIVE, ASCII, EBCDIC, HBCD, IBCD, JIS
and OBCD.

The alphabet-name clause provides a .means of relat.1ng a name to a
speci tied character code set and/or collating sequence. "hen
alphabet-name is reterenced in the PROGRAM COLLATING sequence clause
of the OBJECT-COMPUTER paragraph or the JCOLLATINO SEQUENCE phrase of
a SORT or MERGE statement, the alphabet-name clause specifies a
collating sequenc.e. When alphabet-.name is referenced in a CODE-SET
clause in a file description entry, it specif !es a character code
set.

The c.ollatin9 sequence of each alphabet is given in an_ appendix of
the COBOL La09uage Re terence Manual. This appendix shows the
hexadecimal value, graphic symbol and symbolic character number for
each chara.cter in the alphabet.

12~.01

Whichever alphabet is specified, non-numeric data is always stored
in memory in NATIVE <EBCDIC) form. If another alphabet ls spec! tied
tor comparison, collat1n9 or l/O, code conversion is carried out Cby
software>. The circumstances under which code conversion is carried
out are discussed below.

PROGRAM COLLATING SEQUENCE

PROGRAM COLLATING SEQUENCE in the OBJECT-COMPUTER paragraph
indicates the collating sequence to be used tor non-numeric
comparisons of the following type•

lidentif ier-1 I IS CNOTJ GREATER THAN ident!f ier-2
literal-1 IS CNOTJ LESS THAN literal-2
arithmetic-expression-1 IS CNOTJ > arf thmetic-expression-2

IS !NOTJ <
EXCEEDS

The data to be compared is converted into the collating sequence
indicated by PROGRAM COLLATING SEQUENCE before the comparison is
made. PROGRAM COLLATING SEQUENCE has no effect on non-numeric
comparisons of the following types

l ident 1 tier- I I IS f NOT l EQUAL TO identi fier-2 I
11 t er a 1- J I S C Nor 1 = 11 t er a 1-2
arithmet1c-express1on-1 IS UNEQUAL TO arithmetic-expression-2

EQUALS

These comparisons are made without prior conversion.

SORT AND MERGE COLLATING SEQUENCES

COLLATING SEQUENCE in the SORT and MERGE statements has an effect
similar to PROGRAM COLLATING SEQUENCE described aboves the sort and
merge keys will be converted according to the specified collating
sequence before key comparison is made. This does not affP.ct the
record stored in the COBOL program.

CODE-SET

The CODE-SET clause enables data to be input from or output to files
in code sets other than NATIVE <EBCDIC>. This facility can be used
only with sequential tiles and, if CODE-SET is equated to· HBCD, for
non-sequential H-2000 tiles. These files must contain display items
only and a 11 s i9ns must be speci fled as separate. CODE-SET operates
in the following way.

- Immediately after a record is read, the record is converted
from the code spec! fied in CODE-SET into NATIVE code.

12-08

- Immediately before writing or rewriting a record, it is
converted from NATIVE code into the code specified by the
CODE-SET clause.

The CODE-SET clause is. ignored at execution time when code
conversion is done by hardware Ce.g., for cards or ANS magnetic
tape>.

HIGH-VALUE LOW-VALUE

The chara.cter with the highest ordinal position in the PROGRAM
COLLATING SEQUENCE is used for the figurative constant HIGH-VALUE.
The character with the lowest·ordinal position in the PROGRAM
COLLATING SEQUENCE is used tor the f igurat1ve iconstant LOW-VALUE.
These characters are shown in Table 12-1. ,

Table 12-1. High Values and Low Values

COLLATING SEQUENCE HIGH-VALUE LOW-VALUE

STANDARD-I CASC II> If ll256 II.II "" 1

NATIVE <EBCDIC> ""256"" "" 11111

HBCD. n ¢ " .II Qll

IBCD "9" II "
JIS ""256 11

·"
..... 1 "ti

GBCD II ! II :" 0"

Notes for Table 12-1 !

"0" is zero

11911 is nine

"¢ .. is cent

ll !-" is exclamation mark

II II is blanJc

"" I "" is hexadecimal 00

"
11 2 56 "" is hexadec 1ma 1 FF

Values contained in two sets of quotation marks are
•symbolic-character numbers". That is, they specify a particular
hexadecimal value in the relevant collating sequence.

12-09

$STEP OPTIONS

The OPTIONS parameter of the $STEP statement enables a character
string to be passed to a load module at the start ot execution.

The COBOL program accesses the character string from the OPTIONS
parameter by in.eluding a LINKAGE SECTION in the main program of the
load module. CThe main pro9ram is the one named in the ENTRY
parameter of SLINKER.> The way in which the COBOL program should be
written is shown in the following example •

•
•
WORKING-STORAGE
01 IOI PIC
01 OPT1 PIC
01 OPT2 PIC
01 OPT3 PIC
OJ OPT4 PIC
01 OPT5 PIC
•
•
LINKAGE SECTION.
01 LONG COMP-2.
01 TEXT.

SECTION.
999.

X<20>.
x (20).
x (20).
x (20).
x (20) •

02 ELEM PIC X OCCURS I TO 256 DEPENDING ON LONG •
•
•
PROCEDURE DIVISION USING LONG TEXT.
DEBUT.

•

MOVE SPACE TO OPTI OPT2 OPT3 OPT4 OPTS.
UNSTRING TEXT DELIMITED BY "," INTO OPT1
OPT2 OPT3 OPTA OPT5 •

Suppose that the character string "123456,ABCDEFG,HIJK" is to be
passed to the COBOL program. The .$STEP statement would be•

SSTEP ••• OPTIONS =. ~123456,ABCDEFG,HIJK~ f

The above program has been written so that ft can receive up to 5
twenty-character options with commas as delimiters-. With the above
$STEP statement this program will receive the following values•

OPT1~ 123456
OPT2t ABCDEFG
OPTJa HIJK

It the SORTMEMORY option <used with the COBOL SORT statement> is
present it is passed to the user program with the user options.

12-10

THE REPORT WRITER

The following paragraphs briefly describe the function of thA Report
~riter and provide advice on the use of Report Writer facilities.
For a definition of the Report Writer statements see the COBOL
Language Reference Manual. See also The Report Writer in Section VI
"'f +-he r11rront mAnrrA l
..._,,. ...,. ·~ - """"'.& 6 ""'• ·- •••-• ·-- - •

The Report ~riter enables the programmer to produce reports hy
specifying the physical appearance of a report rather than by
specifying the detailed procedures necessary to produce that n~oort.

A hierarchy of levels is used in specifying the logical organization
ot a report. Each report is divided into report groups, which in
turn are divided into sequences of items. Such a hierarchical
structure enables explicit reference to other levels in the
hierarchy. A report group contains one or more items to be output on
one or more lines.

General Concepts

LINE-COUNTEH is a special register that is generated for each report
description CRD> entry in the REPORT SECTION of the DATA DIVISION.
The implied description is that of an unsigned integer that mu~t be
capable of holding a range of values from 0 through 999999. The
usage is COMP-2. The value in LINE-COUNTER is maintained by the
Report Writer, and is used to determine the vertical ro~itioning of
a report. The value in LINE-COUNTER may be accessed by PROCEDURE
DIVISION statements; however, only the Report Writer may change the
value of LINE-COUNTER.

The reserved word PAGE-COUNTER is a name for a special regist~r that
is generated for each report description entry in the REPORT SECTION
of the DATA DIVISION. The implicit description is that of An
unsigned integer that must be capable of representing a rang0 of
values from 1 to 999999. The usage is DISPLAY. The value in
PAGE-COUNTER is maintained by the Report Writer and is used to
number the pages of a report. The value in PAGE-COUNTER may be
altered by PROCEDURE DIVISION statements.

In the REPORT SECTION, neither a sum counter nor the special
registers LINE-COUNTER nnd PAGE-COUNTER can be used as a subscript.

A report file is a sequential file and is subject to the following
restrictions. An OPEN statement, spec! tying either the OUTPUT or
EXTEND phrase, must have been executed prior to the execution of the
INITIATE statement, and a CLOSE, without the REEL or UNIT phrase,
must be executed for this file subsequent to the execution of the
TERMINATE statem~nt. No other input/output statement may be execut~d
for this file.

12-11

I. Note that the CHANNEL-p IS mnemonic-nAme c1Au5e of the SPECIAL-NAMES
· paragraph cannot be associated with files written by the Report
'.'''. Writer. Also, any form control information specified in JCL
-·· statements for such ·tiles is ignored when th~ files are written. See

Form Control, Section XI.

The DATA DIVISION

A REPORT clause is required in the FD entry to list thP- name~ of the
reports to be produced.

In the REPORT SECTION the description of each report must begin with
a report description entry <RD entry) and be followed by the entries
that describe the report groups within the report.

In addition to naming the report, the RD entry defines the form~t of
each page.of the report by specifying the vertical boundaries of the
region within each type of report group may be printed. The RD
entry also specifies the control data items. When the report is
produced, changes in thA value~ of the control data items causP. thP.
detail information of the report to be proce~sed in groups callP-d
control groups.

Each report named in the REPORTS clause of an FD entry in the FILE
SECTION must be the subject of an RD entry in the REPORT SECTION.
Furthermore, each report in the REPORT SECTION must be named in one
and only one FD entry.

The report groups that will comprise the report are described
~llowfng the RD entry. The description of each report group begins
with a report group description entry; thc.t is, an entrv that hrts a
OJ level number and a TYPE clause. Subordinate to the report group
description entry, there may appear group and elementary entries
that further describe the characte~istics of the report grouo.

The PROCEDURE DIVISION

· The INITIATE statement causes the Report Writer to bAgin the
processing of a report.

The GENERATE statement directs the Reoort Writer to produc~ 8 reonrt
in accordance with the report descrlp~ion that was specified in the
REPORT SECTION of the DATA DIVISION.

The SUPPRESS statement causes the Report Writer to inhibit thA
presentation of a report group.

12-12

The USE statement spec! fies PROCEDURE DIVISION statements that an~
executed Just be fore a report group named in the REPORT SECTION of
the DATA DIVISION is produced.

The TERMINATE statement causes the Report Writer to complete the
processing of the specified report.

REPORT Clause in FD

A given report-name must appear in one and only one file descriotion
entry. The SELECT clause of a report file can only spec1 fy an SSF
record format. If WITH SSF is not specified, it will be assum~rl. If
neither VLR nor FLR is spec! fied, WITH VU? is assumed. The RECORD
CONTAINS clause in the FD entry of a report file is used to ~oeci fy
its record length. The default record length is 132 character~. For
example a

•

ENVIRONMENT DIVISION.
SELECT FILE-I ASSIGN Fl WITH SSF FLR.
SELECT FILE-2 ASSIGN F2.

DATA DIVISION.
FD FILE-I LABEL RECORD IS STANDARD

RECORD CONTAINS J21 CHARACTERS
REPORT IS REPORT-A.

FD FILE-2 LABEL RECORD IS STANDARD
REPORT IS REPORT-A •

•

I n the above ex a mp 1 e F ILE-2 i s imp 1 i c i t l y an S SF V LR f i 1 e • The
records for REPORT-A and REPORT-B wi 11 be written on f ILE-I and
FILE-2 respectively. REPORT-A and REPORT-B cannot descrih~ any line
longAr than 121 and 132 characters respectiv~ly.

Summing Techniques

The examples below show two coding technique~ for the REP<Hff SECTION
of the DATA DIVISION. ExamplP. 2 uses more complex statements than
example J and will result in more efficient (faster> ob.J~ct c0rlA.
The report description entry is as followsi

RD ••• CO NT fW LS ARE YE AR Mo NTH WEEK DAYE

12-1.1

Example 1 •

01 TYPE CONTROL FOOTING YEAR.
05 SUM COST.

01 TYPE CONTROL FOOTING MONTH.
05 SUM COST.

01 TYPE CONTROL .FOOTING WEEK.
05 SUM COST.

OJ TYPE CONTROL FOOTING DAYE.
05 SUM COST.

Example 2.1

01 TYPE CONTROL FOOT I NG YEAR.
05 SUM A.

01 TYPE CONTROL FOOTING MONTH.
05 A SUM B.

01 TYPE CONTROL .FOOTING WEEK.
05 8 SUM C.

OJ TYPE CONTROL FOOTING DAYE.
o~ C SUM COST.

In example 2, one addition will be made for each day, one more for
each week, and one for each month. In example 1, four additions will
be made for each day.

The Use of SUM

Unless each identifier is the name of a SUM counter in a TYPE
CONTROL FOOTING report group at an equal or lower position in thP
control hierarchy, the identifier must be defined in the FILE.
WORKING-STORAGE or LINKAGE SECTION. A SUM counter is algebraically
incremented .by the value of a SUM operand unrler the following
circumstances.

- If the SUM operand is not a SUM counter and it is not
associated with an UPON phrase, then the SUM counter is
incremented just be fore the presentation of any TYPE DETAIL
report group.

- It the SUM operand is not a SUM counter and it appears on the
SUM clause w1 th an UPON phrase, then the SUM counter is
incremented just before the presentation of any TYPE DETAIL
report group specif led in the UPON phrase.

- If the SUM operand is a SUM counter, 1 t is incremented Just
before presentation of the TYPE CF reoort group which contains
this SUM counter.

12-.14

In the foll.owing example, SUBTOTAL is incremented only when OETAIL-1
is generated •

•
FILE SECTION •

•
•

05 NO-PURCHASES P IC 9.9 •

•
REPORT SECTION.
RD •••
01 DETAIL-I TYPE DETAIL.

05 COLUMN 30 PIC 99 SOURCE NO-PURCHASES •
•
•

OJ DETAIL-2 TYPE DETAIL •
• .

01 DAYE TYPE CONTROL FOOTING LINE PLUS 2 •
•
•

-05 SUBTOTAL COLUMN 30 P IC 999
SUM. NO-PURCHASES Ut>ON DETAIL-I •

•
OJ MONTH TYPE CONTROL FOOTING

LINE PLUS 2 NEXT GRCillP NEXT PAGE.

SUM Routines

A SUM routine is generated by the Report Writer for each report. The
SUM operands which are included for summing in this routine fir~
those which are not SUM counters and which are a~sociated with no
UPON phrase.

A SUM routine is generated by the Report Writer for a DETAIL reoort
group whose name is specified in at least one UPON phrase. The SUM
operands included for summing in thi5 routinA are those which nre
associated with Bn UPON phrase which references this DETAIL reoort
group.

A SUM routine is generated by the Report Writer for a CF report
group which contains a SUM counter which is referenced in a SUM
clause.

When a GENERATE detail-name statement is executed, the SUM ro1JtinP.s
for the report and the detail report group are executed in thPir
logical sequence. When a GENERATE report-name statemfrnt is ex~cuted
and the report contains one detail report group, the SUM routines
are ~xecuted for the report and then for the DETAIL report group.

12-15

The following examples show the SUM routines which are generated by
the Report Writer. In example 1 only one SUM routine is generAted
which is associated with the report. ExAmple 2 1llustrAtes how
operands are selected when the UPON dAtail-name option is specif !ed.

Example I•

The following statements are in the REPORT SECTION.

OJ DETAIL-1 TYPE DE •••

• .
OJ DETAIL-2 TYPE DE •••

•

01 DETAIL-3 TYPE DE ••

•
01 TYPE CF •••

0 5 TOT AL - 1 ••• SUM A, B. C •
•
•

01 TYPE CF •••
05 TOTAL-2 ••• SUM 8.

One SUM routine is generated for the report as followsr

ADD A TO TOTAL-1.
ADD B TO TOTAL-1.
ADD C TO TOTAL-1.
ADD D TO TOTAL-2.

Example 21

In this example the same coding is used as in example 1, with
one exception• the UPON detail-name ontion is used for
TOTAL- t , as follows.

01 TYPE CF •••
05 TOTAL-1 ••• SUM A, B, C UPON DETAIL-2.

The following SUM routines would be gAnerated instead of thosA
resulting from the calculations in example I.

SUM routine for DETAIL-21

ADD A TO TOTAL-1.
ADD B TO TOTAL-1.
ADD C TO TOTAL-1.

SUM routine for the report•

ADD B TO TOTAL-2.

12-16

Page breaks

The Report r'4riter page break procedure ooerates independently of the
procedures that are executed after any control breaks Cexcept trv~t a
page break will occur as the result of a NEXT PAGE option>.
Therefore, the programmer should be aware of the following:

- A control heading is not printed after R Onge heading excAot
for first generation. If it is nAccessary to have thP
equivalent of a control heading at the top of each page, the
information to be printed must be inclurled a~ part of thA oage
heading. However, as only one page heading may be specified for
each report, the inclusion of control heading information in
page headings should be done with care. This "control heading"
will be the same for each page and may he printed nt
inopportune times.

- GROUP INDICATE i terns are printed a ft er page And control hn~nkr-:.
Fi;iure 12-1 contains a GROUP INDICATE clause and shows the
run-time output.

REPORT SECTION

01 DETAIL-LINE TYPE IS DETAIL LINE NUMBER IS PLUS 1.
05 COLUMN IS 2 GROUP INDICATE PIC AC9)

SOURCE IS MONTHNAME OF RECORD-AREA <MONTH>.

< e xe cut 1 on output>

FEBRUARY 15 AOO •••
A02 •••

PURCHASES AND COST •••

FEBRUARY 21 A03 •••
A03 •••

Figure 12-1. Sample GROUP INDICATE Clause

WITH CODE Clause

When more than one report is being written on a file and these
reports are to be selectively written, a unique two-character code
known as the record identification code must be ~ssigned to each of
these reports. This is done using the WITH CODE clause. Note th~t it
a report is written using the WITH CODE clause, this renort ~houlrl
not be written in "edited SYSOUT" format (see Section XI> and should
not be output directly to the printer.

12-1 7

When tt1e ~'HTH CODE clause is used, the code wi 11 be wr i ttP.n as thP.
first two character~ of each record in the file. When the programmer
wishes to print a report from tnis file, he rnust use 8 $WRITER
statement specifying the desired code (see the Job Control Lan·gu·age
(JCL) Reference Manual.

The following example shows how to create and print a report with a
code. A Report ~riter program contains the following statements •

•
•

ENVIRONMENT DIVISION •
•
•

DATA DIVISION.
f ILE SECTION.
FD RPT-OUT-FILE RECORD CONTAINS 122 CHARACTERS

LABEL RECORD STANDARD REPORTS ARE REP-FILE-1 REP-FILE-2 •
•
•

REPORT SECTION.
RD REP-t: ILE-1 CODE "AA" •••

•
RD REP-FILE-2 CODE "BB" •••

The RPT-OUT-FILE must be written on a tape. or disk. A SWRITEH
statement could then be used to print only the report with code
"AA", as follows.

WRITER Creport-f ile-description>, REPORT=AA, f1AfAFORM=SSFt

Control Footings and Page Format

Depending on the number and length of control footings Cas WP.11 R~
the page depth of the report>, it is possible that some of th~
spec if ied control footings wi 11 not be printed on the same pnge 1 f a
control brP.ak occurs for a high level control. When a pRgA-break
condition is detected before all required control footings have bePn
printed, the Report Writer will print the page footing Cif
specified>, skip to the next page, print the page heading (if
specified>, and then continue to print control footings.

If it is necessary to print all the control footings on the sam~
page the page must be formatted in the RD-Level entry for th?. renort
<by setting the LAST DETAIL int8ger to a sufficiently low line
number> to allow for th~ nec~ssary space.

12·-.I 8

Note also the followin~ example •

•
RD EXPENSE-REPORT CONTROLS ARE LAST, MONTH, DAYE •

•
01 TYPE CONTROL FOOTING DAYE LINE PLUS 1

NEXT GROUP NEXT PAGE •

.
01 TYPE CONTROL FOOTING MONTH LINE PLUS 1

NEXT GROUP NEXT PAGE •
•
•

<execution output>

EXPENSE REPORT

MARCH 31 •••••••••• 36. 40
(output tor CF DAYE>

MAHCH TOTAL •••••••••• 220.90
(output for CF MONTH>

In the above example, the NEXT GROUP NEXT PAGE clause for the
control footing DAYE is not activated.

Floating First Detail Rule

The first presentation of n body group CCH, CF or DE> that contains
a relative line as its .first line, will have its relative line
spacing suppressed and the first line will be printed on the line
indicated either by FIRST DETAIL or INTEGER PLUS 1 of a NEXT GROUP
clause from the preceding page. For example:

- If the body group shown below was the last to be printed on a
page

Ol TYPE CF NEXT GROUP NEXT PAGE.

then the following body group

01 TYPE DE LINE PLUS 5.

would be printed on value of FIRST DETAIL Cin PAGE clau~~>.

12-19

- It the following body group was the !Ast one tn bP orinted on a
page

OJ TYPE CF NEXT GROUP LINE 12.

and after it was printed the value of LINE-COUNTER was 40, then
the body group

01 TYPE DETAIL LINE PLUS 5.

would be printed on lin~ 12 + l (i.e., line 13).

Report ~riter Routines

At the end of the analysis of a report description entry <RD). thP
Report Writer routines are generated, according to the contents of
the RD. Each routine refer~ to the content~ of the
compiler-generated internal line numbe.r of its own respective f.?D.

TABLE HANDLING

Subscripts

If a subscript is a constant, tne location of the subscripted d:~tn
item within the table is resolved at compilation time.

If a subscript is held in a data item the locatinn is resolv~d At
·execution time. The value contained in a data item used a~ a
subscript is an integer that represents an occurnrnce number within
a table. Every time a subscripted datA item is referred to in a
program the compiler generates several instruction~ to calculatA the
correct displacement. Therefore, subscrirt~ should be used with care
to avoid an inefficient object program. s~e Section VIII for
details. However, the cornriler does optimize the calcul11tion of
displacements. If a subscripted data item is referred to morA than
once in the samP- statement, thP. displacement is calculated once only
and is usP.d each timP. the data item is ref PrrBd to in that
statement.

The SET Statement

The SET statement is used to assign values to index datA item~ anrl
index-names.

The SET statement can assign to an index-name the value of a
literal, an identifier or an i~dex-name from another table element.
When this occurs, the index-name is ~et to an actual displacement

12-20

from the start of the table element that corresoonds with an
occurrence number indicated by the second operand in the SET
statement. The ·compiler performs all the r~quired calculation~. It
the SET statement is used to assign an index-name to another
index-name for the sam~ table element, the compiler does not hAve to
calculate the actual displacement value contained in th~ sAc0nrl
operand.

However, when an index data item is set to ~nother index data 1t0rn
or to an index-name, or when an index-name is s~t to an inrlex rl~t~
item, the col'npiler cannot change any existinq rli~mlacement value
because an index data item is not part of any table. Then~tor~, no
conversion of values can be done. If the pro9rammer forgets this,
programming errors can occur. For example, sunpose that a table hAs
been defined as•

OJ A.
02 B OCCURS 2 INDEXED BY Al, A5.

0.3 C OCCURS 2 INOEXED BY A2, A6.
04 D OCCURS 3 INDEXED BY A3, A4.

05 E PIC XC20>.
05 F PIC 9C5>.

Figur8 12-2 shows how the table is laid out in m~in memory. ~1mpoc;e
it is necessary to reference 0 <2, 2, 3). ThA following stPp~ w011ld
be incorrect•

SET A3 TO 2.
SE1 INDX-DATA-ITM TO A3.
SET A2, AJ To INDX-DATA-ITM.
SET A3 UP BY 1 •
MOVED CAI, A2, AJ> TO WORKAREA.

INCOW?ECT EXAMPLE
correct VP-rsion
shown b~low

The value contained in A3 following 'the first SET statement i~ 25,
which represAnts the starting point Cin bytes> of the sPconrf
occurrence of n. r~hen the second SET statement is oheyerl, the VAl11e
25 i~ 5tored in INDX-DAfA-ITM, and the third SET statement st0n~~
the value 25 in A2 and Al. The fourth SET statement auqment5 th~
value in A3 to 50. The calculation of the adrlrP.s5 0f D- (A1, J\2, AJ)
woulrl then be as follows•

CnrlrlrP.ss of D (1, 1, 1 >)+25+25+50 = Caddn~ss of D (1, 1. 1>)+100

whP-re D (1, 1, I> represents the first occurrence ot D. This i ~ not
the address of D <2, 2, 3>.

The following st~ps will determine the corr8ct addrAsss

SET A3 TO 2.
SET A2, Al TO k1.
SET AJ UP BY 1.

I n th 1 s case t he f 1 rs t SET st a t e men t .5 tore !=1 t he v a 1 u A 2 5 i n A~ • . .
Since the compiler can calculate the !Angths of B and C, the sPcond
SET statement stores the value 75 in A2 and the value 150 in A 1.

12-21

fhe tnird 3~T statement stores the value 50 in A3. The corrP.ct
addres~ calculation will bes

<address of f) C 1, 1, 1))+150+75+~0 = (address of D C 1, 1, l))+?7~)

The rules for the SET statement are shown in t:iqurP 12-.1.

Bv tA N0.
u

D (1 ' 1 ' 1) E F

c (I ' I) D (1 ' 1 ' 2) E F

D (1 • 1 ' ~) E F
b (J)

D (I ' 2, I > E F
1 Od

c (l ' 2) D (1 ' 2, 2) E F

D (I • 2, 3) E F
A

I ~
(2. 1 ' 1)

c (2' 1) (2. 1 ' 2)

(2, 1 • 3)

E F

E f

E r:

1 f_)

?OU

H (2)
f) (2, ?, I) t: F

c (2' 2) n (2, 2, 2) E F
275

f) (2' 2, 3) E F
·~oJ

Figure 12-2. Sample TablP- Lay011t in ~-~P.rnnry

~ Sending IdP,nti fiAr
kecei viny" Index-name I ncfox natn It Pm or LitPr:i.1.

Index-nr.tm8 Set to value Move without Set to VA l lJP,

correcpondiny convP.rsion corr P.~ pond i n~J
Ito occurrence to occurrP,nCP
number <note A> number

Index Data ~.~ove without Move without Not .:mr 1 i c ;:i b 1 P

Item conversion conversion
Identifier ~et to occur-

ire nee number Not a pp 1 icahle Not '3nolicAblP
represented by
indPx-name

i'liOtP. A: It the index-names re fer to the s arne table element
the move is marle without conversion.

Figure 12-3. Rules for thH SET St'1t~ment

The SEARCH Statement

Only one lave 1 of a table Ca table element> can be referenced in one
SEARCH statement. Note that SEARCH statements cannot be nested• an
imperative statement .must to !low the WHEN cond1 t ion and the SEARCH
statement is itself conditional.

The SEARCH statement has two formats.

Format J SEARCH statements carry out a serial search of a table
element. It the programmer knows that the 11 found" condition wi 11
occur after some intermediate point in the table element, to sp~ed
up execution the SET statement can be used to set the index-names at
that point and search only part of the table element. If the table
element is large and must be searched from the first occurrence lo
the last, the use of Format 2 <SEARCH ALL> is more efficient than
Format J, as it uses a binary search technique; however the tablA
must then be ordered.

In Format 1 the VARYING phrase allows the programmer to•

- Vary an index-name other than the index-name stated for this
table element. So, with two SEARCH statements each using a
different index-name, reference can be made to mon~ than one
value in the same table element for comparisons etc.

- Vary an index-namA from another tabl~ element. In this case,
the first index-name specified for this table element is used
for the search and the index-name spe.ci fied in the VARYING
phrase is incremented at the same time. Thus it is possible to
step through two table elements at once.

In Format J, the WHEN cohdition can be any relation condition and
can be multiple. If multiple WHEN conditions are specified, the
implied logical connective is OR. That is, if any one of the WHEN
conditions is satisfied, the imperative statement fullowing the WHEN
condition is executed. If it is necessary thAt all conditions of the
SEARCH statement be satisfied, a compound WHEN condition with an AND
logica.l c.onnective must be used.

In Format 2 CSEARCH ALL> the table must be ordered on the keyCs>
named in the OCCURS clause. Any key can be named in the WHEN
condition, but all preceding names in the KEY phrase must also be
tested. The test must be an "equal to·"<=> condition and the KEY
data-name must either be the subject or the object of the condition,
or the name of a conditional variable with which the testP-d
condition-name is associated. The WHEN condition can also be a
compound condition, consisting of one of the simple conditions
listed above, with AND as the only logical connective. The key And
its object of comparison must be compatible.

12-23

To write a series of statements that will search the three
dimensional table discussed under "ThA SET Statement" above, th~
programmer could write the following:

7 7 COMP ARAND 1
77 COMPARAND2

PIC X<5>.
PIC 9C5>.

OJ A.
05 B OCCURS 2 INDEXED BY Al A5.

10 C OCCURS 2 INDEXED BY A2 A6.
J 5 D OCCURS 3 INDEXED BY A3 A4.

20 E PIC XC5>.
20 F PIC 9(5) •

•
•

Cset-up values for COMPARANDJ and COMPARAND2>
•
•

PERFORM SEARCH-TESTI THRU SEARCH-EXITl
VARYING Al FROM 1 BY 1 UNTIL Al GREATEH THAN 2
AFTER A2 FROM 1 BY 1 UNTIL A2 GREATER THAN 2.

ENTRY.-N.OENTRYl.
GO TO ERROR-RECOVERY 1 • . .

SEARCH-TESTl.
SET A3 To I.
SEARCH D ~l-IEN E (A 1 , A2, A3) = COMPARAND1

AND F (Al, A2, A3) = COMPARAND2
SET A5 TO Al

SEARCH-EX IT 1 •
EXIT.

SET A6 TO A2
SET A2 TO 3
SET Al TO 3
ALTER ENTRY-NOENTRY I TO Pf~OCEED TO ENTRY-PfHX.~ESSI NG I.

•

ERROR-kECOVEHYl.

.
: ENTRY-PROCESSING1.

MOVE E (A5, A6, A3> TO OUT-ARE.Al.
MOVE F CA5, A6, A3) TO OUT-AREA2 •

•

The PERFORM statement varies the indexes (Al and A2} associaterl with
table elements B and C. The SEARCH statement varia~ A3, which is

· associated with table element D.

.,,,

The values of Al and A2 that satisfy the WHEN conditions of tha
SEAHCH statement are stored in A5 and A6. A1 And A2 are then set tn
3 vin the SET statement, so that when returning from the SEAHCH
statement control wi 11 fa 11 through the PERfORM stAtem~rnt to thA Go
TO statement.

12-24

Later references to the desired occurnrnce of table elements E F\nrl F
use the index-names A5 and A6 in which the correct valu8 WAS stored.

For example, suppose that the following table W8s defined•

OJ TABLfA.
05 ENTfH-IN-TABLEE OCCURS 90 TIMES

ASCENDING KEYl, KEY2
r' r- r.., ,-.. ~-II. r n T Ilia. i ,-..
U.t:;::>1..,, C l'tlU .L !~V

INDEXED BY
10 PART-1
10 KEY-1
1 0 PART-2
10 KEY-2
10 PART-3
10 KEY-3

vrv~
f\.C I,)

INDEX-A.
P IC 99.
PIC 9(5).
PIC 9(6).
PIC 9(4).
PIC 9(33).
PIC 9('.:>).

A search of the entire table could be made with the followings

SEARCH ALL ENTRY-IN-TABLEE AT END GO TO NOFIND
WHEN KEY-1 <INDEX-A> = VALUE-1

AND KEY-2 <INDEX-A> = VALUE-2
AND KEY-3 <INDEX-A> = VALUE-3
MOVE PART-l .(INDEX-A> TO OUTPUT-AREA.

These instructions will result in a search on the above table TABLEA
which contains 90 elements of 55 bytes and 3 keys. The orimary and
secondary keys CKEY-1 and KEY-2> are in ascending order but the
least significant key <KEY-3> is in descending order. If 8n entry is
found in which the three keys are equal to the gtven values
CVALUE-1, VALUE-2, VALUE-3> PART-1 of that entry will be moved to
OUTPUT-AREA. If no matching key is found in any of the entrie5 in
TABLEA, the NOf IND routine is entered.

It there is a match between a table entry and the given values, the
index <INDEX-A> is set to a value indicating the relative po~ition
within the table of the matthing entry. If a match is not found, the
final value of the index is unpredictable.

Note that if KEY entries within the table do not contain valid
values, the results of the binary s.earch will be unpredictable.

Building Tables

When reading in data to build an internal table the following points
should be born in mind.

- Ensure that the data does not exceed the space allocated fnr
the table.

.t 2-25

- If the data mu~t be in sequence, check the sequence in thP.
program.

- It the data contains a subscript determining its position in
the table, check that the subscript doec; not ~xceP.d the bormds
of the table.

rthen testing for the enr.f of a table, use a data item containing thP
item count, rather than use a literal. Then, if thA table must bP
expanded, only one value need be changed, instead of all referAncPs
to the literal <in addition to changing the number of occurr~no~~ in
the OCCURS clause>. Both changes can be e ffecterl using the REPLACE
statement of the CONTROL DIVISION. The REPLACE stc:itement is not nArt
of ANS standard COBOL.

INTERMEDIAfE RESULTS

The compiler breaks clown arithmetic statements into a succA~sion 0f
simpler operations and reserves locations in memory to contain thA
results of these operations. The handling of' these "intermediatP.
results" is discussed in the following paragraphs.

For an arithmetic statement containing only one pnir of openrntis, no
intermediate result is generated. Intermediate results mAy be
generated in the following cases.

- In an ADD or SURTRACT statement which contains several on~rt=rnrls
immediately following the verb.

- In a COMPUTE statement which specifies a series of arithmetic
operations.

- In arithmetic expressions which are contained in IF or PERFOF?M
statements.

In such cases, the compiler treats thA statement AS a series ot
operations. For example, the following statement•

COMPUTE Y = A + B * c - D I E + F **G

is rep laced by 1

**F BY G GIVING 1 rJ
MULTIPLY B BY C GIVING 1r2
DIVIDE E INTO 0 GIVING 1r3
ADD A TO ir2 GIVING ir4
SUBTl1ACT ir.1 FROM ir4 GIVING 1 r5
ADO ir5 TO 1r1 GIVING y

Where irl through 1r5 are successive intermediate results.

12-26

In tt1e following discussion 11decimal floating-point format" is
referred to. In this format 18 most significant digits are rPtain~d
(31 if the LEVtL = L64 parameter is included in the COHOL
statement>.

Length of Intermediate Result ~ields

Based upon the length of the operands or intermediate n~sults t0 he
operated upon, the compiler allocates intermediate result fi1=:1lrls nf
a particular lenyth. The algorithm for doin9 th.is is exnlnined
below. The following abbreviations are usect in thi~ explanation.

ip - the number of integer places to h8 ~t0rerl in the
intermediate result.

id - the number of decimal places to be storAd in the
intermediate result.

dmax - eitheri the maximum number of decimal rlBces defined for any
operand,

or, the number of decimal olaces ne8ded for the final
result field <plus 1 if rounding is n~qr1irerf),

whichever is larger in a particul,qr stRtPm~rnt.

op1 - the first operand in a ~enerated arithmetic stAternent.

op2 - the second operand in a generated arithrnAtic stAtement.

dl ,d2 - the number of decimal places specifiP.d for opl Bnrl on2.

ir the intermediate result produced by an Ari thmAtic open~tinn.
1 r 1 , i r 2 etc • represent s u cc e s s 1 v e 1 n t er rnF' d j_ At P r P s u 1 t c; •

The compiler calculates the number of integer pl~ces in A~ ir in the
following way. The maximum valu~ thot en ir orn cnntain is
determined by per forming the sti1tement in which the ir occurs:

- If an operand in the statement is A dAtA-name, UH~ vAlr1p lf':;ed
for this operand is the largest value that cAn b8 c;t0rPtf in thP
data item. For example, PIC 9V99 would resnlt in a value 9.9().

- If an operand is a 1 i tend the Actual vrd 1_1A of thP 11 tend i ~
used.

- If an operand is an intermediate n~sult, thP, vAlue deterr;,f'(Pd
for the intermediate n~sult in R pn~vious calculation is 1 1sP-'.i.

- If the operation is divisions

a. If op2 is a data-namP, thP. value used for op2 is the
smallest non-zero value that can be storArl in the rlAtA itPm.
For example, PIC 9V99 w0uld rPsult in ~ value of 0.01.

12-27

b. If op2 is an intermediate r~sult, the srnAllest non-zero
value that can be stored in the intermediate result field is
used.

c. It a ,further divide, multiply or exponentiatf.on is tn b~
performed for the samP. COBOL statement, decimal
floating-point format will be used.

- If the operation is exponentiation and op2 has a literal value
of 2 or 3 nor ma 1 mu 1 tip li cat 1 on w i 11 be performed. Ot herw i SP,

decimal floating-point format will be used.

When the maximum value of an ir is determined in the above manner,
ip is set equal to the number of integers in this value.

The compiler calculates the number of decimal places in an ir in the
f o !lowing way 1

Operation

+ or -

* I

Decimal Place~

dl or d2, whichever is greater.
dl + d2
dl - d2 or dmax, whichever is grP-ater.

** dmax if op2 is non integral or a 1ata-nnrne;
d * op2 if op2 is an integral literal.

If the number of digits in ir is great~r than 31, decim~l
floating-point format will be used.

Table 12-2 indicates the length allocated to ir based upon the
values calculated for in and dp.

Table 12-2. Length of Intermediate Result Fields

Vnlue of Value of Length allocated
ip + dp ip + dmax for ir

< 32 Any ip integer places and dp dAcim~l
value places are ailocated for ir.

> 31 < 32 ip integer places and 31 - ip
dee imal nlaces are allocated tor

> 3J dee imal floating-point format is
used.

J 2-28

ir.

Fixed Binary Data Items

If an operation involving fixed binary operand5 require~ an
intermediate result greater than the equivalent of 10 decimal
digits, the operantis are converted into packed decimal before
performing the operation. If the result field is fixed binary, the
result will then be converted from packed decimal into hlnary.

If an intermediate result will not be greater than the Pquivalent of
9 dec!maJ digits, the operation will be performed most efficiently
on fixed binary data fi~ld5.

COBOL Run-Time Package

It a decimal multiplication requires an intermediate result greater
than 31 decimal digits, a COBOL run-time package procedure is used
to perform the calculation. The most significant 31 decimal digit~
of the result of this multiplication are kept.

A COBOL run-time packag~ procedure will be used to perform division
if the number of decimal places of the dividend olus the number of
decimal places of the quotient plus the numb~r of integer plnc~s of
the quotient is greater than 31.

If a n a r it hm et 1 c opera t 1 on re q u 1 res an 1 n termed i at e re s u 1 t great er
than 31 decimal digits, decimal floating-point format will be u~erl
for the operation. The number of digits in this intermerliatA result
is given by the TEMP IS clrmse of the CONTROL DIVISION Cthe CONTROL
DIVISION is not part of thP ANS standard) the default value 15 .11 if
LEVEL = L64 is specified in the $COBOL statement,· otherwise the
de tau 1 t value is I 8.

The ON SIZE EHfWR Phrase

ApArt from division by zero, the ON SIZE EHHOR phrase anplies only
to final results and not to intermediate results, 1.e., it ap~:>lies
only when the final results are stored in the receiving data items.

COMMUNICATIONS PROGRAMS

Communications programming is not discussed in this manual. This
subject is covered in the Communications Processing Faci1itt Manual,
which includes a discussion of the following Message Control System
verbs.

12-29

- SEND
- HECEIVE
- ACCEPT
- DISABU:
- ENABLE

INSPECT AND EXAMINE

The INSPECT statement has been added to the COBOL languagt=> stAnd~rd
to replace the EXAMINE statement. As EXAMINE has bPen r~mnved ~0m
the ANS standard, it is advisable to use INSPECT rather than EX~MINE
in all new programs.

The main advantages of INSPECT Are as follows:

- Groups of characters can be tall1Pd anrl/or rAPlac~d by a single
INSPECT statement Cthe EXAMINE statement cr-m only t;:dly nnd/()r
replace a single character).

- Several different groups of character~ can b~ ta 11 ied an,·J/or
replaced in a single INSPECT statement.

- INSPECT can tally and/or replace grours of charact~rs bPfora or
a ft er a s pee i fi ed group of charactBrs.

Examples of EXAMINE statem~nts and an equiva i.~nt INSPECT ~t<-ltP.rnAnt
are shown in Table 12-3.

fable 12-3. Compari5on of INSPf:c·f and EXM-\INE

INSPECT or EXAMINE statem~nt

EXAMINE x TALLYING UNTIL FIRST A.
EXAMINE x TALLYING ALL I •
EXAMINE x REPLACING FIRST B BY c.
EXAMINE x REPLACING LEAD ING 2 Br J.

INSPECT X TALLYING UPTOA
FOR CHARACTERS
BEfOf?E INITIAL A,
ONES f OR ALL 1 ,

REPLACING FIRST B BY C,
LEADING 2 BY J.

Vnlue of x Vnlue
of

PBfore AftP.r fALLY

21f1A2AR same J
21BA2AB ~Am~-~ ' 21RA2AB 21 CA2AF~ same
21CA2AB 31CA2AH S~lnf'

2lBA2AH J1CA2AB

V rl 11.rn v~11n·
of () t

UPTi.>A ONLS

-
-
-
-

Further examples of the use of the INSPECT staterrient nrP. giv0n in
the COBOL Language Re terence Manua 1.

12-30

APPENDIX A

EXAMPLE COBOL PR<XH?AM

A-OJ

:r
0

"'

COBOL V-)0.2 X86.1 Ll STING BOURGAIN BOURGAIN 13:22:48 MAA 311 1978 PAGE

'*
*********~*************~**
**** GCOS L64

C 0 8 0 L
VERSION: 50

···~···••2

• ** *
••• *

DATED: MAR 101 1978 •H•
•••••••••••••••••••••••• ••

PROGRAM: FlND-OAY

USER: BOUR GAIN

PROJECT: BOURGAlN

DATE: 03/.31178

TIME: 1.3:22:48

COMPILER VERSlON: L64 COBOL V-50.2

USER OPTIONS: COMFJLE LIB•1 L£VEL•L64 DCLXREf XREF EXPLJST

ACTIVE OPTION.S: OBJ, NDESUG, WARN, oesuv, .IUAP, DCUCREf1 lAEF1 LIST, EXPLJST1 CKSEQ, CARDI01 CASEQ, OJAGlN1
NCODAPND1 NOPT1 DDE8UGMD1 PSEGMAX•~C96(8YTES), DSEGMAX•4096(8YTES>.

COMPILATIOM LEVEL: L64

COMP I LE R l Nf' UT :
ALTER f JJ..E

.RSTR (H_ALTER)
CD•01/23/78 CT•10:35:24 MD•01/23/78 MT•1•h3Sz24 SL•DAT MN•OO NM•ALTER-DAYS

SOURCE FILE
f JNO-DAY IN RSTR (H_UU.181'
C~•01/23/78 CT•10:JS:24 MO•OJ/07178 MT•11:16:12 SL•DAT MN•11 NH•FIND-OAY

COPY FILE (COPIED TEXT ON l.INES .38 THROUGH 49>
DAYS IN RSTR (H_INLJ81)
CD•01 /23178 CT•10:35:24 IU>•01/23/78 f'1•1 C:.35:24 SL•OAT MN•OO NM•OAYS

=r
0
w

COBOL
FIND-DAY

A.1 ---->
A.2
A .. J
A.4
A.5
A.6
A.7

v-so.2 xa6.1 LI !TING SOURGAlN BOURGAJN 1312la48 MAR 31, 1978
ALTER LUTING

COMPILE;

Rz R FINO-DAY

R: /DATA/SI DJVJ SJOH/ &. I

R: 101 OJ rweu-ua/ ,/SUNDAY I c COMMENT

1
• 1 1-44 TEXT FOLLOWS THE 'A', •c•, 1 1• .(R 'Q' COMMAND.ON THE LINE. TEXT is IGNORED.

A.8
A.9

A.10

l
l
I: ~F

COPY. OAY S
RE PL AC ltU • • PJ C x< 8) •• 8 Y •• P IC X (10) • •.

PAGE 2

>
I

0
~

COBOL v-sa.2 X86.i LI !TJNG BOURGAIN BOUAGAlN 13:22:48 MAR 31, 1978
FIND-DAY SOURCE LISTING

llN XLN TEXT 7-10~------20----~--10-~-----40--------so--------60--~----70--•••••••• <-

s.1
S.2
s.J
s.4
s.s
S.6
s.7
s.8
S.9

s.10
s.11
s.12
s.13
s.14
s.1s
s.16
s.11
s.1s
S.19
s.20
s.21
S.22
S.23
S.24
S.25
s.26
s. Z7
S.28
s.29
s.3C
s.31
s.32
s.33
S.34
s. 35
s. 36
S.37
s.38
s. 39
S.40
s.41
S.42
s.43
s.u

1
2
3
4
5
6
'!
8
9

10
11

•12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

.
•• 1
•• 2
•• .3
•• 4
•• s

*
* •

*

•
*

•

•
*
*

* •

IDENTIFICATION Dl~ISION.

THlS ROUTINE, STARTING FROflt A DATE, GIVES
THE DAY JN THE WEEK CORRESPONDING TO THE
DATE

PROGRAM-ID. FIND-lAY.

ENVIRONMENT OIV IS JON.
CONFIGURATION SECTION.
SOURCE-COMPUTER. lEVEL-64
OBJECT-COMPUTER. LEVEL-64.

OA TA DIVISION.

WORKING-STORAGE S ICTJON.
T EMPOR AR JES

01 X P I C TU RE 9 ' M> •
01 Y P.J CTURE 9 <S >.

TOTAL NUMBER OF DAYS PRECEDING THE MONTH
<SHOWN BY ITS ORDINAL NUMBER IN THE LIST)
IN THE YEAR

01 PREC-D-TAB.
02 FILLER PJ.(999 VALUE O.
02 FllLER Pl C 999 VALUE 31.
02 FILLER Pl C 999 VALUE 59.
02 FllLE R PJ. (999 V AL!JE 90.
02 FILLER Pl C 999 VALUE 120.
02 FJLLER Pl C 999 VALUE 1S1.
02 flllU Pl C 999 VALUE 181.
02 FILLER Pl: l 999 VALUE 212.
02 fllLER Pl.(999 VALUE 243.
02 FllLE R PJ C 999 VALUE 273.
02 f ILLER PI C 999 VALUE 304.
02 FILLER PJ; C 999 VALUE 334.

01 PREC-D-TAB-RE:I REDEFINES PREC-0-TAB.

01

01

02 PRECEDING-DAYS PJC 999 OCCURS 12.

COPY HYS

TABLE GIVING THE NA~E OF THE DAYS IN THE
WEEK

REPlAClNG •• PI c x (8) •• er •• Pl c JC (10) •••
OrHER-UNUSE O.
02.fILLER PlC .x •
02 ULLER co" f-1 s YN c.
D JTWEEK-T AB.
02 flllER PJ;(.X<8) VALUE •1LUNDJ

1 2

" .
* 1 1-32 FJRST WORD Of TEXT REPLACED (OR DELETED>.
* 2 1-.:u LAST WORD OF TEXT R EPl ACED (0 R rELET ED>.

S.45
s.46
s.47
s.48

•• 6
•• 7
•• a
•• 9

0 2 Fl L LE R PI C JC (1 OJ V Al U E "IU RD 1 "•
02 FILLER Pl(x<10.> VALUE "MERCREDI" •
0 2 F 1 L LER PI C JC(1 O> VAL U E "J EU OJ " •
02 FILLER Pl< X(10> VALUE "VENDREO I".

<-

<-

PAGE 3

b
Ul

COBOL v-s·o.2 X86.1 LI HING BOURGAIN BOURGAlN 13:22:48 MAR 31, 1978
FIND-DAY SOURC£ LISTING

JLN XLN TEXT 1-10------20----30-------40-----so-------60--------10-......... <-

s.so
s. 51
s. 52
s.53
s. 54
S.55
S.56
s.s1
s.5a
S.59
S.60
s. 61
S.62
S.63
S.64
S.65
S.66
S.67
S.68
S.69
S.70
s. 71
s.12
s.73
s. 74
s.75
s. 76
s.11

•• 11
-46

47
48
49
so
51
52
53
54
55
56
57
58
5·9
60
61
62
6.3
64
65
66
67
68
69
70
71
72

02 flLLER PIC X(10) VALUE "DIMANCHE".
01 DlTWEEK-TAB-R 10 REDEFINES OJTWEEk-TAB.

02 DAY-IN-THE-WEEK PlC X(10> OCCURS 7 TIMES.
* AREA fOR DATE SPLITTING INTO YEAR, MONTH.1
* ANO DAY
01 SPll T-DAT £.

02 CENTURY PlC 99.
02 SHORT-DAT· I.
OJ FILLER Pl C 99.
OJ MONTH Pl C 99.
0.3 DAY-OF-HOUTH Pl C 99.
0.3 .DAY-Of-MO'HH-.X REDEFINES DAY-Of-.. ONTH PIC XX.

01 YEAR REDEFINES SPLIT-DATE PIC 9<4>.
* ORDINAL NUPl8ER Of THE DAY. TAKEN INTO
* CONSIDERATION WlTHlN THE DAYS Of THE
* CHRIST.IAN ERA

01 DAYS-JN-THE-ERA PIC 9<10).

*
LlNKAGE SECTION.

* DATE f<JI WHICH THE DAY Of WEEK. IS LOOKED
* FOR., UNDER THE FORH YYYYHMDD OR YYIO•DDBB
* (WHEIE 8 MEANS 8LANK

01 FULL-DATE PJC X(8l.
* RETURNED ORUHAL NUMBER Of THE DAY IN THE
* WEEK ·(1 JS HONDAY1 2 TUESDAY ••• >

01 OAY-OF-THE-WE IK PI C 9.
* RETURNED DAY IN .THE WEEK ITSELF

01 OAY-JTSELF PJ;(.X(10J.

PAGE 4

>
I

0
~

COBOL V-50.2 X86.1 LI HING BOURGAIN BOURGAIN 1l:22:48 MAR 311 1978
flND-DAY SOURCE LISTING

ILN XLN TEXT 1-10-----20-----30-------40-----50------60--------70-•••••••• <-

S.78
s.79
s. 80
s. 81
S.82
S.83
s.84
s. 85
s.86
s.87
S.88
s.89
S.90
s.91
S.92
s.93
s.94
S.95
s.96
S.97
s.98
S.99

s.100
s.101
s.102
S.103
s.104
S.105
s.106
S.107
S.108
S.109
s .110
s.111
s.112
s.113
s.114

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109

I

*
PROCEDURE DlVISIO~ USING FULL-DATE DAY-Of-THE-WEEK DAY-ITSELF.

SEGlN.
MOVE fUll-DAT l TO SPLIT-DATE.
IF OAY-OF-MONTH-X • SPACE

MOVE SPl.l T- lATE TO SHORT-DA TE
MOV.E 19 T 0 .(ENT URY.

* LET US COMPUTE THE NUMBER Of DAYS SPENT
* SINCE THE BEGINNING OF THE CHR.ISUAN ERA

COMPUTE DAYS-IN-THE-ERA•
DAY-Of-MONTH

+ PRECEDING-DAYS (MONTH)
+ <YEAR - 1> * 365.

* LET US ADO 1 FOR EACH LEAP-YEAA1 INCLUDING
* THE YEAR Of THE PROCESSED DATE lf TH£
* MONTH 1S LATER THAN FEBRUARY

If MONTH < J COMPUTE YEAR • YEAR - 1.
DlVlDE YEAR Bl 4 GJVING X.
ADD X TO DAYS-IN-THE-ERA.
DlVI DE YEAR 8 l 100 GJVING X.
SUBTRACT X FRC1' DAYS-JN-THE-ERA.
DIVIDE YEAR B' 1000 GIVING x.
AOD X TO DAYS-JN-THE-ERA.

* NOW THE REMAINDER Of THE DIVISION BY 1 Of
* THE OAYS-IN-THE-ERA1 AUGMENTED OF THE
* PROPER CONSTANT, JS THE ORDINAL NUMBER Of
* fHE DAY IN THE WEEK

DIVIDE DU'S-l.,...THE-EAA BY 1 GIVING X REMAINDER Y.
If y > 4

SUBTRACT 4 .IROM Y
ELSE

AOO J TO Y.
MOVE Y TO DAY-Of-THE-WEEK.
HOVE OA't-lN-T~E-WEEIC <Y> TO DAY-JTSELI.

THE-ENO.
EXIT PROGRAM.

PAGE s

COBOL V-50.2 X86.1
FIND-DAY fXPANDEO SOURCE LlSTJNG

Ll !TING BOURGAJN BOURGAIN 13z22z48 MAR 31, 1978 P'1GE 6

ILN XLN TEXT 7-10-----20------3 o------40---.-- --5 o--------60-------- 7 0-•••••••• <-

1 1 JDENTJFJCATJON OJ~JSJON.
2 2 * THJS ROUTJNE1 STARTING FRO" A DATE, GIVES <-
3 3 * THE DAY IN THE WEEK CORRESP.ONDlNG TO THE 4 4 * DATE
5 5 PROGRAM-JD. fINl>-IAY.
6 6 *
7 7 ENVIRONMENT DJVJSJON.
8 8 CONflGURATION SEC;UON.
9 9 SOURCE-COMPUTER. LEVEL-64

10 10 OBJECT-CCMPUTER. LEVEL-64.
11 11 * 12 •12 DATA DJVISJON. <-
13 1 3 *
14 14 WORKlNG-STORAGE S lCTlON.
15 15 * T EMPOR AR JES
16 16 01 X Pl CT URE 9 C1 ().
17 17 01 Y PJCTURE 9 C5 l.
18 18 * TOTAL HUMBER Of DAYS PRECEOJHG THE MONTH
19 19 * <SHOWN BY .ITS ORDINAL NUHBER JN THE LIST)
20 20 * l N THE YEAR
21 21 01 PREC-D-TAB.
22 22 02 fill.ER Pl C 999 VALUE o.

t 2.3 2'3 02 fJLLER Pl· C 999 VALUE .31.
24 24 02 fllLER Pl.(999 VALUE 59. 0
25 25 02 FILLER Piil 999 VALUE 90. -..J
26 26 02 fllLEI Pl C 999 VALUE 120.
27 27 02 ,lLLER PJ:(999 VALUE 151.
28 28 02 f ll LER P JI I 99 9 V Al U E 1 81 • "i

29 29 02 FILLER PJ; C 999 VALUE 212. ' At! ·1

30 30 02 flt.LEA PI; (999 VALLIE 243.
31 31 02 FILLER PllC 999 VALUE 27 3.
32 32 02 FILLER Pl C 999 VALUE .304.
33 33 02 flllER PI C 999 VALUE 334 •
.34 34 01 PREC-D-TAB- RE C RE DEF INES PR EC- D-T AB•
35 35 02 PRECEDING-DAYS PJC 999 OCCURS 12.
.36 36 * TABLE GIVING THE NAME Of THE DAYS IN THE
37 37 * WEEK
38 •• 1 01 OTHER-UNUSED.
39 •• 2 02 f ILLER P JC X.
40 •• 3 02 FILLER C OH P-1 SYNC.

1
1 2-199 A 1 BYTE TYPE 2 flLLER WAS ALLOdATED TO AllGN THIS SYNCHROUIZED ITEM <SEE REFERENCE MANUAL).

41 ··" 01 DlTWEEK-TAB •
42 ••• 5 02 FILLER PIC X(10> <-
43 s VAL U E .,l UN DI .. .
44 •• 6 02 FILLER PI C X (1 Q.) VALUE .. MA~DJ .. .
45 •• 1 02 FJLLER P~C X(10) VALUE "MEiCREDJ".
46 •• 8 02 FILLER Pl(X(10).VALUE "JE OJ H •

47 •• 9 02 fllLER Pl C X(1 Q) VAlU E ''VE OREO J".
48 •• 10 02 FILLER PIC XC10) VALUE "SAHEOI .. .
49 •• 11 02 FILLER PJ.(X(10) VALUE "DIMANCHE".
50 -46 01 OJTWEEK-TAB-R.ED REDEFINES DITWEEK-TAB.

>
I

0
())

COBOL v-so.2 X86.1 LI HING BOURGAIN BOURGAIN 13:22:"8 MAR 31, 1978
FINO-DAY EXPANDED SOURCE LISTING

I LN XLN TEXT 1-10-------20--- ---30--------40-----50-------60------ 70-•••••••• <-

51
52
53
54
55
56
:>I

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

47
48
49
50
51
52
c "t

54
55
56
57
58
59
60
61
62
6l
64
65
66
67
68
69
10
71
72

02 DAY-IN-THE-WEEK PIC XC10) OCCURS 1 TIMES.
* AREA FOR DATE SPLITTING INTO YEAR, MONTH,
• A NO DAY

01 SPLIT-DATE.
02 CENTURY Pl C 99.
02 S.HORT-D ATE.
0.3 FILLER PIC 99.
U.> ,,,:.;, ::: PT C 99.
03 OAY-Of-M~tT.H PlC YY.
OJ OAY-OF-MO~TH-X REDEFINES DAY-OF-MONTH PIC XX.

01 YEAR REDEFINES SPLIT-DATE PIC 9C4>.
* ORDINAL NUMBER Of THE DAY TAKEN INTO
• CONSIDERATION WITHIN THE DAYS OF THE
* CHRIST IAN ER A
01 DAYS-IN-THE-EM PIC 9C10).

*
LINKAGE SECTION.

• DATE f OR WHICH THE DAY Of WEEK IS LOOKED
* FOR, UNDER THE fORM YYYYMHDD OR YYM.MDDBB
* (WHERE B MEANS BLANK

01 FULL-DATE PIC XC8).
* RETURN ED ORDINAL NUMBER 0 F THE OAY IN THE
* WEEK (1 lS .MONDAY, 2 TUESDAY •••)

01 DAY-OF-THE-WEIK PJC 9.
* RETURNED DAY JN THE WEEK ITSELF

01 DAY-JTSELF PIC X(1()).

""SI

PAGE 1

:a
0
'()

COBOL v-so.2 .X86.1 LI !llNG BOURGAIN BOURGAIN 13:22:48 MAR 31, 1978 PAG1E 8
FIND-DAY EXPANDED SOURCE LISTING

JLN XLN TEXT 7-1 o-----20-----30-------40-----so-----60-----1c-•••••••• <-

77
78
79
80
81
82
83

73
74
1S
76
77
78
79

I

*
PROCEDURE OlVJSlO ~ USJNG FULL-DATE DAY-Of-THE-WEEK DAY-ITS Elf.

SEGJN.
MOVE FUU-OAT I TO $PUT-DATE.
If DAY-Of-"ON TH-X • SPACE

MOVE SPLIT- tATE TO SHORT-DATE

1
o 1 5-148 THIS JtECEIVJNG JTEll MAY 8E TRUNCATED ON RIGHT
** 1 5-264 SEN DJ NG ANt. IECUVlltG. fl ELOS OV•IRLAP
* 1 5-184 THlS JS A GROUP ltOVE ANO OPERANDS 00 NOT HAVE THE SA1'E SIZE"

14
as
86
81
88
89
90
91
92
93
94
95
96
91
'98
99

100
101
102
103
104
105
106
107
108
109
110

80
81
82
83
84
15
86
87
88
89
90
91
92
93
94
95
96
91
91
99

100
1Q1
102
1 O'l
104
105
106

..
*

* •
*

* •
* •

MOVE 19 TO .(fNTUAY.
lET US COMPUTE THE NUMBER OF DAU SPENT
SINCE THE BEGINNING Of THE CHRISTIAN ERA

COMPUTE OAYS- JH-TffE-ERA •
·OAY-Of-.. ONT H

+ PR!CEOJNG-DAYS (MONTH)
+ <YEAR - 1> • J65.

LET US ADD 1. IOR UC H LEAP-YEAR1 lNCLUD ING
TltE YEAR OF THE. PROCESSED DATE lf THE .
MONTH lS LATER THAH FEBRUARY

lf llONTH < 3 · U>ltftUTE YEAR • YEAR - 1.
OJYIOE YEAR Bl 4 GJVJNG x.
ADD X TO IAYS-JN-THE-ERA.
DlVJDE YEAA~Bl 100.GlVING x.
SUBTRACT x llCM ons~.1N-TH£-EU.
IJVJDE tUR U 1000 &JVJHG x.
ADD X TO DAYS-JN-THE-EAA.

HOV THE 1£.MUNOER.OF THE DIVJSJON·IY 1 01
THE DAYS-JN-THE-UA1 AUGMUIJEO Of THE ,
P-aGPER CONSTANT,,·. JS THE OllOINAL HUMBEi. Of
THE DAY IN THE WEEk

OJVJH ous-1;.-rH!-UA BY 1 CilVING x UMINOEA Y.
HY> 4

SUlllACT 4 FRO" Y
ELSI

ADO l ro Y.
"OVE Y TO DAY-0,-THl-WEEK.

1
•• 1 5-156 POSSIBLE lift TRUNCATION

111
112
113

107
1 aa
109

ltOVE OAY-Ul-Tfil-Wllk' CY> TO ou-nuu.
THE-IND.

EXIT PIOGRAM.

COBOL V-50.2 H6.1 LI fTlNG BOURGAIN BOURGAIN 13a22a48 MU 31,. 1978 PAGE 9
FIND-DAY CROSS-REf!IEHCE LISTING (OICLARATION ORDER>
LN NAME PN IDDRE.SS USAGE PJ C-STR I NG DEF• REF. LINES

77 TALLY 1:00010 DJ SP 9(5) NOREf

01 x •1:00064 DJ SP 9(10) 16 95 96 97 98 99 100 105

01 y 1:00070 Dl SP 9(5) 1 7 105 106 107 109 110 111

01 PAEC-D-TAB 1:00078 GROUP XCJ6) 21 NOAH

01 PREC-D-TAB-RED 11:00078 GROUP X<J6) 34 NOREF
02 PRECEDl NG-DAYS 1: 00078 DJ SP 9(J) 35 89

01 OTHER-UNUSED •1:000AO GROUP X(4) J8 NOREF

01 D IT WEEK-TAB I 1:000A4 GROUP X(70) 41 NOREf

01 OITWEEK-TAB-RED 1:000A4 GROUP X<70> 50 NOREF
02 DAY-IN-THE-WEEK 1:000A4 DJ SP XC10) 51 111

01 SPLIT-DATE 1:000f0 GROUP X<8> 54 81 83
02 CENTURY t ~: OOOfO DlSP 9(2) 55 84
02 SHORT-DATE 1:000f2 GROUP X(6.) 56 83

:r 03 MONTHR 1:000F4 01 SP 9(2) 58 89 94
03 DAY-OF-llONTH 1:000F6 USP 9(2) 59 88 - Ol OAY-OF-llONTH-X 1:000F6 DJSP XC2> 60 82

0

01 YEAR :1:000FO DI SP 9(4) 61 90 94+ 95 97 99

01 DAYS-JN-THE-ERA 1 :000f8 DJ SP 9<10) 65 8 7 9 6 9 8 100 1 0 5

01 FULL-DATE 1 00000 DI SP 'X(8) 71 78 81

01 DAY-OF-THE-WEEK 2 00000 OJSP 9(1) 74· 78 110

01 DAY-ITS ELF l 00000 DlSP XC10) 76 7 8 111

BEGIN PARA-NM 80 NOAEF
THE-END PARA-Nit 112 NOREF

COBOL V-50.2 X86.1 UnlN& BOURGAJN BOURGAJN 1Ja22i48 MAR 311 1978 P.AGE 10
flND"'DAY CIOSS-REFEREHCE LUTING CA.1.PHAIET JC OR DER>
LN NAME PN •DDR ESS USAGE Pl C- STA I NG DEF. REF. LINl!S

IHJN PARA-NM 80 NOREf
02 CENTURY (SPLIT-DATE) 11:000FO DJ SP 9(2) 55 84
02 DAY-IN-THE-WEEK (DITWEEK-TAl-RED) 1:000A4 USP X(10) 51 111
01 U Y-lT SELF 3 00000 DJ SP X(10) 76 78 111
03 UY-4f-MONTM UPU T-DATU 1:000F6 DJSP 9<2> 59 88
03 IAY-Of-"ONTH-!-X CSPLIT-OATE> 1200016 DJ SP X<2> 60 82
01 DAY-Of-THE-WEEK 2 00000 OJSP 9(1) 74 78 110
01 DAYS-JM-THE-ERA 1:00018 DJ SP 9<10> 65 87 96 98 100 105
01 DI TWEEK-TAB . J::OOOA4 GROUP X(70) 41 NOREf
01 DITWEEK-TAB-RED hOOOM GROUP X(70) so NOREf
01 FULL-DA Tl 1 00000 DI SP X(8) 71 78 81
03 RONTMR(SPLIT-OATE> 1:000'4 OJSP 9<2> 58 .A9 94
01 OJHER-UNUSEO 1a000AO GROUP XC4> 38 NOREF
01 PHC-D-TAB 1:00078 GROUP X<l6) 21 NOREf
01 PREC-1-TAB-RED 1:00078 GROUP XC36> l4 NOREF
02. PIECHJNG-DAYS CPUC-.. TA8-IEO) 1:00078 DJSP 9(3) lS 89
02 SHOil-DATE (SPLIT-DATE) 11:000F2 GROUP X(6) 56 83
01 S Pll T-DA TE · hOOOFO GROUP lC(8) 54 81 8.3
77 TALLY 1200010 DISP 9(5) NOREF

THE-END PARA-NM 112 NOREf
01 x h00064 USP 9(10) 16 95 96 91 98 99 100 105

=t
01 y 1100070 DI SP 9(5) 17 105 106 107 109 110 111
01 YEAR J·aOOOFO DJSP 9<-4> 61 90 94+ 95 97 99 ...

>
I

"'

COBOL
FIND-DAY

SUMMARY Of ERRORS

*
* *

* * *
* * * *

v-so.2 xs6.1 ll !TING BOURGAIN BOURGA IN
COltPILATJON SUMMARY

5
3
0
0

ON LJNE S A.7 4 0 t.44 83
ON LINES 83 110

cu PRODUCED ON LIBRARY ;oo0086.TE"P.CULJB

SEGMENT NAME

FIND-DAY.O
FJND-DAY.1
FJND-OAY.2

STACK

TYPE

•• L
.o.
c ••

SUE CJN BYTES>

99
278
434

u

RUN TIME PACKAGE PROCEDURES JNVOKED

NONE

13:22:48 MAR 311 1978 PAGE 11

APPENDIX B

SCOBOL ERROR MESSAGES

B-.OJ

-1 3 ILLEGAL CHARACTER. REPLACED BY BLANK.
- 2 3 T 0 0 L 0 NG P IC TUR E CH AR ACT ER ST R I ;.JG. PI CT URE C HAP AC TE R

-3 3

-4 3
1 -5 3

1 -6 3

-7 2

-8 2
-9 3

-10 3

1 -11 -1
1 - 1 2 1
1 -13 4

-14 3

-1 5 3

1 -1 6 3

-1 7 3

-1 8 3
1 -19 4
1 -20 3
1 - 2 1 3
1 - 2 2 4

1 - 2 3 5
1 -24. 3
1 -25 3

1 -2 6 4

1 - 2 7 4

1 -2 8 4
1 -2 9 3

, -30 3

1- 31 3
1 - 3 2 1
1 -3 3 1
1 -34 1
1 -3 5 4
1 -3 6 4

STRING IS TRUNCATED.
END DELIMITER MISSING I~ A LITERAL. DELIMITFR
IS ASSUMED.
TOO LONG LITERAL. LITERAL IS TRUNCATED.
ILLEGAL CONTINUATION OF A NOtJ-NUMERIC LITERAL. COLUMN
7 IGNORED.
DEBUGGING LINE DISALLO~ED IN PSEUDO-TEXT PRECEDING
"BY". LINE ACCEPTED.
SEQUENCE ERROR OR ~ON-NJHERIC LINE NUMBER. LINE IS

ACCEPTED.
AREA A IS IGNORED IN A CONTI.'JUATION Lir~E.

CONTINUATION LINE NOT ALLO~ED AFTER DEBUGGING OR
COMME~T LINE, WITHIN A CJMMENT ENTRY OR AS FIRST LINE
OF SOURCE OR COPIED TEXT. COLUM~ 7 IS IGNOPED.
FIRST wORD IS NEITHER "CONTROL" NOR "IDENTIFICATION",
OR IT DOES NOT BEGIN IN AREA A.
SYNTAX CHECKING DISCONTINUED.
SYNTAX CHECKING RESUMED.
IMPLEMENTATION RESTRICTION. NOT ENOUGH ROOM TO
AC C 0 MOD ATE " REPLACE", "C 0 PY REP LAC ING ••• " AN DI 0 R

STATEMENT SCANNING.
ZERO LENGTH OR TOO LONG ~ORD AFTER REPLACEMENT.
REPLACEMENT DID NOT TAKE PLACE.
TH IS "8 Y" PH RASE w ILL N QT PART IC IP ATE T 0 REP LAC E "1 E tJT
BECAUSE OF A PREVIOUS "3Y" PHRASE.
" C 0 MP I L E " C 0 MM A N D 0 R T E ~ "1 I N A T I NG S E M I - C 0 L 0 N T H E R E 0 F
ASSUMED TO BE ~ISSING. IS REPROCESSED.
EMPTY PSEUDO-TEXT TO THE LEFT OF "BY". THIS "~3Y"

PHRASE WILL NOT PARTICIPATE TO REPLACE~ErJT.

ILLEGAL CHARACTER IN COLJMN 7. LINE IS IGNORED.
NO "C:l"'1PILE" COMMAND FOJND IN THE ALTER FILF.
DUPLICATE OR OUT OF SEQJENCE DIVISION HEADER.
~DIVISION MISSING.
ILLEGAL DELIMITER FOR THE REGULAR EXPRESSIOiJS OF AiJ
"S" C:lMMAND.
THIS #ORD IN AREA A IS ~OT A USER-DEFINED WORD.
THIS ~ORD IS RESERVED FJR FUTURE IMPLEMENTATION.
ILLEGAL CHARACTER IN SY~80LIC CHARACTER. END OF
LITERAL IS IGNORED.
THIS FEATURE IS A ~ FEATURE, NOT INCLUDED IN THE
CURRENT COMPILATION LEVEL.
THE USE OF THIS RESERVED WORD HAS BEEN RESTRICTED BY
THIS INSTALLATION.
TOO COMPLEX SUBSTITUTE STRING.
ZERO LENGTH PICTURE CHARACTER STRING. "PICTURE X" IS
ASSUMED.
ZERO LENGTH NON-NUMERIC OR BOOLEAN LITERAL. SPACE OR
ZERO IS ASSUMED, RESPECTIVELY.
TOO LONG A SOURCE LINE. LINE IS TRUNCATED.
FIRST WORD OF TEXT REPLACED (QR DELETED>.
LAST JORD OF TEXT REPLACED (QR DELETED).
WORD REPLACED (OR DELETED).
LINE TOO LONG AFTER ALTER SUBSTITUTION.
UNKNO~N OR ILLEGAL ALTER COMMAND.

B-02

1 -3 7 4

-3 8 4

1 -3 9 4
1 -40 4
1 -41 4

1 -4 2 4
1 -4 3 4

-44 1

-4 5 4

1 - 46 4
1 -4 7 4
1 -48 4

1 -49 -3
1 -so 3

1 -51 4
1 -52 3
1 -53 4
1 -54 4
1 - 5 5 4

1 - 5 6 3

-5 7 3

-5 8 3
1 - 5 9 3
1 -60 4

1 -61 3

-62
1 -63 4
1 -64 1
1 -65 4

1 -66 3
1 -6 7 4
1 -68 4
1 -69 4
1 -70 4
1 -71 4
1 -72 3
1 -73 3
1 -74 4
1 -75 3
1 -7 6 4
1 -77 5
1 -7 8 1
1 -79 3

THE FIRST COMMAND OF THE ALTER ENCLOSURE IS NOT AN
"R" COMMAND WITHOUT ADDRESS EXPRESSION.
AN "R" COMMAND IS ALLOwEl> ONLY AS THE FIRST COMMAND
OF AN ALTER ENCLOSURE.
ADDRESS EXPRESSION MISSING BEFORE "," OR ";".
ADDRESS EX PR ES SI 0 N MISS I i\I G AFT ER "," 0 R "; " •
ADDRESS RANGE IS NOT FOLLOwED BY A "C", A "D" OR AN
"S" C:>MMAND.
END OF COMMAND MISSING IN ALTE.R LINf.
RELATIVE ADDRESS VALUE ~ISSING IN ALTER COMMAND.
T E X T F 0 L L 0 W S T H E " A " , " C " , " I " 0 R " Q " C 0 ~·1 M A N D
ON THE LINE. TEXT IS IGNORED.
DOLLAR MUST NOT BE THE FIRST ADDRESS OF AN ADDRESS
RANGE.
DOLLAR MUST NOT BE FOLLJWED BY A RELATIVE ADDRESS.
SYNTAX ERROR IN REGULAR EXPRESSION.
NUMERIC ADDRESSES ARE MEANINGFUL O~LY WITH SOURCE
PROGRAM IN SSF FORMAT.
OPERAND FOLLOWING "BY" IS ILLEGAL OR MISSirJG.
IMPOSSIBLE TO NOTE ON ~ ~HERE TO START FROr AT NEXT
CO~PILATION.

IMPOSSIBLE TO RECOGNIZE THE LAST LINE IN ~.

"~" IS REFERENCED, BUT IT IS NOT ASSIGNED.
IMPOSSIBLE TO OPEN ~.

IMPOSSIBLE TO OPEN~.
IMPOSSIBLE TO INITIATE ~EW CO~PILATION.

REPOSITIONNING ON ~ CAN~OT BE DONE.
DEBUGGING LINES ARE ALLJ~ED ONLY AF~FR THE
'OBJECT-COMPUTER' PARAGRAPH. LINE IS IGNORED.
"COMPILE" COMMAND NOT RECOGNIZED. FIRST GROUP OF
CONTISUOUS NON BLANK CHARACTERS IS IGNORED.
TEXT FOLLOWS SEMI-COLON. TEXT IS IGNORED.
OPTIO~ CANNOT BE RECOGNIZED. OPTION IS IGNORED.
SEMI-COLON ;.-,ISSING AT T~E END OF THE "COMPILE"
COMMAND.
"~", THOUGH SPECIFI·ED AS AN INPUT LIBRARY, DOES NOT
CONTAIN TEXT.
~ CCO~SOLE ~ESSAGE)

ILLEGAL COBOL OPTION STRING.
TOO MANY PERCENT LINES. LINE IS IGNORED.
"R" C 0 MM AN D D 0 E S N 0 T SP E C I f •Y A S 0 U R C E PR 0 GR A M, AN D

NONE IS WAITING FOR THIS COMPILATION.
TEXT FOLLOWS "R" COMMAND. TEXT IS IGNORED.
LIBRARY-NAME SPECIFIED IN "R" COMMAtJD IS TOO LONG.
MEMBER-NAME MISSING IN "R" COMMAND.
MEMBER - NAM E SP EC I F I ED I \I "R'" C 0 MM AND I S T 0 0 L 0 NG.
UNDEFINED REGULAR EXPRESSION.
MAXIMJM REGULAR EXPRESSION LENGTH EXCEEDED.
COPY TEXT IN ~ NOT EXHAUSTED.
ALTER TEXT IN ~ NOT EXHAUSTED.
MORE THAN ONE LIBRARY MAY MATCH "~".

MORE THAN ONE LIBRARY MAY MATCH "~".
SYNTAX ERROR IN REGULAR EXPRESSION.
ILLEGAL CONTINUATION OF .A. NAME. COLUMN 7 IS IGNORED.
LEVEL-64 SPECIFIC SYSTE~ NAME.
THE REPLACING PHRASE OF THIS COPY STATEMENT DOES NOT

B-03

-80 3

1 -81 3
1 -82 3

1 -8 3 3

1 -84 3
1 -85 5
1 -86 4
1 -87 5

-88 3
-89 3

-90 3

-91 3

-92 3

-?3 3
1 -94

-05

-96

1 -97 3

-98 3
-99 3
-100

1 -101 3
1 -102 3

-1Q3 3

-1 04 3

-1 05 3
- 106 "'3

-107 2

-108 3

-1 0 Q 3

-1 1 Cl 2
-1 11 4
-1 1 2 4

APPLY TO THF COPIED 'REPLACE' STATEMENT.
ILLEGAL CHARACTER IN A 300LEAN LITERAL. CHARACTER IS
IGNORED.
IMPOSSIBLE TO CLOSE ~.

ILLEGAL OR MISSING SYMBOLIC CHARACTER IN A
NON-NUMERIC LITERAL. THE HIGHEST POSITION OF THE
NATIVE COLLATING SEQUENCE IS ASSUMED.
RIGHT-~OST CHARACTER ~ISSING IN SYMBOLIC CHARACTER.
ZERO IS ASSUMED.
IMPOSSIBLE TO CLOSE ~.

SEPARATOR MISSING BEFORE T~E WORD. BLANK IS ASSUMED.
REFERENCED LINE NOT FOUND OR ALREADY PASSED.
PUNCTUATION CHARACTER IS NOT FOLLOWED 8Y A BLANK.
MISSI~G BLANK IS ASSUMED.
ILLEGAL CONTINUATION OF A WORD. COLUMN 7 IS IGNORED.
ILLEGAL CONTINUATION OF A NO~-NUMERIC LITERAL.
MISSING QUOTE IS ASSUMED.
END QUOTE MISSING IN A ~ON-NUMERIC LITERAL. MISSING
QUOTE IS ASSUMED.
TOO LJ~G A NUMERIC LITE~AL. INTEGRAL PART IS
TRUNCATED.
TOO LONG A NUMERIC LITERAL. FRACTIONAL PART IS
TRUNCATED.
ERROR WHILE PURGING ~.

SOME ERRORS ON THIS LINE MAY INDEED APPLY TO THE FIRST
LINE FOLLOWING THE CURRENT COPIED TEXT CIF ANY).
THE F~D OF THIS LINE IS NOT PROCESSED FROM THIS POINT
ON. IT IS REPEATED AFTER THE COPIED TEXT (IF ANY).
TOO SHORT A RECORD ON ~ TO BE AN SSF RECORD. LINE IS
IGNORED AND IS NOT SHOWN IN THE LISTING.
PICTURE ·CHARACTER STRIN~ ENDS wITH A PERIOD OR A
COMMA. THE PERIODCS) ANJ/OR COMMA(S) TERMINATING THE
PICTURE CHARACTER STRINS ARE IGNORED.
TOO L~NG NAME. NA~E IS TRUNCATED.
NAME TERMINATES WHITH A~ HYPHEN.
THE APOSTROPHE IS USED I1JSTEAD OF THE QUOTE TO
DELIMIT LITERALS IN THIS PROGRAM.
PERIOD MISSING AFTER THE REPLACE STATEMENT.
NESTED COPY STATEMENT. COPY STATEMENT IS NOT APPLIED.
T E X T - \J A M E M I S S I rJ G IN C 0 P Y S T A T E ~'1E N T • C 0 P Y P A R S E I S
TERMI\JATED.
LIBRARY-NAME MISSING Ir~ COPY STATEMENT. "IN" OR "OF"
ARE IGNORED.
PERIOD MISSING AFTER THIS COPY STATEMENT.
PERIOD MISSING AFTER THIS COPY STATEMENT• THOUGH NOT

REPEATED BELOW IN THE SOURCE LISTING, THE WORD
·FOLLOwING THE STATEMENT .JILL BE PROPERLY TAKEN CARE OF.
UNEXPECTED SSF CONTROL RECORD IN ~. RECORD IS IGNORED

AND IS NOT SH-OWN ON THE SOURCE LISTING.
TOO LJNG A RECORD IN ~ TO BE AN INPUT LINE. RECORD
IS IG~ORED AND IS NOT S~OWN ON THE SOURCE LISTING.
ABNOR~AL TERMINATION OF THE SOURCE WHILE PROCESSING
AN ALTER INSERT, CHANGE OR APPEND ENCLOSURE.
END OF LINE CONSIDERED AS COMMENT.
NO ALTER DATA AVAILABLE. ~ IS EMPTY.
THE ALTER ENCLOSURE IN~ DOES NOT CONTAIN DATA.

B-04

1 - 1 1 3 3

1 -1 1 4 4
1 -115 3
1 -116 4
1 -1 1 7 3
1 -118 4
1 -1 1 9 3
1 -120 4

1 -122 3
1 -123 4

1 -124 3

1 -125 4
1 -126 3
1 -127 3

-128 3

1 -129 3
1 -130 4
1 -131 3
1 -132 3

1 -133 3

1 -134 4
1 -135 4

-136 3

1 -137 3
1 -1 38 3
1 -139 4
1 -140 3
1 -141 3
1 -142 4

1 _, 43 4

-144 4

1 -145 2

1 -146 3
1 -147 3

1 -148 3

1 -149 1
1 -rso 1
1 -151 1

END OF SOURCE PROGRAM REACHED WHILE SEEKING FOR A
LINE SPECIFIED IN AN ALTER COMMAN~.

"-."NOT FOUND IN ASSIGNED OR SPECIFIED INPUT LIBRARIES.
"-."NOT FOUND IN ASSIGNED OR SPECIFIED INPUT LIBRARIES.
NONE JF THE SPECIFIED I\JPUT LIBRARIES IS"-.".
NONE OF THE SPECIFIED I\JPUT LIBRARIES IS "-.".
"-." NOT ASSIGNED.
"-." NOT ASSIGNED.
"-." N:>T ASSIGNED.
_ a.rnT rl'\.11 .. 1"
.., l'I V I r V U I'll LI •

-. NOT FOUND.
SSF FORMAT FOR -. MUST BE EITHER COBOL, OR COBOLX, OR
DATASSF.
SSF F:>RMAT FOR -. MUST BE EITHER COBOL, OR COBOLX, OR
DATASSF.
SSF FORMAT FOR-. MUST BE DATASSF.
EMPTY CONTINUATION LINE. LINE IS IGNORED.
MISSING CLOSING BRACKET IN IDENTIFIER. THIS "BY"
PHRASE WILL NOT PARTICIPATE TO REPLACEMENT.
QUALIFIER MI SS ING IN I'DENTIFIER. THIS "BY" PHRASE
WILL \JOT PARTICIPATE TO REPLACEMENT.
"BY" PHRASE MISSING.
ERROR WHILE READING~.
EXPECTED WORD WAS "BY".
SUBSCRIPT MISSING IN IDENTIFIER. THIS "BY" PHRASE
WILL NOT PARTICIPATE TO REPLACEMENT.
RELATIVE INDEX MISSING I~J IDENTIFIER. THIS "BY"
PHRASE WILL NOT PARTICIPATE TO REPLACEMENT.
NO SOURCE PROGRAM AVAILABLE. -. IS EMPTY.
NO SOURCE PROGRAM AVAIL~BLE.-. C$PECIFIED IN THE "R"
COMMA\JD). IS EMPTY.
ENDING PSEUDO-TEXT DELI"1ITER MISSING. THIS "BY"
PHRASE WILL NOT PARTICIPATE T-0 REPLACEMENT.
ILLEGAL OR ~ISSING EXPO~ENT. ZERO IS ASSUMED.
SEARCH FOR SUBSTITUTION FAILED.
NEXT COR FIRST) SOURCE IN-. CANNOT BE ACCESSED.
COPY ~ORD FOUND WITHIN ~ COPY OR A REPLACE STATEMENT.
SOURCE TEXT IN -. NOT EXHAUSTED.
THE "CB" REQUEST IS NOT INCLUDED IN THE SET OF
ALTER COMMAND.
"~" IS ASSUMED TO BE AN EXTERNAL FILE-NAME AND AS SUCH
I S N 0 T A L L 0 ttJ E D I N A N " R '' C 0 MM A N D • 0 N L Y " I N L I B 1 " ,
"INLIB2", "INLIB3" AND "LIB" ARE ALLOWED AS SUBFILE
QUALIFIER.
ONLY THE SEMI-COLON IS ALLOWED IN A RANGE WHOSE FIRST
ADDRESS IS A COMPOUND ADDRESS •

. P UN C TU A T I 0 N C H A R A C T E R I S N 0 T F 0 L L 0 W E D 8 Y A 8 L AN K •
MISSI\JG BLANK IS ASSUMED.
COPY STATEMENT. NOT FULLY CONTAINED IN A DEBUGGING LINE.
THIS ~PTION IS LEVEL-62 SPECIFIC. THE ENTIRE
SECTION IS SCANNED OFF.
A USE FOR DEBUGGING ON ALL PROCEDURES HAS BEEN
PREVIOUSLY MET.

ERROR MESSAGES ABOUT THE CURRENT COPY STATEMENT

B-.05

-152 4

_, 5 ~ 2

-1 54 3

1 -155 1
1 -1 5 6 2
1 -157 5
1 -1 5~ 2

-159 4

1 -1 60 3

-1 61 3

-162 3

-163 3

-1 64 3

1 -165
1 -166 3
1 -167 3
1 -16~ 2

HAVE SEEN LOST FROM THIS POINT ON.
ERROR MESSAGES ABOUT THE CURRENT CJPY STATE~E~T

HAVE 3EEN LOST FROM THIS POINT orJ.
THIS FEATURE IS A LEVEL-62 SPECIFIC FEATURE.
THIS ITEM MAY ONLY BE REFERENCED I:J A P1,R.\GRAPH OF A
USE FOR DEBUGGING SECT!JiJ.
A LINE MAY BE LOST.
LEVEL-62 SPECIFIC DEBUG-ITEM REFFRENCE.
~ IS ASSUMED TO BE IN SSF FOR~AT.

LEVEL-62 SPECIFIC COLUM~ 7. THE LI~E IS PROCESSED ~S A
COMME'H LINE; I.E. IS I.'.;;JQRED.
TH I s FEAT u RE (NON c 0 rn I Gu 0 us s E c TI J rJ s 0 F THE s .4 M f
P R I 0 R I i Y) I S A ~ F E A T U R E , N 0 T I ~ C L J D E D I ! J T H E C U R R E ~J T
COMPILATION LEVEL.
EXCESS NUMBER OF CHARACTERS IS SPECIFIED IN PICTURE
CHARACTER STRING, IT ~UST NOT EXCEED 30.
ILLEGAL CHARACTER IS SPECIFIED IN THE PICTURE
CHARACTER STRING.
ILLEGAL COMBINATION OF CdARACTERS IS SPECIFIED IN THE
PICTURE CHARACTER STRING.
THE LENGTH JF THE EDITI~G CHARACTER STRING MUST ~OT

EXCEE~ 256 CHARACTERS.
NO RECEIVING CHARACTER IS SPECIFIED IrJ THE PICTURE
CHAQACTER STRING.
~ DIVISION ~ISSING.
ILLEGAL DAT A TYPE IN '~ Z" R ECW EST.
UNA8LE TO PROVIDE ALTERED SOURCE.
T H E S OH A X A tJ D 8 E HA V I 0 R 0 F T H E C 0 9 J L " Z " R E Q U C::: S T ~·~ A Y
DIFFER FROM THOSE OF LI3i1AINT.

B-.06

2 -1 2
2 -2 3
2 -3 2
2 -4 3
~ -5 3
2 -6 3
2 -7 2

2 -8

? -9 3
2 -10 3
2 -1 1 3

2 -12 3
2 -1 3 2
2 -14 3
2 -1 5 3
2 -16 3
2 -1 7 3
2 -18 2
2 -19 2
2 -20 3
2 -21 2
2 -22 3
2 -23 3
2 -24 3
2 -2 5 3
2 -2 6 2
2 -2 7 3
2 -2 8 3
2 -2 9 3
2 -30 3
2 -31 3

2 -32 3
2 -33 3
2 -34 3
2 -35 3
2 -36 3
2 -3 7 2

2 -38 3
2 -39 3
2 -40 3

2 -41 4

2 -4 2 1
2 -4 3 3
2 -44 3
2 -4 5 3
2 -46 3
2 -4 7 3
2 -48 3

THIS ~ESERVED WORD SHOULD BEGirJ IN AREA A.
THE RESERVED WORD DIVISION SHOULD APPEAR HERE.
MISSING PERIOD.
THE RESERVED WORD PROGR~iM-ID SHOULD APPEAR HERE.
THE PROGRAM NAME IS MISSING OR INCORRECTLY SPECIFIED.
A DIVISION, SECTION, OR PARAGRAPH HEADER IS MISSING.
THIS IDENTIFICATION DIVISION PARAGRAPH HAS APPEARED
PRcVIOUSLY.
IDENTIFICATION DIVISION PARAGRAPHS APPEARED IN
INCORRECT ORDER; ANSI RE~UIRES THE CORRECT ORDER.
CONFLICTING CLAUSES IN THIS SELECT STATEMENT: ~

INVALID COMPUTER NAME.
A MNE~ONIC NAME HAS BEE~ SPECIFIED PREVIOUSLY FOR THIS
wORD.
THE RESERVED WORD SECTIJN SHOULD APPEAR HERE.
THE WORD DEBUGGING OR SUPERVISOR SHOULD APPEAR HERE.
THE RESERVED WORD MODE SHOULD APPEAR HERE.
THE RESERVED WORD SUPERvISOR SHOULD APPEAR HERE.
THIS CLAUSE HAS ALREADY APPEARED.
AN INTEGER SHOULD APPEAR HERE.
THE MEMORY SIZE IS INCORRECTLY SPECIFIED.
THE SPECIFIED SIZE OF MENORY IS LARGER THAN AVAILABLE."
THE SEGMENT-LIMIT CLAUSE HAS APPEARED PREVIOUSLY.
THE RESERVED WORD IS SHJULD APPEAR HERE.
THE SEGMENT LIMIT CANNOT BE GREATER THAN 49.
INVALID SEGMENT-LIMIT CLAUSE.
INVALID ASSIGN CLAUSE.
THE CURRENCY SIGN LITERAL IS INVALID.
THE RESERVED WORD COMMA SHOULD APPEAR HERE.
THE STATUS ~F THIS SWITCH ~AS NOT SPECIFIED.
THE STATUS JF THIS SWITCrl HAS ALREADY BEEN SPECIFIED.
INVALID CONDITION-NAME.
THIS FILE HAS aEEN SELECTED PREVIOUSLY.
THE ASSIGN CLAUSE IS MISSING FRO~ THIS SELECT
STATE~ENT.

FILE INCORRECTLY ASSIGNED.
THE WJRD REEL OR UNIT S~OULD APPEAR HERE.
AN INTEGER SHOULD APPEAR HERE.
INVALID PADDING LITERAL.
PADDING CANNOT BE APPLIED ON THIS FILE.
DUPLICATE PADDING CLAUSE FOR THIS FILE; FIRST CLAUSE
ACCEPTED.
INVALID BANNER CHARACTER.
A BAN~ER CHARACTER CANNJT BE APPLIED ON THIS FILE.
THE ORGANIZATION QUALIFIER JS I~Jcor·1PATI8LE WITH THE
0 R G AN I Z A T I ON •
THIS FEATURE IS A ~ FEATURE NOT INCLUDED IN THE
CURRENT COMPILATION LEVEL.
THE COMPuTER NAME SHOULD BE "LEVEL-64" OR "GCOS".
INVALID OPTION IN A SELECT PHRASE.
DUPLICATE CHARACTER IN ALPHABET NA~E SPECIFICATION.
INVALID RECORD PREFIX.
INVALID INPUT-OUTPUT TECHNIQUE.
INVALID KEY NAME.
INVALID FILE NAME.

8-07

2 -4 9
2 -so
2 -51
2 -52
? -5 3
2 -54
2 -55

2 -5 6
2 -57
2 - 5 8

2 -59
2 -60
2 -61

2 -62

2 -63
2 -64
2 -6 5
2 -66
2 -6 7

2 -6 8
2 -6 9
2 -70
? -71
2 -72

? -73
? -74
2 - 7 s
(-7 6

2 -7 7
? -78
2 -7?
2 - ~ C1

2 -81

2 -84
2 -35
2 -8 6
2 -87
2 -88
? -8 9
2 -9 0
2 -91
2 -9 2
2 -9 3

? -94

2
3
3
3
3
3
3

3
3

3
3
3

3

3
3
3
3

3
3
3
3
2

..,
(.

3
3

1
2

2

3

3
3
3
3
2
3
1
3
3
3

THE RESERVED WORD ON SHJULD APPEAR HERE.
INVALID DEVICE.
THE RESERVED WORD CHECKPOINT-FILE SHOULD APPEAR HERE
INVALID CONDITION-NAME.
NUMBER OF ALTERNATE KEYS IS LIMITED TO A MAXIMUM OF 15.
NUMBER OF SECONDARY KEYS IS LIMITED TO A MAXIMUM OF 8.
THE FILE REFERENCED IN TrlE RERUN EVERY END OF REEL/UNIT
IS NOT ACCESSED SEQUENTIALLY
INVALID RERUN CLAUSE.
ONLY ONE FILE NAME WAS SPECIFIED IN THIS SAME CLAUSE.
NO SYNTAX CHECKING FROM THE· LAST DIAGNOSTIC TO THIS
POINT.
INVALI~ MNE~ONIC-NAME.

THE RESERVED WORD FILE SHOULD APPEAR HERE.
THIS FILE NAME HAS APPEARED IN A PREVIOUS SAME AREA
CLAUSE.
THIS FILE NAME HAS APPEARED IN A PREVIOUS SAME RECORD
AREA CLAuSE.
ANOTHFR FILE IS ASSIGNED TO THE SAME IFN AS THIS FILE.
INVALID ACCESS MODE.
THE RFSERVED WORD SEGMENT SHOULD APPEAR HERE.
INVALID FILE NAME IN THIS SELECT CLAUSE.
INCORRECT ORDER OF CLAUSES IN THIS SELECT
STATE~ENT.

THE RESERVED WORD MULTI~LE SHOULD ~PPEAR HERE.
INVALID ORGANIZATION CL~USE.

THE RESERVED WORD STATUS SHOULD APPEAR HERE.
INVALID FILE STATUS tJAME.
DUPLICATE BANNER CLAUSE FOR THIS FILE; FIRST CLAUSE
ACCEPTED.
~0-RESI~ENT-INDEX CANNOT BE APPLIED ON THIS FILE.
DUPLICATE NO-RESIDENT-I~DEX CLAUSE FOR THIS FILE •
A KFY CLAUSF IS REQUIRED FOR THIS FILE.
THIS I-0 TECHNIQUE IS I~COMPATIOLE WITH A TECHNIQUE
PREVIOUSLY SPECIFIED FOR THE SAME FILE.
INCORRECT ORDER OF I-0-CONTROL CLAUSES.
INCORRECT ORDER OF OBJECT-COMPUlER CLAUSES.
INCORRECT ORDER OF SPECIAL-NA~ES CLAUSES.
~ISPLACED DECI~AL-POINT CLAUSE HAS AFFECTED LEXICAL
ANALYSIS OF PROGRAM.
THf FILE NAS ALREADY REFERENCED IN A PREVIOUS q~~UN

CLAUSE; FIRST CLAUSE ACCEPTED
THIS FILE HAS ALREADY A0 PEARED IN A ~ULTIPLE FILE
CLAUSE.
A PREJIOUSLY SELECTED FILE IS ASSIGNED TO SYS-WRITE.
INVALID QUALIFIER ON KEY OR FILE STATUS NA~E.

.INVALID IMPLEMENTOR-NA;'IE.
INVALID COLLATING SEQUE~CE CLAUSE.
THE RESERVED ~ORD RECORD SHOULD APPEAR HERE.
INVALID DUPLICATES CLAUSE.
INCOR~ECT ORDER OF SOURCE-COMPUTER CLAUSES.
INVALID SEGMENT SIZE CLAUSE.
INVALID ADDRESS FORMAT.
THE SPECIFIED ADDRESS FJRMAT CANNOT BE APPLIED ON THIS
FILE.
DUPLICATE ADDRESS FORMAT CLAUSE FOR THIS FILE; FIRST

B-08

2 -95 3
2 -96 2
2 -9 7 3
? -98 3
2 -99 3
2 -100 2
2 -101 2
2 -102 2
2 -103 3
2 -104 3

2 -1 OS 3
2 -106 3

2 -107 3
2 -108 2
? -io9 2

2 -1 11 2

2 -111 2

'.? -112 3
2 -1 1 3 3
2 -1 1 4 ")
2 -1 1 5 4
2 - 1 1 6 3
2 -1 1 7 3
) -1 '!3 ~

2 - 1 1 9 3

2 -12'1 3

2 -1 21 3
2 -1 22)
2 -1 23 2

2 - j 2 4 2
2 -125 2
2 -126 2
2 -127 3
2 -1 zq 4

2 -12? 2

:? -1) J 3
2 -1 31 4

2 -132 5
2 -1 50 3
2 -151 3
? -1 5 2 2

CLAUSE ACCEPTED.
DEFAULT CLAUSE CANNOT BE RECOGNIZED
PROGRAM-NAME EXCEEDS 12 CHARACTER IN LENGTH
THIS CLAUSE CANNOT BE RECOGNIZED
THE RESERVED WORD SELECT SHOULD APPEAR HERE
THIS FEATURE IS Nn rnP_EMENTED
NON STANDARD "IFN" SUFFIX
THIS CLAUSE IS USED FOR DOCUMENTATION ONLY
THIS FEATURE WILL NOT BE ALLOWED WITH THE NEXT RELEASE
c: V "·' T ~ V t= D D ("I R \J ' ' • I ~ ,., 11-. I ' I ' ..._, I "lo

THE SPECIFIFIED SIZE MAY NOT EXCEED 32K BYTES FOR
PROCEDURE SEGMENTS OR 4~ BYTES FOR DATA SEGMENTS.
ALPHA3ET-NA~E ALREADY DECLARED
THE ALPHABET-NAME REFERENCED IN THE PROGRAM COLLATING
SEQUE~CE CLAUSE IS NOT DECLARED HEREAFTER
THE SUBSTITUTION SECTIO~ HAS NOT BEEN EXECUTED
D U P L I C A T E D E F A U L T F 0 R S Y ·'1 8 0 L I C Q U E U E C L A U S E
DUPLICATE DEFAULT FOR TEMP CLAUSE; FIRST CLAUSE
ACCEPTED
DUPLICATE DEFAULT FOR ACCEPT CLAUSE; FIRST CLAUSE
ACCEPTED
DUPLICATE DEFAULT FOR DISPLAY CLAUSE; FIRST CLAUSE
ACCEPTED
THE RESERVED WORD IDENTIFICATION SHOULD APPEAR HERE
SPECIFIED ORGANIZATION IS ILLEGAL
DEFAU_T FOR TE~P ~UST 8E BETWEEN 18 AND 3C INCLUSIVELY.
COMPILER ERROR : SUBROUTINE STACK OVERFLOW.
INDEX FILE IS INCORRECTLY SPECIFIED.
INVALID FILE FOR ~ULTIPLE FILE CLAUSE.
"..," IS THE I FN GI VEN TO THIS FILE.
THE ME~~ERS OF A MULTIP.E FILE MUST HAVE THE SAME
DEVICE AND ORGANIZATION CLAUSE.
MORE THAN ONE MEMBER OF A MULTIPLE FILE ARE GIVEN THE
S A 1'-1 E P 0 S I T I 0 N •
THE RESERVED WORD 'INDEX' SHOULD APPEAR HERE.
OPTIO\JAL FILE MUST BE ORGArJIZATION SEQUENTIAL.
NON SE~UENTI AL ORGANIZATION OPTIONAL FILE IS A LEV~L-62
SPECIFIC FEATURE.
THIS ...,AY BE A LEVEL-62 IrJTERtJAL DEVICE DESIGNATOR.
THIS IS A LEVEL-62 SPECIFIC FEATURE.
THIS LEVEL-62 SPECIFIC FEATURE IS IGNORED.
THE RESERVED ~ORD CONSOLE SHOULD APPEAR HERE.
THIS FEATURE (OPTIONAL JR EMPTY SE{TION OR PARAGRAPH)
IS A _EVEL-64 FEATURE NJT INCLUDED IN THE CURRENT
COMPILATION LEVEL.
A LEVEL-62 SWITCH STATUS NAME ASSU~ED, THE RERUN CLAUSE
IS IG'JORED.
THIS LEVEL-6~ SPECIFIC FEATURE IS NOT IMPLEMENTED.
TrlE I'JTERACTIVE MODE IS NOT AVAILABLE ON YOUR SITE,
PLEASE CONTACT SUPPLIER.
CONFLICTING CLAUSES I~ THIS SELECT STATEMENT: ~

UNEQUAL SIZE REDEFINES.
BLOCK SIZE MUST EQUAL MAXIMUM RECORD SIZE.
THE SPFCIFIED BLOCK SilE IS TOO SMALL TO CONTAIN THE
LARGEST RECORD OF THIS FILE; THE BLOCK CLAUSE WILL 3.E
IGNORED.

B-09

2 - , 5 3

~ -1 54 1

2 -1 5 5 3

2 -1 5 6

2 -'! 57 3
2 - , 5 8 2
2 -1 5 9 3
2 -16(} 3

2 -161 2

THE RECORD FORMAT FOR T~IS FILE IS PERMITTED ONLY ON
TAP E7.
THE RECORD FORMAT FOR THIS FILE IS PERMITTFD ONLY ON
TAPE :lR DI SK •
A R E C '.) R D C ON TA I NS • • • DE P EN D I N G • • • C L A US E I S r~ 0 T
PERMITTED WITH THIS RECORD FORMAT.
A DATA RECORD FOR THIS FILE IS TOO LARGE FOR THE
SPECIFIED DEVICE.
INVALID RECORD FORMAT FOR CPL FILE.
RECORD PREFIX INCOMPATI3LE WITH DISPLAY TO SYSOUT.
LEVEL-68 IS ALLOWED ONLY IN LEVEL-68 COBOL.
UNBAN~ERED APPLIES TO H-2000 ODD PARITY TAPE FILES
ONLY.
DUPLICATE I-0 TECHNIQUES APPLIED TO THIS FILE; FIRST
CLAUSE ACCEPTED.

2 -162 3 THE I~TERNAL-FILE-NAME ~UST BE H SORT AS RANDOM APPLIES
ONLY TO SORT FILFS.

2 -163 3 INVALID CAT~LOGUE-·NAME.

2 - 1 6 4·· 3 T H E R E S E R V ED :tJ 0 R D T E MP 0 R A R Y 0 R P E R ·~ A N E ~ T S H 0 U L D A PP E A R
HERE.

2 -165 3 NO-SORTED-INDEX APPLIES ONLY TO INDEXED FILES
DESCRIBED WITH ALTERNATE KEYS.

2 -166 2 DUPLICATE DISPLAY SIGN IS CLAUSE, THE FIRST CLAUSE WAS
ACCEPTED.

2 -167 3 LEADING ~R TRAILING MUST BE SPECIFIED IN THE DISPLAY
SIGN IS CLAUSE.

2 -168 2 DUPLICATE DEFAULT FOR CJMP CLAUSE, THE FIRST CLAUSE WAS
ACCEPTED.

2 -1 6 9 3 THE DE FA U l T F 0 R C JM P CL A lJ SE IS I MP R 0 PERL Y S TATE D.
2 -170 2 A FIL_fR IS MISSING TO ACCOMODATE SYNCHRONIZED IN THE

CURRE~T REDEFINITION: FILLER IS PR0VIDED
2 -171 2 THE SYNCHRONIZATION CAN~OT BE ACCO~ODATED FOR ALL

OCCURRENCES OF THIS !TE~

2 -172 2 THIS FEATURF IS NOT IMPLEMENTED
2 -173 2 THE SIZE OF THE 01 OR 77 LEVEL ITEM EXCEEDS THE

SPECIFIED OR IMPLIED MAXIMUM SEGMENT SIZE
2 -174 2 IMPLE~ENTATION RESTRICTION: TOO MANY ITEMS SUBORDINATE

TO THIS ITEM OR REDEFING IT, SPACE IS ONLY ALLOCATED
FOR THE SIZE OF THE REDEFINED 01 OR 77 LEVEL ITEM

2 -175 3 THE 01 LEVEL ITEM HAS NOT THE SAME LENGTH AS THE CD IT
IMPLICITELY REDEFINES

2 -176 2 THE VALUE CLAUSE HAS BEEN DISREGARDED BECAUSE OF THE
INITIAL ATTRIBUTE OF THE CD, THOUGH PART OF IT MIGHT BE
SIGNIFICANT

? -177 2 A VALUE CLAUSE CANNOT BE SPECIFIED FOR A 01 LEVEL ENTRY
THAT D 0 E S N 0 T I MM E D I AT EL Y F ·Q LL 0 W A C D ENT R Y I N TH E
COMMUNICATION SECTION

2 -178 2 THE SIZE OF THE RECORD ~IGHT BE TOO SMALL IF THE. FILE
IS ASSIGNED TO A TAPE

2 -179 3 IMPLE~ENTATION RESTRICTION: TOO LARGE 01 OR 77 LEVEL
ITEM

2 -180 2 THE LENGTH OF THIS RECORD IS GREATER THAN THE MAXIMUM
SPECIFIED IN THE RECORD CONTAI~S CLAUSE

2 -181 2 THE LENGTH OF THIS RECORD IS NOT EQUAL TO THE SPECIFlED
IN THE RECORD CONTAINS CLAUSE

2 -182 3 THE ORGANIZATION OF THIS FILE CONTRADICTS THE VARIABLE

8-10

2 -1 83 3

2 -184 2

2 -1 85 3
2 -186 2

2 -1 87 3
2 -188 2

2 -189

2 - 1 90 2

2 -191 3

2 -192 2

2 -1 93 I..

2 -194 3
2 -195 3

2 -196 3

2 -1 9 7 2

2 -198 1

2 -197

2 -20J .,
2 -201 2
2 -202 2
? -~,J3 ?

2 -204 2

2 -205 2

2 -206 2

2 -207 2
'.? -203 2

RECORD FORMAT IMPLIED BY THE FOLLOwING DEF IN IT ION
THE SPECIFIED CODE-SET IS rJOT ALLO..JED WITH THE FILE
ORGANIZATIO'J
THE SPECIFIED CODE-SETCIJCD) IS MEANINGFUL ONLY IF THE
FILE ACTUALLY ASSIGNED AT OBJECT-TIME IS A TAPf FILF
T H E SP E C I F I E D C 0 D E - S E T I S I~ 0 T I ·.1 PL E '1 E N T E D
THE NUMBER 0 F CH AR AC TE RS SPEC I FI ED ItJ THE AL 0 CK C 0 :JT A IN

CLAUSE IS NOT A MULTIPLE OF THE RECORD SIZE
LINAGE CLAUSE MAY ONLY 3E USED FOR AN SSF FIL~

TH! s s y NT Ax 0 F THE RE c 0 RD p REF Ix pH RA s E w ILL rm T 8 F
ACCEPTED AFTER THIS RELEASE
THE C~DE-SET IS !BCD CLAUSE 1AY O~LY 3E USED FOR A TAPE

FILE WHEN ITS ORGANIZATION IS rl-?noo SEQUENTIAL
THE ~ONGEST RECORD OF A~ SSF FILE ~0ST BE AT LEAST 71
CHARACTERS IN LENGTH.
I Mp LE \1 EN TA TI 0 N RE s TR I c T I 0 rJ : ,, IN DE x ED 8 y '' r1 u s T N () T 9 E

U S E D -J H E N E I T H E R T H E E L E ,., E r J T S I Z E J R T H E R ~ P E A T I T I 0 i·J
NUMBER IS GREATER THAiJ 65535.
THE C~DE-SET CLAUSE IS ~OT ALLOWED ~ITH THE FILE
0 R GAN I Z AT I ON .,
NO SPACE AVAILABLE TO PROCESS TrlE SYNCHRONIZED
ATTRI3UTE.
INTER'IAL FILE NAME ''H-SJRT'' IS RESERVED FClR SORT FILES·.
THE SELECT CLAUSE FOR A SORT FILE CAN ONLY CO~TAIN

THE Ass I G N (M AND AT 0 Ry) c LA us E A rw :J () N - s TA rJ DAR D
FLR/VLR OPTION.
THE I'JTERNAL FILE NAME SIVEN FOR THIS FILE IS NOT
ALLOWED FOR A SORT FILE.
T H E F I L L c R. I P-J S E R T E D F 0 R S Y i J C H R :) :, J I Z r\ T I 0 N ~~ A S N 0 T T A K f N
CARE OF IN THE REDEFINITION.
A ..., TYPE 1 F I l LE R WAS ADDED AT T fl E END 0 F TH IS IT EM
(SEE REFERENCE MA.JUAL).
A..., TYPE 2 FILLER IAIAS ALLOCATED TO ALIGN THIS
SYNCHRONIZED ITEM (SEE REFERENCE ~A~UAL).

THIS "SELECT" HAS NO CORRESPJrJDitJG "FD".
THIS FILE HAS 9EEN OPENED BUT NJT CLOSED.
THIS FILE HAS BEEN CLOSED dUT ~JT OPENED.
THIS FILE WAS NOT OPENED IN INPUT OR I-0 MODE THOUGH IT
IS REFERENCED IN A "READ" OR A "START" STATEMENT.
THIS FILE WAS NOT OPENED IN THE PROPER MODE TO BE
R E F E R E N C E D I N A " i,.J R I T E " S T A T E :'w1 E iJ T •
T H I S F I L E WA S N 0 T 0 P E N E D I N I - 0 i·10 D E T H 0 U G H I T I S
REFERENCED IN A "REWRITE" OR A "DfLETE" STATEMENT.
THIS FILE IS NOT REFERE'JCED IN A "READ" STATEMENT
T H 0 U G H I T I S R E F E R E r~ C E D I N A " R E W R I T E " 0 R A " D E L E T E "
STATE~ENT, AND IT IS IN SEJUENTIAL ACCESS.
ONLY INPUT FILES CAtJ BE OPTIOiJAL.
THE (\1AXI~UM) SIZE IN THE RECORD CO~TAINS CLAUSE IS
GREATER THA'J THE SIZE OF THE LARGER RECORD DESCRIBED
FOR T~IS FILE: IT WILL 3E TAKEN CARE OF, FROM THE NEXT
RELEASE ON, IN DETERMING THE RECORD (AREA) SIZE.

B-1 l

) - .,
3 -2
3 -3
3 -4

3 -5

3 -6

3 -7
3 -~

3 -9

3 -1 0
3 -1 1
3 -1 2
3 -1 3
3 -1 4
3 -1 5
3 -1 6
3 -1 7
3 -1 3
3 -1 '}
3 -2 J
3 -?1

3 -2 2
3 - ? 3
3 - ?. 4

3 -2 5
3 - ? 6
3 - 2 7

3 - 2 3
3 - 2 9

3 -3 n
3 -31

3 -32

3 - 3 3

3 - 3 4
3 -35

3 -36

3 -3 7

3 -38

3 - 3 9

3 UNRECOGNIZABLE SECTION SPECIFICATION HAS OCCURRED.
2 RESER~ED JORD SECTION IS MISSING.
2 PERIOD IS MISSING.
3 REDUNDANT FILE SECTION HAS DETECTED, ONLY ONE FILE

SECTION IS ALLOWED PER PROGRA~.

3 SECTIONS PRECEDENCE SYNTAX ERROR IS DETECTED, CHECK
COBOL MA~UAL FOR CORRECTION.

3 UNREC~GNIZA9LE FILE SECTION LEVEL INDICATOR HAS
OCCUR~ED, IT MUST BE FD, SD.

3 THE RECO~D NAME OF THIS FILE IS IN ERRQq.
3 RECORD HtS FATAL SYNTAX ERROR, SYNTAX ANALYSIS OF THIS

RECORD IS NOT COMPLETED.
3 IN THE PRESENT DATA ENTRY- THE FOLLOWING DATA

PROPERTIES ~RE INCONSISTENT WITH ~

3 FILE ~AME IS NOT DEFINED IN ENVIRONMENT DIVISION.
3 UNRECJGNIZABLE FD CLAUSES ARE ErJC0 1JNTERED.
3 LABEL CLfUSf IS MISSING IN CURRENT FD ENTRY.
1 RECORD DESCRIPTION IS MISSING •
3 FILE REC0RDING CODE NAME IS IN ERROR.
1 CHARACTE~S ~PTION IS ASSUMED FOR THE BLOCK CLAUSE.
3 ~AXIMJ~ ~LOCK SIZE INTE3ER IS ~ISSING.

3 MAXIMJ~ RECORDS SIZE INTEGER IS MISSING.
2 RESERVED WORD RECORD IS MISSING.
2 RESERVJ:'.D WORD OF IS MISSING.
3 DATA NAMf IS MISSING OR IN ERROR.
3 LITERAL OR DATA NAME IS MISSING.
3 REDUNDENT TOP PHRASE IS SPECIFIED FOR LINAGE CLAUSE.
3 LINAGE SPECIFICATION IS IN ERROR.
3 s D D E s c R I p T I 0 r J c 0 N T A I tJ s F A T A L s y : J T A x E R R 0 R , s y r~ T A x

A N A L Y S I s. I S N 0 T C 0 MP L E TE D •
3 LITERALClNTEGER) IS MISSING.
3 AREA CLAJSE IS MISSING.
3 REDUN~ANCY ~F WORKING_STJRAGE SECTION IS DETECTED, 0NLY

ONE rs ALLOwED PER PROG~AM.

3 U N R E C 0 G N I Z A 8 L E L E V E L 0 R S E C T I 0 r J I :J D I C A T 0 R rl A S 0 C C U R R E D •
3 REDEFINES CLAUSE WHEN US~D MUST I~MEDIATLY FOLLO~ THE

SUBJECT OF REDEFINES •
3 DD CLAUSE HEADER IS IN ERROR.
3 THE OCCURS DEPENDING ON ITEM MUST BE THE LAST GROUP OR

EL E ~1 E 'J T . .\ RY I TE M I N THE RE C 0 RD, I T CANN 0 T 8 E FOL l. 'J w ED 8 Y
AN ITE~ OF EQUAL OR LESS LEVEL ~U~BER.

~ THE OBJECT OF REDEFINES DATA ITE~ IS NOT FOUND AT EQUAL
LEVEL, OR IS ITSELF THE SUBJECT OF REDEFINES.

3 VALUE OF THE 88 CONDITIJrJ ITEM IS INCONSISTENT WITH THE
PICTURE.

3 .THE 65 RENAMES ITEM CAN\JOT FOLLOW A 77 LEVEL ITE~.

3 AN UNRECOGNIZABLE DATA ATTRIBUTE IS ENCOUNTERED, OR
PFRIOD IS MISS1NG.

3 THE CJNDITION NAME MUST IM~EDIATLY FOLLOW THE 88 LEVEL
~JUM 8 ER.

3 T H E V A L U E SP E C I F I E D F 0 R T H E C 0 !~ D I T I 0 N N A M E I S I N
ERROR.

3 THE LEVEL ~'JUM£3ER FOR THIS DATA ITE'"I IS IMPROPER, IT
SHOULD BE 77, OR 01.

3 88 CO~DITION NAME ITEM CANNOT BE ASSOCIATED WITH A 66

B-12

LEVfL ITEM.
3 -4 0 3 88 CO~DITIO~ ITEM CAN~OT BE ASSOCIATED WITH A~ I~DEX

DATA ITE~.

3 -4 1 3 THE LITERAL VALUE AFTER THE THRJ MUST 9E GREATFR THAN
THE LITERAL VALUE BEFORE THRU.

3 -4 2 3
3 -4 3 3

T H E 0 3 J E C T 0 F R E D E F I NE S D AT A iJ A, 1 E I S :~ 0 T S P E C I F I E D •
REDUNDANT REDEFINES CLAUSE IS DETECTED, O~LY O~E IS
ALLOWED PER DATA ITEM.

3 -44 3 REDUNDANT PICTURE CLAUS~ IS DETECTED, ONLY ONE IS
ALLOWED PER DATA ITFM.

3 -45 3 REDUNDANT USAGE CLAUSE IS DETECTED, ONLY ONE IS ALLOJED
PER ITEM.

3 -46 3 REDUNDANT VALUE CLAUSE IS DETECTED, ONLY ·J"JE IS ALL·)JED
PER ITEM.

~ -4 7 3 OCCURS CLAUSE CANNOT 3E DECLARED ON A LEVEL 1 OR 77
ITEM, NOR CAN IT 1E REDJ:JDENT.

3 -4q 3 RFDUNDANT JUST CLAUSE IS DETECTED, ONLY O~E IS ALLJ~E)

PER IT E ~~ •
3 -4/ 3 REOi.JNDANT BLAIJK WHEtJ ZE~() CLAUS~ IS DETECTED, Oi·JLY J~4~

IS AL~O~ED PER DATA !TE~.

3 - 5 ') 3 R E D U t J D A N T S Y N C C L A U S E I S D E T E C T E D , ~ N L Y 0 ~ J E I S A L L 0 ~ E D
PFR !JATA ITEM.

) -51 ~ !HDi.HJDANT SIGtJ CLAUSE IS DETECTED, ONLY O~JE IS ALL~)~E'.:>

PER DATA IHM.
) -5?. :J REDUNDANT REtJAMF.S CLAUSE IS DETECTED, O~JLY OiJE IS

4LLOWED PER ITEM.
-S3

3 - 5 4
3 ·- r.;)

) -56

3 -57

?. - 5?
3 -6()

"'1; -6 1

~ -6 3

) -6 4
3 -6 5
) -6 f)
3 -6 7

3 -6 :3

3 -6 "}

~ SIGN IS LEADING O~ TRAILI~G IS NOT SPECIFIED.
~ TH F 0 =3 J E C T J F R E D E F I iJ E S ··1 A Y I J () T H ,, V E A N 0 C C U R S CL AUS t: •
3 J 5 J ::: C T ~ F R F D E F I N f. S D A T A : J A ,_, E C A 'l ~ J ·J T R E A : J I T E '.~ ~ F

'JARit~3LE LENGTH.
5 TH~ 0 3 J E·C T 0 F RED E FINES DAT A NA-~ E I IJ F I l E SE CT I ON Cl R

COMMU'nCATIO~J SECTIOrJ CA~HJOT BE A0 J 1]1 LEVEL ITEr·~,Tt-IE

RfDEFI~ITIO~ IS IMPLIED.
3 THE SJ3J~CT OF REDEFI~ES DATA ITE~ CANNOT BE OF

V .f... R I A 9 L E L ~ ~J G T H •
1'. C 0 i-1 PI L ~ R L IM I T : T 0 0 · 1 A \J Y VAL U ES I ~J 8 3 ENT R Y •
3 THE SUBJECT OF RE~AMES IS NOT SPECIFIED.
3 T H t. F: E N A ~~ E S C L A U S E I S i·1 I S S I f.J G F () R T H E 6 6 L E V E L I T E '·1 •
3 THE O~JECT OF RENAMES DATA NAME CAN~OT BE FOUND IN THE

PREVIJUS RECORD.
~ A 6 6 _ E V E L E N T ~ Y C 4 N ~ J 8 T R E N A M E A r-J J T H E R 6 l , 0 1 , 8 f: , '.) R

77 LEVEL DATA ITE~.

3 THE 03JECT OF RENAMES DATA ITE~ CA~NOT C0NTAIN AN
OCCURS CLAUSE, NOR CAN IT ~E SJ30RDINATE TO AN
ITEM ~HICH CONTAINS A~ JCCURS CLAJSE.

3 RESERVED ~ORD THRU IS ~ISSING.

3 LABEL CLAUSE IS MISSING IN THE CURRENT FD ENTRY.
3 T H E P I C T U R E CH A R A C T ER S T R IN G I S :1 I S S I t J G •
3 REPORT CLAUSE ~ND DATA RECORD CLAUSE ARE ~UT~ALLY

FXCLUSIVE.
~ THE I''HTIAL VALUE IS REDJNDA~JTLY SPECIFIED, WHEN THE

GROUP ITE~ ALREADY HAS I~ITIAL VALUE SPECIFIEDTHE
SUBORDINATE !TE~ CANNOT riAVE ADDITIONAL INITIAL VALJE.

3 THE I~ITIAL VAL~E IS INCJNSISTE~T ~ITH THE PICTURE OF
THE DATA ITEM.

3 THE USAGE OF A SUBORDINATE ITE~ ~UST BE CONSISTENT WITH

B-13

3 -71 3

3 -72 1
3 -73 3

~ -74 1
3 -75 3

3 -7 6 4

3 -7 7 3

3 -78 4
3 -79 3
3 -30 3

3 -~1 3

3 -82 3

3 -83 3
3 -8 4 3
3 -85 3
3 -36 3

3 -87 3
3 -8.3 3

3 -3Q 3
3 -90 3

3 -91 3

3 -9 2 3

~ -93 2

3 -94 3
3 -95 4
3 -96 2
3 -Q? 3
3 -98 3
3 -99 3

THAT)F THE GROUP ITEM.
WHEN THE SR~UP DATA ITE~ HAS INITIAL VALUE,TH~

SUBORDINATE ITEM CANNOT rlAVE LlSAGE OTHER THAN DISPLAY.
JUST RIGHT IS ASSUMED.
~HEN THE GROUP DATA ITE~ HAS INITIAL VALUE,THE
SUBORDINATE ITEM
SYNC RIGHT IS ASSUMED.
W H E N T H E G R 0 UP D A T A I T E ~ H A S I rJ I T I AL VA L :.J E , T H E
SUBORDINATE ITEM CANNOT CONTAIN SYNC CLAUSE.
JUST CLAUSE
THIS FEATURE IS A ., FEATURE iJOT INCLUDED IN THE
CURRENT COMPILATION LEVEL.
THE SIGN CLAUSE IS REDU~DANTLY SPECIFIED, WHEN THE
GROUP ITEM HAS SIGN CLAJSE IT IS !~PLIED TO THE
SUBORDINATE ITEM.
COMPILER ERROR : WORKING SPACE EXHAJSTED.
RESERVED WORD ZERO IS MISSING.
WHEN THE GROUP DATA ITEA IS ASSOCI4TED WITH 38
CONDITION ITEMS, THE SU3DRDINATE ITEMS CA~JNOT CONT.~I:4

JUST CLAUSE.
W H E N T H E G R 0 UP I T E M I S t\ S S 0 C I A T E D :..J I T H 3 3 C 0 N D I T I 0 ~J
I T E ~ S, T H E S U 8 0 R D ItJ AT E I T E M S C A~ JN 0 T C J N TA I ~J S n.: C C LA U S E
WHEN THE GROUP ITEM IS ASSOCIATED WITH 88 CONDITION
ITEMS, THE SUBORDINATE ITE1Y1S CA;JNOT HAVE USAGE OTHER
THAN DISPLAY.
THE DIMENSION OF OCCURS CANNOT EXC~ED 3.
THE OCCURRENCE TIMES IS NOT SPECIFIED.
THE OCCURREtJCE TI~1ES CA~HJOT 8E 1.
THE MAXIMlJM OCCURRENCES '·lUST BE GREATER THAN THE
MINIMJM OCCURRENCES.
REPORT CLAUSE AND LINAGE CLA~SE ARE MUTUALLY EXCLUSIVE.
WHEN THE GROUP ITEM CONTAINS OCCURS CLAUSF, THF
SUBORDINATE ITEM CANNOT 8E OF VARIABLf. LE~JGTH.

THE I~DEX NAME IS MISSI~G.

MIXED INDEXING IS NOT ALLOWED, ~HEN A TABLE ITEM HAS
ONE LEVEL INDEXED, ALL LEVELS MUST ALSO BE INDEXED.
THE SIGN TYPE OF A SUBORDI~ATE ITE~ MUST BE CONSISTENT
WITH THAT OF THE GROUP ITEM.
REDUNDANT INDEXED BY CLAUSE IS DETECTED, ONLY ONE IS
ALLOWED PER DATA ITEM.
THE QUALIFICATION OF OBJECT OF REDEFINES DATA NAME IS
FOR DOCUMENTATION ONLY.
COMMUNICATION SECTION PRECEDENCE ERROR
CD OUTPUT DESTINATION T~~LE INDEX ~AME OVER FLOW.
THE 03JECT ~F REDEFINES DATA NAME MAY BE IN ERROR.
LEVEL INDICATOR CD IS MISSING OR ItJ ERROR
CD NA~E IS MISSING
INPUT OR OUTPUT OPTION ~UST BE SPECIFIED FOR EACH CD
ENTRY

3 -100 3 ONLY ONE INITIAL CLAUSE IS ALLOWED IN THE COMMUNICATION
SECTION

3 -101 3 WHEN ~EITHER OPTION IS JSED, THE C~ ENTRY MUST BE
FOLLO~ED BY ONE OR MO~E 01 RECORD DESCRIPTIONS.

3 - 1 Cl 2 3 EX C ES S DAT A NAMES ARE SP E C I F I E D F () R THE C UR R ENT .c D
ENTRY.

3 -103 3 AN UNRECOGNIZABLE CD LEVEL INDICATOR OR SECTION HEADER

B-14

3 -104 3
3 -i·JS 3
3 -106 3
3 -107 3
3 - 1 03 3
3 -109 3
3 -1 1 0 3
3 - 1 1 1 3
3 - 1 1 2 3
3 - 1 1 3 3
3 -114 3
3 - 1 1 5 3
1: - , 1 6 3
3 - i 1 7 3
l -113 3

3 -1 1 ? 3
3 -12·~ 3
3 -1 21 3
3 -1 22 3
3 -12~ 3
3. -124 3
3 -125 3
3 - , 2 6 3
~ -1 2 7 3
3 -128 3

3 -12? 3

3 -13(1 4

3 -131 3

3 -132 2
3 - , 3 3 3

3 -134 5
3 - 1 3 5)
3 - 1 3 6 3
3 -137 3
3 -1 33 3

3 -1 3 9 3
3 -140 3
3 -141 3
3 -142 3
3 -143 3
3 -144 3
3 -145 3
3 -146 3
~ -147 3

3 -143 3
3 -149 3

IS ENCOUNTERED.
U N R E C :) S N I Z A 3 L E C D C L A J S E I S E ~~ C 0 U r J T E R E D
REDUNDANT CD INPUT SYMBJLIC SJGJUEUE-1 CLA~SE

~EDUNDANT CD INPUT SYMBJLIC SUBQUEUE-2 CLAUSE.
REDUNDANT CD INPUT SYM~8LIC SJ8QUEUE-3 CLAUSE
REDUNDANT CD INPUT SYMBOLIC JUEJE CLAUSE
REDUNDANT CD INPUT MESS~GE DATE CLAUSE
REDU~DANT CD INPUT ~ESS~GE TI~E CLAUSE
RED u rm ANT c D I Np u T TE x T L E ;·JG TH c LA 'J s E
REDU~DANT CD INPUT END (EY CLAUSE
QEDUNDANT CD INPUT STATJS KEY CLAUSE
REDUNDANT CD INPUT QUEUE DEPTH CLAJSE
REDUNUANT CD INPUT SY1aJLIC SOURCE CLAUSE
RE~UNDANT CD INPUT MESS~GE COUNT CLAUSE.
UNRECOGNIZABLE CD OUTPUT ATTRIBUTE IS ENCJUNTERED
THE r., ~ x I iJU r-1 0 c cu R RE fJ c E \J d i'1 a ER nus T 8 E Nu '·1 F.R I c I ~ T EGE R
GREATER THAN fJ.
RtDUNDA~JT CD OUTPUT DESTirJATIOrJ COJNT CLAUSE
REDUNDANT CD OUTPUT TEXT LENGTH CLAUSE
REDUNDANT CD OUTPUT STATJS KEY CLAUSE
REDUNDANT CD OUTPUT DESTINATION TAdLE CLAUSE
RED 1J~JDArJT CD OUTP;JT ERRJR KEY CLAJSE
REDUNDANT CD OUTPUT SY~~OLIC DESTINATION CLAUSE
THIS CD 01 RECORD HAS FATJ\L ERRO~

CD INPUT RECORD LEt4GTH \ldST BE 0? CHARACTERS
CD RECJRD N4ME ERROR
C D 0 UT P UT RE C 0 R D L E ~JG T H : 1 US T 8 E GR E A T E R TH A ~~ 2 3
CHAqACTEPS
WORKING_STORAGE SECTIO:J d.A.S FATAL SYrJTA:.< cqRQR, PARSING
IS NOT COMPLETED.
TH I S FEATURE (LES S TH A ~J 1 1 DAT A ~J A i·1 ES) IS A. LE i.I EL -64
S P E C I F I C F EA T U R E ,_~ 0 T I ~J C L U D E D I ·~ 7 H E C UR R E •J T

COMPILATION LEVEL.
REDUrJOANT LINKAGE SECTIJ•J IS DET~CTED, 0NLY ONEIS
SLLOWED PER PROGRA~.

C 0 D E - S E T C L A U S E I L L E G A L CH~ i JO ~ J S E (~ J E N T I A L F I L E •
R E D U ND A N T C 0 N S T M~ T S E C TI 0 N I S D E T E C TE D , 0 ~ J L Y 0 N E I S
ALLOWED PFR PROGRAM.
CO!H-SET CLAUSE ILLEGAL Oi'J tJON SEGUEtJTIAL FILE.
THE USAGE SPECIFIED IS l.nJREC·')G~JIZA3LF.

CODE-SET CLAUSE ILLEGAL OrJ NO~J SF~UENTIAL FILE.
C 0 D E - S E T C LA U S E R E D U I~ D A '-J T 0 N F D 0 R I L L E ~ A L 0 r J S D •
T H E DE S C R I PT I 0 ~~ 0 F T H I S o o R E f'J AH E S E t J T R Y H A S F A TA l
SYNTAX ERROR, PARSING OF THIS ENTRY IS NOT COMPLETED.
RECORDING MODE CLAUSE REDUNDArJT JN FD OR ILLEGAL ON SD.
BLOCK CONTAitJS CLAUSF REvurJbA~JT '.)rJ FD OR ILLEGAL O~J SD.
RECORD CONTAINS CLAUSE REDUNDANT O~ FD OR SD.
LABEL RECORD CLAUSE REDJ;JDAi'JT OrJ Fu OR ILLEGAL ON SD.
V A L U E 0 F C L.A. U S E R E D U N D A ~J T 0 N F D 0 f~ I L L E G A L "'0 N S D •
DATA RECORD CLAUSE REDuNDANT ON FD OR SD.
REPORT IS C~AUSE REDUNDANT O~ FD OR ILLEGAL ON SD.
LHJAGE IS CLAUSE qEDU~JDAiJT O'J FL> OR ILLEGAL O~J SD.
R E D UN D A N T D E P E N D I ~·JG 0 N C L A u S E I S D E T E C T E D , 0 f J l Y .. 0 N E I S
ALLOWED.
THE SPECIFICATION FOR LAdEL RECORD IS UNRECOGNIZABLE.
DUPLICATE NAME IN REPORT CLAUSE.

8-15

3 -151 3
3 _, 51 3

3 -1 5 2

3 -154 1
3 -155 3

3 -1 5 6

3 -157 3

3 -15~ 3
3 - 1 5 9 3

~ -16·1 3
3 -161 1
3 -162 3
3 -163 3

3 -1 64 3

3 -1 66

~ -167 3
3 -168 3

3 -169 3

3 -1 71 3
3 -171 3
3 -172 3
3 _, 73 3
7 -174 3
3 -1 75 3
3 -1 7 6 3

3 -177 5
3 -173 3
3 -1 7? 3

3 -13'1 ~

.3 -i81 2

3 -182 2

3 -18~ 2

'l -184 3

3 -185 3

THE CJRRENT SECTION IS ASSLlMED TO BE fILE SECTION.
THE CJRRENT SECTION IS ASSUMED TO BE WORKING STORAGE
SECTION PLEASE DISREGARD THE IRRELEVANT DIAGNOSTICS IF
ANY.
SYNTAX ERROR IS ENCOUNTERED AT THIS POINT, PARSI~G IS
DISCO'HINUED.
A DUM~Y RECORD NA~E IS SUPPLIED, SYNTAX CHECKING IS
RESUMED.
SYNTAX CHECKING IS RESU~ED AT THIS POINT.
A REPORT FILE MUST NOT HAVE THE DEPENDING OPTION IN
THE RECORD CONTAINS CLAJSE.
RECORD DESCRIPTION IS ~ISSING, SYNTAX CHECKING IS
RESUMED AT THIS POINT.
A LINAGE OR REPORT CLAUSE CANNOT APPLY TO A FILE WHOSE
ORGANIZATION IS NOT SEQJENTIAL.
A R E P :> R T F I L E S H 0 U L D I~ 0 T H A V E RE C 0 R D D E S C R I P T I 0 N •
THE DATA DESCRIPTION CLAUSES IN THIS ENTRY HAS FATAL
ERROR.
RESERvED wORD KEY IS ~ISSING.

SSF IS ASSU~ED WITH A LINAGE OR A qEPORT CLAUSE.
THE LITERAL FOLLO~ING THE THRU QPTION IS MISSING.
THE 66 RENAMES ENTRY IS NOT PROPERLY POSITIONED, IT
MUST IMMEDIATLY FOLLOW THE LAST DATA ENTRY OF THE
LOGICAL RECORD.
AREA NAME IS NOT DEFINE).
SD NA~E IS NOT DEFINED.
THE RECORD DESCRIPTION FOR THE ABOVE FILE DESCRIPTION
ENTRY IS MISSING.
FILE NAME IS MISSING OR IN ERROR.
THE RECORD PREFIX SPECIFIED IN THE SELECT PHRASE
CONFLICT'S :..JI TH A LltJAGE OR REPORT CLAUSE.
WHUJ THE GRJUP DATA ITE"1 IS ASSOC!ATED WITH LFVEL 8~

ITEMS, THE SUBJRDINATE ITEMS MUST 9E USAGE DISPLAY.
UNREC8GNIZABLE ATTRIBUTE IN CD ENTRY IS ENCOUNT~RED

RW TI~ES IS MISSING
RW KEY IS MI SS IrJG
RW LENGTH IS MISSING
RW TOP OR BOTTOM IS MISSING.
REDUN~ENT BOTTOM PHRASE IS SPECIFIED FOR LINAGE CLA~SE.

REDUNDENTFOOTING 0 HRASE IS SPECIFIED FOR LINAGE
CLAUSE.
A NON ZERO UNSIGNED INTE~ER SHOULD APPEAR HERE.
RW FOJTING IS MISSING.
THE FOOTING INTEGER MUST NOT BE GREATER THAN THE BODY
INTEGER IN LINAGE CLAUSE
THE SUBJECT OF REDEFINES MUST NOT BE A FILLER ITE~

lN THE GIVEN VALUE CLAUSE, SECOND VALUE IS NOT GREATER
THAN FIRST.
IN THE GIVEN VALUE CLAUSE, VALUE MAY BE LONGER THAN
LENGTH OF DATA ITEM.
IN THE GIVEN VALUE CLAUSE, UNSIGNED ITEM HAS SIGNED
VALUE.
IN THE GIVEN VALUE CLAUSE, NU~lER IC DATA ITEM HAS
NON-NUMERIC VALUE.
IN THE GIVEN VALUE CLAUSE, NON-~UMERIC DATA ITEM HAS
NUMERIC VALUE.

B-J6

3 -186 3
3 -187 5
3 -188 3

3 -189 2

3 -190 3

3 -191 1

INVALID CODE-SET SPECIFIED.
AN UNSIGNED INTEGER SHO~LD APPEAR HERE.
WHEN FD HAS JIS CO.DE-SET, SIGNED NUMERIC DATA MUST HAVE
SIGN IS SEPARATE CLAUSE.
RECORD CONTAINS ••• DEPENOING ON IS SPECIFIED IN FD, 3UT
FILE-CONTROL ENTRY SPECIFIES FLR.
THE SIGN CLAUSE MUST BE ASSOCIATED WITH AT LEAST ONE
NUMERIC ITEM WITH PICTURE CONTAINING S.
RECORD DESCRIPTION ASSU~ED TO BE DATA RECORD FOR
PRECEDING FD.

3 -192 7 A LABEL RECORD SPECIFIED IN THE FILE SECTION WAS NOT
DEFINED BY A RECORD DESCRIPTION ENTRY.

3 -193 2 A DATA RECORD. SPECIFIED IN A DATA RECORD CLAUSE WAS NOT
SUBSE~UENTLY DEFINED BY A RECORD DESCRIPTION ENTRY.

3 -194 2 LABEL RECORDS FOR H-RD, H-PR MUST BE STANDARD AND ARE
SO ASSUMED.

3 -195 4 OVERFLOW IN HIERARCHY TA8LE: PROCESSING OF DATA
DIVISION CEASES HERE!

3 -196 4 OVERF~OW IN INDEXNAME T~BLE: PROCESSING OF DATA
DIVISION CEASES HERE!

3 -197 3 RW "DEPEND ING" MI SS ING.
3 -193 1 IN CO~PLIANCE WITH STANDARD: CODE-SET CLAUSE ON FD

SHOULD BE ACCOMPANIED 8Y SIGN IS SEPARATE FOR
SIGNED NUMERIC DATA.

3 -19Q 3 WHEN FD HAS JIS CODE-SET, DATA MUST BE USAGE IS

3 -200

3 -201 3

3 -203 3

3 -204 1
3 -~05 3
3 -206 3

3 -207 2
3 -2'13 3
3 -209 3
3 -? 1 0 2
3 -211 2
3 -212 2
3 -213 2
3 -214 3

3 -215 2

3 -?.16 2
3 -217 2
3 -?1.3 3

3 -219 5

3 -220 2

DISPLAY.
IN CO~PLIANCE WITH STANDARD: CODE-SET CLAUSE ON FD
SHOULD BE ACCOMPANIED BY ALL DATA USAGE IS DISPLAY.
ONLY NUMERIC LITERALS ARE ALLOWED IN THE LINAGE
CLAUSE ~OR AN EXTERNAL FILE.
DESTI~ATION TABLE MAY O~LY OCCUR TIME IN THIS
IMPLE''1ENTATI ON.
A RESERVED WORD HAS BEE~ USED AS A USER WORD OR
DATA-NAME IS MISSING.
REMAINDER OF VALUE OF CLAUSE IS SCANNED OFF
ALL M~Y NOT BE USED WITH A NUMERIC LITERAL.
THIS RELEASE REQUIRES SEPARATE SIGN FOR SIGNED NUMERIC
ITEMS.
NOT SUPPORTED IN THIS RELEASE, WILL BE IGNORED.
THIS RELEASE REQUIRES THAT DEFAULT COMP BE DISPLAY.
THIS FEATURE IS NOT IMPLEMENTED.
LABEL RECORD FORMAT NOT SUPPORTED av THIS RELEASE.
TOO MANY RECORD-NAMES I~ DATA RECO'RDS.
RESERVED WORD DIVISION IS MISSING.
LEVEL NUMBER HIERARCHY INCORRECT
THE NUMBER OF DIGIT PORTIONS SPECIFIED FOR THIS ITE~

EXCEEDS THE MAXIMUM ALLJWED.
THE RECORD CONTAINS CLA~SE SPECIFIES TOO LARGE A RECORD
SIZE
INCONSISTENT VALUES IN THE RECORD CONTAINS CLAUSE
INCONSISTENT VALUES IN THE BLOCK CONTAINS CLAUSE
USAGE IS COMP-1 OR COMP-2 DOES NOT ALLOW A PICTURE
CHARCTER STRING WITH A SCALING FACTOR
ONLY USAGE DISPLAY IS ALLOWED WHEN ORGANIZATION IS
H-2000 OR ANSI.
SIGN CLAUSE CANNOT APPLY TO ANY CONTAINED NUMERIC

8-.17

3 -221 5

3 -::>2'.? 3
3 -223 3
3 -224 2

3 -225 3
3 -226 2
3 -??7 4

3 -223 2
3 -229 3

3 -231] 3

3 -231 4

3 - 2 3 2- 3

3 -2 33 3

3 -234 3

3 -235 4

3 -236 3

3 -2 3 7

D I S P L A Y E L E M E :~ T A R Y I T E M (I F A N Y) •
THE SIGN CLAUSE MUST BE ASSOCIATED ~ITH USAGE DISPLAY
AND PICTURE CONTAINING S.
THE I"ITIAL VALUE SPECIFIED IS Ur-JRECOGNIZABLE.
THE VALUE IS NOT I~ THE RANGE ALLO~ED FOR THE ITE~.

TOO M/\NY ITEMS SUBORDIN~TE TO COrJDITIOrJAL VARit\BLE:
VALUE SIZE WILL NOT BE CHECKED.
THIS LEVEL-62 SPECIFIC FEATURE IS NOT IMf"LEi1E1HED.
THIS IS A LEVEL-62 SPECIFIC FEATURE.
THIS FEATURE (FILLER AT GROUP LEVEL> IS A LEVEL-64
FEATUQE NOT INCLUDED IN THE CURRE~T COMPILATION LEVEL.
COMP-3 IS ASSUMED FOR T~IS LEVfL-62 COMP-3 ITE~.

R E DU t JD AN T EX T E RN A L C L AUS E I S D ET E C T E D , 0 N L Y 0 ;JE I S
ALLOWED PER DATA ITEM.
0 NL Y .,J 0 R KI NG-ST 0 RAGE 0 R C 0 NS TA ~H SECT I 0 NS t11 0 fol 7 7
ENT R IE S W I TH 0 UT R EDE F I NE S C AN HA ·v E T H E E X TE R ; J AL C Lt~ J SE •
THIS FEATURE (MISSING DATA NAME) IS A LEVEL-64 FEATURE
NOT I"CLUDED IN THE C~R~ENT COMPIL~TION LEV~L.

THIS LEVEL-62 SPECIFIC FEATURE IS NOT I~PLEMENTED,

SUBSE~UENT ENTRIES ARE ASSUMED TO 9E WORKING-STORAGE.
THE VALUE CLAUSE CANNOT BE USED TO DESCRIBE A FLQATING
POINT NUMBER.
A FLOATING POINT NUMBER CANNOT BE A CONDITIONAL
VARIABLE.
THE REPORT WRITER IS NOT AVAILABLE ON YOUR SITE, PLEASE
CONTACT SUPPLIER.
THE SPECIFIFD CODE-SET IS NOT ALLO~ED JITH THE FILE
0 R G AN I Z A Tl ON •
THE C~DE-SET IS IBCD CLAUSE MAY ONLY BE USED FOR A T~PE
FILE ~HEN ITS ORGANIZATION IS H-?nao SE~U~NTIAL.

B-18

4 _, 2
4 -2 2
4 -3 3

4 -4 2

4 -5 2
4 -6 2
4 -7 2
4 -9 2
4 -10 2
4 -1 1 3
4 - 1 :? 3
4 -13 3
4 -14 3
4 -1 5 3
4 -1 6 3
4 -17 3
4 -18 3
4 -19 3
4 -20 3
4 -22 3
4 - 2 3 3
4 -24 3
4 -25 3
4 -26 3
4 -2 7 3
4 -3Q 4

4 -31 4

4 -32 3
4 -40 3
4 -41 3
4 -4 2 2
4 -51 3
f. -52 2
4 -5 3 3
4 -54 3
4 -55 3
4 -57 3
4 -60 3

4 -61 3
4 -62 3
4 -6 3 3
4 -70 3
4 -71 2

4 -73 2

4 -80 3
4 -81 3
4 -8 c 3

E X P E C T E D W 0 R 0 I S " S E C T I J .'J " •
PERIOD IS MISSING.
RD ENTRY IS NOT GIVEN FJR A REPORT SPECIFIED IN REPORT
CLAUSE IN FD.
L E V E L I N D I C A T 0 R " R D " 0 R L E V E L r JU M 13 E R " 0 1 " S H 0 U L D B ~ G HJ
FROM A AREA.
THIS ITEM SHOULD BE WRITTErJ I .. J •\RH D.
SYNTAX CHECK DISCONTINUED FRO~ THIS ITEM.
SYNTAX CHEC< IS RESUMED.
END OF DATA DIVISION wAS DETECTED.
NO SECTION CAN FOLLO~ REPORT SECTIO~.

LEVEL INDICATOR "RD" IS MISSI:JG.
LEVEL NUMBER "01" IS MISSING.
LEVEL NUM9ER OR LEVEL I'JDICATOR IS EXPECTFD AFTER ""
ILLEGAL LEVEL ~UMBER.

LEVEL NUMBER UNMATCH.
THIS CLAUSE IS ALREADY SPECIFIED.
ILLEGAL WORD IN RD ENTRY.
ILLEGAL WORD IN 01 ENTRY.
ILLEGAL WORD IN REPORT ITEM DfSCRIPTION.
~ON SIGNED INTEGER IS EXPECTED.
QUA L IF I ER IS ·~IS S ING AFT ER " I :J" I "0 F" •
")" IS MISSING.
INTEGER IS MISSING IiJ RELATIVE INDEXING.
SUBSCRIPTED REFERENCE· IS NOT ALLO~ED.

REPORT NAME CANNOT BE QJALIFIED.
REPORT GROUP DESCRIPTIO~ SHOULD OE WITHIN 3 LEVELS.
NO SPACE AVAILABLE TO ACCOMODATE THIS REP8RT
DESCRIPTION.
IMPLE~ENTATION LIMIT - ~OT ENOUGH SPACE AVAILABLE TJ
ACCOMODATE THIS REPOkT DESCRIPTIO~J.

T H I S F E A T U R E I S N 0 T I ~1 P L E M E N T E D •
OPERA~D OF CONTROL CLAUSE IS ~ISSI~G.

DUPLICATE OPERAND IN CO~TROL CLAUSE.
FINAL SHOULD BE THE FIRST CONTROL.
SYNTAX ERROR IN PAGE CLAUSE.
"DETAIL" IS MISSING.
INTEGER IS MISSING IN P~GE LIMIT CLAUSE.
INTEGER IS MISSING.
ILLEGAL INTF.GER.
RELATION BETWEEN INTEGERS WITH!~ PAGE CLAUSE IS ILLEGAL
REPORT WITH CODE CLAUSE AND REPORT wITHOUT CODE CLAUSE
ARE MUTUALLY EXCLUSIVE ,J!THIN A FILE.
THIS REPORT SHOULD HAVE THE CODE CLAUSE TOO.
CODE LITERAL IS MISSING.
LITER~L OF CODE CLAUSE SHOULD BE OF LENGTH 2.
SYNTAX ERROR IN USAGE CLAUSE.
NO PRINTABLE ITEM SUBORDINATE TO THIS ITEM WITH tHE
USAGE CLAUSE.
ELEMENTARY PEPORT ITEM ,J ITH THE USAGE CLAUSE SHOULD BE
PRINT4aLE ITEM.
SYNTAX ERROR IN TYPE CL~USE.

"HEADING" OR "FOOTifJG" IS MISSING.
PH OR PF REPORT GROUP IS NOT ALLO~ED FOR A REPORT
WITHOUT PAGE CLAUSE.

B-19

4 -83

4 -84

4 -85

4 -86
4 -37

4 -90
4 -91

4 -93
4 -94

4 -95
4 -76
4 -97
4 -100
4 -1 0 1

4 -1(12
I -103 ...
4 -104

4 -105

I -106 4

4 -107
4 - 1 'J 3

4 - , 11

4 - 1 1 1

4 -1 1 ?

4 -1 1 3
4 -1 1 4

4 -1 1 5

4 -1 2 0
4 -1 21

4 - , ? ?
4 -1 2 3
4 -124
4 - 1 2 5
4 -1 2 6
4 -127
4 -1 .~O
4 -1 3,
4 -132
4 -1 3 3
4 -1 34
4 -1 3 5

3

3

3

3
3

3
3

3
7
.J

3
3
3
3
3

3
3
3

3

~

)

3

7i
3
"I: -

3
3

3

3
3

3
3
3
3
3
3
3
3
3
3
3
3

RH, PH, PF OR RF REPORT GROUP SHOULD BE DEFINED AT ~OST

ONCE.
DATA NAME OP "FINAL" IS MISSING WITHIN TYPE CLAUSE FOR
TYPE CH/CF REPORT GROUP.
TYPE CH/CF REPORT GROUP SHOULD NOT APPEAR IN A REPORT
WITH NO CONTROL CLAUSE.
CONTRJL LEVEL CANNOT 3E DEFINED FOR THIS GROUP.
CH OR CF FOR A CONTROL LEVEL CAN BE DEFINED AT MOST
ONCE.
"GROU 0 " IS MISS ING.
REPORT GROUP WITHOUT LI~E MAY HAVE NO NEXT GROUP
CLAUSE.
SYNTAX ERROR IN NEXT GRJUP CLAUSE.
AASOU~TE NEXT GROUP CLAJSE MAY NOT APPEAR IN REPORT

WITHJUT PAGE CLAUSE.
SYNTAX ERROR IN NEXT GROUP I~TEGER.

NEXT GROUP CLAUSE MAY NOT APPEAR IN PH OR RF.
NEXT SROUP CLAUSE MAY NOT APPEAR IN PF.
SYNTAX ERROR IN LINE CLAJSE.
ABSOULTE LI~E CLAUSE MAY NOT APPEAR IN REPORT ~ITHOUT

PAGE CLAUSE.
ILLEGAL LINE INTEGER.
ABSOLUTE LINE CLAUSE SHOULD BE IN ASCENDING ORDER.
ABSOLUTE LINE CLAUSE SHJULD PRECEDE RELATIVE LINE
CLAUSE.
LINE CLAUSE wITH NEXT P~GE SHOULD !3E THE FIRST LINE
CLAUSE IN A GROUP.
LirJE ITE'-1 SHOULD NOT 3E SUBORDUJATE TO LINE ITEM.
PF SHOULD BEGIN WITH ABSOLUTE LINE.
LINE CLA.USE VJ!TH NEXT PAGE MAY APPEAR ONLY WITHIN 90DY
AND RF.
SYNTAX ERROR IN PICTURE CLAUSE.
ILLEGAL CHARACTER IN PICTURE STRING.
JUSTIFIED CLAUSE CONFLICTS WITH OTHER CLAUSE WITHIN
THIS ITEM.
"ZERO" IS MISSING AFTER "BLAtJK".
RLANK ~HEN ZERO CONFLICTS WITH OTHER CLAUSE WITHIN
THIS ITEM.
GROUP INDICA.TF CONFLICTS wITH OTHER CLAUSE WITHI'J THIS
I TE ~.,.
COLUMN INTEGER IS MISSI'J~.

C 0 LU r1N IT FM W I TH 0 UT LINE CLAUS E SH 0 UL D BE SU 8 0 RD I NAT E
T 0 L I \J E I T E ~1 •
THIS ITEM OVERLAPS PREVIOUS ITEM.
REPORT RECORD HAS INSUFFICIENT SIZ~ TO PRINT THIS ITEM.
SOURCE OPERAND IS ~ISSI~G.

VALUE OPERAND IS MISSINS.
L I T E R A L A F T E R fl A L L fl I S .,, I S S I N G •
VALUE OPERAND IS INCONSISTENT WITH ITEM CLASS.
SUM OPERAND IS MISSING.
SUM CLAUSE SHOULD BE SPECIFIED WITHIN CF.
UPON)PERAND IS MISSING.
RESET OPERAND IS ~ISSING.

RESET CONTROL LEVEL CAN~OT BE DEFINED FOR THIS ITEM.
SU~ OPERAND SHOULD NOT 3E REPORT ITEM OTHER THAN SUM
COUNTER.

8-20

4 -1 36 3

4 -1 37 3
4 -138 3

4 -139 3
4 -140 3

4 -150 3
4 -1 51 3
4 -152 3
4 -160 3
4 -1 61 3
4 -162 3
4 -163 3
4 -1 64 3
4 -165 3
4 -166 3
4 -1 71 3
4 -17?_ 3
4 -1 7 3 3

4 -174 3
4 -175 3

SUM C~UNTER OPERAND IN SUM CLAUSE SHO~LD BE DEFINED AT
LOWER OR SAME CONTROL LEVEL.
UPON OPERAND SHOULQ BE DETAIL GROUP WITHIN SAME REPORT.
RESET CLAUSE SHOULD SPECIFY HIFHER OR SAME CONTROL
LEVEL.
MULTI-DEFINED DATA NAME WITHIN SUM OR UPON OPERAND.
SUM OPERAND FOR SUM CLAJSE WITH "UPON" SHOULD NOT BE
SUM C~UNTER.

REPORT NAME IS MISSING.
REPORT NAME IS NOT DEFI~ED IN ANY FD.
DUPLICATE REPORT DESCRIPTION.
TYPE CLAUSE IS MISSING IN REPORT GROUP DESCRIPTION.
NO REP-ORT GROUP FOLLOwED AFTER RD ENTRY.
NO BODY GROUP APPEARED ~!THIN THIS REPORT.
THIS REPORT GROUP VIOLATES UPPER LIMIT RULE FOR ~.

THIS REPORT GROUP VIOLATES LOWER LIMIT RULE FOR ~.

THIS GROUP CANNOT BE =>RESENTED ON 1 PAGE.
THIS REPORT GROUP VIOLATES NEXT GROUP RULE FOR ~.

NO SU30RDINATE ITEM FOR FORMAT-2 ITEM.
NO OPTIONAL CLAUSE WITHIN FORMAT-2 ITEM.
FORMAT-3 ITEM MAY HAVE ONLY ONE OF "SOURCE" I "SUM" I
"VALUE" ..
FORMAT-3 ITEM WITHOUT MANDATORY CLAUSE.
NO ITEM CAN BE SUBORDINATE TO FORMAT-3 ITEM.

B-2J

5 _, 3
5 -2 3
5 -3 3
5 -4 3

5 -5 3

5 -6 2

5 -7 ~

5 -8 3
5 -9 3
5 -10 3
5 -11 3

5 -1 2 3
5 -1 3 3
5 -14 3
5 -1 5 3
5 -16 2

5 -17 3
5 -1 8 1

5 -1 9 3
5 -20 5
5 -21 3
5 -2? 3
5 -2 3 3

5 -24 3
5 -25 3

EXPECTED WORD WAS "PROCEDURE".
E X P E C T E 0 W 0 R D W A S " D I V I S I 0 ~~ " •
EXPECTED WORD WAS "."OR "USltJG".
"USHJG" NOT ALLOWED WITH "INITIAL" CLAUSE IN DATA
DIVISION.
ITEM IS NOT 01 OR 77 LEiJEL DATA ITE~~ DEFINED IN THE
LINKAGE SECTION
NUMBER OF USING PARAMET~RS ~OT EQUAL TO LINKAGE SECTION
COUNT.
PERIOD EXPECTED AFTER THE PREVIOUS ~ORD

SECTIJN HEADER EXPECTED HERE
EXPECTED WORD WAS "USE"
E X P E C T E D W 0 R D W A S " B E F 0 R c " , " A F T E R " , " F 0 R " 0 R " R A N D 0 r4"
EXPECTED WORD WAS "INPUT", "OUTPUT", "I-O", "EXTEND",
0 R A F ILE NAME.
I TE M HA S " LA BEL 0 MITT ED" CLAUS E.
EXPECTED WORD WAS "LABE~"

ITEM IS NOT REPORT SECTION DATA-·~AME

ALPHA3ET-NAME IS UNKNOW~

THIS FEATURE IS NOT IMPLEMENTED YET. IT HAS BEEN
SCANNED OFF
"END COBOL" IN WRJNG PLl\CE.
THIS JPTION IS NOT MEANINGFUL IN LEVEL-64. IT HAS OEEN
SCANNED OFF.
SUBSCRIPT VALUE IS OUT ~F RAtJGt
ITEM IS NOT PARAGRAPH OR SECTIJN DECLARATION
ITEM IS NOT IDENTIFIER
RECEIVING FIELD FOR THIS ITEM IS ALPHABETIC
EXPECTED ~ORD WAS "SYS!~", "CONSOLE", "DATE", DAY",
"DAY-~F-WEEK" OR MNEMONIC-NAr1E
ITEM IS NOT ELEMENTARY ~UMERIC

ITEM IS NOT ELEMENTARY ~UMERIC OR IS NOT "TO" OR
"GIVI~G".

5 -26 3 ITEM IS NOT ELEMENTARY ~UMERIC JR EDITED ELEMENTARY

5 -2 7 3
s -2 3 3
5 -29 3
5 -30 3

5 -31 3
s -3 2 3
5 -33 3
5 -34 3
s -35 3
5 -36 3
5 -37 3
5 -3 8 3
5 -39 3
5 -4 0 3
5 -41 3
5 -4 2 3
5 -4 3 3
5 -44 3
5 -4 s 3

NUMERIC
ITEM IS NOT ALTERABLE PROCEDURE NA~E

ITEM IS NOT "TO"
ITEM IS NOT NON-NUMERIC LITERAL OR IDENTIFIER
ITEM IS NOT 01 OR 77 ITEM IN FILE, WS, COMMUNICATION,
OR LI~KAGE SECTIONS
ITEM IS NOT NON-SORT FILENAME
ITEM IS NOT "REWIND".
ITEM IS NOT "FROM", "=", OR ''EQUALS".
ITEM IS NOT "INPUT" OR "OUTPUT".
ITEM IS NOT AN OUTPUT CDNAME
ITEM IS NOT AN INPUT CDNAME
ITEM IS NOT "KEY".
ITEM IS NOT ALPHANUMERIC IDENTIFIER OR LITERAL
ITEM IS NOT IDENTIFIER OR LITERAL
ITEM IS NOT PROPER DEVICE
EXPECT ED W OR D WAS "INT 0 '' 0 R "BY" •
" I NV AL I D K E Y '' S H 0 UL D N 0 T 8 E US ED F 0 R T HE F I L E •
ITEM CANNOT BE USED IN A "GENERATE" STATEMENT.
ITEM I S N 0 T PR 0 CE DURE NA ·H 0 R "D E PEND ING" •
ITEM IS NOT ELEMENTARY ~UMERIC INTEGER

B-22

5 -4 6 3
5 -4 7 3
5 -4 8 3
5 -4 9 3
5 -so 3
5 - 51 3
5 -52 3

5 -53 3
5 -54 3
s -55 3
5 -5 6 3
s -58 3
5 -s 9 3
s -60 3

5 -61 3

5 -62 3
5 -63 3
s -64 3
5 -6 5 3
5 -66 3
5 -6 7 3
5 -68 3
5 -6 9 3
5 -70 3
5 -71 3
5 -72 3
5 -7 3 3
5 -74 3
5 -75 3
5 -7 6 3
5 -77 3
5 -78 3
5 -79 3
5 - 80 5
5 -81 3

5 -8 2 3
5 -83 3
5 -84 3
5 -85 3
5 -86 5

5 -87 3
5 -88 3
5 -89 3
5 -90 3
5 -91 3
5 -92 3
5 -93 3

5 -94 3
5 -95 3
5 -96 3

ITEM I s rm T DE c LARA TI v E s E c TI 0 ~~ NA :.-1 E
ITEM IS NOT REPORT NAME •
ITEM IS NOT IDENTIFIER iJITH "USAGE IS DISPLAY" CLAUSE.
ITEM IS NOT "TALLYING")R "REPLACING".
ITEM IS NOT "FOR".
ITE'•1 IS NOT "ALL", "LEADING" OR "CHARACTERS".
ITEM IS NOT NON NUMERIC LITERAL OR ELEMENTARY DATA ITEM
WITH "USAGE IS DISPLAY" CLAUSE.
ITEM IS NOT "ALL", "LEADING" OR "FIRST".
ITEM IS NOT "BY".
ITEM IS NOT "SEQUENCE".
ITEM SIZE IS NOT EQUAL TO ITEM REPLACED
ITEM IS NOT "GIVING".
ITEM IS NOT "INPUT", "OJTPUT" OR "I-0".
FILE IS NOT SINGLE REEL/UNIT WITH SEQUENTIAL
0 R GAN i Z AT I ON •
WRITE ADVANCING MNEMONIC-NAME MUST NOT BE USED FOR A
FILE DESCRIBED WIT4 THE "LINAGE" CLAUSE.
ITEM IS NOT REFERENCE P~JCEDURE NAME
ITEM IS NOT "TIME·S".
I T E M I S N 0 T E L E M E N T A R Y \J L.J M E R I C I T E M 0 R I t J D E X ~ J A r.1 E
I TE M I S NC T "F ROM".
ITEM IS NOT "UNTIL".
NOT ACCEPTED IN DECLARATIVES.
ITEM I S N 0 T "C 0 NV ER SI 0 N'' •
FILE CANNOT HAVE VARIABLE SIZF RECORDS
ITEM IS SAME AREA AS FILE NAME
I T EM I S N 0 T "MESS AGE" 0 R "S E G i"1 E: J T '' •
ITEM IS NOT "INTO".
ITEM IS NOT RECORD NA~E IN ASSOCIATED FILE
ITEM IS NOT WITHIN SORT INPUT PROCEDURE RANGE
I T E ~ I S N 0 T W I T H I N S 0 R T 0 U T P U T P R 0 C E D U R E ~ J A ;.1 E
ITEM IS NOT ASSOCIATED SORT FILE
I T E M I S N 0 T " A L L " 0 R I D E i~ T I F I E R •
ITEM IS NOT IDENTIFIER JR INDEX NAME
ITEM IS NOT "WHEN".
THIS REFERE~CE SHOULD BE A SECTION REFERENCE.
ITEM IS NOT rJON-SUBSCRIPTED ArJD NOiJ-INDEXED WITH BOTH
OCCURS AND INDEXED BY CLAUSE
ITEM DOES NOT HAVE "KEY IS" CLAUSE
EXPECTED WORD WAS "EOP".
I T E M I S N 0 T "E S I " , " E M I " , " E G I '', 0 R I D E N T I F I E R
MISPLACED REPORT VERB WITH REGARD TO DECLARATIVES.
RULES FOR TRANSFER OF CONTROL 3ETWEEN PROCEDURFS
ARE VIOLATED.
I T E M I S N 0 T I N D EX NAME I D E r~ T I F I E R 0 R P 0 S I T I V E I tJ T E GE R
ITEM IS NOT INDEX DATA ~AME OR ELEMENTARY INTEGER
ITEM IS NOT INTEGER
ITEM IS NOT SORT FILE.
ITEM IS NOT "ASCE~JDING" ')R "DESCENDING".
ITEM IS NOT DATA NAME I~ ASSOCIATED FILE
ITEM IS NOT "ON", "DESCE~JDING", "ASCENDUJG", "INPUT",
"USING" OR DATA NAME.
ITEM IS NOT "OUTPUT" :)R "GIVING".
ITEM DOES NOT HAVE "USAGE IS D !SPLAY" CLAUSE.
ITEM IS NOT NON-NUMERIC IDENTIFIER OR LITERAL OR

B-23

5 -97 3
5 -98 3
5 -9 ':f 3
5 -100 3

5 -101 3
c; -182 3
) -103 3
5 -104 2
5 -1J5 3
5 -106 3
5 -11]7 3
5 -108 3
5 -109 3
5 - 1 10 3
5 - 1 11 3
~ -112 3
5 -1 1 3 3
5 - 1 1 4 3
5 -1 1 5 3
) - 1 1 6 3
s -1 1 7 3
5 - 1 1 3 5

s - 1 1 9 3
5 -12:] 3

5 _, 21 3
s -1 2 2 ")
5 -123 5
5 -1 24 3

5 -125 2
5 -1 2 6 2

5 -1 27 3
5 -128 3
5 -1 29 3
5 -1 3 0 3
5 -131 3
5 -1 32 3

5 -1 ~3 3
5 -1 3 4 3

5 -1 35 3
5 -1 3 6 3
5 -1 37 3
s -1 3 e 3
5 -139 3
5 -140 3
5 -141 3

"DELI..,ITED".
ITEM IS NOT NON-NUMERIC IDENTIFIER OR LITERAL OR "SIZE"
ITEM IS NOT FIXED LENGT-i WITH "USAGE IS DISPLAY" CLAUSE
ITEM I s N 0 T IDEN T I FIE R 0 R N 0 i~ NU :--1 ER I c LITERAL 0 R "rn 0"
ITEM SHOULD BE ELEMENTARY wITH NO EDIT AND wITH "USAGE
IS DISPLAY" CLAUSE.
ITEM IS NOT ELEME~TARY ~UMERIC INTEGER DATA ITE~

ITEM IS NOT NUMERIC IDE\JTIFIER OR LITERAL
ITEM IS NOT NUMERIC IDE\JTIFIER OR LITERAL OR "FROM" •.
PROGRAM SHOULD END WITH A ".".
ITEM IS NOT ALPHANUMERIC
ITEM IS NOT "INTO" OR "DELIMITED".
ITEM CAN NOT BE USED wITHOUT "DELI~ITED".

ITEM IS NOT RECORD NAME IN NON SORT FILE
ITEM IS NOT IDENTIFIER I~TEGER OR MNEMONIC NAME
"LINAGE" CLAUSE IS MISSirJG IN ASSOCIATED FILE.
N 0 " US E '' A PP L I C A B L E .- S 0 " A T E N D" 0 R " I N V A L I D " M A "J D AT 0 R Y
EXPF.CTED WORD WAS "("
EXPECT ED W OR D WAS ")"
ITEM IS NOT A PROPER SUBSCRIPT
ITEM SHOULD BE INDEX NA~E

ITEr1 IS ~OT ArJ ItJDEX NA..,E OR NOT CORRECT INDEX NAME
ITEM IS NOT AN UNSIGNED INTEGER
THE SIZE OF THE COMPOSIT OF OPERANDS EXCEEDS THE
A L L 0 W E D ~'1 A X I M U M I N T H I S A R I T H M ET IC . V E R B •
E X P E C T E D W 0 R D W A S ''ALL " , "L E A D I :-J G" 0 R "UN T I L " •
ITEM IS NOT SINGLE CHAR~CTER LITERAL OR IDENTIFIER ~ITH
"USAG~ IS DISPLAY" AND CLASS CONSISTENT WITH IDENTIFifQ
EXPECTED WORD wAS "ALL", "LEADING", "UNTIL" OR "FIRST".
EXPECTFD WORD WAS "FIRST"
ILLEGAL 'COMPARISOrHNON-\JUMERIC RELATIOtJ).
INDEX-DATA ITEMS ~AY ONLY BE CO~PARED WITH INDEXES
OR INDEX-DATA ITE~S.

THIS 0 0INT CArJ NEVER BE REACHED DURING EXECUTION
THIS STATE"-1ENT MAY rJOT 3E REACHED DUE TO THE PREVIOUS
" S T 0 P R U N " , " E X I T P R 0 G R A r.1 " 0 R "G 0 T 0 " •
I TF. i1 I S N 0 T "RUN" 0 R L IT E RA L
ITEM IS NOT IMPERATIVE ~ERB

EXPECTED WORD WAS "SECTI~tJ" COMPILER ERROR
SYNTAX ERROR. CHECK AGAINST THE REFERENCE FORMAT.
PARAGRAPH COR SECTION) NAME MISSI~G

~ISSI"JG SECTION HEADER AT 8EGitJNING OF "PROCEDUPE
DIVISION".
ONLY 0 ARAGRAPH (QR SECTION) NAME OR VERB ALLOUED HERE
SENTE\JCE MUST BE P'IPERATIVE, THIS ITEM MAKES IT
CONDITIONAL

·ex Pf CT ED WORD WAS "OVERFLOW"
EXPECTED WORD WAS "ERROR"
Exp E c r i: D w OR D ·w As "DAT A •••
T H E 0 \J L Y A LL 0 W E D L A tJ GU AG E - NAME I S "E S C APE " •
EXPECTED WORD WAS "END"
EXPECTED WORD WAS "COBOL".
ITEM IS NOT CDNAME, IDE\JTIFIER, PROCEDURE NAME,
FILfNAME OR "ALL"

5 -142 3 ITEM ILLEGAL IN THE SCOPE OF AN "ENTER ESCAPE"
STATE"'1ENT.

B-24

f:" ,. I "9 7
_J - 4 l

5 -144 3
5 -145 3
s -146 5
5 -147 2

5 -148 2
s -149 3

5 -iSO 2
5 -151 3

s -1 5 2 3

5 -1 5 3 3

5 -154 3

5 -155 2
5 -1 5 6 2
5 -1 57 3
5 -158 3
5 -1 59 3
5 -160 2
5 -161 3
5 -162 4

5 -163 3
5 -1 64 1
5 -165 1
5 -166 3
5 -167 3

5 -168 3
5 -169 3
5 -170 3
5 -171 3
5 -172 3

5 -173 3
5 -1 7 4 3
5 -1 7 5 3

5 -176 3
5 -177 3
5 -1 78 3

5 -179 3

5 -180 3
5 -181 3

s -182 3

5 -183 4

F X P E C T F '.:· ;_,; ·j R r· '.J A S " S I Z E "
EXPECTED WORD WAS "NO" :>R "LOCK".
SENTE~CE MUST BE IMPERATIVE NOT CONDITIONAL
THIS VERB MUST BE PRECEDED BY PROCEDURE DEFINITION.
OVERLAPPING MAY OCCUR BETWEEN THIS RECEIVING ITEM ANO
SENDING ITEM
THIS RECEIVING ITEM MAY BE TRU·NCATED ON RIGHT
NUMERIC NON-INTEGER SENDING FIELD NOT ALLOWED WITH
ALPHA~UMERIC RECEIVING FIELD
SIGN OF SENDING ITEM WILL NOT BE MOVED TO THIS ITEM
NUMERIC SENDING FIELD NOT ALLOWED ~ITH ALPHABETIC
R E C E I V. I N G F I E L D •
ALPHABETIC SENDING FIELD NOT ALLOWED WITH NUMERIC
RECEIVING FI ELD.
ALPHANUMERIC EDITED SENDING FIELD NOT ALLOWED WITH
NUMERIC RECEIVING FIELD
NUMERIC EDITED SENDING FIELD NOT ALLOWED WITH NUMERIC
RECEI\/ING FIELD
POSSI3LE RIGHT TR~NCAT10N

POSSIBLE LEFT TRUNCATIO~

EXPECTED WORD WAS "NO".
EXPECTED WORD WAS "REWIND".
ITEM IS NOT PART OF A C~NDITION
THIS RESULT MAY BE LEFT TRUNCATED.
ILLEGAL RELATION BETWEEN INDEX AND EXPRESSION.
THIS FEATURE ~ FEATURE, NOT INCLUDED IN THE CURRENT
COMPILATION LEVEL.
EXPECT ED -1 0 R D WAS ''INT 0" 0 R ''END ''
SYNTAX CHECK DISCONTINUED
SYNTAX CHECK RESUMED
"USE" NOT PERMITTED IN NON DECLARATIVE SECTION
DATA ~AMES AND INDICES ~OT ALLOWED TOGETHER AS
SUBSCRIPTS.
I M P E RA T I V E V E R B 0 R ., t4 E X T S E N T E NC E" E X P E C T E D H ER E •
FILE ~RGANIZATION SHOULD BE INDEXED-EXT.
FILE IS NOT INDEXED
COMPILER ERROR
EXPECTED WORD WAS FIGLlR~TIVE CONSTANT OR ALPHANUMERIC
LITER~L

ITEM IS NOT ALTERA8LE IDENTIFIER
EXPECTED WORD WAS "POINTER".
ITEM IS NOT INDEX NAME, INDEX DATA ITEM, OR ELEMENTARY
ITEM DESCRIBED AS AN INTEGER
EXPECTED WORD WAS "TO", "UP", "DOWN" OR AN INDEX NAME
EXPECTED WORD WAS "C0.'-1P:.." OR "COMPLEMENTARY".

.ITEM IS NOT INDEX NAr1e, INDEX DATA ITEM, INTEGER.
GREATER THAN ZERO OR ELEMENTARY ITEM DESCRIBED AS AN
INTEGER
I T E M I S N 0 T I N T E G E R 0 :~ I S N 0 T E L EM ENT A R Y I T E M D E S C R I B E D
AS A NUMERIC INTEGER
EXPECTED WORD WAS "WHEN", "AT" OR "END".
ITEM IS NOT ELEMENTARY ALPHABETIC, ALPHANUMERIC, OR
NUMERIC EDITED OR A GROJP ITEM
ITEM IS NOT FIGURATIVE CONSTANT, NONNUMERIC LITERAL OR
IDENTIFIER
COMPILER ERROR SUBROUTI~t. STACK OVERFLOWED

B-2~

5 -184 1

5 -185 3
5 -186 3
5 -187 3

5 -183 3

5 -189 3
5 -190 3
5 -1 91 3
5 -201 3
5 -202 3
5 -203 3
5 -204 3
5 -205 3
5 -206 3
5 -207 3
5 -208 __ 3

5 -209 3
5 -210 3
5 -211 3
5 -212 3
5 -213 3
5 -214 3
5 -215 3
5 -216 3
5 -217 3
5 -218 3

5 -219 3
5 -220 3
5 -221 3
5 -222 3

5 -2 2 3 3
s -224 3
s -225 2

5 -226 3
5 -227 3

5 -228 3
5 -229 3

s -230 3

5 -231 3

5 -232 5

5 -233 3

TH I S I S A GR 0 UP M 0 VE AND 0 P ER A :rn S D 0 N 0 T HA V E T HE
SAME SIZE.
ITEM IS NOT DATA-NAME
FILE IS NOT SEQUENTIAL ACCESS OR DYNAMIC ACCESS
ITEM IS NOT A ONE CHARACTER INTEGER WITHOUT AN
OPERATIONAL SIGN
DECLARATIVE PORTION CAN NOT BE REFERENCED BY

NON-DECLARATIVE PORTION AND VICE-VERSA
EXPECTED W OR D WAS "DU P LI CATES" •
EXPECT ED WORD WAS "REMOVAL".
EXPECTED WORD WAS OUTPUT CD-NAME
RELATION EXPECTED HERE
THIS OPERAND SHOULD BE ~UMERIC IDE~TIFIER

RELATION OR OTHER CONDITIOrJ OPERATOR EXPECTED HERE.
") " MATCH I NG TH IS "C" IS LACK I NG •
"C" MATCH I NG TH IS ")" IS LACK I NG
NON NU~ERIC IDENTIFIER SHOULD PRECEDr THIS OPERATOR
CD NA~E EXPECTED HERE
THIS OPERAND SHOULD BE NON-ALPHABETIC DISPLAY
IDENTIFIER OR GROUP ITE~ WITHOUT A SIGNED ELEMENT.
ILLEGAL RELATION (BETWEEN TWO LITERALS).
THIS ELEMENT IS NOT VALID BEGINNING OF CO~DITION

ITEM SHOULD BE A KEY OF THE FILE.
VERB ::>R "NEXT SENTENCE" EXPECT ED ERROR.
EXPECTED WORD WAS "." OR "ELSE".
OPERAND MI SS ING
SUBJECT OF COMPARISON MISSING
EXPECT E 0 WORD WAS "SEN TE rH E" •
THIS ELEMENT IS NOT VALID CONDITION
EXPECTED WORD WAS DATA-\IAME COR "TO" OR "THfJ..N" IF
APPROPRIATE).
"DELETE" CANNOT BE APPLIED TO A SEQUENTIAL FILE.
EXPECTED WORD WAS IDENTIFIER OR INPUT CD-NAME
EXPECTED WORD WAS "COUNT".
"WITH CONVERSION" IS AP=>LICABLE ONLY TO ELEMENTARY
NUMERIC DATA.
ITEM DOES NOT REFERENCE INPUT DEVICE
ITEM DOES NOT REFERENCE OUTPUT DEVICE
T H I S '' C 0 N S TA NT S E C T I 0 N " I T E M M I G HT B E M 0 D I F I E D BY TH E
CALLED PROCEDURE.
EXPECTED WORD WAS "LESS" OR."<".
FILE ~UST BE RELATIVE WITH A RELATIVE KEY CLAUSE OR
INDEXED AND MUST HAVE SEQUENTIAL OR DYNAMIC ACCESS
EXPECT ED WORD WAS "EQUAL", "GR AT ER" OR "NOT".
EXPECTED ITEM WAS THE D~TA NAME SPECIFIED IN THE
RELATIVE KEY PHRASE OF THE ASSOCIATED FILE-CONTROL
ENTRY
ADDRESS OF THIS ITEM IS NOT THE SAME ~S THE ADDRESS OF
THE RECORD KEY
EXPECTED ITEM. WAS "INITIAL" OR A NON NUMERIC LITERAL OR
ELEME~TARY DATA ITEM wH)SE USAGE IS DISPLAY
TH I S ""1 0 VE " WI LL A·a 0 RT :> Ei J EC T C 0 DE CS EN 0 I NG
LITERAL NOT DIGITS).
EXPECTED ITEM WAS "BY", "ALL", NON-NUMERIC LITERAL,
ALPHANUMERIC DATA ITEM OR ANY FIGURATIVE CONSTANT
EXCEPT "ALL".

B-26

5 -234 3
5 -235 3

5 - 2 36 3
5 -237 3

5 -238 3
5 -2 3? 3

5 -240 3

5 -241 3

s -242 3

5 -243 3

5 -244 3

5 -245-3

5 -246 3

5 -247 3

5 -248 3
5 -249 2
5 -250 2

5 -255 5

5 -2 56 1
5 -257 2
5 -258 3
5 -259 5
5 -260 3
s -261 3
5 -262 3
5 -263 3
5 -2 64 2
5 -265 4

5 -2 66 4

5 -267 3

5 -268 3

5 -269 3

5 -270 3
5 -2 71 3
5 -272 3
5 -2 73 3

5 -274 3

E X P E C T E D- I T E M W A S " 0 R " 0 R " I N T 0" •
THIS IDENTIFIER DOES NOT CONFORM TO THE C0MPLEX RULES
OF THE LANGUAGE STANDARD
INTEGER OUT OF RANGE FOR ONE OR ~ORE INDEX NAMES
THE RECORD NAME IN THIS STATEMENT ~UST HAVE AN
ASSOCIATED RECORD PREFIX OF "SSF".
EXPECTED WORD WAS NON-NJ~ERIC LITERAL
BOTH PROCEDURE-NAMES MUST BE IN THE SAME DECLARATIVE
SECTION
EXPECTED WORD WAS AN INDEX-NAME, A POSITIVE INTEGER OR
AN ELEMENTARY NUMERIC INTEGER DATA ITEM
EXPECTED WORD WAS A NON-ZERO INTEGER OR AN ELEMENTARY
NUMERIC INTEGER DATA ITEM
EXPECTED WORD WAS AN INDEX-NAME, LITERAL OR AN
ELEMENTARY NUMERIC DATA ITEM
EXPECTED WORD WAS AN ELEMENTARY NUMERIC DATA ITEM OR A
NON-ZERO LITERAL
THE IDENTIFIER FOLLOWING VARYING MUST BE AN ELEMENTARY
NUMERIC INTEGER DATA IT~M

SECTIJNS IN THE DECLARATIVES ~UST CONTAIN SEG~ENT

NUMBERS LESS THAN 50
THIS PERFORM STATEMENT DOES NOT CONFORM TO THE COMPLEX
RULES OF THE LANGUAGE STANDARD FOR SEGMENTATION
THE SEGMENT NUMBER MUST BE AN INTEGER RANGING IN VALUE
FROM Q THRU 99
THIS IDENTIFIER MAY NOT BE A CONSTANT SECTION ITEM.
A USE PROCEDURE ALREADY EXISTS FOR THIS FILE
A USE PROCEDURE HAS ALREADY BEEN ASSOCIATED WITH THIS
PROCESSING MODE
RECORD SIZE OF THIS FILE NOT COMPATIBLE WITH
RECORD SIZE OF THE "SD".
LENGTH OVER 31 CHARACTERS •
EMBEDDED BLANKS HAVE BEEN SKIPPED.
FILE ORGANIZATION SHOULD BE SEQUENTIAL.
FORBIDDEN USAGE OF ABBREVIATED RELATION.
TH IS FEATURE I S N 0 T IM PL E ME fH ED
ITEM IS NEITHER "PROCEDJRES" NOR A DATA-NAME.
THE FILE IS DESCRIBED WITHOUT SUBORDINATE 01 ENTRY
EXPECTED WORD WAS "."
SENDl~G AND RECEIVING FIELDS OVERLAP
IMPLEMENTATION RESTRICTION: TOO MANY NESTED IF
STATEMENTS AND COMPOUND CONbITIONS
IMPLE~ENTATION RESTRICTION: TOO MANY NESTED ARITHMETIC
EXPRESSIONS.
THE WORD "TO" OR AN INTEGER NUMERIC DATA ITEM OPERAND
WAS EXPECTED.
THE WORD "TO", AN INDEX DATA ITEM OPERAND OR AN INTEGER
NUMERIC DATA ITEM OPERA~D WAS EXPECTED.
THE ITEM SHOULD BE EITHER AN INDEX DATA ITEM OR AN
INDEX.
ITEM I S NE IT H·E R " 0 N" N 0 R "0 F F" •
ITEM IS NOT A SWITCH NA~E

I T E M S H 0 U l D B E " W H E N " , '' • " 0 R " E L S E " •
ITEM IS NEITHER"+","-", "(", A NUMERIC LITERAL.
OR A NUMERIC ELEMENTARY DATA ITEM.
START STATEMENT CONTRADICTS FILE ORGANIZATION AND

B-27

5 -275 3
5 -276 3
5 -277 3

5 -278 3

5 -2 79 5

5 -280 3

5 -281 3
5 -282 2
5 -283 1
5 -284 1
5 -285 2
5 -286 2

5 -28? 3

5 -288 5

5 -289 2
5 -?9J 3
5 -291 2

5 -292 4

5 -293 3
5 -'?94 3

ACCESS
ALTER VIOLATES SEGMENTATION RULES
THIS ITEM SHOULD BE A KEY OF THE SEARCH TABLE
THIS KEY HAS ALREADY BEEN REFERENCED IN THIS
"SEARCH ALL".
AT LEAST ONE KEY REFERENCE IS MISSING IN THE "WHEN
PHRASE" OF A "SEARCH AL-".
THIS IDENTIFIER DOES NOT COMPLY TO THE RULE ON USAGE
OF FIRST INDEX IN A "SEARCH ALL" CONDITION.
H_2000 RANDOM FILES SHOULD NOT BE OPEN IN OUTPUT MODE
WHEN THE ACCESS IS SEQUENTIAL
ITEM IS NOT "OF".
"SSF" .IS IMPLIED FOR THE CORRESPONDING FILE.
COMPARISON BETWEEN NUMERIC AND NONNUMERIC ITEMS.
MOVING NONNUMERIC TO NU~ERIC.
NEITHER "STOP RUN" NOR "EXIT PROGRAM" WAS MET.
PREVIOUS CALLS TO THE SAME PROGRAM HAD A DIFFERENT
NUMBER OF ARGUMENTS.
ABNOR\1AL ARGUMENTS IN A "CALL" TO "H_CBL_UGETG4"
(2 M MJD A T 0 RY C 0 MP - 1 AR G J M E N T S) •
OLD TEMPORARY PRINTER CHANNEL SPECIFICATION USED
INSTEAD OF MNEMONIC NAME.
THIS FEATURE IS LEVEL-62 SPECIFIC. THE ITEM IS IGNORED.
LEVEL 62 SPECIFIC FEATURE, NOT IMPLEMENTED.
THE RESULT IS UNPREDICTABLE WHEN A FILE THAT IS NOT
EXTER~AL IS PASSED AS ARGUMENT.
THE USE OF "TERMINAL" IS NOT AVAILABLE ON YOUR SITE,
PLEASE CONTACT SUPPLIER.
EXPECTED WORD WAS "CONSOLE".
COMP-9 OR COMP-10 ITEM SHOULD NOT APPEAR IN THIS
CONTEXT •.

B-28

6 -1
6 -?
6 -3
6 -4
6 -5

6 -6

6 -7
6 -3
6 -0

6 -10
I) - i 1

3 AMBIGUOUS UNQUALIFIED REFERENCE.
3 ITEM NOT DECLARED.
3 AMBIGIOUS QJALIFIED ITE~

3 PARAGRAPH Nt..MF. NOT FOUND IN THf CURRENT SECTI~:J.

~ P A R A G ~ A P H N A M E M U L T I P L Y D E C L A R E D w I T H I N I T S C 0 ~>J T A I '. J I r J G
SECTION.

3 QUALIFIED NAME MULTIPLY DECLARED ~ITHIN ITS CONTAINING

3
3
3

GROUP ITEM.
BAD COMPONENT IN SUBSCRIPT.
NUMERIC LITFRAL, DATANA~E, OR INDEX NAME EXPECTE~ HERE.
NUMERIC LITERAL EXPECTEJ HERE.
INCOMPLETE QUALIFICATIO~. DATA NAME EXPECTED HERE.
TOO MANY QUALIFIERS IN THIS REFERE~CE.

6 -12 3 COMPILER ERROR. ~A~E-STACK OVERFLO~ FOR TrlIS
Rf FERFNCE.

6 -13 3 COMPILER ERROR. SJHSCRIPT-STAC~ OVERFLOW AT THIS !TE~.
7

·' AN IDF~TIFIFR ~UST NOT APPEAR ~ORE THAN ONCE IN A USING
PHRJ\SE.

~ -15 ~ IDENT!FIFR ~UST HAVE AN JCCURS CLAUSE IN ITS
DEscrnPTION.

~) - 1 /--. 3 I DE :J TI F I E f< M J s T 11 .~\IE A rJ I iJ DE x E D 8 y c LA us E r N I Ts
DFSCRirTI·JN.

!_, - 1 7 ., 1 D F t: i I F I ER .., U S T H A V F A < c Y I S C L A U S E I N I T S
DESCP.IPTION.

6 -1 s

f-. -?'l

- 2 1

t - : z

A -24

') - 2)
:, - ~ f;

6 - 2 7

(; -? ~
t; -3·;
1_, - '\ 1

c - ?- 2

6 -35

6 -3 7
6 -38

6 - 3 9

_;

3

3

3

3
2
3
?
3

3

I D E ~J T I F I ER E X P E C T F :l HE R E •
RFPUCEMFNT Ar-~ORT. tJAME TABLE 8UFFER CONTAINS NO ~JEW

UJT R I ~ S F 0 R T W 0 C 0 ~ J S E C U T I V E L 0 A D S •
M ;J S T 3 E A N U N S I G ~J ::) I N T E G E R
t\ ~J s I F J R ~ I D s R F L f.: ~ y a E - () ~ J G T J A R E c 0 R D a ~ T H E F I L E T c
WHICH IT' IS A KEY
:·iu ST SE AL PH A '.''JU ~1 E l(: C & 'J '1 T VAR I~ BL E l E rJ GT H
~UST 3ELONG TO A R~CORD ASSOCIATED TO THE FILE
S T 1\ T IJ S C AN 0 NL Y l3 F. 2 C 1-1 J\ LP H AN U 1 F R I C & N 0 T I ~~ F I L E ,
C 0 ~·J S T ~ N T , LI N K A G E S E C T I J : j S
STATUS KEY ~ ITE~ IS NOT CONFJRMED TO ANSI STANDARD.
I~ E ~J ,\ r.: : 0 A J E C T C A rJ 'J 0 T H A v E A N 0 C C U R S C L A U S E I N I T S D A T A
DEscqIPTIOfJ NOR C-'~4 IT 3E SUJORDI;JATE TO orJE
A 6 6 _ EV FL E NT RY C' A. r JN() T R E tJ A :.1 E AN 0 THE R 6 6 LEVEL ENT R Y
: JO i~ C!'d~ I T R E N A M E A 7 7 , r.rn , 0 R 0 1 L E V E L E i H R Y
q fr'~ M: E 0 BJ EC T 1 MJ D 0 8 J E ~ T 2 A R E A RA NG E C 0 N F L I C 7
K E Y F I t L D I S T 0 0 S "1 A L L
K~Y L)C VALUE TOO LARGE
KEY LJC IS OUTSIDE OF THc RECORD AREA
CLASS NOT ALPHANU~ERIC

ITEM 'JOT ELEM E :n ARY
~IELD TOO SHORT FOR RELATIVE KEY
FIELD TOO L~NG FOR RELATIVE KEY
THE DATA-NA~E REPLACED I~ THE DEPENDING ON CLAUSE OF
·~CCU I\ S ~-1 UST ~~ 0 T T ~ n f S? E C I F IE D I :J THE RANGE 0 F THE
OCCURS
ILLEGAL REFERENCE
ALTER :J AT t KE y c A iJ :rn T H tni E THE s AME 0 F F s ET As THAT 0 F
T HE R E C C R D K E Y 0 R A iJ Y J I ti E R A L TE R ~J A T E K E Y S
THIS ~EPORT GROUP HAS A_READY REEN SPECIFIED IN
PREVI::>US "USE BEFORE t<E=>.)RTING" CLAUSE.

B-29

6 -1. c
6

_,,
6 -42

!, -43

e- -44

6 -45
6 -46

6 -47
6 -48

b -41
6 -s 0
6 -51
6 -52

3
3
3

3

4

3
3

3
3

3
3
3

·3

c ONT R:.l L IT EM Mus T a E 0 Ar •\ i·J A :1 E •
CONTR~L ITEM CANNOT BE OF VARIA3LE LENGTH.
CONTRlL ITEM CANNOT HAVE AN OCCURS CLAUSE NOR BE
SUROCRCINATEO TO A GROU~ tJHlCH COtJTAINS AN CCCURS
CL~USE.

~ F P 0 R T I T E M C A N 0 ~J L Y B E J S E 0 F 0 R S :J M C 0 U t g T E R
QEFERENCE QUALIFICATION.
TH!S FEATURE' IS A"" FEATURE tHH INCLUDED IN THE
CURRE~T COMPILATION LEVELe
SECONDARY KEY EXCfEDS 3J CHARACTER.
SfCONOARV KEY CANrrnr HAVF. THE SA!H: OFFSET AS THAT OF
RfACORD KEY.
INVLID CONTROL ITEM.
USE FOP OEBUGGIUG MUST ~OT REFEREiJCE A USE FOR
OEBUG~ING PROC NAME.
NAMED MORE THAN ONCE IN JSE FOR PE9UGGI~G.

ILLFGAL KEY REFERENCE
ONLY DATA-NAME JS ALLO~ED AS A PAPAMETFR.
TOO LONG LITERAL.

B-30

~ " ' -·

7 -2
7 -~
7 -'4

7 -5
'? -6 ., "9
f -1

7 -8

7 -"J ..,
-11 t

7 -i3
7 -1 5

7 -16
7 -17
7 -13
1 ... z 2
7 -?3
? -?S
7 -26
7 -28

1 -29

2

'1'
""'
"". -
l ..,,,

3
l
J

" !

4

'f
,,}

!..

3
t.

3
3
3
3
3
?
3
4

4

c 0 RR Esp 0 ND rn G 0 p T I 0 N RE s j l '! s A ~JUL L MA r c t4.. ! Tf i·: s •;)·~ ' ~· '•:
ARE 661 8f~ OR WtilCH C:)~JTAl!J OR SJAO?DINATE RfOEFHiES,
OCCURS OR USAGE IS INOF~ ARE ~or CO~SIDER~C.

ITEM \JOT ""
EXPECT E 0 W OR 0 u """

0 A T A fJ ~ M E S AN 0 IN 0 E X l J A (•~ E S i W T A L L 0 ~ E 0 T 0 G E T d E ~ A S
SUBSCRIPTS
ITEM IS NOT ELEME1TARY ~UMERIC I~TEGER.

ITEM IS NOT ALTERABLE l)ENTIFIER.
wHEN EXECUTiNG IrJ DEBUGGING Moor., THF. SUC1SCR!PT VALUE
IN 0 Ea u G I TE M w I L L 0 E nu, T A FT E R T H F. s T A T E ~., E N T ! s
EXECUTED.
THIS FEATURE IS A LEVEL-o4 FEATJRE ~OT INCLUDED I: ~E

CURRENT COMPILATION LEVEL.
O/ATANA\lE OESCRIPTIOM CO\JTAINS u..,.u

COMPILER ERROR: UNEXPECTED TOKE~s· l~J CORRESP:JN:>tr;G
OPf RA'JO.
HIERARCHY ERROR IN CORRESPONDING JPERA~D

COMPILER ERROR: PREMATU~E ENO JF FILE OURI~G CORR JTIO
INITIALIZE STATEMENT
0 PE RAN D 0 F C 0 R RF S P 0 ND I N :; Mu S T 3 E G R 0 U P ~J AfH'.
ITEM IS NOT POSITIVE INTtGER LITERAL.
RELATIVE INDEXING REQUIRES u:JS!GUED UHEGFR LITE~.0.L

OPERAND Of INITIALIZE M-Y NOT HAVE OCCURS DEPENDI~G ON.
ILLEGAL OPERArU> Ill THE REPLACING CLAUSE OF Ii,IT!ALIZE.
INITIALIZE STATEMENT RESULTS IN NO ~ATCH.
IN I T I~ L I Z E S E tJ 0 HJ G 0 Pf R' U 0 N 0 T L F. GA l C ATE G ~ R Y
IMPLE~ENTATION RESTRICTION: T~O ~ANY ~Pf~A~DS fOQ THIS
STATf\1ENT.
IMPLE~ENTATION RESTRICTIOU: THIS STRUCTURF H~S TOO

MANY DATA OESCRIPTIONS SU~ORDI~ATE TO IT.

B-31

3 -1 1

8 -?.1 3
8 -2 2 3
8 -23 3
8 -24 3
8 -2 5 3
8 - 2 6 3
3 -2 7)
8 -28 3
8 -29 3
8 -30 3
3 -31 3
R -32 3
. ~ -33 3
8 -34 3
8 -35 3
R -3 6 3
.Q, -37 :,
8 -3 8 3
'j -39 3
8 -4 0 3
8 -41 :,
B -42 3
8 -4 3 ?
8 -44 2
8 -45 3
8 -4B ?
8 -61 4
8 -6 2 4
8 -6 3 4

8 -66 4

8 -01 4
8 -92 4
8 -93 4
8 -94 4

s -95 4

s -96 4

8 -9 7 4
8 -9 8 1.

8 -99 4
~ -1 00 4

PRINT PHASE WORKING SPACE EXHASTED, PART OF DIAG
MESSEGES WILL NOT aE PROCESSED.
NOT YET IMPLEMENTED.
TOKEN AREA OVERFLOW.
ALTER AREA OVERFLOW.
PERFOR~ TABLE OVERFLO~.

ALLOC-TABLE OVERFLOW.
EGADG ERROR.
EGADG1 ERROR.
EGSTOS ERROR.
EGBUTA ERROR.
LITERALS WILL NOT BE CO~PARED.

ALTER ALLOCATION ERROR.
BAD NJMBER OF PARAMETERS IN H_CBL_UGETG4 •
UNEXPECTED COMPARISON.
ABBREVIATED CONDITION ERROR.
EGGDBG ERROR.
PERFORM ALLOCATION ERROR •
PERFORM ERROR.
3R LOCI< ERROR.
ALL REGISTERS LOCKF.D.
VARIABLE LENGTH ERROR.
MOVE ERROR.
GR ALLOCATION ERROR.
FLGR ERROR..,.
GR LOCK ERRJR .,.
s E G ft F ~ T rw MB ER ER R 0 R.
ERRONEOUS NUMBER OF PARAMETERS.
~ORK SPACE NOT AVAILABLE TO 8UILD PCF TABLFS.
TOO M~NY· DATA/PROCEDURE fJAMES TO BUILD PCF TABLES.
COMPILER ERROR: U~KNdWN COMPILER GENERATED DATA-NAME:
., .
SEGMf~T NUM3ER L!~IT OF 128 HAS BEEN EXCEEDED FOR CODE
SFG~ENTS. GATHER SECTIONS.
CULIG IS NOT A CU LIBRARY.
CU LI 8 I S F UL L •
I I 0 ERR 0 R OrJ CU LI 8.
SEGME~T NUMBER LI1IT OF 128 ISN'S HAS BEEN EXCEEDED.
I NC '< E ~ S E S E G ri E iJ T S I Z E •
I M P L E !\1 E N T A T I 0 N R E S T R I C T I 0 N • i J 0 R 0 0 M E N () U G H T 0 H 0 l D
., TAGS.
I M P L E "1 E N T A T I 0 N R E S T R I C T I 0 N • N 0 R 0 0 '1 E N 0 U G H T 0 H 0 L D
SORT TABLE. INCREASE DATA SEGMENT SIZE.
COMPILER ERROR. INVALID TAG NUM3ER ~.

COMPILFR FRROR. DUPLICATf DEFINITION FOR TAG NUM9ER .,.
·C 0 M P I L E R E RP 0 R • I !"JV AL I D E Q U I VA L E NC E 0 F TA GS ., •
COMPILER ERROR. T~G NUM3ER ~ ~OT DEFINED.

B-32

9 - , 4

9 -2 4
9 -3 4
9 -4 4
9 -5 4
9 -6 4
9 -7 4
9 -8 4
9 -9 4
9 -10 4
9 -11 4
9 -12 4
9 -1 3 4
9 -14 4
9 -1 5 4
9 -16 4
9 -1 7 4
9 -1 8 4
Q -19 4
9 -20 4
9 -21 4
9 -22 4
9 -23 4
9 -24 4
9 -2 5 4

9 -26 4
9 -2 7 4
9 -2 8 4
9 -2 9 4
9 -30 4
9 -31 4
9 -3 2 4
9 -3 3 4
9 -40 .z
9 -41 2
9 -4 2 2
9 -4 3 2
9 -4 4 2
9 -45 4
? -46 4
9 -4 7 3
Q -48 4
9 -4 9 4
9 -so 4
9 -51 4
9 -52 4
9 -53 4
9 -54 4
9 -55 4
9 -56 4

9 -5 7 4
9 -s 8 4

9 -59 4
9 -60 4

UNRECJVERABLE DIFFICULTY
UNRECJVERASLE DIFFICULTY
UNREC8VERABLE DIFFICULTY
UNRECOVERABLE DIFFICULTY
UNRECJVERABLE DIFFICULTY
UNREC)VERABLE DIFFICULTY
UNREC)VERABLE DIFFICULTY
UNRECOVERABLE DIFFICULTY
UNRECJVERA9LE DIFFICULTY
UNRECOVERABLE DIFFICULTY
UNRECJVERABLE Dif FICULTY
UNRECOVERABLE DIFFICULTY
UNRECJVERABLE DIFFICULTY
UNRECOVERABLE DIFFICULTY
UNRECOVERABLE DIFFICULTY
UNRECOVERABLE DIFFICULTY
UNRECJVERABLE DIFFICULTY
UNRECJVERABLE DIFFICULTY
UNRECJVERABLE DIFFICULTY
UNRECJVERABLE DIFFICULTY
UNRECJVERABLE DIFFICULTY
UNRECJVERABLE DIFFICULTY
UNRECOVERABLE DIFFICULTY
UNREC)VERABLE DIFFICULTY
UNRECJVERAB~E DIFFICULTY
UNRECJVERABLE DIFFICULTY
UNRECOVERABLE DIFFICULTY
UNRECJVERABLE DIFFICULTY
UNREC~VERABLE DIFFICULTY
UNRFCOVERABLE DIFFICULTY
UN RE CJ VE.RA BL E DI F FI CULT Y
UNRECJVERABLE DIFFICULTi.
UNRECJVERABLE DIFFICULTY.
ILLEGAL DSEGMAX OPTION : •.,•.
ILLEGAL PSEGMAX OPTION : •.,•.
SPECIFIED DSEGMAX OPTION EXCEEDS 4M BYTES.
SPECIFIED PSEGMAX OPTIO~ EXCEEDS 32K BYTES.
ILLEGAL RESTRICT OPTIOfJ: •.,•.
UNREC)VERABLE DIFFICULTY DUE TO SYSTEM ERROR.
IMPOSSIBLE iO OPEN .,.
IMPOSSIBLE TO CLOSE .,.
UNREC)VERAB~E DIFFICULTi DUE TO SYSTEM ERROR.
COMPILER ERROR: ON SEQUErJTIAL -,. FILE IS OPENED INPUT.
COMPILER ERROR: ON SEQUENTIAL -,. FILE IS OPENED OUTPUT.
COMPILER ERROR: ON SEQUEIJTIAL -,. FILE IS'CLOSED.
COMPILER ERROR: ON SE~UENTIAL -,. FILE IS EXHAUSTED.

·coMPILEP ERROR: O"J SEQUEfJTIAL .,_ INVALID FILE POINTER.
COMPILER ERROR: ON SEQUENTIAL PUT. INVALID LENGTH{-,).
., IS FULL.
BACKING STORE IS FULL. JSE WORK FILES FOR LARGE
PROGRA"lS.
1/0 ERROR JN COMPILER ~JRK FILES.
COMPILER ERROR ON DIRECT -,. FILE IS OPENED.
COMPILER ERROR ON DIRECT .,. FILE IS CLOSED.
CO~PILER ERROR ON DIRECT .,. FILE IS EXHAUSTED.

B-33

'1 -61 4
Q - ., ?. !..

q -63 4
9 -61.. I.

q -~,5 I..

9 -66 4
9 -6., 4

9 -7':: 4
9 -? , 4

9 -72 4
9 -7 3 '
9 -71. 4

9 -7 5 4
9 -76 4

C 0 M P I L E R E RR 0 R 0 N 1.ll R E C T S ? U T • ItN A L I D L E i~ G T H \ "" J •
COMPILER ERROR ON C0f•1!10~ FILE. IN\f'ALID KEY tJUMUFR (..,).
IMPLE~ENTATION RESTRICTIO~. TOO MANY NA~F IN A~ 11.
CO,PILER ERROR ON DIRECT FILE. UN~~LE TO PERFOR~ I/'
BEFORE FIRST BLOCK.
COMMON FILE OVERFLOW.
UNRECOVERABLE DIFFICULTY DUE TO SYSTE~ ERROR.
CO~PILER ERROR ON DIRECT FILE. 3LOC' NU~BFR ~ ALREADY
OLOCKED.
COMPILER ERROR ON DIRECT UNULOCi<. FILC IS !:JT 'JL0C~EO.

BACKING STORE IS FULL. TJO M~NY JOB'S RUNNING
CONCURRENTLY.
1/0 ERROR ON DIRECT FILES.
COMPILER ERROR ON DIRECT ~. INVALID FILE POINTER.
COMPILER FRROR ON DIRECT SGET. ItNALIO LENGTU(...).
CO~PILER ERROR ON DIRECT ~PUT. INVALID LE~GTHC~>.

COMPILER ERROR ON DIRECT OGET. INVALID u:r:GTHC-.).
CO:-'!PILER ERROR ON DIRECT DREAD. INVt\LI~ LE=NGTH(-.).
I NV ALI 0 ~ FILE.

B-34

APPENDIX C

$LINKER E RHOR MESSAGES

c-01

ERROR MESSAGES ISSUED BY THE STA TIC LINKER

108 ERROR lN LMNAME PAPAMETER•
WHEN COMFILE OR COMMAND IS MISSING

112 ERROR IN COMFILE PARAMETER•
COMFILE MAY NOT APPEAR IN THE PRESENT
CONTEXT CWHEN COMFILE IS PRESENT>

112 ERROR IN COMFAC PARAMETER•
COMFAC MAY NOT A PP EAR IN THE PRESENT
CONTEXT CWHEN COMFILE OR COMMAND IS PRESENT>

112 ERROR IN ENTRY PARAMETER•
ENTRY MAY NOT APPEAR IN THE PRESENT
CONTEXT CWHEN COMFILE OR COMMAND IS PRESENT>

112 ERROR IN PRTLIB PARAMETER•
PRTLI 8 MAY NOT APPEAR IN THE PRESENT
CONTEXT C WHEN PRTFILE IS PRESENT>

When a lmname is *• the
lmname1 s are listed in a
command or comfile parameter.

201 MORE THAN 4 FATAL ERR.ORS ONLY TIIE FIRST 4 FATAL ERRORS ARE DISPLAYED!
202 LINKER TABLE INITIALIZATION

FAILURE . RC=OOOOOOOO PTR=XXXXXXXX
203 ERROR DURING OPEN RC=XXXXXXXX CLIBRARY lYPE >

204 BUILD '·'
205 OPENS IN "
206 OPEN OUT n
207 OPEN UPDATE "
208 PUTX ''
209 CLOSES "
210 NOTE "
2.1 I POI NT "
212 GET ''
213 PUT "
2 I 4 CLOSE ,,,

21 5 MORE THAN 64 PROCESSES

2 t 6 SYNTAX ERROR IN LM NAME

217 ENTRY POINT NOT FOUND

2 t 8 LINKER TABLE OVERFLOW

219 SEGMENT TABLE OVERFLOW

RC=OOOOOOOO PTR=XXXXXXXX

220 ERROR DURING CHANGE NAME RC=XXXXXXXX <LIBRARY TYPE>

221 CU INCORRECTLY FORMATTED RC:CREC#>CLIB> UNEXPECTED NB OF RECORDS

222 ENTRY SEGMENT OVERFLOW NO MORE ENTRIES ARE AVAILWLE IN THE ENTRY
<IMPLEMENTATION RESTRICTION> SEGMENT. TI-IE ENTRY SEGMENT IS LIMITED TO

256 ENTRIES

223 NO VALID SM NAME HAS BEEN
FOUND

224 NO VALID LKU ENTRY-POI NT

225 CONFLICT BETWEEN LKU AND
EXISTING SUBFILE

THE SM WHERE nfE LKU IS TO BE STORED IS NC1f
DEFINED

IBE LINKER TRIES TO REPLACE A LKU NOT DES
CRIBED IN TiiE SM SUBFILE

C-02

226 OUTPUT LIBRARY OVERFLOW

227 SM DOES NOT EXIST, PLEASE
SPECIFY ITS S1N AND ESSTE

228 INPUT LIBRARY NOT
A CULIB

229 OUTPUT LI BR ARY NOT
A LMLIB

230 OUTPUT LIBRARY N!>T
A SK.IS

231 PRTLIB LIBRARY NOT
A SL LIBRARY

232 SM ALREADY EXIST
PLEASE DOES NOT
SPEC I FY ITS STN/ESSTE

233 ACCESS VIOLATION TO
SYS.HSMLIB

NOT ENOUGH SPACE IN THE OUTPUT LIBRARY TO
STORE lliE PRODUCED MODULE.

AN ASSIGNED INPUT LIBRARY IS NOT
A CULIB C1YPE, RECFORM, RECSIZE>
<SEE LIBMAINT GUIDE>

TrlE ASSIGNED OUTPUT LIBRARY IS NOT
A LML IB CTYPE, RECFORM, RECS I ZE)
<SEE LlBMAINT GUIDE>

THE ASSIGNED OUTPUT LIBRARY IS NOT
A SMLI.B C 1YPE, RECFORM, RECSIZE >
CSEE LIBMAINT GUIDE>

SELF EXPLANATORY

SELF EXPLANATORY

IT IS FORBIDDEN TO LINK IN
SYS.HSMLIB

40 J UNKNOWN KEYWORD UNEXPECTED OPT! ON OR UNKNOWN KEYWORD •••
THIS ILLEGAL STATEMENT IS IGNORED.

-402 ILLEGAL MULTIPLE PARAMETER A STATEMENT SUCH AS ENTRY,REALLSEG ••• HAS
APPEARED .MOTE THAN ONCE 1 THE Fl RST SPEC I
F ICA TION IS USED

403 SYNTAX ERROR

404 PARAMETER ERROR

405 OPTION ALREADY APPEARED

406 CU NOT FOUND IN LIBRARIES

407 11-IE SPECIFIED CULIB IS
NOT ASSIGNED

SYNTAX ERROR ON A STA IEMENT DURING SYNTAX
ANALYSISIILLEGAL CHARACTERS FOR A PARAMETER
••• THE STATEMENT IS IGNORED.

ERROR lN A PARAMETER• INTEGER VALUE INSTEAD
OF AN !DENT IF I ER, I LLEGAL VALUE, I MCOMP A TI
B ILITY WITii A .PRECEEDING VALUE •••
TiiIS SPECIFICATION IS IGNORED.

TWO PARAMETERS CONCERN THE SAM: OBJECT IDEN
TIFICATION C.MSEGAT,PLACE ••• > OR niE SAME
FIELD CSTACKI ••• > THE IST SPECIF. IS USED

A STA'IEMENT SUCH AS GATE, MSEGAT... REFERS
TO A CU TiiA T DOES NOT EXIST IN CU LI BR A
RIES <IMPLICIT OR SPECIFIED VIA SLINKER>.
THE STATEMENT rs IGNORED.

A STATEMENT SUCH AS REPLACE OR FETCH OR INCLUDE
SPECIFIES A. CU LIBRARY THAT IS NOT ASSIGNED.

408 ILLEGAL PARAMElER ACCORDING THE SPECIFIED PARAMETER CANNOT BE USED WilH
TO LINKTYPE nus lYPE OF LINKAGE (ELM OR LKU) EXI

L.KUENT CANNOT BE USED W.ITH LINK1YPE=-USER

100 I TCX> MANY VACANT ENTRIES
REQUESTED

THE USER <THRU DATA MANGMT OR VACSEG> ASKS
FOR MORE VACANT ENTRIES THAN THERE ARE
AVAILABLE ENTRIES LEFI' IN SEG. TABLE.
RF~MBER THAT AN ST IS LIMITED TO 256
El\ rRIES.

C-0.3

1002

1003

1004

I NITS IZE IN SOME SEGMENT
EXCEEDED MAXSIZE

SYMBMAP RECORD > 32K

NOLINK AND INCLEXT FOR A

AT LEAST ONE SEGMENT HAS BEEN DECLARED WITH
AN INITSIZE GREATER THAN MAXSIZE. THE MAXSIZE
IS ADJUSTED TO INITSIZE

SYMBOLIC PATCHING IMPOSSIBLE.

GLOBAL DATA, INCLEXT IGNORED

1401 PRIVPECT•
NO MATCH I NG DEF

1402 PRIVPECT•
MATCH ING DEF IS A SYSDEF

1403 PR I VPECT•
INVALID MATCH I NG DEF

1404 PRIVPECT•
I MP ROPER MATCHING DEF

1405 EXCEPTION•
NO MATCHING DEF

1406 EXCEPTION•
MATCH I NG DEF IS A SYSOEF

1407 EXCEPTION1
INVALID MATCHING DEF

1408 INCLUDE 1

NO MATCHING DEF

1601 ENTRY 1

NU MATCHING DEF

1602 ENTRY I
MATCH ING DEF IS A SYS DEF

1603 ENTl?Y 1

I Ml-' ROPER MATCHING DEF

1605 ENTRY•
REALLOC RULES VIOLATION

1606 ENTRY I
INVALID MATCH I NG DEF

THE NAME REFERENCED IN PRIVPECT PARAMETER
HAS NOT BEEN FOUND IN LIBRARIES.

THE NAME REFERENCED IN PRIVPECT PARAMETER
IS A SYSTEM NAME.

THE FETCHED SYMDEF HAS NO SlN,.STE,D VALUE
ASSIGNED BECAUSE ERROR OCCURRED WHEN
PROCESS I NG IT.

NAME REFERREU IN PRIVPECT STATEMENT IS
NE ITH ER A PROCEDURE NAME NOR A SEMAPHORE
NAME.

THE NAME REFERENCED IN EXCEPTION
PARAMETER HAS NOT BEEN FOUND IN Ll8RARI ES.

TI-iE NAME REFERENCED IN EXCEPTION
PARAMETER IS A SYSTEM NAME.

n-IE FETCHED SY MDEF FOR EXCEPTION EI 'lliER
HAS NO SIN,SlE,D VALUE- ASSIGNED OR
IS NCI A PROCEDURE DESCRIPTOR SYMDEF.

'filE NA~AE REFERENCED IN INCLUDE PARAMElER
HAS NOT BEEN FOUND IN LI BRAR I ES.

TASK PHHY POINT HAS BEEN FOUND
IN LIBRARIES.

THE NAME DEFINED AS AN ENTRY PO INT IS A
SYSIEM NA~E.

THE SYMDEF FOUND FOR ENTRY P<>INT IS A
DAT A ':jy ~IDEF.

ENTRY POINT IS IN A PROCESS PRIVATE SEGMENT.

THE SYMDEF FOUND FOR ENTRY POINT HAS
NO SIN,STE,D VALUE ASSIGNED BECAUSE AN
ERROR OCCURRED WHILE PROCESSING THE
SYMDEF OR JCL PARAME1ERS.

1601 ENTRY ALREADY USED IN ENTRY '11-iE ENTRY SPECIFIED IN ESINDEX IS ALREADY
SEGMENT USED.

1801 LARGE SEGMENT

1802 SHARE LEVEL I NCONSI STPff
WI rn ASSIGNMENT

1803 SHRLEVEL=3 FOR NOT ASSIGNED
INCLUDED SEGMENT

C-U4

1804 ATTEMPT TO ASSIGN PROC.PRIV
ATE SEG. AMONG INCLUDED SEG~

1805 ALREADY USED ENTRY IN
ASSIGNMENT

2001 SOME !NIT.VALUE RECORDS THE CU CONTAINS MORE INITIALIZATION VALUES
NOT USED TI-IAN 11-fE NEEDS EXPRESSED BY THE SYMDEFS.

2201 SEG REFERRED TO IHRU ISN TriE USER HAS DEFINED nm SSTS OF ATTR!-
AND NAME IN JCL BLITES FOR A SEGMENT IN JCL. IN THE 1 ST,

TiiE SEGMENT HAS BEEN REFERENCED nmu
!SN, IN THE SECOND, IT HAS BEEN REFERENCED
1HRU NAME. WHEN THE SAME ATTRIBUTE
APPEARS IN dOTH DEFINITIONS, TiiE LAST
DEFINED VALUE IS USED.

2202 INV AL ID SHARE LEVEL TI1E SHA RAB I LI TY LEVEL FOR A SEGMENT
IS EQUAL TO 0 OR 1.

2203 SIZE INCONSISTENT WITH TiiE SEGMENT DEFINITION IN THE CURRENT
A PREVIOUS DEFINITION CU SPECIFIES AN <INITIAL> SIZE OR A MAXIMUM

SIZE, BUT 1HE CURRENT SIZE OF THE SEGM:NT
CSUM OF THE SIZES OF DATA ALREADY ALLCCATED
IN IliE SEGMENT> IS GREATER THk~ THIS
SPECIFIED SIZE.

2204 ATTRIBUTES INCONSISTENT A GLOBAL SEGMENT HAS BEEN DEFINED IN
WITH A PREVIOUS DEFINITION TWO CU'S Willi DIFFERENT AITRIBUTES.

2205 JCL GATE FOR NON GATEABLE A JCL "GA TEJ1 C.OMMAND EXISTS FOR A CU
CU WHOSE I ST SEGMENT HAS NO GA TE DOUBLE

WORD PREFIX.

2206 SHARE LEVEL CONFLICT C AFTER AN ANTI CI PA TED PLACEMENT OCCURRED FIRST
PREV. USE OF PLACE> WITii SEGCDEFAULT> AITRIBUTES CONFLICTING

WITH THE CURRENT DESCRIPTION.

2207 SIZE SPECIFICATION C MSEGAT> THE SIZE SPECIFICATION FOR A HARDWARE
EXCEEDED PROTYPE IS LESS THAN ITS SIZE VALUE IN

THE DESCRIPTION.

2401 EXISTS AS SYSDEF

2402 REALLOC RULES VIOLATION

2403 A PREVIOUS REF FOR THIS
DATA STATED• DEF CANNOT
EXIST

2404 ATTRIBUTES INCONSISTENT
WI TH A P REV.I OUS DEF IN I TI ON

TiiE DATA DECLARED IN THE CURRENT CU
IS ALSO A SYSDEF. TiiE SYSDEF IS USED
IN SYSLINK ENVIRONMENT OR IF THE lST
REFERENCE DID NOT HAVE INITIAL! ZA TI ONSI
ELSE lHE SYMDEF IS USED.

AN INITIALIZATION APPEARS FOR A DAT A
WHEREAS ANOTHER DEC.LARA TlC>N FOR 1HE
SAME DATA HAS SAIDI DATA CANNOT BE
INITIALIZED.

THE DATA DECLARED IN lHE CURRENT CU HAS
A ITRIBUTES DIFFERENT FROM THE ONE SPECI
FIED IN AN.OlliER CU f.OR lliE SAME DAT A.

2405 All. ENTRY POINTS MSUT BE SI- A CU CONTAINS SEVERAL ENTRY POINTS, SOME
MULTANEOUSLY DECLARED NOLINK OF lliEM ARE SPECIFIED IN A NOLINK PARAME

TER ,OlHERS ARE NOT. mus SOME REFERENCES
TO nus PROCEDURE STAY UNRESOLVED.

C-05

2407 SUBITEM CANNOT BE LINKED IF A DATA SPECIFIED IN A NOLINK PARAMETER CON-
1 TEM IS NOLINK TAINS .SUBITEM EXTERNALLY KNOWNI REFERENCES

TO IBIS SUBITEM STAY UNRESOLVED.

2409 NAME ALSO USED FOR A
DIFFERENT ENTITY

2410 THIS CATALOGED ENTITY
ALREADY EXISTS

241 I INVALID SHARE LEVEL

260 2 MULTIPLE IN I TI AL I ZATI ON
FOR PTR

2·603 REALLOC RULES VIOLATION

2604 UNRESOLVED REFERENCE

2802 REALLOC RULES VIOLATION

2803 CATALOGED MATCHING DEF

2804 IMPROPER MATCHING DEF

2805 ILLEGAL MATCHING
NO SYMDEF SHOULD EXIST

2806 INVALID MATCHING DEF

2807 CONFL !CT BETWEEN REF-DEF
AITRIBUTES

2808 CONFLICT BETWEEN REF-DEF
ATTRIBUTES

2809 CONFL rcr BETWEEN REF-DEF
AITRIBUTES

2810 ILLEGAL MATCHING

TYPE 3 SLFICB SEGMENT.

AN ENTRY VARIABLE IN AN EXTERNAL DATA
HAS BEEN INITIALIZED IN DIFFERENT CUS
WITH DIFFERENT VALUES.

1HE REFERENCE MAY BE DYNAMICALLY RESOLVED
IN A SM.

USED FOR WANT OF A GLOBAL DATA.

A REFERENCE TO DATA LEADS TO
A PROCEDURE DEFINITION.

THE CURRENT REFERENCE STAIES• SYNDEF
CANNOT EXIST, BUT A SYMDEF HAS BEEN
ALREADY FOUND FOR THIS DATA.

TiiERE ALREADY EXISTS A DEFINITION FOR
THIS DATA .BUT NO STN ,STE,D VALUE rs ASSO-
CIATED TO IT BECAUSE ERROR OCCURRED WHILE
PROCESS ING THE J ST DEFINITION.

A PREVIOUS DECLARATION OF THIS DATA SPECI
FIED A DIFFERENT VALUE FOR DATA LENGTH.

A PREVIOUS DECLARATION FOR THIS DAT A SPE
FIED A DIFFERENT VALUE FOR DATA A ITRIBU
TES.

A PREVIOUS DECLARATION FOR nus DATA SPE
CIFIED A DIFFERENT CONTAINING SEGMENT.

CONTRADICTION BETWEEN THE CURRENT REFE
RENCE SAYIN.G• SYMDEF MIGHT EXIST, AND
A PREVIOUS REFERENCE CTO THE SAME DATA>
SAYING• SYMDEF CANNOT EXIST.

2811 A DATA SYMDEF MATCHES A FOR INSTANCE, A FORTRAN LABELED COMMON
NON DATA .SYMDEF OR A SYSDEF SYMDEF MATCHES A SYMDEF THAT DOES NOT
.OR A SUB ITEM SYMDEF CORRESPOND TO A BLOCK DA TA.

2812 NAME ALSO USED FOR A
DIFFERENT ENTITY

3001 NO MATCH ING DEF

3002 REALLOC RULES YI OLATI ON

A REFERENCE IS MADE TO A DEFINITION WHICH
DOES NOT EXIST .IN LI BRA RIES.

C-06

3005 CONFLICT BETWEEN REF-DEF
A ITRIBUTES

3006 INV AL ID MATCH ING DEF

3007 CONFLICT BETWEEN REF-DEF
AITR H3UTES

3008 CONFLICT BETWEEN REF ·DEF
ATTRIBUTES

3009 CONFLICT BETWEEN REF=DEF
AITRIBUTES

REFERENCE ro A PR.CCEDURE WITH A NUMBER
OF ARGUMENTS DIFFERENT FROM lHE NUMBER OF
PARAMETERS DEFINED IN THE PROCEllURE.

lHE SYMDEF FETCHED HAS NO STN,STE,D VALUE
ASS IONED BECAUSE ERROR OCCURRED WHILE
PROCESS ING IT.

THE DATA LENGlH CFOR DATA> OR
ARGUMENTS SIZES < FOR .PROCEDURES >
SPECIFIED IN THE REFERENCE ARE DIFFERENT
FROM THE ONES SPECIFIED IN 'DiE DEFINITION.

THE A ITRIBUTES SECI FIED FOR THE DAT A
OR THE ARGUMENTS IN THE REFERENCE ARE
DIFFERENT FROM lliE ONES IN THE DEFINITION.

3010 IMPROPER MATCHING DEF A REFERENCE TO DATA LEADS TO A PRC'CEDURE
OR A NON CATALOGUED DATA.l>R A REFERENCE
TO PROCEDURE LEADS TO A DAT A DEFINITION.

3401 GLOBAL DATA SEGMENT TiiE DATA CURRENTLY PROCESSED CANNOT BE
OVERFLOW ENTIRELY STORED IN TiiE GLOBAL SEGJENT

EI IBER BECAUSE THE DATA SIZE IS GREATER
THAN lHE MAXIMUM SIZE FOR MULTIPLE
SEGMENTS, OR BECAUSE THE SUM OF SIZES
OF DAT A ALLOCATED IN SEGMENT BECOMES
GREATER IHAN 1HE LI MIT SIZE FOR NC~
MUL TI PL E SEGMENTS.

3402 INCORRECT CIS NUMBER A GLOBAL DATA IS SAID TO BE CONTAINED
IN A SEGMENT WHICH IS NOT A GLOBAL
SEGMENT C SEGMENT "TO BE INVENTED"
BY THE LINKER>.

3403 SIZE SPECIFICATIONCMSEGAT> lliE CURRENT SIZE BECOMES GREATER THAN
EXCEEDED THE SIZE SPECIFICATION FOR 1HIS GLOBAL

SEGMENT.

3404 REALLOC RULES VIOLATION

3405 SIZE INCONSISTENT WITH A
PREVIOUS DEF IN !TI ON

3801 CROSS REFERENCE LIST HAS
BEEN ABORTED (OVERFLOW)

3802 CU REFERENCED IN JCL
HAS NOT BEEN LINKER

3803 REFERENCE NEVEH OCCURRED

3804 THIS STATEMENT HAS NOT
BEEN USED

A MAXIMUM SIZE HAS BEEN SPECIFIED WHICH IS
ALREADY EXCEEDED BY THE CUMULATED SIZES OF
DAT A ALLOCATED IN 1HE SEGMENT.

WARNING• THE CROSS REFERENCE LIST
CAUSED A LINKER TABLE OVERFLOW.

A CU HAS BEEN REFERENCED IN A JCL ST ATE
MENT BUT THIS CU NEVER APPEARED DURING
THE LINKAGE PROCESS ING C NO REFERENCE TO
THE PROCEDURE HAS BEEN MADE>.

1HE JCL ASKED FOR THE REPLACfaaBW.a- OF A
REFERENCE TO A BY A REFERENCE TO B,
BUT NO REFERENCE To A APPEARED IN
THE SCOPE OF REPLACE.

lHE ENTITY INVOLVED IN A PLACE OR
MSEGAT OR FETCH COMMAND NEVER APPEARED
DURING 1HE LINKAGE.

C-U7

3805 TASK OEFINITlON NEVER
OCCURRED

440 I SEO DEF I NED ONLY BY PLACE
STAT.

4402 ZERO ··LENGTH SEGMENT CONT A INS
DATA

5201 REFERENCE NOT FOUND IN CU

5202 MSEGAT/CU. SEG NOT USED

560 I MORE THAN 9 ERRORS FOR
THAT ENTITY

THE JCL TOLD ABOUT A TASK BUT HAS NEVER
DEFINED IT.

THE JCL ASKED FOR A PLACEMENT IN A
SEGMENT FOR WHICH NO DESCRIPTION WAS
FOUND IN ANY CU.

IBE JCL ASKED FOR THE REPLACEJENT OF A
REFERENCE TO A BY A REFERENCE TO B IN
A GIVEN CU, BUT NO REFERENCE To A
APPEARED IN THE CU.

A SEGMENT OF A GIVEN CU REFERENCED IN
JCL PARAMETERS THRU SEGMENT NAME OR IN
TERNAL SEGMENT NUMBER DOES NOT EXIST
IN CUI OR PARAMETERS THRU GLOBLSEG WERE
PREFERRED TO.

IBE LINKER ONLY DI SPLAYS THE FIRST NINE
ERRORS DISCOVERED WHEN PRC:CESSI NG AN
ENTI1Y.

C-OH

INDEX

NOTES.a Main references are under lined. Entries beg inning with
nonalphabetic characters are classified according to the
first alphabetic character of each entry.

A

Abnormal compiler termination 2-47
ACEPT statement 11-11
Alphabet 12-06
Alter facility 2~16.2
Alter listing 2-28
ALTERNATE KEYS 9-1 4
American Standards Assoc. Format 10-01
ANSI 74 2-10
APPLY NO-RESIDENT-INDEX clause 9-14
A PPL Y NO-SORTED- I NOE X c 1 au se 9- 1 4
ASA 10-01
$ASSIGN statement 9-01
Asterisk convention 2-06

Backing store 2-13
Banner page 3-08
BfAS 9-11
BOTf OM 1 1 -06

CALL IDENTI~IER statement 6-05
CALL statement 4-06, 6-01, 6-0J
Called program 6-01
Calling program 6-01
CANCEL statement 6-01, 6-05
Card identifier 2-06
Card punching 11-09
Card reading 11-07
CARDIO pararnetAr 1-05, 2-06
CASEQ parameter 2-08
Cassettes 11-17

B

c

i-01

Checkpoint/restart 12-05
CK SEC> Dnramete r 2-crn
CLOSE .JH£L/UNif stAtements 9-09, 9-tO
CLOSE ~ITH LOCK statement 9-08
SCOBOL statement 2-01
COBOL file-name 6-08, 9-01
COBOL segment number 3-01 , 7-02
CODAPNO parameter 2-U8, 7-06, 1~01
CODE SET c la use 12-07
COLLATING SEQUENCE phrase 12-07
COMFILE parameter 2-04, 2-1 7, 3-04
Command file 2-16.2
COMMAND parameter 3-04
Communications 12-29
Compilation 2-01
COMP I LE command 2-1 7, 2-1 9
CONTCHAH parameterJ.-07
Control record 10-02
COPY statement 2-1U, 2-16, 2-29
Cross-refP.rence listing 2-09, 2-37, 4-12
CULIB parameter 2-0R

D

Data map and proc.def.listiny 2-11, 2-37, 4-12
Data types 5-0J
DCARnro rr.tr9metf~r 2-06
DCLXREF parameter 2-09
DDEBUGMD parameter 2-09
DEBUG parameter 2-09, 4-02, 4-04
DEBUG-ITEM 4-01
Oebuyying code 4-01
DEBUGMO nararneter 2-U9, 4-02
DECLARATIVE 4-01
Device oriented format 10-01
DIAGIN parameter 2-JO, 2-11
Diagno~tic 2-34, 3-14
DISPLAY data items 5-02
DISPLAY statement 11-11, JJ-13
DOF 10-01
DSEGMAX parameter 2-10, 7-06
OUMMY parameter Y-06
Dump ;:malysis 4-04
DUMP parameter 4-04

E

Ed itP.d sys out format I J -02, t J-09, I 2-1 tl
Edit0r r~quest 2-16.2
Eft 1ciency B-01
ENTRY command 3-05
ENTRY parameter 3-03, 6-02
Epilogue 2-24 --
Error message 2-14, 3-J 4, ~-16

i-02

EXAMINE statP.ment 12-30
Exception 4-06
Exception message 4-16
Exe cut ion 4-0 J
EXIT statement 6-01
Exoanded source listing 2-28
EX~LIST parameter 2-10, 2-29
External linp number 2-33
EXTERNAL pnrase 6-01, 6-04, 6-UR
External-file-name 9-01

file concatenation 9-12
Fi le names 9-01
File organization 9-04
FILE SECTION 12-07
FILE STATUS 9-15
Fixed-point binary ~-05
Floating-point binary 5-05
FOOT I NG 1 J -06
Form control 11-0~
FORTHAN programs 6-06
FSN narameter 9-11

GE~ERAI~ statement 12-12
Urour information 11 sting 3-08

H-2000 9-14
HFAS 9-13
HIGH-VALUE 12-09

I-0-CONTROL paragraph 12-05
INCLUDE command 3-05

F

G

H

I

Included compile units listing 3-08
INDEX data item 5-06
Indicator area 1-06
INFILE parameter J-10, 2-04
INITIATE statement 12-12
INLIR narameter 2-04
I NLI Bn. parameter 2-04, 2·- .16. 1
Input enclosure 1-01
INSPECT statement 12-30
Instruction counter 4-10
Interactive operation facility 1-03

l-03

Interactive terminal line format l-10
Intermediate results 12-26
Internal line number 2-29, 2-33
Internal segment number 3-01, 3-11, 4-11, 4-12, 7-10
Internal-tile-name 6-08, 9-0J
IOF J-03 . --

JK

JCL STATUS 12-03
Job occurrence report 4-15
Job occurrence report summary 2-46
Journalization 12-05
SJUMP 2-15, 12-03, 12-05

Language type 1-05. 2-07
SLET 12-05
LEVEL parameter 2-JO, 2-21
LEVEL 62 2-22
LEVEL 64 9-1 4
SLIB 2-04, 2-16, 3-02, 3-06
$LI BALLOC J -02, 3-02

L

SLIBMAINT l-02, 2-04, 10-02, J0-06
Library 2-16
Library member text format 1-07
Limits 2-21
LINAGE clause 11-06
LINE-COUNTER I 2-11
Linkage report 3-08
LINKAGE SECTION 6-01, 6-03
SLINKER statement 3-01
SLINKER segment number J=.Ql, 4-12
Linking 3-01
LIST parameter 2-lJ
Listings ($COBOL) 2-24
Listings <SLINKER> 3-08
Load-module-name parameter 3-02
LCH~-VALUE J 2-09

Main program 6-02
Map listing 2-37
MAP parameter 2-1 J

M

Maximum data segment size 2-10, 7-06
Maximum procedure segment size 2-10, 7-06
SMERGE 12-01
MERGE statement 12-01, 12-07
Multi logical unit files 9-09
Multiple file tape volumes 9-lJ
Multivolume files 9-09

l-04

Naming convention 1-01, 3-02
NCARDID parameter J-.05, 2-06
NCASEQ parameter 2-08
NCKSEQ parameter 2-08
NCLIST parameter 2-1.1
NCODAPNO parameter 2-08
NOCLXREF parameter 2-09
NDEBUG parameter 2-09
NDEBUGMD parameter 2-09, 4-02
NDIAGIN parameter 2-10
NEXPLIST parameter 2-10
NLIST parameter 2-11
NMAP parameter 2-11
NOBJ parameter 2-11
NOBSERV parameter 2·- J 1
NOPT parameter 2-13
NRESIDX parameter 9-.15
NNARN parameter 2-13
NXREF paramet~r 2-15

OBJ parameter 2-11
Object code 2-24
OBJECT-COMPUTER paragraph 12·-07
OBSEHV parameter 2-11
ON srz:: ERROR 12-29
:·1pt iona 1 fl les 9-04
OPTIONAL parameter 9-06
OPTIONS parameter 12-03, 12-10
ORGANIZATION clause 9·-14
OUTLI B parameter 3-03
Output writer l 0-07, 11-01
Overriding rules 9-02

Packed decimal 5-03
PAGE-COUNTER 12-11

PCF 4-03

N

()

PQ

Per form/a 1 ter bucket 11st ing 2·-11 2-37 ,_
Performance 8-0J
PICTURE clause 5-01
SPOOL statement 9-08, 9-JO, 9-11, 9-13
Printed output (SLINKER> 3-08
Printed output C $COBOL> 2·-24
Pr int i ng I 1 -o 1
Procedure map listing 2-11, 2·-37, 4-11
Process control block 4-06
Process control structure 4-05
Process group control structure 4-05

~-o5

Proyram checkout faci 11 ty 2-09, 4-0t, .1=Ql_
PROGRAM COLLATING SEO.clause 12-07
Prologue 2-24
Protection ring 4-06
PRTFILE parameter 2-12
PRTLIB parameter 2-12
PSEGMAX narameter 2-10, 7-06
Punched card format 1-05

Record length 9-03
Reference format 1-04
REPEAT parameter 12-05
REPLACE statement 2-10, 2-29
Report writer 6-08, 12-11
Representation of dRta 5-01
RERUN clause 12-05
RESIDX parameter 9-15
Return code 9-15
Run-time package 12-29

SAHF 10-01
Search patt1 2-04, 3-02,]-Ob
SEAHCH statement l~-23
Segment 2-08
Segment list 2-46, J-1 I, 4- t 1
Segment number J-0 J
SegmP-nt table entry 4-05
Segment table number 4-05
SEGMENT-LIMIT 7-03
Segmentat 1 on 7-0 I
Sequence number !.:.QQ., I 0-02
Serial compilation 2-19
Seri~l linkage 3-06
SET statement 12-20
Severity value 2-IS
SSORT 12-01
SORT statemHnt 12-01, 12-07
$SORT I DX i..;- I 4
$SORn~oHK 12-02
Source library 1-02
Source listing 2-28

s

SOURCE parameter 2-04, 2·-19
SPECIAL-NAMES paragraph "J'T='l 1, 11-14, 12-04, 12-06
Sra 4-11
SSF I 0-01
Stack 4-06
Stack frame 4-1 O.
Standard access record format 10-01
STATUS 2-15
Ste 4-05, 4-1 I

1 • ..)(:i

STEPOPT parameter 2-13, 3-06
Stn 4-05, ~
STOP LIT ER AL statement 11-11, 1 1-1 6
STOP RUN statement 6-02
Stream reader 1-06, 10-02, 10-0.6, i 1-07
Structured pro~ramming 7-03
SUBOPT parameter 2-t3, 8-02
Subscripts 12-20
Summary page 2-45
SUPPRESS statement 12-12
Swapping 7-0.1
Switches l2·-04
SYMREF 3-08. 1
SYSIN 1-06. 10-02, 10-06, 11-07
SYSOUT 2-12, 11-01 , I J -09
SSYSOUT 10-07, IJ-04, 11--09
System standard format 10-01

Tabl~ handling 12-20
Task listing 3-08
TDS 2-08
TEMP 2-08
TEHMINATE statement 12-13
TOP 11-06

T

Tran~action processing routine 2-08
TYPE parameter 1-06, J-OR, 1 0-02

UFAS 9-1 3
UFF 9-14
Unit record files 11-01
Unpacked decimal 5-02
Updating sou re e program 1-04
$UH I N I T 1 1 - 05
USAGE clause 5-0l

u

USE AFTER EHROR PHOCEOURE SECTION 9-15
USE fOR DEt3UGUINU statement 4-01
USE statement 12-12
USING phrase 6-01, 6-03

VACSEG command 3-05
Vertical format unit J 1-05
SVOLPREP 1 I -20
VfU 11-05
Virtual memory management 7-01

v

i-07

W REQUEST 1-08
WAHN parameter 2-13
WITH CODE clause 12-18

WXYZ

WITH DEBUGGING MODE clause 2-09, 4-02
WITH SARF phrase 10-04
WITH SSF phrase J 0-04
WORKN parameter 2-1.'3
SWRITE~ 10-07, 11-04, J 1-09

1-crn

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

SERIES 60 (LEVEL 64) GCOS
TITLE COBOL User Guide

Addendum A

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER NO. , AQ63-01A

DATED I JUNE 19 79

Your comments will be promptly investigated by appropriate technical personnel D
and action will be taken as required. If you require a written reply, check here
and furnish complete mailing address below.

FROM:NAME----------------------

TITLE ----------------------

COMPANY---------~----------~

ADDRESS ____________________ ~

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WAL THAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

