
SERIES 60 (LEVEL 64)
INTERACTIVE OPERATION FACILITY

SUBJECT

Description of the Interactive Operation Facility (IOF), Including Time Sharing
Capabilities, Command Language, Text Editor Functions, Library Mainte
nance Aspects, and System Considerations

SOFTWARE SUPPORTED

GCOS Software Release 0400

ORDER NUMBER

AQ60, Rev. 0 September 1978

Honeywell

PREFACE

This manual describes the Interactive Operation Facility
available with the GCOS operating system for Series 60 Level 64
computers. Familiarity with "GCOS Series 60 Level 64 Job Control
Language Reference Manual" is assumed.

Section I introduces the general concepts and facilities avail
able with IOF. Section II provides background information for IOF
users. Section III describes the Interactive Conunand Language, Break
Commands, and JCL Statements. Section IV cover the Text Editor and
how to write Editor programs. Section V with Interactive Library
Maintenance. Section VI describes IOF from a System viewpoint and
is primarily intended for System Managers.

Each section of this document is structured according to the
heading hierarchy shown below. Each heading indicates the relative
level of the text which follows it.

Level Heading Format

1 (highest) ALL CAPITAL LETTERS, UNDERLINED

2 Initial Capital Letters, Underlined

3 ALL CAPITAL LETTERS, NOT UNDERLINED

4 Initial Capital Letters, Not Underlined

5 (lowest) ALL CAPITAL LETTERS FOLLOWED BY COLON:
Text begins on same line.

@ Cii Honeywell Bull 1978 File No.: 1N33

Order
Number

AQ02
AQ03
AQ04
AQ05
AQ09
AQlO
AQll
AQ13
AQ14
AQ18
AQ20
AQ21
AQ22
AQ26
AQ27
AQ28
AQ40
AQ49
AQ50
AQ52
AQ53
AQ55
AQ56
AQ57
AQ59
AQ63
AQ60
AQ64
AQ65
AQ66
AQ67
AQ68
AQ69
AQ72
AQ73
AQ82
AQ83
AQ84
AQ85
AQ86
AQ87
AQ88
AQ89
AQ90
AQ92
AQ93
AQ94

LEVEL 64 DOCUMENT LIST

Ti tie

Series 100 Program Mode Operator Guide
Series 100 Conversion Guide
Series 20012000 Conversion Guide
System 3601370 Conversion Guide
System Management Guide
Job Control Language (JCL) Reference Manual
Job Control Language (JCL) User Guide
System Operation Operator Guide
System Operation Console Messages
Operator Reference Manual
Data Management Utilities Manual
Series 20012000 Program Mode User Guide
Series 20012000 Program Mode Operator Guide
Series 100 File Translator
Series 20012000 File Transla.tor
Library Management Manual
System 3 Conversion Guide
Network Control Terminal Operation Manual
Terminal Operations Manual
Program Checkout Facility Manual
Communications Processing Facility Manual
TDS/64 Standard Processor Site Manual
TDSi64 User Guide
Standard Processor Programmer Reference Manual
Unit Record Devices User Guide
COBOL User Guide
Interactive Operation Facility
COBOL Language Reference Manual
FORTRAN Language Reference Manual
FORTRAN User Guide
FORTRAN Mathematical Library
RPG Language Reference Manual
RPG User Guide
Series 20012000 COBOL to Level 64 COBOL Translator
IBM COBOL Translator
BFAS User Guide
HFAS User Guide
UFAS User Guide
Sort/Merge Manual
Catalog Management Manual
Library Maintenance User Guide
I-D-SIII User Guide, Volume 1
I-D-SIII User Guide, Volume 2
COBOL Reference Card
Operator's Reference Card
RPG Reference Card
FORTRAN Reference Card

iii

Section I

Section II

Section I II

CONTENTS

Introduction

Overview of !OF

Facilities available with !OF

Interactive sessions

System command

Interactive Operation from User Viewpoint

Prompts

Message editing

Log-on and Log-off Procedure

Messages

Asynchronous messages

Synchronous messages

Text input with terminals

TTY type terminals

VIP type terminals

Operating levels of interactive terminals

The Console Mode

The Interactive Mode

The Break signal

Interactive Command Language

Syntax of IOF Commands

OCL Commands

IOF Specific Commands

Break Commands

JCL Statements

Operation of Basic Statements

Operation of Extended Statements

v

1-1

1-1

1-1

1-2

1-2

2-1

2-1

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-7

2-7

2-9

2-10

2-13

3-1

3-1

3-2

3-2

3-2

3-3

3-3

3-3

Section IV

Section V

Section VI

Libmaint Command Language

The Text Editor

Workspace and Addressing

Text Input

Simple Requests

More elaborate requests

Using Auxiliary Workspaces

Writing Editor Programs

Control requests and Escape Sequence

Interactive Library Maintenance

Entering Interactive Library Maintenance

Restrictions of use

Additional commands

Treatment of breaks

Error handling

Library Maintenance Output Report

IOF Operation from a System Viewpoint

!OF Generation

Scheduling of !OF Users

System Resources

Activation Process

Execution Priority of I 0 F Users

Master Operator view of IOF

BTNS Functions

Useful .OCL functions

Management of Interactive Jobs

Resource Management

Job Reporting

Accounting

Warm Restart

Security and Administration Functions

Definitions

Description of User Registration

Protection Mechanisms

vi

3-5

4-1

4-1

4-4

4-7

4-11

4-11

4-13

4-16

5-1

5-1

5-3

5-3

5-4

5-5

5-6

6-1

6-1

6-1

6-2

6-2

6-3

6-3

6-3

6-3

6-3

6-4

6-4

6-4

6-4

6-4

6-4

6-5

6-5

Appendix A

Operator Ace es s

Operability Privileges

User registration

Supported configurations

The Scanner Processor

vii

6-5

6-6

6-6

6-6

SECTION I

INTRODUCTION

The Interactive Operation Facility (IOF) provides the GCOS user with a time
sharing capability. The scope of such a system is very large and may include
different functions, such as interactive program preparation and execution,
interactive file query and an interactive checkout facility to debug programs.

OVERVIEW OF IOF

The IOF system has been designed with a few basic objectives considered essen
tial in the context of a modern operating system. The main features can be summarized
as follows:

~ Use of existing command languages. No effort is required to learn the new lan
guage and its capabilities. The user has to know the standard Job Control
Language (JCL), the standard Operator Control Language (OCL) and the standard
Library Maintenance command language. Syntax and semantics are identical
whatever the mode of execution used: batch or interactive.

• Integrated Resource management and accounting. Both interactive and batch
executions are handled the same way by the GCOS-64 system. Thus an inter·
active user session competes with a batch job' at the same level' for the same
kind of system resources. Accounting information related to the use of
resources is also recorded within the standard accounting file. Also the master
operator can control the maximum number of logged-on users and can modify pri
orities of different interactive user sessions in addition to batch jobs .

• High availability of the IOF system. In particular, the abnormal termination
of an interactive user session due to a user or a system program error has no
effect on the other sessions in progress. In fact the visibility is the same as
that which exists between batch jobs running concurrently .

. Good security. This ensures privacy protection at different levels from the
log-on to the independence of memory address spaces.

FACILITIES AVAILABLE WITH IOF

!OF provides the following facilities:

• Program preparation: !OF can be used to devel9p and maintain source

1-1

programs (COBOL, FORTRAN, RPG) stored within disk libraries or sequential
files .

• JCL preparation: IOF can be used to develop and maintain JCL procedures
stored in disk libraries .

• Batch job submission as well as the ability to control job execution and output
deliveries in the same way as the master operator .

• Scanning of output deliveries generated by the submitted jobs to check them
before their final printout.

INTERACTIVE SESSIONS

An interactive session (or an interactive user session) is defined by the ordered
set of commands that are entered by the user from his log-on to his log-off.

Basically an interactive session is equivalent to the execution of a job, the log-on
being the $JOB statement and the log-off the $ENDJOB statement. So an interactive
session has the same properties as a normal batch job, the only difference being that
the JCL commands are interactively entered and executed. We will call the job associ
ated with the interactive session an 'Interactive Session Job' or simply an 'Interactive
Job'. The interactive job consists of successive executions of the IOF step which is
the conversational interpreter of the system commands and of the different steps called
by the interactive user. Hence, after log-on and the initiation of the associated inter
active job, the first executed step is the IOF step, which monitors the system command
level (i.e. JCL). Each time another system processor (such as the Library Maintenance
Processor) is called by using a $STEP .. $ENDS TEP description or an extended state
ment, the I OF step is terminated and the called step is loaded in its place, as in the
case of a batch job. The IOF step will be reloaded at the completion of the called step
in order to return the terminal to the system command lenl (JCL).

There is no stream reading or asynchronous input function, so the interactive job
cannot have input enclosures. Commands and data are in~eracti vely entered, providing
the respective program support and conversational mode. Commands and data may also
be stored in library members or sequential files.

SYSTEM COMMAND

A system command is a request to the system that some function be performed. It
may be an OCL (Operator Command Language) command to request some control or sta
tus about the system operation and particularly about the batch jobs submitted by the
interactive user. It can also be a JCL (Job Control Language) statement at the job
enclosure level, which may.be either a control statement to the JCL translator (ex.LIB),
or a program call (ex. LIBMAINT). The called program may be conversational and so
communicates with the user's console. It could be, for example, the Library Mainte
nance Processor whose command language can be entered in conversational mode. See
figure 1-1 which shows how IOF activates standard GCOS functions to execute JCL
statements and call programs.

1-2

Batch case

(INPUT I

I
l

STREAM
READER

SYS IN

JCL

Common functions Interactive case

JCL
TRANSLATOR

JCL statements to
call a program

IOF case l (next command)

JOB
MANAGEMENT

terminate initiate

I

________ "" ___ conversational
1 1 data I

1 PROGRAM entry
(job step) ~-----~

CONVER
SATION AL
PROCESSOR

(i.e. LIBMAINT)

Figure 1-1 Interactive Program and Batch Program Execution.

1-3

SECTION II

INTERACTIVE OPERATION FROM USER VIEWPOINT.

This chapter describes the operation of a terminal from the interactive user's point
of view. We shall first see the conditions that are necessary to allow a log-on under
I OF. We shall then define the basic interface between the terminal and the system,
promts, message editing, system messages, the communication mail boxes and text
input. Once these concepts are well defined, we shall be able to describe the operation
of an IOF terminal and consider a conversational program.

PROMPTS

A prompt means that the terminal is waiting for an input text. The prompt is
aligned in the first column of the terminal line with the input text following up to maximum
of 255 characters. Since there are differe.nt levels of conversational language it is use
ful to introduce the different types of prompts. The prompt provides infor~ati~n about the
processing level of the terminal and in particular indicates which language the user is
authorized to enter at that moment.

PROMPTS

S:

C:

R:

I:

???

MESSAGE EDITING

PROCESSING LEVELS

System Command level, only OCL and JCL languages allowed.
Line Continuation, current line is not complete and terminal is
waiting to continue.
Processor Command level, in the case of the Library Mainte
nance processor (LIBMAINT), only the LIBMAINT language
is authorized.
Request level, in the case of the Library Maintenance processor
only the Text Editor language is authorized.
Input Data Request, the conversational program requests data.
In the case of the Library Maintenance processor it may mean
that you are within the Text Editor in an 'Append', 'Insert' or
'Change' sequence;
Break interruption.

The IOF software adapts the message for the terminal's physical characteristics,
the message is automatically split onto several lines, VIP-like terminals are handled in
a no scrolling mode. This means the operator has to enter a ready signal (e.g. $*$
RDY BTNS Command) in order to unlock the screen when filled with messages and thus
be able to display the following messages.

2-1

Message editing observes a number of conventions so as to ease the readability of
the console listing. In general, the columns 1 to 3 of the listing are reserved for con
trol characters and messages, input texts are printed starting from column 4 to the end
of the line. The control character is intended to identify the kind of mes sage that is
printed or the type of the request to be entered (i.e. prompts).

MESSAGES AND
PROMPTS

Prompts

Synchronous
messages

Asynchronous
messages

Asynchronous mes
sage with a deferred
reply

CONTROL
CHARACTERS

S:V>
C:V>
R:V>
I :V>
???
-:V>

>>>
<<<

V>V>V>
V>V>*

V>**

nn/

MEANING

system command level
processor command level
processor request level
input data level
break interruption
line continuation

start banner of a processor

end banner of a processor
message corresponding to normal result
error of severity 1
error of severity 2
error of severity 3

messages received through the user's mail
box

nn represents the system number used to
identify the reply when entered

Note: V> = blank

LOG-ON AND LOG-OFF PROCEDURE

The manual procedure is fully described in the 'Terminal Operation Manual'. The
following is an example of a TTY-like terminal connected through a switched line with
the 'controls' log-on option. IOF needs a user name (may be the terminal-id) to be
cataloged in the site catalog.

ACTION

break signal
listener request

listener request
listener mes sage
IOF banner
message

of today
ready message

log-off request

TERMINAL ACTIVITY

depress the break key
10. 32 ID, USER/PROJECT /BILLING, APPL?TOOl,
ATKINS, IOF
10.32 PASSWORD?
10.32 TOOl ACTIVATEDF<t>R I<t>F <t>N FEB 28,78

))) 10.33 IOF 10.01

~ MOT:IOF SESSION TERMINATES AT 12.00
S:

S:QUIT;

2-2

REF.

1

2
3
4

5
6
7

ACTION TERMINAL ACTIVITY REF.

log-off banner <<< 11.15 ATKINS LOGGED OFF
CPU 0.572
ELAPSED 79.012 8

Explanations of the above references:

1. The user may either press the break key or type the $*$ BRK BTNS
command, if there is no break key which also causes an interrupt.

2. The system requests the user to enter his identification which consists
of:

ID-mandatory with a maximum of 4 characters. This is
the terminal-id as declared in the network configuration.

USER-mandatory with a maximum of 8 characters. This
user name must both be unique and must exist within the
site catalog.
PROJECT-optional with 8 characters maximum. The
specified project-id overrides the default project-id attached
to the user.

BILLING-optional with 8 characters maximum. Account which
overrides the default one attached to the project.

APPL-mandatory with 8 characters maximum. This is the
application name. The 3 characters 'IOF' must be entered
ta be logged-on with the IOF facility although this para-
meter may not be requested if the terminal has been dedi-
cated to IOF at network generation time.

3. PAS SWORD attached to the user name, it is mandatory.
4. The listener acknowledges the user's identification and requests

IOF. In other words the listener requests the scheduler to
initiate a job and start a new IOF step for this new user. Note
that the scheduler may deny the request if the machine has too
many users.

5. The I OF log-on banner. This indicates the I 0 F version number
(i.e. the actual state of the patches in the IOF load module).

6. and 7. First, IOF lists the messages that have been sent to the
user's mailbox whilst he was logged-off. It may also display
the Message of Today from the system (which has been entered
by the main operator by using the MOT command) if it exists.
Then, it issues the system level prompt.

8. The log-off is simply triggered by means of the QUIT command. IOF
displays a log-off banner with information about the CPU time used and
the total elapsed time of the session (in minutes and thousandths of a
minute).

MESSAGES

The IOF user receives two types of messages at his terminal; asynchron0us mes
sages and synchronous messages. These messages are to be distinguished from

2-3

prompts. Prompts as we have seen, inform the user of the processing level of the ter
minal and are a request to the user to enter commands or lines of text. (We have seen
that the control characters printed in the first three character positions on the display
or printline tell us what type of message follows). However, messages received inform
the user about the state of his program, for example, or information sent by another
user. See Figure 2-1 for the relation of message types.

MESSAGES

ASYNCHRONOUS SYNCHRONOUS

c CONSOLE) c USER) c IOF)

Figure 2-1 Mes sage Types

We can see from the above figure that both asynchronous and synchronous messages
are further subdivided into other types of message. The asynchronous type messages are
subdivided into Console and User mes sages; this reflects their origin. ~9.1'.!~~!~H-ll!~S sages
(sometimes known as System messages) ~-t:- asynchronous messages sentfrom GCOS.
User messages are those messages which are actually sent from the user's program, for
example, using the COBOL ACCEPT /DISPLAY statements.

Synchronous messages are also subdivided into other types of messages; Proces
sor and IOF messages. As with the Asynchronous messages the names Processor and
IOF reflect the origins of this type of message. The IOF messages are sent directly
from I OF. The Processor messages are sent directly from the called processor, for
example LIBMAINT.

Asynchronous Messages

All asynchronous messages are queued in an area called a mailbox. The messages
which are stored in the mailbox are organised by user-name and not under terminal-id.
As we have seen asynchronous messages can be sub-divided into two types: asynchro
nous messages which are queued with no reply and asynchronous messages with a defer
red reply.

Asynchronous messages which are queued are displayed on the terminal or display
as follows:

··:)I QUEUED ASYNCHRONOUS MESSAGE
The first three characters show the message type; a queued asynchronous message with
no reply.

2-4

Asynchronous messages which are queued in the mailbox with a deferred reply are rep
resented on the terminal or display as follows:
nn/QUEUED ASYNCHRONOUS MESSAGE WITH DEFERRED REPLY
The first 3 characters show the message type; a queued asynchronous message with a
deferred reply. The two characters nn represent the system number which is used to
identify the reply when it is entered.
Following are some examples of asynchronous messages:

---j 19.00 X32 IN SCANNER ABITOL P SPR=7

--~)·19.01 X32 STARTED SCANNER ABITOL P

As we have already seen all asynchronous me.ssages are queued. Asynchronous mes
sages are queued so that they may be displayed when the user is ready to receive them.
Also we have seen that asynchronous messages may be sub-divided into two types:

- Console messages consist of those messages which are normally sent to the mas
ter operator from the GCO S System. More information may be found in the man
ual "Console Messages".

- User messages are either sent from another user or is sued from a program.
The mailbox mechanism may be used as a means of communication between two
interactive users, through the JCL SEND command. Consider the following
example:

S: SEND 'HAVE A GOOD DAY',KATKINS;

The prompt S: is followed by the JCL command SEND with the message in
quotes; the message is sent to the user-name specified in the SEND command,
in this case, KATKINS.

We have also seen that asynchronous user messages can be issued from the
user's program by using the COBOL ACCEPT/DISPLAY verbs.

Synchronous Messages

Synchronous messages are sent directly to the terminal; this type of message is
not queued and the messages do not pass through the mailbox mechanism. Synchronous
messages are either related to IOF or a Processor. A typical synchronous message
from IOF at log-on would be the IOF start banner:
)))118:26 I.OF 10.01

and after logging-off

(«20:12 ATKINS LOGGED OFF
(((\ CPU 0.831
<((\. ELAPSED 2 .16

A typical synchronous message from the LIBMAINT processor would be:

)))- 19:02 LIBMAINT 20.02(2)

and having finished with the LIBMAINT processor and issuing the QUIT command we
would receive at the terminal:

<« 119:20[

We can see again that the first three control characters inform us of the type of message
following. Thus for -~J.!!,S,~1:.?:.1.~:!; mef,.s.!&.es i ..,.the message will always be preceded by
three chevrons; the direction of t e c evrons tell us whether we have just logged-on or

2-5

logged-off from a processor. The reader should refer to Figure 2-1 for the structure
of messages and Figure 2-2 for the message handling and the mailbox mechanism.

GCOS
system

ASYNCHRONOUS
MESSAGES , ______ _

SYSTEM

I ~:~h i.._~~U~S_E_R_~~~~""'
COBOL ACCEPT/

DISPLAY

IOF

conversational
program (e.g.
LIBMAINT
processor)

command

asynchronous
messages and
deferred
replies

SYNCHRONOUS MESSAGES

Figure 2-2 Message handling and the Mailbox mechanism.

TEXT INPUT WITH TERMINALS

Text can be entered at the terminal when the appropriate prompt is received.
Input Text is entered at the terminal on one or several lines; each line being ended by
the continuation character - (minus sign) followed by the transmit character, except the
last line which ends with the transmit character only. Input text represents information
that will be handled by the receiving program before sending back a new prompt.

The input text may contain one or several commands addressing the system or a
conversational processor LIBMAINT. An input text contains a maximum of 255 charac
ters (which represents the logical record size within source language libraries).

Note that the use of the minus sign as a continuation character is !OF-specific and
has nothing t6 do with other continuation signs in other languages. The minus sign def
ines the input text continuation; other language continuation signs may be used to link
successive input texts together. The input text has the same definition for all types of
terminal, but the visibility may differ if a TTY-like or a VIP-like terminal is used.

2-6

:TTY Type Termina:s

The input text consists of one or more lines separated by minus signs (-) and new
line characters (NL). The last line does not need the minus sign ending. The minus
sign must precede the NL characters without any spaces or other characters between.
The NL character consists of the carriage return and line feed characters. They are
entered by pressing the 'new line' or 'return' keys. Consider the following example of
an input text:

S :inputtextinputtextinputte-NL
- :inputtextinputtextinputtextinputt-NL
- :inputtextinputtextinputtextinNL

Since the transmission is character per character, it is simple to correct typing errors.
The backslash character (') is used to erase one or more preceding characters (Pro
vided the ERCAP parameter was specified in the LINE statement for this particular
terminal at network generation time). . For example, two consecutive backslashes will
erase the two immediately preceding characters. The commercial 'at' sign (@) is used
to erase the whole current line. The @ character must be the last character of the line,
otherwise it has no effect (so you can enter lines with @ characters in them, provided
the last character is not a commercial 'at' sign (@)). Consider the following example:

S:inputtextinputtexxx,,tinput extNL
,S·:.inputtextinputtextinputtextinput@.NL

VIP Type Terminals

The input text consists of one or more lines separated by either a minus sign fol
lowed by a transmit character (TR) or by a minus sign followed by new line characters
(carriage return and line feed). The last line is terminated by a transmit character
without a preceding minus sign. Below we have an example of an input text using the
minus sign and the transmit character:

S: inputtextinputtextinputtextinputtext-TR
- :inputtextinputtextinputtextinputtext-TR
- :inputtextinputtextTR

We should also consider the second case of using the minus sign followed by the new line
character:

S:inputtextinputtextinputtextinputtext-NL
inputtextinputtextinputtextinputtext-NL
inputtextinputtextinputtextinputtext-NL
inputtextinputtextTR

Notice that since the text is transmitted only when you enter the transmit character, you
do not have to wait for a prompt before entering the next line. However, the input text
is limited to 255 characters and you cannot fill-up the screen before requesting the
transmit. Scrolling mode is not supported and as you have just seen, work is done at
line level and not at page level.

OPERATING LEVELS OF INTERACTIVE TERMINALS

The operation of a terminal is determined by the type of interaction you wish to
establish with the system. It may simply be the control of a batch job which is similar

2-7

to the master operator action, in which case you are essentially interested in asynchro
nous messages and OCL language. On the other hand it may be an interactive activity
using JCL to perform interactive executions of system processors. In this case you
are entering interactive commands or data and waiting for synchronous messages and you
do not want to be disturbed by asynchronous mes sages.

Let us see what happens after you have successfully logged-on. After log-on the
terminal is at System Command level. This means you are able to request actions to be
performed by the system such as call and execute interactive programs, submit batch
jobs, etc. The System Command level, as we have seen in the section 'Prompts', is
represented by the prompt S: • Languages available at this level are subsets of the
standard Operator Control Language (OCL) and Job Control Language (JCL). This com
mand level is either one of two modes of operation: the console mode or the interactive
mode. The interactive mode is the default one at log-on in the case of an IOF common
operator, but you may switch between the two modes by using the CONS/ INT commands.
We should also consider the levels of facilities available to the IOF user and the escape
levels the user enters after issuing a QUIT command. Assuming the user has success
fully logged-on and is in the interactive mode at System Command level, let us consider
Figure 2-3.

SYSTEM COMMAND

(S:) • S:LIBMAINT .•••••••• ;

PROCESSOR COMMAND

(C:) • C:EDIT ;

PROCESSOR REQUEST

(R:) .R:A

INPUT DATA LEVEL (I:)

PROCESSOR REQUEST

(R:)
R:Q;

I:¢F

PROCESSOR COMMAND

I (C:)
~ C:QUIT;

SYSTEM COMMAND

(S:)

Figure 2-3 Levels of !OF Facilities and Exit Mechanisms.

The user, having entered the Syst~m Command lev.el 1 can issue an OCL command

2-8

or a JCL statement. In the figure above we are calling a utility $LIBMAINT which
takes us into the Processor Command level where only Library Maintenance Language is
authorized. After receiving the prompt C: , which informs us that we are at Processor
Command level, the EDIT command was issued which takes us into Request level. At
this level only the Text Editor language is allowed and we have requested an APPEND
which will take us to the Input Data level. At this level we can enter lines of source
program. To exit from the Input Data level we must type F which will return us to the
Processor Request level as shown above. By typing Q we can exit from the Processor
Request level and return to the Processor Command level, where we can also type
QUIT and return to the System Command level. It should be clear that we must pass
through the Processor Request level if we enter or exit from the Input Data level.
Except the input data level is also used after entering the LIBMAINT UPDATE command.
Thus we must pass through the intermediary levels when we go from the highest level,
which we shall call the System Command level, to the lowest level, which we shall call
the Input Data level. It follows that we must pass through the intermediate levels when
we exit from the lower levels. We cannot go directly from the System Command level to
the Input Data level and we cannot go from the Input Data level directly to the System
Command level.

THE CONSOLE MODE

In this mode the user is not solicited to enter input text; asynchronous messages
that are sent to him are displayed as soon as they arrive in the mailbox. To enter an
input text (which may be a deferred reply to a request message or a command}, the user
must issue a break signal either by pressing the break key or by typing the $~.c$ BRK
BTNS command. The IOF system will acknowledge this by sending back the prompt S:
which means the user may enter the reply or a System Command. OCL commands are
handled in an asynchronous way, resulting messages are asynchronous messages which
are displayed like other asynchronous messages without blocking up the terminal. How
ever, some commands are synchronously executed within the interactive job space and
all results are synchronous messages, for example the DS command.

The console mode also allows conversational communication between the logged-on
user and batch jobs. All the messages and requests issued by a batch job are directed
to the mailbox of the job's submitter unless a CONSOLE JCL statement overrides it. So
the logged-on user will receive all the messages and requests sent by the jobs submitted
from his console. Replies may be deferred or immediately displayed depending on the
user's option. In the case of a deferred reply, which is the normal case, repeat the
system number that has been given with the request message when entering the reply.
This number is used to identify the reply with its corresponding request since several
requests may be pending. Consider a COBOL program that communicates with the user
through the DISPLAY I ACCEPT clauses. We want to have the program executed within
a batch job and we want to control its execution. The JCL statements have been pre
viously stored within the member CHESS of the MYLIB library. We are using a TTY
type terminal and the carriage return character is not represented.

ACTION

System command level,
console mode
Start CHESS job

Wait for job scheduling

TERMINAL ACTIVITY

S:CONS
Depress the break key
S:SJ CHESS:MYLIB
Depress the break key
S:DS CHESS

2-9

ACTION

Display job status
(job still waiting)
System message
DISPLAY COBOL

ACCEPT COBOL with a
deferred reply (1)

DISPLAY COBOL
ACCEPT COBOL
reply (2)

I am bored ! break
signal and terminate
job

Return to the inter
active mode

TERMINAL ACTIVITY

bbbl3.50 X30 SCH CHESS ATKINS P SPR=7 DPR=9

---) 14.30 X30 STARTED CHESS ATKINS P
---) 14. 35 X30. l CHESS:WHAT ARE YOU EXPECTING ME
TO DO?
01/14.36 X30.l CHESS:ACCEPT WAITING ?

Depress break key
S:Ol START A CHESS GAME
--114.30 X30. l CHESS:OK,BLACK OR WHITE ?
02/14.41 X30. l CHESS:ACCEPT WAITING ?

Depress break key
S:02 WHITE

15.00 X30. l CHESS:ACCEPT WAITING ?
Depress break key
S:T J X30

-:-) 15.05 X30. l KILLED CHESS ATKINS P
Depress break key
S;INT

S:

THE INTERACTIVE MODE

As opposed to the console mode, a terminal in the interactive mode is, by
default, ready to accept system commands. The user is advised that he can
enter a new command by the prompt S: Also in the interactive mode, asynchro
nous messages are printed at the time a System Command Level prompt (S:) or
a break prompt is printed out and just before it. They are stacked at is suing
time within the user's mailbox until a system message is to be displayed. Such
a mode is the normal mode of operation for an interactive user who is doing
program or JCL preparations. Let us consider an example. We will take the
same example as above but will describe the whole operation starting from the
writing of the COBOL program, its compilation and linking and finally the stor
age of JCL procedures. We are using a TTY-like terminal and are at System
Command lEvel. Carriage return characters are not represented. We are
using the MYLIB library to store source programs and JCL procedures. This
library is supposed· to be stored on a resident disk.

WRITING THE CHESS PROGRAM AND STORING IT

ACTION

Call LIBMAINT
LIBMAINT command
level

TERMINAL ACTIVITY

S:LIBMAINT SL LIB=MYLIB:
C:EDIT;

2-10

ACTION

EDITOR append
request

Input data request
level

End of append
Write the CHESS
member in COBOLX
Quit from the

editor processor
Number the source

program

TERMINAL ACTIVITY

R:A

!:IDENTIFICATION DIVISION.
I :PROGRAM-ID. CHESS.
!:AUTHOR.ATKINS.

!:DATA DIVISION.

1:01 DATAl PIC X (80).

!:PROCEDURE DIVISION.

!:DISPLAY "WHAT ARE YOU EXPECTING ME TO
DO?"
-:UPON CONSOLE.
I:ACCEPT DATAl FROM CONSOLE.

I:STOP RUN.
I:¢F
R:W(CBX)CHESS

R:Q

C:RENUMBER CHESS;

C:QUIT;
S:SJ LIBPRINT(CHESS,MYLIB);

If a user requires to print a library member on the line-printer he is
obliged to use the LIBPRINT expression above. LIBPRINT would typically
call the following JCL Statements.

ATTACH CATALOG! = &CATALOG;
LIBMAINT SL LIB =(&2,MD= &MD,DVC=&DVC)
COMMAND= I PRINT I &l ';';

However if the user library is catalogued in a private user catalog named
PR IV. CAT AUpG, then the command will be:

S: SJ LIBPRINT(MEMBl, MYLIB, CATAL<flG=PRI V. CATAL(flG);

The program is entered in the COBOLX format which is the best format to man
ipulate COBOL instructions at a terminal. In this format, input records to the

2-11

compiler contain only the COBOL text (from column 7 to 72 of the card format),
So you just have to enter the COBOL without number (columns 1 to 6) and iden
tification (column 72 to 80). For more details about the different formats and
options see the COBOL User Guide.
Let us consider the compiling and linking of the COBOL program. We will sub
mit a batch job as the compiler and the linker are not available in the interac
tive mode.

ACTION

JCL description of
the job to be
submitted

Write the COMPL
member in DATASSF
form
Quit LIBMAINT
Submit batch job
Log-off from I 0 F

C:EDI T;
R:A

TERMINAL ACTIVITY

I:$JOB COMPL, USER=ATKINS;
I:LIB SL,LIB=MYLIB;
I:COBOL SOURCE=CHESS;
I:LINK CHESS. LM,OUTLIB=MYLIB,
I:COMMAND ='ENTRY=CHESS';
I:$ENDJOB;
I:¢F
R:W COMPL
R:Q

C:QUIT
S:RUN COMPL MYLIB;
S:QUIT;

14.20 ATKINS LOGGED OFF
CPU : 0.572
ELAPSED 45. 012

Once you have checked the compiler and linker outputs (which we can do with
the interactive SCANNER function from the terminal), you can store a JCL
description of the program in MYLI B and then submit the program as a job.

ACTION

Asynchronous mes
sages sent by the sys
tem whilst the user
was logged-off

JCL description

TERMINAL ACTIVITY

depress break key
17. 30 ID, USER/PROJECT /BILLING, APPL?

TOOl, ATKINS, IOF
17. 30 PASSWORD?
17 .31 TOOl ACTIVATEDF(flRI(flF (flNFEB 28, 78
))) 17. 32 IOF 10. 01

16.35 X235 STARTED COMPL ATKINS P
16. 35 X235 COMPLETED

S:LIBMAINT SL LIB=MYLIB;
C:EDIT;
R:A
I:$JOB CHESS,USER=ATKINS;
I:VALUES LM LIBRARY.
I:STEP CHES-S LM, FILE=&l;
I:ENDSTEP; -
I:$ENDJOB;
I:¢F

2-12

ACTION

Write the CHESS
member in DATASSF
form
Run CHESS
Display Status
Using the C(/JN S(/JLE
mode

THE BREAK SIGNAL

TERMINAL ACTIVITY

R:W CHESS
R:Q
C:QUIT;
S:RUN CHESS
S:DS CHESS
S: C(/JNS;
--1 16.55 X321 STARTED CHESS ATKINS P

I Olii6.58 X321 CHESS: WHAT ARE Yc,;?U EXPECTil\IG
I ME T(/J D(/J ?

The break signal is entered either by depressing a break key, when there is one, or by
using the BTNS command $':~$BRK. The break signal normally interrupts the current
processing and sets the terminal at the break interrupt level by sending the ??? prompt.
The user then has three options:

1. Enter an empty command by just depressing the new line key or the
transmit key in the case of a VIP terminal.
Result: • Under the LIBMAINT processor, the processing of the
current command is stopped 3.nd the terminal is returned to the
Request (R:) or Command (C:) level.

2. Enter the RESUME command (abbreviation RS).
Result: • The current processing is resumed at the point it was
interrupted by the break.

3. Enter an OCL or a JCL command.
Result: • The current processing is aborted and the new system
command is executed.

Examples of Break Handling:

BREAK

BREAK

BREAK

BREAK

S:LIBMAINT;
C:PRINT TOTO;

???DS XlO
***TASK MAIN J=Z P=O AB(/JRTED BY USER

10,.30 XlO SCH CHESS ATKINS PSPR=7 DPR=9
S:LIBMAINT;
C:EDIT;
R:R.ALPHA
R: 10 $P

??? NL
R:800, $P

???RS;

??? ZUT;

2-13

BREAK

BREAK

~:0:0:~ ILLEGAL COMMAND
~:0:0:~TASK MAIN J=2 P=O AB<PRTED BY USER
S:LIBMAINT
-:SL

???
S:
???
S:

2-14

SECTION III

INTERACTIVE COMMAND LANGUAGE

The interactive command language consists of a subset of the Operator Command Language
(OCL) and the Job Control Language (JCL) with some IOF specific commands. Syntax
and semantics are identical with existing languages and provide the same facilities.
OCL commands are directly handled by the interactive monitor, JCL commands are tran
slated by the standard JCL translator and generally imply the execution of a system
processor (LIBMAINT). This processor must support a conversational execution as
opposed to a batch execution with a command file. Only the LIBMAINT processor is
provided in its conversational version, and it is restricted to the maintenance of source
libraries. Interactive commands can be entered when the terminal is at the system
command level. Subsequent levels correspond to the different conversational languages
of the LIBMAINT processor (or other interactive programs). Consider the following
example:

S:LIBMAINT SL,LIB=TOTO;
C:EDIT
R:A
I: ¢F
R:Q
C: QUIT;
S:

SYNTAX OF IOF COMMANDS

At system command level, the input text always begins with a command name followed by
arguments. The command name is either a JCL statement name or an OCL command
name.

S
·. < ~JCL statement~

OCL command
name) < arguments) [;]

OCL commands cannot be mixed with JCL statements within the same input text. There
is only one OCL command per input text and an OCL command cannot be split into succes
sive input texts. The continuation character must be used if the command cannot be
entered within a single line. The semi-colon is optional at the end of an OCL command.
Consider the following example:

S:SJ CHESS:MYLIB:Cl3l:MS/M400 -~
-: (PARl, PARZ) NL

S:

JCL statements are completely free format; each statement must be ended with a semi
colon. There may be several statements within the same input text and one statement
may be split between successive input texts. Consider the following example:

3-1

S:LIB SL ®
-: INLIBl=MYLIB @
-:INLIB2=MYLIB2; ®
S:

OCL COMMANDS

The following is a list of the OCL commands that are allowed under IOF and a brief
description of some specific IOF commands.
The first group control and display jobs belonging to the interactive user.

SI~ SJ 5 submit a stream of batch jobs (see JCL RUN statement)

DS display scheduling
HJ hold job
RJ release job
MJ modify job (class, priority)
T J terminate job

The following group of commands control and display sysout deliveries (or outputs) gen
erated by jobs submitted by the interactive user.

DO display output
HO hold output
RO release output
CO cancel output

The following facilities are provided by BTNS to display and communicate within the net
work and are only available with the master console

DT display telecommunications
BT broadcast telecommunications

The following miscellaneous group of commands are also available.
DD display device
DTM display time
DMM display the memory size of the machine and the currently used memory for

locked segments
CMSG cancel all the asynchronous messages that are pending in the user's mailbox.

Useful when there are too many unnecessary mes sages to be printed.

IOF SPECIFIC COMMANDS

These commands do not have any arguments; they are intended for terminal control.
INT to switch to the interactive mode (terminal always waiting for an operator

reply).
CONS to switch to the console mode (terminal normally waiting for printing of asyn

chronous messages).
QUIT to end an interactive session and log-off.

BREAK COMMANDS

When the system sends back the prompt ??? after a break, the following commands can
be entered:

3-2

Empty command

RESUME (RS)
Other commands

to return to processor language level or resume current
processing.
to resume the current processing.
to terminate the current processing and have the command
executed.

A full explanation of OCL commands and the corresponding error messages can be found
in the System Operation Operator Guide.

JCL STATEMENTS

The following is a list of Basic and Extended JCL commands and their abbreviations
which are supported under IOF.

Basic Statements

Extended Statements

COMMENT (C)
RELEASE (RLS)
SEND
SCAN
WRITER (WR)

LIB SL
LIBMAINT (LMN)
RUN

Further information about Basic and Extended Statements can be found in the JCL Ref
erence Manual; the Basic Statements have their full capabilities explained so we need
not describe them here. Their characteristics are the same as in a batch environment
apart from some exceptions which are described below.

Operation of Basic Statements

• Use of the SEND statement: this allows communication between different users
through the mailbox system. Asynchronous messages are immediately displayed if the
user is already logged-on or at his next log-on. Consider the following example:

S: SEND 'WHAT DO YOU THINK OF A FISHING PARTY
NEXT WEEK-END ?' KATKINS

The message between quotes will be sent to the user named KATKINS.

Operation of Extended Statements

Extended statements are specified as there are some restrictions under I OF use.

LIB SL STATEMENT

LIB SL (INLIB l=

(INLIB2=

(INLIB3=

I
~TEMPa

(input-library)t]

~TEMP:
(input-library)~]

?EMP:
(input-library)~]

3-3

The LIB SL statement allows input library specification to be used, according to the
standard search rules, by the LIBMAINT processor. A maximum of four libraries may
be declared at any one time. The last entered LIB SL statement completely overrides
the preceding one; it defines the new search rules. Consider this example:

S: LIB SL INLIBl=Sl, INLIB2=S2, INLIB3=S3;
S: LIB SL INLIBl=S2, INLIB2=Sl;

The declared libraries in the search order are then: S2 and S 1, declared at any time by
entering a LIB SL statement without specifying any libraries. Consider the following
example:

S: LIB SL;
No more libraries exist within the search rules.
Warning: It is possible to have a library overflow when trying to modify too many lib
raries. The problem can be solved by erasing all the declared libraries before entering
the new LIB statement. Consider the example below:

S:LIB SL, INLIBl=Sl, INLIB2=S2, INLIB3=S3;
S:LIB SL, INLIB=HYLIB;
~:~~:0:~ FATAL 142 LIBS TABLE OVERFLOW
S:LIB SL;
S:LIB SL, INLIBl=MYLIB;
S:

LIBMAINT SL STATEMENT

LIBMAINT SL n COMFILE= (sequential-inrut-file~
COMMAND;'command; ... ']

~
INFILE = (sequential-input-file)
I NOE F = (indef-parameters ~

[OUTFILE = (sequential-output-file)
[OUTDEF = (outdef-parameters)]
LIB =~TEMP: TEMPI: TEMP2/: (output-library) ~ t]]

Restrictions: using PRTFILE is excluded and only suurce libraries are allowed.
The COMFILE is optional and when specified it refers only to a permanent sequential
file or member of a library (input enclosures may not be used). ·
Further information about the Statements above can be found in the LIBRARY MAINTE
NANCE REFERENCE MANUAL.

RUN STATEMENT
RUN member (source-library)

VALUES = (valuel ,
CLASS = class
PRIORITY = priority
HOLD
HOLDOUT
JOBS = (jobl job2)
SW = switch-values '

keywords

There are no restrictions with this command.

value ,)

The $RUN command provides the interactive user with the facility to submit batch jobs
from his terminal. It has the same facilities as the SI I SJ OCL commands and can be
used as well. All the system messages that report the execution of the submitted batch
job are duplicated and sent to the user's terminal. In addition, the interactive user
represents the master operator , whilst for communications the batch job is programmed
to deal with the master console. The REPEAT and ROLLBACK requests are normally
sent to the master operator in cases of abnormal terminations of steps using the REPEAT
and JOURNAL options. These requests are sent to the interactive user provided that
he is still logged on. Note that in the case of a warm restart after a crash, these

3-4

restart requests are always sent to the master operator.

For further information see the JCL Reference Manual.

LIBMAINT COMMAND LANGUAGE

The following commands are available for use with the LIBMAINT processor. More
information on their use may be found in the Library Maintenance User Guide .

. CODE and DECODE commands may be used in order to provide maximum secur
ity for data stored in one or more source language units. These commands allow
a user to encypher or decypher units according to a key which is specified in
the command. Attempts to display an encyphered unit results in an unreadable
listing.

• COMM introduces a comment that will be listed in the execution report.

. COMPARE command is used to compare two units and print out the changes made
to the first one to yield the second one .

. CREATLI ST command creates a unit containing a corr.plete or selective list of
the member names of a library. This unit can be later used as an "indirect
name list" in commands .

. DELETE is used to suppress one or more members of a library in order to
recover their space for further use •

• EDIT is used to call the Text Editor •

. EJECT causes a skip to the top of a new page in the exec_ution report.

• ESCAPE allows a user to enter ~CL statements without having to leave
LIBMAINT.

• EXEC is used to execute a series of command lines contained in a source lan
guage library unit.

. LIST is used to produce a complete or selective table of contents of a SL lib
rary or a sequential file save copy of a SL library.

• LOWER and UPPER commands respectively convert one or more source lan
guage units into lower or upper case letters .

. MOVE is to be considered with the same meaning as the equivalent COBOL verb.
It is a transfer of a piece of information from an origin to a destination without
altering the original information. Strictly speaking, it should therefore be con
sidered as a copy rather than a move •

. QUIT is used to exit from interactive LIBMAINT.

3-5

. PRINT is used to display the contents of one or more members of a source lan
guage library.

. PUNCH is used to ·produce a card deck image of one or more source units .

. RENAME allows the user to change the name of a source unit.

. RENUMBER may be used to change the internal line numbering of one or more
source units.

. SORT command sorts the lines of one or more units in ascending or descending
collating sequence. The position and length of the sort key may be specified by
the user.

. ST A TU S is used to indicate what should be done in the event of an error whilst
executing a command .

. SUBMIT may be used for requesting submission of a series of JCL statements
stored in a source language library unit. SUBMIT supports parameterization
in a scheme similar to that of command EXEC.

. TITLE is used to introduce a title line to be printed on top of each execution
report page.

. UPDATE is followed by a number of "requests", each one indicating a modifi
cation to be made on the contents of a source language library.

3-6

SECTION IV

THE TEXT EDITOR

The Text Editor is called by means of the EDIT command. This command does not
specify by itself the detail of the editing operations to be performed. This is achieved
by means of a number of request lines that follow the ED IT command in the command
input stream. Requests are processed sequentially until a Q (quit) request is found indi
cating that the text editing session is terminated.

The Text Editor is a very powerful tool when its full potential is used. It is, how
ever, designed in a modular fashion to simplify its approach for a user who wants to do
rather simple things. This section will introduce the main features of the Text Editor
in a progressive manner. If a user wants to be acquainted with its more elaborate poten
tialities, he should refer to the LIBRARY MAINTENANCE REFERENCE MANUAL,
where a complete description of all Text Editor functions is given.

WORKSPACE AND ADDRESSING

Text editing requests do not operate directly on a source unit (as the UPDATE com
mand does), but on an image of the source unit which is known as a workspace.
Requests allow the user to:

- feed one or more units into the workspace
- to add lines read from the command stream into the workspace
- to modify the contents of the workspace
- to write the contents of the workspace into a unit

These requests will be introduced later on in this chapter. For the present time,
we will concentrate on the layout of the workspace, irrespective of the way in which it
was filled.

The workspace can be viewed as a series of continuous lines. A special case
arises when the workspace contains no line at all; this case is reported as an EMPTY
WORKSPACE. The only operations which are allowed on an empty workspace are to
feed a unit into it and to add lines read from the input stream.

It is important to be able to refer to a particular line in the workspace. Various
methods are provided for that purpose. They are designated addressing methods.
There are basically three addressing methods.

Line number addressing is the simplest one; it is achieved by specifying the
number of the line that one wants to address. It should be noted that the line number
is generally not . the rank of the line in the workspace, but its internal line number as
generated by the RENUMBER or MOVE from COMFILE commands for example. If one

4-1

had created a unit with the default line numbering (NUMBER=(lO, 10)) and fed it into the
workspace,

10 would refer to the fir st line

20 to the second one

100 to the ten th one

etc ...

Additional means are provided to refer to the first line and the last line in the work
space. Symbol 1 denotes the first line and would be equivalent to 10 in the preceding
example. Symbol $ denotes the last line in the workspace.

Context addressing .LS used to refer to a line by specifying a string of charac
ters contained in the target line. In its simplest form, the address is specified by:

I string I
i.e. by enclosing the requested string between two slash symbols. For example:

/ SECTION-3/

would refer to a line containing the string of characters "SECTION-3". The string
enclosed between the two slashes is acting as a pattern to be matched on to the target
line. When a match is found, the matching line is the addressed one. The pattern is
known in the Text Editor as a Regular Expression.

More complex patterns (i.e. Regular Expressions) are provided in the text editor.
They are introduced here with examples.

If one wants to address a line that contains a known string at its beginning, symbol
-, is used as first character in the expression. For example, expression:

/ 1 SECTION-2/

will address a line that starts with string "SECTION-2"; thus line:

will be a correct target, but lines

or

will not.

SECTION-234.

eeeSECTION-2
X3SECTION-3

In a similar manner, it is possible to specify that a string is to be matched at the
end of a line by using the $ symbol at the end of the regular expression. For example,
expression:

matches lines:

or

but not line

/ GOTO X; $/

PX =33; G(/JT(/J X;

GOTO X;

GOTOX; Z = 4;

Other means are provided to specify that a position in the regular expression may

4-2

match any character by indicating a period character in that position. For example
expression:

would match lines containing strings:

AABC

ABBC

AXBC

etc ..•

I A.BC/

It is also possible to specify that a character may appear optionally or as many
times as required to match the target line. This is achieved by following the optional
character with symbol~:~. Hence, expression

will match lines containing strings

INTO

INXTO

INXXTO

INXXXXTO

etc ..•

Note that if one wants the optional character to appear at least once in the required pos
ition, this has to be specified by stating the character twice, the second occurrence
being followed by the ~~ Hence:

would match all of the preceding lines except the first.

It is also possible to combine two or more of these devices to address a line. For
example, the sequence of characters . '~ would match any occurrence of any character.
Examples of regular expression follow.

Expression

/ ABCD/

t1ABC/

/ ABCD$/

(1ABC$/

/ AXX*B/

I A.*B/

Matches

xxxABCDyyy

ABCxyz

xyz ABCD

ABC

AB
AXB
AXXB

AXB
AXXB
AXXXB

AB
AxB
AxyzB

4-3

Does not match

AxBCD

xABC

ABCxyz

xABC
AB Cy

AXYB

AB
AXYB

AC

Expression Matches

AxB
AxyB
AxyztB

ABCDEF
ABCxy ...• DEF

Does not match

AB
AC

xABCDEF
ABCxyDEFz

The last addressing method is relative addressing. This is achieved by specifying
an increment or a decrement to one of the two preceding forms of addresses. For exam
ple:

$-1

30-2

120+6

I ABC/+l

/DEF/-6

etc ...

addresses the last but one line

addresses the second line

addresses two lines before line number 30
(i.e. line 10 if numbered with default option)

addresses six lines after line number 120
(i.e. line 180 if numbered with default option)

addresses the line following the one containing
string "ABC"

addresses six lines before line containing string
"DEF"

Before beginning to introduce the first Text Editor requests, it is necessary to
introduce another concept: the notion of current_ line. The current line is the last line
on which an operation was performed; all editor requests leave the current line pointer
with a well defined value that can be used in a subsequent request. The user can refer
to the current line by means of symbol . (dot). For example:

• + 1

- 6

TEXT INPUT

addresses the current line

addresses the line following the current line

addresses the line which lies six lines before the current
line

As explained before, there are two means by which text can be fed into an empty
workspace:

. by reading the contents of the workspace from a source unit

. by entering lines into the command stream and appending them into the
workspace

Reading a unit into the workspace is achieved by means of the R (Read) request,
the syntax of which is:

R unit-name

Search rules apply, unless the name of the unit is explicitly prefixed by one of the

4-4

library key words.

Examples:

R INLIBZ : MYUNIT

R LIB : PROGRAMZ

If the workspace is initially empty, its contents after the read request are the same as
the contents of the read unit. If the workspace was not initially empty, the contents of
the read unit are appended after the last line in the workspace. Thus, issuing a series
of read requests in succession results in the physical appendage of the read units into
the workspace.

Example:

A contains: AX
BX
ex
DX

B contains: YY
01
zz

e contains: X
y

If the workspace is initially empty and the following requests are entered:

RA

RB

R e
workspace contains as a result the series of lines

in that order.

AX
BX
ex
DX
yy
01
zz
x
y

It is possible to specify that the appendage of the read unit be made at a place
other than the last line of the workspace. This is achieved by specifying an address
(as defined earlier) as the left argument of the read request. For example, if the work
space is initially empty, requests:

R A

/eX/ R e

result in a workspace containing the series of lines:

AX
BX

4-5

ex
x
y
DX

where the workspace was first fed in with the contents of A, then the contents of unit C
were appended after the Jine containing string "CX".

When a read request is executed, the current line pointer is set to the last line
read into the workspace.

The other method for entering text into the workspace is to append text given in the
command stream into the workspace. This is achieved by means of the A (Append)
request whose form is:

A

literal text lines to be input

The A request is followed by the series of lines to be fed into the workspace, end of the
series of input lines being indicated by the sequence of characters "tF" at the beginning
of a new line.

When the workspace is initially empty, the A request loads the workspace with the
input lines. If the workspace already contains some text, the input lines are appended
after the current line. For example, the series of requests:

R UNITl

A

I text

tF
will result in a workspace containing the contents of unit UNIT 1 followed by the literal
text given as input in the A request. This is due to the fact that the R request has
positioned the current line pointer to the last line read (i.e. the last line of UNITl).

It is also possible to append literal text at any place in the workspace. As in the
R request, this is achieved by giving an address as the left argument of the A request.
For example, the series of requests:

R UNITl

$-2 A

~ Text 1

tF
I+ 1 A

I text 2

tF

4-6

will result in a workspace containing UNITl with Textl appended after the second from
last line (before the last but one) and with text2 appended after the second line of UNIT 1.

A variation of the Append requ'--st is the I (Insert) request. When applied to an
empty workspace, it behaves like the A request. When applied to a workspace contain
ing text, appendage of the input text is made before the current line or before the
addressed line. Thus, request:

I I

j text

iF
would append literal tm~t before the first line in the workspace.

In both cases, the current line pointer is set to the last text line appended (i.e. the
last one input).

SIMPLE REQUESTS

This subsection introduces requests which are most frequently used in simple text
editing situations.

One of these requests has already been introduced, it is the Q (quit} request that
terminates the Text Editor session. Lines following the Q request will be interpreted
as LIBMAI NT commands.

The Q request by itself does not store the results of any text editing which might
have been done. This has to be asked for by means of a W (write) request which writes
the contents of the workspace into a specified unit of the LIB libra.ry. The format of
the W request is:

W (type)-(LIB:] name

The type specified in the command is the type to be given to the created unit. If the
named unit already exists in the library, the request will be rejected. If the user
wants to overwrite an existing unit, he must use the Z (overwrite) request which is a
\!aria ti on of the W request. Its format is

Z [{type)] [LIB:] name

In this form it is not necessary to specify the type to be given to the unit; when omitted,
the former type of the unit will be kept.

The normal layout of a simple edit session will thus be:

EDIT;

R unit

i edit requests

W or Z (type) unit or new unit

4-7

The W and Z requests allow the user to write only a part of the workspace into a
source unit. For this function, the reader should refer to the LIBRARY MAINTENANCE
REFERENCE MANUAL.

We shall now discuss the specific edit requests. These fall into two broad classes:
those that modify the workspace and those that display some parts of the workspace con
tents without altering them.

The simplest edit request is the locate request which is used to set the current line
pointer on to a desired line. Its format is simple, it consists of an address alone on
the request line. Thus:

$

I

100

10 + 3

/1 ABC/ +2

etc ...

are valid locate requests.

The locate mechanism consists in scanning the workspace from the current line
pointer down to the last line until the addressed line is found. If not found in this sec
tion, the search continues from the first line down to the current line. If the search
still fails, an error is reported in the form "SEARCH FAILED". Once the search is
successful, the matched line is displayed and the current line pointer is set to that line.

There are two variations to the locate request. The N (No operation) request
which has the form:

address N

and acts like the locate request with the difference that the matched line is not displayed
when found. Example:

120 N

$N

/XYZ/N

The backward search request (() searches for a line containing a string starting back
wards from a specified address (i.e. from the address upwards to the first line, then,
if needed from the last line upwards to the specified address. Its format is:

[address] </regular expression/

If the address is omitted, search starts from the current line. Thus:

(/PARAG-2/

120 (/I ABC/

/ABC/< /I XYZ$/

are valid backward search requests.

All variations of the locate request set the current line pointer to the matched line

4-8

and issue a diagnostic if no match is found.

Other requests that ~o not alter the contents
print with number and the print number requests.

f addressl
'-

f ,addressz ll
L .I .J

of the workspace are the print,
Their basic format is:

!r1
~ = '

the

P means that the target lines should be printed with·.)Ut their line numbers, L requests a
print with numbers and = is used for printing only tne line number.

When used with no address (i.e. L, P or =), the requests means that the current
line is to be printed. When used with one address, the addressed line will be printed.
Examples of use are:

$P

I +5 L

/ ABCDEF/L

.-3=

When used with two addresses, the range of lines starting at the line addressed by the
first address and ending at the line addressed by the second address inclusive is printed.
In particular, the following request:

1,$L

will print the whole contents of the workspace. Examples of requests are:

$-E, $ p

-in+z L

I ABCD/ , I ABCD/ +4 P

100, 150 L

100' 100+10 p

etc ...

Note that 100 + 10 does not mean 110 but 10 lines after line number 100.

Requests that alter the contents of the workspq.ce are the C (Change), D (Delete)
and S (Substitute) requests.

is:
The C request has a behaviour similar to that of the Append request. Its format

[address! [,addressz]] C

I literal text

</:.F
This means that the ;· ;.inge of lines defined by the two addresses is replaced by the literal
text lines that follow the request up to the "</:.F" string. If the second address is omit
ted, the changed range is limited to one line, namely the one addressed by address 1.
If both addresses are omitted the current line is changed. After a C request, the cur
rent line pointer is set to the last changed (input) line. It should be noted that a range
of lines may be replaced by any number of lines, the number may be smaller, greater

4-9

or equal to the number of lines in the changed range of lines.

The D request, deletes a range of lines. Its format is:

[addressl [• address2 l] D

When one or both addresses are omittej, the same rules as in the C request apply. In
particular, a D alone will delete the current line. The current line pointer is set to the
line immediately following the la~ t deleted one. Examples of delete requests follow:

/ABC/ , /ABC/ + 10 D

delete from line containing string "ABC" down to 10 lines after this line.

l,$D

delete all workspace. The workspace becomes empty.

$D

delete last line.

120 D

delete line number 120.

D

delete the current line.

The Substitute request is slightly more complex. It is used to replace all occur
rences of a given string in c: specified range of lines by a new string. The general for
mat of the S request is:

[address 1 (, address 2 J] SI regular expression/string/

The range of lines where the substitution applies is determined by address 1 and address
2 with the same conventions as for the C or D requests. All strings that are matched by
the regular expression are replaced by the specified string. Examples of use follow.

Initial string

THE BROWN SOX

THE BROWN FOX

A BROWN FOX

TWO BROWN FOXES

TWO BROWN DOGS

etc •.•

!{equests

S/SOX/FOX/

S/I THE/ A/

~S/ A/TWO/

~S/$/ES/
S/FOXES/DOGS/

S/BROWN//

Resulting string

THE BROWN FOX

A BROWN FOX

TWO BROWN FOXES

TWO BROWN DOGS

TWO DOGS

(Additional functions of the S request will be found in the LIBRARY MAINTE
NANCE REFERENCE MANUAL). At the end of the S request, the current line pointer
is set to the last line in the addressed range.

If one wants to operate a substitution over the complete workspace, one should
write

I , $SI regular expression/ string/

If no matching string is found a diagnostic is issued by the Text Editor.

4-10

MORE ELABORATE REQUESTS

Following is the description of requests that are less frequently used than the pre
ceding one.

It has been seen that the P, L, D and = requests can apply to a range of lines by
specifying the beginning and end addresses of the range. The requests apply to the
whole range which implies that they can be used only if the target lines are contiguous.
The Global requests (GP,GL;GD,G=) generalise the scope of the P;iL,D and= requests
to apply to non contiguous lines within a given range of addresses. The format of the
Global requef:ts is:

f address 1 [. address 2 J J G ~ g /regular exp res si on/

This means that the P, L, D or = request is to be applied to all lines in the specified range
that are matched by the specified regular expression. If no address is specified, the
whole workspace is assumed h, $). For example, request

GD/IABC/

would delete all lines in the workspace that start with string "ABC". The request GL or
GP is particularly useful to list all lines of a workspace that meet a certain criterion
(i.e. that contain a SAecified string or match a given pattern).

A variation of the Global request is the V (Exclude) request that applies the P, L, D
or = request to all lines that do not meet a specified criterion. For example,

vnr1ABC/

would delete all lines in the workspace that do not start with string "ABC!!.

Other more elaborate requests may be used:

- to count the number of lines that contain a given string (#request);

- to break a line into two or more pieces (% request);

- to merge two or more lines into a single line (& request}.

For these requests, the reader should refer to the LIBRARY MAINTENANCE REFER
ENCE MANUAL.

USING AUXILIARY WORKSPACES

Up to this point in the discussion of the Text Editor, we have assumed the exis..,..
tence of only one workspace. This workspace, known as the current workspace is the
object of all requests: i.e. editor requests, displays or modifications Of the contents
of this workspace.

In fact, Text Editor supports up to six workspaces. However, at any moment,
only one workspace is known as the current workspace; other workspaces are known as
auxiliary workspaces. Workspaces are named 0, 1, 2, 3, 4 and 5 respectively. When one
enters the EDIT command, workspace 0 is created and designated as the current work
space. To create a new auxiliary workspace, it is sufficient to mention its name in one
of the workspace requests detailed below. When first mentioned, the auxiliary

4-11

workspace is initially empty.

To change the current workspace, the user must issue a B request (Change Base
or Workspace). The current workspace becomes an auxiliary workspace and is left as
it is, the designated auxiliary workspace becomes the current workspace. All subse
quent edit requests will apply to this new current workspace until another B request is
encountered. The format of the B request is:

B(x) with x=O, 1, 2, 3, 4 or 5.

If in doubt about which is the current workspace, the user can is sue an X request which
displays the status of all known workspaces. The current workspace is identified by an
arrow and the number of lines in each workspace is displayed. The format of the X
request is:

x
and a typical output would be:

~:~woRKSPACE (0) 120
~:~woRKSPACE (2) ---7 140
~:~woRKSPACE (5) 220

Three requests allow transfer of text from the current workspace into a designated
auxiliary workspace.

The copy (K) request copies lines from the current workspace into
an auxiliary workspace. The current workspace is left unchanged,
the previous contents of the auxiliary workspace are lost.

[address 1 [,address 2]] K(x)

The move (M) request works like the K request with the difference
that the copied lines are deleted from the current workspace

[address 1 [.address 2)] M(x)

The file output (F) request specifies that all results from a print (P,
L,=,VP,VL,V=,GP,GL,G=,etc ...) request be appended at the end of
a specified workspace instead of being printed on the execution report.
The effect of the F request is reversed by an E request.

F(x)

E

A typical example of auxiliary workspace use follows.

Example: Create a unit containing all lines of a source unit that contain
a GOTO or a PERFORM statement.

4-12

EDIT;

R UNIT

F(1)

GP/GOTO/ t
GP/PERFORM/

1

E

B(1)

W(COB)RESULT

Q

WRITING EDITOR PROGRAMS

enter editor

feed the source unit (in workspace or
file output in workspace 1

printed lines are filed into workspace 1

end file output

Change current workspace to 1

Write result

Terminate

One of the important capacities of the Text Editor is its ability to read requests
from an auxiliary- workspace. This is achieved by the tB(x) sequence of characters.
Each time that this sequence is found, it is processed exactly as if the current contents
of workspace x had been inserted at that point. This means, in other words, that the
request stream is provisionally redirected towards the designated workspace. Return
to the original request stream is made when the end of the workspace is reached or when
a request executed from the workspace results in a SEARCH FAILED diagnostic.

An important use of this feature is for inserting the same pattern of lines at differ
ent places in a unit. It is processed as follows:

1. feed the string (pattern of line) into an auxiliary workspace (say 2):

B(2)

A

tF

lines

2. Return to the former workspace

B(O)

3. At each place where the string should be inserted requests should be issued

,,.,--

A
tB(2)tF

This means that once the A request is read in, subsequent lines will be read
from workspace 2; when workspace 2 is exhausted, tF is read from the
request stream. This construction achieves the desired result.

The above construction may be used to write complete editing programs into a
workspace and to call them by means of the tB(x) mechanism. Additional requests allow
for branching, looping and testing. These are:

:x
define a label at this line

4-13

)Lx
go to label x

+)-n
go n lines forwards or backwards

*/expression/request
execute request if current line contains expression

address? request
execute request if current line pointer is at specified address

Detailed information on the use of these requests will be found in the LIBRARY MAIN
TENANCE RE FERENCE MANUAL. An example of an editor program will illustrate
some of these programming facilities.

Example:

Write an editing program that will scan all lines of a workspace
and introduce a comment at the end of each line cor taining GOTO
or PERFORM.

The following sequence may be introduced into a workspace and
called by a ¢B(x) sequence when requested.

4-14

Flowchart of the operations to be performed is given below:

~yes

set current
line to first

no

current line
current line + I

\ii

0

yes

substitute
end of line

1 by comment 1

An Editor program implementing this algorithm is given on the following page.

4-15

:N

~:'/GOTO/) LR

~:'PERFORM/) LR

: I

$?)LE

.+l N

)LN

:R

S/ $/comment/

)LI

:E

position on first line (No operation)

define label N

if line contains GOTO then go to R

if line contains PERFORM then go to R

define label I

if last line go to E

move one line forward (No Operation)

go to label N

define label R

add comment at end of line

go to label I

define label E for exit.

CONTROL REQUESTS AND ESCAPE SEQUENCE

Additional requests in the editor allow the user to control the type of output that he
wants from the editor and the action to be taken in case of errors. These requests are
known as control requests and are introduced by letter Y.

Another type of editor control is provided by an escape sequence that acts as a
kind of macroprocessing on the editor requests. Escape sequences are introduced by
~haracter rf_. Two of these have already been introduced:

rf_F to denote end of A, C or I requests

rf_B(x) to invoke the contents of a workspace.

Both the control requests and escape sequences are discussed in detail in the LIBRARY
MAINTENANCE REFERENCE MANUAL.

4-16

SECTION V

INTERACTIVE LIBRARY MAINTENANCE

Interactive LIBRARY MAINTENANCE is basically the same product as batch
LIBRARY MAINTENANCE. This means, in particular, that functions offered, syntax
of commands and behaviour of the system are the same in batch and interactive modes.

This chapter will specifically concentrate on the aspects of interactive. LIBMAINT.
Differences· between batch and interactive modes will be listed and indications on how to
enter in and to react to interactive LIBMAINT will be given. Further details of the
batch and interactive modes of LIBMAINT may be found in the LIBMAINT User Guide
and the LIBRARY MAINTENANCE Reference Manual.

ENTERING INTERACTIVE LIBRARY MAINTENANCE

Interactive LIBRARY MAINTENANCE operates under Interactive Operation Faci
lity (IOF) and is fully integrated to that system. It is assumed that the reader is fam
iliar with the basic concepts of I OF and has logged-on.

From most interactive processors' standpoint, the user's console is viewed as a
job stream: i.e. a succession of JCL statements, of commands and of data subordinated
to those statements and commands. To enter LIBMAINT, it will thus be necessary to
enter suitable JCL statements to indicate the various entities INLIBs, LIB, INFILE,
OUTFILE on which LIBMAINT is to operate. This is achieved, like in batch, by the
LIB and LIBMAINT statements.

Interactive LIB statement has the same purpose and syntax as in batch mode.
LIBMAINT statement also has the same form, the only difference is that the key word
COM FILE may be :omitted. This means that commands, requests and data can be input
from the user's console rather than from an input enclosure or a file. Both LIB and
LIBMAINT statements may be entered at any time when IOF is at "System Level",
i.e. has issued the prompt S: and is expecting an input. Following is an example of
how to enter interactive LIBMAINT.

S: ~!~ __ s_I:_,

!~~]_!3_~~-~~~~J~~~~~-~~~~-s_~~~-Sj_~~QQ.!.~~-~!~~~~~~i

S : :....IBMAINT SL,LIN=TEMP; -------------------------
))) 12:07 LIBMAINT 20.01 (3)

C:

In this example, text which is input by the user is underlined and system output is not.

5-1

First the user entered a LIB statement at S: level; as the statement was not ter
minated on the first line, system requested for a continuation by issuing the prompt -: .
On the third line, the LIBMAINT statement is issued without a COMFILE: this means
that commands will be interactively accepted from the cc•nsole. .

At this point, the user has entered interactive LIBMAINT. On the following line,
LIBMAINT identifies itself, then requests a command by issuing the prompt C:. The
user is now free to enter any valid LIBMAINT command. If the command does not ter
minate on the line (end with a semi-colon), LIBMAINT will request for a continuation
by issuing the prompt -:

Example:

NUMBER, --------
REPLACE; ---------

C:

Once a command is completely entered it is immediately executed and any possible
results are printed on the console, followed by a prompt (C:) requesting a new command.

If a faulty statement is entered, the whole statement is reprinted with a diagnostic
and a pointer to the faulting item. Then a new command is requested.

Example:

C: MOVE XNLIBl : MYUNIT, -------------------------
REPLACE;

MOVE XNLIBl:MYUNIT ,REPLACE;

?

~:G:~>:c UNKNOWN LIBRARY KEY WORD

C:

From the above examples, it can be seen that the first three columns of the console
output are used to prompt the expected users reaction. This mechanism is extended to
other levels of LIBMAINT. For example, if at the C: level one enters the EDIT;
command, the next thing that LIBMAINT is expecting is a request. This is notified by
prompting characters R: in the prompt area. If the user then enters an input request,
following lines are expected to be input data, this is notified by prompt I:, until exiting
from input mode, where prompt R: will be reissued. If the user issues a Q request at
request level (R:), LIBMAINT will return to command level (C:).

5-2

Example:

C:

R:

I:

T·
.L.

I:

R:

R:

C:

EDIT;

A

THIS IX

MY TEXT

t/:.F

S/IX/IS/P

THIS IS

Q

(

(

invoke editor

append request

~ appended text

(exit input mode

~ request to substitute and print

~ result of print

~ quit editor

~<-- return to command level

From this example, it can be seen that results are indented three spaces in order
not to appear in the prompt zone. This is done to achieve clarity in the console output.

A user might also wish to execute from a console a series of commands stored in a
file. This can be achieved by specifying the key word COMFILE in the LIBMAINT
statement. LIBMAINT will then read commands from the specified file, echo them on
the console, execute them and print possible results unit the file is exhausted.

RESTRICTIONS OF USE

There are only two restrictions of use of LIBMAINT commands in interactive mode:
Global EDIT and UPDATE with star convention or name lists may not be typed on the
console. This would result in such a poor operability that it has been decided to forbid
this construction. It is however possible to enter these statements into a source unit
and to EXEC itfrom_the console.

ADDITIONAL COMMANDS

Two commands are introduced in LIBMAINT to cater for the specific requirements
of the interactive users:

command QUIT is used to exit from interactive LIBMAINT, it plays
a role similar to the end of the COM FILE file in batch mode. Its
syntax is very simple:

QUIT;

The command ESCAPE allows a user to enter Operator Command Language
(OCL) statements without having to leave LIBMAINT. All OCL com
mands which are authorized at S: level may be coded in an ESCAPE
command. Syntax of ESCAPE is:

5 3

Examples:

TREATMENT OF BREAKS

ESCAPE OCL-statement;

ESCAPE DS Xl37;

ESCAPE T J Xl36;

ESCAPE SI MY JOB:MYLIB:MS/M400:Cl00;

One of the important features of an interactive system is the ability for its users to
imperatively interrupt a process. Interrupts are notified by means of Breaks. A
Break is notified as follows:

by depressing the "Break" or "Interrupt" key of the console for
those consoles which have such a key

or by entering sequence $~:~ $BRK on a new line.

When a Break is entered while LIBMAINT is processing, the system issues the
characters ??? in the prompt area and expects a reply from the user. Replies fall in
three categories

• RESUME; or RS; may be entered to request the continuation of
the current processing at the point where it was interrupted by
the Break.

• any JCL, OCL or IOF command causes the termination of LIBMAINT
and the execution of the specified command.

• a carriage return (blank line) causes an interrupt of the current
processing. If LIBMAINT was executing a command, the com
mand is aborted and a new command is requested. If LIBMAINT
was executing an EDIT request, the request is aborted and a. new
request line is asked for.

As a general rule, all precautions have been taken in order to minimize confusion
that might result from use of Breaks in critical phases of the processing. This might
cause a very small delay in the response of LI BMAI NT to a break, because, in some
circumstances, some critical action must be terminated before aborting execution of a
command or a request in order to leave the object libraries and files clean.

If a Break is issued while LIBMAINT is executing a command from a COMFILE,
the current command is aborted and the LIBMAINT session terminated.

If a Break is issued while LIBMAINT is executing commands through an EXEC
command, the current command is aborted, EXEC is terminated and a· request is made
for the next command from the console.

Example

As explained above, functions offered to an interactive user of LIBMAINT are the

5-4

same as those offered to a batch user. Let us consider an example of using interactive
LIBMAINT to prepare a job to be submitted from the console (Conversational Remote Job
~ntry). - - -

S: ~!~I'!~!~-~--~~~-~!~~~~~~~~~~!~_;

>>> 13:36 LIBMAINT 20.01 (3)

C:

R:

I:

I:

EDIT;

A

$JOB C, USER=D,ACCOUNT=E; ------------------------------

COBOL SOURCE=MYPROG; --------------------------

I: ~F

R: W (JCL) COMPL

R: Q

C: 9~~'!:i.

<<< 13:37

S: RUN COMPL,USER.SLLIB;

ERROR HANDLING

enter LIBMAINT

invoke editor

append

job description

write in COM PL

leave editor

terminate LIB MAI NT

request execution of COMPL

In interactive mode, behaviour in the case of errors is different than for batch
mode. When the user enters commands from a console, he is able to immediately react
to an error by retyping the failing line or taking any suitable corrective action. Termi
nation of LIBMAINT in the case of a SEVERE ERROR is therefore not desirable. The
STATUS command is also of no interest in this context, it is therefore ignored.

However, when a user triggers the execution of a stored sequence of commands by
means of the COMFILE parameter in the LIBMAINT JCL statement or by entering an
EXEC command on the console, error control becomes a necessity. In these cases,
LIBMAINT behaves as in batch mode:

. if commands are read from a COMFILE and a SEVERE ERROR occurs, the
LIBMAINT session terminates unless a STATUS command specifies
otherwise

. if commands are executed from a subfile triggered by an EXEC command
entered on L~1e console and a SEVERE ERROR occurs, execution of the
subfile is discarded and control returns to the console unless a STATUS
command in the subfile specifies otherwise.

5-5

LIBRARY MAINTENANCE OUTPUT REPORT

In interactive mode, the LIBMAINT report differs from the batch mode report.
The first line of the session is the standard interactive banner))) . The following
lines are printed in accordance with the IOF standard rules. The prompts are

C: for enter a command

R: for enter a request
input prompts

I: for enter input

for enter continuation

!
blank for result

output prompts ~:~ for warning

~~~:0:~ FOR severe error 

Executed commands or commands entered through a COMFILE are listed as if they 
had been entered on the console. They are therefore preceded with prompts C: , R: and 
I:. 

The last line of the session is the termination banner ((( which indicates the cur
rent time of the day. 

In interactive mode, identification of handled units is not printed except with the 
LIST command. When a command is applied to more than one unit (star convention, 
name list, etc ... ) the name of each member is printed before being processed but its 
identification is not printed. 

A commented example of the output of a sample interactive LIBMAINT session is 
given in the following page. 

5-6 



)))12:57 LIBMAINT 20.01 (3)(-- standard interactive banner 

command---- G EDIT; ------
A ® 

/( I: AAAA -------
I: BBBB 

commands 

input 

continued 

command 

I: 
I: 
I: 
I: 
I: 
I: 
I: 

® 

® 
(2\ 
~ 

C: 

~
I: 
I: 
I: 
C: 

-------cc cc ------
DDD.D ------
EEEE ------
FFFF ------
GGGG ------
HHHH if' ____ 

WUNIT -------

':~N{fl LANGUAGE TYPE , DAT IS ASSUMED 

Q 

~-E;_~Yli~~B.~!?_YB.!-1:2-
PRINT UNIT; -------------

10 AAAA 
20 BBBB 
30 cccc 
40 DDDD 
50 EEEE 
60 FFFF 
70 GGGG 
80 HHHH 

l 
~results 

J 

YR.12~_1~-~-YB.!_I_.f 9-~~~I=t~L~L~~:_)j 
lOAAA 
4o$:nso 
7/F,(jjfj--

~}{[~:t-~f:i!Ii 

10 AAA 
20 BBBB 
30 CCCC results 
60 FFFF 
70 GGGG 
80 HHHH 

C: DELETE D{flESN{flTEXIST; ------------------------
':~,:0:~MEMBER N{flT F{flUND ~ severe error 

~ C: EXEC TRUC, 
~ -: vA"Cu"E-s~HTNIT); 

) c: RENAME-UNfT~UNI T<PLD; ~ 
C: M{flVE UNIT{flLD,NEW=UNITNEW,NUMBER; 
C: QUIT; 
<« 13:01 end banner 

s Users input are underlined (----------) 
~Other characters are produced by the system 

5-7 

warning 

EXECuted 
commands 





SECTION VI 

IOF OPERATION FROM A SYSTEM VIEWPOINT 

This section describes the IOF as seen by the master operator and the system manager. 
Different points will be discussed, particularly the control of IOF operation, the man
agement of system resources, the billing and the interfaces with the main operator. 

IOF GENERATION 

IOF uses the standard VCAM access method of GCOS-64. So the different 
actions necessary to initiate VCAM must be performed before starting IOF. The termi
nal network ffr-s't has to be generated by using the Communication Network Configurator 
(CNC); terminals may be declared general purpose and so used can work with a TDS 
application, a COBOL application using MCS or IOF itself. The I<PF facility is speci
fied by the key word 'IOF' in the DCT AP command (NDL) at CNC generation time. 
Terminals may also be dedicated to IOF (log-on automatic under IOF), the iog-on pro
cedure must be declared as a manual log-on with controls. (The CNC is fully docu
mented in the Communications Processing Facility Manual). 

IOF cannot work without the site catalog, so the catalog must be present in the 
system and the interactive user names must be catalogued with a given password for each 
one. (The 'System Management Guide' provides a good description, see also Catalog 
Management). 

SCHEDULING OF IOF USERS 

The scheduler provides the system manager with tools to control the IOF opera
tion concurrently with batch processing. It particularly allows the system operator to 
start or terminate the whole IOF operation and to set a maximum limit on the number of 
logged-on users. It also automatically controls the use of different resources in order 
to prevent a system overload due to IOF operation. 

There is one interactive job being executed per logged-on user. The launching of 
an interactive job is performed when a successful log-on has been completed. Activa
tion is performed only if a certain number of conditions are satisfied. Otherwise it is 
denied and the listener notifies the user that he cannot log-on because the system is 
ovedoaded. These ':::onditions are related to the machine's current load, involving the 
I OF maximum load, the system multiprogramming limit, memory use and some system 
resources. 

6-1 



System Resources 

The system resources concerned are: 

• IOF maximum load: this defines the upper limit of the maximum number 
of users that can be logged-on at the same time. It is configurable 
on site with a default value of 10. 

. System multiprogramming limit: this includes batch jobs, inter
active jobs, file transfer jobs and service jobs (like the JCL trans
lator job, the output writer job, the B TN S job). This number 
is configurable on site with a default value of 15 • 

. The Scheduling Class state and load: the 'Q' scheduling class is 
normally given to all interactive jobs. So the class state (started/ 
terminated) is a way to start or terminate the IOF operation. 
Also the class maximum load is an additional way to limit the maxi
mum number of logged-on users (from 0 up to the IOF maximum load). 
So if the maximum load is exceeded or if the class is terminated, the 
log-on is denied. These class attributes are initialized at site 
configuration time but they can be modified by using the OCL com
mands related to the scheduling classes (MC/TC/ SC). 

. Memory use: memory is reserved for each interactive job from 
their respective beginnings (log-on) to their ends (log-offs). 
Such reservations allow the interactive session to be processed 
normally without memory problems. Thus if the memory is over
loaded at scheduling time the activation is denied . 

. System resources: this mainly concerns the maximum number of 
tasks, which introduces a limit that has to be checked at sched
uling time so that the resources are reserved for the whole inter
active user session. 

Activation Process 

Once the scheduler agrees to launch an interactive job, that job is initiated and 
the H I OF step is loaded and started. If the load module has been previously preini
tialized, initiation is straightforward. Otherwise, loading may be unsuccessful because 
of a lack of backing store space. In such a case the interactive job will be abnormally 
terminated and the user will have to disconnect and try to log-on again. The interac...:. 
tive job is given the following description, (which is normally provided by the $JOB JCL 
statement). 

Job identification: 
Project: 
Billing: 
Scheduling class: 

"IOF" 
project of the logged-on user. 
cost-centre of the logged-on user. 
Q 

Note that the user name is given at log-on time and the project and account are retrieved 
by default from the site catalog when not specified at log-on time. 

6-2 



Execution Priority of IOF C sers 

Interactive jobs are given the execution priority associated with the Q schedule 
class. This execution priority is initialized at site configuration time and can be modi
fied by using the MC command. The execution priority is the priority of CPU allocation. 
So by giving a certain execution priority to the Q scheduling class, we define the pri~ 
ority of I OF users relative to competitive batch jobs. Default value = 4. 

MASTER OPERATOR VIEW OF IOF 

BTNS Functions 

All the facilities provided by BTNS are relevant to IOF users. BTNS in parti
cular keeps a record of the different log-ons and log-offs to IOF. Also, the main ope
rator is provided with some commands that allow him to display a list of currently logged
on users, to send messages to logged-on users and to terminate interactive user ses
sions. All these facilities are documented in the Systems Operation Operator Guide. 

Useful OCL Functions 

In addition to the standard BTNS facilities, the IOF system provides the main 
operator with some further commands: 

. Display of interactive jobs: 
DS IOF will display all the intenctive jobs 

by giving their ron, their execution 
priority and their CPU usage. 

DS IOF (user-name) the same as above, but specifically 
for the indicated user . 

. Modify the execution priority of an interactive job: 
MJ ron ':~'~ <execution-priority) 
The default execution priority of an interactive job is the priority 
attached to the Q scheduling class (which can be modified with 
the MC command). The MJ command allows the operator to mod
ify the default priority for a given interactiv user's job . 

. Start and terminate the IOF operation: this is simply done by 
starting or terminating the Q scheduling class with the SC/ TC 
commands. When the Q class is terminated, any new log-on 
attempts are denied. 

Modify the autqorized maximum number of logged-on users: this 
is done by modifying the maximum load of the Q class with the MC 
command. If the new number is less than the current number, 
any new log-on attempts are denied. 

MANAGEMENT OF INTERACTIVE JOBS 

The following refers to the standard functions of Job Management in the GCOS 

6-3 



system. 

Resource Management 

_The initiation and termination of interactive job steps are handled in the standard 
way. However there is no queuing in the case of a conflict at resource allocation time. 
The requested step initiation will be aborted and the terminal will be returned at system 
command level with an appropriate message. This message normally gives sufficient 
information about the resource which is unavailable. Nevertheless, the interactive job 
may wait for media mounting until the operator has mounted all the requested media 
(disk-volumes or tapes). If a wait for media mounting occurs, a message informs the 
user that he will have to wait. 

Job Reporting 

The Job Occurrence Report for an interactive job is not normally printed either at the 
terminal or at the central system. It is, however, printed in the case of an abnormal 
termination of the H IOF step. Sysout deliveries generated by the interactive job 
(including dumps) are normally printed out at the end of a job; the time of the printout 
depends on the user's options. By default delivery is made at the end of a job, so all 
Sysout deliveries generated by the interactive job are printed at the end of the session. 
That is, unless a user has specified a printout at the end of a step by using the SY SOUT 
JCL statement. 

Accounting 

IOF activity is fully recorded within the standard billing mechanism file. Each inter
active user session is described by its job description, which consists of a job record 
and one step record per program. Records are identified by the characteristics of the 
interactive job as defined in the sub-section 'Activation Process' (JOB ID= 'IOF', 
USER-NAME= name of the logged-on user, PROJECT= user's project, BILLING= 
billing identificaion). Details of the billing mechanism records may be found in the Sys
tem Management Guide. 

Warm Restart 

Interactive jobs are not restartable at either step level or job level after a crash. 

SECURITY AND ADMINISTRATION FUNCTIONS 

Definitions 

Administrative functions refer to the control of user access to the system together 
with its different privileges. Such functions are the responsibility of an IOF 

6-4 



administrator. The registration of users within the system and priveleges related to 
IOF operation are logically part of an integrated privacy protection system. Such a 
system is implemented within the GCOS site catalog. 

Description Of User Registration 

A user is identified within the system by a user identifier of up to 8 characters. 
Such a user-name must be unique; all the users known to the system must have different 
user-names. A user-name is al ways attached to a project identifier. A project-id 
has different user-names associated with it. See figure 5-1. A project-id is attached 
to a billing identifier of up to 8 characters; a billing-id has several project-ids asso
ciated with it. 

Such a structure, which can be represented by a tree structure is stored in the 
catalog system. Generally a user has a default project and a project has a default bil
ling mechanism associated with it, but a user may exist under different projects and bil
ling mechanisms. The project is related to the protection mechanism in general. Com
munication between the user and the system, and between one user and another them
selves is supported via a mailbox system. A mailbox is attached to each user registered 
within the site catalog. 

I BILLING BILLING 
I 

ATTRIBUTES --~~PROJECT 
PROJECT 0 

PROJECT 2 PROJECT 3 

USER 1 USER 2 USER 3 USER 4 

Figure 5-1. Structure of User Registration. 

PROTECTION MECHANISMS 

Operator Access 

The access of an operator to the system is checked by means oi a password 
mechanism. There is one password per registered user and the check is performed by 

6-5 



the listener at log-on time and according to the following rules: 

USER-NAME: is it registered? 
PASSWORD: is it the correct password? 
PROJECT: is user registered under this project? 
(overrides the default) 
BILLI NG: is project registered under this billing mechanism? 
(overrides the default) 

. Operability Privileges 

Operability privileges are IOF specific. They apply to the different operations autho
rized under IOF. The following operability privileges exist with IOF: 

. General User: This user is allowed to enter only the IOF command lan
guage as defined, and can only control the jobs and sysout deliveries that 
he has submitted himself. He cannot act on other jobs or sysout deliv
eries submitted either by other interactive users or by the master oper
ator on the central station . 

. Master Operator: this privilege gives access to the full Operator Con
trol Language (OCL). Also it allows the master operator to control 
the whole system without any limitations. There is only one Master 
Operator logged-on at any time, and he is the operator of the Operator 
station. The physical device identifier may be redefined at system gen
eration time for the Operator Station. 

User Registration 

The opera ti on that consists of introducing a new user, new project, new billing or 
modifying operability privileges of a project is the System Administrator's responsibil
ity. Such an administrator is a particular operator who belongs to a project. Since 
registration involves the GCOS site catalog, all these operations are performed by 
using the catalog management utilities. Refer to the Catalog Management Manual and 
the System Management Guide for more details. 

SUPPORTED CONFIGURATIONS 

The IOF system supports communications procedures for TTY and VIP terminals 
through the VCAM access method. The network is generated by the Communication 
Network Configurator utility (CNC) and the BTNS job must be active in order to 
operate IOF. The VCAM access method makes the physical terminal type transparent 
to IOF. So all the TTY and VIP type terminals are supported by IOF. The only 
exception concerns the scrolling mode of CRT type terminals, which is not 
supported. 

In addition to communications support, IOF requires two load modules which must be 
stored within the SYS HLMLIB library and should be pre-initialized. The two load 
modules are: 

H IOF load module, which is necessary to operate terminals at the system 

6-6 



command level. 
H LIB MAI NT load module, which contains the Library Maintenance and Text 
Editor conversational processors. 
The same load module supports both batch and interactive mode. 

The maximum number of users that may log-on under IOF is configurable on-site. The 
upper limit is the multiprogramming limit which is also configurable on site from l to 30 
jobs. Default values are: maximum number of logged-on users = 10, the system multi
programming limit = 15. 

6-7 





APPENDIX A 

THE SCANNER PROCESSOR 

The scanner processor is able to scan Sys out outputs. These Sys out outputs may 
be stored either on the public Sysout file, or on a private Sysout file, which can be on 
disk or tape. The format of Sysout may be either edited or SSF. This facility allows 
the user to display pages. Pages are identified by their page numbers or by the occur
rence of a given character string. This function is useful for checking large Sysout 
outputs before having the output printed. 

Access to outputs available for the user's control is restricted. Only the outputs 
that have been generated by the jobs the user has submitted can be accessed. The con
trol is performed on the user name. This submitter name is attached to all the jobs sub
mitted by that interactive user and all the outputs generated by those jobs. The submitter 
name is also kept for cases of jobs submitted by other users through the JCL RUN state
ment. When a user wants to access a Sysout output, the user-name must be the same as 
the submitter name attached tc the output; otherwise access is denied. 

COMMAND LANGUAGE 

The Scanner processor is called by using the SCANNER extended JCL statement 

S: SCANNER; 
C: 

The Scanner JCL statement supports the following set of commands: 

LIST 
SCAN 
QUIT 

- list of output names for a given job. 
- scan a sys out output which is identified by its output name. 
- quit from the Scanner processor and return to the system 

command level. 

The SCAN command allows us to scan a Sysout output at page level. Pages are 
addressed by their page numbers or by a given character string contained in them. The 
processor also keeps a pointer at the currently addressed page and the user can specify 
the address of a page relative to the current one. 

By convention, when a new page is searched by means of a given character string, 
the scanning for the required character string is al ways forward and starts at the first 
line of the current! y addressed page. 

A page is addressed in a Sys out by its sequential page number, which may differ 
from the one printed at the top of the page. A page can also be addressed by its position 
relative to the currently addressed page. The following set of commands are available 
for moving backwards and forwards over pages and displaying pages. 

A-1 



#(n] 
>[n] 
<[n] 
P[n] 

position at page n 
n pages forward 
n pages backward 
display n pages starting from the current one 
display the number of the current page 

n represents the page number or a number of pages. By convention, the default value 
of n is 1 and n=$ represents the last page of the Sysout (the first page if moving back
ward). For instance P $ prints the output from the current page to the last one. 

A page can also be referrred to by giving a character string contained in it. The 
following command is available for this purpose: 

/(string]/ 

The effect of this command is to scan the output from the first line of the current page, 
until the first occurrence of the string, then print the line containing the string, then 
point to the first line of the currently addressed page. It is possible to have the prin
ting of the first m occurrences of the string before pointing to the page containing the 
m-th occurrence-; with the command: 

I [string] I (m] 

Default string means the latest defined one. 

Let us consider an example where we want to check the errors generated by a 
COBOL ccmpilation instead of having the complete compiler listing printed-out. The 
printout of the compiler output must obviously have been stored. 

S: 
C: 

C: 
R: 
R: 

SCANNER; 
LIST X42; 
X42:1 JOB REP 
X42:2 JOB-OUT 
SCAN X42:Z:3 
#5500 
I':~':{ I $ 
PAGE 005632 

C PR SIZE 
C PR SIZE 

803 
80263 MEMBER = 4 

':{'n3-982 IN THE GIVEN VALUE CLAUSE, VALUE MAY BE 
LONGER THAN LENGTH OF DATA ITEM. 
PAGE 006239 

,:,,:{ 1 5-156 POSSIBLE LEFT TRUNCATION. 
':{,:{ 1 5-150 SIGN OF SENDING ITEM NOT MOVED. 
PAGE 006242 
'~':{ l 5-156 POSSIBLE LEFT TRUNCATION. 
PAGE 006243 
':{,:{ l 5-150 SIGN OF SENDING ITEM NOT MOVED. 

R: Q 
C: QUIT; 
S: CO X42:2 
s: ................... . 

Let us now consider a second example where we shall scan a private Sys out. The 
file name is "ACCOUNTING", the media is the 9-track tape "2125". 

A-2 



S: 
r . ......... 

R ~ 
,• 

R: 

R: 
C: 
S: 

LIST COMMAND 

LIST [ron]; 

SCANNER; 
SCAN ACCOUI\TING : 2125 : MT/T9; 
#5250 
p 
PAGE 5250 

JOB RECORD 

ACCOUNT = INSTALl 
USER NAME = BTNS 

Q 

QUIT; 

The LIST command lists all the outputs which are in the REP.DY or HOLD states 
and have been generated by the indicated job. The job must have been submitted by the 
same user otherwise access is denied. 

ron is the Run Occurrence Number of the job whose outputs are to be listed. 
When ron is omitted, outputs generated by the interactive job are listed. 

Information that is displayed, on one er two lines, is formatted as follows: 
Xron:index(Output-name][priority] class device SIZE= nl [Xn2] [MEMBER = n3] 

[[Subfile=] efn] 

Xron:index 
Output-name 

priority 

class 
device 
SIZE 

MEMBER 
[subfile:] efn 

identifies the output for the SCAN command. 
name of the output as indicated in the corresponding Sysout 
statement. 
priority of the output in the Output Writer queues (not spe
cified when the default value is used). 
class of the output , 
device type (PR, CD ...•.. ) . 
gives the size of the output as the number of lines (nl) and 
the number of requested copies (n2). 
number of parts of the JOBOUT output. 
in the case of a private Sysout file, the external file name 
(and the library member name if appropriate). 

Here is an example of using. the LIST command: 

C: LIST X34; 
X34: 1 JOB REP c PR SIZE=783 
X34;2 JOB=OUT c PR SIZE=92769 MEMBER= 12 
X34:5 c PR SIZE 51133 
MYLI STING:MYOUTLIB 
X34:74 2 A CD SIZE=233 
MYPUNCHFILE 
X34:168 B PR SIZE 7284 

C: 

A-3 



SCAN COMMAND 

SCAN ~ (member:] efn:medi.a:device-class t; 
? ron:index [:jobout index] ~ 

The SCAN command provides a set of requests to scan the specified output. 

ron is the Run Occurrence Number of the job whose output is to be scanned. 

index is a number which identifies an output uniquely from all others generated by the 
job. 

jobout index is a number which identifies an output of the JOBOUT output. This is 
mandatory when index = 2 (i.e., the JOBOUT output). 

The SCAN command only applies to outputs that are known by the Output Writer. An 
output is always ide.ntified by the Run Occurrence Number of a job and an index, plus 
a jobout index number in the case of a JOBOUT output. The output must be in the 
READY or HOLD state (i.e., not being created or being printed). Trying to access 
an output currently being printed gives an unpredictable result. Thus it is recommended 
to hold an output before scanning it. To access a private Sysout (sequential file or 
member of a library) this must be specified using the above SCAN command by specify
ing the device-class, media, efn and member name. 

The user must have access rights to the required output; this means a user name which 
is the same as the submitter name of the job that has generated the output. 

We have already seen how a page pointer is used. We should note that improved perfor
mances for _searches for a given character string can obviously be achieved by skipping 
any parts of the Sysout where the string cannot occur. 

We have also seen how some commands may be used for addressing pages using the cur
rent pointer. The general syntax of such a command is as follows: 

<request code)(parameter) 

(request code) is a character from the following set: #, (, >, P, =, /, Q. 

<parameter) is optional. It is al ways a number whose default value is 1. By conven
tion the character $ represents the last page of the Sysout (the first one if moving back
ward). 

The following is a list of the commands that can be used in association with SCAN toge
ther with some of the possible return messages: 

#[n] 

>(n] 

<[n] 
p [n] 

used to position the current pointer at the first line of page n of 
the Sysout. 
used to move n pages forward so that the pointer is at the first 
line of the new page. 
same as above, but backward. 
used to display n pages starting from the current one. The 
return message typically would be: 
PAGE 008142 

A-4 



PAGE 008143 

We should note that a line is automatically displayed on several 
lines, if it is too long for a single line. 
used to display the current page number. A typical return mes
sage would be: 
PAGE 008143 

/ [string]/ [ m] used to display the first m lines which contain the given string. 
The search starts at the first line of the currently addressed page. 
Default string means the latest defined one. A typical return 
mes sage would be: 
PAGE 008143 
After that command, the c'urrent pointer is set at the first line 
of the current page. 

Q used to quit the Request level and return to the Processor Com
mand level. The current pointer is lost when we quit. 

QUIT COMMAND 

QUIT; 
The QUIT command, as we have already seen, forces an exit from the Processor Com
mand level and returns operation of the terminal to the System Command level. 

A-5 





HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

TITLE 
SERIES 60 (LEVEL 64) GCOS 
INTERACTIVE OPERATION FACILITY 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

ORDER NO. , AQ6 0, REV 0 

DATED !SEPTEMBER 19 78 

r\. Your comments will be promptly investigated by appropriate technical personnel and action will be taken D L/' as required. lf you require a written reply, check here and furnish complete mailing address below. 

FROM: NAME~~~~~~~~~~~~~~~~~~~~~~-

TITLE ~~~~~~~~~~~~~~~~~~~~~~~ 

COMPANY~~~~~~~~~~~~~~~~~~~~~ 

ADDRESS'~~~~~~~~~~~~~~~~~~~~~-



PLEASE FOLD AND.TAPE -
NOTE: U.S. Postal Service will not deliver stapled forms 

ATTENTION: PUBLICATIONS, MS 486 

Business Reply Mail 
Postage Stamp Not Necessary if Mailed in the United States 

Postage Will Be Paid By: 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WAL THAM, MA 02154 

Honeywell 

FIRST CLASS 
PERMIT NO. 39531 
WALTHAM, MA 
02154 


