

SUBJECT

This Addendum Provides an Index

SPECIAL INSTRUCTIONS

SERIES 60 (LEVEL 64)

LIBRARY MAINTENANCE
REFERENCE MANUAL

ADD~NDU~B

This is the second addendum to AQ28, Revision 1, dated September 1978. Insert
the attached pages into the manual according to the collating instructions
provided. This addendum corrects the pagination problem which occurred in the
previous index, Addendum A.

Note:
Insert this sheet after the manual cover to indicate that the manual
has been updated with Addendum B.

SOFrWARESUPPORTED

Level 64 GCOS Release 0400

ORDER NUMBER

AQ28-01B

27133
1480
Printed in U.S.A.

March 1980

Honeywell

COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove Insert

i-Ol through i-OB i-Ol through i-07, blank

© Honeywell Information Systems Inc., 1980 File No.: IN13
4/80

AQ28-01B

Order
Number

AQ02
AQ03
AQ04
AQ05
AQ09
AQI0
AQll
AQ13
AQ14
AQ18
AQ20
AQ21
AQ22
AQ26
AQ27
AQ28
AQ40
AQ49
AQ50
AQ52
AQ53
AQ55
AQ56
AQ57
AQ59
AQ63
AQ60
AQ64
AQ65
AQ66
AQ67
AQ68
AQ69
AQ72

·AQ73
AQ82
AQ83
AQ84
AQ85
AQ86
AQ87
AQ88
AQ89
AQ90
AQ92
AQ93
AQ94

LEVEL 64 DOCUMENT LIST

Title

Series 100 Program Mode Operator Guide
Series 100 Conversion Guide
Series 20012000 Conversion Guide
System 3601370 Conversion Guide
System Management Guide
Job Control Language (JCL) Reference Manual
Job Control Language (JCL) User Guide
System Operation Operator Guide
System Operation Console Messages
Operator Reference Manual
Data Management Utilities Manual
Series 20012000 Program Mode User Guide
Series 20012000 Program Mode Operator Guide
Series 100 File Translator
Series 20012000 File Translator
Library Maintenance Manual
System 3 Conversion Guide
Network Control Terminal Operation Manual
Terminal Operations Manual
Program Checkout Facility Manual
Communications Processing Facility Manual
TDSI64 Standard Processor Site Manual
TDSI64 User Guide
Standard Processor Programmer Reference Manual
Unit Record Devices User Guide
COBOL User Guide
Interactive Operation Facility
COBOL Language Reference Manual
FORTRAN Language Reference Manual
FORTRAN User Guide
FORTRAN Mathematical Library
RPG Language Reference Manual
RPG User Guide
Series 20012000 COBOL to Level 64 COBOL Translator
IBM COBOL Translator
BFAS User Guide
HFAS User Guide
UF AS User Guide
SortlMerge Manual
Catalog Management Manual
Library Maintenance User Guide
I-D-SIII User Guide, Volume 1
I-D-SIII User Guide, Volume 2
COBOL Reference Card
Operator's Reference Card
RPG Reference Card
FORTRAN Reference Card

iii

SECTION I

SECTION II

SECTION III

SECTION IV

SECTION V

SECTION VI

CONTENTS

SCOPE AND PURPOSE ••••••••••••••••••••••••••••

OBJECTS HANDLED ••••••••••••••••••••••••••••••

Libraries ••••••••••••••••••••••••••••••••
Sequential Files •••••••••••••••••••••••••
Cards ••••••••••••••••••••••••••••••••••••

UNIT IDENTIFICATION ••••••••••••••••••••••••••

PROTECTION •••••••••••••••••••••••••••••••••••

Library Level Protection ••••••••••••••••••
Type Protection ••••••••••••••••••••••
Characte,ris,tics check1ng •••••••••••••

Unit Level Protection ••••••••••••••••••••

AVAILABLE FUNCTIONS ••••••••••••••••••••••••••

Summary of Commands
LIBMAINT Inputs and
Aval!able,Functions

••••••••••••••••••••••
outputs ••••••••••••••
for SL •••.••••••••••••

Available Functions for
Available Functions for
Available Functions for

CU •••••••••••••••
LM •••••••••••••••
SM •••••••••••••••

BASIC LANGUAGE STRUCTURE •••••••••••••••••••••

Commands •••••••••••••••••••••••••••••••••
Search RlJle~ •••••••••••••••••••••••••••••
Member Name ••••••••••••••••••••••••••••••
List of Member N8mes •••••••••••••••••••••

Explicit List ••••••••••••••••••••••••
Indirect List ••••••••••••••••••••••••
Star Convention ••••••••••••••••••••••
Limited Star Cnnventlon ••••••••••••••

General Format of Commends •••••••••••••••

v

1-01

2-01

2-01
2-02
2-02

3-01

4-01

4-01
4-01
4-02
4-03

5-01

5-02
5-05
5-06
5-01
5-08
5-08

6-01

6-0J
6-.02
6-03
6-04
6-04
6-05
6-06
6-01
6-0.8

SECTION VII

SECTION VIII

SECTION IX

SECTION X

COMMANDS APPLICABLE TO ALL LIBRARIES •••••••••

••••••••••••••••••••••••••••••••••••• COMM
EJECT
ESCAPE
EXEC
QUIT

••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••

STATUS
TITLE

•••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••

COMMANDS APPLICABLE TO SL LIBRARIES ••••••••••

••••••••••••••••••••••••••••••••••••• CODE
COMPARE
CRLIST
DECODE
DELETE
EDIT

••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••••
GLOBAL EDIT ••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••

INDENT
LIST
LOWER
MOVE
PRINT

••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••• PUNCH

RENAME
RF.NUMRER

•••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••• SORT
UPDATE
UPPER

•••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••

COMMANDS APPLICABLE TO CU LIBRARIES ••••••••••

•••••••••••••••••••••••••••••••••••
• ••••••••••••••••••••••••••••••••••••

DELETE
LIST
MOVE
PUNCH

• ••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••

COMMANDS APPLICABLE TO LM LIBRARIES • • • • • • • • • •

••••••••••••••••••••••••••••••••••• · DELETE
LIST
MOVE
PUNCH

·
••••••••••••••••••••••••••••••••••••

vi

7-01

7-02
7-03
7-04
7-05
7-01
7-08
7-09

8-01

.8-02
8-04
8-06
8-08
8-10
8-' I
8-.11
8-13
8-15
8-.6
8-17
8-23
8-24
·8-26
8-21
8-28
·8-30
8-35

9-01

9-02
9-03
9-04
9-06

10-01

10-02
10-03
10-04
10-06

SECTION XI

SECTION XII

RENAME · .
COMMANDS APPLICABLE TO SM LIBRARIES

DELETE ·
iN IT ••••••••••••••••••••••••••••••••••••• · LIST
LOAD
MOVE
UNLoAD

·
• • • • • • • • • • • • • • • • • e _ • • • • • • • • • • • • • • • • • • ·

THE TEXT EDITOR .
Usage ••••••••••••••••••••••••••••••••••••
Requests •••••••••••••••••••••••••••••••••

I n pu t R eq IJ est ~ •••••••••••••••••••••••
Basic Er1it Requests •••••••••••••
Extenrled Edi t Requestc; •••••••••••••••

Address1ng •••••••••••••••••••••••••••••••
Arldressing by Line Numf.)~r ••••••••••
Adrlressing Relative to the Cnrrer)t
Line •••••••••••••••••••••••••••••••••
Arldressing by Context ••••••••••••••••
Compound Adrire s se s •••••••••••••••••••
Arfrlresslnq (3 Series of Lines •••••••••
Addressing Errors ••••••••••• • ••••

Use of the Erli tor •••••••••••••••••••
Request Format .-••••••••••••••••••••••
The value of II •.•••••••••••••••••••••••

Multiple Requests on ~ Ltn~ ••••••••••
Spacing ••••••••••••••••••••••••••••••
Comments •••••••••••••••••••••••••••••
The Locate Request •••••••••••••••••••
Responses from the Ed! tor ••••••••••••

Input Morle •••••••••••••••••••••••••••••••
Append Req1Je s t (A) ••••••••••••••

Change Reque s t (C) •••••••••• -•••••••••

Insert Request (I) •••••••••••••••••••
Basic Erlit Requests ••••••••••••••••••••••

Delet~ Request (D) •••••••••••••••••••
Print and Print with NlJmhp.r Rp,<1'Ip.~t~

(P anrl L) ••••••••••••••••••••••••••••
o III t Re que s t (Q) •••••••••••••••••••••

Read Request (- R) •••••••••••••••••••••
Substi tute Request (5) •••••••••••••••

Writ~ anrl Forcerl Write Requests
(Wand Z) •••••••.•••••••.............
No-operation Requ~st (N) •••••••••••••

Count Lines ReCluest (N) ••••••••••••••

Extended Edit Requests •••••••••••••••••••
Print Line Number Reque5t (=)

Global Request (0) •••••••••••••••••••
Exclude Request (V) ••••••••••••••••••

Auxiliary Workspaces •••••••••••••••••••••

v 11

10-07

11-01

11-02
11-03
11-04
11-05
11-06
11-07

12-01

12-01
12-01
12-02
12-02
12-02
12-03
12-04·

12-04
12-05
12-06
12-07
12-08
12-09
12-09
12-10
12-10
12-10
12-10
12-11
12-11
12-12
12-13
12-14
12-15
12-16
12-16

12-17
12-18
12-19
12-20

12-21
12-22
12-23
12-24
12-24
12-25
12-26
12-27

I INDEX

TABLES

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

4-1.
5-1.
5-2.
5-3.
5-4.
5-5.
8-1.
8-2.
8-3.

12-1.

12/79
AQ28-01A

Change Workspace (B) ••••••••••••••••• 12-~7
Copy and Move Requests (K and M) ••••• 12-28
Workspace Status Request (X) ••••••••• 12-29
Special Escape Sequence •••••••••••••• 12-30
Use of Workspace for Moving Text ••••• 12-31
Other Uses of Workspaces ••••••••••••• 12-31
File Output and End File Output
Requests (F and E) ••••••••••••••••••• 12-31
The Output Message Request (() ••••••• 12-32
Condi tional C* and 1) Requests ••••••• 12-33
The Goto (» Request ••••••••••••••••• 12-34
Labels (IX) and Goto Label (>lx) ••••• 12-35

Miscellaneous Requests ••••••••••••••••••• 12-36
Top of Page Request (T) •••••••••••••• 12-36
The S pI! t L! n eRe que 5 t (%) ••••••••••• 12 - 3 7
The Concatenate Request .(&) •••••••••• 12-38
The Search Backwards Request «) ••••• 12-39
The SpecIal Control Request (V) •••••• 12-40

Escape Sequences ••••••••••••••••••••••••• 12-41
Pro te c tlon (¢ C) •••••••••••••••••••• 12-41
Hexadecimal Escape (¢ X) ••••••••••••• 12-41

Summary 0 f Functions ••••••••••••••••••••• 12-42

Output Files and Library Checking•..........
Sununary 0 f Command s ••..........•.••......••.•....•
Available Functions for SL•..............••..
Available Functions for CU ••••..•.......•........
Available Functions for LM .•......•............••
Avai lable Functions for SM•.•......••.•••.•.•
De faul t Formats ...•.•....•..•••.•....•.....•.•...
Punching Conventions••...••......•..•.....
De fa u 1 tVa 1 u e s • • • . . • . • . . . • • . •
Summary of Edit Functions••••......•.........

vIII

i-Ol

4-02
5-02
5-06
5-07
5-08
5-08
8-18
8-24
8-30

12-42

SECTION I

SCOPE AND PURPOSE

LIBRARY 'MAINTENANCE (LIBMAINT) Is a standard GCOS-64 processor which
performs furictions and services convenient for the efficient
management of libraries. Functions provided allow updating, copying,
movIng, listing and miscellaneous handling of lihrary members.

The contents of a library can be source language units (including
JeL), compile units, load modules, shareable modules or master and
sort tables. Libraries Are homogeneous In that they contain entities
which are all of the same type. A suitable protection mechanism (see
Section IV) enforces this important rule. Therefore, in a given
LIBMAINT seSSion, only one type of entity can he handled. This type
is indicated as a parameter to the processor at JCL level. One will
thus indicate: 8L, CU, LM, or 8M depending on the types of entities
to be processed.

LIBMAINT accepts as its input libraries, specified members of a
library or sequential files or subfiles defined as sepArate
entities. This input can be stored on disk, tape or card.

The oUtPlt of LIBMAINT can be one or several members of a library or
a sequential file or subfile. The contents can be prlnterl, listeri,
modifIed or punched in the same single seSSion.

Actions requested of the LIBMAINT processor are expressed in terms
of commands. LIBMAINT commands build up into a powerful language. A
command 15 a directive to LIBMAINT to execute A function such as
copy a member from one library to another one or to update the
contents of one or several members in a library. A command is buIlt
up from the command word and specific parameters, if needed. A small
number of commands require arlditional detailed informatIon on the
action to be performed. These actions are known as requests and
Immediately follow the command In the command input stream. The
com~and stream will generally be defined as being a user supplie~
input enclosure on cards' the stream can also be a sequentIal file
or a member of a source languaqe library. These latter facilities
are of p8rticular help in the case of repetitive operations.

]-01

SECTION II

OBJECTS HANDLED

Objects hanrlled by LIBMAINT may be stored in libraries, sequential
files or on cards.

LIBRARIES

Libraries are files with Queued Linked Organization. A library can
be viewed as being constituted ofl

- a dictionary known as the "dlrectoryll

_ a number of entities whose names appear In the directory.
These are known as "subfiles lt

, ·"units" or "members".

LIBRARY

DIRECTORY

"e"

MEMBER
"It

record

Each subtile is composed of
logIcal recorris. The format ot
the logical records and their
contents is dependent upon the
type of the stored entity. In
the case of a source language
unit, for example, a record will
contain one source line.

Due to their organization, which implies direct access to data
blocks, l1braries must reside on direct access devices and media,
i.e. dlskpacks.

2-01

SEQUENTIAL FILES

Another method for storing an object acceptable to LIHMAINT is to
store all units one after the other on a sequential tile. Units need I

to be separated by some kind of delimiter. This delimiter is
dependent upon the type of the stored entities and recognized by
LIBMAINT In the proper context.

•

·
•

Unit
A

delimiter

Unit
B

delimiter

Unit
C

delimiter

•
•
·

CARDS

The sequential file might be any
sequential organized media supported by
GC()S-64 • i.e. disk, tape, pAper tape,
etc ••••

LIBIAAINT allows the transfer of units
from a sequential file to a library anrl
vice-versa.

A unit miqht also be stored on cards. Cards mIght be used as input,
In which case they are added to the output library or file. These
cards are inserted in the command input stream right after the
corresponding transfer command or request. If the command input
stream is not on card, the cards are replaced by their card images
which might have been created and/or modified by the convenient
processor.

Cards might also be used as output. This is achieved by the PUNCH
command that produces card imageCs) of the specified obJectCs).
These card images are generally acceptable as input to LIHMAINT.

The format of the card deck 15 dependent upon the types of the
stored entitles. It Is checked for valid1ty by LIBMAINT In input
mode and produced by LIBMAINT if punched.

2-02

SECTION III

UNIT IDENTIFICATION

Unambiguous Identification of a unit Is vital for the rational
management of lIbraries. In a library, each unit i5 uniquely
identified by'

- the na~e of the library where the unit is stored

- the name of the unit

- the date and time it was f1rst created

- the date and time it WnS last modified

- additional information depending on the type of the stored
unit.

This unique identification Is displayed each time the unit is used.
It is updated each time the contents of the unit are changed. A copy
of a unit has the same identification (except name and name of
contain1ng library) as the original unit if no change has been made
in the copy.

The identification of a unit 15 recorded as a part of the unit,
generally as its first logical record.

Raw (SARF) format (see section VIII) source language units have no
identification. However, this format of data Is selrlom used and
should be avoided In libraries whenever possible.

EXAMPLE OF IDENTIFICATION DISPLAY'

MYUNIT FROM' JOHN-X.CULIB

CD = 09/26111 CT = 23.14 MD = 10/01171 MT 14'25 SL = FOR CV = 1.0

The first line contains.

- The unit~s name
- The name of the containing library

The second line always contains.

- CD Cre.atlon date (MM/DD/YV)
- CT Creation time (HH J MM)
- MD Modification date (MM/DD/VY)
- MT Modification time (HH I MM)

and possibly'

- SL Source language (for CU and SL)
- CV Compiler version (for CU)
- LK Linker version (for LM)
- MN Modification number (for SL, SM and LM)

3-02

SECTION I V

PROTECTION

In order to ensure the security of LIBRARY MAINTENANCE, specific
protectIon measures are taken. These are of two types.

- at library level to ensure that only valid entities are stored
in order to be able to later process the library correctly.

- at unit level to ensure that no external action or failure will
cause loss of information.

LI BRARY LEVEL P.ROTECTION

Two types of control are enforced'

Type Protection

It is checked that the library has been allocated with the correct
a t tr i bu te i. e • J

- input library must be of the type specified by the LIBMAINT
invocation

- output library must be of the type specified by the LIBMAINT
invocation.

In all cases, a library with no type will be accepted as input or
output by LIBMAINT. This might however result In errors which will
be accepted as input or output by LIBMAINT, which in turn might
result in errors which will be often irrecoverable. It is therefore
recommended to allocate libraries specifying a correct type.

4-01

Characteristics checking

In add1tIon to the precedIng verification. all output flIes or
lIbraries are checked for valid fIle organIzatIon, record format and
record size according to the following table 4-1.

TABLE 4-1. OUTPUT FILES and LIBRARY CHECKING

OUTPUT FIlEORG LIBMAINT RECFORM RECSIZE
TYPE

SL VB
F } for SARF* no constraint
FB

output
library CU VB ~ 1024

LIB

Queued LM F = 1024
Linked FB

SM F or FB = 1024

output SL VB
Sequent1al Sequential F } tor SARF* no constraint
tile FB

or
CU U ~ 3960

Queued
Linked LM U ~ 3960

OUTFILE If S.UBFILE
specified SM F or FB = lO2~

in JeL
ASSIGN

<*> SARF format will be discussed In section VIII.

4-02

UNIT LEVEL PROTECTION

In order to be protected agaInst external unforseen actions such as
killing the Job or. System Crash, LIBMAINT never overwrites an
existing unit. Therefore, if LIBMAINT is not allowed by such
external events to terminate its writing activity properly,the
former version of the object unit still exists in the library. It
proceeds as follows.

- creates a temporary unit whose name is
"LBMNC.I· conc.atenated wi th the name of the uni t.

- deletes the former version of the unit.

- renames the temporary unit with the former version~s name.

Even In the highly improbable case of an external event in the
latter two steps above, the user will be able to recover the unit
under its temporary name.

As a consequence of this policy, enough room must be given In the
object library in order to accommodate both the old and new copies
of a unit. A good rule is to provIde enough space for all units plus
the space needed for the largest of these units.

4-03

SECTION V

AVAILABLE FUNCTIONS

The aim of this chapter Is to give a synoptical view of the LIBRARY
MAINTENANCE FUNCTIONS. Two series of tables are given'

- A table stating the available commands in alphabetical order
with the specific parameters and/or keywords applying to each
type of entity (SL, CU, LM, SM)

- A set of tables giving, for each type of entity, the arlowed
combinations of inputs and DutputS. This second series of
tables is preceded by a general overview of LIBMAINT inputs and
outputs.

5~OJ

TABLE 5-1. SUMMARY OF COMMANDS

CO,\tMAND MEANS SL CU LM SM

CODE To encode a text KEY
NEW
FROM
TO
REPLACE

COMM To comment the
report

COMPARE To compare two LIMIT
units FROM

TO

CRLIST To create a unit FROM
containing TO
member names. NUMBER

REPLACE

DECODE 'fo decode a text KEY
NEW
FROM
TO
REPLACE

DELETE To delete FROM
unlt(s) from LIB TO

EDIT To invoke the see
TEXT EDITOR requests

sect.XIII

global To repeatedly NEW
EDIT invoke the FROM

TEXT EDITOR TO
see
requests
sect.XIIIi

EJECT To skip to the
top 0 f page on
the report

EXEC To execute a VALUES VALUES VALUES
sequence of
LIBMAINT
commands

5-02

TABLE 5-1 (CONT). SUMMARY OF CO~~NDS

COMMAND MEANS

INDENT To improve the
readability of
a GPL unit

INIT To initialize a
ISM

LIST . To list entries
of directory

LOAD To load a SM

LOWER To convert a
source unit
into lower case
letters

MOVE To transfer units

(*) Ma y no t be
used with
COMFILE

PRINT To print the
contents of
unlt(s)

SL

NEW
FROM
TO
eM

I IN
LM
REPLACE

FROM
TO
SIZE

NEW
FROM
TO
REPLACE

NEWC*>
FROM
TO
TYPE
NUMBER
END
FORMAT
INFORM
OUTFORM
CONTCHAR
ENDCHAR
REPLACE
CHECK

FROM
TO
NTAB
COPIES

5-03

: CU

FROM
TO
SIZE

FROM
TO
END
REPLACE

LM

FROM
TO
SIZE

NEWC*>
FROM
TO
END
REPLACE

SM

SM
LKU
DIR
INFILE
DETAILED

TABLE 5-1 (CONT). SUMMARY OF COMMANDS

COMMAND MEANS SL

PUNCH To punch unites) FROM
TO

RENAME To rename
unites)

RENUM- To renumber
BER un1 t{ 5)

SORT To sort lines
of a source
unit

STATUS To continue or
suspend the
processing of
commands

TITLE To Introduce a
private title
In the report

UNLOAD Clear the virtual
memory

UPDATE To update a
unit using
requests

UPPER To convert a
source unit
into upper
case letters

TYPE
ENDCHAR

NEW
FROM
TO

FROM
TO
NUMBER

NEW
FROM
TO
ASC
DESC
REPLACE
SORTKEY
NUMBER

EVEN
ONLY
RESET

NEW
FROM
TO
TYPE
NUMBER
END
FORMAT
CONTCHAR
ENDCHAR
REPLACE

NEW
FROM
TO
REPLACE

5-04

CU

FROM
TO

EVEN
ONLY
RESET

LM

FROM
TO

EVEN
ONLY
RESET

SM

EVEN
ONLY
RESET

LIBMAINT INPUTS AND OUTPUTS

LIBRARY MAINTENANCE supports up to three Input libraries, an object
library which can be treated both as input and output, an input
tile, an output tile plus miscellaneous inputs and outputs.
Selection of unlta among the input libraries or files will be
discussed in section VI. The following diagram illustrates the
various LIBMAINT inputs and outputs together with the abbreviations
used to denote them.

input libraryJ (INLIS)

input library2 (INLIB2)

Input library3 (INLIS3)

object library

input tile (INFILE)

command input stream
(COMFILE)

backIng store
(for 8M only)

v
INPUTS

5-05

Object library (LIB)

Output file (OUTFILE)

output report (SYSOUT)

Punched cards
(CARD PUNCH)

Backing store
(for SM only)

OUTPUTS

TABLE 5-2. AVAILABLE FUNCTIONS FOR SL

LIB LIB OUTFILE OUTFILE SYSOUT CARD
ssf sarf ssf sarf PUNCH

CODE (:~)
MOVE (:~) LIST (:~) PUNCH (:~) COMPARE (::)

CRLIST (:~)
PRINT (::) DECODE (::)

LIB DELETE (::)
EDIT (::)

EXEC
INDENT (::)

ssf LOWER (::)
MOVE (::)

RENAME (::)
RENUMBER (::)
SORT (::)
UPDATE (::)
UPPER (::)

CODE (::) MOVE (::) MOVE (::) MOVE (::) LIST (::) PUNCH (::)
COMPARE (::) PRINT (::)
CRLIST (::)

INLIBU
DEeOD!': (::)

EDIT (::)
EXEC
INDENT (::)

ssf LOWER (::)
MOVE (::)
SORT (::)
UPDATE (::)
UPPER (::)

INLIB{~ MOVE (::) MOVE (::) MOVE (::) MOVE (::) PRINT (::)

sarf

LIB MOVE (::) MOVE (::) MOVE (::) MOVE (::) PRINT
sarf RENAME C::)

Infile MOVE
ssf

(::) MOVE (::) MOVE (::) MOVE (::) LIST

lnfile MOVg MOVE MOVE MOVE
sarf

COMFILE MOVE MOVE MOVE MOVE
ssf/sarf

(::) : More than one unit can be processed in a single command (star convention;
etc. See section V I).

ssf/ sarf : Distinction between these two formats will be discussed in section V II I.

5-06

TABLE 5-30 AVAILABLE FUNCTIONS FOR CU

LIB OUTFILE SYSOUT CARD PUNCH

MOVE <*> I PUNCH < *)

LIB
DELETE <-*)

INLIBH
MOVE <*) PUNCH <*)

<*>
\

INFILE MOVE <*)

COMFILE MOVE <*>

<*> More than one unit can be processed in a single command <star
convention, etc ••• see section VI)

5-07

LIB

IHLIS I~
- 3

INFILE

COMFILE

LIB

TABLE 5-4. AVAILABLE FUNCTIONS FOR LM

LIB OUTFILE SYSOUT CARD PUNCH

MOVE (*)
DELETE(*>

LIST
RENAME(*>

MOVE (*> MOVE <*) PUNCH C*>
(*)

MOVE C*)

MOVE C*)

TABLE 5-5. AVAILABLE FUNCTIONS FOR SM

LIB

DELETE

UNIT

BACKING

STORE
SYSOUT OUTFILE

LIST

INLI B I MOVE

BACKING
STORE

INFILE

(*> More than one unit can be processed in a single command (star
convention, etc ••• see section VI>

5-08

SECTION VI

BASIC LANGUAGE STRUCTURE

The LIBMAINT command input stream is made up of a series of
commands, requests and literal text. Requests and literal text are
subordinated to a command which 1s the highest level structure in
the LIBMAINT language. The purpose of this chapter is to underline
the characteristics which are common to all LIBMAINT commands
together with the basic structure of the language.

COMMANDS

A command has the following general format.

<VERB> <POSITIONALS>, <PARAMETERS>;

- <VERB> is the name of the command

- <POSITIONALS> stands for a sequence of positional parameters
separated hy commAS or spaces.

- <PAHAMETERS> stands for a sequence of keywords or parameter
values. A parameter value Is a parameter keyword followed by
the equal sign (=) and by a value assigned to this parameter.

All positional parameters, keyword and parameter values are
separated by commas or spaces(commas or spaces or a combination of
both may be used as delimiters between parameters and posltlonals).
One or several spaces may appear inside the body of the command
except within the VERB, keywords or values. The command terminates
with a semi-colon. A command may span several cards or records but
no more than one command may appear on a single card or record.

Example l

,INLIBl zUNIT) " ,REPLACE, NUMBER = (10,10)',

verb po sit ion () 1 parameters

PosltionAls, parameters anrl values other than library keywords and
member-names are rlescriberl under eflch command description in the
followlnq chapters. ThIs chapter will concentrate on the rules for
narl1nq nlprnhers and retrievlny them.

6-0 J

SEARCH RULES

As explaIned earlier LIBMAINT may take its input from any of the
following' INLIS., INLIB2, INLIB3, INFILE. LIB, COMFILE.

The association of the above keywords with an actual library or file
is made by JeL statements (see USER GUIDE). Lihraries or tiles are
to be specified only for input, as output is always LIB or OUTFILE
depending on the JeL used for activating LIBMAINT.

Search rules are the rules that govern the choice at the input
library in which a unit is to he selected. There are two possible
cases:

- The library is explicitly stated as a qualifier to the name of
the member. This is achieved by means of the library or file
ke~~ord prefixe0 to the nBme by a colon.

Exampl e J

MOVE INLIB J I UNITJ ;
MOVE INr:ILE : UNIT2 ;

- The libr~ry is not explicitly stated in which case the
following rules apply :

- if command is DELETE, RENAME or RENUMBER, the assumed library
is LIB.

- if more than one member is processed in a command by means of
~ list of member names, the assumed Input library is LIB.

- in all other cases, the named member is searched for, first
j n I N LIB) the n i n I N L I 82 t I NL I 83 and 1 as tIn LIB un til A un i t
with the specified name Is found.

NOTE: LIBMAINT SM always works in LIB except for command MOVE which
operates on INLIBI or INFILE. INLISJ is never indicated.
INfILE needs to be specified when required.

6-02

MEMBER NAME

A member name 15 composed of a string ofalphabe"tic (A-Z). numeric
(0=9) and spacial characters. The allowed special characters are the
underscore (_>, the minus (-) and period e.) symbols. There 1s no
restriction on the ~irst character and the maximum length of a name
is 31 characters (30 characters for a SM or LKU).

IMPORTANT NOTE'

THE FOLLOWING DOES NOT APPLY TO LI8MAINT SM.

As stated above, a member name may be prefixed by any of the
following.

COMFILE t
INLIBI I

I NLI 82 I

INLIB3 I

LIB I

INFILE I

fhe library keyword Is separated from the member name by a colon
(I). Spaces are allowed before and after the colon.

6-03

IMPORTANT NOTE I

THE FOLLOWING DUES NOT APPLY TO LIBMAINT SM

LIST OF MEMBER NAMES

Most LIBMAINT commands can operate on more than one member. This is
stated by indicating a list of members In place of the member name
In the command. There are three basic means through which a lIst of
members can be stated I

- by an explicit list
- by an indIrect list
- by t~e ·star convention-

Expl1cit List

An explicit list of member names is formed by a list of names
separated by commas or spaces and enclosed between parentheses. All
members must belong to the same library. if none is specified, LIB
is assumed. If member-names have a common prefix or suffix, these
may be written outside the parentheses. These will act like factors
in classical arithmetic. No space is allowed between the prefix and
the left parenthesis or between the right parenthesis and the
suffIx.

EX3mpies a

- (LIBEANAL, LIBERPRINT. LIBEREAD)
or

LIBECANAL, PRINT, READ)

- (LIBSLERR, LIBCUERR, LIBLMERR)
or

LIH(SL, CU, LM)ERR

If an explicit 11st of member names is prefixed with symbol not
(, >, this means that ~ll members except those ind1cated In the list
are to be processed.

Examples.

-1CLIBA, LIBB, LIBC)

6-04

or
ILl B(A, S, C)

-j(XXABYY, XXCYY, XXDEFYY)
or

iXX(AB, C, DEF) YY

IMPORTANT NOTE I

THE FOLLOWING APPLIES ONLY TO LIBMAINT SL

Indirect List

A list of the members to be processed may be given in a unit of a
source language library. This list might have been created, for
example, by the CRLIST command (see section VIII).

To denote that the members list is given in a unit, one specifies
the unit name, possibly qualified by a library keyword. enclosed
between It < n and II > II (search rules apply there).

txamples I

- MOVE INLI81 I < LI B I SFLISTJ > ,

The members of INLISJ whose names are contained in unit SFLISTl of
LIB will be moved to LIB

- PRINT INLIBJ I < LIST2 >

. -. LIST < LIST3 >,
The Itnotll convention may also be used with an indirect name list.
This means that all members, except those whose names are listed in
the unit, are to be processed.

EX3mpies I

- PRINT INLIBJ 11< INLIB2 • SFLIST4 >

- DELETE 1< LIST5 >

6-05

IMPORTANT NOfE:

THE FOLLOWING DOES NOT APPLY 10 LIBMAINT SM

star Convention

The star convention is a device which allows the specification of a
name list in terms of a given pattern. All names that match the
pattern are selected for processing. Constant sections of the
pattern are expressed as such, variable sections are denoted by an
~sterisk or a star <*>. When a name is found to match the pattern,
the "*11 replaces 0 to n characters.

Examples :

Pattern Matches Does not match

A*B AB AXYYXI3 AXBYB AXBY

A**B same same

A* A AX AXYZ XAX

*A*B* any name with a B the
right hanrf side of an A

* all nArne s none

** all names none

If a library is specified before the pattern, the matching process
applies to all members of the named library. If no library Is
specifierl, LIB is assumed.

The '''not .. • convention can also be used In combination wi th the star
convention. It indicates that the command is to process all members
that are not matcherl by the pattern.

Example I

matches all members in LIB whose names rio not begin with flLIB3M •

6-06

The user can also specify the first and/or last name to be matched
by the star convention based on alphabetical order. The first and
last names neerl not be the names of members. these are only
reference values for comparison.

IMPORTANT NOTE ,

THE FOLLO,.lING DOES NOT APPLY TO LIBMAINT SM

Examples I

- LM*. FROM = LMAB, TO :: LMXY

means that all names begInnIng with LM, falling alphabetically
between LMAB and LMXY (both inclusive> are to be processed.

- *XYZ, FROM = HHHXYZ
- .H*, fROM = G. TO = L
- *, FROM = A, TO = P
- *, TO = D;

Limited Star Convention

This limited form of the star convention has to be used I

- when the command has two posItional parameters representing
member names (Ex I COMPARE)

- when parameter NEW is used to create or update members under a
new name

Limited star convention restricts the number of asterisks in the
pattern to one occurrence. FROM and TO parameters may also be used
in this limited form.

Examples I

- COMPARE INLIBI 1*, INLIB2 I *OLD

denote that all members of INLIBl are to be compared with the
members of INLIB2 with the same name followed by OLD.

- MOVE I NLI 13 I I H*ERR, NEW = Z*VIARN

applied to a library containing members a

HMZIMZH
HLI BERR
HDBERR

6-07

HLKZ

will result in moving members HLIBERR and HDBERR into LIB and
renAmIng them ZLIBWARN and ZOBWARN respectively.

GENERAL FORMAT OF COMMANDS

DOES NOT APPLY TO LIBMAINT SM

Command-name

INLIl:3J

INLIB2

INLIl33 ,
LIB

INFILE

COMFILE . .

member-name J

star-convention

limited-star-

convention I

[{::::b:r:::::~~name_2}]
[,FROM-: member-name-3]

[t TO = member-name-4] \

[{

,Limited-star-convention-2 }

,NEW = limited-star-convention-2

1
,FROM = member-name-3

,TO = member-name-4

(explicit-name -list)

\ <indirect-name -list> (*>
\

[,specific parameters and keywords] ,

(*) A PP LIES TO L I BMA I NT 5 L 0 NL Y

6-08

To improve the legibility of subsequent chapters, the following
conventions will be used.

- ··"star-conventionU will stand for ·"star-convention •••
FROM ••• TO ••• II

- IIlimited-star-convention" will stand for
III imi ted-s tar-convention ••• FROM •••• TO'"

- commas will appear as s~parators between parameters and
positional keywords. It is understood that these may be
replaced by one or more spaces.

6-0.9

SECTION VII

COMMANDS APPLICABLE TO ALL LIBRARIES
(ExceptSM)

Following is a description of LIBMAINT commands which are applicable
to all types of libraries: SL, CU, LM (not applicable to 8M).

Commands are sorted in alphabetical order and each description
starts at the top of a page.

7-01

COMM

Function'

To in,troduce comment lines in the LIBMAINT execution report.

format.

COMM Text of the commentl

Ruiesl

I. The text of the comment may span several input cards o-r
records.

2. The text of the comment must be protected (I.e. enclosed
between s1ngle quotation marks) if it contains a semi-colon.

3. The text of the comment may be paramet.erized (see EXEC).

Example l

COMM "SAVE of LIBRARIES , LIST OF SAVED UNITS" ,

1-02

EJECT

Function'

To skip to the top of a new page in the LIBMAINT report.

Format. EJECT ,

Rules'

This command is not printed out in the execution report.

1-03

ESCAPE

Function'

To submit an (JCL statement for execution in interactive mode.

Format.

ESCAPE OCL-statement ,

Examples.

ESCAPE OS X25 •

ESCAPE SI TEST4aTESTLIH'CJOOtMS/M4001

7-04

EXEC

Functionl

fo execute a sequence of LIBMAINT commands stored in a source
library SSF unit. The fixecuted commands may be parameterized.

r:ormatl

EXEC
[

INLIBJ
INLIB2
INL!B3
LIB a

unit-name [, VALUES = (pI, •••• , p99)]

Parameters.

- VALUES introduces a list of parameters which are to replace the
correspondIng &n in the executed unit (1 ~ n ~ 99). &1 will
be replaced by pi, $2 by p2, ••• &99 by p99.
Acceptable forms for pJ arel

- an unprotected character string which does not contain
the characters space, .lI;.tI til , ""'.I,. Spaces precedinq
the first character or following the last s1gnlficant
character are ignored.

Example. VALUES = (ABCD, EFGH, I)

- a protected character string a i.e enclosed between
single quotation marks"·~II. Th.is string may contain any
character but .11.,.11.

Exampl e' VALUES = ("STATUS ONLY , .')

- an empty protected string • i.e. two consecutIve single
quotation mark characters. The corresponding &n
combination will be merely eliminated from the executed
text.

Example' VALUES = (A, ' ~ , B)

- an empty string a i.e. two consecutive commas, possibly
separated by spaces. The corresponding &n combination
will be lett as it is.

Example' VALUES = (A , , , D)

7-05

Ruiesl

- EXEC may not appear inside an EXECuted sequence of LIBMAINT
commands.

2 - Replacement of &n by the corresponding pn is effective in I

- LIBMAINT commands

- EDIT command~s requests

it is ineffective in data introduced by a LIBMAINT command
(MOVE COMFILE' t UPDATE) or by an input mode request of the
text editor (EDIT~s At Ct I).

Example'

unit EDIT,

&1&2 EXEC unit

&3&4

&5

VALUES =
(EDIT, ., ..

:
:

&1

I '.

t
:
&2

, .I

&3

7-06

&4

&5

QUIT

Function.

To terminate a LIBMAINT Session. This command Is optional, an end of
file mark on COMFILE i5 treated as a QUIT command.

fo'ormat. QUIT ,

7-07

SJATUS (also SM)

Functionl

fo continue or suspend the processing of LIBMAINT commands when an
error has previously occurred.

Formata

STATUS IEVEN I ONLY
RESET

I

Rules l

J. STATUS ONLY proceeds with the execution of the following
command only if no error has previously occurred.

2. STATUS EVEN proceeds wi th the e.xecution of the following
command (and that command only) even if an error has
occurred.

3. STATUS RESET rese ts the error count to zero.

Examples.

I • DELETE A ,
STATUS EVEN

PR INT C i

PRINT B

2. DELETE A I

STATUS RESET

PHINT B ;

MOVE C ,

,

I

The PRINT Command will be executed even

if the DELETE failed. But PRINT B will

not be executed if either DELETE or PRINT C
failed

If the DELETE command fails, the

following commands are executed.

7-08

TITLE

~unctionl

To introduce a private title line after the standard LIBMAINT title
lines in the execution report.

Format.

TITLE [Text of the title];

~?ules :

1. The text of the title can span several input cards or
records. The maximum length is 240 characters.

2. The text lOust be protected between single quotation marks if
a semi-colon appears in its body.

3. The text may be parameterized.

4. The TITLE command is not pri-nted out on the execution report.

5. The new title text is taken into account from the first skip
to top of paqe following the TITLE command.

6. If the title is to he printerl at the first pAge of the
LIl:3MAINT report, th~ first two commands must he: TITLE XI anti
EJECT;

7. An empty text (i.e. : TITLE;) destroys the effect of a
previous TITLE command.

Examples.

TITLE UPDATE OF SOURCE ,
TIlLE 'TODAY; IR FEH 1978"' ;
TTTLr: ;

7-09

5 E CT I ON V I I I

COMMANDS APPLICABLE TO SL LIBRARIES

The following is a description of the LIBMAINT commands that are
applicable to SL libraries.

A source language library contains a number of source units that may
bet

- in System Standard Format (SSF)
- in Standard Access Record Format (SARF).

A source unit will typically contain a series of EBCDIC source text
lines such as programs, documents, confidential information or any
other kind of legihle text. In normal mode, only SSF units are
treated. However, some LIBMAINT commands apply to hoth (refer to the
tables of section V) and conversion from one format to the other is
possible (see MOVE command in this section)" •

SSF units are prefixed with a special control record which is not
directly user visible and which holds the relevant irlentlfication
information for the unit, namely'

- Date and time of creation

- Date and time of last update

- Version number

- Lanquaqe type

- Size in lines

This information is vi tal for the efficient handling of source
language lihraries and is automatically updaterf by LIBMAINT. Most
commRnrls rlisplRY the irlentification of the llnits which they process.
SSF source lines contain internal numhering which i s l~ft unchanqerl
by all but the RENUMBEr? commnnrl (unless explicitly rf!qlIPsterl to rio
otherwIse).

SARF source units have no line nlJmherlnq anti no inf()rmfltlon on th~tr
status or identification. SARF Is A"raw" format.

Commands are presented in alphabetical order anrl each rlescrlption
starts at the top ot a page.

8-01

CODE

FunctionJ

To provide maximum security for data stored In SSF source unites),
this command permits the coding of the units contents according to a
key which need not he stored in the system.

Format.

CODE [I
INLIBl
INLIB2
INLIB3

LIB •

member-name-I, NEW = member-name-2
star-convention
I1mlted-star-convention-1
[. NEW = I1mlted-star-convention-21
(explicit-name-Ilst)
<indlrect-name-list>

, KEY = 'keyvalue' [, REPLACE] ;

Parameters.

- KEY is a protected strlnq of no more than 16 non-hlank
characters which is used for the codlnq. This parameter is
mandatory.

- NEW specifies the name(s) ot the resultlnq memher(s). This may
be used with memher-name or limited-star-convention.

- FROM, TO may be used with star-convention and
limited-star-convention.

Keywords.

- REPLACE allows the member-name being written In LIB to replace
(over-write) a member with the same name previously
present In library LIB.

- if the specified or selected library Is LIB and if NEW
Is not specified, REPLACE need not he specified.

- REPLACE may be userl even if the LIB library contains no
unit with the resulting memher-name.

8-02

Rules •

1. When member-name is specified, search rules apply unless a
library keyword is used.

2. When star convention, explicit or indirect name list is used,
rlefault library is LIB, unless a library keyword is specified.

3. The result of the coding 1s in lihrary LIB.

4. See DECODE command for the reverse process.

5. This command may be parameterized.

Examples'

CODE INLIBI , SOURCE_PROC, NEW = CSOURCE_PROC, REPLACE,
KEY = '+*AW·',

CODE * t KEY = 'MYKEY' ;

8-03

COMPARE

Funct 10nl

Compare two SSF source units and pr1nt out the changes made to the
first arqument unit to yield the second argument unit.

Format I

COMPARE

Parameters.

member-name 1
INLI82 I I
I NLI B 1 :

INLIB3 t

LI B I [.]11 m1 ted-star-convention-I

I NLI B J •
INLIB? I

INLIB3 •
LIB I

member-name2

limited-star-convention-~

,

[.LIMIT=X] ;

- LIMIT specifies the maximum number of rliscrepancies to be taken
into account before processing stops. Default value is
50; maximum value is 32767.

- FROM, TO may be used with limited-star-convention.

Rules.

J. When member-name-l or member-name-2 is specifierl, search
rules apply unless a library keyword is used.

2. When limited-star-convention is used, default lihrary is LIB
unless a library keyword Is used.

3. The output is organized with the assumption that the first
unit WAS edited, resulting in the second.

4. Both compared members must be in SSF.

~. Internal lIne numbering is not taken into account in the
comparison process. Thus, two members which rliffer only by
their number1nq will be considered as identicctl.

6. The command may be par,':)meter 1 zed.

8-04

Exampl as I

H_LIB_El and H_LIB_EJ8IS are compared until 10 discrepancies
are found. Search rules apply for both arquments.

- COMPARE INLIBt I H_LIB_ELIST, INLIB2 I H-LIB_ELIST ;

H LIB ELIST in libraries INLIS} and INLIB2 are compared. No
search rule applies. Comparison will terminate if more than 50
discrepancies are found.

- COMPARE INLIB) I H_LIB_*, INLIB2 I H_LIU_*_OLO, LIMIT = 1 ;
will compare

INLISl : I-I_LIB_ERR with INLIB2 t H_LIB_ERR_OLD

INLIS! I H_LIB_GO with INLIB2 I H_LIB_GO_OLD etc •••

8-05

enLIST

Function.

Create a SSF unit containing a complete or selective list of the
member names of a library or a list of user specified names.

Format.

CRLIST

I Nl r B I I

INLIB2 z

INLIH3 I

LIB I

member-name-J \
star-convention I
(explicit-name-Ilst)
<Indirect-name-list>

• member-name-2 [. NUMllER [= (n I [. n2])]] [. REPLACE] I

Parameters.

- FROM, TO may be used with star-convention

Keywords.

- NUMBER specifies that the lines of the created (member-name-2)
SSF unit are to be numbererl, beginning with nJ, and
incrementing by n2 for each new line. Default values are
n1 =)0 and n2 = 10.

- REPLACE allows the created member name to replace (overwrite) an
existing memher with the same name in LIB. This may be
used even if no such member exists In LIB.

Rules.

I. One recorri Cline) is created in member-name-2 (In LIB) for
each membflr-nAme spec1fierl In the command or faunn In the
input library. The record contains the rn8mher name followerl hy
a single space character.

2. Member-name-2 may be later used as an indirect name list by
another LIBMAINT command

3. When star-convention is specified the directory of the
specified or implicit (LIB) library is read and matchlnq names
stored In member-name-2 of LIB.

4. When member-name-I, explicit or indirect name lIst, not
preceded by "~." are used, library keyword is immaterial.

5. The command may be parameterized.

Examples'

- This command will be best appreciated when one has to handle
a set of members, the list of names of which cannot be
easily obtained by star convention or explicit name list.
Select a superset of the required names in a CRLIST command,
then eliminate in the resulting unit all undesirable names.
The unit may then be used as an indirect name list.

- CRLIST is also useful when a series ot commands is to be
applied to the same set of members. One can then proceed as
follows.

CRLIST (list-ot-the members) , MYLIST ;

command J ••• < MYLIST > •••••

•
•
•
command n ••• <MYLIST> •••• ;

DELETE MYLIST ,

8-07

DECODE

Function.

Reconstruct the original unit, given a coded unit and its coding
key.

Format.

DECODE

,

INLIBJ I

I NLI 82 I

member-name-I [,NEW = member-name-2]
star-convention

INLIB3 I
1

limited-star-convention-I

LIB' (expllcit-name-list)
<indirect-name-list>

KEY ="k eyva 1 !le-" [• REPLACE] I

[.NEW=llmlted-star­
convention-2]

Parameters.

- KEY

- NEW

is a protected string denoting the key which was used to
code the unit. It is a string of no more than 16 non-blank
characters. This parameter is mandatory.

Specifies the nRme to be given to the reconstructed member.
NEW may be used with member-name-l or
limited-star-convention.

- FROM, TO may he used with star-convention and
limited-star-convention.

Keywords.

- REPLACE allows the reconstructed member to replace (overwrite) an
existing unit in LIB.

Rules'

- if the specified or selected library is LIB and NEW is
not specified, REPLACE neerl not be present.

- REPLACE may be used even if no member with the same name
exists in LIB.

I. When member-name is specified, search rules apply unle.ss a
library keyword is used.

2. When star-convention, explicit or indirect nrlme list is Ifsed,
riefault librAry Is LIB unless a lihrary keyword is speclflerl.

3. The reconstructed member is written in LIB.

4. See CODE command for the reverse operation.

8-08

5. The command may be parameterized

Examples.

DECODE LIB a CSOURCE_PROC, NEW = SOURCE_PROC,

REPLACE, KEY = ~ + SAW I ;

DECODE L! B 3 * i NEW = K_* ! KEY = J MYKEY ·1 ,

DECODE * , KEY = , @ XZK' ,

8-09

DELETE

Function.

Delete one or more units in a source unit library LIB.

Format I

DELETE [LIB I] [-,]

Parameters I

member-name
star-convention

(explicit-name-list)
<indirect-name-list>

- FROM. TO may be used with star-convention

Rules'

I. No search rule applies, member(s) must exist in library LIB.

2. The only allowed library keyword is LIB.

3. Deleted members may be in SSF or SARF format.

4. Identification of deleted members Is rl~splayed for SSF
members.

5. The command may be parameterized.

Examples.

DELETE LIB' *A t FROM == ALPHA, TO = OMEGA ;

DELETE SOURCE ;

DELETE H*J I

8-10

EDIT

~unction' invoke the text editor using the requests followinq in the
command Input stream.

Formata EDIT ,

Rulesl See section XIII.

GLOBAL EDIT

Function.

Repeatedly invoke the TEXT EDIT()R for a series of members defined in
the EDIT command.

Format I

EDIT

INLI B 1 ;
INLIB2 ,
INLI83

LIB ,

Par arne tar 5 I

-,
member-name-J [. NEW = member-name-21
star-convention
llmited-star-convention-J
[, NEW=limited-star-conventlon-21 ;
(explicit-name-list)
<inriirect-name-Ilst>

- NEW Specifies the name(s) of the unites) resulting from the W or Z
requests (see section XIII). This may be us~d with member-name
or limited-star-convention.

- fROM, TO may be used with star-convention or
limited-star-convention.

8-1 J

,

Rules'

I. Requests for GLOBAL EDIT are identical to those for EDIT (see
section XIII) except for extensions of R, Wand Z. Such
requests that refer to units defined in the command must take
one of the following forms I

[! ~ ~t i ~~ :!J R INLIB3 I &0
LIB I

When a library keyword is used with the R request it must he
the same as the one In the EDIT command.

2. If NEW Is used and member-name-2 exists In the LIB library,
the corresponding W &0 will be rejected, Z &0 will be accepted
to overwrite the member.

3. &0 is reserved for Rt Wand Z requests. It is replaced by the
corresponding member-name in the command.

Example I

EDIT INLIBI • H_*_ERR, NEW = I_*_WARN I

R I NLI B 1 I &0
•

requests
•
•
•
•
Z &0

Q

If INLIBJ contains members I H_MZ_IMZH
H_LI B_ERR
H_LK_EDIT
H_DB_ERR

r P.ql.osts will apply to

Ii I.II~ ~:r?1{ Lo create (In erlltAd unit named I_LIB_WARN and
II=I>B_GIH? to create an e01 ted un! t namen I_DB_WAHN.

8-12

Function l

Improve the readability of a GPL source unit by indenting it
according to a set of rules described below.

Format.
- ... -

I NIJENT

...

INDENT

I NL I B 1 I

INLIB2 I

INLIB3 I

member-name-J ,[NEW = member-name-2J- I
star-convention [

l 1 1m! ted-star-convention- J t NEW=l 1Mi ted-]
star-convention-2

(explicit-name-list))
<indirect-nama-list>

LIB I - '- -...

[.CM = xxx] [. IN = yy] [. LM = zz] [. REPLACE] '

Parameters.

- NEW Specifies the name(s) of the resulting member(s); this may
be used with member-name and limited star-convention.

- FROM, TO may be used with star-convention or limited
star-convention.

- eM Sets the comment column to position xxx. Comments are linerl
up in this column unless they be91n a line and are preceded by
a blank line (or are nt the beqinninq of the program or Bre a
comment beginning in column 1). It this parameter is omitted,
de faul t for xxx is 61. -

- IN Sets the value of indentation tor each level to yy. Each DO,
BEGIN, etc ••• statement will cause additional yy spaces 0f
indentation until the matching statement is encountered. If
this parameter is omitted, default for yy 15 5.

- LM Sets the left margin (indentation for normal program
statement) to zz. If this argument is omitted, default value
tor z z i 5 J I • .

Keywords'

- REPLACE Allows the member(s) being written to the output
library LIB to replace (overwrite) existing member(s) with the
same name.

- If the specif1ed or selected library is LIB and NEW is not
used, I~EPLACE nped not he stClterl.

- REPLACE may be llseri even if the resultlnq member(s) do not
exist in LIH.

8-13

Rules a

J. When member-name is specified, search rules apply unless a
library keyword is stated.

2. When star-convention, explicit or indirect name list is used,
default library is LIB unless a library keyword is specified.

3. The resultIng member(s) are obtaIned in LIB or OUTFILE
depending on LIBMAINT assignments.

4. Declaration statements are .indented five spaces. structure
decla.rations are indented according to structure level number.
After level 2, arlditlonal levels are Indented two more spaces
each.

5. Multiple spaces are replaced by a single space, except within
strings or non-leading spaces in comments. Spaces are inserted
before a left parenthesIs, after commas, and around the
constructs = , -> , < = , > = , and ,=. Spaces are deleted
when found atter a left parenthesis or before a right
parenthesis.

6. Parentheses are counted and are expected to balance at every
semi-colon. If parentheses do not balance at a semi-colon, or
if the unit terminates in a string or in a comment, a
diagnostic is produced.

7. The command may be parameterized.

Examples'

IDENT INLIB3 I PROG, NEW =IPROG, eM = 8f, LM = 7, IN = 3 ,

INDENT LIB' * , FROM = ALPHA, TO = OMEGA,

NEW = *NEWREPLACE, eM = 71 ,

8-14

Functionl

Produce a complete or selective table of contents of a source
language library or SSF sequential file.

Format!

LIST

INLIBI •
INLI82 a
INLIB3 c
LIB I

INFILE •

Parameters.

member-name

l star-convention
(explicit-name-list)
<indirect-name-list>

- FROM, TO may be used with star-convention

LIST

- SIZE .When specified, allocated space is displayed for each member
(unit:: J block)

Rules.

I. When member-name is specified, search rules apply unless a
library keyword or INFILE is used.

2. When star-convention, explicit or indirect name list is
specified, default library is LIB unless a library keyword or
INFILE is used.

3. For a library, members are listed in alphabetical order.

4. For a sequential file, members are listed In storage order.

5. For a library, occupancy information Is displayed.

6. Identification of SSF units is displayed

7. The command may be parameterized

Examples.

LIST INFILE • MEMBER_*_NEW I

LIST * , FROM = ALPHA, TO :: OMEGA I

8-15

LOWER

Function:

Convert source language unites) into lower case letters.

Format.

LOWER

Parametersl

INLIBI I

INLIB2 I

INLIB3 •

LIB I

[.REPLACE] I

member-name-J [.NEW = member-name-2]
star-convention

limited-star-convention-I [.NEW=limite~]
star-convention-2

(explicit-name-list)
<indirect-name-list>

- NEW 5 pe c i fie 5 the new nam e (s) tQ_j:> e; ,g i v e n tot h e co n v e r ted
un i t (s) • ... ~ii-~ ~.

- FROM , TO May be used wi th star--convention or
limiteri-star-convention.

Keywords'

- REPLACE Allow the unites) being written 1n output library LIB to
replace (overwrite) an existing unit with the same name.

if the specified or selected library is LIB, and if NEW is not
specified, REPLACE need not be stated.

- REPUCE may be used even if no member with the same name exists
in LI B.

Rules'

J. When member-name is used, search rules apply unless a library
keyword Is specified.

2. When star-convention, 1Imited-star-con'vention, explicit or
indirect name list is used, default library is LIB unless a
library keywo.rd is specified.

3. The command may be parameterized.

Examples' LOWER LIB I MYMEMBER •

LOWER INLIBJ I <INLIB2 I MYLIST> ,

8-16

MOVE

Function.

- Move one member from COMFILE to a library.

- Mova one or more members tram a library to the LIB library or
to a sequential file.

- Move one or or more members from a sequential tile to a library
or another sequential file.

- Move a SSF member from a library to the LIB library or to a
sequential file with SARF format (SSF to SARF);

- Move a SARF member form a library or sequential file to the LIB
library with SSF format (SARF to SSF).

Format'
~ ~ .. ~

1'1 NLI B 1 I" ~ember-name-I [. NEW '" member-name-2J'
INLIB2 ,

star-convention
INLIS3 I t

MOVE "4 ~ l~
ILlS I Ilimi ted-star-convention-l [,NEW =

I imited~star-convention-2J
COMFILE I (explicit-nama-list)

,INFILE • ~indirect-name-list>
~ _ L. _

[. TYPE

. [. INFORM '"

= langUage-type] [• NUMBER [= (n I [. n2])]]
[, END = "string"]

[• OUTFORM = {SSF }] [.REPLACE] [.CHECK J
SARF

[. ENDCHAR= "'charl"J [.C(lNTCHAR '" "ChartJ'J [FORMAT=<nl.n2.n3.n4 [.n5 J> J '

Parameters'

- NEW Specifies the name(s) at the resulting member(s). This may be
used with member-name or limited-star-convention. NEW cannot
be used with COMFILE I or INFILE I with SAR~.

- FROM, TO may be userl wIth star-convention or
limlted-star-cO~wention.

- TYPE determines the language type of the output unit. This type
will be permanently associated with the unit and be part of

8-17

its identification. The language type determines the default
FORMAT (see below) of Input records when the user transfers
units from COMFILE, input lIbraries or INFILE in SARF format.
In these cases TYPE is mandatory. It is possIble to use
parameter FORMAT to override the default values provided. The
following table gives these default values (refer to FORMAT,
below for explanations).

TABLE 8-1. DEFAULT FORMATS

Language-type Means Default FORMAT

nJ n2 n3 n4 n5

FOR or FORTRAN FORTRAN 0 0 I 72 0

CBX or COBOLX Extended COBoL I 6 7 72 0

COB or COBOL COBOL I 6 7 80 0

RPG Unified Report Program 0 0 J 80 0

JCL Job Control Language 0 0 J 80 0

OAT or DATASSF Data in SSF format 0 0 I 80 0

DEL or HUDEL Honeywell User 0 0 1 80 0
Doc umen t En try
Language

OPL GeOS Programming I 6 7 80 0
Languaqe

- NUMBER Specifies that the line numbers (if any) in the input
records are to be discarded and that the lines be numbered
beginning at nl and incrementing by n2 at each new input
record. Default values are nJ = 10 and n2 = 10.

- END Denotes the marker to be used to specify the end of a
sequence of input cards in COMFILE.

- maximum length of string is 8 characters

- all characters except single quote mark are allowed

- It END Is omitted, implicit value for strIng Is //EOD

- string or //EOD Is mandatory when COMFILE Is usedl it
must begin In column 1 of the Input record.

- FORMAT This parameter is used to override default values derIved
from the language type or the TYPE parameter. It defines
the pOSitIon of the lIne number, of the text and vertical
form control fields 1n the record. ThIs is defined by means

8-18

of 5 values denoted as nl, n2, n3, n4 and 05.

- Line number field expands from columns nJ to n2. Zero
values denote that no line number is present. The line
number must be right Justified in the field. Blanks are
treated as zeroes.

- Text field expands from columns n3 to n4. It may overlap
the line number field.

- n5 15 used to specify the column in which a particular
form control option Is coded. Zero value denotes no form
control option. Applicable codes 8rel

Space vertical space J line before this line

o rlouble space before this line

triple space before this line

+ do not vertically space before this line

Skip to top of page with this line.

- Character * may be used to denote variable length fields.
If n2 = *. line number terminates at first non-digit
character. If n3 = *. text field begins with the first
non-digit character on input record except when this
first non-digit character 15 a space. If n4 = *, text
continues until end of record. Neither nJ nor n5 may be
*.

- CONTCHAR The character defined by parameter CONTCHAR Is considered
as a continuation mark if it is the last significant
character of an input card or of a SARF record. This
option may he used with MOVE with INFORM = SARF I it may
be used simultaneously with ENDCHAR (see below).

- ENDCHAR The character defined by parameter ENDCHAR is cons1dered
as an end of record delimiter if it is the last
significant character of an input card or of a SARF
record. This option may only be used with MOVE with INFORM
= SARF • it may be used simultaneously with CONTCHAR (see
above). When ENDCHAR 15 specified, all input records must
terminate with the specifierl character.

- INFORM Speciftes that input member is in SARF or SSF.

Default Is SSF.

- OUTFORM Spec i f 1 es tha t output memher is to be SARF or 55 F.

Default is SSF. When OUTFORM = SARF, line numbers are
inserted in the text in accordance with the standard
format correspond1ng to the members type (if any). This
format may be overridden by parameter FORMAT (see above).

8- 19

Keywords'

- REPLACE Allow the member(s) beIng wrItten in output library LIB to
replace (overwrite) member(s) with the same name
prevIously existing in LIB.

-CHECK

Rules'

- When assigned LIBMAINT output is OUTFILE 9 REPLACE is
ignored and command will operate regardless of whether
REPLACE permission is given or not.

- REPLACE may be used even if no member with the result1ng
name is present in LIB.

Specifies that it is to be checked that line numbers (for
type = GPL, COB, CBX) are in non-descending order. This
option can be used with MOVE COMFILE and MOVE INFILE SARF.

I. When member-name is specified, search rules apply unless a
library keyword, COMFILE or INFILE is used.

2. When star-convention, explicit or indirect name list is used,
defaul t library is LI B unless ·a library keyword or INFILE is
specified.

3. Library keyword LIB cannot he specified when LIBMAINT
assigned output Is OUTFILE.

4. The command may be parameterlzerl.

Examples 1

I. To store a whole unit read from cards into a lihrary or
sequential fIle

MOVE COMFILE I member-name [, FORMAT •••] [, CHECK]
[, OUIFORM = •••] [t NUMBER = •••] , TYPE = ••••
[, END = "strlngJ] [, REPLACE] [, CONTCHAR = ..• 1
[, E NDCHAR = •••] ;
- output may be SARF or SSF

- Records of more than RO characters can be created by means
of CONTINUE orRECEND. The maximum length of such records
is however limited to 256.

- MOVE COMFILE I SI, TYPE = DATASSF, END = ~FIN" , REPLACE;

de ck 0 t cftrds
•
•
•
FIN

8-20

2. To transfer SSF units from a library or file into a library
or file.

MOVE

INLIBJ •
INLIB2 •
INLIB3 I

INFILE I

LIB s

member-name) C, NEW = •••••]
star-convention

~ limited-star-convention [, NEW = ••••]
(explicit-name-list)
<indirect-name-List>

[. REPLACE] [, NUMBER] ;

output is LIB or OUTFILE depending on the LIBMAINT
assignment.

MOVE INLIB! :l* OLD

MOVE TEST4, NUMBER, REPLACE ;

lli>VE INFILE I * ;
MOVE INFILE I UNIT1, NEW = UNIT2, NUMBER, TYPE = COBOL;

MOVE INLIBJ I *, FROM = ALPHA, TO = OMEGA;

MOVE INLIS3 I UNIT (1,2,3,4), NUMBER,

MOVE <INLIB2 I MYLIST> , REPLACE ;

3. To transfer SARF from INFILE into LIB or OUTFILE.

MOVE INFILE s member-name, INFORM = SARF, TYPE = . .. ,
[, OUTFORM = •.• l [, CHECK] [, REPLACE] [. FORMAT]

[t CONTCHAR = •••] [, ENDCHAR = •••] ;

- Output is tIB or OUTFILE depending on LIBMAINT assignment.

- output may be in SSF or SARF (OUTFORM parameter)

- MOVE INFILE. UNITt, TYPE = DATASSF, FORMAT = (0, 0, J, *>.
INFORM = SARF ;

4. To transfer SSF or SARF from a library into LIB or OUTFILE In
SARF

MOVE
INL I B I I

INLIB2 •
INLIB3 :
LIB •

[, TYPE = ••••

member-name
star-convention [. R)RMAT s ••• l
(explicit-name-list) [, NUMBER = ••• l
<indirect-name-list>

] • OUTFORM = SARF [. I NFORM a ••••] f

- ~()RMAT rlescribesthe output format.

8-21

- MOVE UNITI, OUIFORM = SARF. TYPE = COBOL.

- MOVE INLIB2 a UNITI, OUTFORM = SARF, TYPE = CBX, FORMAT =
(1,4,7,97) ,

- MOVE UNITl, OUTFORM = SARF, FORMAT = (1,6,7, *) ,

8-22

PRINT

Function.

Print the contents of one or more members of a source unit library
or sequential file.

Formati

PRINT

I NLI B J J

INLIB2 I

INLIB3 I

LIB I

INFILE J

[, COPIES = xl

Parameters l

member-name
star-convention

(explicit-name-list)
<indirect-name-list>

.r , NTABl ,

- FROM, TO may be used with star-convention

- COPIES Specify the number of copies to be produced (1 " x .$ 9)

Keywords:

- NTAB I Do not expand tabulation characters (hexadecimal 05)

Rules.

1. Search rules apply when no library keyword nor INFILE is
s p e c, i fie d •

2. When star-convention, explicit or indirect name list 15
specified, default library 1s LIB, unless a library keyword
or INFILE is specified.

3. Selection of a member or set of members from INFILE is
possible.

4. The command may be parameterized.

Examples:

PHINT INFILE I ,<LIST> , COPIES = 3 ,
pr~ I NT * ,

8-23

PUNCH

Function'

Punch one or more members of a source unit library or sequential
file in SSF format.

Format.
r- - ~ -

INLIBJ I member-name I INLIB2 I star-convention
PUNCH INLIB3 I

-,
LIB • (explicit-name-list>1
INFILE , I <indlrect-name-llst>1

"- - - -
[, TYPE = language-type] [, ENDCHAR = ~charJ'] ,

Pararne te.rs'

- FROM, TO may be used with star-convention

- ENDCHAR the specified character is to be punched as the last
character of each output record.

- TYPE Determine the format in which cards are to be punched.
Basically, TYPE indicates the positIons in which the lIne
numbers are to be punched (If any> and the width of the
punched text. PUNCH is such that the punched cards will be
accepted as such by the MOVE COMFILE command with the same
TYPE parameter. When no type Is specIfIed, the stored unit I

type is assumed. The following table summarizes the
punching conventions according to the language type
indicated.

TABLE 8-2. PUNCHING CONVENTIONS

Language
type Means Line number Text

COBOL·or Standard I to 6 7 to 80
COB COBOL

COBOLX or Extended
1 to 6 1to 72

CBX COBoL

FORTRAN
or FOR FORTRAN None I to 72

Un i fie d R e po r t
RPG Generator None J to 80

Language

Job Control
JeL Lanquaqe None I to 80

8-24

TABLE 8-2. (CONT). PUNCHING CONVENTIONS

DATASSF System Standard
or OAT Format Data None 1 to 80

GPL Gens
Programming J to 6 7 to 80
Language

Rules I

I. If the specified member has no associated type and TYPE
parameter Is not supplied, an error occurs.

2. When member-name is specified, search rules apply unless a
library keyword or INFILE Is specified.

3. When star-convention, explicit or indirect name list is used,
default library is LIB unless a library keyword or INFILE is
specified.

4. The line number and text are punched according to the unit's
language type or the supplied TYPE parameter.

5. Records longer than 80 characters are truncated, unless
ENDCHAR is specified.

6. The command may bA parameterized.

Ex~mplesl

PUNCH INLISJ I HLIB* , TYPE = COBOL ;

PUNCH * ;

8-25

RENAME

Function.

Rename one or more members of a source unit library in SSF or SARF
format.

Formata

REN AME [L I B J J

Parameters.

j
Member-name J, [NEW =J member-name-2 ~ I

{-']limited-star-conventlon-l, [NEW =J I1mited­
star-conventlon-2

- NEW Specify the new name(s) of the renamed member(s).

- FROM, TO may be used with star-convention or
limited-star-convention.

Rules.

I. New member name(s) must not exist on LIB; REPLACE parameter
Is not allowed.

2. Renamed member(s) must be present in LIB.

3. After the command, the old name(s) no longer exist.

4. The command may be parameterlzeo.

EXAmples.

RENAME HLIBX3 , NEW = LIB_3 I

RENAME LIB: H*ERR, I*WARN ,

8-26

RENUMBER

Function.

Renumber one or moreSQurce members in SSF format into LIS.

Format I

RENUMBER [L I l3 •] [...,J
member-name
star-convention
(explicit-name-list)
<indirect-name-list>

[~UMBER [= (n 1 [, n2])] ;

Parameters.

- FROM, TO may be used with star convention.

~--- 1

- NUMBER specify the initial value and the increment used for

Hules'

numbering. nJ is the initial value, n2 is the increment.
Default value is 10 for both nl and n2.

1. Members must be present in library LIB.

2. The command may be parameterized.

Examples.

RENUMBER UNITI, NUMBER = (1, 1) ;

RENUMBER UN* , NUMBER = .(20, 20) ,

RENUMBER UN I T (1, 2, 3, 18 t 27) ,

RENUMBER * FROM = H , TO = y ,

8-27

SORT

Function.

Sort the lInes of a SSF source unit or units in ascending or
descending EBCDIC collating sequence.

Formata

SORT [I INLIB 1 '][] INLIB2 I

~~I:3 I I

f [, ASC J}
t [, DESC]

member-name I £, NEW = member -name-21
star-conventIon
11mlted~star-conventionJ [, NEW =

1Imited-star-conventlon-2]
(explicit-name-lIst)
<indirect-name-list>

[,REPLACE][SORTKEY = (nl [,n2])}

[, NU MB E R [= (n J [, n 2])]] ;

Parameters.

- NEW Specify the name(s) to be given to the resulting unites). It
may be used with member-name or limited-star-convention.

- FROM, TO May be used with star convention or limited star
convention

- SOrrrKEY - nJ gives the posi tion of the first character of the
sort key in the record (line).

- n2 maximum length of the sort key. If omitted,

n2 = 256 - nl Is assumed.

- if SORTKEY is omitted, default values taken are

nJ = J and n2 = 255 (i.e. the key is the whole
record) •

- NUMBER specifies that the lines of the createrl (member-name-2) SSF
unit are to be numbererl, beginning with nl, and
incrementing hy n2 for each new line. Default values are nJ
= 10 and n2= 10.

Keywords:

- ASC Sort in dscendinq order.

- DESC Sort In 0escending order.

8-28

- REPLACE Allow the member-name(s) being written to output library
LIB to replace (overwrite) an existing unit with the same
name in LIB.

Rules'

- if the selected or specified l1brary 1s LIB and if NEW
Is not specified, REPLACE need not be specified.

- REPLACE may be used even if the resulting member(s) do
not exist in LIB.

J. When member-name is used, search rules apply unless a library
keyword is specified.

2. When star-convention, explicit or indirect name list 1s
specified default library is LIB unless a library keyword is
given.

3. The resultlnq member(s) are output on LIB.

4. The command may be parameterized.

5. SORT is restricted to sort1ng reasonably small units (a few
thousand 11nes is a maximum). For other applications the GeOS
SORT utility should be used.

Examples l

SORT I NL 182 I MYS 1 t DESC t SORTKEY = (J. J 09) ;

SORT INLI8J • HLIB* t NEW = ZLIB* t REPLACE I

8-29

UPDATE

t=unctionl

Modify the contents of a source unit according to the requests
following the commands in the command input stream. UPDATE provides
limited editing facilities.

Formata

UPDATE
[

INLIB J
I NLI B2
INLIB3

LIB I

member-name-I [.NEW = member-name2]
star-convention
limited-convention-J [.NEW = limited­

star-convention-2]
(explicit-name-list)
<indirect-nama-list>

[, NUMBER [= (n 1 [, n2)]] [, TYPE = 1 anguage-type]

[, END = , 5 t r i n 9"] [, FOR M AT = (n), n 2, n 3, n 4 [t n 5])]

[. REPLACE][, CONTCHAR = 'char' ,][~ ENDCHAR = "char I"'] ;

-NEW Specifies the name(s) of the resulting member(s). This may
be used with member-name or limited star-convention.

-FROM, TO May be used with star-convention or limited
star-convention.

- TYPE Determines the type of the output unit. This type is
permanently associated with the unit and is part of its
identification. The language type determines the default
FORMAT (see below) of the request followinq the command.
When TYPE is not specified, the type of the updated unit
is taken. It 15 possible to use parameter FORMAT to
override the default values provided. The following table
<Jives these default values (refer to FORMAT below for
explanations).

TABLE 8-3. DEFAULT VALUES

De faul t FORMAT
Lanqllaqe-t ype MeClns

nJ n2 n3 n4 n5

FOR or FORTRAN fORTRAN 0 0 J 72 0

CBX or COBOLX Extended COBOL I 6 1 12 0

COB or COBOL COBoL J 6 1 80 0
RPG Unified Report Program 0 0 I 80 0

Generator

8-30

TABLE 8-3 (CONT). DEFAULT VALUES

JCL Job Control Language o o 80 a

DAT or DATASSF Data in SSF format a o 80 a

r-nT urJ...

-NUMBER

-END

GCOS Programming
Language

6 ..., I I J I 80 I 0

I
Specifies that the resulting unites) are to be renumbered
after update. The initial value of the number Is nJ, the
increment at each new line Is n2. Default values are nJ =
JO, n2 = JO.

Denotes the marker to be used to specify the end of the
requests.

- maximum length of string is 8 characters.

- all characters except single quote mark are allowed

- if END is omitted, implicit value for string is IIEOD

- string or IIEOD is mandatory. It must hegin in column 1 of
the record following the last update request.

- FORMAT This parameter is used to override default derived from
the language type or the TYPE parameter. It defines the
pOSition of the 11ne number of the text and vertical form
control fields in the record. This is defined by means of
5 values denoted as nJ, n2, n3, n4 ann n5.

- Line. number field expands from columns nl to n2. Zero
value denotes that no line number is present. The line
number must he right justifled in the field. Blanks are
treated as zeroes.

- Text fielrl expands from columns n3 to n4. It may overlap
the line number field.

- n5 is used to specify the column in which a particular
form control option is coded. Zero value denotes no form
control option. Applicable codes aret

Spacel vertically space 1 lIne before this line.

o I double sprlce before this line

I triple space before this line

+ : rio not vertically space betore this line

I skip to top of page with this line.

8-31

- Character * may be used to denote variable length fields.

If n2 = *. line number terminates at first non-digit
character.
If n3 = *. text field begins with the first non-digit
character on input record except when this first non-digit
character is a space.

If n4 = *. text continues until end of record. Neither nJ
nor n5 may be *.

- CONTCHAR The character defined by parameter CONTCHAR Is considered
as a contInuation mark if it is the last significant
character of an updote card. This option may be used
simultaneously with ENDCHAR (see below).

- ENDCHAR The character defined by parameter ENDCHAR 1s considered
as an end of record delimiter if it Is the last
significant character of an update card. This option may
be used simultaneously with CONTCHAR (see above). When
ENDCHAR is specified, all update cards must terminate with
the specified character.

Keywords:

-REPLACE Allow the updated member(s) to replace (overwrite)
member(s) with the same name.

Ruiesl

- if the specified or selected library Is LIB and NEW is
not stated, REPLACE need not be specfled.

- REPLACE may be used even if no previous member with the
resulting name exists in LIB.

1. Member-name-l is the name of the member to which the
modification requests are to be applied. This member is found
by means of the search-rules. unless a library keyword is
specified.

2. Name of the resulting member in LIB is member-name2 if
parameter NEW Is used, otherwise it is member-name-l

3. The language type is the one stored in the members
identification record. The FORMAT parameter may be used to
overrirle the default format associated with the stored type
or the one specifle0 by parameter TYPE.

4. The UPDATE requests are cnded with IIEOD if no END parameter
is spp.clflen, otherwIse, hy 'strlnq' appearing In column I of
A r·eques t recorrl.

5. The commanrl may be parameterized.

8-32

Requests.

J. Requests are interpreted according to the FORMAT parameter or
to default values derived from TYPE or the unit type stored
in its identification.

2. Requests and member-name-J must be sorted on their line
numbers in non-descending order.

3. If no request Is given, the only effect of the commana 15 to
replace the language type stored in the unit identification
with the one given by TYPE.

4. An update line whose number matches one or several lines in
member-name-J replaces the matched lines. Several update
lines with equal line numbers are merged in sequence.

5. An update line with a line number that does not match a line
number in member-name-J is added to the source member in
sequence (after the inserted lines if any).

6. An update line with string "SIDII in the first three positions
of the text field causes the matched 11ne(s) to be deleted. A
range of lines may be deleted by placing the number of the
last line to be deleted after the .IIS'D" • Intervening spaces
are allowed; nothing else can appear on the update line.

7. An update line with line number field blank is assumed to
have the same number as the previous update line. The line
will be given number zero in the updated unit.

Examples:

UPDATE UNITI, NEW = UNIT2, REPLACE, NUMBER, TYPE = COBOL;

~~~230 REPLACED LINE 
~~~241 INSERTED LINE 
ySiSiS250 S:D
Y1i'S~310 $'0420
flEOD

UNITl is found by search rules. The resulting unit 1~ LIB
will be named UNIT2 and renumbered starting at 10 with
increment 10.

Line 230 of UNITJ is replaced, line 241 15 inserted after
line 240 of UNITt, line 250 and lines 3JO to 420 are
deleted.

- UPDATE UNITl, FORMAT = (1,2,3, *), END = JFINJ , CONTCHAR
= '#.' ,

25 FH~ST PART OF REPLACED LINE #

WHICH CONTINUES ON #

8-33

THE FOLLOWING UPDATE #

RECORDS

35 SID

FIN

Line number 25 is replaced, line 35 is deleted.

8-34

UPPER

Fun ct ion'

Convert source languaqe library unites) into upper case letters.

Formata

I
I I UPPER

[

INLI B J I 1 r 1 star-convention
INLIB2 • Member-name [. NEW = member-name-2]
INLIB3 I , limited-star-convention-I

l [, NEW = limited-star-convention-2]
LIB I (explicit-name-list)

<indirect-name-list>

[. REPLACE] ;

Parameters:

-NEW Specifies the new name(s) to be given to the converted
unites).

- FROM, TO may be used with star-convention or
limited-star-convention.

Keywords :

-REPLACE Allow the unites) being written in output library LIB to
replace (overwrite) an existing unit of the same name.

Rules:

- if the specified or selected library is LIB, and if NEW
is not specified, REPLACE need not be stated.

- REPLACE may be used even if no member with the same name
exists in LIB.

1. When member-name is used. search r.ules apply unless a 11brary
keyword is specified

2. When star-convention, limited-star-convention, explicit or
indirect name list is used, default library is LIB unless a
library keyword is specified

3. The command may be parameterized.

Examples:

UPPER LIB I MEMUER ;

UPPER INLIB3 I <MYLIST>,

8-35

SECTION IX

COMMANDS APPLICABLE TO CU LIBRARIES

The following is a description ot the commands that are applicable
to Compile-Unit (CU) libraries.

A Compile-Unit library contains a number of memhers, each one being
the result ot a compilation. A CU has a name, which Is generally the
name of t~e compiled program or procedure. It may have alternate
rames to denote secondAry entry points or, more generally, ~ny
cat~loglJe" external symhol definition. These alternate names are
known as "aliases· lt

• An alias may be userl 1n lieu of the Compile-Unit
name and reters to the same entity.

Compile units have an identification in their own right. This will
he displayed each time that a unit is handled by LIBMAINT.

Commands are presented in alphabetical order anrl each description
stArts at the top 0t a page.

9-01

DEL

Fun

Del

For

DEL

Par

- F

Exar

MOVE

Functlon·a

- Move one or more CUs from COMFILE to a CU library.

- Move one or more CUs from a library to another CU
sequential file.

- Move one or more CUs from a sequential file to a C

Format I

MOVE

INLIB I ,
INLIB2 I
INLIBJ .,
LI B •
COMFILE I

INFILE •

.., l member-name
star-conventl

(explicit-name

[.END • ~strln9~] [,REPLA

- FROM, TO may be used with star-convention.

- END Denotes the enn marker for input cards in COMFI

- Maximum length of string is 8 characters.

- All char~cters except single quotation mark
allowed.

- If END is omltteri string 'IIEOD" Is 8ssumerl.

- ~~hen COMFILE is used, strIng or IIEOD 15 mand
must appear in column 1 of the record follow1
input card.

Keywords.

- REPLACE Allow the unit being wrItten in output lIbrar
replace (overwrite) an existing unit wIth th

- When output is to OUTFILE, this keyword is
the command will operate regardless of whe
permIssion is given or not.

- REPLACE may be used aven if no mernher with
nama exists In LIB.

9-04

Rules'

I. When member-name Is userl. search rules apply, unless a
library keyword. COMFILE or INFILE is specified.

2. When star-convention or explicit name list is used, default
library is LIB unless a library keyword, COMFILE or INFILE is
specifien.

3. Library keyword LIB cannot be specified when LIBMAINT
assigned output is OUTFILE.

4. When COMFILE Is userl. only member-name or * may be used (i.e.
select one or all units in the following deck of cards).

5. When COMFI LE is use ci. each CU entered on cards begins wi th a
CU header holding the name of the unit and ends with an 'ECUJ
carri. This Is the format of the deck which would he produced
by the PUNCH commanrl.

6. The command may he parameterized.

- MOVE COMFILE • *. END ='FIN" ;

{ card for CUI

ECU

1 cards for CU2

ECU

•
•

FIN

Store CUs read from cards into LIB.

- MOVE I NL I 82 • .., HB*, TO = HCOBOL. REPLACE ,

- MO V E I NF I LE I UN IT J I

9-05

PUNCH

Function:

Punch one or more CU(s) of a CU library.

Formata

PUNCH [i ~t i ~~ :1] ["l~ INLLB3
LIB I

{

member-name }
star-convention
(explicit-name-list) ;

Parameters'

- FROM, TO may be used with star-convention.

Ruies l

1. When member-name Is specified, search rules apply unless a
library keyword is stated.

2. When star-convention or explicit name list is used, defatJlt
library is LIB unlec;s a library keyword is specified.

3. lhe command may be parameterized.

PUNCH INLIB2 1 ALPHA

PUNCH LI:3 I *, FROM = ALPHA, TO = OMEGA

9-06

SECTION X

COMMANDS APPLICABLE TO LM LIBRARIES

The following is a description of the commands that are applicable
to Load Module eLM) libraries.

A Load-Module library contains a number of members. each member
being the result of the linkage of one or more Compile Un1ts ecu) to
proriuce an executable module acceptable by the GCOS-64 loader.

Load modules have an identification In their own right. This will be
displayed each time that a unit is handled by LIBMAINT.

Commands are presented In alphabetical order anrl each rlescriptlon
starts at the top 0 f a page.

10-01

MOVE

Function a

- Move one or more LMs trom the command input stream to a LJ
library.

- Move one or more LMs from a LM library to another LM I1brl
sequential file.

- Move one or more LMs from a sequential file to a LM libra]

Format·

I NLIB I •
INLIB2 •

member-name- J [. NEW=member-name-
star-convention
limited-star-convention-l MO V E I NL I 83 I

[.NEW=llmlted-star-convention-2~ l
LIB I

COMFILE t (explicIt-name-list)
I NFILE J

[,END = -'string"] [,REPLACE],

Parameters.

- NEW Specifies the name(s) of the res~ltin9 member(s); tl
may be used with member-name or limlted-star-conven1
It may not be userl when keyworrl COMFILE is present.

- FROM, TO May be used with star-convention anrl
limited-star-convention.

- END

Keywords J

- REPLACE

Denotes the end of a sequence of input cards on COME

- maximum length of st.ring is 8 characters.
- all characters except sinqle quotation markC'} are

allowed.
if END is omitted, implicit value tor "strlng l is
., I lEnD'.

- when COMFILE is specified, either flEOD or string
mandatory and must appear in column one of the ree
immediately following the last input card.

Allow the member being written onto LIB to repJace
(overwrite) an exlstinq memher with the SAme name.

- When LIBMAINT 8ss1qned output Is OlJTFILE, REPLACE
ignored' the command operates reQarrlless of whethe
REPLACE permission Is given or not.

10-04

Rules.

- REPLACE may be used even if the resulting member name
does not exist in LIB.

J. When member-name-l is specified, search rules apply unless a
library keyword, INFILE or COMFILE is stated.

2. When star-convention or explicit name list is used, default
library is LIB unless a library keyword, COMFILE or INFILE is
specified.

3. Library keyword LIB cannot be specIfied when LIBMAINT
aSSigned output is OUTFILE.

4. When COMFILE is used, only memher-name-l or * may be used
(l.e.1 select one or all units in the following deck of
cards).

5. When COMFILE Is used, each LM entered on carris beqlns with a
LM header ho Idinq the name of the unit and ends with an' ELM"
card. This Is the format of the deck which would be produced
by the PUNCH command.

6. The command may be parameterized.

Exampl eS'

- MOVE COMFILE J *, END = "FIN" , I cards for LM I

ELM

cards for LM2

ELM
•
•
•
FIN

store LMs read from cards into LIB.

- MOVE INLIB2 I PROC*, NEW = P*NEW, REPLACE,

MOVE I Ni-= ILE *, FROM = ALPHA, TO = OMEGA, REPLACE I

10-05

PUNCH

Function:

Punch one or more LM(s) of a LM library.

Formata

PUNCH

Parameters.

~
member-name ~
star-convention
(explicit-name-list)

- t=~?OM, 1'0 may be used with star-convention.

nules l

;

I. When member-name is specified, search-rules apply unless a
library keyword is used.

2. When star-convention or explicit name list is used, default
library is LIB unless a lihrary keyword is specified.

3. The command may be parameterized.

Examples'

PUNCH INLIB2 I *NEW ;

PUNCH PROG*3, fROM = PROGX3 ;

10-06

Function.

Change the name of one or more LMCs) 1n LIB.

Formata

RENAME [LIB']

Parameters:

member-name-l.[NEW =] member-name-2

[i]11m1ted-star-convent1on-J,
[NEW =] l1mited-star-convention-2

- NEW introduces the new name(s) of the renamed member(s).

- FROM, TO may be used with limiteri-star-convention.

Rules:

RENAME

I. New member nameCs) must not exist in LIB; REPLACE parameter
1s not allowed.

2. Renamed members must exist 1n LIB.

3. The command may he parameterized.

Examples:

RENAMt LIS : PLM*. NEW = QLM*NEW ,

RENAME *, *_NEt~ ;

10-07

SECTION XI

COMMANDS APPLICABLE TO SM LIBRARIES

[he following is a description of commands that are applicable to
sharable modules (SM) libraries. A SM library contains a number of
members, each one being a SM. A SM contains in turn a number of
members, each one being a Linked Unit (LKU).

The name ()f eAch member must be unique and must not exceerl 30
ch~ract~rs in length.

~ SM is the result of the linkage of LKU or of a LIBMAINf commanrl. A
LKU 1s the result of t~e linkage of one or more comp1le units that
specify the containing SM.

Each rlescription starts at the top of a page.

11-01

DELETE

Functionl

To delete a SM and its associated LKUs in SM library LIB.

Format.

DELETE SM = sm-name ;

Exampl e I

DELETE SM = MYSM ;

11-02

INIT

Function'

To initialize a SM in SM library LIB.

Format.

I SIN -_ ~EF(INII SM = smname, I \ , ESSIE = hexa-2 [,REPLACE],

Parameters.

- SM gives the name of the SM to be initialized.

- SIN indicates the SIN associated with the SM.

- ESSTE gives the Entry Segment STE ; this is an hexadecimal value
limited to FF.

Keywords.

- REPLACE is needed if an exlstlnq SM with the same name already
exists In LIB.

Example I

INrI SM = MYSM, SIN = F, ESSIE = 09, REPLACE ;

11-03

LIST

Function'

To list part or all of a SM LIB or INFILE contents.

Format.

DIR ,
I * LIST [INFILE,] [.DETAILED] I ,
I SM rm:name! =
I I
\LKU = lieu-name I

Parameters and keywords'

- INFILE Specifies that the INFILE contents are to be listed. If
not present, the LIB contents are listed.

- DIR or * To list the SMs and their associated LKU names.

- SM List the characteristics of a specified (sm-name) or all
(*) SM s.

- DETAILED With SM = *. the associated LKU list Is printed; with SM
= sm-name, the associated LKU name list and the entry
points are listed (this latter comhination is not allowerl
with I Nf I LE) •

- LKU

Examples l

Specifies the name of the LKU to he listed. Liste~
information includes segment numher of private ~ata and
entry points (not allowed wi th INFILE).

- LIST * ;
- LIST OIR ;
- LIST INFILE, * I
- LIST IN~ILE, SM = MYSM ;
- LIST INFILE, SM = *, DETAILED ,
- LIST SM = *t DETAILED;
- LIST LKU = MYLKU ;

LIST SM = MYSM, DETAILEO ;

11-04

LOAD

Function'

To load one or all SMs from SM library LIB into backing store.

rormata

LOAD SM
__ jsm-n*ame l

1 ~ [,DEBUG] [, REPLACE];

Parameters ~nrl Keywor~sz

- SM If SM = * all SMs are loaded; otherwise the name nf the
SM to be Inarlerl is given.

- DEBUG Specifies that the SM is to be accesserl by the Proqram
Checkout Facility (PCF) during the execution of a LM
referencing the SM. A SM loaded with option DEBUG may not
be s~ared hetween process groups. To suppress the DEBUG
option, the SM has to be CANCElled and relOADed without
this option.

- qEPLACE Is needed if a SM with the same name exists, after having
heen loaded from the same library.

Rules:

It is not Rllowerl to loarl a SM from TEMP. SMlIB

EXAmples I

LOAD SM = MYSM. DEBUG I
LOAD SM = * ,
LOAD SM = *. DEBUG I
LOAD XM = MYSM, REPLACE. DEBUG;

11-05

MOVE

Functionl

To move one or all SMs of SM INLISI or INFILE onto .LI B. or OUTFILE.

Format.

MOVE [INFILE,] Ism-name!
SM =

*
[, REPLACE] I

Parameters anrl Keywords,

- INFILE if specified, SMs are moved from INFILE; if not
specified, they are moved from INLIB1.

- SM states the name of the SM to be moved. If * 1s specified.
all SMs will be moved.

- REPLACE 15 needed to overwrite an existing SM with the same name
in LIB. This keyword Is not allowed if LIBMAINT assigned
output is OUTFILE.

Examples'

- MOVE INrILE, SM = * ,REPLACE, (INFILE to LIB)

- MOVE SM = * I (INLIB to LIB or OUTFILE>

- MOVE SM = MYSM, REPLACE , (INLISJ to LIB)

- MOVE INFILE, SM = *1 (INFILE to LIB or OUTFILE)

11-06

UNLOAD

Function'

To clear the backing store of nIl information associated with a
specified SM.

c_ __ ••
ru! 1110 ... •

UNLOAD SM = sm-name, SMLIB = smlib-name •

Par arne ter 5 Z

- SM gives the name of the SM as specified when the SM was
initialized.

- SMLIB states the name of th~ SM l.lbrary from which the SM has
been loaded into backing store.

Example I

UNLOAD SM = MYSM SMLIB = MYLIB ,

11-07

SECTION XII

THE TEXT EDITOR

The TEXT EDITOR can be used to create, modify or edit an EBCDIC
source unit in SSF format.

USAGE

The layout of the input to a text editor session is as follows.

EDIT-command

specific edit requests

()nce the EUIT command is actIvated, all following records in the
input stream are treated as editor requests until a Q (quit) is
encountered. Requests fall into two general categories • input
requests and edit requests. Input requests place the editor into
inout mode which allows the following EBCDIC records to be entered
as' new text until an appropriate escape sequence is read ·to switch
the editor back into edit mode. Edit requests allow the user to read
and write source units and to perform various simple or complex
editing functions on their contents. Input and editing operations
are not performed directly on the target units, but in a temporary
buffer known as ·"Workspace".

REOUESTS

In the following list, the editor requests are divided into three
categories I input requests, basic edit requests and extended edit
requests. The basic edit requests are sufficient to allow a user to
create and etiit EBCDIC units and provide a good functional
capability. Extended requests may he more time consuminq but allow
additionAl capability.

12-01

Input Requests

A - (append) I Enter input mode, append the following lines after
specified line until the escape sequence is rearl.

C - (change) I Enter input mode, replace the specified line or lines
with the following lines until the escape sequence is rearl.

I - (insert) I Enter input mode, insert the following lines bp,for~ n
specifie~ line until the escape sequence is read.

Basic Edit Requests

D - (delete) I Delete specified line or lines from the workspace.

P - (print) I Print specified line or lines.

L - (print with line number) I Print specified line or lines
prefixed with their internRl line numbers.

Q - (quit) I exit from the text edItor.

R - (read) I Read specified unit into workspace.

5 - (substitute) I Replace specific charflcter strings in specified
line or lInes.

W - (write) I Create a new unIt with the contents of the edited
workspace.

Z - (forced write) I Create a new unit with the contents of the
editerl workspace.

N - (no operatIon) I Do nothing.

- (count lines) I Count the number of lines with the specifierl
content and print the result.

Extended Edit Requests

= - (print line number) I Print the line number (contained in the
SSF header) of specified 1jne.

G - (global) • Print, delete, print with the line ntlmher or prInt
line number of all addressed lines tt)at cont~ln ;:) specific
char~ctar string.

v - (excl'Jde) 1 Print, delete, print with the line numher or print
line number of all addresserl lines that rio not contain a

12-02

specific character string.

K - (copy) I Copy specified line or lines into a specified auxiliary
workspace.

M - (move) I Move specIfied line or lines into a specifierl auxiliary
workspace.

x - (status) I Print a summary status of all workspF.lces currently
usert.

T - (top of pnge) I Skip to top of page in the TEXT EDIToR output
re por t.

F - <file output) I Alter the report output to the specified
workspace.

E - (end file output) I Revert the report output to the normal
default device.

o - (output message) : Print the remainder of the line on the output
report.

I - (define label) I Set a label on this line for reference in a
gate (» request.

Y - (list1ng control) S Allow variations in the contents of the
edt tors report.

% - (split line) I Split all lines containing a givp,n pattern.

& - (concatenate 11nes) I Concatenate all lines containinq a qivp.n
pattern with the Immeriiately preceding ones.

< - (backwards search) : Search for target line hackwarrls.

> - (gato) : Skip n request lines or goto n request lines backwards
or goto specified label.

* - (test contents) I If line contains the given string then execute
the remainder of the request line, otherwise skip to next
request line.

? - (range test) I If current line i~ in specified range then
execute the rem~inrler of the request line. otherwise skip to
next roq'J8st lIne.

ADDRESSINrJ

fhe TEXT EOIT<H? Is baSically a line-oriented edi tor in thAt ed1ting
requests usually operate on an integral number of lines. As a
result, most editing requests are preceded with an arlrlress
specifying the line or lines in the workspace on which t~e request

12-03

is to operate. There are three basic means by which lines in the
workspace can be addressed.

- addressing by line number
- address1ng relative to the "current line"
- addressing by context

In addition, an address can be for~e~ using a combination of the
above techniques.

Addressing by Line Numher

Each line in the workspace can be addresserl by ~ rlecimal number
indicating its line number as contained in its SSF header.
Search for the target line is made sequentially from the
"current line" to the last line of the workspace, then from the
first lIne ot the workspace to the one immediately preceding
the "current line". Lines which are adderl to the workspace are
given line number o. Lines which are modified keep their
original numbering.

Arlrlresslng Relative to the Current Line

The edItor maintains the notion of a "current line" thAt is
addressable by usinq the character "." <periorl) to repre!1ent
the address of the current line. Normally, the ctlrrent lIne is
the last line addressed by an e1it request or the lAst line
entered by an input request. The value of "." after each erJitor
request is documented in the description of the request anti in
the summary of requests at the end of this section •

Lines can be addressed relAtive to the current line numher by
using an address consisting of " •. 11 followert hy a signerl rlecimal
number specifying the pos1tion afthe deslre~ line relAtive to
the current lIne. For example the aridress ".+J" specifies the
line immediately following the current line and the arlrlress
tI._I" specif1es the line immediately precerling the current
line.

When specIfying an increment to the current lIne position, the
.. + II S 1 9 n can be 0 mit ted (e. Q • ... 5.11 i sin t e r pre ted a 5 ". +~) fI). I n
addlt1on, when specifying a riecrement to the current line
pOSition, the tI." itself can be omitted (e.g. "-3" Is
interpreted as ".-3).
Two symbols are used to rlenote respectively the first nnn last
11ne ot a workspace.

- til" denotes the first lIne' hence .lIl+J" would denote the
second lIne and .It l+l" the (1+))th. line of the workspace.

12-04

- U$Udenotes the last line of the workspace, hence uS-I·'" would
address the last but one line, etc •••

Addressing by context

Lines can be addressed by context by using a regular expression
to match a string of characters on a line. When used as an
address, a regular expression specifies the flr5t lIne
encountererl that contains a string of characters that matches
the regular expression.

For example, in the following text the regular expression
.II/ABC/" matches 1 tne 2.

A : PROCEDURE ;
ABC : DEF ;
X = y
END A

To use a reg81ar expression as an address, the user enters
.u/regexp/tl t where "regexp" is any valid expression as described
below. The search for a regular expression begins on the line
following the current line (I.e •• +}) anrl continues through the
entire workspace, if necessary, until it again reaches the
current line. In other words the search proceedsfrom n .+).11 ·to
US" :lnd then .from "l" to u.". If the search is successful,
U/regexp/fl specifies the first line encountered during the
search in w~ich a match WAS found.

A regulAr expression can consist of any character in the EBCDIC
set. However the following characters have specialIsed meaning
in regular expressi0n~.

It/" delirnits a regular expression used as an address;

"*11 siJnifies "Any number (or none) of the preceding characte.r·u ;

Ill" when used as the first character of a reqular expreSSion, the
"l" chFlrFlcter signifies the virtual character preceding the
first character on a line J

liS II

If .n .

when lIserl as the last character of a regular expression, the
IISst character signifies the virtual character following the
l~st chRracter 0n a line'

rn.ltches any character on a line.

12-05

Some examples tollow

IAI Matche

/ABCI Matche

IAB*CI Matche.
lIne

lIN •• TO/ Matche.
charac

/IN.*To/ Matche,

11ABC/ Matche

/ABC$/ Matche,

/lABC.*DEF$/Matche

Matche

The special meanIng a
expression can be nul
U¢CII. Thus •

I¢C/¢C*I

ItC1/

Matche

Matche

The editor remembers
context. The user can
using a null regular
expression can be fol
manner as when addres
the addresses ~/ABC/+
second line following

Note that the two use
and (2) as special ch,
di 5 tlngui shed by conti

Compound Arldresses

An address can bt
described above.
gu ide in the fOT!

- if a lIne numb!
fi rs t componen'

specifies a series of two lines, th
current line through the second lin

However,if a semi-colon is used to
of a comma, the value of ".n is set
addressed by al before the evaluati
to the example given immediately ab

• J , .2

specifies a series of three lines,
.following the original current line
following the line specified by al.
address paIr I

IABe/,.+ J

is equivalent to the address pair I

I ABCI ,I ABC/·

Addressing Errors

The following list describes the various
the editor is attempt1nq to evaluate an I

- "WORKSPACE EMPTY'" - an at tempt has I
specifIc line when the workspace 1s
are legal addresses within an empty
with a read, appenrl or insert reque:

- "ADDRESS NEGATIVE" or I'ADDRESS TOO i

made to refer to a non-existent lin4
when there are fewer than 20 lines'
address of -, - 4).

-"ADDRESS WRAP AROUNDII - an attempt t
series of lInes In which the poslti(
addresses Is before the line adrlres~
(e.g. $,1>.

- "SEAf?CH FAILED" - a regular express]
search initiated from the request s1
matchIng 11ne.

- "SYNTAX ERROR IN REG-EXP" - a regulc
address has not been properly dellmj

-III/UNDEFINED" - a null regular exprE
previously defined regular expresslc

12-08

USE OF THE EDITOR

Request Format

A request to the editor can take anyone of the following forms
depending on the number of addresses to be specified with the
reques t t

<request>

adr <request>

adrJ,adr2<request>

adrl;adr2<request>

adr, adr] and adr2 are any legal address as specified above,
and request is any valid editor request.

Some editor requests require no address, some require a single
address and others require a pair of addresses. In all cases,
however, the user can use a request omi.ttlng one or both of the
required addresses and let the editor provide the missing
address information by default. The following rules apply to
the use of addresses specified by default

- if a request requiring an address pair is issued with the
second address missing, the (missing) second address is
assumed to he the same as the first. For example'

adr<.reque s t>

is interpreted as:

adr,adr<request>

and addresses a single line in the workspace (I.e. the line
addressed by adr)

- if a request requiring an address pair is issued with both
addresses missing, one of the follnwlng address pairs is
assumed depending on the request issued'

.,. <request> for most erlltor requests

1,$ <request> for wrIte, forced wrIte, qlobal and exclude

- if a request requiring a sIngle address Is issued with no
address specified, one of the following addresses Is assumed
depending on the request issued

• <request> for most editor requests

$ <request> for read requests

12-09

The Value of .11 ."

All editor requests that alter the contents of the workspace or
cause information to be output change the value of ~.~ (I.e.
the current line). Usually, the value of ".M is set to the last
line address specified (either explicitly or by default) in the
edi tor request. The one major exception to thIs rule is the
delete request which sets ".u to the lIne after the last line
de Ie ted.

Multiple Requests on a Line

In general, any number of edt·tor requests can be 1 ssued in a
single input line. However, each of the requests listed below
must termin.ate a line and, thus, must appear on a line by
itself or be placed at the end of a line containIng multiple
edItor requests.

SprJcing

R read
Wand Z write and forced write
A,e and I input requests
Q quit request

The following rules govern the use of spaces In editor
requests.

Comments

- spaces are taken as literal when appearing inside regular
expressions. thus, /THE NI Is not the same as ITHENI

- spaces cannot appear in numbers, i.e. 13 cannot be written
as I 3 (which is interpreted as 1+3)

- spaces within addresses, except as indicated above, are
ignored

- the treatment of spaces in the body of an editor request
depends on the nature of the request

The quotation mark character (II) is reserved as the comment
delimiter and is actually implemented as an editor request. the
effect of which is to ignore the remainder of the request line.
If the quot~tlon mark Is preceded by an address. the value of

12-10

".U is set to that address.

The Locate Request

If an address terminates a request line, the value of If • .u is
set to the addressed line and the line is printed. For example
the request linel

11STARTI

locates a line beginning wi th START, sets the value of " to
that lIne and prints it.

Responses from the Editor

In general, the editor does not respond with output unless
explicitly requested to do so (e.g. with a print line number
request).

The use of frequent print requests 15 recommended for users
using the editor for the f1rst time.

If an error Is encountered by the editor, an error message is
printed and a skip to the next request line is made. Thus the
trail1nq part of the offending request line is ignored.

12-11

INPUT MODE

The editor can be placed in input mode with the use ot one of the
three input requests (append, change and insert). The input request
must terminate a request line. Itls followed by a number of literal
text lines.

The lIteral text can contain any number of EBCDIC source lines. To
exit from input mode and terminate the input request, the escape
sequence ¢F is entererl as the first character of a new line. The
usual form of an input request is as follows.

adrl [,adr21<lnput request>

text

¢F

It 1s important to remember to terminate the input request with the
¢F escape before entering another request. Otherwise the (would be)
editor request is regarded as input and included in the text rather
than executed as a request.

Upon leaving input mode, the value of "." is set to the last input
line. The special mean1ng of any of the escape sequences used by the
editor (e.g.¢F,¢C,¢B and ¢X) can be suppresserl by inserting the ¢C
escape sequence betwen the two characters (e.g.¢¢CF,¢¢CC,¢¢CE.¢¢CX),
thus allowing the escape sequence to be input as lIteral text. All
input lines entered are aSSigned line number zero ana should
therefore be later addressed by context or relative addressing
rather than by line number.

12-12

specific character string.

K - (copy) I Copy specified line or lines into a specified auxiliary
workspace.

M - (move) I Move specified line or lines into a specifierl auxiliary
workspace.

x - (status) I Print a summary status of all workspaces cur.rently
usen.

T - (top of pAge) I SkIp to top of page in the TEXT EDIToR output
repor t.

F - (file output) t Alter the report output to the specifierl
workspace.

E - (end file output) I Revert the report output to the normal
default device.

o - (output message) I Print the remainder of the line on the output
report.

I - (define label) I Set a label on this line for reference in a
goto (» request.

Y - (listing control) I Allow variations in the contents of the
ed! tors report.

% - (split line) I Split all lines containing a given pattern.

& - (concatenate 11nes) I Concatenate all lines containing a qiven
pattern with the immeriiately preceding ones.

< - (backwaros search) t Search for target line hackwarrls.

> - (goto) I Skip n request. lines or goto n request lines backwards
or goto specified label.

* - (test contents) I If line contains the given string then execute
the remainrler of the request line, otherwise skip to next
request line.

? - (range test) I If current line is in specified range then
execute the rem~inrler of the request line. otherwise skip to
next rHqlJest line.

ADDRESS I N(,

fhe TEXT EDITOR Is basically a line-oriented edt tor in thAt edltlnq
requests usually operate on an integral number of lInes. As a
result, most editing requests are preceded with an arlrlress
specifying the line or lines in the workspace on which t~e request

12-03

is to operate. There are three basic means by which lines in the
workspace can be addressed.

- addressing by line number
- addressing relative to the "current line"
- addressing by context

In addition, an address can be forme~ using a combination of the
above techniques.

Addressing by Line Numher

Each line in the workspace can be addresserl by ~ rlecimal number
indIcating its line number as contained 1n its SSF header.
Search tor the target line is made sequentially from the
"current line" to the last line of the workspace, then from the
first lIne of the workspace to the one immediately preceding
the "current line". Lines which are adder! to the workspace are
given line number o. Lines which are modified keep their
original numbering.

Arlrlressing Relative to the Current Line

The editor maintains the notion of a "current line" thrlt is
addressable by usinq the character ".n (perior.f) to repre~ent
the address of the current line. Normally, the ctIrrent lIne is
the last line addressed by an arlit request or the lAst line
entered by an input request. The value of 1t.1I after each erJitor
request is documented in the description of the request Ann in
the summary of requests at the enrl of this section •

Lines can be addressed relAtive to the current line numher by
using an address consisting of 11 •. 11 follower! I;y a signed rlecimal
number specifying the pOSition of the ~esire~ line relative to
the current lIne. For example the address ".+1" specifies the
line immediately following the current line and the arlrlress
It.-I'' specifies the line immediately precerling the current
line.

When specifying an increment to the current line position, the
.u+tt sign can be omi tted (e.9. ".5.11 is interpreter.f as n.+~)fI). In
addition, when specIfying a rlecrement to the current line
posItion, the tI." itself can be omitted (e.g. "-3" is
interpreted as ".-3).
Two symbols are used to ~enote respectively the first 8nrl last
lIne of a workspace.

- "l" denotes the first line a hence J' l+l" would denote the
second line and .It l+ll1 the (1+))th. line of the workspace.

12-04

- .. $.. de no t est h e las t 1 in e 0 f the wo r k s pa c e, h en ce" $ - J.a. wo u I d
address the last hut one line, etc •••

Addressing by context

Lines can be addressed by context by using a regular expression
to match a string of characters on a line. When used as an
address, a regular expression specifies the first line
encountered that contains a string of characters that matches
the regular expression.

For example, in the followIng text the regular expression
JI/ABC/" matches lIne 2.

A : PROCEDURE
ABC : DEF ;
X = y
END A

To use a reg~lar expression as an arldress, the user enters
.1I/regexpIU, where "regexp" Is any valid expression as described
below. The search for a regular expression begins on the line
following the current line (i.e •• +J) anrl continues through the
entire workspace, if necessary, until it again reaches the
current line. In other words the search proceedsfrom n .+l,lI 'to
US" :lno then .from Ill" toll.". If the search is successful,
u/regexp/fl specifies the first line encountered rluring the
search in w~ich a match WAS found.

A regulAr expression CAn consist of any character in the EBCDIC
set. However the following characters have specialised meaning
in requl8r expressions.

It/n delimits A regular expression used as an address;

"*11 siJnifies "Any number (or none) of the preceding characte.r'u ;

lilt! when used as the first character of a reqular expression, the
"l" chFlrActer signifies the virtual character preceding the
first character on a line;

"SII

.. .11 .

when userf as the last character of a regular expression, the
"Sn character signifies the virtual character following the
l~st character 0n ~ line;

rn,ltches any character on aline.

12-05

Some examples tollow a

IAI

/ABCI

/AB*CI
11ne

lIN •• TOI

/1ABCI

IABeS/

Matches the lette-r A anywhere on a lIne

Matches the string ABC anywhere on a line

Matches ACt ABC, ABBC, ABBBC, etc ••• anywhe.re on a

Matches aline containing IN followed by any t\tlO
characters followed by TO

Matches a line containing IN and T() in that order

Matches a line beginning with ABC

Matches a line ending with ABC

/IABC.*DEFS/Matches a line begInnIng with AB.c and ending with DEF

Matches any lIne

The special meanIng of ..1'/", ,,*n, .1'$", .. ,. .. and within a .reqular
expression can be nullified by precedIng the specIal character· with
"¢.CII. Thus'

I¢C/¢C*I

I¢Cl/

Matches the strIng 1* anywhere on a lIne

Matches any line containing the character 1

The editor remembers the last regular expression used in any
context. The user can reinvoke the last used regular expression by
using a null regular expression (i.e"/I·"). In addit1on, a reglliar
expression can be followed by a Signed decimal inteqer in the same
manner as when addressing relative to the current line. For exampln,
the addresses .II/ABC/+5-3", "/ABC/·+2" or .ulABC/2.u all address the
second line following a line containIng ABC.

Not_e that the two uses of It. ", ul" and 11$'" (I) as line addresses
and (2) as special characters in regular expressions) are
distinguished by context.

Compound Arldress8s

An address can be formed using a combination of the techniques
described above. The following rules are intended 8S a general
guide in the formation of these compound addresses.

- if a lIne number is to appear in an address, it must be the
first component of the address.

12-06

- a line number can be followed by a regular expression. This
construct is used to begin the regular expression search
after a .specific line number. For example, the address
IIJO/ABC/" starts the search for ·"/ABC/-" immeriiately after
line number JO.

- a regular expression can follow an address specified relative
to the current line number. For example, the address
".-S/ABC/"· starts the search from 8 lines preceding the
current line.

- a regular expression can be followed by another regular
expression. For example, the address "/ABCIIOEF/" matches the
first line containing DEF appearing after the first line
containing ABC. As mentioned earlier, a regular expression
can be followed by a decimal integer. For example, the
address ~/ABC/-l0/DEF/5" starts the search for "/DEF/fl from
JO lines preceding the first line to match J'/ABC/.I' and, if
It/DEFI-" is matched, the value of the compound address is the
fifth line following the line containing the match for
"/DEf/u •

Addressing a Series of Lines

Several of the editor requests can be used to operate on a
serIes of lines in the workspace. To specify a series of
lInes, two addresses must be given in the following general
form.

.81 t 82

The pair of addresses specifies the series of lines starting
with the line addressed by the address aJ through the lIne·
addressed a2 inclusive.

Examples.

J,5 specifies from line number I through line number 5

1. $ specifies the entire contents of the workspace

.It/ABC/ specifies the line following the current line
throuQh the first line after the current line
containing ABC

When a comma is used to separate addresses, the arldress
computation of the second address Is unaffected by the
computatIon of the first address (i.e. the value of n.JI Is not
changed by the evaluation of the first address). For example.
the address pair I

• I , .2

12-07

specifies a series of two lines. the line immediately after the
current line through the second line after the current line.

However, .i f a semi-colon is used to separate addresses instead
of a comma, the value of ".n is set to point to the line
addressed by al before the evaluation of a2 begins. In contrast
to the example given immediately above, the address pair I

.'1.2

specifies a series of three lines, the line Immediately
.following the original current line through the second line
following the line specif1ed by al. As a further example, the
address pa ir I

IABC/; .+10

Is equivalent to the address pair I

IABC/,/ABC/+JO

Addressing Errors

The following list describes the various errors that can occur when
the editor is attemptlnq to evaluate an address.

- "WORKSPACE EMPTYu - an attempt has been made to reference a
specifIc line when the workspace Is empty. (Only U.S!I and "'1"
are legal addresses within an empty workspace and only if used
with a read, appenrl or insert request.)

- "ADDRESS NEGATIVE" or "ADDRESS TOO BIG" - an attempt has been
made to refer to a non-existent line (e.g. an address of 1+ 20
when there are fewer than 20 lines in the workspace or an
address of -, - 4).

- ·"ADDRESS WRAP AROUNDII - an attempt has been made to address a
series of lInes In which the pOSition of the second lIne
addresses is before the line adrlressed by the first address
(e.g. S,I).

- "SEAf~CH FAILED" - a regular expression search or a lIne number
search initiated from the request stream has failed to finri a
matchIng line.

- "SYNTAX ERROR IN REG-EXP" - a regular expression used as an
address has not been properly delimited.

- fl//UNDEFINED" - a null regular expression has been used and no
previously defined regular expression 15 available.

12-08

USE OF THE EDITOR

Request Format

A request to the editor can take anyone of the following forms
depending on the number of addresses to be specified with the
request I

<request>

adr <request>

adrJ ,adr2<request>

adrl;adr2<request>

adr, adrl And adr2 are any legal address as specified above,
and request is any valid editor request.

Some editor requests require no address, some require a Single
address and others require a pair of addresses. In all cases,
however, the user can use a request omi,ttlng one or both of the
required addresses and let the editor provide the missing
address information by default. The following rules apply to
the use of addresses specified by default

if a request requirlnq an address pair is issued with the
second address miSSing, the (missing) second address is
assumed to be the same as the first. For example.

adr<.request>

is interpreted as:

adr,adr<request>

and addresses a single line in the workspace (I.e. the line
addressed by adr)

- if a request requiring an address pair Is issued with both
addresses missing, one of the foll~wlng address pairs is
assumed depending on the request issued'

••• <request> for most erlltor requests

1,$ <request> for write, forced write, global and exclude

- if a request requiring a single address is issued with no
address specified, one of the following addresses 1s assumed
depending on the request issued

• <request> for most editor requests

$ <request> for read requests

12-09

The Value of .tI.1I

All editor requests that alter the contents of the workspace or
cause information to be output change the value of ~.M (I.e.
the current line). Usually, the value of ".M is set to the last
line address specified (either explicitly or by defaul·t> in the
editor request. The one major exception to this rule is the
delete request which sets ".n to the line after the last line
de Ie ten.

Multiple Requests on a Line

In general, any number of editor requests can be issued in a
single input line. However, each of the requests listed below
must termin.ate a line and, thus, must appear on a line by
itself or be placed at the end of a line containing multiple
editor requests.

Spf3cing

R read
Wand Z write and forced write
A,e and I input requests
Q quit request

The following rules govern the use of spaces in editor
requests.

Comments

- spaces are taken as literal when appearing inside regular
expressions. thus, /THE NI is not the same 8S ITHENI

- spaces cannot appear in numbers, i.e. 13 cannot be written
as I 3 (which is interpreted as 1+3)

- spaces within addresses, except as indicated above, are
ignored

- the treatment of spaces in the body of an editor request
depends on the nature of the request

The quotation mark character (") is reserved as the comment
delimiter and 15 actually implemented as an editor request, the
effect of which is to ignore the remainder of the request line.
If the quot~tlon mark is preceded by an address, the value of

12-10

".U is set to that address.

The Locate Request

If an address terminates a request 11ne, the value of ... "" is
set to the addressed line and the line is printed. For example
the request l1nel

11STARTI

locates a line beginning wi th START, sets the value of ".," to
that line and prints it.

Responses from the Editor

In general, the edi tor does not respond wi th output unless
explicitly requested to do so (e.g. with a print line number
reques t).

The use of frequent print requests 1s recommended for users
using the editor for the f-irst time.

If an error 15 encountered by the editor, an error message 1s
printed and a skip to the next request line is made. Thus the
traillnq part of the offending request line 1s ignored.

12-11

INPUT MODE

The editor can be placed in input mode with the use of one of the
three input requests (append. change and insert). The input request
must terminate a request line. Itis followed by a number of literal
text lines.

The 11 teral text can contain any number of EBCDIC s·ource lines. To
exit from input mode and terminate the 1nput request. the escape
sequence ¢F is entereri as the first character of a new line. The
usual form of an input request is as follows.

adr1 [.adr21<input request>

text

¢F

It Is important to remember to terminate the input request with the
¢F escape before entering another request. ()therwise the (would be)
editor request is regarded as input and included in the text rather
than executed as a request.

Upon leaving input mode, the value of ".11 is set to the last input
line. The special meaning of any of the escape sequences used by the
editor (e.g.¢F,¢C,¢B and ¢X) can be suppressed by inserting the ¢C
escape sequence betwen the two characters (e.g.¢¢CF,¢¢CC,¢¢CE.¢¢CX),
thus allowing the escape sequence to be input as literal text. All
input lines entered are assigned line number zero ana should
therefore be later addressed by context or relative addressing
rather than by line number.

12-12

Append Request (A)

FUNCTIONJ

The append request is used to enter input lines from the input
stream, appending these lines after the line addressesd by the
append request. The append request is one of the few requests
that can operate correctly when the workspace is empty.

FORMATs

adrA

text

¢F

DEFAUL'f I

A is taken to mean .A

VALUE OF II.".
set to the last line appended

EXAMPLE I

- Before - A : PROCEDURE ,
X = Y ;
END A ;

- request sentence ~~ + lA
Q = R ;
c F

- After - A I PROCEDURE ,
X = Y ,

".If -> Q = R ;
END A ;

Note : request SA can be used to insert new text at the end of
a workspace.

12-13

Change Request (C)

FUNCTION'

The change request 1s used to delete an addressed line or range
of lines and replace the deleted 11ne(s) with new text read
from the input stream.

fORMAT'

adr 1, adr2C

text

¢F

DEFAULT.

C is taken to mean .,. C

adC is taken to mean ad, adC

VALUE OF ".ltl

set to the last line entered

EXAMPLE'

- Before - A I PROCEDURE ,
X = Y ,
Q = R ;
END A I

- request sentence -1'.12C
S = T ,
U = V ;
W = Z ,

¢F

- After - A • PROCEDURE
5 == T ,
U = V ,

II II -> ,~ :: Z I •
END A I

12-14

Insert Raquest (I)

FUNCTIONS

The insert request is used to enter input lines from the input
stream and insert the new text immediately before the addressed
line. The insert request Is one of the few requests that can
operate on an empty workspace. .

fORMAT'

adr I

text

¢F

DEFAULTI

I is taken to mean .1

V AL U E OF ". -II I

set to the last line inserted

EXAMPLE'

- Before - A I PROCEDURE I
X = Y I
END A ;

- request sentence -IX = II
Q = R ;
¢F

- After -
"." ->

A .1 PROCEDURE ;
Q = R ,
X = Y ,
END A ,

Notes request adr! has the same effect as the request adr-IA.
Request 11 is used to in.sert text before the first line of
the workspace.

12-15

BAS IC EDI T REQUESTS

The basic edit requests described below represent a subset of editor
suitable for most editing situations. Additional requests are
described later in this section under "Extended edit requests'" and
"AuxIliary workspaces".

Delete Request (D)

FUNCTIONI

The delete request is used to delete the addressed line or set
of lines from the workspaces.

FORMAT'

adrl, adr20

DEFAULT'

o is taken to mean .,. 0

adD Is taken to mean ad,adD

VALUE of ".ul

set to the line immediately following the last lIne deleted

EXAMPLE'

- Before - A • PROCEDURE ,
X = y ;
Q = R ,
S = T ,
END A I

- request sentence -/0=/ , /5=/0

- After -

".11 _>

A .• PROCEDURE ,
X = Y ,
END A ,

12-16

The Print and Print with Number Requests (P and L)

FUNCTION'

The print requests are used to print the addressed line or set
of lines l P prints the addressed 1ine(5) without line number,L
prints the addressed 1ine(s) and prefixes them with the~r
internal line numbers.

FORMATi

adrJ, adr2P or adrl, adr2L

DEFAULT.

P or L are taken to mean ••• P or ••• L

adP oradL are taken to mean ad.adP or ad,adL

VALUE OF " '

set to the last line addressed by the request(i.e. the last
line to be printed)

EXAMPLE'

- contents of workspace - A : PROCEDURE ;
X = Y ;
Q = R ;
S = T ;
END A ;

- request sentence - IX=I,/S=/P

- printed output - X = Y . ,
Q = R ;

II .. -> 5 = T ; •

12-17

Qui t Request (Q)

FUNCTION'

The quit request is used to exit from the editor and does not
itself save the result of any editing that might have been
done. If the user wishes to save the modified contents of the
workspace, he must expllclty use a write or forced write
request (see below).

FORMAT'

Q

DEFAULT'

The quit request cannot have an address

NOTE' the quit request must terminate a request line, the remainder
of the line is treated as a comment.

12-18

Read Request (R)

FUNCTION.

FORMAT'

The read request is used to append the contents of a
specified source unit after the addressed line. The read
request is one of the few requests that can operate on an
empty workspace.

adrRname

name is the name of a SSF source unit in a library to be read
in the workspace after the line addressed by adr. The name of
the uni t follows the synt-actic-al rules for a uni t name in
LIBMAINT (i.e. '[libl] name) ; it can be preceded by any
number of spaces and must terminate the request line.

DEFAULTa

Rname is taken to mean SRname

VALUE OF ". lt s

set to the last line read from the unit

EXAMPLE:

- before -

- request sentence -

where BX contains the

- after -

A • PROCEDURE ;
X = y ;
END A ;

/X=/R BX

following text

B • PROCEDURE ,
C = D ;
END B ,
A • PROCEDURE ,
X = Y • t

B I PROCEDURE ,
C = D ,

" •. 11 _> END 8 ;
END A ,

12-19

Substitute Reguest (5)

FUNCTION'

The substitute request is used to modify the contents of the
addressed line or set of lines by replacing all strings that
match a given regular expression with a specifIed character
strIng.

FORMAT'

adrl,adr2S/regexp/string/

(the first character after S is taken to be the regular
expression delimiter and can be any character not appearing
in either regexp or in string).

DEFAULT:

S/regexp/string/ is taken to mean .,.S/regexp/string/

adS/regexp/strinq is taken to mean ad, adS/regexp/string

VALUE OF ".11:

set to the last line addressed by the request

OPERATION:

Each character string In the addressed line or lines that
matches regexp 1s replaced with the character string. If
string contains character &, each & Is replaced by the string
matched by regexp. The special meaning of & can be suppressed
by preceding & with the escape sequence ¢C.

EXAMPLE:

- Before -
- Request
- After -

- Before -
- Request -
- After -

- Before -
- Request -
- After -

THE QUICK BROWN SOX
S/SOX/FOX/
THE QUICK BROWN FOX

XYZINDEX = Q I
S?INDEX?(&)?
XYZ(INDEX) = QI

x = Y
S/S/'I
X = Y I

12-20

The Write and Forced Write Requests (Wand Z)

FUNCTION!

The write and forced write tequests are used to.write the
addressed line or set of lines into a specific source unit.
If the source unit already exists, request W will be rejected
and request Z will result in the overwriting of the existing
unit with the addressed I1ne(s).

FORMAT'

adr' ,adr2 {~} retype)] (LIBa] name

'''name n is the name of a source unit to be created (W) or
overw.ritten (Z) in the specified library. The name of the
unit must not exceed 31 characters in length; it can be
preceded with any number of spaces and must terminate the
request line.

"type" is the language type to be-set In control records of
the output library. Applicable values are the same as for
parameter TYPE in the MOVE SL command.

DEFAULT:

Wname or Zname are taken to mean ,$Wnarne or ,SZname.
adWname or ~rlZname are taken to mean ari,adWname nr
ad,adlname.
If type is omi.tted, DAT is assumed unless the member already
exists in LIB, in which case the existing type is preserved.

VALUE OF u.
unchanqed

EXAMPLES:

W(COB)MYPROGRAM
Z UNIT-A
Z(COB)M2

12-21

The No-operatIon Request (N)

FUNCTIONI

The no-operation request N is used to position on a line
without issuing any output on the report. It is identical to
the locate request with the difference that the located line is
not printed.

fORMATI

adr N

adr is the address of the line to position on •

DEFAULT'

N is taken to mean .N

VALUE OF "."1

set to adr.

EXAMPLES'

.N
IPROCEDURE DIVISION/N

12-22

Count Lines Request (#)

FUNCTION:

The count lines request counts the numb.er of lines which, in a
specified range, contain the given regular expression.
The count is printed on the execution report.

r-,.nll a 'r.
rUttMf\ . .1 •

adr1,adr2#/regexpl

- adrJ,adr2 specify the range of the counting (first line,
last line)
- regexp specifies the regular expression

(the first character after # is taken to be the regular
expression delimiter and can be' any character not appearing
in regexp)

DEFAULT'

#/regexp/is taken to mean .,.#/regexpl
ad#/regexp/ is taken to mean ad,ad#/regexp/

V A L U E 0 Fit •. 11 I

set to adr2

EXAMPLES.I

1,S#/X=31
J30,500DISECTIONI

12-23

EXTENDED EOIT REQUESTS

The editor requests discussed up to this poInt comprise a basic
subset sufficient for most applications. A user learning to use
the editor for the first time might be well advised to stop at
this point.

Print Line Number Request (=)

FUNCTION.

This request Is used to print the line number (as contained in
the SSF header and not to be mistaken with the rank of the line
in the workspace) of the addressed line.

FORMAT'

adr =
DEFAULT,

= is taken to mean .=
VALUE OF It •. u.

set to the lIne addressed hy the request

EXAMPLEI

- contents of the workspace -

- SSF header - - text-

1000 A I PROCEDURE . t

I J 00 X = y ;
1300 P = Q ;
1800 END A ;

- request - 1+2= or 10;1=

- response - 1300

12-24

Global Request (0)

FUNCTIONa

The global request is used in conjunction with some other
request (e.g. print, print with number, print line number,
delete).
That request is to operate only on those lines addressed by the
global request that contain a match tor a specified regular
expression.

FORMATa

adrl,adr2Gx/regexp/
where "XU must be one of the following requests.

D ria late 1 ines containing .ftregexp",
P print lines containingUregexp·ti;
L print with number lines contaIning Uregexp";
= print the numbers of lines containing ·i1regexp";

DEFAULT.

Gx/regexp/ is taken to mean ,SGx/regeX71
adGx/regexp/ is taken to mean ad,ad Gx regexp/

VALUE OF .11. "a

NOTEI

set to adr2 of request

The character immediately following the request x is taken to
be the regular delimiter and can be any character not
appearing In ~regexp"

EXAMPLE'

- Before -

- Request -

- After -

It •.•• _>

A I PROCEDURE ;
Q = R ;
X = Y ,
END A ;

I, SOD/O/

A a PROCEDURE ;
X = Y ,
END A ;

12-25

~xclude Request (V)

fUNCTIONa

The Exclude request is used in conjunction with some other
request {e.g. print, print with number, print line number,
delete}. That request is to operate only on those lines
addressed by the exclude request that do not contain a match
for a specified regular expression.

FORMATa

adrl, adr2Vx/reqexp/

where "Xfl must be one of the following requestsl

D de Ie te 1 ines no t containing .lIregexp" ;
P print lines not containing Uregexp" ;
L print wi th number 1 ines not containing .lfregexp·n ;
= print the numbers of lines not containing"regexp·u

DEFAULT'

Vx/regexpl Is taken to mean ,SVx/.regexp/
ad Vx/regexpl 1s taken to mean ad, an Vx/regexp/

VAL UE Ol-" ... II I

NOTEa

set to adr2 of request

The character immediately following the request x is tnken to
he the regular expression delimiter and can be Any char~cter
not appearing in .ltreqexp".

EXAMPLE.

- Be fore - A : PROCEDURE ;
Q = R • X = y ;
X = Q ;
END A ,

- Request - l,SVP/Q/

- Response - A I PROCEDURE
X = y ,
END A ;

12-26

AUXILIARY WORKSPACES

The rliscussion up to this point has assumed the existence of
only one single workspace. Actually the editor supports up to 6
different workspaces. One workspace at a time can be
designated as the "current workspace.ll, any other workspaces at
this time are referred to as .tlauxiliary workspaces-". All the
editor reqtJests descrihed so far operate within the current
workspace.

Each workspace is given <1 symbolic name I 1I0,u t "I","2",.u3 It ,"4J •

or 115". Y~hen the edt tor is invoked a single workspace
(workspace "0") is activaterf and designated as the current
workspace. Additional workspaces can be created me~ely by
referencing a previously undefined workspace name.

Workspace names are usually enclosed between parentheses:
however these may omitted (e.g., "5-11 is taken to l;e"'(5)-II).

Change Workspace (8)

fUNCTION'

The change workspace request is userl to designate an auxiliary
work5p~ce as the current workspace. The previously rlesignated
current workspace becomes an auxiliary workspace.

~ORMAT:

B(x) or Bx

where "x·" Is the name of the workspace to become the current
workspace.

VALUE OF u.n.

restored to the value of If." when workspace "Xll was last used
as current workspace (i.e., the value of 1I.lIis maintained
separately for each workspace and saved as part of the
workspace stRtuS).

EXAMPLE'

8(5)
B4

12-27

Copy and Move Requests (K and M)

FUNCTIONI

The copy and move requests are used to copy or move one or more
lines to a specified auxiliary workspace. The addressed lines
replace the previous contents (if any> of the auxiliary
workspace.

fORMAT'

adrl ,adr2{~} (xl or adrl,adr2

where "x" Is the name of the auxiliary workspace to which
lines are to be copied or moved

DEFAULT:

M(x) or K(x) are taken to mean .,.M(x) or .,.Kex)

arlM(x) or arlK(x) are taken to mean ad,adM(x) or ad,adK{x)

VALUE OF

set to last copied line for K or the line after the last
copied for M in the current workspace , set to () 1n thp
specified auxiliary workspace

EXAMPLE:

- Before -

- Current workspace -

A I PHOCEDURE
X = Y . ,
y = K ,
K = R ;
END A

- ~Jorkspace 2 -

ABC = DEF ;
END BIN ;

-Request - IKI/,/RIIM(2)

- After -

- Current Workspace -

A , PROCElJURE
X = y ;

- Workspace 2 -

Y = K •
K = R ;

II. u->ENU A ;

f{equest IK;I,/n;IK(2) would have left the current
workspace unchanqed and given the same contents for
workspace 2.

12-28

Workspace Status Request (X)

FUNCTI ()N:

The workspace status request is used to print a summary of the
status of all workspaces currently in use. The name and length
(in lines) of each workspace Is listed t the current workspace
is marked wi th a right arrow " ___ >.11 immediately to the rj.ght of
the workspace name.

fORMAT'

x
VALUE OF ".'"

unchanged

EXAMPLE'

If the user has created the arldltional workspaces 2 and 4 and
has designated 2 as his current workspace, the output of the
workspace status request miqht be as follows:

*~H)RKS PACE (0) J 57
*WORKSPACE(2) - - ->32
*~·JORKS PACE (4) ') 3

This output indicates 157 lines in workspace O(the initial
workspace};32 lines in workspace 2(the current workspace) anrl
53 lines in workspRce 4.

12-29

Special Escape Sequence

Input to the Editor can be viewed as a stream of EBCDIC lines.
Depending on the context, some of these lines are interpreted
as Erlitor requests and others are interpreted as literal text.
The U¢Bex)" escape sequence is recognized by the Erlltor in
either context as a directive to alter the input stream to read
subsequent 11nes from workspClce "x".

When the text Editor encounters the sequence U¢B(x)''', the
entire escape sequence 1s removed from the stream and replaced
with the literal contents of the specified workspace. The text
Editor proceeds exactly as if the the current content of
workspace x were in the request stream in place of¢B(x). If
another u¢B" escape sequence is encountereri while accepting
input from workspAce "xU(i.e. appears in the literal contents
of workspace x), the newly encountere~ escape sequence also is
replaced by the contents of the nameri workspace. The text
Editor allows the recursive replacement of H¢8" e~cape
sequences by the contents of named workspaces to a depth of 50
nested¢B escape sequences.

Request Stream ~~orkspf:)ce X

I a
2 h
3 c
4 d
¢B(x) e
5 ¢BCy)
6 f
7 9
8 h

is equivalent to the series of lines

I 2 3 4 abc rl e i J kIm n 0 f 9 h 5 678

EXAMPLE OF USE OF ¢I3

i
j
k
1
In

n
o

The workspace to which the input stream is redirected can
contain Editor requests, literal text, or both.
If the Editor is executing a request obtained from a workspace
(rather than from the command stream) and the request specified
a line number or regular expression for which no match is
found, the usual error comment is suppressed and the remaining
contents of the workspace are skipped. The esc,lpe sequence
"¢H(x)" can be thought of as a subroutine call st~tement, and
the failure to match a lIne or regul~r expression specified by
some request in workspace "XII can he thought of as A return
statement.

NOfE I The special meaning of"¢8" can be suppressed hy precedinq
the character B with a u¢C" escape sequence (¢<tCB).

12-30

Use of Workspace for Moving Text

Perhaps the most common use of workspaces in the editor is for
moving text from one part of a unit to another. A typical
pattern is to move the text to be moved into an auxiliary
workspace with a Move request. For example the request a

18,32M(5)

moves lines from line number 18 through line number 32
inclusive into auxiliary workspace 5. Once the lines have been
moved to an auxiliary workspace, they can be read as literal
text in conjunction with an input request. For example, to
insert the lines in workspace 5 immediately before the last
line in the current workspace, the following sequence might be
usedl

$ I
¢B(5)¢F

In this case, the liternl text in workspace 5 replaces the ¢8
escape sequence and thus Is treated as input to the editor
already put in input mode by the Insert (I) request. Notice
that the ¢F immediately following the ¢B escape. sequence is
correct since it can be expected that the last line in
workspace 5 is terminated by a fictitious end of line mark that
precedes the ¢F after the ¢B(5) is expanded.

other Uses of Works paces

Another common use for workspaces is to define frequently used
editing sequences. For example, to add the same source code
sequence in several places in a program, the programmer might
elect to enter the editing sequence into a workspace only once
and invoke the contents of the workspace as many times as
necessary_

The use of workspaces also allows a user to place more
elaborate Text Editor request sequences into auxiliary
workspaces and use the Editor as a pseudo-programming language.
In this context, it is useful to regard a workspace containing
executable Editor requests as a subroutine and to view the II¢S"
escape sequence as a call statement.
The reader should refer to the "'LIBRARY MAINTENANCE User Guide"
tor specific examples of use.

The File Output and End File Output Reguests (F and E)

In normal mode, all results Issued by the text editor are

12-31

printed on the execution rpoort. This might be altered by mears
of the F request which forces results, with the exception of
error messaqes, to be appended ~t the end of the specified
workspace. Reooest E returns to the normal rp.portinq device.

This lIIiqht be userl, for example, in the following circumstance:

example I Construct a unit that contains all lines
containinq the string -"CALL" or "RETURN,II in
unit Xl. The following sequence of requests l

R XI
F (I)
I.SGP/CALLI
It $GP/RETURNI
E

achieves the requesterl objective. Instead of printing lines
containing -"CALL" and "f?ETURNIi. the edi tor appenrls them in
workspace 1 which might later be userl by other r~rpJests or
written into the library.

The Output Message I~equest (0)

The 0 request causes the remainder of the request line to he
prInted on the output report. This might be of great help wRile
rlebuqqinc; editor macros to trace the execution of the
workspaces. For exampl e the sequence I

BJ
A
OIAMENTERING HI
•
•
•
•
•
OIAMLI::AVING HI
¢f
BO¢HI

will trace the execution of workspace 1 and might help
considerably 1n the rlebugging.

12-32

Conditional (* and ?) Reguests

We have seen that a workspace can be viewed as ,8 procedure
w~1ch can be invoked by means of the ¢B(x) sequence.However,
the expressive power of the procedural language (requests) is
rather limited. The requests discussed in this section and the
following one are aimed at giving fuller expressive power to
the editor language by introducing conditions and Jumps.

FUNC'f ION OF U*U I

The Test Contents request <*) is used to test if a line in a
given range contains a given regular expression. If such a line
is found, the remainder of the request lIne is executed,
otherwise it is discarded and execution continues with the
following line.

adt,ad2*/reqexp/other-requests
(the first character after * is taken to be the regular
expression delimIter and can be any character not appearing
in the regular expression).

DEFAULTa

/regexpl is taken to mean .,./regexpl
ad*/regexp/is taken to mean ad,ad*/regexp

VALUE OF 11."1

Set to the matched 11ne if a match occurred ~ set to the line
addressed by ad2 otherwise.

FUNCTION of u1 11 1

The Test Range request (?) is used to test if the current lIne
(".It) belongs to ~ given range of lines. If so, the remainder
of the request line 15 executed, otherwise it is discarded and
execution contInues with the following line.

FORMAT'

.ad 1 ,ad2? other-reque 5 ts

DEFAULT:

ad? is taken to mean ad,ad?
? is taken to mean 1,$1 which means that the remainder of
the line 1s execflted except if the current workspace 15
p.rnpty.

VALUE OF 11.",

unchanged

12-33

The Ooto (» Request

FUNCTIONa

The goto request (» can only be executed from a workspace. It
is used for skipping a number of request lines or for going a
number of request lines backwards.

FORMAT&

> [{±}] n or >Lx (see the following page for this latter
format)

if the sign is omitted, + is assumed
n is a decimal number giv1ng the number of lines to skip
forwards (+) or backwards (-).

VALUE OF II • . lIa

unchanged.

OPERATION'

In the current workspace, a skip is made n lines forwards or
backwards. If this causes a positioning before the first line
of the workspace a branch to the first line is assumed I if
this causes a positioning after the last line of the workspace,
an exit from the workspace is assumed.

EXAMPLEJ

A common editing problem 15 the following I

"For each line that contains strIng Itstrinq) II perform some
kind of action".

Assuming that the detail of the action to be performed Is
contained in workspace 2, the above problem can be solved by

AN
.,S*/strlngl/>.+2
>+4
¢B(2)
$1>+2
.+IN>-4

12-34

Labels (IX) and Goto Label (>Lx)

The previously defined method of skipping backwards and
forwards in the request stream might be inconvenient when the
contents of the request stream (in a workspace) are to be
altered. In this case all offsets have to be recalculated each
time that a line is inserted or deleted.

Labels allow symbolic reference to a request line~

A label is defined as being the sequence IX, where x stands for
any character, in the first position of a request line (i.8.
columns I and 2). Setting a label does not otherwise alter the
execution of the statement.

A labelled statement can be referred to in a goto statement as
tollows :

>Lx

where x stands for the character defining the label.

The example 1n the precedinq section could thus equally have
heen written as follows:

IN
IN .,S*/string/>LE
> LX
, E¢B(2)
$?>LX
.+IN>LN
:X

12-35

MISCELLANEOUS REQUESTS

We have grouped under this header a number of requests which
will not be of great use to a first time user of the TEXT
EDITor~ •
The reading of this section might therefore be deferred until a
specific need arises.

Top of Page Request CT)

FUNCTIONs

The top of page request T is used to force a skip to the top of
a new page on the TEXT EDITOR output reper t.

T

DEFAULTs

I'I() Nt

VALUE OF 1t."1

left unchanged

EXAMPLE:

reouest
Tl, SP

will cause the printing of the whole current workspace,
startinq at the top of a new paqe.

12-36

The Split Line Request (%)

FUNCIION:

The split I1ne request is used to break down lines into two or
more lines depending on their contents.

fORMAT I

ad1,ad2%/regexpl

(the first character after % is taken to be the regular
expression delimiter and can be any charActer not appearinq in
regexp)

DEFAULT:

%/regexp/ is taken to mean .,.%/regexp/
ad%/regexp/ is taken to mean ad,ad%/regexp/

VALUE OF "."S

Set to ad2

ACTION:

All lines matched by reqexp in the specified range are treaterl
as follows J

- if the match 15 before the first character in the line or
atter the last one, no action is taken

- otherwise, the line is broken down as many times as regexp
appears in the line. Each resulting line is ~elimited by
the first character matcherl by regexp.

Before

ABC
CDA
BABABA

Request

I, S%/AI

After

ABC (match is the Jst character of line)
CD
A
B
AS
AS
A (match is last of line)

12-37

The Concatenate Request (&)

FUNCTIONI

f(H?MAT'

The concatenate request is used to concatenate lines which
fulfil a certain criterion.

adrJ,adr2&/regexpl

(the first character after & Is taken to be the regular
expression delimiter and can be any character not appearing
in regexp)

DEFAULT.

&/regexpl is taken to mean .,.&/regexpl
arl&/reqexpl is taken to mean ad,ad&/regexpl

VALUE OF ".11.

ACTION'

set to arlr2

All lines matched by the regular expression in the given
range are merged (i.e. concatenated at the end) with the
immediately preced1ng line. If the matched line 15 the first
in thA workspace no action is taken for that line.

EXAMPLE'

Be fore I -A
BB

r -v

-D
-E
F
G
-H

Request I '.$&/~I

After: -A
BB-C-D-E
F
G-H

12-38

The Search Backwards Request «)

FUNCTION:

The search backwards request «)is used to search for a qiven line
backwards. That is, starting from the line before the specified
one towards the first line of the workspace, then, if no match
occurred, from the last line in the workspace towards the
___ ~ ~ 4f! ~ ~.--J 1 ~ -,
::>f)~Ll.l .Lt-:IJ 1. .1.ll~;.

FOr?MAT:

arl</reqexpl
(the first character after < is taken to he the regular
expression delimiter and can he any character not appearing in
the reqular expression)

DEFAULT:

</regexpl is taken to mean .</regexpl

VALUE OF ".":

set to the matched line it found, to the line addressed by ad
otherwise.

::XAMPLEs

- Before -
A
B
c
o

". It > D
E

- Request -
</IJI

- After -
A

II.U > B
C
D
D
E

12-39

The Special Control Request (Y)

FUNCTION'

The user of the editor might wish to control the contents of ~
the report listing produced by the TEXT EDIT(}R or its behaviour
when an error occurs. This is achieved by means of the Y
Reques t.

FORMAT.

YM YE

l~! YV
YB
YL YR

\ 1 ! YF 13 YN
YS YP g} YW

MEANING-

- YV (for Verbose) will produce a printing of all target
lines in Substitute requests before the substitution is
made, thus giving a trace of the morlifierl lines. YM (for
Mute) Is the default setting which prorluces no trace.

- In normal mode, request and input lines are echoed on the
report listing. This trace may he suppresse~ hy means of
the YB (for Srief) request. Default setting is YL (for ~
Long) which produces the echo. ~

- YN (for Trace oN) will produce a trace of request lines
executed from a workspAce, thus provirling a useful tool for
rlebugging editor macr0S. Default setting YF (for Trace oFf)
does not prorluce this trace.

- YS (tor strong) wIll produce n severity 3 rliagnostic for
all errors. YW (tnr Weak) will produce a severity t
diagnostic for some user errors. Irrecoverable errors or
system fai lures wi 11 still be reported \'/1 th sever i ty 3.
Default setting is YS (severity 3 for all errors).

- YEI simulates the occurrence of a severity I error, YE3
simulates a severity 3 error.

- YR3 resets to zero the severity
counters,
YR1 resets to zero the severity

and 3 riiagnostic

ri18gnostlc counter.

- YP3 1s used to specify that any subsequent \."1 or Z request
is to be rejected if a severity 3 rliAgnostic has previously
occurred. YPI is used to specify that any subsequent W or Z
request is to be rejected if a severity .3 or I diAgnostic
has previously occurred. DefAult option is never to reject
W or Z requests even after a severity t or 3 rli~9nostic.

12-40

ESCAPE SEQUENCES

The Escape sequence mechanism is a device provided to alter the
way the editor interprets its input stream. Two of those
sequences were already discussed earlier in this section:

¢F, to indicate the end of input mode
~B, to denote workspace invocation

The other escape sequences will be discussed in this section.
They are all intro0ucerJ by means of symbol ¢ followerl by a
distinctive letter which might he followed by nne or'mor~
complementary characters.

Protection (¢C)

The protection escape sequence is used for entering text that
might otherwise be treated as an escape sequence. For example,
to enter sequence ¢B(3) as a literal text,¢¢C3(3) shoulrl be
entered in order that the sequence is not consirlered as a
workspace invocation.

The general rule 1s that protection sequences ¢C are eliminated
in all contexts after other escape sequences have been treaterl.
Protection sequences may be nested at any rlepth to provirle
successive protection against escape sequence processing I

,¢¢ ••••• ¢, cc ••••• c , ,

n n

Hexadecimal Escape '¢X)

A user may wIsh to work with characters for which no graphics
exist. This can be achieved by means of the ¢X escape sequence.

In all contexts, sequence ¢Xhh(where hh stands for 2
hexadecimal digits) is treated as if the s1ngle character whose
internal hexadecimal representation is hh had bean entered.
Note that two hexarlecimal digits must be present (i.e.¢XOF and
notq:XF). Any sequence where syntax is incorrect (I.e. I¢XF,

¢XO Z t etc ••) i s t r e at e d a s a Ii t era 1 s t ring in pu t.

The meaning of the ¢X sequence can be overridden by means of
the
¢C protection escape sequence(i.e.'¢¢CX)

12-41

SUMMARY OF FUNCTIONS

The attached table summarizes the syntax and use of the TEXT
EDITOR functions.

TABLE 12-1. SU~rnARY OF EDIT FUNCTIONS

Request Meaning Syntax Defau 1 t Values of II JJ •

Space Locate

I
ad none set to ad

AdA

A append text .A last appended

F

B chanqe work B(x) none unchanged

srace

ad 1 ,ad2 C

C change text ••• c I last changeri

F

D delete ad 1 ,ad2 D ••• D after ad2

E end file E none unchanged

output

F ~ file output F(x) none unchanqed

apply x

G to all lines ad I • ad2Gx/re/ • $Gx/rel set to ad2

with Ire/

12-42

TABLE 12-1 (CONT). SUMMARY OF EDIT FUNCTIONS

Flequest Meaning lSyntax I Default Values of II .u • ! I

I I I I ladI
I

I I
I insert I text . I I last in.serted I

F I

K copy ad 1 ,ad2K (x) • , • K (x) set to ad?

print with
L ad 1 ,ad2L • , • L I set to ad2

I

line number

M move arll,ad2M(x) • , .M (x) set to ad2

N no operation adN .N I set to ad I

output
() o text none unchanged

messaqe

P print arll , ad2P · , . P set to ad2

Q quit Q none lost

R read adRname $Rname last line read

S substitute ad 1 , ad2S/rel .,.S/re/stl set to ad2
stl

T top of page T none unchanged

apply x to

V all lines aril ,ad2Vx/rel I,SVx/rel set to ad2

except those

with Irel

W wrl te ad 1 ,ad2Wname SWname unchanqed

12-43

TABLE 12-1 (CaNT). SUMMARY OF EDIT FUNCTIONS

Request Meaning Syntax Default Values of If .11 •

print

X workspaces X none unchanged

status

YB YS

I YF YW

YL
YP ~~rE ~~ l Y special YM none unchanged

YR ~ 'l YN 3

Z overwrite ad 1 ,ad2Zname ,$zname unchanged

:: print line ad ::II . ::: set to ad

number I

I

u comment ad .tI text •. 11 text set to ad

set to
search ad</re/ .</rel matched

<
backwards line or ad

set to

* test adJ ,ad2*/rel • t 1*/rel matched

contents lIne or ad2

goto
> [±J

unchanged > > Lx none

12-44

TABLE 12-1 (CONT). SUMMARY OF EDIT FUNCTIONS

Request Meaning Syntax Default Value of .U ...
•

• define label! . x I nona unchanged .. I

I
? test range I adJ ,ad2? l,s? unchanged

I

I
If count lines I ad I ,ad2# ., ./I/rel set to ad2

I
I/rel

I I
I % I s pI it lines I .,.%/rel set to ad2 t ad I ,ad2%/rel I

I I I & concatenate !adl,ad2&/re/ . , . &/rel set to ad2

!
I

lines I I

I
I I l ¢B(x) depending on

I B (x)

I spe cial ¢C
I II unc hanged

¢
'escape ¢F none

¢Xhh

12-45

INDEX

. value 1 2 -10
< (search backwards) request, Text Editor 12-39
< parameters> 6 -01
< positionals> 6-01
< verb> 6-01
& (concatenate) request, Text Editor i 2-38
* (conditional) request, Text Editor 12-33
% (split line) request, Text Editor 12-37
> (goto) request, Text Editor 12-34
> Lx (goto label) request, Text Editor 12-35
? (conditional) request, Text Editor 12-33
: X (label) Text Editor 12-35
(count lines) request, Text Editor 12-23
= (print line number) request, Text Editor 12-24

A

A (append) request, Text Editor 12-13
Auxiliary workspaces, Text Editor 12-27
Available functions 5-01

B

B (change workspace) request, Text Editor 12-27
Basic language structure 6-01

C

C (change) request, Text Editor 12-14
Card punch 5-05
Cards 2-02
Characteristics checking 4-02
Checking characteristics 4-02
CODE command (SL) 8-02
COMFILE 5-05
COMM command 7 -02
Command 6-01

format 6-01, 6-08
Commands applicable to

a111ibraries (except SM) 7 -01
CD libraries 9 -01
LM libraries 10-01
SL libraries 8-01
SM libraries 11-01

Commands, summary of 5 -02
Comments, Text Editor 1-10
Compare command (SL) 8-04
Compound addressing, Text Editor 12-06
Context addressing, Text Editor 12-05
CRLIST command (SL) 8-06

i-O!

CD

D

DELETE command 9--02
functions available 5-07
library commands 9 -02
LIST command 9-03
MOVE command 9-04
PUNCH command 9 -06

D (delete) request, Text Editor 12-16
DECODE command

SL 8-08
CU 9-02
LM 10-02
SIvI 11----02

DELETE command (SL) 8-10
Dictionary 2-01
Directory 2-0 I

E

E (end file output) request, Text Editor 12-31
EDIT command (SL) 8-11
EJECT command 7 -03
Errors in addressing, Text Editor 12-08
Escape sequence, special (Text Editor) 12-30
Escape sequences, Text Editor 12-41
EXEC command 7 -OS
Explicit list of member names 6-04

F

F (file output) request, Text Editor 12-31
Files, sequential 2-02
Format, Standard Access Record 8-01

System Standard 8-01
Functions available for

CU 5-07
LM 5-08
MST 5-07
SL 5-06
SM 5-08

Functions summary, Text Editor 12-42
Functions, available 5 -0 I

G

G (global) request, Text Editor 12-25

HI

I (insert) request. Text Editor 12-15
Identific.ation

display example 3 --02
Df unit 3 ---01

1·02

INDENT command (SL) 8-13
Indirect list of member names 6-05
INFILE 5-05
INLIB1 5-05
INLIB25-05
INLIB35-05
Input mode, Text Editor 12-12
Input, LIBMAINT 1-01, 5-05

JK

K (copy) request, Text Editor 12-28

L

L (print with line numbers~ request, Text Editor 12-17
Language, basic structure 6-01
LIB 5-05
LIBMAINT

input 1-01,5-05
output 1-01,5-05
scope and purpose 1 -01

Libraries 2-01
Library

commands 7 -01
contents 1-01
level protection 4-01

Limited star convention 6-07
Line number addressing, Text Editor 12-04
LIST command

CU 9-03
LM 10-03
SL 8-15
SM 11-04

List of member names 6-04
LM

DELETE command 10-02
functions available 5-08
library commands 10-01
LIST command 10-03
MOVE command 10-04
PUNCH command 10-06
RENAME command 10-07

LOAD command (SM) 11-05
LOWER command (SL) 8-16

M

M (move) request, Text Editor 12-28
Member 2-01

name 6-03
names,

explicit list of 6-04
indirect list of 6-05

i-03

MOVE command
CD 9-04
LM 10-04
SL 8-17
SM 11-06

MST
functions available 5 -07

N

N (no operation) request, Text Editor 12-22
Name, member 6-03

o
o (output message) request, Text Editor 12-32
Objects handled 2-01
OUTFILE 5-05
Output, LIRMAINT 1-01, 5 -05

P

P (print) request, Text Editor 12-17
Parameters 6-01
Positionals 6-01
PRINT command (SL) 8-23
Protection 4-01

characteristics checking 4-02
library level 4-01
type 4-01

PUNCH command
CU 9-06
LM 10-06
SL 8-24

Purpose of LIBMAINT 1-01

Q

Q (quit) request, Text Editor t 2-18
QUIT command 7-07

R

R (read) request, Text Editor 12-19
Relative addressing Text Editor 12--04
RENAME command

LM 10-07
SL 8-26

Renumber command (SL) 8-27
Responses, Text Editor 12-11

i-04

S

S (substitute) request, Text Editor 12-20
SARF 8-01
Scope of LIBMAINT 1-01
Search rules 6-02
Sequential files 2-02
Series addressing, Text Editor 12-07
SL

CODE command 8-02
COMPARE command 8-04
CRLIST command 8-06
DECODE command 8-08
DECODE command 8-10
EDIT command 8-11
functions available 5 -06
INDENT command 8-13
library commands 7-01,8-01
LIST command 8-15
LOWER command 8-16
MOVE command 8-17
PRINT command 8-23
PUNCH command 8-24
RENAME command 8-26
RENUMBER command 8-27
SORT command 8-28
UPDATE command 8-30
UPPER command 8-35

SM
DELETE command 11-02
functions available 5 -08
INIT command 11-02
library commands 11-01
LIST command 11-04
LOAD command 11-05
MOVE command 11-06
UNLOAD command 11-07

SORT command (SL) 8-28
Spacing Text Editor 12-10
Special escape sequence, Text Editor 12-30
SSF 8-01
Standard Access Record Format 8-01
STAR convention 6-06

limited 6-07
STATUS command 7 -08
Sub file 2-01
Summary

of commands 5-02
of functions (Text Editor) 12-42

SYSOUT 5-05
System Standard Format 8-01

i-OS

T

T (top of page) request, Text Editor 12-36
Text Editor 12-01

. value 12-10
addressing 12-03

compound 12-06
context 12-05
errors 12-08
line number 12--04
rela.tive 1 2 -04
series 12-07

auxiliary workspaces 12-27
comments 12 - 10
escape sequences 12-41

hexidecimal 12-41
protection 12-41

input mode 12-12
requests 12-13

< (search backwards) 12-39
& (concatenate) 12-38
* (conditional) 12-33
% (split line) 12-37
> (goto) 12--34
> Lx (goto label) 12-35
? (conditional) 12-33
: X (label) 12-35
(count lines) 12-23
= (print line number) 12-24
A (append) 12-13
B (change workspace) 12-27
C (change) 12-14
D (delete) 12-16
E (end file output) 12-31
F (file output) 12-31
format 12-09
G (global) 12-25
I (insert) 12-15
K (copy) 12-28
L (print with line numbers) 12-17
locate 12-11
M (move) 12-28
multiple 12-10
N (no operation) 12-22
o (output message) 12-32
p. (print) 12--17
Q (quit) 12-18
R (read) 12-19
S (substitute) 12-20
T (top of page) 12--36
V (exclude) 12--26

i-06

W (write) 12-21
X (workspace and status) 12-29
Y (special control) 12-40
Z (forced write) 12-21

responses 12-11
spacing 12-10
special escape sequence 12-30
usage 12-01

TITLE command 7 -09
Type protection 4-0 i

u
Unit 2-01

identification 3 -01
level protection 4-03

UNLOAD command (SM) 11-07
UPDATE command (SL) 8-30
UPPER command (SL) 8-35

v
V (exclude) request, Text Editor 9-26
Verb 6-01

w

W (write) request, Text Editor 12-21

X

X (workspace and status) request, Text Editor 12-29

Y

Y (special control) request, Text Editor 12-40

Z

Z (forced write) request, Text Editor 12-21

i-07

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE
SERIES 60 (LEVEL 64)
LIBRARY MAINTENANCE REFERENCE MANUAL
ADDENDUMB

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME --------_________________________________ __

TITLE _____________________________________ __

COMPANY -------------
ADDRESS ____________________________________ __

ORDER No·1 AQ28'{)IB

DATED I MARCH 1980

DATE

\

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

IIIIII
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY I
IF MAILED

IN THE
UNITED STATES I

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1 W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

21600,1.5978, Printed in U.S.A. AQ28, Re\

