

SERIES 60 (LEVEL 64)
LIBRARY MAINTENANCE
REFERENCE MANUAL
ADDENDUM B

SUBJECT
This Addendum Provides an Index

SPECIAL INSTRUCTIONS

This is the second addendum to AQ28, Revision 1, dated September 1978. Insert
the attached pages into the manual according to the collating instructions
provided. This addendum corrects the pagination problem which occurred in the
previous index, Addendum A.

Note: -
Insert this sheet after the manual cover to indicate that the manual
has been updated with Addendum B.

SOFTWARE SUPPORTED
Level 64 GCOS Release 0400

ORDER NUMBER
AQ28-01B March 1980

27133

1480 Honeywell

Printed in U.S.A.

COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:
Remove Insert
i-01 through i-08 i-01 through i-07, blank

4/80
© Honeywell Information Systems Inc., 1980 File No.: IN13 AQ28-01B

LEVEL 64 DOCUMENT LIST

Order

Number Title

AQO02 Series 100 Program Mode Operator Guide
AQo03 Series 100 Conversion Guide

AQo4 Series 200/2000 Conversion Guide

AQO5 System 360/370 Conversion Guide

AQ09 System Management Guide

AQ10 Job Control Language (JCL) Reference Manual
AQ11 Job Control Language (JCL) User Guide
AQ13 System Operation Operator Guide

AQ14 System Operation Console Messages

AQ18 Operator Reference Manual

AQ20 Data Management Utilities Manual

AQ21 Series 200/2000 Program Mode User Guide
AQ22 Series 200/2000 Program Mode Operator Guide
AQ26 Series 100 File Translator

AQ27 Series 200/2000 File Translator

AQ28 Library Maintenance Manual

AQ40 System 3 Conversion Guide

AQ49 Network Control Terminal Operation Manual
AQ50 Terminal Operations Manual

AQ52 Program Checkout Facility Manual

AQ53 Commaunications Processing Facility Manual
AQ55 TDS/64 Standard Processor Site Manual
AQ56 TDS/64 User Guide

AQ5T7 Standard Processor Programmer Reference Manual
AQ59 Unit Record Devices User Guide

AQ63 COBOL User Guide

AQ60 Interactive Operation Facility

AQ64 COBOL Language Reference Manual

AQ65 FORTRAN Language Reference Manual
AQ66 FORTRAN User Guide

AQ67 FORTRAN Mathematical Library

AQ68 RPG Language Reference Manual

AQ69 RPG User Guide

AQT72 Series 200/2000 COBOL to Level 64 COBOL Translator
-AQ73 IBM COBOL Translator

AQ82 BFAS User Guide

AQ83 HFAS User Guide

AQ84 UFAS User Guide

AQ85 Sort/Merge Manual

AQ86 Catalog Management Manual

AQ87 Library Maintenance User Guide

AQ88 I-D-S/IT User Guide, Volume 1

AQ89 I-D-S/IT User Guide, Volume 2

AQ90 COBOL Reference Card

AQ92 Operator’s Reference Card

AQ93 RPG Reference Card

AQ94 FORTRAN Reference Card

iii

SECTION I

SECTION 11

SECTION I1II

SECTION IV

SECTION V

SECTION VI

CONTENTS

SC(JPE AND PURP()SE L0 B L IR 20 R IR BN B X BN BE K R BN BN A BN BN B I NN N BN RN Y

{)BJECTS HANDLED (AR R B NENENEENENNEENEENENERNNNRIENEEREY

Libraries ©00090 0000000000800 cs000t00ns00e
Sequential Files €0 vev0sesstscccersses s

Cards 28 0 09090000080 ¢00 00080000200 SO OPSIOIROISS

UNIT IDENTIFICATI()N 329 8020029000000 00 00000000

pR()TECTI()N 08 00 000 09 00908 0888 QRECOCILIOBSIOSOIOGIEOQSOETDIOS

Library Level Protection...“..C.O...O....
Type Protection sececceccsccecsccscncccs
Characteristics checking ececeeccecesoan

Unit Level Protection Ssesese sttt eccssene

AVAILABLE FUNCTI()NS 99800000 QOO ROSISIOIOCEOIOSIBNSNOIOSEOIODS

Summary of Commands 0900 0esse0svscsvenensse
LIBMAINT Inputs and Outputs tss00eccccccss
Available_FunctionS for SL tesvs00sscssvse
Available Functions for CU ceeecacscscncas
Available Functions for LM ..cececcsccaces
Available Functions for SM .ceccccccescssses

BASIC LANGUAGE STRUCTURE G 9 008 6000 90 ¢ 0 OSO PSSO OS

Commands ® @ 6 50 ¢85 90 05000 000 O OEO €8 OO PG PGV TISD
Search RULES cseccecscsesscccenncsccsssscne
Member Name cececoccccossscccsccscccnsnsse
List of Member NAmMeS «cceccssecccceccccaccces
EXpliCit - 3
Indirect List G @0 0 O 0000 0009 0O ORS OOPIOGNDOSTPSDS
Star Convention .csececeescacscecsascccse
Limited Star ConventioN ccceoccscscscs
General Format of CommaNdS .ccseeccsccccsce

1-01

2-01

2=01
2-02
2-02

3-01

4-01

4-01
4-01
4-02
4-03

5-01

5=-02
5~-05
5-06
5-07
5-08
5-08

6-01

6~01
6-02
6-03
6-04
6-04
6-05
6-06
6-07

6-08

SECTION VII COMMANDS APPLICABLE TO ALL LIBRARIES <ecceceee 7-01

C()"M LK B B B IR K K B B A K I B NN B N I N BN R N R R R NERRENIENNNEY] 7-02
EJECT G € 0 €550 0 0E0 00020 COTENISISOTOSENTSAEGSOOGTES 7‘03
ESCAPE T8 32000000 GOO 0OV SV OGOBSTIOIPSITOIOIBSTOSTSESEOSTBODS 7—04
EXEC L IR B BN BE B B BK I BN B BE B B BK B W B A NN B I B N NI N N R B BN NS J 7-05
QUIT LEC IR B BN R B B B BB LI BB B AL BE N A B L IR 2L B B I B I BN IR N I N N R N J 7-07
STAT’}S T8 500000 OOIH ¢ 09 9S0EOTEEOIISSITOIBSBIOSS 7-08
TITLE 9 9 0 0800000 Q VOOV GOV VOBV OSSIOGOOESIOOTIBTOSES 7.09

SECTION VIII COMMANDS APPLICABLE TO SL LIBRARIES ..cceceese 8-01

C(}DE LI B I B BCC IR B B BE B AR BE BN K B BN BN B B N N B BLBE B NI A N N N N N R N J 8-02

C()MPARE LI B B B B B B BN IR K N A IR N B N B R N N B K N ENNENRNRNRH:E X] 8.04
CRLIST L 3K B B BB B B K IR IR B BB N BN N L IR R N I N NN I E R N KR RN] 8.06
DEC()DE S €0 09V VS VO O PO GO GO QOO TLSOOQUTS VTSSO 8-08
DELETE ® 9 009 20 0600 00O GO PGV OOBTOLGCOEOSIONPOTPITSPROSTYS 8""0

EDIT GO 9O GG GOD ST PSOEDSOECD S DOESSSSTRIOEBDPOIOGTTOTSTS 8-l|
GL‘)BAL EDIT 99 OGP O OG0 0 064505 COCOSSGSP2ONSNGSSTOTILES B-Al‘
INDENT ® 0 9 0000 O0 O 0 G OGP OE GBIV VSO ORD ST TS O 8"3
LIST 2 9 GG 9 8650 00O 060 0CSICOITBOIIIGBSBISIOEBNTOOES 8.|5
L()"ER 3 B IR IR B B BN BN BE K IR B B BY R B BE R L AL B AU N BN N BN N NN R R N 1 8.'6
M()VE ® €06 ¢ O TV OOPP OB OCP VIV IGE S eSO OOSESSSTES 8-]7

pRINT 200 €0 Q0 G COT P00 S0 VISV SOVOTICIGEOISSEISISIOTOS 8.23
pUNCH LN R BB I B B BB IR O I B AU BN B B BE BN BC AL AL B K B BEIK B N I B N N N) 8‘24
RENAME ® 0O 90 OO0 0O P OS G0 09O IPT S OBONGIBIRTNNSTSINS 8-26
RENUMBER R BE BE R B BR BN BN BN BE BY BN B BN B X BN B AKX BE BN R N BN B B N BN N N N N J 8-27

S()RT 90 ¢ 0 08 8T 0 ECAEDO DO OSC CECPOOGOCEIS O SOOI OOPPOTOEDN 8-28

UPDATE 09 28 000 0GP GD &8 0T EONS OSSOSO CGCOIEBSBPOEOEBSBSTOTISTS 8.30
UpPER R B 2R BE B BN B B AL BN IR AR B BRI BN BB IR B BB BN AR B BE BN B N BN N AN N | 8.35

SECTION IX CUMMANDS APPLICABLE TU CU LIBRARIES e ssseessss 9_01

DELETE 2 06 0000 VP V0P CEOIEBIIOPONOGIOIENISIOICSOEOITOIEOSETTIOTSN 9_02

LIST 90 002 0 0060006006000 00600800c0acccN cOOCETBPEEOES 9-03
M()VE ® 6 9 @ 0 ¢ 9 OO 2O OO O OO ST O OO O S E S OO S OIS C PN 9-04
PUNCH 06 4300000060000 000000000s0088000CGCEOEGS 9-06

DELETE o'oooo.?oooooooooooo.o.oooooa.o.o.- 10_02
LIST 9 2060 2 0000 00 P VT OLOPOOOIRTIGEGCIESEIBSIOONOROSEDRPETSTTDS 10_03

MOVE © 00000 0000000000 eev00000cCc0cOCCs0000OLS 10_04

pUNCH 00 8 0006 000 0O P PSP EEINOOEONBEEEOESI OO OETS 10_06

vi

SECTION XI

SECTION XII

RENAME ® 0 0 C 0% 2 PO T O OO O L O OP N T TP EO LG TSI ES SISO EOEOE

COMMANDS APPLICABLE TO SM LIBRARIES .eiceceeoes

THE

LIST ® © 6 0 090 000 000 00O SO N PO OO LS s et

L()AD @ 0 09 00 8¢ 0 00 °ODO S SO S OEL P8 SO0 EPeGSEOOTCTE

M()VE L 20 2K B BE BE BE BE N IR IR BRI BB IR SR 2R JX BN BU R BN B BN EE R R B N S A A

UNL()AD ® S 00 00 9 20 ° 0 00O EC SISO LT ASCOSE o8 0B 0o

TEXT EDIT()R ® © 0 0 ¢ T S OO OO0 OO AP PSS E s st e

Usage ® € 0 &% @& G @O 9 S B LSS ECEO e T E T TR ST e

Requests @ % 6 46 ¢ ¢ 00 00 QO SO O EE P EE T TS O 00O O

Input Requests

e 8 0.0 06 00 0 0806806 909 00 0o

Basic EAit Requests eeeeesvccsaaccanas
Extended Edit Requests ceeeeeeeecacone
AddressSing eceeseeececcecssasssccnscccscnns
Addressing by Line Numhercceee..
Addressing Relative to the Current
Line ® © @ 68 © &0 89 00 SO P ST QOSSO E eSS o
Addressing by Context siceececescncens
Compound AdAreSS5€S seeeeccssosscesssecans
Addressing a Series of LLines .t.eeeeeas
Addressing Errors cecoescsceeceescsasace
Use of the EAILtOr ciceeceencececccnsssnone

Request Format
The value of " #

29 0000600000000 0600000 sa

® @& @ 00 o ¢ 8 ¢ 0 %O S PS8 saoe

Multiple Requests on a Lineceeceae
SpaCing ® 5 0 8 © & %9 58 5 SO S0 S S O PO e

Comments

L BRI B B BN K BT IR BN R BN BE N BN S K IR BE IR K L2 BN B 2 N

The Locate Request .(ieeeevccacesscccss
Responses from the Editorcccce..
INPUt MOAE ceeeeeevevssssssscaancsscnncsscsnse
Append Reqmest (A) ceecericasnesosccnns
Change Request (C) .ceveevceccscccscces
Insert Request () .eeeeeeccenccacanne
Basic Edit RequesStS ceceeecccecsccssccconn
Delete Request (D) sceeseccscsnacssnes
Print and Print with Number Requests

(P and L)

@ 0 8 ¢ 5 0 C 00 TS ST 0SS SOOI 00

Quit Request (Q)
Read Request (R)

® 8 @60 0600 te 00 oe s el

Substitute Request (S) .eeecevescrenss
Write and Forced Write Requests

(W and Z)

® © 0 99 T 0 060 90T O 0O ® OO B OSSO0 s

No-operation Request (N) (eeeecaancens
Count Lines Request (#) .ececeescsnscs
Extended Edit Requests ceeecceccscccccscscses
Print Line Number Request (=) cocceces
Global Request (G) ceicceecaccasccccecese
Exclude Request (V) civeeeneccacsesses

Auxiliary Workspaces

vii

0 © 0% 0098 0000 s oSO

10-07

11-01

11-02
11-03
11-04
11-05
11-06
11-07

12-01

12-01
12-01
12-02
12-02
12-02
12-03
12-04

12-04
12-05
12-06
12-07
12-08
12-09
12-09
12-10
12-10
12-10
12-10
12-11
12-11
12-12
12-13
12-14
12-15
12-16
12-16

12-17
12-18
12-19
12-20

12-21
12-22
12-23
12-24
12-24
12-25
12-26
12-27

E

INDEX .. .iiiieeeennann s eesssasssaneanne s e aesesseeacnnssasanns .o
TABLES

Table 4-1. Output Files and Library Checking................
Table 5-1. Summary of CommandsS.....cocieeeecsoscacsceass ceseas
Table 5-2. Available Functions for SLi....cccvieeeeeenencsaens
Table 5-3. Available Functions for CU...eceeeercecnacssonnas
Table 5-4. Available Functions for LM....c.cceeeeeecnsaanaas
Table 5-5. Available Functions for SM......cicecueen ceeoenan
Table 8-1. Default FOrmatS...eeeeeecseesoesasaccsascscsss e
Table 8-2. Punching ConventionsS.....ceeeeeeeeees cesenn ceeean
Table 8-3 Default ValueS...ceeeeoosoees t e eest et e en e
Table 12-1. Summary of Edit FUncCtionS.....ieeeececeeescecasasan
12/79

AQ28-01A viii

Change MWorkspace (B) ceeeecccccccsances
Copy and Move Requests (K and M)
Workspace Status Request (X) ceeeececece
Special Escape SeqQUENCE ceeeccceccccna
Use of Workspace for Moving Text
Other Uses of WOrkSpacesS eceecececceeccecsee
File Output and End File Output
Requests (F and E) cccecceccccsccccccss
The Output Message Request (0)
Conditional (* and ?) RequestsS ..ecees
The Goto (>) RequesSt cececaceccccccses
Labels (1X) and Goto Label (>Lx)
Miscellaneous RequesStsS .cececcecosceccccace
Top of Page Request (T) cececcacececce
The Split Line Request (%) ...ccececes
The Concatenate Request (&) ...ceceene
The Search Backwards Request (<)
The Special Control Request (Y)
Escape SeqQUENCEeS ccceccvscccscnscacccaseces
Protection (¢ C) cceceeceveccncccccnes
Hexadecimal Escape (¢ X) ceceecacasceen
Summary Of Functions ® 9 90 O 0C O OO 90 SV TP o0

12-27
12-28
12-29
12-30
12-31
12-31

12-31
12-32
12-33
12-34
12-35
12-36
12-36
12-37
12-38
12-39
12-40
12-41
12-41
12-41
12-42

SECTION I
SCOPE AND PURPOSE

LIBRARY MAINTENANCE (LIBMAINT) is a standard GC0S=64 processor which
performs functions and services convenient for the efficient
management of libraries. Functions provided allow updating, copying,
moving, listing and miscellaneous handling of library members.

The contents of a library can be source language units (including
JCL), compile units, load modules, shareable modules or master and
sort tables. Libraries are homogeneous in that they contain entities
which are all of the same type. A suitable protection mechanism (see
Section IV) enforces this important rule. Therefore, in a given
LIBMAINT session, only one type of entity can be handled. This type
is indicated as a parameter to the processor at JCL level. One will
thus indicate : SL, CU, LM, or SM depending on the types of entities
to be processed. :

LIBMAINT accepts as its input libraries, specified members of a
library or sequential files or subfiles defined as separate
entities., This input can be stored on disk, tape or card,

The output of LIBMAINT can be one or several members of a library or
a sequential file or subfile. The contents can be printed, listed,
modified or punched in the same single session.

Actlons requsested of the LIBMAINT processor are expressed in terms
of commands. LIBMAINT commands build up into a powerful language. A
command is a directive to LIBMAINT to execute a function such as
copy a member from one library to another one or to update the
contents of one or several members in a library. A command is built
up from the command word and specific parameters, if needed. A small
number of commands require additional detailed information on the
action to be performed. These actions are known as requests and
immediately follow the command in the command input stream. The
command stream will generally be defined as being a user supplied
input enclosure on cards$ the stream can also be a sequential file
or a member of a source language library. These latter facilities
are of particular help in the case of repetitive operations.

1-01

SECTION II
OBJECTS HANDLED

Objects handled by LIBMAINT may be stored in libraries, sequential
files or on cards.

LIBRARIES
Libraries are files with Queued Linked Organization. A library can
be viewed as being constituted of:

- a dictionary known as the "directory"

- a number of entities whose names appear in the directory.
These are known as "subfiles", *units" or "members".

[LIBRARY
DIRECTORY
nameé Each subfile is composed of
name MEMBER logical records. The format of
name C '\ the logical records and their
contents is dependent upon the
type of the stored entity. In
the case of a source language
MEMBER record unit, for example, a record will
’g” contain one source line.
MEMBER
”C”

Due to their organization, which implies direct access to data
blocks, libraries must reside on direct access devices and media,

i.e. diskpacks.

2-01

SEQUENTIAL FILES

Another method for storing an object acceptable to LIBMAINT is to
store all units one after the other on a sequential file. Units need
to be separated by some kind of delimiter. This delimiter is
dependent upon the type of the stored entities and recognized by
LIBMAINT in the proper context.

|

Unit
A
delimiter
Unit The sequential file might be any
B sequential organized media supported by
GCOS-64 . i.e. disk, tape, paper tape,
del imiter etCeeee
Unit LIBMAINT allows the transfer of units
C from a sequential file to a library and
vice-versa.
delimiter

CARDS

A unit might also be stored on cards. Cards might be used as input,
in which case they are added to the output library or file. These
cards are inserted in the command input stream right after the
corresponding transfer command or request. If the command input
stream is not on card, the cards are replaced by their card images
which might have been created and/or modified by the convenient
processor,

Cards might also be used as output. This is achieved by the PUNCH
command that produces card image(s) of the specified object(s).
These card images are generally acceptable as input to LIBMAINT.

The format of the card deck 1s dependent upon the types of the

stored entities. It is checked for validity by LIBMAINT in input
mode and produced by LIBMAINT {f punched.

2-02

SECTION III
UNIT IDENTIFICATION

Unambiguous identification of a unit is vital for the rational
management of libraries. In a library, each unit is uniquely
identified bys

This

the name of the library where the unit is stored
the name of the unit

the date and time it was first created

the date and time it was last modified

additional information depending on the type of the stored
unit.,.

unique identification i{s displayed each time the unit is used.

It is updated each time the contents of the unit are changed. A copy

of a

unit has the same identification (except name and name of

containing library) as the original unit i1f no change has been made
in the copy.

The identification of a unit is recorded as a part of the unit,
generally as its first logical record.

Raw (SARF) format (see section VIII) source language units have no
identification . However, this format of data 1s seldom used and
should be avoided in libraries whenever possible.

3-01

EXAMPLE OF IDENTIFICATION DISPLAY:

MYUNIT FROMs JOHN-X.CULIB
CD = 09726777 CT = 23314 MD = 10/07/77 MT = 14125 SL = FOR CV = 1.0

The first line contains:

- The unit’s name
- The name of the containing library

The second line always containsi

CD Creation date (MM/DD/YY)
CT Creation time (HH 3 MM)
MD Modification date (MM/DD/YY)
MT Modification time (HH 3 MM)

and possibly?

SL Source language (for CU and SL)

CV Compiler version (for CU)

LK Linker version (for LM)

MN Modification number (for SL, SM and LM)

3-02

SECTION IV
PROTECTION

In order to ensure the security of LIBRARY MAINTENANCE, specific
protection measures are taken. These are of two types:

- at library level to ensure that only valid entities are stored
in order to be able to later process the library correctly.

- at unit level to ensure that no external action or failure will
cause loss of information.

LIBRARY LEVEL PROTECTION

Two types of control are enforced:

Type Protection

It is checked that the library has been allocated with the correct
attribute i.e.s

- input library must be of the type specified by the LIBMAINT
invocation

- output library must be of the type specified by the LIBMAINT
invocation,

In all cases, a library with no type will be accepted as input or
output by LIBMAINT. This might however result in errors which will
be accepted as input or output by LIBMAINT, which in turn might
result in errors which will be often irrecoverable. It is therefore
recommended to allocate libraries specifying a correct type.

4-01

Characteristics checking

In addition to the preceding verification, all output files or

libraries are checked for valid file organization, record format and

record size according to the following table 4-1.
TABLE 4-1. OUTPUT FILES and LIBRARY CHECKING

OUTPUT FILEORG LIBMAINT RECFORM RECSIZE
TYPE
SL vB
F } for SARF* | no constraint
FB
Output
library Cu VB > 1024
LIB
Queued LM F = 1024
Linked FB
SM F or FB = 1024
Output SL VB
Sequential | Sequential F } for SARF* | no constraint
file FB
or
Cu U 2 3960
Queued
Linked LM U > 3960
OUTFILE if SUBFILE
specified SM F or FB = 102¢
in JCL
ASSIGN

(*#) SARF format will be discussed in section VIII.

4-02

UNIT LEVEL PROTECTION

In order to be protected against external unforseen actions such as
killing the Job or. System Crash, LIBMAINT never overwrites an
existing unit. Therefore, if LIBMAINT is not aliowed by such
external events to terminate its writing activity properly, the
former version of the object unit still exists in the library. It
proceeds as follows?

~ creates a temporary unit whose name is
WLBMNC* concatenated with the name of the unit.

- deletes the former version of the unit,

- renames the temporary unit with the former version“s name.
Even in the highly improbable case of an external event in the
latter two steps above, the user will be able to recover the unit
under its temporary name.

As a consequence of this policy, enough room must be given in the
object library in order to accommodate both the old and new copies

of a unit. A good rule is to provide enough space for all units plus
the space needed for the largest of these units.

4-03

SECTION V
AVAILABLE FUNCTIONS

The aim of this chapter i{s to give a synoptical view of the LIBRARY
MAINTENANCE FUNCTIONS. Two series of tables are givent

- A table stating the available commands in alphabetical order

with the specific parameters and/or keywords applying to each
type of entity (SL, CU, LM, SM)

- A set of tables giving, for each type of entity, the allowed
combinations of inputs and outputs. This second series of

tables is preceded by a general overview of LIBMAINT inputs and
outputs.

5=01

TABLE 5-1. SUMMARY OF COMMANDS
|
1"
COMMAND MEANS SL . cu LM SM
CODE To encode a text SE; ! \<§S§§ ‘\Qis\Q:SE
FROM \
TO \ \\
EPLAC \ \
il NN
COMM To comment the
. report
COMPARE(To compare two LIMIT j\\\::iss \Qisgg\\:if
units FROM \\\\\
S NN\
" CRLIST |[To create a unit | FROM \\ R
containing TO \\\\\\\\
member names., NUMBER N \\\\\
REPLACE k NN &
\ N
DECODE |To decode a text | KEY \<§E N \<§§
NEW NN \
FROM \
TO g
P NN
DELETE |To delete FROM | FrRoM | FROM |[SM
unit(s) from LIB | TO | TO TO
EDIT To invoke the see | \<§S \QSS \QQS
TEXT EDITOR requests | \
sect.XIII x N x
N
N NN
global |To repeatedly NEW \\\\\
EDIT |invoke the FROM N\ \ \
TEXT EDITOR TO \
see \\\\\
requests | \\\\\
sect. XTTTRN & R
N
EJECT To skip to the
top of page on |
the report 1L
EXEC To exacute 3 VALUES VALUES | VALUES
sequence of
LIBMAINT
commands

5-02

TABLE 5-1 (CONT). SUMMARY OF COMMANDS

COMMAND MEANS SL

INDENT {To improve the NEW
readability of FROM

a GPL unit TO

CM

IN

LM
REPLACE

INIT To initialize a

; |

LIST 'To 1ist entries FROM FROM FROM SM
of directory TO TO TO LKU
: SIZE SIZE SIZE DIR
INFILE
DETAILED

LOAD |To load a SM N \sggsuo
& NN JREPLACE

.

\\
LONER (To convert a NEW i \\
source unit FROM §
L rerorer ©%%® PolacE L\\\\\\\\

MOVE To transfer units|NEW(%*) FROM NEW(%x) SM

FROM TO FROM REPLACE
TO | END TO
TYPE
NUMBER REPLACE
END]
FORMAT
INFORM
OUTFORM
CONTCHAR
ENDCHAR
REPLACE
CHECK

X
m
O
-
>
O
29}
13
=
(W)

(x)May not be
used with
COMFILE

\\\\\\‘
unit(s) NTAB \\\\\\\\
il NN\ &\

5-03

TABLE 5-1 (CONT).

SUMMARY OF COMMANDS

COMMAND MEANS SL Cu LM SM
PUNCH T h it(s) | FROM FROM FROM \Q
o punch un s ¥$PE TO(TOO \QS§§§
ENDCHAR
N
RENAME |To rename NEW \§S§§ NEW \<§§§§
unit(s) FROM FROM
1o \\\ 1o k\\
. F VAT
e AN
EENINNNX
ORT T sort tines | e, \\\\\§
unit TOC
S
gEsc X\\
REPLACE \\\
SORTKEY
e ANMARNNN
STATUS {To continue or EVEN EVEN EVEN EVEN
suspend the ONLY ONLY ONLY ONLY
processing of RESET RESET RESET | RESET
commands
TITLE To introduce a
private title
in the report
UNLOAD |Clear the virtual N \\ %su
memory RE:Q§§SSQ§S§B\\§S§\ \\\SMLI%Q
E |IT da: NEW
UPDAT uzigpu:§gga FROM EQEE;;;;\:§§§§§ \QS§§§
requests TO
TYPE \\\
NUMBER
END \
FORMAT \\\
T
UPPER lopoverte | en, §\ N
into upper TO ihttititsgkiihhthiiiti
case letters REPLACE
DN

5-04

LIBMAINT INPUTS AND OUTPUTS

LIBRARY MAINTENANCE supports up to three input libraries, an object
library which can be treatsd both as input and output, an input
file, an output file plus miscellaneous inputs and outputs.
Selection of units among the input libraries or files will be
discussed in section VI. The following diagram illustrates the
various LIBMAINT inputs and outputs together with the abbreviations
used to denote them.

input libraryl (INLIBI) Object library (LIB)

input library2 (INLIB2) Output file (OUTFILE)

input library3 (INLIB3)

object library (LIB) OQutput report (SYSOUT)

input file (INFILE)
Punched cards
(CARD PUNCH)
command input stream
(COMFILE)

backing store
(for SM only)

Backing store
(for SM only)

V =V

INPUTS OUTPUTS

5-05

TABLE 5-2.

AVAILABLE FUNCTIONS FOR SL

tput LIB LIB OUTFILE | OUTFILE CARD
\;npx ssf sarf ssf sarf SYSOUT PUNCH
cooE ()] N)]
CRLIST (%) .
. DECODE () \\ PRINT ()
DELETE (%)
EDIT () \\
EXEC
INDENT ()
ssf LOWER (:2)
MOVE &3]
RENAME (:2)
RENUMBER (:2)
SORT ()
UPDATE (x0) \\
UPPER (%)
NS
CODE (%) | MOVE (%) | MOVE (%) | MOVE (*) | LIST (x¢) | PUNCH ()
COMPARE (%) PRINT (:t)
CRLIST (%)
1 DECODE (%)
INLIB4{2 EDIT)
3 EXEC
INDENT (%)
ssf LOWER)
MOVE)
SORT ()
UPDATE ()
UPPER (:2)
] NN
INLIBY2 MOVE (:2) MOVE (%) | MOVE ()| MOVE (%) | PRINT () \
3
LIB . MOVE (x) . B NN
sarf MOVE (%) RENAME (%) MOVE (i) | MOVE (x) | PRINT (%) &\
Infile . . o oy | LIST () .
ssf MOVE (:2) MOVE (%) | MOVE (:¢) | MOVE (:%) PRINT () PUNCH ()
infile . ‘\\ S
- MOVE MOVE MOVE MOVE \\\\\i\\
N NN N
g(s)gi I;IF; £ MOVE MOVE MOVE MOVE \\\\\
& \

)

: More than one unit can be processed in a single command (star convention;
etc. See section VI).

ssf/sarf : Distinction between these two formats will be discussed in section VIII,

5-06

TABLE 5-3. AVAILABLE FUNCTIONS FOR CU

output
LIB OUTFILE |SYSOUT | CARD PUNCH
input
MOVE (%) _ PUNCH (%)
LIB \ LIST (%)
DELETE (%) &
| MOVE (%) | MOVE(%) PUNCH (%)
INLIB!2
3 LIST (%)
\
INFILE MOVE (%) NLIST (%) \\\
COMFILE | MOVE (%) \\\\X\Q \\\
DR

(x) More than one unit can be processed in a single command (star
convention, etc... see section VI)

5-07

TABLE 5-4., AVAILABLE FUNCTIONS FOR 1LM

output
LIB OUTFILE | SYSOUT CARD PUNCH
input
N
MOVE (%) \QS§§§§ PUNCH (%)
LIB DELETE(%)
, LIST (%)
RENAME(*) ES§>\
! MOVE (%) | MOVE (%) PUNCH (%)
INLIB {2 LIST (%)
- {3
S N
e o SO - D
INFILE MOVE (%) §§§;;i::;§ LIST ({\E§>\ ‘\\\:
COMFILE | MOVE (%) thiié:isss \Q§§§;§§§;:f§§§33¥:?§
ESE\ S§>\ R

TABLE 5-5. AVAILABLE FUNCTIONS FOR SM

output BACKING
LIB SYSOUT | OUTFILE
input STORE
N
DELETE _ \<§S§§§§§
UNIT LIST
LIB
LOAD i, \&
INLIBI MOVE ESS;:::EEESQ;;:\\:fFSS MOVE
BACK ING :§§§:?5§§§§ \:f§§>:f§3<§§;;§:§§§§§
n NN NS
INFILE MOVE \<§E§§§§ LIST MOVE
NS

(*) More than one unit can be processed in a single command (star
convention, etc ... See section VI)

5-08

SECTION VI
BASIC LANGUAGE STRUCTURE

The LIBMAINT command input stream is made up of a series of
commands, requests and literal text. Requests and literal text are
subordinated to a command which is the highest level structure in
the LIBMAINT language. The purpose of this chapter is to underline
the characteristics which are common to all LIBMAINT commands
together with the basic structure of the language.

COMMANDS

A command has the following general format:
<VERB> <POSITIONALS>, <PARAMETERS>3%
- <VERB> is the name of the command

- <POSITIONALS> stands for a sequence of positional parameters
separated by commas or spaces.

-~ <PARAMETERS> stands for a sequence of keywords or parameter
values, A parameter value 1s a parameter keyword followed by
the equal sign (=) and by a value assigned to this parameter.

All positional parameters, keyword and parameter values are
separated by commas or spaces(commas or spaces or a combination of
hoth may be used as delimiters between parameters and positionals).
One or several spaces may appear inside the body of the command
except within the VERB, keywords or values. The command terminates
with a semi-colon. A command may span several cards or records but
no more than one command may appear on a single card or record.

Examples
JOVE, JNLIBI2UNITI,, (REPLACE, NUMBER = (10,10)3,
verh positional parameters

Positionals, parameters and values other than library keywords and
member-names are described under each command description in the
following chapters. This chapter will concentrate on the rules for
naming memhers and retrieving them,

6-01

SEARCH RULES

As explained earlier LIBMAINT may take its input from any of the
followingt INLIB1, INLIB2, INLIB3, INFILE, LIB, COMFILE.

The association of the above keywords with an actual library or file
is made by JCL statements (see USER GUIDE). Libraries or files are
to be specified only for input, as output is always LIB or OUTFILE
depending on the JCL used for activating LIBMAINT.

Search rules are the rules that govern the choice of the input
library in which a unit is to be selected. There are two possible
cases?

-~ The library is explicitly stated as a qualifier to the name of

MOTE:

the member. This is achlieved by means of the library or file
keyword prefixed to the name by a colon.

Examples
MOVE INLIB! s UNITI! 3
MOVE INFILE ¢ UNIT2 3

The library is not explicitly stated in which case the
following rules apply 3

- if command is DELETE, RENAME or RENUMBER, the assumed library
is LIB.

-~ if more than one member is processed in a command by means of
A list of member names, the assumed input library is LIB.

- in all other cases, the named member is searched for, first
in INLIB! then in INLIB2, INLIB3 and last in LIB until a unit
with the specified name is found.

LLIBMAINT SM always works in LIB except for command MOVE which

operates on INLIBI or INFILE. INLIB! is never indicated.
INFILE needs to be specified when required.

6-02

MEMBER NAME

A member name is composed of a string of alphabetic (A~-2Z), numeric

If\=f)\ e | nani -} rhavanrta ers Tha 81 TAwa~ v\nn{ Al AalAvandtawes avwma -
\uU=>1 and Dpc 131 Cnaracier . A1IT Li1Vngu (L2 141 uuc:xc:\..\.cx:) ajl < LIU

underscore (_), the minus (=) and period (.) symbols. There is no
restriction on the first character and the maximum length of a name
is 31 characters (30 characters for a SM or LKU).

IMPORTANT NOTE?

THE FOLLOWING DOES NOT APPLY TO LIBMAINT SM.

As stated above, a member name may be prefixed by any of the
following?

COMFILE ¢
INLIBI ¢
INLIB2 @
INLIB3 @
LIB 1
INFILE ¢

The library keyword is separated from the member name by a colon
(3). Spaces are allowed before and after the colon.

6-03

IMPORTANT NOTE 3
THE FOLLOWING DOES NOT APPLY TO LIBMAINT SM

LIST OF MEMBER NAMES

Most LIBMAINT commands can operate on more than one member. This is
stated by indicating a 1list of members in place of the member name
in the command. There are three basic means through which a list of
members can be stated 3

- by an explicit list

- by an indirect list
- by the *star convention®

Explicit List

An explicit list of member names is formed by a list of names
separated by commas or spaces and enclosed between parentheses. All
members must belong to the same librarys if none is specified, LIB
is assumed. If member-names have a common prefix or suffix, these
may be written outside the parentheses. These will act like factors
in classical arithmetic. No space iIs allowed between the prefix and
the left parenthesis or between the right parenthesis and the
suffix.

Examples 3

- (LIBEANAL, LIBERPRINT, LIBEREAD)
or
LIBE(ANAL, PRINT, READ)

- (LIBSLERR, LIBCUERR, LIBLMERR)
or
LIB(SL, CU, LM)ERR

If an explicit list of member names is prefixed with symbol not
(1), this means that all members except those indicated in the list

are to be processed.

Examples 3

-J(LIBA, LIBB, LIBC)

6-04

or
aLIB(A, B, C)

=“1(XXABYY, XXCYY, XXDEFYY)

or
1XX(AB, C, DEF) YY

IMPORTANT NOTE 3
THE FOLLOWING APPLIES ONLY TO LIBMAINT SL

Indirect List

A list of the members to be processed may be given in a unit of a
source language library. This list might have been created, for
example, by the CRLIST command (see section VIII).

To denote that the members list is given in a unit, one specifies
the unit name, possibly qualified by a library keyword, enclosed
between " < " and " > " (search rules apply there).

Examples 3

- MOVE INLIB1 & < LIB 3 SFLISTI > 3

The members of INLIBI whose names are contained in unit SFLISTI! of
LIB will be moved to LIB

- PRINT INLIB! s < LIST2 >

= LIST < LIST3 >3
The "not" convention may also be used with an indirect name list.
This means that all members, except those whose names are listed in
the unit, are to be processed.
Examples ¢
- PRINT INLIB! 37« INLIB2 ¢ SFLIST4 >
- DELETE T1< LISTS5 »>

6-05

IMPORTANT NOTE:

THE FOLLOWING DOES NOT APPLY TO LIBMAINT SM

Star Convention

The star convention is a device which allows the specification of a
name list in terms of a given pattern. All names that match the
pattern are selected for processing. Constant sections of the
pattern are expressed as such, variable sections are denoted by an
asterisk or a star (x). rhen a name is found to match the pattern,
the "x" replaces 0 to n characters.

Examples :

Pattern Matches Does not match
AxB AB AXYYXB AXBYB AXBY

A*xxB same same

Ax A AX AXYZ XAX

*AxB*x any name with a B the

right hand side of an A
* all names none
*k all names none

If a library is specified before the pattern, the matching process
applies to all members of the named library. If no library is

specified, LIB is assumed.

The *not" convention can also be used in combination with the star
convention. It indicates that the command is to process all members
that are not matched by the pattern.

Example 1
LIS3 sILI33%

matches all members in LIB whose names do not begin with "LIB3%,

6-06

The user can also specify the first and/or last name to be matched
by the star convention based on alphabetical order. The first and
last names need not be the names of members, these are only
reference values for comparison.

IMPORTANT NOTE s

THE FOLLOWING DOES NOT APPLY TO LIBMAINT SM

Examples ¢
- LM*, FROM = LMAB, TO = LMXY

means that all names beginning with LM, falling alphabetically
between LMAB and LMXY (both inclusive) are to be processed.

*XYZ, FROM = HHHXYZ
9H¥, FROM = G, TO = L
x, FROM = A, TO = P
*x, TO = D3

Limited Star Convention

This limited form of the star convention has to be used

- when the command has two positional parameters representing
member names (Ex ¢ COMPARE)

- when parameter NEW is used to create or update members under a
new name

Limited star convention restricts the number of asterisks in the
pattern to one occurrence, FROM and TO parameters may also be used
in this limited form.

Examples 3
~ COMPARE INLIBI ¢ %, INLIB2 s *0OLD

denote that all members of INLIB1 are to be compared with the
members of INLIB2 with the same name followed by OLD.

- MOVE INLIB! & H*ERR, NEW = Z*WARN
applied to a library containing members
HMZIMZH

HLIBERR
HDBERR

6-07

HLKZ

will result Iin moving members HLIBERR and HDBERR into LIB and
renaming them ZLIBWARN and ZDBWARN respectively. (

GENERAL FORMAT OF COMMANDS

DOES NOT APPLY TO LIBMAINT SM

Command-name

+Member-name-2
member—-name |
V+NEW = member-name-2
- aOr-
/ INLIBI ‘ star-convention [,FROM = member-name-3]
INLIB2 [+,TO = member-name-4]’
INLIB3 > 1
LIB limited-star- {.Limited-—star-convention—Z }
INFILE < convention | +NEW = limited=-star-convention-2
COMFILE =/ | '
- JL +FROM = member-name-3
/J + TO = member-name-4

\ (explicit-name =-list)

\<indirect—name ~list> (*)

[,specific parameters and keywords] 3

(*) APPLIES TO LIBMAINT SL ONLY

6~08

To improve the legibility of subsequent chapters, the following
conventions will be useds

- #star-convention® will stand for %star-convention...
FROMeoeoTOsee™

- Wlimited=-star—-convention” will stand for
"]imited=star-convention...FROM +...TO"

commas will appear as separators between parameters and
positional keywords, It is understood that these may be
replaced by one or more spaces.

6-09

SECTION VII

COMMANDS APPLICABLE TO ALL LIBRARIES
(Except SM)

Following is a description of LIBMAINT commands which are applicable
to all types of libraries : SL, CU, LM (not applicable to SM).

Commands are sorted in alphabetical order and each description
starts at the top of a page.

1-01

COMM

Functions

To introduce comment lines in the LIBMAINT execution report.

Formats
COMM Text of the comments
Ruless

l« The text of the comment may span several input cards or
records.

2. The text of the comment must be protected (i.e. enclosed
between single quotation marks) if it contains a semi-colon.

3. The text of the comment may be parameterized (see EXEC).

txamples

COMM “SAVE OF LIBRARIES % LIST OF SAVED UNITS”

7-02

Functions

To skip to the top of a new page in the LIBMAINT report.
Formats EJECT 3

Rules?

This command is not printed out in the execution report.

7-03

ESCAPE

Functions

To submit an OCL statement for execution in interactive mode.

Formats

ESCAPE OCL-statement H

Exampless

ESCAPE DS X25 3
ESCAPE SI TEST4sTESTLIB:Cl1003MS/M4001

1-04

Functions

To execute

EXEC

a sequence of LIBMAINT commands stored in a source

library SSF unit., The egxecuted commands may be parameterized.

Formats
INLIB! ¢

EXEC INLIB2 3 unit-name [, VALUES = (pl,ceas, p99)] 3
INLIB3 3
LIB 3

Parameterss

- VALUES introduces a list of parameters which are to replace the

corresponding &n in the executed unit (1 £ n g 99). &1 will

be replaced by pl, $2 by p2, «.s« &99 by p99.
Acceptable forms for pl aret

an unprotected character string which does not contain
the characters space, M“§" , W, , Wel Spnaces preceding
the first character or following the last significant
character are ignored.

Examples VALUES = (ABCD, EFGH, I)

a protected character string ¢ i.e enclosed between
single quotation marks %", This string may contain any
character but #s0",

Examplet VALUES = (“STATUS ONLY %)

an empty protected string ¢ i.e. two consecutive single
quotation mark characters. The corresponding &n

combination will be merely eliminated from the executed
text,

Examples VALUES = (A, 2 < , B)

an empty string s i.e. two consecutive commas, possibly
separated by spaces. The corresponding &n combination
will be left as it is.

Examples VALUES = (A , , , D)

7-05

Ruless

| = EXEC may not appear inside an EXECuted sequence of LIBMAINT
commands.

2 - Replacement of &n by the corresponding pn is effective in 3
- LIBMAINT commands

- EDIT command”’s requests

it is ineffective in data introduced by a LIBMAINT command
(MOVE COMFILEs , UPDATE) or by an input mode request of the
text editor (EDIT“’s A, C, D).

Examples
unit EDIT 3
&182 EXEC unit
&3&44 VALUES = &4
&5 CEDITy 2 % %4 27 4 4+) % &5
+ 44 s
£ 82 43 475

1-06

QUIT
Functions

To terminate a LIBMAINT Session., This command is optional, an end of
file mark on COMFILE is treated as a QUIT command.

Formats QUIT 3

7-07

STATUS (also SM)

Functions

lo continue or suspend the processing of LIBMAINT commands when an
error has previously occurred,

Formats
EVEN
STATUS ONLY H
RESET
Rules:

l. STATUS ONLY proceeds with the execution of the following
command only if no error has previously occurred.

2. STATUS EVEN proceeds with the execution of the following
command (and that command only) even if an error has
occurred.

3. STATUS RESET resets the error count to zero.
Exampless

l. DELETE A 1
The PRINT Command will be executed even
STATUS EVEN 3
if the DELETE failed. But PRINT B will
PRINT C 3
not be executed if either DELETE or PRINT C
PRINT B failed

2. DELETE A 3
If the DELETE command fails, the
STATUS RESET 1
following commands are executed.
PRINT B 3

MOVE C 3

7-08

TITLE

tfunctions

To introduce a private title line after the standard LIBMAINT title
lines in the execution report.

Formats

Rules

TITLE [Text of the title]s

The text of the title can span several input cards or
records. The maximum length is 240 characters.

2. The text must be protected between single quotation marks if
a semi-colon appears in its body.

3. The text may be parameterized.

4, The TITLE command is not printed out on the execution report.

5« The new title text is taken into account from the first skip
to top of page following the TITLE command.

6. If the title is to bhe printed at the first page of the
LIBMAINT report, the first two commands must bet TITLE x3 and
EJECTS

7. An empty text (i.e. ¢ TITLE §) destroys the effect of a
previous TITLE command.

fFxampless

TITLE UPDATE OF SOURCE 3
TITLLE *#TODAY s 18 FEB 19787 3%
TITLE 3%

7-09

SECTION VIII

COMMANDS APPLICABLE TO SL LIBRARIES

The following is a description of the LIBMAINT commands that are
applicable to SL libraries.

A source language library contains a number of source units that may
bes

- in System Standard Format (SSF)
- in Standard Access Record Format (SARF).

A source unit will typically contain a series of EBCDIC source text
lines such as programs, documents, confidential information or any
other kind of legible text. In normal mode, only SSF units are
treated. However, some LIBMAINT commands apply to both (refer to the
tables of section V) and conversion from one format to the other is
possible (see MOVE command in this section) .

SSF units are prefixed with a special control record which is not
directly user visible and which holds the relevant identification
information for the unit, namely?

Date and time of creation

Date and time of last update

- Version number

~ Language type

- Size in lines
This information is vital for the efficient handling of source
language libraries and is automatically updated by LIBMAINT. Most
commands display the identification of the units which they process.
SSEF source lines contain {nternal numbering which is left unchanged

by all but the RENUMBER command (unless explicitly requested to do
otherwise).

SARF source units have no line numbering and no information on their
status or identification. SARF is a "raw" format.

Commands are presented in alphabetical order and each description
starts at the top of a page.

8-01

CODE

Functions

To provide maximum security for data stored in SSF source unit(s),
this command permits the. coding of the units contents according to a
key which need not be stored in the systemn.

Formats
INLIB! member—-name-1, NEW = member—-name-2
INLIB2 star-convention
CODE INLIB3 3 1 limited-star-convention-1
{, NEW = limited-star~convention-21
LIB ¢ (explicit-name-1list)
<indirect-name~list>
, KEY = skeyvalues [, REPLACE] 3
Parameterss?

- KEY is a protected string of no more than 16 non-blank
characters which is used for the coding. This parameter 1is

mandatory.

- NEW specifies the name(s) of the resulting member(s). This may
be used with member-name or limited-star-convention.

- FROM, TO may be used with star-convention and
limited-star-convention.

Keywordss

- REPLACE allows the member—name being written in LIB to replace
(over-write) a member with the same name previously

present in library LIB.

- if the specified or selected library is LIB and if NEW
is not specified, REPLACE need not be specified.

- REPLACE may be used even if the LIB library contains no
unit with the resulting member-name.

8-02

Rules ¢
1. When member-name is specified, search rules apply unless a
library keyword 1is used.

2. When star convention, explicit or indirect name list is used,
default library is LIB, unless a library keyword is specified.

3. The result of the coding is in library LIB.
4, See DECODE command for the reverse process,

5. This command may bhe parameterized.

Examplest

CODE INLIB! ¢ SOURCE_PROC, NEW = CSOURCE_PROC, REPLACE,
KEY = 2+xAW/3}

CODE % , KEY = /MYKEY” 3

8-03

COMPARE

Functions

Compare two SSF source units and print out the changes made to the
first arqument unit to yield the second argument unit.

Format:
INLIBI 3 member-namel
INLIB2 1 ‘
COMPARE .
INLIB3
LIB ¢ [l imited-star-convention-1
INLIB! 3 member-name?2
INLIB? @
[,LIMIT=X];
INLIB3
i LIB 3 limited=-star-convention-2
Parameterss

- LIMIT specifies the maximum number of discrepancies to be taken
into account before processing stops. Default value is
503 maximum value is 32767.
- FROM, TO may be used with limited-star-convention.
Ruless

!« When member-name-1| or member-name-2 is specified, search
rules apply unless a library keyword is used.

2. When limited-star-convention is used, default library is LIB
unless a library keyword is used.

3. The output is organized with the assumption that the first
unit was edited, resulting in the second,

4, Both compared members must be in SSF,

Y Internal line numbering is not taken into account in the
comparison process. Thus, two members which differ only by
their numbering will be considered as identical.

6. The command may be parameterized,

8-04

Examples?
- COMPARE H_LIB_El, H_LIB_EIBIS, LIMIT = 10 3

H_LIB_E! and H_LIB_EIBIS are compared until 10 discrepancies
are found. Search rules apply for both arguments.

- COMPARE INLIB! s H_LIB_ELIST, INLIB2 % H-LIB_ELIST 3
H_LIB_ELIST in libraries INLIB! and INLIB2 are compared. No

search rule applies. Comparison will terminate if more than 50
discrepancies are found.

-we

- COMPARE INLIBI & H_LIB_%x, INLIB2 ® H_LIB_*_OLD, LIMIT = 1
will compare

INLIB! ¢ H_LIB_ERR with INLIB2 * H_LIB_ERR_OLD

INLIB! s H_LIB_GO with INLIB2 s H_LIB_ GO_OILD etc...

8-05

CRLIST

Functions

Create a SSF unit containing a complete or selective list of the
member names of a library or a list of user specified names.

Formats:
INLIBI member-name-| 1
INLIB2 star—-convention
CRLIST |
INLIB3 s (explicit-name-1list)
LIB <indirect—-name~list>
- i L

, member—name-2 [, NUMBER [= (ni [. n2])]] [, REPLACE]:

Parameterss

- FROM, TO may be used with star-convention

Keywordss

- NUMBER specifies that the lines of the created (member—name-2)
SSF unit are to be numbered, beginning with n!, and
incrementing by n2 for each new line. Default values are
nl = 10 and n2 = 10.

- REPLACE allows the created member name to replace (overwrite) an
existing member with the same name in LIB. This may be
used even if no such member exists in LIB.

Ruless

l. One record (line) is created in member—-name-2 (in LIB) for
each member-name specified In the command or found in the
fnput library. The record contains the member name followed by
a single space character.

2. Memher—-name-2 may be later used as an indirect name list by
another LIBMAINT command

3. NKhen star-convention is specified the directory of the
specified or implicit (LIB) library is read and matching names
stored in member-name-2 of LIB.

4, When member-name-1, explicit or indirect name list, not
preceded by " 1" are used, library keyword is immaterial.

5. The command may be parameterized.

8-06

Exampless

- This command will be best appreciated when one has to handle
a set of members, the list of names of which cannot be
easily obtained by star convention or explicit name list.
Select a superset of the required names in a CRLIST command,
then eliminate in the resulting unit all undesirable names.
The unit may then be used as an indirect name list.

- CRLIST is also useful when a series of commands is to bhe
applied to the same set of members. One can then proceed as
followss
CRLIST (list=-of-the members) , MYLIST 3

command | ¢ee € MYLIST 5> eveee

command N eee <MYLIST> coeee}

DELETE MYLIST 3

8-07

DECODE

Functions

Reconstruct the original unit, given a coded unit and its coding
key.

Formats
[INLIB! 2 member-name-1 [,NEW = member—name—z]
INLIB2 ¢ star-convention
DECODE 1
INLIB3 3|/ limited-star-convention-| [.NEw=llm1ted—5tar-
convention-2
[\LIB s (explicit-name-1list)
<indirect-name-list>
+ KEY = "keyvalue" [. REPLACE] 3
Parameterss?

- KEY is a protected string denoting the key which was used to
code the unit. It is a string of no more than 16 non-blank

characters. This parameter is mandatory.

- NEW Specifies the name to be given to the reconstructed member.
NEW may be used with member—-name-1| or
limited-star-convention,

- FROM, T(O may bhe used with star-convention and
limited-star-convention.

Keywords:

- REPLACE allows the reconstructed member to replace (overwrite) an
existing unit in LIB.

- if the specified or selected library is LIB and NEW is
not specified, REPLACE need not be present.

- REPLACE may be used even if no member with the same name
exists in LIB.

l. When member—-name 1s specified, search rules apply unless a
library keyword is used.

2. HWhen star-convention, explicit or indirect name list {s r1nsed,
default library is LIB unless a library keyword 1is specified.

3. The reconstructed member is written in LIB.

4. See CODE command for the reverse operation,

8-08

5. The command may be parameterized

Exampless
DECODE LIB & CSOURCE_PROC, NEW = SOURCE_PROC,
REPLACE, KEY = 2 + SAW 7 3

ofal
DECOD

E LIB 1 %

L]

NEW = K_*x , KEY = v MYKEY “ 3

DECODE * , KEY 7 @ XZK 7 3

8=-09

DELETE

Functioni

Delete one or more units in a source unit library LIB.

Format 3

member-name
star-convention

DELETE [LIB 8] ['1] P
(explicit-name-1list)
<indirect-name-11ist>

Parameters

- FROM, TO may be used with star-convention

Ruless
l. No search rule applies & member(s) must exist in library LIB.
2. The only allowed library keyword is LIB.
3. Deleted members may be in SSF or SARF format.

4. Identification of deleted members is displayed for SSF
members.

5. The command may be parameterized.

Exampless

DELETE LIBs *A , FROM = ALPHA, TO = OMEGA 3

DELETE SOURCE 3
DELETE HxJ 3

8-10

EDIT

Function?! invoke the text editor using the requests following in the
command input stream.

Formats EDIT 3

Rulest See section XIII.

GLOBAL EDIT

Functions

Repeatedly invoke the TEXT EDITOR for a series of members defined in
the EDIT command.

Format:

INLIBI 3 member-name-| {, NEW = member-name=-2]

| INLIB2 3 star-convention

| EDIT |{INLIB3 1 limited-star-convention-1

| [, NEW=limited-star-convention-2] H
LIB 3 (explicit-name-1list)

} <indirect-name-~1list>

L

Parameters:

-~ NEW Specifies the name(s) of the unit(s) resulting from the W or Z
requests (see section XIII). This may be used with member-name
or limited-star-convention,

- FROM, TO may be used with star-convention or
limited—-star-convention.

8~=11

Ruless

l« Requests for GLOBAL EDIT are identical to those for EDIT (see
section XIII) except for extensions of R, A4 and Z. Such
requests that refer to units defined in the command must take
one of the following forms 3

INLIBI s
INLIB2 3
R INLIB3 1 &0
LIB 3
W
[(type)] 80
Z

When a library keyword is used with the R request it must be
the same as the one in the EDIT command.

2. If NEW is used and member-name-2 exists in the LIB library,
the corresponding W 80 will be rejected, Z 80 will be accepted
to overwrite the member.

3. &0 is reserved for R, W and Z requests, It is replaced by the
corresponding member-name in the command.

Example 3
EDIT INLIB! & H_*_ERR, NEW = I_x»_WARN 3

R INLIB! t &0

;equests

Z 80

Q

If INLIB! contains members 8 H_MZ_IMZH
H_LIB_ERR
H_LK_EDIT
H_DB_ERR

requests will apply to

H_1LLIB_ERR Lo create an edited unit named I_LIB_WARN and
H_DB_ERR to create an sdited unit named I_DB_WARN.

8-12

INDENT

Functions

Improve the readability of a GPL source unit by indenting it
according to a set of rules described below.

Formats
INLIBI 3 member-name-| ,[NEW = member-name-zJ
INLIB2 ¢ star-convention
INDENT INLIB3 1 limited-star-convention—-1 |, NEW=limited-
star-convention-Z]f
LIB ¢ (explicit-name-1ist)
- “\<indirect-name-1list>

[,CM = xxx] « IN = yy] [. LM = zz] [, REPLACE] H
L

Parameterss

-~ NEW Specifies the name(s) of the resulting member(s)s this may
be used with member-name and limited star-convention.

- FROM, TO may be used with star-convention or limited
star-convention.

- CM Sets the comment column to position xxx. Comments are lined
up in this column unless they begin a line and are preceded by
a blank line (or are at the beginning of the program or are a
comment beginning in column 1). If this parameter is omitted,
default for xxx is 6l.

- IN Sets the value of indentation for each level to yy. Each DO,
BEGIN, etc... statement will cause additional yy spaces of
indentation until the matching statement is encountered. If
this parameter is omitted, default for yy is 5.

- LM Sets the left margin (indentation for normal program
statement) to zz. If this argument is omitted, default value
for zz is ll.

Keywordss

- REPLACE Allows the member(s) being written to the output
library LIB to replace (overwrite) existing member(s) with the
same name.

- If the specified or selected library is LIB and NEW is not
used, REPLACL need not be stated.

- REPLACE may be used even if the resulting member(s) do not
exist in LIB,.

8-13

Rules

le

2.

4.

5.

1.

When member—-name is specified, search rules apply unless a
library keyword is stated.

When star-convention, explicit or indirect name list is used,
default library is LIB unless a library keyword is specified.

The resulting member(s) are obtained in LIB or OUTFILE
depending on LIBMAINT assignments.

Declaration statements are .indented five spaces. Structure
declarations are indented according to structure level number.
After level 2, additional levels are indented two more spaces

each.

Multiple spaces are replaced by a single space, except within
strings or non-leading spaces in comments. Spaces are inserted
before a left parenthesis, after commas, and around the
constructs = , => , < =, > = , and Tl=. Spaces are deleted
when found after a left parenthesis or before a right
parenthesis.

Parentheses are counted and are expected to balance at every
semi-colon. If parentheses do not balance at a semi-colon, or
if the unit terminates in a string or in a comment, a
diagnostic is produced.

The command may be parameterized.

Exampless?

IDENT INLIB3 ® PROG, NEW =IPROG, CM = 81, IM =7, IN =3 j
INDENT LIB ¢ * , FROM = ALPHA, TO = OMEGA,
NEW = *NEW REPLACE, CM = 71 3

8-14

Functions

Produce a complete or selective table of contents of a source

language library or SSF sequential file.

Forma

te

LIST

-

INLIBI
INLIB2
INLIB3
LIB

INFILE

] member-name

3

NI star-convention
(explicit-name-list)

:J <indirect-name-list>

[, sxze]s

Parameters:

- FROM, TO may be used with star-convention

LIST

= S1ZE When specified, allocated space is displayed for each member
(unit = | block)

Ruless

le

24

3.
4.
5.
6.
1.

When member-name is specified,

library keyword or INFILE is used.

When star-convention, explicit or indirect name list is

search rules apply unless a

specified, default library is LIB unless a library keyword or
INFILE is used.

For a library, members are listed in alphabetical order.

For a sequential file, members are listed in storage order.

For a library, occupancy information is displayed.

Identification of SSF units is displayed

The command may be parameterized

Exampless

LIST INFILE s MEMBER_*_NEW 3

LIST *

e

FROM = ALPHA, TO = OMEGA 3%

8-15

LOWER

Functions

Convert source language unit(s) into lower case letters.

Formats
INLIB1 member-name-| [,NEN = member—name-2] \
INLIB2 3 star-convention

LOWNER .|
INLIB3 1 {limited-star—-convention-1| [,NEW=limited—]

star-convention-2
LIB ¢ (explicit-name-1list)
\<indirect-name-1list> /

[,REPLACE] ;

Parameters?

- NEW Specifies the new name(s) tose given to the converted
unit(s). -

- FROM , TO May be used with star-convention or
limited-star-convention.

Keywordss

-~ REPLACE Allow the unit(s) being written in output library LIB to
replace (overwrite) an existing unit with the same name.

- 1f the specified or selected library is LIB, and if NEW is not
specified, REPLACE need not be stated.

- REPLACE may be used even if no member with the same name exists
in LIB.

Ruless

1. When member-name is used, search rules apply unless a library
keyword is specified.

2. When star-convention, limited-star-convention, explicit or
indirect name list is used, default library is LIB unless a
library keyword is specified.

3. The command may be parameterized.
Examplest LOWER LIB s MYMEMBER 3
LONER INLIB! & <INLIB2 ® MYLIST> 3

8-16

MOVE

Functions
- Move one member from COMFILE to a library.

-~ Move one or more members from a library to the LIB library or
to a sequential file,

- Move one or or more members from a sequential file to a library
or another sequential file.

- Move a SSF member from a library to the LIB library or to a
sequential file with SARF format (SSF to SARF)3

- Move a SARF member form a library or sequential file to the LIB
library with SSF format (SARF to SSF).

Formats
r 1
INLIBI ¢ member-name-| [, NEW = member-name—é]
INLIB2 3
star-convention
INLIB3
MOVE 1
LIB ¢ limited-star-convention=-1 +NEW =
limitedestar-convention-z]
COMFILE 3 (explicit-name-1list)
INFILE 3 i <indirect-name~list>
[, TYPE = 1anguage-typ6][» NUMBER [= (nl [, n2])]]

s END = "string"]

1, INFORM = ¥ A o OUTFORM = : {,REPLACE] [,CHECK]
UsarF). SARF

—

N

K ENDCHAR= ”charl“]['CdNTCHAR = "charl"][FORMAT=(nI,n2,n3.n4[.n5])] i

Parameterst

- NEW Specifies the name(s) of the resulting member(s). This may be
used with member-name or limited-star-convention. NEW cannot
be used with COMFILE t or INFILE ¢ with SARF.

- FROM, TO may be used with star-convention or
limited-star-corivention,

- TYPE determines the language type of the output unit. This type
will be permanently associated with the unit and be part of

8-17

its identification. The language type determines the default
FORMAT (see below) of input records when the user transfers
units from COMFILE, input libraries or INFILE in SARF format.
In these cases TYPE is mandatory. It is possible to use
parameter FORMAT to override the default values provided. The |
following table gives these default values (refer to FORMAT,
below for explanations).

TABLE 8-1, DEFAULT FORMATS

Language~-type . Means Default FORMAT
nl n2| n3| n4 | n5
FOR or FORTRAN | FORTRAN 0 0 1 72 10
CBX or COBOLX | Extended COBOL | 6 |7 | 7210
COB or COBOL COBOL | 6 7 80 |0
RPG Unified Report Program 0 0 1 80 |0
JCL Job Control Language 0 0] 80 |0
DAT or DATASSF | Data in SSF format o) 0 l 80 |0
DEL or HUDEL Honeywell User 0 0] 80 |0
Document Entry
Lanquage
GPL GCOS Programming | 6 7 80 |0
Language

- NUMBER Specifies that the line numbers (if any) in the input
records are to be discarded and that the lines be numbered
beginning at nl and incrementing by n2 at each new input
record. Default values are n! = |0 and n2 = 10.

- END Denotes the marker to be used to specify the end of a
sequence of input cards in COMFILE.

- maximum length of string is 8 characters
-~ all characters except single quote mark are allowed
- {f END is omitted, Implicit value for string is //E0D

- string or //E0OD is mandatory when COMFILE is useds it
must begin in column | of the input record.

- FORMAT This parameter is used to override default values derived
from the language type or the TYPE parameter. It defines
the position of the line number, of the text and vertical
form control fields in the record. This is defined by means ‘

8-18

of 5 values denoted as n!t, n2, n3, n4 and n5.

- Line number field expands from columns n! to n2. Zero

values denote that no line number is present. The line
number must be right Jjustified In the field. Blanks are
treated as zeroes.

- Text field expands from columns n3 to n4. It may overlap

the line number field.

- n5 is used to specify the column in which a particular

CONTCHAR

ENDCHAR

INFORM

OUTFORM

form control option is coded. Zero value denotes no form
control option. Applicable codes aret

Space vertical space | line before this line

0 double space before this line

- triple space before this line

+ do not vertically space before this line
1 Skip to top of page with this line.

Character * may be used to denote variable length fields,
If n2 = x, line number terminates at first non-digit
character. If n3 = %, text field begins with the first
non-digit character on input record except when this
first non-digit character is a space. If n4 = %, text
continues until end of record. Neither nl nor n% may be
%,

The character defined by parameter CONTCHAR is considered
as a continuation mark 1f it is the last significant
character of an input card or of a SARF record. This
option may be used with MOVE with INFORM = SARF § it may
be used simultaneously with ENDCHAR (see below).

The character defined by parameter ENDCHAR is considered
as an end of record delimiter if it is the last
significant character of an input card or of a SARF
record., This option may only be used with MOVE with INFORM
= SARF § it may be used simultaneously with CONTCHAR (see
above), When ENDCHAR is specified, all input records must
terminate with the specified character.

Specifies that input member is in SARF or SSF.
Default is SSF.

Specifies that output member is to be SARF or SSF.

Default is SSF. When OUTFORM = SARF, line numbers are
inserted in the text in accordance with the standard
format corresponding to the members type (if any). This
format may be overridden by parameter FORMAT (see above).

8~19

Keywordss

= REPLACE Allow the member(s) being written in output library LIB to

-CHECK

Ruless

le

replace (overwrite) member(s) with the same name
previously existing in LIB.

- When assigned LIBMAINT output is OUTFILE, REPLACE is
ignored and command will operate regardless of whether
REPLACE permission is given or not.

- REPLACE may be used even if no member with the resulting
name is present in LIB.

Specifies that it is to be checked that line numbers (for
type = GPL, COB, CBX) are In non-descending order. This
option can be used with MOVE COMFILE and MOVE INFILE SARF.

When member-name is specified, search rules apply unless a
library keyword, COMFILE or INFILE is used.

2. When star-convention, explicit or indirect name list is used,
default library is LIB unless a library keyword or INFILE is
specified.

3. Library keyword LIB cannot be specified when LIBMAINT
assigned output is OUTFILE.

4. The command may be parameterized,

Exampless

To store a whole unit read from cards into a library or
sequential file

MOVE COMFILE st member-name [, FORMAT ...1 [, CHECK]
[, OUTFORM = +..] [, NUMBER = ...1 , TYPE = ,...

{y, END = “string”] [, REPLACE] [, CONTCHAR = ...]
[, ENDCHAR = ... 1 3

- Qutput may be SARF or SSF

- Records of more than 80 characters can be created by means
of CONTINUE or RECEND. The maximum length of such records
is however limited to 256.

- MOVE COMFILE ¢ S1, TYPE = DATASSF, END = “FIN’ , REPLACE 3

deck of cards

FIN

8-20

2e

To transfer SSF units from a library or file into a library
or file.,

[~ a9 r 7
INLIBI 3 member-namel [, NEW =]
INLIB2 1 star-convention
MOVE INLIB3 Il {limited-star-convention [, NEW = .,,.]
INFILE 2\ (explicit-name-11ist)
LIB i <indirect-name~List>

{, REPLACE] [, NUMBERI] 3
Output is LIB or OUTFILE depending on the LIBMAINT
assignment.
MOVE INLIB! :7]* OLD
MOVE TEST4, NUMBER, REPLACE 3
MOVE INFILE ® % 3
MOVE INFILE ¢ UNIT!, NEW = UNIT2, NUMBER, TYPE = COBOL 3
MOVE INLIB! s %, FROM = ALPHA, TO = OMEGA3
MOVE INLIB3 & UNIT (1, 2, 3, 4), NUMBER 3
MOVE <INLIB2 ® MYLIST> , REPLACE 3

3. To transfer SARF from INFILE into LIB or OUTFILE,

4,

MOVE INFILE ¢ member-name, INFORM = SARF, TYPE = «..¢

[, OUTFORM = ...]1 [, CHECK] [, REPLACE] [, FORMAT]}

[, CONTCHAR = ... 1 [, ENDCHAR = ...1 3

- Qutput is LIB or OUTFILE depending on LIBMAINT assignment.

- Qutput may be in SSF or SARF (OUTFORM parameter)

- MOVE INFILE s UNIT!, TYPE = DATASSF, FORMAT = (0, 0, I, *),
INFORM = SARF 3

To transfer SSF or SARF from a library into LIB or OUTFILE in
SARF

INLIBI member-name

MOVE INLIB2 star-convention [, FORMAT = ...
INLIB3 ¢ (explicit-name-list){{, NUMBER = ...]
LIB <indirect-name-1list>

[’ 1YPE = eees] . OUTF()RM = SARF [’ INF()RM = oo-o] $

- FORMAT describes. the output format.

4 8-21

- MOVE UNIT!, OUTFORM = SARF, TYPE = COBOL 3

- MOVE INLIB2 ® UNITI, OUTFORM = SARF, TYPE = CBX, FORMAT =
(1,4,7,97) §"

- MOVE UNIT!, OUTFORM = SARF, FORMAT = (1, 6, 7, *) 3}

8-22

PRINT

Functions

Print the contents of one or more members of a source unit library
or sequential file,

Formats
INLIB! 1 member-name
INLIB2 ¢ star—-convention
PRINT INLIB3 1 1
LIB ¢ (explicit-name-list)
INFILE ¢ <indirect-name-~list>
[, COPIES = x] [o NTAB1 3
Parameters:

- FROM, TO may be used with star-convention
- COPIES Specify the number of copies to be produced (1 & x &€ 9)

Keywordss

- NTAB ¢+ Do not expand tabulation characters (hexadecimal 05)
Ruless

l. Search rules apply when no library keyword nor INFILE is
specified.

2. When star-convention, explicit or indirect name list is
specified, default library is LIB, unless a library keyword
or INFILE is specified.

3. Selection of a member or set of members from INFILE is
possible.

4, The command may be parameterized.
Exampless

PRINT INFILE s "1<LIST> , COPIES = 3 3
PRINT * 3

8-23

PUNCH

Functions

Punch one or more members of a source unit library or sequential
file in SSF format.

qumatt

INLIBI! ¢ member-name

INLIB2 star-convention
PUNCH {INLIB3 R _

LIB (explicit-name-list)

INFILE <indirect—-name-list>

{, TYPE = language-type]l [, ENDCHAR = “charl“] i
Parameterss

- FROM, TO may be used with star-convention

= ENDCHAR the specified character is to be punched as the last
character of each output record.

- TYPE Determine the format in which cards are to be punched.
Basically, TYPE indicates the positions in which the line
numbers are to be punched (if any) and the width of the
punched text. PUNCH is such that the punched cards will be
accepted as such by the MOVE COMFILE command with the same
TYPE parameter. When no type 1s specified, the stored unit
type is assumed. The following table summarizes the
punching conventions according to the language type
indicated.

TABLE 8-2. PUNCHING CONVENTIONS

Language
type Means Line number Text
M——
COBOL or |Standard I to 6 7 to 80
COB COBOL
COBOLX or|Extended
|1 to 6 Tto 72
CBX COBOL.
FORTRAN
or FOR FORTRAN None] to 72
Unified Report
RPG Generator None } to 80
LLanguage
Job Control
JCL Lanquage None !l to 80

8-24

TABLE 8-2. (CONT). PUNCHING CONVENTIONS

[DATASSF | System Standard
or DAT Format Data None ! to 80
GPL GCOS
Programming 1 to 6 7 to 80
Language
Rules

le If the specified member has no associated type and TYPE
parameter is not supplied, an error occurs.

2. When member-name is specified, search rules apply unless a
library keyword or INFILE 1s specified.

3. When star-convention, explicit or indirect name list is used,
default library is LIB unless a library keyword or INFILE is
specified.

4, The line number and text are punched according to the unit’s
lanquage type or the supplied TYPE parameter.

5. Records longer than 8Q characters are truncated, unless
ENNCHAR is specified.

6. The command may be parameterized.

Exampless

PUNCH INLIB! s HLIBx , TYPE = COBOL 3

PUNCH * 3

8-25

RENAME
Functions
Rename one or more members of a source unit library in SSF or SARF

format.

Formats

[] Member-namel, [NEN %Jmember-name—z
RENAME | LIB 3
[MJ1imited-star-convention-1, [NEW =] limited-
star-convention-2

Parameterss
- NEW Specify the new name(s) of the renamed member(s).

- FROM, TO may be used with star-convention or
limited-star-convention.

Rules:

I« New member name(s) must not exist on LIB 3 REPLACE parameter
is not allowed.

2. Renamed member(s) must be present in LIB.
3. After the command, the old name(s) no longer exist.

4., The command may be parameterized.

Exampless
RENAME HLIBX3 , NEW = LIB_3 3
RENAME LIB ¢ H*ERR, I*WARN 3

8-26

RENUMBER

Functions

Renumber one or more .source members in SSF format into LIB.

Formats

member-name

RENUMBER [L18] [—] star-convention
(explicit-name-list)
<indirect-name-list>

[NumBER [= (nt [, n2])] ;

Parameters:s

- FROM, TO may be used with star convention.

- NUMBER specify the initial value and the increment used for
numbering. nl is the initial value, n2 is the increment.
Default value is 10 for both nl! and n2.

Rulest

l. Members must be present in library LIB.

2. The command may be parameterized.

Exampless
RENUMBER UNIT!, NUMBER = (1, 1) 3
RENUMBER UNx , NUMBER = (20, 20) 3
RENUMBER UNIT (1, 2, 3, 18, 27) 3

RENUMBER * FROM = H , TO = Y 3}

8-27

SORT

Functions

Sort the lines of a SSF source unit or units in ascending or
descending EBCDIC collating sequence.,

Formats
INLIB1 member-name | [, NEN = member -name-21
INLIB2 @ star-convention
SORT INLIB3 t} {j71)1imited-star-convention! [, NEW =
limited=-star-convention-2]
LIB 3 (explicit-name-list)
<indirect-name-1list>
ASC ;
{{']} [,REPLACE][SORTKEY = (n1 [,n2D1]
[, pesc]
[, vuMBER [= (nl [,n21)]] 3
Parameterss

- NEW Specify the name(s) to be given to the resulting unit(s). It
may be used with member-name or limited-star-convention.

- FROM, TO May be used with star convention or limited star
convention

- SORTKEY = nl gives the position of the first character of the
sort key in the record (line).

- n2 maximum length of the sort key. If omitted,
n2 = 256 - nl is assumed.
- if SORTKEY is omitted, default values taken are

nl =1 and n2 = 255 (i.e. the key is the whole
record).

~ NUMBER specifies that the lines of the created (member-name-2) SSF
unit are to be numbered, beginning with nl, and

incrementing by n2 for each new line. Default values are nl

Keywordss:
- ASC Sort in ascending order.

- DESC Sort in Adescending order.

8-28

- REPLACE Allow the member-name(s) being written to output library

Ruless

2

3.
4,
5.

LIB to replace (overwrite) an existing unit with the same
name in LIB.

- if the selected or specified library is LIB and if NEW
is not specified, REPLACE need not be specified.

- REPLACE may be used even if the resulting member(s) do
not exist in LIB.

When member-name is used, search rules apply unless a library
keyword is specified.

When star-convention, explicit or indirect name list is
specified default library is LIB unless a library keyword is
given.

The resulting member(s) are output on LIB.
The command may be parameterized.

SORT is restricted to sorting reasonably small units (a few
thousand lines is a maximum). For other applications the GCOS
SORT utility should be used,

Exampless

SORT INLIB2 s MYS1, DESC, SORTKEY = (1, 109) 3

SORT INLIB! s HLIB* , NEW = ZLIB* , REPLACE 3

8-29

UPDATE

Functions

Modify the contents of a source unit according to the requests
following the commands in the command input stream. UPDATE provides
limited editing facilities.

Formats

INLIBI
INLIB2
UPDATE INLIB3

member-name~1 [,NEW = member-name?2]

star-convention

limited-convention-1 [,NEW = limited-
star-convention-2

LIB ¢ (explicit-name=~list)

<indirect-name-~list>

.

» NUMBER [= (nt [, n2)]] [, TYPE = language-type]
, END = sstring”] [, FORMAT = (nl, n2, n3, n4 [, n5])]

~ r~ -

, REPLACE][, CONTCHAR = schari-][, ENDCHAR = “char14] 3

~NEW Specifies the name(s) of the resulting member(s). This may
be used with member-name or limited star-convention.

~FROM, TO May be used with star-convention or limited
star-convention.

- TYPE Determines the type of the output unit. This type is
permanently associated with the unit and is part of its
identification. The language type determines the default
FORMAT (see below) of the request following the command.
WNhen TYPE is not specified, the type of the updated unit
is taken., It is possible to use parameter FORMAT to
override the default values provided. The following table
gives these default values (refer to FORMAT below for
explanations).

TABLE 8-3. DEFAULT VALUES

Default FORMAT
Language~-type Means

ni n2| n3 | n4|nd
FOR or FORTRAN | FORTRAN 0 0 l 72 | 0O
CBX or COBOLX Extended COBOL | 6 7 7210
COB or COBOL COBOL ! 6 7 80 10
RPG Unified Report Program 0 0] 8010

Generator

8-30

TABLE 8-3 (CONT). DEFAULT VALUES

JCL Job Control Language 0 0] 8010

DAT or DATASSF| Data in SSF format 0 0] 80 1|0

GPL GCOS Programming i 617 800
Language

~-NUMBER Specifies that the resulting unit(s) are to be renumbered
after update. The initial value of the number is nl, the
increment at each new line is n2. Default values are nl =
10, n2 = 10,

-END Denotes the marker to be used to specify the end of the
requests.

- maximum length of string is 8 characters.
- all characters except single quote mark are allowed
- if END is omitted, implicit value for string is //E0D

- string or //E0OD is mandatory. It must begin in column | of
the record following the last update request.

- FORMAT This parameter is used to override default derived from
the language type or the TYPE parameter. It defines the
position of the line number of the text and vertical form
control fields in the record. This is defined by means of
5 values denoted as nl, n2, n3, n4 and n5.

- Line number field expands from columns nl to n2. Zero
value denotes that no line number is present. The line
number must he right justified in the field. Blanks are
treated as zeroes.

- Text field expands from columns n3 to n4, It may overlap
the line number field.

- n5 is used to specify the column in which a particular
form control option is coded. Zero value denotes no form
control option. Applicable codes ares

Spacet vertically space 1 line before this line.
0 t double space baefore this line
- ! triple space before this line

+ ! do not vertically space before this line

1 ¢ skip to top of page with this line.

8-31

-~ Character * may be used to denote variable length fields.

If n2 = x, line number terminates at first non-digit
character.

If n3 = %, text field begins with the first non-digit
character on input record except when this first non-digit
character is a space.

If n4d = %, text continues until end of record. Neither nl
nor n5 may be %,

~ CONTCHAR The character defined by parameter CONTCHAR is considered
as a continuation mark if it is the last significant
character of an update card. This option may be used
simul taneously with ENDCHAR (see below).

- ENDCHAR The character defined by parameter ENDCHAR 1is considered
as an end of record delimiter if it is the last
significant character of an update card. This option may
be used simultaneously with CONTCHAR (see above). When
ENDCHAR is specified, all update cards must terminate with
the specified character.

Keywords:

-REPLACE Allow the updated member(s) to replace (overwrite)
memher(s) with the same name.

- if the specified or selected library is LIB and NEW is
not stated, REPLACE need not be specfied.

- REPLACE may be used even if no previous member with the
resulting name exists in LIB.

Ruless

1. Member-name=1 is the name of the member to which the
modification requests are to be applied. This member is found
by means of the search-rules, unless a library keyword is
specified.

2. Name of the resulting member in LIB is member-name2 if
parameter NEW is used, otherwise it is member-name-t

3. The language type is the one stored in the members
identification record. The FORMAT parameter may be used to
override the default format associated with the stored type
or the one specified by parameter TYPE,

4. The UPDATE requests are ended with //EOD if no END parameter
is specifieds otherwise, by “string” appearing in column ! of
a request record.

5. The command may be parameterized.

8-32

Requestst

Requests are interpreted according to the FORMAT parameter or
to default values derived from TYPE or the unit type stored
in its identification.

Requests and member-name-! must be sorted on their line
numbers in non-descending order.

If no request is given, the only effect of the command is to
replace the language type stored in the unit identification
with the one given by TYPE.

An update line whose number matches one or several lines in
member-name-1 replaces the matched lines. Several update
lines with equal line numbers are merged in sequence.

An update line with a line number that does not match a line
number in member—-name-1 is added to the source member in
sequence (after the inserted lines if any).

An update line with string ®$sD" in the first three positions
of the text field causes the matched line(s) to be deleted. A
range of lines may be deleted by placing the number of the
last line to be deleted after the %$:D" , Intervening spaces
are allowedi nothing else can appear on the update line.

An update line with line number field blank is assumed to
have the same number as the previous update line. The line
will be given number zero in the updated unit.

Exampless

- UPDATE UNIT!, NEW = UNIT2, REPLACE, NUMBER, TYPE = COBOL 3

¥p230 REPLACED LINE
Y241 INSERTED LINE
pyp250 $3D

prB310 $:D420

//7EOD

UNIT! is found by search rules. The resulting unit in LIB
will be named UNIT2 and renumbered starting at 10 with
increment 10. ‘

Line 230 of UNIT! is replaced, line 241 is inserted after
line 240 of UNITI1, line 250 and lines 310 to 420 are
deleted.

- UPDATE UNIT!, FORMAT = (1,2, 3, %), END = “FIN“ , CONTCHAR
= 14 3

25 FIRST PART OF REPLACED LINE #

WHICH CONTINUES ON #

8-33

THE FOLLOWING UPDATE #
RECORDS

35 $:D

FIN

Line number 25 is replaced, line 35 is deleted.

8-34

UPPER

Functions

Convert source language library unit(s) into upper case letters.

Formats
INLIBI! 3 star-convention
INLIB2 Member-name [, NEW = member-name=2]
UPPER INLIB3 1 11)limited-star-convention-|
[+ NEW = limited-star-convention-2]
LIB ¢ (explicit-name~1list)
<indirect-name-list>
[, REPLACE]3
Parameters:
-NEW Specifies the new name(s) to be given to the converted

unit(s).

- FROM, TO may be used with star-convention or
limited-star-convention.

Keywords 3

-REPLACE Allow the unit(s) being written in output library LIB to
replace (overwrite) an existing unit of the same name.

- if the specified or selected library is LIB, and if NEW
is not specified, REPLACE need not be stated.

~ REPLACE may be used even if no member with the same name
exists in LIB.

Rules:

1. When member-name is used, search rules apply unless a library
keyword is specified

2. When star-convention, limited-star-convention, explicit or
indirect name list is used, default library is LIB unless a
library keyword is specified

3. The command may be parameterized.

Examples:
UPPER LIB ® MEMBER 3
UPPER INLIB3 s <MYLIST> 3

8-35

SECTION IX

COMMANDS APPLICABLE TO CU LIBRARIES

The following is a description of the commands that are applicable
to Compile-Unit (CU) libraries.

A Compile-Unit library contains a number of members, each one being
the result of a compilation. A CU has a name, which is generally the
name of the compiled program or procedure, It may have alternate

names to denote secondary entry points or, more generally, any
catalogued external symbol definition. These alternate names are
known as "aliases". An alias may be used in lieu of the Compile-Unit

name and refers to the same entity.

Compile units have an identification in their own right. This will
be displayed each time that a unit is handled by LIBMAINT.

Commands are presented in alphabetical order and each description
starts at the top nf a page.

9-01

MOVE

DEL
Fun Functions
Del - Move one or more CUs from COMFILE to a CU library.
-~ Move one or more CUs from a library to another CU
For sequential file.
DEL - Move one or more CUs from a sequential file to a C
| Format:
Par
- F C(INLIBL ¢)71 [1] member-name
INLIB2 s star-conventt
MOVE INLIB3 3 A (explicit—-name
Rul: LIB @
COMFILE s
(\INFILE s JJ L
[END = sstring] [,REPLA
- FROM, TO may be used with star-convention.
- END Denotes the end marker for input cards in COMFI
- Maximum length of string is 8 characters.
Exar

- All characters except single quotation mark (
allowed.

-~ [f END is omitted string #//E0D” {s assumed.

~ When COMFILE is used, string or //EOD i{s mand
must appear in column | of the record followi
input card.

Keywords:

- REPLACE Allow the unit being written in output librar
replace (overwrite) an existing unit with th

- When output is to OUTFILE, this keyword is
the command will operate regardless of whe
permission is given or not.

- REPLACE may be used even if no member with
name exists in LIB.

Ruless

1. When member-name is used, search rules apply, unless a
library keyword, COMFILE or INFILE {s specified.

2. When star-convention or explicit name list is used, default
library is LIB unless a library keyword, COMFILE or INFILE is
specified.

3. Library keyword LIB cannot bhe specified when LIBMAINT
assigned output is OUTFILE.

4, When COMFILE is used, only member-name or * may be used (i.e.
select one or all units in the following deck of cards).

5. wWhen COMFILE is used, each CU entered on cards begins with a
CU header holding the name of the unit and ends with an ‘ECU“
card. This is the format of the deck which would be produced
by the PUNCH command.

6. The command may be parameterized.

- MOVE COMFILE t *, END = “FINY 3
% card for CUI
ECU
cards for CU2

ECU

FIN
Store CUs read from cards into LIB.
- MOVE INLIB2 s T1HBx, TO = HCOBOL, REPLACE 3
- MOVE INFILE 3 UNITI! 3

PUNCH

Functions:

Punch one or more CU(s) of a CU library.

Format:
INLIBt member-name
. INLIB2 ¢ .| star-convention
PUNCH INLIB3 1 (explicit-name-list) H
LIB
Parameters:

- FROM, TO may be used with star-convention.

Ruless

l« When member-name is specified, search rules apply unless a
library keyword is stated.

2. When star-convention or explicit name list is used, default
library is LIB unless a library keyworr is specifiled.

3. The command may be parameterized,

PUNCH INLIB2 & ALPHA 3

PUNCH LIB ¢ %, FROM = ALPHA, TO = OMEGA 3

SECTION X

COMMANDS APPLICABLE TO LM LIBRARIES

The following is a description of the commands that are applicable
to Load Module (LM) libraries.

A Load-Module library contains a number of members, each member
being the result of the linkage of one or more Compile Units (CU) to
produce an executable module acceptable by the GC0S-464 loader,

Load modules have an identification in their own right. This will be
displayed each time that a unit is handled by LIBMAINT.

Commands are presented in alphabetical order and each description
starts at the top of a page.

10-01

MOVE

Functions

- Move one or more LMs from the command input stream to a L

library.

~ Move one or more [LMs from a LM library to another LM libr
sequential file.

~ Move one or more LMs from a sequential file to a LM libra

Format:
(INLIBI ¢ \1[] member-name-! [,NEWN=member-name-
INLIB2 ¢ star-convention
MOVE || INLIB3 3 limited-star-convention-1 .
{ 7 [+ NEW=1imi ted-star-convention-2_
LIB 3
COMFILE (explicit-name-1list)
\\INFILE s /j|
[LEND = #string”] [,REPLACE] 3
Parameterss:
- NEW Specifies the name(s) of the resulting member(s); tt

may be used with member-name or limited-star-convent
It may not be used when keyword COMFILE is present.

- FROM, TO May be used with star-convention and
l1imi ted~star-convention.

- END Denotes the end of a sequence of input cards on COML

Keywordss

maximum length of string is 8 characters.

all characters except single quotation mark(’) are
allowed.

if END is omitted, implicit value for “string” is
2//EQD’.

when COMFILE is specified, either //E0D or string
mandatory and must appear in column one of the rec
immediately following the last input card.

- REPLACE Allow the member being written onto ILIB to replace

(overwrite) an existing memher with the same name.
When LIBMAINT assigned output is OUTFILE, REPLACE

ignoreds the command operates regardless of whethe
REPLACE permission is given or not.

10-04

- REPLACE may be used even Iif the resulting member name
does not exist in LIB.

Ruless

l. When member-name-! is specified, search rules apply unless a
library keyword, INFILE or COMFILE is stated.

2. When star-convention or explicit name list is used, default
library is LIB unless a library keyword, COMFILE or INFILE is
specified.

3. Library keyword LIB cannot be specified when LIBMAINT
assigned output is OUTFILE.

4, When COMFILE is used, only memher-name-! or * may be used
(i.e.? select one or all units in the following deck of
cards).

5. When COMFILE is used, each LM entered on cards begins with a
IM header holding the name of the unit and ends with an “ELM~”
card. This is the format of the deck which would be produced
by the PUNCH command.

6. The command may be parameterized.

Exampless

- MOVE COMFILE 3 %, END = “FIN“ 3

cards for LMI

cards for LM2

ELM

.

FIN

Store LMs read from cards into LIB.

- MOVE INLIB2 3 PROC*x, NEW = Px*NEW, REPLACE 3%

- MOVE INFILE © *, FROM = ALPHA, TO = OMEGA, REPLACE 3

10-05

PUNCH

Function:

Punch one or more LM(s) of a LM library.

Formats:
INLIBI s) member-name
INLIB2 1 star-convention

PUNCH INLIB3 (explicit-name~-list) H
LIB

Parameterss

- FROM, IO may be used with star-convention.

Rulest

l. HWhen member-name is specified, search-rules apply unless a
library keyword is used.

2. When star-convention or explicit name list is used, default
library is LIB unless a library keyword is specified.

3. The command may be parameterized.

Exampless
PUNCH INLIB2 t *NEW 3
PUNCH PRUOG%3, FROM = PROGX3 3

10-06

RENAME

Functions

Change the name of one or more LM(s) in LIB.

Format?

member-name=-1,[NEW =] member-name-2
RENAME [LIB:] ;
[(]11mited-star-convention-1,
[NEW =] limited-star-convention-2

Parameters:?
- NEW introduces the new name(s) of the renamed member(s),

- FROM, TO may be used with limited-star-convention.

Rules:

l. New member name(s) must not exist in LIB §$ REPLACE parameter
is not allowed.

2. Renamed members must exist in LIB,

3. The command may be parameterized.

Exampless
RENAME LIB ¢ PLMx, NEW = QLMxNEW 3

RENAME *, *_NEW 3

10-07

SECTION XI

COMMANDS APPLICABLE TO SM LIBRARIES

Ihe following is a description of commands that are apolicable to
sharable modules (SM) libraries. A SM library contains a number of
members, each one being a SM. A SM contains in turn a number of

members, each one being a Linked Unit (LKU).

The name nf each memher must be unique and must not exceed 30
characters in length.

A SM is the result of the linkage of LKU or of a LIBMAINI command, A
LKU is the result of the linkage of one or more compile units that

specify the containing SM.

Each description starts at the top of a page.

11-01

DELETE

Function:

To delete a SM and its associated LKUs in SM library LIB.

Formats

DELLETE SM = sm—name 3}

Examples

DELETE SM = MYSM 3

11-02

INIT

Functiont

To initialize a SM in SM library LIB.

Formats
IEI

INIT Si# = smname, SIN =; g » ESSTE = hexa-2 [.REPLACE] 3
F

Parameterss

- SM gives the name of the SM to be initialized.

- STN indicates the STN associated with the SM.

- ESSTE gives the Entry Segment STE 3 this is an hexadecimal value
limited to FF.

Keywordss
- REPLACE is needed if an existing SM with the same name already

exists in LIB.

Example?

INIT SM = MYSM, SIN = F, ESSTE = 09, REPLACE 3

11-03

LIST

Function:

To list part or all of a SM LIB or INFILE contents.

Formats

[DIR \

*

LIST[INFILE,] [.DETAILED] 3

{ sm-name)

SM = g (
*

\LKU = lku-name }

Parameters and keywords:

- INFILE Specifies that the INFILE contents are to be listed. If
not present, the LIB contents are listed.

- DIR or * To list the SMs and their associated LKU names.

- SM List the characteristics of a specified (sm—name) or all
(x) SM s.

— DETAILED With SM = x, the associated LKU list is printed 3 with sy |
= sm-name, the associated LKU name list and the entry
points are listed (this latter combination is not allowed
with INFILE).

- LKU Speciflies the name of the LKU to bhe listed. Listed
information includes segment number of private data and
entry points (not allowed with INFILE).

Examples:?

LIST * 3

LIST DIR 3

LIST INFILE, * %

LIST INFILE, SM = MYSM 3

LIST INFILE, SM = %, DETAILED s
LIST SM = ~, DETAILED 3

LIST LKU = MYLKU 3

LIST sM = MYSM, DETAILED 3

Functions

To load one

LOAD

or all SMs from SM library LIB into backing store.

rormats
sm-name :
LOAD SM =3 } [,LDEBUG] [, REPLACE]s
*

Parameters and Keyworrdss

- SM If SM = % al] SMs are loaded 3 otherwise the name nf the
S4 to be lnaded is given.

- DEBUG Specifies that the SM is to be accessed by the Program
Checkout Facility (PCF) during the execution of a LM
referencing the SM. A SM loaded with option DEBUG may not
be shared hetween process groups. To Suppress the DEBUG
option, the SM has to be CANCELled and relL0OADed without
this option.

- REPLACE 1Is needed if a SM with the same name exists, after having
heen loaded from the same library.

Rules:

It is not a

Examples ¢

llowed to load a SM from TEMP. SMLIB

LOAD SM = MYSM, DEBUG 3

LOAD SM = % 3

LOAD SM = x, DEBUG 3

LOAD XM = MYSM, REPLACE, DEBUG 3

11-05

MOVE

Functions

(

To move one or all SMs of SM INLIB! or INFILE onto LIB or OUTFILE.

Formats

3 sm-name$

MOVE [INFILE,] SM = [LREPLACE] 3

Parameters and Keywordss

- INFILE if specified, SMs are moved from INFILE; if not
specified, they are moved from INLIBI1.

- SM states the name of the SM to be moved. If * is specified,
all SMs will be moved.

- REPLACE 1{s needed to overwrite an existing SM with the same name
in LIB. This keyword is not allowed {f LIBMAINT assigned
output is OUTFILE.

Exampless (

- MOVE INFILE, SM = * ,REPLACE % (INFILE to LIB)

- MOVE SM = x 3 (INLIB to LIB or OUTFILE)
- MOVE SM = MYSM, REPLACE 3 (INLIB! to LIB)
- MOVE INFILE, SM = *3 (INFILE to LIB or OUTFILE)

11-06

UNLOAD

Functions

To clear the backing store of all information associated with a
specified SM.

[-3

rormats

UNLOAD SM = sm-name, SMLIB = smlib-name 3
Parameterss
-~ SM gives the name of the SM as specified when the SM was

initialized.

- SMLIB states the name of the SM library from which the SM has
been loaded into backing store.

Examplet

UNLOAD SM = MYSM SMLIB = MYLIB 3

11-07

SECTION XII
THE TEXT EDITOR

The TEXT EDITUR can be used to create, modify or edit an EBCDIC
source unit in SSF format.

USAGE

The layout of the input to a text editor session is as follows 3

EDIT=-command

speclfic edit requests

Once the EDIT command is activated, all following records in the
input stream are treated as editor requests until a Q (quit) is
encountered., Requests fall into two general categories t input
requests and edit requests. Input requests place the editor into
input mode which allows the following EBCDIC records to be entered
as new text until an appropriate escape sequence is read to switch
the editor back into edit mode. Edit requests allow the user to read
and write source units and to perform various simple or complex
editing functions on their contents. Input and editing operations
are not performed directly on the target units, but in a temporary
buffer known as "Workspace'.

RENUESTS

In the following list, the editor requests are divided into three
categories ¢ input requests, basic edit requests and extended edit
requests. The hasic edit requests are sufficient to allow a user to
create and edit EBCDIC units and provide a good functional
capability. Extended requests may be more time consuming but allow
additional capability.

12-01

Input Requests

A - (append) ¢ Enter input mode, append the following lines after
specified line until the escape sequence is read.

i

C - (change) t Enter input mode, replace the specified line or lines
with the following lines until the escape sequence is read.

I - (insert) ® Enter input mode, insert the following lines before a
specified line until the escape sequence 1s read.

Basic Edit Requests

D - (delete) & Delete specified line or lines from the workspace.
P - (print) * Print specified line or lines.

L - (print with line number) t Print specified line or lines
prefixed with their internal line numbers.

Q - (quit) t exit from the text editor.
R - (read) t Read specified unit into workspace.

S - (substitute) 3 Replace specific character strings in specified
line or lines.

W — (write) t Create a new unit with the contents of the edited
workspace.,

Z - (forced write) ¢ Create a new unit with the contents of the
edited workspace.

N - (no operation) ¢ Do nothing.

= (count lines) t Count the number of lines with the specified
content and print the result.

Extended Edit Requests

- (print line number) : Print the line number (contained in the
SSF header) of specified line. '

G - (global) s Print, delete, print with the line number or print
line number of all addressed lines that contain a specific
character string.

<

- (exclnude) & Print, delete, print with the line number or print
line number of all addressed lines that do not contain a

12-02

0]

specific character string.

(copy) ¢ Copy specified line or lines into a specified auxiliary
workspace.

(move) & Move specified line or lines into a specified auxiliary
workspace.

{status) s Print a summary status of all workspaces currently
used.

(top of page) 3 Skip to top of page in the TEXT EDITOR output
report.

(file output) ¢t Alter the report output to the specified
workspace.

(end file output) &t Revert the report output to the normal
default device.

(output message) ¢ Print the remainder of the line on the output

report.

(define label) &t Set a label on this line for reference in a
goto (>) request.

(listing control) & Allow variations in the contents of the
editors report.

(split line) ¢ Split all lines containing a given pattern.

(concatenate lines) ¢ Concatenate all lines containing a given
pattern with the immediately preceding ones.

{(backwards search) %t Search for target line backwards,

(goto) ¢ Skip n request lines or goto n request lines backwards
or goto specified label.

(test contents) ¢ If line contains the given string then execute
the remainder of the request line, otherwise skip to next
request line.

(range test) ¢ If current line is in specified range then
execute the remainder of the request line, otherwise skip to
next reguest line,

ADDRESS ING

Ihe TEXT EDITOR is basically a line-oriented editor in that editing
requests usually operate on an integral number of lines. As a
result, most editing requests are preceded with an address
specifying the line or lines in the workspace on which the request

12-03

is to operate. There are three basic means by which lines in the
workspace can be addressed.

- addressing by line number
- addressing relative to the "current line"
- addressing by context

In addition, an address can be formed using a combination of the
above techniques.

Addressing by Line Number

Each line in the workspace can be addressed by a decimal number
indicating its line number as contained in its SSF header.
Search for the target line is made sequentially from the
“current line%" to the last line of the workspace, then from the
first line of the workspace to the one immediately preceding
the "current line", Lines which are added to the workspace are
given line number 0. Lines which are modified keep their
original numbering.

Addressing Relative to the Current Line

The editor maintains the notion of a Ycurrent line" that Is
addressable by using the character "." (period) to represent
the address of the current line. Normally, the current line is
the last line addressed by an edit request or the last line
entered by an input request. The value of ".," after each editor
request is documented in the description of the request and in
the summary of requests at the end of this section .

Lines can be addressed relative to the current line numbher hy
using an address consisting of ".,% followed hy a signed decimal
number specifying the position of the Adesired line relative to
the current line. For example the address ".+I" specifies the
line immediately following the current line and the address
",-I" specifies the line immediately preceding the current
line.

When specifying an increment to the current line position, the
#+" 3ign can be omitted (e.g. ".5" is interpreted as ".+5"), In
addition, when specifying a decrement to the current line
position, the ",¥ {tself can be omitted (e.g. "=-3" is
interpreted as ".-3).

Two symhols are used to denote respectively the first and last
line of a workspace.

- u 7" danotes the first line ¢t hence ¥ 7J+1" would denote the
second line and * [+i" the (i+l1)th. line of the workspace.

12-04

- ¥Ws¥Wdenotes the last line of the workspace, hence "$=~[|% would
address the last hut one line, etc...

Addressing by context

o AT L=

to match a string of characters on a line. When used a
address, a regular expression specifies the first line
encountered that contains a string of characters that matches
the regular expression.

Lines can be addressed by context by using a regular expression
s

For example, in the following text the regular expression
"/ABC/" matches line 2.

A * PROCEDURE 3
ABC & DEF 3

X =Y 3

END A 3

To use a regular expression as an address, the user enters
"/regexp/", where "regexp" is any valid expression as described
below. The search for a regular expression begins on the line
following the current line (i.e. .+!) and continues through the
entire workspace, if necessary, until it again reaches the
current line. In other words the search proceeds from ".+|* to
"$" and then from " |¥ to ",", If the search is successful,
"/reqgexp/" specifies the first line encountered during the
search in which a match was found,

A regular expression can consist of any character in the EBCDIC
set. However the following characters have specialised meaning
in regular expressions.

iyn
e 18

nn

|I$Il

H "
-

delimits a regular expression used as an addresss

signifies "any number (or none) of the preceding character" 3
when used as the first character of a regular expression, the
" character signifies the virtual character preceding the

first character on a line 3

when used as the last character of a regular expression, the

Ws® character signifies the virtual character following the

last character on a line 3

matches any character on a line,

12-05

Some examples follow

/A/ Matche
/ABC/ Matche
/AB*C/ Matche.
line
ZIN..TO/ Matche.
charac
/INXTO/ Matche.
/71ABC/ Matche.
/ABCS/ Matche.
/7 IABC.*DEF$/Matche
/ok/ Matche

The special meaning o
expression can be nul

"¢C", Thus
/¢C/¢Cx/ Matche
/¢CV/ Matche

The editor remembers

context. The user can
using a null regular

expression can be fol
manner as when addres
the addresses “/ABC/+
second line following

Note that the two use

and (2) as special ch
distinguished by cont

Compound Addresses

An address can b
described above.
guide in the for

- if a line numb
first componen

specifies a series of two lines, th
current line through the second 1lin

However, if a semi-colon is used to
of a comma, the value of ".,* is set
addressed by al before the evaluati
to the example given immediately ab

3.2

specifies a series of three lines,
.following the original current line
following the line specified by al,

address pair 3
/ABC/§ .+1
is equivalent to the address pair @

/ABC/,/ABC/

Addressing Errors

The following list describes the various
the editor 1s attempting to evaluate an

"WORKSPACE EMPTY" - an attempt has |
specific line when the workspace is
are legal addresses within an empty

with a read, append or insert reque

WADDRESS NEGATIVE" or "ADDRESS TOO |
made to refer to a non—existent lins
when there are fewer than 20 lines :
address of “1- 4),

WADDRESS WRAP AROUND" - an attempt !}
series of lines in which the positic
addresses is before the line addres:
(e.g. S,—]).

WSEARCH FAILED" - a regular express;

search Initjiated from the request st
matching line.

WSYNTAX ERROR IN REG-EXP" - a regul:
address has not been properly delim]

"//UNDEFINED" - a null regular expre
previously defined regular expressic

12-08

USE OF THE EDITOR

Request Format

A request to the editor can take any one of the following forms
depending on the number of addresses to be specified with the
request ¢
<request>
adr <request>
adr) ,adr2<request>
adrljadrZ2<request>

adr, adr! and adr2 are any legal address as specified above,
and request is any valid editor request.

Some editor requests require no address, some require a single
address and others require a pair of addresses. In all cases,
however, the user can use a request omitting one or both of the
required addresses and let the editor provide the missing
address information by default. The following rules apply to
the use of addresses specified by default
- if a request requiring an address pair is issued with the
second address missing, the (missing) second address is
assumed to be the same as the first. For examplet
adr<request>
is interpreted as:
adr,adr<request>

and addresses a single line in the workspace (i.e. the line
addressed by adr) ‘

- 1f a request requiring an address pair is issued with both
addresses missing, one of the following address pairs is
assumed depending on the request issueds
«v. <request> for most editor requests
1,8 <request> for write, forced write, global and exclude
- if a request requiring a single address is issued with no
address specified, one of the following addresses is assumed
‘depending on the request issued
« <request> for most editor requests

$ <request> for read requests

12-09

The Value of ",%

All editor requests that alter the contents of the workspace or
cause information to be output change the value of ¥.% (i.e. {
the current line). Usually, the value of ".% is set to the last
line address specified (either explicitly or by default) in the
editor request. The one major exception to this rule is the
delete request which sets ",¥ to the line after the last line
deleted.

Multiple Requests on a Line

In general, any number of editor requests can be issued in a
single input line. However, each of the requests listed below
must terminate a line and, thus, must appear on a line by
itself or be placed at the end of a line containing multiple
editor requests.

R read

W and Z write and forced write
A,C and I input requests

Q quit request

Spacing
The following rules govern the use of spaces in editor
requestss

- spaces are taken as literal when appearing inside regular
expressionss thus, /THE N/ is not the same as /THEN/

- spaces cannot appear in numbers, i.e. 13 cannot be written
as | 3 (which is interpreted as 1+3)

- spaces within addresses, except as indicated above, are
ignored

- the treatment of spaces in the body of an editor request
depends on the nature of the request

Comments

The quotation mark character (") is reserved as the comment
delimiter and is actually implemented as an editor request, the
effect of which is to ignore the remainder of the request line.
I1f the quotation mark is preceded by an address, the value of ‘

12-10

" is set to that address.

The Locate Request

If an address terminates a request line, the value of "“.,¥ is
set to the addressed line and the line is printed. For example
the request lines

/ISTART/

locates a line beginning with START, sets the value of "." to
that line and prints it.

Responses from the Editor

In general, the editor does not respond with output unless
explicitly requested to do so (e.g. with a print line number
request).

The use of frequent print requests is recommended for users
using the editor for the first time.

If an error is encountered by the editor, an error message is
printed and a skip to the next request line is made. Thus the
trailing part of the offending request line is ignored.

12-11

INPUI MODE

fhe editor can be placed in input mode with the use of one of the
three input requests (append, change and insert). The input request
must terminate a request line. It is followed by a number of literal
text lines.

The literal text can contain any number of EBCDIC source lines. To
exit from input mode and terminate the input request, the escape
sequence ¢F is entered as the first character of a new line. The
usual form of an input request is as followss

adri [,adr2l<input request>

text

¢F

It is important to remember to terminate the input request with the
¢F escape before entering another request, Otherwise the (would be)
editor request is regarded as input and included in the text rather

than executed as a request.

Upon leaving input mode, the value of ".," is set to the last input
line. The special meaning of any of the escape sequences used by the
editor (e.g.¢F,¢C,¢B and ¢X) can be suppressed by inserting the ¢C
escape sequence betwen the two characters (e.g.¢¢CF,¢¢CC,¢¢CE,¢¢CX),
thus allowing the escape sequence to be input as literal text. All
input lines entered are assigned line number zero and should
therefore be later addressed by context or relative addressing
rather than by line number.

12-12

)

3€

specific character string.

(copy) ¢t Copy specified line or lines into a specified auxiliary
workspace.

(move) 8 Move specified line or lines into a specified auxiliary
workspace.

(status) : Print a summary status of all workspaces currently
used.

(top of page) 3 Skip to top of page in the TEXT EDITOR output
report.

(file output) ¢ Alter the report output to the specified
workspace.

(end file output) ¢t Revert the report output to the normal
default device.

(output message) ¢ Print the remainder of the line on the output
report,

(define label) t Set a label on this line for reference in a
goto (>) request.

(listing control) s Allow variations in the contents of the
editors report.

(split line) ¢ Split all lines containing a given pattern.

(concatenate lines) ¢t Concatenate all lines containing a given
pattern with the immediately preceding ones.

(backwards search) t Search for target line bhackwards.

(goto) t Skip n request.lines or goto n request lines backwards
or goto specified label.

(test contents) ® If line contains the given string then execute
the remainder of the request line, otherwise skip tn next
request line.,

(range test) ¢ If current line is in specified range then
execute the remainder of the request line, otherwise skip to
next raguest line,

ADDRESS ING

Ihe TEXT EDITOR i{s basically a line-oriented editor in that editing
requests usually operate on an integral number of lines. As a
result, most editing requests are preceded with an address
specifying the line or lines in the workspace on which the request

12-03

is to operate. There are three basic means by which lines in the
workspace can be addressed.

- addressing by line number
- addressing relative to the "current line"
- addressing by context

In addition, an address can be formed using a combination of the
above techniques.

Addressing by Line Numbher

Each line in the workspace can be addressed by a decimal number
indicating its line number as contained in its SSF header.
Search for the target line is made sequentially from the
Wcurrent line" to the last line of the workspace, then from the
first line of the workspace to the one immediately preceding
the "current line". Lines which are added to the workspace are
given line number 0. Lines which are modified keep their
original numbering.

Addressing Relative to the Current Line

The editor maintains the notion of a “current line" that s
addressable by using the character "." (period) to represent
the address of the current line. Normally, the current line is
the last line addressed by an edit request or the last line
entered by an input request. The value of "." after each editor
request is documented in the description of the request and in
the summary of requests at the end of this section .

Lines can be addressed relative to the current line number by
using an address consisting of ".,% followed hy a signed decimal
number specifying the position of the desired line relative to
the current line. For example the address ".+1" specifies the
line immediately following the current line and the address
W,~|" specifies the line immediately preceding the current
line.

When specifying an increment to the current line position, the
#4e" gign can be omitted (e.g. ".5" is Interpreted as ".+5"), In
addition, when specifying a decrement to the current line
position, the "." itself can be omitted (e.g. "=-3" is
interpreted as "“.-3).

Two symhols are used to denote respectively the first and last
line of a workspace.

- w 7" denotes the first line & hence " 7+1" would denote the
second line and " |+i" the (i+])th. line of the workspace.

12-04

- Wshdenotes the last line of the workspace, hence "$~[{% would
address the last hut one line, etc...

Addressing by context

Lines can be addressed by context by using a regular expression
to match a string of characters on a line. When used as an
address, a regular expression specifies the first line
encountered that contains a string of characters that matches
the regular expression.

For example, in the following text the regular expression
"/ABC/" matches line 2.

A t PROCEDURE 3
ABC t DEF 3

X =Y 3

END A 3

To use a regular expression as an address, the user enters
"/regexp/", where "regexp" is any valid expression as described
below. The search for a regular expression begins on the line
following the current line (i.e. .+!) and continues through the
entire workspace, if necessary, until it again reaches the
current line., In other words the search proceeds from ".+[{" to
"$" and then from " |[# to “,", If the search is successful,
"/regexp/" specifies the first line encountered during the
search in which a match was found,

A regular expressinn can consist of any character in the EBCDIC
set. However the following characters have specialised meaning
in regular expressions.

wyn
"yl

uwn

lls.ll

delimits a regular expression used as an addresss

signifies "any number (or none) of the preceding character" 3
when used as the first character of a regular expression, the
T character signifies the virtual character preceding the
first character on a line 3

when used as the last character of a regular expression, the
Ws® character signifies the virtual character following the
last character on a line 3

matches any character on a line.

12-05

Some examples follow 3

/A/ Matches the letter A anywhere on a line

/ABC/ Matches the string ABC anywhere on a line

/AB*C/ Matches AC, ABC, ABBC, ABBBC, etc... anywhere on a
line

/ZIN..TO/ Matches a line containing IN followed by any two
characters followed by TO

ZIN.*TO/ Matches a line containing IN and TO in that order

/7JABC/ Matches a line beginning with ABC

/ABCS/ Matches a line ending with ABC

/TIABC.*DEF$/Matches a line beginning with ABC and ending with DEF

Vs 74 Matches any line
The special meaning of #/%, Wih, 6 ugn W7 gnd W, 4 within & reqular
expression can be nullified by preceding the special character with
"¢C", Thus ¢

/¢C/¢Cx/ Matches the string /* anywhere on a line

7¢Cl/ Matches any line containing the character 1
The editor remembers the last regular expression used in any
context. The user can reinvoke the last used regular expression by
using a null regular expression (i.e"//"). In addition, a regular
expression can be followed by a signed decimal integer in the same
manner as when addressing relative to the current line. For example,
the addresses W/ABC/+5-3", W/ABC/#+2%" or “/ABC/2% all address the
second line following a line containing ABC.
Note that the two uses of ",", ¥7" and "$* (1) as line addresses

and (2) as special characters in regular expressions) are
distinguished by context.

Compound Addresses

An address can be formed using a combination of the techniques
described above. The following rules are intended as a general
guide in the formation of these compound addresses.

- if a line number 1s to appear in an address, i1t must be the
first component of the address.

12-06

- a line number can be followed by a regular expression. This
construct is used to begin the regular expression search
after a specific line number. For example, the address
"]10/ABC/" starts the search for M"/ABC/" immediately after
line number 10,

- a reqgular expression can follow an address specified relative
to the current line number. For example, the address
",-B/ABC/* starts the search from 8 lines preceding the
current line.

- a regular expression can be followed by another regular
expression. For example, the address "/ABC//DEF/" matches the
first line containing DEF appearing after the first line
containing ABC. As mentioned earlier, a regular expression
can be followed by a decimal integer. For example, the
address “/ABC/-10/DEF/5" starts the search for “/DEF/" from
10 lines preceding the first line to match "/ABC/" and, if
W/DEF/* is matched, the value of the compound address is the
fifth line following the line containing the match for
IC/DEF/N .

Addressing a Series of Lines

Several of the editor requests can be used to operate on a
series of lines in the workspace. To specify a series of

lines, two addresses must be given in the following general
form.

.al,a?
The pair of addresses specifies the series of lines starting
with the line addressed by the address al through the line
addressed a2 inclusive.
Examples 3
1,5 specifies from line number | through line number 5
1, s specifies the entire contents of the workspace
«1,/ABC/ specifies the line following the current line
through the first line after the current line
containing ABC
When a comma is used to separate addresses, the address
computation of the second address is unaffected by the
computation of the first address (i.e. the value of "." is not
changed by the evaluation of the first address). For example,
the address pair

olee2

12-07

specifies a series of two lines, the line immediately after the
current line through the second line after the current line.

However, if a semi-colon is used to separate addresses instead
of a comma, the value of "." is set to point to the line {
addressed by al before the evaluation of a2 begins. In contrast
to the example given immediately above, the address pair @

13.2

specifies a series of three lines, the line immediately
following the original current line through the second line
following the line specified by al. As a further example, the

address pair 3
/ABC/3.+10
is equivalent to the address pair

/ABC/,/ABC/+10

Addressing Errors

The following list describes the various errors that can occur when
the editor is attempting to evaluate an address.

- “"WORKSPACE EMPTY" - an attempt has been made to reference a
specific line when the workspace is empty. (Only "$* and ™
are legal addresses within an empty workspace and only if used

with a read, append or insert request.)

- WADDRESS NEGATIVE" or "ADDRESS TOO BIG" - an attempt has been
made to refer to a non-existent line (e.q. an address of "1+ 20
when there are fewer than 20 lines in the workspace or an
address of "~ 1- 4),

- “ADDRESS WRAP AROUND"™ - an attempt has been made to address a
series of lines in which the position of the second line
addresses is before the line addressed by the first address
(e.g. $, 1.

- WSEARCH FAILED" - a regular expression search or a line number
search injtiated from the request stream has failed to find a
matching line.

- WSYNTAX ERROR IN REG-EXP" - a regular expression used as an
address has not been properly delimited.

- "//UNDEFINED" - a null regular expression has been used and no
previously defined reqular expression {s available.

12-08

USE OF THE EDITOR

Request Format

A request to the editor can take any one of the following forms
depending on the number of addresses to be specified with the
request ¢

adr <request>
adrl,adr2<request>
adrljadrZ2<request>

adr, adr! and adr2 are any legal address as specified above,
and request is any valid editor request.

Some editor requests require no address, some require a single
address and others require a pair of addresses. In all cases,
however, the user can use a request omitting one or both of the
required addresses and let the editor provide the missing
address information by default. The following rules apply to
the use of addresses specified by default
- if a request requiring an address pair is issued with the
second address missing, the (missing) second address is
assumed to he the same as the first. For examplet
adr<request>
is interpreted ast
adr,adr<request>

and addresses a single line in the workspace (i.e. the line
addressed by adr)

- if a request requiring an address pair is issued with both
addresses missing, one of the following address pairs is
assumed depending on the request issueds
«s. <request> for most editor requests
1,$ <request> for write, forced write, global and exclude
- if a request requiring a single address is issued with no
address specified, one of the following addresses is assumed
depending on the request issued
. <request> for most editor requests

$ <request> for read requests

12-09

The Value of " %

All editor requests that alter the contents of the workspace or
cause information to be output change the value of *.% (i.e. {
the current line). Usually, the value of ".,¥% is set to the last
line address specified (either explicitly or by default) in the
editor request. The one major exception to this rule is the
delete request which sets "." to the line after the last line
deleted.

Multiple Requests on a Line

In general, any number of editor requests can be issued in a
single input line. However, each of the requests listed below
must terminate a line and, thus, must appear on a line by
itself or be placed at the end of a line containing multiple
editor requests.

R read

W and Z write and forced write
A,C and I input requests

Q quit request

Spacing
The following rules govern the use of spaces in editor
requestss

~ spaces are taken as literal when appearing inside regular
expressionst thus, /7THE N/ is not the same as /THEN/

-~ spaces cannot appear in numbers, i.e. 13 cannot be written
as | 3 (which is interpreted as [+3)

- spaces Within addresses, except as indicated above, are
ignored

- the treatment of spaces in the body of an editor request
depends on the nature of the request

Comments

The quotation mark character (") is reserved as the comment
delimiter and is actually implemented as an editor request, the
effect of which is to ignore the remainder of the request line.
1f the quotation mark is preceded by an address, the value of ‘

12-10

", is set to that address.

The Locate Request

If an address terminates a request line, the value of ".* is
set to the addressed line and the line is printed. For example
the request lines

/START/

locates a line beginning with START, sets the value of "“.," to
that line and prints it.

Responses from the Editor

In general, the editor does not respond with output unless

explicitly requested to do so (e.g. with a print line number
request).

The use of frequent print requests is recommended for users
using the editor for the first time.

If an error is encountered by the editor, an error message is

printed and a skip to the next request line is made. Thus the
trailing part of the offending request line is ignored.

12-11

INPUT MODE

The editor can be placed in input mode with the use of one of the
three input requests (append, change and insert). The input request
must terminate a request line. It is followed by a number of literal
text lines,

The literal text can contain any number of EBCDIC source lines. To
exit from input mode and terminate the input request, the escape
sequence d¢F is entered as the first character of a new line. The
usual form of an input request is as follows:

adrl [,adr2l<input request>

text

¢F

It is important to remember to terminate the input request with the
¢F escape before entering another request., Otherwise the (would be)
editor request is regarded as input and included in the text rather

than executed as a request.

Upon leaving input mode, the value of "." is set to the last input
line. The special meaning of any of the escape sequences used by the
editor (e.qg.¢F,¢C,¢B and ¢X) can be suppressed by inserting the ¢C
escape sequence betwen the two characters (e.g.¢¢CF,¢¢CC,¢¢CE,.¢¢CX),
thus allowing the escape sequence to be input as literal text. All
input lines entered are assigned line number zero and should
therefore be later addressed by context or relative addressing
rather than by line number.

12-12

Append Request (A)

FUNCTIONS
The append request is used to enter input lines from the input
stream, appending these lines after the line addressesd by the
append request. The append request is one of the few requests
that can operate correctly when the workspace is empty.
FORMATL:

adrA

text

¢F
DEFAULTS

A is taken to mean .A
VALUE OF "“.":

set to the last line appended

EXAMPLES
- Before - A ¢ PROCEDURE
X =Y 3
END A 3
- request sentence -71 + IA
Q =R 3
¢ F
- After - A ¢ PROCEDURE 3
X =Y 13
ll.tl _>Q=R;
END A 3

Note ¢t request $A can be used to insert new text at the end of
a workspace.

12-13

Change Request (C)

FUNCTIONs
The change request is used to delete an addressed line or range
of lines and replace the deleted line(s) with new text read
from the input stream.

FORMATs

adrt, adr2C

text
¢F
DEFAULT?
C is taken to mean .,. C
adC is taken to mean ad, adC

VALUE OF ", "2

set to the last line entered

EXAMPLES
- Before - A t PROCEDURE 3
X=Y 3
Q=R 3
END A 3
~ request sentence -711,72C
S =T 3
U=V 3
W=123
¢F
- After - A 3 PROCEDURE 1
S =T1
Uus=yV 3
ll.Il - w=z‘
END A 3

12-14

Insert Request (I)

FUNCTION?
The insert request is used to enter input lines from the input
stream and insert the new text immediately before the addressed
line. The insert request is one of the few requests that can
operate on an empty workspace.

FORMATs

adr 1

text

¢F

DEFAULT?

I is taken to mean .I

VALUE OF ".'3

set to the last line inserted

XAMPLES
- Before - A ¢ PROCEDURE 1
X =Y 13
END A 3
- request sentence -/X = /I
Q=R
¢F
- After - A ¢ PROCEDURE 3
non = Q =R 3
X =Y3
END A 3

Notet request adrl has the same effect as the request adr-lA.
Request 11 is used to insert text bhefore the first line of
the workspace.

12-15

BASIC EDIT REQUESTS

The basic edit requests described below represent a subset of editor
suitable for most editing situations. Additional requests are [
described later in this section under "Extended edit requests*® and
"Auxiliary workspaces".

Delete Request (D)

FUNCTIONs
The delete request is used to delete the addressed line or set
of lines from the workspaces.

FORMAT:

adrl, adr2D

DEFAULT:
D is taken to mean .,. D
adD i{s taken to mean ad,adD
VALUE OF ", "

set to the line immediately following the last line deleted

EXAMPLES

~ Before = ROCEDURE 3

Mmoo x>
=

PRO
Y §
R 3
T 3
A3

S U e

- request sentence -/Q=/ , /5=/D
- After - A t PROCEDURE 3

X =Y 3
u,m ~> END A 3

12-16

The Print and Print with Number Requests (P and L)

FUNCTIONS®
The print requests are used to print the addressed line or set
of lines: P prints the addressed line(s) without line numberiL
prints the addressed line(s) and prefixes them with their
internal line numbers.

FORMATS
adrl, adr2P or adrl, adr2L

DEFAULT?
P or L are taken to mean ,,.P or .,.L
adP or adlL are taken to mean ad,adP or ad,adL

VALUE OF ", %3

set to the last line addressed by the request(i.e. the last
line to be printed)

EXAMPLE?®
- contents of workspace - A ¢ PROCEDURE 3
X =Y 3
Q =R 3
S =T 3
END A 3
- request sentence - /X=/,/S=/P
- printed output - X =Y 3
Q =R 3
nn _59g = T B

12-17

Quit Request (Q)

FUNCTIONS
The quit request is used to exit from the editor and does not
itself save the result of any editing that might have been
done. If the user wishes to save the modified contents of the
workspace, he must explicity use a write or forced write
request (see below).

FORMAT?

Q

DEFAULTs
The quit request cannot have an address

NOTEs the quit request must terminate a request line3 the remainder
of the line is treated as a comment, ,

12-18

Read Request (R)

FUNCTIONS
The read request is used to append the contents of a
specified source unit after the addressed line. The read
request is one of the few requests that can operate on an
empty workspace.

FORMATS
adrRname
name is the name of a SSF source unit in a library to be read
in the workspace after the line addressed by adr. The name of
the unit follows the syntactical rules for a unit name in

LIBMAINT (i.e. 3[lib2] name) § it can be preceded by any
number of spaces and must terminate the request line,

DEFAULT?:
Rname is taken to mean $Rname
VALUE OF # "s

set to the last line read from the unit

EXAMPLES
- before - A ¢ PROCEDURE 3
X =Y 3
END A 3
- request sentence - /X=/R BX

where BX contains the following text

B & PROCEDURE
C =D 3

ND B 3

t PROCEDURE 3
=Y %
8 PROCEDURE
= D %

Cc

E

- after - A
X

B

C

w,m—-> END

12-19

Substitute Request (S)

FUNCTIONs

The substitute request is used to modify the contents of the
addressed line or set of lines by replacing all strings that
match a given regular expression with a specified character
string.
FORMAT 3
adrl ,adr2S/regexp/string/

(the first character after S is taken to be the regular
expression delimiter and can be any character not appearinq
in either regexp or in string).

DEFAULT:
S/regexp/string/ 1is taken to mean e yeS/regexp/string/
adS/regexp/string is taken to mean ad, adS/regexp/string
VALUE OF " "
set to the last line addressed by the request
(OPERATIONs
Each character string in the addressed line or lines that
matches regexp is replaced with the character string. If
string contains character &, each & is replaced by the string

matched by regexp. The special meaning of & can be suppressed
by preceding & with the escape sequence {C.

EXAMPLEs
- Before - THE QUICK BROWN S0X
- Request S/S0X/FOX/
- After - THE QUICK BROWN FOX
- Before - XYZINDEX = Q 3
- Request - S?INDEX?(&)?
- After - XYZ(INDEX) = Q3
- Before =~ X =Y
- Request - S/$/7%/
- After - X =Y 3

12-20

The Write and Forced Write Requests (W and Z)

FUNCTIONS

The write and forced write requests are used to .write the
addressed line or set of lines into a specific source unit.
If the source unit already exists, request W will be rejected
and request Z will result in the overwriting of the existing
unit with the addressed line(s).

FORMATs

adrl,adr2 {W} [(type)] [LIB:] name
Z

name" is the name of a source unit to be created (W) or

overwritten (Z) in the specified library. The name of the
unit must not exceed 31 characters in length § it can be

preceded with any number of spaces and must terminate the
request line.

"type" is the language type to be-set in control records of

the output library. Applicable values are the same as for
parameter TYPE in the MOVE SL command.

DEFAULT:
Wname or Zname are taken to mean ,$Wname or ,$Zname.
adWname or adZname are taken to mean ad,adWname .or
ad,adZname.
If type is omitted, DAT is assumed unless the member already
exists in LI3, in which case the existing type is preserved.
VALUE OF ",":

unchanged

EXAMPLES:
W(COBIYMYPROGRAM

Z UNIT-A
Z(COBIM2

12-21

The No-operation Request (N)

FUNCTIONs
The no-operation request N is used to position on a line
without issuing any output on the report. It is identical to
the locate request with the difference that the located line is
not printed.
FORMAT:
adr N
adr is the address of the line to position on .
DEFAULTs
N is taken to mean .N
VALUE OF ", "s
set to adr.

EXAMPLES?

N
/PROCEDURE DIVISION/N

12-22

Count Lines Request (#)

FUNCTIONs:
The count lines request counts the number of lines which, in a

specified range, contain the given regular expression.
The count is printed on the execution report.

adr! ,adr2#/regexp/
- adrl,adr2 specify the range of the counting (first line,
last line)
- regexp specifies the regular expression
(the first character after # is taken to be the regular
expression delimiter and can be any character not appearing
in regexp)

DEFAULT

#/regexp/is taken to mean .,.#/regexp/
ad#/regexp/ is taken to mean ad,ad#/regexp/

VALUE OF "."3

set to adr2
EXAMPLES:
N $#/X=3/

130,500#/SECTION/

12-23

EXTENDED EDIT REQUESTS

The editor requests discussed up to this point comprise a basic
subset sufficient for most applications. A user learning to use
the editor for the first time might be well advised to stop at
this point.

Print Line Number Request (=)

FUNCTION:
This request is used to print the line number (as contained in
the SSF header and not to be mistaken with the rank of the line
in the workspace) of the addressed line.

FORMAT
adr =

DEFAULT?
¥ is taken to mean .=

VALUE OF "."3
set to the line addressed by the request

EXAMPLEs

- contents of the workspace -

- SSF header =- - text-
1000 A ¢t PROCEDURE 3
1100 X =Y 3
1300 P=Q3
1800 END A 3

- request - "1+2= or /Qi/=

- response - [300

12-24

Global Request (G)

FUNCTION?

The global request is used in conjunction with some other
request {(e.3. print, print with number, print line number,
delete).

That request is to operate only on those lines addressed by the
global request that contain a match for a specified regular
expression.

FORMAT?

adr | ,adr2Gx/regexp/
where "x¥ musSt be one of the following requestss

D delete lines containing "regexp's

P print lines containing "regex iy

L print with number lines conta%ning "regexp"s

= print the numbers of lines containing "regexp";
DEFAULT3

Gx/regexp/ is taken to mean ,$Gx/regexg/
adGx/regexp/ is taken to mean ad,ad GOx regexp/

VALUE OF ,"s

set to adr2 of request

NOTEs
The character immediately following the request x is taken to
be the regular delimiter and can be any character not
appearing in Y“regexp"
EXAMPLE?
- Before - A ¢ PROCEDURE 3
Q =R 3
X=Y 3
END A 3
- Request - “1,$GDs/Q/
- After - A 3 PROCEDURE 3
X =Y 3
"> END A 3

12-25

Exclude Request (V)

FUNCTION:
The Exclude request is used in conjunction with some other
request (e.q. print, print with number, print line number,
delete). That request is to operate only on those lines
addressed by the exclude request that do not contain a match
for a specified regular expression.
FORMAT:
adrl, adr2Vx/regexp/
where "x" must be one of the following requestss
D delete lines not containing “regexp" i
print lines not containing "regexp" 3

P
L print with number lines not containing "regyexp" 3%
= print the numbers of lines not containing "regexp"

DEFAULTs

Vx/regexp/ is taken to mean ,$Vx/regexp/
ad Vx/regexp/ is taken to mean ad, ad Vx/regexp/

VALUE OF ", "3

set to adr?2 of request

NOTEs
The character immediately following the request x is taken to
be the regular expression delimiter and can be any character
not appearing in Y"regexp".
EXAMPLE?
- Before - A ¢ PROCEDURE 3
Q =R 3
X =Y 3
X =0Q 3
END A 3

Request - 71,$VP/7Q/

Response - A t PROCEDURE 3
X=Y3
END A 3

12-26

AUXILIARY WORKSPACES

The discussion up to this point has assumed the existence of
only one single workspace. Actually the editor supports up to 6
different workspaces. One workspace at a time can be
designated as the '"current workspace": any other workspaces at
this time are referred to as Yauxiliary workspaces". All the
editor requests described so far operate within the current
workspace.

Each workspace is given a symbolic name t BQOW MWW Nou _hign _ign
or "5", When the editor is invoked a single workspace
(workspace "0O") is activated and designated as the current
workspace. Additional workspaces can be created merely by
referencing a previously undefined workspace name.

Workspace names are usually enclosed between parentheses:
however these may omitted (e.g., "5" is taken to he H(5)4),

Change Workspace (B)

FUNCTIONs
The change workspace request is used to designate an auxiliary

workspace as the current workspace. The previously designated
current workspace becomes an auxiliary workspace. :

FORMAT :
B(x) or Bx

where "x" is the name of the workspace to hecome the current
workspace.,

VALUE OF »,"s
restored to the value of "." when workspace "x" was last used
as current workspace (i.e., the value of ".,"is maintained

separately for each workspace and saved as part of the
workspace status).

EXAMPLES

B(5)
B4

12-27

Copy and Move Requests (K and M)

FUNCTION?
The copy and move requests are used to copy or move one or more
lines to a specified auxiliary workspace. The addressed lines
replace the previous contents (if any) of the auxiliary
workspace.

FORMATS

adrl,adrz{M} (x) or adrl,adr? {M} X
K Kf

where Y"x" is the name of the auxiliary workspace to which
lines are to be copied or moved

DEFAULT:

M(x) or K(x) are taken to mean .,.M{(x) or .,.K(x)

adM(x) or adK(x) are taken to mean ad,adM(x) or ad,adK(x)
VALUE OF %, M3

set to last copled line for K or the line after the laSt

copied for M in the current workspace § set to O in the
specified auxiliary workspace

EXAMPLES
- Before -
- Current workspace - - Workspace 2 -
At PROCEDURE ABC = DEF 3
X =Y 3 END BIN 3
Y = K ¢
K=2123
END A 3
-Request - /K3//R3/M(2)
- After -
- Current Workspace - - Workspace 2 -
A & PROCEDURE Y =K 3
X =Y 3 K=R3$

WOUSEND A 3

Request /K3/,/R3/K(2) would have left the current
workspace unchanged and given the same contents for
workspace 2.

12-28

Workspace Status Request (X)

FUNCTION:
The workspace status request is used to print a summary of the
status of all workspaces currently in use. The name and length
(in lines) of each workspace is listed ¢ the current workspace
is marked with a right arrow "—-->" immediately to the right of
the workspace name.

FORMAT:
X

VALUE OF ", "t
unchanged

EXAMPLES
If the user has created the additional workspaces 2 and 4 and

has designated 2 as his current workspace, the output of the
workspace status request might be as followss:

*NORKSPACE(0) 157
*WORKSPACE(2) — ——>32
*HWORKSPACE(4) 53

This output indicates 157 lines in workspace O(the initial
workspace) 332 lines in workspace 2(the current workspace) and
53 lines in workspace 4.

12-29

Special Escape Sequence

Input to the Editor can be viewed as a stream of EBCDIC lines.
Depending on the context, some of these lines are interpreted
as Editor requests and others are interpreted as literal text.
‘ithe "¢B(x)" escape sequence is recognized by the Editor in
either context as a directive to alter the input stream to read
subsequent lines from workspace "x".

When the text Editor encounters the sequence "¢B(x)", the
entire escape sequence is removed from the stream and replaced
with the literal contents of the specified workspace. The text
Editor proceeds exactly as if the the current content of
workspace x were in the request stream in place of¢B(x). If
another "¢B" escape sequence is encountered while accepting
input from workspace "x"(i.e. appears in the literal contents
of workspace x), the newly encountered escape sequence also is
replaced by the contents of the named workspace. The text
Editor allows the recursive replacement of "¢B" escape
sequences by the contents of named workspaces to a depth of 5C
nested¢B escape sequences.

Request Stream Workspace X Workspace Y
1 a i

2 b J

3 c k

4 d 1

¢B(x) e m

5) ¢B(y) n

é f o]

7 g

8 h

is equivalent to the series of lines

1 234abcdei jklmnofghb678

EXAMPLE OF USE OF ¢B

NOTE

The workspace to which the input stream is redirected can
contain Editor requests, literal text, or both.

If the Editor is executing a request obtained from a workspace
(rather than from the command stream) and the request specified
a line number or regular expression for which no match is
found, the usual error comment is suppressed and the remaining
contents of the workspace are skipped. The escape sequence
"eB(x)Y" can be thought of as a subroutine call statement, and
the failure to match a line or regular expression specified by
some request in workspace "x" can be thought of as a return
statement.

¢ The special meaning of "¢B" can be suppressed by preceding
the character B with a "¢C'" escape sequence (¢¢CB).

12-30

Use of Workspace for Moving Text

Perhaps the most common use of workspaces in the editor is for
moving text from one part of a unit to another. A typical
pattern is to move the text to be moved into an auxiliary
workspace with a Move request., For example the requests

18,32M(5)

moves lines from line number 18 through line number 32
inclusive into auxiliary workspace 5. Once the lines have bheen
moved to an auxiliary workspace, they can be read as literal
text in conjunction with an input request. For example, to
insert the lines in workspace 5 immediately before the last
line in the current workspace, the following sequence might be
useds?

$1
¢B(5) ¢F

In this case, the literal text in workspace 5 replaces the ¢B
escape sequence and thus is treated as input to the editor
already put in input mode by the Insert (I) request. Notice
that the ¢F immediately following the ¢B escape sequence is
correct since it can be expected that the last line in
workspace 5 is terminated by a fictitious end of line mark that
precedes the C¢F after the ¢B(5) is expanded.

Other Uses of Workspaces

Another common use for workspaces is to define frequently used
editing sequences. For example, to add the same source code
sequence in several places in a program, the programmer might
elect to enter the editing sequence into a workspace only once
and invoke the contents of the workspace as many times as
necessary.

The use of workspaces also allows a user to place more
elaborate Text Editor request sequences into auxiliary
workspaces and use the Editor as a pseudo-programming language.
In this context, it is useful to regard a workspace containing
executable Editor requests as a subroutine and to view the "¢B"
escape sequence as a call statement.

The reader should refer to the *LIBRARY MAINTENANCE User Guide"
for specific examples of use.

The File Output and End File Output Requests (F and E)

In normal mode, all results issued by the text editor are

12-31

printed on the execution report. This might he altered by mears
of the F request which forces results, with the exception of
error messages, to be appended at the end of the specified
workspace. Reauest E returns to the normal reporting device.

4

This might be used, for example, in the following circumstances

example ¢ Construct e unit that contains all lines
containing the string “CALL" or "RETURN" in
unit Xi. The following sequence of requestst

R X1

F (1)
“1y$GP/CALL/
1, $GP/RETURN/
E

achieves the requested objective. Instead of printing lines
containing "CALL" and "RETURN", the editor appends them in
workspace | which might later be used by other renuests or

written into the library.

The Output Message Request (0)

The O request causes the remainder of the request line to be
printed on the output report. This might be of great help while
debuoging editor macros to trace the execution of the
workspaces. For example the sequence ¢

B
A
OIAMENTERING 31

OIAMLEAVING Bl
¢r
BO¢B1

will trace the execution of workspace 1 and might help
considerably in the debugaing.

12-32

Conditional (* and ?) Requests

We have seen that a workspace can be viewed as a procedure
which can be invoked by means of the ¢B(x} sequence.However,
the expressive power of the procedural language (requests) is
rather limited. The requests discussed in this section and the
following one are aimed at giving fuller expressive power to
the editor language by introducing conditions and jumps.

FUNCTION OF "%
The Test Contents request (%) is used to test if a line in a
given range contains a given regular expression. If such a line
is found, the remainder of the request line is executed,

otherwise it is discarded and execution continues with the
following line.

FORMATs
adl,ad2%/regexp/other-requests
(the first character after * 1s taken to be the regular

expression delimiter and can be any character not appearing
in the regular expression).

DEFAULT?

/regexp/ 1s taken to mean .,./regexp/
adx/regexp/is taken to mean ad,ad*/regexp

VALUE OF %, "3

Set to the matched line if a match occurred § set to the line
addressed by ad2 otherwise.

FUNCTION OF %24
The Test Range request (?) is used to test if the current line
(".,"%) belongs to a given range of lines. If so, the remainder
of the request line is executed, otherwise it is discarded and
execution continues with the following line,
FORMAT?S
adl,ad2? other-requests
DEFAULTs
ad? is taken to mean ad,ad?
? is taken to mean 71,$? which means that the remainder of
the line is executed except if the current workspace 1is
empty.
VALUE OF #, %3

unchanged

. 12-33

The Goto (>) Request

FUNCTIONS '
The goto request (>) can only be executed from a workspace. It
1s used for skipping a number of request lines or for going a
number of request lines backwards.

FORMATs

> Bij]n or >Lx (see the following page for this latter
format)

if the sign is omitted, + is assumed
n is a decimal number giving the number of lines to skip
forwards (+) or backwards (-).

VALUE OF %, 43
unchanged.

OPERATIONS

In the current workspace, a skip is made n lines forwards or
backwards. If this causes a positioning before the first line
of the workspace a branch to the first line is assumed § If
this causes a positioning after the last line of the workspace,
an exit from the workspace 1s assumed.

EXAMPLEs
A common editing problem is the following

"Eor each line that contains string "stringl!" perform some
kind of action".

Assuming that the detail of the action to be performed is
contained in workspace 2, the above problem can be solved by

AN

ey Sk/stringl/>+2

>+4

¢B(2)

$2>+2

«+IN>-4

12-34

LLabels (tx) and Goto Label {>Lx)

The previously defined method of skipping backwards and
forwards in the request stream might be inconvenient when the
contents of the request stream (in a workspace) are to be
altered. In this case all offsets have to be recalculated each
time that a line is inserted or deleted.

Labels allow symholic reference to a regquesti line.

A label is defined as being the sequence :x, where x stands for
any character, in the first position of a request line (i.e.
columns |t and 2), Setting a label does not otherwise alter the
execution of the statement,

A labelled statement can be referred to in a goto statement as
follows 3

>1Lx
where x stands for the character defining the label.

The example in the preceding section could thus equally have
heen written as followss

N

tN . ,$*/string/>LE
> LX

1 E¢B(2)

$?>LX

«+1IN>LN

s X

12-35

MISCELLANEQUS REQUESTS

We have grouped under this header a number of requests which
will not be of great use to a first time user of the TEXT
EDITOR.

The reading of this section might therefore be deferred until a
specific need arises,

Top of Page Request (T)

FUNCTIONS

The top of page request T is used to force a skip to the top of
a new page on the TEXT EDITOR output report.

FORMAT
o
DEFAULT
NONE
VALUE OF ", u:
left unchanged
=XAMPLE?

request
T, 8P

will causce the printing of the whole current workspace,
starting at the top of a new page,

12-36

The Split Line Request (%)

FUNCTTIONs

The split line request is used to break down lines into two or
more lines depending on their contents.

FORMAT s
adl,ad2%/regexp/
(the first character after % is taken to be the regular
expression delimiter and can be any character not appearing in
regexp)

DEFAULT:

%/regexp’/ is taken to mean .,.%/regexp/
ad%/regexp/ is taken to mean ad,ad%/regexp/

VALUE OF »,":
Set to adz
ACTTONS
All lines matched by regexp In the specified range are treated
as follows @
- if the match is before the first character in the line or
after the last one, no action is taken
- otherwise, the line is broken down as many times as regexp

appears in the line. Each resulting line is delimited by
the first character matched by regexp.

Before Reguest After
ABC ABC (match is the !lst character of line)
CDA i PR-594.V4 CD
BABABA A
B
AB
AB

A (match is last of line)

12-37

The Concatenate Request (&)

FUNCTIONs

The concatenate request is used to concatenate lines which
fulfil a certain criterion.

FORMAT?S
adr | ,adr28/regexp/
(the first character after & is taken to be the regular
expression delimiter and can be any character not appearing
in regexp)

DEFAULT:

&/regexp/ is taken to mean .,.&/regexp/
ad8/regexp/ is taken to mean ad,ad&/regexp/

VALUE OF ", v:
set to adr2

ACTIONS
All lines matched by the regular expression in the given
range are merged (i.e. concatenated at the end) with the

immediately preceding line., If the matched line {5 the first
in the workspace no action is taken for that line.

EXAMPLE?®

Before 3 -A
BB
-C
=D
-
F
G
-4

Request & “1,88/7+/

Afters -A
BB-C-D-E
F
G-H

12-38

The Search Backwards Request (<)

FUNCTIONs

The search backwards reaquest (<)is used to search for a given line
nackwards. That is, starting from the line before the specified
one towards the first line of the workspace, then, if no match
occurred, from the last line in the workspace towards the

specified line.

FORMAT
ad</regexp/
(the first character after < is taken to be the regular
expression delimiter and can he any character not appearing in
the regular expression)

DEFAULTs
</regexp/ 1s taken to mean .</regexp/

VALUE OF "."3

set to the matched line if found, to the line addressed by ad
otherwise.,

CXAMPLES®

~ Before =

A\
mCcTCoos>

- Request -
</B/

- After -

H_n
.

\%

mooOw>»

12-39

The Spect

al Control Request (Y)

FUNCTIONs

The
the
when

user of the editor might wish to control the contents of
report listing produced by the TEXT EDITOR or its behaviour
an error occurs. This is achieved by means of the Y

Request.

FORMAT:

YM
YV
YB
YL
YF
YN
YS
YW

MEANINGs

YV (for Verbose) will produce a printing of all target
lines in Substitute requests before the substitution is
made, thus giving a trace of the modified lines. YM (for
Mute) is the default setting which produces no trace.

In normal mode, request and input lines are echoed on the
report listing. This trace may he suppressed hy means of
the YB (for Brief) request. Default setting is YL (for
Long) which produces the echo.

YN (for Trace oN) will produce a trace of request lines
executed from a workspace, thus providing a useful tool for
debugging editor macros. Nefault setting YF (for Trace ofFf)
does not produce this trace.

YS (for Strong) will produce a severity 3 diagnostic for
all errors. YW (for Neak) will produce a severity |
diagnostic for some user errors. Irrecoverable errors or
system failures will still be reported with severity 3.
Default setting is ¥YS (severity 3 for all errors).

YE| simulates the occurrence of a severity | error § YE3
simulates a severity 3 error,

YR3 resets to zero the severity | and 3 diagnostic
counterss
YR1 resets to zero the severity 1| diagnostic counter.

YP3 is used to specify that any subsequent W or Z recuest
is to be rejected if a severity 3 Adiagnostic has previously
occurred. YP! i{s used to specify that any subsequent W nr 7
request is to be rejected 1f a severity 3 or | diagnostic
has previously occurred. Nefault option is never to reject
W or Z requests even after a severity 1 or 3 diagnostic.

12-40

ESCAPE SEQUENCES

The Escape sequence mechanism is a device provided to alter the
way the editor interprets its input stream. Two of those
sequences Wwere already discussed earlier in this sectiont

¢F, to indicate the end of input mode
¢B, to denote workspace invocation

The octher escape sequences will be discussed in this section.
They are all introduced by means of symbol ¢ followed by a
distinctive letter which might he followed by nne or more

complementary characters,

Protection (¢C)

The protection escape sequence is used for entering text that
might otherwise be treated as an escape sequence. For example,
to enter sequence ¢B(3) as a literal text,¢¢C3(3) should be
entered in order that the sequence is not considered as a
workspace invocation.

The general rule is that protection sequences ¢C are eliminated
in all contexts after other escape sequences have been treated.
Protection sequences may be nested at any depth to provide
successive protection against escape sequence processing

GGeesest CCussasC

n n

Hexadecimal Escape (¢X)

A user may wish to work with characters for which no graphics
exist. This can be achieved by means of the ¢X escape sequence.

In all contexts, sequence ¢Xhh(where hh stands for 2
hexadecimal digits) is treated as if the single character whose
internal hexadecimal representation is hh had bheen entered.
Note that two hexadecimal digits must be present (i.e.¢XOF and
not¢XF). Any sequence where syntax is incorrect (i.e. t¢XF,
¢XOZ,etc..) is treated as a literal string input.

The meaning of the ¢X sequence can be overridden by means of
the

¢C protection escape sequence(i.e.?¢¢CX)

12-41

SUMMARY OF FUNCTIONS

The attached table summarizes the syntax and use of the TEXT
EDITOR functions. {

TABLE 12-1. SUMMARY OF EDIT FUNCTIONS

Request [Meaning Syntax Default Values of ".*
Space |(Locate ad none set to ad
adA
A append text <A last appended
F
B change work B(x) none unchanged
space
adl,ad2 C ‘
C change text ey eC last changed
F
D delete adl,ad2 D ey oD after ad2
E end file E none unchanged
output
F ™ ifile output F(x) none unchanged
anply x
G to all lines|adl,ad2Gx/re/ y$Gx/re/ set to ad2
with /re/

12-42

TABLE 12-1 (CONT). SUMMARY

OF EDIT FUNCTIONS

Request [Meaning Syntax Default Values of #,4
adl
1 insert text o1 last inserted
F
K copy adl,ad2K(x) ey K (x) set to ad?
print with
L adl,ad2L egel set to ad2
line number
M move adl,ad2M(x) ey oM () set to ad?
N no operation adN N set to ad
output
0 0 text none unchanged
message
P print adl ,ad2p ege P set to adz
Q quit Q none lost
R read adRname $Rname last line read
S substitute adl,ad2S/re/ eveS/re/st/ | set to ad2
st/
T top of page T none unchanged
apply x to
v all lines adl,ad2Vx/re/ 1S$Vx/re/ set to ad2
except those
with /re/
W write adl,ad2Wname SWname unchanged

12-43

TABLE 12-1 (CONT). SUMMARY OF EDIT FUNCTIONS

Request |Meaning Syntax Default Values of ",
print
X workspaces X none unchanged
status
YB YS
YF YW
YL YP({])YE({!
Y special YM 3 3 none unchanged
YR\{1
YN 3
Z overwrits adl ,ad2Zname «52Zname unchanged
= print line ad = . = set to ad
number
u comment ad " text « M text set to ad
set to
search ad</re/ «/Te/ matched
<
backwards line or ad
set to
* test adl,ad2x/re/ codk/re/ matched
contents line or ad2
>[2]
> goto none unchanged

>LX

12-44

TABLE 12-1 (CONT).

SUMMARY OF EDIT FUNCTIONS

Request|Meaning Syntax Default Yalue of #,0
s define label 3 X% nons unchanged
? test range !adl,ad2? 1,82 unchanged
count lines (adl,ad2# . 74 4-74 set to ad2
/re/
% split lines |adl,ad2%/re/ N 94 «-74 set to ad2
& concatenate (adl!,ad2&/re/ eye &/Te/ set to ad2
lines
¢B(x) depending on
B (x)
¢ special ¢C
escape ¢F none unchanged
¢Xhh

12-45

INDEX

.value 12—10

< (search backwards) request, Text Editor 12—39
< parameters> 6—01 1

< positionals> 6—01

<verb> 601

& (concatenate) request, Text Editor 12—38

* (conditional) request, Text Editor 1233

% (split line) request, Text Editor 1237

> (goto) request, Text Editor 12—34

> Lx (goto label) request, Text Editor 12—35

? (conditional) request, Text Editor 12—33

: X (label) Text Editor 12—35

(count lines) request, Text Editor 12—-23

= (print line number) request, Text Editor 1224

A

A (append) request, Text Editor 12—13
Auxiliary workspaces, Text Editor 12—-27
- Available functions 5—-01

B

B (change workspace) request, Text Editor 1227
Basic language structure 6—01

C

C (change) request, Text Editor 12—14
Card punch 5-05
Cards 2—02
Characteristics checking 4—02
Checking characteristics 4—02
CODE command (SL) 8—-02
COMFILE 5-05
COMM command 7—02
Command 6-01

format 601, 608
Commands applicable to

all libraries (except SM) 7—01

CU libraries 9—-01

LM libraries 10—01

SL libraries 801

SM libraries 1101
Commands, summary of 5—-02
Comments, Text Editor 1—-10
Compare command (SL) 8 —04
Compound addressing, Text Editor 12—06
Context addressing, Text Editor 12—05
CRLIST command (SL) 8—06

i-01

Cu
DELETE command 902
functions available 507
library commands 9-02
LIST command 9—03
MOVE command 9-04
PUNCH command 9-06

D

D (delete) request, Text Editor 12—16
DECODE command

SL 8-08

CuU9-02

LM 10-02

SM11-02
DELETE command (SL) 8—10
Dictionary 2—-01
Directory 201

E

E (end file output) request, Text Editor 12—31
EDIT command (SL) 8—11

EJECT command 7-03

Errors in addressing, Text Editor 12—08
Escape sequence, special (Text Editor) 12—-30
Escape sequences, Text Editor 12—41

EXEC command 7-05

Explicit list of member names 604

F

F (file output) request, Text Editor 12—31
Files, sequential 2—02
Format, Standard Access Record 801
System Standard 8—01
Functions available for
CU 5-07
LM 5-08
MST 5-07
SL5-06
SM 5-08
Functions summary, Text Editor 1242
Functions, available 5—01

G

G (global) request, Text Editor 12--25
HI

I (insert) request, Text Editor 12—15
Identification

display example 302
of unit 3-01

i-02

INDENT command (SL) 8—13
Indirect list of member names 6—05
INFILE 5—05

INLIB1 5-05

INLIB2 5—05

INLIB3 5—-05

Input mode, Text Editor 12—12
Input, LIBMAINT 1-01,5-05

K

K (copy) request, Text Editor 1228

L

L (print with line numberss request, Text Editor 12—17
Language, basic structure 6—01
LIB 5-05
LIBMAINT

input 1-01, 5-05

output 1-01, 5-05

scope and purpose 1-01
Libraries 201
Library

commands 7—01

contents 101

level protection 4—01
Limited star convention 6—07
Line number addressing, Text Editor 12—04
LIST command

CU9-03

LM 10-03

SL 8—15

SM 11-04
List of member names 6—04
LM

DELETE command 10—02

functions available 5—08

library commands 10—01

LIST command 10-03

MOVE command 10—04

PUNCH command 10—06

RENAME command 10—07
LOAD command (SM) 11-05
LOWER command (SL) 8—16

M

M (move) request, Text Editor 12—28
Member 2—01
name 6—03
names,
explicit list of 604
indirect list of 605

i-03

MOVE command
CU9-04
LM 10-04
SL8—-17
SM11-06
MST
functions available 5—07

N

N (no operation) request, Text Editor 1222

Name, member 6—-03

o

O (output message) request, Text Editor 12—-32

Objects handied 2—01
OUTFILE 5-05
Output, LIBMAINT 1-01, 5-05

P

P (print) request, Text Editor 12—17
Parameters 6—01
Positionals 6—01
PRINT command (SL) 823
Protection 401
characteristics checking 4—02
library level 4—01
type 4—01
PUNCH command
CU 9-06
LM 10-06
SL 8-24
Purpose of LIBMAINT 1-01

Q

Q (quit) request, Text Editor 12—18
QUIT command 707

R

R (read) request, Text Editor 12—19
Relative addressing Text Editor 12—04
RENAME command

LM 10-07

SL 8--26
Renumber command (SL) 8—-27
Responses, Text Editor 1211

i-04

S

S (substitute) request, Text Editor 12—20
SARF 8-01
Scope of LIBMAINT 1-01
Search rules 6—02
Sequential files 2—02
Series addressing, Text Editor 12—-07
SL
CODE command 8—02
COMPARE command 8—-04
CRLIST command 8—06
DECODE command 808
DECODE command 8—10
EDIT command 8—11
functions available 5—06
INDENT command 8—13
library commands 7—01, 801
LIST command 8—15
LOWER command 8—16
MOVE command 8—17
PRINT command 8—23
PUNCH command 8—-24
RENAME command 8-26
RENUMBER command 8—-27
SORT command 8—-28
UPDATE command 8—30
UPPER command 8—35
SM
DELETE command 11-02
functions available 5—08
INIT command 11-02
library commands 11-01
LIST command 11-04
LOAD command 11-05
MOVE command 11-06
UNLOAD command 11-07
SORT command (SL) 8—28
Spacing Text Editor 12—10
Special escape sequence, Text Editor 12—30
SSF 801
Standard Access Record Format 8 —01
STAR convention 6—06
limited 607
STATUS command 7—-08

Subfile. 201
Summary

of commands 5-02

of functions (Text Editor) 12—42
SYSOUT 5-05 ‘
System Standard Format 801

i-05

T

T (top of page) request, Text Editor 12-36
Text Editor 12-01
. value 12—10
addressing 12-03
compound 12-06
context 12—05
errors 12—08
line number 12-04
relative 12—-04
series 12—-07
auxiliary workspaces 12—-27
comments 12— 10
escape sequences 12—41
hexidecimal 12—41
protection 1241
input mode 1212
requests 12—13
< (search backwards) 12—39
& (concatenate) 1238
* (conditional) 1233
% (split line) 12—37
> (goto) 12--34
> Lx (goto label) 1235
? (conditional) 12—-33
: X (label) 12-35
(count lines) 1223
= (print line number) 12-24
A (append) 12—-13
B (change workspace) 12—-27
C (change) 1214
D (delete) 1216
E (end file output) 1231
F (file output) 12—-31
format 12—-09
G (global) 12-25
I (insert) 12—15
K (copy) 1228
L (print with line numbers) 12—17
locate 1211
M (move) 1228
multiple 12--10
N (no operation) 12-22
O (output message) 12—-32
P (print) 12--17
Q (quit) 1218
R (read) 1219
S (substitute) 12—-20
T (top of page) 12--36
V (exclude) 12--26

W (write) 1221
X (workspace and status) 12—-29
Y (special control) 12—40

Z (forced write) 1221
responses 12—11

spacing 12—10
special escape sequence 12-—-30
usage 1201

TITLE command 709

Type protection 4—01

U

Unit 2-01

identification 3—01

level protection 4—03
UNLOAD command (SM) 11-07
UPDATE command (SL) 8—30
UPPER command (SL) 835

\%

V (exclude) request, Text Editor 9-26
Verb 601

W
W (write) request, Text Editor 1221

X

X (workspace and status) request, Text Editor 12—-29

Y
Y (special control) request, Text Editor 12—40

Z
Z (forced write) request, Text Editor 1221

i-07

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

—]
SERIES 60 (LEVEL 64) ¢ ORDERNO. | AQ28-01B
TITLE | [IBRARY MAINTENANCE REFERENCE MANUAL
ADDENDUM B
DATED | MARCH 1980

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

and action will be taken as required. Receipt of all forms will be

D Your comments will be investigated by appropriate technical personnel
acknowledged; however, if you require a detailed reply, check here.

FROM: NAME DATE

TITLE
COMPANY

ADDRESS

PLEASE FOLD AND TAPE—
NOTE: U. S. Postal Service wiil not deliver stapled forms

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WiLL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

Honeywell

Honeywell Information Systems
In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Wiliowdale, Ontario M2J 1W5
In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

21600, 1.5978, Printed in U.S.A.

AQ28, Rev

