
SUBJECT

LEVEL 64

DATA MANAGEMENT UTILITIES

Description of the File and Volume Utility Programs

SPECIAL INSTRUCTIONS

For users of Release 0400, this edition completely supersedes Revision 2, dated
September 1978, and Addendum A. Change bars in the margins indicate new or
changed information; asterisks denote deletions.

SOFTWARE SUPPORTED

Level 64 GCOS Release 0400

ORDER NUMBER

AQ20-03 July 1980

Honeywell

Preface

This manual describes the record file and volume utility programs for the
Level 64 GCOS operating system. It is aimed at the programmer or analyst who
has data management responsibilities.

Section 1 of this manual is an introduction to the utilities.

Section 2 describes the structure of the utilities.

Section 3 discusses file and volume identification.

In Section 4 there is a description of many keywords and parameters which
are common to the utilities.

Section 5 contains a description of the record level utilities and the associated
Data Services Language (DSL).

The file level utilities are described in Section 6, and the volume level utilities
are described in Section 7.

Appendix A contains a brief description of the compatibility between files and
volumes saved under the previous and current release of GCOS.

In this manual, all references to Series 60 apply specifically to Series 60
Level 64 computer systems running under the Level 64 GCOS Operating
System.

The term GCOS used in this manual always refers to the Level 64 GCOS
Operating System, unless otherwise stated.

Each section of this document is structured according to the heading
hierarchy shown below. Each heading indicates the relative level of the text
that follows it.

Level
1 (highest)
2
3
4
5 (lowest)

UPPERCASE
lowercase
[item]
item 1
item 2
item 3
()

ALL CAPITAL LETTERS, BOLD FACE
Initial Capital Letters, Bold Face
ALL CAPITAL LETTERS, MEDIUM FACE
Initial Capital Letters, Medium Face
ALL CAPITAL LETTERS FOLLOWED BY COLON: Text
begins on the same line.

The following notation conventions for JCL statement formats
are used in this manual:
The keyword item is code<i exactly as shown.
Indicates a user-supplied .-larameter value.
An item within square bra'- sis optional.
A column of items within bra1 means that one value must be
selected if the associa· d para:r. :2rer is specified. If the parameter is
not specified the _:r.ieriinsd item is taken as the default value.
Parentheses m ,t be coded if they enclose more than or.~ i.em
An ellipsis indicates that the preceding item may be repc ate 1.

or more times.

The Level 64 Document Set follows.

© Cii Honeywell Bull, 1979 File No.: lN 13 AQ20-03

Order
Number

AQ02
AQ03
AQ04
AQ05
AQ09
AQlO
AQll
AQ13
AQ14
AQ20
AQ21
AQ22
AQ26
AQ27
AQ28
AQ40
AQ49
AQ50
AQ52
AQ53
AQ55
AQ56
AQ57
AQ59
AQ60
AQ63
AQ64
AQ65
AQ66
AQ67
AQ68
AQ69
AQ70
AQ72
AQ73
AQ77
AQ80
AQ82
AQ83
AQ84
AQ85
AQ86
AQ87
AQ88
AQ89
AQ90
AQ91
AQ92
AQ93
AQ94
AQ95
AQ96
AQ97

LEVEL 64 DOCUMENT SET

Title

Series 100 Program Mode Operator Guide
Series 100 Conversion Guide
Series 20012000 Conversion Guide
System 3601370 Conversion Guide

~ystem Management Guide
/Job Control Language (JCL) Reference Manual
Arib Control Language (JCL) User Guide

System Operation Operator Guide
System Operation Console Messages

./fJata Management Utilities Manual
200 Program Mode User Guide
200 Program Mode Operator Guide
Series 100 File Translator
Series 20012000 File Translator
Library Maintenance Reference Manual
IBM System/3 Conversion Guide
Communications Network Control Terminal Operations
Terminal Operations
Program Checkout Facility
Communications Processing Facility
TDS/64 Site Manual
TDS/64 User Guide
TDS/64 Programmer's Reference Manual
Unit Record Devices User Guide

~eractive Operation Facility
JXJBOL User Guide

_ceBOL Language Reference Manual
FORTRAN Language Reference Manual
FORTRAN User Guide
FORTRAN Mathematical Library
RPG Language Reference Manual
RPG User Guide
Series 100 COBOL Translator
Series 20012000 COBOL to Level 64 COBOL Translator

~-IBM System 3601370 to Level 64 COBOL Translator
File Translator
Series 360 (DOS) Program Mode Operator's Guide
~AS User Guide

HFAS User Guide
~FAS User Guide
~!Merge

Catalog Management
Library Maintenance User Guide
1-D-SIII User Guide, Volume 1
1-D-SIII User Guide, Volume 2
COBOL Pocket Guide
System Summary Pocket Guide
Operator's Reference Card
RPG Listing Decoder
FORTRAN Reference Card
Telecommunications and TDS Reference Card
1-D-S/II Pocket Guide
Character Conversion Reference Card

iii

Order
Number

AQ98
CH73
CQ17
CQ31
CQ35
CQ43
DQ02

Title

--S,Stem Overview Manual
Query Driven System Reference Manual
Error Messages and Return Codes Pocket Guide

~'·-l~rror Messages and Return Codes Manual
Remote Batch Facility
BASIC
Automated Update Facility

Table of contents 1. Introduction 1-01

Record-level Utirities 1-01
File-level Utilities 1-01
Volume-level Utilities 1-02
The Data Services Language (DSL) 1-02
Running Utility Programs 1-02
Reports and Diagnostics 1-02

2. Structure of the Utility Statements 2-01

3. Files and Volumes 3-01

File Names 3-01
File Expiration Dates 3-01
Volume Identification 3-01
Resident Volume 3-01
Non-resident Volume 3-01
Multivolume Files and Volume Mounting 3-01
Volume and File Sharing 3-02

4. Common Parameters and Keywords 4-01

Define-parameters 4-02
File-description 4-04
INDEF 4-05
INFILE, INFILES 4-06
OUTDEF 4-07
OUTFILE 4-08
PRTDEF 4-09
PRTFILE 4-10
PATOUT or SYSOUT 4--11
STEPOPT 4-12
SYSOUT - Parameters 4-13

5. Record Level Utility Specifications and the DSL 5-01

Step Completion Conditions For Record Level Utilities 5-02
COMPARE 5-03
CREATE 5-07
PRINT 5-14
The Data Services Language 5-18
DSL DECK FORMAT 5-19

DSL Syntax Rules 5-19
The INCLUDE Statement 5-20
The OM IT Statement 5-20
DSL Condition Elements 5-21
INCLUDE and OMIT Examples 5-23
The AR RANGE Statement 5-23
The TRANSMIT Statement 5-23

DSL ENTRY METHOD 5-24
EXAMPLES WITH DSL USAGE 5-24

v

6. File Level Utility Specifications 6-01

DEALLOC 6-02
FILCHECK 6-04
FILDESC 6-08
Fl LDUPLI 6-12
FILMODIF 6-15
FILPRINT 6-17
FILREST 6-20
FILSAVE 6-22
PREALLOC 6-25
SORTIDX 6-40

7. Volume Level Utility Specifications 7-01

VOLCHECK 7-02
VOL COMP 7-07
VOL CON TS 7-10
VOLDUPLI 7-13
VOLPREP 7-16
VOLPRINT 7-22
VOL REST 7-Z~
VOLSAVE 7-27

Appendix A - Inter-release Compatibility of A-01
Saved Files and Volumes

:LLUSTRATIONS

Figure 5-1 - Job Deck for Utility with DSL 5-29
Figure 5-2 An Outline of How DSL is Used 5-37

TABLES

Table 1-1 - The File-Level Utilities 1-01
Table 1-2 The Volume-Level Utilities 1-02
Table 5-1 Record-Level Utilities 5-01
Table 5-2 Data Field Types in DSL 5-21
Table 6-1 File-Level Utilities 6-01
Table 7-1 Volume-Level Utilities 7-01
Table A-1 The Relationship Between Formats A-01

and Functions

vi

RECORD-LEVEL UTILITIES

Fl LE-LEVEL UTILITIES

1. Introduction

The Data Management Utilities of Series 60 Level 64 GCOS are programs which are
simple to use and make data-file and volume management easier for the user. The
utilities work on both UFAS (Unified File Access System) and BFAS (Basic Fiie
Access System) file formats.

Each utility (utility program) is run as a GCOS job step, and more than one utility can
be run in a job. The utilities are accessed by means of Extended JCL (Job Control
Language) statements, and this means that the user has to write only one statement
($PREALLOC, for example) and supply the appropriate parameters. The system
expands the statement into a series of Basic JCL statements which make up a single
job step.

There are three types of utility :

Record-Level Uti I ities

File-Level Utilities

Volume-Level Utilities.

The record-level utilities, described in detail in Section 5, operate on the logical
records of a file. They allow the user to manipulate data fields within records, to select
or omit certain records, and to change the organization of a file. There are three
record-level utilities :

- $COMPARE : Compares the contents of two files

- $CREATE Loads or reorganizes a file

- $PRINT Prints logical records from a fi.le.

The file - level utilities operate on entire files. Section 6 contains a detailed description
of these utilities, which are listed in Table 1-1.

Utility name Function

$DEALLOC Deallocate a disk or tape file

$Fl LCHECK Check the integrity of a disk file

$FILDESC List file label information

$FILDUPLI Copy the contents of a file into another file
of a similar type

$FILMODIF Change the name and/or the expiration date of
a file

$FILPRINT Print the physical blocks of a disk or tape file

$Fl LR EST Restore a ~FI LSAVE file onto disk

$FILSAVE Save a disk file onto a tape file

~PREALLOC Allocate space for a disk or tape file

$SORTIDX Sort and load secondary indexes of a file

Table 1-1. The File-Level Utilities

1-01

~

VOLUME-LEVEL UTILITIES The volume-level utilities operate on tape reels or disk packs. They are fully described
in Section 7, and listed in Table 1-2.

Utility name

$VOLCHECK

$VOLCOMP

$VOLCONTS

$VOLDUPLI

$VOLPREP

$VOLPRINT

$VOL REST

$VOLSAVE

Table 1-2. The Volume-Level Utilities

Function

Check the integrity of a disk volume

Compare two volumes

List the Volume Table of Contents of a disk volume
and edit file characteristics

Make a duplicate of a volume

Prepare a disk, cassette or tape volume

List the physical blocks of a tape volume

Restore a $VOLSAVE file onto a disk volume

Save a disk volume into a tape file

THE DATA SERVICES LANGUAGE (DSL)

With the record-level utilities, data can be manipulated by the DSL (Data Services
Language). The DSL allows you to define selection rules for the record stream that
is being loaded into a file. The DSL statements are provided through an input enclosure
to the record level utilities. For further details of the DSL, see Section 5.

RUNNING UTILITY PROGRAMS

A utility program is run as a normal Level 64 GCOS job step, in the same way as, for
example, a program translation job step or a user application program. A typical job to
run a utility might be:

SJOB WXC, USER= FRED;

VOLCOMP

SENDJOB;

parameter-list ;

The format of $JOB and $ENDJOB is given in the JCL Reference Manual, and the
precise definition of $VOLCOMP and its parameters is given in Section 7 of this manual.

There is no need to run each utility as a separate job, and several can occur in one job.
For example, the job below prepares a disk volume, allocates space on it for a file, loads
the file, and then prints the file to validate the data transfer.

$JOB CVB, USER= JOHN;

VO LP REP

PREALLOC

CREATE

PRINT

SENDJOB;

parameter-list ;

parameter-list ;

parameter-list ;

parameter-list ;

REPORTS AND DIAGNOSTICS When a utility is executed, a JOR (Job Occurence Report) and a Utility Report are
produced (see Note, below). The JOR shows you how GCOS handled the utility, and
the utility report is produced by the utility itself; additional messages may be sent to
the operator's console.

Error messages can be produced on two occasions, when the JC L is processed, and
during the execution of the utility. Both kinds of message are printed on the JOR.

1-02

Messages which are delivered during the execution of the utility step belong to one
of the four categories described below :

SEVO Messages :

Messages in this category are merely information messages; they do not report any
malfunctions. They only describe normal events, such as storage being allocated to a
temporary file, and so on. They also provide statistical information such as the
number of records that have been processed. SEVO messages do not affect the way
job steps are processed by Job Management.

SEV1 Messages ;

Messages in this category are WARNING messages. They usually support some
unexpected event or events which have little or no effect on the results of the
utility step execution.

The user must pay attention to WARNINGS and take appropriate action to ensure
that they do not occur in future executions of the jobs.

A common example of a warning message is the one which occurs whenever an
obsolete JCL statement is encountered by the JCL Translator. If no action is taken
by the user to update the jobs, they will not work when the next version of the
system is installed, as the obsolete JCL statement names will no longer exist.
SEV1 messages, like SEVO messages, have no effect on the way in which job steps
are sequenced by Job Management.

SEV3 Messages :

Messages in this category report on unexpected events which will have FAT AL
consequences on the running of the utility step. These events are considered to have
lasting effects on the execution of the step, and restarting the step from one of its
recovery points (if there are any) will not give a better execution. Consequently, the
step is aborted and no attempt is made to restart it, even if the REPEAT option is
present. SEV3 messages cause Job Management to consider the step as aborted, and
every step that follows is skipped until either an executable $JUMP statement is
found, or a $ENDJOB, is found. SEV3 messages otten result from user errors.

SE V 4 Messages :

Messages in this category also report on unexpected events that have FAT AL
consequences to the execution of a utility step. Unlike SEV3 messages, SEV4
messages report on malfunction conditions that are not thought to have lasting effects.
Such conditions are expected to disappear either as a result of normal activity of the
system (such as the release of a resource), or as the result of some action by the
operator (such as replacing a volume by another one or moving a volume onto
another drive) ; therefore an attempt can be made automatically by the system to
restart the aborted step from its recovery point.

If the REPEAT option was used in the STEPOPT parameter group, the utility step
aborts and is restarted from its available recovery point. The abort and restart
sequence can happen again and again until the operator refuses a new restart operation
for that step.

If the REPEAT option was not used, or if the operator did not allow a restart
operation for the step, Job Management handles step sequencing as it does for SEV3
messages.

Note:

There are a few utilities which produce very little printed output, and these utilities
report exclusively to the JOR. A utility report is not produced. This happens, for
example, with $PREALLOC, $DEALLOC, $VOLSAVE, $FILSAVE, $VOLREST and
$FILREST.
With the utilities that do produce a utility report, the user can ask the system to direct
this report to a permanent output file rather than to the standard SYSOUT file. This is
done by means of the PRTFI LE, PRTDEF, and PRTOUT parameters to the utilities.
These parameters are described in Section 4.

1-03

2. Structure of the Uti I ity Statements

The rules for writing utility statements are identical to those for writing Basic JCL
statements. These rules are fully described in the JCL Reference Manual.

Most utility statements read from a file (the input file) and write to another file (the
output file).

The input file is described by providing a file-description after the key-word INF I LE.
This file description is, in fact, given in terms of all the ~ASSIGN parameters (except
the internal-file-name). Some utilities can process more than one file, in which case
a series of file-description:; follows the key-word INFI LES. The way in which this is
done is identical to the file concatenation for $ASSIGN. In additiont some utilities
may need to read more than one file, in which case the input files are described after
the key-words INFILE 1 and INFILE 2.

Similarly, the output file is described after the key-word OUTF I LE.

There are occasions when it is useful to provide the file characteristics using parameters
from the $0 E FINE Basic JCL statement . This is done by putting these parameters
under the scope of the key-words INDEF or OUTDEF (or INDEF 1 and INDEF 2) as
appropriate.

Most utilities produce a utility report. This utility report is normally treated as standard
output (that is, temporarily stored in the SYSOUT file until it is printed). It is possible
to send the report to a permanent SYSOUT file, which is described by the parameter
PRTFI LE ; the characteristics of this file can also be defined by the parameter PRTDEF.

This utility report will be printed by the output writer with all the standard options
(possibly defined by an OUTVAL statement - see the JCL User Guide). If other
characteristics are required for this output (for example, the use of a specific paper
size, or a specific output class, or several copies), they can be supplied by placing the
parameters of the $SYSOUT Basic JCL statement under the scope of the PRTOUT
key-word for the PRTFI LE file {the SYSOUT key-word will be used instead of
PRTOUT for the OUTFI LE file).

All the characteristics of the step corresponding to the execution of the utility (for
example, execution priority, limits on time, etc ...) are the default ones unless specific
information is provided by placing $STEP Basic JCL statement parameters after the
key-word STEPOPT.

For the record level utilities, some DSL statements may be provided, and these will be
read from the input enclosure, sequential file, or library member described after a
COMFILE key-word.

To summarize, the general form of the utility statements is:

Utility-name

INFILE (file-description) ! file read
[, INDEF (define-parameters)]

, OUTFI LE= (file-description)
file written

[, OUTDEF= (define-parameters)]

[, SYSOUT = (sysout-parameters)]

[, PRTFILE= (file-description)]

[, PRTDEF = {define-parameters)] utility report

[, PRTOUT= (sysout-parameters)]

2-01

[, COMFI LE = (file-description)]

[, STEPOPT = (step-parameters)]

utility-specific-parameters;

The most used form is likely to be :

Utility-name

INFILE = (file-description), OUTFILE

utility-specific-parameters ;

2-02

DSL

step parameters

(file-description),

FILE NAMES

FILE EXPIRATION DATES

VOLUME IDENTIFICATION

Resident Volume

Non-resident Volume

3.Files and Volumes

This section discusses the rules for identifying files and the volumes and devices on
which files are stored. ·

When specifying a file in a utility statement, it is usually necessary to also specify the
disk or tape volume on which the file is stored, and the type of device that supports
the volume.

The complete conventions for file names are described in the JCL Reference Manual.

For all permanent disk files and for all files on native labelled cassettes and tapes there
is an expiration date maintained with the file. For disk files, the expiration date is set
when the file space is allocated. For tape or cassette, the date is set when the first file
is recorded onto the volume. Note that an expiration date is associated with the file
and not with the volume.

The users attention is drawn to Section 4. This shows the complete file description
which is applicable to the utilities.

A distinction is made between a volume that is permanently online to the ~ystem
(resident) and one that is loaded on a device only when it is needed (non-resident).

A resident volume is always a disk, and is identified by the RES ID ENT parameter. No
other identification is necessary. Example...:

$DEALLOC CUI FEB, RESIDENT;

The permanent file CUI FEB is held on a RESIDENT disk volume. For further details
see the description of the parameter RESIDENT in Section 4. Note that when
RESIDENT appears, FILESTAT = UNCAT applies by default.

For a non-resident disk volume or a tape volume, the volume identifier (which is
recorded in the volume label) must be specified using the MEDIA parameter. The
volume identifier is expressed in alphanumeric (0-9, A-Z) and has a maximum of six
characters (the maximum is 4 characters for a COMPACT cassette). Note that the

keyword WORK may be specified to indicate that a work volume is to be used.

Work tapes are prepared using the $VOLPREP utility statement. In the case of

cataloged files, the volume type and name are given in the catalog description of
the file.

MULTIVOLUME FILES AND VOLUME MOUNTING

This paragraph only deals with record and file level utilities, as volume level utilities I
cannot handle media-lists with several volume-names.

The MOUNT option of the $ASSIGN JCL statement is supported by the record level
utilities without any restrictions, but if the file organization has any special requirements,
they must be observed (for example, direct access or relative files require all the
volumes to be mounted).

For disk files, the file level utilities sometimes override the user-supplied value of the
MOUNT parameter. For $PREALLOC, all the volumes have to be mounted.

Tape files are, in general, supported by file level utilities with a user given volume
mounting request.

3-01

Volume and File Sharing

When a file level utility is restarted at a checkpoint ($FI LSAVE, for example), it is
possible that the re-opening of a disk file causes the first volume of the file to be
mounted without apparent justification, although the actual processing resumes with
the volume which was being accessed when the checkpoint occurred. This is done to
check the file label at file opening time.

When the $PREALLOC utility has already processed several volumes of a multivolume
file and it encounters abnormal conditions on the current volume, it generally attempts
to undo what has already been done to the file. It therefore requests that the already
processed volumes be mounted again, to restore them to their previous state. The
success of this restore, and the possibility of being able to restore are not guaranteed
and, if unsuccessful, the file will be left in an inconsistent state.

Shared access only applies to input disk files and volumes.

The input volumes for the utilities SVOLCOMP, SVOLSAVE and $VOLDUPLI

will only be shared by multiple executions of the utilities themselves. That is,

an input volume to SVOLSAVE may be accessed concurrently by, say,

SVOLCOMP.

S VO LCONTS can share its input volume with any file-level or record-level

utility, but not with other volume-level utilities.

If the input volumes are RESIDENT, then this restriction does not apply; all

other jobs may access a RESIDENT volume concurrently with a volume-level
utility.

Sharing of input files (SFILSAVE, SFILREST, SFILDESC, $CREATE, etc.)

is always allowed. These utilities access the input files with user specified

values of ACCESS and SHARE.

For further details on file sharing and the parameters ACCESS and SHARE,

see the UFAS User Guide and the BFAS User Guide.

3-02

4.Common parameters

In the utility statement,definitions presented in Sections 5, 6, and 7, there are a number
of parameters and keywords that occur frequently. To avoid repeated explanation of
these, they are described separately here in this section. No further detailed explanation
is given in the utility description, but they are shown to be present in the statement
form, where applicable. These parameters are :

define-parameters

file-description

INDEF

INFILE

OUTDEF

OUTFILE

PRTDEF

PRTFILE

PRTOUT and SYSOUT

STE PO PT

sysout-parameters.

They are described in alphabetical order on the following pages.

4-01

Define-parameters

Define-parameters can be given in addition to the file-descriptions used for files accessed
at record level. They usually do not apply to files which are handled at the file level.

The files which are accessed at record level are PRTFI LE (for any utility which has
one), and the input and output files of the record level utilities.

Thus a file accessed at record level can be fully described by a combination of two
parameter groups ; one providing a file-description for the file, and the other
providing a file-definition for the file.

The define-parameters are identical to those which may be given in a SDEFINE
Basic JCL statement; a full description of SDEFINE is given in the JCL Reference
Manual.

The relation between define-parameters and the corresponding file is established
through the internal-file-name, as follows :

INDEF is related to the internal-file-name infile

INDEF1 is related to the internal-file-name infile

INDEF2 is related to the internal-file-name infile2

OUTDEF is related to the internal-ti le-name outfile

PRTDEF is related to the internal-file-name prtfile

The most useful of the define-parameters are the following :

IJ3LKSIZE = blksize]

[,RECSIZE = recsizeJ

F 1 FB

,RECFORM = U

~BJ
(,NBSN]

,FILEFORM =

I '

)

I ~::~ i
ANSI\

\ NSTD I , I

[NBBUF ={~}] [,JOURNAL= BEFORE]

,DATACODE =

(BCD

)

H200

ASCII

\,EBCDIC

[,BPB = blocks-per-buffer] [,KEY LOC = key-position][,KEYSIZE = key-length

[,CISIZE =control-interval-size] [,DUMMY REC= rec-interval]

[,CASIZE =control-area-size]

[,CKPTLIM =number-of-records]

[ERROPT = l ABORT ll
IGNORED [,WRCHECK]
SKIP

Other define-parameters can also be used, especially those which relate to the unit
record dev;ces PRINTER, READER and PUNCH.

4-02

Define-parameters

The DATAFORM parameter is not supported. No conversion SARF -+-+SSF is

provided by any of the utilities. Such conversions are performed by SLIBMAINT.

No DATACODE conversion is provided except if it can be performed automatically

by the system at the level of the device attachment mechanisms.

The keyword NBBUF may be coded in all cases. It specifies the number of buffers,

and the default value is 1. To handle binary decks of cards NBBUF must be set to 2.

BLKSIZE, RECSIZE, RECFORM, and NBSN can only be used with tape or cassette

files, and are used as follows :

For tape input :

- Specify BLKSiZE, RECSIZE, and RECFORM when LABEL= NONE, when

LABEL= NSTD, or when the labels are incomplete (IBM DOS format).

For tape output :

- BLKSIZE, RECSIZE, and RECFORM must always be specified unless the file is

cataloged. If no BSN's are required, then NBSN may be specified.

Handling of a deck of cards also requires BLKSIZE and RECSIZE, RECFORM be given.

The parameter BPB (Blocks per buffer) only applies to BFAS Sequential and indexed

Sequential files. The default value is 1, and the parameter may be specified for input
and output.

*

I

The DUMMY REC parameter only applies to BFAS Indexed Sequential files on output.*

Fl LE FORM= NSTD can be used to handle tape files using the Foreign tape processor

similarly, a Foreign cassette handler is available. Native standard files can also be

processed using the foreign tape or cassette handlers, but certain services are not

available. For example, there is no repositioning in the event of a malfunction or a

restart, and "there is no automatic track switching for cassettes. It should be noticed

that the record level utilities, and in particular SCR EATE, are not designed to be used

as tape handlers which can do anything with any tape.

It should be noted that only a subset of the define parameters is applicable to any
given file. Relevant information concerning a parameter, the given file format, file
organization (or unit record device) can be found in the appropriate access method
users guide or the Unit Record Devices User Guide.

4-03

I

File-description

The file-description that is app1il.;dU1t:: lU the utilities is shown below. The parameters
which are mandatory, not used, or which may be omitted with the input and output
files, are shown in the description of each file.

The file-description corresponds to the file information which may be supplied using
the $ASSIGN Basic JCL statement. The format of the most common file description
options is as follows:

\ external-file-name l'
/ * input-endosure-name ~

[,SUBFILE =member-name]

[

,EXPDATE = l ~~~ddd l]
yy/mm/dd

,FILESTAT =

,TEMP RY

)

CAT ~
UNCAT

TEMP RY

[

(DEASSIGN l
,END= IPASS

LEAVE

UNLOAD

L l RESIDENT

PASS

LEAVE

UNLOAD

[ABEND=

~ (volume name [,volume-name] ... 1/ (l L DEVCLASS =device-class, MEDIA= I WORK \ 'J

I ~~~~VE i]
I'

COMPACT.~ ,

'. NSTD /

[,MOUNT= number-of-volumes]

(WRITE \NORMAL i

)
READ

,SHARE=
ONEWRITE

,ACCESS= SPWRITE I DIR)
SPREAD \FREE

\ RECOVERY

[,CATALOG= catalog-number] [FSN = r·}J 255
("'VOL WR]

For other options and further details, see the SASSIGN statement in the JCL Reference Manual.

Note:

The file-description is related to an internal-file-name which becomes visible to the
user in various circumstances, including messages relative to step reporting. The
internal-file-name is identical to the keyword which introduces the file-description.

4-04

INDEF

- Function:

To provide file attributes which are used by the access method to handle records from
the input file that the I NFI LE parameter group describes.

Parameter form :

INOEF =(define-parameters)

Other similar groups are :

INDEF1 =(define-parameters)

which can be used instead of the INDEF parameter group

I NOEF2 = {define-parameters)

which is related to the file that the INF I LE2 parameter group describes.

- Restrictions :

The JOURNAL option has no meaning.

WRCHECK has no meaning.

Other restrictions depend upon the utility using the parameter group.

Assodated internal-file-names :

Keywords

INDEF

INDEF1

INDEF2

-_Parameter description :

Related file-description

INFILE

INFILE

INF! LE2

l Related internal-file-name

I infile I

j
infile

infile2

The define-parameters have been described earlier in this section. They can be separated
into two classes : those related to the characteristics of a file, and those related to the way
the file is to be processed by the utility (that is CKPTLIM, BPB, ERROPT).

The first class of define-parameters need not be used when the associated input file is
a native disk or tape file ; this is because every characteristic required is available in the
file label, and label information overrides user provided define-parameter values.

The second class of define-parameters is given a set of default values, thus avoiding the
necessity to specify these parameters when their default values are convenient to use.

Consequently, none of the I NDEF, INDEF1, or I NDEF2 parameters are mandatory;
they can be omitted whenever the input files are native labelled files, and the default
values for the file processing define-parameters are convenient.

If one of the input files is either an unlabelled file or a non-standard file, or if it is a
Level 62 file (which does not have a HDR2 label), the corresponding INDEF parameters
must be provided. An input cards deck also requires an I NDEF parameter group.

Similarly, if the user wishes the input file, INFI LE, to be accessed with double buffering,
or if the user wants to specify that unreadable blocks be skipped, the IN DEF parameter
group must be present, even if the file is a native labelled file.

INDEF is a record level utility option. With the file level utilities, only $FILDUPLI
allows this option. In this case, I NDEF is to be used to set the file processing parameters
only, according to the user's wishes.

4-05

INFILE, INFILES

Function:

To describe the assignment to a utility step of a file which is given as input.

Parameter form :

I NFI LE = (file-description)

INFILES =((file-description) [,(file-description)] ...)

Other similar parameter groups are :

INFI LE1

INFILE2

(file-description) or I NF I LES1 = (list-of-file-descriptions)

(file-description) or I NFI LES2 = (list-of-file-descriptions)

INFILE1 is a synonym of INFILE. INFILE2 is used whenever two distinct input files
are accessed at the same time (e.g. fCOMPARE).

Restrictions :

The parameter EXPDATE is not allowed with these parameter groups.

Internal-file-names :

File-description keyword Related internal-file-name

INFILE infile

IN FILES infile

INFILE1 infile

INFILES1 i infile

INFILE2 infile2

INFILES2 1 infile2

Parameter description :

Depending on the utility, the file will be accessed either at record level via an access
method, or globally when the utility lists or modifies the file attributes or when it
applies to the file in its entirety. In this last case, it most often happens that the file is
accessed at basic or 1/0 level, that is, track by track or block by block.

In all cases the file is accessed in input mode, which means that no write operation is
performed by the utility on the device that holds the file. The exception to this rule
occurs if the file is a BFAS Indexed Sequential file, in which case, statistical infor­
mation on the file usage is written when the file is closed.

The input file can be a disk, tape, or cassette file, and with the record level utilities, it
may be an input enclosure.

The input file can be an input enclosure whose contents are card images. By choosing
appropriate values for the CONTCHAR and ENDCHAR options of the $INPUT
statement ,card images can hold records longer than 80 characters. Input enclosures
are only supported by the record level utilities.

The file may be temporary, permanent uncataloged, or permanent cataloged, and it

may be passed or not. File concatenation is available for tape files through the INFI LES

parameter group, and is supported by the record level utilities.

Before the utility is run, the input file must have been preallocated and loaded, and if
it is a UFAS Indexed Sequential file which is to be accessed via secondary indexes, the
utility $SORTIDX must have been used to sort the secondary indexes.

4-06

The option INFILES is to be used when descriptions are provided for several files
which are intended to be viewed by the utility as a single file. Everything happens
as if each described file was concatenated to other described files in the same order

they are described.

OUT DEF

Function :

To provide information needed by the access method to create the output file of
the utility (when it does not previously exist}, and to process it according to the
user's requirements.

Parameter form :

OUTDEF = (define-parameters)

Restrictions :

ERROPT has no meaning.

Other restrictions may apply, depending on the utility and on the fileform and file
organization of the file OUTF I LE.

Associated I nternal-fiie-names :

Keyword Related file-description Related internal-file-name

OUTDEF OUTFI LE outfile

Parameter description :

The OUTDEF option cannot be used unless the OUTFI LE option is also used.

When OUTFILE is a disk file, or a preallocated cataloge.d tape file, the OUTDEF
option can only be used to change the file processing parameters to values other
than the default values (that is, JOURNAL, BPB, NBBUF, etc ...).

When OUTF I LE is an ordinary tape file or a cassette file that does not yet exist,
OUT DEF is mandatory to establish the file characteristics to the required values;
file label will be built from the user defined values. OUTDEF is also mandatory
when OUTF I LE is a temporary disk file that has not been passed by a previous
step, or when it is a deck of sards.

With the record level utilities, OUTDEF can be used to provide both classes of
define-parameters : file characteristics and file-processing parameters.

With the file level utilities, OUTDEF is only accessible to $FILDUPLI. In this
particular case, the file characteristics are automatically set to the same values as
the input file, and therefore, OUTDEF can only be used to access the file processing
parameters of the define-parameters group.

4-07

OUTFILE

Function : To describe the assignment to a utility of a file which is used as an

output file.

Parameter form :

OUTF I LE = (file-description)

Restrictions :

The parameter NVOLWR is not allowed with this parameter group

The OUTF I LE file description cannot refer to an input-enclosure.

Internal-file-names :

File-description keyword Related internal-file-name

OUTFILE outfile

Parameter description :

As for I NF I LE, the file is accessed either at record level, or globally when the

utility modifies the file attributes or applies to the file in its entirety (for example,

$Fl LR EST and SFILDUPLI).

In all cases, the file is accessed :n output mode, which means that write

operations are performed by the utility on the device which contains the file.

The file may be a disk, tape, or cassette file, but preferably should not be a stream

attached to a unit record device such as a card punch or a printer, as proper driving

of such devices is not fully insured by utilities themselves (no error handling, etc.).

The file can be a temporary file, an uncataloged permanent file, or a cataloged

permanent file, and may be a passed or an unpassed file.

File concatenation cannot be used with an output file.

The output file can of course reside on one or several volumes.

The output file is accessed at record level using standard access methods or the

Foreign tape processor by record level utilities. It is accessed at I /0 level (track by

track or block by block) by file level utilities.

4-08

PRTDEF

- Function:

To provide the information needed by the access method to create and load the file
where the utility is to store the report that it produces.

Parameter form :

PRTDEF = (define-parametersi

Restrictions :

ERROPT is meaningless with this parameter.

The only define parameters that can be used are those which are allowed with
sequential output files.

Associated Internal-file-names

Keyword Relative file-description I nternal-fi I e-name

PRTDEF PRTFI LE prtfile

Parameter description :

The PRTDEF option cannot be used unless the PRTF I LE option is used.

By default, the PRTF I LE file is the sysout file established by the system to hold
the printed reports that result from the execution of the utility step. Note that
some utilities do not use a sysout file and do not produce a printed report ; some
utilities only produce JOR messages - see the descriptions of each utility for details.

The utilities that use a sysout file set the following default values for tape files :

BLKSIZE = 604, RECSIZE = 600, RECFORM =VB, NBBUF = 1,
DATAFORM = SSF, Fl LEORG =SEO.

For further details on how to establish the various parameter values refer to the
Output Writer section of the COBOL User Guide.

The use of the COMPACT option is of interest when prealiocating a PRTF I LE file.

4-09

l

I

PRTFILE

Function :

To describe the assignment of a permanent file, to be accessed through the
SYSOUT access method, to a utility.

Parameter form :

PRTF I LE = (file-description)

Restrictions :

The NVOLWR option is not allowed with PRTFI LE.

The output file described cannot be an input enclosure, and DUMMY cannot be
specified in the file-description.

The option FILESTAT = TEMPRY should not be used because the file may well
have disappeared by the time the Output Writer processes it.

Associated Internal-file-name :

Keyword Internal-file-name

I

PRTFI LE I prtfile
i
L-

- ·· Parameter description :

The PRTFI LE may be a sequential tape or disk file which can be printed, after the
step has finished, by the SWRITER Basic JCL statement.

If PRTF I LE is a disk file or a cataloged tape file, it must have been preallocated
before the utility is executed.

When the PRTFI LE option is used with a utility, the printed report that this utility
produces is sent into this private file instead of being loaded into the system file
SYS.OUT. The report can be printed from this private file at any later time more
convenient to the user.

4-10

PATOUT or SYSOUT

Function:

To indicate to the system Output Writer how a file is to be printed.

Parameter form :

PRTOUT = (sysout-parameters)
nr­
vo

SYSOUT = (sysout-parameters)

Associated Internal-file-names :

Keyword Related file-description

PR TOUT PRTFILE

SY SO UT OUTFILE

Parameter description :

Related internal-file-name

prtfile

outfile

The sysout-parameters for PHTOUT and SYSOUT consist of the parameters to the
Basic JCL statement $SYSOUT, and are described in this section.

PRTOUT can be used whenever PRTFI LE is allowed. When PRTFI LE is not used,
·PRTOUT applies to the standard default SYS.OUT file.

When no sysout-parameters are given, the PRTF I LE file is not printed, and stays
available (as a permanent file) for a possible off-line printing performed via the
Basic JCL statement $WRITER.

SYSOUT can be used whenever OUTFI LE is allowed, and only in connection with
a record level utility. SYSOUT must be used to inform the Output Writer that it is to
process the contents of the file OUTFI LE. The contents of this file will then be
printed or punched without any editing process occurring. Note that care should be
taken if OUTFI LE contains binary data.

4-11

I

I

I

STEPOPT

Function:

To specify the execution conditions of the utility.

Parameter format :
STEPOPT = ([load-module-name], [load-module-library-name]

[, XPRTY = step-exec-priorty]
[,CPTIME = cplim]

[,ELAPTIME = elaplim]

[,LINES= sysout-print-lim]

[,CARDS= sysout-card-lim]

[ouMP = ~D:~A~]
(,REPEAT])

Parameter description :

The parameters to the STEPOPT parameter are described briefly below. For a
complete description, see the $STEP basic JCL statement in the JCL Reference
Manual. The parameters in the STEPOPT parameter group are :

XPRTY This specifies a one-digit step execution (dispatching) priority
between 0 (the highest priority) and 9 (the lowest priority). The
default value of XPRTY is determined by the CLASS of the job
containing the step.

CPTIME Specifies the maximum permitted CPU usage time for the step, in
units of one-thousandths of a minute. The value cplim may consist
of up to seven digits.

ELAPTIME This parameter specifies the maximum permitted clock-time during
which the step can execute. The unit of time is one minute, and the
elaplim value can consist of up to four digits. By default, there is no
limit on step execution time.

LINES This specifies the maximum number of printer records that may be
written to each SYSOUT file by the step. The value of sysout-print­
lim must not exceed eight digits. If the limit is exceeded, the return
code ERLMOV is produced. By default, there is no limit.

CARDS Specifies the maximum number of card images that may be written
to the standard SYSOUT file by the step. The value of sysout-card­
lim must not exceed eight digits. If the limit is exceeded, the return
code ER LMOV is produced. By default, there is no limit.

DUMP This specifies if a dump listing is to be produced in the event of
abnormal step termination, and, if so, what its contents will be.

REPEAT

NO By default, no dump listing is produced.

DAT A Only segment containing data are dumped.

This specifies that the step is to use the Checkpoint/Restart facilities.
This provides the step with a recovery point at which it can possibly
be restarted after a system crash or abnormal termination of a step.
If REPEAT is not specified, by default the step has no recovery
points and cannot be restarted. For further details on when check­
points are taken and how a step c 1r, be restarted, see the utility
descriptions.

4-12

SYSOUT • PARAMETERS

- Function:

To define how an output file is to be printed by the Output Writer.

- Parameter form :

[,CLASS = output-class]

[[·::::~ r~~~ut-pr]iority] 1 IMMED

[
' \HOLD l]DEFER

(NHOLD~
[,NAME= symbolic-name]

[t~::~~:~]
[BANINF = (name1 (,name2] ...)]
(,COPIES = number-of -copies]

[,DEVCLASS =device-class [,MEDIA= media-name]]

[,DEST= station-name]

[~~~~:wG
[,DELETE]

- Parameter description :

These parameters correspond to those of the $SYSOUT Basic JCL statement. For
full details, see the JCL Reference Manual.

4-13

5.Record Level Utilities and the DSL

This section contains descriptions of the Record Level Utilities in alphabetic order by
statement name. After the specifications, there is a detailed description of the Data
Services Language (DSL) which can be used with these utilities. Each utility specifi­
cation consists of :

1. The function or purpose of the utility.

2. The statement formats, using the conventions defined in the preface

3. A description of the utility operation

4. A description of the parameters and keywords

5. A set of one or more examples.

A summary of these utilities is given in Table 5-1.

Statement name Function

iCOMPARE Compare the contents of two files

$CREATE Load or reorganize a file

SPRINT Print logical records from a file

Table 5-1. Record Level Utilities

The record level utilities are identical in the way they handle files and in their step
completion conditions. A common description of these features is given at the
beginning of this section.

5-01

STEP COMPLETION CONDITIONS FOR RECORD LEVEL UTILITIES

When a fatal error occurs during the translation of the utility statement, files are left
untouched, and are not opened.

When a syntax error or any other user error is detected during the translation of the
DSL statements from the COMFI LE, the utility step aborts with a SEV3 termination
status. As the files have been opened,_they are closed, and the OUTFI LE will not. hold
any records unless it was previously loaded with data records and the APPEND option
was used. If OUTFI LE contained records before the utility step was executed, and the
APPEND option was not used, it will be left with no records in it.

When an error occurs during the processing of the input file(s), and if the error is
FAT AL, every file is closed at the point that has been reached, and OUTF I LE
is partly loaded. A JOR message informs the user how many records were processed
from each file (the message key is DU03.01). Whenever possible, the utility tries to
print the last processed record into the sysout or PRTFI LE file.

If the error occurred during a READ operation, the printed buffer will not
necessarily show significant contents, but if the error was during a WRITE
operation, the contents of the printed buffer will be siiJlificant.

If the REPEAT option is used in the STEPOPT parameter group, checkpoints are taken
automatically after every 100,000 records are processed for disk files, and at every
end--of ..-eel for tape files. If the described default values for checkpoint taking are not
satisfactory for the user, the CKPTLIM option of the define·parameters for the file(s)
can be used to define when checkpcints are to be taken.

Note that even if the REPEAT option is used, the step is only resta1ed if it has aborted
with a SEV4 completion status.

5-02

COMPARE

Function:

To logically compare the contents of two files. The user data part of each record in
tt.e fim file is compared with that of the corresponding record from the other input
file. The differences are printed.

Statement form :

$COMPARE {INFILE1
INFILES1

(,INDEF1

{
INFILE2

' INFILES2

(,INDEF2

(file-description) }
((file-description-1) (,(file-description-2)] ...)

(define-parameters) l
(file-description) }
((file-description-1) [,(file-description-2) l ...)
(define-parameters)]

[,OUTFILE = (file-description)]

(,OUTDEF (file-definition)]

[,SYSOUT (sysout-parameters)]

(,PRTFI LE (file-description))

(,PRTDEF = (define-parameters)]

[,PRTOUT = (sysout-parameters)]

(,COMFI LE = (file-description)]

~TART= t~~
pNcR

(,HALT
t!D
p)

~RINT = ([.FORMAT=

{-q1J·1 [,TAPEND = J
(,EQUAL)

J
ALPHA l] [,TITLE = 'character]
BOTH string'])
HEX

(,STEPOPT = (step-parameters)];

Statement description :

The files to be compared may be of different organizations, as the comparison only
involves the user data part of the records. The usual BFAS and UFAS file organi­
zations are supported, as are IBM DOS files and Level 62 files.

You can compare entire files or selected records of files. The selection can be done
by the DSL (described in this Section) and by the parameters START, INCR, and
HALT. The process of record selection is described in Figure 5-2. Basically, record
number n (START) is found, and the records after this are used by the DSL to
prowce a group of records for input to I NCR. I NCR selects every m'th record from
this group, and these are passed onto SCOMPARE for processing. After- p (HALT)
records have been printed, processing will stop. The DSL can also be used to
rearrange records. This feature allows the sorted keys to be chosen as part of the
records, and thus produces a better listing of mismatches. The DSL statements
are applied identically to each input file.

5-03

I

COMPARE

When the records have been DSL processed, they are assumed to have the same

lengths (even if they were of different lengths to start with), and to be ready for

comparison. Records in the same relative position are compared according to the

normal sequence. User defined collating sequences are not allowed.

When the compared records are different, and if the PR I NT option is used, a

message is sent to the output listing file. The message states and describes the

difference. If the EQUAL option is used, records which are the same are printed.

Once a difference has been found, it is necessary to make sure that the input files

are still "synchronized" before the comparison process continues. To do this,

$COMPARE assumes that the two input files have been sorted into two compatible

ascending sequences of records before processing starts. If this is done, the file which

delivered the lowest record of the "not equal" pair is read until a "not lower" record

is found. At this point, either the current pair of DSL processed records are equal,

or they are not, in which case, the synchronization process is carried out on the

other file. This is repeated until the DSL processed records are equal.

One or both of the input files may be a card deck, which can be introduced as an

input enclosure. This deck can contain records which are longer than 80 characters

if the appropriate CONTCHAR and ENDCHAR parameters are given with the

$INPUT statement.

The PR INT parameter is used to ask for a printed report, and enables you to choose

the format of the printed report and its title. The margin, output line length, number

of copies, and so on, can be supplied by the PRTDEF and PRTOUT parameter
groups.

The outfile file contains those records which are in INFILE2, but not in INFILE1 ;

if EQUAL has been used, then it will contain the records in INF I LE2 which are the

same as those in INFILE1. The outfile file is optional, and, when present, always

contains records from INFILE2, and never contains records from INFILE1.

$COMPARE will also compare non-standard magnetic tape and cassette files. This

is done by specifying FILEFORM = NSTD in the INDEF1 and INDEF2 parameter

groups. The comparison is between physical blocks, and tape marks are treated as

one byte blocks, conventionally shown as hexadecimal FF. Because there is no
logical end to the processing, the HALT or TAP END parameter must be used to

stop processing. Using the DSL, it is possible to select blocks and rearrange their

contents before comparison. Note that with Fl LE FORM= NSTD, the file is

accessed through the Foreign Tape Processor, and the usual repositioning of the

tapes and cassettes does not occur ; and tape marks show up as a one byte value (F FL

If the default values of the parameters are used, they will require the minimum of

resources, but will give the maximum elapsed time. The execution speed of

OCOMPARE can be improved by setting NBBUF and BPB from the INDE F 1 and

INDEF2 parameter groups to values higher than their defaults.

If there is a lot of (printed) output, this can also be done in the PRTDEF and

OUTDEF parameter groups.

5-04

COMPARE

Parameter description :

INFILE1
INFILES1
INDEF1

INFI LE2
INFI LES2
INDEF2

OUTFI LE
OUTDEF

SYSOUT

PRTFI LE
PRTDEF
PRTOUT

COMFILE

STA,RT

INCR

HALT

PRINT

TAPEND

These parameter groups describe the first input file.

These parameters describe the second input file.

These optional parameters describe the output file.

This optional parameter allows you to inform the Output Writer that
it must process the contents of OUTFI LE.

When the PR I NT option is used, these optional parameter groups
define and describe a private output file to which the printed
output is to be sent.

This parameter is optional, and describes a file which is to contain
the DSL statements. A complete description of the DSL statements
is given in this section. If the parameter is not specified, all the input
records are transmitted to ZCOMPARE without any restructuring of
the data fields.

This optional parameter which is an eight di~it decimal number with
a default of 1, indicates that the first n-1 records of the input files
are to be ignored.

The first record to be considered for DSL and further utility pro­
cessing are the records numbered n in the sequence of input records;
all records, including the n'th, after the n-1 'th are processed. If the
parameter is omitted, no records are ignored.

Those records which have been DSL selected are counted, starting with one.

From these reco!'"ds, only one every m is selected for further processing by

the utility. Thus records numbered 1, m+1, 2m+1, 3m+1, ... are the only ones

to be compared. If INCR is omitted, all DSL selected records are passed on

for further processing.

This optional parameter limits the amount of output produced by
$COMPARE, and also terminates processing. Each output record
(or prtfile record) is counted, starting at one. When p records
have been counted, processing stops.

This option must be used if the PRTFI LE is to be loaded with a
printed report of the mismatching (or matching records if EQUAL is used).

FORMAT TITLE

These options can be used to specify a format and title for the printed

report (refer to PRINT parameter description, see below).

This option can be used when the input files are non-standard tape
or cassette files. The processing stops when n tape marks have been
read. The default value is 1, but TA.PEND should always be specified
when non-standard input tapes are being processed.

5-05

I

I

I

I

COMPARE

EQUAL This optional parameter specifies that DSL processed-records that
are equal in the input files are to be sent to the output files
(OUTFILE or PRTFILE).

STEPOPT If REPEAT is used, checkpoints are taken every 100,000 records of
every file, unless otherwise specified by the user via the CKPTLIM
parameter of the define-parameter group.

Examples:

1) To compare two catalogued files and obtain the count of mismatches :

COMPARE H'JFILE1 = .FIRSTFILE, INFILE2 = .SECONDFILE;

2) To compare two files position 10, length 3, position 50 length 4,
position 1 length 9. The mismatches will be printed in alphanumeric (defaLilt) in
a permanent sysout file.

COMPARE INFILEl = (UFASINDEXED, DEVCLASS = MS/M400,
MEDIA= C056),

INFILE2 = (SEOTAPE, DEVCLASS = MT/T9/D1600,
MEDIA= 1520),

PRINT= (TITLE= 'A TITLE'),
PRTFILE = (PRIVATE.OUTPUT,RESIDENT),
COMFILE = •DSL;

$INPUT DSL, PRINT;
RECORD: ARRANGE= (10,3) (50,4) (1,9) END:

SENDINPUT;

3) To compare two files and select and punch the equal records and place them in a third file.
These records are to be printed in both alpha and hexadecimal format.

COMPARE INFILE = •CARD,INFILE2=(MYFILE,TEMPRY),
OUTFI LE=(OUT, DEVCLASS= CD/P/C80, MEDIA= PUNCH),
OUTDEF= (BLKSIZE=80,RECSIZE=80,RECFORM=F),
PRINT= (FORMAT= BOTH),
PRTFI LE=(PRIVATE. OUTPUT, RESIDENT),
PRTDEF =(PRINTER= (MARGIN= 5)),
PATOUT= (DEVCLASS = PR/Hl 55) EQUAL ;

4) To compare two sets of files:

COMPARE INFILES1 = ((OLD36,DEVCLASS= MTIT9/D1600,MEDIA = 1006,
FSN=3) I (OLD38,DEVCLASS=MT /T9/D1600,
MEDIA=l 006,FSN=6)),

INFILES2 = ((NEW36,DEVCLASS=MT/T9/D1600,MEDIA = 1008,
FSN == 10), (NEW38,DEVCLASS = MT/T9/D1600,
MEDIA= 1038,FSN=13)),

PRINT= (FORMAT= HEXA);

5-06

CREATE

Function:

To load or reorganize a UF AS or BF AS fiie.

Statement form :

{
INFILE - = (file-description) }

$CREATE INFILES = ((file-description-1), (file-description-2) •..)

(,INDEF = (define-parametersl]

,.OUTFI LE = (file-description)

[,OUTOEF = (define-parameters)]

(.SVSOUT = (sysout-parameters)]

[,PRTFILE = (file-desCription)]

[,PRTDEF = (define-parameters)]

[,PRTOUT = (sysout--parameters)]

[,COMFI LE = (file-description)]

[si-ART= Ii J]
~NCR = t1'J]
[,HALT = P]

rlLLER= {:::::"'}]

~INT = c[FORMAT = J ~~All
[,APPEND) ~
[,KEYLOC =value]

LTAPEND = { 1}]
[,STEPOPT = lstep-parameter)] ;

[TITLE= "character-]
string'))

I

I

CREATE

St<.1tement description :

The utility copies the records of the input file into the output file. The input file
m<.1y be a disk, tape, or cassette file, <.1 card deck, or a card deck image contained in
an input enclosure!. The input file org<.1nin.1tion may he BFAS (sequential, indexed
sequential, or direct) or UFAS (sequential, indexed sequential, or relative). IBM
DOS files (sequential, indexed sequential, or direct) and Series 60 Level 62 files
(sequential, indexed sequential, or direct) arc also accepted. ·

The files may have the record format fixed or variable, blocked or unblocked, or
undefined.

When input records are larger than the output records, the input records are
1runcated on the right to conform to the maximum output record length.

When input records are shorter than the output records, and the output records
have the format fixed blocked or fixed unblocked, the input records are expanded
to match the output records. In this case, the space which is added to the input
records is filled with space characters or with the character or hexadecimal code
which has been specified in the FILLER parameter. If the output record format is
variable (variable blocked or unblocked, or undefined), then the Fl LLER option is
ignored, and the output record length is the same as the input record length.

For input files which have no labels (LABEL= NONE, cards, IBM DOS files and
Level 62 files, except indexed sequential, or cassettes); the file characteristics
must be given in the I NDEF parameter.

The utility accesses the input file in a sequential manner. For output to a UFAS
Indexed file or a BFAS Indexed file, records must he delivered in the ordered
sequence based upon the key field. The position and length of the key field are
those given in the ZPREALLOC utility which allocated the file. Note that for
creations between BFAS Direct files and UFAS Relative files (direct-direct,
direct-relative, relative-direct, relative-relative) the access is direct in order
to preserve any deleted records in the output file.

If the APPEND parameter is present, then records are added to the output file.
These additional records are written sequentially after the last record currently
present. The APPEND parameter is not allowed with COMPACT cassette files or
with non-standard tape or cassette files. f\lote that if the files are nnt preallocated,
the allocation parameters must-be given in the OUTDtF parameters {BLKSIZE,
RECSIZE, RECFORM, Fl LE FORM, and, optionally, NBSN). This often has to
be done when the output files are on tapes or cassettes, or are cards to be punched.

It is possible i:o load or append a file with the contents of a card deck which contains
records whose length can be greater than 80 characters, or variable. To do this, the
card deck should be contained in an input enclosure and the correct values chosen
for the CONTCHAR and ENDCHAR parameters of the $INPUT statement.

It is not possible to load a complete library file, but each subfile of the library file
can be loaded with ZCREATE. Note that ZCREATE does not automatically insert
the control records that text to be processed later by ZLI BMAI NT must contain,to
conform to SSF format. Conversion from SARF to SSF is done with the MOVE
command of iusMAINT.

5-08

CREATE

The Data Services Language (DSL) available from within the COMFI LE allows the
user to select (and load into the output file) only certain records frorr: the input file. It
also allows these selected records, or all the records if no selection took place, to
be modified by inserting new fields or by updating and moving existing fields. The
records which can be loaded into the output file may be the selected records, or
all of the records including the selected (and possibly modified) ones. This feature
allows correction of a file at record level by selection of incorrect records, correction
of these records, and then loading the corrected file. A complete description of the
DSL is given in this section.

In addition to the record selection performed by the DSL, you can ask $CREATE to
ignore the first n-1 records of the input file and start processing at the n'th input
record. This is done by using the START= n parameter. Similarly, you can ask the
utility to stop processing the input file as soon asp records have been printed
(HALT= p).

It is poss1ole to load «sample» files by selecting one input record every m records
(INCR=m).

The ~CREATE utility will print the output file while it is loaded if the PRINT
parameter is specified.

A U FAS Indexed Sequential file can be accessed according to any of its secondary
indexes by using the parameter KEYLOC=secondary-key-location in the file­
description.

When the input file contains deleted records, these records are transmitted to the
output file unless the output file was preallocated with the ND LR EC parameter
present. This means that $CREATE will not change the relative numbers within
a file if it is used carefully.

Non-standard input tapes and cassettes are accepted by ZCR EATE, but there are
a number of restrictions, such as no automatic track switching for cassettes, and no
automatic repositioning at restart. With non-standard tapes and cassettes, each
block is read and written as a record, and Fl LEFORM = NSTD should be specified
in the INDEF and OUTDEF parameters. A tape mark is printed and written as a
one byte block (hexadecimal FF). Every block is read and written, including the
labels, so there is no natural end to the processing, and the TAPEND or HALT
parameter must be used to end processing. Using the DSL record selection facility,
it is possible to produce a standard output tape or cassette from a non-standard
input file. It is also possible to produce a standard disk file with RECFORM=U
from a non-standard tape or cassette file by writing the output file with one record
per block. The user should take care when using these facilities, because of the lack
of safeguards mentioned above.

In all cases with $CREATE, the default values of the parameters require the
minimum of resources, but give the maximum elapsed time. The execution of
$CREATE can be speeded up by setting the NBBUF and BPB parameters (INDEE
OUTDEF, and PRTDEF) to greater than 1.

5-09

I

INFILE
INF I LES
OUT FILE
INOEF
OUTOEF
SYSOUT
PRTFILE
PRTOEF
PR TOUT
COMFILE

START

INICR

IHIAU

FILLER

IP'IRH l'Nllf

llll!!ir. p»~lets clesaihe dr. inpul ••Kl oulpul files which .-.e used
I.flt' J&:;REATE_ The liile-d1.5l."liplion ;.wwl ((lefine-1....-;.1111e1er-s die
clesailnl iin Secliion 4.

INFILE(SI •-I OUTFILE ..-e llliilll(lal01ry., l•ll rite 01hers ~ opllonat

This piillame11e11 rs. opll«•llfilll .. ~md desnll~ a hie whiidn rs. 11&·!d 10

c:nnl;aiUll the OSL 'S;l<ailements_ A cumpllele desaiipliion ol Rile DSL.
Sli.Jlemetr111S iis gM'IOellll iin lhiis Sft::liion. I ff ahe ,,.. «Mnetetr iis lfllOI specifiied.
<Ill liar lrlllJl.ll irecorck will be copied mlhout iJDY H'Slruc:luriing of lhe
tbl;a field!;..

TIUs optiiorwll p;;.-dlllleler iindiicates lhal Ille fiirsl n-1 records of the
iinput fileiire to be iignor-ed_ The ftiiirst irec.ord to be~ fo1r

ost i.1ll1ld turlm 1111iilii1y proa5Siing 1s 111e ,-ttnr"d nt1mlbered 1r11 m the!

sequret!llOC! «»fl ii11lpllll R'DJltls: "1lll re100rds .. iimdudiing Ihle 1111"th., "1lher 11tnce

111-l "lh ..-e pr~- If dr p;.w-.anwdn iis <<MlllHitttm .. lfll(Q) ruords .-e
~«default w..illure of 1»,, ...t iii lllnli.1fW •~up to <eiight cligi1s llong..

~ PJl!r<.lllllllC!llcn ~·~ H«.'Dl'lld ~lnorn bw 'IM.lllrnpliirng._ Tlh1<omc! n1ect.0ir«k

\\'lllhidl ~ heu.0!1111 DSL ~~I "11te <ac•1n111!(C!((I,. -s;ff• Uiirrng lm'!iialhi <OOllC!- Fir«JUmi

~ uNDris;,. 0t11Ry <OJlllC! ~w mm u-s; ~lkc!«ff ff or lfm lhe!!r pn«.~alllllJ Hww
lllhr. u.uniilii11y_ Thi.16> oft nllr. 11ftDl«lki wthiidll <Jll~ ~!d ((lllll bw 11~ DSL ltOJn
bllh::11 pnncr.s..-.Qii11g. oi.Uy dle::Ne u-lllllr.nni 1,.mm.tt-1" 2mm+1 .. 31!1111+1,, ___ _
.ie W1111litklt11 linlll({J) llltw! «JUlpid Hiilke_ IH iii 0$!1mmii1t1ke!«.li" ..Ull lhe n~ iM"<e

~ <Ollll ff1011 ftun•lln p~"'liii11*91 (dd<a1tulln w<aikllle! ol u" Ullllld iin lllllliAftW be~
UJ41J n(()) 1e•u digias b11g Cnelfccji no fiiguine 5--2))_.

Tltniis op11iiocnwil p.11r h!'.lr Aiinmiits tlhr. <m1JOlllJlml @ff 'oottpurn pr~ bw
SCREATE

EArch rrnlOllld IPJll~~ ifl; fCUl.unnnieu.H .. $U~lliirnig <.11n <OllllC!- P1r«JJCOe~inll!!IJ $1lCOf>H>

menn p lllCDOll cd& im...e~ M!llll CUUllllkd. The~ IJUr""111lC~UIC~ ~ be~ llllp tt«»
1e!iigtnn «lkr.iimoo~I «.iigi11$ lk011ng, UJ111ldl llhc! «ieft;audln WUJ~ku.e! cc..J11.1mc$..Biii Rhe! rncmoirnlk
Uo llJt: 11*1«:11£15.~ intdf1e11 Ito Fiiu11111He~ 5--7»

Thi$ ~I p;Jlr~ ~iffiirs tllhwe ~ dttaracllft 11.0 be W6ladl
\1lrhem the muflpllll ir~ ;arie !longer th.Jn lllhle iitrrpld ~ The
pallrdhnf:4I dhUl!iEltn rmuw he spaciifiiadl ~ iJI <dloral!:!ft ~ «flJDlteS..
Uff 1the dtu1;x:tte1 n~d iis •~1 quottie .. m iiff ttthr.ine iis mm> dhar.arcttn
rciaJU~im¥) to lllhle gudkdiimv.g \Wllkue n~ i1I bro dgitl: he~imull
ll1llUIY be giiwAftm._ lflhr deffUltt ~ a::har~ j6; OJI~··

lflhiis •iioirlWI par.anmettcm- ~iffifi ~ 1lllM? «OOl1lpw1l ffiilke iis t«B lie
priimltlftll \111Ahiike iitt iis lei~ I~ mtiaii PfflHINllf iis ommiilltnfl,, 1lllM? ooly
U1UllpUdt prcaxrlurnmll iis ttlhutt ~om the JOIRL Whml iit iis ~ ..
;andl iiff 1lhe PRTFILE pm-.alllldtJr iis 11m11 giiuftn,, a ~ SYSOtLrr
'.lldblfiilke iis prnrolulmd.. Mnn PRTFHLIE iis giftwm\, iit cdesorii!Jll5 ~ ~tt
~tt fftillt! 'Glhiidtn lll1llll8;0: lflww! lileieJm 1p1nr .. wiiaruw.1Jw pt~ (iiff iitt: ii$ <al

<di8ilk ffiite) .. Tin.e WmtJr ~ CllllmMI «J.M.(flr llltoiis ffijte i.B1Tidf •~ \llMW iitt. iis
IPJr<DJOt$'Btd 11Jw Ou1111fJJU11t \\1/rriitl6r,. wiW. lllhle PllUOOT tpIBt<anlllftIDL.

5-10

CREATE

APPEND

KEYLOC

TAPEND

STEPOPT

Note:

This parameter is optimal. and (;.auses the output RCOrds to be
added to the existing output file. If OUTFI LE is not a s;eq~tial
file. the reconJs to be added must be presei."lted in ~ding siequenc:re
by key value. and their key values must be ~ter th;an the highest
key value already present in the file. APPEND cannot be used with
COMPACT cassetlt!) files and OOO-$tandanJ tape and ~tte files.
This parameter can only be used when the OUTf I LE is a
sequential BFAS or UFAS file. OUTFILE can also be a BF.AS
Indexed file but one must remember that in onler to load such a
file the records must be delivered in a s~ sequence.

This optional parameter provides the user with a means of $peclfying
which s-econdary index of a UFAS Indexed Sequential input file is
to be used to access the records of the file. When this is omitted. the
records are accessed in the primary index order. This parameter
cannot be used with BFAS lndexal Sequential files. It may be up to

five digits long.

This optional parameter is used when noo-st;andard files are being
processed. Processing stops after no tape marks have been read. The
default vaiue is 1 .. but TAPEND should be considered mandatofV
for non-standard tape and cassette files.

This parameter describes the processing options for the step.

Under the previous release of Level 64 GOOS. it was possible to produce a printed report
with $CREATE. This option has been replaced as follows:

- AUDIT information is now automatically produced in the JOR.

- PARAM is now replaced by the PRINT option of the SINPUT Basic JCL
statement. When this option is used, the contents of the input enclosure are
printed out by the system.

S-11

I

I

I

I

I

CREATE

Examples:

1) To create a cataloged file of any organization from another cataloged file :

CREATE INFILE = .THISFILE, OUTFILE = .OTHERFILE;

2) To load a temporary file with the contents of an input enclosure with variable
records, and to simultaneously load a permanent sysout file where the records
will be formatted in hexadecimal. A title will be created, and it will be printed
on each page of the output during the processing of the $WRITER statement:

PREALLOC PERM. OUTPUT, RESIDENT= (SIZE= 1), Fl LEST AT= UNCAT,
BFAS =(SEO= (BLKSIZE = 1204, RECSIZE = 600, RECFORM =VB));
CREATE INFILE = *CARDS,OUTFILE=(MYFILE, TEMPRY,END=PASS) I

OUTDEF = (BLKSIZE = 5000, RECSIZE = 256, RECFORM =VB,
FILEFORM = BFAS),

PRTFI LE= (PERM. OUTPUT, RESIDENT),
PRINT= (FORMAT= HEX, TITLE= 'THIS IS MY FILE');

~INPUT CARDS, PR I NT I CONTCHAR = , /'I ENDCHAR = , ; I;

AAAA ... A;
BBBBBBBBB ... Bl
BBBBBBB ... B/
BBBBBBBBBBBB;
C;
~ENDINPUT;

As can be seen, it is easy to create test files which can be used to debug new
programs. These files can have variable length records, and the record length can
be longer than 80 characters.

3) To append onto a cassette file records from a separate deck of cards with printing
of the created records. The printing of these records will be in both formats :

:ilphanumeric and hexadecimal ; each line will start in column 5 and stop at column 155.

CREATE INFILE =(CARDS, DEVCLASS = CD/R/C51, MEDIA= READER),
INDEF =(BLKSIZE == 51, RECSIZE = 51, RECFORM = F),
OUTFILE = (K7FILE, DEVCLASS =CS, MEDIA= K7), FILLER='*'
APPEND, PRTDEF =(PRINTER= (MARGIN= 5)),
PRTOUT = (DEVCLASS = PR/H155),
PRINT= (FORMAT= BOTH);

4) To create a native file from a foreign tape. This file has 10 tapemarks, and the
file to be created is between the 30'th block and the 1 O'th tape mark ; the tape
marks are not to be copied onto the new created standard file :

CREATE INFILE = (MYTAPE, DEVCLASS = MT/T9/D1600,
MEDIA= 1070, LABEL= NONE),

INDEF = (BLKSIZE = 1000, RECSIZE = 1000, RECFORM = U,
Fl LE FORM = NSTD),

OUTFILE =(STANDARD, DEVCLASS = MS/M400, MEDIA =C036),
TAPEND = 10, COMFILE = *DSL;

SINPUT DSL, PRINT;
RECORD: OMIT= 1,1 EQ 1FF.HEXA

OMIT= RECNB LT UBIN '30'
END:
$ENDINPUT;

5-12

CREATE

5) To update a file which has a bad byte 19 of the word SMITH. The selection is
made on the bad name SMITZ DAVE. The byte 19 is corrected, and all the
records of the file are copied by the TRANSMIT= ALL parameter.
The copy will be faster if the number of buffers and the blocks per buffer are
greater than 1 :

CREATE INFILE = (OLDFILE, RESIDENT),
OUTFI LE= (NEWFI LE, RESIDENT), INDEF = (NBBUF=2, BPB = 3),
OUTDEF = (NBBUF = 2, BPB = 3), COMFI LE= *DSL;

~INPUT DSL, PRINT;
RECORD: INCLUDE= 15,10 EQ' SMITZ DAVE'

ARRANGE 1,18 I H' 20,200
END: TRANSMIT= ALL

%ENDINPUT;

6) To create a sequential file from a UFAS Indexed Sequential file, where the
records are being taken from a secondary index :

PREALLOC TEST. SORTIDX, DEVCLASS = MS/M400, UNIT= CYL,
Fl LESTAT = UNCAT, GLOBAL= {MEDIA= C062, SIZE= 50),
UFAS =(INDEXED= (CISIZE = 1024, RECSIZE = 200,

RECFORM = FB, KEYLOC = 1, KEYSIZE = 6,
SECIDX = ({KEYLOC ::r 134,KEYSIZE = 10,

DUPREC))));
CREATE INFI LE= (TEST. PERF2SO, DEVCLASS = MS/M400,

MEDIA= C062),
OUTFI LE= (TEST. SORTIDX, DEVCLASS= MS/M400,

MEDIA= C062);
SORTIDX OUTFILE =(TEST. SORTIDX, DEVCLASS = MS/M400,

MEDIA= C062);
CREATE INFI LE= (TEST. SORTIDX, DEVCLASS = MS/M400,

MEDIA= C062),
OUTFI LE= (SEQUENTIAL, DEVCLASS = MS/M400,

MEDIA= C083),
KEYLOC = 134;

7) To create a new file from a set of files with checkpoints every 50,000 records on
INFI LES and OUTFI LES:

CREATE IN FILES= (K71, DEVCLASS =CS, MEDIA= K70NE)'
(K72, DEVCLASS =CS, MEDIA= K7TWO)

OUTFI LE= (COLLECT, DEVCLASS = MS/M400, MEDIA= C036),
INDEF = {CKPTLIM = 50000),
STEPOPT =REPEAT;

5-13

I

I

I

I

PRINT

Function :

To print records from a file.

Statement form :

PRINT
{

INFILE
INFI LES

(file-description) }
((tile-description-1) r ,(tile-description-2) I ...)

[,INDEF

[,PRTFILE

[,PRTDEF

(define-parameters)]

(print-file-description) J

(define-parameters) J

I ,PATOUT (sysout-parameters) l
[,COMFI LE = (file-description) J

[,TITLE 'character-string']

[FORMAT =J~~~~A} J
[,START =rr !]
[,INCR =11 f]
(,HALT. pj

[,KEYLOC key-position I

[,TAPEND {1} J
[,STEPOPT = (step-parameters)] ;

5-14

PRINT

Statement description :

This utility will print records for a disk, cassette, or a tape file, from an input
enclosure, or from a card deck. Through parameters the user may specify that only
every n'th record be printed, where n is coded by the user. In the same manner, a
user may request that printing is to start or finish after the m'th record.

Input records are retrieved sequentially, and with UFAS files only, they may be
retrieved according to the order of a specified secondary index.

The input file may be any BFAS file, any UFAS file, any IBM DOS file, any Level 62
file, any input enclosure, or any card deck. All record formats are accepted.

Records may be printed in alphabetic form, hexadecimal form, or both. The user
may specify the line length, margin, number of copies and so on, depending on the
values of the parameters of PATOUT.

A title can be specified, and this is placed as a heading on each page of the output.

The $PRINT utility accepts a permanent SYSOUT file into which the output will
be written, instead of having the output dispatched direct to the System Output
Writer for printing.

Since %PRINT accepts DSL statements, it is possible to select only certain records
for printing. It is also possible to re-arrange or omit data fields within records before
each record is printed.

Cards containing more than 80 characters per record can also be printed, if the
correct values of CONTCHAR and INCHAR are chosen with i1NPUT.

The default options of SPRINT require from the system the minimum of resources, but
give the maximum elapsed time. Execution of SPRINT can be speeded up by giving the NBBUF
and BPB options of the INDEF and PRTDEF parameters a value greater than I.

5-15

I

Statement parameters :

INFILE
INFILES
INDEF

PRTFILE
PRTDEF

PATOUT

COMFILE

TITLE

FORMAT

START

INCR

HALT

KEYLOC

These keywords describe the input file from which the records are
to be printed. The complete definition of the file-description is given
in Section 4.

These optional keywords are followed by a parameter group which
describes a permanent file into which the printed output is written.

This optional parameter is followed by a parameter group which contains
options which control the printing of PRTFI LE by Output Writer.

This optional keyword designates the source for the DSL statements.

This optional keyword may be coded to provide a title which will
appear at the head of each page of the listing. The keyword is
followed by the title contained within single quotes. The character
string may not contain a single quote. The maximum length is 114
characters. If the title string is continued from one card to the next
then the continuation character (-) must be the last character on
the card to be continued.

For example :

TITLE= «THIS LINE IS TOO LON­

G TO FIT ON ONE CARD»

The character (G) above is in column 1 of the second card.

This optional keyword allows the user to choose how the records
are printed. 1f FORMAT= ALPHA then the records are printed as
alphabetic characters. If FORMAT= HEX then the record contents
are printed in hexadecimal notation, two hex digits to a byte. If
FORMAT= BOTH then the contents of records are printed in both
alphabetic and hexadecimal formats.

If FORMAT is not coded then FORMAT= ALPHA is assumed.

This optional keyword allows the user to specify that printing starts
at a given record number. If start is omitted then printing commences
at the first record.

This optional keyword allows the user to specify that only every n' th
record be selected for printing. For example if I NCR = 8 then only
records 1, 9, 17, 25, etc. will be printed.

If I NCR is not specified then all input records will be selected for
printing, subject, of course, to any selection instructions provided
through DSL. Note that I NCR selection occurs after INCLUDE/
OMIT processing (refer to figure 5-2).

This optional keyword allows the user to specify that printing will
finish after a given number of records have been listed. For example
if HALT= 86 then printing will terminate after the 86th record is
displayed. If HALT is omitted then printing will continue until an
end-of-file is encountered on input (refer to figure 5-2).

This optional parameter provides the user with a means of specifying
which index of an UFAS Indexed Sequential input file is to be used to
access the records of the file. When this is omitted, the records are
accessed in the primary index order.

5-16

PRINT

TAPEND

STE PO PT

Example :

This optional parameter is a two digit number that specifies the
number of tape marks that are to be read before processing stops.
This option is only available when the input file definition
holds the parameter Fl LE FORM= NSTD. The default value is 1,
but the option should be considered mandatory.

This parameter describes the processing option for the step.

1) To print a cataloged file of any organization :

PRINT INFILE = THISFILE;

2) To print a passed temporary file into a permanent sysout file with formatted
output in alpha and hexadecimal with a title printed on each page. The records
50, 70, 90, 110, 130, 150, 170, 190, 210, 230 and 250 will be written into the
permanent sysout file. A $WRITER statement can print this file :

PREALLOC PRIVATE. OUTPUT, RESIDENT= (SIZE= 1),
FILESTAT= UNCAT, BFAS= (SEO= (BLKSIZE= 1208
RECSIZE = 600, RECFORM =VB));

PRINT INFILE = (MYFILE, TEMPRY, END= PASS),
PRTFILE =(PRIVATE. OUTPUT, RESIDENT),
FORMAT= BOTH, TITLE= 'THIS IS MY FILE',
START= 50, INCR = 20, HALT= 11 ;

3) To print a cassette file with labels, but of any foreign organization, and with
processing stopping when the fourth tape mark is found or if 200 records
(blocks) have been printed.

The output format will be alpha (default), the paper width is 70 characters, and
the margin width is 10 characters; this means that the blocks will be printed from
column 11 to column 70. The record selected will be the first 9 records and the
records with a number greater than 50. These records will be formatted as
follows:

60

xxxxxxxxxxxxxxxxxxxxxxx ... xx

PPINT INFI LE= (MYK7, DEVCLASS =CS, MEDIA= K7),
INDEF= (BLKSIZE = 200, RECSIZE = 200, RECFORM = U,

Fl LE FORM= NSTD), TAPEND = 4, HALT= 200,
PRTFILE =(PRIVATE.OUTPUT, RESIDENT),
PATOUT= (DEVCLASS = PR/H70),
PRTDEF =(PRINTER =(MARGIN= 10)),COMFILE =*DSL;

$INPUT DSL;
RECORD: INCLUDE= RECNB LT UBIN '10'

INCLUDE= RECNB GT UBIN '50'
ARRANGE =·:·1, 10,':'50, 8':'19, 12':'END:

SENDINPUT;

4) To print a UFAS indexed file according to one of its secondary indexes.

PRINT INFI LE= (TEST. SORTIDX, DEVCLASS = MS/M400,
MEDIA= C062), KEYLOC = 134;

5) To print a set of files :

PRINT INFILE =((CAB, DEVCLASS = MS/M400, MEDIA= C036),
(CAC, DEVCLASS = MS/M400, MEDIA= C038));

5-17

THE DATA SERVICES LANGUAGE

I With the utility programs $COMPARE, SCREATE, and SPRINT the user may supply a
GCOS input enclosure or any file containing DSL (Data Services Language) statements.
Through DSL statements the user may request the following services :

that certain input records be omitted from the output record stream ;

that only certain input records be included in the output record stream ;

that the order and contents of data fields be changed within records.

The selection/omission process may be based on a comparison between two data fields

or between a data field and a constant.

The job deck for a utility execution, with DSL, will have the format shown in
Figure 5-1.

DSL statements may also be entered from a source library in which they have been
previously loaded. They should be loaded as TYPE = DATASSF by ZLI BMAI NT SL ;
for further details see the Library Maintenance Reference Manual.

~ENDJOB;

~ENDINPUT;

$INPUT name ;

UTILX ... COMFILE =*name ;

$JOB ... ;

UTI LX represents the name of any record level utility Note that the DSL statements
may also be contained in a file or subfile.

Figure 5-1. Job Deck for Utility with DSL

5-18

·SL DECK FORMAT

>SL Syntax Rules

The format of a DSL deck is as follows :

I { INCLUDE= condition [AND condition]... l l
j
1

p~:~.~u~~-~~~~:~i~i~:.~A~~~~~:~i1tion] ...] ... I VIVll I - l.;UllUIUVll LMl"LJ l,,VllUILIVllj ... l J'
L \[OMIT =condition [AND condition] ...] ...

RECORD:

[ARRANGE= arrange element [arrange element] ...]

END: [TRANSMIT= { SEL:c~ED} J
Thus a DSL deck consists of an optional set of I NC LU DE statements or an optional set
of OMIT statements, followed independently by an optional ARRANGE statement.
The start and end irfentifiers, RECORD: and END: must always be present. Every DSL
deck must be in the above order. After the END, an optional TRANSMIT statement
may be given.

The entity «condition» in the above definition is described in detail below. A
«condition» describes a comparison or test to be made on records processed by the
utility. The value of a condition is true (T) or false (F).

DSL statements are coded in free format. There must be at least one separator between
each element. A separator may be either a space character, or an opening parenthesis
"(",or a closing parenthesis")", or a comma. Any number of spaces may appear before
or after a separator. The main advantage in using parenthesis and commas is in legib­
ility. Using these rules the following are all equivalent:

INCLUDE

INCLUDE

INCLUDE

INCLUDE

36 4 NE PDEC 'O'

36,4 NE PDEC 'O'

(36 4) NE (PDEC, 'O'

36(4) NE PDEC ('O')

Note that left and right parenthesis do not have to balance.

Continuation from one card to the next is automatic :the next column after 80 is
column 1.

5-19

I

The INCLUDE Statement

The OMIT Statement

If a DSL deck contains one or more INCLUDE clauses then, for a record to be accepted,
the condition values must satisfy at least one of the INCLUDE statements. An
I NC LU DE statement is satisfied only when all the conditions in it are true {T).

Consider the DSL example below :

RECORD:

END:

INCLUDE= ca

INCLUDE= cb AND cc

INCLUDE= cd AND ce AND cf

There are three INCLUDE statements. Records will only be accepted from the input
stream if:

ca= T

or:

cb = T and cc T

or :

cd = T and ce = T and cf = T

Input records which do not satisfy any of the three condition sets above will be skipped.

The tests are performed in the order in which the INCLUDE statements occur. The
process of comparison and testing terminates as soon as any INCLUDE statement is
satisfied. Therefore for efficiency in execution it is recommended that the INCLUDE
statements most likely to be satisfied be placed before others which will be satisfied less
frequently.

INCLUDE statements must not be mixed with OMIT statements in the same DSL deck.

If a DSL deck contains one or more OMIT clauses then a record will be omitted if the
condition values satisfy at least one of the OMIT statements. OMIT statements are
provided as an alternate path of record selection, to be used when it is more convenient
to describe unwanted records. An OMIT statement is satisfied only when all the
conditions in it are true (T).

Consider the example below :

RECORD: OMIT= ca

END:

OMIT= cb AND cc

OMIT= cd AND ce AND cf

There are three OMIT statements present. Input stream records will be excluded from
the output stream if

ca= T

or :

cb = T and cc = T

or:

cd = T and ce = T and cf = T

Input records which do not satisfy any of the three sets of conditions above wi II .be
included in the output stream.

5-20

The tests are performed in the order in which the OMIT statements occur. The process
of comparison and testing terminates as soon as a statement is satisfied. Therefore for
efficiency in execution it is recommended that OMIT statements most likely to be
satisfied be placed before others which will be satisfied less frequently.

DSL Condition Elements

OMIT statements must not be mixed with INCLUDE statements in the same DSL deck.

The condition elements which appear in OMIT and I NC LU DE statements contain
parameters which describe the type of data field being addressed. The five data types
available are shown in Table 5-2.

Parameter Description Maximum
length (bytes)

CHAR Alphanumeric Character Data 256

PDEC Packed Decimal Data 16

UDEC Unpacked Decimal Data 31

SBIN Signed Binary Data 2 or 4

UBIN Unsigned Binary Data 2 or 4

HEXA Bit String Data 4

Table 5-2. Data Field Types in DSL

The conditions can have one of three possible forms. The first form is applicable only
to decimal or binary data.

position length
{

POS } { UDEC}
NEG PDEC

ZERO SBIN

The «position» is the byte location at which the data field starts in the record. The
po~ition of the first byte in a record is 1. The «length» gives the field length in bytes.
The next field gives the condition to be s·atisfied for the condition element to have the value
true. The value true may be associated with positive field contents, or zero, or negative.
The last keyword specifies the data format, Unpacked Decimal or Packed Decimal or
Signed Binary.

Examples:

3, 7 ZERO UDEC

This element will be true when the 7 byte long Unpacked Decimal field starting at byte
3 of input records is zero.

1, 4 POS SBIN

The value is true when the signed binary full word data field starting at the first byte
of the record is positive.

5-21

I

I

The second form of condition element is :

EQ CHAR

NE PDEC

position length LT position length UDEC

LE SBIN

GT UBIN

GE L HEXA

In this form the position and length of two data fields is given. The value is true if the
asserted relationship between the fields is correct.

There are six possible relationships :

EO Equality

NE Not Equal

LT Less Than

LE Less Than or Equal

GT Greater Than

GE Greater Than or Equal

If no data format is supplied then the fields are assumed to be CHAR.

Examples:

(4 I 4) EQ (28 I 4) SBIN

The condition is true if the signed binary numbers at locations 4 and 28 are equal.
Both fields are fullword (4 bytes long).

18,6 GE 5,7 UDEC

Two Unpacked Decimal fields are compared, one located at byte position 18, the other
at 5. The first field is 6 bytes long, the second is 7. The condition will be true if the
first decimal value is greater than or equal to the second.

(5 I 7) LT (18 , 6 UDEC)

This example has exactly the same meaning as the previous one.

The third form of condition element is used when the comparison is to be performed
between a data field or the record number and a constant value.

EO CHAR

NE PDEC l position length~ LT UDEC 'constant'

RECNB LE SBIN

GT UBIN

GE HEXA

R ECNB is the name of a variable whose current value is the record number of the
current input record. The data type of this variable is UBIN and it is 4 bytes long.

The value of this condition form is t ue if the asserted relationship between the field
and the constant is correct. The data formats supported are 1he same as for the second
condition form.

5--22

INCLUDE andOMIT Examples

The ARRANGE Statement

The TRANSMIT Statement

The constant is enclosed in apostrophes. If the value is numeric it has the form of a
signed (SBIN), or unsigned (UBIN, UDEC) integer decimal value. In these cases a
conversion is first made on the constant to produce the internal data format which is
used for comparison. If the constant is CHAR in type then it must be the same length
as the field against which the comparison is made. The sum of the constant lengths
occurring in a RECORD: paragraph must not exceed 512 bytes. If the value is hexa­
decimal, it has the form of 2n hexadecimal digits (HEXA), where n is between 1 and 4.

In a file transfer operation it is required that only those rncoids with non-zero fields at
locations 24 and 36 (4bytes PDEC) be moved.

INCLUDE = (36 4 NE PDEC 'O') AND (24 4 NE PDEC 'O')

This statement will cause a record to be skipped if either field is zero. The
equivalent operation using OMIT is :

OMIT (36 4) ZERO

OMIT (24 4) ZERO

PDEC,

PDEC

The function of an AR RANGE statement is to re-order the contents of records and
to insert or delete from a record data fields or constant values. It is an optional
statement. If no ARRANGE statement is provided then the structure of ouput
records is exactly the same as on input. Only one such statement may be given
in a DSL deck. The format of the ARRANGE statement is :

ARRANGE= l position length l
data-field-type 'constant' ~ [

j position length i]
' l data-field-type 'constant' ~

Where "position" and "length" define fields of the input record (in units of bytes).
Data field types are given in Table 5-2, the default value being CHAR. The position
of the first byte in a record is 1. Through the AR RANGE statement the user
provides a complete description of the output record, in terms of input record
fields. It is possible to have certain input fields repeated two or more times or to

have other input fields omitted.

Example:

ARRANGE = (18 , 40) 10 , 4) (61 , 20)

This ARRANGE statement describes output records to be 64 bytes long
(40 + 4 + 20 = 64). The first 40 output bytes will consist of bytes 18 to 57 of the
input record, the next 4 bytes will be input bytes 10 to 13 and the last 20 will be
61 to 80. Note that bytes 1 to 9, 14 to 17 and 58 to 60 of the input record will not

appear in the output record.

The DSL deck (and DSL processing) acts as an interface between the input file and
the utility that is applied to it. If record selection is used, only certain records are
selected and submitted to the record re-arrangement process. These selected records
are then passed on to the utility, which can perform further processing on them
before they are directed to the output file.

The TRAN SM IT statement allows you to either :

- Only pass the selected records to the utility (SELECTED)

or :

- Pass both the re-arranged records and the non-selected records on to the utility.

5-23

I

I

DSL ENTRY METHOD

This facility enables you to select certain records for re-arrangement and then copy the
whole input file, including the re-arranged records. For example, a copy of a file can
be made with only certain records modified (or corrected), and the rest of the records
unaltered. If the TRANSMIT statement is omitted, then only the selected records are
passed on to the utility for further processing.

The format of the TRANSMIT statement is :

l SELECTED I TRANSMIT=
ALL

The JCL statement for a utility which accepts DSL contains an input enclosure name
or a source library subfile reference designated by the COMFILE keyword which
describes the source of the DSL deck. If COMFI LE is not present then it is assumed
that there are no DSL statements to be acted upon.

The format of the keyword for DSL entry is the same for all utilities for which DSL
is applicable :

COMFI LE = *input-enclosure-name

or:

COMFILE (library-name, SUBFILE = member-name

[
, {RESIDENT

DEVCLASS = device-name,MEDIA=volume-name

EXAMPLES WITH DSL USAGE

The recoras or an input file on tape are to be loaded into an indexed sequential file.
The tape is labeled. The records are fixed length : 100 bytes. Since the file will be
subject to a large number of insertions there is to be one dummy record present for
every three records loaded. The format of each record is shown below :

5 28 78 88 100

CUSTNO CUSTNAME ADDRESS SALES AREA DEBIT
UDEC CHAR CHAR CHAR UDEC

These input records have already been sorted in ascending order on the field CUSTNO.
This field will be used as the key in the resulting indexed sequential file.

The output format required for the indexed sequential file is :

11 15 38

SALES AREA CUSTNO CUSTNAME ADDRESS
CHAR UDEC CHAR CHAR

In addition the user wishes to select only those records in which :

1. The first character of SALES AREA is 'A' or 'B'

and:

2. The fourth character of SALES AREA is not 'L'.

5-24

88 100

DEBIT
UDEC

The job deck to load the file is :

gJOB
CREATE

$INPUT
RECORD:

PCJOB, USER= PJJC, PROJECT= DEVEL;
INFILE = (OLD. MASTER, DEVCLASS = MT/T9,

MEDIA= TLX44),
OUTFI LE =(SALE. SAS, DEVCLASS = MS/M402,

MEDIA= 084),
OUTDEF = (DUMMY REC= 3),
COMFI LE= *CONCA;
CONCA;
INCLUDE= (7S, 1 EQ 'A') AND (S1, 1 NE 'L')
INCLUDE= (7S, 1 EQ 'B') AND (S1,1 NE 'L')
ARRANGE=(78,10 1,4 5,23 28,50 88,13)

END:
iENDINPUT;
iENDJOB;

I

The input tape file, OLD. MASTER is on volume TLX44, the new file, SALE.SAS, on
volume 084. The SALE.SAS was allocated using $PREALLOC with the attributes I
KEYLOC = 11, KEYSIZE = 4, the position and length of the field CUSTNO. Note the
use of the optional punctuation characters () and comma to aid the understanding of
the OS L statements.

Note that the I NC LU DE data field specifications refer to the input record format and
not to the output format. Also, in the above AR RANGE statement it would be more
efficient to treat the fields CUSTNAME and ADDRESS as one single field, that is 5,23
28,50 :::::;> 5,73.

The second example (below) shows the use of DSL in conjunction with SPRINT.
Selected records from a file DEPT. SKI Lare to be printed in alphanumeric format after
they have been re-arranged to include only three fields from the input record.

The selected records are those where the field (10,4) has a value less than or equal to
ALMS and where the field (30,6) has a value not equal to '100000'. Only one in 10 of
the records selected will be printed and printing is to terminate after 50 records have
been printed.

~JOB
PRINT

$INPUT
RECORD:

END:

LOOK, USER= JJM, PROJECT= SPEC;
INFILE =(DEPT. SKIL, DEVCLASS = MS/M400,

MEDIA= VL89),
COMFILE = *PRINX, INCR = 10,HALT= 50;
PRINX;
OMIT= (10,4 GT CHAR 'ALMS')
OMIT= (30,6 EQ UDEC '100000')
ARRANGE= (10,4 30,6 40,20)

SENDINPUT;
$ENDJOB;

5-25

I

non-selected
records

Input file
-----~--........ ___ ./".....__ _...-.---~----

-

INFILE 1 INFILE 2

'----~

record counting process for start of
record selection process

record re-arrangement process
non-selected

records

I

' ________ ,. __ - --- - - - -- - - - - ~ - - - --- ._ - ----------
record

transmission
process

TRANSMIT= ALL
non-selected and

selected records transmitted
--

record
transmission

process

~-----... -- - -- - i----- - - -- - - - - - - - - __ .._ _____ _,

TRANSMIT= SELECTED

--
non-selected

records
dropped out

! ~

\ 7

•
record counting for I NCR

DSL and INCR
Selected records

Utility function processing
$COMPARE $CREATE $PRINT

1
OUTFI LE or PRTFI LE records

counting for HALT option

Figure 5-2. An outline of how DSL is used

5-26

*

TRANSMIT =SELECTED

non-selected
records

dropped out

\ 7

6. File level" utility specifications

!his section contains the full specifications for the File Level utility statements. The
descriptions are given in alphabetic order by statement name. Each utility specification
consists of :

1. The utility function;

2. The statement form, using the notation convention defined in the Preface;

3. A description of the utility operation;

4. A description of the parameters and keywords;

5. A set of one or more examples;

A summary of these utilities is provided in Table 6-1.

Statament name Function

$DEALLOC Deallocate a disk or tape file

$FILCHECK Check the integrity of a disk file

$FILDESC List file label information

$FILDUPLI Make a duplicate copy of a disk or tape file

$FILMODIF Change the name and/or the expiration date of disk
file

$FILPRINT Print the physical blocks of a file

$Fl LR EST Restore a $FILSAVE file onto disk

$FILSAVE Save disk file onto tape file

~PREALLOC Allocate space for a disk or tape file

$SORTIDX Sort and load secondary indexes of a disk file

Table 6-1. File Level Utilities

6-01

I

I

I

I

DEALLOC

Function:

To deallocate the storage space of a disk file or cataloged tape file. If the file is
cataloged, the catalog must be attached, and it is updated.

Statement form :

. {RESIDENT
DEALLOC external-file name ' DEVCLASS _ d · I MEDIA - d. 1· } r, J - ev1ce c ass, . - me 1a- 1st

LCATALOG =digit 1

CAT ~
[f I LEST AT= { UNCAT [,MOUNT= n) [,FIRSTVOL = n]

TEMP RY
[,FORCE] [,BYPASS]
[,STEPOPT = (step-parameters)];'

Statement description :

This utility removes all references to the named file from the Volume Table Of
Contents (VTOC). All the space extents allocated to the file are marked as free space
contents (that is, they may be used by future ~PREALLOC statements). If in the

deallocation process an extent is made available which is adjacent to other free
extents(then the adjacent free extents are concatenated into one larger extent of free
space. If the file being deallocated is multivolume, and an incomplete media-list
was given, the file will only be partially deallocated, and ma'{ be left in an inconsis­
tent state.
If the file to be deallocated is a cataloged tape file, the tape on which it resides
cannot be a multifile tape. Every volume of the file is then returned to a scratch state
by n:!writing thP. labels without a "catalog flag" and with an expired expiration date.
SVOLPREP must be used to deallocate non-cataloged files.

$VOLPR EP must also be used to deallocate cassette files. Passed temporary files may
be deallocated, but there is no need to, as a temporary file is automatically deallocated
when the file is closed and deassigned.

If the REPEAT option of STEPOPT is used, then in the case of an abort/restart,the
deallocation of a multi-volume file continues, even if the first volume has been
already deallocated.
At restart, every volume of the multivolume file is examined and searched for an
extent of the file to deallocate. If no extent is found for that file, a warning is issued
and processing continues with the following volumes.

Statement parameters :

Apart from the two parameters described below, the others are identical to the file­
description parameter group, with the following exceptions:

Fl RSTVOL may only be used with cataloged files

MOUNT must not be used for disk files, but it can be used for tape files.

BYPASS This optional parameter causes $DEALLOC to ignore any valid expiration
date on the file. If it is not specified, and the expiration date is not passed
then the utility will not deallocate the file, but will abnormally terminate.

FORCE This parameter, which is optional, is used to deallocate a cataloged file
on disk without consulting or modifying the catalog. It is especially
useful if the catalog was destroyed or incorrectly updated. Because the
catalog is not consulted, details such as the volumes and media on which
the file resides must be specified, and thus FILESTAT = UNCAT must
be used. The FORCE option should be used with care as a file recovery
facility.

CATALOG This parameter denotes the rank within the $ATTACH statement of
the catalog file that holds the file entry which is to be deallocated.
When omitted, all of the attached catalogs are searched, in increasing
order of rank, for the first catalog entry which matches the given file

name.

6-02

DEALLOC

Examples:

DEALLOC XO.DAT;

This deallocates the file named XQ DAT which by defau It is cataloged. The expirat­
ion date is assumed to have been passed since BYPASS has not been coded.

DEALLOC PQ.DATP, DEVCLASS = MSiM300, MEDIA= OVA;

The file PO.DATP on the MSU0310 disk volume OVA is de-allocated.

DEALLOC PAY.MASTER, DEVCLASS = MS/M400,
MEDIA= (M064A, ~llP64A, MR64A) ,BYPASS ;

The multi-volume file PAY.MASTER residing on MSU0400 disk volumes M064A,
MP64A, MR64A is de-allocated. The expiration date of PAY.MASTER will not be
checked before deallocation. Note that the order of the media must be the same as
that in the $PREALLOC statement.

The types of errors can be :

VTOC ERROR

Fl LE NOT ON VOLUME

Nonstandard VTOC

The files does not reside on
the volume.

EXPIRATION DATE NOT OVER The file is still valid and the
parameter BYPASS has not
been specified.

SYSTEM ERROR-RETURN CODE: xxxxx Storage management has used a
primitive giving an unexpected
return code.

DEALLOCATION NOT PERFORMED FOR Fl LE filename

ERROR DURING THE EXECUTION OF system primitive (return
code).

This message is displayed when a system primitive invoked by the utility has given
an unexpected return code.

MISSING OR ILLEGAL PARAMETERS

Parameters of the statement are not correct for the specified request.

OPTION STRING UNAVAILABLE

The step cannot get the option string.

UNKNOWN COMMAND

In the option string, the request is neither deallocate nor allocate.

6-03

FILCH ECK

Function

To ensure that a disk file may be processed by the standard access methods.

Statement form :

FILCH ECK external-file-name

RESIDENT

DEVCLASS

MEDIA

CATALOG

[, STEPOPT

Statement description :

device-class I
volume-name

catalog-number

(step-parameters)] ;

The utility verifies that the format of the file label, the dependent file organization
label and the additional extent label in the VTOC are correct. It also verifies that
control information fields within the file are correct. This last function applies only
to library files and certain system files.

In checking sequential files, it scans the file from the first block and bounds the file
either at the first end-of-file encountered or at the first inconsistency between the
track balance and the track allocation status.

The only file organization supported by iFI LCH ECK are sequential and library. It
does not support multivolume library files.

If an execution of $FILCHECK causes any label corrections to be made then it should
be followed by an execution of $VOLCHECK to verify the updated VTOC.

The report produced by the utility consists of a header which states the name of the
file being investigated followed by :

The volume name

The file organization

The cylinder/track addresses of the file space

The detected errors

The suggested action

6-04

FILCH ECK

- Statement Parameters :

CATALOG This optional parameter gives the rarik of the catalog containing the
file attributes

Messages:

The detected errors may be divided into two groups : Label Errors and File Errors.

Label Errors

FILE ORGANIZATION DEPENDANT LABEL FAILS AND CANNOT BE
CREATED VTOC EXTENT IS TOO SMALL

Self explanatory message. No correction can be made.

FILE LABEL VOLUME SERIAL NUMBER ERROR

This message is sent if in the first volume of the file, the volume serial number found
within the file label is not equal to the volume seriJI number found in the volume
label. No correction can be made.

FILE LABEL FORMAT IDENTIFICATION HAS BEEN CORRECTED

The format identification of the file label has been set to "F 1"

NO SPACE WAS ALLOCATED THIS FILE BEEN DELETED

All the extents of the file label are empty. The label is deleted.

ADDITIONAL EXTENT LABEL NOT ALLOWED THIS LABEL HAS BEEN
DELETED

The file label contains less than 3 extents, the additional extent label is then
forbidden and is deleted.

FILE ORGANIZATION DEPENDANT LABEL FAILING A NEW LABEL HAS
BEEN CREATED

Self explanatory message.

ADDITIONAL EXTENT LABEL KEY ERROR THIS LABEL HAS BEEN DELETED

The pointed label is not the expected additional extent label. The pointer to this label
is deleted.

ADDITIONAL EXTENT LABEL FORMAT IDENTIFICATION HAS BEEN
CORRECTED

The format identification within the additional extent label has been set to "F3"

ADDITIONAL EXTENT LABEL, NO SPACE WAS ALLOCATED, THIS LABEL
HAS BEEN DELETED

Self explanatory.

EXTENTS FOUND AFTER A NON VALIDATED EXTENT HAVE BEEN DELETED

An extent has been found with an error and has been deleted, all the following
extents are therefore deleted.

EXTENT SEQUENCE NUMBER ERROR EXTENTS HAVE BEEN DELETED

As the extent sequence number of an extent is wrong, this extent has been deleted.

EXTENT NUMBER ERROR THIS NUMBER HAS BEEN CORRECTED

Self explanatory message.

EXTENT BOUNDS ERROR THIS EXTENT HAS BEEN DELETED

The extent bounds are not valid since there is an inversion between the extent bounds
This extent is deleted.

6-05

FILCH ECK

- File Errors

THIS FILE IS EMPTY

There are not·any records within the sequential file

THIS FILE HAS BEEN BOUNDED AT LAST SUCCESSFUL CLOSE

The last close performed on the file is validated; all the data recorded prior to this
close are accessible.

THIS FILE HAS BEEN BOUNDED AT LAST AVAILABLE EXTENT END

The file check utility has closed the file at the end of the last available axtent as
described in the file label.

THIS FILE HAS BEEN BOUNDED AT LAST SUCCESSFUL WRITE

The file check utility has closed the file just after the last available record (at the
point where data processing has been interrupted).

LAST DATA BLOCK ADDRESS HAS BEEN UPDATED IN FILE LABEL

The last data block address recorded in the file label has been set to the last
available block recorded in the file.

TRACK BALANCE HAS BEEN UPDATED IN FILE LABEL

The track balance of the last available track has been modified in the label.

END FILE ADDRESS HAS BEEN UPDATED IN RECORD ZERO

The record number of the end of file record has been set in the record. zero of the
last available track.

TRACK BALANCE HAS BEEN UPDATED IN RECORD ZERO

The track balance of the last available track has been set in the record zero of this
track.

LOGICAL TRACKS HAVE BEEN SET FREE IN THE BAM

The file salvaging has freed some logical tracks from the BAM because these logical
tracks dorit pertain to any valid subfile.

LOGICAL TRACKS HAVE BEEN SET BUSY THE BAM

The file salvaging has sized logical tracks in the BAM which pertain to valid subfiles :
the corresponding flags are set to busy.

FREE LOGICAL TRACKS NUMBER HAS BEEN UPDATED IN THE BAM

The free logical tracks number in the header of the BAM block has been modified.

FORMATED LOGICAL TRACKS NUMBER HAS BEEN UPDATED IN THE BAM

The number of formated logical tracks in the header of the BAM block has been
modified.

MAXIMUM SUBFILE IDENTIFIER HAS BEEN UPDATED IN FILE
ORGANIZATION DEPENDANT FILE LABEL

Self explanatory message.

DIRECTORY OVERFLOW INDICATOR HAS BEEN UPDATED IN FILE
ORGANIZATION DEPENDANT Fl LE LABEL.

Self explanatory message.

INVALID SUBFILE IDENTIFIER

Subfile has been bounded : one of the blocks chained to a subfile has a wrong subfile
identifier. The subfile is bounded at the previous block.

6-06

FILCH ECK

POINTER ERROR A LOGICAL TRACK HAS BEEN DELETED

A prior pointer error has been found while checking a subfile. The subfile has been
reduced to its shortest part.

Fl LE IS NOT FORMATED

The file has been allocated but not still opened (no formating).

SUBFILE BEGINNING ADDRESS HAS BEEN UPDATED

The begin address of a subfile has been updated in the subfile entry of the directory.

AN INVALID ENTRY HAS BEEN FOUND IN DIRECTORY

Self explanatory message

AN INVALID BLOCK HAS BEEN FOUND IN BAM,

Self explanatory message

DIRECTORY OVERFLOW HAS BEEN BOUNDED AT LAST AVAILABLE BLOCK

An invalid directory block has been found in directory in directory overflow, and one
has been bounded in the preceding block.

SUBFILE ENDING ADDRESS HAS BEEN UPDATED

The end address of a subfile has been updated in the subfile entry of the directory
The suggested action message will be one of the following :

NO ACTION

RESTORE FILE

RESTORE VTOC

DEALLOCATE FILE

PREALLOCATE Fl LE

PREPARE VOLUME

Example:

Use $Fl LR EST to restore file

Use $VOLREST to restore volume

Use $DEALLOC to delete file

Use $PREALLOC to re-build file

Use $VOLPREP to prepare the volume

FILCH ECK CRU.MP,DEVCLASS = MS/M400,MEDIA = BXN;

6-07

I

FILDESC

- Function:

To list the label and usage information for a disk, tape or cassette file whose name
is known. When the external-file-name is unknown, ivoLCONTS has to be used.

- Statement form :

FILDESC INFILE =(file-description)

[, PRTF I LE = (output-file-description)]

[, PRTDEF (define-parameter)]

(, PATOUT = (sysout-parameters)]

[,SHORT)

[, STE PO Pl\= (step-parameters)];

- Statement description :

This utility lists the file attributes and volume information contained in the labels of
a disk or, tape or cassette file. The following information is provided in the utility
report:

file name

volume name

volume sequence number

generating system
creation date

expiration date

file format family (UFAS or BFAS)

file organization

unit of allocation (disk only)

record format (RECFORM)

block length(BLKSIZE)

record length (RECSIZE)

for disk files

for BFAS indexed
sequential files

for libraries

number of extents
start and end address of each extent
possibility of deleted records

presence of master indexes
presence of independent overflow
presence of cylinder overflow
key length and key position
number of index levels
number of deleted records
number of active records in prime data area
number of references to overflow records
number of full cylinder overflow areas
number of available tracks in independent overflow
number of cylinder overflow tracks

a list of the subfiles with creation and last modification
dates and the percentage of used space.

This information is listed for the first volume. For subsequent volumes only extent
information is printed and volume sequence numbers checked.

6-08

For UFAS disk files, additional information is provided.

The file status and status value information is given for software maintenance
purposes only. UFAS will automatically salvage any unstable file next time it
is opened in update mode.

For UFAS Sequential Relative :

file status (normal or unstable)
data control interval format
record format (RECFORM)
data control interval size (CISIZE)
record size (RECSIZE)
number of allocated control intervals
first relative track address
number of ci 's per track

number of formatted control intervals

For UFAS Indexed, in addition to the above details, the following information is
listed:

Data control area size (CASIZE)
key position from label
key position given in prealloc (KEYLOC)
key length (KEYSIZE}
control interval free space (CIFSP)
control area free space (CAFSP)
index control interval size
number of index levels
control interval number of root index

For the lowest level index address space:

number of allocated control intervals
first relative track address
number of ci's per track

number of formatted control intervals

This information is also listed for the higher level index address space.

Additionally, the utility provides:

number of active data control intervals
number of control interval splittings
number of control area splittings

For information on the use of the $FI LDESC with UFAS l·D-S/11 files see the
publication l-D-S/11 User Guide.

If the SHORT option is used, only the contents of the FL 1 and FL3 disk file labels
will be displayed. If it is not given, the F L2 label information is displayed, and the
file can be logically opened to give further information.

When the file to be described is cataloged, the catalog entry should be accessible.

When the file is multivolume, the volume mounting requirements are those needed
for a correct open of the file.

6-09

I

I

I

I

FILDESC

For 8 FAS Indexed Sequential files unless SHORT is used, additional information on
file usage is displayed. This information is :

For each prime track data :

. The greatest key values.

. The greatest key values in overflow.

Note that the printed key value is limited to 20 characters. Leftmost characters
beyond the first 20 are not printed.

The number of active data records.

The number of deleted records.

The number of associated active records in cylinder overflow.

The number of associated deleted records in cylinder overflow.

The number of associated-active records in general overflow.

The number of associated deleted records in general overflow.

For each cylinder, the number of available record locations and "percentage free",
in the cylinder overflow.

For the complete file, the number of available record location and "percentage
free", in the general overflow.

Statement parameters :

INFILE

PRTFILE
PRTDEF
PRTOUT

SHORT

STE PO PT

Example:

This keyword introduces a parameter group which describes the file
to be processed. It is mandatory, and the parameter group is described
in Section 4. SHARE=DIR must be used with libraries to obtain
the list of subfiles.
These parameter describe the output file and how it is processed

This optional keyword reduces the amount of information to be
displayed about the given file. The absence. of SHORT produces an
extended description of the file and statistical information on its
usage, when available. SHORT causes a less detailed description to be
produced, and no statistical information is given.

This parameter describes the processing options for the utilities

FILDESC INFILE (P.XYR,DEVCLASS = MS/M400, MEDIA= (80401,
80402));

a file description of P.XYR, a two-volume file, is requested.

Step Completion Conditions :

The user should note that $Fl LDESC uses a temporary work file to store and sort
the list of subfiles when the file to be described is a library.
This temporary work file is named H_SUBFLS, and is a UFAS indexed sequential file
It is accessed using the name H_SUBFLS as the internal-file-name. This file will be­
reterred to by name m some of the error messages.

If the file to be described is a multivolume file, the volume mounting depends upon
the file organization requirements. For 8FAS files, MOUNT= 1 can be used. For
libraries and UFAS files, MOUNT should preferably not be used to avoid the risk of
abnormal file openings.

6-10

FILDESC

The majority of errors that are encountered while accessing the file to open it
are considered fatal, and result in a SEV4 or SEV3 completion code.

Errors which are encountered while editing access-method-dependent labels, or
while editing the list of subfiles of a library, are considered to be of low severity,
and result in warning error messages and a SEV1 completion code.

The use of the REPEAT option is possible, but because the execution time for
,S'Fl LOESC is short, it is of little interest. Because $F! LDESC does not modify much
of the system behaviour, the job step following $Fl LDESC can usually execute
regardless of the termination status of ~Fl LDESC.
Thus it is recommended that the REPEAT option not be used, as its use could lead
to an abort/restart cycle which wou!d invoh1e the operator.

For further details, see the description of the $VOLCONTS step completion condit­
ions.

&-11

FILDUPLI

Function:

To copy the contents of a source file into another of identical type. Decks of cards
can be duplicated.

Statement form :

FILDUPLI INFILE

[, INDEF

(file-description)

(processing-options)]

, OUTF I LE= (file-description)

[, OUTDEF = (processing-options)]

[, TAPEND = nn]

[, STEPOPT = (step-parameters)];

The processing-options are the only detine-parameters which have any meaning with
$Fl LDUPU native standard files. They are :

[

SKIP

[, NBBUF =Hl] n ~l~~N lf BPS] , ERR OPT =
RETCODE

[. WRCHECK] [· CKPTLIM = J~g~BER-OF-RECORDS~ l
- Statement description :

~Fl LDUPLI can be used to physically duplicate files on magnetic tapes, cassettes and
disks. It is the fastest way of performing file duplication.

With magnetic tape files and cassette, the duplication is done block by block or by
groups of blocks if BPB is used. With disk files, the duplication is done track.by track, which

means that the input and output files must be on compatible volumes (that is,
volumes with the same track length). Some of the features of $FILDUPLI are:

buffer sharing in input and output

the choice of single or double buffering {NBBUF)

read after write verification (WRCHECK)

the processing of read errors (ERROPT)

the support of multi-extent mono or multivolume files

- the support of dynamic mounting of successive volumes of a multivolume file

- the support of checkpoint-restart (CKPTLIM)

Physical duplication is applicable to all disk files of all label types. In particular, it
is applicable to LABEL= NONE files and to libraries, and $FILDUPLI is probably
the quickest and easiest way of duplicating library files.

The output file, if it is a disk file, must have been preallocated before duplication,
and must possess tr.2 s2me characteristics as the input file.

$Fl LDUPLI has cor• '">Ver the definition of files, and Fl LEORG, Fl LE FORM,
BLKSIZE, RECSIZE, f TACODE, DATAFORM, CISIZE, CASIZE, KEYLOC,
KEYSIZE, et.:., m•.:st · ::we the same values in the input and output files.

6-12

FILDUPLI

If the files are LABEL= NONE or non-standard files, no controls are applied. Their
duplication is thus under the control of the user, and he must ensure the consistency
and availability of the output file after duplication. This mainly concerns non­
standard disk files, which includes some GCOS system files.

$FILDUPLI does not guarantee the physical duplication of non-relocatable files
except BF AS Indexed Sequential files, which are logically duplicated. The user
is responsible for using SFI LDUPLI with non relocatable files (files having disk
addresses stored as part of the data records).

If the output file is smaller thanthe input file, the duplication will not be
successfully performed; if will be interrupted when the space deficiency is
discovered. This is also the case if INCRSIZE is available on the output file. The
INCRSIZE feature is not supported by $Fl LDUPLI.

If the output file is bigger than the input file, the duplication will occur. The
additional space on the output file will not be available for further file extension
in the case of BFAS Indexed Sequential and Direct files, and UFAS Relative files.
For these files a warning message will be produced. For all other native files, the
extra space is available for further file extension, but will not be reported as
available free space by $FILDESC until an extension of the file has occurred under
the access method in order to update the file control structures.

For a library file, the extra space left free in OUTFILE after file duplicaton will be
used provided INFI LE was preallocated with a large enough value for MAXSIZE.

To duplicate a deck of cards, use NBBUF = 2 in both INDEF and OUTDEF
parameter groups. See example below. The deck used for duplication purposes can
contain checkpoint cards however they are not duplicated and therefore the
REPEAT option of the checkpoint facility should not be used. The deck can contain
hollerith, binary, control (see JCL User Guide) and $JOB cards all of which will be

duplicated.

To punch cards via a SYSOUT file use $CREATE with the SYSOUT option.

Note:

Wherever SFI LDUPLI is not applicable because of discrepancies between the input
and output files, duplication can be performed using $CREATE.

- Parameter description

INF I LE these parameter groups describe the input file.

INDEF LABEL= NSTD is not supported

OUTFI LE these parameter groups describe the output file

OUTDEF LABEL= NSTD is not supported

TAPEND this option is only used when FILEFORM = NSTD. The processing
will stop when nn tape marks have been reached in the two files.

Examples:

- Duplication of a cataloged file:

FILDUPLI INFILE

OUTFILE

(OLD. FILE, FILESTAT

(NEW. FILE, FILESTAT

CAT, MOUNT = 1).

UNCAT, MOUNT = 1);

- Duplication of a card deck :

FILDUPLI INFILE = (CARDIN, DEVCLASS CD/R/C80,
MEDIA = READER},

INDEF (BLKSIZE = 160, RECSIZE = 160, NBBUF 2,
READER = (BINARY, NJOB, NCOMMAND)},

5 .. 13

I

I

FILDUPLI

OUTFILE (CARDOUT, DEVCLASS = CD/P/C80,
MEDIA = PUNCH),

OUTDEF = (BLKSIZE = 160, RECSIZE = 160,
NBBUF 2, PUNCH= (BINARY));

Note that in the above example INDEF and OUTDEF options are mandatory.

- Duplication of a tape file, using the parameters that improve the execution speed
of the utility :

FILDUPLI INFILE

I NDEF

OUTFILE

(FIRST, DEVCLASS = MT/T9/D1600,
MEDIA = 1003),

(BPB = 3, NBBUF = 2),

(SECOND, DEVCLASS = MT/T9/D1600,
MEDIA = 1004),

OUTDEF = (BPB = 3, NBBUF- = 2);

- Duplication of a non-standard tape with end-of-processing after the 4th tape mark:

Fl LDUPLI INFI LE

INDEF

OUTFILE

(FIRST, DEVCLASS = MT/T9/D1600,
LABEL = NONE, MEDIA = 1005),
(BLKSIZE = 2000, RECSIZE = 2000, RECFORM = U,
Fl LE FORM = NSTD),

(SECOND, DEVCLASS = MT/T9/D1600,
MEDIA = 1006, LABEL = NONE),
OUTDEF = (FILEFORM = NSTD),

TAPEND = 4;
- Step Completion conditions :

The status of the OUTFILE file at the end of SFILDUPLI step execution is as follows:

If the OUTFILE was not big enough, the step has aborted on a DATALIM condition,
and its termination status is SEV3. The file is not in a consistent state.

If the OUTF I LE was large enough, and no fatal malfunctions occurred, the step has
completed its run 'lormally, and the OUTFI LE labels have been modified as
follows:

- If OUTFILE was a preallocated disk file, its FL1 label has been updated (starting
at field number 7, up to field number 25) by copying the corresponding fields of
the INF I LE F L1 label; the secondary space characteristics and the file indicator
fields were not copied.

- If INFILE had a FL2 label or an extended label, they have been entirely copied,
in order to replace the corresponding labels of OUTFI LE.

- If OUTFI LE was a tape file, its HDR2 label is built from the contents of the
INFILE HDR2 label.

Any discrepancy between INFILE and OUTFILE characteristics will result in a
SEV3 step completion status to prevent the restarting of the step if the REPEAT
option was used.

Any fatal 1/0 error on INFI LE will result in a SEV4 step completion status.

Any fatal 1/0 error on OUTF I LE, when it is a disk file, will cause the switching of
the addressed track onto an alternate track. Warning messages will be sent to the
JOR, and a SEV1 step completion status will result.

Note that CKPTLIM and REPEAT options should not be used together when the
input file or output file is a tape or cassette file whose fileform is NSTD. Duplication
of non-standard tape or cassette files should be handled by SCREATE.

6-14

During the physical duplication of a disk file, checkpoints will not be taken unless
they are specifically requested by the user via the CKPTLIM parameter.
Furthermore, do not attempt to take checkpoints during duplication of a deck
of cards because the checkpoints will not be supported by the card punch
access method.

FILMODIF

Function :

To change the name or expiration date of a disk file

Statement form :

FILMODIF INFILE =(file-description)

[,NAME=

[.EXPDATE

[,FORCE]

external-file-name]

1
ddd !] yy/ddd
yy/mm/dd

[,STE PO PT (step-parameters)] ;

-· Statement description :

This utility allows you to change the recorded name or expiration date of a disk file.
The file may be multivolume, in which case, the names of all the volumes must be
supplied in the file description. In addition, all the volumes must be mounted. If the
file is cataloged, the new name (if the name is to be changed) must be cataloged before
the utility is used. If the FORCE option is used, a cataloged file will be renamed regard­
less of the catalog. We recommend that FORCE be used only for file recovery.

Before renaming a file, the utility checks that no file with the name given in NAME
is oresent. This ensures that duplicate file names may not occur. The utility will abort
abnormally if there is an attempt to place a duplicate file name on a volume, and
will attempt to restore the already processed volumes to their original state.

This utility cannot be used with temporary files.

Parameter description :

I NFI LE Describes file whose name or expiration date is to be changed

NAME This optional parameter gives the new name by which the file will be
known after the utility has been executed.

FORCE This optional keyword allows a cataloged file to be renamed without
the new name being placed in a catalog.
It should be used for file recovery purposes only.

EXPDATE This optional key word introduces the new expiry date to be assigned
to the file.

Step Completion Conditions

If an abnormal condition occurs, the utility tries to undo what it has done, and then
sets SEV3, which is a fatal status, but does not allow the system to repeat the step.

If the file modification was not done on all the volumes (for example, when a system
crash occurs during renaming), the user can use the FI RSTVOL parameter of the file­
description to recover that situation in a separate job.

The FORCE option can be used if the corresponding catalog entry does not match
the file state; this causes the renaming of the cataloged file which is done without
updating the catalog.

6-15

I

FILMODIF

Examples:

FILMODIF INFILE=(XO.DAT),NAME = XO.DAT1;

In this example, the cataloged file XO.DAT is renamed to XO.DAT1.
The name XO.DAT1 must have been made known to the catalog by a statement of
the form CATALOG XO.DAT1; note that the name is already cataloged as it is found
for the file XO.DAT.

FILMODIF INFILE=(XO.DAT1),EXPDATE=200;

In this example, the previously renamed file XO.DAT1 is glven a new expiry date of
200 days.

6-16

FILPRINT

- Function:

To print the physical blocks of a disk or tape file.

- Statement form :

r-11 nnll\.IT
r1Lrn11" 1 !NF!LE = {file-description)

[,PRTF I LE= (file-description)]

[,PRTDEF = (define-parameters)]

[,PRTOUT = (sysout-parameters)]

[,TAPEND = nnn]

(,BUFFER= nnnnn]

[,FORMAT=
{

BOTH }
ALPHA
HEX

[,SKIP= value]

ALL
ITEM= {(nnnnn [,nnnnn] ...)}

(ttttt/ rr [, tttttl rr] . . .)

PART= l((nnnnn,nnnnn) [, (nnnnn,nnnnn)] ...) l
((ttttt/rr,ttttt/rr) [, (ttttt/rr,ttttt/rr)] ..• ~

[,STE PO PT = (step-parameters)] ;

- Statement description :

This utility will print:

- The entire file;
or
- Specified physical blocks from the file ;
or
- Specified ranges of physical blocks from the file.

The printed output of each block may be charact~r. hexadecimal or both.

If the input file is on tape then it may be in standard labelled form
(LABEL= NATIVE) or it may consist of a series of data blocks followed by a tape
mark (LABEL= NONE) or it may consist of a non-standard mix of data blocks and
tape marks (LABEL= NSTD). The labeling is specified in the file-description.

If LABEL= NSTD then the user may specify the number of the tape mark at which
printing is to stop.

6-17

I

I

I

FILPRINT

Statement Parameters :

INFILE This parameter introduces a parameter group which describes the file to
be printed.

PRTFI LE These parameters describe the output file and how it is processed
PRTDEF
PRTOUT

TAPEND This parameter is only valid when LABEL= NSTD, when it should be
present. The TAPEND parameter indicates when printing is to terminate.

If TAPEND = 2 the printing will finish when the second tape mark is
encountered.

If TAPEND is not coded then reading terminates when the "no-record­
found" condition is encountered.

BUFFER This parameter is optional for disk files but required for tape files. It
specifies the number of bytes that will be printed from each block. If
all the bytes of every block (tape) are to be displayed, the maximum
block size must be coded.

The maximum value is 30000.

If the parameter is omitted (for a disk file) then all the bytes of each
physical record will be printed.

FORMAT This parameter specifies the printing format : character (ALPHA,
hexadecimal (HEX) or BOTH(default).

SKIP

ALL

ITEM

PART

Is a three digit decimal number which specifies how many unrecoverable
read errors on the input file will be ignored.

If this parameter is coded then all the physical blocks of the file are
printed.

If this parameter is coded then only the blocks whose numbers are
specified are printed.

For a tape the block numbers are 1,2 ...

For a disk, the physical block number is made up of a relative address
of the form:

track-number/record-within-track

Where the first data block in the file is :

0/1

If there are, say, 3 physical records on each track then the sequence is :

0/1,0/2,0/3, 1/1, 1/2, 1/3,2/1 ...

Up to 20 physical blocks can be identified in the ITEM List.

If this parameter is coded then up to 10 pairs of block numbers (relative
addresses) may be specified. Each pair designates a range of blocks to be
printed.

The range is inclusive, if

PART= ((1/1, 3/12))

the blocks 1/1, 1/2 ... 3/11, 3/12 will be displayed.

STEPOPT This parameter describes the processing op~ions for the utility.

6-18

FILPRINT

Examples:

FILPRINT INFILE = (PX.CMS,DEVCLASS = MT/T9, MEDIA= PCT45),
BUFFER= 800, PART= ((1,200));

A file PX.CMS on a standard labelled volume PCT45 is printed. The first 200 blocks
are displayed in both alphanumeric and hexadecimal.

FILPRINT INFILE = (DLP.CMIP, DEVCLASS = MS/M400, MEDIA= 0814),
ITEM= (4/5, 4/6, 5/5,5/8) ;

Records 5 and 6 from track 4, and 5 and 8 from track 5 are printed from the disk
file DLP.CMIP on volume DB14.

Step Completion Conditions :

If the execution was successful, the only message on the JOR will be

I FN : E FN, that is, infile : file-name

If the execution was totally unsuccessful, a message is found on the JOR, indicating
the error; it is usually an error in the JCL (SEV3). For example :

SKIP: illegal value

- this means that skip is probably not numeric

PART or ITEM illegal values

Because of the large number of possible errors, only a general message is printed.
Usually, the position of the parentheses is wrong, or tape format (blocks)
has been used for a disk file.

In any of the cases, the JCL just needs to be corrected and the job rerun.

If the execution was partially successful, a message of severity 3 or severity 1 will be
printed on the JOR. For example:

SEV1 an 1/0 error occurred when. reading a track; a message will be
printed in the sysout. As long a the number of 1/0 errors does
not exceed the values of SKIP, the program continues.

SEV4 number of 1/0 errors exceeded the value of SKIP- If you wish
to print more than is already printed, either change the value of
SKIP, or change the range to be printed.

SEV3 printing is stopped because the track is out of the range of the
file.

SEV1 the number of records to be printed on a given track is greater
than actual number of records on that track.

6-19

I

I

FILREST

Function :

To restore the contents of a disk file from a sequential tape file.

Statement form :

FI LR EST IN Fl LE (file-description)

,OUTFI LE (file-description)

,NAME external-file-name]

,SKIP nnn]

,NBBUF H·}
,STEPOPT (step-parameters)]

Statement description :

This utility performs the reverse function of $FILSAVE. It restores, to a

previously al!ocated disk file, the disk file contents previously written to tape

by means of SFILSAVE. The file must be restored onto the same type of disk

as that from which it was saved.

The choice of the disk file image, contained within the tape file, is decided through

the keyword NAME. If NAME is not given, then if the restore is onto a disk file

named AAB the utility will search the tape to find a disk file image whose name

is al so AAB; and this file image will be restored onto the disk.

If the disk file being restored has BFAS Indexed Sequential organization then

the disk space into which it is restored must be on the same disk addresses from
which it was saved. Such a file is not relocatable.

This restriction does not apply to other UFAS or BFAS or library files.

Irrespective of Fl LEST AT status, the original file when restored to the output

disk can be either cataloged or uncataloged. If the SIZE of the output disk file

is not large enough to hold the restored image, FILREST will abort even though

the file may have been preallocated within the INCRSIZE attribute.

Volume mounting is user specified for the input tape file, and for the output
disk file.

SF I LSAVE and SF I LR EST are organized so that a file named A can be restored

into another file named B providing A and B have identical organizations and

definition parameters and reside on disks having identical track length. For

details of inter-release compatability, see Appendix A.

Statement parameters:

The meaning of the parameters for $Fl LR EST is exactly the same as for $FILSAVE.

OUTFILE

INFILE

This is followed by the parameters describing the disk file that is to

be restored. The volume names, in a multi-volume situation, must

be cited in the same order as in other allocation or assignment

statements for the file.

Outfile can be a temporary file.

This parameter group describes the tape file which contains the

disk file image to be restored. In the case when the tape file is

multi-volume, then the volume r '-1es must be cited in the same

o"der as on the associated SF I LSAVE statement.

FILREST

NAME

SKIP

NBBUF

Examples:

This optional parameter specifies the name of the disk file image
recorded on the tape file by SFILSAVE.

This optional parameter specifies the number of unrecoverable
READ errors that are to be ignored on INFILE.

This optional parameter specifies the number of buffers for the
restore file.

FILREST OUTFILE (INV.TOD), INFILE =(DALY,

DEVCLASS=MT/T9/D800,MEDIA=ST442A) ;

The disk file I NV.TOD is restored onto its RESIDENT disk space. The restore wil!
be from the tape file DALY on tape volume ST442A.

FILREST OUTFILE

INFILE

(PAY.SET, DEVCLASS = MS/M400,
MEDIA= (OLA, OLB)),

{DALY, DEVCLASS = MT/T9/D800,
MEDIA =(ST442A, ST4428));

The disk file PAY.SET, held on MSU0400 type volumes OLA and OLB, is restored
from the tape file DALY, volumes ST442A and ST442B.

FIL REST OUTFILE = (MYFILE, DEVCLASS = MS/M400,
MEDIA = MY100),

INFILE = (SAVE, DEVCLASS= MT/T9/D1600,
MEDIA= TAP1),

NAME = OLDIMAGE;

The disk file image OLDIMAGE is restored from the tape file SAVE into the disk file
MYFILE.

The three examples given here correspond to the three examples given for
$FILSAVE.

- Step Completion Conditions :

Checkpoint/Restart :

when the REPEAT option is used, checkpoints are taken at the switching of every
tape volume to the next tape volume. If a Restart occurs, $FI LR EST asks for
the first volume of the (mu1tivolume) disk file to be mounted; it then goes to the
volume that was the current one when the step aborted.

If $Fl LR EST aborts with the message DU 09.50, NOT ENOUGH SPACE TO
RESTORE FILE, OUTFILE is modified and left in its current state, which may be
inconsistent.

The file attributes of the disk file (OUTFI LE)are partly updated with the corre­
sponding attributes of the restored file image. For more information on this subject,
see the step completion conditions for $FI LO UPLI.

Note that if the SKIP option is used, if some of the blocks from the input tape file
could not be read, the step terminates with a SEV1 completion code, and the corre­
sponding tracks from OUTFI LE are left untouched. If the same thing happens when
SKIP is not used, the step aborts with a SEV4 completion code.

6-21

FILSAVE

Function :

To save the entire contents of a disk file onto a sequential tape file.

Statement form :

Fl LSAVE I NFI LE = (file-description)

,OUTFI LE = (file-description)

j CREATE l [~AVEMODE=]
APPEND

(,NAME external-file-name]

[,SKIP nnn]

~BBUF ={t}
[,STEPOPT = (step-parameters)] ; .

Statement description :

This utility stores the contents of a disk file as a series of data blocks (one block per
original track) in a magnetic tape file. This copy of the disk file may not be processed
on the tape but may be retrieved using the utility $Fl LR EST. Several disk files may
be saved onto one $FI LSAVE tape file, and both the disk file and the tape file may
be multi-volume. The volume mounting is user specified for INFI LE and OUTFI LE.

The disk file saved by this utility may have any organization.

The file to be saved may be temporary if it is relocatable (th is is not the case for BF AS
indexed Sequential files). The output file may or may not be preallocated. If it is
preallocated with definition parameters which do not correspond to those required,
a run-time error message is sent and the execution stops.

For information on inter-release compatibility, see Appendix A.

For each save file the utility stores :
an information block (which includes the name of the file)

a block containing the labels of the saved file

data blocks, one per allocated track of the disk file.

Statement parameters :

INFILE

OUTFI LE

This keyword is followed by a group of parameters describing the
disk file that is to be saved. If DEVCLASS is given then only disk
device classes are permitted. All volume names given must be in the
same order as when the file was created. INF I LE may be a temporary
file.

This keyword is followed be a parameter group describing the file
into which the save is performed.

The device class must be a magnetic tape.

If OUTFI LE is a catalogued file, it must be preallocated with
BLKSIZE = 13200, RECSIZE = 13196, and RECFORM = V.

6-22

FILSAVE

SAVEMODE This paramet~r specifies whether the tape file to be used already
contains other saved disk files images, and that the current operation
is to add another, or whether the operation is to place a first disk file on
the tape file.

If SAVEMODE =CREATE, the default, then the latter situation is
assumed.

If SAVE MODE =APPEND, then the utility will not create a new tape
file, but instead will ensure that an existing valid file of the name given
(in the OUTFI LE parameter group) is present. The program will then
skip down to the current end of the file and start recording the new
disk file image after the last block of data : thus the operation is one
of appending to the tape file another disk file image.

If SAVEMODE =APPEND then the parameter EXPDATE must not
be specified in the parameter group describing the tape file. Its presence
would be inconsistent and meaningless.

NAME This optional parameter specifies the name to be given to the disk file

image to be saved into the file described in OUTF I LE .

. SKIP This optional parameter indicates that a number of unreadable tracks
are to be ignored on the input file. If a number is specified the

utility will abort when this number of 1/0 failures has occurred.

NBBUF This optional parameter gives the number of buffers to be used for the
save of the disk file. The buffer size is set to the maximum length of a
data block on the disk concerned.

Programing considerations

In using $Fl LSAVE the following points should be borne in mind :

No attempt should be made to store two disk file images of the same name onto
a tape file using this utility. AlthJugh both save operations will be carried out
successfully, it will not be possible to instruct $FILREST to restore the second,
later file images from the tape file.

Care should be taken when SAVEMODE =APPEND. The only check performed
on the output file in this case is to ensure that a valid tape file of given 11ame is

present. The utility cannot check that the file contents consists of disk file images.
Thus by quoting a normal data file it is possible for the utility to append to it a disk
file contents. It will be impossible to retrieve the appended file using $FI LR EST.

Examples

FILSAVE INFILE = !NV.TOD, OUTFILE = (DALY,
DEVCLASS =MT /T9/D800,

MEDIA= ST442A, EXPDATE = 78/9/28) ;

In this example the disk file named I NV.TOD, which is RESIDENT, is saved into
a new tape file named DALY on tape volume ST442A, and the file DALY will
be given an expiration date of the twenty eighth (28) of September (9), 19,78.

6-23

I

I

FILSAVE

FILSAVE INFILE = (PAY.SET, DEVCLASS = MS/M400,
MEDIA = (OLA, OLB)) ,

OUTFILE =(DALY, DEVCLASS MT/T9/D800,
MEDIA = (ST442A,

ST4428)), SAVEMODE =APPEND;

The file named PAY.SET, residing on disk volumes OLA and OLB, is saved into an
existing tape "save" file named DALY. Note that the user expects the file f)Al.Y
already to be multi-volume or to require a second volume, ST442B (by comparison
with the first example above) onto which the utility can save the contents of PAY.
SET.

FILSAVE INFILE = (MYFILE, DEVCLASS = MS/M400,
MEDIA= MY100),

OUTFILE (SAVE, DEVCLASS
MEDIA= TAPl),

NAME = OLDI MAGE ;

MT/T9/D1600,

The disk image OLDIMAGE is saved into the tape file SAVE from the disk file
MYFILE.

Note that these examples correspond with the examples for SF i LR EST.

Step Completion'·Conditions:

Checkpoint/Restart :

When REPEAT is used, checkpoints are taken at the switching of every tape volume
to the next one. If there is a Restart, $FI LSAVE asks for the first volume of the
multivolume disk file to be mounted, and then goes to the volume which was the
current one when the step aborted.

If SFILSAVE aborts with the message DU 01.51 printed in the JOR, the OUTFILE
tape has invalid characteristics.

If the option SKIP was used and a track is encountered that gives an unrecoverable
read error, then iFI LSAVE does not abort unless the SKIP count is already exhausted;
instead, it records the address of this unreadable track in the output file. This
enables $Fl LR EST to warn the user that the restored file image was damaged, and
that the restored file may be in an inconsistent state. The entire contents of the
unreadable track are lost.

6-24

PREALLOC

Function :

To allocate space and declare attributes for a UFAS or BFAS disk file; also to extend I
an existing BFAS sequential disk file, or UFAS sequential or indexed file. Cataloged
tapefilescan also be preallocated or extended.

- Statement form 1 for disk files :

'

$PREALLOC externai-fiie-name

{

Cl
CYL
TRACK
RECORD

r rvpr./\TC -l'C:/'\. UM I '- -

}J [.MAXEXT =

~ ~~~rlrlrl t l
) y y1 uvu (J
(yy/mm/dd)

value]

UFAS
(SEQ= (sequential attributes)

== { { RELATIVE= (relative attributes)
\INDEXED= (indexed attributes} }

' BFAS
{

SEQ= (sequential attributes)
= (DIRECT= (direct attributes)

INDEXED= (indexed sequential attr.)

EXTEND

RESIDENT =-=(SIZE = value)

DEVCLASS = device-class

GLOBAL = (MEDIA= (volume-name

}

[,volume-name] ...) ,SIZE= value)

SPLIT ((volume-name, SIZE= value
[,(volume-name, SIZE= value

[,CYL =address])
[,CYL = address]) 1 ...)

SIZE value

LlNCRSIZE=value)

l TEMPRY
,FILESTAT = . CAT[, CATALOG

UNCAT
catalog-number] I

[,STEPOPT = (step-parameters)] ;

-Statement Form 2 (For Catalogued Magnetic Tape files) :

~PREALLOC external-file-name

I l
BFAS~
UFAS

1 ANSI

EXTEND

,DEVCLASS

,GLOBAL

,Fl LEST AT

[,MOUNT

[, STEPOPT

6-25

[.EXPDATE ~ ddd !] = yy/ddd
yy/mm/dd

(SEQ options for BFAS files [,NBSN])

device-class-name

(MEDIA= (volume-name L volume-name) ...)) I
CAT

n]

(step-parameters)] ;

PREALLOC

The format of UFAS file attributes is:

SEQ= (CISIZE = value,RECSIZE =value [.RECFORM = *HI
RELATIVE= (CISIZE = value{RfCSIZE =value

[,RECFORM = ~}])

UFAS = (INDEXED = (CISIZE =value ,RECSIZE =value

[RECFORM = {~}]

,KEYLOC =value ,KEYSIZE =value

[,CASI ZE= value] [,Cl FSP =value J [,CAFSP =value J)

tSECIDX = ((KEYLOC =value, KEYSIZE =value [,DUPREC])
(, (KEYLOC =value, KEYSIZE =value [,DUPREC])] ...)]

fhe format of 8FAS file attributes is:

SEO= (BLKSIZE =value ,RECSIZE =value

,REcrnRM = \[I [NDLREC] f,FIXTRACKJ [,COMPACT]!

DIRECT=(BLKSIZE=value , RECSIZE=value

BFAS = ([RECFORM ={~8} J (,NDLREC]))

INDEXED (8LKSIZE = value ,RECSIZE = value

[RECFORM ~{~8} J [,NDLRECJ[,MASTE R]

,KEYSIZE = value ,KEYLOC valua

[,CYLOV = value] [,GE NOV ::: value]

[10XSiZE =
{ inde:-size}] [rnACKFAC = {~} }

6-26

PREALLOC

Statement description :

The $PREALLOC utility reserves space for a disk file and creates the :-?ecessary file
labels which are set up to contain details of the file organization.

File pre-formatting occurs for BFAS Indexed Sequential files and for UFAS files.

The space reservation is done at the unit of a record, a control interval, a disk track
or disk cylinder. Space is allocated to the file as a series of one or more extents.
An extent is a group of one or more contiguous allocation units (tracks or cylinders).
On any one volume a file may have up to 16 extents. However, for efficiency purposes,
there is the facility to restrict the number of extents to one per volume.

In the case where a multi-volume file is allocated, it is possible to specify the amount
of space that is to be taken on each volume and also the position (cylinder address)
at which the allocation is to take place. In the latter case only one extent may be
allocated per volume.

The normal allocation of extents is done as follows. A list of all the free space extents
available is inspected. The smallest extent of all those which are greater or equal to
the space required is chosen. Thus if the free extents were 20, 23, 25, 60 cylinders
and request was for 24 cylinders then the allocation would be made on the 25
cylinders extent leaving free- space extents of 1, 20, 23, 60 cylinders. If the space
requested is larger than the largest free space extent then the largest extent is
allocated and the remaining space still required is chosen firstly by searching for the
smallest of the larger free extents or choosing the largest and then searching for space
for the remainder. Thus if a request for 86 cylinders was made with the above space
list then 60 and 25 extents would be allocated and one cylinder would be used from
the 20 cylinders.

The FI LEST AT parameter states whether the file to be preallocated is a temporary I
file, a permanent uncataloged file, or a permanent cataloged file. In the latter case,
PR EA LLOC will automatically complete the catalog entry for the file. Temporary
files are made available to the next step which assigns them. $ALLOCATE can also
be used to allocate temporary files.

For tape files, the UFAS and BFAS file formats are the same, so you can choose
either of the correspondinQ options. Tape files can also be in ANSI format, and a
cataloged tape file cannot be preallocated on a multifile tape.

The second part for a $PREALLOC statement describes the UFAS/BFAS organizat­
ion.

Note that the $PREALLOC form for l-D-S/11 file allocation is described separately in
the publication 1-0-S/ll User Guide.

The information supplied is loaded into the file label and is used when the file is
accessed by program.

For details on file design and space calculation see the UFAS User Guide or BFAS
User Guide.

6-27

I

rnCALLU(.;

Statement parameters :

EXTERNAL­
FILE-NAME

EXPDATE

UNIT

MAX EXT

RESIDENT

OEVCLASS

GLOBAL

The external-file-name which must be present.
It must conform to the rules for file names given in Section 3.
The name chosen must be unique within the set of file names
already present on the volume(s) to be used, unless file extension
is requested.

This keyword gives the expiration date for the file. If no expiration
date is given then the default assumed is the current date.

This keyword specifies the unit of allocation that is to be used by
the utility. The choice i"s between cylinders (CYL), tracks (TRACKl
records (RECORD) or control interval (Cl)

If a BFAS Indexed Sequential file is being established then the
allocation unit must be the cylinder. The choice Cl is only valid
for UFAS files. The number of Cls is transformed into a number
of tracks and allocation is performed in tracks. For further details
see the UFAS User Guide.

The choice of RECORD is only available to~ BFAS files; the given
number of records is converted into cylinders, and storage allocat­
ion is performed in cylinders.

If this keyword is not given then the default assumed is CYL.

This optional keyword specifies the maximum number of extents
to be selected per volume. The numeric value given may not exceed
16.

If MAXEXT is not explicitly stated, the default value assumed is
the maximum of five possible extents per volume;
this is increased to 16 if EXTEND is used.
MAX EXT can also be used with SPLIT.
If this keyword is specified then the allocation will take place on
the resident volumes attached to the system.

S1ZE

This keyword is followed by a numeric value, up to five digits long
giving the size of the file in allocation units.

This parameter is coded when non-resident disk space is allocated.
It is followed by a standard disk device class identification. If a
non-resident file is being allocated, then DEVCLASS must be
specified. It must be specified if a cataloged file is being allocated.

This keyword specifies that allocation of extents is to be performed
automatically. That is, in the parameter gro:.Jp that follows only the
total size of the file

0

is given. By comparison, the alternative, SPLIT,
gives a discrete size parameter for each volume. In the case where
only a single volume is being used, GLOBAL and SPLIT reduce to
almost exactly the same form though in the case of SPLIT there
is still the additional facility for specifying the disk address at
which allocation occurs.

MEDIA

This parameter is followed by a list of one or more volume names
to be used in the acquisition of space. The order of the list is impor­
tant. The utility will allocate the maximum number of extents (see
MAXEXT above) on the first volume and proceed to the second
and so on. The manner in which extents are chosen is described
above in "statement description".

In the case of a multi-volume allocation it is possible that the space
requirement for the fiie will be satisfied without all the volumes
being needed. If this occurs then the utility will not use the last
volumes in any way, and they need not b;:; mentioned in future
references to the file.

6-28

PREALLOC

SPLIT

EXTEND

INCRSIZE

SIZE

This keyword is followed by a numeric value, up to five digits long, giving the size of

the file in allocation units.

This keyword specifies that the allocation is to be performed on a volume by

volume basis. It is followed by a parameter group which lists each volume and the

amount of space required on each. Optionally the user may specify for each volume

the disk address at which allocation is to occur. It is possible to give such addresses

for some of the volumes and not for others. The SPLIT feature may not be used
with BFAS Indexed Sequential files, with BFAS files when UNIT :: RECORD or

for UFAS files when UNIT = C1. Note that cylinder number zero must not be

addressed by SPLIT, even if the VTOC has been located elsewhere.

Volume-name

The volume names given must be in the desired order of usage. The first logical

records will be recorded on the first volume and the last logical records on the last.

SIZE

This keyword, supplied with each volume name, gives the amount of space required
on the volume. The numeric value supplied. up to five digits long, is in allocation units.

CYL

This optional keyword allows the user to specify the cylinder address within volume

at which allocation is to occur. If this is specified then there is no automatic extent

selection. Instead all the amount of SIZE, for the volume, is allocated starting at the
supplied cylinder address. The user must ensure that there is a sufficiently large

contiguous free space at the supplied address : otherwise the allocation will fail and
terminate abnormally.

The numeric values giving the cylinder address must not be more than three digits

long. Zero must not be used as a cylinder address. If the unit of allocation is track

then a partically used cylinder can be given as the start point for allocation.

If CYL is not specified for a volume then space is reserved by automatic extent

selection as in "statement description" above.

This optional parameter request that the current storage space of an existing file

is extended. It may be given for BFAS Sequential files, UFAS Indexed Sequential
files, and UFAS Sequential files. If the file is cataloged, the amount of space added

to the file may be specified in the SIZE parameter without specifying any media. If
the file is uncataloged, the space added is specified in the SIZE parameter of
RESIDENT, GLOBAL, or SPLIT.

This parameter has no effect on the existing contents of file. If the unit of
allocation given is n0t the same as the original unit of allocation, then the utility
will re-calculate the size and continue to use the original unit.

For uncataloged, non-resident files, you must specify the last or only volume on

which the file is currently held. If the dXtension is to be multivolume, then
subsequant volumes may be specified in the volume list. In all cases, the first

volume in the list must be the last volume of the file.

EXTEND can not be used with RESIDENT unless the file which is to be extended

is entirely resident on the system disk.

This parameter states how much the file is to be automatically incremented by

the system each time the file storage space is completely used. INCRSIZE is not
available for BFAS Indexed or Direct files. The size of the increment of space

is expressed in cylinders when UNIT = CYL or in tracks when UNIT does not equal

CYL.

6-29

I
I

PREALLOC

FILESTAT

UFAS

SEO

RELATIVE

INDEXED

This mandatory parameter gives the status of the file to be preallocated.
It may be a permanent uncataloged file (UNCAT), a permanent cataloged file
(CAT), or a temporary file (TEMPRY). If it is a cataloged file, the number of the
catalog in the SATTACH statement may be given (CATALOG =). SPREALLOC
will return the information required to complete the catalog entry for the file to
the catalog containing the file attributes. Note that the catalog entry for the file
must have been created previously by SCAT ALOG statements.

If the file is temporary, then it will only be available to the next
job step which assigns it, unless END= PASS is specified in the
$ASSIGN statement.

This keyword is followed by a parameter group containing the file
organization attributes. The keyword signifies that the file described
is UFAS (Unified File Access System) in type. The keyword UFAS
must be coded.

This keyword signifies that the parameters which follow are de­
scribing a sequential file.

CISIZE

This keyword specifies the Control Interval size for the file. The
value supplied, up to 5 digits long, is in units of bytes. The value
given will be rounded up to the next multiple of 256 (unless it is
already a multiple). This keyword is required. The specified value
includes the Cl header, record headers and (indexed files only)
record descriptors.

RECSIZE

This keyword supplies the logical record length in bytes. The value
supplied may be up to 5 digits long. This keyword must be supplied.
The value excludes any UFAS record header. In the case of variable
length records the value supplied is the maximum record length.

RECFORM

This keyword specifies the record format to be employed. There
are two possible formats allowed :

Fixed : When R ECFORM= F every record will have the same length.

Variable: The specification of RECFORM = V marks the file as
having variable le11gth records.

The default value of RECFORM is F.

This keyword signifies that the parameters which follow describe
a relative file.

The mandatory keywords are CISIZE and RECSIZE.

As can be seen from the statement form, the attributes of this
organization are similiar to those for SEO.

This keyword describes the organization of an Indexed Sequential
file. The keywords CISIZE, RECSIZE and RECFORM are the
same as those for SEQ and DIRECT above. All the other parameters
are strictly concerned with Indexed file attributes.

KEYSIZE

This keyword is required. It specifies the key length in bytes. The
maximum key length is 255 bytes.

KEYLOC

This keyword is required. It specifies the location of the key within
the record. The value supplied is the number of the first (left-most)
byte of the key field. The first byte of a record is byte 1, the second
is byte 2 etc (the record header is excluded).

CASIZE

This keyword specifies the number of Control Intervals (Cls) in a
Control Area.

6-30

PREALLOC

BFAS

SEO

This value will also be used as the number of index entries in an
index control interval. This index Cl size is rounded up to a
multiple of 256. So the users CASIZE is consequently updated, to
optimize index management.

If CASIZE is not specified then a default value will be chosen when
the file is first opened. This default is the number of index entries
that will fit in an index Control Interval of 2048 bytes.

Maximum CASIZE : number of index entries that fit in an index
Control Interval of 4096 bytes.

CIFSP

This keyword specifies the free space (as a percentage) to be left in
each Cl when the file is sequentially loaded (opened in output).

Default value : O; Maximum value : 100

CAFSP

This keyword specifies the free space ·(as a percentage) to be left
in each CA when the file is sequentially loaded (opened in output).

Default value: O; Maximum value : 100

SECIDX

This keyword specifies whether or not the file is to have secondary
indexes and what keys they are related to : The DUPREC keyword
specifies that duplicate keys are allowed.

This keyword is followed by a parameter group containing the file
organization attributes. The keyword signifies that the file described
is BFAS (Basic File Access System) in type. The keyword BFAS.
must be coded.

This keyword signifies that the parameters which follow are describ­
ing a sequential file.

BLKSIZE

This keyword specifies the block size for the file. The value supp1ied,
up to 5 digits long, is in units of bytes. This keyword is required.

RECSIZE

This keyword supplies the logical record length in bytes. The value
supplied may be up to 5 digits long. This keyword must be supplied.

RECFORM

This keyword specifies the record format to be employed. There are
five possible formats allowed :

Fixed Blocked; When RECFORM = FB it is assumed that all records
are of equal length and that the block size is a multipie of the record
size. Each block of the file, except for the last, will contain the same
number of records.

Fixed: When RECFORM =Fit is assumed that there will only be
one record per block and hence the block size will be the same.as
the record size. Every record will have the same length.

Undefined: When RECFORM = Uthe file is designated as having
records of undefined length. The maximum record size is
taken to be the block size since no attempt is made to pack records
into blocks. The RECSIZE should not be specified since it is not
meaningful.

Variable: The specification of RECFORM = V marks the file as
having variable length records contained within variable length blocks.
Each block only contains one record.

Variable Blocked : When RECFORM =VB the file is r:narked for use
with variable length records in variable length blocks. The input/
output access methods will ·place as many variable length records

6-31

PREALLOC

DIRECT

INDEXED

as will fit into specified maximum block size.

With both variable and variable blocked organizations each record
consists of a one word (four bytes)
Record-Description-Word, followed by the data area. This ROW is
not included in the maximum record length supplied through RECSIZE.

Also with variable organizations each block (whether V or VB)
contains a Block-Descrip~ion-Word (BOW) or four bytes. This BOW
is not included in the maximum blocks length as supplied through
BLKSIZE.

Thus, the maximum ·number of bytes taken by a variable block on
the disk is four bytes greater than that specified by B LKSIZE.

The default value of RECFORM is FB.

ND LR EC

This option concerns the presence or otherwise of deleted (dummy)
records in the file. By default GCOS will assume that the file may
contain such records. A deleted record is one which contains hexa­
decimal FF in the first data byte. Such records will be skipped on
sequential input of the file. If ND LR EC is stated then records of
this type will be considered as normal data records. Therefore it is
necessary to say NDLREC if the file is likely to contain valid
records which have FF as the contents of the first byte.

If this parameter is omitted then it is assumed that the file may
contain deleted records, according to the above convention.

FIXTRACK

This option requests that the number of physical records per track
for a BFAS sequential disk file whose record format is variable
(or blocked variable) be constant. The number of physical records
will be derived by the system from the value of RECSIZE. This is
achieved by taking into account the physical length of the track for
the chosen device class.

COMPACT

This option requests the compaction of consecutive blank characters
found in a text record of a BFAS sequential file or in a source library
member. This option can only be used when the record format is
variable or blocked variable.

This keyword signifies that the parameters which follow describe
a Direct Access file.

The mandatory keywords are BLKSIZE and RECSIZE.

As can be seen from the statement form, the attributes of this
organization are a subset of those for SEO. The main difference
being that there are only two record formats available, F and FB.

The meaning of the parameters for DIRECT are exactly the same
as their counterparts in SEO above.

This keyword describes the organization of an Indexed Sequential
file. The keywords BLKSIZE, RECSIZE and RECFORM are the
same as those for SEO and DIRECT above. Only F and FB record
formats are allowed. The parameter ND LR EC is also permitted for
INDEXED and DIRECT files. All the other parameters are strictly
concerned with indexed Sequential file attributes.

6-32

Note that the minimum of an indexed sequential file is 2 cylinders :
one for the index extent and one for the prime data extent.

MASTER

This signifies that the fiie is to have a master index. ii is optional,
and if omitted, then no such index will be maintained for the file.

KEY SIZE

This keyword is required. lt specifies the key length in bytes for
the file. The maximum key length is 255 bytes. For an MSU0310
the maximum length is restricted to 200 bytes.

KEYLOC

This keyword is required. It specifies the location of the key within
the record. The value supplied is the number of the first (left-most)
byte of the key field. The first byte of a record is byte 1, the second
is byte 2 etc.

CYLOV

This keyword is optional. It allows the user to specify the number
of tracks per allocated cylinder to be used as an overflow area. This
overflow area is a local one, being associated only with overflow on
the same cylinder and should not be confused with the independent
overflow area which is specified through the GENOV keyword. This
is described below. If CYLOV is not given then no local overflow
space is reserved within each cylinder of the file. 18 is the maximum
value allowed. If UNIT= RECORD, the number of tracks is calcula­
ted; there must be at least one track of data.

GE NOV

This keyword is optional. It allows the user to specify the number of
cylinders to be used as a general overflow area. These cylinders are
always reserved from the last cylinders (in the last extents) of the file.
There is no general overflow area reserved if this keyword is omitted.
If UNIT= RECORD, the number of cylinders is calculated. There is
always at least one.

IDXSIZE

This keyword gives the number of cylinders required for the index
area. Default value is 1.

TRACKFAC

This keyword gives the number of tracks of cylinder index per master
index entry. Default value is 1.

6-33

I

PREALLOC

Example 1

PREALLOC LP.PJM, UNIT= Cl, RESIDENT= (SIZE= 600) ,
UFAS = (SEO= (CISIZE = 1000, RECSIZE = 190)),
FILESTAT = UNCAT;

This statement allocates a sequential file LP.PJM. By default it will take the
creation date to be the expiration date. The space reserved will consist of 600
control intervals, each being 1024 (next 256 multiple above 1000) bytes. The
record format by default is fixed and each record will be 190 bytes long.

Example 2

PREALLOC MPTSP.DD, EXPDATE = 300, UNIT= CYL,
DEVCLASS = MS/M400,
SPLIT= ((D18A, SIZE = 10), (D18B, SIZE= 10)),
UFAS = (RELATIVE= (CISIZE = 768, RECSIZE = 52)),
FILESTAT =CAT;

In this example a cataloged Relative file MPTSP.DD is allocated on two volumes,
D18A and D18B. Each volume will contain 10 cylinders. The file is split evenly
between the two disks, hence reducing head movement in random access. The
file has a retention period of 300 days.

Example 3

PREALLOC PC.UIX, UNIT= Cl, DEVCLASS = MS/M400,
GLOBAL= fMEDIA = TNOA, SIZE= 26352),
UFAS = (INDEXED= <CIS!ZE = 3072, RECSIZE = 211,
CASIZE = 60, KEYLOC = 10, KEYSIZE = 21, CAFSP = Cl FSP=20)),

FILESTAT =CAT;

In this example a cataloged file, PC.UIX, is allocated on an MSU0400 volume,
TNDA. A total of 26352 data control intervals are requested. The space for the
header track and index area will be automatically added. The records are fixed­
length, 211 bytes, and contain a 21-byte key starting at position 10. The user
has requested that each CA contain 60 Cls and that each Cl is 3071 bytes long.
When the file is opened and leaded sequentially, each Cl will be left with 20%
free space and each CA will maintain 20% of Cl's free (12 Cl's). This free space
will reduce the possibility of frequent splitting to accommodate later insertions.

Example 4:

ATTACH CATALOG 1
CATALOG XO, TYPE
CATALOG XO.DAT;

OWN.CATALOG;
DIR;

PREALLOC XO.DAT, BFAS =(SEO= (BLKSIZE = 2000, RECSIZE = 400))
, DEVCLASS = MS/M400
, GLOBAL =(MEDIA= D16, SIZE= 30)
I FILESTAT =CAT;

This example catalogs and allocates a disk file named XO.DAT. By default, the
creation date will be the expiration date, and the allocation unit will be the
cylinder. Thus 30 cylinders of space will be reserved on the MSU0400 disk

6-34

PREALLOC

called D16. XO.DAT will be sequential in organization and will have data blocks
of 2000 bytes, each block consisting of five 400-byte records. The default record
format is Fixed Blocked (FB). It is assumed that the file may contain deleted
records. For further details of cataloged files, see the Catalog Management
Manual.

Example 5:

PREALLOC XO.DATR, RES!DENT = (S!ZE=30},F!LESTAT = UNCAT,
BFAS =(DIRECT= (BLKSIZE = 2000, RECSIZE = 400)) ;

This statement describes a file XO.DATR which has the same space, block and
record attributes as XO.DAT in the previous example. However the file organizat­
ion is DIRECT, allowing the file to be processed randomly by the "direct" access
method software.

Example 6:

PREALLOC PO.DATP, EXPDATE = 55, UNIT= TRACK,
DEVCLASS = MS/M402, GLOBAL= (MEDIA= OVA,
SIZE= 438),
MAXEXT = 3,
BFAS =(SEQ ={BLKSIZE = 220, RECSIZE = 220,
RECFORM = F, NDLREC))
,FILES!AT =CAT;

This example allocates a cataloged file named PO.DATP on an MSU0402 disk
volume named DVA. The allocation unit is a track and the expiration date of
the file is set to 55 days after the allocation date. The size of the file is to be
438 tracks and the maximum number of extents is 3. The blocksize is 220 bytes
and since the record format is Fixed, the record size is also 220 bytes. It is a
sequential file without any possibility of deleted records.

Example 7:

PREALLOC PAY.MASTER, EXPDATE = 78/8/01,
DEVCLASS = MS/M400.
GLOBAL= (MEDIA= (M064A, MP64A, MR64A),

SIZE= 300) I

MAXEXT = 1,
BFAS =(SEQ= (RECFORM =VB, BLKSIZE = 268,

RECSIZE = 264).) ,Fl LEST AT= CAT;

I •

I

I

In this example a cataloged multivolume file, PAY.MASTER, is allocated on the
MSU0400 disk volumes, M064A, MP64A, and MR64A. The allocation unit, by default,
is the cylinder. A space of 300 cylinders is requested and only one extent may be
allocated on each volume. Thus the allocation algorithm will operate as follows :

" 1. The free extents on M064A will be checked to see if any are greater than
300 cylinders. If any exist then the smallest that is greater (or equal) to 300
will be chosen and the allocation will be completed using only M064A and
not MP64A or MR64A. Assuming, there is no single extent of 300 cylinders
or greater on MQ64A, the largest available will be chosen. The size of this
extent is then subtracted from the required size to find the residual size.

2. Using the residual size as the required size a search for space is then perform­
ed on the volume MP64A. The smallest free extent which is larger or equal
to the required size is chosen.or no such extents exist;then the largest single
extent is chosen. Either the required space is completely accommodated or
a new residual requirement results. If the latter is the case then step 3 is
performed. Otherwise the allocation is complete.

3. Using the new residual size as the required space a search is made for the
smallest free extent on MR64A that will accommodate it. If one is found
then the utility terminates successfully. Otherwise an error condition, insuffi­
cient free space, is signalled.

6-35

Messages and Step Completion Conditions

If the execution was successful, a detailed message will appear on the JOR indi­
cating the media and number of extents allocated. If the catalog has been modified,
this will be stated. The message is described in detail late;.

If the execution was unsuccessful, the step completion status is almost always
SEV3, indicating that no file was allocated, and the file name is not available for
use. With JCL errors, as many as possible will be found and indicated before the
execution of the load module, but because of the involved relationship between
certain variables, some JCL errors will only be detected in the load module. Errors
such as duplicate name are only detected after the JCL is considered to be perfect.

When it is impossible to preallocate a file, a detailed list of the media and the
reasons why preallocation was impossible will be found in the JOR.

If the file is preallocated but formatting or the writing of additional labels is
impossible, $PREALLOC will try to delete any files which it cannot successfully finish
processing. If this task is interrupted for any reason, $'DEALLOC should be used
immediately to finish the job.

If it is impossible to modify the catalog, $PREALLOC will again try to deallocate
any space allocated. If this is not successful, $DEALLOC should be called imme- ·
diately, using the FORCE option if necessary. $'PREALLOC cannot be called
again for this file. Note that catalog modification takes place at the end of the
preallocation process.
The messages produced by ~PREALLOC are listed below.

SPACE ALLOCATED FOR THE Fl LE : filename

TOTAL AMOUNT OF SPACE ALLOCATED : xxx CYLINDERS ON THE
TRACKS

FOLLOWING VOLUMES :

VOLUME : volume-name EXTENTS : no. of extents SIZE : xxx
NOT USED

This is the trailer message when the allocation has been correctly performed. Note
that if more than one volume is specified in GLOBAL and allocation is not
possible on one of the volumes, then if it is possible to allocate the file on the
remaining volumes (omitting the faulty volume), the preallocation will be consid­
ered successfu I.

SPACE EXTENSION FOR THE Fl LE : filename

-:oTAL AMOUNT OF ADDITIONAL SPACE ALLOCATED

~1N THE FOLLOW! NG VOLUMES :

xxx CYLINDERS
TRACKS

VOLUME : media name EXTENTS : no. of extents SIZE : xx
NOT USED

1H~ ·s 1,•;e traiier message when the space extension has been correctly performed.

1:.:c·· ·:Ns~::N NC'T PERFORMED FOR FILE: file-n~rn;

·':-i.!n "f' by one of the fol!mvir:g :

PREALLOC

FILE NOT FOUND
NON STANDARD LABEL
MEDIA NOT LAST VOLUME OF CURRENT FILE
AT LEAST 1 MEDIA MUST BE SPECIFIED

This is the trailer message when a request for space extension fails.

EXTENSION ONLY PARTIALLY PERFORMED FOR THE FILE : file-name

This is the trailer message when a request for space extension is only partly
fulfilled.

ALLOCATION NOT PERFORMED FOR FILE : file-name

followed by one of the following :

SIZE MISSING OR ILLEGAL VALUE
RECFORM ILLEGAL VALUE
RECSIZE ILLEGAL VALUE
BLKSIZE ILLEGAL VALUE
KEYSIZE ILLEGAL VALUE
INDEXSZ ILLEGAL VALUE
GENOV ILLEGAL VALUE
CYLOV ILLEGAL VALUE
KEYLOC ILLEGAL VALUE
NUMULAB ILLEGAL VALUE
CIFSP ILLEGAL VALUE
CAFSP ILLEGAL VALUE
CISIZE ILLEGAL VALUE
CASIZE ILLEGAL VALUE
INCRSIZE ILLEGAL VALUE
TRACFAC ILLEGAL VALUE
KEYLOC SECONDARY INDEX NO (index-number) : ILLEGAL VALUE
BLKSIZE MUST EQUAL RECSIZE WITH RECFORM = F
BLKSIZE MUST BE A MULTIPLE OF RECSIZE WITH RECFORM = FB
SIZE : TO SMALL
ILLEGAL RECORD FORMAT IN DIRECT
ILLEGAL RECORD FORMAT IN INDEXED SEQUENTIAL
ERROR IN primitive PRIMITIVE AT ADDRESS : address
ERROR DURING EXECUTION OF PRIMITIVE CODE : ..

This is the trailer message when a request of preallocation fails before space has
been allocated by storage management. These errors are all of severity 3 and will
cause the program to abort.

ALLOCATION NOT PERFORMED FOR FILE : file-name

SPACE COULD NOT BE ALLOCATED ON THE FOLLOWING VOLUMES :

VOLUME : volume name ERROR : error type

This is the trailer message when the allocation is not possible.

The types of errors can be :

VTOC ERROR
DUPLICATE NAME
NO ROOM IN VTOC
NO AVAILABLE SPACE :

Non-standard VTOC
The file-name already exists on the volume
There is no more available file label
There is no room on the volume or the allocation
can only be made with more than the MAXEXT
number of extents.

SYSTEM ERROR RETURN CODE : xxxxx. : Storage management has used

6-37

a primitive giving an unexpected
return code.

I

PREALLOC

If some severity 1 errors are found for one volume of a multivolume file, but
allocation is possible on the others, no abort will occur.

THE FOLLOWING ERROR OCCURED AFTER PREALLOCATION OF FILE :
file-name.

1/0 ERROR DURING FORMATTING
1/0 ERROR WHEN WRITTING EXTENDED LABEL
ERROR DURING EXECUTION OF primitive RETURN CODE :
Fl LE COULD NOT BE PREFORMATTED
ERROR IN OPEN ORCLOSE FILE RETURN CODE:
Fl LE LABEL 2 COULD NOT BE WRITTEN

VTOC ERROR TRY VOLCHECK
Fl LE LABEL NOT FOUND
FILE LABEL 2 DOES NOT EXIST
NON STANDARD LABEL

The above messages are followed by :

DEALLOCATION REQUIRED FOR ALREADY ALLOCATED FILE : file-name

This message is then followed by the same detailed report of the deallocation
process as in the utility ,Sb EAL LOC.

OPTION STRING INCORRECT OR UNAVAILABLE

The step cannot get the option string.

The following messages relate to the catalog :

CATALOG WAS UPD.t\TED

These messages follows the SPREALLOC trailer message if a cataloged file was
successfully preallocated and the catalog successfully updated.

CATALOG PROBLEM
CATALOG PROBLEM

CATALOG PROBLEM
CATALOG PROBLEM
CATALOG PROBLEM
CATALOG PROBLEM

FILE NOT IN CATALOG
l'JAME DOES NOT FOLLOW NAMING
CONVENTION
OBJECT NOT A Fl LE
i/O ERROR
NEW GENERATION IS REFERENCED
FILE ALREADY HAS A CATALOGUED MEDIA
UST

These messages imply that allocation was not attempted because of problems with
the ca ta I og.

UNABLE TO MODIFY CATALOG

This message occurs if preallocation was successful, but the catalog could not be
modified. This message should be followed by the message and action of'

DEALLOCATION REQUIRED FOR ALREADY ALLOCATED FILE : file-name

This is to avoid having a file existing with an unstable catalog entry. If the
deallocation is successful, then a new ~REALLOC can be issued. If it is not
successful, the FORCE option can be used to avoid referring to the catalog.

Fl LE HAS NO CATALOGUED MEDIA LIST

or

DEVCLASS NOT THE SAME AS ORIGINAL DEVCLASS

These additional messages may appear if the cataloged file could not be found.
The following messages apply to magnetic tape files :

6-38

PREALLOC

PREALLOCATION OF THE Fl LE: file-name

ON THE FOLLOWING TAPES:

tape name

TAPE STILL CONTAINS VALID FILE

AN ERROR OCCURED ON THE TAPE : volume-name

EXTENSION OF FI LE : file-name

ON THE FOLLOWING TAPES:
tape name

EXTERNAL FILE NAME NOT FOUND ON MEDIA LIST PR-OVIDED BY USER

TAPES DEMANDED ALREADY ASSIGNED TO A FILE

6-39

SORTIDX

Function : To sort and load the secondary indexes of an UFAS Indexed Sequential
File.

Statement form :

SORTIDX OUTFILE

,WKTAPE

(tile-description)

(NBDV = n, DEVCLASS =device-class)

,WKDISK = (l external-file-namel[I RESIDENT \]
SIZE = value ~ DEVCLASS =device-

' class,MEDIA=volume-)
·list

[,STEPOPT (step-parameters)];

- Statement description :

This utility must be used to sort the keys stored into the secondary index of an
Indexed Sequential file into ascending order. The process of loading the secondary
keys into an index is not assumed, in the genera I case, to include their reordering
within the index. The only file organization that currently supports secondary
indexes is the UFAS Indexed Sequential file organization.

Parameter description :

OUTFILE

WKTAPE

WK DISK

SIZE

Example:

This parameter describes the file whose secondary indexes are to be
sorted.

This optional parameter declares that the sorting media are magnetic
tapes.

NBDV

Allows the number of devices required to. support the sort work tapes
to be specified in n. The minimum value of n is 3, and the maximum
value is 6.

This optional parameter specifies that the sorting media arc disks.
The work file may be permanent, in which case it must have been
preallocated, or it may be temporary. If it is temporary, the space
specified will be allocated when the file is opened. The file will be
formatted by the sort as needed.

Indicates that the file is temporary, and specifies that nnn cylinders
should be allocated on the volume specified in the MEDIA list.

SORTIDX OUTFILE = XO.DAT, WKTAPE = (NBDV = 3,
DEVCLASS = MT/T9) ;

In this example, the secondarv. indexes of the file XO.DAT will be sorted into
ascending order, and 3 9-track work tapes will be the sort media.

6-40

7. Volume level utility specifications

This section contains the full specifications for the Volume Level Utilities in alphabetic
order by statement name. Each utility specification consists of :

1. The utility function

2. The statement form, using the notation convention defined in the Preface

3. A description of the utility operation

4. A description of the parameters and keywords

5. A set of one or more examples

6. A list of messages and diagnostics

A summary of these utilities is provided in Table 7-1.

Table 7-1. Volume Level Utilities

Statement
Function

name

$VOLCHECK Check the integrity of a disk volume

$VOLCOMP Compare two volumes

$VOLCONTS List a Volume Table of Contents cf a disk

$VOLD UP LI Make a duplicate of a volume

$VO LP REP Prepare a disk or tape volume

$VOLPRINT Print the physical blocks of a tape volume

$VOL REST Restore a $VOLSAVE file onto a disk volume

$VOLSAVE Save a disk volume into a tape file

7-01

VOLCHECK

Function : To check the integrity of a disk volume.

Statement form :

$VOLCHECK DEVCLASS

MEDIA

, DELETE] ;

Statement description :

device-class

volume-name

The purpose of this utility is to verify that the format of all the VTOC labels is
correct and that each track of the volume is described once and only once by
the label information.

In the VTOC label the utility checks :

The key

The format identifier

The VTOC extent

The number of type-zero file labels available

The address of the highest type-one file label

In me file labels section of the VTOC it checks :

The format identifiers

The extents (extent type, extent sequence number and extent consistency).

All the links between file labels and organization dependent file labels - and
additional extent labels.

In the unallocated space label it checks :

The format identifier

The free extents (they are compared with those obtained after all the file labels
have been checked).

The links between unallocated space labels

The utility also verifies that there are no inconsistencies between the extents (over­
lapping).

Restriction : when $VOLCHECK is applied to a RESIDENT disk the user must
ensure that GCOS is mono-programming, that is, no other jobs (including the input
reader and output writer) are executing concurrently.

$VOLCHECK will not work on volumes with more than 16 bad tracks.

$VOLCHECK will abort with return code 1219 (TABOV) in the following circum­
stances :

More than 100 extents on the volume

Overlap condition found for more than 10 files

More than 1024 labels in the VTOC

More than 30 files for which label errors are detected

If the optional parameter DELETE is specified then any temporary files found will
be deleted.

7-02

VOLCHECK

The report produced by the utility consists of a title line and volume identification
line followed by a series of messages grouped into three sections :

1. Volume Description : This section consists of three parts :

a. Unrecoverable errors

b. Recovernd errors

c. Suggested action

The unrecoverable errors are those found by the utility which it cannot correct :

VTOC LABEL KEY ERROR

The key of the first label is not equal to «04». No correction is made.

VTOCLABELEXTENTTYPEERROR

The extent type within the VTOC is not equal to «00». No correction is made.

THE LABEL FOLLOWING VTOC LABEL IS NOT THE EXPECTED ONE

The VTOC label is not followed by the unallocated space label. No correction is made.

UNALLOCATED SPACE LABEL FAILS AND CANNOT BE CREATED VTOC
EXTENT IS TOO SMALL

The creation of an unallocated space label is needed and $VOLCHECK cannot create
it since there is no more VTOC space of the correct type available.

VTOC LABEL FORMAT IDENTIFICATION HAS BEEN CORRECTED

The VTOC label format identification was not equal to «F4». It is set to this value.

VTOC LABEL EXTENT SEQUENCE NUMBER HAS BEEN CORRECTED

The VTOC label extent sequence number was not equal to «00». It is set to this value.

VTOC LABEL EXTENT BOUNDS HAVE BEEN CORRECTED

The inferior extent bound within the extent field of the VTOC label was not equal
to the bound within the volume label. It has been set to the volume label value.

VTOC INDICATORS HAVE BEEN UPDATED

The list «VTOC ERROR» and/or the list «NOFLS» has been reset in the VTOC
indicator byte within file label 4.

VTOC LABEL HIGHEST FILE LABEL ADDRESS OR AVAILABLE LABELS
NUMBER HAS BEEN CORRECTED

Self explanatory message.

UNALLOCATED SPACE LABEL NUMBER n AN EXTENT ERROR HAS BEEN
CORRECTED

There was at least one extent within the unallocated space label n which was incorrect.
Correction is performed.

7-03

VOLCHECK

UNALLOCATED SPACE LABEL NUMBER n KEY ERROR A NEW LABEL HAS
BEEN CREATED

The una~located space label (n-1) pointed to the label n, the key of which was not
equal to «05». A new label is created and the pointer is updated.

UNALLOCATED SPACE LABEL NUMBER n FORMAT IDENTIFICATION HAS
BEEN CORRECTED

The format identification of unallocated space label n has been set to «05».

The suggested action in the volume description consists of one of the following
messages:

NO ACTION

RESTORE FILE

RESTORE VTOC

DEALLOCATE FILE

REALLOCATE FILE

PREPARE VOLUME

self exp Ian atory

use $FI LR EST to restore file

use $VO LR EST to restore the volume

use $DEALLOC to remove file

use $PREALLOC to allocate file

use $VOLPREP on the volume

2. File Description : This section of the report provides information on all the files
which are present on the volume :

ex tern a 1-f i le-name

whether the file is multi-volume or not

the file organization

the number of cylinders and tracks occupied

detected errors

suggested action

The detected errors may consist of one or more of the following messages :

FILE ORGANIZATION DEPENDANT LABEL FAILS AND CANNOT BE
CREATED VTOC EXTENT IS TOO SMALL

Self explanatory message : no correction can be made.

FILE LABEL VOLUME SERIAL NUMBER ERROR

This message occurs if in the first volume of a file, the volume serial number (volume
name) found within the file label, is not equal to the volume serial number found in
the volume label. No correction is made.

FILE LABEL FORMAT IDENTIFICATION HAS BEEN CORRECTED

The format identification of the file label has been set to « F 1 ».

NO SPACE WAS ALLOCATED THIS FILE HAS BEEN DELETED

All the extents of the file label are empty. The label is deleted.

ADDITIONAL EXTENT LABEL NOT ALLOWED THIS LABEL HAS BEEN
DELETED -

The file label contains less than 3 extents, the additional extent label is then in
error and is deleted.

7-04

VOLCHECK

FILE ORGANfZATION DEPENDANT LABEL FAILING A NEW LABEL HAS
BEEN CREATED

Self explanatory message.

ADDITiONAL EXTENT LABEL KEY ERROR THIS LABEL HAS BEEN
DELETED

The pointer label is not the expected additional extent label. The pointer to this
label is deleted.

ADDITIONAL EXTENT LABEL FORMAT IDENTIFICATION HAS BEEN
CORRECTED

The format identification is set to «F3».

ADDITIONAL EXTENT LABEL NO SPACE WAS ALLOCATED THIS LABEL
HAS BEEN DELETED

Self explanatory message.

EXTENTS FOUND AFTER A NON VALIDATED EXTENT HAVE BEEN
DELETED

An extent has been found with an error and has been deleted, all the following
extents are deleted also.

EXTENT SEQUENCE NUMBER ERROR EXTENTS HAVE BEEN DELETED

The extent sequence number of an extent is wrong. This extent has been deleted.

EXTENT NUMBER ERROR THIS NUMBER HAS BEEN CORRECTED

Self explanatory message.

EXTENT BOUNDS ERROR THIS EXTENT HAS BEEN DELETED

The extent bounds are not valid since there is an inversion between the extent bounds.
This extent is deleted.

The suggested action messages in the File Description section are the same as those
in the Volume Description section of the utility report.

3. Overlap Information

These messages give the names of the files and the extent addresses, cylinder/
tracks, which overlap each other. The address values are printed in hexadecimal.

When one or more of these messages occur, the following instructions are also
displayed:

SUGGESTED ACTIONS TO DO SUCCESSIVELY

1 - TO PRINT THE FILES WHICH OVERLAP EACH OTHER

2 - TO DEALLOCATE THE WRONG FILE

3 - TO RUN AGAIN VOLUME CHECK UTILITY

7..05

VOLCHECK

In addition to the above message sets, the following messages may also be displayed
by $VOLCHECK :

ERROR 136 NON STANDARD VOLUME RC return-code

The volume to be checked is not a NATIVE one.

FATAL ERROR xx RC = return-code

This message will occur when an internal call to a GCOS system facility encounters
an error. The xx codes are explained be.low :

xx values Explanation

8, 9, 10, 11, 12 Central Processor error during OPEN/CLOSE

16, 17 Creation or deletion of buffers unsuccessful

24 Error in option string parameters, as passed
to the utility from the $VOLCHECK statement

32 Open file not successful - error in one file label
extent

40 Overflow has occurred in an internal software
table concerned with the VTOC

48 Logical Device Number cannot be obtained

56,64,65,66,67 An 1/0 error has occurred during file processing

72 A non-standard label has occurred, despite
previous verification.

80,81, 136 Errors encountered in volume label handling

144 The file is not on the volume

152 The file organization is not supported in this
software release

160 The file is multi-volume

Example:

VOLCHECK DEVCLASS MS/M400, MEDIA 15 x 14;

7-06

VOL COMP

- Function : To compare two tape or disk volumes of the same type and to report on
the differences encountered. Cassette volumes are not supported.

- Statement form :

$VOLCOMP INVOL 1 = (DEVCLASS = device-class

, MEDIA = volume-name

[.LABEL= m~r}Ji
[, TAPEND = nn]

, INVOL2 (DEVCLASS = device-class

, MEDIA = volume-name

[• LABEL = rn~~r}]
[,LIMIT ·= value]

[.FORMAT {~~~:A}]
[,SKIP nnn]

[,BUFFER= value]

[, PRTOUT = (sysout-parameters)] [, PRTF I LE= (file-description)]

[, PRTDEF = (define-parameters)] [, VTOC)

[, STEPOPT = (step parameters)];

Statement description :

For disk volumes the compare operation may be divided into the following actions:

Com pa risen of both volume tables of contents (VTOCS). An exception will be
reported if the VTOCS do not contain the same number of files, having matching
names and other attributes. Obviously the volume names will not match and this
mismatch will not be reported. Similarly no exceptions will be reported when the
Volume Serial Numbers (VSN) of files do not match.

For each file, both lists of allocated extents will be compared. If these lists are
different then the utility terminates abnormally.

For each allocated extent a comparison is made between the two volumes on a
track by track basis.

For tape volumes comparison is performed block by block. If a comparison is
performed between labelled tapes then no exception reports will occur on mis­
matches of the following :

Volume names

Volume Serial Numbers

Private user's labels, which may be present on one volume and not on the other.

When a comparison exception occurs the relevant block or track is printed in alpha­
numeric and/or hexadecimal form. It is also possible to place an upper limit on the
number of exceptions· to be printed.

7-07

I

I

VOLCOMP

Statement parameters :

INVOL1

INVOL2

TAPEND

LIMIT

FORMAT

SKIP

BUFFER

VTOC

PRTFILE
PRTDEF
PATOUT

Examples:

This keyword is followed by a parameter group identifying the
first of the two volumes to be compared. For further details see
Section 111 File and Volume Identification .

This keyword is followed by a parameter group describing the
second volume.If the LABEL keyword is present in INVOL 1
and is NONE or NSTD, it must be the same in INVOL2.

This keyword is used when LABEL= NSTD and it is then
mandatory~

It states the number of tape marks which are to be processed
before processing stops. It is specified as a two digit decimal
number. A no-record-found condition (time out on tape) also
stops processing.

This keyword may be used to specify the maximum number of
mismatches that are to be printed. When this limit is reached the
comparison will terminate. The limit is expressed as a numeric
value of up to 4 digits in length. If no limit is given then all
exceptions found in the comparison will be reported.

This keyword specifies the format to be used in reporting
comparison exceptions. If ALPHA is given then blocks or tracks
will be displayed in alphanumeric format only.

If HEX is given then the listing will be hexadecimal only.
If BOTH, the default, is the FORMAT value then the ~isting
will consist of both alphanumeric and hexadecimal formats.

This parameter, a three digit decimal number which is optional,
gives the total number of unreadable tracks that are to be
skipped on the input volumes. An unreadable track is processed
in the same way as a track which differs from the one it is being
compared to.

For tapes only : this keyword supplies the maximum block size,
in bytes,for tape to tape comparison. The numeric value given
must not be more than five digits long and must not exceed
30,000 in value.

For disks only : if this parameter is given then only the Volume
Tables of Contents(VTOC) of the two volumes are compared.
Hence only the first phase of disk comparison as described above
in «Statement Description» is performed.

These optional parameters introduce various parameter groups whose
purpose is to define the output file and how it is to be printed
(see Section 4).

$VOLCOMP INVOL 1 = (DEVCLASS = MS/M400 MEDIA= SERTA),

INVOL2 = (DEVCLASS = MS/M400 MEDIA= SERTX),

LIMIT= 40;

The two disk volumes SERT A and SERTX are compared. Only the first forty except­
ions will be listed, and the print format will be FORMAT= BOTH, alphanumeric and
hexadecimal.

$VOLCOMP INVOL1 = (DEVCLASS

INVOL2= (DEVCLASS

BUFFER= 3000;

7-08

MT/T9/D1600, M~DIA = TID4R),

MT/T9/D1600, MEDIA= TRB4R),

VOLCOMP

The two tape volumes, TID4R and TRB4R are compared. It is assumed, by default
LABEL= NATIVE, that both volumes are labelled. The maximum block size is
3000 bytes and all exceptions will be listed, in both alphabetic and hexadecimal
format.

7-09

VOLCONTS

Function : To produce a printed report on the contents of a native disk, tape, or
cassette volume.

Statement form :

$VOLCONTS DEVCLASS

, MEDIA

, SHORT]

device-class

volume-name [
-{NATIVE }]

I LABEL - COMPACT

, PRTF ILE = (print-file-description)]

PRTDEF

PRTOUT

[,STEPOPT

(define-parameters)]

(sysout-parameters)]

(step-parameters)] ;

Statement description

This utility lists the following information pertaining to a disk volume:

The volume name and VTOC (Volume Table of Contents) address.

The list of free extents left on the volume. This information is not available for
IBM DOS volumes, where free space is ignored.

The files resident on the volume. For each file present the program reports in
exactly the same way as $FI LDESC does. The only exception is that BFAS
Indexed Sequential file usage statistics are not printed even when SHORT is not
used.

File descriptions are printed in alphabetic order of file name.

When the SHORT option is used, the printed report is reduced to a condensed
summary table of contents of the volume.

When SHORT is not used, a logical file opening is often performed to obtain
more information. When the file is a multivolume file, the attempt to open the
file may fail because other volumes are not available. This failure will be reported,
and the file description will look incomplete compared to the other descriptions.

Statement parameters

DEVCLASS

MEDIA

LABEL

SHORT

PRTFILE
PRTDEF
PRTou-1

Examples:

This keyword is followed by the device class of the volume.

This keyword is followed by the name of the volume which is
to be inspected.

Is used for COMPACT format cassettes.

This optional parameter should be used if the free or available
space is to be reported with a brief summary of the descript­
ion of the files resident on the volume. The space occupied by
files whose expiration date has passed is not considered as free
space. For the space occupied by a file to become free, the
$DEALLOC utility must be used on the file. If this parameter
is omitted, then all the details of volume contents will be listed,
and a complete description of every file will be given. In addit­
ion, a summary of allocated files will be printed.

These optional parameters introduce various parameter groups
whose purpose is to define the output file and how it is to be
printed (see Section 4).

VOLCONTS MEDIA BDXC21, DEVCLASS = MS/M400;

7-10

VOLCONTS

This statement will produce an occupancy report on MSU0400 disk volume BDXC21.
All the pertinent details mentioned in the statement description above will be
printed.

VOLCONTS MEDIA = L60D83, DEVCLASS = MS/M300, SHORT;

In this example the utility is applied to an MSU0310 disk named L60D83 in order
to produce a report on the available space. Details of valid files found will not be
iisted.

- Step Completion Conditions

It should be noted that $VOLCONTS uses three work files, which are :

H LABELS

H_SUBFLS

H_SUMARY

accessed through the internal-file-name «h_labels>>. It is a
UFAS indexed sequential file used to store all the file
labels and reorder them according to the alphabetic sequence
of external-file-names.

accessed through the internal-file-name «h_subfls». It is a
UFAS indexed sequential file used to store all of the subfile
entries from a given library. This workfile is also used to
reorder the description of subfiles in the alphabetic order of
the subfile names.

accessed through the internal-file-name «h_sumary». This
workfile is a UFAS Sequential file used to build the summa­
ry table of contents of the volume to be described. The final
contents of H_SUMARY are copied into the sysout (or
PRTFILE) file at the end of step execution. When SHORT
is used, the produced report is restricted to that table of
contents. When SHORT is not used, the table of contents is
appended to the end of the extended report.

The description of every file on the volume requires that the file being described is
dynamically assigned to the $VOLCONTS step (especially when SHORT is not
used). In a number of cases, the file is then opened to access library members, or
extended labels, or statistical information.

When a file is dynamically assigned, an abnormal return code can be obtained. In
particular, one can get :

CONFLICT

BUSY

the file was already assigned to the step. This happens for
$VOLCONTS workfiles during the description of the system
disk (or of a resident volume).

the file is assigned to another job step.

When a attempt is made to open the dynamically assigned files, it is also possible
that abnormal return codes might occur. In particular :

EXTERR this occurs when the file to be opened is a multivolume one.

CATERR means that a catalog should be attached.

Because there is very little user input to $VOLCONTS, most fatal malfunctions are
considered to be system malfunctions, and result in a SEV3 or SEV4 termination
status. Malfunctions are most likely to occur when the input volume is accessed for
the collection of the file labels to edit, and when the system is asked for resources,
which might not be available ; for example, secondary storage space for work files,
locked memory for buffers, abnormal opens on the work files, and so on.

7-11

VOLCONTS

Once the labels have been collected, the label editing phase starts. From then until
the end of the step, most malfunctions will result in SEV1 error messages (warnings).
If a particular file cannot be assigned (BUSY), it will be partially described, as some
of the label information will be available, and $VOLCONTS will go directly to the
next file. The same thing happens if the file cannot be opened, or if some subfiles
of a library cannot be accessed.

Note that when $VOLCONTS is applied to a tape or cassette volume, the entire
volume is scanned, and the count of data blocks is extracted from the EOF labels.
This is not done by $FILDESC.

No checkpoints are taken with $VOLCONTS.

7-12

VOLDUPLI

- Function : To copy the contents of an entire volume, disk or tape, onto another
volume of the same type. The VOLDUPLI function is partly performed

for ~ssettes by using SCREATE with FILE FORM= NSTD
- Statement form :

$VOLD UP LI OLD = (DEVCLASS device-class

MEDIA volume-name

[. rATIVE !] LABEL= =NONE
NSTD ~

[, TAPEND nn]

, NEW= (DEVCLASS = device-class

MEDIA volume-name

[. LABEL =
~ NATIVE t]
) NONE ~

[, DENSITY= density]

[, BUFFER =value]

[, SKIP = value] [,STEPOPT = (step-parameters)] ;

Statement description :

For copying from disk to disk, the duplication is performed on a track by track
basis with old alternate tracks being inserted in the new volume and any necessary
new tracks being made alternate if there are defective tracks. Although only the
allocated tracks of the source volume are copied, the same address space will be
used to write the tracks on the target. Thus the integrity of Indexed Sequential
file (where the index contains absolute addresses) is maintained. Note that
$VOLDUPLI will fail if the target volume supplied contains any valid files.

For disk volumes, the following mappings are supported.

MSU0350 to MSU0400, MSU0402, MSU0452

MSU0400 to MSU0402, MSU0452

MSU0402 to MSU0400, MSU0452

Duplication from a higher capacity volume to a lower capacity volume is not supported.

Tape to tape copy operation is performed on a block by block basis. The input label
organization is always maintained on output. Thus if the input volume is NATIVE
then the output volume will be. If the input volume is unlabelled or non-standard,
then the output volume will be the same.

If the input volume contains cataloged files, they will be copied as cataloged files
onto the output volume (that is, the catalog flag will be set in the file labels). The
catalog which contains the file attributes will not contain an entry for the copied
files, as the media list will be out of date. If the copied files are to be cataloged,
then the catalog entry must be modified by the user to contain the new media list.

7-13

VOLD UP LI

The REPEAT option of the step-parameters is not supported for disks, as the system
cannot guarantee the exclusive reservation of volumes between abort and restart.
If REPEAT is used with disk duplication, a warning message is sent, but execution
continues. If REPEAT is used for disk or tape, no checkpoints are taken.

Note that it is possible for the target tape to have previously recorded labels when
the input tape is unlabelled or non-standard. In this case the output tape is checked
to ensure that it does not contain a valid file. If it does then the utility will fail. If
there are no files present then the copy operation takes place and the final form of
the output tape is unlabelled or non-standard, like the input tape.

When an unlabelled tape is copied, the first Tape Mark encountered is taken as the
end-of-volume.

When a non-standard tape is copied, the user may code that the operation be perform-
ed until a specified number of tape marks have been read. ·

It is not possible to duplicate a WORK volume: The output volume cannot be WORK.
It is not possible to duplicate a cassette volume.
It is not possible to duplicate an ASCII tape with the SKIP option present.

Statement parameters :

OLD

TAPEND

NEW

DENSITY

BUFFER

SKIP

This keyword is followed by a parameter group describing the
volume to be copied. The keyword LABEL is only relevant for
tape volumes. For further details see Section 111, «File and
Volume Identification».

This two digit parameter is mandatory for non-standard volumes
and is only valid when LABEL= NSTD. TAPEND specifies the
number of tape marks to be read before terminating.

If TAPE ND = 2 then duplication will finish when the second
tape mark is read.

Whatever TAPE ND is, then reading also terminates when the
no-record-found condition is encountered.

This keyword is followed by a parameter group describing the
output volume for the copy operation. The device class must
correspond with that for the input volume given in the OLD
parameter group. In a disk-to-disk operation the device type
must be compatible.as indicated. The keyword LABEL, us.ed onlv fnr
tapes, describes the volume organization prior to the utility
operation. The organization of the tape after duplication will
be the same as that of the input volume.

For tapes only : this keyword enables the user to specify the
new recording density to be used in writing the output tape
volume. The allowed values are D200, D556, D800 (default for
7-track), and D 1600 (defau It for 9-track).

For tapes only : for a tape copy operation this keyword must
be supplied giving the maximum blocksize of the tape to be
copied. The numeric values may be up to five digits long but
must not exceed 30000.

This parameter specifies what action is to be taken when a read
error is encountered. If SKIP= nnn then the utility will only
skip nnn bad blocks. If more than nnn read errors are encoun­
tered then the utility will fail.

If the SKIP is omitted then the utility will fail if any read error
is encountered.

7-14

VOLDUPLI

Examples:

~VOLDUPLI OLD = (DEVCLASS = MS/M400, MEDIA= DSKB8),

NEW = (OEVCLASS = MS/M400, MEDiA = DSKC8) ;

To copy the contents of MSU0400 type disk DSKB8 onto disk DSKC8 .

.$VOLDUPLI OLD = (DEVCLASS = MT/T9/D800, MEDIA= T2641),

NEW= (OEVCLASS = MT/T9/D800, MEDIA= T48XQ),

DENSITY= 0800, BUFFER= 8008;

To copy the contents of the labelled tape volume T2641 onto a tape T48XQ. The
density of the new output labelled volume T48XQ will be 800 bpi. The maximum
block size for the copy operation is 8008 bytes.

Step Completion Conditions :

If a$VOLDUPLI step abnormally terminates when performing standard tape dupli­
cation, the output tape is rewound, and the volume and file labels are overridden ;
this ensures that the output volume is left in the same state as an «empty scratch
volume». The exception to this is when the output tape is not long enough to hold
the entire input volume, in which case, SVOLDUPLI terminates abnormally, but the
output tape is not scratched.

If a disk duplication step is restartable (REPEAT) and has aborted, the restart will
probably fail because of valid files being found on the output volume; these valid
files are those already copied before the step aborted.

No checkpoints are taken with ,S'VOLDUPLI.

7-15

I

I

VOLPREP

- Function: To label and format a disk, cassette, or tape volume for use by GCOS or to
remove the existing standard labels. For disk volumes, a list of all defective
tracks is produced.

- Statement form :

~OLPREP OLD = (DEVCLASS

MEDIA

device-class

volume-name

r NAT!YE l NONE

L
LABEL= COMPACT)

NSTD
G100

NEW =(DEVCLASS=device-class,MEDIA=volume-name [LABEL J~~~r:iTl])
' ?NONE ~

{

D1600}
[, DENSITY= g ~~

D 200

[l NTRKANL l]
I NTRKPRF

COMPLETE
[VTOC ADDA= lcc~:t l J

[, WORK] [, FORGET]

[I BYPASS] [, FORCE]

[, BADTRACK = (ccc/tt [, ccc/tt] ...)]

[, STEPOPT = (step-parameters)] ;

7-16

VOLPREP

Statement description :

The $VOLPR EP utility, for· tapes and cassettes, writes a volume label containing
the new volume name and follows this with a dummy header file label and a tape
mark. If there is already a valid (unexpired) file on the tape then the utility will
fail unless BYPASS is specified.

For disk volumes, the following functions are performed :

Surface analysis : each track is verified and if any is found defective then an
alternate track is assigned. This validation is applied to the alternate area
first.

Track preformatting : standard home addresses are written on each track
and the remainder of each is erased.

System Load Records : space is reserved on track 0 cylinder 0 for these records.

The VTOC (Volume Table Of Contents) is initialized. This table is recorded
containing the volume name and other volume characteristics.

User Defined Defective Tracks : These tracks are those that are found to be
defective by the disk pack manufacturer. The precise addresses (cylinder/
track) are supplied. with each pack.

Operator verification : a check is made on the target disk to ensure that there
are no valid (or cataloged) files present. If valid files are present then the
utility will fail unless BYPASS has been specified. If BYPASS is present and
there are valid files on the volume then the operator is asked for permission
for execution to continue.

VOLPREP should not be considered as a means to remove cataloged files
from a volume because it does not update the catalog. DEALLOC must be

used to clear cataloged files from a volume which is being prepared. As a
recovery tool FORCE can be used to ensure that VOLPREP ignores
cataloged files.

The utility may be used to remove existing labels (for a disk the VTOC is erased)
from a volume.

This feature permits the transfer of a volume from LABEL
=NONE.

NATIVE to LABEL

This is the only method in GCOS of removing standard labels (with the exception

of SVOLDUPLI). •

SVOLPREP provides a means of upgrading or downgrading the volumes of a
particular type to volumes of the same type but different capacities. The
possible changes are :

MSU0350 volumes can be changed from/to MSU0400 volumes

MSU0402 volumes can be changed from/to MSU0452 volumes

When the volume to be upgraded does not contain files of interest to the user, the
upgrade can be performed by a simple SVOLPREP. The utility recognize a device­
class change for the volume to be prepared ; it asks the system to have the volume
mounted on a device of the new device-class, and operates as if the FORGET
option was given. The list of bad tracks must be re-specified by the user.

When the volume to be changed contains files of interest to the usei, he may
either perform a SVOLSAVE, a SVOLPREP, and then a SVOLREST to bring the
files back onto the volume, or the SVOLSAVE and SVOLREST can be replaced
by SVOLDUPLI.

7-17

I

VULPREP

DEFECTIVE AND ALTERNATE TRACKS

There are three types of defective track which may occur on a disk volume :

1. A track that does not allow the registration of a home address and a one track
long record ; this is a $VOLPREP declared defective (bad) track.

2. A track that is designated defective by the manufacturer of the disk volume after
volume certification. This is a Manufacturers Bad Track, and a list of these is given
on the volume cover.

3. A track that is declared defective by the user when it causes frequent 1 /0 errors. This is
a user declared bad track.

The three types of defective track described above are, to a certain extent, indepen­
dent, and the automatic detection of defective tracks during surface analysis by
$VOLPREP cannot be assumed to be exhaustive. In particular, there is no guarantee
that every manufacturer's bad track will be recognized. Therefore, we recommend
that you explicitly declare the manufacturer's bad tracks the first time $VOLPREP
is used on a volume or when the FORGET option is used.

The FORGET option causes every track which is flagged as defective to be unflagged.

All disk volumes contain a fixed number of tracks that are reserved for use as alter­
nate tracks. These are used as alternates for tracks which are found to be defective
when the volume is prepared, or which become defective during the life of the
volume . These alternate tracks are set aside as a pool of spare tracks when the
volume is prepared. The VTOC (Volume Table Of Contents) format 4 label records
the total number of alternate tracks left, and the address of the next available alter­
nate track.

An entire number of cylinders, which depends upon the volume type, is reserved
for alternate tracks. These cylinders are the innermost cylinders of the volume.

In addition to the declared bad tracks, $VO LP REP performs a surface analysis of
the disk volume. This analysis gives a rapid check that every bad track has been
recognized. This uses the entire 1/0 hardware path, so if the disk drive is malfunc­
tioning, or is not properly tuned,,S'VOLPREP may find problems which it incor­
rectly attributes to the disk volume. During the surface analysis, channel programs
used by $VOLPREP are declared not retryable by softwara. In the case of an 1/0
error, SVOLPREP is notified, and checks the nature of the error. If it is a «data-error»,
SVOLPREP performs a few further tests and flags the track as defective.

The surface analysis is first done on the alternate tracks before declared bad tracks
are processed. This means that defective alternates are withdrawn from the set of
available alternates. Every abnormal l/O event is traced on the execution report.

SPACE ALLOCATION

Space is reserved on disks as follows :

On cylinder O/track 0 for System Load Records

On the very innermost cylinder for the test and diagnostic needs. This space
has a one cylinder extent, and did not exist with previous software releases.
The absence of this space is recognized by the system, so «old» volumes are
supported.

The VTOC is allocated, preformatted, and initialized. The number of available
preformatted «file label containers» on a track and in the whole table depends
on the volume type. The user can supply a start address for the VTOC.This
address must be different from cylinder 0/track 0, and by default, the start
address of the table is cylinder O/track 1. The size of the VTOC table is always
to one cylinder or less depending upon its start address.

7-18

VOLPREP

The length of the VTOC cannot be less than two tracks, and the extent of the

VTOC lies between the start address and the end of the cylinder. The VTOC cannot

be multicylinder.

- Statement parameters :

OLD

NEW

DENSITY

NTRKANL
NTRKPRF

COMPLETE

VTOCADDR

WORK

FORGET

This keyword is followed by a parameter group describing the

state of the volume before initialization. A description of the

elements in the parameter group is given in Section 4.

A MS/M452 volume can be mounted on a MS/M402 drive.
If the site has no MS/M452 configured the volume will be

recognized as nonstandard and OLD must be used with

LABEL = NSTD.

This mandatory parameter group describes the state of the

volume once prepared.

If LABEL= NONE is code_d in this parameter group then
the result of the utility is a volume without labels which

may only be referenced in succeeding JCL statements by
LABEL= NONE or LABEL= NSTD.

For tape only : specifies the new recording density. An

MT /T9 tape can be recorded at either 800 or 1600 bpi, but
an MT/T7 tape can only be recorded at 800 bpi.
For disks only: if NTRKANL is specified then the utility
does not perform a surface analysis and hence it is assumed

that there are no defective tracks. If instead NTR KPRF is
given, then neither surface analysis nor track preformatting

occurs. It is assumed that the volume is already formatted.
In this case only a new VTOC is written. When used with a

LABEL= NONE volume NTRKPRF is ignored and a

SVOLPREP NTRKANL is actually performed. If COMPLETE
is given (the default) then surface analysis and track prefor­

matting are performed.

This optional parameter, available with disks only, assigns

a specified start address to the VTOC. The VTOC is always

assumed to end on the last traGk of the same cylinder. The

minimum number of tracks for the VTOC is two, between

the beginning and the end of the array. The VTOC cannot

reside in the alternate track area, and the address must
always be in the form CCC/TT.

This parameter applies to work tapes only, and must be
used to prepare a work tape. A work tape is a tape that can
be used by any job step that asks the system for a work

tape, regardless of the media.

This optional keyword applies to disks only. It is used to
unflag all defective tracks before the BADTRACKS option
is processed and surface analysis performed. The list of
manufacturers bad tracks should be supplied again in the
BADTRACK option. If FORGET is not used, old bad track

are preserved, and their set enlarged with the set of tracks

which are listed under the BADTRACKS option.

Note that this option cannot be used in conjunction with

NTRKPRF.

7-19

I

I

I

VOLPREP
FORCE

BYPASS

BADTRACK

Examples:

VOLPREP

When this optional parameter is used, the destruction of
catalogued files (if any) is allowed without any update of
the catalog. The operator is asked for permission to perform
the destruction when the volume to be prepared is a disk volume.

If this parameter is coded then utility execution will take
place even if there are valid files on the volume. However,
the operator will be requested to authorize this execution.
If the operator answers in the negative, then the utility will
terminate without preparing the volume.

For disks only: this keyword allows the user to specify that
certain disk tracks be assigned alternates. The keyword is
followed by a list of cylinder and track addresses, each
having the form ccc/hh. Leading zeros in address values may
be omitted.

Note that BADTRACK operates independently of the auto­
matic alternate track assignment feature. Assignments by
both techniques may occur in the same utility execution.
However, it is nut valid to supply BADTRACK values in
conjunction with NOTRKPRF. In this circumstance alter­
nates are never assigned.

The first cylinder is number 0 and the first track within a
cylinder is number O.

OLD= (DEVCLASS = MS/M300, MEDiA = NUPACK,
LABEL= NONE), NEW= (MEDIA= MASPYA);

A new disk pack for an MSU0310 drive is initialized with the volume name
MASPY A. Surface analysis and preformatting actions are performed on the new
pack. Note that NUPACK is only a physical external name which is written onto
the outside of the pack : it is not the volume name recorded prior to initialization.

VOLPREP OLD = (DEVCLASS = MS/M400, MEDIA= LOA),
NEW = (MEDIA= LOB) ;

An MSU0400 volume LOA is re-initialized and renamed LOB.

VOLPREP OLD= (DEVCLASS = MT/T9/D800, MEDIA= MASA,
LABEL= GlOO), NEW= (MEDIA= PAYC), DENSITY=
0800 ;

An old Series 100 magnetic tape, MASA, is renamed as a native volume, PA YC. The
recording density on the tape reel will be 800 bits per inch.

VOLPREP OLD= (DEVCLASS = MS/M350, MEDIA= LDV45),
NEW= (MEDIA= BDV45), BYPASS,
BADTRACK = (41 /0, 231/4) ;

An MSU0350 disk volume LDV45 is re-initialized with a new name BVD45: If any
valid files are present then operator permission will be requested (BYPASS). The
user has defined two bad tracks, added to the old bad track set, for alternate assign­
ment.

Operator Action

When valid files have been encountered while BYPASS is specified the following
message is displayed on the operator's console :

DU01 VOLPREP : VALID/CATALOGUED FILES ON volume-name
DESTRUCTION AUTHORIZED?

The inswer YES will allow preparation to continue.The answer NO will cause
i.(;iitv termination.

VOLPREP
During a VOLPREP operation the volume under preparation must not be moved
onto another device.

Step Completion Conditions :

If S VOLPREP aborts with a severity code greater than SEV3, the prepared volume
is left in a non-standard state for a disk volume. If you want to execute the
preparation again, it is necessary, prior to the run, to list the old bad tracks set in the
BADTRACK option. Note that the old defective tracks are preserved when the
volume is a native volume, and if the output format is upward compatible with the
input format (that is, from MS/M400 to MS/M452, or to MS/M402 from MS/M400,
or to MS/M350) , FORGET must then be omitted.

$VOLPREP does not take checkpoints.

7-21

I

I

VOLPRINT

- Function: to print physical blocks of a tape volume. The function of SVOLPRINT

is pa-rtially performed for a cassette volume by SPRINT with Fl LEFORM=NSTD.
- Statement form :

[, TAPEND = nn] [, DATACODE =ASCII]

, BUFFER= nnnnn

[, PRTF I LE = (print-file-description)]

[, PRTDEF = (define-parameters)]

[,PRTOUT = (sysout-parameters)]

ALL

ITEM= (bbbbb [, bbbbb] ...)

PART= (bbbbb, bbbbb) [,(bbbbb, bbbbb) J ...)

ALPHA

1

]

HEX

BOTH

FORMAT=

[, STEPOPT = (step-parameters)] ;

- Statement description :

This utility will print :

The entire volume
or

Specified blocks from the volume
or

Specified ranges of blocks from the volume

The printed form of each block may be character, hexadecimal or both. If the
LABEL= G100 then only hexadecimal output occurs.

The tape may be standard in format, or unlabelled , or non-standard.

7-22

VO LP RI NT

- Statement parameters

DEVCLASS
MEDIA

LABEL

SKIP

TAPEND

DATACODE

BUFFER

FORMAT

ALL

ITEM

PART

7-23

These parameters define the device-class and volume-name of the
volume to be printed. These parameters must be present.

This parameter specifies the tape format. If omitted then
the tape is assumed to be standard GCOS/EBCDIC (that is
LABEL= NATIVE).

If LABEL= NONE then the volume is unlabelled and the
first tape mark encountered is taken as the end-of-input
condition-.

If LABEL= NSTD then the volume is non-standard in for­
mat. In these cases the user may code a TAPEND parameter
to indicate when printing is to terminate.

When this option is not present, any unretryable.
1/0 error on the input volume will cause the utility to fail.
When it is used, 1/0 errors will not cause failure until the
specified number of failures is reached.

This optional parameter is only valid when LABEL= GlOO
or LABEL= NSTD. TAPEND specifies the number of tape
marks to be read before terminating.

If TAPEND = 2 then printing will finish when the second tape
mark is read.

If TAPEND is not coded then reading terminates when the
no-record-found condition is encountered.

This optional parameter is included if the tape is in ASC11
code and can only be used when LABEL= NSTD.

This parameter specifies the number of bytes that will be
printed from each block. If all the bytes of every block are
to be displayed then the maximum blocksize (or greater)
must be coded.

This parameter is mandatory for tapes. The maximum value is
30000.

This parameter specifies the printing format : character
(ALPHA), hexadecimal (HEX) or BOTH.

The default FORMAT is BOTH.

If this parameter is coded then all the input blocks will be
printed.

If this parameter is coded then only the blocks
whose numb.ers are specified are printed. The first physical
block on the tape is number 1.

If LABEL= NATIVE then the header labels and associated
tape marks are not counted. The first data block is block
number 1.

If LABEL= NSTD then the labels and tape marks are counted.

Up to 20, addresses may be specified in the ITEM parameter.

If the parameter is coded then up to 10 pairs of block
numbers may be specified. Each pair designates a range

to be printed. The range is inclusive : if

PART= ((15, 19))

the blocks 15, 16, 17, 18 and 19 will be displayed. Even if
only one range is given, there must be two sets of parentheses.

I

I

I

VOLPRINT

PRTFILE
PRTDEF
PATOUT

Examples:
$VOLPRINT

These parameters define the output file and how it is to
be printed.

DEVCLASS = MT/T9, MEDIA= 11864, BUFFER= 800,

ITEM= (10, 20, 30, 40, 50} ;

A standard labelled tape volume (LABEL= NATIVE by default) named 11864 is
printed. The numbers of the blocks printed are: 10, 20, 30, 40 and 50.

$VOLPRINT DEVCLASS = MT/T9, MEDIA= UNK, BUFFER= 10000,

LABEL= NSTD, TAPEND = 6,
An non-standard tape is printed until the sixth tape mark is read.

7-2.4

VOL REST

Function : to restore the contents of a disk volume from a tape file.

- Statement form :

$VOLREST INF I LE= (file-description)

, VOLUME= (DEVCLASS =device-class-name,

MEDIA= media-name)

[~~c~
[NBBUF =i~ l]
[SKIP= nnn]

~ STEPOPT =(step-parameters)]

Statement description :

This utility performs the reverse function to $VOLSAVE. It restores onto a disk
volume a $VOLSAVE file. Before data transfer the utility checks to ensure that
the volt1me onto which the restore is performed is empty. That is, it does not
contain any valid files. If a restore is attempted onto a volume that is not empty
then the program will terminate abnormally.

The target volume must be of a type compatible with the saved volume. In addition,
the contents of a saved MSU0350 may be restored onto an MSU0400. For details
of inter-release compatibility, see Appendix A.

Other possible mappings are :

MSU0350 to MSU0400, MSU0402, MSU0452
MSU0400 to MSU0402, MSU0452
MSU0402 to MSU0400, MSU0452

Statement parameters :

The meaning of the parameters for S VO LR EST are exactly the same as for
$VOLSAVE. The following points should be noted in addition:

In the case when the save file is multi-volume, the volume names must be
specified in the same order as they appeared in the SVOLSAVE utility that
was used to create the file.

Only one tape drive will be used in execution if MOUNT= 1 is specified in the
INFILE parameter, the default is MOUNT= ALL. When the restore from the first
tape volume is complete, it is unloaded and the system requests that the second
tape volume be mounted, and so on.
Note that it is not neces$ary to restore a save file onto a volume of the same
name as that from which it was saved. Thus a volume named VA might be
saved onto a file named FSVA and subsequently restored onto a volume named
VX. The disk named VX will still have VX as its volume name but it will
contain all the files that resided on VA originally.

The user is warned that the current version of $VO LR EST works with only
one buffer by default. The double buffering mode must be explicitely requested
by the user. Double buffering was the default mode of operation under previous
versions of this utility.

7-25

I

I

VOL REST

Examples:

VOL REST INFILE = (FCU248, DEVCLASS = MT/T9, MEDIA= TCU248),

VOLUME= (DEVCLASS = MS/M400, MEDIA= NCU248);

The contents of save file FCU248 held on tape volume TCU248 are restored onto
an MSU0400 disk having volume name NCU248. The file FCU248 must have been
produced by utility $VOLSAVE from an MSU0400 type disk.

VOL REST INFILE = (SF54A, DEVCLASS = MT/T9,

. MEDIA =(VS54AA, VS54AB, VS54AC)),

VOLUME= (DEVCLASS = MS/M400, MEDIA= ND54A) ;

The MSU0400 disk ND54A is restored with save file SF54A which resides on three
tape volumes, VS54AA, VS54AB and VS54AC. Note that when SF54A was created
using $VOLSAVE the tape volume names must have been given in exactly the same
order as above.

Step Completion Conditions :

If an abnormal condition occurs before the utility writes onto the disk volume onto
which the restore is to performed, the message.

VOLUME NOT MODIFIED

i" rlisplayed.

A checkpoint is taken at each tape volume switching. Note that the step might not be
repeatable if the utility was aborted after the VTOC was restored (if the VTOC
contained valid or catalogued files), and before the first tape volume switching takes
place.

The output disk volume is not kept reserved by the system for $VOLR EST after the
step has been aborted and until it is restarted. For a $VOLREST abort/restart
situation to be safe, the system should be operated in monoprogramming mode.

If the SKIP option has been used and the save file contains unreadable blocks, the
number of skipped blocks is not counted by the utility ; the address of the last track
which has been restored before encountering the unreadable block(s) is displayed.
The step completion code is then SEV1.

On the output disk volume every track which corresponds to a skipped block from
the tape is left untouched.

7-26

VOLSAVE

- Function : to save the contents of a disk volume intu a native labelled tape file.

- Statement form :

$VOLSAVE VOLUME= (DEVCLASS = device-class, MEDIA= volume-name) I
, OUTF I LE= (file-description)

(, SKIP= nnn]

[
, \ALL ~]

I VTOC \

[NBBUF =)}I]
[, STEPOPT = (step-parameters)] ;

Statement description

The contents of the nominated disk volume are written track by track onto the
designated tape file. Only those tracks which are allocated are written. Any alternate
tracks on the volume are re-inserted into their correct logical position.

The output file used may be multi-volume if required. The recording density used
is that already on the tapes as recognized by AVR (Automatic Volume Recognition).

The file format used to save the volume is such that no user defined processing
should be attempted on it. The only other programs which handle this format
are SFI LDUPLI and SVOLREST - volume restore.

The utility will fail if an attempt is made to save onto a tape which already contains
a valid file.

If the tape file is catalogued, it must have been preallocated before performing the
save; BLKSIZE should be 13200, RECSIZE should be 13196, and RECFORM
should be V. For an MSU0300, BLKSIZE should be 7400, and RECSIZE should
be 7396. If there are incorrect values, S VOLSAVE will fail.

For details of inter-release compatibility, see Appendix A.

- Statemei:it parameters :

VOLUME

OUTFILE

Th•s keyword is followed by a parameter group defining the
disk volume to be saved. DEVCLASS may only specify a
disk.

This parameter is followed by a parametergroup describing
the file to be used in saving the disk volume. The group
defines the external-file-name, the device-class (which must be
tape), and the volume identification. ·

When a multi-volume save is required, the volume mounting
is performed according to the user's instructions. The order
In which the volumes are used is taken to be the order in
which they are specified in the $VOLSAVE statement. If
an insufficient number of volumes is provided, adcitional
WORK volumes will be requested. The produced tape file
can be used as the input file to $VOL REST via the INFI LE
option of this utility.

7-27

I

VOLSAVE

ALL
VTOC

SKIP

NBBUF

These optional keywords specify whether all the extents
are to be saved (ALL, the default), or just the VTOC is to
be saved.

When this option, a three digit number, is not present, any
irrecoverable 1 /0 error on the input disk volume will cause
the utility step to abort. When this option is used, the same
kind of failure will not cause the utility step to abort unless
the failures exceed a specified limit, but instead, the track
that was read is not saved.

This statement describes the number of buffers to be used
for input and output by $VOLSAVE.

Note that SVOLSAVE operates by default with only one buffer. Double buffering
must be explicitely requested by the user. Previous versions of this utility were
working in double buffering mode by default.

Examples:

~VOLSAVE VOLUME= (DEVCLASS = MS/M300, MEDIA= VCU248)

, OUTFILE = (FCU248, DEVCLASS =MT,

MEDIA= TCU248) ;

In this example the contents of MSU0310 disk named VCU248 are saved as file
FCU248 on tape volume TCU248.

$VOLSAVE VOLUME= (DEVCLASS = MS/M400, MEDIA= BD54A),

OUTFILE = (SF54A, DEVCLASS =MT,

MEDIA= (VS54AA, VS54AB, VS54AC));

In this example the MSU0400 disk BD54A is saved as file SF54A on the tape
volumes VS54AA, VS54AB and VS54AC. Note that the utility will use VS54AA
first, followed by VS54AB and finally VS54AC.

- Step Completion Conditions:

If an abnormal condition occurs before the utility writes onto the cutput tape(s),
the message :

OUTFILE NOT MODIFIED

is displayed.

If the SKIP option has been used and the input disk volume contains unreadable
tracks, these tracks will not be saved at all, but their addresses are recorded in order
to warn the user about the tracks when the volume image is reloaded by $VOLREST.
The step terminates with a SEVl completion code.

When an error occurs during the writing to the save file, the file will be closed at the
point that has been reached.

A checkpoint is taken at each tape volume switching. If an abort/restart situation
occurs, the disk volume must not be used by other jobs before the step is restarted.
The user and operator should take care, because the system does not keep the disk
volume reserved for the ~VO LSAVE step during the time this step is aborted and
not yet restarted.

When REPEAT is used, the$VOLSAVE utility should be executed in monoprogram­
ming mode if the abort/restart is to be safe.

7 ~r - .

Appendix A
Inter-release Compatability
of Saved Files and Volumes

The following points should be taken into account when dealing with files and volumes
saved with Release 0300 of GCOS.

1) Tapes saved by Release 0300 are in undefined format (U format); only one buffer
was used when saving files, and double buffering was used when saving volumes. U
format is always read with one buffer.

2) Save tapes from Release 0300 will be processed by 0400 with one buffer; this
will mean that $VOLREST will be less efficient when processing these tapes.

3) Saves for 0400 are in variable format (V format), and only one buffer will be
used by default. Double buffering is allowed, but must be explicitly requested by
the user. The use of double buffers will improve the efficiency of $VOLREST
and $VOLSAVE.

4) Saves made with Release 0400 which are processed by Release 0300 must be
changed from V format to U format. This can be done by $CREATE.

Table A - 1. The Relationship Between Formats and Functions

Release 0300 Release 0400

RECFORM NBBUF RECFORM NBBUF

FILSAVE ut 1
1

ut 1

vt 1 or 2

VOLSAVE UV 2 UV 1

vv 1 or 2

Fl LR EST ut 1 ut 1

Vt 1 or 2

VOL REST UV 2 UV 1

vv
.
1 or 2

In Table A-1, Uv designates the U format generated by $VOLSAVE. It is processed
with double buffers under Release 0300 and with one buffer under Release 0400.

Uf designates the U format generated by $FI LSAVE. It is processed with one buffer
in Release 0300 and Release 0400.

Vv designates the V format generated by t\'OLSAVE, and V f designates the V format
generated by ~FILSAVE.

The device upgrades available with $VO LR EST are:

Release 0300: MSU/350 to MSU/400/402, MSU/400 to MSU/402

Release 0400: MSU/350 to MSU/400/402/452,MSU/400 to MSU/402/452,
MSU/402 to MSU/452

A-01

With Release 0400, all Release 0300 saves are accepted directly, but processing will
be slower than it is for 0400 saves.

With Release 0300, all Uf and Uv 0400 saves are accepted directly, but 0400 V f and
Vv saves must be converted to U format using $CREATE.

A. 02

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE LEVEL64
DATA MANAGEMENT UTILITIES

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME-----·

TITLE

COMPANY

ADDRESS-------~---------------~

ORDER NO. AQ20-03

DATED I JULY 1980

DATE

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATE

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massacl'lJsetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1 W5

In the U.K.: Great WestRoad, Brentford, Middlesex 1W8 9DH
In Australia: 124 Walker Street. North Sydney, N.S.W. 2060

in Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

27908, 7.5C880, Printed in U.S.A. A020-03

