

SUBJECT

SERIES 60 (LEVEL 64)

JOB CONTROL LANGUAGE
USER GUIDE

This Manual Complements the Level 64 Job Control Language Reference Manual
and Is Intended to Serve as an Aid to the Use of the GCOS Operating System for
Series 60 Level 64 Computers

SPECIAL INSTRUCTIONS

For users of Release 0400 this manual replaces Revision 0 dated July 1977,
which remains valid for Release 0300 users. Because of extensive revision,
change bars have not been used.

SOFTWARE SUPPORTED

Level 64 GCOS Release 0400

ORDER NUMBER

AQll, Rev. 1 September 1978

Honeywell

A011

Preface

This manual is inten~d for all users of the level 64 GCOS operating system and
should be used in ~hjunction with the Job Control Language Reference Manual
(referred to in th'5 manual as the JCL.Reference Manual).

While there are many areas in common between the topics covered in this manual
and the tqpics of the JCL Reference Manual, the latter is more concerned with
statement format specifications and usage regulations; in this manual, the emphasis
is place,d on how to benefit from the various facilities available through the Job
Control Language of Level 64 GCOS.

Section I introduces the basic concepts involved in the passage of a job through the
system. The management of unit record input and output (for example, punched
card input and line printer output) is described in Section II, and Section Ill is
concerned with the assignment and allocation of disk, tape and cassette files.
Sections IV and V respectively deal with the management of system resources, such
as memory and devices, and the way in which stored JCL can be modified and
executed. Section VI discusses how to change the processing order of JCL
statemefits and deals with the manner in which errors are handled under Level 64
GCOS. ;i'Section VI I describes the Job Occurrence Report. A description of the
Mini·E~itor is contained in Appendix A.

Each section of this document is structured according to the heading hierarchy
shown below. Each heading indicates the relative level of the text that follows it.

Level

2

3

4

Heading Format

ALL CAPITALS BOLD

lnital Capitals Bold

ALL CAPITALS MEDIUM

lnital capitals Medium

The Level 64 Document Set follows. Many of the manuals may be referenced
in the text.

© Cii Honeywell Bull 1978 File No.: 1N13

Order
Number

AQ02
AQ03
AQ04
AQ05
AQ09
AQlO
AQll
AQ13
AQ14
AQ18
AQ20
AQ21
AQ22
AQ26
AQ27
AQ28
AQ40
AQ49
AQ50
AQ52
AQ53
AQ55
AQ56
AQ57
AQ59
AQ63
AQ60
AQ64
AQ65
AQ66
AQ67
AQ68
AQ69
AQ72
AQ73
AQ82
AQ83
AQ84
AQ85
AQ86
AQ87
AQ88
AQ89
AQ90
AQ92
AQ93
AQ94

LEVEL 64 DOCUMENT LIST

Title

Series 100 Program Mode Operator Guide
Series 100 Conversion Guide
Series 200/2000 Conversion Guide
System 3601370 Conversion Guide
System Management Guide
Job Control Language (JCL) Reference Manual
Job Control Language (JCL) User Guide
System Operation Operator Guide
System Operation Console Messages
Operator Reference Manual
Data Management Utilities Manual
Series 20012000 Program Mode User Guide
Series 20012000 Program Mode Operator Guide
Series 100 File Translator
Series 20012000 File Translator
Library Maintenance Manual
System 3 Conversion Guide
Network Control Terminal Operation Manual
Terminal Operations Manual
Program Checkout Facility Manual
Communications Processing Facility Manual
TDS/64 Standard Processor Site Manual
TDS/64 User Guide
Standard Processor Programmer Reference Manual
Unit Record Devices User Guide
COBOL User Guide
Interactive Operation Facility
COBOL Language Reference Manual
FORTRAN Language Reference Manual
FORTRAN User Guide
FORTRAN Mathematical Library
RPG Language Reference Manual
RPG User Guide
Series 200/2000 COBOL to Level 64 COBOL Translator
IBM COBOL Translator
BFAS User Guide
HFAS User Guide
UFAS User Guide
Sort/Merge Manual
Catalog Management Manual
Library Maintenance User Guide
I-D-S/II User Guide, Volume 1
I-D-S/II User Guide, Volume 2
COBOL Reference Card
Operator's Reference Card
RPG Reference Card
FORTRAN Reference Card

iii

AQ11

CONTENTS SECTION I

Job Management
Job Structure

A Job Run
Stages of aJob Run
Input Reader

-·--·--·--··--··-------·--·--·

Stream Reader
JCL Translator
Known Jobs Limit

Job Scheduling
Job Scheduler
Command Interpreter

Job Termination

A Job Description
Introduction
SSTEP Description
File Assignment

Scheduling and Execution
Scheduling Priority

Entering the Scheduler Queue
Job Order in the Scheduler Queue

Activities
Maximum System Load
Job Class

Class Attributes
Job Selection from the· Scheduler Queue
Step Execution
Execution Priority

Communications JCL
Overview IOF
Overview TDS

SECTION 11

Unit Record Input Output
Handling Card Input

Input Enclosures INPUT ENDINPUT
Use of Standard SYSI N
Premanent SYSI N
Using a Permanent SYSIN File
Direct Input
Input Data Types
Reading SSF Input
Additional Notes on Card Input

Handling of Printed and Punched Output
The GCOS Output Facilities

Summary of !facilities

1-1
1-1
1-3

1-3
1-5

1-5

1-5
1-5

1-5

1-5

1-6

1-6

1-6

1-6

1-8

1-8

1-8

1-8
1-9

1-9

1-10
1-10

1-10
1-10
1-13

1-13
1-13

1-15

1-15

1-15

2-1
2-1
2-3

2-4

2-5

2-6
2-7
2-7
2-8
2-9
2-9
2-9
2-10

v

A011

SYSOUT Mechanism 2-10
Description 2-10

Use 2-11
The SYSOUT Statement 2-11
The -SYSOUT Suffix 2-11
The $DEFINE Parameter SYSOUT 2-12
Restriction on Record Size 2-12

Effect of the Various SYSOUT Options 2-14
Avoiding the Use of the SYSOUT Mechanism for Output Editing 2-15

Overriding Rules for the SYSOUT Mechanism 2-15

Use of the Output Writer 2-17

Standard SYSOUT Subfiles 2-17
Use of Several SSYSOUT Statements for One Subfile 2-17

Permanent SYSOUT Files 2-18
Filling of Permanent SYSOUT Files in Several Steps 2-18
Partial Output of Files 2-19
Deallocation of a Permanent SYSOUT File 2-19

Editing and Handling of Output 2-19
Output Editing 2-19
Output Handling 2-19
lines and Cards limits 2-21
Output Editing Parameters 2-21

Effect on Different SYSOUT File Types 2-21
Standard SYSOUT Subfiles 2-21
Edited Permanent SYSOUT Files 2-21
Unedited Permanent SYSOUT Files 2-21
Otdinary Permanent Files 2-21

Media Definition for Printer 2-22
Logical Page Setting 2-22
Setting Stop Levels in a Printer Page 2-23
Binary Punching 2-23
Character Set for Punched Cards 2-23

Output Handling Parameters 2-24
Enqueuing of Output Writer Requests 2-24
Output Selection and Naming 2-25
Production of Several Copies 2-25
Output Banners 2-26
Deletion of Library Members 2-26
Suppression of Skip Function 2-26

Use of the SOUTVAL Statement 2-27
The Job Occurrence Report and the JOBOUT 2-28
Notes on Punched Card Output 2-28

Use of the SYSOUT Mechanism 2-28
Output of Source Programs, compile Units and Load Modules 2-29

Example of the Uses sot SSYSOUT and $WRITER in a Job 2-29
Direct Use of the Printer and Punch 2-31
Diagram of Output Facilities 2-31

SECTION Ill

File Assignment and Allocation 3-1
Introduction 3-1
Catalog Overview 3-3

Assignment of Cataloged Files 3-4
File Allocation and Preallocation 3-5
Temporary Disk Files 3-6
Permanent Disk Files 3-6

Preallocation of a Permanent Disk File 3-7

vi

A011

Allocation of a Permanent Disk File
Comparison of SALLOCATE and SPREALLOC

Tape Files
Work Tapes

Tape File Extension
Use of Multivolume Files

iviuitivoiume Work Tapes
Multifile Tape Volumes

Cassette Files
File Concatenation

File Space Re-Assignment
Uncataloged Tape Files
Cataloged Tape Files
Uncataloged Disk Files
Cataloged Disk Files
SDEFINE Overview
GCOS 64 Override Rules
Generation Group Creation, Access and Deletion

Generation group Creation
Creating the next Generation

PREFIXING
Automatic Prefing
Prefixing using SPREFIX Utility
The SSHIFT Utility
Deletion of a Generation Group

SECTION IV

Resource Management
Introduction

Memory Management
SSIZE Parameter
Estimation and Tuning of DWS value
MAXMEM and MINMEM
Use of MI NMEM

File Passing
Deadlock Situation

File Sharing
Device Management

Use of Device Pools
File Protection
Setting of Expiration Dates

SECTION V

Maintenance of Stored JCL
SRUN, S INVOKE and SEXECUTE
Use of S RUN
Use of SINVOKE and SEXECUTE

Input Enclosures in stored JCL
Independence of SINVOKED or S EXECUTED sequence
Nested SINVOKE and SEXECUTE statements
Invoking or Executing Input Enclosures
The Update Parameter of SINVOKE
Differences between $INVOKE and SEXECUTE
Use of Invoke with non-resident libraries

Parameter Substitution in Stored JCL

3-8
3-9
3-11
3-12
3-13
3-13
3-13
3-15
3-15
3-15
3-16
3-16
3-16
3-16
3-16
3-16
3-17
3-18

3-21
3-24
3-27
3-27
3-28
3-28
3-28

4-1
4-1
4-1
4-2
4-3
4-3
4-4
4-4
4-7
4-8
4-13
4-15
4-19

4-19

5-1

5-1
5-4
5-5
5-8
5-8

5-9
5-10

5-10

5-10
5-10
5-10
5-12

vii

A011

viii

Job Stream Creation and Maintenance

SECTION VI

Sequence Modification and Error Processing
Introduction

Error Messages and Return Codes
Labelling a JCL statement

The SJUMP statement
SWITCHES
STATUS

Use of Status for Execution Abort
Setting Severity Value within an Invoked JCL Sequence

SRELEASE statement
Control of Interdependent Jobs
Checkpoint/Restart and File Journal

Taking of Checkpoints
File Journal

After Journal
Journalized File Organisations

Repeating a Step
Warm Restart

Program Checkout Facility (PCF)
Use of PCF

SECTION VII

Job Occurrence Report
Job Introduction and Translation
Job Execution
Output Writer End Banner
Job Execution Messages

Warning and Error Messages
Job Initiation and termination Messages
Step Initiation Messages

Step Termination Messages
Job Execution Trace

Messages at Restart Time

APPENDIX A

The Mini-Editor
Introduction
Line Numbers
The Mini-Editor Commands

The Append Command
The Change Command
The Delete Command
The Insert Command
The substitute Command

The JCL for Editing
Notes on the Edit Commands

The Update Sequence

5-15

6-1
6-1
6-1
6-1
6-2
6-3
6-4
6-7
6-8
6-10
6-11
6-14
6-14
6-14
6-15
6-15
6-16
6-16
6-16

6-16

7-1
7-1
7-5
7-9
7-11
7-11
7-11
7-12
7-12
7-14
7-14

A-1
A-1
A-1
A-2
A-2
A-3
A-3
A-3
A-4
A-5
A-5
A-6

A011

ILLUSTRATIONS

Figure 1-1.

Figure 1-2.
Figure 1-3.
Figure 1-4.

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.

Figure 4-1.

Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.

Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.

Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.

TABLES

Table 1:1
Table 2-1
Table 3-1
Table 3-2
Table 5-1
Table 6-1
Table 6-2

Job Description
Stream Reader and JCL Translator
Step Execution for a Single Step Job
Selection of Jobs for Execution

Methods of Handling Card Input
Overriding Rules for SYSOUT mechanism
Job Output
Summary of Output Facilities

Partial/Extensible Multivolume Processes
GCOS Overriding Rules
A file with Three Generations
The Site-catalog after three Generations Have been Created

Example of Missing Segment Number plotted againt
declared working set
File Passing with Deadlock
lnterjob File Sharing
File Sharing within a Job Step for Cataloged Files
File Sharing Requests
Shared Access to a File
File Sharing Example
Use of Mount
Multivolume Device Management
Device Pool Usage

Stored JCL
Example of Storing JCL in a library Member
JCL Submission
Variables Parameters in Stored JCL

Use of $LET SEV
Example of the Use of $LET
Interdependency of Jobs
Example of Interdependent Jobs

Sample Output Writer Banner
Sample Job Introduction JCL Translation Listing
Job Execution Listing Format
Job Execution Listing Example
Output Writer End Banner

Class Availability and Use (Default Values)
SYSOUT Options
File Class, Organisation and Media
Comparison of SPREALLOC and SALLOCATE
Priority Order for Parameters of Spawned Job
Step Termination Conditions
Availability of File Journal

1-2
1-4
1-7
1-14

2-2
2-16
2-30
2-32

3-14
3-18
3-20
3-24

4-3

4-7
4-8
4-9
4-10
4-11
4-12
4-14
4-15
4-16.

5-2
5-3
5-4
5-15

6-9
6-10
6-12

6-13

7-3
7-4
7-3
7-4
7-5

1-11
2-14
3-1
3-10
5-6
6-6
6-15

ix

AO 11

JOB MANAGEMENT

Job structure

1•Job Management

The execution of work input to the s 1stem by the user, is controlled by GCOS
(General Comprehensive Operating St pervisor). A work package, which may consist
of many separate jobs, is submitted tc the system in the form of an input stream,
usually via card reader. A job stream contains JCL (Job Control Language) statements
which allows GCOS to handle each pt ase of a job through to successful execution.

In a multi-programming environment, jobs executing concurrently may compete for
the same system resources. The inforr 1ation given to the operating system in the JCL
job descriptions enables conflicts of ti 1is type to be resolved to optimize throughput
by establishing an execution and scheduling hierarchy. JCL instructions and operator
commands entered at run-time allow 1 he user to make further optimizing interventions
in the overall processing strategy.

Each user job in an input stream is delimited by JCL SJOB SENDJOB
statements, forming the major partition or enclosure of a complete job description.
The system resource and utility requirements of each load module are defined by
JCL statements and enclosed by SSTEP ... SENDSTEP statements. Data in the input
stream is separated from the input strnam in a job enclosure by S INPUT
SENDINPUT statements. The structu ·e of an input stream therefore consists of three
levels of enclosure (see Fig. 1-1). Their functions are to:

make the job known to the system JOB enclosure

describe the handling of each load •nodule to the operating system ; STEP enclosure

define data areas in a job stream ; INPUT enclosure.

Most of the JCL statements in a job deseription relate to a step enclosure, that is, they
name a load module and define conditions and resources required for step execution.
If a step involves the execution of a U'.;er written program, then the user must provide
a complete JCL step description.

The execution of a system program, typically a compiler or dependent component
program, does not require a detailed step descrjption. It is sufficient to write only a
single statement (for example SCOBOL, SSORT) and supply the appropriate parameter
information. At the time the job description is translated into internal format
(see Translator below), the original single statement coded by the programmer is
expanded to a full set of basic functions.

These expandable JCL statements, such as SCOBOL, SSORT, are not considered as
basic statements, although they are written in exactly the same way ; they are called
Extended JCL. Thus JCL comprises of two types of statement :

- Basic JCL Statement, which reque~.ts a specific system function for example
SSTEP, SASSIGN, SENDSTEP

- Extended JCL Statement, which represents a set of basic JCL statements that
themselves constitute one complete s1ep description, for example SCOBOL, SPRINT,
SSORT.

AO 11

1-2

SJOB

SSTEP

SENDSTEP

SINPUT

SENDINPUT

SENDJOB

JCL

Step

Input

Enclosure

Figure 1-1. Job Description

Job

Enclosure

AO 11

AJOB RUN

Stages of a Job Run

The JCL Language Reference Manual .jescribes in full the purpose of each Basic JCL
statement and contains a list of Extended JCL statements together with the name of
the associated manual.

The whole life cycle of a job, as opposed to the period of this cycle during which the
job is actually being executed, is called a job run. Dudng its run a job is uniquely
identified by a number assigned to the job by the operating system, called a Run
Occurrence Number (known as a «ron>>). The Run Occurrence Number is a number
of up to three digits, which is always preceded by the letter X. Sample rons are X23,
X56, Xl 12. Steps of a job are referenced by their physical order in the job description,
that is, the step number. This number is printed in the banner page of the Job Occur­
rence Report produced by the system for identification purposes.

From the time the job is submitted, until it is output to the user-defined media, it
is known to the system in different st;ites or stages. Firstly the job is introduced to
GCOS ; that is, a request is sent to GCOS to execute a given job in a job stream. It is
at this time that a ron is assigned to a job (and the job is «known» to the system).
The job description is then translated into an internal format suitable for execution.
During translation the JCL is checked for syntax errors (see Section VII). From the
time the job is submitted to the system at an input device until the JCL is translated,
the job is said to be in an INTRODUCED state. The Input Reader supervises this
stage of a job run.

The translated JCL is used by a system component known as the Job Scheduler, to
establish an executing hierarchy for jobs currently «known» to the system. The Job
Scheduler selects a job from the IN SCHEDULING queue that is next to be executed.
The selected job enters the executing ~.tate. The EXECUTING state is followed by the
OUTPUT state during which the Output Writer supervises the production of program
output onto the user defined media. 1 wo other job states exist, namely the HOLD
state and the SUSPENDED state. Job~ in the HOLD state, although at the same stage
as jobs IN SCHEDULING, are removed from the scheduler queue and are ignored by
the Job Scheduler.

A job may be put in the HOLD state by use of the HOLD parameter in a $JOB
statement, or by an operator command, HOLD JOB (HJ).

A job in the HOLD state can be put IN SCHEDULING by an operator command
RELEASE JOB (RJ), or a RELEASE statement in another job. The HOLD option
can be used to delay the eX.ecution of a job until a certain event has occurred for
example, the termination of another job, or an operator decision.

EXECUTING jobs can be temporarily placed in the SUSPENDED state, by the operator
HJ command. This can prove useful for the quick re-scheduling and execution of an
urgent job, or to handle recurrent resource conflicts between two jobs, or to alleviate
a situation of excessive system load.,

The resources allocated to the a job can be made available by using the operator
command HJ ron ENDSTEP; the job is then suspended at the end of the current.,
step.

1-3

AO 11

SYSIN DATA

SUB-FILES

INPUT

ENDINPUT

SYSIN DATA

TERMINATED BY SEOS

BACKING

STORE

TRANSLATEOJCLSUBFILE

1-4

JCL

DATA

SJOB •..•.

STREAM

READER

STREAM READER

JCL
TRANSLATOR

TRANSLATOR

JOB STREAM LIBRARY

StOUENTIAL FILES

STREAM ENCLOSURES

BACKING

STORE SUBFILE

FOR JCL EACH

STEP - EN DSTEP

SJOB

SENDJOB

SSTEP

SENDSTEP

SIN PUT

SENDINPUT

SCHEDULER

INFORMATION

ON DISK FILE

Figure 1-2. Stream Reader and JCL Translator

AO 11

Input Reader

Known Jobs Limit

Job Scheduling

The input reader is initialized by an operator command or more usually by switching
the card reader to READY. The Input Reader controls the introduction of a job
stream into the system by reading, analyzing, translating and storing data and JCL
in an internal format separately for later job scheduling and execution. The input
reader consists of two separate processes :

Stream Reader

JCL Translator

STREAM READER

When the Stream Reader is requested 1 o read an input stream (see Figure 1-2) it
assigns the input device and reads the 1irst record. For each job, the JCL statements
in the input stream are stored, i_n source form, on a file in backing store. For each
input enclosure the data is stored in a system file known as SYS.IN. In this way, the
stream reader separates input enclosures from JCL job descriptions, yielding one JCL
file in backing store and 'n' SYSIN sub-files for 'n' input enclosures. When the
S ENDJOB statement is encountered, an entry is made in a queue accessible to the
Translator. The Stream Reader then repeats its activity for the next job, until the
end of the input stream is reached. At this point an end of input stream notification
is sent to the Translator and the start of translation is initiated. The end of an input
stream on cards is indicated by a S EOS statement, followed by at least one blank card.
Normally the S EOS statement is an operator function rather than a programmer
function.

JCL TRANSLATOR

When the Translator is notified by the Stream Reader that the e.nd of an input stream
has been reached, it starts to translate the JCL statements into a format suitable for
execution by the Command Interpreter. For each JCL file produced by the Stream
Reader's activity, the Translator opens a file into which the translated JCL statements
of a job description are written. In addition, a listing of all JCL and Translator errors
is stored for printing later in the Job Occurrence Report by the Output Writer.

KNOWN JOBS LIMIT

From the moment a job enters the system (INTRODUCED STATE) to the moment
it is about to leave the system (OUTPUT STATE), the job is said to be «known» to the
system. The maximum number of jobs known to the system is set at system configu­
ration time and is 200. If this limit is exceeded the Stream Reader stops further jobs
being introduced to the system.

When the translation is complete, provided that no errors have been detected, the job
Scheduler determines when a job can be started.

JOB SCHEDULER

The Job Scheduler controls the system load at job level, and provides various facilities
to the user for organization and planning of the workload in order to optimize system
throughput. In addition, it provides the user with a set of commands (JCL and OPE­
RATOR) to control the job flow.

1-5

AO 11

Step Termination

Job Termination

JOB DESCRIPTIONS

Introduction

1-6

There are pratical reasons for limiting the number of jobs simultaneously executing.
Firstly, in the case where two executing steps would require the same system
resources (for example each step needs three tape devices, and only three devices are
available), the user can ensure that such jobs do not execute simultaneously.
Secondly, if the number of programs executing was allowed to increase without
restriction, a greater proportion of memory would be occupied by segments which
must be resident throughout execution (e.g. process control structures). This would
mean that virtual memory management must be increasingly involved with transferring
the non-resident parts of the programs to and from backing store, thus degrading the
overall system performance (see Section IV, SSIZE). For these reasons GCOS provides
a set of functions to control the number and type of jobs simultaneously executing
as well as the order in which they are executed.

At any time, the total number of executing jobs is limited by the System Multi­
programming Level (the actual number of jobs is known as the System Load).
Each job has a~ associated scheduling priority, indicating its urgency or priority of
scheduling relative to other jobs known to the system. Jobs IN SCHEDULING are
stored in a queue (the scheduler queue), which they enter at the end of JCL trans1ation.
The schedvler queue is put in sequence according to the «scheduling priority»,
assessed either from user specified values or by default value associated with the
«job class» (see SCHEDULING AND JOB CLASSIFICATION below).

COMMAND INTERPRETER

When the scheduler selects a job from the queue for execution it notifies the
Command Interpreter, which then accesses the job's translated JCL from backing
store. For ea~h JCL statement, the Command Interpreter's function is to initiate
the appropriate Operating System action. Before execution of a step can begin, its
requests in the JCL for resources must be analyzed and fulfilled, or the necessary
queueing for resources performed. When all resources are available a user program
or a utility can be executed.

At step termination, allocated resources are released and control again passes to the
Command Interpreter. If the job contains another step, the process is repeated.
Figure 1-3 illustrates the processing of a one-step job. Abnormal step termination
may be caused by certain errors or abnormal conditions during step initiation or
translation.

When the Command Interpreter encounters an SENDJOB statement, job termination
procedures are invoked to delete temporary files and subfiles and to collect final
accounting information ; Output Writer activity for the job is ready to be initiated.

The SJOB statement is the first statement of a job description, and provides identi­
fication and administrative information, such as job name, user name, project name
and accounting identification. For example :

SJOB RTSJOB, USER= SSF,

PROJECT= SSFT, BILLING= GPO;

AO 11

SJOB•

!'4-----------
1
I
I

I SSTEP

SASSIGN•
SAL LOCATE

Step

Initiation
SENDSTEP ..•

l~--------

1
I
I
I
~--- --- --- ---
1

Job
Occurrence

Report

Step

Termination

SENDJOB

JOB
INITIATION

RESOURCE
ALLOCATION

PROGRAM
LOADING

STEP
EXECUTION

RESOURCE
RELEASE

JOB
TERMINATION

OUTPUT
WRITER

JOB
OUTPUT

Figure 1-3. Step t:xecution for a Single Step Job

Load Module
Library

SYSIN
(Input

Enclosures)

SYSOUT
(Job
Output)

1-7

AO 11

SSTEP description

File assignment

SCHEDULING AND EXECUTION

Scheduling Priority

1-8

The job description is always terminated by SENDJOB, which has no parameters.
If it is available, the site catalog contains a list of users and associated project and
billing information; normally only the USER parameter need be used.

The purpose of the SSTEP statement is to define to the system all the resources and
facilities needed to execute the load module enclosed within the SSTEP
SENDSTEP statements.

The assignment of files to a step is performed using SASSIGN statements.
The SASSIGN statement relates the internal-file-name (ifn), which is the name by
which the file is known to the program, to the external-file (efn), which is the name
by which the file is physically identified by the system. The second function of the
statement is to allocate to the step, the resources (device, volume) that are associated
with the file. The file assigned may be a permanent file (cataloged or uncataloged)
or a temporary file which exists for the duration of the step only (or can be passed,
see Section Ill) providing work space for the step. The most common uses of
SASSIGN are:

For an input enclosure :

ASSIGN ifn, *input-enclosure-name;

For a permanent cataloged file:

ASSIGN ifn, efn;

For a permanent, uncataloged file on a resident disk:

ASSIGN ifn, efn, RESIDENT;

For a permanent, uncataloged file on a non-resident disk:

ASSIGN ifn, efn, DEVCLASS =device-class, MEDIA= volume-name;

For a temporary file :

ASSIGN ifn, efn, TEMPRY ;

See Section 111, File Assignment.

GCOS gives the user a considerable amount of control over the order in which jobs
will be executed once they are known to the system. This control capability enables
work loads to be planned to produce an efficient processing strategy. The user applies
this control by use of a PRIORITY parameter in the SJOB (or SRUN) statements,
which establishes an execution hierarchy for each job relative to all others in scheduling
and those of the Operating System. The second parameter is job class, which
establishes a job as of a certain category, and the system schedules the job according
to the class mix of jobs already known to the system. The following.paragraphs describe
the use of these parameters to produce the desired job throughput.

A job is assigned a scheduling priority, which indicates its urgency relative to other jobs.
Scheduling priorities range from 0 (highest priority) to 7 (lowest priority). The
scheduler queues the jobs according to the priority number and, for jobs of equal
priority, on a first-in, first-out basis. Jobs are selected for execution according to their
order in the queue, and the availability of the job class, one after another until the
syst~m multiprogramming limit is reached (see below). There is a limit applied also to
the number of jobs of the same class which may execute simultaneously, (i.e., job
class multiprogramming limit). This is discussed later. At this point, the remaining
jobs are left in the IN SCHEDULING state until the termination of a job frees a

AO 11

multiprogramming slot (see below).

The scheduling priority of a user job can be specified using the PRIORITY parameter
in the SJOB or in the S RUN statement (see JCL Reference Manual). If the PRIORITY
parameter is not present then a default value is assigned to a job according to its job
class (see below).

NOTE: The operator MJ command (MODIFY JOB) can override any priority given
by the user, or applying by default, for the duration of the job.

ENTERING THE SCHEDULER QUEUE

For a given scheduling priority, a job enters the scheduler queue just behind the last
job with the same priority. An example is shown in Figure 1-4 (see the paragraph
entitled Scheduling).

JOB ORDER in the SCHEDULER QUEUE

Jobs are placed in the scheduler queue in the following order.

Forced job (i.e. urgent job).
The operator command FJ positions a job at the head of the queue, regardless of
its class or its status (e.g. even if the HOLD parameter is present in the SJOB
statement). A forced job executes immediately, unless it has been introduced
but not yet translated. Only one forced job can be executing in the system at
any time.

Suspended jobs
Executing jobs can be put temporarily in the SUSPENDED state by the operator
command HJ ron. This can prove useful for the quick rescheduling and execution
of an urgent job or to handle recurrent resource conflicts between two jobs. The
SUSPENDED job can be released by the operator RJ ron command, which then
executed as soon as resources are available.

A multiprogramming slot occupied by the SUSPENDED job is in general, not
released. The slot can be released at the end of the currently executing step by
use of HJ ENDSTEP (ron).

Service Jobs
Certain system components (e.g. JCL Translator, BTNS) are·executed in the same
way as ordinary user jobs with specific classes and priorities. These jobs are known
as «service jobs» and are not subject to the scheduling rules but are started when
required (provided the multiprogramming limit of their class has not been exceeded),
and are never taken into account when calculating the system load.

User jobs (not forced nor held)
Jobs are in the scheduler queue according to their job scheduling priority and then
to their Run Occurrence Number (i.e. jobs with the same priority are scheduled in
the order of their introduction to the system). The scheduling priority can have a
value between 0 and 7 inclusive, where 0 has the highes~ urgency and 7 the lowest.

Held jobs
A job in the scheduler queue may be put in the HOLD state by use of the HOLD
parameter in SJOB statement, or by an operator command HJ (ron). A job in the
HOLD state is ignored by the scheduler. Such a job can be released either by
operator command RJ ron, or a RELEASE job-name, in a job other than the one

in the HOLD state. The job is then returned to the scheduler queue at the end of
the jobs of the same class already in the queue.

1-9

AO 11

Activities

Maximum System Load

Job Class

1-10

Once a job is selected from the scheduler queue for execution, it is known as an
«activity», and as such occupies a multiprogramming slot. There is a maximum
number of multiprogramming slots available to all jobs (user and service), set at
system configuration time. This limit specifies the maximum number of activities
(i.e. the total number of jobs), that can be executing or suspended at any time.
If this limit is reached, every job in the scheduler queue waits in the IN SCHEDU­
LING state until a slot is freed. Unlike the Maximum System Load (see below), the
maximum number of activities is considered to be invariant and is not used by the
operator for controlling the execution of jobs within the system.

The Maximum System Load (or System Multiprogramming Limit) is the maximum
number of batch jobs i.e., _in the EXECUTING or SUSPENDED states. In
other words, it is the total number of multiprogramming slots available to user jobs.
The Maximum System Load value is user configured and can never exceed the maximum
of 30. It can be changed dynamically by the operator, depending on the current
work load. The operator can control job throughput by use of this value.

The programmer can influence the order in which jobs are executed through the
assignment in the SJOB statement of a job class. A user job is assigned to one of
sixteen job classes, denoted by a letter from A to P. Service jobs are assigned classes
within the range Q to Z.

Class P is the default class for user jobs.

Job classes are a means of organizing the user's workload, so as to optimize the
throughput of jobs in a multiprogramming environment. For example :

Some jobs need to be executed serially (one after another) because of the installa­
tion dependancies or constraints.

Some jobs must be executed at given periods of time (night shifts, etc ...).

To take the best advantage of multiprogramming, some job mixes (running
simultaneously) are more favorable then others; for example, central processor
bound and 1/0 bound jobs, instead of groups of all central processor bound jobs.

If several jobs use the same resources (for example tape units or other peripherals)
to avoid conflicts, they should not be scheduled at the same time.

Thus, each user job entering the system belongs to a certain class associated with a
series of attributes, through which the job mixes and workload planning can be tuned.

A class multiprogramming limit (or «maximum class load») controls the number of
jobs which can be in EXECUTION or SUSPENDED state within a given class. The
total number of jobs that are executing and/or suspended at a given time within a
particular job class is known as the class load for that class. Associated with each
job class are the default job scheduling and step execution priorities, as well as the
default multiprogramming limit. These are shown in Table 1-1.

In addition, an operator can suspend or reactivate a job class. This provides further
capabilities to select job for processing and manage the serial execution of jobs.

CLASS ATTRIBUTES

Three attributes are attached to each class and used to optimize the user's work-load.
These attributes are never erased by a system shutdown or system crash, anti are unal­
tered unless the permanent backing store is destroyed and are fixed at configuration
time. They can be modified, though, by the operator, via the MC command.

AO 11

The attributes are :

Class multiprogramming limit :
This is the maximum number of jobs in execution or suspended within a given
class, including those of service jobs. The operator can change the value of the
class multiprogramming limit to suit the current work load.

Scheduling priority :
A default value is automatically allocated to a job, if not specified in the SJOB
or S RUN statements. The operator can also modify the scheduling priority using

the MJ command.

EXECUTION PRIORITY (DISPATCHING PRIORITY)

A default value is allocated to all steps of all jobs in a given class for which the

execution priority {XPRTY) is not specified in SSTEP statement. The operator
can modify the execution priority by use of MJ command (by default).

EXAMPLE OF WORKLOAD ORGANIZATION

The following example shows a possible organization of a user workload with the

partition of jobs into classes according to their type (1/0 bound etc.). It is assumed
that scheduling and execution priorities are those defined as the class attributes,
see Table 1-1.

TABLE 1-1. CLASS AVAILABILITY AND USE {DEFAULT VALUES)

DEFAULT SCHEDULING DEFAULT DISPATCHING DEFAULT
JOB CLASS PRIORITY (EXECUTION) PRIORITY MULTIPROGRAMMING

LIMIT
t----- --~---

A ! 7 9 1
B (NATIVE JOBS) 7 9 1
c 7 9 1
D - PROGRAM MODE 1 5 1

(PM 100, 200)
E

I
2 4 1

F (NATIVE JOBS) 3 7 1
G 4 9 1
H - {COMMUNICATIONS) 6 1 1
I - (NATIVE JOBS) 7 9 1
J - (TDS/64 STANDARD 6 1 1

PROCESSOR)
K 7 9 1
L 7 9 1
M > (NATIVE JOBS) 7 9 1
N 7 9 1
0 7 9 1
p - DEFAULT CLASS NATIVE JOBS 7 9 5
SERVICE JOBS
0- IOF 7 4 10
R - READER 7 2
s - BTNS 7 0 1
u FTU 1 2 6
w WIHIE H 1 2 B
x JTHA 0 3 1

NOTE : The values stated in this table ase those of the reference system disk, but they can be modified using CONFIG, see System
Management Guide.

1-11

AO 11

Assume the following system configui ation :

Four tape drives

Multiprogramming limit= four jobs

and the following work jobs :

Job Type Resources and constraints No. of jobs Assigned class
I---

1/0 3 tapes/job step 3 E

1/0 1 tape/job step 5 F

CPU 2 jobs max in memory 5 G

Communication Assume user job running all day 1 H

(BTNS + User job)

Background 2 tapes/job step 5 K

Tests unknown 10 p

The class configuration intended to optimize the global throughput according to the different constraints of coexistence
between jobs may be the following :

1-12

Class Max Class Load Scheduling Execution

within Constraints priority priority

E 1 2 4

F
i

1 3 4 (a)

G I 2 (aj 4 9

H 1 6 1

K 2 (a) 7 9
p 5 6 (a) 9

a. Modifiable by operator MC command. Then valid until again modified.

All referenced classes are «started».

Suggested Work Schema :

Communication job (Class H) is scheduled at the start of the day. The execution
priority is higher than that of the Output Writer and Stream Reader in order to
get an acceptable response time.

Class E jobs are exclusive, in order not to create conflicts between tape drives.

From the point _of view of tape drive requirements, class F jobs are complementary
to jobs of class E. They may be executed alongside class E jobs.

Class G jobs are scheduled with previously referenced jobs, but only one at a time
unless one of the above classes becomes empty. In order not to monopolize the
common resources of virtual memory, the maximum number of jobs in parallel
(in this class) is two.

Class P jobs are scheduled when one of the previous classes is emptied.

AO 11

Job Selection from Scheduler Queue

Step Execution

Execution Priority (Dispatching Priority)

If there is enough room, the background jobs of class Kare executed to avoid
conflicts on the tape drives, with a maximum of two at the same time.

Whenever the current system load is less than the maximum system load and the
scheduler queue contains at least one job whose class load is currently less than the
maximum class load for that class, a job will be selected from the scheduler queue
for execution. The selection is based on the current order within the scheduler queue,
the job classes of the jobs already executing, and the classes of the members of the
queue.

- Figure 1-4 illustrates the selection of jobs from a scheduler queue. Note that after
job PAUL terminates, job PETER cannot be selected because one job of class Eis
already executing. Therefore job JOHN is started, making it the second job in class
A executing.

The scheduler notifies the Command Interpreter when a job has been selected for
execution. The Command Interpreter reads and initiates the appropriate system
action requested by JCL statements. Each time a SSTEP statement is encountered,
the Command Interpreter calls a «step initiation» routine which reads all of the
statements of the step description and allocates the appropriate system resources,
(or the step is queud until all necessary resources are available. The load module
is loaded from the load module library and step execution begins when the
SENDSTEP for that step is encountered.

Once a job is scheduled and initiated, its various steps are executed. The DISPATCHING
PRIORITY (DPR) is used to control the amount of CPU time a particular step can
obtain relative to other steps currently competing with it for CPU time. The DPR is
represented by n, where 0 ~ n ~ 9 (0 =highest priority) and can be defined by
the XPRTY option of SSTEP, or the operator MDPR command. If the priority option
is not present, the default value is determined by the job class (see table 1-1).

NOTE : The dispatching priority of a step can be modified by using the operator
MJ command. The MDPR command is used to control what specific CPU allocation
is available to steps which are executing with a certain dispatching priority, see below.

Parameters available to the operator in the MDPR command enable further optimiz­
ation of overall throughput to be achieved by «controlling» the dispatching priority.
These parameters :

enable equal amounts of CPU time to be allocated to steps of equal DPR concur­
rently executing {MDPR dpr SLICE command).

limit the amount of CPU time that steps in a certain range of dispatching
priorities can use, {MPDR dpr: dpr n)

declare as optimized two consecutive DPRs to adjust dynamically the relative
priorities in order that 1/0-bounded steps always have a higher priority over
CPU-bounded steps.

Refer to the System Operator Guide for further details.

1-13

AQ 11

SYSTEM MULTIPROGRAMMING LIMIT = 3

CLASS D MULTIPROGRAMMING LIMIT = 2

CLASS E MUL Tl PROGRAMMING LIMIT = 1

CLASS G MULTIPROGRAMMING LIMIT = 2

4th

3nd

2nd

1st

3nd

2nd

1st

2nd

Scheduler Queue
I
I
I

Job ROBERT
Class G

Job Bill
Class E

Job JOHN
Class D

Job PETER
Class E

I
I

Job ROBERT
Class G

Job Bill
Class E

Job PETER
Class E

Job ROBERT
Class G

Job Bill
1st Class E

Job DAVE
Class D

Jobs Executing

~~
~~

Job PAUL
Class G

' Execution of job PAUL terminates

Yields

Job DAVE
Class D

Job DON
Class E

Job JOHN
Class D

' Execution of job DON terminates

Yields

Job DAVE
Class D

Job PETER
Class E

Job JOHN
Class D

Figure 1-4. Selection of Jobs for Execution

1-14

AQ 11

COMMUNICATIONS JCL

Overview IQ F

TOS Overview

The communications session applies t::> the execution of Message Control System
(MCS) COBOL application programs x any of the Virtual Communications Access
Method (VCAM) subsystems.
The three types of VCAM subsystem~ are,
- TOS (transaction driven system)

IOF (interactive operation facility

The JCL for these software modules is the same as for any other job but with the
following additions, namely,

- SOASSIGN

- NOL commands (network descrip1 ion language)
- OMAINT commands (queue maimenance).

Specific to MCS COBOL or MAN (M1·ssage Access Method) application programs
is the $0ASSIGN ·statement for relati 1g physical queues declared in the network to
their symbolic queues referred to in tie programs. Queues are maintained using the
QMAINT utility which is driven usin~ specific commands.

The network to be generated for the communications session is defined by NOL
commands within the S INPUT enclo~ure for the CNC utility (communications
network configurator).

The IOF facility enables a user to be connected to GCOS through a terminal.
From the terminal the user is able, using Library Maintenance and thetext Editor,
to build and modify job descriptions and data files; and then ask GCOS to execute
such jobs. These jobs are introduced 10 GCOS as if they had been read by the card
reader, using the same commands as a job entered on cards for instance. An IOF
user who requires work to be done b\ GCOS, specifies his requirements at the
terminal using a subset of JCL, see tht~ IOF Manual for full details.

The user provides COBOL programs in the form of Transaction Processing Routines
(TPR). Each TPR can receive a message to process data and generate a response.

At TOS generation, the user links his TPRs with the TOS executive in order to tailor
a specific version of TOS for his requirements. The version so generated is executed
as a job step with BTNS and the network generated by the CNC utility.
For debugging purposes, the TOS version can be executed as a job step with a
simulated network of batch entry programs functioning as terminals.

For further details on TOS, see the appropriate manuals listed,
- TOS Programmer Reference Manual
- TOS User Guide
- TOS Site Manual.

1-15

AO 11

UNIT RECORD INPUT/OUTPUT

HANDLING CARD INPUT

2 •Unit record Input Output

In a Level 64 environment, much use will be made of a card reader for input
purposes (of data, source programs, job descriptions), and of a line printer or card
punch for output purposes (of reports, invoices, etc.). These devices, known as
Unit Record Devices, operate at slow speeds compared with the speed of data
transfer between main and secondary storage, and the speed at<which central
processor operations are performed. To separate the input/output function from
that of job translation and execution, and thus prevent the build-up of large queues
for these devices, GCOS employs a spooling system. This facility makes use of
intermediate storage on disk or tape files, and operates independently from the
execution of user jobs. Note that it is possible for the programmer to bypass the
intermediate storage and make the program access a device directly.

There are three ways in which card input can be handled :

- by storing it in an intermediate system file ; that is, spooling it onto the file and
thus relieving the user of the responsibility for device assignment. This facility
is known as «standard SYSIN».

- by storing it in a sequential input file using the utility SCREATE, or by storing
it as a member (subfile) of a source library by using the utility SLIBMAINT.
This facility is known as «permanent SYSIN»

- by assigning the card reader directly to the program.

Each of these methods is describe below, and shown in figure 2-1.

Input Enclosures- SINPUT and SENDINPUT

For standard and permanent SYSIN, the card data is contained in an input enclosure.
An input enclosure is defined by the Basic JCL statements SINPUT and SENDINPUT.
The S_:ign is mandatory with these statements.

The ENDCHAR and CONTCHAR parameters to the SINPUT statement allow the
user to select characters from cards, and to concatenate records together.

ENDCHAR

When the ENDCHAR parameter is used, consecutive input cards are concatenated
in the same SYSIN record until the character specified in the ENDCHAR parameter
appears as the last non-blank character on a card.
For example,

ENDCHAR=/

2-1

N
~

Permanent
SYSIN

Standard
SYSIN

Direct Use
of the
Card Reader

CARD

READER

ACCESS

METHOD

SCREATE
or

S LIBMAINT

Permanent File

INPUT

READER

SYS.IN

Figure 2-1. Methods of Handling Card Input

Sequential
Access
Method

SYSIN
Access
Method

User
Program

User
Program

User
Program

)>
0

AO 11

input cards: ABC/DE 80
FGHIJ,·

resulting
SYSIN record : ABC/DE FGHIJ

CONTCHAR

80 characters
80 characters

85 characters

When the character specified in the CONTCHAR parameter appears as the last non­
blank character of a card :

only the characters preceeding it in the current card are copied in the SYSIN
record;

the next card will be concatenated to the current one in the same input record.

For example,

CONTCHAR = +

input cards

resulting SYSIN
record:

ABC/DE+. 80
FGHIJ

ABC/DEFGHIJ . . .

ENDCHAR AND CONTCHAR USED TOGETHER

80 characters
80 characters

86 characters

The ENDCHAR and CONTCHAR parameters can be used together. For example,

ENDCHAR =I CONTCHAR = +
input cards :

resulting SYSI N

ABCDE + .
FGHIKJL/ . . .

80 80 characters
80 characters

record ABCDEFGHIJKL 12 characters
If the card deck to be read does not have the 'II character in column one of any of
the cards, the SENDINPUT statement need not be written, and the END parameter
of the SI NPUT statement can be used. For example,

SINPUT INDECK, END= DOLLAR;

card-deck

SSTEP ... ; NOTE : The S sign is mandatory in this case.

If the card deck to be read contains a SENDINPUT statement, the match facility
can be used. For example,

SINPUT INDECK, END= MATCH;

SINPUT CARD;

other cards to be read

SENDINPUT CARD;

SENDINPUT INDECK;

DATA

Because the Input Reader always considers a SJOB command to be the start of a
new job enclosure, a SJOB command cannot be read as data in an input enclosure.

2-3

AO 11

The Use of Standard SYSI N

2-4

NOTE : If the ENDCHAR is the blank character, all the characters on the input card
up to the last non-blank character are transferred to the sysin file. This can be used
to sav~ space on the SYS.IN system library file for standard SYSIN. In this case,
the last column of the card must always be blank, otherwise this card will be conca­
tenated to the next one in the same input record.

An error in the S INPUT statement will cause the job to abort after JCL translation,
and this will also happen if two input enclosures in the same job stream have the
same name.

With the standard SYSI N, the data from the input enclosure is stored as a subfile
of an intermediate system file known as SYS.IN. An input enclosure is associated
with its processing program by means of a SASSIGN statement of the form :

SASSIGN internal-file-name, *input-enclosure-name;

Other parameters to SASSIGN are ignored, but if present, each one causes a warning
message to be produced on the JOR.
If the specified input-enclosure-name does not exist in the job stream, the job will
abort at JCL translation time.

Within the COBOL program, a file-description must be supplied for each standard
SYSIN used, and this file-description must specify that the file is a standard SYSIN
file. This is done in the ASSIGN clause :

ASSIGN TO internal-file-name-SYSIN

For example, the following program reads a card deck :

JCL

SJOB USER =JONES,PROJECT=P1 ;

STEP PROGA ... ;

ASSIGN CARDFILE, *INDECK;

ENDSTEP;

SINPUT INDECK;

card deck to be read

SENDINPUT;
SENDJOB;

COBOL Program:

SELECT CARD.

ASSIGN TO CARDFILE-SYSIN.

FD CARD.

BLOCK CONTAINS 6 RECORDS.

RECORD CONTAINS 80 CHARACTERS.

LABEL RECORD IS STANDARD.

OPEN INPUT CARD.

READ CARD RECORD INTO ident1 •

CLOSE CARD.

AO 11

Permanent SYSI N With permanent SYSIN, the intermediate file which contains the card input may be :

- a permanent BFAS or UFAS sequential disk or tape file filled by using the
SCREATE utility

- a subfile of a source library, filled by using the SLIBMAINT utility.

If the permanent SYSIN file is a un cataloged tape file, the file characteristics must
be specified in the OUTDEF parameter of SCREATE. If it in cataloged, this
information may be in ithe catalog entry. The recommended values are:

RECFORM = FB, RECSIZE = 80

SCREATE can be used in two ways:

1) when the input deck is an input enclosure. For example, to create a sequential
tape file:

CREATE INFILE =*INDECK, OUTFILE = (CARD,DEVCLASS=MT/T9,
MEDIA =TAPE03),

OUTDEF = (RECFORM= FB, RECSIZE = 80, BLKSIZE = 2400);

SINPUT INDECK;

cards to be read

SENDINPl.JT:

2) when the input deck is read directly from the card reader. For example, to fill
an already preallocated sequential disk file :

CREATE INFILE = (CARD,DEVCLASS = CD/R/C80, MEDIA= INDECK),

OUTFILE =(MY.FILE, DEVCLASS = MS/M400, MEDIA= DISK02);

When the step is initiated, the operator will be requested to mount the input deck
INDECK omo the card reader.

The use of the card reader in direct mode with SCREATE is very convenient when
a very large input deck is to be read.

When SCREATE is used with the card reader in direct, it is possible to read a card
deck containing SJOB and SCKP cards. When SCKP cards are present and an incident
occur~(an unrecoverable 1/0 error a· system crash,) while the cards are being read, the
processing can resume at the last checkpoint. Only the cards following the last
checkpoint have to be reloaded onto the card reader:

· SCREATE using the card reader in direct also allows you to read 51 column cards
and marked cards. 51 column cards are 80 column cards truncated on the right,
and marked cards are cards where marker strokes replace the punches. For marked
cards, the DEVCLASS parameter must be

DEVCLASS = CD/R/Ml/C80 for IBM mode marked cards, or

DEVCLASS = CD/R/MB/C80 for HIS mode marked cards.

HIS mode cards have the marks placed in odd columns, and IBM mode cards have
the marks placed in even columns. Note that marked cards can also be pun~hed
(punches may occur in all the columns), but if the marks and punches occurring
the same column only the punches will be read, and the marks will be ignored.

2-5

AO 11

Using a permanent SYSIN File

2-6

To read 51 column cards, the DEVCLASS parameter to SCREATE must be:

DEVCLASS = CD/R/C51 for punched cards, or

DEVCLASS = CD/R/Ml/C51 for IBM mode marked cards, or

DEVCLASS = CD/R/MB/C51 for HIS mode marked cards.

The MOVE command of SLIBMAINT stores an input deck as a subfile (me~ber)
of a source library. For example, if the input deck has to be stored in subfile

MEMB1 of the cataloged source library SOURCE1.SLLIB, the program would
be:

LIBMAINT SL,

LIB= SOURCE1. SLLIB,

COMFILE =*co;

SINPUT CD;

MOVE COMFILE: MEMB1, TYPE= DATASSF;

input deck

//EOD

SENDINPUT;

A COBOL program uses a permanent SYSIN file in the same way as it uses any
sequential file. A SASSIGN statement must be present in the JCL to make the
correspondence between the internal-file-name and the external-file-name.

An example of the use of a permanent SYSIN file is:

JCL:

STEP PROGA ... ,

ASSIGN CAR OF I LE, CARD, DEVCLASS =MT/T9,

MEDIA =TAPE03;

ENDSTEP;

COBOL Program :

SEL.ECT IN1.

ASSIGN TO CARDFILE-SYSIN.

FD IN1.

RECORD CONTAINS 80 CHARACTERS.

LABEL RECORD IS STANDARD.

NOTES: At OPEN time, COBOL checks the record size found in the file label.
If it is greater than the record size declared in the program, a warning message is
produced on the JOR, but processing continues.

At READ time, if the record being read is greater than.the receiving area, the
read data is right truncated. The processing can continue if the program specified a
USE procedure for this file.

AO 11

Direct Input

Input Data Types

The direct use of the card reader is similar to processing a non-standard file.

At program level, a file-description for the card reader has to b'e defined ..
At JCL level, a SASSIGN statement has to make the correspondence between the
internal-file-name used in the program and the card deck to be read.
The form of th is statement is :

SASSIGN internal-file-name, DEVCLASS = CD/R/C80, MEDIA= INDECK;

The cards to be read are not part of the job stream, but are a separate deck.
The system will ask the operator to mount the deck at the initiation of the corres­
ponding step. The last card of the deck must be a S EOS card, which is the end-of-file
mark. At least one blank card has to be added after the S EOS card so that a
RECOVER does not occur at S EOS reading.

The example below shows a COBOL program, PROGA, which reads a card deck,
INDECK, with the card reader in direct.

JCL:

SJOB ... ;
STEP PROGA ... ;
ASSIGN CARDFILE, DEVCLASS = CD/R/C80, MEDIA= INDECK;
ENDSTEP;
SENDJOB;

COBOL program :

SELECT CARD.
ASSIGN TO CARDFILE-CARD-READER
ORGANIZATION IS LEVEL 64 SEQUENTIAL.

FD CARD.

BLOCK CONTAINS 1 RECORD.
RECORDS CONTAIN 80 CHARACTERS.
LABEL RECORD IS OMITTED ...
OPEN INPUT CARD.

READ

CLOSE CARD.

At PROGA step initiation, the operator will receive the message :

hh. mm CD 01 MOUNT INDECK FORXn

With a permanent SYSI N file, data type SSF can be asked for regardless of the type
of card to be read (BIN, HOL, punched or marked).

With SCREATE, the SSF header (8 bytes) must be taken into account when the file
is allocated.

With an input enclosure, to get SSF all that has to be specified is
TYPE= DATASSF in the SINPUT statement. For example,

2-7

AO 11

Reading SSF Input

2-8

CREATE INFILE =*INDECK,
OUTFILE = (CARDFILE, DEVCLASS = MT/T9,

MEDIA =TAPE 03);
S INPUT INDECK, TYPE= DATASSF;

data cards

SENDINPUT;

Note that the format of a permanent SYSIN file is exactly the same as that of the
standard SYSI N subfile.

With S LIBMAINT, the TYPE= SSF parameter to the MOVE command is
mandatory. S LIBMAINT will always create a Library member in SSF. For further
details of SSF and SARF, see the COBOL User Guide.

When the card reader is used in direct with SCREATE, the input file will always
be in SARF format, regardless of what is specified in the OUTDEF parameter group.

Standard or Permanent SYSIN files and subfiles allow the COBOL programmer to
process the SSF header. When nothing is specified in the SELECT statement for the
SYSIN file, the READ statement only delivers the data part of the record, regardless
of the format of the file (SARF or SSF). If the input file is in SSF, COBOL skips
the control records and suppresses the SSF header.

When WITH SSF is specified in the SELECT statement, COBOL suppresses the eight
byte SSF header and skips the control records without checking what format the file
is in. Because of this, the user must ensure that the file is actually in SSF, otherwise
the first eight bytes of data will be lost, and any records which look like control
records (bit 0 of byte 1 is equal to 0) will be skipped.

When WITH SARF is specified in the SELECT statement, the READ statement
delivers the entire record to the COBOL program, including the SSF header, if it
exists. Thus if WITH SARF is specified and the SYSIN file is in SSF, the programmer
must include the eight byte header in the record-description.

The WITH SARF option is used to access the SSF header. For example,

JCL: COBOL Program:

STEP PROGA ... ; SELECT CARD

ASSIGN CARDFILE,*INDECK; ASSIGN TO CARDFILE SYSIN.

ENDSTEP;

SINPUT INDECK, FD CARD

TYPE= DATASSF; RECORD CONTAINS 88 CHARACTERS

01 INREC.

02 SSFHEAD PICX(8).

SENDINPUT; 02 USERDATA PIC X (8 0).

When the card reader is in direct with ICREATE, it is not possible to access the
SSF header. The READ statement always delivers the card image.

AO 11

Additional Notes on Card Input The ACCEPT COBOL verb inputs data from any input sequentlc~ fi!e (input
enclosures, permanent SYSIN files and the card reader in direct :~·.ode) which has
to be assigned by a SASSIGN statement to the COBOL reserved internal file
H RD. For more details, see the COBOL User Guide.

All the considerations on each input have assumed that the cards are punched in
H 36 mode. There are facilities for reading cards punched in binary and H 14 mode.
For further details, see the JCL Reference Manual and the Unit Record Devices
User Guide.

The SMAP control card can be used with input decks to :;elect fields from the cards.
The selected fields will be transferred to the COBOL program if the card reader is
being used directly, or to the SYSIN file or subfile otherwise. For further details,
see the JCL Reference Manual and the Unit Record Devices User Guide.

HANDLING OF PRINTED AND PUMCHED OUTPUT

The GCOS Output Facilities In general, there iS only a small number of printers and/or card punches associated
with a machine. However, in a multiprogramming environment, all jobs will produce
some output to be sent to a printer. Although this may only be the .Job Occurrence
Report (JOR), the majority of jobs will produce additional reports and some jobs
will produce several reports concurrently. A user program can access a printer or
punch directly ; however, to avoid the situation of having to assign a printer and/or
~punch to each job while it is in execution, a spooling technique is available. Each
report is assigned to a file on disk or tape and later p_rinted or punched from that
file by the system component known as the Output Writer.

When considering the spooling of output within GCOS, the user should distinguish
between two separate stages :

1. when a file to be output is being created (i.e. written) by means of a file
access method ;

2. when the contents of the file are being printed or punched by means of the
Output Writer

A special access method, known as the SYSOUT Mechanism, is available for the·
writing of files to be output. The SYSOUT mechanism incorporates the editing
requirements into the file as it is built ; its use is generally recommended as it saves
time when the file is output later by the Output Writer (see SYSOUT Mechanism
below).

Each output «file», if any, produced during the execution of each step is normally
written by the system to a standard system output subfile, known as a standard
SYSOUT subfile, which is generally printed at the end of the job ; the user may
modify the standard output parameters (print belt, number of copies, etc.) by using .
a SOUTVAL statement within the job enclosure or a $SYSOUT statement in the
corresponding step enclosure. Alternatively, the user can write output to a permanent
file that is output by a $SYSOUT statement in the same step or by a $WRITER
statement in the same or a later job. This facility has the advantage that the file,
known as a permanent SYSOUT file, is not deleted after printing, as is the case
with a standard SY SO UT subfile. The program can also access the pr inter or card
punch directly by an assignment (using SASSIGN) of the internal file name to the
device itself. In general, this procedure is not recommended.

2-9

AQ 11

SVSOUT MECHANISM

DESCRIPTION

2-10

NOTE : The use of standard SYSOUT subfiles is the simplest and most common.
method of producing printed output. As will be shown below, the user need not be
concerned with file assignment nor with special instructions to the system ; all that
is required is either a JCL statement (SSYSOUT) in the relevant step enclosure or an
indication in the {COBOL) program (-SYSOUT).

The main differences between standard and permanent SYSOUT files are as follows :

A standard SYSOUT subfile is a member of a system file, called SYS.OUT, that
is automatically assigned to the step. Once the information to be output is
printed or punched, the relevant SYSOUT subfile is deleted from SYS.OUT.
The SYSOUT mechanism is always used for the creation of a standard SYSOUT
subfile and any editing requirements are incorporated into the file as it is written.

A permanent SYSOUT file is a permanent sequential file on disk or tape (or a
permanent source library member) and the assignment of the file is the responsi­
bility of the user. In general, the contents of a permanent SYSOUT file are preservec'
after the execution of the job. The file can be created under UFAS, BFAS or HFAS
and may be in SSF or SARF format; any editing requirements in these circums­
tances will be incorporated when the file contents are printed or punched.
However, the user can choose to use the SYSOUT mechanism (see below) to edit
the file when it is being created.

SUMMARY OF FACILITIES

The following output facilities are available under GCOS :

1. use of the SYSOUT Mechanism and the Output Writer :
a. for temporary subfiles (standard SYSOUT subfiles)
b. for permanent files (edited permanent SYSOUT files) ;

2. use of the Output Writer for permanent files created under UFAS, BFAS or HFAS
(unedited permanent SYSOUT files) ;

3. direct use of the output device (no intermediate file).

Refer to Figure 2-3 at the end of this Section for an illustration of the functions of
the various output facilities.

As described above, when output spooling is used, program output to a unit record
device takes place in two stages :

1. the creation of a SYSOUT file ;

2. the printing (or punching) of the file.

The use of the SYSOUT Mechanism at stage 1 to produce an «edited SYSOUT
file» saves the Output Writer time at stage 2 and, in general, gives a net increase in
throughput over both stages.

The SYSOUT Mechanism edits a SYSOUT file as it is created as follows:

suppresses trailing blanks from each record produced by the program (e.g. by a
COBOL WRITE verb);

AO 11

- writes each record in the file in a format suitable for the output device ;

- formats the output page according to the user's requirements.

An edited SYSOUT file is said to be in «SYSOUT format».

USE

To use the SYSOUT Mechanism for the creation of a SYSOUT file or subfile;,
the user can specify one of the following options :

a SSYSOUT statement in the relevant step enclosure;
the suffix-SYSOUT in a SELECT clause for the appropriate.
internal-file-name in a COBOL program ;
the parameter SYSOUT in a SDEFINE statement in the relevant step enclosure.

The SSYSOUT Statement

The use of the SSYSOUT statement is the simplest way of requesting output from
a program. If there is no assignment of the internal-file-name of the file to be printed,
the SYSOUT Mechanism will create a standard SYSOUT subfile whose contents ·
will be printed by the Output Writer and the file will be deleted. If the internal-file­

name of the file to be printed is assigned to a permanent file, the SYSOUT Mechanism
will c"reate a permanent SYSOUT file and the Output Writer will print the file contents.
file contents.

Examples:

1. STEP TSTA, ... ;
ASSIGN INP, *CADS;
ASSIGN REF, MY.PFILE;
SYSOUT RESULTS;

ENDSTEP;

In the above example, the data associated within the program with the internal-file­
name RESULTS will be printed after the end of the job; the default installation
parameters (e.g. standard stationery, standard print density) will be used for the
printing of the listing; no permanent copy of the data will be kept.

2. STEP TSTB, ;
ASSIGN INP, *CADS;
ASSIGN REF, MY.PF I LE;
ASSIGN RESULTS, MY.DATA;
SYSOUT RESULTS;

ENDSTEP;

Assuming that the program writes to RESULTS, assigned to external-file-name
MY.DATA, the SYSOUT mechanism will be used to create MY.DATA; the required
editing parameters, in this case the default installation parameters, will be incorporated
into the file as it is created (subject to the Restriction on Record Size described below)
and the edited file will be printed after the end of the current job. The data written to
RESULTS will be preserved in the edited permanent SYSOUT file MY.DATA.

The ·-SY SO UT Suffix

If a COBOL program contains a statement of the form :
SELECT file-name ASSIGN TO ifn-SYSOUT

the SYSOUT Mechanism will be used for the writing of data to the file. with

2-11

AO 11

2-12

the specified internal-file-name (corresponding to «ifn»). If the relevant step enclosure
does not assign the internal-file-name, the SYSOUT Mechanism will create a standard
SYSOUT subfile whose contents will l>e printed by the Output Writer and the subfile
will be deleted ; no SSYSOUT statemimt is necessary in this case. If the internal-file­
name is assigned to a permanent file, 1 he SYSOUT Mechanism will create a permanent
SYSOUT file, incorporating the requi1·ed editing parameters into the file (subject to
the Restriction on Record Size below). The contents of the permanent SYSOUT file
will not be printed unless an appropri.ite SSYSOUT statement appears in the corres­
ponding step enclosure or an appropriate SWRITER statement appears in the current
job (see «Use of Output Writer Facili1 ies» below).

Here is an example of part of a COBOL program which uses the -SYSOUT facility:

SELECT OUT
ASSIGN TO OUTFI LE-SYSOUT
ORGANIZATION IS LEVEL 64 SEQUENTIAL

FD OUT
RECORD CONTAINS 100 CHARACTERS
LABEL RECORD IS STANDAFm
OPEN OUTPUT OUT
WRITE record name
CLOSE OUT

The SDEFINE parameter SYSOUT

The use of the SYSOUT parameter in a SDEFINE statement in the relevant step
enclosure has an identical effect to that of the suffix -SYSOUT in a user program.
If there is no assignment of a file to be output, the parameter SYSOUT will force
the creation and printing of a standard SYSOUT subfile. For a permanent file
assigned and created in the current step, it will force the use of the SYSOUT

Mechanism and edit the file as appropriate subject to the restriction on Record size given
below. The contents of the permanent SYSOUT file will not be printed unless a corres­
ponding SSYSOUT or SWRITER sta1ement is specified.

NOTES :- The SDEF INE statement is normally used for the purpose of overriding,
for a particular step execution, certain options that have been specified
in a production program. For the use of the SYSOUT Mechanism
users are advised to specify either -SY SO UT in the program (for standard
program output) or SSYSOUT (useful for specifying particular output
handling parameters) or both options together, instead of specifying the
SYSOUT parameter in SDEFINE.

If there is no -SYSOUT in a user's program but the user wishes to force
the use of the SYSOUT Mechanism for the creation of a permanent
SYSOUT file without printing the file contents, the following alternative
to the use of a SDEFINE statement is available:

specify WHEN=DEFER in a SSYSOUT statement in the corresponding
step enclosure (see Output Handling Parameters, below).

Restriction on Record Size

In order that the SYSOUT Mechanism can edit a file at creation time (and thus
increase the performance of the job), the file must have a record size of at least
600 bytes. This is no problem for standard SYSOUT subfiles since the record size
of all members of SYS.OUT is above this minimum value. However, in the case of
permanent SYSOUT files, the user must allocate the file with an appropriately large
record size. If this is not done, the record size given in·the program will be used and

AO 11

the SYSOUT Mechanism will not edit the file at file creation time. The
recommended procedure is to specify a SPREALLOC statement before the step
that creates the permanent SYSOUT file. The record advised is VB.

Example:

PREALLOC R2D2, DEVCLASS=MS/M300,
GLOBAL=(MEDIA=VADAR, SIZE=10), FILESTAT=UNCAT,
BFAS=(SEO=(BLKSIZE=5000, RECSIZE=1000,

RECFORM=VB)) ;

If a $ALLOCATE statement is used to allocate a permanent SYSOUT file, a SDEFINE
statement that specifies the appropriate record size must appear in the same step.
This is useful for an uncatalogued tape file, since SPREALLOC cannot be used in
this case.

Example (for disk) :

STEP PROGA, ... ;
ASSIGN OUTFILE, R2D2, DEVCLASS MS/M300, MEDIA=VADAR;
ALLOCATE OUTFILE, SIZE=10, UNIT=CYL;
DEFINE OUTFILE, RECSIZE=1000, BLKSIZE=5000, RECFORM=VB;

ENDSTEP;

Example (for tape) :

STEP PROGA .•. ;
ASSIGN OUTFILE, TAPEFILE, DEVCLASS=MT/T9, MEDIA=TAPE01;
DEFINE OUTFILE, RECSIZE=1000, BLKSIZE=5000, RECFORM=VB;

ENDSTEP;

NOTE : For a permanent SYSOUT file, the record size specification in the program
is not affected by the RECSIZE value in SPREALLOC or SDEFINE. For
example, the following file-processing statements might appear in a COBOL
pr~gram that is associated with the above examples of SPREALLOC and
SALLOCATE. :

SELECT OUT
ASSIGN TO OUTFILE-SYSOUT
ORGANIZATION IS LEVEL 64 SEQUENTIAL
FLR

FD OUT
RECORD CONTAINS 108 CHARACTERS
LABEL RECORD IS STANDARD
OPEN OUTPUT OUT
WRITE record name
CLOSE OUT

As far as the user is concerned, the program is still writing records with a length of
108 characters; apart from the fact that trailing blanks are suppressed on a SYSOUT
file, the record structure superimposed by the SYSOUT Mechanism is of no
importance to the programmer.

2-13

AO 11

Program JCL

SYSOUT SSYSOUT

YES NO

- YES

YES NO

YES NO

. YES

- YES

2-14

EFFECT OF THE VARIOUS SYSOUT OPTIONS

Table 2-1 illustrates the effect of the main options concerned with the use of the
SYSOUT Mechanism. If read horizontally, it shows what effect the presence
(indicated by YES) or absence (indicated by NO) of certain situations in the program,
the JCL, or the file label (in particular, the record size) have on a file that is created
by a user program. Each result indicated on the right of the table gives the type of
file created (e.g. standard SYSOUT subfile, edited permanent SYSOUT file) and
whether or not the contents are printer or punched (column headed Output).

NOTES: The case where there is no -SYSOUT in the program and SSYSOUT
does not appear in the JCL is not considered to be relevant to this table
(produces either an un1?dited file or an error condition, depending on
whether or not the intc!rnal-file-name has been assigned within the step
enclosure).

A hyphen(-) in the column headed -SYSOUT indicates that either
YES or NO can apply (the case where the column headed SSYSOUT
contains YES).

A hyphen in the column headed RECSIZE indicates that the entry is
not applicable (the case where there is no permanent file).

If a SSYSOUT statement contains the parameter WHEN=DEFER,
the entries marked with an asterisk in the column headed Output will
not produce output in connection with the current step.

The presence in the step enclosure of a SDEFINE statement with the
parameter SYSOUT has an identical effect to that of -SYSOUT in the
program.

TAB LE 2-1. SYSOUT Options

Permanent
Result

File

SASSIGN RECSIZE c,j. File Output

NO . standard SYSOUT YES

NO . standard SYSOUT YES

YES ~ 600 permanent SYSOUT NO
edited

YES < 600 permanent
not edited NO

YES ~ 600 permanent SYSOUT YES
edited

YES < 600 permanent SYSOUT YES
not edited

AO 11

AVOIDING THE USE OF THE SYSOUT MECHANISM FOR OUTPUT EDITING

There are certain cases where the use of the SYSOUT Mechanism is unsuitable for
the editing of permanent files at creation time ; for example :

where the contents of a permanent SYSOUT file are to be reused by another

system component (e.g. as input to SLIBMAINT);

where a file is used in conjunction with the report selection facility of the COBOL
Report Writer (which means that the REPORT option of the SWRITER statement
cannot be used with files jn SYSOUT format) ; this rule also implies that the

COBOL Report Writer selection facility cannot use standard SYSOUT subfiles

since they are by definition in SYSOUT format.

In addition, there are a few cases where the editing of a file at creation time might
degrade the job performance; for example where the contents of a file are only to be
punched - which requires re-editing by the Output Writer (see «Notes on Punched
Card Output» below), or where a permanent SYSOUT file is to be created but in
general the contents will not be printed.

In the above situations, the user can override the presence of the -SYSOUT suffix
in the program in one of the following ways :

...,_ by preallocating the file with a record size of less than 600 bytes (normally the
record size given in the program) ; if in this case a SSYSOUT statement is specified
for the file, the SYSOUT Mechanism will take account of the enqueuing
requested (i.e. the value of the WHEN parameter) but the file will not be edited.

NOTE : This method is not possible for uncataloged tape files since SPREALLOC
cannot be used for them.

by specifying the parameter NSYSOUT in a $DEFINE statement; this is the
usual way to avoid the use of the SYSOUT Mechanism for an uncataloged tape
file (otherwise, of -SYSOUT appears in the program, the system forces a record
size equal to that of SYS.OUT, i.e. at least 600 bytes) ; the record size in the
program will apply, the SYSOUT Mechanism will not be used to write the file,
and the file will not be edited.

NOTE : If the SYSOUT Mechanism is not used the file will be written as a
SSF, SARF or ASA format, see COBOL user Guide.

OVERRIDING RULES FOR THE SYSOUT MECHANISM

Figure 2-2 illustrates in the form of a low diagram the overriding rules that decide
whether or not a SYSOUT file will be edited.

2-15

AO 11

2-16

SY SO UT
mechanism:

WHEN parameter
incorporated

N

SY SO UT
mechanism:

editing

y

no
editing

N

y

y

standard access
method:
no editing

Figure 2-2. Overriding Rules for SYSOUT Mechanism

AO 11

Use of Output Writer STANDARD SYSOUT SUBFILES

The most frequent use of the Output Writer will be for the printing of reports on
standard stationery with no requirement to maintain a copy of a report on disk or
tape. A neat way of doing this is to use the SSYSOUT statement, for example :

SYSOUT Fl;

(where F1 is an internal-file-name). There is no need for a SASSIGN statement;
in fact, as explained previously, a $ASSIGN statement is only relevant for permanent
SYSOUT files. To produce punched card output, specify the appropriate device class,

for example :

SYSOUT F2, DEVCLASS = CD/P/C80, MEDIA= DECK;

If the user wants the Output Writer to be notified at a time other than the end of
the job (the default value of the WHEN parameter), or requires nonstandard

stationery, the appropriate paramete1 scan appear on the SSYSOUT statement;
for nonstandard editing (e.g. margin setting, form control) a SDEFINE statement

is necessary. Both types of parameter are discussed later.

A statement of the form :

SELECT PRFILE ASSIGN TO F1-SYSOUT

is an alternative means of requesting the printing of a standard SYSOUT subfile

(provided no SASSIGN statement is (iiven for the internal-file-name F 1}. However,
if nonstandard options are required, a SSYSOUT statement (or a previous SOUTVAL
statement) with the appropriate parameters must also appear.

One cannot open a standard SYSOUT subfile several times within a step; at each
open, the system will create a new member in SYS.OUT. For example, two standard
SYSOUT subfiles will be created if a COBOL program contains the following
statements :

SELECT OUTFILE
ASSIGN TO OUT-SYSOUT

OPEN OUTPUT OUTF I LE

CLOSE OUTFILE

OPEN EXTEND OUTF I LE

CLOSE OUTFILE

The above example shows that, for a standard SYSOUT subfile, EXTEND processing
mode is treated as OUTPUT processing mode.

Use of Several SSYSOUT Statements for One Subfile

Several SSYSOUT statements can appear for the same standard SYSOUT suhtile
if the user requires several copies of ci listing and/or card deck, each copy having
different characteristics.

AO 11

2-18

For example, if a printed copy of a card deck is required :

SJOB CRDOUT, ;
STEP S1, ;

SYSOUT CARD, DEVCLASS=CD/P/CSO, MEDIA=DECK;
SYSOUT CARD;

ENDSTEP;
'l1 ENDJOB;

PERMANENT SYSOUT FILES

In some cases, a permanent copy of a report or punched card deck may be required
on disk or tape. Furthermore, since there is a limitation on the size of the file
SYS.OUT, a standard SVSOUT subfile should not be used when a job is likely to
produce an excessive amount of output. In these cases, instead of using SYS.OUT,
the user should make an assignment to the file in which the copy is to be held, for
example:

ASSIGN F1, OUT.PR.FU ;

or, for output to tape :

ASSIGN F1, XYZ.TAPE, EXPDATE= 3,
DEVCLASS =MT/T9/D1600, MEDIA= 045;

To request the printing or punching of a report created in the current step, inform
the Output Writer by means of a SSYSOUT statement, for example:

SYSOUT Fl;

If at a later stage (in the current job, or in another job) the user requires a printed
or punched copy of the file, a SWRITER statement will be necessary; for example,
for a printer listing :

WRITER OUT.PRFL 1 ;

or for punched cards :

WRITER OUT.PRFL1, DEVCLASS=CD/P/CSO, MEDIA=X99;

Both output handling and editing parameters can·appear in the SWRITER statement.
These are discussed later in this Section.

NOTE: The SASSIGN statement for a permanent SYSOUT file must not contain
the parameter MEDIA= WORK nor the DVIDUST parameter.

The WRITER (efn DEVCLASS = MEDIA=) are residency parameters

and
WRITER (DEVCLASS= MEDIA= ...) are editing parameters.

Filling of Permanent SYSOUT Files in Several Steps.

The user can fill a permanent SYSOUT file in several steps and request the Output
Writer to print or punch the complete file, as follows :

1. Open the file in OUTPUT processing mode in the first step that writes to it; open
the file in EXTEND processing mode in the other steps that write to it.

AO 11

Editing and Handling of Output

2. If a SSYSOUT statement appears in one or more of the steps, insert the
WHEN= DEFER parameter to prevent a request to the Output Writer.

3. Ensure that the output records are processed in an identical manner in each step
(i.e. either all of the records are edited by the SYSOUT Mechanism, or none of
them are).

4= Use a SWRITER statement to make the request to the Output Writer.

NOTE : To ensure that the latest contents of the file are printed or punched even
if one of the job steps aborts, do one (or both) of the following :

- Make use of the $JUMP statement (see Section VI).

- Put the $WRITER statement immediately after the $.JOB statement.

Partial Output of Files

The PART parameter of the SWRITER statement allows the user to output specified
parts of a permanent SYSOUT file.

Example:

WRITER (PFILE, DEVCLASS=MS/M350, MEDIA=C018),
PART= (40:60, 90:S);

The above example prints pages 40 to 60 and pages 90 to the end, for an uncataloged
disk file.

The SUBFILES parameter of the SWRITER statement allows the user to output
specified members of a permanent SYSOUT library file.

Example:

WRITER MY.LIB, SUBFILES= (TOM, DICK, HARRY);

The above example prints members 10M, DICK and HARRY of the cataloged
library file MY.LIB.

Deallocation of a Permanent SYSOUT File

Since the activity of the Output Writer is independent of the execution of the job
that has reque~ed its use, the user must take care before attempting to deallocate a
permanent SYSOUT file after an output request has been made for it. The user is
advised never to use the S DEALLOC statement for a file in the same jobs as it is
output, nor even in a later job unless it is certain the file has already been printed or
punched. Otherwise, there is a danger that the file will be deallocated before it has

been output. In order to overcome the problem, the user can do one of the following:

use a standard SYSOUT subfile instead of a permanent SYSOUT file;
put the SDEALLOC statement in a separate job whose SJOB statement contains
the HOLD parameter ;

use a member of a permanent library file as the SYSOUT file and include the
DELETE parameter in the SSYSOUT or SWRITER (or SOUTVAL) statement.

It is important to distinguish between output parameters that are concerned with the
editing of the data to he output and those that deal with the handling of listings and
decks.

2-19

AO 11

2-20

OUTPUT EDITING

The parameters that are used to specify editing characteristics are as follows :

- for the printer: - the MEDIA parameter of SSYSOUT and SOUTVAL and
the PRINTER parameter group of SDEFINE and SWRITER;

- the DEVCLASS parameter of S SYSOUT and SOUTVAL
(type of printer and number of hammers)

for the card punch: the PUNCH parameter group of SDEFINE and SWRITER.

For a printer, the value of the MEDIA parameter (or the default value if MEDIA
is not specified) determines which default system parameters for output editlng will
apply. If the SYSOUT Mechanismod is used to edit the file at creation time, a
SDEFINE statement in the current step will override and/or complement these
parameter values. Thus, for an «edited» SYSOUT file, all editing parameters are
incorporated into the file at creation tir.ie. Provided the requirements for the output
do not change, there is no need for editing parameters to be respecified each time an
edited permanent SYSOUT file is to be printed. The above rules apply for punched
card output except that there is a unique set of default system parameters for output
editing in this case.

If a step creates an unedited permanent SYSOUT but a SSYSOUT in the STEP requires
an edited output:

the SYSOUT is output according to the specified edition parameters
if the same editing parameters are required in the future then they must be
restated in full.

OUTPUT HANDLING

The parameters that are used to direct the handling of output are those that appear
in the SOUTVAL statement (except MEDIA for a printer). All those parameters can
be specified also within the SSYSOUT and SWRITER statements. With the exception
of the WHEN parameter (see below) they are obeyed at output time by the Output
Writer. The required handling parameters must be specified each time a permanent
SYSOUT file is to be printed or punched.

NOTE: Although the SLEW and NSLEW appear both in the SOUTVAL statement
and in the PRINTER group of SDEFINE and SWRITER, they are treated
as output handling parameters and apply only to a current request for
the Output Writer.

LINES AND CARDS LIMITS

To limit the amount of output produced by a program, for example to anticipate
the occurrence of an infinite loop, the user can specify in SSTEP a maximum number
of lines printed (LINES parameter) and cards punched (CARDS parameter). When
a limit is reached, the program is abnormally terminated, with the return code
ERLMOV.

Example : Suppose a program works satisfactorily with test data and produces less
than 100 lines of SYSOUT output; if, tor a particular production run, the
user wants to print and punch the SYSOUT report, SSTEP statement
of the form given below should appear :

STEP STEP1, ... I LINES= 100, CARDS= 100, ... ;

AO 11

NOTES : The limit controlled is the number of WR IT Es that the program produces.
In general, this value will be identical to the number of lines printed
(or cards punched) ; however, if several copies of a SYSOUT file are made
(COPIES parameter), the additional lines or cards produced by the extra
copies are not included. The lines printed in the Job Occurrence Report are
also independent of the LINES and CARDS limits.

OUTPUT EDITING PARAMETERS

Effect on Different SYSOUT File Types

The following paragraphs summarize the way in which editing is done for the
different types of .SYSOUT files.

STANDARD ·sYSOUT SUBFILES : Editing is done as the subfile is filled. Any given
editing parameters of SOUTVAL and/or SSYSOUT and/or SDEFINE override the
default system values.

EDITED PERMANENT SYSOUT FILES: Editing is done as the file is filled. If
any editing parameters appear for a previous SOUTVAL statement or for a SSYSOUT
and/or SDEFINE statement in the step in which the file is created, their values override
the standard system parameter values. If an edited permanent SYSOUT file is output
at a later stage by SWRITER, the Output Writer will do so according to the editing
done at file creation time. The user can supply alternative editing parameter values
in the SWR ITER statement, but these will be ignored unless the FPARAM parameter
also appears. Note, however, that this use of FPARAM to force new editing parameters
will mean that extra processing time will be required in order to re-edit the file.

Example: Suppose an uncataloged permanent SYSOUT file is edited at creation
time with a nonstandard form height setting and a nonstandard print density ; if the
user wishes to print the file later with standard characteristics, the following $WRITER
statement CCin be used :

WRITER (MYFILE, DEVCLASS=MS/M400, MEDIA=V1), FPARAM;

Similarly, if a standard form height and print density are required but the user wants
a different margin setting :

WRITER (MYFILE, DEVCLASS=MS/M400, MEDIA=V1),
FPARAM, PRINTER= (MARGIN=10);

UNEDITED PERMANENT SYSOUT FILES: Since the record size is less than 600
bytes, the SYSOUT Mechanism does not edit the file at file creation time. If the
file is to be output later with any nonstandard editing parameters, these parameters
must appear in the $WRITER statement, even if they appeared in a SSYSOUT and/
or a $DEFINE statement when the file was written. If the data records are not in
SSF format, the user must specify the format in the DATAFORM parameter.

ORDINARY PERMANENT FILES: Since the SYSOUT Mechanism has not been
requested at file creation time, the file is not edited. If the file is to be output with
any nonstandard editing parameters, these parameters must appear in the SWRITER
statement. If the data records are not in SSF format, the user must specify the format
in the DATAFORM parameter.

Example:
WRITER MY.FILE, DEVCLASS = CD/P/C80, DATAFORM = SARF,

PUNCH = (CHARSET = EH14);

The above example will punch the contents of the SAR F file MY.FI LE (an unedited
permanent SYSOUT file or an ordinary permanent file) in the H14 character set.

2-21

AO 11

2-22

Media Definition for Printer

If the user wants nonstandard printer paper or a nonstandard printer character set,
the necessary information can be supplied in the MEDIA parameter. The media­
name contains the following two fields:

the first two characters identify the character set to be used ;

the remaining characters identify the paper form.

The Unit Record Devices User Guide describes in detail printer character sets and
form numbers.

Example:

STEP STEPA, ... ;
ASSIGN PRINT, MY.PRFL;
SYSOUT PRINT, DEVCLASS =PR, MEDIA= 120003;

ENDSTEP;

In the above example, the character set number is 12 and 0003 is the form number.

NOTE : The standard character set is 11, which consists of the following characters :

0 1 2 3 4 5 6 7 8 9

A B C D E F G H I J K L M
NOPQRSTUVWXYZ

space & - /\

¢!:. S,#<*%(£y()

-:+;>=I-,?,,

Logical Page Setting

Within a physical printer page, the user can define a «logical» page within which the
output text will be confined. The relevant parameters are :

head of form (HOF) ; this is the first line to be printed in a page;
full form 1 (FF1); this identifies the last line to be printed in a page;
margin (MARGIN) ; this is the number of character positions on the left of the
page to be skipped before the first character of each line is printed.

The Unit Record Devices User Guide explains these concepts in detail.

NOTES: - There is also a Full Form 2 (FF2); if the corresponding line is reached
when the printer is used directly (see below), a return code is produced.

- The following relationship must hold:
O~OF~FF2~ FF1~FH

where F H is length of the page.

- The standard paper form (number 0000) has the following
characteristics : HOF =-= 5

FFl =: 60
MARGIN· 0

This means tha1 oach page has 4 blank linos ut the top and 6 hlank lines
at tho bottom (sinco FOUMHT · .. G6).

AO 11

Setting Stop Levels in a Printer Page

The user can define stop Levels within a page by means of the CHi parameters.
Refer to the Unit Record Devices User Guide for more details.

Setting Margins for Punched Cards

The user can specify the number of initial card columns to be skipped when the
Output Writer punches cards, by means of the MARG IN parameter.

Example:

STEP STEPC, ... ;
SYSOUT CRDS, DEVCLASS = CD/P/C80, MEDIA= DECK;
DEFINE CRDS, PUNCH =(MARGIN=9) ;

ENDSTEP;

In the above example, the data in the punched cards will begin in card column 10.

NOTE : for punched card output, the record size declared in the program must
observe the following relationship with the value of MARGIN (number-card­
columns):

number-card-columns + record-size ~ 80

Binary Punching

There are two types of binary mode punching that the user can request : L64 mode
(BINARY parameter) and H200 mode (HBINARY parameter). These modes are
described in the Unit Record Devices User Guide.

Example:

STEP STEPX, ... ;

SYSOUT BINOP, DEVCLASS=CD/P/C80, MEDIA=CARD;
DEFINE BINOP, PUNCH= (BINARY);

ENDSTEP;

Character Set for Punched Cards

If the required code conversion for card output is different from EBCDIC to H36,
the user can specify the translation table name by means of the parameter CHARSET.
Refer to the Unit Record Devices User Guide.

Example:

WRITER (H14CRDS, DEVCLASS=MT/T7, MEDIA= TP5),
DEVCLASS = CD/P/C80, MEDIA=H14DK, PUNCH=

(CHARSET = EH14) ;

2-23

AO 11

2-24

OUTPUT HANDLING PARAMETERS

Enqueuing of Output Writer Requests

By default, a request to output a SYSOUT file is sent to the Output Writer when the
current job terminates. By use of. the WHEN parameter, it is possible to change the
time that the Output Writer is notified. The possibilities are :

at job termination (default value)

at step termination (for SSYSOUT only);
for a job that contains several steps, this option allows
the output of one step to be printed or punched
concurrently with the execution of later steps
(depending on the current activity of the Output Writer -
see note 4 below).

as soon as the SYSOUT file is closed (i.e. «immediately»);

no Output Writer request made at this point
(for permanent SYSOUT files only, with SSYSOUT)

NOTES:

WHEN =-'OB

WHEN =STEP

WHEN= IMMED

WHEN= DEFER

1. The system always takes account of the value of the WHEJ" parameter on a
SSYSOUT statement even if the SYSOUT Mechanism is not used edit the file.
This means that, if a SSYSOUT statement is specified for a permanent file with a
record length of less than 600 bytes, the enqueuing request is observed even through
the editing parameters. Editing parameters must be restated if a future output
is required, see SYSOUT Mechanism above.

2. The WHEN= DEFER option is useful in the following situation. A program
creates a permanent SYSOUT file but the user wishes to delay the output of the
file contents; however, the program does not contain the -SYSOUT suffix in the
SELECT statement. In order to use the SYSOUT Mechanism to write to the
file (to increase efficiency by editing at the time of file creation), the user can add
to the JCL a SSYSOUT statement that contains the parameter WHE~ =DEFER.
Provided that the record size is large enough (see SYSOUT Mechanism above),
the SYSOUT Mechanism will edit the file but the file contents will not be printed
or punched. For example, if a program contains the following statement :

SELECT OUT ASSIGN TO OUTFILE-PRINTER.
the following step enclosure will ensure the editing of the file assigned to OUT
without printing its contents.

STEP STEPA, ... ;
ASSIGN OUTFILE. MYTAPE. DEVCLASS=MT/T9, MEDIA=TAPE03;
SYSOUT OUTFILE, WHEN=DEFER;

ENDSTEP;

3. The requests to output the SYSOUT files that are created by various system
utilities (e.g. SCREATE, LIBMAINT are made, by default, at job termination
(i.e. WHEN =JOB). Where the utility statement contains the PATOUT parameter,
the user can override this default value.

Example:
LIBMAINT SL LIB= MY-LIB COMFILE = *MY-IN

PATOUT= (WHEN= IMMED) ;

AO 11

4. The time between the request to the Output Writer and the ::~;;:rt of printing or
punching on the output device is dependent on the current C:..:tput Writer
activity and on the order of the request within the output queue. Even if
WHEN= IMMED is specified, for example, the printing or punching may still
be delayed beyond the termination of the step or job. Refer also to Deallocation
of a Permanent SYSOUT File, above.

Output Selection and Naming

Each output request in the output queue belongs to a given output class and _also has a
particular output priority. The existence of different output classes means that the
operator can control the printing and/or punching of different catagories of outpu~.
For example, if several types of paper are used in an installation, all the requests
for output on a particular type of paper should belong to one class and requests for
output on a different type should belong to a different class, for each type of paper;
if the operator activates the Output Writer only for one output class, all the listings
on the corresponding type of paper will be printed consecutively. The user can
specify the class and priority for each output request by means of the CLASS and
priority parameters. The operator can select a particular output class by means of
the operator SO command.

NOTE : The requests to output the SYSOUT files that are created by various system
utilities (e.g. CREATE, LIBMAINT), belong, by default, to output ciass C.
The user can override this value by means of the PRTOUT parameter in the
utility statement.
Example:

LIBMAINT SL LIB=MY-LIB COMFILE=MAY.SEQ PRTOUT= (CLASS=D);

The SOUTVAL statement can also influence the output class of output
requests from subsequent utility statements (see SOUTVAL Statement,
below).

The user can prevent the selection by the Output Writer of an output request, by
means of the HOLD parameter. The Output Writer will not select a «held» request
until the operator specifies a Release Output (RO) command.

NOTES : - The HOLD parameter differs fundamentally in use from the WHEN=
DEFER parameter: the WHEN=DEFER parameter prevents the
notification of the Output Writer, since the output request is not made
and no entry is put in the output queue; the HOLD parameter delays
the printing or punching by the Output Writer, but the request is made
and an entry is put in the output queue.

·- If the user specifies HOLD for an output request, it is advisable also
to specify the NAME parameter so that the operator can easily identify
this request. Name is also useful for identification purposes if a job
produces many output listings.
Example : STEP ST1, ... ;

ASSIGN INPT, * ADECK;
SYSOUT PRT1, NAME= REPA;
SYSOUTPRT2,HOLD,NAME=HLDOP;
SYSOUT PRT3, NAME= REPS;

ENDSTEP;
STEP ST2, ;

ASSIGN FL1, ABC.X14;
ASSIGN FL2, ABC.014;
SYSOUT FL2, NAME=REPC;

ENDSTEP;

2-25

AO 11

2-26

If the SJOB statement contains the HOLDOUT parameter, all output
requests made within the job will be held until released by the operator;
the user can override this for a particular request by using the NHOLD
parameter of the SSYSOUT or SDEFINE statement (or for several
consecutive requests by using the NHOLD parameter of the SOUTVAL
statement).

Production of Several Copies

The COPIES parameter allows the user to make several identical copies of a SYSOUT
file.
Example:

STEP STEPA, ... ;
SYSOUT PRINT, COPIES= 3;

ENDSTEP;

Output Banners

The user can suppress the standard output banners that appear on listings and card
decks or supply alternative values for the items they contain (e.g •. Run Occurrence
Number, user-name). The appropriate parameters are NBANNER and BANINF
respectively. Details of the format of printer listing banners are given in Section VII;
each punched deck is preceded and followed by there banner cards, as follows :

a flag card

a card containing the job's Run Occurrence Number and the user's name and
job statement

a card containing the Job Identification and account of the SJOB statement.

Deletion of Library Members

If a permanent SYSOUT file is a member of a permanent library file, the user can delete
the member from the library after it has been printed or punched, by use of the
DELETE parameter.

Example:
STEP PROGA, ... ;

ASSIGN OUT, PRTLIB, DEVCLASS=MS/M400, MEDIA=VOL 13,
SUBFILE= TEMPFL

SYSOUT OUT, DELETE;
ENDSTEP;

Suppression of Skip Function

The user can force the replacement of every skip function in the program by a skip
to the following line, by means of the NSLEW parameter.

AO 11

USE OF THE SOUTVAL STATEMENT

By means of the SOUTVAL statement, the user-can supply output handling parameter
values that override the default system parameter values. The new default values will
apply to all SSYSOUT and SWRITER statements that appear after the SOUTVAL
statement, up to the next SOUTVAL statement or, if there are no more $0UTVAL
statements, to the end of the job. Any exp I icit appearance of a particular parameter
value in a SSYSOUT or a SWRITER will in turn override for that statement only
any new default value supplied by $0UTVAL. Note that the $0UfVAL statement
takes effect at the time of the execution of the job and not at JCL translation time.

Examples:

1. SJOB XYZ, ... ;
OUTVAL CLASS=D ;

SYSOUT OP1;

SYSOUT OP2, CLASS=E ;

SYSOUT OP3;

SENDJOB;

In the above example, OP1 and OP3 will belong to class D and OP2 to class E.

2. SJOB ABC, ... ;
OUTVAL CLASS=D;

START:
STEP ST1 I ••• ;

SYSOUT OP1;

ENPSTEP;
OUTVAL CLASS= E;
STEP ST2, ... ;

SYSOUT OP2;

ENDSTEP;
JUMP START, SW1, EQ, 1;

SENDJOB;

The first time ST1 is executed, its output will belong to class D ; if, as a result of the
SJUMP statement, ST1 is executed again, its output will then belong to class E.

2-27

2-28

THE JOB OCCURRENCE REPORT AND THE JOBOUT

The first SOUTVAL statement (for the printer) that appears before the first step in
a job description defines the output characteristics of the Job Occurrence Report;
if no such statement is specifiert, or if a SOUTVAL statement without any parameters
is specified, the job Occurrence Report will be printed according to the following
parameter values :

CLASS=C, PRIORITV=3, WHEN=JOB, COPIES=l

The group of standard SYSOUT subfiles that have the same output characteristics
as the file that contains the JOA is considered as a single file for output purposes.and
is known as the JOBOUT. For example, suppose a job does a compilation, a linkage
and an execution of a program ; assume that no nonstandard output handling
parameters are specified in the job description ; as a result, the operator will be
aware of only two output listings :

JOB_REP
JOB_OUT

which contains the Job Occurrence Report
which contains the JO BOUT, i.e. the output from the compiler,
the linker and the step corresponding to the user program.

The discussion in the first paragraph above about the JOA also applies to the JOBOUT.

Examples:

1. SJOB ORS, ;
OUTVAL CLASS= E;
STEP STPA, ;

SENDJOB;

In the above example, the JOBOUT contains all the output listings with characteristics
WHEN=JOB, CLASS=E, PRIORITY=3, COPIES=l.

2. SJOB TUV, ;
OUTVAL;
OUTVAL CLASS=D, PRIORITY=4, COPIES=2;
STEP STAB, ;

SENDJOB

In the above example, the JOA is the only listing that has the characteristics
CLASS=C, PRIORITY=3, WHEN=JOB, COPIES=l {assuming that there is no
other SOUTVAL statement in the job description, and that no SSYSOUT nor
SWRITER statement specifies those four values).

NOTES ON PUNCHED CARD OUTPUT

Use of SYSOUT Mechanism·

When the SYSOUT Mechanism is used at file creation time, it edits the data.
records as if they were destined for the printer (even if the SSYSOUT statement
specifies the card punch) ; in other words, for reasons of efficiency, SYSOUT for :iat
is compatible with the format required by the printer device. At the time a SYSOUT
file is punched, the Output Writer will transform the edited records into the format

AO 11

suitable for the card punch.

In order to avoid this re-editing, the user is advised not to use the SYSOUT Mechanism
for card output unless the SYSOUT file is also to be printed ; in other words, if a
SYSOUT file is only to be punched, the user should use a permanent SYSOUT
file preallocated with a record size less than 600 bytes; this prevents the SYSOUT
Mechanism from editing the file at creation time.

Output of Source Programs, Compile Units and Load Modules

This Section has been principally concerned with the output of data. For the
punching of the contents of source programs, compile units and load modules,
the user can execute the$ LI BMAI NT utility. Details appear in the Library
Maintenance User Guide.

Example of the Uses of SSYSOUT and SWRITER in a Job

The following example contains a variety of output request. An illustration of the
different effects of these statements is shown in Figure 2-3.

$JOB ..• ;
STEP STEP1, ;

ASSIGN INl, *INCRDS;
ASSIGN G1, MY.P99,END=PASS;

COMMENT'SEND THE OUTPUT OP1 TO A PERMANENT SYSOUT FILE';
ASSIGN OP1, MY.OUT1;

ENDSTEP;
STEP STEP2, ..• ;

ASSIGN IN2, MY.P99, END=PASS;
COMMENT' USE A STANDARD SYSOUT SUBFILE FOR THIS STEP'

SYSOUT OP2;
ENDSTEP;

JUMP ST3, SEV, GE, 3;
COMMENT' NOW REQUEST COPY OF STEP1 OUTPUT'

WRITER MY.OUT1 ;
ST3 : STEP STEP3, ;

ASSIGN IN3, MY.P99;
COMMENT 'SEND SOME OUTPUT TO A PERMANENT SYSOUT FILE'

ASSIGN OP3A, MY.OUT3 ;
COMMENT 'REQUEST TO BE MADE AT STEP TERMINATION' ;

SYSOUT OP3A, WHEN=STEP;
COMMENT 'USE A STANDARD SYSOUT SUBFILE FOR MORE OUTPUT'

SYSOUT OP3B ;
ENDSTEP;

SINPUT INCDRS;

SENDINPUT;

SENDJOB ;

2-29

AO 11

SJOB ... ;

STEP STEP1, •... ;

ASSIGN IN1, *INCRDS;

ASSIGN G1, MY. P99, END=PASS;

ASSIGN OP1, MY.OUT1 ;

ENDSTEP;

STEP STEP2, .•• ;

ASSIGN IN2, MY.P99, END=PASS;

SYSOUTOP2;

ENDSTEP;

JUMP ST3, SEV, GE, 3;

WRITER MY.OUTl ;

ST3:STEP

ASSIGN IN3, MY.P99;

ASSIGN OP3A, MY.OUT3;

SYSOUT OP3A, WHEN= STEP;

SYSOUT OP3B ;

ENDSTEP;

KEY

s
T
E
p
1

s
T
E
p
2

s
T
E
p
3

--- File creation (SYSOUT Mechanism)

- - - - - Output Writer notification

- - - - - - - - Production of output

Figure 2-3. Job Output

2-30

------ ------ -----.
I

~T~

-- -- -- -- --i

[M~T~

. -·-·- .. -- -- -- -- -- --.

AO 11

Direct Use of the Printer and Punch

Diagram of Output Facilities

When a unit record device is used directly, the records written are sent to the device
without any intermediate storage on a temporary or a permanent file. The user has
exclusive use of the device until the execution of the current step has terminated
or, if the COBOL program contains the WITH LOCK option, when the CLOSE
statement is executed.

To use a printer or punch direct!y the user must specify the device in a SASSIGN
statement. In addition, the COBOL program should contain the suffix -PRINTER
or -CARD-PUNCH as appropriate in the ASSIGN clause of the SELECT statement.
The SASSIGN statement can also specify the paper form for a printer (MEDIA
parameter).

Examples:

1. SJOB DIRECT, ;
STEP STEPA, ... ;

ASSIGN PROUT, DEVCLASS=PR, MEDIA= 150000;
ENDSTEP;

SENDJOB;

2. SJOB EXCARD, ... ;
STEP STEPA, ;

ASSIGN CROUT, DEVCLASS =CD/P/C80,MEDIA=DIRECT;
ENDSTEP;

SENDJOB;

NOTES:

By default, cards are punched in H36 code ; the user can specify a different mode
by means of the SDEFINE statement (CHARSET parameter).

If a device is used directly, no banners are provided.

The only relevant parameters of the SASSIGN statement for direct use are the
internal-file-name, DEVCLASS, MEDIA and POOL.

Figure 2-4 summarizes the action of the different output methods that are available
to the user.

2-31

AQ 11

2-32

EDITED SYSOUT FILE
UNEDITED PERMANENT

SYSOUT FILE

DIRECT
ASSIGNMENT

Standard

USER
Program

WRITE+

SSYSOUT
-SY SO UT

editing by
SY SO UT
mechanism

SSYSOUT
-SY SO UT

Unit
Record
Device

Permanent

USER
program

WRITE+

SSYSOUT
-SYSOUT

editing by
SY SO UT
mechanism*

permanent file
or subfile

SSYSOUT
SWRITER

Output Writer

USER
program

WRITE

standard
access method
(no editing)

permanent file
or subfile

SWRITER.

SSYSOUT

USER

program

WRITE

(with editing if required)

independent of program execution

CJ
D

(edited and output
during program execution)

*no editing if record size< 600 bytes

Figure 2-4. Summary of Output Facilities

AO 11

3· File assignment and allocation

Associated with each job step, and necessary to its execution, are a number of

system resources such as memory space, physical files and devices. The user is
able to exercise considerable control over the handling of files and devices by means

of JCL statements.

This section explores the various means by which the user allocates space for and
assigns files for use in a user job and the use of the catalog facility.

The allocation of file space is carried out by either the S ALLOCATE statement
or the S PREALLOC utility, while the allocation of device and volume is performed
in conjunction with the SASSIGN statement. The following paragraphs explain the
concepts involved in resource allocation.

These major classes of files are available to the GCOS Level 64 user, namely :
temporary files

permanent cataloged files

permanent uncataloged files

These three classes inducle the standard file formats (BFAS, UFAS, HFAS) ; file
organisations (e.g. sequential, indexed sequential) and media types (disk, tape,
cassette), see Table 3-1 below for restrictions

UFAS BFAS HFAS
FILE TAPE t----.--

s IS R s IS R s IS

T x x x
TEMPORARY D *I x *I *I x *I

R

*I ~--~-~ j--------i ----- -----r-----t-r~ c x x
---f-----

T T x x i

xt I

CATALOGED D x x x x x I !
c x x I I

I

T x x IX
UNCATALOGED D J x x x x x x 1 x x l - -

I : T c x
Table 3-1 File Class, Organization and Media

I* Not normally used.

x l x

S= SEQUENTIAL, IS=INDEXED SEQUENTIAL, R=RANDOM T=TAPE,
D=D ISK, C=CASSETTE

l

x

s
A temporary file in available to the user when a work area is required in which the
data is not needed after the end of the step. Such a file exits only for the duration of
the step and is deleted at step termination. If the user requires such a file be retained
for more than one step within a job, but feels that the creation of a permanent file
is not justified, then the file may be passed (END=PASS, see File Passing), to the

3-1

I
i
J

AO 11

3-2

next step. A temporary file is never accessible to another job. The organisations
available to temporary files are the same as for permanent files, but are normally
sequential. Space for a temporary file is made available using SALLOCATE in the
step in which the file is to be used. The SPREALLOC statement can also be used
when the options available in SAL LOCATE are insufficient to describe the temporary
file to be generated. When the user makes no explicit space allocation a default value
of I cylinder is available for a temporary file.

Permanent files are of two types, cataloged and uncataloged. The main difference
between these two classes is the catalog. A catalog contains information such as file
location, file generations and usage. The catalog thus simplifies user JCL since a
cataloged file may be referenced simply by its internal-fi~e-name (see S ASSIGN).
The highest level of catalog is the site catalog which contains information on users,
projects, billings. Private catalogs can be created which contain information on user
files. Where private catalogs are used a search path can be defined using SA TT ACH,
so that files, or objects can be more readily found (see Catalog Overview).

Space for a permanent file can be made available usin~ SALLOCATE (within a step)
or in a job enclosure using the S PREALLOC utility. -'Jn all three classes of file, a
program is written to access a file name described in the conventions of the language
being used. When step executioni:launched, access will have to be made to a physical
file. The link between the file as known by the program, and the file as known by
GCOS has to be established. This link is provided using the SASSIGN statement in
which the name of the file as known to the program (internal-file name, or ifn) and
the name of the file as known GCOS (external-file-name, efn) is established within a
step. The SASSIGN statement also establishes the class of file, access rights and
device requirements (refer to JCL Language Reference Manual). The SASSIGN
statement allows any user program to see an input enclosure as ordinary sequential
file.

SJOB TEST, USER=TD,PROJECT=ED;

STEP LMI, LMUB.EXS;

ASSIGN CRDN1, INENC1, DEVCLASS = MS/M300,

MEDIA =·NI;

COMMENT' IFN CRDNl IS CONNECTED TO EFN INENC1, WHICH

IS AN UNCATALOGED DISK FILE~

ASSIGN DATAI, *CRDR;

COMMENT' INPUT ENCLOSURE DATA! IS READ INTO CRDR';

ASSIGN STAS, CDEX.DCOM, TEMPRY ;

COMMENT' TEMPORARY FILE STAS IS ASSIGNED TOCDEX.DCOM,

AND SINCE NO PASS PARAMETER IS STATED THE FILE IS

DELETED AT THE END OF THE STEP';

ASSIGN IN3, TD.COM;

COMMENT' CATALOGED FILE OF THE SITE CATALOG';

ENDSTEP;

SENDJOB;

AO 11

CATALOG OVERVIEW The catalog facility of Level 64 allows you to keep a permanent record of each file.
A catalog is, in itself, a permanent file consisting of a set of object records, each of
which contains information on a file. The information includes the file name, the
generation, sharing information and so on.

Using catalogs gives you many advantages, including ;

All the information that is needed to locate and use a file is held in one place, and
is easy to access and update.

This information need not be supplied in most JCL statements. Normally it is
retrieved automatically from the catalog. For example, the SASSIGN Basic JCL
statement for a cataloged file can normally be reduced to SASSIGN ifn, efn ;

By using file generations, the JCL required to update a file need not be changed
for each update, and previous versions of the file can remain accessible.

Greater control of file usage and access is possible, with project controllers being
able to allocate files and other resources to projects, and oversee their usage.

Permanent-file-names consist of a combination of component names and separators
(see the JCL Reference Manual for full details of file naming conventions;, and each
component name represents an object record in the catalog. The object records are
linked together to form a tree-structure and thus, for example, the tree-structure
created for a file called PLANTA.DEPT1.SALES would be:

PLANT A

SALES

PLANT A is known as a Master Directory because it is at the top of the tree, DEPT1
is a directory, and SALES, the lowest level, is a file. All the information_ on the file
PLANTA.DEPT1 .SALES is held in the object record SALES. The other object
records associated with the file only act as pointers and unique identifiers for the file.

The catalog entry for a file is created by the SCATALOG extended JCL statement,
with any additional information required to complete the entry being supplied when
the file is preallocated. The information contained in the catalog entry overrides
the same information if it is supplied through JCL statements.

Once a file has been cataloged, the catalog containing the file description must be
available to any job which uses the file. This is done by the SATTACH extended
JCL statement, which attaches up to five catalogs to any job. If the file is cataloged
in the SITE. CATALOG. there is no need to have a SATTACH statement, since, when
the SITE. CATALOG is the only one to be searched, the search is performed automati­
cally.

3-3

AO 11

Assignment of Cataloged Files

3-4

Note: The maximum number of catalogs that can be attached to all jobs at one
time is 10. Jobs which ask for new catalogs when this limit has been reached will
be enqueued.

To illustrate how the use of catalogs simplifies JCL, consider the SASSIGN
statement.

To assign the uncataloged file PLANTA.DEPT1, the SASSIGN statement might be:

SASSIGN ifn, PLANTA.DEPT1,SHARE = ONEWRITE,

EXPDATE = 100,DEVCLASS = MS/M400,

MEDIA= (Dl, D2);

This information would have to be given for the file every time a SASSIGN on the
file occurs. If the file was catalogued, the corresponding SASSIGN statement would
be:

SASSIGN ifn,PLANTA.DEPT1;

The other information is contained in the catalog entry for the file PLANT A.DEPT1,
and this entry would have been set up by statements of the form :

SCATALOG PLANTA.DEPT1, SHARE= ONEWRITE, RETPER=100;

The remainder of the entry (the media where the file resides) is supplied when the file
is preallocated.

NOTE:

SEARCH RULES FOR PASSED FILES (see File Passing)

If the DEVCLASS and MEDIA parameters are missing from the SASSIGN statement,
the following occurs:

1) The system looks for a cataloged file of the given name in tf:le currently attached
catalog(s).

2) If there is no cataloged file in this name, the system looks for an uncataloged file
passed from a previous step.

3) If there is no passed file of this name, the system assumes it is a RESIDENT
uncataloged file.

The extended JCL statement SA TT ACH is used to :tpecify an ordered list of catalogs
which are to be searched for a particular catalog object(s), particulary when those

objects are files. If the only catalog to be .searched is the SITE.CATALOG, the
S ATTACH statement may be omitted. If other catalogs are to be searched in
addition to the SITE.CATALOG, the SITE.CATALOG must be explicitly declared
in the SATTACH statement. The SATTACH statement is an extended JCL statement
and appears outside a STEP enclosurn.

AO 11

SJOB USER= RT,PROJECT =ZONE ;

ATTACH CATALOG1 =.CATALOG;

CATALOG2 DEPT. CATALOG,

CATALOG3 = SITE. CATALOG,

CATALOG4 = !NV. CATALOG;

STEP RTS, LMLIB;

ASSIGN en, .TOWN.STREET;

ENDSTEP;

SENDJOB ;

The private cataloged file ZONE.TOWN.STREET is to be accessed by step RTS. The
catalogs are searched in order site catalog, Catalog 2, catalog 3, catalog 4 until the
ob,iect describing the file ZONE.TOWN.STREET is found. Note that the PROJECT=
ZONE is automatically prefixed to the ifn so that the full file name need not be
stated in the ASSIGN statement.

NOTE : The catalog object contains all volume and device information.
The search path stated in a SATTACH can be overridden by use of CATALOG
parameter in SASSIGN. For example :

SJOB

SATTACH CATALOG1 =DEPT ;CATALOG I

CAT ALOG2 = SITE.CATALOG ,

CATALOG3=1NV.CATALOG;

SSTEP RTS,LM-LIB ... ;

SJ,l.SSIGN en, .TOWNSTRETT, CATALOG= 3;

$ASSIGN .•........ ;

SENDSTEP;

The catalog INV. CATALOG only is searched for file ZONE. (TOWN.STREET).
If it is not found, the step is abnormally terminated.

FILE ALLOCATION AND PREALLOCATION

The SALLOCATE and SPREALLOC (Extended JCL statement) can be used to
allocate space for either permanent or temporary uncataloged disk or tape files.
The SALLOCATE statement must be used in conjunction with a SASSIGN in the
same SSTEP enclosure. The SPREALLOC is used outside a SSTEP enclosure.

3-5

AO 11

Temporary Disk Files

Permanent Disk Files

3-6

NOTE : S ALLOCATE, should never be used for cataloged files (refer to Catalog
Management Manual).

Temporary disk files can be allocated space by means of the SALLOCATE state~ent
associated with the SASSIGN which defined the file status as temporary. One cylinder
is available for a temporary file in the absence of S ALLOCATE. Temporary file
organizations can only be BFAS direct, BFAS sequential or UFAS (all organizations).
SPREALLOC can be used in cases where unsifficient options are available in
SALLOCATE to completely describe the required temporary file.

The following general points should be noted :

A temporary disk file cannot exist after the end of execution of the step that
created it (unless it is passed to a later step see Section IV). Once created, a
temporary disk file cannot be given permanent status (although the contents
can always be copied into a permanent file under program control).

Space for a temporary file is only reserved when the file is opened by a processing
program or utility. Consequently, if a temporary file is not opened during the
execution of a particular job step, the space will not be allocated.

By default, temporary disk files are deallocated by the system at the end of
the job step in which they are created and used (i.e. privilege of access to the
file, and device, are removed and the file label is destroyed). A temporary disk
file can be prematurely deallocated during job step execution by closing the file
with deassign - CLOSE WITH LOCK in COBOL If a temporary disk file is required
for more than one job step, it can be passed to a subsequent step under the direction
of each SASSIGN by END=PASS for example (see Section IV, File Passing).

If an «increment size» is specified in a SALLOCATE for a BFAS or a UFAS
sequential disk file, the size of the file will be increased dynamically by the
specified amount whenever a write opP.ration in the current job step cannot be
performed because the file is full.

Space reservation for permanent disk files can be done in one of two ways :

As a special operation before any use of the file. This is a disk file preallocation.
It is the recommended procedure for all permanent disk files. For cataloged disk
files, the catalog entry must be created using S CATALOG before the file is
preallocated (see Catalog Management).

As part of the first open operation on the file (as for temporary files). This is a
dynamic allocation of a disk file. The mechanism can be used only for sequential
or direct BFAS files or UFAS files (any organization).

Once allocated, a permanent file will continue to exist after the execution of the job.
Under normal circumstances when the file is no longer required, the space must be
deallocated under explicit user control, by use of the SDEALLOC utility. Volume
preparation (using the Data Management utility S VOLPREP) on the volume containing
the'.file will also perform this function.

At the beginning of each job step in which an existing permanent disk file is assigned,
system resources such as access to the file and to the device are given to the job.
Unless the file is passed to the next job step (see the Section IV, File Passing), all
these resources (excluding the file space itself) are freed at the end of the job step.

AO 11

However, if a file is closed with deassign (CLOSE WITH LOCK in COBOL), the
resources will be freed at the time of file closing and the file cannot be opened again
in that job step.

EXAMPLE

SJOB HJEX, USER=K1, PROJECT= WASF;

COMMENT 'THE FOLLOWING JOB STEP CREATES AND USES A TEMPORARY
DISK FILE SCR AND REFERENCES AN EXISTING PERMANENT FILE ABC.
PR';

STEP ST01, ABC.LOI;

ASSIGN FILEl, SCR, TEMPRY, DEVCLASS = MS/M300,

MEDIA= 12345;

COMMENT 'NOW ALLOCATE 10 TRACKS FOR THIS TEMPORARY FILE';

ALLOCATE FILE1, SIZE 10, UNIT= TRACK;

ASSIGN FILE2, ABC.PR,DEVCLASS =MS/M300, MEDIA=X42;

COMMENT 'SINCE RESIDENCY PARAMETERS (DEVCLASS AND MEDIA)

ARE GIVEN THEN THE FILE CONSIDERED TO BE UNCATALOGED'

ENDSTEP;

COMMENT' AS TEMPORARY FILE SCR OF STEP STOP NO LONGER EXISTS,
THE FILE NAME CAN BE USED IN ANOTHER STEP';

CAN BE USED IN ANOTHER STEP';

STEP ST02, ABC. L02 ;

ASSIGN NEX, SCR, TEMPRY;

COMMENT' AS NO ALLOCATE IS PROVIDED FOR SCR HERE IT WILL
ALLOCATED ONE CYLINDER (ON A RESIDENT DISK)';

ENDSTEP;

SENDJOB;

Comment : the use of CLOSE WITH LOCK in conjunction with Check point/Restart
is not advised.

PREALLOCATION OF A PERMANENT DISK FILE

For UFAS and BFAS permanent files, space may be reserved and file labels may
be created using the SPREALLOC utility. This utility is described in detail in the

3-7

AO 11

3-8

UFAS or BFAS User Guide as appropriate, but its major characteristics are outlined
below. SHALLOC, the corresponding utility for HFAS disk files (which can only be
permanent) in a Level 64 environment, is described in the HFAS User Guide and is
not discussed here.

The SPREALLOC utility gives the user full control over the size and location of
the disk space allocated, the file organization, the file attributes such as record size
and record format, and the expiration date of the fife.

Once a PREALLOC statement has been executed successfully, the file exists, even
though it may not have been accessed during the job that created it. The SPREALLOC
statement appears within a JOB enclosure.

EXAMPLES:

SJOB PREP, USER=PREPF, PROJECT= MKT;

COMMENT' CREATE A FILE PREPF. N01RESERVING50 TRACKS ON MS/M402
VOLUME C018 .RECORD FORMAT FB WITH 80 BYTE RECORDS IN 6400
BYTE BLOCKS';

PREALLOC PREPF. N01, DEVCLASS=MS/M401 UNIT=TRACK,

GLOBAL= (MEDIA=C018, SIZE=50), FILESTAT = UNCAT,

BFAS =(SEO =(BLKSIZE=6400, RECSIZE=80,RECFORM=FB) ;

COMMENT'NO MORE PROCESSING TO BE PERFORMED IN THIS JOB';

SENDJOB;

The SPREALLOC INCRSIZE parameter allows a file to be dynamically extended
whenever more space is required, subject to volume limitations. Unlike SALLOCATE,
the effect of INCRSIZE in SPREALLOC is global. Dynamic extension can therefore
be dangerous if a program gets into a loop which causes file extension within a step.

ALLOCATION OF A PERMANENT DISK FILE

The SALLOCATE basic JCL statement can be used in a job sT to allocate space
for a permanent file, instead of the SPREALLOC utility, but 1s must have an associated
SASSIGN statement in the same job step. The statement cannot be used for BFAS
indexed sequential files (which require S PREALLOC), or for HFAS files. SALLOCATE
is generally used to create temporary disk files.

The SALLOCATE statement requests disk space in units of track (by default) or
cylinder. but without defining a location for the file~ In addition, for BFAS sequential,
UFAS sequential and indexed, and library files, a dynamic file extension mechanism
(INCRSIZE) is available if all the space in a file is fully occupied, or likely to become
so.

COMMENT : SALLOCATE (with INCRSIZE specified) must be present in the step
in which the extension is required.

The SALLOCATE statement enables an optional check mechanism to be used to
prevent the overwriting of an already created file, by erroneous allocation to a step.

The execution of a SALLOCATE statement does not occur until the file is opened
for the first time. The SALLOCATE statement does not supply the external file
name (provided instead by an associated SASSIGN statement in the same step), or
the file characteristics (taken from the file description in the processing program or

AO 11

from an associated S DEFINE statement).

SJOB NEWPERM, USER=PREPF, PROJECT=MKT

STEP LM1, PREPF. COBCR;

ASSIGN KDIS, PREPF. N01,

DEVCLASS=MS/M402, MEDIA=C018;

ALLOCATE KDIS, SIZE=50, UNIT=TRACK, INCRSIZE=1 ;

ENDSTEP;

SENDJOB;

Assuming the load-module LM1 has been built from the COBOL program :

SELECT MISAJ.

ASSIGN TO KDIS.

ORGANISATION IS LEVEL-64 SEQUENTIAL.

FLR.

FD KDIS.

BLOCK CONTAINS 80 RECORDS.

01 KDIS-REC PIC A(80).

a file named PREPF. N01 will be created on volume C018. Its size will be 50 tracks.
It will be a BFAS sequential file with fixed blocked records, each record being
80 bytes long, with 80 records per block. One track will be dynamically allocated to
this file whenever a write operation would overfill the file during this job step.

COMPARISON OF SPREALLOC AND SALLOCATE

Table 3-2 shows the main differences between the Extended JCL Statement
~REALLOC and the basic JCL Statement SALLOCATE.

3-9

AQ 11

3-10

Table 3-2. Comparison of SPREALLOC and SALLOCATE

SPREALLOC SAL LOCATE

Permanent files (cataloged or Permanent uncataloged or temporary
uncataloged) and Temporary file files
Job Enclosure Statement

Placed inside a step enclosure with
associated SASSIGN

Must be used for indexed Only allocates sequential or direct
sequential files

The number of extents and placement Automatic space allocation only.
of space can be explicitly declared

The maximum number of extents per Up to 16 extents per volume may be
volume may be restricted by user allocated, if required
(MAX EXT)

The organization, block size, record The organization, block size, record
size and record format are declared size and record format are taken from
explicitly (BLKSIZE, RECSIZE and the program which is executed (or
RECFORM) from an associated SDEFINE

statement)

Extension of file space must be Specifies the space extension to be
performed explicitly for sequential made if end-of-file on output is reached
disk files by the executing step ! applies to

sequential files only.

CHECK feature for existing files.

Files can only be allocated on disk volumes which have been prepared using the
SVOLPREP utility.

It is recommended that SPREALLOC be used for permanent files and SALLOCATE
for temporary files. SPREALLOC must be used if the files are cataloged.

SJOB

COMMENT

PREALLOC

PJACJ, USER= TP,PROJECT= CMS;

'THE NEXT STATEMENT ALLOCATES A PERMANENT
UNCATALOGEO FILE USING THE PREALLOC UTILITY';

CMS.PIX, EXPDATE=800, UNIT=CYL,OEVCLASS=MS/M400,

GLOBAL=(MEOIA=(B014, 8015), SIZE=80),

MAXEXT=2,

BFAS = (INOEXED=(BLKSIZE=SOO, RECSIZE=160,

RECFORM=FB, CYLOV=2, GENOV=12,

KEYLOC=5,KEYSIZE=12));

AO 11

Tape Files

STEP TP47, CMS.LML;

COMMENT 'THE NEXT STATEMENTS WILL BUILD A TEMPORARY
FILE WHICH WILL BE USED IN THIS STEP AND THE NEXT STEP'

ASSIGN FILA, CMS.TPIX, FILESTAT=TEMPRY, END=PASS,

MEDIA=BD14, DEVCLASS=MS/M400;

ALLOCATE FILA, SIZE=25, UNIT=TRACK;

DEFINE FILA, FILEFORM=BFAS, BLKSIZE=450, RECSIZE=90,

RECFORM=FB;

COMMENT 'THE NEXT STATEMENT REFERENCES THE FILE BUILT BY
PREALLOC ABOVE';

ASSIGN FILE CMS.PIX, DEVCLASS=MS/M400,

MEDIA=(BD14, BD15);

ENDSTEP;

STEP TP48, CMS.LML;

ASSIGN FNP, CMS.TPIX, FILESTAT=TEMPRY;

ENDSTEP;

ENDJOB;

No space allocation is required for tape files except for cataloged files, whether
temporary or permanent. At the beginning of a job step system resources, such as
access rights to tape drives, are assigned to the step. The file name is written when
the tape fiJe is opened in output processing mode (even if the permanent file already
exists on the tape volume). Tape naming also occurs when a file which does not
already exist on the volume is opened in append processing mode.

EXAMPLE

SJOB HJTP, USER= BR, PROJECT= TAX;

STEP TRIAL, TAX.RUN;

COMMENT' ASSIGN TAPE FILE TAX.TPERM WITH INTERNAL
NAME TEST AND UNCATALOGED';

ASSIGN TEST, TAX.PERM ,DEVCLASS =MT/T9, MEDIA=PR16;

ENDSTEP;

SENDJOB;

3-11

AO 11

3-12

The file label contains information from the SASSIGN statement (external file
name, internal file name, expiry date) and the file definition in the generating
program, or SDEFINE, (BFAS, UFAS, HFAS, FOREIGN sequential with characte­
ristics as for disk files).

Unless they are passed from one job step to another, _temporary tape files, like
temporary disk files, are known to the system only for the duration of the job step
in which they are assigned (and opened). In fact temporary tape files are not
destroyed automatically by the system since a new file can be created on the tape by
overwriting the current one. Note that work tapes, see below, are dissimilar in this
respect.

A permanent tape file, cataloged or uncataloged, exists after the job step that
created the file terminates. The contents of the file are preserved until a new file is
created on the named volume, or until the VOLPREP utility is used on the volume.
Note however that the integrity of cataloged tape files is subject to the same security
given by the catalog tmction, as for permanent disk files.

The destruction of a file is subject to file security rules, in particular any expiration
date applying to the file (See Section IV).

WORK TAPES

A WORK tape is a tape volume that has been prepared by the data Management
utility SVOLPREP (with WORK option). WORK tapes are intended to free the user
from the need to indicate the exact name of the tape, particularly if temporary work
space is required. When the programmer specifies MEDIA= WORK in a $ASSIGN
statement, the operator at execution time is instructed to mount a WORK volume
for the job.

The SASSIGN specifies whether the file to be written is temporary (TEMPRY
parameter) or permanent (see SASSIGN for permanent cataloged and uncataloged
files). If a temporary file is requested the tape volume remains a WORK in type.
However, if a permanent file is requested, the tape volume loses its WORK status
and becomes a normal named volume. The next time the file on tape is used, the
programmer must supply the proper volume name, i.e. the volume name of the
work tape (displayed in the original job occurrence report). The WORK status of a
tape can also be removed using SVOLPREP utility.

EXAMPLE

SJOB •.•.• ;

SENDJOB;

STEP ..•• ;
ASSIGN SCRI, OFF.TEMP, DEVCLASS = MT/T9,
MEDIA.= WORK, TEMPRY;
ENDSTEP;
STEP;
ASSIGN EXTRA, HOME.PERM, DEVCLASS = MT/T9,

MEDIA= WORK;
ENDSTEP;

A temporary work tape is allocatml tor the durnlion of the first step. The tape used·
in the second step will lose its work status and become permanent.

AO 11

Tape File Extension

USE OF MUL TIVOLUME FILES

Multivolume Work Tapes

Work tapes can be used for the extension of existing tape files. If, during a writing
operation on a normal tape file, the end of the last specified tape is reached, Level
64 GCOS will try to use a work tape to extend the file, rather than abort the step.
If no WORK tape is premounted, the system will ask the operator to mount one.

The operator may refuse to do so, in which case the writing operation is not
performed and the job step will be aborted.

If the existing tape file is a permanent file, the new work tape will lose its WORK
status. If a file is passed to a later step, it will be considered as a multivolume file
and treated as if the new tape had been indicated in the respective SASSIGN
statement. If a file is not passed, the new tape will not be usable in a subsequent
step. The exception to this is for a cataloged file in which case file passing is not

necessary.

If the (multivolume) file is used afterwards, the associated SASSIGN statement
must include the new volume name in the MEDIA list. This name will have been
indicated in the original Job Occurrence Report.

A single file may be spread across a number of volumes up to a maximum of 10
volumes. All the volumes for the file must be of exactly the same. type (all disk,
same disk type, or all tape, same tape type). The user must always supply volume
names, in the SASSIGN statement, in the same order as they were specified when
the file was written. However, if a user requires records from a subset of the volumes
of a multivolume tape file (for example in APPEND processing mode) the user may
specify only the required volume name(s). This avoids the unnecessary reading of
preceding volumes of the file. This is illustrated in Figure 3-1.

For tape files and for HFAS and BFAS disk sequential files, the programmer can
indicate how many volumes of a multivolume file are to be mounted simultaneously.
This facility, introduced by means of the MOUNT parameter in the SASSIGN
statement, can be helpful in reducing device requirements. Details are given under
the paragraphs entitled Device Management.

Multivolume files can be temporary or permanent.

A multivolume tape file can consist entirely of WORK tapes. If MEDIA=WORK is
indicated in SASSIGN, the system will automatically use as many WORK volumes
as are required. The sequence in which they are used will be listed on the Job
Occurrence Report and these names will then have to be used in references to the
file in subsequent jobs.

It is not possible for a file to reside partly on normal tapes and partly on work
tapes. (Note that a work tape once used for normal tape extension becomes a
normal tape .itself).

3-13

AO 11

3-14

File FNAL. A

88888

File HMOC. 41

program only reads rec:>rds within volumes LBC and LBD.
Does not read to end-of-file so LBE not needed

GGGGGG

File NCU.BX

PM4 is the last volume currently used. This file will be opened
in APPEND mode· and the user wishes that expansion occurs on
reserved volumes PM5 and, later, PM6.

80

STEP
ASSIGN
ASSIGN

ASSIGN
ENDSTEP;

File NCU.BX, opened in APPEND mode, is to grow using work
volumes. Currently, only one volume, 148, accommodates the
file.

GROFIL MY.LMLB, DEVCLASS=MS/M400, MEDIA=-=MSD;
FLA, FNAL.A, DEVCLASS=MT/T9, MEDIA=(LBC.LBD) ;
F LB, HMOC.41 DEVCLASS=MT /T9,
MEDIA=(PM4, PM5, PM6) ;
FLC, NCU.BX, DEVCLASS=MT/T9, MEDIA=148;

F iuure 3-1. Partial/ extensible Mult ivolume Processing

AO 11

MULTI FILE TAPE VOLUMES

Cassette Files

File Concatenation

Example:

COMMENT' THE NEXT STATEMENT ASSIGNS A MULTIVOLUME DISK FILE';

ASSIGN FILA, MST.PLN, DEVCLA~:S=MS,M350

MED!A=(VOL1, VOL2, VOL3);

COMMENT'THE NEXT STATEMENT ASSIGNS A TAPE FILE WHICH IS TO BE
WRITTEN ON A WORK TAPE OR WORK TAPES';

ASSIGN FILB, N.MSTPLN, DEVCLJ\SS=MT/T9,

MEDIA=WORK, EXPDATE= 340;

Note that in the second SASSIGN statement, the EXPDATE parameter ensures

that the file N.MSTPLN will be retained for 340 days. Expiry settings are
described in Section IV.

A tape volume may contain one file (.1 monovolume file), part of a file (multivolume

file) or it may contain more than one file, in which case it is known as a multifile

volume.

There are parameters of the SASSIGN statement which are specific to the processing

of multifile tape volumes. They are the END, ABEND, and FSN parameters.

With the END and ABEND keywords, there is the special value of LEAVE, which

ensures that a multifile tape volume i~; left positioned at the start of the next file on

the tape when processing of the current file is finished. If this is not specified, the
tape would normally be rewound aftt:r each file is processed.

The FSN parameter must be specifieci for multifile tapes, and specifies the file

sequence number of the file to be assigned. Sequence numbers of files start at 1.
There are two special values for FSN, 254 and 255.

If FSN=255 is specified, the tape will be searched for a file of the specified name
at file open time. Note that if the processing is in output mode, the existing file

will be over-written. If there is no file and processing is in output mode, a new file
will be created after the last file on the tape.

To avoid problems with possible overwriting of existing files of the same name when
processing in output mode, the value of 254 can be given for FSN. This value causes
the file to be written after the last file on the tape regardless of whether a file with
the same name already exists on the tape.

Cassette files can be treated in the same way as tape files. The device-class for
cassettes is CS.

The format of cassette files is fully described in the BFAS and UFAS User Guides.

Several BFAS sequential files, UFAS standard sequential or cassette files can be

accessed as if they were a single sequmtial file. File concatenation, as it is called,

is specified by successive S ASSIGN sratements in required sequence, with the
omission of the internal-file-name of all but the first SASSIGN. For example :

3-15

FILE SPACE RE-ASSIGNMENT

Uncataloged Tape files

Cataloged Tape files

Uncataloged Disk files

Cataloged disk files

SDEFINE Overview

3-16

SSTEP ;

ASSIGN TOTO, MY.FILE1, OEVCLASS=MT/T9, MEDIA=A1;

ASSIGN ,MY.Fl LE2, DEVCLASS=MT/T9, MEDIA=A2;

ASSIGN ,MY.FILE3, DEVCLASS=MT/T9, MEDIA= A3;

In this example the three uncataloged tape files are treated as a single file with an
internal file name TOTO. The file starts at MY.FILE1 and ends with MY.FILE3.
Concatenated files must have compatible record and block sizes and have the same
device class and device 3ttributes.

The release of space occupied by an outdated file, to allow a new file to be created, is
achieved in different ways, depending on the type of file i.e. disk file, (cataloged or
uncataloged), or tape file (cataroged or uncataloged) as follows.

No particular action is required to reassign the tape.

A cataloged tape file must be deallocated using SDEALLOC.

The space is released by means of a SDEALLOC (or SHDEALLOC for HFAS files).
The volume preparation utility program (VOLPREP) makes it possible to release
the space of all files on a volume.

The space is released as for uncataloged files but the file name and description will
remain in the appropriate catalog until it is systematically deleted by use of UNCAT
statement (see Catalog Management).

NOTE : The above methods, where appropriate, are subject to expiration date checks.

The deallocation of space can only be achieved prior to an expiration date by a
BYPASS parameter in the following manners

BYPASS in VOLPREP, HVOLPREP in addition to operator consent for disk files.

DEALLOC and HDEALLOC

VOLSCRAT for UFAS or BFAS tapes.

In the case of cataloged files which are preallocated and not known by the
catalog (when a system crash occurs for instance), the SDEALLOC statement
must have the FORCE parameter and DEVCLASS, MEDIA information.

The SDEFINE statement allows the user to supply information on a file this
information can override program supplied information and/or supply information
that is otherwise not available. It may not be available either because the file label
does not contain it (for example, the label does not exist), or because the program
does not contain it (for example, the language does not allow this information to

AO 11

GCOS Level 64 Override Rules

be given).

SDEFINE is always associated with a11 internal-file-name, and if the same file is
assigned to different internal-file-namt~s. there may be a SD E FINE for each
assignment.

The information provided by SDEFINE sets up the file characteristics when the
file is opened. This information overrides any file-description in the program, and
contentsof the file label will override the SDEFINE information. The exception to
this is when an non-nativetape file is ndicated (FILEFORM=NSTD), when any file
labels are ignored. The GCOS Level 6'~ override rules are described in this section.

The following information can appea1 in SDEFINE :

block size and record size

recording format

file format

number of buffers and number of lllocks per buffer

the inclusion or omission of block sequence numbers

the occurrence or not of read afte! write check

the residency of the index for Indexed Sequential files

key position and size

control interval and control area size (UFAS only)

control interval and control area free space (UFAS only)

the frequency with which checkpoints are taken

unit recorddevice control options

file journalisation can be requesteci

For HFAS files:

tape format (H200 form)

EBCDIC code conversion/non-conversion

date code

filler character

flag character

For non-native tape files :

- the function mask to control proct~ssing of the tape

When specified, and if SDEFINE does not indicate a non-native tape file, the file
label provides, refer also to fif:)ure 3<-1 :

- file configuration

record length

block size

for UFAS and BFAS tape files, the specification or omission of block sequence
numbers

size and location of the key

3-17

AO 11

FILE LABEL

OVERRIDES

CATALOG

JCL (SASSIGN,
SDEFINE •.•)

FILE DEFINITION
IN THE USER

PROGRAM

Figure 3-2. GCOS OVERRIDING RULES

3-18

AO 11

whether deleted records are to be allowed or not

Cl and CA size and available space (U FAS)

whether the file is catalogued or not

$ASSIGN provides :

the external file name

the label type

the name of the volumes and the type of device on which the file resides

the level of sharing and access allowed to the file

whether the file is temporary, permanent uncatalogued or permanent catalogued

whether the file is multivolume

The file definition in the program provides the other features, namely :

access mode

number of buffers

move or locate mode

code set used for data storage

all label information when the label is not present

The file label is considered to be missing for :

tapes without labels (LABEL= NONE)

files which have to be generated

GENERATION GROUP CREATION ACCESS, AND DELET:ON

A generation-group is a set of cataloged files that are chronologically or functionally
related. Each member of the group is called a generation. Level 64 GCOS supports
update generations, which are different versions of a master file. Update generations
can be processed in a «closed loop» way, that is, when the newest generation is
assigned, the media and the file space of the oldest generation are used for creating
the newest generation.

All the generations in the group are referred to by a common name, but each
generation has a specific suffix joined to the common name. This suffix uniquely
defines the generation. The suffix may be :

an absolute generation number (e.g. *G0024)

a relative generation number (e.g. *G + 00)

a symbolic generation name (e.g. *G_MARCH)

The file label only contains the absolute generation number, which may be between
1 and 9999, and will be incremented by 1 each time a generation is created. When
generation 9999 is reached, the cycle continues with 1. Conversion from relative
to absolute is performed automatically by the system.

3-19

AO 11

3-20

The symbolic generation name is a name given by the user to an absolute generation
number, and enables you to keep track of the contents of a file. For exarriple,
DEPT1. INVENTORY*G_MARCH could refer to the.state of an inventory file in
March. If the absolute number of tha1 generation was *G0456, the file label would
contain this absolute number, and thE catalog entry would contain the symbolic
generation name.

The relative generation number identifies the position of a specific generation within
the generation group, relative to the current generation. Thus,

*G + 00 refers to the current generation

*G-01 refers to the generation preceding the current one

e.t.c

A reference to generation *G+ 01 indicates that a new generation is to be created,
and the generation group is to be rotated (see SSH I FT, later in this section). After
the shift of the generation group, the new generation will become the current one.

NOTE : Reference to *G+ 02, *G+ 03, etc. is not allowed, and a generation group
may only contain a maximum of 32 generations.

When a relative generation number is given, the catalog finds the absolute (and the
symbolic generation name if present) of the generation, according to the position
of the current generation.

A generation group can be represented as follows :

GENERATION
NUMBER 324

DEPT1. INVENTORY

GENERATION
NUMBER 325

Figure 3-3. A file with Three Generations

The catalog description for each generation contains :

GENERATION
NUMBER 326

The generation name (the absolute generation number and, possibly, the symbolic
generation name).

The volume list on which the generation exists.

Security lock information

Statistical information, including the date of preallocation, the current size of
the file with its unit of allocation, and the date of last updating.

At generation group level, the catalog maintains a description which consists of:

Sharing information; the maximum sharing allowed for all the generations.

The number of generations (NBGEN).

The increment size and unit of incrementation to be used for all generations.

The abort conditions applicable to all generations.

The retention period as a number of days. This information is to be used when
you want to give an expiry date to the generations. This expiry date is automa­
tically stored away at each cycling of generations by applying the formula :

A_Q 11

Generation Group Creation

expiration-date= date-of-the-day +retention-period

This mechanism may be bypassed by specifying an expiration date in the $ASSIGN
statement; note that if this is done, the JCL required to perform the update will
have to be changed periodically, and thus one of the advantages of using file
generations is lost.

- The bypass expiration-date switch. This switch is used as follows:

when set, the creation of the newest generation on the media of the oldest will
not check the expiration date; the oldest generation will be erased whether it has
expired or not.

when reset, the expiration date of the oldest generation will be checked before
creation of the newest generation. If it is not expired, the open will abort with
the return code NOTOBS.

Statistical information such as the date of cataloging or the date of the last
modification to the catalog description.

The following sub-sections deal with creation of generation groups, how generations
are accessed, and how generations are deleted.

Suppose that we want to create a generation group of three generations called
DEPT1. INVENTORY on disk. The JCL that must be used is:

(1) CATALOG DEPT1, TYPE= DIR;

(2) CATALOG DEPT1. INVENTORY, NBGEN = 3;

(3) PREALLOC DEPT1. INVENTORY *G1, FILESTAT =CAT

,GLOBAL= (MEDIA =C161,SIZE =1), ... ;

(4) t-'REALLOC DEPT1. INVENTORY *G2,FILESTAT =CAT,

GLOBAL= (MEDIA= C162, SIZE= 1) ... ;

(5) PREALLOC DEPT1. INVENTORY*G3, FILESTAT =CAT,

GLOBAL= (MEDIA =C163, SIZE= 1) ... ;

(6) CATLIST FROM= DEPT1;

In this example, statement (1) creates the master directory DEPT1. The generation
group DEPT1. INVENTORY is created with three generations by step (2). The
generation group description is filled with the information supplied by $CATALOG,
that is:

number of generations= 3

maximum sharing applicable to generations= NORMAL

no increment size

no abort conditions

no retention period

Statement (3) creates generation G0001 with the following attributes :

absolute generation number is 0001

there is no symbolic name

the size is one cylinder

3-21

AO 11

3-22

- the media for the generation is C161

Statement (4) creates generation G0002 with an identical description to G0001
except for the media, which is C162, and statement (5) creates generation G0003
identically on media C163. Statement (6) gives a list of the tree-structure from the
master directory DEPT1. The above process can be represented symbolically as
follows:

AFTER STATEMENTS (1) and (2)

T
ABSOLUTE 0000 0000 0000
GENERATION
NUMBER

RELATIVE
GENERATION
NUMBER

MEDIA LIST

AFTER STATEMENT (3)

ABSOLUTE
GENERATION 0001 0000 0000
NUMBER

RELATIVE
GENERATION 0
NUMBER

MEDIA LIST C161

AFTER STATEMENT (4)

ABSOLUTE
GENERATION 0002 0001 0000
NUMBER

RELATIVE
GENERATION 0 -1
NUMBER

MEDIA LIST C162 C161

AFTER STATEMENT (5)

ABSOLUTE
GENERATION 0003 0002 0001
NUMBER
~

RELATIVE
GENERATION 0 -1 -2
NUMBER

MEDIA LIST C163 C162 C161

NOTES:

1) The preallocation of the generation must be done as specified in the example.
Generation 2 cannot be preallocated before generation 1. Symbolic generation
names may be given at preallocation time, but if relative generation numbers
are used, the *G + 01 must be used.

2) If a SPREALLOC of generation *G4 is issued, an abort will occur, as the
newest generation always uses the space of the oldest one which already
exists.

3) It is not necessary to allocate space for all three generations at once. The space
for the first one may be allocated, the generation may be processed and then
the space for the following ones may be allocated.

4) The JCL is the same if the generations are on tape files, except for the device
class and media.

5) Instead of SPREALLOC, you may use SREPLACE, but in this case, tape
files will be duplicated, as the name of an uncataloged tape file is different
to a generation name. The example might become:

SREPLACE INFILE =(DATA, FILESTAT =UNCAT,MOUNT =1,

MED IA=(1894, 1895), D EVC LASS= MT /T9/D1600),

OUTFILE = (DEPTl. INVENTORY*Gl, FILESTAT =CAT,

MOUNT=1, DEVCLASS=MT/T9/D1600,

MEDIA= (1896,1897));

Note that as for $PREALLOC, a S REPLACE on generation *G4 will cause
an abort.

6) The first generation must be *G 1, but the number can be changed later using
the S MODIFY statement.

7) To make the JCL easier, generation numbers such as *G0001 can be shortened
to *G 1 (leading zeroes can be suppressed).

8) A generation group may be created on a private catalog or the site catalog.
Figure 3-4 shows the effect of creating o three generation group on the site
catalog.

3-23

AO 11

Creating the next Generation

3-24

SITE.CATALOG

~ ~ 0
Volume containing volume containing Volume containing

G0003 G0002 G0001

Figure 3-4. The SITE.CATALOG After Three Generations Have Been Created

The position in the generation group created in the previous example after a
S~SSIGN of DEPT1. INVENTORY *G4 is:

Absolute Generation
Number 0004 0003 0002 0001

Relative Generation
Number + 1 0 -1 -2

Media list C161 C163 C162 C161

After a successful OPEN in output mode, generation *G1 is not accessible, as it is
over written with generation *G4 file label. The current generation is st.II *G3.
The act of shifting generations is entirely the responsibility of the user, that is.the
user must:

1) deeide when *G4 is to be considered as valid

2) modify the correspondance between relative and absolute generation numbers.

ln other words, the user determines when *G4, *G3, *G2 become equivalent to
*G+ 00, *G-01, *G-02. The system will never perform any automatic shifting, and
you must use the extended JCL statement SSH I FT (described later in this section)
for this purpose. Shifting time may be decided arbitrarily or according to instructions
given by the project manager.

Note that concurrent access to *G 1 cind *G4 is no1 allowed. Wh'm two jobs try to
concurrently assign these two generations, enqueuing will be performed by the
system. After dequeuing, the dequeued job cannot reference G1 if *G4 has been

created in the mean time. If *G4 has not been created (for example, the step with
SASSIGN *G+ 01 has aborted), then *G1 is still accessible.

If *G 1 and *G4 are assigned within the same step, or if *G 1 is passed by a preceding
step and *G4 is assigned in the following step, an abort will occur with the following
message appearing in the JOR :

DS09 efn OLDEST AND NEWEST GENERATIONS MAY NOT BE ASSIGNED
CONCURRENTLY

For example, these two jobs will abort :

SJOB USER= JONES, PROJECT= PR1;

STEP UPDATE, .•. ;

ASSIGN ifn1, DEPT1. INVENTORY*G1;

ASSIGN ifn2, DEPT1. INVENTORY*G4;

ENDSTEP;

SENDJOB;

SJOB USER=HUGHES,PROJECT=PR2;

STEP .•. ;

ASSIGN ifn1, DEPT1. INVENTORY*G1, END=PASS;

ENDSTEP;

STEP UPDATE, ..• ;

ASSIGN ifn1, DEPT1. INVENTORY *G4;

ENDSTEP;

SENDJOB;

The next example shows how SSHIFT may be used:

(1) SJOB UPDATE, USER= BOB ,PROJECT= DEPT1;

(2) DEALLOC .INVENTORY*G-2;

(3) PREALLOC .INVENTORY*G-2, FILESTAT=CAT,DEVCLASS=MS/M400,

GLOBAL= (MEDIA =NEWVOL, SIZE= 2), .•• ;

(4) STEP ••.. ;

(5) ASSIGN ifn1, INVENTORY [*G + Ol;

(6) ASSIGN ifn2, .INVENTORY I *G+ 0 I;

(7) ENDSTEP ;

3-25

AQ 11

3-26

(8) STEP ... ;

(9) ASSIGN ifn, .INVENTORY *G + 1;

(10) ENDSTEP;

(11) SHIFT INVENTORY;

(12) SENDJOB;

All the information contained between [) is optional.

This job first reallocates the space for the oldest generation, *G-2, on a volume
called NEWVOL. This is done by steps (1) and (2).

NOTE : These steps are not mandatory.

In step (4), the current generation, *G+ 0, is used to create the newest generation,
*G + 01, according to statements (5) and (6).

Step (8) inspects the newly created generation.

Note the uniformity of naming in statements (5) and (9) and note that the JCL
in statement (5) can be applied to any generation.

Step (11) shifts the generations to make the new generation the current one.

The oldest generation is not available for access.

If a symbolic namewas required for the new generation, the SASSIGN statement
(5) could have been ASSIGN .INVENTORY *G_DEC, where DEC is a symbolic
name that is unknown to the catalog. At OPEN time, the labels will be modified to
cc;mtain the new generation. For tape files, the new file label is written dynamically
on the volumes as they are accessed. For disk files, the labels will normally be
changed at OPEN time if all the volumes are mounted.

When the newest generation is created, the OPEN must be performed in OUTPUT
mode, otherwise an abnormal return code, EFNUNKN, will be issued. The OPEN
will only be successful if the expiry date of *G-2 is over, or if the «ignore expiry
date» option is used.

The state of the generation group before and after the example job can be shown
pictorially as follows :

BEFORE SASSIGN DEPT1. INVENTORY *G+ 1

Absolute generation number 0003 0002 0001

Relative generation number 0 ·- 1 -2
1----·- ··--f---

Media list C163 C162 C161

AO 11

PREFIXING

Automatic Prefixing

AFTER $SHIFT

Absolute generation
number 0004 0003 0002

Relative generation
I I I

I
number 0 -1 -2

Media list C161 C163 C162

NOTE : Relative generation numbers must be used with some caution. Because
Level 64 has a multiprog_ramming environment, a concurrently running job might
create a new generation, which will then cause a wrong retrievat Consider the
following example :

JOB 1 JOB 2

STEP .•. ; STEP ... ;

ASSIGN ifn1, .INVENTORY*G-01; ASSIGN ifn2, .INVENTORY*G+01;

ENDSTEP; ENDSTEP;

If JOB 2 causes a generation shift before JOB 1, the latter will retrieve a wrong file.
For that reason, some degree of control must be maintained over the execution of
job steps referring to generation with relative generation numbers. File Management
cannot ensure such a synchronization. The only thing that can be done to avoid this
position is to either «security lock» the *G + 01 or to synchronize the scheduling of
the two jobs.

To reduce the amount of writing required in JCL statements, external-file-names
can be shortened by taking advantage of prefixing. This can be done in two ways,
described below.

If the files associated with a project are all given external-file-names that start with
the project name, the first component name of the files can be omitted. This requires
that the master directory for these files has the same name as the project. When this
is done, the external-file-name starts with the concatenation character (.),and the
system automatically supplies the first component name. For example, if a job is
running under the project DEPTl, and the master directory for all files associated
with this project is DEPTl, the file DEPTl. SECT2. INVENTORY could be
accessed by the name .SECT2 .INVENTORY, with the system automatically
providing the name DEPTl. The previous example of SSH I FT shows the use of
automatic prefixing.

Automatic prefixing only allows you to omit the first component name of the
external-file-name. The second method of prefixing, described below, allows you to
omit as many component names as you want to.

3-27

AQ 11

Prefixing Using the SPREFIX statement

The SSHIFT Utility

Deletion of a Generation Group

3-28

The SPREFIX statement (described in the JCL Reference Manual) allows you to
define a prefix for all files. Each SPREFIX statement is valid until it is overridden
by another SPREFIX statement. For example, if within a job there was frequent
reference to files whose first two component names were DPET1 and SECT2,
(DEPT1. SECT2. INVENTORY, DEPT1. SECT2. SALES, and DEPT1. SECT2.
SALES, and DEPT1. SECT2.PAYROLL, for example), the first two component
names can be omitted from references to the files ifthe statement

SPREFIX DEPT1. SECT2;

occurs before the references to the files.

When accessing the files, the only names that be given are .INVENTORY, SALES,
and .PAYROLL, as the system will automatically supply the defined prefix.

NOTE : The prefix must always be taken into account when calculating file name
lengths.

The SSHIFT statement is used to make the latest generation of a cataloged file the
ccurrent» generation and thus to discard the oldest generation.
This utility will shift a generation group when the file is valid, that is, when :

- the newest generation contains a valid media list ;

the newest generation name created in the catalog is identical to the one which
is stored in the file label.

When the FORCE parameter is given, the consistency of the catalog information
and the file label will not be c~ecked before generation shifting, so no media
mountin will be requested. After a generation shift, the oldest generation will be
erased from the catalog.

Examples:

1. SHIFT DEPT1. DATABASE;

The generation group DEPT1. DATA BASSE is to be shifted if it satisfies the conditions
stated above.

2. SHIFT DEPT1. PAYROLL, FORCE;

The generation group DEPT1. PAYROLL is to be shifted without any checks on
catalog and file label information consistency.

If you want to delete the generation group created in the previous examples, the
JCL would be :

(1) DEALLOC INFILE = DEPT1.INVENTORY*G+ 00;

(2) DEALLOC INFILE = DEPT1.INVENTORY*G-01;

(3) DEALLOC INFILE = DEPT1.INVENTORY*G-02;

(4) UNCAT DEPT1. INVENTORY, TYPE= FILE;

Statements (1), (2) and (3) will delete the filespace occupied by the different

generations in the group, and statement (4) deletes the generation group name an-'

entry from the catalog.

AO 11

NOTES:

1) The deallocation may be performed in any order, but must be performed before
the uncataloging.

2) Deallocation of generation *G + 01 is forbidden, so if this generation exists, a
SSH I FT must be given before it can be deallocated. If it does exist, statement
(3) will abort because the external-file-name of the generation is not found on
the specified media.

3) The uncataioging (4) is not necessary if the user wants to create another
generation group with the same characteristics.

4) If the expiration date of the generations is not passed, the BYPASS keyword
of $DEALLOC must be used.

3-29

AO 11

introduction

MEMORY MANAGEMENT

4· Resource management

GCOS provides the user with JCL facilities which enable the overall system
throughput to be optimized by improving the use of resources, such as memory,
files and devices. This section discusses the way in which the user can influence
the allocation of resources within a step enclosure and from job step to job step.

It may be useful to consider briefly the normal action taken by GCOS immediately
before and during step execution.

Before a job step is initiated, the system refers to the user's JCL statements to
establish the nature and extent of resources required, and attempts to reserve them.
If all the necessary resources are available, they are allocated to the job for the
duration of the job step. If one or more resources are not available, the step is kept
waiting until they are released by a step of another job. Once all of the required
resources have been allocated to the step, its load module is loaded and control is
given to the first instruction.

When the step terminates, allocated resources are freed and the JCL processing
continues with the next statement of the job description (i.e. the statement that
follows the S ENDSTEP). Note that the multiprogramming slot occupied by a job is
not released between steps, ans not released if the job is held or suspended
(see Section I).

The virtual memory concept implemented in GCOS 64, frees the user from problems
associated with program structure (e.g. segmentation, transaction sequences), since the
user appears to have one large memory for his exclusive use. In a multiprogramming
environment' memory overload situations can occur when several jobs compete for
memory resources. Memory overload causes a general degradation in overall job
throughput due to increase in the number of segment transfers between backing store
and main memory (see System Management Guide).

Information is made available in the Job Occurrence Report (JOR) from which the user
can make a quantitative assessment of the overall processing efficiency of a given
job step with respect to memory usage. This information is the SYS MISSING
SEGMENT number and PROG MISSING SEGT number (see Section VII, Job
Occurrence Report).

The MISSING SEGMENT number indicates the number of sy~tem segment and user
program segments transfers that occurred in a given step. If the non-resident segments
of a program are confined to a small amount of memory, as would occur in a
multiprogramming overload situation, then the number of swapping operations would
eventually seriously degrade the system throughput. The.user, by means of the SSIZE
parameter, with the MAXMEM option, see overleaf, is able to vary the amount of
memory available to a step. A curve of the sort shown in Fig. 4-1 is generated. There
exists on the curve a point such that an increase in the amount of memory available
to the step does not give a big decrease in the number of missing segments; .but a
decrease in the amount of (memory available produces a sharp !ncrease in the

4-1

AO 11

SSIZE Parameter

4-2

number of missing segments. This value corresponds to the declared. working-set
value stated in S SIZE.

The user is able to state a given memory size that must be available to a job step
before step execution can begin.

If the system can fulfill the stated memory value, as well as other. system resources
(e.g. devices, media), then step execution can b.e initiated. If the available memory
is inadequate, the step is «WAITING FOR RESOURCES» as it would be for any
other system resources.

The SSIZE parameter within a step enclosure enables the user to state the memory
requirements of a job step.

The SSIZE parameter is used to specify a declared-working-set (OWS) value for a
job step. The DWS value is the total amount of memory resident, (process control
structures, buffers), and non-resident (i.e. code and data segments), required for a
program to execute in the most efficient manner in a given processing environment.
For example·:

STEP S03, LM.ET ;

SIZE 40;

ASSIGN•...... ;

ENOSTEP.;

In this example the declared-working-set value, 40(1K bytes) of main memory must
be available before step execution can be initiated. The sum total of the DWS
values (35K by default) for job steps currently executing must be less than the
physical memory size.

A011

Estimation and tuning of DWS value

MAXMEM and MINMEM

NUMBER

OF

MISSING

SEGMENT

I
I
I

1---1--
1

T
I
I
I

I

+­
I
I
I

A

B

c
x

SIZE

SIZE

SIZE

- dws ~

DECLARED-WORKING-SET ---

32

36

40 (see example)

38

c

The mean working set value is the optimum value for working set and is used in SSIZE
as declared-working-set.

Figure 4-1. Example of missing segment number plotted against declared-working-set

Information appears in the linker listing and JOR which enables an initial estimate to be
made of the DWS value.

The linker listing gives the sizes of process control structures, user code and data seg­
ments, and run-time package segments (refer to COBOL User Guide).

The JOR gives the number of buffers used, channel program page size and the number
of missing segments.

For further information refer to the System Management Guide.

The MAXMEM parameter of $STEP can be used when tuning the DWS value ; its use
should be discontinued when the optimal size has been obtained.

The MAXMEM facility ensures that

the amount of memory allocated is never more 1 than the DWS value specified in
SSIZE

the system does not attempt to execute the step if the amount of physical memory
available is not greater than or equal to the DWS value, even if the step could be
run on less, i.e. the step does not benefit from the gradual release of memory
resources as the system load decreases.

4-3

A011

Use of MINMEM

FILE PASSING

4-4

The optimum value for DWS can be obtained simply by declaring the initial estimate
in SSIZE and using MAXMEM :

STEP OPTMEM, LO.ABC, MAXMEM ;

SIZE 40;

ASSIGN ;

ENDSTEP;

In this example the step OPTMEM executes with 40K bytes of memory reserved to it.
The JOR missing segment value should be noted.

If the figure is large, the DWS value should be increased and the associated missing
segment figure noted_. In this manner a curve can be generated (see Fig. 4-1) and the
optimum value (mean working set) estimated.

WARNING : The use of MAXMEM can degrade overall system performance.

The MINMEM parameter of SSTEP is used in conjunction with SSIZE and applies only
to communications applications ; it guarantees, for the duration of the current step,
memory resources equal to the DWS value, irrespective of the current system load. Use
of MINMEM helps to ensure that a reasonable response time can be obtained even when
the system load is high. Note that MINMEM should be used with discretion since it
reserves memory for the step whether or not the step requires it.

Generally all resources are allocated at the beginning of each step and released at the
end of the step. With respect to files, this situation may lead to problems when succes·
sive steps are planned to work on the same file. Between the end of one step and the
beginning of the next, another step in a concurrent job could gain access to this file and
modify it, jeopardizing the work performed by the first job. If the file in question is a
temporary disk file, it would be deallocated at the end of the first step and the subse·
quent step would not be able to work on it at all.

Files may be passed from one job step to a later one in order to overcome these pro·
blems. It is managed using the END and ABEND parameters (with value PASS) in a
SASSIGN statement. END specifies file passing for normal termination of load module
execution, ABEND for abnormal termination.-

Consider first of all a situation where file passing is not used :

STEP ST01, ABC.LD1 ;

ASSIGN FILE1, ABC.SCA, TEMPRY;

ASSIGN FILE2, ABC.PR, DEVCLASS=MS/M300,

MEDIA= (DX143, DX127) ;

ENDSTEP;

A011

STEP ST02, ABC.LD1;

ASSIGN JACK, ABC.SCA, TEMPRY;

ASSIGN JILL, ABC.FR, DEVCLASS=MS/M300,

MEDIA= (0X143, DX127) ;

ENDSTEP;

In a multiprogramming environment there is always the danger of the permanent file
ABC.PR being used by another job between the execution of program ST01 and ST02.
In addition, the temporary file ABC.SCA in the first step has no particular relationship
with the file of the same name in the second step.

Consider the following modification of the above example :

STEP ST01, ABC.LD1 ;

ASSIGN FILE1, ABC.SCA, TEMPRY, END=PASS;

ASSIGN FILE2, ABC.PR, DEVCLASS=MS/M300,

MEDIA= (DX143, DX127), END=PASS;

ENDSTEP;

STEP ST02, ABC.LD1 ;

ASSIGN JACK, ABC.SCA, TEMPRY;

ASSIGN JILL, ABC.PR;

ENDSTEP;

In the modified example, the user has passed both files from ST01 to ST02. Note that
in subsequent assignments of a passed permanent file it is not necessary to supply device
and volume attributes. Note also that for a passed temporary file, the allocation of
space is performed only in the job step within which the file is first assigned (in the above
example a default size of 1 cylinder is allocated when the file is first opened in step
ST01). The file is not deallocated between steps and so it can be used to pass information
from one step to the next. However, the temporary file in the above example will be
deallocated at the end of step ST02 as END= PASS has not been specified for the file
in that step.

The following general points apply to the passing of files :

- Access to a passed file is reserved to the job, subject to the declared file sharing
constraints applying to the file (see File Sharing in this Section), from job step to job
step until END=DEASSIGN (or END=UNLOAD) is specified or assumed by default.

4-5

AQ11

4-6

Access to a volume which contains 3 passed file is not normally reserved. Therefore
another job could acquire access to the same volume to use a different file (or to
share the same file· .see «File Sharing»).

A file may be passed across job steps which do not refer to the file at all. In these
cases, the resources are reserved throughout the job until a SASSIGN statement that
refers to the file is encountered (see the example job TRY below).

The following specific observations apply to temporary files, including temporary
WORK files, which are passed:

The file space and access to a temporary file are reserved while it is being passed,
subject to file sharing rules. File passing is therefore the means of ensuring that tem­
porary information produced or used in one job step can be accessed in a later step.

A device used by a job for accessing a temporary file is not necessarily reserved
during file passing, so the volume may have to be remounted when the file is assigned
again.

For permanent tape files passed, the device used is kept reserved to the job. This ensures
that no unnecessary mounting and dismounting of devices is performed. By being aware
of which files are to be used again, the system can give better guidance to the operator.

Example:

s.JOB TRY, ... ;

STEP LM1, ... ;

ASSIGN MAN1, SUNDAY.REP,

ENDSTEP;

STEP LM2, ... ;

ENDSTEP;

STEP LM3, ... ;

DEVCLASS = MT/T7, MEDIA= CH215,

END= PASS;

ASSIGN MAJ, SUNDAY.REP;

ENDSTEP;

SENDJOB;

Suppose the processing program in step LM1 contains the following COBOL statements:

SELECT MAN.

ASSIGN TO MAN1.

OPEN MAN.

CLOSE MAN.

OPEN MAN.

CLOSE MAN WITH LOCK.

A011

Deadlock Situation

and that step LM3 contains :

SELECT AGT

ASSIGN TO MAJ

OPEN AGT

CLOSE AGT

If the execution of LM1 terminates normally, the file SUNDAY.REP will be passed on
to LM3 without interference from the execution of LM2. No other job will have access
to SUNDAY.REP and LM3 is guaranteed access to it (although possibly on another
tape drive if in the meantime the drive flas been assigned 10 another job step).

If the execution of LM1 aborts, SUNDAY.REP will not be passed (because ABEND=
PASS has not been specified for this file assignment in LM1) even if by use of the
SJUMP statement (see Section VI) the job itself is not aborted. Note that in these cir­
cumstances the CLOSE ... WITH LOCK in LM1 prevents any further opening of the
file during the execution of this load module but does not prevent the file from being
passed.

When files are being passed in a multiprogramming environment, care must be taken to
avoid a deadlock situation. This can occur when two programs are waiting on each
other to release files. An example of this situation is illustrated in Figure 4-2.

JOB STREAM A JOB STREAM B

STEP LM5, VY.MA; STEP LM3, VY.MB;

ASSIGN 11, M.1,END=PASS .. ; ASSIGN J1, M.J,END=PASS .. ;

ENDSTEP; ENDSTEP;

STEP LM6, VY.MA; STEP LM4, VY.MB;

ASSIGN 12,M.I ... ; ASSIGN J2, M.J ... ;

ASSIGN 12J, M.J ... ; ASSIGN J21, M.I. ... ;

ENDSTEP; ENDSTEP;

;

Figure 4-2. File Passing with Deadlock

4-7

A011

In the above example, step LM5 in multiprogramming stream A and step LM3 in
stream B can run in parallel. However, step LM6, which cownn files M.I., cannot start
execution until it can access file M.J, but will not release M.I (to step LM4) until it has
oompleted execution. Correspondingly, step LM4 cannot start execution until step
LM6 has released M.I. Thus each stream is waiting on the other. The only way to
resolve this situation is for the operator to terminate one of the two jobs.

FILE SHARING There are many situations where it is desirable to allow access to one particular physi­
cal file (as specified by its external file name) by several jobs runnir'J concurrently or
within the same step by means of two or more independent internal file names. On the
other hand, it is useful in most circumstances to be able to control the simultaneous
access to a file in order to prevent, for example, two jobs from modifying a file at the
same time.

4-8

s.JOB R1

Access and sharing policy can be controlled in GCOS using the SHARE and ACCESS
parameters of SASSIGN statement, in the case of uncataloged and temporary files.
For cataloged files the SHARE parameter of SCATALOG is used to set sharing infor­
mation and is held permanently in the catalog (see Catalog Management), only the
ACCESS parameter of SASSIGN must be used. Figure 4-3 illustrates the simultaneous
access of the same file by two concurrent jobs.

Multiple assignment of a single external file name to different internal file names is
shown in Fig. 4-4.

s.JOB R2

STEP ; STEP ;

COMMENT'REOUEST READ ACCESS TO MJ.OMN ASSIGN COMM, HJ.OMN, DEVCLASS=MS/M300,

AN UNCATALOGED FILE, ALLOWING MEDIA::: (DX143, DX127),

OTHERS READ ACCESS ONLY'; ACCESS:.- READ,

ASSIGN COMP, HJ.OMN, DEVCLASS=MS/M300, SHARE = NORMAL ... ;

MEDIA= (DX143, DX127), ENDSTEP;

ACCESS= READ,

SHARE = NORMAL ... ; SENDJOB;

ENDSTEP;

SENDJOBi

Figure 4-3. lnterjob File Sharing

AQ11

SJOB UNIV, ... ~

STEP

COMM

ASSIGN

ASSIGN

ASSIGN

ENDSTEP;

SENDJOB;

MULTR, ••• ;

'THREE REQUESTS FOR READ ACCESS TO CENT.REF ALLOWING

READ ACCESS (ONLY) TO OTHERS';

INC1, CENT.REF, ACCESS=READ;

INC2, CENT.REF, ACCESS=READ;

INC3, CENT.REF, ACCESS=READ;

SJOB POLY ;

STEP MANA, ;

COMMENT 'CATALOG CONTAINS SHARE=NORMAL IN FILE DESCRIPTORS, ONLY ACCESS IS

THEREFORE STARTED';

ASSIGN

ASSIGN

ASSIGN

ENDSTEP;

SENDJOB;

IST1, CENT.REF, ACCESS=READ;

IST2, CENT.REF, ACCE~S=READ;

IST3, CENT.REF, ACCESS=READ;

Figure 4-4. File Sharing within a Job Step for Catal1?9ed Files

4-9

AQ11

4-10

When share and access requests are made on a file, the system will decide whether or
not to grant the request, depending on the type of sharing currently active on the file.
If the requested access is given, the system updates the current sharing mode accord­

ingly (in preparation for further requests). If an inter-job file sharing request cannot be
granted, the requesting job will be queued to wait until the request can be satisfied
(when an appropriate job, or jobs, releases the file). If an access request from the step
already using the file is unable to be granted, the job is aborted.

The ACCESS parameter can have one of four values, WRITE, READ, SPWRITE,
SPREAD. Of the possible SHARE values, the ones recommended for standard use are
NORMAL and ONEWRITE. Figure 4-5 shows the possible combinations of the
SHARE and ACCESS parameter values and their corresronding meanings in terms of
type of sharinq requested. Note that SHARE can have the value FREE, but its use is
not normally recommended since the system has no control over the access of files
when FREE is specified. If SHARE and ACCESS are not specified, the step has exclu·
sive use (read or write) of the file, via a single internal file name.

Keyword Values
Type of Sharing Requested

ACCESS= SHARE=

WRITE NORMAL Exclusive Use (default)

SPWRITE NORMAL Exclusive Use

READ NORMAL Read while any job reads

SPREAD NORMAL Read while same step reads

READ ONEWRITE Read while any job reads and one job writes

SPREAD ONEWRITE Read while same step reads and writes

WRITE ONEWRITE Write while any job reads

SPWRITE ONEWRITE Write while same step reads

Figure 4-5. File Sharing Requests

I

A011 ___________________ _

ACCESS=

WRITE

SHARE= NORMAL

OR (EXCLUJIVE}

ACCESS=

READ

ACCESS=

READ

ACCESS=

READ

ACCESS=

WRITE

Figure 4-6. Shared Access to File

SHARE= ONEWR ITE

ACCESS=

READ
,...,,,..~·-

/
/

ACCESS=
_........- READ

ACCESS=

READ

Figure 4-6 illustrates the rules that the system follows when it tests if access can be
granted or not. It shows, for example, that a file assigned with values ACCESS=WR ITE,
SHARE=ONEWRITE may be shared with other jobs that specify ACCESS=READ,
SHARE=ONEWRITE but not with any jobs that specify SHARE=NORMAL nor with
another job that specifies ACCESS=WRITE, SHARE=ONEWRITE; if, however, in
this situation the original job (ACCESS=WRITE, SHARE=ONEWRITE) releases the
file, any job with ACCESS= READ irrespective value of SHARE can· access the file.

Note that the rules of ACCESS=SPREAD, ACCESS=SPWRITE correspond to those
for ACCESS=READ and ACCESS=WRITE respectively expect that other accesses to
the file are restricted to the same step (i.e. multiple assignments).

Figure 4-7. illustrates the effect of multiple assignments within a step.

4-11

AQ11

[SELECT FILE1 ASSIGN TO F1]

ASSIGN F1,XF.S,
SHARE= ONEWRITE,
ACCESS= WRITE ;

ASSIGN F2,XF.S,
SHARE= ONEWRITE,
ACCESS= READ ... ;

ASSIGN F3,XF.S,
SHARE= NORMAL,
ACCESS= READ ... ;

ASSIGN F4,XF.S,
SHARE= ONEWRITE,
ACCESS= READ ... ;

[CLOSE FILE1 WITH LOCK]

SASSIGN F5,XF.S,
SHARE= ONEWRITE,
ACCESS = WRITE ... ;

4-12

F1 F2 [F3 _J
Queued

F2

F1

F4

[F3 :J
Queued

.. I

Figure 4-7. File Sharing Example

Notes:

- Sharing is possible on disk files only. A tape user always has exclusive read access or
exclusive write access.

- If space is being allocated for a file within a step (SALLOCATE), the file can only
by accessed from within the step. In other words, the values WRITE and READ for
the ACCESS parameter are treated in this case as SPWRITE and SPREAD respect­
ively. The SALLOCATE must refer to the first SASSIGN statement in the step.

- When a file is passed (END= PASS), the sharing mode of the file remains until the
next SASSIGN for the file. This SASSIGN must declare a new (or the same) sharing
mode.

AQ11

- The system does not check that the sharing mode requested is supported by the fife·
organization. The user should make sure that the two are compatible.

- The catalog contains SHARE information. If SHARE is specified outside of the
catalog and it is different to that stored in the catalog; then the catalog sharing
information is used but the step has exclusive use of the file (equivalent to SP). If
the information is the same then no probiem arises.

- The special value RE COVE RY for the ACCESS parameter is reserved for recovery
purposes of a cata1oged file in the state ABORT= LOCKED ; the step has exclu­
sive access to such a file (see Catalog Management Manual).

In theory, the number of devices needed to run a step will be equal to the number of
different volumes which are specified in all the SASSIGN statements present in the step
description. In practice, there are two areas of application where device utilization can
be minimized. These concern the mounting of multivolume files and the situation where
different files using the same (type of) device are processed one after another rather
than simultaneously.

If nothing is specified to the contrary, GCOS will reserve a device for each volume that
is to be used in a job step. The only exception to this rule occurs for multivolume work
tapes (see below).

The most obvious case for reducing this number of devices is in the case of a multivolume
tape file. Since only one tape is actually required at any moment an assignment of the
following type can be made:

ASSIGN IF1, EF1, DEVCLASS=MT, MEDIA=(M4T1, M4T2,M4T3,M4T4),
MOUNT=1, ... ;

so that only one drive is requested instead of four, in this case, if MOUNT had not
been specified. The MOUNT parameter in the above SASSIGN statement indicates the
number of volumes to be mounted simultaneously. The use of MOUNT is obviously
essential when there are not sufficient devices available for all the volumes of a file.
Figure 4-8 illustrates the function of the MOUNT parameter.

4-13

A011

4-14,,

l]

@@
T422

.,..-1

8 _/

ASSIGN Fl, MY.TF43, MEDIA=

(T421, T422, T423, T424), MOUNT= I, ... ;

Figure 4-8. Use of MOUNT

The most useful values of MOUNT for multivolume tape files are MOUNT = 1 and
MOUNT=2.

If MOUNT= 1 is specified then only 1 tape drive will be used for the file. At the end of
each volume used, the volume will be replaced by the next volume in sequence. Although
minimizing device usage this technique does cause the program to be halted while the
operator changes volumes.

With MOUNT = 2 only 2 devices are used for the file. However in this case the operator
can mount in advance each volume and volume switching is not delayed by operator
intervention, see Figure 4-9.

AQ1i

SCOMM 'NO MOUNT PARAMETERS';
SASSIGN GLBE,REL.X,FILESTAT=UNCAT,DEVCLASS=MT/T9,

MEDIA=(MA1,MA2,MA3,MA4);

MT01 MT02 MT03 MT04

e 8 e e 4 drives used

SCOMM 'MINIMUM DEVICE USAGE';
SASSIGN GLBE,REL.X,FILESTAT=UNCAT,DEVCLASS=MT/T9,

MEDIA=(MA1,MA2,MA3,MA4),MOUNT=1;

MT01 MT01 MT01 MT01

8 8 only 1 drive used

SCOMM 'MOUNTING IN ADVANCE BY OPERATOR';
SASSIGN GLBE,REL.X,FILESTAT=UNCAT,DEVCLASS=MT/T9,

MEDIA=\ 1A1,MA2,MA3,MA4),MOUNT=2;

MT01 MT02

8

Use of D&vice Pools

MT01 MT02 MT01 MT02

8 8 8
Figure 4-9. Multivolume Device Management

The use of MOUNT applies to both permanent and temporary tape files. If MOUNT is
not supplied for a multivolume work tape file (MEDIA=WORK), GCOS operates as if
MOUNT=1 is specified.

The MOUl'~JT parameter continues to have effect when a normal tape file overflow onto
a WORK volume (see the earlier paragraphs on Tape File Extension).

The MOUNT parameter can also be applied to the use of SASSIGN for multivolume
disk files or organization BFAS sequential or HFAS sequential and indexed sequential.
MOUNT cannot be used on a file which has multiple assignments (i.e. more than one
SASSIGN in a job step, each having the same external file name but a different internal
file name). Nor is MOUNT allowed when a multivolume disk file is being allocated
(for example, in conjunction with a SAL LOCATE statement).

The MOUNT parameter may be used with a device pool (see below). If a $ASSIGN
statement specifies POOL, FIRST then the number of devices indicated by MOUNT
will be required at assign time. If POOL, NEXT is indicated, the specified number of
devices will be required only at open time.

Normally the access to a particular device is granted exclusively to a file for the dura­
tion of a job step. Suppose, however, an executing COBOL program contains the
following statements :

4-15

AQ11

4-1l

. SELECT FILE1 ASSIGN TO F1.

SELECT .FILE2 ASSIGN TO F2.

OPEN INPUT FILE1.

CLOSE FILE1 WITH LOCK.

OPEN INPUT FILE2.

This means that the file FILE1 is completely processed before processing begins on file
FILE2.

In the above case it would be possible to use the same device for F1 and F2. The user
can inform GCOS that this is possible by using the SPOOL statement in conjunction
with the POOL parameter in SASSIGN:

POOL I *MS/M402 ;

ASSIGN F1, MAX.Z,DEVCLASS=MS/M402, MEDIA=VOL1, POOL, FIRST, ... ;

ASSIGN F2, BMY.I, DEVCLASS=MS/M402, MEDIA=VOL2, POOL, NEXT, .•. ;

Thus only one MSU0402 will be reserved for the use of the pooled files.
Figure 4-10. illustrates the concept of device pools.

POOL
ASSIGN
ASSIGN
ASSIGN
ASSIGN

l*MS/M400;
Fl,MS.40, MEDIA= M~1. POOL, FIRST ..• ;
F2,MS.5E, MEDIA= M0002, POOL, NEXT ... ;
F3,MS.6F. MEDIA= M0003, POOL, NEXT ... ;
F4,MS.7G, MEDIA= M0004. POOL. ·NEXT ... ;

Figure 4-10. Device Pool Usage

As shown above. a device pool C1"'n be specified by the use of a SPOOL statement
together with, SASSIGN statements (one for each file accessing the cpool1). The device
pool technique depends on the logic of the processing program. When the program has
completed the processing of a file it must signal to GCOS that the file can be deassigned,

AQ11

thus freeing the devices assigned to the file. In COBOL this is done as indicated in the
example by the inclusion of WITH LOCK in the CLOSE verb. A further example of
device pool usage follows.

Suppose a COBOL program contains the following statements:

SELECT FC1 ASS!GN TO !FN1.

SELECT FC2 ASSIGN TO IFN2.

SELECT FC2 ASSIGN TO IFN3.

OPEN FC1.

CLOSE FC1 WITH LOCK.

OPEN FC2.

CLOSE FC2 WITH LOCK •

OPEN FC3.

CLOSE FC3.

Since the files are used sequentially only one device is necessary. The job description
could be:

s.JOB ;

STEP ... ;

POOL MT/T9/01600;

ASSIGN IFN1, FIRSTFILE, DEVCLASS = MT/T9,

MEDIA= TRUC,

POOL, FIRST;

ASSIGN IFN2, SEC.FILE, DEVCLASS = MT/T9,

MEDIA= CHOSE,

.POOL, NEXT ;

ASSIGN IFN3, THIRD-FILE, DEVCLASS = MT/T9,

MEDIA= MACHIN,

POOL, NEXT;

ENDSTEP;

SENDJOB;

The mounting of volume TRUC will be requested before the load module execution is
initiated. When the OPEN FC2 is executed, volume CHOSE will be mounted and when
OPEN FC3 is executed, volume MACHIN. This job is able to run with only one device
rather than three.

J.-17

A011

4-18

In the examples so far only one device has been pooled. In general a device pool may
contain more than one device. If in the first example the disk files MAX.Z and/or
BMY. I were each on two volumes, the pool statement would be :

POOL 2*MS/M400

The device pool is constructed as follows :

The SPOOL statement defines and reserves the number of devices of a particular
device type to be placed in the pool.

The POOL parameter of the SASSIGN statement indicates that the device to be
used for the current file must be selected in the pool for that device.

- The DEVCLASS or DVIDLIST parameter specifies what type of device is to be
selected. The recomme;1ded practice is to use the SPOOL statement with the device
class parameter (DEVCLASS) so that the required number of devices is free but no
explicit declaration is made concerning which physical devices are members of the
pool.

The FIRST parameter indicates that the named volume should be mounted at
assign time. The sum of all the volumes of the files for which FIRST is specified
(for multivolume files that includes the value of MOUNT where FIRST is specified)
must not exceed the minimum number of devices specified in the SPOOL statement.

The NEXT parameter indicates that the volume mounting will be requested only
at open time. However GCOS checks at the time of assignment that the file is not
already being used, and the step will be kept waiting if the volume or the file is not
accessible.

As shown already, a device pool can be specified for disk and tape or cassette device
types. The files may be temporary or permanent. There is no restriction on the use of
MOUNT in conjunction with device pools.

Example:

STEP ... ;

POOL 2*MS/M400 ;

POOL 1*MT/T9;

ASSIGN F1, AX.BM, DEVCLASS=MS/M400, MEDIA=4D2S, POOL, FIRST, ... ;

ASSIGN F2, AX.BP, DEVCLASS=MS/M400, MEDIA=4D20, POOL, NEXT, ... ;

ASSIGN F3, AX.BT, DEVCLASS=MS/M400, MEDIA=4D2E, POOL, FIRST, ... ;

ASSIGN F4, AX.BZ, DEVCLASS=MS/M400, MEDIA=4D2P, POOL, NEXT, ... ;

ASSIGN F5, AX.CD, DEVCLASS=MS/M400, MEDIA=4D2Z, ... ;

ASSIGN F6, P4.D1, DEVCLASS=MT/T9, MEDIA=(T41, T42, T43), POOL,
FIRST, MOUNT=1, ... ;

ASSIGN F7, P4.D2, DEVCLASS=MT/T9, MEDIA=T63, POOL, NEXT, ... ;

ASSIGN FB, P4.D3, DEVCLASS=MT/T9, MEDIA=T71, ... ;

ENDSTEP;

In the above example, if POOL and MOUNT had not been used we would require
5 MSU0400 disk drives and 5 tape drives. With POOL and MOUNT we require 3 disk
drives (2 for files F 1, F2, F3, F4 : 1 for F5) and 2 tape drives (1 for F6, F7 : 1 for FS).
Note that the disk file AX.CD and the tape file P4.D3 do not access pooled devices.

A011 -·-

FILE PROTECTION

SETTING OF EXPIRATION DATES

Uncataloged Files

Notes:

- The user should ensure that the number of volumes in a pool that are simultaneously
required is always less than or equal to the number of corresponding devices in the
pool.

All SASSIGN statements for a particular device pool may specify POOL, NEXT.
This is useful in particular when the order in which the opening of the files will take
place is not necessarily known in advance.

A measure of protection must be given to files in any processing system to ensure thi3t
spurious accesses are not possible which modify or otherwise compromise the integrity
of a given file. Unrequested modifications or involuntary destruction of files due to
errors made by the user or the operator, or due to the malfunctioning of hardware or
software must be provided for.

GCOS provides this function in two main ways :

By assignment, files are protected against non-requested access, since no file can be
processed unless its name and supporting volume identification are supplied by the
user.

By a file logging method and checkpoint/restart mechanism, in which files are pro­
tected against unexpected events (refer to the section on Error Processing).

The protection afforded by the file assignment method consists of the following
mechanisms :

Expiry date, to protect a file against destruction prior to a given date.

File Sharing, to allow only authorized sharing modes of a given file/s (see File Sha·
ring).

A set of Utility Programs is provided to anticipate possible incidents .

Saving and restoring files (FILSAVE, FILREST).

Saving of files during RESTART (see Error Processing).

The EXPDATE parameter, for exampl.e, (in the SASSIGN statemen_t) provides security
against the accidental destruction of a disk or tape file. The setting of expiration dates
applies to permanent files only.

DISK FILE EXPIRATION DATES

The presence of an (unexpired) expiration date prevents a disk file from being deallo­
cated by the normal use of the utility SDEALLOC (SHDEALLOC for HFAS files).
Under normal circumstances it will also prevent the volume preparation of the volume
containing the file.

The expiry date is stored in a disk file at file allocation time (as a parameter tor to
SASSIGN in conjunction with $ALLOCATE in a step in which the file is used, or as a
parameter to SPREALLOC or SHALLOC).

4-19

AQ11

4-20

Example:

I.JOB ... ;

STEP .•. ;

ASSIGN DK1, PRIV.ACCS, EXPDATE=30,

DEVCLASS=MS/M402, MEDIA=)(XA2 ;

ALLOCATE DK1, SIZE=50, UNIT=CYL;

ENDSTEP;

SENDJOB;

The example given above allocates the file PRIV.ACCS and sets an expiration period of
30 days. Note that if, for instance, the above job was run on the 14th February 1977,
making the expiration date the 16th March 1977, the parameter specification:

EXPDATE = 77/3/16 or EXPDATE = 77/75

would have stored the same expiration date setting in the file.

The file can be deallocated on or after the 16th March 1977.

Notes:

The existence of an expiration date on a disk file does not prevent a program
which refers to the same file name from modifying the contents of the file (i.e. in
output or update processing mode); it is the file name itself (and the reservation
of file space) that is protected.

An expiration date setting on a disk file can be overridden if a $DEALLOC

(or SHDE.ALLOC) statement contains the BYPASS parameter. This also applies to
the SVOLPREP utility with BYPASS, but in this case the operator will have to give
permission.

- A disk file can be renamed using the Data Management utility SFILRENAM even if
an expiration date applies. However, after the file is renamed, the original expiry
date setting will still be present.

- For uncataloged C'.f isk, files, the EXPDATE parameter of SASSIGN only applies if
file space is allocated in the current step (with SALLOCATE).

- For cataloged files (disk and tape), the EXPDATE only has meaning when a new
generation is created.

- For uncataloged tape files the retention period of a file can be specified each time
the file is written, that is, in output mode. If no date is provided in this circum­
stance, then the current date is taken as the expiry date.

AQ11

MAINTENANCE OF STORED JCL

5· Maintenance of stored JCL

When a set of JCL statements is to be used more than once. it is convenient to store
it in a permanent disk or tape file from which it may be accessed as required. The set
of statements may be part of a job description (referred to as a JCL sequence) or it
may consist of one or more complete job descriptions (referred to as a job stream).

By means of the $RUN statement. a user can submit to the Stream Reader a stored job
stream for translation and execution ; alternatively. the user can insert a stored JCL
sequence into a current job at translation time ($INVOKE) or at execution time
($EXECUTE). Details of these statements are given in the JCL Reference Manual.

Job streams and JCL sequences can be stored in members of permanent library files ;
the user can create and maintain each library member by means of the $LIBMAINT
utility. which has its own comprehensive text editing facility. Refer to the Library
Maintenance User Guide for full details on the maintenance of library files.

In addition. the system provides a «mini» editing facility (see Appendix A) and a
parameter substitution facility (see the JCL Reference Manual). so that the user can
modify stored JCL sequences and job streams dynamically to suit the requirements
of a particular job run.

Figure 5-1 illustrates a method. using $LI BMAI NT. of storing in a library member an
input enclosure that contains a JCL sequence ; Figure 5-2 gives an example of the
corresponding job description. Figure 5-3 shows the comparison between job submis­
sion by cards and job initiation via the $RUN statement. Note that since only one job
is involved here. a $INVOKE or a $EXECUTE statement could be used (provided the
$JOB and $ENDJOB statements are removed from the stored file and there are no
input enclosures).

5-1

AQ11

JOB DESCRIPTION

SLIBMAINT SL

Figure 5-1. Stored JCL

5-2

AQ11

$JOB ... ;

COMMENT'IT IS ASSUMED THAT THE LIBRARY GEN.JCL

HAS ALREADY BEEN ALLOCATED';

COMMENT'STORE JCL STATEMENTS ON SUBFILE NEWJCL

OF LIBRARY FILE GEN.JCL I;

LIBMAINT SL,

LIB= GEN.JCL

COMFILE=*INCARDS;

$INPUT INCARDS ;

MOVE COMFILE: NEWJCL, TYPE=JCL, NUMBER;

< JCL statements >

$ENDINPUT;

$ENDJOB;

Figure 5-2. Example of Storing JCL in a Library Member

5-3

AQ11

COMPILATIONS

TESTS

RESEARCH

$JOB ... ;

STANDARD

PRODUCTION

$RUN. $1 NVOKE AND $EXECUTE

5-4

$ENDJOB;

RUN ... ;

$JOB ..• ;

Figure 5-3. JCL Submission

STEP

ENDSTEP

STEP

ENDSTEP

$.Joe ...
STEP

ENDSTEP

STEP

ENDSTEP

$ENDJOB

An important difference between the use of $RUN and $INVOKE (or $EXECUTE)
concerns the processing of the job description. $RUN requests the scheduling for
execution of a job stream (the cspawned» jobs) that is independent of the job issuing
the $RUN statement (the «spawning» job). The spawning operation is activated when
the $RUN statement is encountered during the execution of the original job. Suppose.
for example. a spawned job contains statements which request the updating of a data
file. Since the execution of the spawned job depends on its scheduling parameters and
on the current job environment. the spawning job can make no assumption concerning
the updating of the file. Therefore it would normally be bad practice if. subsequent to
the $RUN statement. the spawning job contained a statement which accessed the same
data file.

The use of $INVOKE causes a sequence of JCL statements to be inserted directly into
the current job description in place of the $INVOKE statement itself. This operation
is performed at JCL statement translation time.(any $ 1 ~VOKE statements encountered
within ·this: sequence are also replaced at JCL translation time). These statements are
then executed, in order, as part of the current job.

The statement following the original $INVOKE will not be executed until all the
replacing statements have been executed, subject to any $JUMP statements present
(see the JCL Reference Manual).

Unlike the $INVOKE statement, $EXECUTE is activated at execution time; no
replacement is made at JCL statement translation time. $INVOKE is static in the sense
that a sequence of JCL statements is inserted into a job description at translation time
and thus becomes part of the job description; $EXECUTE is dynamic since the
sequence to be executed is not identified and translated until execution time and, once
the sequence has been executed, it has no further significance to the job description
that contains the $EXECUTE statement.

The operator SJ and SI commands perform the same function as $RUN but are
entered from the operator's console. They provide the same scheduling parameters as
$RUN. The operator can always. exercise subsequent control over any job using other
operator commands (in particular, the MJ command).

Notes;

Although there can be a marked difference in the effect of $INVOKE and
$EXECUTE, most of the rules for the use of the statements are identical. At the end
of this Section there is a comparison between the two statements («Differences
between $INVOKE and $EXECUTE») ; elsewhere in the Section, where there is a
general explanation or example that applies to both statements. only the $INVOKE
statement is used, in order to simplify the discussion.

In this Section, the terms 'S INVOK~d'and 'SEXECUTEd~will be used to iden­
tify stored JCL sequences that are accessed by $INVOKE and $EXECUTE respec­
tively.

Throughout this discussion the information given about the $RUN statement is also
applicable to the operator SJ and SI commands.

Parameters of the $JOB statements of a spawned job or jobs are computed from :

parameters of the stored $JOB statement (if any)

parameters of the $RUN statement

parameters of the $JOB statement of the spawning job.

The parameters of the $JOB statement for each stored job override those of the $RUN
statement and those of the $JOB statement. If, however, one or more parameters are
missing from the stored $JOB statement, the following rules apply :

job-name

user-name

project-name·

billing-name

job-class

scheduling-priority

job-name in stored $JOB statement.

user-name in stored $JOB statement.

project-name in stored $JOB statement;
if none, spawning job's project.

billing-name in stored job ;
if none, spawning job's billing.

parameter of $RUN statement;
if none, parameter of stored $JOB statement;
if none, class P.

parameter of $RUN statement;
if none, parameter of stored $JOB statement;
if none, default value associated with spawned job class.

5-5

A011

5-6

-· --

HOLD parameter of $RUN statement or parameter of stored $JOB I
statement;
HOLD is considered as present if it is present in either
statement (or both).

HOLDOUT parameter of $RUN statement or parameter of stored $JOB
statement. HOLDOUT is considered present if it is present
in one statement (or both).

REPEAT parameter of stored $JOB statement.

Note:

If the job stream referred to by SRUN contains .more than one job, each job must be
delimited by $JOB and SENDJOB statements. However, if the job stream contains
only one job it is possible to omit the $JOB and $ENDJOB statements. In such a case
the job-name is assumed to be the same as the member-name specified in the $RUN
statement which in this case must not contain more than 8 characters, the user-name
is assumed to be the same as that of the $RUN statement, and the REPEAT parameter
cannot be specified.

A summary of these relationships is shown in Table 5-1.

The above rules can be expressed also by the fact that identification is given by the
stored job description in preference to the spawning job, while, on the other hand
processing information comes from the spawning job in preference to the stored job
description.

PARAMETER $STEP
$RUN STORED SPAWNING

DEFAULT
SJ/SI JOB JOB

-- --
I I Job-id - 2 1 I - --

User-id -- -- 1 I 2 -

I
Project - - 1

I
2 catalog

Billing - - I 1 I 2 catalog

Job-class - 1 2 - p

Sch-pr - 1 2 - class
default

HOLD - 1 1 - not held

HOLDOUT - 1 1 - not held

REPEAT - - 1 - no repeat

Table 5-1. Priority Order for Parameters of Spawned Job

-

The SJ)awning joh can pass information lo spawned johs throuqh the use of parnmf~tur

substitution (see JCL Reference Manual, Appendix E) and throuqh the use of switches
(see the JCL Reference Manual, $RUN statement).

The following examples illustrate the handllng of $JOB parameters in spawned jobs.

l

AQ11

Example 1 ~

Assume that a job stream containing a single job has been stored in member TUES32
of library JOBS. LIB. The spawning job could be :

$JOB LONDON, USER= X123, PROJECT= INVHO, CLASS= L;

RUN TUES32, JOBS.LIB;

$ENDJOB;

The spawned $JOB statement would be :

$JOB T32, USER= X123, PROJECT= INVHO, CLASS= P,
t t I t

stored $JOB spawning $JOB spawning $JOB default

Now, if instead the $RUN statement was:

RUN TUES32, JOBS.LIB, CLASS= K, HOLD, PRIORITY= 2;

The spawned job would have a $JOB statement of the form :

$JOB T32, USER= X123, PROJECT= INVHO, CLASS= K,
t I I t

stored $JOB spawning $JOB spawning $JOB $RUN

HOLD, PRIORITY= 2;
t t

$RUN $RUN

Example 2:

Assume that a job stream containing two jobs has been stored in member WED32 of
library JOBS.LIB. The spawning job could be :

$JOB LONDON, USER= X123, PROJECT= INVHO, CLASS= L;

RUN WED32, JOBS.LIB ;

$ENDJOB;

Assume also that the $JOB statements of the stored jobs were :

$JOB MONDAY, USER= A047, PROJECT= BRW, CLASS= M;

$JOB TUESDAY, USER= A048;

The spawned $JOB statements would be:

$JOB MONDAY, USER= AQ47, PROJECT= BRW, CLASS= M;
t t .I' t

stored $JOB stored $JOB stored $JOB stored $JOB

$JOB TUESDAY, USER= A048, PROJECT= INVHQ, CLASS= P;
t t t t

stored $JOB stored $JOB spawning $JOB default

Note:

The Ulle of $RUN for the control of interdependent jobs (i.e. jobs whose processing is
consequent to the execution of other jobs) is shown in Section 6.

5-7

A011

USE OF $INVOKE AND $EXECUTE $INVOKE and $EXECUTE statements refer to stored JCL sequences. The $INVOKE
and $EXECUTE statements are replaced by the referenced JCL sequences as described
above. Note that the stored JCL sequence must not contain JCL statements which are
handled by the Stream Reader ($JOB, $ENDJOB, $INPUT or $ENDINPUT).

5-8

Suppose that member PREA of library JOBS.I LIB contains the following statements:

PREALLOC MYFILE, INV,

DEVCLASS = MS/M400, FILESTAT =CAT,

GLOBAL= (MEDIA= C112, SIZE= 5),

UFAS = (SEQ=(CISIZE=1024, RECSIZE=100)) ;

Then the job :

$JOB NEW, USER= PETER, PROJECT= MARY;

INVOKE PREA, JOBS.ILIB ;

STEP LM1. .. ;

ENDSTEP;

$ENDJOB;

will be equivalent to the job :

$JOB NEW, USER= PETER, PROJECT= MARY;

PREALLOC MYFILE.INV,

DEVCLASS = MS/M400, FILESTAT =CAT,

GLOBAL= (MEDIA= Cl 12, SIZE= 5),

UFAS = (SEQ=(CISIZE=1024, RECSIZE=100)) ;

STEP LM1 ... ;

ENDSTEP;

$ENDJOB;

INPUT ENCLOSURES IN STORED JCL

As $INPUT and $END INPUT cannot be used in a stored JCL sequence with $INVOKE
and $EXECUTE, an input enclosure cannot be contained in such a JCL sequence.
However, a job containing $INVOKE or $EXECUTE can contain an input enclosure,
as shown in the following example. Consider a job of the-form :

$JOB ... ;

SORT INFILE = (...), OUTFILE = (...),

COMFILE = *ORDER ;

$INPUT ORDER ;

sort commands >

SENDINPUT;
SENDJOB;

A011

A JCL sequence of the form outlined below can be stored under the name PETER in
library MY,JCLLIB :

SORT INFILE = (...), OUTFILE = (...) ;

COMFILE =*ORDER;

A job of the following form can invoke the above sequence :

$.JOB ... ;

INVOKE PETER, MY.JCLLIB;

$INPUT ORDER;

sort commands

$ENDINPUT;

$ENDJOB;

obtaining the same result as the original job.

INDEPENDENCE OF $1NVOKEd OR $EXECUTEd JCL SEQUENCES

A label which is defined inside a $1NVOKEd or $EXECUTEd JCL sequence cannot be
referenced outside the sequence. In addition, it is not possible to «jump» outside the
sequence. Therefore the user can define the same label name both inside and outside
the sequence with no subsequent ambiguity.

For example, using the following stored JCL sequence named TRUC:

STE~ LM1 ... ;

ENDSTEP;

JUMP A, STATUS, NE, 0 ;

STEP. LM2 ... ;

ENDSTEP;

A:

the following job description :

$JOB ... ;

A : STEP S1, ... :

ENDSTEP;

JUMP
1
A, STATUS, EO, 12;

INVOKE TRUC;

$ENDJOB;

5-9

A011

5-10

will effectively become :

$JOB ...

A : STEP S1, ... ;

ENDSTEP;

JUMP A, STATUS, EO, 12 ;

STEP LM1. .. ;

ENDSTEP;

JUMP A', STATUS, NE, 0;

STEP LM2 ... ;

ENDSTEP;

A':

$ENDJOB;

Note:

A' is not a legal label, but is used in the above example to show the distinction between
label A in the job containing the $INVOKE and label A in the $1NVOKEd enclosure.

Independence of $1NVOKEd or $EXECUTEd sequences also applies to parameter
value substitution by means of the $VALUES statement (see the JCL Reference Manual),
and to the scope of $LIB statements (see the Library Maintenance User Guide). If any
of these statements appears in a $1NVOKEd or $EXECUTEd sequence, it applies only
to that JCL sequence. However, a $LIB statement in the job (or JCL sequence) that
contains the $INVOKE will· apply within a sequence that does not itself contain a
$LIB statement. In other words, if there is a $LIBMAINT, but no preceding $LIB, in
the sequence, the search path declared in the job or sequence that contained the
$INVOKE will apply to the $LIBMAINT statement.

NESTED $INVOKE AND $EXECUTE STATEMENTS

A stored sequence may itself contain $INVOKE and/or $EXECUTE statements. These
statements, in turn, can refer to stored sequences that contain $INVOKE and/or
$EXECUTE statements, and so on. However, whereas there is no control over the
number of levels of «nesting» for $EXECUTE, $INVOKE statements can only be nested
up to a depth of nine levels. Any $INVOKE statement in a stored sequence that is refer·
red to by a S EXECUTE statement will not be translated and replaced until the S EXECUTE
itself is executed. The above rules concerning the independence of stored sequences apply
to each level of nesting.

INVOKING OR EXECUTING INPUT ENCLOSURES

Sequences of JCL statements can be $1NVOKEd or $EXECUTEd from input enclosures,
rather than from stored files. The user can take advantage of this facility for testing and
debugging purposes before storing a JCL sequence in a library.

A011

For example:

$JOB ... ;

INVOKE "*TEST;

$INPUT TEST ;

STEP LML .. ;

ENDSTEP;

$ENDINPUT;

$ENDJOB;

will become after translation

$JOB ... ;

STEP LMl ... ;

ENDSTEP;

$ENDJOB;

THE UPDATE PARAMETER OF $INVOKE

The UPDATE parameter of the $INVOKE statement specifies that the «Mini-Editor»
commands stored in the named input enclosure must be applied to the invoked JCL
sequence before translation. The use of the Mini-Editor is described in Appendix A.

DIFFERENCES BETWEEN $INVOKE AND $EXECUTE

The JCL Translator replaces $INVOKE statements at job translation time (unless such
statements are contained in a stored sequence subject to a $EXECUTE statement).
This implies the following :

- $INVOKE cannot refer to a JCL sequence which is created in a previous step in the
same job; nor can it take account dynamically of any file updates which may be
made during job execution.

- The JCL translator does not act as a user step, in the following sense : if the
$INVOKE statement references a library on a volume which is not RESIDENT and
not known to the system at JCL translation time, then it will not ask the operator
to mount the volume, nor will it wait for the volume to be mounted ; the job is
aborted at JCL translation time; this is done so that the translation of other jobs
will not be delayed. Therefore, a user who references a non RESIDENT library via
an SINVOKE statemen~ must ensure that the volume is mounted before the job is
input to the system.

The above restrictions can be avoided by using the $EXECUTE statement as described
below.

USE OF INVOKE WITH NON-RESIDENT LIBRARIES

As mentioned above a $EXECUTEd JCL sequence can contain $INVOKE statements.
Such statements, because they are translated at job execution time, are not subject to
the above restrictions. To force the mounting of the required volume(s) in advance of
the $INVOKE statement, the following steps are required :

A011

1. Put the appropriate $INVOKE statement in an input enclosure, or store it in a
library member.

2. Specify in a $LIB statement the library that contains the stored JCL sequence that
is to be $1NVOKEd.

3. Below the $LIB statement, add a $EXECUTE statement that refers to the input
enclosure or library member containing the $INVOKE.

For example :

LIB SL, INLIB1 (TOOLS.SLLIB, DEVCLASS=MS/M400, ~~EDIA=TEAM-15)
INLIB2 = (TEST.SLLIB, DEVCLASS=MS/M400, MEDIA=EXP42) ;

EXECUTE *INVOKE-ENC;

At step-initiation the operator is requested to mount the volumes TEAM-15 and
EXP42. Then, if the input enclosure INVOKE-ENC is as follows:

$INPUT INVOKE-ENC;

INVOKE MY-WORK, (TOOLS.SLLIB. DEVCLASS=MS/M400, MEDIA=TEAM-15);

INVOKE TEST-WORK, (TEST.SLLIB, DEVCLASS=MS/M400, MEDIA=EXP42) ;

$ENDINPUT;

these statements will be translated successfully, because the volumes TEAM-15 and
EXP42 are already mounted.

A useful feature of the $EXECUTE statement is that if a particular $EXECUTE state­
ment is executed several times in the same job (for example, by means of a $JUMP
statement), it is possible for a different version of the sequence to be created each
time. For example, the file that contains the sequence may be modified using
$LIBMAINT between each execution of the $EXECUTE statement. See Section VI for
a discussion of this technique.

To summarize, the choice between using $INVOKE and $EXECUTE depends upon :

a) whether the stored JCL statements are on a resident disk, or a non-resident disk
which is not mounted ;

b) whether the insertion of JCL can be static or must be done dynamically;

c) whether the user wishes to have all JCL errors detected before any step is started,
or at job execution-time.

PARAMETER SUBSTITUTION IN STORED JCL

5-12

The VALUES parameter in the $RUN statement allows a spawning job to supply
parameter values for the execution of a stored job stream. Suppose the stored job
stream TEXT in library JOBS.L 1 is of the form :

$JOB ... ;

FILSAVE INFILE = (&1),

OUTFILE = (&2,DEVCLASS= MT/T9, MEDIA= &3);

"$ENDJOB;

AQ11 __ _

Then the execution of :

RUN TEXT, JOBS.L1, VALUES= (MY.GOOD.FILE,MY.SFILE, T11 7);

will create a job of the form :

SJOB ... ; .
FILSAVE.INFILE =(MY.GOOD.FILE),

OUTFILE ={MY.SFILE,DEVCLASS = MT/T9,MEDIA = T11 7);

SENDJOB;

causing the disk file MY.GOOD.FILE (which is on a resident disk or cataloged) to be
saved on tape T11 7 in file MY .SF I LE.

The values indicated in the S RUN statement have no effect on the spawning job.
Nevertheless, these values are ordinary parameters in the spawning job description and
may themselves be variable parameters to be replaced at spawning job translation time
by values supplied inside the spawning job.

For example, the spawning job could be :

SJOB ... ;

VALUES ABC, DEF, MY.BAD.FILE;

RUN TEXT,JOBS.L1, VALUES= (&3, MY.SFILE, T11 7);

SENDJOB;

This S RUN statement is equivalent to

RUN TEXT, JOBS.L 1, VALUES= (MY.BAD.FILE, MY.SFILE, T11 7);

Using the same stored job stream as before, this will create the job :

SJOB ... ;

FILSAVE INFILE =(MY.BAD.FILE) I

OUTFILE = (MY.SFILE, DEVCLASS = MT/T9, MEDIA= T11 7);

SENDJOB;

but the SVALUES statement in the spawning job will be unaffected by the S RUN
statement.

It is also possible to include SVALUES statements in the stored job stream. These
values will be used as default values for variable parameters when the S RUN statement
does not provide any. If the stored job stream TEXT in library JOBS.L2 is :

VALUES F.J, F.SFILE, T117, MT/T9;

FILESXJE INFILE = (&1),

OUTFILE = (&2, DEVCLASS = &4, MEDIA= &3) ;

The execution of :

RUN TEXT, JOBS.L2, VALUES= (MY.FILE);

~13

AQ11

5-14

will create a job (using default values of 2nd, 3rd and 4th variable parameters) :

SJOB ... ;

FILSAVE INFILE =(MY. FILE),

OUTFILE = (F.SFILE, DEVCLASS = MT/T9, MEDIA= T11 7);

SENDJOB;

while:

RUN TEXT, JOBS.L2, VALUES= (YOUR.FILE,,W142);

will create a job (using default values of 2nd and 4th variable parameters) :

SJOB ... ;

FILESAVE INFILE =(YOUR.FILE),

OUTFILE = (F.SFILE, DEVCLASS = MT/T9, MEDIA= W142);

SENDJOB;

Moreover, it is possible to force from the SRUN statement a default value that is defi­
ned in the stored job stream to be considered as absent. This is done by giving the value
NIL in the SRUN statement. Taking the same example as above:

RUN TEXT, JOBSL2, VALUES= (A.FILE,, NIL, NIL);

will create a job equivalent to :

SJOB ... ;

Fl[SAVE INFILE =(A.FILE),

OUTFILE •· (F.SFILE);

SENDJOB;

in which default values for the 3rd and 4th parameters are ignored.

Note:

The SJ or SI operator commands provide the same set of functions as the SRUN state·
ment.

Values for variable parameters can also be provided in the SINVOKE and SEXECUTE
statement. The stored JCL sequences can include SVALUES statements which are
used as default values for variable parameters when SINVOKE or SEXECUTE do not
provide any. NIL values can also be used in SINVOKE and SEXECUTE statements.

These mechanisms follow exactly the same rules as for the SRUN statement.

If the stored JCL sequence was:

VALUES D.F, C112, 10, 1024, 100;
PREALLOC &1, DEVCLASS = MS/M400,

GLOBAL= (MEDIA= &2, SIZE= &3),
UFAS = (SEQ=(CISIZE=&4, RECSIZE=&S)),
FILESTAT=CAT;

A011

a statement :

INVOKE PREA, !NV.JOB, VALUES= (OTHER.FILE);

will be replaced (using default value of 2nd, 3rd and 4th variable parameters) by

PREALLOC OTHER.FILE, DEVCLASS = MS/M400,

GLOBAL= (MEDIA= Cl 12, SIZE= 10),

UFAS = (SEQ=(CISIZE=1024, RECSIZE=100),

FILESTAT =CAT;

while a statement:

INVOKE PREA, iNV.JOB, VALUES (HIS.FILE,, 2,,200);

will be replaced (using default values of 2nd and 4th variable parameters) by :

PREALLOC HIS.FILE, DEVCLASS = MS/M400,

GLOBAL= (MEDIA= Cl 12, SIZE= 2),

UFAS = (SEQ=(CISIZE=1024, RECSIZE=200,)),

FILESTAT =CAT;

Figure 5-4 demonstrates repeated substitution of parameter values by means of SRUN
and SINVOKE statements.

RUN ... VALUES=(MS/M400,MY.FILE,LAB3);

STEP ... ;
ASSIGN ... ;

VALUES MT/T7,YOUR.FILE;

ENDSTEP;
INVOKE ... VALUES=

(MT/T9,HIS,FILE,&1,&2);
STEP ... ;
ASSIGN F1,&2,MEDIA=&3,

DEVCLASS=& 1 ... ;
ENDSTEP;

STEP ... ;
VALUES,,MS/M300;

ENDSTEP;
INVOKE ... ;

VALUES=(&3) ;
STEP ... ;

ENDSTEP;

Figure 5-4. Variable Parameters in Stored JCL

STEP .•. ;

POOL 2 * &1;

ENDSTEP;

JOB STREAM CREATION AND MAINTENANCE

A job stream is a sequence of job descriptions that the Stream Reader can read. The
Stream Reader is able to read a job stream from

- a card deck

5-15

AQ11

5-16

- a sequential disk or tape file.

- a source library member

Furthermore, in the last two cases the operator can ask the Stream Reader to select
only certain jobs of the job stream.

A job stream can be stored in a sequential disk or tape file using the SCREATE state­
ment as in the following example :

SJOB ... ;

CREATE INFILE =(STREAM, MEDIA=KARDS, DEVCLASS=CD/R/C80),

OUTFILE =(STREAM 1, MEDIA=DD345, DEVCLASS=MT/T7);

SENDJOB;

The same function is also provided via SLIBMAINT:

SJOB ... ;

LIBMAINT SL,

SENDJOB;

INFILE =(STREAM, MEDIA=KARDS, DEVCLASS=CD/R/C80),

OUTFILE = (STREAM1, MEDIA=DD345, DEVCLASS=MT/T7),

COMMAND =/MOVE INFILE:DECK, INFORM=SARF, TYPE=JCL,
OUTFORM-SARF I;

Execution of any of the two preceding jobs will request the operator to mount a deck
of cards which is the job stream to be stored. The system will issue the message .

hh.ss CDOi MOUNT KARDS FOR Xj.

where CDOi is the device on which the deck of cards is to be mounted and KARDS is
taken from the value given to the MEDIA parameter.

The job stream wilt be stored in file STREAM1 on tape 00345. Later, the operator
will be able to issue the SI command. For example :

SI STREAM1 : 0345: MT/T7

On this command the Stream Reader will process the job stream.

The advantage of using the card reader directly, as in the above examples, is that SJOB
statements can be used in the input job stream. This is not possible when the job stream
is input via the Stream Reader (e.g. in an input enclosure). This is because when the
Stream Reader encounters a SJOB statement it considers that the current job descrip­
tion is complete and that a new one is starting. The Stream Reader does this in order
to project jobs from each other (otherwise a job description which did not end with
SENDJOB would be merged with the next job description).

The disadvantage of using the card reader directly is that the card reader must be
assigned exclusively to the job and cannot be used during this time for normal job
stream input. In certain installations the card reader might be in constant use and
exclusive assignment will not be permitted.

A011

In order to avoid direct use of the card reader the following can be done :

- Remove the S sign from each SJOB statement in the job stream to be input, and

Put the job stream in an input enclosure and move the input enclosure to a library
member using the MOVE command of SLIBMAINT.

Note:

The above technique will result in a library member containing SJOB statements without
the S sign. This situation is the only exception to the rule that the SJOB statement
must contain the S sign.

For example, assume that the following job stream is to be stored in member
STREAM2 of the source library SOURCES on a resident disk :

SJOB A ... ;

SENDJOB;

SJOB B ... ;

SENDJOB;

SJOB LAST ... ;

SENDJOB;

The S signs should be removed and the job stream should be preceded by a MOVE
command and followed by an //EOD command :

MOVE COM FILE : STREAM2, REPLACE, TYPE= JCL;
JOB A ... ;

SENDJOB;
JOB B ... ;

SENDJOB;
JOB LAST ... ;

SENDJOB;
//EOD

Because the jobs of the job stream may have their own input-inclosures, it is necessary
to use the END=MATCH facility of the SINPUT statement; otherwise, the Stream
Reader would consider that the deck of cards ends at the first SENDINPUT it encoun­
ters. The input-enclosure becomes :

SINPUT JOBSTREAM, END=MATCH ;
MOVE COMFILE : STREAM2, REPLACE, TYPE~=JCL;
JOB A ... ;

SENDJOB;

5-17

A011

5-18

JOB B ... ;

SENDJOB;
JOB LAST ... ;

SENDJOB;
//EOD
SENDINPUT JOBSTREAM;

and the corresponding SLIBMAINT step is:

LIBMAINT SL,
LIB= SOURCES,
COMFILE = JOBSTREAM;

So the complete job becomes :

SJOB RECORD ... ;

LIBMAINT SL,
LIB= SOURCES,
COMFILE = *JOBSTREAM ;

SINPUT JOBSTREAM END=MATCH ;
MOVE COMFILE : STREAM2, REPLACE, TYPE=JCL;
JOB A ... ;

SENDJOB;
JOB B ... ;

SENDJOB;
JOB LAST ... ;

SENDJOB;
//EOD
SENDINPUT JOBSTREAM;
SENDJOB;

At the completion of this job the stored job stream can be started using the SRUN sta­
tement or the operator commands SJ or SI. The job stream can also be updated using
SLIBMAINT.

A011

Introduction

6 •Sequence modification
and error proccessing.

Level 4 GCOS contains system components and utilities which are designed to minimize
the effects of serious errors which can occur for diverse reasons within the system.

For this purpose JCL can be included in a job description to alter the execution sequence
in the event of a step abort. Thus the abort of a single step can be prevented from cau­
sing the entire job from being terminated. Step recovery aids include the periodic
storage of executing process group structures and file journalizing, so that a step can be
restarted from a known point prior to where an execution abort occurred. This facility
is known as Checkpoint/Restart and File Journal.

Errors in application programs can be traced simply by means of a system component
called the Program Checkout Facility {PCF). Each of these facilities is discussed briefly
in this section and references are given to manuals containing detailed descriptions.

Error messages and return codes are generated by the system when an abnormal inci­
dent occurs in the execution of a job. These incidents are recorded on the JO R (Job
Occurrence Report).

ERROR MESSAGES AND RETURN CODES

Labelling a JCL Statement

When the system detects a malfunction during the execution of a job, an error message
is entered in the Job Occurrence Report. The malfunction may be due to a user error
or a system error.

Error messages can be report messages with no qualification, or may be qualified as
WARNING, FATAL or SYSTEM messages. SYSTEM messages refer to some malfunc­
tion of the system itself (either hardware or software) and are normally indicated by
only a message code and a message number.

Return codes are also printed on the Job Occurrence Report. These codes normally
indicate that some abnormal incident has occurred within the system.

A complete list of return code mnemonics appears in the Error Messages and Return
Codes Manual along with probable causes and remedial action where appropriate.

A label can be associated with any JCL statement simply by preceding the statement
with the label name and a colon.

6-1

A011

THE I.JUMP STATEMENT

6-2

For example :

SJOB ... ;

STIL: STEP LM4 ... ;

ENDSTEP;

SENDJOB;

The step LM4 can now be referenced in a SJUMP statement (by use of the name STIL).

The SJUMP statement allows the modification of the order in which JCL statements
are handled.

The following rules apply:

• SJUMP statements outside step enclosures can only refer to labels outside step en­
closures. A SJUMP 1used i11~~_is _ '!'aY_ changes the order in which steps are executed
within a job. Jumping can be forward or backward.

• A SJUMP statement inside a step enclosure can only refer to a label inside the same
step enclosure. Furthermore, jumping can then only be forward. Such a jump can be
used, for example, to select various resources associated with the step.

The first parameter of a SJUMP statement is a label. The other parameters, which are
optional, correspond to condition tests and will be described later on.

The following example illustrates the previous rules :

Step 1

SJOB ... ;

SJUMP A ... ; (forward)

SSTEP LM1 ... ;

SASSIGN ... ;

SJUMP B ... ; (forward)

SASSIGN ... ;

B : SASSIGN ... ;

SENDSTEP;

Step 2 -[A:
SSTEP LM ... ;

SENDSTEP;

SJUMP A ... ; (backward)

SENDJOB;

Labels in an invoked JCL sequences are considered as local. In other words, a SJUMP
statement in the job (or sequence) that contains the SINVOKE cannot reference a label

A011

defined in the invoked sequence; conversely a JUMP statement in the invoked sequence
cannot reference a label defined in the job (or sequence) that contains the SINVOKE.
This concept is illustrated in this section. The above comments also apply to JCL
sequences referred to by SEXECUTE.

A set of 32 switches are associated with each executing job. They are named SWO
throughSW31. At the beginning of job execution, they are all set to 0 unless the job ,s
spawned (via the SRUN statement) or released (via the SR ELEASE statement) by
another job. In both of these cases, the switches can be set initially to any value by the
other job. Each one can be set to 0 or 1 by means of the SLET JCL statement or by
the executing load module (for example, using SET SWITCH-i in COBOL). They are
not modified otherwise. Each one can be tested by a $JUMP JCL statement or by an
executing load module (testing in COBOL SWITCH-i).

The following example illustrates a simple use of switches. Assume that LM1 sets SW5
to 1 when the end of a procedure is reached and that the job description is :

SJOB ... ;

LET SW5, 0;

LOOP: STEP LM '!. .. ;

ENGSTEP;

JUMP FIN, SW5, EQ, 1 ;

STEP LM2 ... ;

ENDSTEP;

JUMP LOOP;

FIN : STEP LM3, ... ;

ENDSTEP;

SENDJOB;

The first SLET statement guarantees that SW5 is set to 0 initially. Then the load module
LM1 is executed. If it leaves SW5 at 0, load module LM2 is executed and then LM1
again. This continues until LM2 or LM1 sets SW5 to 1. At this stage the jump is perfor­
med to FIN and LM3 is executed. The job terminates after the execution of LM3.

Through this mechanism, one job can influence the execution of another (that it spawns
using SRUN). Suppose that a job description stored in member EX12 of library
L.JOBS is of the form :

JUMP NEXT, SWO, EO, 1 ;

STEP LM1, ... ;

ENDSTEP;

NEXT. $TEP LM2, ... ;

t~' . fEP;

A spawning job :

$JOB ... ;

RUN EX12, L.JOBS;

SENDJOB;

6-3

AQ11

STATUS

6-4

causes the stored job to execute both LM1 and LM2 (SWO having been set to O origi­
nally), while a spawning job :

SJOB ... ;

C()MMEr:.n~_~§PAYY~. ~°-~ EX_1_?§_Ei:TINC?_~o TQ 1';

RUN EX12, L.JOBS, SW=SOOOOOOO ;

SENDJOB;

causes only LM2 to be executed (in the SRUN statement the values of all 32 switches
are specified as a string of 8 hexadecimal characters). Note that the value of SW1 in the
SRUN statement has no effect on the switches of the father job. The transfer of infor­
mation from one job to another via switches in the SRUN statement can also be per­
formed by means of switches in a SR ELEASE statement (see SRELEASE in this section).

The status is1 a decimal number which is associated with each executing job step. Its
use is similar to that of switches but is more directly related to the overall results of the
execution of a load module. It is set to 0 at the beginning of the execution of the load
module, and its value can be modified under user control within the load module itself
(for example, using a CALL H-CBL-USETST in COBOL) or by the System when it
takes a decision about this execution. In the latter case, the status set by GCOS will
override the value set by the user. The status can be tested by the SJUMP JCL state·
ment, and its value remains unmodified until the next load module execution is started.

For example :

SJOB ... ;

FIRST:

SECOND:

STEP LM1;

ENDSTEP;
STEP LM2 ... ;

ENDSTEP;

I
OStatus

J__

T Sta:+M1
Status set by LM2

The status set by LM1 may be tested between the SENDSTEP statement labelled
FIRST (which corresponds to LM1 execution) and the SENDSTEP statement labelled
SECOND (which corresponds to a new load module execution).

The scope of the status of a load module might not correspond to continuous state·
ments if a SJUMP statement exists as in the following example :

AQ11

REPEAT:

THIRD:

FIRST:

SECOND:

STEP LMO ... ;

ENDSTEP;

STEP LM1 ... ;

ENDSTEP;

jUMP REPEAT, STATUS, NE, 200;

STEP LM2 ... ;

ENDSTEP;

T
Status LMO Status LMO

+ + Status LM1 I Status LM1

j __ - __ :

Status LM2

If the status set by LM 1 is equal to 200 it can be tested between statement FI RST and
SECOND. If not the SJ UMP statement will be effective and the status set by LM 1 can
be tested between statement FIRST and the SJUMP statement, and then between
statements REPEAT and THIRD.

Thus the user can direct the flow of control of a job according to the execution of a
particular load module.

The status, also referred to as the step completion code, can be set by the user to any
values between 0 and 32767; other values are used for special cases by GCOS. Further­
more any value greater- than 9999 will be interpreted by GCOS as meaning that the
load module execution was incorrect and that the job execution should be aborted.
Note however that it is possible by use of the JUMP statement to overcome this situa­
tion (see «Use of Status for Execution Abort» below). Status values are classified into
groups. The names of these groups are SEVO through SEV6 (for Severity 0 through 6)
and can be used in SJUMP statements to test groups of values as in the following
example:

SJOB ... ;

STEP LM1 ... ;

ENDSTEP;

JUMP MESS, SEV, NE, 0;

FILSAVE ... ;

JUMP CONTINUE ;

JUMP FIN, SEV, EO, 0;

MESS: SEND 'FILE TRUC HAS NOT BEEN SAVED';

FIN:

SENDJOB;

if LM1 execution sets status to a value of severity 1 or more, the file save will not bt!
attempted but the message FILE TRUC HAS NOT BEEN SAVED will be sent to the
operator; if the file save is unsuccessful (SEV=O) the same message is sent to the ope­
rator. Note the necessity for the JUMP CONTINUE in the case of an unsuccessful
FILSAVE (refer to «Use of Status for Execution Abort» later in this Section). The
user can set the value of SEV by means of the SLET statement.

6-5

A011

I

STATUS

Group Value
'

SEVO 0-99

SEV1 100-999

SEV2 1000-9999

10000
SEV3 -

19999

20000
SEV4 -

32767

i---·

SEV5 50000

SEV6 60000

61000

6-6

Table 6-1 shows the relationship between a particular SEV grouping (with is correspo111-
ding status value range) and its significance to the system (for all SEV groups). Note
that the interpretation of status values set under user control is defined by the user,
but in all cases the system will interpret a value of 10000 or over (SEV3 or greater) as
an abnormal condition. The significance of the status after the execution of a compiler
is influenced by the fact that a compiler will always set the status according to the
highest severity encountered during the compilation.

! Meaning Job Occurrence Report

(when produced by system)
Consequences

message

Normal termination TASK TERMINATED

STEP TERMINATED Execution terminated normally.

Normal termination STATUS=SEV1 (or SEV2)

+WARNING or
ST ATUS=numerical code Job processing continues

Normal termination (SEV1 or SEV2 is printed
only if numerical code

+WARNING equals 100 or 1000
respectively)

_tJ ...1..

Work not performed due to STEP ABORTED REPEAT option (Checkpoint/Res-

user error. Step is not tart) :

repeatable. ST ATUS=SEV3 (or SEV4) If operator enters YES,
or

I
step repeated from last

ST ATUS=numerical code checkpoint.
I

Work not performed due to
(SEV3 or SEV4 is printed

I
GCOS problem or to exter- NOREPEAT option (no Checkpoint/

nal events (1/0 Error). only if numerical code Restart) :

Step is repeatable. equals 10000 or 20000
respectively) Scan JC L statements : if encounter :

. SENDJOB or step enclosure, then

Abort requested by the STEP ABORTED BY terminate job

operator (Terminate Job OPERATOR

I
SJUMP statement, then test

command)
STATUS=SEV5

condition ; if false, scan next sta-
tement (as above)
if true, resume execution from

An exception occurred in STEP ABORTED BY given label.
a system procedure SYSTEM

System Crash ST ATUS=SEV6

Table 6-1. Step Termination Conditions

A011

iUse of Status for Execution Abort If after the execution of a step the status value is greater than 9999 (in other words
the severity is greater than 2), the step is considered to be abnormally terminated.
From that point on, the command interpreter scans JCL statements in sequential order,
ignoring them until one of the following conditions happens:

- SENDJOB or SSTEP or any other job enclosure statement (except $JUMP CO!\JTl­
NUE or a $JUMP which tests the status is encountered). The job execution is abnor­
maliy terminated.

- A $JUMP statement tests the status (using STATUS or SEV) and the condition is
true. In this case the $JUMP statement is executed and normal execution is resumed.
If the condition is false, the job aborts.

- A $JUMP statement with the reserved label CONTINUE is encountered. This signifies
that execution is to proceed in sequence.

Consider the following job :

$JOB ... ;

STEP LM1, ... ;

ENDSTEP;

STEP LM2, ... ;

ENDSTEP;

JUMP ABNORM,SEV,GE,3;

SEND 'EXECUTION OK' ;

STEP LM3, ... ;

ENDSTEP;

JUMP END;

ABNORM: STEP LM4 ... ;

ENDSTEP;

END:

SENDJOB;

If steps LM1 and LM2 terminate normally, the message «EXECUTION OK» will appear
on the operator's console and step LM3 will be started.

If LM 1 execution is abnormally terminated the command interpreter will abort the job
when it encounters the next step (here step LM2).

If LM 1 terminates normally but LM2 execution is abnormally terminated the Command
Interpreter will skip over the SSE ND statement, then execute the jump to ABNORM
and the job execution will resume from there (load module LM4).

Another example is :

$JOB ... ;
COBOL1 .. ;
JUMP CONTINUE ;
COBOL. .. ;
JUMP CONTINUE;
COBOL. .. ;

SENDJOB;

6-1

A011

Each COBOL statement is an extended statement corresponding to a step requiring
execution of the COBOL compiler. In this job all three steps will be executed even if
the first or second one discovers a probiem and sets the status to a value which would
normally cause the job to be aborted.

Setting Severity Value within an Invoked JCL Sequence

6-8

The SLET statement with SEV parameter can be used to simulate an error condition
within an invoked JCL sequence, thus allowing the processing sequence to be altered
after the SINVOKE statement in the original job description. Suppose, for example,
an invoked sequence contains three step descriptions, the first step of which is to be
executed in all cases ; only one of the two remaining steps is to be executed, depending
whether the first step terminates normally (severity less than 3). In other words, the
success or failure of the first step determines which of the two steps will be executed.
Assuming that the second step to be executed terminates normally, the severity value
at the end of the JCL sequence (invoked) and therefore applying to the statement,
will always be less than 3. A SJUMP statement after the SINVOKE cannot take
account of the severity code of the first step in the invoked sequence. The solution to
this problem is to set the severity to 3 or more at the end of the step (in the invoked
sequence), which is executed in the event of an abnormal termination of the first step.
This concept is illustrated in Fig. 6-1.

AQ11

STEPA.

INVOKE
GEN·SPEC

v

STE PC

I

8

N <
S'T!PI

INVOKED SEQUENCE
GEN-SPEC

STEPl1

N

STEP3

RHSET SEV to 3

Flgur18·1. Ute of ILET SEV

STEPl2

AQ11

SRELEASE STATEMENT

6-1'"

Figure 6-2 contains the JCL statements that correspond to the situation shown in
Figure 6-1. If STEPl1 terminates normally, STEPl2 is executed and provided it also
terminates normally, a severity of 0 applies to the SJUMP after the SINVOKE. In this
case steps STEPB and STEPC are executed. If, however, STEP11 aborts STEP13 is
executed ; the SLET statement ensure;.. that a severity of 3 applies to the SJUMP state­
ment after the SINVOKE, irrespective of the result of the execution of STEPl3, in this
case only STEPC is executed next.

SJOB JOBA, ;

STEP STEPA, ;

ENDSTEP;

INVOKE GEN.SPEC ;

JUMP LAST,SEV,GE,3;

STEP STEPB, ;

ENDSTEP;

LAST : STEP STEPC ;

ENDSTEP;

SENDJOB;

Contents of GEN.SPEC

STEP STEPI 1. ;

ENDSTEP;

JUMP ERR,SEV,3;

STEP STEPl2 ;

ENDSTEP;

JUMP END;

STEP STEP13;

ENDSTEP;

LET SEV,3;

END : JUMP CONTINUE ;

Figure 6-2. Example of the Use of SLET

The S RELEASE statement in a job erclosure can be used to release a job which has
been suspended (by a JCL HOLD option in SJOB or operator HJ). The job in which
the statement appears and the job to be released must have the same characteristics,
namely USER and PROJECT. The statement has a single keyword, SWITCHES which
has two parameters, hex-string and PASS. SWITCHES is used to initialize each of the
32 job switches associated with each job, to a reqL.:rt 1 value when the job is released .

. The PASS parameter causes the current switch value of the releasing job to be assumed
by the released job. If the SWITCH parameter is omi~ted from SRELEASE then all 32
swi le hes arc set to zero.

An example of the use of SRELcASE is given in the paragraphs in this section entitled
Control of Interdependent Jobs.

CONTROL OF INTERDEPENDENT JOBS

The testing of switch or status values can be use to control the order in which interde­
pendant jobs are executed. The user can do this by interspersing the JCL description
with SJUMP, SRUN and SR ELEASE statements. The facility is useful in cases where
the execution sequence is dependent upon successful comp!etkm of other job~ in the
same stream. Rather than burden the operator with the responsibility of managing the
interdependencies, the ~tsterr, handles them by selectively spawning the JCL descrip­
tions.

Figure6-3shows a flow chart illustrating inte-rdependencies between several jobs.

Figure 6-4 shows the JCL that might be used to produce the required dependencies.

Note that the processing done in hold job JOBB3 depends on the execution of job
JOBA, which releases JOBB3. The value of SW2 in JOBA at the time it releases JOBB3
determines whether JOBC30 or JOBC31 is spawned bv JOB83.

6-11

A011

JOBA

STEP

SETSW

swo
SPAWN

JOB BO

SW1
SPAWN __ ,...
JOBB1

RELEASE

JOBB3

SW2 SPAWN
...

JOBB2

RELEASE

JOBB3

0-- SPAWN -
JOBE RA

L

6-12

JOBB1

STEP

SETSW5

CONTINUE

JOBB1

FINISH

~
STEP

SETS EV

SPAWN

JOBC20

SPAWN

JOBD

N

Figure 6-3. Interdependency of Jobs

SPAWN

JOBC1

WAIT IN

HELD

STATE

N

SPAWN

JOBC1

CONTINUE

JOBB3

(FINISH

SPAWN

JOBC21

SPAWN

JOBC30

)

AQ11

SJOB JOBA, ... ;

LET SW, hex-string :
STEP SETSW, ... ;

ENDSTEP;
COMM 'SPAWN JOBBO AND JOBB1 IF SWO SET';

JUMP BORUN, SWO, EO, 1 ;
COMM 'SPAWN ONLY JOBB1 IF SW1 SET';

JUMP BIRUN, SW1, EO, 1 ;
JUMP ENDA, SW2, NE, 1 ;

COMM 'SW2 SET SO SPAWN JOBB2' ;
RUN JOBB2, ... ;
RELEASE JOBB3, SWITCHES=PASS;
JUMP END;

BORUN : RUN J0'3BO, ... ;
BIRUN: RUN J01:)81, ... ;
RELEASE JOBB3, SWITCHES=PASS;
ENDA:

SENDJOB;

stored job JOBB1

LET SW5, binary digit ;
STEP SETSW5, ... ;

ENDSTEP;
JUMP NOSPN, SW5, EO, 0;
RUN JOBC1, ... ;
NOSPN: STEP NEXT, ... ;

Held Job JOBB3

SJOB, JOBB3, , HOLD;
JUMP C31RUN,SW2,NE,1 ;

RUN JOBC30, ... ;
JUMP NEXT;
C31 RUN : RUN JOBC31
NEXT:

stored job JOBB2

STEP SETSEV, ... ;

ENDSTEP;
JUMP C20, SEV, EO, 0;
JUMP C21, SEV, LT, 3;

COMM 'ERROR PROCESSING HERE' ;
RUN JOBERR, ... ;
JUMP ENDSPN ;

COMM 'SPAWN JOBC21 HERE' ;
C21 : RUN JOBC21, ... ;

JUMP ENDSPN;
COMM 'SPAWN JOBC20 HERE' ;
C20 : RUN JOBC20, ... ;

RUN JOBD, ... ;
ENDSPN : ENDJOB ;

Figure 6-4. Example of Interdependent Jobs

6-13

A011

CHECKPOINT/RESTART AND FILE JOURNAL

Taking of Checkpoints

File Journal

6-14

A pair of complimentary faciJities known as Checkpoint/Restart and File Journal are
provided as recovery aids when a step abnorm~lly terminates due to some incident. The
first facility stores at intervals defined by the user an image of all step information
which would be required to restart the step if an abnormal termination occurred. The
second mechanism allows files to be resta~~ to their exact state prior to step execution
in the event of abnormal step termination.

The following paragraphs are intended to give a general introduction to the purpose
and use of Checkpoint/Restart and Journalization. The System Management Guide
describes at length the principles and theory of the facilities, while guidance on their
use in connection with a particular programming language is given in the appropriate
language guide, for example the COBOL User Guide.

Use of the REPEAT parameter of SSTEP (or SJOB) initiates the Checkpoint/Restart
mechanism. A checkpoint is established prior to the execution of the first instruction
of the step.

Checkpoints can also be taken during the execution of a step. In order to achieve this,
the user must include in his program calls to the Checkpoint/Restart mechanism
H-CK-UCHKPT. These calls can be initiated either by explicit statements in the program
or each time a specified number of records of a named file have been processed (refer to
System Management Guide). The latter is achieved by use of the keyword CKPTLIM in
the SDEFINE statement and specifying the number of records to be read between each
checkpoint.

Calls to H-CK-UMODE in the user program can be used to obtain reports on the current
checkpoint status of a step, without causing the checkpoint image to be updated to that
point.

Note:

When a step is restarted, it always restarts from the most recent successful checkpoint
i.e. in the case of a checkpoint within a step from the last one that occurred in the
execution of the step before the abort occurred.

The File Journal facility is used to restore the contents of a file processed by an abnor­
mally terminated step to those of the last checkpoint. In cases where no checkpoints
occur within a step the file is restored to its state at beginning of the step. The File
Journal is used when the re-positioning of a file is not sufficient to return it to its
condition prior to step termination. The Journal facility is implemented by use of the
JOURNAL option of SDEFINE. The JOURNAL option has two parameters BEFORE
and AFTER.

BEFORE JOURNAL

BEFORE is used to restore the contents of a file to those of the last checkpoint, for
example:

ASSIGN RTS, LM-LD;
DEFINE RTS, BLKSIZE=

JOURNAL=BEFORE;

AQ11

allows the contents of the file RTS to be «Rolled-Back» to those of the last check­
point. If the step in which the file is processed is non-repeatable (i.e. the REPEAT
·parameter is not present in the SSTEP statement), the file can still be «rolled-back» if
the step aborts; or at a Warm Restart after a system crash.

AFTER JOURNAL

The AFTER parameter of JOURNAL is a system file on tape or disk in which informa­
tion is stored concerning all writing operations on a file. This .enables the contents of a
file to be restored to those of the previous save. The AFTER Journal can only be used
in connection with Transaction Driven System sessions, to ensure that the integrity of
a file is maintained in the event of abnormal termination of a session.

Notes:

1. The Journal is only available for a single process load module. It cannot be used with
a multiprocess load module and in particular a telecommunications load module.

2. A journalized file must not be closed with a deassignment (i.e. a COBOL, CLOSE WITH
LOCK), otherwise a roll-back attempt will lead to unpredictable results.

JOURNALIZED FILE ORGANIZATIONS

Table 6-2 shows when the File Journal can be used, with respect to file organization
and processing mode.

UFAS

BFAS

File organization

Sequential tape
Sequential disk
Relative
Indexed

Sequential tape
Sequential disk
Direct
Indexed sequential

Processing mode

Output Append Update

NO
NO
YES
NO

NO
NO
YES
NO

NO
YES

NO

NO
NO

NO

YES
YES
YES

YES
YES
YES

------------------- ----+----------------------!

HFAS

Random
Indexed sequential
Sequential disk
Sequential tape

YES
NO
NO
NO

NO
NO
NO

Table 6-2. Availability of File Journal

YES
YES
YES

6-15

AQ11

Repeating a Step

Warm Restart

When the execution of a step is abnormally terminated and if thecheckpoint/Restart
facility has been implemented then the operator will be advised to restart the step
from the last checkpoint. See System Operator Guide for full details. The system
allows the following options :

Step restart from last checkpoint with or without Rollback

Just to rollback file (journalized)

To terminate the step

To suspend the step by use of HJ (ron).

The operator may take corrective action also, for example by mounting a disk on a
different drive.

The warm restart facility minimizes the effects of a system crash due a Power Off or a
hardware/software failure. This is achie·Je by making it possible to recover all jobs that
were in the IN/SCHEDULING/HOLD/OUT STATES. Jobs that were executing at the
time of the system crash, with the repeat option of SSTEP (or SJOB), unless
NRESTART is specified, and with at least one journalized file, are restarted if the ope­
rator requests it. See the System Management Guide.

Note:

Utilities are available to the user, namely SFILCHECK, SVOLCHECK and SCATCHECK,
which allow:

- The labels (SFILCHECK) of a file to be read to ensure that the file can be processed
by a standard access method (available for sequential and library files only).

- The volume table of contents (VTOC) to be checked.; (VOLCHECK).

- The catalog structure to be checked (SCATCHECK).

PROGRAM CHECKOUT FACILITY (PCF)

Use of PCF

6-16

A source program which seldom runs perfectly the first time, is usually corrected and
improved by a process of trial-and-error in a man/machine dialogue. This method is
lengthy and might be extremely expensive in terms of human and machine resources.
The Program Checkout Facility is a resident system program which assists the program­
mer to debug application programs written for Level 64 GCOS. The PCF accepts
commands from a user, specifying program checkout functions such as DUMP and
TRACE. The commands generally refer to source language items, in COBOL and
FORTRAN for instance, which are to be subject to a particular checkout procedure.

The benefits to be derived from the use of PCF are :

- the implementation of a debugging method with powerful tools (such as trace)

the avoidance of time-consuming clerical errors

a clear and easy-to-read debugging report stated in source language terms

a reduction in the number of compilations needed to obtain a productive program.

The user implements the PCF in three phases. Initially the application program is
compiled with the DEBUG parameter present in the appropriate JCL statement.

A011

For example :

FORTRAN SOURCE=*MYDECK, DEBUG ;

which states that a FORTRAN program on cards in an input enclosure is to be compiled
in debugging mode. - -

COBOL SOURCE=MYPROG,INLIB=(MYLIBRARY),DEBUG;

names a source COBOL program in a source program library, MY LIBRARY, which is to
be compiled in debugging mode.

The compiler is thus instructed to keep track of program source elements, and to
generate a table giving the mapping of source line numbers, labels and variables on me­
mory locations, which is then incorporated in the compile unit.

The second phase takes place when the user wishes to start a checkout session. This is
achieved by stating the keyword DEBUG at JCL step level, and providing a description
of the file from which the PCF instructions are to be read.

For example :

STEP ,DEBUG;

ASSIGN H_DB,*CARDS;

ENDSTEP;

SINPUT CARDS;

PCF commands on cards

SEND INPUT;

This example illustrates the association of an internal file name, H_DB, with PCF ins­
tructions on cards.

The PCF commands are read and interpreted. Breakpoints are inserted in the object
program, by use of the tables generated during the initial compilation phase. The final
phase is then entered in which the program is executed, branching from normal exe­
cution sequence occurring at the inserted breakpoints to carry out the specified debug­
ging procedures.

The contents of the PCF command file is discussed fully in the PCF manual.

Notes:

1. If the source program is compiled without the DEBUG option the user may still
use PCF but in this case the user must generate the actual core references of the
action and object points to which he refers.

2. Only COBOL and FORTRAN source programs can be compiled using the DEBUG
option. RPG and GPL may be debugged if the user supplies all the core references.
Refer to the PCF User Guide.

6-17

AQ11

7 •Job occurrence report

For each job run on the system, a printed report is produced, called the Job Occurrence
Report (JOR). The JOR is automatically printed by the Output Writer. The JOR is
subdivided into categories of messages according to the phase, during the job processing,
in which the information is sent to the JOR :

- Job Introduction and JCL Translation

- Job Execution

In general, a report message is a 120-character line, in which are listed the JCL input,
job accounting information, and the body of the JOR messages describing the result of
each command, whether successful or not. The JOR messages begin in column 11. The
date of the report is given in the same line as the report title. When the time of a parti­
cular operation is given, it appears in columns 1 to 8 of the line corresponding to the
relevant message. In addition, for accounting purposes, the start and terminate times
for the job are given in the report.

The general message format is :

- Columns 1 through 10 may contain one of the following character strings, left-justi­
fied: FATAL, SYSTEM, WARNING, hh:mm:ss, a string of blanks.

Here, hh:mm:ss represents a clock time in
hours:minutes:seconds, «FATAL» and «WARNING» indicate user errors, and
«SYSTEM» indicates an abnormal system situation.

Columns 11 through 120 contain the body of the message.
An error message is designated by the message name (e.g. IN01) appearing as the
first item in the message.

JOB INTRODUCTION AND JCL TRANSLATION

The first printed material produced for the job is the Output Writer Banner {see Figure
7-1). This contains:

Date on which the JOR was printed.

2 Time at which the JOR was printed.

3 Run Occurrence Number or the job.

4 User-id.

5 Job-id.

6 Project.

7 Software Release.

8 Version of the System shared Modules.

9 Version of the System Load Module.

7-1

A011

7-2

10 Firmware Version.

11 Machine Identification.

12 Printer Name (on which the report has been printed).

13 Printer Characteristics.

Following the Banner comes the Job Introduction and JCL Translation listing. It is
headed by a line giving the identification of the job, user, account and Run Occurrence
Number. This may be followed by a «Message of Today» (MOT) line, which has been
established by the operator.

An example of this listing is given in Figure 7-2 and an explanation of the various types
of information printed follows here :

14 Time at which translation started.

15 Listing of Source JCL.
The record count is the number of records read. (Note invoked JCL is counted
as 2 records).

16 Time at which translation terminated.

17 Input medium for source JCL, with time and date of introduction (CD - card
reader, MS - disk drive, MT - tape drive).

18 There are two types of JCL «error». WARNING indicates that default action
has been taken. The user should verify that this is the intended action. FATAL
indicates that the error is more serious and the job will be aborted at the end
of translation.

19 As for 8 except that the fatal error resulted in the job being aborted.

CO II
II I'- II
11 Cl" II

~ ;+-e
II II
II II
II <: II
II :!: II
II II
ii :;

II
II
II
II
II
II
II
II

UJ co 0::--1©
g:, II

II
II
ii
II

>---011 :Z II
.... LO
CC II
::E" II.
C> II

II
II
II
II

; _!!!:\
~~

I'll
ra ra
ra Cd CoJ
ra ca <ii
'ii Ccl ca
ra racardra
ra CclcaC'il
17<

cc ca ca
ca ca ra ca ca

ca 111 ca ca
C1!I Ccl :11 ca ,., ca

ca ca ra ca
cara ca ca ca
ca ra Cd

~+e

II
II
II
II
II
II
II
II
H
H
H

• • II

oi:

II
II
II
II
II
II
II
II
II
II
II
II

:~
~.~
c:>- II
0 II

Cl! <O CB
ca ca ai ai ca

raca cara
ca ra ca
ca ca ca

"' "" tR ('A ra ca ra ca C1!I
ca ca ca

cacaracacacee11
C8C8alCCICilC1!11'8t8

Cil
ca
Cil
ca

ca111raniicara<11ca
<a ra 1a ra ca ra ca

ra ,., Cl! C8 11' ai
<aCl!carararaarra
(d '" ca ra
C1!I Cl!I
ra ca
a m 1a ra ca ca ca ca

CBCilCilca<"l'lll

cacacaracamraC8
ra rara ai C1!I ca ca ca

C8
ca
Cd

'" cacacacararacaca
ca racacacaca aira

ra ca
ca 111 ra
ca ca ca
ca <l!I ca
ca ra ra
ra ca ca
ca ("!lcacaraC1!1'19C8
ca ca ca ca ca ra ra ca

ca
C8
CB
ca
C8
C8

ra raCBcacacaraca
ca ca Cd CB ca m ra ra

m
ca
ca
rarar.:tmt11"'"'"' re ca ca <11 ra CB <a ca
ca
ca
Cil

C'iln9C8111C11Cl!t!IC'B
ra ca ra ra ai ra •a c-..

ca .a
ca I'll ca

CP Cn
ca

<11 ra m ca <11 c& <a ca
re m m ca ca cil .. ~ ra

co ra
m ca ca cci <11 CB ·.a C"cl
<11camcae11ca.am
CB Cit

ca ca <11 ca .a ca
ca ca ca ni ca •i!I ca

ca C1I ca
ca ca ca
ca ra lil
ca <1!I ca

ce ca ca ra ca <ii ca
ca ca ca ca :a ca

racaracacacaraai
raracararaca-aca

ca
ca ca
ni ca

Cl!I
ra ca ra ca ca <11 ·a ra
ca ca ra ca CB ca ·a CB

ra ra CB ra ca a ra ca ra ,., ,-a ,., .a ca
ca ra
ca ·a ca
ca ca ca
CB ca
nicacacaaiaicaca

ca ca ca ra ca •i!I

Figure 7-1. Sample Output Writer Banner

rara e11n-re
<ii CB caraca
ra Cil ca
<ii C1'
ca ra
ca ra
Cil<11<11rarocacaca
C!'llllC110tCOct!!Cln9

CB CB
Cd C8 CO ra ,., ca
re ca ra
ca ca m
r.1 ca ra
raraaicaracarara
rar11caramrar"ra

ca ca
ca CB
ca ca
ca ca
ca ca
ca '° ra ca ca ca ca ca ca ca
cacae11racarecaca

ca ca ca ca ca ro
1"cat"d<B<Cll'i!IC1'1ca
<ii ca
ca ca
Cl! (ii

ca ca
ca ra raca '.1!I ca ra ca

<BC11CBCilcaC"d

It
Ii
Ii
II

" II
II
Ii
II
II

" II
II
II

If
II
N
II
II
II
II
II
II
II
II
II
I

II
II
II

" II
II
II
II
II
II
II
II
II
II
II
II
II

II
II
II
II
II

" " II
II
II
II
II
II
II
It
II

C'

'°
:r
C(

VI

0::
CL

~-fr® Q.' ,..

CL II
II

,.... II

~-i©:: ,..
0 ,..
O 11
0 II
C II

II
II
II
II

~-t®·: 0
:: II 'r'"
3 II

II
II

ii II

;. ~ t::\
~~
::!" It
..J II

"
~ ::~ .. ~
~ II
.,, II

II
I"' II
C II

II
0 II

~~ - :\.J
H

7-3

.....
.J:a

-n ca·
c
""I
CD

.....
~
g>
3

"O
Ci"
c...
0
C"'

:;
a c.
c
~
2r
:::J
Cl)

:::J c.
c...
n
r-
-f
""I
Cl)

:::J
Ill

iii s·
:::J

r-
~·

~·

JOBID•QlUU.IT USER•LEHOUX PROJEChOPER -~ILLIN~~OPe~::Rs RON•X0007

-~------------------------~---------------~--~-·----~~--

09:42:11 JOB INTRODUCED FROM MAY 031 191'1

-----~--------------------------------~---:::~-~:~---------------------~------------------~-----~~-
09:42: 13 START OF TRANSLATION ®

SJOB QMAINT USER•LEHOUX PROJECT•OPER:
STEP H:QMAINT svs;
ASSIGN H:cR,•CMD;
ENDS TEP;
SINPUT CMD;
RECORD COUNT:
SEND INPUT;
SENOJOB:

RECORD COUNT : 8

09:°42:14 END Of TRANSLATION ®

A011

JOB EXECUTION

----·· ---·------ __ ___..__ ________ _

The Job Execution messages provide information about the file status and program
status and functioning, and of problems and errors encountered during execution of the
various job steps.

The corresponding listing (see Figure 7-3) contains :

®
®
®
@
©

Step number. If this step is a Utility, the name of the Utility is also given.
This is followed by the name of the load-module (which is the same as the
subfile name) and if the load-module has been preinitialized this will also be
indicated ; and finally, the name of the library from which the load-module
was initialized. If a JUMP is made to a previous step, the original number of
that step will appear.

The time at which the step execution began, and the J and P numbers and
result of the task (J and Pare for debugging use in the event of a system
failure).

The number of 1/0 connects for each file (1 per block transfer + file open,
close, etc.). The example shown includes the number for the JOURNAL file
since the Before Journal is used here.

STACKOV : Number of stack overflows.
The stack contains address information for each segment call. A high value
here may indicate, for example, that a program loop has been split between
two segments.
MISSING SEGMENTS: Number of segments that have been swapped in.
BACKING STORE: Total size (in bytes) of segments in backing store. It does
not include the space for a preinitialized load module.
BUFFER SIZE : Maximum buffer space used.
CPSIZE : Channel program size.

CPU time in minutes.
Elapsed time in minutes.
Number of lines of SYSOUT printer output wi1h the limit, if any.
Number of punched cards (SYSOUT) with the I imit, if any.
Time at which the step terminated.

Same as 24, but in this case for the job.

Reason for abnormal step termination (in this case, see «Messages at Resto'
Time» below).

Messages writen on the execution report in connection with the file access
method (in this case for a BFAS indexed sequential file} ; and, in connection
with Restart.

Notification of file rollback.

Time of attempted warm restart.

The number of the checkpoint at which the step is restarted.

The disk space occupied by the Journal file.

Information about the checkpoints taken during the step.

7-5

......
a,

.,,
ce·
c
~
......
?J
c...
0
CT
m
x
~ c:
r+ s·
::I

r
~·
~· .,,
0

3
Q)
r+

JOB I 0 •QI' Al NT USEhL EHOUX PROJECT•OPER AILLING•OPER::Rs RON•XQ...Q07

--
12:2 2 :1 5 JJ~ EXECUTION LISTI~G MAY 09, 1978

----------sr£P-;-------------------------------~---
LOAD MODULE = H_CNC C78/4 /28 10:54> 20
LIBRARY = MCS.LMLla CMD=C122 > ·

12:22:22 STEP STARTED XPRTY•8 } ~

12:22:29

12:22:32

12:23:21

TASK MAIN J=03 P=OO COMPLETED
RC TRACE : RC=4BC6100E->OFPRE 6,TPUNKN AT 1C3A19A0

RC=4BCA100E->DFPRE 1J,TPUNKN AT 1C07C15A
H_QC_FMS
H_PR
H_CR

ON C122 : N8 OF IO CONNECTS= 22}-@
ON EXP628 : N9 OF IO CO~NECTS= 9 22
ON EXP628 : NB OF IO CONNf.CTS= 1

0.028 l PROG MISSING SE~TS 14 CPU
ELAPSED
LINES

0.105 SYS MISSING SEGTS 15
66 LIMIT NOLIM BACKING STORE 156288

CA ROS 0 LI~IT NOLIM BUFFER SIZE 8256
STEP CO!'t1PLETEO SEV2

STEP 2
LOAO MODULE = TQC_l~IT (78/3 /17 09:51>
LIBRARY = TEST.LMLIB CMO=C122
STEP STARTED XPRTY=8
TASK MAIN J=03 P=JO KILLED
RC TRACE : RC=20181878->VMM 24,NOMATCH AT 0AA402AC

RC=4F001008->0QULK 16,SFNUNKN AT 1AE002FC
FP07.IFN=H_QC_FMS HAS BEEN CLOSED BY SYSTEM
FP07.IFN=H_TST_IN ~AS BEEN CLOSED BY SYSTEM
FP07.IFN=H_PR HAS BEEN CLOSED BY SYSTEM
H_DPPR ON EXP628 : NB OF IO CONNECTS= 129
H_QC_FMS OH C122 : NB OF IO CONNECTS= 74
H_TST_IN ON EXP628 : NB OF IO CONN~CTS= 2
H_PR ON EXP628 : NB OF 10 CONNECTS= 12
CPU 0.235 PROG MISSING SEGTS
ELAPSED 0.808 SYS MISSING SEGTS
LINES 2369 LIMIT NOLIM JAC~ING STORE
CARDS J LIMIT HOLIM BUFFER SIZE
STEP KILLED
CHECKPOINT 1 TIMES CALLEO
CHECKPOINT LARGEST SNAPSHOT LENGTH 50352

STEP 2 RESTARTED AT CHECKPOINT
SHARED MODULE = H_SM1
LIBRARY = ~CS.SMLia

)7

32
39J 72
11J40

12:23:22 STEP STARTED XPRTY=8

RC=4o83100E->DFASG
RC=4~C6100E->OFPRE

3,JPUNKN
6,TPUNKN

STACKOV

CPSIZE

51 l ~
2272 r--e

RC=4FD61008->DQ~L~ 27,SFNUNKN
RC=4aCA100E->DFPRE 10,TPUNKN

STACKOV 19

CPSIZE 2 2 72

~ARNING FP21.RESTART OF IF~ "H_QC_FMS": ~OT ASSI~NED ANY MOHf .~C=JOJOOJCJ->DONE
ELAPSED 1.320

12:24:42 STEP ABORTEC 9Y SYSTEM CRASH

AT 1BB519CC
AT 1C3A19AO

AT 1AD40448
AT 1C0701 5 A

)>

e

;

....,

.!.J

'Tl ca·
c:
;,
?J
8
t.
c..
0
C"
m
)(

2
~ er
:I ,...
iii'
~ cB.
'Tl
0

3
~

12:26:26
WARNING

12:26:49

12:26:49

LIST OF FILES ASSIGNED AT C~ASH Ti~E

EFN
MS_Q0EUE
STEP 2 RESTARTED AT CHEC~POINT

SHARED MODULE = rl_SMl
LIORARY = MCS.S~LI8
STEP STARTED XPRTY=8

V S"l
C122

PM!)

L~

SALVAGED 'llEEDED
.JO 'llO;H

FP21.RESTART OF IF~ "H_QC_F~S": ~OT ASSI~NEO ANY MORE .RC=00000000->DONE
TASK MAIN J=03 P=OO COMPLETED
RC TRACE : RC=4BCA100E->OFPRE 1J,TPUNK~

RC=4B331uOE->OFASG 3,T?uN~~

FP07.IFN=H_TST_IN HAS BEEN CLOSE~ dY SYSTEM
FP07.IFN=H_PR HAS BEEN CLOSED dY SYSTEM

AT 1C07015A
AT 1i3d519CC

RC=433310JE·>OF~SG 31TPUNKN
RC=4dCA1JOE·>OF?RE 10,TPUNKN

FP07.IFN=H_QC_FMS HAS BEEN CLOSED BY SYSTE~
H_TST_IN ON EXP628 : N3 OF 10 CO~NtCTS= 8
H_PR ON EXP628 : NB OF JO CONNECTS= 4~

H_QC_FMS ON C122 : N3 OF lv CONNECTS= 164
CPU 0.347 PROG MISSING SEGTS
ELAPSED 0.380 SYS MISSING SEGTS
LINES 305 Ll~IT NOLIM BACKING STOQE
CARDS 0 Ll~lT NOLI~ euFFER SI~E
STEP CO~PLETEO
CHECKPOINT 0 TIMES CALLEO~

STA HT
STOP
CPU
ELAPSE
RESULT:

12:22:15 LINES
12:26:49 CARDS

0.611
4.567

JOB COMPLETED

2740L ~
o~

27
47

0
12016

STACKOV

CPS IZE

18

2272

AT 1BB519CC
AT 1Cu701 5 A

!~
! _.

AQ11

7-8

JOBID=EDIT USER=ABITBOL PROJECT=JOBM BILLING=JOBM RON=X007

17:30:10 JOB EXECUTION LISTING MAY 25, 1977

STEP 1 LI BMAI NT
LOAD MODULE = H.LIBMAINT (78/1 /30 10350) PREINITIALIZED
LIBRARY = SYS.HLMLIB

17: 30: 37 STEP STARTED
TASK MAIN J=02 P=OO NORMALLY COMPLETED
H.PR ON SR3A91 NB OF 10 CONNECTS=912
COMFI LE ON ER3A91 NB OF 10 CONNECTS= 1
INLIB1 ON B054 NB OF 10 CONNECTS=326
INLIB2 ON B054 NB OF 10 CONNECTS= 22
INLIB3 ON B054 NB OF 10 CONNECTS= 11
LIB ON B054 NB OF 10 CONNECTS= 98
CPU 0.504 PROG MISSING SEGTS 57
ELAPSED 0.919 SYS SEGMENTS 24
LINES 13252 LIMIT NOLIM BACKING STORE 0
CARDS 0 LIMIT NOLIM BUFFER SIZE 12752

17: 31 : 33 STEP COMPLETED STATUS=SEV1

STEP2
LOAD MODULE = H.EDIT ACT
LIBRARY = SYS.HLMLIB

17: 31 : 40 STEP STARTED
TASK MAIN J=02 P=OO NORMALLY COMPLETED
USERACTIF ON 2125 NB OF 10 CONNECTS= 123
USER ON SR3A91 : NB OF 10 CONNECTS=6046
CPU 0.968 PROG MISSING SEGTS 42
ELAPSED 1.882 SYS SEGMENTS 22
LINES 44642 LIMIT NOLIM BACKING STORE 39072
CARDS 0 LIMIT NOLIM BUFFER SIZE 10336

17 : 33 : 32 STEP COMPLETED

START
STOP
CPU
ELAPSE

17: 33: 33

17: 30: 31 LINES 57894
17 :33 :33 CARDS 0

1.472
3.034

RESULT : JOB COMPLETED

Figure 7-4. Job Execution Listing Example

STACKOV 22

CPSIZE 1536

STACKOV 13

CPSIZE 2256

AQ11

OUTPUT WRITER END BANNER

In the above example the library SYS.HLMLIB is specified in the FILE parameter of
the SSTEP statement. The value between the statements STEP STARTED and STEP
COMPLETED represent the accounting information which describes the step execution.
The ELAPSE parameter expresses the clock time in thousandths of a minute which
elapsed during the execution of the step. The PROG MISSING SEGTS statement for
STEP 1 indicates that a total of 24 instances occurred involving the swapping in of a
program segment from backing store to memory, while the SYS MISSING SEGTS
gives the same lnfoimation foi system segments used by the pmgrnm ; in addition there
were 22 occurrences of stack overflow (ST ACKOV) in that step. The statements
BUFFER SIZE and BACKING STORE express the number of bytes within the user
buffers and backing store respectively. CPSIZE gives the ammount of space used by
the channel programs. In addition, the number of physical 1/0 «connects» and the
number of log entries made (1/0 retries) are listed for each assigned file.

A banner, similar to the one written at the beginning of the JOR, is written at the end
of the JOR by the output writer. The format of this end banner is shown if figure 7-5.

The only difference between the end banner and the one written at the beginning
is that at the foot of the page (area 33) information on the printing of the JOR appears
in the form of the following messages :

OUTPUT HELD The output has been retained on
SYS.OUT by the system due to a fault on
the printer.

OUTPUT HELD BY THE OPERATOR The output has been retained on
SYS.OUT by the operator (HO command).

OUTPUT CANCELLED The output has been cancelled by the
system due to a severe and irrecoverable
error.

OUTPUT CANCELLED BY THE
OPERATOR

WRITER TERMINATED

WRITER TERMINATED BY THE
OPERATOR

The output has been cancelled by the
operator (CO command).

All output writer activities have been
terminated by the system owing to a
severe and irrecoverable error.

All output writer activities have been
terminated by the operator owing to a
severe and irrecoverable error
(TO command).

7-9

AQ11

7-10

. .,
• C> • • ,,,
• 0

QC

w
a.
0

....
z

)(

::>
0
:c
w
.;J

.....
)(

'° .,, ..
C>
0

C1I
C1I C1I
Cll C1I C1I
C1I Cll (It
C1I l'8C11
(II C1I C1I C1I C1I
m ns ca C1I
(II

C1I CB«a
Cll C'll C11CllC11

ca "' C1I ca
111<11 C1I
C1I (9 C1I

C1I Cll Cll C1I
tit tit Cll C1I C8
C1I C11C11

C1I C1I ca
C11tll C!J C11ftl

ca• "'C1I
,. Cll C1I
C9C11C11

nt ni C1I C1I
m ca C11 cam
"' "'ca

C11 C11 cam ca C11 C11
"'ca C11 C11 C11 C11 C11 ca

ca
Cll
C1I
C8

C11t9CllC11t9tll C11C11
C1I C1I C1I C1I C1I C1I "'

C8C9C11tllC8C11
C11caC8C11C11caC11C11
C1I •
C1I C1I
C1I C1I
C1I C1I
C11 m"' ca C11 C11 C11 C11

C11C11tllftH8 C1I

C1I C1I C1I C1I C9 C1I C1I C1I
C11 C11 ca C11 nt C11 n1 n1

C1I
C1I
C1I
C1I

m ca cam m re ca C11
CllCllC9ntC11cantnt

C1I C1I
C1I C1I C1I
m ca ca
I'll C1I C1I
C1I C1I C1I
C1I C1I C1I
C11CllC11CllC11ntC1H11
C1I <llC11C11 C11C11C1IC11

nt
C1I
C1I • • • C1I C11<il C1I C11C11 C1IC11

C1I C1I C1I C1I RI (It C1I C1I

II

If

• • II
II

• n
• • • II ..

Figure 7-5. Output Writer end Banner

0

'° ...
:c
c
en

...
a:
Q.
1111:
a.
...
0
a::
Q.

..,
0
0
0
c
0
0

0 ..,
c
::s

.. .. .,
0

z
-'
ao
0

lE
cn
..,
C>
0

c .
0

A011

Job Execution Messages The various types of messages produced during the execution of a job are described in
the following paragraphs. Refer to Error Messages and Return Codes manual.

WARNING AND ERROR MESSAGES

A warning or error message is written in the JOA when the system detects an abnormal
condition concerning the job processing. A warning message may be produced when
actual processing conditions are inconsistent with the expected conditions, but are not
severe enough to prevent the continuation of processing. An error message reflects a
condition which may be due to a user, operator or system error. Such a condition
usually requires that the step be abnormally terminated.

The general format of error messages in the JO R is :

< message code> <message number>. <message text>

For example, DV03.MEDIA volid IS NOT ASSIGNED.

JOB INITIATION AND TERMINATION MESSAGES

The messages in this group are produced during job initiation and termination proce­
dures (note that m.mmm signifies minutes to three decimal places).

JOBID =job identification

USER = username

PROJECT= project name

BILLI NG = account name

RON = run occurrence number

MOT = message of to-day

JOB EXECUTION LISTING mmm dd,yyyy

START hh:mm:ss

LINES= number of lines registered in the sysouts

STOP hh:mm:ss

CARDS= number of punched cards registered in the sysouts

CPU m.mmm Total for all steps in the job excluding centralized system functions

ELAPSE m.mmm

hh:mm:ss RESULT: job termination <;ode (e.g. COMPLETED/ABORTED/KILLED)

7-11

A011

7-12

STEP INITIATION MESSAGES

Under normal processing the followi~1 messages appear in the JOR :

STEP step-number [utility-name] r~ REPEATED ~]
iRESTARTED AT CHECKPOINT~

LOAD MODULE= load-module-name(yy/mm/dd hh:mm) lPREINITIALIZED]

LIBRARY= library-name [(MD= mHdia-name)]

hh:mm:ss STEP STARTED XPRTY = nn

The step number is allocated by the system and represents the order in which each
step was executed within the job.

The date and time given with the Load Module name identifies the time of the last
linkage of the load module.

XPRTY gives the execution priority ot the step at start time.

The following message appears when the operator interrupts the step with an HJ, T J
or END command:

STEP INITIATION SKILLED lSEV5) ~
t DELAYED BY SHUTDOWN~

SEV5 occurs when the interrupt was caused by a T J without the STRONG option.

The following message appears after a specific step initiation error message {see the
Error Messages manual) :

STEP INITIATION ABORTED ~ ~~~! t RC= hhhhhhhh-+ siu, ic, mnemonic code

SEV3 indicates that the step initiation failed because of a user error, whilst SEV4 means
that the failure was due to an irrecoverable system or 1/0 error. The meaning of the
component parts of the return code are explained in the Error Messages and Return
Codes manual.

STEP TERMINATION MESSAGES

The following messages are produced at the end of a step and are split into those at
task level those at step level and those which refer to checkpoints.

Task Level

TASK task-name
J=jj P=pp

COMPLETED RC = hhhhhhhh -+ siu, ic,mnemonic-code
ABORTED BY SYSTEM RC= hhhhhhhh-+ siu, ic,mnemonic-code
ABORTED BY USER. TERMINATION CODE= status-value
KILLED

[RC TRACE : hhhhhhhh -+ siu, ic,mnemonic-code AT kkkkkkkk ... J

AQ11

The terms employed have the following meanings :

COMPLETED

ABORTED BY SYSTEM

ABORTED BY USER

RC TRACE

Step Level

The task has reached a normal (logical) end but may
nevertheless produce an abnormal return code.

The task has been aborted by the system due to a
severe error (program exception; which is described
in a previous message (EXOR).

The task has been aborted by the program itself
through a call to the SH.ABTSK primitive. The termi­
nation.code gives the status value in decimal.

A trace of the last four abnormal return codes set by
functions. c.alled by the program. This information is
useful to the field engineer in case of a system
malfunction.

TEMPORARY FILES USED= nn TRACKS
ifn ON media-name NB OF 10 CONNECTS= nn I NB OF LOG EVENTS= nn]

STACKOV nn CPU m.mmm PROG MISSING SEGTS nn
ELAPSED m.mmm SYS MISSING SEGTS nn

LINES nn LIMIT NOLIM BACKING STORE nn
nn

CARDS nn LIMIT NOLIM
nn

BUFFER SIZE nnn CPSIZE nn

The terms employed have the following meaning:

NB OF CONNECTS

NB OF LOG EVENTS

CPU

ELAPSED

CPSIZE

SYS MISSING SEGTS

PROG MISSING SEGTS

BUFFER SIZE

The total number of physical I/Os issued by the user
program.

The number of 1/0 events that have been logged onto
the SYS.LOG file. Such events occur in the case of
1/0 retries. They have nothing to do with success or
failure of the 1/0.

The CPU time taken to process the user program. It
starts timing at the end of the step initiation (start
program) and finishes at the end of step termination
and includes system functions called by the program.

The elapsed time between the end of step initiation
and the end of step termination.

The total size of the channel program pages in bytes.

The number of missing segments related to system
procedures called by the program.

The number of missing segments related to the
program itself.

Total buffer size in bytes.

7-13

7-14

BACKING STORE

LINES

CARDS

LIMIT

Checkpoint Messages :

The total backing store space used by the program in
bytes.

The number of lines in the sysout files relating to this
step.

The number of card images in the sysout files relating
to this step.

The physical maximum number of LINES or CARDS.

CHECKPOINT nn TIMES CALLED
CHECKPOINT LARGEST SNAPSHOT LENGTH 111

A checkpoint snapshot is an image of the virtual memory address space saved by the
checkpoint facility. The size of the largest snapshot is given in bytes.

JOB EXECUTION TRACE

Events which have modified the sequential execution of the JCL program are logged
in the JOR. In particular each time a JUMP statement is executed with a true condition
it is logged with the following message.

JUMP DONE TO label

Also all actions taken by the operator which affect the job are logged as follows:

COMMAND JOR MESSAGE
·--- ----- -------------------

FJ hh:mm:ss JOB FORCED BY OPERATOR

RJ hh:mm:ss JOB RELEASED BY OPERATOR

HJ hh:mm:ss JOB HELD BY OPERATOR

MJ hh:mm:ss JOB MODIFIED NY OPERATOR : CLASS= ~ cl:ss t

SCH=~~~ DPR = S ~ ~ SW = S * ~
~ ~ ~n ... n~

Where* means not modified by the command.

MESSAGES AT RESTART TIME

If a crash occurs during the initiation or termination of a job or a step (process group)
one of the following messages will be produced.

JOBINIT RESTARTED AFTER A SYSTEM CRASH

JOBTERM RESTARTED AFTER A SYSTEM CRASH

PGINIT RESTARTED AFTER A SYSTEM CRASH

PGTERM RESTARTED AFTER A SYSTEM CRASH

If a crash occurs between steps, for example during the processing of a SLABEL,
SJUMP or SWRITER JCL statement, warm restart performs the necessary operations

A011

to allow the interstep statement to be executed. In this case the following message is
written on the JO R :

JOB RESTARTED AFTER A SYSTEM CRASH

If a warm restart aborts the job which was being executed. or was suspended at the
time of the crash because of irrecoverable inconsistencies found in its structure, the
foiiowing message is written on the JOR :

JOB TERMINATED BY SYSTEM CRASH

If a system crash occurs while a step is being processed, the step is aborted and the
following message appears in the JOA :

STEP ABORTED BY SYSTEM CRASH

This message is followed by recovery information about the files that were currently
assigned to the step :

LIST OF FILES ASSIGNED AT CRASH TIME

EFN

Where:

EFN

VSN

PMD

VSN

SALVAGED

NEEDED

PMD SALVAGED NEEDED

Heads the I ist of file names.

Identifies the volume that contains the file in question.

Processing mode.

Will indicate either YES or NO depending on whether or not the
file was salvaged.

Specifies what is required for the recovery with the following signi·
ficance:

NONE

FILREST"

VOL REST

VOLCHECK

DEALLOC

REALLOC

VO LP REP

UNKNOWN

No action required

A file restore should be performed

A volume restore should be performed

Volume checking is required

De-allocate the file

Re-allocate the file

A volume preparation should be performed

Some damage has been done but the system is
unable to establish the type of recovery action
necessary.

7-15

AQ11

INTRODUCTION

LINE NUMBERS

AppendixA The mini-editor

Parameter substitution allows the user to update JCL statements within an input enclo­
sure. HoWever substitution can only take place at predefined points within the state­
ments, (i.e. wherever the value reference & nn or & keyord appears).

Parameter substitution, allows the user to change the JCL using the VALUES command
in SVALUES, SiNVOKE or SRUN without a thorough knowledge of the JCL to be
changed. l:his is useful where a seqL1ence.of JCL is to be used in different circumstances
with minor modifications; for example where the MEDIA and the DEVCLASS change
from one job to another it may be useful to use parameter substitution in the
SASSIGN statement. A full description of parameter substitutjon can be found in
Appendix E of the JCL Reference Manual.

It is sometimes useful to be able to update a sequence of JCL statements on.a «one"off»
basis, (e.g. where the stored JCL sequence has to be modified for a single test run, or
where an unexpected situation has to be tested), where no provision for change has
been made in advance.

The Mini-Editor on the other hand gives the user a limited editing capability for stored
JCL or for JCL in an input enclosure (where TYPE DATASSF appears in the SINPUT
state'ment). The updating of a JCL sequence is done at translation time (immediately
before parameter substitution is applied). The editing commands available to the
Mini-Editor user is the following subset of the SLIBMAINT editing commands:

A - Creates a new line after the line number specified.

C - Changes the whole of the specified lines for the text following the C.

D - Deletes the lines specified.

I - Inserts new lines of text before the line number specified.

S - Substitutes one character string for another on the specified line.

Use of the Mini.~Editor .requires a knowledge of the JCL to be changed and the line
number of each statement. This information can be obtained using the PR I NT command
of SLIBMAINT. .

Each line in the s;tored JCL or input enc;losure has an associated line number. The first
line of an input enclosure is line number 10, the second is 20 and so on in steps of 10,
e.g.

10 VALUES WORK;
20 STEP LM1,LM.LIB;
30 ASSIGN IN, *INPUT; . .
40 ASSIGN QUT, WORKFILE, FILESTAT = TEMPRY,
SO ENb ~PASS, DEVC,LASS = MT/T9, MEDIA= &1;
·50 ENDSTEP;
70 STEP LM2,' LM.LIB;
80 ASSIGN IN, WORKFILE, FILESTAT = TEMPRY;
90 ASSIGN PRINT, SYS.OUT;

100 ENDSTEP;

A-1

AQ11

THE MINI-EDITOR COMMANDS

The Append Command

A-2

Each edit command must be preceded by either a line number on which the editing is
to take place, or a pair of line numbers separated by a comma. In the latter case the
editing command will operate on all the lines between the two specified including those
specified. e.g.

50C

¢F

This will change the whole of line 50 to whatever follows the C, and:

30, 605

will make whatever substitution is specified after the Son lines 30 to 60 inclusive.

The maximum line number is 999990.

There follows a description of each Mini-Editor commands in alphabetic Qrder.

A -to append one or more lines after the given line number.

STATEMENT FORMAT

ad A

line or lines to by appended after the line ad.

¢F

Example 2:

30A

ASSIGN FRED, EXTFIL;

¢F

This will have the effect of inserting the text ASSIGN FRED, EXTFIL; between line
30 and the next line, leaving the original text unchanged. In Example 2 the result would
be:

Example 3:

30 ASSIGN IN, *INPUT;

ASSIGN FRED, EXTFIL;

40 ASSIGN OUT, WOAKFILE, FILESTAT = TEMPRY, ...

The append command (A) must be written in exactly the same way as it is presented
above. That is, with the line number and the A command on the first line, the text to
be appended in the next lines and on the last line an end of text marker, ¢F. The end
of text marker is necessary to prevent the Append command micking up the next edit
command and appending it to the rest of the text. The user may append several lines in
the same append command.

AQ11

The Change Command

The Delete Command

The Insert Command

C -to change one or more lines completely.

STATEMENT FORMAT

ad1:{,ad2]C

replacement line

¢F

Example 4:

30C

ASSIGN BILL, *DATA;

¢F

Example 5:

150,210C

MEDIA= &1

¢F

The result of the edit command in example 4 will be to delete the existing line 30 and
to replace it with ASSIGN WILL, *DATA;. The result of the edit command given in
example 5 will be to delete lines 150 to 210 inclusive and replace them all with
MEDIA= &1.

The Change command must be written exactly as it is shown above occupying one line
for the line numbers and the change command C, one line for each line to be replaced
and one line for the end of text command ¢F. The end of text command is necessary
since the user may replace one line with many and the editor needs to be informed
when the end of the replacement text has been reached.

D -to delete one or more lines.

STATEMENT FORMAT

ad1[,ad2]D

I -to insert one or more lines immediately before the specified line or lines.

STATEMENT FORMAT

ad1 I

lines to be inserted

¢F

A-~

AQ11

The Substitute Command

A-4

Example 6:

301

ASSIGN FRED, EXTFIL;

¢F

Example 7:

170,

DEVCLASS = MT/T7,

MEDIA= &2;

¢F

The result of the edit command given in example 6 will be to put the line ASSIGN
FRED, EXTFIL; immediatly before line 30,·leaving all other lines unchanged. The
result of the edit command given in example 7 will be to put the two lines :

DEVCLASS = MT/T7,

MEDIA= &2;

before the line 170. Apart from this insertion the rest of the text will remain unchanged.
The end of text marker ¢F is mandatory.

s -to substitute a character siring for a new one.

STATEMENT FORMAT

ad1[,ad2) S/string 1/string 2/

The string delimiting character «I» may be replaced by any other character so long as
it is not contained in either string 1 or string 2. It is necessary to change the string deli­
miter when either string 1 or string 2 ~(,)ntain a «I».

The SLIBMAINT editor makes use of the following special characters:

(dot)

* (asterisk)

A (not)

S (dollar)

& (ampersand)

Although these characters are not used by the Mini-Editor we recommend that when
used they be protected by preceding them with the character protection symbol ¢C. If
ttiis has been done the Mini-Editor commands will be available for use on the SLIBMAIN11
editor. In string 1 only the characters. (dot), *(asterisk), A (not) and S (dollar) need be
protected. In string 2 only the character & (ampersand) needs to be protected.

A011

THE JCL FOR EDITING

Notes On The Edit Commands

Example 8:.

305/N IN/N FREDi

This will h.ave.the effect of replacing the character string IN with the character string
FRED. If this edit command were appliedto example 1 the internal file name on line
30 wouid be FRED in piace of iN. N9te that it is necessary to make the string 1 cha­
racters explicit within ~he line, hence. in example 8 IN and FRED are preceded by an
N plus a blank space. Had this N blankbeen omitted both the IN character strings
would have been replaced by FRED, giving:

Example 9:

30 ASSIGN FRED, *FREDPUT;

130,250S(MT/T9(MS/M452))

The result of the edit command in example 9 will be to change all occurrences of
MT/T9 betWeen lines 130 and 250 inclusive. Note that because string 1 and string 2
contain a I this cannot be used as a string delimiter hence the character (has been used.

To execute the edit commands the user·must build them into an input enclosure and
then reference the input enclosure via UPDATE parameter of a SINVOKE statement.

E~ample 10:

Suppo5e we wish to change the JCL in an input enclosure called JIM with the follo­
wing editing commands whichhave been written into an input enclosure called BI LL :

SINPUT BILL;

50S/X384/Y9872/

110A

ASSIGN IN~ WORKFILE, TEMPRY,

END= PASS, D~VCL.~,= MT/T7, MEDIA= &4;

¢F

SEND INPUT;

The SINVOKE statement required to effect these changes is as follows :

INVOKE •JIM, UPDATE= *BILL;

If the JCL to be changed was stored in a source library file called ROD, the SINVOKE
statement to execute the editing commands in example 10 would be as follows:

INVOKE ROD, AD.LIB, UPDATE= BILL;

All edit commands in the input enclosure must be in increasing order of line. Where a
command uses two line numbers it is the first line number which counts for this
purpose.

All commands must start in the first character position of the line (or the first column
in the case of card input).

A-5

A011

THE UPDATE SEQUENCE

A-6

All blank spaces are considered as meaningful in all commands, character strings, and
text to be inserted or appended. This means that the Mini-Editor will not recognize, for
example, the command 80 C ; it must be written as SOC.

The same line number may be used in various edit commands. It so, the commands
must appear in a specific sequence and only certain combinations are permitted within
a record;

The possible combinations are :

[I] [S] A

[I] [S] D

llJ [S] C

[IJ [SJ

[I]

The input enclosure which contains the editing commands must be in DATA or
DATASSF.

The SINPUT statement at the beginning of the input enclosure containing the edit
commands must not contain a parameter for parameter substitution (i.e. an &nor a
keyword).

There are no restrictions when embedded invoked JCL sequences require Mini-Editor
updating. This means, for example, that an invoked JCL sequence which requires
editing can contain a SINVOKE statement which itself requires editing.

If more than one SINVOKE statement updates a particular input enclosure, each
SINVOKE statement (i.e. each application of edit commands), will create a different
version of the input enclosure.

The syntax of the edit commands is checked according to the above rules and any
errors will cause the SINVOKE statement to be ignored. Error messages concerning the
Mini-Editor commands will appear on the JOA. For a full description of these, see the
Error Messages and Return Codes manual.

If the edit commands pass one syntax test, the editing is performed, and then any para­
meter substitution is done after the editing.

The JCL translator handles the input records after editing as if the updated records
were originally the stored sequence (or input enclosure). Therefore, if the LIST= ALL
command is given in SJOB the edited JCL will be printed on the JOR (but without the
substituted values in the case of parameter substitution).

An error condition arises if a command is not used.

Examples

Example 11 :

The JCL to be changed is stored in a source library member called SEQl of the JCL
library VAST.LIB. The contents of SEQ1 are:

10 VALUES WORK;

AQ11

20 STEP LM1, LM.LIB;
30 ASSIGN IN, *INPUT;
40 ASSIGN OUT, WORKFILE, TEMPRY,
50 END= PASS, DEVCLASS = MT/T9, MEDIA= &1;
60 ENDSTEP;
70 STEP LM2, LM.LIB;
80 ASSIGN IN, WORKFILE, TEMPRY;
90 SYSOUT PRINT;

100 ENDSTEP;

The commands to edit SEQ1 are contained in the following input enclosure called UP:

SINPUT UP;

50S/T9/T7/

90C

ASSIGN PRINT, PRINFILE, DEVCLASS = MT/T9, MEDIA= PR5;

CF

SEND INPUT;

The SINVOKE statement required to execute the edit commands in the input enclosure
UP, and to carry out the parameter substitution is as follows :

INVOKE SEQ1, VAST.LIB, VALUES= X1234, UPDATE= *UP;

After editing and parameter replacement we get the following JCL.

STEP LM1, LM.LIB;

ASSIGN IN, *INPUT;

ASSIGN OUT, WORKFILE, FILESTAT = TEMPRY,

END= PASS, DEVCLASS = MT/T7, MEDIA= X1234;

ENDSTEP;

STEP LM2, LM.LIB;

ASSIGN IN, WORKFILE, TEMPRY;

ASSIGN PRINT, PRINFILE, DEVCLASS = MT/T9, MEDIA= PR5:

ENDSTEP;

If LIST= All was specified in the SJOB statement the JCL printed on the JOR will
be:

VALUES WORK;

STEP LM1, LM.LIB;

ASSIGN IN, *INPUT;

ASSIGN OUT, WORKFILE, TEMPRY,

• END= PASS, DEVCLASS = MT/T7, MEDIA= &1;

ENDSTEP;

STEP LM2, LM.LIB;

A-.7

A-8

ASSIGN IN, WORKFILE, FILESTAT = TEMPRY;

• ASSIGN PRINT, PR INF I LE, DEVCLASS = MT/T9, MEDIA= PR5;

ENDSTEP;

all modified lines are flagged using a dot.

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE SERIES 60 (LEVEL 64)
JOB CONTROL LANGUAGE USER GUIDE

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER No. j AQl l, REV. 1

DATED I SEPTEMBER 1978

r\. Your comments will be promptly investigated by appropriate technical personnel and action will be taken D LI" as required. lf you require a written reply, check here and furnish complete mailing address below.

FROM: NAME~~~~~~~~~~~~~~~~~~~~~~

TITLE~~~~~~~~~~~~~~~~~~~~~~

COMPANV~~~~~~~~~~~~~~~~~~~~-

ADDRESS,~~~~~~~~~~~~~~~~~~~~~-

PLEASE FOLD AND TAPE -
NOTE: U.S. Postal Service will not deliver stapled forms

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WAL THAM, MA 02154

Honeywell

FIRST CLASS
PERMIT NO. 39531
WALTHAM, MA
02154

Honeywell
HoneY\Vell Information Systems

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

21792, 1.5•978, Printed in U.S.A. A011, Rev. 1

