

SERIES 60 (LEVEL 64)
SYSTEM MANAGEMENT GUIDE

ADDENDUM A

SUBJECT

Additions and Changes to Series 60 Level 64 System Management Guide;
Includes the System Patching Facility and Introduces the File Integrity Tools
Available with Level 64 GCOS

SPECIAL INSTRUCTIONS

This is the first addendum to AQ09-01, dated September 1978. Insert the
attached pages according to the collating instructions provided. Pages that have
been changed have an ~~A" after the manual's reference number at the top of the
page. Change bars in the margin indicate technical changes or additions.

Note:
Insert this sheet after the manual cover to show that the manual has
been updated with Addendum A.

SOFTWARE SUPPORTED

Level 64 GCOS Release 0400

ORDER NUMBER

AQ09-0lA

24490
1.2979
Printed in U.S.A.

August 1979

Honeyvvell

Collating Instructions

To update this manual, remove old pages, where necessary, and insert new pages as follows:

Remove

Title page, Preface

iii through viii

1-3,1-4

6-1 through 6-5

© Cii HoneY\',eil Bull, 1979

Insert

Title page, Preface

iii through viii

ix, blank

1-3,1-4

6-1 through 6-26

File No.: 1 N 1 3

SUBJECT

SERIES 60 (LEVEL 64)

SYSTEM MANAGEMENT GUIDE

Describes Installation Management Aspects of Level 64 GeOS

SPECIAL INSTRUCTIONS

For users of Release 0400, this manual replaces Rev. 0 dated July 1977 which
remains valid for Release 0300 users. Because of extensive revision, change bars
have not been used.

EOFTW ARE SUPPORTED

Level 64 GeOS Release 0400

ORDER NUMBER

AQ09, Rev. 1 September 1978

Honeywell

() Cii Honeywell Bull, 1979

Preface

This manual discusses those aspectsof Series 60 Level 64 General Comprehen­
sive Operating Supervisor (GCOS) which relate to installation management.

Section I deals with the methods by which the System is implemented and
updated to include corrections to the system. Section II details the config­
uration facility which is available for adapting the system. Section III
describes the way in which an installation may tailor the supplied system to
meet installation requirements. Section IV consists of concise details relating
to all the system files. Section V covers the various aspects of the GCOS
accounting facility. Section VI describes how the user can make best use of
the file protection facilities available with Level 64 GCOS. Section VII
relates to the subject of Memory Management. Section V III describes the
use of Job Classes, Scheduling Priorities and Execution Priorities. Appendix A
contains examples of the various output listings and error messages derived
from the GCOS configuration procedure. Appendix B discusses the $CAT­
MAINT Utility.

For further information, and in some cases as prerequisite reading, the user
of this manual is referred to the following GCOS Level 64 publications:

Concepts and Characteristics (Order No. AOOS)
Functional Characteristics (Order No. A023)
JCL User Guide (Order No. A011)
Data Management Utilities (Order No. A020)
UFAS User Guide (Order No. AOS4)
BFAS User Guide (Order No. AOS2)
HFAS User Guide (Order No. AOS3)
System Operation, Operator Guide (Order No. A013)
System Operation, Console Messages (Order No. A014)
COBOL User Guide (Order No. A063)
COBOL Language Reference Manual (Order No. A064)
Unit Record Devices User Guide (Order No. A059)
Installation Guide (Order No. C032)

Each section of this document is structured according to the heading
hierarchy shown below. Each heading indicates the relative level of the text
that follows it.

Level

1 (highest)

2

3

4

5 (lowest)

ALL CAPITAL LETTERS,

I nitial Capital Letters,

ALL CAPITAL LETTERS,

Initial Capital Letters,

ALL CAPITAL LETTERS FOLLOWED BY
COLON: Text begins on the same line.

File No.: 1N13

The following notation conventions are used in this manual:

UPPERCASE

lowercase

[item]

{item 1 1
{ ~tem 2 }
litem 3 J

()

The keyword item is coded exactly as shown.

Indicates a user-supplied parameter value.

An item with in square brackets is optional.

A column of items within braces means that
one value must be selected if the associated
parameter is specified. I f the parameter is
not specified the underlined item is taken as the
default value.

Parentheses must be coded if they enclose more
than one item.
An ellipsis indicates that the preceding item may
be repeated one or more times.

The Level 64 Document Set follows. Many of the manuals may be referenced
in the text.

iii

iv

Order
Number

AQ02
AQ03
AQ04
AQ05
AQ09
AQI0
AQll
AQ13
AQ14
AQ18
AQ20
AQ21
AQ22
AQ26
AQ27
AQ28
AQ40
AQ49
AQ50
AQ52
AQ53
AQ55
AQ56
AQ57
AQ59
AQ63
AQ60
AQ64
AQ65
AQ66
AQ67
AQ68
AQ69
AQ72
AQ73
AQ77

AQ82
AQ83
AQ84
AQ85
AQ86
AQ87
AQ88
AQ89
AQ90
AQ92
AQ93
AQ94
AQ98
(:Q31
CQ3,s

LEVEL 64 DOCUMENT LIST

Title

Series 100 Program Mode Operator Guide
Series 100 Conversion Guide
Series 200/2000 Conversion Guide
System 360/370 Conversion Guide
System Management Guide
Job Control Language (JCL) Reference Manual
Job Control Language (JCL) User Guide
System Operation Operator Guide
System Operation Console Messages
Operator Reference Manual
Data Management Utilities Manual
Series 200/2000 Program Mode User Guide
Series 200/2000 Program Mode Operator Guide
Series 100 File Translator
Series 200/2000 File Translator
Library Management Manual
System 3 Conversion Guide
Network Control Terminal Operation Manual
Terminal Operations Manual
Program Checkout Facility Manual
Communications Processing Facility Manual
TDSI64 Standard Processor Site Manual
TDSI64 User Guide
TDSI64 Processor Programmer Reference Manual
Unit Record Devices User Guide
COBOL User Guide
Interactive Operation Facility
COBOL Language Reference Manual
FORTRAN Language Reference Manual
FORTRAN User Guide
FORTRAN Mathematical Library
RPG Language Reference Manual
RPG User Guide
Series 20012000 COBOL to Level 64 COBOL Translator
IBM COBOL Translator
File TI-anslation Manuql
BFAS User Guide
HFAS User Guide
UFAS User Guide
Sort/Merge Manual
Catalog Management Manual
Library Maintenance User Guide
I-D-SIII User Guide, Volume 1
I-D-SIII User Guide, Volume 2
COBOL Reference Card
Operator's Reference Card
RPG Reference Card
FORTRAN Reference Card
System Overview Manual
Error Messages and Return Codes Manuai
Remote Batch Facility

AQ09A

Contents 1. System Implementation
The Configuration and Tailoring Options
Selection of Optional System Facilities
User Files on System Volume
Unit Record Control Information
First Loading of the New System

1- 1
1- 1
1- 2
1- 2
1- 2
1- 4

2. System Configuration 2- 1
The $CONFIG JCL Statement 2- 3

Parameter Description 2- 3
Examples of $CON F IG 2- 3

Conventions of the Configuration Statements 2- 4
The $ACCOUNT Statement 2- 4

Parameter Description 2- 4
Examples of the $ACCOUNT Statement 2- 5
User Guide for the $ACCOUNT Statement Memory Requirements 2- 5

The $ACTSIZE Statement 2- 5
,Example of the $ACTIZE Statement 2- 5
User Guide for the $ACTIZE Statement Memory Requirement 2- 5

The $BANNER Statement 2- 5
User Guide for $BANNE R Stationery Usage 2- 6

The $DEVTRACE Statement 2- 6
Parameter Description 2- 6
Example of the $DEVTRACE Statement 2- 6

The $FI LESHARE Statement 2- 6
Example of the $FI LESHARE Statement 2- 6

The $JOBCLASS Statement 2- 7
Parameter Description 2- 7
Examples of the $JOBCLASS Statement 2- 8
Example of the $JOBCLASS Q Statement 2- 8

The $JOBSIZE Statement 2- 8
Parameter Description 2- 8
Example of the $JOBSIZE Statement 2- 8

v

AD09

vi

The $MAXFI LE Statement
Parameter Description
Example of the $MAXFI LE Statement

The $MAXJOB Statement
Example of the $MAXJOB Statement

The $MAXTAPE Statement
Parameter Description
Example of the $MAXTAPE Statement

The $MAXTASK Statement
Parameter Description
Example of the $MAXTASK Statement

The $MULTLEV Statement
Parameter Description
Example of the $MULTLEV

The $OWCLASS Statement
Parameter Description
Example of the $OWCLASS Statement

The $OWDEVICE Statement
Parameter Description
Example of the $OWDEVICE Statement
User Guide for the $DEVICE Statement

The $OWDL T Statement
Parameter Description
Example of the $OWDFL T Statement

The $PR LOG Statement
Parameter Description
Example of the $PRLOG Statement

The $ROFCLAS Statement
Parameter Description
Example of the $ROFCLAS Statement

The $STATION Statement
Parameter Description
Example of the $STATION Statement

The $STEPFILE Statement
Parameter Description
Example of the $STEPFILE Statement

Summary of CON FIG Default Values and Statements

3. System Tailoring
Planning the System Disk Contents
The TAILOR Job

TAILOR Recovery
Additional Phases of TAl LOR

The TAILOR Option List
Option List Details

Example TAILOR Job
TAILOR Job Output Messages
Executing the TAILOR Job
TAILOR Job Error Diagnostics
Additional Usage of TAILOR

2- 8
2- 8
2- 8
2- 9
2- 9
2- 9
2- 9
2- 9
2- -9
2- 9
2- 9
2-10
2-10
2-10
2-11
2-11
2-11
2-11
2-12
2-12
2-13
2-13
2-14
2-14
2-14
2-14
2-14
2-15
2-15
2-15
2-15
2-15
2-15
2-16
2-16
2-16
2-17

3- 1
3- 1
3- 2
3- 2
3- 2
3- 3
3- 4
3- 5
3- 6
3- 7
3- 8
3- 9

AQ09

4. Description of System Files
Optimized Disk Contents
HUB .
SYS.BOOT
SYS.ERLOG
SYS.URCINIT
SYS.HSLLlB
SYS.HCULIB
SYS.HSMUB
SYS.SYSTEM
SYS.IN
SYS.KNODET
SITE.CATALOG
SYS.BKST
SYS.BKST1
SYS.OUT
SYS.GMCF
SYS.HLMLIB
SYS.HMCF
SYS.SYSDUMP
SYS.SDUMP
SYS.JRNAL
SYS.JADIR
SYS.FTU

5. Job Accounting Facilities
Accounting File Description

4- 1
4- 2
4- 2
4- 3
4- 4
4- 5
4- 6
4- 7
4- 8
4- 9
4-10
4-12
4-13
4-15
4-16
4-20
4-22
4-23
4-26
4-27
4-28
4-29
4-30
4-31

5- 1
5- 1

User Accounting File Description 5-
dumpact utility 5- 2

Introduction by Operator Command 5- 2
Introduction by JCL 5- 2

EDITACT Utility 5- 3
Administrative Functions of Accounting 5- 3

Description of User Registration 5- 3
Control of Job Submission 5- 4
User Registration 5- 4

Description of Accounting Records 5- 4
Job Record Description 5- 5

COBOL Declaration of the Job Record 5- 5
Field Definition of the Job Record 5- 6

Step Record Description 5- 7
G PL Declaration of the Step Record 5- 7
COBOL Declaration of the Step Record 5- 8
Field Definition of the Step Record 5- 8

Crash or Shutdown Record Description 5-10
G PL Deciaration of the Crash/Shutdown Record 5-10
COBOL Declaration of the Crash/Shutdown Record 5-11
Field De'inition of the Crash/Shutdown Record 5-11

User Defined Record Description 5-12
G PL Primitive 5-12
COBOL Call 5-12

Parameter Description 5-12
Return Codes 5-12

G PL Declaration of a User Record 5-12
COBOL Declaration of a User Record 5-12

System Configuration Options of the Job Accounting Feature 5-13
Size of the Two System Accounting Files 5-13

vii

AQ09A

viii

6. File Integrity
File Recovery Facilities

The Before Journal
The After Journal
File Salvager
Checkpoint/ Restart
Summary

Choosing a Recovery Facility
The Before Journal

The Before Journal File
The Before Images

Journalized File Organizations
Requesting Before Journalization ($DEFINE)
Programming Considerations
Rollback Action

The After Journal
The After Journal File

The After Journal on Tape
The After Journal File on Disk

The After Journal Directory
Recycling
Journal Volume Error
The After Images
After Journal File Organization
Requesting After Journalization ($DEFINE)
Ro"forward Action
The After Journal Utility, JAGEN
Parameter Description

PRINT
APPEND
REMOVE
GEN

File Salvager
Activation and Control of File Salvaging
The Action of File Salvager
The UFAS File Salvager

Checkpoint/ Restart
Restart Functions

Restartable Jobs and Steps
Programming for Checkpoint/Restart

H_CK_UCHKPT Routine
H_UMODE Routine
Coding a Checkpoint
Submitting a Restartable Step
The JaR of a Restartable Step

Errors within Checkpoint
Checkpoint at System Shutdown
Recovery of Files

File Positioning
UFAS and BFAS
HFAS
Repositioning of Card Reader Input Stream
File Location

COBOL Message Control System
SYSOUT
Step Management
Accounting
File Assignment
Warm Restart and Shutdown

Shutdown
System Shutdown Actions

System Restart

6- 1
6- 1
6- 1
6- 2
6- 2
6- 2
6- 2
6- 2
6- 5
6- 5
6- 6
6- 6
6- 6
6- 7
6- 7
6- 8
6- 8
6- 9
6- 9
6-10
6-10
6-10
6-11
6-11
6-11
6-11
6-12
6-12
6-12
6-12
6-12
6-13
6-13
6-13
6-14
6-15
6-15
6-15
6-15
6-16
6-16
6-17
6-17
6-18
6-18
6-19
6-19
6-19
6-19
6-20
6-20
6-20
6-20
6-20
6-21
6-21
6-21
6-21
6-21
6-21
6-22
6-22

AQ09A

7.

8.

Appendix A

Appendix B

Figure 2-1
Figure 3-1
Figure 5-1
Figure 6-1
Figure 7-1

Table 3-1
Table 3-2
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table 8-1

Warm Restart
File Salvaging
Warm Restart Initialization
Warm Restart for IN/SCH/HOlD Jobs
Warm Restart of EXP /SUSP Jobs
Warm Restart Action on SYSOUT
Rerun Report

Checkpoint/Restart limitations

Memory Management
Segment Fault Management

The Search for the Virtual Free Memory Area
Compacting
Swapable Segments
Locked Segments
Thrashing

Memory Scheduling
The Minimum Memory Facility
Resident System Functions
Declared Working Set

DWS Estimation for the User Program
DWS Calculations for a User Program

DWS Calculation for Buffer Space

Job Classes, Scheduling and Execution
Recommended Practice
Execution Priority

CONFIG Output Listings and Error Messages

The Cataiog Maintenance Utiiity

ILLUSTRATIONS

CONFIG Throughput
Sample Log Report of Tailor Execution
The User Registration Structure
A Representation of Before and After Journals
Performance Versus Memory

Optional System Files
File Size Values
Supplied Master Disk Layout
System Component Size
SYS.OUT Size Calculation

TABLES

Space Requirements for Optional Elements
Criteria for Choosing a Recovery Facility
Before Journal Use Details
After Journal Use Details
Warm Restart For IN/SCH/HOLD Jobs
Warm Restart Action on Operator Response
Preset Job Classes

6-22
6-22
6-23
6-23
6-24
6-25
6-25
6-26

7- 1
7- 1
7- 2
7- 2
7- 2
7- 2
7- 3
7- 3
7- 4
7- 4
7- 4
7- 6
7- 7
7- 9

8- 1
8- 2
8- 2

A-l

8-1

2- 1 *
3- 7
5- 3
6- 3
7- 5

3- 1
3- 2
4- 1
4-18
4-21
4-24
6- 4
6- 6
6-11
6-23
6-25
8- 1

ix

AQ09

1. System Implementation

The General Comprehensive Operating Supervisor (GCOS) software is designed
to minimize the amount of user effort required for system maintenance and
implementation.

GCOS is delivered to an installation on one disk volume. This disk will contain
all the basic components of GCOS plus any additional components which may
have been ordered specifically for the installation. Concise details of the
software installation procedure are provided in the "Installation Guide".

The system manager's first task is to perform a "Save" on the contents of the
supplied disk volume. This is a security copy and should be produced by use of
the $VOLDUPLI utility, and where an additional copy on tape is required, by use
of the $VOLSAVE utility. The supplied master disk may be used to execute
these utilities.

The name of the supplied system disk should be determined by performing an
Initial System Load (lSL) from this supplied system disk.

Assuming the volume name of the supplied master is CHBSYS then the initial
back-up job might be as follows :

$ JOB FJ,USER=OPMAN,PROJECT=SYSMAINT;

VOLPREP OLD=(DEVCLASS=MT/T9,MEDIA=NONAME,
LABEL=NONEl,

NEW=(MEDIA=OMRX) ;

VOLSAVE VOLUME=(DEVCLASS=MS/400,MEDIA=CHBSYSl,
OUTFI LE=(OMSS,GCOS,DEVCLASS= MT IT9,

MEDIA=OMRX};

$ ENDJOB;

In this instance the user first prepares a tape volume OMRX (not necessary if a
standard labeled volume is available) and then saves the contents of the master
disk as tape file OMSS.GCOS on OMRX.

THE CONFIGURATION AND TAILORING OPTIONS

Once the contents of the supplied master disk have been saved, GCOS may be
used directly from this supplied disk without any further action. System Con­
figuration and Tailoring are completely optional.

These Configuration and Tailoring procedures are primarily intended to be used
as an aid to system software installation. Therefore, minimal use after initial
installation should be anticipated.

However, careful planning by site management with consideration of the long
term effects of the various options can have a significant impact on th~ overall
efficiency of the system's operation. This impact can be both advantageous and
disadvantageous, i.e. the introduction at configuration time of the optional
facility $ACCOUNT will have obvious and attractive advantages, but the
increase in memory cost to an already heavily loaded site could prove to be too
expensive in terms of efficient system throughput.

1-1

AQ09

Similarly, the facilities provided by the tailoring procedure require careful con­
sideration. Efficient use of the tailoring facility can result in the minimum
amount of disk space being required by the system files. Optional files are the
more obvious areas for possible disk space saving, with the actual size of the
selected files being a further important point for consideration. If the files
selected are not located (System, resident or non-Resident disks) carefully, any
possible saving in disk space could be heavily outweighed by the cost in the
wastage of system and operator time.

The system files, which are created by GCOS for its own use, are directed to
specific disc volumes by the file allocation procedures. One of the primary con­
siderations when creating these files is to achieve an equitable balance of files
across all available devices. Careful file balancing can improve the overall
system efficiency by avoiding access conflicts (Le. where two or more jobs com­
pete for the use of a device).

Full working details of the Configuration and Tailoring procedures are given in
sections II and III of this manual.

SELECTION OF OPTIONAL SYSTEM FACILITIES

As previously mentioned, the accounting feature of GCOS is an optional facility.
Others include the Journal file recovery mechanism (see section VI of this
manual) and the Catalog facilities feature (see section V and appendix B of this
manual). Choice of use and any installation-imposed limitations (options and
default values) of such features are the system manager's responsibility.

The cost in terms of additional memory requirements, any increase in operator
work and the overall effect on system throughput shouid be considered carefully
when adopting (and adapting) such facilities.

Details of the various options relating to system facilities are given in sections II
and III of this manual.

USER FILES ON SYSTEM VOLUME In transfering from one software release to another it may be necessary to
transfer user files from the old system to the new.

In this case, system transition consists of the following steps:

1. Save all user files (and possibly SYS.URCINIT as well) on the old system.disk
using the utility $FILSAVE.

2. Build a new system disk (TAILOR, see section III of this manual).
3. Restore files to the new system disk using $FILREST (preceeded by

$PREALLOC).

Warning:
Note that TAILOR first destroys (by $VOLDUPLI) all files on the output volume.
It is not possible to update a system disk to a new system while retaining files
on the volume.

UNIT RECORD CONTROL INFORMATION

1-2

When a new version of GCOS is installed, the user will normally have to reload
any user-defined Unit Record Control (URC) definitions from the old system to
the new. These user-defined elements are placed in the system file
SYS.URCINIT (see Section IV, Description of System Files).

A utility program named URINIT controls storage within the SYS.URCINIT file
of such parameters as character sets, belt segment images, forms, vertical for­
mat units, selection tables, etc., which are all needed by the Unit Record Drivers
to initialize the Unit Record Controller.

AQ09

For a new site, the release 0400 files supplied with the system should be
sufficient to initiate the installation tasks and, in many cases, to start oper­
ation. If the site has only a card reader and/or printer as unit record devices,
the minimum SYS.URCINIT file as contained on the release 0400 disk will
be sufficient. if there is card punch, paper tape equipment, and/or a docu­
ment handling unit, the UREXT file should be used to obtain the required
parameters; this is done by using the editor to choose the generation com­
mands applicable to the site, then running the URI N IT utility program with
these commands as input.

The URI N IT utility performs a control function which enables protection of
device independence. This independence allows more than one item to be
associated with the same device name and is ach ieved through the alphabetical
prefixing of the items' names.

The following list gives these specific alphabetical characters and their respec­
tive device names:

K For Printer Character Set.
B For Printer Belt.
F For Printer V.F.U.
P For Printer Print Test.
R For Card Reader Character Set.
U For Card Punch Character Set
E For Cassette Translation Table.

Additional device-independence facilities are also provided by subfi!es
containing the Specifics Tables of a given device:

CATALDIR subfile for Table of Contents of SYS.URCINIT file.
PR INTEAL subfile for the Printer.
TAPCARK7 subfile for the Card Reader.
T APCAR K7 subfile for the Card Punch.
TAPCARK7 subfile for the Cassette.

The internal structure of the SYS.URCINIT file has been modified for
Release 0400, as has the U R IN IT utility language: the file and the utility
language are therefore incompatible with the file language as used in release
0300. The minimum SYS. U RCINT file can be used for system installation;
if this file is sufficient for user needs, operation can then begin immediately,
with no problems, If, however, the user wishes to retain the parameters of
the SYS.URCINT file of release 0300 format the TURF utility must be
used to translate them to 0400 format. Note that no output must be
queued at the time TURF is run, and that a RESET RELOAD must be
performed following TU R F completion.

1-3

AQ09A

FIRST LOADING OF THE NEW SYSTEM

1-4

Once a new system disk is installed, the system manager may wish to perform
the foilowing actions:

,. Pre-initialize load modules by means of the PLM command; selected load
modules (compilers, utilities, user applications) are permanently loaded into
backing store.
This pre- initialization should be done for those load modules that are fre­
quently used (such as the COBOL compiler) and especially for those fre­
quently used in more than one job stream concurrently.
In the case of concurrent usage, the advantages of pre-initialization are
twofold:

Avoidance of repeated loading of the module into the backing store.
- Only one copy of code and constant data segments is present, instead of

multiple copies.

2. Load shared modules; these modules (such as HIDS and BTNS) must be
placed in SYS.BKST' prior to their use. This loading is performed via the
LOAD command of $LlBMAINT SM utility. Note the result of this loading
may be verified by the operator command DLM SM.

3. Implement the "default" installation values for:
Multiprogramming Level.
Multiprogramming Level, Execution Priority and Scheduling Priority for
each class. For further information on these see $MULTILEV statement,
see Section II of this manual.

4. Define any RESIDENT volumes for use with the system disk; this is done in
reply to ILO'.

5. Reply RESTORE with volume-name to message ILO' ; this will establish, for
future occasions, the name of the volume containing the file SYS.SYSTEM.

6. Establish dump options, using the DUMP-CD parameter in the IL01 reply.

For further details of the SYS.BKST1, SYS.SYSTEM and SYS.HSMLlB files
refer to Section IV of this manual.

AQ09-

2. System Configuration

When a system is initialy built (system generation), it is of a standard format and
is not dedicated to any particular hardware configuration or specific software
requirement. Therefore, the running operating system should ideally be adapted
to its environment, conform to site specific devices and by possible changes to
the supplied default values, permit optimum installation throughput.

To adapt the standard level 64 GCOS operating system to suit a specific
environment the system configuration facility (CONFIG) can be used. This is
performed on site and is designed as a quick and easy to use "tool" activated
like any other standard dependant software component. The hardware con­
figuration is not specified through any statement of configuration, this is per­
formed automatically based on the System Resources Status Table (SRST), at
each execution of CONFIG. Certain features of the supplied system are optional
thus constituting some additional overhead to the site. If a particular feature, or
part of one is not required, it may be adopted or deleted through use of CON­
FIG. The Accounting feature is one such example; it provides information, both
at step and job level and on exception conditions etc. The Accounting feature, if
required, and the chosen record type can be adapted by CONF!G.

In the event of a running site being supplied with a new release of system
software, ~tandard supplied default values may not suit the installation require­
ments; however the facitities offered may be suitable for the chosen application,
By use of CONFIG the new software release can then be configurated to meet
the specific requirements. For example in release 0300 there were 6 Output clas-
ses with varying default priorities; whereas under release 0400, 26 output classes
exist. It may be advantageous to use the 26 output classes but with changes in
the provided default priorities.

The following figure details the input requirements of CONFIG and the cor­
responding outputs of the completed run.

SRST

Report of
Execution

Statements of
Configuration

CONFIG

Figure 2 -1 . CONFIG Throughput.

SYS.SYSTEM

Updated
SYS.SYSTEM

2-1

AG09

2-2

The input requirements of the CON FIG component are as follows:

The SRST of the running (existing) operating system.

A SYS.SYSTEM file which was the output from system generation.
However, it need not be the SYS.SYSTEM file which generated the backing
store of the current operating system.

A sequential file of statements of configuration.

The result of a successful execution of CONFIG is an updated SYS.SYSTEM file
or as it should be retermed "A Configurated SYS.SYSTEM File".

If CONFIG is run on several occassions on the same SYS.SYSTEM file, changes
will only be made in respect of the original (supplied) SYS.SYSTEM file. Conse­
quently a second running of CONFIG with only one change specified will have
the effect of cancelling all previous configuration changes to all areas of the
system file, thus reverting to the supplied file format, with only the one, as
specified, change being made. The changes made are against a constant
reference, the status of the SYS.SYSTEM file as it was originally delivered to the
site. This feature offers a fixed reference point for each execution of
CONFIG; thus enabling trouble-free changes to be made. until the required (op­
timum) configuration is reached.

Once the SYS.SYSTEM file has been sucessfully adopted by use of CON FIG, the
r~-configurated system may be launched by use of the following ISL options:

- RESTORE to restore the backing store
from the configurated
SYS.SYSTEM file.

- RESTART (COLD) the type of restart specified
must always be "cold".

If a RESTORE option is not issued. no change will be made to the backing store
and the status of the running system after ISL will remain the same.

If an incorrect RESTART is issued. the following message is output at the
operator console :

RESTART (COLD) IS MANDATORY. YES OR NO?

If the answer given is "YES" then the restore option will be obeyed and a COLD
restart performed. If the answer is "NO" then no RESTORE will be performed.

In general any incident, such as a system crash, during the execution of CONFIG
will not affect the SYS.SYSTEM file upon which CON FIG is being run. This is
because the SYS.SYSTEM file is either of the "OLD" or "NEW" status. If the old
file is corrupted the new file will be unaffected, and if the new file is corrupted
the old file will remain unaffected.

However. if an abort of CONFIG occurs. it is possible for the SYS.SYSTEM file
to be left in a non-defined state (neither "OLD" nor "NEW"). A further run of
CONFIG will correct this situation. If a re-run is not performed and an ISL
RESTORE is attempted. (using a SYS.SYSTEM file of an undefined state). the
operator will be warned that CONFIG execution could not be satisfactorily com­
pleted, and asked if a restore is required.

Console message: CONFIGURATION PARAMETERS LOST
, DO YOU WANT TO RESTORE?

If the answer is "NO" then no restore is performed. If the answer is "YES" a
restore will be performed which will revert the backing store back to its state as
at system generation time.
CONFIG must then be re-run

Note:
Preinitialized load modules are not valid from one run of CONFIG to another.
When a configurated SYS.SYSTEM file is introduced all preinitialized load
modules should be cancelled (CLM) and then re-preinitialized (PLM).

Examples of CONFIG output listings and a full list of error messages, with
definitions. are given in Appendix A of this manual.

A009

THE $CONFIG JCL STATEMENT

Parameter Description

Examples Of SCONFIG

Function:
Enables the user to adapt SYS.SYSTEM file to suit specific needs.

Format :

CONFIG [l RESIDENT '1
DEVCLASS = device-class l

\ MEDIA = volume-name j J

[" COMFILE = S *input-enclosure-name f]
l sequential-file-description ~

[, DUMP= i~TA t],
L PRTFILE = (print-file-description)]

[, PRTOUT = (SYSOUT -parameters)]

L PRTDEF = (DEFINE-parameters)1 ;

RESIDENT The SYS.SYSTEM file of the RESIDENT volume will be chosen by
default if no DEVCLASS and MEDIA parameters are given.

DEVCLASS The device-class of the vo~ume supporting the SYS.SYSTEM file
to be configurated. This parameter must be specified in conjunc­
tion with the media parameter.

MEDIA The name of the disk volume supporting the SYS.SYSTEM file to
be configurated. This parameter must be specified in conjunction
with the DEVCLASS parameter.

COMFILE Command file parameter which must be given in either Standard
System Format (SSF) or Standard Access Record Format (SARF).

DUMP Standard dump parameter, the default value being NO dump.

PRTFI LE The PRTFI LE parameter specifies the sequential file to which the
output listing will be sent; the default is the standard SYSOUT
subfile.

PRTOUT The PRTOUT parameter is used to override and change the stan­
dard ouput parameters. Any parameter of the $SYSOUT JCL
statement can be specified.

PRTDEF The PRTDEF parameter is used to override and change the file­
definition parameters used for the output file. Any parameter of
PRINTER parameter group of the $DEFINE JCL statement can be
specified.

CONFIG MEDIA = I NST,DEVCLASS = MS/M400,COMFILE = *KART;

$INPUT KART;

{
$ENDINPUT;

From the above example the installation system disk (MEDIA = INST)' which
supports the SYS.SYSTEM file to be configurated, is located on device-class
MS/M400 (DEVCLASS = MS/M400) and configurated by the input enclosure
KART ($INPUT KART).

2-3

AQ09

CONFIG COMFILE = (MY LIB SUBFILE = MY CONFIG
DEVCLASS = MS/M400,M EDIA = MY _ DK); - '

From the above example the RESIDENT system disk (chosen by default) sup­
ports the SYS.SYSTEM file to be configurated. The statements of configuration
are located within a subfile named MY CONFIG (SUBFILE = MY CONFIG) of
the library MY LIB. This library is supported by a volume named MY DK
(MEDIA = MY-OK) located on device-class MS/M400
(DEVCLASS = MS/M400)

Conventions Of The CONFIGURATION Statements

THE $ACCOUNT STATEMENT

Parameter Description

2-4

1. Mandatory "$" sign before names of all configuration statements.
2. No space allowed between "$" sign and the name of a statement.
3. The end of a record acts as a delimitor.
4. Standard facilities of JCL are adopted in the following areas:

- free format
- no order imposed for keyword parameters
- the optional number of blanks allowed before and after a separator
- the use of positional parameters, and/or keyword parameters
- the comma not a mandatory seperator between the various parameters

of a statement

Function:
To establish if the accounting facility is required, and to specify what level of
detail is expected. This statement can only be modified by a further run of CON­
FIG.

Format:

$ACCOUNT ~ ALL

/ ~S~EP] LJOB] LEXCEPT] LEND] LUSER]I :

If no $ACCOUNT statement is given. $ACCOUNT ALL will be assumed by
default. If neither "ALL" nor "NO" is specified then at least one other parameter
(STEP, JOB, EXCEPT. END or USER) must be given. Where more than one
parameter is given. each parameter must be seperated by a comma, however
the keyword string must not be seperated form $ACCOUNT by a comma.

ALL

NO

STEP

JOB

EXCEPT

END

USER

The ALL parameter is used to specify that every type of
accounting record is required to be written to the accounting file.
It also allows "USER" information to be written to the accounting
file.

The NO parameter is used to specify that accounting facilities are
not required.

The STEP parameter specifies that step records are written to the
accounting file.

The JOB parameter specifies that job records are written to the
accounting file.

The EXCEPT parameter specifies that exception records are writ­
ten to the accounting file.

The EN D parameter specifies that a record is written to the
accounting file at each shutdown.

The USER parameter enables any user specific accounting infor­
mation to be written to the accounting file.

AQ09

Examples Of The $ACCOUNT Statement

$ACCOUNT ALL;

and

$ACCOUNT STEP,JOB,EXCEPT,END,USER;

These are equivalent statements which specify that ail accounting information.
including user specific information, are to be written to the accounting file.

$ACCOUNT NO;

This statement specifies that no accounting information is required.

User Guide For The $ACCOU NT Statement Memory Requirements

THE $ACTSIZE STATEMENT

The parameters of this statement allow a choice of the accounting information
to be written to the accounting file. Where ALL is specified, the working set
memory cost at step level is about 5K (at step termination) and about 5K at job
termination. The use of the USER,EXCEPT and EN D parameters will cost a
further 5K of memory at the time when the information is written to the
accounting file.

Function:
To estabiish the size of the VMM (Virtual Memory Management) accounting
file. This size can only be modified by a further run of CONFiG.

Format:

$ACTSIZE size;

The size expressed in this statement is given in units of allocation of backing
store.The size of one unit of allocation is 1 K. The system default value is 200,
and the maximum value is 2000.

Example Of The $ACTSIZE Statement $ACTSIZE 100;

This statement specifies that provision is made for 100 units of allocation for
accounting information.

User Guide For $ACTSIZE Statement Memory Requirements

THE $BANNER STATEMENT

The accounting mechanism is based on two files, if $ACTSIZE n is specified, the
cost in memory will be 2*n units of backing store. For further details see the Job
Accounting Facilities section of this manual.

Function:
To define the default value of the number of heading banners given by
Output-Writer. To override this system default value use the [N] BANNER/­
BANINF options of $OUTVAL, $SYSOUT and $WRITER JCL statements.

Format:

$BANNER! ~ ~ ;
If any value other than 0, 1 or 2 is specified, 2 will still be assumed. The options
available are: no banner (0)' 1 page of banner, or 2 pages of banner, the system
default value is 2 pages of banner.

2-5

AQ09

User Guide For $BANNER Stationery Usage

THE $DEVTRACE STATEMENT

Parameter Description

Example Of The $DEVTRACE Statement

THE $FILESHARE STATEMENT

Example Of The $FllSHARE Statement

2-6

Use of this statement depends largely on the user application. Careful
consideration should be given to usage where expensive pre-printed stationery
is used. Where the stationery is of a standard nature and cost per page not so
inportant, consideration might be given to possible ease of use gained from
larger banners which could enable quicker separation of printout and clearer
identification for distribution.

Function:
To set a default option for device trace as output at operator console. These
default options may be re-set by the NOT, SOT and TOT operator commands.

Format:

$OEVTRACE [ABN] [,ATN] [,WARN] [,ALARM] ;

If no $OEVTRACE statement is specified through CONFIG, there will be no
trace of devices given at the operator console. When a $OEVTRACE statement
is made it must include at least one of the options, there is no default option for
this statement.

ABN

ATN

WARN

ALARM

The ABN parameter is used to enable the display of all "abnor­
mal" events, from SYS.ERLOG, at the operator console.

The ATN parameter is used to enable the display of all "attention"
messages, from SYS.ERLOG, at the operator console.

The WARN parameter is used to enable the display of all "war­
ning" messages, from SYS.ERLOG, at the operator console.

The ALARM parameter enables the display of an alarm message
at the operator console. This message occurs at preset intervals
within a group of abnormal events. The operators attention is
drawn to the fact that there is a continuing abnormal error status.
Presetting of the ALAR M message occurrence is performed
through the operator START and TRACE commands. For further
details see System Operator Operation Guide.

$OEVTRACE WARN;

This statement enables all "warning" messages to be displayed at the operator
console.

Function:
To set the maximum number of jobs which can share the same file. This figure
can be modified only by a further run of CONFIG.

Format:

$FILSHARE total-number-of-jobs ;

The total-number-of-jobs parameter specifies the maximum number of jobs
which can share anyone file concurrently (permissible range 2 - 32). The
default value of this figure is 5. If the system assigns the file for system usage
this will count as one job. If the same file is assigned more than once within the
same step it will still count as one job.

$FILSHARE 3 ;

This statement specifiee; thdt
the same time.

nore than 3 jobs may access anyone file at

AQ09

THE SJOBCLASS STATEMENT

Parameter Description

Function:
To set the system job management default values for job classes. A job ~Iass
va!us may be modified by the MC, TC and SC operator commands. It is possible
to override some default values by use of the PRIORITY parameter of the $JOB
JCL statement, and by use of the XPRTY parameter of the $STEP JCL state­
ment. For full details of the provided system job class default values. see the
summary of default values and statements of this Section.

$JOBCLASS job-class

[,XPRTY = execution-priority]

['PRIORITY = scheduling-priority]

[,MAXLOAD = maximum-class-load]

[
~ STARTED ~]

, t NSTARTED5

r,NSC] [,NMAXPRTY]

[,NMPRIO) LNMLOAD] ;

To enable a valid $JOBCLASS CONFIG statement to be made at least one of
the above optional parameters must be specified.

job-class The "job-class" parameter defines the job class to which the
$JOBCLASS statement applies. This parameter can be anyone
from the job class range A-Z.

XPRTY

PRIORITY

MAXLOAD

STARTED
NSTARTED

NSC

NMXPRTY

NMPRIO

NMLOAD

The XPRTY parameter defines the execution priority of the job
class (also known as the despatching priority). This parameter
may be changed by the XPRTY keyword parameter of the $STEP
jCL statement. 0 is the highest priority and 9 the lowest.

The PRIORITY parameter defines the scheduling priority of the job
class. This parameter may be changed by the PRIORITY keyword
parameter of the $JOB JCL statement. 0 is the highest priority
and 7 the lowest.

The MAXLOAD parameter defines the maximum number of jobs
within the specified class that can be executing simultaneously.
The figure chosen should be equal to or less than the figure given
by the first parameter of the CONFIG statement $MULTLEV

The STARTED parameter starts (by default) the specified job class
and the NSTARTED parameter inhibits the start of the job class.
The NSTARTED option must not be specified when the NSC
parameter is to be used for the same job class.

When the NSC parameter is specified, use of the SC and TC
operator commands, to affect the related job class, is inhibited.
When this parameter is not specified the operator is able to use
the SC and TC commands to modify (STARTED and NSTARTED)
the specified job class. The NSC parameter must not be specified
when the NSTARTED option has been selected for the same job
class.

The NMXPRTY parameter, when used, inhibits operator use of the
MC command to modify the execution priority of the given job
class.

The NMPRIO parameter, when used, inhibits operator use of the
Me command to modify the scheduling priority of the given job
class.

The NMLOAD parameter, when used, inhibits operator use of the
MC command to modify the multiprogramming limit of the given
job class.

2-7

AQ09

Examples Of The SJOBCLASS Statement

Example $JOBCLASS Q Statement

THE $JORSIZE STATEMENT

Parameter Description

$JOBCLASS P,XPRTY = 9,PRIORITY = 7,MAXLOAD = 3;

The job-class is P, with a dispatching priority of 9, a scheduling priority of 7 and
a multiprogramming limit of 3. The class is started by default, and the operator
has full use of the TC, SC and MC commands on this class of job.

$JOBCLASS H,XPRTY = 9,PRIORITY = 7,MAXLOAD = 0 ;

Although this class is started by default, no job of class H will be started
because the multiprogramming limit is set at zero. To start jobs of class H either
the FJ or MC operator command would need to be used.

$JOBCLASS Q MAXLOAD = 12, NSTARTED ;

The job class is Q with a limit of 12 (multiprogramming) IOF users being
allowed to log-on. The operator is required to issue the SC Q command to start
the Q job class and has the power, by use of the TC command, to stop other
users from logging on.

Function :
To state the maximum number of user generated lines on the Job Occurrence
Report. This figure can only be modified by a further run of CONFIG.

Fonnat:

$JORSIZE max-number-of-lines;

max-number-of-lines

The maximum number of lines parameter sets the permissible maximum
number of user written lines within the same step to be output on the JOR. If
the information written exceeds the $JORSIZE statement, then no further infor­
mation will be output on the JOR. The system default value for this parameter is
500 lines, the system permissible--maximum is set at 2,000 lines.

Example Of The SJORSIZE Statement $JORSIZE 50 ;

THE $MAXFILE STATEMENT

This $JORSIZE statement parameter specifies that a maximum of 50 lines per
step of user generated JOR are permitted.

Function:
To set the maximum number of active files which at any point in time are within
the system. The SITE.CATALOG, SYS.IN, SYS.OUT and SYS.URCINIT files are
not included in this evaluation. Active files being either opened, or assigned (not
opened). or not assigned but passed or those which are an attached user
catalog. This figure can only be modified by a further run of CONFIG.

Format :

$MAXFILE max-number-of-files;

The system default value for this parameter is set at 55, the permissable range
is from 1 0 to 200.

Parameter Description The $MAXFILE parameter should be greater than the "max-number-of-started­
jobs·' as given in the $MULTLEV statement.

Example Of The SMAXFILE Statement $MAXFI LE 1 5 ;

The maximum number of active files is set at 15.

2-8

AQ09

THE $MAXJOB STATEMENT

Example Of The SMAXJOB Statement

THE $MAXTAPE STATEMENT

Parameter Description

Example Of The SMAXTAPE Statement

THE $MAXTASK STATEMENT

Parameter Description

Example Of The SMAXTASK Statement

Function:
To set the maximum number of known jobs in the system. Known jobs being
those vvhich are introduced, scheduled, executing or \'vaiting for output. This
figure can only be modified by a further run of CON FIG.

Format :

$MAXJOB max-number-of-jobs:

The system default value for this parameter is 200. The average cost of
backing-store is about 3.5K per 30 Known jobs. Therefore if a reduction of the
internal tables can be made, to match the true load, then a worthwhile advan­
tage is gained. The system permissible maximum for the number of known jobs
is 9999.

$MAXJOB 32;

The maximum number of known jobs is set at 32.

Function:
To set the maximum number of known tapes (or cassettes) in the system at any
point of time. A known tape being either assigned or passed. This figure can
only be modified by a further run of CONFIG.

Format:
$MAXTAPE max-number-of-tapes ;The system default for this parameter is
64, with the range of 1-64.

The maximum number of tapes parameter sets the permissable maximum
number of known tapes (or cassettes) in the system at any point in time.

$MAXTAPE 12 ;

The maximum number of known tapes is set at 12.

Function:
To set the maximum number of user tasks (user proccesses) that can
simultaneously execute. This figure can only be modified by a further run of
CONFIG.

Format:
$MAXTASK max-number-of-user-tasks:

The system default value is set at 50, and the system permissible maximum is
set at 150.

The max-number-of-user-tasks parameter defines the total user processes that
may be simultaneously executing. It should be noted that the value for TOS user
processes is defined at TOS generation time by the TASK parameter. One
Program mode job (emulator) should be counted as two processes and one user
step as one process. Little or no advantage will be gained from specifying a
figure which is 15 (or greater) above that specified for the "max-number-of­
started-jobs" parameter of the $MULTLEV statement.

$MAXTASK40;

The maximum number of running user tasks may be 40.

2-9

AQ09

THE SMULTLEV STATEMENT

Parameter Description

Example Of The SMUL TLEV Statement

2-10

Function :
To set the maximum number of : (a) started jobs including service jobs. (b) batch
jobs. excluding service jobs. (cl IOF users. The values (a) and (c) can only be
modified by a further run of CONFIG. The value (b) may be modified by the MS
operator comma~d.

Format :
$MULTLEV .max-number-of-started-jobs

• BATCH = max-number-of-batch-jobs
• INTERACT = max-number-of-IOF-users ;

The system default values for these parameters are:

$MULTLEV = 14,BATCH = 5,INTERACT = 10;

The values of BATCH and INTERACT. when modified. must still be equal to or
less than the values of MULTLEV. The value of MULTLEV, when modified, must
be equal to, or greater than the MAXLOAD parameter of the $JOBCLASS CON­
FIG statement. The value of MULTLEV, when modified, must also be less than
the MAXFILE parameter of the $MAXFILE CONFIG statement.

max-number-of-started-jobs
The maximum number of started jobs parameter defines the total permissible
number of simultaneously started jobs within the system. i.e. service jobs and
user jobs.

BATCH The BATCH parameter defines the maximum number of batch
user jobs which may be simultaneously started. (excluding service
jobs).

INTERACT The INTERACT parameter defines the maximum number of IOF
users.

$MULTLEV 15,BATCH = 6,INTERACT = 2 ;

The number of jobs that may be simultaneously started is 15. Batch jobs are
limited to 6 and the interactive IOF users is 2.

$MULTLEV 12,BATCH = 10,INTERACT= 10;

The number of jobs that may be simultaneously started is 12. Batch jobs are
limited to 10 and interactive IOF is also 10.

$MULTLEV 7;

This statement would result in an error because the default value for INTERACT
(and BATCH) must always be less than the figure given for the maximum
number of started jobs.

AQ09

THE $OWCLASS STATEMENT

Parameter DM~ription

Example Of The SOWCLASS Statement

THE $OWDEVICE STATEMENT

Function:
To define the default selection priority attatched to the output classes of the
output Writer. This figure may be modified by the MO/MOC operator command.
This figure may also be modified by use of the PRIORITY parameter of the
OUTVAL, SYSOUT and WRITER JCL statements.

Format:

$OWCLASS output-class-to-be-modified

1
2
3

,PRIORITY = . 4
5
6
7

The system default value for any given output class priority is as follows:

Output Default
Class Priority

A _______________________ .1
8 ___________ 2

C ,3
o 4
E ,5
F 6

G-Z 7

nlltnllt-rl:::I~~-tn_hA_rnnrlifiDri __ .. ,..._ .. _. ___ .. ___ •• 1 __ ",_-

The output class to be modified parameter defines the output
class whose default selection priority is to be modified.

PRIORITY The PRIORITY parameter defines the prority attached to the cor­
responding output class.

$OWCLASS A, PRIORITY = 2 ;
$OWCLASS C, PRIORITY = 2 ;

The above statements have modified both output classes A and C to priority 2.

Function :
To define output classes activated by the Output Writer when no indication of
class type is given in the SO operator command.

Format :

$OWDEVICE device-rank-identifier
,OVID = device-identifier
,CLASS = alphabetical-identifier;

The system default value for any given output class is as follows:

The device-rank identifier is of the range 1 - 15, OVID is SRST dependent and
CLASS = the full range A - Z.

2-11

AG09

Parameter Description

Example Of The $OWDEVICE Statement

2-12

device-rank-identifier

OVID

CLASS

The first parameter value "device-rank-identifier" has no physical
meaning, it is used as a rank identifier. There can be no space
(unused digit) in the ranks used i.e. if rank 6 is used then ranks
1 - 5 and 7 - 1 5 must also be used. When two statements have
the same rank identifier, the statements must refer to the same
device.

The OVID parameter identifies an output device i.e. PR01, PR02,
CD01, C002 etc. When a SO operator command is issued, the
output classes specified by the CLASS parameter are automatical­
ly started on the given device. The device names used must be
those registered in the System Resources Status Table.

The CLASS parameter specifies the output classes which are
started by default.

The following examples assume that the output devices PR01, PR02, CDOl
and C002 are known system output devices.

EXAMPLE 1 Where no $OWOEVICE statement is made, the system supplied
default values are assumed. Therefore, when the operator issues
the SO command on devices PR01, PR02, COOl, and C002, the
full range of output classes (A - Z) is started on each of the
devices.

EXAMPLE 2 $OWOEVICE 1 ,DVID '. PR01.CLASS = ABCDEF;
$OWOEVICE 2,DVID = PR02,
CLASS = GHIJKLMNOPQRSTUVWXYZ ;

From the above $OWOEVICE statements the following will occur
on the operator specified devices:

Operator
command

SO PROl
SO PR02
SO COOl
SO C002

Output class
Started

A-F
G -Z
A-Z
A _. Z

EXAMPLE 3 $OWOEVICE 1 ,OVID = PR01,CLASS ,=. ABCDEFGHIJKl ;
$OWOEVICE 2,OVID = PR02,CLASS = IJKLMNOP ;
$OWOEVICE 3,OVID = COOl ,CLASS = INITIALIZATION;

From the above $OWDEVICE statement the following actions will
occur on the operator specified devices.

Operator
command

SO PR01
SO PR02
SO COOl
SO C002

Output class
Started

A-l
I-P
A.I,L,N,O,T,Z.
A-Z

EXAMPLE 4 $OWOEVICE 1 ,OVID = PR01 ,CLASS = ABeD;
$OWOEVICE 1 ,OVID = PROl ,CLASS = EFGH ;

The second $OWOEVICE statement will override t;,e first as both
statements are for the same device (PR01). The output classes
started on device PR01 will be EFGH.

A009

EXAMPLE 5 $OWDEVICE 1 ,OVID = PR01 ,CLASS = ABCD ;
$OWDEVICE 1 ,OVID = PR02,CLASS = EFGH ;

The above $OWDEVICE statements show an error. The two state­
ments are of the same rank but refer to different devices. Similarly
two devices of the same type could not be refered to with dif­
ferent ranks.

User Guide For The SOWDEVICE Statement

THE SOWDFLT STATEMENT

As previously stated, the function of the $OWDEVICE CONFIG statement is to
define the output classes activated by the Output Writer when no indication of
class type is given by the SO operator command. However, this statement can
also be used to perform a priority output control function where only one printer
is available, where two printers, and more than one stationery format are used,
to perform a stationery format streaming function.

EXAMPLE OF PRIORITY OUTPUT CONTROL

Requirement:
Maximum priority output always within classes A - F, low priority
output always within classes G - Z.
Assuming the installation has only one printer, PR01, the follow­
ing statement will be necessary to ensure the required priorities:

$OWDEVICE 1 ,OVID = PR01 ,CLASS = ABCDEF ;

When the operator issues the SO PR01 command only the output
classes of maximum priority (A - F) will be printed. Upon comple­
tion of all maximum priority output, the operator may then issue
the SO PR01 G - Z command to receive all other output.
Note, this example only ShO\AlS t\,AJO priority divisions, the actuai
number may be set to meet the user specific requirements.

EXAMPLE OF STATIONERY FORMAT STREAMING

Function:

Assuming the installation has two printers PR01 and PR02, and
the stationery mounted on these two is of two different types, the
following statements could be given:

$OWDEVICE 1 ,OVID = PR01 ,CLASS = ABCDEF ;

$OWDEVICE 2,DVID = PR02,
CLASS = GHIJKLMNOPORSTUVWXYZ;

In response to the first statement, output classes A - F will be
printed on paper type one at output device type PRO 1. In
response to the second statement, output classes GHIJKLMNOP­
ORSTUVWXYZ will be printed on paper type two at output device
type PR02.

To define the system default values for the Output Writer. These default values
are observed when processing the OUTVAL,SYSOUT and WRITER JCL state­
ments.

Format:

$OWDFL T [CLASS = I defaultcvalue I]
[DEVCLASS _ Sde~ice-class-name ~]

, - l PR/H132 S

r MEDIA _ ~ media-name)]
l ' 1""\ - ~ I 1 0000 ~

[,TAPE = 1 N;~;~~~ t] ;
2-13

AQ09

Parameter Description

Examples Of The $OWDFL T Statement

THE $PRLOG STATEMENT

Parameter Description

Example Of The $PRLOG Statement

2-14

CLASS The CLASS parameter defines the output value of OUTVAl,
SYSOUT and WRITER JCl statements. The default value for this
parameter is C.

DEVCLASS The DEVCLASS parameter specifies the output device for Output
Writer output. The default value for this parameter is PR/H 132.

MEDIA

TAPE

The MEDIA parameter specifies the default print belt, character
set and paper identification for the printer as specified by the
DEVCLASS parameter.

When the SYSOUT option (default value) of the tape parameter is
selected, the Output Writer is able to override certain user file
definition parameters. The NSYSOUT option ensures com­
patability between releases 1 C and 10 when the standard sup­
plied utilities are not being used to read SYSOUT tapes.

EXAMPLE 1 $OWDFlT;

The default class for deliveries is CLASS =c C, the default output
device for the system is the PR/H 132 printer with belt: character
set/paper: 110000. If the output writer has to create a SYSOUT
tape, it is allowed to override the user RECFORM and BlKSIZE
parameters.

EXAMPLE 2 $OWDFlT CLASS = D. DEVClASS = PR/H71 ,MEDIA = 13050 ;

The default class for deliveries is CLASS = D. the default output
device for the system is a PR/H71 printer with 13 character set
and paper type 050. If either the belt of paper type are wrong, Le.
they are not entered in the SYS.URCINIT file. then 110000 will be
assumed.

Function:
To set the threshold value at which the operator is warned to print the
SYS.ERlOG. This figure can only be modified by a further run of CONFIG.

Fonnat:

$PRlOG [THRESHOLD = specified-percentage I
[.COMMAND = "operator-command"] ;

specified -percentage
The specified percentage parameter defines the point (threshold)
at which the operator is notified of the need to print SYS.ERlOG.
This threshold point is expressed in percentage terms, e.g. when
the SYS.ERlOG is 80% full, notification will commence. The
system default value is 50%.

operator-command
The operator command parameter specifies a valid operator com­
mand which should be obeyed as SOOI1 as the threshold figure is
reached. If this parameter is not specified, the system default
action is to request the operator to "RUN PRlOG".

$PRLOG THRESHOLD = 90 ;

This statement specifies that the point of notification to print SYS. ER lOG is
when SYS.ERLOG is 90% full. By default the operator is then requested to
"RUN PRlOG".

AQ09

THE $ROFCLAS STATEMENT

Parameter Description

Example Of The SROFCLASS Statement

THE $STATION STATEMENT

Parameter Description

Examples Of the SSTATION Statement

Function:
To set the default class for a job introduced in GCOS64 using ROF. This default
class can only be modified by a further run of CONFIG. Tha ROF US6i may OV8i­

ride this default class by using the CLASS parameter in his $JOB JCL state­
ment.

Format:

$ROFCLAS default-class;

default-class
The default class parameter specifies one of the job classes from
the range A - P. The system default value is class "P".

$ROFCLASS B ;

This statement specifies that the default job class for a job introduced using
ROF is class "B".

Function :
To define the remote station names and the corresponding protocols to be sup­
ported by the Output Writer. These values can only be changed by a further run
of CONFIG.

Format:

$STATION station-rank, name + identity, PROTOCOL = ~ __ .~.1_ l
f MVIt' ,

station-rank The station rank parameter defines a rank, of the range 1 - 6,
which would enable a station name to be overridden when there
is more than one $STATION statement for the same station. Rank
numbers must start form 1 and there can be no space (unused
digit) in the ranks used Le. if rank 6 is used then ranks 1 - 5 must
also be used.

NAME The NAM E parameter defines the name of the remote station.
This name may comprise up to 4 characters in length, the first two
characters must be alphabetical but not PR or CD.

PROTOCOL The PROTOCOL parameter defines which protocol is to be used
by the system for dialogue with the station. This protocol may be
either the 61 or MVI P type. The system default value for this
parameter is the 61 protocol.

$STATION 1, LYON;
$STATION 2, XPR;
$STATION 3, BCO;

This set of statements defines three stations whose names are "LYON",
"XPR" and "BCO". Therefore, any other station-name used in an Output Writer
JCL statement will be rejected.

$STATION 3, PC09, PROTOCOL = 61 ;
$STATION 3, AG12, PROTOCOL = MVIP;

The second statement overrides the first because it applies to the same station,
Le. station 3.

2-15

AQ09

THE $STEPFILE STATEMENT

Parameter Description

Examples Of The SSTEPFILE Statement

2-16

Function:
To establish the maximum number of file assignments made during a step. This
figure can only be modified by a further run of CONFIG.

Format:

$STEPFILE ~ :~ t

The parameter 42/55 defines the maximum number of internal-file-names
which may be assigned during a step. The figure chosen can only be 42 or 55,
with 42 being the system default value.

$STEPFILE 42 ;

The maximum number of internal-file-names which may be assigned during a
step is set at 42 ;

$STEPFILE 30;

This statement is an error because the value given is neither 42 nor 55.

AQ09

SUMMARY OF CONFIG DEFAULT VALUES AND STATEMENTS

$ACCOUNT ALL;

$ACTSIZE 200 ;

$BANNER 2;

$FILESHARE 5 ; "

$JOBCLASS A ,XPRTY = 9 , PRIORITY = 7 , MAXLOAD = 1 , STARTED ;'.//

$JOBCLASS B ,XPRTY = 9 , PRIORITY = 7 , MAXLOAD = 1 , STARTED ;v
$JOBCLASS C ,XPRTY = 9 , PRIORITY = 7 , MAXLOAD = 1 , STARTED ;V

$JOBCLASS D ,XPR1Y = 5 , PRIORITY = 1 , MAX LOAD = 1 , STARTED ;v"

$JOBCLASS E ,XPRTY = 4 , PRIORITY = 2, MAXLOAD = 1 , STARTED; }J- 1. ;;­

$JOBCLASS F ,XPRTY = 7 I PRIORITY = 3 , MAXLOAD = 1 , STARTED ;v

$JOBCLASS G , XPRTY = 9, PRIORITY = 4, MAXLOAD = 1 , STARTED ;/"

$JOBCLASS H I XPRTY = 1 , PRIORITY = 6, MAXLOAD = 1 I STARTED;

$JOBCLASS I , XPRTY = 9 , PRIORITY = 7 , MAXLOAD = 1 ,STARTED;

$JOBCLASS J ,XPRTY = 1 , PRIORITY = 6 , MAXLOAD = 1 , STARTED;

$JOBCLASS K ,XPRTY = 9 I PRIORITY = 7 , MAXLOAD = 1 , STARTED;

$JOBCLASS L ,XPRTY = 9 , PRIORITY = 7 , MAXLOAD = 1 , STARTED;

$jOBCLASS M , XPRTY = 9 , PRIORITY = 7 , MAXLOAD = 1 , STARTED;

$JOBCLASS N , XPRTY = 9, PRIORITY = 7 ,MAXLOAD = 1 ,STARTED;

$JOBCLASS 0 ,XPRTY = 9 , PRIORITY = 7 , MAXLOAD = 1 ,STARTED;

$JOBCLASS P ,XPRTY = 9 , PRIORITY = 7 , MAXLOAD = 5 , STARTED;

$JOBCLASS Q ,XPRTY = 4, PRIORITY = 7, MAXLOAD =10, STARTED, NMPRIO;

$JOBCLASS R , XPRTY = 2 , PRIORITY = 0 , MAXLOAD = 6 , STARTED, NSC ;

$JOBCLASS S , XPRTY = 0, PRIORITY = 7 , MAXLOAD = 1 , STARTED, NSC,NMPRIO,NMLOAD ;

$JOBCLASS T , XPRTY = 4 , PRIORITY = 7 , MAXLOAD = 6 , STARTED, NMPRIO ;

$JOBCLASS U ,XPRTY = 2 , PRIORITY = 7 , MAX LOAD = 6 , STARTED, NMPRIO ;

$JOBCLASS V ,XPRTY = 9 , PRIORITY = 7 , MAXLOAD = 1 , STARTED;

$JOBCLASS W , XPRTY = 2 , PRIORITY = 0, MAXLOAD = 8, STARTED, NSC ;

.$JOBCLASS X ,XPRTY = 3 , PRIORITY = 0, MAXLOAD = 1 , STARTED, NSC,NMPRIO,NMLOAD ;

$JOBCLASS Y ,XPRTY = 9, PRIORITY = 7 , MAXLOAD = 1 ,STARTED;

$JOBCLASS Z I XPRTY = 9 , PRIORITY = 7 , MAXLOAD = 1 , STARTED;

$JORSIZE 500;

$MAXFI LE 55;

$MAXJOB 200;

$MAXTAPE 64 ;

$MAXTASK 50;

$MULTLEV 14, BATCH = 5, INTERACT= 10;

2-17

AQ09

SUMMARY OF CONFIG DEFAULT VALUES AND STATEMENTS (cont).

$OWCLASS A ,PRIORITY = 1

$OWCLASS B ,PRIORITY = 2

$OWCLASS C ,PRIORITY = 3

$OWCLASS D ,PRIORITY = 4

$OWCLASS E ,PRIORITY = 5

$OWCLASS F ,PRIORITY = 6

$OWCLASS G ,PRIORITY = 7

$OWCLASS H through to Z are all default PRIORITY = 7

$OWDEVICE 1 ,DVID = ... , CLASS = A through Z;

$OWDEVICE 2 , DVID = ... , CLASS = A through Z ;

$OWDEVICE 3 , DVID = ... , CLASS = A through Z ;

$OWDEVICE15, OVID = ... , CLASS = A through Z;

$OWDFLT CLASS = C, DEVCLASS = PR/H 1 32, MEDIA = 110000, TAPE = SYSOUT ;

$PRLOG THRESHOLD = 50 ;

$ROFCLASS P;

$STEPFILE 42 ;

2- 18

AQ09

3. System Tailoring

The system tailoring procedure allows a system disk to be built which
corresponds closely to the installation's requirements. It also minimizes the
amount of disk space required for system files.

Before running the TAILOR job the system manager must prepare a disk volume
for receiving the GCOS components.

It is important that the volume preparation ($VOLPREP) specifies that a
COMPLETE preparation is performed and that all weak tracks (as given by the
list supplied with the disk pack) are specified in the Badtrack parameter group.

Example:

VOLPREP OLD=(DEVCLASS=MS/M400,MEDIA=WDK),
NEW=(DEVCLASS=MS/M400,MEDIA=C020),
COMPLETE,
BADTRACK=(045/16,174/3,332/14);

For full details of the $VOLPREP statement see the Data Management Utilities
manual.

PLANNING THE SYSTEM DISK CONTENTS

In the tailor operation there are two choices:

Selection of optional files

Selection of size values for certain files.

Optional files are those which the user need not have present if certain system
features are not used. They are summarized in Table 3-1.

Table 3-1. Optional System Files

File Name When Required Size (eYu

SYS.SYSTEM System Restore at ISL 15

SYS.JRNAL System Journal (Before) 6

SYS.JADIR System Journal (After) 1

GMCF Series 1 00 Program Mode 2

HMCF Series 200/2000 and IBM 2
Program Mode.

SITE.CATALOG Catalog Facilities ;;;;:1

SYS.FTU File Transferthru 61/64 ;;;;:10

3··1

AQ09

THE TAILOR JOB

TAILOR Recovery

Additional Phases Of TAILOR

3-2

These optional files will be automatically selected (or rejected) by the TAILOR
job, based on the parameters supplied by the user. They need not be deleted by
user-supplied $DEALLOC statements.

The following table lists the system files to which file size selection applies. The
sizes shown are the default values. If the sizes of these files are to be changed,
the calculation should be performed using the information provided on each file
as detailed in Section IV of this manual.

Table 3-2. File Size Values

File Name File Use Initial Size
(CYL)

SYS.HLMLIB System Load Module Library 60

SYS.IN System Input File 5

SYS.BKSTl System Backing Store File 60

SYS.OUT System Output File 50

SITE.CATALOG Catalog File For Site 1

SYS.FTU File Transfer Utility File 10

Having planned the new system, the system manager executes the TAILOR job.
This job is supplied in the system and is executed by the SJ (Start Job) com­
mand, SJ TAILOR (option list). The TAILOR job may also be executed by use of
the $RUN JCL statement, RUN TAILOR, SYS.HSLLlB, VALUES~=(option list);.
The "option !ist" is a group of up to 26 parameters. If any option is omitted, the
appropriate default value will be assumed. (See TAILOR Option list, below). All
parameter values, as used in the previous run are retained by TAILOR and
refered to during the current run. This facility eliminates the need for repetitive
action as only the parameters under going change need be specified. There is
however one exception, the FUNC parameter, its value is always set to NORM
when none of its SIX options are respecified.

The TAILOR job can be started from a given point (recovery phase) by use of the
FUNC parameter. This parameter offers two restart options.

- FUNC=RCVYCT used for restart after abort during copy of catalog.

- FUNC=RCVTLM used for restart after abort during copy of standard load
modules.

The PRINT phase, which is used for the printing of the values as defined in
TAILOR (i.e, FUNC=PRINT).

The RESET phase, which is used for reseting the original default values of
TAILOR. (Le, FUNC=RESET).

The TEST phase, which is used for rewriting and printing of the supplied
parameters of TAILOR. This phase can be used before the normal (NORM)
run of TAILOR, prior to processing.

AQ09

THE TAILOR OPTION LIST Notation:

CSV Customer Supplied Value

SJ TAILOR (lNDVC= 1 ~~~M400 t
nUTn\lt'" _ S csv l
U 'IJVv- fMS/M400S •

INVOL= CSV •

OUTVOL= CSV •

FUNc=I~~;
PRINT
RESET

SYST= t ~~S t .

JRNL= ~ !~l ,
~ BEF ~

CTLG- ~ YESLNBOBJ= S CSV l I ~
- ~ NO ~ §QQJ ~.

SYSOUT = S YES
I RSD,RDSVOL=C5V!.RSDDVC= ! ~~~M400 I! !,

OUTSZ= ~ ~~V t .
,CSV l

RECSZ= ~ ill!. s .
s CSV l

BLKSZ= ~ 3130 ~.

LGTKSZ= t ~SV ~ •

MODE= ~ ~Q~'65 ~.
PM200
PM360

[CT1 00UFT1 OOJ.[COBTRJ.[FT200]'

[HUTIL],[BALTRJ.[RPGTRl.

ROF=! ~~!:R ,
BOT
BOTR
N

S csv l
FTUSZ= ~!.Q S'

HLMSZ= ~ ~~Vt '

5
I NSZ= lcsv~'

BKST1SZ= ~ ~~v t)

3-3

AQ09

OPTION LIST DEFINITIONS

INDVC Device class of the input disk.

OUTDVC Device class of the output disk.

Possible values are: MSM350
MS/M400,MS/M402,MS/M452

INVOL Self explanatory

OUTVOL Self explanatory

FUNC · Execution mode of TAILOR

· PRINT Prints default values defined in TAILOR job

· NORM Normal use of TAILOR

· RCVYCT Recovery, beginning atthe PREALLOC
of SITE.CATALOG.

· RCVYLM Recovery, beginning at the PREALLOC of SYS.HLMLIB

· TEST Rewrite and print option, without processing of TAILOR.

· RESET Resets the initial default values of TAILOR.

SYST 1 · " Defines if the SYS.SYSTEM file needed on optimized disk

· . : YES PREALLOC of SYS.SYSTEM

· NO No file.

JRNL · Defines if journalization is required.

· BEF PREALLOC of SYS.JRNAL file.

· AFT PREALLOC of SYS.JADIR file and copy load modules

· BOT PREALLOC of both files and copy load modules

........ NO Nofile.

· Defines if Catalog facilities are required

· YES PREALLOC SITE.CATALOG and copy file and load modules.

· NO No File.

· NBOBJ Number of objects to be cataloged. Used for PREALLOC

CTLG 1
'of SITE. CATALOG.

SYS.OUT · Defines if SYS.OUT file will be on optimized
disk or another.

· YES SYS.OUT file allocated onto OUTVOL.

· RSD SYS.O~Tfile allocated onto RSDDVC/RSDVOl.

· RSDVOL Resident disk (not system).

· RSDDVC Device Class of Resident disk (not system).

OUTSZ .. Size to be given to SYS.OUT file.

RECSZ Record size chosen for SYS.OUT file.

BLKSZ .. Block size of SYS.OUT

LGTKSZ Logical track size of SYS.OUT file.

3-4

AQ09

MODEl=

t
· Mode control option

· PM 1 00 G 1 00 file will be allocated and PM 1 00 load
module delivered

· PM200 H200 file will be allocated and PM200 load module
delivered

· NATIVE Native mode only.

CT100 .. Delivery of G 100 program translator

FT100 .. Delivery of G 100 file translator

COBTR .. Delivery of required COBOL translator

FT200 .. Delivery of required file translator

HUTll Delivery of HFAS file & volume utilities

SAL TR .. Delivery of BAl to COBOL translator.

RPGTR Delivery of RPG translatorfrom IBM3.

ROF · lV6 ROF through level 6 (no SYS file required).

· LV61 : ROF through level 61, PREAlLOC of SYS.FTU onto
OUTVOL and copy load modules.

· LV61 R PREALLOC of SYS.FTU onto RSDVOL and copy load modules.

· NO No ROF required.

· BOT PREALLOC of SYS.FTU onto OUTVOL

· . " BOTR " PREALLOC of SYS.FTU onto RSDVOL

FTUSZ .. Size to be given to SYS.FTU.

HlMSZ Size to be given to SYS.HLMLIB

INSZ .. Size to be given to SYS.IN

BKSn SZ Size to be given to SYS.BKST1.

EXAMPLE TAILOR JOB SJ TAILOR (lNVOL=CHBSYS,OUTVOL=GCOSRX,RSDVOL=GCOS,
RSDDVC=MS/M350,FUNC=TEST,MODE=NATIVE,JRNL=BEF,
OUTSZ=60)

From the above TAILOR job format a new system disk GCOSRX is created,
using the GCOS disk as the resident volume with a device number of MS/350.
The GCOSRX disk is created with the following characteristics:

The phase of TAILOR used was TEST.

All components of the Series 100,200/2000 and IBM/3 (files and load
modules) are excluded. (MODE=NATIVE).

Preallocation of SYS.JRNAL performed (JRNAL=BEF).

SYS.HLMLIB has a size of 60 cylinders (default value assumed).

SYS.lN has a size of 5 cylinders (default value assumed).

SYS.FTU is not preallocated (default value assumed).

The SYS.OUT file preallocated on GCOSRX (SYS.OUT =Y assumed) with 60
cylinders, RECSZ of 3128 bytes a BLKSZ of 3136 bytes (default values), and
a logical track size of 9.

3-5

AGOg

TAILOR JOB OUTPUT MESSAGES SYSTEM CONSOLE (see sample listing)

3-6

Each stage of TAl LOR activity is reported by the message:

"****SYSTEM DISK OPTIMIZATION PHASE: 1"

.. : 2"

.. : 3"

The end of a successful operation is signalled by :

"YOUR SYSTEM IS NOW READY

ONTO output volume identify

AND YOU HAVE AT LEAST. .. given number. .. CYL FREE"

If the SYSOUT file is to be allocated onto a resident but non-system disk, the
following message will be displayed by TAILOR:

"SYSOUT file preallocation"

and the following message will be provided by the system :

"MOUNT output volume identify ... FOR ... xyy"

If SYS.FTU is required on RSDVOL, the following message will be sent:

"x SYSFTU file preallocation"

LINE PRINTER OUTPUT

The line printer output details the volume contents of the oplimizen nisk ann
also gives the following information.

List of delivered Compile Units (SYS.HCULlB).

List of delivered Sharable Modules (SYS.HSMLlB).

List of delivered Load Modules (SYS.HLMLlB).

List of delivered JCL - (SYS.HSLl.1 B).

A009

EXECUTING THE TAILOR JOB

*

Figure 3-1. shows a sample log report of TAILOR execution. After the command
is entered CD. The options and values selected are not listed.

$Joe CROPTDSK,USER=ussr-nams,PROJECT =project-name;

$RUN TAILOR, SYS.HSLLlB,VALUES7, (lNVOL:C053,OUTVOLCS 18,
RSDVOL=C219,MODE=PM200,COBTR,BAL TR,RPGTR,
SYST =Y,JRNAL=BOT,SYSOUT =R,HLMSZ=5,IN-SZ=9,

$ENDJOB;

B KST1 SZ= 70,OUTSZ=30,R ECSZ= 1040,
BLKSZ=1048,LGTSZ=33);

19.33 X9 IN TAILOR SYSADMIN P SPR=7
19.33 X9 STARTED TAILOR SYSADMIN P
SP06 X9 *"TAILOR UTILITY 1 0809
SP06 X9 FUNCTION REQUIRED NORM***
SP06 X9
SP06 X9 * SYSTEM DISK OPTIMIZATION PHASE: 1
SP06 X9 WARNING: GPL FILES ONTO C053
SP06 X9 NO PREALLOC PROVIDED ON C218
SP06 X9 * PHASE: 2
SP06 X9 WARNING: SITE CATALOG REQUIRED
SP06 X9 WHEN YOU RUN TELECOM FACILITIES
SP06 X9 SITE.CATALOG IS PREALLOCATED WITH 600 OBJECTS
SP06 X9 * PHASE: 3
SP06 X9
SP06 X9 **
SP06 X9 *
SP06 X9 *
SP06 X9 *

YOUR SYSTEM IS NOW READY
ON C218

SP06 X9 * AND YOU HAVE AT LEAST 20 CYL FREE
S P06 X9 **
SP06 X9

SP06 X9 * SYS.OUT FILE PREALLOCATION
20.09 MS06 MOUNTC219 FOR X9
20.10 X9 .75 COMPLETED TAILOR SYSADMIN P
20.10 GCOS: NO MORE JOBS RUNNING
20.11 X9 OUTPUT COMPLETED TAILOR SYSADMIN
20.12 GCOS: NO MORE RUNNING
20.12 Geos: IDLE

Figure 3.1. Sample Log Report of TAILOR Execution

The job then reports each stage of its activity allowing the user to verify that the
desired result has been achieved.

To optimize the performance of TAILOR, it is recommended that the following
load modules are pre-initialized before TAILOR job execution:

H_JTRA
H_LlBMAINT
H_PRE_DEALLOC
H_CATALOG

Upon successful completion of TAILOR (signalled by the message (3)) the
new system may be used by performing an ISL (Initial Storage Load) action
from the new system disk (the output disk of TAILOR).

If an error occurs during the execution of TAILOR, the job should be repeated;
however, before any attempts to repeat are made, the user should perform
$VOLPREP again to clear the target volume.

If the error persists then the following actions must be taken:

. $VOLPREP the target disk

. Restore the master supplied volume

Repeat TAl LOR

3-7

AG09

TAILOR JOB ERROR DIAGNOSTICS The TAILOR job can abort for one of the following reasons:

3-8

1. Wrong option(s) given in a keyword or in a parameter.
TAl LOR will abort with the following message:

"XXXXX: undefined labeL

Action required: Rerun TAILOR with the offending option(s) corrected.

Example:

SJ TAILOR (lNVOL=MD1 ,OUTVOL=MD2,CTLG=YAR,
NBOBJ=1900)

Abort was due to CTLG=YAR

Abort message .. c YAR : undefined label".

To correct this option and continue running TAILOR, input the following
message:

SJ.TAILOR (lNVOL=MD1 ,OUTVOL=MD2,CTLG=Y,NBOB= 1900).

If an incorrect keyword is given TAILOR will not abort, the default value will be
assumed.

Example:

SJ TAILOR (..... ,SYSTEM=Y)
The keyword SYSTEM is unknown, therefore SYST =N will be assumed.

2. Error during duplication.

Rerun TAILOR, when the error has been corrected, by use of SJ TAILOR, or
if the OUTVOL is unavailable use SJ TAILOR (OUTVOL=new medial.

3. Overflow on file occuring when copying load modules, and catalog files.

a). Overflow on SYS.HLMLIB

The following message will be given on the operator console:

"UNABLE TO COPY load-module-name LOAD MODULE
CHECK SIZE OF SYS.HLMLIB

AND RUN A RCVYLM PHASE".

Action: Run RCVYLM phase with a new SYS.HLMLIB size (HLMSZ
parameter).

Example:

SJ TAILOR (lNVOL=MD1,OUTVOL=MD2,-,HLMSZ=30)

The job aborted due to insufficient size for SYS.HLMLIB.

Therefore the following change was made:

SJ TAILOR (FUNC=RCVYLM,HLMSZ=40).

b) Overflow on SITE.CATALOG

An overflow may occur when the RELCAT utility is being used to copy the
catalog file from the input volume.

The following message will be given on the console:

"UNABLE TO COpy CATALOG FILE
CHECK VALUE OF NBOBJ AND

RUN A RCVYCT PHASE"

Action: Run RCVYCT phase with the new size for NBOBJ.

Example:

SJ TAILOR (lNVOL==MED1 ,OUTVOL7MD2"CTLG Y,NBOBJ 600l

The value given for JBOB.1 was not sufficient.

Therefore the following change was made:

SJ TAILOR (FUNC=RCVYCT,NBOBJ=1900)

AQ09

ADDITIONAL USAGE OF TAILOR In addition to the normal TAilOR job usage, as previously described, TAilOR
can be used to perform the following functions:

CORRECT!NG F!LE SIZE

Example:

When creating an optimized disk by running the following:

SJ TAILOR \lNVOL=CHBSTS,OUTVOL=GCOSRX,MODE=PM200,COBTR,
FT200,H LMSZ=44,1 NSZ=3,OUTSZ=30);

The new disk GCOSRX is created; a need then arises for a new disk (GCOSRY)
to be created with an updated SYS.IN and SYS.OUT size.

To enable the change to be made the following is run:

SJ TAilOR (OUTVOl=GCOSRY,INSZ=5,OUTSZ=50);

or:

SJ TAilOR (lNVOl=GCOSRX,OUTVOl=GCOSRY,INSZ=5,OUTSZ=50);

Both give the same result:

the creation of system disk GCOSRY with a SYS.I N size of 5 cylinders and a
SYS.OUT size of 50 cylinders.

THE ADDITION OF A NEW PRODUCT

Example:

When it is decided to use an additional utility, like HFAS or similer, it will be
required to place on the system disk the appropriate working information.
Therefore the size of SYS.HlMLIB must be increased in the following way:

SJ TAILOR (FUNC=RCVYLM,HLMSZ=50,HUTIL);

3-9

A009

4. Description Of System Files

Table 4-1 shows the layout of the GCOS master system disk as supplied to an
installation. The files are listed in order of their position on the disk (the first,
"VTOC" is the Volume Table of Contents found on all disks at cylinder 0).

I

Table 4-1. Supplied Master Disk Layout

File Name Size (CYL) Location

VTOC 1 ALL

HUB 3 S

SYS.BOOT 1 S

SYS.ERLOG 2 R(S)

SYS.URCINIT 2 R(S)

SYS.HSLlIB 3 R(S)

SYS.HCULIB I 2 R(S)

SYS.HSMlIB I 8 R(S)

eve eVeTI:a. .. 15 AI~ .. "\ ~ I .;J.~' Wli ~IYI

SYS.IN 5 R(S)

SYS.KNODET S

SITE.CATALOG 1 S

SYS.BKST 19 S

SYS.BKST1 60 S

SYS.OUT 50 R

GMCF 2 R

SYS.HLMLIB 60 R(S)

HMCF 2 R

SYS.SYSDUMP 4 S

SYS.SDUMP S

the notation used for location in table 4-1 is:

S must be present on the system disk.

R must be present on a RESIDENT disk.
(note that the system disk is always RESIDENT)

M : the master supplied disk.

A : any disk.

Supplied
Contents

loaded

loaded

empty

loaded

loaded

loaded

loaded
144

empty

empty

loaded

empty

empty

empty

loaded

loaded

empty

empty

empty

When the required location is followed by a second choice in parentheses, the
value in the parentheses is the recommended value.

The size, in cylinders, is given for disks MSU0350/400/402.

In the allocation description for each file the JCL variables & 1 and &2 are the
user-supplied device-class and disk volume-name.

4-1

AQ09

OPTIMIZED DISK CONTENTS

FILE NAME: HUB

---- COMMENT

This file must always

4-2

be present on a system disk
at a fixed location

The system file type and cylinder which are located on the optimized disk are
identical to those of the supplied master disk with the following exceptions:

Additional SYS Files

SYS.JRNAL.. .. cylinder size ... 6
SYS.JADIR cylinder size ... 1
SYS.FTU cylinder size ... 1 0

Others

Use TAILOR facility to
include these files onto

the system disk

SYS files GMCF and HMCF have a combined cyclinder size requirement of 2.

The remainder of this section gives, in simple diagramatic form, all relevant
information concerning each of the system files.

FILE

HUB

ORGANIZATION
non-standard

LOCATION

Must be the first
file located on the

system disk.

INITIAL ALLOCATION

----- FUNCTION -----.

Contains system firmware
for processor (central & unit record)
initialization.

FILE TRANSFER

1. TAILOR
or
2. $VOLSAVE/$VOLREST
or
3. $VOLDUPLI

PREALLOC HUB,DEVCLASS=& 1 ,EXPDATE=365,
GLOBAL=(MEDIA=&2,SIZE=3),
BFAS=(NONE=(BLKSIZE=13000)).
FILESTAT=UNCAT;

AQ09

FILE NAME: SYS. BOOT

FILE

SYS.BOOT

ORGANIZATION
non-standard

,...---- FUNCTION I This file is used to load
- ---; the Geos· software at the start of I a session.

I ThiS~~:~S~:~W~YS. -- ---i
~ present on a system disk

-- . -- -.- -~.--~

FILE TRANSFER I 0
t :::~:AVE/$VOLREST H J

I 3. $VOLDUPLi I ~ Cy!r - -

LOCATION

Must be the second
file located on the

system disk.

I NITIAL ALLOCATION

PREALLOC SYS.BOOT,DEVCLASS=& 1 ,EXPDATE"",365,
GLOBAL=(MEDIA=&2,SIZE=3),
BFAS=(NONE=(BLKSIZE=13000)).
FI LESTAT=U NCAT;

4-3

AQ09

FILE NAME: SYS.ERLOO.

4-4

COMMENT ----.

User responsible for
emptying this file. For further

details see "System
Operation, Operator Guide"

FILE

SYS.ERLOG.

ORGANIZATION
BFAS Sequential

LOCATION

Must be located on
a RESIDENT disk, preferably the

system disk.

INITIAL ALLOCATION

PREALLOC SYS.ERLOG,DEVCLASS=& 1,
GLOBAL=(MEDIA=&2,SIZE=2),
BFAS=(SEQ= (RECFORM=VB ,

RECSIZE=1502,
BLKSIZE=1506,
NODELR,FIXTRK)),

FILESTAT =UNCAT;

...--- FUNCTION

Contains record of all
hardware failures which
occur in the system.

AQ09

FILE NAME: SYS.URCINIT ,-----...." .----- FUNCTION

/
FILE \ J

~ ~ """= = Contains the control tables
used with unit record devices, card
codes, printer character sets & vertical
form units etc.

----- COMMENT ----..

This file contains all
standard GCOS code elements.

For full details see the
"Unit Record Devices, User Guide".

LOCATION

Must be located on
a RESIDENT disk, preferably I on the system disk. I

~

INITIAL ALLOCATION

PREALLOC SYS.URCINIT,DEVCLASS=& 1,
EXPDATE=365,
GLOBAL=(MEDIA=&2),
BFAS=(LlNKQD=(RECSIZE=580,

BLKSIZE=584,RECFORM=VB,
LOGTRKSZ=1 ,DIRSIZE=15)),

FILESTAT=UNCAT;

The user may add elements (such as forms definitions) into this library by use of
the $URINIT statement.

In general when moving from an old release to a new release of GCOS, the
system manager will need to re-Ioad into the SYS.URCINIT the installation
defined elements which are already present in the old SYS.URCINIT file.

This transition is performed by use of the utility known as the Translator of Unit
Record File (TURF). The TURF utility is so designed to overcome any in com­
patibility within the URINIT input language of the old and new releases.
However, care must be exercized by ensuring that every installation defined ele­
ment which is required to be moved into the new system disk is specified as
input to the TURF utility.

This precaution is imperative as all previous contents of the SYS.URCINIT file
are erased at the begining of TURF execution.

For full details of the TURF utility see the System Installation manual.

4-5

AQ09

FILE NAME: SYS.HSLLlB

FILE

SYS.HSLlIB

ORGANIZATION
library

----- COMMENT --­

The contents & size 1-------

4-6

of this file must not be
changed

LOCATION

Must be located on
a RESIDENT disk, preferably

the system disk.

INITIAL ALLOCATION

lIBALLOC SL,(SYS.HSLlIB,DEVCLASS=& 1,
(MEDIA=&2,SIZE=3),
EXPDATE=365).MEMBERS=8;

---- FUNCTION

Contains source JCL for
the following jobs:
PRLOG, DUMPACT,
MCFCOPY,TAILOR,SYSDUMP.

AQ09

FILE NAME: SYS.HCULIB

r---- COMMENT ---....

The size & content of
this file should not be changed.

The file must be specified
in $LlB CU preceding $LlNKER

FILE

SYS.HCULIB

1'"'-----FUNCTION-----. I Contains supplied Compile
- - --1 Units for incorporation into user l programs by $LlNKER.

ORGANIZATION
library

--

LOCATION

Must be located on
a RESIDENT disk. preferably

the system disk.

INITIAL ALLOCATION

LlBALLOC CU.SYS.HCULlB.DEVCLASS=& 1.
MEDIA=&2.SIZE=2).
EXPDATE=365).MEMBERS=8;

4-7

AQ09

FilE NAME: SYS.HSlMLIB

,..----- COMMENT-----,

This file is only used
by $LlBMAINT SM when loading

the backing store.
The size of this file

may not be changed.

4-8

FILE

SYS.HSMLlB

ORGANIZATION
library

LOCATION

Any disk but for administrative
convenience it should remain

on the system disk.

INITIAL ALLOCATION

LlBALLOC SM,(SYS.HSMLlB,DEVCLASS=& 1,
MEDIA=&2,SIZE=8j,
MEMBER=8;

,------ FUNCTION

Contains the SYSTEM sharable
modules.

AQ09

FilE NAME: SYS.SYSTEM

r---~- COMMENT ---.... ,

If installation system

FILE

SYS.SYSTEM

ORGANIZATION
non-standard

,...-----FUNCTION----... I This file is only used at
- - - ~ system initialization time and when

a restore is performed at GCOS
loading.

disk is built from the supplied ~
master, the file may

be excluded during TAILOR - - --
(SYS=--=(Y IN) specified)

The contents & size of this I

file must not be changed.

LOCATION

May be located on
any disk but preferably

not the system disk.

INITIAL ALLOCATION

PREALLOC SYS.SYSTEM,DEVCLASS=& 1,
EXPDATE=365,
GLOBAL=(MEDIA=&2,SIZE=15),
BFAS=(NONE=(BLKSIZE=13000)),
FILESTAT =UNCAT;

4-9

AQ09

FILE NAME: SYS.lN

~--- COMMENT --~

FILE

SYS.lN

ORGANIZATION
library

~--- FUNCTION -----.

Used by the system stream reader
to store JCL and input enclosures
prior to execution.

.",---....-.
"

~,- --~ I~::::::.=::::::: •
See overleaf for
further details t------- . ___ 1.Filesize I

I can be changed
: byTAILOR I

4-10

LOCATION

Must be located on
a RESIDENT disk preferably

the system disk.

INITIAL ALLOCATION

PREALLOC SYS.IN,OEVCLASS=& 1,

, _--_ ... "

GLOBAL=(MEDIA=&2,SIZE=5),
BFAS=(L1NKOO=(RECSIZE=264,BLKSIZE=1048,

RECFORM=VB,NOOELR,LOGTRKSZ=2,
OIRSIZE=8,INCRSIZE=1)),

FILESTAT=UNCAT;
STEP H_OUEUDFMT,FILE=SYS.HLMLlB,OPTION='SYS.IN';
ASSIGN H_FFU,SYS.lN,FILESTAT=UNCAT,

OEVCLASS=& 1,MEOIA=&2;
ENDSTEP;

A009

The size of this file may be changed by TAILOR. The size chosen depends on
installation requirements. The values given below allow the calculation of a
suitable size :

I
Record Type Recorde per track - I

Records per cylinder ..
DATA 132 2508
COBOL 132 2508
DATASSF 121 2299
BINARY ($BIN) 66 1254

Therefore, to ensure capacity for 10000 DATA cards it is sufficient to have a
size of (10000/2508)=4 cylinders.

The default value supplied of 5 cylinders will accomodate 13000 DATA records.

Each input enclosure occupies an integral number of tracks. Therefore the max­
imum possible number of input enclosures is equal to the number of tracks
available.

Note:

In the event of overflow, the size of SYS.lN will be increased by one cylinder.

4-11

AQ09

FILE NAME: SYS.KNODET

_--- COMMENT ---­

4-12

The size of this file
must not be changed

FUNCTION

FILE

SYS.KNODET

Used by GCOS to record control
information about jobs known (active)
to the system.

ORGANIZATION
non-standard

LOCATION

Must be located on
a RESIDENT disk, preferably

the system disk.

INITIAL ALLOCATION

PREALLOC SYS.KNODET,DEVCLASS=& 1,
GLOBAL=(MEDIA=&2,SIZE=11.
BFAS=(NONE=(BLKSIZE= 1061)).
EXPDATE=365,FILESTAT=UNCAT;

A009

FILE NAME: SITE.CATALOG

COMMENT ::l
If installation system

disk is built from supplied
master disk, the file

may be copied or excluded
during TAILOR

po----- FUNCTION -----

/ FILE \ I Contains User, Project
}-- - --""I and Billing details for the site

SITE.CATALOG. ..1 _____ ---------

ORGANIZATION
non-standard

F
('------:)

... ---- ~
Minimum "Fiiesilecan be -----L_ j-----~ ~~n::~:6BJ

I option :
cyl ,_ ~~

~ -----.,.,.--

LOCATION

Must be present on the
system disk if Catalog

facilities are used.

INITIAL ALLOCATION

CATBUILD SITE.CATALOG,DEVCLASS=& 1,
MEDIA=&2,NBOBJ=600,
SYSTEM;

4-13

AQ09

4-14

When using the TAILOR job the number of objects must correspond to the
number of cylinders as shown in the following table.

No of objects as
specified in N BO BJ I Corresponding number

of cylinders required

Upto 600 ... 1 cylinder

Upto 1270 ... 2 cylinder

Upto 1900

Upto 2550

Upto 3190

Upto 3830

Upto 4480

Upto 5100

Upto 5770

Upto 6400

Upto 7050

Upto 7690

3 cylinders

4 cylinders

5 cylinders

6 cylinders

7 cylinders

8 cylinders

· .. 9 cylinders

· 10 cylinders

· 11 cylinders

· 12 cylinders

Upto 8330 .. 13 cylinders

Upto 8960 .. 14 cylinders

Upto 9600 .. 1 5 cylinders

AQ09

FILE NAME: SYS.BKST

COMMENT=:l
The size and content

of this file must not be' chanced
I I ~ !
! '

FiLE

SYS.BKST

r__---- FUNCTION
Forms part of Backing Store
and contains GCOS comp'ts in the
form of segments which are swapped
into memory as required.

ORGANIZATION
non-standard

LOCATION

Must be present, at
any location, on the

system disk.

INITIAL ALLOCATION

FILE TRANSFER

1. TAilOR
or
2. $VOLSAVE/$VOLREST
or
3. $F!LSAVEi$F!LREST
or

.4. $VOLDUPLI

PREALLOC SYS.BKST,DEVCLASS=& 1,
EXPDATE=365,
GLOBAL=(MEDIA=&2;SIZE=19),
BFAS=(NONE=(BLKSIZE=13000)).
FI LESTAT=U NCAT;

4-15

AQ09

FILE NAME: SYS.BSKT1

.. --- COMMENT -----.
The supplied file size

is 60 cyl's, but the working
minimum possible is

20 cylinders.

4-16

See overleaf for further
comments

FILE

SYS.BSKT1

ORGANIZATION
non-standard

LOCATION

Must be present, at
anylocatio~onthe

system disk.

INITIAL ALLOCATION

r----- FUNCTION

This file is a part of backing store
and used to contain:
- User & system program segments

Pre-initialized load modules.
Accounting information.
Compiler work areas.
Sharable modules

FILE TRANSFER
1. TAILOR
or
2. $VOLSAVE/$VOLREST 1----...
or
3. $VOLDUPLI
or
4. $FILSAVE!$FILREST

PREALLOC SYS.BKST1 ,DEVCLASS=& 1,
GLOBAL=(MEDIA=&2,SIZE=60),
BFAS=(NONE=(BLKSIZE=13000)),
FILESTAT=UNCAT;

AQ09

The TAILOR job allows the user to change the file size (subject to the minimum
size restriction).

Calculation (in cylinders) of optimum size is : system requirement (20); plus
space for each expected level of multiprogramming, plus space for pre­
initialized load modules and shared modules.

The muitiprogramming space requirement depends largely on the number of
expected multiprogramming levels and the expected number of suspended job
steps.

For each job step in EX or SUSP state it is recommended that three cylinders be
reserved.

In practical terms, most job steps will only need one or two cylinders. The
largest user of the backing store is the COBOL compiler, which needs space to
accomodate work areas. The work area size is a factor of the number of state­
ments to the compiled:

250 statements per cylinder.

Therefore a compilation of a 1500 line program wiil need six cylinders. This for­
mula .assumes that the compiler is pre-initialized.

Pre-initialized load modules are those programs which the system manager
decides. for performance reasons, to maintain in the backing store. When a pre­
initialized load module is executed the system does not need to load the
requested program into the backing store. It is already loaded.

The user should choose which load modules to pre-initialize (operator command
PLM) on the basis of frequency of use. The load modules may be either user
application programs or system components such as the COBOL compiler or
the utilities.

The size of user programs ii-e., the space required to accomodate it in
SYS.BKST1) is found from the JaR. The value displayed in the JaR is in bytes.
This value must be converted to units, where:

39090 bytes = 1 unit

A program will always occupy an integer number of units.

Table 4-2 gives the size of the system components in terms of units (6 units = 1
cylinder).

4-17

AQ09

4-18

Table 4-2. System Component Size

Module Name Function Size
(unita)

H...JTRA JCL Translation 12

H_COBOL COBOL compiler 30

H_RPG RPG compiler 9

H_FORTRAN Fortran compiler 9

H_LlNKER Static linker 8

H_BTNS Telecommunications 3

H_CNC Telecommunications 3

H_SORT Sort/Merge 6

H_MERGE Sort/Merge 2

H_SORT_DISK Sort/Merge disk 6

H_SORT_TAPE Sort/Merge tape 6

H_SORTFMT Sort/Merge file formatting 1

H_LlBMAINT Library Management 3

H_FILSAVE $FILSAVE utility 2

H_FILREST $FILREST utility 2

H_VOLSAVEREST $VOLSAVE & $VOLREST utilities 2

H_VOLREPARE $VOLPREP/$VOLWORK and $VOLSCRAT utilities 2

H_CREATE $CREATE & $PRINT utilities 2

H_PRE_DEALLOC $PREALLOC & $DEALLOC utilities 2

H_PM100 Series 100 Program Mode 7

H_PM200 Series 200/2000 Program Mode 5

Note:

If an installation uses BTNS (Telecommunications), the lOS/II component, or
the TOS component, must be placed in backing store. They are loaded under
user request by the $LlBMAINT utility.

AQ09

Example 1 :

An installation has the following characteristics :

Maximum of two leve1s of multiprogramming.

- No pre-initialized components except the JCL translator and the COBOL
compiler.

The calculation is :

System requirement = 20 cylinders
Multiprogramming = 6 cylinders

H-JTRA+COBOl =

12+30
42 blocks 7 cylinders

33 cylinders

The value 33 may be coded in TAILOR. This provides a space saving of (60-
33) = 27 cylinders on the resulting system pack.

Example 2:

An installation has the following characteristics:

- Three levels of multiprogramming (e.g., 12 cylinders)

In addition, the backing store is to contain:

60 units of user application programs

The TDS and BTNS components (48 units)

20 units for TPRs (Transaction Processing Routines)

All the components for COBOL program preparation (compiier, iinker,
$lIBMAINT,
total 42 blocks).

JCL translator and Sort/Merge (20 units)

Which gives a total of:

(60 + 48 + 20 + 42 + 18)/6 = 32 cylinders

Therefore, the total size of SYS.BKST1 must be:

20 + 2 + 12 + 32 = 66 cylinders

Initial Allocation:

PREALLOC SYS.BKST1 ,DEVCLASS=& 1 ,EXPDATE=365,
GLOBAL=(MEDIA=&2,SIZE=60),
BFAS=(NONE=(BLKSIZE=13000));

4-19

A009

FILE NAME: SYS.OUT

ORGANIZATION
library

r------ FUNCTIONI----­

This is the standard SYSOUT
area into which reports are written for
subsequent printing and punching.

tI""'-------.-.,
I ' ~

--- COMMENT --­

See overleaf for

~::------~ ~ ... :-----".. ... "'" I __ ... --

____ -..J File size can, :
I be changed I
: byTAILOR I further details

4-20

LOCATION

Must be located on a
RESIDENT disk but preferably

not the system disk.

INITIAL ALLOCATION

'...) ----.-'

PREALLOC SYS.OUT,DEVCLASS=& 1,
GLOBAL=(MEDIA=&2,SIZE=50),
BFAS=(LlNKOD=(RECSIZE=3128,BLKSIZE=3136,

RECFORM=VB,NDLREC,LOGTRKSZ=9,
INCRSIZE=3,DIRSIZE=8)),

EXPDATE=365,FILESTAT=UNCAT;
STEP H_OUEUDFMT,FILE=SYS.HLMLlB,OPTIONS='SYS.OUT';
ASSIGN H_FFU,SYS.OUT,FILESTAT =UNCAT,DEVCLASS=& 1 ,MEDIA=&2;
ENDSTEP;

AQ09

The size of this file may be changed by the TAILOR job. The information below
shows the capacity of an MSUO/350/400/402 cylinder.

Table 4-3. SYS.OUT Size Calculation

Average Number of Unes Numbe: of Unn 1
Una Length per Track Par Cylinder

160 66 1254
150 66 1254
140 66 1254
136 77 1463
130 77 1463
120 77 1463
110 88 1672
100 99 1881
90 121 2090
80 132 2299
60 132 2926
50 154 3344
40 220 4180
30 264 501S
20 352 6688

iherefore if the size is ien at 50 cylinders then the capacity is, for an average
length line of 80 characters:

50*2299=126445 lines

Note:-

Each report will occupy a multiple of three tracks; therefore, no matter how
short a report is, it will occupy at least three tracks.

4-21

A009

FILE NAME: GMCF

r----- COMMENT

Required only by
installations using Series
100 program mode
Can be modified by
$PREALLOC or $MCF utility.

Only allocated by TAl LOR
if PM 1 00 is specified

FILE

GMCF

ORGANIZATION
library

LOCATION

Any disk that is
RESIDENT when $PM 1 00

is executed

INITIAL ALLOCATION

----- FUNCTION -----

Contains the user commands
for Series 100 Program
Mode ($PM 1 00),

Before
.,--_____ ~ TAILOR

FILE TRANSFER
$FILSAVE
$FILREST

After
TAILOR

PREALLOC GMCF,DEVCLASS=& 1 ,EXPDATE=365,
GLOBAL=(MEDIA=&2,SIZE=2),

4-22

B FAS=(LI NKQD=(RECSIZE=88,B LKSIZE= 168,
RECFORM=VB,N DLREC,
DIRSIZE=30),

FILESTAT=UNCAT;

A009

FILE NAME: SYS.HLMLIB

~
COM!VIENT

Original supplied size
may be larger than required
since some components, such
as IDS or FORTRAN may not
be on supplied master volume

4-23

I FILE '- __ -

\. SYS.HLMLIB

ORGANIZATION
library

FUNCTION::J

Contains system supplied
load_module such as COBOL compiler, I
utilities etc. I

..,.---......
;' '"
~ " ~::::---::::~ ::== '.

____ ~Fiie size can be changed
Iby TAILOR usin'g HLMSZ

LOCATION

Must be located on a
RESIDENT disk but preferably

the system disk.

INITIAL ALLOCATION

lIBALLOC LM,(SYS.HLMlIB,DEVCLASS=& 1,
(MEDIA=&2,SIZE=60),
EXPDATE=365),MEMBERS=B;

I~arameter)

, -----~

AQ09

4-24

The basic system requirement Is 2895 blocks (209 blocks :::.: 1 cylinder). This
value must be added to the total required for optional elements. Table 4-4 gives
the space requirements for optional elements.

Table 4-4. Space Requirement For Optional Elements

Load Module
Name

H_PM100 I
H_CONF100 ~

~

H_COBTRANS

H_CT100

H_FT100

H_FILTRANS

H_BALTRANS

H_RPGTRANS

H_HALLOC ,

H_HCREATE

H_HDEALLOC

H_HMAPDISK

Description

PM 1 00 Control
Mode

PM200 Control
Mode

TAILOR
keyword

PM100
Mode= PM200

COBOL Translator COBTR

G 1 00 Translator CT100

G 1 00 File Translator FT1 00

H200/IBM3 File FT200
Translator
(includes PACKTRANS)

BAL to COBOL Translator BALTR

RPG Translator RPGTR

HUTIL H_HPRINT I} HFAS file & ~
volume utilities ~

H_HVOLPREP

H_HVOLDUMP

H_MSPLTLIB I

H_FXFER t
H_ROF· ~ ROF through

Level 61
LV61

ROF= LV61 R

H_READER ROF through Level 6 ROF=LV6

H_JAGEN !
For Journal After

H_ROLLFORWARD
JRNL=AFT

H_CATALOG I Catalog utility CTLG=Y

Size
(blocks)

355
41

260
35

421

18

185

259

219

200

51

64

29

46

90

54

43

30

42

106

100

30

23

135

AQ09

Table 4-4. Space Requirements For Optional Elements

Load Module De8Cription TAILOR Size
Name keyword (blocka)

--

The following applications are managed by SYSOPT utility.

H_OOLPROC

~
------- 176

Integrated Data Store
H,-OMLPROC ------- 124

H_DBANAL YS ~ ------- 93

H_OBPRINT Administrator Aid ------- 74

H_OBVALIO ------- 70

H_SORT_OISK ------- 272

H-.SORT _TAPE ------- 232
Sort/Merge

H_SORTFMT ------ 25

H_MERGE ------- 102

H_COBOL ------ 1107

H_BTNS

l
------ 134

tLCNC ------- 104

H_QMAINT ------- 42
I H_RPG RPG

I 753 I -------

H_FORTRAN FORTRAN ------- 362 I H_TOSCTP j ------- 73
I I TDS/STP

H_TOSGEN ~ 32

H_IOF

I
181

IOF
H_SCANNER 60

Example:

A system disk is built containing only the following optional items in
SYS.H LM LI B :

COBOL 1107
SORT 631
HFAS utilities 479
PM200 235

Total: 2512

Add basic
system 2895
requirement

Total: 5407

Therefore the size of SYS.HLMLIB is (5407/209)=26CYL.

This value may be specified in TAILOR, resulting in a saving of (50-35)=15
cylinders.

4-25

A009

FILE NAME: HMCF

_--- COMMENT ----.....

Required only by installations
using series 200/2000
program mode
Only allocated by TAl LOR
if PM200 is specified

4-26

----- FUNCTION ----_

FILE

HMCF

ORGANIZATION
library

LOCATION

Any disk that is
RESIDENT when PM200
is executed

FILE TRANSFER

$FILSAVE
$FILREST

INITIAL ALLOCATION

LlBALLOC & 1.(HMCF,DEVCLASS=& 1,
MEDIA=&2.SIZE=2),
MEMBERS=8:

Contains the user commands
for the Series 200/2000
program mode

AQ09

FilE NAME: SYS.SYSDUMP

r-; COMMENT~ If the installation system
disk is built from the
suppiied master then the
file will be allocated onto
the optimized disk

FILE

SYS.SYSDUMP

ORGANIZATION
non-standard

LOCATION

Any RESIDENT disk
but preferably the

system disk.

INITIAL ALLOCATION

PREALLOC SYS.SYSDUMP,DEVCLASS=& 1,
GLOBAL=(MEDIA=&2,SIZE=4).
B FAS=(N ONE=(B LKSIZE= 13030)).
FILESTAT=UNCAT;

_--- FUNCTION ----.

This file is used when a
dump is performed at a system
crash.

4-27

A009

FILE NAME: SYS.SDUMP

COMMENT-----......

It is advised to preallocate
this file with a RECSIZE and
and a BLOCKSIZE equal to those
req' for the SYS.OUT file.
In the event of overflow
this file will be increased
by one cylinder
(max 10 cyl's)

FILE

SYS.SDUMP

ORGANIZATION
link queued

LQCATION

Must be located on a
RESIDENT disk preferably

the system disk.

-- fUNCTION

This file is used to store data when
an abort occurs on a service job

INITIAL ALLOCATION

PREALLOC SYS.DUMP,DEVCLASS=& 1,
GLOBAL=(MEDIA=&2,SIZE=1),

4-28

B FAS=(lI NKQD=(RECSIZE=3128,B LKSIZE=31 36,
RECFORM=VB,DIRSIZE=8.
MAXSIZE=1 O,INCRSIZE=1)).

FILESTAT=UNCAT;

AQ09

FILE NAME: SyS.JRNAL (Optimized disk only)

~-- COMMENT -~-....

This file is only
required if GeOS journai
facility is to be used.
File may be selected by
TAILOR using JRNL=BEF

~--- FUNCTION-----

To journalize files. used
FILE

SYS.JRNAL with JOURNAL=BEFORE facility

ORGANIZATION
non-standard

LOCATION

Must be located on a
RESIDENT disk preferably

the system disk.

INITIAL ALLOCATION

...-.-:=.~
. - ""
J~::==::~~
I File size can .

~ ~ -4 be -chang~d see
l"CheckPoint/restart··.

,.------~

PREALLOC SYS.JRNAL,DEVCLASS=& 1.
EXPDATE=365.
GLOBAL=(MEDIA=&2,SIZE=6).
BFAS=(NONE=(BLKSIZE=1000)),
FI LESTAT=U NCAT;

4-29

AQ09

FILE NAME: SYS.JADIR (Optimized disk only)

COMMENT

This file is only req'
if GCOS journal facility
is to be used.

File may be selected by
TAILOR using JRNL=AFT.
In the event of a overflow
file size will be ~xpanded
by 1 cylinder (max 10)

FILE

SYS.JADIR

ORGANIZATION
library

----- FUNCTION

To journalize files, used
with the JOURNAL=AFTER facility

, ... -- ,
.' ' J
1'':--:::';''-':-:;' . --- ... - .
I File size can

-- - - - -1 be changed see
I "Checkpoint/Restart

LOCATION

Must be located on a
RESIDENT disk preferably

the system disk.

INITIAL ALLOCATION

''''-------'

PREALLQC SYS.JADIR,DEVCLASS=& 1,
GLOBAL=(MEDIA=&2,SIZE=11.
BFAS=(LI NKQD=(BLKSIZE= 1 032,RECSIZE=24,
DIRSIZE=16,INCRSIZE=l,

MAXSIZE= 1 0)),
FI LESTAT=U NCAT;

AQ09

FILE NAME: SYS.FTU (Optimized disk only)

COMMENT ---....

In the event of a overflow
this file will be increased
by 1 cylinder.
it is advised to prealiocate
this file with a RECSIZE
and B LOCKSIZE equal to
those req' for the SYS.OUT
file

FILE

. SYS.FTU'

ORGANIZATION
library

Cyls

LOCATION

Must be located on a
RESIDENT disk preferably

not the system disk.

INITIAL ALLOCATION

" para ---

PREALLOC SYS.FTU,DEVCLASS=& 1,
GLOBAL=(MEDIA=&2,SIZE=10),
BFAS=(LlNKQD=(RECSIZE=3128,BLKSIZE=3136,

RECFORM=VB,INCRSIZE=1,
NDLREC,DIRSIZE=8)),

FILESTAT=UNCAT;

FUNCTION

Used 8S a SYSOUT file for
File Transfer utility between
level 61 & 64.

4-31

A009

5. Job accounting facilities

The accounting feature of GCOS records all relevant account information for
each job and each job step. The information being gathered by the system
within a user sequential file which is handled by the utility program known as
BILLING.

The BILLING utility is a COBOL written program which is tailored by the user to
meet his own requirements. Each job is fully identified by a user name, a project
name and a billing name; any job failing on one or more of these identity checks
will be refused access to the system. This facility of automatic checking and
account security is provided by the Site Catalog.

The job accounting feature of GCOS can be either active or inactive depending
on the system configuration parameter. Additional types of record can be stored
in the account file; these must also be specified at system configuration time.

ACCOUNTING FILE DESCRIPTION All accounting information is first gathered within two system files located
within the backina store and operatina in flio-floo manner. These Virtual
Memory Managem-ent (VM M) files are defined as system permanent files with
short blocks of 1 K each, with only one of the two files being active at any point
of time. These files are named ACT1 and ACT2, their size being specified at
system configuration tima. ""hen the active fila becomes full the 0psiatoi is
informed by the following message :

AC01*GCOS:ACCOUNTING FULL.RUN DUMPACT.

The system accounting will then continue, using the previously inactive file. If
both files are full the older (inactive) file is erased and set to the active state. The
operator then has to run the DUMPACT utility program to transfer the full file to
the user accounting file. If DUMPACT is run when there is no full file, the active
file is automatically closed and dumped to the user accounting file.

USER ACCOUNTING FILE DESCRIPTION

The user accounting file is a sequential tape or disk file with the following
characteristics:

BLOCKSIZE = 4008
RECSIZE = 4004
RECFORM = VB

These characteristics have to be specified at file allocation time (PREALLOC) by
using the following parameters.

BFAS = (SEO=(BLKSIZE=4008,RECSIZE=4004,RECFORM=VB).

The size of this file must be chosen on the basis of how many accounting
records are to be contained. This figure is dependant on how many jobs and job
steps are run each day and how many days the same file is to be used to
accomodate the output of DUMPACT.

If the user accounting file is to be held on disk then it should be held on a resi­
dent volume so that the operator need not load another disk specifically to fulfil
the DUMPACT action.

5-1

AQ09

DUMPACT UTILITY This utility program is used to dump accounting information from the full VMM
file, or the currently active file (if neither are full).

The DUMPACT utility provides various facilities. It enables the user accounting
file to be opened in output or in an append mode. It can also be used as 8 dum­
my file. Furthermore it insures the compatabillty of user record formats between
the 1 C and 1 D releases.

A message to the operator signifies a successful or unsuccessful DUMPACT
completion. If unsuccessful, details will be given within the Job Occurrence
Report.

There are two methods of DUMPACT introduction, either by operator command
or by JCL use.

Introduction By Operator Command This procedure is registered in the SYS.HSLLlB

Fonnat :

Introduction By JeL

5-2

SJ DU MPACT(efn,devclass,media,filestat,options).

efn : user file name

devcla88 : device class name

media: volume name

filestat: file system option

option: n~~~] [OLD]

Deecrlption of Options :

Default: MT 1T9
Default :WORK

Default: UNCAT

Default: AP and new record
format (of the 1 D release).

AP : User file opened in append mode.

OU : User file opened in output mode.

OLD : Record format of the 1 C release (usefull to insure a correct com­
patibility).

Example Operator Command:

SJ DUMPACT (ACCFILE,MS/M400,C113,,'AP OLD")

Fonnat :

JOB=jobid, USER=userid, PROJECT =project-name, BILLlNG=charge-name;

STEP H_DUMPACT,FILE=SYS.HLMLIB

,OPTION= ,[lt0'!] [OLD]';

ASSIGN USERACTF, efn, DEVCLAS=devclass,
MEDIA=media, FILSTAT=fllestat;

ENDSTEP;

ENDJOB;

This JCL statement can be user tailored to adjust default parameters within the
SYS.HSLLlB file.

AQ09

EDITACT UTILITY This utility program is written in COBOL 64 and is used to edit in clear form the
information stored in the user accounting file. It is activated by use of the fol­
lowing JCL

Format:

JOB=jobid, USER=userid, PROJECT =project name;

STEP H_ED!TACT F!LE=SYS.HLML!B:

ASSIGN H_USERACTF,efn,DEVCLASS=devclass,MEDIA=media,
FI LEST AT =filestat;

ENDSTEP;

ENDJOB;

Definition :

efn:

devclass:

media:

is the external file name of the user account file.

device class of the volume supported

volume name.

ADMINISTRATIVE FUNCTIONS OF ACCOUNTING

Administrative functions refer to the control of the user access to the system.
Such functions are under the responsability of a system administrator.

The registration of users within the system. the description of their access rights
and different privileges are all part of a integrated privacy protection system.
This system is implemented within the GeOS cataiog.

A US6i is identified within the system by a usei name of up to eight characters.
Such a user name must be unique, Le. all the users known by the system have
different user names.

A user name is always attached to a project name of up to eight characters. A
project name gathers different user names. A project name is attached to a bill­
ing name of up to eight characters. A billing name gathers several project
na mes, see Figure 5-1.

This control structure is stored within the system catalog. Generally a user has a
default project a project has a default billing, but a user may exist under dif­
ferent projects as well as a project may exist under different billing names.

The project is related to the protection mechanism in general.

The billing name is related to the billing aspect.

, BILLING 1 I

Figure 5-1. The User Registration Structure

5-3

AQ09

control Of Job Submission

User Registration

When the user relevant area of the SYSTEM CATALOG is active, the system
automatically checks each introduced job rejecting any with invalid user, project
and billing names.

This checking procedure Is performed by the Stream Reader In accordance with
the following rules:

USER: is it registred?

PROJECT: optional, it overrides the default one.
Is the user registered under this project?

BILLING: Optional, it overrides the default one.
It the user registered under this billing.

The operation that introduces a new user, a new project, a new billing or
modifies file access rights and operability privilages of a project is under the
responsibility of the System Administrator. Such an administrator Is a particular
operator that belongs to a project with specific access rights.

User registration uses the GCOS 64 Catalog Maintenance utility $CATMAINT
described in Appendix A of this manual. Reference should be made to the
Catalog Management Manual for all other general maintenance utilities.

DESCRIPTION OF ACCOUNTING RECORDS

5-4

Accounting information is gathered at each of the different steps of a job's life
and at critical states of the system i.e. shutdown, crash, and system exception.
This information consists of various types of accounting records, each one being
identified by a record type. These records are stored sequentially within the user
accounting file by the DUMPACT utility program.

Job record (type=O 1) :
accounting information concerning overall job execution including the print
out of SYSOUT files.

Step record (type=02/03) :
accounting information concerning the execution of a step.

Crash record (type=04) :
gives a status of the system at the last crash.

Shutdown record (type=06) :
gives a status of the system at the last shutdown.

Exception record (type=06) :
gives information about an exception that occurs within a system procedure
called by a user program.

User defined record (type=user defined) :
a record directly written by a user program by means of the $H_PUTACT
primitive of the COBOL call to the H....ACT _UWRACT system procedure.

Accounting records can be selected through a system configuration parameter
at system configuration time. So only the selected records are stored in the
accounting file.

A system crash may imply that some accounting information is lost. However
only Step record information may be missing (or not guaranteed) In the case of
a step being executed at crash time. In such a case, the system will generate a
Step record of a speCific type in order to allow the user billing job to overcome
this problem. Consequently job records may possibly be duplicated. This will
occur when the system cannot retrieve a job record, of a given type. This
retrieval would be necessary to store accounting information related to a sysout
printout resulting from the switching of VM M files.

The 0400 release introduces new accounting information. Therefore the
different record formats are not compatible with those of the 0300
release. In order to allow already existing billing jobs to run without
having to be modified, the DUMPACT util ity provides a choice of either
0300 or 0400 format records depending on the option used (i.e., whether
or not OLD is specified).

AQ09

Job Record Description At job termination a record is added to the accounting file. This record is
updated when the output writer completes its work for this job.

GPL DECLARATION OF THE JOB RECORD:

DCl1 JOB_RECORD,
2 TYPE
2 BilLING
2 USER_NAME
2 JOBID
2 PROJECT
2 RON
2 CLASS
2 PRIORITY
2 DATE_ln_CHAR
2 DATE,

3 MM
3 DD
3 YY

2 START
2 STOP
2 CPU
2 ELAPSE
2 STATUS
2 MACHINE_ID
2 LINES
2 PAGES
2 CARDP
2 CARDR
2 CPU_WRITER

Total record length: 125 bytes.

CHAR (2)'/*TYPE="O 1 "*/
CHAR(8),
CHAR(8),
CHAR(8),
CHAR(8)'
CHAR(4),
CHAR(1),
CHAR(1),
CHAR(10)'

bit(16),
bit(16),
bit(16),
CHAR(8),
CHAR(8).
FIXED BIN (31)'
FIXED BIN(31)'
FIXED BIN(31)'
CHAR(21),
FIXED BIN(31)'
FIXED BIN(31)'
FIXED BIN(31),
FIXED BIN(31)'
FIXED BIN(31);

COBOL DECLARATION OFTHE JOB RECORD

01 JOB_RECORD.
02 TYPE
02 BilLING
02 USER_NAME
02 JOBID
02 PROJECT
02 RON
02 CLASS
02 PRIORITY
02 DATE_IN_CHAR
02 DATE

03MM
03 DO
03VY

02 START
02 STOP
02 CPU
02 ELAPSE
02 STATUS
02 MACHINE_ID
02 LINES
02 PAGES
02 CARDP
02 CARDR
02 CPU_WRITER

Total record length: 125 bytes.

PICTURE X(2).
PICTURE X(8).
PICTURE X(8).
PICTURE X(8).
PICTURE X(8).
PICTURE X(4).
PICTUREX.
PICTURE X.
PICTURE X(10).

USAGE IS COMP_1.
USAGE IS·COMP_1.
USAGE IS COMP_1.
PICTURE X(8).
PICTURE X(8).
USAGE IS COMP-2.
USAGE IS COMP-2.
USAGE IS COMP-2.
PICTURE X(21).
USAGE IS COMP-2
USAGE IS COMP-2
USAGE IS COMP-2.
USAGE IS COMP-2.
USAGE IS COMP-2.

5-5

A009

TIme Information

5-6

FIELD DEFINITION OF THE JOB RECORD:

TYPE

BILLING

USER_NAME

JOBID

PROJECT

RON

CLASS

PRIORITY

DATE_IN_CHAR

DATE

START

STOP

CPU

ELAPSE

STATUS

LINES

PAGES

CARDP

CARDR

Type of the record ("01)

Billing name of the user

UseLName

Job Identification

Project Identification

Run Occurrence Number(nnnn)

Class of the JOB (the one at job term time)

Scheduling Priority (the one at job term_time)

Date in Characters (YV/MM/DDbb)

Date in numbers

MM: month
DO: day
YV: year

Start time of the JOB (hh:mm:ss)

Stop time of the JOB (hh:mm:ss)

CPU used by the JOB (unit: 1/1000 minute)

Elapsed time (unit: 1/1000 minute)

Step completion code of the last step of the job.

Name of the Machine as it is printed on the Job
Occurrence Report.

Number of Lines printed by the job (directly or
through the Output Writer)

Number of Pages printed by the job (directly or
through the Output Writer).

Number of Cards punched by the job (directly or
through the Output Writer).

Number of Cards read by the job (directly or through
the Input Reader).

CPU time used by the Output Writer to print lines or
punch cards. (unit 1/1000 minute).

Records of job execution at crash time are fully recovered.

The job CPU time is equal to the sum of the values of CPU time for each step.
The elapsed time is counted from the initiation of the job by the Scheduler to
the termination of the job. So it includes the waiting times of the different steps
of the job (waiting for volume mounting, waiting for resources, etc.).

The counters LINES, PAGES, CARDP, and CPU WRITER may be separated onto
two job records with one stored in each of the VMM files (ACT1 or ACT2). In
such a case, the counters of both records must be added in order to get the cor­
rect values. Only the first record (date of creation) contains meaningful informa­
tion about the job. The second record contains only the preceding counters plus
the fields necessary to identify the job (billing name, user name, project, job
name, machine id and date). The other fie'tis :AI e initialized to the following
values:

CLASS
PRIORITY
START
STOP
CPU
STATUS

blank
blank
blank
blank
o
o

AQ09

STEP Record Description At step termination time a variable length record is added to the accounting file.

GPL DECLARATION OF THE STEP RECORD

DCL1
STEP _RECOR 0,

2 TYPE
2 BILLING
2 USER_NAME
2 JOBID
2 PROJECT
2 RON
2 REPEATED
2 PRIORITY
2 DATE_I N_CHAR
2 DATE

3 MM
3 DO
3 YY

2 START
2 STOP
2 CPU
2 WAITING
2 READY
2 ELAPSE
2 H_STATUS
2 SYSOUT_WRITE
2 SYSOUT_PUNCH
2 DECLARED_WS
2 BUFFER_SIZE
2 BACKST
2 PGMISSGNB
2 SYSMISSGNB
2 STACKOV
2 SSN
2 DSN
2 CHKPT_NB
2 CHKPT_MAXSIZE
2 TEMPORARY_SIZE
2 LM_NAME
2 NB_OF _ENTRIES
2 ENTRY

3 IFN
3 MEDIA
3 NB_OF _LOGEVENTS
3 NB_OF_CONNECTS
3 o EV_TYPE
3 RFU

CHAR(2)'/*TYPE="02" or "03"*/
CHAR(S),
CHAR(S),
CHAR(S),
CHAR(S).
CHAR(4).
CHAR(l),
CHAR(l),
CHAR(10}'

BIT(16}'
BIT(16),
BIT(16),
CHAR(S),
CHAR(S),
FIXED BIN(31),
FIXED BIN(31),
FIXED BIN(31),
FIXED BIN(31),
FIXED BIN(31),
FIXED BIN(31)'
FIXED BIN(31),
FIXED BIN(31),
FIXE.D BIN(31;'
FIXED BIN(31),
FIXED BIN(31).
FIXED BIN(31)'
FIXED BIN(31),
FIXED BIN(15),
FIXED BIN(15),
FIXED BIN(15).
FIXED BIN(31)'
FIXED BIN(31),
CHAR(32).
FIXED BIN(15),
(NB_OF _ENTRIES),
CHAR(S)'
CHAR(6).
FIXED BIN(15).
FIXED BIN(31)
CHAR(2).
BIT(16);

Length of the record: 164 + H_NB_OF _ENTRIES *24

There is one entry within the H_ENTRY array per IFN (Internal File Name)
assigned by the step with a maximum of 63 assigned IFN's per step.

5-7

AQ09

5-8

COBOL DECLARATION OF THE STEP RECORD

01
STEP_RECORD

02 TYPE .
02 BILLING
02 USER_NAME
02 JOBID
02 PROJECT
02 RON
02 REPEATED
02 PRIORITY
02 DATE_IN_CHAR
02 DATE

PICTURE X(2).
PICTURE X(8).
PICTURE X(8).
PICTURE X(8).
PICTURE X(8).
PICTURE X(4).
PICTURE X.
PICTUREX.
PICTURE X(10).

03 MM USAGE IS COMP-l.
03 DO USAGE IS COMP-l.
03 YY USAGE IS COMP-l.

02 START PICTURE X(8).
02 STOP PICTURE X(8).
02 CPU USAGE IS COMP-2.
02 WAITING USAGE IS COMP-2.
02 READY USAGE IS COMP-2.
02 ELAPSE USAGE IS COMP-2.
02 STATUS USAGE IS COMP-2.
02 SYSOUT_WRITE USAGE IS COMP-2.
02 SYSOUT_PUNCH USAGE IS COMP-2.
02 DECLARED_WS USAGE IS COMP-2.
02 BUFFER_SIZE USAGE IS COMP-2.
02 BACKST USAGE IS COMP-2.
02 PGMISSGNB USAGE IS COMP-2.
02 SYSMISSGNB USAGE IS COMP-2.
02 STACKOV USAGE IS COMP-2.
02 SSN USAGE IS COMP-l.
02 DSN USAGE IS COMP-l.
02 CHKPT_NB USAGE IS COMP-1.
02 CHKPT_MAXSIZE USAGE IS COMP-2.
02 TEMPORARY_SIZE USAGE IS COMP-2.
02 LM_NAME PICTURE X(32).
02 NB_OF_ENTRIES USAGE IS COMP.l.
02 H_ENTRY OCCURS 63 TIMES

031FN PICTURE X(8).
03 MEDIA PICTURE X(6).
03 NB_OF_LOGEVENTS USAGE IS COMP-l.
03 NB_OF _CONNECTS USAGE IS COMP-2.
03DEV_TYPE PICTURE X(2).
03 FILLER USAGE COMP-l.

Length of the record: 164+H_NB_OF _ENTRIES X 24.

There is one entry within the H_ENTRY array per IFN (Internal File Name)
assigned by the step and a maximum of 63 assigned IFN's per step.

FIELD DEFINITION OF THE STEP RECORD:

TYPE

BILLING

USER_NAME

JOBID

PROJECT

: Type of record ("02" is the normal case and "03"
refers to a record of a step that was recovered after a
crash).

Billing name of the user

UseLName

: Job Identification name

: Project identification name

AQ09

RON

REPEATED

PRIORITY

DATE_IN_CHAR

DATE

START

STOP

CPU

WAITING

READY

ELAPSE

STATUS

SYSOUT _WRITE

DECLAR ED_WS

BUFFER_SIZE

BACKST

PGMISSGNB

SYSMISSGNB

STACKOV

SSN

DSN

CHPT_NB

CH K PT _MAXSIZE

TEMPORARY_SIZE

LM_NAME

H_NB_OF _ENTRIES

H_ENTRY

IFN

MEDIA

NB_OF _LOG EVENTS

NB_OF _CONNECT

DEV_TYPE

Run Occurrence Number (nnnn)

B!ank: Step not Repeated -R : Step repeated (sftsr
an abort or a crash).

Scheduling Priority (the one at step term_time).

Date in Characters (YY/MM/DDj

Date in numbers
MM: month
DO: day
YY: year

Start time of the step (hh:mm:ss)

Stop time of the step (hh:mm:ss)

Running time of the step: CPU used (unit=1/1 000
minute).

Waiting time of the step: waiting for I/O's comple­
tion or semaphore resources (unit= 1/1000 minute).

Ready time of the step: waiting for CPU allocation
(unit=1 /1000 minute).

Elapsed time (unit=1/1000 minute)

Step completion code of the last step of the job.

Number of lines written onto a Sysout file (to be
printed).

Number of cards written onto a Sysout file (to be
punched) access method.

Declared working set in bytes.

Buffer size effectively used in bytes.

Size of Backing Store used in bytes.

Number of program missing segments.

System missing segments due to the program

Number of Stack Overflows

Static Step Number

Dynamic Step Number (including job enclosure
statements).

Number of calls to Check point.

Check point largest snapshot size for the step (unit=
byte).

Size of Temporary used by the step (unit=cylinder).

Load Module Name of the step.

Number of Entries in the array H_ENTRY.

One Entry per IFN (Internal File Name) on which I/O
accounting is performed.

Internal File Name.

Volume serial number.

Number of Events detected on this file and Logged.

Number of !lO's related to the file.

Type of the Device related to the file.

5-9

AQ09

Crash or Shutdown Record Description

5-10

Records of steps in execution at crash time may not be fully recovered.
Information that could be lost or possibly meaningless can be expected in the
following fields:

CPU
ELAPSED
LINES
CARDS
BUFFER_SIZE
BACKST
PGMISSGNB
SYSMISSGNB
H_ENTRY array

Such records whose information can not be guaranteed are identified by a
record type="03".

Time information

Time information (like CPU time. waiting time. ready time and total elapsed
time of the step) is counted starting from the end of the step initiation (after
having allocated all the resources and loaded the program into memory). to the
end of the step termination (after having deallocted all the resources). Therefore
a" the time spent within the user step space is counted. but the time spent for
the step within centralized tasks of the system is not counted.

The difference between the job elapsed time and the sum of the different step
elapsed times gives the time spent by the job in waiting for resources and media
mounting and within centalized system tasks (resource allocation and program
loading).

After a crash or a shutdown the warm restart adds a system record to the
accounting file.

GPl DECLARATION OF THE CRASH/SHUTDOWN RECORD:

DCl 1 SYSTEM_RECORD.
2 TYPE
2 DATE_IN_CHAR
2 DATE.

3 MM
3 DO
3 YY

2 TIME
2 JOB_LlST_NUMBER
2 JOB_LlST(20),

3 BilLING
3 USER_NAME
3 JOBID
3 PROJECT
3 RON
3 CLASS
3 STAGE
3 SSN
3 DSN
3 STATUS
3 FillER

length of record : 948 bytes

CHAR(2)./*Type="04"*/
CHAR(10).

BIT(16).
BIT(16).
BIT(16).
CHAR(8).
FIXED BIN(15).

CHAR(8).
CHAR(8).
CHAR(8).
CHAR(8).
CHAR(4).
CHAR(1).
CHAR(1).
FIXED BIN(15).
FIXED BIN(15).
FIXED BIN(15),
BIT(16);

There is one entry within the JOB_LIST array per job in execution or suspended
(EX or SUSP states). If there are more than 20 jobs. another record is created.
Therefore several crash records related to the same crash may occur.

AQ09

COBOL DECLARATION OF THE CRASH/SHUTDOWN RECORD
01 SYSTEM_RECORD.

02 TiPE
02 DATE_IN_CHAR
02 DATE

03 MM
03 DO
03 yy

02 TIME
02 JOB_UST_NUMBER
02 JOB_LIST OCCURS 20TIMES

03 BILLING
03 USER_NAME
03 JOBID
03 PROJECT
03 RON
03 CLASS
03 STAGE
03 SSN
03 DSN
03 STATUS
03 FILLER

Length of record : 948 bytes.

PiCTURE X(2).
PICTURE X(10).

USAGE IS COMP-1.
USAGE IS COMP-1.
USAGE IS COMP-1.
PICTURE X (S).
USAGE IS COMP-1.

PICTU RE X(S).
PICTU RE X(S).
PICTURE X(S).
PICTU RE X(S).
PICTU RE X(4).
PICTUREX.
PICTUREX.
USAGE IS COMP-1.
USAGE IS COMP-1.
USAGE IS COMP-1.
USAGE IS COMP-1.

FiELD DEFiNiTiON OF THE CRASHiSHUTDOWN RECORD:

TYPE : Type of the record ("04" in case of a crash and "05"

DATLiN_CHAR

DATA

TIME

JOB_LlST_NUMBER

BILLING

USER_NAME

JOBID

PROJECT

RON

CLASS

STAGE

SSN

DSN

STATUS

in case of a shutdown).

Date in iiterals (YV/MM/DD)

: Date in numerals:
MM month
DO day
YY year

: Crash Time or shutdown time (hh:mm:ss)

: Number of entries within the JOB_LIST array (equal
to 20). When it exceeds 20 another record is created.

: Billing Name

: User Name

: Job Identification Name

Project Identification Name

Run Occurrence Number rXnnn)

Class of the job

S if the job was suspended
E if the job was in execution

: Static Step Number of the step that was in execu­
tion.

: Dynamic Step Number of the step that was in execu­
tion.

: Step completion code of the step that was in execu­
tion

There may be several records related to the same crash Or shutdown when
more than 20 jobs are listed.

6-11

A009

User Defined Record Description

5-12

A user program can write accounting records of its own by using the
$H_PUTACT primitive in GPL or the external call to the system procedure
"H-ACT _UWRACT" in COBOl.

GPL PRIMITIVE

H_PUTACT record, length;

record Lchar(n), record to be written onto the accounting file. It must be of
the following format:
del 1 record,

2 type char(2),/-Record type-/
2 info char(2) ;/-Accounting information-/

length Lfb(15), length of the Accounting information in bytes.

COBOL CALL

Data description statement:

01 USER_RECORD.
02 TYPE PICTURE X(2).
02 INFO PICTURE X(n).

77 LENGTH USAGE IS COMP-l.

Call statement :

CALL "H-ACT_UWRACT" USING USER_RECORD,LENGTH.

where LENGTH=n (length of INFO in bytes).

Parameter De8cription

The record type is specified by the user program. The range 0 to 49 being
reserved for system use. The INFO area is to be defined by the user. Its length is
given in the LENGTH parameter, with a maximum of 800 characters.

RETURN CODES:

NORMAL : DONE

ABNORMAL: RECSZERR : INFO area length exceeds 800 characters.
RECFERR : record type is not included within the range 50 to

99.

GPL DECLARATION OF A USER RECORD:

DCl 1 USER_RECORD,

2 TYPE
2 USER_INFO

CHAR(2)j-TYPE GIVEN BY THE USER-/
CHAR(n);

COBOL DECLARATION OF A USER RECORD:

01

02
02

USER_RECOR D.

TYPE
INFO

PICTURE X(2).
PICTURE X(n).

The record type is specified by the user program within the range 50 to 99. The
INFO area is to be defined by the user (length and contents).

AQ09

SYSTEM CONFIGURATION OPTIONS OF THE JOB ACCOUNTING FEATURE

A configuration option allows the customer to specify whether he wants the job
accounting facility or not, and to select what records he wants to be stored
within the job accounting file. Note that the job accounting may slightly degrade
some performances of functions related to job management. For further details
see Section i I of this manual.

Size of the Two System accounting File,

The size of the VMM files used in the flip-flop by the job accounting facility can
be adjusted at system configuration time. Such an adjustement implies a
CLEAN restart. It may be useful because the size of these files may be too big or
too small depending on the number of records that are selected through the
$ACCOUNT parameter. If it is too big, lose of valuable space will occur within
the backing store. If it is too small the DUMPACT utility will be in constant use
due to rapid file filling.

CONFIG File Description

$ACTSIZE size;

Where size is the number of blocks (1 K each for each VM M accounting file).
Default value: 200 blocks for each VMM file.

5-13

AQ09A

FilE RECOVERY FACILITIES

The Before Journal

6. File Integrity

Once a file is created, various incidents can occur during its existence that
can effect the integrity of the contents of the file. The most common
incidents are:

The volumes on which the file resides are damaged, and the file is no
longer accessible.
There is a system crash, and the file is left in an unstable state.
There is a- step abort, and the file is left partially updated.
An erroneous update is made t~ the file.

To reduce the effect of these incidents, there are various recovery facilities
available to the GCOS 64 user. The purpose of these facilities is to bring files
back to a state from which the user can run jobs again. They are designed so
that the user does not lose work already done, and also does not lose large
parts of jobs that were running when the incident occurred. By using these
facilities the user can:

Restart the iob that was just working on the file.
Start jobs which want to work on the file.
Restart jobs which were running.

The faciiiiies avaiiabie are:

The Before Journal
The After Journal.
The File Salvager.
Checkpoint/Restart.

Each one of these facilities protects against some type of incident, and the
speed of the restart depends upon the facility chosen. Each one is described
briefly below, and a more detailed description follows later in the section.

The Before Journal protects against software failures such as a system
crash, a step abort, and a TPR abort (Transaction Processing Routine) in a
TDS (Transacti{;n Driven Subsystem) environment. It brings files back to
their state at tha last recovery point (beginning of step, last checkpoint, or
beginning of TPR), and it allows the step or TPR to be repeated immediately.

Example of Use:
A user is updating a file, and the new contents of a record depend upon the
previous contents. A software incident (step abort, system crash, etc.)
occurs.

If the step is restarted without a Before Journal, the user program will
perform the update again. As the file has already been updated before the
incident occurred, and as the new contents of a record depend upon the
previous contents, the final result will be incorrect (processing of the records
up to the point of the crash will occur twice).

If the file was journalized with a Before Journal, after the incident occurs, the
file will be reset to its state at the last recovery point. This resetting is
automatic, and the repeated step will give the correct results. The Before
Journal applies to all file organizations.

AQ09A

The After Journal

Ale Salvager

Checkpoint/Restart

Summary

CHOOSING A RECOVERY FACILITY

6·2

The After Journal protects files against:

Hardware failures (the volume containing the file is damaged).
Erroneous update by the user program.
Software failures caused by a system crash or a step abort. In conjunction
with deferred update, it protects against TPR aborts in a TDS environment
(see the TDS/64 User Guide for details).

The operation which brings files to the state from which the user can restart
jobs is called roll forward, and the After Journal has been designed to make
this operation as automatic as possible.

The user has to save the contents of the files regularly in order to have a
correct version of the files available. These saved versions are restored, and
the After Journal is applied using rollforward to leave the files in the state
they were in when the incident occurred.

The salvager protects files against system crashes. After a system crash,
files may be in an unstable state and inaccessible to the system. For
example, some control fields may have been updated and the file structure is
not consistent.

At warm restart, the salvager scans all the files and volumes that were in use
when the crash occurred, and makes them accessible to the system. It
should be noted that it does not guarantee the integrity of the data in the
files.

Example of Use:
If a system crash occurs while a user is adding new records to a file, and if
the file is not closed (no EOF record is written), the salvager will find the end
of the file and write an EOF record. It will not bring the file back to its original
state, before updating started.

Note that the UFAS system has its own integral file salvager, and this is
automatically activated when the file is re-opened.

The Checkpoint/Restart facility allows a step which accesses a file in append
mode to be restarted without the use of a journal. This is done by taking a
checkpoint as soon as the file is opened. Note that the Checkpoint/Restart
facility does not protect files being used in update mode; it only allows a
restart of the step and does not bring the file back to its original status.

Figure 6-1 gives a pictorial representation of the two types of Journal.

There are three factors which affect the choice of facility:

The type of incident that the file is to be protected from
The overhead incurred when using the facility.
The time needed to restart the job.

Table 6 - 1 summarizes the characteristics of the four recovery facilities. Note
that more than one facility can be used at a time.

OLel
FILE.

NORMAL UPDATING

Modification (Mod)

Creating the
NEW
FILE

UPDATE WITH BEFORE JOURNAL; JOURNAL CONT AINS IMAGES BEFORE MODIFICATION:

incident

'-_/ Checkpoint 1
Olf)
FilE

--

OLD
FilE

mods to file

State So

Rollback to
checkpoint.
Journal
applied to
bring file to
state So

UPDATE WITH AFTER JOURNAL; JOURNAL CONTAINS IMAGES AFTER MOf)IFICA TION

SAVE of old
FilE state So

incident

mod 1 mod 2 1
X

State S1 State S2

Figure 6-' A Representation of Before and After Journal

all modifications repeated from So

creating the

File saved in state
So is restored.
After journal with
rollforward applied.
Mods 1 and 2
repeated to bring
f·ile to state S2

modification

continued
from S2

,--~

NEW
FilE

NEW
FilE

» o
o
~

In
.j::..

Integrity TPR
Facility abort

Salvager NO

Before YES
Journal

After NO
Journal
Alone

r-- -
After YES
Journal +
Deferred
Update
(TDS onlyl

Checkpoint NO
Restart

Table 6 - 1 Criteria for Choosing a Recovery Facility

InCident Protected Against
Volume failure Special

Step System or erroneous Restart Time Configuration
abort crash up-date Overhead and Effect Requirements

NO YES NO Only during warm File guaranteed NONE
restart none during accessible, but data not
step execution. guaranteed correct;

restart not always
possible.

YES YES NO Double the number Immediate at the last A file of 6 cylinders
of 1I0's needed when recovery point and fast. allocated on the system
updating a file. disk.

YES YES YES Medium Deferred and long as it Space on the system disk
needs a file restore. for the Journal Directory

+ one MTH if on tape
- - ------ --- -- --- --- or space on disk

YES YES YES Medium Immediate at the to allocate a sequential
beginning of abortal file.
TPR's and last.

YES YES NO Low Immediate at the last
checkpoint.

Comments

Re-used every time a
recovery point is taken.
Journalization at block
level.

Journalization at record
level. Used for UFAS files
in a TDSenvironment.
--- --- --

Available for TDS only.

Used only in batch
environment. May protect
files in append mode if the
checkpoint is taken
immediately after the
OPEN.

}>
o o
~

AQ09A

THE BEFORE JOURNAL

The Before Journal File

The Before Journal is an independent system facility; when requested by the
user, it ensures that when an abnormal termination occurs, files will be
automatically restored to their previous state. This previous state is the state
of the file before the step started for both a step which is not restartab!e, and
for a step which has not defined a new restart point.

When a step defines a new restart point (i.e. takes successful checkpoints)'
the previous state is the state of the file at the current restart point. Note that
the original state of a journalized file is lost every time a step takes a check­
point and cannot subsequently reach its normal termination (after any
number of possible restarts).

At step restart time (after an abnormal termination, a Terminate Job or a
crash) the operator may have the journalized files restored without a step
repeat. Note that the files are restored to their state at the last checkpoint, if
any. It is the responsibility of the user to explicitly request that files are
journalized; if they are not, checkpoint will not ensure the restoring of the
contents of the files before any possible restart. Files (except UFAS
sequential disk files) that are accessed in append mode cannot be journalized.
The program should take a checkpoint just after the opening of such a file
and before any WRITE occurs on it.

The Before Journal acts in two ways:

JOURNALIZE: The contents of user records prior to their update are
recorded in system file, SYS.JRNAL.

ROLLBACK: In the case of abnormal termination of a step (eIther abort or
system crash), the journal may be used to rollback (to reset) the files to
their contents at the last restart point; either at the beginning of the step
if there are no checkpoints, or at the last checkpoint.

Note that the Before Journal does not protect the user against physical
destruction of the volume on which the file is recorded.

The use of the Before Journal will produce messages on the JOR (Job
Occurrence Report) and the console. These messages are fully described in
the System Error Messages and Return Codes and the System Operation
Console Messages manuals.

The Before Journal is a system file named SYS.JRNAL (see SYS.JRNAL,
Section IV of this manual). This file is divided logically into subfiles, and the
maximum number of active subfiles is site dependent. It can vary between 3
and 19, and the default is 8.

Several steps may journalize simultaneously while others, which aborted,
are rolling back their files. The Before Journal file contains only the before
images taken from the last restart point (either beginning of step or
checkpoint). After a checkpoint or at the beginning of a step or a TPR, the
new images erase the previous ones.

The Before Journal file will overflow if the space required by the Journalized
records exceeds the size of the file. In this case, an automatic extension of
the file (for each step that overflows from the first, shared extent) is
performed, which allows up to 15 extensions of 6 cylinders of the journal for
a single step, and 31 extensions for the whole system. Note that the limit of
31 extensions can be reached with three steps journalizing simultaneously,
depending upon the size of the journalized records and the number of
journalized records for each step.

The first extension of the file is made automatically on the system disk if
there is enough room on it. Subsequent extensions are made after a question

6-5

AQ09A

The Before Images

Journalized File Organizations

on the console asks the operator the name of the volume on which the
extension should be made. Note that the volumes on which the extensions
are to be made must be of the same type as the system disk.

When the next checkpoint or the normal end of the step is reached, all the
extensions belonging to the step are destroyed, and the disk space is
released.

In case of abnormal termination, all the extensions are destroyed and the space
released after the rollback occurs.

To help you judge the appropriate size for the Before Journal file, the
maximum number of tracks that have been used to journalize is indicated in
the JOR.

These are recorded on the journal in time sequence, and are used in reverse
order at Rollback.

To guarantee the integrity of the journalized files, the images are recorded
before each modification of the user file.

The images belonging to all journalized files are stored in the same Journal file.

Table 6 - 2 below shows when the Before Journal may be used, according to
the file organization and processing.mode.

Table 6 - 2 Before Journal Use Details

Processing mode

1 File organization
Output Append Uprlate I

UFAS

Sequential tape NO NO -
Sequential disk NO YES YES
Relative YES - YES
Indexed NO NO YES

BFAS

Sequential tape NO NO -

Sequential disk NO NO YES
Direct YES - YES
Indexed sequential NO NO YES

HFAS

Sequential tape NO NO -
Sequential disk NO NO YES
Random YES - YES
Indexed sequential NO NO YES

Requesting Before Journalization ($ DEFINE)

6·6

To Journalize a file the user must supply in the Jel. for each file to be jour­
nalized, the $DEFINE statement:

DEFINE ifn, JOURNAL=BEFORE;

Where ifn is the internal-file-name on the $ASSIGN statement for the file to be
journalized. Note that this request will be ignored if the file SYS.JRNAl is not
present.

AQ09A

Programming Considerations

Rollback Action

A journalized file should not be deassigned during the step; however if it occurs
before the abort :

After an abort this file will not be rolled back.

After a crash this file will not be rolled back except if the file was assigned
with the option " PASS" .

Note that, in this case, rollback may lead to unpredictable results for the file.
if while the file was deassigned for a step, it was assigned and updated in
another step.

Roll back restores the contents of journalized files to their state at the last restart
point (last checkpoint, beginning of step or beginning of TPR).

Rollback occurs either after a step abort, at Warm Restart after a system crash,
or after a TPR abort. After a TPR abort, rollback is automatic.

The operator decision to perform rollback, or not, must be made when the
restart question is answered. It is not possible to defer the decision to a time
when, perhaps, the aborted job is no longer present. Note however that the
answer to the restart question may be delayed; for further details see the
paragraph "Restart Operator Response" later in this section.

All the files journalized in a step are rolled back simultaneously. If an incident
occurs on one file at rollback, the rollback continues for the other files.

Either after a step abort or after a system crash a question is sent to the
operator:

a) if REPEAT is f10t specified in the $STEP Vi $JOB statements, it asks if a rol!,
back is required.
If the answer is YES, rollback occurs immediately.
If the answer is NO, rollback is inhibited and the journal contents are deleted.

b) if REPEAT is specified in the $ STEP statement it asks if a restart is to be
done from the last checkpoint.
If the answer is YES, rollback occurs immediately and the step is restarted.

If the answer is NO, rollback is inhibited, the journal contents are deleted,
and the step is not restarted.

If the last checkpoint number was 0 (no checkpoint has been taken) the answer
may be ROLLBACK; then rollback occurs immediately but the step is not
restarted.

At the end of the rollback a message is sent to the JOR. After a system crash, if
an incident in the system prevents rollback for all the steps than a message is
given on the Rerun Report on the JOR.

6-7

A Q09A

THE AFTER JOURNAL

The After Journal File

6-8

The After Journal (currently available with TDS only) acts in several ways:

- JOURNALIZE: the contents of the user records, after they have been
modified, in a system file, the After Journal file.

- JOURNALIZE: in a system file (the After Journal Directory, SYS.JADIR) the
list of a" the volumes of the After Journal file, the list of a" aborted TPRs and
the After Journal file characteristics. There is a utility (described later in this
section) which will modify the characteristics and edit the contents of the
After Journal Directory.

- ROLLFORWARD: When a file is left in an inconsistent state by, for example,
a software failure or a volume failure, the After Journal may be used to roll
the files forward from the last point of restart to the point at which the
incident occurred. Currently, the last point of restart is the last non-aborted
TPR.

There are two ways of using rollforward. The first is to call a utility which will
bring a file back to its state at the last non-aborted TP R, and re-executes all the
logical operations on the file, skipping those made by the aborted TPR and the
second is dynamic rollforward, which is an entirely automatic procedure
launched at TDS restart in the case of a system crash or TDS abort. The
rollforward utility is described in the TDSI64 Standard Processor Site
Manual.
Note that a file which is updated by batch programs and by TDS will not be
protected against volume failure unless a save is made before each TDS
session. Note that if the previous session ended in a crash or an abort, the save
should be taken after the dynamic rollforward is activated.

The After Journal file is a file which consists of a set of sequential files (journal
files) in undefined format with a default blocksize of 2K bytes. This blocksize
may be modified by the After Journal utility, JAGEN. Th-e set of files which
constitute the After Journal file are managed by the system, and there is only
one After Journal for the whole system, so all steps which journalize in After
mode journalize on the same journal. Currently, up to four TDS can journalize
simultaneously. The journal files can be on magnetic tape or disk, the medium
change being done by JAGEN.

It is up to the user to decide whether the After Journal file is to be on disk or
tape, but once journalizing starts, the medium cannot be changed dynamically.
See the note below for the procedure for changing the medium.

The default values for the After Journal file are:

- Device type: magnetic tape
- Device characteristics: 9-track 1600 b.p.i.
- Blocksize: 2K records

The JAGEN utility has to be run to change these values.

For an After Journal on disk, the user cannot dynamically change the blocksize,
as this is equivalent to a device-class modification.

For an After Journal on tape, the blocksize can be changed dynamically without
saving all of the files, and thus the After Journal file on tape can consist of files
with different blocksizes. The blocksize change will take place the next time the
system starts to journalize.

Note: When the medium is changed (for example, from tape to disk), all the files
to be protected by the After Journal must be saved, and the After Journal
Directory must be "cleaned" by the JAGEN utility, or by $LBDELET
SYS.JADIR.

AQ09A

The after journai on tape

A.f.+ro.r ;""" Irn",,1 fila ,..,.n rfi~1"
'"'I llCIl JVUII 101 III'!J VI I Ylu",

TheAfter Journal on magnetic tape requiresone MagneticTape Handler(MTH},
even ifseveral steps are journalizing. If there is no MTH available when the first
step journalizes, the step will be enqueued until an MTH is available. The
resource handling is entirely automatic, and optimizes the use of MTH's for
steps that are journalizing.

When the After Journal is used for the first time, the operator has to load a
WORK tape, which will then be transformed to a journal tape by the system.
The After Journa! file can be on several volumes, in which case when the end of
the current volume is reached, another work tape must be loaded. This tape, in
turn, is converted to a journal tape by the system. To save time, the next work
volume can be prepared on another MTH.

Each tape of the After Journal file contains one journal file. Each file will have
the name: SYS.JA.tsn, where "tsn" is the sequence number of the tape, and is
given by the Journal. The first journal file will be SYS. JA.OOOOOOOOOO1, and
the number increases for each tape.

When a ROLLFORWARD is launched and a step is journalizing, the current After
Journal tape is closed, and a new work tape is required for the journal file. If an
incident prevents the current After Journal tape being closed, a new work
tape has to be loaded. .

It is your responsibility to decide when an After Journal tape can be used
again. Once you take this decision, run $VOLPREP to return the tape to
work status (see the Data Management Utilities Manual for details of
$VOLPREP). If a tape is no longer to be used as a journal tape, the user has
to inform the system that the after images on this tape are obsolete. This is
done by using the JAGEN utility with the REMOVE parameter.

Tn inllrno::lli"7a in l1f+o.r rY'\n~o. nn ~i~1,.. +ha II~or mlle+ rlln +ho. II+ilihl 111r::E:1\1 +n
I \J J\J\""U. n IIL'-' ... ,-, I Lvi I I nJUv VI I UI..;J"-, ... ,...., '\..I;"...... I I "" ... I UI I ",I • ..., U 11..'" &. Y Vr-\""",L..I.. LV

define the Ifst'of volumes on which the After Journal file can be created. This
utility allocates a sequential journal file on each of the named volumes. The
name of these journal files is:
SYS.JA. volume-name

Note that each disk may contain only one journal file.

The After Journal can share disks with other files, but to ensure file integrity,
the journal should be on a different disk to the file which is being journalized. If
they are on the same, there is no guarantee of protection against volume failure,
and thus one of the advantages of using After Journal is lost.

The first step which journalizes requires the operators to load the volume on
which the current journal file is allocated. A drive should be available to load this
volume, otherwise the step will be queued waiting for a drive to become
available.

When the first va ume is loaded, and journalization begins, a message is sent to
the operators, telling them which volume contains the current journal file, and
the volume that will contain the next journal file. When the end of the current
journal file is reached, a message asking for the next volume to be loaded is sent
to the operators, if this volume is not alteady mounted. If no drive is available for
this new volume, all of the steps that are journalizing in After mode are aborted.

When the system starts to use the last volume specified in the list of volumes
that support the After Journal, the operator is informed, and can run the JAGEN
utility with the APPEND parameter to provide a new list of disks for the journal.
If this is not done, and the last disk is used, all the steps that are journalizing in
After mode will abort. .

Each time a journalizing step is run, the system will:

- Either request the loading of the current journal disk, used for the journal in
a previous session.

6-9

AQ09A

The After Journal Directory

Recycling

Journal Volume Error

6-10

time

- Or, if it is the first time the user has journalized, or if the current disk is not
closed because of an incident (e_g. a system crash), request the loading of
the first disk in the journal volume list.

- Or, if a rollforward is activated, request the loading of the next disk in the
volume list, as the current disk is closed while another step journalizes.

Each time volume switching occurs, the operator is given the name of the next
volume to be loaded. It is the responsibility of the user to decide when an After
Journal file on disk can be erased; the contents of the file are lost as soon as the
disk is entered as a new volume in the volume list maintained in the Journal
Directory.

The After Journal Directory is a file which is preallocated on the system disk. If
this file does not exist, steps which journalize in After mode will abort. The
name of the file is SYS.JADIR, and it contains a" the control information for the
After Journal files, including:

- The list of all the After Journal files which can be used by rollforward, their
beginning and end dates.

- For each one of the After Journal files, the list of all the aborted TPRs journal­
ized on the file. This is done because a" the records journalized by these
TPRs must not be rolled forward.

- The name of the current journal file and its characteristics.
- If the After Journal file is on disk, the list of the disks on which the After

Journal can be created.
- Information on the blocksize distribution if the After Journal is on tape.

The After Journal directory is handled entirely by the system, but it is essential
that all restarts after a system crash are warm restarts, so that this file can be
salvaged.

It is the responsibility of the user to decide when to recycle the After Journal
volumes. When to do this wi" depend upon the time at which saves were taken.
For example,

T(1,O) T(2,O) t 1 T(1,1) T(3,O) T(2,1)

Journal '--1------'--_-+ ____ :,~ .. ,..::~-__iIr__-____,~ t__-..,.'----.l...--_b ___ _
volume .-- ,-- i·" i -

Saves

volume: V1 , volume I V2 volume, V.3 volume
, ill: V4
ii' I I

i ~ • I __ ,,,~--_. I

: file f1 : file f3 I file f2 I

" I I
file f2 file f1

In this example, files f1, f2 and f3 are journalized.

The volume V 1 can be recycled only when file f2 is saved again at time T(2.1).
The volume V2 can be recycled only when the file f1 is saved again.
If an error is made, for example, volume V2 is recycled during the interval T(3,O),
T(2, 1),_~ei!tler file f1 or file f2 is protected. The volume V1 is now obsolete, but
file f3 is still protected. If the user wishes to make files f1 and f2 protected
again, they must be saved.

If, during rollforward, there is a Read error on the After Journal, GCOS64 does
not provide any automatic method of recovery.

AQ09A

The After Images

After Journal File Organizations

These are recorded on the journai in time sequence and used in this order by
rollforward. The images belonging to all journalized files are recorded on the
same journal file.

The images are recorded after the modification has been made to the file.

Table 6 - 3 shows when the After Journal may be used, according to the file
organization.

BFAS
HFAS

UFAS
(Batch)

UFAS
(TOS)

Table 6 - 3. After JOllrnal Use Details

Processing mode
File Organization

Output Append

NO NO

NO NO

NO NO

Update

NO

NO

YES

Requesting After Journalization ($ DEFINE)

Rollforward Action

To Journalize a file in After mode, the user must supply in the Jel, for each file
to be journalized, the $ DEFINE statement:

. jAFTER) DEFINE Ifn, JOURNAL = BOTH \

If AFTER is stated, the file will be journalized only on the After Journal.
If BOTH is stated, the file will be journalized on the Before and the After Journal.

Note that ifn is the internal-file-name given in the $ASSIGN statement for the
file to be journalized.

If the After Directory (SYS.JADIR) does not exist, the step will abort.

If the After Journal requires a new disk, and if the volume list is empty, the step
will abort.

If it is a TDS step, journalization is automatic if the required resources are
available. If they are not available, the step is queued.

If it is a batch step, the step aborts at file open time.

The After Journal has been designed to allow the following:

- Several rollforwards on different files to run simultaneously.
- Rollforward of files and the journalization of other files to occur simul-

taneously.
- Automatic supply of the volume list required for rollforward.

There are two types of rollforward, static rollforward (called by the roll­
forward utility), and dynamic rollforward, automatically activated by the
system at TDS warm restart time, and used in conjunction with deferred
update (see the TDS/64 User Guide for details),

6-11

A009A

The After Journal Utility, JAGEN

Parameter Description:

PRINT

APPEND

REMOVE

6·12

Function: To define the physical characteristics of the After Journal File, or to
record volumes on remove volumes from the list of volumes that support the
After Journal.

Format:

$INVOKE JAGEN, SYS.HSLLlB
VALUES = PRINT

APPEND, volume1 Lvolume21 ... [,volume10]
REMOVE, volume 1 [, volume2] ... [, volume 1 0]
GEN, [DEVCLASS = device-class], [BLKSIZE = blocksizel

, [SIZE = size], [INCRSIZE = increment-size]

Statement Description:
This utility is called by the $INVOKE JCL statement, and the parameters are
given in the VALUES parameter of $INVOKE. See the Job Control Lan­
guage (JCL) Reference Manual for details.

If the After Journal is on magnetic tape, the introduction or removal of volumes
from the list of volumes that support the After Journal can be done automatic­
ally by the system, and the utility supplies an additional facility which can be
used to clear obsolete journal tapes from the After Journal Directory, or to print
the list of journal tapes.

If the After Journal is on disk, the utility must be run to supply the identification
and characteristics of the supporting volumes to the system. It is also used to
inform the system when a journal file on a given volume (and all journal files
previous to this file) are to be released from the After Journal Directory. When a
new volume is supplied with this utility, a sequential file for use by the After
Journal is automatically allocated by the system.

NOTES:
- When a volume is removed from the After Journal Directory by the utility, all

journal files that were created before the file on this volume are automatic­
ally cleared from the Directory. This applies for disk and tape.

- Whenever a volume identification is removed from the Directory, ensures
that all entries in the Directory are chained. If an entry does not belong in
the volume list, it is destroyed.

This parameter causes the printing of:

- The current characteristics of the After Journal
- The list of disks to be used (for disk only)
- The description of and statistics of each After Journal file

This parameter is valid only with disks. It causes the allocation of a sequential
file, SYS.JA.volume-n on the disk volume-n. It also records the name of the
volume in the After Journal Directory.

When the After Journal is on disk, the given volume names are searched for in
the list of volumes to be used and amongst those already used. If the names are
found, these volumes are released from the list, and all the previous volumes in
the chain are also released. Note that no space dealJocation occurs.

When the After Journal is on tape, the volumes given are searched for among
the tapes already used. When found, they are released, along with all the
previous tapes in the chain.

AQ09A

GEN

FILE SALVAGER

This parameter allows the user to choose the characteristics of the After Journal
file.

It is not mandatory, because once the After Journal Directory has been
allocated, the default values of MT/T9/D1600i blocksize= 2K bytes are
assumed by the system. Note: SIZE~blocksize~2056 bytes.

If it is used, the utility must be run immediately after the allocation of the
Journa! Directory if the device-class or the device attributes are to be changed.

Any attempt to modify these characteristics will fail if journalization in After
mode is current. This means that the Directory has to be cleaned using the
REMOVE parameter before the volume type is changed or the characteristics
are changed.

The facility to modify the default blocksize of 2K bytes applies to tapes only.
Blocksize for disks can only be changed when there is no list of supporting
volumes in the Directory.

The facility to modify the size and increment size applies to disk only. An
increment size of 0 will cause an error.

A full description of JAGEN and its parameters is given in the TDS/64 Site
Manual.

The file salvager is designed to increase the reliability of the system by reducing
the effect of system crashes on the integrity of files and volumes. !t is called by
operator request at warm restart time, and attempts to:

- Make the data and control information recorded in the job management
file SYSIN and SYS"JCF accessible. See Section IV for details of these files.

- Allow editing of job output currently recorded in the SYSOUT and SYS.REP
files. See Section IV for details of these files.

- Recover the file control information for user files processed in write mode to
allow an immediate or deferred rerun of the jobs.

The file salvager ensures only that files are accessible by the system, it does not
ensure that the data in the files is correct. If the other integrity facilities (such as
Before Journal and Checkpoint/Restart) are not used, an immediate rerun of the
job may lead to incorrect results.

The action of salvager on user files depends upon the processing mode and the
stage of processing reached when the crash occurred. Library files are always
verified, regardless of the processing mode; sequential files processed in output
mode or append mode are recovered up to the last effective write; sequential
files processed in update mode are not verified. Whatever the intended activity
on a file was, salvager will produce a detailed printout giving the file
characteristics, the file status, and the intended action when salvaging.

To summarize, the file salvager:

- Builds a list of potentially damaged files
- Warns the operator about those files which are in an unstable state
- Verifies and recovers these files if the operator requests salvaging
- Warns their owner about their characteristics and the stage of processing

reached when the system crashed, and informs the owners of the action to
be taken when salvaging.

Activation and Control of File Salvaging File salvaging is activated during a system restart following an emergency
shutdown (system crash, power failure, etc.). It provides independent facilities
for salvaging system files and user files. These facilities are activated in two
ways:

6-13

AQ09A

The Action of File Salvager

6-14

- System file salvaging is automatically requested by job management and
runs under the control of job management whenever the operator requests a
warm restart. See WARM RESTART/SHUTDOWN in this section.

- User file salvaging is requested by the operator at warm restart time, and
runs under his control.

After establishing the list of user files active at shutdown time, the system
warns the operator about those which are potentially damaged, and asks if file
salvager is to be run. If the answer is no, no salvaging will be performed. If the
answer is yes, file salvaging will be activated, and the operator will receive a
brief report on the status of each file and the result of the intended correc­
tionsto it. This report is fully described in the System Operation Console
Messages manual.

File salvager first informs the owners of files that the files may have been
affected by a system crash, and produces a salvaging report containing the
names of the owners of the files, the characteristics of ~~e volumes containing
the files and the run occurrence number (ron) of the jobs dccessing the files. It
then declares files as unstable if:

- They are opened in write mode
- They have been dynamically allocated by the jobs using them and the open

has not been completed.

The names of these unstable files are sent to the operator with the names of the
volumes supporting them and the ron of the jobs processing them.

The next stage of file salvaging is only concerned with these unstable files and
then only if they are native GCOS files and monovolume (multivolume file
salvaging is supported if only one volume was loaded at shutdown time).

The file organizations supported are library files and sequential disk files. Other
organizations are declared as NOT SUPPORTED in the status report.

Depending upon the stage of. processing, the following actions are then
performed by file salvager.

- If the file is assigned but not yet opened, and the space allocation was
performed in a previous step, no action is taken by the salvager;

- If the file is assigned but not yet opened and the assignment took place in
the step that was running at shutdown time, the result of the allocation
request is verified. The salvager verifies and corrects the space description
in the VTOC of the volume, attempts to correct inconsistencies in file labels,
and deletes any labels it cannot correct. If the shutdown occurred during a
storage allocation procedure, the salvager resets the VTOC indicator which
forbids any allocation/deallocation on the volume, but does not verify the
complete VTOC. The utility $VOLCHECK should be run on the volume,
before any storage allocation/deallocation on this volume, to ensure that the
unallocated space is completely updated.

- If the file is opened in write mode, library files are verified regardless of the
processing mode. Subfiles which have an entry in the directory are verified
from the subfile entry to the last correctly chained block. Subfiles processed
in append or output mode are recovered to the point of last effective I/O on
the file. Subfiles processed in update mode are protected against data
structure inconsistencies caused by an I/O interrupt during an insert or a
delete function.

Sequential files are only verified if they were processed in outo!.1 "" append
mode, the file is closed at the last effective write; the file is sCc J'Ti the
first record and closed either at the first end of file or at the first incor~i.. cy
between track balance and effective track allocation status.

The two salvaging utilities, $FILCHECK and $VOLCHECK can be called at
any time by the user; they are fully described in the Data Manag9ment
Utilities Manual.

AQ09A

The UFAS File Salvager

CHECKPOINT/RESTART

Restart Functions

Restartable Jobs and Steps

The U FAS system has its own integral file salvager. This is cailed auto­
matically when the file is reopened, and will produce JOR messages prefixed
with the code DUF. These messages are fully described in the System Error
Messages and Return Codes Manual, and the salvager is fu lIy described in
the UFAS User Guide.

The function of the Checkpoint/Restart mechanism is to save an image of the
Process Group (job step) and to update the current recovery point according to
this saved image. The point of activation for checkpoint. within the user
program, is specified by the user.

The image (snapshot) will contain all the step status. data and code segment
information which will be required for restart purposes in the event of a step
abort. Snapshots saved by the checkpoint facility are stored in a system file
known as the checkpoint file. Each snapshot is held in a separate subfile within
the checkpoint file. The checkpoint file is shared at system level by all active
jobs but will never contain more than one valid checkpoint at a time for any
given job. As soon as a new checkpoint is entered iri the system file by a job. the
system deletes the previous checkpoint for the same job.

The Checkpoint/Restart mechanism means that aborts and restarts are auto­
matic, and thus not visible to the user. However, the System Operator will be
made aware of all abort and restart incidents and run time, and full details are
given in the Job Occurrence Report.

The restart facility is a centralized function of the system. When a system or
step failure has occured during a restartable step. the step is aborted and
returned to the beginning. or a predetermined point during step execution.

During the step termination phase the operator is asked if he wants to restart
the step (see System Operation Operator Guide, Step Repeat); if the restart
is required, a new step initiation phase is entered to re-execute the step from
the specific recovery point.

The following conditions must be satisfied for an aborted step to be restarted.
Note that a system crash corresponds to a step aborted for all executing and
suspended (held during execution) job steps.

The restart conditions are:

· The job is known to the system and does not have to be resubmitted.

· The step completion severity code is at least 3 and the abort did not result
from a "T J STRONG" operator command.

· All the resources allocated to the step are still allocated. They can be com­
pletely released, including the mUltiprogramming channel (but not the files). if
the operator puts the job in the SUSPENDED state by entering a HJ command
before answering the REPEAT question .

. The $STEP statement of the aborted step specifies REPEAT.

6-15

AQ09A

· The files held by the step to restarf are closed and deassigned.

· A restartable step must keep its dynamic step number unchanged until its full
termination.

· The step completion code and the job switches must be temporarily restored
to the values they had during the first step initiation, thereby allowing the JCL
to be reprocessed.

Note: If the $JOB statement specifies REPEAT, this will override $STEP.

Programming For Checkpoint/Restart The system provides two entry points (routines) through which the programmer
may access the Checkpoint facility. Both routines have identical parameters and
return codes.

H CK UCHKPT Routine

6-16

· H _ CK _ UCH KPT; this routine causes a snapshot to be taken and provides,
via parameters, the result of the action.

· H_ CK _ UMODE; this routine reports on the current checkpoint status of the
step. It does not cause a snapshot to be taken.

This routine must be invoked to build up and store into the checkpoint file a new
checkpoint. The current snapshot of the step is then updated by the new
snapshot (provided no severe error condition was encountered). If the update of
the current snapshot is successful, the checkpoint which supported the previous
snapshot is deleted from the checkpoint file.

If the snapshot cannot be updated, the new checkpoint is deleted.

Consequently the checkpoint file never contains more than one valid checkpoint
(containing the current snapshot) for each restartable job step which exists at
any given time in the system. All journalized files (or queues of messages) are
synchronized with the new snapshot.

Two static parameters (MODE and CKINF) are reset every time H CK UCHKPT
is entered, and assigned new values when it is exited. Note that H- CK- UMODE
can be called merely to read these indicators and return their curre-lit values
without changing them.

MODE Parameter

This parameter is a 32-bit byte-aligned numeric variable. It informs the user of
his current execution mode (normal or restarted). When MODE is set at zero,
the execution mode is restarted. This will mean that the step has aborted and
has been restarted using the current snapshot.

The execution mode 'restarted' will continue until a new activation of
H CK UCHKPT is performed. When it is not zero, MODE is set to the value of
the step completion code at the time of abort. Hence by checking MODE a
program can take specific actions in the event of a restart of a job.

CKINF Parameter

This parameter is a 32-byte character-string variable. Every character of the
returned string is set to either "0" or "'" thereby indicating the occurrence of
given conditions. If one or more abnormal conditions are met, the corresponding
flags are set to "1".

These conditions are listed below. The left-most byte is number 1 and the right­
most is 32.

AQ09A

H CK UMODE Routine

Coding a Checkpoint

Byte Condition when "I"

1 to 1 5 Reserved.

16 Major error or malfunction.
0 ... 4="" .. +,.,. +h"" Ino
""iJ"I~1 .. v lIl.., tJ'V.I_

Corresponds to the return code FUNCNAV.

17 to 23 Reserved.

24 0"" •••••••• There were operator commands enqueued when the abort
happened;
the return code is ABNCCAD.

25 There were pending requests for this step in the Internal
Timer queue;
the return code is ABNCCAD.

26 Reserved.

27 External IDs were found pointing to this step;
the return code is ABNCCAD.

28 to 31 Reserved.

32 The next call to H CK UCHKPT will fail;
the return code isABNCCAD.

The return code ABNCCAD is delivered with a warning message, which
generally means that the checkpoint taken is valid, but it may be necessary to
take special action at restart time.

The return code FUNCNAV is delivered with a fatal error message and signifies
either an internal system malfunction or, more likely, a checkpoint restriction;
multi-task steps (Communications only) cannot use checkpoint.

For further details see the paragraph "Checkpoint/Restart Limitations".

This routine returns the same information to the caller as H CK UCHKPT. but
unlike H CK UCH KPT it does not cause a snapshot to be taken.
H CK UMODE is especially useful when the Checkpoint mechanism is called
implicitly (as it is by the COBOL RERUN declaration).

The parameters are exactly the same as those for H_ CK_ UCHKPT.

The calling sequences pave different forms according to the programming
language being used.

Checkpoint With COBOL

A COBOL program can activate H _ CK _ UCHKPT either directly or implicitly.

a) Implicit call: H CK UCHKPT is implicitly activated by the COBOL runtime
package when the user program contains a RERUN statement.

The RERUN statement is:

RERUN ON CHECKPOINT-FILE EVERY integer-n RECORDS OF filename-l.

integer-n is the count of records to be processed between two consecutive
activations of H CK UCHKPT. In certain cases the count can be slightly
exceeded because its value is checked only when an I/O operation is to be
initiated;
filename-1 is the name of the file to which the counted records belong.

bi Explicit caii :
The data description statements are as follows

77 mode COMP-2.
01 ckinf.

02 ekel PICTURE X OCCURS 32 TIMES.
The CALL statement is :
CALL "H_CK_UCHKPT' USING mode, ckinf. &17

AQ09A

Submitting a Restartable Step

The JOR of a Restartable Step

6-18

The RERUN COBOL statement does not activate H CK UMODE, but this entry
point can be explicitly referenced by a COBOL program which uses a RERUN
clause, this action would be taken to find out whether the checkpoints are suc­
cessful or not and as to what the current mode of execution is.

Checkpoint With FORTRAN

In FORTRAN the access to checkpoint is as follows:

Data description statements:
DIMENSION ckinf (32)
CHARACTER ckinf * 1
INTEGER mode

The CALL statement is :
CALL H _ CK _ UCHKPT (mode, ckinf)

Calls to H_CK_UMODE are entirely similar to the H CK UCHKPT calls.

A step is not restartable unless it is explicitly declared as restartable. A step is
declared restartable by using the REPEAT parameter in its $STEP JCL state­
ment. Note that the REPEAT parameter of $JOB applies to every step in the job.

Description of Parameters:

NOREPEAT is the default option; it specifies that the step cannot be restarted
after an abort. When used with a step which calls
H CK UCHKPT, the H CK UCHKPT acts as a dummy procedure
giving-the return code DONE and the step is not granted a
recovery point.

REPEAT declares the corresponding step as restartable. If a step abort
occurs the system will ask the operator whether or not to restart
the step from its current recovery point. The first recovery point is
automatically established at the beginning of the step. The
recovery point is later updated by every call to H CK UCHKPT
which is successfuly completed. If the DEBUG option is used
together with REPEAT, any call to H CK UCHKPT will be unsuc-
cessful. - -

During the execution of a step certain messages are written into the Job Occur­
rence Report (JOR) which are related to its property of being restartable.

Messages for a normal step execution :

hh:mm:ss STEP STARTED

TASK J=01 P=OO COMPLETED
START
STOP
CPU
ELAPSE
CHECKPOINT ddd TIMES CALLED
CHECKPOINT LARGEST SNAPSHOT LENGTH: dddddd
STEP TERMINATED

AQ09A

Errors Within Checkpoint

Checkpoint at System Shutdown

Recovery of Files

FILE POSITIONING

Messages for a restarted step:

hh:mm:ss STEP STARTED

TASK J=01 P=OO ABORTED G4=UNRECIO-H GET
START
STOP
CPU
ELAPSE
CHECKPOINT ddd TIMES CALLED
CHECKPOINT LARGEST SNAPSHOT LENGTH: dddddd
STEP TERMINATED

hh:mm:ss STEP dsn RESTART AT CHECKPOINT ccc

TASK J=01 P=OO COMPLETED
START
STOP
CPU
ELAPSE
CHECKPOINT ddd TIMES CALLED
CHECKPOINT LARGEST SNAPSHOT LENGTH: dddddd
STEP TERMINATED

The user must be aware that the cost of taking a checkpoint is rot negligible
in CPU time nor in backing store usage. This is why the system reports the
number of calls to H CK UCHKPT. and the maximum size (as a byte count) of
the total amount of data and code saved at checkpoint. These figures are
evaluated for the most recent step initiation {normal Oi iestartL and for the
actual sizes of segments (not from their maximum size).

Certain errors within checkpoint are reported as warnings to the operator and
the JOR.

The form of the message in the JOR is:

SYSTEM ERROR CK01.06 RETURN CODE IS xxxxx FROM xxxxx (G4=xxxx)
WHILE IN CHKPT #12 CHECKPOINT ABORTED

In this example a system malfunction occurred while a checkpoint was being
'taken. The first line gives the message number, CK01.06 followed by further
detailed status values. The second line shows that the error occurred during
checkpoint number 12. Note that the job step accessing the checkpoint will be
informed of the error through the CKINF parameter of H_CK_UCHKPT or
H_CK_UMODE.

When the operator issues an EN D command for system shutdown. any job
steps using chec kpoint are automatically suspended when the next successful
checkpoint is made. These job steps will then be automatically restarted if the
next system session begins with a Warm Restart.

The file recovery has two aspects which at first seem to be independent but in
fact are related: one can look at the contents of a file and one can look at the
positioning of a file. The problem in connection with checkpoint/restart is how
to synchronize files with a step to restart. In other words how to get the files
back to the state they were in at the time where the restart point was
established. The integrity of file contents is the responsibility of the Journal.

UFAS, BFAS and HFAS ensure a correct repositioning of user files at restart.
Other access methods, even "library" (except for SYSOUT/SYSIN files) do not
support file repositioning.

Files which were not opened at time of the restart point are not repositioned.

The system only asks for the volumes which were loaded at restart time.

6-19

AQ09A

UFAS and BFAS

HFAS

Sequential, Indexed (Indexed Sequential) and Relative (Direct) files are
repositioned to the processing point of checkpoint.

In other words, data management control structures and buffers are restored to
this status and in particular, the current pointer is moved back to the checkpoint
state.

Note however that the actual contents of the file are those as at abort time and
not that at checkpoint, unless before images of updates to the file were taken by
the Journal.

As a consequence the following rules apply to repositioning:

- Sequential

Input, output; file is repositioned to checkpoint state.
Update: before images should be applied to restore file contents.

- Indexed and Indexed Sequential

Input, output; file is repositioned to the checkpoint state.
Update: before images should be applied to restore file contents.

Relative and Direct

Input: file is repositioned.
Output, Update; before image should be applied to restore file contents.

- Sequential tiles: same rules as for UFAS/BFAS.

- Indexed sequential files: same rules as for UFAS/BFAS, when processing
mode is Input or Update. When processing mode is Output, records loaded in
the file between checkpoint and abort remain in the file but are written again
if the program sequence is the same as before abort. If for some reason that
sequence is changed, the remaining records which are not erased become
inaccessible; so no DUPKEY return code will be received.

- Random files: same rules as for UFAS Relative/BFAS Direct files, except that
DUPKEY return code is not delivered in Output processing mode.

Repositioning of Card Reader Input Stream

File Location

The card reader file control structures and buffers are restorable to a current
checkpoint, but this is not an automatic repositioning facility. This repositioning
is an operator responsibility which is assisted by Device Management informa­
tion detailing ·the checkpoint card ($CKP) corresponding to the appropriate
checkpoint taking.

The checkpoint name is given within a "MOUNT" request and corresponds to
the name (checkpoint specific character/s) on the relevent $CKP card.

Files used at restart must have the same location on volumes as they had at
recovery point. It is not possible to relocate a file or to replace it by a duplicate
between the abort and the restart. If the extents of a file were modified or if
the file was allocated ($ALLOCATE extension) on a volume between the
recovery point and the step abort, the file is returned to the step at restart time
with the location and the extents it had at the time of abort. Note however that
a volume may be mounted on a different device (in the event of device failure).

COBOL MESSAGE CONTROL SYSTEM

6-20

Rollback of the Message Control System queues is provided as well as Rollback
of journalized files providing the RESTART option has been indicated within the
NDL QUEUE command. Such a Rollback consists of a repositioning of the mes­
sage queues to the state they were in at recovery point. In addition, it keeps all
the messages that have been received between the recovery and abort points.

AQ09A

SYSOUT

STEP MANAGEMENT

ACCOUNTING

FilE ASSIGNMENT

If a step is declared restartable and if it is to produce immediate SYSOUT
deliveries, those deliveries are automatically changed into end of step deliveries.

If a permanent SYSOUT file was opened at recovery point, it is repositioned
at restart according to its access mode.

See the Job Control Language (JCL) Reference Manual for details.

When a step is restarted its resources are reallocated by referring to the JCL in
the step enciosure. For example, the full quota of CPU-time is reallocated
regardless as to how much was used prior to the abort.

Checking procedures which were performed during the initial loading are reper­
formed whilst loading the checkpoint, therefore it is possible that a restart can­
not be performed if a resource is dynamically requested (dynamic REQCM) at
the recovery point and its requirements are in excess of the (static) JCL
specification.

Accounting records are written at step termination, whether the termination is
normal or abnormal.

A step termination phase is always performed before restarting a step so that
resource use is reported even during the period between the restart point and
the step abort.

Every value is measured according to the period of time which starts at a step
initiation (normal or restart) and lasts until the step termination (normal or
abnormal). This also applies to the information which is reported on the JOR.

Files which are dynamicaiiy deassigned before the restart point Si6 not
reassigned at restart.

Temporary files, passed files, work volumes, pools of devices and multivolume
files are supported.

The system protects the integrity of files which are allocated on work tape
volumes therefore the work tapes of a restartable step (which has aborted) are
also reserved. These tapes cannot be aSSigned to any other step until the owner
step is restarted.

WARM RESTART AND SHUTDOWN The Warm Restart mechanism contributes to the system availability by
minimizing the cost of a system crash due to a power failure or a
hardware/software failure. It salvages different system files and tables, restores
the scheduler queue and the Output Writer queue as they were at crash time
and allows a restart of the jobs that were running at crash time. In other words
the jobs in the states I N/SCH/HOLD/OUT are fully recovered. Jobs in the state
of execution (EX) are restarted depending on the job conditions at crash time,
the JCL-options and the operator decision. They may be automatically
recovered at the point they were at crash time or restarted at the last
checkpoint or the beginning of the current step or totally repeated.

Shutdown

The Warm Restart also allows a recovery of the SYSOUT listings that were
being printed at crash time.

The Shutdown function provides a means of terminating the Level 64
GeOS system.

It stops the Output Writer, suspends current jobs at end of steps or first
checkpoints and closes system files in order to allow an automatic restart to
be actioned later.

The Shutdown of the Level 64 GeOS system is instigated by the operator
command END. It covers all areas of the system and performs a controlled
systematic termination of operations and processing.

Termination of TDS and Telecommunications jobs are also operator func­
tionsand are performed by use of the appropriate commands (M STOP,TT).

6-21

AQ09A

System Shutdown Actions

System Restart

Warm Restart

File Salvaging

6-22

The command EN 0 is prohibited when there are jobs in the system which are
held in the state of suspension (HJ). If this ruling is not observed and the END
command is used the message "JOBS SUSPENDED, END NOT ALLOWED"
will be conveyed to the operator .. The operator will then be required to reac­
tivate the suspended job through use of the RUN JOB (RJ) command, and then
reissue the command END.

1. Stream Reader: the Stream Reader automatically stops after having read a
$ENOJOB JCL statement, and the introduction of new jobs through the SJ
command is inhibited.

2. Jobs in execution (EX state) : they are suspended at the end of the current
step or the first occurrence of a checkpoint in order to be automatically
restarted at the next system restart.

3. Output Writer: As soon as the command EN 0 is accepted the Output Writer
is notified not to commence printing and/or punching fresh output but only
to complete the current operations.

4. Jobs in other states (IN, SCH, OUT, HOLD): Scheduling is inhibited. All the
job queues will be restored at system restart time in the state they were at
when shutdown occurred.

5. System files and tables: system files are closed and tables saved in order to
allow an accurate resart.

This facility is fully automatic and therefore requires no operator actions. Jobs
are automatically restarted at the point at which they were suspended (end of
step or checkpoint). Scheduling is reactivated and the different queues are
restored.

The Stream Reader and the Output Writer have to be reactivated by the
operator through use of the SI, SJ and SO commands as appropriate.

Warm restart is called after the Initial Storage Load (lSL), and before system
ready. This facility is used when the system has not been terminated by shut­
down, and neither the option "COLD" restart nor "CLEAN" restart were
requested by the operator at ISL.

Warm restart uses two basic control structures, KJOB, and the JCS structure.
Within these structures job states and restart points are defined. These states
are described by several fields and are updated in one short move (non­
interruptable instruction). In order that the system files be in a state cor­
responding to the job they are related to, a "SAVE" is performed on the control
structures as soon as they have been updated.

Warm restart resets all the necessary files (system and user files) and control
structures (KJOB, JCS, JET, KNOT, KNOOET) so that when the system is ready
the jobs known at crash time can resume execution at a point either implicitely
defined by the system, or explicitely given by the operator.

Warm restart is called after the following actions are performed:

addressability to system control structures (KJOB, JCS) is restored.

salvaging of Virtual Memory files (JOR. JCFf, JCFS).

Before performing any action, warm restart calls upon the Salvager to salvage
the user files, and system files (SYS.IN, SYS.OUT, SYS.FTU, SYS.JADIR). The
salvager bases its action on the KNOOET structure to find out which files were
assigned and in an unstable state at the time of the crash.

For any sequential file, or mono volume file found in a unstable state, the
salvager sends a message of the following format to thf' operator:

SV01 SYSTEM: UNSTABLE efn FILE ON media FOR xn

AQ09A

Warm Restart Initialization

When the whole KNODET structure has been scanned, the salvager then asks
the operator if salvaging is to be performed by sending the following message:

SV05 ·SYSTEM : FILE SALVAGING?

if the operator answers YES, the salvager performs its action, and issues the fol­
lowing message for each file it salvages:

etn FILE RECOVERED

If the salvager does not find any file e!igible to be salvaged it does not issue a
request message to the operator.

After the salvager has been called, warm restart performs the following actions:

- Writes one or more records on the accounting file,

- Rebuilds the KNOT and ifn-lists from the KNODET structure,

- Cleans the KNODET structure to J = 0,

- Assigns and opens the system files in the correct processing mode,

- Restores addressability to the Output Writer structures

- Salvages the Output queue,

- Prepares a list of all JOR, JCFJ, JCFS present and checks that their state cor-
responds to the stage of the corresponding job,

- Opens a rerun report which gives details of current jobs,

- Sends a request to the Output Writer for the rerun report.

After these initialization actions are performed, warm restart scans the KJOB
structure to process each job in turn.

Warm Restart for IN/SCH/HOLD J,)bs The action for jobs in the IN/SCH/HOLD states is taken automatically by warm
restart on the basis shown in the following table and without the necessity for
operator intervention.

Table 6-4. Warm Restart For IN/SCH/HOLD Jobs

OLD STATE NEW STATE (KJOB atored)
(KJOB details)

JOB BATCH SERVICE JOB

in introduction empty empty

introduced introduced empty

in translation introduced empty

idle ----- empty

translated with error output output

translated + T J Output Output

held + TJ output output

schedulable + T J output output

hold hold empty

schedulable schedulable empty

output output output

6-23

AQ09A

Warm Restart for EX!SUSP Jobs

6-24

Before updating the job state in the KJOB, warm restart completes the follow­
ing actions :

- Checks the corrections of the system files related to the JOB (SYS.IN,
SYS.OUT, JOR, JCFS.JCFI).

- Writes a message on the JOR if necessary,

- Sends a message to the operator if the job is deleted.

- Updates the counters in the SYSLOAD, where necessary.

The service jobs JTRA, WRITER, BTNS, IOF and FTU are all aborted without
any notification being sent to the operator. The action taken on jobs in the EX or
SUSP state depends on the execution status of the job at the time of the crash.

The crash is only operator visible either through a message written on the JOR,
or when a Xnnn JOB REACTIVATED message, or a Xnnn JOB REMAINS
SUSPENDED message is sent to the operator. This visibility only applies when
the execution status of the job is one of the following:

- Job being initiated

- Step being initiated or waiting for resource allocation.

- Interstep (job level statement)

- Job being terminated.

- Step being terminated (case of a normal or abnormal termination)

- Repeatable step that has aborted but the operator had time before the crast}'
to define whether the step is to be repeated or not.

- Step being executed, and neither step or job have been declared repeatable
in the corresponding JCL statement.

- Step introduction in EXEC mode.

In these cases warm restart resets all control structures, so that the job can
resume its execution as if no crash has occured and without requiring any
operator intervention. However the job stage will remain as it was at the time of
the crash i.e. EXEC or SUSP. If the job was released. the normal processing of
the scheduler will select it at an appropriate time when the system is ready.

The operator is asked what to do with the job if the level of execution of the job
is one of the following:

- Step in execution, and either the step or the job have been declared
repeatable in the corresponding JCL statement.

- Repeatable step that has aborted but the operator did not have time before
the crash to define whether the step is to be repeated or not.

The operator interface that is used in the last and most frequent of cases con­
sists of the message RR01 with an immediate answer which may be YES/­
NO/ROLLBACK/ALL [,HOLDI.

Message fonnat:

~ ABORTED ~
RR01 ron ssn ~ KILLED ~ load module name SEV1 [=status] G4=

REPEAT?
REPEAT [FROM CHKPT sss-nnn]?
REPEAT WHOLE JOB?
ROLLBACK?

AQ09A

\'\/drrn Restart Action on SYSOUT

Rellin Report

The format of the question depends on the following conditions:

-Level of the job execution.

- Repeat option in $STEP.

- Journaiization of at least one file.

- T J command issued before the crash.

- Step completion code value (STATUS).

- Repeat option in $JOB.

The possible operator replies and the corresponding warms restart actions are
summarized in Table 6-5 below.

Table 6-5. Warm Restart Action on Operator Response

Question REPEAT? REPEAT FROM REPEAT WHOLE ROLLBACK?
CH KPT 8ss-nn 7 JOB?

ANSWER

YES Repeat the Repeat t'1e step Repeat the job Rollback files
step from its from the last from its begining and continue

begining with chekpoint with with file next step
file rollback file rollback rollback

NO Continue next

I
Continue next Continue next Continue next

step step step step

ROLLBACK Rollback files I Not Rollback files Rollback files
and continue allowed I and continues and continue
to next JCL I to next JCL to next JCL
statement staremem SlcHemenI

To avoid repetitive operator conversation, the ALL answer has the equivalence
of YES and is used as a "once and for all" positive reply for all jobs within the
batch which are of the EXEC or SUSP status.

When HOLD is specified, the job is suspended by warm restart as opposed to
being resumed by warm restart. Where no question is asked the job remains in
the state as at crash time.

File rollback includes a rollback of journalized files and a rollback of journalized
telecommunication queues. ,A. rollback applies only to the last checkpoint or the
beginning of the step if there is no checkpoint. So a rollback only without a
repeat of the step is forbidden if a checkpoint exists (answer ROLLBACK).

When a crash occurs during job execution, warm restart wil! perform the
equivalent of a s~ep termination and prepare the Internal Job Control File (JCFI)
to enable either • he job to be restarted at a checkpoint, or repeated from its start
point, or repeated from the beginning of the current step.

The step completion code is set to 61 QCX) if the job had a step in execution at
crash time and the operator decides not to perform a step or a job repeat. It can
be tested by JCL in the case of a step.

The operator is re'-1,-,ested to specify where he wants the SYSOUT that was
being printed or punched at the time of the crash to be restarted.

I
I

I

For further details refer to the System Operation Console Messages manual.

VVarm restart edits a report which contains information about the jobs which
were known at crash time, and the salvager report.

This file is always opened in the append mode, i,e. so that if between two
crashes the Output Writer has not been started, the first rerun report will not be
erased by the second.

6-25

A009A

Checkpoint/Restart Limitations

6-26

It should be noted that Checkpoint/Restart does not support the following:

- Deferred restart

- Relocation of files before restart

- Immediate SYSOUT deliveries (they are deferred to the end of step)

- Unit-record device repositioning

- Several coexisting recovery points for the same step (multiple checkpoints)

- Use of the Program Checkout Facility

- Multi-task step recovery.

AQ09

SEGMENT FAULT MANAGEMENT

7. Memory Management

The memory management for GeOS Level 64 is based on the principle of virtual
memory. The execution units (load modules) are composed of segments. To
each segment is attached a segment descriptor. These segments and the dic­
tionary of segment descriptors are stored either in the library or in the auxiliary
memory (backing store). The address that is derived from the segment descrip­
tor and used to reference a field in a segment is composed of the following two
items:

The first is used to reference the base of a segment.

The second specifies a displacement in the segment.

The descriptor contains fields which indicate the access rights, the length, and
the address of the segment. The descriptor also contains a "presence bit" which
indicates whether the address is a central memory address (segment present) or
a disk address (segment missing).

V'Jhen a program ~vhich is in execution mode rafsisnCeS a segment which is not
in central memory ("presence bit"=O), the firmware automatically calls upon
the Segment Fault Management (SFM) system procedure giving it the iden­
tification of the absent segment. The SFM procedure, executed in the address
space of the process which referenced the missing segment, is used to fulfil the
following three points:

Search for the segment in backing store.

Find space in central memory to load this segment.

Restart execution of the process by re-execution of the instruction which
triggered the segment fault.

The SFM procedure extracts from the segment descriptor the size of the
segment and its disk address, and then searches in the list of available memory
areas, called the list of free memory areas (FMA), for the first area large enough
to accept the segment. The appropriate area is then withdrawn from the FMA
list, the segment loaded into the area, and the segment descriptor modified to
point to the corresponding memory address.

7-1

AQ09

The Search For The Virtual Free Memory Area

Compacting

Swappable Segments

Locked Segments

7-2

The SFM procedure may not be able to locate a zone of sufficient size from the
FMA list. In such a case it is necessary to overwrite from main memory certain
segments.

Within the main memory each area (both segment and free area) is proceeded
by a header. This header contains chaining information for the preceding area
and the following area. The header for each segment also contains the address
of the descriptor and the disk address of the segment plus the current pointer of
the memory address where the last search (of memory space) stopped. The
search for virtual FMA consists of a circular sweep over the memory zone list.
This search commences from the current pointer and is performed to locate a
group of consecutive swappable segments and/or FMA which are of sufficient
size to accept the requested segment. A segment is known to be swappable by
reference to the indicator of segment usage (the "used bit" of the segment
descriptor) which is set to 1 at each reference to the segment. When a virtual
FMA satisfies the initial request the current pointer will be modified to point to
the next memory zone following the last zone of the virtual FMA. The member
segments of the FMA are rewritten into the backing store (if necessary) and the
requested segment loaded into main memory.

The "written bit" of the segment descriptor which is set to 1 by firmware upon
modification of the segment is used to avoid all unnecessary recopying in back­
ing store.

The current pointer mechanism is used to methodically outdate segments and
to integrate them, thereby reducing possible memory fragmentation. Memory
fragmentation would occur if a large number of spaces arose which were too
small for general usage.

During a search for a virtual FMA, segments of high usage ratings are respected
and remain untouched. This factor coupled with the possibility that a large
number of segments could be temporarily non-swappable (Jocked) will give rise
to a state where no available virtual FMA can satisfy the initial request. In such
an instance the Compacting facility will move the temporarily non-swappable
segments and those of a high usage rating in order to create a FMA of sufficient
size to incorporate the segment initially requested.

The system is able to indicate that one or more system segments are no longer
required. This segment redundancy is most likely to occur at the change of a
service phase, or at the end of error processing. These segments are known as
"eligible to be swapped" and will remain in memory until the system needs the
space. The discharge of these segments will occur when they are found to
satisfy a virtual FMA request, or when the compacting facility removes them.

A certain number of segments of a load module must be locked in central
memory. The system can neither discharge them into backing store nor chenge
their place in memory, as they are pointed by absolute addresses and are
therefore locked in memory.

These locked segments are essentially limited to control structures, segments
containing channel programs, and to buffers. To ensure that such segments are
not scattered throughout memory, causing fragmentation and affecting virtual
FMA searches and compaction phases, the system will assign them to low
memory addresses.

Commencing with the lowest memory address, the system searches for an ade­
quate FMA and an area of non-locked consecutive segments large enough to
contain the locked segments. When a locked segment is allocated, the system
checks that the sum of the sizes of the locked segments of a job step does not
exceed the memory size specified in $SIZE.

If the $SIZE specification is exceeded the job step is abnormally terminated
with a return code indicating user memory overload.

AQ09

Thrashing

MEMORY SCHEDULING

A situation, known as thrashing, is indicated when the acceptable limit of seg­
ment fault is surpassed. An excessive number of segment faults will cause con­
siderable time wastage and inefficiency and is generally caused by system
acceptance of too many job steps in execution.

When the system detects an unacceptable level of segment faults the following
message is displayed on the operator console:

"THRASHING SITUATION"

The operator should then suspend one or more jobs using the HOLD JOB com­
mand. This action will suspend the execution of the job step and give the seg­
ment an "eligible to be swapped" status.

Similarly, the system also controls the total number of input/output transactions
on the system disk and will notify the operator when the number exceeds the
system permissable limit by way of the following message:

"SYSTEM DISK OVERLOAD"

To avoid memory overload situations the amount of memory required for each
job step including locked and swappable segments should be specified by use of
the $SIZE statement.

This memory requirement figure is known as the Declared Working Set (DWS).
If at initialization time the DWS memory allocation procedure is not followed
the program, by default, will be allocated 35K of main memory.

During job execution a situation can arise whereby there is insufficient memory
to swap in the requested segments, whereupon the affected job step will
immediately enter a WAIT state and the operator is notified by the following
message:

" job ... step ... identification ... WAITS FOR MEMORY".

Which requires no operator action.

The system's function is to ensure that the total sum of the DWS is equal to (or
less than) the schedulable memory size less all memory size reserved for the
system. A total of 15% of the swappable memory is reserved for all system
operations.

To obtain concise information about the memory the operator uses the follow­
ing command:

DMM (DISPLAY MAIN MEMORY).

The return message is:

MAIN = ... total swappable memory,
RESERVED = '" total declared working set,

LOCKED = ... total locked segments.

7-3

AQ09

THE MINIMUM MEMORY FACILITY

RESIDENT SYSTEM FUNCTIONS

7-4

Although a residence factor (RF) may be used to influence the duration of a
segment in memory, this duration is still dependent on memory load. Therefore
the R F factor may not be sufficent for such programs as used in data­
communication applications, which require brief response times.

The minimum memory facility enables the system to guarantee the amount of
memory as requested by the communications program. It ensures that the size
of memory occupied by the program segments, called the instantaneous work­
ing set (lWS), is greater than or at least equal to the amount of memory
declared (DWS).

The MINMEM parameter forms part of the $STEP JCL statement in the foltow­
ing format:

STEP ,MINMEM, ;

SIZE ... deciared working set...;
ENDSTEP;

For full working details refer to the JCL User Guide and the Communications
Processing Facility manual.

As some system functions are constantly in use by certain programs, good
response times must be assured. It is therefore desirable that such procedures
remain in central memory permanently.

By use of the PM M operator command specific system functions can be made
resident. These specific system functions should only be segments which make
up the core of the function.

The system verifies that the total DWS plus the total functions made resident by
the operator are equal to (or less than) the swappable memory. When the
available memory is not sufficient to load the system function the operator will
receive the following message :

'TRY LATER: NOT ENOUGH MEMORY".

The space occupied by the resident system functions is accounted and declared
in the locked memory field of the DMM command. This DMM system command
is used to list the resident system functions. These functions remain resident
until the operator requests their suppression by use of the CMM command.

In order to ensure that such segments do not disturb memory management they
are packed towards high memory addresses.

The following is a list of System Functions which can be made resident by the
operator using the PMM command.

BFAS UFAS UFASTDS

BFASI UFASREL QUEUED

BFASII UFASI IDSR
HFASST UFASIK IDSU
HFASSD UFASIP MAMM
HFASI UFASIKP MAMD
HFASRDM RDMIDS VCAM

AQ09

DECLARED WORKING SET The declared working set (DWS) is the physical memory size in units of 1 K
(1024 bytes), required by code/data segments, and control structures of a job
step. This figure should be the optimal requirement which allows a program to
execute without any significant loss in performance (or excessive memory
aiiocation;.

Assuming that degredation of performance will arise from inadequate memory.
memory increase will subsequently improve performance. The DWS is therefore
the ideal balance between additional memory and increased performance.
Some further advantage may be gained from providing somewhat more
memory than the DWS figure. however a distinct lack of advantage will be felt
from providing memory greatly in excess of the DWS.

The amount of memory required can change throughout the duration of a
program. At various stages of program execution the incremental working set
(lWS) could be high if a large number of different segments were called upon,
but as this would only be for a short time, such peaks may be ignored.

The concept of the DWS is shown in Figure 7-1. beiow.

CIl
c:
o
.~

Q)
u
x
w
E
Q)

E
Cl
Q)

CJ)

DWS

/ Cl
c:
'iii
.~
~

'0
Q;
.c
E

THRESHOLD~~(-/---------------------------~-
:::l

Z
Amount of Memory Avaiiabie

Figure 7-1. Performance Versus Memory

The curve shown depicts the increase in the total number of missing segment
exceptions a program encounters in relation to the amount of physical memory
available for holding pages.

This curve is a general one; each program will have its own curve depending on
its own structure; but the general shape will always be the same.

From the curve, it can be seen that when a program is restricted to a small
amount of memory, it encounters a large number of missing segment excep­
tions. When memory is increased. the number of missing segment exceptions
decreases.

The threshold point where any further incremental increases in" memory will
give little or no advantage is the point which should be specified as the declared
working set. This figure being that which is given as the DWS in the $SIZE JCL
statement.

The function of this JCL statement is to define the memory requirements for a
job thereby helping memory management (and memory scheduling) to avoid
memory overload situations.

Format:

SIZE [declared working-set]

['CPPAGE = channel-program-page-size]

[,NBBUF = number-of-buffers]

['POOLSIZE = poolsize] ;

Full working detaiis of the $SiZE jCL statement are given in the JCL USER
GUIDE.

7-5

AQ09

DWS Estimation For The User Program

7-6

The first consideration when estimating a programs DWS must be given to the
structure produced by the load module. If the program is organized in phases
corresponding to the main sections of the program, the estimation must be
made phase by phase with the programs DWS corresponding to that of the
largest DWS for anyone phase.

An estimation of a programs memory requirements can be ascertained from the
following areas.

1. LINKER information produced after the linking of a load module, particularly
code segments and data segments.

2. BUFFER SIZE information given on the JOR concerning maximum size of
the buffers. (see the Storage Estimation manual). The total space occupied
by buffers depends on :

The number of files.

The block, CI size each file.

The number of buffers used for each file.

3. FILE CONTROL TABLES

See the Storage Estimation manual.

4. PROGRAM CONTROL STRUCTURE:

Stacks (6K).

Physical Channel Programs (PCP's) segments made up of un-swappable
segments. Their sizes depend on :
. The number, organization, and processing modes of files .
. The number of buffers per file.

Process Group Control Segment (PGCS) which is usually less than 2K.
The exact value is given on the LINKER listing (map).

Semaphore Segments usually less than ~ K, the exact figure is given in
the LINKER listing (map).

5. References to data management access method routines
(UFAS/BFAS/HFAS). These routines are normally available to all the jobs
wishing to use them so they should only be counted once (see the Storage
Estimation manual).

6. Segment fault information derived from the number of user and system seg­
ment faults. The number of segment faults and the amount of memory used
during a program will depend on which programs are being run at anyone
time and whether they are run concurrently.

Once the first run of the program has been completed, the information provided
on the JOR will give the total buffer size, PCP segment size, and the number of
missing segments details. This information will permit a readjustment of the
DWS value to an optimal value.

However, within a multiprogramming environment where multiple programs are
concurrently competing for memory, it is difficult to readjust correctly the DWS
value solely from this information.

To aid an easier readjustment of the DWS value, use of the "MAXMEM" facility
is recommended. When using this facility the GCOS operating system ensures
that the total amount of memory devoted to the segments of a program is
always equal to or less than the DWS specified in the $SIZE of the program.

AQ09

DWS Calculations for a User Program

Format:

STEP ,MAXMEM ;
SIZE. declared working set ;

ENDSTEP;

For fuii working details refer to the JCL User Guide and the Communications
Processing Facility manual.

It should be noted that the following figures are given for example purposes
only; in no way do they represent the true storage requirements of supplied
components. For precise storage figures see the Storage Estimation manual.

The first consideration is the structure of the produced load module. Suppose a
load module is as represented below:

MAIN PROGRAM (18K)

First segment reads cards and
writes them to a U FAS
sequential disk file. (4K)

Second segment reads the file
built by first segment, uses J
l also an input UFAS relative

file, and writes records to a
UFAS indexed file. (6K) -----------
Last segment produces a
report using the U FAS index­
ed file as input. (5K)

Single data segment
referenced by all code seg­
ments. (3K)

CALLED ROUTINE (6K)

This routine is only called for
"rare" exception handling (6K
code 1 data)

SYSIN:
BLKSIZE=1048, NBBUF=2

Sequential Disk file:
CISIZE=1024, NBBUF=2

Relative file:
CISIZE=512, NBBUF=5

Indexed file (file with one index level) :
CISIZE= 2048, index CISIZE= 2048
NBBUF=2

SYSOUT:
BLKSIZE=1048, NBBUF=2

7-7

AQ09

7-8

Notes:

1. There are three phases of execution corresponding to the three main sec­
tions of the main program. (Segmentation rules are described in the COBOL
Reference Manual).

2. Since the called program of segment 1 is rarely used, it is not counted in the
DWS.

3. Since there is only one phase executed at a time, the program's DWS is the
requirement of the largest phase.

4. The DWS calculation (in K) for the first phase is:

Code Segment 04.096
Data Segment 03.072

SYSIN
Control Tables 164 + 2*32 00.228
Buffer Space 02.208

UFAS Sequential Disk File (WRITE)
Access Method 3,3 + A 11.500
Control Tables 143 + 40 + 10*2 00.203
Buffer Space 80 + 2* 1 024 02.128

Stack .. 06.560
PCPs (default value, n=2) 04.384

Phase 1 total : 34.379 K

5. The DWS calculation for the second phase is :

Code Segment 06.144
Data Segment 03.072
UFAS Access Methods
Relative (READ) is included in Sequential

Sequential 12.368
Indexed (WRITE insert) 17.680

Subtotal: 30.048 K

Control Tables
Sequential
Relative
Indexed
Buffer Space

143 + 40 + 10*2 00.203
143 + 40 + 10*5 00.233
263 + 40 + 10*(2 + 1 + 3) 3.630

Sequential 80 + 2*1024 2.128
Relative 5* (40 + 546) 2.780
Indexed 2* [2048 + 40] 4.176

Stacks .. 6.560
PCPs ... 4.384

Phase 2 total: 63.358 K

6. By inspection it is obvious that the DWS for the third phase will be smaller
than that for the second phase. Therefore the DWS for the load module is
64K.

AQ09

DWS Calculation. For Buffer Space The total space occupied by buffers depends on the number of files, the block or
control interval size of each file, and the number of buffers used for each file. A
good approximatio!1 of buffer space requirements may be ca!culated by assum~
ing that the size of each is the same as a block. To form a precise calculation
refer to the storage Estimation manual.

For library access (including SYSIN/SYSOUT) an extra 43 bytes must be added
to the blocksize to get the space requirement for each buffer. Therefore, using
SYSOUT with double buffering, where the block size is 1048, the buffer space
in bytes is:

2* (1048 + 43 rounded to multiple of 16 (=1104)) =.2208.

7-9

AQ09

JobClaa

AV'
Bv/

~, ~ ~'
(EJ
F;/, -l-/ . G

"I~, H/

"''''-,,- -~/

'- ''''K/

L/ .,,-
M./
N/

,'(i~ 0
"I ,.! --"--'p7

'--..._., ···:;:1107':.···
k"if/

S""'"
T/
U./
V,/
W/
X""
y/
Z",..

8. Job Classes, Scheduling and Execution

The delivered GCOS system is pre-set with the Job Classes, Scheduling
Priorites and Execution Priorities as shown below.

Scheduling
Priority

7
7
7
1
2
3
4
6
5
6
1
7
7
7
7
7
7
0
7
7
7
7
0
0
7
7

Table 8-1. Preset Job Classes

~

Execution
Priority

9
9
9
5
4
7
9
1
0
1
9
9
9'
9
9
9
4'
2
0
4
2
9
2
3
9
9

I

Multi­
program

Limit

1
1
1
1
1
1
5
1
6
1
6
6
1
8
1
1
1

Recommended
Usage

PROGRAM MODE
EMERGENCY JOBS

"GREATE:'!~~~~6!~~~ ~~~~RITY JOBS I
TELECOM JOBS

TQS. __ .. '

NORMAL B'ATCHJ1Ys·S····· .. · __ ·

IOF

BTNS

FTU

WRITER
JTRA

Job Class A-P are user class jobs and Job Class Q-Z are service class.

An installation may modify this delivered set-up using the MC command. Addi­
tionally, the MJ command is available to the operator for modifying the class of
a job.

In JCl, at job level a given job may request a different scheduling priority from
that associated with the job class.

Also, at the step level, a given job step may request a different execution priority
from that associated with the job class.

Note that classes K to 0 are not initially "started". These classes should be
brought into use when there is a clear installation policy for them.

In genera!, it is not recommended that major or frequent changes be made to
the set-up as delivered. It is best to maintain a stable set of installation
conventions and defaults so that the operator's task is not unnecessarily com­
plex.

8-1

/~

AQ09

Recommended Practice

EXECUTION PRIORITY

8-2

The classes E, F and G should be reserved for high priority (and probably,
unplanned) jobs. They should be used, upon the advice of the system mana­
ger, by the operator to promote, when needed, jobs which normally use a
standard job class (K to P).

The installation rules for classes K to P (that is, batch jobs) should be defined
according to the type of activity of a job.

Job may be divided into different classes according to such characteristics
as:

· CP time versus elapsed time.

· Device Usage.

· File Usage.

· Memory Requirement.

The decision as to which class to use is a matter for the system manager to
decide, based on such considerations as:

· The desired scheduling and execution priorities between job streams.

· The need to minimize resource queueing and contention (files, devices,
memory).

· The sequence in which jobs must be run.

The system manager must ensure that all operators, analysts, and program­
mers are aware of the installation conventions and defaults.

This is the priority of a task (step) for CP allocation. There is a default execution
priority associated with each job class.

This default value may be changed for a step by :

Specifying a different priority on the $STEP statement.

The operator changing the priority at step execution

The choice of execution priority affects system behaviour since the system itself
also competes for the CPo System execution priorities are shown below:

Highest Lowest

o 2 3 4 6 7 8 9

L L JCL Translator

Output Writer and Stream Reader

Step Initiation/Termination

Scheduler

Therefore, if a user batch job executes with priority 0 or 1 it will severely impact
the Output Writer, thus reducing the output rate.

Another example of erroneous management might be a batch job which is CP­
bound (mostly computation, little I/O) with an execution priority of O. This job
would deny execution of the system scheduler until the batch job released the
CP to perform, say, I/O.

A009

Execution Priority Recommendations:

Reserve priorities 0, 1, 1 and 2 (classes H, I and J) for Telecom jobs since
they require rapid access to the CP in order to provide adequate response
times.

Use the priorities 4 to 9 (classes 0, E, F, G, K to P) for batch jobs according
to installation requirements. The choice for a job might be made on the
basis:

· I/O bound jobs having higher priorities than CP bound jobs.

· Urgent jobs being given higher priorities than "normal" jobs.

These recommendations are summarized below:

Highest lowest

0 2 3 4 · . .
i I

Telecom Jobs Emergency
(classes H,I.J) Batch Jobs

(class E)

5 6 7

~. t
Program High Priority
Mode Batch Jobs
(class 0) (class F)

8 . 9

f
Normal
Batch Jobs
(class P)

8-3

AQ09

Appendix A
CONFIG Output Listing and Error Melsages

THE OUTPUT LISTING PRODUCED BY CON FIG

0001 $JOBCLASS P,NSC;

A standard banner is output, followed by the heading "CONFIGURATION
LANGUAGE", followed by a numbered list of statements of configuration.

Example listing:

CONFIGURATION LANGUAGE

0002 $JOBCLASS A,XPRTY=7,PRIORITY=7,MAXlOAD=5,NSTARTED,NMPRIO,NMlOAD,NMXPRTY;
0003 $JOBCLASS B,XPRTY=7,PRIORITY=7,MAXlOAD=5,NSTARTED,NMPRIO,NMlOAD,NMXPRTY;
0004 $JOBCLASS C,MAXlOAD=5;
0005 $JOBCLASS D,XPRTY=7,PRIORITY=7,MAXlOAD=5,NSTARTED,NMPRIO,NMlOAD,NMXPRTY;
0006 $JOBCLASS E,XPRTY=7,PRIORITY=7,MAXlOAD=5,NSTARTED,NMPRIO,NMlOAD,NMXPRTY;
0007 $MULTLEV 20,INTERACT=12,BATCH=14;

Scheduling Parameters

Classes Configuration

Numbered error messages are given after the statements of configuration
listing, these messages always refer to a statement by its number. Each of the
error messages is preceded by either one, two or three stars (*), depending on
the severity of the error. If no major error occurs then the configuration process
proceeds.

Under the title "SCHEDULING PARAMETERS " the following summary is
given:

Maximum number of known jobs extracted from $MAXJOB state­
ment.

Maximum number of stated jobs extracted from $MUlTlEV state­
ment.

Maximum number of started batch jobs ... extracted from BATCH parameter
of the $MUlTlEV statement.

Default class for remote jobs extracted from $ROFCLASS state­
ment.

Under the title "CLASSES CONFIGURATION" a summary of the status of the
job classes is given. The summary is divided into the following categories:

CLASS Name of the job class.

MAXlOAD

PRIORITY

XPRTY

STARTED

SC

Value of the multiprogramming level of the job class.

Scheduling priority attached to the job class.

Dispatching priority attached to the job class.

"v" means that the job class is started.

Blank means that the job class is not started.

"v" means that use of the SC and TC operator commands is
permitted.

Blank means that use of the SC and TC operator commands is
not permitted. (NSC parameter has been used in the cor­
responding $JOBCLASS statement).

A-l

AQ09

MXPRTY

MPRIO

MLOAD

"Y" means that the operator may change the dispatching
priority of the corresponding job class (MC command).

Blank mean~ that the operator may not change the dispatching
priority of the corresponding job class (NMXPRTY parameter
has been used in the corresponding $JOBCLASS statement):

"Y" means that the operator may change the scheduling
priority of the corresponding job class (MC command).

Blank means that the operator may not change the scheduling
priority of the corresponding job class (NMPRIO parameter has
been used iil the corresponding $JOBCLASS statement).

"Y" means that the operator may change the multiprogramm­
ing level of the corresponding job class (MC command).

Blank means that the operator may not change the mul­
tiprogramming level of the corresponding job class (NMLOAD
parameter has been used in the corresponding $JOBCLASS
statement).

Example listing for "Scheduling Parameters" and "Classes Configuration"

SCHEDULING PARAMETERS

MAXIMUM NUMBER OF KNOWN JOBS 200

MAXIMUM NUMBER OF STARTED JOBS 20

MAXIMUM NUMBER OF STARTED BATCH JOBS 14

DEFAULT CLASS FOR REMOTE JOBS P

CLASSES CONFIGURATION:

CLASS MAXLOAD PRIORITY XPRTY STARTED SC MXPRTY MPRIO MLOAD

A 5 7 7 Y
B 5 7 7 Y
C 5 7 9 Y Y Y Y Y
D 5 7 7 Y
F 1 3 7 Y Y Y y Y
G 1 4 9 Y Y y Y y

H 1 6 1 y y Y Y y

I 1 5 0 y Y Y y y

J 1 6 1 Y Y y y y

K 1 7 9 Y Y y Y Y
L 1 7 9 y Y Y Y Y
M 1 7 9 Y Y Y y Y
N 1 7 9 Y Y Y Y Y
0 1 7 9 Y Y Y Y Y
P 5 7 9 Y Y Y y

Q 10 7 4 y y y y

R 6 0 2 Y Y Y Y
S 1 7 0 y y

T 6 7 4 Y y y y

U 6 7 2 y Y Y Y
V 1 7 9 Y Y Y Y y

W 8 0 2 y y Y Y
X 1 0 3 Y Y
Y 1 7 9 Y Y Y Y y

Z 1 7 9 Y Y Y Y y

A-2

AQ09

Device Configuration Information

CONFIG ERROR MESSAGES

General Error Messages

The Device configuration information displayed on the CONFIG output listing is
derived from the System Resources Status Table.

Example:

LON NAME PATH LON NAME PATH

01 UC01 0200 02 TC01 0100
03 MCOl 0000 04 0101 0203
05 CS01 0204 06 LN01 0200
07 LN07 0211 08 LN08 020F
09 LN09 0210 AO LN16 0217
OB LN02 020E OC CT01 0209
00 PR02 0208 OE PR01 0207
OF C001 0201 10 C002 0202
11 MT03 0103 12 MT02 0102"
13 MT01 0101 14 MS03 0003
15 MS04 0004 16 MS06 0005
17 MS06 0006 18 MS07 0007
19 MS08 0008 1A MS02 0002
1B MS01 0001 1C OU03 0008
10 OU02 OOOA 1E OU01 0009

Following the device configuration information, specific error messages are dis­
played. These messages refer to a statement by name and not by number. If no
error has been detected and no warning given, the following message is output
both at the operator console and on the listing:

SUCCESSFUL SYSTEM CONFIGURATION TO RUN CONFIGURATION
SYSTEM PERFORM STORAGE LOADING WITH RESTORE AND RESTART
COLD OPTIONS

These error messages comprise two parts:

1) The General Message:
these are numbered, given in numerical order and refer to a statement
number.

2) Specific Error Message:
these refer to a statement name, and are given in the alphabetical order of
the statements of reference.

ERROR 0000
UNSUCCESSFUL CONFIGURATION PROCESS

(This is due to severe errors, no configuration performed).

ERROR 0001
UNABLE TO OPEN SYS.SYSTEM

(The SYS.SYSTEM file could not be opened; check that a SYS.SYSlEM file
exists on disk).

ERROR 0002
UNABLE TO READ INPUT FILE

0/0 error while reading configuration statements file).

ERROR 0003
PREMATURE END OF STREAM

(An EOF for a configuration statement has been encountered: correct the last
statement - a ";" is missing).

A-3

AQ09

A-4

ERROR 0004
DOLLAR INSIDE A STATEMENT

(A dollar sign has been encountered before reaching the final ";").

ERROR 0005
ILLEGAL SEPARATOR SEQUENCE

(An illegal set of separators has been encountered, i.e. keyword=,,).

ERROR 0006
UNABLE TO CLOSE INPUT FILE

(The configuration statement file could not be closed).

ERROR 0007
UNABLE TO READ SYS.SYSTEM

(I/O error while reading SYS.SYSTEM file).

ERROR 0008
UNABLE TO CREATE A WORK SEGMENT

(Internal CONFIG error).

ERROR 0009 ON STATEMENT XXXX
NO VALID SEPARATOR BEFORE PROTECTED STRING

(Statement XXXX contains the following:
.... =ZZ·string· this should read
.... =·ZZ string').

ERROR 0010 ON STATEMENT XXXX
EMPTY PROTECTED STRING

(A string must not be empty: do not use COMMAND keyword in statement
XXXX).

ERROR 0011 ON STATEMENT XXX X
NO VALID SEPARATOR AFTER PROTECTED STRING

(Statement XXXX contains the following:
.... =·string·ZZ this should read
.... =·string ZZ·).

ERROR 0012
NO USER SUPPLIED CONFIGURATION STATEMENT

(This is a warning that no user statement has been taken into account).

ERROR 0013 ON STATEMENT XXXX
UNKNOWN STATEMENT NAME

(An unknown statement has been used in statement XXXX).

ERROR 0014 ON STATEMENT XXX X
ILLEGAL SEPARATOR AFTER FIRST POSITIONAL

(An illegal separator has been used after the first positional parameter of state­
ment XXXX).

ERROR 0015 ON STATEMENT XXXX
UNKNOWN FIRST POSITiONAL

(The first parameter value of statement XXX X is unknown).

ERROR 0016 ON STATEMENT XXXX
KEYWORD/SIV NOT FOUND

(A mandatory keyword parameter/Self Identifying Value is missing from state­
ment XXXX).

AQ09

Specific error messages

ERROR 0018 ON STATEMENT XXXX
PRESENCE OF EXCLUSIVE SIV'S

(in statement XXXX conflicting Self Identifying values have been used, i.e.
STARTED NSTARTED).

ERROR OOi 9 ON STATEMENT XXXX
ILLEGAL SEPARATOR AFTER A SIV

(In statement XXXX an illegal separator has been used after a Self Identifying
Value).

ERROR 0020 ON STATEMENT XXXX
SIV DUPLICATION

(In statement XXXX the same SIV has been used more than once).

ERROR 0021 ON STATEMENT XXXX
ILLEGAL SEPARATOR AFTER A KEYWORD

On statement XXXX an illegal separator has been used after a keyword).

ERROR 0022 ON STATEMENT XXXX (>8 CHARACTERS)
ILLEGAL STATEMENT/KEYWORD NAME

(Each keyword or statement name must have a length equal to or less than 8).

ERROR 0023 ON STATEMENT XXXX
ILLEGAL PARAMETER TYPE

(Incorrect parameter value given).

ERROR 0024 ON STATEMENT XXX X
TOO LONG PARAMETER VALUE

(The value of a parameter in statement XXXX exceeds the permitted size).

ERROR 0025 ON STATEMENT XXXX
DUPLICATE STATEMENT

(An identical statement has already been used within the set configuration
statement).

ERROR 0026 ON STATEMENT XXXX
MANDATORY ARGUMENT MISSING

(A mandatory argument has been omitted from statement XXXX).

ERROR IN STATEMENT "$ACTSIZE;"
LIMIT FOR SIZE: 2000 BLOCKS

(The value given for the $ACTSIZE statement exceeds the permissible limit).

ERROR IN STATEMENT "$BANNER ;"
ERRONEOUS BANNER NUMBER: 2 ASSUMED

(The value of the parameter is neither 0, 1 or 2; therefore 2 is assumed).

ERROR IN STATEMENT "$JOBCLASS job-class,MAXLOAD";
EXCEEDS NUMBER OF JOBS

(The value of MAXLOAD parameter of the "$JOBCLASS job-class" statement
exceeds the permissible limit).

ERROR IN STATEMENT "$JOBCLASS job-class, XPRTY;"
LIMIT FOR DISPATCHING PRIORITY: 9

(The value of XPRTY parameter of the "$JOBCLASS job-class" statement
exceeds the range of the dispatching priorities values).

A-5

AQ09

A-6

ERROR IN STATEMENT "$JOBCLASS job-class, PRIORITY;"
LIMIT FOR SCHEDULING PRIORITY: 7

(The value of PRIORITY parameter of the "$JOBCLASS job-class" statement
exceeds the range of the dispatching priority values).

ERROR IN STATEMENT "$JOBCLASS job-class, NSC"
CLASS SHOULD BE STARTED OR SC ALLOWED

(Both the NSC and NSTARTED parameters have been specified in
"$JOBCLASS job-class" statement).

ERROR IN STATEMENT "$JORSIZE;"
LIMIT FOR SIZE: 2,000 records

(The value given for the $JORSIZE statement exceeds the permissible limit).

ERROR IN STATEMENT "$MAXJOB POSIT--1 ;"
LIMIT FOR MAXIMUM JOBS: 9999

(The value given by the parameter of the $MAXJOB statement exceeds the per­
missible limit).

ERROR IN STATEMENT "$MAXTASK;"
LIMIT FOR NUMBER OF TASKS: 150

(The value given by $MAXTASK statement exceeds the permissible limit).

ERROR IN STATEMENT "$MULTLEV BATCH
INTERACT

EXCEEDS NUMBER OF JOBS

."

(The value of BATCH or INTERACT parameters, either explicitly stated by the
user, or implicitly assumed, is inconsistent with the first parameter value of
$MULTLEV).

ERROR IN STATEMENT "$MULTLEV POSIT --1";
LIMIT FOR NUMBER OF JOBS: 30

(The value given by the parameter of the $MULTLEV statement exceeds the
permissible limit).

ERROR IN STATEMENT "$OWCLASS;"
INVALID OUTPUT CLASS PRIORITY, NORMAL DEFAULT VALUE
ASSUMED

(The value of PRIORITY parameter is outside the range 1,2, 7. Therefore the
default value is assumed).

ERROR IN STATEMENT "$OWDEVICE;"
XXXX NOT PRESENT AT INSTALLATION

(The value of the OVID parameter: XXXX is not in the installation; not found in
the SRST).

ERROR IN STATEMENT "$OWDFLT;"
DEVICE CLASS ERROR. PRIH 132 TAKEN AS DEFAULT CLASS

(Incorrect value given for the DEVCLASS parameter, PRIM 132 assumed).

ERROR IN STATEMENT "$OWDFLT;"
UNACCEPTABLE DEFAULT MEDIA

(The value of MEDIA parameter is either incorrect, or has not been found in
SYS.URCINIT).

AQ09

ERROR IN STATEMENT "$OWDFLT;"
INCORRECT TAPE PARAMETERTAPE=SYSOUT ASSUMED

(The value given for TAPE parameter was neither SYSOUT nor NSYSOUT.
Default option assumed).

ERROR IN STATEMENT "$PRLOG THRESHLD;"
THRESHOLD VALUE MUST BE LESS THAN 1 00 AND GREATER
THAN 0

(Incorrect threshold value given for the threshold parameter of the $PRLOG
statement).

ERROR IN STATEMENT "$ROFCLASS POSIT--1 ;"
CLASSES FOR USER JOBS: A-P

(The value given by the parameter of the $ROFCLASS statement is not within
the permissible range of A-P).

ERROR IN STATEMENT "$STATION;"
WARNING: TOO MANY STATIONS DECLARED. LAST XX NOT SUP­
PORTED

(More than 6 stations have been declared therefore only the first 6 have been
accepted).

ERROR IN STATEMENT "$STATION;"
XXXXINVAUD STATION NAME. NO MORE STATIONS ANALYZED

(The value given for the NAM E parameter of a station is not acceptable. The fol­
lowing $STATION statements are not checked or acceptable).

ERROR IN STATEMENT '$STATION;"
XXXX INVALID PROTOCOL PARAMETER FOR STATION XXXX

(In the $STATION statement for station XXXX the value of the PROTOCOL
parameter is XXXX and should be either 61 or MVIP).

ERROR IN STATEMENT '$STEPFILE POSIT--1 ;"
STEPFILE SHOULD BE 42 OR 55

(The value given by $STEPFILE statement is neither 42 nor 55).

A-7

AQ09

THE $CATMAINT UTILITY

Statement form

Statement description

Parameter description

THE $CATMAINT COMMANDS

VALIDATION COMMANDS

Appendix B
The CR_t_R_I_og MainfoAnanft8 Ilt:I:t;. _. __ _.. ..'" v III Y

Function:

To store and maintain PROJECT, USER and BILLING information in the site
catalog

CATMAINT COMFILE = sequential-in put-file

[,PRTFI LE=(print-file] ;

This utility can only be run under the project SYSADMIN.

The command file (COMFILE) may be a sequential or pseudo-sequential file
(input enclosure or member of a source library) and may be temporary or per­
manent.

The catalog in which the project, user and billing information is stored is always
the site catalog.

COMFILE The file containing the commands to $CATMAINT, It may be in
DATASSF or DATA format. See below for a description of the
$CATMAINT commands.

The commands to $CATMAINT are contained in COMFILE.

Each command consists of :

- A mandatory operation code followed by different positional parameters and
keywords, ending with a semicolon.

There are two types of command, vali'dation commands and site description
commands. These are described below.

There are two validation commands:

VAL NBILLCHK;
BILLCHK

NVAL;

which validates the site catalog

which causes no validation of the site catalog

After a site catalog is set up, there may be mis-specifications and so on, and if
VAL is used, the project, user and billing information will be checked for these.
Conversely, if NVAL is used, these checks will be ignored.

If the BILLCHK keyword of the VAL command is specified, project, user and bill­
ing information will be checked. Otherwise, only the project and user informa­
tion is checked.

B-1

AQ09

SITE DESCRIPTION COMMANDS The site description commands are used to create, modify, list and delete
project, user and billing information in the site catalog.

THE PROJECT COMMANDS

B-2 ..

The general format of these commands is:

- Operation-code object-name, parameters;

The operation-codes available are:

CRx Create object type x

LSx List object type x

M Dx Modify object type x

DLx Delete object type x

where x may be :

U

P

B

for a USER

for a PROJECT

for a BILLING

All the commands, which are described below, have a free format (for example,
they may be spread over more than one card), and a string of characters may be
protected by quotes ('), for example,

PASSWORD = 'A*:

Comments may be present in commands and between commands.

ExampCe:

CRB DEPT1.BILLING/*BILLING CENTRE O~ DEPT1/*

The star convention may be used in LS and DL commands, where it means
"all". For example,

DLU *.BOB

LSP *

LSU *.*

means "delete user BOB from all projects"

means "list all projects and their dependent users and bil­
ling names".

means "'ist all users with their projects and billing
names"

The project commands are:

CRP project-name rRIFCODE ~ \ ~T~~ION I]
[? STATN ,

[APPLIST = (application-name [application-nam~)]

MOP project-name [RIFCODE = ~ ~T~~ION l]
(STATN ~

LSP

DLP

rs ,APPLIST = (application-name [,application-name!) ~l
L~ ,ADDLIST = (application-name Lapplication-name!) \J

j ;rOject-name ! I ~roject-name l

AQ09

THE USER COMf;ANDS

The parameters are:

project-nama Tha name of the project; a simpie name of eight characters
maximum length.

RIFCODE The RIF code values.

MAIN
Main operator project.

STATION and STATN
Station operator project.

APPLIST A list of up to four application names for TDS.
The names may be up to four characters long.

ADDLIST A list of applications to be added to the current list.

The user commands are:

CRU project-name.user-name [PASSWORD=password)

[TDSCODE=cod~

[
~ DFLT ~]

, ~ NDFLT)

MDU project-name. user-name [PASSWORD = password]

[TDSCODE = code]

[~ DFLT ~ 1
' (NDFLT~

LSU

**

1
*.user-name l
project-name. *
project-name. user-name

DLU *.u~er-name l
* *

project-name. user -na me l project-name. *

The parameters are:

project-name.
user-name

Simple names of eight characters maximum.

PASSWORD A string of up to eight characters. The length of the string is
significant and no padding with blanks is allowed. The pas­
sword is not used in a batch environment.

TDSCODE

DFLT

A string of up to eight hexadecimal characters defining the dif­
ferent TPR's the user can access, each TPR being coded as a
bit in TDSCODE.

Indicates that the project is the default for the user. NDFLT
indicates that it is not the default.

8-3

AQ09

THE BILLING COMMANDS The billing commands are:

CRP project-name.billing-name [CREDIT =nnnnnnnn]

[~ ~6~~T~]

MOB project-name.billing-name [CREDIT = nnnnnnn~

[. ~ ~6~~Tt]

••
LSB 1 ·.billing-name l

project-name. •
project-name.billing-name

OLB ·.bi~ling-name

1

..

project -nam e.billing-nam e ! proJect-name. •

The parameters are:

project-name.
billing-name

CREDIT

DFLT

Simple names of up to eight characters in length.

The maximum credit of the billing in billing units. The default
value is 99999999.

Indicates that the billing is the default billing for the project.
NDFLT indicates that it is not the default.

EXAMPLES OF THE USE OF $CATMAINT

Setting up a Site Description in the Site Catalog

B-4

The following example shows the entering of project. user and billing informa­
tion and their relationships in a site catalog.

(1) $JOB SITE-GEN,USER=VIP,PROJECT =SYSADMIN,
BILLlNG=SITE-GEN;

(2) CATMAINT COMFILE=*deck;

(3) $INPUT deck;

(4) CRP SYSADMIN;

(5) CRP FIMA;

(6) CRU SYSADMIN.VIP;

(7) CRB SYSADMIN.SITE-GEN;

(8) CRU FIMA.MAN;

(9) CRU FIMA.WOMAN;

(10) CRU FIMA. CHILD;

(11) CRB FIMA.USERACT1 ;

(12) CRB FIMA.USERACT2;

(13) CRU SYSADMIN.MAN;

AQ09

(14) VAL;

(15) $ENDINPUT.

(16) $ENDJOB:

Not .. :

The above job creates :

3 billings, SITE-GEN, USERACT 1 and USERACT 2 (7. 11 and 12)

2 projects, SYSADMIN and FIMA (4 and 5)

4 users, MAN. WOMAN, CHILD and VIP (6, 8, 9 and 10)

5 relationships for FIMA (8, 9, 10, 11 and 12)

making a total of 17 objects in the site catalog. All the billing attributes are set
to the default (99999999). USERACT1 is the default billing for FIMA, as it is
the first one listed for it.

Modifying a Site Description in the Site Catalog

The example below shows the modification of the site description created in the
previous example.

(1) $JOB SITE-MANLlB,USER=VIP;

(2) CATMAINT COMFILE=*libdeck;

(3) $INPUT libdeck;

(4) DLU *.CHILD;
/,...\ DLU FiMA.~; \01

(6) DLB FIMA.*;

(7) DLP FIMA;

(8) $ENDINPUT;

(9) $ENDJOB;

Notes:

The star convention has been used, and the project FI MA, along with all
associated users and billings, deleted by statements 5, 6 and 7. The user CHILD
has been deleted from all projects by statement 4.

It is also possible to modify the actual descriptions using the M 0 set of com­
mands.

B-5

A009

MESSAGES AND DIAGNOSTICS OF $CATMAINT

Syntax Errors

B-6

There are three types Qfmessage produced with $CATMAINT :

- Non-fatal warnings

- Syntax errors

- Abort messages.

SYNTAX ERROR UNKNOWN OPCODE

SYNTAX ERROR PERIOD MISSING AFTER PROJECT NAME

SYNTAX ERROR PROJECT NAME MISSING

SYNTAX ERROR ILLEGAL PROJECT NAME

SYNTAX ERROR BILLING NAME MISSING

SYNTAX ERROR ILLEGAL BILLING NAME

SYNTAX ERROR USER NAME MISSING

SYNTAX ERROR ILLEGAL USER NAME

SYNTAX ERROR ILLEGAL KEYWORD

SYNTAX ERROR PREMATURE END OF STATEMENT

SYNTAX ERROR ILLEGAL COMMA SIGN

SYNTAX ERROR EOUAL SIGN MISSING

SYNTAX ERROR ILLEGAL USE OF STAR (*)

SYNTAX ERROR DUPLICATE RIFCODE

SYNTAX ERROR ILLEGAL RIFCODE VALUE

SYNTAX ERROR DUPLICATE APPLICATION NAME LIST

SYNTAX ERROR ILLEGAL APPLICATION LIST VALUE

SYNTAX ERROR ILLEGAL APPLICATION NAME

SYNTAX ERROR DUPLICATE DEFAULT VALUE

SYNTAX ERROR DUPLICATE CREDIT

SYNTAX ERROR ILLEGAL CREDIT VALUE

SYNTAX ERROR MISPLACED DELIMITER

SYNTAX ERROR DUPLICATE TDSCODE

SYNTAX ERROR ILLEGAL TDSCODE VALUE

SYNTAX ERROR DUPLICATE PASSWORD

SYNTAX ERROR ILLEGAL PASSWORD

AQ09

Abort M ges

Warning Messages

*** ABORT

*** ABORT

*** ABORT

*** ABORT

*** ABORT

*** ABORT

*** ABORT

*** ABORT

*** ABORT

*** ABORT

*** ABORT

*** ABORT

ILLEGAL ACCESS TO CATALOG

CATALOG ERROR TO BE CHECKED

NO ROOM FOR NEW APPLICATIONS

COMFILE IS TOO BIG

COMFILE IS NOT ASSIGNED

COM FILE DOES NOT EXIST

COMFILE CANNOT BE OPENED

COMFILE IS DUMMY

MEMORY OVERFLOW,RETRY LATER

COMFILE RECORD CANNOT BE READ

COMFILE CANNOT BE CLOSED

* WARNING DEFAULT VALUE IGNORED

* WARNING PROJECT UNKNOWN,STATEMENT IGNORED

* WARNING USER UNKNOWN,STATEMENT IGNORED

* WARNING BILLING UNKNOWN,STATEMENT IGNORED

* WARNING RELATION UNKNOWN,STATEMENT IGNORED

* WARNING UPDATE INSUFFICIENT CREDIT

* WARNING THE PROJECT ALREADY EXISTS,STATEMENT IGNORED

w WARNiNG THE USER ALREADY EXISTS,STATEMENT IGNORED

* WARNING THE BILLING ALREADY EXISTS,STATEMENT IGNORED

* WARNING PROJECT.USER ALREADY EXISTS,STATEMENT IGNORED

* WARNING PROJECT.BILLING ALREADY EXISTS,STATEMENT
IGNORED

* WARNING PROJECT.USER DOES NOT EXIST,STATEMENT IGNORED

* WARNING PROJECT.BILLING DOES NOT EXIST,STATEMENT
IGNORED

* WARNING PROJECT.L1NKS(USER,BILLlNG)EXIST,STATEMENT
IGNORED

* WARNING STATEMENT IGNORED

8-7

-.
I
I HONEYWELL INFORMATION SYSTEMS
I Technical Publications Remarks Form

" I
!

(
w
Z
...J

<.9
Z
o
...J
<t:
I­
:J
U

L
I
I

TITLE
SERIES 60 (LEVEL 64) GeOS
SYSTEM MANAGEMENT GUIDE
ADDENDIJMA

ERRORS !N PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER No.1 AQ09-01A

I

DATED ~1_A_U_G_U_S_T_l_9_7_9~

Your comments will be promptly investigated by appropriate technical personnel D
and action will be taken as required. If you require a written reply, check here
and furnish complete mailing address below.

FROM: NAME ---
DATE ____________ __

TITLE _______________________________ _

COMPANy-------------------------------
ADDRESS ________________________________ ___

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I'
I
I
I
I
I

UJ
Z
:::;
<.:l z

-tC9

l-

~
o

~

I -
f

~
i
I
I
I
I
I
I
I
I UJ

I Z
I ..J

l<.:l
• Z
~g

«
o
..J
o
U.

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

21703, 1.5978, Printed in U.S.A. AQ09, Rev. 1

	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	8-01
	8-02
	8-03
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	replyA
	replyB
	xBack

