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' 7. 1 

cess. 

CHAPTER VII 

RESOURCE SHARING AND INTERCOMMUNICATION 
AMONG COEXISTING PROCESSES 

INTRODUCTION 

Tht earlier chapters gave us an increasingly larger view of an executing pro

We began in Chapter 1 with the microscopic view that focused on the minute, 

but nontrivial details in the fetch and execute of individual G.E 645 instructions in an 

executing process. Upon completing Chapter 6, we have managed to enlarge our 

view of a process in execution about as far as possible from the "in-vacuo" point 

of view taken thus far. That is, for the most part, we have been considering the 

process in isolation, as if it were the only one etnploying the computer system 1 s 

resources. We know that each executing process coexists in some sense with other 

processes, some may be executing simultaneously on other processors (if there be 

more than one i':J_ service), some are waiting a "turn" to execute on a processor, 

and sti;I others may be waiting for some event whose occurrence will enable the 

process to proceed with execution. The collection of these coexisting processes 

clearly implies (a competition for and) a sharing of hardware resources, a sharing 

of system software and data bases and control over this sharing. Most of the con

trol functions described previously were of a per-process nature and the data bases 

considered were of a one-per-process type, e. g., stacks, de;.;criptor segments, 

KST's, etc. In this chapter we will be examining controls of'' per-systen1 nature. 

Of course, the data bases that associate with these functions are central to the opera

tion of the entire system. Hopefully, when a subsystem designer understands how 

a process functions (cooperates and/or competes) in a milieu of other processes, 

he can better anticipate the performance of the processes in which his subsyste1n(s) 

resides. 

Types of Coexisting Processes 

In this overview section we shall anticipate what follows by smnm.ari:.?.ing the 

types of processes that coexist in Multics and provide a rough indication as to the 

nature of their interaction. We identify three kinds of coexistence. 

l. Sets of seemingly unrelated user processes._ (Multi:.£E_2gramming.) 

Experience with earlier operating systems including CTSS has shown that it is 

a rare console user whose process can fully utilize a fast processor. Characteristic

ally, a user process makes frequent requests for relatively slow-to-commence block 
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:rar.sfers of information from drum, disk or other I/0 devices. Even with devices 

that have high transfer rates, there is, to begin with, an associated. latency of 

several milliseconds or more, i.e. , a delay before the to- or from-core transfer 

may begin. During the delay and subsequent transfer time, it may not be possible 

for the requesting process to do any useful work. (This is certainly the case in 

M ultics when a segment or page fault has led to the initiating of the request for a 

drum or disk transfer to core of the desired segment or page thereof. ) In principle, 

either the CPU must remain effectively idle while the process waits for completion 

of the block transfer or the about-to-be idled process must somehow relinquish the 

processor to another process which is in a position to execute on a processor at 

this time. Systems for "passing the processor around" among several processes, 

so as to prevent the idling of a CPU during I/0 ·waits or other delays, are known 

as multi-programming systems. Multics is, among other things, a multi-program-

ming system. 

The set of processes that share a processor in the fashion we just crudely 

described need not be related to one another in any explicit way. They may, for 

instance, be a set of arbitrary user processes. Nevertheless, interaction among 

these processes is clearly implied. First, they share the same supervisory pro

cedures and certain system. data bases (tables), as segments in their respective 

address spaces. Second, each process is compelled, while executing, to occasion

ally assist an idled process that is waiting for a particular event to "arrive." Al

though in each case the executing process must cooperate, the user should be, and 

is, completely oblivious to the fact that his process is performing as a G•:>Od 

Sarnaritan. This is because all such activities will occur while his process is 

trapped in certain ring-0 supervisory routines. SiJtce these routines are cc,mmon 

to all user processes, all processes are guaranteed to be Good Samaritans. 

There are several ways an executing process may know about the arrival of' 

an event which is of interest to another (non-executing) process. However this 

knowledge is acquired, the waiting process is alerted so that it rnay again cornpete 

ror tin1e or, the processor (or on~ processor, if there is more than one}. 

An executing process ma.y, for exarnple, be interrupted (by an identifiable 

signal from another active unit} and in this way "tcdd" about an event of interest 

to another process. Should th.is occur, the interrupted process is fo1·ced to (in 

so1ne sense) wa1-e ..'::£the process for whom the interrupt signal is of primary 
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interest. Alternatively, the executing process may of its own-discover the apparent 

arrival of such events. This type of discovery happens with great frequency in Mul-e tics. When a process incurs a page fault and must wait for the arrival of a requested 

page from the drum, it must put itself into a~ state. Just before doing so, it al

ways checks a certain system-wide I/0 request list in which it can discover which, 

if any, paging requests (of other processes) have been completed. The executing 

process then "notifies" the appropriate waiting processes before making itself idle. 

2. User process and a system process 

Multics provides a set of ''ever-present" system processes that offer special

ized services to user processes. Among these, for instance, is the output driver, 

a system process that drives line printers and other output devices to produce 

copies of user-designated segments. A user will usually communicate implicitly 

with such a process by executing a system library subroutine call. This routine 

in turn executes the explicit steps needed to communicate an unambiguous work 

request to the system process so the user is, in fact, insulated from the details 

of interprocess communication. 

Because the system process is a separate and fully independent proce~·. s, its 

functions may be achieved as a parallel operation. The system is free to fulfill the 

requests it receives at its convenience. With the current implementation, the user 

process proceeds to other chores without waiting for an acknowledgment from the 

output driver that the requested output task is done. For illustrative purposes, how

ever, we can also imagine that when requested such a system process could send a 

meaningful completion signal to any user· process. The latter might either wait for 

and be awakened by the completion signal or periodically inspect a special ''mailbox" 

for the presence of a message sent by the forn1er to indicate completion of the task. 

3. Sets of deliberately cooperating processes. 

The computation structures of many algorithms exhibit parallelism that can 

never be taken advantage of when using only one processor.. There is an increasing 

interest in the computer community in providing the operating system machinery 

which would p~rmit parallel computation. The Multics design provides a simple 

capability of this type. 

The ordinary programmer notices parallelisrn at various levels, frorn the 

PL/I statement level on up to the subroutine. Thus, in the righthand side of the 

statement 
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computation of the numerator can, in principle, be carried out in parallel with that 

of the denominator. Likewise, but at a more macroscopic structural level, it is 

conceivable that in the statement 

T = det(A)>:~ cos(x); 

the function for computing the determinant of the matrix A could be executed in 

parallel with the computation for the ~ine of x, if each subroutine could be invoked 

to execute in parallel on separate processors. 

If one could invoke separate and parallel computations, a mechanism for syn

chronizing the two parallel functions would also be needed. Thus, the multiplication 

of det(A) and cos(x) clearly must be delayed until it is known that both subroutines 

have returned values. Suppose, for instance, we consider flow structure as depicted 

in Figure 7-1. 

1 

invoke det A as a separate 
and parallel action 

No 

4 

is det (A) 
completed 

Yes 

3 

computation of det(A) 

5 

inform main sequence 
of completed task 

Figure 7-1 Invoking and synchronizing a par<tllel action 

Boxes 1, 4 and 5 are represePtative of the logic required to invoke and to synchron

ize the parallel action. Boxes 1, 4 and 5 can be carried out only if some common 

data cells are shared between the two computatiom, for use, so that one cmnputation 

can c01nmunicate with the oth~r. 
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Clearly, there is some trade-off between the savings in time that can be 

achieved in the parallel computation and the extra costs associated with use of 

the machinery for achieving these gains, In Multics, opportunity for such com-e putation is provided. Parallel computation can be achieved by executing two or 

more processes concurrently. However, in a Multics system with several CPU's, 

the user is never given an opportunity to force their simultaneous allocation to his 

separate processes. Hence, in Multics, "parallel computation" is just a possibility, 

never something that can be guaranteed. Although it is more realistic to regard 

the execution of such separate computations as asynchronous rather than parallel, 

we shall generally use the latter term and understand it in its properly qualified 

sense. 

Machinery for interprocess communication is provided in Multics by which 

to create and/or invoke other processes and also to synchronize with other processes 

using shared data bases known as "event channels." With this machinery, n:'leaning

ful cooperation (e. g. , parallel computation) can be conducted. (The scope of the 

parallel tasks may be large or small, as the user or users desire.) Explicit user 

programming, of a type to be described in this chapter, is required to achieve this 

objective, Moreover, the programming for each such "subsystem," for we can 

indeed regard such planned co•-:>peration as a subsystem design, is specific to the 

objective at hand. 

In review of the above three types of coexisting processes, we see that in all 

cases: 

1. "Cooperation," whether voluntary or involuntary, preplanned by 
the systen1 or explicitly planned by the programmer, implies eon1-
munication between processes through the use of shared data bases. 

2. Of necessity, all coexisting processes, whether they cooperate or 
not, also compete for processor time and core space.>!< 

3. By design, all p::-ocesses share common supervisor modules and 
certain system tables, 

For gaining additional perspective, it is wdl to consider how Multics differs 

in its design approach for a(:hieving and controlling parallelism from the approach 

'" We make the in1plicit assumption that nearly always there are rnore processes 
able to execute than there ar.e available processors. A similar assumption is made 
with respect to core space, i.e. , there is not en•)ugh to "go around. 11 
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taken in more traditional operating systems. 

In earlier operating systems, parallel operations were limited to I/0 activi

ties, hence the mechanisms for controlling parallelism (interrupt handling and 

dispatching) became embedded in supervisory packages called I/0 Control Systems. 

Of course, in the context of the more "modern•• multi-access, multiprocessor 

systems the same or equivalent mechanisms together with some new ones are 

also inherent in (a) achieving the multiprogramming of unrelated coexisting pro

cesses (type 1 ), and (b) in the invoking and synchronizing of parallel computations 

in coexisting processes (typ'e 3). The additional mechanisms include appropriate 

locking controls on shared data bases and the means of communicating (e. g. , send

ing signals) between the independently operating hardware processors. For this 

reason, Multics has split out the traditional aspects of I/0 Control Systems having 

to do with parallelism (interrupt handling and dispatching) and has combined these 

with the other aspects of parallel processing. 

The combination resulting from this unified viewpoint has led to the dev:elop

ment of a single, general purpose supervisor subsystem for control of all parallel 

operations. This subsystem is known as the Traffic Controller.,~ 

7. 2 MULTIPLEXING PROCESSORS 

Our immediate goal is to see how Multics achieves the orderly and effective e 
multiplexing of its processods) among the coexisting processes. A set of modules 

referred to as the Traffic Controller is responsible for this activity. 

We shall learn about the functions of the Traffic Controller (or TC) in an 

incremental fashion. First, 'Ve view those functions needed to support multi

programming. These are the mechanisms to give away and get back a processor 

when predictable time delays, such as those due tn paging, are forced on a process. 

Next, we shall consider the 1 C viewed as a gener<·l mechanism for time sharing, 

for interprocess communication, and for achievinr still other control functions. 

>:~ The Traffic Controller was first formulated by J. H. Salt7.er in a lucid Ph. D. 
dissertation (MAC TR- 30, July 1966, "Traffic Control in a Multiplexed Computer 
System''). A tnodification of Prof. Saltz cr 1 s original design, developed in the 
M.S. thesis by Robert Rappaport, has been incorporated in Multics. The prin-
cipal MSPM references are the BJ sections. 
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7. 2. 1 A Simple Mechanism for Multiprogramming 

Consider a set of n seemingly unrelated user processes in a system of k e processors (k < n). Each process coexists in one of three "execution states": 

running, ready, or waiting. 

A ru~ning process is one that is currently executing on a processor. (At 

most, k o£ the processes are in the running state. ) 

A ready process is one that would be runn:.ngif a processor were available 

for it to run on. (There are at most n-k ready processes.) 

Since we picture that processes will frequently incur page faults, some of 

the n-k non-executing processes will be waiting for the completion of previously 

invoked paging requests (normally from the drum). So, we define a waiting pro

cess as one that cannot make immediate use of a processor (even if one were 

available), because it is waiting for a so-called system event to happen. Arrival 

of a page in core is an example of a system event, which can be defined as an 

event which 

(a) is of interest to at least one coexisting process>:< and 

(b) the waiting time for whose occurrence has a predictable upper bound. 

Waiting processes compete for processors in the sense that once the waited-for 

event has occurred, the processes should then be regarded as being ready. 

The Traffic Controller's tasks for multiplexing processors among this class 

of processes are conceptually simple. Its activities center around the maintenance 

of a list of the coexisting processes. {This list is called the Active Process 

Table, APT). For each proc£~ss on the list, the Traffic Controller (TC), associ

ates the current execution state and other vital data. Thus, for a process that is 

marked as running there is also recorded a code that identifies the particular 

processor on which the listed process is now executing. Entries for processes 

that are marked ready can be pictured as belonging to a so-called "'ready list." 

Although we shall examine th:is list in greater detail later, for the moment it is 

>:< Two processes could concewably take page faults for the identical page of the 
same shared segtnent. The page fault in the second process could occur after the 
page fault taken by the first process, but before the page request initiated by the 
first process has been con1pleted, The net result is that when the systen1 event 
(completing the page request) finally occurs, it will be of interest to~ waiting 
processes. 
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best to view the ready list as a. FIFO-managed list. Finally, for each listed process 

that is marked as waiting there is recorded an identifier for the event being waited 

for. 

When a Good Samaritan process (executing in ring 0) notes that a:waited-for 

system event has arrived, it calls the Traffic Controller to 11 notify" the appropri

ate process(es) that has (have) been waiting. The Good Samaritan is, in nearly all 

instances, any process that may have just taken a page fault. While trapped in the 

ring-0 supervisor for the purpose of initiating a page request, this process auto

matically scans a system-maintained list of (drum/disk) I/0 requests in search of 

those that are marked as satisfied (i.e. , done). If any are found, the TC is called, 

giving it an identifier for the event that has occurred. The TC then uses this identi

fier to notify the appropriate processes in the following manner. For each given 

event identifier the TC locates on its list of processes those that are waiting for 

the identical event. For each such process, the TC then alters the code for its 

execution state from waiting to ready, and makes this process a part of the ready 

list. Eventually, this entry becomes topmost on the ready list. (Remember, we 

are thinking of it as a FIFO list). The TC will select the associated process for 

execution, and when this happens, the APT entry is receded as running, thereby 

removed from the ready list. The code for the processor given to this process 

is also recorded in this APT entry. 

In summary, we see that notifying a process of a system event does not im

mediately place it in the execution state. A process must first pass through the 

ready state enroute from waiting to running. 

It may have occurred to you to ask the following question; Once put into the 

:running state, is there any iron-clad guarantee that the page for which a process 

had been waiting will, in fact, be there? There is some possibility that in the 

interi1n, between the tirne the process was first "notified" that its requested page 

was in core and the time it fin.dly reacquired a processor to reference that page, 

the page has again been removed from core. This situation could arise in the 

following way. Let "x" be the page in questioa. Then, during the said interim, 

which could be a long one, other running processes may have page demandH that 

are satisfied by "pushing out 11 page x. If in fact this situation were actually to 

occur, the victirniz ed process, when it regained the running state, would re-. 

execute the original faulting instruction and again cause a page fault. The running 
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process would reinitiate the same page request, play Good Samaritan to call the 

TC to notify others of completed page requests, and again call the TC to "put 

itself" into the wait state and give up the processor to an eligible (ready) process. 

The hypothetical situation just described pictures a process cycling through 

the running-wait-ready states without ever accomplishing anything but page faults. 

This situation is one of several types of "system thrashing" which the system de

signer is always bent on preventing. Thrashing is prevented in Multics in the 

following way. The number of processes eligible for CPU attention is kept below 

a limit which, if exceeded, would cause thrashing. This limit would be respected 

even if it means allowing a CPU to become idle occasionally. Moreover, a pro

cess that is forced into the wait state never loses its priority relative to the other 

eligible processes. So, when the process has been notified that it may resume 

execution, there can be at most a limited number of processes queued ahead of 

it. The possibility that the desired page would be pushed out before it can be used 

by each process that has faulted on it is thus made negligible. We defer until 

Section 7. 4 a full elaboration on how this fine control is achieved. 

7. 2. 2 The TC Used for Time Sharing 

If a running process in executing in a computation loop (deliberate or acci

dental) such that it takes no page faults over an extended period, what prevents 

this process from "monopolizing" the processor? The scheme for multiprogram

ming that was described in the preceding subsection does not indicate any way 

that other processes (ready or waiting) can get their "turn." Clearly, an addi

tional mechanisn< is needed to force a sharing of the processor on the basis of 

elapsed time in execution. Th:ts mechanism is provided in the TC by assigring 

to each coexisting process an appropriate execution time allotment, q, such that 

when a process has executed for a total of q time units, it is forced to give up 

the processor. The time allotment is a value that is under the control of the 

system administrator. The control is achieved with the help of hardware as 

elaborated slightly in the following discussion. 

First, it should be noted that the time allo·tmcnt, q, for each procesE is 

assigned by a n1odule of the TC called the "scheduler." The value for q is 

stored in the Active Process Table entry for the p,·ocess. Also kept in the same 

entry is the amount of tim.e, 1·, which has already been used in execution a::('ainst 

the allotment, q. When a process enters the running state, one can picture that 
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the TC sets a timer register with the value q- r. The timer register then counts 

down to zero. When it reaches zero, a combination of hardware and software 

causes the generation of a process interrupt. The interrupted process then calls 

an appropriate entry point in the Traffic Controller which will 

l. "reschedule" the now running process for execution at a later time, 

and 

2. give away the processor to the "next" ready process. 

The term ''rescheduling" refers to the tasks of 

(a) giving the interrupted process a new time allotment q 1 (not 
necessarily equal to its last value of q) for use the next time 
it is allowed to enter the running state; 

(b) putting the process into the ready state by marking the execution 
state as ready, resetting the value of the time used (r) to zero, 
and making other updates to its APT entry. The business of 
deciding where on the ready list to place a process is discussed 

in Section 7. 4. 

When a running process moves to the wait state because it has incurred a 

page fault (or is forced to wait for some other system event, e. g. , the unlocking 

of a system table), the value oi r is kept in its APT entry and is incremented by 

an amount inferred from the reading of the timer register. Typically, the pro

cess' current time allotment is, in fact, used up over a sequence of short execu

tions, each punctuated by a page fault or other system delay that causes the pro

cess to pass through the wait and ready states. Eventually, the time allotment 

is used up, at which time the process must be ''rescheduled. 11 Other things being 

equal, if a process must be rescheduled, it is giver' a larger time allof;ment, but 

it is also given a lower priority, which in effect me ::tns that its ''insertion point'' 

in the ready list is made corn spondingly less favo1able. 

In addition to giving a more detailed look at rescheduling, Section 7. 4 also 

describes an eligibility restriction and a set of pre-e1nption mechanisms. 

Eligibility refers to the depth or ''degree'' of multiprogramming. It is the number 

of processes that are permitt(d to c01npete for a p;·ocessor at any one tithe. The 
I 

nmnber of eligible processes i.s necessarily restricted in order to prevent thrash-

ing, i.e. , destructive competition for the limited core resour::::es. In simple 

terms, eligibility can be viewed as a conserved resource of the system that is 
I 

passed about an10ng the processes-like the fixed <tnd limi.ted number of lunch 
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I 
I 
I 
I 

• 
trays that is circulated among the much larger number of daily customers that 

pass through a cafeteria. Eligibility is first conferred on a process when that 

process reaches a certain preferred point on the ready list. Eligibility is later 

withdrawn from a process when it is rescheduled {moved) to a less favorable 

position on the ready list or when it leaves the ready list for a long time. 

Pre-emption refers either to the capture of a processor {CPU pre-emption) 

or to the capture of eligibility {eligibility pre-emption). The former allows an 

eligible process that is being readied, if it is "important" enough, to cause the 

capture of a processor. Capture by a high priority eligible process is either im

mediate, in case it is being notified that a page read has been completed {or some 

other system event has occurred) or at the end of the next time unit {currently one 

second), in all other cases. 

CPU pre-emption in the current implement;ation of Multics occurs in a com

pletely automatic way. For example, whenever an ineligible process that is being 

rescheduled has a high enough relative priority, that process becomes a candidate 

to pre-empt a processor. The process will, in fact, pre-empt a processor if a 

search of the APT entries for those processes now running {including that of the 

process doing the searching) reveals one (process) that is "less important." In 

a m.ulti-processor configuration, if there is a choice, the running process that is e "pre-empted" will be the one of lowest "importance. 11 Any process that is CPU

pre-empted is rescheduled (e. g., put back on to an appropriate point in the ready 

list). 

Eligibility pre-emption is also automatic, permitting a high-priority but 

ineligible process to capture the eligibility of a lower priority running process. 

7. 2. 3 Block, Wakeue Functwns for Use in I/0 Control and in General 
Interprocess ommunication 

Two more rnechanism s are provided in the TC that are designed mainly to 

facilitate the synchronizing of deliberately cooperating processes. These are 

called the block and wakeup functions. They are functionally different from the 

previously described wait and notify functions. The wait, notify mechanisms, 

which can be called only from ring 0, allow a proct~ss to wait on (and later be 

notified of) system events; block, wakeup mechani8ms allow a process to wait 

on {and later be notified of) so-called process ~ts. 
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By a process event we mean an occurrence that can be of interest to ohly a 

specific process (or set of specific processes). The waiting period for such an 

occurrence will not, however, be either predictable by the supervisor or bounded. 

To retain the distinction between the two types of waiting, we say that a proc'ess 

enters the blocked state when a process begins waiting for a process event. We 

will say that the process receives a wakeup when it is notified of the occurrence 

of that event. 

Before going further into detail of these TC mechanisms, it will help to con

sider an illustrative example (somewhat contrived) of a user process synchronizing 

its activities with a hypothetical system process that manages teletyped I/0 (tty 

manager)~·. We will picture an I/0 operation involving the typing out of a string 

of several thousand characters. 

Suppose the tty manager shares a segment with the user process that can be 

regarded as an output buffer. For simplicity, let it be 270 characters in length. 

We picture that the tty manager copies characters out of the buffer in amounts 

that range up to 270 characters at a time (enough to type up to three full lines on 

a certain brand of teletype). 1 he user process attempts to move up to 270 charac

ters of the long output string into the smaller buffe:r area on each transit through 

its write loop. With the aid of pointers into the buffer, each process is able to 

interpret the information in the buffer in an appropriate way. Thus, the pointers 

identify and delimit the next group (up to 270) characters in the buffer which may 

be moved out (in groups of up to 90 characters) by the tty manager. The same 

or other pointers tell the user process which set of spaces within the buffer are 

"open, 11 i.e., n1ay be filled v.ith the next group of characters from the output 

string. Two situations are apt to arise. 

a. The user process may find at this instant that there is not enough 
room in the buffer for the next group llf i :<270 characters to be 
copied into it. We will presume that -1nder these circurnstances, 
the user proces ~ would want to place_ itself into the blocked stat<: 

>:< Readers should realize th;;t in the present implementation of I/0 Control in 
Multics, I/0 supervisory procedures that contro! teletypes are part of each user 
process. No manager procE~ss is needed as a "middle man" or broker to execute 
these I/0 functions. The hypothetical example of the manager process, once 
thought to be useful for syst ~1n-wide service, is instructive and may prove ap
plicable in the design of special subsystems. 

7-12 



• b. 

until the tty ma:1.ager has had an opportunity to "empty out" 
enough of the buffer to provide the room needed by the user 
process. 

The tty manager may find it has emptied out the buffer, i.e., 
there is no information in the buffer to be moved out. In the 
event there is nothing else that the tty manager can do, it 
would then have to wait for the arrival of more data into the 
buffer. The tty manager would then want to put itself into 
the blocked state to await the desired event. 

Note (according to our earlie:t definition) that the events for which both the 

user and manager process might wait are process events. Thus, no other process 

but the manager will be interested in being notified that there are now characters 

in the buffer which are to be copied out onto the teletype. Moreover, there is no 

general way to predict how long the manager might have to wait for this notification, 

because the user process may incur various delays (including delays due to paging, 

due to computations of arbitrary length, or due to entering the blocked state) in the 

course of cycling through its write loop. Thus, the user process might be pre

empted or timed out during any one transit of its write loop. 

There is, in fact, a symmetry here in the synchronizing of these two pro

cesses that can easily be seen. If one process, say the user, blocks itself, the 

other process (in this case the manager process) wakes up the first process and e vice versa. Also, note the important implication that when each process blocks 

itself it is counting ~ the other process to "wake it up. " It is usually unimportant 

for. the blocked process to know when it will be awakened, but it is always crucial 

for that process to know it will be awakened. 

We are now ready to see how the mechanisms block and wakeup that are 

provided in the TC would be applied. Our initial view will of necessity be greatly 

simplified. A more complete description is given in Section 7. 5. Figure 'i'-2 will 

be helpful for our present purp')se. It sketches son<e of the details in the write 

loop of the user process and in the synchronized read loop of the tty rnanager, 

which, taken together, characterize the buffered write operation. The synchron

izing steps (loops) being descr::bed here are genera1 ed as a result of using ordinary 

source language I/0 calls. In this chapter we shall not consider how the I/0 con

trol system converts user-wri1ten calls such as: 

call write_ out(striPg ); 

into the steps being described in Figure 7-2. 
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It is advisable to begin the discussion of Figure 7-2 at box 1. If the user 

process fails the test in that box (i.e., no place open in the buffer), it calls the 

"block" entry of the TC. The three dots on the line between boxes 1 and 2 and 

-between boxes 2 and 3 are provided to suggest that the call to block and the return 

from it are really handled indirectly, i.e. , through a chain of intermediate {super

visory} routines to be described in Section 7. 5. In actual fact, a user will not be 

aware that his process is calling block. The argument in the call is a returned 
\ 

pointer to a location where A can expect to find a "message" signifying the event(s) 

being waited for has {or have} arrived. Basically, what the TC does when called 

at box 2 is the following: 

The APT entry for process A will be marked blocked and the processor will 

be switched to the process which is currently at the top of the ready list. 

Process A has now been taken out of the running state and hence cannot re

turn from its call to block (box 2) until after the event it waits for has arrived. 

This is why the line from box 2 to box 3 is shown with a break ( * ). A can re

turn to the running state and thereby "jump the line break" in the flow diagram 

(so to speak) only after process B has executed a call to the wakeup entry of the 

TC (in box 6). In this call, process B names as arguments A's unique process 

identifier and a message, mesnage n, that represents the event A is expecting. 

The message must later be recognized by process A before A can re-enter the 

running state. 

The TC upon being called at box 6 will place the given message_n in a system

wide shared data base that is, of course, accessible to process A. The TC also 

places a pointer to the message in the APT entry for process A. Here, we bear 

in mind that only the TC is allcwed access to the APT (which is also a system-

wide shared data base). Next, the TC places process A in the ready state, making 

A's entry part of the ready list. Wakeup now returns to its cailer and execution 

in process B proceeds through box 7. 

Now that A is in the ready state, it can compEte again for a processor. 

When A subsequently gets a processor, it will resu1ne execution within the TC 

m.odule in which it (A) was last executing and then r ,3turn from block at the exit 

of box 2. Block returns the po :nter to the message sent by B as a return argu

lnent (i. c. , the second argun1e 1t in the call). 
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intermediate step between box 2 and box 3 which was omitted 

>keep its structure as simple as possible during a first view. 

to box 3, an intermediate system routine makes a check to be 

expected event message and not a spurious or irrelevant one 

ived. :i< If spurious, then box 2 is repeated. The schematic 

aces box 2 and the delay that follows. 

call block (argl, 

location for message_ n) 

N 

More detail for box 2 

2 

·ucture is appropriate to replace box 9. 

System Interrupts into Wakeups 

Lll expand the detail of box 10 in the model given in Figure 7-2. 

at having initiated teletype output, the manager process can do 

this relatively slow output operation is completed. We suppose 

ircumstancef it is appropriate for the tty manager to give up 

:ailing block. In this case it would be more realistic to consider 

n Figure 7-4 to replace box 10. 

process P n1ay be in comrnunication with more than one other 
and C. At any one point, however, process P Tnay enter the 
wait a waket.p signal fron1 B. SHppose that shortly there-after 
.eup signal, ~·or whatever reason. Chaos would then result if P 
1d permitted to proceed on the assumption that its expected signal 
received. 
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10 

initiate an I/0 operation (type on a teletype 
the set of up to 90 characters now in the 
write buffer. } 

11 

call block (argl.location _for-event_p} 

No 

Yes 

12 

reset pointers in the write buffer 

Figure 7-4 More detail of the initiation of an I/0 operation 

How, then, will the tty manager receive word of the completion of the I/0 opera

tion? That is, who (what process} wakes up the manager so that execution may 

proceed to box 12? The user process, A, may itself be in one of the nonrunning 

(blocked, waiting or ready} states while the tty ma·.1ager is blocked .. Thus, pro

cess A cannot be counted on for any help. Clearly, some "third" process must 

be involved. In the Multics I/0 system design, the third process is any process 

that happens to be executing on the processor when it receives a hardware inter

rupt signal that is intended to indicate completion of the invoked I/0 oper.ation. 

The executing process is forced to play a Good Samaritan role because all syEtem 

interrupt signals (I/0 completion signals are examples of such interrupts} are ' . 

handled by the Traffic Controller. By design, an I I 0 completion signal comes 

into the GE 645 memory and triggers the interrupbon (trapping} of whatever pro

cess happens to be executing on the affected processor. An invoked interrupt 

interceptor module then converts this signal into a wakeup call to the TC, identifying 
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the process that should be waked up and providing it a mes~:age that signifies the 

device on which the I/0 task has been completed. Just as soon as the call to wake

up is completed, control returns from wakeup, and routine execution of the inter

rupted Good Samaritan continues, The foregoing concepts are suggested in Figure 

7-5. 

General Interproce s s Communication 

The test in box 2a of Figure 7-3 (and in box 9a, if it were drawn in a simi

lar fashion) suggests an essential characteristic of meaningful communication 

among coexisting (and cooperating processes. A process may receive more than 

one message or signal (from one or more processes). Each legitimate signal 

could have different significance to a receiving process. In most instances it is 

essential that the reawakened process be able to identify the sender and the nature 

of the roes sage, if proper interpretation of the "reawakening" is to be made. 

For example, consider our hypothetical tty manager as the receiver of 

messages. Such a process could serve not just one user, but all users who are 

using teletype consoles for output or input. In that event, the loop (boxes 6 through 

10) of Figure 7-2 would clearly be an oversimplification. When awakened the tty 

manager must identify which user process is sending a message and moreover 

vvhich type of n'lessage it has n~ceived, so that it can act accordingly, i.e. , so 

it can res urn e a read loop to initiate more output on the teletype or so it can re

sume a write loop to initiate more input to read a buffer from the teletype-for 

some process. While the manager is not running, it must somehow be in a posi

tion to receive such messages in an orderly way, so that when again in the running 

state the message(s) received in the interim can be properly interpreted. 

Multics provides a general mechanis1n known as the !PC (interprocess 

communication facility) to achieve the transfer of messages (signals) between 

processes, "Receipt" of messages can occur while the process is in any execu

tion state, because the sender, using the IPC facilLy, can place a message in 

a shared data base which the receiver will examine and interpret at a later time, 

also with the aid of the same !PC facility.':' Subsystem designers will have little 

interest in the details for tran 3mitting messages between user processes and 

':' The shared data base and it!:- manipulating procedures are necessarily in ring-0 
for protection reasons. 
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system processes like the I/0 driver, since these are entirely controlled by 

built-in functions of the I/0 control supervisory procedures. On the other hand, 

the same techniques for interprocess communication also apply to subsystems 

in which two or more user processes must comunicate with one another for effec

tive operation. Here, the designer must provide the explicit calls on the IPC 

facility. For such subsystems, the designer must become more fully acquainted 

with the IPC. Section 7. 5 provides the basics. 

A final observation is in order in this introduction concerning interprocess 

com.munication. This has to do with the distinction between data communication 

and control communication. In the example of Figure 7-2, the data passing into 

and out of the write buffer may be regarded as data communicated between the 

two processes. The messages transmitted by th·~ makeup function and examined 

by the block function, though also data in one sense, nevertheless serve as con

trol communicatic.ns in that their net effect, like stop and go signals, permit the 

starting-up of a blocked process. There is an analogy between these two types 

of comtnunication and two types of computer instructions. Control communication 

corresponds to a "frea_d} memory" type of instruct ion. 
~nte 

7. 2. 4 Other Control Functio~s of the Traffic Cant roller 

The Traffic Controller contains modules needed for the purpose of creating 

processes, for destroying thern, and for halting processes in anticipation of des

troying them. Additionally, the TC is able to cause the loading of a process. 

Loading a process amounts to placing in memory a lim i.ted number of selected 

segments, page tables, and other inforn1ation whose guaranteed presence in 

memory is essential if the process is put into the running state. We shall refer 

to this set of process information as the n1ini1num core image, (MCI). Among 

the components of the MCI are the APT entry for the process,. a ring-0 descriptor 

segment, and a special ring 0 process state segmeLt named PDS (Process Data 

Segment). 

Generally speaking, the ,.,ubsysten! designer need pay little attention t,) 

these essential supervisory functions, since they rnust be carried out as a rn.:ttter 

of course in norn'1al operations. Thus, during log-in a so-called "working process" 

is autornatically created for the user and during logout that process is destroyed. 

Moreover, it is also the responsibility of the Traffic Controller to see to it that a 
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proc~ss reaching the top of the ready list has a minimum core image. ):c In other 

words, loading of the MCI is supervised on behalf of the working process when-

ever necessary. 

With all this machinery for "managing processes" already necessary (and 

available) as supervisory functions, it is not surprising that the Multics design 

is aimed at giving a sophisticated user the opportunity to exploit some of these 

functions for his own purposes. 

Two types of user applications are envisioned. The first is almost funda-

mental because of its relationship to console debugging. The second relates to 

the user's management of a subsystem in which one process spawns others. 

1. Stopping a process so as to debug it 

During a console session the user will often find cause to stop a process 

now in execution {running, ready or blocked). He may notice, for instance, that 

his working process is in an endless (or undesirably long) output loop, suspect 

an endless computation loop is in progress, or for other reasons wish to halt the 

process and take stock of the situation, i.e., enter into certain on-line debugging 

activities. The Multics design makes it feasible to carry out such console debug

ging by providing the user a simple-to- use facility to accomplish the following: 

a. Cause his current working process to be 11 stopped". 

b. Cause a new working process to be created and activated 
on the user's behalf which will now respond to his console 
commands. (No new login is necessary, mind you,) The 
new process can now be used to '''inspect'' segments such 
as the stacks of the stopped proces e, using debugging pro
cedures that execute in the newly created process. 

c. When Multics is fully implemented, a user will be able to 
achieve steps a and b simply by pressing the quit button 
and then issuing a "save" command on his console. The 
effect will be to signal an always'-coexisting process, called 
the answering service, and asking i.t to do these chores. 

>:< The loading task is carried out, in fact, by wakirg up a system loading process 
to do the job. This special process is of the highest priority and is itself always 
loaded. Consequently, the Traffic Controller's request fo1· the loading of a pro
cess will receive relatively qt•ick response. We will add more detail to this 
frame of reference in Section 7. 4. 

7-21 



c. If, after inspecting the stopped process, the user deems it 
"resumable'', possibly after "doctoring'' one or more of its 
segments in some fashion, then he may destroy the new or 
current working process and resume (put back into the ready 
state) the old working process. This step, of course, implies 
that the console will be reattached to the resumed process. 

Step c would be accomplished by typing a simple command. 

d. Alternate decisions might be either to save the old process 
for future resumption or save certain OTTile temporary files 
of this process. Saving a previous working process or any 
of its temporary i>arts is simple enough and is achieved by 
typing a simple command. Providing the system support for 
the practice of resuming a saved process at a much later time 
may await further system research and development:--Thrs--
is because such practice implies that the "state" of the Multics 
supervisor, and the Multics library will, at the time an old 
process is resumed, be sufficiently like its original state to 
make resumption of the process meaningful. But how can we 
be sure that the option to resmne the process at some later 
time can be successfully exercised? This problem is intrinsic 
to all information utilities whose supervisory code and system 
libraries evolve at some finite rate. Presumably a process 
will be stopped and saved in a state where its execution point 
lies outside of any supervisory procedure or library code. 
If superv1sory or system library code has been altered in the 
interim, resuntption of the process at a later time can be 
"effective" if and only if re-execution of said altered system 
codes is (Case a) not required, is (Case b) functionally similar, 
i.e., the altered procedures retain their original interface 
(e. g., same argument list, external references, etc.), or 
(Case c) old copies of the altered code can be retained for use 
at process resumption time. 

Clearly, Case a is purely a lucky circumstance. As a general solution, 

Case c implies serious and perhaps insurmountable problems in system design 

and system management. This approach requires that in the limit it would be 

necessary to furnish a user with a complete copy of an older Multics system to 

resuh'le a saved process. 

Only Case b implies serious promise for a general solution. When systems 

like Multics or their successors reach a sufficiently stable state of development, 

it is not inconceivable that a contract between syste1n administrator and a sub

scriber will imply a commitment to provide (over a certain time span) a stable 

functional interface to the supervisor and other system- supplied code, i. e. , 

sufficiently stable to provide effective resumption of long- saved processes. 
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(Needless to say, we are "not there yet", either in Multics or in any other system 

of like objectives.) 

e One remark is appropriate after considering this example. The TC is not 

only designed to assist in the stopping of a process, but is also able thereafter to 

recognize such a process, by marking the execution state (in its APT entry) as 

stopped. We see then that there are in actuality a total of five execution states 

that are recognized: 
/ 

running, ready, waiting, blocked, a.nd stopped. 

A process is marked "stopped" as explained below, when it has no use for 

a processor and has no expectation of needing one, i.e. , is not expecting a wake

up •. Putting a process in the stopped state prevents later wakeups received from 

cooperating processes from accidentally restarting a quit process. 

2.. Stopping a process in the general subsystem case 

A special entry is provided in the TC which can be used by one process 

(A} to stop another process (B). The form of the call is: 

call stop (id_of_process _B); 

Of course, the call must be and is quite privileged. No user can be permitted to 

euse it in an indiscriminate fashion or the entire system would quickly collapse. 

On the other hand, with proper safeguards, it would be very useful to grant such 

permission for user process A to stop (and possibly even then destroy) user pro

cess B, provided, however, A and B were related to one another in a meaningful 

way. For example, Multics provides a subsystem with the capability for one 

proce!'S to spawn one or more other processes (much as certain system processes 

must be capable of doing), Each such spawned user process would then belong 

to the same "process tree" (as those that have a common ancestor user process). 

In a fully implemented version of Multics a supervisory module, such as the TC, 

would conceivably be able to recognize members of the same process tree~:~ so as 

to screen requests of the form: 

call stop (B); 

)~ The coding scheme that will permit this recognition is not yet finalized as of 
this writing. 
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A subsystem designer will, therefore, be able to write code which r.nakes 

an initial working process A spawn processes B, 'C, ••• , etc. Any of these may 

be coded to spawn others. All belong to the same process tree. Any one process 

might reach a decision to stop another in the same tree on the basis of "cross 

talk", i.e., interprocess communication between or among two or more of those 

coexisting within the group. We leave to the imagination of the reader the possi

bilities for subsystem design that are implied by virtue of these capabilities. 

Further consideration of this topic here would be premature prior to an examina

tion of the Multics interprocess communication facility (IPC) itself, which is 

introduced in Section 7. 5. 

7. 3 CORE RESOURCES EMPLOYED AND MANAGED BY AN ACTIVE PROCESS 

. In this section we shall examine core requirements of an active Multics 

process during various phases of its existence (from the time the process is 

created until it is destroyed). We will also consider the system implications 

of these core requirements in the multi-process environment in which all co

ex~sting processea compete or tend to compete !ov core, (When ~ l+l~l' ~Rii j.n1 

a process is created on his behalf by a pre- existing system process which re

sponds to the login command. The newly created process is registered in the 

Active Process Table (APT) and then given active status by loading into core 

the page tables for a small group of key segments.* The process normally re

mains active until the user logs out, at which time the process is destroyed. t) 

The executiPn itA-tf! pf a process not only characterizes th-e procetts "'" 

a competitor for a processor, but it also suggests implicitly how a process 

functions as a competitor for core. 

A running process will attempt to and in fact may capture as much COJ."e as 

it needs. It will be restricted from doing so while it is executing only by virtue 

),'c 'The initial Multic s implementation rigidly couplef' activation and deact5.vation 
of a process with its cr'eation and destruction. A znore flexible connection, 
e. g., dynamic activation, is also possible, and in principle, could be ad4e4 

I 

to the System at some later time. Dynamic activation would make it convenient i 

for Multics to support subsystems which exhibit a large number of only occasionl
ally-used processes. 

t A user's process can spawn other processes, which become 11active1' :iii'-tlu!"· 
same way. 
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of cdmpeting demands of pro;:esses which are simultaneously executing on other e processors. In a single-processor environment, the longer a process is allowed 

to execute without interruption, the larger can its "core holdings" become. 

A ready process competes for a processor mainly with other ready processes. 

At any given time, a ready process will be queued in some fashion dependent, 

among other things, on the respective priority levels of the set of ready processes. 

The specific queuing discipline is discus sed in Section 7. 4. As a competitor for 

core, a ready process is a "loser". Because it is not executing, a ready process 

is unable to initiate the acquisition of core. Attrition can occur in its core holding 

due to the demands made by the executing process(es). A new page is brought 

into core for an executing process at the "expense" of some other page. The 

Multics algorithm for selecting pages to be "thrown out" in.favor of new ones, 

is such that least recently refere~ced pages tend to be preferentially selected 

for removal. Thus, in principle, the longer a process remains in the ready 

state (hence, not making references to its pages, to the core-resident portion 

of its address space) the more likely it will suffer a loss of pages. In actual 

practice, a small group of processes will at all times belong to the class of so

called "eligible processes". At any given time a small number, n, of active e processes are allowed by the Traffic Controller to compete for a processor. 

These are the eligible processes. The number n is recomputed per~odically 

by the Traffic Controller. n is a measure of the capacity of the system to ef

fectively serve its clients short of an overload. An eligible process will normally 

gain sufficiently frequent use of a processor, such that its most recently refer

enced pages will not be purged during any period of its residence in the ready 

state. 

A waiting process is one that cannot make immediate use of ~,processor 

because it is waiting for a so-called system event to happen, for example, the 

arrival of a page into core, the request for which was initiated while thi's process 

was last executing. As ~ competitor for core, a waiting process is a loser in 

roughly the same sense as a ready process. However, because a process that 

goes to the wait state for a system event is expected to remain there for only a 

brief and predictable period of time, it is allowed to retain its eligibility during 

this period. It also retains its favorable position in the queue. If sufficiently 

favorable, the readied process may in fact pre-empt the processor. In general, 

residence in the ready state will tend to be for short periods, hence short periods 
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between execution states and hence minimal attrition of its core holdings. 

A blocked process is waiting for a {process) event whose time of "arrival" 

is not in general predictable. As a competitor for core, all we can say is: the 

longer the process remains blocked, the more of its {non- shared) core-resident 

pages will be removed. If a process is blocked long enough, all its unshared 

pages, including its descriptor segments, will be paged out. Page tables for 

most of these segrnents will also be deleted. ca:re is taken, however, in the 

system design to retain the page tables for several critically important segments 

(suc.h as for the process state segment {PDS) and descriptor segmentsV:'. By 

retair:.ing page tables for these important segn<ents, the process does not have 

to thrash about, taking an undue number of segn<ent and page faults when it next 

re-enters the running state. Page tables and pointers to these segrnents and to 

all other segments which rem.ain active are retained in a special wired-down 

table area known as the System Segment Table {SST)t. Of course, there will 

always also remain a "core residue" consisting of pages and page tables of the 

shared supervisory segments and perhaps also son<e shared library segments 

(both wired-down and otherwise). 

A stopped process is the same type of core competitor as is a blocked 

process. The only difference is that a stopped process may be destroyed at 

the request of another process. i·t In the course of being destroyed, segments 

that are categorized as ternporary {and filed in its "process directory"}, are 

deleted along with their file branches. These include the KST, the various in

clividllal and con1bined linkage segrnents of the process, etc, The space occupied 

by these files, on whatever device they happen to occupy, is returned to the free 

storage pool of that storage device by the storage allocating routines of the sys

tem. Thus, core space occupied by pages (and page tables) for temporary seg

lnents is in<mediately reclassified as fr_ee. (Free space is dispensed first in 

satisfying page requests of executing processes. Only after this pool is exhausted 

':' Strictly speaking, even these pa,~e tables would be removed if the process were deacth·ated. 
The decision to deactivate (i.e., llnload) a process would be made by a system control! process 
on behalf of a process that has be~n blocked for a lengthy period. A dcactiv<tted proces~ is still 
"rernem.bered" in a process table of the system so that it can be reactivated when necesaJ.ry. 

t The detailed architecture of the SST is given in BG. 2. 

ti-Moreover, a stopped process m<ty be deactivated. 
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will other pages be removed.) Blocks occupied by the remaining pages and page 

tables of the destroyed process will be reused as needed by the system's paging 

algorithm. * 
From the above discussions we see that, as a process cycles through its 

execution states, there also is a marked tendency for its core holdings to ebb 

and flow cyclically. It is to the user's advantage that in the typical cycle the 

pages lost in going from the "crest" reached during its current execution state 

to the "trough" reached during its next wait or block state, should not include 

those which will be needed during some reasonable interval after the process 

next re-enters the running state. There are two obvious reasons: 

1. Increasing the number of page faults taken by a process will per
force increase the total elapsed time from the beginning to the 
end of a process, since the time spent in the wait state increases. 

2. The processing of each page fault adds several milliseconds to 
execution time and this time is (and probably must be) charged 
to the faulting process. 

The system 1 s scheduling and page removal algorithms are designed to 

help keep this potential loss of efficiency from becoming severe. As previously 

mentioned, the Traffic Controller limits the number of users that may compete 

for a CPU at any one time. The eligibility restriction has the effect of keeping 

the paging activity in the system at a tolerably low level (as a percent of CPU 

usage). The by-product effect of this restriction is that the average number of 

pag~s allotted to each competing process can be kept above some desirable mini

m.mn value. If the number of eligible processes is made too low, ho}Vever, 

eligible processes may compute efficiently (i.e., for very long periods between 

page faults), but there will be too much idle timE: when the page faults do occur, 

while at the same time the system's response to the non-eligibles may become 

unacceptably poor:. As experience in the use of Multics grows, the sophistication 

of the various controls employed by the Traffic Controller can be expected to 

increase in the resultant din:lction of an optimal balance among these conflicting 

needs. 

':~ An excellent view of this algorithm can be found in the paper, "A Paging 
Experiment in the Multics System, 11 by F. J. Co1·bato, Multics repository 
document M0104. 
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7. 3. 1 Minimum Core Requirements of an Active Process 

We have already alluded to the idea that there exists in Multics a minimum 

core comtnitment for each active process. In this section we will begin to gain e 
insight into the core management aspects of Multics that relate to these memory

resource requirements of an active process. 

From an overall view, core can be viewed as composed of three parts: 

(a) wired-down supervisor code (very roughly 25K words as of the 
summer of 1969), 

(b) system-wide tables and I/0 buffers (perhaps 50K words~:<), and 

(c) the remainder, consisting of core blocks of a pool that is managed 
by a wired-down core allocator. These blocks are for the pages 
of non-wired procedure and data segments (approximately 300K 
words maximum, in the present configuration at Project MAC). 

Of the system-wide tables mentioned in (b), the SST (System Segment Table) is 

of chief importance in this discussion. This is a table that includes an entry for 

eve~::-y active segment in the system and cross-references each of these segments 

with the processes which presently share them. For each active segment there 

is also included in the SST its corresponding page table. Saying that a segment 

is active, therefore, mainly reflects the fact that its page table is currently m 

core. Segments are limited to 64 pages (1 024 words each), t so their page 

tables are stored as 64-word blocks. tt 

'~ Space allotted in these tables is a function of the total core space available and of the 
anticipated number of active processes permitted in the system at any one time. 

t The SST provides page table space for enough page tables (npt) to ensure that there is, in 
fact, always an excess of page tables over,· the number of segments (nseg) having a page or 
more in core. The excess, npt - nseg, is used to retain page tables for vital segments of all 
active processes (including those not eligible), and also to retain page tables for segments 
that are the ancestor directories of all active segments. Experience shows that keeping page 
tables for these segments in core drastically depresses the number of segment faults (and by
product page faults) that are norntally incurred as a result of process switching and as u. re
sult of file system operations. This amounts to a form of "preventive maintenance" for system 
efficiency, since each segment fault currently costs around 16 ms. and each page fault around 
6 ms. Clearly, reducing the number of these faults also means reduced delay or latency ir. 
the execution of any one task. 

·t-tin Chapter 1 of this GuJde, we mentioned that the GE 645 hardware was capable of support
ing segments of up to 2 1 or 256.K words. However, software considerations have recently 
resulted in a decision to limit segments to 64K. 

~·. 
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In terms of the overall view of core just presented, we now discuss two 

e types of minimum core requirements for an active p~·ocess. 

1. A static minimum; which is the core committed to the active 
process while it is not running. This is the core needed for an 
effective transition mto the running state. As long as the process 
remains active (i.e., has an entry in the APT), the static mini
mum is retained. In the present implementations (Summer, 1969) 
it is a core space of approximately 230 words and, apart from the 
16-word entry in the APT, is drawn entirely from the SST. 

2. A dynamic m1mmun1., which is the core needed when the process 
is running. The additional core space implied in this minimum, 
while partly drawn from the SST, is mainly drawn from the general 1 

pool of 1024-word core blocks. Approximately six blocks are cur- , 
rently needed for pages of several "vital" system-provided segme::1ts. 

It will be useful to enumerate components that make .up each of these mini

mum "sets" even though continuing implementation improvements may make 

these details rapidly obsolete. Table 7-1 lists the static set and Table 7-2 lists 

the dynamic set. The following discussion provides some functional explanation 

of these two sets. It is not intended as a complete discussion, only as the begin-

ning of a plausible explanation for the curious. 

e First we shall suggest the reason for maintaining, in active status, the 

three listed segments of Table 7-1. The system is designed so that resumption 

e 

of the running state will result in references to each of these segments, and 

hence segment faults to them either should or must be avoided. At least two of 

the listed segments will almost immediately be referenced when the process re

sumes the running state. These are: the process state (data) segment, <pds >, 

and the ring-0 descriptor segment. (In the current implementation, the process 

state segment includes data areas previously allotted to various ring-0 segments, 

e. g., <pdf >, <rtn stk>, <stack 00> and <kst >. In making references to the 

first two of these, neither segment faults nor page faults to certain pages therein~:< 

'~ The process executed last while m the Traffic Controller (ring 0). It was using page 1 of the 
ring-0 descriptor segment and a special stack (called the "process concealed stack") that is kept 
in the process state segm.ent. This segment also contains vital process state information such 
as the current ring number, which must be accessible to the system while it is processing page 

faults. 
Upon returning from the block (or wait) entry of the Traffic Controller, the process will still 

be in ring 0, so the ring-0~. also embedded in the process state segm.ent, will also be 

needed. 
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TABLE 7-1 

The Static Set 
(Minimum core requirement while an Active Process is not running) 

Item 

l. APT entry 

2. SST entries for segments: 
(72 words/ entry, including 
a 64-word page table) 

a. ring-0 descriptor seg:ment <desc 0 > 

b. 

c. 

"process state segment" 
(combines in one segment 
the functions of 

< pds> 

<pdf> 

<stack 00 > 

< rtn stk >,>!<and 

< kst >} 

<pds> 

ring-i descriptor segment <desc i > ' 

Total 

Number of Words 

16 

72 

72 

72 

232 words 

>!< Discussion in earlier chapters of this Guide mentioned these components as 
separate segments. Condensation into one segment resulted from implementa
tion improvement in the Sur.~mer ()f 1969. 
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TABLE 7-2 

The Dynamic Set 
(Minimum core requirement while an Active Process is Running) 

Number of Words 
Item 

1. Items listed in Table 7-1 
(3 SST entries and 1 APT entry) 

232 

2. SST entries for segments: 
(72 words/ entry, including 
a page table) 

process directory (ring 0) 

ring-i stack 

ring-i combined linkage segment 

3. Pages for Segments 

(a) 

(b) 

(c) 

ring-0 descriptor segment 

process state segment 
(see Table 7-1} 

ring- i descriptor segment 
ring-i combined linkage segment 
ring- i stack 

Subtotal 

(2)~:~ 

or:~ 

(1) 
(1} 

Total 

(in round numbers) 

72 

72 

72 

448 

1024 

2048 

1024 
1024 
1024 

6600 

,,. These pages are preloaded before the process begins to run. All other pages ··-
listed here are brought in as a result of page faults. Pages of the process state 
segment and the first page of the ring-0 descriptor segment, once loaded, are 
treated as wired-down so long as the process is in the running state. 
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can be tolerated, so actual pages for these segrhents will be read (back) into 

memory, as necessary, before the process is switched to the running state. 

Typically, the Traffic Controller was entered either as a result of a 

s~stem interrupt, while the process was executing in some ring other than 0, or 

indirectly, as a result of a call from another ring -i. The Gatekeeper must be able 

to effect a return to ring i, implying need for the presence of the page table to 

(and a page from) ring i 1s descriptor segment. 

Once a process enters the running state, the pages of its core holdings 

(beyond those (four) that are pre loaded for it) will rapidly expand in number. 

Segment faults will be incurred in referencing other segments such as those 

listed in Table 7-2, item 2. 

A segment fault results in the creation of an SST entry (72 words) and a 

page request for the referenced page. In a "busy'' system new SST entries can 

be created only at the expense of old ones which are in some sense candidates 

for removal. Just as new pages replace ("old") pages that have not :r:ecently 

been referenced, new SST entries replace those for segments which have no 

pages remaining in core. (Of course, certain types of SST entries, such as 

the per-process segments listed in Table 7-1, are not candidates for removal 

while the process is active.) 

As shown in Table 7-2, a process will tie down a minimum of six SST 

entries and a minimum of six pages while it performs even the simplest of tasks. 

Additional core space is neecled for its non- supervisory procedures and data seg

ments. Normally, the pages and SST entries in Table 7-2 will be referenced so 

frequently that the system removal algorithms will never select them as candidates 

for removal while the process is eligible. Presumably, the same will be true 

for frequently- referred-to pages of the user-provided segments of a process. 

The Working Set 

Following Denning~:~ we shall refer to the Table 7-2 list, plus the other 

pages and page tables of the user segments that are being referred to very 

':' Peter J. Denning, "The Working Set Model for Program Behavior!' Communi
cations of the ACM, May, 1968, Vol. 11, No. 5, pp. 323-333. Also, "Resource 
Allocation in Multiprocess Computer System, 11 May, 1968, Project MAC Techni
cal Report 50 (Ph. D. Thesis of P. J. Denning). 
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frequently, as the working _§et of a process. The page removal and SST-entry 

::-emoval algorithms of MulEcs are expected to "honor" the working set in the e sense that its components tend to remain in core over the period of time the 

process is executing. During this time, demands by the same or coexisting 

processes for a large number of less-frequently-needed pages and their SST 

entries can also be satisfied without seriously affecting the working set (or work

ing sets of the eligible processes). 

7. 3. 2 The System Segment Table and Shared Segments 

This subsection and section 7. 3. 3 describe some of the inner workings of 

the file system's key modules and data bases used in creating and managing the 

Multics virtual memory. The material is provided mainly for the sake of com

pleteness.~:~ It is certainly not essential in the flow of ideas for this chapter. 

These subsections do, however, help one to appreciate some of the challenges 

that have faced the Multics System designers and show why the success of some 

subsystems may well depend on how successfully its designer has minimized the 

load (segment and page faults) that the subsystem has placed on the file system. 

Since space for entries in the SST is limited, it will be the usual case that 

some segment must be deactivated so that another may be activated. Deactivating e a segment, therefore, means relinquishing SST table space for its SST entry. 

Each such entry consists of an 8-word "Active Segment Table" (AST) entry and 

its associated 64-word page table. An active segment becomes a candidate for 

deactivation if it satisfies these conditions: 

1. The "wired-down" switch in its AST entry must be OFF. 

2. If this is an AST entry for a directory, its inferior count, i.e., 
the number of its im1_nediate descendents which are actlve, must 
be zero. 

Among all those entries that satisfy the above conditions, select the segme:qt 

whose page table shows the fewest pages now in core. 

>:< A more complete discussion (very readable and interesting) of this topic may 
be found in the paper, 11 The Multics Virtual Memory•• by Bensoussan, A., 
Cling en, C. J., and Daley, R. C. , Second ACM Symposium on Operating System 
Principles, Princeton University, Princeton, New Jersey, October 21, 1969. 
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When the entry for such a segment is selected for deactivation, the corres

ponding SDW for the process which lists this segment in its address space must 

be located and marked appropriately with segment-missing bits. (This process 

is termed in some of the Multics literature disconnecting~ segment.) In this 
,, 

way one is assured that a subsequent reference to this segment will incur a seg-

ment fault and thereby invoke mechanisms to recreate an AST entry and page 

table. Having put a "stop" in the appropriate SDW, Segment Control is then free 

to proceed with the construction of the new AST entry and page table, and (call 

Page Control to) page- in the referenced page. The faulting SDW word is then 

altered appropriately and made to point to the newly constructed page table. 

(This process is termed connecting~ segment.) 

If we consider that the old segment may have been shared, then removal 

of its AST entry and page table implies the alteration of an SDW in the descriptor 

segment of each process that shares it. 

Recall that SST cross-references every active segment with the processes 

that share it. Segment Control, by proper use of the SST, is therefore able and 

is sufficiently privileged to identify each process that currently shares any given 

segment and additionally determine its segment number in each of these processes 

(i.e., determine the segment pointer in each sharing process). To be more pre

cise, the eros s- referencing design of the SST permits Segment Control to get at 

and alter SDW's in each descriptor segment of every process that shares the 

segment that is being deactivated. 

Suppose we picture that process A is deactivating a segment <s > that is 

shared by processes B, C, D, etc. Clearly, the job of marking with segment 

faults a sizeable number of SDW's (i.e., disconnecting a sizeable number of 

segments) cannot be done instantaneously. This means that some care must be 

(a.nd is) taken to prevent page-faulting references to < s> from being serviced 

by processes B, or C, etc., while A, still executing in Segment Control, is 

attempting to deactivate < s >. To permit the freedom for B or C, etc., to re-

quest a new page in< S> at '~his time is to invite chaos.>:< Process A prevents 

':< This is because such references, if permitted, would imply th,at Page Control 
would be working at cross purposes for different processes. For one process 
it would be attempting to add pages for < s > (and remove page faults in the page 
table words of <S >' s page table}, while for another process it would be attempt
ing to reset the page table so it can be used for another segment. 
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this confusion from happening by setting certain flags and locks at key places in 

the SST at the start of its deact:Lvation task. The result is that no other process e sharing < s > will then be permitted to do more than idle in a loop, should it fault 

to a page of <s > while < s > is being deactivated. When fully completed, and all 

SDW 1 s have been set with segment faults, the flags and locks are reset, permit

ting the sharing processes once again to reference <s >. The first such reference 

will incur a segment fault that will then result in a new activation of <s >. More 

details for those interested are provided in the accompanying footnote.* 

7. 3. 3 Handling of Segment and Page Faults 

Segment faults and page faults are relatively costly in execution time and 

wherever pas sible the subsystem designer should be on the lookout for ways to 

avoid triggering these faults unnecessarily. Before examining ways to avoid 

these faults {see Section 7. 3. 4) it is a good idea first to get a feeling for how 

these faults are handled. 

7.3.3.1 Segment faults currently require on the order of 15 to 20 ms of cpu 

processing time. In addition, segment faults will usually trigger page faults 

and pas sibly other segment faults as a by-product since both the segn~ent fault 

handling procedure and the data bases it looks at are not wi1·ed down. The steps e taken are roughly as given below. For purposes of illustration we shall picture 

that the fault is taken for a segment <t > in ring i. Here we imagine the branch 

for < t > is found in a user directory whose path name is > w _ dir _ dir >John. 

1. Consult the KST entry whose index is the same as the segment 
number of<t >. {t# is determined from the saved machine condi
tions.) Since the KST is itself always active, there will be no 
segment fault incurred in referencing it, but since the KST is 
a paged segment, a page fault may be induced before a reference 
to the desired KST entry is eventually achieved. Segment Control 
will obtain from the KST entry the segment nutnber and offset 
of the directory branch for < t > in the segn-:tent <John>. 

'~ If another process takes a page fault in the segment being deactivated, Page Control will notice 
the set flags and will properly interpret what is happening. It will then "tinker" with the process 
so that it will believe it has taken a segment fault instead of a page fault. This is accomplished 
by altering the SDW of the segment that has incurred the page fault so it will cause a segment 
fault when next referenced. Following this adjustment Page Control. sin1ply returns, whereupon 
a repeated execution of the faulting instruction will cause a segtnent fault. Nhen the process 
next attempts to solve its segment fault problem, it will be forced to wait on a lock (of the parent 
directory) which has been set and will remain set until the process doing the deactivating of the 
segment has finished its job. Whereupon, the flags and locks are reset, permitting other pro
cesses to again activate the deactivated segtnenl if necessary. 
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2. Appropriate information needed for activating <t > is then copied 
from ite branch if <t > is not already active. >'.c In referencing the 
branch, another segment fault may be induced if <John>, although 
guaranteed to be active (by the ancestor..,is-always-active rule), 
is not connected tp its page table, i.e. , has fault bits set in its 
SDW. f However, the partiCular page wanted from <John> may 
be missing, thus inducing a page fault. The data copied from the 
branch is used to create a new AST entry and page table. Page 
table words (PTW's) are set with missing page faults and file map 
data. That is, the address field of the PTW is either set with 
pointer information for the page 1 s address in auxiliary storage 
or is set to null (for page numbers that are either beyond the cur
rent length of the segment or that correspond to pages yet to be 
created). 

' 
3. After the page table is constructed and the new AST entry is cross-

referenced to the process requesting it, the SDW words are ap
propriately set in the ring 0 and ring i descriptor segments, point
ing to the new page table. 

7. 3. 3. 2 Page faults currently require on the order of 3 to 7 ms of cpu process-

ing time. We have already suggested the type of tasks that are involved in hand

ling page faults in earlier discussions, so we will not go into much more detail 

on the matter here. Briefly, when Page Control is called to get a page, it is 

handed, via the faulting machine conditions, a pointer to the faulting page table 

word (PTW). Moreover, since the page table address in which the PTW is found 

has the same index as the corresponding AST entry, the latter's address in the 

SST can also be determined. The AST entry would then be consulted to ascertain 

if it is o. k. to proceed with the fetching (or creation) of the page. (You may re

call, this entry may have been flagged to indicate the segment is in the process 

of being deactivated.) If the PTW address field is non-null, it contains device 

address information for the wanted page, but if null, it indicates that a page of 

zero-valued words is wanted.tt Page Control calls on a core-allocating 

* Strictly speaking, all references to branches are made by Directory Control on behalf of Seg
ment Control. 

tIn fact, a recursive sequence of such segment faults can occur in the unlikely event thc..t all 
parents (except the root) have fault- inducing SDW' s (i.e. , are disconnected). The recursion 
ends at the root node because this item is by design always immediately accessible. 

ttSpace for such "empty" pages is created only when first reference is made to them. It is 
never created and stored ahead of time. Hence, no page needs to be "transferred" from secon
dary storage. 
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routine):c to obtain the address of a free core block. (Such a request can easily 

trigger a page-removal request if no free core blocks are immediately avail-

• able.) t Page Control zeroes out this acquired biock, resets the faulting PTW 

to point to the new block, adjusts the J>.ST entry to reflect the new condition of 

the page table, and returns control to the faulting procedure. 

If the pointer in the PTW is not null, Page Control again asks for a core 

block address, initiates the drum or disc I/0 request as appropriate to get the 

wanted page from secondary storage, and performs its Good Samaritan chores 

(notifies) as described in Section 7. 1, and calls wait in the Traffic Controller. 

You can see from the foregoing discussion that processing time for a page fault 

will vary according to several factors. Certainly, the time to create a new page 

of zeros rather than to bring one in will be short, i. e., of the order of one 

millisecond (which is about the time required to write a thousand words of 

zeros). Processing of several milliseconds will be needed in the more compli

cated cases, where the page removal algorithm must be invoked and an I/0 

request initiated. Of course, this does not count the actual time spent in the 

page wait and in the (possibly) subsequent ready states. 

7. 3. 4 Ways to Reduce Segment Faults 

• By now the subsystem designer reading this chapter should be more than 

mildly receptive to suggestions for reducing the incidence of segment faults 

(that are under his control to reduce). Two relatively obvious principles serve 

as a guide. 

1. Because other eligible processes compete for page table space 
in the SST, a process having a large number of segments will 
tend to suffer a larger number of segm.ent faults than a process 
with fewer segments. Hence, a conscious effort to keep the 
number of segments to a minimum will tend to reduce segment 

faults. 

~' Additional details on Core Control and its interaction with page control may be found in BG. 5 

and BG. 6. Page Control itself is described in BG. 4. 
To remove a page involves invoking the page-removal algorithm about which we spoke 

earlier, which "fingers" pages that are candidates for removal. Also invoked would be the 
appropriate machinery to copy ou·: the contents of said removal candidates on to auxiliary 
storage. Copying of a page is performed only if the respective PTW indicates, via its page-
has-been-written bit, that the page has been altered while in core. 
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2. For a given number of segments in a process it should be possible, 
by conscious programming effort, to organize a "computation" for 
a minimum of segment faults. Intuitively, this could be achieved 
if it were possible to sustain a high enough frequency of reference 
to the segments that were most recently referenced. In other words, 
if it is possible to design the process so that it maintains a high 
degree of locality':~ with respect to its segment references, the 
process will incur fewer segment faults. 

Here are several approaches the subsystem designer can take to reduce or 

limit the number of segments of a process: 

(a) Avoid specifying multiple rings unless necessary because each 
ring in which the subsystem executes automatically adds a number 
of segments to the process, e. g., a descriptor segment, a stack 
segment, a combined linkage segment, and, when used, a signals 
segment and its special linkage segment. 

(b) Bindt procedure segments that belong to the same ring and bind 
where feasible, data segments of the same ring that are to have 
the same access controls. 

(c) Proliferation of procedure segments can be limited by a conscious 
effort to define internal functions and procedures, i.e., those that 
are defined within the body of external functions. Algol, PL/1 and 
MAD provide good facilities for defining internal functions. 
FORTRAN does not. 

(d) Use internal static and automatic variables (i.e., that will be 
placed in the ring-i stack or (combined) linkage segment) whenever 
possible, in deference to creating separate (external) segments 

for variables. 

Here are several approaches the subsystem designer can take to increase 

the degree of locality of his process: 

1. If the subsystem is multi- ringed, try to confine the computation 
within one user ring (or within as few rings as possible) for as 

long as possible. 

2. Avoid frequent use of loops in which there are explicit calls to 
the ring-0 supervisor. 

'~ A thorough discussion of 1he locality concept is given by P. J. Denning in a 
paper entitled "Thrashing, Jts Causes and Prevention", Proceedings of the 1968 
Fall Joint Computer Confert·nce, Vol. 33, Part l, pp. 915-922. 

t Refer to BX. 14 for details of binding. 
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7. 3. 5 

3. Avoid signaling across rings entirely, or reduce the frequency 
of such signaling, i.e. , avoid executing calls to < signal >that 
incur searches across ring boundaries for the active handler • 
(This is a reference to discussions in Chapter 5. If you have 
not read those details, pay no attention to this remark.) 

Ways to Reduce Page Faults 

Alas, there are no revelational remarks that can be made on this subject! 

Following the logic in preceding discussion on segments, it is clear enough that 

a process with fewer pages will, in the long run, generate fewer page faults. 

What is really wanted is the recipe for minimizing page faults when the number 

of pages in a process is already at its minimum. A high degree of locality (within 

the pages of) each segment is wanted and this is a property which only the individ

ual programmer can, with his conscious effort, attempt to achieve. In som'e 

cases this will be easy and in other cases very difficult. 

Source code for a procedure can be examined (or re-examined) in search 

of ways to regroup sections of code, especially loops, so that execution is 

"resident" within the fewest pages for the longest period. To do this it may 

require that the programmer identify points in the source code that correspond 

to "page breaks" in the target code. If there were a high enough payoff for this 

type of activity, compilers might be coded to optionally print page- break markers 

right~ the program listings. In this way, it would be possible to avoid inspec

tion of the target code in most cases. (I know of no compilers now operating i.n 

Multics that provide this service.) Unfortunately, any gains from such attention 

to page- breaks could easily be lost if the segment is bound with others in an 

effort to reduce segment faults. 

7. 4 ASSIGNMENT OF PROCESSOR RESOURCES 

The assignment of processors to processes that need them is a central 

management problem in any information utility. In Multics, two management 

functions are, in fact, to be simultaneously fulfilled in the second- by- second, 

minute- by-minute solution to this assigmnent problem. These are time sharing 

decision-making and multi-programming decision-making. Both functions quite 

naturally influence the kind of system response that can be expected in the execu

tion of subsystems developed by users. Introductory details, hopefully adequate 

for the needs of the subsystem designer, are provided in this section.~:~ 

~:~ The principal MSPM references are Sections BJ. 5, BJ. 6 and BJ. 7. 
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The time-sharing function guarantees each user a c.hance to gain an equit

able share of processor time. The term 11 equitable11 is explained in the next 

subsection. Roughly speaking, sharing is always among those users that have 

the same priority. For reasons we shall seE~ shortly, a user's priority needs 

inay well vary with time. An ideal time- sharing system should therefore antici

pate (or correctly guess) each user 1 s current need for processor time and accord 

him a (higher or lower) level of priority that is consistent with this need, 

Principally because of core memory limitations, however, a processor 

cannot be effectively time- shared with an unlimited number of equal-priority 

prbcesses. The multiprogramming function is therefore restricted so that the 

pr'ocessor is assigned in fact to a sufficiently small subset of the "most deserv-I 

ing''. The subset, called the eligibles, is chosen small enough so that the work 

that is done for each member is effective ~· and is not degraded, for instance, 

by thrashing. An implication of the 11 subset-of-eligibles 11 idea is that the proces

sor may occasionally be forced to idle for very brief periods when and if all 

eligible members happen into page-wait or other system wait status at one time. 

(Occasional idleness is preferable to the alternative of adding another process 

to the list being multiprogrammed. The latter approach would greatly increase 

the risk of thrashing. If this occurred, the cost of recovery would prove greater 

than the small abount of deliberate idle time.) 

7. 4. 1 Time-Sharing Philosophy 

To understand the basis for the scheduling algorithm used in Multic s, one 

begins with a crude model in which every user is an 11 interactive user 11
; his 

process consists of executing a series of norrn.ally short spurts of computation, 

e. g., commands. If the execution time for each command were short, invariant, 

and known in advance, then a sensible scheduler might allot each user the time 
Users would be queued 

qk that is needed to execute command k to com.pletion. 

on a single list and pernlitted to execute in FIFO fashion. 

interrupts would be required. 

No timer run-out 

A few commands may be fixed in duration, but, for most, their duration 

are functions of their arguntents, such as the FORTRAN command whose argu

ment is the program being compiled. Nevertheless, it is useful to pursue t'his 

line of reasoning because it provides us with a useful conceptual basis from 

which to understand the more realistic scheduler used by Multics. I 

7-40 



• 
A Conceptual Model 

Let q be some (albeit fuzzily defined) average duration for commands in the 

system. Suppose current experience indicates that q0 time units is an appropriate 

approximation to q. If the scheduler were initially to allot each user an amount of 

time q0 , then a sizeable fraction of users would complete their tasks before their 

ti~e "ran out••. We accept as a premise that the system should, in the default case, 

be designed to favor users who execute short c01nmands by according such users a 

relatively high priority. Let each command be classified into one of n categories 

(numbered 1, 2, •.. , n) according to its duration. Commands in category I would 

respond to short d;urations with priority level 1 (highest priority), while lengthiest 

commands in category n would be in priority level n (lowest priority). 

Our next step is to associate with each priority level a separate queue. If 
' 

a user wishes to execute a command that falls into category j, where 1 ~ j ~ n, his 

process would then be added .to the queue numbered j to wait his turn. Following 

tlle management pl'inciple that higher-priority jobs should be executed before 
! 

lower priority jobs, we promulgate the following default rule for the conceptual 

model scheduler to follow. 

No entry on queue numbered j shall be considered until all higher priority 

queues are empty. This rule discourages users from executing long-duration 

commands while the load is high. There is also presumed to be a mechanism 

for overriding this rule, so that urider certain circumstances a user can request 

an increase in priority level for his command. (He might, for instance, be 

requested to attract the attention of the supervisor by pressing a special button 

on his console. This completes our first model. 

The real model (Multics) 

Here we shall realistically presume that a command's duration is in general 

not known in advance. However, we shall take the attitude that the unknown dura

tion must be determined if meaningful scheduling is to be achieved. Some type 

of adaptive technique suggests itself .. In the Multics scheduler, it is assumed 

that every process arriving on the ready list for the first time deserves a posi

tion on a high priority queu.~ on grounds that the command to be executed will be 

a short one. Associated with the queue is some fixed time allotment q 0 (say one 

second). When a process on this queue is picked to compete (in the eligible

for-multiprogramming sense), the command may run to completion. If so; the 

7-41 



pr~cess will then c~ll block before the allotment q0 is used up. On the other 

hand, if the allotted time is exceeded, execution will be halted by a timer run

out mechanism. The command is then assumed to belong to the next category. 

The containing process can no longer compete on the first queue, so the process • 

is awarded an additional allotment of time, say 2 x q 0 , and placed at the end of 

thr next lower level priority queue. 

Each time the current time allotment is exceeded, execution is stopped so 

that the command's category can be "reappraised". That is, the process is given 

an. additional allotment, say twice the preceding allotment (e. g. , 2 x (2 x q0 )) and 

placed at the end of the next lower priority level queue. In this fashion we see 

ho/w the system learns adaptively about the "true" duration category, 51,, of a 
! 

cqmmand's activation. When command execution is completed at some priority 

level, 5I, (or more strictly speaking, whenever an interaction is accomplished) 
I 

the process is rescheduled, anticipating execution of another command. Specific
! 

ally, the process is dissociated from queue and reassociated with the top 

Pt; ior ity level queue with allotment q0 • 
I 

I 
I 

A price has been paid to learn a command's "true'' duration category when 

more than q 0 time units are needed. This price amounts to premature process

ing of a variable portion of its total execution. During this time the process is 

allowed to compete briefly with more favored commands. Thus, if a command 1 s 

execution is in the rante q 0 x 2r <::: duration <::: q 0 x 2 r, then at least half of its 

processing (q0 x 2r) will be completed at a perhaps undeservedly high priority.,:, 

7.4.2 Multics Design Details t 

The Multics solution to the processor assignment problem is made 

'··If we assume there are cost vectors C and R such that c. is the charge to execute for q 0 
seconds at priority level i, and r. is the cost of reschedultng the process from priority level 
ito i + 1, then the excess cost, :Etc, to learn the true category, s, of a command's particular 
activation is at most 

s - 1 
EC = 2: 

i = 1 

i 
(c. - c ) x 2 + r. 

1 s 1 

Of course, a user would not necessarily be charged in this manner. EC is a quantity that is 
mainly of conceptual value in understanding the nature of the Multics scheduler. 

I t: Modular design of the central supervisor has made it feasible for the Multics system architects 
to try many variations of the basic traffic control and scheduling algorithm whose concepts have 
bleen sketched earlier. The details presented here are, to the best of the writer's knowledge, 
consistent with a version of the scheduler used in the Spring of 1969 and are useful for illustrative 
purposes. Details of the actual scheduler may differ from those described here, but in all likeli
h!ood differences from those described here should be of no significance to the subsystem writer. 
System designers wishing to learn about the current algorithm are expected to consult the appro
priate BJ sections of the MSPM. 
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conceptually simple when it is discussed with the ready list as the focal point. 

For then, albeit at risk of some oversimplification, one sees that: 

(1) 

(2) 

7.4.2.1 

The decision process that determines where new entries will be 
inserted in the ready list and what time allotments to give them 
(scheduling) amounts to fulfilling the time- sharing decision 
function. 

The decision process that determines which entries on the ready 
list to run amounts to fulfilling the multiprogramming decision 
function. (Removing an entry means awarding a processor to the 
process associated with that entry.) · 

Insertions in the ready list (scheduling) 

The ready list may be viewed as a set of n queues (each a ready list), one 

per priority level. At the time it is created, each user process is assigned a 

range of priority levels ( Q, 1 , ~) with initial execution started at level t 1 • The 

r~nge ( t 1, Q, 2 ) offers some clue as to the type of time- sharing service the pro

c~ss will be given. At any given time a ready process has a current priority 

level, t, such that 1 <t1 ~ t~t2 <n, For interactive and absentee user processes, 

the ranges ( t 1, t 2) fall on the scale 1 to n as follows: 

Interactive processes would range from 3 to some value k1 while 
absentee processes would range from some value k2.. to n- 2., with 
k 2 having a lower priority level than k 1 as suggestea by these 
sfraddling brackets: 

levels for 
interactive 
processes levels for 

absentee 
processes 

Figure 7-6 summarizes these ideas and reminds us that there exist (and 

indeed, that there must exist) priority levels both higher than the highest user 

priority level and lower than the lowest user priority level. There is room "at 

the top" for special system processes>:~ that can, if necessary, preferentially 
I 

~~ One such process is the Loader Daemon System Process. This process is awakened by the 
Traffic Controller for the purpose of "loading" a process that has been identified as ready and 
eligible to run on a processor. Loading consists of placing in core and wiring down any or all 
of the starred items of Table 7-2 that are not now in core. To be of any value, the Daemon 
should run immediately and briefly upon being awakened. For this reason, it must have its 
own vital segments and pages in core at all times. As soon as the loading is completed, the 
Daemon calls block and waits for another such wakeup. 
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Level 1 

Level 2 

Special system 
processes 

Special system 
processes 

Remarks Eligibility 
I 

This level is reserved for certain •.Always 
system processes like the Loader :eligible 
Daemon Process. They always : 
run in short bursts and it is essen- : 
tial that they can almost immedi-
ately pre-empt a processor when 
waked up. 

Less critical system processes, 
such as the I/0 driver, e. g., for • 
the line printers, which should pre-: 
empt overall user processes, and : 
the System Control Process (com
monly referred to as the ••answer-
ing service••). 

--------------------------------------------------------------------r-------

Level 3 

Level k 1 

I 

. 
Level n-1 

Level n 

Interactive 
users and sys
tem processes 

Interactive 
users, system 
and absentee 
processes 

.Absentee 
processes 

Idle 
processes 

Top priority level for interactive 
user. 

Lowest priority level for interac-

tive users. 

Lowest priority level for absentee 

users. 

One idle process is earmarked for 
(exclusive use of) each processor 
in the system. 

Note: System processes in the range (3, k 1) compete with 
user processes. 

Figure 7-6 The n priority level queues of the ready list 
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capture a processor. Likewise, there is room "at the bottom•• for an "idle" 

process that can capture the processor should all ready queues at higher priority 

e levels ever become empty. 

Priority level 3 is reserved for processes that have an urgent, but very 

brief, expected need for a processor. E. g. , a process which has initiated a 

co11.sole read command, is willing to give up the processor (go blocked) while 

waiting for the console typist to type the next input line, but wants the opportunity 

to resume execution, i.e., to respond, just as soon as the input step has been 

completed. The console read subroutine is a privileged (ring-0) procedure which, 

after initiating I/0 activity, calls the block entry of the Traffic Controller after 

turning on a so-called "interaction" switch in the process state segment. Any 

call to block with this switch ON results in rescheduling the process for the 

highest user priority queue (level 3). 

Lower priority levels would be reserved for absentee processes. These 

are processes which run without console assistance, i.e., non- conversational 

with the external environment. Absentee processes are akin to foreground

initiated background jobs in CTSS':'. (The priority range for absentee processes 

is expected to be (k2 , n-1) where 3 :::; k 2 :::; k 1 • This would provide some straddling 

of the interactive user's priority range, which is (3, k 1). In this way overnight 

service on relatively short absentee jobs would in effect be "guaranteed".) 

7.4.2.2 Eligibility Management - design details 

Eligibility management superimposes a needeq control on the number of 

processes, call it nep, that are being multiprogrammed. This control prevents 

thrashing, since the number~ is, in a sense, an approximation of the maxi

mum number of processes whose complete working sets can fit in the available 

core memory. There should be no substantive alteration to the efficacy of the 

general multi-level scheduling algorithm as a consequence of superirn.posing 

eligibility control. This subsection and the next one on pre-emption outline the 

design details. 

':' For more information on absentee processes, see BQ. 2 and BQ. 3. Actually, 
absentee processes are not yet provided for in the current Multics. 
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The number, nep, which will eventually be a value that can be varied by 

the system administrator, is a function of available core memory and the number 

of available processors. At the present time, nep is fixed at 2, but may well be 

increased when 384K of core is used by the system. (There are also certain 

special processes that are allowed to and, indeed, must be eligible at all times. 

As mentioned earlier, these include, for instance, the Loader Daemon Process, 

and the one or more idle processes.) 

APT entries for eligible processes can be thought of as linked in a list 

such that their positions on this list determine their relative priority to capture 

a processor. When a running (and eligible) process enters a wait state for the 

occurrence of a system event, the CPU will be given to the ready process on the 

eligibles list that has the highest relative (or positional) priority. When the 

event waited for occurs, the now running process notifies the waiting process 

by marking its APT entry accordingly (changing its state bit to ready). If the 

process so notified has higher relative priority, the notifying process (executing 

in the supervisor, of course) immediately yields the CPU to the notified process. 

(We refer to this behavior as CPU pre-emption.) In this way the system favors 

processes that become eligible, one at <t time, giving each eligible process when 

it reaches the lead position the greatest chance to run to completion of its time 

allotment. 

The number, nep, is treated as a system resource that can be allocated 

among the active processes, somewhat as core is allocated. Processes gain 

and lose eligibility cyclically. The cycle can be traced as follows: 

An ineligible process is made eligible when it appears on the top of the 

ready list at the time an eligibility vacancy occurs. A vacancy will occur when 

a process loses its eligibility for any one of a number of reasons: 

(a) An eligible process enters the blocked or stopped state, 

(b) A process incurs a time:::- run-out interrupt and is rescheduled, 

or 

(c) A process' eligibility is pre- em pte d. (We explain eligibility 
pre- emption as distinct from CPU pre- emption, in the next 
subsection.) 

Since a process specifically retains its eligibility when it enters the wait 

state, it is entirely possible for all nep of the eligible processes to be in the 
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wlit state simultaneously. 

the firs~ n-1 ready queues:, 

In this event, there being no eligible processes on 

the processor is given to an idle process. 

Each time a prbcess gains or loses eligibility, its APT entry is marked 

accordingly. When the process loses its eligibilit:r the Traffic Controller selects 

the next candidate to be marked eligible. If that candidate is not loaded, the TC 

s~nds a wakeup to the fast-responding Loader Daemon process to load):' that pro

cJss, and finally re-enters the blocked state. 

7.4.2.3 Pre- emption of Eligibility 

The required conditions (for an ineligible process B to pre-empt the eligi

bility of a running process C are: 

(1) B's priority level exceeds that of C (i.e., B's queue number 
is lower than C's), 

(2) The eligibility of a running process C will not be pre-empted 
unless it has executed at least as much of its present allotment 
as the higher-priority process B "intends 11 to run when it cap
tures the processor. Let r be B 1 s time allotment and s the 
arriount already used of C 1 s time allotment. The condition to 
be satisfied is that r ~ s. 

If condition (1) is met, but condition (2) is not, process B must reside on 

the ready list until (to the nearest time unit) condition (2) is met. Notice that 

eligibility pre-emption is a necessary (though not sufficient) prerequisite for 

CPU pre-emption. 

For whatever reason a process is pre-empted (its CPU or its eligibility), 

that process must be immediately rescheduled. A pre-empted process that has 

a 'priority level k, is rescheduled by being placed on top of the queue at level k 

with a time allotment equal to whatever time is still unused from its last schedul-

ing allotment. 

The net effects are as one would like them to be, namely that a pre-empted 

process is favorably treated, relatively speaking. Thus, suppose B, at priority 

level 3, pre-empts C at level 4. C is rescheduled at the top of level 4. If, 

shortly afterward, B incurs a timer run- out, it will lose its eligibility and be 

rescheduled at the bottom of the queue at level 4. Each time a process loses 

':' Loading, you recall, involves placing and wiring into core the pages listed in 
Table 7-2. 
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eli~ibility, the Traffic Controller immediately tries to fill the created vacancy 

before identifying the next eligible process to be selected from the ready list. 

In this instance, the eligibility vacancy will be given to C, and C will be picked 

to run next, if no other process has been added to the ready list ahead of C while 

B was running. This, we should note, is precisely the behavior pattern we want. 

Namely, other things remaining the same, a pre-empted process should be 

placed in a favored position to recapture the processor when the pre-empting 

process next loses its eligibility. Because its position is favorable, the pre

empted process is unlikely to lose a significant part of its working set. No cere 

losses to speak of will be experienced if the user process is pre-empted by a 

high priority system process, since these processes do not "consume significant 

quantities of core. 11 

7. 4. 3 Expected System Response 

With the benefit of the foregoing discussions on scheduling, eligibility 

central, and pre-emption, a user is now ready to anticipate the type of system 

that can be expected for his process. We summarize these ideas here. 

During slack load periods, e. g., 2 a.m., Sunday morning, users will be 

satisfied with the system response to most commands. The ratio, R, is defined 

as 
elapsed time for completion of a command 

virtual time 
' 

will approach 1. 

During peak load perf:,ds, however, users who execute commands of long 

duration are likely to obsen·e that execution appears to proceed rapidly at first, 

then slower and slower, as suggested by the solid curve in Figure 7-7. Thus, 

commands that under light system loads might require three minutes of proces

sor time may require hours to complete in extreme cases. This is because 

the user's process sinks to lower and lower priority levels as virtual execution 

proceeds. A point is likely to be reached where the process is rarely or never 
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shows points of 
user interaction 

elapsed 
time 

Figure 7-7 Vat·iation of R (the ratio elapsed time to virtual 
tirne} as a function of virtual time. 
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picked to execute simply because there are one or more processes that are 

always queued at higher priority levels. Only after the peak load subsides (fewer 

users logged in) will the long-duration command again have a good chance to be 

picked for execution. 

User Recourse to slow response 

A user that is impatient with this response is encouraged to restructure 

his process to run in absentee fashion. Alte:t:·natively, he can force one or more 

"interactions" each of which will have the effect of rescheduling his process 

(back up) to level 3. The simplest way to force an ihteraction is to press the 

"quit" button on the console and then type 

start (carriage return) 

after the console responds to the quit signal by typing 

ready. 

The effect of hitting the quit button is to cause the user 1 s quit responder to call 

the Listener to accept the user's next input. Since a console read-in always sets 

the interaction switch in < pds> to ON, there is a consequent rescheduling to 

level 3. The effect of using the quit button is suggested by the dashed line in 

Figure 7-7. Users will learn that the use of the quit button for purposes of 

speeding up execution will prove to be an unpleasant way to use the system. 

(It turns out to be not much fun hitting quit and typing "start" repeatedly, especi

ally if it must be done a large number of times.) 

7. 5 INTERPROCESS COMMUNICATION 

7. 5. l The Nature of Processes and the Nature of Their Intercommunication 

In the overview of this chapter (Section 7. 1}, we initiated a discussion of 

interprocess communication--although without taking a serious look into the 

nature of their intercommu•1ication. Here we provide a more thorough discussion 

of this topic. We shall alsc provide for interested readers a description of the 

tools available (and how to 'lSe them), i.e. , for the operation of subsystems that 

comprise two or more intercommunicating processes. 

We already know from previous discussions that processes may properly 

function to achieve a common goal only if they communicate as senders and as 
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receivers of messages via shared data bases. Hence, an understanding of com

munication mechanisms, e. g., information content of messages, "mailboxes, 11 

A message switching and routing techniques, validation and protection of messages, 

W etc., is likely to be essential for detailed subsystem design. 

active 2 3 

dormant suspen ed suspended suspen e 

Figure 7-8 Time-line characteristics of sequential processes 

A process A that wishes to alert a process B of an event of interest to the 

latter must send a wakeup and a message to B. The message 1nust be formatted 

in a standard fashion, so that its source (Process A) and its target (Process B) 

and the specific receiving point within the target's address space (i.e., a 

"channel" or mailbox) may be recognized, validated, and accessed. The receiv

ing process must in turn exercise known scanning habits which will find, properly 

interpret, and dispose of messages that have been received in its mailboxes. 

Details are discussed below. 

7. 5. 2 Comrnunication Mechanisms 

A process may reach any number of suspension points, as suggested in 

Figure 7-8 where, for example, three such points are marked. In a very simple 

process, these suspension points, however many in number, may occur at the 

same program point, i.e., the process loops through this program point. For 

n transits of the loop, there will be n suspensions. In each case, then, the 

nature of the event waited for will be the same, and even the sender of the notify

ing n1essage that permits resumption of the active state may be the same. In a 

more general case, however, we can expect suspension points at different E.:_ 

gram points, e. g., possibly occurring in different procedures, and even in 
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different rings. Suspensions at different program points will,. in general, be for 

different reasons. (Such program points will hereafter be referred to as wait 

points.) This means that the nature of the events waited for at different wait 

points will in general be different. Moreover, the corresponding sending pro

cesses are not likely to be the same either. Basic to all of this discussion is 

the following: For each distinct wait point of a process it must be assured by 

prior arrangement that some process (at least one) will send a wakeup message 

when the looked-for event has occurred. Suppose then a process that has several 

distinct wait points reaches one of them. The p:rocess must now be prepared to 

wait, if necessary, for a particular message to arrive (possibly from a particu

lar sender). Of course, there need not be any waiting at all if the wanted mes

sage has already arrived. However, whether or not waiting is required, either 

upon reaching the wait point or after being awakened following a suspension, the 

suspended process must be sure that the right message has been received before 

continuing with its active efforts. 

What is involved in searching for the right message? If one pictures that 

the receiving process has a single tnailbox for all messages, then determining 

if the right message has arrived is simply a matter of scanning the contents of 

one mailbox-- either by an indexed or by an associative search, depending on the 

data structure of the mailbox. But, wait! Won 1t protection considerations dic

tate that there may be at least one mailbox per ring of the process? The answer 

is yes, but since the reasons are secondary to our main line of thought here, the 

explanation is left to our footnote~:~. 

Are there cases where one mailbox per ring would be insufficient? In 

principle perhaps the answer is no, provided each message fully identified the 

wait point, the sender, and the exact time that the message was sent. In prac

tice, however, the Multics designers have chose,n to implement the system in 

such a way that several different mailboxes per ring are available. For example, 

a process may contain a programmed wait point that asks to wait for receipt of 

~~" A one-mailbox approach W•)uld mean that a ring- 32 procedure, for instance, 
could read rnail intended for a ring-1 procedure! Clearly, this is unacceptable. 
So we m.ust picture a process arranging for the receipt of mail in different, ring
related mailboxes. In this way, a ring 1 procedure can scan mail 1n a r1ng-l 
mailbox (and even in a ring- 32 mailbox if desired), but a ring- 32 procedure would 
be able to scan mailboxes only in rings ~32. 
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a message in any of a given list of designated mailboxes. We shall discuss these 

ideas in more detail later. We mention them here only to rilotivate the notion that e a process may have what an'lounts to sets of mailboxes (each mailbox possibly 

empty), one set per ring.* Clea~ly, each mailbox must bear a unique designation 

within the receiving process so that a sender can transmit his messages to their 

proper destination. 

7.5~2.1 Messages, Mailboxes (event channels) and Transmission 

The technical name used in Multics for a mailbox is event channel. An 

event channel is uniquely designated by a 72- bit identifier t. This name is gener

ated by the system as a result of executing a user-written subroutine call for the 

creation of an event channel.tt 

Origin of the Message 

By added convention, every message originates as a 72- bit item of arbitrary 

content (set by the sender). (However, in the course of transmitting the mesf;age, 

system routines expand it with self-identifying information.) 

A message is sent in the form of a call to the hard-core system routine, 

hcs_ $wakeup: 

call hcs_$wakeup (receiving process id, 
channel name, 
message, 
code); 

I 

* There is one byproduct benefit that comes from the implementation decision to have multiple 
mailboxes per ring. Let the distinct wait points in some ring-r of a process A be designated 
as wpl, wp2, ••• , etc. Suppose the wait at each of these points is for a message from a cor
respondingly different process, e. g., from processes pl, p2, ••• , etc. Prior arrangements 
between the process pairs (A, pi), (A, p2), (A, p3), etc., for the sending of messages to A 
need not be fully coordinated in the sense A is not forced to give (or to divulge) to pl, p2, p3, 
etc,, the very same mailbox name. One can regard this flexibility as an advantage in that 
there may be less risk of confusion if separate senders are asked to send messages to differ
ent mailboxes, with each mailbox having a different meaning. 

t The substructure of the event channel name includes three items, a ring number, a key 
(52 bits), and an ECT address. The key is a unique name representing the wall clock t1me 
at which the event channel was created for this process. The ring number identifies the ring 
in which the receiver expects to examine messages placed in this channel. Received messages 
are saved (until inspected) in a on~-per-ring segment called an ECT (Event Channel Table). 
The ECT address is simply the offset within this segment at which the possibly-queued mes
sages for this channel may be found, A channel is in effect a FIFO list. Details of the ECT 
data structures should be of no interest to users. They may be found in BJ. 10. 02. 

ttnetails on how to create event channels may be found in BJ. 10. 01. 
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Note that although the actual text of a message is small and fixed in size, it is 

large enough to be used as a pointer to messages of arbitrary size. We defer 

momentarily answering the. obvious question, namely, how will the sender know 

both the process _id of the receiver and its receiving point (the event channel 

name). This matter is taken up in the section entitled Setup for Interprocess 

Communication. 

The hcs _$wakeup routine makes some simple (routine) checks on the first 

two arguments so that if they are obviously erroneous):<, due to programmer 

error, the caller can be alerted if he chooses to examine the returned error code. 

After this partial validation, the Traffic Controller 1 s wakeup entry is called, at 

which point steps are taken to forward the message to the intended receiver, as 

outlined below. 

1. If the message indeed has a receiver, then it must be possible 
to match the receiver process id with the id of one of the processes 
that now have entries 1n the Active Process Table. Failure to 
find such a match means that the message is meaningless. Such 
a case results in an appropriate error code being reflected to 
hcs $wakeup's caller. (Note that a post-office analogy to this 
case is -- "addressee unknown at this address -- return to 
sender''.) 

2a. A message aimed at a bona fide target process will be copied 
into a ring zero system table where it is properly augmented 
with "truthful" information about the sender. The system table 
(central storage) is called the ITT (for Interprocess Transmis
sion Table). The receiving process will later fetch the message 
out of this table. 

2b. The last step is to call the Traffic Controller at its entry point 
wakeup to wake up the receiving process. 

The above steps are summarized in the Figure 7-9 flow chart. Note that 

he s _$wakeup serves as the user 1 s only interface with the otherwise inaccessible 

wakeup entry in the Traffic Controller. Protecting this entry from direct user 

calls simplifies the logic of the Traffic Controller which, because it is locked 

to all other processes wten entered, must be kept as simple (and fast-executing) 

as possible. 

):< For example, if the process id or certain of the subfields of the 72- bit channel 
name are zero, this is clearly an error. 
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Receivers must be protected against receipt of false messages, whether 

accidental or intentionally sent. Certain information about the sender is there

fore added to the copied message that is placed in the ITT. This information, e which iE of critical importance for the protection of the receiver, consists of the 

sender's process id and the validation level ~ the sender's call to hcs $wakeue, 

(i.e., the ring in which this call was made). The user cannot be trusted to trans

mit these items accurately. Figure 7-10 shows the message format as stored in 

the ITT. The Interprocess Transmission Table is a wired-down system table in 

ring- 0 that is large enough to hold messages for all known processes. The table 

is organized as a set of message queues, one per process. The head of each 

queue is pointed to from a fixed position in the APT entry for the corresponding 

process, so that when any process re-enters the running state in the Traffic 

Controller, as a result of being awakened, it can quickly determine if there have 

been any messages deposited in the ITT on its behalf since the last time it ran. 

la 
Does :-ece1v1ng process id 
match one of the id's of"a No Set error 
process in the APT (that is+----~code ap-
not stopped)? propriately 

Yes 
2 

Make a copy of the message 
aug1nent it with information 
about the sender, and place 
it in a central store-and
forward table (ITT) 

3 

~ake up the receiving process 

Figure 7-9 Some details of the Traffic Controller's entry 
point wakeup 
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message as op
posed to a device 
signal 

event channel 
name 

text of the 
message 

sender's process id 

0 
sender's 
ring 

72 bits 

72 bits 

36 bits 

36 bits 

Figure 7-10 Message format augmented with information about 
the sender as placed in the ITT 

Getting the message from the central store-and-forward point to the receiver 

So far we have considered mainly the mechanics of sending a message as 

far as a central forwarding center. In a postal system analogy such as shown 

in Figure 7-11, this is the halfway point, e. g. , a regional post office. No ordinary 

citizen is able to walk up to this center and ask for his mail. Nor, by analogy, 
I 

can the Multics user expect to get his mail by attempting to read messages while 

they are still in the ITT. He needs help in moving the messages to data areas that 

are ring-accessible for his purpose. While the post office automatically pushes 

the mail through to its receiver from the central p. o., without any special coax

ing, the Multics analogy is somewhat different. Here some initiative is always 

taken by the receiver to pul~ the message(s) out of central storage and to place 

them into the individual ring-accessible event channels of the process. Recall 

that a receiver's process w;ll have a table of one or more event channels (an ECT} 

in every ring in which there occurs a distinct wait point in that process. 
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System 

I MULTICS I 
Process A 

~-
user A sends ""' 

a message to B )-
via a call to ' 

ipc$wakeup r' 
-----,_J 

/ 

Process D 

/ 
Process E 

·- -----, ,local 1 

~(Wellesley) 1 

~!:_OS t _ O~fi-=~ 1 

'- 'To~~---, 
,,1 I 
~(Allston) 1 

IPost Office. 
L -·-- __ _j 

Process C 

/ 
/ 

/ 
/ 

ipc$ 
1----;.-l block 

Process F -......... 

Process B 

message received 
1---__..::~ by B at B 's 

initiative, i.e., 
if B is waiting 
for it via a call 
to ipc$block 

Figure 7-11 Postal system analogy to Multics inte1"process 
me:isage transmission 
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A wait point is always programmed as a call to ipc$block which is the 

entry point in the so-called wait coordinator, the heart of the interprocess com

munication facility.. A user program should call this entry point whenever it 

must enter the blocked state while awaiting the receipt of a message. 

The form of this call is 

call ipc$block (wait_list_ptr, 

) 
A list of one or 
more event
channel names 

message_ptr, error_code); 

"'A pointer supplied as an input 
argument that specifies the 
location where the caller 
expects to receive a message 
which he can examine 

' When called, ipc$block scans the event. channels in the list pointed to by the first 

argument. Scanning of the channels is done in the listed order, and if lucky enough 

to find a message in one of these channels, ipc$block transfers the first such mes

sage found into the location given by the second argument, and returns to its caller. 

The message that is actually transferred consists of the six-word message whose 

format was shown in Figure 7-10, augmented by a seventh word consisting of the 

wait-list index. Thus, if a message is found in the third of eight channels on a 

wait list, the seventh word of the returned message will have the value 3. 

Note that ipc$block has been executing in the ring of its caller. (Ipc$block 

has ring brackets which are (1, 63, 63}.) Cor'Lsequently, this procedure does not 

have ring access for scanning central storage (i.e., the ITT) which may have re

ceived one (or more} of the desired messages. Therefore, ipc$block is forced to 

call a privileged routine in ring-0 (at an entry point hcs _$block). This r011tine in 

effect tranders all valid messages that have accumulated in the ITT event queue 

for this process. Each mes i;age is placed in the event channel that is designated 

in that message. Invalid me :;sages, such as those whose channel names do not 

rnatch existing channels in the receiving process' ECT' s, are summarily discarded. 

If, in the course of making these message transfers, not a single message was 

transferred into a ring 2: the validation ring (i.e., that of ipc$block), then it is 

clear the wanted message cannot have yet been received. Hence hcs $blcck, 

which is fully privileged to do so, calls the corresponding entry in the Tr :~.ffic 
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Controller to give away the processor.~:~ If, on the other hand, at least one such 

message~ moved to a ring that is accessible to ipc_$block, then hcs_$blotk e will return so that the former can again scan its given list of channels in hopes 

of finding the wanted message. The chain of calls we have just discussed is sum

marized in Figty e 7- 12. 

If we were to follow the return path from the TC backwards toward the 

point of call to ipc$block, it becomes easy to see how a fresh message, received 

at ipc$wakeup can be thought of as being forwarded from central storage to the 

appropriate event channel of the receiver. 

It should be recalled that when an awakened process finally recaptures a 

processor, effective execution will resume as a return from the block entry in 

the TC to its caller, hcs $block. The latter then "transfers" all newly arrived 

messages from its ITT event queue into the appropriate event channels. If no 

messages were transferred into rings ~ that of the caller, ipc$block, then 

the process cannot have received the message it was waiting for. Hence, 

hcs_$block agai~ calls the TC at entry point block to give away the processor. 

But if at least one potentially suitable message was transferred from the ITT, 

hcs $block returns to its caller (ipc$block). (This is how the pulling of mes-e sages is done-- in the absence of an explicit effort, e. g., a call to ipc$block, 

messages for this process can in principle pile up in central storage without ever 

being drawn out.) Note that the return to ipc$block is no guarantee of a return 

to its caller. If ipc$block finds no message in one of the listed event channels, 

it simply recalls hcs$block. 

7.5.2.2 Setup for lnterprocess Communication t 

Here we shall discuss how a sender learns the identification of a receiver 

process and the identification of that receiver's event channel. For convenience 

let us adopt the following notation. 

~' To be absolutely precise about things, there is still a possibility for a last minute "reprieve", 
if anytime up to the very last instant before giving the processor away a wakeup arrives, con
trol will return to the TC's caller. For more details you could review J. H. Saltzer's Ph. D. 
thesis or BJ. 3.01 to see the functicn of the so-called "wakeup waiting'' switch. 

t For a more basic discussion of this topic, the reader may wish to examine the paper, "The 
Multics lnterprocess Communication Facility", by M. J. Spier and E. I. Organick, submitted 
for presentation at ACM's Second Symposium on Operating Systems Principles, Princeton 
University, Princeton, New Jersey, October, 1969. 
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Executes in 
'ring of its 
caller 1 

(l thru 63) 

list ptr 
message ptr, -

code)-

Scan event 
channels in 
the listed order 

Call 
hcs$block 

Transfer it 
J-~--1 from the 

channel to 
message_ptr 

L.:

=S=e=t=r=-e-tu_r_n....J-eeturn status in 
code 

Ring-u-----------------------------------~ 

call TC entry 
block (ptr) 

Transfer event messages 
from ITT queue to in
dividual channels in the 
per-ring ECT's 

Any events on this 
process' event queue!-;;:....:.~ 

in the IT1? 

No 

Give a¥ ay the-l 
proces:;or j 

Illustrating how event messages are pulled 
out of the ITT queue and distl·ibuted to individual 
event ch::1nnels in the user rings. (Readers 
should note that Figure 7-15 is a more complete 
description of ipc$block.) 

Figure 7-12 Th·~ chain of calls: -ipc$block -+hcs$block ...,.TC block entry. 
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Let B-to-A setup info be that basic information that is required by a se.~der 

process B so that it can send a message to a receiver process A. This infonnae tion consists of A Is 36- bit process id and A Is 72- bit event channel name. 

Let p(A) and p(B) refer to the people responsible for programming A and B, 

respectively. (To be sure, they may be the same individual, wearing "two hats".) 

Clearly, the system-provided message transmission facility (IPC) cannot be em-
! 

played to transmit B-to-A setup info, else why would setup info be needed in the 

first place. Note also that p(A) cannot supply p(B) with the B-to-A setup info by 

telephone or by other direct personal communication until after A has~ created. 

This is because a process id is a clock-dependent unique bit string that is gener

ated by the system at process creation time. Furthermore, A's event channel 

name, which is also a clock-dependent unique bit string, will not be known until 

after A 1 s declaration that creates the event channel has been executed. There 

appears to be only one sensible plan for passing setup info. The plan is as 

follows: 1 

(l) 

(2) 

I 
p(A) and p(B) agree in advance on the (unambiguous) name of a 
segment that is to beshared by A and B. Call this segment 
<shared>. Also agreed upon is an offset within <shared>; 
call it [ setupBA] which is to be regarded as a 3-word mailbox 
initially set to zero. 

I 
After A and B have been created, and after A has declared 
(created) the appropriate event channel, A places in 
shared$setupBA the desired setup info. 

(3) B f~tche s the three words at shared$setupBA, and if non- zero, 
assumes by convention that the required A-to-B setup informa
tion has been obtained. 

Note that if A is also to become a sender to B (not just a receiver), then A-to-B 

setup (as opposed to B-to-A) is also needed. This info can be sent by a similar 
I 

prearrangement, although in fact a form of "boot strapping" can now be achieved 

if it is desired, to avoid further use of <shared>. That is, the first message B 

sends to A can,· by further convention, contain the A ~to- B setup information. 
! 

But how does A know its B-to-A setup info so that it can place it at 

shared$setupAB? 

How A obtains its own proceE;s id 

When a process is created, one o£ the temporary segments that is created 

for it and placed in its process directory is called <process _info>. This segment 
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contains special information about the process that can be read by all procedures. 

Among these is the process id which is stored in process_info$processid. * Any 

user procedure can snap a link to and read this word. 

How A obtains an event channel name 

A user creates an event channel simply by calling ipc$create_ ev _ chn. The 

first of two return arguments in the call contains (upon return) the 72- bit name 

that the IPC has established for this channel. Henceforth, it is the user's respon

sibility to keep track of this name. 

Summary 

The steps that would be coded by p(A) and p(B) to establish interprocess 

communication with B as a sender and A a receiver can now be summarized. 

1. p(A) codes the following steps :ln some procedure of A: 

(a) call ipc$create ev chn (channelBA, code}; this call creates 
an event channel ,,Vfi.ich can hereafter be referred to by the 
name, channelBA, because the value of the first return argu
ment is a 72- bit unique id of channelBA. 

(b) assign to the 3-word mailbox at share$setupBA values of 
process info$processid and channelBA. Illustrative epl 
coding is provided in the accompanying footnote. t 

2. p(B) can code B to pick up the required setup info at any time and 
use it to send a two-word message to A. Illustrative epl coding 

'~Some consideration is currently being given to merging <process info> with another segment 
in order to reduce the working set. It is for this reason that this argument was not listed in 
Table 7-2. If this change should be implemented, however, the name, process info, will still 
be used in referencing the process id. -

t In epl, this might be accomplished with coding that relies on a 3-word based structure for 
a mailbox: 

del 1 mailbox3 based (p), 

2 pid bit (36) I'~ a process iMI 

2 chname fixed bin (71) I'~ a channel name '~I; 

Then, the executable code which .vould follow creation of the desired event channel might look 
like: 1 

P = addr(shared$setuF BA); 

P - > mailbox3. pid = pn,cess_info$processid; 

P - > mailbox3. chname ' channelBA; 
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is provided in the accompanying footnote.):< 

3. p(A) is now able to code appropriate calls to ipc$block at various 
points in A, to wait for messages from B. A call of the form 

call ipc$block (argptr, msgptr, code); 

gets the job done on the assumption that the first two arguments 
are pointers to the base of structures, the first being to a wait 
list of channel names, and the second to an area of sufficient size 

for receipt of the message. 

The general structure for the wait list is of the form shown in Figure 7-13. 

n 

1 
1st 
channel name 

~ number of channel names on this list 

}+-.r- 72 bits 

2nd 
channel name 2 

. 
-<:> . :> . 

nth 
n channel name 

(a) general form of a 
wait list 

value of 
channelBA 

1 

(b) appearance of wait list 
for example in the text. 

Figure 7-13 Wait lists. General and Specific. 

'~ We shall assume that B also use!; a declaration for a 3-word mailbox identical to the one in 
the preceding footnote. Then codiug in B might appear as: 

p = addr (shared$setup!IA); 

receiver _pid = p -> mailbox3. pid 

channel_name = p - > mailbox3. chname 

if .., (receiver _pid = 0 and channel_name = O) 

then call hcs$wakeup (receiver _pid, channel_name, message, code); 

else call print_ error; 

Here message is a 72- bit messagt and print error might be a routine to print an appropriate 
error message before proceeding vith whatever steps are then deemed appropriate. 
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7. 5. 3 Programming of a Multi-purpose Process 

A Multics process is basically sequential in nature by virtue of the fact that 

but a single execution point (or point of control) is free to traverse over its ad

dress space at any one time. For this reason, it is natural to think of such a 

process as having a single purpose. 

If twc or more independent computations are to be performed, albeit related 

to one another, it is entirely appropriate for the programmer to create a separate 

process, one per each defined purpose, and have these processes execute in any 

interrelated fashion that seems appropriate. In fact, this approach is recommended 

for most initial efforts of this kind. 

Subject to processor availability, concurrent computation of the separate 

but related processes may occur in some fashion, but it is not predictable, of 

course, since the Traffic Controller and its functions are outside the control of 

the programmer. In any case, by proper use of IPC, the separate processes 

(purposes) may synchronize with one another. 

It is worth noting, however, that the establishing and maintaining of separate 

address spaces, one per process, incurs an appreciable system overhead. Such 

costs are ultimately passed on to the user directly or indirectly. Hence it may 

well be worth considering under what circumstances it is feasible to coalesce (and · 

condense) the address spaces of several processes into a single, now multi-purpose 

process having one address space (and one execution point). 

Certainly, it is necessary that concurrent pursuit of the separate purposes, 

i.e., parallel executing of the separate tasks be no requirement. (But, then such 

a requirement, even without coalescing, cannot be guaranteed in Multics anyway.) 

Beyond this, the order in which these tasks may be initiated and executed should 

in some sense be of secondary im.portance and perhaps be independent of the tasks 

themselves. This requirement may be satisfied in the case where events exter-

nal to the process drive the multi-purpose process. That is, IPC messages 

recE,ived by the process are the basis for deciding which task to execute next. 

Examples of multi-purpose processes are cotnmon among system software pro

cesses, e. g., answering services, I/0 device managers, automatic reco:·ders, 

automatic file dumpers, etc. 

A process that must b,~have in multi-purpose n1anner, can in principle be 

coded using flow chart logic described in Figure 7-14. The basic idea s11ggested 
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in the figure is to create n event channels, one for each of the n distinct purposes 

• of the process. After furnishing setup information for use of each of the n chan-

nels to the n senders (not necessarily n differenh prbcesses) the process calls 

ipc$block to await one of the n types of events. Each time an event arrives, 

ipc$block returns with a message. The message is examined (in box 5 of the 

flow chart) to determine which channel (type of event) has occurred so as to invoke 

the associated task. When the task is completed, a call is again issued to 

ipc$block. 

We have not yet defined what we mean by a~· The simplest idea is to 

suppose it corresponds to a call to a procedure that is associated with the corres

ponding event channel. We will be interested in understanding what restrictions 

are imposed, if any, as to what may go on inside the called procedure. For 

instance, are calls to ipc$block to be permitted from within the associated pro

cedure and/ or from any of its dynamic descendents? We shall consider this 

possibility in the next subsection. For the moment, however, we shall assume 

such repeated calls do not happen. 

7.5.3.1 Event call channels 

Note that further logic a 1 simplification (from the point of view of the user) 

arises and a slight increase in efficiency can be gained if the control logic of 

boxes 3, 4, 5 and 6 are made part of ipc$block. At the top-most logic level the 

process would be characterized simply as the execution of boxes 1 and 2. That 

is, initializing of channels, transmitting of setup information, etc., followed by 

a single call to ipc$block. There would be no return and of course no repeated 

calls on ipc$block. Of course, it would be necessary to furnish IPC with more 

information so it can perform its more elaborate job. Basically, this amounts 

to telling IPC what are the procedures that should be called (invoked) upon receipt 

of respective messages. 

The 11 simplification11 WP have been discussing is in fact provided for in Mul

tics by allowing the user to designate event channel:> of his choice for special 

interpretation. Event channt~ls marked in this fashion are referred to as .event 

call channels, as opposed to the ordinary event~ channels. Messages found 

in event call channels are e}i amined and interpreted while the process is executing 

inside the IPC. Interpretatiun amounts to execution of a call to the associated 

procedure. 
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create n distinct channels, 

pass setup info to appropriate 
mailboxes, 

wait list, and 

ipc$block (wait list_ptr, m~sage, code) 

1 
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iated with 
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6-2 
perform a task 
associated with 
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call 
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6-n 
perform a task 
associated with 
the nth 
channel 

Figure 7-14 A possible structure for a multi-purpose proceE.s 
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7.5.3.2 Concept of the Wait Coordinator 

e . As can now be seen, the code associated with entry point ipc$block is in 

fact more sophisticated than a simple scanner for messages received in event 

channels, since some action decisions (i.e., interpretation) are in fact delegated 

to this procedure. The code is referred to in MSPM documentation as the Wait 

Coordinator~:c, and aptly so. 

e 

Once an event channel has been created, a programmer is free to declare, 

by a call to an appropriate IPC entry point, that said channel is thereafter to be 

regarded by the Wait Coordinator as event call type. Subsequently, when the 

process is executing inside the Wait Coordinator a scan of event channels that 

turns up a message in an event call channel will trigger a call to the associated 

procedure. It should be stressed that return from this call is to a return point 

within the Wait Coordinator. The net effect therefore, is that, in the case of 

event call channels, the action of boxes 5 and 6 of the Figure 7- 14 flow chart is 

accomplished implicitly, i.e., on behalf of the procedure that calls the Wait Co-

ordinator. 

I When a Multics user wishes to establish an event channel to be of the call 

type, he takes the following action: 

(l) Create the event channel by a call to ipc$create ev chn. (This 
step sets up the channel, but its default interpretation is of the 
event wait type, i.e., while given this interpretation it may 
only be used as pictured in Figure 7- 14. ) 

(2) Declare said channel to be of the event call type by a call to 
ipc$decl_ ev _call_ chn. The form of thiS'Call is 

~ 
call ipc$decl_ev_call_chn (channel_name, associated 

procedure_ptr, data_ptr, priority, code). 

The second and third arguments in this call are saved in the 
event channel table (ECT) for later use by the Wait Coordinator 
so it can constru< t the desired call to the associated procedure. 
Since a user is free to declare more than one event channel to 
be of the call type, it is necessary to prc·vide the Wait Coordinator 

-·-,,,The principal MSPM reference is BJ. 10. 03. 
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a scanning order for these channels. The user furnishes an 
integer argument, priority~~. to be used by the Wait Coordinator 
as a scanning index. Thus, if channel billy and channel tilly 
are both declared to be event call channels and priorities 2 and 
1 are associated with them, respectively, then if messages have 
been received on both channels, the procedure associated with 
channel tilly will be called before the one associated with 
channel billy. 

The next three subsections (7. 5. 3. 3, 7. 5. 3. 4, and 7. 5. 3. 5) round out the 

design details of the Wait Coordinator that may be of interest to some readers. 

They can easily be skipped on a first reading. 

7. 5. 3. 3 Call- Wait Polling Order 

Although we have just suggested the rule for scanning event call channels, 

we have yet to explain the dependency relationship that exists between rules for 

scanning event call channels ~nd those for scanning event wait channels. Each 

call to the Wait Coordinator (in reality a call to ipc$block) is in fact a request to 

scan, not one, but two lists of channels, the wait list, and the call list. The ---- ----
wait list is the list of event wait channels that is pointed to (first argument) in 

the call to the Wait Coordinator. The call list is the list of event call 

·channels that are currently kept in the ECT for the ring of the Wait Coordinator's 

caller. 

We shall say that a W- C polling order is one in which the wait list is scanned e 
first and then the call list, while a C- W polling order is the reverse (i.e., call list 

before wait list). The system's default polling order is W-C, but a user is given 

the opportunity, by calling a special entry point in the IPC, to reverse the current 

polling order. 

It should be remembered that whenever a message is found in a channel of 

the wait list, channel scanning ends immediately. The discovered message (aug

mented by the wait list index) is copied into the caller's message area, and the 

Wait Coordinator returns to its caller. This means that when functioning in the 

default (W- C) polling order, the event call list is scanned only if no event wait 

message is found. 

~~ Strictly speaking, this argument is a priority level, the lower the integer (level}, 
the higher the priority. 
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Whenever a call list is scanned, it is scanned in its entirety. Each event 

call channel is inspected for a message. If one is found, the associated procedure 

is called and, following a return from this call, if any, the next event call channel 

in the list is inspected, etc. The above scanning logic is summarized in the 

Figure 7-15 flow chart. 

7.5.3.4 Invoking an associated procedure and controlling its repeated use 

A designer of a subsystem that uses an event call channel will, of course, 

be required to designate the name (or pointer) of the associated procedure at the 

time he declares the channel to be of event call type. The same designer may 

also be required to code this procedure. (We will call it AP, for convenience.) 

The Wait Coordinator, when it issues the call to AP, will always use a standard 

form for this call. AP's author must therefore code it so that it is compatible 

with this standard call. The rules are explained in the accompanying footnote.~:< 

Several messages can be queued up over the same event call channel. But 

the Wait Coordinator must see to it that it treats only one message at a time (the 

top most). It should not recognize the next message in the queue until processing 

of the top most is completed. This means that an associated procedure must 

return control before the Wait Coordinator can permit itself to again inspect the 

same event call channel. The following paragraphs show why the controls are 

needed and how they are achieved. 

It is easy to see how the Wait Coordinator could get into this situation. 

Suppose API is called for the first message of a call channel "1" and suppose 

tl").at during its execution API must call ipc$block to await a message on some 

event wait channel. Further, suppose this message has not arrived at the time 

of this fresh call to ipc$block. The Wait Coordinator might then find itself scan

ning channel 1 once again, and if it finds another message (assuming no controls 

were set to prevent it), would call API once again. We would then have a 

·" Conventions used in calling as soc:cated procedure (AP) are: 

1. The AP has one argument, message ptr, which is a pointer to an eight-word based 
structure, the first six words of wh:lch are as given in Figure 7-10. 

2. Before issuing the call,. the Wait Coordinator appenps to these six words a word pair 
whose value is that of clata ptr. This item, you rec;,,ll, is the third argument fur
nished in the declarati< n oT the event call channel. '::'he data ptr can, therefore, be 
thought of as an ordina .. y arglist ptr of a procedure, except IT is available only in-

. directly in the message argument. In addition, of course, AP has access to the 
Wal first six words of the rr. essage area, which is also useful information. 
-J 
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b. the last thing it does, pr\or to retu<ning, is tO execute an 
ipc call that unmasks all event call channels, i. e. , 

call ipc$unmask _ev _calls {code); 

This approach has the merit that any task that is invoked is 
treated as having absolute top priority. In a sense, it can 
be regarded as an extreme approach to solving the problem. 
Figure 7-18 illustrates what we mean. Here we show the 
effects of masking and unmasking event call channels using 
the same event timing sequence as in Figure 7- 17. Note 
that task EC4, because of its low priority, is not even begun 

during the time span being considered. 

(3) This approach will no doubt prove to be the most attractive: Give 
up trying the multi-purpose approach in the first place! Go back 
to the principal-design approach of Multics and let each task that 
is now programmed as an event call task and in need of better re
sponse from its Wait Coordinator be made into an independent 
process to accomplish the same objective. Each such created 
process would have a single event call channel over which it can 
be signalled. Hence, competition for good response by its Wait 

Coordinator will now be eliminated. 

Bear in mind, however, that after establishing separate processes 
for the several tasks, these can now, in principle anyway, be 
executed in parallel, whenever two or more processors can be 
awarded to these tasks during a single period of time. The mere 
fact that execution can proceed in parallel as a result of following 
this approach carrres with it the need for greater care in the 

handling of shared data segments. 
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a message in any of a given list of designated mailboxes. We shall discuss these 

ideas in more detail later. We mention them here only to motivate the notion that e a process may have what an'lounts to sets of mailboxes (each mailbox possibly 

empty), one set per ring.* Clea::ly, each mailbox must bear a unique designation 

within the receiving process so that a sender can transmit his messages to their 

proper destination. 

7.5;2.1 Messages, Mailboxes (event channels) and Transmission 

The technical name used in Multics for a mailbox is event channel. An 

event channel is uniquely designated by a 72- bit identifier t. This name is gener

ated by the system as a result of executing a user-written subroutine call for the 

creation of an event channel.tt 

Origin of the Message 

By added convention, every message originates as a 72- bit item of arbitrary 

content (set by the sender). (However, in the course of transmitting the message, 

system routines expand it with self-identifying information.) 

A message is sent in the form of a call to the hard-core system routine, 

hcs_ $wakeup: 

call hcs_$wakeup (receiving process 
channel name, 
message, 
code); 

id, 

* There is one byproduct benefit that comes from the implementation decision to have multiple 
mailboxes per ring. Let the distinct wait points in some ring-r of a process A be designated 
as wpl, wpZ, ••• , etc. Suppose the wait at each of these points is for a message from a cor
respondingly different process, e. g., from processes pl, pZ, •• ,, etc. Prior arrangements 
between the process pairs (A, pl), (A, p2), (A, p3), etc., for the sending of messages to A 
need not be fully coordinated in the sense A is not forced to give (o.r to divulge) to pi, pZ, p3, 
etc., the very same mailbox name. One can regard this flexibility as an advantage in that 
there may be less risk of confusion if separate senders are asked to send messages to differ
ent mailboxes, with each mailbox having a different meaning. 

t The substructure of the event channel name includes three items, a ring number, a key 
(52 bits), and an ECT address. The key is a unique name representing the wall clock hme 
at which the event channel was created for this process. The ring number identifies the ring 
in which the receiver expects to examine messages placed in this channel. Received messages 
are saved (until inspected) in a on-.J-per-ring segment called an ECT (Event Channel Table). 
The ECT address is simply the offset within this segment at which the possibly-queued mes
sages for this channel may be found. A channel is in effect a FIFO list. Details of the ECT 
data structures should be of no interest to users. They may be found in BJ. 10. 02. 

ttDetails on how to create event channels may be found in BJ.IO.Ol. 
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Note that although the actual text of a message is small and fixed in size, it is 

large enough to be used as a pointer to messages of arbitrary size. We defer 

momentarily answering the obvious question, namely, how will the sender know 

both the process _id of the receiver and its receiving point (the event channel 

name). This matter is taken up in the section entitled Setup for Interprocess 

Communication. 

The hcs_$wakeup routine makes some simple {routine)checks on the first 

two arguments so that if they are obviously erroneous):~, due to programmer 

error, the caller can be alerted if he chooses to examine the returned error code. 

After this partial validation, the Traffic Controller's wakeup entry is called, at 

which point steps are taken to forward the message to the intended receiver, as 

outlined below. 

l. If the message indeed has a receiver, then it must be possible 
to match the receiver process id with the id of one of the processes 
that now have entries 1n the Active Process Table. Failure to 
find such a match means that the message is meaningless. Such 
a case results in an appropriate error code being reflected to 
hcs $wakeup's caller. (Note that a post-office analogy to this 
case is -- "addressee unknown at this address -- return to 
sender••.) 

2a. A message aimed at a bona fide target process will be copied 
into a ring zero system table where it is properly augmented 
with 11truthful 11 information about the sender. The system table 
(central storage) is called the ITT {for Interprocess Transmis
sion Table). The receiving process will later fetch the message 
out of this table. 

Zb. The last step is to call the Traffic Controller at its entry point 
wakeup to wake up the receiving process. 

The above steps are summarized in the Figure 7-9 flow chart. Note that 

hcs_$wakeup serves as the user's only interface with the otherwise inaccessible 

wakeup entry in the Traffic Controller. Protecting this entry from direct user 

calls simplifies the logic of the Traffic Controller which, because it is locked 

to all other processes when entered, must be kept as simple (and fast-executing) 

as possible. 

':' For example, if the process id or certain of the subfields of the 72- bit channel 
name are zero, this is clearly an error. 
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Receivers must be protected against receipt of false messages, whether 

accidental \)r intentionally sent. Certain information about the sender is there

fore added to the copied message that is placed in the ITT. This information, e which is of critical importance for the protection of the receiver, consists of the 

sender's process id and the validation level~ the sender's call to hcs $wakeu;e_ 

(i.e., the ring in which this call was made). The user cannot be trusted to trans

mit these items accurately. Figure 7-10 shows the message format as stored in 

the ITT. The Interprocess Transmission Table is a wired-down system table in 

ring- 0 that is large enough to hold messages for all known processes. The table 

is organized as a set of message queues, one per process. The head of each 

queue is pointed to from a fixed position in the APT entry for the corresponding 

process, so that when any process re-enters the running state in the Traffic 

Controller, as a result of being awakened, it can quickly determine if there have 

been any messages deposited in the ITT on its behalf since the last time it ran. 

1 
la 

Does ::-ece1vmg process id 
match one of the id's of'"'a No Set error 
process in the APT (that is+----~code ap-
not stopped)? propriately 

Yes 
2 

Make a copy of the message 
augment it with information 
about the sender, and place 
it in a central store-and
f~rward table (ITT) 

3 

Wake up the receiving process 

Figure 7-9 Some details of the Traffic Controller's entry 
point wakeup 
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The zero 
means a process 
message as op
posed to a device 
signal 

event channel 
name 

text of the 
message 

sender 1 s process id 

0 
sender's 
ring 

72 bits 

72 bits 

36 bits 

36 bits 

Figure 7-10 Message format augmented with information about 
the sender as placed in the ITT 

Getting the message from the central store-and-forward point to the receiver 

So far we have considered mainly the mechanics of sending a message as 

far as a central forwarding center. In a postal system analogy such as shown 

in Figure 7-11, this is the halfway point, e. g. , a regional post office. No ordinary 

citizen is able to walk up to this center and ask for his mail. Nor, by analogy, 
' can the Multics user expect to get his mail by attempting to read messages while 

they are still in the ITT. He needs help in moving the messages to data areas that 

are ring-accessible for his purpose. While the post office automatically pushes 

the mail through to its receiver from the central p. o., without any special coax

ing, the Multics analogy is somewhat different. Here some initiative is always 

taken by the receiver to pul~ the message{s) out of central storage and to place 

them into the individual rin1;-accessible event channels of the process. Recall 

that a receiver's process w:ll have a table of one or more event channels (an ECT) 

in every ring in which there occurs a distinct wait point in that process. 
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U.S. Postal 
System 

I MULTICS I 
Process A 

local 
(Newton) 
Post Office 

Process D 

/ 
Process E 

local 
(Cambridge) 
Post Office 

,- -----, 
tlocal 1 

"'!...i (Wellesley) 1 

~.!:_ost _o~fi_:~ 1 

'- 'local - - -, 
,,1 I 
~(Allston) 1 

!Post Office. 
L ---- __ _j 

Process C / 
/ 

Process F 

/ 

/ 
/ 

/ 

block 

Process B 

~~received 
1-----">~ b;~~~:t B 's 

initiative, i.e., 
if B is waiting 
for it via a call 
to ipc$block 

Figure 7-11 Postal system analogy to Multics inte1"process 
meHsage transmission 
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A wait point is always programmed as a call to ipc$block which is the 

entry point in the so-called wait coordinator, the heart of the interprocess com

munication facility. A user program should call this entry point whenever it 

must enter the blocked state while awaiting the receipt of a message. 

The form of this call is 

call ipc $block (w ait_lis t_ptr, 

tf 
A list of one or 
more event
channel names 

message_ptr, error_ code); 

"'A pointer supplied as an input 
argument that specifies the 
location where the caller 
expects to receive a message 
which he can examine 

' When called, ipc$block scans the event. channels in the list pointed to by the first 

argument. Scanning of the channels is done in the listed order, and if lucky enough 

to find a message in one of these channels, ipc$block transfers the first such mes

sage found into the location given by the second argument, and returns to its caller. 

The message that is actually transferred consists of the six-word message whose 

format was shown in Figure 7-10, augmented by a seventh word consisting of the 

wait-list index. Thus, if a message is found in the third of eight channels on a 

wait list, the seventh word of the returned message will have the value 3. 

Note that ipc$block has been executing in the ring of its caller. (Ipc$block 

has ring brackets which are (1, 63, 63).) Cor'1sequently, this procedure does not 

have ring access for scanning central storage (i.e., the ITT) which may have re

ceived one (or more) of the desired messages. Therefore, ipc$block is forced to 

call a privileged routine in ring-0 (at an entry point hcs _$block). This routine in 

effect tranders all valid messages that have accumulated in the ITT event queue 

for this process. Each mes!;age is placed in the event channel that is designated 

in that message. Invalid me >sages, such as those whose channel names do not 

match existing channels in the receiving process' ECT' s, are summarily discarded. 

If, in the course of making these message transfers, not a single message was 

transferred into a ring :? the validation ring (i.e., that of ipc$block), then it is 

clear the wanted message cannot have yet been received. Hence hcs $blc·ck, 

which is fully privileged to du so, calls the corresponding entry in the Tr 'l.ffic 
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Controller to give away the processor.~:~ If, on the other hand, at least one such 

message was moved to a ring that is accessible to ipc $block, then hcs $block e will retur~o that the former can again scan its given list of channels i~ hopes 

of finding the wanted message. The chain of calls we have just discussed is sum

marized in Figlre 7-12. 

If we were to follow the ret~rn path from the TC backwards toward the 

point of call to ipc$block, it becomes easy to see how a fresh message, received 

at ipc$wakeup can be thought of as being forwarded from central storage to the 

appropriate event channel of the receiver. 

It should be recalled that when an awakened process finally recaptures a 

processor, effective execution will resume as a return from the block entry in 

the TC to its caller, hcs $block. The latter then "transfers" all newly arrived 

messages from its ITT event queue into the appropriate event channels. If no 

messages were transferred into rings ~ that of the caller, ipc$block, then 

the process cannot have received the message it was waiting for. Hence, 

hcs_$block again calls the TC at entry point block to give away the processor. 

But if at least one potentially suitable message was transferred from the ITT, 

hcs $block returns to its caller (ipc$block). (This is how the pulling of mes-e sages is done-- in the absence of an explicit effort, e. g.' a call to ipc$block, 

tnessages for this process can in principle pile up in central storage without ever 

being drawn out.) Note that the return to ipc$block is no guarantee of a return 

to its caller. 1£ ipc$block finds no message in one of the listed event channels, 

it simply recalls hcs$block. 

7.5.2.2 Setup for Interprocess Communication t 

Here we shall discuss how a sender learns the identification of a receiver 

process and the identification of that receiver's event channel. For convenience 

let us adopt the following notation. 

~' To be absolutely precise about things, there is still a possibility for a last minute "reprieve", 
if anytime up to the very last instant before giving the processor away a wakeup arrives, con
trol will return to the TC 1 s caller. For more details you could review J. H. Saltzer 1 s Ph. D. 
thesis or BJ. 3. 01 to see the functicn of the so-called "wakeup waiting" switch. 

t For a more basic discussion of thts topic, the reader may wish to examine the paper, "The 
Multics Interprocess Communication Facility", by M. J. Spier and E. I. Organick, submitted 
for presentation at ACM 1 s Second Symposium on Operating Systems Principles, Princeton 
University, Princeton, New Jersey, October, 1969. 
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Executes in 
'ring of its 
caller 1 

(1 thru 63) 

ipc$block {wait list ptr 
message ptr, -

code)-

Scan event 
channels in 
the listed order 

Yes Transfer it 
Message found? from the 

channel to 
message_ptr 

Call 
hcs$block 

Set return 
status in 
code 

Ring-u-----------------------------------~ 

call T C entry 
block (ptr) 

Transfer event messages 
from ITT queue to in
dividual channels in the 
per-ring ECT's 

Any events on this 
process' event queuel--...-..~ 

in the IT1? 

No 

Give av ay the-l 
procesHor 1 

Illustrating how event messages are pulled 
out of the ITT queue and dist1·ibuted to individual 
event channels in the user rings. (Readers 
should note that Figure 7- 15 is a more complete 
description of ipc$block.) 

Figure 7-12 Th·~ chain of calls: -ipc$block -.hcs$block ~TC block entry. 
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Let B-to-A setup info be that basic information that is required by a se.~der 

process B so that it can send a message to a receiver process A. This informae tion consists of A Is 36- bit process id and A Is 72- bit event channel name. 

Let p{A) and p{B) refer to the people responsible for programming A and B, 

respectively. {To be sure, they may be the same individual, wearing "two hats".) 

Clearly, the sy1stem-provided message transmission facility {IPC) cannot be em-
1 

ployed to transmit B-to-A setup info, else why would setup info be needed in the 

first place. Note also that p{A) cannot supply p{B) ~ith the B-to-A setup info by 

telephone or by other direct personal communication until after A has been created. 

This is because a process id is a clock-dependent unique bit string that is gener

ated by the system at process creation time. Furthermore, A 1 s event channel 

name, which is also a clock-dependent unique bit string, will not be known until 

after A 1 s declaration that creates the event channel has been executed. There 

appears to be only one sensible plan for passing setup info. The plan is as 

follows: 

{l) 

(2) 

I 
p{A) and p{B) agree in advance on the {unambiguous) name of a 
segment that is to beshared by A and B. Call this segment 
<shared>. Also agreed upon is an offset within <shared>; 
call it (setupBA] which is to be regarded as a 3-word mailbox 
initially set to zero. 

I 
After A and B have been created, and after A has declared 
(created) the appropriate event channel, A places in 
shared$setupBA the desired setup info. 

(3) B f~tches the three words at shared$setupBA, and if non-zero, 
assumes by convention that the required A-to-B setup informa
tion has been obtained. 

Note that if A is also to become a sender to B (not just a receiver), then A-to-B 

setup (as opposed to B-to-A) is also needed. This info can be sent by a similar 
I 

prearrangement, although in fact a form of "boot strapping" can now be achieved 

if it is desired, to avoid further use of <shared>. That is, the first message B 

sends to A can, by further convention, contain the A ~to- B setup information. 
! 

But how does A know it:s B-to-A setup info so that it can place it at 

shared$setupAB? 

How A obtains its own proce~.s id 

When a process is created, one of the temporary segments that is created 

for it and placed in its process directory is called< process_info>. This segment 
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contains special information about the process that can be read by all procedures. 

Among these is the process id which is stored in process _info$processid. ):< Any 

user procedure can snap a link to and read this word. 

How A obtains an event channel name 

A user creates an event channel simply by calling ipc$create_ ev chn. The 

first of two return arguments in the call contains {upon return) the 72- bit name 

that the !PC has established for this channel. Henceforth, it is the user's respon

sibility to keep track of this name. 

Summary 

The steps that would be coded by p{A) and p{B) to establish interprocess 

communication with B as a sender and A a receiver can now be summarized. 

1. p{A) codes the following steps in some procedure of A: 

2. 

(a) call ipc$create ev chn (channelBA, code); this call creates 
an event channel "'IVhich can hereafter be referred to by the 
name, channelBA, because the value of the first return argu
ment is a 72- bit unique id of channelBA. 

{b) assign to the 3-word mailbox at share$setupBA values of 
process info$processid and channelBA. Illustrative epl 
coding is provided in the accompanying footnote. t 

p{B) can code B to pick up the required setup info at any time and 
use it to send a two-word message to A. Illustrative epl coding 

'~ Some consideration is currently being given to merging <process info> with another segment 
in order to reduce the working set. It is for this reason that this argument was not listed in 
Table 7-2. If this change should be implemented, however, the name, process info, will still 
be used in referencing the process id. -

t In epl, this might be accomplished with coding that relies on a 3-word based structure for 
a tnailbox: 

del 1 mailbox3 based \p), 

2 pid bit (36) / ':' a process id~'/ 

2 chname fixed bin (71) /•~ a channel name'~/; 

Then, the executable code which ..vould follow creation of the desired event channel might look 
like: 

P = addr(shared$setuf BA); 

P -> mailbox3.pid = pncess_info$processid; 

P - > mailbox3. chname ' channelBA; 
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is provided in the accompanying footnote.* 

3. p(A) is now able to code appropriate calls to ipc$block at various 
points in A, to wait for messages from B. A call of the form 

call ipc$block (argptr, msgptr, code}; 

gets the job done on the assumption that the first two arguments 
are pointers to the base of structures, the first being to a wait 
list of channel names, and the second to an area of sufficient size 

for receipt of the message. 

The general structure for the wait list is of the form shown in Figure 7-13. 

n 

1 
1st 
channel name 

~ number of channel names on this list 

}~72 bits 

2nd 
channel name 2 

. 
-<;> . . 

nth 
n channel name 

(a) general form of a 
wait list 

vali1e of 
channelBA 

1 

(b) appearance of wait list 
for example in the text. 

Figure 7-13 Wait lists. General and Specific. 

'~ We shall assume that B also use!' a declaration for a 3-word mailbox identical to the one in 
the preceding footnote. Then coding in B might appear as: 

p = addr(shared$setup!IA); 

receiver _pid = p - > mailbox3. pid 

channel_name = p - > mailbox3. chname 

if ., (receiver _pid = 0 and channel_name = O) 

then call hcs$wakeup (receiver_pid, channel_name, message, code); 

else call print_ error; 

Here message is a 72- bit messagt and print error might be a routine to print an appropriate 
error message before proceeding vith whatever steps are then deemed appropriate. 
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7. 5. 3 Programming of a Multi-purpose Process 

A Multics process is basically sequential in nature by virtue of the fact that 

but a single execution point (or point of control) is free to traverse over its ad

dress space at any one time. For this reason, it is natural to think of such a 

process as having a single purpose. 

If twc or more independent computations are to be performed, albeit related 

to one another, it is entirely appropriate for the programmer to create a separate 

process, one per each defined purpose, and have these processes execute in any 

interrelated fashion that seems appropriate. In fact, this approach is recommended 

for most initial efforts of this kind, 

Subject to processor availability, concurrent computation of the separate 

but related processes may occur in some fashion, but it is not predictable, of 

course, since the Traffic Controller and its functions are outside the control of 

the programmer. In any case, by proper use of !PC, the separate processes 

(purposes) may synchronize with one another. 

It is worth noting, however, that the establishing and maintaining of separate 

address spaces, one per process, incurs an appreciable system overhead. Such 

costs are ultimately passed on to the user directly or indirectly. Hence it may 

well be worth considering under what circumstances it is feasible to coalesce (and · 

condense) the address spaces of several processes into a single, now multi-purpose 

process having one address space (and one execution point). 

Certainly, it is necessary that concurrent pursuit of the separate purposes, 

i.e., parallel executing of the separate tasks be no requirement. (But, then such 

a requirement, even without coalescing, cannot be guaranteed in Multics anyway.) 

Beyond this, the order in which these tasks may be initiated and executed should 

in some sense be of secondary importance and perhaps be independent of the tasks 

themselves. This requirement may be satisfied in the case where events exter-

nal to the process drive the multi-purpose process. That is, IPC messages 

received by the process are the basis for deciding which task to execute next. 

Examples of multi-purpose processes are cotnmon among system software pro

cesses, e. g., answering services, I/0 device managers, automatic reco;·ders, 

auto1natic file dumpers, etc. 

A process that must b,~have in multi-purpose n1anner, can in principle be 

coded using flow chart logic described in Figure 7-14. The basic idea s11ggested 
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·' in the figure is to create n event channels, one for each of the n distinct purposes 

• of the process. After furnishing setup information for use of each of the n chan-

nels to the n senders (not necessarily n different prbcesses) the process calls 

ipc$block to· await one of the n types of events. Each time an event arrives, 

ipc$block returns with a message. The message is examined (in box 5 of the 

flow chart) to determine which channel (type of event) has occurred so as to invoke 

the associated task. When the task is completed, a call is again is sued to 

ipc$block. 

We have not yet defined what we mean by a task. The simplest idea is to 

suppose it corresponds to a call to a procedure that is associated with the corres

ponding event channel. We will be interested in understanding what restrictions 

are imposed, if any, as to what may go on inside the called procedure. For 

instance, are calls to ipc$block to be permitted from within the associated pro

cedure and/ or from any of its dynamic descendents? We shall consider this 

possibility in the next subsection. For the moment, however, we shall assume 

such repeated calls do not happen. 

7.5.3.1 Event call channds 

Note that further logic a 1 simplification (from the point of view of the user) 

arises and a slight increase in efficiency can be gained if the control logic of 

boxes 3, 4, 5 and 6 are made part of ipc$block. At the top-most logic level the 

process would be characterized simply as the execution of boxes 1 and 2. That 

is, initializing of channels, transmitting of setup informati~n, etc., followed by 

a single call to ipc$block. There would be no return and of course no repeated 

calls on ipc$block. Of course, it would be necessary to furnish IPC with more 

information so it can perform its more elaborate job. Basically, this amounts 

to telling IPC what are the procedures that should be called (invoked) upon receipt 

of respective messages. 

The "simplification" WE' have been discussing is in fact provided for in Mul

tics by allowing the user to designate event channelB of his choice for special 

interpretation. Event channds marked in this fashion are referred to as event 

call channels, as opposed to the ordinary event wait channels. Messages found 

in event call channels are e:>i amined and interpreted while the process is executing 

inside the IPC. Interpretati'm amounts to execution of a call to the associated 

procedure. 
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initialize 

call 

----. 

create n distinct channels, 

pass setup info to appropriate 
mailboxes, 
create a wait list, and 

(d) allocate a message 
-~=--,---..........__ 

2 

ipc$block (wait list_ptr, m~sage, code) 

1 

perform a 

\----:..1 

5 

Getermine channel over 
which message has been 
received 

2 • I 

6-2 
perform a task 

task assoc- associated with 
iated with the second 

channel 

call 
error 
handler 

6-n 
perform a task 
associated with 
the nth 
channel 

Figure 7-14 A possible structure for a multi-purpose procef;S 
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7. 5. 3. 2 Concept of the Wait Coordinator 

e . As can now be seen, the code associated with entry point ipc$block is in 

fact more sophisticated than a simple scanner for messages received in event 

channels, since some action decisions (i.e. , interpretation) are in fact delegated 

to this procedure. The code is referred to in MSPM documentation as the Wait 

Coordinator*, and aptly so. 

e 

Once an event channel has bee.n created, a programmer is free to declare, 

by a call to an appropriate IPC entry point, that said channel is thereafter to be 

regarded by the Wait Coordinator as event call type. Subsequently, when the 

process is executing inside the Wait Coordinator a scan of event channels that 

turns up a message in an event call channel will trigger a call to the associated 

procedure. It should be stressed that return from this call is to a return point 

within the Wait .Coordinator. The net effect therefore, is that, in the case of 

event call channels, the action of boxes 5 and 6 of the Figure 7-14 flow chart is 

accomplished implicitly, i.e., on behalf of the procedure that calls the Wait Co

ordinator. 

When a Multics user wishes to establish an event channel to be of the call 

type, he takes the following action: 

(1) Create the event channel by a call to ipc$create ev chn. (This 
step sets up the channel, but its default interpretation is of the 
event wait type, i.e., while given this interpretation it may 
only beused as pictured in Figure 7-14.) 

(2) Declare said channel to be of the event call type by a call to 
ipc$decl_ ev _call_ chn. The form of thiS""Ca'll is 

...r-o........--v-~·~-v-

obtained from step (1) 

call ipc$decl_ev_call_chn (channel name, associated 

procedure_ptr, data _ptr, priority, code). 

The second and third arguments in this call are saved in the 
event channel table (ECT) for later use by the Wait Coordinator 
so it can constru<t the desired call to the associated procedure. 
Since a user is fr~e to declare more than one event channel to 
be of the call type, it is necessary to prc·vide the Wait Coordinator 

... 
··· The principal MSPM reference is BJ. 10. 03. 

7-67 



a scanning order for these channels. The user .furnishes an 
integer argument, priority~:', to be used by the Wait Coordinator 
as a scanning index. Thus, if channel billy and channel tilly 
are both declared to be event call channels and priorities2 and 
1 are associated with them; respectively, then if messages have 
been received on both channels, the procedure associated with 
channel tilly will be called before the one associated with 
channel billy. 

The next three subsections (7. 5. 3, 3, 7. 5. 3. 4, and 7. 5. 3. 5) round out the 

design details of the Wait Coordinator that may be of interest to some readers. 

They can easily be skipped on a first reading. 

7.5.3.3 Call- Wait Polling Order 

Although we have just suggested the rule for scanning event call channels, 

we have yet to explain the dependency relationship that exists between rules £or 

scanning event call channels ~nd those for scanning event wait channels. Each 

call to the Wait Coordinator (in reality a call to ipc$block) is in fact a request to 

scan, not one, but two lists of channels, the wait list, and the call list. The 

wait list is the list of event wait channels that is pointed to (first argument) in 

the call to the Wait Coordinator. The call list is the list of event call 

channels that are currently kept in the ECT for the ring of the Wait Coordinator's 

caller. 

We shall say that a W- C pollin!~ order is one in which the wait list is scanned 

first and then the call list, while a C- W polling order is the reverse (i.e., call list 

before wait list). The system's default polling order is W-C, but a user is given 

the opportunity, by calling a special entry point in the IPC, to reverse the current 

polling order. 

It should be remembered that whenever a message is found in a channel of 

the wait list, channel scanning ends immediately. The discovered message (aug

mented by the wait list index) is copied into the caller's message area, and the 

Wait Coordinator returns to its caller. This rneans that when functioning in the 

default (W- C) polling order, the event call list is scanned only if no event wait 

message is found, 

':' Strictly speaking, this argument is a priority level, the lower the integer (level}, 
the higher the priority. 
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Whenever a call list is scanned, it is scanned in its entirety. Each event 

call channel is inspected for a message. If one is found, the associated procedure 

is called and, foll6wing a return from this call, if any, the next event call channel 

in the list is inspected, etc. The above scanning logic is summarized in the 

Figure 7- 15 flow chart. 

7.5.3.4 Invoking an associated procedure and controlling its repeated use 

A designer of a subsystem that uses an event call channel will, of course, 

be required to designate the name (or pointer} of the associated procedure at the 

time he declares the channel to be of event call type. The same designer may 

also be required to code this procedure. (We will call it AP, for convenience.} 

The Wait Coordinator, when it issues the call to AP, will always use a standard 

form for this call. AP's author must therefore code it so that it is compatible 

with this standard call. 
·'c The rules are explained in the accompanying footnote.·· 

Several messages can be queued up over the same event call channel. But 

the Wait Coordinator must see to it that it treats only one message at a time (the 

top most}. It should not recognize the next message in the queue until processing 

of the top most is completed. This means that an associated procedure must 

return control before the Wait Coordinator can permit itself to again inspect the 

same event call channel. The following paragraphs show why the controls are 

needed and how they are achieved. 

It is easy to see how the Wait Coordinator could get into this situation. 

Suppose APl is called for the first message of a call channel 11 1 11 and suppose 

that during its execution API must call ipc$block to await a message on some 

event wait channel. Further, suppose this message has not arrived at the time 

of this fresh call to ipc$block. The Wait Coordinator might then find itself scan

ning channel 1 once again, and if it finds another message (assuming no controls 

were set to prevent it), would call APl once again. We would then have a 

'~ Conventions used in calling as sodated procedure (AP) are: 

1. The AP has one argument, message ptr, which is a pointer to an eight-word based 
structure, the first six words of whiCh are as given in Figure 7-10. 

2. Before issuing the call,.. the Wait Coordinator appenP.s to these six words a word pair 
whose value is that of <lata ptr. This item, you recall, is the third argument fur
nished in the declarati< n oT the event call channel. The data ptr can, therefore, be 
thought of as an ordina"y arglist ptr of a procedure, except IT is available only in-

. directly in the message argument. In addition, of course, AP has access to the 
first six words of the rr.essage area, which is also useful information. 
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· loop ~/~ 
(controls for -
\Jist scan_) 

'--------' 

ipc$block 
(wait_lis t_ptr, 
message_ptr, code) 

Employ the currently-governing 
polling order to concatenate the 
wait list and the call list (to 
form a single list to be scanned). 

initialize 

r------~~ advance 

channel? 

1 

any 
more 
channels 

Yes 

2 

the 

Yes 

No 

I 
call 

hcs$block 

4 

channel type 

Copy message 
,_ __ ...;e;..;v...;e;.;;n;.;t.__...,.w- ith channel 's 

II 

Call 

event 
call 6 

Associated Procedure 
(with the message ptr 
as the argument) 

wait wait list index 
i.nto caller's 
message area 

5 
Set return 
stat\J.S in 
code 

Figure 7-15 How the ipc$b1ock functions as a Wait Coordinator 
(Note that this is an expanded version of the flow 
chart given in Figure 7-12.) 
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situation that there are two invocations of API, each permitted to perform opera

tions over the same set of external {and static internal) variables. Since the first 

activation could be suspended after making incomplete alterations to such varia

bles, chaos could easily result. 

To avoid this kind of confusion, the Wait Coordinator associates and main

tains an inhibit flag for each event call channel. This flag is set immediately 

prior to the call to -and is reset immediately following the return from- the 

associated procedure. Moreover, event call channels that have inhibit flags set 

are ignored by the Wait Coordinator whenever the list of channels is scanned. 

This simple set of controls has been omitted from the picture given in Figure 7-15 

to keep things simple, but could be added simply by replacing box 6 with the 

following amplification: 

7.5.3.5 

Yes 

call 

6a 

inhibit flag set? 

No 

6b 

6c 

Associated Procedure 
(with the message ptr 
as the argument) 

6d 

reset the 
inhibit flag 

Other Channel Management Functions 

The subsystem designer who has a further need to know about event channels 

and their management will be pleased to learn that the IPC offers a number of 

other services. Using thest:' capabilities, a user may, for instance, control the 

polling order, delete as welt as add new event channds, drain or flush out un

wanted messages from existlng channels, cause a given list of channels to be 
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masked during certain periods, i.e., skipped over during normal scanning by the 

Wait Coordinator, convert event call channels back to the event wait category, 

associate a given call channel with a new procedure and/or data pointer, and last, 

but of considerable importance, read the messages in a given channel {without 

waiting). Details for making the appropriate IPC calls can be found in BJ. 10. 01. 

7.5.4 Limitations of Multi-purpose Processes 

The study of the Wait Coordinator has provided us with a new frame of 

reference for discussing multi-purpose processes. With additional study we can 

understand the potential as well as the limitations of such Multics Processes. 

Because each task of a Multics process must share the same stack with its 

sister tasks, the order in which events arrive and their time spacing clearly 

determines the order in which tasks are started and completed. A feeling for 

this event dependency can be gained by studying timing diagrams for specific 

cases. We present in Figures 7-16 and 7-17 two cases, each for a multi-purpose 

process having four event call channels whose associated procedures are ECl, 

EC2, EC3, and EC4. The respective priorities for these channels are assumed 

to be 1, 2, 3, and 4. 

7.5.4.1 Two Case Studies Using Timing Diagrams* 

Figure 7-16 covers a period of time which commences while associated 

procedure ECl is executing. Events arrive for channels in order 2, 3, 4, 2, 1, 

spaced as shown in the vertical time line on the left side of the figure. The 

vertical line segments in columns marked ECl, EC2, etc., correspond to execu

tion times for the respective tasks, which are carried out in the order 2, 3, 4, 

1, and 2. This is somewhat different from the order in which the event messages 

were received due to priority considerations. 

Figure 7-17 is a similar case, but exhibits one important complication, 

namely: at some point during its execution each task must make a call to 

ipc$block to await a specific message (on an event wait channel). Arrival times 

for event wait messages are labeled ew 1, ew2 , etc. 

We gain valuable insight by "walking" through this timing diagram to see 

why things happen the way they do. 

':< This section may be skipp•!d on a first reading without loss of continuity. 
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· Everlt 
Time Line 

ec 
2 

Task 
ECl 

l 
I 

I 

Task 
EC2 

0 

Task 
EC3 

Figure 7-16 Timing diagram showing execution of tasks ECl, 
EC2, EC3, and EC4 when triggered by events that 
a1 rive at points in time labeled ec 1, ec2 , etc., as 
indicated on the (vertical) event time line. Circled 

· numbers show the sequence in which tasks are 
ex:!cuted in virtual time. 
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ew1 

ew2 

ew3 

ew4 

---------------

Event Task Task Task Task Stack History 
time line ECl EC2 EC3 EC4 

CDi 
l I 

ec2 - jw 

01 
I 

(d~ 
ec3 ~ 

w 

-~--
ec4 

~~~!$) 

-~ 

tr.i;J 

~ ec2 

ec1 

~ 
01 " 

® 
I 

. i 

l_j 

® 

t 
Figure 7-17 Timing Diagram showing execution of tasks ECl, 

EC~, EC3, and EC4. This example assumes each 
task executes one call to ipc$block to await distinct 
events, labeled ew1, ewz, ew3, and ew4, respec-. 
tivdy. Note that a W -C polling order is assumed. 
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.. (1) When task EC 1 has called the Wait Coordinator to await arrival 
of event ew1, the Wait Coordinator discovers event ecz, so it 
triggers task EC2 which proceeds until it reaches a wait point. 

(2) During execution of ECl, the event ew 1 that task ECl has been 
waiting for, has arrived, but cannot be recognized by the Wait 
Coordinator when it is called by EC2 to await event ;ew2 • Con
sequently, the process is forced to block itself until the next 
recognizable event arrives, which, in our particular example, 
is ec 3 . Arrival of this event causes the Wait Coordinator to 
invoke task EC3. 

The reason why the Wait Coordinator fails to recognize ew1 
when it is called by task EC2 is simple: The event ewl is not 
on the wait list of this call! The Wait Coordinator is in fact 
executing with a new stack frame. Hence, this activation of 
the Wait Coordinator will not be "looking for 11 ew1. When will 
the Wait Coordinator again look for ew1? In a moment we will 
have the answer to this question, but first let us continue our 
walk through Figure 7-17. 

(3) As a result of invoking EC3, this task executes until it reaches 
a wait point and calls the Wait Coordinator with the wait list, 
ew 3• Since this event has not yet arrived, and since no event 
call message is initially present, the process is again forced 
to block itself. 

(4) The process is revived following arrival of ec4, at which time 
task EC4 is invoked. 

(5) After going blocked again for a short period, ew4 arrives. The 
Wait Coordinator recognizes ew4 because it is on its wait list, 
so task EC4 resumes, executes to completion and returns to 
the Wait Coordinator. 

(6) A return (as opposed to a call) to the Wait Coordinator implies 
reverswn to a preceding stack frame of the Wait Coordinator 
(i.e. , to a prior activation). Execution in the prior activation 
means that the Wait Coordinator can now recognize the arrival 
of ew3. It may be noted that events ecz and ec 1 have also arrived. 
However, we are assuming a W -C polling order in the example. 
As a result, ew3 will be the first message discovered in the scan. 
As a consequenc,~, task EC3 is resumed and completed. 

(7) & (8) The above reasoning may be repeated to see how tasks EC2 and 
ECl may be completed in this order. 

(9) Upon completion of task ECl and the return to the Wait Coordina
tor, events ec 2 and ec 1 are discoverable, since there are no 
event wait messages on hand. The message for eel is discovered 
first because it ·nas higher priority causing ECl to be invoked. 
(Thus endeth this 9- step walk.) 
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7.5.4.2 Ways to prevent Sluggish Event Wait Response of Event Call Tasks 

A serious shortcoming of the multi-purpose process should now be evident. 

A difficulty may arise any time an event call task is forced to call ipc$block for 

an expected event. Even though that event may arrive with reasonable dispatch, 

there is no guarantee that the Wait Coordinator will "respond11 in a reasonable 

length of time by giving this task an opportunity to resume. For instance, 

suppose 
(a) Task EC 1 calls ipc$block to event ew 1· 

(b) The Wait Coordinator then invokes task EC2, and shortly thereafter 

ew 1 arrives. Then, 

(c) Task EC2 calls ipc$block for an event ew 2 , which takes an unexpec
tedly long time to arrive. 

Nothing can be done to give control back to EC 1 even though its awaited message 

has long since arrived. (Changing the polling order does not help.) The diffi

culty stems from the fact that a stack history has been built up of the form: 

w 
l ECl1----. w 1-----. 

2 EC2 

It is impossible to resume ECl without doing an abnormal return, i.e., from 

W3 to ECl. But this action would have the effect of aborting task EC2, which 

could cause chaos. 

Three approaches are open to the programmer to circumvent this problem. 

Two of these, (1) and (2), are less than fully satisfactory. 

(1) Program all associated procedures so that they and all their 
dynamic descendents (if any) execute no calls ipc$block. (This 
will be difficult because if an associated procedure or any of 
its descendents calls a system library routine or one written 
by another indivi:iual, there is no easy way to be sure, without 
reading the code, if said targets do or do not call ipc$block.) 

(2) Program each a::sociated procedure so that 

a. the first thi1.g it does upon being called is to execute an 
ipc call that masks all event call channels, i, e., 

call ipc$mask_ev_calls (code); 
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time line EC2 EC3 EC4 EC4 
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Figure 7-18 Same case as in Figure 7-17 except that ealls to 
ip.::$mask ev calls and to ipc$unmask ev calls are 
made at points marked M and U, respectTvely . 
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b. the last thing it does, pr~or to returning, is to execute an 
ipc call that unmasks all event call channels, i. e. , 

call ipc$unmask_ ev _calls (code); 

This approach has the merit that any task that is invoked is 
treated as having absolute top priority. In a sense, it can 
be regarded as an extreme approach to solving the problem. 
Figure 7-18 illustrates what we mean. Here we show the 
effects of masking and unmasking event call channels using 
the same event timing sequence as in Figure 7-17. Note 
that task EC4, because of its low priority, is not even begun 
during the time span being considered. 

(3) This approach will no doubt prove to be the most attractive: Give 
up trying the multi-purpose approach in the first place! Go back 
to the principal-design approach of Multics and let each task that 
is now programmed as an event call task and in need of better re
sponse from its Wait Coordinator be made into an independent 
process to accomplish the same objective. Each such created 
process would have a single event call channel over which it can 
be signalled. Hence, competition for good response by its Wait 
Coordinator will now be eliminated. 

Bear in mind, however, that after establishing separate processes 
for the several tasks, these can now, in principle anyway, be 
executed in parallel, whenever two or more processors can be 
awarded to these tasks during a single period of time. The mere 
fact that execution can proceed in parallel as a result of following 
this approach carr:leS with it the need for greater care in the 
handling of shared data segments. 
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