
MOl OS

A GUIDE TO MULTICS

FOR

SUBSYSTEM WRITERS

CHAPTER VI

Segment Management and Directory Structure

Elliott I. Organick

Draft No. 4

March, 1969

Project MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TABLE OF CO ;\IT E;\fT S

Section

LIST OF ILLUSTRATIONS

LIST OF TABLES

VI SEGMENT MANAGEMENT AND DIRECTORY STRUCTURE

6. 1 Introduction

6. 2 Directory Structure

6. 2. 1 Branches

6. 2. 2 Links

6. 2. 3 Path Names

6. 2. 3. 1 Relative Path Names

6. 2. 3. 2 Retrieving File Branch Information

6. 2. 4 Programming Without Path Names to Segments

6.2.5 Standard Search Rules

6. 2. 6 Permission to Search

6. 2. 7 The Case of a Search Failure

6. 2. 8 Access Failure

6. 3 Initiating a Segment

6. 3. 1 Listing Symbolic Reference Names in the KST

6. 3. 1. 1 Ring Context Prefixes

6.3.1.2 Examples

6. 3. 2 More on Ring Context Implication

6. 4 Explicit Calls to the SMM

6. 5 The Conflict-of-Names Problem

6. 6 Segment Descriptor Management

6. 6. 1 Constructing Segment Descriptor Words after
Snapping a Link

iii

iv

iv

6-1

6-2

6-3

6-3

6-5

6-6

6-9

6-10

6-11

6-13

6-14

6-15

6-16

6-17

6-19

6-19

6-20

6-24

6-29

6-31

6-38

6-39

Figure

6 -1a

6-1 b

6-2

6-3

6-4

6-5

6-6

6-7

6-8a

6-8b

6-9

6-10

6-11

6-12

Table

6-1

6-2

6-3

6-4

6-5

LIST OF ILLUSTRATIONS

Conceptual Model of the File System Tree Structure

Conceptual Model of the File System Tree Structure

Chain of Links

Linking to Branch Named Sort

The File System Hierarchy

A Sequence of Five Calls

A Possible Directory Structure

Creating a Separate Directory Structure

Illustrating Direct Calls to the SMM

Illustrating Direct Calls to the SMM

Sources of Data used by Segment Control

Logic used by Segment Control

The Sequence in which Segment Descriptor Words are Created

Further Details for Developing Segment Descriptor Words

LIST OF TABLES

Standard Search List

List of Items in a KST Entry

Buildup of Entry Names in the KST

Buildup of KST Entries for Case Shown in Figures 6-5 and
6-6

Tasks that a User's Process May Need Completed

iv

Page

6-7

6-8

6 -11

6-16

6-21

6-25

6-2 7

6-35

6-36

6-37

6-40

6-41

6-43

6-45

6-13

6-18

6-22

6-28

6-30

e

CHAPTER VI

SEGMENT MANAGEMENT AND DIRECTORY STRUCTURE

6. l INTRODUCTION

The file system plays a central role in the execution of every process. Multics

is designed so that an unsophisticated user can remain oblivious to the interaction be­

tween file system modules and the remainder of his process. This is true because

services of the file system will be invoked indirectly on behalf of the user by other

modules such as by the Linker as a result of link faults. More advanced users may

seek more direct contact with the file system by is suing file system commands (see

BX. 8) that result in calls to the Basic File System. These commands permit the user,

for example, to obtain listings of his files, create or delete files including directories,

modify branches by renaming them or altering access control entries, etc. As the

user constructs subsystems having increased complexity, he is likely to need an in­

creased understanding of the Multics file structure. In particular, he will need to see

how modules of the file system maintain and control a dynamic interface between the

file structure and his working process. In this chapter we hope to explain a number

of the functions of the Basic File System with which the subsystem designer will be

most concerned and over which he can exercise a degree of control.

We shall refer primarily to two modules of the Basic File System (BFS), Segment

Management and Directory Control.

Segment Management

(SMM) is responsible for properly interpreting the intent of the user's symbolic

references to segments. Thus, it is the SMM that determines to which if any of the

segments already "belonging" to the process does a given symbolic name refer. If

to none, the SMM must then determine if any existing file in the hierarchy is to be

associated with the user's symbolic name. If none, the SMM must then determine if

a new file is to be created and placed in the hierarchy (on a temporary or permanent

basis). Questions must be answered like: where in the directory structure should a

newly created file be placed? Is the new file empty, or should it be a copy of an exist­

ing file? Finally, SMM must see to it that, however the file is identified, it is given

the status of a segment in the executing process, that is the segment is made known

via a segment number and appropriate access control is provided. Another way of

saying this is that the target segment is put into the state where it may be properly

written, read, or transferred to by the segment which referred to it.

6 -l

The SMM modules are primarily managerial. Most of the actual work suggested

in the foregoing paragraph is performed by other (conceivably more primitive or

central) modules of the Basic File System, e. g., Segment Control, Directory Con­

trol, and Access Control. In this sense the SMM may be regarded as an interface

with the core of the file system. It will not be practical to discuss the interface with­

out some discussion of the core modules and of the data bases managed by the core

modules.>:<

One of the data bases which will come under careful scrutiny now is the KST

(Known Segment Table) to which we have made frequent, but glancing reference in

preceding chapters. In simplest terms, the KST is a dynamically-maintained

"registry" of the segments that are currently part of the process. Symbolic refer­

ence names and other identification are kept in the per-segment entries of the KST.

This data also provides (ring) context information with which the SMM can determine

the intended target when one segment makes symbolic reference to another segment

that has previously been similarly referenced in the same ring.

Directory Control (DC)

All user requests which deal with creation, deletion, alteration of files and/or

their file descriptions ultimately result in invoking Directory Control to make the

appropriate modification to the directory structure. All inquiries about the status or

location of files and/or their descriptions also must ultimately invoke Directory Con­

trol, because only this module is permitted to read and alter the contents of the

directory files.

Depending on the ring context, i.e., the ring in which a referencing procedure

executes, the same symbolic reference name may be intended to refer to the same or

to different segments (i.e., to different points) in the file system hierarchy. t More­

over, there may be several different reference names in use which are intended to

:::<
Primary MSPM references for the material in this chapter are:

BG.l8 Segment Management
BG. 3 Segment Control
BG. 2 Known Segment Table
BG. 7 Directory Data Base
BG. 8 Directory Control
BG. 9 Access Control

tHenceforth, we shall use the word "hierarchy" to mean "file system hierarchy. "

6-2

refer to the same point in the hierarchy. These cases of multiplicity are sure to

arise in subsystems involving groups of users, with several directories available

as respositories for common routines. The SMM maintains control over these refer­

ence name-segment number pairings. It develops and reuses each name-number

pair in its proper context.

6. 2 DIRECTORY STRUCTURE

In Chapter 4 we began our discussion of the directory structure. Here, we

shall review it and amplify it with the introduction to the as -yet -untreated subject

of directory links. There are actually two types of entries which may be added to

a directory- branches and links.

6. 2. 1 Branches

A branch, you recall, is a detailed description of a file. Among other things, a

branch contains the physical locations in secondary storage of the records that com­

prise the file.+ The file described in the branch may be another directory or, if

it is not a directory, it can be thought of as a data or procedure segment. Any pro­

cess that has access to a file is able to make it a segment in that process. In some

cases detailed later it is a ££,Ey of the file, rather than the original which is made

part of the process. Of course, when a copy is made it too must be identified as part

of the file system. A branch which points to the file copy must be made and placed

in an appropriate directory. t

+In point of fact, if the file extends over several records (1024 words each) the physical
location takes the form of a file map, which is an ordered list of the addresses for the indi­
vidual file records, A zero length file has an empty file map, As the file's maximum size is
adjusted upward to range over one or more records, additional entries are made in the file
map. So as not to take up unnecessary storage, a record of a file which has not yet been
"written into," is regarded to have all its words in the zero state. Such zero records are not
actually allocated secondary storage at the outset. Instead, the file map entry for this record
is marked appropriately. Whenever a process makes reference to such a record (as a page
of the corresponding segment), a block of all zeros would be written into core memory,

tif the copy is made for temporary use, i, e,, only for the duration of the process which re­
fers to it, the branch is placed in a directory that is associated with this process, It is ap­
propriately called the process directory, Every process, while it exists in Multics, will have
its own process directory.

6-3

At the time it is created, each branch has associated with it a unique identifier

(in reality a generated (36- bit) serial number). In addition, each branch holds a

list of one or more "entry names". These are the official nicknames or aliases by

which we as users will normally refer to the segment in our source code. Multics

is so designed that any entry name in the branch is a permissible reference name

in our source code.

A principal purpose of the alias feature is to provide convenience to the pro­

grammer for designating symbolically distinct entry points in the same external

segment. An appreciation of this concept is enhanced by explaining the following

Multics convention. A call reference to an external segment of the form

"< procname>" in EPLBSA (or "procname" in EPL)

will be interpreted as the entrypoint whose address

"< procname> I [procname J" (or "procname$procname" in EPL).

The value of this convention becomes clear when we now consider a single procedure

which has two or more aliases. Suppose we picture a library file whose branch has

two aliases, "insert" and "delete". Then assuming insert and delete are declared

external, an EPL call of the form

call insert (A, B);

will be interpreted by the compiler as syntactically identical with

call insert$insert (A, B);

while a call of the form

call delete (C, D);

would be interpreted the same as

call delete$delete (C, D);

and the respective targets will be

s# I insert

and

s# I delete

Here, we use the symbol 11 s#" to refer to the common segment number that would be

returned by the Segment Management Module at the Linker's request. The offsets

insert and delete are values which the Linker would obtain by inspecting the in-symbol

table of the segment established for this file.

6-4

The converse situation should also be appreciated, Namely, if a file has only

one entry name, say "delete", but the procedure it represents has two entry points,

one named "delete" and the other named "insert", then to reach the second entry

point, the user has no choice but to refer to it as delete$insert, i.e,,

call delete$insert (A, B),

Another purpose of the alias feature is to permit different programmers on the

same project to refer to the same segment with different names, e, g., delete and

remove. Rather than reassemble or recompile the code written by these programmers

to force conformity among several programmers on the same project in the referenc­

ing of a given segment, it may sometimes be simpler to guarantee the appearance of

both names in the file branch of such a segment, (and to let both names have the same

offset value),':'

Any programmer (in this instance, possibly the project manager), who has write

access to the directory holding the particular branch, may add to it as many distinct

entry names as he cares to. Of course, no two branches in any one directory are al­

lowed to have a common entry name. t But, two or more directories may each have

a branch with the same entry name. Figure 6-la is an attempt to summarize the ideas

concerning directory structure given in the foregoing discussions, To conserve space,

circles represent directories and rectangles represent nondirectories in this figure

(just the reverse of the technique used in Figure 4-1).

6.2.2 Links

A link is a special kind of named entry whose purpose is to point to another entry

normally in some (any) other directory. Links permit a useful form of cross­

referencing capability that can be superimposed over the basic tree structure formed

by the branch type entries. Ordinarily, since files and their corresponding branches

must be one-to-one, no two directories can directly share the same file. But, for

example, with the use of link type entries that point to branches, a subsystem design­

er can effectively develop a directory so it appears to have files in it that, in fact,

belong to other directories. Thus, in Figure 6-lb, directory q which "points" direct­

ly to only two files, named v and w, indirectly points to two others: h inn and c in s.

*This would probably mean revising the source code for this segment to make delete
and remove synonyms (in EPLBSA) or dual labels (of the same EPL statement) and
then recompiling.

t This restriction is guaranteed by the Basic File System.

6-5

Likewise, directory s indirectly points via a link to file m in the superior directory x.

This capability for grouping under one directory a selected set of files \•:hich, via links

are actually located in other directories, is a powerful "packaging" device in the de­

sign of subsystems. This packaging is especially effective when the subsystem is

later embedded within other subsystems. We will return to this topic later on in this

chapter.

Note, also, that if q is a directory belonging to userl and n is a directory belong­

ing to user2, then userl may use the symbolic reference "r" while user2 may use the

symbolic reference "h", each intending to access the same segment (<h>). Actual

access to <h>, however, is another matter. Userl's access to <h> is governed by

the ACL information in the branch named "h" in < n>. The existence of a link to < h>

in userl 1s directory has no bearing on userl 1s access privileges to <h>. Only users

who have write access to <n> can accord userl access privileges to <h>.

6. 2. 3 Path Names

There are several ways by which the system can refer unambiguously to a par­

ticular branch (or link) in the hierarchy. As for the subsystem writer, the primary

way is by giving the path name for the entry. ':'

A path name, in the simplest sense, is a list of the node names from the root to

the branch (or link) inclusive. Elements of the list are separated, not by commas

as you might expect, but by the ">" character. Thus, the path name for the branch

in Figure 6-la named sub would be:

Since this same branch has the alternate entry name sort, an

equally unique path name would be:

user directory directory>useral directory>sort"
- - - '--y--J

directory path entry
name

path name for the branch
(or link)

':'Another way, mentioned here only for the sake of completeness, is by unique id, Uniqueness
is assured because the 36 bits include the date and time of day that the branch was created as
well as the identification of the hardware system which created it, The ordinary user will n'?t
normally know the unique id for a segment he wants to reference, (See BG. 7 for more deta1ls.)

6-6

name

~'
~to

{a) Circles represent directory segments and
squares represent non-directory segments.
In reality, the names shown in the directory
files {circles) and in the non-directory file
(squares) are, in fact, stored in the branches
to these files, i.e., in the immediately
superior directory.

Figure 6-la. Conceptual Model of the File System Tree Structure

6-7

branches

links

(b) Showing the cross-referencing that can be
achieved with the use of links. Links may
be independently named. Thus, in q, the
link named j points to the branch whose
name is c.

Figure 6-1 b. Conceptual Model of the File System Tree Structure

6-8

Note that a path name for a branch can be thought of as having two main parts:~~

The path name for the directory, which points to the branch (directory path name),

followed by the entry ~for the branch.

Certain shorthand conventions are expected by the basic file system procedures.

When you write a path name which emanates from the root node, you almost never

write the name of the first two root directories of this path. Simply begin the path

name with ">" as a shorthand for "root>multics root>". t Thus any path name, e. g.,

">a>b>c", which begins with ">" is considered to be an absolute path~·

6. z. 3. l Relative Path Name

An executing process has at all times associated with it a directory that is desig­

nated as the working directory. t This is a directory that the process happens to be

"currently using." It is merely a reference marker to a point in the hierarchy from

which it becomes "convenient" to describe paths to other segments. Thus, tree paths

to a particular node may be described relative to the working directory of a process.

If a path name begins with some character other than ">", the given path is interpreted

relative to the working directory. Use of this convention greatly shortens the length

of most path names. We illustrate by referring again to Figure 6-la. Assume that

useral_directory is the working directory at some instant in time.

Example 1

The path name for proc is simply "proc"; for sub it is simply "sub". Thus, for

branches (or links) in the working directory, the entry name and the path name are

identical.

•:<A user can call for services of the basic file system directly via certain of its "primitives" in
Segment and Directory Control, indirectly via such gates as the entry points in the SMM, or in­
directly by using one of the many file system commands described in BX. 8. In these calls (or
commands), the target procedure in Segment or Directory Control either expects to have a path
name passed to it as an argument, or expects to return a path name as an (output) argument,
Typically, the caller is required to furnish the path name as a pfr of arguments, i, e,, directory
path name and entry name. We will be speaking about some oft ese primitives in Section 6. 4.

tit would only be used when making certain special calls directly,to the Basic File System, en­
abling the caller to designate either 11 root>multics _root" or "root>system root. 11 The latter
would only be recognized by a privileged callee, It is not necessary for a-user to preappend
11 root>multics_root" because normally all path names are regarded as relative to either
"root>multics_root" or to "root>system_root," whichever is stored in a key location within
the pdf (process definitions segment), a special process data base available to the supervisor,

:t"The system or the user is free to alter the designation of the working directory. BX. 8, 1 z
describes a series of commands, which allow the user to exercise direct control over the
designation of the working directory, As control moves from user 1s procedures to superviso­
ry modules, the working directory often changes temporarily, because supervisory modules
(e, g,, Directory Control) set the working directory and reset it as required,

6-9

Example 2

The path name for physical_properties (relative to the working directory is

''data _bank>physical_properties."

Example 3

It is also possible to use the relative path name convention when referring to a

branch that is not a descendant of the working directory. This is done with the aid

of the character"<". It is interpreted to mean parent of the working directory.

Moreover, "<<"would mean parent ~parent of the working directory, etc.

Thus, a suitable (relative) path name for < usera3 _directory> is "< usera3 _

directory". This is a somewhat more attractive alternate to the (absolute) path

name:

">user_ directory _directory>usera3 _directory"

especially since users will not normally know the names of the parent directories.

Example 4

As another example of the same type, the (relative) path name for <angles>

would be "<us era3 _directory> angles 11 •

6. 2. 3. 2 Retrieving File Branch Information

When Directory Control is handed a path name for the purpose of retrieving

corresponding file branch information, the desired directory entry is retrieved and

its type (link or branch) determined. If it is a branch, the target has been reached;

if it is a link, the path name found in the link is then employed for a repetition of the

retrieval process. A chain of links eventually leading to a branch is also a possi­

bility. Directory Control is coded to prevent the repeated retrieval process from

getting out of hand, as could occur in the event the links loop back on themselves.

Figure 6-2 shows a chain of two links leading to a file branch. The chain depicted in

Figure 6-2 can conceivably arise in the following way. User4 grants permission to

user3 to use the routine called "b". But, it is inconvenient for user3 to refer to the

same procedure as "b" because he already has a routine in his directory called "b",

so he chooses to refer to the user4 - procedure as "c". At some other time user3

persuades user2 to use the same routine, only user2 chooses to call it by still another

name, "d", for similar reasons. When and if user2 makes a reference to "d", he

may find he has no access to it, if user4 has made no provision to include user2 in

the permission list for "b".

6-10

+ < user_ directory_ directory >

< userl_ directory> < userZ _directory>

I ~ ? ~ ~I I ~ ~ r~J

If userZ and user3 appear in the access con­
trol list for < b> in user4 1 s user directory,
then userZ may use "d" as a symbolic refer­
ence and user3 may use "c" as a symbolic
reference to the file whose branch entry is
named "b".

Figure 6-2. Chain of Links

6. z. 4 Programming Without Path Names to Segments

If every programmer were forced to unambiguously designate every segment by

its path name (absolute or relative), the job of the administrative modules would be

made a great deal easier, but they would have few, if any, customers! A major de­

sign objective of Multics is to shift the burden of unambiguous segment designation,

or as much of the burden as possible, from the user to the system. Certainly, for

example, the ordinary PL/I or FORTRAN programmer should be entirely freed of

this burden.

6-11

Our purpose now is to show in a general way how this is done and greater details

will be provided in later sections.

In ordinary usage, the reference name given for a segment is the name given to

the corresponding file's directory entry {normally a branch). This reference name

can be thought of as the path name for the file stripped of its front end {i.e., stripped

of its directory path name). It is this omission which, while making it easier for

the users, complicates the problem for the SMM when it is asked to obtain a segment

pointer for the symbolically referenced segment.

We illustrate this problem by again referring to Figure 6-1a. Suppose the pro­

cedure named proc is executing in a process which we shall call process1. Now, let

< proc>, in particular, be the segment whose branch is in< useral_ directory>.

Further, let us suppose< proc> now incurs a link fault to someplace in< sort>. The

Fault Interceptor passes the baton to the Linker which, after extracting the string

"sort" from< proc> 1s outsymbol table, now calls the SMM, asking it to return a seg­

ment pointer to< sort>, i.e., an its pair of the form

sort #

0

It is possible that the SMM already knows the segment number for this segment

by virtue of having previously helped the Linker on an identical problem, e. g., on a

link-fault to the same segment. There is no problem in this case. This is because

the SMM oversees the recording of all such symbolic reference name-segment number

pairings in the process' KST {Known Segment Table). Hence, when requested to do

so, the SMM will cause the KST to be searched for the return of the matching segment

number.

If, however, there is no record of the reference name 11 sort" in the KST, then

the SMM has the problem of deciding which of the many possible segments named

"sort" is the one desired by the faulting procedure. Looking over Figure 6-1 a, we

see four branches, each having an entry name "sort". Some are more "likely" than

others, but, in principle, any one of these may be the intended segment.

Most likely, however, the one marked (D is not intended. But, any one of the

other three, i.e., @ , G) and @ might very well be the one the user had in mind.

6-12

6. z. 5 Standard Search Rules

Multics has adopted a standard approach (actually a heuristic) for resolving this

ambiguity, consisting of a sequence of trial assumptions. The first trial assumption

is that the intended target name is a file having a branch in the same directory as the

one holding the branch for the faulting procedure segment. That is, the first direct­

ory to be considered is the so-called caller directory abbreviated as "cdir". In our

example, cdir for< proc>, the faulting segment, is "usera1_directory". Hence, the

branch marked@ in Figure 6-1a would be selected. In general, however, if no

entry can be found in cdir having a name that n1atches "sort", the SMM falls back

on a secondary search strategy. This is to search a (system-prescribed) ordered

list of directories. First on this list is the user's current working directory dubbed

"wdir". {Frequently cdir and wdir will be the same.) Following this is a list of

system library directories, and finally the process directory. The first match found

is then considered to identify the intended target. If no match is found in any of the

prescribed directories in the "search list", failure is then conceded by the SMM.

It reports an error code back to its caller (normally the Linker), which in turn must

act appropriate! y.

To summarize, the Standard Search List is given in Table 6-1.

Primary
Strategy

Secondary
Strategy

TABLE 6-1

Standard Search List

Directory

l. The directory holding the branch
to the faulting procedure

2. The user's working directory

3. The Multics Command and Systems
Library

4.

5. A list of up to five additional

6. special libraries which may

7. eventually be placed in the

8. hierarchy

9. The user's process directory

6-13

Name (or metaname)

(cdir)

{wdir)

Sys_lib

Sys_lib_1

Sys_lib_Z

Sys_lib_3

Sys_lib_4

Sys_lib_5

(pdir)

6. 2. 6 Permission to Search

The scan of each directory in SMM' s search list is performed by Directory

Control. Each search of a directory is done on behalf of the faulting segment. Con­

sequently, Directory Control, a ring-0 module, first ascertains the faulting segment's

right-of-search. In essence, the rules are as follows. Suppose the faulting segment

is <a> and it needs to know if "b" is an entry name in< directoryl>. Although

Directory Control does the "looking," it first checks that the user has search privi­

leges in < directoryl>. This check amounts to determining if the user _id (for the

process which is calling Directory Control) appears in the access control list for the

branch describing <directory!> and, moreover, that the E (execute) attribute is ON

in the effective mode of this branch.>:< For a refresher on what the user_id is, review

Section 4. 2. 2 of this Guide.

If any directory on the search list fails to meet these criteria, it is skipped and

the next directory on the list is searched.

As another example, if < proc> took a link-fault using the reference cosine, t

a path name to the branch named "cosine", found in Sys _lib, would be returned. If,

prior to taking this link-fault the user had executed the set_wdirf command, desig­

nating the path name: "< useral_ directory>al_library" as the working directory, then

his own library cosine routine would be selected instead of the Multics library cosine

routine.

Finally, we note that in the hypothetical situation given in Figure 6-1 a if useral' s

< proc> takes a link-fault to sort while the working directory is set at useral_directory,

it would be impossible for the SMM to return a pointer to the sort procedure in

al_library, i.e., to (±) unless the user makes some deliberate effort to achieve this

objective. This is because useral already has a branch named sort (one of four

aliases) in the same directory that holds < proc>, the caller.

In order to give< proc> the opportunity to reference useral 1 s library routine

called sort, one of two approaches must be taken. a) Prior to the call to sort, make

an explicit request of the SMM to "initiate" the desired file as a segment which, in

this process, is hereafter to be referred to as sort. To initiate a segment in this

-·-'''The principal MSPM reference is BG. B. 04.

tHenceforth, reference names will be italicized (underscored) in this text so as to
avoid using quotation marks.

f See BX. 8 for a description of this command.

6-14

way a programmer must be able to furnish the SMM with the path name of the de­

sired file. Note that the same problem can recur again during execution of another,

similar process. The explicit call to the SMM for initiating the desired sort file

does not alter the basic directory structure or search strategy, so it only provides

a per-process "remedy". We shall defer additional discussion of this type of expedi­

ent until Section 6. 4. b) Make some change to the directory structure itself any­

time prior to the implicit invocation of the SMM. One possible change which might

be made is as follows: First, delete the alias sort from the list of four names given

to the branch marked @ . {The delname command can be used for this purpose, as

described in BX. 8. 06.) Second, add a link to useral_directory which points to the

branch named sort in al_library, as sketched in Figure 6-3. {The link command can

be used for this purpose, as described in BX, 8. 04.) An alternative to this second

step would be to have< proc> execute a call to the system library routine, change_

wdir to set the working directory to "al_library" immediately prior to the call on

sort. The call would, in this instance, be:

cail change_wdir {"al_library11),

After returning from the desired sort routine it would probably be advisable to reset

the working directory by is suing the call:

call change_wdir ("useral_directory11).

The foregoing actions exemplify the type of control a user can exercise on the

directory structure that is subsidiary to his user directory. In later sections,

especially Section 6. 5, we shall consider the case where the same reference name

may be used (in the same process) to mean different files in the hierarchy. This

conflict-of-names problem and ways to solve it or avoid it is one with which sub­

system designers will frequently be confronted.

6. 2. 7 The Case of a Search Failure

If after considering every directory on the search list no entry is found, this

failure will be considered to be an error and the error code is returned by the SMM

to the Linker, and thence to the Fault Interceptor which signals a link-fault condition

in the ring of the faulting segment. If the user has not provided his own handler, a

system-supplied default handler will be invoked. It will print a canned message and

will then call a system procedure to terminate the process. In this way the nature

of the error is reflected back to the user.

6-15

useral_directory

al_library

Figure 6-3. Linking to Branch Named Sort

6. 2. 8 Access Failures ("The operation was successful but the patient died".)

Even if the search is successful, Access Control which is called by Directory

Control after the branch has been found, can still reject the request on grounds of

access violation. Access Control, as described in Chapter 4, will check to see if

the user 1 s user_id appears on an ACL (Access Control List) entry in the branch.

Failure to find the user_id (or a class name which includes user_id as a member) in

any ACL entry of the branch is, in fact, only a partial indication that the creator of

the target file wishes access to be denied to this user. Each directory is actually

provided with another access control list. It is called the Common Access Control

List (CACL). A user_id that appears in a CACL entry of a directory is accorded

blanket access to the files for all branches in that directory. Access Control checks

the CACL':' after failing to find the user_id in the ACLof the target branch. A fail­

ure to find a listing on the CACL seals the verdict. Access is denied and the rejection

':'In Chapter 4, we deliberately omitted a discussion of the CACL when we described
the structure of a directory. The reader can see these details by inspecting BG. 7.

6-16

notice is passed backward via the SMM to the Linker, etc. The nature of the error

is reflected back to the user in the same way as we described for the case of a search

failure.

6. 3 INITIATING A SEGMENT

Assuming the search module has been successful, the SMM now has a complete

path name for the desired file. Its next job is to initiate this file as a segment to the

current process. From the viewpoint of the user, initiating a segment simply means

establishing a name -number pair for use in handling this and all future symbolic

reference (including link-faults) that are directed toward the same segment.

The information associated with each initiated segment is registered as a new

entry in the Known Segment Table. Placing an entry in this table for a new segment

is referred to as making a segment "known" to a process. Placing the ith entry in

this table is tantamount to assigning i as the segment number of this segment. Each

entry is threaded back to the entry that corresponds to the immediately superior di­

rectory file. In this way, KST entries form a tree structure. In essence, the KST

tree is a subtree of the entire file system hierarchy and characterizes the current

state of the executing process.

Table 6-2 lists the items in each KST entry.* Item 3 serves as the backward

thread referred to in the preceding paragraph. The very first item is a dynamically

maintained list of reference names by which each segment is known in the process.

More will be said about this item momentarily. Items 6, 7, 8, 9, and 10 represent

information copied from the corresponding branch at the time the segment is initiated. t
The effective mode and ring brackets (items 7 and 8) are used by Segment Control to

construct (and possibly later to revise) SDW's (segment descriptor words). Items 2,

4, and 5 will be disregarded in the present discussion.

Only the Basic File System is privileged to use or modify KST data. This is be­

cause the data kept here is the basis for policing the process' use of each segment,

and for this reason must remain compatible with the latest access control information

given in the branch for this segment.

>!<A complete description of the KST and its storage structure is given in BG. 1.

titems 7, 8 and 10 are updated from time to time as a rest:lt of subsequent changes
made in the corresponding branch.

6-17

TABLE 6-2

List of Items in a KST Entry

Importance level of Applicability Check on
item for discussion the type of Segment

Item in this chapter Directory Non-directory
No. (l is most important) Item Description Segment Segment

l l List of names':' j I ---
2 nil Number of currently

known segments in this v ignore

process for which this
directory is the parent
directory

3 l Pointer to the branch .j .j
for this segment.
(Includes segment num-
ber for this segment's
parent directory

4 & 5 nil Transparent usage and .; ../
transparent modifica-
tion switches

6 4 Directory segment I I switch (ON if a
directory)

7 l Effective mode I .;
(R,E,W,A)

8 l Ring brackets ../ I (rl, r2, r3)

9 3 Unique identifier
(36 bits) .; I

10 2 Date and time the
branch for this s eg- I I
ment was last modi---fied --

':'If this entry is for a directory, the list begins with the absolute path name for the
directory. The remaining names constitute a cumulative list of symbolic reference
names by which the process currently knows this segment.

6-18

•

6. 3. 1 Listing Symbolic Reference Names in the KST

In a single process a target segment may be referred to by one of several dif­

ferent names. The first of these names that is actually used as a symbolic refer-

ence will trigger the initiation of the segment (i.e., the construction of a KST entry).

The segment will then initially be known by this first symbolic reference name. Later,

if a second reference name is used and if the SMM determines that this too is a valid

alias for the same segment, this alias is also entered into the KST entry (as an append­

age to the list in Item l of the entry).

Any of the following are valid reference names for a file.

1. Entry names in the file branch for this segment.
2. Entry names in a link to the file branch for this segment.
3. Any name that the user may wish to declare (by an explicit call to

the SMM) to be an alias for the segment. Such declared aliases
are temporary, i.e., for the life of the process. Since the KST
vanishes when the process is destroyed, so does the temporary alias.
Section 6. 4 mentions how these alias declarations are made.

6. 3.1.1 Ring Context Prefixes

Each such name that is stored in the KST entry has prefixed to it an important

bit of context information, namely the validation level.>!< This number is the ring

in which the referencing procedure is executing when it makes the symbolic refer­

ence. The KST form is:

"nn refname" v-
validation level

If the SMM is subsequently asked for a segment pointer to the same "reference",

mere discovery of this name in a KST entry will not be sufficient; the prefixed valida­

tion level must also be matched against the current validation level. Only then will

the SMM deduce that the index of the KST entry where the match was found is the

appropriate segment number for use in constructing the requested segment pointer.

By associating the validation level, nn, with each recorded reference name in the

KST, the SMM is able to offer the user an extra degree of control over the mapping

of names to their intended target segments. A user may, if he chooses, use the same

reference name to mean two or more different segments, each target being determined

in the context of the ring in which the reference to it has been made.

':'For a refresher on validation levels, see Section 4. 3. 4.

6-19

6. 3. 1. 2 Examples

A somewhat elaborate and admittedly contrived series of examples is given here

to illustrate the points we have just made. We assume that the file system hierarchy

includes the files and file branches as shown in Figure 6-4. We further suppose

that in usera5 1 s process a sequence of symbolic references are made in the order

shown in Table 6-3.

Each line in the table gives values for the pertinent state variables (columns 2,

3, and 4) that were extant at the time the symbolic reference was made. It also

shows the identified target segment (column 6) and the name if any that has been

added to the corresponding KST entry (column 7). The response of the SMM

(columns 5-7) for a given line in the Table is clearly dependent on the process 1

history. For our purposes, the history begins at line one.

The table must be read one row at a time. As you read a row you are expected

to be consulting Figure 6-4. The first 11 lines show the process executing a chain

of calls:

The next paragraphs amount to a walk through the first few lines of the table. De­

pending on your interest, you are invited to finish the walk through the first 11 lines

as one exercise and if the spirit really moves you, to complete the remaining lines

as an additional exercise.

Walk Through Lines l through 6 of Table 6-3

Line 1

Procedure < p> executing in ring 32, using < usera5 _ dir> as its working directory,

makes a reference to a segment using the name ~· Since this is presumably the first

time the reference name~ has been used in this process, there will. be no KSTentry

having a reference name of the desired form (32_a), so a search of the hierarchy is

begun, beginning with the caller's directory. The caller directory is < usera5 _ dir>

and a search of this directory finds a branch (to file [[]) with an entry name ~·

The KST is re-searched to see if there already exists an entry whose unique id is

[[]. ':' This could be the case if the file had previously been initiated under a differ­

ent alias. We assume here that this possibility in fact did not occur. Hence, a new

KST entry is created and the entry name 32 _a is added to its (empty) list of refer-

ence names.

··-
···It should be clear that our use of a number inside a square to represent a unique
identifier (actually 36 bits), is merely a graphical convenience.

6-20

< sys_lib> <us eraS dir>

Figure 6-4. The File System Hierarchy

6-21

TABLE 6-3

Buildup of Entry Names in the KST

State Variables Response by the SMM

@
Sa Sb 6a 6b 7a 7b

Line ® ® €)
No. Name of Ring of Current Symbolic Directory Name of Direc- Unique designation New KST New KST Form of

referenc- execuc- working refer- search re tory in which (schematic) of the entry entry new KST
ing proc- tion direc- ence qui red matching entry target file and its ~es or name entry
edure tory name (yes or no) is found corr. segment no) name

< p > 1 <P> 32 <useraS..::.dir~- a yes <useraS_dir> :iJ yes yes 32._ a

{
<q >

2 <P> 34 <UseraS_diJ:.> q yes <useraS_dir> 3] yes yes 32_q

3 <q> 32 <useraS_dir"> b yes <useraS_dir"> 2J no yes 32-b

,~? 4 <q> 32 <useraS_dir> r yes <subs;> :ll yes yes 32_r

5 <r> 33 <.useraS_dir> b yes <sys_lib).. ;r; no yes 33-b

0' (I
N
N

< s >

(
<.t>

6 <r> 33 <useraS_dir> c yes <useraS_dir> ~ no yes 33_c

7 <r> 33 <.useraS_dir> s yes <subs> L!J yes yes 3Ls

8 <s> 33 <useraS_dir."' b no - 1_1_1 no no -
9 <s> 33 <.\1seraS_dir.~ c no - ')r no no -

10 <s> 33 <useraS_dir~ t yes <subs~ ~ yes yes 33_t '

11 <.t> 33 <useraS_dio c yes ..;;:useraS_dir > [2) no yes 32_c

12" <q> 32 <useraS_dir> a

13 <q> 32 t

14 <t> 32 b

15 <t> 32 r

* It is presumed that prior to reaching the occasion of line 12 normal return has been executed from

<t> to < s> to < r > to < q';> •

e e e

Line 2

Procedure < p> (still executing in ring 32) calls < q>, thereby making the

symbolic reference g_. Since (we assume that) no entry in the KST has the

reference name 32_q, a search of the hierarchy yields the fact that file [!] in

<us eraS dir> fulfills our search requirements. Assuming a second search of

the KST shows that no entry now has the unique id equal to [I] , the appropriate

KST entry is then formed and the name 32 _ q is added to its list of reference

names.

Line 3

Procedure < q> executing in ring 32 makes a reference to a segment using

the name ~. Assuming the search of the KST fails to find an entry name that

matches 32_b, a search of the hierarchy will result in again finding file m .
A re-search of the KST now shows there already is an entry for a segment whose

unique id is []] • So, no new KST entry is needed. It is merely necessary to

add 32 b to the list of reference names in the existing entry.

Line 4

Procedure < q> calls < r> with the symbolic reference .£• A search of

the hierarchy is again assumed necessary. This time Directory Control will

discover that a link in <user aS _dir> (not a branch) has the matching entry

name. The path name found in this link points to a branch in < subs> , thus

identifying file (1] as the target. Again, we assume a new KST entry for this

segment must be made on grounds that there is no existing KST entry having

I1J as its unique id.

Line 5

Since < r> executes in ring 33, when < r> makes symbolic reference to

~. a match must be found with 33_b in a KST entry. No such match will be

found in this case so again the hierarchy is searched. But now, the caller

directory is < subs>.

link named b is found

file ITJ in < sys _lib>

initiating file ITJ as a

Line 6

This is the first directory in the search list now. The

in <subs> leading Directory Control to come up with

as the intended target. A new KST entry is formed,

segment, and making it known by the name 33 b.

Procedure < r> refers to c. There is no branch nor link named c in

the caller directory <subs> • The standard search rules next dictate a search

6-23

in the working directory, <usera5_dir> • The search succeeds in locating the

branch for file (£] , one of whose aliases is £• The reference name 33 c is

now added to the list of names by which the segment for file rn is now known.

In case the subsystem actually intended that the target be file [I) in •

< sys_lib> , it would be necessary to have previously established a link named

£ in < subs> pointing to the branch named _£ in < sys _lib> •

6. 3. 2 More on Ring Context Implication

If a procedure < p> has an access bracket of two or more rings, it is

possible (and perhaps occasionally desirable) for the meaning of< p> 1s symbolic

references to depend on the particular ring within the access bracket in which

< p> happens to be executing. To be more specific, Figure 6-5 shows a sequence

of symbolic references which will help to explain the point we have just made.

In this situation the service procedure named .P. can execute in ring 32 or in

ring 33. Rules for determining in which ring of its access bracket a procedure

will execute were developed in Section 4. 2. 2. 1. Applying these rules we see

that if called from procedure < x> whose ring brackets are (33, 33, 33), then

< p> will execute in ring 33. If called, say, from a procedure < y> whose ring

brackets are (32, 32, 32), then < p> will execute in ring 32.

Figure 6-5 suggests that while < p> executes in ring 33 and references

sort, the intended target segment could very well be one routine, say, a radix

sorting procedure; whereas an entirely different target is intended, say a binary

sorting routine, when < p> executes in ring 32. Moreover, if the thread of

control shifts back and forth between ring 32 and ring 33, the meaning of sort,

as used in repeated calls from < p> could alternate!

One way this alternation of meaning for a symbolic reference could be

explained is by picturing that there is a physically different copy of the link

pointer used to address the target. Each of the two link pointers would be

snapped by the Linker, but to distinct targets. As a matter of fact, this is

precisely how this dual intent occurs in Multics. The two different link pointers

reside in different copies of linkage segments for < p>. One linkage segment is

used when < p> executes in ring 33 and the other is used when < p> executes

in ring 32.

We shall now take a more complete look at the idea of multiple copies of

linkage segments. Having done this, we will consider how the situation

described in Figure 6-5 is appropriately reflected in the KST.

6-24

execution in
ring 33

execution in
ring 32

m 2 {radix method

0 ;:.. intended > p sort

3 l
4 5

~ ~ sort {binary method y p
intended

This sequence begins with execution in a segment
known by the reference name ~· Access bracket
for .2. is (32, 33). When .2_, referenced by ~. refers
to sort, a different target is intended than when .2_,
referenced by y, refers to sort. This dual intent
is achieved by providing two copies of £.1 s linkage
segment, one for use when executing in ring 32
and one for use when executing in ring 33.

Figure 6-5. A Sequence of Five Calls

Ring protection considerations dictate that for each ring in which < p>

executes a separate copy of the linkage section must be used. Here is why:

While < p> is executing in ring 32, the corresponding linkage data must be

protected from procedures executing in higher -numbered rings. Hence, the

ring brackets for < p> 1s linkage section must be of the form (i, j, 32), where

i ~ j ~ 32. Now, we can employ a similar argument when < p> is executing

in ring 33. Granted, that < p> must have access to its linkage data, but how

can it have access to the particular linkage section made earlier whose ring

bracket is (i, j, 32) ? Clearly, a new copy of the linkage section must be

formed whose ring brackets are of the form (j, k, 33), where j ::::: k :::::33.

Extending this argument to the general case, we see that a procedure < p> whose

6-25

access brackets are (1, m) may require (as necessary) a separate copy of its

linkage section for each of the rings 1, 1+1, ••• , m-1, min which < p>

actually executes.>!<

A Matter of Terminology Regarding Linkage Sections.

In the foregoing paragraph you may have noticed we used the phrase
linkage section rather than linkage segments. It would be very costly
if the system let each new linkage copy stand as a separate segment.
Some of the consequent costs are: longer descriptor segments,
longer KST's (and other such ring-0 segments whose entries are on
a per-segment basis), wasted space in individual linkage segments
and more segments which can be missing from memory when they
are needed. To avoid these expenses, the Linker whenever possible
will place each created copy of a linkage block onto a special, one­
per-ring segment called a combined linkage t segment. This seg­
ment contains linkage blocks or sections for other segments which
have also been referenced in this ring; call it r. The combined
linkage segment for this ring has the ring bracket (r, r, r). It is
actually of no great importance to the subsystems writer whether a
linkage section "stands alone" or is combined with those of other
segments. The important net effect relative to this discussion is
the same; namely: multiple copies of linkage sections are made for
a segment when it is referenced in different rings. It is, however,
far simpler for our discussion to picture each of these linkage
copies standing as separate segments. So in all subsequent discus­
sions we will revert to the terminology of linkage segments rather
than linkage sections.

We are now ready to view the action taken by the SMM in handling the five

symbolic references depicted in Figure 6-5. This is done with the aid of

Figure 6-6 and Table 6-4. The former shows the kind of directory structure

which would be needed to support the "ambivalence" of sort in the Figure 6-5

example. What appears to be required is that branches for neither of the two

targets called sort may appear in the same directory as the branch for < p>,

the calling procedure. Line numbers in Table 6-4 correspond to the 5 numbered

symbolic references of Figure 6-5. It is necessary that the working directory be

adjusted at least once during the sequence of references. Two changes are

assumed in the trace depicted in the table. Wdir is assumed to be set to

< student_lib> prior to the ring-33 call on< p>. Wdir is set again, this time to

< sys _lib>, prior to the ring- 32 call on < p>.

*Certainly these copies need not be made in advance. The Linker, in fact, orders
these copies to be made as it handles link faults to < p> from each new ring in

the range 1. through m.

t The primary reference is MSPM BD. 7. 05.

6-26

< useral_ directory>

• • • sort • • •

X

< student lib>

This structure is consistent with the
call sequence in Figure 6-5.

y

Figure 6-6. A Possible Directory Structure

6-27

p

p

0"-
1

N
00

Line No.

1

2

3

4

5
-

e

(i)
Name of
referenc-
ing proce-
dure

<:,.x>

<P:>

<x>

(.y)

<P>
- ---~-

TABLE 6-4

Build-up of KST Entries for Case Shown in Figurffi 6-5 and 6 -6.

State Variables Response by the SMM

0 G) e 6a 6b 7a 7b

Ring of Current Symbolic Unique id New KST New KST Form of
execution working reference of target entry entry new KST

directory name required name entry
name

33 (Student_lib) p 0 yes yes 33_p

33 <_student_lib) sort [}] yes yes 33_sort

33 <.student 1 ib) y Pl yes yes 32_y

32 (sys_ lib) p ! 3j no yes 32_p

32 {sys_lib > sort G yes yes 32_sort

-~

e

Remarks

First copy of <.. P.
link>is made.

Radix sort is
selected.

Wall crossing
fault (inward).

1.... y ')sets working I

i

direction to
(sys_lib '> before

making call on p.
Second copy of <. p
link> is made.

Binary sort is
selected.

~

e

6. 4 EXPLICIT CALLS TO THE SMM

Thus far we have been viewing the SMM as a module that is normally called

by the Linker in search of a segment pointer for use in snapping a link to a

target segment. Now that we understand the task involved in initiating a segment,

we can consider reasons why a user may wish to cause the initiating or terminating

of a segment in a more explicit manner, i.e., by calling the SMM directly.':'

One important reason is so that a user process can be allowed to declare

that an arbitrary alias is to be meaningful as a reference name for a particular

segment of the process. The declared pairing of reference name and segment,

which is defined by giving its full pathname, can then remain in effect throughout

the life of the process. Temporary aliases are not made part of the directory

structure since they are stored only in the KST entry for the stated segment. Sub­

sequent to the declaration that "initiates" the alias, (in actuality a call to the SMM

entry point, hcs$initiate), link fault references can be made to the declared alias

just as if it were a valid entry name in the directory hierarchy.

It may also be necessary occasionally to ask for the initiation of a segment

in order to learn information about that segment, possibly in anticipation of ref­

erencing the segment itself at a later time.

Table 6-5 contains a selected list of tasks which a user's process may need

to have completed. These tasks can in each instance be accomplished by the appro­

priate call or sequence of calls to SMM entry points.

Most of the listed calls to the SMM are relatively safe for a subsystems

writer to make -- with the exception of a call to terminate a segment. The SMM

is nice enough to return a value for an error code argument that indicates the

success or failure of its mission. (The reader can consult BG. 18.01 for details

on the calling sequences, if he chooses.) Thus, an attempt to initiate a segment

from ring 32 with the reference name zilch will fail if there already exists a KST

entry with the name "32_zilch11 and the returned error code will so indicate.

To initiate a segment, a user must supply the SMM with a path name. To

terminate a previously initiated segment, a user must supply a segment number.

Herein lies a real danger. This segment number is normally freed for a re­

assignment (by analogy to a reuse of a telephone number) the next time the

process initiates another segment. When a segment number n is terminated,

KST entry numbered n is deleted and the SDW numbered n is set to zero to

induce a segment fault the next time access is attempted through it. As long as

this number remains "deactivated" in this way, links that have been previously

':'A complete treatment will be found in the BG. 18 sections of the MSPM.

6-29

TABLE6-5

Tasks that a User's Process May Need Completed

EPL Names for the Appropriate
Task Entry Points in the SMM that are

to be Used

l • Given a valid path name for an existing file, hcs _$initiate
initiate a segment and obtain a pointer for
it. Optionally, supply a reference name as
well, so that it will thereafter be associated
with the segment being initiated. Optionally,
supply a reference which is to be regarded
as a copy of the one identified b) the given
path name.

2. Given a particular reference name hcs_$get_segment (if the path name
find a file in the search list of for the desired target can be found,
directories for this process. the corresponding file will be initiated

as a segment by an appropriate call
to hcs _$initiate).

3. Find the segment number for a hcs_$get_seg_ptr
segment, given its reference
name.

4. Find out the path name of a seg- hcs$get_path name (if not previously
ment, given its segment number. initiated a returned an error code

tells you so.)

5. Find out the effective mode and hcs _$get_seg_ status (if not pre-
ring brackets for a segment viously known, first call hcs _$
given its segment number. initiate).

6. Find out any or all of the refer- hcs _$get_name (use this entry point
ence names by which a given one or more times as needed).
initiated segment is currently
known.

7. Create an empty segment (file) hcs _$make _seg
by a given name and in a
designated directory having
certain designated attributes,
e. g., size, effective mode.

8. Terminate a segment identified hcs _$terminate
by a particular segment number.
(Terminating a segment is the
inverse of initiating it.)

6-30

snapped to segment n will induce segment faults and the user will be alerted via

error messages if such unintended events occur. However, if prior to executing

these snapped links, the user's process initiates another segment which is

assigned segment number n, chaos can surely occur. Any unintended address

formation which re-employs the snapped links to the former segments will go

undetected. Errors and possibly faults of unpredictable nature (and of hard-to­

recognize origin) are likely to occur shortly thereafter.

As you can see, an ordinary call to terminate a segment involves some risk.

A user should be certain that his process will never re-employ previously snapped

links while the target segment is terminated. In terminating a segment the user

may optionally specify that its segment number be held in reserve, i.e., not

returned to the "pool" of available segment numbers. Exercising the option

eliminates the risks described above and also offers other interesting possibilities

which may be of positive use to the subsystem writer. To appreciate the latter

possibilities, one must also be aware of a companion option that may be exercised

in the call to hcs_$initiate. This option permits the user to specify a segment

number to be assigned (if available) for the segment being initiated. Employing

both options, a user may terminate a segment named ~ and later initiate another

segment with the same number that also has the same name. In principle, then a

user has the power to let a given name take on two (or even more) different mean­

ings, albeit one meeting at a time. He can even cause a reversion to an original

meaning (by terminating the second segment named~ and reinitiating the original

one that was named ~). If done carefully, then at no time need there be a risk

that a snapped link would be used to address a spurious target.

6. 5 THE CONFLICT-OF-NAMES PROBLEM

A better understanding of the services and limitations of the SMM can be seen

from a study of the double-meaning or conflict-of-names problem which can

conceivably plague many a subsystem writer if he is not careful. The problem arises

wherever the same reference name is, in different parts of the same process, in­

tended to represent one of two (or more) different files. We illustrate with the follow­

ing example.

Suppose a subsystem writer, say a civil engineer, wishes to package a set of

related segments as a subsystem called "truss" for computing forces in arbitrary

structures. For simplicity let us assume this subsystem consists of the principal

procedure <truss>, a data segment called <formulas>, and the special routines

<cosine> and <arctangent>. Typically, truss users should not be expected to

know what procedures <truss> refers to nor where in the hierarchy they are

6-31

located. Now the difficulty is that some of these procedures may be referenced

in <truss> using the same reference names as are other (likely different)

procedures of the same names used by the "customer" who has "rented" the use

of truss.

We see that the user's process now not only needs to make reference to

different segments having the same reference names, e. g., cosine or arctangent,

but worse, the user will not be aware of this apparent ambiguity. If, prior to

calling <truss>, the user's process has already initiated one version of, say

cosine, how can we be sure that, when called, <truss> will link to the cosine it

needs? Or, if, after a return from <truss>, the user wants to compute cosine(x),

won't the cosine routine that is called necessarily be the one initiated by his

process while executing in the< truss> package? In short, how can the user be

sure that each portion of his process will get the cosine of its choice without

making an elaborate advanced study of <truss>' "inner works". Clearly, the

person who packages and "sells" others on using his truss subsystem must

guarantee that all subsidiary procedures, when executing in the truss subsystem,

will be properly selected (names paired with the right segment numbers and no

interference with name-number pairs needed when executing "outside" the truss

package).

This conflict-of-names problem was anticipated in the original Multics design

and a general solution for it was not only proposed, but implemented. An SMM was

designed which enabled a packager of a subsystem to relate one or more uniquely

identified segments to a uniquely identified caller or "parent" segment. Thus if

< x> is regarded as the parent, it would be, for example, possible to declare

segments < u>, < v>, and< w> as being related to < x> in such a way that when

symbolic references, ~. ~· and/or ~are made within < x> (and only within < x>),

links are snapped to the intended segments < u>, < v>, and < w>, notwithstanding

the possibility that the same reference names ~· v, and'!!. had already been used

(or would in the future be used} which refer to other segments in the hierarchy.

Establishing the required relationship among the segments could be achieved via

explicit calls to the SMM. As initially implemented, this SMM proved too costly

to use. The current SMM does not now provide the relate facility. Conceivably,

however, it could be expanded to achieve a somewhat similar objective. One way

that this relating capability could be added would be to expand the KST 1 s (intended}

representation of a reference name from what is now basically a 2-tuple, con­

sisting of a context ring number and a name, to a 3-tuple. If the reference name

is to be thought of as related to a parent, then the third element of the 3 -tuple

would identify the parent segment, (e. g., by its segment number); otherwise the

6-32

•

third component would be marked null to indicate no parent implied. For example,

suppose < x> is unrelated to any other segment, and suppose a first reference was

made to it from ring 33. Then its KST representation might be the character string

where ':":":' is some fixed length string which by convention means null. Likewise,

if <x> is initiated as segment#201, executes in ring 32, and is the parent of certain

segments < u>, < v>, and < w>, (whose unique path names are somehow given to

the SMM), then their KST names might, when initiated, appear as

"201_ 32_ u", "201_32_v", and "201 32 w".

We have taken a digress ion to discuss this type of solution to the conflict- of­

names problem to plant hope in the breasts of the faithful. Whether such an exten­

sion of the present SMM mechanism may eventually prove feasible is not known

now. For this reason the remainder of this section is devoted to a discussion of

techniques which the subsystem designer can use now, as alternative ways to deal

with potential name conflicts.

1. Changing the Reference Names Used within the Package to Increase the
Likelihood of their Uniqueness (or changing the ring of the procedure that
executes these symbolic references, or both). Clearly, by qualifying
the names used (or changing the context rings), e. g., truss cosine in
place of cosine, there will be a drastic reduction in the possibility for
name conflict.':' Of course, such an expedient, while it will appear
attractive to some, is not a general solution. Packagers who elect this
approach would do well to publish the reference names that they have
used in their packages so that their subscribers may be forewarned of
the consequences when using similar reference names in their own
programs.

2. Binding the Subsystem Package into One Segment. This approach probably
offers the best and simplest solution now available to a subsystem designer.
A subsystem designer, after debugging his package, can execute a system
command t to bind the segments of his package into a limited number of
segments (normally, one for the procedures and one for the data segments,
if any). When procedure segments <a>, < b>, and< c> are bound into one
segment, their corresponding linkage sections are also bound into one
linkage segment. We use the term bind rather than combine to emphasize
that in binding the links for all the former intersegment references among
the segments of the set being bound, e. g., a call from <a> to < b>, are
eliminated in the binding process. The bound package can be executed
without further fear of conflict between reference names used within the
package and those employed by the user of the package. There is some

·~Up to 32 characters will be permitted in a reference name in the file system being
reimplemented in 1969, which leaves a good deal of room for qualifiers.

tThe binder command is described in BX. 14.

6-33

disadvantage of binding for the subsystem designer who may wish to main­
tain his package by periodic updates, The cost of updating may be higher
since even minor changes will necessitate rebinding the entire package. But
let not the disadvantage just mentioned be construed as a weakening of the
argument for binding. Rather, a wise subsystem designer will see added rea­
son for carefully debugging (and then binding) his package before renting it out,

3, Terminating Names (segments) which may have been previously initiated
before making new symbolic references with the same names. This approach
can hardly be regarded as offering a general solution, but may be useful in
special situations, It illustrates one way that the subsystem designer may
find himself interacting directly with the SMM.

To outline this approach we make our example of the truss package more con­
crete using Figure 6-7 as an aid. Here we assume that the truss system de­
signer is usera3, We also assume that he creates a new director for the truss
package, letting a branch directory be called truss system, and gives every­
one E (execute) access to this directory by an appropnate ACL entry. Only
the designer has W (write) and A (append) access to truss system, The de­
signer can later add authorized users to the permission l:fsts of the branches
in truss system as his customers "sign up" for the service. An authorized
customer gains access to the truss subsystem by establishing a directory
link to <truss> as shown in Figure 6-7. The <truss> procedure would be pro­
grammed so that upon entry the working directory is set to truss system and
is reset to the earlier working directory immediately prior to the normal
return, The following steps, for example, would accomplish this opjective,

After entry into <truss>

1. Call get wdir which returns the string of characters in the name for
the current working directory (EX. 8. 12).

2. Save this value in saved name for use in step lA.
3, Execute: call change_wdir ("truss_system);

When ready to return to the caller of <truss>

lA. Call change_wdir (saved_name).

Next, <truss> could attempt to terminate any segments named cosine (like­
wise, formulas and arctangent) which might already be initiated at the time the
package is entered, as illustrated in boxed 5, 6, 7, and 11 of Figure 6-8a. Segments
which are terminated, if any, would be those the user of< truss> has initiated pre­
viously. The segment numbers for such terminated segments, and their path names
would be saved (box 8 of Figure 6-8a) so they could be re-initiated later, when pre­
paring for a return from the truss package, as illustrated in boxes 6 and 7 of Figure
6-8b, The cosine of the truss package would be initiated by normal link fault the
first time the package is used, but would be terminated upon exit from the package
and its segment pointer saved (boxes 2, 3, 4, and 5 of Figure 6 -8b). On the second
and all repeated entries into the package the truss cosine would be reinitiated expli­
citly (boxes 9 and 10 of Figure 6 -8a). Similar coding would be required for each
name in the package (e. g., formulas and arctangent) for which name conflict is to be
prevented in this way.

Observation: One wonders if this costly set of repeated calls on the SMM can
in practice be· justified.

6-34

usera3_directory

customer directory

I 0 0 0-0 0 A I
' ' '

/
~--~~~~.~~~~----------,'

\
/

/
I

I
I
I
\

I truss

' '
cosine arctangent'

/ ------------

I
I

I

This is for a subsystem package to be
used by others.

\
I
I
I

Figure 6-7. Creating a Separate Directory Structure

6-35

ll

sw~ ON

5

call hcs _$get_seg_ptr
(~)

6

returned seg pt=null

F

7

of truss

10

save ptr = (-)

(a) These would be needed to possibly terminate
an old cosine and initiate (as required) a new
one upon entering the truss package.

Figure 6-8. Illustrating Direct Calls to the SMM

6-36

F

3

call hcs_$get_seg_ptr (""""")

4

call hcs_$terminate (.--)

5

saveptr ~ seg ptr for truss
cosine (initial value of saveptr
is null)

T

7

call he s _$initiate f--)

(b) These would be needed to terminate
the <truss>' s cosine and reinitiate
the user's cosine, if one had been
initiated at the time the truss package
was entered.

Figure 6-8. Illustrating Direct Calls to the SMM

6-37

6. 6 SEGMENT DESCRIPTOR MANAGEMENT

Initiating a segment, i.e., giving it a KST entry, is only one of the steps neces­

sary for a user's process to gain access to the segment. No segment descriptor

word will yet have been constructed for the segment in this process,':' Moreover,

the segment itself, or more precisely, the referenced page of the segment is very

likely not in core at the time the segment is initiated. t Building the SDW and loading

the segment (i, e., placing in core the page table for the segment and the required

page that is implicit in the user's symbolic reference) are mechanisms relegated to

Segment Control. These are tasks to be completed, when necessary, only after the

Linker has snapped the link and control has been returned via the Fault Interceptor

to the faulting procedure, At this time, the faulting procedure is allowed to resume

its attempt to form the target address that is now held in the snapped link, This tar­

get will point to a (preset) zero-valued SDW. The hardware then interprets this zero

as a missing segment fault. It is this induced fault which will invoke the service of

Segment Control to complete the accessing path to the target.

In summary, numerous symbolic references to the same segment may result in

an equal number of link faults, each leading to a call on the SMM for a segment

pointer, But, only the first of the link faults to the same segment will require that

the SMM initiate the segment. Likewise, it is approximately correct to say that use

of only the first of the snapped links to a segment will result in a segment fault that

triggers construction of an SDW and the loading of the required page table and the

desired page.

We would further remark that so long as the segment remains "active," i.e. so

long as its page table remains in core, additional references to the same segment

can pass successfully through the SDW, These references may, however, incur page

faults in the event the desired page is not in core. A page fault induces the loading

into core of the referenced page.

The remainder of this section attempts to show how Segment Control constructs

the SDW 1 s, as needed, from the information stored in the KST entries. This dis­

cus sion is provided not so much because of its immediate utility in the design of sub­

systems, but because it may help some avid reader tie together a number of "loose

ends" regarding segment addressing, access control and protection in the Multics

':'of course, if this segment was once initiated but later terminated, the SDW is
actually being constructed for a second time.

tThe segment would be loaded in the event that some other active process had al­
ready initiated and loaded a segment having the same unique identifier.

6-38

operating environment. It would be perfectly reasonable to skip this material es­

pecially during a first reading.

6. 6. 1 Constructing Segment Descriptor Words after Snapping a Link

We start by pictu-ring the various descriptor segments of a process, i.e., one

for each ring in which the process has thus far executed code. At the time segment

number i is initiated, the contents of each descriptor segment at the offset = i are

(preset) to zero.

We now consider what happens after the Linker has converted the link pointer to

the appropriate its pair and control has returned to the faulting procedure. As men­

tioned in an earlier paragraph, a segment fault will occur immediately, as a con­

sequence of attempting to form the indirect address implied by the its pair. The

segment fault, of course, occurs because the address formation mechanism of the

GE 645 will attempt to employ the word at offset = i in the currently-employed

descriptor segment. A zero word is interpreted by the hardware as a missing seg­

ment fault.

When the Fault Interceptor is again involved, i.e. , via the segment fault, it

calls Segment Control to construct the proper SDW (Segment Descriptor Word).

Figure 6-9 summarizes the sources of information used by Segment Control in

constructing as SDW.

Figure 6-10 shows logic exercised by Segment Control in determining the six­

bit descriptor field. The primary question that is resolved is: "Was the segment

fault due to an inter -ring reference"? If so, the protection rules described in

Chapter 4 govern the determination of the descriptor bits (boxes 2, 3, 4, 5, and 6

of the logic). If not, the R, E, W mode attributes of the target (found in its KST

entry) govern the determination (boxes 7, 8, 9, 10). Also, as indicated in box 11,

a page table is created for this segment, a pointer to it is placed in the SDW, and

the reading in of the wanted page is initiated.

Upon completing the SDW, Segment Control returns via the Fault Interceptor to

the faulting procedure which can now again attempt to complete execution of the in­

struction that faulted. Although the SDW is not now zero, it may nevertheless have

been coded as one of the faults or potential faults indicated in Figure 6-10.

If the coding corresponds to an inward or outward procedure reference (flow

chart boxes 5 or 6), then the executing procedure will fault again. This time the

fault handler will be the Gatekeeper. During the course of its work, the Gatekeeper

effects a ring change by causing the descriptor base register (DBR) to be reset so

6-39

30
descriptor

field
Ring of procedure causing
the segment fault (saved by
the Fault interceptor).

27-29 (2) KST entry information for
target segment i: -

19

18

~

bounds
field

(a) ring brackets
(b) REW attributes of

Data used:
(1) KST entry for target segment

i. A (append) attribute of
effective mode used to select
size information,

(2) AST~' (Active Segment Table)
entry

bounds~{~;;~en~t:ize of } if A= {'ol}

maximum size of
segment

Sources of data used by Segment Control in constructing .
the descriptor, bounds, and address fields of an SDW for

a target segment i.

*The AST is another ring-0 data base. This per-system table is discussed in
Chapter 7.

Figure 6-9. Sources of Data used by Segment Control

6-40

invalid
(inward)

3

faulting segment
outside call
bracket of target

4

F
(faulting segment's ring is with­
in access bracket of target)

reat as a data
segment. If target
is really a procedure,
an attempt to execute
a word in this segment
will cause a fault to
be handled by the Gate­
keeper.

valid
(inward)

5

w =0

jlioolol
(impure)

I o 1 oo 1 ol
(pure)

9

10

directed fault 3
(all access denied.
User may provide
his own handler,
else unclaimed
signal)

directed fault 2
(to be handled by
the Gatekeeper)

,.._- ~..!. i1
I w = 1 l11 ooo 1 1

I w= o lo1ooo1ll
~- -~

1 01001 q
execute only

(slave)

011000

Key:

"load" the segment
and the required page,
if they are not already
present in core.

R means read attribute
E means execute attribute
W means write attribute
A means append attribute

Figure 6-1 o. Logic used by Segment Control

6-41

it now points to the target ring's descriptor segment. Eventually, the Gatekeeper

will return control via the Fault Interceptor to the faulting procedure. If the target

has never before been referenced in the target ring, then the SDW found at the same

offset (=: i) in the target ring's descriptor segment will again be zero and cause

another segment fault.

This fault is again handled by Segment Control. The Fault Interceptor will have

recorded, as part of the saved machine conditions, the segment number and core

location of the SDW causing the fault, and the (new) ring number of this target seg­

ment. Consequently, Segment Control is fully able to proceed with the task of form­

ing the new SDW using, of course, the same set of rules (Figure 6-1 0) as before.

(This time, however, the logic in boxes 7, 8, 9, 10, and 11 will be followed.) When

control is returned to the faulting procedure, address formation will be allowed to

proceed through the newly formed SDW to the now-loaded target.

We are now in a position to picture the evolution of multiple descriptor segments

in the multi-ring environment. The SDW's are set dynamically, i.e., one at a time

in the rings where they are used, on an as-needed basis.

To illustrate how this activity would proceed, we deliberately choose the rather

exotic (in fact, unlikely) case first displayed in Figure 4-9. This case involved four

procedures,< slave>, <a>, < b>, and< super>, each with different ring brackets.':'. If

<slave> has just been initiated in the process, and if a chain of calls emanates from

<slave> to< b> to <a> to< super>, these additional procedures will become initiated

in the course of executing this chain.

Figure 6-11 gives a particular hypothetical chain of calls and shows the sequence

in which the SDW's would be created via segment faults. Note that the positions of

the SDW's in their respective descriptor segments reflect the order in which the

corresponding segments are initiated in the process. Each descriptor segment will

typically have some SDW's that have not been set. The setting of the SDW's is

strictly a dynamic affair, depending upon the particular thread of control that has

been followed in the process.

':'The straddling access brackets of< a> and < b> cannot be justified in a typical appli­
cation. They .are used here to illustrate the coordination between Segment Control
and the Multics protection rules and mechanism which were described in Chapter 4.

6-42

----------------- ------~~

ring 32 ring 3 3 ring 34 ring 3 5 ring 36

< slave> <IQ) ... (ill
10 ... p

 ..
<a> ..

<super> <ID
7

.. 0

Illustrating the sequence in which segment descriptor words are created (circled

numbers) via segment faults, Non-circled numbers refer to the sequence of calls

and returns as follows:

1 2 3 4

<slave>;::!~<a> ~ ><super>..,_ __

10 9 8 7

5

<a> ~ <slave>

6

(36) (35) (34) (32) (33)

Assumptions: No prior reference have been made to <a>, or <super>.

Moreover, we assume that <slave> has been referenced for the

first time by a call from within ring 36. Ring brackets for the

segments in this figure are:

(36, 36, 36) for <slave>
(34, 35, 35) for
(33, 34, 34) for <a>
(32, 32, 32) for <super>.

Figure 6-11. The Sequence in which Segment Descriptor Words are Created

6-43

Figure 6-11 is still oversimplified in the following respects:

(1) Normally, when the Linker is invoked to snap a link, it needs to "get its
hands on" both the text segment and its linkage segn1ent. For example,
on a first reference to a procedure segment< t>, the Linker will ask the
SMM for pointers to both< t> and< t.link>. You will recall that to com­
plete a transfer from procedure <a> to procedure < t>, control passes
via< a. link> through < t.link> before reaching < t>. This idea was illus­
trated in Figure 2-12. A quick review of this figure is suggested.

(2) We have disregarded the possibility that the various procedures shown in
Figure 6-11 may also make inter segment data references. Linkage faults
resulting therefrom would eventually cause segment faults to the refer­
enced data segments and, quite possibly, to their respective linkage seg­
ments as well.':'

We give in Figure 6-12 a more realistic version of Figure 6-11, taking these

omissions into account. In this figure we suggest that <a> and < b> reference data

segments< adata> and< bdata >. We also assume for this example that the access brack­

ets for these data segments are, respectively, identical to those for< a> and < b>.

':'In general when snapping any links for intersegment references of types 2 or 4 (see
Figure 2-10), which are not self references, the Linker, to do its job properly, must get its
hands on both the referenced segment and its corresponding linkage segment. In such cases
the Linker must use and possibly alter the Linkage section of the target segment before it
can complete the link for the faulting segment.

6-44

•

ring 32 ring 33 ring 34 ring 3 5 ring 36

< slave.link > L

<slave> p

<b. link>
 0

< bdata. link> 0

< bdata > 0

<a. link> 0

<a>
< ad at a. link>

<ad at a>

< super.link >

<super>

Key to descriptor symbols: L means a segment whose effective mode is REWA
(used for linkage segments)

D - data

P - procedure

-- inward call

-- outward call

Further details in the steps followed for developing segment descriptor words in

the sequence of calls and returns:

1 2 3 4 5
<slave> ;=:: ~<a> ~<super> ~<a> <::slave>

10 9 8 7 6

(35) (34) (32) (33) (36)

Figure 6-12. Further Details for Developing Segment Descriptor Words

6-45

•

