
....
•

... ..

M0087

A GUIDE TO MULTICS

FOR

SUBSYSTEM WRITERS

Chapter II

Intersegment Linking

Elliott I. Organick

Draft No. 3

February 1968

Project MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

J
•

TABLE OF CONTENTS

Section

LIST OF ILLUSTRATIONS

LIST OF TABLES

II INT ERSEGMENT LINKING

2. 1 Introduction

2. 2 Three Objectives of Multics

2. 2. 1

2. 2. 2

2. 2. 3

Segment Reloading

Sharing In-Core Procedures

Loading Segments as Needed

2. 3 Linking Details

2. 4 Relocating Segment <s> After Linking

2. 5 Processes Sharing Procedure Segments

2. 5. 1 What If We Didn't Have Linkage Segments

2. 5. 2 Avoiding the Extra Memory Cycle in an
Intersegment Data Reference

2. 6 Establishing Links at Execution Time

2. 6. 1 The Linker- Phase One

2.6.2

2. 6. 3

2.6.4

2. 6. 5

Link Definition Structure (Outsymbol Table)

The Linker- Phase Two

External Symbol Definitions (Insymbol Table)

The Linker- Phase Three

2. 7 More on the Structure of Link Definitions

2. 8 The Trap-Before- Link Feature

2. 8. 1 Why Have It?

2. 8. 2 What Is It and How Does It Work?

2. 9 Transfer to a Procedure Entry Point

2. 10 Format of the Linkage Segment

2. 11 Self Relative Addressing used for the Entry
Instructions of Linkage Blocks

iii

Page

iv

iv

2-1

2-2

2-2

2-3

2-3

2-7

2-8

2-12

2-18

2-19

2-21

2-24

2-25

2-28

2-29

2-32

2-32

2-34

2-34

2-35

2-37

2-44

2-51

Figure

2-1

2-2

2-3

2-4

2-Sa

2-Sb

2-6

2-7

2-8

2-9

2-10

2-11

2-12a

2-12b

2-12c

2-12d

2-13

2-14

2-15

2-16

Table

2-1

LIST OF ILLUSTRATIONS

A Procedure Segment< a> With Four Instructions
Making Intersegment References

Loading and Relocating < s > in Core Memory

Referencing < s > from <a> via an Intermediate Linkage
Segment Called <a. link>

Two Processes Sharing a Common Reference Procedure

Assembling and Storing a Symbolic Instruction

A Completed its-Pair Link

Schematic of an ft2 Pair

Data Structure for the Link Definition Stored in <a>

General Form of an Insymbol Table

Format of the Insymbol Table

External References- Types 2, 3, and 4

Structure of Link Definitions

Developing the First Link (Phase 1)

Developing the First Link (Phase 2)

Developing the Second Link (Phase 1)

A Composite of Both Links Completed for the
Inter segment Transfer from <a> to< t >

Single- Block Linkage Segment

Single- Block Linkage Segment Link2

Intrasegment Pointer in <d. link>

Showing a Second Block Added to <a. link>

LIST OF TABLES

References on Intersegment Linking

iv

Page

2-4

2-10

2-13

2-15

2-22

2-23

2-26

2-27

2-30

2-31

2-33

2-36

2-40

2-41

2-42

2-43

2-47

2-48

2-49

2-50

Page

2-8

•

•

•

CHAPTER II

INTERSEGMENT LINKING

2. l INTRODUCTION

One of the key problems needing solution in any programming system is

this: Given two segments, <a> and< b> of a process, suppose< a> is a

procedure that needs to fetch from, store into, transfer control to or return

to < b>. How is <a> "told" where is located in memory so that such

intersegment references can in fact be executed?

In an ordinary batch opera tin~ system, all the segments of a process are

declared, in advance, in some way. All segments are loaded for execution at

the outset, and in the loading process, each procedure segment is "told", by

establishing its transfer vector, where each of the other segments it needs

to know about is located. This "telling" process is known as "linking".

In the Multics environment a process, at the time it is activated for

execution, does not provide the supervisory system with an explicit list of

the segments that belong to it. The "withholding" of this information is, in

a sense, deliberate. The supervisor learns that a certain segment is part

of a given process only at the instant that the active process reaches a point

in its execution where it needs to have said segment in core memory. Prior

to this instant the heretofore unloaded segment is simply a file stored some

where within the secondary storage hierarchy, under the thumb of the file

system. ~:c The supervisor is automatically invoked at the instant the need

for each new segment occurs. At this point the supervisor's job is to go get

that file, wherever it is, place it in core somewhere, register it as another

bona fide segment of the process in question, and "tell" the asking segment

where the newly loaded segment has been placed. This, in the broadest

*The "file system" is that part of the supervisory software which organizes,
manages, stores and retrieves information from the secondary storage
hierarchy.

2-1

sense is what is meant by linking in Multics. Bear in mind that the ordinary

user will be completely unaware that this interplay between his procedures

and the supervisor is going on. Such a grand plan automatically alters our

concept of core memory. Its physical dimensions may be fixed, to 2 18 words,

for example, but, under the new concept, its effective size, as far as a

user is concerned, is really the sum of core memory (less the space occupied

by the supervisory system) and that of the entire secondary store that is

managed by the file system.

You would be correct in now sensing that in the Multics operating environ

ment the problems of linking are more complex than in a batch system - but of

course - far more operating flexibility is achieved.

2. 2 THREE OBJECTIVES OF MULTICS

Three different operating objectives of Multics influence the design

of the linking mechanism. We shall state these objectives, see how each

affects the process of linking, and then see how this aspect of the linking

process is handled in Multics. The three objectives are:

2. 2. 1 Segment Reloading

When an operating process i is interrupted, the space used for the

pages or page tables for some of its segments may be used by some other

process J, which may take over the processor. When process i resumes

operation, some of its segments, pages or even page tables may be missing.

They must be reloaded as needed. Moreover, in order to gain efficiency in

the use of core memory, and to reduce core swapping overhead, the new

core location of a reloaded page or page table of a segment should not have

to be located in the core block corresponding to its last core residence

address.

2-2

'f

•

There should be no penalty for the privilege of relocating a segment. In

particular, the relocation of a (reloaded) segment should not result in a need

to revise any previously established inters egment address references.>:<

2. 2. 2 Sharing In-Core Procedures

Certain procedure segments will be in common use in many user proc

esses. Among these are a group of supervisory routines, library sub

routines, compilers and assemblers. It should be possible for several proc

esses to share the same in-core copy of a procedure in order to conserve

memory space to reduce unnecessary core-to-secondary storage transfers.

A first prerequisite for such shared procedures is that it necessarily be a

pure procedure. We define a pure procedure as one that does not change

(not one bit of it) as a result of being used, i.e., no moving or replaceable

parts. The data with which, or on which, such a shared procedure operates

will necessarily be different for each process that the shared procedure is

attempting to serve. Consequently, the effect of data pointers must somehow

change each time the procedure finds its elf serving in a different process.

A Multics mechanism must be and has been developed to achieve this ca

pability at an overall minimum cost in execution time or storage require

ments.

2. 2. 3 Loading Segments as Needed

When a process begins functioning it should not have to acquire core

copies of any more of its segments, or pages of segments, t than is abso

. lutely necessary to begin running. As the process executes, segments

>:<Strictly speaking this objective is automatically achieved by the segment
and page management modules of the supervisor, which are units of the
basic file system. We mention this objective in connection with linking
only to round out the full picture for the reader.

t To simplify the exposition in this chapter we shall henceforth refer to
segments only, but you should keep in mind that pages and the paging
mechanism are always implied as a further detail.

2-3

should be brought into core or allocated in core only on an as-needed basis.

Motivation: In a Multics operating environment a process may have space for

most any (or all) of its in-core segments pre-empted frequently, and in most

cases, unpredictably.

Therefore, there is little point to undertake the "expense" of loading a

given segment unless there is some significant expectation that that segment

will be used during the time slice alloted to that process.

Moreover - and more striking - some segments of a process cannot

conceivably be known about and therefore loaded in advance. Thus, a user

may type at the console the name of a segment as part of a command. Only

at that point can the computer learn that the given segment is related to the

user's process.

When we speak about a segment brought in as needed, we mean at the time

the first executed reference is made. Let's, for example, see what this

means for a procedure segment <a> that refers to places in two different

data segments, <r>, and <s> and to an entry in one procedure <t>. Figure

2-1 shows a schematic of< a> showing four different instructions as they are

likely to be written by the programmer in some symbolic language- we have

selected assembly language, but we could have also illustrated with a PL/I

or MAD segment .

.Q~ ~A->\ L ~o..u.j +Co, -t
-"J:c... "'A->\ t...F l , "'l

. . .
<n..'> \ l~ l-~ ,z.

. .
~- ~t> \C~l . . .

Figure 2-1. Procedure Segment <a> With Four Instructions
Making Intersegment References.

2-4

e

• •

Figure 2-1 tells us that< a> might at some time need to know where

<s>, <r>, and <t> are each located in core. But, we certainly can't say

at the time <a> is loaded when (during the execution of <a>), or in what

order <a> will need to know these core locations. Depending on the de

tailed logic in< a> it's possible that~ of these four inter segment

instructions will be needed for some run of the process that< a> is serving.

It is in this sense that we speak of loading segments on an as needed basis.

Thus if in attempting to execute the instruction in <a>:

lda < s > I [place] + 6, 4

a Multics process discovers that the pointer to< s >doesn't exist in its

descriptor segment>!<, then and only then, will < s > need to be loaded (or

space for < s > allocated) in core. This concept has been referred to as

''dynamic linking". With respect to our particular example of the lda in

struction we must bear in mind that at the time <a> is as sembled, no one

can in general know any of the following vital facts:

1. Where < s > would be variously located in core -and more
importantly, what value will have been given to s# in the
process we are speaking- that is to say, where in the
descriptor segment a pointer to the core location for < s >
will eventually be placed.

2. Where, relative to the top of< s >, may [place] be found, i.e.,
the value of place. The programmer of < a> in general does
not even want to be able to know this information about < s >.
He only wants to be able to know and be able to use a character
string that is the symbolic location for said position internal
to < s >.

What mechanism can be employed to complete such an intersegment

reference at execution time? Multics provides an automatic mechanism.

It's rather complex in detail but not in overall concept.

>!<By searching a so-called Known Segment Table which is a list of all
segment names currently known to belong to this process. The segment
number associated with the segment name is found in this table.

2-5

To understand this concept we refer to the familiar apparatus known as

a symbol table. Any Multics segment that has locations within it which have

symbolic names, will have associated with it a symbol table>:~. Normally

this table is prepared automatically by the assembler or compiler from the

source language representation of the segment. This table has a standard

format, hence, it can be searched in a predetermined way. A successful

search of it will locate the numerical equivalent of any local symbol that may

have been referred to by another segment. In our example, we would say

that associated with< s > is a symbol table which can be searched for the

locally unique symbol "place'' and its corresponding numerical equivalent.

The linking mechanism can now be seen conceptually as following these

basic steps relative to the example

lda < s > I [place] + 6, 4

l. Determine s# by the following general mechanism:
Find and load the missing segment< s > from secondary storage,
or, if< s > is merely to be a data area in which data is to be
generated, allocate the core space for < s >. In doing this, create
and add another descriptor word to the descriptor segment for
the process. The descriptor word will contain a pointer to< s >.
Now s# is determined as the index of the newly-formed descriptor
word. At the same time enter in a table called the Known Segment
Table the name < s > and its number s#.

2. Determine place, i.e. the value of [place]
This can now be done because when < s > is loaded, we will also
have loaded its symbol table (and we now know where < s > is
located), so we can search the table for place and thence find its
numerical value.

>!~The name used in Multics for this table is the "external symbol defini
tions". See BD. 7. 01 for details. It's not to be confused with another,
more extensive symbol table, called the "Segment Symbol Table"
described in BD. l. 00.

2-6

•

Having determined s# and place, we can complete the process of gen

erating the required machine code and use it to replace the equivalent

symbolic form of the instruction

lda < s > I [place] + 6, 4

which was encountered when executing in <a>.

Note the instruction

sta <s> I [here], 4

found in Figure 2-1, which is pictured as immediately following the 1 da

instruction. When the Ida is executed for the first time, the linage mech

asism as we've just described it will have resulted in the loading of< s>

and its symbol table into core. So, when the computer next attempts to

execute the sta instruction, < s > is already loaded. The job of completing

the machine code equivalent of the sta is now quite a bit shorter, because

no segment loading is involved. We determine s# simply by searching for

and finding it in the Known Segment Table for the process (we just put s#

there while loading < s >, you will recall). We then determine here by

searching for it, as we did for place, in the symbol table belonging to< s >.

2. 3 LINKING DETAILS

Needless to say, a great deal of detail has been skirted in the mech

anism we have just described. Some subsystem writers may need to under

stand this process in some detail in order to provide Multics with the data

it needs and in the proper format so that this automatic linking process can

be achieved. The subsystem writer who may especially need to know these

details is the one who will be building his own processor like an ALGOL

or MAD compiler -or an assembler -which will output target code directly;

i.e., a processor that does not output code or data in the syntax of a stand

ard Multics-provided language like PLii, or EPLBSA (assembly language).

2-7

We intend to go over more of these details in the remaining sections of

this chapter; however, for the present we list in Table 2-1 the key reference

sections of MSPM on which the following material is based.

Document No.

BD.7.01

BD. 2. 01

BX. 14.01

BD.7.04

BD. 7. 05

TABLE 2-1

References on Intersegment Linking

Title

Linkage Section

Binding Info & Format

The Binder

The Linker

Combined Linkage
Segments

Remarks

Primary reference on
linking

Secondary information

Secondary information

Secondary information

We shall proceed by looking at linking details that are made necessary

to meet each of the three Multics objectives stated in our introductory

discussion. The objectives were deliberately ordered according to the

complexity (increasing order) of the explanations that are required.

2. 4 RELOCATING SEGMENT< s >AFTER LINKING

We again refer to our example in Figure 2-1. Suppose that sometime

after having once established the values s#, place, and here, the space for

< s >has been pre-empted for use in another process. ~:c The machine code

equivalent to

~:<Actually, even the same process could require temporarily the space
occupied by< s >. If < s > is needed again, it would be presumed that
space in core could subsequently be made for it when actually needed.

2-8

lda < s > I [place] + 6, 4

-~ will have already been 11 established11 ; We might look at this equivalent

machine code, for the moment in a sort of pseudo symbolic form as

lda s# I place + 6, 4

~
value of [place] in < s >

Notice that if we later reload < s > into a different core location, as long

as we don't change s#, there is no need to further alter our established

intersegment reference. This idea is captured pictorially in Figure 2-2.

Multics manages to retain the same value s# for < s >, each time < s >

is loaded, in a very simple way. When< s > is first loaded a descriptor

word for it is created and added to the current end of the description segment.

Let's say at position 56. This means that s# = 56. If< s > is ever re

moved from core memory temporarily, certain bits (33-35) of the descriptor

word for < s > (see Table 1-1) are automatically revised to indicate the

segment is absent. Any future attempt to address a word in this segment

will incur a 11 directed fault 11 during the formation of this address, Let's

for the moment skip over the details of how the GE 645 and the Multics

software handle this faultt -we'll pick this up later- and now look only at

the resulting effect. As a result of this fault, segment< s > will be re-

loaded into memory, this time probably into some other core location.

When loading is completed, we don't add a ~descriptor word for the newly

loaded< s >. Instead, we adjust < s >' s old descriptor word (number 56) to

reflect the new core address of< s > (i.e., the 11 AB 11 field). Also, segment

missing bits (33 -35) are reset to designate (a) that the segment is again

;'<What we mean by 11 established11 will become clear later.

', t A directed fault is like an IBM 7094 trapping process -like floating point
overflow trap. Upon sensing the directed fault condition the GE 645
processor is trapped to a location where certain desired action is involved.

2-9

r--~~

! ~
.... ,'""""

.

L!A~ . '-i I I I l .
'-'•< .. >\(~'\~,.~

(a) Core memory immediately after < s > has been loaded. New descriptor
has been added to point to < s >. Address of lda instruction in <a> not yet
11 established. 11

< t~

+·~
' ' I

\,_ u .. ~·I v.t.... ••,41
I
I

(b) Same as above after establishing the address of the lda instruction. We
show it in pseudo symbolic form to suggest that s# and place are now known.
Dashed connecting line to < s > I [place] is to show that a connection has in
some sense been established.

~~~ 

'----------

"" L--c -- -, ~ 
'\ 
-1 t 1 I 

j : : " 
I I <~> y 1 ·--- - - j 

<A.~ : 

I --.-- u ..... ,,.~ ....... ~ : 
pifd.1'4,~ 

j_ 
coo.£ MEfo\0~'1' 

(c) Same as above after reloading< s > into new location. Note there is no 
change in the lda instruction of <a>. 

Figure 2-2. Loading and Relocating< s >in Core Memory. 

2-10 



present and (b), denote the segment class. (See Section l. 2. 9 for an ex

planation of Segment Class.) Address formation, interrupted by recognition 

of the directed fault, is now allowed to go to completion as if the fault had 

not occurred at all. 

In summary, the important concept to take note of is that instructions 

in <a> that refer to locations within < s > do not themselves need to be 

changed, once "established" in the course of being executed a first time. 

Each such address is established by determining two values which, 

generically speaking, are s# and sloe. Sloe is an offset from word 

zero of< s>. Neither of these values will have changed in spite of 

the fact that the core location for< s > I 0 may have changed. 

2-11 



2. 5 PROCESSES SHARING PROCEDURE SEGMENTS 

In the immediately preceding discussion we have been deliberately vague, 

when discussing the concept of "establishing" an address for referencing a 

place in another segment. For example, we did not actually give the specific 

details of the original symbolic reference < s > J [place] as it is found in <a> 

at the time <a> is originally loaded. Nor did we show the actual format of 

the numerical equivalent when that numerical equivalent of < s> I [place] was 

determined. 

In this section we will begin to develop these details, which are some

what complex. Strong motivation for the complexity comes from attempting 

to satisfy the second of our major objectives, namely insisting that it should 

in principle be possible for any procedure to be (simultaneously) shared by 

two or more processes. 

We begin by examining Figure 2-3. Here we are reminded that a single 

GE 645 instruction in one procedure segment, can indirectly reference a 

location within another segment via a point within an intermediate segment 

containing an indirect word pair (its pair). Shortly, we will see why it is a 

good idea to call this middleman segment a "linkage segment". In particular, 

a single instruction in segment <a> can make a data or instruction (transfer 

or return) reference to any point within segment < s >, via an intermediate 

linkage segment. In Multics, every procedure segment that makes such 

cross references will have an associated linkage segment. Generally speak

ing, segment< a> has associated with it a linkage segment called< a. link>. 

(Thus if the name of the segment is "cosine" then the name of its linkage 

segment is "cosine. link".) Note too that the notation for segment numbers 

naturally leads to interpreting a. link# as the segment number for <a. link>. 

Initially it is hard to see why one needs to bother going to the trouble of 

making the reference from< a> to < s > an indirect one when it's perfectly 

feasible to use GE 645 instructions that make direct intersegment references. 

Direct intersegment referencing was illustrated in Figure 1-12 (b). In the 

next paragraphs we hope to provide the why of the linkage segment. Without 

doubt, there are few concepts more crucial to the power of Multics than 

that of the linkage segment. 

2-12 



1-----I""T 
a.. t...IL• 

1------1 _j_ 

Figure 2-3. Referencing < s > from <a> via an Intermediate Linkage 

Segment called< a. link> 

2-13 



In Figure 2-4 we imagine that segment< a> is a procedure segment that 

is currently shared by two processes. Let's imagine that <a> is an assembler 

or a compiler. An assembler that's being shared by two active processes~:' 

may have to deal with two completely different sets of data stored in core 

memory at the same time. 

It is highly desirable that< a> be a pure procedure. If so, then, as 

"ownership" of the processor is switched back and forth between two (or more) 

processes, the one copy of <a> can function effectively on the two different 

source language programs that <a> treats as data. 

For the assembler to be pure, all data on which it operates, e. g., source 

language program, symbol tables that are being constructed or being sorted, 

switch settings, etc., must be maintained in one or more separate segments. 

Hence there must be a different set of such separate data segments for each 

process that the assembler currently serves. 

Connection to the data segments is made indirectly via the linkage segment 

of the procedure being executed. It is important to bear in mind that the 

linkage segment < a. link> is (and must be) genera ted by the assembler or 

compiler while it is generating <a>. During execution, the linkage segment 

is reached from <a> in a standard fashion, namely: one pair of base regis

ters, in particular the lb-lp pair, is always set to point at the associated 

linkage segment. (E. g. , if process l is in control, then at the time < a> is 

called, we imagine that lb-lp is then set to point at the< a. link> in that 

process. For process l we call the linkage segment <a. link > 1 and its 

segment number is called a. link1 #.) 

Located within <a. link> will be found the its pairs, one for every unique 

symbolic intersegment data (or procedure) reference, that appears in the 

programmer's source code for <a>. But, make a mental note of this fact: 

the compiler or assembler that's generating <a> and <a. link> cannot 

~:' An "active process 11 is a technical term in MSPM. It has specified mean
ing and is defined technically in BJ. 2. 01. A semi-technical definition 
would be that the supervisory system of Multics knows this process by 
virtue of it being entered on a list of currently actlve (running or ready) 
processes. Each entry in this list gives, among other things, the address 
of the descriptor segment for that process. 

2-14 

• 



,)o-tJ.•. 

.. ~Lt.-, 
~.,...,A 'i 

, ...... ta.. ~')0 u.. .. t ON. 

~~t-....... ~dM ~ ... 'k~ 

~-ll.o ~'1; ~ ... ?"-".........., 1. ~'\ 

~~ 1)..0-t. ~<A. ~2. ......... --· 

(. 0 . 

I 
I 
I 
I 
\ 

I \ 
~ '?rwCAM Z. 1 I 

~~ ~--~._-:_-_· y~-~::. L.. ,' 
)_ ~ .......--;._--·_l_ / 

ElL/~.--/ ~ 
C::.o RE 

Processes (i=l, 2) share a common procedure< a> which makes data refer
ences to < dl >1, and < d2 > 1, when functioning for process l; but makes data 
references to < dl >2 and < d2 >2 when functioning for process 2. Each time 
process i takes charge, the lb base register is set to a.linki#. Solid lines 
represent pointers that do not change as a result of process switching. 

Figure 2-4. Two Processes Sharing a Common Reference Procedure 

2-15 



produce the desired its pairs because it doesn 1t have all the necessary 

information. It does, however, produce equivalent word pairs which can 

eventually be transformed into the needed its pairs. 

We'll now sketch how this linking mechanism works in one simple case 

(and look at the actual detail much more closely in the next section). Suppose 

an instruction in <a> originally appeared in source language as 

1 da <,!>I [ place ] + 6, 4 

The assembled instruction would turn out to be an indirectly addressed lda 

instruction to a location in <a. link>. The as sembled binary machine 

instruction would if "unassembled", have the form 

Ida lp I k, ~:< 

Its meaning is as follows: 

The segment tag of this instruction is 4. It points to the lb-lp pair. So, 

the effective pointer is the contents of the lb base register, which presumably 

has been set previously to a. link#. 

The effective internal address is k + (contents of the lp base register). 

To keep things simple, we have shown in Figure 2-4 that the contents of lp is 

zero. Here, k is a number determined by the assembler that assembled 

<a> to point to a strategically located pair of indirect words within <a. link>. 

This indirect pair will ultimately have the its pair appearance: 

} a completed "link" 
s# 0 its 

place + 6 0 4 

when linking is completed. 

The format of the linkage segment is the subject of the next section of 

this chapter, so we need not go into it in any detail here. We will see there 

how the constant k used in the Ida instruction above is determined so that 

we are sure to address the right pair in <a. link>. Also, we 111 see just what 

the indirect word pair looked like before it gets converted to the desired its 

pair. We'll also see how it gets converted to the desired its pair. 

2-16 



To take stock- after our short look ahead into the next section- we can 

summarize what we've said to this point as follows: While operating in 

process 1, each time an inter segment reference must be made from <a> to 

some data or procedure segment, an indirect reference is used employing an 

its pair located in <a. link >1 . All external references from <a>, regardless 

of the destination segment, are routed via its (or itb) pairs located in< a.link>1 . 

This linkage segment acts like a big switch box. Its purpose is to eventually 

hold its (or itb) pairs which will provide the generalized addresses [segment 

number, internal address values (or base, internal address values)] corre

sponding to each unique symbolic data and instruction reference that is given 

in the original source language coding of <a>. 

We now make an interesting observation. When the processor is switched 

to process 2, <a> is immediately ready to serve in this process, provided 

there has been loaded an appropriate linkage segment, < a.link>2, to act in a 

fashion similar to < a. link> 1 . 

How about the problem of being sure lb+-lp points to the right a. link#? 

Even this is handled automatically, if, for example, we are switching back 

and forth between two processes that are both busy executing in< a>. Here's 

how. Suppose we are switching out of process 2 while executing in <a>. In 

this case the value in lb is currently set to a. link2#. (It was set to this value 

automatically at the time some other procedure in process 2 called< a>.) 

Now, if and when process 2 is interrupted so that process 1 can take over, the 

software in MULTICS for process switching automatically saves all machine 

conditions including the contents of all base registers. This data is saved 

on a push down list known as the "process stack". (The detailed format of 

this stack need not concern us. The BJ sections of MSPM provide the details.) 

When ownership of the process is later regained by process 2, the lb+-lp 

pair, among other registers, will have their values properly restored. Thus, 

execution in <a> is resumed, and any inter segment references proceed as 

before - via <a. link > 2 . 

One final bit of good news. There is no change required in the linkage 

segments of either process as a consequence of switching back and forth 

between processes! 

2-17 



'· 

2. 5. 1 What If We Didn't Have Linkage Segments? 

The following paragraphs are offered for those from Missouri who are not 

yet ready to accept the need for the< a. link> type of switch box. Others can 

skip over the following arguments as they see fit. 

Suppose a shared assembler,< a> were to use direct intersegment 

addressing (ala Figure 1-12) in referring to the information in data seg

ments. Suppose process lis currently employing <a>. 

Now if the processor is switched to process 2, what guarantee do we 

have that data-referencing instructions, possibly established while using 

process 1, will now be applicable for referencing the corresponding data 

segments of process 2? As a matter of fact, even if corresponding data 

segments have the same names, like < dl > in process 1 and < dl > in process 2, 

is there any way to guarantee that they will have the same segment numbers 

in their respective descriptor segments? Quite the contrary, since segment 

numbers are established on a first come first served (as-needed) basis, there 

is only a small chance for such a coincidence to occur. 

Another way to see this is to observe that each process tends to execute 

a unique sequence of segments, each calling in some particular ord·er on data 

segments and other procedure segments. Thus the order of the loading of 

segments as -needed will tend to give rise to different segment numbers for 

corresponding or shared segments of two different processes. 

It would, therefore, seem fairly clear that to avoid a linkage segment 

implies the need to change within <a> the data referencing instructions each 

time <a> receives a new "owner". This contradicts our assumption that 

<a> might remain a pure procedure so that we could reap the benefits of its 

purity. 

0. K., so we agree that <a> must lose its purity. Let's set about trying 

to pay the price, hoping it won't loom as large as the apparently costly 

business of maintaining separate linkage segments in each process for each 

procedure segment, like< a>. A further question immediately arises. Who 

alters these instructions in< a> for each process switch, and how and when 

should it be done? It's fairly clear .that another procedure, private to each 

process, would then be needed to properly alter <a>. This auxiliary 
I 

2-18 



procedure then serves <a>, much like a prologue in a subroutine that's 

generated by a present-day MAD or FORTRAN compiler on a computer like 

the IBM 7094. A MAD prologue, for example, fetches each argument in the 

subroutine call and uses it to "set" or complete every instruction which in

volves the corresponding subroutine parameter. Unlike some subroutines, 

however, execution of this kind of prologue could never be avoided. It would 

have to be executed for process 1 each time process 1 obtains control of the 

processor. The cost of storing and repeatedly executing this prologue could 

be prohibitive if process switching frequency is high. What's worse, there 

would have to be a prologue executed for every shared procedure of a process 

and all such prologues would have to be executed each time the process gets 

hold of the processor! 

This is a nightmare which only gets worse the more one dwells on it. 

To wake up from this bad dream it is only necessary to remember that it 

started by suggesting that direct intersegment addressing of data segments 

might be worth a try. 

2. 5. 2 Avoiding the Extra Memory Cycle in an Intersegment Data Reference* 

Use of the linkage segment would seem to imply that every data reference 

(outside the procedures segment) must be indirect and therefore must involve 

an extra memory cycle. Conceivable, this requirement could prove costly, 

for example, in executing the innermost loop of a highly repetitive procedure 

like a matrix multiply or, for example, where the innermost loop develops 

an inner product of two vectors. When execution efficiency is really needed, 

special assembly-level coding may reduce or in some cases even eliminate 

these inner loop indirect memory cycles. 

* This section can be skipped during a first reading without loss of con
tinuity. 

2-19 



A coding technique that offers promise and which takes full advantage of 

the abr pairs of the GE 645 would be something like: 

(1) Load into available abr pairs from its pairs the generalized addresses 

of data variables that appear in the inner loop. (If the data variable 

is an array variable, then the its pair loaded into the abr pair would 

represent a base location in preparation for a "march" through one 

of the subscript ranges of the array variable). 

(2) When inside the loop, reference the data, but via the abr pair for the 

desired data. This is a direct reference in the sense that no extra 

memory cycle would be needed. 

We illustrate with a hand-coded computation of a simple inner product 

in the segment < t >, which in PL/I might be written as: 

inner prod = 0; 

loop: do j = 1 to m; inner prod = inner prod + a(j) ~:' b(j); endloop; 

A possible hand-coding (using integer arithmetic) would be: 

eapap 

eapbp 

ldxj 

stz 

loop: ldq 

mpy 

add 

sto 

tix 

<stat_>! [a] 

<stat_>! [b] 

1 

inner prod 

a pi o, j 

bpi o, j 

innerprod 

inner prod 

loop, n, j 

put stat_# 1 a in ab- ap, <stat_> is the segment e 
put stat_# I b in bb _ bp containing the data. 

index reg j - 1 

innerprod- 0 

direct addressing used in 

formation of a. x b. 
J J 

some kind of an increment, test, and 

branch instruction like the IBM 7090 

TIX. 

Note that the first two instructions would be assembled in the form: 

eapap 

eapbp 

lpl k, >:< 

lpl k + 2, ~:< 

2-20 



These would refer to locations in< t. link> containing generated fault 

pairs. These pairs would later be converted to its pairs as shown below. 

<t. link> 

T 
k 

j__ 
J < 

stat # 0 its 

a 0 0 

stat # 0 its 

b 0 0 

(That is to say, the first time the eapap and eapbp instructions are executed 

the corresponding fault pairs in < t. link> would be converted to the its pairs 

shown above.) The ldq and mpy instructions which form a. x b. are, as 
J J 

desired, directly addressed rather than indirectly addressed. 

2. 6 ESTABLISHING LINKS AT EXECUTION TIME 

We are now ready to examine many of the remaining details of linking. 

These are the details which are related to the fact that segments (and linkage 

segments), are loaded on an as needed basis, making it necessary that the 

conversion of symbolic intersegment references to numeric references be 

made at the last possible moment (i.e., at the time the first use of that 

symbolic reference is made). 

In reviewing what has already been covered on this topic in Section 2. 5, 

we now note that the linking suggested in Figure 2-2(a) and Figure 2-2(b) is 

an over-simplification. At that time we had not yet developed the concept 

of the linkage section. Figure 2-5, parts (a) and (b), represent an updating 

of Figure 2-2, and a short discussion of the new figure will motivate the 

material in the remainder of this chapter. The illustration in Figure 2-5 is 

again based on our old faithful instruction: 

lda <s>l [place] + 6, 4 
~~ ~~ 

segment "external" "expression tag 
name symbol value" 

2-21 



<A"> 

r 
,4u-tf:t,4\' 
j_ 1----:.::-:-:-:r------i 

<C...~> 

c:. 0 i..£ 

Symbolic instruction 
lda <s>l [place] + 6, 4 

is as sembled and stored in <a> as the numeric (binary) equivalent of 
lda lpl k, >:< 

This instruction points at < a. link > l k, which is the first word of a pair of 
indirect words. In its initial state, i.e., never-before.._ referenced, it is 
a link in prenatal form. It contains a special tag in the first word to de
signate an ft2 fault. It also contains a pair of pointers that lead to sym
bols < s >, and [place] , and to the value for the remainder of the expression 
i.e., the value 6 in this case. The fault pair also contains a tag for index 
register 4. 

Figure 2-S(a). Assembling and Storing a Symbolic Instruction 

2-22 



Showing the link in the form of an its pair, as completed by the 

Linker program. This its pair replaces the ft2 pair. The its 

pair points at the desired target word. 

Figure 2-S(b). A Completed its-Pair Link 

2-23 



As suggested in the preceding section, the assembler translates this 

instruction into two parts. 

a. A single, never-to-be-altered, instruction word whose binary form 

is equivalent to 

1 da lp I k, >!< 

This instruction is made part of the object code for <a>. 

b. A pair of pointers stored in the format of a ft2 word pair. This word 

pair is placed in <a. link> at a point k locations from word zero of 

<a. link>. 

The symbol k represents a number generated by the assembler. Each 

time the assembler encounters an instruction with a unique inter segment 

reference, it generates another fault pair for <a. link>. These pairs are 

ordered in some fashion relative to a, link #I 0, 

The ft2 fault pair contains pointers to all the remaining information 

embedded within the original symbolic instruction 

lda < s >I [place] + 6, 4 

2. 6. l The Linker - Phase One 

In executing 

1 da lp I k, >!< 

the GE 645 retrieves the ft2 pair as an indirect word pair found at location 

a.link#l k. This word pair is shown in Figure 2-5(a). When the Special bit 

pattern denoted by "ft2" is sensed, the GE 645 traps to a special memory 

location in what is known as the "fault vector". A short program called the 

"fault intercepter" takes over and saves all machine conditions on a stack. 

(This is not unlike the action of a trap processor on the IBM 7094.) Next, 

the fault interceptor causes a special procedure to be invoked known as the 

11 Linker". In the process of giving control to the Linker, the location of the 

offending £t2 pair is saved. The two pointers that were stored in the ft2 pair 

are now employed by the Linker to retrieve vital information that is stored 

in a special list structure known as a link definition. As you might guess, 

2-24 



the assembler generates a link definition to go with eachftZ pair. None of 

the information in a link definition is subject to change. Hence all link 

definitions are packaged as a single "table". For this we shall use the name 

"outsymbol table". This table is stored at the tail end of <a> itself, as 

suggested in Figure 2-6. 

The orientation which explains our use of the term "outsymbol table" 

is this: We associate ourselves with the segment (<a> in this case) that's 

making an outward reference to another segment (< s > in this case). It's 

as if we were standing inside <a> and looking outward.) With respect to 

<a> the symbols in its outsymbol table are "outsiders". 

Z. 6. 2. Link Definition Structure (Outsymbol Table) 

Each definition begins with a header word which in MSPM is referred to 

as the "expression word". Figure Z -7 shows the particular storage structure 

of the link definition for our example.>:~ If the use of pointerl and pointer2 

ofthe ftZ pair allows the Linker to locate the right expression word, it 1 s a 

simple matter then for theLinkerto extract the strings "s" and "place", 

and the value 6. 

There is more to be said about the general structure of a link definition. 

We have only looked at one type, in particular we've looked at a "type 4" 

link definition. There are several others, and we'll come back and look at 

these after we've pursued our current example to its conclusion, i.e., 

after we have completed the narrative on how the Linker constructs the 

desired its pair. 

s# 0 its 

place + 6 0 4 

which must replace the ft2 pair. 

>:~ Depending on who writes the assembler or compiler that generates the 
outsymbol table, packaging can be more or less efficient. For the Multics 
assembler, efficiency is achieved by avoiding duplication of symbol 
strings. Thus if two or more link definitions refer to the same segment 
name string or external symbol string, only one copy of the string is kept 
in the table. 

Z-25 



,, ~ 

t:J:· 
/ 

' 
' 
' ' 
' ' 

\ 
\ 

\ ' 
\ \ 

\~~ 
\'\ "' '· \ 

l)b . I . o l nJJp 
~ s.u~ ~ 

' 

··4~oo.1 ~"""~ 
L~'' 

// 

P>:b./,0\ 

(_~~ ~~ 

·6\e.. ~r~., \ 

Showing schematic of anft2 pair pointing at the head of its associated link 
definition which is located within a portion of <a> known in MSPM as the 
"definitions 11 section. 

Figure 2-6. Schematic of an ft2 Pair 

2-26 



e 

~t" 0 
~4M. 

~ 
J:u_~~ pJ i ()., 
y\.~ 

(., e. 0 C) 

This structure is for the expres sian: 
<s> I [place] + 6 

Note: Character strings are stored nine bits per character (7-bit ASCII, 
right justified in a 9-bit field), 4 characters per word. Consecutively 
addressed words are used for strings of length, 1. :::=::: 4 characters. 
The length, 1. is coded in the first 9 bits of the first word used for the 
string. (Maximum length for such strings is seen to be 29-1 or 511 
characters.) We show the unused portions of a word containing the 
end of a string as filled with zeros. 

Figure 2-7. Data Structure for the Link Definition Stored in< a> 

2-27 



2. 6. 3 The Linker - Phase Two 

The second phase ofthe Linker's activity is to determine s# from <s>, 

determine place from [place), and then form and store the desired its pair. 

The Linker calls on a unit of the superviser known as Segment Management':' 

to help it accomplish this task. We won't bother to spell out, in the description 

which follows, just who is doing what. We'll just give the Linker "credit" for 

all of it. Here is how it goes, skipping some of the details. 

A search is made of the Known Segment Table (KST) for the purpose of 

finding s#. If< s >had ever been loaded, (whether or not< s> resides in 

memory right now), an entry for < s > will exist in the KST. Hence, the 

corresponding value of s# will be found as a result of this search. 

However, when the descriptor field of the descriptor word at s# is 

examined, it may be found to be of class A, which means the segment is 

missing. In this event < s > must be reloaded. 

If the search of the KST fails to find < s >, it means that no previous 

reference to < s >had ever been made. Here again, the loading of< s > is 

required before the Linker can proceed with its appointed task. A search t 
must then be made for< s >in secondary storage and< s >must be loaded. As 

< s >is finally loaded, the pair (< s >, s#) is inserted as an entry in the KST. 

Also, a new descriptor word at s# is added to the descriptor segment. This 

new descriptor word points to the newly loaded address for< s >. 

The linker now knows s#. Its next job is to search a table in< s >for 

[place] in order to find the corresponding value assigned to it by the assem

bler or computer that made < s >. When the table entry for [place] is found, 

the corresponding value for [place] i.e., place, will also be found. 

':' This module may in turn call on other modules known as the "basic file 
system". More detail is given in Chapter 6 of this Guide. 

t The subsystem writer will be interested in learning more about the search 
strategy which the file system employs here. Details are discussed in 
BD. 4 and BX. 13. The subsystem writer will find that he can supply the 
file system any search strategy he wishes, however elaborate, to replace 
the "standard" search module that is normally provided. 

2-28 



2. 6. 4 External Symbol Definitions (Insymbol Table) 

The table that is to be searched is described in BD 7. 01 under the name 

"external symbol definitions". We are going to rename it the "insymbol 

table", and we should not confuse this table with the so-called "segment 

symbol table" (see B. D. 1. 00). ,;, 

The orientation that explains the term insymbol table is cons is tent with 

our "outsymbol" terminology. A segment can not only make outward 

references but can also receive reference to it, i.e., inward references. 

Thus, the symbols in the insymbol table for< a> are all those symbols locally 

defined in <a> which may be referred to by another segment. 

The programmer, writing the source code for a given data or procedure segment 

"marks", via special pseudo ops or other declarations, those symbols whose 

values he wishes to make known (somehow) to other segments. The assembler 

or complier then creates an entry in the insymbol table for each of these 

marked symbols (and their corresponding values). 

Each entry has the format shown in Figure 2-8 and the structure for the 

entire table is pictured in Figure 2-9. 

In most instances, the insymbol table, for a segment< s >is invariant under 

execution, so it can be stored in< s >.t We suggested this idea in Figure 2-6 where 

we show the insymbol table placed immediately following the executable code of the 

segment. The insymbol table always precedes the outsymbol table, by convention. 

Each symbol entered in the insymbol table for< seg >is assigned a class code. 

The class code is used mainly to designate to which segment - i.e., < seg>, 

< seg.link> or < seg. symbol> - the particular symbol and its value refer. 

':' The segment symbol table for a prodecure segment is a much more elaborate table. It 
associates with each symbol lists of attributes and other information valuable for debug
ging aids, data directed I/0, etc. --in addition to the address of the symbol. This table 
is actually stored in a separate but related segment. Thus, a procedure <x> has associ
ated with it really two segments. One of these is < x. link> and the other is <x. symbol>. 
Together these three segments form a "group". When the linker, operating for a given 
process, decides < x> is needed in memory, copies of < x. link> and< x. symbol >are then 
automatically loaded and their corresponding segment numbers are placed in the KST. 

t A definition which holds a trap pointer, called a trap-before-definition pointer is an excep
tion. These definitions are employed in special situations where a trap to a special proce
dure is desired at the time the Linker searches for this symbol the first time. Upon return 
from a trap procedure the Linker will reset this pointer and hence an in-symbol table con
taining such definitions would be stored in the linkage segment. Chapter 5 illustrates the 
use of the trap-before-definition in connection with establishing default handlers for system
defined conditions. 

2-29 



I 

I 

,- - -- -·- - - - -, 
I I 

I 
I 1- - - - - _. - - - - -

I 
I 

- - -- ""I 

I I 
I 

~--------~--------~ 

~-- - - _l - -, 
I 
I -·-----, 
I 

--- ...1 

\ 

' I 
I 
I 
I 

I 
/ 

\ ----------1 
' I ....M 

~-D ~I . I . ..,0'\At r ~ 1 ,~ 
I_ - - - ~- --

r-
j... 

/1- -
I 

t--

\ -
I 

'~ 

--- r--- -, 
I I 

---1---- -1 
I I 
I ...,-,-,--1 

I I I I 
I ' -~- -1- -1-

I I 
I 

0 
0 

0 0 
I 

I 
1---- -:----, 

I I I 
I - - - - -r - ,- _j 
I : I 

I I I I I 
- - - - - _. - -1 - -· 

Specific example. 
Symbol is "place." 
Its value is 4 2.0 

In the specific example, the symbol is "place" (of length 5). Its value is 
imagined here to be 420. Assuming this entry is in the insymbol table of 
<s>, we see that the sought-after value of [place], which we have been de
noting symbolically as place, is actually 420. The class code is 0 in this 
example, which means that place (=420) is an offset within <s> (rather than 
within <s.link> or <s. symbol>). 

Figure 2-8. General Form of an Insymbol Table 

2-30 



/ 
~ 0 0 0 

~J ~ . 
• • . 

\~-----
• 

0 

\ . 
~ ___...__ example of table 

• with no entries .. 
• . 

"' 
• • . 

~ 0 

~ -----: .. -----. 
' • 

example of a non-null table 

Figure 2-9. Format of the Insyrnbol Table. 

2-31 



----------- -----------------, 

Class 
Code Meaning 

0 value is interpreted as an offset from top of <seg> 

l value is interpreted as an offset from top of <seg.link> 

r-----1--------------------------------------------------------------+ 
2 value is interpreted as an offset from top of <seg. symbol> 

Remark 

procedure 
entry point 

We'll have more to say about the class code when we speak about entry

point references in Section 2. 9. (Another use of the class code is discussed in 

connection a Topic referred to as signalling in Chapter 5. ) 

2. 6. 5 The Linker - Phase Three 

When the value of ~lace J has been obtained, the Linker is now close to 

finishing its job by completing and storing the link and resuming execution. 

It has determined s# and place. Now it generates the its pair you see in 

Figure 2- 5(b) and stores this in place of the fault pair. (Remember the 

location of the fault pair was stored as part of the trapping action.) Now the 

Linker returns to the "Fault Interceptor" which called it. The Fault Inter

ceptor restores all machine conditions which existed at the time of the fault 

(popped from a special stack), but now corrected to reflect a stored its pair, 

and the GE 645 processor then resumes the execution of the lda instruction 

which cased the fault. 

2. 7 MORE ON THE STRUCTURE OF LINK DEFINITIONS 

There are five types of symbolic intersegment references one can make 

in assembly language source code. For each type there is a different structure 

generated for the link definitions and a different type of link is generated. We 

have already looked at one of these types. It's called a "type 4'' reference. 

Types 2, 3, and 4 are listed and illustrated in Figure 2-lo.~:~ 

The link ultimately generated in a type 2 reference is necessarily an 

itb pair, while those generated for other types are its pairs. 

Types l and 5 are special purpose variations of types 3 and 4, reserved for 
self references, i.e. , references to the executing procedure, to its linkage 
segment, or to its symbol segment. More details may be found in BD. 7. 01. 

2-32 



Type 
No. 

2 

3 

4 

Key: base 
m 
exp 
ext 

Source Code Examples 

<s>l [place), 3 

<s> I [place) + 

means base register 
means modifier 
means expression 

Syntactical Form 
Of lntersegment 

Reference 

number 

means external symbol 

Ultimate Form Of 
Generated Link 

base X 215 0 itb 

exp ;. txt-· 0 m 

2 x 2 15 0 itb 

blue + 2006 0 7* 

general 

form 

specific 

example 

general 

form 

specific 

example 

general 

form 

example 

example 

3 

Note that either exp, or m, or both may be omitted without altering the type 
number. 

Figure 2-10. External References -Types 2, 3, and 4 

2-33 



Figure 2-11 shows the storage structure for the link definitions that go 

with each of the three types of reference. 

It's true we've already illustrated the storage structure for a type 4 link 

definition. This was given in Figure 2-7. Nevertheless, we give a second 

example in Figure 2-ll(c) to illustrate the important "trap-before-link 

feature 11 of the Multics linkage mechanism. 

2. 8 THE TRAP-BEFORE-LINK FEATURE 

2. 8. 1 Why Have It? 

The trap feature has been incorporated in Multics for benefit of some 

subsystems writers who must have the object programs that are produced 

by their subsystem, like PL/I or FORTRAN, automatically perform certain 

special storage management tasks at the time certain segments are first 

referred to. For example, by inserting this trap feature in certain link 

definitions the object program can create or grow segments as allocation 

for variables which, in PL/I terminology, are referred to as static-storage 

variables. For variables of either static-storage or automatic storage the 

trap procedure can also assign initial values for those variables that are 

declared to have the initial attribute, i.e., at the time the space for such 

variables is being created.>:< In other instances, it is conceivable that the 

>:< At the time the data space is allocated, for a static variable an entry must 
be created and added to the insymbol table for the data segment. 

This table entry will provide the value of the symbol, i.e., a pointer to 
the allocated slot in the data segrnentso that other links to this same 
location can be completed. 

These other links may be required for references to the same data location, 
either from the same procedure segment that makes the initial reference, 
or, if the variable is static external (like COMMON or PROGRAM COMMON 
in FORTRAN or MAD), from other procedure segments. 

Unlike insymbol tables for procedure segments, which are kept in the 
procedure itself, the insymbol table for a data segment is normally kept in 
the linkage segment associated with the data segment. In this way the 
data segment can grow as repeated allocations are made and at the same 
time the corresponding insymbol table can also grow independently. 

Adding an insymbol table entry, along with that of extending the length of 
a data segment and possibly assigning initial values --- all these services 
must be "standard apparatus" for a compiler in Multics. For more de
tails see BP. 4. 00 and especially BP. 4. 01. Also see BY. 13. 

2-34 



trap procedure could be used to monitor (gather statistics) on segment usage 

for a set of object programs. It's likely that the subsystem writer will 

dream up many applications for this feature (but he can also leave it alone). 

There will be no penalty paid for having the feature available and not using 

it. 

2. 8. 2 What Is It and How Does It Work? 

Suppose a user wishes to gain control (i.e., intercede) just before the 

link for some intersegment reference is completed. For example, let the 

instruction be 

ida <s> I [place], 3 

Let the procedure that is to be executed before establishing the link to 

<s> I [place], 3 be 

<proced> I (begin] 

Also, let the argument list for this procedure be located at <par am> I 0. 

When the Linker is busy searching through the link definition for the 

reference 

<s> I (place], 3 

as shown in Figure 2-ll(c), it will discover a non-zero value in the right 

half of the type pair. A non-zero value will be interpreted as a trap pointer 

and this will immediately cause the Linker to digress for the purpose of 

executing the trap feature. By working its way over to the links that contain 

the name of the procedure and the information about the argument list, the 

Linkeris able to generate and execute the call that executes the desired 

"trap" procedure. More details are given in BD 7. 01. Suffice to say, 

that upon return from the trap procedure the Linker will again have control, so 

it can now complete the link that it started out to build. In this case it is, of 

course, 

s# 0 its 

place 0 3 

2-35 



A1i(;. V.' • 

...,.J. \ 

(a) Type ~ reference: 

bpi [blue] + 2006, 7~:< 
(See Fig. 2-ll(a)) 

(b) Type ~reference: 

<weight>l3472 

(c) Type i_ reference with the trap feature invoked. 

<s>l[place], 3 

Normally, the right half of the first word of the "type pair" is zero. In this 
case, however, it contains a so-called trap pointer which leads to a pair of 
other pointers used by the linker to generate a call on an arbitrary, user
specified procedure. 

Figure 2-11. Structure of Link Definitions 

2-36 



2. 9 TRANSFER TO A PROCEDURE ENTRY POINT 

Let's go back to Figure 2-1 and consider the linking process that's 

involved in executing the transfer instruction: t 

tra <t> I [ entry2] 

In transfering control from <a> to a point within another procedure 

segment, <t>, the linkage is necessarily more complex because, before 

beginning to execute in <t>, we want to load the lb +- lp base pair so that it 

points at < t. link> instead of <a. link>. No special GE 645 hardware is 

available to accomplish the change in lb +- lp base register values automati

cally. It can only be done by having the assembler convert the tra instruction 

into a short sequence of several instructions. 

We will see that the resulting code will force the Linker to do double 

duty. The following is a brief sketch of the steps involved: 

1. In <a>: execute an instruction of the form 

tra lp I k, >:< 

which is a transfer through an indirect word pair found in <a. link>. 

2. In <a. link>: the indirect word pair, pointed at by 

lpl k, 

will be the link: 

t. link# 0 its 

number! 0 0 

When this link has been completed after invoking the linker, we 
now have a transfer from <a>, through <a. link>, to 
to < t. link> I [ numberl] • 

t Such an instruction would normally appear in a program as a result of 
issuing any procedure call. In assembly language, for instance, the use 
of the "call" macro generates a stereotyped (but critically important) 
sequence of instructions called the CALL sequence. See BD. 7. 02for 
details. 

2-37 



3. In < t. link>: a pair of instructions and a related 
ft2 indirect word pair are provided. 
The instructions are located at 
<t.link>\[number l] and 
< t. link> [number l] + l. 
The first of these is an eaplp instruction which 
effectively causes lb +- lp pair to be loaded as 
follows: 

l b t. link# 
l p offset of be ginning of the linkage block in < t. link>. 

The second instruction is an indirect transfer (through 
the word pair that is also within <t.link>) to <t>l [entry]. 

The indirect transfer is accomplished by using an £t2 fault pair. 

The Linker must again be invoked to convert this ft2 pair to a proper 

link. This time the completed link will look like: 

t# 0 its 

entry2 0 0 

And this last step completes the linking for the inter segment transfer. 

In order to complete this second link, the Linker first searches a link 

definition that is found within the outsymbol table of < t>. Here it discovers 

that the segment being referred to is < t> itself, i.e., a self reference. 

Moreover, since the link definition shows a type 3 reference, there is no 

external symbol whose value needs to be determined. The value has been 

preset by the assembler and placed in the right half of the expression word. 

So, the insymbol table for < t> need not be searched. A self reference is 

discovered by the Linker whenever that pointer in a link definition, which 

ordinarily points at the character string for the segment name, turns out to 

be zero. 

In summary, the work involved in an intersegment transfer is seen to be: 

l. Execute an indirect transfer from <a>, through <a. link>, to < t.link>. 
In doing so, invoke the Linker(first time only, of course). 

2. Execute an eaplp instruction in< t. link> to set lb +- lp for t.link#. 

3. Execute an indirect transfer from < t. link>, through< t.link >, to 
< t >. In doing so, invoke the Linker again (first time only, of course). 

2-38 



Figure 2-12 displays core memory representations for parts of< a>, 

<a. link>, < t >, and < t. link> during the course of establishing the two links. 

You might already be wondering why are we transferring first to < t. link>. 

Why not go to < t > directly? The answers are these: 

(a) Loading the .tb- .tp pair with t.link# takes only one (eaplp) instruc

tion when executed from< t.link>. To accomplish the same task 

frotn <t> is practically impossible. The footnote explains why.>:< 

(b) We are going to need <t.link> in memory anyhow, in order to 

execute in < t >. 

Next you may have wondered by what magic was it possible to establish 

the first link as 

t. link# 0 its 

numberl 0 0 

instead of as 

t# its 

numberl 0 0 

>:< If we transferred to < t > directly, how would< t > know the value of t.link# 
to use in loading the lb- lp? One approach might be to have < t > call on a 
supervisory procedure to determine t.link# from a search of the KST. 
This would involve executing a large number of instructions. But wait a 
minute! How can < t > call on any procedure to help to find t. link#? 
Calling on another procedure implies that an instruction of the form 

op code .tpJ k, >:< 

can be executed, where .tb - .tp contains t.link#. But, of course, if we 
had t.link# loaded into .£b- .tp we wouldn1 t need to call on a supervisory 
procedure for help. We see, therefore, that transferring to < t > before 
loading .£b - .tp with t.link# would have the effect of hopelessly isolating 
< t > from any communication with the rest of the system. In other words 
a transfer to < t > in this way would result in a dead end with no way to 
return except possible to the segment that called it. Clearly this could 
not be a generally useful approach. 

A second approach would be to design Multics so that there's always a 
predetermined relationship between t# and t. link#, such that instructions 
executed in < t > could evaluate t. link# and then load it into .£p - .tp. It 
turns out that such a plan would impose restrictive conventions in the 
numbering of segments which are incompatible with the operational flexi
bility needed for segment management in Multics. 

2-39 



l I 



• 

.--'> 

' , I 

\ 

I I 

f: l,-

l 
., 

C\.. 
,_,_ 

J. 0 t.~ 

"" 

,---
• 
0 

' ~ 0 

1;.,._ Ut,..,. 
• 
• 
• 

z. r O'V'v\ "'tv~. ~ I 0 ~~ ... 
"t..<AAG\tlt . 

?~~41 0 I o • .. 
> 

- -~ ~ 

',~ '\ ' "' " " ' ' " 

~ "' ~ '~ ~ ' 

~ ~ 
\ 

~ 

) 01 
1_1~ 1 

\ ,.,,,.,_ .. , 
.. "' "'' 

/ I I I 1 / I I I 
C:. e. f\. t.j 

11- "11 2. o I ~ 
I 

It I 

It I 
/ I 

I 

I 

I 

I 
/ 

VI / / 1/1/1/1 

ME'MO~'f 

Searching the external symbol definition in < t > for [entry 2), and 
discovery that it's a class 1 symbol- which means that its value 
is-relative to <t. link> and not to <t>. 

Figure 2-12(b}. Developing the First Link (Phase 2} 

2-41 



I.,J 

• 



' . , 

\ 

--- --- ---------

0... 

Jy 
J. --

" t.t..Jtt6 
~ -. 

<.t.). 

T-
~<. • 

~ 

j_ 
L.o.At 

~ .. 

.1~ 
01 
1 

(, ~ fl. J:.l 
n_ "?/ z.. oj 

) 

/ 

Searching the external symbol definition in < t > for [entry 2] r and 
discovery that it 1 s a class 1 symbol - which means that its value 
is- relative to < t. link> and not to < t >. 

Figure 2-12(b). Developing the First Link (Phase 2) 

2-41 



• . 

~~ ~ ,~~t.-. 3 -f-\.. 
', f'~,t ... <-1 0 

----------~ 

/ I ~ ... i,,,,_ 
I w-ol k '---t----.----• 

' ' ' '\ 
\ 

\ 
I 
I 

T 

' ' ' 

't__ 

0 tt.w ... • 

\ 

\ 

Searching the link definition in < t >. Here the loader Linker discovers that 
it's a type 3 reference, and moreover it's a self reference. Consequently 
the linker accepts the value of the expression (stored in the right half of the 
expression word and shown as [entry2] ) as the effective internal address 
within< t>. That is to say, no phase 2 is needed. The second link can now 
be generated as shown in Figure 2-13 (d). 

Figure 2-12 (c). Developing the Second Link (Phase 1) 

2-42 



----------~ ·----------------

< t> 

---- -- -·-------...____ 

Figure 2-12 (d). A Composite of Both Links completed 
for the Intersegment Transfer from <a> to <t> 

2-43 



After all, the original instruction read 

tra <t>l [entry2] 

and not 

tra <t.link>l [entry2]. 

To answer this we call your attention to Figure 2-12 (b), where you see 

that, in searching the insymbol of <t> for [ entry2], we find it to be a class l 

symbol. You will recall from Section 2. 6. 4, that a class l symbol is 

interpreted to mean that the proper segment number to use with the value of 

[entry2] is t.link# rather than t#. 

2. 10 FORMAT OF THE LINKAGE SEGMENT 

In preceding sections we have implied that the Linker is able to use the 

pair of pointers which it finds in the ft2fault pair to locate the expression 

word in the link definition. For example in Figure 2-12 (a) we showed the 

fault pair 

pointer l 0 ft2 

pointer2 0 0 

in <a. link> and we suggested that the Linker employs pointer l and pointer2 

to locate the proper link definition in <a>. To explain how these pointers are 

used it 1 s helpful to digress for a look at the underlying format given to each 

linkage segment. 

A design objective of Multics is that there be a capability of easily 

combining or binding together into one segment the separate linkage segments 

of two or more data or procedure segments. Suffice to say that, in the 

interests of efficiency, certain groups of supervisory procedures have their 

linkage information bound into a single segment. To make it convenient to 

bind such information each linkage segment is structured so that it can be

come one block of a two-way linked list of blocks. Thus, every linkage 

segment when first generated, consists of an eight-word block header, 

followed by a ''body' 1 , made up of entries and links belonging to this block 

and/or insymbol table entries (for data segments). 

2-44 



The block header contains three pairs of words (which are pointers) 

plus the length of the block. The eighth word is unused. The second and 

third word pairs are preset to zero and remain zero as long as the block is 

a "loner"; i.e., is not two-way linked to any other block. (The second and 

third word pairs of each block header are provided so that they can be made 

into its pairs and serve as "forward" and "backward" pointers to other 

block headers in a list of such blocks.) 

The first word pair of the block header is used in one of two ways de

pending on the nature of the linkage segment. 

l. A linkage segment for a procedure segment uses this first word 

pair as an its pair that points to the beginning of the (insymbol and 

outsymbol) definitions within the procedure segment. 

2. A linkage segment for a data segment uses only the first word of 

the first word pair. It's used as a single indirect word pointer to 

the beginning of the data segment's insymbol table definitions that 

are stored within the linkage segment itself. 

Figure 2-13 illustrates the important connections for a single-block 

linkage segment referring to the procedure segment <a>. We note from this 

figure the following points: 

( 1) Pointer 1 of the ft2 pair is "self-relative" to the top of the block 
header where we see an its pair that points to 

a#l defa 

This is the beginning of the definitions section within< a>. 

(2) The assembler which generates< a. link> cannot, of course, know 
a# but it can and does know defa, so the as-generated (initial) 
condition of the first its pair in the block header is really set as: 

0 0 its 

de fa 0 0 

When< a> is made active (i.e., gets a segment number assigned 
to it), the Linker will be invoked to complete this its pair as you see 
it in Figure 2-13. 

For a more specific example, suppose we consider the link called 

''link2" that's shown in Figure 2-12 (c). If this link is located 50 words from 

the top of< t.link>, then the value generated for pointer3 will be -50. 

2-45 



(See Figure 2-14 (a).) The pointer in the first word of an ft2 pair is called the 

"head pointer".':' It is self-relative, pointing to the first word of the block 

header. The its pair located there points in turn to the top of the definitions 

section in < t >. It's called the 11 definitions pointer".':' 

Suppose the expression word of the desired link definition is 80 words 

down from the top of the definitions section in < t >. Then the value generated 

for the second pointer of theft2pair will be 80. This pointer is called the 

"expression pointer".':' 

Since the linker is handed the core location of theft2pair, it can deter

mine the location of the definitions pointer by the relation: 

loc. of definitions pointer= location of ft2pair+ head pointer. 

The pointer found here, together with the expression pointer, is then used to 

construct the location of the expression word which, in this example, is: 

t#\ 250+ 80. 

Figure 2-14 (a) shows the details of this example. Figure 2-14 (b) is a 

slight generalization using the terminology you would see in the reference 

document BD. 7. 01. 

Figure 2-15 shows the appearance of a linkage segment for a data seg

ment, < d>, containing only insymbol table definitions. The first word of 

the header provides an indirect word whose address is that of the body of 

this block. Figure 2-16 shows the appearance of a linkage segment for an 

impure procedure< impa>. We imagine that this linkage segment has two 

blocks. The first block would consist primarily of the information generated 

by the assembler of <impa >. It is X words in length. The second block 

linked to it could contain new insymbol table definitions that refer to locations 

named during execution. The user can add a block of such definitions using 

the procedure calls described in BY. 13. The first word of the second block 

would contain the effective internal address X+ 8 which locates the definitions 

in this block. 

':' Terminology used in BD. 7. 0 l. 

2-46 

• 



~-~-- ---------------

~0...> 

I () I 0 
__ _L I __ 

0 1()1() 
---L-~--

0 -- - :_ ~ !__ () 
I "" I _. 0 l v ' v 

0 0 

• 

This illustrates the pointer system 
from an <a. link> ft2 pair to the 
expression word in< a> 

Figure 2-13. Single-Block Linkage Segment 

2-47 



... 

T 
2SO 

+ > 

-t;;.. "'' ....... "'"' 
< <f 

(a) Details of the Example 

< 

~ <) 

(b) Generalization of the Example 

Figure 2-14. Single-Block Linkage Segment Link2 

2-48 



T 8 0 .. 
0 0 0 

0 0 0 
8 0 0 0 

e, 0 a 
0 c c:> 

~~ 

.L. -

~ 

The first word of< d. link> is an intrasegment pointer 
(single indirect word) to the beginning of the insymbol 
table entries for the data segment< d> . 

Figure 2-15. Intrasegment Pointer in <d. link> 

2-49 



<~. ~ 

~·1. 
# 0 .tto, 

/ 0 0 
0 ~ (, 

~ 0 0 

' 0 0 • ' () 0 0 I 
-;1:.-

I 

1 

~ 
I 

I 

I I 
r-- x te 0 * 0 C) 0 

8 0 0 0 
--

0 0 0 
' ... ··{ ()., k'w.~ 0 ~ 

0 0 C) 

$--
,lr , 

\U..W ~W\u 
to!t. Q..v\ ~ 

+~ <~> 
.. 

Figure 2-16. Showing a Second Block Added to < impa. link> 

2-50 



2. 11 SELF RELATIVE ADDRESSING USED FOR THE ENTRY 
INSTRUCTIONS OF LINKAGE BLOCKS 

Since linkage blocks can be added to form a chain of such blocks in one 

·segment, there is a need to observe one oversimplification which we made in 

an earlier discussion that can now be removed. The point we are about to 

make is a subtle one and need not be considered on first reading. 

Note the pair of instructions at< t. link> I dist in Figure 2-12(d), and ob

serve that in using these instructions we have assumed that the linkage block 

shown there begins at word zero of < t. link>. Suppose for reasons of effi

ciency we would like to bind several procedure segments (and their corres

ponding linkage segments (see BD. 2). It might happen that the < t. link> block 

shown in Figure 2-l2{d) would now be appended to the end of another block in 

a newly-formed composite linkage segment. Now the pair of instructions: 

dist: eaplp 0 

tra link2, >!< 

no longer do their jobs. It's necessary in practice (and in fact it's a Multics 

standard) to use the following types of instructions to achieve self-relative 

addressing: 

dist: eaplp ->!<, ic 

tra link2-*, ic>:< 

Here the modifier "ic" means add the current contents of the instruction 

counter to the address value designated in the address field of the instruction. 

Thus 

dist: eaplp ->!<, ic 

means establish in lb-lp the values: 

2-51 



~---~~~~---------------------, 

lb-- segment number of executing procedure 

this is the address of word zero 
of the containing linkage block for 
eaplp instruction regardless of whether 
the block itself begins at word zero of 
the segment in which it's embedded. 

When referring to these "entry" instructions in the future, as in Chapter 3, 

we shall illustrate with the standard forms introduced in this section, rather 

than the simplified versions shown previously. 

2-52 






