
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

The Multiplexed Information and

Computing Service:

Programmers' Manual

PART II

REFERENCE GUIDE TO MULTICS

Revision: 15

Date: 11/30/73

All rights reserved

This material may not be duplicated

Copyright 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page ii

I FOREWORD I
1 J

PLAN OF THE MUlTICS PROGRAMMERS' MANUAL

November 30, 1972

The Multics Programmers' Manual (MPM) is the
reference manual for user and subsystem programming
Multics system. Jt is divided into three major parts:

Part I: Introduction to Multics

Part I I: Reference Guide to Multics

Part III: Subsystem Writers' Guide to Multics

primary
on the

Part 1 is an introduction to the properties, concepts, and
usage of the Multics system. Its four chapters are designed for
reading continuity rather than for reference or completeness.
Chapter 1 provides a broad overview. Chapter 2 goes into the
concepts underlying Multics. Chapter 3 is a tutorial guide to
the mechanics of using the system~ with illustrative examples of
terminal sessions. Chapter 4 provides a series of examples of
programming in the Multics environment.

Part II is a self-contained comprehensive reference guide to
the use of the Multics system for most users. In contrast to
Part I, the Reference Guide is intended to document every detail
and to permit rapid location of desired information, rather than
to facilitate cover-to-cover reading!

Part I I is organized into ten sections, of which the first
eight systematically document the overall mechanics, conventions,
and usage of the system. The last two sections of the Reference
Guide are alphabetically organized lists of standard Multics
commands and subroutines, respectively, giving details of the
calling sequence and the usage of each.

Page iii

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page iv

Several cross-reference facilities help locate information
in the Reference Guide:

• The table of contents, at the front of the manual,
provides the name of each section and subsection and an
alphabetically ordered list of command and subroutine
names.

• A comprehensive index (of Part I I only) lists items by
subj ect.

• Reference Guide sections 1.1
commands and subroutines,
category.

and 2.1 provide
respectively, by

lists of
functional

Part II I is a reference guide for subsystem writers. It is
of interest to compiler writers and writers of sophisticated
subsystems. It documents user-accessible modules which allow a
user to bypass standard Multics facilities. The interfaces thus
documented are a level deeper into the system than those required
by the casual user.

Examples of specialized subsystems for which construction
would require reference to Part II I are:

1) a subsystem which precisely imitates the command environment
of some system other than Multics (e.g., an imitation of the
Dartmouth Time-Sharing System);

2) a subsystem which is intended to enforce restrictions on the
services available to a set of users (e.g., an APL-only
subsystem for use in an academic class);

3) a subsystem which is protecting some kind of information in
a way not easily expressible with ordinary access control
lists (e.g., a proprietary linear programming system, or an
administrative data base system which permits access only to
program-defined aggregated information such as averages and
correlations).

Each of the three parts of the MPM has its own table of contents
and is updated separately, by adding and replacing individual
sections. Each section is separately dated, both on the section
itself, and in the appropriate table of contents. The title page
and table of contents are replaced as part of each update, so one
can quickly determine if his manual is properly up-to-date. The
Multics on-line "message of the day" or local installation
bulletins should provide notice of availability of new updates.
In addition, the Multics command "help mpm" provides on-l ine
information about known errors and the latest MPM update level.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page v

In addition to this manual, users who will write programs
for Multics will need a manual giving specific details of the
language they will use; such manuals are currently available for
PL/I, FORTRAN, and BASIC. A separate, specialized supplement to
the MPM is also provided for users of graphic displays. The
bibliography at the end of Part I, ChaPter 1, describes these and
other references in more detail.

Multics provides the ability for a local installation to
develop an installation-maintained or author-maintained library
of commands and subroutines which are tailored to local needs.
The installation may also document these facilities in the same
format as used in the MPM; the user can then interfile these
locally provided write-ups in the command and subroutine sections
of his MPM.

Finally, access to Multics requires authorization. The
prospective user must negotiate with the administration of his
local installation for permission to use the system. The
installation may find it useful to provide the new user with a
documentation kit describing available documents, telephone
numbers, operational schedules, consulting services, and other
local conventions.

Page v

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

CON TEN T S

November 30, 1973

FOREWORD: Plan of the Multics Programmers' Manual

PART II: REFERENCE GUIDE TO MUlTICS

Section 1 The Multics Command Language Environment

11/30/73
07/12/73
09/25/73
07/11/73
09/24/73
11/30/73
09/24/73
10/01/73
10/01/73
10/01/73
10/01/73
10/01/73
10/02/73
10/01/73

1.1
1.2
1.3
1.4
1.5
1.6
1.8
1.9
1.10
1.11
1 .. 12
1.13
1.14
1.15

The Multics Command Repertoire
Protocol for Logging In
Typing Conventions
The Command Language
Constructing and Interpreting Names
Command and Active Function Name Abbreviations
Alphabetical List of Active Functions
Logical Active Functions
Arithmetic Active Functions
Character String Active Functions
Segment Name Active Functions
Date and Time Active Functions
Question Asking Active Functions
User Parameter Active Functions

Section 2 The Multics Programming Environment

11/30/73
07/05/73
11/29/72
10/02/73

2.1
2.2
2.5
2.6

The Multics Subroutine Repertoire
Programming Languages
System Programming Standards
Clock Services

Section 3 Using the Multics Storage System

09/25/73
09/18/73
08/04/72
08/01/72
10/13/71
OS/25/73

3.1
3.2
3.3
3.4
3.5
3.6

The Storage System Directory Hierarchy
The System Libraries and Search Rules
Segment, Directory and Link Attributes
Access Control
Multi-segment Files
Backup and Retrieval of User Storage

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

iii

MULTICS PROGRAMMERS' MANUAL

Page vii i

Section 4 Input and Output Facilities

10/21/71
07/24/72
11/02/71
10/12/71
10/12/71
11/19/71

4.1
4.2
4.3
4.4
4.5
4.6

Use of the Input and Output Facilities
Use of the Input and Output System
Available Input and Output Facilities
Bulk Input and Output
Graphics Support on Mu1tics
Writing an I/O System Interface Module

Section 5 Standard Data Formats and Codes

10/14/71
07/11/73
11/16/73
08/22/72
08/10/72

5.1
5.2
5.3
5.4
5.5

ASCII Character Set
Punched Card Codes
Mu1tics Standard Magnetic Tape Format
Mu1tics Standard Data Type Formats
Standard Segment Formats

Section 6 Handling of Unusual Occurrences

05/08/72
10/18/73
03/06/72
10/03/73
10/18/73

6.1
6.2
6.3
6.4
6.5

Strategies for Handling Unusual Occurrences
The Mu1tics Condition Mechanism
Non1ocal Transfers and Cleanup Procedures
List of System Status Codes and Meanings
List of System Conditions and Default Handlers

Section 7 Special Subsystems

03/10/72
03/27/72

7.1
7.2

The Limited Service System
The Multics Dartmouth System

Section 8 Miscellaneous Reference Information

07/10/73
11/01/7,3
11/30/73
07/05/73
10/02/73

8.1
8.2
8.3
8.4
8.5

List of Names with Special Meanings
List Names in The System Libraries
Obsolete Procedures
Standard Checksum
Hardware features to Avoid

Copyright; 1973; Massachusetts Institute of Technology
and Honeywe 11 Info rma t i on Sys terns Inc.

MULTICS PROGRAMMERS' MANUAL I Contents

Page ix
11/30/73

Section 9 Commands (03j20ji2)

09/24/73
01/27/72
01/29/71
10/05/73
08/20/73

05/17/72
11/16/73
11/08/72
11/07/72
04/30/73
02/16/72
01/03/12
03/09/73
02/15/13
09/22/11
05/18/13
02/16/71
09/28/71
02/16/11
10/18/73
11/13/13
08/11/73
08/11/73
06/24/71

03/17/12
06/29/12
09/26/13

03/26/73
03/01/13

07/24/72
06/29/72
03/30/13
03/30/13
03/01/73

07/06/72
06/29/72

08/18/71

abbrev
addname
adjust_bit_count
alm
alm_abs
and: see Logical Active Functions
answer
apl
archive
archive_sort
basic

- bas i c_run
basic_system
bind
calc
cancel_abs_request
cancel_daemon_request
change_default_wdir
change_error_mode
change_wdir
check_info_segs
close_file
code
compare
compare_ascii
console_output: see file_output
copy
create
createdir
date: see Date and Time Active Functions
date_time: see Date and Time Active Functions
day: see Date and Time Active Functions
day_name: see Date and Time Active Functions
debug
decam
decode: see code
delete
delete_dir
delete_iacl_dir
delete_iacl_seg
deleteacl
deletecacl: see deleteacl
deleteforce
deletename
directories: see Segment Name Active Functions
directory: see Segment Name Active Functions
display_component_name

continued on next page

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page x

Section 9

11/13/73
08/20/73
08/17/73
10/09/73
02/12/73
03/19/73
OS/24/72

03/20/72

11/20/73

02/13/73

10/01/73
10/01/73
02/13/73
02/13/73

02/12/73

10/18/73
02/12/71

08/22/72
02/26/73

02/12/73
08/18/71
03/06/73

02/12/73
02/13/73

08/13/73
07/09/73
12/09/71
03/14/72
05/18/73
03/30/73
03/30/73
10/14/71

MULTICS PROGRAMMERS' MANUAL

Commands (continued)

divide: see Arithmetic Active Functions
do
dprint
dpunch
dump_segment
edm
endfile
enter
enterp: see enter
enter_abs_request
entry: see Segment Name Active Functions
equal: see Logical Active Functions
exec_com
exists: see Logical Active Functions
f i 1 e_ou t pu t
files: see Segment Name Active Functions
format_line: see Character String Active Functions
fortran
fortran_abs
fs_chname
get_com_l i ne
get_pathname: see Segment Name Active Functions
getquota
greater: see Logical Active Functions
help
hold
home_dir: see Segment Name Active Functions
hour: see Date and Time Active Functions
how_many_users
indent
index: see Active Functions
index_set: see Active Functions
initiate
iocall
iomode
length: see Character String Active Functions
less: see Logical Active Functions
1 ne_length
1 nk
1 nks: see Segment Name Active Functions
1 sp
1 sp_comp i 1 er
1 st
1 st_abs_requests
1 st_daemon_requests
1 st_iacl_dir
1 st_iacl_seg

st_ref_names
continued on next page

1973; Massachusetts
and Honeywell

Institute of Technology
Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL I Contents

Sect ion 9

02/28/73

04/05/73
07/05/73

07/28/72
05/30/72

07/16/73

04/03/72
06/23/71
09/23/70
02/12/71

05/10/72

08/18/72
09/24/73
09/24/73

02/20/73
07/28/71
03/12/73
11/11/70
02/16/71
07/28/71
02/12/71
02/07/73
06/23/71
02/11/71
11/05/73
02/16/73

Commands (continued>

1 i stacl
listcacl: see listacl
listnames: see list
listotals: see list
login
logout
long_date: see Date and Time Active Functions
rna i 1
make_peruse_text
max: see Arithmetic Active Functions
memo
min: see Arithmetic Active Functions
minus: see Arithmetic Active Functions
minute: see Date and Time Active functions
mod: see Arithmetic Active Functions

Page xi
11/30/73

month: see Date and Time Active Functions
month_name: see Date and Time Active Functions
move
movequota
names
new_proc
nondirectories: see Segment Name Active Functions
nonlinks: see Segment Name Active Functions
nonsegments: see Segment Name Active Functions
not: see Logical Active Functions
or: see logical Active Functions
page_trace
path: see Segment Name Active Functions
pd: see Segment Name Active Functions
peruse_text
pl1
pll_abs
plus: see Arithmetic Active Functions
pre_page_off: see page_trace
pre_page_on: see page_trace
pr nt
pr nt_at tach_table
pr nt_bind_map
pr nt_dartmouth_library
pr nt_default_wdir
pr nt_l i nk_i nfo
pr nt_linkage_usage
pr nt_motd
pr nt_search_rules
pr nt_wdir
profile
program_interrupt

continued on next page

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

I Contents

Page xii

Section 9

08/14/73
11/16/73

07/01/71
07/01/71
06/28/71
07/01/71
02/12/73
11/13/72
09/30/71
04/27/73

08/15/72
08/22/73
03/12/73
03/12/73

02/09/73
02/13/73
11/03/70
03/29/73
03/29/73
06/30/72
06/25/71
03/01/73

11/04/70
04/20/72
03/12/73

02/12/73

08/10/72'
11/14/72

02/15/73

04/30/73

Commands (continued)

progress
qedx

MULTICS PROGRAMMERS' MANUAL

query: see Question Asking Active Functions
ready
ready_off
ready_on
release
rename
reorder_archive
repr i n t_e rror
resource_usage
response: see Question Asking Active Functions
runoff
runoff_abs
safety_sw_off
safety_sw_on
search: see Character String Active Functions
segments: see Segment Name Active Functions
set_bit_count
se t_com_l i ne
set_dartmouth_library
set_iacl_dir
set_iacl_seg
set_search_dirs
set_search_rules
setacl
setcacl: see setacl
sort_f i 1 e
start
status
string: see Character Strin~ Active Functions
strip: see Segment Name Active Functions
strip_entry: see Segment Name Active Functions
substr: see Character String Active Functions
suff x: see Segment Name Active Functions
term nate
term nate_refname: see terminate
term nate_segno: see terminate
term nate_single_refname: see terminate
time see Date and Time Active Functions
times: see Arithmetic Active Functions
trace_stack
truncate
unique: see Segment Name Active Functions
unlink
user: see User Parameter Active Functions
v5basic
verify: see Character String Active Functions

continued on next page

~ Copyright~ 1973~ Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Section 9 Commands (continued)

09/27/71 walk_subtree
wd: see Segment Name Active Functions

02/13/73 where
08 j 2 1/ 72 wh 0

year: see Date and Time Active Functions

Section 10 Subroutines (03/24/72)

07/05/73
08/10/71
10/08/71
02/16/71
09/28/73
02/16/73
11/16/72
02/15/72
02/25/72
08/23i71
08/10/73
09/16/70
03/15/72
03/28/72
06/30/72
03/30/73
09/13/73
10/11/72
05/09/72
09/13/73
08/20/73
03/01/71
08/20/73
08/18/71
08/20/73
03/08/71
11/01/71
07/28/71
08/20/73
07/14/72
09/30/71
08/16/73
03/08/71
11/06/72
10/31/73
11/30/71
09/28/73
02/15/73

active_fnc_err_
adjust_bit_count_
broadcast_
change_wd i r_
check_star_name_
clock_
com_err _
command_query_
condition_
convert_binary_integer_
convert_date_to_binary_
copy_acl_
copy_names_
copy_selL
cpu_time_and_pagin&
cu_
cv_acl_
cv_bin_
cv_dec_
cv_di r _acl_
cv dir mode
cv=float_ -
cv_mode_
cv_oct_
cv_userid_
date_time_
decode_clock_value_
decode_descriptor_
decode_entryname_
delete_
di scard_output_
encipher_
expand_path_
fi 1 e
find=condition_info_
get_default_wdir_
get_eQual_name_
getJroup_id_

continued on next page

Page xii i
11/30/73

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

I Contents I MULTICS PROGRAMMERS' MANUAL

Page xiv

Section 10 Subroutines (continued>

02/28/73
01/31/73
02/16/71
02/12/73
02/13/73
03/19/73
03/20/73

'02/16/73
02/16/73
02/13/73
02/21/73
03/15/73
03/14/73
02/12/73
02/13/73
02/12/73
03/08/73
02/28/73
08/24/71
02/16/73
02/27/73
02/28/73
03/12/73
03/12/73
02/15/73
02/13/73
01/17/72
02/16/72
02/13/73
02/15/73
03/19/73
03/19/73
04/02/73
03/19/73

02/20/73
02/20/73
02/15/73
02/20/73
03/19/73
03/19/73
07/11/73
10/01/73
09/28/73
09/17/70
03/20/73

get_pd i r_
get_process_id_
get_wd i r_
hcs_$add_acl_entries
hcs_$add_dir_acl_entries
hcs_$append_branch
hcs_$append_branchx
hcs_$append_link
hcs_$chname_file
hcs_$chname_seg
hcs_$del_dir_tree
hcs_$delentry_file
hcs_$delentry_seg
hcs_$delete_acl_entries
hcs_$delete_dir_acl_entries
hcs_$delete_acl_entries
hcs_$fs_get_mode
hcs_$fs-&et-path_name
hcs_$fs-&et_ref_name
hcs_$fs-&et_seg-ptr
hcs_$fs_move_file
hcs_$fs_move_seg
hcs_$initiate
hcs_$initiate_count
hcs_$list_acl
hcs_$l ist_dir_acl
hcs_$make-pt r
hcs_$make_seg
hcs_$replace_acl
hcs_$replace_dir_acl
hcs_$set_bc
hcs_$set_bc_seg
hcs_$star_
hcs_$status_
hcs_$status_long: see hcs_$status_
hcs_$status_minf: see hcs_$status_
hcs_$status_mins: see hcs_$status_
hcs_$terminate_file
hcs_$terminate_name
hcs_$terminate_noname
hcs_$terminate_seg
hcs_$truncate_file
hcs_$truncate_seg
ioa_
ios_
match_star_name_
move_names_
nstd_

continued on next page

t;:\ rnn\1,..in-ht-
~ ""''' ;,. '0""" 1973, Massachusetts Institute of Technology

and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Section 10 Subroutines (continued)

08/21/72
05/04/71
OS/25/72
07/30/71
07/11/73
02/25/12
10/31/73
09/23/70
08/27/73
09/08/71
10/01/73
02/20/73
03/29/71
06/13/72
10/03/73
03/19/73
02/15/73
04/13/72
04/05/73
07/09/73

object_info_
pa rse_f i 1 e_
plot_
random_
read_list_
reversion_
signal_
stu_
suffixed_name_
syn
tape_
term_
timerJl1anager_
tota l_cpu_t i me_
tw_
unique_bits_
unique_chars_
unpack_system_code_
user_info_
wr i te_l j s t_

Reference Guide Index (11/30/73)

I Contents I
Page xv

11/30/73

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

IHf MULTICS COMMAND REPERTOIRE

Command Language Environment
11/30/73

The following facilities are the ones considered to be part
of Multics and are described in this manual. Detailed
specifications on each of the commands mentioned below can be
found, filed in alphabetical order by command name, in the MPM
Reference Guide section, Commands. In addition, many commands
have on-line descriptions that can be obtained with the help
command.

The active functions available on Multics are described
separately, by functional grouping, in several MPM Reference
Gutde write-ups: Alphabetical List of Active Functions, Logical
Active Functions, Arithmatic Active Functions, Character String
Active Functions, Segment Name Active Functions, Data and Time
Active Functions, Question Asking Active Functions, and User
Paremeter Active Functions. Active functions can be used in a
command line in the manner described in the MPM Reference Guide
section, The Command Language, under the heading ActiYe Strings.

The user should also consult the list of items in the Author
Maintained and/or Installation Maintained Library at his
installation, since local language translators and other commands
can substantially extend the standard command repertoire.
Documentation of the Author Maintained and/or Installation
Maintained Library is supplied by the local installation.

The command repertoire Js organized by function into the
following groups:

Storage System, Creation and Editing of Segments
Storage System, Segment Manipulation
Storage Segment, Directory Manipulation
Storage System, Access Control
Storage System, Formatted Output Facilities
Storage System, Address Space Control
Language Translators, Compilers, Assemblers and Interpreters
Object Segment Manipulation
Debugging and Performance Monitoring
I/O System Control
Command Typing and Control
Communication Among Users
Accounting
Control of Absentee Computations
Miscellaneous Tools

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Command Repertoire
Command Language Environment
Page 2

MULTICS PROGRAMMERS' MANUAL

1) Storage System, Creation and Editing of Segments

basic_system
compare_ascii

create
edm
indent

qedx
sort_file

sets bit count of a segment to last
nonzero character
editor and runner of BASIC programs
compares supposedly identical ASCII
segments, reporting differences
creates an empty segment
inexpensive, easy to learn editor
indents a PL/I source segment to
make it more readable
more sophisticated editor
sorts ASCII segments line by line

2) Storage System, Segment Mani~ulation

addname

archive

compare

compare_ascii

copy
create
delete

deleteforce
deletename

fs_chname
1 ink

~; ~~names J
listotals
move
names

rename

adds a name to a segment, directory,
or 1 ink
sets bit count of a segment to last
nonzero character
packs segments together to save
physical storage breakage
sorts the contents of an archive
segment by component segment name
compares segments word by word,
reporting differences
compares supposedly identical ASCII
segments, reporting differences
copies a segment
creates an empty segment
deletes 9 segment, but questions if
segment IS read only
deletes a segment without question
removes a name from a segment,
directory, or link
directs typewriter output to a
segment
an extra powerful rename command
creates a directory link to another
segment

prints directory contents

moves segment to another directory
moves or copies names from one
storage system entry to another
renames a segment, link, or
directory

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

reorder_archive

s~fptv sw off
- - • - - (//I _- - -_- - •

set_bit_count
status

truncate

unlink

Command Repertoire
Command Language Environment

Page 3
11/30/73

rearrages order of an archive
segment
turns safety switch off for a
segment or directory
turns safety switch on for a
segment or directory
sets a given bit count in a segment
prints everything known about an
entry in a directory
used to truncate a segment to a
specified length
removes a directory link

3) Storage System, Directory Manipulation

change_default_wdir
change_wdir
createdir
delete dir
list - }
1 i stnames
listotals
print_default_wdir

sets the default working directory
changes to a new working directory
creates a directory
destroys a directory

prints directory contents

prints default working directory
name
prints current working directory
n~me

4) Storage System, Access Control

delete_iacl_dir

delete_iacl_seg

deleteacl

deletecacl

listacl
1 istcacl
set_i ac l_d i r

removes an Initial ACL for new
directories
removes an Initial ACL for new
segments
removes an access control list
(ACL) entry
removes a common access control
list (CACL) entry
prints an Initial ACL for new
directories
prints an Initial ACL for new
segments
prints an ACL entry
prints a CACL entry
adds (or changes) an Initial ACL
for new directories
adds (or changes) an Initial ACL
for new segments

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Command Repertoire
Command language Environment
Page 4

setacl
setcacl

MUlTICS PROGRAMMFRS' MANUAL

adds (or changes) an ACl entry
adds (or changes) a CACl entry

5) Storage System, Formatted Output Facilities

dprint

dpunch

ma i 1
memo

print
print_motd

runoff

runoff_abs

adds segment to the high speed line
printer queue
adds a segment to the card punch
queue
selective octal dump of segment
contents
prints or sends mail
allows users to set reminders
for later printout
prints any ASCII segment
prints the system's message of the
day
formats a text segment according
to internal control words
invokes the runoff command as an
absentee job

6) Storage System, Address Space Control

initiate

print_search_rules

print_wdir

set search di rs }
set_search_rules
terminate

where

controls directory assumed when
relative path names are given
adds a segment to the address space
of a process
prints all names by which segment
is known to a process
prints path of search for missing
segments
prints name of current working
directory
controls path of search for missing
segments
removes a segment from process
address space
prints full path name of a segment

7) language Translators, Compilers, Assemblers, and Interpreters

apl
basic

© Copyr i ght,

assembly language for Multics
invokes the AlM assembler as an
absentee job
invokes the APl interpreter
translates and optionally runs
Version 6 BASIC programs

1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MUlTrcs PROGRAMMERS' MANUAL

basic_run
basic_system
fortran
fortran_abs

1 i sp
lisp_compiler
pl1
pll_abs

qedx

vSbasic

Command Repertoire
Command Language Environment

Page S
11/30/73

runs BASIC programs
editor and runner of BASIC programs
standard FORTRAN IV compiler
invokes the FORTRAN compiler as an
absentee job
a LISP 1.S interpreter and compiler
invokes a LISP compiler
the Multics PL/I compiler
invokes the PL/I compiler as an
absentee job
sophisticated editor, with macro
facilities (a minor interpreter)
invokes the Version I I PL/I
compiler as an absentee job
translates and oPtionally runs
Version S BASIC programs

8) Object Segment Manipulation

bind packs two or more object segments
into a single segment
prints name of bound component,
gives offset
prints information about a bound
segment
prints list of entries and outbound
links of an object segment

9) Debugging and Performance Monitoring

debug
dump_segment

hold

how_many_users
page_trace

print_linkage_usage
profile

progress

adjusts length and contents of status
messages
symbolic source language debugger
selective octal dump of segment
contents
saves the stack for debugging or
later restart
tells how many users are logged in
prints list of pages recently
demanded
prints map of all current linkage
prints information about execution
of individual statement within a
program
prints information about the progress
of a command as it is being executed

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Command Repertoire
Command Language Environment
Page 6

ready

ready_on
reprint_error

trace_stack
where

10) I/O Sys tern Cont ro 1

close_file
console_output

dprint

dpunch

i oca 11

iomode

line_length
list_daemon_requests

MULTICS PROGRAMMERS' MANUAL

prints a summary line of CPU time
and paging usage
suppresses the ready line
following commands
restores the ready line
allows retyping of earlier status
messages
prints stack history
prints full path name of a segment

cancels a previosu1y submitted
daemon request
closes open FORTRAN and PL/I files
restores typewriter output to the
typewriter
adds a segment to the high speed
printer queue
adds a segment to the card punch
queue
directs typewriter output to a
segment
allows direct calls to I/O system
entries
sets typewriter character conversion
modes
sets typewriter carriage length
prints list of daemon requests
currently queued
prints list of current I/O system
stream attachments

11) Command Typing and Control

abbrev

answer

do

enter

get_com_l i ne 1
set_com_l i ne ,

allows user-specified abbreviations
for command lines or parts of
command lines
answers questions normally asked
of the user
executes a command line with
arguments inserted
enters an anonymous user into the
system
allows a segment to be treated as
a list of commands to be executed
adjusts size of command line
buffers

Massachusetts Institute of Technolo~y
and Honeywell Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

hold

login
logout
new_proc

program_interrupt

release
start

walk_subtree

12) Communication Among Users

change_wdir

check_info_segs

help
1 ink

ma i 1

make_peruse_text

peruse_text

set_search_dirs

unlink
where
who

13) Accounting

getQuota

moveQuota

resource_usage

Command Repertoire
Command Language Environment

Page 7
11/30/73

saves the stack for debugging
following an accident
enters user into the system
exits user from the system
creates a new process, with a
fresh address space
signals a condition following an
accident
releases a saved stack
restarts a computation following
a quit or unexpected signal
repeats a command in all directories
below a given directory

changes base of operation to
another directory
checks information (and other)
segments for changes
prints special information segments
inserts a directory link to
another segment
sends an ASCII message to another
user
prepares segments for use by
peruse_text
selectivelY prints structural
information segments
sets path of search for missing
segments
removes a directory link
prints full path name of a segment
prints list of users currently
logged in

prints secondary storage quota
and usage
moves secondary storage quota to
another directory
prints resource consumption for
the month

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Command Repertoire
Command Language Environment
Page 8

MULTICS PROGRAMMERS' MANUAL

14) Control of Absentee Computations

runoff_abs

who

15) Miscellaneous Tools

archive

calc
code

decam
decode

print_motd

reorder_archive

who

invokes the ALM assembler as an
absentee job
cancels a previously submitted
absentee job request
adds a request to the absentee
job queue
invokes the FORTRAN compiler as an
absentee job
prints list of absentee job
requests currently queued
invokes the Version I PL/I compiler
as an absentee job
invokes the runoff command as an
absentee job
prints list of absentee jobs
currently logged in

packs several segments together
to save physical storage breakage
sorts the contents of an archive
segment by component segment name
a desk calculator
enciphers a segment, given a coding
key
another desk calculator
deciphers a segment, given the proper
co~ing key
prints the system's message of the
day
rearranges order of an archive
segment
prints list of users currently
logged in

~ Copyright; 1973; Massachusetts Institute of Technology
and Honeywell I nformation Systems Inc. (END)*

MUlTles PROGRAMMERS' MANUAL

Command Language Environment
7/12/73

PROTOCOL FOR LOGGING iN

The first step in using Multics is to establish a connection
between the user's terminal and the system, as described in the
MPM Introduction, Chapter 3, under The Mechanics of Terminal
Usage. After the user has established that connection, Multics
responds:

Multics 20.6; MIT, Cambridge, Mass.
Load = 16.0 out of 40.0 units; users = 15

where the system, the site, the number of
currently logged in, and the maximum number of
permitted are, of course, variable.

Logging l..D.

units and users
units currently

Once the user has obtained the "Load =" message (and if he
still wishes to log in), he should type:

login person -project- -control_arguments-

If the project is omitted, the user's default project ID is used.
(See the write-up of the login command for more information.)
Multics responds:

Password:

The terminal prepares for the user's typing of his password by
x'ing out the line following the password request. The user then
types his password (eight characters or less); e.g.,

qwertyui

At this point, Multics prints one of the following messages:

1) person project logged in: date time from type terminal "x"

There is a short interval during which the process is
created for the user, followed by the printing of the
message of the day, followed by a ready message (see Ready
Messages below). If the user's password has been given
incorrectly since its last correct use, a message to that
effect is also printed.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Logging In Protocol
Command Language Environment
Page 2

MULTICS PROGRAMMERS' MANUAL

2) System full. Please try again later.

Acceding to the user's login request would cause the number
of logged in users to exceed the current maximum. (Note
that certain users have privileges such that they can log in
despite the current maximum setting.)

3) Load control group full. Please try again later.

The user's load control group has its maximum number of
users already logged in.

4) Incorrect login word.

The user has not specified a recognizable login request.

S) login: illegal argument "XXXII.

The user has specified an illegal parameter in his login
request line.

6) Home directory missing.

The user's home directory does not exist and cannot be
created.

7) You are subject to preemption.

This message is printed in conjunction with messa~e 1
(above). It indicates that the user has been assigned
secondary status and can be preempted if the system becomes
full and a primary user from any load control group logs in.

8) You are protected from preemption until hhmm.

This message is printed in conjunction with message 1
(above). It indicates that the user has been assi~ned
primary status and cannot be preempted until the time given.
Once this time arrives, the user retains primary status
until another user from his load control group attempts to
log in and finds the load control group full. The first
user can then be demoted to secondary status or preempted,
depending on whether or not the system is full.

@) Copyr t ght, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

9) Special session in progress.

logging In Protocol
Command language Environment

Page 3
7/12/73

A new version of Multics is being tested, or certain repair
or administrative work is in progress which requires that
users be temporarily restricted from accessing the system.

10) login incorrect.

Some item in the system's verification of the user's attempt
to access Multics was incorrect. I.e., the user's name
or project was not registered (or was mistyped) or the
password was incorrectly typed.

11) person.project already logged in from type terminal "x"

The user-project combination is already using Multics. A
message notifying the already logged in user of the current
login attempt is printed at his terminal.

If a user does not complete his login within a few minutes,
his terminal hangs uP.

User's Process Parameters

Several attributes of the user's process can be controlled
by the user's project administrator. The project administrator
can, in turn, allow the user to override some of these attributes
by specifying control arguments in his login or enter line. (See
the login and enter command write-ups.) The variable attributes
and their values for most users are:

1) ~ directory

The project administrator can specify the path name of the
user's home directory. The project administrator can also
permit the user to override this specification by use of the
-home_dir control argument to the login or enter commands.
The usual value for a user's home directory path name is:

)user_dir_dir)project>person

and if the path name has this form, and the directory does
not exist, the login or enter commands attempt to create the
directory.

~ Copyri~ht, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Logging In Protocol
Command Language Environment
Page 4

2) process overseer

MULTICS PROGRAMMERS' MANUAL

The user's process overseer is the procedure which is called
to initialize the user environment when a process is
created. The project administrator can specify the path
name of this procedure. The project administrator can also
allow the user to override this specification by use of the
-process_overseer control argument to the login or enter
commands. The usual value for a user's process overseer is:

If the user's process overseer cannot be located, the user
process cannot be initialized.

3) initial ~ maximum Lln& number

The project administrator can specify the initial protection
ring in which the user process begins execution, and the
maximum ring in which the user process can execute, within
limits set by the system administration. This specification
cannot be overridden by the user. The usual values for
these parameters are:

initial ring: 4
maximum ring: 7

4) preemption protection ~

The project administrator can specify the minimum amount of
time that a user can hold primary status, within limits set
by the system administration. The user cannot override this
specification. The usual value for most users for this
parameter is 48 hours.

5) password

The user can change his password by use of the
-change_password control argument to the login command. The
command asks first for the current password to verify the
identity of the user, then for the new password. On
subsequent logins, the new password is required.

6) default project

The user can change his
logins) to the project
command line.

default project (for subsequent
specified in the current login

rnnvl"'tah1-_
--,......." I • M' ~ 1 9 73 , r,1 ass a c h use t t sin C 1- i 1- 111- Qo n f T Qo r h n n 1 n CT v

and Honeywell i~*~~~~iio~·s~~~~~~·l~~.

MULTICS PROGRAMMERS' MANUAL

7) attributes

Logging In Protocol
Command Language Environment

Page 5
7/12/73

flags which determine user privileges
as the user attributes. The system
allow project administrators to set

A number of one-bit
are referred to
administrator can
certain of them
can be overridden

for users on a project, and some of them
by the user. The attribute flags include:

a) brief

If Qn, the user does not receive messages associated with
a successful login. If the user is using the standard
process overseer, the message of the day is not printed.
The project administrator can force this attribute to be
on, or the user can set it to Qn by use of the -brief
control argument to the login or enter commands.

b) nostartup

If on, the user can specify the -no_start_up control
argument to the login or enter commands, and cause his
start_up.ec to be bypassed. (See Start YR below.) Most
users have this attribute set to Qn.

If Qn, the user can override the process overseer
specification by use of the -process_overseer control
argument to the login or enter commands. If 2ft, the
control argument has no effect. Most users have this
attribute set to 2n.

d) v_home_dir

If Qn, the user can override the home directory
specification by use of the -home_dir control argument to
the login or enter commands. If Qff, the control
argument has no effect. Most users have this attribute
set to Qn.

e) preempting

If QU, the user can preempt other primary users in his
load control group whose grace has expired. The user can
cause this attribute to be set to 2fi by use of the
-no_preempt control argument to the login or enter
commands.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTles PROGRAMMERS' MANUAL

Logging In Protocol
Command Language Environment
Page 6

f) guaranteed_login

If Qn, the user is logged in, if at all possible, if he
also specifies the -force control argument to the login
or enter commands. This attribute flag is set to gn only
for system users for emergency repair applications.

g) multip

If Qll, the user can
simultaneously. Only
attribute.

h) nobump

be logged in
system daemon

more
users

than
have

once
this

If QllL.
operator.

the user cannot be bumped by name by the system
Only system daemon users have this attribute.

t) no 1 is t

If Qn, the user is not listed on the output of the who
command. This attribute is not normally given to any
user.

If Qn, the user cannot have primary status.

k) no_secondary

If QO, the user cannot have secondary status.

Start !!Q

Upon beginning execution in a new process, a user might
desire his process to perform certain actions before coming to
command level. In order to do this, the user can create an
exec_com segment (see the MPM write-up of the exec_com command)
that contains commands which are to be executed before his
process attempts to read from his terminal. This segment must be
named start_up.ec and must reside in the user's initial working
directory.

(c) Copyright, 1973, Massachusetts Institute of Technolo~y
" and Honeyweii Information Systems Inc.

MUlTIes PROGRAMMERS' MANUAL

Logging In Protocol
Command Language Environment

Page 7
7/12/73

If the segment start_up.ec exists in the user's initial
working directory, the printing of the message of the day is
suppressed. In addition, the command "exec_com start_up
creationtype processtype jj is executed as a command during process
initialization. If the process is being created because the user
has logged in, creationtype is the string "login". If the
process is being created because of a new_proc command or a
process termination, creationtype is the strin~ "new_proc". If
the process being created is interactive, then processtype is the
s t r i n g II i n t era c t i v e" • 1ft h e pro c e s s. b e i n g c rea ted i san
absentee process, processtype is the string "absentee".

This feature allows users to initialize their processes as
they see fit. Some uses of this feature might be to suppress
ready messages or change the search rules.

ReadY Messages

The ready message is a printed response designed to provide
timing information for the user. It is of the form

r time cpu mu pf

and is printed after every command or sequence of commands, and
after a quit condition. time is the current time of day (24-hour
notation), cpu is the amount of processor time charged to the
process (in seconds, to the nearest millisecond), mu is the
memory usage and pf is the number of page faults. The cpu, mu
and pf figures are the values since the last calculation or, in
the case of the first ready message for a n~w prpcess the time,
memory usage, and page faults required to initialize t~e process.

Special Subsystem ~

Some projects may wish to arrange for a special process
overseer procedure to be called when a user logs in, instead of
the standard Mu1ttcs procedure, in order to modify the system's
appearance to the terminal user. A project administrator can
specify a special process overseer for any user on his project.
The MPM Subsystem Writers' Guide write-up for the
process_overseer_ subroutine contains further information.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Logging In Protocol
Command Language Environment
Page 8

Anonymous Users

MULTICS PROGRAMMERS' MANUAL

For some applications (like short courses), it is desirable
to allow unregistered persons to log in as users of a particular
project. Multics allows a project to register a special,
anonymous user. Users who log in under this identity are given
the access name anonymous.project.a, and any number of these
users can log in at once. When used in conjunction with the
special process overseer control argument described above, this
facility allows a subsystem to simulate other time-sharing
systems under Multics.

There are two varieties of anonymous user registrations and
two corresponding login procedures. For anonymous users who have
a password, the user types

enterp person project -control_arguments-

instead of the login line described above. No default project 10
is possible. The system then asks

Password:

and continues with the normal login sequence. For anonymous
users with no password (usually those with a special process
overseer which checks for a password), the user types

enter person project -control_arguments-

The system skips requesting a password and goes directly to the
logged In message. For both cases, the user's name as given on
the login line is available to a special process overseer for any
checks It wishes to make. (See the MPM command write-up for
enter.)

Logging Out

When the user has finished his current terminal activity, he
issues the command

logout

Multics disconnects the user's telephone line after printing

person project logged out date time
CPU usage ss sec, memory usage uu units
hangup

1973# Massachusetts Institute of Technolovy
and Honeywell Information Systems inc.

MUlTICS PROGRAMMERS' MANUAL

Logging In Protocol
Command Language Environment

Page 9
7/12/73

Emergency Logout

When a scheduled shutdown or system emergency occurs, the
user may see the following message appear on his terminal:

Automatic logout
person project logged out date time
CPU usage ss sec, memory usage uu units
hangup

followed by the telephone line disconnection as for a normal
logout command. If possible, a warning message is printed a few
minutes before the automatic logout message appears.

Unscheduled Disconnections

If, for some reason, the user's telephone connection to
Multics is broken, the Multics system recognizes this event and
issues an automatic logout for the user (without printing on the
user's terminal, needless to say). If he has more work to
accomplish, he should dial into Multics again and attempt the
standard login sequence.

Logout ~ Inactivity

If a user is inactive (that is, his process remains blocked)
for more than the installation-specified maximum time limit,
Multics logs the user out with the following message:

Maximum inactive time exceeded
person project logged out date time
CPU usage ss sec, memory usage uu units
hangup

Terminal Switch Settings

Switches must be set as indicated below for interaction with
the computer.

2741: LCL-COM switch on ~.
INHIBIT AUTO EDT switch (if present) Qn.
Power switch QU.
The quIt button is marked ATTN.
The end of line key is marked RETURN.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Logging In Protocol
Command Language Environment
Page 10

Datel:

1050 :

37:

38:

35:

33:

ARDS:

LOCAL-REMOTE switch on REMOTE.
EOT-INH switch on lHtl.
Power swi tch Q.!l.
The quit button is marked ATTN.
The end of line key is marked RETURN.

System switch on Attend.
Printer 1 switch on SendRec.
Keyboard switch Q.!l.
System switch up.
Test switch off.
Power swi tch on.
Line Contro-l'- Switch (located inside rear
pedestal door) Q.!l.
The quit button is marked RESET LINE.
The end of line key is marked RETURN.

No switches are accessible. Power is turned on
by the QAIA button.
The quit button is marked INTERRUPT.
The end of line key is marked LINE SPACE.

Line button Q!l
Both the CR and
sequentially to
~1 u 1 tic s new 1 i n e
Carriage return
line feed.

LF buttons must be pressed
generate the equivalent of a

(carriage return_line freed).
should be typed first, then

The quit button may be unmarked -- it is the
second button from the bottom in the right hand
colomn of five buttons.

ON-LINE/OFF-LINE switch on ON-LINE.
HALF DUPLEX/FULL DUPLEX switch on EUl1 DUPLEX.
The quit button is marked BREAK.
The end of line key is marked LINE FEED.

ON-LINE/OFF-LINE switch on ON-LINE.
HALF DUPLEX/FULL DUPLEX switch on E!.L..L. DUPLEX.
The quit button is marked BREAK.
The end of line key is marked LINE FEED.

Power switch (on back) Qn.
Press RESET button before dialing.
The quit button is marked:
a) when in read mode, the CONT and Q buttons
pressed at the same time;
b) when in write mode, the WAIT button.

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Terminet 300:

Execuport 300:

Trendata 1000:

Logging In Protocol
Command Language Environment

Page 11
7/12/73

The end of line key is marked LF.

The ON LINE and READY buttons should be lit.
The INTERRUPT button should light up when
the quit button is hit.
Transparency switch Qfi.
Inhibit switch on Norm.
Rate switch set to lie
Line Feed switch on ~.
Auto L.F. switch Qn.
The quit button is marked INTERRUPT.
The end of line key is marked RETURN.

The PWR switch (on back panel) should be gn.
Mode switch on llHE.
DUPLEX switch on HALF. (Can be set to
~ to suppress printing of the password
only.)
CHAR/SEC switch on lie (Should be set to
lQ if dialed into a 110 baud line.)
PARITY switch on fYfli.
QSL switch on LOWER.
The quit button is marked BRK.
Both the LF and CR buttons must be pressed
sequentially to generate the equivalent of a
Multics "new line" (carriage return-line feed).
Either button can be pressed first.

Power switch 2n (POWER indicator light turns
on) •
COMM button lighted (press switch to enter or
leave communication mode).
LOCAL button unlighted (press switch to enter
or leave local mode).
The quit button is marked ATTN.
The PROCEED light indicates that the keyboard
is unlocked.
The ERROR CHECK light indicates that a
character cannot be printed.
The UNLOCK button can be depressed to free the
keyboard and turn on the PROCEED light.
The end of line key is marked RETURN.

G) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Logging In Protocol
Command Language Environment
Page 12

Tektronix 4013:

Teleterm 1030:
(Multics version)

Power switch (under the keyboard) Qn (POWER
indicator light turn on).
LINE/LOCAL switch to the LINE position.
TRANSMIT AND RECEIVE baud rates (on back of
pedestal) set to 1200.
FULL DUPLEX/HALF DUPLEX switch (on back of
pedestal) set to HALF DUPLEX, SUPERVISOR.
CARRIAGE RETURN switch (on back of pedestal)
set to CR/LF.
The quit button is marked BREAK.
The end of line key is marked LF.

Power sw itch .Q!l.
Duplex switch on half.
Parity switches set to Qn and ~.
SPEED set to 10, 15, or 30 depending on whether
a 110 baud, 150 baud, or 300 baud telephone
number was dialed.

Note that when using Multics via a data network, the above switch
settings may be superseded by local host conventions.

See also the MPM Reference Guide section, Typing
Conventions, for information on keyboard input and output
conventions. In general, the conventions described there apply
to lo~ging in and out as well as all other typing.

(c) Copyri~ht! 1973! Massachusetts Institutp. of Technolovv
-- and Ho n e yw ell I n for ma t f 0 n S y 5 t ems -Inc. (F NO)

MUlTlrs PROGRAMMFRS' MANUAL

TYpING CONVENTIONS

Command Language Environment
9/25/73

Three categories of typing conventions are dealt with in
this section: canonical form, erase and kill characters, and
escape characters. Quits, which mi~ht reasonably be considered a
typing convention, are discussed elsewhere. The button that can
be pressed to cause a quit condition to be signalled is listed
for each terminal type under Terminal Switch Settings in the MPM
Reference Guide section, Protocol for Logging In. Handling of
the condition is discussed under the quit condition in the MPM
Reference Guide section, List of System Conditions and Oefault
Handlers.

Canonical Form

The concept of a canonical representation of a printed line
image described here has been used in at least two character
oriented systems: in TYPSET on the IBM 7094 (as suggested by Earl
Van Horn), and in the TITAN operating system on the ATLAS
computer.

Characters are intended ultimately for human communication,
and conventions about a printed line must be made with this in
mind. A character stream is a representation of printed lines.
In general, there are many possible character streams that
represent the same line. In particular, on input, a typist can
produce the same printed line twice with different sets of key
strokes. For example, the line

start lda alpha,4 get first result.

could have been typed with either spaces or hori~ontal.tabs
separating the fields; one cannot tell by looking at the prInted
image. Since it is not possible for the individual to
distinguish between several ways of typing a printed
representation, no program should deliberately attempt to do so
either.

For example, a program should be able to compare easily two
character streams to see if they are the same, in the sense that
they produce the same printed image. It follows that all
character input to Multics must be converted into a standard
(canonical) form. Similarly, all programs producing character
output, including editors, must produce the canonical form of
output stream.

Effectively, of all possible ASCI I character strings, only
certain of those strings are ever found within Multics. All of
those strings that produce the equivalent printed effect on a

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Typing Conventions
Command Language Environment
Page 2

typewriter terminal are represented within Multics as one string,
the canonical form for the printed image.

No restriction has been placed on the individual at his
terminal; he is free to type a noncanonical character stream.
This stream is automatically converted to the canonical form
before it reaches his program. For the user who wants his
program to receive raw or partially processed input from his
terminal, the following escape mechanism is provided. The tw_
outer module (see the MPM write-up for the tw_ subroutine)
supports the following applicable modes below through the
changemode call:

-'esc

-'erk 1

rawi

no canonicalization of overstrikes.

no canonicalization of escape characters.

no erase and kill processing.

the specified data is read from the terminal without
any conversion or processing. This includes shift
characters and undifferentiated upper and lower
case characters.

Similarly, an I/O System Interface Module (IOSIM) is free to
rework a canonical stream on output into a different form if, for
example, the different form happens to print more rapidly or
reliablY on the device.

We assume that every IOSIM is able to determine
unambiguously what precise physical motion of the device
corresponds to the actual character stream coming from or going
to it. In particular, the IOSIM must know the location of
physical tab settings. This requirement places a constraint on
devices with movable tab stops. When the tab stops are moved,
the IOSIM must be informed of the new settings. Standard Multics
software assumes that tab stops are at character positions 11,
21, 31, 41, etc.

The current Multics canonical form does not meet all of the
objectives of the above discussion: it represents a compromise
between whose objectives and that of convenience of typing
aligned tabular information, which requires an ambiguous
interpretation of the tab character. The following three
statements describe the current Multics canonical form.

1) A message consists of strings of
separated by carriage motion.

character positions

€) Copyright" 1973" Massachusetts Institute of Technology
and Honeywell Information Systems inc.

MUlTICS PROGRAMMERS' MANUAL

Typing Conventions
Command Language Environment

Page 3
9/25/73

2) Carriage motion consists of new line, tab,
characters.

or space

3) Character positions consist of a single graphic or an
overstruck graphic. A character position with overstrikes
contains the numerically (in ASCI i sequence) smallest
graphic, a backspace character, the next larger graphic, etc.

Thus, for the most part, the canonical stream differs little from
the raw input stream it was derived from.

Fxamples of Canonical Form

Several illustrations of canonical form are shown below.
The examples do not attempt to cover every conceivable variation
or combination of characters, but, rather, illustrate the intent
and the method. (In the examples, assume that the typist's
terminal has horizontal tab stops set at 11, 21, 31, etc.)

Typist: This is ordinary text.<NL>
Printed line: This is ordinary text.
Canonical form: This is ordinary text. <NL>

For the case of simple, straight line input, the canonical form
reduces to the original key strokes of the typist. Most input
probably falls into this category.

Typist: Here full<BS><BS><BS><BS> ____ means that<NL>
Printed line: Here full means that
Canonical form: Here _<BS>f_<BS>u_<BS>l_<BS>l means that<NL>

This is probably the most common example of canonical conversion,
to insure that overstruck graphics are stored in a standard
pattern.

Typist: We see no prob <BS>lem<CR> __ <NL>
Printed line: We see no problem
Canonical form: _<bs>W_<bs>e see no problem

(Recall that the carriage return erR) does not produce a line
feed.} The most important property of the canonical form is that
meander'n~s of the typist within a line are irrelevant. The
typist need merely concern himself with the printed image.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Typing Conventions
Command Language Environment
Page 4

Erase ~ Kl!l Characters

MULTICS PROGRAMMERS' MANUAL

Experience has shown that even with sophisticated editor
programs available, two minimal editing conventions at the
earliest possible level are very useful for human input to a
computer system. These two conventions give the typist two
editing capabilities at the instant he is typing:

1) Ability to delete the last character or characters typed.

2) Ability to delete all of the current line typed up to this
point.

(More complex editing capabilities are also available, but they
fall in the domain of editing programs that can work with lines
previously typed as well as the current input stream.) By
framing these two editing conventions in the language of the
canonical form, it is possible to preserve the ability to
interpret unambiguously a typed line image despite the fact that
editing was required.

The first editing convention is that one graphic, the number
sign (I), is reserved as the erase character. When this
character appears as the only graphic in a print position, it
erases itself and the contents of the previous print position.
When it is not the only graphic in a print position, it erases
the print position in which it appears. If the erase character
follows simple carriage motion, the carriage motion is erased.
Several successive erase characters erase an equal number of
print positions or simple carriage motions. Since erase
processing occurs after the transformation to canonical form,
there is no ambiguity as to which print position has been erased;
the printed line image is always the guide. Whenever a print
position is erased, any carriage motion on the two sides of the
erased print position is combined into a single carriage motion.

The second editing convention reserves another graphic, the
commercial at sign (@), as the ~ character. When this
character appears as the only graphic in a print position, the
contents of that line up to and including the kill character are
discarded. Again, since the kill processing occurs after the
conversion to canonical form, there can be no ambiguity about
which characters have been discarded. By convention, an
overstruck erase character is processed before a kill character,
and a kill character is processed before a non-overstruck erase
character. Therefore, a kill character can only be erased by an
overstruck erase character.

~ Copyright; 1973; Massachusetts Institute of Technolo£v
and Honeywell Information Systems Inc.

MUL T I rs PROGRAM~,fFRS' ~1ANUA L

Examples of Erase and Kill Processing

Typing Conventions
Command Language Environment

Page 5
9/25/73

Typist: abcx#de<SP><BS>fzz##g<NL>
Printed line: abcx#defzz##g
Canonical form: abcx#defzz##g<NL>
Final input: abcdefg<NL>

This represents the primary use of the erase character,
correcting typing errors the moment they are noted. Note that
the erroneous space between e and f was not erased, it was
undone.

Typist: This@The off<BS><BS><BS> ___ ##n<BS>_<SP>state<NL>
Printed linp: This@The off##n state
Canonical form: This@The <BS>o_<BS>f <BS>f## <BS>n state<NL>
Final input: The _<B5>0_<BS>n state<NL>
Printed appearance of final form: The Qn state

Escape Characters

Contemporary terminal equipment often is not capable of
representing all 128 of the ASCII code values. To keep full
generality and flexibility in the future, standard software
escape conventions are used for all terminal devices. On devices
that have the revised ASCI I set, the use of the escape mechanism
is normally unnecessary. Each class of terminal device has a
particular character assiRned as the software escape character.
When this character occurs in an input (or output) string to (or
from) ate r min ali tal \"1 a y s g i ve s asp e cia 1 i n t e r pre tat ion tot h e
next one or mor~ charactersf: The standard escape character is
the 1 eft slant; th I S means tha to I nput the code tor I t, an
escape convention has to be used. Therefore, the left slant
should be avoided in all Mu1tics software. (It should be noted
that the two standard erase characters, # and @, should also be
avoided in all software.)

For simplicity, universal escape conventions have been
established that are uniform over several terminal classes. For
full flexibility, there is a mechanism for representing any
arbitrary octal code in a character string. The universal escape
conventions are:

\d1d2d3 for the octal code dl d2 d3 where dl, d2, d3 are
from zero to seven. \d2d3 is equivalent to \dld2d3 if dl is
zero. \d3 is equivalent to \dld2d3 if dl and d2 are zero.

® Cop y rig h t , 19 7 3 ~ ~1 ass a c h use t t sin s tit ute 0 f T e c h no log y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Typing Conventions
Command Language Environment
Page 6

\<NL> for a local (i.e., concealed) use of the new line
character that does not go into the computer-stored string on
input and that is not in the computer-stored string on output.

" for placing an erase character into the input string.

\@ for placing a kill character into the input string.

\\ for placing a left slant character into the input string.

One additional stylistic convention holds for all terminals:
the solid vertical bar (I) and the broken vertical bar <:) are
equivalent representations of the graphic for ASCII code 174.

l]M 1050 ~ ~ Terminals

Each type ball used requires a different set of escape
conventions.

EBCDIC ~ ~ (~) snQ EBCDIC Keypunches

The following non-ASCII EBCDIC graphics are consi-dered to be
stylized versions of ASCII characters:

¢ , (cent sign)
(apostrophe)
(negation)

for
for
for

\ (left slant, software escape)
,. (acu te accent)
" (circumflex)

In addition to the four universal escape conventions, the
following are available for convenience.

¢ , for , (grave accent)
¢< for [(left bracket)
¢> for] (right bracket)
¢(for { (left brace)
¢) for } (right brace)
¢t for (tilde)

There are no currently implemented escapes for IBM 029
keypunches with EBCDIC codes.

In the case of keypunches, an end-of-card automatically
generates a new line character. It is also convenient for input
to have:

¢* for "skip reading the remainder of this card without
the new line character"

¢/ for "new line and skip reading the remainder of this

(c) Copyright, 1973, Massachusetts Institute of Technology
" and Honeywell information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

card"

Typing Conventions
Command language Environment

Page 7
9/25/73

¢+ for "new line and keep reading this card"
¢H for horizontal tab

Note that one can use the mUltiple punch codes described in the
MPM Reference Guide section, Punched Card Codes, when at an 029
keypunch instead of the above escape conventions. The two sets
of conventions (escape and multiple punch) are interchangeable,
even in the same card deck.

Model 11 ~ 12 Teletypes

Because these models do not have both upper and lower case,
the following typing conventions are necessary to enable users to
input the full ASCII character set:

1) The keys for letters A through Z input lower case letters a
through z, unless preceded by the escape character \ (left
slant). The left slant is shift-l on the keyboard, although
it does not show on all keyboards. For example to input
"Smith.ABC", type "\Smith.\A\B\C".

2) Numbers and punctuation map into themselves when possible.

3)

The underscore (_) is represented by the back arrow (~). The
circumflex (A) is represented by the up arrow (f). The acute
accent (') is represented by the apostrophe (I).

The following other correspondences exist:

Charact~r ~l.n o,1;a l

backspace \- 010
grave accent (,) \1 140
1 eft brace (f) \(173
vertical 1 i ne (:) \! 174
right brace (}) \) 175
tilde (-) \= 176

In normal I/O mode, characters are output according to these same
rules. In edited I/O mode, the output drops the left slant and
becomes much tidier, but ambiguous.

Model 11 ~ l! Teletypes

There are no additional escape conventions for the model 37
and 38 teletypes since they use the full ASCI I character set.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Typing Conventions
Command Language Environment
Page 8

Execuport .lQ.Q.

MULTICS PROGRAMMERS' MANUAL

The following non-ASCI I characters on the keyboard are
considered to be stylized versions of ASCII characters:

#- (b a c k a r row)
t (up arrow)

for
for

(underscore)
(circumflex)

~ Copyright~ 1973~ Massachusetts Institute of Technology
and Honeywell Information Systems inc. (ENDi*

MULTICS PROGRAMMERS' MANUAL

.I1iE. COMMAND LANGUAGE

Command Language Environment
7/11/73

A system command is a program furnished by the system that
performs some general, canned function for a user. Such programs
~rp called commands because they carry out users' orders to the
system (renaming a segment, compiling a program, etc.). In
Multics, system commands are not a special class of program. Any
user program that takes character strings as arguments can be
invoked as a command. (See the MPM Reference Guide section, The
Multics Programming Environment.) The command processor can be
viewed as simply a mechanism for invoking programs by name.

It is clearlY necessary to establish some conventions for
the syntax of a command line. (A command line is defined as the
sum of a command name plus any arguments to be passed on to the
command when it is invoked. Note that, in Multics, the general
rule is for system commands to accept arguments at invocation and
not to acquire them by interrogation of the user during
execution.) It should also be clear that it is not usually
desirable to declare that the syntax be identical to the
subroutine call of some particular programming language, since
the engineering of human interfaces is different from that of
subroutines. The conventions developed here are chosen for
simplicity in the basic case, and for functional flexibility in
the nonbasic cases. That is, various services such as nesting
and iteration of commands are furnished, and the command language
syntax allows these features to be specified by means of certain
special delimiters in the command line; but if the services are
not desired, the user need only type his commands accordin~ to
the format discussed below under Simple Commands. For that
matter, the command system is avoidable; some subsystems under
Multics may choose to interact with their users in their own
fashion, with their own conventions. Most users, however, deal
with Multics directly through the command system.

Context

After successfully logging in to the system, the user is
said to be at command level. Then and thereafter, from the point
of view of the user, command level is the time after a ready
message, at which point the system is available' for new commands.
That is, when a command has finished executing, it returns to the
command processor (which called it in the first place), and the
command processor prints a message on the user's terminal
informing him that the system is ready for further orders. When
the user is at command level, he issues commands in the syntax of
the command language described herein. Note that because Multics
typewriter input allows read-ahead, the user does not have to
wait for a ready message before typing another command line. He

€) Copyri~ht, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Command Language
Command Language Environment
Page 2

MULTICS PROGRAMMERS' MANUAL

can, however, be interrupted in the middle of typing a line by
the ready message. If this occurs, that line is lost and must be
retyped. The typing of ready messages can be turned off and on
using the commands ready_off and ready_on (see the MPM command
write-ups).

Simple Commands

A command line specifies a function to perform plus, if
appropriate, the arguments with which the function is to operate.
Each command line element is currently treated as a character
string. That is, individual commands are called with character
string ary.uments, there currently being no conversion by the
system of, say, numeric characters to binary representation.

There are two basic elements of a command line. The first
is the command name. This is essentially a reference name, i.e.,
a (procedure) segment name, and, if appropriate, an entry point
name. The command processor uses the user's search rules (see
the MPM Reference Guide section, The System Libraries and Search
Rules) to find the program whose name is the command name.
However, the reference name can be preceded by a storage system
hierarchy location specification; that is, it can be a path
name. In this case, the search rules are superseded and the path
name is used to find the program. Subsequent unqualified
references to the same reference name are treated as if the path
name were present (see example below). The second basic element
is the argument. This is simply a character string designating,
for instance, a segment. Depending on the particular command in
question, there can be from zero to an arbitrary number of
arguments. The element delimiter (or separator) in a command
line is the space (or blank). The terminator of a command line
can be either the semicolon (;) or the new line character. Note
that more than one command can be issued on the same line of
console input by using the semicolon between commands.

The ~eneral form of the simple command is

command_name argl ••• argn

with each element separated from the preceding one by one or more
spaces. For example, the rename command takes arguments in
pairs; the first is the current path name of the segment to be
renamed and the second is the desired new entry name. Thus,

rename square_root sqrt

(2) Copyright, 1973~ ~,1assachusetts Institute of Technolo£y
" and Honeywell Information Systems Inc.

MULTles PROGRAMMERS' MANUAL

Command Language
Command Language Environment

. Page 3
7/11/73

causes the command processor to search for and invoke a procedure
named rename at entry point rename with the character strings
"square~root" and "sqrtll as ar~uments. There is no difference
between invoking a command from the console and calling it in a
procedure. For example, typing the command line "rename
square_root sqrt fl is equivalent to executing the following PL/I
program:

x: proc;
call rename ("square_root", "sqrt");
end x;

As another example, suppose
experimental version of the rename
directory >Smith_dir. If one types:

>Smith_dir>rename square_root sqrt

that one
command

knows
resides

that
in

an
the

then the experimental version is invoked. That is, the program
rename in the directory >Smith dir is invoked with the character
string arguments "square_root" and "sqrt". Subsequent
unqualified references to rename invoke the one in >Smith_dir.
In like manner, any program in the storage system hierarchy can
be invoked.

Iteration

Sometimes the user wishes to repeat a command with one or
more elements changed. The iteration facility of the command
lang~age is grovided for economy of typing. The iteration set
consists of one or more elements enclosed by parentheses
(parentheses are reserved characters). Each element of the set,
in turn, replaces the entire set ir the command line. For
example,

print (a b c).pl1

is equivalent to the three commands

print a.p11; print b.pll; print c.pll

More than one iteration set can appear in
corresponding element from each set is taken.
compound command

a command. The
For instance, the

rename >Smith_dir>(Jones Doe Brown) (Day White Green)

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Command Language
Command Language Environment
Page 4

would expand into the commands

rename >Smith_dir>Jones Day

rename >Smith_dir>Doe White

rename >Smith_dir>Brown Green

MULTICS PROGRAMMERS' MANUAL

Nested iteration sets are also allowed.· Evaluation of
parentheses occurs from the outside in. The principal use of
nested iteration sets is to reduce typing when subsets of an
element are repeated. For example,

createdir >Smith_dir>(new>(first second) old>third)

would create three directories

>Smith_dir>new>first

>Smith_dir>new>second

>Smith_dir>old>third

Active Strings

The following hypothetical situation introduces the next
feature of the command language. Suppose one wants to
periodically delete the least recently used segment in a
directory. After rejecting the notion of listing the directory
and picking out the appropriate segment by hand, one would
probably write a small program (say, oldest_segment> to perform
the same task, have it print the name of the segment, and then
delete the segment. Further thought leads one to the realization
that it should be possible to give the results of oldest_segment
directly to the delete command. The desire generalizes into the
notion of active strings where an active string is defined to be
an element of a command line which is immediately evaluated
(executed) and the resultant value placed back into the command
line. A program explicitly designed to be used in an active
string is called an active function. An active function must
return a varying character string as its value.

Since they are called from the user's terminal, active
functions do not follow the standard library subroutine practice
of returning a status code e Instead, upon detecting an error,
they call the subroutine active_fnc_err_ which signals an error
condition (see the MPM subroutine write-up for active_fnc_err_).
Also, they are inherently more expensive than library subroutines

€) Copyri~ht, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Command Language
Command Language Environment

Page 5
7/11/73

since they are designed to interact directly with a human user.
For these reasons, they should not be called from a program.

The delimiters of an active string are the left bracket e[)
and the right bracket el). Thus, in terms of the hypothetical
situation sketched above:

delete [oldest_segment]

performs the desired task where oldest_segment has been changed
to return its value as a varying character string rather than
printing its value on the terminal. The command processor scans
the command line, discovers the active string, evaluates it,
places the obtained value into the command line, discovers the
terminator, evalutes what is left (which is "delete" as a command
name and some character string as arguments), and then returns.

To afford fuller generality, active functions can have
arguments and active strings can be nested. Suppose one had a
random name generating routine called namer which took an
arbitrary two-character string as a "seed" and returned a
32-character (or shorter) varying character string, then:

rename [oldest_segment] rnamer xz]

would cause the least recently used segment to be renamed to
whatever random name emerged from namer when the latter was
invoked with xz as an argument. Now supposing one also had a
random number generator called random for priming namer,

rename [oldest_segment] [namer [randoml]

is also valid (provided random returns a varying character string
value).

An implication of the use of
further emphasis is the fact that
value is actually rescanned for
inserted into the command line. For
returned [beta] as its value,
command, then

x (al pha]

active strings which deserves
after being evaluated, the
active strings before being
example, if procedure alpha
and x were some appropriate

would invoke x with whatever value procedure beta in turn
returned.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Command Language
Command Language Environment
Page 6

MULTICS PROGRAMMERS' MANUAL

In some cases, the user may not want the string returned by
the active string to be rescanned for further active strings. To
suppress this rescanning, one immediately precedes the active
string with a vertical bar (I). Continuing the immediately
preceding example,

x I [al pha]

would result in the invocation of x with (beta] as an argument.
Note that all other scanning (e.g., for spaces) is performed on
the returned string.

Iteration can, of course, be combined with the above
features. For example, suppose the program "bill" returned the
character string "arthur robert fred". Then the command line

p r i n t ([b ill])

would expand into

print (arthur robert fred)

The command line finally obtained when all active strings
have been processed is called the expanded command line. For
example, in the case "print ([bill])" above, the expanded command
line is "print (arthur robert fred)".

The maximum length of the expanded command line is, by
default, 128 characters. This size can be changed using the
set_corn_line command (see the MPM command write-up). For the
sake of efficiency, it is recommended that the size be left at
128 characters except when a larger size is temporarily needed
(to accommodate a large returned string from some active
function, for example).

For simplicity, all of the above examples have used active
strings consisting of a single command line. In its most general
form, an active string can consist of any number of legal command
lines separated by semicolons. The value of the active string is
the concatenation of the values of the command lines. For
example, if the active string

returns the value TURN and the active strin~

~ CoPYright~ 1973~ Massachusetts Institute of_Technolo~y
~ and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Command Language
Command Language Environment

Page 7
7/11/73

returns the value STYLE then the active string

[act_fncl x; act_fnc2 y zJ

returns the value TURNSTYLE.

The idea of active strings is taken from the TRAC~language
designed by Calvin N. Mooers.

Concatenation

Another desirable feature of a command language is the
ability to form basic elements (i.e., character strings) by
concatenation with nonbasic elements (e.g., the values of active
strings). For example, suppose one has written an active
function called work which returns the character string
representation of the path name of one's working directory. It
should then be possible to perform a command (presumably from
some other directory) such as

rename [work]>sQuare_root sQrt

and have the first argument to rename be the concatenation of the
value of the work active function with the string ">sQuare_root".
In the Multics command language, this facility is furnished in
precisely the manner shown. That is, the value of a delimited
element of a command is concatenated with the string or delimited
element adjacent to it when there is no space between the two.

Note that more than one delimited element can be
concatenated. For example,

de 1 et e [wor k] > ([b i 111)

deletes the segments arthur, robert, and fred in the user's
working directory where the active function "bill" is defined as
above.

Note also that concatenation
direction with regard to the
non-delimited string. For example,

delete >proj ect_di r >Ooe> ([b i llJ)

is permissible in either
delimited string and the

® Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Command Language
Command Language Environment
Page 8

MULTICS PROGRAMMERS' MANUAL

deletes the segments arthur, robert, and fred in the directory
)project_dir)Ooe.

Concatenation was implicitly assumed in our description of
iteration.

Reseryed Characters ~ Quoted Strings

Note that in the context of the Multics command language,
the following characters are reserved: space, quotation mark
(II), semicolon (;), the new line character, left and right
brackets ([and]), left and right parentheses ("(II and 11)11), and
the vertical bar (I) when adjacent to the left bracket.
Occasionally, however, it is necessary to use a reserved
character without its special meaning. For example, we might
want to pass a semicolon as an argument to a command. The
character quotation mark ("> is reserved for this purpose.
Reserved characters within a quoted string (i.e., a string of
characters surrounded by quotation marks) are treated as ordinary
characters. Thus,

rename ";" foo

causes a semicolon to be passed as an argument to the rename
command. Also, since a quotation mark is a reserved character,
it may be desirable to suppress its special meaning. For this
purpose, two adjacent quotation marks within a quoted string are
interpreted as a single quotation mark. For example,

causes the argument AilS to be passed to the delete command.

Notes

The command processor can be called from a program by using
the procedure cu_$cP. See the write-up of the subroutine cu_ in
the MPM. See also the MPM Reference Guide section, The Multics
Programming Environment.

€) Copyright~ 1973~ Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)*

MULTICS PROGRAMMERS' MANUAL

CONSTRUCTING AHQ INTERPRETING NAMES

Command Language Environment
9/24/73

The various types of names used on Multics are constructed
and interpreted according to certain conventions. The names in
question are user names, segment names~ command names, subroutine
names, I/O stream names and condition names.

User names are discussed in the MPM Reference Guide section,
Access Control, since they are primarily used to specify access
control information.

A segment can be named in two ways. Its location in the
storage system hierarchy is specified by its path name. The name
by which it is known in a process is its reference name. The
star convention and equal convention provide shorthand methods of
specifying segment names. Offset names allow specification of
externally known locations in a segment.

Ea1h Names

As described in the MPM Introduction Chapter 3, Beginner's
Guide to The Use of Multics, each segment (or directory or link)
in the Multics storage system has an entry in a superior
directory. Any segment (or directory or link) can be found by
following the appropriate entries from a designated directory
through inferior directories until the desired segment (or
directory or link) entry is reached. An absolute path name is
just such a sequence of entry names starting from the root
directory. A relative path name is a sequence relative to the
current working directory. Path names, whether relative or
absolute, are typically used as arguments to commands and
subroutines.

An entry name is a string of 32 or fewer ASCII characters.
Only the greater-than (» and less-than «) characters are
prohibited in entry names, since they are used to form path names
as described below. Several other characters are not recommended
for entry names -- asterisk (*), question mark (?), percent sign
(%), equals (=) and dollar sign ($) -- because standard commands
attach special meanings to them. Each is explained below.

In general, entry names consist of the upper- and
lower-case alphabetic characters, the digits, the underscore (_)
and the period (.), and must have at least one nonblank
character. The underscore is used to simulate a space for
readability; e.g., a segment might be named new_seg. (Including
a space in an entry name is permitted, but is cumbersome since
the command language uses spaces to delimit command names and
arguments.) The period is used to separate components of an

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

constructing and Interpreting Names
Command Language Environment
Page 2

MULTICS PROGRAMMERS' MANUAL

entry name, where a component is a logical part of the name.
Several system conventions depend on components. For example,
compilers on Multics expect the language name to be the last
component of the name of a source segment to be compiled; e.g.,
square_root.pll for a PL/I source segment.

An absolute path name is formed from a sequence of entry
names, each preceded by a greater-than character. The initial
greater-than indicates that the entry name following it
designates an entry in the root directory. Thus, an absolute
path name has the form >first_dir>second_dir>third_dir>my_seg.

The directory first_dir is immediately inferior to the root,
second_dir is an entry in first_dir, etc. A maximum of 16 levels
of directories is allowed from the root to the final entry name.
The number of characters in the path name cannot exceed 168.
Each intermediate entry in the chain can be either a directory or
a link to a directory. The final entry can be a directory, a
segment or a link.

A relative path name looks like an absolute path name except
that it does not contain a leading greater-than character, and
can begin with less-than characters as explained below. It is
interpreted by various commands to be a path name relative to the
user's working directory. The simplest form of relative path
name is the single name of an entry in the user's working
directory. For example, the relative path name alpha refers to
the entry alpha in the user's working directory. On a slightly
more complex level, the relative path name sub_dir>beta refers to
the entry beta in the directory sub_dir which is immediately
inferior to the user's working directory.

The less-than character can be used at the front (left end)
of a relative path name to indicate that the directory
immediately superior to the working directory is where the
following entry name is to be found. This principle can be
extended so that several less-than characters cause the superior
directory several levels higher than the working directory to be
searched for the first entry name in the relative path name.

In the following examples, the user's working directory is

>dirl>dir2>dir3>dir4

A relative path name of

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeyweii information Systems inc.

MULTICS PROGRAMMERS' MANUAL

Constructing and Interpreting Names
Command Language Environment

Page 3
9/24/73

would designate the segment with the absolute path name

>dir1>dir2>dir3>dir4>new=seg

A relative path name of

would designate the segment

>dir1>dir2>dir3>dir4>dirS>old_seg

A relative path name of

<dirO>newer

would designate the segment

>dir1>dir2>dir3>dirO>newer

A relative path name of

«<sample_dir>game_dir>chess

would designate the segment

>dir1>sample_dir>game_dir>chess

~ ~ Convention

Many commands that accept path names as input allow the
final entry name .in the path to be a star name. A ~ ~ is
an entry name that identifies a group of entries in a single
directory. Commands that accept star names perform their
function for each directory entry identified by the star name.

A star name identifies all entries in a directory having an
entry name that matches the star name. A special type of
matching is performed in which some character strings of the star
name are compared with corresponding strings of the entry name,
while other character strings of the entry name are ignored. If
the star name strings match the entry name strings, then the
entry name matches the star name. Therefore, the entries
identified by a star name all have similar names.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTles PROGRAMMERS' MANUAL

Constructing and Interpreting Names
Command Language Environment
Page 4

Under the star convention, the
according to the rules for constructing
names listed below:

matching is performed
and interpreting star

1) A star name is an entry name. Therefore, it is composed of
a string of 32 or fewer ASCII printing graphics or spaces,
none of which may be the less-than «) or greater-than (»
character. Note that, unlike an entry name, a star name
cannot contain control characters such as backspace, tab, or
new line.

2) A star name is composed of one or more nonnull components.
This means that a star name cannot begin or end with a
period (.), and cannot contain two or more consecutive
periods.

3) Each question mark (?) character appearing in a star name
component is treated as a special character. The question
mark matches any character that appears in the corresponding
component and letter positions of the entry name.

4) Each asterisk (*) character (loosely referred to as a star)
appearing in a star name component is treated as a special
character. The asterisk matches any number of characters
(including none) appearing in the corresponding component
and letter positions of the entry name. Only one asterisk
can appear in each star name component, except for a double
star component as noted in the next rule.

5) A star name component consisting only of a double star (**)
is treated as a special component. The double star
component matches any number of components (including none)
in the corresponding component position of the entry name.
Only one double star component can appear in a star name.

Note that the rules above do not require that star names contain
asterisks or question marks. Therefore, an entry name that does
not contain either of these special characters can be used as a
star name, as long as it does not contain any null components.
Note too that the rules above impose no restrictions on the form
of the entry names to be matched with the star name. Such names
can contain null components that match only star name components
of * or **.

The following examples illustrate some common forms for star
names. The entry name

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

*.pl1

Constructing and Interpreting Names
Command Language Environment

Page 5
9/24/73

identifies all two-component entries in the user's working
directory that have pll as their second component; the path name

identifies all three-component entries in the directory sub dir
(which is immediately inferior to the user's working directory)
that have my-prog.new as their first and second components; and

*
and

identify, respectively, all one-component and
entries in the working directory. The entry name

my-prog.**

two-component

identifies all entries with my-prog as the first (and possibly
only) component;

identifies all entries with two or more components of which the
last is my_seg;

**.pll

identifies all entries with pll as the last (and possibly only)
component; and

**

identifies all entries in the user's working directory. The
entry name

prog*.pl1

identifies all two-component entries whose first component begins
with prog and has four or more characters, and whose second
component is pll;

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Constructing and Interpreting Names
Command language Environment
Page 6

*_data

MUlTICS PROGRAMMERS' MANUAL

identifies all one-component entries whose first component ends
with _data and has five or more characters; and

interest_*_data.*.*

identifies all three-component entries whose first component
begins with interest_, ends with _data, and has fourteen or more
characters. Finally, the entry name

ad?

identifies all three-character one-component entries in the
user's working directory which begin with ad;

I??????????????

identifies all fifteen character one-component entries beginning
with ! (called unique names because such names are generated by
the unique_chars_ subroutine and the unique active function); and

sub_dir)prog?**.pll

identifies all entries in the directory sub_dir (which is
immediately inferior to the user's working directory) with two or
more components, the first of which has five characters and
begins with prog, and the last of which is pll.

~ EquaJ Convention

Some commands that accept pairs of path names as their
arguments (e.g., the rename command) allow the final entry name
of the first path to be a star name, and the final name of the
second path to be an equal name. An equal ~ is an entry name
containing special characters that represent one or more
characters from the entry names identified by the star name.
Commands that accept equal names provide a powerful mechanism for
mapping certain character strings from the first path name into
the second path name of a pair. Such a mechanism helps to reduce
the typing required for the second path name, and it can be
essential for mapping character strings from the entry names
identified by the star name into the equal name, because these
characters strings are not known when the command is issued.

Under the equal convention, the mapping of character
strings from the star name into the equal name is performed
according to the rules for constructing and interpreting equal

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell information Systems inc.

MUlTICS PROGRAMMERS' MANUAL

names given below:

Constructing and Interpreting Names
Command language Environment

Page 7
9/24/73

1) An equal name is an entry name. Therefore~ it is composed
of a string of 32 or fewer ASCII printing graphics or
spaces, none of which may be the less-than «) or the
greater-than ()} character. Note that, unlike an entry
name, and equal name cannot contain control characters such
as backspace, tab, or new line.

2} An equal name is composed of one or more nonnull components.
This means that an equal name cannot begin or end with a
period (.), and cannot contain two or more consecutive
periods.

3} Each percent (%) character appearing in an equal name
component is treated as a special character. The percent
represents the character in the corresponding component and
letter position of the entry name identified by the star
name. An error occurs if the corresponding character does
not exist.

4) Each equal sign (=) appearing in an equal name component is
treated as a special character. The equal sign represents
the corresponding component of the entry name identified by
the star name. An error occurs if the corresponding
component does not exist. An error also occurs if an equal
sign appears in a component that also contains a percent
character. Only one equal sign can appear in each equal
name component, except for a double equal sign component, as
noted in the next rule.

5) An equal name component consisting only of a double equal
sign (==) is treated as a special component. The double
equal sign component represents all components of the entry
names identified by the star name that have no other
corresponding components in the equal name. From this
definition, it follows that if the double equal sign
component represents (i.e., corresponds to) any components
of the entry name identified by the star name, then the
equal name necessarily has the same number of components as
the entry name. Only one double equal sign component can
appear in an equal name.

Note that the rules above do not require that equal names
contain equal signs or percent characters. Therefore, an entry
name that does not contain either of these special characters can
be used as an equal name, as long as it does not contain any null

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Constructing and Interpreting Names
Command Language Environment
Page 8

MULTICS PROGRAMMERS' MANUAL

components. Note too that the rules above impose no restrictions
on the form of the entry names identified by the star name.
These names can contain null components. However, the rename and
addname commands cannot be called with an entry name that
contains null components, because these commands treat their
arguments as either star names or equal names. The fs_chname
command can be used to rename entries if names containing null
components are accidentally created.

The following examples illustrate how equal names might be
used in rename and addname commands. The command

rename random.data_base order.=

is equivalent to

rename random. data_base ordered.data_base

addname world.data =.statistics =.census

is equivalent to

addname world.data world.statistics world.census

The command

rename random. data. base

is equivalent to

rename random.data.base random. data

The star convention is used in the command

rename *.data_base =.data

to rename all two-component entry names with data_base as their
second component to have, instead, a second component of data.
The command

rename alpha beta.=.gamma

is in error because the first name of the pair does not contain a
component corresponding to the equal sign in the second name.
The command

rename program.pll old_=.=

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell information Systems inc.

MULT1CS PROGRAMMERS' MANUAL

Constructing and Interpreting Names
Command Language Environment

Page 9
9/24/73

is equivalent to

rename program.pl1 old_program.pll

and

addname data first_=_set

is equivalent to

The next rename command, which contains a double equal sign
component,

rename one. two. three 1.==

is equivalent to

rename one. two. three l.two.three

and

addname one.two.three.four 1.==.4

is equivalent to

addname one.two.three.four l.two.three.4

Note that, in the two examples above, the first name has
components that are represented by the double equal sign in the
second name of each pair. As a result, the number of components
represented by the equal name is the same as the number of
components in the first name. On the other hand, in the command

addname able ==.baker.charlie

which is equivalent to

addname able baker.charlie

the double equal sign does not represent any component of the
first name. Component able of the first name is represented in
the equal name by baker. As a result, the equal name represents
a greater number of components than there are in the first. The
command

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Constructing and Interpreting Names
Command Language Environment
Page 10

addname **.ec ==.absin

MULTICS PROGRAMMERS' MANUAL

uses the star convention to add a name to each entry with a name
whose last component is ec. The last component of this new name
is absin, and the first components (if any) are the same as those
of the name ending in ec. Finally, the command

rename ???*.data %%%.=

renames all two-component entry names that have a last component
of data and a first component containing three or more characters
to have a first component that has been truncated to the first
three characters and the same last component. Note that the
command

rename *.data %%%.=

may result in an error if the first component of any name
matching *.data has fewer than three characters.

Reference Names

Procedures executing in a process need to refer by name to
other segments known in that process. Such a name is a reference
name. A reference name may be the same as an entry name of the
segment, or may be different. For example, when a dynamic
linkage fault occurs for a reference name, the linker searches
(using search rules) for a segment which has an entry name
identical to that reference name. A procedure call, an
invocation of a command through the command processor, or a
reference to an external data segment is of this type, as is a
segment made known by the hcs_$make_ptr subroutine. Search rules
(telling which directories to search for the entry name) may be
specified by the user or may be system defaults. The default
search rules are described in the MPM Reference Guide section,
The System Libraries and Search Rules. Alternatively, the user
may explicitly designate the reference name to be associated with
a specified segment. The initiate command and the hcs_$initiate
and hcs_$initiate_count subroutines perform this function. In
this case, the reference name need not have any similarity to any
entry name of the segment.

Since a reference name is associated only with segments made
known in a process, the same reference name may be used in two
different processes to refer to two different segments. Also, a
reference name/segment binding exists only for the duration of
the process in which it is specified. It is possible to break
that binding by terminating the segment, thus causing all 1 inks

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell information Systems Inc.

MULTICS PROGRAMMERS· MANUAL

Constructing and Interpreting Names
Command Language Environment

Page 11
9/24/73

to that segment to be unsnapped and causing the segment to no
longer be known in the process (by any reference name). Any
reference name of a terminated segment can be used again in the
process to refer to a different segment. (See the write-ups for
the terminate and terminate_refname commands and the term_,
hcs_$terminate_file, and hcs_$terminate_seg subroutines.)

Individual reference names can be unbound in a process
without terminating the segment unless the reference name removed
was the only one on the segment. (See the write-ups for the
terminate_single_refname command and for the term_,
hcs_$terminate_name, and hcs_$terminate_noname subroutines.) A
user wishing to replace a system routine with one of this own by
the same reference name might terminate that one reference name
and initiate his routine by that same reference name:

terminate_single_refname sys-prog

Thereafter, references to sys-prog would invoke his routine,
my-prog, with one exception. Other system routines bound to
sys_prog would continue to invoke the system routine since those
links had been presnapped when the routines were bound together.

Note that the commands and the term- subroutine unsnap
dynamic links to any segment that has a linkage section, whereas
the hcs_ entry points do not unsnap links.

Offset Names

Procedures frequently have more than one
data segments frequently have internal locations
externally by symbolic name. The names of the
the internal locations are called offset names.
symbolically an offset wIthin the segment.
specified may be refered to by the
ref_name$offset_name where the dollar sign
reference name and offset name.

entry point, and
which are known
entry points and

Both designate
The location
construction

separates the

In many cases the entry point to a procedure has the same
name as the segment itself (or the segment has several entry
names corresponding to the names of its entry points). A
shorthand notation allows the offset name to be assumed to be the
same as the reference name. For example,

call square_root (n);

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Constructing and Interpreting Names
Command Language Environment
Page 12

is interpreted to mean

call square_root$square_root (n);

and the command line

rename a b

is equivalent to

rename$rename a b

It is worthwhile to remember that if the user has renamed
one of his procedure segments (perhaps to preserve an old copy)
or created a storage system link to a segment using a different
name, he must thereafter use the full reference name/offset name
construction when referring to that segment as a procedure
external data segment. For example, a PL/I subroutine compiled
with subr_name as the label of its procedure statement, and then
renamed new name must be referred to as new name$subr name. It
is also important to not that if a reference name/segment binding
has been established in a process, then merely renaming the
segment does not break the association in that process. To do
this, the segment must be terminated.

Command, Subroutine, Condition .a.n.Q 1LQ. Stream Names

These types of names all have some conventions in common.

1) Each is permitted to be not more than 32 characters in
length.

2) All ASCII characters are legal in any position except as
noted in points 3 and 4 below.

3) System subroutine names end in an underscore to prevent
conflicts with subroutine names given by users. (I.e., the
user may easily avoid confl icts by refraining from having an
underscore as the last character of his subroutine names.)

4) Condition and I/O stream names which are part of the system
should end in an underscore to help prevent conflicts with
names given by users. A glance at the MPM Reference Guide
sections, List of System Conditions and Default Handlers,
and List of Names with Special Meanings, reveals many system
condition and I/O stream names which do not observe this
convention. These names were incorporated into the system
before this convention was established.

® Copyright, 1973, r~assachusetts Institute of Technology
;ann ~~nno\lh,oll In4=I"\"'I""'I~+-;l"\n ~""'+-"n"I'" I ,.. (C''''ln\
-._- "".,'-"." , , I"'''''''''U'-''-..III "".1..:Jlr.C'!I';;:> I'~\""..~ \L,."tUI'

MULTICS PROGRAMMERS' MANUAL

Command Language Environment
11/30/73

~QMMAND AHQ ACTIVE FUNCTION NAME ABBREVIATIONS

The following is a list of abbreviations for commands and
active functions. The abbreviations are also listed immediately
after the command or active function name in the individual
write-ups. For example,

~:

Abbreyiation

aa
ab
abc
ac
an
as
bd
br
bs
car
cd
cdr
cdwd
cern
cis
co
cp
cpa
cr
cwd
da
db
dc
dcm
dcn
dd
df
did
dirs
dis
dl
dn
dp
dpn
ds
e
ear
ec

abbrev, ab

Command ~

alm_abs
abbrev
adjust_bit_count
archive
addnarne
archive_sort
bind
basic_run
basic_system
cancel_abs_request
createdir
cancel_daemon_request
change_default_wdir
change_error_mode
check_info_segs
console_output
copy
compare_ascii
create
change_wdir
deleteacl
debug
deletecacl
decam
display_component_name
delete_dir
deleteforce
delete_iacl_dir
directories
delete_iacl_seg
delete
deletename
dprint
dpunch
dump_segment
enter
enter_abs_request
exec_com

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Command Abbreviations
Command Language Environment
Page 2

ep
fa
fl
fo
ft
gcl
gpn
gq
hd
hmu
in
ind
1
1a
1ar
le
lep
ldr
lid
lis
lk
1 1
1n
1 rn
1s
It
ml
mpt
mq
mv
nondirs
nonsegs
pa
pat
pbm
pdl
pdwd
pg
pgt
pi
p 1 i
plu
pmotd
pr
psr
pt
pwd
qx

enterp
fortran_abs
format_l i ne
file_output
fortran
ge t_coflL line
get_pathname
getquota
hold
how_many_users
initiate
indent
login
1 stael
1 st_abs_requests
1 stcacl
1 sp_comp i 1 er
1 st_daemon_requests
1 st_iacl_dir
1 st_iacl_seg
1 nk
1 ne_length
1 stnames
1 st_ref_names
1 st
1 stotals
ma i 1
make_peruse_text
movequota
move
nondirectories
nonsegments
pl1_abs
print_attach_table
print_bind_map
print_dartmouth_library
print_default_wdir
progress
page_trace
program_interrupt
print_l ink_info
print_linkage_usage
print_motd
print
print_search_rules
peruse_text
pr i nt_wd i r
qedx

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

ra
rq
... rI.f . "".
rfa
rf
rdn
rdy
re
rl
rn
ru
sa
sbc
sc
scl
sdl
segs
sf
sid
sis
sr
ssd
ssf
ssn
ssr
st
tc
tm
tmr
tms
ts
ul
v2pa
wh
ws

reorder_archive
reorder_archive
ready_off
runoff_abs
runoff
ready_on
ready
reprint_error
release
rename
resource_usage
setac1
set_bit_count
setcacl
set_com_l i ne

Command Abbreviations
Command Language Environment·

Page 3
11/30/73

set_dartmouth_library
segments
sort_f i 1 e
set_i acl_ dir
set_i acl_seg
start
set_search_directories
set_safety_sw_off
set_safety_sw_on
set_search_rules
status
truncate
termi nate
terminate_refname
termi nate_segno
trace_stack
unlink
v2p11_abs
where
walk_subtree

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Command Language Environment
9/24/73

ALPHABETICAL LiST QE ACTiVE FUNCTiONS

The active functions of interest to most Multics users are
documented in this and seven other MPM Reference Guide Sections:
Logical Active Functions, Arithmetic Active Functions, Character
String Active Functions, Segment Name Active Functions, Date and
Time Active Functions, Question Asking Active Functions, and User
Parameter Active Functions. The MPM Reference Guide section, The
Command Language, describes the purpose of active functions and
illustrates their use.

The following alphabetical list of the active functions
available to Multics users includes the grouping to which each
active function belongs; i.e., indicates which write-up contains
its description.

Actiye Function

and
date
date_time
day
day_name
directories
directory
divide
entry
equal
exists
f i 1 es
format_l i ne
getJ)athname
greater
home_dir
hour
index
index_set
length
less
1 inks
lonLdate
minus
minute
mod
Month
month_name
nondirectories
non 1 inks
nonsegments

Group

logical
date and time
date and time
date and time
date and time
segment name
segment name
arithmetic
segment name
logical
logical
segment name
character string
segment name
logical
segment name
date and time
character string
character string
character string
logical
segment name
date and time
arithmetic
date and time
arithmetic
date and time
date and time
segment name
segment name
segment name

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Active Functions
Command Language Environment
Page 2

not
or
path
pd
plus
query
response
segments
string
strip
strip_entry
substr
suffix
time
times
unique
user
wd
year

logical
logical
segment name
segment name
arithmetic
question asking
question asking
segment name
character string.
segment name
segment name
character string
segment name
date and time
arithmetic
segment name
user parameter
segment name
date and time

€) Copyright, 1973, Massachusetts Institute of Technology
__ ...I u 1 1 I -'= _ ... :........ c ,.......... I ,.. (r lin \
allY !!V!!C)'VVC! I II!! VI ilIa\. I VII ..;I)';::) \.C!";::) !!!\",. ~ 'bnu,

MUlTICS PROGRAMMERS' MANUAL

Command language Environment
10/1/73

lOGICAL ACTIVE FUNCTIONS

The active functions of interest to most Multics users are
documented in this and seven other MPM Reference Guide sections:
Alphabetical list of Active Functions, Arithmetic Active
Functions, Character String Active Functions, Segment Name Active
Functions, Date and Time Active Functions, Question Asking Active
Functions, and User Parameter Active Functions. The MPM
Reference Guide section, The Command language, describes the
purpose of active functions and illustrates their use. Note that
in a command line an active function must be enclosed in square
brackets. However, those brackets have been omitted from usage
descriptions in this wirte-up. They are included in examples.

The following active functions return a character string
value of either "true" or "false". They are intended to be used
with the &if control statement of the exec_com command. (See the
MPM write-up for exec_com.)

~: and

This active function returns the valu-e "true" if both of its
arguments are true. Otherwise, it returns the value "false".

Usage

and arS!:l arg2

1) argi are character strings that must have one of
the values "true" or "false"; if not, an
error diagnostic is issued and the value is
undefined.

~: or

This active function returns the value "true" if either or
both of its arguments are true. Otherwise, it returns the value
"false".

Usage

or arg1 arg2

are character strings that must have one of
the values "true" or "false"; if not, an
error diagnostic is issued and the value is
undefined.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTlrs PROGRAMMERS' MANUAL

Logical Active Functions
Command Language Environment
Page 2

~: not

This active function returns either "true" or "false",
whichever is the opposite of the value of its argument.

Usage

not arg

1) arg is a character str i ng. If arg = "true", then
"false" is returned. If arg = "false", then
"true" is returned. Otherwi se an error
diagnostic is issued.

~: equal

This active function returns the value "true" if its two
arguments are equal (i.e., identical). Otherwise, it returns the
value "false".

Usage

equal arg-l arg2

1) argl are any character strings.

~: greater

This active function returns the value "true" if the value
of the first argument is greater than the value of the second
argument. Otherwise, it returns the value "false".

Usage

greater arg1 arg2

1) argi are character strings. If both arg1 and arg2
are character string representations of
single-precision fixed binary integers, then
a numeric comparison is made. Otherwise, the
comparison is made a character at a time,
starting from the left, using the ASCII
collating sequence.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell information Systems ;~c.

MULTICS PROGPAM~FRSI MANUAL

Name: 1 ess

Logical Active Functions
Command Language Environment

Page 3
10/1/73

This active function returns the value "true" if the value
of the first argument is less than the value of the second
argument. Otherwise, it returns the value "false".

Usage

less arg1 arg2

1) argi are character strings. The comparison is
made as described above in the greater active
function.

Name: exists

This active function checks for the existence of various
types of items, depending on the value of a key.

Usage

exists key arg

1) key

entry

branch

segment

directory

1 ink

argument

can have any of the following values:

returns "true ll if an entry with path name arg
exists; otherwise it returns "false".

returns "true" if a branch with path name arg
exists; otherwise it returns "falsell

•

returns "true" if a segment with path name
arg exists; otherwise it returns "false".

returns "true" if a directory with path name
arg exists; otherwise it returns "false".

returns "true" if a link with path name ar~
exists; otherwise it returns "false".

returns "true" if a link with path name arg
exists and points to an existing segment or
directory; otherwise it returns "false".

returns "true" if it has been passed an
argument; otherwise it returns "false".

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Logical Active Functions
Command Language Environment
Page 4

MULTICS PROGRAMMfRS' MANUAL

2) arg is the argument described for each possible
value of key.

Example

The following example illustrates the use of one of the
active functions described in this write-up. It involves the use
of the &if control statement of the exec_com command. <See the
MPM write-up for exec_com.)

& if (equa 1 [wd] [home_d i r]1

&then &goto elsewhere

&else change_wdir [home_dir]

This example compares the path name of the working directory
with the path name of the home directory, and if they are not the
same changes the working directory to be the home directory.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeyweii information Systems inc. (ENO)*

MULTICS PROGRAMMERS' MANUAL

Command Language Environment
10/1/73

ARiTHMETiC ACTiVE FUNCTiONS

The active functions of interest to most Multics users are
documented in this and seven other MPM Reference Guide sections:
Alphabetical List of Active Functions, Logical Active Functions,
Character String Active Functions, Segment Name Active Functions,
Date and Time Active Functions, Question Asking Active Functions,
and User Parameter Active Functions. The MPM Reference Guide
section, The Command Language, describes the purpose of active
functions and illustrates their use. Note that in a command line
an active function must be enclosed in square brackets. However,
those brackets have been omitted from usage descriPtions in this
write-up. They are included in examples.

The following active functions all perform some arithmetic
operation on their arguments and return the character string
representation of the result.

Namg: plus

This active function returns a value that is the character
string representation of the sum of its arguments.

Usage

plus argl ••• argn

1) argl

Name: minus

are character string representations
single-precision fixed binary integers.

of

This active function returns a value that is the characater
string representation of the difference of its two arguments;
i.e., its first argument minus its second argument.

Usage

minus argl arg2

1) argi

Name: times

are character string representations
single-precision fixed binary integers.

of

This active function returns a value that is the character
string representation of the product of its arguments.

~ Copyright, 1973, Massachusetts Institute of Technolo~y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Arithmetic Active Functions
Command Language Environment
Page 2

Usage

times argl ••• argn

1) argl are character string representations
single-precision fixed binary integers.

Name: divide

of

This active function returns a value that is the character
string representation of the result of dividing its first
argument by its second.

Usage

divide arg1 arg2

1) argl. are character string representations of
single-precision fixed binary integers.

~: mod

This active function returns a value that is the character
string representation of its first argument taken modulus its
second argument.

Usage

mod arg1 arg2

1) argj,

~: min

are character string b.repre~entations
single-precIsion flxea Inary Integers.

of

This active function returns a value that is the character
string representation of the numerical minimum of its arguments.

Usage

min argl ••• ar~n

1) argl are character string representations
single-prevision fixed binary numbers.

Copyright, 1973, Massachusetts Institute of Technology
and Honeyweii information Systems inc.

of

MULTICS PROGRAMMERS' MANUAL

Nam~: max

Arithmetic Active Functions
Command Language Environment

Page 3
10/1/73

This active function returns a value that is the character
string representation of the numericai maximum of its arguments.

Usage

max argl ••• argn

1) argn

Example

are character string representations
single prevision fixed binary numbers.

of

The following example illustrates the use of one of the
active functions described in this write-up.

This example sets the bit count of my_seg (assumed to
contain 672 words of information) to 24,192 which is the product
of 672 and 36.

~ Copyriy.ht, 1973, Massachusetts Institute of Technolo~y
and Honeywell Information Systems Inc. (END)*

MULTles PROGRAMMERS' MANUAL

CHARACTER STRiNG ACTIVE FUNCTiONS

Command Language Environment
10/1/73

The active functions of interest to most Multics users are
documented in this and seven other MPM Reference Guide sections:
Alphabetical List of Active Functions, Logical Active Functions,
Arithmetic Active Functions, Segment Name Active Functions, Date
and Time Active Functions, Question Asking Active Functions, and
User Parameter Active Functions. The MPM Reference Guide
section, The Command Language, describes the purpose of active
functions and illustrates their use. Note that in a command line
an active function must be enclosed in square brackets. However,
those brackets have been omitted from usage descriptions in this
write-up. They are included in examples.

The following active functions return the results of various
operations on one or more character strings.

Name: 1 engt h

This active function returns a value that is the character
string representation of the number of characters in a specified
string

Usage

length arg

1) arg is a character string.

~: index

This active function returns a value that is the character
string representation of the character position in the first
argument where a substring matching the second argument begins.

Usage

index argl arg2

1) ar~l are character strings.

Name: subs t r

This active function returns a value that is the character
string representation of a substring of the first argument
beginning at the character position specified by the second
argument and having a length as specified by the third argument.

~ Copyright, 1973, Massachusetts Institute of TechnoloFY
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Character String Active Functions
Command Language Environment
Page 2

Usage

substr arg1 arg2 arg3

1) arg1

2) arg2, arg3

is a character string.

are character string representations of
single-precision fixed binary integers. If
arg3 is omitted, it is assumed to be the
length of arg1 minus arg2, so that the value
returned is the rest of arg1 beginning with
the arg2-th character.

This active function returns a value that is the character
string representation of the numbers from 1 to the number
specified, with a space between successive numbers. This active
function is useful within an iteration in a command line.

Usage

1) arg

Name: string

is a character string representation of a
single-precision fixed binary integer.

This active function returns its input arguments, separated
from Qne another by a single space L as a quoted character strin~.
By uSing string, the user can trea~ the results of one or more
active functions as a single character string.

Usage

string argl ••• argn

1) argl are the optional input arguments that are to
be returned as a single character string. If
no input arguments are present, then string
returns a null character string. If one or
more arguments are present, then any quotes
in these are doubled when the argument is
placed in the quoted return string, as
required by the Multics command language
convention for quoted strings.

(c) Copyright, 1973, Massachusetts Institute of Technology
~ and Honeywell Information Systems inc.

MULTICS PROGRAMMERS' MANUAL

Character String Active Functions
Command Language Environment

Page 3
10/1/73

~: format_line, fl

This active function returns a formatted character string
that is constructed from a control string and other oPtional
input arguments. Quotes are placed around the return value so
that the command processor treats it as a single argument. Any
Quotes contained in the return value itself are doubled when the
value is placed in Quotes, as required by the Multics command
language convention for Quoted strings.

Usage

format_line control_string arg1 ••• argn

1) control_string

2) arg~

Name: search

is an ioa_ control string that is used to
format the return value of the active
function. It can contain control characters
within it. If no control characters occur,
the string itself is returned as the value of
the active function. If control characters
exist, they govern the conversion of
successive additional arguments which are
expanded into the appropriate characters and
inserted into the return value. The MPM
write-up of the ioa_ subroutine describes the
control characters that can be used with
ioa_. Of these, -d, -0, -f, -e, -p, -w, and
-A cannot be used with the format_line active
function, because they control the conversion
of argument types that cannot be processed by
the command processor, and hence, cannot be
input to an active function.

are optional input arguments that are
substituted in the formatted return value,
according to the ioa_ control string.

This active function returns a value that is the character
striny representation of the character position in the first
argument that contains a character matching any character in the
second argument.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Character String Active Functions
Command Language Environment
Page 4

Usage

search argl ••• argl

1) arg1 is the character string to be searched.

2) arg2 is the set of characters searched for.

Name: verify

This active function returns a value that is the character
string representation of the character position in the first
argument that contains a character not matching any character in
the second argument.

Usage

verify arg1 ••• arg2

1) argl is the character string to be verified.

2) arg2 is the set of characters searched for.

Examples

The following examples illustrate the use of two of the
active functions described in this write-up. One of the examples
involves the use of the &if control statement of the exec_com
command. (See the MPM write-up for exec_com.)

delete seg ([index_set 15])

This example is equivalent to the command line

delete seg(l 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

to delete the 15 segments segl, seg2, ••• , seg15.

&if [query {format_line "Is -9a a good date? .. [long_date]]]
&then &print Beginning execution.
&else &quit

This example might result in the following dialogue. Note
that the user's response has been underlined for the sake of
clarity.

Is November 22, 1972 a good date? ~
Beginning execution.

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell information Systems inc.

MUlTfCS PROGRAMMERS' MANUAL

Command language Environment
10/1/73

SEGMENT NAME ACTIVE FUNCTiONS

The active functions of interest to most Multics users are
documented in this and seven other MPM Reference Guide sections:
Alphabetical List of Active Functions, Logical Active Functions,
Arithmetic Active Functions, Character String Active Functions,
Date and Time Active Functions, Question Asking Active Functions,
and User Parameter Active Functions. The MPM Reference Guide
section, The Command Language, describes the purpose of active
functions and illustrates their use. Note that in a command lir;e
an active function must be enclosed in square brackets. However,
those brackets have been omitted from usage descriptions in this
write-up. They are included in examples.

The following active functions return a segment path
entry name or some part thereof. Some of them
manipulations on an input string to produce the output
One returns a unique character string that is commonly
the entry name of a segment.

Name: home_dir

name or
perform
string.
used as

This active function returns the path name of the user's
home directory (usually of the form >user_dir_dir>Project>Person)
as obtained by a call to user_info_$homedir.

Usage

Name: pd

This active function returns the path name of the process
directory of th~ process in which it is invoked.

Usage

pd

Name: wd

This active function returns the path name of the working
directory of the process in which it is invoked.

Usage

wd

€) Copyri~ht, 1973, Massachusetts Institute of Technolo~y
and Honeywell Information Systems Inc.

Segment Name Active Functions
Command Language Environment
Page 2

~: get_pathname, gpn

MULTICS PROGRAMMERS' MANUAL

This active function returns the absolute path name of the
segment that is designated by the reference name or segment
number specified. Reference names are discussed in the MPM
Reference Guide section, Constructing and Interpreting Names.

Usage

get_pathname -control_arg- arg

2) arg

~: path

if present, can be -name, in that case the
following argument (which looks like an octal
segment number) is to be interpreted as a
segment name.

is a reference name or segment number (octal)
known to this process.

This active function returns the absolute path name of the
specified segment.

Usage

path arg

1) arg is a segment name.

Nam~: directory

This active function returns the directory portion of the
absolute path name of the specified segment.

Usage

directory arg

1) arg is a segment name.

~: entry

This active function returns the entry name portion of the
absolute path name of the specified segment.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems inc.

MULTICS PROGRAMMERS' MANUAL

Usage

entry arg

Segment Name Active Functions
Command Language Environment

Page 3
10/1/73

1) arg is a segment name.

~ strip

This active function returns the absolute path name of the
specfied segment after having removed the last component of the
entry name, if one exists or if it matches a specified character
string.

Usage

strip arg1 -arg2-

1) arg1 is a segment name.

2) arg2 is an optional character string that, if
present and if it matches the last component
of the entry name portion of arg1, is removed
from that entry name. If arg2 is not given,
any last component is removed from the entry
name portion of argl, assuming arg1 has more
than one component in its entry name.

~: strip_entry, spe

This active function returns the entry name portion of the
absolute path name returned by the strip active function.

Usage

strip_entry argl arg2

1) arg1

2) arg2

~: suffix

is a segment name.

is as described above under the strip active
function.

This active function returns the last component of the entry
name portion of the specified segment. If that entry name has
only one component, It returns the null string.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Segment Name Active Functions
Command Language Environment
Page 4

Usage

suffix arg

1) arg is a segment name.

~: unique

This active function returns a unique character string as
generated by unique_chars_ (see the MPM write-up)~

Usage

unique

~: files

This active function returns the
blanks) of all directories, segments,
starname.

names (separated by
and links matching

Usage

files starname

1) starname is a path name for which the entryname
portion (oPtionally) contains stars to be
interpreted according to the star convention.
(See the MPM Reference Guide section,
Constructing and Interpreting Names.)

~: segments, segs

This active function returns the names (separated by blanks)
of all segments matching starname.

Usage

segments starname

1) starname is as described above under the files active
function.

~: directories, dirs

This active function returns the names (separated by blanks)
of all directories matching starname.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell information Systems inc.

MUlTICS PROGRAMMERS' MANUAL

Usage

Segment Name Active Functions
Command language Environment

Page 5
10/1/73

directories starname

1) starname

H9m.e,: links

is as described above under the files active
function.

This active function returns the names (separated by blanks)
of all links matching starname.

Usage

links starname

1) starname is as described above under the files active
function.

Name: nonlinks, branches

This actIve function returns the names (separated by blanks)
of all segments and directories matching starname.

Usage

nonlinks starname

1) starname is as described above under the files active
function.

Name: nondirectories, nondirs

This active function returns the names (separated by blanks)
of all segments and links matching starname.

Usage

nondirectories starname

1) starname is as described above under the files active
function.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Segment Name Active Functions
Convnand Language Environment
Page 6

~: nonsegments, nonsegs

This active function returns the names (separated by blanks)
of all directories and links matching starname.

Usage

nonsegments starname

1) starname is as described above under the files active
function.

Examples

The following examples illustrate the use of three of the
active functions described in this write-up.

status [get_pathname refnameJ

This example invokes the status command with the path name
of the segment that is known to the process by the reference
name, refname.

1 i st *. pll -p [di rectory [wdJ]

This example lists PL/I source segments in the directory
immediatelY superior to the working directory.

dprint [segs *.pl1]

This examQle invokes the dprint command to have copies
printed of all 2-component PL/I source segments in the working
directory.

~ Copyright, 1973, Massachusetts Institute of Technology
and Hone~~el1 information Systems Inc. I ~ lin'

\CI"U'"

MUlTICS PROGRAMMERS' MANUAL

DATE ANQ TiME ACTiVE FUNCTiONS

Command language Environment
10/1/73

The active functions of interest to most Multics users are
documented in this and seven other MPM Reference Guide sections:
Alphabetical list of Active Functions, Logical Active Functions,
Arithmetic Active Functions, Character String Active Functions,
Segment Name Active Functions, Question Asking Active Functions,
and User Parameter Active Functions. The MPM Reference Guide
section, The Command language, describes the purpose of active
functions and illustrates their use. Note that in a command line
an active function must be enclosed in square brackets. However,
those brackets have been omitted from usage descriptions in this
write-up. They are included in examples.

The following active functions return information about
dates and times.

~: date

This active function returns a date abbreviation in the form
"mm/dd/yyll; e.g., "02/20/73".

Usage

date argl ••• argn

1) argl are oPtional input arguments that determine
the date and time for that information is
returned. These arguments must be in a form
acceptable to the convert_date_to_binary
subroutine (see the MPM write-up). If no
arguments are specified, information about
the current date and time is returned.

This active function returns a date abbreviation, a time
from 0000.0 to 2359.9, a time zone abbreviation, and a day of the
week abbreviation in the form: "mm/dd/Yy hhmm.m zzz www"; e.g.,
"08/07/72 0945.7 est Mon.

Usage

date_time arg1 ••• argn

1) argl are as described above under the date active
function.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Date and Time Active Functions
Command language Environment
Page 2

This active function returns the 1- or 2-digit number of a
day of the month, from 1 to 31; e.g., "7".

Usage

day, arg.1 •.•• argn

1) ard are as described above under the date active
function.

This active function returns the name of day of the week;
e.g., "Monday".

Usage

day_name arg.1 ••• argn

1) arti

~: hour

are as described above under the date active
function.

This active function returns the 1- or 2-digit number of an
hour of the day, from 0 to 23; e.g., "9".

Usage

hour argl ••• argn

1) argi are as described above under the date active
function.

This acti.ve function returns a month name, a day number, and
a year in the form: "month day, year". e.g., "August 7, 1912".

Usage

Tong_9ate arg.1 ••• argn

1) argi are as described above under the date active
function.

~ Copyright, 1913, Massachusetts Institute of Technology
and Honeyweii information Systems inc.

MULTICS PROGRAMMERS' MANUAL

~: minute

Date and Time Active Functions
Command Language Environment

Page 3
10/1/73

This active function returns the 1- or 2-digit number of a
minute of the hour, from 0 to 59; e.g., "45".

Usage

minute argl ••• argn

1) argl.

~: month

are as described above under the date active
function.

This active function returns the 1- or 2-digit number of a
month of the year, from 1 to 12; e.g., "8".

Usage

month arg1 ••• argn

1) argl. are as described above under the date active
function.

This active function returns the name of a month of the
year; e.g., IiAugust".

Usage

month_name arg1 ••• argn

1) argl.

~: time

are as described above under the date active
function.

This active function returns a 4-digit time of day in the
form "hh:mm" where 00 ~ hh ~ 23 and 00 ~ mm i 59; e.g., "09:45 11

•

Usage

time argl ••• argo

1) argl. are as described above under the date active
function.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Date and Time Active Functions
Command Language Environment
Page 4

~: year

MULTICS PROGRAMMERS' MANUAL

This active function returns the 2-digit number of a year of
the century; e.g., "73".

Usage

year ard ••• arnn

1) argl

Example

are as described above under the date active
function.

The following example illustrates the use of one of the
active functions described in this write-up.

enter_abs_request abs_seg -time [date [month 1 month]/11

This example enters an absentee request for deferred
execution to start at the beginning of the next month. The
arguments to the month active function indicate that "I month".
should be added to the current date to get the date from which
the month is to be calculated. The II/I" when concatenated with
the calculated month forms a string such as "2/1".

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell information Systems inc. (END)*

MULTICS PROGRAMMERS' MANUAL

QUESiiQN ASKiNG ACiiVE FUNCiiQNS

Command Language Environment
10/2/73

The active functions of interest to most Multics users are
documented in this and seven other MPM Reference Guide sections:
Alphabetical List of Active Functions, Logical Active Functions,
Arithmetic Active Functions, Character String Active Functions,
Segment Name Active Functions, Date and Time Active Functions,
and User Parameter Active Functions. The MPM Reference Guide
section, The Command Language, describes the purpose of active
functions and illustrates their use. Note that in a command line
an active function must be enclosed in square brackets. However,
those brackets have been omitted from usage descriptions in this
write-up. They are included in examples.

The following active functions return the answer given by a
user in response to a specified question.

~: query

This active function asks the user a specifi.ed question and
returns the value "true" if the user's answer was lIyes" or the
value "false" if the user's answer was "no".

Usage

query arg

1) arg

l:!a.m.e.: response

is a question
worded so as
answer.

to be asked.
to require a

It should be
" yes " or "no"

This active function asks the user a specified Question and
returns the answer typed by the user in response.

Usage

response arg

I} arg is a question to be asked the user.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Question Asking Active Functions
Command Language Environment
Page 2

Example

MULTICS PROGRAMMERS' MANUAL

The following example illustrates the use of one of the
active. functions described in this write-up. It involves the use
of the &if control statement of the exec_com cotTlTland. (See the
MPM lAfr i te-up for exec_com.)

&Jf [query "Do you wish to continue? "1
&then
&else &quit

This example causes the exec_com to continue or quit
depending on the user's answer.

(c) Copyright, 1973, Massachusetts Institute of Technology - and Honeywell Information Systems inc. (ENDi*

MULTICS PROGRAMMERS' MANUAL

Command Language Environment
101 II 73

USER PARAMETER ACTIVE FUNCTiONS

The active functions of interest to most Multics users are
documented in this and seven other MPM Reference Guide sections:
Alphabetical List of Active Functions, Logical Active Functions,
Arithmetic Active Functions, Character String Active Functions,
Segment Name Active Functions, Date and Time Active Functions,
and Question Asking Active Functions. The MPM Reference Guide
section, The Command Language, describes the purpose of active
functions and illustrates their use. Note that in a command line
an active function must be enclosed in square brackets. However,
those brackets have been omitted from usage descriptions in this
write-up. They are included in examples.

The following active function returns user
obtained from system data bases.

parameters

~: user

This active function returns various user parameters.

Usage

user arg

1) arg

name

project

login_date

login_time

anonymous

secondary

absentee

terOLid

can have one of the following values:

returns the user name at log in time.

returns the user project I D.

returns the date at log in time. The date is
of the form "mm/dd/-yy".

returns the time of log in. The time is of
the form "hhmm.t".

returns "true" if the user is an anonymous
user; otherwise it returns "false".

returns
subject
IIfalse".

"true" if the
to preemption;

user is currently
otherwise it returns

returns "true" if the user is an absentee
user; otherwise it returns "false ll

•

ret urn s the use r 's t e r min a 1 I D co de. I tis
"none" if the user's terminal does not have

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

User Parameter Active Functions
Command Language Environment
Page 2

the answer back feature.

returns the user's terminal type.
have one of the following values:

"Absentee"
"Network"
"1050"
"2741"
"IBM2741"
"TTY33"
"TTY37"
"TN300"
"ARDS"

It can

The terminal types "2741" and IIIBM274111
differ in that "IBM2741" designates a
standard IBM 2741 terminal, and "2741"
designates a 2741 terminal that has been
modified according to MIT specifications.
The modification prevents keyboard locking
after a carriage return. A "2741" terminal
can be made to look exactly like an "IBM2741"
terminal by placing its INHIBIT AUTO EOT
switch in the 2ft position.

returns the user's CPU usage, in seconds,
since log in. The usage is of the form
"sss.t" with leading zeros suppressed.

returns the user connect time,
since log in. The time is
"mnJrI.t".

in minutes,
of the form

preemption_time if the user is a primary user, returns the
time at which he becomes eligible for group
preemption. The time is of the form
"hhmm. tit.

brief_bit returns "true" if the user specifled the
-brief control argument in his login line;
otherwise, returns "false".

protected if the user is currently a primary user and
protected from preemption, returns "true";
otherwise, returns "false tl

•

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MUlT1CS PROGRAMMERS' MANUAL

absin

absout

Example

User Parameter Active Functions
Command Language Enviornment

Page 3
10/1/73

if the user is an absentee user, this returns
the absolute path name of his absentee input
segment including the .absin suffix;
otherwise returns a null string.

if the user is an absentee user, returns the
absolute path name of his absentee output
segment; otherwise, returns a null string.

The following example illustrates the use of one
active functions described in this write-up.

of the

ioa_ [user login_time]

This example causes the time the user logged in to be
printed at the user's terminal.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)*

MULTICS PROGRAMMERS' MANUAL

IliE. MULTICS SUBROUTINE REPERTOIRE

Programming Environment
11/30/73

The following facilities are the ones considered to be part
of Multics and are described in this manual. Detailed
specifications on each of the subroutines mentioned below can be
found, filed in alphabetical order by name, in the MPM Reference
Guide section, Subroutines.

In addition, the user should consult the list of items in
the Author Maintained and/or Installation Maintained Library at
his installation, since local library procedures can
substantially extend the standard subroutine repertoire.
Documentation on the Author Maintained and/or Installation
Maintained Library is supplied by the local installation.

The subroutine repertoire is organized by function into the
following groups:

Storage System, Utility Routines
Storage System, Access Controi and Rings of Protection
Storage System, Supervisor Entries for Manipulating Directories

and Segments
Storage System, Supervisor Entries for Manipulating an Address

Space
Clock and Timer Services
Subroutine Call and Argument Utilities
Command Environment Utility Procedures
1/0 System Facilities
Error Handling Facilities
Routines to Convert Some Data Type To and From a Character String

Representation
Object Segment Manipulation Routines
Miscellaneous Procedures

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Subroutine Repertoire
Programming Environment
Page 2

MULTICS PROGRAMMFRS' MANUAL

1) Storage System, Utility Routines

copy_seg_
delete_
decode_entryname_

expand_path_

get_default_wdir_

changes the current working
directory
checks an entry name for correct
construction as a star name
copies access control list (ACL)
from one segment to another
copies all names from one segment
to another
copies a segment
deletes a segment or unlinks a link
splits a procedure reference into
reference name and offset name
implements the storage system equal
convention
converts relative path name
to absolute path name
returns the default working
directory
returns path name of process
directory
return~ path name of current working
directory
determines if an entry name matches
a star name
moves names from one segment to
another
manipulates suffixes on storage
system entry names
removes a segment from the address
space and also unsnaps any
subroutine linkage to it

2) Storage System, Access Control and Rings of Protection

cu_$level_get

cu_$level_set
cv_acl_

copies ACL from one segment to
another
obtains current ring validation
level
sets the ring validation level
formats a segment ACL entry for
printing
formats a directory ACL entry for
printing
converts directory access mode to
bit form

Copyright, 1973, Massachusetts !n~titu~~ of TechnoloFY
and Honeywell InTorma~lon Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

ge t_grou p_ i d

hcs_$add_acl_entries

Subroutine Repertoire
Programming Environment

Page 3
11/~n/7~ _ ~I ." 'W' I W ."

converts segment access mode to bit
form
converts process class identifier
to normalized form
returns access control name of
current user
adds or changes ACl entries on a
segment

hcs_$add_dir_acl_entries
adds or changes ACl entries on a
directory

hcs_$delete_acl_entries deletes all or part of an ACl
on a segment

hcs_$delete_dir_acl_entries
deletes all or part of an ACl
on a directory

hcs_$fs_get_mode returns access control mode for
a given segment relative to the
current validation level

hcs_$list_acl returns all or part of an ACl
on a segment

hcs_$list_dir_acl returns all or part of an ACl
on a directory

hcs_$replace_acl replaces one ACl on a segment
with another

hcs_$replace_dir_acl replaces one ACl on a directory
with another

3) Storage System, Supervisor
Directories and Segments

Entries for Manipulating

Note: some entries come in pairs. The name ending in
ufile" takes a segment name as an argument, while the name
ending in "seg" takes a segment number instead.

hcs_$append_branch J
hcs_$append_branchx
hcs_$append_l ink
hcs_$chname_file }
hcs_$chname_seg
hCS_$delentrY_file}
hcs_$delentry_seg
hcs_$fs_move_fi 1 e }
hcs_$fs_move_seg
hcs_$make_seg

creates a segment or a directory

creates a directory link
adds, deletes, and changes names
found in a directory
deletes a sinyle entry in a
directory
moves a segment from one directory
to another
creates a new segment and then
initiates it

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Subroutfne Repertoire
Programming Environment
Page 4

hcs $set bc }
hcs_$set_bc_seg .
hcs_$star_

hcs_$status_

hcs_$ t runcate_f i 1 e }
hcs_$truncate_seg

MUlTlrs PROGRAMMERS' MANUAL

sets the bit count of a segment

implements the storage system star
convention
returns information about a given
segment
truncates a segment to a given
length

See also 1) Storage System, Utility Routines.

4) Storage System, Supervisor Entries for Manipulating an
Address Space

hcs_$fs~et_path_name

hcs_$fs_get_ref_name

hcs_$initiate

hcs_$ term i nate_f i 1 e J
hcs_$terminate_seg
hcs $terminate name }
hcs_$terminate_noname

returns access control mode for
a given segment relative to the
current validation level
returns path name for a segment
specified by segment number
returns a reference name for a
segment specified by segment number
returns a segment number for a
segment specified by a reference
name
maps a given segment into the
address space of the current
process
same as hcs_$initiate but also
returns the segment's bit count
returns a pointer to a segment
entry point, following search
rules and link conventions
removes a segment from the address
space of the current process
removes a reference name from the
table which defines the address space

See also term_ and change_wdir_ under 1) Storage System,
Utility Routines.

5) Clock and Timer Services

clock_
convert_date_to_binary_
cpu_time_and_paging_

date_time_

reads calendar clock
converts ASCII string to binary time
returns CPU time used and paging
activity for this process
converts binary time to ASCII
string

(c) Copyri~ht, 1973, Massachusetts Institute of Technology
~ and Honeyweii information Systems Inc.

MUlTles PROGRAMMERS' MANUAL

timer_manager_
tota l_cpu_t i me_

Subroutine Repertoire
Programming Environment

Page 5
11/30/73

returns information about binary
time

returns total CPU time used by
this process

6) Subroutine Call and Argument Utilities

These are used in
facilities are not
calling sequence.

cu_$arg_ptr

cu_$artr_ptr_rel

cU_$stack_frame_size
decode_descriptor_

cases where standard Pl/ I language
adequate, such as a variable length

returns number of ary.uments
procedure was called with
returns a pointer to current
argument list
returns a pointer to a specified
argument in current argument list
returns a pointer to a specified
argument in a specified argument
1i s t

generates a subroutine call to a
procedure where name and arguments
are not known at compile time
generates a subroutine call to a
procedure whose name is not known
at compile time
returns a pointer to the current
stack frame
returns current stack frame size
used to interpret PL/I argument
descriptors

See also the MPM Reference Guide section,
Calling Sequences.

Subroutine

7) Command Environment Utility Procedures

cu $cl }
cu_$get_cl
cu_$set_cl
cu_$cp }
cu_$get_cp
cu_$set_cp

controls which procedure is invoked
to return to command level following
quit or unclaimed signal
controls which procedure is used as
the command processor

See also the MPM Reference Guide
language Environment.

section, The Command

€) Copyright, 1973, Massachusetts Institute of Technolo~y
and Honeywell Information Systems Inc.

Subroutine Repertoire
Programming Environment
Page 6

8) I/O System Facilities

broadcast_

discard_output_

ioa_
ios_
ios_$read_ptr }
ios_$write_ptr

tw_
user_info_$tty_data

MULTICS PROGRAMMERS' MANUAL

directs an output stream to several
other streams
infinite sink for an output stream

I/O interface to the Multics
storage system
produces formatted printed output
the complete Multics I/O system
two special high speed entry points
for character string I/O to and from
the typewriter terminal
nonstandard tape device interface
module
prriduces two-dimensional graph for
a display
reads and converts free format
typed input
makes one stream name equivalent
to another
Multics standard tape interface
module
typewriter device interface module
returns information about the
current terminal device
automatically converts and formats
output variables

See also the MPM Reference Guide section, Input and Output
F ac i 1 i ties.

9) Error Handling Facilities

condition_

reversioJ"_

handles errors encountered by
active functions
prints a standard status message for
common errors
handles questions ~enerated by
commands
establishes a procedure to handle
a named condition
returns information about a
condition
discards a condition handling
procedure
calls the handler of a named
condition

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell information Systems inc.

MULTICS PROGRAMMFRS' MANUAL

Subroutine Repertoire
Programmin~ Environment

Page 7
11/30/73

converts packed status code into
standard status code

See also the MPM Reference Guide section, List of System
Status Codes and Meanings.

10) Routines to Convert Some Data Type To and From a Character
String Representation

converts binary integer to ASCII
string
converts ASCII string to binary clock
reading
converts binary integer to ASCII
string
converts ASCII decimal string to
binary integer
converts ASCII floating point string
to binary real
converts ASCII octal string to binary
integer
convert clock reading to ASCI I string

Note: some data type conversion can also be performed
within the PL/I language.

See also 4) Storage System, Supervisor Entries for
Manipulating an Address Space, for conversion from
character string name to pointers in the address space.

11) Object Segment Manipulation Routines

12) Miscellaneous Procedures

decipher_
encipher_

sets bit count of a segment
to last nonzero character
used by a compiler to put finishing
touches on a newly created object
segment
returns structured information
about an object segment
(Symbol Table Utility) used to
retrieve information from a
procedure symbol table

decodes an encoded array of words
encodes an array of words

~ ropyrifht, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Subroutine Repertoire
Programming Environment
Page 8

hcs $block }
hcs:$wakeup .
ipc_
parse_file_
random_
un i Que_b i ts_

uni Que_chars_

MUlTICS PROGRAMMERS' MANUAL

returns identification of current
process

interprocess communication

parses ASCII text into tokens
random number generator
returns a bit string different
from all other such strings
converts a unique bit string
to a unique character string
which contains no vowels
returns miscellaneous information
about the current user

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell information Systems inc. (END)*

MULTICS PROGRAMMERS' MANUAL

£ROGRAMMING LANGUAGES

Programming Environment
7/5/73

A number of programming languages are available on Multics:
PL/I, FORTRAN, BASIC, ALM, APL, and LISP. ALM is an assembler,
APL is an interactive interpreter, LISP is both an interactive
interpreter and compiler, and the rest are compilers.

BASIC on Multics is the Dartmouth College BASIC language and
the current compiler is a copy of the one developed by Dartmouth
College. Multics PL/I is the proposed ANSI standard PL/I,
Multics FORTRAN is the ANSI standard FORTRAN, and Multics APL is
identical to the IBM APL. Multics PL/I uses the full ASCII
character set.

PL/I can be regarded as the standard compiler language on
Multics. The calling sequences,. argument declarations, and
standard data types in terms of which the system is documented
are taken from PL/I. This is because the system itself is
written largely in PL/ I. In the same sense, ALM is the standard
system assembler since areas of the system requiring
assembly-language coding are written in ALM.

Users of other languages, however, should encounter no
difficulties because they choose to work in another language.
Each Multics translator is callable as a command and produces
object code segments which are also callable as commands. A
program written in one of the Multics languages can call other
programs written in the same language by merely following that
language's calling conventions. A more troublesome point is the
ability to call programs written in another language since in
some cases one language does not contain the mechanics required
to construct calls or arguments to programs not written in the
same language. <See Common Features below, number 6.)

Common Features

1) A Multics compiler or assembler is invoked by a command line
of the form

and takes as its source code a segment named
"source_name.language_name". For example, the command line

p11 square_root

would invoke the PL/I compiler to compile the source code
contained in the segment square_root.p11 in the user's
working directory.

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Programming Languages
Programming Environment
Page 2

MULTICS PROGRAMMERS' MANUAL

2) A source code segment must be prepared prior to invoking the
translator. This is done using a Multics editar such as edm
or qedx. (See the MPM write-ups for the edm and qedx
commands.) It is at this point that the source cade segment
is given the appropriate name as described in 1) abave. It
can include instructions to insert the source code contained
in other segments (known as include files) into this saurce
segment at compilatian time.

3) A Multics compiler 'Or assembler produces an object segment
in the user's working directory. The object segment
contains the object code praduced' by translation of the
source code as well as Multics standard linkage and symbol
table information. The object segment has the same name as
the source segment, minus the language_name component.
Continuing the example from 1) above, the object segment
square_root would be produced.

4) The production of compflation and assembly listings is at
the user t s opt i on. I f I i sti ngs are produced' they are pu tin
the working directory with a name of source_name.listi e.g.,
square_root. list.,

5) The user ean cantrol the verbos i ty of error mess.ages pr tnted
on his terminal during a trans·lation. See the MPM write-up
for the translator to. be used.

6) In general, programs coded
to call programs coded
except ions or restr i·ct ions
which may be passed) are
var tous languages .• !

in one Multics language are able
inanotner Multics language. Any
(such as t.he types of arguments
noted in the documentat ion of the

7) Each Mu 1 t rcs languag-e has an MPM wri te-up deseri bing the
command which invokes the translator. It describes how the
command is used, including the use of optional features such
as praducti on of' 1 is t i ngs and ve rbosl ty of e r-rar message·s.
This dacument refers, when necessary, ta a complete language
descri'ption usually found outside the MPM. The conrnand
wr i te-up i tsel f notes any differences between the s-tandard
descriptron and the current version.

~ Capyright, 1973, Massachusetts Institute of Technalogy
and Honeywell Informatian Systems inc.

NUL TICS PROGHAf.1MERS I MANUAL

SYSTEM PROGRAMMING STANDARDS

Programming Environment
11/29/72

This section outlines many of the design and coding
standards followed by Mu1tics system programs. It is provided to
give users some insights into what is considered to be good
programming practice on 1·1ultics. The information presented belo\'o/
represents the accumulation of several years of experience in
programming on Multics. It is hoped that it \'o/i11 aid users in
their own programming efforts. As will be obvious, some of the
standards apply only to modules of the system itself. On the
other hand, those standards may suggest analogous procedures
which would be appliable to other programming projects.

Coding Standards

1) All system subroutines must be pure, so that a single. copy
may be shared by all users. The Mu1tics PL/I and FORTRAN
compilers produce only pure subroutines.

2) All system subroutines must be written in the PL/I language.
Explicit permission of the project management is required to
use any other language. To aid others in understanding a
program, the program listing should be well commehted. This
includes explaining the meaning of important variables.

3) Only subroutines documented as part of the Multics system
(not including tools and the author-maintained library) may
be called.

4) The names of all system programs that are not commands or
active functions must end with an underscore (). The names
of all temporary segments and all I/O streams and condition
names (other than PL/I defined condition names) used by
system modules must also end in an underscore. This is to
avoid naming conflicts with the user.

5) All variables used, including called subroutines, must be
declared. This is done to increase program readabil ity and
reduce the confusion introduced by default or implicit
declarations. For called subroutines, the parameter list
must be fully declared, unless, of course, the subroutine
accepts a variable number of arguments (e.g., a free format
output subroutine). For readabil ity, declarations should be
collected together in a logical way (e.g., at the beginning
of the subroutine or block for which they apply, or at the
end) rather than being scattered throughout the program.

6) The use of pointers as arguments should be avoided when
practical. Passing a data item as an argument rather than a

Copyright, 1972, ~assachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

System Programming Standards
Programming Environment
Page 2

pointer to that item makes a program less error prone since
the compiler can make checks for argument mismatch and since
it is sometimes possible to perform run-time argument
validation.

7) Special characters should be placed in the program directly.
To lessen dependencies on the character code being used, the
built-in function unspec should not be used for this purpose.
Fo r examp 1 e,

declare nl (char(l) initial ("
II);

declares "nl" to be a one-character string whose
the new line character. The statement

unspec(nl) ="OOOOOIOIO"b;

should not be used.

value is

8) Use of implicit conversion from one data type to another is
prohibited, since it makes a program harder to understand.
For example,

declare x fixed bin(18), y bit(lS)i

y=x;

should not be used. Instead one should write

y=bit(x,lS);

9) Use of external static variables which do not contain a
dollar sign (e.g., declare x external static) is prohibited
since this data type is not efficiently implemented in the
current Mu1tics environment. External references of the form
a$b a re a 11 owed. I f the programmer needs to have an ex terna 1
data base which is shared among many subroutines, he may
either create a segment by an appropriate storage system call
and reference it using based structures or use the assembler
to create a data segment by appropriate use of the segdef
pseudooperation. The programmer wi~hing to do this should
consult with a knowledgeable member of the Multics
Development Group.

10) All variables should be of the automatic storage class unless
there is a good reason for them to be internal static; i.e.,
they are static by nature. See also rule 11 below.

(C) Co p y rig h t, 19 72, fvi ass a c h use t t sin s tit ute 0 f T e c h nolo g y
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

System Programming Standards
Programming Environment

Page 3
11/29/72

11) In PL/I programs, to avoid having to initialize variables
whose values are constant every time the subroutine
containing them is entered, and to avoid having copies of
these variables made for every user of the subroutine, one
should use internal static and initialize the variables using

12)

the initial attribute. The PL/I compiler will allocate space
for these variables in the text section of the subroutine
being compiled and will initialize them. Since the text
section is pure, one copy of these variables will be used by
all users of the subroutine. UnfortunatelY, if a variable of
this type is passed as a argument to another subroutine, the
compiler has no way of knowing whether or not that variable
is to be changed by that subroutine and it, therefore, puts
the variable into the linkage section. Therefore, if one has
a large number of "constant" variables that are also passed
as parameters, one should put them in the text portion of an
assembly language program and initialize them using the
appropriate data generating pseudooperations and reference
them using either based structures or the "a$b" notation.
This will assure that only one copy of these variables is
used by all users of the subroutine. The programmer wishing
more clarification of this point should consult with a
knowledgeable member of the Multics Development Group.

Use of the PL/I allQcate and ~ statements
cleared in advance with project management, since
exist more efficient ways to accomplish the
Subroutines that do perform allocations (or call
which do) must establish a cleanup procedure
storage in the event that processing is aborted.

should be
there often
same task.

subroutines
to free the

13) When possible, the PL/I on, revert and signal statements
should be used instead of the condition_, reversion_ and
signal_ subroutines since they are more efficient and make
the program less system dependent.

14) The programmer should avoid writing PL/I functions with
multiple entry points which return different data types
unless there is a good reason to do so, since this generates
extra code at each return statement.

G) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

System Programming Standards
Programming Environment
Page 4

progranEing Style

1) The most common route through a program
efficient. More exotic facilities
expensive should be separated from the
that a casual user need not pay for
uses the simple.

should be the most
which are inherently
simple facilities so

the exotic each time he

2) System programs should, in general, use one of the three
standard I/O streams: user_input, user_output, and
error_output. Only special I/O service programs should issue
I/O attach or detach calls for these streams. Commands should
not, in general, provide optional off-line output. The
file_output command is provided for this purpose.

3) All programs that are not commands or active functions should
return a status code indicating successful completion or
occurrence of an unexpected event, unless they are programs
for which errors are unrecoverable or extremely rare; e.g.,
console output subroutines. This type of program should make
use of the Multics signalling facility to signal that
one-in-a-million error. In general, because of the higher
overhead involved, programs should not make use of the Multics
signalling facility for routine errors and status conditions.
Subroutines which are directly called by the user must return
only standard error_table_ codes. See the MPM Reference Guide
section, Strategies for Handling Unusual Occurrences.

4) In most cases, programs that are not commands or active
functions should not print error messages, but should allow a
higher level subroutine to decide on the seriousness of errors
and what to do about them. In general, it is wise to let the
most qualified subroutine give the message. A good rule of
thumb for determining the most qualified subroutine is to ask
whether anything could be learned by reflecting the error to a
higher level subroutine. If the answer is no, then the most
qualified subroutine has been found.

5) All programs that are not commands, active functions or gates
into a ring should assume they are called with the correct
number and type of arguments and should not make checks. This
is to avoid continually paying the cost of argument checking
in programs which call the subroutines correctly. This does
mean that the programmer must be careful to call subroutines
correctlyo

6) System programs should be prepared to execute properly even if
they did not complete execution during a previous invocation

(c) Copyright, 1972, Massachusetts Institute of Technoiogy
- All rights reserved.

MULTICS PROGRAMMERS' MANUAL

System Programming Standards
Programming Environment

Page 5
11/29/72

because of a quit or a fault. That is, they should either
operate normally or warn the user of the consequences of
continuing. For example, edm warns the user that, if he
continues, the partically completed results of an earlier
invocation will be lost.

7) System programs should never call a command if there is a
subroutine which does almost the same thing. Commands are
inherently more expensive since they are designed to interact
directly with a human user.

8) System programs should not use a subroutine to do something
which can be done reasonably easily in a few PL/I statements.
The purpose of this rule is to avoid the proliferation of
unnecessary system subroutines. The exceptions to this rule
are input/output (see paragraph 1 under Error Handling ~ lLQ
below) and conversion from character to numeric data types.
The reason for the latter exception is that this type of
conversion is inherently more expensive than calling a
specialized subroutine.

9) Calls to subroutines which require descriptors should be
minimized when this does not conflict with program readability
or degrade the user interface. This is because of the higher
overhead involved in setting up argument lists with
descriptors. For example, one should try to minimize the
number of ioa_ calls in a program. This should not be
interpreted to mean that one should remove all error messages
from his program or make their output so terse as to be
unreadable. It simply means that if, subject to the
constraints mentioned above, it is possible to use one ioa_
call rather than two then the programmer should to so.

~ ~ Management

Designing a program for a virtual memory environment
requires a new outlook on program and data organization. Though
the programmer is freed from the onerous task of allocating
physical storage for his programs and data (e.g., storing
intermediate results on secondary storage, overlaying parts of
his programs with others to fit into core memory, etc.) he cannot
ignore the issues of data management and program organization if
he wants his program to be reasonably efficient. This is
especially true for programs which manipulate large amounts of
data. The attitude that an infinite virtual memory is available
and if a program needs more room it can create another segment,
may be all right for the casual user building a one-shot program

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

System Programming Standards
Programming Environment
Page 6

MUlTICS PROGRAMMERS' MANUAL

but not for the systems programmer. A major aim of the
programmer should be to minimize the working set of his programs;
i.e., his programs should create as few segments as is practical,
reuse the ones they do create and should avoid unnecessary
moving of data. The term working set is used loosely here to
denote both the number of se~ents and the number of pages in the
execution path of a program. In Multics it generally pays to
spend CPU time (within reason) to save space. This principle
should not, of course, be taken to an extreme. It does not mean,
for instance, that one should not use a hash table. It is true
that a hash table takes up more space than an equivalent linear
list but a program will take fewer page faults referencing the
former than searching the latter. In this case, the actual
working set of the former is smaller even though its potential
working set is larger. In all cases, the programmer must
exercise his judgement as to the proper tradeoff between working
set size and CPU usage, always avoiding the temptation to allow
his working set to expand to infinity.

In addition
guidelines apply:

to this basic principle, the following

1) System programs must leave their data bases in a consistent
state; e.g., a program which changes the contents of a segment
should reset the bit count of that segment when it is
finished. Programs should make any period of inconsistency as
short as possible. They must also clean up after themselves;
e.g., free storage should be released.

2) In order to assure consistent behavior, all standard
translators must use the subroutine tssi_ to interface with
the storage system. It might not make sense for nonstandard
translators such as BASIC to use tssi • Exceptions of this
sort should be cleared in advance with the project management.

3} System programs should initiate the segments they access by a
null reference name and should subsequently access those
segments via a pointer. In general, segments initiated by a
module should be terminated by that module (see point 4
below).

4} In general, the process directory should be used to hold
temporary segments. If a program is not being entered
recursively it should create temporary segments with
intelligible names (e.g., containing the name of the creating
program). It should clean up after itself before exiting by
either truncating or deleting these temporaries. If the
temporary segment can be reused the next time the program is

~ Copyright, 1972, Massachusetts institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

System Programming Standards
Programming Environment

Page 7
11/29/72

invoked it should be truncated; otherwise, it should be
deleted. If a program is being entered recursivelY (e.g. 1 one
quits out of a command, issues a hold command, and reenters
that command), it should create temporary segments whose names
consist of a unique first component followed by one or more
intelligible components. These segments should be deleted
when the program exits. If, for some reason, a program cannot
be made recursive it should detect the fact that it is being
entered recursively, warn the user that partially completed
work of an earlier invocation will be lost if he continues,
then give him the option of continuing or exiting. Programs
which create temporary segments should establish cleanup
procedures to truncate or delete these segments if execution
is abnormally terminated. As mentioned above, the names of
temporary segments must end in an underscore.

5) Any system program which creates new segments (other than
temporary segments) should put them into the user's current
working directory unless the program explicitly makes
provision for the user to provide a target directory. (The
move and copy commands fall into this latter category.) The
aim of this rule is to avoid messing up another directory,
such as the directory from which a source segment was
obtained.

6) System programs which create new segments must set access
control lists according to the conventions enumerated below.
If a segment is being replaced instead of being newly
created, the command must leave the access control list as it
was before the command acted. For instance, a translator
finds that an object segment already exists with read and
execute access for this user, and with other access for other
users. The translator must obviously add write access to
change the segment contents, but should restore the entire
access control list to its former value when the translation
is completed. The storage system interface subroutine tssi_
does this automatically for the translator writer. The access
to be given to the user creating a segment is:

Segment .llI2..e. Access .B.l.n& Brackets

directory segment SAM v,v
object segment RE v,v,v
data segment RW v,v,v

where v is the current validation level of the user. See the
MPM Subsystem Writers' Guide section, Intraprocess Access

@ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

System Programming Standards
Programming Environment
Page 8

MULTICS PROGRAMMERS' MANUAL

Control (Rings), for a discussion of validation level.

Additional Standards fQL Commands ~ Sybsystems

Through the mechanism of the command processor any program
system subroutine, system command, user subroutine -- can be

invoked from the console. System commands are a special class of
subroutines that are explicitly programmed with the console user
in mind. They must check carefully for' argument validity; they
must warn the user of possible misunderstandings; they must be
very reliable. They must, to the greatest possible extent, be a
self-consistent set; i.e., the behavior of a command should be
predictable from that of other commands.

For these reasons a number of additional standards are
necessary for system commands and subsystems.

Naming Conventions

1) For ease of typing, all commands must have an abbreviated
name consisting of the first letter of the first two or three
syllables or first two or three words of its name (e.g.,
rename rn, unlink ul, print_attach_table pat).

2) All command names and abbreviations must be cleared in
advance with the project management.

programming Style ~ ~ Interface

1) If a command would also be useful as a subroutine, break it
apart into a command which interfaces with the user
(processes multiple arguments, handles the star and equals
conventions, interprets control arguments, etc.) and a
subroutine which does the work. This subroutine, like all
subroutines, should return a status code rather than printing
an error message. The outputing of error messages like all
other user interface problems should be handled by the
command.

2) Any command for which the star convention makes sense should
use the star convention. Any command for which the equals
convention makes sense should use the equals convention. See
the MPM Reference Guide section, Contructing and Interpreting
Names for a discussion of the star and equals conventions.

3) Characters which have special meanings to commands (e.g.,
"*", "=", ">" 11(11) should not be used in any context other
than their standard one. For example, a command should not

@ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

System Programming Standards
Programming Environment

Page 9
11;29;72

interpret an argument of 11*" as meaning that user wants to be
logged out.

4) Commands should not be too powerful, that is, typing errors
should not cause disastrous results. For example, with the
old remove command

remove a>b

would delete the segment b in directory a, whereas

remove a> b

(i.e., one accidentallY types a space before the b) would
delete the directory a. To remedy this, there are now two
commands: delete which deletes only nondirectory branches,
and deletedir which deletes only directory branches.

5) Unless the purpose of a command is to produce some sort of
output, it should produce no output during normal operation;
i.e., it does not need to tell the user that it is doing its
job. For example, if one enters the command

delete x y

the delete command produces output only if it has trouble
deleting x or y. It does not type "deleting segment x",
"deleting segment yll. Commands which take a long time to
execute (e.g., p11) should print a short message when they
are entered to indicated they are functioning. The general
idea here is to reassure the user that he has not done
something wrong. After more than a couple of seconds wait,
the user, particularly a novice user, begins to worry that
perhaps the computer is waiting for him.

6) Commands which take segment names as arguments should accept
pathnames, not reference names, unless they explicitly deal
with reference names (e.g., terminate_refname). The user who
has a reference name he wishes to pass to a command may use
the get_pathname active function to convert this reference
name to a pathname (e.g.,

status [get_pathname x]

will cause the status command to be called with the pathname
of the segment whose reference name is x). See the MPM
Reference Guide section, Constructing and Interpreting Names

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

System Programming Standards
Programming Environment
Page 10

for a discussion of reference names.

7) Commands which interact with the typist should be prepared to
handle the program_interrupt condition which is signalled by
the program_interrupt command. Handling this condition
correctly is Quite tricky. See the MPM Reference Guide
section, List of System Conditions and Default Handlers for
details.

8) When a command which interacts with the typist produces an
error message which the typist may not have expected, the
command should normally follow the error message with a call
to ios_$resetread (which discards all input read but not yet
used) on the I/O stream from which it reads input so that the
typist can modify his subsequent input.

9) We come now to a standard that is difficult to express with
any degree of exactness. The phrase "corrmands should be
designed with the user in mind" expresses the spirit of the
standard. What follows is a series of examples designed to
sensitize the reader to some of the issues involved in
designing a command. Calling sequences should be logical
(e.g., the user should not have to remember that % as a third
argument to the xyz command causes all segments with a second
component name fred to be deleted, whereas a? in the same
position suppresses this feature). Commands should allow the
user to decide whether a protected segment should be deleted,
rather than forcing him to make the segment deletable and to
resubmit the delete request (or worse, delete the segment
without warning). Judicious use of red console output is
encouraged. It should be used to call attention to important
or unusual occurrences. Remember, over-use destroys the
whole purpose of red output a corrmand which outputs
everything in red may as well output everything in black.
Canned messages printed by commands should not contain
characters which come out as escape characters on IBM model
1050 and model 2741 consoles and on model 37 teletypes (e.g.,
"¢<segment¢> not found" is not an acceptable message).

Argyment Handling

1) Commands, wherever possible, must accept path names (not just
entry names) as arguments. The subroutine expand_path_
should be called to convert a relative path name into an
absolute path name.

2) Commands which deal with segments whose names have a fixed
suffix should not force the user to type that suffix.

Copyright, 1972, Massachusetts Institute of Technology
Aii rights reserved.

,.,l; L TICS PkUGRAMfviEkS I Iv,ANUAL

3)

System Programming Standards
Programming Environment

Page 11
.... I""" I..,'" J.J./i.-;j/li.

kather, they should append that suffix to their arguments if
it is not given. For example, the command lines

pll x

and

pll x.pll

should be equivalent.

Conmands whose interface is simple (such as
addname commands) should accept multiple
makes sense to do so.

the delete and
arguments if it

4) All commands which accept a variable number of arguments
should declare themselves as having no arguments (i.e.,
command_name: proc;) and should obtain their arguments using
the procedure cu_$ar&-ptr.

5) Conm~nds must obey Multics control argument conventions as
described in the MPfvl Reference Guide section, List of Command
Lontrol Arguments.

til In general, for the convenience of the user, command
arguments should be order independent unless the order
dependency serves a useful purpose (as in the -ag control
argument of the enter_abs_request command).

Error Handling ~ lLQ

1) The input/output facilities of the PL/I language must not be
used in system programs since they are more expensive than
system-provided subroutines.

2) To read a line from the input stream user_input, use the
subroutine ios_$read_ptr. To read a line with appropriate
data type conversion (i.e., the user is typing in pointers,
floating point numbers, etc.) use the subroutine read_list_.

3) Output lines fall into three distinct classes:

a) unusual status messages
b) questions
c) everything else

@ Copyright, 1972, Massachusetts Institute of Technology
All ri&hts reserved.

~ystem Programming Standards
Programming Environment
Page l~

f\'ll.JL TICS PROGRAMt.'iERS I r'iANUAL

Lines of type a) should be output using the subroutines
com_err_ and active_fnc_err_ <active functions should use
active_fnc_err_, all other modules should use com_err_>.
Lines of type b) should use the subroutine command_Query_.
These three subroutines are provided in order to centralize
the processing of lines of type a) and b> so that changes in
system conventions in this area may easily be made. For
lines of type c) the subroutine ios_ should be used when it
is necessary to format an output line; otherwise, use the
subroutine ios_$write_ptr.

4) Conmands should check for status codes which have special
meaning to them and either print appropriate error messages
or, if the error is easily recoverable, allo\'J for user
intervention using command_query_. All such messages must
con ta in the name of the cOlnrnand wh i ch gene rated them, since
otherwise the user would have no way of knowing which command
generated a given message if he has issued several at once or
was running an exec_com segment. Complex programs such as
compilers may output diagnostics by standard output
subroutines but shoulu have at least one call to com_err_ to
notify the system that an error has occurred.

c Copyright, 1972, hdssachusetts Institute of Technology
All rights reserved. (END)*

MULTICS PROGRAMMERS' MANUAL

CLOCK SERViCES

Programming Environment
10/2/73

Two types of clocks are available on Multics: a real-time
clock for the entire system and a process execution meter for
each process. The real-time clock, a hardware calendar clock
accessible via a special register on a memory controller, runs
whenever the system is in operation. It contains a double-word
integer that is incremented once per microsecond and represents
the number of microseconds elapsed since January 1, 1901, 0000
hrs. GMT. An interrupt mechanism is associated with the calender
clock so that a specified process can receive an interprocess
wakeup when the calendar clock reaches a specified clock value.
The specified clock value is regularly compared with the calendar
clock value, and when the two are equal an interprocess wakeup is
generated for the appropriate process.

A process execution meter is maintained as part of the state
of each process. It counts the microseconds during which the
process is running. This meter is used to record each process's
usage of system resources as well as being available to the user
to cause wakeups after a specified amount of time has passed.
There are actually two such meters for each process; the more
valuable one measures virtual time, which is the time during
which the process is running decremented by the time it handles
interrupts and page faults.

An interrupt mechanism associated with the virtual time
meter allows a process to receive an interprocess wakeup when the
meter is incremented beyond a specified value. This meter is
compared to the specified value at regular intervals and when the
value is exceeded an interprocess wakeup is generated for the
running process.

The uses to which clocks are put are diverse. There are a
number of general uses for which they can be used. Included are
the following:

1) Resource monitoring and accounting;

2) Labeling data (e.g., storage system entries) with dates and
times of interest;

3} Computing the date and time for output;

4) Generating a unique bit string;

5) Waking up a specified process at a specified time, perhaps
causing a specified procedure to be called;

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Clock Services
Programming Environment
Page 2

MULTICS PROGRAMMERS' MANUAL

6) Interrupting a process after a specified amount of CPU time
has elapsed.

Access ~ System Clocks

A number of commands and subroutines (all described in MPM
write-ups) permit the user to inspect the real-time clock and the
process execution meter. The clock_ subroutine reads the
real-time clock and returns its current value as a fixed bin(71)
quantity. This clock time can be converted to a more
understandable form using either date_time_ (which returns a
single character string) or decode_c10ck~value_ (which returns
the various components of the time -- month, year, etc. -- as
distinct variables. The convert_date_to_binary_ subroutine
accepts a character string like that produced by date_time_ and
returns a fixed bin(71) equivalent.

The value of the process execution meter is returned by both
cpu_time_and_paging_ and total_cpu_time_. The resource_usage
command prints a report of the resources used by the user from
the beginning of the current month to the time of creation of the
user's current process.

The status command and the hcs_$status_ subroutine both
provide dates and times associated with storage system entries,
such as the date and time modified and the date and time last
used.

The unique_bits_ subroutine returns a bit string generated
partly from the current real-time clock reading that is
guaranteed to be unique among all bit strings so generated. The
unique_chars_ subroutine converts this value into a character
string that is also guaranteed to be unique among all character
strings so generated.

Facilities E2L Timed Wakeyps

The interprocess communication facility (described in the
MPM Subsystem Writers' Guide under ipc_) allows a user to set up
channels for sending interrupts (wakeups) to a specified process.
The interrupt can merely cause that process to return from the
blocked state to whatever it was previously doing, or can cause
same other procedure to be called in that process as a result.
One possible use of this facility is to wake up a process as the
result of some clock activity. The timer_manager_ subroutine
(described in an MPM subroutine write-up) provides the necessary
interface. Using it, a user can specify an event channel for his
own or another process, whether the process should merely be

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeyweii information Systems inc.

MULTICS PROGRAMMERS' MANUAL

Clock Services
Programming Environment

Page 3
10/2/73

wakened or a specified procedure should be called, and the nature
of the clock activity that triggers the wakeup (i.e., real or CPU
time). In specifying the time, the user can further specify
absolute or relative time, and can use seconds or microseconds.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

THF STORAGE SYSTFM DIRECTORY HIERARCHY

Storage System
9/25/73

The Multics storage system is used for supervisor segments
as well as for user segments. Since a single directory hierarchy
is used for both, it is frequently useful to know the relative
arrangement of items within the hierarchy. This section outlines
briefly the organization and contents of the directory hierarchy.

Generally, the user should never embed pathnames of
supervisor segments in his programs. Most often, he will use
these segments indirectly, by invoking some library procedure or
command that knows both the pathnames and the format of the data
stored there. The details provided here are intended as
background information for understanding and, occasionally,
debugging. The structure described here changes fairly often, so
it should not be assumed when writing programs.

Figure 1 is a diagram of the top of the directory hierarchy.
The name of the root directory is, by convention, omitted from
pathnames. The diagram shows seven directories always found in
the root. (Only the basic structure assumed by the Multics
supervisor is illustrated. Additional segments and directories
can also appear at all levels in the directory hierarchy.)

This directory is the storage location for most system
accounting, authorization, and logging information. The
table printed by the who command, the message of the day,
and the absentee queue segments are the only generally
accessible segments in this directory. Project
administration tables are stored in a directory tree that
starts tn system_control_dir.

2) process_dir_dir

This directory contains one directory for every process
currently in the system. The name of an individual process
directory is derived from the unique identification of the
process. The process directory is used as a place to store
all segments that are intended to have a lifetime no greater
than that of the process that creates or uses them. Thus,
if a compiler needs a scratch area, it can create a segment
here. A program wishing to create or use a segment in the
process directory does not normally need to know or
construct the full pathname of the directory, since the most
common means of creating a segment uses the process
directory by default.

€) Copyri~ht, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTlrs PROGRAMMERS' ~ANUAL

Storage System Directory Hierarchy
Storage System
Page 2

Five segments are normally placed in a process directory
upon creation of the process. Others can be added by various
commands or user programs. The five initial segments are:

pds (Process Data Segment) A supervisor
data base containing the state of the
process with respect to the
supervisor. (This segment is
accessible only to the supervisor.)

kst (Known Segment Table) A supervisor
data ba~e detailing the
correspondence between segment
numbers and segment names, as known
in this process. (This segment is
accessible only to the supervisor.)

pit (Process Initialization Table) A
driving table used to contain details
on how the process should initialize
itself. The name of the initial
program to be called in this process
is found in the pit.

stack_4 This segment is the stack used for
PL/I automatic variables and for
subroutine call and return
operations. There is one stack
segment for each active ring; the
last character of the stack name is
the ring nvmber dexcept ink ring 0, where pas IS use as a stac •

combined_linkage_4.00 This segment, managed by the linker,
contains interprocedure links and
PL/I internal static storage. If the
total requirements for linkage and
static storage of a process exceed
the space available in a segment,
additional segments are automatically
created using the same name; the last
two characters are a sequence number.
In addttion, each active ring except
ring 0 has its own linkage; the
character before the period in the
segment name indicates the ring
number.

(c) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell information Systems inc.

MUlTICS PROGRAMMERS' MANUAL

Storage System Directory Hierarchy
Storage System

Page 3
9/25/73

Other segments commonly found in the process directory
include the free storage area used to implement Pl/I allocate and
free statements, temporary storage areas of the editor commands,
and segments used to contain the parse tree of the Pl/I compiler.
These segments are created only when needed by the various
commands and subroutines usin~ them.

This directory contains segments and directories used to
support the various system daemon processes, such as
automatic file backup and bulk (card and printer) input and
output. Except for the queues of the I/O facilities, the
contents of daemon_dir_dir are not generally accessible to
users.

This directory is the base of a tree containing all of the
personal segments of individual users. The immediate
contents of user_dir_dir is a set of directories, one for
each project that uses Multics. Contained in a project
directory is usually one personal directory for each user
working on that project.

This directory contains the library of commands and
subroutines provided as part of Multics. These procedures
are documented in the Commands and Subroutine Calls sections
of the MPM Reference Guide. Unless the user specifies
otherwise, this directory is included in the list of
directories to be searched when dynamic linking occurs.

This directory contains the processors for
programming languages supported on multics.

all the

This directory is similar to system_libr~ry_standard except
that it contains commands and subroutines provided by
prograrrrners of the local installation. It is distinct from
system_library_standard so that it can be left out of the
search path if desired.

€) Copyri~ht, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

...J

~ -Z
<l:
~

(/)

ex:
w
~
:E:
<l:
ex:
<.:;
0
c::
Q..

(/)
(..;;

I-
...J
~
~

1~ Ius

~
.J:.
U
'-
ro
'-
Q)

:c
~
'-
c ..,
u
Q)

'-

c
E E
Q) Q) .., ..,
"'''' >.~
(/) (/)

Q)Q)
~ b(j..:::t
rotO
'-'-w

system_
control
dir

process_
dir dir

miscellaneous account
ing, log, line
usage, and pass
word segments

(name=
processid)

daemon
dir dir

__ ___ oy--_---.J
Directories and
segments of the
backup and I/O
daemon processes

}

one
directory
per
process

~~ ___________________ ~~~ ______________________ ~,J

Plus other temporary segments created as needed

o 0 b.O Figure I: ..,....,ro The Multics Directory Hierarchy
(/) (/) Cl..

user
air dir

(project
name)

(user
name)

system
library
standard

...
~~

All commands and Commands and
subroutines pro- subroutines
vided as part of of the local
Multics author-main-

l
One
directory
per
project

}

One
directory
per
user

tained lib
rary

"V"

Personal segments
and directories
of this user

-.J> "'.
U"::

~c.)

be'::
00--'

00 en
cE

..c. ClJ
U"'"
Q) en
I- :~

(/)

4-
01::

~:>
(1) ••• -
+-' 01-'
:J t'C
+-'1::
.- l~
....., t:>
c.n~~
c Ie

c.n r -..,r
.., IOJ
Q)3:
en::>
:JaJ

.J:..C
uO
ro::r:
en
(1)·0
roC
::ro

'
~
c.
00
u

(~)

MULTICS PROGRAMt,1FRS' MANUAL

.Ilif. S YST fro; L i R BA B i F.S ANi) SEA R CH RU L ES

Storage System
9/18/73

External references to procedures and data segments are
bound at execution time by the dynamic linker. (External
references include both subroutine calls and use of external
static variables of the form alpha$beta.) The linker uses a
standard set of rules in searching for the target of an external
reference. The default search rules are given below. If
appropriate, the user can specify his own set of search rules.
See the write-ups of the set_search_dirs and the set_search_rules
conmands.

If neither of those commands have been used, the search for
a segment with the same name as the external reference name
proceeds as follows:

1) already initiated segments

This is a list of names that have been previously referred to
in this process. A reference name is associated with a
segment by:

a) use in a dynamically linked external reference from a
program;

b) a call (which may be made by the initiate command)
to hcs_$initiate, hcs_$initiate_count or hcs_$make_seg
with the "rname" argument a non-null string;

2) referencing directory

This is the directory in which the calling or referencing
procedure is contained as a segment (not a link).

3) working directory

This is the directory that has been specified as the user's
current working directory. The working directory can be
changed with the change_wdir command or the change_wdir_
subroutine. The initial working directory is the user's home
directory. (See the MPM write-up for user_info_.)

4))system_library_standard

This lihrary contains the Standard Service System modules,
the Development System modules, and the PL/l System modules.
It contains most system commands and subroutines.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

System Libraries and Search Rules
Storage System
Page 2

This library contains a small set of commands and subroutines
that are reloaded every time the system is reinitialized.
These include hcs_, ios_, cu_, clock_, com_err_, and
error_table_. From the user's point of view, there is no
reason for considering this library to be anything but a
continuation of system_lihrary_standard.

6))system_library_languages

This library contains the language processors for the
programming languages supported on Multics.

This library contains the author-maintained and
installation-maintained libraries. The author-maintained
library consists of a collection of procedures contrihuted by
users at a particular installation. It is maintained for the
convenience of the local user community, as an aid in sharing
of programs. Users of author-maintained procedures should be
aware of two dangers:

a) there may have been little or no verification of the
effectiveness or accuracy of the procedures;

b) no guarantee is made that the procedures will continue to
be maintained as the system changes. Users of
author-maintained language translators should be
especially wary of this second danger.

The installation-maintained library contains procedures
installed and maintained by the local installation. It
differs from the author-maintained library in that
verification of accuracy and effectiveness of the procedures
has been performed by the installation, and the installation
is committed to maintain the procedures.

Include Files

Several of the languages on Multics permit the
the contents of a separate segment into a specified
source segment at translation time. These separate
known as include files. The translator searches
files as follows:

inclusion of
place in a
segments are
for include

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MU1T1CS P'RO'G'RAMMfRS J MANUAL

1) working directory

System Libraries and Search Rules
Storage System

Page 3
9/18/73

See working directory (number 3 above) for a descriptior of
this directory.

This directory can be maintained if needed by a project for
use by its members. The directory project_id in the path
name is the name of the user's project.

This library of source code contains all include files used
in system programs.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems lric. (END)

MULTICS PROGRAMMERS' MANUAL

SEGMENT, DiRECTORY AND LiNK ATTRiBUTES

Storage System
8/4/72

Every directory in the Multics storage system may contain
three types of entries: segments, directories, and links. Each
of these entries includes two types of information: contents (or
data) and attributes. It is the contents of an entry that is the
primary purpose for its extence. For a segment, the contents are
the data of the segment. For a directory, the contents are the
entries of the directory. For a link, the contents are the path
name of the entry to which the link refers. The attributes of an
entry contain information about the contents of the entry.

Each entry has a specific set of attributes. A list of the
different types of attributes that may be associated with each
type of entry is given below. Each member of the list contains
the name of the attribute, a list of the types of entries that
have this attribute, a description of the attribute, and a
statement of whether or not the attribute may be modified. An
attribute is explicitly modifiable if there is a storage system
subroutine that will explicitly change the value of the
attribute. An attribute is implicitly modifiable if something
can be done to the entry which will change the value of the
attribute. An example of the latter is changing the date/time
modified of a segment by writing into a segment. A description
of the type of access modes required to modify attributes is
given in the MPM Reference Guide section Access Control.

access control list (segments, directories)

The access control list (ACL) specifies if and how different
processes may access a segment or directory. ACLs are
described in detail in the MPM Reference Guide section
Access Control. An ACL may be explicitly modified.

author (segments, directories, links)

The author of an entry is the access
process that created the entry.
modifiable.

bit count (segments)

identifier
The author

of
is

the
not

The bit count of a segment specifies the length of the
contents of the segment in un its of bit, i.e., it de 1 imi ts
the last meaningful bit of information in the segment. The
bit count is explicitly modifiable and since it is not
maintained by the supervisor, should be maintained by all
procedures that modify the length of the contents of the
segment. Many system commands and subroutines will not

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

Segment, Directory and Link Attributes
Storage System
Page 2

MULTICS PROGRAMMERS' MANUAL

function properly unless the bit count is accurate. The bit
count is maintained by system procedures that change the
length of segments. The bit count is necessary because the
system is unable to automatically maintain the length of a
segment in units finer than the page size (this measure of
length is called the current length, see below). In order
to modify the bit count it is necessary only that the
process have write access to the segment at the validation
level, unlike all other segment attributes which require
modify access in the directory containing the segment. This
is to insure that any process that can modify the length of
the segment can also modify its bit count.

copy switch (segments)

The copy switch provides a means by which many processes can
simultaneously execute impure procedures. When a segment
with the copy switch on is symbolically referenced, either
by resolving a symbolic link reference or by initiating the
segment, a pointer to a copy of the segment for this process
is returned instead of a pointer to the segment itself. In
this way each process will be using its own copy of the
segment and will be able to modify the segment without
affecting other processes. In the current implementation a
new copy is generated each time a 1 ink is resolved to the
segment by a different name or each time the segment is
initiated by a different reference name. To avoid
confusion, it is therefore recommended that a segment with
the copy switch on have only a single name. The copy switch
may be explicitly modified.

current length (segments, directories)

The current length specifies the length of the contents of
the segment or directory, i.e., it delimits the last
non-zero bit of data. It is accurate to units of page size.
The current length is impl icitly modified by storing data
beyond the previous current length or by truncating the
segment or directory.

date/time dumped (segments, directories, links)

This attribute specifies the last time a backup copy of this
segment were made by the Multics backup procedures. The
date/time dumped is implicitly updated by the Multics backup
procedures when an entry is dumped.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Segment, Directory and Link Attributes
Storage System

Page 3
8/4/72

date/time entry modified (segments, directories, links)

This attribute specifies the time any of the attributes
this entry were last modified. The date/time entry modified
is implicitly updated when an entry is modified.

date/time modified (segments, directories)

This attribute specifies the time the contents of the entry
were last modified. The date/time modified is implicitly
updated when the data of an entry is modified. (For
implementation reasons the date/time modified may not be
precisely accurate but will normally be less than a few
minutes after the correct time.)

date/time salvaged (directories)

This attribute specifies the time the directory last had to
be salvaged. Salvaging implies that the directory had to be
modified in order to eliminate an inconsistency in its
contents so that the storage system can function properly.
The date/time salvaged is implicitly modified when a
directory is salvaged.

date/time used (segments, directories, links)

This attribute specifies the last time the contents of the
entry were referenced. (For implementation reasons the
date/time used may not be precisely accurate but will
normally be less than a few minutes after the correct time.)

initial access control lists (directories)

The initial ACL specifies the default value for the ACL of a
segment or directory newly created in the associated
directory. A detailed description of initial ACLs is given
in the MPM Reference Guide section Access Control. The
initial ACLs may be explicitly modified. Only modify access
in the directory at the validation level is necessary to
modify an initial ACL. Unlike most directory attributes, no
access on the superior directory is necessary.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

Segment, Directory and Link Attributes
Storage System
Page 4

maximum length (segments)

MULTICS PROGRAMMERS' MANUAL

This attribute specifies the maximum length of the segment,
i.e., the size beyond which the segment may not grow. The
maximum length is accurate to units of page size. The
maximum length may be explicitly modified.

multi-segment file indicator (directories)

A non-zero value for this attribute indicates that this
directory is actually a multi-segment file. The value of
the attribute is the number which is the entry name of the
last segment in the multi-segment file. The multi-segment
file indicator is implicitly modified by the multi-segment
file primitives when the length of the file changes. It may
also be explicitly modified.

names (segments, directories, links)

The names of an entry are the character strings used to
identify and reference the entry. Each entry may have many
names. The first name on an entry is termed the primary
name and will always be listed first until it is deleted.
Entry names may be explicitly modified.

Quota (directories)

The Quota of a directory is the number of records of storage
that segments and directories inferior to this directory may
occupy, excluding those subtrees that have their own quota.
The Quota may be explicitly modified. Only modify access in
the directory at the validation level is necessary to modify
the quota. Unlike most directory attributes, no access is
needed in the containing directory.

records used (segments, directories)

The records used by a segment or directory is the number of
records of secondary storage occupied by the contents of the
segment or directory. The records used may be implicitly
modified by changing the amount of storage occupied by the
entry. This may be accomplished by changing its length.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Segment, Directory and Link Attributes

ring brackets (segments, directories>

Storage System
Page 5
Rlb./7?
v I , ...

The ring brackets of a segment or alrectory partiaiiy
specify access to that segment or directory. Ring brackets
may be explicitly modified. A full description of ring
brackts is found in the MPM Subsystem Writer's Supplement
Reference Guide section Intraprocess Access Control (Rings).

safety switch (segments, directories)

If the safety switch of a segment or directory is on, that
segment or directory can not be deleted. The safety switch
may be explicitly modified.

secondary storage device identifier (segments, directories>

This attribute identifies the type of secondary storage
device on which the contents of this segment or directory
reside. The secondary storage device identifier is
implicitly modified when the device upon which the contents
of the entry reside is changed.

type (segments, directories, links)

The type of an entry indicates whether it is a segment, a
directory, or a link. The type of an entry may not be
modified.

unique identifier (segments, directories links)

Each entry in a Multics storage system hierarchy has a
distinct unique identifier. This unique identifier may not
be modified.

Warning

The information contained in this MPM section is not fully
accurate until step 2 of directory reformatting is completed
(probably about November, 1972). The following attributes will
not exist until then: initial access control list, maximum
length, safety switch, and (for directories) ring brackets.

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

ACCESS CONTROL

Storage System
8/1/72

Access control is the regulation of the right of a process
(rhp active component of the system) to use or reference objects
within the system. Examples of such objects are typewriters,
printers, segments, and processes. This section discusses the
regulation of the right of processes to use or reference certain
objects within the Multics storage system, namely directories and
segments.

This section is divided into two parts. The first part
explains what rights may be granted or denied a process
referencing a segment or directory. The second part describes
how different access rights may be granted to different
processes, i.e., interprocess access control.

A few sentences are in order about the use of this section.
The access control mechanism represents an attempt to provide a
general capabilty for controlling access in many different ways
and yet keep the mechanism simple for common applications. This
section is a comprehensive description of the full access control
mechanism and most readers will find much if not all of the
material of no interest to them. Users who do no sharing of
segments, i.e. those who have segments which only they reference,
need not know anything about access control because the system
defaults automatically provide for this case. Even if the user
makes use of programs of other users he need not know anything
about access control because setting access is the responsibility
oft he 0 t.h e r use r s • 0 n 1 y i f the use r w ish est 0 s h are his
segments with other users need he know anything about access
control. In this case he should first read the MPM Introduction
Chapter 3, Beginner's Guide to the Use of Multics. That chapter
provides sufficient information about access control for most
common applications. Only if that chapter is insufficient for
the user's needs, should he then read this section.

Yet another facet of Access Control is described in the MPM
Subsystem Writers' Supplement section Intraprocess Access Control
(Rings). This part of access control differentiates between the
access rights that a process may be granted in different states.
It is called the ring mechanism, and is of use to the subsystem
writer who wishes to write a protected subsystem.

~~: Access Modes

One does not simply want to regulate whether or not a
process can reference a given object, but usually wants a finer
control in order to regulate various ways in which a process may
use an object. For different types of objects the means of

@ Copyright, 1972, f\1assachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Access Control
Storage System
Page 2

referencing may be different. For segments and directories these
ways of referencing objects are termed modes of access or access
modes. Since segments and directories are different types of
objects, having different properties and different operations for
referencing them, they have different modes.

Segment access modes determine the ways in which a process
may reference the data of a segment. Directory access modes
determine the ways in which a process may reference the
attributes of directory entries. Each mode is labelled by a
distinct, single character identifier that is used when
specifying the mode to system cOn1l1ands.

The access modes for segments are:

execute (e) an executing procedure may transfer to this segment
and words of this segment may then be interpreted as
instructions and executed by a processor;

read (r) the process may execute instructions that cause data
to be fetched (loaded) from the segment;

\~rite (w) the process may execute instructions that cause data
in the segment to be modified. *

The access modes for directories are:

status (s)

modify (m)

append (a)

the attributes of segments, directories and links
contained in the directory and certain attributes of
the directory itself may be obtained by the process
(see the MPM Reference Guide section on Se~ment,
Directory and Link Attributes for a definition of
attributes);

the attributes of existing segments, directories and
links contained in the directory and certain
attributes of the directory itself may be modified;
and existing segments, directories, and links
contained in the directory may be deleted;

new segments, directories and links may be created
in the directory.

If a segment or directory is not accessible in any of the
above modes then the process has no access to the segment.

* Until step 3 of directory reformatting has been completed (probably about
February, 1973), the segment access mode append (a) should appear on segment
ACLs that have write (w) access mode.

~ r"I""\" ... :l?h+- 10"'71') ~A_ h _ ,.. , __ ... , _ ,..& "" __ L.._,..1 __ •• \:::.J ,",VtJ,Y1 '5"'-' '&';;J'&', PIC';;)';;)CP ... !lU';;)Ct.t.;) 1I1;:)l.1 I..Ul.t:: VI IC IIIIVIVg,y

All rights reserved.

MULTICS PROGRAMMERS' MANUAL

EsL1 2: Interprocess Access Control

Access Control
Storage System

Page 3
8/1/72

In order to be able to grant different processes distinct
access right? it is necessary to be able to distinguish different
processes. For this purpose, each process has an associated
access identifier. The access identifier is fixed for the life
of the process. The identifier is a three component character
string with the components separated by periods (.). The first
component is the name of the person on whose behalf the process
VJas created. The second component is the name of the project
group of which the person named in the first component is a
member. This person-project combination is termed a user. The
same person may log into Mu1tics under different projects and is
considered to be two different users. The third component of the
access identifier is the instance which is a single character
used to distinguish different processes belonging to the same
user. The access identifier must be less than 33 characters in
length. The access identifier Jones.Faculty.a would be
associated with a process created for Jones in the Faculty
project. The "a" instance distinguishes the process from another
process created for Jones.Facu1ty which might have an access
identifier Jones.Faculty.b. All processes need not have distinct
access identifiers. It is quite likelY that several processes
have the access identifier Jones.Faculty.a which simply means
that all these processes have the same access rights to segments
and directories in the storage system.

Access Control ~

The rights that different process have when referencing a
segment or directory are specified as an attribute of that
segment or directory in the form of a list called the Access
Control ~ (Ak1). Each entry of the list specifies a set of
processes (actually a set of access identifiers of processes) and
the access modes that members of that set may use when
referencing the segment or directory. The modes read, write, and
execute may be specified in ACLs of segments and the modes
status, modify, and append may be specified in ACLs of
directories. On directory ACLs, modify mode may not appear
\'/i thout status mode. I f some of these access modes are not
granted in a ACL entry, then processes specified in the entry
cannot access the segment or directory in the ungranted mode.
For example, if the ACL of a segment contains an entry for a
process and the modes specified are read and execute then the
given process may execute instructions that fetch data from the
segment, and transfer to and execute instructions in the segment,
~ut it may not modify data in the segment.

® Cop Y rig h t, 19 7 2 , lvia s sac h use t t sins tit ute 0 f T e c h no log y
All rights reserved.

Access Control
Storage System
Page 4

MUlTICS PROGRAMMERS' MANUAL

The members of the set of processes associated with an ACl
entry are specified by a character string called a process class
identifier. The process class identifier is similar in
appearance to an access identifier. In fact a string which is an
access identifier may also be a process class identifier. Such a
process class identifier identifies the class of processes whose
access identifiers are the same as the process class identifier;
e.g., the process class identifier Jones.Faculty.a identifies the
class containing all processes with access identifier
Jones.Faculty.a.

It is very useful to identify larger groups of processes
than simply those with the same access identifier. This may be
accomplished by replacing one or more of the three components of
the process class identifier (i.e., the person name, project
name, or instance) by the asterisk character (*). Such a
character string identifies that class of processes whose access
identifiers match the remaining components of the character
string; i.e., those components of the string that are not the
asterisk character. For example, the class identifier Jones.*.a
identifies that class of processes with an access identifier
containing Jones as the person identifier and "all as the
instance. Any project identifier in the access identifier will
match. Therefore, processes with access identifiers
Jones.Work.a, Jones.lazy.a, and Jones.Faculty.a will be members
of the class identified by Jones.*.a. Similarly, processes with
access identifiers Jones.lazy.a, Jones.Work.q, and
Jones.Faculty.q are members of the class identified by Jones.*.*.
The string *.*.* identifies the class of all processes.

Structure 2i ~ Access Control ~

From the above discussion one can see that it is quite
possible for a single process to be a member of more than one
process class. This situation can lead to ambiguities on ACls
when more than one entry can apply to the same process. To
eliminate this ambiguity and make ACls more easily readable, four
conventions are imposed on ACls and their interpretation. First,
no process class identifier may appear more than once on any ACl.
Second, the ACl is ordered as explained below. Third, the entry
that applies to a given process is the first entry on the list
whose process class contains the given process. Finally, if no
entry exists on the list for a given process then that process
has no access to the segment or directory. These conventions
assure that the access for every process is uniquely specified by
the AC l.

@ Copyright; 1972; lvlassachusetts
All rights reserved.

Institute of

MULTICS PROGRAMMERS· MANUAL

Access Control
Storage System

Page 5
8/1/72

In order to properly generate and modify ACLs it is
necessaiY to have some understanding of how they are ordered.
The ordering is done by leftmost specificity of components of
process class identifiers. This can be easily explained by a
simple ordering algorithm and an example. The entries to be
ordered are first divided into two groups, those whose first
(person) component are specific (i.e., are not asterisk) and
those whose first component are asterisk. Those with specific
first component are placed first on the ACL. Within these two
groups a similar ordering is done by second (project) component
again with the specific entries being first. This produces four
groups. Finally, within each of these four groups a similar
ordering is done on the third (instance) component to produce
eight groups. The eight groups resulting will be in the
following order:

1) cl ass identifiers 'I' i th no asterisks

2) class identifiers wi th an asterisk in the th i rd component
only

3) class identifiers with an asterisk in the second component
only

4) class identifiers wi th asterisks in the second and third
components only

5) class identifiers with an asterisk i n the first component
only

til class identifiers wi th asterisks in the first and th i rd
components only

7) class identifiers wi th asterisks in the first and second
components only

8) the class identifier *.*.*

Within each of these groups the ordering is unimportant
because a process may belong to only one class in a group. The
following is a validly ordered ACL:

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

B l·IU L TICS PROGRAMf-.1ERS' MANUAL

Access Control
Storage System
Page 6

Jon e s • \~o r k • a r (1)

Smith.Lazy.* rw (2)

\.~ hit e • * • q re (3)

Black.*.* rew (4)

*.Faculty.m no access (5)

.Student. re (6)

.Lazy. r (7)

..b rew (8)

..* r (9)

In the above example a process with access identifier
Srnith.Lazy.h would be able to read and write the segment as
derived from entry (2), a process with access identifier
Jones.Lazy.h would be able only to read the segment as derived
from entry (1), and a process with access identifier
Smith.Faculty.q would be able to read the segment as derived from
en try (9). No t e t hat des pit e en try (9), wh i ch a p pa r e~n-t 1 y g ran t s
read access to all processes, Smith.Faculty.m has no access since
entry (5) is encountered first.

t·ia i n tenance of Access Con tro 1 Lis ts

Both commands and subroutines are provided for the purpose
of creating and modifying ACLs. The commands are listacl,
setacl, and deleteacl (see the MPM write-ups for these commands).
The subroutines are hcs_$add_acl_entries,
hcs_$add_dir_acl_entries, hcs_$replace_acl, hcs_$replace_dir_acl,
hcs_$delete_acl_entries, hcs_$delete_dir_acl_entries,
hcs_$l i s t_ac 1 , and hcs_$l is t_d i r _ac 1 (see the tviPtri wr i te-ups for
these subroutines). The specific usage of each of these
procedures is described in their command and subroutine
write-ups. The commands and subroutines enforce the constraints
~entioned above; i.e., they order the ACL and do not permit more
than one entry with a given process class identifier to appear on
the ACL.

@ Copyright, 1972; lw,assachusetts
All rights reserved.

Institute of Torhnnlno-v r"._' -01

MULTICS PROGRAM~ERS' MANUAL

Access Control
Storage System

Page 7
8/1/72

Consider the example of a segment with an ACL containing the

Jones.*.* r

A new entry is added for the process class *.Work.* resulting in
the ACL:

Jones.*.* r

.Work. rw

This would superficially appear to given all members of the Work
project the right to read and write the segment. In actuality it
gives all members of the Work project the right to read and write
the segment except for Jones (assuming Jones is a member of the
~·Jork project). Jones has only read access. If we truly wanted
to give all members of the work project write access we would
have to add another entry to produce:

Jones.Work.* rw

Jones.*.* r

.Work. rw

The entry Jones.*.* is still useful for specifying access for
Jones when he logs in on any project other than Work.

It is important to realize that placing a new entry on an
ACL does not necessarily grant all members of that process class
the specified access, for some members of that process class may
also be members of process classes appearing earlier on the ACL.
The user should, therefore, be aware of what an ACL currently
contains before modifying it.

Special Entries Qll Access Control Lists

Several Multics system services are performed by special
processes as opposed to being done in the user's process. These
system service processes perform such functions as making backup
copies of segments in the storage system and queued printing and
punch i ng of segments at users' requests. I n order for these
service processes to perform these functions they must have
access to the segments to be serviced. In many cases the service
processes normally service all segments in the storage system
and, therefore, need access to most segments. These service

@ Copyright, 1972, Ivlassachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Access Control
Storage System
Page 8

processes and only these service processes are members of a
single project called SysDaemon. In order to assure that these
service processes have access to the segments the storage system
subroutines automatically place the ACL entry

.SysDaemon. rw

on the ACL of every segment, and the ACL entry

.SysDaemon. sma

on the ACL of every directory when the segment or directory is
created or its ACL is entirely replaced. A user taking no
special action with regard to any members of the SysDaemon
project will, thereforce, have automatically granted the
necessary access to all service processes so that they may
perform their function.

Under special circumstances, some user may elect not to
receive the service of a service process on some of his segments.
To do this, the user simply denies access to his segments to that
service process by modifying the ACL to contain an entry for that
service process with null access. It is crucial that a user who
elects not to receive such a system service be fully aware of the
nature of the service and the consequences of his choice. For
example, if the backup processes are not permitted access to a
segment, backup copies of the segment cannot be made and the
segment will not survive certain types of system failure.

Default values f2L Access Control Lists

f·1any system commands and subrout i nes, e.g., create,
create_dir, and hcs_$append_branch, add an entry for the creating
process to the ACL of a newly created segment or directory. The
storage system subroutines also automaticallY add the above
mentioned service process entry to all newly created segments and
directories. It is also useful to be able to specify a list of
entries to be added to all newly created segments in addition to
entries for the creating process and the service processes. This
eliminates the need to expicitly modify an ACL each time a new
segment or directory is created. This list of entries to be
added to newly created segments or directories is called an
initial access control ~ or initial ACL and is an attribute of
a directory. Each directory has two sets of initial ACLs, one
set for segments appended to the directory and one set for
directories appended to the uirectory. Since each initial ACL is
simply a 1 ist of ACL entries, it has the appearance of an ACL ..
\Jhen a segment or directory is created the service process ACL

@ Cop y rig h t ; 19 72, ii! ass a c h use t t s
All rights reserved.

Institute of TarhnnlnO"\I
• '-'-"" '''' I ""b3

MULTICS PROGRAMMERS' MANUAL

Access Control
Storage System

Page 9
8/1/72

entry is first placed on the ACL of the segment or directory.
Then the appropriate initial ACl (i.e., either the one for
segments or the one for directories) of the containing directory
is merged with the ACL. The merging of two ACLs means that the
entries are combined and sorted. If two entries on the resulting
ACL contain the same process class identifier, then the entry
that was originally on the ACL of the segment is deleted leaving
the newly added entry. In this way the service process entry
originally on the segment may be overridden by the initial ACL by
placing an entry with process class identifier *.SysDaemon.* on
the initial ACL. Finally, any entries specified in the call to
append the segment (for most system commands this is simply one
entry for the creating process) are merged into the ACL. Again
these entries will override the service process and initial ACL
entries if duplicate process class· identifiers exist.

The default value for the initial ACLs of a newly created
directory is empty, i.e., there are no entries in the initial
ACLs.

Reference

Organick, E.I., ~ Mu1tics System:
Structure, Chapter 4, Access Control
Press~ Cambridge, Mass~ 1972

An Examination 2i ~
and Protection, M.I.T.

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Storage System
10/13/71

MULTI-SEGMENT FILES

Segments on Multics have a size limit which is suitable for
a large class of applications. However, subsystems which make
use of large data bases need ways of treating many segments as a
single file. The approach that has been adopted in Multics is to
put these segments into a directory and to set the directory's
multi-segment file indicator (formerly called the bit count) to
some nonzero value. Such a directory is called a multi-segment
file (MSF).

The convention for MSFs is considered to be at a higher
level than the file system and command system. That is, the file
system and most of the command system do not recognize MSFs. To
manipulate an MSF, the user must use the tools provided him by
the subsystem which maintains the MSF. For instance, he cannot
expect to ed it an MSF conta in i ng ASC II info rmat i on us i ng a
standard Multics editor. For user convenience, the list, status,
and delete commands do recognize MSFs. In addition, the dprint
command, if given an MSF, will assume that the multi-segment file
indicator of the MSF is a count of the number of segments in the
MSF and that if the MSF contains n+l segments, then their names
are the characters 0, 1, 2, ••• , n. The MSFs produced by the
file_ I/O System Interface Module (IOSIM) (see the MPM Command
Section) are in this format, thus making it possible to dprint
them.

~ Copyright, 1972, Massachusetts Institute of Technology
All r i.gh t.s r-es-e rved. LEND)

MULTICS PROGRAMMERS' MANUAL

Storage System
5/25/73

BACKUP AHQ RETRIEVAL QE ~ STORAGE

The Multics backup system provides insurance against the
involuntary destruction of information maintained by the storage
system. This insuiance is obtained by preserving on magnetic
tape recent copies of all nonexpendable segments known to the
storage system, and reclaiming these copies when needed. In
effect, the backup system augments the reliability of the on-line
storage system.

It is the primary responsibility of the backup system to
protect users against damage to their segments that can result
from a system failure or error. As a secondary duty, the backup
system also protects users against self-inflicted damage to their
segments.

The backup system performs the following four functions:

1) segment backup copying

the copying of segments from the Multics directory hierarchy
onto tape.

2) retrieving

the recovering (during normal Multics operation) of segments
that have been copied onto tape.

3) reloading

the recovering of the
(generally following
Multics operation.

4) sa-l vagi ng

entire contents of on-line storage
a system crash) in order to resume

the finding, reporting, and correcting of errors contained in
the Multics directory hierarchy.

Users are normally concerned only with segment backup copying and
retrieving, since reloading and salvaging ar~ system functions
performed automatically when the need arises.

A number of installation-determined parameters occur in the
Multics backup system; in particular, the frequency of segment
backup copying and the length of time for which tapes are kept
are determined locally. Examples in the text are typical values
and should not be relied on. The user should check with his
local installation to find out these local values.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Backup and Retrieval of User Storage
Storage System
Page 2

Segment Backup Copying

.- MUL TICS PROGRAMMERS' MANUAL

The segment backup copying mechanism searches out, selects,
and copies onto tape, segments from the Multics directory
hierarchy. (The term "dumping" has been used to indicate backup
copying for historical reasons. It is a piece of jargon local to
Multics and-is avoided in this write-up as much as possible.) At
the same time it produces a map indicating the segments included
in each backup copy. The copying mechanism operates in three
different modes corresponding to three different types of backup
copies -- incremental, consolidated, and complete. These backup
copies are distinguished by three different criteria used to
select candidates for copying (as described below).

During each of the three types of backup copying, those
portions of the hierarchy specified by a control segment are
searched. In current practice, only two subdirectories of the
root directory are not searched. One of these,
>system_library_l (which is logically a subset of
>system_library_standard), is always reloaded from a Multics
system tape and therefore does not require the services of
backup. In >system_library_l is contained the hardcore system
plus that part of the command system needed during reloading.
The other subdirectory, >process_dir_dir, contains only
per-process information which is temporary in nature and hence
also does not require the services of backup. All other sections
of the hierarchy are included in the backup copying search path.
See the MPM Reference Guide section, The Storage System
Directory Hierarchy.

Two system processes are employed by the backup system for
the purpose of segment backup copying, namely Backup.SysDaemon
and Dumper.SysDaemon. The Backup process is used to produce
incremental and consolidated backup copies, whereas the Dumper
process is used to produce complete backup copies. Hence,
complete backup copies can be produced concurrently with either
incremental or consolidated backup copies.

Incremental Backup Copying

Incremental backup copying is the principal technique used
to keep the backup system abreast of changes to on-line storage.
It is the purpose of an incremental backup copier to discover
modifications to-on-line information not reflected in backup tape
storage. The incremental backup copier locates and copies all
segments in its search path that have been modified more recently
than they have been copied. This criterion is easily determined
by comparing the date/time modified {maintained by the storage

r" __ ! _L
vUIJY r I go L, Massachusetts institute of Technology

and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Backup and Retrieval of User Storage
Storage System

Page 3
5/25/,3

system) and the date/time dumped (maintained by the backup
system) found in the entry for any given segment. Immediately
after backup copying a segment, the incremental backup copier
resets the date/time dumped for that segment. The net effect of
the incremental backup copying scheme is to limit the amount of
information that can be lost to those modifications that have
occurred since the last backup copy.

Incremental backup copying is triggered periodically by a
system~timing mechanism. In order to restrict the maximum time
span during which modifications to on-line storage can go
unnoticed by the backup system, it follows that incremental
backup copies should be produced frequently. On the other hand,
because the backup daemon competes with ordinary users and exerts
a considerable drain on system resources, it becomes economically
desirable to lower the frequency of incremental backup copies.
Therefore, the incremental backup copying rate at an installation
is chosen as a compromise between these two consIderations. A
triggering interval of one hour might be chosen. This does not
imply, however, that an incremental backup copy will necessarily
finish within~ single one-hour time interval. In fact, since
the incremental backup copier normally enjoys no scheduling
advantage, an incremental backup copy typically might require
several one-hour intervals to complete during hours of heavy
system load. A new backup copy begins immediately following the
completion of such an overtime backup copy.

The backup system does not guarantee that segments are
copied in a consistent state. In other words, it is possible
that while the backup copier is copying a segment, another
process might be writing into that same segment. Thus, an
inconsistent copy of a segment might be produced. Note, however,
that modifications that cause a segment copy to be inconsistent
also cause another copy of the segment to be produced on the next
pass of the incremental backup copier. Therefore, a consistent
copy is eventually produced.

Consolidated Backup Copying

A consolidated backup copier locates and copies segments in
its search path that have been modified after some specified time
in the past. For example, an installation might choose to run a
consolidated backup copier every midnight to copy all segments
modified since the preceding midnight; i.e., since the preceding
consolidated backup copy. When used in this manner, the
consolidated backup copier is essentially imitating an
incremental backup copier except, of course, that the interval

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Backup and Retrieval of User Storage
Storage System
Page 4

MULTICS PROGRAMMERS' MANUAL

between consolidated copies is longer. Another possible practice
is to backup copy all segments modified since the last complete
backup copy (see below).

The original motivation behind consolidated backup copying
was the need to consolidate the most recent copies of segments
from a group of incremental tapes in order to'reduce the amount
of time needed to reload these tapes. An inefficient solution to
this problem would be to actually merge a group of incremental
tapes. Instead, the consolidated backup copy was invented to
achieve the same goal. Notice that since a consolidated backup
copier catches modifications that have accrued over a period of
time encompassing many incremental backup copies, it effectIvely
consol idates the most recent information from a group of
incremental tapes. Furthermore, the consolidated backup copier
also picks up segments that have been modified more recently
than the last incremental backup copy. Hence, a consolIdated
backup copier performs the work of an incremental backup copier
as well.

A second motive for consolidated backup copying might be
simply expressed as "two copies are better than one". There is
some question, however, ·as to when secondary copies should be
produced. An alternate and somewhat more obvious strategy, for
example, would be to have the incremental backup copier produce
duplicate tapes. This method would guarantee that both primary
and secondary copi es were i dent i ca 1. Such a fac i 1 i ty is, in
fact, implemented in the backup copier, but is not used for
incremental backup copying. The principal ·shortcoming of the
duplicate tape strategy is that the primary and secondary copies
are not produced in a sufficiently independent fashion.
Therefore, both copies are, to a certain extent, susceptible to
the same errors. This is particularly true of operational errors
and, to a lesser degree, is true of hardware and software errors.
Also, the duplicate tape strategy is comparatively expensive and
voluminous.

Complete Backup Copying

A complete backup copIer simply backup copies every segment
in its search path without regard for modification time. Unlike
modification-driven backup copying which attempts to keep the
backup system up-to-date, complete backup copying is somewhat
different in purpose and follows a more leisurely schedule.
During a complete backup copy, the date/time dumped is not reset.
Therefore, complete backup copying does not interact in any way
with incremental or consolidated backup copying.

€) Copyri ght .. 1973; Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Backup and Retrieval of User Storage
Storage System

Page 5
5/25/73

A complete backup copy establishes a checkpoint in time,
essentially a snapshot of the entire Multics storage hierarchy.
If it should ever become necessary to recover from scratch the
contents~of on-line storage, then the most recent complete backup
copy marks a cutoff point beyond which no older backup tapes need
be inspected.

Another purpose of complete backup copying involves the tape
retention strategy. The high production rate of incremental and
consolidated tapes makes the retention of these tapes for long
periods of time impractical. -Therefore, incremental and
consolidated tapes are kept for some short time, perhaps three
weeks. Complete backup copy tapes are retained for a longer
time, perhaps six months, with the exception of one complete
backup copy per month that might be held for a period of one
year.

Retrieving

The segment retrieval mechanism used by the backup system
consists of a group of programs known as the reloader/retriever.
The reloader/retriever is used to recover segments from tapes
produced by the backup copier. Retrieving, which occurs during
normal Multics operation, is distinguished from reloading, which
occurs prior to normal Multics operation.

When a user notices that a segment or directory has been
lost or damaged, he can submit a request to the Multics
operations staff for that segment or directory to be retrieved
from a backup tape. The problem he faces, of course, is
determining which backup copying operation produced the copy he
wishes to retrieve. Usually the most recently produced copy is
wanted. In the case of a damaged segment, however, the damaged
version is likely to have been backup copied as well, and hence
the most recent copy is not wanted. Hopefully a user knows
approximately when his segment was lost or damaged. Also, he
should remember if the segment has been recently modified. Using
these two pieces of information he can make a reasonable guess as
to which backup'copy contains a suitable copy of a given segment.

Once a conjecture has been made as to which backup copy
contains the desired copy, the conjecture can be verified by
examining the corresponding backup copy map. The map indicates
the tape reel on which the backup copy was written. A feature of
the backup copy map which is sometimes helpful is the date/time
last dumped for the segment, which effectively points to the next
most recent backup copy of the segment.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

~MULTICS PROGRAMMERS' MANUAL

Backup and-Retrieval of User Storage
Storage System
Page 6

The user -can spec i fy that a s i ngl e segment, a
without its subtree, or a directory including its
retrieved. A directory for which the subtree is not
contains only the links and access control information
with the directory itself.

directory
subtree be
retrieved

associated

A user can also specify that the segment or directory be
retrieved by a different path name. A single segment or a
directory without a subtree can be relocated at any point in the
storage system hierarchy. A directory subtree can be relocated
at any point at the same level in the hierarchy <i.e., the number
of > characters in the path name of the directory cannot change).

Normally the most recent copy of an entry on the specified
tape is retrieved. However, the user can specify that the first
occurrence is to be retrieved instead, presumably to retrieve a
particular intermediate-copy.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

~ OF THE INPUT AND OUTPUT FACILITIES

Multics provides various means
output, i.e., moving data in to or out

I/O Facilities
10/21/71

for performing input and
of the Multics system.

Users should note that input/output (I/O) in Multics is not the
means by which the data stored in segments in the Multics storage
system is referenced. Data in the Multics storage system is
internal to Multics and referencing such data, therefore, does
ntit require moving it in to or out of the system. Refer to the
MPM Reference Guide Section on Using the Multics Storage System
for information on referencing segments. Most I/O involves one
of the many available peripheral devices such as typ~writers,
printers, tape drives, card readers and punches, graphic devices,
etc. All I/O operations in Multics make use of the I/O system.
The use of the Multics I/O system is described in the MPM
Reference Guide Section on the Use of the Input and Output
System. The I/O system provides a general means by which any I/O
capable of being performed in Multics can be accomplished.
However, for most common uses of I/O, procedures are provided
which eliminate the need for the user to have a working knowledge
of the I/O system. This section provides a brief introduction to
some of these facil ities and indicates where further information
about each facility can be found. The MPM Reference Guide
Section, Available Input and Output Facil ities, provides a
complete 1 ist of I/O faci 1 ities.

Translators

Multics provides several higher level languages which have
built-in I/O facilities such as formatting and directing I/O to
and from various devices (e.g., PL/I, FORTRAN). Users should
consult the appropriate language manuals for a description of
these facilities.

Console Input/Output

For simple reading from and writing to the user's console,
the entries ios_$read_ptr and ios_$write_ptr are provided. See
the MPM write-up on ios_.

Formatting

Two subroutines, ioa and write_list_, are provided for
formatting output before it is printed on the console. The
subroutine read_list_ is used to parse input read from the
console. See the MPM Subroutine Calls Section describing these
programs.

€> Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

Use of I/O Facilities
110 Facilities
Page 2

MULTICS PROGRAMMERS' MANUAL

Redirecting Console Output to a Segment

The file_output command will cause all subsequent output
normally printed on the user's console to be written instead to a
segment in the file system. The console_output command causes
such output to be directed aga into the conso 1 e. See 'the MPM
Command Section describing these commands.

Printing of Segment Contents

The contents of segments that contain exclusively Multics
ASCII characters may be printed on the console by invoking the
"print" command. The contents of a segment which does not
contain characters can be printed in octal using the command
dump_segment or the Multics debugger, debug. See the MPM Command
Section describing these commands.

BYlk Input/Output

In order to permit all users to make use of certain critical
peripheral I/O devices in an efficient manner, Multics provides a
service in which users may queue requests to input or output data
using these devices. These devices are:

1) Printer - The contents of a segment containing Multics ASCI 1-

characters can be printed on a high speed printer using the
dprint command. The dprint command queues the request for
printing and, at some later time, the contents of the segment
will be printed and made available to the user by the Multics
installation. The printed output will consist of one or more
pages of header indicating the path name of the segment and
the user issuing the request, the contents of the segment, and
one or more pages of information detailing the charges
incurred in printing the contents of the segment. See the MPM
command dprint.

2) Card Punch - The contents of a segment may be punched on cards
using the dpunch command. In a manner similar to printing,
the dpunch command queues the requests for punching and, at
some later time, the contents of the segment will be punched
and made available to the requester. The output deck will
consist of several "flip" cards identifying the segment and
requester, the contents of the segment in one of several
possible formats, and cards indicating the end of a deck. For
a description of the various types of card format, see the MPM
Reference Guide Section on Bulk Input and Output. The use of
the dpunch command is described in the MPM Conmand Section.

@ Copyr i ght, 1971, Massachusetts ! nst i tute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Use of I/O Facilities
I/O Facil ities

Page 3
10/21/71

3) Card Reader - Information contained in a deck of cards may be
read into the Multics system by submitting the deck to the
Multics installation. The deck must consist of a contiol caid
which contains information about the deck and how it is to be
located within the system, the cards containing the data in
one of the Mu1tics standard formats, and a special card
indicating the end of the deck. The contents of the deck
will be input at some later time to a segment in a special
directory in the Mu1tics system and a link to this segment
placed as indicated on the control card. After the deck is
rea din, i t w ill be rna d e a v ail a b 1 e tot he s u bm itt e r • The
exact format of input decks is described in the MPM Reference
Guide Section on Bulk Input and Output.

Graphics

Users having I/O devices with graphic I/O capabilities can
make use of the Multics graphic system. The graphic system uses
a general intermediate graphic structure language that permits
programs to be written in a device-independent manner. For
simple graphic appl ications, see the MPM subroutine plot_. Users
wishing more sophisticated graphic capabil ities should see the
MPH Reference Guide Section on Graphics Support on Multics and
obtain the MPM Graphics Users' Supplement.

@ Copyr i ght, 1971, Massachuset ts I nst i tute of Techno logy
All rights ·res~·rved. (END)

MULTICS PROGRAMMERS' MANUAL

~ QE THE INPUT ANQ OUTPUT SYSTEM

I/O Facilities
7/24/72

The primary purpose of the I/O system is to allow a process
to communicate with external physical devices such as
typewriters, on-line printers, tape drives, etc. In other words,
I/O is the movement of data to and from the system, as opposed to
the management of data within the system. An example of the
latter is the storage system. On the Multics hardware, I/O
communications are handled by the I/O channel controller which is
fed ins t ruct ions by the CPU. It is the funct i on of the I/O
system to translate high level I/O system calls into channel
controller instructions. This is accomplished through various
levels of programming both within and outside the hardcore
supervisor. The final result of this programming is that the
user is provided with a very flexible set of subroutines which
allow him to easily communicate with devices. The flexibility is
provided by the use of I/O stream names for addressing devices,
the Attach Table for associating the stream name with a device,
and a means by which the association can be changed. The user is
able to perform I/O operations upon diverse devices by using a
singie set of simple operations. This is possible because the
system is designed so that all I/O devices appear functionally
identical at the user procedure level. Exceptions to the
functional equivalence occur in devices upon which certain
operations cannot be performed; for example, reading from a
printer or writing to a card reader. The combination of stream
names and functional equivalence of devices from the user level
allows run-time specification and modification of the device or
devices to which I/O is directed without modification of
programs.

Interface Modules

The procedure responsible for coordinating the communication
with a particular device is called an interface module. Each
device has at least one associated interface module. The
interface module is responsible for lending the appearance of
functional equivalence of a device to the I/O system. It
contains entry points whose calling sequences and functions are
defined by system wide convention. These common operations are
transformed by the interface module into calls to other I/O
system subroutines in order to perform the actual I/O. I t is the
primary purpose of the interface module to create the common
appearance of the device to higher levels of the I/O system in
order that I/O calls directed to different devices can be made in
a standard manner.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Use of The I/O System
I/O Facil ities
Page 2

1)

There are basically three types of interface modules:

Device Interface Module (DIM): This type of
coordinates communications with a particular
physical device such as a typewriter, printer,
drive.

module
external
or tape

2) Pseudo-Device Interface Hodule: This type of module permits
a process to communicate with something other than a
physical device as if it were a device. The best example is
the Storage System Interface Module (SSIM) which allows a
process to use a segment (or set of segments) in the storage
system as an I/O device. Another use could be to create a
pseudo-device to simulate an actual device for testing
purposes.

3) Intermediate Interface Module: This type of module is
intended to serve as an intermediary between a user program
and another interface module and will be discussed in more
detail later. It serves to modify an I/O communication
before the DIM or pseudo-DIM is called. The modification
might be the formatting of data or redirecting of the call
to a different device or set of devices.

In order to perform its function, the interface module may
call upon other routines for such things as code conversion or
buffering. In some cases, device dependent code is placed in the
Hardcore Ring supervisor for efficiency (e.g., the major portion
of the typewriter DIM is in The Hardcore Ring). If an external
device is involved, the interface module will have to send
instructions to the hardware channel controller. A procedure in
the supervisor has been provided for this purpose. The channel
controller interface module is responsible for giving
instructions (Data Control Words (DeW» to the channel controller
and is callable by User Ring procedures.

Streams ~ ~ lLQ Switch

The user of the I/O system does not directly call an
interface module. I/O calls are made by specifying a symbolic
stream name. One of the arguments of each call to the I/O system
is a stream name. Each stream name is associated with an
interface module and a particular device. Thus, when a user
wishes to obtain his input from or direct his output to a
different device, he does not have to rewrite his programs; he
simply changes the device with which the specified stream is
associated, assuming the device is capable of the desired
operations.

~ Copyright, 1972, Massachusetts institute of Technology
All rights reserved.

~1UL TICS PROGRAMMERS' MANUAL

Use of The I/O System
I/O Facilities

Page 3
7i24i72

The association of stream names and interface modules and
devices is kept in a data base called the Attach Table. The
procedure which maintains and uses the Attach Table is called the
I/O switch. All user calls to the I/O system are actually calls
to the I/O switch. The switch finds the specified stream name in
the Attach Table and calls the associated interface module at the
appropriate entry. Two calls to the I/O switch" are handled in a
s pe cia 1 ma nne r • The at t a c h calli sus edt 0 i nit i ali z e a s t ream
and a device for communication. It also causes the I/O switch to
create an association in the Attach Table between the specified
stream name, interface module, and a particular device. The
creation of such an association is initiated by use of the
f 0 1 1 ow i n g call.

call attach ("user_i/o", "typewriter", " tty100 1l
);

This call causes the I/O switch to call the typewriter interface
nodule, which has been specified by its name "typewriter" to
prepare the specified typewriter, "tty100H , for communications.
If this is successful, the I/O switch creates an entry in the
Attach Table relating the stream name "user_i/o" to "tty100" with
the typewriter interface module being specified as the control
program. All further I/O calls on the stream "user_i/o" wi 11 be
forwarded to the typewriter interface module to be performed on
"tty100". The detach call serves the opposite purpose. It
causes the I/O switch to terminate communication with the device
and remove the association from the Attach Table.

Intermediate Interface Modules

The attachments discussed so far associate a stream name
with an interface module and a device. Another type of
attachment associates a stream name with an interface module and
another stream name. The interface modules involved in such
attachments serve to intercept the I/O call made on the first
stream and, after performing some processing, make another call
to the I/O switch on the second stream. Such interface modules
are effectively spliced into the logical flow of control and are,
therefore, called intermediate interface modules. Such interface
modules may be used for formatting data before it is actually
passed on to a device. There are also some other important uses
of intermediate interface modules.

The syn intermediate interface module simply passes an I/O
call to a different stream. If the stream "user output" is
attached via the syn interface module to the stream-"user_i/o",
then all I/O calls to "user_output" will be directed by the syn

@ Copyright, 1972, ~·1assachusetts Institute of Technology
All rights reserved.

Use of The I/O System
I/O Facilities
Page 4

MULTICS PROGRAMMERS' MANUAL

interface module to the stream "user_i/o". A call to either
stream will have the same result and the streams are, therefore,
synonymous. syn attachments are useful because they are much
easier to change than device attachments because no device
initializations or terminations are necessary. (Initialization
and termination are those operations a DIM must perform to start
or end communication with a physical device.)

The broadcast interface module is used for attaching a
stream to many other streams. In doing so, a call on the first
stream wi 11 resul t in call s on all the streams to which it is
attached. This is a means by which 1/0 calls may fan out.

Figure 1 gives a block diagram of the 110 system showing the
various types of modules which can exist.

t-1odes .im.9. ~ Organ izati on

Each attachment has associated with it certain attributes
called modes. The precise interpretation of a mode is dependent
upon the interface module being invoked, but some general
statements about modes can be made.

The read and write modes specify that the read (input) and
write (output) operations can be performed on this device. The
user may wish to use a teletype only for writing and, therefore,
may not wish to give it the read attribute. On devices such as a
printer, the read attribute is meaningless; therefore, attempts
to read from a printer will cause an error status to be reflect~d
back to the user.

I/O data consists of a collection of elements where an
element is the smallest indivisible unit of information. The
type of an element is determined by its size, i.e., the number of
bits it contains. Data operated on by a single I/O call to an
interface module must consist of elements of the same type
(size). Entries are provided to change the element size accepted
by an interface module. An element could be a character or a bit
or a word or a fixed-size logical record. The data element size
is usually a function of the type of information being
transferred and is not necessarily a function of the device. In
all calls to the 1/0 system involving the reading or writing of
data, the amount of data to be transferred is expressed as an
integral number of elements.

There are two basic
logical. The physical
device accepts the data.

categories for data: physical and
representation is the way the actual
The organization of logical data is

(c) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

HUL TICS PROGRAMMERS I fv1ANUAL

Use of The I/O System
I/O Facilities

Page 5
7i24i72

defined by the program. For example, magnetic tape requires that
data be organized into physical records with gaps between the
records. However, the user receives a linear stream of data as
the logical representation.

Other modes are concerned with the synchronization of I/O
calls and the actual I/O operations. The use of such features as
read-ahead and write-behind means that the I/O operation may not
be performed at the time of the actual I/O call. Various modes
and calls are provided to give the user some control over the
synchronization.

Status Reporting

It is necessary for the I/O system caller to know the status
of his I/O call. This is especially true since the I/O operation
may not be performed at the same time as the call. For this
reason, a status argument is provided in each call. The I/O
system returns essentially three pieces of information in the
status argument. A code describing the nature of an error, if
one occurs, is returned. Some bits are returned indicating the
state of the transaction. The status argument also includes a
unique identifier which enables the I/O system to identify the
transaction if the caller wishes to request information about or
modify the transaction at a later time. Status is described in
more detail later in this document.

Usage

The various calls to the I/O system are described in the MPM
wr i te-up on i os. In orde r to ill us t rate some of the uses to
which the I/O system can be put, a few examples of its use
follow. For ease of explanat.ion, the calls shown in this section
may not correspond exactly to the calls available on Mu1tics; the
reader should refer to other MPM sections for exact calling
sequences.

A typical user performs I/O communications with a single
device, a typewriter. To initialize this communication, calls
are made to the I/O system at process initialization time. The
following three calls are made:

call attach ("user_i/o", "typewriter", "tty100",
"read, write", status);

call attach ("user_output", "syn", "user_i/o", "write",
status);

@ Copyright, 1972, ~1assachusetts Institute of Technology
All rights reserved.

Use of The I/O System
I/O Facilities
Page 6

MULTICS PROGRAMMERS' MANUAL

call attach ("user_input", " syn ", "user_i/o", "read",
status);

The first call estab1 ishes that the device whose identifier is
"tty100" will be controlled by the I/O interface module named
"typewriter" for reading and -writing. All subsequent operations
for this device will be made by referencing the stream name
"user i/o". Information about the status of this I/O call is
retur~ed in "status". The second call establishes a synonym for
"user_i/o" called "user_output". The "write" as the fourth
argument, however, restricts this synonym to write calls only.
Any write call to the stream "user_output" is now synonymous to a
\,/r i te ca 11 on the stream "user _i /0". Any read ca 11 on
"user_output ll \'Ii 11 be an error that \"/i 11 be reflected in the
status string of the read call. The third attach call
establishes another synonym for "user_i/o" for reading only and
is called lIuser_input".

The process may now communicate with the typewriter
"tty100". To type something out on the typewriter, the process
issues a write call:

call write ("user_output", workspace l ne1ements, status);

This call writes the specified number of elements (nelements) of
data contained in \'Jorkspace onto the stream "user_output". This
results in a call to the stream "user_i/olt. The typewriter
interface module is invoked to transmit the information to
"ttylOO". The sequence of calls is illustrated in Figure 2.

The process may also wish to receive input typed by the user
on the typewriter. For this purpose, the following call is
issued:

call read ("user_input", workspace, nelements, nactual,
status);

This call reads into workspace the specified number of elements
(nelements) from n t ty10Q" following a similar sequence of calls
as in the write request. Read calls have an additional feature
in that they make use of read delimiters. The typewriter DIM
vli11 attempt to read the specified number of elements; however,
if, in doing so, it encounters a read delimiter, reading ceases
at that point. The actual number of characters read is returned
as nactual. For example, if the process issued the call:

cal 1 rea d (" use r _ i n put", wo r k spa c e , 10 , n act u a 1, s tat us) ;

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

t1UL TICS PROGRAMMERS I MANUAL

Use of The I/O System
I/O Facilities

Page 7
7/24/72

and the string typed on "tty100" by the user is abcdefghijklmn
and the read delimiter is d, then the string abcd will be placed
in workspace and nactual will be set to four. If~ however~ the
read delimiter is m, then workspace will be set to contain
abcdefghij and nactual set to ten since only ten elements
(characters in this case) were requested in the read call.
Delimiters and element types are established by various calls to
the I/O system. The most commonly used read delimiter is the
"new line" character.

Let us assume that the user wishes to direct his output to a
segment in the storage system instead of to his typewriter. To
do this, he may issue the following calls:

call attach ("segment_stream", "file_", "segment_name",
"write", status);

call detach ("user_output", "user_i/o", status);

call attach ("user_output", ilsyn", IIsegment_streamil,
"write", status);

The first call initializes a segment whose name is "segment_name"
as an I/O device via the SSIM. All write calls on the stream
"segment_stream" will be directed to the segment "segment_name".
However, we assume that the programs the user is about to invoke
use the stream "user_output" for writing since this is the stream
that normally is used for output. The detach call and the
subsequent attach call serve to modify the synonymization of
"user_output" • "user_output" is now synonymous to
"segment_stream" for \lJriting and all wr·ite requests will now be
directed to the SSIM for writing into the segment
"segment_name". Note that if "user_output" had been attached
directly to the typewriter, instead of indirectly through the syn
interface module, it would have been necessary to terminate the
actual device, i.e., tty100, to accomplish the detachment. By
having the extra level of indirection, such changes are simply
table modifications by the syn interface module. Now all output
\llritten to the stream "user_output" wi 11 appear in "segment_name"
ins tead of on the typewr i te r. In 0 rde r to rever t back to the
typewriter, the process issues the calls:

call detach ("user_output", "segment_stream", status);

call attach ("user_output", "syn", "user_i/o", "write",
status);

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

Use of The I/O System
I/O Facilities
Page 8

MULTICS PROGRAMMERS' MANUAL

tlote that the segment remains attached via the stream
"segment_stream" to allow the user to switch back to segment
output more easily. When the user is sure he will no longer use
the segment for output, he issues the call:

call detach ("segment_stream", "segment_name", status);

tJote, also, that during this entire operation, the user's input
stream was never affected, i.e., read calls directed to the
stream "user_input" will obtain data from the typewriter.

Certain Multics commands and the Multics user environment
expect the standard streams user_output, user_input, and
error_output to be attached to other streams via the syn
interface module. This assures that if any of these streams are
detached and subsequently reattached, as is the case when the
user quits and starts, that no information about the attachment
is lost. Users should therefore attach these streams using only
the syn interface module.

lLQ. Terms

Below are some of the more important terms used in
describing the I/O system.

Attachment

An attachment is the association of one stream name with an
interface module and either a device 10 or another stream name.
This association is established by an attach call. Subsequent to
an attachment, data may be read or written by issuing a read or
\,/r i te ca 11 wi th the appropr i ate stream name.

Del imiters

There are two kinds of I/O delimiters meaningful to an I/O
user on input. These are the break characters and the read
delimiters which are established by means of the setde1im call.
A break character is meaningful only to an interactive device and
serves three functions: it delimits physical interrupts,
canonicalization, and erase-and-kil1 processing. A break
character is an interrupt delimiter in that it is recognized by
the hardware channel controller and causes an immediate
interrupt. A break character is an erase-and-kill delimiter in
that its presence permits erase-and-kill processing to take place
over all characters received since the preceding break character.
A break character is a canonicalization delimiter in that its
presence permits canonical ization to take place over all elements

Copyright, 1972, Massachusetts Institute of Technology
.411 rights reserved.

r1ULTICS PROGRAMMERS' r4ANUAL

Use of The I/O System
I/O Facilities

Page 9
7/24/72

received since the preceding canonicalization delimiter. For
certain devices (e.g., typewriters), the "new line" character is
the default break character. !n addition, whether established as
a break character or not, the "new 1 ine" character ---always
delimits canonicalization and erase-and-kill processing. A read
delimiter affects the amount of data transferred to the user
program during a read call. A read call continues to transmit
data to the caller until a read delimiter is recognized (and
transferred) or until the specified amount of data has been
transferred. The current break characters and read delimiters
may be determined or modified using the getdelim or setdelim
calls.

Element

An element is a linear array of bits. It
data entity referred to by an I/O call.
element sizes are 1 (bit), 9 (character), and
The current element size of a stream may
modified using the getsize or setsize calls.

~1odes

is the smallest
The most frequent
36 (word) bits.

be determined or

The modes of an attachment specify the setting of a
collection of attributes relevant to the intended use of the
specified stream name. Modes are expressed as a character string
to the attach call or a changemode call~ The string consists of
key words, specifying individual modes, separated by commas.
r~des need only be understandable by the interface module
receiving the attach or changemode call. Some modes, however,
have commonly accepted meanings:

1} read data may be input from this stream;

2) wr i te data may be output to this stream.

The key words in a mode string may be preceded by the
circumflex character which indicates the opposite of the mode.
For example, the mode string "read, write" indicates data may be
input from this stream but no outputting may be done to this
stream. Note that the mode string in the attach and changemode
calls serves only to change the setting of the modes specified in
the string and does not affect the setting of modes not specified
in the string. In the attach call, the modes are changed from
the default; in the changemode call, the modes are changed from
the current setting.

€) Cop y rig h t, 19 7 2 , ~1 ass a c h use t t sin s tit ute 0 f T e c h n 0 log Y
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Use of The I/O System
I/O Faci 1 i ties
Page 10

Reference Pointers

Associated with each stream are five values called reference
pointers. A reference pointer is the offset of an element of
data that is of special interest. The five reference pointers
and the elements to which they point are:

1)

2)

3)

4)

5)

read

wr i te

first

1 as t

bound

the next element to be read;

the next element to be written;

the first element of data;

the last element of data;

the element beyond which data cannot be written.

The seek I/O call may be used to explicitly modify the
values of these reference pointers. The read reference pointer
is modified implicitly when a read or read_ptr I/O call inputs
some data. The write reference pointer is modified implicitly
when a write or write_ptr I/O call outputs some data. The last
reference pointer is implicitly modified by a write or write_ptr
I/O call which appends to the end of the data. The values of the
reference pointers always obey the following relations:

first ~ read ~ last +1 ~ bound +1

first ~ write ~ last +1 ~ bound +1

For example, if one wanted to start reading the data of a device
from the beginning one would issue the following seek call:

call seek (stream, IIread", IIfirst lf
, 0, status);

If one wanted to append to the end of the data one would issue
the call:

call seek (stream, "write", "last ll
, 1, status);

If one wanted to erase the data one would issue the call:

call seek (stream, "last", "first", -1, status);

t Jot e t hat the val u e s 0 f ref ere n c e po i n t e r s are r e 1 at i vet 0 0 n e
another. They do not have absolute values. As with I/O calls,
all of the five reference pointers may not be implemented by each
I/O System Interface Module (IOSIM). The MPM sections on 10SIMs

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved:

MULTICS PROGRAMMERS' MANUAL

Use of The I/O System
I/O Facilities

Page 13
7/24/72

call requesting the read operation (read-ahead).
write asynchronous, the write operation may not

If a stream is
complete until

the \"Ir i te
(write-behind). Synchronization modes may be established using
the readsync and writesync calls.

Uorkspace

The buffer area in the user's address space, to or from
which a request to transfer data is directed, is referred to as
the workspace. A read call reads an integral number of elements
into a specified workspace; a write call writes an integral
number of elements from the workspace.

@ Copyright, 1972, t,1assachusetts Institute of Technology
All rights reserved.

JI> (")
· ... 0
.... -0

'< ., .,

., r-'
tt)~

III
tt)N

"' .. .=::
tt) 3:
1:1. OJ r-'-
• II)

~ L __ D_I M ___ __

II)

ro
rt
rt
II)

::J
II)

rt

rt
C
rt
ro

0
-tl

-I
ro
n
:::T
::J
0

0
()'q

'<

User
Ring_
Hardcore
Ring

Hardware

DIM

channel controller
interface module

r::- channe 1 I I l~~ntroller
}J JIIII\\

User
Program

I/O Switch

r----'

DIM
(Part 1)

Figure 1: I/O Devices

Intermediat.e
Module

Pseudo-DIM

"''0 - c:
QI II)

C~ 0 ro
(D

,,0
I~ OJ -tl
.;:-n

-. -I
-' :::T
-om
rt

m
II) 0

(/)

'<
II)

rt
ro
3

(")
(/)

3:
l>
Z
c:
l>
r-

HUL TICS PROGRA~1~1ERS' ~~ANUAL

user_ ou t put

J,

I
I/O Switch

, ,
syn

Interface
Module

Use of The I/O System
I/O Facilities

Page 15
7/24/72

r-~ I r---~---

Figure 2

I/O SlVitch

typewriter

DIM

channel
controller
interface

module

1/0 channel

controller

tty 100

~ Copyright, 1972, Massachusetts Institute of Technology
A11 rights reserved. (END)*

MULTICS PROGRAMMERS' MANUAL

I/O Facilities
11/2/71

AVAILABLE INPUT ANQ OUTPUT FACILITIES

The following is a list of commands and
available to users that are commonly used to provide

subroutines
input and

output functions. The list i~ organized by the function
provided. The procedures 1 isted as Miscellaneous I/O System
Procedures and those subroutines categorized as Input/Output
System Interface Modules (IOSIM) require some knowledge of the
Multics I/O system in order to be used. (See the MPM Reference
Guide Section on the Use of the Input and Output System.) The
MPM section under which each module is described is given for
easy reference. Note that the 10SIMs are categorized under the
MPM Subroutine Calls Sectfon.

Simple Inout/Output

ios_$read_ptr
ios_$write_ptr

Formatted Input/Output

ioa_
read_l i st_
wr i te_l i st_

MPM subroutine
MPM subroutine-

MPM subroutine
MPM subroutine
MPM subroutine

Input/Output rlt.h Segments .in..t.b.g, File System

console_output MPM command (see the MPM command
file_output)

debug MPM command
dump_segment MPM command
exec_com MPM command
f i 1 e_ MPM IOSIM
file_output MPM corrmand
pr i nt MPM command

Ir,anslators

fortran MPM conmand (see the FORTRAN Manual)
1 i sp MPM corrmand (see the LISP Manual)
pl1 MPM command (see the PL/1 Manual)

.l!Y.J..1 Input/Output

With the high speed printer:

dpr i nt MPM command

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

Available I/O Facilities
I/O Facilities
Page 2

With punched cards:

dpunch
Card Input

With magnetic tape:

MULTICS PROGRAMMERS' MANUAL

MPM command

until general tape reel mounting
facil ities are available, these
10SIM's may be used only by special
arrangement with operations.

See also the MPM Reference Guide Section on Bulk Input and
Output.

Graphics

MPM subroutine

See also the MPM Reference Guide Section on Graphics Support on
Multics and the MPM Graphics Users' Supplement.

Inout/Output Devices

Cards:

dpunch
Card Input

MPM command

See also the MPM Reference Guide Section on Bulk Input and
Output.

Consoles (typewriters, teletypes, ARDS, etc.):

iomode
1 ine_length
tw_

Printer (high speed):

dprint

MPM command
MPM command
MPM 10SIM

MPM command

Miscellaneous !LQ SYstem Procedures

broadcast_
get_at_entry_
iocall
i05_

MPM 10SIM
MPM subroutine
MPM command
MPM subroutine

~ Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

print_attach_table
syn

MPM command
MPM IOSIM

Available I/O Facilities
I /0 F ac i 1 i tie s

Page 3
11/2/71

See also the MPM Reference Guide Section on the Use of the Input
and Output System.

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved. (END)

MUlTICS PROGRAMMERS' MANUAL

I/O Facilities
10/12/71

~ INPUT ANQ OUTPUT

The Multics system currently has provisions for three types
of bulk I/O: high speed printed output, punched card input, and
punched card output.

Printed Output

The dprint command (see the MPM Command Section) causes the
contents of a Multics segment containing Multics ASCII characters
to be printed on a high speed printer.

1)

The printed output will be of the following form:

One or two header sheets containing the pathname of the
segment printed, the identification of the requesting
process, and a character string, if any, supplied by the
requester in the dprint command.

2) The contents of the segment. Printed 1 ines contain 136
character positions. If a line to be printed contains more
than 136 character positions, it will be continued on the
following line.

3) A sheet that summarizes the charges incurred in printing the
contents of the segment.

Punched ~ Input

Facilities are provided to read punched card decks into
Multics segments. There are three types of card formats which
can currently be input to Multics: Multics card codes, 7punch,
and raw.

1) Multics card codes are defined in the MPM Reference Guide
Section on Punched Card Codes. Essentially, they comprise a
superset of the EBCDIC card punch codes, and are producible
by 029 key punches. The 12 bit card codes are converted to
9 bit ASCII codes. (The escape conventions mentioned in the
Punched Card Codes Section have not yet been implemented.)

2) 7punch decks are binary representations of existing
segments, and the data portions of the cards are read in
exactly as they were punched out.

3) Raw decks are simply read into Multics segments without any
conversion, and without regard to format. That is, the 960
bits on each card are read into the segment, in column
order. Any desired conversion may then be performed by the

€) Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Bulk Input & Output
I/O Facilities
Page 2

user.

Note that "flip" cards (and other sorts of labelling cards
from other systems) are not read correctly and should be removed
from decks.

Procedure

Each deck must begin with an 029 key punch produced control
card in the format described below, and end with a card which has
a 5-7 multiple punch in column 1. The decks are submitted to
Operations, and will, in general, be read in by the next day.
Owing to protection considerations, segments will be created in a
system directory rather than placed directly in the user's
directory; a link to the input segment will be placed in the
user's directory by the card reading program, through which the
segment may be copied. In order that the 1 ink may be created,
the user must not have removed append access for *.SysDaemon.*
for the directory in question. (Note that SysDaemon is
automatically granted access when directories are created.)

Note that segments must be copied from the system directory
within a reasonable time, as the segments in that directory will
be periodically deleted.

Control Card Format

TYPE DIRECTORY ENTRY ACCESS_NAME

1) TYPE

2) DIRECTORY

3) ENTRY

is the deck type. Currently, the valid types are
MCC (for Multics card codes decks), VIIPUNCH (for
7punched decks), and RAW (for unconverted decks).

is the pathname of the directory into which a link
to the input segment will be placed.

is the desired entry name of the 1 ink to the input
segment. Note that this entry name must not
already exist, as the card reading program will
not attempt to resolve name duplications.

4) ACCESS_NAME is the access control name which is to be given
read access to the 1riput segment. See the MPM
Reference Guide Section on Naming Conventions for
a description of access control names.

The items are to be separated by one or more blanks; all four
items must be specified.

~ Copyright, 1971, Massachusetts Institute of Technology
All rights reserved ..

~'1U L TICS PROGRAMMERS I MANUAL

Bulk Input & Output
I/O Facilities

Page 3
10/12/71

The format is shown in upper case because the 029 key punch
prints that way. However, pathnames and access control names may
contain both upper and lowercase. Therefore, the card reading
program will map all letters on the control card to lower case
except those letters immediately following an escape character
(¢). For example, *.¢MULTICS.* as an access name would be
interpreted as *.Multics.*. This convention is established as an
interim measure for ease in punching control cards, and will be
superseded when the escapes of the Punched Card Codes Reference
Guide Section have been implemented.

Example

Suppose user Doe, working on project Proj, wishes to read a
FORTRAN source deck into a segment called alpha.fortran:

1) The control card, placed in front of the deck, is as
follows:

MCC >UDO>¢PROJ>¢OOE>SUB XALPHA ¢DOE.¢PROJ.*

where MCC specifies Multics card code conversion, and XALPHA
is chosen so that the eventual copy through the 1 ink need
not be renamed.

2) The control card, deck, and end of file card (5-7 multiple
punch in column 1) are submitted to Operations.

3) When the cards have been read, issue a copy command on the
console for xalpha into alpha.fortran. If the cards were
read in successfully, the copy will succeed. If not, xalpha
will not be found; in this case, check with Operations to
determine what went wrong.

fJotes .Q!l ~ ~

Decks must not exceed the maximum length of a Multics
segment. A good rule of thumb is to 1 imit decks to single boxes
of cards, although more precise counts can be made. For II raw"
reading, the actual maximum is 2,456 cards. For Multics card
codes, the actual maximum depends on the number of characters
actually read, as trail ing blanks on cards are ignored. Assuming
all 80 columns are punched on each card, the maximum would be
3,276 cards. For 7punched decks, the length of the created
segment depends on the length of the original segment. The
typical 7punch card represents 22 words, but it may represent as
many as 4,096 words if the original segment contained that many

~ Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Bulk Input & Output
110 Facilities
Page 4

consecutive words of identical contents.

Errors

The operator will return a note with the deck if any errors
took place during the read. In general, the error should be
corrected and the deck resubmitted. However, in certain cases it
is possible to avoid rereading; when the only problem involves
the input segment bit count or a name dupl ication in the user's
directory, the uniquely named segment (in >daemon_dir_dir>cards)
May be 1 inked to directly.

t1u 1 tics ££r.Q Output

The dpunch conmand (see the MPH Command Section) causes the
contents of Mu1tics segments to be punched. The segments may be
punched under mcc, raw, or 7punch conversion modes.

The 7punch conversion mode essentially furnishes a binary
representation of a segment, suitable for subsequent reloading.
The 7punch format also provides sequencing and checksumming;
~ence, it is more secure than the raw mode, provided that the
segment is being punched in order to serve as additional backup
and not for use on any system other than Mu1tics.

The Multics 7punch format is as fo 11 O~JS :

Columns

nows 1 2 3 4 5 6 7 72
I I

1-3 17 "" s c c c d d I
I I

4-6 Iw w, s -c c c d d I
I I

7-9 l\'/ t s c c c d d I
1 I

10-12 15 s s c c c d d I
I I

1) 7 and 5 (octal) are 7punch format identifying codes.

is the number of data words on the
less than 27(3); if greater,
replication count and indicates
times the single data word on the
be repl icated on reading back in.

card, if
i tis a
hO~J many

card is to

-(9 Cop y rig h t , 1 9 71 , r·; ass a c h use t t sin 5 tit ute 0 f T e c h no i 0 g y
All rights reserved.

1'1U L TICS PROGRAtU·1ERS' r\1ANUAL

3) t

4) sssss

5) cccccccccccc

6) dddd ••• dddd

Deck Structure

Bulk Input & Output
I/O Facilities

Page 5
10/12/71

is a last card code. It will be 0 on each
card of the deck except the last card, where
it will be 3. The bit count of the segment
is punched as the last card for Multics
decks.

is the sequence number of the card in the
deck, starting from O.

is the full word logical checksum of all bits
on the card except the checksum itself.

are the data words.
columns 7-9 contain
binary(35» and columns
that the word count
count card.

On the last card,
the bit count (fixed

10-80 are O. Note
is 0 on the last/bit

Labell ing information is punched on "fl ip" cards. The
structure of Multics produced decks is as follows:

Card 1: A "flip" card containing tV/O rows of XiS

Card 2 : A IIfl jp" card containing the heading (may be
more than one card)

Card 3: A "flip" card containing the date and time
punched

Card 4: A "fl i pIt card containing the pathname
segment punched (may be r:1ore than one

Cards 5-11: The punched segfilent

Card 11+ 1: A "flip" card saying END OF DECK

Card 11+ 2: A "flip" card containing tVJO rOVJS of

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

of the
card)

XiS

(END)

~1ULTICS PROGRAMMERS' MANUAL

GRAPHICS SUPPORT ON MULTICS

I/O Faci 1 ities
10/12/71

The basic purpose behind the development of the Multics
Graphic System is to provide a terminal-independent general
purpose graph i c Interface su i tab 1 e for use by all graph i c
appl ications on Multics. A graphic program written at one type
of graphic terminal should be operable at another type of
terminal of similar capabilities without modification. A wide
variety of graphic appl ications should be supported. The user
should be able to write his program easily and naturally, and it
should run in an efficient manner.

This first attempt at a graphic system for Multics naturally
represents compromises with the above goals. The Multics Graphic
System will change as better solutions to the problems involved
are discovered. These changes will be upward compatible whenever
possible, and every attempt will be made to support graphic
programs written for previous versions of the graphic system.

The idea of terminal independence was adopted from the
t1ultics typewriter I/O system, for the same reason that it is so
important there. A wide variety of console types are connected
to Multics (including graphic terminals used as video
typewriters), and this console mix changes with time. To require
a program to incorporate specific terminal dependencies would
have severe disadvantages.

a) User Fragmentation. Only a limited amount of user
program sharing could take place because a program
written by a user could not be used by others working at
different terminals. This kind of fragmentation would
severely inhibit the development· of on-line user
communities.

b) Terminal Immobility. Being able to use only a fraction
of the terminals connected to the util ity is a
considerable inconvenience. Even worse, the dependence
of a subsystem on a specific terminal would grossly
inhibit the transference to new and better types of
terminals.

c) Certain modules provided by the util ity would require a
different version for each supported terminal type.

The net result would be to support only a limited number of
different types of terminals, to inhibit the introduction of new
types, and to retain an obsolete type long after the desirabil ity
of its removal had become apparent.

@ Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

Graphics
I/O Facilities
Page 2

MULTICS PROGRAMMERS' MANUAL

~~hi le these arguments for terminal independence now apply
Ll0St strongly to typewriters, as more types of graphic terminals
are added to Multics, they gain validity for graphics as well.

What is meant by terminal independence in graphics? There
are many different types of graphic terminals ranging from
storage tube terminals to refresh displays with internal
processing capability. Even a plotter could be connected, though
not as an interactive console. Each device has its own set of
special features, such as dotted 1 ine or bl inking capability. To
create true device jndifference by allowing the use only of those
features common to all terminals is clearly an intolerable
solution. Rather, as a compromise solution, an interface
incorporating the union of all features of existing terminals is
provided. This interface is extensible to include new features
of terminals to be attached in the future.

A user tailors his program to use the features of the
terminal types he intends to use. When the program is run, the
use of any unavailable feature is mapped into the most reasonable
compromise feature of the terminal being operated. Thus, the
user has a reasonable guarantee that a program coded in accord
\'.Jith the 1 imitations of the system's terminal independence
capability ~Jill generate a recognizable picture on practically
any type of graphic terminal attached to Multics. However, it
will not necessarily operate equally well at any terminal. For
example, a program written to use the dynamic rotation and
editing capabilities of a programmable display such as an IMLAC
would operate rather poorly on a storage tube display terminal
such as the AROS.

The motivation to provide a general purpose graphic system
is to avoid creating and maintaining a multipl icity of systems,
each oriented towards a separate appl ication. The extra overhead
borne by the utility is obvious, but also important is the added
burden of graphic users having to master the idiosyncrasies of
entirely separate systems.

The design problem of any general purpose system is that
generality is often opposite to ease and efficiency of use. A
system intended to accept a wide variety of tasks may perform few
of them well. The Multics Graphic System avoids this dilemma in
a compromise fashion. It provides a sophisticated,
picture-structure oriented programming interface which is
suitable for direct use by a knowledgeable programmer. However,
those desiring a more appl ication oriented or simpler interface
May use instead application modules that sit between a user
program and the general graphic interface. The programming

(2) Copyright, 1971, t-1assachusetts Institute of Technology
'-' All rights reserved.

nUL TICS PROGRAMMERS' ~1ANUAl

Graphics
I/O Facilities

Page 3
lO/12/il

interfaces of these application modules present a view of the
graphic system more structured towards the user's needs.
Currently, both a casual user module and a plotting mopule exist.

Conceptually, the Multics Graphic System can be viewed as a
double-ended funnel implementing a switching function between a
particular application interface and a particular terminal type.

user and
application
interfaces

core
graphic

system

terminal
interfaces

A Conceptual View of the Organization
of the Multics Graphic System

~ Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

\
Graphics
I/O Facilities
Page 4

MULTICS PROGRAMMERS' MANUAL

The central portion is the core graphic system, through which
everything is channeled. At the user end, the funnel expands to
include a number of different application interface modules. The
user is to select the most appropriate of these for use by his
graphic program. At the system end, the funnel expands to
include interface modules for all the different graphic terminals
attached to the utility. The user exchanges graphic
communications with his terminal through one of these.

More extensive graphic system information and graphic system
~odule write-ups are available in the MPM Graphics Users'
Supplement.

@ Co p y rig h t , 19 71, t .. 1 ass a c h use t t sin s tit ute 0 f T e c h nolo g y
All rights reserved. (END)*

MULTICS PROGRAMMERS' MANUAL

HR I T I NG AN .lLQ SYSTEM INTERFACE f400U LE

I/O Facilities
11/19/71

An I/O System Interface Module (IOSIM) is responsible for
coordinating all the activities of a particular device or
pseudo-device. The interface module must functionally provide
some or all of the services called for in the general
specifications of the I/O system .. These services are descr-ibe"d
in the MPM section for the subroutine ios_. In order that the
I /0 s wit c h be a b 1 e to calli n t e r f ace mo d u 1 e s , the s e mo d u 1 e s mu s t
have fixed call ing sequences. These call ing sequences contain
basically the same information as the original call to the I/O
switch (ios_). Since the same interface module may be used to
control several devices simultaneously, it is necessary that the
10SIM maintain separate data about the status of each device. It
is the job of the interface module to create space for and
maintain the individual device data, but it is the responsibil ity
of the I/O switch to keep track of the stream, device, and device
data associations. Device data is kept in a region called the
Stream Data Block (SOB) and contains information describing the
status of each device and other information for use by both the
interface module and the 1/0 switch. As an example of device
status information, consider the typewriter interface module,
which maintains the channel number of the typewriter being
accessed and the event 10 of the event which is signalled when an
interrupt of interest comes from this type\tJriter. Information
shared by both the interface module and the switch is kept at the
beginning of the SOB in a fixed format (discussed later in this
section). This information consists of the name of the interface
module and a 1 ist of names of devices or streams upon which I/O
operations are to be performed for calls to this stream. Each
call by the switch to an interface module has as an argument a
pointer to the SOB for the stream referred to in this call. This
SOB pointer is passed to the interface module by the I/O switch
in addition to the arguments received by the I/O switch in the
original call to the I/O system.

Each interface module is called in a standard manner by the
I/O switch. For the sake of efficiency, the calls to the
interface module are directed through a transfer vector. Each
interface module has a transfer vector. The transfer vector is
an assembly language program consisting of a sequence of transfer
instructions, each one transferring to a different entry in the
corresponding interface module. The beginning of the transfer
vector is identified by the external symbol whose name is formed
by concatenating the name of the interface module and the string
"module". The name of the transfer vector is the name of the
interface module. The I/O switch calls a particular entry in an
interface module by transferring to a particular location
relative to the beginning of the transfer vector; therefore each

~ Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

Writing an 10SIM
I/O Facilities
Page 2

MULTICS PROGRAMMERS' MANUAL

location in each transfer vector in the system corresponds to a
particular entry in the interface module and is fixed by
system-wide convention. A typical transfer vector is shown in
Figure 1. Notice that some locations in the vector transfer to a
small subroutine. This routine returns an error in the status
argument indicating that this interface module does not contain
this entry. Figure 2 shows a template transfer vector which
shows the position of each interface module entry in the transfer
vector. Note that since the name of the interface module is the
name on the transfer vector, the name of the procedure the
transfer vector transfers to must be distinct and not the name of
the interface modure. In Figure 1 this procedure is named
typewriter_uti1_. There may, however, be several procedures
involved, possibly each I/O system call being implemented by a
separate program.

For example, the transfer vector for the typewriter_
interface module shown in Figure 1 contains the external symbol
typewr i te r _modu 1 e. When a ca 11 is made to th i s i nte rface modul e,
the I/O switch will transfer to an offset relative to the
location corresponding to this external symbol. The specific
offset depends upon the particular call being made.

Each interface module is responsible for returning the
proper status string. (See the MPM Reference Guide Section on
the Use of the Input and Output System.) The first 36 bits
(first word) of the status string is an error code. A 0 error
code indicates no error. The error code may be either a standard
Hultics error code (see the MPM Reference Guide Section on System
Error Codes and Meanings) or a bit string representing the status
of a physical device. The latter case is used by Device
Interface Modules (DIM) in physical mode and is indicated by the
first bit of the status string being one. The exact
interpretation of the physical status bits is dependent on the
interface module in question. The next 18 bits indicate the
state of the transaction. One of these bits is the so called det
bit. If the interface module turns the bit on, the I/O switch
will delete this device attachment. Normally, only the detach
entry to the interface module turns the det bit on. The final 18
bits of the status string is the transaction identification and
is a unique string used to identify this transaction. The use of
the transaction identification is not fully specifed yet and
therefore should not be used.

The attach entry of an 10SIM must perform certain tasks.
The requested attachment may be a multiple attachment, i.e., an
attempt to attach a device or stream on a stream to which some
other device or stream is already attached. This may be detected

© Copyright, 1971, t-1assachusetts Institute of Technology
All rights reserved.

MU L TICS PROGRA~·1MERS I ~1ANUAL

Writing an 10SIM
I /0 F ac i 1 i tie s

Page 3
lli19iil

by the interface module by looking at the SOB pointer passed to
it by the I/O switch. If the SOB pointer is not a null pointer,
then an SOB already exists for this stream, indicating a multiple
attachment. If the interface module does not allow multiple
attachments, an appropriate error code must be returned in the
status string. If the interface module does allow multiple
attachments, or the SOB pointer passed by the switch is null,
then the interface module may proceed with the attachment. If a
physical device is being attached, the interface module must call
the I/O channel controller interface module to initial ize the
device. If a pseudo-device or intermediate interface module is
involved, then whatever initial ization that is appropriate must
be performed. If no errors have occurred, the interface module
must then update the information in the SOB. If this is the
first attachment to this stream, then the interface module must
allocate space for the SOB and return a pointer to the SOB to the
switch by overwriting the null SOB pointer passed to it by the
switch. One means of performing allocation is by using the PL/1
allocate statement. In order that both the interface module and
the I/O switch may share certain data, it is necessary that this
data be kept in a fixed format (see Figure 3) at the beginning of
the SOB. The shared data includes the name of the interface
module and a 1 ist of the devices or streams to which this stream
is attached. A 1 ist of device or stream names is necessary to
allow multiple attachments which permit an I/O call to one stream
to fan out to many devices or streams (i.e., broadcasting). This
shared information is most easily allocated and updated by the
interface module, but is needed by the" switch in order that it
may inform the user as to the name of the interface module and
the devices or streams to which a particular stream is attached.
Once the information in the SOB has been updated, the information
in the status string argument must be updated and the interface
module may then return to the switch. If an uncorrectable error
occurs at any point in the attachment, the interface module
should return an appropriate error code in the status string. If
the interface module operates in physical mode, it may choose to
return the physical status of the device involved in place of an
error code. It indicates this by turning Qll the first bit of the
status string. If the attachment was not successful, and no
other devices or streams are already attached to this stream, the
SOB should be freed and the det bit of the status string should
be turned on, indicating to the switch that the attachment should
be destroyed.

For most of the other types of I/O calls, the actions taken
depend upon the device being referenced and the nature of the
call. As an example, consider a read call to a stream that is

© Copyright, 1971, ~1assachusetts Institute of Technology
All rights reserved.

Writing an 10SIM
I /0 F ac i 1 i tie s
Page 4

~·1UL TICS PROGRAt1~1ERS' MANUAL

attached to a typewriter. The interface module must reference
the device data pointed to by the SOS pointer supplied by the
switch to retrieve the logical channel of this device. The 10SIM
then calls the channel controller module to read in the data (the
issue of buffering has been ignored for this example). If
nothing is read, the 10SIM calls ipc_$block to wait for more
input. Here it is again necessary to reference the device data
to get the event identifier of the event which indicates that
more input has arrived. This event identifier is passed to
jpc_$block so that the process is awakened only upon the
occurrence of this event. Upon begin awakened, the interface
module again calls the channel controller interface module to
read the data and then fills in the status string appropriately.

In a detach call, the device must be terminated. For a
physical device, this will require that the interface module call
the channel controller module. In all cases, the interface
module must update the status string and, if the detachment is
successful and no other devices or streams are currently attached
to this stream, deallocate the SOB and store a one in the det bit
of the status string. Upon performing a detachment, the caller
may not wish to completely terminate a device. For example, in
detaching a tape, the caller may not wish to unload or even
rewind the tape because it intends to continue using the tape.
For this purpose, the detach call has a disposal argument. It is
here that the caller may specify the extent to which the device
is to be terminated. The default, i.e., a null string, is full
termination. The effect of specifying any other disposal is
dependent upon the interface module.

Call ing sequences for each interface module entry are fixed
by system convention. The arguments for each entry are the same
as the arguments to the I/O switch for the same entry with the
following exceptions:

1) The attach entry in the interface module contains an extra
argument at the end of the argument 1 ist which is a pointer. On
initial attachment on a stream, the interface module returns in
this argument a pointer to the SOB it has allocated for this
device. On all subsequent calls on this stream, the SOS pointer
is passed back to the interface module.

2) All other entries to the interface module have the SOB pointer
as their first argument. The SOS pointer argument replaces the
first argument in the call ing sequence for the same entry in the
I/O switch.

~ Copyr ght, 1971, r.1assachusetts Institute of Technology
All r ghts reserved.

MULTICS PROGRAMMERS' MANUAL

Examples

Writing an 10SIM
I/O Facil ities

Page 5
Ilj19jil

Two entry statements in the typewriter outer module might be
as f 01 1 o\'/ s :

typewriter_attach: entry (stream, type, device, mode,
status, data_ptr);

typewriter_read: entry (data_ptr, workspace, offset,
nelements, nactual, status);

€) Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Writing an IOSIM
I/O Facilities
Page 6

"Interface Module Transfer Vector for the
"typewriter_ Interface Module

ent ry typevJr i te r _modu 1 e
typewriter_module:

tra *+1,6 go to proper transfer instruction

tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
t ra
t ra
tra

end

< t y pel/oJ r t e r _ u t 1_ > 1 l1 y pev.J r i t e r _at t a c tj1
< typewr ter _ut 1_> 1 l!ypewr ter _detactiJ
< typewr ter _ut 1_> 1 i!ype\r-.Jr ter _read)
< typewr ter~ut 1_> 1 ~ypewr ter _wr i fa
<typewr ter_ut 1_>1 ~ypewr ter_abore
<typel/Jr ter _ut 1_> 1 (Eypewr ter _ordei)
<typewr ter_ut 1_>1 ~ypewr ter_resetrea~
<typewr ter_ut 1_>1 ~ypewr ter_resetwriti
<ios_>1 [no_ent YJ this ent y not implemented
<ios_>1 (!lo_entril this entry not implemented
<typewr iter _ut i 1_> I {lypewr iter _setdel irUl
<typewriter_uti1_>1 ~ypewriter_getdeli~
< os_> IDo_entr~ th s entry not implemented
< os_> @o_entr)l] th s entry not implemented
< os_> rno_entr~ th s entry not implemented
< os_> illo_entr~ th s slot currently unused
< os_> ~o_entr~ th s slot currently unused
< os_> ~o_entr~ th s slot currently unused
< os_> mo_entr~ th s slot currently unused
< os_> ~o_entr~ th s entry not implemented
< os_> @o_entr~ th s entry not implemented
< os_> {fio_entr~ th s slot currently unused
< os_> illo_entr~ th s slot currently unused
< os_> no_entr~ th s slot currently unused
< os_> ~o_entrij th s slot currently unused
< os_> ~o_entr~ th s slot currently unused
< os_> ~o_entr~ th s slot currently unused
< os_> fio_entr~ th s slot currently unused

.< os_> 60_entr~ th s slot currently unused
< os_> [io_entriJ th s slot currently unused

Figure 1: A Typical Transfer Vector

© Copyr i ght, 1971, Massachusetts t nst i tute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Writing an 10SIM
I/O Facilities

Page 7
"'10/71

111 nterface ~1odule Transfer Vector for the
.. x yz_ I nte rface ~1odu 1 e

entry xyz_module
xyz_module:

tra *+1,6 go to proper transfer instruction

tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
tra
t ra
tra
tra
tra
tra
tra

end

<xyz_ut j 1_> I \l<yz_attac@
<xyz_ut i 1_> 1 (l<yz_detac61
<xyz_ut i 1_> J ~yz_reaQJ
<XYZ_ut · 1_> I ~.xyz_\"Jr i t~
<XYZ_ut 1_>1 ~yz_abor~
<xyz_ut 1_>1 ~yz_ordefl
<Xyz_ut 1_>1 ~yz_resetrea~
<xyz_ut 1_>1 ~yz_resetwritm
<XYZ_ut 1_> 1 ~yz_set s i zru
< xyz_ut 1_> 1 (gyz_gets i z~
<xyz_ut 1_>1 ~yz_setde1 i~
<Xyz_ut 1_> I ~yz_get.~e 1 i rill
<xyz_ut 1_>1 ~yz_see~
<xyz_ut 11_> 1 l8yz_te1 n
<xyz_ut j 1_> 1 ~yz_changemod~
<ios_>1 Cno_entr~ this slot
<ios_>1 \!.lo_entr~ this slot
<ios_>1 \!}.o_entr~ this slot
<ios_>1 mo_entriJ this slot
< xyz_ut i 1_> I (8yz_readsyng
<XYZ_ut i 1_> I ~yz_wr i tesyn~
<ios_>1 IDo_entrY.] th s slot
< . os_> 1 (Do_ent ry] th s s lot
< os_> I ffio_ent r~ th s slot
< os_>1 ~o_entr~ th s slot
< os_>1 ~o_entr~ th 5 slot
< 05_> 1 15o_ent ri) th 5 slot
< os_>1 iio_entr~ th 5 slot
< 05_>1 ~o_entr~ th s slot
< 05_> I fio_ent rY] th s slot

currently unused
currently unused
currently unused
currently unused

currently unused
currentl.y unused
currently unused
currently unused
currently unused
currently unused
currently unused
currently unused
currently unused

Figure 2: A Template Transfer Vector

~ Co p y rig h t , 19 71 , t··1a 5 5 a c h use t t 5 Ins tit ute 0 f T e c h no log Y
All rights reserved.

.L_, 4J/' ...

~J r i tin g a n lOS I fYl
I/O Facilities
Page 8

MUL TICS PROGRJ-\14f\'lERS I j',lANUAL

declare 1 stream_data_block aligned based (sdb_pointer),
2 outer~nodule_name char(32),
2 device_name_list ptr,
2 ---------;

1) outer~~odule_name is the name of the interface module.

3) ---------

is a pointer to the threaded list of
device names.

the remaining information for this stream
is at the discretion of the interface
module.

declare 1 device_nalile al igned based,
2 next_ptr ptr,
2 name_size fixed bin,
2 name char (name_size) aligned;

is a pointer to the next entry. This is null
if this is the last entry.

2) name_size is the number of characters in the name.

5) name is the name of the device or stream.

Figure 3: Declaration for a Stream Data Block

~ CODyright. 1971. Massachusetts Institute of Technology
'-' All"rights reserved. (ErJD)*

MULTICS PROGRAMMERS' MANUAL

ASCII CHARACTER SET

Standard Data Formats and Codes
10/14/71

The Multics standard character set is the revised U.s. ASCI I
Standard (refer to USA Standards I nst i tute, IIUSA Standard
X3.4-1968 1'j. The ASCii set consists of 128 seven bit characters.
Internally these are stored right justified in four nine bit
fields per word. The two high order bits in each field are
expressly reserved for expansion of the character set; no system
program shall use them. Any hardware device which is unable to
accept or create the full character set should use establ ished
escape conventions for representing the entire set. It is
emphasized that there are no meaningful subsets of the revised
ASCII character set.

Included in the ASCII character set are 94 printing
graphics, 33 control characters, and the space. Mu1tics
conventions assign precise interpretations to all the graphics,
the space, and 11 of the control characters. One of these
control characters is the "Enter Graphic Modell character which
is recognized only on a graphics device. The remaining 22
control characters are presently reserved. The graphics in the
set are as follows:

Upper Case Alphabet

ABCDEFGHIJKLMNoPQRSTUVWXYZ

Digits

0123456789

special Characters

! exclamation point
If double quote
if number sign
$ do 11 a r sign
c., percent '{}

&. ampersand
I acute accent
(left parenthesis
) right parenthesis
* asterisk
+ plus
, comma
- ninus

pe r i od
/ right slant

colon

Lovler Case Alphabet

abcdefghijklmnopqrstuvwxyz

; semicolon
< less than
= equals
> greater than
? question nark
U commercial at
l left bracket
\ left slant
] right bracket
A circumflex

underl ine
" grave accent
t 1 eft hrace
~ vertical 1 ine
1 right brace
,...., til de

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

ASCI I Character Set
Standard Data Formats and Codes
Page 2

Control Characters

MU L TICS PROGRAtv1MERS I f'1ANUAL

The following conventions define the standard meaning of the
ASCII control characters which are given precise interpretations
in Multics. These conventions will be followed by all standard
Device Interface Modules (DIM) and by all system software inside
the I/O system interface. Since some devices have different
interpretations for some characters, it is the responsibil ity of
the appropriate DIM to perform the necessary translations.

The characters designated as "not used" are specifically
reserved and may be assigned definitions at any time. Until
defined, "not used" control characters will be output using the
octal escape convention in normal output and not printed in
edited mode. Users wishing to assign interpretations for a "not
used" character must use a non-standard DIM.

If a device
character, its
interpretation
substituting one
octal escape, or

does not perform a function imp1 ied by a control
standard DIM will provide a reasonable
for the character on output. This may be
or more characters for the one, or printing an
ignoring it.

The Multics standard control characters are:

BEL Sound an audible alarm.

BS Backspace. Move the carriage back one space. The backspace
character implies overstrike rather than erase.

HT Horizontal tab. Move the carriage to the next horizontal
tab stop. Multics standard tab stops are at 11, 21, 31 •..
when the first column is numhered 1. This character is
defined not to appear in a canonical string.

tJ L II New 1 i ne". ~1 0 vet he car ria get 0 the 1 eft end 0 f the n ext
1 ine. This implies a carriage return plus a line feed.
ASCII LF (octal 012) is used for this character.

VT Vertical tab. Move the carriage to the next vertical tab
stop and to the left of the page. Standard tab stops are at
1 ines 11, 21, 31... vJhen the fi rst 1 ine is numbered 1.
This character is defined not to appear in a canonical
string.

tJP New page. Move the carriage to the top of the next page and
to the left of the 1 ine. ASCII FF (octal 014) is used for
this character.

Copyright, 1971, Massachusetts Institute of Technology
Ai j rights reserved.

MULTICS PROGRAMMERS' MANUAL

CR Carriage return. Move the

ASCII Character Set
Standard Data Formats and Codes

Page 3

carriage to the left

, n. I' I. 1"'7 "I
4U/41f/IJ.

of the
current 1 i ne. This character is defined not to appear in a
canonicai string.

RRS Red ribbon shift. ASC II SO (octal 016) is used for this
character.

BRS Black ribbon shift. ASCII S I (octal 017) is used for this
character.

PAD Padding character. This is used to fill out words which
contain fewer than four characters and which are not
accompanied by character counts. This character is
discarded when encountered in an output 1 ine and cannot
appear in a canonical character string.. ASCII DEL (octal
177) is used for this character.

Non-Standard Control Character

One control character is recognized uncer certain conditions
by all DIMs because of its wide use outside Multics. This
character is handled specially only when the DIM is printing in
e d i ted mo de, i. e ., i tis i g nor i n gun a v ail a h 1 e con t r 0 1 fun c t ion s •
This character is

NUL Null character. ASCII character NUL (octal 000) is used for
this purpose. In normal mode, this character is printed
with an octal escape sequence; in edited ~ode, it is treated
exactly as PAD. This character cannot appear in a canonical
character string.

Programmers are warned against using NUL as a routine
padding character and using edited mode on output because all
strings of zeros, including mistakenly uninitial ized strings,
will be discarded.

Graphic Control Characters

Character code 037 octal (ASCII US) is used to escape into
graphic output mode when a graphic display terminal is in use;
it is treated as "not used" and an octal escape is provided ",hen
an ordinary typewriter is in use. Details on Multics graphic
output mode may be found in the Graphic Users' Supplement to the
~1 P~1.

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

ASCII Character Set
Standard Data Formats and Codes
Page 4

iJot Used Characters

These characters are reserved for future use:

SOH 001 ACK 006 DCll 024
STX 002 OLE 020 NAK 025
ETX 003 DCl 021 SYN 026
EDT 004 DC2 022 ETB 027
ENQ 005 DC3 023 CAN 030

rJotes

EM 031
SUB 032
ESC 033
FS 034
GS 035
RS 036

The vertical 1 ine has two representations on current console
devices. It may be represented as either a solid vertical 1 ine
(I) or a hroken vert i calli ne (t). These are represented
identically internally by octal value 174.

Copyright, 1971, nassachusetts Institute of Technology
A1 i rights reserved.

MULTICS PROGRAMMERS' MANUAL

ASCI I Character Set
Stannard Data Formats and Codes

Page 5
1 n 11 " 1"71
~VI ~"TI I ~

ASCII Character Set on Multics

0 1 2 3 4 5 6

000 (NU L)

010 BS HT tJL VT NP CR RRS

020

030

040 Space " # $ % &

050 () * + ,

060 0 1 2 3 4 5 6

070 8 9 ; < = >

100 @ A B C D E F

110 H J K L M N

120 P Q R S T U V

\] 1\

130 X Y Z (

140 , a b c d e f

150 h J k m n

160 p q r s t u v

170 x y z l J '"

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

7

BEL

BRS

EGt-1

,

/

7

?

G

0

~'J

g

0

VI

PAD

r,1U L TICS PROG RAMf.1 E RS I MANUA L

ASCI I Character Set
Standard Data Formats and Codes

Multics Definitions

NUL Null character (edited output mode only)
BEL Alarm
BS Backspace
HT Horizontal Tab
NL New Line (carriage return and 1 ine feed)
VT Vertical Tab
rJP Nelt' Page (carriage return and form feed)
CR Carriage Return
RRS Red Ribbon Shift
BRS Black Ribbon Shift
E G~1 En t erG rap h i c ~J10 de
PAD Padding Character

Copyright, 1971, l·1assachusetts Institute of Technology
Ail rights reserved. frHn\ ...

\ I:.I'fU J ..

MULTICS PROGRAMMERS' MANUAL

PUNCHEP ~ CODES

Standard Data Formats and 'Codes
7/11/73

This write-up defines standard card punch codes to be used
in representing ASCII characters for use with Multics. Since the
card punch codes are based on the punch codes defined for the IBM
EBCDIC standard, a correspondence between the EBCDIC and ASCII
character sets is defined automatically.

Notes

The Multics standard card punch codes described here are not
identical to the currently proposed ASCII punched card code. The
proposed ASCI I standard code is not supported by any· currently
available punched card equipment; until such support exists,- it
is not a practical standard for Multics work. The Multics
standard card punch code described here is based on the widely
available card handling equipment used with IBM System/360
computers. The six characters for which the Multics standard
card code differs from the ASCI I card code are noted in the table
below.

EBCDIC SillQ ASCI I

The character set used for symbol ic source programs and
input/output on Multics is the American National Standard Code
for Information Interchange, X3.4-1968, known as ASCII. This set
is described in the MPM Reference Guide section, ASCI I Character
Set.

Similarly, the character set used for input/output with some
devices from a System/360 computer is the IBM standard, known as
EBCDIC. This set is described on page 150.3 of the IBM Systems
Reference Library Manual "IBM System/360 Principles of
Operation", A22-6821-7.

EBCDIC is an eight-bit code for which graphics* have been
assigned to 88 code values, controls to 51 code values, and card
codes to all 256 possible values. ASCII is a seven-bit code with
graphics assigned to 94 code values and controls to 34.

* By way of terminology, the characters are divided into two
groups, named graphics and controls (including the space).
The graphics are further divided into alphabetic (upper and
lower case), numeric, and special subgroups.

® Copyright, 1973, "'1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

Punched Card Codes
Standard Data Formats and Codes
Page 2

MULTICS PROGRAMMERS' MANUAL

Although there are 85 graphics in common between EBCDIC and
ASCII, there is no practical algorithm by which one can deduce an
EBCDIC code value from the ASCII code value (or vice versa),
short of a complete table look-up. That is to say, the numerical
values of the two codes are more or less completely unrelated.

Graphic Correspondence

On the other hand, since there are so many common graphics,
one can define a correspondence between at least the graphic
parts of the two, codes, and thereby establish conventions for
communication between computers using the codes. Simultaneously,
a card punch code for ASCII is defined, as mentioned above, that
has the practical advantage of equipment available in quantity
using these card codes. Table 1 provides this correspondence as
used on Multics.

In interpreting Table 1, it is helpful to observe that the
correspondence between ASCII Code Value in column one and ASCII
Meaning in column two is firmly defined by the ASCII standard.
Simi larly, correspondence among Corresponding EBCDIC Meaning in
column three, EBCDIC Code Value in column four, and
EBCDIC/Multics Punch Code in column five is firmly defined by the
IBM standard. This table provides a correspondence between the
first two columns on the one hand, and the last three on the
other hand, based on graphic similarities and other suggestions,
as noted.

The graphic correspondence in Table 1 is derived as follows:
85 ASCI I graphic characters correspond directly with identical
EBCDIC graphics. Three ASCI I graphics are made to correspond
with the three remaining EBCDIC graphics as follows:

ASCII

acute accent
left slant
circumflex

EBCDIC

apostrophe
cent sign
negation

Thus all 88 EBCDIC graphics have an equivalent ASCII graphic.
The remaining six ASCII graphics, namely:

left and right square brackets
left and right braces
grave accent
overline (tilde)

(C) Copyright, 1973, Ivlassachusetts Institute of Technology
......, and Honeyweil information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

Punched Card Codes
Standard Data Formats and Codes

Page 3
7/11/73

have no EBCDIC graphic equivalent. In Table 1 they are made to
correspond to unassigned EBCDIC codes which, nevertheless, have
well-defined card punch code equivalents. Where possible, the
unassigned EBCDIC codes chosen result in the same punch card
representation as in the proposed ASCII standard card code. Thus
a majority of the Multics standard card codes do, in fact, agree
with the proposed standard.

The programmer faced with the problem of representing ASCII
data in the EBCDIC environment must make some arbitrary decisions
if he needs to obtain graphic representation of these six
characters. One appropriate technique is that the suggested
"illegal ll code be used wherever EBCDIC code representation is
required (e.g., in cards or in core memory), but, when printing
readable output, the illegal codes be printed as escapes or
overstrikes.

For example, choosing the cent sign as an escape character,
one has the following graphic representation borrowed from
Multics conventions.

AS C I I G r a ph i c

1 eft brace
right brace
tilde
left accent
left bracket
right bracket
left slant

EBCDIC Escape Representation

¢(
¢)
¢t
¢ I

¢<
¢>
¢134

The last escape is required in order to insure unambiguous
meaning of the cent sign as an escape character.

Alternatively, one can propose a series of overstrike
graphics which are more suggestive of the ASCII graphics being
represented. For example,

ASCI I Graphic

left brace
r i gh t bra ce
left bracket
right bracket
grave accent
til de

EBCDIC Overstrike Representation

t (left parenthesis over minus sign)
7 (right parenthesis over minus sign)
f (left parenthesis over equals sign)
~ (right parenthesis over equals sign)
1 (apostrophe over minus sign)
" (double quote over negation sign)

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Punched Card Codes
Standard Data Formats and Codes
Page 4

These two alternatives suggested for printing readable
output in an EBCDIC environment are mirrored in the Multics card
input conventions (based on card punching with EBCDIC equipment).
Either the multicolumn escape sequences described above or the
single column multiple punch codes (with meaningless graphics
printed on the card, of course) can be used to represent these
characters.

Control Character Correspondence

The 34 ASCII control characters and 51 EBCDIC control
characters match in 33 cases. The remainder have no
correspondence that can be expected to work in most cases.

As a result, the programmer transforming character data from
one environment to another must study the precise meaning of the
control codes in the new environment. For example, some EBCDIC
control codes might logically transform into ASCII hardware
escape sequences for some hardware devices. Other controls might
not be imitable in the new environment and might instead be
printed with graphic escape sequences, or possibly ignored.

Since, in genera 1, i tis aW'kwa rd to hand punch the
codes which correspond to the controls, it should be noted
for Multics input, control codes can be punched as graphic
escape sequences. Also, the end of a card is interpreted
new line character.

Eight-Bit Environment

card
that

octal
as a

In the System/360 Manual, "Principles of Operation", there
is published a code table labeled USASCI I-eight. This table
purports to show how the seven-bit ASCII code is represented in
an eight-bit environment. It is obtained by taking ASCII,
interchanging bits 6 and 7, and duplicating bit 7 as bit 8. This
method of representing ASCII in an eight-bit environment is not
an ANSI standard but rather an IBM suggestion (resulting from a
nine-track tape design problem) which has no official sanction.
The ANSI standard way of representing ASCI I code in an eight-bit
environment is by setting bit 8 to zero. (See, for example, USAS
X3.22-1967, paragraph 6.4.3, describing nine-track tape
standards.) I n any case, the Mu 1 tics standard for representat ion
of ASCII codes in the nine-bit environment of the Honeywell 6180
is seven-bit codes right adjusted in nine-bit fields, with
leading zeros.

(c) Copyright, 1973, ~~assachusetts Institute of Technology
" and Honeywell Information Systems inc.

MULTICS PROGRAMMERS' MANUAL

Punched Card Codes
Standard Data Formats and Codes

Page 5
7/11/73

Bibliography

1) "USA Standard Code
X3.4-1968, American
10, 1968.

for Information Interchange", USAS
National Standards Institute, October

2) IBM SRL, "IBM System/360 Principles of Operation", form
A22-6821-7, September 1968, pp. 149-150.3.

3) "Proposed American Standard: Twelve-Row Punched-Card Code
for Information Interchange ll

, Communications of the ACM,
June 1966, pp. 450-459, obsolete.

4) "USA Standard Recorded Magnetic Tape for Information
Interchange (800 CPI, NRZ I)", USAS X3. 22-1967, Amer i can
National Standards Institute, November 13, 1967.

5) .. Proposed Amer i can Standa rd: Twe 1 ve-Row Punched-Card Code",
ASA document X3.2/532, not yet publ ished. Latest proposed
ANSI standard card code. (Replaces published reference 3),
above.)

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

B MULTICS PROGRAMMERS' MANUAL

Punched Card Codes
Standard Data Formats and Codes
Page 6

Table 1: Correspondence Between
ASCII Characters and EBCDIC Characters

ASCII ASC II Corre- EBCDIC EBCDIC/ Comments
Code Meaning sponding Code Multics
Value EBCDIC Value Punch

Meaning Code

000 (NUL) NUL 00 9-12-0-8-1

001 (SOH) 'SOH 01 9-12-1

002 (STX) STX 02 9 -12- 2

003 (ETX) ETX 03 9-12-3

004 (EDT) EDT 37 9-7

005 (ENQ) ENQ 20 9-0-8-5

006 (ACK) ACK 2E 9-0-8-6

007 BEL BEL 2F 9-0-8-7

010 BS BS 16 9-11-6

011 HT HT 05 9-12-5

012 NL(LF) NL 15 9-11-5 (Note 1)

013 . VT VT OB 9-12-8-3

014 N PC FF) FF OC 9-12-8-4

015 CCR) CR 00 9-12-8-5

016 RRS(SO) SO OE 9-12-8-6

017 BRSCSI) SI OF 9-12-8-7

020 (OLE) OLE 10 12-11-9-8-1

021 (OCI) DCl 11 9-11-1

ASCI j code values are in octal; EBCDIC code values are
in hexadecimal.

€) Co p y rig h t , 19 73 , Mas sac h use t t sin s tit ute 0 f T e c h no log y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

ASC I I
Code
Value

022

023

024

025

026

027

030

031

032

033

034

035

036

031

040

041

042

043

044

ASC II
Meaning

HLF(DC2)

(OC3)

HLR(DC4)

(NAK)

(SYN)

(ETB)

-(CAN)

(EM)

(SUB)

(ESC)

(FS)

(GS)

(RS)

(US)

Space

..
I

$

Corre
sponding
EBCDIC
Meaning

DC2

TM

DC4

NAK

SYN

ETB

CAN

SUB

ESC

I FS

I GS

lRS

JUS

Space

..
I

$

Punched Card Codes
Standard Data Formats and Codes

Page 7
7/11/73

EBCDIC
Code
Value

EBCDIC/
Multics
Punch
Code

Comments

12 9-11-2

13 9-11-3 (Note 3)

3C 9-8-4

3D 9-8-5

32 9-2

26 9-0-6

18 9 -11-8

19 9-11-8-1

3F 9-8-7

27 9-0-7

Ie 9-11-8-4

10 9-11-8-5

IE 9-11-8-6

IF 9-11-8-1

40 CNo punches)

5A 11-8 - 2 (Note 1)

7F 8-1

7B 8-3

58 11-8-3

ASCII code values are in octal; EBCDIC code values are
in hexadecimal.

€) Copyright, 1913, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Punched Card Codes
Standard Data Formats and Codes
Page 8

ASCII
Code
Value

045

046

047

050

051

052

053

054

055

056

057

.060

061

062

063

064

065

066

ASC II
Meaning

%

&

,

{

)

*
+

,

I

0

1

2

3

4

5

6

Corre
sponding
EBCDIC
Meaning

%

&

(

)

*
+

,

/

a

1

2

3

4

5

6

EBCDIC
Code
Value

6C

50

70

40

50

5C

4E

6B

60

4B

61

FO

Fl

F2

F3

F4

F5

F6

MULTICS PROGRAMMERS' MANUAL

EBCDICI
Multics
Punch
Code

0-8-4

12

8-5

12-8-5

11-8-5

11-8-4

12-8-6

0-8-3

11

12-8-3

0-1

0

1

2

3

4

5

6

Comments

Maps ASC II
accute accent
into EBCDIC
apostrophe

ASCI I code values are in octal; EBCDIC code values are
in hexadecimal.

(c) Copyr i ght, 1973, Massachusetts I nsti tute of Technology
....., and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

ASCII
Code
Value

067

070

071

072

073

074

075

076

077

100

101

102

103

104

105

106

107

110

111

ASCII
Meaning

7

8

9

. ,

<

=
>

?

@

A

B

C

D

E

F

G

H

Corre
sponding
EBCDIC
Meaning

7

8

9

. ,

<

=
>

?

@

A

B

C

D

E

F

G

H

Punched Card Codes
Standard Data Formats and Codes

Page 9
7/11/73

EBCDIC
Code
Value

EBCDIC/
Multics
Punch
Code

Comments

F7 7

F8 8

F9 9

7A 8-2

5E 11-8-6

4C 12-8-4

7E 8-6

6E 0-8-6

6F 0-8-7

7C 8-4

C1 12-1

C2 12-2

C3 12-3

C4 12-4

C5 12-5

C6 12-6

C7 12-7

C8 12-8

C9 12-9

ASCI I code values are in octal; EBCDIC code values are
in hexadecimal.

€) Copyr i ght, 1973, Massachusetts I nst i tute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Punched Card Codes
Standard Data Formats and Codes
Page 10

ASCII
Code
Value

ASC II
Meaning

Corre
sponding

EBCDIC
Code
Value

EBCDIC/
Multics
Punch
Code

Comments

112 J

113 K

114 L

115 M

116 N

117 0

120 P

121 Q

122 R

123 S

124 T

125 U

126 V

127 W

130 X

131 Y

132 Z

133 [

EBCDIC
Meaning

J

K

L

M

N

0

P

Q

R

S

T

U

V

W

X

Y

Z

None

01 11-1

D2 11-2

D3 11-3

D4 11-4

D5 11-5

D6 11-6

D7 11-7

D8 11-8

D9 11-9

E2 0-2

E3 0-3

E4 0-4

ES 0-5

E6 0-6

E7 0-7

E8 0-8

E9 0-9

8D 12-0-8-5 May be
as ¢<.
(Notes

ASCI i code values are in octal; EBCDIC code values are
in hexadecimal.

(c) Copyr i ght, 1973, Massachusetts I nst i tute of Technology

punched

1,2)

- and Honeywe iii nformat ion Sys terns inc.

MUlTICS PROGRAMMERS' MANUAL

ASCII
code
Value

134

135

136

137

140

141

142

143

144

145

146

147

150

151

ASC II
Meaning

\

]

a

b

c

d

e

f

g

h

Punched Card Codes
Standard Data Formats and Codes

Page 11
7/11/73

Corre- EBCDIC EBCOIC/
Multics
Punch
Code

Comment s
sponding Code
EBCDIC Value
Meaning

¢ 4A 12-8-2 Maps ASC II left
slant into
EBCDIC cent sign.
Used as an escape.
(Note 1)

None 90 12-11-8-5 May be punched
as ¢>.
(Notes 1,2)

5F 11-8-7 Maps ASC II
circumflex
into EBCDIC
negation.

60 0-8-5

None 79 8-1 May be punched
as ¢'. (Note 2)

a 81 12-0-1

b 82 12-0-2

c 83 12-0-3

d 84 12-0-4

e 85 12-0-5

f 86 12-0-6

g 87 12-0-7

h 88 12-0-8

89 12-0-9

ASCI I code values are in octal; EBCDIC code values are
in hexadecimal.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Punched Card Codes
Standard Data Formats and Codes
Page 12

. ASCII
Code
Value

152

153

154

155

156

157

160

161

162

163

164

165

166

167

170

171

172

ASC II
Meaning

J

k

m

n

0

p

q

r

s

t

u

v

w

x

y

z

Corre
sponding
EBCDIC
Meaning

J

k

m

n

0

p

Q

r

s

t

u

v

w

x

y

z

EBCDIC
Code
Value

91

92

93

94

95

96

97

98

99

A2

A3

A4

A5

A6

A7

A8

A9

EBCDIC/
Multics
Punch
Code

12-11-1

12-11-2

12-11-3

12-11-4

12-11-5

12-11-6

12-11-7

12-11-8

12-11-9

11-0-2

11-0-3

11-0-4

11-0-5

11-0-6

11-0-7

11-0-8

11-0-9

Comments

173 { None CO 12-0 May be punched
as ¢ (.

174 4F 12 -8-7 (Note 1)

ASCII code values are in octal; EBCDIC code values are
i n hex a dec i rna 1 •

(C) Copyright~ 1973~ ~~assachusetts Institute of Technology
~ and Honeywell information Systems inc.

(Note 2)

MULTICS PROGRAMMERS' MANUAL

ASC II
Code
Value

175

176

177

Note 1:

Note 2:

Note 3:

ASCII
Meaning

}

PAD (DEL)

Corre
sponding
EBCDIC
Meaning

None

None

DEL

In the punched
reference 5), a
character.

Punched Card Codes
Standard Data Formats and Codes

Page 13
7/11/73

EBCDIC
Code
Value

EBCDIC/
Multics
Punch
Code

Comments

00 11-0 May be punched
as ¢). (Note 2)

Al 11-0-1 May be punched
as ¢t. (Note 2)

D7 12-7-9

card code proposed for ASCII in
different card code is used for this

This graphic does not appear in (or map into any
graphic which appears in) the EBCDIC set; it is
assigned to an otherwise illegal EBCDIC code value/card
code combination.

In some applications, the ASCI I meaning of this control
character may not correspond to the EBCDIC meaning of
the corresponding control character.

Where the Multics meaning of a control character differs from the
ASCI I meaning, the ASCII meaning is given in parentheses.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS· MANUAL

Punched Card Codes
Standard Data Formats and Codes
Page 14

Table 2: Summary of Extensions to EBCDIC
to Obtain Multics Standard Codes

ASCII
Character

open bracket
left slant
close bracket
grave accent
open brace
close brace
overline/tilde
acute accent
circumflex

Unassigned
EBCDIC Card
Code Chosen

12-0-8-5
12-8-2
12-11-8-5
8-1
12-0
11-0
11-0-1
8-5
11-8-7

*
*
*
*
*
*

* Same as the ASCI I choice for this graphic.

Table 3: Summary of Differences Between Multics Standard
Card Codes and Proposed ASCII Standard Card Codes

ASCII
Character'

new line
exclamation point
open bracket
left slant
close bracket
vertical line

Multics
Standard
Card Code

11-9-5
11-8-2
12-0-8-5
12-8-2
12-11-8-5
12-8-7

ASC I'
Standa rd
Card Code

0-9-5
12-8-7
12-8-2
0-8-2
11-8-2
12-11

(C) Copyr i ght, 1973, Massachusetts I nst i tute of Technology
- and Honeywe 11 I nforma t i on Sys t ems Inc. (END) '*

MULTICS PROGRAMMERS' MANUAL

Standard Data Formats and Codes
11/16/73

MULTICS STANDARD MAGNETiC TAPE FORMAT

This write-up describes the standard physical format to be
used on 7-track and 9-track magnetic tapes on Multics. Any
magnetic tape not written in the standard format described here
is not a Multics standard tape.

Standard ~ Format

The first record on the tape following the beginning of tape
(BOT) mark is the tape label record. Following the tape record
is an end of file (EOF) mark. Subsequent reels of a multireel
sequence also have a tape label followed by EOF. (An EOF mark is
the standard sequence of bits on a tape that is recognized as an
EOF by the hardware.)

Following the tape label and its associated EOF are the data
records. An EOF is written after every 128 data records with the
objective of increasing the reliability and efficiency of reading
and positioning within a logical tape. Records that are repeated
because of transmission, parity, or other data alerts, are not
included in the count of 128 records. The first record following
the EOF has a physical record count of 0 mod 128.

An end of reel (EOR) sequence is written at the end of
recorded data. An EOR sequence is:

EOF mark

EOR record

EOF mark

EOF mark

Standard R~~or:g For!DSlt

Each physical record consists of a 1024-word (36864-bit)
data space enclosed by an 8-word header and an 8-word trailer.
The total record length is then 1040 words (37440 bits). The
header and trailer are each 288 bits. This physical record
requires 4680 frames on 9-track tape and 6240 frames on 7-track
tape. This is approximately 5.85 inches on 9-track tape at 800
bpi and 7.8 inches on 7-track tape at 800 bpi, not including
interrecord gaps. (Record gaps on 9-track tapes are
approximately 0.6 inches and on 7-track tapes are approximately
0.75 inches, at 800 bpi.)

® Copy r i gh t, 1973, r·1as sachuset ts Ins t i tu te of Techno logy
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Standard Magnetic Tape Format
Standard Data Formats and Codes
Page 2

For 1600 bpi 9-track tape, the record length is
interrecord gap of approximately 2.925 inches (with an

approximately 0.5 inches).

Physical Record Header

The following is the format of the physical record header:

\'10 rd 1:

Words 2 and 3:

\~ord 4:

\"/0 rd 5:

\'10 rd 6:

Constant with octal representation
670314355245.

Multics standard unique identifier (70 bits,
left justified). Each record has a different
unique identifier.

Bits 0-17: the number of this physical record
in this physical file, beginning with record
o.

Bits 18-35: the number of this physical file
on this physical reel, beginning with file O.

Bits 0-17: the number of data bits in the
data space, not including padding.

Bits 18-35: the total number of bits in the
data space. (This should be a constant equal
to 36864.)

Flags indicating the type of record. Bits
are assigned considering the leftmost bit to
be bit 0 and the rightmost bit to be bit 35.
Word 6 also contains a count of the rewrite
attempt, if any.

lit Meaning if Bit i s 1

0 This i s an administrative record
(one of bits 1 through 13 i s 1).

1 This is a label record.

2 This is an end of reel (EOR) record.

3-13 Reserved.

14 One or more of bits 15-26 are set.

(c) Copyright, 1973, Massachusetts Institute of Technology - and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

\'/0 rd 7:

Hord 8:

Standard Magnetic Tape Format
Standard Data Formats and Codes

Page 3
11/16/73

15 This record is a rewritten record.

16 This record contains padding.

17 This record was written following a
hardware end of tape (EOT) condition.

18 This record was written synchron04slv;
that is control did not return to the
caller until the record was written
out.

19 The logical tape continues on another
reel (defined only for an end of reel
record) •

20-26 Reserved.

27-35 If bits 14 and 15 are 1, this quantity
indicates the number of the attempt to
rewrite this record. If bit 15 is 0,
this quantity must be O.

Contains the checksum of the header and
trailer excluding word 7; i.e., excluding the
checksum word. (See the MPM Reference Guide
section, Standard Checksum, for a description
of standard checksum computation.)

Constant with octal representation
512556146073.

Physical Record Trailer

The following is the format of the trailer:

\"lord 1:

Words 2 and 3:

Hord 4:

Co n s tan t wit h octal representation
107463422532.

Standard Multics unique identifier (duplicate
of header).

Total cumulative number of data bits for this
logical tape (not including padding and
administrative records).

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Standard Magnetic Tape Format
Standard Data Formats and Codes
Page 4

Word 5:

Word 6:

Word 7:

Word 8:

Padding bit pattern (described below).

Bits 0-11: reel sequence number (multi reel
number), beginning with reel O.

Bits 12-35: physical file number, beginning
with physical file 0 of reel O.

The number of the physical record for this
logical tape, beginning with record O.

Constant with octal representation
265221631704.

Note: The octal constants listed above were chosen to form
elements of a single-error-correcting code whether read as 8-bit
tape characters (9-track tape) or as 6-bit tape characters
(7-track tape).

Administrative Records

The standard tape
administrative records:
record.

format includes two types of
1) a tape label record; or 2) an EOR

The administrative records are of standard length:
header, 1024-word data area, and 8-word trailer.

8-word

The tape label record is written in the standard record
format. The data space of the tape label record contains:

Words 1-8:

Words 9-16:

32-character ASCI I installation
identifies the installation that
tape.

code.
labelled

This
the

32-character ASCII reel identification. This is
the reel identification by which the operator
stores and retrieves the tape.

The remaining words are a padding pattern.

The end of reel record contains only padding bits in its
data space. The standard record header of the EOR record
contains the information that identifies it as an EOR record
(word 6, bits 0 and 2 are 1).

~ Copyright? 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Density gng Parity

Standard Magnetic Tape Format
Standard Data Formats and Codes

Page 5
11/16/73

Both 9-track and 7-track standard tapes are recorded in
binary mode with odd ones having lateral parity. Standard
densities are 800 frames per inch (bpi) (recorded in NRZI mode)
and 1600 bpi (recorded in PE mode).

!La..t£ Padding

The padding bit pattern is used to fill administrative
records and the last data record of a reel sequence.

Write Error Recovery

Multics standard tape error recovery procedures differ from
the past standard technique in that no attempt is made to
backspace the tape on write errors. If a data alert occurs while
writing a record, the record is rewritten. If an error occurs
while rewriting the record, that record is again rewritten. As
many attempts as desired can be made to write the record. No
backspace record operation is performed.

The above write error recovery procedure is to be applied to
both administrative records and data records.

Compatibility Consideration

Software shall be capable of reading Multics Standard tapes
that are written with records with less than 1024 words in their
data space. In particular, a previous Multics standard tape
format specified a 256-word (9216-bit) data space in a tape
record.

€) Copyright, 1973, t.1assachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

MULTICS STANDARD QAIA TYPE FORMATS

Standard Data Formats and Codes
8/22/72

This section describes the representation of Multics
standard data types. See the MPM Reference Guide section
Subroutine Call ing Sequences for a discussion of data
descriptors. In the following discussion let p be the declared
precision of an arithmetic datum. let n be the declared length
of a string datum, and let k be the declared size of an area
datum.

Any scaling factor declared for a fixed-point datum is not
stored with the datum. The scaling factor is applied to the
value of the datum when the value participates in a computation
or conversion.

Real Fixed-Point Binary Short (descriptor type I)

A real, fixed-point, binary, unpacked datum of preCISion
O<p<36 is represented as a 2's complement, binary integer
stored in a 36-bit word.

A real, fixed-point, binary, packed datum of preCISion
O<p<36 is represented as a 2's complement, binary integer
stored in a string of p+l bits.

Real Fixed-Point Binary Long {descriptor type 2}

A real, fixed-point, binary, unpacked datum of preCISion
3S<p<72 is represented as a 2's complement, binary integer
stored in a pair of 36-bit words the first of which has an
even address.

A real, fixed-point, binary, packed datum of precision
3S<p<72 is represented as a 2's complement, binary integer
stored in a string of p+l bits.

Real Floating-Point Binary Short (descriptor type 3)

A real, floating-point, binary, unpacked datum of precision
O(p(28 is represented as a 2's complement, binary fraction m
and a 2's complement, binary integer exponent e stored in a
36-bit word of the form:

f e I m
o 78 35

The value 0 is represented by m=O and e=-128. For all other
values, m satisfies 1/2~lml(1.

Copyright, 1972, Massachusetts Institute of Technology
All r i gh ts reserved.

MULTICS PROGRAMMERS' MANUAL

Multics Standard Data Type Formats
Standard Data Formats and Codes
Page 2

A real, floating-point, binary, packed datum of precision
O<p<28 is represented as a 2's complement, binary fraction m
and a 2's complement, binary, integer exponent e stored in a
string of p+9 bits.

I e I m
o 78 p+8

The value 0 is represented by m=Q and e=-128. For all other
values, m satisfies 1/2~lml<1.

A real, floating-point,
27<p<64 is represented
m and a 2's complement,
a pair of 36-bit words
address.

I e I
o 78

binary, unpacked datum of precision
as a 2's complement, binary fraction
binary, integer exponent e stored in
the first of which has an even

m
71

The value Q is represented by m=O and e=-128. For all other
values, m satifies 1/2~lml<1.

A real, floating-point, binary, packed datum of precision
27<p<64 is represented as a 2's complement, binary fraction
m and a 2's complement, binary, integer exponent e stored in
a string of p+9 bits.

I e I m
Q 78 p+8

The value 0 is represented as m=Q and e=-128. For all other
values, m satisfies 1/2~lml<1.

Complex Fixed-Point Binary Short (descriptor type 5)

A complex, fixed-point, binary, unpacked datum of preCISion
O<p<36 is represented as a pair of 2's complement, binary
integers stored in a pair of 36-bit words the first of which
has an even address. The first integer is the real part of
the complex value and the second integer is the imaginary
part of the complex value.

A complex, fixed-point, binary, packed datum of precision
O(p(36 is represented as a pair 2's complement, binary
integers stored in a string of 2(p+1) bits. The first p+1
bits contain the integer representation of the real part and
the second p+1 bits contain the integer representation of

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved"

MULTICS PROGRAMMERS' MANUAL

the imaginary part.

Multics Standard Data Type Formats
Standard Data Formats and Codes

Page 3
8/18/72

Complex Fixed~Point Binary Long (descriptor type 6)

A complex, fixed-point, binary, unpacked datum of precision
3S<p*< IS REPRESENTED AS A PAIR OF <'s complement, binary
integers stored in 4 consecutive 36-bit words the first of
which has an even address. The first two words contain the
integer representation of the real part and the last two
words contain the integer representation of the imaginary
part.

A complex, fixed-point, binary, packed datum of preCISion
3S<p<72 is represented as a pair of 2's complement, binary
integers stored in a string of 2(p+1) bits. The first p+1
bits contain the integer representation of the real part and
the last p+1 bits contain the integer representation of the
imaginary part.

Complex Floating-Point Binary Short (descriptor type 7)

A complex, floating-point, binary, unpacked datum of
precIsion O<p<28 is represented as a pair of real,
floating-point, binary, unpacked data stored in two 36-bit
words the first of which has an even address. The first
word contains the real part of the complex value and the
second word contains the imaginary part of the complex
value.

A complex, floating-point, binary, oacked datum of precision
O(p(28 is represented as a pair of real, floating-point,
binary, packed data stored in a string of 2(p+9) bits. The
first p+9 bits contain the real part of the complex value
and the last p+9 bits contain the imaginary part of the
complex value.

Complex Floating-Point Binary Long (descriptor type 8)

A complex, floating-point, binary, unpacked datum of
precIsion 27<p(64 is represented as a pair of real,
floating-point, binary, unpacked data stored in 4
consecutive 36-bit words the first of which has an even
address. The first two words contain the real part of the
complex value and the last two words contain the imaginary
part of the complex value.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

Multics Standard Data Type Formats
Standard Data Formats and Codes
Page 4

MULTICS PROGRAMMERS' MANUAL

A complex, floating-point, binary, packed datum of precIsion
27(p<64 is represented as a pair of real, floating-point,
binary, packed data stored in 2(p+9) bits. The first p+9
bits contain the real part of the complex value and the last
p+9 bits contain the imaginary part of the complex value.

Real Fixed-Point Decimal (descriptor type 9)

A real, fixed-point, decimal datum (packed or unpacked) of
precision p is represented as a signed, decimal integer
stored as a string of p+l characters. The leftmost
character is either a "+" or a "_", and all other characters
are from the set "0123456789".

An unpacked, decimal datum is aligned on a word boundary and
occupies an integral number of words, some bytes of which
may be unused.

I s I d11 d21 , . ,
Real Floating-Point Decimal (descriptor type 10)

A real, floating-point, decimal datum (packed or unpacked)
of precision p is represented as a signed, decimal integer m
and a 2's complement, binary, integer exponent e stored as a
string of characters of the form:

The exponent e is right justified within the last 9-bit
character and the unused bit is zero.

An unpacked, decimal datum is aligned on a word boundary and
occupies an integral number of words, some bytes of which
may be unused.

Complex Fixed-Point Decimal (descriptor type 11)

A complex, fixed-point, decimal datum (packed or unpacked)
of precIsion p is represented as a pair of real, fixed
point, packed, decimal data of precision p. The first
represents the real part of the complex value, and the
second represents the imaginary part of the complex value.

An unpacked, complex, decimal datum is aligned on a word
boundary and occupies an integral number of bytes, some of
which may be unused.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Multics Standard Data Type Formats
Standard Data Formats and Codes

Page 5
8/18/72

Complex Floating-Point Decimal (descriptor type 12)

A complex; floating-point; decimal datum (packed or
unpacked) of precision p is represented by a pair of real,
floating-point, packed, decimal data of precision p. The
first represents the real part of the complex value and the
last represents the imaginary part of the complex value.

An unpacked, complex, decimal datum is aligned on a word
boundary and occupies an integral number of bytes, some of
which may be unused.

Pointer (descriptor type 13)

An unpacked pointer datum is represented by a ring number r,
a segment number s, a word offset w, and a bit offset b,
stored in a pair of 36-bit words the first of which has an
even address.

lr1 s m 43 1 w tal b lW4I 0 I
023 17 30 3536 53 56 61 66 71

A packed pointer datum is represented by a segment number s,
a word offset w, and a bit offset b, stored as a string of
36-bits.

w
o 56 1718 35

Offset (descriptor type 14)

An offset datum (packed or unpacked) is represented by a
word offset w, and a bit offset b, stored in a single 36-bit
VJord.

I '" 101b~
o 1718202126 35

Label (descriptor type 15)

A label datum (packed or unpacked) is represented by a pair
of unpacked pointers. The first pointer identifies a
statement within a procedure ~nd the second pointer
identifies a stack frame of an activation of the block
immediately containing the statement identified by the first
pointer.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

Multics Standard Data Type Formats
Standard Data Formats and Codes
Page 6

Entry (descriptor type 16)

MULTICS PROGRAMMERS' MANUAL

An entry datum (packed or unpacked) is represented by a pair
of unpacked pointers. The first pointer identifies an entry
to a procedure and the second identifies a stack frame of an
activation of the block immediately containing the procedure
whose entry is identified by the first pointer. If the
first pointer identifies an entry to an external procedure,
the second pointer is null.

Structure (descriPtor type 17)

A structure is an ordered sequence of scalar data. A packed
structure contains only packed data, whereas an unpacked
structure contains either packed or unpacked data or both.
An unpacked structure contains at least one unpacked datum.

A structure is aligned on a storage boundary that is the
most stringent boundary required by any of its components.
A packed structure that is not a member of a structure is
aligned on a word boundary.

An unpacked member of a structure is aligned on a word or
double word boundary depending on its data type and occupies
an integral number of words.

A packed member of a structure is aligned on the first
unused bit following the previous member, except that up to
8 bits may be unused in order to insure that decimal
arithmetic or non-varying string datum is aligned on a 9-bit
byte boundary.

An unpacked structure occupies an integral number of words.

Area (descriptor type 18)

An area datum (packed or unpacked) whose declared size is k
occupies k words of storage, the first of which has an even
address. The content of these k words is not yet defined as
a Multics standard.

Bit-String (descriptor type 19)

A bit-string (packed or unpacked) whose length is n occupies
n consecutive bits. The leftmost is bit 1 and the rightmost
is bit n. An unpacked bit-string is aligned on a word
boundary and occupies an integral number of words. Some
bits of the last word may be unused.

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Multics Standard Data Type Formats
Standard Data Formats and Codes

Page 7
8/18/72

Varying Bit-String (descriptor type 20)

A varying bit-string (packed or unpacked) whose maximum
length is n is represented by a real, fixed-point, binary
short, unaligned integer followed by a nonvarying bit-string
of length n.

m bits

tm~~;yJ
n bits

The length of the current value is m. A varying bit-string
is aligned on a word boundary and occupies an integral
number of words, the last of which may contain unused bits.

Character-String (descriptor type 21)

A character-string (packed or unpacked) whose length is n
occupies n consecutive 9-bit bytes. Each byte contains a
single 7-bit ASCII character right justified within the
byte. The two unused bits must be zero.

An unpacked character-string is aligned on a word boundary
and occupies an integral number of words, the last of which
may contain unused bytes.

Varying Character-String (descriptor type 22)

A ~arying character-string (packed or unpacked) whose
maximum length is n is represented by a real, fixed-point,
binary, short, unaligned integer followed by a nonvarying
character-string of length n.

mcharacters
----~ Im~~

n characters

The length of the current value is m.

A varying character-string is aligned on a word boundary and
occupies an integral number of words the last of which may
contain unused bytes.

Copyright, 1972, Hassachusetts Institute of Technology
All rights reserved.

Multics Standard Data Type Formats
Standard Data Formats and Codes
Page 8

File (descriPtor type 23)

MULTICS PROGRAMMERS' MANUAL

A file datum (packed or unpacked) is represented by a pair
of unpacked pointers the second of which points to a
file-state block and the first of which points to a
bit-string. Neither the form of the file-state block nor
the form of the bit-string are defined as tlultics standards.

Arrays

An array is an n-dimensional, ordered collection of scalars
or structures, all of which have identical attributes. The
elements of an array are stored in row major order. (When
accessed sequentially the rightmost subscript varies most
rapidly).

SUmmary of ~ Descriptor Types

1 real fixed-point binary short
2 real fixed-point binary long
3 real floating-point binary short
5 complex fixed-point binary short
6 complex fixed-point binary long
7 complex floating-point binary short
8 complex floating-point binary long
9 real fixed-point decimal

10 real floating-point decimal
11 complex fixed-point decimal
12 complex floating-point decimal
13 pointer
14 offset
15 label
16 entry
17 structure
18 area
19 bit-string
20 varying bit-string
21 character-string
22 varying character-strin~
23 file

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

tilU L TICS PROGkAI~iMERS I fvlANLJAL

Standard Data Formats and Codes
8/10/72

STANDARD SEGMENT FORMATS

The Multics storage system does not make any restrictions or
assumptions about the nature or format of the data stored in
segments in the hie Fa rchy. I "[does prov ide fou r 1 ength
attributes for each segment giving some information about the
contents: bit count, current length, maximum length, and number
of records occupied. For a discussion of these and other
attributes see the MPM Reference Guide section Segment, Directory
and Link Attributes.

The system commands and subroutines
contents of segments, however, expect them to
small number of formats:

which deal with the
be in one of a

1) Object (procedure) segments for execution as machine
instructions or as external-reference data (i.e., of the form
alpha$beta), with special characteristics to satisfy the pure
procedure and dynamic linking requirements of Multics.

2) Archive segments for combining other segments <of any format)
into a single segment, thus reducing the number of segments
in a directory and eliminating the wasted bits at the end of
the last record of each segment.

3) ASCII character string segments for editing, printing, and as
input to various lViultics commands (e.g., the standard fvlultics
language translators).

4) Data segments peculiar to individual commands or subsystems.
These have no standard format.

Object Segments

A f';1u 1 tics obj ec t segment
machine-executable and relocatable
divided into four sections.

contains
(to permi t

an array of
binding) words

1)

2)

The text section contains the pure executable
object program: instructions, read-only
relative pointers into the other sections.

part of
constants

the
and

The definition section
symbolic information to
symbolic debugging.

contains
be used

non-executable read-only
in dynamic linking and

3) The linkage section contains 'impure data: links which are
snapped at execution time, and internal storage which exists
beyond a single invocation of the program.

@ Copyright, 1972, l'riassachusetts Insti tute of Technology
All rights reserved.

Standard Segment Formats
Standard Data Formats and Codes
Page 2

MULTICS PROGRAMMERS' MANUAL

4) The symbol section contains any pure data which does not
belong in the other three sections. In particular, it
contains a map of all other sections of the object segment
and the symbol tree (a description of source language
variables).

For a full description of object segments, see the MPM Reference
Guide section Standard Object Segments.

Archiye Segments

A segment in archive format consists of the individual
component segments in linear juxtaposition, each component
preceded by a header giving the name of the component, its length
(in bits), and the time of creation of the component, as well as
certain constant information used to verify that the segment is
in fact correctly archived. All of the per-component header
information is maintained as ASCII characters, so that if all the
component segments are ASCII character string segments, the
entire segment may be printed. Each component segment will be
separated from the preceding one by a new page, since the first
character in each header is the ASCI I "new page ll character. The
name of the component will appear roughly in the center of the
first line on the page, the actual contents beginning three lines
later.

The terminal component of the name of an archive segment is
".archive". Using the archive cOlTllland, components may be added,
deleted or replaced in an archive segment, and a table of the
contents of the archive segment may be obtained. Archive
segments are also used as input to the Multics binder (see the
MPM Reference Guide section Standard Object Segments), the
component segments of the archive being the object segments to be
bound together. Note that archiving is similar to binding, but
that an archive segment may not be properly executed as a
procedure since no relocation is done on the data inside, and
internal addressing references are thus incorrect.

ASCI I Character String Segments

Segments which are to be edited, printed, or used as input
for standard translators and other commands are composed of
strings of characters of the ASCI I character set. Each 7-bit
character is right justified in a 9-bit field, with the two
high-order bits set to 0 and reserved for compatibility and
future USASCII extensions. There are four characters per machine
word, accessed sequentially from left to right, the first
character of each word occupying the leftmost nine bits. The

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

f.1U L TICS PROGRAt.a·IERS' t/jANUAL

Standard Segment Formats
Standard Data Formats and Codes

Page 3
8/10/72

segment's bit count is set by the creator of the segment to
indicate 9 times the number of characters in the segment.

ASCI I segments to be used as input to system comnands
frequently have very rigid format requirements. In these cases,
the command write-ups adequately describe the format. Language
translator formats are usually described in a separate (non-MPM)
document which is referenced in the write-up of the command which
invokes the translator. The translators which require ASCI I
character string input segments are pll, fortran, alm, and basic.
Other commands which require such input are bind,
enter_abs_request, exec_com, help, peruse_text, runoff and
set_search_rules.

i'ilany ASC I I commands produce ASC I I segmen ts intended for
printing. While these segments have a definite format, that
format is prepared by the command, and the user need not know it
in detail. These commands are the language translators, bind,
the absentee facility, runoff and mail.

~ost of the ASCII input and output segments discussed above
have reserved suffixes on their names. These suffixes are listed
in the MPH Reference Guide section List of Names with Speci~l
(ilean i ngs •

Other

The user may encounter some other segments which fit into
none of the above categories. Some of these are:

1) The breaks segment produced by the debug command to record
information about breakpoints.

2) The saved environment produced by the lisp and apl commands
which may be reentered by a later invocation of lisp or apl.

3) A message segment (with last component name .ms) which is an
Administrative Ring segment and has its own managing
subroutine. It is not accessible to the user.

4) The user profile which is maintained by the abbrev and
check_info_segs commands.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMER~' MAN~AL

Handl ing Unusual Occurrences
tS/8/72

;JIRATEGIES FOR HANpLING UNUSUAL OCCURRENCES

During its execution, a' procedure may encounter a set of
circumstances which prohibit it from continuing in the normal
manner. Examples of such circumstances are an attempt to divide
by zero and being unable to find a necessary segment in the
storage system. Clearly, whether or not a particular set of
circumstances, such as those given above, prohibits a procedure
from continuing in a normal manner is dependent upon the
procedure in question. Circumstances that are abnormal for one
procedure may be quite normal when encountered in a different
procedure. If it is unable to continue in the normal manner, a
procedure will want to notify its caller or others of its
ancestors that an unusual occurrence has taken place. This
sect i on, and the i mmed i ate 1 y follo~1i ng sec t ions, descr i be means
by which procedures can handle such occurrences and notify their
ancestors of such occurrences. The means used to handle and send
notification of unusual occurrences depends on tnany things, such
as the significance of the effect of the occurrences, the
expected frequency of the occurrences, the nature of the
environment in which the program is executing, the nature of the
occurrences, the ability to modify the circumstances, etc.

The discussion of the methods of unusual occurrence
reporting described below will enable users to understand how to
handle unusual occurrences reported by system procedures. < Also,
the discussion will enable users to better select an appropiate
means for handl ing and reporting unusual occurrences that may
arise during the execution of their own procedures.

Pr i n ted t1essages

The type of unusual occurrence reporting that most Multics
users first encounter is a message printed on their terminals.
~ince, in some sense, the caller of a command is the user
himself, printing a message on the user's terminal is the means
by which a command can report an unusual occurrence to its
caller. There are essentially two general types of printed
messages used to report unusual occurrences: statements and
questions. A statement is simply a description of the unusual
occurrence that informs the user that the occurrence has been
encountered. If the user wishes to take action to rectify the
circumstances of the occurrence, he must subsequently issue
commands to do so. A question gives a description of the
occurrence, but also requests an immediate response from the user
in the form of a character string entered at the terminal. In
this way, the user must immediately specify one of several
courses of action that the command will take with respect to the
occurrence.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

Strategies
Handling Unusual Occurrences
Page 2

MULTICS PROGRAMMERS' MANUAL

Most Multics system commands generate such printed messages
in a standard format. For statements, this format consists of
the name of the command printing the statement, a description of
the unusual occurrence causing the message to be printed, and
!"aore detai led information about the occurrence, if appropriate.
For Questions, the format consists of the name of the command
asking the Question, followed by the Question itself. The
question contains sufficient descriptive information about the
unusual occurrence so that the user can supply an intelligent
repl y. T'vl/o procedures, cOin_err _ and command_query_ (see the MPM
subroutine write-ups), are provided to help report unusual
occurrences through printed statements and Questions. Their use
is strongly encouraged because they provide many facilities other
than simple formatting.

Status Codes

For passing descriptions of unusual occurrences between
procedures, the character string is too cumbersome and
inefficient. For this purpose, a coded description of the
unusual occurrence, called the status code, is used. The status
code is either a short bit string or arithmetic number which
takes on a different value for each possible unusual occurrence.
If the status code is a bit string, usually each bit refers to
the occurrence of some circumstance, as in Multics I/O system
status. If the status code is an arithmetic number, then each
different value corresponds to an unusual occurrence or set of
unusual occurrences, as in the case of the Multics storage system
codes. The status codes are passed from a calling procedure to
the called procedure as an argument. The cal led procedure
assigns the appropriate value to the argument at some point
during its execution. When the called procedure returns to the
call ing procedure, the calling procedure examines the status code
to determine what unusual occurrence has been encountered, if
any, and then takes special action, if desired. Note that the
status code is a means by which a called procedure may report an
unusual occurrence only to its immediate ancestor. However, the
fir s tan c est 0 r ma y , i n t urn, ref 1 e c t the s tat us co d e to its
immediate ancestor, and so on.

Multics provides a means by which status codes may be
generated and interpreted. The status codes generated by this
facility are fixed binary{3S) (one word) arithmetic numbers whose
scope is a single process. The actual values of the codes are
generated dynamically when referenced symbolically from a
program, and may be interpreted (i.e., converted to a character
string description) by calling com err ~ By using these
dynamically generated status codes rather than status codes with

@ Copyright, 1972, Massachusetts Insti tute of Technology
All rights reserved.

NULTICS PROGRAMMERS' MANUAL

Strategies
Handling Unusual Occurrences

Page 3
5/8/72

fixed, preassigned values, one avoids the problem of conflict
between several separately compiled subsystems which may all use
the same status code to represent different occurrences. In the
dynamic scheme, all status codes are guaranteed to be unique
within a process. Note that status codes cannot be used in a
process other than the one generating them because they wi 11 not
have the same interpretation in another process.

In order to have a status code generated, a Multics standard
status code segment must exist. (A description of how to
generate a standard status code segment is given in the MPM
Subsystem Writers' Supplement (SWS).) This segment contains an
externally defined symbol corresponding to each status code to be
generated in the segment, as well as space for the code itself,
and the character string interpretation of the code. When the
status code segment is first referenced in a process, the system
generates a new value for each status code defined in the
segment, and stores it into the segment. (Actually, it is stored
into the linkage section of the status code segment, so that a
different status code may be generated for each process.) From
then on, all references to that external symbol wi 11 be
referencing the generated status code. com_err_, when given such
a status code, is able to locate and return the associated
character string interpretation.

When a program wishes to reference a status code, it must do
so symbol ica11y. If, for example, a program wished to return a
status code appearing in the status code segment "mistake" and
having the external symbol "bad_argument", then the fo11o\<"Iing
PL/I statements would be needed:

declare mistake$bad_argument fixed bin(3S) external;

return (roistake$bad_argument);

I f a program vJanted to exam i ne a s ta tus code for a par t i cu 1 a r
value to determine if it should take some distinct action, it
would contain statements like:

declare mistake$bad_argument fixed bin(35) external;

if status_code = Illistake$bad_argument then do;

tJote that all references to the status code are symbol i c and that
the mechanism of generating the status code is automatic and not
visible to the program or programmer at all.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

Strategies
Handl ing Unusual Occurrences
Page 4

MULTICS PROGRAMMERS' MANUAL

Most Multics system procedures use standard status codes. A
list containing the symbol ic names, character string
interpretations, and meaning of the status codes returned by
system procedures is given in the MPM Reference Guide section,
List of $ystem Status Codes and Meanings.

Important ~

Some of the documents describing MPM subroutines declare
their status code argument (usually called "code") as fixed bin
or fixed bin(17). This is a vestige of an earlier form of status
codes. Users should declare all status codes returned by MPM
subroutines as fixed bin(3S), although any of the three
declarations will generally work correctly.

Conditions

Status codes enable an ancestor procedure to take action on
an unusual occurrence only after the procedure encountering the
occurrence has returned. It is sometimes necessary for an
ancestor procedure to gain control immediately upon encountering
an unusual occurrence, so that it may decide what action to take.
If the ancestor procedure decides to take corrective action, it
may then continue execution from the point of the occurrence.
This is the purpose of the Multics condition mechanism as
described, in detail, in the MPM Reference Guide section, The
Multics Condition Mechanism.

The Multics system invokes the condition mechanism upon
encountering certain unusual occurrences during the execution of
a process. The Multics standard user enviroment acts upon these
system generated occurrences, as well as user program generated
occurrences, if the user programs do not do so themselves. A
list of occurrences which cause the system to invoke the
condition mechanism, and the action taken by the Multics standard
user environment if it is invoked to act upon these occurrences,
is given in the MPM Reference Guide section, List of System
Conditions and Default rlandlers.

Faults

There is a class of unusual occurrences that are detected by
the Multics hardware processor. These occurrences are cal led
faults, and are a subset of the set of occurrences that cause the
system to invoke the condition mechanism. They are, therefore,
included in the List of System Conditions and Default Handlers in
the MPM Reference Guide.

Copyright, 1972, Massachusetts
,",ii rights reserved.

Institute of Technology
(E i~ 0)

MULTICS PROGRAMMERS' MANUAL

.I1iE. ',1U L TICS COND I T ION MEeHAN I SM

Handling Unusual Occurrences
10/18/73

The condition mechanism is a facility of the Multics system
that notifies a program of an exceptional -condition detected
during its executione A ~onnition is a state of the executing
process. Each condition that is detected is identified by a
condition~. For example, division by zero is a condition
identified by the condition name, zerodivide. An attempt by a
user to exceed his storage allocation limit is a condition
identified by the name, record_Quota_overflow.

A condition can be detected by the system or by a user
program. When a condition is detected, it is signalled. A
signal causes a block activation of the most recently established
on unit for the condition. Thus, by establishing an on unit, a
program arranges with the system to receive control when
conditions of interest to it are detected and signalled.

An Qn Ynlt can be a begin block or independent statement, or
it can be a procedure entry. A program (an activation of a
procedure block or begin block) can establish a begin block or an
independent statement as an on unit for a particular condition by
executing an PL/I on statement that names that corditior. A
program can establish a procedure entry as an on unit by calling
the condition_ subroutine with the condition name as an argument.
(See the MPM subroutine write-up.)

When an on unit is activated, it can take any action to
handle a condition. Typically, the on unit might try to rectify
the circumstances that caused the condition and then restart
execution of the interrupted program at the point where the
condition was detected; or it might abort execution of the
program by performing a nonlocal transfer to a location within
the interrupted program or to one of its callers.

All of the on units established by a block activation are
reverted when that block activation terminates by returning to
its caller or when it is aborted by a nonlocal transfer. An on
unit for a particular condition can be explicitly reverted. If
the on unit is a begin block or an independent statement, it can
be reverted by executing a PL/I revert statement, or by executing
another on statement, naming the condition. If it is a procedure
entry, it can be reverted by calling the reversion_ subroutine,
or by calling the condition_ subroutine again, with the condition
name as an argument. (See the MPM subroutine write-up for
reversion_.> Therefore, each block activation can have no more
than one on unit established for each condition at any given
time; however, there can be as many on units established for a
particular condition as there are block actiVations. Si~nalling

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

Condition Mechanism
Handling Unusual Occurrences
Page 2

a condition causes a block activation of the most recently
established on unit for that condition. Normally, this is the
only on unit that is activated, even though other on units for
the condition were established by preceding block activations.

The effect of this scheme is that, once a block activation
has established an on unit for a condition, any occurrence of the
condition activates that on unit. This remains true only until
the block activation is terminated or until the on unit is
reverted and while no descendant block activation establishes an
on unit for the condition.

The general philosophy of establishing on units is that
procedures that can take action when a condition is detected
should establish an on unit for that condition. Of those block
activations that have established an on unit for the condition,
the most recently established on unit is activated since the most
recent is probably the best Qualified to handle the condition.

The conditions detected and signalled by
listed in the MPM Reference Guide section,
Conditions and Default On Unit Actions. Methods
conditions from user programs are discussed
write-up.

An Example of ~ Condition Mechanism

the system are
list of System
of signalling

later in this

The example below is presented to illustrate the mechanism
discussed above. It is not meant to illustrate typical or
recommended use of the condition mechanism.

Example: proc;

declare Subl external entry;
declare Sub2 external entry;
declare c fixed bin;
declare wrong_way condition;

on wrOnLway begin;

.
end;

call Subl;

c = 2;

(l)

(2)

(3)

@ Copyr i ght; 1973; Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTles PROGRAMMERS' MANUAL

Subl:

Sub2:

ca 11 Sub2;

end Example;

proc;

declare a fixed bin;

Condition Mechanism
Handling Unusual Occurrances

Page 3
10/18/73

{4}

declare wrong_way condition;

a = 0;

on wronK-way begin;

end;

a = 1;

end Sub1;

proc;

declare b fixed bin;
declare wrong_way condition;

b = 1;

on wrong_way begin;

end;

b = 2;

revert wron~way;

b = 3;

end Sub2;

(Sl)

{S2}

(S3)

(S4)

(S 5)

(S6)

(S7)

(S8)

In the above example, if procedure Example is called, the
executable statements are executed in the order, (1), (2), (Sl),
(S2), (S3), (3), (4), (S4), (55), (S6), {57}, (S8), under normal

~ ropyrj~ht, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Condition Mechanism
Handling Unusual Occurrences
Page 4

MULTICS PROGRAMMERS' MANUAL

circumstances. However, if the wron~way condition is detected
and signalled during the execution of (51), then the on unit
established for wrong_way by Example is activated because Subl
has not established an on unit for the wron~way condition at
this time. If the on unit simply corrects the circumstances that
caused the wrong_way condition and returns, then execution
resumes in (51) from the point of interruPtion. If condition

"wrong way is detected and signalled during the execution of
statement (53), then the on unit "estalished in Subl is activated
because Subl has established the most recent on unit for
wrong_way. If wronK-way is signalled during (3), the on unit
established by Example is activated because the block activation
for Subl has been terminated and its on unit is no longer
established. If wron~way is signalled during (58), the on unit
established in Example is activated because Sub2 explicitly
reverted the on unit it had previously established, making
Example's on unit the most recently estalished wron~way on unit.

An On Unit Activated Qy All Conditions

The above description inidcates how on units can be
established for specific conditions. It is sometimes desirable
to handle any and all conditions that occur. To do this, a block
activation can establish an on unit for the any_other condition.
When a particular condition is signalled, the any_other on unit
established by the block activation is activated if no specific
on unit for the condition was established by the block
activation, and if no on unit for that condition or the any_other
condition was established by a more recent block activation. In
other words, when a condition is signalled, each block
activation c starting with the most recent

f
is insRected for an on

unit established for that specific condi ion and, if none is
found, for an established any_other on unit. The first such
specific or any_other on unit found is the one that is activated.
Note that, as with on units for specific conditions, only one
any_other on unit can be established by a given block activation.
Establishing a second any_other on unit simply overwrites the
first.

As a summary, the flow diagram of Figure 1 illustrates the
algorithm used by the condition mechanism to determine which on
unit to activate when a condition is signalled. The action taken
when no on unit for a condition can be found is described later
in this write-up.

(c) Copyright, 1973, Massachusetts Institute of Technology
" and Honeywell information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Condition Mechanism
Handling Unusual Occurrances

Page 5
10/18/73

Obtaining Additional Information About £ Condition

An en unit might (in fact, probably does) need information
about the circumstances under which it was activated. The
find_condition_info_ subroutine (described in an MPM subroutine
write-up) makes such information available to an on unit. ihe
information might include machine conditions (i.e., the processor
state) or other information describing the condition in question.
The information that is available when system-detected conditions
are signalled is listed in the MPM Reference Guide section, List
of System Conditions and Default On Unit Actions.

Interaction with the Multics Ring Structure

The condition mechanism interacts with the Multics ring
structure. The above description of how an on unit is selected
for activation applies only to block activations within a single
ring. When a condition is signalled in a particular ring, the
algorithm of Figure 1 is followed for the block activations in
that ring. If no on unit for the condition is found in that
ring, then the ring is abandoned and the same condition is
signalled in the higher ring that called the abandoned ring.
This process is repeated until all existing rings have been
abandoned, indicating that this process has not established an on
unit for the condition being signalled, in which case the process
is terminated.

Signalling Conditions in ~ User Program

A user program can signal a condition by executing a PL/I
signal statement that names that condition. Alternately, it can
call the signal_ subroutine with the condition name as an
argument. (See the MPM subroutine write-up for signal_.) If the
on unit activated by the signal returns, the user program should
retry the operation that was interrupted by the condition.

Differences Between £iLl and Multics Condition Mechanisms

The PL/I language on, revert, and signal statements are very
similar in purpose and function to the Multics condition_,
reversion_, and signal_ subroutines and for many applications can
be used interchangeably. However, there are important
differences between them as noted below, and the user should not
interchange them blindly. The signal_ subroutine can be called
with arguments that describe the particular circumstances under
which a condition is being signalled. (See the MPM subroutine
write-up for signal_.) The PL/I signal statement does not accept

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Condition Mechanism
Handling Unusual Occurrences
Page 6

arguments. Therefore, a block activation must call signal_ if it
wants to pass descriptive arguments when signalling a condition.

Executing a PL/I on statement to establish an on unit is
equivalent to calling the condition_ subroutine. An on unit
established for a condition by either method is activated when
the condition is signalled, either by the execution of a PL/I
signal statement or by a call to the signal_ subroutine.
However, an on unit established by calling condition_ must be a
procedure entry; therefore, it can accept the descriptive
arguments passed with the signal by signal_. An on unit
established by 'executing a PL/I on statement must be a begin
block or an independent statement; it can refer to the arguments
passed by si~nal_ only by calling the find_condition_info_
subroutine.

A PL/I on statement and a call to the condition_ subroutine
must not be executed by the same block activation in order to
establish an on unit for a given condition. Also, a PL/I revert
statement can only revert on units established by an on
statement, but cannot revert on units established by condition_.
Similarly, the reversion_ subroutine can only revert on units
established by condition_, but cannot revert on units estabiished
by an on statement.

In PL/I Version 2, when calls to condition_ or reversion_
appear within the scope of an internal procedure, the
nO_Quick_blocks option must be specified in the procedure
statement of that procedure. The nO_Quick_blocks option is a
nonstandard feature of the Multics PL/I language; therefore,
programs using it might require conversion when being transferred
to other systems.

Action Taken ~ the Defaylt On Ynll

Some conditions are routinely handled by the system's
default on unit (in the absence of a user-supplied on unit> by
printing a message on the user's terminal to alert him that the
condition has occurred and returning to command level. These
conditions are denoted by "Default action: prints a message and
returns to command level." in the MPM Reference Guide section,
List of System Conditions and Default On Unit Actions.

In many cases, the
condition is detected is
is of little interest to
to know the location
subroutine was executing

subroutine that is executing when a
a system or PL/I support subroutine that
the user. In such cases, the user needs
at that the most recent non-support
before the condition was detected. To

€) CoPYright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Condition Mechanism
Handling Unusual Occurrances

Pa~e 7
10/18/73

fill this need, the default on unit actually hunts through the
block activations that precede the support subroutine until it
fInds the first non-support subroutine; it then indicates that
the condition was detected while executing at a location within
that non-support subroutine.

Machine Conditions

As described above, information is available that describes
the state of the processor at the time a hardware condition
(fault) was raised. It has the following declaration:

declare 1 mc based (mc_ptr) aligned,
2 prs (0:7) ptr,

1) prs

2) regs

a) x

b) a

c) q

d) e

3) scu

4) errcode

(2 regs,
3 x (0:7) bit(I8),
3 a bit(36),
3 q bit(36),
3 e bit(8),
3 pad bit(64),

2 scu (0:7) bit(36),
2 padl bit(I08),
2 errcode fixed bin(35),
2 pad2 bit(7 2),
2 ring bit(I8),
2 fault_time bit(54),
2 pad3 (0:7) bit(36)) unaligned;

is the contents of the 8 pointer registers at the
time the condition occurred.

is the contents of the other r~gisters at the time
the condition occurred.

is the contents of the 8 index registers.

is the accumulator contents.

is the q-register contents.

is the exponent register contents.

is the stored control unit, expanded below.

is the fault error code. Refer to the MPM
Reference Guide section, List of Sysyem Status
Codes and Meanings.

€> Copyri ght, 1973, f,1assachusetts I nst i tute of Technology
and Honeywell Information Systems Inc.

Condition Mechanism
Handling Unusual Occurrences
Page 8

MULTICS PROGRAMMERS' ~ANUAL

5) ring is the ring in which the condition occurred.

6) fault_time is the time the condition occurred.

The stored control unit is declared as follows:

declare 1 scu aligned,

/* WORD (0) */

(2 ppr,
3 prr bit(3),
3 psr bit(15),
3 p bit(l),

2 pad4 bit(17),

/* WORD (1) */

2 padS bit(35),
2 fi_flag bit(l),

1* WORD (2) */

2 tpr,
3 trr bit(3),
3 tsr bit(15),
2 pad6 ibt(18),

/ * \,10 R D (3) * /

2 pad7 bit(30)
2 tpr_tbr bit(~),

/* WORD (4) */

2 ilc bit(18),
2 i r,
3 zero bit(1),
3 neg bit(1),
3 carry bite!),
3 ovfl bit(l),
3 eovf bitel),
3 euf 1 bit e l},
3 of 1m bit(l),
3 tro bit(l),
3 par bit(l),
3 parm bite!),
3 bm bite!),

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeyweii information Systems inc.

MULTICS PROGRAMMERS' MANUAL

1) ppr

a) prr

b) psr

c) p

2) fi_flag

3) tpr

a) trr

b) tsr

4) tpr _tbr

5) i 1 c

6) i r

a) zero

b) neg

c) carry

Conditior Mechanism
Handling Unusual Occurrances

Page 9
10/18/73

3 tru bit(1),
3 mi f bit(1),
3 abs hj~(l' 'JJ ~",

3 pad bit(4),

1* \-lORD (5) */

2 ca bit(1S},
2 padS bit(1S),

1* WORD (6) */

2 even_inst bit(36),

/ * \AIORD (7) * /

2 odd_inst bit(36);

is the procedure pointer register contents.

is the ring number portion of ppr.

is the segment number portion of ppr.

is the procedure privileged bit.

equals "l ltb after a fault,
interrupt.

"Glib after

is the temporary pointer register contents.

is the ring number portion of ptr.

is the segment number portion of tpr.

is the bit offset portion of tpr.

is the instruction counter contents.

is the contents of indicator registers.

zero indicator.

negative indicator.

carry indicator.

an

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Condition Mechanism
Handling Unusual Occurrences
Page 10

d) ovfl

e) eovf

f) eufl

g) of 1 m

h) tro

i) par

j) parm

k) bm

1) tru

m) mif

n) abs

7) ca

overflow indicator.

exponent overflow.

exponent underflow.

overflow mask.

tally runout.

parity error.

parity mask.

bar mode.

truncation mode.

multiword instruction mode.

absolute mode.

is the computed address.

the instruction causing the fault is stored here.

the next sequential instruction is stored here if
ilc (see above) is even.

Information Header Format

A standard header is required at the beginning of each
information structure provided to an on unit. This information
is particular to the condition in question and varies among
conditions except for the header. The format of that header is:

declare 1 info_structure aligned,
2 length fixed bin,
2 version fixed bin,
2 action_flags aligned,

3 cant restart bite!) unaligned,
3 default_restart bite!) unaligned,
3 pad bit(34) unaligned,

2 info_string char(256) var,
2 status_code fixed bin(3S),

1) length i s the length of the structure i n words.

@ Copyrip;ht; 1913; ~~assachusetts In~titlJtp of Tprhnolop"v
and Honeywell information- Systems-Inc.

MULTles PROGRAMMERS' MANUAL

2) version

Condition Mechanism
Handling Unusual Occurrances

Page 11
10/18/73

is the version number of this structure.

indicates appropriate behavior fer a handler:

if "1I1b, a handler should never attempt to
return to the signalling procedure.

default_restart if "1 f1 b, the computation can resume with no
further action on the handler's part except a
return.

5) status_code

is a printabel message about the condition.

if nonzero, is a code interpretable
com_err_ further defining the condition.

by

If neither action flag is set, restarting is possible, but
its success depends on action taken by the handler.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Condition Mechanism
Handling Unusual Occurrences
Page 12

Condition x Raised

Examine
most recent
activation

Is there an on unit established in
this activation for condition x?

No

Yes

.~

Invoke the
on un:i.t

Examine next

previous
activation

Is there an any other on unit
established in this activation?

Yes ~~ ________ ~

No

No

Is this the oldest
activation?

Yes

No orr uni t for

this condition

Figure 1: Simplified algorithm for determining which
on unit to invoke when condition x is raised.

«) Copyright, 1973: Massachusetts Institute of Technolo~y
- and Honeywell Information Systems inc. (END)*

MUlTICS PROGRAMMERS' MANUAL

Handl ing Unusual Occurrences
3/6/72

NONlOCAl TRANSFERS AND CLEANUP PROCEDURES

Many languages provide the ability to perform nonlocal
transfers. In Multics, this is a facility by which the currently
executing procedure activation may transfer to a location in an
earl ier existing procedure activation and, as a consequence,
abort all activations descendant from the earlier activationa
Programmers of certain types of procedures may wish to have these
procedures establ ish a set of code to be executed if an
activation of one or more of these procedures is aborted in this
manner. An example of such a procedure is a program that
references static data that must be reset so that the procedure
can be reentered. This function of executing predefined code
when an activation is aborted by a nonlocal transfer is termed
cleaning QQ. A procedure or entry that contains the code for
cleaning up is termed a cleanup procedure.

A procedure may establ ish a cleanup procedure by call ing the
MPH subroutine establ ish_cleanup_proc_. Having a cleanup
procedure establ ished will cause the specified cleanup procedure
to be invoked if the establ ishing block activation is aborted by
a nonlocal transfer. The establishment of a cleanup procedure
may be reverted by call ing the MPM subroutine
revert_cleanup_proc_. If a procedure activation is terminated
either normally by a return or abnormally by a nonlocal transfer,
any establ ished cleanup procedure is automatically reverted. In
the latter case of an abnormal termination, the cleanup procedure
is automatically reverted when it is invoked.

In Pl/I Version 2, \'1hen calls to establ ish_cleanup_proc_ or
revert_cleanup_proc_ appear within the scope of a begin block or
internal procedure of a procedure, the no_quick_blocks option
must be specified in the procedure statement of that procedure.
The nO_Quick_blocks option is a nonstandard· feature of the
Multics PL/I language and, therefore, programs using it may not
be transferable to other systems.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Handling Unusual Occurrences
10/3/73

ll[I OF SYSTEM STATUS CODES AND MEANINGS

Status codes report unusual occurences encountered by
procedures during execution. The codes are returned by Multics
System commands and subroutines. Printed messages which
correspond to these status codes appear on printed output in the
format consisting of the name of the command printing the
statement, a description of the unusual occurrence causing the
message to be printed, and more detailed information when
appropriate.

To test for the return of a particular system-defined status
code, the following approach can be taken in order to avoid
compi 1 ing particular numeric values, which might change, into
programs:

declare error_table_$entry

if code = error_table_$entry then •••

where

1) code

2) entry

is a status code (fixed binary(3S» returned from
a Multics system command or subroutine.

is an error_table_ entry taken from the 1 ist
below.

See also the MPM Reference Guide section, Strategies for
Handling Unusual Occurences, and the subroutine write-up for
com_err_. com_err_ reflects to printed output the occurrence and
interpretation of any of the status codes.

The first part of this write-up contains an alphabetic 1 ist
of printed messages. Each message is followed by the name of the
entry for the status code in error_table_. The error_table_
entry name is followed by a more extensive interpretation of the
status code.

This version of error_table_ is accurate through Multics
system 20.12

€) Copyright, 1973, tvlassachusetts Institute of Technology
and Honeywell Information Systems Inc.

Status Codes
Handling Unusual Occurrences
Page 2

MULTICS PROGRAMMERS' MANUAL

A call that must be in a sequence of calls was out of sequence.
(error_table_$out_of_sequence)
Meaning: The procedure called required another call to have
been made prior to this call.

A logical error has occurred in initial connection.
(error_table_$net_icp_error)
Meaning: Network only. A Network connection management
program has detected an error in the execution of Network
protocol to establish a connection to a foreign host.
Re-try the connection attempt; if the problem persists, it
may be a sign that either the foreign host or Multics is not
properly following Network protocol.

ACL/CACL is empty.
(error_table_$empty_acl)
Meaning: The ACL of a directory or segment is empty.

Allocation could not be performed.
(error_table_$notalloc)
Meaning: This operation required an allocation in an area
that did not contain enough space to perform the allocation.

An event channel is being used in an incorrect ring.
(error_table_$wrong_channel_ring)
Meaning: A channel name was supplied that does not
correspond to a channel in the current ring.

An initial connection is already in progress from this socket.
(error_table_$net_already_icp)
Meaning: Network only. The user's process has requested
that a fJetwork connection be established from a local socket
that is already involved in a connection attempt. If
possible, the user should direct his program to use a
different socket, or, if appropriate, close the
already-established connection if it is no longer desired.

Append permission missing.
(error_table_$no_append)
Meaning: Append permission is missing for an operation that
requires it.

Argument ignored.
(error_table_$arg_ignored)
Meaning: An argument was found that was not expected and
was ignored.

Argument is not an ITS pointer.
(error_table_$bad_ptr)
Meaning: One of the argument pointers, in the argument 1 ist
used in a cross-ring call, is not in the correct format.

Argument size too small.
(error_table_$smallarg)
Meaning: The argument size is too small (in length).

Argument too long.
(error_table_$bigarg)

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Status Codes
Handling Unusual Occurrences

Page 3
10/3/73

Meaning: An entry name argument greater than 32 characters
or a path name argument greater than 168 characters was
passed to a program.

Attachment loop.
(error_table_$att_loop)
Meaning: The attempted attachment would result in the given
stream being attached to itself, either directly or
indirectly, through intermediate outer modules.

Attempt to access beyond end of segment.
(error_table_$boundviol)
Meaning: An attempt was made to access beyond the maximum
length of the segment.

Attempt to attach to an invalid device.
(error_table_$invalid_device)
Meaning: The device specified in this I/O system attach
calli s no t 0 fat y pe han d 1 e d by the lOS Ir~ tow h i c h the
attach was directed.

Attempt to change first pointer.
(error_table_$change_first)
Meaning: The type of device associated with the given
stream name does not permit the value of the first reference
pointer to be changed.

Attempt to convert directory or link to multisegment file.
(error_table_$bad_ms_convert)
Meaning: An unsuccessful attempt was made to convert a
directory or link to a multisegment file.

Attempt to delete segment whose safety switch is on.
(error_table_$safety_sw_on)
Meaning: The user attempted to delete a segment, directory,
or directory subtree for which the safety switch was on
(preventing deletions).

Attempt to execute in data segment.
(error_table_$execute_data)
Meaning: The user has attempted to transfer to a segment to
which he does not have execute access.

Attempt to manipulate last or bound pointers for device that was
not attached as writeable.

(error_table_$invalid_seek_last_bound)
Meaning: Changing the position of the last or bound
reference pointers of a device that cannot be written is
nonsensical and is therefore not allowed.

Attempt to read or move read pointer on device which was not
attached as readable.

(error_table_$invalid_read)
Meaning: Changing the position of the read reference
pointer of a device that cannot be read is nonsensical and
is therefore not allowed. From tape_: an attempt was made

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Status Codes
Handling Unusual Occurrences
Page 4

MUL TICS PROGRAMMERS' t4AtJUAL

to change the mode from write to read during a seek request.
Attempt to set delimiters for device while element size is too
large to support search.

(error_table_$invalid_setdelim)
Meaning: The type of device associated with the given
stream does not support read delimiters or break characters
with the current element size.

Attempt to set max length of a segment less than its current
length.

(error_table_$invalid_max_length)
Meaning: The user attempted to set the maximum length of a
segment to a value less than its current length.

Attempt to specify the same segment as both old and new.
(error_table_$sameseg)
Meaning: There was an attempt to use a single segment
(possibly specified twice) with an operation that requires
two different segments (e.g., copying).

Attempt to unlock a lock that was not locked.
(error_table_$lock_not_locked)
Meaning: An attempt was made to unlock a lock that was not
locked.

Attempt to unlock a lock which was locked by another process.
(error_table_$locked_by_other_process)
Meaning: An attempt was made to unlock a lock that was
locked by another existing process.

Attempt to write or move write pointer on device which was not
attached as writeable.

(error_table_$invalid_write)
Meaning: Changing the position of the write reference
pointer of a device that cannot be written is nonsensical
and is therefore not allowed. From tape_: an attempt was
made to change the mode from read to write during a seek
reques t.

Bad class code in definition.
(error_table_$bad_class_def)
Meaning: An object segment containing nonstandard
information was referenced.

Bad definitions pointer in linkage.
(error_table_$no_defs)
Meaning: The linkage section has been illegally modified.

Bad gate for entry referenced.
(error_table_$bad_arg_type)
Meaning: A bad argument specification was found in the gate
validation information.

Bad mode specification for ACL/CACL.
(error_table_$bad_acl_mode)
Meaning: The user specified an illegal mode or combination
of modes in the process of setting an ACL.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honey\'Jel1 Information Systems inc.

MULTICS PROGRAMMERS' MANUAL

Status Codes
Handl ing Unusual Occurrences

Page 5
10/3/73

Bad socket gender involved in this request.
(error_table_$net_bad-zender)
Meaning: Network only. A Network socket connection is
either read-only or write-only; an attempt has been made to
perform the opposite operation on a socket.

Bad syntax in pathname.
(error_table_$badpath)
Meaning: A syntax error of the following form was used in a
path name: 1) a less than character «) following a
non-less than character (e.g., <a< or <)<); 2) two
sucessive greater than characters (e.g., »); or 3) a
greater than character immediately following a less than
character (e.g., <».

Brackets do not balance.
(error_table_$unbalanced_brackets)
Meaning: The brackets in a command line do not balance.

Communications with this foreign host not enabled.
(error_table_$net_fhost_inactive)
Meaning: Network only. The user has requested a connection
to a foreign Network host with whom Multics does not
routinely communicate. If communication with this host is
desired, the user should consult the local installation
management or Network technical 1 iason.

Connection not completed within specified time interval.
(error_table_$net_timeout)
Meaning: Network only. The user's process has attempted to
establish a tJetwork connection to a foreign host, but that
host has not responded within a reasonable period of time.
Most likely, the foreign host is overloaded, or is about to
cease all Network communication for some reason.

Could not create dartmouth job core.
(error_table_$no~ob_core)
Meaning: The Dartmouth subsystem encountered a system error
while attempting to create temporary segments in the process
directory.

Current processid does not match stored value.
(error_table_$bad_processid)
Meanings: The user has tried to use a socket that belongs
to some other process.

Dartmouth job aborted.
(error_table_$dart_abort)
Meaning: The Dartmouth subsystem cound not find a Dartmouth
command (e.g., basic) in the 1 ibrary; or the Dartmouth
subsystem encountered a system error while attempting to
creat temporary segments in the process directory.

Data not in expected format.
(error_table_$improper_data_format)

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Status Codes
Handling Unusual Occurrences
Page 6

MULTICS PROGRAMMERS' MANUAL

Meaning: From tape_: the tape to be read is not in Multics
standard tape format.

Directory or link found in multisegment file.
(error_table_$bad_ms_file)
Meaning: A directory or link was found in a multisegment
file. Only segments are permitted as components of a
multisegment file.

Directory pathname too long.
(error_table_$dirlong)
Meaning: A specified directory name is greater than 168
characters in length.

Duplicate entry name in bound segment.
(error_table_$dup_ent_name)
Meaning: Two or more components containing entry points
with the same name were bound together, and the user
referred to bound_seg_name$entry_name so that the
appropriate entry point cannot be determined.

Entry is not a branch.
(error_table_$not_a_branch)
Meaning: A storage system entry that is not a branch was
used in a context where a branch was expected.

Entry is not a directory.
(error_table_$notadir)
Meaning: A storage system entry that is not a directory was
used in a context where a directory was expected.

Entry name too long.
(error_table_$entlong)
Meaning: The specified entry name in a directory is greater
than 32 characters in length (perhaps after the addition of
a s u f fix compo n e nt, e • g.; • p 11 , • arc h i ve , etc.).

Entry not found.
(error_table_$noentry)
Meaning: The branch specified by the path name does not
exist.

Equals convention makes entry name too long.
(error_table_$longeql)
Meaning: The user supplied a name with the equals
convention which, when expanded, becomes greater than 32
characters in length.

Error in internal ioat information.
(error_table_$ioat_err)
Meaning: System error. Contact Multics operations.

Error zeroing entry in the linkage offset table.
(error_table_$loterr)
Meaning: The linkage section is in an improper format.

Expanded command line is too large.
(e r ro r _ta b 1 e_$command_l i ne_overf 1 ov,J)
Meaning: The evaluation of active functions has overflowed

~ Copyright; 1973; Massachusetts Institute of Technology
and Honeywe 11 I nf orma t i on Sys terns Inc.

MULTICS PROGRAMMERS' MANUAL

Status Codes
Handling Unusual Occurrences

Page 7
10/3/73

the available space for command line expansion. See the
command set_corn_line.

Expected argument descriptor missing.
(error_table_$nodescr)
Meaning: The expected argument descriptor is missing.

Expected argument missing.
(error_table_$noarg)
Meaning: An argument expected by a program was not passed
to that program.

External symbol not found.
(error_table_$no_ext_sym>
Meaning: The entry name was not found on the segment being
referenced.

Fatal error. Translation aborted.
(error_table_$translation_aborted>
Meaning: The translator has become internally inconsistent,
probably not due to the source program, and is reverting
directly to command level.

Foreign IMP is down.
(error_table_$net_fimp_down)
Meaning: Network only. The user has attempted to connect
to, or has had an open connection to a network host whose
Interface Message Processor has gone down. Communication
with that host is not possible at this time.

Foreign host is down.
(error_table_$net_fhost_down)
Meaning: Network only. The user has attempted to connect
to a Network host which is not presently communicating with
the Network, or has had an open Network connection to a
foreign host that has just ceased communicating with the
Network.

10 device failed to become unassigned.
(error_table_$io_still_assnd)
Meaning: A call to detach an I/O device failed for some
reason. From tape_: a different reel 10 was specified on
detaching the stream than on attaching it.

10 device not currently assigned.
(error_table_$dev_nt_assnd)
Meaning: A call was made to perform I/O using an illegal
device.

Illegal entry name.
(error_table_$badstar)
Meaning: A syntax error of the following form appeared in
an entry name utilizing the star convention: 1) a null
component; 2) a less than «) or greater than (»
character; 3) a non-printing ASCII character (e.g., tab or
new line); 4) more than one component of "**"; or 5) a

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Status Codes
Handling Unusual Occurrences
Page 8

MULTICS PROGRAMMERS' MANUAL

component which is not "**" but contains more than one *
character.

Illegal entry point name in make_ptr call.
(error_table_$bad_entry_point_name)
Meaning: There is an illegal entry point name in the
hcs_$make_ptr call.

Illegal host number or ide
(error_table_$net_bad_host)
Meaning: Network only. The user has specified a Network
host name unknown to Multics, or has given a host number
which was either negative or greater than the largest host
number known to Multics. The user should check the spelling
of the name or number.

Illegal initial ization info passed with create-if-not-found link.
(error_table_$bad_link_target_init_info)
Meaning: There is an unrecognizable action code in the
initialization information for a link target to be created
when first 1 inked to.

Illegal self reference type.
(error_table_$bad_self_ref)
Meaning: The object se~ment is in an invalid format.

Illegal type code in type pair block.
(error_table_$bad_link_type)
Meaning: The object segment is in an invalid format.

Illegal use of equals convention.
(error_table_$badequal)
Meaning: There was no letter or component in the entry name
that corresponds to a % or an = in the equal name.

Improper access to given argument.
(error_table_$bad_arg_acc)
Meaning: An argument to which the process does not have
access was passed on a cross-ring call.

Improper mode specification for this device.
(error_table_$bad~ode)
Meaning: Either the given I/O mode specification was of
illegal syntax or the type of device associated with the
given stream does not support one or more of the modes.
From tape_: The mode specification on the attach call was
other than r or w.

Improper syntax in command name.
(error_table_$bad_command_name)
Meaning: Command name is of the form as, Sa, or $.

Inconsistent combination of control arguments.
(error_table_$inconsistent)
Meaning: The command invocation contained an inconsistent
combination of control arguments.

Incorrect access on entry.
(error_table_$moderr)

@ Copyright,\' 1973,\' Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Status Codes
Handling Unusual Occurrences

Page 9
10/3/73

Meaning: The user attempted to reference a segment to which
he has insufficient access for the reference, but has
sufficient access to know of its existence.

Incorrect access to directory containing entry.
(error_table_$incorrect_access)
Meaning: The user had incorrect access to the directory
containing the entry he wished to access; i.e., the access
mode required for the operation was not present.

Incorrect detachable medium label.
(error_table_$bad_label)
Meaning: there is an inconsistency or error in the label on
this detachable volume.

Indicated device assigned to another process.
(error_table_$already_assigned)
Meaning: The indicated device is already assigned to
another process.

Infinite recursion.
(error_table_$recursion_error)
Meaning: Recursive include segments were encountered while
expanding a source segment.

Initial connection socket is in an improper state.
(error_table_$net_ipc_bad_state)
Meaning: Network only. The user's process had made a call
to a Network connection management program (such as
net_icp_) to establish a socket connection to a foreign
host, and some anomalous event has occurred which has left
the user's local (Multics) socket in an improper state. The
connection attempt should be re-tried; if the problem
persists, it should be reported.

Insufficient access to return any information.
(error_table_$no_info)
Meaning: The user had insufficient access to the specified
entry or to its superior directory to return any information
about the entry.

Internal index out of bounds.
(error_table_$bad_index)
Meaning: The device index given does not correspond to a
device owned by this process.

Invalid backspace_read order call.
(error_table_$invalid_backspace_read)
Meaning: The backspace_read request attempts to set the
read reference pointer of an I/O system stream to the
element after the previous read delimiter; however, no read
delimiters currently exist for the given stream.

Invalid element size.
(error_table_$invalid_elsize)

®

Meaning: The element size specified in this I/O system call

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Status Codes
Handling Unusual Occurrences
Page 10

MULTICS PROGRAMMERS' MANUAL

is not valid for the type of device associated with the
specified stream.

Invalid mode specified for ACL.
(error_table_$invalid_mode)
Meaning: The user attempted to set m (modify) permission on
a directory without setting s (status) permission.

Invalid move of quota would change terminal quota to non
terminal.

(error_table_$invalid_move_quota)
Meaning: An attempt was made to move all assigned quota to
a superior directory when the quota is still used in an
inferior directory.

Inval id project for gate access control list.
(error_table_$invalid_project_for~ate)
Meaning: Access to gates can only be set for users in the
same project.

Invalid volume identifier.
(error_table_$bad_volid or error_table_$bad_tapeid)
Meaning: The specified detachable volume name is incorrect
or does not match the volume name stored in the volume
1 abe 1 •

loname already attached and active.
(error_table_$ionmat)
Meaning: An attempt has been made to attach an I/O device
to a stream to which no more devices can be attached.

loname not active.
(error_table_$ioname_not_active)
Meaning: The stream name specified in a call to the I/O
system is not attached to any device. Either the specified
stream name or one of the stream names to which it is
attached through on intermediate outer module should be
attached to a device.

loname not found.
(error_table_$ioname_not_found)
Meaning: No stream with the stream name given in the call
to the I/O system exists.

Linkage section not found.
(error_table_$no_linkage)
Meaning: Either a data segment has been called or a bad
object segment referenced.

Looping searching definitions.
(error_table_$defs_loop)
Meaning. There were too many definitions found in the
definitions search. The user should try reducing the number
of en try n a me sin the s e gme n t • I tis a 1 so po s sib 1 e t hat the
linkage information has been illegally modified to produce a
ci rcular 1 ist.

Maximum number of arguments for this command exceeded.

@ Copyr i ght; 1973; Massachusetts
and Honeywell

Institute of Technology
Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

(error_table_$too_many_args>

Status Codes
Handling Unusual Occurrences

Page 11
10/3/73

Meaning: A command which has a maximum on some argument set
was called with more arguments of that type than are
allowed.

Mismatched iteration sets.
(error_table_$mismatched_iter>
Meaning: The command line contains more than one iteration
element and the number of iterations specified by one is not
the same as specified by another.

Missing entry in outer module.
(error_table_$missent>
Meaning: The I/O system call is not implemented for the
type of device associated with the stream specified in the
call.

Mount request could not be honored.
(error_table_$bad_mount_request)
Meaning: Some error has occurred while attempting to
perform this mount request.

Mount request pending
(error_table_$mount_pending)
Meaning: The volume requested is currently being mounted as
requested; i.e., this is a redundant request.

Multics IMP is down.
(error_table_$imp_down>
Meaning: Network only. The Interface Message Processor
that connects Multics to the Network is not operating. All
connections with other Network hosts have been broken, and
no new connections can be established until the IMP resumes
communication with Multics.

Name already on entry.
(error_table_$segnamedup>
Meaning: An attempt was made to add a name to a storage
system entry when the name was already on that entry.

Name duplication.
(error_table_$namedup)
Meaning: An attempt was made to add a name to a storage
system entry when the name was already on some other entry
in the same directory.

Name list exceeds maximum size.
(error_table_$too_many_names>
Meaning: From get_library_source: The user specified too
many source segment names or system names.

Name not found.
(error_table_$oldnamerr>
Meaning: An attempt was made to delete from a storage
system entry a name that was not on that entry.

Negative number of elements supplied to data transmission entry.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Status Codes
Handling Unusual Occurrences
Page 12

(error_table_$negative_nelem)

MULTICS PROGRAMMERS' MANUAL

Meaning: A negative number of elements specified in an I/O
system call is not permitted.

Negative offset supplied to data transmission entry.
(error_table_$negative_offset)
Meaning: Negative offsets to I/O system read or write calls
are not permitted.

-Network connection closed by foreign host.
(error_table_$net_socket_closed)
Meaning: Network only. A previously open Network
connection to a foreign host has been disconnected by that
host; communication over that connection has been
terminated.

Network control program not in operation.
(error_table_$net_not_up)
Meaning: Network only. The user has attempted to establish
a Network connection to a foreign host, but Multics is not
presently communicating with the r~etwork.

New offset for pointer computed by seek entry is negative.
(error_table_$new_offset_negative)
Meaning: The value of a reference pointer relative to the
first reference pointer can never be negative. The
specified seek call would have resulted in such a negative
offset.

fJo PRPH card was found for the requested device.
(error_table_$no_prph_card)
Meaning: No PRPH (peripheral) card was found in the
configuration deck for the requested device.

No bases supplied in force call.
(error_table_$force_bases)
Meaning: Insufficient information was supplied to complete
an Indirect Through Base (ITB) link.

No device currently available for attachment.
(error_table_$no_device)
Meaning: No free device is currently available for
attachment by this process.

No interrupt was received on the designated 10 channel.
(error_table_$no_io_interrupt>
Meaning: The DCW list active switch in the printer DCM had
not been turned off in 100,000 tests of its status.

IJo 1 inkage offset table in this ring.
(error_table_$nolot)
Meaning.: There is no linkage offset table in this ring.

No room available for device status block.
(error_table_$no_room_for_dsb)
Meaning: The attachment could not be performed because
space for the necessary data was not available. This
problem might be corrected by detaching another stream

® Copyright .. 1973 .. ~1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Status Codes
Handling Unusual Occurrences

Page 13
10/3/73

associated with the same type of device.
No wired structure could be allocated for this device request.

(error=table=$no~wired=structure)
Meaning: All available wired structures for this device
type were in use when the device attachment was attempted.

No/bad linkage info in the lot for this segment.
(error_table_$nolinkag)
Meaning: The system could not find the linkage information
for a segment.

Not enough room in stack to complete processing.
(error_table_$stack_overflow)
Meaning: The request specified by the user requires too
many recursive calls to be processed; e.g., by the command
processor.

Not in proper ring bracket to perform desired operation.
(error_table_$not_in_proper_bracket)
Meaning: The ring brackets, independently of the access
modes, prevent the desired access to a segment.

rJull bracket set encountered.
(error_table_$null_brackets)
Meaning: An active string of the form [] was encountered.

Obsolete object segment format.
(error_table_$oldobj)
Meaning: The object segment being referenced is in an
obsolete format.

Odd number of arguments.
(error=table_$odd=no=of_args)
Meaning: An attempt was made to call a command that
requires pairs of arguments with an odd number of arguments.

Parentheses do not balance.
(error_table_$unbalanced_parentheses)
Meaning: The parentheses in a command 1 ine do not balance.

Pathname too long.
(error_table_$pathlong)
Meaning: Total path name is longer than 168 characters.

Physical end of device encountered.
(error_table_$device_end)
Meaning: The physical end of the device (e.g., magnetic
tape) was encountered.

Pointer name passed to seek or tell not currently implemented by
it.

(error_table_$unimplemented_ptrname)
Meaning: The pointer name passed to the seek or tell call
is not currently implemented by it.

Procedure called improperly.
(error_table_$badcall)
Meaning: The procedure was called improperly.

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Status Codes
Handling Unusual Occurrences
Page 14

MULTICS PROGRAMMERS' MANUAL

Procedure was not invoked as an active function.
(error_table_$not_act_fnc)
Meaning: A procedure that is intended to be used as an
active function was invoked as a normal command.

Process lacks permission to alter device status.
(error_table_$io_no_permission)
Meaning: The user attempted to do something to an 1/0
device that does not belong to him.

Process not attached to indicated device.
(error_table_$not_attached)
Meaning: The process is not attached to the indicated
device.

Quotes do not balance.
(error_table_$unbalanced_quotes)
Meaning: The quotes in a command line do not balance.

Record quota overflow.
(error_table_$rqover)
Meaning: An attempt was made to use more records than the
user is permitted by the storage system.

Relevant data terminated improperly.
(error_table_$data_improperly_terminated)
Meaning: From tape_: the end of readable data was reached
on read, but the tape had not been properly detached when
data was written.

Request for connection refused by foreign host.
(error_table_$net_rfc_refused)
Meaning: Network only. The user has requested a Network
connection to a particular socket at a foreign host, and the
foreign host has refused that connection request. It may be
that· the foreign host is not offering the desired Network
service at this time, or that no process on that foreign
host is listening for connection requests on that socket.

Request for connect received from improper foreign socket.
(error_table_$net_bad_connect)
Meaning: Network only. The user's process was waiting to
complete a connection to a foreign Network host, but the
connection established was not the expected one. The
connection attempt was therefore abandoned. The user should
try again.

Request is inconsistent with current state of device.
(error_table_$invalid_state>
Meaning: The operation requested is not possible because
the specified device is in a state inconsistent with that
operation.

Request is inconsistent with state of socket.
<error_table_$net_invalid_state>
Meaning: Network only. Some operation could not be
performed on the user's Network connection, because the

~ Copyright~ 1973, Massachusetts Institute of Technology
and Honeywe 11 Info rma t ion Sys terns Inc.

MULTICS PROGRAMMERS' MANUAL

Status Codes
Handl ing Unusual Occurrences

Page 15
10/3/73

present state of the connection does not allow it. For
example, it is not possible to read or write on a Network
socket that is not connected to a foreign Network host.

Request not recognized.
(error_table_$request_not_recognized>
Meaning: The user requested a program to perform an action
that it was not prepared to perform.

Requested tape backspace unsuccessful.
(error_table_$no_backspace}
Meaning: From nstd_: An unsuccessful backspace to retry
writing the record after a bad transmission occurred.

Requested volume is already mounted.
(error_table_$redundant_mount>
Meaning: The tape reel or other volume of detachable nature
is already mounted on the drive requested.

Requested volume is not yet mounted.
(error_table_$mount_not_ready)
Meaning: The tape real or other volume of detachable nature
is still being mounted on the drive requested.

Ring brackets input to directory control are invalid.
(error_table_$bad_ring_brackets)
Meaning: The ring brackets to be added to an ACL are
inconsistent or illegal.

Segment already known to process.
(error_table_$segknown>
Meaning: The segment is already known to the process and
the information returned by the call should be assumed to be
valid.

Segment is not bound.
(error_table_$not_bound)
Meaning: The referenced segment is not a bound segment.

Segment not found.
(error_table_$seg_not_found)
Meaning: The segment was not found using the user's search
rules.

Segment not known to process.
(error_table_$seg_unknown)
Meaning: The user has attempted to terminate a segment that
is not known to this process.

Segment not of type specified.
(error_table_$not_seg_type)
Meaning: The segment specified as an argument was not of
the type expected; e.g., a segment specified to the mail
command as a mailbox was actually a directory.

Some directory in path specified does not exist.
(error_table_$no_dir>
Meaning: The user specified a path name containing a

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Status Codes
Handling Unusual Occurrences
Page 16

directory that does not exist.
Specified buffer size too large.

(error_table_$buffer_big)

MULTICS PROGRAMMERS' MANUAL

Meaning: From nstd_: too large a read/write request was
passed to the Hardcore Ring tape OCM.

Specified control argument is not implemented by this command.
(error_table_$badopt)
Meaning: A control argument was used that is not appl icable
to this particular command or, perhaps, a val id control
argument was misspelled.

Specified offset out of bounds for this device.
(error_table_$dev_offset_out_of_bounds)
Meaning: From tape_: A nonzero offset was passed to the
seek request.

Specified socket not found in network data base.
(error_table_$net_socket_not_found)
Meaning: Network only. An attempt has been made to perform
an operation on a Network socket connection of that the
Multics Network Control Program has no record. A
now-invalid socket identifier may have been retained from a
previous invocation of some program in the user's process.

Status permission missing on directory containing entry.
(error_table_$no_s_permission)
Meaning: The user attempted to access an entry in a manner
requiring s (status) permission on the superior directory
when he did not have permission to that directory.

Strings are not equal.
(error_table_$strings_not_equal)
Meaning: Character or bit strings that should be equal were
not equal.

Supplied area too small for this request.
(error_table~$area_too_small)
Meaning: The supplied area is too small for this request.

Supplied identifier already exists in data base.
(error_table_$id_already_exists)
Meaning: An identifier that must only appear once in a data
base has appeared more than once.

Supplied machine conditions are not restartable.
(error_table_$no_restart)
Meaning: The user attempted to restart (using the start
command) after a fault that cannot be restarted because the
machine conditions are invalid.

Symbol segment not found.
(error_table_$no_sym_seg)
Meaning: The symbol segment was not found.

Syntax error in ascii segment.
(error_table_$badsyntax)
Meaning: There was a syntax error in an ASCI I segment.

~ Copyright~ 1973~ Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Status Codes
Handling Unusual Occurrences

Page 17
10/3/73

System service process not currently available.
(error_table_$nosys)
Meaning: The requested service normally provided by the
system cannot be used at this time.

The NCP could not find a free table entry for this request.
(error_table_$net_table_space)
Meaning: Network only. A system-wide data base maintained
by the Network Control Program is full, and no more Network
connections can be established at this time. If this
problem persists, it should be reported so that increasing
Network traffic can be accommodated.

The access name specified has an illegal syntax.
(error_table_$bad_name)
Meaning: An access control name was encountered that was
not of the form "person_id.project_id.tag."

The directory hash table is full.
(error_table_$full_hashtbl)
Meaning: A user has tried to add two many names within a
directory. {This will not be restricted in the future and
the status code will no longer be returned.}

The directory is the ROOT.
(error_table_$root)
Meaning: The root has no branch and therefore, the
requested operation does not work for this directory.

The equal name specified had illegal syntax.
(error_table_$bad_equal_name)
Meaning: An equal name: 1) had more than one == component;
2) contained a < or >character; 3) had an illegal character
{e.g., tab or new 1 ine}; 4) had more than one = in a
component that was not ==; or 5) had a null component.

The event channel specified is not a valid channel.
(error_table_$invalid_channel)
Meaning: A channel name was supplied to ipc_ that does not
correspond to an existing event channel.

The event channel table was full.
(error_table_$ect_full)
Meaning: No more event channels can be created in the
current ring unless some existing channels are deleted.

The event channel table was in an inconsistent state.
(error_table_$inconsistent_ect)
Meaning: There is an inconsistency in the data bases of
ipc_, probably resulting from interrupting ipc_ while it was
running. A new process is recommended.

The initial connection has not yet been completed.
(error_table_$net_ipc_not_concluded)
Meaning: Network only. The user's process has made a call
to a Network connection management program (such as

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Status Codes
Handling Unusual Occurrences
Page 18

MULTICS PROGRAMMERS' MANUAL

net_ipc_> to gain control over a socket connection on which
a connection attempt has been initiated but has not yet been
completed. The user's process should wait for a wakeup from
the connection management program before making this call.

The lock could not be set in the given time.
<error_table_$lock_wait_time_exceeded)
Meaning: An attempt was made to lock a lock already locked
by another process and the lock was not relinquished to the
current process in the specified amount of time.

The lock was already locked by this process.
(error_table_$locked_by_this_process)
Meaning: An attempt was made to lock a lock that was
already locked by the current process.

The lock was locked by a process that no longer exists, therefore
the lock was reset.

(error_table_$invalid_lock_reset.>
Meaning: An attempt was made to lock a lock that was
already locked by another process; however, the other
process does not currently exist so the lock was forcibly
locked for the current process.

The maximum depth in the storage system hierarchy has been
exceeded.

(error_table_$max_dePth_exceeded)
Meaning: The maximum depth of the storage system hierarchy
is 16 levels. An attempt was made to create an entry at a
deeper level.

The name specified contains non-ascii characters.
(error_table_$invalid_ascii>
Meaning: The user specified an access control name which
contains non-ASCII characters.

The name was not found.
(error_table_$name_not_found)
Meaning: The entry name specified by the user was not found
in the directory.

The normal/ge-xtnd switch is set incorrectly on the printer
controller.

(error_table_$print_mode_switch)
Meaning: The switch on the printer controller governing the
normal or ge-xtnd mode setting is set incorrectly.

The operation would leave no names on entry.
<error_table_$nonamerr)
Meaning: An attempt has been made to delete the last name
on a storage system entry.

The process's limit for this device type is exceeded.
(error_table_$device_limit_exceeded)
Meaning: From tape_: the caller already has attached to
his process the maximum number of drives allowed to be
assigned at anyone time.

€) Copyright, 1973~ Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Status Codes
Handling Unusual Occurrences

Page 19
10/3/73

The reference name count is greater than the number of reference
names.

(error_table_$refname_count_too_big)
Meaning: The reference name count is greater than the
number of reference names on an initiated segment.

The requested action was not performed.
(error_table_$action_not_performed)
Meaning: The user requested some action but either 1) had
previously directed the program to perform only certain
other actions, or 2) directed the program to not perform the
action when questioned about it.

The rest of the tape is blank.
(error_table_$blank_tape)
Meaning: From tape_: an attempt was made to read a blank
tape (returned only by the attach request).

The same fault will occur again if restart is attempted.
(error_table_$useless_restart)
Meaning: The user attempted to restart (using the start
command) after a fault that should not be restarted because
it will recur immediately.

The specified detachable volume has not been registered.
useless_restart

The same faule occur again if restart is attempted.
(error_table_$unregistered_volume)
Meaning: The tape reel or other detachable volume has not
been registered with Multics Operations, and therefore
cannot be user

The star convention is not implemented by this procedure.
(error_table_$nostars)
Meaning: This procedure does not allow any special
characters in name arguments.

The stream is attached to more than one device.
(error_table_$multiple_io_attachment)
Meaning: The specified stream was associated with more than
one device when the attempt was made to get information
about it. Therefore, not all the associations could be
returned.

There are too many links to get to a branch.
(error_table_$toomanylinks)
Meaning: The number of links traversed to refer to a branch
has exceeded the system limit (currently 10).

There is an inconsistency in arguments to the file system.
(error_table_$argerr)
Meaning: The arguments given were incorrect because of
type, number, and/or format.

There is an internal inconsistency in the segment.
(error_table_$bad_segment)

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Status Codes
Handling Unusual Occurrences
Page 20

MULTICS PROGRAMMERS' MANUAL

Meaning: From object_info_: the segment is not an object
segment. From message segment facil ity: the message
segment was being salvaged or was left in an inconsistent
state (perhaps due to a system crash).

There is no initial connection in progress from this socket.
(error_table_$net_no_icp)
Meaning: Network only. The user's process has made a call
to a Network connection management program (such as
net_icp_) to gain control over a socket connection without
having previously called this program to initiate that
connection. This may indicate a programming error in the
user-level Network interface program being used.

There is no more room in the KST.
(error_table_$nrmkst)
Meaning: There is no more room in the KST to allocate KST
entries. A solution for this problem is to terminate
segments, terminate reference names, or to cause a new
process to be created.

There is no room to make requested allocations.
(error_table_$noalloc)
Meaning: The user-specified area for return arguments is
not large enough, or the user attempted to add an entry to a
directory that had no room for additional entries.

There was an attempt to create a copy without correct access.
(error_table_$invalid_copy)
Meaning: An attempt has been made to initiate a directory
with the copy switch on.

There was an attempt to delete a non-empty directory.
(error_table_$fulldir)
Meaning: The user attempted to delete a directory that
contains branches and/or links.

There was an attempt to make a directory unknown that has
inferior segments.

(error_table_$infcnt_non_zero)
Meaning: There was an attempt to make a directory unknown
that has inferior segments known.

There was an attempt to move segment to non-zero length entry.
(error_table_$clnzero)
Meaning: The user called hcs_$fs_move_file or
hcs_$fs_move_seg and specified a nonzero length segment as
the entry to move to and did not specify the truncate
switch.

There was an attempt to use an invalid segment number.
(error_table_$invalidsegno)
Meaning: The user attempted to use a pointer that contained
a segment number that does not reference any segment known
to his process.

This operation is not allowed for a directory.

Copyright, 1973; Massachusetts
and Honeywell

Institute of Technology
Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

(error_table_$dirseg)

Status Codes
Handling Unusual Occurrences

Page 21
10/3/73

Meaning: The attempted operation is illegal when performed
on a directory.

This operation is not allowed for a segment.
(error_table_$nondirseg)
Meaning: The attempted operation is illegal when performed
on a segment.

This procedure does not implement the requested version.
(error_table_$unimplemented_version)
Meaning: The version number on a data structure is unknown
to the system module attempting to manipulate the data,
indicating that the data might not be in the expected
format.

Too many 11(11 's in pathname.
(error_table_$lesserr)
Meaning: The user supplied a relative path name that
contains more less than characters than his current working
directory is deep in the hierarchy.

Too many buffers specified.
(error_table_$too_manY_buffers)
Meaning: Not enough wired core exists to transfer the
requested data.

Too many read delimiters specified.
(error_table_$too_many_read_delimiters)
Meaning: The type of device associated with the given
stream does not support the given number of read delimiters
or break characters at the current element size. It may be
possible to specify fewer read delimiters or break
characters.

Too many search rules.
(error_table_$too_many_sr>
Meaning: The number of search rules to be used exceeds the
system limit.

Translation failed.
(error_table_$translation_failed)
Meaning: The translation was not able to produce a usable
object segment because of errors in the source segment.

Typename not found.
(error_table_$typename_not_found)
Meaning: The device type specified in a call to the I/O
system is unknown.

Unable to convert character date/time to binary.
(error_table_$date_conversion_error)
Meaning: Illegal syntax or conflicting specifications were
used in the input string that specifies the date/time.

Unable to create a copy.
(error_table_$no_create_copy)

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Status Codes
Handling Unusual Occurrences
Page 22

MULTICS PROGRAMMERS' MANUAL

Meaning: A copy of the desired segment could not be
created.

Unable to initiate the copy.
(error_table_$copy_not_init)
Meaning: The copy of the desired segment cound not be
initiated.

Unable to make original segment known.
(error_table_$no_makeknown)
Meaning: A segment with a copy switch on could not be
initiated and, hence, no copy could be made.

Unable to move segment because of type, access or quota.
(error_table_$no_move)
Meaning: The segment could not be moved because of type.
access or quota.

Unable to process a search rule string.
(error_table_$bad_string)
Meaning: The syntax in a search rule string is
unacceptable.

Unable to set the bit count on the copy.
(error_table_$no_set_btcnt)
Meaning: The bit count on the copy of the desired segment
could not be set.

Undefined order request.
(error_table_$undefined_order_request)
Meaning: The request specified in this 110 system order
call does not exist for the type of device associated with
the given stream name.

Unrecognizable ptrname on seek or tell call.
(error_table_$undefined-ptrname)
Meaning: An invalid reference pointer name was given in an
110 system seek or tell call.

Unrecoverable data-transmission error on physical device.
(error_table_$device_parity)
Meaning: From tape_: the program was physically unable to
finish writing the tape or unable to read the desired tape
r~cord. If another read request is made, processing begins
with the next logical record.

Use of star convention resulted in no match.
(error_table_$nomatch)
Meaning: The use of the star convention resulted in no
match during the requested directory search.

User name not on access control 1 ist for branch.
(error_table_$user_not_found)
Meaning: A storage system subroutine for deleting or
listing ACL entries could not find a name that was
requested.

Wrong number of arguments supplied.
(error_table_$wrong_no_of_args)

Copyright; 1973; Massachusetts Institute of Technolo~v
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Status Codes
Handling Unusual Occurrences

Page 23
10/3/73

Meaning: A program was not passed the correct number of
arguments.

Zero length segment.
(error_table_$zero_length_seg)
Meaning: The bit count of the segment indicates that it is
of zero length.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Status Codes
Handling Unusual Occurrences
Page 24

MULTICS PROGRAMMERS' MANUAL

The following is an alphabetic cross-reference by
error_table_ entry name to printed messages listed in the first
part of this write-up. The error_table_$ prefix has been removed
from these entry names to facilitate perusing.

action_not_performed
The requested action was not performed.

already_assigned
Indicated device assigned to another process.

a rea_too_sma 11
Supplied area too small for this request.

arg_ignored
Argument ignored.

argerr
There is an inconsistency in arguments to the file system.

att_loop
Attachment loop.

bad_acl_mode
Bad mode specification for ACL/CACL.

bad_arg_acc
Improper access to given argument.

bad_arg_type
Bad gate for entry referenced.

bad_class_def
Bad class code in definition.

bad_command_name
Improper syntax in command name.

bad_entry_point_name
Illegal entry point name in make_ptr call.

bad_equal_name
The equal name specified had illegal syntax

bad_i ndex
Internal index out of bounds.

bad_l abe 1
Incorrect detachable medium label.

bad_link_target_init_info
Illegal initialization info passed with create-if-not-found
1 ink.

bad_l ink_type
Illegal type code in type pair block.

bad_mode
Improper mode specification for this device.

bad_mount_request
Mount request could not be honored.

bad_ms_convert
Attempt to convert directory or link to multisegment file.

bad_ms_file

(C) Copyright:, 1973:, t"1assachusetts Institute of Technology
'-' and Honeywell Information Systems Inc.

HULTICS PROGRAMMERS' MANUAL

Status Codes
Handling Unusual Occurrences

Page 25
10/3/73

Directory or link found in multisegment file.
bad_name

The access name specified has an illegal syntax.
bad_processid

Current processid does not match stored value.
bad_ptr

Argument is not an ITS pointer.
bad_ring_brackets

Ring brackets input to directory control are invalid.
bad_segment

There is an internal inconsistency in the segment.
bad_self_ref

Illegal self reference type.
bad_string

Unable to process a search rule string.
bad_tapeid

Invalid volume identifier.
bad_vo 1 i d

Invalid volume identifier.
badca 11

Procedure called improperly.
badequal

Illegal use of equals convention.
badopt

Specified control argument is not implemented by this
command.

badpath
Bad syntax in pathname.

badstar
Illegal entry name.

badsyntax
Syntax error in ascii segment.

bigarg
Argument too long.

blank_tape
The rest of the tape is blank.

boundviol
Attempt to access beyond end of segment.

buffer_big
Specified buffer size too large.

change_first
Attempt to change first pointer.

clnzero
There was an attempt to move segment to non-zero length
entry.

command_line_overflow
Expanded command line is too large.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Status Codes
Handling Unusual Occurrences
Page 26

copy_not_jnit
Unable to initiate the copy.

dart_abort
Dartmouth job aborted.

data_improperly_terminated

MULTICS PROGRAMMERS' MANUAL

Relevant data terminated improperly.
date_conversion_error

Unable to convert character date/time to binary.
defs_loop

Looping searching definitions.
dev_nt_assnd

10 device not currently assigned.
dev_offset_out_of_bounds

Specified offset out of bounds for this device.
device_end

Physical end of device encountered.
device limit exceeded

The process's limit for this device type is exceeded.
device-parity

Unrecoverable data-transmission error on physical device.
dirlong

Directory pathname too long.
dirseg

This operation is not allowed for a directory.
dup_ent_name

Duplicate entry name in bound segment.
ect_full

The event channel table was full.
empty_acl

ACL/CACL is empty.
entlong

Entry name too long.
execute_data

Attempt to execute in data segment.
force_bases ,

No bases supplied in force call.
fu ll_hashtb 1

The directory hash table is full.
fulldir

There was an attempt to delete a non-empty directory.
id_already_exists

Supplied identifier already exists in data base.
imp_down

Multics IMP is down.
improper_data_format

Data not in expected format.
inconsistent

Inconsistent combination of control arguments.

~ Copyright! 1973, Massachusetts Institute of Technology
'-' and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

inconsistent_ect

Status Codes
Handling Unusual Occurrences

Page 27
10/3/73

The event channel table was in an inconsistent state.
incorrect_access

Incorrect access to directory containing entry.
infcnt_non_zero

There was an attempt to make a directory unknown that has
inferior segments.

i nva 1 i d_asc i i
The name specified contains non-ascii characters.

invalid_backspace_read
Invalid backspace_read order call.

invalid_channel
The event channel specified is not a valid channel.

invalid_copy
There was an attempt to create a copy without correct
access.

invalid_device
Attempt to attach to an invalid device.

invalid_elsize
Invalid element size.

invalid_lock_reset
The lock was locked by a process that no longer exists,
therefore the lock was reset.

invalid~ax_length
Attempt to set max length of a segment less than its current
length.

invalid_mode
Invalid mode specified for ACL.

invalid_move_quota
Invalid move of quota would change terminal quota to non
terminal •.

invalid_project_for-&ate
Invalid project for gate access control list.

invalid_read
Attempt to read or move read pointer on device which was not
attached as readable.

invalid_seek_last_bound
Attempt to manipulate last or bound pointers for device that
was not attached as writeable.

invalid_setdelim
Attempt to set delimiters for device while element size is
too large to support search.

Invalid_state
Request is inconsistent with current state of device.

i nva 1 i d_wr i te
Attempt to write or move write pointer on device which was
not attached as writeable.

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Status Codes
Handling Unusual Occurrences
Page 28

invalidsegno

MULTICS PROGRAMMERS' MANUAL

There was an attempt to use an invalid segment number.
io_no_permission

Process lacks permission to alter device status.
io_st i ll_assnd

10 device failed to become unassigned.
ioat_err

Error in internal ioat information.
ioname_not_active

loname not active.
ioname_not_found

loname not found.
ionmat

loname already attached and active.
lesserr

Too many "<" 's in pathname.
lock_not_locked

Attempt to unlock a lock that was not locked.
lock_wait_time_exceeded

The lock could not be set in the given time.
locked_by_other_process

Attempt to unlock a lock which was locked by another
process.

locked_by_this_process
The lock was already locked by this process.

longeql
Equals convention makes entry name too long.

loterr
Error zeroing entry in the linkage offset table.

max_depth_exceeded
The maximum depth in the storage system hierarchy has been
exceeded.

r.1 i sma tched_i te r
Mismatched iteration sets.

missent
Missing entry in outer module.

moderr
Incorrect access on entry.

mount_not_ready
Requested volume is not yet mounted.

mount_pending
Mount request pending.

multiple_io_attachment
The stream is attached to more than one device.

name_not_found
The name was not found.

namedup
Name duplicationo

A. rnnu t" : ah t-'V ...,.'-'...,~. 1 0 ",-, 1973~ Massachusetts
and Honeywell

Institute of Technology
Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

negative_nelem

Status Codes
Handl ing Unusual Occurrences

Page 29
10/3/73

Negative number of elements supplied to data transmission
entry.

negative_offset
Negative offset supplied to data transmission entry.

net_a 1 ready_i cp
An initial connection is already in progress from this
socket.

net_bad_connect
Request for connection received from improper foreign
socket.

net_badJender
Bad socket gender involved in this request.

net_bad_host
Illegal host number or ide

net_fhost_down
Foreign host is down.

net_fhost_inactive
Communications with this foreign host not enabled.

net_fimp_down
Foreign IMP is down.

net_ipc_bad_state
Initial connection socket is in an improper state.

net_ipc_error
A logical error has occurred in initial connection.

net_icp_not_concluded
The initial connection has not been completed.

net_invalid_state
Request is inconsistent with state of socket.

net_no_i cp
There is no initial connection in progress from this socket.

net_not_up
Network control program not in operation.

net_rf c_refused
Request for connection refused by foreign host.

net_socket_closed
Netword connection closed by foreign host.

net_socket_not_found
Specified socket not found in network data base.

net_table_space
The NCP could not find a free table entry for this request.

net_timeout
Connection not completed within specified time interval.

new_offset_negative
New offset for pointer computed by seek entry is negative.

no_append
Append permission missing.

€) Copyr i ght, 1973, f-<1assachusetts I nst i tute of Techno logy
and Honeywell Information Systems Inc.

Status Codes
Handling Unusual Occurrences
Page 30

MULTICS PROGRAMMERS' MANUAL

no backspace
- Requested tape backspace unsuccessful.

no_create_copy
Unable to create a copy.

no_defs
Bad definitions pointer in linkage.

no_device
No device currently available for attachment.

no_dir
Some directory in path specified does not exist.

no_ext_sym
External symbol not found.

no_info
Insufficient access to return any information.

no_io_interrupt
No interrupt was received on the designated 10 channel.

no~ob_core
Could not create dartmouth job core.

no_l i nkage
Linkage section not found.

no_makeknown
Unable to make original segment known.

no_move
Unable to move segment because of type, access or quota.

no_prph_card
No PRPH card was found for the requested device.

no_restart
Supplied machine conditions are not restartable.

no_room_for_dsb
No room available for device status block.

no_s_permission
Status permission missing on directory containing entry.

no_set_btcnt
Unable.to set the bit count on the copy.

no_sym_seg
Symbol segment not found.

no_wi red_structure
No wired structure could be allocated for this device
request.

noalloc
There is no room to make requested allocations.

noarg
Expected argument missing.

nodescr
Expected argument descriptor missing.

noentry
Entry not found.

no 1 i nkag

® Copyright; 1973; Massachusetts Institute of Technology
and Honeywe 11 Info rma t i on Sys terns Inc.

MULTICS PROGRAMMERS' MANUAL

Status Codes
Handl ing Unusual Occurrences

Page 31
10/3/73

No/bad linkage info in the lot for this segment.
nolot

No linkage offset table in this ring.
nomatch

Use of star convention resulted in no match.
nonamerr

The operation would leave no names on entry.
nondirseg

This operation is not allowed for a segment.
nostars

The star convention is not implemented by this procedure.
nosys

System service process not currently available.
not_a_branch

Entry is not a branch.
not_act_fnc

Procedure was not invoked as an active function.
not_attached

Process not attached to indicated device.
not_bound

Segment is not bound.
not_in_proper_bracket

Not in proper ring bracket to perform desired operation.
not_seg_type

Segment not of type specified.
notadir

Entry is not a directory.
nota 11 oc

Allocation could not be performed.
nrmkst

There is no more room in the KST.
null_brackets

Null bracket set encountered.
odd_no_of_args

Odd number of arguments.
oldnamerr

Name not found.
oldobj

Obsolete object segment format.
out_of_sequence

A call that must be in a sequence of calls was out of
sequence.

pathlong
Pathname too long.

print_mode_switch
The normal/ge-xtnd switch is set incorrectly on the printer
controller.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Status Codes
Handling Unusual Occurrences
Page 32

recursion_error
Infinite recursion.

redundant_mount

MULTICS PROGRAMMERS' MANUAL

Requested volume is already mounted.
refname_count_too_big

The reference name count is greater than the number of
reference names.

request_not_recognized
Request not recognized.

root
The directory is the ROOT.

rqover
Record quota overflow.

safety_sw_on
Attempt to delete segment whose safety switch is on.

sameseg
Attempt to specify the same segment as both old and new.

seg_not_found
Segment not found.

seg_unknown
Segment not known to process.

segknown
Segment already known to process.

segnamedup
Name already on entry.

sma llarg
Argument size too small.

stack_overflow
Not enough room in stack to complete processing.

strings_not_equal
Strings are not equal.

too_many_args
Maximum number of arguments for this command exceeded:

too_many_buffers
Too many buffers specified.

too_many_names
Name list exceeds maximum size.

too~many_read_delimiters
Too many read delimiters specified.

too_many_sr
Too many search rules.

toomanylinks
There are too many links to get to a branch.

translation aborted
Fatal error. Translation aborted.

translation_failed
Translation failed.

typename_not_found

(C) COD Y rig h t ~ 19 7 3 ~ ~1a s sac h use t t sin s tit ute 0 f Tee h nolo g y
'-' and Honeywell Information Systems Inc.

t,1UL TICS PROGRAMMERS' t4A[~UAL

Typename not found.
unbalanced_brackets

Brackets do not balance.
unbalanced_parentheses

Parentheses do not balance.
unbalanced_quotes

Quotes do not balance.
undefined_order_request

Undefined order request.
undefined_ptrname

Status Codes
Handling Unusual Occurrences

Page 33
10/3/73

Unrecognizable ptrname on seek or tell call.
unimplemented_ptrname

Po inter name passed to seek or te 11 not current 1 y
implemented by it.

unimplemented_version
This procedure does not implement the requested version.

unregistered_volume
The specified detachable volume has not been registered.

useless_restart
The same fault will occur again if restart is attempted.

user_not_found
User name not on access control list for branch.

\'~rong_channe l_r i ng
An event channel is being used in an incorrect ring.

wrong_no_of_args
Wrong number of arguments supplied.

zero_length_seg
Zero length segment.

@ Copyright, 1973, t·1assachusetts Institute of Technology
and Honeywe 11 Info rma t ion Sys tems Inc. (END) *

MULTICS PROGRAMMERS' MANUAL

Handling Unusual Occurrences
10/18/73

l ! ~ T 1'\ ... f!' Y S T r-l. " 1'\ II n • T • ,... N S ,II. ~! n n r- r- A t 1. T ,... N I IIU • Til". T • 1'\ N f!' Ja..L..¥.l.. !L!:.;) I !:.IVI '" U I'" U , I 'U I .c.Ll.!:L U c. r t\ U L I Y.L Y.!!J...L t\ '" I 'U I ;)

System conditions are signalled to report certain unusual
occurrences encountered by system procedures. The MPM Reference
Guide section, The Multics Condition Mechanism, describes the
signalling and handling of conditions in general. See also the
MP"M Reference Gu i de sect ion, Strateg i es fo r Handl i ng Unusua 1
Occurrences.

This section lists the conditions signalled by system
procedures, and the default actions taken for each. The default
on unit is invoked if no other user or system on unit has been
established for the condition. The conditions are listed in
alphabetical order by name.

When present, the parenthetical type designator at the
right margin on the same line with the name indicates that the
condition is either:

1) defined by the PL/I language; or

2) due to a hardware fault or an error encountered while
processing a hardware fault {indicating that a processor
state description is available}.

Otherwise, the condition is neither of these.

Four items follow for each condition:

1) cause

2) default action

3) restrictions

4) data structure

is the reason the condition is signalled;

is a brief description of the action taken
by the default on unit;

indicate when the user should not attempt
to handle the condition and note when
restarting after an occurrence of the
condition is inappropriate;

is the PL/I declaration of the data that
can be pointed to by info_ptr, the fourth
argument available to a condition handler.
(See the MPM Subsystem Writers' Guide
section, Multics Condition Mechanism
Arguments, for details.) Unless otherwise
specified, it is not generally useful for
the handler to change the values of
variables in the data structure.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

System Conditions
Handling Unusual Occurrences
Page 2

~ flLl Condition ~ Structyre

MULTICS PROGRAMMERS' MANUAL

Most of the PL/I conditions have the data structure
described below. Only the items associated with a particular
instance of a condition are filled in. The relevant information
should be obtained from the PL/I defined ondata functions. Users
should not refer to this structure (beyond the header) since it
is primarily an implementation vehicle for the ondata functions.

For brevity, the data structure item of PL/I conditions that
use this data structure is listed as lithe standard PL/I data
structure".

declare 1 info aligned,
2 length fixed bin,
2 version fixed bin,
2 action_flags aligned,

3 cant_restart bit(l),
3 default_restart bit(l),
3 pad bit(34),

2 info_string char(256) var,
2 status_code fixed bin(35),
2 i d cha r (8) i nit (lip 1 i ocond") ,
2 content_flags aligned,

(3 v1sw,
3 oncode_sw,
3 onfile_sw,
3 file_ptr_sw,
3 onsource_sw,
3 onchar_sw,
3 onkey_sw,
3 onfield_sw) bit(1) unaligned,

2 on code fixed bin(35),
2 onfile char(32) aligned,
2 f i 1 e pt r pt r,
2 onsource char(256) var,
2 oncharindex fixed bin,
2 onkey_onfield char(256) var;

1) length is the length in words of this structure.

2) version is the version number of this structure.

3) action_flags indicates appropriate behavior for a handler:

if "l"b, a handler should never attempt to
return to the signaling procedure.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

System Conditions
Handl ing Unusual Occurrences

Page 3
10/18/73

default_restart if 1f1"b, the computation can resume with no
further action on the handler's part except a
return.

info_string

status_code

id

v1sw

oncode_sw

onfile_sw

file-ptr_sw

onsource_sw

onchar_sw

onkey_sw

onfield_sw

oncode

onf i 1 e

file_ptr

is a printable message about the condition.

is the status code, if any, that caused the
condition to be signalled.

identifies this structure as belonging to a
PL/I condition.

if "l"b, indicates that the condition was
raised by a version 1 PL/I procedure.

if "l"b, indicates that the structure
contains a valid oncode.

if 1I1 f1 b, indicates that a file name has been
copied into the structure.

if "l"b, indicates that there is a file
associated with this condition.

if "l"b, indicates that there is a val id
onsource string for this condition.

if "1"b, indicates that there is a val id
onchar index in this structure.

if "l"b, indicates that there is a valid
onkey string in this structure.

if "1 f1 b, indicates that there is a val id
onfield string in this structure.

is the condition's oncode if oncode_sw =
"l"b.

is the onfile string if onfile_sw = "l"b;

is a pointer to a file value if file_ptr_sw =
"l"b.

18) onsource is the onsource string if onsource_sw = "l"b.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

System Conditions
Handling Unusual Occurrences
Page 4

19) oncharindex

20) onkey_onfield

is character offset in onsource of the
offending character if onchar_sw = "l"b.

is the onkey string if onkey_sw = "l"b and is
the onfield string if onfield_sw = "l u b.

Shorthand Notation

One default action description occurs frequently. For
brevity, it is 1 isted as

"prints a message and returns to command level"

to mean

"an error message is printed on the stream "error_output",
and the user is placed at command level with a higher level
stack frame than before the condition was signalled".

Thus his stack is intact and the history of the error is
preserved. The user can hold the stack for further debugging
activities, or he can release it. (See the MPM write-ups for the
debug, hold, release and start commands.)

System Conditions

Cause: the user incorrectly used an active function in a
command line. The procedure active_fnc_err_ signals this
condition. See the MPM Reference Guide section, The Command
Language.

Default action: prints a message and returns to command
level.

Restrictions: none.

Data structure:

declare 1 active_function_error_info aligned,
2 length fixed bin,
2 version fixed bin,
2 action_flags aligned,

3 cant_restart bit(l) unal igned,
3 default_restart bit(1) unaligned,
3 pad bit(34) unaligned,

€) Copyright, 1973, Massachusetts Institute of Technology
rinn Hnn~vw~ll Infn~m~~inn Svc~~mc Inr_ - •• - •• _ •• _" " ••••• - ~.--,~ .. --....'I .. ~ ••• --...

MULTICS PROGRAMMERS' MANUAL

1) length

System Conditions
Handling Unusual Occurrences

Page 5
10/18/73

2 info_string char(256) var,
2 status_code fixed bin(35),
2 nameJ)tr ptr,
2 name_ith fixed bin,
2 errmsgJ)tr ptr,
2 errmsg_lth fixed bin,
2 max_errmsg_lth fixed bin,
2 print_sw bit(l);

is the length
structure.

is words of

2) version is the version number of this structure.

3) action_flags indicates appropriate behavior for a
handler:

if "1 Itb, a handler should never attempt
to return to the signalling procedure.

default_restart if "1 lt b, the computation can resume with

pad

5) status_code

6) name-ptr

no further action on the handler's part
except a return.

is currently ignored.

is a printable message about the
condition.

is the status code being reported by
active_fnc_err_.

is a pointer to a character string
containing the name of the procedure
which called active_fnc_err_.

is the length of the name of the
procedure which called active_fnc_err_.

is a pointer to a character string
containing the error message prepared by
active_fnc_err_. A handler might wish
to alter that message.

is the significant length of the error·
message prepared by active_fnc_err __
This datum can be changed by the

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

System Conditions
Handling Unusual Occurrences
Page 6

handler.

10) max_errmsK-lth is the size of the character string
containing the error message prepared by
active_fnc_err_.

11) print_sw if "1"b, the error message will be
printed by active_fnc_err_ if and when
the handler returns control to it. This
datum can be changed by the handler.

alrm (hardware)

area

Cause: a real-time alarm occurred a specified length of
time after a call by the user to timer_manager_$alarm_call
(to set the alarm). See the MPM write-up for
timer_manager_.

Default action: the handler looks up the alarm that is
expected at the time this one occurred, and calls the
appropriate user-specified procedure. When (if) this
procedure returns, the user's process is returned to the
point at which it was interrupted.

Restrictions: the user should not attempt to handle this
condition.

Data structure: none.

Note: any_other handlers should pass th.is on.

(PL/I)

Cause: the user attempted to either I} allocate storage in
an area that had insufficient space remaining to generate
the storage needed; or 2) assign one area to another, and
the second had insufficient space to hold the storage
allocated in the first.

Default action: prints a message on the "error_outputl1
stream and signals the error condition. Upon a normal
return, the attempted allocation is retried in case the user
has freed some storage from an area in the interim.

Restrictions: none.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc ..

MULTICS PROGRAMMERS' MANUAL

Data structure: none.

System Conditions
Handl ing Unusual Occurrences

Page 7
10/18/73

Cause: the user attempted to make an illegal call to an
outer ring.

Default action:
level.

prints a message and returns to command

Restrictions: none.

Data structure: none.

Cause: the user incorrectly used a command (such as giving
it bad arguments), or a command encountered a situation that
prevented it from completing its operation normally. The
procedure com_err_ signals this condition.

Default action: returns to com_err_, which then prints a
formatted message on the stream "error_output". Other more
sophisticated handlers could reformat the error message to
the individual user's taste, or take some special action
depending on the particular condition in question.

Restrictions: none.

Data structure:

declare 1 command_error_info aligned,
2 length fixed bin,
2 version fixed bin init(2),
2 action_flags aligned,

3 cant_restart bit{l) unaligned,
3 default_restart bite!) unaligned,
3 pad bit(34) unaligned,

2 info_string char(256) var,
2 status_code fixed bin(3S),
2 name-pt r pt r,
2 name_lth fixed bin,
2 errmess_ptr ptr,
2 errmess_lth fixed bin,
2 max_errmess_lth fixed bin init(2S6),

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

System Conditions
Handling Unusual Occurrences
Page 8

2 print_sw bit(l) init("l"b);

1) length

2) version

3) action_flags

is the 1 ength
structure.

in words of this

is the version number of this structure.

indicates appropriate behavior for a
handler:

if "l lt b, a handler should never attempt
to return to the signalling procedure.

default_restart if "l"b, the computation can resume with
no further action on the handler's part
except a return.

pad

5) status_code

6) name-ptr

8) errmess_ptr

9) errmess_lth

is currently ignored.

is a printable
condition.

message about the

is the status code being reported by
com_err _.

is a pointer to a
containing the name
which called com_err_.

character string
of the procedure

is the length of the name of
procedure which called com_err_.

the

is a pointer to a character string
containing the error message prepared by
com_err_. A handler might wish to alter
that message.

is the significant length of the error
message prepared by com_err_. This
datum can be changed by the handler.

10) max_errmess_lth is the size of the character string
containing the error message prepared by
com_err_.

if "1 It b, the error message is printed by
com_err_. This datum can be set by the
handler.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc ..

MUlTICS PROGRAMMERS' MANUAL

System Conditions
Handl ing Unusual Occurrences

Page 9
10/18/73

Cause: the user specified a handler for the
command_question condition that did not return a "yes" or
"no" answer when the data structure element indicated that a
"yes ll or "no" answer was required. The procedure
command_query_ signals this condition.

Default action:
level.

prints a message and returns to command

Restrictions: none.

Data structure: none.

command_question

Cause: a command is asking a question of the user. The
procedure command_query_ signals this condition.

Default action: returns to command_query_, which then
prints the question on the stream "user_output". Other more
sophisticated handlers could supply a preset answer, modify
the question or suppress its printing. See the data
structure below for details.

Restrictions: none.

Data structure:

declare 1 command_quest ion_info,
2 length fixed bin,
2 version fixed bin init(2),
2 action_flags aligned,

3 cant_restart bit(1) unaligned,
3 default_restart bit(l) unaligned,
3 pad bit(34) unaligned,

2 info_string char(2S6) var,
2 status_code fixed bin(3S),
2 query_code fixed bin(3S),
2 question_sw bit(l) ini t (1I1"b) unal igned,
2 yes_or_no_sw bit(1) unaligned,
2 preset_sw bit(1) init("0Ilb) unaligned,
2 answer_sw bit(1) init("1"b) unaligned,
2 name_ptr ptr,
2 name_lth fixed bin,

@ Copyright, 1973, r·1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

System Conditions
Handling Unusual Occurrences
Page 10

1) length

2 question_ptr ptr,
2 question_lth fixed bin,
2 max_Question_lth fixed bin,
2 answer-ptr ptr,
2 answer_lth fixed bin,
2 max_answer_lth fixed bin;

is the length in
structure.

words of this

2) version is the version number of this

3) action_flags

structure.

indicates appropriate behavior for a
handler:

cant_restart if "1 Itb, a handler should never attempt
to return to the signalling procedure.

default_restart if "1 It b, the computation can resume
with no further action on the handler's
part except a return.

pad is currently ignored.

5) status_code

6) pad

7) question_sw

is a printable message
condition.

about the

is the status code that prompted the
call to command_query_.

is currently ignored. (A value of zero
is always passed to the handler.)

if 11"b,
question.
handler.

command_Query_ prints the
This datum can be set by the

if "1 It b, indicates that command_Query_
expects the preset answer (if any)
returned by the handler to be either
"yes" or "no". In th is case, if the
handler returns any other string,
command_query_ signals the
command_Query_error condition.

if "1 It b, the handler is returning
the character string pointed to

in
by

@ Copyr i ght, 1973, rv1assachusetts I nst i tute of Technology
and Honeywell Information Systems Inc~

MULTICS PROGRAMMERS' MANUAL

@

10) answer_sw

11) name-ptr

13) question_ptr

14) question_lth

System Conditions
Handling Unusual Occurrences

Page 11
10/18/73

answer_ptr a
command_query_.
command_query_

preset answer to
In that case,

returns the preset
answer to its caller. That is, it does
not attempt to obtain an interactive
response by reading from the stream
Huser_input". This datum can be
changed by the handler.

if "l"b, contnand_query_ prints the
preset answer (if any). This datum can
be changed by the handler.

is a pointer to a character string
containing the name of the procedure
which called command_query_.

is the length of the name pointed to by
name_ptr.

is a pointer to a character string
containing the question prepared by
command_query_. A handler might wish
to alter that question.

is the significant
question pointed to
This datum can be
handler.

length of the
by question-ptr.

changed by the

15) max_question_lth is the size of the character string
pointed to by question_ptr.

16) answer-ptr

17) answer_lth

is a pointer to a character string that
can be used by the handler to return a
preset answer.

is the significant length of the preset
answer pointed to by answer-ptr. This
datum can be changed by the handler.

is the size of the character string
pointed to by answer_ptr.

Notes: a preset answer is treated exactly as if it had been
read from the stream "user_input"; that is, leading and
trailing blanks and the terminal new line character (if any)

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

System Conditions
Handling Unusual Occurrences
Page 12

are removed.

If the yes_or_no_sw is on and a preset answer
that is not "yes" or "no", command_Query_
condition command_Query_error.

is returned
signals the

conversion (PL/ I)

cput

Cause: a PL/I conversion or runtime-I/O routine attempted
an illegal conversion from character string representation
to some other representation. Possible illegal conversions
are a character other than 0 or 1 being converted to bit
string, and non-numeric characters where only numeric
characters are permitted in a conversion to arithmetic data.

Default action: prints a message on the "error_output"
stream and signals the error condition. Upon a normal
return, the conversion is attempted again, using the value
of the PL/I onsource pseudovariable as the input character
string.

Restrictions: none.

Data structure: the standard PL/I data structure.

Note: the user can establish a handler that uses the onchar
and onsource builtin functions to alter the invalid
character string.

(hardware)

Cause: a CPU-time interrupt occurred after a user-specified
amount of CPU time had passed following a call to
timer_manager_$cpu_call. <See the MPM write-up for
time r _manager _.)

Default action: the handler looks up the CPU time interruPt
that is expected at this time and calls the appropriate
user-specified procedure. When (if) this procedure returns,
the process is returned to the point at which it was
interrupted.

Restrictions: the user should not attempt to handle this
condition.

@) Cop y rig h t , 19 73 , t~a 5 sac h use t t sin s tit ute 0 f T e c h nolo g y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Data structure: none.

System Conditions
Handling Unusual Occurrences

Page 13
10/18/73

Note: any_other handlers should pass this on.

(hardware)

Cause: the user attempted to cross ring boundaries using a
transfer instruction. A CALL or RTCD instruction must be
used to cross ring boundaries.

Default action: prints a message and returns to command
1 eve 1 •

Restrictions: none.

Data structure: none.

de ra i 1 (hardware)

Cause: the user attempted to execute a derai 1 instruction
on the 6180.

Default action:
1 eve 1 •

prints a message and returns to command

Restrictions: usually none. However,
(e.g., Dartmouth) use it for special
operating within such subsystems, the
attempt to handle the condition.

Data Structure: none.

some subsystems
pu rposes * ~~hen

user should not

endfile (f) CPL/I)

Cause: a PL/I get or read statement attempted to read past
the end of data on the file f.

Default action: prints a message on the lIerror_output"
stream and signals the error condition. Upon return from
any handler, control passes to the PL/I statement following
the statement in which the condition was raised.

Restrictions: none.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

System Conditions
Handling Unusual Occurrences
Page 14

Data structure: the standard PL/I data structure.

endpage (f) (PL/I)

error

Cause: PL/I inserted the last "new line" character of the
current page into the output stream of the file f. I.e., if
page_size is the number of lines normally placed on a page,
then the (page_size)th "new line" character is the last one.

Default action: begins the next page on the file f and
returns.

Restrictions: none.

Data structure: the standard PL/I data structure.

Note: the handler can begin a new page via a 'PL/I statement
of the form

pu t f i 1 e (f) page ••• (... .. tit 1 e" •••) ,
or can simply return, permitting the number of lines on the
current page to exceed the number normally occurring.

(PL/I)

Cause: some other (more specific) PL/I condition occurred,
and its handler signalled the error condition.
Alternatively, some PL/I runtime subroutine (e.g., one in
the mathematical library) enountered one of a variety of
errors.

Default action: prints a message and returns to command
1 eve 1 •

Restrictions: if the error condition is not merely an echo
of another PL/I condition, then restarting (i.e., returning
control to the signaller) is usually undefined.

Restarting from other PL/I conditions is discussed under the
individual conditions.

Data structure: the standard PL/I data structure.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

System Conditions
Handling Unusual Occurrences

Page 15
1-0/18/73

{hardware}

Cause: the user attempted an indirect reference through a
word pair containing either a fault tag 1 or a fault tag 3
modifier.

Default action: prints a message and returns to command
level.

Restrictions: none.

Data structure: none.

finish

Cause: the user's process is being terminated by a logout
(either voluntary or involuntary) or by a newJ>roccommand.

Default action: closes all open files and returns.

Restrictions: if the process is terminating because of a
bump or resource limit stop, there is only a small grace
period before the process is actually killed. If a
user-supplied handler does not return, the process continues
to run but in some cases a subsequent process termination is
fata 1 •

Data structure: none.

Note: any_other handles should pass this on.

fixedoverflow (hardware)

Cause: the result of a binary fixed-point operation
exceeded 71 bits, or the result of a decimal fixed-point
operation exceeded 63 digits.

Default action: prints a message on the "error_output"
stream and signals the error condition.

Restrictions: a return to the point where
occurred is prohibited since continued execution
point is undefined.

the signal
from this

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

System Conditions
Handling Unusual Occurrences
Page 16

Data structure: none.

MULTICS PROGRAMMERS' MANUAL

Cause: the user attempted an inward wall crossing through a
gate segment with the wrong number of arguments.

Default action: prints a message and returns to command
level.

Restrictions: none.

Data structure: none.

illegal_modifier (hardware)

Cause: an illegal modifier appeared on an indirect word.

Default action:
level.

prints a message and returns to command

Restrictions: none.

Data structure: none.

Note: this error caused the op_not_complete condition to be
signalled on the 645.

illegal_opcode (hardware)

Cause: the user attempted to execute an illegal operation
code. In a machine language program this could be a simple
programmer error. It could also be a compiler error or a
hardware error.

Default action:
level.

prints a message and returns to command

Restrictions: none.

Data structure: none.

illegal_procedure (hardware)

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

System Conditions
Handling Unusual Occurrences

Page 17
10/18/73

Cause: the
instruction,
i 11 ega 1 way.

user attempted to execute a privileged
or tried to execute an instruction in an

Default action: prints a message and returns to command
level.

Restrictions: none.

Data structure: none.

illegal_ring_order (hardware>

Cause: ring brackets on a segment are in the wrong order;
i.e., not in ascending order.

Default action: prints a message and returns to command
level.

Restrictions: none.

Data structure: none.

illegal_return

Cause: an attempt was made to restore the control unit with
i 11 ega 1 info rma t ion.

Default action:
1 eve 1 •

prints a message and returns to command

Restrictions: none.

Data structure: none.

Cause: an I/O procedure which does not return an I/O system
status code received such a code from an inferior I/O
procedure. The first procedure (e.g., ioa_> reflects the
error by signalling this condition.

Default action: prints a message and returns to command
1 eve 1 •

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

System Conditions
Handling Unusual Occurrences
Page 18

Restrictions: none.

Data structure:

declare 1 io_error_info aligned,
2 length fixed bin,
2 version fixed bin init (O),
2 action_flags aligned,

3 cant_restart bit(l) unaligned,

1) length

2) version

3 default_restart bit(l) unaligned,
3 pad bit(34) unaligned,

2 info_string_char(256) var,
2 stream char(32),
2 status bit(72);

i s the 1 ength
structure.

in words

is always 0 in this case.

of this

3) action_flags indicates appropriate behavior for a
handler:

cant_restart if "l"b, a handler should never attempt
to return to the signalling procedure.

default_restart if "1"b, the computation can resume with
no further action on the handler's part
except a return.

pad is currently ignored.

5) status_code

6) stream

7) status

is a printable
condition.

message about the

is the unexpected status code received
by an 110 procedure.

is the name of the stream on which the
1/0 operation was performed.

is the I/O system status code describing
the error.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywe 11 I nforma t ion Sys terns Inc.

MULTICS PROGRAMMERS' MANUAL

System Conditions
Handling Unusual Occurrences

Page 19
10/18/73

Cause: the user called an ioa entry with illegal
arguments. The possible incorrect calls are:

1) failed to provide a stream name for
ioa_$ioa_stream
ioa_$ioa_stream_nnl

2) failed to provide a correct character string descriptor
for

ioa_$rs
ioa_$rsnnl
ioa_$rsnpnnl

Default action:
level.

prints a message and returns to command

Restrictions: none.

Data structure: none.

key (f) (PL/I)

Cause: the user attempted to specify
PL/I record-I/O statement on the
illegal uses are 1) a keyed search
designated key; and 2) on output,
duplicates a pre-existing key.

an invalid key in a
file f. Two possible
failed to find the

the designated key

Default action: prints a message on the lIerror_output"
stream and signals the error condition. Upon return from
any handler, control passes to the PL/I statement following
the statement in which the condition was raised.

Restrictions: none.

Data structure: the standard PL/I data structure.

Note: the handler can obtain the value of the inval id key
by use of the onkey builtin function. The invalid key
cannot, however, be corrected in the handler.

linkage_error (hardware)

Cause: the user's process encountered a fault tag 2 in a
word pair. It then attempted to reference the external

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

System Conditions
Handling Unusual Occurrences
Page 20

MULTICS PROGRAMMERS' MANUAL

entry specified by the word pair and failed because either
the segment was not found or the entry point did not exist
in that segment.

Default action: prints a message and returns to command
level.

Restrictions: none.

Data structure: none.

lockup (hardware)

Cause: a pending interrupt has not been allowed for too
long. This can be caused by a looping instruction pair, an
infinite indirection chain, or a bar mode interrupt inhibit
bit on for too long.

Default action: prints a message and returns to command
level.

Restrictions: none.

Data structure: none.

Note: this condition was signalled only because of an
infinite indirection chain on the 645.

loop_wait_error

Cause: a procedure
Hardcore Ring called
arguments.

operating in or calling into, the
pxss$loop_wait with bad or illegal

Default action: prints a message and returns to command
level, after leaving the Hardcore Ring <i.e., the default
handler operates only in outer rings).

Restrictions: the user should not attempt to handle this
condition.

Data structure: none.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell information Systems inc.

MULTICS PROGRAMMERS' MANUAL

System Conditions
Handl ing Unusual Occurrences

Page 21
10/18/73

Cause: an absentee queue was found by the message segment
facilty to be in an inconsistent state, or a crawlout from
the Administrative Ring occurred in the message segment
facility.

Default action:
level.

prints a message and returns to command

Restrictions: since the message segment facility is used
only for system services such as absentee queues, the user
should not attempt to handle this condition.

Data structure: none.

mme1, mme2, mme3, mme4 (hardware)

Cause: the user attempted to execute the 6180 instruction
mmen, where n is 1, 2, 3 or 4.

Default action:
level.

prints a message and returns to command

Restrictions: none.

Data structure: none.

Note: the debug command uses the mme2 condition to
implement breakpoints. This the user will encounter
problems if he attempts to set breakpoints in a program that
handles the mme2 condition.

name (f) (PL/ I)

Cause: an invalid identifier occurred in a PL/I get data
statement on the file f.

Default action: prints a message on
"error_output" and signals the error condition.
from any handler, the invalid identifier and its
value field are skipped.

Restrictions: none.

the stream
Upon return
associated

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

System Conditions
Handling Unusual Occurrences
Page 22

MULTICS PROGRAMMERS' MANUAL

Data structure: the standard PL/I data structure.

no_execute_permission (hardware)

Cause: the user attempted to execute a segment to which he
did not have execute permission.

Default action: prints a message and returns to command
level.

Restrictions: none.

Data structure: none.

Cause: the user attempted to read from a segment to which
he did not have read permission.

Default action: prints a message and returns to command
level.

Restrictions: none.

Data structure: none.

no_write-permission (hardware)

Cause: the user attempted to write into a segment to which
he did not have write permission.

Default action: prints a message and returns to command
level.

Restrictions: none.

Data structure: none.

Cause: the user attempted to call into a gate segment
beyond its call limiter; i.e., beyond the upper bound of the
transfer vector in a gate.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell information Systems inc.

MULTICS PROGRAMMERS' MANUAL

System Conditions
Handl ing Unusual Occurrences

Page 23
10/18/73

Default action: prints a message and returns to command
level.

Restrictions: none.

Data structure: none.

Cause: the user attempted to call a segment from a ring not
within the segment's call bracket.

Default action:
level.

prints a message and returns to command

Restrictions: none.

Data structure: none.

(hardware)

Cause: the user attempted to execute a segment from a ring
not within the segment's execute bracket.

Default action:
level.

prints a message and returns to command

Restrictions: none.

Data structure: none.

Cause: the user attempted to read a segment from a ring not
within the segment's read bracket.

Default action: prints a message and returns to command
level.

Restrictions: none.

Data structure: none.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

System Conditions
Handling Unusual Occurrences
Page 24

MULTICS PROGRAMMERS' MANUAL

(hardware)

Cause: the user attempted to write into a segment from a
ring not within the segment's write bracket.

Default action:
1 eve 1 •

prints a message and returns to command

Restrictions: none.

Data structure: none.

Cause: 1) the processor failed to access memory within
approximately 2 ms after its previous memory access.

Default action:
1 eve 1 •

prints a message and returns to command

Restrictions: none.

Data structure: none.

Note: upon return to the signalling procedure, the
processor attempts to continue execution at the point where
the op not co~plete was detected. The processor usually
continues execution correctly but the machire state mi~ht be
such that continued execution is at the user's risk.

(hardware)

Cause: the user attempted to refer to a location beyond the
end of the segment specifipd.

Default action:
1 eve 1 •

prints a message and returns to command

Restrictions: none.

Data structure: none.

I" __ •• _! _L
,-,ujJyr 1l:;!I\', 1973, Massachusetts Institute of Technology

and Honeywell Information Systems Inc.

MUlTICS PROGRAMMFRS' MANUAL

overflow

System Conditions
Handling Unusual Occurrences

Page 25
10/18/73

(ha rd'tJa re)

Cause: the result of a floating-point computation had an
exponent exceeding 127.

Default action: prints a message on the "error_output"
stream and signals the error condition.

Restrictions: returning to the point where the signal
occurred is not allowed since continued execution from this
point is undefined.

Data structure: none.

Cause: the normal paging mechanism of the Multics
supervisor could not bring a referenced page into memory
because the stora~e system device containing the page could
not be read due to a hardware error that could not be
corrected hy the error condition mechanism.

Default action: prints a message and returns to command
1 eve 1 •

Restrictions: none.

Data structure: none.

parity (hardware)

Cause: the process attempted to refer to a location in
memory that has incorrect parity, or to use a RCCl (read
clock) instruction on a memory port that does not have a
clock. The first is a hardware error; the second is a
hardware error or incorrect hardware configuration.

Default action: prints a message and returns to command
level.

Restrictions: none.

Data structure: none.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTlfS PROr,RAMMFRS' MANUAL

System Conditions
Handling Unusual Occurrences
Page 26

program_interrupt

quit

Cause: the user issued the program_interrupt (pi) command
for the express purpose of signalling this condition. The
condition is used by several commands to return to their
internal request level (waiting for the next request) after
the previous request has been aborted by the user pressing
his interruPt (quit) button.

Default action:
1 eve 1 •

prints a message and returns to command

Restrictions: none.

Data structure: none.

Note: any_other handlers should pass this on.

Cause: an interactive user has requested a quit; for
example, by pressing the Quit button on his terminal.

Default action: prints "QUIT" on the terminal, aborts any
pending terminal I/O activity, reverts the standard I/O
attachments to their default settings, and establishes a new
command level, saving the current stack history.

Restrictions: none. But, in general, the user's programs
should not handle the quit condition since this condition is
normally intended to bring t~e process back to command
level. In addition, a program with a quit handler is more
difficult to debug since a bug in the quit handler mir-ht
make it impossible to interrupt the execution of the
program. Certain subsystems can, for various reasons, still
choose to make use of the quit condition; but most programs
should, instead, use the program_interrupt condition as
described eariler in this section.

Data structure: none.

Notes: The standard I/O attachments are described under
Usage in the MPM Reference Guide section Use of the Input
and Output System. any_other handlers should pass this on.

® Copyright, 19 i3, Massachusetts institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMEPS' MANUAL

record (f)

System Conditions
Handling Unusual Occurrences

Page 27
10/18/73

(PL/I)

Cause: a Pl/l read statement on the file f read a record of
a size different from the variable provided to receive it.

Default action: prints a message on the "error_output"
stream and signals the error condition. Upon return from
any handler data is copied from the record to the variable
by a simple bit-string copy as though both were the length
of the shorter.

Restrictions: none.

Data structure: the standard PL/I data structure.

(hardvJare)

Cause: the user attempted to increase the number of records
taken up by the segments inferior to a directory to a number
greater than the secondary storage quota for that directory.

Default action: prints a message and returns to command
level.

Restrictions: none.

Data structure: none.

seg_fault_error (hardware)

Cause: the user attempted to use a pointer with an illegal
segment numher. This situation arises when 1) a segment was
deleted or terminated after the pointer was initialized; 2)
the pointer was not initialized in the current process; or
3) the user had null access to the segment.

Default action: prints a message and returns to command
1 eve 1 •

Restrictions: none.

Data structure: none.

€) Copyripht, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTlrs PROGRAMMERS' MANUAL

System Conditions
Handling Unusual Occurrences
Page 28

simfault_nnnnnn (h a r d't' are)

C a use: the use rat t em pte d to use a nul 1 po i n t e r ; i. e • , a
pointer with a segment number of -1 (2's complement) and an
offset of nnnnnn. The offset is mapped into the 6-character
string nnnnnn that makes up part of the condition name.

Default action: prints a message and returns to command
1 eve 1 •

Restri ctions: none.

Data structure: none.

Note: If a user references through a null pointer with no
offset modification, the condition simfault_OOOOOl is
signa 11 ed.

size (PL/I)

stack

Cause: some value was converted to fixed-point with a loss
of one or more high-order bits or digits.

Default action: prints a message on the "error_output"
stream and signals the error condition.

Restrictions: returning control to the
signal occurred is not allowed since
continued execution are undefined.

point
the

where
results

Data structure: the standard PL/I data structure.

the
of

rause: The user attempted to make a reference within the
last four pages of the stack.

Default action:
level.

prints a message and returns to command

Restrictions: none.

Data structure: none.

Note: any_other handlers should pass this on.

€) Copyright; 1973; Massachusetts Institute of Technoloy-y
and Honeywell Information Systems inc.

MULTICS PROGRAMMERS' MANUAL

System Conditions
Handling Unusual Occurrences

Page 29

storage

'''''0'-'7 ~U/.J.OI IJ

(PL/I)

Cause: the PL/I Usystem storaS!e H has insufficient space for
an attempted allocation.

Default action: prints a message on the
stream and signals the error condition.
return the allocation is retried.

Restrictions: none.

Data structure: none.

"error_output"
Upon a normal

store (hardware)

Cause: an out_of_bounds error occurred while operatirg in
bar mode, or the user referred to a non-existant memory
(e.g., by attempting to read a clock on the memory).

Default action: prints a message and returns to command
level.

Restrictions: none.

Data structure: none.

stringrange (PL/I)

Caus~: the substr pseurlov~riable or builtin fuvctipn
specified a substrin~ that IS not in fact contained In the
string specified.

Default action: prints a message on the "error_output"
stream and signals the error condition.

Restrictions: returning control
signal occurred is not allowed
continued execution are undefined.

to the point where the
since the results of

Data structure: the standard PL/I data structure.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

System Conditions
Handling Unusual Occurrences
Page 30

stringsize (PL/I)

Cause: a string value was assigned to a string variable
shorter than the value.

Default action: returns to the point where the condition
was signalled, causing a truncated copy of the string value
to be assigned to the string variable.

Restrictions: none.

Data structure: the standard PL/I data structure.

subscriptrange (PL/I)

Cause: the value of a subscriPt lies outside the range of
values declared for the bounds of the dimension to which it
applies.

Default action: prints a message on the "error_output"
stream and signals the error condition.

Restrictions: returning control
signal occurred is not allowed
continued execution are undefined.

to the point where the
since the results of

Data structure: the standard PL/I data structure.

Cause: the event channel on which timer_manager_ would go
to sleep could not be created, or ipc_$block returned a
non-zero status code when timer_manager_ went to sleep on
it. Either internal static storage for timer~anager_ has
been destroyed or the system is about to crash. This
condition is also signalled if timer_manager_ is called in a
ring other than that in which the process was created,
indicating a programming error in the calling procedure.

Default action: prints a message and returns to command
1 eve 1 •

Restrictions: the user should only attempt to handle this
in a handler for otherwise unclaimed signals.

Data structure: none.

® Copyr i ght, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

System Conditions
Handling Unusual Occurrences

Page 31
10/18/73

transmit (f> (PL/ I)

Cause: a value was incorrectly transmitted between storage
and the data set corresponding to the file f. In the case
of list-directed input, the condition is signalled after
each assignment by the get statement of a value that might
have been in error due to the bad input line.

Default action: prints a message on the "error_output"
stream and signals the error condition. Upon return from
any handler, the program continues from the point of
detection as though the transmission had been correct.

Restrictions: none.

Data structure: the standard PL/I data structure.

truncation (hardware)

Cause: the user ·executed an extended instruction set
instruction to move string data with the truncation bit set,
and the target string was not large enough to contain the
source string, or bit strings were being combined to the
left or right (also EIS instructions) and there was not
enough room to hold the combined string.

Default action:
1 eve 1 •

prints a message and return to command

Restrictions: none~

Data structure: none.

undefinedfile (f) (PL/I)

Cause: an attempt to open the PL/I file f failed.

Default action: prints a message on the "error_output"
stream and signals the error condition.

Restrictions: none.

Data structure: the standard PL/I data structure.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

System Conditions
Handling Unusual Occurrences
Page 32

underflow (hardware)

Cause: the result of a floating-point computation had an
exponent less than -128.

Default action: prints a message on the "error_output"
stream and returns.

Restrictions: none.

Data structure: none.

Note: before the underflow condition is signalled the
floating-point value in question is set to zero.

unwinder_error

Cause: the user attempted to perform a non-local transfer
to an invalid location.

Default action:
1 eve 1 •

prints a message and returns to command

Restrictions: none.

Data structure:

dec 1 are i nva 1 i d_l abe 1 1 abe 1 ;

1) invalid_label is the invalid label to which this transfer
, was attempted.

zerodivide (Pl/I)

Cause: the user attemPted to divide by zero.

Default handling: prints a message on the "error_output"
stream and signals the error condition.

Restrictions: returning control
signal occurred is not allowed
continued execution are undefined.

to the point where the
since the results of

Data structure: the standard Pl/l data structure.

~ Copyright; 1973; Massachusetts Institute of Technology
'-'" and Honeywell I nformation Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

~ LIMITED SERVICE SYSTEM

Command Language Environment
3/10/72

A small set of Multics commands, all of which are noted for
their light resource usage, compose what is known as the Limited
Service -System (LSS). A user of the LSS is prevented by the
system from using commands outside this set; in addition, his
rate of CPU usage is tightly controlled.-

The LSS provides a way for a project to allow its members
(or a subset of its members) access to computing services with a
ceiling on the amount of money they will spend. For example, a
professor could leave a terminal logged in all day, available to
anyone in his class, and still be sure that only a fixed amount
of money would be spent each day.

To register an LSS user, the project administrator need only
specify the LSS process overseer as that user's process overseer.

The LSS is sufficiently modular that pieces of it (for
instance, the piece that controls which commands are accessible)
may be used in other subsystems. This means that subsystem
writers can easily tailor their own limited systems with their
own list of commands and/or governing parameters. Documentation
of the subroutines necessary to do this are published in the MPM
Subsystem Writers' Supplement (SWS).

The following commands are currently allowed in the LSS:

addname
basic
basic_system
calc
decam
delete
deletename
edm
help
list
listnames
listotals
logout
print
program_interrupt
ready
ready_off
ready_on
rename
start

€) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

_-7"'"

MULTICS PROGRAMMERS' MANUAL

Special Subsystems
3/27/72

lHf MULTICS DARTMOUTH SYSTEM

The Multics Dartmouth System provides a user with a closed
subsystem which duplicates, as closely as possible, the Dartmouth
Time-Sharing System (DTSS) as implemented at Dartmouth College.
Both the command language and the access control mechanism have
been simulated in Multics. The language processors and text
editors of the subsystem are actual Dartmouth object modules,
running in an environment which duplicates that of an HIS-635
computer on which DTSS is normally run.

Most commands operate identically to their counterparts at
Dartmouth. Therefore, a user should refer to the documentation
published by Dartmouth for detailed information.

To use the Multics Dartmouth System, a user's process
overseer should be set to the Dartmouth process overseer. This
operation must be done by the user's project administrator. To
assure the security of the DTSS access control mechanism, a
Multics Dartmouth user will not be able to reference his
Dartmouth directory, except through the Multics Dartmouth System.

Segments created under the Multics Dartmouth System are not
compatible with other Multics segments. The end of the line
convention under DTSS is the ASCII carriage return-new line.
Under the regular Multics system, it is just "new line".

The Multics Dartmouth System uses, unchanged, modules of the
real DTSS. Errors detected in these modules should be referred
to Dartmouth College.

The
noted:

Command

BUILD

BYE

CATALOG

COMPI LE

EDIT

GOODBYE

following commands are supported with differences as

Notes

No change.

Executes the MUltics logout command.

Only the options ALL, NFILE5, and
NHEADER are implemented.

No change.

The EXPLAIN option is not implemented.

is Identical to BYE.

~ Copyright, 1972, Massachusetts Institute of Technology
All r i gh t s res e r v e d •

Dartmouth System
Special Subsystems
Page 2

HELLO

IGNORE

LENGTH

LIST

NEW

OLD

RENAME

REPLACE

RUN

SAVE

SCRATCH

SORT

STRINGEDIT

SYSTEM

TEST

TEXTEOIT

TTY

UNSAVE

USERS

MULTICS PROGRAt"1MEQS' MANUAL

Executes the Multics command "logout hold".

No change.

No change.

No change.

No change.

See Notes on passwords.
If the syntax:
<USERNUMBER):<SEGMENTNAME)
is used, the segment is assumed to be in
)user_dir_dir)Project)USERNUMBER)SEGMENTNAME.

No change.

See Notes on passwords.

No change.

See Notes on passwords.

No change.

No change.

No change.

The following systems are implemented:

ALGOL
BASIC
CHECKERS

FORTRAN
LISP
MIX

Contact the system administrator to use the
TEST command.

No change.

No change.

See Notes on passwords.

Prints the number of users currently on
Multics.

€) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

XTEST

Notes

See TEST.

Dartmouth Syste~
Special Subsystems

Page 3
3/27/72

The following commands are not implemented:

APPEND
BACKGROUND
81 LLS
DIRECT
EXPLAIN
FRIDEN
FULLDUPLEX
HALFDUPLEX

JO IN
KEYBOARD
LINK
NFRIOEN
NPARITY
PARITY
PUNCH
TAPE

The following systems are not implemented:

9MAP
ALGOL68
DEBUGGER
GEFORT

GMAP
LAFFF
TRAC

At Dartmouth, a user may type:

<COMMAND> <NAME>,<PASSWORD>

and DTSS will overstrike the password for securitys This can be
done at Dartmouth because the user terminates his command line
wit h the AS C I I c h a r act e r ca r ria ge ret urn. M u 1 tic s t e r min a 1 s
normally terminate input lines "'lith the "new line" character,
thus precluding overstriking the line. Multics Dartmouth will
accept this syntax but will not attempt to overstrike the line.
However, both DTSS and Multics Dartmouth will accept the
following syntax:

<COMMAND> <NAME>,

Following this command, the user is asked to enter a password.
In this manner, the overstrikes may be typed first and password
security maintained. This second method is recommended to the
user.

The erase character on Multics Dartmouth is the number sign
(#). The kill character is the commercial at sign (@). A quit
condition may be signalled only by pressing the appropriate key
on the terminal. (See the MPM Reference Guide section on the
Protocol for Logging In for the quit button's marking on various

GD Copyright, 1972, Massachusetts Institute of Technology
A1l rights reserved.

/

Dartmouth System
Special Subsystems
Page 4

MULTICS PROGRAMMERS' MANUAL

terminals.) The quit will be followed by the messages STOP and
READY, at which point the monitor will again be listening for
commands.

Segment names in Multics Dartmouth should not contain the
characters greater than (» or less than «).

To enter a commercial at sign or a number sign into actual
text, the user should precede the character with a backslash (,@
or "). To enter a backslash into his actual text, the user
should type two backslashes ("). (Note: the backslash character
is a cent sign (¢) on a 2741, 1050, and Datel 30 terminal.)

DTSS FORTRAN and LISP require all input to be in upper case
letters. DTSS MIX maps all lower case letters into upper case.
All other systems will accept upper and lower case letters
interchangeably.

A large percentage of the programs in the DTSS Program
Library are available to users of the Multics Dartmouth System
(and users of the basic and basic_run commands). These are
programs written in BASIC and ALGOL and cover a large range of
applications. See TMOI0 (described below) for full
documentation.

Documentation

The Multics Dartmouth user should consult the following
documents for detailed information:

TM002

TM003

Tt~O 0 4

TM006

TM010

Tt>1 0 13

TM015

Tlv10 16

TM017

Dartmouth EDIT

Dartmouth String Editor

Text Users Manual

Double Precision in Dartmouth BASIC

User's Guide to the DTSS Program Library

MIX User's Reference Manual

System FORTRAN Reference Manual

Accurate Matrix Inversion in BASIC

LISP System Reference Manual for DTSS on
GE635

(c) Copyright, 1972, Massachusetts Institute of Technology
- All rights reserved.

MULTICS PROGRAMMERS' MANUAL

TM021

TM022

Dartmouth System
Special Subsystems

Page 5
3/27/72

Dartmouth ALGOL for the DTSS

User's Guide to DTSS

BASIC, Fifth Edition

The above documents are all published by the Dartmouth
College Kiewit Computation Center, Hanover, New Hampshire.

In addition, the user should reference the manual FORTRAN
Langyage, published by General Electric for the Mark I I
Time-Sharing Service, manual number 802209.

The current version of the Dartmouth System
is a proprietary program of Dartmouth
College. It has been made available to users
of the M.I.T. Information Processing Center
with the permission of Dartmouth College.
The Dartmouth System may not be used at other
computer installations without permission of
Dartmouth College.

® Copyright, 1972, rv1assachusetts Institute of Technology
All rights reserved. (END)*

MULTICS PROGRAMMERS' MANUAL

Miscellaneous Reference Info
7/10/73

ll[l OF NAMES WITH SPECIAL MEANINGS

The following names are reserved for special purposes within
Multics. The user should not use them with a different meaning.
See also the following MPM Reference Guide sections for other
names with special meanings: List of System Conditions and
Default Handlers, List of Names in the System Libraries, and
Obsolete Procedures.

Reseryed 1LQ Stream Names

By convention, the following I/O stream names are reserved.
Those maintained by the standard environment are:

is the stream attached
terminal or absentee
segments.

to the user's
input and output

is the stream attached to user_i/o and
devoted expressly to read calls.

is the stream attached to user_i/o and
devoted expressly to write calls.

is the stream attached to user_i/o and
devoted expressly to write calls under
error conditions.

Those maintained by system commands or subroutines are:

graphic_output

is the stream attached by the exec com
command using the attach command line.
N is a unique sequence number assigned
by exec_com. user_input is attached to
this stream through the syn interface
module.

is the stream attached by the
file_output command. user_output is
attached to this stream through the syn
interface module.

is the stream used for graphics input.

is the stream used for graphics output.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Names With Special Meanings
Miscellaneous Reference Info
Page 2

Reseryed Segment Names

By convention, the following segment names are reserved.
Those maintained in the home directory are:

rna i 1 box

username.breaks

username.con_msgs

username.memo

username.motd

username.profile

is the segment used by the mail command.

is the exec_com invoked at the beginning
of a process in the standard
environment.

is the break segment used by the debug
command. (username is the name derived
from the login command.)

is the segment used by the message
facility (see the MPM write-up of the
send_message command). (username is the
name derived from the login command.)

is the segment used by the memo command.
(username is the name derived from the
login command.)

is the segment used by the print_motd
command. {username is the name de rived
from the print_motd command.}

is the segment used by the abbrev
command. (username is the name derived
from the login command.)

Those maintained in the process directory are:

combined_linkage_N.jk is the user's linkage segment for ring
number N (1(=N<=7). jk is a two digit
sequence number. This segment also
contains internal static storage.

kst

pds

C'\ rnnvl"'iahf"
""","',....,. ·0··";

is temporary storage used by alm, edm,
and qedx.

{Known Segment Table} is a Hardcore Ring
data segment.

(Process Data Segment) is a Hardcore
Ring data segment.

1973; Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

pit

Names with Special Meanings
Miscellaneous Reference Info

Page 3
7/10/73

is the user's Process Initialization
Table. It should only be referenced
through the subroutine user_info_ (see
the MPM subroutine write-up for
user _i nfo_> •

is the user's automatic storage area for
ring number N (1<=N<=7).

is the free storage area used by system
commands for ring number N (1<=N<=7).

In general, users should not create segments whose names end
in a trailing underscore (). ~These names are reserved for
system subroutines and may cause errors if they are in the user's
search path. (See the MPM Reference Guide section, The System
Libraries and Search Rules.)

Reserved Segment Name Suffixes

Suffixes are used as in the following example: If one is
creating a PL/I source program to be named xyz, he would create a
source language segment named xyz.pll. The PL/I compiler, by
convention, translates this segment, producing the segment
xyz.list, containing a printable listing, and the segment xyz,
containing the object program.

By convention, the following segment name suffixes are
reserved. The language translator source segment suffixes are:

Language Source Include
Translator Segment Files

PL/I comp i I er .pll • i nc 1 • p 11

FORTRAN compiler .fortran .incl.fortran

ALM assembler .alm • inc I . a 1m

BASIC compi I er .basic

The listing segment suffix is:

.list is the suffix on printed output listing
segments produced by compilers, the
assembler, and the binder.

€) Copyright, 1973, ~/1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Names With Special Meanings
Miscellaneous Reference Info
Page 4

Other special suffixes are:

.absin

.absout

.apl

.archive

• bind

• dobj

.ec

• info

• 1 i sp

.ms

.pt

• runoff

.runout

is the input segment suffix for an
absentee process.

is the default output segment suffix for
an absentee process.

Is the suffix on the segment containing
a saved workspace from the apl command.

is the suffix on the segment created by
the archive command •

is the suffix on the input control
segment for the binder.

is the suffix on the output segment
produced from the -compile control
argument to the BASIC compiler.

is the suffix on the input segment to
the exec_com command.

I s the suff i x on a segment, in
>documentation> info_segments, for use
with the help command.

is the suffix on the segment
a saved environment from
command.

containing
the lisp

is the suffix on an Administrative Ring
message segment.

is the segment suffix for use with the
peruse_text command •

is the input segment suffix to the
runoff corrmand.

is the output segment suffix from the
runoff command.

Reserved Object Segment Entry Point

By convention, the following entry point definition in
object segments is reserved.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Names with Special Meanings
Miscellaneous Reference Info

Page 5
7/10/73

is the entry point definition which
provides the address of the symbol table
produced by the pll or fortran commands.

Since this is a reserved entry point, no user-created
program can use this name. A statement of the form

symbol_table: procedure •••

is illegal if it is the external procedure block.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Lnc. (ENO)*

MULTICS PROGRAMMERS' MANUAL

~ QE NAMES 1N ~ SYSTEM LIBRARIES

Miscellaneous Reference Info
11/1/73

The Multics system libraries, >system_library_standard and
>system_library_l, are described in the MPM Reference Guide
section; The System Libraries and Search Rules. They contain
the system commands and subroutines described in the MPM commands
and MPM Subroutines sections. They also contain a number of
other procedures not intended to be called directly by users, but
included in these directories for various reasons. For example,
old commands and subroutines that are being phased out (but are
still available for an interim period) are left in these
directories for the convenience of users who are converting to
the replacements for these procedures. Similarly, if the name of
a command or subroutine is changed, both names appear on the
segment for a time, but users should call it only by the new
name.

In addition, the libraries contain entries that are internal
interfaces of the Multics supervisor or command system, and are
not intended to be called by the user. They are user-accessible
primarily to ease the job of checkout of new system commands.
User programs should not be coded with calls to these procedures
as such calls would produce undesirable dependence one internal
system organization or hardware configuration. This set of
entries also represents a collection of names that should not be
chosen for user-written subroutines, since if the user-written
subroutine is lost, a call to it could wind up in the system
subroutine of the same name.

This write-up lists the names of those entries in
>system_library_standard and >system_library_l that the user
should avoid. Several types of names are excluded from the list
to make it more compact. The types of names excluded are:

1) all system command names and their abbreviations. A list of
command names can be found in the MPM Reference Guide table
of contents; a list of abbreviations can be found in the MPM
Reference Guide section, Command Name Abbreviations.

2) all system subroutine names. A list of subroutine names can
be found in the MPM Reference Guide table of contents.

3) old versions of recently updated commands and subroutines
(and possibly other procedures). These entry names have an
additional component of "I" or "2"; e.g., an old version of
the compare command might have the entry name compare.l.

4) all names ending in an underscore. System subroutine names
are guaranteed to end in an underscore as described in the

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Names in the System Libraries
Miscellaneous Reference Info
Page 2

MULTICS PROGRAMMERS' MANUAL

MPM Reference Guide section, Constructing and Interpreting
Names. Users can avoid conflicts by adopting some other
convention.

5) all names
encounter
should be
names are
directory

with more than one component. Users should not
conflicts with these names since procedure names

of only one component. Typically, multi-component
used in situations where only the user's working
is searched.

6) all bound segments. The primary entry name of a bound
segment in the system library always has the character
string "bound_" as part of the first component of the name.
Other entry names on the bound segment are unaffected (in
this list) by the application of this rule.

7) all separate linkage section segments. These segments are
recognizable by the presence of "link" as the last component
of the entry name. Each one has a corresponding text
segment without the "link" component in its entry name.

8) all unique names. These segments all have IS-character
names with an exclamation point as the first character.

active_all_rings_data
admin_mode_exit
asr
backup_ut i 1
changewdir
db_print
delete_search_rules
disassemble
dsr
f i 1 e_ut i 1
fscodedinfo
global
ibm
imf_state
install
lot_maintainer
lsrb
name_table
ncp_test
phd
porn
pp_off
pp_size
print_pdt

add_search_rules
ame
backup_load
caller
check_object
db_regs
deletedir
dissassemble
file
fl
gb
gr-print
i load
ind
interpret_bind_map
lset_ring_brackets
moveb
nc
netca 11
pll_operators
pp_mode
pp_on
print_object_map
printhomedir

1973; Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

printwdir
pur
reload
retrieve
sar
setquota
signal
spe
stacq
sys_info
terminate_reference
translator_ec_ec
unique_chars
v1pa

Names in The System Libraries
Miscellaneous Reference Info

Page 3
11/1/73

proj_usage_report
read_convert
rename ns
ring_zero_cleanup
sethomedir
shd
slt
sq
submit_abs_request
tdsm
translator_absin_absin
unique_bits
unwinder
v1pl1_abs

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

OBSOLETE PROCEDURES

Miscellaneous Reference Info
11/16/73

The following procedures are obsolete subroutines or
writearounds which remain in the system so that early versions of
system commands will continue to work. New programs should not
be written to call any of these entry points. Old programs which
use them should be modified to use the new procedure or technique
indicated.

acm_
bindarchive
bsys
check_fs_errcode_

decode_object_
default_handler_

deletedir
equal_
establish_cleanup_proc_

global
hcs_$acl_add

hcs_$chname

hcs_$fs_get_brackets

hcs_$fs_search_get_wdir
hcs_$fs_search_set_wdir
hcs_$get_dbrs
hcs_$get_usage_values
hcs_$proc_info

hcs_$set_timer
hcs_$usage_values
make_obj_map_
moveb
move_
ms_

(Use timer_manager_)
(Use bind)
(Use basic system)
(Use convert_status_code_,

documented in the MPM Subsystem
Writers' Guide)

(Use object_info_)
(Establish on unit for any_other

condition)
{Use delete_dir>
(Use get_equal_name_>

(Establish on unit for cleanup
condition)

(Use walk subtree)
(Use hcs_$add_acl_entries,

hcs_$add_dir_acl_entries,
hcs_$delete_acl_entries,
hcs_$delete_dir_acl_entries,
h cs_$ 1 i s t_ac 1 ,
hcs_$list_dir_acl,
hcs_$replace_acl, or
hcs_$replace_dir_acl)

(Use hcs_$chname_file or
hcs_$chname_seg)

(Use hcs_$get_rin~brackets or
hcs_$get_dir_rin~brackets,
documented in the MPM Subsystem
Writers' Guide)

(Use get_wdir_)
{Use change_wdir_>

(Use cpu_time_and_paging_)
(Use get_process_id_, get_group_id_,

get_pdir_, or get_ring_)
(Use timer_manager_)
(Use cpu_time_and_paging_)
(Use make_object_map_)
(Use move)
(Use PL/1 array substitution)
(Use cu_)

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Obsolete Procedures
Miscellaneous Reference Info
Page 2

printhomedir
probe

revert_cleanup_proc_
sethomedir
set_search_directories
submit_abs_request
ti

MUlTICS PROGRAMMERS' MANUAL

(Use print_link_info with
the -In control argument)

(Use print_default~wdir)
(Use debug, dump_segment,

list_ref_names, or trace_stack)
(Revert on unit for cleanup conition)
(Use change_default_wdir)
(Use set_search_dirs)
(Use enter_abs_request)
(Use tssi_, documented in the MPM

Subsystem Writers' Guide)
(Use ios_)

pointers Qll Converting to New Interfaces

From time to time, as procedures become obsolete, the
following pages will be updated to supply information useful for
converting old programs to work with new interfaces.

(c) Copyright, 1973, Massachusetts Institute of Technology
~ and Honeywell Information Systems inc.

MULTICS PROGRAMMERS' MANUAL

Obsolete Procedures
Miscellaneous Reference Info

Page 3
11/16/73

This subroutine was used to obtain pointers to the
components of a segment in object format. the subroutine
object_info_ now provides much more complete information about an
object segment. Therefore, decode_object_ i~:considered obsolete
and will eventually be removed from the system.

Qls! Method

declare decode_object_ entry (ptr, fixed, fixed, ptr, fixed,
fixed);

call decode_object_ (segp, be, i, q, len, bits);

1) segp is a pointer to the object segment. (Input)

2) bc

3)

4) q

5) 1 en

6) lits

is the bit count of the object segment pointed to by p.
(Input)

indicates the desired component (standard assignments:
1 = text, 2 = link, 3 = symbol). (Input)

is a pointer to the desired
component does not exist
obj ect segment. (Output)

c omp 0 n e nt, nul 1 i f the
or the segment is not an

is the number of words occupied by the lth component.
(Output)

is the bit count of the lth component. (Output)

Current Method

declare object_info_$brief entry (ptr, fixed bin(24), ptr,
fixed bin(3S»;

call object_info_$brief (segp, bc, infop, code);

1) segp is as above.

2) bc is as above.

3) infop is a pointer to an info structure in which the object
information is returned. (Input)

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Obsolete Procedures
Miscellaneous Reference Info
Page 4

MULTICS PROGRAMMERS' MANUAL

4) code is a standard Multics status code. (Output)

Two other entries, $display and $long have identical call ing
sequences.

The structure of the info segment is described in the MPM
write-up of the object_info_ subroutine.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Obsolete Procedures
Miscellaneous Reference Info

Page 5
11/16/73

The function of this procedure (to rapidly copy a block of·
data from one place to another) is now implemented at least as
efficiently by the PL/l compiler. Therefore move_ is considered
obsolete and will eventually be removed from the system.
Procedures calling it should be modified to use in-1 ine code as
described below.

Old Method

declare move_ entry (ptr, ptr, fixed bin);

call move_ (fromp, top, went);

1) fromp is a pointer to the start of the data to be copied.
(Input)

2) top

3) went

is a pointer to the start of the block where data is to
be copied to. (Input)

is the number of words to be copied. (Input)

Current Method

declare block (went) fixed bin (35) based;

top -) block = fromp -) block;

where fromp, top, and went are as described above.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Obsolete Procedures
Miscellaneous Reference Info
Page 6

The ti subroutine provided an interface between translators
and the storage system. The new subroutine, tssi_ (described in
the MPM Subsystem Writers' Supplement), provides the same
functions (setting up output segments, finishing them and
cleaning up after an interrupt) for multi_segment files as well
as for single segments. Note that only translator writers have
need for this facility •

.Q.U!-Methods for Segments

To set up an output segment:

declare ti_$getseg entry (char{*) aligned, char{*) aligned,
ptr, fixed bin(3S), fixed bin);

call ti_$getseg (dname, ename, segp, acl info, code) ;

1) dname is the name of the directory in which the segment
resides. (Input)

2) ename is the name of the segment. (I nput)

3) segp is the pointer to the segment. (Output)

4) aclinfo is coded information about where to find the
segment's previous ACL saved. (Output)

5) code i s a standard Multics status code. (Output)

To finish an output segment and give it "re" access:

declare ti_$finobj entry (ptr, fixed bin(3S), fixed bin(3S),
fixed bin);

call ti_$finobj (segp, bitcnt, aclinfo, code);

1) segp a s a bo ve • (I n pu t)

2) bitcnt is the bit count of the output segment. (Input)

3) aclinfo as above. (Input)

4) code as above. (Output)

(c) Copyright, 1973, Massachusetts Institute of Technology
" and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Obsolete Procedures
Miscellaneous Reference Info

Page 7
11/16/73

To finish an output segment and give it " rwa " access:

declare ti_$findata entry (ptr, fixed bin(3S), fixed bin(3S),
fixed bin);

call ti_$findata (segp, bitcnt, acl info, code);

Arguments are as for ti_$finobj.

To clean up after an interrupt:

declare ti_$clean_up entry (fixed bin(3S»;

call ti_$clean_up (aclinfo);

The argument is as above.

New Methods for Segments

The entry tssi_$get_segment is equivalent to ti_$getseg,
except that the fourth argument, aclinfo, is a standard pointer
datum rather than coded information.

The entry tssi_$finish_segment performs the functions of
both ti_$finobj and ti_$findata. It has an additional argument
(in the third position) which specifes the access to be placed on
the segment. Again, the aclinfo argument is a standard pointer
datum.

The entry tssi_$clean_up_segment is equivalent to
ti_$clean_up, again with aclinfo a standard pointer datum.

Multisegment Files

Entries for handling multisegment files do not exist in ti_.
See the MPM Subsystem Writers' Supplement write-up of tssi for
their usage.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

STANDARD CHECKSUM

Standards and Conventions
7/5/73

This write-up describes a technique for
word checksum on the Honeywell 6180 computer.
the Multics standard technique.

computing a full
This technique is

Algorithm

Checksums are computed using the "awca" instruction fo1lo'v'J€d
by an "alr 1" instruction. Upon completion of checksum
computation, two "awca O,dl" instructions are executed to include
all carries in the checksum.

A typical checksum computation scheme follows:

1 d i
s t i
lda
eaxl

loop: ldi
awca
s t i

alr
eaxl
cmpxl
tnc

1 d i
awca
awca

sta

=o004000,dl
indies
0, d 1
o

indies
word,1
indies

1
1,1
size,du
loop

indies
0, d 1
O,dl

cksum

inhibit overflow fault
save indicators
initialize "a" to zero
count locations in xl

restore indicators
add with carry to checksum
save indicators (they get
clobbered by cmpxl)
rotate "a" left
count 1 location and
check for completion
loop

restore indicators
add in carry, if any
in case carry generated by
last instruction
save the checksum

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

HARDWARE FEATURES TO AVOID

Miscellaneous Reference Info
10/2/73

This write-up documents a number of restrictions on usage of
the 6180 that should be observed when writing programs to operate
in the Mu1tics environment. Some of th~se_-_~;restrictions a--=r-e---
enforced by the Mu 1 tics superv i so r; others,---wh i 1 e not enforced,
should be followed to minimize the effect of potential supervisor
or hardware changes. The Multics system uses these features, but
does so in a controlled way. A 11 instances of thei r use are
localized in a very few procedure segments to minimize the
effects of changes.

Consult the 6180 processor manual for descriptions of the
instructions and modifiers listed below.

Hard-to-Interrypt Instryctions and Modifiers

The 6180 processor has in
instructions and special modifiers
instruction, once begun:

its
wi th

repertoire a
the property

number of
that an

1) might not be able to complete execution because of a missing
page or pending interrupt;

2) cannot be scrapped and restarted from the beginning because a
core location or register has already been modified.

Such instructions must be interruptable in mid-execution in such
a way that they can be continued at a later time; elaborate
special-purpose hardware has been provided to snapshot the entire
processor state including internal registers when an interrupt or
fault occurs.

The cost of providing this interruptabi1ity is quit high for
two reasons.

1) The special-purpose hardware is not needed for any other
function.

2) Every interrupt and fault (not just those occuring during
execution of a hard-to-interrupt instruction) must be started
and ended with a pair of relatively long instructions
requiring 11 microseconds to save the snapshot in core, and
restore it to the processor, repectively. In addition,
following every fault or interrupt on which control was
returned to the user, the store machine conditions must be
checked for validity by a procedure that performs about a
dozen tests.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Hardware Features to Avoid
Miscellaneous Reference Info
Page 2

MULTICS PROGRAMMERS' MANUAL

Since it is unlikely that these continually paid costs are
paid back by the time saved in occasional use of these
instructions, a hardware change to force a compatibliity fault
when they are used would allow removal of both of the above
costs, and it would also permit addition of an interpreter
procedure that simulates the effect desired but using more easily
interruptible instructions. Thus it is unadvisable to utilize
any of the instructions or modifiers in question, so as to make
as simple as possible any future hardware change along this line.

The following instructions and modifiers are included in the
above discussion.

1) Instructions:

XED Execute double

RPT Repeat

RPO Repeat double

RPL Repeat link

2) Modifiers that change the indirect word:

CI

01

AD

SO

10

DIC

IDC

SC

SCR

~ Copyright~ 1973~ Massachusetts Institute of Technolo~y
~ and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Hardware Features to Avoid
Miscellaneous Reference Info

Page 3
10/2/73

Extended Instruction Set

The 6180 has in its repertoire a set ~of __ single-word and
multiple-word instructions for bit and character string
manipulation and for decimal arithmetic. At present they do not
work dependably and, thus, should be avoided. The following
instructions make up the extended instruction set.

MLR
MRL
MVE
CMPC
SCD
SCDR
TCT
TCTR
SCM
SCMR
MVN
CMPN
MVNE
AD3D
AD2D
SB3D
SB2D
MP3D
MP2D
DV3D
DV2D
CSL
CSR
SZTL
SZTR
CMPB
DTB
BTD
LARn
LAREG
SARn
SAREG
AWD
A9BD
A6BD
A4BD
ABO
SWD
S9BD

Move Alphanumeric Left to Right
Move Alphanumeric Right to Left
Move Alphanumeric Edited
Compare Alphanumeric Character String
Scan Character Double
Scan Character Double in Reverse
Test Character and Translate
Test Character and Translate in Reverse
Scan with Mask
Scan with Mask in Reverse
Move Numeric
Compare Numeric
Move Numeric Edited
Add Using 3 Decimal Operands
Add Using 2 Decimal Operands
Subtract Using 3 Decimal Operands
Subtract Using 2 Decimal Operands
Multiply Using 3 Decimal Operands
Multiply Using 2 Decimal Operands
Divide Using 3 Decimal Operands
Divide Using 2 Decimal Operands
Combined Bit Strings Left
Combined Bit Strings Right
Set Zero and Truncation Indicators with Bit Strings Left
Set Zero and Truncation Indicators with Bit Strings Right
Compare Bit Strings
Decimal to Binary Convert
Binary to Decimal Convert
Load Address Register n
Load Address Registers
Store Address Register n
Store Address Registers
Add Word Displacement to Specified AR
Add 9-Bit Character Displacement to Specified AR
Add 6-Bit Character Displacement to Specified AR
Add 4-Bit Character Displacement to Specified AR
Add Bit Displacement to Specified AR
Subtract Word Displacement from Specified AR
Subtract 9-Bit Character Displacement from Specified AR

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Hardware Features to Avoid
t1iscellaneous Reference Info
Page 4

S6BD
S4BD
SBD
AARn
NARn
ARAn
ARNn
LPL
SPL

Subtract 6-Bit Character Displacement from Specified AR
Subtract 4-Bit Character Displacement from Specified AR
Subtract Bit Displacement from Specified AR
Alphanumeric Descriptor to ARn
Numeric Descriptor to ARn
ARn to Alphanumeric Descriptor
ARn to Numeric Descriptor
Load Pointers and Lengths
Store Pointers and Lengths

~ Copyright; 1973; Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTI CS PROGRAMMERS' NANUAL

3/20/72

COMMANDS ~ ACTIVE FUNCTIONS

This section contains, in alphabetic order, descriptions of
all standard Mu1tics commands. The user of this section will
also want to refer to the Reference Guide section on the Command
language Environment, which contains

1. A guide to the commands, organized by function.
2. An alphabetic list of command name abbreviations.
3. A descriPtion of the Mu1tics command language.
4. An explanation of the role of active functions.

The following conventions are used in command descriPtions:

1. In command usage, optional arguments are sho\"-/n
surrounded with hyphens. For example,

locate name1 -name2-

would indicate that the locate command has a mandatory
first argument and an optional second argument.

2. In command usage, the ellipsis form

a.l ••• all

is used to indicate a variable number of arguments all
having the same form as al and an.

Note that commands may be distinguished from subroutines by
name; in general, subroutines have segment names which end with a
trailing underscore.

Commands not found in this section may possibly be listed in
the Reference Guide sections on Obsolete Procedures or Internal
Interfaces.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

~: abbrev, ab

Command
9/24/73

The abbrev command provides the user with a mechanism for
abbreviating parts of (or complete) command lines in the normal
command environment.

When it is entered, the abbrev command sets up a special
command processor that is invoked for each command 1 ine input to
the system. The abbrev command processor checks each input line
to see if is is an abbrev request line and, if so, acts on that
request. (Requests are described below under Control Requests.)
If the input line is not an abbrev request line (recognized by a
period (.) as the first nonb1ank character of the line) and
abbreviations are included in the line, then the abbreviations
are expanded once and the expanded string is passed on to the
normal Multics command processor. The abbrev command processor
is, therefore, spliced in between the listener and the normal
command processor.

Usage

abbrev

Notes

The abbrev command is driven by a user profile that contains
information about a user's abbreviations as well as other
information pertinent to abbrev's execution on behalf of that
user. The profile is a segment which (by default only) resides
in the home directory of the user. I f the prof i 1 e is not found,
it is created and initialized. The name of the profile is
personid.profile where personid is the login name of the user.
For example, if the user Washington logged in under the project
States, the default profile would be

)user_dir_dir)States)Washington)Washington.profile

The profile being used by abbrev can be changed at any time
with the .u control request (see below) to any profile in the
storage system hierarchy to which the user has appropriate
access. The entry name of a profile segment must have the suffix
".profile". A new profile can be created by specifying a
nonexisting segment to the .u control request. The segment is
then created and initialized as a profile segment, assuming the
user has the necessary access access permission. The user must
be careful not to delete or terminate the segment that is
currently being used as the profile.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywe 11 Info rma t i on Sys terns Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

The user can suppress expansion of a particular string in a
command 1 ine by enclosing it within double quote characters (").
To supress expansion of an entire command line see the .<space>
control request.

A user might want to include the invocation of the abbrev
command in a startup.ec segment so that he is automatically able
to abbreviate whenever he is logged in. For an explanation of
the startup.ec segment, see the MPM Reference Guide section,
Protocol for Logging In, under Start ~.

Control Requests

Before abbrev expands a command line (to pass it on to the
normal command processor), it first checks to see if the command
line is an abbrev request line. An abbrev request line is
recognized by its having a period (.) as the first nonblank
character of the line. This means that an abbrev request is
recognized only at the front of a command line. Any command line
interpreted as an abbrev request line is treated specially and is
neither checked for embedded abbreviations nor (even in part)
passed on to the normal command processor. The one exception to
this rule is a command line with a apsce character following the
period; the rest of the line is passed to the normal command
processor with no expansion being done.

The character immediatelY after
request line is the request name.
recognized:

the period of an abbrev
The following requests are

.a <abbr> <rest of line>

• ab <abbr> <rest of line>

Add the abbreviation <abbr> to the
current profile. It is an
abbreviation for <rest of line>.
Note that the <rest of line> string
can contain any characters. If the
abbreviation already exists, the
user is asked if he wishes to
redefine it. The user must respond
wi th "yes" or "no". The
abbreviation must be no longer than
eight characters and must not
contain break characters. The
string it stands for must be no
longer than 132 characters •

Add an abbreviation which is
expanded only if found at the
beginning of a line or directly

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

.af <abbr> <rest of line>

.abf <abbr> <rest of line>

.d <abbrl> ••• <abbrn>

.f

Page 3
9/24/73

following a semicolon (;i in the
expanded line. In other words,
this is an abbreviation for a
command name$

Add an abbreviation to the profile
and force it to overwrite any
previous abbreviation with the same
name. The user is not asked if he
wants the abbreviation redefined.

Add an abbrev"i at ion wh i ch is
expanded only at the Qeginning of a
line and force it to replace any
previous abbreviation with the same
name. The user is not asked if he
wants the abbreviation redefined.

Delete the specified abbreviations
from the current profile.

Enter a mode (the
which forgets each
after executing it •
• s requests •

default mode)
conmand line

See the .r and

• 1 <abbr1> ••• <abbrn> ~ist the specified abbreviations
with the strings they stand for.
If no abbreviations are specified,
all abbreviations in the current
profile are listed. If no letters
are specified, all abbreviations in
the current profile are listed •

• la <letterl> ••• <lettern> ~ist £11 abbreviations starting
with the specified letters.
<letteri> is expected to be a
single character. If no letters
are specified, all abbreviations in
the current profile are listed •

• q Quit. This request resets the
command processor to the one in use
before invoking abbrev and, hence,
prevents any subsequent action on
the part of abbrev unt i 1 it is
explictly invoked again.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 4

• i

.s <rest of line>

.u <profile>

.p

~<space> <rest of line>

Break Characters

MULTICS PROGRAMMERS' MANUAL

Enter a mode which Lemembers the
last line expanded by abbrev. See
the .f and the .s requests.

~how the user how <rest of line>
would be expanded but do not
execute it. The.s request with no
arguments shows the user the last
line expanded by abbrev, and is
valid only if abbrev is remembering
lines. See the .f and .r requests.

Specify to abbrev the profile that
the user wants to ~se. <profile>
is the pathname of the profile to
be used and can contain
abbreviations already defined.

This request Qrints the name of the
profile being used.

If the request character is a
space, the entire command line is
passed on to the normal command
processor (after removing the
period) with no expansion being
performed. The user can thus issue
a command line that contains
abbreviations that are not to be
expanded.

W hen a b b rev ex pa n d s a cOl1111a n d lin e , itt rea t s ce r t a i n
characters as special or break characters. Any character string
which is less than or equal to eight characters long and is
bounded by break characters is a candidate for expansion. The
string is looked up in the current profile and, if it is found,
the expanded form is placed in (a copy of) the command line to be
passed on to the normal command processor.

The characters which abbrev treats as break characters are:

tab
new line
space
double quote
dollar sign

II

$

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

apostraphe
per i od
semicolon
vertical bar
parentheses
less than
greater than
brackets
braces

Example

. ,
I
()
<
>
[]
{ I

Page 5
9/24/73

Suppose that a user notices that he is typing the segment
name suffixes "fortran" and "jncl.fortran" a lot as he edits his
FORTRAN source segments. He might wish to abbreviate them to
"ft" and "ift" respectively. He then types the lines specified
to accomplish the following objectives:

1) Invoke the abbrev command
abbrev

2) Define the two abbreviations
.a ft fortran
.a ift incl.fortran

3) Now that lift" and "ift" are defined, invoke the text editor,
edm, to create or edit his source segments

edm sample.ft
edm insert.ift

4) Print the include file
print insert.ift

Note that if the user chooses to write out one of the
segments from edm by a different name, he must type the expanded
name since the edm command (and not the abbrev commmand
processor) is intercepting all terminal input. For example,
after editing sample.fortran he might wish to write out the
changed version as example. fortran. He would type to edm

w example. fortran

However, if he typed

w example.ft

he would create a segment by exactly that name (example.ft).

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)*

MUlTICS PROGRAMMERS' MANUAL I addname I
Command

Standard Service System
1/27/72

Name: addname, an

The addname command adds an alternate name to the existing
name(s) of the segment, directory, or link specified. See also
deletename and rename in the MPM.

Usage

addname path entrYA ••• entrYn

1) path is the path name of the segment, directory, or 1 ink
to which an additional name is to be added.

2) entryl is the additional name(s) to be added to the
segment, directory, or link.

Notes

The user must have write access on the directory
containing the segment, directory, or link to be modified.

The equals and star conventions may be used.

The entryl argument must be unique in the directory. If
there is a duplication, the initial instance of entryl will be
removed and the user will be informed of this action, unless
removing the initial instance would leave the segment, directory,
or 1 ink without a name. In the latter case, the user wi 11 be
interrogated as to whether he wishes the segment, directory, or
link deleted; if he does not, entryl will not be added to the
segment, directory, or link specified.

Example

addname >sys_l ib>Smith.Multics~pl1 Jones.==

would add the name Jones.Multics.pl1 to the
Smith.Multics.pll in the directory sys_lib.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

segment

(END)

MULTICS PROGRAMMERS' MANUAL

Command
Development System

7/29/71

~: adjust_bit_count, abc

The adjust_bit_count command may be used to set the bit
count of segments which for some reason do not have the bit count
set properly (e.g., the program which was creating the segment
got a fault, or the process terminated without the bit count
being set, etc.).

usage

adjust_bit_count path~ ••• pathn -option-

1) pathl

2) option

are the pathnames of the segments to be adjusted.

may be -character (-ch). If the option occurs
anywhere on the command line, it applies to all
pathname arguments such that resetting of the bit
count is done to the last nonzero character in the
segment. The default is to reset the bit count to
correspond to the last nonzero 36 bit word in the
segment.

If the bit count could be computed but could not be
reset (e.g., improper access to the segment), the
computed value will be printed such that the user
may then use the set_bit_count command (see the MPM)
after resetting access or other necessary corrective
measures.

(END)

MUlTICS PROGRAMMERS' MANUAL

Command
10/5/73

ALM is the standard Multics assembly language. It is
commonly used for privileged supervisor code, compiler support
operators and util ity packages, and data bases. It is
occasionally used for efficiency or to use hardware features not
accessible in compiler languages; however, its routine use is
discouraged.

The ALM language is described briefly in this section as
there is no language reference manual available to users. The
6180 Processor Reference Manual has not yet been published, but
the 645 Processor Reference Manual (amended for 6180 processor)
can be used to understand the instruction set.

The alm command invokes the ALM assembler to translate a
segment containing the text of an assembly language program into
a Mu1tics standard object segment. A listing segment can also be
produced. These segments are placed in the user's current
working directory.

Usage

alm segment_name -contro1_arguments-

1) segment_name

2) control_arguments

-list, -ls

-quiet, -qe

specifies the path name of the source
program to be assembled. The suffix
".al m" is added automatically by the alm
command unless it is already present.

control optional functions of the
assembler. They can only appear after
the segment_name argument, and none are
required. Legal control arguments are:

An assembly 1 isting segment is produced
if and only if this control argument is
specified.

By default the listing segment produced
by the -1 ist control argument contains a
cross-reference table. This control
argument suppresses the table.

This control argument prevents errors
from being typed out on the terminal.
Errors are flagged in the 1 isting (if
any) in any case.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

Notes

The entry name of an ALM source segment consists of the name
of the object segment concatenated with the string ".alm".
SimilarlY the name of the 1 isting segment produced by the
assembly has a name consisting of the name of the object segment
concatenated with the string ".list". The pathname argument to
the alm command identifies the source segment; if the ".alm"
suffix is omitted, the command appends it. This does not affect
the names of the object and listing segments.

The assembly listing is made into a multisegment file if
necessary.

The assembler is serially reusable and sharable, but not
reentrant. That is, it cannot be interrupted during execution,
invoked again, then restarted in its previous invocation.

Error Conditions

Errors arising in the command interface, such as inability
to locate the source segment, are reported in the normal Multics
manner. Some conditions can arise within the assembler that are
considered to be malfunctions in the assembler; these are
reported by aline typed out and also in the 1 isting. Either of
the above cases is immediately fatal to the translation.

Errors detected in the source program, such as undefined
symbols, are reported by placing one-letter error flags at the
left margin of the offending 1 ine in the listing file. Any line
so flagged is also printed on the user's terminal, unless the
-quiet control argument is in effect. Flag letters and their
neanings are given below.

B mnemonic used belongs to obsolete (645) processor
instruction set.

C obsolete (645 compatibil ity check).

E malformed expression in arithmetic field.

F error in formation of pseudo-operation operand field.

M reference to a multiply-defined symbol.

N unimplemented or obsolete pseudo-operation.

o unrecognized opcode.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 3
10/5/73

P phase error. Location counter at this statement has
changed between passes, possibly due to misuse of QL&
pseudo-operation.

R expression has invalid relocatability.

S error in the definition of a symbol.

T undefined modifier (tag field).

U reference to an undefined symbol.

x segdef pseudo-operation
executeonly procedure.

used in

7 digit 8 or 9 appears in an octal field.

mastermode or

The errors B, E, M, 0, P, and U are considered fatal. If
any of them occurs, the standard Multics "Translation failed"
error message is reported after completion of the translation.

AJJ1 Language

An ALM source program is a sequence of statements separated
by new 1 ine characters or semicolons. The last statement must be
the end pseudo-operation.

Fields must be separated by white space, which is defined to
include space, tab, new page, and percent characters.

A name is a sequence of upper and lower case letters,
digits, underscores, and periods. It must begin with a letter or
underscore, and cannot be longer than 31 characters.

Labels

Each statement can begin with any number of names, each
followed immediately by a colon. Any such names are defined as
labels, with the current value of the location counter. Note
that a label on a pseudo-operation that changes location counters
or forces even al ignment (such as QL& or ~) might not refer to
the expected location. White space can appear before, after, or
between labels, but not before the colon, and no white space is
required.

@ Copyright, 1973, r.1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

QDCO~

The first field after any labels is the opcode. It can be
any instruction mnemonic described in the appropriate processor
reference manual, or anyone of the pseudo-operations 1 isted
below. It can be omitted, and any labels are still defined.
White space can appear before the opcode, but is not required.

Operand

Following the opcode, and separated from it by mandatory
white space, is the operand field. For instructions, the operand
defines the address, base, and tag (modifier) of the instruction.
For each pseudo-operation, the operand field is described below
in the 1 ist of pseudo-operations. The operand field can be
omitted in an instruction. Those pseudo-operations that use
their operands generally do not permit the operand field to be
omitted.

Comments

Since the assembler ignores any text following the end of
the operand field, this space is commonly used for comments. In
those pseudo-operations that do not use the operand field, all
text following the opcode is ignored and can be used for
comments. Also, a quote character (") in any field introduces a
comment that extends to the end of the statement. (The only
exceptions are the ~ and 2&l pseudo-operations, for which the
quote character can be used to delimit 1 iteral character
strings.) Note that semicolon ends a statement and therefore ends
a comment as well.

Instruction Operands

The operand field of an instruction can be of several
distinct formats. Most common is the direct specification of
base, address, and modifier. This consists of three subfields,
any of which can be omitted. The first subfield specifies a base
register by number, user-defined name, or predefined name (ap,
ab, bp, bb, lp, lb, sp, sb). The subfield ends with a vertical
bar. If the base register and bar are omitted, no base register
is used in the instruction.

The second subfield is any arithmetic expression,
relocatable or absolute. This is the address part of the
instruction, and defaults to zero. Arithmetic expressions are
defined below.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 5
10/5/73

The last subfield is the modifier or tag. It is separated
from the preceding subfields by a comma. If the tag subfield and
comma are omitted, no instruction modification is used. (This is
an all zero modifier.) Legal modifiers are defined below.

Other formats of instruction operands are used to imply base
registers. These cannot have the base register subfield
specified explicitly.

If a symbolic name defined by~, tempd, or temp8 is used
in the address subfield (it can be used in an arithmetic
expression) then the base register sp is implied. This form can
have a tag subfield.

Similarly, if an external expression is used in the address
subfield then the base register lp is impl ied; this causes a
reference through a link. If a modifier subfield is specified,
it is taken as part of the external expression; the instruction
has an implicit ~ modifier to go through the link pair.
External expressions are defined below.

A literal operand begins with an equals sign followed by a
literal expression. The literal expression can be enclosed in
parentheses. It has no base register but can have a tag
subfield. A literal reference normally causes the instruction to
refer to a word in a literal pool that contains the value of the
literal expression. However, if the modifier du or Ql is used,
the value of the 1 iteral is placed directly in the instruction
address field. Literal expressions are defined below.

EQg!JJP]~~ of ID~tru~tioD Stgt~meDt~

xlab: lda apI2,* .. Example
eax7 xlab-l

rccl <sys_i nfo> I clock ,* If Example -
segref sys_info, time_del ta II Example
adl time _delta+l

temp nexti " Example
lxlO nexti,*

1 ink goto,<unwinder_>1 unwinder If Example -tra lpigoto,*

ana =o777777,du II Example
ada =v36/l ist_end-l

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

1.

2.

3.

4.

5.

6 •

MULTICS PROGRAMMERS' MANUAL

Page 6

Example 1 shows direct specification of address~ base~ and
tag fields. In the second instruction, no base is specified, and
the symbol xlab is not external, so no base is used.

Example 2 shows an explicit link reference. Indirection is
specified for the link as the item at clock_ (in sys_info) is
merely a pointer to the final operand.

Example 3 uses an external expression as the operand of the
adl instruction. In this particular case, the operand itself is
in sys_info.

Example 4 uses a stack temporary. Since the word is
directly addressable using sp, the modifier specified is used in
the instruction.

Example 5 shows a directly specified operand that refers to
an external entity. It is necessary in this case to specify the
base and modifier fields, unlike segref.

Example 6 uses two literal operands. Only the second
instruction causes the literal value to be stored in the 1 iteral
pool.

Arithmetic Expression

An arithmetic expression
external names) and decimal
operators + - * I. Parentheses
meaning.

consists
numbers
can be

of names
joined by

used with

(other than
the ordinary
the normal

An asterisk in an expression, when not used as an operator,
has the value of the current location counter.

All intermediate and final results of the expression must be
absolute or relocatable with respect to a single location
counter. A relocatable expression cannot be multiplied or
divided.

Logical Expression

A logical expression is
absolute symbols combined
(XOR), * (AND), and ~ (NOT).
normal meaning.

composed of octal constants and
with the Boolean operators + (OR), -

Parentheses can be used with the

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

External Expression

Page 7
10/5/73

An external expression refers symbolically to some other
segment. It consists of an external name or expl icit 1 ink
reference, an optional arithmetic expression added or subtracted,
and an optional modifier subfield. An external name is one
defined by the segref pseudo-operation. An explicit link
reference must begin with a segment name enclosed in angle
brackets and followed by a vertical bar. This can optionally be
followed by an entry name in square brackets. For example:

<segname> I entryname
<segname>IO,5*

A segment name of *text or *link indicates a reference to
this procedure's text or linkage sections.

A link pair is constructed for each combination of segment
name, entry name, arithmetic expression, and tag that is
referenced.

Literal Expression

A literal reference causes the instruction to refer to a
word in a literal pool that contains the value specified. An
exception occurs, in that the modifiers du and Ql cause the value
to be stored directly in the address field of the instruction;
the effect is the same when executed. The various formats of
literals are described as follows.

A decimal literal can be signed. If it contains a decimal
po i nt or exponent, it is float i ng po i nt. I f the exponent beg i ns
with lid" instead of lie", it is double precision. A binary scale ~
factor beginning with II bit indicates fixed point, and forces
conversion from floating point.

An octal literal begins with an "Oil followed by up to twelve
octal digits.

ASCII literals can occur in two forms: one begins with a
decimal number between 1 and 32 followed by lIa ll followed by that
many data characters, which can cross statement delimiters. The
other form begins with Ita" followed by up to four data
characters, which can be delimited by the new line character.

A GBCD literal begins with IIhll followed by up to six data
characters, which can be delimited by the new line character.
Translation is performed to the 6-bit character code.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

EJ MULTICS PROGRAMMERS' MANUAL

Page 8

An ITS (ITP ... ITB) 1 iteral begins with "its" (lfitp", "itb")
followed by a parenthesized 1 ist containing the same operands
accepted by the ~ (~, itb) pseudo-operation. The value is
the same as that created by the pseudo-operation.

A variable-field literal begins with "v" followed by any
number of decimal, octal, and ASCII subfields as in the yfg
pseudo-operation. It must be enclosed in parentheses if a
modifier subfield is to be used.

These specify indirection, index register address
modification, immediate operands, and miscellaneous tally word
operations. They can be specified as 2-digit octal numbers
(particularly useful for instructions like ~), or symbolically
using the mnemonics described here.

Simple register modification is specified by using any of
the register designators listed in the table. It causes the
contents of the selected register to be added to the final
effective address.

Register-then-indirect modification is specified by using
any of the register designators followed by an asterisk. If the
asterisk is used alone it is equivalent to the n* modifier. The
register is added into the effective address, then the address
and modifier fields of the word addressed are used in determining
the final effective address. Indirection cycles continue as long
as the indirect words contain an indirection modifier.

Indirect-then-register modification is specified by placing
an asterisk before anyone of the register designators listed
below. See the processor manual.

Direct modifiers are du and Ql. They cause an immediate
operand word to be fabricated from the address field of the
instruction. For Ql, the 18 address bits are right-justified in
the effective operand word; for du they are left-justified. In
either case, the remaining 18 bits of the effective operand are
filled with zeros.

Segment addressing modifiers ~, l1Q, and llQ can only
occur in an indirect word pair on a double-word boundary. ~
causes the address field of the even word to replace the segment
number of the effective address, then continues the indirect
cycle with the odd word of the pair. Nearly all indirection in
Multics uses ITS pairs. For ~ and l1Q, see the processor
nanua 1 •

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

Page 9
10/5/73

Tally modifiers 1, il, ~, ~, ad, ~, lQ, .9..1.,1..9.&, and .9l..&.
control incrementing and decrementing of the address and tally
fields in the indirect word. They are difficult to use in
Multics because the indirect word and the data must be in the
same segment. See the processor manual.

Fa u 1 t . tag mo d i fie r s f 1 , ll, and II c au sed i s tin c t h a r dwa r e
faults whenever they are encountered. II is reserved for use in
the Multics dynamic linking mechanism; the others result in the
signalling of the conditions "fault_tag_11f and Ifault_tag_3".

designators register

xO 0 ndex reg ster 0
xl 1 ndex reg ster 1
x2 2 ndex reg ster 2
x3 3 ndex reg ster 3
x4 4 ndex reg ster 4
xS 5 ndex reg ster 5
x6 6 ndex register 6
x7 7 ndex register 7
n none (no modification)
au A bits 0-17
al A bits 18-35 or 0-35
qu Q bits 0-17
ql Q bits 18-35 or 0-35
ic instruction counter

.Ell modifi~(~

An EIS modifier appears in the first word of an EIS
multi-word instruction. It affects the interpretation of operand
descriptors in subsequent words of the instruction. No check is
made by ALM that the modifier specified is consistent with the
operand descriptor specified elsewhere.

An EIS modifier consists of one or more subfields separated
by commas. Each subfield contains either a keyword as listed
below, or a register designator, or a logical expression. The
values of the subfields are ORIed together to produce the result.

keyword meaning

pr Descriptor contains a base register reference.
id Descriptor is an indirect word pointing to the true

descriptor.
rl Descriptor length field names a register containing

data length.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 10

Pseudo-operation~

end
terminates the source file.

include segmentname
inserts the text of the segment segmentname.incl .alm immediately
after this statement. A standard include 1 ibrary search is done
to find the include file. See the MPM Reference Guide section,
The System Libraries and Search Rules.

name objectname
respecifies the object segment name as it appears in the object
segment. By default the storage system name is used.

~ name
assembles subsequent code into the location counter name.
Default location counter is ".text.".

LQln /~name1,name2, ••• /link/name3,name4, •••
appends the location counters name1, name2, etc. to the text
section, and appends the location counters name3, name4, etc. to
the linkage section. The text and link parts can be used alone
or together; any number of names can appear. Each name must have
been previously referred to in a ~ statement. Any location
counters not lQlned are appended to the text section.

2L& expression
sets the location counter to the value of the absolute arithmetic
expression expression. The expression must not use symbols not
previously defined.

~
24d.
eight
sixtyfour

inserts padding (nop) to a specified word boundary.

mod expression
inserts padding (nop) to an (expression) word boundary.

mastermode
executeonly

requests special entry-checking code. Obsolete.

inhibit Q!l
inhibit .Q£f

sets a mode affecting interrupt inhibit bit that is assembled
into subsequent instructions. For system use.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

nY.ll
.r..em

is ignored. Used for comments.

QQQl name,expression

Page 11
10/5/73

defines the symbol ~ with the logical value expression. See
the definition of logical expressions above.

~ name,expression
defines the symbol ~ with the arithmetic value expression.

~ name, express ion
assigns the arithmetic value expression to the symbol~. Its
value can be reset in other ~ statements.

link name,extexpression
defines the symbol ~ with the value equal to the offset from
lp to the link pair generated for the external expression
extexpression. Note that an external expression can include a
tag subfield. Note also that ~ is not an external symbol, so
an instruction should refer to this link by:

lpl~,*

segref segname,namel,name2, •••
defines the symbols namel, name2, etc. as external symbols
referencing the entry points namel, name2, etc. in segment
segname. This defines a symbol with an implicit base register
reference.

~ namel(nl),name2(n2), •••
defines the symbols namel, name2, etc. to reference unique stack
temporaries of nl, ill, etc. words each. nl fi£, etc. are
absolute arithmetic expressions, and can be omitted (the
parentheses should also be omitted). The default is one word per
name.

tempd namel(nl),name2(n2), •••
is similar to ~, except that nl (n2, etc.) double words are
allocated, each on a double word boundary.

temp8 namel(nl),name2(n2), •••
is similar to ~, except that 8-word units are allocated, each
on an 8-word boundary.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 12

ace !string!
assembles the ASCI I string string into as many contiguous words
as are required (up to forty-two). The delimiting character /
can be any non-white-space character. The quoted string can
contain new line and semicolon characters. The length of the
string is placed in the first character position in ~ format.

£&l /string/
is similar to ~, but no length is stored. The first character
position contains the first character in ~ format.

~ /string/
is similar to a&l, but uses GBCD six-bit character codes.

~ numberl,number2, •••
assembles the decimal integers numberl, number2, etc. into
consecutive words.

~ numberl,number2, •••
is like ~, with octal integer constants.

~ expressionl,expression2
assembles expressionl into the left 18 bits of a word and
expression2 into the right 18 bits. Both subfields default to
zero.

£L& operand
is assembled exactly like an instruction with a zero opcode. Any
form of instruction operand may be used.

vfd TILl/expressionl,T2L2/expression2, •••
is variable format data. expressioni is of type Ii and is stored
in the next 11 bits of storage. As many words are used as
required. Individual items can cross word boundaries and exceed
36 bits in lengtho Type is indicated by the letters "a" (ASCII
constant) or "0" (logical expression) or none (arithmetic
expression). Regardless of type, the low order 11 bits of data
are used, padded if needed on the left. Ii can appear either
before or after li.

Restrictions: The total length cannot exceed ten words. A
relocatable expression cannot be stored in a field less than 18
bits long, and it must end on either bit 17 or bit 35 of a word.

~ name,expression
defines the symbol ~ as the address of a block of expression
words at the current location. ~ can be omitted, in which
case the storage is still reserved.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 13
10/5/73

~ name,expression
is like ~, but ~ is defined as the address of the first word
after the block reserved.

~ segno,offset,tag
generates an ITS pointer to the segment segno, word offset
offset, with optional modifier 1£&. If the current location is
not even, a word of padding (nop) is inserted. Note that such
padding causes any labels on the statement to be incorrectly
defined.

11Q baseno,offset,tag
1tR baseno,offset,tag

generates an ITB (ITP) pointer referencing the base register
baseno. Not commonly used in Multics.

firstref extexpression1(extexpression2)
the procedure extexpression1 is to be called with the argument
pointer extexpression2 the first time (in a process) that this
object segment is linked to by an external symbol. If
extexpression2 and the parentheses are omitted, an empty argument
list is supplied. The expressions are any external expressions,
including tags.

segdef name1,name2, •••
makes the labels name1, name2, etc. available to the linker for
referencing from outside programs, using the symbolic names
name1, name2, etc. Such incoming references go directly to the
labels name1, name2, etc., so the segdef pseudo-operation is
usually used for defining external static data. For program
entry points the entry pseudo-operation is usually used.

entry name1,name2, •••
generates entry sequences for labels name1, name2, etc. and makes
the externally-defined symbols name1, name2, etc. refer to the
entry sequence code rather than directly to the labels. The
entry sequence performs such functions as initializing base
register lp to point to the linkage section, which is necessary
to make external symbolic references (link, segref, explicit
links). The entry sequence can use (alter) base register bp,
index registers 0 and 7, and the A and Q. It requires sp and sb
to be properly set (as they normally are).

getlp
sets the base register lp to point to the 1 inkage section.
can be used with segdef to simulate the effect of entry.
operator can use base register bp, index registers 0 and
the A and Q, and requires sp and sb to be set properly.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

This
This

7, and

MULTICS PROGRAMMERS' MANUAL

Page 14

~ expression
push expression

creates a new stack frame for this procedure, containing
express jon words. If expression is omitted (the usual case), the
frame is just large enough to contain all cells reserved by ~,
tempd, and temp8. This operator can use base registers bp and
sp, index registers 0 and 7, and the A and Q, and requires sp and
sb to be set properly.

short return
is used to return from a procedure which has not performed a
~. This operator requires sp and sb to be set properly.

return
is used to return from a procedure which has performed a ~.
This operator requires sp and sb to be set properly.

~ routine(arglist}
calls out to the procedure routine using the argument list at
argl ist. Both roy tine and argl ist can be any legal instruction
operand, including tags. If argl ist and the parentheses are
omitted, an empty argument list is created. All registers are
saved and restored by &all. This operator requires that sp and
sb be set properly.

short call routine
calls out to routine using the argument list pointed to by ape
Only lp, sp, and sb are preserved by short call, and sp and sb
must be properly set.

LQ1 tally,delta,term1,term2, •••
generates the machine LQl instruction as described in the
processor manual. tally and delta are absolute arithmetic
expressions. The termj specify the termination conditions as the
names of corresponding conditional transfer instructions. This
same format can be used with the ~, LQ4, LQQ£, and rpdb
pseudo-operations,

.!:.l2..t.A , del t a
generates the machine ~ instruction with a bit set to indicate
that the tally and termination conditions are to be taken from
index register O. This format can be used with LQlx and LQQA.

ggA index,operand
assembles into an ~ instruction, where n is the value of the
absolute arithmetic expression index. This format can be used
for all index register instructions.

@ Co p y rig h t I 19 73 , ~J1a s sac h use t t sin s tit ute 0 f T e c h no log y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

~ base, operand

Page 15
10/5/73

assembles into a ~ instruction, where n is found as follows:
If ~ is a built-in base name (ap, ab, etc.) that register is
selected. Otherwise, ~ must be an absolute arithmetic
expression whose value is n. This format can be used for all
base register instructions except ~.

awd operand
~ operand

generates the 6180 EIS instruction awd as described in the
processor manual. operand must specify a base register, as this
instruction selects its output register that way. The ~
pseudo-operation causes the offset to be cleared before the
addition, thus effecting a load. This format can be used with
gj;ul, £!Lb..9., .s..I2.Q., sbdx, etc.

mlL (MF1),(MF2),illl(octexpression),enablefault
generates the first word of an EIS multiword instruction. MEl
and MEl are EIS modifier fields as described above. Certain
keywords (illl, bool, and ~) require logical expression
operands that specify the bits to be placed in the appropriate
parts of the instruction. Other keywords (round, enablefault,
ascii) cause single option bits in the instruction to be set.
Keywords can occur in any order, before or after any MF fields.
This format can be used for all 6180 EIS multiword instructions.

desc4a
desc6a
desc9a

address(offset),length
address(offset),length
address(offset),length

generates the operand descriptor that usually follows the first
word of an EIS multiword instruction. address is any arithmetic
expression, possibly preceded by a base register subfield as in
an instruction operand. offset is an absolute arithmetic
expression giving the offset (in characters) to the first bit of
data. It can be omitted if the parentheses are also omitted.
length is either a built-in index register name (al, au, ic, xO,
etc.) or an absolute arithmetic expression for the data length
field of the descriptor. The character size (in bits) is
specified as part of the pseudo-operation name.

descb address(offset),length

generates an operand descriptor for a bit string.
length are in bits.

offset and

@ Copyright, 1973, r1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 16

dpsc4fl
desc4ls
desc4ns
desc4ts

MULTICS PROGRAMMERS' MANUAL

address(offset);length;scale
address(offset),length,scale
address(offset),length,scale
address(offset),length,sca1e

generates an operand descriptor for a decimal string. scale is
an absolute arithmetic expression for a decimal scaling factor to
be applied to the operand. It can be omitted, and is ignored in
a floating-point operand. Data format is specified in the
pseudo-operation name: desc4f1 indicates floating point, desc4ls
indicates leading sign fixed point, desc4ns indicates unsigned
fixed point, and desc4ts indicates trailing sign fixed point.
Nine-bit digits can be specified by using desc9f1, desc9ls,
desc9ns, and desc9ts.

@ Cop y rig h t , 19 73 , r~a s sac h use t t sin s tit ute 0 f T e c h no log y
and Honeywe 11 Info rrnat ion Sys terns Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Command
8/20/73

This command submits an absentee request to perform ALM
assemblies. The absentee process for which alm_abs submits a
request assembles the segments named, appends the output of
print_link_info for each segment to the segment segnamel.l ist if
it exists, and dprints and deletes segname~.list. If the
-output_file control argument is not specified, an output
segment, segname.absout, is created in the user's working
directory (if more than one segname is specified, the first is
used). If the segment to be assembled cannot be found, no
absentee request is submitted.

Usage

alm_abs segnamel ••• segnamen -alm_control_args
-alm_abs_control_args-

1) segnamel is the path name of a segment to be
assembled.

can be one or more nonobsolete control
arguments accepted by the ALM assembler
and described in alm. (See the write-up
in the MPM.)

3) alm_abs_control_args can be one or more of
control arguments:

the
,-~

followi ng

-queue n, -q n

-copy n, -cp n

-hold

specifies in which priority queue the
request is to be placed (n <= 3). The
default queue is 3. segnamel.l ist is
also dprinted in queue n.

specifies the number of copies (n <= 4)
of segnamel.list to be dprinted. The
default is 1.

specifies that alm_abs should not dprint
or delete segnamel.list.

-output_file I, -of £ specifies that absentee output is to go
to segment £ where L is a path name.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

No-.tes

Control arguments and segment names can be mixed freely and
can appear anywhere on the command line after the command. All
control arguments apply to all segment names. An unrecognizable
control argument causes the absentee request not to be submitted.

Expanded segments containing include files are not deleted.

Unpredictable results can occur if two absentee requests are
submitted which could simultaneously attempt to assemble the same
segment or write into the same .absout segment.

When doing several assemblies, it is more efficient to give
several segment names in one command rather than several
commands. With one command, only one process is set up. Thus
the links that need to be snapped when setting up a process and
when invoking the assembler need be snapped only once.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

HULTICS PROGRAMMERS' MANUAL I answer I

~: answer

Command
Development System

5/17/72

This command provides a preset answer to any questions asked
by some other command. It does this by establ ishing a handler
for the condition command_question, and then executing the
subject command. If the subject command calls command_query_ to
ask a question, the handler will be invoked to supply the answer.
The handler is reverted when "answer" exits.

Usage

answer ans -control_args- commandline

1) ans

2) control_args

-brief, -bf

- times 11

3) commandline

tiotes

is the desired answer to any question.

may be chosen from the following 1 ist of
control arguments:

suppresses printing of both the question and
the answer.

gives the prespecified answer 11 times only
(where 11 is an integer); then it acts as if
"answer" had not been called.

is any Multics command line.

If a question is asked which requires a yes or no answer,
and the preset answer is neither yes nor no, the handler will not
be invoked.

Examples

To delete a directory without being asked if you want to
delete it:

answer yes -bf dd test_dir

To see the first three blocks of an info segment named
fred. info, and then be interrogated:

answer yes -times 2 help fred

To see only the first three blocks:

® Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 2

answer no answer yes -times 2 heip fred

In the above example, "answer" is invoked twice. The first
invocation is to answer no and is given the command 1 ine

answer yes -times 2 help fred

The second invocation is to answer yes twice, and is given the
·command 1 i ne

help fred

The help command prints the first block of fred.info, and gets
the answer yes from the second invocation of "answer". It
repeats this process, and again obtains a yes answer. After help
prints the third block of fred. info, however, the second
invocation of "answer" has had its count run out, and behaves as
if it had not been called. Hence, the first invocation of
"answer" suppl ies the answer no and execution ends.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

HULTICS PROGRAMMERS' MANUAL

liame: apl

Command
11/16/73

The apl command invokes the Multics APL interpreter, which
is completely described in the APL User's Guide. The Multics APL
language is nearly identical to the language APL/360, which has
earned wide acceptance.

APL can be characterized as a 1 ine-at-a-time desk calculator
with many sophisticated operators and a limited stored-program
capability. One needs 1 ittle or no prior acquaintance with
digital computers to make use of it. After invoking APL, one
types an expression to be evaluated. The APL interpreter
performs the calculations, prints the result, and awaits a new
input 1 ine. The result of an expression evaluation can also be
assigned to a variable and remembered from 1 ine to 1 ine. In
addition, there is a capabil ity for storing up input 1 ines and
giving them a name, so that a later mention of the name causes
the 1 ines to be brought forth and interpreted as if they had been
entered from the console at the time. Finally, there is also the
ability to save the entire state of an APL session, complete with
all variable values and stored programs, so that it can be taken
up again on another day.

Usage

apl

Notes

There are no arguments. The interpreter responds by typing
six spaces and awaiting input. For further information, consult
the APL User's Guide.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

~: archive, ac

Command
11/8/72

An archive segment is a single segment which is formed by
combining together an arbitrary number of separate segments;
these constituent parts of an archive segment are called
components. The archive segment is particularly useful as a
means of conserving storage space by eliminating the breakage
which occurs when the contents of segments do not fill complete
pages of stora~e. It is convenient as a means for packaging
segments; it is used in that manner when interfacing with the
Multics binder.

The archive command is furnished to
segments for the user. There are four
operations performed by the archive command.

I} printing a table of contents;
2} extracting components;
3} deleting components;

maintain archive
general classes of
These are:

4} replacing, updating, or appending components.

The first two classes of operations use the contents of archive
segments; the last two classes of operations change the contents
of archive segments. Various features are combined with these
operations to ease the use of archive segments.

The copy feature may be combined with the replacement and
deletion operations. It causes the updated archive to be placed
in the working directory when the original archive segment is
found elsewhere in the storage system. The copy feature behaves
as if the archive segment were first copied into the user's
working directory and then updated as requested.

Deletion can be combined with the replacement operations to
cause segments to be deleted from the storage system after they
have been replaced or added to an archive segment. The force
feature can be used in conjunction with deletion to cause the
safety function to be bypassed. (This is analogous to the
operation of the deleteforce command.) This form of deletion
should not be confused with the operation which deletes
components from archive segments.

The update feature causes components of archives to be
replaced only if the date-time modified of the segment in the
storage system is later than that associated with the component
in the archive. If a component requested for updating is not
found in the archive, it is not added to the archive.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULT I CS PROGRAMME RS I tJiANUAL

Page 2

The append feature can be used during replacement when
additions only are to be made. If the archive command finds a
component already present in the archive segment, a diagnostic is
printed and replacement is not performed.

The archive command can operate in two modes: if no
components are named on the command line, the requested operation
is performed on all components of the archive; if components are
named on the command line, the oper~tion is performed only on the
named components.

The star convention can be applied to the archive segment
path name during the extraction and table of contents operations;
it cannot be used during replacement and deletion operations.
Component names may not be specified using the star convention.

No commands other than archive, archive_sort, and
reorder_archive should be used to manipulate the contents of
archive segments; using a text editor or other similar commands
will result in unspecified behavior.

Usage

archive key archivepath path~ pathn

1) key is one of the following:

~ Function Comments

Table of Contents Operations

t print .table of
contents

tl print ~able of
contents in
.long form

tb print ~able of
contents, hriefly

tlb print ~ables of
contents in long
form, Qriefly

prints the entire table of contents if
no components are named by the pathi
ar~uments; otherwise it prints
information about the named components
only; a title and column headings are
printed before the first listed
component.

operates like t, printing all
information for each component.

Operates like t, except that the title
and column headers are suppressed.

Operates likes tl, except that the
title and column headers are
suppressed.

® Copy rig; h t , 19 7 3 , ~4a s sac h use t t sin s tit ute of Tech no log y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Replacement Operations

r .r.eplace

rd .r.eplace and
.d.elete

rdf .r.eplace and
.d.eleteiorce

cr ~Opy and
.r.eplace

crd ~opy, .r.eplace,
and delete

crdf ~opy, Leplace,
and .d.elete£orce

Append Operations

a ,append

ad ,append and Qelete

adf ilPpend and
delete£orce

Page 3
11/8/72

replaces or adds components in the
archive. If no component names are
given, all components of the archive for
which segments by the same name are
found in the user's working directory
are replaced. When components are
named, if they are found in the existing
archive segment, they are replaced by
segments in the storage system;
otherwise they are added.

operates like r and deletes all segments
which have been placed in the archive
after the archive has been updated.

operates like r and forces deletion of
all replaced segments after the archive
has been updated.

operates like r, placing the updated
archive in the user's working directory
instead of changing the original archive
se$!ment.

operates like rd, placing a copy in the
user's working directory.

operates like rdf, placing a copy in the
user's working directory.

appends named components to the archive
segment. I f any named component is
found within the archive, a diagnostic
is issued and the component is not
replaced. At least one component must
be named by the pathl arguments.

operates like a and deletes all appended
se~ments after the archive has been
updated.

operates like a and forces deletion of
all appended segments after the archive
has been updated.

@ Cop y rig h t , 1 973, Ma s sac h use t t sin s tit ute 0 f T e c h nolo g y
and Honeywell Information Systems Inc.

Page 4

ca

cad

,&opy, .append

,&opy, .append,
and Qelete

cadf ~opy, aPpend,
and .s;leleteiorce

Update Operations

u

ud

'y'pdate

J.Lpdate and
delete

udf J.Lpdate and
.s!eleteiorce

cu ,&opy and ypdate

cud .&opy, ypdate, and
delete

cudf ~opy, ypdate, and
deleteiorce

Deletion Operations

d gelete

cd ~opy, delete

MULTICS PROGRAMMERS' MANUAL

operates likes a,
archive segment in
directory.

placing the new
the user's working

operates like ad, placing the new
working archive segment in the user's

directory.

operates like adf,
new archive segment in
workin~ directory.

placing the
the user's

operates like r except it replaces only
those components for which the
corresponding segment has a date-time
modified later than that associated with
the component found in the archi vee If
the component is not found in the
archive, it is not added to the archive
segmente

operates like u and deletes all updated
segments after the archive has been
updated.

operates like u and forces deletion of
all updated segments.

operates like u, placing the new archive
in the user's working directory.

operates like ud, placing the new
archive in the user's working directory.

operates like udf, placing the new
archive in the user's working directory.

deletes from the archive those
components specified by arguments.

operates 1 ike d, placing the
updated archive i n the working
directory.

~ Copyright, 1973, Massachusetts Institute of Technolo~y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Extraction Operations

x

xf

2)

3)

Notes

~xtract

.e,xtract and
deleteiorce

archivepath

pathl

Page 5
11/B/72

extracts from the archive those
components specified by arguments,
placing them in segments in the storage
system, as specified by the path name
arguments. The mode stored in the
archive is given to the segment for the
user performing the extraction. Deletes
segments if already present, observing
the duplicated name convention in a
manner simi 1 ar to the copy command. If
no component names are given, it
extracts all components, placing them in
the working directory. The archive
segment is not modified.

operates like x, deleting or removing
names from any se~ments found where the
new segment is to be created e

is the p~th name of the archive segment
to be created or manipulated. The
suffix lI.archive" will be added if the
user does not supply it. If the segment
does not exist, it will be created for
replace or append operations. The star
convention may be used for extraction
and table of contents operations.

specifies the components to be operated
on for table of contents and deletion
oper at ions. For rep 1 acement and
extraction operations, it specifies the
path name of a segment corresponding to
a component whose name is the entry name
portion of the path name. The star and
equal conventions may not be tised.

Each component of an archive segment retains certain
attributes of the corresponding segment in the storage system. A
single name, the effective mode of the user who placed the
component in the archive, the date-time the segment was last
modified, and the bit count of the segment are maintained. In
addition, the date-time that the component was placed in the
archive segment is maintained. When a component is extracted
from an archive segment and placed in the storage system, the new

@ Cop y r 1 ;~: h t i' 19 7 3 , Ha s sac h use t t 5 Ins tit ute 0 f Tee h nolo g y
and Honeywell Information Syste~i1s Inc.

MULTICS PROGRAMMERS' MANUAL

Page 6

segment is given the mode associated with the archive component
for the user performing the extraction, the name of the
component, and the bit count associated with the component.

The archive command maintains the order of components
contained within an archive segment. When new components are
added, they are placed at the end.

The archive command automatically creates an archive segment
during replacement operations when no original archive exists.

The archive command cannot be used recursively. Internal
consistency checks are made to prevent the misuse of the command
in this fashion. The user is asked a question if the command
detects an attempt to use the archive command prior to its
completing the last operation.

During the operation of the archive command for replacement
or deletion, because the replacement operation is not
indivisible, it is possible for the updating operation to be
stopped before it has been completed and after the original
segment has been truncateda This may happen, for example, if a
record quota overflow is received. When this situation occurs, a
message is printed informing the user what has happened. In this
case, the only good copy of the updated archive segment will be
contained in the process directory.

Archive segments may be placed as components inside of
archive segments, preserving their identity as archives, and then
later may be extracted intact.

When the archive command detects an internal consistency
error, it prints a status message and stops performing the
requested operation. For table of contents and extraction
operations, it wi 11 have completed requests for components
appearing before the place where the format error is detected.

For segment deletions after replacement requests, if the
specified component name was a link to a segment, the segment
linked to is deleted.

No more than thirty-two components may be named for anyone
request. For replacement operations where no components are
named, more than thirty-two components may be replaced or
appended, but if deletion is requested, only the first thirty-two
segments will be deleted. A message is printed when this
situation occurs.

The archive command observes the protected segment
convention by interrogating the user when appropriate.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MUlTICS PROGRAMMERS' MANUAL

Name: archive_sort, as

Command
11/7/72

This command is used to sort the components of an archive
segment. The components are sorted into ascending order by entry
name using the standard ASCI I collating sequence. The original
archive segment is replaced by the sorted archive.

usage

archive_sort pathl •••• pathn

1) pathl

Notes

is the path name of an archive segment to be sorted.
(The user need not supply the ".archive" suffix.)

There may be no more than 1000 components in an archive
segment which is to be sorted.

Storage system errors encountered while attempting to move
the temporary sorted copy of the archive segment back into the
user's original segment will result in diagnostics, and the
preservation of the sorted copy in the user's process directory
(te 11 i ng the use r i ts name). I f the or i gina 1 is pro tee ted, the
user will be interrogated to determine whether or not it should
be overwritten.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywe 11 I nformat ion Sys terns Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Name: basic

Command
4/30/73

The basic command invokes the BASIC compiler to translate a
segment containing BASIC source code. If the compile oPtion is
not specified, the compiled code is then executed.

Usage

basic source_name -optionl- ••• -oPtionn-

2) oPtioni

-time 11, -tm n

-compile

-library, -lb

Notes

is the path name of the segment to be
translated. The characters .basic mayor may
not appear as part of the path name. They
must appear, however, on the segment itself.

is selected from the
options. The options
order.

fo 11 ow i ng 1 i s t
may appear in

of
any

specifies a time limit of n CPU seconds where
11 is an integer. When the time limit is
exceeded, execution stops, and the user is
asked if he would like to continue execution.
If he answers yes, a new timer is set giving
the user the same amount of time.

indicates to compile the program and produce
an object segment rather than immediately
executing the code. The compiled object
se~ment is saved in the user's working
directory with the characters .dobj appended
in place of .basic. The object segment is
not a Mu1tics standard object segment and can
only be executed using the basic_run command.

indicates that the Dartmouth library is to be
searched for the source segment. No other
directory is searched.

This implementation of BASIC is described in BASIC, Sixth
Edition, published in 1971 by the Kiewit Computation Center,
Dartmouth College, in Hanover, New Hampshire.

The following is a list of differences between the Dartmouth
and Multics implementations of BASIC:

@ Copyright, 1973, r·1assachusetts Institute of Technology
and Honeywe 11 I nforma t ion Sys terns Inc.

MUlTICS PROGRAMMERS' MANUAL

Page 2

1) The Mu1tics storage system conventions differ from those
at Dartmouth. Therefore, if a user refers to a segment
as

20 file 1I1:"a1pha"

Multics will search for a segment named alpha in the
user's working directory. If alpha is not found, the
directory is searched for a1pha.basic. If this is not
found, the segment alpha is created.

2) The number sign (I) must be entered with an escape
character preceding it to avoid the Mu1tics
interpretation as an erase character. The upward arrow
character is entered as a circumflex on Mu1tics.

The current version of the BASIC compiler is
a proprietary program of Dartmouth College.
It has been made available to users of the
M.I.T. Information Processing Center with the
permission of Dartmouth College. The BASIC
compiler may not be used at other computer
installations without permission of Dartmouth
Co 11 ege.

@ Copyr i ght, 1973, t·1assachusetts I nst i tute of Technology
and Honeywe 11 I nforma t i on Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Command
Development System

2/16/72

This command will execute an object segment created by the
BASIC compiler. For information on the BASIC language, see the
wr i te-up on the "bas i c" command in the MPf-.1.

Usage

basic_run pathname -option~- ••• -optionn-

1) pathname is the path name of the object segment to be
executed. The characters ".dobj" mayor may
not appear as part of the path name but must
be the last component of the BASIC object
segment.

2) optionl is selected from the following 1 ist
options which may appear in any order:

of

-time n, -tm n specifies a time 1 imit of n CPU seconds where
n is an integer. When the time 1 imit is
exceeded, execution stops, and the user is
asked if he would like to continue execution.
If he answers yes, a new timer is set giving
the user the same amount of time.

-1 ibrary, -lb indicates that the Dartmouth 1 ibrary is to
be searched for the object segment. No other
directory is searched.

The current version of the BASIC compiler is
a proprietary program of Dartmouth College.
It has been made available to users of the
M.I.T. Information Processing Center with the
permission of Dartmouth College. The BASIC
compiler may not be used at other computer
installations without permission of Dartmouth
College.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MUlTICS PROGRAMMERS' MANUAL

COl1l11and
Development System

1/3/72

Name: basic_system, bs

basic_system is the standard BASIC source editor and run
dispatcher. A BASiC source segment path name must be specified.
If the segment exists, it is picked up; otherwise a new segment
is expected to be input.

This is an interactive BASIC, as opposed to the Multics
"basicll command, which only compiles a program.

Usage

basic_system pathname

1) pathname

Requests

is the path name of an existing or a to be created
segment. The .basic suffix is assumed.

The basic_system editing requests are:

line number basic source 1 ine

line number

save

quit

1 is t

run

adds or
sequence.
10,000.

replaces a
The line

basic source 1 ine in proper
number must be less than

deletes that source 1 ine if such a line number
exists.

stores the current internal source segment in the
segment specified in the command line.

returns from basic_system. The current internal
segment is lost.

prints the entire current internal segment.

calls BASIC with the current internal source
segment.

Any other type of request is ignored.

Copyright, 1972, Massachusetts Institute of Technology
All r i gh ts rese rved.

[bas i c_system MULTICS PROGRAMMERS' MANUAL

Page 2

"- ... _,.. ItVLS;Z

If you quit out of a BASIC compilation or execution run,
immediately issue the program_interrupt (pi) command in order to
get back to basic_system. Otherwise, any unsaved BASIC program
within basic_system will be lost.

Refer to BASIC, Fifth Edition, published by the Kiewit
Computation Center, Dartmouth College, Hanover, New Hampshire,
September 1970, for detailed information on the BASIC language
syntax.

The current version of the BASIC compiler is
a proprietary program of Dartmouth College.
It has been made available to users of the
M.I.T. Information Processing Center with the
permission of Dartmouth College. The BASIC
compiler may not be used at other computer
installations without permission of Dartmouth
Co 11 ege e

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MUlTles PROGRAMMERS' MANUAL

~: bind, bd

Command
3/9/73

This is the command interface to the Multics binder which,
given one or more separately translated procedure object
segments, produces a single inclusive and compact bound procedure
object segment. The bound segment will be in standard object
segment format if all input segments are standard object
segments. (See the MPM Subsystem Writers' Guide section, The
Multics Standard Object Segment.) This write-up describes
version 8.1 of the binder:

Usage

bind arcl ••• arcn --update- -updl- ••• ~updn- -control_arg-

1) arcl

2) -update, -ud

3) updl

4) control_arg

-1 ist, -ls

is the pathname of an archive segment
containing one or more component object
segments to be bound. Up to 16 (current
arbitrary implementation limit) input archive
segments may be specified. They are logically
concatenated in a left to right order to
produce a single sequence of input component
object segments. The specified pathname of the
archive segment mayor may not contain an
explicit .archive suffix.

is an optional functional argument to the
binder indicating that the following list of
archive segments (updl) specifies update rather
than input object segments. (See below.)

is the pathname of an oPtional archive segment
containing update object segments. Up to a
combined total of 16 input and update segments
may be specified. The contained update object
segments are matched against the input object
segments by object segment name. Matching
update object segments replace the
corresponding input object segments; unmatched
ones are appended to the sequence of input
object segments. If several update object
segments have the same name, only the last one
will be bound.

the bind command accepts either of
following two optional control arguments:

the

produces
derived

a listing segment
from the name of

whose name is
the bound object

@ Copyright, 1973, t1assachusetts Institute of Technology
and Honeywell Information Systef'1s Inc.

Page 2

-map

.Ib..e. Bjndfile

MULTICS PROGRAMMERS' MANUAL

segment plus a ".1 ist" suffix. The 1 isting
segment is generated for the purpose of
dprinting, and contains the bound segment's
.bind control segment, its bind map, and that
information from the bound object segment which
would be printed by the print_link_info
command. See the MPM write-ups for dprint and
p r i n t_l i n k_ i n f 0 •

produces a .list listing segment which contains
only the bind map information.

In the absence of either of these control
arguments, no listing segment is generated •

As is discussed in more detail in Syntax of ~ Bindfile
below, special binding instructions may be provided in symbolic
form in a special ASCII segment known as the bindfile whose entry
name must contain the suffix ".bind". The bindfile must be
archived into anyone of the input archive segments (at any
location within that archive segment) where it will be
automatically located and recognized by the binder.

In the case in which two bindfiles are specIfied, one in an
input archive segment and the other in an update archive segment,
the latter takes precedence and an appropriate message is printed
to that effect.

Outout

The binder produces as its output two segments: an
executable bound procedure object segment and an optional
pr in tab 1 eAse II 1 is t i ng segment. The name of the bound obj ect
segment is, by default, derived from the entry name of the first
input archive segment encountered by stripping the .archive
suffix from it. The name of the listing segment is derived from
the name of the bound segment by"adding to it the .list suffix.
Use of the Objectname master statement in the bindfile (see
Master ~ Words below) allows the name of the bound object
segment to be stated explicitly. In addition, use of the Addname
master statement in the binding instructions (as explained below)
will cause additional segment names to be added to the bound
segment. Note that the primary name of the bound object segment
must not be the same as the name of any component, since both the
bound object name and the component names must be stored in the
definition section.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Backgroynd Information

EJ
Page 3
3/9/73

In order to understand the purpose of the bindfile, some
knowledge of the binder's functions is required.

A Multics procedure object segment consists of an internal
part (pure text, internal static, and symbol table) which is the
machine code representation of the source program, and an
external part (definition section and linkage information) which
defines certain external variables by a symbolic name for the
purpose of dynamic interprocedure linking.

The binding process performs two distinct operations: a) a
bound object segment is produced whose internal part (i.e., text,
internal static, and symbol table) is a concatenation of the
respective (relocated) portions of the component object segments;
and b) all interprocedure references among the bound component
object segments are prelinked at bind time.

The external part of the bound segment is newly generated to
reflect the bound object segment's interface with the external
world. Many external symbols previously defined within the
component objects may now be internal to the bound object segment
and need, therefore, no longer be defined as external to it.

The binder performs its internal prelinking by establishing
direct text-to-text or text-to-internal static references among
the bound component objects. For nonstandard object segments,
dynamic links to procedure entry points are established through
an indirect entry sequence located in the entered procedure's
linkage section. The purpose of this indirection is to properly
reload the linkage pointer (LP) register before the procedure
itself is entered. The binder dispenses with this indirection in
its internal prelinking because the entire bound object segment
requires a single value of LP which has been set properly when
the bound object was first entered. Under certain circumstances,
however, it is customary in Multics to pass entry values to
external procedures (e.g., condition_, ipc_$decl_ev_call_chn)
which later may invoke the entry' specified by such an entry.
value. If such an entry value refers to an entry point which is
internal to the bound segment, but which is not internal to a
component originally in standard object segment format, that
entry point's indirect entry sequence in the linkage section must
be regenerated to assure that a transfer of control to that entry
point will cause the LP to be reloaded properly.

The main purpose of the bindfile is to specify which
external symbols within the component objects are to be retained
in the bound objects, which are to be deleted, and which are to

@ Copyright, 1973, ''''assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 4

be prelinked indirectly through an entry seQuence in the linkage
section because they are used as parameters in calls to
procedures such as condition_ or ipc_$decl_ev_call_chn.

Syntax Qf ~ Bindfile

The binder's symbolic instructions have their own syntax
which allows for statements consisting of a key word followed by
zero or more parameters and then delimited by a statement
delimiter. Master statements pertain to the entire bound object
segment, regular statements pertain to a single component object
within the bound object segment. Master statements are
identified by master key words which are distinct from regular
key words in that they begin with a capital letter; regular key
words begin with a lower case letter. A key word designates its
parameters and a certain action to be undertaken by the binder
pertaining to those parameters.

Following is a list of the delimiters used:

;

,

/*

*/

Normal ~ Words

objectname

synonym

key word delimiter. It is used to identify a
key word followed by one or more parameters.
A key word which is followed by no parameters
is delimited by a statement delimiter.

statement delimiter.

parameter delimiter <the last parameter is
delimited by a statement delimiter}.

begin comment.

end comment.

the single parameter is the name of a
component object as it appears in the archive
segment. The objectname statement indicates
that all following normal statements (up to
but not 1ncluding the next objectname
statement) pertain to the component object
whose name is the parameter of the objectname
statement.

the parameters are symbolic segment names
declared to be synonymous to the component
object's objectname. The synonym statement
has two uses. First, it facilitates the
Multics linker's lookup of entries in bound

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

retain

delete

indirect

Page 5
3/9/73

segment components that have severai externai
segment names associated with them. Second,
it allows the binder to locate the component
object, for the purpose of prelinking, even
if it is referenced by names other than its
objectname. Users should take care to state
explicitly in a 'synonym statement all the
normally used segment names of a component
object. For example, the commands list,
listnames and listtotals are all implemented
in one procedure, and all have
abbreviations; thus a bindfile for the bound
segment in which this procedure resides would
contain:

objectname:

synonym:

1 is t;

1 s, 1 i s t name s , 1 n, 1 i s t tot a 1 s ,
It;

Failure to state segment names results in
most inefficient linker performance.

the parameters are the symbolic names of
external symbols (i.e., entry names and
segdefs) declared within the component object
segment which the user wishes to retain
(i.e., have regenerated) as external symbols
of the bound object segment.

the parameters are the symbolic names of
external symbols (i.e., entry names and
segdefs) declared within the component object
segment which the user does not wish to be
regenerated as external symbols of the new
bound segment.

the parameters are the symbolic names of
entry names (no segdefs) of the component
object segment which are to be prelinked
indirectly through a regenerated entry
sequence in the bound segment's linkage
section. For components not in standard
object segment format, an indirect statement
must be specified for all entry points used
as parameters in calls to procedures such as
condition_ and ipc_$decl_ev_call_chn.

,/

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 6

global

table

Master ~ Words

Objectname

Order

MULTICS PROGRAMMERS' MANUAL

The retain, delete and indirect statements
are considered to be exclusive. An error
message is displayed if the binder recognizes
that two or more such statements were made
regarding any single external symbol.

the parameters are the symbolic names of
external symbols which are nQ1 to be
prelinked during binding; i.e., all
references to such symbolic names will be
regenerated in the form of links to external
symbols. The no_link statement implies a
retain statement for the specified symbols.

the global statement may have as its
parameter either retain, delete, indirect or
no_link which becomes effective for all
external symbols of the component object. An
explicit retain, delete, indirect or no_link
statement concerning a given external symbol
of the component object overrides the global
statement for that specific external symbol.
A global no_link causes all external
references to the component object to be
regenerated as links to external symbols, to
allow execution time substitution of such a
component by a free standing version of it,
for example for debugging purposes.

does not requi re parameters. I t causes the
symbol table for the component to be retained
and is needed to override the master key
word No_Table, which is described below.

the parameter is the segment name of the new
bound object.

the parameters are a list of objectnames in
the des ired bind i ng order. I n the absence of
an order statement, binding will be done in
the order of the input sequence. The order
statement requires that there be a one-to-one
correspondence between its list of parameters
and the components of the input sequence.

same as Order, except that
parameters may be a subset
sequence, allowing the archive

the list of
of the input

segments to

® Cop y rig h t , 1 9 7 3 , t"l ass a c h use t t sin s tit ute 0 f Tee h nolo g y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Global

Addname

Page 7
3/9/73

contain additional segments which are not to
be bound (e.g., source programs).

is the same as the global statement except
that it pertains to all component object
segments within the bound segment. A global
or explicit statement concerning a single
component object or a single external symbol
of a component object overrides the Global
statement for that component' obj ect ,·or
symbo 1 •

the parameters are the symbolic names to be
added to the bound segment. If Addname has
no parameters, it causes the segment names
and synonyms of those component objects for
which at least a single external symbol was
retained to be added to the bound object
segment.

does not require parameters. It causes the
symbol tables from all the component symbol
sections containing them to be omitted from
the bound segment except when they are needed
by (version II) PL/I I/O runtime routines.
If this key word is not given, all symbol
tables will be kept.

If no bindfile is specified, the binder assumes default
parameters corresponding to the following:

Objectname: segment name of the first input archive file.

Global: retain; /*regenerate all definitions*/

Error Messages

The binder produces three types of error messages. Messages
beginning with the word I1Warning: 1I do not necessarily represent
errors. Messages beginning with the word "binder_:" normally
represent errors in the input components. Errors detected during
the parsing of the bindfile have the format:'

Bindfile Error Line In

where n is the line number of the offending statement,. to allow
easy retrieval through use of a context edi tor. If one of the
latter occurs the binder aborts, as it would not be able to bind
according to the user's specifications.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 8

The message

"binder_: Fatal error has occurred; binding unsuccessful."

indicates that due to errors detected during binding it was
impossible for the binder to produce an executable object
segment. The bound object segment is left in an unpredictable
state.

Notes

The binder may be considered, in some sense, to be a
language processor whose source language is the collection of
component object segments. For components not in standard object
segment format, it has to be cognizant of the code generation
peculiarities of the diverse translators supported by Multics.
Therefore, before processing a component object segment, it looks
up, in the component's symbol table, the name of the processor
which produced that component object segment. If that component
is not in standard format and if that language processor is
unknown to the current version of the binder, it will display an
error message and refuse to handle that component object.
Binding is terminate at that point.

Also, because the binder does not preserve the original
linkage section of the component object segment, code which makes
assumptions about the existence of a given link in the linkage
section (i.e., which would cease to work if that link were
removed by the binder), or which assumes a certain structure of
links (i.e., an array of links used as a transfer vector and
accessed through indexing) is not bindable by the Multics binder
and will normally result in a display of an appropriate error
message or, occasionally, in unpredictable results during the
execution of the bound segment.

Copyr;;~:htJ' 1973, Massachusetts Institute of Technology
and Honeywell Information Syste~s Inc.

MUlTICS PROGRAMMERS' MANUAL

Examples

Page 9
3/9/73

Following are examples of bindfiles.

1) Bindfile for alm

Global: delete;

objectname: alm;
retain: alm;

bound_alm_.bind

I*delete all old definitions*1

I*retain definition for single entry*1

2) Bindfile for debug -- bound_debug_.bind

Global:

Addname;

objectname:
synonym:
retain:

indirect:

objectname:
retain:
objectname:
retain:

delete;

debug;
db;
debug,
db;

fault;

list_arg_;

I*delete all old definitions*1

I*add names debug, db, list_arg_
and gr_print to bound segment
bound_debug_*1

I*indicate db is synonymous to debug*1

I*retain entry names debug$debug and
debug$db*1

I*indirect entry sequence for condition
handler debug$fault*1

list_arg_; I*retain entry name list_arg_$list_arg_*1
gr_print;
gr_printi I*retain entry name gr_print$gr_print*1

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

lia.!!le.: calc

Command
2/15/73

The calc command provides the user with a calculator capable
of evaluting arithmetic expressions with operator precedence, a
set of often-used functions, and an addressable-by-identifier
memory.

Usage

calc

initiates the command. The user may then type in any
expressions, assignment statements, list commands,
command, separated from each other by one or more
returns.

Expressions

number of
or a quit
carriage

Arithmetic expressions involving real values and the
operands +, , *, I, and ** <addition, subtraction,
multiplication, division, and exponentiation) may be typed in.
Prefix plus and minus are allowed. Parentheses may be used, and
blanks between operators and values are ignored. Calc will
evaluate the expression and print out the results. For example,
if the user typed:

2 + 3 * 4

calc would respond:

= 14

The order of evaluation is as follows:

1) expressions within parentheses

2) function references

3) prefix +, prefix -

4) **
5) if, /

6) +, -

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

Page 2

Operations of the same level are processed from left to
right, except for the prefix plus and minus which are processed
from right to left. Note that this means that 2**3**4 is
evaluated as (2**3)**4.

Numbers may be integers (123), fixed
floating point· (1.23e+2, 1.23e2, 1.23E2, or
stored as float bin(27). An accuracy of about
maintained. Variables (see below) may be
constants; e.g., pi * r ** 2.

point (1.23) and
1230E-1). All are
seven figures is

used in place of

Seven functions are provided: sin, cos, tan, atan, abs, 1n,
and log (In is base e, log is base 10). They may be nested to
any level:

sin(ln(var)*45*pi/180)

Assignment Statement

The value of an expression may be assigned to a variable.
The name of the variable must be 1 to 8 characters in length, and
must be made up of letters (upper and/or lower case) and the
underscore character (_). The form is:

<variable>=<expression>

For example, the following are legal assignment statements:

x = 2

Rho = sin(2*theta)

The calc command does not print any response to assignment
statements. "pi" and lie" have pre-assigned values of 3.14159265
and 2.7182818 , respectively.

list Command

If "list" is typed calc will print out the names and values
of all the variables that have been declared so far •

.lli!.Lt. Command

Typing "qll will cause calc to return to the calling program;
i.e. to command level.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywe 11 I nforma t ion Sys terns Inc ..

MULTICS PROGRAMMERS' MANUAL

Examples of Y.§..e.

user: calc

calc:

u:

c:

u:

c:

u:

c:

u:

c:

u:

c:

u:

2+2

= 4

r = 1.5

= 7.068583

sinCO.Ol)

= 9.999832E-3

143e11+(12e13

too many (

143e11+{ 12e13)

=
1 i st

r

e

q

1.343E+14

=
=

=

1.5

2.718282

3.141592

Page 3
2/15/73

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Command
Development System

9/22/71

The cancel_abs_request command allows a user to delete a
request for an absentee computation which is no longer required.
Normally the deletion can be made only by the user who originated
the request.

Usage

cancel_abs_request pname -optionl- ••• -optionn-

1) pname

2) optionl

-queue n, -q n

-all, -a

-brief, -bf

Notes

is the pathname of the absentee control
segment associated with this request. The
pathname must be typed as it was given in
the original request.

is selected from
options and may
command line:

the following 1 ist of
appear anywhere on the

indicates which priority queue is to be
searched. It must be followed by an
integer specifying the number of the
queue. If this option is omitted, the
third priority queue is searched unless
the -all option is provided. <See below.)

indicates that all priority queues are to
be searched starting with the highest
priority queue and ending with the lowest
priority queue.

indicates that the message "Absentee
request pname cancelled" is omitted.

The last request for an absentee co~putation is deleted if
there is more than one request associated with the same absentee
control segment in the same queue.

If the request refers to an absentee process which is
already logged in, this command will not be effective in stopping
the absentee computation.

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 2

Example

car)udd)Multics)Jones)dump)translate

would delete the last absentee request which the user had made in
queue 3 that was associated with the control segment
)udd)Multics)Jones)dump)translate.absin.

~ Copyright, 1971, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Conmand
5/18/73

~: cancel_daemon_request, cdr

The cancel_daemon_request command allows a user to delete a
dprint or dpunch request which is no longer required. Normally
the deletion can be made only by the user who originated the
request. See the MPM command write-ups for dprint and dpunch.

Usage

1) pname

-queue n., -q n

-a 11, -a

-brief, -bf

Notes

is the path
the dprint
cancelled.
exactly as
request.

name of the segment for which
or dpunch request is to be

The path name must be typed
it was given in the original

is selected from the following list of
control arguments and can appear anywhere
in the command line:

indicates which priority queue is to be
sea rched. I t mus t be fo 1 lowed by an
integer specifying the number of the
queue. If this control argument is
omitted, the third priority queue is
searched unless the -all control argument
is provided. (See below.)

indicates that all priority queues are to
be searched starting with the highest
priority queue and ending with the lowest
priority queue.

indicates
(dpunch)
omitted.

that the message
of pname cancelled"

"Dprint
is to be

The last request to print or punch a segment is deleted if
there is more than one request associated with the same user for
that segment in the same queue.

If the request refers to a segment which the I/O daemon is
already processing, this command is not effective in stopp;ng the
print or punch operation.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

Example

cancel_daemon_reQuest)Jones_dir)dump)translate.list

would delete the last request which the user had made in queue 3
to print or punch the segment)Jones_dir)dump)translate.list.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

The change_default_wdir command
directory as the user's default working
duration of the current process
change_default_wdir command is issued.

Usage

Command
Standard Service System

02/16/71

records
directory

or until

a specified
during the

the next

1) path is the directory which is to become the default working
directory. If path is not given, the current working
directory becomes the default working directory.

Notes

The change_default_wdir command is used in conjunction with
change_wdir. When the change_wdir command is issued with no
arguments, the default working directory becomes the current
working directory; if no default working directory has been
establ ished, the change_wdir command prints an error message.

See also change_wdir and print_default_wdir in the MPM.

(END)

nULTICS PROGRAMMERS' MANUAL

Command
Development System

9/28/71

This command is used to control the amount of information
printed by the default error handler. It affects all the
messages for the life of a process or until it is invoked again.

Usage

1) option may be chosen from the following list of
options:

-brief, -bf' prints the condition name.

-long, -lg prints more complete messages. In
particular, if a segment is bound, both the
offset relative to the procedure and the
offset relative to the segment are printed.
When there is a crawl out, both sets of
machine conditions are printed.

The normal mode, with the message intermediate in length
between the brief and long messages, is the default, and can be
reset by giving this command with no arguments.

€) Copyright, 1971, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

~: change_wdir, cwd

Command
Standard Service System

02/16/71

The change_wdir command changes the user's current working
directory to the directory specified as an argument.

Usage

change_wdir -path-

1) pa th is the pathname of the directory to change to. If path
is not given l the default working directory is assumed.

Notes

If path specifies a nonexistent directory, an error message
\'IJ ill be p r i n ted •

No access to path is required for the command to be
employed. However, once the working directory has been changed,
the user can proceed only according to his access to path. That
is, to effectively use path as a working directory, he must have
a mode of "rewa" for path. Restricted uses are possible in
accordance with the mode attributes on the directory. For
example, the mode must be at least "r" to list the directory.

~1PM.

(END)

t1UL TICS PROGRAMMERS I MANUAL

~: check_info_segs, cis

Conmand
10/18/73

The check_info_segs command prints a list of new or modified
segments. It saves the current time in the user profile, so that
when it is invoked again, it lists segments created or modified
since the last invocation.

Optional control arguments allow check_info_segs to be used
to perform a specified command on each modified segment, or to
search any directory for modified segments, or to use a time
other than that of the last invocation for the comparison.

Usage

1) control_args can be selected from the following:

-date string, -dt string If this argument is given,
check_info_segs uses the date
specified by string instead of the
date in the user profile. string
must be acceptable to the
convert_date_to_binary_ subroutine.
(See the convert_date_to_binary_
write-up in the MPM.) The time of
last invocation in the user profile
is not updated to the current time.

-long, -lg If this argument is specified,
check_info_segs lists the date and
time modified as well as the name of
any segment selected.

-brief, -bf If this argument is specified,
check_info_segs does not print the
names of selected segments and
suppresses the corrment fino change"
if no segments are selected. This
argument is intended for use with
the -call control argument described
below.

-no_update, -nud If this argument is specified,
check_info_segs does not place the
current time into the user profile.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

-call cmdline If this argument is specified,
check_info_segs calls the current
command processor with a string of
the form "cmdline path" for each
selected segment, after the name of
the segment is typed. path is the
absolute pathname of the segment.
Note that cmdline must be enclosed
in Quotes if it contains blanks.

-pathname path, -pn path If this control argument is

Notes

specified, check_info_segs assumes
that path is a pathname with one or
more asterisks in the entryname
portion. All new or modified
segments that match path are
selected.

Up to 10 occurrences of this
argument can appear in a call to
check_info_segs. All specified
directories are searched, in the
order that the arguments were given.
If the -pathname control argument is
not specified, the defaults are
>documentation>info>*.info and
>documentation>iml_info>*.info.

The first time check_info_segs is invoked by a particular
user, it just initializes the time in the user profile to the
current time, prints a comment, and does not list any segments.
If a profile does not exist, it is created.

check_info_segs checks the time modified for any segment
pointed to by a link, not the time the link was modified. The
command types a warning message if any segment pointed to by a
link does not exist.

The check_info_segs command cannot detect that a segment has
been deleted since the last invocation of the command.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Exampies

Page 3
10/18/73

1) Check for info segments modified since the specified date:

check_info_segs -date 1107/01/73 0900."

2) Print all modified info segments:

check_info_segs -call print -bf

Note that the "-bf" argument is given to check_info_segs to
suppress duplicate printing of segment names since the print
command types the segment name in the heading.

3) Print just the first block of any modified info segment:

check_info_segs -call "answer no help -pn"

Note that the -pn argument must be given to the help command,
since check_info_segs supplies an absolute path name as the
other argument in the command line.

4) Check for all modified info and peruse_text segments:

cis -pn)doc)pt)*.pt -nud
cis

Note the use of the -nud argument to prevent the time of last
invocation from being updated in the first command line.

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Command
11/13/73

The close_file command closes specified FORTRAN and PL/I
files. It closes all open files if the -all control argument is
specified.

Usage

close_file -ctl_arg- -filenamel- ••• -filenamen-

can have the value -all to close all open files.
In this case, no filenamel appears.

2) filenamel is the name of an open FORTRAN or PL/I file.

Notes

The format of a FORTRAN file name is filenn where nn is a
2-digit number other than 00; e.g., fileOS. PL/I file names are
selected by the user and can have any format.

If a specified file
printed indicating the name
specified files are closed.

cannot be found, an error message is
of the file. The rest of the

For each filenamel, all PL/I files of that name and, if
applicable, the FORTRAN file of that name are closed.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMFRS' MANUAL

Command
8/17/73

Name: code, decode

In order to provide maximum security for data stored in a
Multics segment, the code command is provided to encipher a
segment's contents according to a key which need not be stored in
the system. The decode command, given an enciphered segment and
the same key, reconstructs the oripinal segment. The two
segments, original and enciphered, have the same length.

Usage

To encipher:

code namel -name2-

1) namel

2) name2

To decipher:

is the path name of the segment to be enciphered.

is the path name of the enciphered segment to be
produced. If name2 is not provided, it is taken
to be the same as namel. This command always
appends the suffix lI.code" to name2 to produce the
name of the enciphered segment.

decode namel -name2-

1) name1

2) name2

Notes

is the path name of the enciphered segment.
".code" suffix should not be specified.

The

is the path name of the deciphered segment to be
produced.

The code command requests an encipherment key (1-11
characters not including space, semicolon, or tab) from the
terminal. The printer is turned off while the key is typed. The
command then requests that the key be typed again, to guard
against the possibility of mistyping the key. If the two keys do
not match, the key is requested twice again.

The decode command requests the key from the terminal only
once, and produces name2 from the enciphered segment name1.code.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywe 11 I nforma t ion SyS terns Inc. (END)

MULTICS PROGRAMMERS' MANUAL

~: compare

Command
8/17/73

The compare command compares two segments and lists their
differences. The comparison is a word-by-word check and can be
made with a mask so that only specified parts of each word are
compared.

Usage

compare path110ffset1 path210ffset2 -ctl_argl- -ctl_arg2-

1) path1, path2 are the path names of the segments to be
compared. The equal convention is allowed
for path2.

2} offset 1, offset2 are octal offsets within the segments to be
compared. The comparison begins at the word
specified or with the first word of the
segment if no offset is specified.

specifies one of the following
arguments:

control

-mask n specifies that the octal mask n is to be
used in the comparison. If n is less than
12 octal digits it is padded on the left
with zeros.

-length n, -lg n specifies that the comparison should
continue for no more than n (octal) words.

Notes

The actual number of words to be compared is the minimum of
the control argument -length, the word count of the first segment
minus its offset, and the word count of the second'segment minus
its offset. The word count of a segment is computed by dividing
the bit count plus 35 by 36. If the word count minus the offset
is less than zero an error message is printed and the command is
aborted.

The command lists any differences found in the following
format:

offset
4
6

contents
404000000002
404000000023

offset
4
6

contents
000777000023
677774300100

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

To compare segments containing only ASCII character string
data, use the compare_ascii command described in the MPM.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL compare_ascii

Command
Development System

6/24/71

~: compare_ascii, cpa

This command compares two ASCI I files and prints out the
changes made to the file specified by oldpath to yield the file
newpath. The output is organized vJith the assumption that the
first file was edited resulting in the seccind file.

usage

compare_ascii oldpath newpath -nl- -n2-

1) oldpath

2) newpath

3) n1

4) n2

IJotes

is the pathname of the first file.

is the pathname of the second file (the
result of editing the first file).

is a decimal number (optional) specifying the
minimum number of characters which must be
the same before compare_ascii will assume the
segments are again l1in sync".

is a decimal number (optional) analogous to
n1 specifying the minimum number of 1 ines
that must be the same. It is requ i red that
n1 be specified to exercise this option.

The equals convention
given, they must both be
considered "in sync" again.

may be used.
exceeded for

If n1 and n2 are both
the segments to be

® Copyright, 1971, t .. 1assachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

~: copy, cp

Command
Standard Service System

3/17/72

The copy command causes copies of indicated segments to be
created in indicated directories with indicated names. Access
control lists (ACLs) and multiple names are oPtionally copied.

Usage

copy path11 path21 ••• path1n path2n -cal- ••• -can-

1) path1!

2) path21

3) cal

-name, -nm

':"acl

- a 11, -a

-brief, -bf

are the segments to be copied.

are the copies to be created. If the last path2!
is not given, the copy is placed in the working
directory with the entry name of the segment from
which it was copied.

may be chosen from the following list of control
arguments:

causes multiple names to be copied.

causes the ACl to be copied.

causes multiple names and ACls to be copied.

causes the messages "Sit count inconsistent with
current length ••• " and "Current length is not the
same as records used ••• " to be suppressed.

The control arguments may appear once anywhere in the
command line and apply to the entire command line.

Notes

Read access is required for path1!. Execute access is
required for the directory containin* pathl!. Execute, write,
and append access are required for the directory containing
path21.

The star and equal conventions may be used.

Example

copy >old_dir>fred.1ist george.=

The segment fred.list in the directory >old_dir is copied into
the working directory as george.list.

® Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Command
Standard Service System

6/29/72

~: create, cr

The create command causes a storage system segment of
specified name to be created in specified directory (or in the
working directory). That is, it creates a storage system entry
for an empty segment. See createdir for ~r~ation of directories,
and link for creation of links.

Usage

create path~ ••• pathn

1) pathl is the name of the segment to be created.

Notes

The user must have execute and append access for the
directories in question.

If the creation of a new segment would introduce a
duplication of names within the directory, and if the old segment
has only one name, the user will be interrogated as to whether he
wishes the segment bearing the old instance of the name to be
deleted. (If the old segment has multiple names, the conflicting
name will be removed and a message to that effect issued to the
user.)

The user is given rewa access to the segment created.

All directories specified in pathl must already exist. That
is, only a single level of storage system hierarchy can be
created with one invocation of this command.

Example

create first_class_mail >new_dir>alpha>be·ta

would cause the segment first_class_mail to be created in the
working directory and the segment beta to be created in the
directory >new_dir>alpha. A noted above, the directories new_dir
and alpha must already exist.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MUlTICS PROGRAMMERS' MANUAL

Name: createdir, cd

createdir

Command
9/26/73

The createdir command causes a storage system directory
branch of specified name to be created in a specified directory
(or in the working directory). That is, it creates a storage
system entry for an empty subdirectory. See the write-up of the
create command for creation of segments.

Usage

createdir pathl ... pathn

1) pathl specifies the name of the subdirectory to be created.

Notes

The user must have append access for the directories in
question.

If the cr~ation of a new subdirectory would introduce a
duplication of names within the directory, and if the old
subdirectory has only one name, the user is interrogated as to
whether he wishes the subdirectory bearing the old instance of
the name to be deleted. (If the old subdirectory has multiple
names, the conflicting name is removed and a message to that
effect issued to the user.)

The user is ~iven sma access for the subdirectory created.

All higher-level directories specified in pathl must already
exist. That is, only a single level of storage system hierarchy
can be created with one invocation of this command.

Example

createdir sub >my_dir>alpha>new

would create the subdirectory sub immediately inferior to the
current working directory and the subdirectory new immediately
inferior to the directory >my_dir>alpha. As noted above, the
directories my_dir and alpha must already exist.

~ Copyright, 1973, Massachusetts Institute of Technolo~y
and Honeywell Information Systems Inc. (END)

MUlTICS PROGRAMMERS' MANUAL

~: debug, db

Command
Development System

3/26/73

The debug command is an interactive debugging aid to be used
in the Multics environment. It allows the user to look at or
modify data or code. The concept of breakpoints (commonly called
breaks) is implemented and thus makes it possible for the user to
gain control during program execution for whatever reason he may
have. A concise syntax for user requests coupled with a complete
system of defaults for unspecified items allows the user to make
many inquiries with little effort. Symbolic references permit
the user to retreat from the machine oriented debugging
techniques in common use and to refer to variables of interest
directly by name.

debug uses a segment in the initial working directory to
keep track of information about breaks. The segment is created
if not found. If the segment cannot be created, the break
features of debug are disabled and unusable. The name of the
break segment is username.breaks where username is the login name
of the user.

usage

debug

Notes

The debug command provides the user with the following
functions:

1) it can look at data or code;

2} it can modify data or code;

3) it can set a break;

4) it can perform (possibly nonlocal) transfers;

5) it can call procedures;

6) it can trace the stack being used;

7) it can look at procedure arguments;

8) it can control and coordinate breaks;

9) it can continue execution after a break fault;

@ Copyright, 1973, t1assachusetts Institute of Technology
ano Honeywell Information Syste~s Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

10) it can change the stack reference frame;

11) it can print machine registers; and

12) it can execute commands.

These functions are provided by two types of debug requests:
data requests and control requests. The first five functions
above are performed by data requests; the others, by control
requests. Several debug requests (either data or control) may be
placed on a line separated by semicolons (;) •

.Il.£1.a Requests

Data requests consist of three fields and have the following
format:

<generalized address> <operator> <operands>

The generalized address defines the actual data or code of
interest. It is ultimately reduced to segment number and offset
by debug before being used. The operator field indicates to
debug which function to perform, e.g., print rather than modify
the data referenced by the generalized address. The operands
field mayor may not be necessary, depending on the operator.
When these fields are specified, they are separated by blanks or
commas.

As debug decodes a data request, it parses the generalized
address and generates a pointer to the data being referenced.
This pointer, called the working pointer, is changed whenever the
generalized address is changed. It points into either the
working segment, its stack frame, or its linkage section. The
actual segment depends on the most recent specification in a
generalized address. The form for a generalized address is as
follows:

[/segment name/] [offset] (?egment IOJ lfe 1 at i ve offset]

(The brackets are metalinguistic and are not in the debug
syntax.) The segment name is either a path name, a reference
name, or a segment number, and defines what is called the working
segment. I f the work i ng segment i s a procedure segment wi th an
active stack frame, the stack frame may be referenced by
spec i fy i ng &s as the segment I D. I f the work i ng segment has an
active linkage section (i.e., one with an entry in the Linkage
Offset Table (LOT) for the working ring), this may be referenced
by specifying &1 as the segment 10. A segment 10 of &t refers to
the working segment itself.

~ Copyright, 1973, Massachusetts Institute of Technolo~y
and Honeywe 11 I nformat i on Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 3
3/26/73

The offset field is used as an offset within the segment
referenced by the working pointer. For the working segment, this
offset is relative to the base of the segment. If the working
pointer points into an active stack frame, the offset is relative
to the base of that frame. I f the worki ng poi nter poi nts into an
active linkage section, the offset is relative to the beginning
of that linkage section.

The offset may be either a number or a symbolic name. (Note
that all numbers are treated as octal except in a few cases
specified later.) If a symbolic name is specified, a symbol
table must exist for the working segment. See the pll command in
the MPM for a description of symbol table creation. If a
symbolic name begins with a numeric character, . the escape
characters &n (for name) must precede the name, to avoid
interpreting the name as a number. For example,

/test/&nl0&t

might be used to specify the location associated with FORTRAN
line number (i.e., label) 10 in a debug request.

The relative offset field allows the user to relocate the
working pointer by a constant value or register. For example, if
the user wished to reference the fourth word after the stack
variable he could use

/test/i&s+4

as the generalized address. The relative offset can also assume
the value of a register. For example, if the a-register
contained the value 4 at the time of a break, then

/test/i&s$a

would result in exactly the same output as above. Note the lack
of a + sign when a register is used. (See Registers below.)

The three most common values for the segment 10 field are
&t, &s, and &1. These designate that the working pointer is to
refer to, respectively, the working segment itself, its active
stack frame, or its active linkage section. In addition, two
other possible values of segment 10 allow alternate methods of
referring to locations in either the working segment or its stack
frame.

A segment 10 of &a refers to the ASCII source program for
the working segment. Associated with this segment 10 is a
decimal line number which must immediatelY follow the &a. This

@ Copyright, 1973, t-1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 4

iine number is used to generate a working pointer to the first
word of code compiled for that line. A relative offset may
follow the line number. Note that the line-number/code-location
association can only be determined if a symbol table exists for
the working segment.

An example:

/test_seg/&a219+36

would generate a working pointer
(octal) word in the text after
for line 219 in the source for
offset _field is given before
offset of the working pointer is
number and the relative offset.

which points at the thirty-sixth
the first word of code generated
the segment test_seg. If an
&a, the offset is ignored. The

generated solely from the line

A segment 10 of &p refers to the parameters of an active
invocation of a procedure. If the current defaults specify an
active stack frame, a number following the &p specifies the
parameter which is to be addressed. The offset field is ignored,
but a relative offset may be specified.

An example:

/test_seg/&s;&p4+36,a14

will cause the stack frame for test_seg to be the working
segment, and the first 14 characters of the data contained at a
location 36 words after the beginning of the fourth parameter
will be printed in ASCI I format.

It is not necessary to specify all four fields of a
generalized address. In fact, every field is optional. If a
field is not specified, a default value is assumed which is
frequently the last value that the field had. For example,

/test_seg/line&s+3

followed by the generalized address

+4

would be acceptable.
equivalent to

/test_seg/line&s+7

The latter request would have been

One time that the defaults assumed are not the values of the
previous data request is when a symbolic variable name or label

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

Page 5
3/26/73

is specified which would cause some field to change. If this is
the case, debug may realize that the segment 10, for example, of
the previous data request is not valid and set it appropriately.
For example,

/test_seg/760&s

followed by

regp

would cause the defaults to be changed to:

/test_seg/140&1

if regp is found at a relative offset of 140 (octal) in the
linkage section. Note that the segment 10 was changed to &1
w her e i t w ill r em a i nun til ex p 1 i cit 1 y 0 rim p 1 i cit 1 y c han g e d
again.

Defaults are also reset to values different from the
previous values when the segment name field is specified in a
generalized address. In this case, the following actions are
taken:

1) If the segment name begins with &n, take the rest of the
characters composing the segment name and go to step 3 below.
looking up the string as a name. This convention allows the
use of debug on segments whose names are composed of numeric
characters.

2) If the se~ment name is really a segment number,
is used In a search of all active stack frames
exists for this segment. The search is from
stack depth (deepest in recursion) to the base
so that if an active stack frame is found, it is
r e c e n t 1 y use d • I fan act i ve s t a c k frame i s
generalized address defaults are set as follows:

this number
to see if one
the highest
of the stack
the one most
found, the

a) working segment the one specified by the given
segment number;

b) offset zero;

c) segment 10 &s, i • e. , the working pointer
points into the latest stack
frame for the wo r kin g s e gm e n t ;

@ Cop y rig h t, 1 9 73, Ma s sac h use t t sin s tit ute 0 f T e c h n 0 log y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 6

d) relative offset zero.

If no active stack frame is found, the defaults are set as
above except that the segment ID is &t instead of &s, i.e.,
the working pointer points into the working segment itself.

3) If the segment name is a reference name known in this ring,
the segment number for the segment being referenced is found,
and then the defaults are calculated as if this segment
number were given directly.

4) If the segment name is a path name, the specified segment is
initiated (it may already have been known) and the returned
segment number is used as above.

The entire set of defaults which apply to a debug data
request can be determined at any time by issuing the control
request to print defaults. For the format and use of this
request, see the description under Control Requests.

Operator Field of ~ Requests

After decoding the generalized address and coming up with
the working pointer, debug checks the operator. The following
five operators are recognized:

1) , print;

2) = assign;

3) < set a break;

4) > alter program control (i.e., II go to");

5) := call a procedure.

If a debug request is terminated before an operator is
encountered either by a semicolon or a "new line" character, the
default operator used is ",", i.e., print. The one exception is
that a blank line is ignored. The first, second, and fifth
operators above have operands.

Q.a.t.a R e que s t s !.Q. L 00 k .at Q.a.t.a

For the print request, there are two operands (both
oPtional). The first operand is a single character specifying
the output mode desired. (See Appendix 1 for a list of
acceptable output modes. The default is half carriage octal.)
The second operand is a number indicating how much output is
being requested. For example,

® Cop y rig h t , 1 9 7 3 , t", ass a c h use t t sin s tit ute 0 f T e c h nolo g y
and Honeywell I nformat ion Systems Inc.

MULTICS PROGRAMMERS' MANUAL

/test_seg/142&t,iI2

, debug I
Page -7

3/26/73

requests that 12 (octal) words starting at 142 (octal) in the
text of test_seg be printed in instruction format.

The following output modes are available for data requests
(see Appendix 1 for a full description):

1) 0 octal

2) h half carriage octal

3) d decimal

4) a ASCII

5) instruction

6) p pointer

7) s source statement

8) code for line number

9) n

10) e

11) f

12) b

13) g

no output (just change defaults)

floating point with exponent

floating point

bit string

graphic

The request

+36,aI6

requests that 16 (octal) characters starting at 36 (octal) words
after the current working pointer be printed in ASCII format.
The output might be

1416 1416 lI>user_dir_dir>1I

The two numbers printed in most output modes should be
interpreted as follows:

1) If the data is from a stack frame, the first number is the
relative offset from the base of the stack segment and the

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 8

second number is the relative offset within the stack frame.
Note that if the second number is negative, the variable does
not exist in the current stack frame and is a parameter or a
global variable.

2) If the data is from a linkage section, the first number is
the offset within the combined linkage segment and the second
number is the offset within the linkage section.

3) For all other segments, both numbers are the same and
represent the offset within the segment.

If a mode is not specified for output, the last specified
mode is used unless debug realizes another mode is more
appropriate (e.g., when a symbol specifies a variable of a
different type). If the amount of output is not specified, it is
assumed to be one, i.e., one word for octal output, one line for
source output, one character for ASCII output, etc.

~ Requests 12 Modify ~

When modifying data or code, the operands (at least one is
expected) specify the new values to use. For example,

i = 7; pel) = 206110, 206132

would assign the octal value 7 to i and the values 206110 and
206132 to p(l) and p(2), respectively. (It is assumed that both
are variables which are defined for the current working segment.)
If more than one operand is specified in an assignment request,
consecutive words starting at the working pointer are changed.
This is illustrated by the assignment to the pointer array P.

There are nine acceptable forms for assignment operands:

1) an octal number;

2) a decimal number (a number preceded by &d);

3) character strings;

4) register values (see Registers below);

5) instruction format input;

6) floating point;

1) pointers;

@ Copyright, 1973, r~assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

8) bit strings;

9) variables.

Page 9
3/26/73

Note that all numbers typed to debug are assumed to be octal
unless immediately preceded by the characters &d which cause such
a number to be interpreted as decimal. There are three
exceptions. SubscriPts, the bit offset of a pointer, and the
number immediately following a segment 10 of &a are all assumed
to be decimal.

Character strings being input must be bracketed by double
quote characters (n). Bit strings being input must be bracketed
by double quote characters and followed by a b. Floating point
numbers must not have exponents.

The word offset portion of a pointer value being input may
optionally be fOllowed by either a decimal bit offset in
parentheses, a ring number in square brackets, or both. If both
a bit offset and a ring number are specified, the ring number
must follow the bit offset, with no intervening blanks. For
example,

p = 206125(29); q = 2521104[5]; rp = 2111200(3)[4]

The format for instruction input is as follows:

(opcode address, tag)

The address may specify a base register or a number. For
example,

/test/lab2 = (lda pr6120) (sta prOI2,*0) (nop 0)

Note that some value must be given for the address field. The
zero-op-code is specified by the opcode arg.

Input of bit strings and character strings changes only
those bits or characters specified, i.e., a full word might not
be completely changed.

Several types of input may be interspersed in the same
assignment request. For example,

/145/13000 = "names" &d16 126

When different types of input are specified in one request, the
user should be aware that the bit offset of the temporary working
po inter mi ght be ignored for cer ta in types of input. I n the

@ Copyright, 1973, r1assachusetts Institute of Technology
and Honeywell Information Syste~s Inc.

MULTICS PROGRAMMERS' MANUAL

Page 10

exampie aoove, the ASCII for "name" was placed at 145113000 and
the ASCII for IIS" was placed in the first character position of
145113001. The next assignment argument (&d16) will fill in
145113001 with the decimal 16 and hence overwrite the "S" of the
previous argument.

In order to better specify more compl icated assignments, a
repetition factor is provided. If a single number (octal, or if
&d escaping is used, decimal) appears in parentheses in an
assignment, the next data item is assigned repeatedly (i.e., the
specified number of times), updating the working pointer each
time. An example of this might be:

string = (40)" " "alpha"

which will result in string being modified so that the first 32
(decimal) characters are blanks, and the 33rd through the 37th
would get the string "alpha".

Qgla Requests to ~ Breaks

A breakpoint is a special modification to the code of a
program which, when executed, causes control to pass to debug.
The user is then free to examine and change the states of
variables, set other breaks, continue execution, etc. When
setting a break, the working pointer is used directly unless it
points into the stack. In that case, the working pointer is
temporarily forced to the text. To set a break at the label
loop_here in the program parse_words, one would say

One could also say

/parse_words/loop_here+23<

to set the breakpoint 23 (octal) locations after the first word
of code for the statement labelled loop_here in the text segment.

One could also set a break by specifying a line number. For
exampl e,

/rand/&a26<

would set a break at the first word of code generated for line 26
(decimal) of the source program.

The break number printed by debug when setting a breakpoint
is used as the name of the break when referring to breaks. After
a break is reset, the break number will be reused. (Resetting a

~ Copyright, 1973, Massachusetts Institute of Technolo~y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

break restores the code to its previous value.)

Page 11
3/26/73

Once a break has been set at a given location, another break
cannot be set there. To find which breaks are set, the user can
use the list breaks control request (see Control Requests below).

A program with breakpoints in it must be
debug. See Control Requests below for
commands.

lla12 Requests to Alter program Control

run from
executing

inside
Multics

To alter program control by issuing an explicit transfer,
one might say

/216/2176>

debug will search the stack for an active stack frame for the
segment 216 (octal) and set the stack pointer to this frame. It
will then transfer to 2176 (octal) in the text associated with
this stack frame.

If no active stack frame is found, debug comments on the
fact and awaits further requests.

~ Requests to ~ ~ Procedure

The user can cause debug to call a specified procedure and
return values into specified locations. This is done by
specifying := as the operator in a data request. This operator
expects one operand which is a procedure name with its associated
arguments. There are two slightly different ways to invoke this
feature: first, to invoke a procedure·as a function call (with
the n+1'st argument being the returned value); and, second, to
explicitly call a procedure. When a procedure is invoked as a
function reference, the current working pointer is used as the
last argument in the argument list and, hence, the procedure will
return a value into wherever the working pointer is pointing.
For example,

/ t es t / f i : = s q r t_ (2 • 0)

This will cause the sqrt_ function to be called with the first
argument 2.0 and the return argument of fi. Note that debug
converts the 2.0 into a floating point number before the call.

If no fields are present before the := is encountered, debug
does not specify a return argument in the call. (The := can be
thought of as "call" ina PL/' program.) For exampl e,

@ COD Y rig h t, 1 9 73 , 1-1a s sac h use t t 5 Ins tit ute 0 f T e c h nolo g y
. and Honeywell Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

Page 12

: = who

will set up a call to who$who with no arguments. Note that

:= rename (lifooll,"moo")

and

•• rename foo moo

are functionally equivalent.
under Control Requests below.}

(See Multics command execution"

The method debug uses in setting up the call is to use ten
temporary storage areas, one for each of ten possible arguments.
debug converts the arguments appropriately and stores the values
in these areas. Each area starts on an even location and
consists of eight words. These temporary storage areas can be
looked at or altered with standard data requests. They are named
% 1, ..., % 10 • For e x am P 1 e ,

%1, d

%2,d

will print two decimal numbers, both being return values from
hcs_$usage_values. The actual call that debug made had two
arguments which were both O. (Note the first words of the first
two storage areas were zeroed out prior to the call.) The above
call could also have been made as follows:

If this were done, the second argument would not have been zeroed
before the calle

Variables can also be used as arguments. For example,

sum := sqrt_(n}

No conversion would be done by debug if n were fixed and sqrt_
expected a floating argument.

Note that the above mentioned temporaries can be used to do
simple mode conversion. For example, to get the floating point
representation of 3.7 (in octal) one could say:

@ Cop y rig h t, 19 73, ~1a s sac h use t t sin s tit ute 0 f T e c h no log y
and Honeywell Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

%1= 3.7; ,0

Page 13
3/26/73

To find the ASCI I value for 137 (octal) one could type:

%1 = 137137137137 ; ,a4

Note that a reference to one of these storage areas causes the
working segment to be changed to the stack segment.

If one of the arguments in a procedure call is the character
%, then the temporary storage for that argument is not changed
(e.g., overwritten with the usual argument value). Results from
some previous work may be passed in that argument position. For
example,

%2 := sqrt_(2.0)
: = i 0 a_ (11 e" , %)

Registers

The hardware registers at the time
a break fault) are available to the
change. These registers are referenced
name immediately by a dollar sign
looked at by merely typing the register

$a

of a fault (in particular
user for inspection or
by preceding the register
($). The register can be
name. For example,

prints the contents of the a-register at the time of the last
fault. If the user would like the value in the a-register to be
changed, he might type

$a = 146

for example. Decimal input is allowed also:

$a = &d19

The predefined register names used by debug are:

1) prO

2) pr1

3) pr2

4) pr3

pointer register 0

pointer register 1

pointer register 2

pointer register 3

@ Cop y rig h t, 1 9 7 3, ~·1a s sac h use t t sin s tit ute 0 f T e c h n 0 log y
and Honeywell Information Systems Inc.

Page 14

1::.' nru. ." , -.

6) pr5

7) pr6

8) pr7

9) prs

10) xO

11) xl

12) x2

13) x3

14) x4

15) x5

16) x6

17) x7

18) a

19) q

20) aq

21) exp

22) tr

23) ralr

24) regs

25) ppr

26) tpr

27) even

28) odd

29) scu

pointer register 4

pointer register 5

pointer register 6

pointer register 7
"It. • all pOinter registers

index register 0

index register 1

index register 2

index register 3

index register 4

index register 5

index register 6

index register 7

a-register

q-register

MULTICS PROGRAMMERS' MANUAL

the a and q register considered as a single register

exponent register

timer register

ring alarm register

all of 10) through 23)

procedure pointer register

temporary pointer register

even instruction of Store Control Unit <SCU) data

odd instruction of SCU data

all SCU data

@ Copyright, 1973, t~assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

30) all all machine conditions

Page 15
3/26/73

The user can change these registers at will with the
understanding that if he continues execution after the break or
transfers directly (via> in a data request), the values of the
hardware registers will be set to those of these registers.

The values in the registers are automatically filled in by
debug (when it is called or faulted into) with those of the last
fault found in the stack. The user can override these values
with the fill registers and crawl out registers control requests.
See Control Requests below.

The user can also define his own registers and use them as a
small symbolic memory. For example,

$sta1 = 600220757100; $nop = 11003

would allow the user to later say

/test/210&t = $sta1 $nop $nop

To print out the contents of all user-defined registers, the
user may type

$user

The setting and displaying of registers follows the syntax
of ~ata requests. However, only the register name and a possible
new value may appear in a register request. Registers may be
specified in a general data request only in the relative offset
field and as operands in assignment requests. Register names
must be less than or equal to four characters in length. Some
examples of the use of registers follow:

/test/i =$q

/test/O = $xO

Itest/46$xO,a5

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

I debug I
Page 16

",... _ ,.. 1 D ,.. I I .eo c: ... c:
leV I I h I V I " s= '" W G'" ~ oJ

MULTICS PROGRAMMERS' MANUAL

Control requests provide the user with useful functions not
necessarily related to any specific data. The format for a
control request is:

.<request name>

Control requests and data requests may be freely mixed on a
command line if separated by semicolons. However certain control
requests use the entire input line and hence ignore any
semicolons found therein. Spaces are not allowed in most control
requests.

The following is
functions they perform.
all requests.

1) Trace Stack

• t i , j

a list of all control requests and the
See Appendix 2 for a complete review of

The stack is traced from frame 1 (counting from 0 at the base of
the stack) for 1 frames. If 1 is less than 0, tracing begins at
0; if 1 is greater than the last valid frame, then only the last
frame is traced. If 1 is not specified, it is assumed to be 0;
if 1 is not specified, all valid stack frames after 1 will be
traced. The name printed in the stack trace is the primary
segment name unless the segment is a PL/I or FORTRAN program in
which case it is the entry name invoked for the stack frame
(i .e., the label on the entry or procedure statement).

Examples:

.t2,3

.tIOO

2) .f.Q.Q. QL. Push Stack

The general form is:

.+1 or .-1

The working segment is changed by moving up or down the stack i
frames. For example, if the working segment's active stack frame
is at depth 4 in the stack, then

.+3

@ CoP y rig h t , 1 9 7 3 , r,1a s sac h use t t sin s tit ute 0 fTc c h nolo g y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 17
3/26/73

will change the working segment to the segment whose stack frame
is at depth 7 in the stack. The defaults for working pointer,
segment 10, and offset are reinitialized to splO, &s, and 0,
respectively.

3) ~ Stack

The general form is

.1

The working segment is set to that of the 1'th stack frame
(starting at 0). The defaUlts are set as in pushing or popping
the stack.

4) Execute Multics Command

The general form is

•• <Multics command line>

The rest of the input line is interpreted as a standard Multics
command line and is passed to the standard command processor
after the •• 's and any preceding characters are blanked out. Any
valid Multics command line may be given. Note that when setting
breaks, the program being debugged must be called in this manner
because debug sets up a condition handler (for break faults)
which is active only as long as debug's stack frame is active.

5) Print Defaults

or

The general form is

• d or • D

The output might look like

3/test_seg/14(O)&t,i 212

3/>udd>m>foo>test_seg/14(0)&t,i 212

The first number (3 above) is the stack depth in octal, unless
there is no stack frame for the working segment, in which case
the number is -1. The working segment appears between the
slashes (test_seg above); if .D is used, the full path name
occurs here. The offset appears next (14 above); the bit offset
(in decimal) of the working pointer appears next; the segment 10
(&t above) appears next; the operator appears next (, for print);
the output mode appears next (i for instruction); finally the

@ Copyr; ;~:ht .. 1973, Massachusetts I nst i tute of Technology
and Honeywell Information Syste~s Inc.

MULTICS PROGRAMMERS' MANUAL

Page 18

segment number of the working segment appears (212 above). To
find the name/segment number association for a given segment, the
user might type

/206/,ni. d

yielding

60 /test_caller/O(O)&s,o 206

If he knew the name, he could obtain the same output by typing

/test_caller/,n;.d

6) Continue Execution After ~ Break

The general form is

or

or
• c r ,l

If 1 is not specified, it is assumed to be O. If 1 is specified,
the next i break faults for the current break will be skipped.
Note that the first instruction executed upon continuation is the
instruction on which the break occurred. If a t follows the c,
debug will continue in temporary break mode (see below). If an r
follows the c, debug will reset the mode to normal (not
temporary).

Exampl es:

.c continue execution

.c,3 continue execution, but skip the next three break
faults for the current break

.ct continue execution in temporary break mode

The general form is

.q

This request returns from debug to its caller. Note that if
debug was entered via a break, then typing .q wi 11 return to the
last procedure which explicitly called debug.

® Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

(

I

MULTICS PROGRAMMERS' MANUAL

8) Change Output ~

Page 19
3/26/73

Requests pertaining to debug l s console output begin with

a) Enter brief output mode

.mb

This request places debug in brief output mode, which is
somewhat 1 ess verbose than its normal output mode. In
particular, assignment requests and the resetting of breaks
are not acknowledged on the user's console; the column
headings are not printed for a stack trace; the printing of
register contents is somewhat more compact; some error
messages are abbreviated.

b) Enter long output mode

.ml

This returns debug to long output mode, which results in
fuller and more explicit console output. Long mode is the
i nit i a 1 def au 1 t •

9) Break Requests

The following control requests are specific to breaks and
are recognized by having a b immediately following the" "
Reference is made to the default object segment, which is merely
that segment which debug is currently working with when
performing break requests. The default object segment is
generally specified implicitly when a break is set or hit. It
can be changed and determined on request. The default object
segment used for break requests is not necessarily the same as
the segment addressed by the working pointer used in data
requests.

Breaks are numbered (named) sequentially starting at 1 but
the numbers are unique only for the object segment in which the
break resides. A user may have several breaks with the same
number defined in different object segments.

There are two types of global requests which can be
performed on breaks. The first, or subglobal requests, refer to
all breaks within the default object segment. The second, or
global requests, refer to all breaks set by the user (as
determined from the break segment in the initial working
directory). The subglobal request is soe~ifted by omitting the

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

Page 20

break number in a break request: The global request is specified
by a g immediately after the b of all break requests (see below).

The general form of all break requests is

.bgxll args

where the g, the number 11, and the arguments are oPtional. The x
is replaced by the control character for the break request
~esired. The following break requests are currently defined:

a) Reset a break (or breaks). The forms of the requests
are:

.brl to reset break 1 of the default object segment;

.br to reset all breaks of the default object
segment;

.bgr to reset all breaks known to debug.

b) List (print information about) a break. The forms of
the reques tare: _

c)

.bll to list break 1 of the default object segment;

.bl to list all breaks of the default object
segment;

.bgl to list all breaks known to debug.

Execute a debug command 1 i ne at break ti me. The
forms for this request are:

• bel <rest of 1 i ne>

.be <rest of 1 i ne>

.bge <rest of 1 i ne>

Specifying the above request will cause <rest of line>
to- be interpreted as a debug input line whenever the
appropriate break(s) is (are) encountered. If
<rest of line> is null, the specified breaks
will have this execute feature reset to normal.

d) Disable a break (or breaks). The forms of this request
are:

@ Copyright, 1973, t1assachusetts Institute of Technology
anrl Honeywell Information Systef"1s Inc.

MULTICS PROGRAMMERS' MANUAL

e)

Page 21
3/26/73

.boi disable (turn Qff) break 1 of the default
break segment;

• bo disable
segment;

all breaks in the

.bgo disable all breaks known to debug.

default break

Disabling a break has the effect of preventing the break
from being taken without discarding the information
associated with it. A user might disable a break if he
wishes not to use it for the moment but thinks he might
want to restore it later. A disabled break can be
eliminated altogether by the .br request, or re-enabled
by the .bn request. If the break was already disabled,
the request has no effect.

- --

Enable a break or breaks. The forms of this request
are:

.bni enable (turn on) break 1 of the default break
segment;

.bn enable all breaks in the default break
segment;

• bgn enable all breaks •

This request restores a previously disabled break. If
the break was not disabled, the request has no effect.

f) Establish a temporary command line to be executed
whenever breaks are hit. This request is of the
form:

.bgt <rest of line>

This will cause <rest of line> to be executed as a debug
request whenever any break is hit during the current
process. The difference between this request and .bge
is that when .bge is typed, the associated line remains
associated with all breaks until they are reset, or
unt i 1 they are changed by • be reques ts. It is poss i b 1 e
to have a temporary global command without removing
command lines associated with individual breaks. If
<rest of line> is null, a previously-established
temporary command line is disestablished.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 22

g) Break conditionally. The following requests allow the
user to change a break into a conditional break, i.e., a
break that will only stop if a certain condition is met •

• bcl arg1 -rel- arg2

.bc arg1 -rel- arg2

arg1 and arg2 may be constants or variables. -rel- may
be = or ~=. Whenever a specified break is encountered,
a test is made to see if the equality exists and breaks
according to whether the user specified = or ~= in
setting up the conditional break. For example,

.bc3 ~= 0

will cause break 3 to fault whenever it is encountered
and the value of is nonzero. Also,

• bc3 i = j

will cause break 3 to fault whenever it is encountered
and the value of i is the same as the value of j. Note
that the comparison is a bit by bit comparison with the
number of bits to compare being determined by the size
and type of the second argument.

If no arguments are given to a set conditional request,
the specified break is set back to a normal break. For
example,

.bc

would cause all breaks of the default object segment to
fault normally.

h) Specify the number of times a break should be ignored
(skipped). The general form is

i)

.bsl n
This causes the number of skips to be assigned to break
1 of the default object segment to be n.

Print or change the default object segment.
for this request is

.bd name

The form

@ Copyright, 1973, ''''assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

j)

Page 23
3/26/73

where name is the <relative) path name or segment number
of the segment to become the default object segment.
If name is not specified, the path name of the
default object segment is printed.

List the current segments which have breaks.
for this request is:

.bp

The form

This request merely interprets the break segment in the
initial working directory.

10) print Arguments

The general form is

.al,m

Argument 1 for the current stack frame will be printed in the
mode specified by m. If 1 is not specified, all arguments are
printed. If m is not specified, debug will decide the output
mode. Valid values for !!l are:

a) 0 full word octal;

b) p pointer;

c) d decimal;

d) a ASC I I ;

e) b bit string;

f) location of argument;

g) e,f floating point;

h) ? debug will decide <the default value for m).

Examples:

.a3

.a3,o

ARG 3: 076165163145

@ CoP y rig h t , 19 7 3 , Ha 5 sac h use t t 5 Ins tit ute 0 f T e c h no log y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 24

, , , ~ -. to C _ •• 1 ~ D.II'!!o n; C ~ 0 C
.L.a.1 ~ I gWI '- "kbl-''''''''c''''

The general form is:

• f

For register requests debug uses the machine registers of the
last fault found in the stack starting at the frame currently
being looked at. (This is the default when debug is entered as a
result of a break fault.)

12) Crawl-~ Registers

The general form is:

.c
For register requests debug uses the fault data associated with
the last crawl-out (abnormal exit from an inner ring).

Program Interrupt Feature

The user may interrupt debug by hitting the quit button at
any time, in particular during unwanted output. To return to
debug request level (i .e., to where debug waits for a new
request), the user should type:

pi

which is the standard program interrupt manager.
program_interrupt write-up in the MPM.)

(See the

Temporary Break ModA

When debug is in temporary break mode (placed there
.ct control request), the tollowing actions are
automatically:

via a
taken

1) When the user continues any break, another (temporary) break
is set at the first word of code for the next line of source
code after the source statement containing the break being
continued. If debug cannot determine the location of the
next line of source code, the temporary break is set at the
word of object code immediately following the break being
continued.

2) A temporary break is restored automatically whenever it is
continued, and only then, i.e, a temporary break, if not
continued, must be explicitly reset by the user.

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywe 11 I nformat ion Sys tems Inc.

MUlTICS PROGRAMMERS' MANUAL

Page 25
3/26/73

Since temporary breaks are set sequentially in a program
(i.e., at the next statement in the source program), any
transfers within a program may either skip a temporary break or
cause code to be executed which was stopped earlier with a
temporary break. Temporary break mode is designed to be used in
programs which are fairly uniform and sequential in their flow of
control. Note that a user should generally list his breaks after
using temporary break mode to see if any breaks remain active.

Indirection

It is quite often desirable to reference the data pointed to
by the pointer pointed to by the working pointer, i.e., to go
indirect through the pointer. The user can instruct debug to do
this by typing * instead of the segment name, offset, and segment
10 in a generalized address. For example,

/test/regp

might print

1260 110 21412360

To find what is at 21412360, the user need type only (assuming he
wanted two octal words)

*,02

This causes the working pointer to be set to 21412360 and, hence,
not necessarily into the same segment as before the request.

Implementation of Breakpoints

Breakpoints are implemented by using a special instruction
(mme2) which causes a hardware fault whenever it is executed.
debug sets itself up as the handler for this fault and, whenever
a break word is executed, debug gains control. When debug is
entered via a break, it does the following:

1) fills the registers with those of the break fault;

2) prints the location of the break fault;

3) waits for requests.

When continuing after a break fault, debug changes the
control unit information so that when it is restarted, it will
execute the instruction which used to exist where the break word
waS placed.

® Copyright, 1973, ~-1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 26

.... _ h. •• _ ~ -. -. e ~ ... ~,.. ~ n 4= ~ ,.. ~ 4= ~ I I 1 ~ n h ~ II!!>.'" to c: ~ ".m II!!>. n to All h ... II!!>. ~ ~
ucuue. "CC..,';' L.' 0""" 'oJ' 0 ""~. 0"'" I L. 'oJu.J~"" L. oJ "-b"'~" L. • 1'"'\" U, ~o"

requests made are relative to the default object segment. For
example, any reference to break 3 really means break 3 of the
default object segment. To change (or find out) the value of the
default object segment, the .bd request should be used.

Variable Names for £iLl Programs

If a symbol table were created for a PL/l program using the
table option, then names of labels, scalars, structures, and
arrays may be used. The only restrictions are that 1) the
entire structure name must be specified; 2) the only expressions
which are allowed for subscripts are of the form

variable ~ constant

where variable may be an arbitrary reference as above; and 3)
all subscripts must appear last. If a variable is based on a
particular pointer, that pointer need not be specified. Some
examples of valid variable references are

p-> a"b .. c(j,3)

a.b

p(3,i+2) -) qp.a.b{x{x(4)+1»-)j.a

.f3..U. Addressing

When a working pointer is generated to a data item which is
based or part of a substructure, abit offset may be required.
This bit offset is indeed kept and used. When making references
to data relative to a working pointer with a bit offset, the
relocated addresses may still contain a bit offset. For example,
if the working pointer has the value

15113706(13)

then the request

+16,b3

will set the working pointer to

15113724(13)

and print the three bits at this location.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

1) 0

2) h

3) d

4} a

Appendix 1

Output Modes

The following output modes are accePtable to debug:

octal

Page 21
3/26/73

The data pointed to by the working pointer is printed in
full word octal format, eight words per line.

half carriage octal

The data is printed as in 0 format except only four
words per line are printed.

decimal

The data is printed in decimal format, eight words per
1 i ne.

ASC 11

The data is interpreted as ASCI I and printed as such.
No more than 256 characters will be printed in response
to a single request.

S) instruction

6) p

7) s

The ~pt~ is printed in instruction format much as an
assembler might do.

pointer

The data is printed in pointer format, i.e., segment
number and offset (and bit offset if it is nonzero).

source statement

One or more source statement lines are printed starting
with the line of source code which generated the code
pointed to by the working pointer (assumed to be
pointing into the text). For example,

/test/loop_here+32,s2

will print two lines of source code starting with the
line which generated the code 32 (octal) words after the
label loop_here.·

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 28

MULTICS PROGRAMMERS' MANUAL

Another example:

Itest/&a219,s

will print line number 219 (decimal) of test. lang where
lang is the appropriate language suffix. Note that if
there was no code generated for the specified line,
debug comments on the fact, increments the line number,
and tries again (forever).

8) code for line number

The code associated with the specified line number is
printed. The line number is determined as in s type
output. For example,

Itest/&a27,1

will print
test. lang.
ignored.

the code generated for line 27 (decimal) of
Note that any number following the 1 will be

9) n no output

10) e

11) f

12) b

13) g

No output. This is used to suppress output when
changing defaults.

floating point with exponent

floating point

bit string

The data is printed as if it were a bit string. No more
than 72 bit positions will be printed in response to a
single request.

graphic

The specified number of characters are interpreted as
graphic characters (this is assumed to start in
typewriter mode).

~c Co,..·· y r i"'" h t 19 73 \"':J ~ I- I' , Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Appendix 2

Page 29
3/26/73

Qata and Control Requests

1) Data Requests

/seg reme/ offset seg 10

path name number &t
ref name symbol &s
seg number &1
&n seg name &an

&P.!l

~egment l.Il Operators

&t text , print

&s stack = assign

&1 1 i nkage < set break

&an source 1 i ne > transfer

&P.!l parameter . -. - call

rel offset

number
register

Registers

$a
$q
$aq
$xO

.
$x7
$prO

$pr7
$exp
$tr
$ralr
$ppr
$tpr
$even
$odd
$prs
$regs
$scu
$ all

operator operands

,
=
<
>
:=

operands
input 1 i st
function list

Output Modes

0 octal
h half carriage octal
d decimal
a ASC II
i instruction
p pointer
s source statement
1 code for line number
n no output
e floating point
f floating point
b bit string
g graphic

~ Copyright, 1973, Massachusetts Institute of Technolo~y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 30

2) Control Requests

.tl,l

.+1 or .-1

.1

.d or .0
• c,l

• ct,l
• cr,l
.q
.brl
.br

.bgr

.b11

.b1

.bg1

.bel <line>

.be <1 ine>

.bge < 1 i ne >

.bol

.bol

.bo
• bgo
.bnl
.bn
.bgn
.bgt < 1 i ne >
.bcl a1 -re1-
.bc a1 -re1-

.bs1 n

.bd name/no.

.bp

.al,!!!.

· f .c
.mb
• m1

a2
a2

trace stack from frame 1 for 1 frames
pop or push stack by 1 frames
set stack to 11th frame
Mu1tics command
print default values
continue after break (ignore next 1 break
faults)
continue, in temporary break mode
continue, in normal mode
return from debug to caller
reset break 1
reset the breaks of the default object
segment
reset all breaks
list break 1
list the breaks of the default object
segment
list all breaks
execution line for break 1
execution line for all breaks of the
default object segment
execution line for all breaks
disable break 1
disable break 1
disable the break of the default object segment
disable all breaks
enable break 1
enable the breaks of the default object segment
enable all breaks
establish a temporary global command
make conditional break 1
make conditional all breaks of
default object segment
set skips of break 1 to n
set (or print) default object segment
print all segments with breaks
print argument 1 in mode !!!.
(mo des: 0 , p, d , a, b, 1, e, f, ?)
use registers from last fault
use crawl-out registers
change to brief output mode
change to long output mode

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (ENO)*

MUlTICS PROGRAMMERS' MANUAL

~: decam, dcm

Command
3/1/73

The decam (~sk ££lculator with memory) command performs the
functions of a ten-key desk calculator. In addition, it has a
small memory and variable radix input/output.

Usage

decam

initiates the calculator; when ready to accept the first request
decam types "Go". No further responses will be typed by decam
unless it is asked to print a result or an illegal request is
given. Successive requests are separated by new-line characters.
All blanks are ignored. One result register is maintained,
called A here. The following requests modify the contents of A
as shown (n is any integer):

typed request computation performed

=n n -) A initial ize A wi th n
+n A + n -) A add n to A
-n A - n -) A subtract n from A
*n A X n -) A multiply A by n
/n A / n -) A divide A by n
%n n / A -) A divide n by A

p print contents of A

One additional request

Q

will return the user to command level.

Storage Cells

Eight storage cells, named s, t, u, v, w, x, y, and z, may
also be used as operands in the above requests by replacing the
integer n with the name of a storage cell. A value may be stored
in a storage cell by

x = n

where storage cell x receives the value of n. Of course any of
the eight storage cell names may be used~ If n is omitted the
value of A is used. Storage cell s contains the radix which is
used for input/output conversion. It initially contains ten
(decimal). The contents of s must be in the range from 2 to 20
inclusive.

@ Copyright, 1973, r1assachusetts Institute of Technology
and Honeywell Information Systel'!ls Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

To print storage cell x~ type

p x

All computations are done with 35-bit integers, giving about
10 digit precision when the radix is ten.

Example

The following example- sums two set of numbers, then divides
the first sum by the second. The right hand column describes the
activity in the left hand column.

decam
Go
=0
+214
+27
+818
p
1059

x=
=0
+14
+23
+79
p
116

%x
p
9

q

user invokes decam
response from decam
user initalizes A
user adds first set of numbers

. .
user requests result to be printed
decam prints the result
decam prints a blank line
user saves result in cell x
user resets A to zero for second addition
user adds second set of numbers . .
user requests result to be printed
decam prints the result
decam prints a blank line
user divides A into x
user requests result to be printed
decam prints the result
decam prints a blank line
user returns to command level

Note that if the second set of numbers had been summed first, the
divide request would have been Ix (divide A by x) instead of %x
(divide A into x).

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Syntax

Page 3
3/1/73

Only a subset of the allowed syntax of the desk calculator
has been described above. The full syntax description is given
as follows:

<name> ::=

<integer> :: =

<operand> :: =

<operator> :: =
<request> ::=

sltlulvlwlxly)zl <null field>

(usual definition--the letters a through j
are used as digits as necessary, for
rad i x > 10.)

<name> I <integer>

+1-1*1/1%lplql=

<name> <operator> <operand>

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

~: delete, dl

The delete command causes the
multi-segment files to be deleted.
deleting directories) and deleteforce
segments without being interrogated).

Usage

delete path.l path!!.

Command
Standard Service System

7/24/72

specified segments and
See also delete dir (for

(for deleting protected

1) path! is the name of the segment to be deleted.

Notes

The user must have write access for both the segment and its
directory. If only the segment's write access is lacking, he
will be interrogated as to whether he wishes to delete the
segment. See also the MPM section for deleteforce.

If path! is a link, delete will print a message;
delete either the segment in question or the link.
section for unlink. If path! is a directory, delete
message; it will not delete the directory. See the
for de 1 e ted i r •

The star convention may be used.

i t wi 11 not
See the MPM

will print a
MPM section

€) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

~: delete_dir, dd

Command
Standard Service System

6/29/72

The delete_dir command causes the specified directories (and
any segments they contain) to be deleted. Subdirectories and
their segments and subdirectories will also be deleted. See the
r1PM sections for delete (for deleting segments) and deleteforce
(for deleting protected segments).

Usage

delete_dir pathl ••• pathn

1) pathl is the name of the directory to be deleted.

Notes

The user must have write access for both the directory and
its superior directory. The star convention may be used. Before
deleting each specified directory, delete_dir will ask the user
if he wants to delete that directory. It will be deleted only if
the user types "yes".

Warning: protected segments in pathl or any of its
subdirectories will be deleted.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MUlTICS PROGRAMMERS' MANUAL

Command
3/30/73

This command deletes entries from a directory Initial Access
Control list (Initial ACl) in a specified directory. A directory
Initial ACl contains the ACl entries to be placed on directories
added to the directory. For a discussion of Initial ACls, see
the MPM Reference Guide section, Access Control.

Usage

delete_iacl_dir pathname acname~ ••• acnamen -control_arg-

1) pathname specifies the directory in which the directory
Initial ACl should be changed. If it is "-wd" or
"-work i ng_d i rectory" or omi t ted then the work i ng
directory is assumed. If it is omitted then only
the "-a" option for acname.l is allowed. If no
arguments are given then the entry for the user's
name and project is deleted from the Initial ACl
of the working directory. The star convention may
be used.

2) acname.l is an access control name. If no acnamel is
specified then the user's name and project are
assumed. acnamei must be of the form
person.project.tag. If one or more of the
components is missing, then all entries in the
Initial ACl that match the given components are
deleted. Components missing on the left must be
delimited by periods; however, the periods may be
omitted on the right.

3) control_arg may be -ring (-rg). If may appear anywhere on the
line and affects the whole line. If it is present
it must be followed by a digit, where user's ring
~ digit i 7, which specifies which ring's Initial
ACl for directories should be affected. If this
option is not given then the user's ring is
assumed.

@ Copyr i gh t, 1973, -Massachuset ts Ins t i tute of Techno 1 o,gy
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

Examples

delete_iacl_dir news .Faculty •• a

will delete from the directory Initial ACL of the news directory
all entries with project name Faculty and all entries with
instance tag a.

did -a

will delete all entries from the directory Initial ACL of the
working directory.

did store Jones -rg 5

will delete from the directory Initial ,ACL in ring 5 in the
directory store, all entries beginning with person name Jones.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Command
3/30/73

Access·
segment

segments
ACLs, see

This command deletes entries from a segment Initial
Control List (Initial ACL) in a specified directory. A
Initi~l ACL contains the ACL entries to be placed on
added to the directory. For a discussion of Initial
the MPM Reference Guide section, Access Control.

Usage

delete_iacl_seg pathname acnamel •.• acnamen -control_arg-

1) pathname specifies the directory in which the segment
Initial ACL should be changed. If it is "-wd" or
"-working_directory" or omitted then the working
directory is assumed. If it is omitted then only
the "-all option for acnamel is allowed. If no
arguments are given then the ACL entry for the
user's name and project is deleted from the
Initial ACL of the working directory. The star
convention may be used.

2) acnamel is an access control name. If no acnamel is
specified then the user' name and project are
assumed. acnamel must be of the form
person.project.tag. If one or more of the
components is missing, then all entries in the
Initial ACL that match the given components will
be deleted. Components missing on the left must
be delimited by periods; however, the per i ods may
be omitted on the right.

3) control_arg may be -ring (-rg). It may appear anywhere on the
line and affects the whole line. If it is present
it must be followed by a digit, where user's ring
i digit i 7, which specifies which ring's Initial
ACL for segments shou 1 d be affec ted. If th is
control argument is not given then the user's ring
is assumed.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

I=v;:amnl&J>C:
-"'1 M···", • ",..,

delete_iacl_seg news .Multics •• a

will delete from the segment Initial ACL of the news directory
all entries with project name Multics and all entries with tag a.

dis -a

will delete all entries from the segment Initial ACL in the
working directory.

dis store Jones -rg 5

will delete from the segment Initial ACL for ring 5 in the
directory store all entries beginning with a person name Jones.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc .. (END)

MULTICS PROGRAMMERS' MANUAL deleteacl

Command
3/1/73

~: deleteacl, da

This command deletes entries on an Access Control List (ACL)
of either a segment or a directory.

Usage

deleteacl pathname acname1 ••• acnamel

1) pathname

2) acnamel

specifies the ACL of the segment or directory
which should be changed. If it is "-wd" or
"-working_directory" or omitted, then the working
d i r ec tor y i s as sum ed • I fit i s om itt ed, the non 1 y
the "-a" opt i on for acname.!.. I s a 11 owed. I f no
arguments are given, then the ACL entry for the
user's name and project is deleted from the ACL of
the working directory. The star convention may be
used.

is an access control name. If no acnamel is
specified, then the user's name and project are
assumed. acnamei must be of the form
person.project.tag. If one or more of the
components is missing, then all entries in the ACL
that match the given components will be deleted.
Any components missing on the left must be
delimited by periods; however, the periods may be
omitted on the right. If an acnamel would include
.SysDaemon., but does not have all three
components specified, the ACL entry for
.SysDaemon. will not be deleted if it exists.
If acnamei is "-a" or-.r:all" then the whole ACL
will be deleted, and the *.SysDaemon.* rwentry
(or sma for directories) will then be added to the
empty ACL.

An ACL entry for *.SysDaemon.* can be deleted only by
specifying all three components. The user should be aware that
in deleting access to the SysDaemon project he will prevent
Backup.SysDaemon.a from saving the segment or directory
(lncluding the hierarchy inferior to the directory) on tape,
Dumper.SysDaemon.a from reloading it, and Retriever.SysDaemon.a
from retrieving it.

@ Copyri ght, 1973, Hassachusetts I nst i tute of Technology
and Honeywell Information Systems Inc.

deleteacl MULTICS PROGRAMMERS' MANUAL

Page 2

Examp 1 es

deleteacl news .Faculty •• a

will delete from the ACL of news all entries with the project
name Faculty and all entries with the instance tag nan.

da -a

will delete all entries from the ACL of the working directory and
then add an entry u*.SysDaemon.* sma".

da test.pl1 *.*.* Doe

will delete from the ACL of test.pll an entry for *.*.* and all
entries with the person name Doe.

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

~: deleteforce, df

deleteforce

Command
Standard Service System

7/6/72

The deleteforce command causes the specified segments to be
deleted, regardless of whether or not they are protected.

Usage

deleteforce pathl ••• pathn

1) pathl is the name of the segment to be deleted.

Notes

The user must have write access for both the segment and its
directory.

If pathl is a link, deleteforce will print a message; it
will not delete either the segment in question or the link. See
the MPM section for unlink. If pathl is a directory, deleteforce
will print a message; it will not delete the directory. See the
MPM section for delete_dire

The star convention may be used.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MUlTtCS PROGRAMMERS' MANUAL

~: deletename, dn

deletename

Command
Standard Service System

6/29/72

The deletename command deletes specified names from segments
or directories which have multiple names. See the MPM sections
for addname (for adding names to storage system entries) and
rename (for changing names of storage system entries).

Usage

deletename pathl ••• pathn

1) pathl is the name which is to be deleted.

Notes

In keeping with standard practice, pathl may be a relative
path name or an absolute path name; its final portion (the
storage system entry in question) will be deleted from the
segment or directory it specifies, provided that doing so does
not leave the segment or directory without a name. In the latter
case, the user will be interrogated as to whether he wishes the
segment or directory in question to be deleted.

The star convention may be used.

Example

deletename alpha >my_dir>beta

would delete the name alpha from the list of names for the
appropriate segment in the current working directory, and would
delete the name beta from the list of names for the appropriate
segment in the directory >my_dir. Neither alpha nor beta may be
the only name for their respective segments.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Command
Development System

8/18/71

~: display_component_name, dcn

The display_component_name command converts an offset within
a bound segment (e.g., bound_zilch_123017) into an offset within
the referenced component object (e.g., compI1527). It works on
segments bound with version number 4 (and subsequent versions) of
the binder. It is especially useful when it is necessary to
convert an offset within a bound segment (as displayed by the
default error handler or by a stack trace) into an offset
corresponding to a compilation 1 isting.

It is intended to be a temporary command and will probably
be removed when the debugging and diagnostic tools have been
modified to perform the appropriate offset conversion themselves.

Usage

display_component_name path offsetl ••• offsetn

1) path is the pathname of a bound object segment.

2) offsetl. is an octal offset within the text of the bound
object segment specified by "path".

Example

The command

might respond with the following display:

17523
64251

componentS I 1057
component7163

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved. {END}

MULTICS PROGRAMMERS' MANUAL

.ll£IJle.: do

Conmand
11/13/73

The purpose of the do command is to expand a command string
given as its first argument by replacing the parameter
designators &1 •.• &9 found in it with the actual arguments
supplied following the command string. The resultant expanded
string is then passed to the Multics command processor for
execution. If abbreviations are being expanded in the process,
any abbreviations in the expanded string are first expanded.
{See the writeup for the abbrev command.} Control arguments
exist to print the expanded command line, to suppress its
execution, or to pass it back as the value of an active function.

Usage

do IIcommand_stringll -argl- ••• -argn.-

I} conmand_string is a command line {in quotation marks}. Each
instance of the paramter designator &1 {where
1 is a number from 1 to 9} found in
command_string is replaced by the
corresponding actual argument argl.. If any
argi is not supplied, then each instance of
&1 in command_string is replaced by the null
string. Each instance of the unique-name
designator &! found in command_string is
replaced by a IS-character identifier unique
to the particular invocation of the do
command. Finally, each instance of the pair
&& is replaced by a ampersand. Any other
ampersand discovered in command_string causes
an error message to be printed and the
expansion to be terminated. Any argument
supplied but not mentioned in a paramter
designator is ignored.

2) argl. is a character string argument to replace a
parameter designator &1 in command_string.

Usage ~ sn Actiye Function

If the do command is called as an active function

Ido "command_string" argl ••• arg,!ll

then, instead of executing the resultant expanded string, the do
command passes it back as the value of the active function.

€) Cop y rig h t , 197 3 , r ... 1a s sac h use t t sin s tit ute 0 f T ec h no log y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

Modes

The do command has three modes, the long/brief mode, the
nogo/go mode, and the absentee/interactive mode. These modes are
kept in internal static storage and are thus remembered from call
to call within a process. The modes are set by invoking the do
command as follows:

do mode

where mode is one of -long, -lg, -brief, -bf, -nogo, -go,
-absentee, or -interactive.

If the long/brief mode is long, then the expanded command string
is printed on the string error_output before it is executed or
passed back. If the long/brief mode is brief, then the string is
not printed. The default for this mode is brief.

If the nogo/go mode is nogo, then the expanded command
string is not passed to the command processor for execution. If
the nogo/go mode is go, then the expanded string is passed to the
command processor (if the do command was invoked as a command).
If do is invoked as an active function, then the nogo/go mode is
ignored. The default for this mode is go.

If the absentee/interactive mode is absentee, then the do
command establishes itself as a default on unit during the
execution of the expanded command string. This is mainly of use
in an absentee environment, in which any invocation of the
standard default on unit terminates the process. When do is the
default on unit, any signal caught by do merely terminates
execution of the command string, not the process. A number of
conditions, however, are not handled by do but are passed on for
their standard Multics treatment; they are cput, alrm, quit,
program_interrupt, command_error, command_query_error,
command_question, and record_quota_overflow. (For a description
of these conditions see the MPM Reference Guide section, List of
System Conditions and Default On Unit Actions.) If the
absentee/interactive mode is interactive, then do does not catch
any signals. The default for this mode is interactive.

Quote-doubling £nQ Reguoting

In addition to the parameter designators &1 ••• &9, the do
command also recognizes two more sets of parameter designators.
They are &ql &q9, to request quote-doubling in the actual
argument as it is substituted into the expanded string, and &r1

&r9, to request that the actual argument be requoted as well
as have its quotes doubled during substitutution.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 3
11/13/73

Quote-doubling can be described as follows. Each parameter
designator in the input string to be expanded is found nested a
certa i n 1 eve 1 deep in quotes. I f a des i gnator is found to be not
within quotes, then its quote-level is zeroi if it is found
between a single pair of quotes, then its quote-level is one; and
so on. If the parameter designator &qi is found nested to
quote-level L, then, as argi is substituted into the expanded
string each quote character found in argi is multiplied by 2**L
during insertion. This permits the quote character to survive
the quote-stripping action to which the command processor
subsequently subjects the expanded string. If &qi is not located
between quotes, or if argi contains no quotes, then the
substitutions performed for &qi and for &1 are identical.

If the parameter designator &ri is specified, then the
substituted argument arg1 is placed between an additional level
of quotes before having its quotes doubled. More precisely, if
the parameter designator &ri is found nested to quote-level L,
then 2**L quotes are inserted into the expanded string, argi is
substituted into the expanded string with each of its quotes
multiplied by 2**(L+l), and then 2**L more quotes are placed
following it. If argument argi is not supplied, then nothing is
placed in the expanded string; this providis a way to distinguish
between arguments that are not supplied and arguments that are
supplied but null. If argument argi is present, then the
expansions of &rl and of &ql written between an additional level
of quotes are identical.

Accessing ~ !han Nine Arguments

In addition to the normal parameter designators in which the
argument to be substituted is specified by a single digit, do
also allows "the designators &(d ••• d), &r(d ••• d), and &q(d ••• d)
where d ••• d denotes a string of decimal digits. An error message
is printed and the expansion is terminated if any character other
than 0 ••• 9 is found between the parentheses.

Examples

The do command is particularly useful when used in
conjunction with the abbreviation processor, the abbrev command.
Consider the following abbreviations:

ADDPLI
AUTHOR
AX
FO
P

do lifo &1.listiioa_ --liPli &1;co ll

do "ioa_$nnl &1;status -author $1"
do .. i f is &1 -then IIlIdf &1 1

"IIf

do "AX &1;fo &1"
do "pll &1 -1 ist &2 &3"

® Copyright, 1973, t,1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 4

The command

ADDPLI alpha

expands to

fo alpha.list;ioa_ ~I;pli alpha;co

The command line

AUTHOR beta

prints the author of segment beta.

The command line

FO gamma

expands to

AX gamma;fo gamma

which is expanded to

if is gamma -then df gammaifo gamma

This shows how do can be used at several levels and how
abbreviations can be used within abbreviations.

The command line

Pal pha

generates the expansion

pl1 alpha -list

while the command line

P alpha -table

expands to

pl1 alpha -list -table

This shows how references to unsupplied arguments get deleted.

@) Copyr i ght, 1973, Massachusetts I nst i tute of Technology
and Honeywe 11 Info rma t i on Sys terns Inc. (END)

MUlTICS PROGRAMMERS' MANUAL

~: dprint, dp, dpl, dp2

Command
8/20/73

The dprint (daemon print) command allows specified segments
to be queued for printing on the Multics line printer. It is
similar to the dpunch command and the actual printing is managed
by the same system process -which manages segment punching. The
output, identified by the personal name contained in the
requestor's user 10, is available from Operations. Because queue
traffic is highly variable, no guarantee can be made as to how
long the printing will take.

The entry dpl places requests in the top priority queue, dp2
places them in the second priority queue, and dp and dprint place
them in the lowest priority queue. All requests in the first
queue are processed before any requests in the other queues, etc.
Higher priority queues have a higher cost associated with them.

Usage

dprint -ctl_arg!- ••• -ctl_argn- -pathl- ••• -pathn-

-brief
-bf

-copy n
-cp n

-queue n
-q n

can be chosen from the following list
of control arguments and can appear
anywhere in the command line:

the message "j requests signalled, k
already queued." is suppressed. This
control argument cannot be overruled
later in the command line.

causes n copies (n <= 4) of subsequent
segments to be printed. This control
argument can be overruled by a
subsequent -copy contro 1 argument. If
the -delete control argument is
specified for the segment, it does not
take place until after the last copy
has been printed. The default value
for n is 1.

all subsequently specified segments are
~rinted in priority queue n (n <= 3).
This control argument can be overruled
by a subsequent -queue control
argument. It overrides any
specification made through the use of

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 2

-delete
-dl

-header heading
-he heading

-destination dest
-ds dest

2) pathl

Notes

MULTICS PROGRAMMERS' MANUAL

the command names dp1 or dp2. The
default value for n is 3.

all subsequently specified segments in
the command line are deleted after
printing.

subsequent output is identified by
the string "heading" as well as by the
user 10. This control argument can be
overruled by a subsequent "-header"
control argument.

subsequent output is labeled with the
the string "dest", which is used to
determine where to deliver the output.
(If this control argument is omitted,
the requestor's project 10 is used.)
This control argument can be overruled
by a subsequent -destination control
argument.

is the path name of a segment to be
queued for printing.

All control arguments can appear anywhere in the command
line. If present, they affect only segments specified after
their appearance.

The -brief control argument affects only the message printed
afte"r the cOnTlland is fin i shed and not the process i ng of segments.

The -copy control argument limits the maximum number of
copies to 4.

The -delete control argument is the only control argument
affecting segments that cannot be reset in a given invocation of
the command. Once -delete appears in a line, all subsequent
segments are deleted after printing.

The command dp (or dp1 or dp2), with no arguments specified,
results in a message giving the status of the queue.

The dprint command does not accept the star convention; it
prints a warning message if a name containing asterisks is
encountered and continues processing its other arguments.

Copyright, 1973, Massachusetts Institute of Technology
and Honeywe 11 Info rma t ion Sys terns Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Command
8/17/73

dpnl, dpn2

The dpunch (~aemon punch) command allows specified segments
to be queued for punching by the Multics on-line card punch. It
is similar to the dprint command and the actual punching is
nanaged by the same system process that manages segment printing.
Output is available from Operations_ Because queue traffic is
highly variable, no guarantee can be made as to how soon the
punching will be performed.

See also the MPM Reference Guide Section, Input and Output
Facilities ..

The entry dpn1 places requests in the top priority
dpn2 places them in the second priority queue, and dpn and
place them in the lowest priority queue .. All requests
first queue are processed before any requests in the

queue,
dpunch
in the
other
cost queues, etc.. Higher priority queues have a higher

associated with them~

Usage

dpunch -ctl_argl- ••• -ctl_argn- -pathl- -pathn-

-brief
-bf

-copy 11
-cp n

-queue n
-q D.

can be chosen from the following 1 ist of
control arguments and can appear
anywhere in the command line:

the rnessage "j requests signalled, k
already queued." is suppressed. This
control argument cannot be overruled
later in the command line.

causes n copies (n <= 4) of all
subsequent segments to be punched. This
control argument can be overruled by a
subsequent -copy control argument .. If
the -delete control argument is
specified for the segment, it does not
take place until after the last copy has
been punched. The default value of n is
1 ..

a11 subsequently specified segments are
punched in priority queue n (n (= 3).
This control argument can be overruled
by a subsequent -queue control argument.

@ Copyright, 1973, nassachusetts Inst itute of Technology
and Honeywe 11 I nformat ion Sys tens I nc ~

Page 2

-delete
-dl

-header heading
-he heading

-destination dest
-ds dest

-mcc

-raw

-7punch
-7p

MULTICS PROGRAMMERS' MANUAL

It overrides
through the use
dpnl and dpn2 ..
i s 3.

any specification made
of the command names
The default value for n

all subsequently specified segnents in
the command line are deleted after
punching.

the string "heading" is added to
the deck's identifying information for
all subsequently specified segments in
the command line unless overruled by a
subsequent -header control argument.

the string "dest" is printed on the
accompanying sheet identifying the
output, and is used to determine where
to deliver the deck. (If this control
argument is omitted, the requestor's
pro j e c tiD i sus e d.) T his co n t r 0 1
argument can be overruled by a
subsequent -destination control
argument.

the following segments in the command
line are to be punched under character
conversion. This control argument can
be overruled by either the -raw or
-7punch control arguments.

the following segments in the command
line are to be punched with no
conversion. This control argument can
be overruled by either the -mcc or
-7punch control arguments.

the following segments in the command
line are to be punched under -7punch
conversion. This is the default
conversion mode and need only be
specified when a number of segments are
being requested by one invocation of
dpunch and other modes (-mcc or -raw)
have been specified earlier in the
command line ..

€) Copyright, 1973, Massachusetts Institute of Technology
and HoneY'v'Jel1 Information Syster.1s Inc.

MULTICS PROGRAMMERS' MANUAL

Page 3
8/17/73

2) pathl is the path name of a segment to be
queued for punching.

Hotes

All control arguments can appear anywhere in the command
line. If present, they affect only segments specified after
their appearance.

The -brief control argument does not affect the processing
of segments but only the nessage printed after the command is
finished.

The -copy control argument limits the maximum number of
copies to 4 ..

The -delete control argument is the only control argument
affecting segments that cannot be reset in a given invocation of
the command~ Once -delete appears in aline, all subsequent
segments are deleted after punching.

The dpunch command does not accept the star convention; it
prints a warning message if a name containing asterisks is
encountered and continues processing its other arguments.

The dpunch command (or dpn or dpnl or
arguments specified, results in a message giving
the specified queue.

dpnZ), with no
the status of

It is suggested that, before deleting the segment that was
punched, the user read the deck back in and compare it with the
original to ensure the absence of errors.

Example

dpunch a b -mcc -he Doe c.pll -dl -7p -he "J. Roe" a

would cause segments a and b in the current working directory to
be 7punched (the default conversion mode) and c.pll to be punched
under character conyers i on vJi th "for Doe" added to the head i ng ..
Segment a is 7punched with "for J. Roe" added to the heading and
the segment is then deleted after punching.

® Copyright, 1073, Nassachusetts Institute of Technology
and ,1oneywel1 Information Systems Inc. (END)

t1ULT1CS PROGRA~1MERS' MANUAL

Command
10/9/73

Harne: dump_segment, ds

The dump_segment cOMmand prints in octal format selected
portions of a segment. It prints out either four or eight words
per line and can be instructed to print out an edited version of
the ASCII representation.

Usage

dump_segment seg offset num -control_arg-

1) seg

2) offset

3) num

-long, -lg

-character,-ch

-bcd

is the pathname or segment number of the
segment to be dumped .. If it is a pathname,
but looks 1 ike a number, the preceding
argument should be -name or -nm.

is the offset of the first word to be dumped.
If omitted, the entire segment is dumped.

is the number of words to be dumped~
omitted, 1 is assumed.

I f

can be chosen from the following 1 ist of
control arguments:

causes eight words to be printed on aline.
Four is the default~ This control argument
cannot be used together with any of the other
control arguments. (Its use with -bed or
-character would result in a line longer than
132 characers.)

causes the ASCII representation of the words
to also appear on each 1 ine4 Characters that
cannot be printed are represented as periods.

causes the BCD representation of the words to
also appear on each line. There are no
non-printable BCD characters, so periods can
be taken literally.

@ Cop y rig h t , 1 9 7 3, t,1 ass a c h use t t 5 Ins tit ute 0 f T e c h n 0 log y
and Honeywell Information Systems Inc.

Page 2

-short, -sh

MULTICS PROGRAMMERS' MANUAL

causes 1 i nes to be compac ted, to fit on a
t e r min a i \v I t n ash 0 r t 1 i fl e 1 eng t h • Sin g 1 e
spaces are placed between fields, and only
the two low order digits of the address are
printed, except when the high order digits
change. This shortens BCD output lines to
less than 80 characters.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywe 11 Info rma t ion Sys tems Inc. (END)

MUlTICS PROGRAMMERS' MANUAL

Command
2/12/73

lia!:!:le.: edm

The edm command is the standard Multics context editor. It
is used for creating and editing ASCII segments. This command
cannot be called recursivelY. See cd so the t"Pt.A Introduction
ChaPter 3, Beginner's Guide to the Use of Multics.

Usage

edm -pathname-

1) pathname specifies the segment to be edited. The argument
is optional. If pathname is not given, edm will
begin in input mode (see Notes below), ready to
accept whatever is typed subsequently as input;
when the created segment is written out, its name
may be specified as part of the write request. If
pathname is given, but the segment does not yet
ex i s t , e d m w ill a 1 sob e gin i n i n put mo de;
otherwise, edm will begin in edit mode, ready to
edit the segment specified by pathname.

Notes

This command operates in response to requests from the user.
To issue a request, the user must cause edm to be in edit mode.
This mode is entered in two ways: if the segment already exists,
it is entered automaticallY when edm is invoked; if dealing with
a new segment (and edm has been in input mode), the mode change
characters must be issued. The mode change characters are the
period (.) followed by a "new line" (carriage return-new line),
issued as the onl¥t characters on a line. The command announces
its mode by typing 'Edit." or "Input." when the mode is entered.
From edit mode, input mode is also entered via the mode change
characters.

The edm requests are predicated on the assumption that the
segment consists of a series of lines to which there is 2
con c e p t u a 1 po i n t e r w h i chi n d i cat est h e cur r en t 1 i n e . (The 11 top II

and "bottom" lines of the sep-ment are also meaningful.) Various
requests explicitly or implicitly cause the pointer to be moved;
other requests manipulate the line currently pointed to. Most
requests are indicated by a single character; for these, the
character is generally the first letter of the name of the
request. Only the single character is accepted by the command.
Three requests have been considered sufficiently dangerous, or
likely to confuse the unwary user, that their names must be
specified in full.

@ Cop y rig h t, 1 9 7 3, ~·1a s sac h use t t sin s tit ute 0 f T e c h n 0 log Y
and Honeyv.Jell Information Systems Inc.

~!UL TICS PROGRAMMERS' ~~ANUAL

Page 2

If the user presses the quit button while in edit mode and
then invokes the program_interrupt command, the effect of the
last request executed on the edited copy is nullified. (See the
~I\PM write-up for progrcm_interrupt.) In addition any requests
not yet executed are lost. If program_interrupt is typed after a
qui tin c omm e n tor i n put mo des the n all i n put sin c e 1 as t 1 e a v i n g
edit mode will be lost. If the user wishes to keep the input he
must type start following the quit.

Requests

The requests are as follows (detailed descriptions follow
the list, in the order of the list):

=

,

b

c

d

E

f

k

merge

n

p

q

qf

r

backup

print current line number

comment mode

mode change

bottom

change

delete

execute

find

i nser t

k i 11

locate

insert segment (move)

next

print

quit

Quitforce

@ Cop y rig h t , 1 9 7 3 , r-~ ass a c h use t t sin s tit ute 0 f T e c h nolo g y
and Honeywell Information Systenls Inc.

r1U L TICS PROGR,An~~ ERS' r',~ANUAL

Pap-e 3
2/12/73

s substitute

t top

updelete delete to polnter

upwrite write to pointer (upper portion of se~ment)

v verbose

w write

:... Request

Format:

Purpose:

Spacing:

Pointer:

Default:

Example:

- I!.

Move pointer backwcrds
segment) the number
inteeer n.

(tO~Ja rd
of 1 ires

the top of the
specified by the

A space is optional between the request and the
inteeer ar~ument.

Set to the nth line specified before the current
1 i ne.

If n is null, the pointer is moved up only one
1 i ne.

Before: a: procedure;
x = Yi
q = r · ,
s = t;

-> end a;

Request: -2

After: a: procedure;
x = Y;

-> q = r ;
s = t;
end a;

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeyv.Jell Information Systems Inc.

Page 4

_ n __ .. .-,..
..::. "eyut;;:~~

Formet:

Purpose:

Po i n t e r :

.L Request

Format:

Purpos e:

Po inter:

It Request

Format:

Purpose:

Po i nte r :

~ Request

Format:

Pur pos e:

Spacing:

Po i n te r:

r~l'L T I rs PROr,RAI"'1~iERS I t,iANUAL

=

Print curr~nt line number.

Unchanped.

,

The editor will print lines, starting with the
current one, leavi ng: off the carri age return. It
then switches to input mode, letting you type the
rest of the line (comment, "new line", etc.). The
process then r~peats with the next line. The mode
change char?cters will return you to edit mode.

Left pointing to the last line printed.

b

~~ove poi nter to the end of the sezment and swi tch
to input mode.

Set after the lest line in the segment.

c n /stringl/string2/

Replace every instance of stringl by string2 in
the number of lines indicated to be searched by
the integer n. cdm responds to each chan~e by
printing the line with the changed text in red if
the user is in verbose mode (see the v request),
or with " edm: Substitution f2iled. tI if stringl is
not found.

A space before n and between n and the stringl
delimiter is optional.

Set to the last line scanned.

@ Copyright, 1973, r.1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MUL TICS PROGRAM~1ERS' 1\~ANUAL

Delimiters:

Default:

Example:

Note!

Q Request

Format:

Purpose:

Spacing:

Po inter:

Default:

Note:

Page 5
2/12/73

Any character not appearing in string1 or string2
can delimit the strings (I is shown in the
format). A delimiter following string2 is
optional.

If an integer is absent, only stringl of the
current 1 i ne is changed. If str i ng1 is absent,
string2 is inserted at the beginning of the line.

Before:

Reques t:

Response:

.After:

<!: procedure;
-> x = y.

Q = r.
s = t;
end a;

c2/./;/

x = y;
q = r;

a: procedure;
x = y;

-> q = r;
5 = t;
end a;

For compatibility with qedx 1 this request may also
be given as s (for substitute).

d n

Causes !l
integer.

lines to be deleted where n is
Peletion berins at the current line.

A Space is optional between d and n.

an

Set to "no line" followine the line deleted. That
is, an i request or a chnnge to input mode would
take effect before the next nondeleted line.

If n is null, only the current line is deleted.

The requests c, d, n, and p count "no line" when
issued immediatelY after a delete request.

(C) C 1'1-' v, ; .. h f' 19 7 3 ~1a s sac h use t t sin s tit ute ofT c c h nolo g y
.,.,,~ ... _ •• J ,- • ... 1 , and Honeywell Information Systc'~s Inc.

Page 6

~ Request

Format:

Purpose:

Spacing:

Po i n te r:

i Request

Format:

Purpose:

Spacing:

Pointer:

Default:

1 Request

Format:

Purpose:

Spacinr-:

Pointer:

f'lefault:

fliUL TICS PROGRAr"1~1ERS' t·1ANUAL

E comrnandline

Pass commandline to the command processor for
execution as a command line.

A single space following E is not significant.

Unchanged.

f strin~

Search segment for a line beginning with the
string. Search starts at the line following the
current line and continues around the entire
segment until the string is found or until return
to the current line. The current line is not
searched. If the string is not found, the error
me s 5 age " e dm : S .e a c h f ail e d ." i s p r i n ted. 1ft he
string is found and the user is in verbose mode,
the line containing the string is printed.

A single space following f is not significant.
All other leading and embedded spaces are used in
searching.

Set to the line found, or remains at the current
line if the line is not found.

If the string is null, edm searches for the string
requested by the last f or request.

i newl i ne

Insert newline after the current line.

The first space following i is not significant.
All other leadin~ and embedded spaces become part
of the text of the new line.

Set to the inserted line.

If nevJline is null, a blank line is inserted.

® Cop y rig h t , 1 9 7 3 , r·1a s sac h use t t sin s tit ute 0 f T e c h nolo g y
and Honeywe 11 I nforma t ion Sys tems Inc.

~ULTfCS PROGRAMMERS' MANUAL

Note:

k Request

Format:

Purpose:

Po i nte r:

Note:

1 Request

Format:

Purpose:

Spacing:

Pointer:

Default:

Example:

Pare 7
2/12/73

ImmediatelY after a t (top) request, an i request
causes the newline to be inserted at the beginning
of the segment.

k

To i n h i hit (k ill) res po n s e s f 0 1 1 ow i n g a c, f , 1 ,
n, or s request ..

Unchanged.

See v (verbose) request for restoring responses.

1 string

Search sefment for a line containing the strine.
Search starts at the line following the current
line and continues around the entire segment unti 1
the strinp is found or until return to the current
line. The current line is not searched. If the
string is not found, the error message "edm:
Search failed." is printed. If the string is
found and the user is in verbose mode, the line
containing the string is printed.

A single space following 1 is not si~nificant.
All other leading end embedded spaces are used in
searching.

Set to the line found, or remains at the current
line if the line is not founrl.

If the string is nul" edm searches for the string
requested by the last 1 or f request.

Before: a: procedur e;
x = y;
q = r . ,

-> s = t;
end ?;

Request: 1 x =

~ Copyright, 1973, Massachusetts Institute of Technolo~y
and Honeywell Information Systems Inc.

R
Page 8

merge Request

Format:

Purpose:

Spacing:

Po i n te r :

Default:

.!l Request

Format:

Purpose:

Spacing:

Po i n te r:

Default:

Note:

Q Request

Format:

Pur pos e:

Spacing:

Po i nte r:

Default:

r'lUL TICS PROGRAt.jtliERS' ~,'iANUAL

After: a: procedurfl;
-) x = y;

q = r . ,
s = t;
end a;

merr-e path

The seement specified by path is inserted after
the current line.

A single space followin~ merge is not significant.

Set to the last line of the inserted segment.

If path is not given, the name given in the
invocation of edm is used •

n !l

Move pointer down the segment n lines.

A space is oPtional between n and the integer !l.

Set to the !lth line specified after the current
1 i ne.

If the integer !l is null, the pointer is moved
down only one line.

T~e printed response to this request can be shut
off using the k request.

P !l

!l lines will be printed, beginning with the
current line.

A space is optional between p and the integer !l.

Left pointing to the last line printed.

If n is null, the current line is printed.

@) Copyr i ght, 1973, nassachusetts I nst i tute of Technology
ann Honeywell Information Syste'"'1s Inc.

MULTICS PROGRAMMERS' MANUAL

Note:

g Request

Format:

Purpose:

Po i n te r:

.9f. Request

format:

Purpose:

.r:. Request

Format:

Purpose:

Spacing:

Po in te r:

Default:

~ Request

Note:

Page 9
2/12/73

A print request in edm may be aborted by pressing
the quit button and typing pi or
program_interrupt. This will put edm in a state
where it is ready to accept another request. (See
the MPM write-up for program_interrupt.)

q

To ex i t edm and ret urn tot he calle r , us u all y
command level. If no write request has been made
since the last change to the edited text, edm will
warn the user that the changes will be lost and
ask if he still wishes to quit.

If the user is queried and answers no, then the
pointer is unchanged •

qf

To exit from edm directly without being warned or
queried .

r newline

Replace current line with newline.

One space between r and newline is not
significant. All other leading and embedded
spaces become part of the text of the new line.

Unchrnr:ed.

If newline is null, a blank line replaces the
current line.

Used identicallY to the c request.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

PClP:e 10

1. Request

Format:

Purpose:

Po inter:

Note:

MULTICS PROGRAMMERS' MANUAL

t

Moves pointer to the first line of the segment.

At "no line" immediately above the first line of
text.

An i (insert) request immediately following a t
request causes insertion of a text line at the
beginning of the se?ment.

upde1ete Request

Format:

Purpose:

Po inter:

upwrite Request

Format:

Purpose:

Spacing:

Po i n te r :

nef?ult:

Note:

upde1ete

Delete all lines above (but not including) the
current line.

Unchanged.

upwrite path

All the lines above the current line (but not
including the current line) are saved in the
hierarchy in the sey.ment specified by path.

A sin~le space fo 11 ow i ng upwrite i s not
sip-nificant.

Unchanged.

If path is not given, the name given in the
invocation of edm is used.

The lines written out are deleted from the edit
buffers and thus are no longer ?vai1able for
editing.

@ Copyr i ght, 1973, "'1assachusetts I nst i tute of Technology
and Honeywell Information Systems Inc.

MULTles PRorRAM~ERS' MANUftL

y. Request

Format:

Purpos e:

Po inter:

Note:

~ Request

Format:

Purpose:

Spacing:

Po inter:

Default:

Note:

v

Page 11
2/12/73

Causes edm to print responses following a c, f,
1, n, or s request. This is the default mode.

Unchanged.

See k (kill) for inhibiting verbose mode.

w path

To write out (save) the edited copy. path can
stipulate the directory and the entry name within
the directory in which the segment is to be saved.
If only the entry name for the saved copy is
given, the working directory is assumed.

A space between wand path is not si,nificant.

Set to "no linell at the end of the segment.

If path is null, and if the orieinal name of the
segment is not null, the edited segment is saved
under the original name; the ori~inal segment is
deleted. If path is null and no previous segment
exists, an error messaee is printed and edm looks
for another request.

To terminate editing without saving the edited
copy, see the qf (quitforce) request.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MUlTICS PROGRAMMERS· MANUAL

~: endfile

Command
3/19/73

The endfile command causes the FORTRAN I/O system to close
one or all of the FORTRAN I/O files which are still open after
the end of the execution activities during which the I/O files
were referenced. If is useful when a FORTRAN program did not
proceed to completion, such as when it was interrupted by the
user pressing his quit button.

Usage

end f i 1 e f i 1 e_ i d

is a one- or two-digit number which identifies the
file to be closed. If file_id is "-all", then all
of the FORTRAN I/O files still open in the process
are closed.

@ Cop y rig h t, 1 9 73, t.1a s sac h use t t sin s tit ute 0 f Tee h no log y
and Honeywell Information Systems Inc. (END)

i1ULTICS PHOGRAf·U.1ERS' itAtJUl\L

~: enter, e
enterp, ep

Command
Standard Service System

5/24/72

These commands are used by anonymous users to gain access to
;1ultics. enter is actually a request to the answer~ng service to
create a process for the anonymous user. Therefore, these
commands can only be used from a terminal connected to the
answering service; that is, one \.Jhich has just dialed up, or one
VI h i c h has bee n ret urn edt 0 the an s vIe r i n g s e r vic e aft era
terminated session vJith a "l ogou t -hold" command.

Anonymous users who are not to supply a password use the
enter (e) command. Anonymous users who are to supply a password
use the enterp (ep) command.

Usage

enter -anonymous_name- project -control_args-

2) proj ect

-brief, -bf

-home_dir path
-hd path

is an optional identifier ""hich is not
checked by the systen, but is passed to
the user's process overseer as if it
were a person 10. If anonymous_name is
not specified, it \'Ji11 be assumed to be
the same as the project 10:

is the identification of the user's
project.

may be chosen from the follovIing 1 i st
of control arguments:

;lessages associ ated \Ji th a successful
logi n \Ii 11 be suppressed. I f the user
is using the standard nrocess overseer,
the message of the day vii 11 not be
printed.

The user's home directory will
to the path spec i fi ed, if the
project administrator allows
specify his home dirctory.

be set
user's

him to

-process_overseer path The user's process overseer will be
-po path the Drocedure given by the oath

specified, jf t~e user's project
administrator allows him to specify his
nrocess overseer.

Cop y r i t; h t , 1 ~ 7 2 , Ii ass a c h use t t 5 Ins tit IJ teo f T e c h n 0 1 0 .?: Y
All rights reserved.

-print_off, -pf

-account id, -ac id

-force

tlU L TICS PROG :~/t1': EilS' lAtHJ AL

The 5 Y 5 t e8 \.Ji 1 1 0 v e r t yo e s eve r all i n e s
to provide a ~lack area for the user to
type ~is pass\,Jorn.

The system \Jill not overtype an area
for the password, since the user's
terMinal responds to the printer-off
control sequence.

If the user can only be lo~ged in by
preempting some other user in ~is load
control group, refuse his login
instead.

If the user has a stt3rt_up.ec segment,
and the project administrator allows
the user to avoid it, instruct the
standard process overseer not to
execute it.

Replace the norMal account identifier
for the use r \Ji t hid. (T his co n t r 0 1
argument currently has no effect.)

I f the user has
attribute, log
possible.

the guaranteed login
the user in if at all

See the i1P~1 Reference Guide section on the Protocol for
Logging In for an explanation of the responses to the enter and
enterp cOr.1mands.

@ Copyr ight, 1972, !-1assachusetts I nsti tute of Technol0.gy
All rights reserved. (E~·!~)

;·1U L TICS PRO GRAMM ERS' i~ANU.l\L

Command
Development System

3/20/72

The enter_abs_request command
an absentee process be created for
executes commands from a segment and
segment. The time before which this
may be specified.

allows a user to request that
him. An absentee process
places its output in another
process is not to be created

The principal difference between an absentee process and an
interactive one is that "user_input" is attached to an absentee
control segment containing commands and control lines;
"user_output" is attached to an absentee output segment as well.
The absentee control segment has the same syntax as an exec_com
segment .. (See exec_com in the MPr·1.)

Usage

enter_abs_request pname -ca~- ••• -call- -ag argl ••. argn

1) pname

2) cal

-output_file pname
-of pname

-restart, -rt

-limit..!], -1111

specifies the path name of the
absentee control segment associated
with this request. The entry name
must have the suffix .absin
although it may be omitted in the
command. Pname must be the first
argument to the command.

is selected from the following list
of control arguments and may aopear
in any position:

indicates that the
specify the name
segment. It must
the path name of
output segment.

use r It! ish est 0

of the out out
be fo 11 o\"Jed by
the absentee

indicates that the computation
specified by this request may be
started over again from the
beginning if interrupteo (e.g., by
a system crash). The default is
not to restart the computation.

indicates that the user wants to
place a CPU limit on the ti~e the
absentee process wi 11 use. It must
be fol lowed by a positive integer

Copyright, 1972, Massachusetts Institute of Technology
Al1 rights reserved.

Page 2

-queue .D., -q 11

- tim e "d e fer r e d_ t j me"
-tm "deferred_time"

-brief, -bf

3) -arguments, -ag

4) argi

specifying the limit, in seconds.
The default is no user supplied
limit. There is a system enforced
limit which an absentee process may
use. Currently this absolute limit
is twenty minutes.

indicates in which priority queue
the request is to be pI aced. It
must be followed by an integer
specifying the number of the queue.
1ft his op t ion i s om j t ted, the
request is olaced in the third
queue.

indicates that the user wishes to
delay creation of the absentee
process until a specified time. It
must be followed by a character
strin~ representing this time. The
format of the deferred time is any
character string acceptable to the
convert_date_to_binary_ subroutine~
(See convert_date_to_binary_ in the
MP~1.) I f the tine cons i sts of more
than one component, it should be
enclosed in ~uotes.

indicates that the
already requested."
suppressed.

Message "j
is to be

is an oPtional control argument
which indicates that the absentee
control segment requires arguments.
I f pre sen t , i t r1 us t be f 0 1 1 0"''' e d by
at least one argument. All
arguments following -ag on the
command line will be taken as
arguments to the absentee control
segment. Thus -ag, if present,
must be the last control argument
to the enter_abs_request command.

is an argunent to the absentee
control segment.

Copyright, 1972, :'1assachusetts Institute of Technolor:y
A 11 r j ghts reserved.

dUL TI CS PROGRA~>1tIJERS I MANUAL

Notes

Page 3
3/20/72

If the path name of the output segment is not specified, the
output of the absentee process will be directed to a segment
whose path name is the same as the ahsentee control segment,
except that it has the suffix .absout.

The command checks for the existence of the absentee input
segment and will reject a request for an absentee process if it
is not present ..

The effect of specifying the -tine option is as if the
enter_abs_request command VJas issued at the deferred time ..

Examples

Suppose that a user wants to request an
compilation. A control segment would be constructed
absentee_p11_absin containing:

cwd current

pl1 x -table -symbols

dp -dl x.list

logout

The command line

off-line
ca 11 eo

would cause an absentee process to be creat~d (so~e time in the
future) which would:

1) set the working directory to a directory "current" inferior to
the use r 's nor rna 1 i nit i a 1 vJ 0 r kin g d ire c tor y ;

2) compile a PL/I program named x.p)1 with two options;

3) dprint one copy of the list segment;

4) log out.

The output of these tasks would appear in the same directory as
absentee_p11.absin in a segment called absentee_pl1.absout.

Suppose that an absentee control segment, trans.absin,
contained the fol lowing:

€> Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MU L TICS PRO GRA~'1~·1 E~ S I ~,1A NUJ\ l

Page 4

cV'Jd &1

&2 &3 -list ~i4

&goto &2.a

& 1 abe 1 p 11. a

fo &3.1ist; ioa_ ~I; pli &3; co

&label alm.a

dp -dl &3.list

agoto &2.b

&label pll.b

&3

&label alm.b

logout

The command

ear trans -li 300 -rt -ag'work pll x -map

would cause a request for an absentee process to be made in queue
3 ,",/hich will set the working directory to the directory "work ll

inferior to the normal initial working directory, then compile a
Pl/I program x.pl1 in that directory, produce a listing segment
containing a map, append to the listing segment linkage
information, issue a dprint request for the listing segment, and
execute the program x, just compiled in the absentee process.
There would be a CPU limit of five minutes placed on this
p roces s.

The command

ear trans -rt -tm "Monday midnight" -q 2 -ag comp a1m yz

would cause a request for an absentee process to be placed in
queue 2 which will set the working directory to the directory
"comp" inferior to the initial working directory, assemble an AU1
program named yz.alm, produce a listing segment, and issue a
dprint request for the listing segment constructed. This process
will not be created until after midnight of the next Monday.

Copyright, 1972, Massachusetts.lnstitute of Technology
All rights reserved.

MUlT1CS PROGRAMMERS' MANUAL

Page 5
3/20/72

Both absentee processes would issue a logout co~~and as t~e
last command in the process.

Both absentee computations could be restarted from the
beginning if interrupted for any reason.

Copyright, 1'372, I,tassachusetts Institute of Technolo?:y
All rights reserved. (ENr))

MUlTICS PROGRAMMERS' MANUAL

Command
11/20/73

The exec_com command is used to execute a series of command
lines contained in a segment. It allows the user to construct
command sequences that are invoked frequently without retyping
the commands each time. In addition the segment can contain
control statements that permit more flexibil ity than the simple
execution of commands. Facil ities exist for:

1. substitution of arguments to the command for special strings
in the exec com segment;

2. control of I/O streams;

3. generating command lines, control statements and input 1 ines
conditionally;

4. combining several exec_com sequences into one segment; and

5. altering the flow of control .

.usage

exec_com pathname -argl- -arg2- ••• -argn-

1) pathname

2) argl

is the pathname of the segment containing the
commands to be executed and control statements to
be interpreted. The entry name of the segment
must have the suffix ". ec", although the suffix
can be omitted in the command invocation.

is the string to be substituted for special
strings in the exec_com segment.

The Input Segment

The exec_com segment should contain only command lines,
input lines and control statements. It is normally created using
a text editor, such as edm or qedx. The exec com command can be
used.in conjunction with the abbrev command t~ for~ abbreviations
for command sequences that are often used.

~/hen the character "&11 appears in the exec_com segment, it
is interpreted as a special character. It is used to denote a
string used for argument substution and to signify the start of a
control statement.

€> Cop y rig h t , 1 9 7 3 , r/~ ass a c h use t t sin s tit ute 0 f T e c h nolo g y
an d H 0 n e y\\1 ell I n for rna t ion S y s tern sin c .

MULTICS PROGRAMMERS' MANUAL

Page 2

Argument Substitution

Strings of the
interpreted as dummy
corresponding argument
arg1 is substituted for
for "&10".

for", "&1" in the exec_com segment arp
arguments and are replaced by the

to the exec_com command. For instance,
the string: "&1" and arg-l0 is substituted

The character "&" shou 1 d be fo 11 owed by a number, i, or by
the string "ec_name". If arg1 is not provided, U&1" is 'i="pplaced
by the null string:. The string H&ec_name" is replaced b}l the
entry name of the exec_com segment wi thout the" "ec" suffi x~) the
string "&0" is replaced by the pathname argument to exe,c_com,
just as it was given to the command.

Argument substitution can take place in command lines, input
lines or in control statements, since the replacement of
arguments is done before the check for a control statement.

Control Statements

Control statements permit more variety and control in the
execution of the command sequences. Currently there are twelve
control statements: &label, &goto, &attach, &detach, &input_line,
&command_line, &ready, ~print, &if, &then, and &else.

Control statements renerally must start at the begirning of
a line with no leading blanks. Exceptions to this rule are the
&then and &else statements, which can appear elsewhere. Also
when a control statement is part of a THEN_CLAUSE or an
ELSF_CLAUSE, it does not have to start at the beginnirr of a
1 i ne ..

1. ~label and ~goto

These statements permit the transfer of control within an
exec_com segment.

&label location

&goto location

identifies the place to which a goto control
statement transfers control. location is any
string of 32 or fewer characters identi~yir~
the 1 abe 1 ..

causes control to be transferred to the place
in the exec_com segment specified by the
label location. Execution then continues at
the line immediately following the label.

@) Copyri f!ht, 1973, ~~assachusetts I nsti tute of TechnolofY
anc! Honeyvle 11 I nformat i on Sys terns Inc.

MUlTICS PROGRAMMERS' MANUAL

Page 3
11/20/73

2. &attach, &detach and &input_line

These statements allow the control of the I/O strea~
"user_input".

&attach

&detach

& i n p u t_ 1 i n e 0 f f

causes the I/O stream "user_input" to be
attached to the exec_com segment. This means
that if this control statement is executed,
all input read by subsequent commands is
taken from the segment rather from the stream
"U ser _i /0" •

causes the I/O stream "user_input l1 to be
reverted to its original value. The default
is detach rather than attach.

causes input lines returned when using the
&attach feature to be written on the stream
"user_output".

causes such input lines not to be written
out. The default is on.

3. &command_line, &ready and &print

These statements allow the control of the I/O stream
"user_output". They are useful as tool sin observi ng the
progress of the exec_com execution and in printing messages.

&command_l i ne on

&command_line off

&ready on

&ready off

causes subsequent command 1 ines to be written
on the stream "user_output" before they are
executed.

causes subsequent command lines not to be
written out. The default is on.

causes the invocation of the user's ready
procedure after the execution of each command
1 i ne.

causes the user's ready procedure not to be
invoked. The default is off.

&print char_string causes the character string following &print
to be written out on the I/O strean
"user_output". The character II " is treated
as a special character in an &print
statement. The following is a list of
strings that can appear and the characters

(0 Cop y rig h t , 1 9 7 3 , f '1 ass a c h use t t sin s tit ute ofT e c h nolo g y
an d H 0 n e yw ell I n for rna t ion S y s tern sin c .

MULTICS PROGRAM~~ERS' ~1ANUAL

Page 4

that replace them:

string

......

replacement

new line character
form feed
horizontal tab

No other characters should appear followin~
It ... " in the &print statement.

4. &Quit

&quit causes exec_com to return to its caller and
not to execute subsequent command lines.

5. &if, &then and &else

These statements provide the ability to generate command
lines, input lines and control statements conditionally.

The form of these control statements is:

&if [ACTIVE_FUNCTION -argl- ••• -argn-]
&then THEN_CLAUSF
&else ELSE_CLAUSE

An active function in an &if control statement is evaluated.
If the value of the active function is the string "true",
THEN_CLAUSE is executed. If the value is "false", ELSF._CL.A,USE is
executed.

&if [ACTIVE_FUNCTION -argl- ••• -argn-],

&then THEN_CLAUSE

This statement must start at the beginning of
a line. The active function is any active
function (user-provided or system-supplied)
that returns as its value a varying character
string with the value IItrue ll or "false". The
arguments to the active function can
themselves be active functions. (Nesting of
active functions is permitted.) The active
function and its oPtional arguments, enclosed
in brackets, must be on the same lire as the
&if statement ..

This statement must immediately follow the
&if statement; it can appear on the same
line or on the following line. THEN_CLAUSE
is an exec_com statement, and can include a

® Copyri ~ht, 1973, r~assachusetts I nsti tute of Technology
and Honeyv/ell Information Systems Inc.

MULTles PROGRAMMERS' MANUAL

&else ELSE_CLAUSE

Page 5
11/20/73

command i i ne, an input 1 i ne, the nu 11
statement and most control statements. The
exceptions are &label, &if, &then and &else.
(Nesting of &if statements is not permitted.)
THEN CLAUSE must be on the same line as the
&then statement.

This statement is optional. \~hen it appears
i t mu s t i mme d i ate 1 y f 0 11 0"1 the & the n
statement; it can appear on the same line or
on the following line. ELSE_CLAUSE is an
exec_com statement, and can include a command
line, an input line, the null statement and
most control statements. The exceptions are
&label, &if, &then and &else. ELSE_CLAUSE
must be on the same line as the &else
statement.

The active functions described in the MPM Reference Guide
section, Logical Active Functions, are frequently used in the &if
control statement.

Notes

I f a 1 i·ne begi ns VJi th the "&" character but is not one of
the current control statements, the entire line is ignored. This
is one way of including comments in the exec_com segment. The
user is cautioned to leave a blank immediatelY following the "&"
to insure.compatibility with control requests to be added to
exec_com in the future.

The segment executed by exec com can contains calls to
exec_com. The user is cautioned against frivolous use of this
feature when using the &attach feature. When exec_com is called
from an exec_com using this feature, the input read by commands
in the second exec_com is read from the first exec_com segment.
Generally if the &attach feature is used, all calls to exec_com
should be preceded by &detach control statements.

Several exeC_COffiS can be combined into one segment, by using
th e dummy ar gumen t II &ec_name" toget her \-J i t h th e & 1 a be 1 an d &go to
statements. If exec_corns are grouped together, the exeC_COM
segment should have all the names on its storage system entry
that can replace lI&ec_name" (concatenated with a ".ec" suffix).

@ Copyright, 1973, t·jassachusetts Institute of Technology
and Honeywell Information Systems Inc.

t·'!ULTICS PROGRAM~1ERS' M.lH.:UI\L

Page 6

Examples

1. Assume that the segment a.ec in the user's working directory
contains:

pll &1 -table -list
dprint -dl ?11.1ist
~}qu i t

The command

would cause the following to be executed:

pll foo -table -list
dprint -dl foo.list

2. Assume that the segment b.ec in the user's working directory
has an additional name a.ec and contains:

&goto &ec_name
&
&label b
print &1 1 99
&quit
&
&label a
pll &1 -table -list
dprint -dl ~1.list
&quit

The command

exec_com b ~y_file

would cause the following to be executed:

print my_file 1 99

The command

would cause the following to be executed:

p11 faa -table -list
dprint -dl feo. list

€) Copyri sr.ht, 1973, t·1assachusetts I nsti tute of Technology
and Honeywell Information Systems Ince

MULTICS PROGRAM~ERS' MANUAL

Page 7
11/20/73

3. Assume that the segment d.ec in the user's workirg directory
contains the following:

& i f [exists segment & 1 • p 11J & the n
&else &goto not_found
p11 &1 -table -list
dp r in t -d 1 &1. 1 i s t
&quit
&label not_found
&print &1.p11 not found
&qui t

If the segment foo.pl1 exists, the command

would cause the following to he executed:

p11 foe -table -list
dprint -dl foo~ list

If the segment foo.p11 did not exist, the command

would output the following:

foo.p11 not found

4. Assume that the segment test.ec in the user's workirg
directory contains:

&print be~in &ec_name exec_com
&command_line off
create &1.pl1
&command_l i ne on
&attach
edm &1.pl1
i &1: prOCi
&input line off
i end &1;
w
q
&detach
&goto &2
&label compile
p11 &1
&label nocompile
~print end &ec_name &1 &2 exec_com

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information SysteMs Inc.

Pa~e 8

The command

exec_com test x compile

produces the following output:

begin test exec_com
edm x.pl1
edit
i x: proc;

pl1 x
PL/1
end text x compile exec_com

MUL TICS PROr,RA~1~~ERS I ~"A~·'UAL

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywe 11 I nformat ion Sys terns Inc. (END) *

MULTrcs PROGRAMMERS' MANUAL

Command
2/13/73

Names: fiie_output, fo
console_output, co

The file_output command allows the user to direct the I/O
output stream "user_output" to a specified segment. The
console_output command allows the user to direct it back to the
termi na 1 •

Usage

file_output -pathname
console_output

1) pathname is an optional segment path name. If is not
present, the file_output command will direct
output to the segment, output_file, in the user's
working directory. If the specified segment does
not exist (pathname or output_file), it will be
created. If it does already exist, subsequent
output will be appended to the end of the segment.

To avoid getting ready messages in the output file the
file_output and console_output commands should appear on the same
line of console input. (See Examples below.)

Examples

The sequence of commands

file_output my_info

1 is t -a

list -p >sample_dir -d

console_output

wi 11 pl ace in the segment my_i nfo, in the user's work i ng
directory, a listing of all entries in his working directory and
a listing of all directories contained in the directory
>sample_dir. Note that the ready messages from the file_output
command and the two invocations of the list command will also
appear in mY_info.

@ Cop y rig h t , 1 9 73, t,1a 5 5 a c h use t t 5 Ins tit ute 0 f Tee h nolo g y
and H 0 n e ywe 1 1 I n for rna t ion S y 5 t em 5 Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

The command line

fo my_info; list -a; list -p >sample_dir -d; co

has the same affect as the first example except that no ready
messages will appear in my_info.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Uame: fortran, ft

Command
10/1/73

The fortran command invokes the FORTRAN compiler to
translate a segment containing the text of a FORTRAN source
program into a Multics object segment. A listing segment is
optionally produced. These results are placed in the user's
working directory.

Usage

fortran pathname -control_arg~- ••• -control_argn-

1) pathname

-source, -sc

-symbols, -sb

-map

-assembly

-1 ist, -ls

is the path name of a FORTRAN source segment
that is to be translated by the FORTRAN
compiler. A directory path name and an
entry name, segname, are derived from path
name by calling expand_path_. The compiler
takes its input from segname.fortran.

can be chosen from the following list of
control arguments:

produces a
1 is t i ng . of
1 is t i ng.

line-numbered
the program.

printable
The default

ASCII
is no

lists the source program as above and all
the names declared in the program with their
attributes. The default is no symbols.

lists the source program and
above followed by a -map of the
generated by the compilation.
control argument produces
information to allow the user to
problems online. The default is

symbols as
object code

The map
sufficient

debug most
no map.

lists the source program as for the -source
control argument followed by an
assembly-like 1 isting of the compiled
program. Note that producing an
assembly-like listing significantly
increases compilation time and should be
avoided whenever possible by using the -map
control argument. The default is no list.

lists the source program and symbols as for
the -symbols control argument followed by
Note that use of the -1 ist control argument

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 2

MULTICS PROGRAMMERS' MANUAL

significantly increases compilation time and
should be avoided whenever possible by using
the -map control argument. The default is
no lis t •

-brief, -bf causes error messages written into the
stream "error_output" to contain only an
error number, statement identification, and,
when appropriate, the identifier or constant
i n err 0 r " I nth e no r ma l, non - b r i e f mo de, an
explanatory message of one or more sentences
is also \'/ritten.

-severityi, -svi causes error messages whose severity is less
than i (where i is 1, 2, 3, or 4; e.g.,
severity3) to not be written into the
"error_output" stream although all errors
are written into the listing. The default
value for i is 1.

-check, -ck is used for syntactic and semantic checking
of a FORTRAN program. Only the first phase
of the compiler is executed. Code
generation is skipped as is the manipulation
of the working segments used by the code
generator.

-optimize, -ot invokes an extra compiler phase just before
code generation to perform certain
optimizations such as the removal of common
subexpressions. Use of this control
argument adds 5-10% to the compilation time.

-table, -tb generates a full symbol table for use by
symbol ic debuggers; the symbol table is part
of the symbol section of the object progran
and consists of two parts: a statement
table that gives the correspondence between
source line numbers and object locations,
and an identifier table containing
information about every identifier used by
the source program. This control argument
usually causes the object segment to become
significantly longer.

-brief_table, -bftb
generates a partial symbol table consisting
of only satement labels for use by symbol ic
debuggers. The table appears as the symbol
section of the object segment produced for

® Cop y rig h t, 1 9 7 3, t4 ass a c h use t t sin s tit ute 0 f Tee h no log y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

-subscriptrange
-subrg

-profile, -pf

Page 3
10/1/73

the compiiation. This control argument does
not significantly increase the size of the
object program.

causes extra code to be produced for all
subscripted array references, to check for
subscript valu.es . 'exceeding the declared
bound dime~·fon. Such an error causes the
subscr i pt ran:~e tbAd i t i ~'n to 'be' s ,.gna 11 ed.

generates add it i ona'l code" to meter . the
execution of individual' statements. Each
statement in the object program contains an
additional instruction to increment an
internal counter associated with that
statement. After a program has been
executed, the profile command can be used to
print the execution counts. See the MPM
command write-up of the profile command.

The following two control arguments are available for users
who wish to maintain their FORTRAN source segments in ANSI card
format.

-card

-convert

specifies that the source segment is in card
image format.

specifies that the source segment is in card
image format. The compiler generates a
segment, segname. converted, in the user's
work i ng d i rectory, in Mu 1 tics FORTRAN
format. All alphabetic characters that are
not part of character strings are mapped
into their lowercase equivalent. The
listing segment displays the segment as it
appears after this mapping. Error messages
refer to only the modified segment.

The segment produced by -convert differs
from the source segment as follows:

1) Alphabetic characters not in character
strings are mapped to lower case.

2) Column 73-80 of the card image are
deleted. Trailing blanks that are not
part of a character string are
eliminated.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 4

MULTICS PROGRAMMERS' MANUAL

3) Columns 1-6 have three different forns
and are converted accordingly:

a) Columun one contains a "C", "c" or "*"
The card image is a comment and columns
1-6 are preserved as is.

b) Column 6 contains a character other than
zero or blank. ColuMns 1 thru 6 are
replaced by a tab and the preceding 1 ine
is marked as being continued.

c) For all other cards, column G is ignored
and el iminated. Columns 1-5 can contain
blanks or numerals. The numerals
present are concatenated to for~ as a
single string and are followed by a tab.

The following control arguments are available, but are
probably not of interest to the normal user.

-tir.le, -tm

-debug, -db

-1 ink -lk

prints a table after compilation giving the
time, in seconds, the numbe r of page fau 1 t s,
and the amount of free storage used by each
of the phases of the compiler. This
information is also available from the
command fortranStimes typed after a
comp i 1 at ion.

leaves the list-structured internal
representation of the source programs intact
after a compilation. This control argument
is used for debugg i ng the comp i 1 er. The
command fortran$epilogue can be used to
discard the 1 ist structure.

generates a 1 ink to the operator segment
instead of loading its address from the
stack. This control argument i s provided
for users who must be able to sw itch
operator segments ea s i 1 y, and is not
suggested for the general user because of
increased execution overhead.

Further information on the above control arguments is
contained under Error Diagnostics and Listing.

® Cop y rig h t, 1 9 7 3 , t-1 ass a c h use t t sin s tit ute 0 f T e c h nolo g y
and Honeywe 11 I nfo rna t ion Sys tems Inc.

HULTICS PROGRAMMERS' MANUAL

iJotes

Page S
10/1/73

A nor~al compilation produces an object seg~ent, segnane,
and leaves it in the user's working directory. If segname
existed previously in the directory, its Access Control List
(ACL) is saved and given to the new copy of segname. Otherwise,
the user is given "re ll access to the segment ,{Jith ring brackets
V,S,S where V is the val idation level of the process active when
the object segment is created.

The user's control arguments control the absence or presence
of the 1 isting segment for segname.fortran and the contents of
that listing. If created, the listing segment is named
segname.l ist. The ACL is as described for the object seg~ent
ex c e p t t hat i t j s g i v en II n"l a " ace e ssw h en n eVil y ere ate d •
Previous copies of segname and <if the 1 ist option is Qll)
segna~e.l ist are replaced by the new segments created by the
compilation ..

Note that because of the Multics standard which restricts
the length of segment names, a FORTRAN source segment name cannot
be longer than 24 characters.

Error Diagnostics

The FORTRAN compiler can diagnose and issue messages for
messages are graded in about 200 different errors. These

severity as follows~

Severity Level

1

2

3

/Vlean i ng

~Jarning only - compilation continues \:Jithout
ill effect.

Correctable error - the compiler remedies the
situation and continues, probably without ill
effect. For example, a missing end statement
can be and is corrected by simulating the
appending of the string "end" to the source to
complete the program. This does not guarantee
the right results, however.

An uncorrectable but recoverable error. That
is, the program is definitely in error and
cannot be corrected but the conpiler can and
does continue executing up to the point just
before code is generated. Thus, any further
errors are diagnosed.

€> Copyright, 1973, Hassachusetts Institute of Technology
and HoneY\"Iel1 Informat ion Systems Inc.

Page 6

4

MULTICS PROGRAMMERS' MANUAL

An unrecoverable error. The compiler cannot
continue beyond this error. The Message is
printed and then control is returned to the
fortran conmand unwinding the compiler. The
comMand writes an abort message into the
"error_output" stream and returns to its
ca 1 1 e r .

Error messages are \tJritten into the stream "error_output" as
they occur. Thus, a user at his console can quit his compilation
process immediately when he sees sOMething is amiss~ As
indicated above, the user can set the severity level so that he
is not bothered by minor error messages. He can also set the
brief option so that the message is shorter. An example of an
error message in its long form is:

WARNING 156 IN STATEMENT 1 ENDING ON LINE 5
Do loop control variable "j" has been modified vJithin the
range of the do loop ending at this statement.
SOURCE: 5 continue

If the brief option had been set the user would see instead:

WARN ItJG 156 JrJ STATE~'1ENT 1 END I i~G ON LINE 5
J
SOURCE: 5 continue

Once a given error message has been typed on the user's
console in the long forM, all further instances of that error
use the brief mode.

If the 1 isting option is on, the error messages are also
written into the listing segment. They appear, sorted by 1 ine
number, after the 1 isting of the source program. Because of an
implementation restriction, no more than 100 messages are printed
in the listing.

Listing

The 1 isting created by fortran is aline-numbered image of
the source segment. This is followed by a table of all of the
names declared within the progra8. The names are categorized by
declaration type v/hich are:

1) type, dimension, common statements, etc.;

2) explicit context (labels, entries, and parameters);

3) implicit context.

@ Copyright, 1973, r·1assachusetts Institute of Technology
and Honeyv/e 11 Info rma t ion Sys tens Inc.

MULTfCS PROGRAMMERS' MANUAL

Page 7
10/1/73

\Jithin these categories, the symbols are sorted
alphabetically and then 1 isted with their location, storage
class, data type, attributes, and references. Then comes a
listing of external operators used followed by a listing of the
error messages ..

The object code map follows the 1 ist of error messages.
This table gives the starting location in the text segment of the
instructions generated for statements ending on a given 1 ine.
The table is sorted by ascending storage locations.

Finally, the.l isting contains the asseMbly-like 1 isting of
the object segment produced. The executable instructions are
grouped under an identifying header which contains the source
statement which produced the instruction. Op code,
base-register, and modifier mnemonics are printed alongside the
octal instruction. If the address field of the instruction uses
the Ie (self-relative) modifier, the absolute text location
corresponding to the relative address is printed on the remarks
field of the line .. If the reference is to a constant, the octal
value of the first word of the constant is also printed. If the
reference is to a variable, the name.of the variable is printed.

® Copyright, 1973, t-1assachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

~: fortran_abs, fa

Command
10/1/73

This command submits an absentee request to perform FORTRAN
compilations. The absentee process for which fortran_abs submits
a request compiles the segments named, appends the output of
print_link_info for each segment to the segment segnamel.list if
it exists, and dprints and deletes segnamel.list. If the
-output_file control argument is not specified, and output
segment, segname.absout, is created in the user's working
directory (if more than one segname is specified, the first is
used). If the none of the segments to be compiled can be found,
no absentee request is submitted.

Usage

fortran_abs segnamel ••• segnamen -fortran_control_args
-fortran_abs_control_args-

1) segnamel

-queue n, -q n

-copy n, -cp n

-hold

-output_file I, -of i

is the path name of a segment to be
compiled.

can be one or more nonobsolete
control arguments accepted by the
FORTRAN compiler and described in
fortran. (See the write-up in the
f'.1PM.)

can be one or more of the following
control arguments:

specifies in which
the request is to
3). The default
segnamel.list is
queue n.

priority queue
be placed (n <=
queue is 3.

also dprinted in

specifies the number of copies (n
<= 4) of segnamel.list to be
dprinted. The default is 1.

specifies that fortran_abs should
not dprint or delete segnamel. list.

specifies that absentee output is
to go to segment f where i is a
path name.

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

f.1ULTICS PROGRAMMERS' MANUAL

Page 2

fJotes

Control arguments and segment names can be mixed freely and
can appear anywhere on the command line after the command. All
control arguments apply to all segment names. An unrecognizable
control argument causes the absentee request not to be submitted.

Expanded segments containing include files are not deleted.

Unpredictable results can occur if two absentee requests are
submitted that could simultaneously attempt to compile the same
segment or write into the same .absout segment.

When doing several compilations, it is more efficient to
give several segment names in one command rather than several
commands. With one command, only one process is set up. Thus
the links that need to be snapped when setting up a process and
when invoking the compiler need be snapped only once.

€) Copyright, 1973, t~assachusetts Institute of Technology
and Honeywell InforPlation Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Command
2/13/73

The fs chname command is an interface to the storage system
subroutine hcs_$chname_file. It causes an entry name of a
specified segment to be replaced, deleted, or added. This
command interprets none of the special command system symbols
(e.g., *, » and thus allows the user to by-pass the star
convention or to manipulate strangely-named segments. For
segments with ordinary names, the rename, addname and deletename
commands perform the same funct ion. See the t~1PM wr i te-ups for
these commands.

Usage

fs_chname dir_name entry_name oldname newname

1) dir_name is the directory name portion of the path name of
the segment in question.

2) entry_name is the entry name portion of the path name of the
segment in question.

3) oldname

4) newname

Notes

is an old entry name to be deleted.
below.

See Notes

is a new entry name to be added. See Notes below.

When both an old entry name and a new entry name appear in
the command line, the new entry name replaces the old entry name.
This is equivalent to using the rename command.

1ft he old en try n am e i san u 1 1 c h a r act e r s t r i n g (1111), the n
the new entry name is added to the segment. This is equivalent
to using the addname command.

If the new entry name is a null character string (1111), then
the old entry name is deleted from the segment. This is
equivalent to using the deletename command.

The user must have write attribute on the directory
containing the entry in order to make any name changes.

@ Copyright, 1973, Hassachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

Examples

fs_chname >mY_dir alpha>beta alpha>beta alpha_beta

This example would replace the i.ncorrect entry name
alpha>beta (which the rename command would interpret as
designating the segment beta in the directory alpha) with a more
appropriate name.

fs_chname >my_dir story.equal 1111 story.=

This example would add the entry name story.= to the
specified segment. The addname command could not perform this
operation because it would interpret the second component of
story.= as use of the equals convention, and would attempt to add
the entry name story.equal to the segment. See the MPM Reference
Guide section, Constructing and Interpreting Names, for a
discussion of the equals convention.

@ Copy r i gh t, 1973, r·1assachuset ts I ns t i tu te of Techno logy
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Command
2/13/73

The get_corn_line command prints on the user's terminal the
current value of the maximum expanded command line size. An
expanded command line is one obtained after all active strings
have been processed.

Usage

The default maximum length of an expanded command line is
128 characters. It may be changed using the set_corn_line
command. For a discussion of the command language (including the
treatment of active strings), see the MPM Reference Guide
section, The Command Language.

@ Copyright, 1973, I'vlassachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PRO~RAMMERS' MANUAL getquota I
Command
2/12/73

Name: getquota, gq

The getquota command returns information about the secondary
storage quota and pages used for a specified directory.

Usage

getquota -ctl_arg- pathname~ .•• pathnamen

2) pathnamel

Notes

if -long or -lg, it specifies that the long form
of output is to be used.

is the name of the directory about which quota
information is desired. If pathnamel is -wd or
-wdir, the working directory will be used. If no
arguments are given, the working directory wi 11
be used. The star convention may by used to
obtain quota information about several
directories.

The short form of output (the default case) prints the
number of pages of quota assirned to the directory and the number
of pages used by the segments in that directory and any inferior
directories that are char~in~ ap-ainst that quota. The output is
prepared in tabular format, with a tot?l, when more than one path
name is specified. When only one path name is specified, a
single line of output is printed.

The long form of output gives the quota and pages used
information provided in the short output. In addition, the
number of immediatelY inferior directories with nonzero quotas is
printed. The time-page product in units of page-days is also
returned along with the date that this number was last updated.
Thus, a user can See what secondary storage charges his accounts
are accumulating. If the user ,has interior directories with
nonzero quotas he will have to print this product for all things
directories in order to obtain the charge.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

flame: help

Command
10/18/73

The help command assists users in obtaining information
about commands and subsystems.

Asking for help with a command causes information about that
command to be printed on the the user's terminal. After a small
but useful amount of information has been typed the user is asked
i f hew ant s mo r e he 1 p • 1ft h e use r rep 1 i e 5 II yes If a no the r b 1 0 c k
of information is typed and the user again questioned. Otherwise
the command exits. Typing the command tlhelp" (or "help help")
causes information about the help command to be typed. A count
of the lines to follow is printed before each time the user is
asked if the wants more help.

Usage

help -name- -control_arg-

1) name

2) control_arg

-pathname xxx, -pn xxx

Example

is the name of an information segment
that the user wi shes to read. It is
the first component of a segment, in
the installation information
directory >documentation >iml_info or
in the system information directory
>documentation>info, that has .info
as its second component. If the name
argument is present, control_arg
cannot be present.

can be present only if the name
argument is not present, and can have
as its value:

if this control argument is
specified, help types the contents of
the info segment whose path name is
xxx instead of looking in the system
or installation information
directories.

In the following example, messages typed by the user are
underlined for clarity but are not underl ined in the actual
script.

® Copyr i ght, 1973, r-1assachuset ts Ins t i tute of Techno logy
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

l"elQ
(5 1 i nes fo 11 ow)
7/28/72 - help now gives following line count in its question.

The help command types out system information segments located in
the directory >documentation>info and installation information
segments located in the directory >documentation>iml_info.
Type "help name" to see the segment name. info.

17 1 i nes fo 11 ow. f'~o re he 1 p? ~

To see what system info segments are available, type
list -pn >udd>documentation>info *.info

(There are currently over 200 info segments.)

Some useful info segments are:

motd
news
sys
pl1
fortran
basic
bugs
doc
pt

message of the day
g en era 1 i n for ma t ion, 0 n - 1 i n e ins tal 1 a t ion s
supervisor change information
status of PL/I compiler
status of FORTRAN compiler
status of BASiC compiier
current list of system bugs
documentation and assistance
introduction to "peruse_text", which gives
additional information on many commands

Rest of segment has 10 lines. More help? ~

help accepts one control argument:

-pathname xxx, -pn xxx if this control argument is
specified, help types out the info
segment whose path name is xxx,
instead of looking in the system or
information directory. If the suffix
.info is missing from xxx, help
appends it.

The data segments are composed of blocks of ASCII character
information, with the blocks arranged in descending order of
importance of their contents. Lines should be less than 60
characters long. Each block except the last is terminated by the
ASCI I character \006, which causes the help command to ask if
more help is wanted. The first line of an info segment should
contain a creation (or updating) date.

@ Copyright, 1973, t,1assachusetts Insti tute of Technology
and Honeywe 11 Info rma t ion Sys terns Inc. (END) *

MULTICS PROGRAMMERS' MANUAL

.~: hold, hd

Command
Standard Service System

02/12/71

The hold command may be issued after a quit signal or an
unclaimed signal has interrupted a process. This will cause the
history of the process up to the point of interruption to be
preserved. That is, the current state of the cal1-save-return
stack is saved. This history is preserved until a release
command is issued.

Usage

hold

(END)

MULTICS PROGRAMMERS' MANUAL

Command
Standard Service System

8/22/72

This command tells how many users are on the system. In
addition, it prints the name of the system, the load on the
system, and the maximum load. If the absentee facility is up,
the number of absentee users and the maximum number of absentee
users is printed also.

Usage

-long, -lg

may be chosen from the following
arguments:

control

prints additional information including the
name of the installation, the time the system
was brought up, and the time of the last
shutdown or crash. Load information on
absentee users is also printed.

-absentee, -as prints load
only, even
running.

information on absentee users
if the absentee facility is not

-brief, -bf suppresses the printing of the headers. Only
used in conjuction with one of argl.

2) argl specifies that only selected users are to be (
listed, and may be one of the following:

Name

• Project

Name.Project

Notes

lists a count of logged in users with user
name "Name" •

lists a count of logged in users with a
project 10 of ".Project".

lists a count of logged in users with the
name and project of "Name. Project".

Absentee counts in a selective use of how_many_users (i.e.,
when an argl is specified) are denoted by an asterisk (*).

Up to twenty classes of selected users are permitted.

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 2

Examples

1) Print summary information.

hmu

Multics 15.16, load 5.0/50.0; 6 users

2) Print summary information on absentee users.

hmu -absentee

Absentee users 0/2

3) Pring long information.

hmu -long

Multics 15.16; MIT, Cambridge, Mass.
Load = 24.5 out of 50.0 Units; users = 23
Absentee users = 0; Max absentee users = 2
System up since 08/01/72 0644.5
Last shutdown was at 08/01/72 0517.9

4) Print brief information about the project SysDaemon.

hmu -bf .SysDaemon

SysDaemon = 3 + 0*

5) Print brief information about the person Smith.

hmu -bf Smith

Smith = 1 + 1*

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

~: indent, ind

Command
2/26/73

The indent command improves the readability of a PLfl source
segment by by indenting it according to a set of standard
conventions described below.

Usage

indent oldpath -newpath- -control_args-

1) oldpath

2) newpath

3} control_args

-brief, -bf

-lmargin XX, -1m XX

-comment YY, -cm YY

-indent ZZ, -in ZZ

is the path name of the input PL/I
source segment. I f the source segment
name does not have a suffix of .pll, the
suffix will be assumed.

is the path name of the output Pl/I
source segment. If the output segment
name does not have suffix of .pll, the
suffix will be assumed. If this
argument is omitted, newpath will be
assumed to be the same as oldpath, and
the indented copy of the program will
replace the original copy.

may be any of the following;

suppress warning comments on illegal or
non-PL/I characters found outside of a
string or comment. (Such characters are
never removed.)

set the left.margin (indentation for
norma 1 program 5 tatemen ts) to XX. If
this argument is omitted, the default
for XX is 11.

set the comment column to YY. Comments
are lined up in this column unless they
begin a line and are preceded by a blank
line (or are at the beginning of the
program or are a comment beginning in
column 1). If this argument is omitted,
the default for YY is 61.

set indentation for each level to ZZ.
Each do, begin, proc, and procedure
statement will cause an additional ZZ
spaces of indentation until the matching
end s tat erne n tis en co un t ere d • 1ft his

@ Copyr i gh t, 1973, ~·1assachuset ts Ins t i tu te of Techno 1 o.c;y
and Honeywell Information Systems Inc.

Page 2

Conventions

MULTICS PROGRAMMERS' MANUAL

argumEnt is omitted,
is 5.

Declaration statements are indented five spaces (with any
identifiers that appear on extra lines, but which are still part
of the same declaration, being lined up under the first
identifier on the first line of the statement). Structure
declarations are indented according to level number; after level
two, additional levels are indented two more spaces each.

Multiple spaces are replaced by a single space, except
inside of strings or for non-leading spaces and tabs in comments.
The indent command inserts spaces before left parentheses, after
commas, and around the constructs =, ->, <=, >=, and ~=. Spaces
are deleted if they are found after a left parenthesis or before
a right parenthesis. Tabs are used wherever possible to conserve
storage in the output segment.

The indent command counts parentheses and expects them to
balance at every semicolon. If parentheses do not balance at a
semicolon, or if the input segment ends in a string or comment,
indent will print a warning message. Language keywords (do,
begin, end, etc.) are recognized only at parenthesis level zero.

Restrictions

Lines longer than 350 characters will be split, since they
overflow indent's buffer size. This is the only case in which
indent will split a line.

Labeled end statements will not close multiple open do
statements.

The indent command assumes that the identifiers begin, end,
procedure, proc, declare, and del are reserved words, and are
always language keywords. Thus, indent will become confused if
the input contains a statement like

go to begin;

since it will think that the statement delimits a begin block.

Structure level numbers greater than 99 will not tndent
correctly.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

N am e : i nit i ate, i n

initiate

Command
2/12/73

The initiate command enables users to initiate segments
directly; i.e., not using the normal search rules. For a
discussion of search rules, see the MP~ Reference Guide section,
The System Libraries and Search Rules.

Usage

initiate pathname -refl- -refl- ••• -refn- -control_arg-

1) pathname is the path name of the segment to be initiated.

2) refl are optional reference names by which the segment
may be known without further initiating. See
Notes below.

3) control_arg may be the string "-S" and may appear anywhere in
the command line. If present, the segment number
assigned to the segment is printed on the user's
terminal.

Notes

1f no reference names, refl, are given in the command line,
then the segment will be initiated by the entry name part of the
path name. I f any reference names, ref 1, are present in the
command line, the segment will not be initiated by its entry
name, but by the reference names so given. If the path name is a
single element name then the directory assumed is the working
directory. The < and> symbols are recognized in the path name;
the star convention may not be used to initiate a group of
segments.

If a reference name cannot be initiated an error message is
given and the command continues initiating the segment by the
other names.

To initiate a segment, the user must have non-null access to
that segment.

® CoP y rig h t , 19 7 3 , t1 ass a c h use t t sin s tit ute 0 f T e c h nolo g y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

Examples

initiate >udd>m>mmm>gamma x y

would initiate the segment >udd>m>mmm>gamma with the names x and
y.

initiate pop

would initiate the segment pop in the working directory and give
it the reference name pop.

initiate xx u v -s

would initiate the segment xx in the working directory with the
reference names u and v and would print out the assigned segment
number.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Command
Standard Service System

8/18/71

fJ arne: i 0 ca 11

Often it is useful to issue I/O system function calls from
command level. The iocal1 command is provided for this purpose.
It will perform the fo11oV'Jing functions: 1) it will accept a
variety of argument formats, supplying useful default arguments
where required; 2) it will print the values of return arguments;
3) it will decode and print status returned by the I/O system.

More information on I/O can be found in chapters 1 and 2 of
the Introduction to Multics, the Reference Guide Section, and in
the description of ios_.

usage

ioca1l function_name stream_name arguMentl ••• argumentn

1) function_name is one of the I/O system calls: abort,
attach, changemode, detach, getsize, order,
read, readsync, resetread, resetwrite, seek,
setsize, tell, worksync, write, writesync.

2) stream_name is the stream_name argument present on all
function calls.

Notes

Below is a 1 ist of the function calls accepted by iocall.
The 1 ist starts with the complete I/O system call. Following the
call is a list of the variations of the call acceptable by
ioca1l. Following this are notes on special cases associated
vii t h the call.

1) attach

call ios_$attach (stream_name, type, device/stream_name,
mode, status);

iocall attach stream_name type device/stream_name
-model- .•• -moden-

The various mode~ are concatenated and separated by commas
to form the mode argument. If there are no model, mode is set to
the null string.

@ Copyright, 1971, t'<1assachusetts Institute of Technology
All rights reserved.

~'1U L TICS PROGRAMM ERS' r1ANUA L

Page 2

2) detach

call ios_$detach (stream_name, device/stream_name,
disposal, status);

iocall detach stream_name
iocall detach stream_name device/stream_name
iocall detach stream_name device/stream_name disposal

If the arguments device/stream_name or disposal are missing,
the null character string is supplied. The status argument is
supplied and decoded.

3) read

call ios_$read (stream_name, workspace, offset, nelem,
nelemt, status);

iocall read stream_name segment
iV~Q~' read stream_name segment nelem
iocall read stream_name segment offset nelem

The offset and nelem arguments, if present, are in decimal.
If the offset argument is missing, 0 is suppl ied. If the nelem
argument is missing, the maximum size of the segment argument is
provided as a multiple of the current element size. A pointer to
the base of the segment argument is supplied as the workspace
argument. If the segment argument does not exist, it is created
in the working directory. The status argument is supplied and
decoded.

4) write

call ios_$write (stream_name, workspace, offset, nelem,
nelemt, status);

i oca 11 \"Jr i te stream_name
iocall vJrite stream_name segment nelem
iocall write stream_name segment offset nelem

The offset and nelem arguments, if present, are in decimal.
If the offset argument is missing, 0 is supplied. If the nelem
argument is missing, the bit count of the segment argument is
provided as a multiple of the current element size. A pointer to
the base of the segment argument is suppl ied as the workspace
argument. The status argument is suppl ied and decoded.

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

r1Ul TICS PROGRAr.1MERS I MANUAL

5) seek

Page 3
8/18/71

call ios_$seek (stream_name, ptrname1, ptrname2, offset,
status);

iocall seek stream_name ptrname1
iocall seek stream_name ptrname1 ptrname2
iocall seek stream_name ptrname1 ptrname2 offset

The offset argument, if present, is decimal.
argument is missing, 0 is supplied. If ptrname2
II fir s til iss up p 1 i e d • The s tat usa r g urn en tis

If the offset
is missing,

supplied and
decoded.

6) tell

call ios_$tell (stream_name, ptrname1, ptrname2, offset,
status);

iocall tell stream_name ptrname1
iocal1 tell stream_name ptrnamel ptrname2

If ptrname2 is missing, "first" is supplied. The offset
argument is suppl ied and its value is printed in decimal on
return. The status argument is supplied and decoded.

7) setsize

call ios_$setsize (stream_name, elementsize, status);

ioca1l setsize stream_name elementsize

The elementsize argument is decimal. The status argument is
supplied and decoded.

B) getsize

call ios_$getsize (stream_name, elementsize, status);

iocall getsize stream_name

The elementsize argument is provided and its
printed in decimal on return. The status argument is
and decoded.

® Copyright, 1971, f'.1assachusetts Institute of Technology
All rights reserved.

value is
suppl ied

MULTICS PROGRAMMERS' MANUAL

Page 4

n \ _~-' __
;:)J UfUCI

call ios_$order (stream_name, request, argptr, status);

iocall order stream_name request

The argptr arguMent is supplied as a null pointer. The
status argument is suppl ied and decoded.

10) changemode

call ios_$changemode (stream_name, mode, old_mode, status);

iocall changemode stream_name -model- .•• -moden-

The various modes are concatenated and separated by commas
to form the mode argument. If there are no model, mode is set to
the null character string. The old mode argument is supplied and
its value printed on return. The status argument is supplied and
decoded.

11) resetread

call ios_$resetread (stream_name, status);

iocall resetread stream_name

The status argument is suppl ied and decoded.

12) resetwrite

call ios_$resetwrite (stream_name, status);

i oca 11 rese tVJr i te stream_name

The status argument is supplied and decoded.

13) abort

call ios_$abort (stream_name, old_status, status);

iocall abort stream_name

A zero bit string is suppl ied as the old status argument.
The status argument is supplied and decoded.

14) readsync

call ios_$readsync (stream_name, smode, limit, status);

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

HUlTICS PROGRA~~t·1ERS' ~A,ANUAl

iocall readsync stream_name smode
iocall readsync stream_name smode limit

Page 5
8/18/71

The limit argument is in decimal, if present, and is set to
a large value if absent. The status argument is supplied and
decoded.

15) writesync

call ios_$writesync (stream_name, smode, 1 imit, status);

iocall 'IJritesync stream_name smode
iocall writesync stream_name smode limit

The limit argument is decimal, if present, and is set to a
large value if absent. The status argument is suppl ied and
decoded.

Copyright, 1971, Hassachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

~: iomode

Command
3/6/73

The iomode command changes the type of code conversion
performed by the 110 system for a specified device.

Usage

iomode mode -ioname-

1) mode

2) i oname

specifies the type of code conversion. It- may be
"edited ll or "normal". The edited mode suppresses
all escapes; i.e., non-avail cb1e graphics. The
normal mode includes escapes.

specifies the stream name associated with the
device whose mode is to be set. If ioname is not
specified the stream name "user_output" is assumed.
For the normal user this will have the effect of
setting the mode of his terminal.

Other modes are available in the 110 system and may be set
by using the iocall command (with the changemode function) or the
ios_$changemode subroutine. See the MPM write-ups for iocall and
iOS_e The iomode command merely calls ios_$changemode to make
the change.

@ CoP y rig h t, 1 9 73, '·1 a s sac h use t t sin s tit ute 0 f T e c h no log y
and H 0 n e yw ell I n forma t ion S y stem sin c • (END)

MULTICS PROGRAMMERS' MANUAL

Name: li ne_l ength, 11

The line_length command allows the user to
maximum length of a line written on the device which
is using for output on the "user_output" I/O stream.
will usually be his terminal.

Usage

line_length maxlength

Command
2/12/73

control the
his process
This device

1) maxlength is the maximum number of characters which may
henceforth be printed on a single line using the
I/O stream Huser_outputl1. In most cases, this is
the maximum length of a line of output printed at
the user's terminal.

® Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

~"u L TICS PROGRAM~1 ERS' ~'ANU A L

Command
2/13/73

~: 1 ink, 1 k

The link command causes a storage system link with a
specified name to be created in a specified directory pointing to
a specified segment or directory. For a discussion of links, see
the MPM Reference Guide section, Segment, Directory, and Link
Attributes.

Usage

link path11 path21 ••• path1n -path2n-

1) path1l

2) path2l

Notes

specifies the segment to which path2l is to point.

specifies the link to be createc. If not given (in
the final arpument position of a command line only)
a link to path1l will be created in the working
directory with the entry name portion of path1l as
its entry name.

Entry names must be
if the creation of c
user is interrogated as
the old instance of
will not be created.

unique within directories. Therefore,
1 ink wo u 1 d 1 e ad to a d u p 1 i cat e n am e , the

to whether he wishes the entry bearing
the name to be deleted. If not, the link

The star and equals conventions may be used.

The user must have append access in the directory in which
. the link is to be created.

Example

link >my_dir>beta alpha >dictionary>grammar

creates two links in the working directory, named alpha and
grammar; the first points to the se~ment beta in the directory
>my_dir and the second points to the segment grammar in the
directory >dictionary.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

~: 1 isp

Command
8/13/73

The lisp command invokes a LISP subsystem that provides an
interpreter of the MACLtSP dialect of LISP for interactive use on
t,1u 1 tics.

LISP is a recursive language that is suited for many
applications. The Multics implementation is designed to be very
fast yet not limited by storage capacity as many other LISP
systems are. Over two hundred fifty system functions are
provided for diverse user needs while a compiler is provided so
that a user can compile his own functions from functions written
for interpretive use.

Usage

lisp -pathname- -argumentl- ••• -argumentn-

1) pathname

2) argumentl

Notes

is a path name of a saved environment from which
the subsystem constructs an initial active
environment. If not specified, the standard LISP
saved environment is used. The user can save an
environment from inside the LISP subsystem and
then use this saved environment at some later time
to initialize a new 1 isp command to the same state
as when he saved it.

is an arbitrary argument which can be referred to
from within the LISP subsystem with the
appropriate system function.

For a complete description of the MACLISP dialect of LISP,
consult the document ~ Reference Manual (MACLISP Dialect).
The file lisp.info describes methods for obtaining this document
in addition to other useful information. Also, refer to the MPM
write-up for the Multics conmand, lisp_compiler.

This MPM write-up is divided into two parts with the first
part describing the basic structure of the interpreter and the
methods by which the user can control it while the second part
summarizes some of the characteristics that distinguish the
MACLISP dialect from other dialects of LISP. Both parts assume
that the user has some prior knowledge of LISP, such as having
read Weissman's LISP ~ PRIMER or part of the LISP ~ Manual.

@ Copyr i ght, 1973, fv1assachuse t ts Ins t i tute of Techno logy
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

Part i: Essential Facts f2L Using ~ Interpreter

Accomplishing Evaluation

Explanations in the following text are illustrated by an
example of a terminal session. Line numbers have been added for
reference and a star is placed after the numbers for 1 ines --that
have items entered by the user.

1 * 1 i sp
-2 *
3* {cons (quote a) (quote b)}
4 (a • b)
5* (car (quote (a b cd»)
6 a
7* 3245
8 3245
9* (setq foo (quote bar»

10 bar
11* foo
12 bar
13* (quit)
14 r 410 1.474 9.264 204

When the lisp command is issued, an initial environment of
atoms, functions, and list structure is constructed from a saved
environment. After this environment has been constructed, the
interpreter reaches its basic state, known as top level.
Whenever the interpreter reaches this state from some other state
it outputs a star to the user's terminal as is seen in line 2.
MACLISP has an eval type top level as opposed to some other
dialects of LISP that have an evalquote type top level. Thus ~
~ lll.Y.tl ll.Q.e. QD..e. .fQ.r:.m ..t.Q. be eva 1 e d f 0 1 lowe d h £ ~ ~
character, instead of two S-expressions, one to be applied as a
function to the second. Note that one has to explictly quote an
S-expression if one does not want to have it evaluated. On line
3 the user types a form that is a simple function call. The
evaluation is printed on line 4. Lines 5 and 6 illustrate the
same thing. On line 7 the user simply types a number followed by
a new 1 ine character. IJumbers evaluate to themselves v/hich is
shown on 1 i ne 8. Note.tb.£.t II II ~ ~ .t.Q. forget .tb.ll ..till!
interpreter starts QY1 operating In ~ eight, octal.* In

*The input radix can be varied by resetting the system variable,
ibase, and the output radix can be varied by resetting the
variable, base.

€) Copyr i ght, 1973, t4assachusetts I nst i tute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 3
8/13/73

MACLISP, atoms that can have values are called symbols. On line
9 the user sets the symbol, foo, to have the value, bar. Then on
line 11 the user evaluates this symbol. Finally we g1ve a simple
example of control of the interpreter. In order to leave the
subsystem permanently one uses the function quit which takes no
arguments. This is illustrated above by line 13. All atoms and
list structure that have been created by the user are then
destroyed and the subsystem returns control to Multics.

Control 2i ~ Interpreter

A MACLISP interpreter gives a user a great amount of control
over its behavior. It has many switches that can be set by the
user and functions that he can replace. Some of these features
are discussed in Part I I. Many of the switches can be set in two
different ways, either by using some function or by a general
Qethod that has real time effect. This latter method is
described immediately below.

If at any time the user depresses the interrupt (break or
attention) key on his terminal, the LISP interpreter responds by
prompting the user and then waits for input. The ~ ~ ~
~ a single letter command followed ~ £ ~ line character.
It must be stressed that these commands have effect in real time,
they happen when they are given and not after the interpreter is
finished doing whatever it was doing at the time the attention
key was depressed. Three important commands are:

z gives the user a Multics Command Processor at a higher stack
frame. This is identical to what happens in most Multics
programs when the interrupt key is depressed. The Multics
command, start, starts lisp running again in the standard
manner. If the command, program_interrupt, is issued, then
lisp again prompts the user, but only accepts the three
characters mentioned on this page.

g interrupts the current LISP program and returns control to
the top-level function of the interpreter. The internal
LISP stacks are unwound and temporary bindings of variables
are restored.

b enters a "break loop", a read-eval-print loop at a higher
level in the LISP stacks. The user can examine variables,
do whatever else he wishes to do and then return to the
previously running program by typing the atom,
(dollar-sign)p ($p).

® Copyr i ght, 1973, f··1assachuset ts Ins t i tute of Techno logy
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 4

Error Conditions

If the user tries to evaluate some item that causes a LISP
error, the interpreter usually creates a break loop and informs
the user of this by typing something such as n;bkpt unbnd-vrbl".
In many cases the user can then modify the incorrect item and
then restart the program. However, for now it is sufficient to
know that if the user types the atom, $p, the interpreter returns
to top level and the user can try again.

~ 11: Features 2f ~ MACLISP Dialect

Features Common ~ All MACLISP Implementations

1) Debugging System -- As the name, lisp subsystem, implies, a
MACLISP interpreter provides a complete system in which to work.
Thus one of its important features is a sophisticated debugging
system. Functions are provided to set break-points, do traces,
do back traces, examine variables at various levels in the LISP
stack, reset variables, examine arguments in function calls,
return values for function calls that are still stacked up, and
others. I n add it i on, as ment i oned in Part I, most errors
signalled by the interpreter are correctable from the break loop
created by the error. These break loops are created by the
user interrupt system that is mentioned below.

2) ~ ~ Control Characters A method is provided for
giving commands from the console to the interpreter while it is
also doing evaluation.

3) Programmable Portions of ~ Interpreter -- Many parts of
the interpreter can be modified by the user. Besides offering
versatility for regular programming, this facilitates the use of
LISP as a language for implementing other languages and
subsystems. For example, the languages Micro-Planner and
CONNIVER and the mathematical laboratory, MACSYMA, are all
Hritten in LISP.

Reader Syntax Table -- The syntax categories of characters
can be set by the user.

Macro Characters -- One of the things that can be entered in
the syntax table is whether or not a character is a macro
character. When the reader encounters a macro character, it
invokes a function associated with that character. For
example the system comes supplied with two macro characters,
<accent-acute> (') which is the quote macro and <semi-colon>
(;) which is the comment macro. When the reader sees

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

'<S-expression>

Page 5
8/13/73

the associated function for the macro character' transforms
it into

(quote <S-expression»

when a <semi-colon> is encountered the associated function
discards the rest of that line.

Multiple Obarrays -- Instead of a single obarray (or obl ist
as it is known in other LISP's) several may be used. The
user can create new obarrays, either totally or
incrementally different, and then instruct the LISP reader
to use a particular one. This allows use of modular systems
by preventing name conflicts.

Variable Top-leyel Function
top-level function to be anything.
could make an evalquote top level.

The user can
For example

set the
the user

~ Interrupt Functions On the occurrence of certain
conditions such as various errors, an alarmclock ringing, or
certain real time control characters being entered, the
interpreter executes various user interrupt functions. For
example many of the error interrupts are preset to a
break-loop producing function. The user has the ability to
set any of the user interrupt functions.

4) Arbitrary Precision Arithmetic -- In addition to a large
number of arithmetic functions including exponential and
trigonometric functions, MACLISP's arithmetic capabilities are
further enhanced by the ability to do integer arithmetic to
arbitrarily large precision.

5) Compiled Code -- Due to the structure of the interpreter,
the code produced by the compiler is very efficient as compared
to other dialects of LISP. Refer to the MPM write-up for the
t1ultics command, lisp_compiler.

Features Specific ~ ~ Multics Implementation

1) The entire address space of the Multics virtual memory can
be used for LISP storage.

2) Functions can be written in the other languages that exist
on Multics.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell I nformat ion Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 6

.." ,
J} A new data tYPe called character strings

functions are provided to manipulate them.
ov:et-e
'-"'.~"'~, and

References

1) PDP-6 LISP (LISP 1.6), A.I. Memo No. 116A, revised 1967,
Project MAC, Massachusetts Institute of Technology.

2) Crisman, P.A., Editor, Compatible Time-Sharing SYstem: A
Programmer's Guide, 2nd edition, M.I.T. Press, 1965.

3) McCarthy, John, et al, LISP ~ Programmer's Manual, 2nd
edition, M.I.T. Press, 1966.

4) Moon, D. A. , eta 1 ,
Dialect), Project
Technology, 1973.

1.12
MAC,

Reference Manua 1 (MAC LISP
Massachusetts Institute of

5) Weissman, Clark, ~ ~ Primer, Dickerson Publishing
Company, 1967.

6) White, John L., An Interim ~ User's Guide, A.I. Memo
No. 190, Project MAC, Massachusetts Institute of
Technology, 1970.

@ Copyr i ght, 1973, Massachusetts I nst i tute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL 1 i s p_comp i 1 e r

Command
7/9/73

~: lisp_compiler, 1cp

The lisp_compiler command invokes a compiler that translates
a file of LISP functions written for interpretive use into a
standard Mu1tics object segment. These compiled functions can
then be used from within an actively running LISP.

Usage

lisp_compiler -pathname- -control_argl- -contro1_argn-

1) pathname

-time, -tm

- tot a 1_ time,
-total, -tt

-nowarn, -nw

-pathname 2S.,M,
-pn ~, -p AA2S..

-macros, -mc

-genprefix ~,
-gnp ~

is the path name of a segment or
multi-segment file to be compiled. If the
name does not end in. 1 i sp, the suff i xis
supplied. This file can contain function
definitions, declare's, and other LISP code
which will be executed when the object
segment is made known to the LISP environment
by the fas10ad function.

can be chosen from the following list of
control arguments:

prints out the time taken to compile each
function.

at the end of the compilation, prints out the
CPU time, paging, etc.

do not print warning messages.

the following argument (~ is the path name
of the segment to be compiled. This control
argument specifies that the name should be
used exactly as given. The .lisp suffix is
not appended to it, and it can begin with a
minus sign without adverse effect.

make all variables "special li
•

copy macro definitions into the output so
that they will be defined at run time.

Sets the prefix for generated function nanes
to A,2SX.

@ Cop y rig h t , 1 9 7 3 , t·1a s sac h use t t sin s tit ute 0 f T e c h n 0 log y
and Honeywell Information Systems Inc.

1 i sp_comp i 1 er

Page 2

-check, -ck

-eval ~

rJotes

MULTICS PROGRAMMERS' MANUAL

do not generate an object segment, just check
for errors.

evaluate the S-expression before
beginning the compilation.

The object segment created by this command is placed in the
working directory with a name which is the first component of the
name of the source file; i.e., the name of the source file up to
but not including the first period.

Include files can be used by inserting the statement:

(%include name) or (%include "name")

The include file name.incl.lisp is inserted into the input at
that point. The standard include file search rules are used (see
the MPM Reference Guide section, The System Libraries and Search
Rules).

For a complete description of the MACLISP dialect of LISP,
consult the document LISP Reference Manual (MACLISP Dialect).
The help segment lisp. info describes methods for obtaining this
document in addition to other useful information. Also, refer to
the MPM write-up for the Multics command, lisp.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Name: 1 j s t, 1 s
1 istotals, lt
1 i s t n a me 5 , 1 n

Command
Standard Service System

12/9/71

The 1 ist command enables the user to determine the names
(including multiple names), modes, times last used and modified,
and lengths of either all the entries in a specified directory or
selected entries. The related 1 istotals and 1 istnames commands
give information only about counts and lengths, and names,
respectively. / All three commands present information about
segments, directories, multi-segment files, and 1 inks (in that
order, where appropriate), and respect various options as to
searching and sorting, as explained below.

Usage: 1 i s t , 1 s

1 ist entry~ ••• entrYn -opt~- ••• -optn-

1) entryl

2) optl

-pathname, -pn

-segment, -sm

-directory, -dr

-multisegment_file
-msf

is an entry name (see the -pn
option for a directory). If no
entries are specified, all the
entries of the relevant directory
are dea 1 t 'Id th.

is cho~en from the~.:··f.'~llQ\';i.ng 1 ist·
of options (see also-No·tes. belo\<'1):

uses the directory specified in the
immediately follovJing path name.
The desired entries follow the path
name. The default is the current
working directory. -pn may occur
more than once in a single
invocation of the command. Entries
preceding the first -pn refer to
the working directory. (See
Examples below.)

lists segments only.
is on.

The default

lists directories only. The
de fa u 1 tis 0 f f •

lists multi-segment files only.
The default is off.

€) Cop y rig h t , 1 9 7 2, t,1 ass a c h use t t sin s tit u t Po 0 f T e c h nolo g y
All rights reserved.

Page 2

-1 ink, , '-
-IK

-branch, -br

-a 11, -a

-date_time_used
-dtu

-date_time_modified
-dtm

-reverse, -rv

Notes

MULTICS PROGRAMMERS' MANUAL

, ~ _ -
I I ~\..~

off.
1 inks " 1 .,

VII I Y • Th"
III\:;

lists branches,
segments, directories,
multi-segment files only.
default is off.

i s

i . e . ,
and
The

lists all segments,
multi-segment files,

directories,
and 1 inks.

The default is off.

sorts on and prints the date and
time last used. The order
is reverse chronological, i.e.,
the most recent first. The
default is off.

sorts on and prints the date and
time last modified. The order is
reverse chronological, i.e., the
mo s t r e c e n t fir s t _ The de fa u 1 tis
off.

reverses the order (to
chronological or least recent
first) for the -dtu or -dtm
options. If -dtu is wanted, only
-rv need be given. The default is
off.

In the discussion of options, default means "v.Jhat is assumed
if this option is not given for a particular invocation of the
conmand". on means the specified action is taken. off means the
specified action is not taken.

The last three options (-dtu, -dtm, -rv) do not apply to
links.

The star convention may be used in the entryl argument.

Conflicting options (e.g., -dtu and -dtm) should not be
given in a single invocation of the command. Note that -sm, -dr,
and -lk do not confl ict.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

~1U L TICS PROGRAMrv1ERS' HANUAL

Exampies

1 is t -a - rv

Page 3
12/9/71

would list all the segments, directories, multi-segment files,
and links in the current working directory, with the segments,
directories, and multi-segment files sorted on the date and time
last used, in chronological order.

1 ist a b -pn >udd>Multics>Doe *.pl1 -pn >udd>MAC>Roe **

would 1 ist segments a and b (if present) in the working
directory, all two component segments with a second component of
pl1 in the directory >udd>Multics>Doe, and all of the segments in
the directory >udd>MAC>Roe.

Usage: 1 i stotal s, 1 t

1 istotals entryl entrYn -optl- ••. -optn-

1) entryl as above.

2) optl as above except that the last three options are not
val id (-dtu, -dtm, and -rv).

The response is a count of, and the total number of records
occupied by, segments, directories, and multi-segment files, and
a count of 1 inks, as appropriate to the particular options
chosen.

Usage: listnames, ln

1 istnames entryl entrYn -optl- ... -optn-

1) entryl as above.

2) optl as above except that the last three options are not
val id (-dtu, -dtm, and -rv).

The response is a 1 ist of the names of the segments, directories,
multi-segment files, and links, as appropriate to the particular
options chosen.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Command
Development System

3/14/72

The list_abs_requests command allows the user to obtain
information about absentee requests. Normally the user will be
allowed information only concerning requests which he has made.

Lisage

list_abs_requests oPtion1 .•• optionn

1) optionl is selected from
options and may
command line:

the following list of
appear anywhere on the

-total, -tt

-,long, -lg

-queue Il, -q !l

-a 1 1, -a

. .

indicates that the user
total of the requests in

wants only
the queue.

the

indicates that all of the information
pertaining to an absentee request will be
printed. If this option is omitted, only
the full path name of the absentee control
segment will be printed.

indicates which queue is to be searched.
It must be followed by an integer
specifying the number of the queue. If
this option is omitted, the third priority
queue is searched unless the -all option
is provided. (~ee below.)

indicates that all priority queues are to
·be searched starting with the highest
priority queue and en~ing with the lowest
priority queue •

..
The -total and -long options are incompatible.

Examples

@

Queue 3: 3 requests. 6 total requests.

>udd>t4ul t i cs>Jones>dutnp> trans 1 ate. abs in
>udd>Multics>Jones>abs>tasks.absin
>udd>Multics>Jones>abs>bindings.absin

C 0 ~ y rig h t, 1 ~ 7 2 , t··\a s sac h use t t sin s tit ute 0 f T e c h nolo g y
1-\11 rights reserved.

MULTICS PROGRA~1MERS' ~lANUAL

Page 2

2) list_abs_requests -long -queue 1

~ueue 1: 2 requests. 27 total requests.

Absentee input segment:
Restartable:

>udd>M>Day>dump>translate.absin
yes

Deferred time:
Argument string:

09/16/71 2300.0 edt Thu
Ipl1"
"abed"
"-table"
1-lOap"

Absentee input segment:
Restartable:

>udd>M>Day>bind>auto_bind.absin
no

Cpu 1 i mit:
Absentee output file:

) list_abs_requests -total -all

000 seconds
>udd>M>Day>bind>bd.out

~ueue 1: 2 requests. 15 total requests.

Queue 2: a requests. 0 total requests.

Queue 3: 0 requests. 3~ total requests.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

The
terminal
the user
requests
wr j te-ups

Usage

Command
5/18/73

list_daemon_requests co~mand prints on the user's
information about dprint and dpunch requests. Normally
is allowed to obtain information concerning only

which he has previously made. See the MPM command
for dprint and dpunch.

is selected from the following 1 ist of
control arguments and can appear anywhere
in the command line:

-total, -tt indicates that the user wants only the
total of the requests in the queue.

-long, -lg

-queue il, -q .D.

-a 11, -a

indicates that all of the information
pertaining to a request should be printed.
If this control argument is omitted, only
the full path name of the segment to be
printed or punched is printed.

indicates which queue is to be searched.
It must be followed by an integer
specifying the number of the queue. If
this control argument is omitted, only the
third priority queue is searched unless
the -all control argument is provided.
(See be low.)

indicates that all priority queues are to
be searched starting with the highest
priority queue and ending with the lowest
priority queue.

The -total and -long control arguments are incompatible, and
cannot be used in the same list_daemon_requests command line.

@ Copy right, 1973, t1assachuset ts Ins t i tute of Techno logy
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

r- ... ___ , __

C. hqlllU , t;; 2

Queue 3: 3 requests. 6 total requests.

>Jones_dir>dump>translate.list
>Jones_dir>doc>ldr.runoff
>Jones_dir>Jones.profile

2) list_daemon_requests -long -queue 1

Queue 1: 2 requests. 27 total requests.

Pathname:
Type:
Copies:
Delete:
For:

Pathname:
Type:
Copies:
Delete:
To:

>Smith_dir>foo.list
print
1
yes
Jones

>doc>info>motd.info
print
3
no
575 Tech Sq.

3) list_daemon_requests -total -all

Queue 1: 2 requests. 15 total requests.

Queue 2: 0 requests. 0 total requests.

Queue 3: 0 requests. 39 total requests.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Command
3/30/73

This command lists some or all of the entries on a directory
Initial Access Control List (Initial ACl) in a specified
directory. A directory Initial ACL contains the ACL entries to
be placed on directories added to the directory. For a
discussion of Initial ACLs, see the MPM Reference Guide section,
Acces s Con t ro 1 •

Usage

listacl pathname acnamel ••• acnamen -control_arg-

1) pathname

2) acnamel

specifies the directory in which the
directory Initial ACL should be 1 isted. If
it is "-wd lt

, "-working_directory" or omitted
then the working directory is assumed. If it
omitted then no acnamel may be specified.
The star convention may be used.

is an access con t ro 1 name. I f no acname i is
specified then the whole Initial ACL will be
listed. acnamel must be of the form
person.project.tag. Any components missing
on the left must be delimited by periods;
however, the periods may be omitted on the
right. If one or more of the components is
missing then all access names that match the
given components wi 11 be 1 isted. If acnamei
is "-a" then the whole Initial ACL will be
listed.

may be - ring (- rg) • I t may appear anywhe re
on the line and affects the whole line. If
present it must be followed by a digit, where
o ~ digit ~ 7, which specifies which ring's
Initial ACL should be listed. If the control
argument is not given then the user's ring is
assumed.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

Fx::.mnlpc;; ... ·=···c .. -

will list, from the directory Initial ACL
all_runoff, all entries with the project name
entries with the person name Fred.

lid -wd -a -rg 5

in the directory
Faculty and all

will list all entries in the directory Initial ACL for ring 5 in
the working directory.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywe 11 I nformat ion Sys terns Inc. (END)

MUlTICS PROGRAMMERS' MANUAL

Command
3/30/73

This command lists some or all of the entries on a segment
Initial Access Control list (Initial ACL) in a specified
directory. A segment Initial ACl contains the ACl entries to be
placed on segments added to the directory. For a discussion of
Initial ACls, see the MPM Reference Guide section, Access
Contro 1 •

Usage

listacl pathname acnamel .•. acnamen -control_arg-

1) pathnarne

2) acnamel

specifies the directory in which the segment
Initial ACl should be listed. If it is
"-wd", "-working_directoryll or omitted then
the work i ng directory is assumed. If it is
omitted then no acnamel may be specified.
The star convention may be used.

is an access control name. If no acnamel is
specified then the whole Initial ACl will be
listed. acnamel must be of the form
person.project.tag. Any components missing
on the left must be delimited by periods;
however, the periods may be omitted on the
right. If one or more of the components is
missing then all access names that match the
given componen ts will be 1 is ted. If acnamel
is u-a" then the whole Initial ACl will be
listed.

ma y be - r i n g (- r g) . I t rna yap pea ran yw her e
on the line and affects the whole line. If
present it must be followed by a digit, where
o i digit ~ 7, which specifies which ring's
Initial ACl should be listed. If the option
is not given then the user's ring is assumed.

@ Co p y rig h t, 19 73, r·1a s sac h use t t sin s tit ute 0 fTc c h no log y
and Honeywell Information Systems Inc.

MULTrcs PROGRAMMERS' MANUAL

Page 2

Examples

will list, from the segment Initial ACL in all_runoff, all
entries with the project name Faculty and all entries with the
person name Fred.

lis -wd -a -rg 5

will list all entries in the segment Initial ACL for ring 5 in
the working directory.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Command
Development System

10/14/71

This command accepts both segment numbers and pathnames and
prints the reference names and segment numbers by which segments
are kno\"/n. ~Jhen segrilent numbers are specified, it also prints
pathnames.

Usage

... all

1) al can be segment nunbers, pathnames, or
op t i on s.

If al is a segment number, the pathname and reference names
of segment al will be printed.

If al is a pathname, the segment number (in octal) and the
reference names of segment al vJi 11 be printed. If al looks 1 ike
an option (i .e., if it is preceded by a minus sign) or a number,
then al should.be preceded by -name or -nm.

The following options are available for use with this
command:

-from 1
-to k

-brief, -bf

-all, -a

These two options allow one to specify a
range of segrilent numbers (segments 1 through
k). The pathnames and reference names of the
segments in this range are printed. If the
-from option is omitted, the segment number
of the first non-ring 0 segment vlill be
assumed, unless -all is used (see below). If
the -to option is omitted, the highest used
segment number \-vi 11 be assumed.

This option suppresses printing of the
reference names for the entire execution of
the command. This oPtion may appear anywhere
in the 1 ine.

This option causes the pathnames and
reference names of all known segments to be
printed, as well as the reference names of
ring 0 segments. This option may appear
anywhere in the line. The -a option is
equivalent to -from O.

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

t,iUL TICS PROGRAr-H'lERS I r.1Af'JUAL

Page 2

All of the above forms (segment nunbers, pathnames, and
options) may be mixed. For example:

1ist_ref_names pathone 156 -from 230

In the above command line, the segment number (in octal) and the
reference names of pathone are returned. The pathname and
reference names of segment 156 and of all segments from 230 on
are also returned.

If called with no arguments, list_ref_names prints
information on non-ring 0 segments only.

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved. (END)

~UlTrcs PRO~RAMMERS' MANUftl

Command
2/28/73

Name: 1 i 5 t a c 1, 1 a

This command lists some or all of the entries on an Access
Control List (ACL) of either a segment or directory.

Usage

1istac1 -pathname- -acnamel- ••• -acnamen- -contro1_arg-

1) pathname

2) acnamel

specifies the segment or directory for which the
ACL should be listed. If it is II-wd",
"-working_directory" or omitted, then the working
directory is assumed. If it is omitted then no
acnamel may be specified. The star convention may
be used.

is an access control name. If no acnamel is
specified then the whole ACL will be listed.
acnamel must be of the form person.project.tag.
Any components missing on the left must be
delimited by periods; however, the periods may be
om itt e don the rig h t • I f 0 n e 0 r mo reo f the
components is missing then all access names that
match the given components will be listed. If
acnamel is "-a" then the whole ACL will be listed.

3) contro1_arg may be -ring_brackets (-rb). It may appear

Examples

anywhere on the line and affects the whole line.
If it is present, the ring brackets will be
listed. Ring brackets are discussed in the MPM
Sub s y stem \'1 r i t e r s ' G u ide sec t ion, I n t rap roc e s s
Access Control (Rings).

listacl notice.runoff .Facu1ty Doe

will list, from the ACL of notice.runoff, all entries with the
project name Faculty and all entries with the person name Doe.

1a *.p11 -rb

will list the whole ACL and the ring brackets of every segment in
the workinv directory that has a two-component name with second
component p11.

@ CoP y rig h t , 1 9 7 3 , t"~a s sac h use t t sin s tit ute 0 f T e c h nolo g Y
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

~: logi n, 1

Command
4/5/73

The login command is used to gain access to the system.
login is actuallY a request to the answering service to start the
user identification and process creation procedures. Therefore,
this command can only be issued from a terminal connected to the
answering service; that is, one which has just dialed up, or one
which has been returned to the answering service after a session
terminated with a "logout -hold" command.

The login command wi 11 request a password from the user (and
will attempt to insure either that the password does not appear
at all on the user's terminal or that it is throughly hidden in a
line of cover-up characters). The password is a string of one to
eight letters and/or integers associated with the person 10. It
is maintained by the system administration.

After the user responds with his password, the system will
look up the person 10, the project 10, and the password in its
tables, and verify that the person ID is valid, that the user is
a legal user of the project, that the project 10 is valid and
that the password given matches the registered password. If
these tests succeed, and if the user is not already logged in,
the load control mechanism is consulted to determine if allowing
the user to log in would overload the system.

If the user is permitted to log in, a process is created for
the user, and the terminal is placed under control of the new
process.

Usage

login person -project- -control_args-

1) person

2) project

t::\c C 0 .~ v r ; ',' h t 19 7 3 ~ ~. ~ r ,

is the user's registered
identifier. This argument
supplied.

personal
must be

is the identification of the user's
project. If this argument is not
supplied, the default project 10
associated with the person 10 will be
assumed. See the
-change_default_project control
argument below for changing the
default project 10 to the project 10
specified by this argument.

Massachusetts Institute of Technology
and Honeywell Information Syste~s Inc.

B
Page 2

-brief, -bf

-home dir path,
-hd path

-process_overseer path,
-po path

-print_off, -pf

-account id, -ac id

-force

MULTICS PROGRAMMERS' MANUAL

may be selected from the following:

Messages associated with a successful
login wi 11 be suppressed. If the
standard process overseer is being
used, then the message of the day is
not printed.

The user's home directory will be set
to the path specified, if the user's
project administrator allows him to
specify his home directory.

The user's process Overseer will be
the procedure given by the path
specified, if the user's project
administrator allows him to specify
his process overseer.

The system will overtype several
lines to provide a black area for the
user to type his password.

The system will not overtype several
lines for the password, since the
user's terminal responds to the
printer off control sequence.

If the user can only be logged in by
preempting some other user in his
load control group then the login
does not take place.

If the user has a start_up.ec
segment, and the project
administrator allows the user to
avoid it, instruct the standard
process overseer not to execute it.

Replace the normal account identifier
for the user with ide (This option
currently has no effect.)

If the user has the guaranteed login
attribute, log the user in if at all
possible. Only system users who
perform emergency repair functions
will have the necessary attribute.

@ Cop y rig h t , 1 9 7 3 , Ma s 5 a c h use t t sin 5 tit ute 0 f T e c h nolo g y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

-change_password,
-cpw

-change_default_project,
-cdp

Notes

Page 3
4/5/73

Request to change the user:s password
to a newly given password. The login
command w'i 11 r eques t the old
password, and then a new password.
If the old password is correct, the
new password will replace the old for
subsequent logins, and the message
"password changed" will be printed at
the user's terminal. Note that the
user should not type the new password
as part of the control argument.

Request to change the user's default
project 10 to be the project 10
specified in this login command line
(see the description of the second
ar gument above) • I f the password
given by the user is correct, the
default project 10 will be changed
for subsequent logi ns, and the
message "default project changed"
will be printed at the user's
terminal.

Several parameters of the user's process, as noted above,
can be controlled by the user's project administrator. The
project administrator may allow the user to override some of
these attributes by specifying control arguments in his login
line. See the MPM Reference Guide section, Protocol for Logging
In, for more information about these variable parameters and
their usual values.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

~1U l TICS PROGRAMMFRS' ~~ANUj\.l

Name: i Ol!:OU t

Command
7/5/73

The logout command terminates a user session ar.d ends
communication with the Multics system.

Usage

logout -control_args-

-hold

-b r i ef, -bf

is an oPtional control argument that can be
chosen from the following:

the user's sessio~ is terminated. However,
communication with the Multics system is not
terminated and a user can immediately log in
without redialing.

no logout message is printed, and if the
-hold control ar~ument has been specified, no
lo~in messaee is printed either.

See also the MPM Reference Guide section, The Multics
Command Language Environment.

€> Cop y rig h t , 1 9 7 3 , r,1 ass a c h use t t sin s tit utE' 0 f T e c h nolo ~ y
and Honeywe 11 I nforma t i on S ys terns Inc. (E NO)

HULTICS PROGRAMMERS' MANUAL

~: mai 1, ml

Command
Development System

7/28/72

The mail command allows the user to send a segment to
another user or to print messages sent to him. Mail sent to a
user is placed in the segment "mailbox" in his home directory.
The mailbox is provided with a lock.

Usage

mail -path- -personl- -projectl- ••• -personn- -projectn-

1) path

2) personl

3) projectl

Printing .Mgil

is the pathname of a mailbox segment to be printed
(if no person! project! pairs are supplied) or of
a segment to be sent to other user or users (when
one or more person! project! pairs are specified).

is the name of a person to whom mail is to be
sent.

is the name of a project on which personl works.

The mailbox segment named by path will be locked and its
contents printed out preceded by a line of the form

x messages, y lines

If path is omitted, the segment "mailbox" in the user's home
directory is printed. After the mail is printed, the mail
command will ask whether to delete the mail. If the answer is
no, the command mail unlocks the mailbox and terminates it; if
the answer is yes, mail truncates the mailbox f~ z~ro length.

Sending Mall

The contents of the segment path will be copied into the
segment

>user_dir_dir>projectl>personl>mailbox

for e a c h per son - pro j e c t p air s p e c i fie d . ~~ hen m ail iss e nt, the
command first locks the target mailbox and then copies the
contents of the mail into the target rna i 1 box, preceded by a
header identifying the sender:

@)

From Person. Project date time

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

HULTICS PROGRAMMERS' MANUAL

Page 2

The segment to be mailed must be less than one record long.
Illegal characters will be removed from the mail as it is sent.

If path is *, mail will respond "Input" and accept lines
from the keyboard until a line with only a period (.) is typed;
the typed lines then will be sent to the specified addresses.

The user of the mail command must have rwa access to any
mailbox he accesses, and e access to the directory superior to
the mailbox in order to read or send mail.

Entry: mail$unlock

The user will receive a message of the form

mail: The segment is already locked.
mailbox busy, try again later.

if the mailbox he attempts to access is locked. Because quitting
out of mail may leave a mailbox locked, this entry is provided to
force the lock to zero. The mailbox specified by path will have
its lock cleared. If path is not specified, the mailbox in the
user's home directory will be unlocked.

Usage

mail$unlock -path-

1) path as above.

Creating ~ Mailbox Segment:

In order to receive mail, there must be a segment in the
user's home directory called mailbox whose ACL is set to rwa for
all users. To create such a segment perform the following
sequence of commands in your home directory.

create mailbox
setacl mailbox rwa *.*.*

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Command
Development System

5/30/72

In order that the peruse_text command may perform
efficiently, it is necessary to translate a source segment
(document) which is written for use with peruse_text. This
translation produces a segment comprised of the original text
followed by some information used by peruse_text to access a
labeled title without performing a line-by-line search.

usage

1) pathname specifies that the segment pathname.pts is the
source segment. The resulting new segment will be
placed in the user's working directory under the
name entryname.pt, where entryname is the entry
name portion of pathname.

Notes

When writing an on-line document for use with peruse_text,
the writer should pay particular attention to the formatting of
the document title and the topic headings. A sample outline of a
typical document is given at the end of this description.

1) Title of Document

The first line must be the title of the document. When
peruse_text is first invoked, or when the call or return
requests are issued, peruse_text searches for the first "new
1 i n e" c h a r act e r , the n p r i n t s the 1 i nee n de d by t his II n ew
line" character.

2) Topic Headings

Each topic in a document is introduced by a labeled title
similar to a topic heading in an outline. These topic
headings consist of the ASCI I character \006, immediately
followed by a label (see Label Syntax below), followed by a
space or spaces and the title of the topic. The complete
topic heading must be written on one line.

3) Label Syntax

Each topic heading in a peruse_text document begins with the
ASCII character \006, and is immediately followed by a
label. A label is composed of a sequence of from one to

® Copyright, 1972, Hassachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 2

eight integer elements separated by periods (e.g., 1., 3.1,
4.1.12). A label must contain at least one period. Each
integer element can take on values between 0 and 511. The
integer elements of topic headings must be in ascending
sequence from the start of the document to the end of the
document. However, they do not have to be consecutive
integers; numbers can be skipped. If make_peruse_text finds
errors in label format or sequence, it prints diagnostic
messages and aborts the translation of the segment specified
by pathname.

4) Recommended Style

It is recommended that topic headings should be followed by
some associated text which describes the topic, and/or refer
the user to other topics. If the inclusion of associated
text does not seem appropriate, then the topic heading is
probably unnecessary. The format of this text is at the
discretion of the user, but should be terse.

First level topics should have single-level labels, i.e.,
1., 2., not 1.0, 2.0, etc. Topic headings (excluding the
label) and the document title should usually be all capital
letters. Numbers are permitted in both.

Each topic heading that is subordinate to another topic
should be indented one more space than its immediately
superior topic heading. This can be achieved by inserting
one or more blank characters before the ASCI I \006
character.

To prevent excessive printing at the terminal, no single
topic should be divided into more than five subtopics at the
next subordinate level. In addition, the number of lines of
text following a topic heading should be on the order of
six.

Lines should be no more than 72 characters long, so that
they may fit on one line of all commonly used terminals.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Example

FILE OUTPUT, CONSOLE OUTPUT (6-2-71)

1. FILE OUTPUT COMMAND
1.1 USAGE
1.3 DEFAULT
1.4 FEATURES AND CONSTRAINTS
1.5 EXAMPLE

2. CONSOLE OUTPUT COMMAND
2.1 USAGE
2.4 FEATURES AND CONSTRAINTS
2.5 EXAMPLE

Page 3
5/30/72

@ Cop y rig h t, 19 72 , t,1 ass a c h use t t sin s tit ute 0 f Tee h nolo g y
All rights reserved. (END)*

MULTICS PROGRAMMERS' MANUAL EJ

Name: memo

Command
7/16/73

The memo command makes possible the use of Multics as an
interactive notebook and reminder list containing memos. It
allows the user to specify a maturity time for each memo (a time
before which the memo will not appear). By use of the alarm
feature the user can specify the exact time the memo will be
printed on the console. Memos can also be set which are passed
directly to the command processor and executed as a normal
Multics command line. Using these features jointly the user can
set a memo which, rather than reminding him to do something at a
certain time, actually performs the action itself. Finally the
user can specify that the memo is to be repeated at regular
intervals.

In the default case memo maintains its information in a
segment Username.memo in the user's home directory. If memo is
invoked and such a segment does not exist, memo attempts to
create and initialize it. Optionally a different memo segment
can be specified and used. Each memo in the memo segment
consists of a text portion containing up to 132 characters, the
maturity date, and additional information tell ing whether the
memo is to be repeated or not and whether is to be printed or
executed.

For the user's convenience, control arguments allow the
printing, listing, and deletion of memos selected by subsequent
optional arguments. Memos can be selected by number, type,
maturity time and content. Other control arguments enable or
disable memo alarms.

It should be noted that if a date, time, repeat interval, or
match string contains embedded blanks, that string must be
enclosed in quotes so that the co~mand processor will pass it to
memo as a" s i ngl e argument.

Usage

memo -control_arg- -oPt1- ••• -optn- -memo_text-

1) control_arg is one of the following control
arguments. Only one can appear on the
command line, and it must be the first
argument. If no control argument
appears then if nothing else appears on
the command line mature memos are
printed or executerl, otherwise the rest
of the line is used to set a memo.

@ Co p y rig h t , 19 73, t·1a s sac h use t t sin 5 tit ute 0 f T e c h no log y
and Honeywell Information Systems Inc.

B
Page 2

-pathname memo path ________ ~L.

- J.JJ I 111t:IIIU Vel L II

-list, -ls

-print, -pr

-delete, -dl

-off

-on

-brief

2) opt i

MULTICS PROGRAMMERS' MANUAL

where memopath is the path name of a
...................... rr.-. ""' ... +- +-,.. ho lIeo~ Tho on~ ... '\/ n!:lmo
IIIt::IIIU ~'t;;O'II~'I~ ~v ..,~ ~~~'"". • II,," ~,.'" '.1

of the segment must end in the suffix
.memo, and if the segment does not
exist, memo attempts to create it. If
the user does not specify the suffix
.~emo, it is assumed.

memos selected by the optional arguments
are printed in full detail, including
their maturity ti~es, text, and
information about the optional
arguments, optl, used when the memos
were set. No memos are executed.

the text of all memos selected by the
optional arguments, optl, are printed.
No memos are executed.

all memos selected by the
arguments, optl, are deleted.

optional

suppresses all memo alarms. This
control argument must not be followed by
any optional arguments, opt~.

enables the setting of memo alarms.
This control argument must not be
followed by any optional arguments,
opti.

suppresses the message "No memos" if
none are

b
found, Thisbcontrol argvmenf

must not e tol owed y any optlona
arguments, optl. .

is one of the following optional
arguments. Note that some of the
arguments can be used for setting memos,
some for selecting memos to be printed,
listed, or deleted, and others for both
setting and selecting memos.

is used when selecting memos. If any
numbers are used to specify which memos
are to be selected then only those memos
which match one of the numbers are
selected.

© Copyright, 1973, ~~assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL B
-date memo_time
-dt memo_time

-time memo_time
-tm memo_tirre

-a 1 a rm, -a 1

-repeat interval
-rp interval

-invisible, iv

-ca 11

Page 3
7/16/13

where memo_time is a time in a form
suitable for input to the subroutine
convert_date_to_b i nary_ (see the fvtPM
subroutine write-up for
convert_date_to_binary.) memo_time is
truncated to midnight preceding the date
in which memo_time falls. If used while
setting a memo then the trucated
memo_time becomes the maturity time of
the new memo. If memos are being
selected, then only those memos with
maturity times prior to or equal to the
truncated memo_time are selected.

where memo_time is a time in a form
suitable for input to the subroutine
convert_date_to_binary_. This optional
argument is used in the same manner as
the -date optional argument above except
that memo_time is not truncated.

if a memo is being set, this specifies
that the memo is to De an alarm. When
mature it will be printed or executed
immediately (or as soon as alarms are
enabled) and then deleted. If memos are
being selected, this argument selects
only those memos which are alarms.

where interval is the interval
(>=1 minute) at which this memo is to
appear. This optional argument is used
when setting a memo. When the memo is
mature an identical memo is set with a
rna t uri t y tim e t hat i sin t e r val i nth e
future. The interval specification
should be in the for~at of the offset
field suitable for input to
convert_date_to_binary_.

used only when setting a memo, this
optional argument specifies that the
memo will never be mature and will never
be printed during a nor~a1 memo print.

used only when setting a memo, this
argument specifies that the ~emo is to
be passed to the command processor as a
comrr.and.

@ Copyri ght, 1973, t,:assachusetts Insti tute of Technology
and H 0 n e Y\Al ell I n for rna t ion S y s t ems Inc.

f-.1U L TICS PROGRA~·'~1 ERS' MA NUA L

Page 4

-match stringl •• stringn

Notes

where stringl is a character string.
Memos containing substrings matching all
of the stringl's are selected. The
remainder of the line is interpreted as
the set of the strings to be matched.
The maximum number of strings which may
be specified is 32, and the maximum
length of anyone string is 32
characters.

is the text of the memo being set.

If the -pathname control argument is used, the following
argument must be the path name of a memo segment which is to be
used. If a memo segment is specified by this means it will
continue to be used for the duration of the user's process,
unless changed again by the -pathname control argument. If the
segment with path name memopath does not exist, memo attempts to
create It.

To set a memo, no control arguments are given. Any
optional arguments except -match and memo_number may be
specify the type of memo being set, and the time it will
If no maturity time or date is specified, the maturity
assumed to be the current time.

of the
used to
mature.
time is

If memo is invoked with no arguments or only the -brief
control argument, then all mature memos are printed or passed to
the command processor. Alarms are enabled and any alarms pending
are printed or executed.

If either the -print or -list control argument is given,
then all memos selected by the optional arguments are printed.
The contents of the memo segment do not change in any way, and
memos that would ordinarily be passed to the command processor
are printed instead. If no optional arguments are used to select
which memos are to be printed or listed, then all memos are
printed or listed. If the -date or -time optional arguments are
given, then only those memos which mature before the specified
date or time are printed. Only those memos are printed which
meet all of the specifications set by the optional arguments.

If the -delete control argument is used, memos selected by
the optional argument are deleted. If no optional arguments have
been used to specify which memos are to be deleted, then none are
deleted.

@ Copyright, 1973, r~assachusetts Institute of Technology
and HoneyvJell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL EJ
Page 5

7/16/73

The -off control argument is useful for times when the user
does not wish any extraneous output, such as when using the
tvlu 1 tics r unof f command. The command 1 i ne "memo -on" may be given
to re-enable alarms after they have been turned off, or it may be
used at login time to enable alarms without printing or executing
other mature memos. Memo alarms are enabled by any use of memo
except "memo -off".

Examples

In the following sequence of memo examples, input typed by
the user is marked by an arrow (-». Ready messages from the
system are omitted. First, the user's memo segment is
initialized and is demonstrated to have no mature memos. Four
memos are set and then listed, first in their entirety, then only
mature memos, then all memos maturing before a specified date.
Finally, the only mature memo is deleted, and its successful
deletion is demonstrated.

->memo
memo: Creating >udd>xproj>Jones>Jones.memo.

->memo
No memos.

->memo get bookshelves
->memo -date 5/23/73 -repeat 2weeks -alarm Staff meeting at two.
->memo -call -date 6/1/73 -repeat 1month list -dtm -rev
->memo -time thu9am -repeat 1week Weekly report due Friday.

->memo -list
1) Tue 05/15/73 1729 get bookshelves
2) Wed 0 5/ 2 3/ 73 0 00 0 S t a f f me e tin gat two. (a 1 a r IT:, II 2 wee k s II)

3) Fri 06/01/73 0000 list -dtm -rev (call, "1month")
4) Thu 05/17/73 0900 \'Jeekly report due Friday. ("lweek")

->memo
1) get bookshelves

->memo -print -date 5/30/73
get bookshelves
Staff meeting at two.
Weekly report due Friday.

->memo -delete -match book

->memo
No memos.

€> Copyrieht, 1973, r-1assachusetts Institute of Technology
and HoneY\fJell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

~: move, mv

Command
Standard Service System

4/3/72

The move command causes a designated segment (and its access
contro1 1 ist (ACL), and mul tiple names, if any) to be moved to a
new position in the storage system hierarchy.

Usage

move path1~ path2~ ••• path1n path2n -ca-

1) path11

2) path21

3) ca

_-brief, -bf

Notes

is the path name of the nondirectory storage
system segment to be moved.

is the path name to which path11 is to be
moved.

may be the following control argument:

causes the messages "Bit count inconsistent
with current length ••. H and "Current length
is not the same as records used .•• " to be
suppressed.

The star and equal conventions may be used.

If path21 already exists, the user will be interrogated as
to whether he wishes it to be deleted.

The user's mode with respect to the di rectory portion of
path21 must include execute, write, and append access.

Example

move alpha >udd>Multics>Doe>= >udd>Multics>Doe>beta b

causes segment alpha to be moved from the current working
directory to the directory >udd>Multics>Doe, with the name alpha,
and segment beta to be moved from the directory >udd>Multics>Doe
to the current working directory, with the name b.

@ Copyright, 1972, ~4assachusetts Institute of Technology
All rights reserved. (END)

MULTfCS PROGRAMMERS' MANUAL movequota

~: movequota, mq

Command
Standard Service System

6/23/71

The movequota command allows a user to move all or part of a
quota between two directories (one immediately inferior to the
other).

Usage

movequota pathnamel quota_changel ••• pathnamen quota_changen

1) pathnamel

Notes

is the pathname of a directory branch. The
quota change will take place between this
branch and its parent di rectory. "-wd" may
be given to specify the working directory.
The star convention may not be used.

is the number of pages to be subtracted from
the parent directory quota and added to the
quota on pathnamel. If thi s number is
negative, the number of pages will be added
to the parent directory quota and subtracted
from the quota on pathnamel

The user must have "write" permission on both the directory
specified by pathnamel and its parent directory.

After the change, the quota must be greater than or equal to
the number of pages used in pathnamel unless the change would
make the quota zero.

If the change would make the quota on pathnamel zero, there
must be no immediately inferior directories with nonzero quota.
When the quota is changed to zero, the pages used and the
page-time product for pathnamel is then reflected up to the
superior directory.

Example

movequota >udd>Multics 1000 >udd>Multics>Doe -50

"vill add 1000 pages to the quota on >udd>j,lultics and subtract
1000 pages from the quota on >udd. It will then subtract 50
pages from the quota on >udd>i·lultics>Doe and add 50 pages to the
quota on >udd>Multics.

(E;J D)

'··1UL TICS PROGRAt,1~·tERS I ~1ANUl\L names

tJame: names

Entry: names$move

Command
Development System

09/23/70

This command moves all the "extra" names from one multiply
named directory entry to another for any numher of entry pairs.
The name used to designate the segment is not moved; all others
are moved.

Usage

names$move frorn_pathl to_pathl from_path2 to_path2
from_pathN to_pathN

is the pathname of the segment whose names
are to be moved.

is the pathname of the segment to which names
are to be moved.

Entry: names$copy

This entry is similar to names$move but leaves the names on
the segment v"hich originally has them. tJote that in this case
the names cannot be copied to a segment in the same directory
hecause that would attempt to dupl icate names in the directory.
All of the names on the original segment are copied.

Usage

arguments as described above.

(END)

MUlTICS PROGRA~MERS' MANUAL

~: new_proc

Command
Standard Service System

02/12/71

The new_proc command creates a new process for the user,
leaving him at command level in the same working directory he
logged into. Although not implemented in the initial release of
r~ultics, the process from which the command was invoked will in
later versions be available for debugging.

The new_proc command is typically used to refresh static
storage, possibly because a runaway program has overwritten the
static storage area. Since dynamically snapped links are placed
in the static storage area, they must be resnapped in the new
process.

If the login working directory contains a segment named
start_up.ee, new_proc will cause the command

to be automatically issued in the new process. This feature may
be used to initialize per-process static variables.

Usage

(END)

MULTICS PROGRAMMERS' MANUAL

Command
Standard Service System

5/10/72

~: page_trace, pgt

This command prints a recent history of page faults and
other system events within the calling process.

Usage

page_trace -count- --long-

1) count causes the last count of system events (mostly
page faults) recorded for the calling process to
be printed. If count is not specified, then all
the entries in the system trace list for the
calling process will be printed. Currently, there
is room for approximately 350 entries in the
system trace list.

2) -long, -lg causes full
appropriate.

path names to printed, where
The default is to print only entry

names.

Output

The first column of output describes the type of the trace
entry. If nothing is printed in this column for an entry, the
entry is for a page fault. The second column of output is the
real time, in milliseconds, since the previous entry's event
occurred. The third column of output is the page number for
entries where this is appropriate. The fourth column gives the
segment number for entries where this is appropriate. The last
column is the entry (or path) name of the segment for entries
where this is appropriate.

Whenever the real time between successive entries is greater
than one second, a blank line is printed between the entries.
This blank line usually appears between interactions, where the
user interposes a think time longer than one second, and on long
running programs, between scheduling quanta.

Notes

To perform useful tests to determine page fault activity and
frequency, the prepaging mechanism must first be crippled for the
calling process. This is because the prepage driving list is the
same list as the page trace list. To turn prepaging off, the
command

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MU L TICS PROGRAf1f,lERS I f\;ANliAL

Page 2

may be issued. To turn prepaging on again, the conmand

may be issued.

Note that since it is possible for segment numbers to be
reused within a process, and since only segment numbers (not
names or path names) are kept in the trace array, the entry names
and path names associated with a trace entry may not be correct.
In fact, the entry and path names printed are the current ones
appropriate for the given segment number.

For completeness, events occurring while inside the
supervisor are also listed in the trace. The interpretation of
these events sometimes requires detailed knowledge of the system
structure; in particular, they may depend on activities of other
users. For many purposes, the user will find it appropriate to
identify the points at which he enters and leaves the supervisor,
and ignore the events in between.

Typically, any single invocation of a program will not
induce a page fault on every page touched by the program, since
some pages may still be in primary memory from previous uses or
use by another process. It may be necessary to obtain several
traces to fully identify the extent of pages used.

@ Copyright, 1972, rvlassachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Command
Development System

8/18/72

The peruse_text command allows a user to extract information
from a formatted segment with a minimum of printing at the
terminal. Formatted segments consist of a labeled topic heading
for each block of text. To write and prepare such a segment,
refer to the MPM description of the make_peruse_text command.

The peruse_text command responds by printing the title line
of the document.

Usage

peruse_text -control_arg- entryname

2) entryname

is an optional argument which specifies, if
present, that entryname is actually a path
name. It can have as its value either
-pathname or -pn.

refers to the segment entryname.pt in the
specified directory. The suffix .pt need not
be specified. If the -pathname control
argument is used, the complete path name is
specified by this argument. Otherwise, it is
assumed that entryname.pt resides in the
directory where all pt documents are kept,
>documentation>pt (abbreviated as >doc>pt).

Label Syntax ~ Label Depth

Each topic in a document is introduced by a topic heading
which begins with a label. A label is composed of a sequence of
from one to eight integer elements separated by periods (e.g.,
1., 3.1, 4.1.12). A label must contain at least one period.
Each integer element can take on values between 0 and 511. The
n um be r 0 fin t e g ere 1 eme n t sin a 1 abe 1 i s the de p tho f the 1 abe 1 ,
ranging from one .to eight. In the above examples of a label, the
depths are 1, 2, and 3 respectively.

Subsystem Request ~

The peruse_text command responds to requests to peruse topic
headings and associated text. These requests are listed in the
following table.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

Page 2

Request t·1ean i ng

t .table

p Qr i nt

i Index
c ~a 11

r .r.eturn

"string ll find

q .9,uit

Table Request

MULTICS PROGRAMMERS' MANUAL

Function

print a table of the topic headings at one
depth
print the specified range of topic headings
with their associated text
print the specified range of topic headings
call from the segment currently being perused
to peruse a specified segment
return to perusing the segment that was
perused before the current segment
print all topic headings where the specified
character string appears as part of the topic
heading or the associated text
exit peruse_text to command level

The table request prints a table of the topic headings at
one depth. The format is:

t -labe1-

If no argument is given, all topic headings with a depth of one
are printed. If a label is supplied, all topic headings one
level deeper than and subordinate to the specified label are
printed. The space between t and the argument is optional.

Whenever the table reques~ causes the last topic heading at
the level specified to be printed, peruse_text appends a line
containing only the word END after the last topic heading. When
a topic heading has no subordinate topic headings, an asterisk
appears on the same 1 ine, following the topic heading.

See Examples below for use of the table request.

Index ~ Print Requests

The index request prints topic headings within the range
specified. The print request prints topic headings and the
associated text within the range specified. The format of these
requests is:

request_name -begin_label- -end_label- -depth-

1) request_name is either i or p

2) begin_label specifies the first label to be indexed or
printed. This argument is optional; its
default value is the current label (that is,

® Cop y rig h t, 19 7 2 , t."l ass a c h use t t sin s tit ute 0 f T e c h n 0 log y
All rights reserved.

MULTICS PROGRAMMERS 1 MANUAL

4) depth

Page 3
8/18/72

the value of the label last tabled, indexed,
or printed).

specifies the last label to be indexed or
printed. It must be preceded by a hyphen.
It is optional and has as a default value the
value of begin_label.

specifies the depth of topic headings and
text to be indexed or printed. That is, it
specifies the maximum number of integer
elements in labels to be indexed or printed.
It is optional and takes the maximum of the
depths of begin_label and -end_label as its
default value.

Spacing in the index and print request is not significant
before the begin_ label and -end_label arguments. However, one
or more spaces must appear before the depth argument when it is
present.

As in the table request, a line consisting of the word END
is printed following the last topic heading at a given level.
Requests for indexing or printing which do not involve the last
topic heading produce

no such line. However, unlike the table request, no asterisk
appears on the line with topic headings having no inferiors.

Note that the depth specified (or assumed by default) may be
larger than the depth of -end_label. In this case, printing of
output will continue past the topic heading specified by
- e n d_l abe 1 un til all top i c h e ad i n g sin fer i 0 r to t hat on e and
having a depth within the specified range are printed.

See Examoles below for various ways of using the index and
print requests.

~ of Asterisk in an Argument

An asterisk (*) has special meaning in arguments to the
table, index, and print requests. It is taken as a shorthand
notation for the maximum possible value of the place it occupies.
Thus, an asterisk is equivalent to 511 when used as an integer
element in a label argument, and is equivalent to 8 when used as
a depth argument.

Note that the use of asterisk in the table request is nearly
always meaningless since very few documents will have an integer

@ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

peruse_text nUL TICS PROGRAMMERS' fv1ANUAl

Page 4

element of a label equal to 511. (Recall that the table request
says to print all topic heading immediatelY inferior to a
specifed label.) Similarly, the use of asterisk in the
begin_label argument of the index and print requests is usually
me ani n g 1 e s s • Its use f u 1 n e s sis i nth e - e n d_l abe 1 and de p t h
arguments of the index and print requests where it effectively
specifies that the request should be performed until the end of
the document is reached and should go to the maximum label depth
present in the document.

Default Request Names

The table, print, and index requests are the only ones
concerned with the structure of the document being perused. The
peruse_text command remembers which of the three was l~st used,
and supplies it whenever the request name is omitted from a
request. The default request name is thus the last request (of
those th~ee) used for the document being perused. Upon initial
entry to each document, the default request is index.

£.i.nQ Request

The peruse_text command accepts any quoted string (inciuding
spaces) as a request. The find request causes peruse_text to
search the segment being perused for all occurrences of the
quoted string and to print the labeled topic headings wherever
the quoted string occurs in the title or associated text. The
format of the find request is:

"string"

The value of the quoted string may be any ASCI I string that might
be part of the contents of the segment currently being perused.
The ASCII string must be enclosed in quotation marks. The Pl/I
quoting convention is used if quotation marks are to be specified
within the quoted string.

~ ~ Return Requests

The call request is used to change from perusing the current
segment to perusing another segment. The return request is used
to resume perusing the previous segment.

@ Co p y rig h t, 19 72, til ass a c h use t t sin s tit ute 0 f T e c h n 0 log Y
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

The format of the call request is.

c -control_arg- entryname

Page 5
8/18/72

Arguments are the same as those for peruse_text. The title line
of the called segment is printed immediately following the call.

The format of the return request is.

r

The title line of the segment returned to and the topic heading
last referenced before the call request are printed upon return.
The default request name is set to t, p, or i, whichever was the
default at the time of the call request.

iliLLt Request

The quit request may be used to exit peruse_text to r',lultics
command level. The format of the ~uit request is:

q

Program Interrupt

The user may interrupt peruse_text by pressing the QUIT
button, especially during the printing of unwanted output. To
immediately return to peruse_text, where peruse_text waits for a
subsequent request, type the command program_interrupt (pi).

Examples

The following series of requests was performed (in the order
shown) on the pt segment for the peruse_text command. A short
explanation of the feature being demonstrated by each request
precedes the request. The line typed by the user is marked by a
sma 1 1 a r row (-)) a t the 1 eft • The res t v-J asp r i n ted by
peruse_text. The print request was slighted in the examples due
to the excessive space required. However, examples of the index
request cover the print request format adequately.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 6

1) Obtain a full table of contents of the document for reference
in iater examples. incidentally this shows the index iequest
with three arguments, and the asterisk in arguments.

->i 1. -*. *
1.
1.1
1.2

2.
2.1
2.2
2.3
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9
2.4.10
2.4.11

2.5
END.

PREFACE
FUNDAMENTALS OF PERUSE TEXT
TO READ THE REST OF THIS DOCUMENT
PERUSE_TEXT (pt) COMMAND
USAGE
OPTION
DEFAULTS
FEATURES AND CONSTRAINTS
LABELS
TAB LE (OF CONTENTS), I NDEX AND PR I NT REQU ESTS
THE CALL AND RETURN REQUESTS
THE FIND REQUEST
THE QUIT REQUEST
USE OF ASTERISK
DEFAULTS FOR ARGUMENTS
DEFAULT FOR REQUEST NAMES
PROGRAM INTERRUPT
DOCUMENT FORMAT
"COMPILATION" OF DOCUMENTS
EXAMPLES

2) Table request with no arguments.

->t
1.
2.
END.

PREFACE
PERUSE_TEXT (pt) COt,1MAND

3) Default request name (i.e., the table request is assumed).

->2.
2.1
2.2
2.3
2.4
2.5

END.

USAGE *
OPTION *
DEFAULTS *
FEATURES AND CONSTRAINTS
EXAt4PLES *

4) Index request with no arguments.

->i
2.5

END.
EXAt·1PLES

@ Co p y rig h t , 19 7 2 , t·l ass a c h use t t sin s tit ute 0 f T e c h no log Y
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

5) Index request with begin_label argument only.

Page 7
8/18/72

-)i 2.4.2
2.4.2 TABLE (OF CONTENTS), INDEX AND PRINT REQUESTS

6) Index request with begin_label and -end_label arguments. Note
that no space appears before -end_label.

-)i 1.-2.
1.
2.
END.

PREFACE
PERUSE_TEXT (pt) COMMAND

7) Index request with all arguments. All optional spaces are
omitted.

-)i1.-2. 2
1.
1.1
1.2

2.
2.1
2.2
2.3
2.4
2.5

END.

PREFACE
FUNDAMENTALS OF PERUSE TEXT
TO READ THE REST OF THIS DOCUMENT
PERUSE_TEXT (pt) COMMAND
USAGE
OPTION
DEFAULTS
FEATURES AND CONSTRAINTS
EXAMPLES

8) Index request (assumed by default) with the -end_label
argument missing and an asterisk for the depth argument.

-)1. *
1.
1.1
1.2

PREFACE
FUNDAMENTALS OF PERUSE_TEXT
TO READ THE REST OF THIS DOCUMENT

9) Print request with no arguments.

-)p

1.2 TO READ THE REST OF THIS DOCUMENT

Use the requests described in Section 1.1 to read the rest
of this document.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 8

10) Find requests.

->"request"
1.1
1.2

2.
2.4
2.4.2
2.4.3
2.4.4
2.4.6
2.4.7
2.4.8
2.4.9

2.5

->"REQUEST"
2.4.2
2.4.3
2.4.4
2.4.5
2.4.8

FUNDAMENTALS OF PERUSE_TEXT
TO READ THE REST OF THIS DOCUMENT
PERUSE_TEXT (pt) COMMAND
FEATURES AND CONSTRAINTS
TABLE (OF CONTENTS), I NDEX, AND PRINT REQUESTS
THE CALL AND RETURN REQUESTS
THE FIND REQUEST
USE OF ASTERISK
DEFAULTS FOR ARGUMENTS
DEFAULT FOR REQUEST NAMES
PROGRAM INTERRUPT
EXAMPLES

TABLE (OF CONTENTS), INDEX, AND PRINT REQUESTS
THE CALL AND RETURN REQUESTS
THE FIND REQUEST
THE QUIT REQUEST
DEFAULT FOR REQUEST NAMES

11) Cal 1 r e que s t , and i n de x r e que s t s how i n gin i t i a 1 de f au 1 t
request name.

->c ec
EXEC_COM (5-17-72) SSS

->1.1 -1.5
1.1
1.3
1.4
1.5

END.

USAGE
DEFAULTS
FEATURES AND CONSTRAINTS
EXAfv1PLES

12) Return request showing that the current label is restored.

->r
PERUSE_TEXT (5-17-72)

1.2 TO READ THE REST OF THIS DOCUMENT

Summary of Requests

1) Data Requests

t

t label

Print first-level table of
contents.
Print topic headings at next
level subordinate to label.

® Cop y rig h t, 1972, t,1 ass a c h use t t sin s tit ute 0 f T e c h nolo g y
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

begin_label

begin_label -end_label depth

p

p begin_label -end_label depth

"string"

2) Control Requests

c name

c -pathname name

r

q

Page 9
8/18/72

Print current topic heading.
Print topic heading
associated with begin_label.
Print topic headings from
begin_label to end_label to
the maximum depth of the two
labels.
Print topic headings from
begin_label to end label to
the depth specified.

Print current topic heading
and text.
Print topic heading and text
associated with begin_label.
Print topic headings and text
from begin_label to end_label
to the maximum depth of the
two labels.
Print topic headings and text
from begin_label to end_label
to the depth specified.

Print topic headings where
the ASCI I string appears in
the topic heading or text.

Call the peruse_text
specified (in a
system directory).

segment
special

Call the peruse_text segment
specified by complete
pathname.

Return to the peruse_text
segment from which the
current one was called.

Return to
1 eve 1 •

Multics command

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (EtJD)

MUlTICS PROGRAMMERS' MANUAL

Harne: pl1, v2pl1

Command
9/24/73

The pl1 command invokes the Pl/I compiler to translate a
segment containing the text of a Pl/I source program into a
Multics object segment. A listing segment is oPtionally
produced. These results are placed in the user's working
directory. This command cannot be called recursively.

Usage

p11 pathname -control_argl- ••• -contro1_argn-

1) pathname

-source, -sc

-symbols, -sb

-map

-1 ist, -ls

is the path name of a Pl/I source
segment that is to be translated by the
Pl/I compiler. If the source segment
name does not have a suffix of .p11,
then one is assumed.

can be chosen from the following 1 ist of
control arguments:

produces aline-numbered printable ASCII
listing of the program. The default is
no 1 is t i ng.

lists the source program as above and
all the names declared in the program
with their attributes. The default is
no symbols.

lists the source program and symbols as
above, followed by a -map of the object
code generated by the compilation. The
-map control argument produces
sufficient information to allow the user
to debug most problems on-line. The
default is no map.

lists the source programs and symbols
as for the -symbols control argument,
followed by an assembly-like listing of
the compiled object program. Note that
use of the -list control argument
significantly increases compilation time
and should be avoided whenever possible
by using the -map control argument. The
default is no 1 ist.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 2

-brief, -bf

-severityl, -svl

-check, -ck

-optimize, -ot

-table, -tb

brief_table, -bftb

MULTICS PROGRAMMERS' MANUAL

causes error messages written Into the
stream "error_output" contain only an
error number, statement identification,
and, when appropriate, the identifier or
constant in error. In the normal,
non-brief mode, an explanatory message
of one or more sentences is also
written.

causes error messages whose severity is
less than 1 (where 1 is 1, 2, 3, or 4;
e.g., severity3) to not be written into
the "error_output" stream although all
errors are written into the 1 isting.
The default value for 1 is 1.

is used for syntactic and semantic
checking of a PL/I program. Only the
first three phases of the compiler are
executed. Code generation is skipped as
is the manipulation of the working
segments used by the code generator.

invokes an extra compiler phase just
before code generation to perform
certain optimizations such as the
removal of common subexpressions. Use
of this control argument adds 5-10% to
the compilation time.

generates a full symbol table for use by
symbolic debuggers; the symbol table is
part of the symbol section of the object
program and consists of two parts: a
statement table that gives the
correspondence between source line
numbers and object locations, and an
identifier table containing information
about every identifier used by the
source program. This control argument
usually causes the object segment to
become significantly longer.

generates a partial symbol table
consisting of only statement lables for
use by symbolic debuggers. The table
appears as the symbol section of the
object segment produced for the
compilation. This control argument does
not significantly increase the size of

@ Copyright, 1973, f'.1assachusetts Institute of Technology
and Honeywe 11 I nforma t i on Sys terns Inc.

MULTICS PROGRAMMERS' MANUAL

-profile, -pf

the object program.

Page 3
9/24/73

generates additional code to meter the
execution of individual statements.
Each statement in the object program
contains an additional instruction to·
increment an internal counter
associated with that statement. After a
program has been executed, the
print_profile command can be used to
print the execution counts. See the MPM
command write-up of the print_profile
command.

The following control arguments are available, but are
probably not of interest to the normal user.

-debug, -db

-time, -tm

leaves the list-structured internal
representation of the source programs
intact after a compilation. This
control argument is used for debugging
the compiler. The command pll$clean_up
can be used to discard the list
structure.

After compilation, this control argument
prints a table giving the time, in
seconds, the number of page faults, and
the amount of free storage used by each
of the phases of the compiler. This
information is also available from the
command pll$times typed after a
compilation.

Further information on the above control arguments is
contained under the headings Error Diagnostics and Listing.

Notes

A normal compilation produces an object segment, segname,
and leaves it in the user's working directory. If segname
existed previously in the directory, its access control 1 ist
(ACL) is saved and given to the new copy of segname. Otherwise,
the user is given lire" access to the segment with ring brackets
v,v,v where v is the val idation level of the process active when
the object segment is created.

of
The user's control arguments control the absence or presence

the listing segment for segname.pll and the contents of that

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 4

listing. if created, the listing segment is named segname.list.
The ACL is as described for the object segment except that the
use r i s given II rwa" access to i t when new1 y c rea ted. Prev i ous
copies of segname and (if the list option is Qfi) segname.1ist are
replaced by the new segments created by the compilation.

Note that because of the Mu1tics standard that restricts the
length of segment names, a PL/I source segment name cannot be
longer than 24 characters.

Error Diagnostics

The PL/I compiler can diagnose and issue messages for about
350 different errors. These messages are graded in severity as
follows:

Severity Level Meaning

1

2

3

4

Warning only - compilation continues without ill
effect.

Correctable error the compiler remedies the
situation and continues, probably without ill
effect. For example, a missing end statement can
be and is corrected by simulating the appending of
the string ";end;" to the source to complete the
program. This does not guarantee the right
results however.

An uncorrectab1e but recoverable error. That is,
the program is definitely in error and cannot be
corrected but the compiler can and does continue
executing up to the point just before code is
generated. Thus, any further errors are
diagnosed.

An unrecoverable error. The compiler cannot
continue beyond this error. The message is
printed and then control is returned to the p11
command unwinding the compiler. The command
writes an abort message into the "error_output"
stream and returns to its caller.

Error messages are written into the stream "error_output" as
they occur. Thus, a user at his terminal can quit his
compilation process immediately when he sees something is amiss.
As indicated above, the user can set the severity level so that
he is not bothered by minor error messages. He can also set the
-brief control argument so that the message is shorter. An
example of an error message in its long form is:

@ Copyright, 1973, r"1assachusetts Institute of Technology
and Honeyvve 11 I nforma t ion Sys terns Inc.

MULTICS PROGRAMMERS' MANUAL EJ
Page 5

9/24/73

ERROR 158, SEVERITY 2 ON LINE 30

A co n s tan t i mme d i ate 1 y f 0 1 1 ow s the ide n t i fie r II z i 1 c h II •

Source: a = zilch 4;

If the -brief control argument had been specified, the user would
see instead:

ERROR 158, SEVERITY 2 ON LINE 30
z i 1 ch

If the user had set his severity level to 3, he would have
seen no message at all.

Once a given error message has been printed on the user's
terminal in the long form, all further instances of that error
message use the brief mode.

If no explanatory text appears with the first instance of a
info, the user should use the help command to consult
>documentation>info>pll.status.info. This situation arises when
a new error is defined before the segment containing the message
text is updated.

If the -list control argument has been specified, the error
messages are also written into the listing segment. They appear,
sorted by line number, after the listing of the source program.
Because of an implementation restriction, no more than 100
messages are printed in the listing.

The pl1 command issues a warning if any variables have been
declared by context or implication. This warning does not appear
in the listing segment.

Listing

The listing created by PL/I is a line-numbered image of the
source segment. This is followed by a table of all of the names
declared within the program. The names are categorized by
declaration type which are:

1) declare statement;

2) expl icit context (labels, entries, ~tl'(f parameters);

3) imp 1 i cit co n t ext.

Within these
alphabetically and

categories,
then listed

the
wi th

symbols are sorted
their location; storage

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywe 11 Info rma t ion Sys tems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 6

class; data type; size, preCISion, or level; attributes such as
"initial", "array", "internal", "external", "aligned" and,
"unal igned"; and a cross-reference 1 ist. The symbol 1 isting is
followed by the error messages.

The object code map follows the list of error messages.
This table gives the starting location in the text segment of the
instructions generated for statements starting on a given line.
The table is sorted by ascending storage locations.

Finally, the listing contains the assembly-like listing of
the object segment produced. The executable instructions are
grouped under an identifying header that contains the source
statement that produced the instruction. Opcode, base-register,
and modifier mnemonics are printed alongside the octal
instruction. If the address field of the instruction uses the IC
(self-relative) modifier, the absolute text location
corresponding to the relative address is printed on the remarks
field of the line. If the reference is to a constant, the octal
value of the first word of the constant is also printed. If the
address field of the instruction references a symbol declared by
the user, its name appears in the remarks field of the 1 ine.

Reference

1) The MULTICS PLfl Language. A semiformal definition of the
Multics PLfl language.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Command
9/24/73

This command submits an absentee request to perform PL/I
compilations using the Version 2 PL/I compiler. The absentee
process for which p11_abs submits a request compiles the segments
named, appends the output of print_link_info for each segment to
the segment segnamel.1ist if it exists, and dprints and deletes
segnamel.1ist. If the -output_file control argument is not
specified, an output segment, segname.absout, is created in the
user's working directory (if more than one segname is specified,
the first is used). If the segment to be compiled cannot be
found, no absentee request is submitted.

Usage

1) segnamel

-queue n, -q n

-copy n, -cp n

-hold

is the path name of a segment to be
compiled.

can be one or more nonobso1ete control
arguments accepted by the PL/I compiler
and described in p11. (See the write-up
in the MPM.) Control arguments must
begin with a minus sign (-).

can be one or more of the following
control arguments:

specifies in which priority queue the
request is to be placed (n <= 3). The
default queue is 3. segnamei.list is
also dprinted in queue n.

spcecifies the number of copies (n <= 4)
of segnamei.1ist to be dprinted. The
default is 1.

specifies that p11_abs should not dprint
or delete segnamel.1ist.

-output_file i, -of f specifies that absentee output is to go
to segment i where f is a path name.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywe 11 I nforma t ion Sys tems Inc.

I pl1_abs I MULTICS PROGRAMMERS' MANUAL

Page 2

Notes

Control arguments and segment names can be mixed freely and
can appear anywhere on the command 1 ine after the command. All
control arguments apply to all segment names. An unrecognizable
control argument causes the absentee request not to be submitted.

Unpredictable results can occur if two absentee requests are
submitted which could simultaneouslY attempt to compile the same
segment or write into the same .absout segment.

When doing several compilations, it is more efficient to
give several segment names in one command rather than several
commands. With one command, only one process is set UP. Thus
the links that need to be snapped when setting up a process and
when invoking the compiler need be snapped only once.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywe 11 Info rma t ion Sys terns Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Name: print, pr

Command
2/20/73

The print command prints a specified ASCI I segment on the
user's terminal. Unless the user specifies a range of line
numbers, the command prints the entire segment.

Usage

print path -begin- -end-

1) path is the path name of the segment to be printed.

2) begin is the line number from which to begin printing and is
optional. It it is not specified, printing starts on
the first line of this segment. If begin is not
specified, then end may not be specified either.

3) end is the line number to end printing; it is optional and
if not specified, printing ends with the last line of
the segment.

Notes

If neither begin nor end is supplied, a short identifying
header will precede the printing of the segment. This header is
suppressed whenever begin is nonnull. See Examples below.

The command assumes that "nevI 1 ine" characters are
appropriately embedded in the text& Output is written on the I/O
output stream "user_output" which is. usually di rected to the
user's terminal.

The user must have read access to the segment to be printed.

Examples

print alpha

prints the segment alpha in the user's working directory in its
entirety.

print alpha 1

has the same e f f e c t , but om its. the ide n t i f yin g he a d e r •

print alpha 10 20

prints lines 10 through 20 of the segment.

@ Copyright, 1973, r1assachusetts Institute of Technology
ana Honeywell Information Syste~s Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

print alpha 10

prints 1 ines 10 through the end of the segment.

print alpha 1 10

prints the first ten lines of the segment.

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Command
Standard Service System

7/28/71

This command prints on the user's console the I/O stream
name associations created by attach calls in the user's current
ring.

Usage

is the name of a stream about which
information is to be printed.

Notes

The type and identifying names of th~ devices associated
with the indicated stream names will be printed. If no arguments
are specified, the information for all streams currently attached
will be printed.

(END)

MULTICS PROGRAMMERS' MANUAL

Command
3/12/73

The print_bind_map command displays all or parts of the bind
map of an object segment generated by version number 4 of the
binder or subsequent versions. Note: if the object segment was
bound by the old bindarchive command or by earlier versions of
the binder, it will ask the user to print the appropriate map
segmen t.

Usage

print_bind_map path -compl- ••• -compn- -control_args-

1) path

2) compi

3) contro1_args

-long, -lg

-name, -nm

-no_header
-nhe

is the path name of a bound object segment.

are the optional names of one or more
components of this bound object. Only the
lines corresponding to these components will
be displayed. A component name must contain
one or more non-nume ric cha racte rs. If i tis
purely numerical, it is assumed to be an
octal offset within the bound segment and the
line corresponding to the component residing
at that offset will be displayed. A
numerical component name may be specified by
preceding it with the control argument
"-name" ("-nm").

may be any of the following:

in addition to the components' relocation
values (displayed in the default brief mode),
the command also displays their compilation
time and their source language.

the following compi argument is the purely
numerical name of a component segment.

the command will omit all headers,
only lines concerning the
themselves.

printing
components

If no component names are specified, the entire bind map is
displayed.

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

t1ULTICS PROGRAMt'1ERS' flArJUAL

Command
Standard Service Systen

11/11/70

This command prints the Dathname of the ~~ultics directory
hein~ used as the current user 1 ihrary for the Dartmouth
subsysteM. The user 1 ihrary is searcherl whenever a Dartmouth
Basic program produces a program naMe ending: in "***".

Usage

(END)

MULTICS PROGRAMMERS' MANUAL

Command
Standard Service System

02/16/71

The print_default_wdir command causes the current default
working directory's name to be printed at the console.

Usage

See also change_wdir and change_default_wdir in the MPM.

(END)

MULTICS PROGRAMMERS' MANUAL

Command
Standard Service System

7/28/71

The print_link_info command prints selected items of
information'for the specified object segments.

Usage

print_l ink_info path1 ••• pathn option1 ••• option

1) pathl is the pathname of the object segment to be
displayed.

2) optionl is chosen from the following list of oPtions.
It may appear anywhere on the command line
and applies to all pathnames. If no option
is specified, all of them are assumed by
default. In this case, information
describing the segment's actual file system
location (tree name) and the circumstances of
its creation (creation time, generator name,
etc.) is also displayed.

-length, -In displays the
lengths.

object segment sections'

-entry, -et

-link, -lk

is a listing of the object segment 1 s external
definitions, giving their symbolic names and
their relative addresses within the segmenta

is an alphabetically sorted listing of
the external symbols referenced by
object segment.

all
this

(END)

MULTICS PROGRAMMERS' MANUAL

Command
Development System

02/12/71

This command prints out all linkage segment usage for a
process. This information is useful for debugging purposes or
for analysis of a process' use of its linkage segments.

Every procedure segment and each data segment that has
definitions has a 1 inkage section associated with it.

Usage

Notes

The information printed for each linkage block is the name
of the corresponding segment, the segment number, the offset, and
the length of the linkage block. The printout is in order by "the
segment number and the offset of the linkage block. The command
prints the position and size of each block ~ithin a combined
1 inkage segment that is not used for 1 inkage.

(END)

MULTICS PROGRAMMERS' MANUAL

Name: print_motd, pmotd

Command
2/7/73

The print_motd command is intended to be used within a
start_up.ec segment. It prints out changes to the message of the
day since the last time the command was called. For a
description of the function of a startup.ec segment see the MPM
Reference Guide section, Protocol for Logging In.

Usage

Notes

The current segment >system_control_l>message_of_the_day is
compared with the segment User.motd (where User is the user's
name) found in the user's home directory. All newly inserted or
modified lines are printed on the console, and the user's copy is
updated for use the next time print_motd is invoked.

If the. segment User.motd does not exist, print_motd will
attempt to create it, print the current message of the day, and
initialize User.motd.

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTrcs PROGRAMMERS' MANUAL

Command
Development System

6/23/71

The print_search_rules command causes the printing of the
currently operating search rules in the user output stream.

Usage

Notes

See also set_search_rules and set_search_directories in the
MPM.

(END)

t~UL TICS PROGRAt1MERS t t~ANUAL

~: print_wdir, pwd

Command
Standard Service System

02/11/71

The print_wdir command prints out the name of the current
working directory on the user's console.

Usage

(END)

MULTICS PROGRAMMERS' MANUAL

~: profi le

Command
11/5/73

The profile control argument of the pl1 and fortran commands
causes the compiler to generate an internal static table
containing an entry for each statement in the source program; the
table entry contains information about the source line as well as
a counter that starts out as zero. Each statement in the program
is modified to start with an instruction to add one to the
counter associated with the statement. The profile command
allows the user to print and reset these counters.

Usage

profile namel.

1) namel

-print, -pr

-brief, -bf

is the
program
reset.

pathname or reference name of a
whose counters are to be printed or

is selected from the following list. Control
arguments apply to all programs whose names
appear in the command line.

causes profile to
information for
specified programs.

1. line number

print the following
each statement in the

2. statement number

3. number of times the. statement has been
executed.

4. cost of executing the statement measured
in number of instructions executed online
plus the number of jumps into
pl1_operators_. Note that each
instruction and each jump into
pl1_operators_ count as only one unit.

5. the names of all operators in
pl1_operators_ used by this statement.

The total cost for all statements is printed
at the end.

causes profile to
list statements

omi t
that

from the statement
have never been

€> Copyright, 1973, t~assachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 2

-long, -lg

-reset, -rs

Example

MULTICS PROGRAMMERS' MANUAL

- -- t:At:\-U'-CU.

causes profile to include the statement 1 ist
statements that have never been executed.

causes profile to reset to zero all counters
in the specified program.

The default control arguments are -print and
-brief.

The PL/I program shown below counts the number of
occurrences of one string in another string. It was compiled
with the -profile control argument and executed once. The output
from the profile command, which is printed below, shows an
anomaly of the current implementation there is only one
counter for the statement:

if then •••

so that one cannot determine the number of times the condition
was satisfied.

The source code for the program is:

example: proc(sl,s2);

declare (sl,s2) char(*),
(i , k) fixed bin,
ioa_ options (variable);

k = 0;
do i = 1 to length(sl) - length(s2);

if substr(sl,i,length(s2» = 52 then k = k + 1;
end;

call ioa_(II"'d",k);
end example;

@ Cop y rig h t , 19 7 3 , ~·1a s 5 a c h use t t sin s tit ute 0 f T e c h no log y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 3
11/5/73

After executing the program once, the output from the
profile command is:

LINE STM COUNT COST PROGRAM

example
7 1 1 1
8 1 1 8
9 1 27 351 + 54 (set_cs cp_cs)

10 1 27 54
12 1 1 14 + 1 (call_ext_out_desc)
13 1 1 o + 1 (return)

TOTAL 428 + 56

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

~: program_interrupt, pi

program_interrupt

Command
2/16/73

The program_interrupt command allows the users of editors,
subsystems and other interactive programs to interrupt those
programs and re-enter them at known places.

When the user wants to interrupt a program he presses the
quit button and types program_interrupt or pi after receiving a
ready message. If the program thus interrupted is not prepared
to accept the interrupt, the system will print a message of the
form "no active handler for program_interrupt". Otherwise the
interrupt is accepted and what happens next depends on the
particular program that was interrupted.

Usage

program_interrupt

To make use of the program interrupt facility, a program or
subsystem must establish a condition handler for the condition
"program_interrupt". \'>Ihen the user invokes the program_interrupt
command, the handler established by the program or subsystem is
invoked. For a discussion of conditions see the MPM Reference
Guide sections, the Multics Condition Mechanism, and List of
System Conditions and Default Handlers.

Example

The edm command has a handler for the "program_interrupt"
condition which, when it is entered, stops whatever the editor is
doing and looks for a request from the user's terminal. Thus, a
user of edm who inadvertantly typed "p100" (to print 100 lines)
could kill this printout by pressing the quit button and then
typing program_interrupt.

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

~: progress, pg

progress

Command
8/14/73

The progress command executes a specified command line and
prints information about how its execution is progressing in
terms of CPU time, real time, and page faults.

Usage

progress -control_arg- -command_line-

-off

-on

-brief, -bf

-output_stream stream_name
-os stream_name

-cput n

if present, progress performs
only the function specified by
that control argument. No
command_line argument can follow
except in the case of -brief.
The control argument can be one
of the following:

suppresses the incremental
messages (see Output Messages
below) printed during execution
of a command line previously
initiated, but does not suppress
the message printed when that
command line is finished. This
control argument can be used to
suppress messages while
debugging.

restores the printing of
incremental messages during
execution of the command 1 ine.

permits only the message at
completion of the command line to
be printed. The command_line
argument is used following this
control argument.

directs output from the progress
command to be printed on the I/O
stream, stream_name. The default
stream is user_i/o.

causes progress to print its
incremental message every n
seconds of virtual CPU time. The
default is -cput 10.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 2

~realt D..

2) command_line

Output Messages

MULTICS PROGRAMMERS' MANUAL

to n ... in~ ,.... its
incremental message every n
seconds of rea 1 time. The
default is -cput 10.

is a character string made up by
concatenating all the arguments
to progress (excluding the first
if it is a control argument) with
blanks between them. The string
is executed as a command line.
It can appear as the only
argument or following the -brief
control argument.

After every 10 seconds of virtual CPU time (assuming the
default triggering value is used), progress prints out a message
of the form:

ct/rt = pt%, ci/ri = pi% (pfi)

where:

1) ct is the number of virtual CPU seconds used by the
command 1 i ne so far.

2) rt is the total real seconds used.

3) pt i s the percentage of total real time that the command
was executing.

4) ci i s the incremental virtual CPU time (since the last
message).

5) r i is the incremental real time.

6) pi is ci expressed as a percentage of r i .

7) pfi i s the number of page faults per second of virtual CPU
time (since the last message).

When the command line finishes, progress prints the
following message:

finished: ct/rt = pt% (pft)

where:

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL I progress I
Page 3

8/14/73

8) pft is the number of page faults per second of virtual CPU
time for the execution of the entire command.

Example

progress pl1 newseg -list
PL/I
10/30 = 33%, 10/30 = 33% (26)
20/50 = 40%, 10/20 = 50% (17)
30/123 = 24%, 10/73 = 13% (20)
finished: 33/150 = 22% (22)

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

~: qedx, qx

Command
11/16/73

The qedx context editor can be used to create and edit ASCI I
segments in Multics. The editor is based on the QED editor as
implemented by K. L. Thompson of Bell Telephone Laboratories.
qedx is basically a subset of QED and is designed to provide the
user with much of the power of QED and performance similar to the
simpler edm editor also described in this manual.

Usage

1.

qedx -inst_path- -argl- ••• -argn-

is an optional argument and, if present,
specifies the pathname of an ASCI I segment
from which the editor is to take its initial
instructions. Such a set of instructions is
commonly referred to as a macro. The editor
automaticallY concatenates the suffix ".qedx"
to inst_path to obtain the complete pathname
of the segment containing the qedx
instructions.

2. arg.i is an optional argument that is appended as a
separate line to the buffer "args"; argl
becomes the first line in the buffer, and
argn becomes the last. Arguments are used in
conjunction with a macro specified by
instr_path. See Initalization Q£ Macros
below.

If inst_path is provided, the editor executes the qedx
requests contained in the specified segmerit and then interrogates
the user I s termi na 1 for further requests. If ins t_path is
omitted, the editor immediatesly interrogates the user's terminal
for the first qedx request. The use of the inst_path argument
requires a fairly detailed understanding of the editor and
further discussion of this feature is delayed until later in this
write-up. For the moment, we will restrict our discussion to the
most straightforward use of the editor.

Once the qedx command is invoked, the user can immediately
begin to issue qedx requests from his terminal. Requests fall
into one of two general categories, input requests and edit
requests. Input requests place the editor into input mode, which
allows the user to enter new ASCI I text from his terminal until
an appropriate escape sequence is typed to switch the editor back

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

to edit mode. Edit requests allow the user to read and write
ASCI I segments and perform various editing functions on ASCII
data. Input and editing operations are not performed directly on
the target segments but in a temporary workspace known as a
buffer.

To create a new ASCII segment, a user might perform the
following steps.

1. Invoke qedx and enter input mode by typing one of the input
requests (e.g., append) as the first qedx request.

la) Enter ASCI I text lines into the buffer from the
terminal.

Ib) Leave input mode by typing the appropriate escape
sequence as the first characters of a new 1 ine.

2. Inspect the contents of the buffer and make any necessary
corrections using edit or input requests.

3. Write the contents of the buffer into a new segment using
the write request and exit from the editor using the quit
request.

To edit an existing ASCI I segment, a user might perform the
following steps.

1. Invoke qedx and read the segment into the buffer by giving a
read request as the first qedx request.

2. Edit the contents of the buffer using edit and input
requests as necessary.

3= Using the write request, write the contents of the modified
buffer either back into the original segment or, perhaps,
into a segment of a different name and exit from the editor.

The user can create and edit any number of segments with a
single invocation of the editor as long as the contents of the
buffer are deleted before work is started on each new segment.

Editor Requests

In the list given below, editor requests are divided into
three categories: input requests, basic edit requests, and
extended edit requests. The basic edit requests are sufficient
to allow a user to create and edit ASCI I segments and provide a

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL EJ
Page 3

11/16/73

functional capability quite similar to edm. The extended
requests are, in general, a little more difficult to learn to use
and the discussion of these requests is postponed until later in
this write-up. Note that the letter given in parentheses is the
actual character used to invoke the request in qedx and does not
always bear a relation to the name of the request.

1. I npu t Regues ts

append (a)

change (c)

insert (i)

Enter input mode, append 1 ines typed from the
terminal after a specified line.

Enter input mode, replace the specified line
or lines with lines typed from the terminal.

Enter input mode, insert lines typed from the
terminal before a specified line.

2. Basic ~ Requests

delete (d)

print (p)

quit (q)

read (r)

substitute (s)

wri te (w)

Delete specified line or lines from the
buffer.

Print specified line or
termi na 1 •

Exit from the editor.

1 i nes on

Read specified segment into the buffer.

Replace specific character strings
specified 1 ine or lines.

the

in

Write current buffer into specified segment.

3. Extended I4it Requests

execute (e)

1 i ne numbe r (=)

global (g)

Pass remainder of request line to the Multics
command processor (i.e., escape to other
commands).

Print 1 ine number of specified line.

Print, delete or print
addressed lines that
character string.

line number of all
contain a specified

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 4

exclude (v) Print, delete or print line
addressed 1 ines that do
specified character string.

number of all
not contain a

buffer (b) Switch to specified buffer (i.e., change base
of all subsequent editor operations to
specified buffer).

move (m) Move specified line or lines into a specified
auxiliary buffer.

status (x) Print on the terminal a summary of the status
of all buffers currently in use.

Addressing

The
editing
1 i nes •
address
request
1 i nes i n

1.

2.

3.

qedx editor is basically a line-oriented editor in that
requests usually operate on an integral number of ASCII
As a result, most editing requests are preceded with an

specifying the line or lines in the buffer on which the
is to operate. There are three basic means by which
the buffer can be addressed:

Addressing by line number;

Addressing relative to the "current" line;

Addressing by context.

In addition, a line address can be formed using a combination of
the above techniques.

1. Addressing ~ ~ Number

Each line in the buffer can be addressed by a decimal number
indicating the current position of the line within the buffer.
The first line in the buffer is line 1, the second line 2, etc.
The last line in the buffer can be addressed either by line
number or by using the $ character, which is interpreted to mean
lithe last 1 ine currently in the buffer". In certain cases it is
possible to address the (fictitious) line preceding line 1 in the
buffer by addressing line O.

As lines are added to or deleted from the buffer, the line
numbers of all lines that follow the added or deleted lines are
relocated accordingly. For example, if line 15 is deleted from
the buffer, 1 ine 16 becomes line 15, 17 becomes 16, and so on.

® Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 5
11/16/73

If an attempt is made to address aline not contained in the
buffer, an error message is printed by the editor. If the buffer
is currently empty, as it is when the editor is first entered,
only the line numbers 0 and $ are considered val ide

2. Addressing Relatiye ~ ~ Current ~

The qedx editor maintains the notion of a "current" line
that is addressable by using the character "." (period) to
represent the address of the current line. Normally, the current
line is the last line addressed by an edit request or the last
1 ine entered from the terminal by an input request. The value of
"." after each editor request is documented in the description of
the request.

Lines can be addressed relative to the current 1 ine number
by using an address consisting of "." followed by a signed
decimal number specifying the position of the desired line
relative to the current line. For example, the address .+1
specifies the line immediately following the current line and the
address .~1 specifies the line immediately preceding the current
1 i ne.

When specifying an increment to the current line number, the
+ sign can be omitted (e.g., .5 is interpreted as .+5.. In
addition, when specifying a decrement to the current line number,
the "." itself can be omitted (e.g., -3 is interpreted as .-3 .•
It is also possible to follow"." with a series of signed decimal
numbers (e.g., .5+5-3 is interpreted as .+7).

3. Addressing ~ Context

Lines can be addressed by context by using a regular
expression to match a string of characters on a line. When used
as an address, a regular expression specifies the first line
encountered that contains a string of characters that matches the
regular expression. In its simplest form, a regular expression
used as an address performs in a manner similar t~ the edm locate
(1) request. For example, in the following text, the regular
expression labcl matches line 2.

a: procedure;
abc=def;
x=y;
end a;

€> Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 6

To use a regular expression as an address, the user types
Iregexp/, where regexp is any val id regular expression as
described below. The search for a regular expression begins on
the line following the current line (i.e., .+1. and continues
through the entire buffer, if necessary, until it again reaches
the current line. In other words, the search proceeds from .+1
to $ and then from line 1 to the current line. If the search is
'successful, Iregexpl specifies the first line encountered during
the search in which a match was found.

A regular expression can consist of any character in the
ASCII set except the new line character. However, the following
characters have specialized meanings in regular expressions.

Some

I Delimits a regular expression used as an address.

* Signifies "any number (or none) of the preceding
character ll

•

When used as the first character of a regular
expression, the ~ character signifies the character
preceding the first character on a line.

$ When used as the last character of a regular
expression, the $ character signifies the character
following the last character on a line.

Matches any character on a line.

examples

lal

label

lab*cl

lin •• tol

lin.*tol

I abcl

follow:

Matches the letter lIa" anywhere on a
1 i ne.

Matches the string lIabc" anywhere on a
1 i ne.

Matches fl ac", "abc", "abbc", "abbbc",
etc. anywhere on a line.

Matches a line containing "in" followed
by any two characters followed by "to".

1-·1 at c h e sal i n e con t a i n i n g II in" and II to"
in that order.

Matches aline beginning with lIabc".

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

labc$1

I~abc.*def$/

1.*1

I~$I

Page 7
11/16/73

Matches a line ending with "abc".

Matches a line beginning with "abc" and
ending with "def".

Matches any 1 ine.

Matches an empty
character onl y).

1 i ne (new 1 i ne

The special meanings of
regular expression can be
character with ¢c.

"I", "*",
removed

"$11, II~II, and "." within a
by preceding the special

l¢c/¢c*1 Matches the string "1*" anywhere on a
1 i ne.

The editor remembers the last regular expression used in any
context. The user can reinvoke the last used regular expression
by using a null regular expression (e.g., II). In addition, a
regular expression can be followed by a signed decimal integer in
the same manner as when addressing relative to the current 1 ine
number. For example, the addresses labc/+5-3, labcl+2 or /abc/2
all address the second line following aline containing "abc".

Note that the two uses of ".11 and "$11 (as 1 ine numbers and
as special characters in regular expressions) are distinguished
by context.

4. Compound Addresses

An address can be formed using a combination of the
techniques described above. The following rules are intended as
a general guide in the formation of these compound addresses.

1. If a line number is to appear in an address, it must be
the first component of the address.

2. A line number can be followed by a regular expression.
This construct is used to begin the regular expression
search after a specific line number. For example, the
address 10/abcl starts the search for label immediately
after 1 ine 10.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 8

'Z
J •

MULTICS PROGRAMMERS' MANUAL

A regular expression can follow an
relative to the current line number.
address .-8/abc/ starts the search
preceding the current line.

address
For example, the
from 8 lines

4. A regular expression can be followed by another regular
expression. For example, the address /abc/ldefl matches
the first line containing "def" appearing after the
first line containing "abc". As mentioned earlier, a
regular expression can be followed by a decimal integer.
For example, the address /abcl-lO/defl.S starts the
search for Idef/ from 10 lines preceding the first line
to match /abcl and if /defl is matched, the value of the
compound address is the fifth line following the line
containing the match for /defl.

S. Addressing £ Series of Lines

Several of the editor requests can be used to operate on a
series of lines in the buffer. To specify a series of 1 ines, two
addresses must be given in the following general form:

Al,A2

The pair of addresses specifies the series of lines starting with
the line addressed by the address Al through the line addressed
by A2 inclusive.

Examples

1,5 specifies line 1 through line 5.

1,$ specifies the entire contents of the buffer •

• 1,/abcl specifies the line following the current line
through the first line after the current line
containing lIabc".

When a
computation
computation
changed by
the address

• 1, • 2

comma is used to separate addresses, the address
of the second address is unaffected by the

of the first address (i.e., the value of "" is not
the evaluation of the first address). For example,

pair

specifies a series of two lines, the 1 ine immediately after the
current 1 ine through the second line after the current line.

€) Copyright, 1973, t~assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 9
11/16/73

However, if a semicolon is used to separate addresses
instead of a comma, the value of 11." is set to point to the line
addressed by Al before the evaluation of A2 begins. In contrast
to the example given immediately above, the address pair

.1;.2

specifies a series of three lines, the line immediately following
the original current line through the second line following the
line specified by AI. As a further example, the addres~ .. pair

/abc/;.+10

is equivalent to the address pair

/abc/,/abc/+10

6. Addressing Errors

.:~

The following list describes the various errors that can
occur when the editor is attempting to evaluate an address.

1. "Buffer empty" - An attempt has been made to reference
a specific line when the buffer is empty. (Only "$",
"." and "0" are legal addresses within an empty buffer
and only if used with a read, append, or insert
request.)

2. "Address out of buffer" - An attempt has been made to
refer to a nonexistent line (e.g., an address of 20
when there are fewer than 20 lines in the buffer or an
address of .+5 when the current line is fewer than 5
lines from the last 1 ine in the buffer).·

3. "Address wrap around" - An attempt has been made to
address a series of lines in which the line number of
the second line addressed is less than the line number
of the first (e.g., $,1).

4. "Search failed" - A regular expression search initiated
from the user's terminal has failed to find a match.

5. "Syntax error in regular expression" A regular
expression used as an address has not been properly
del imited.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 10

o. "II undefined" - A null regular expression has been
used and no previously typed regular expression is
available.

~ .Qf ~ Edi tor

1. Editor Request Format

A request to the editor can take anyone of the following
three forms depending on the number of addresses to be specified
with the request.

1. <request>

2. ADR<request>

3. ADRl,ADR2<request> or ADRl;ADR2<request>

ADR, ADRl, and ADR2 are any legal addresses as specified above,
and <request> is any valid editor request.

Some editor requests require no address, some require a
single address and others require a pair of addresses. In all
cases, however, the user can use a request omitting one or both
of the required addresses and let the editor provide the missing
address information by default. The following general rules
apply to the use of addresses specified by default.

1. If a request requiring an address pair is issued with
the second address missing, the (missing) second address
is assumed to be the same as the first. For example,

ADR<request>

is interpreted as

ADR,ADR<request>

and addresses a single line in the buffer (i.e., the
1 ine addressed by ADR).

2. If a request requiring an address pair is issued with
both addresses missing, one of the following address
pairs is assumed depending on the request issued •

• ,.<request> for most editor requests

1,$<request> for write, global and exclude

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 11
11/16/73

3. If a request requiring a single address is issued with
no address specified, one of the following addresses is
assumed depending on the request issued •

• (request> for most editor requests

$<request> for read requests

2. I.b.g Value of ~

All editor requests that alter the contents of the buffer or
cause information to be output on the user's terminal change the
value of "." (i.e., the current line). Usually, the value of 11."
is set to the last address specified (either explicitly or by
default) in the editor request. The one major exception to this
rule is the delete request, which sets II II to the line after the
last line deleted.

3. Multiple Requests Qll £ ~

In general, any number of editor requests can be issued in a
single input line. However, each of the requests listed below
must be terminated with a new line character, and, thus, each
must appear on a line by itself or at the end of a line
containing multiple editor requests.

read (r)
wr i te (w)
quit (q)
execute (e)

4. Spg~iDg

The following rules govern the use of spaces in editor
requests.

1. Spaces are taken as literal text when appearing inside
of regular expressions. Thus, /the n/ is not the same
as /then/.

2. Spaces cannot appea r in numbers, i • e. , 13 cannot be
written as 1 3 (which is interpreted as 1+3 or 4 •.

3. Spaces within addresses except as indicated above are
ignored.

€) Copyr i ght, 1973, t~assachuset ts Ins t i tute of Techno logy
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 12

I. The treatment of spaces in the body of an
depends on the nature of the request.

5. Comments

"At "
CU I LVI ieqUest

The quotation mark character is reserved as the comment
del imiter and is actually implemented as an editor request, the
·effect of which is to ignore the remainder of the request line.
If the quotation mark is preceded by an address, the value of "."
is set to that address.

6. ~ Locate Request

If an address is followed by a new line character, the value
of "." is set to the addressed line and the line is printed on
the user's terminal. For example, the request line

/-'start/

locates a line beginning with "start", sets the value of
prints the line •

. 7. Responses iL2m ~ Editor

II II . and

In general, the editor does not respond with output on the
terminal unless explicitly requested to do so (e.g., with a print
or print line number request). The editor does not comment when
the user enters or exits from the editor or changes to and from
input and edit modes. The use of frequent print requests is
recommended for users using the qedx editor for the first time.

If the user inadvertently requests a large amount of
terminal output from the editor and wishes to abort the output
without abandoning the edit, he can hit the quit button on his
terminal, and, after the quit response, he can re-enter the
editor by invoking the program_interrupt (pi) command. This
action causes the editor to abandon its printout, but leaves the
value of "." as if the printout had gone to completion.

If an error is encountered by the editor, an error message
is printed on the user's terminal and any editor requests already
input <i.e., read ahead from the terminal) are discarded.

If a user exits from qedx by hitting the quit button, and
subsequently invokes qedx in the same process, the message "qedx:
Pending work in previous invocation will be lost if you proceed;
do you wish to proceed?" is printed on the terminal. The user
must type a "yes" or "no" answer.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

8. Input ~

Page 13
11/16/73

The editor can be placed in input mode with the use of one
of the three input requests (append, change and insert). The
input request must immediately be followed by a blank or a new
line character, which in turn is followed by the literal text to
be input to the buffer. The literal text can contain any number
of ASCI I lines. To exit from input mode and terminate the input
request, the escape sequence ¢f is typed, usually as the first
character of a new line. The ¢f escape sequence can be followed
immediately with more editor requests on the same line. The
usual form of an input request is as follows:

ADRl{,ADR2.<input request>
TEXT

¢f

It is important to remember to terminate the input request
with the ¢f before typing another request. Otherwise, the (would
be) editor request is regarded as input and included in the text
rather than executed as a request.

Upon leaving input mode, the value of
the last line input from the terminal.

II II is set to point at

The special meaning of any of the escape sequences used by
qedx (e.g., ¢f, ¢c, ¢b, ¢r) can be suppressed by preceding the
escape sequence with ¢c thus allowing these escape sequences to
be input as literal text.

Input Requests

1. Append III
The append request is used to enter input lines from the

terminal, appending these lines after the 1 ine addressed by the
append request. The append request is one of the few requests
that can operate correctly when the buffer is empty.

Format:

Default:

ADRa
TEXT
¢f

a is taken to mean .a

@ Copyr i ght, 1973, f\1assachuset ts I nst i tute of Techno logy
and Honeywell Information Systems Inc.

Page 14

Value of Ii Ii. . .
Example:

Note:

2. Change.i.&l

MULTICS PROGRAMMERS' MANUAL

Set to last 1 ine appended.

Before

a: procedu re;
X=Y;
end a;

Request Sequence

After

"."_>

2a
q=r;
¢f

or

a: procedure;
x=Y;
q=r;
end a;

/x=/a
q=ri
¢f

The request Oa can be used to insert text before
line 1 of the buffer.

The change request
set of lines and replace
entered from the terminal.

is used to delete an addressed line or
the deleted 1ine(s) with new text

Format:

Default:

Value of II II.

Example

ADR1,ADR2c
TEXT
¢f

c is taken to mean .,.c

Set to last 1 ine entered from terminal.

Before

a: procedure;
X=Y;
q=r;
end a;

@ Cop y rig h t , 1 9 7 3, t·1a s sac h use t t sin s tit ute 0 f T e c h no log y
and HoneY\,Je 11 Info rmat i on Sys terns Inc.

MULTICS PROGRAMMERS' MANUAL

3. Insert.tU

Request Sequence

After

11."_>

2,3c
s=t;
U=V;
W=Zi
¢f

or

a: procedure;
s=t;
u=V;
W=Z;
end a;

/x=/,/q=/c
s=t;
U=Vi
w=z;
¢f

Page 15
11/16/73

The insert request is used to enter input lines from the
terminal and insert the new text immediately before the addressed
line. The insert request is one of the few requests that can
operate on an empty buffer.

Format:

Default:

Value of H II.

Example

ADRi
TEXT
¢f

i is taken to mean .i

Set to last line inserted.

Before

a: procedu re;
x=y;
end a;

Request Sequence

2i
q=r;
¢f

or
/x=/i
q=r;
¢f

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 16

. Note:

a: procedure;
"."_> q=r;

x=y;
end a;

MULTICS PROGRAMMERS' MANUAL

The request ADRi has the same effect as the
request ADR-1a.

Basic ~ Requests

The edit requests described below represent a subset of qedx
suitable for most editing situations. Additional requests are
described later in this write-up under extended editor functions.

1. Delete iQl

The delete request is used to delete the addressed line or
set of lines from the buffer.

Format:

Default:

Value of II II. . .

Example:

ADR1,ADR2d

d is taken to mean .,.d

Set to line immediately following the
deleted.

Before

a: procedure;
x=y;
q=r;
s=t;
end a;

Request Sequence

3,4d or /q=/,/s=/d

After

a: procedure;
x=y;

"."_> end a;

last

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

1 i ne

MUlTICS PROGRAMMERS' MANUAL EJ
2. Print 1Jll

Page 17
11/16/73

ihe print request is used to print the addressed line or set
of lines on the user's terminal.

Format:

Default:

Value of 11 II. . .

Example:

Note:

3 • ill!.Lt...l9.l

ADR1,ADR2p

p is taken to mean .,.P

Set to last line addressed by the print
(i.e., the last line to be printed).

Contents of Buffer

a: procedurei
X=Yi
q=ri
S=ti
end ai

Request

2,4p or

Console Output

X=Yi
q=r;

11."_> s=t;

/x=/,/s=/p

request

The output from the print request can be aborted
with the use of the quit button and
program_interrupt command.

The quit request is used to exit from the editor and does
not itself save the results of any editing that might have been
done. If the user wishes to save the modified contents of the
buffer, he must explicitly issue a write request (see below).

Format:

Default:

Special Note:

q

The quit request cannot have an address.

The quit request must be followed immediately by
a new line character.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 18

4.

The read request is used to append the contents of a
specified ASCI I segment after the addressed line. The read
request is one of the few requests that operate correctly when
the buffer is empty.

Format:

Default:

Value of II II. . .
Example:

Note:

ADRr PATH

PATH is the pathname of the ASCI I segment to be
read into the buffer. The pathname can be
preceded with any number of spaces and must be
followed immediately by a new line character.

r PATH is taken to mean $r PATH

Set to the last line read from the file.

Before

a: procedu re;
x=y;
end a;

Request

2r b.pll or /x=/r b.pl!

where b.pll is the following text

b: procedure;
c=d;
end b;

After

a: procedure;
x=y;

b: procedure;
c=d;

"."_> end b;
end a;

The request
contents of
buffer.

Or PATH is used
a segment before

to insert the
line 1 of the

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 19
11/16/73

5. Substitute ~

The substitute request is used to modify the contents of the
addressed line or set of lines by replacing all strings that
match a given regular expression with a specified character
string.

Format:

Default:

Value of ".11:

Operation:

Examples:

6. Write llil

ADR1,ADR2s/REGEXP/STRINGI

(The first character after the "s" is taken to be
the request delimiter and can be any character
not appearing either in REGEXP or in STRING.)

s/REGEXP/STRINGI is taken to mean
.,.s/REG£XP/STRINGI

Set to last line addressed by request.

Each character string in the addressed 1 ine or
lines that matches REGEXP is replaced with the
character string STRING. If STRING contains the
special character &, each & is replaced by the
string matching REGEXP. The special meaning of &
can be suppressed by preceding the & with the
escape sequence ¢c.

Before:
Request:
After:

Before:
Request:
After:

Before:
Request:
A f te r:

The quick brown sox
s/sox/foxl
The quick brown fox

xyzindex=q;
s/index/(&)1
xyz(index)=q;

x=y
s/$I;/
x=y;

The write request is used to write the addressed line or set
of 1 ines into a specified segment~ If the segment does not
already exist, a new segment is created with the specified name.

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 20

Format:

Default:

Value of .. II • . .
Example:

MULTICS PROGRAMMERS' MANUAL

ADRl,ADR2w -PATH-

PATH is the pathname of the segment the contents
of which are to be replaced by the addressed
lines in the buffer. The pathname can be
preceded by any number of spaces and must be
followed immediately by a new line character. If
PATH is omitted, If PATH is omitted and the
default pathname is null, then the message "No
pathname given ll is printed and qedx awaits
another request. The default pathname is the
first pathname used with either a read or write
request in this invocation of qedx. The default
pathname is set to null if no pathname has been
given or if a pathname (either the same one or a
different one) is used with a read or write
request a second time.

w PATH i s taken to mean 1, $w PATH

Unchanged

Request

2,4'11 sam.pl1

Result

The second through fourth lines of the
buffer replace the contents of the segment
sam.pl1 in the user's working directory.

Extended ~ Qf ~ Editor

The editor requests discussed up to this point comprise a
basic subset sufficient for most applications. A user learning
to use qedx for the first time might be well advised to stop at
th i s po in t.

The editor requests remaining to be described are divided
into two groups: those that require a knowledge of auxiliary
buffers and those that do not. Discussion of the former group of
requests is delayed until the section on auxiliary buffers.
Discussion of the latter group of requests proceeds below.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

1. Execute ie.l

Page 21
11/16/73

The execute request is used to invoke the Mu1tics command
system without exiting from the editor. Whenever an execute
request is recognized, the remaining characters following the
execute request in the request line are passed to the Mu1tics
command processor. The execute reques"t can be fo 11 owed by any
legal Multics command line. However, due to a temporary
restriction, the user should not invoke edm, bsys, or qedxwhi1e
in qedx.

Format:

Value of

Example:

Note:

II 11. . .
e <corrrnand line>

Unchanged

The request line

e print alpha.pl1

can be used to print a segment in the user's
working directory.

The request line

eli s t; ma i 1

lists the user's working directory and prints his
mailbox (if any).

If the user wishes to abort a command line issued
with the execute request, he can hit quit and
invoke the program_interrupt command to abort the
command line and restore control to qedx.

2. Print ~ Number 1=1

There request is used to print the line number of the
addressed line.

Format: ADR=

Default: = is taken to mean =
Value of " II. Set to line addressed by request

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 22

Example:

a: procedure;
X=Yi
p=q;
end a;

Request

/q;/=

Response

3

3. Global 1.&l

The global request is used in conjunction with some other
request (e.g., print, delete, print line number). That request
is to operate only on those lines addressed by the global request
that contain a match for a specified regular expression.

Forma t:

Default:

Value of II If. . .
Note:

Example:

ADR1,ADR2gX/REGEXP/

where X must be one of the following requests

d delete lines containing REGEXP
p print lines containing REGEXP
= print line numbers of lines containing REGEXP

gX/REGEXP/ is taken to mean 1,$gX/REGEXP/

Set to ADR2 of request

The character immediately following the request X
is taken to be the regular expression delimiter
and can be any character not appearing in REGEXP.

Before

a: procedure;
q=r;
x=y;
y=q;
end a;

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Request

l.,.$gd/q/

After

a: procedure;
x=y;

"."_> end a;

4. Exclude III

Page 23
11/16/73

The exclude request is also used in conjunction with another
request
exclude
regular

request (e.g., print, delete, print 1 ine number). That
is to operate only on those lines addressed by the
request that do not contain a match for a specified
expression ..

Format:

Default:

Value of II It.

(Jote:

Example:

ADR1,ADR2vX/REGEXP/

where X must be one of the following requests

d delete lines not containing REGEXP
p print lines not containing REGEXP
= print line numbers of lines not containing

REGEXP

vX/REGEXP/ is taken to mean 1,$vX/REGEXP/

Set to ADR2 of request

The character immediately following the request X
is taken to be the regular expression delimiter
and can be any character not appearing in REGEXP.

Before

a: procedu re;
q=r;
x=y;
y=q;
end a;

Request

1,$v=/q/

@ Cop y rig h t , 19 73, r·1 ass a c h use t t sin s tit ute 0 f T e c h n 0 log y
and Honeywell Information Systems Inc.

Page 24

Response

1
3
5

MULTICS PROGRAMMERS' MANUAL

Auxiliary Buffers

The discussion up to this point has assumed the existence of
only a single buffer. Actually, qedx supports a virtually
unlimited number of buffers. One buffer at a time can be
designated as the "current buffer"; any other buffers at this
time are referred to as auxiliary buffers. All of the editor
requests described so far operate within the current buffer.

Each buffer is given a symbolic name of 1 to 16 ASCII
characters. When the editor is invoked, a single buffer (buffer
0) is created by the editor and designated as the current buffer.
Additional buffers can be created merely by referencing a
previously undefined buffer name. Each buffer is implemented as
a separate segment in the user's process directory and, thus, is
capable of holding any ASCI I segment.

Buffer names are usually enclosed in parentheses; for
example, the buffer name Fred is typed as (Fred). However, for
historical reasons, a buffer name consisting of a single
character can be typed with or without the enclosing parentheses
(e • g., II X II i s ta ken to be II (x) ") •

1. ~ Change Buffer Request 1Ql

The change buffer request is used to designate an auxiliary
buffer as the current buffer. The previously designated current
buffer becomes an auxiliary buffer.

Format:

Value of II II. . .

b(X)

where X is the name of the buffer that is to
become the current buffer.

Restored to the value of "." when buffer X was
last used as the current buffer <i.e., the value
of "." is maintained separately for each buffer
and saved as part of the buffer status).

® Copyright, 1973, fc1assachusetts Institute of Technology
and Honeywe 1 1 Info rma t ion Sys terns Inc.

MULTICS PROGRAMMERS' MANUAL

Page 25
11/16/73

2. ~ ~ Request 1m2

The move request is used to move one or more lines from the
current buffer to a specified auxiliary buffer. The addressed
lines replace the previous contents (if any) of the auxiliary
buffer.

Format:

Default:

Value of

Example:

II II. . .

ADR1,ADR2m(X)

where X is the name of the auxiliary buffer to
which the lines are to be moved.

m(X) is taken to mean .,.m(X)

Set to first line after last line moved in
current buffer. Set to line 0 in the specified
auxiliary buffer.

Before: Current Buffer

a: procedure;
X=Yi
y=ki
k=r;
end a;

Request: 3,4m(S)

After: Current Buffer

a: procedure;
x=y;
end a;

or

Buffer B

abc=def;
end bini

/k;/,/r;/m(B)

Buffer B

y=k;
k=r;

3. ~ Buffer Status Request 1Al

The buffer status request is used to print on the user's
terminal a summary of the status of all buffers currently in use.
The name and length (in lines) of each buffer is listed; the
current buffer is specially marked with a right arrow "_>"
immediately to the left of the buffer name.

Format: x

Value of II II. Unchanged

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 26

Example:

MULTICS PROGRAMMERS' MANUAL

If the user has created the additional buffers
alpha and beta and has designated alpha as his
current buffer, the output from the buffer status
request might be as follows.

157 (0)
32 ->(alpha)
53 (beta)

This output indicates 157 lines in buffer 0 <the
initial buffer), 32 lines in alpha (the current
buffer) and 53 lines in beta.

4. Special Escape Sequences

The input to qedx can be viewed as a stream of ASCI I
characters. Depending on the context, some of these characters
are interpreted as editor requests and others are interpreted as
literal text. The following escape sequences are recognized by
the editor, in either context, as directives to alter the input
character stream in some fashion.

¢b(X) This sequence is used to redirect the editor input
stream to read subsequent input from buffer X. When
the editor encounters this sequence, the entire escape
sequence is removed from the input stream and replaced
with the literal contents of the specified buffer. If
another ¢b escape sequence is encountered while
accepting input from buffer X, the newly encountered
escape sequence is also replaced by the contents of the
named buffer. The editor allows the recursive
replacement of ¢b escape sequences by the contents of
named buffers to a recursion depth of 500 nested ¢b
escape sequences.

The buffer to which the input stream is redirected can
contain editor requests, literal text or both. If the
editor is executing a request obtained from a buffer
<rather than from the terminal) and the request
specifies a regular expression search for which no
match is found, the usual error comment is suppressed
and the remaining contents of the buffer are skipped.
If one thinks of the escape sequence ¢b(X) as a
subroutine call statement, the failure to match a
regular expression specified by some request in buffer
X can be thought of as a return statement.

@ Copyright, 1973, r·1assachusetts Institute of Technology
and Honeyv.Jell I nformat ion Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

¢r

Note:

Page 27
11/16/73

This escape sequence is used to temporarily redirect
the input stream to read a single line from the user's
terminal and is normally used when executing editor
requests contained in a buffer. The ¢r is removed from
the input stream and replaced with the next complete
line entered from the user's terminal. In the line
that replaces the ¢r sequence, additional ¢r or ¢b
escape sequences have no effect.

The special meanings of ¢b and ¢r can be suppressed by
preceding the escape sequence with a ¢c escape
sequence.

5. ~ of Buffers f2L Moving ~

Perhaps the most common use of buffers in qedx is for moving
text from one part of a segment to another. A typical pattern is
to move the text to be moved into an auxiliary buffer with a move
request. For example, the request

1,5m(temp)

moves line 1 through 5 of the current buffer into the auxiliary
buffer temp. Once the lines have been moved to an auxiliary
buffer, they can be used as literal text in conjunction with an
input request. For example, to insert the lines in buffer temp
immediately before the last 1 ine in the current buffer, the
following sequence might be used.

$ i
¢b(temp)¢f

In this case, the literal text in buffer temp replaces the ¢b
escape sequence and thus is treated as input to the editor
already placed in input mode by the insert (i) request. Notice
that the ¢f immediately following the ¢b escape sequence is
correct since it can be expected that the last 1 ine in buffer
temp is terminated by a new line character that precedes the ¢f
after the ¢b(temp) is expanded.

6. Defining Editor Cliches

Another common use for buffers is for the definition of
frequently used editing sequences or "cl iches ll

• For example, if
a programmer were faced with the task of adding the same source
code sequence in several places in a program, he might elect to
type the editing sequence into a buffer only once and then invoke

® Co p y rig h t , 19 7 3 , t:1a s sac h use t t sin s tit ute 0 f Tee h no log y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 28

the contents of the buffer as many times as necessary~ In the
example given below, the contents of buffer new contains the
necessary editor requests and literal text to append four lines
of text at any point in the current buffer.

Example: Contents of buffer new

Usage

a
if code -=0 then do;

call error (code);
return;
end;

¢f
.-4,.lp

ADR¢b(new)

ADR becomes the address of the append request in
buffer new and specifies the point at which the
literal text is to be appended. The four lines of
text in buffer new {lines 2-5. are appended to the
current buffer, the ¢f terminates the append
request and the print request prints the line
preceding the appended lines, the four appended
lines and the line following the appended 1 ines.

7. ~ Qf Editor Macros

The use of buffers in qedx allows a user to place more
elaborate editor request sequences (commonly called macros) into
auxiliary buffers and use the editor as a pseudo-programming
language. In this context, it is useful to regard a buffer
containing executable editor requests as a subroutine and to view
the ¢b escape sequence as a call statement.

In the example discussed below, a macro is implemented to
read ASCI I text from the terminal until an input terminating
sequence, a line consisting only of 11.", is typed. Hhen the
terminating sequence is typed, the macro asks the user for a name
under which the input is filed and exits from the editor. The
macro is implemented with two executable buffers (subroutines)
named read and test and is invoked by diverting the input stream
to the read buffer (i.e., by call ing the read subroutine>.

@ Copyr i ght, 1973, Massachusetts I n_st i tute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Example: Contents of buffer read

e ioa_ Type
$a
¢r¢f'
¢b(test)
¢b(read)

Contents of buffer test

s/ ¢c.$//
d
e ioa_ "Give me a segment name."
w ¢r
q

Explanation of the read buffer

Page 29
11/16/73

1. The first request in read is an escape to the command
processor to call ioa_ to print the message IIType" on
the user's terminal.

2. The second requ'est ($a) places the editor in input
mode to append text to the end of the current buffer
(presumably buffer 0).

3. One line is read from the user's terminal (¢r) and the
append request is terminated (¢f).

4. The contents of buffer test is executed (i.e., read
"calls" the test "subroutine").

5. \~hen and if test "returns", the contents of buffer
read are executed again (i.e., read "call s " itself).

Explanation of the test buffer

1. The first line uses a substitute request to test the
current line (i.e., the line just read in by the above
append request) for the input terminating sequence (a
line consisting only of "."). If the regular
expression in the substitute request fails to find the
terminating sequence, the remaining requests in buffer
test are ignored (i.e., the test subroutine "returns"
to its caller).

@ Copyright, 1973, t,1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 30

2. If the terminating sequence is found in step I, the
blank line that previously contained the terminating
sequence is deleted.

3. Again ioa_ is used to type a message to the user.
This time, the macro asks the user for a segment name
under which the input lines appended by the read
subroutine are to be stored.

4. The contents of the current buffer containing the
input lines are written into a segment, the name of
which is read from the terminal by the ¢r escape
sequence.

5. The macro exits from the editor with a quit request.
If the quit request were not included, qedx would
expect further instructions from the user's terminal
at this point.

8. Initialization Qf. Macros

The editor provides a means through which a qedx macro can
be initiated directly from command level. As indicated earl ier,
qedx can be invoked in the following fashion.

qedx path

The above command i$ equivalent to entering the editor with the
simple command

qedx

and immediately executing the following series of requests.

b(exec)
r path.qedx
bO
¢b(exec)

This request sequence reads the initial macro segment into buffer
exec, changes the current buffer back to buffer 0 and executes
the contents of buffer exec. This series of requests is
sufficient to allow a multi-buffer macro to be initialized. For
example, the macro given in the previous example can be
initialized and run from a segment with the following contents.

b(read)$a
e ioa_ Type

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

$a
¢c¢r¢c¢f
¢c¢b(text)
¢c¢b(read)
¢f
b(test)$a
s/~¢c¢c.$/I
d
e ioa_ "Give me a segment name. 1I

w ¢c¢r
q
¢f
bO
¢b{read)

Page 31
11/16/73

The contents of the buffers read and test are initialized with
append requests. Notice that all escape sequences to be placed
into a buffer as 1 iteral text must be preceded by a ¢c escape
sequence. Thus, the second line to be input to buffer "read" is
input as

¢c¢r¢c¢f

to produce the following line in the target buffer.

¢r¢f

In addition to the above, the qedx editor can be invoked
with more than one argument. Thus,

qedx read path

is the equivalent of

qedx
b(exec)
r read.qedx
b(args)
a
path
¢f
bO
¢b(exec)

@ Copyright, 1973, r,1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 32

if the contents of read.qedx is:

r ¢b(args)

then the contents of buffer exec and buffer args become:

r ¢b(args) path

and the request ¢b(exec) causes the segment with the pathname
path to be read into buffer O. At that point the editor waits
for further commands from the user.

With the same contents of read.qedx the invocation

qedx read path 1,$s/x/y/ w q

enters into the buffers exec and args the following:

r ¢b(args) path
1,$s/x/y/
w
q

This causes the editor to read the segment path into buffer 0,
substitute for every occurence of x the character y, write out
the segment path and quit, returning to co~mand level.

Notes

Since the name of the segment to be read in appears on the
command 1 ine, this feature allows users to use abbreviations (see
the write-up of the abbrev command) for the names of segments to
be edited.

There is no safeguard to keep the editor from changing a
buffer from which it is also accepting editor requests. If this
is attempted, havoc may well be the result.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

~: ready, rdy

Command
Standard Service System

7/01/71

The ready command types out an up-to-date ready message
giving the time of day, the processor time, and the page faults
since the last ready message was typed.

Usage

ready

See the MPM commands ready_on and ready_off.

(END)

MULTICS PROGRAMMERS' MANUAL

~: ready_off, rdf

Command
Standard Service System

7/01/71

The ready_off command allows the user to turn off the ready
message typed on the console after the processing of each command
line. The automatic typing is suspended until a ready_on command
is given.

Usage

See the MPM commands ready and ready_on.

(END)

MULTICS PROGRAMMERS' MANUAL

Command
Standard Service System

6/28/71

The ready_on command causes the ready message to be
automatically typed on the console after each command line hai
been processed. The automatic printing is in effect until a
ready_off command is called.

Usage

5ee the MPM commands ready and ready_off.

(END)

MULTICS PROGRAMMERS' MANUAL

Command
Standard Service System

7/01/71

Name: release, rl

The release command causes the stack history which was
preserved by a previous hold command to be released. That is,
the Multics stack will be returned to a point immediately prior
to the stack frame of the command which was being executed when
the quit signal or unclaimed signal which led to the hold command
occurred.

Usage

1) opt

release -opt-

is an optional control argument which if "-all" or
"-a" causes the stack history preserved by all
previous hold commands (which have not already been
released) to be released.

(END)

MULTICS PROGRAMMERS' MANUAL

Name: rename, rn

Command
2/12/73

The rename command replaces a specified segment, directory,
or link name by a specified new name, without affecting any other
names the entry may have.

Usage

rename path~ namel ••• pathn namen

1) pathl

2) namel

Notes

specifies the old name which is to be replaced; it
may be a path name or an entry name.

specifies the new name which replaces the storage
system entry name portion of pathl.

The star and equals conventions may be used.

The user's access mode with respect to the directory
specified by pathl must contain the modify attribute; if the star
convention is employed, the mode must also contain the status
attribute.

The entry name namei must be unique in the directory
specified by pathl; if a namel already exists in the directory,
the user is interrogated as to whether he wishes the other entry
which has that name to be deleted.

Example

rename alpha beta >sample~dir>gamma delta

causes alpha, -in the user's
be ta, and gamma, in the
delta.

working directory, to be renamed
directory >sample_dir, to be renamed

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MUlTICS PROGRAMMERS' MANUAL reorder_archive

Command
11/13/72

~: reorder_archive

This command provides a convenient way for ordering the
contents of an archive segment, eliminating the need to extract
the entire contents of an archive and then replace them in the
order desired. This command will place specified components at
the beginning of the archive, leaving any unspecified components
in their original order at the end of the archive.

Usage

1) cal

-ci

-fi

reorder_archive -ca~- ••• path~ ••• -can- ••• -pathn-

may be chosen from the following list:

if the command is to be driven from console input.
(This is the default.)

if the command is to be driven from a driving list.

2) path! is the full path name of the archive segment to be
reordered; the user need not supply the ".archive"
suffix.

Notes

If no control arguments are specified, the default -ci
(console input) is assumed.

~'/hen the command is invoked with the console input (-ci)
control argument or wi th no control arguments, it wi 11 type
"input for archive name" where archive_name is the name of the
archive file to be reordered. Component names are then input in
the order desired, separated by carriage returns. The character
"." termi nates input. The character str i ng ". *" causes the
command to type back a "*". This feature can be used to make
sure there are no input errors before typing ".". The character
string ".q" will cause the command to terminate without
reordering the archive.

The driving list (-fi control argument) must have the name
"name.order" where "name.archive" is the name of the archive
segment to be reordered. The order segment must be in the
working directory. It consists of a list of component names in
the order desired, separated by carriage returns. No "." is
necessary to terminate the list. Any errors in the list (name
not found in the archive file, name duplication) will cause the
command to terminate without altering the arch-ive.

® Copyright, 1973, t·1assachusetts Insti tute of Technology
and Honeywell Information Systems Inc.

reorder_archive MULTICS PROGRAMMERS' MANUAL

Page 2

The procedure creates a temporary segment named
e'ra_temp_earchive" in the user's process directory. This
temporary segment is created once per process, and is truncated
after it is copied into the directory specified by pathl. If the
command cannot copy the temporary segment, it will attempt to
save it and rename it to the name of the archive specified.
There is an interval of time, while the command is copying the
reordered archive into the user's directory, when a quit, not
followed by a start, will result in the loss of the archive.
Therefore, quits should be used judiciously.

The reorder_archive command will not operate upon archive
segments containing more than 1000 components.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell I nformat ion Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Name: reprint_error, re

Command
Development System

9/30/71

This command allows the reprinting of an error message
produced by a fault and saved by a "hold" request. The mode of
the error message may be specified.

Usage

reprint_error -options-

1) options may be in any order and are chosen from
the following list of options:

-depth 1., -dh 1. indicates which instance of saved fault
information is to be used for the
message (the most recent instance is
depth 1). This option may appear only
once per command line.

-a 11, -a prints messages corresponding to all
existing sets of fault information.

-brief, -bf prints the short form of the message.

-long, -lg prints the long form of the message.

iiotes

The default for~ of the message is the normal mode and the
default depth is 1.

The message mode options for this command have no effect on
the operation of the default error handler as such.

Examples

The following example illustrates some
reprint_error comrnand might be used.

simf

Error while executing in ring 0:
Improper access by fi nd_command_$fi nd_comriland_1574
(>system_l ibrarY_l>bound_command_loop_)
referencing >udd>m>Smith>dw>simfI202
(offset is relative to base of seg~ent)

~"Jays

@ Cop y rig h t , 19 71 , (,1 ass a c h use t t sin s tit ute 0 f Tee h no log y
All rights reserved.

the

reprint_error t,1UL T I C3 PROGRAIH'1ERS' r,1Ai~UAL

Page 2

hr\ 1 r{
11'-' I "'"

setacl simf re

simf

Error: Attempt by >udd>m>Smith>dw>simfI20
to reference through null pointer

hold

Error: Gate error by >udd>m>Smith>dw>deh_testl$gate_errorI320
referencing >system_librarY_l>hcs_$initiate
Number of arguments expected = 7; number supplied = 3.

hold

reprint_error -all -brief
1 eve 1 1:
Error: gate_error
level 2:
Error: simfault_OOOOOl
1 eve 1 3:
Error: accessviolation while in ring 0

reprint_error -long -depth 3
level 3:
Error while executing in ring 0:
Improper access by >system_library_l>bound_sss_activeI63
(offset is relative to base of segment)
referencing >udd>m>Smith>dw>simfI202

The entry into ring 0 was by
find_command_$fi nd_command_1 574
(>system_library_l>bound_command_loop_114076)
referencing >system_library_l>hcs_$make_ptr
(accessviolation condition)

reprint_error
1 eve 1 1:
Error: Gate error by >udd>rn>Smith>dw>deh_testl$gate_errorI320
referencing >system_librarY_l>hcs_$initiate
iJurnber of arguments expected = 7; number suppl i ed = 3.

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

~: resource_usage, ru

The resource_usage command enables
month-to-date report of his resource
possible for a user to use this command
about other users' resource usage.

Usage

resource_usage -control_arg-

resource_usage I
Command
4/27/73

the user to print a
consumpt ion.. It is not
to obtain information

1) control_arg provides the optional feature of selecting
variable portions of available resource usage
information. The valid control arguments
fo 11 ow:

-total, -tt prints only total dollar figures including
the user's dollar limit stop and his
month-to-date spending (see Notes below).

-brief, -bf prints the information selected by the -total
control argument, and as well precedes this
information with a header and follows it by
total dollar figures depicting the user's
interactive, absentee, and I/O daemon usage.

-long, -lg prints the most comprehensive picture of the
user's resource usage. This display includes
the information selected by the -brief
control argument and includes an expanded
report of interactive, absentee, and I/O
daemon usage which breaks down the total
dollar charges according to shift and queue,
breaks down the charged virtual cpu time and
terminal connect time into hours, minutes,
and seconds, and displays the charged memory
units and terminal I/O operations, both
expressed in thousands. <See Example below.>

If no control argument is specified, the default action
results in the selection of slightly less extensive resource
usage information than that which is printed by the -long control
argument; namely, all dollar charges are printed but resource
usage expressed as time is not printed.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

resource_usage MULTICS PROGRAMMERS' MANUAL

Page 2

Notes

The system calculates a user's month-to-date dollar charges
when it creates his process. If a user wishes the most
up-to-date figures, he should issue the new_proc command prior to
typing resource_usage.

Notice that in a given usage report, shift and queue numbers
may not appear in consecutive order as only shifts or queues with
accrued charges will be listed.

If no dollar limit stop has been set by a user's project
administrator, the resource usage report will indicate this by
the printing of "open" as the dollar limit entry.

@) Copyright, 1973, t1assachusetts Institute of Technology
ancf Honeywell Information Systems Inc.

('")

o
'0
'< ..,
()'q
::::r
rt ,

013:
:::J OJ
Q.V)

V)
:J:D1
o 0
:J:T
(1) c:
'<V)
~ (1)
(l)rt

- rt
-V)

:J ::J
-taV)
Ort .., -.
3rt
OJ c:
rt rt
-0(1)
o
:J 0

-t\
(J)

'<-t
V) CD
rtO
(1)::::r

3 :J
V) 0

-0
:JJ'q
0'< .
",.....

m
2
o
.......
*

resource_usage -long

Doe.Example Report from 04/01/73 1014.7 to 04/10/73 1345.8

Month-Te-Date Charge: $ 292.61;
Resource Limit: $ 1000.00;

Interactive Usage: $ 254.31; 19 logins, 7 crashes.

shift $charge
1 173.91
2 54.30
4 26.10

Absentee Usage:

queue $charge
1 8.74
3 10.23

10 Daemon Usage:

queue $charge
3 19.32

$limit
open
open
open

$ 18.97;

jobs
1
1

$ 19.32;

pieces
10

cpu
0:14:32
0:05:26
0:04:13

cpu
0:00:49
0:00:49

cpu
0:01:06

connect
14:59:17

4:52:47
5:25:18

memory*K
.4
.6

lines/K
12

term ina 1 i/o
0.0
0.0
0.0

memory*K
6.0
1.9

• 4

3:
:t>
Z
C
:t>
r-

..,
(I)
U)

o
c: ..,
o
(1)

I
c:
U)

OJ
()'q
(1)

MULTICS PROGRAMMERS' MANUAL

Command
Development System

8/15/72

~: runoff, rf

The runoff command is used to type out text segments in
manuscript form. Output lines are built from the left margin by
adding text words until no more words will fit on the line; the
line is then justified by inserting extra blanks to make an even
right margin. Up to twenty lines of header and footer can be
printed on each page. The pages can be numbered, lines can be
centered, and equations can be formatted. Space can be allowed
for diagrams. Detailed control over margins, spacing, headers,
justification, numbering, and other aspects of format is provided
by control lines beginning with a period interspersed within the
text, but not appearing in the output segment. The output can be
printed page by page to allow positioning of paper, or it can be
directed into a segment. Characters not available on the device
to which output is directed are replaced by blanks. If special
symbols must later be hand drawn, a separate segment can be
created which contains reminders as to where each symbol should
be placed. The user may define variables and cause expressions
to be evaluated; in combination with the ability to refer to
(and sometimes modify) variables connected with the workings of
the runoff command, the user has extensive control over the
processing of his text.

Usage

runoff pathname1 ••• pathnamen -control_args-

1) pathname~ is the pathname of an input segment or
multi-segment file (MSF) named entryname.runoff;
however, the .runoff suffix may be suppl ied in
the entryname. If more than one pathname is
specified, they are treated as if runoff had been
invoked separately for each one. The segments
are printed in the order in which they occur in
the invocation of the command.

2) control_args may be chosen from the following list. Any
control argument specified anywhere in the
command invocation applies to all segments, and
control arguments may be intermixed arbitrarily
with segment names. Control arguments must be
preceded by a minus sign.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

Page 2

-ball ll, -bill

MULTICS PROGRAMMERS' MANUAL

r"\ __ ..&.... ___ ..&.... ! _ _ _ _ _ _ _ __ .L.. _.J .&... _ _ .L:: _ .. _ __ _ __ ! ..I.... _ L , _ L _ __ _ ._

UUq.JUL I::> ~unverLeu LU d lurlll ::>UILdUle lur dn

n typeball on a unit equipped with a
S e 1 e c t ric ® t y pin gel e me n t • A c c e p tab 1 e ball
numbers are 041, 012, 015, and 963. The
default is the form of the terminal device
being used. Use of this control argument
overrides any specification set by the
-device control argument (below).

-character, -ch When this control argument is used, certain
key characters in the output will by flagged
by putting the line containing the key
character in a segment named entryname.chars.
The normal output is not affected. Page and
line numbers referring to the normal output
will appear with each flagged line, and
reminder characters, enclosed by color-shift
characters, will be substituted for the key
characters. The default set of key and
reminder characters corresponds to those
unavailable with a 963 typeba1l, as follows:

left square bracket
right square bracket
left brace
right brace
til de
grave accent

<
>
(
)

t
I

The key and reminder characters may be
changed by use of the .ch control line;
specifying a blank reminder character removes
the associated key character from the set of
key characters. If a key character would
print normally in the output, it should also
appear in a .tr control line to turn it into
a blank in the output.

-device n, -dv n Output is prepared compatible with the device
specified. This is usually used when the
output is stored in a segment to be printed
elsewhere. Suitable devices are consoles
2741, 1050, 37, and the bulk output printers,
202 or 300. Use of this control argument
overrides any specification set by use of the
-ball control argument; if both are used in
one invocation of runoff, the last one
encountered will prevail.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

-from Il, -fm Il

Page 3
8/15/72

If neither -device nor -ball was specified,
the default device type is that from which
the user is logged in; any unrecognized type
is assumed to support the entire ASCI I
character set.

Printing starts at the page numbered Il. If
the -page control argument is used, printing
starts at the renumbered page Il.

-hyphenate, -hph When this control argument is used, a
procedure named hyphenate_word_, which the
user suppl ies, wi 11 be invoked to perform
hyphenation when the next word to be output
will not fit in the space remaining in a line
(see Hyphenation Procedure Calling Sequence
near the end of this document). Otherwise,
no attempt will be made to hyphenate words.

-indent n, -in n When this control argument is used, the
output will be indented n spaces from the
left margin (default indentation is 0 except
for 11-d e vic e 2 0 2 II (t he de f au 1 t for - s e gme n t) ,
which is 20; see also -number below). This
space is in addition to whatever indentation
is established by use of the .in control
word.

-no_pagination,-npgn

-number, -nb

-page n, -pg n

Page breaks in the output are suppressed.

Source line numbers will be printed in the
left margin of the output; minimum
indentation of 10 is forced.

This control argument changes the initial
page number to n. All subsequent pages are
similarly renumbered. Note that if the
control word .pa is used within the segment
the -page control argument is overridden and
the page is numbered according to the .pa
con tro 1 1 i ne.

-parameter ~, -pm g£g

The argument ~ is assigned as a string to
the internal variable "Parameter".

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

Page 4

-pass 11

-segment, -sm

-stop, -sp

-to .D.

-wait, -wt

t~otes

MULTICS PROGRAMMERS' MANUAL

The source segments will be processed n times
to permit proper evaluation of expressions
containing symbols which are defined at a
subsequent point in the input. No output is
produced unti 1 the last pass.

When this control argument is used, the
output will be directed to the segment or MSF
entryname.runout. This control argument
assumes by default that the material is to be
dprinted, so the segment is prepared
compatible with device 202 unless another
device is specified; thus, unless overridden
by the -indent control argument, each printed
line in the output segment is preceded by 20
leading spaces so that the text will be
approximately centered on the page when
dprinted.

The runoff command will wait for a carriage
return from the user before beginning typing
and after each page of output .

. Printing ends. after the page numbered n.

The runoff command will wait for a carriage
return from the user before starting output,
but not between pages.

A runoff input segment contains two types of lines: control
lines and text 1 ines. A control line begins with a period; all
other lines are considered text lines. A two-character control
word appears in the second and third character positions of each
control line. The control word may take a parameter which is
separated from the control word by one or more spaces. Lines
which are entirely blank are treated as if they contained a
".Sp I" control line.

Text lines contain the material to be printed. If an input
line is too short or too long to fill an output line, material is
taken from or deferred to the next text line. A line beginning
with a space is interpreted as a break in the text (e.g. the
beginning of a new paragraph) and the previous line is printed as
is.

Tab characters (ASCI I HT) encountered in the input stream
are converted to the number of spaces required to get to the next
tab position (11, 21, •.•).

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 5
8/15/72

\~hen an input text 1 i ne ends wi th any of the characters ::. n,
"?", "!", ";11, or ":", or with ".", "?", or "!" followed by a
double quote or 11)11, two blanks will precede the following word
(if it is placed on the same output line), instead of the normal
single blank.

The maximum number of characters per input or output line is
361; this permits 120 underlined characters plus the NL
character.

Terminology

Two separate concepts are relevant to understanding how
runoff formats ou tpu t: illl mode and ad ius t mode. In fill mode,
text is moved from line to line when the input either exceeds or
cannot fill an output line. Adjust mode right justifies the text
by inserting extra spaces in the output line, with successive
lines being padded alternately from the right and from the left.
Note that initial spaces on a line are not subject to adjustment.
Fill mode can be used without adjust, but in order for adjust to
work, fill mode must be in effect.

The ~ length is the maximum number of print positions in
an output line, including all spaces and indentations, but not
including margins set or implied by the -device, -indent, or
-number control arguments.

A break insures that the text that follows will not be run
together with the text before the break. The previous line is
printed out as is, without padding.

Vertical spacing within the body of the text is controlled
by the three commands .ss, .ds, and .ms. Single spacing, which
is the default, is set by .ss, double spacing is set by .ds, and
II • m s nil i sus e d for mu 1 tip 1 e spa c i n g • The rea r e (n - 1) b 1 an k
lines between text lines for .ms.

A ~ eject insures that no text after the control line
will be printed on the current page. The current page is
finished with only footers and footnotes at the bottom, and the
next text line begins the following page.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 6

There are four margins on the page vertically. The first
margin on the page is the number of blank lines above the first
header, and is set by the .ml control line. The second, set by
.m2, concerns the number of lines between the last header and the
first line of text. The third is between the last line of text
and the first footer, set by .m3. The fourth is below the last
footer, set by .m4. The default for the first and fourth margins
is four lines; for the second and third, the default is two
1 i nes.

As the output is being prepared, a ~ number counter is
kept. This counter can be incremented or set by the user. The
current value of the counter can be used in a header or footer
through the use of the symbol "%". A page is called odd (even)
if the current value of the counter is an odd (even) number.

A header is a line printed at the top of each page. A
footer is a line printed at the bottom of each page. A page may
have up to twenty headers and twenty footers. Headers are
numbered from the top down, footers from the bottom up. The two
groups are completely independent of each other. Provision is
made for different headers and footers for odd and even numbered
pages. Both odd and even headers (footers) can be set together
by using .he (.fo). They are set separately by using .eh, .oh,
".ef, and .of.

A header/footer definition control line has two arguments,
the line number (denoted in the control line descriptions as
H#"), and the title.

The line number parameter of the control line determines
which header or footer line is being set. If the number is
omitted, it is assumed to be 1, and all previously defined
headers or footers of the type specified (odd or even) are
cancelled. Once set, a line is printed on each page until reset
or cancelled.

The title part of the control line begins at the first
non-blank character after the line number. This character is
taken to be the delimiting character, and may be any character
not used in the rest of the title. If the delimiting character
appears less than four times, the missing last parts of the title
are taken to be blank. The three parts of the title are printed
left justified, centered, and right justified, respectively, on
the line. Any or all parts of the title may be null.
Justification and centering of a header or footer line are
derived from the line length and identation in effect at the time
of the definition of the header or footer, and will be used
whenever that line is output, regardless of the values at the
time of use.

@ Cop y rig h t , 19 7 2 , t·1 ass a c h use t t sin s tit ute 0 f T e c h nolo g y
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 7
8/15/72

Omitting the title in the controi
footer with that number, including its
hlank line in the header or footer
consisting entirely of four delimiting
number and title cancels all headers
specified.

i ine canceis the header or
space on the page. A

may be achieved by a title
characters. Omitting both
or footers of the type

Expressions and Expression Evaluation

An expression may be either arithmetic or ~tring, and
consists of numbers and operators in appropriate combinations.
All operations are performed in integer format, except that
string comparisons are performed on the full lengths of the
strings.

Operators in order of precedence:
- (bit-wise negation), - (unary)
*, /, ¢ (remainder)
+, - (binary)
=, <, >, ;, ~, L

(comparison operators, yield -1 (true) or
o (false»

& (bit-wise AND)
I (bit-wise OR), - (bit-wise equivalence)

Parentheses may be used for grouping.

Blanks are ignored outside of constants.

Octal numbers consist of "#11 followed by a sequence of
octal digits.

String constants are surrounded by the double quote
character; certain special characters are defined by
multiple character sequences beginning with the
character *, as follows:

** yields
*11

*b
*n
*t
*s
*CllDll

asterisk-character
double-Quote-character
backspace character
new-line character
horizontal tab character
space character
character whose decimal value
is nnn (1 to 3 digits)

Concatenation of strings is performed by the
juxtaposition of the strings involved, in order, left
to right.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

Page 8

MULTICS PROGRAMMERS' MANUAL

string_expression(i)

and

string_expression(i, k)

are equivalent to the PL/I substr built-in function
references

sub 5 t r (s t r i n g_ ex pre s s ion, i)

and

substr(string_expression, i, k)

respectively.

For negative 1, the substring is defined as starting -1
characters from the rightmost end of the string; for
negative k, the substring ends -k characters from the
end of the string.

Evaluation of substrings takes place after any
indicated concatenations; string operations have higher
precedence than all the binary operations.

In any context other than a ".sr" control line or in a
string comparison, a string expression is converted to
an integer in such a way that a one-character string
results in the ASCII numeric value of the character.

Expression evaluation takes place under the following
conditions:

1) In .sr and .ts control lines;
2) I n all con t r 0 1 1 i n e s w hie hac c e pta n .. n II 0 r ".:!:.n"

argument.

Definition ~ Substitution of Variables

Variables may be defined by the use of the .sr control line;
their values may be retrieved thereafter by a symbolic reference.
Names of the variables are composed of the upper- and lower-case
alphabetic characters, decimal digits, and "_", with a maximum
length of 361 characters. When a variable is defined, it is
eiven a type based on the type of the expression which is to be
its value, either arithmetic or string. Variables which are
undefined at the time of reference yield the null string, which
is equivalent to an arithmetic O.

~ Copyright, 1912, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 9
8/15/72

in substitution of variables, the name of tne variable is
enclosed by "%"; other occurrences of the character "%"
encountered during substitution of variables are replaced by the
value of the page counter; if a "%" character is to occur in the
resulting output, it must be coded as 11%%11 (but see also .cc).

Substitution of variables may occur
1) In expressions if a "%" is found as either the first or

second character following the spacing after the
control word (substitution of variables takes place
before expression evaluation);

2) In .ur control 1 ines;
3) In all titles ('part1'part2'part3'), whether in

header/footer control lines, or as equation lines.

Many of the variables internal to runoff are available to
the user (a complete list will be found at the end of this
document); these include control argument values (or their
defaults), values of switches and counters, and certain special
functions. However, the user need not worry about naming
conflicts, since an attempt to re-define an internal variable
that is not explicitly modifiable will merely make it
inaccessible to the user, but will cause no harm to the operation
of the command.

Two special builtin symbols in runoff are provided for use
in footnote and equation numbering: "Foot" contains the value of
the next footnote number available (or the current footnote if
referred to from within the text of the footnote), and "Eqcnt" is
provided for equation numbering. The value of "Foot ll is
incremented by one when the closing .ft of a footnote is
encountered. Any reference to "Eqcntll provides the current
value, and causes its value to be incremented by one
automatically; thus its value should be assigned to a variable,
and the variable should then be used in all further references to
that equation number.

@ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 10

Defauit Conditions

When no control words are given, runoff prints the text
single spaced, right adjusted, with no headers, no footers, and
no page numbers.

If page numbers are substituted in headers or equations,
they will be arabic.

A page consists of 66 lines, numbered 1 through 66. The
first line is printed on line 7, and the last on line 60, if no
headers or footers are used. If headers are used, there will be
four lines of top margin, the headers, two blank lines, and then
the text. If footers are used, there will be two lines skipped
after the text, footers printed, and four lines of bottom margin.

A line is 65 characters long; the left margin is that of
the typewriter. The output is compatible with whatever is normal
for the device from which the runoff command is executed. The
entire segment is printed, with no wait before beginning or
between pages.

€) Copyright, 1972, ~:1assachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 11
8/15/72

Control ~ Formats

This section gives a description of each of the control
words which may be interspersed with the text for format control.
Control lines do not cause an automatic break unless otherwise
specified. Arguments of the control words are in the following
form:

integer constant
n integer expression
~n integer expression preceded by oPtional + or -
(expression) arbitrary expression (string or integer)
c character
cd character pair
f segment name
'partl'part2'part3'

a title whose parts are to be left justified,
centered, and right justified respectively.

(b 1 ank 1 i ne)
A blank line occurring in the text is treated as if it
were a ".Sp 1" control line •

• ad AQjust: text is printed right justified. Fill mode
must be in effect for right justification to occur.
Fill mode and adjust mode are the default conditions.
This control line causes a break •

• ar ALabic numerals: when numeric variables are

.bp

substituted into text or control 1 ines as a result of a
.ur control line, or into a title or equation as it is
printed, they are in arabic notation. This is the
default condition.

~egin Qage:
of output.

the next line of text begins on a new page
This control line causes a break .

.
• br ~eak: the current output line is finished as is, and

the next text line begins on a new output line.

.cc c £ontrol £haracter: this control line changes the
character used to surround the names of symbolic
variables when they are referenced to c. The default
special character is 11%11. The character specified by ~
must thereafter be used to refer to symbolic variables,
while percent signs are treated literally. ".CC ~~II or
.cc restores the percent sign as the special character.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 12

.ce n lln te r: the nex t 11 tex t 1.1 nes are cen te red. if 11 is
missing, 1 is assumed. This control line implies
".ne !l" (or ".ne 2!l" if doublespacing) so that all
lines centered will be on the same page. A break
occurs •

• ch cd •• Characters: each occurrence of the character ~ will be
replaced in the .chars segment by the character £, set
off by color-shift characters. If the £ character is
blank, or an unpaired ~ character appears at the end of
the line, the ~ character will not be flagged, and will
occur as itself in the .chars segment, or not at all if
no other character on the line was flagged •

• ds Double ~pace: begin double spacing the text.
control line causes a break •

This

• ef # 'part1'part2'part3'
£ven footer: this defines even page footer line
number 1. See the section entitled Terminology •

• eh # 'partl'part2'part3'

.eq n

~ven header: this defines even page header line number
1. See the section entitled Terminology.

.E.guation: the next n text 1 i nes are taken to be
equations. I f n i s missing, 1 i s assumed. This
control 1 i ne implies ".ne nil (or II .ne 2nll i f
doublespacing) so that all equations will be on the
same page. The format of the equations should be
'partl'part2'part3' just as in headers.

.ex text ~ecute: the remainder of the control line (~) is
passed to the Multics command processor. Substitution
of variables may occur if the first or second character
of ~ is 11%11.

.fh 'partl'part2'part3'
£ootnote header: before footnotes are printed, a
demarcation line is printed to separate them from the
text. The format of this line may be specified through
the title in the .fh control line. This title is
printed in the same manner as headers. The default
footnote header is a line of underscores from column
one to the right margin.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 13
8/15/72

.fi ELl 1 : this control 1 ine sets the fi 11 mode. In fi 11
mode, text is moved from line to line to even the right
margin, but blanks are not padded to justify exactly.
This is the default condition. Since right
justification is also the default condition, getting a
slightly even right margin without adjustment is
accomplished by use of the .na control line. This
control 1 ine causes a break •

• fo # 'part1'part2'part3'
Footer: even and odd footers are set at the same time;
this is equivalent to

.ef # 'part1'part2'part3'

.of # 'part1'part2'part3'
See the section entitled Terminology •

• fr c £ootnote Leset: this control line controls footnote
numbering according to the argument~. Permitted
values of this argument are:

t Footnote counter is reset at the top of each
page. This is the default condition.

f Footnote counter runs continuously through the
text.

u Suppresses numbering on the next footnote •

• ft £oo~note: when .ft is encountered all subsequent text
until the next .ft line is treated as a footnote. Any
further text on the .ft line will be ignored." If a
footnote occurring near the bottom of a page will not
fit on the page, as much as necessary will be continued
at the bottom of the next page. If a footnote

• gb xxx

.gf xxx

reference occurs in the bottom or next to bottom 1 ine
of a page, the current page will be terminated and the
offending line printed at the top of the succeeding
page •

~o Qack: the current input segment is searched from
the beginning until a line of the form ".1a MK" is
found; "~" in this case means "the rest of the
1 ine". Processing is continued from that point.

~o forward: same as .gb, except search forward from
the current position in the input segment.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 14

.he # 'part1'part2'part3'
~ader: even and odd headers are set at the same time.
This is equivalent to

.eh # 'part1'part2'part3'

.oh # 'part1'part2'part3'
See the section entitled Terminology •

• if f <expression>

• in .:!:.n

.la xxx

• 1 i n

Insert file: the segment with pathname i.runoff is
inserted into the text at the point of the ".if i"
request. The inserted segment may contain both text
and control lines. No break occurs. The effect is as
if the control line were replaced by the segment.
I nse rts may be nes ted to a max i mum depth of 30. I f a
second argument is provided, it will be evaluated in
the same fashion as the expression in .sr, and its
value and type will be associated with the identifier
"Parameter ll

; otherwise the value of "parameter ll

remains unchanged (or undefined) (prior values of
"Parameter" are not pushed down) •

indent: the left margin is indented n spaces by
padding n leading spaces on each line. The right
margin remains unchanged. By default n is O. The
margin can be reset with another ".in nit request.
Either. in or ". in a" resets the original margin. If n
is preceded by a plus or a minus sign, the indentation
is changed by n rather than reset. This control line
causes a break.

12bel: defines the label ~ for use as the target of
the .gb or .gf control word.

llteral: this request causes the next n
treated as text, even if they begin with
not given 1 is assumed.

1 i nes
II II

to be
If n is

Line length: the line length is set to n. The left
margin stays the same, and no break occurs. The
default for n is 65 both initiallY and if n is omitted
in the .11 control line. If n is preceded by a plus ~r
a minus sign, the line length is changed by n rather
than reset.

@ Copyright, 1972, Massachusetts Insti tute of Technology
All rights reserved.

MUlTICS PROGRAMMERS' MANUAL

• ma .,:!:.n

.mp .,:!:.n

.ms .,:!:.n

.ml .,:!:.n

.m2 .:!:.n

.m3 .:!:.n

.m4 .,:!:.n

.na

.ne n

Page 15
8/15/72

M£rgins: top and bottom margins are set to n lines •
If n is preceded by a plus or a minus sign, the margin
is changed by n rather than reset. The margin is the
number of lines printed above the first header and
below the last footer. The default is four lines.
This control line is equivalent to

.ml .,:!:.n

.m4 .:!:.n

Multiple Qages: format the
prints on every nth page.
only for output intended for
default value is 1.

output text so that it
This control line is val id

the bulk printer. The

Multiple ~pace: begin multiple spacing text, leaving
(n-l) blank lines between text lines. If n is preceded
by a plus or a minus sign, the spacing is changed by n
rather than reset. If n is not given, 1 is assumed.
This control line causes a break.

Margin~: the margin above the first header is set to
n lines, or changed by n if n is signed. The default
is four lines.

Margin 1: the number of blank lines printed after the
last header and before the first line of text is set to
n, or changed by n if n is signed. The default is two
1 i ne s •

Margin i: the number of blank 1 ines printed after the
last line of text and before the first footer is set to
n, or changed by n if n is signed. The default is two
1 i nes •

Margin~: the margin below the last footer is set to n
lines, or changed by n if n is signed. The default is
four lines.

No ~djust: the right margin is not adjusted. This
does not affect fill mode; text is still moved from
one line to another. This control line causes a break.

~e d : a b 1 0 c k 0 f n 1 i n e sis nee d e d • I f 11 0 r mo r e
lines remain on the current page, text continues as
before; otherwise, the current page is ejected and
text continued on the next page. No break is implied.
The default value is 1.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 16

• nf No fill: fill mode is suppressed, so that a break is
caused after each text line. Text is printed exactly
as it is in the input segment. This control line
causes a break •

• of # 'part1'part2'part3'
Qdd footer: this defines odd page footer line number
I. See the section entitled Terminology.

".oh # 'part1'part2'part3'
Odd header: this defines odd page header line number
I. See the section entitled Terminology •

• op Odd Qage: the next page number is forced to be odd by
adding 1 to the page number counter if necessary. A
break is caused and the current page is ejected.

.pa .:!:.n

• pin

• p 1 .:!:.n

£age: the current line is finished as is (ie a break
occurs) and the current page is ejected. The page
number counter is set to n, or is changed by n if n was
signed.

Elcture: if n lines remain on the present page, then n
lines are spaced over; otherwise, the text continues
as before until the bottom of the page is reached, then
n lines are skipped on the next page before any text is
printed. Headers are printed normally, and the space
is below the headers. This option may be used to allow
for pictures and diagrams. If several .pi control
lines are used, each n is added to the number of lines
pend i ng and the tota 1 is checked aga ins t the space
remaining on the page. All pending space is allotted
together. If the total is greater than the usable
space on a page, the next page contains only headers
and footers and the rest of the space is left on the
following page.

fage length: the page length is set to n lines. The
default is 66 lines. If n is preceded by a plus or a
minus sign, the page length is changed by n rather than
reset .

• rd ReaQ: one 1 ine of input is read from the stream
"user_input"; this input line is then processed as if
it had been encountered instead of the .rd control
line. Thus it may be either a text line or a control
line; a break occurs only if the replacement line is a
control line which causes a break, or a text line
beginning with one or more spaces, or a blank line.

@ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 17
8/15/72

.ro RQman numerais: numeric-to-string conversions required
by an explicit .ur control line (q.v.) or in titles or
equations will result in roman numerals in the
evaluated text. This may be reset to arabic numerals
(the default) by use of the .ar control line •

• rt He~urn: cease processing characters from the current
input segment •

• sk n Skip: n page numbers are skipped before the next new
page by adding n to the current page number counter.
No break in text occurs. This control argument may be
used to leave out a page number for a figure. If n is
not given 1 is assumed •

• sP n ~ace: space n 1 ines. If n is not given, 1 is
assumed. If not enough lines remain on the current
page, footers are printed and the page ejected, but the
remaining space is not carried over to the next page.
This control line causes a break •

• sr name <expression)
~et Leference: associate the value of <expression)
with the identifier name. The type of ~ will be set
to the type of <expression) (either numeric or string);
if the expression is not provided, or cannot be
properly evaluated, a diagnostic message will be
printed. ~ may be either a user-defined identifier
or one of the built-in symbols which the user may set.
(see Built-in Symbols below.)

.ss ~ingle ~pace: begin single spacing text. This is the
default condition. This control 1 ine causes a break •

• tr cd.. Translate: the nonblank ch-aracter ~ is translated to Q
in the output. An arbitrary number of cd pairs can
follow the initial pair on the same line without
intervening spaces. An unpaired & character at the end
of a line will translate to a blank character.

.ts n

(Translation of a graphic character to a blank only in
the output is useful for preserving the identity of a
particular string of characters, so that the string
will not be split across a line, nor have padding
inserted within it.)

Te~t: process the next input 1 ine if the value of n
does not equal zero (false). The default value is 1.

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 18

.ty xxx lYpe: write AAA (ie the rest of the control line) onto
the stream iierror_outputii. Substitution of variables
may occur if the first or second character of ~ is
"%" .

• un n Undent: the next output line is indented n spaces less
than the current indentation. Adjustment, if in
effect, will occur only on that part of the line
between the normal left indentation and the right
margin. If n is not specified, its value is the
current indentation value (ie, the next output line
will begin at the current left margin). This control
line causes a break •

• ur text Qse Leference: the remainder of the .ur control line
(~) will be scanned, with variables of the form
"%name%" replaced by their corresponding values
(converted back to character string form if they were
numeric). The line thus constructed is then processed
as I if it had been encountered in the original input
stream (e.g., it may be another control 1 ine, including
possibly another .ur) •

• wt Xiai.t,: read one line from the stream "user_input", and
discard it (cf .rd).

.* This line is treated as a comment and ignored.
break occurs.

No

This line is treated as a comment and ignored with
respect to the output segment. However, the line is
printed in the appropriate place in the .chars output
segment.

® Cop y rig h t, 19 72 , r-1 ass a c h use t t sin s tit ute 0 f T e c h no log Y
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 19
8/15/72

Summary of Control Arguments and Control Line Formats

Control arguments

-ball .D., -bl n.

-character, -ch

-device .D., -dv n

-from.o., -fm 11

-hyphenate, -hph

-indent .D., -in n.

Convert output to a form suitable for an .0.
typeball.

Create entryname.chars, listing page and line
numbers with red reminder characters where
certain characters, normally not printable,
must be drawn in by hand.

Prepare output compatible with device n..

Start printing at the page numbered 11.

Call user-supplied procedure
hyphenation.

Set initial indentation to n.

to perform

-no_pagination, -npgn
Suppress page breaks.

-number, -nb Print source segment line numbers in output.

-page 11, -pg 11 Change the initial page number to fi.

-parameter ~, -pm ~

-pass 11

-segment, -sm

-stop, -sp

-to D.

-wait, -wt

Assign ~ as a string to the internal
variable "Parameter".

Make n passes over the input.

Direct output to the
"entryname.runout", where
name of the input segment.

segment or MSF
entryname is the

~ait for a carriage return before each page.

Finish printing after the page numbered 11.

Wait for a carriage return before the first
page.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 20

Control ~ formats

The following conventions are used to specify arguments of
control words:

c character
cd character pair
exp expression (either numeric or string)
integer constant
n integer expression
~n ~ indicates update by n; if sign not present set to n
f segment name
t title of the form 'partl'part2'part3'

Request Break

(blank line) yes
.ad yes
• ar no
• bp yes
• b r yes
.cc c no

.ce n yes

.ch cd.... no

.ds yes

.ef # t no

.eh # t no

.eq n yes

.ex xxx no

.fh t no

• f i yes
.fo # t no

• f r c no

• ft no
.gb xxx no
.gf xxx no
• he # t no

.if f exp no

• in .±.n yes
• 1 a xxx no

Default Meaning

Equivalent to ".sp 1"
on Right justify text
arabic Arabic page numbers

Begin new page
Break, begin new line

% Change special character from %
to c

n=1 Center next n lines
Note "c" in .chars file as lid"

off Double space
Defines even footer line #
Defines even header line #

n=1 Next n lines are equations
Call command processor with "xxx"

line of underscores
Format of footnote demarcation
1 i ne

on Fill output 1 ines
Equivalent to: .ef I t

.of I t
t Controls footnote numbering: "t"

reset each page; "f" continuous;
"u" numbering suppressed for next
footnote.
Delimits footnotes
"go back" to label xxx
"go forward" to label xxx
Equivalent to: .eh # t

.oh # t
Segment f.runoff inserted at
po i n t of reques t; va 1 ue of "exp"
assigned to "Parameter"

n=O Indent left margin n spaces
Define label xxx

@ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 21
8/15/72

Request Break Default Meaning

• 1 i
.11
.ma
.mp
.ms
.m1
.m2

.m3

.m4

.na

.ne

.nf

.of

.oh

.op

.pa
• pi

.pl

.rd

• ro
.rt
.sk

.sp

.sr

.ss
• tr

• ts

.ty

.un

.ur

n no
.:!:.n no
.:!:.n no
.:!:.n no
.:!:.n yes
.:!:.n no
.:!:.n no

.:!:.n no

.±.n no
yes

n no

yes

t no
t no

yes
.:!:.n yes
n no

.:!:.n no
no

no
no

n no

n yes
sym exp no

yes
cd •••• no

n no

xxx no

n yes

text no

n=l
n=65
n=4
n=l
n=l
n=4
n=2

n=2

n=4
off
n=l

off

n=l

n=66

arabic

n=l

Next n lines treated as text
Set line length to n
Top and bottom margins set to n
Print only every n-th page
Multiple space of n lines
Margin above headers set to n
Margin between headers and text
set to n
Margin between text and footers
se t to n •. "
Margin below footers set to n
Do not right justify
Need n lines; begin new pag~ if
not enough remain
Nofill; break after each input
1 i ne
Defines o~ footer line #
Defines o~a header line #
Next page number is odd
Begin page n
Skip n lines if n remain;
otherwise skip n on next page
before any text
Page length is n
Read one line of text from
"user_input" and process it in
place of .rd line
Roman numeral page numbers
"return" from this input segment
Skip n page numbers before next
new page

n=l Space n lines
Assign value of "exp" to variable
named "sym"

on Single space
Translate nonblank character c
into d on output

n=l Process the next input line only
if n is non-zero

left margin

Write "xxx" onto the stream
"error_output"

Indent next text line n spaces
less
Substitute values of variables in
"text", and re-scan the line.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

Page 22

Request

.wt

.*

Break

no

no
no

Default

MULTICS PROGRAMMERS' MANUAL

t·lean i ng

Read one line of text from
"user_input" and discard it (for
synchronization with console)
Comment line; ignored
Comment line; ignored, but
included in .chars output

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Built-in Symbols

Page 23
8/15/72

Only those symbols marked yes in the Set column may have values
assigned by the user.

All symbols are of type Number unless they are specified to be of
type string.

Control words and control arguments which affect the values of
the variables are indicated in parentheses: (x/y) indicates that
x sets the switch to true (-1), and y sets it false (O)~ Ca) or
(a, b, c) indicates that it is affected by a or by a, band c.

Symbol

Ad
Ce

CharsTable

Charsw

ConvTable

Date

Device

DeviceTable

Eq
Eqcnt

ExtraMargin

Fi
FileName

Filesw

Foot
FootRef

Fp

yes

yes

yes

yes

yes

yes

yes

yes
yes

yes

Value

Adjust (.ad/.na)
Number of lines remaining to be
centered (.ce)
Translation table for .chars
segment output (String) C.ch)
If.chars" file is being created
(-character)
Translation table for output.
Product of DeviceTable and TrTable
(String) (.tr, -device)
Date of this invocation of runoff;
format is mmlddlyy (String)
Type of device output is to be
formatted for (-device, -ball,
-segment)
Translation table for physical
device (String) (-device)
Equation line counter (.eq)
Equation reference counter
(incremented each reference)
Indent entire text this many spaces
(-segment, -device, -indent)
Fill switch (.fi/.nf)
Name of current primary input
s e gme n t (S t r i n g)
True if output is going to a
segment (-segment)
Footnote counter (.ft, .fr)
Footnote reference string in
footnote body (String)
First page to print (set at the
beginning of each pass to the value
of From)

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

I runoff I
Page 24

Symbol

Fr
From
Ft
Hyphenating

In
InputFileName

. I nputL i nes

LinesLeft

Ll
Lp

~1a1
Ma2
~1a3
fv1a4
t4s

MultiplePagecount

NestingDepth

Nl
NNp
NoFtNo

NoPaging

Np

PadLeft

Parameter

Passes

Pi
Pl
Print

Printersw

PrintLineNumbers

.s.tl

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

MULTICS PROGRAMMERS' MANUAL

Value

Footnote counter reset switch
Control argument value (-from)
Footnote processing switch (.ft)
True if an attempt to break a word
should be made (-hyphenate)
Indent to here (.in)
Name of current input segment
(String) (.if)
Current line number in current
source file
Number of usable text lines left on
this page
Line length (.11)
Last page to print (initialized
each pass from To)
Space above header (.ma, .m1)
Space below header (.m2)
Space above foot (.m3)
Space below foot (.ma, .m4)
Spacing between lines (ss = 1,
ds = 2, etc.) (.ms, .55, .d5)
Form feeds between pages to printer
(.mp)
Index into stack of input files
(• if)
Last used line number
Next page number (-page, .pa)
True to suppress number on next
footnote reference (.fr)
True if no pagination is desired
(-no_pagination)
Current page number (.pa, -page,
initialized each pass from Start)
Alternate left/right padding switch
(• un, • ad)
Argument passed during insert
processing (-parameter, • if)
Number of passes left to make (= 1
when printing is being performed)
(-pass)
Space needed for pictures (.pi)
Page length (.pl)
Whether or not to print
«Fp ~ Np ~ Lp) & (Passes ~ 1»
Output is intended for bulk printer
(-device, -segment)
True if source line numbers are to
be printed in output (-number)

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Symbol

Roman
Selsw

Start
Stopsw

TextRef

Time

To
TrTable

Un
Waitsw

yes
yes

yes

yes
yes

yes

Value

Page 25
8/15/72

Roman numeral pagination (.r%ar)
True if typeball other than 963 is
being used (-ball)
Initial page number (-page, -start)
Stop between pages of output
(-stop)
Footnote reference string in main
text (String)
Loca 1 time, in seconds, since
January 1, 1901.
Last page to be printed (-to)
Translation table for user-supplied
substitutions (String) (.tr)
Undent to here (.un)
Wait for input before printing
first page (-wait)

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 26

Hyphenation Procedure Calling Sequence

The runoff command provides a means whereby a user-supplied
program may be called whenever the space available on a line is
less than the length of the next word (including attached
punctuation, if any). The mechanism is activated by use of the
-hyphenate control argument, and the PL/I calling sequence is
provided below.

declare hyphenate_word_ entry(char(*) unaligned, fixed bin,
fixed bin);

call hyphenate_word_(string, space, break);

1) string

2) space

3) break

is the text word which is to be split.
(Input)

is the number of print positions remaining in
the line. (Input)

is the number of characters from the word
that should b~ placed on the current line;
it should be at least one less than the value
of space (to allow for the hyphen), and may
be 0 to specify that the word is not to be
broken. Thus if the word "calling!l is to be
split, and 6 spaces remain in the line, the
procedure should return the value 4
(adjustment is performed after hyphenation).
(Output)

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL runoff_abs

Command
8/22/73

~: runoff_abs, rfa

This command submits an absentee request to process text
segments using the runoff command. The absentee process
prepares, in manuscript form, an output segment for each text
segment and stores each output segment in the user's working
directory. The name of the output segment is the name of the
text segment with the suffix ".runoff" replaced by ".runout".
The absentee process then uses the dprint command to queue each
output segment for printing and deletion. Printing and deletion
can be withheld if desired. If the -output_file control argument
(one of those recognized by the enter_abs_request command) is not
specified, the absentee process's output segment is placed in the
user's working directory with the name pathl.absout, where pathl
is the first argument of the command. (See Usage below.)

Usage

runoff_abs pathl

1) pathl

3) ear_args

-queue n, -q n

-copy n, -cp n

is an absolute or relative path name
specifying the segment to be processed by the
runoff command. I t need not spec i fy the
".runoff" suffix, which must appear in the
actual segment name, however. I f more than
one path name is given, each segment is
considered a separate runoff task.

can be one or more control arguments accepted
by the runoff command. See the MPM write-up
for runoff.

can be one or more control
by the enter_abs_reQuest
-brief (-bf) control
permitted here. See the
enter_abs_request.

arguments accepted
command. The

argument is not
MPM write-up for

can be one of the following:

specifies in which priority Queue the request
is to be placed (n ~ 3). The default Queue
is 3.

specifies the number of copies of the segment
to be dprinted (n ~ 4). The default is 1.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywe1l Information Systems Inc.

runoff_abs

Page 2

-hold

Notes

MULTICS PROGRAMMERS' MANUAL

specifies that the output segments created by
runoff should not be queued for printing or
deleted. Each output segment is formatted
for printing on an IBM 2741 terminal, with a
963 type ball, unless some other output form
is specified by one of the runoff control
arguments.

When doing several runoffs, it is more efficient to give
several path names in one command, since only one process is set
up with one command. Thus the cost of process initialization
need be incurred only once.

Control arguments and path names can be mixed freely in the
command line. All control arguments apply to all path names. An
unrecognizable control argument causes the absentee request not
to be submitted.

The runoff_abs command expects each segment to be processed
to have the suffix ". runoff", whereas early versions of the
runoff command accepted segments without such a suffix. If any
of the input text segments cannot be found, no absentee request
is submitted.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Command
3/12/73

This command turns off the safety switch of a directory or a
segment, thus permitting the segment or directory to be deleted.
See the MPM Reference Guide section, Segment, Directory and Link
Attributes, for a descriPtion of the safety switch.

Usage

safety_sw_off pathname~ ••• pathnamen

1} pathnamel

Examples

is the path name of the segment or directory which
should have its safety switch turned off. If it
is "-wd" or "-working_directory" or omitted, then
the working directory is assumed. The star
convention may be used.

safety_sw_off test.p11 check.fortran

will turn off the safety switch of the segments test.p11 and
check.fortran

will turn off the safety switch of all directories and segments
with a two component name which ends in temp_dire

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MUlTICS PROGRAMMERS' MANUAL

Command
3/12/73

This command turns on the safety switch of a directory or a
segment, thus preventing deletion of the segment or directorY$
See the MPM Reference Guide section, Segment, Directory and link
Attributes, for a description of the safety switch.

Usage

safety_sw_on pathnamel ••• pathnamen

1) pathnamel

Examples

is the path name of the segment or directory which
should have its safety switch on. If it is "-wd"
or "-working_directory" or omitted then the
working directory is assumed. The star convention
may be used.

will turn on the safety switch of all segments found in the
working directory with two component names ending in .pl1.

ssn

will turn on the safety switch in the working directory.

@ Copyright, 1973, Massachusetts Institute of Technolo~y
and Honeywe 11 I nforma t ion Sys terns Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Hames: set_bit_count, sbc

Command
2/9/73

This command sets a specified bit count on a specified
segment entry, and changes the bit count author for that entry to
be the user who invoked the command.

~age

set_bit_count pathl countl ••• pathn countn

1) pathl

2) countl

Notes

is the path name of the segment whose bit count is to
be set. If pathl is a link, the branch linked to
will have its bit count set.

is the bit count, in decimal, desired for pathl.

Setting the bit count on
several system modules will
multi-segment file.

a directory
then regard

is permitted, but
the directory as a

The user must have modify access on the directory containing
the segment for which the bit count is to be set.

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MUlTICS PROGRAMMERS' MANUAL

Command
2/13/73

The set_com_line command allows the user to change the
maximum size of expanded command lines. The default size is 128
characters. An expanded command line is one obtained after all
active strings have been processed.

Usage

1) size

Notes

is the new maximum expanded command line size. If size
is not specified, the line size is restored to its
default of 128 characters.

The get_com_line command prints on the user's terminal the
current value of the maximum size of expanded command lines.

For a discussion of the command language (including the
treatment of active strings), see the MPM Reference Guide
section, The Command language.

~ Copyright, 1973, Massachusetts Institute of Technology
~ and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Name: set_dartmouth_library, sdl

Command
Standard Service System

11/03/70

This command allows the user to specify a directory to be
searched before the Dartmouth system 1 ibrary is searched in
reference to Basic library programs. The library is searched
whenever *** is appended to a program name within a Basic
program.

Usage

set_dartmouth_library -pathname-

1) pathname is the pathname of the directory to be used as the
user's library. If no pathname is given, the library pathname is
set to null and no user library is searched.

Note that if a program in the user's 1 ibrary has the same
name as a system 1 ibrary routine, the user's version is the one
used.

(END)

MULTICS PROGRAMMERS' MANUAL

Command
3/29/73

~: set_iacl_dir, sid

This command adds entries to a directory Initial Access
Control List (Initial ACL) in a specified directory, or modifies
the access mode in an existing Initial ACL entry. A directory
Initial ACL contains the ACL entries to be placed on directories
added to the directory. For a discussion of Initial ACLs, see
the MPM Reference Guide section, Access Control.

Usage

set_iacl_dir pathname model acnamel ••• moden acnamen -ca-

1) pathname

2) model

3) acnamel

4) ca

specifies the directory in which the
directory Initial ACL should be changed. If
it is lI-wdCl or "-workinLdirectory" then the
working directory's Initial ACL is assumed.
If an entry for acnamel already exists, then
its mode is changed to model, otherwise
acnamel with model is added to the ACL. The
star convention may be used.

is the mode associated with acnamel. It may
consist of any or all of the letters "sma"
(status, modify, append) except that if 11m II
is given, "s" must also be given. To
specifically deny access to acnamel, "n", 1111,

or nnull" should be used for model!O

is an access control name which is permitted
model to pathname. If the last model has no
acnamel following it, the user's name and
project are assumed. acnamel must be of the
form person.project.tag. If one or more of
the components is missing, then they are
assumed to be n*". Any component missing on
the left must be delimited by periods. The
periods to the right may be omitted.

may be the control argument -ring (-rg). It
may appear anywhere on the line, except
between a mode and its associated acname, and
affects the who 1 eli ne. I f present i t mus t
be followed by a digit, where user's ring ~
digit i 7, which specifies which ring's
Initial ACL should be affected. If the
control argument is not given the user's ring
is assumed.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

Examples

set lacl dir listings sm * - -
will change the mode or add an entry to the directory Initial ACL
in the directory listings with the mode "sm" being given to *.*.*
(everyone.)

sid -wd sa Jones.Faculty

will add to the directory Initial ACL in the working directory an
entry with mode "sail for Jones.Faculty.* if that entry does not
exist; otherwise it will change the mode of the Jones.Faculty.*
entry to "sa."

GD Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Command
3/29/73

This command adds entries to a segment Initial Access
Control List (Initial ACL) in a specified directory, or modifies
the access mode in an existing Initial ACL entry. A segment
Initial ACL contains the ACL entries to be placed on segments
added to the directory. For a discussion of Initial ACLs see the
MPM Reference Guide section, Access Control.

Usage

set_iacl_seg pathname mode~ acname~ ••• moden acnamen -ca-

1) pathname

2) model

3) acnamel

4) ca

specifies the directory in which the segment
Initial ACL should be changed. If it is
II-wd" or II-working_directory" then the
working directory's Initial ACL is assumed.
If an entry for acnamel already exists, then
its mode is changed to model; otherwise
acnamel with model is added to the Initial
ACL. The star convention may be used.

is the mode associated with acnamel. It may
consist of any or all of the letters "rew ll

(read, execute, write.) To specifically deny
access to acnamel., IInll, 1111, or "null" should
be used for model.

is an access control name which is permitted
model to pathname. If the last model has no
acnamel following it the user's name aryd
Rroject are assumed. acnamei must be of the
form person.project.tag. If one or more of
the components is missing, then they are
assumed to be "*11. Any components missing on
the left must be delimited by periods. The
periods to the right may be omitted.

may be the control argument -ring (-rg). It
may appear anywhere on the line except
between a mode and its associated acname, and
affects the whole line. If present it must
be followed by a digit, where user's ring ~
digit i 7, which specifies which ring's
Initial ACL should be affected. If the
control argument is not gi ven, then the
user's ring is assumed.

@ Copyright, 1973, r·1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

Examples:

will chan~e the mode or add an entry to the segment Initial ACL
in the directory test, with the mode rew bein~ given to *.*.*
(everyone.)

sis -wd re Jones.Faculty -r~ 5

will add to the segment Initial ACL for ring 5 in the working
directory, an entry with mode re for Jones.Faculty.* if that
entry does not exist; otherwise it will change the mode of the
Jones.Faculty.* entry to IIre li

•

@ COP y rig h t , 1 9 7 3 , r{~a 5 5 a c h use t t sin s tit ute 0 f T e c h nolo g y
and Honeyl,tJel1 Information Systems Inc. (E~~2)

MULTICS PROGRAMMERS' MANUAL

Command
Development System

6/30/72

The set_search_dirs command allows users to insert search
directories after the working directory in the default search
rules ..

Usage

1) argl are the pathnames of the directories to be searched.

Notes

The current maximum number of arguments is thirteen.

See also set_search_rules and print_search_rules in the MPM.

Searching is expensive in machine time, so the fewer
directories searched, the better.

@ Copyright, 1972, ~1assachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Command
Development System

6/25/71

The set_search_rules command allows the user
search rules to suit his individual needs with
restrictions.

to set his
only minor

Usage

1) pathname is the pathname of a segment containing the ASCI I
representation of the search rules.

Notes

The allowed search rules are absolute pathnames of
directories to be searched and the following key words:

1) initiated_segments check the already initiated
segments;

2) referencinLdir search the parent directory of the
segment making the reference;

3) workinLdir search the working directory;

4) home_ dir search the home directory;

5) process_ dir search the process directory;

6) system_libraries search the default system
1 ibraries.

Currently, initiated_segments must be the first search rule.
If the user decides not to put system_libraries in his search
rules, then many standard commands cannot be found.

There must be one rule per line. A maximum of 21 search
rules is allowed. Leading and trailing blanks are allowed but
embedded blanks are not allowed.

See also print_search_rules and set_search_directories in the
MPM.

Warning: searching is expensive in machine time so the fewer
directories searched the better.

(END)

MULTICS PROGRAMMERS' MANUAL EJ
Conmand
3/1/73

~: setacl, sa

This command adds entries to an Access Control List (ACL) or
modifies the access mode in an existing ACL entry of either a
segment or a directory. See the MPM Reference Guide section,
Access Control, for a discussion of ACLs.

usage

setacl pathname mode~ acname~ ••• moden -acnamen-

1) pathname

2) model

3) acnamel

specifies the segment or directory for which the
ACL should be changed. If it is "-wd" or
"-working_directory", then the working directory
is assumed. If an entry for acnamel already
exists, then its mode is changed to model,
otherwise acnamei with modei is added to the ACL.
The star convention may be used.

is the mode associated with acnamei. For
directories it may consist of any or all of the
1 e t t e r s II sma" (s tat us, mo d i f y , a P pen d) wit h the
requirement that if "m" is given, liS" must also be
given. For segments it may consist of any or all
of the letters "rew" (read, execute, write.) To
specifically deny access to acnamel, "n", "", or
"null" should be used for model.

is an access control name which is permitted model
to pathname. If the last model has no acnamel
following it, the user's name and project are
assumed. acnamei must be of the form
person. project. tag. If one or more of the
components is missing, then they are assumed to be
"*". Any component missing on the left must be
delimited by periods. The periods to the right
may be omitted.

~ Copyright, 1973, Massachusetts Institute of Technolo~y
and H 0 n e yw ell I n forma t ion S y stems Inc.

MUlTICS PROGRAMMERS' MANUAL

Page 2

Examples

setacl *.pl1 rew *

will change the mode or add an entry to the ACl of every segment
in the working directory that has a two component name with a
second component pll, giving the mode "rew" to *.*.* (everyone.)

sa -wd sm Jones.Faculty

will add to the ACL of the working directory an entry with mode
"sm" for Jones.Faculty.* if that entry does not exist; otherwise
it will change the mode of the Jones.Faculty.* entry to "sm."

~ Copyright, 1973, Massachusetts Institute of Technolo~y
and Honeywell Information Systems Inc. (E~:D)

MULTICS PROGRAMMERS' MANUAL

Command
Development System

11/04/70

The sort_file command may be used to sort the 1 ines in an
ASCII file in ascending order according to the ASCII collating
sequence. The resorted file replaces the previous contents of
the specified file.

Usage

1) path

Notes

sort_file path

specifies the pathname of an ASCII file to be sorted
line by line. The resorted contents of the file will
replace the previous contents of the file. (The
length of the file will, of course, remain
unchanged.)

Lines of unequal length are compared by assuming the shorter
line to be padded on the right (after the new-line character)
with following blanks.

The lines of the original file are resorted using temporary
segments in the process directory. The original file is not
modified until the last moment.

(END)

MULTICS PROGRAMMERS' MANUAL

!:ism.e.: start, sr

Command
Standard Service System

4/20/72

The start command is employed after the quit button has been
pressed in order to resume execution of the user's process from
the point of interruption. It may also be used to resume
execution after an unclaimed signal, provided that the condition
which caused the unclaimed signal either is innocuous or has been
corrected. I t restores the attachments of user_input,
user_output, and error_output, and the mode of user_i/o to what
they were at the time of the interruption, unless the -no_restore
control argument is given (see below).

Usage

start -control_argument-

I} control_argument is either -no_restore or -nr. If present,
it indicates that the standard I/O
attachments should not be restored.

Notes

This command may be issued immediately after a quit signal.
It may also be issued later, but only if a hold command was given
immediately after the quit signal and no subsequent release
command was given.

If there is no suspended computation to re-start, the
command prints the message "start ignored".

See also the MPM Reference Guide section on The Multics
Command Language Environment.

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MUlTICS PROGRAMMERS' MANUAL

~: status, st

Command
3/12/73

The status command prints selected detailed file status
information about the storage system entry specified.

Usage

status pathl ••• pathn -control_arg~- ••• -control_argn-

1) pathl

-all, -a

-date, -dt

-name, -nm

-mode, -md

-device, -dv

is the path name of the segment, directory,
multi-segment file, or link for which status
information is desired. The default path
name is the working directory which may also
be specified by "-wd". The star convention
may be used.

is chosen from the following list of control
arguments. The control arguments may appear
anywhere on the line and are in effect for
the whole line.

The control arguments for segments and
directories are:

all relevant information returned by
hcs_$status_long; i.e., the type of entry,
names, unique id, date used, date modified,
date branch modified, date dumped, author,
bit count author (if different from' author),
device, bit count, records used, current
blocks (if different from records used), max
length in words (if type is segment), safety
switch (if it is on), user's mode and ring
brackets, and copy switch (if it is on);

all the dates on the entry; i.e., date used,
date modified, date branch modified, date
dumped;

all the names on the entry;

the user's mode, ring brackets and safety
switch (if it is on);

the device id;

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Infor~ation Systems Inc.

Page 2

-length~ -In

-author, -at

-type, -tp

-all, -a

-date, -dt

-name, -nm

-author, -at

-type, -tp

Notes

MULTICS PROGRAMMERS' MANUAL

the bit count~ the number of records used~
the current blocks (if different from records
used) and the max length in words (if type is
segment);

the author of the entry and the bit count
author (if different from author);

the type of entry (segment,
multi-segment file, link).

directory

If no control argument is specified, the
following information is given for segments
and directories: names, type, date used, date
modified, date branch modified, bit count,
records used, user's mode.

The control arguments for links are:

all relevant information return by
hcs_$status_long, i.e., the path name of the
entry linked to, names, unique id, date link
modified, date dumped, and the author of the
link;

all the dates, i.e., date link modified, date
dumped; the path name of the entry linked to;

all the names on the link;

the author of the link;

the type of entry (link) and the path name of
the entry linked to.

If no control argument is specified, the
following information is printed for links:
the pathname of the entry linked to, names,
date link modified, date dumped. The -mode,
-device, and -length control arguments will
be ignored for links.

Any zero-valued dates will not be printed.

Directories that have been used to implement multi-segment
files will be labelled as SUCh

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Examples

1)

2)

status >Federal>Adams

names:

type:
unique id:
date used:

Washington
Test_1ss
Adams

date modified:
branch modified:
author:
bit count author:
device:
bit count:
records used:
safety sw:
mode:
ring brackets:

-a 11

directory
764576046673

Page 3
3/12/73

01/27/73 1459.0 est Wed
01/27/73 1459.0 est Wed
11/19/72 1542.6 est Thu
Hamilton.Mu1tics.a
Dumper.SysDaemon.a
DSU-190
o
6
on
rew
5, 5

status -type -mode -date newtest.*

>States>Washington>newtest.p11

type: segment
date used: 01/26/73 2145.0 est Tue
date modified: 01/13/73 1630.0 est Wed
branch modified: 01/13/73 1626.7 est Wed
date dumped: 01/14/73 0305.4 est Thu
mode: rew
ring brackets: 4, 5, 5

>States>Washington>newtest.list

type:
1 inks to:
date link modified:

1 ink
Federal>Jefferson>newtest.list
01/26/73 2139.3 est Tue

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MUlTICS PROGRAMMERS' MANUAL

Names: terminate, tm
terminate_segno, tms
terminate_refname, tmr
terminate_single_refname, tmsr

terminate

Command
2/12/73

This command allows the user to remove a segment from his
address space. It is most useful when recompiling procedures so
that the new version may be invoked with no linkage
complications. Therefore it is called automatically by the
Multics compilers. The user may also call this command directly
in order to test various versions of a procedure. Generally, the
links to a segment are not reset unless that segment has a
linkage section. However, they are always reset for the
terminate_refname (tmr) and terminate_single_refname (tmsr)
entries.

Usage

terminate namel ••• namen

1) namel is the path name of a segment to be terminated.

Entry: terminate_segno, tms

This entry allows termination by segment number.

Usage

terminate_segno segnol ••• segnon

1) segnol is the segment number (in octal) of a segment to be
terminated.

Entry: terminate_refname, tmr

This entry allows termination by reference name. The
segment itself is terminated, not merely the particular reference
name specified.

Usage

terminate_refname namel ••• namen

1) namei is the reference name of a segment to be terminated.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

terminate MULTICS PROGRAMMERS' MANUAL

Page 2

Entry: terminate_single_refname, tmsr

This entry allows termination of a single reference name.
Unless the specified reference name is the only one by which the
segment is known, the segment itself will not be terminated.

Usage

terminate_single_refname name~ ••• namen

1) namel is the reference name to be terminated.

Notes

Caution must be exercised when using these commands as one
may unintentionally terminate a segment of the command language
interpreter or another critical piece of the environment. The
usual result is termination of the user's process.

The star convention is not recognized in any of the above
commands.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

/

MULTICS PROGRAMMERS' MANUAL

Command
Development System

8/10/72

~: trace_stack, ts

The track_stack command prints a detailed explanation of the
current process's stack history in reverse order (most recent
frame first). For each stack frame, all available information
about the procedure which established the frame (including, if
possible, the source statement last executed), the arguments to
that (the owning) procedure, and the condition handlers
established in the frame is printed.

trace_stack is most useful after a fault or other error
condition. If the command is invoked after such an error, the
machine registers at the time of the fault are also printed, as
well as an explanation of the fault and the source 1 ine in which
it occurred if possible.

Usage

may be selected from the foflowing:

-brief, -bf Supress listing of arguments and handlers.

-long, -lg Print octal dump of each stack frame.

-depth 11, -dh n Dump only n frames.

Output Format

When trace_stack is invoked, it first searches backward
through the stack for a stack frame containing saved machine
conditions as the result of a fault. If such a frame is found,
tracing will proceed backward from that point; otherwise, a
comment is printed and tracing beings with the stack frame
preceding trace_stack.

If a machine-conditions frame is found, track_stack· repeats
the system error message describing the fault. Unless "brief"
mode was selected, trace_stack also prints the source line and
faulting instruction, and a listing of the machine registers at
the time the fault occurred.

The command then performs a backward trace of the stack, for
n frames if the "-depth nil argument was specified, or unti 1 t.he
beginning of the stack is reached.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MUlTICS PROGRAMMERS' MANUAL

Page 2

For each stack frame, trace_stack prints the offset of the
frame, the condition name if a fault occurred in the frame, and
the identification of the procedure which established the frame.
If the procedure is a component of a bound segment, the bound
segment name and the offset of the procedure within the bound
segment will be printed also.

The trace_stack command then attempts to locate and print
the source line associated with the last instruction executed in
the procedure which owns the frame (which is either a call
forward, or a line which encountered a fault). The source line
can be printed only if the procedure has a symbol table (that is,
if it was compiled with the "-table" option) and if the source
for the procedure is available in the user's working directory.
If the source line cannot be printed, trace_stack will print a
comment explaining why.

Next, trace_stack prints the machine instruction last
executed by the procedure which owns the current frame. If the
machine instruction is a calIon a pl1 operator, trace_stack will
a Iso p r i n t the name 0 f the 0 pe r a to r • 1ft he ins t r u c t ion i s a
procedure call, trace_stack will suppress the octal of the
machine instruction and print the name of the procedure being
called.

Unless the output mode is "brief", trace_stack will next
list the arguments supplied to the procedure which owns the
current frame, and list any enabled condition, default and
clean-up handlers established in the frame.

If the output mode is "long",trace_stack will then print an
octal dump of the stack frame, with eight words per line.

Example:

After a fault which reenters the user environment and
reaches command level, a user might type

hold

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Command
11/14/72

~: truncate, tc

This command will truncate a segment to a specified length,
and reset the bit count accordingly. It resets the bit count
author for the storage system entry to be the user who invoked
the command. The segment may be specified by path name or
segment number.

Usage

truncate -control_arg- segid length

2) segid

3) length

Notes

The length
after truncation.

if present, must be -name or -nm, indicating
that the following segid is in fact a path
name, although it may look like a number.

is either a path name or an octal segment
number. A path name that happens to be an
octal number should be preceded by the
control argument -name or -nm.

is an octal integer indicating the length in
words to which the segment is to be
truncated. If no length argument is
provided, zero will be assumed.

argument
Thus,

designates the length of the segment

truncate alpha 50

will truncate all of the segment alpha except the first 50 words
(i.e., words 0 to 47). The bit count of the segment will be set
to the truncated length.

If the segment is already shorter than the specified length,
its length will be unchanged, but the bit count will be reset to
the specified length.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

~: unlink, ul

Command
2/15/73

The unlink command deletes the specified link entry. For a
discussion of links see the MPM Reference Guide section, Segment,
Directory and Link Attributes.

ysage

unlink pathl ••• pathn

1) pathl specifies a storage system link entry to be deleted.

Notes

The user must have modify access in the directory containing
the 1 ink.

The star convention may be used.

The delete, deleteforce and delete_dir commands may be used
to delete segment and directory entries.

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

li.am.e: v5bas i c

Command
4/30/73

The v5basic command invokes the BASIC compiler to translate
a segment containing BASIC source code. If the compile option is
not specified, the compiled code is then executed.

Usage

v5basic source_name -optionl- ••• -optionn-

2) opt i on1

-time n, -tm n

-compile

-library, -lb

Notes

is the path name of the segment to be
translated. The characters .basic mayor may
not appear as part of the path name. They
must appear, however, on the segment itself.

is selected from the
options. The options
order.

following list
may appear in

of
any

specifies a time limit of n CPU seconds where
n is an integer. When the time limit is
exceeded, execution stops, and the user is
asked if he would like to continue execution.
If he answers yes, a new timer is set giving
the user the same amount of time.

indicates to compile the program and produce
an object segment rather than immediately
executing the code. The compiled object
segment is saved in the user's working
directory with the characters .dobj appended
in place of .basic. The object segment is
not a Multics standard object segment and can
only be executed using the basic_run command.

indicates that the Dartmouth library is to be
searched for the source segment. No other
directory is searched.

This implementation of BASIC is described in BASIC, Fifth
Edition, published in 1970 by the Kiewit Computation Center,
Dartmouth College, in Hanover, New Hampshire.

The following is a list of differences between the Dartmouth
and Multics implementations of BASIC:

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

1) The Mu1tics storage system conventions differ from those
at Dartmouth. Therefore, if a user refers to a segment
as

20 file 11:"alpha"

Mu1tics will search for a segment named alpha in the
user's working directory. If alpha is not found, the
directory is searched for a1pha.basic. If this is not
found, the segment alpha is created.

2) The number sign (I) must be entered with an escape
character preceding it to avoid the Mu1tics
interpretation as an erase character. The upward arrow
character is entered as a circumflex on Mu1tics.

The current version of the BASIC compiler is
a proprietary program of Dartmouth College.
It has been made available to users of the
M.I.T. Information Processing Center with the
permission of Dartmouth College. The BASIC
compiler may not be used at other computer
installations without permission of Dartmouth
Co 11 ege.

o Copyright, 1973, Hassachusetts Institute of Technology
\::J and Honeywell Information Systems Inc. (END)

tviUL TICS PROGRAMMERS' t4Ar~UAL I wa I k_s ubt ree

~: walk_subtree, ws

Command
Development System

9/27/71

The walk_subtree command is used to execute a given command
line in a given directory (called the starting node) and in all
directories inferior to the starting node. The pathname of every
directory in which the command line is executed is printed onto
the user's console. Control arguments are provided to modify the
behavior of the command (see the list below).

Usage

walk_subtree pathname "command line" -option~- ••• -option.n-

1) pathname

2) "command line"

3) optionl

-first n., -ft n

-last ,n, -It .D.

-brief, -bf

-bottom_up, -bu

is the starting node. This must be the
fir s tar g u me n t • I fit i s -w d , the
working directory is assumed.

is the command line to be executed.
Note that the entire command line is
taken to be a single argument.
Therefore, a multiple word command line
should be typed as a quoted string.

is chosen from the following list of
options. These control arguments can
appear in any order following the
command line.

ma k e s ,n the fir s t 1 eve 1 i nth e f i 1 e
system hierarchy at which the command
line is to be executed where, by
definition, the starting node is level
1. The default is -first 1.

makes n. the lowest level in the file
system hierarchy at which the command
line is to be executed. The default is
-last 99939, i.e., all levels.

suppresses the printing of the names of
the directories in which the command
line is executed. (This is not a
default option.)

causes execution of the command line to
commence at the last level and to
proceed upwards through the file system

@ Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

Page 2

Notes

MULTICS PROGRAMMERS' MANUAL

hierarchy until tne first level is
reached. I n the def au 1 t mode, execu t ion
begins at the highest (first) level and
proceeds downward towards the lowest
(last) level.

The walk_subtree command establishes a program_interrupt
handler. If the user quits out of the walk_subtree command and
immediately types PI (or program_interrupt), his working
directory will be changed to the directory he was in when the
walk_subtree command vias typed.

Examples

Assume the following directory structure:

C"'--____ Udd-----')

dl

C,",",-_d_dd_l_)

J C ____ d_3,,)

Assume that the user currently has working directory isaac.

@ Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL I wal k_subtree

1) walk_subtree)udd)pr)isaac "list *.list"

Page 3
9/27/71

will list all the segments with a second component of "list ll

in the directory isaac and all of its subdirectories.

2) wa 1 k_subtree)udd)pr) isaac "1 i st *.1 i st; d1 *.1 i st ll

will list and then delete all the segments with a second
component name of "list" in the directory isaac and all of its
subdirectories.

3) walk_subtree -wd "list *.list" -first 3

executes the command line "list *.1 ist" in the directories
john, bill, dddl, d2, d3.

4) walk_subtree)udd)pr)isaac "list *.list" -last 2

ex e cut est he comma n d 1 i n e .f 1 i s t *. 1 i s t II i nth e d ire c to r i e s
isaac, fred, harry, dl.

5) walk_subtree)udd)pr)isaac "list *.list ll -last 4 -first 3

executes the command 1 i ne 111 i st *.1 i st" in the di rectori es
john, bill, dddl, d2.

6) walk_subtree fred "setacl -wd rewa isaac.pr.*fI

executes the given command line first in the directory fred,
then in john and in bill, then in d2, and then in d3.

7) walk_subtree fred "deleteac1 -wd isaac" -bottom_up

executes the given command line first in the directory d3,
then in d2, then in john and in bill, and then in fred. Note
that the -bottom_up option is essential in this case for the
deleteac1 command to succeed.

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

~: where, wh

I where I
Command
2/13/73

The where command searches for a given reference name using
the standard search rules and initiates the segment if found. It
prints out the full path name of that segment, including its
primary name. If the segment is not in the search path, an
error message is printed. The segment will remain known to the
process after the where command is invoked.

Usage

where namel name~ ••• namen

1) namel is a segment reference name of ~ 32 characters.

The primary name of a segment is the name which is first in
the list of names on a storage system directory entry.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

COl11Tland
Standard Service System

8/21/72

The who command determines the number, identification and
partial status of all users of the system. The command prints
out a header and lists the name and project of each user. The
header consists of the system name, the total number of users,
the current system load, and the maximum load. (See the MPM
write-up for how_many_users to print only the header.)

Usage

who -control_argl- ••• -control_argn- -argl- ••• -argn-

I} control_argl may be chosen from the fo 11 owi ng 1 is t of
control arguments:

-long, -lg prints the date and time logged in, the
terminal identification and the load units of
each user, in addition to his name and
project. The header includes installation
identification, the time the system was
brought up, and load information on absentee
users.

-project, -pj sorts the output by the project
identification of each user.

-name, -nm sorts the output by the name of each user.

-absentee, -as lists only absentee users.

-brief, -bf

2) argl

suppresses the printing of the header.

may be selected from the following list:

Name

• Proj

Name.Proj

lists only users with person name "Name".

lists only users with project identification
"projl1.

lists only users with person name "Name" and
project identification "Proj".

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 2

Notes

Absentee users are denoted by an asterisk (*) following
"Name.Proj".

Up to twenty classes of selected users are permitted.

If the options -project or -name are omitted, the output is
sorted on login time.

If an argi is specified, the header is suppressed even if
the -long control argument is specified. The -long control
argument will produce long information for each user listed.

Examples

1) Print default information.

who·

Multics 17.6b, load 6.0/50.0; 5 users
Absentee users = 1/2

Backup.SysDaemon
IO.SysDaemon
Jones.Faculty
Doe.Work
Smith.Student*

2) Print long information for absentee users on the Student
project (with no header).

who -absentee -long .Student

Absentee users = 1/2

08/21/72 0050~2 none 1~0 Smith.Student*

3) Print brief information for all users.

who -brief

Backup.SysDaemon
IO.SysDaemon
Jones.Faculty
Doe.Work
Smith.Student*

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

3/24/72

SUBROUTINES

This section contains, in alphabetic order, descriptions of
all standard Multics subroutine calls. The user of this section
will also want to refer to the Reference Guide section on the
Multics Programming Environment, which contains a guide to the
subroutines, organized by function.

The following
descriptions:

conventions are used in subroutine

1. An entry declaration, suitable for verbatim copying
into a calling program, is provided. Using such a
declaration is recommended practice, since it helps
reduce errors.

2. Calling sequences are normally given for the Pl/I
language. Users of other languages should translate
the sequences accordingly.

3. Following the description of each argument, the
notation (Input) or (Output) indicates that the
argument is passed to or comes from the subroutine,
respectively.

4. I/O System Interface Modules are also alphabetically
included in this section.

Note that subroutines can be distinguished from commands by
name; generally, subroutines have names which end with a
trailing underscore.

Subroutines not described in this section may possibly be
listed in the Reference Guide sections on Obsolete Procedures or
I nterna 1 I nte rfaces.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subrout i ne Ca 11
7/5/73

The active_fnc_err_ subroutine is called by active functions
when they detect unusual status conditions. It formats an error
message (as described below) and then signals the condition
active_function_error. The default handler for this condition
prints the error message and then returns the user to command
level. (See the MPM Reference Guide sections, Error Handling,
and List of System Conditions and Default Handlers, for further
information.)

Since this subroutine can be called with a varying number of
arguments, it is not permissible to include a parameter attribute
list in its declaration.

Usage

declare active_fnc_err_ entry options (variable);

call active_fnc_err_ (code, caller, control_string,
a rg.l, ••• , argn);

1) code

2) call e r

is the status code (fixed bin(35» detected.
(Input)

is the name (char(*» of the procedure calling
active_fnc_err_. It can be either fixed or
varying. (Input)

The remaining arguments are optional, as explained in Notes
below.

3) control_string

4) argi

Notes

is an ioa_ control string (char(*».
MPM write-up for the ioa_ subroutine.

See the
(Input)

is an ioa_ format argument. See the MPM
write-up for the ioa_ subroutine. (Input)

The error message prepared by active_fnc_err_ has the format
"caller: system_message user_message". The system message is a
particular message from error_table_ corresponding to the value
of code. If code = 0, no system message is included. The user
message is constructed by ioa_ from the control string and format
arguments. If no control_string and format arguments are given,
the user message is omitted.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
Development System

8/10/71

This procedure performs the basic work of the
adjust_bit_count command. This entry is called to find the last
nonzero word or character of a segment and set the bit count
accordingly.

Usage

1) dn

2) en

declare adjust_bit_count_ entry (char(l68) aligned,
char(32) al igned, bit(l) al igned, fixed bin(24),
fixed bin);

call adjust_bit_count_ (dn, en, char_sw, bit_count,
code) ;

is the directory pathname. (Input)

is the entry in the directory. (Input)

3) char_sw is "O"b if adjustment is to be made to the last
nonzero word; it is "1"b if to the last nonzero
character. (Input)

5) code

is the computed bit count for the segment. If
the value is < 0, no attempt at computing the
count was made (code will be nonzero). If the
value is)= 0, the computed value is correct,
regardless of whether the bit count could be
set. (Output) .

is 0 if the operation was successful. Ahy file
system error code May be returned. (Output)

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL broadcast_I

I/O System Interface Module
Development System

10/8/71

~: broadcast_

The broadcast_ interface module, or broadcaster, is one
means by which I/O system calls may fan out, i.e., a single I/O
system call on a single stream can result in I/O operations being
performed on several different devices. The broadcaster permits
a single stream to be simultaneously attached to several other
streams. Certain I/O system calls then issued to the first
stream will result in similar calls to each of the object
streams.

Note: Due to current limitations in the specifications of the
I/O system, certain deficiencies exist in this release of the
broadcaster. These deficiencies have to do with return
arguments. The broadcaster performs I/O calls on several I/O
streams and receives return values from each of these calls,
e.g., status. However, the broadcaster itself has no way to
return all of these return values to its caller. Currently, the
broadcaster performs some mapping of these various values to
determine the single value to be returned, and these mappings are
indicated later in this document.

usage

call ios_$attach (stream, IIbroadcast_", object_stream.l,
status);

1111 ,

call ios_$attach (stream, "broadcast_", object_streaml, 1111,

status);

call ios_$attach (stream, IIbroadcast_", object_streamll, 1111,

status);

For each object stream to be associated with the primary
stream, an attach call, as indicated above, must be issued. All
the various object streams will be simultaneously associated with
the primary stream until detach calls are issued. Any I/O system
calls 1 isted below issued to the primary stream, except the
attach and detach calls, will result in equivalent calls to each
of the object streams.

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

broadcast_I MULTICS PROGRAMMERS' MANUAL

Page 2

l1Q System Calls

The following I/O system calls are implemented by the
broadcaster:

abort
attach
detach
resetwrite
wr i te

The number of elements written, as returned by the write
call, is the minimum of the number of elements written by each
write call to an object stream.

Device Identification

Since the pseudo-device of the broadcast_ interface module
is an object stream, any stream name is a permitted device
identification. The object stream does not have to exist at
attach time. However, any attempt to use a stream which
broadcasts to a nonexistent object stream will result in an error
status being returned.

Status

If any of the error codes in the status strings returned in
I/O calls by the broadcaster to the object streams are nonzero,
then one of these nonzero codes will be returned by the
broadcaster. Otherwise, the error code portion of "status"
returned by the broadcaster will be zero.

Modes

The broadcaster has no modes of its own; therefore I/O
operations performed by the broadcaster on its object streams
take on the modes of the individual streams.

Element ~

The broadcaster pays no attention to element size; therefore
each object stream uses its own element size. Users must be
careful that all object streams of a given broadcast stream have
the same element size.

Synchronization

The broadcaster takes on the synchronization of its object
streams. If all its object streams are write synchronous, the

~ Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL broadcast_I

Page 3
10/8/71

broadcaster will also be write synchronous. If any of the object
streams are in write asynchronous mode, then the broadcast stream
vJi 11 be in wr i te asynch ronous mode.

Detachment

The caller may specify that one or all of the object streams
be detached. If the second argument to detach is a null string,
all the object streams will be detached. If a particular object
stream is specified as the second argument in the call to detach,
only this stream will be detached. If a call to detach leaves no
object stream associated with the primary stream, the primary
stream will be deleted.

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
Standard Service System

02/16/71

The change_wdir_
working directory to
argument.

subroutine changes the
the directory specified

user's current
as its first

Usage

declare change_wdir_ entry (char(168) aligned, fixed bin);

call change_wdir_ (directory_name, code);

1) directory_name

2) code

is the pathname of the directory which will
become the user's working directory.
(Input)

is a standard file system error
the MPM Reference Guide
"Miscellaneous Reference Data".

code. See
Section on

(Output)

(END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
9/28/73

This procedure validates an entry name to insure that is has
been formed according to the rules for constructing star names.
These rules are given in the MPM Reference Guide section,
Constructing and Interpreting Names. It also returns a status
code that indicates whether the entry name contains asterisks or
question marks, and whether it is a star name that matches every
entry name.

This entry point accepts an absolute path name as its input.
It validates the final entry name in that path, as described
above.

Usage

declare check_star_name_$path entry (char(*),
fixed bin(3S»;

call check_star_name_$path (pathname, code);

1) pathname is the absolute path name whose final entry name
is to be validated. Trailing spaces in the path
name character string are ignored. (Input)

2) code

o

1

2

is one of the following status codes: (Output)

the entry name is valid, and does not contain
stars or question marks.

the entry name is val id, and does contain stars or
question marks.

the entry name is valid, and is a star name that
matches every entry name. This means that the
entry name is either "**", or "*.**", or "**.*".

error_table_$badstar
the entry name is invalid. It violates one or
more of the rules for constructing star names.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

Page 2

This entry point accepts, as input, the entry name to be
validated.

Usage

declare check_star_name_$entry entry (char(*),
fixed bin(3S»;

call check_star_name_$entry (entryname, code);

1) entryname

2) code

Notes

is the entry name to be
spaces in the entry name
ignored. (Input)

is as above. (Output)

validated. Trailing
character string are

Refer to the MPM write-up for the hcs_$star_ subroutine to
see how to get a list of directory entries that match a given
star name.

Refer
subroutine
name.

to the MPM write-up for the match_star_name_
to see how to compare an entry name with a given star

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MUlTICS PROGRAMMERS' MANUAL

Subroutine Call
2/16/73

The clock_ procedure reads the system clock. The time
returned is a fixed bin(71) number equal to the number of
microseconds since January 1, 1901, 0000 hrs GMT. It is suitable
for input to the date_time_ subroutine which converts the time to
an ASCII representation.

Usage

declare clock_ entry returns (fixed bin(71»;

date_time = clock_ ();

is the number of microseconds since January 1,
1901, 0000 hrs GMT. (Output)

Since the "leap second" declared by the National Bureau of
Standards on June 30, 1972, the value returned by clock_
understates the time since January 1, 1901, 0000 hrs GMT by one
second. As a result, conversion routines which ignore the "leap
second" will give correct answers for times since midnight of
June 30, 1972, and will be one second high for times before that
date.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL COllLer r _I
Subroutine Call

11/16/72

This is the principal error message printing subroutine. It
should be called to report any unusual status condition, e.g.,
when a nonzero status code is returned.

Since this procedure can be called with a different number
of arguments, it is not permissible to include a parameter
attribute list in the declaration.

See also the MPM Reference Guide section, Strategies for
Handling Unusual Occurrences.

This procedure formats an error message (as described below)
and then signals the condition command_error. The default
handler for this condition simply returns control to com_err_
which then writes the error message on the stream "error_output".

Usage

declare com_err_ entry options (variable);

call com_err_ (code, caller, control_string, ar&l ••• argn);

1) code

2) ca 11 e r

is a status code (fixed bin (35» as returned
from system entry points, etc. If code = 0,
no system message is printed. (Input)

is the name of the
calling com err.
varyi ng. (Input)

procedure (character{*»
It may be either fixed or

The remaining arguments are optional, as explained in the Notes
below.

3) control_string

4) argl.

Hotes

is an ioa_ control string (character{*». See
the MPM descr i pt i on of i oa_. (Input)

is an ioa_ format argument.
description of ioa_. (Input)

See the MPM

The error message prepared by com_err_ has the format
"caller: system_message user_message ll

• The system message is a
particular message from error table corresponding to the value
of code. If code = 0, no system message is included. The user

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

message is constructed by ioa_ from the control string and format
arguments. If no control_string or format arguments are given,
the user message is omitted.

This is the recommended entry to use when the caller name
and colon are not wanted because it still allows a meaningful
caller name to be passed to the command_error condition handler.
Otherwise, it is the same as the com_err_ entry.

Usage

declare com_err_$suppress_name entry options (variable);

call com_err_$suppress_name (code, caller, control_string,
arg~ ••• arm);

The description of the arguments is the same as for
com_err_. The argument "caller" must not be null or blank
because condition handlers for cOlll11and_error need to know who
signalled them.

Notes

If a nonzero code is provided which does not correspond to an
error_table_ entry, the system message will be of the form
"Code.s1.9.Q. not found in error_table_", where ~ is the decimal
respresentation of code; if code is negative the message will be
of the form "1/0 Status .Q.Q.Q" where .QQQ is the 12-digit unsigned
octal representation of code (this form is intended for use by
I/O System device interface modules (DIMs) which wish to return
hardware error status to their callers; the actual interpretation
of the value is dependent on the physical device and the
individual DIM).

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
Development System

2/15/72

This subroutine is the standard system procedure invoked to
ask a question and obtain an answer from the user. It formats
the question (as described below) and then signals the condition
command_question. See the MPM Reference Guide section, List of
System Conditions and Default Handlers. The default handler for
this condition simply returns control to command_query_ which
writes the question on the stream user_i/o. It then reads the
stream user_input to obtain the answer. Several options have
been included in command_query_ to support the use of a more
sophisticated handler for the command_question condition.

Since this procedure can be called with different numbers of
arguments, it is not permissible to include a parameter attribute
list in the declaration.

Usage

1) p

declare command_Query_ entry options (variable);

call command_Query_ (p, answer, caller, control_string,
arg..l ••• argn);

is a
below.

pointer to
(Input)

the structure

declare 1 Query_info aligned,
2 version fixed bin init(2),
2 yes_or_no_sw bit(l) unal igned,
2 suppress_name_sw bit(l) unaligned,
2 status_code fixed bin(35),
2 Query_code fixed bin(35);

(1) version is the version number of
structure. (Input)

this

if 11"b, command_Query_ will not
return until a yes or no answer is
read. (Input)

if 1I1"b, the name of the call ing
procedure will be omitted from the
Question. See Notes below.
(Input)

€) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

command_query_

Page 2

(5) query_code

2) answer

3) caller

MULTICS PROGRAMMERS' MANUAL

is the status code which prompted
the question; otherwise it should
be zero. (Input)

is currently
intended for
handlers for
(Input)

ignored. It is
use by special ized

command_question.

is the response (character(*)
varying) read from user_input.
Leading and trailing blanks plus
the "new line" character have been
removed. (Output)

is the name (character(*» of the
calling procedure. It may be
either varying or nonvarying.
(Input)

The remaining arguments are optional as explained in the Notes.

4) control_string

5) arti

Notes

is an ioa_ control string
(character(*». See the MPM
description of ioa_. (Input)

is an ioa_
the MPM
(Input)

format argument. See
description of ioa_.

The question prepared by command_query_ has the format
"caller: message". If suppress_name_sw is .Q!l, then the caller
name will be omitted from the question. The message is
constructed by ioa_ from the control string and format arguments.
if no control string and therefore no format arguments are given,
the message portion of the question is omitted.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved .. (END)

MULTICS PROGRAMMERS' MANUAL condition_

Subroutine Call
Standard Service System

2/25/72

tJame: condition_

This procedure establ ishes a handler for a condition in the
call ing block activation. If a handler for the specified
condition is currently established in the calling block
activation, it 'v'lill be overridden.

A description of the condition mechanism is given in the MPM
Reference Guide section on The Multics Condition Mechanism.

Usage

declare condition_ entry (char(*), entry);

call condition_ (name, handler);

1) name

2) handler

Notes

is the name of the condition for which the handler
is to be established. (Input)

is the handler to be invoked when the condition is
raised. (Input)

The condition names unclaimed_signal and cleanup are
obsolete special condition names and should not be used.

The PL/I on statement and the condition subroutine must not
be invoked during the same block activation Tn order to establ ish
a handler for the same condition.

In order to explicitly revert a handler establ ished by a
call to condition_, the reversion_ (see the MPM subroutine)
procedure must be called. The PL/I revert statement must not be
used for this purpose.

In PL/I Version 2, when a call to condition_ appears within
the scope of a begin block or internal procedure of a procedure,
the nO_Quick_blocks option must be specified in the procedure
statement of that procedure. The nO_Quick_blocks option is a
nonstandard feature of the Multics PL/I language and, therefore,
programs using it may not be transferable to other systems.

® Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
Development System

8/23/71

This procedure performs conversion from binary integers to a
character string representation either in the octal base or the
decimal base. It contains entries to handle double precision
integers.

The string representation is returned as an appropriate
varying character string with no included blanks and an assumed
decimal (binary) point at the right. If the argument is
negative, the first character of the returned value will be a
~inus sign. Leading zeros will be omitted.

This entry converts a single precision binary integer to its
decimal string representation.

Usage

declare convert_binary_integer_$decimal_string entry
(fixed bin(3S» returns (char(12) varying);

string = convert_binary=integer_$decimal_string (number);

1) number is a binary integer to be converted. (Input)

2) string is the representation of "number" in the decimal
base. (Output)

This entry converts a single precision binary integer to its
octal string representation.

Usage

declare convert_binary_integer_$octal_string entry
(fixed bin(3S» returns (char(13) varying);

string = convert_binary_integer_$octal_string (number);

1) number is a binary integer to be converted. (Input)

2) s t ring is the representation of "number" in the octal
base. (Output)

~ Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 2

This entry converts a double precision binary integer to its
decimal string representation.

Usage

declare convert_binary_integer_$lonK-decimal_string entry
(fixed bin(71» returns (char(23) varying);

string = convert_binary_integer_$long_decimal_string
(1 onK-num) ;

1) lonlLnum is a double precIsion binary integer to
converted. (Input)

be

2) string is the representation of long_num in the decimal
base. (Output)

Entry: convert_binary_integer_$long_octal_string

This entry converts a double precision binary integer to its
octal string representation.

Usage

declare convert_binary_integer_$lon&-octal_string entry
(fixed bin(71» returns (char(2S) varying);

string = convert_binary_integer_$lonK-octal_string
(1 on&-num);

is a double precIsion binary integer to
converted. (Input)

be

2) string is the representation of long_num in the octal
base. (Output)

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
8/10/73

The convert_date_to_binary_ subroutine converts a character
representation of a date and time into the 72-bit system clock
format. It accepts a wide variety of date and time forms,
including the output of date_time_ (see the data_time_ subroutine
write-up in the MPM).

Usage

declare convert_date_to_binary_ entry (char(*),
fixed bin(71), fixed bin(3S»;

call convert_date_to_binary_ (string, clock, code);

1) string is the character representation of the clock
reading desired. It has up to five parts
(date, time, day-of-week, offset, and time
zone), all of which are optional. They may
appear on 1 yonce and in any order. I fall of
them are omitted, the current time is
returned. Each part can be made up of
alphabetic fields, numeric fields, and
special characters. An alphabetic field is
made up of letters. The whole word or an
abbreviation made up of the first three
letters must be supplied. That means that
Jan and January are equivalent. No
distinction is made between upper and lower
case. A numeric field consists of an integer
of one or more decimal places. In addition,
there are four special characters: the slash
e/); the period (.); the colon (:); and the
comma e,). Blanks are necessary to separate
two numeric fields or two alphabetic fields.
They are optional between alphabetic and
numeric fields.

The five parts of the clock reading are:

date This is the date of the year. The year is
opt i ona 1 , and, if omi t ted, i s assumed to be
the year in which the date will occur next.
That is, if today is March 16, 1971, then
March 20 is equivalent to March 20, 1971,
while March 12 is the same as March 12, 1972.
There are three forms of the date,
illustrated by the examples below:

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 2

time

MULTICS PROGRAMMERS' MANUAL

16 March 1971 or 16 March

March 16, 1971 or March 16 1971 or March 16
(Note that the comma is optional.)

3/16/71 or 3/16

This is the time of day. If omitted, it is
assumed to be the current time. It has two
basic formats, 24-hour and meridional time.
The 24-hour time format consists of a four
digit number hhmm, where hh is the hour, and
mm is the minutes, followed by a period, and
an optional decimal fraction of a minute
field. Also acceptable are hours, minutes,
and an optional seconds field separated by
colons. The minutes and seconds fields must
be two digits in length each.

Examples of 24-hour time are:

1545.

1545.715

15:45:08

Meridional time must end with a meridional
designator (i.e., am, pm, noon (or n),
midnight (or m». If it is not preceded by a
time, midnight (0000.0) is indicated by the
alphabetic fields m or midnight, and noon
(1200.0) is indicated by n or noon. The
designator may be preceded by an hour, an
hour-colon-minutes time, or an
hour-colon-minutes-colon-seconds time. The
minutes and seconds fields, if present, must
be two digits in length.

Examples of meridional time are:

midnight

5 am

5:45 am

11:07:30 pm

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

day-of-week

offset

Page 3
8/10/73

This field is the day of the week <i.e.,
Monday, Tuesday, etc.). If the day of the
week is present along with a date, the date
must fallon that day of the week or else a
status code is returned. I f a date is not
present, the first day of the week after the
current date is used; that means that Tuesday
is interpreted as next Tuesday.

This field specifies an amount of time to be
added to the clock value specified by the
other fields. Offsets may be specified in
any and all of the following units:

seconds
minutes
hours
days
weeks
months

(second, sec)
(minute, min)
(hour)
(day)
(week)
(month)

Only one occurrence of each unit can be
present, each preceded by an integer. The
singular version can only be used with 1, the
plural for any other value. Note that if the
offset field is the only field present, the
offset is added to the current time.

If the month offset results in a nonexistent
d ate (e • g • , II Jan 31 3 mo nth s" wo u 1 d y i e 1 d
April 31), the last date of the resulting
month is used (e.g., April 30). The month
offset is applied before the other offsets
and must not be abbreviated nor used with the
zone field.

Examples of offset fields:

1 hour 5 minutes (an hour and five minutes
from now)

Monday 6 am 2 weeks (two weeks from next
Monday)

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 4

zone

2) clock

3) code

MULTICS PROGRAMMERS' MANUAL

This is the starting time zone to be used in
making the conversion to GMT. It currently
may be any of the following:

GMT (Greenwich mean time)
EST (eastern standard time)
EDT (eastern daylight time)
CST (central standard time)
COT (central daylight time)
MST (mountain standard time)
MDT (mountain daylight time)
PST (Pacific standard time)
PDT (Pacific daylight time)

or the current time zone used by the system.

If omitted, the current time zone used by the
system is assumed.

Note that if the date and day of the week are
not present, the time returned is the next
instance of that time after (or equal to) the
cur r en t time. . For e x amp 1 e, i fit i s
currently 3 pm, April 15, then 2 pm means 2
pm on the 16th, while 7 pm means 7 pm on the
15th (i.e., tonight).

is set by convert_date_to_binary_ to the
computed clock value. It is returned
unchanged in the event of an error.

is a standard Multics status code.
either zero (no errors),
error_table_$date_conversion_error.
nonzero value is returned in all
following cases:

1) General syntax error.
2) Unrecognized alphabetic field.
3) Two or more dates, times, etc.
4) Month without a date number.

It is
or

The
of the

5) Year not in the twentieth century.
6) Date of month does not exist (e.g.,

35 March).
7) Midnight and noon preceded by an

hour other than 12.
8) Minutes greater than 59.
9) Seconds greater than 59.

10) 24-hour time after 2400.0 specified.
11) Zero hours in meridional time.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywe 11 Info rma t i on Sys terns Inc.

MULTICS PROGRAMMERS' MANUAL

Page 5
8/10/73

12) Month greater than 12 in slash time.
13) Minutes or seconds not two decimal

places in length.
14) Day of week and date conflict.
15) Improper use of comma.
16) 24-hour time less than three places

in length.
17) Improper use of offset.

This entry is similar to convert_date_to_binary_, except
that the clock reading returned is computed relative to an input
clock time rather than the current clock time. Thus the clock
reading returned for the string "March 26" is the clock reading
for the first March 26 following the input clock time, rather
than the clock reading for the first March 26 following the
present clock time. Given a 72-bit clock time to use, this entry
converts a character representation of a date and time to the
equivalent 72-bit system clock representation.

1)

2)

3)

4)

declare convert_date_to_binary_$relative entry
(char(*), fixed bin(71), fixed bin(71),
fixed bin(3s»;

call convert_date_to_binary_$relative (string, clock,
clock_in, code);

string is as above. (I npu t)

clock i s the clock time determined by string relative
clock_in. (Output)

clock_in i s the clock time relative to which string
converted into a clock time. (Input)

code is as above. (Output)

Examples 2f Input

March 23

17 May 1974 EST 8:30 pm

03/28/71 2252.9 EST Sun

to

is

~ Copyright, 1973, Massachusetts Institute of Technology
and H 0 n e yw ell I n for ma t ion S y stem sin c • (END)

~1lJL TICS PROr,RAMME R~' MANUAL

Miscellaneous Call
Standard Service System

09/16/70

This procedure copies the access
segment to another. The ACL on the target
before the new list is added.

control list from one
segment is emPtied

Usage.

declare copy_acl_ entry (char(*), char(*), char(*),

ca 11

1) dirl

~) enl

~) rtlr2

4) en2

5) errsw

6) code

char(*),· char(*), bit(l) aligned, fixed bin(17»;

copy_acl_ (dirl, enl, dir2, en2, errsw, code);

is the directory in which the original segment is
found. (Input)

is a ntlme on the orip-;lnal segment. Clnput)

i~ the directory in which the target segment is
fntJnri. (Input)

is a name already on the target segment. (Input)

indicates whether the error indicated by "code"
occurred on the original segment ("O"b) or on the
tar get s e gme n t (" 1 "b) • (0 u t put)

Is a standard file system error code. (Output)

(END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
Standard Service System

3/15/72

This procedure copies all the names from one segment to
another. Name duplications are handled by the standard system
name dupl ication handling procedure.

Usage

declare copy_names_ entry (char(*), char(*), char(*),
char(*), char(*), bit(l) aligned, fixed bin);

call copy_names_ (dir1, en1, dir2, en2, caller, errsw,
code);

1) d i r1

2) en1

3) dir2

4) en2

5) ca 11 e r

6) errsw

7) code

is the absolute path name of the directory in which
the original segment is found. (Input)

is a name on the original segment. (Input)

is the absolute path name of the target segment's
directory. (Input)

is a name already on the target segment. (Input)

is the name of the calling procedure. It is used by
the standard system name duplication handling
procedure. (Input)

indicates which segment the error indicated by the
code argument occurred in. It is "Glib if the error
was on the original segment and fl1 f1 b if on the
target segment. (OutPut)

is a standard storage system status code. (Output)

If a name duplication occurs due to another segment having
the same name as the one copied, the status code
error_table_$namedup is returned. Otherwise, if a name
dupl ication occurs-due to name being copied into a segment having
the same name, the status code error_table_$segnamedup is
returned.

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MUlTICS PROGRAMMERS' MANUAL

Subroutine Call
Standard Service System

3/28/72

This procedure produces a copy of a Multics nondirectory
segment. The new segment is created with rewa access for the
creator.

Usage

declare copy_se&- entry (char(*), char(*), char(*),
char(*), char(*), bit(l) aligned, fixed bin);

call copy_se&- (dirl, enl, dir2, en2, caller,

1) dirl

2) enl

3) dir2

4) en2

5) caller

6) errsw

7) code

Notes

er rsw, code);

is the absolute path name of the directory in which
the original segment is to be found. (Input)

is a name on the original segment. (Input)

is the absolute path name of the directory In which
the copy is to be created. (Input)

is the name to be given the new segment. (Input)

is the name of the calling procedure. It is the
procedure name that will be printed in status
messages and questions. (Input)

indicates which segment the error reported via the
code argument occu rred in. I tis "O"b if the er ro r
was on the original segment and "lu b if on the
target segment. (Output)

is a standard system status code. (Output)

The following status codes may be of special interest to the
caller of copy_se&-:

error_table_$dtrseg
error_table_$moderr
error_table_$namedup
error_table_$sameseg

Note that other status codes may also be returned.

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 2

This entry point performs the same task as copy_se&- with
the exception that the messages IIBit count inconsistent with
current length ••• " and "Current length is not the same as
records used are suppressed.

Usage

declare copy_se&-$no_message entry (char(*), char(*), char(*),
char(*), char(*), bit(l) aligned, fixed bin);

call copy_se&-$no_message (dirl, enl, dlr2, en2,
caller, errsw, code);

Same arguments as above.

€) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MUlTICS PROGRAMMERS' MANUAL

Subrou tine Ca 11
Development System

6/30/72

~: cpu_time_and_paging_

This procedure returns the total CPU time used by the
calling process since it was created as well as two measures of
the paging activity of the process.

usage

1) pf

declare cpu_time_and_paginL entry (fixed bin, fixed bin(71),
fixed bin);

is the total number of page faults taken by the calling
process. (Output)

2) time is the total cpu time used by the calling process.
(Output)

3) pp is the total number of pre-pagings for the calling
process. (Output)

@ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
3/30/73

~: cu_

The cu_ (command utility) module provides several short
subroutines coded in machine language which provide functions not
directly available in the PL/I language. Although these
subroutines are designed primarily for the use of command
writers, many may prove useful to Multics users and subsystem
developers.

Entry:· cu_$arg_count

The arK-count entry may be used by any procedure to
determine the number of arguments with which it was called.

Usage

declare cu_$arg_count entry (fixed bin);

call cu_$arg_count (nargs);

1) nargs is the number of arguments passed to the
caller of arg_count by his caller. (Output)

The arg_ptr entry is designed for use by a command or
subroutine which is callable with a varying number of arguments,
each of which is an adjustable length unaligned character string
(i.e., declared char(*}). This entry returns a pointer to and
the length of a specified character string argument.

The command or subroutine which uses this entry must be
called with data descriptors for its arguments. Otherwise, the
returned value of arglen will be zero. If the argument specified
by argno is not a character string, arglen will be the value of
the "size" field of the descriptor (the rightmost 18 bits for old
descriptors, the rightmost 24 bits for new descriptors). This
entry must not be called from an internal procedure which has its
own stack frame (because arg_ptr does not check for a display
po in te r).

Usage

declare cu_$arg_ptr entry {fixed bin, ptr, fixed bin,
fixed bin(3S}};

call cu_$arg_ptr (argno, argptr, arglen, code);

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

[;]
Page 2

1) argno

2) argptr

3) arglen

4) code

MULTICS PROGRAMMERS' MANUAL

is an integei specifying the number of the
des ired argumen t. (Input)

is a pointer to the unaligned
string argument specified by argno.

character
(Output)

is the length (in characters), of the argument
specified by argno. (Output)

is an error status code. The code may be one
of the following: 0 (normal return) or
error_table_$noarg (the argument specified by
argno does not exist). If error_table_$noarg
is returned, the values of argptr and arglen
are undefined. (Output)

Some PL/I procedures may wish to reference arguments passed
to other procedures. This entry permits a procedure to reference
arguments in any specified argument list.

Usage

declare cu_$a rg_ptr_re 1 entry (fixed bin, ptr, fixed bin,
fixed bin(35), ptr);

call cu_$arg_ptr_rel (argno, argptr, arglen, code, ap);

1 - 4)

5) ap is a pointer to the argument list from which
this argument is being extracted. This
pointer may be determined by calling
cu_$arK-list_ptr in the program whose
argument list is to be processed and then
passing it to the program wanting to look at
the argument list. (Input)

It is sometimes desirable to design a PL/I procedure to
accept a variable number of arguments of varying data types
(e.g., ioa_). In these cases, the PL/I procedure must be able to
interrogate its argument list directly to determine the number,
type, and location of each argument. The arg_list_ptr entry is
designed for use in such cases and returns a PL/I pointer to its
caller's argument list.

@) Copyright, 1973, t1assachusetts Institute of Technology
ann Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Usage

1) ap

Page 3
3/30/73

is a pointer to the callers' argument list.
(Output)

This entry assumes it has been called by an active function.
It returns to its caller the number of arguments passed to the
caller by ~ caller, not including the active function return
argument. I f the caller has not been invoked as an active
function a status code is returned.

Usage

1)

2)

declare cu_$af_arg_count entry (fixed bin, fixed bin(3S»;

nargs

code

is the number of input arguments passed to
the caller. (Output)_

may be one of the following:

o - caller was called as an active function;

error_table_$nodescr no argument
descriptors were passed to the caller or an
incorrect argument list header was
encountered;

error_table_$not_act_fnc - the caller was not
invoked as an active function. (Output)

This entry and the two following entries, cu_$af_arg_ptr and
cu_$.af_return_arg, have been provided so that active functions
need not have knowledge of the mechanism for returning arguments
programmed into them.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 4

This entry assumes it has been called by an active
function. It operates in the same fashion as cu_$arg_ptr, except
that it verifies that the caller was invoked as an active
function, and does not allow the return argument to be accessed.
That is, if the return argument happens to be the Ith argument in
the actual argument list, and one asks cu_$af_arg_ptr for the Ith
argument, it will return the (i+1)st argument (if any). If the
(i+l)st argument does not exist a "no argument" status code will
be returned. In practice, the return argument is currently
always the last one, but use of this entry and the following
entry allows the active function to be independent of the
position of the return argument in the argument list. (See ~
under cu_$af_arg_count above.)

Usage

1)

2)

3)

4)

declare cu_$af_arg_ptr entry (fixed bin, ptr, fixed bin,
fixed bin(3S»;

call cu_$af_arg_ptr (argno, argptr, arglen, code);

argno

argptr

arglen

code

is the number of the desired
(Input)

argument.

is the same as for cu_$arg_ptr, except that
it is set to the null value if any error is
encountered. (Output)

is the same as for cu_$arK-ptr, except that
it is set to 0 if any error is encountered.
(Output)

is the same as for cu_$af _arg_count, -except
that error_table_$noarg may also be returned,
meaning that the argno-th input argument was
not present. (Output)

Entry: cu_$af_return_arg

This entry assumes it has been called by an active function.
It makes the active function's return argument available as
de s c rib e din .t!Qtt below. I tis pro v ide d to pe rm i t w r i tin g 0 f
active functions which accept an arbitrary number of arguments.
(See ~ under cu_$af_arg_count above).

@ Copyright, 1973, '-1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 5
3/30/73

Usage

1)

declare cu_$af_return_arg entry (fixed bin, ptr, fixed bin,
fixed bin(35)};

declare return_string char (max_length) varying based
(rtn_string_ptr);

call cu_$af_return_arg (nargs, rtn_string_ptr,
max_length, code);

nargs

2) rtn_strin&-ptr is a pointer to the varying string return

3)

4)

~

code

argument of the active function. (Output)

is the maximum length of the
pointed to by rtn_string_ptr.

varying string
(Output)

An active function which takes an arbitrary number of
arguments makes use of this entry to return a value as follows.
It calls the entry to get a pointer to the return argument and
its maximum length. It declares the based varying string,
return_string, as described above. It then merely assigns its
return value to return_string.

Entry: cu_$stack_frame_ptr

The stack_frame_ptr e.ntry returns a pointer to its caller's
stack frame.

Usage

1)

declare cu_$stack_frame_ptr entry (ptr);

call cu_$stack_frame_ptr (sp);

sp is a pointer to the caller's stack frame.
(Output)

Entry: cu_$stack_frame_size

The stack_frame_size entry returns the size (in words) of
its caller's stack frame.

@ Copyright, 1973, Hassachusetts Institute of Technology
and Honeywe 11 Info rma t ion Sys terns Inc.

MULTICS PROGRAMMERS' MANUAL

Page 6

Usage

1)

declare cu_$stack_frame_size entry (fixed bin);

size is the size (in words) of the caller's stack
frame. (Output)

The gen_call entry is used to generate a standard call to a
specified procedure with a specified argument list. This call is
designed for cases in which a PL/I procedure has explicitly built
an argument list from its input data. The principal use of this
entry is by command processors which call a command with an
argument list built from a command line input from a terminal.

Usage

1)

2)

declare cu_$gen_call entry (ptr, ptr);

call cu_$gen_call (proc_ptr, ap);

is a pointer specifying the procedure entry
point to be called. (Input)

ap is a pointer to the argument
passed to the called procedure.

list to be
(Input)

The ptr_call entry is used to call a procedure, the name of
which is not known at compilation time. This entry is similar to
gen_call with the exception that the argument list of the
procedure to be called is known at compilation time rather than
constructed at execution time.

Usage

declare cu_$ptr_call entry;

call cu_$ptr_call (proc_ptr, argl, ••• , argn);

is a pointer to the procedure entry point to
be called. (Input)

2) argi is an argument (which may be of any type) to
be passed to the procedure specified by
proc_ptr. (Input)

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 7
3/30/73

Some standard commands (e.g., edm) allow the user to type
normal command lines even when the user is not currently at
command level. When one of these commands recognizes a command
line, the command line is passed to the command processor for
processing. In order to allow use of these standard commands in
a closed subsystem environment (e.g., Limited Service System),
these commands (edm, etc.) do not call the command processor
directly but call the cp (command processor) entry point in cu_
which will pass control to the procedure entry point defined as
the current command processor. The set_cp entry point allows a
subsystem developer to replace the standard command processor
with a procedure of his own. This mechanism can be used to
insure that the subsystem remains in full control and still allow
subsystem users the use of many standard commands.

Usage

1)

declare cu_$set_cp entry (ptr);

call cu_$set_cp (proc_ptr);

is a pointer to the procedure entry point to
which control is passed upon receiving a call
to cu_$cP. (See below.) If proc_ptr is
null, cu_$cp will call the standard command
processor. (Input)

Entry: cu_$cp

The cp entry is called by any standard command which
recognizes normal Multics command lines. When a Multics command
line is recognized by one of these commands, a call is made to
cu_$cp to pass the command line to the currently defined command
processor for processing. The contents of the command line are
destroyed.

Usage

1)

declare cu_$cp entry (ptr, fixed bin, fixed bin(3S);

is a pointer to the beginning of an aligned
character string containing a command line to
be processed. (Input)

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

[;]
Page 8

2) 1 i ne_l en

3) code

MULTICS PROGRAMMERS' MANUAL

is the length of the command
characters. (inputi

1 i ne in

is an error status code. If code is
non-zero, an error has been detected in the
command processor. However, the caller of cp
is not expected to print a diagnostic at this
time since it can be expected that the
command processor has already done so.
(Output)

This entry returns to the caller a pointer to the procedure
currently being invoked in a call to cu_$cP. A null pointer is
returned if the default standard command processor is being
invoked by cu_$cP.

Usage

1)

declare cu_$get_cp entry (ptr);

call cu_$get_cp (proc_ptr)i

is a pointer to the procedure entry point to
which control is passed upon receiving a call
to cu_$cp. (Output)

Entry: cu_$set_cl

The Standard Service System provides a set of procedures to
handle any error conditions which may be signalled within a
process (see signal_, condition_ and reversion_). The standard
error handlers attempt to type an understandable diagnostic and
call a procedure to reenter command level. Reentering command
level is done for a Standard Service user via a call to
get_to_cl_$unclaimed_signal. However, in order to allow use of
the standard error handling procedures in a closed subsystem
environment, the error handlers do not call
get_to_cl_$unclaimed_signal directly but call the cl (command
level) entry point in cu which wi 11 pass control to the
procedure entry point currently defined by the last call to
cu_$set_cl. If cu_$set_c1 has never been called in the process,
control will be passed to get_to_cl_$unclaimed_signal on a call
to cu_$c 1 •

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 9
3/30/73

Usage

1)

declare cu_$set_cl entry (ptr);

is a pointer to the procedure entry to be
called by the standard error handlers after
printing a diagnostic message. If proc_ptr
is null, get_to_cl_$unclaimed_signal will be
called. (Input)

Entry: cu_$cl

The cl entry is called by all standard error handlers after
printing a diagnostic message. This entry will pass control to
the procedure specified by the last call to set_cl. If no such
procedure has been specified (the normal case for the Standard
Service System), control is passed to get_to_cl_$unclaimed_signal
which reenters command level.

Usage

declare cu_$cl entry;

There are no arguments.

This entry returns to the caller a pointer to the procedure
entry currently being invoked by a call to cu~$cl. If a null
pointer is returned, then the default call, to
get_to_cl_$unclaimed_signal, is made by cu_$cl.

Usage

1)

declare cu_$get_cl entry (ptr);

call cu_$get_cl (proc_ptr);

is a pointer to the procedure entry being
called by the standard error handlers after
printing a diagnostic message. (Output)

@ Copyright, 1973, r·1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 10

Entry: cu_$level_set

The level_set entry is used to change the current protection
ring validation level. This entry is useful for procedures which
must distinguish the periods of time when the procedure is acting
in behalf of itself (i.e., its own ring) and when it is acting in
behalf of another procedure which may be in an inferior (i.e.,
lower privilege) protection ring •

. Usage

1)

declare cu_$level_set entry (fixed bin);

call cu_$level_set (level);

level specifies the new protection validation level
and must be greater than or equal to the
current ring number. (Input)

The level_get entry is used to obtain the current ring
validation level. This entry is normally used prior to a caii to
level_set to save the current validation level.

Usage

declare cu_$level_get entry (fixed bin);

1) level is the current validation level. (Output)

@ C · ht 1973 Massachusetts Institute of Technology c opyrlg', , I
and Honeywell Information Systems nc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
9/13/73

This subroutine, given a pointer to an Access Control List
(ACL), and the array index of an entry in the ACL, formats the
entry for printing, returning the formatted string to the caller.
Options allow suppression of the mode, process class identifter,
and error message subfields. Refer to the MPM Reference Guide
section, Access Control, for a discussion of access control and
to the subroutine writeup for hcs_$add_acl_entries for a
description of an ACL structure.

The formatted ACL entry which is returned has the form:

rew User.Project.* error_table_ message

Usage

declare cv_acl_ entry (ptr, fixed bin, char(*), fixed bin,
bit(*»;

call cv_ac1_ (acl-ptr, index, string, len, options);

2) index

3) s t ring

4) 1 en

5) options

is a pointer to the ACl array, one of which is to
be formatted. (Input)

is the array index of the ACL entry to be
formatted. (Input)

is the resultant formatted string containing the
mode, process class indentifier, and error message
as described above. (Output)

is the number of significant characters in string.
(Output)

are control bits allowing suppression of various
parts of the output: (Input)

bit 1 on - include mode
bit 2 on - include error_tab1e_ message associated

with the status code in the ACL entry
bit 3 on - suppress process class identifier.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywe 11 Info rma t ion Sys tems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
10/11/72

The cv_bin_ procedure converts a binary integer (of any
base) to a twelve-character ASCII string.

Usage

declare cv_bin_ entry (fixed bin, char(12), fixed bin);

call cv_bin_ (n, string, base);

1) n is the binary integer to be converted. (Input)

2) string is the character string in which to return the
ASCI I representation. (Output)

3) base is the base to use in converting the binary
integer. (e.g., base = 10 for decimal integers).
(Input)

This entry converts a binary integer of base 10 to a
twelve-character ASCI I string.

Usage

declare cv_bin_$dec entry (fixed bin, char (12»;

call cv_bin_$dec (n, string);

1) n is the binary integer to be converted. (Input)

2) string is the character string in which to return the
ASCI I representation. (Output)

This entry converts a binary integer of base 8 to a
twelve-character ASCII string.

Usage

declare cv_bin_$oct entry (fixed bin, char(12»;

® Copyr i gh t, 1973, Massachuset ts Ins t i tu te of Techno logy
and Honeywell Information Systems Inc.

Page 2

1 \
... , II

2) string

f'wlUL TICS PROGRAMMERS I fviANUAL

is the binary integer to be converted. (Input)

is the character string in which to return the
ASCII representation. (Output)

@ Copyr i ght, 1973, f··1assachusetts I nst i tute of Technology
and Honeywe 11 Info rma t i on Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
Standard Service System

5/9/72

~: cv_dec_

This procedure takes an ASCII representation of a decimal
integer and returns the fixed binary(35) representation of that
number.

Usage

declare cv_dec_ entry (char(*» returns (fixed bin(3S)};

1) string is the string to be converted.
non-varying. (Input)

It must be

2) a is the result of the conversion. (Output)

The syntax of the string is a sequence of digits preceded by
an optional plus or minus sign. Leading and trail ing blanks are
ignored.

This entry point differs from cv dec only in that a code is
returned indicating the possibility of a conversion error. It
may be called as shown because the segment is multiply named.

Usage

declare cv_dec_check_ entry (char(*), fixed bin)
returns (fixed bin(3S»;

1) string is the string to be converted.
nonvarying. (Input)

It must be

2) code

3} a

=0 if no error occurred;
index of the character
conve rs ion. (Output)

otherwise it is
that terminated

is the result of the conversion. (Output)

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

the
the

(END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
9/13/73

This subroutine, given a pointer to a directory Access
Control List (ACL), and the array index of a directory ACL entry,
formats the entry for printing, returning the formatted string to
the caller. Options allow suppression of the mode, process class
identifier, and error message subfields. Refer to the MPM
Reference Guide section, Access Control, for a discussion of
access control and the subroutine writeup for hcs_$add_dir_acl_
entries for a description of a directory ACL structure.

The formatted directory ACL entry that is returned has the
form:

sma User.Project.* error_table_ message

Usage

declare cv_dir_acl_ entry (ptr, fixed bin, char(*),
fixed bin, bit(*»;

call cv_dir_acl_ (acl_ptr, index, string, len, options);

2) index

3) str i ng

4) 1 en

5) options

is a pointer to the ACL array, one of which is to be
forma t ted. (I n pu t)

is the array index of the ACL entry to be formatted.
(Input)

is the resultant formatted string, containing the
mode, process class identifier and error message as
described above. (Output)

is the number of significant characters in string.
(Output)

are control bits allowing suppression of various
parts of the output: (Input)

bit 1 on - include mode
bit 2 on - include error_table_ message associated

with the code in the directory ACL entry
bit 3 on - suppress process class identifier.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
8/20/73

This procedure converts a character string representation of
a c c e s s mo de d ire c tor y a t t rib ute s (e • g ., It sma 11 , II nul 1 II , II nil, 1111)

to the proper bit string for insertion into an Access Control
List (ACL) entry. Mode characters in the input string can be in
any order, and embedded blanks are ignored. See the MPM
Reference Guide section, Access Control, for a description of
access mode attributes.

Usage

declare cv_dir_mode_ entry (char(*), bit(*), fixed bin(3S»;

call cv_dir_mode_ (chars, bits, code);

1) chars is the character string to be converted (e.g., "sma ll
).

(Input)

2) bits

3) code

is the mode bit string corresponding to chars (e.g.,
"111" b) • (0 u t pu t)

is a status code that
error_table_$bad_acl_code.

has the
(Output)

value zero or

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL CV_float_!

Subroutine Call
Development System

03/01/71

This procedure converts a character string representation of
a floating point number into a single precision floating point
representation. If an illegal character is encountered, its
index in the string is returned and the number is set to O.OeO.

Usage

declare cv_float_ entry (char(*), fixed bin, float bin(27»;

call cv_float_ (string, code, fnum);

1) string is the character representation of the number.
(Input)

2) code is the index
character, if
(Output)

in string of the first illegal
one was found; otherwise it is zero.

3) fnum is the number in floating point form. (Output)

Entry: cv_float_double_

This entry is similar to cv_float_ except that the number
returned is in double precision.

Usage

declare cv_float_double_ entry (char(*), fixed bin,
float bin(63»;

call cv_float_double_ (string, code, fnum);

Same arguments as above.

The input
po i n t co n s tan t •
a decima 1 po i nt.

string should look like a PL/1 floating or fixed
It does not need either an explicit exponent or

(END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
8/20/73

This procedure converts a character string representation of
access mode segment attributes (e.g., " rew", "null", "n", or IItI)

to the proper bit string for insertion into an Access Control
List (ACL) entry. Mode characters in the input string can be in
any order, and embedded blanks are ignored.

Usage

declare cv_mode_ entry (char(*), bit(*), fixed bin(3S»;

call cv_mode_ (chars, bits, code);

1) chars is the character string to be converted (e.g., " rew").
(Input)

2) bits

3) code

is the mode bit string corresponding to chars (e.g.,
"111"b). (Output)

is a status code that
error_table_$bad_acl_code.

has the
(Output)

value zero or

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

11..e!:Im: cv_oct_

Subroutine Call
Standard Service System

8/18/71

This procedure takes an ASCI I representation of an octal
integer and returns the fixed binary(3S) representation of that
number. It may be called as shown because the segment is
multiply named.

Usage

declare cv_oct_ entry (char(*) returns (fixed bin(3S»;

1) string is the string to be converted.
non-varying. (Input)

It must be

2) a is the result of the conversion. (Output)

This entry differs from cv_oct_ only in that a code is
returned indicating the possibl ity of a conversion error. It may
be called as shown because the segment is multiply named.

Usage

declare cv oct check entry (char(*), fixed bin)
returns (fixed bin(3S»;

1) s t ring is the string to be converted.
non-varying. (Input)

It must be

2) code

3) a

=0 if no error occurred;
index of the character
conversion. (Output)

otherwise it is
that terminated

is the result of the conversion. (Output)

® Copyr i ght, 1971, Massachusetts I nst i tute of Technology
All rights reserved.

the
the

(END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
8/20/73

This procedure, given an unnormalized process class
identifier (e.g., "Multics"), returns a normal ized identifier
(e.g., "*.Multics.*"). See the MPM Reference Guide section,
Access Control, for a discussion of process class identifiers.

Usage

declare cv_userid_ entry (char(*» returns (char(32»;

1) arg

2) norma 1 i d

is the unnormalized process class identifier to be
converted. (Input)

is the resultant normalized identifier. If it has
fewer than 32 characters, it is padded on the
right with blanks. (Output)

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL date_t tme_1

Subroutine Call
Standard Service System

03/08/71

The date_time_ procedure converts a system clock reading to
ASCII. It takes as an argument a clock reading (see clock_),
fixed binary(71), and returns as an argument a 24 character
nonvarying ASCII string. (If the caller declares the length to
be less than 24, the string Is truncated on the rIght; if greater
than 24, the string is padded on the right with blanks.) The
string format is IIITI11/dd/yy hhmm.m zzz www" where www is a three
letter abbreviation of the day of the week. Clock readings not
corresponding to dates in the twentieth century (after 1/1/1901)
are converted as 1101/01/01 0000.0". The clock reading is
assumed to be in microseconds relative to January 1, 1901,
Greenwich Mean Time (GMT). The time returned is local standard
time.

Usage

declare date_time_ entry (fixed bin(71), char(*»;

call date_time_ (time, string);

1) time is the clock reading. (Input)

2) string is the ASCII string equivalent of time. (Output)

Entry: date_time_$fstime

This entry point performs the same function as the above
entry point but accepts a 36 bit time (as used internally in the
file system) as input.

Usage

declare date_time_$fstime entry (fixed btn(3S), char(.»;

call date_time_$fstlme (time, string);

Same arguments as above.

(END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
Development System

11/1/71

Given a calendar clock value, decode_clock_value_ will
return the month, the day of the month, the year, the time of
day, and the day of week it represents. In addition, the current
time zone, used in the calculation, is returned.

Usage

1)

2)

3)

4)

5)

6)

7)

declare decode_clock_value_ entry (fixed bin(71), fixed bin,
fixed bin, fixed bin, fixed bin(71), fixed bin,
char(3) aligned);

call decode_clock_value_ (clock, month, dom, year, tod, dow,
zone);

clock is the clock value to be decoded. (Input)

month is the month (January = 1, December = 12). (Output)

dom is the day of the month. (Output)

year is the year. (Output)

tod is the number of microseconds since midnight (the
time of day). (Output)

dow is the day of the week (Monday = 1, Sunday
(Output)

zone is the current time zone. (Output)

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

= 7).

(END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
Development System

7/28/71

This procedure extracts information from argument
descriptors. It should be called by any procedure wishing to
handle variable length or variable type argument lists. It can
process both the old descriptor format used by Version 1 PL/l and
the new format used by Version 2 PL/l and Fortran. The following
type codes are used:

~ Datum ~

1 real fixed binary short

2 real fixed binary long

3 real float binary short

4 real float binary long

5 complex fixed binary short

6 complex fixed binary long

7 ,compl ex float binary short

8 complex float binary long

9 real fixed decimal

10 real float decimal

11 complex fixed decimal

12 complex float decimal

13 pointer

14 offset

15 label

16 entry

17 structure

18 area

MULTICS PROGRAMMERS' MANUAL

Page 2

Usage

1) pt

2) n

19 bit string

20 varying bit string

21 character string

22 varying character string

23 file

declare decode_descriptor_ entry (ptr, fixed bin,
fixed bin, bit(1) aligned, fixed bin, fixed bin,
fixed bin);

call decode_descriptor_ CPt, n, type, packed, ndims, size,
scale);

points either directly at the
decoded or at the argument
descriptor appears. (Input)

descriptor to be
list in which the

controls vihich descriptor is decoded. If n is 0,
pt points at the descriptor to be decoded;
otherwise, pt points at the argument list header
and the nth descriptor will be decoded. (Input)

3) type will be set to the data type specified by the
descriptor. Type codes appearing in the old form
of descriptor will be mapped into the new codes
given earlier. The value 0 will be returned if an
illegal type code is found in the old format
descriptor. The value -1 will be returned if
descriptors are not present in the argument list
or if the nth descriptor does not exist. (Output)

4) packed

5) ndims

6) size

wi 11 be set to "l"b if the data item is packed.
If an old format descriptor specifies a string,
the value "l lt b wi 11 be returned; otherwi se, the
value "O"b will be returned for old descriptors.
(Output)

will be set to the number of dimensions specified
by the descriptor. This value will be 0 or 1 for
an old form of descriptor. (Output)

will be set to the arithmetic precision, string
size, or number of structure elements of the
datum. This value will be 0 if an old form of

MULTICS PROGRAMMERS' MANUAL

7) scale

descriptor specifies a structure. (Output)

Page 3
7/28/71

will be set to the scale of an arithmetic value.
This value will be 0 for an old form of
descriptor. (Output)

(END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
8/20/73

This procedure, given a procedure entry point name of the
form "a$b", returns the reference name and entry point portions
s e pa rat ely; i. e ., II a II and .. b II • If" a II iss up p 1 i ed, " a" and .. a"
are returned. If "a$" is supp 1 i ed, the ent ry po i nt port ion is
blank on return.

Usage

dcl decode_entryname_ entry (char(*), char(32), char(32»;

call decode_entryname_ (name, rname, enamel;

1) name

2) rnarne

3) ename

is an entry point name; e.g., lIa$b". (Input)

is the reference name portion of name; e.g., flail.
If it has fewer than 32 characters, it is padded on
the right with blanks. (Output)

i s the en try po i n t po r t ion 0 f name; e. g • , 11 b II • J f
it has fewer than 32 characters it is padded on the
right with blanks. (Output)

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

HULTICS PROGRAMMERS' MANUAL

~: delete_

Subroutine Call
Development System

7/14/72

The delete_ subroutine deletes segments and unlinks links.
It asks questions if the segment to be deleted is protected, and
attempts to remove the protection. It has two entries: one is
called with a path name, the other with a pointer to a segment.
Both have a set of switches which tell delete what to do. If
the specified entry is a segment, it is terminated using the
term_ subroutine.

Entry: delete_$path

This entry is called with the path name of the segment or
link to be deleted.

Usage

declare delete_$path entry (char(*), char(*), bit(6),
char(*), fixed bin(3S»;

call delete_$path (dname, ename, switches, caller, code);

1) dname

2) ename

3) switches

is the directory in which the entry to be deleted
resides. (Input)

is the entry within the specified directory to be
deleted. (Input)

specifies the actions to be taken by this routine.
It consists of six switches in the order listed
below. (Input)

If force_sw is "l"b, then delete will
automatically attempt to delete the entry even if
it is protected; if "D"b, the next switch is
examined.

question_sw If question_sw is II"b, delete_ will ask the user
if the entry should be deleted. A negative
response will cause delete_ to return the status
code error _tab 1 e_$act i on_not_pe rformed. If
question_sw is "D"b, delete_ will just return if
it is unable to delete the entry, with an
appropriate storage system status code.

dirctory_sw delete_ will only delete directories if this
s wit chi s "1" b • 1ft he pat h n am e s pee i fie d ref e r s
to a directory, and this switch is "Q"b, delete_

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

Page 2

4) caller

5) code

MULTICS PROGRAMMERS' MANUAL

a status code _£
ur will return with

error_table_$dirseg.

delete_ will delete segments only if this switch
is "1"b. Multi-segment files are considered to be
segments. If the path name specified refers to a
segment, and this switch is "a"b, delete_ will
return a status code of error_table_$nondirseg.

delete_ will delete (i.e. unlink) links only if
this switch is "l lt b. If the path name specified
is a link, and this switch is "a"b, delete_ will
return a status code of error_table_$not_a_branch.

If link_sw is "l"b, and chase_sw is "1"b, delete_
will "chase" the link, and delete the segment that
i t po i n t s to.

is the name of the calling procedure, to be used
when questions are asked. (Input)

is a status code. (Output)

Entry: delete_$ptr

The ptr entry is similar to the path entry, except that the
caller has a pointer to the actual segment to be deleted. The
directory_sw, link_sw, and chase_sw are not examined by this
entry, but must be present.

Usage

declare delete_$ptr entry (ptr, bit(6), char(*), fixed
bin(35»;

call delete_$ptr (segp, switches, caller, code);

1) segp is a pointer to the segment to be deleted.
(Input)

The other arguments are as above.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

I/O System Interface Module
Development System

9/30/71

This I/O System Interface Module (IOSIM) provides a means by
which output may be discarded. Any output written to a stream
attached via the discard_output_ module will be discarded, i.e.,
no operation is performed. All implemented I/O system calls will
return information indicating successful completion of the
operat ion.

Usage

call ios_$attach <stream_name, "discard_output_", 1111,

1111, status);

Subsequent to the above attach call and until a corresponding
detach call is made, all data written on stream_name will be
discarded.

lLQ System Calls

abort
attach
detach
resetwrite
Hr i te

Device Identification

Since no device or pseudo-device is involved, the device
i dent i f i cat i on must be 1111

Status

Only standard Multics error codes are returned as the first
part of the status string.

Detachment

No special action is permitted when detaching.

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved. (END)

MUlTrcs PROGRAMMERS' MANUAL I end pher -I
Subroutine Call

8/16/73

~: encipher_, decipher_

This subroutine enciphers and deciphers an array of' double
words. The caller supplies a 72-bit key that is used to generate
an initial encoding, and subsequent keys are generated from the
enciphered text.

Entry: encipher_

Usage

This entry point enciphers an array.

declare encipher_ entry (fixed bin(71), (*)fixed bin(71),
(*)fixed bin(71), fixed bin);

call encipher_ (key, input, output, lth);

1) key is the input key. Any 72-bit key is appropriate and
produces some enciphering of the array. (Input)

2) input is the array to be enciphered. (Input)

3) output is the enciphered array. (Output)

4) lth is the length of the input and output arrays in
fixed bin(71) elements. (Input)

Entry: decipher=

This entry point deciphers an array previously produced by
encipher_.

Usage

declare decipher_ entry (fixed bin(71), (*}fixed bin(71),
(*}fixed bin(71), fixed bin);

ca 11 dec i pher _ (key, input, output, 1 th);

1) key

2) input

3) output

4) 1 th

is as above and should be the same as the key used
to encipher the array if the original array is to be
reproduced. (Input)

is the enciphered array to be deciphered. (Input)

is the deciphered array. (Output)

is as above. (Input)

® Copyr i ght, 1973, t4assachuset ts Ins t i tute of Techno logy
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
Standard Service System

03/08/71

The expand_path_ procedure expands a relative pathname into
an absolute pathname.

See MPM Reference Guide Section 2
Programming Environment".

on liThe Multics

Usage

declare expand_path_ entry (ptr, fixed bin, ptr, ptr,
fixed bin);

call expand_path_ (pnamep, pnamel, dirp, enamep, code);

Below pname is used
pnamep.

1) pnamep

2) pnamel

3) dirp

4) enamep

5) code

to denote the string pointed to by

is a pointer to the pathname to be
expanded. I t may po i nt to an
unaligned string. (Input)

specifies the length of pname. If 0,
pname is assumed to be the current
working directory. (Input)

is a pointer to a string in which
either the directory pathname derived
from pname or the entire pathname
derived from pname will be stored.
(See 4, below.) It is assumed that
dirp points to an aligned character
string of length 168. (Input)

is a pointer to a string In which the
entry name derived from pname is to
be stored. If enamep = null, then
the entire pathname derived from
pname will be stored in dire It is
assumed that enamep poInts to an
aligned character string of length
32. (Input)

is an error code. (Output)

MULTICS PROGRAMMERS' MANUAL

Page 2

Error codes that can be returned are:

1) error_tab1e_$badpath bad syntax in the pathname.

2) error_tab1e_$dir1ong the directory pathname is longer than
168 characters.

3) error_tab1e_$ent1ong the entry name is longer than 32
characters.

4) error_tab1e_$lesserr too many n<"· s In the pathname.

5) error_tab1e_$path1ong the final pathname (directory name II
entry name) is longer than 168
characters.

Examp1 es

In all of the following examples, assume that the user's
current working directory is >udd>dir>dl and that dir and ename
stand for the string pointed to by dirp and enamep, respectively.

Input (pname)

fred
<
«
«george
«george>harry
>udd>jack>bi 11

Outpyt
if enamep Is null otherwise

sLLr. dir ename

>udd>dir>dl>fred
>udd>dir
>udd
>udd>george
>udd>george>harry
>udd> j ack>b I 11

>udd>dtr>d1
>udd
>
>udd
>udd>george
>udd>jack

fred
dir
udd
george
harry
bill

(END)

MULTICS PROGRAMMERS' MANUAL

I/O System Interface Module
11/6/72

This pseudodevice interface module enables a procedure to
use segments and multi-segment files as if they were I/O devices.
For the sake of brevity, this document shall use the term IIfile l1

to mean a segment or multi-segment file. A fi le is made to
appear as an I/O device by issuing an attach call as illustrated
below. Once the attach call has been made, data may be read from
or wr i tten to the f i 1 e by the usua 1 I/O read and wr i te
operations. Information on the I/O system can be found in the
MPM Reference Guide section, Use of the Input and Output System.

Usage

call ios_$attach (stream_name, "file_", file_name, mode,
status);

This call causes the file with absolute path name file_name to be
attached as a pseudodevice via the stream stream_name. All
subsequent read or write calls to stream_name will cause data to
be input from or output to the specified file. The same file
should not be attached to more than one stream or by more than
one process simultaneously.

Permitted !LQ System Calls

attach
detach
getde 1 i m
getsize
read
seek
setde 1 i m
setsize
tell
wr i te

Device Identifiers

The device identifier used in a call to attach must be the
path name of the file to be used as a pseudodevice.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

Modes

Only read and write modes are allowed by this IOSIM. The
mode string in the attach call conforms to the conventions
described in the MPM Reference Guide section, Use of the Input
Output System. The mode of a particular attachment may not be
changed after the attach call.

Statys

The first half of the status string is a standard Multics
status code with zero indicating no error. In the second half of
the status string, the stream name detached bit being 2n
indicates the stream has been detached; the end of data bit being
2n indicates the last element has been read, or, more precisely,
that the "read" reference pointer is beyond the "last" reference
pointer.

Element Size

Any element size up to 2,359,296 is permitted. This is the
size of a 64K segment. The default element size is 9.

~ pelimiters ~ Break Characters

Any element can be a read delimiter subject to the following
general restrictions. Read delimiters may not be established if
the element size is greater than 72 or if an element could
potentially span a segment boundary <i.e., the element size does
not evenly divide the maximum segment size). For element sizes
less than or equal to 9, any number of elements may be
established as read delimiters. For element sizes greater than
9, the maximum number of permitted read delimiters is the
integral part of 720 divided by the element size. Note that
changing the element size causes all currently established read
delimiters to be discarded since the delimiters no longer make
sense with a new element size. The default read delimiter is the
"new line" character. Break characters are not implemented.

Reference Pointers

The reference pointers first, read, write, last, and bound
are all implemented. The reference pointer "first" always has a
value of zero and cannot be modified. The reference pointer
"read" is initially set to the value of "first", while the
reference pointer "write" is set to the value of "last". The
pointer "last" is set to the last element of the fj le as
indicated by the bit count.

@ Copyright, 1973, t1assachusetts Institute of Technology
ann Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

SYnchronization

Page 3
11/6/72

The file_ I/O System Interface Module (IOSIM) operates in
read synchronous, write synchronous mode only.

Detaching

Detaching causes the bit length attribute of the file to be
updated to the new value if the length of the file has been
modified. No special actions are permitted during detachment.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
10/31/73

This procedure is given a pointer to a stack frame being
used when a condition occurred and returns information relevant
to that condition.

Usage

1) sp

declare find_condition_info_ entry (ptr, ptr,
fixed bin(3S»;

call find_condition_info_ (sp, cip, code);

is a pointer to a stack frame being used when a
condition occurred. It is normally the result of a
call to find_condition_frame_; or if null, the most
recent condition frame is used. (Input)

2) cip is a pointer to the following structure in which
information is returned. (Input)

declare 1 cond_info aligned,

1) mcptr

2 mcptr ptr,
2 version fixed bin,
2 condition_name char(32) varying,
2 infoptr ptr,
2 wcptr ptr,
2 loc_ptr ptr,
2 flags aligned,

3 crawlout bit(l) unaligned,
3 pad1 bit(3S) unaligned,

2 pad2 bit(36) aligned,
2 user_loc_ptr ptr,
2 pad(4) bit(36) aligned;

if not null, points to the machine
conditions. Machine conditions are
described in the MPM Reference
Guide section, The Multics
Condition Mechanism.

2) version is the version number of
structure (currently = 1).

this

3) condition_name is the condition name.

4) infoptr points to the info structure if
there is one; otherwise it is null.
The info structures for various

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 2

3) code

5) wcptr

7) crawlout

8) pad1

9) pad2

11) pad

MULTICS PROGRAMMERS' MANUAL

Reference Guide section, List of
System Conditions and Default On
Unit Actions.

is a pointer to machine conditions
describing a fault that caused
control to leave the current ring.
This occurs when the condition
described by this structure was
signalled from a lower ring and,
before the condition occurred, the
current ring was left because of a
fault. Otherwise, it is null.

is a pointer to the location where
the cond i t ion occu r red. I f
ctawlout = "1"b, this points to the
last location in the current ring
before the condition occurred.

if "l"b, indicates that the
condition occurred in a lower ring
but that it could not be adequately
handled there.

is currently unused.

is currently unused.

is a pointer to the most recent
non-support location before the
condition occurred. If the
condition occurred in a support
procedure (e.g., a PL/I support
routine), this makes it possible to
locate the user call that preceded
the condition.

is currently unused.

is a standard system status code. It is nonzero when
sp does not point to a condition frame or, if sp is
null, when no condition frame can be found. (Output)

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

~: get_default_wdir_

Subroutine Call
Development System

11/30/71

This function returns the path name of the user's current
default working directory.

Usage

declare get_default_wdir_ entry returns (char(168) aligned);

1) default_wdir is the path name of the user's current
de f au 1 t wo r kin g d ire c tor y • (0 u t put)

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MUlTICS PROGRAMMERS' MANUAL

Subroutine Call
9/28/73

This procedure accepts an entry name and an equal name as
its input, and constructs a target name by substituting
components or characters from the entry name into the equal name,
according to the Multics equal convention. Refer to the MPM
Reference Guide section, Constructing and Interpreting Names, for
a description of the equal convention and for the rules used to
construct and interpret equal names.

Usage

declare get_equal_name_ entry (char(*), char(*), char(32),
fixed bin(3S»;

call get_equal_name_ (entryname, equal_name, target_name,
code) ;

1) entryname is the entry name from which the target is to be
constructed. Trailing blanks in the entry name
character string are ignored. (Input)

2) equal_name is the equal name from which the target is to be
constructed. Trailing blanks in the equal name
character string are ignored. (Input)

3) target_name is the target name that is constructed. (Output)

4) code is one of the following status codes: (Output)

o the target name was constructed properly.

error_table_$bad_equal_name
the equal name has a bad format.

error_table_$badequal
there was no letter or component in the entry name
that corresponds to a percent character (%) or an
equal sign (=) in the equal name.

error_table_$longeql
the target name to be constructed would be longer
than 32 characters.

If the error_table_$badequal status code is returned, then a
target_name is returned in which null character strings are USed
to represent the missing letter or component of entryname.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 2

IT the erroF_table$longeql
first 32 characters of the
returned as target_name.

MULTICS PROGRAMMERS' MANUAL

status code is returned, then the
target name to be constructed are

The entryname argument which is passed to get_equal_name_
can also be used as the target_name argument, as long as the
argument has a length of 32 characters.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems 'nee (END)

MUlTICS PROGRAMMERS' MANUAL

The get_group_id_ subroutine
32-character access identifier of
called.

Usage

getJroUP_ld_1

Subroutine Call
2/15/73

returns to the user the
the process in which it is

declare get_group_id_ entry returns (char(32) aligned);

1) char_string is a left-justified character string padded with
trailing blanks, which contains the access
identifier. (Output)

This entry point returns the access identifier of its caller
with the instance component replaced by "*".

Usage

declare get_group_id_$tag_star entry returns
(char(32) aligned);

I} char_string is as above.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MUlTICS PROGRAMMERS' MANUAL

Subroutine Call
2/28/73

This subroutine returns the path name of the user's process
directory. For a discussion of process directories, see the MPM
Reference Guide section, The Storage System Directory Hierarchy.

Usage

declare get_pdir_ entry returns (char(168) aligned);

char_string = get_pdir_ ();

1) char_string is a left-justified character string, padded
with trailing blanks, which contains the path
name of the ~user's process directory.
(Output)

~ Copyright, 1973, Massachusetts Institute of Technolo~y
and HoneY~/el1 Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
1/31/73

The get_process_id_ subroutine returns to the user the
36-bit identifier of the process in which it is called.

Usage

declare get_process_id_ entry returns (bit(36»i

bit_string = get_process_id_ ()i

1) bit_string is the 36-bit identifier of the process. (Output)

@ Copyr i gh t, 1973, Massachuse t ts I pst i tu te of Techno logy
and H 0 n e yw ell I n for rna t ion S y 5 t em 5 Inc. (END)

MULTICS PROGRAMMERS' MANUAL get_wdl r _I
Subroutine Call

Standard Service System
02/16/71

This function returns the pathname of the user's current
working directory.

Usage

declare get_wdir_ entry returns (char(168) aligned);

1) workinLdir is the pathname of the user's current working
di rectory. (Output)

(END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
2/12/73

This subroutine, given a list of Access Control List (ACL)
entries, will add the given ACL entries, or change their modes if
a corresponding entry already exists, to the ACL of the specified
segment.

Usage

declare hcs_$add_acl_entries entry (char(*), char(*),
ptr, fixed bin, fixed bin(3S»;

call hcs_$add_acl_entries(dirname, ename, acl_ptr,
aCl_count, code);

1) dirname is the directory portion of the path name of the
segment in question. (Input)

2) ename

5) code

Notes

is the entry name portion of the path name of the
segment in question. (Input)

points to a user-filled segment_acl structure.
See Notes below. (Input)

contains the number
se~ment_acl structure.

of ACL entries
See Notes below.

is a standard status code. (Output)

in the
(Input)

The following structure is used:

dcl 1 segment_acl (acl_count) aligned based (acl_ptr),
2 access_name char(32),
2 modes bit(36),
2 zero_pad bit(36),
2 status_code fixed bin(35};

1) access_name is the access name (in the
person.project.tag) which identifies
processes to which this ACL entry applies.

form
the

2) modes contain the modes
first three bits
execute, and write.
zero.

for this access name. The
correspond to the modes read,

The remaining bits must be

~ Copyright, 1973, Massachusetts Institute of Technolo~y
and Honeywell Information Systems Inc.

Page 2

MULTICS PROr,RAMMERS' MANUAL

must contain zero. (This fieid is for use with
extended access.)

4) status_code is a standard status code for this ACL entry
only.

If code is returned as error_tab1e$?rgerr then the offending
ACL entries in segment_ac1 will have status_code set to an
appropriate error and no processing will have been performed.

If the segment is a gate (see the MPM Subsystem Writers'
~uide section, Intraprocess Access Control (Rin~s», then if the
validation level is greater than Rinr. 1, then only access names
that contain the same project as the user, and "SysDaemon ll and
"sys_contro1" projects wi 11 be allowed. I f the ACL to be added
is in error then no processing will be performed and the code
error_table_$invalid_project_for_gate will be returned.

® Copyright, 1973, Hassachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
2/13/73

This subroutine, given a list of Access Control List (ACL)
entries, will add the given ACL entries, or change their
directory modes if a corresponding entry already exists, to the
ACL of the specified directory.

Usage

declare hcs_$add_dir_acl_entries entry (char(*), char(*),
ptr, fixed bin, fixed bin(35»;

call hcs_$add_dir_acl_entries (dirname, ename, acl_ptr,
acl_count, code);

1) dirname is the path name of the directory superior to
the one in question. (Input)

2) ename

5) code

Notes

is the entry name of the directory
qup.stion. (Input)

in

points to a user-filled dir_acl structure.
See Notes below. (Input)

contains the number of entries in the dir_acl
structure. See Notes below. (Input)

is a standard status code. (Output)

The following structure is used:

declare 1 dir_acl (acl_count) aligned based (acl_ptr),
2 access_name char(32),

1) access_name

2) dir_modes

3) status_code

2 dir_modes bit(36),
2 status_code fixed bin(35);

is the access name (in the
person.project.tag) which identifies
process to which this ACL entry applies.

form
the

contains the directory modes for this access
name. The first three bits correspond to the
modes status, modify, and append. The
remaining bits must be zero.

is a standard status code for this ACL entry
only.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

If code is returned as error_table_$argerr then the
offending ACL entries in the dir acl structure will have
status_code set to an appropriate error and no processing will
have been performed.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MUlTICS PROGRAMMERS' MANUAL

Subroutine Call
3/19/73

This entry creates a segment in the specified directory,
initiates the segment's Access Control list (ACl) by copying the
Initial ACl for segments found in the directory, and adds the
user to the segment's ACl with the mode specifiede ACls and
Initial ACls are described in the MPM Reference Guide section,
Access Control.

usage

declare hcs_$append_branch entry (char(*), char(*),
fixed bin (5), fixed bin (35»;

call hcs_$append_branch (dirname, entryname, mode, code);

1) dirname is the path name of the directory in which segname
is to be placed. (Input)

2) entryname is the entry name of the segment to be created.
(Input)

3) mode is the user's access mode; see Notes below. (Input)

4) code is a standard storage system status code. (Output)

Append (a) access mode is required in the directory dirname
to add an entry to that directory.

A number of attributes of the segment are set to default
values.

1) Ring brackets are set to the user's current validation level.
See the MPM Subsystem Writers' Guide section, Intraprocess
Access Control (Rings).

2) The user 10 is set to the name and project of the user, with
the instance tag set to *.

3) The copy switch is set to O.

4) The bit count is set to O.

See the MPM write-up for hcs_$append_branchx to create a
storage system entry with other values than the defaults listed
above.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

Page 2

T ... -. .-,.. A..... ~ .,. un 0..... ... : e ~ +: v 0. A h.: ~ .,. U PO h.,. •• ,,.,.,. ,.. ,.. A ~ : _ -. A
I IIC "IVU~ gl 6"""~"" I.., U I I n~u u ... g,,. ""'"IUC' V'l1I~1 C "IIC uc~, I cu

mode is encoded with one access mode specified by each bit. For
segments the modes are:

read
execute
wri te

8-bit (i.e., OIOOOb)
4-bit (i.e., OOIOOb)
2-bit (i.e., 00010b)

For directories, the modes are:

status
modify
append

8-bit (i.e., 01000b)
2-bit (i.e., OOOIOb)
I-bit (i.e., 0000lb)

The unused bits are reserved for unimplemented attributes and
must be zero. For example, rw access in bit form is 01010b, and
is 10 in fixed binary form.

~ Copyright, 1973, Massachusetts Institute of Technolo~y
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
3/20/73

This entry creates either a subdirectory or a segment in the
specified directory. (The entry point is really nothing more
than an extended and more general form of hcs_$append_branch.)
If a subdirectory is created then the subdirectory's access
control list (ACL) is initiated by copying the Initial ACL for
directories that is stored in the specified directory; otherwise
the segment's ACL is initialized by copying the Initial ACL for
segments. The input userid and mode (See Usage below) are then
added to the ACL of the subdirectory or segment.

Usage

declare hcs_$append_branchx entry (char(*), char(*), fixed
bin (5), (3) fixed bin (6), char(*), fixed bin (1),
fixed bin (1), fixed bin (24), fixed bin (35»;

call hcs_$append_branchx (dirname, entryname, mode, rings,
userid, dirsw; copysw, bitcnt, code);

1) dirname

2) entryname

3) mode

4) rings

5) userid

6) dtrsw

7) copysw

8) bitcnt

is the path name of the directory
entryname is to be placed. (Input)

in which

is the name of the segment or subdirectory to be
created. (Input)

is the user's access mode; see Notes below.
(I npu t)

are the new segment's or subdirectory's ring
brackets; see the MPM Subsystem Writers' Guide
section, lntraprocess Access Control (Rings).
(I npu t)

is the user's acce~s
Person. Project. Tag.

control
(I npu t)

name

is the branch's directory switch
directory is being created; = 0
(I npu t)

of the form

(= 1 if a
otherwi se).

is the segment copy switch (= 1 if a copy is
wanted whenever the segment is initiated; = 0 if
the 0 rig ina 1 i s wan ted) • (I n pu t)

is the segment's length (in bits). (Input)

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

Page 2

9) code

Notes

is a standard storage
(Output)

system status code.

Append (a) access mode is required in the directory dirname
to add an entry to that directory.

The mode argument is a fixed binary number where the desired
mode is encoded with one access mode specified by each bit. For
segments the modes are:

read 8-bit (i.e., OIOOOb)
execute 4-bit (i.e., 00100b)
wr i te 2-bit <i.e., 000 lOb)

For directories, the modes are:

status 8-bit <i.e., OIOOOb)
modify 2-bit <i.e., 00010b)
append l-b it <i.e., 00001b}

Note that if modify access is given for a directory, then status
must also be given; i.e.,OIOIOb. The unused bits are reserved
for unimplemented attributes and must be zero. For example, rw
access in bit form is OIOIOb, and is 10 in fixed binary form.

@ Copyright, 1973, r~assachusetts Institute of Technology
and Honeywell InformatIon Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Name-II •

Subroutine Call
2/16/73

This subroutine is provided to create a link in the storage
system directory hierarchy to some other directory entry in the
hierarchy. For a discussion of links see the MPM Reference Guide
section Segment, Directory and Link Attributes.

Usage

declare hcs_$append_link entry (char(*), char(*) char(*),
fixed bin(3S)};

is the directory path name in which the link is to
be created. (Input)

2} link_name is the entry name of the link to be created.
(Input)

3) path

4) code

Notes

is the path name of the segment to which link_name
is to point. (Input)

is a standard storage system status code. (Output)

The user must have the append attribute with respect to the
directory in which the link is being created.

The entry pointed to by the link need not exist at the time
the link is created.

The subroutines hcs_$append_branch and hcs_$append_branchx
may be used to create a segment or directory entry in the storage
system hierarchY.

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (ENO)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
2/16/73

This subroutine changes an entry name on a storage system
entry specified by path name. If an old (i.e., already existing)
name is specified, it is deleted from the entry; if an new name
is specified it is added. Thus, if only an old name is
specified, the effect is to delete a name; if only a new name is
specified, the effect is to add a name; and if both are
specified, the effect is to rename the entry •

.usage

declare hcs_$chname_file entry (char(*), char(*),
char(*), char(*), fixed bin(35»;

call hcs_$chname_file (dir_name, entry_name, oldname,
newname, code);

1) dir_name

3) oldname

4) newname

5) code

Notes

is the path name of the directory
entry to be manipulated is found.

in which
(Input)

the

is the name of
(Input)

the entry to be manipulated.

is the name to be deleted from the entry. It may
be a null character stri ng (1111) in whi ch case no
name is to be deleted. If oldname is null, then
newname must not be nUll. (Input)

is the name to be added to the entry. It must not
already exist in the directory on this or another
entry. It may be a null character string (1111) in
which case no name is added. If it is null, then
oldname must not be the only name on the entry.
(Input)

is a standard storage system status code. I t may
have the values:

error_table_$nonamerr
error_table_$namedup
error_table_$segnamedup (Output)

The subroutine hcs_$chname_seg performs the same function,
given a pointer to the segment instead of its path name.

@ Copyright, 1973, r-1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

The usei must have the modify attribute with respect to the
directory in question.

Examples

Assume that the entry >my_dir>alpha exists and that it also
has the entry name beta. Then the following calls to
hcs_$chname_file would have the effects described.

call hcs_$chname_file (">my_dir", "alpha", "beta", "gamma",
code) ;

This call WOuld change the entry name beta to gamma.

call hcs_$chname_file (">my_dir",
code) ;

"~arrma", "gamma", "" ,

This call would remove the entry name gamma. Note that any entry
name may be used in the second argument position.

call hcs_$chname_file (">my_dir", "alpha",
code);

1111 , "delta",

This call would add the entry name delta. The entry now has the
names alpha and delta.

@ Copyr i gh t, 1973, ~~assachuset ts Ins t I tute of Techno logy
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
2/13/73

This subroutine changes an entry name on a storage system
segment, given a pointer to the segment. If an old (i.e.,
already existing) name is specified, it is deleted from the
entry; if a new name is specified, it is added. Thus, if only an
old name is specified, the effect is to delete a name; if only a
new name is specified, the effect is to add a name; and if both
are specified, the effect is to rename the entry.

Usage

declare hcs_$chname_seg entry (ptr, char(*), char(*),
fixed bin(3S}};

call hcs_$chname_seg (seg_ptr, oldname, newname, code);

2) oldname

3) newname

4) code

Notes

is a pointer to the segment whose name will be
changed. (Input)

is the name to be del eted from the entry. I t may
be a null character string (1111) in which case no
name is to be deleted. If oldname is null, then
newname must not be nUll. (Input)

is the name to be added to the entry. It must not
already exist in the directory on this or another
entry. If may be a null character string ("11) in
which case no name is added. If it is null, then
oldname must not be the only name on the entry.
(Input)

is a standard storage system status code. I t may
have the values:

error_table_$namedup
error_tab_$nonemerr
error_table_$segnameduD (Output)

The subroutine hcs_$chname_file performs the same function,
given the directory and entry names of the segment instead of the
pointer.

The user must have the modify attribute with respect to the
directory in question.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

Examples

Assume that the user has a pointer, seg_ptr, to a segment
which has two entry names, alpha and beta. Then the following
calls to hcs_$chname_seg would have the effects described.

call hcs_$chname_seg (seg_ptr, tlbeta", Itgarrrna", code);

This call would change the entry name beta to gamma.

call hcs_$chname_seg (seg_ptr, II gamma", 1111, code);

This call would remove the entry name gamma.

This call would add the entry name delta. The entry now has the
names alpha and delta.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

~: hcs $del dir tree - - -

Subroutine Call
2/21/73

This subroutine deletes a subtree of the storage system
hierarchy, given the path name of a directory. All segments,
links and directories inferior to that directory "are deleted
including the contents of any inferior directories. The
specified directory is not itself deleted; to delete it, see the
MPM write-ups for hcs_$delentry_file and hcs_$delentry_seg.

Usage

declare hcs_$del_dir_tree entry (char(*), char(*),
fixed bin(3S»;

1) parent_name is the path name of the parent directory
directory whose subtree is to be deleted.

of the
(Input)

is the entry name of the directory whose subtree
is to be deleted. (Input)

3) code is a standard storage system status code.

The user must have the status and modify attributes with
respect to the specified directory and the safety switch must be
off in that directory. If the user does not have status and
modify attributes on inferior directories, hcs_$del_dir_tree will
provide them.

If an entry in an inferior directory gives the user access
only in a ring lower than his validation level, that entry will
not be deleted and no further processing will be done on the
subtree. For those users who need to know about rings, they are
discussed in the MPM Subsystem Writers' Guide section,
Intraprocess Access Control (Rings).

~ Copyright, 1973, Massachusetts Institute of Technolo~y
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
3/15/73

This subroutine, given a directory name and an entry name,
deletes the given entry from its parent directory. If the entry
is a segment the contents of the segment are deleted first. If
the entry specifies a directory which contains entries the status
code error_table_$fulldir is returned and hcs_$del_dir_tree must
be called to remove the contents of the directory.

Usage

declare hcs_$delentry_file (char(*), char(*),
fixed bin(35»;

call hcs_$delentry_file (dirname, ename, code);

1) dirname is the parent directory name. (Input)

2) ename is the entry name to be deleted. (Input)

3} code is a standard storage system status code. (Output)

Notes

The subroutine hcs_$delentry_seg performs the same function,
given pointer to the segment instead of the pathname.

The user must have modify permission with respect to
dirname. If ename specifies a segment or directory rather than a
link, the safety switch of the segment or directory must be off.
For a temporary period the user must have write permission with
respect to the segment or modify permission with respect to the
directory being deleted.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell InformatIon Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
3/14/73

This subroutine, given the pointer to a segment, deletes the
corresponding entry from its parent directory. If the entry is a
segment the contents of the segment are deleted first. If the
entry specifies a directory which contains entries the status
code error_table_$fulldir is returned and hcs_$del_dir_tree must
be called to remove the contents of the directory.

Usage

1) sp

declare hcs_$delentry_seg (ptr, fixed bin(3S»;

call hcs_$delentry_seg (sp, code);

is the pointer to the segment to be deleted. (Input)

2) code is a standard storage system status code. (Output)

Notes

The subroutine hcs_$delentry_file performs the same
function, given the directory and entry names of the segment
instead of the pointer.

The user must have modify permission with respect to the
segment's parent directory. The safety switch of the segment
must be off. For a temporary period the user must have write
permission with respect to the segment.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
2/12/73

This subroutine is called to delete specified entries from
an Access Control List (ACL) for a segment.

Usage

declare hcs_$delete_2cl_entries entry (char(*), char(*),
ptr, fixed bin, fixed bin(3S»;

call hcs_$delete_?cl_entries (dirname, ename, acl_ptr,
acl_count, code);

1) dirname is the directory portion of the path name of the
segment in question. (Input)

2) ename is the entry name portion of the path name of the
segment in question. (Input)

points to a user-filled delete_acl structure. See
Notes be low. (I npu t)

contains the number
delete_2cl structure.

of ACL entries
See Notes below.

in the
(Input)

5) code is a standard status code. (Output)

Notes

The following structure is used:

declare 1 delete acl (acl count) aligned based (acl_ptr),
2 access_nc=tme char (32), -
2 status_codp- fixed bin(35);

is the access
person.project.ta~)

entry to be deleted.

n?me (in the form
which identifies the

of
ACL

2) status_code is a standar~ status code for this ACL entry
only.

If code is returned as error_table_$argerr then the
offending ACL entries in the delete acl structure will have
status code set to an appropriate error and no processing will
have been performed.

@ Copyright, 1973, r·1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

~ULT'CS PROGRAMMERS' MANUAL

Page 2

If an access name cannot be matched to one existing on the
segment's ACL then the status code of that ACL entry is set to
error_table_$user_not_found, processing contiriues to the end of
the delete_acl structure and code is returned as zero.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
2/13/73

~: hcs_$delete_dir_acl_entries

This subroutine is used to delete specified entries from an
Access Control List (ACL) for a directory. The delete_acl
structure used by this subroutine is described in the MPM
write-up for hcs_$delete_acl_entries.

Usage

declare hcs_$delete_dir_acl_entries entry (char(*),
char(*), ptr, fixed bin, fixed bin(35»;

call hcs_$delete_dir_acl_entries (dirname, ename, acl_ptr,
acl_count, code);

1) dirname is the path name of the directory superior to the
one i n Que s t i on • (I n put)

2) ename

5) code

is the entry name of the directory in Question.
(Input)

points to a user-filled delete_acl structure.
(Input)

is the number of ACL entries in the delete_acl
structure. (Input)

is a standard status code. (Output)

The status code
hcs_$delete_acl_entries.

i s interpreted as described in

@ Copyright, 1973, ""1assachusetts Institu.te of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
3/8/73

This subroutine returns the access mode of the user, at the
current validation level, with respect to a specified segment.
For a discussion of access modes, see the MPM Reference Guide
section, Access Control.

Usage

declare hcs_$fs_get~ode entry (ptr, fixed bin(S),
fixed bin(3S»;

1) segptr is an pointer to the segment in question. (Input)

2) mode

3) code

Notes

is the mode (see Notes below). (Output)

is a standard storage
(Output)

system status code.

The mode and ring brackets for the segment in the user's
address space are used in combination with the user's current
validation level to determine the mode the user would have if he
accessed this segment. For a discussion of ring brackets and
validation level, see the MPM Subsystem Writers' Guide section,
Intraprocess Access Control (Rings).

The mode argument is a fixed binary number where the desired
mode is encoded with one access mode specified by each bit. For
segments the modes are:

read 8-bit (i.e., 01000b)
execute 4-bit (i.e., 00100b)
wr i te 2-bit (i.e., 00010b)

For directories, the modes are:

status 8-bit (i.e., 01000b)
modify 2-bit (i.e., OOOlOb)
append I-b it (i.e., OOOOlb)

Note that if modify access is given for a directory, then status
must also be given; i.e., OlOlOb). The high-order bit is
reserved for an unimplemented attribute and must be zero. For
example, rw access in bit form is OlOlOb, and is 10 in fixed
bInary form.

@ Copyright, 1973, t·1assachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MUlTICS PROGRAMMERS' MANUAL

Subrout ine Call
2/28/73

This entry, given a pointer to a segment, returns a path
name for the segment, with the directory and entry name portions
of the path name separated. The entry name returned is the
primary name on the entry; see the MPM Reference Guide section,
Segment, Directory and link Attributes for a discussion of
primary names.

Usage

declare hcs_$fs_get_path_name entry (ptr, char(*),
fixed bin, char(*), fixed bin(35»;

call hcs_$fs_get_path_name (segptr, dirname, ldn, ename,
code) ;

1) segptr

2) dirname

3) 1 dn

4) ename

5) code

is a pointer to the segment in question. (Input)

is the path name of the directory superior to the
segment pointed to by segptr. If the length of
the path name to be returned is greater than the
length of dirname, the path name will be
truncated. To avoid this problem, the length of
dirname should be 168 characters. (Output)

is the number of nonblank characters in dirname.
(Output)

is the primary entry name ,of the segment pointed
to by segptr. If the length of the entry name to
be returned is greater than the length of ename,
the entry name will be truncated. To avoid this
problem, the length of ename should be 32
characters. (Output)

is a standard storage
(Output)

system status code.

@ Copyright·, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MUlTICS PROGRAMMERS' MANUAL

Subroutine Call
Standard Service System

8/24/71

This entry point returns a specified (i.e., first, second,
etc.) reference name for a specified segment.

Usage

1)

2)

3)

4)

Notes

declare hcs_$fs_get_ref_name entry (ptr, fixed bin,
char(*), fixed bin);

segptr

count

rname

code

is a pointer to the segment in question.
(Input)

specifies
returned.

which reference name
See Notes. (Input)

is to be

is the desired reference name. (Output)

is a standard file system status
(Output)

code.

If "count" = 1, the name by which the segment has most
recently been made known will be returned. If "count" = 2, the
second most recently added name is returned and so on. If
"count ll is larger than the total number of names, the name by
which the segment was originally made known is returned and
"code" is set to error_table_$ref_count_too_big.

See the MPM Reference Guide Section on naming conventions.

~ Copyright, 1971, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
2/16/73

Given a reference name of a segment, hcs_$fs_get_seg_ptr
returns a pointer to the base of the segment. For a discussion
of reference names, see the MPM Reference Guide section,
Constructing and Interpreting Names.

Usage

declare hcs_$fs_get_seg_ptr entry (char(*), ptr,
fixed bin(3S»;

1) rname

2) segptr

3) code

is the reference name of a segment for which a
pointer is to be returned. (Input)

is a pointer to the base of the segment. (Output)

is a standard status code. (Output)

If the reference name is accessible from the user's current
validation level, segptr is returned pointing to the segment;
otherwise, it is null. The user who needs to know abotit rings
and validation levels can find a discussion of them in the
Subsystem Writers' Guide section, Intraprocess Access Control
(Rings).

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MUlTICS PROGRAMMERS' MANUAL

Subroutine Call
2/27/73

This subroutine moves the data associated with one segment
in the storage system hierarchy to another segment given the path
names of the segments in question. The old segment remains,
with a zero length.

Usage

declare hcs_$fs_move_file entry (char(*), char(*),
fixed bin(2), char(*), char(*), fixed bin(3S»;

call hcs_$fs_move_file (from_dir, from_entry, at_sw, to_dir,
to_entry, code);

is the path name
from_entry resides.

of the
(Input)

directory in which

2) from_entry is the entry name of the segment from which data
is to be moved. (Input)

3) at_sw

4) to_dir

6) code

Notes

see Notes below. (Input)

is the path name of the
to_entry resides. (Input)

directory in which

is the entry name of the segment to which data is
to be moved. (Input)

is a standard storage system status code.
have the value error_table_$no_move if
entry is not a segment, or one of the
described in Notes below.

It may
either
values

The input argument at_sw is a 2-indicator switch which
directs the procedure to use certain options. The two options
specified are £Ppend option and ~runcate option. If the append
oPtion (high-order bit) is on, then append to_entry to to_dir if
it does not already exist. If the append option is off and the
destination entry can not Jbe found the status code
error_table_$noentry is returned.

® Cop y rig h t , 1 9 7 3, t·1a s sac h use t t sin s tit ute 0 f Tee h nolo g y
and Honeywell Information Systems Inc.

[hcs_$ f s_RlOve_f 11 e I
Page 2

MULTICS PROGRAMMERS' MANUAL

If the truncate option (low-order bit) is on, to_entry is
t run ca ted i fit i s no t zero 1 en g t h • 0 the rw i s e (i • e • , i f the
option is off and the length of to_entry is not zero) the status
code error_table_$clnzero is returned. In both of the cases
where the move is not completed, the procedure will attempt to
return the data to the original segment.

The subroutine hcs_$fs_move_seg performs the same function
given pointers to the segments in Question instead of path names.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MUlTICS PROGRAMMERS' MANUAL

Subroutine Call
2/28/73

This subroutine moves the data associated with one segment
in the hierarchy to another segment, given pointers to the
segments in question. The old segment remains, with a zero
length.

Usage

declare hcs_$fs_move_seg entry (ptr, ptr, fixed bin(l),
fixed bin(3S»;

3) trunsw

4) code

is the pointer to the segment from which data is
to be moved. (Input)

is the pointer to the target segment. (Input)

if equal to 1, then truncate the segment specified
by to_ptr (if it is not already zero-length)
before performing the move;
if equal to 0, then reflect the status code
error table $clnzero if that segment is not
already zero-length. (Input)

is a standard storage system status code. Besides
the value given under trunsw above, it may also
have the value error_table_$no_move. (Output)

The subroutine hcs_$fs_move_file performs the same fUnction
given the path names of the segments in question instead of the
pointers.

@ Copyright, 1973, Hassachusetts Institute of Technology
and Honeywell Information Sys;ems Inc. (END)

MULTICS PROGRAMMERS' MANUAL hcs_$initiate

Subroutine Call
3/12/73

This subroutine is used to search for a segment, make a copy
of it if the copy switch so indicates, and make the segment or
its copy known to the process. The reference name specified is
entered in the address space of the process and a pointer to the
segment is returned. If segsw is Qn, then the segment pointer
is input and the segment is made known with that segment number.

Usage

declare hcs_$initiate entry (char(*), char(*), char(*),
fixed bin(I), fixed bln(2), ptr, fixed bln(35»;

call hcs_$initiate (pname, ename, rname, segsw, copysw,
segptr, code);

1) pname

2) ename

3) rname

4) segsw

5) copysw

6) segptr

7) code

is the path name of the directory containing the
segment. (Input)

is the entry name of the segment. (Input)

is the reference name. If it is zero in
the segment is initiated by a null name.

is the reserved segment switch:

length,
(Input)

= 0 if no segment number has been reserved;
= 1 if a segment number was reserved. (Input)

is the copy switch:

= 0 if it is desired to go by the setting in the
directory entry;

= 1 if no copy is wanted;
= 2 if a copy is always wanted. (Input)

i s a po i n t e r tot h e s e gme n t • (I tis I n put i f
segsw = 1. Otherwise, it is Output.)

is a standard storage
(Output)

system status code.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

hcs $initiate MULTICS PROGRAMMERS' MANUAL

Page 2

Notes

The user must have non-null access on the segment ename in
order to initiate it.

If ename cannot be initiated, a null pointer is returned for
segptr and the returned value of code indicates the reason for
failure. If ename is already known to the user's process, code
is returned as error_table_$segknown and the the argument segptr
will contain a valid pointer to ename. If ename is not already
known, and no problems are encountered, segptr will contain a
valid pointer and code will be zero.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
3/12/73

This subroutine, given a path name and a reference name,
causes the segment defined by the path name (or a copy of it,
depending upon the copysw option) to be made known by the given
reference name. A segment number is assigned and returned as a
pointer and the bit count of the segment is returned.

Usage

declare hcs_$initiate_count entry char(*), char(*), char(*),
fixed bin(24), fixed bin(2), ptr, fixed bin(35»;

call hcs_$initiate_count (pname, ename, rname, bitcount,
copysw, segptr, code);

1) pname

2) ename

3) rname

4) bitcount

5) copysw

6) segptr

7) code

is the directory portion of the path name of the
segment in question. (Input)

is the entry name portion of the path name of the
segment in question. (Input)

is the des i red reference name. If it is zero in
length, the segment is initiated by a null name.
(Input)

is the bit count of the segment. (Output)

is the copy switch:

= 0 if it is desired to go by the setting in the
hierarchy entry;

= 1 if no copy is wanted;
= 2 if a copy is always wanted. (Input)

is a pointer to the segment in question. (Output)

is a standard storage
(Output)

system status code.

@ Copyright, 1973, t1assachusetts Institute of Technology
and Honeywell Information Syste~s Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

Notes

The user must have non-null access on the segment ename in
order to initiate it.

If ename cannot be initiated, a null pointer is returned for
segptr and the returned value of code indicates the reason for
failure. If ename is already known to the user's process, code
is returned as error_table_$segknown and the argument segptr will
contain a valid pointer to ename. If ename is not already known,
and no problems are encountered, segptr will contain a valid
pointer and code will be zero.

See also the MPM Reference Guide section, Constructing and
Interpreting Names.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
2/15/73

This subroutine is used to either list the entire Access
Control List (ACL) of a segment or to return the access modes
from specified entries. The segment_acl structure used by this
subroutine is described in the MPM write-up for
hcs_$add_acl_entries.

Usage

declare hcs_$list_acl entry(char(*), char(*), ptr, ptr,
ptr, fixed bin, fixed bin(35»;

call hcs_$list_ac1 (dirname, ename, area_ptr, area_ret_ptr,
acl_ptr, ac1_count, code)

1) dirname is the directory portion of the path name of
the segment in question. (Input)

2) ename

7) code

is the entry name portion of the path name of
the segment in question. (Input)

points to an area into which the list of ACL
entries is to be allocated. (Input)

points to the start of the allocated list of
ACl entries. (Output)

if area_ptr is null then acl_ptr is assumed
to point to an ACl structure, segment_acl,
into which mode information is to be placed
for the acCess n~mes specified in that same
structure. (Input)

is the number of entries in the ACL structure
identified by acl_ptr (Input); or is set to
the number of entries in the segment_acl
structure allocated in the area pointed to by
area_ptr , if area_ptr is not nUll. (Output)

is a standard status code. (Output)

If ac1_ptr is used to obtain modes for specified access
names (rather than obtaining modes for all access names on a
segment), then each ACL entry will either have a zero code and
will contain the segment's mode or will have code set to
error_table_$user_not_found and will contain a zero mode.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
2/13/73

This subroutine is used to either list the entire Access
Control List (ACL) of a directory or to return the access modes
for specified entries. The dir_acl structure described in
hcs_$add_dir_acl_entries is used by this subroutine.

Usage

1)

2)

3)

4)

declare hcs_$list_dir_acl entry (char(*), char(*), ptr,
ptr, ptr, fixed bin, fixed bin(3S»;

call hcs_$list_dir_acl (dirname, ename, area_ptr,
area_ret_ptr, acl_ptr, acl_count, code);

dirname

ename

area_ptr

area_ret_ptr

i s the path name of the directory super i or to
the one i n ques t i on. (I npu t)

is the entry name of the directory i n question.
(I npu t)

points to an area into which the 1 i s t of ACL
entries i s to be allocated. (I npu t)

po i nts to the start of the 1 i s t of the ACL
entries. (Output)

if area_ptr is null then acl_ptr is assumed to
point to an ACL structure, dir_acl, into which
mode information is to be placed for the access
names specified in that same structure. (Input)

is either the number of entries in the ACL
structure identified by acl_ptr (Input); or if
area_ptr is not null, then it is set to the
number of entries in the dir_acl structure that
has been allocated. (Output)

7) code is a standard status code. (Output)

If acl_ptr is used to obtain modes for specified access
names (rather than obtaining modes for all access names on a
segment), then each ACL entry will either have a zero code and
will contain the directory's mode or will have code set to
error_table_$user_not_found and will contain a zero mode.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywe 11 I nforma t i on Sys tems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
Standard Service System

1/17/72

This entry, when given a segment name and an entry point
name, returns a pointer to a segment entry point. It uses the
search rules to find the required segment.

Usage

declare hcs_$make_ptr entry (ptr, char(*), char(*), ptr,
fixed bin);

call hcs_$make_ptr (caller_ptr, seg_name, entry_point_name,
entry_point_ptr, error_code);

is a pointer to the "calling procedure" (see
Notes below). (Input)

is the name of segment to be
(Input)

located.

3) entry_paint_name is the name of the entry point to be located.
(Input)

4) entry_point_ptr is the pointer to the segment entry point
specified by seg_name and entry_point_name.
(Output)

is the returned error code. (Output)

Notes

pointed to by
directory for the

rule 1 of the

The directory in which the procedure
caller_ptr is located is used as the calling
standard search rules. If it is null, then
standard search rules is skipped. See the MPM
section on The System Libraries and Search Rules.
usage is to have caller_ptr null.

Reference Guide
The standard

The se&-name and entry_point_name arguments are nonvarying
character strings of length i 32. They need not be al igned and
~ay be blank padded.

If a null string is given for the entry_point_name argument,
then a pointer to the base of the segment is returned. In either
case, the segment se&-name is made known to the process with the
reference name seg_name. If an error was encountered upon
return, the entry_point_ptr argument is null and a nonzero errur
code is given.

€) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

I hcs_$make_pt r

Page 2

MULTICS PROGRAMMERS' MANUAL

To invoke
entry_point_ptr,
the t.1PM.}

the procedure entry point pointed to by
use cU_$gen_cal1 or cu_$ptr_call. (See cu_ in

Example

The following PL/I statements will generate a call to the
procedure fred$foo passing as arguments the integer 17, the
pointer p, and the character string "treat".

call hcs_$make_ptr (null, "fred", "foo", ep, code);

cal 1 c u_ $ p t r _ cal 1 (e p , 1 7, p, .. t rea t ..) ;

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL I hcs_$make_seg I
Subroutine Call

Standard Service System
2/16/72

This procedure creates a segment in a specified directory
with a specified entry name. Once the segment is created, it is
made known to the process by a call to hcs_$initiate and a
pointer to the segment is returned to the caller. If the segment
already exists, an error code is returned. However, a pointer to
the segment is still returned.

Usage

declare hcs_$make_seg entry (char(*), char(*), char(*),
fixed bin(S), ptr, fixed bin);

call hcs_$make_seg (dirname, entry, rname, mode
segptr, code);

1) dirname

2) entry

3) rname

4) mode

5) segptr

6) code

Notes

is the directory in which to create the segment.
(Input)

is the entry name of the segment to be created.
(Input)

is the desired reference name, or '''I (Input)

specifies the mode for this user. See Notes in
hcs_$append_branch for more information on modes.
(Input)

is a pointer to the created segment. (Output)

is a standard file system status code. (Output)

If dirname is null, the process directory is used.
entry argument is null, a unique name is provided.
argument is passed directly to hcs_$initiate and should
be nu 11 •

If the
The rname

normally

See also the MPM Reference Guide section on Constructing and
Interpreting Names.

€) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
2/13/73

~: hcs_$replace_acl

This subroutine replaces an entire Access Control list (ACl)
for a segment with a user-provided ACL, and can optionally add an
entry for *.SysDaemon.* with mode rw to the new ACl. The
segment_acl structure described in hcs_$add_acl_entries is used
by this subroutine.

Usage

declare hcs_$replace_acl entry (char(*), char(*), ptr,
fixed bin, bit(l), fixed bin(35»;

call hcs_$replace_acl (dirname, ename, acl_ptr, acl_count,
no_sysdaemon_sw, code);

1) dirname is the directory portion of the path name of
the segment in question. (Input)

2) ename is the entry name portion of the path name of
the segment in question. (Input)

points to the user supplied segment_ac1
structure that is to replace the current ACL.
(Input)

is the number of entries in the segment~acl
structure. (Input)

5) no_sysdaemon_sw if IIQllb, then a *.SysDaemon.* rw entry will
be put on the segment's ACL after the
existing ACL has been deleted and before the
user supplied segment_acl entries are added;
if "1"b, then only the user-suppl ied
segment_acl will replace the existing ACL.
(Input)

6) code is a standard status code. (Output)

Notes

If acl_count is zero then the existing ACL will be deleted
and only the action indicated by no_sysdaemon_sw will be
performed (if any). In the case when acl_count is greater than
zero, processing of the segment_acl entries is performed top to
bottom, allowing later entries to overwrite previous ones if the
access_name parts are identical.

~ Copyright, 1973, Massachusetts Institute of Technolo~y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

If the segment is a gate (see the MPM Subsystem Writers'
Guide section, Intraprocess Access Controi (Rings» and if the
validation level is greater than Ring 1, and only access names
that contain the same project as the user, and "S ys Daemon" and
"sys_control" projects will be allowed. If the replacement ACL
is in error then no processing will be performed and the code
error_table_$invalid_project_for_gate will be returned.

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
2/15/73

~: hcs_$replace_dir_acl

This subroutine replaces an entire Access Control List (ACL)
for a directory with a user-provided ACL, and can oPtionally add
an entry for *.SysDaemon.* with mode sma to the new ACL. The
dir_acl structure described in hcs_$add_dir_acl_entries is used
by this subroutine.

Usage

declare hcs_$replace_dir_acl entry (char(*), char(*), ptr,
fixed bin, bit(1), fixed bin(35»;

call hcs_$replace_dir_acl (dirname, ename, acl_ptr,
acl_count, no_sysdaemon_sw, code);

1) dirname

2) ename

4) acl_count

is the path name of the directory superior to
the one in question. (Input)

is the entry name of the directory
question. (Input)

in

points to a user-supplied dir_acl
that is to replace the current ACL.

structure
(Input)

is the number of entries in the dir_acl
structure. (Input)

5) no_sysdaemon_sw if IIQllb, then a *.SysDaemon.* sma entry will
be put on the directory's ACL after the
existing ACL has been deleted and before the
user-supplied dir acl entries are added; if
"1"b, then only the user-supplied dir_acl
will replace the existing ACL. (Input)

6) code is a standard status code. (Output)

If acl_count is zero then the existing ACL will be deleted
and only the action indicated by no_sysdaemon_sw will be
performed (if any). In the case when acl_count is greater than
zero, processing of the dir_acl entries is performed top to
bottom, allowing later entries to overwrite previous ones if the
access_name parts are identical.

@ Copyr i ght, 1973, t·1assachusetts I nst i tute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
3/19/73

This subroutine sets the bit count of a segment in the
storage system, given a path name. It also sets that segment's
bit count author to be the user who called it.

Usage

declare hcs_$set_bc entry (char(*), char(*),
fixed bin(24), fixed bin(3S»;

call hcs_$set_bc (dirname, ename, bit_count, code);

1) dirname is the directory name of
count is to be changed.

the segment
(I npu t)

whose bit

2) ename is the entry name of the segment whose bit count
is to be changed. (Input)

3) bit_count

4) code

Notes

is the new bit count of the segment. (Input)

is a standard storage
(Output)

system status code.

The user must have write permission with respect to the
segment, but does not need write permission with respect to the
parent directory.

The subroutine hcs_$set_bc_seg performs the same function,
when a pointer to the segment is provided rather than a path
name.

@ Copyright, 1973, f'-1assachusetts Insti tute of Technolo~y
and Honeywe 11 I nforma t i on Sys terns Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
3/19/73

This subroutine sets the bit count of a segment in the
storage system, given the pointer to the segment. It also sets
that segment's bit count author to be the user who called it.

usage

declare hcs_$set_bc_seg entry (ptr, fixed bin(24),
fixed bin(3S»;

call hcs_$set_bc_seg (segptr, bitcount, code);

1) segptr is a pointer to the segment whose bit count is to be
changed. (Input)

2) bitcount is the new bit count of the segment. (Input)

3) code is a standard storage system status code. (Output)

The user must have write permission with respect to the
segment, but does not need write permission with respect to the
parent directory.

The subroutine hcs_$set_bc performs the same function, when
provided with a path name of a segment rather than the pointer.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
4/2/73

This subroutine is the star convention handler for the
storage system. (See ~ ~ Convention in the MPM Reference
Guide section, Constructing and Interpreting Names.) It is
called with a directory name, and an entry name containing
components which may be * or **. The directory is searched for
all entries which match the given entry name. Information about
these entries is returned in a structure. If the entry name is
**, information on all entries in the directory is returned.

Status permission is required with respect to the directory
to be searched.

The main entry returns the storage system type and all names
which match the given entry name. (See hcs_$star_list_ below to
obtain more information about each entry.)

Usage

declare hcs_$star_ entry (char(*), char(*), fixed bin(2),
ptr, fixed bin, ptr, ptr, fixed bin(3S»;

call hcs_$star_ (dirname, star_name, select_sw,
areap, ecount, eptr, nptr, code);

1) dirname

2) star_name

4) areap

5) ecount

is the path name of the directory to be searched.
(Input)

is the entry name which may contain asterisks.
(Input)

= 1 if information is to be returned about link
entries only;

= 2 if information is to be returned about segment
entries only;

= 3 if information is to be returned about all
en t r i es • (In pu t)

is a pointer to the area in which information is
to be returned. If the pointer is null, ecount is
set to the total number of selected entries. See
Notes immediately below. (Input)

is a count of the number of entries which match
the entry name. (Output)

@ Copyright, 1973, '-1assachusettslnstitute of Technology
and Honeywell Information Systems Inc.

Page 2

6) eptr

7) nptr

8) code

Notes

MULTICS PROGRAMMERS' MANUAL

is a pointer to the allocated structure
information on each entry is returned.

in which
In _ \
\VU~"'U~I

is a pointer to the allocated array of all the
entry names in this directory which match
star_name. See Notes immediately below. (Output)

is a standard storage system status code.
Status Codes below. (Output)

See

Even if areap is null, ecount is set to the total number of
entries in the directory which match star_name. The setting of
select_sw determines whether ecount is the total number of link
entries, the total number of segment entries or the total number
of all entries.

If areap is not null, the following structure is allocated
in the user-supplied area:

declare 1 entries (ecount) aligned based (eptr),
(2 type bit(2),

1) type

2) nnames

3) nindex

2 nnames bit(16),
2 nindex bit(18» unaligned;

specifies the storage system type of entry:

a ("aa"b) = 1 ink,
1 ("OlUb) • nondirectory segment,
2 ("lOltb) = directory segment.

specifies the number of names for this entry which
match star_name.

specifies the offset in the array of names
(pointed to by nptr) for the first name returned
for this entry.

All of the names which are returned for anyone entry are
stored consecutively in an array of all the names, allocated in
the user-specified area. The first name for anyone entry begins
at the offset nindex in the array.

declare names (total_names) char(32) aligned based (nptr);

where total_names is the total number of names returned.

It should be noted that the user must provide an area large
enough for this subroutine to store the requested information.

@) CoP y rig h t, 1 9 7 3 , ~1a s sac h use t t sin s tit ute 0 f T e c h nolo g y
and Honeywe 11 I nforma t ion Sys terns Inc.

MULTICS PROGRAMMERS' MANUAL

Page 3
4/2/73

This entry returns more information about the selected'
entries.

Usage

1)

2)

3)

declare hcs_$star_list_ entry (char(*), char(*),
fixed bin(3), ptr, fixed bin, fixed bin, ptr, ptr,
fixed bin(35»;

call hcs_$star_list_ (dirname, star_name, select_sw,
areap, seg_count, link_count, eptr, nptr, code);

dirname

star_name

select_sw

i s as above. (I npu t)

is as above. (I npu t)

=1 if information is . to be returned about 1 ink
entries only;

=2 if information is to be returned about segment
entries only;

=3 if information
entries;

is to be returned about all

=5 if information is to be returned about link
entries only, including the path name
associated with each link entry;

=7 if information is to be returned about all
entries, including the path name associcated
with each link entry. (Input)

4) areap is a pointer to the area in which information is
to be returned. If the pointer is null, seLcount
and link_count are set to the total number of
selected entries. See Notes immediately below.
(Input)

5) seg_count i s a count of the number of segments and
directories which match the entry name. (Output)

6) link_count is a count of the number of 1 inks which match
entry name. (Output)

7) eptr i s as above. (Output)

@ Copyright, 1973, ~·1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

th~

MULTICS PROGRAMMERS' MANUAL

Page 4

8) nptr is a pointer to the allocated array in which
selected entry names and path names associated
with link entries are stored. (Output)

9) code is as above. (Output)

Notes

Even if areap is null, seg_count is set to the total number
of segments and directories which match star_name, if information
on segments is requested. If information on links is requested,
link_count is the total number of links which match star_name.

The following structure is allocated in the user-supplied
area, if areap is not null:

declare entries (count) bit(144) aligned based (eptr)i

where count = seg_count + link_count.

For each unit of the array, one of two structures will be
found. Which structure should be used may be determined by the
type item w h i chi s 1 0 cat ed at the bas e 0 f e a c h s t r u c t u r e • I t
should be noted that the first three items in each structure are
identical to the structure returned by hcs_$star_.

The following structure is used if the entry is a segment or
a directory:

1)

2)

3)

4)

S)

declare 1 branches aligned based (eptr),

type

nname

nindex

dtm

dtu

(2 type bit(2),
2 nname bit(16),
2 nindex bit(18),
2 dtm bit(36),
2 dtu bit(36),
2 mode biteS),
2 pad bit(13),
2 records bit(lS» unaligned;

is as above.

is as above.

i s as above.

is the date and time the segment
last modified.

i s the date and time the segment
last used.

or directory

or directory

@ Copyr i ght, 1973, ~~assachusetts I nst i tute of Technology
and Honeywell Information Systems Inc.

was

was

MULTICS PROGRAMMERS' MANUAL hcs_$star _I
Page 5
4/2/73

6) mode

7) pad

8) records

is the current user's access to the segment or
directory. See the MPM write-up of
hcs_$append_branch for a description of modes.

is unused space in this structure.

is the number of l024-word records of secondary
storage which have been assigned to the segment or
directory.

The following structure is used if the entry is a link:

1)

2)

3)

4)

5)

6)

declare 1 links aligned based (eptr),
(2 type bit(2),

type

nname

nindex

dtm

dtd

pathname_len

2 nname bit(16),
2 nindex bit(18),
2 dtm bit(36),
2 dtd bit(36),
2 pathname_len bit(18),
2 pathname_index bit(18» unaligned;

is as above.

is as above.

is as above.

is the date and time the link entry was
modified.

is the date and time the 1 ink entry was
dumped.

is the number of significant characters
the pathname assocated with the link.

last

last

in

7) pathname_index is the offset in the array of names for the
link pathname. See below.

If the path name associated with each link entry was
requested, the path name will be placed in the names arraY and
will occupy six units of this array. The offset of the first
unit is specified by pathname index in the links array. The
length of the path name is given by pathname_len in the links
array.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 6

Status Codes

If no match with star_name was found in the directory, code
will be returned as error_table_$nomatch.

If star_name contained illegal syntax with respect to the
star convention, code will be returned as error_table_$badstar.

If the user did not provide enough space in the area to
return all the requested information, code will be returned as
error_table_$notalloc. In this case the total number of entries
(for hcs_$star_> or the total number of segments and the total
number of links (for hcs_$star_list_> will be returned, to
provide an estimate of the space required.

~ Copyright, 1973, Massachusetts Institute of Technolo~y
and HoneY\>lell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
3/19/73

This subroutine consists of a number of hardcore,
user-callable, storage system entry points which return various
items of information about a specified hierarchy entry.

The main entry point (hcs_$status_) returns the most often
(See needed information about a specified entry.

hcs_$status_long below.)

.usage

declare hcs_$status_ entry (char(*), char(*), fixed bin(l),
ptr, ptr, fixed bin(3S»;

call hcs_$status_ (dirname, entry, chase, eptr, nareap,
code);

1) dirname

2) entry

3) chase

4) eptr

5) nareap

6) code

Notes

is the directory portion of the path name of the
entry in Question. (Input)

is the entry name portion of the path name of the
entry in Question. (Input)

=0: if the entry is a link, return link
information;

=1: if the entry is a link, return information
about the entry to which it points. (Input)

is a pointer to the structure in which information
is returned. See Notes immediately below.
(I nput)

is a pointer to the area in which names are
returned. If the pointer is null, no names are
returned. See Notes immediately below. (Input)

is a storage system status code.
Requirements below. (Output)

See Access

The argument eptr points to the following structure if the
entry is a segment or directory:

@ Copyright, 1973, r·1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

declare 1 branch based (eptr) aligned~

1) type

2) nnames

3} nrp

4) dtm

5) dtu

6) mode

7) padl

8) records

(2 type bit(2),
2 nnames bit(16),
2 nrp bit(lS),
2 dtm bit(36),
2 dtu bit(36),
2 mode blt(S),
2 padl bit(13),
2 records bit(lS}) unaligned;

specifies the type of entry:

o ("OO"b) = 1 ink;
1 ("Ol"b) = segment;
2 ("l0"b) = directory.

specifies the number of names for this entry.

is a relative pointer (relative to the base of the
segment containing the user-specified free storage
area) to an array of names.

contains the date and time the segment was 1 ast
modified.

contains the date and time the segment was 1 ast
used.

contains the mode of the segment with respect to
the current user. See the MPM write-up of
hcs_$append_branch for a description of modes.

is unused

contains
secondary
segment~

space in this structure.

the number of l024-word records of
storage which has been assigned to the

The argument eptr points to the following structure if the
entry is a link:

declare 1 link based (eptr) aligned,
(2 type bit(2),
2 nnames bit(16),
2 n rp bit (IS) ,
2 dtem bit(36},
2 dtd bit(36),
2 pn 1 bit (18) ,
2 pnrp bit(lS» unaligned;

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

1) type

2) nnames

3} nrp

4} dtem

S} dtd

6} pnl

as above.

as above.

as above.

contains the date
modified.

contains the date
dumped.

and time the

and time the

1 ink

1 ink

Page 3
3/19/73

was 1 ast

was 1 as t

specified the length in characters of the link
path name.

7) pn rp is a relative pointer (relative to the base of
the segment containing the user-specified free
storage area) to the link path name.

Note that the user must provide the storage space required
by the above structures. The status entry point merely fills
them in.

If nareap is not null, entry names are returned in the
following structure allocated in the user-specified area.

declare names (nnames) char(32) aligned based (np);

where np = ptr (nareap, eptr-)entry.nrp).

The first name in this array is defined as the primary name
of the entry.

link path names are returned in the following structure
allocated in the user-specified area.

declare pathname char(pnl) aligned based (lp);

where lp = ptr (nareap, eptr-)link.nrp);

Note that the user allocates the area and it must be large
enough to accommodate a reasonable number of names.

Access Requirements

The user must have status permission on the parent directory
to obtain complete information.

@ Copyright, 1973, t1assachusetts Institute of Technology
and Honeywell Information Syster'!1s Inc.

MULTICS PROGRAMMERS' MANUAL

Page 4

If the user lacks status permission but does have non-null
access to a segment, the following per-segment attributes may be
returned: type, effective access, bit count, records and current
length. In this instance if the entry point hcs_$status_ or
hcs_$status_long is called, the status code
error_table_$no_s_permission is returned to indicate that
incomplete information has been returned.

This subroutine returns the bit count and entry type given a
directory and entry name. The access required to use this
subroutine is status permission on the directory or non-null
access to the entry.

Usage

declare hcs_$status_minf entry Cchar(*), char(*), fixed
binCl), fixed bin(2), fixed bin(24), fixed bin(3S»;

call hcs_$status_minf (d i rname, entry, chase, type, bitcnt,
code);

1) di rname is as above. (Input)

2) entry is as above. (Input)

3) chase is as above. (Input)

4) type specifies the type of entry:

o = 1 ink;
1 = segment;
2 = directory. (Output)

5) bitcnt is the bit count. (Output)

6) code is as above. (Output)

This subroutine returns the bit count and entry type given a
pointer to the segment. The access required to use this
subroutine is status permission on the directory or non-null
access on the segment.

Usage

declare hcs_$status_mins entry (ptr, fixed bin(2),
fixed bin(24), fixed bin(35»:

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL hcs_$ 5 tat us-l

Page S
3/19/73

call hcs_$status_mins (segptr, type, bitcnt, code);

1) segptr is a pointer to the segment about which
information is desired. (I npu t)

2) type is as above. (Output)

3) bitcnt is as above. (Output)

4) code is as above. (Output)

En t[~: hcs_$status_long

This subroutine returns most user-accessible information
about a specified entry. The, access required to use this
subroutine is the same as that required by hcs_$status_ and
described in Access Requirements above.

Usage

Notes

declare hcs_$status_long entry (char(*), char(*),
fixed bin(l), ptr, ptr, fixed bin(3S»;

call hcs_$status_long (dirname, entry, chase, eptr, nareap,
code);

Arguments are as above.

The argument eptr points to the same structure as before if
the entry is a link. It points to the following structure if the
entry is a segment or directory:

declare 1 branch based (eptr) aligned,
(2 type bit(2),

2 nnames bit(16),
2 nrp bit(18),
2 dtm bit(36),
2 dtu bit(36),
2 mode biteS),
2 padl bit(13),
2 records bit(18),
2 dtd bit(36),
2 dtem bit(36),
2 pad2 bit(36),
2 curlen bit(12),
2 bitcnt bit(24},

@ Copyright, 1973, 'v1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 6

1-8}

9) dtd

10) dtem

11) pad2

12} curlen

13} bitcnt

14) did

IS} pad3

16) copysw

17} pad4

18) rbs

19) uid

,.. ~,~ L! ... I I. ,
LUlU UIL\'+I,

2 pad3 bit(4),
2 copysw bit(9},
2 pad4 bit(9},
2 rbs <0:2) bit(6),

MULTICS PROGRAMMERS' MANUAL

2 uid but(36» unaligned;

are as described above in the structure for
segments and directories returned by hcs_$status_.

is the date and time the segment was last dumped.

is the date and time the branch was last modified.

is unused space in this structure.

is the current length of the segment in units of
1024-word records.

is the bit count associated with the segment.

specifies the secondary storage device (if any) on
which the segment currently resides.

is unused space in this structure.

contains the setting of the segment copy switch.

is unused space in this structure.

contains the ring brackets of the segment.

is the segment unique identifier.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
2/20/73

This subroutine, given the path name of a segment in the
current process, removes all the reference names of that segment
and then removes the segment from the address space of the
process. For a discussion of reference names, see the MPM
Reference Guide section, Contructing and Interpreting Names.

Usage

declare hcs_$terminate_file entry (char(*), char(*),
fixed bin(l), fixed bin(3S»;

call hcs_$terminate_file (dir_name, entry_name, rsw, code);

is the directory portion of the path name of the
segment in question. (Input)

2) entry_name is the entry name portion of the path name of the
segment in question. (Input)

3) rsw

4) code

Notes

is the reserved segment SWitch. If equal to 1,
the segment number should be saved in the reserved
segment list; if equal to 0, the segment number
should not be saved. (Input)

is a standard storage
(Output)

system status code.

The subroutine hcs_$terminate_s~g performs the same
operation given a pointer to a segment Instead of a path name;
hcs_$terminate_name and hcs_$terminate_noname terminate a single
reference name.

The subroutine term_ performs the same
hcs_$terminate_file.

operation as

In fact, only those reference names are removed for which
the ring level associated with the name is greater than or equal
to the validation level of the process. If the user needs to
concern himself with rings, he should refer to the MPM Subsystem
Writers' Guide section, Intraprocess Access Control (Rings).

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
2/20/73

This subroutine terminates one ~reference name from a
segment. If it is the only reference name for that segment, the
segment is removed from the address space of the process. For a
discussion of reference names see the MPM Reference Guide
section, Constructing and Interpreting Names.

Usage

declare hcs_$terminate_name entry (char(*), fixed bin(3S»;

call hcs_$terminate_name (ref_name, code);

1) ref_name is the reference name to be terminated. (Input)

2) code is a standard storage system status code. (Output)

The subroutine hcs_$terminate_noname terminates a null
reference name from a specified segment; hcs_$terminate_file and
hcs_$terminate_seg completely terminate a segment given its path
name or segment number, respectively.

The subroutine term_$single_refname performs
operation as hcs_$terminate_name.

the same

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
2/15/73

This subroutine terminates a null reference name from the
specified segment. If this is the segment's only reference name,
the segment is removed from the address space of the process.
This entry is used to clean up after initiating a segment by a
null name; see also the MPM write-up for hcs_$initiate. For a
discussion of reference names, see the MPM Reference Guide
section, Constructing and Interpreting Names.

Usage

declare hcs_$terminate_noname entry (Ptr, fixed bin(35});

call hcs_$terminate_noname (segptr, code);

1) segptr

2) code

is a pointer to the segment in question. (Input)

is a standard storage
(Output)

system status code.

The subroutine hcs_$terminate_name terminates a specified
non-null reference name; hcs_$terminate_ftle and
hcs_$terminate_seg completely terminate a segment given its path
name or segment number, respectively.

@) Cop,yr.ight, 1973, Massachusetts Institute of Technolos;y
and Honeywe 11 I nforma t ion Sys tems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
2/20/73

This subroutine, given a pointer to a segment in the current
process, removes all the reference names of that segment and then
removes the segment from the address space of the process. For a
discussion of reference names, see the MPM Reference Guide
section, Constructing and Interpreting Names.

Usage

declare hcs_$terminate_seg entry (ptr, fixed bin(I),
fixed bin(3S»;

call hcs_$terminate_seg (segptr, rsw, code);

1) segptr

2) rsw

3) code

Notes

is a pointer to the segment to be terminated.
(Input)

is the reserved- segment switch. If equal to 1,
the segment number should be saved in the reserved
segment list; if equal to 0, the segment number
should not be saved. (Input)

is a standard storage)system
(Output)

status code.

The subroutine hcs_$terminate_file performs the same
operation given the path name of a segment instead of a pointer;
hcs_$terminate_name and hcs_$terminate_noname terminate a single
reference name.

The subroutine term_$segptr performs the same operation as
hcs_$terminate_seg.

In fact, only those reference names are removed for which
the ring level associated with the name is greater than or equal
to the validation level of the process. If the user needs to
concern himself with rings, he should refer to the MPM Subsystem
Writer's Guide section, Intraprocess Access Control (Rings).

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
3/19/73

This subroutine, given a pathname, truncates a segment to a
specified length. If the segment is already shorter than the
specified length, no truncation Is done. The effect of
truncating a segment is to store zeros in the words beyond the
specified length.

Usage

declare hcs_$truncate_flle entry (char(*), char(*),
fixed bin, fixed bin(3S»;

call hcs_$truncate_file (dirname, ename, length, code);

1) dirname

2) ename

3) length

4) code

Notes

is the directory portion of the path name of the
segment In question. (Input)

is the entry portion
segment in question.

of the
(Input)

path name of the

is the new length (decimal) of the segment in
words. (Input)

is a standard storage system error code. (Output)

The subroutine hcs_$truncate_seg performs the same function
when given a pointer to the segment instead of the path name.
See also the restrictions discussed in that write-up under Notes.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL hcs_$truncat~seg I
Subroutine Call

3/19/73

This subroutine, given a pointer, truncates a segment to a
specified length. If the segment is already shorter than the
specified length, no truncation is done. The effect of
truncating a segment is to store zeros in the words beyond the
specified length.

Usage

declare hcs_$truncate_seg entry (ptr, fixed bin,
fixed bin(3S»;

call hcs_$truncate_seg (segptr, length, code);

I} segptr is a pointer to the segment to be truncated. Only
the segment number portion of the pointer is used.
(Input)

2} length

3} code

Notes

is the new length (decimal) of the segment in words.
(Input)

is a standard storage system status code. (Output)

The write attribute is required with respect to the segment.

A directory may not be truncated.

The implementation is such that pages will be thrown away
starting from the next page after the word number length and the
remainder of the last page will be zeroed.

The subroutine hcs_$truncate_file performs the same function
when given the pathname of the segment instead of the pointer.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
7/11/73

This procedure is used for formatting, according to a
control string (see Notes), character strings, fixed binary
numbers, floating numbers, and pointers into complete character
string form. Entry points are provided that write the formatted
string out on the stream "user_output", on a specified stream, or
which return the expanded string. The expanded string cannot
exceed 256 characters when the line is to be written out.

Since this procedure can be called with a varying number of
arguments, it is not permissible to include a parameter attribute
list in the declaration of the various entry points.

Entry: ioa_

The ioa_ entry reformats the input data and writes the
resultant character string out on the stream "user_output" with a
new line character added at the end.

Usage

declare ioa_ entry options (variable);

call ioa_ (control_string, argl, ••• , argn);

1) control_string is a character string (char(*»
the output format for the data.
below. < Input)

specifying
See Notes

2) ar&i is the variable to be
argument position of
(Input)

placed in the lth
the control string.

Entry: ioa_$nnl

This entry is identical to ioa_ except that no new line
character is added.

Usage

declare ioa_$nnl entry oPtions (variable);

call ioa_$nnl <control_string, argl, ••• , argo};

Arguments are as above.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

IMULTICS PROGRAMMERS' MANUAL

Page 2

~n~rv! ;n~ tin~ ~~r~~m --, .• ' ,, _T· --_- -- -_ ...

This entry reformats the input data, appends a new line
character, and writes the resultant character string out on the
specified output stream.

Usage

2)

3)

declare ioa_$ioa_stream entry options (variable);

call ioa_$ioa_stream (stream_name, control_string,
arg.l, ••• , argn);

is the name (char(*» of the output stream
desired. (Input)

is as above. (I nput)

i s a s a bo v e • (I n pu t)

Entry: ioa_$ioa_stream_nnl

This entry is identical to ioa_$ioa_stream except that no
new line character is added.

Usage

declare ioa_$ioa_stream_nnl entry options (variable);

call ioa_$ioa_stream_nnl (stream_name, control_string,
a r ti, ... , a r gn) ;

Arguments are as above.

Entry: i oa_$ rs

This entry reformats the data but instead of writing the
string out, it returns the new expanded string as well as the
significant length of the new string, in characters. Note that
the returned string argument should be declared large enough to
allow for expansion extremes. It can be a varying or nonvarying
string, aligned or unaligned. If it is nonvarying, it is padded
with blanks if the expanded string does not completely fill it,
unless the entries ioa_$rsnp or ioa_$rsnpnnl were called (see
beloW). Expansion stops when the end of the returned string
argument is reached.

€> Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Usage

declare ioa_$rs entry options (variable);

call ioa_$rs (control_string, return_string, length,
arg1, ••• , argn);

1) control_string is as above. (Input)

Page 3
7/11/73

2) return_string is the returned formatted string (char(*».
See Notes below. (Output)

3) length is the number (fixed bin)
characters in return_string.

of significant
(Output)

4) argl is as above. (Input)

Entry: ioa_$rsnnl

This entry is identical to ioa_$rs except that no new line
character is added at the end.

Usage

declare ioa_$rsnnl entry options (variable);

call ioa_$rsnnl (control_string, return_string, len,
a r gl, ••• , a r gn) ;

Arguments are as above.

Entry: ioa_$rsnp

This entry is identical to ioa_$rs except that the end of
return_string is not padded with blanks.

Usage

declare ioa_$rsnp entry OPtions (variable);

call ioa_$rsnp (control_string, return_string, len,
a rg1, ••• , argn);

Arguments are as above.

€) Copyright, 1973, Massachusetts institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 4

Entry: ~-- ... _-----,
IOd_~r::tnJ.Jnnl

This entry is identical to ioa_$rsnp except no new line
character is added at the end.

Usage

declare ioa_$rsnpnnl entry options (variable);

call ioa_$rsnpnnl (control_string, return_string, len,
argl, ••• , argn);

Arguments are as above.

Notes

All entries require a control string argument. This is a
character string which mayor may not contain control characters
within it. If no control characters occur, the string is merely
returned at the rs entry points or written out at the other entry
points. If control characters exist, they govern the conversion
of successive additional arguments which are expanded into the
appropriate characters and inserted into the resultant string.
The control characters are indicated by the circumflex character
(~) and may take an optional field width (n or ~). The
possibilities are:

I'd or "'nd decimal

""0 or AnO octal

"f or "'n • .d.f floating
or Anf
or A.g,f

Ae or A .d,e exponential

Aa or Ana ASC II

"P pointer

,...w or "nw full word octal

'" insert form feed (new page) character

"I or Ani insert new line character

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

~- or

AX or

AA

AR

AS

AA

A~

A~

insert horizontal tab

insert blank character

acc string

insert red ribbon shift character

insert black ribbon shift character

insert circumflex character

Page 5
7/11/73

where n expresses the field width. n can be a decimal integer
constant or the letter v. ff n is the letter v, the next argl
specifies the field width and the following arg~ment, argCl±l),
is the datum to be converted, if required. g is a decimal
integer specifying the number of digits to the right of the
decimal point.

Ad assumes a fixed binary input and converts this to
decimal. If a number appears between the circumflex and
the d, the decimal character string is placed right
justified in a field as wide as the specified number and
padded with blanks.

AO assumes a fixed binary input and converts it to octal
form. It is similar to d.

Af assumes a floating input.
occur:

The following cases can

Af An attempt is made to output nine significant
digits. If the field width exceeds 13, the
number is converted to exponential form. The
field does not contain any blanks.

The decimal point is placed at the extreme
right in the field and no fraction part
appears. High-order zeros are converted into
blanks.

A.Qf The minimum field width is ~ to accommodate a
fraction part g digits long and the decimal
point. If necessary, the field is extended to
accommodate the integer part or minus sign or
both.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 6

~e

MULTICS PROGRAMMERS' MANUAL

If the number cannot be accommodated in this
fie 1 d, i tis converted to exponent i a 1 form.
High-order zeroes are converted into blanks.

assumes a floating input. ~, if not specified, is
assumed to be eight. The number is converted to the
following format:

~.x x ------x e~y y
1 2 d 1 2

Aa (ASCI I) assumes a varying or nonvarying character string
as input. If there is no field width, trailing blanks
are stripped. If the field width is specified, the
string is left adjusted within the field and padded with
trailing blanks up to the specified field width. If the
length of the string after trailing blanks have been
removed is greater than the specified field size, the
field size is ignored.

Ap assumes a pointer as input and expands it to a character
string of the form "276113640". If a bit offset is
pre sen t, i tis p r i n ted a sad e c i ma 1 numb e r i mme d i ate 1 y
following the word offset in the form "276113640(27}".
No field width option is accepted.

AW (~ord) assumes a fixed binary number as input and
converts it to a 12-character octal number padded on the
left with leading zeros. The field width is accepted,
but is ignored if less than 12.

AI causes a form feed (new page) character to be inserted
into the expanded string. No field width is accepted.

AI causes a new line character to be inserted into the
expanded string. n specifies repetition.

A_ causes a horizontal tab character to be inserted into
the expanded line. n specifies repetition.

~x causes a blank character to be inserted into the
expanded line. n specifies repetition.

AA assumes that the current argument is a pointer to a
character string in acc (ASCII Character with Count)
format. The character string is inserted into the
expanded line. No field width is accepted.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 7
7/11/73

AA causes a circumflex character () to
the string.

inserted into

AR causes a red ribbon shift character to be inserted into
the string.

AS causes a black ribbon shift character to be inserted
into the string.

Any character other than those cited following a circumflex
is ignored. To write a bit string out, it should first be
converted to fixed mode and then an octal format used. If a
number does not fit in a specified field width, the field width
is expanded so that the complete number is printed.

If no arguments remain to be converted, the circumflex is
merely copied into the output field.

Examples

1) call ioa_ (IlThis is Aa the third of "'a", "Mon", "July");

Result: This is Mon the third of July.

2) call ioa_ ("date Ad/Ad/Ad, time Ad:Ad", 6, 20, 69,
2014, 36);

Result: date 6/20/69, time 2014:36

3) call ioa_ ("overflow at "pit, ptr);

Result: overflow at 27114671

4) call i oa_ (A601'14wA14wA14w", no, word1, word2, word3);

Result: 014100 014114214300 00000014000 111000101104

5) ca 11 i oa_ (""'a") ;

Result: a

Result: a=123.456789 123.457

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (ENO)*

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
10/1/73

This write-up describes the generalized I/O system function
calls. The reader is cautioned that the descriptions contained
in this document state the general purpose of each call as put
forth in the I/O system specifications and that the result of a
particular call to a device is dependent on that device and its
associated software. However, any deviations of a particular
device from the specifications stated here are enumerated in the
MPM write-up describing the software for that device. These
descriptions are labeled I/O System Interface Modules (IOSIMs).
The reader should also refer to the specific 10SIM write-ups to
see which I/O system function calls are implemented for that
device since only a limited number of these calls are usuallY
implemented for each device. Users should also see the MPM
Reference Guide section, Input and Output Facilities, for further
information.

Generic Argyments

Rather than reproduce the descriptions of arguments that are
common to several function calls under the description of each
function call, they are given here.

1) stream_name

2) type

3) device/stream_name

4) mode

is a string of 32 characters or less
that identifies the stream upon which
this call is to be performed. A stream
usually identifies a particular device
and the control software, the Device
Interface Module (DIM), for that device.
(Input)

is a string of 32 characters or less
that identifies the control software,
the DIM, for a type of device. A list
of system supported types is given in
the MPM Reference Guide section,
Available Input and Output Facilities,
and each type is described in the MPM
Subroutines section as an 10SIM.
(Input)

is the identifier of a particular
device, pseudodevice, or stream name
upon which an I/O operation can be
performed. (Input)

describes characteristics related to an
attachment (e.g., readable, writeable,

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 2

5) status

6) disposal

7) gmode

8) smode

9) limit

10) oldstatus

11) request

12) argptr

13) element_size

14) workspace

MULTICS PROGRAMMERS' MANUAL

etc.). The modes permitted for a
particular device type are described in
the 10SIM write-up for that device type.
(Input)

is a bit string returned by an I/O call
containing information about the success
of that call. (See the MPM Reference
Guide section, Use of the Input and
Output System.) This bit string must be
ali gned. (Output)

indicates special action to be taken
when a device is detached. (Input)

is a string of 128 characters or less
containing an encoding of the mode of an
attachment. The addition of new modes
in the future could make the maximum
length of gmode even greater. (Output)

is the synchronization mode. The mode
can be synchronous ("s") or asynchronous
("a"). (Input)

is the maximum
write-behind
permissible
(Input)

number of elements of
or read-ahead data

in asynchronous mode.

is the status string of a previous
transaction. This string must be
aligned. (Input)

is a special request to the I/O system.
The requests appropriate to a device
type are described in the IOSIM write-up
for that device type. (Input)

is a pointer to a data structure
containing information relevant to a
special request. (Input)

is the current element size (i.e., the
number of bits in an element) for read
or write calls. (Input/Output)

is a pointer to the buffer space for
data to be read into or written from.
The buffer space must be aligned.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MUlTICS PROGRAMMERS' MANUAL

15) offset

16) nelem

17) nelemt

18) nbreaks

19) breaklist

20) nreads

21) readlist

(Input)

Page 3
10/1/73

is the number of elements from the
beginning of the workspace at which to
start reading or writing data. (Input)

is the number of elements requested to
be read or written. (Input)

is the number of elements actually read
or written. (Output)

is the number of break characters in
breaklist. (Input/Output)

is an array of break characters. This
is an unaligned bit string array each
element of which is element_size bits
long. (Input/Output)

is the number of read delimiters in
readlist. (Input/Output)

is an array of read delimiters. This is
an unaligned bit string array each
element of which is element_size bits
long. (Input/Output)

is a string of 32 characters or less
specifying a reference pointer that
identifies a particular position in the
data referred to by the stream (e.g.,
the write pointer points to the next
element to be written). For a
description of reference pointers, see
the MPM Reference Guide section, Use of
the Input and Output System.
(Input/Output)

is the same
(Input/Output)

as

The write_ptr call is a specialized form of the write call
(see below). The number of elements specified by nelem in the
buffer area pointed to by workspace starting at the element
specified by offset is written on the stream "user_output".
Since the stream "user_output" is normally associated with the

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 4

user!s terminal, a write_ptr call usually results in the
specified elements being typed on the user's terminal. The
write_ptr call should be used in preference to the write call
when writing on the stream "user_output" due to the greater
efficiency of the write-ptr call.

Usage

declare ios_$write_ptr entry (Ptr,' fixed bin, fixed bin);

call ios_$write_ptr (workspace, offset, nelem);

The read_ptr call is a specialized form of the read call
(see below). The number of elements specified by nelem are
attempted to be read from the stream "user_input" into the buffer
area pointed to by workspace. If a read delimiter is encountered
as one of the elements being read, reading ceases with this
element. Therefore, the number of elements read in is either
nelem or up to the first read delimiter, whichever comes first,
and this number is returned in nelemt. Since the stream
"user_input" is normally associated with the user's terminal, a
read_ptr call usually results in the specified elements being
read from the terminal. The read_ptr call should be used in
preference to the read call when reading from the stream
"user_input" due to the greater efficiency of the read_ptr call.

Usage

declare ios_$read_ptr entry (ptr, fixed bin, fixed bin);

call ios_$read_ptr (workspace, nelem, nelemt);

Entry: ios_$wri te

The write call attempts to write from the buffer area
pointed to by workspace, starting offset elements from the
beginning of the buffer area, the requested number (nelem) of
elements onto the stream stream_name. The number of elements
actually written is returned in nelemt and indications of the
status of the transaction are returned in status.

Usage

declare ios_$write entry (char(*), ptr, fixed bin,
fixed bin, fixed bin, bit(72) aligned);

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 5
10/1/73

call ios_$write (stream_name, workspace, offset, nelem,
nelemt, status);

Entry: ios_$read

The read call attempts to read into the buffer area pointed
to by workspace, starting offset elements from the beginning of
the buffer area, the requested number (nelem) of elements from
the stream stream_name. If a read delimiter is encountered as
one of the elements being read, reading ceases with this element.
Therefore, the number of elements read in is either nelem or up
to the first read delimiter, whichever comes first, and this
number is returned in nelemt. Indications of the status of the
transaction are returned in the status argument.

Usage

declare ios_$read entry (char(*), ptr, fixed bin,
fixed bin, fixed bin, bit(72) aligned);

call ios_$read (stream_name, workspace, offset, nelem,
nelemt, status);

Entry: ios_$attach

The attach call associates the given stream_name with a
device or stream name, device/stream_name, as a particular type
(DIM). All subsequent read or write operations performed upon
the stream identified by stream_name result in data being
transferred from or to the device or stream identified by
device/strea~name and this transfer is performed by the DIM
(control software) identified by the type argument. This
association remains in force until removed by a detach call (see
below). The mode argument specifies how attributes of this
attachment differ from the defaul t. I f mode is 1"1, then the
default attributes for the specified device are used.

Usage

declare ios_$attach entry (char(*), char(*), char(*),
char(*), bit(72) aligned);

call ios_$attach (stream_name, type, device/stream_name,
mode, status);

Entry: ios_$detach

The detach call deletes all associations established by an
attach call between stream_name and device/stream_name. If

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 6

device/stieam_name ;s III', then all associations fOi stieam_name
are deleted. The disposal argument indicates any special action
to be taken on detachment. If disposal is 1111, the appropriate
default action for the 10SIM involved is taken.

Usage

declare ios_$detach entry (char(*), char(*), char(*),
bit(72) aligned);

call ios_$detach (stream_name, device/stream_name,
disposal, status);

Entry: ios_$resetwrite

The resetwrite call is used to delete unused write-behind
data collected by the I/O system as a result of write-behind
associated with the stream stream_name.

Usage

declare ios_$resetwrite entry (char(*), bit(72) aligned);

call ios_$resetwrite (stream_name, status);

Entry: ios_$resetread

The resetread call is used to delete unused read-ahead data
collected by the I/O system as a result of read-ahead associated
with the stream stream_name.

Usage

declare ios_$resetread entry (char(*), bit(72) aligned);

call ios_$resetread (stream_name, status);

Entry: ios_$abort

The abort call causes all outstanding transactions on the
stream stream_n'ame to be aborted. The oldstatus argument should
be set to flilb.

Usage

declare ios_$abort entry (char(*), bit(72) aligned,
bit(72) aligned);

call ios_$abort (stream_name, oldstatus, status);

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Entry: ios_$order

Page 7
10/1/73

The order call is used to issue a specialized request on the
stream stream_name. The argptr argument points to a data
structure containing arguments relevant to the particular
request. Allowable requests depend upon the type (the DIM)
associated with the steam stream_name. The order requests
appropriate to a device type are described in the IOSIM write-up
for that device type. The order call is used to perform
specialized I/O operations when no generalized I/O call is
available. Note that although argptr is an input argument, the
structure to which it points can contain both input and output
information.

Usage

declare ios_$order entry (char(*), char(*), ptr, bit(72)
aligned);

call ios_$order (stream_name, request, argptr, status);

Entry: ios_$getsize

The getsize call returns the current element size associated
with the stream stream_name.

Usage

declare ios_$getsize entry (char(*), fixed bin,
bit(72) al igned);

call ios_$getsize (stream_name, element_size, status);

Entry: ios_$setsize

The setsize call sets the element size for subsequent calls
on the stream stream_name.

Usage

declare ios_$setsize entry (char(*), fixed bin,
bit(72) aligned);

call ios_$setsize (stream_name, element_size, status);

Entry: ios_$getdelim

The getdelim call returns the read delimiters and breaks
currently in effect on the stream stream_name. The breaks are

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 8

returned as an array of elements in breaklist and nbreaks is set
to the number of breaks. The read delimiters are returned as an
array of elements in readlist and nreads is set to the number of
read delimiters. If either array is not large enough to contain
all of the returned delimiters or breaks, as many as possible are
returned.

Usage

declare ios_$getdel im entry- (char(*), fixed bin,
(*) bit (element_size), fixed bin,
(*) bit (element_size), bit(72) aligned);

call ios_$getdelim(stream_name, nbreaks, breaklist,
nreads, readlist, status);

Entry: ios_$setdel im

The setdelim call establishes elements to delimit data read
by subsequent read calls on the stream stream_name. The argument
breaklist is an array of breaks <containing nbreak elements),
each serving simultaneously as an interrupt, canonicalization and
erase-and-kill delimiter. Breaks are meaningful only on
character oriented devices. The argument readlist is an array of
read delimiters (containing nreads elements). Read delimiters
cause subsequent read calls to cease reading at the first read
delimiter element. The new delimiters established by this call
are in effect until superseded by a subsequent setdelim call.

Usage

declare ios_$setdelim entry (char(*), fixed bin,
(*) bit (element_size), fixed bin,
(*) bit (element_size), bit(72) aligned);

call ios_$setdelim (stream_name, nbreaks, breaklist,
nreads, readlist, status);

Entry: ios_$seek

The seek call sets the reference pointer specified by
pointer_name_l to the value of the pointer specified by

_ pointer_name_2 plus the value of a signed offset offset.
pointer_name_l and pointer_name_2 can be "read", "write", "last",
or "bound". The read pointer indicates the next element to be
read, the write pointer the next element to be written, the first
pointer the first element of data associated with this stream,
the last pointer the last element of data, and the bound pointer
the element beyond which data cannot grow. The seek call is used
to truncate; e.g., call ios_$seek (stream_name, "last", "last",

Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 9
10/1/73

-40, status); or to set the bound of data; e.g., call ios_$seek
(stream_name, IIbound", "last", 27, status); in addition to its
more traditional usage involving the read and write pointer;
e.g., call ios_$seek (stream_name, "read", "write", -2,
status);. The read and write pointers are also set as a result
of read and write calls, respectively. All relative offsets
between reference pointers are in terms of numbers of elements.

Usage

declare ios_$seek entry (char(*), char(*), char(*),
fixed bin, bit(72) aligned);

call ios_$seek (stream_name, pointer_name_1,
pointer_name_2, offset, status);

Entry: ios_$tell

The tell call returns the value of the pointer specified by
pointer_name_1 as an offset, with respect to pointer_name_2. The
arguments pointer_name_l, pointer_name_2, and offset have the
same meaning as in the seek call. As an example, the call can be
used to obtain the bound of the data by call ios_$tell
(stream_name, "bound", IIfirst", offset, status);.

Usage

declare ios_$tell entry (char(*), char(*), char(*),
fixed bin, bit(72) aligned);

call ios_$tell (stream_name, pointer_name_1,
pointer_name_2, offset, status);

Entry: ios_$changemode

The mode of an attachment describes certain characteristics
related to the attachment (e.g., readable, writeable, linear,
formatted, etc.). The changemode call permits mode changes to be
invoked for the given stream stream_name that modify the mode of
the attachment. The gmode argument is set to the mode of the
attachment prior to this call.

Usage

declare ios_$changemode entry (char(*), char(*), char(*),
bit(72) aligned);

call ios_$changemode (stream_name, mode, gmode, status);

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 10

For the given stream_name, the readsync call sets the read
synchronization mode, smode, of subsequent read calls. This mode
is either synchronous or asynchronous. Synchrony implies that
the read operation is performed in its entirety during a read
call. Asynchrony implies that read-ahead is possible to the
extent permitted by the limit argument, which is the desired
maximum number of elements which can be read ahead. The default
mode is asynchronous.

Usage

declare ios_$readsync entry (char(*), char(I), fixed bin,
bit(72) aligned);

call ios_$readsync (stream_name, smode, limit, status);

Entry: ios_$writesync

For the given strea~name, the writesync call sets the write
synchronization mode, smode, of subsequent write calls. The mode
is either synchronous or asynchronous. Synchrony implies that
the write operation is performed in its entirety during a write
call. Asynchrony implies that write-behind is possible to the
extent permitted by the limit argument, which is the desired
maximum number of elements which can be written behind. The
default mode is asynchronous.

Usage

declare ios_$writesync entry (char(*), char(I), fixed bin,
bit(72) aligned);

call ios_$writesync (stream_name, smode, limit, status);

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Ince (END)

MUlTICS PROGRAMMERS' MANUAL

Subroutine Call
9/28/73

This procedure implements the Multics storage system star
convention by comparing an entry name with a name containing
stars or question marks (called a star name). Refer to the MPM
Reference Guide section, Constructing and Interpreting Names, for
a description of the star convention and a definition of
acceptable star name formats.

Usage

declare match_star_name_ entry (char(*), char(*),
fixed bin(3S»;

is the entry name to be
name. Trailing spaces
ignored. (Input)

is the star name it is
Trailing spaces in the
(Input)

compared
in the

wi th
entry

the star
name are

to be compared with.
star name are ignored.

3) code is a status code that can have one of the values:

Notes

o the entry name matches the star name.

error_table_$nomatch
the entry name does not match the star name.

error_table_$badstar
the star name does not have an acceptable format.
(Output)

Refer to the MPM write-up for the hcs_$star_ subroutine to
see how to list the directory entries that match a given star
name.

Refer to the MPM write-up for the check_star_name_
subroutine to see how to validate a star name.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS 1 MANUAL

Miscellaneous Call
Standard Service System

09/17/70

This procedure moves all the entry names, except the one
usen to designate the original segment, from one segment to
another. Name duplications are handled by nd_handler_.

Usage

declare move names_ entry (char(*), char(*), char(*),
char(*), char(*), bit(l) aligned, fixed bin(17»;

call move_names_ (dtr1, en1, dir2, en2, caller, errsw,
code) ;

1) d t r1

2) enl

3) dir2

4) en2

5) caller

6) errsw

7) corle

is the directory in which the original segment is
found. (Input)

is a name on the original segment. (Input)

is the target segment's directory. (Input)

is a name already on the target segment. (Input)

is the name of the calling procedure; it is used
in calls to nd_handler_. (Input)

indicates which segment the error indicated by
"code" occurred on; it is set to "O"b if the error
was on the original segment and to "l ltb if on the
target. (Output)

is a standarrl File System status code.

If a name duplication occurs and the conflicting name is
not deleted, then the code nerror_table_$namedupll is returned to

MULTICS PROGRAMMERS' MANUAL

Page 2

the caller. The names that occur after the confl feting name are
processed.

(END)

MULTICS PROGRAMMERS' MANUAL

~: nstd_

I/O System Interface Module
3/20/73

This procedure is an I/O system Device Interface Module
(DIM) used to control operation of magnetic tapes. (Note that
this is the non~tandard ~ape QIM; Multics standard tapes are
defined by and dealt with through the tape_ DIM.) The subroutine
nstd_ is not directly called by a user program. Instead, the
user provides the name nstd_ in a call to the I/O system attach
entry. He then accomplishes the I/O operations by calling
standard I/O system entry points which are independent of the
interface module in use. Further information on the I/O system
may be found in the MPM Reference Guide sections on Input and
Output Facilities. Details on the I/O system call syntax may be
found in the module description of ios_. This write-up explains
how nstd_ interprets the standard I/O system calls.

Usage

call ios_$attach (stream, nnstd_", reel, mode, status);

1) stream

2) "nstd_"

3) ree 1

4) mode

5) status

is the name of the I/O stream to be attached.
(Input)

specifies the nonstandard tape DIM. (Input)

is the reel
passed on
(Input)

identifying message which will be
to the operator in the mount message.

is r for reading, and w for writing,
reading and writing. If the mode is
message will specify no write ring.
modes will cause the mount message
write ring. (Input)

or rw for
r, the mount

All other
to specify a

is a status indicator. See the section below on
Returned Status. (Output)

permitted !LQ System Calls

The following I/O system calls are implemented by this DIM:

attach
changemode
detach
getsize
order
read
write

@ CoP y rig h t, 19 73, l>1a s sac h use t t sin s tit ute 0 f T e c h no log y
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

Qrder Requests

The following order requests are implemented by this DIM:

binary

bed

nine

back

eof

request_status

forward_record

backspace_file

set hardware mode to binary (this is the
default).

set hardware mode to binary coded decimal
(BCD).

set hardware mode to nine track <the default
is seven track).

backspace one record.

write end of file (EOF).

return last hardware status. The result will
be written into the location pointed to by
the pointer argument of the ios_$order call
as bit(12) aligned.

set error retry count. This is used to
change the error retry count which has an
initial value of 10 and which controls the
number of times a tape operation encountering
an error will be retried before being
reflected to the caller. If the pointer
argument of the ios_$order call is null, the
error retry count will be set to 0 <i.e.,
errors will be passed directly to the caller
with no retry attempts). If the pointer
argument is not null, it must point to a
fixed bin(17) error count which is
nonnegative and less than 100.

issue a request status command to the tape
controller. The status will be written into
the location pointed to by the pointer
argument of the ios_$order call as bit(12)
aligned.

forward space one record.

forward space to an EOF mark. The tape stops
just past the EOF mark.

backward space to an EOF mark. The tape
stops just before the EOF mark; i.e., a
subsequent read will encounter the EOF mark.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

erase

high

low

protect

unload

erase tape.

Page 3
3/20/73

set high density (this is the default).

set low density.

set write inhibit regardless of the presence
of a write permit ring in the tape reel. The
tape unit will remain write inhibited until
the tape is detached.

rewind tape and unload (done automatically
when the tape is detached).

rewind rewind the tape to the load point.

fixed_record_length allow the DIM to operate asynchronously,
reading 'up to six physical records at a time.
The pointer argument must point to a fixed
bin(17) number indicating the record size.
Subsequent read and write calls continue to
pass one physical record.

Returned Status

The first half of the status string may contain either
standard Multics status codes or hardware status. If the latter,
the first bit will be 1 and the rightmost 12 bits of the first
half of the status string will hold hardware status as described
in Table I below.

Detaching

When a tape is detached, it will be rewound and unloaded and
the drive will be freed for attachment. No other types of
detachment are permitted.

Element .sll.e.

Only an element size of thirty-six is permitted.

Byffer .sll.e.

The maximum number of words which may be transmitted on a
read or write call is 1632.

@ Copyright, 1973, Massachusetts InstJtute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 4

Status Codes

The following status codes may be returned by nstd_:

error_table_$bad_index
error_table_$buffer_big
error_table_$ionmat
error_table_$no_backspace
error_table_$no_device
error_table_$not_attached
error_table_$undefined_order_request

See also the MPM Reference Guide section, List of System
Status Codes and Meanings, for more information.

Notes

All order requests and the changemode
fixed_record_length state after writing the
buffers, if any. The changemode call does not
tape; it is the user's responsibility to do so.

call reset
current set

reposition

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

the
of

the

MULTICS PROGRAMMERS' MANUAL

Peripheral Subsystem Ready
Write Protected
Positioned on Leader
Nine Track Tape Unit

Device Busy

Device Attention
Write Inhibit
No Such Tape Unit
Tape Unit in Standby
Tape Unit Check
Blank Tape on Write

Device Data Alert
Transfer Timing Alert
Blank Tape on Read
Transmission Parity Alert
Lateral Parity Alert
Longitudinal Parity Alert
End of Tape (EOT) Mark
Bit During Erase

End of File
EOF Mark (Seven Track)
EOF Mark (Nine Track)
Data Alert Condition
Single Character Record

Command Reject
Invalid Operation Code
Invalid Device Code
Parity on I/O
Positioned on Leader
Read After Write
Nine Track Error

Program Load Termination

Peripheral Subsystem Busy

Table 1

I ns td I
Page 5

3/20/73

Major Status Substatus

000000
OOOXXI
000X1X
OOOlXX

000001

000010
OXXXX1
OXXX1X
OXX1XX
OX1XXX
01XXXX

000011
000001
XXXX1X
XXX1XX
XX1XXX
X1XXXX
1XXXXX
XXXXl1

000100
001111
011100
111111
XXXXXX

000101
XXXXXI
XXXX1X
XXX1XX
XX1XXX
X1XXXX
1XXXXX

000111

001000

~ Copyright, 1973, Massachusetts Institute of Technology
and HoneyvJell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
Development System

8/21/72

This procedure returns structural and identifying
information extracted from an object segment. It has three entry
points returning progressively larger increments of information.
All three entry points have identical calling sequences, the only
distinction being the amount of information returned in the info
structure described below.

This entry only returns the structural information necessary
in order to be able to locate the object's four sections •

.u.,sage

declare object_info_$brief entry (Ptr, fixed bin(24), ptr,
fixed bin(3S);

call object_info_$brief (segp, bc, infop, code);

1) segp is a pointer to the base of the object segment.
(Input)

2) bc is the bit count of the object segment. (Input)

3) infop is a pointer to the info structure in which the object
information is returned. (Input)

4) code is a standard Multics status code. (Output)

Entry: object_info_$display

This entry returns, in addition to the $brief information,
all the identifying data required by certain object display
commands, such as print_link_info.

Usage

1-4)

declare object_info_$display entry (Ptr, fixed bin(24), ptr,
fixed bin(3S);

call object_info_$display (segp, bc, infop, code);

as above. (Input/Output)

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 2

This entry returns, in addition to the $brief and $display
information, the data required by the Multics binder.

Usage

1-4)

declare object_info_$long entry (ptr, fixed bin(24), ptr,
fixed bin(3S);

ca 11 obj ect_i nfo_$l ong (segp, bc, i nfop, code);

as above. (Input/Output)

Information Structure

The info structure is as follows:

declare 1 info aligned,
2 version_number fixed bin,
2 textp ptr,
2 defp ptr,
2 linkp ptr,
2 symbp ptr,
2 bmapp ptr,
2 tlng fixed bin,
2 dIng fixed bin,
2 lIng fixed bin,
2 sIng fixed bin,
2 bIng fixed bin,
2 format,

3 old_format bit(1) unaligned,
3 bound bit(1) unaligned,
3 relocatable bit(1) unaligned,
3 procedure bit(1) unaligned,
3 standard bit(1) unaligned,
3 gate bit(1) unaligned,

2 call_delimiter fixed bin,

/*This is the limit of the $brief info structure.*/

2 compiler char(8) aligned,
2 compile_time fixed bin(71),
2 userid char(32) aligned,
2 cvers aligned,

3 offset bit(18) unaligned,
3 length bit(18) unaligned,

2 corrment,
3 offset bit(18) unaliged,
3 length bit(18) unaligned,

@ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

liiUL TICS PROGRAMMERS' MANUAL

1)

2)

3)

4)

S)

6)

7)

S)

9)

10)

11)

12)

2 source_map fixed bin,

Page 3
8/21/72

/*This is the limit of the $disp1ay info structure.*/

2 re1_text ptr,
2 rel_def ptr,
2 re1_1ink ptr,
2 rel_symbo1 ptr,
2 text_boundary fixed bin,
2 static_boundary fixed bin,
2 default_truncate fixed bin,
2 optional_truncate fixed bin;

/*This is the limit of the $long info structure.*/

version_number is the version number of the structure
(currently = 1).

textp is a pointer to the base of the text
section.

defp is a PQiRte~ to the base of the
definition section.

1 i nkp is a po inter to the base of the 1 inkage
section.

symbp is a pointer to the base of the symbol
section.

bmapp is a pointer to the break map.

t1ng is the length (in words) of the text
section.

dlng i s the length (in words) of the
definition section.

11 ng is the length (in words) of the 1 i nkage
section.

slng is the length (in words) of the symbol
section.

b1ng is the length (in words) of the break
map.

old_format is "1"b if this segment i s in the old
format; otherwise i t i s "0"b.

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

Page 4

13) bound

14) relocatable

15) procedure

16) standard

17) gate

18) call_delimiter

MULTICS PROGRAMMERS' MANUAL

is IIllib if this is a bound object
segment; otherwise it is nO"b.

is IIl"b if the object is relocatable;
otherwise it is "O"b.

is IIl ltb if it is a procedure; is "O"b if
it is nonexecutable data.

is "l ltb if this is a standard object
segment; otherwise it is "Q"b.

is "l"b if this is a procedure generated
in the gate format; otherwise it is
"Qllb.

is the call delimiter value if this is a
gate procedure.

This is the limit of the $brief info structure.

19) compiler

20) c omp i 1 e_ time

21) userid

22) cvers.offset

23) cvers.length

24) comment.offset

25) comment. length

26) source_map

is the name of the compiler
generated this object segment.

which

is the date and time this object was
generated.

is the access id of the user in whose
behalf this object was generated.

is the offset (in words), relative to
the base of the symbol section, of the
aligned variable length character string
which describes the compiler version
used.

is the length (in characters) of the
compiler version string.

is the offset (in words), relative to
the base of the symbol section, of the
aligned variable length character string
containing some compiler generated
comment.

is the length (in characters) of the
comment string.

is the offset (relative to the base of
the symbol section) of the source map.

@ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 5
8/21/72

This is the limit of the $display info structure.

31) text_boundary

32} static_coundary

33) default_truncate

34) optional_truncate

is a pointer to the object's
section relocation information.

text

is a pointer to the object's definition
section relocation information.

is a pointer to the object's linkage
section relocation information.

is a pointer to the object's symbol
section relocation information.

partially defines the beginning address
of the text section. The text must
begin on an integral multiple of some
number, e.g., 0 mod 2, 0 mod 64; this is
that number.

is analogous to
internal static.

text_boundary for

is the offset (in words), relative to
the base of the symbol section, starting
from which the symbol section may be
truncated to remove nonessential
information (e.g., relocation
i nformat ion).

is the offset (in words), relative to
the base of the symbol section(starting
from which the symbol section may be
truncated to remove unwanted information
(e.g., the compiler symbol tree).

This is the limit of the $long info structure.

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
Development System

05/04/71

The parse_file_ module provides a facility for parsing an
ASCII text into symbols and break characters. It is recommended
for occasionally used text scanning applications. In
applications where speed or frequent use are important, in-line
PL/I code to do parsing is recommended instead.

A restriction of the procedure is that the text to be parsed
be an aligned character string.

The initialization entry points, parse_file_init_name and
parse_file_init_ptr, both save a pointer to the text to be
scanned and a character count in internal static storage. Thus,
one text only can be parsed at one time.

This entry initializes the module given a directory and an
entry name. 1t gets a pointer to the desired segment and saves
it for subsequent calls in internal static.

Usage

1) dir

declare parse_file_$parse_file_init_name entry (char(*),
char(*), ptr, fixed bin);

call parse_file_$parse_file_init_name (dir, entry, p,
code) ;

is the directory name portion of the pathname of the
segment to be parsed. (Input)

2) entry is the entry name of the segment to be parsed.
(Input)

3) p is a pointer to the segment. (Output)

4) code is an error code. It is zero if the segment is
initiated. If nonzero, the segment cannot be
initiated. It can return any code from hcs_$initiate
except error_table_$segknown.

This entry initializes the parse_file_ module with a
supplied pointer and character count. It is used in cases where
a pointer to the segment to be parsed is already available.

Page 2

Usage

1) p

2) cc

MULTICS PROGRAMMERS' MANUAL

declare parse_file_$parse_file_init_ptr entry (ptr,
fixed bin);

is a pointer to a segment or an aligned character
s t ring. (I npu t)

is the character count of the ASCII text to be
scanned. (Input)

Break characters may be defined by use of this entry.
Normally, all nonalphanumeric characters are break characters
(including blank and new line).

Usage

1) cs is a control string. Each character found in cs will
be made a break character. (I nput)

This entry renders break characters as normal alphanumeric
characters.

Usage

1) cs is a control string each character of which will be
made a nonbreaking character. (Input)

The text file
symbol is returned.
over.

is scanned and the next break character or
Comments enclosed by /* and */ are skipped

MULTICS PROGRAMMERS' MANUAL

Usage

1) ci

2) cc

declare parse_file_ entry (fixed bin, fixed bin,
fixed bin(I), fixed bin(I»;

call parse_file_ (ci, cc, break, eof);

Page 3
05/04/71

is an index to the first character of the symbol or
break character. (The first character of the text is
considered to be character 1.) (Output)

is the number of characters in the symbol. (Output)

3) break is set to
character;

1 if the returned item
otherwi se it is o. (Output)

i s a break

4) eof is set to 1 if the end of text has been reached;
otherwise it is O. (Output)

This entry is identical to parse_file_ except that a pointer
(with bit offset) to the break character or the symbol is
returned instead of a character index.

Usage

1) p

2-4)

declare parse_file_$parse_file_ptr entry (ptr, fixed bin,
fixed bin(l), fixed bin(I»;

is a pointer to the symbol or the break character.
(Output)

are the same as above. (Output)

The current line
caller. This entry is
messages.

of text being scanned is returned to the
useful in printing diagnostic error

Usage

declare parse_file_$parse_file_cur_line entry
(fixed bin, fixed bin);

MULTICS PROGRAMMERS' MANUAL

Page 4

1-2) are the same as in parse_file_ above.

The current line number of text being scanned is returned to
the caller. This entry is useful in printing diagnostic error
messages.

Usage

1) c I

declare parse_file_$parse_fi le_l ine_no entry (fixed bin);

call parse_file_$parse_file_line_no (cl);

is the number of the current line. (Output)

Examples

Suppose the file zilch in the directory dir contains the
following text:

name: foo; /*foo program*/

path_name: >bar;

linkage;

end;

fini;

The following calls could be made to initialize the parsing
of zilch:

call parse_file_$parse_file_init_name (dir, zilch,
p, code);

declare atom char (cc) unaligned based (p);

MULTICS PROGRAMMERS' MANUAL

Subsequent calls to par se_f i 1 e_pt r
following:

liQill break

name 0

1

foo 0

· 1 ,

path_name 0

1

>bar 0

; 1

1 i nkage 0

· 1 ,

end 0

· 1 ,

fini 0

· 1 ,

would

.e.2f.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

then

Page 5
05/04/71

yield the

(END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
Development System

5/25/72

The procedure plot_ is a user interface to the Multics
Graphics System. It creates a two dimensional graph from input
data for use with Multics display terminals. The graph created
is a Cartesian graph, scaled so as to permit maximum coverage of
the screen, and labeled in convenient increments to facilitate
reading. This routine can be made to plot either with vectors
connecting the data points, with a specified character displayed
at each point plotted, or both. It also has facilities that
enable the user to append a new plot over the one being currently
displayed (in which case the new plot is scaled to match the old
one), to suppress the grid (in which case only the left-most and
lowest lines are displayed, with tic marks at increments), and to
direct that the graph be scaled equally in both directions.

For a more extensive description of graphics facilities, see
the MPM Reference Guide section Graphics Support on Multics.

Usage

declare plot_ entry «*)float bin, (*)float bin, fixed bin,
fixed bin, char(l»;

call pJot_ (x, y, xydim, vec_sw, symbol);

1) x is an array of x coordinates of points to be
(Input)

2) y is an array of y coordinates of points to be
(Input)

3) xydim i s the number of elements in the x and y array
(Input)

4) vec_sw = 1 if the vectors but no symbol are desired;
= 2 if the symbol and vectors are desired;

plotted.

plotted.

pairs.

= 3 if the symbol but no vectors are desired. (Input)

5) symbol is the symbol to be plotted at each point. (Input)

Notes

It is possible, by repetitive calls to plot_, to display any
set of graphs on top of one another. All graphs after the first
graph will be scaled to the scale of the first. A call to plot_
will erase the screen only if there was a call to either
plot_$init or plot_Sinitf prior to it. The only exception is

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MUlTICS PROGRAMMERS' MANUAL

Page 2

that the first call to plot_ in a process will always erase the
screen whether or not plot_$init or plot_$initf have been called.
Default values for options are dotted grid, automatic scaling, no
labels, and linear-linear plot.

Entry: plot_$init

This entry allows the user to set parameters controll ing the
. type of plotting performed. The parameters specify the type of
graph desired (log-log, linear, etc.), the type of grid desired
(if any), and whether or not plot_ is to scale both axes equally.
A call to this entry also ensures that the next call to plot_
will erase the screen.

Usage

declare plot_$init entry (char(*), char(*), fixed bin,
float bin, fixed bin, fixed bin);

call plot_$init (xlabel, ylabel, type, base, grid_sw,
eq_sca 1 e_sw);

1) xlabel

2) ylabel

3) type

4) base

i s the label desired along the x axis. (I npu t)

i s the label desired down the y axis. (Input)

= 1 for 1 inear-l inear plot;
= 2 for log-linear plot (log on x axis);
= 3 for linear-log plot (log on y axis);
= 4 for log-log plot. (Input)

is the logarithm base (for logarithmic plots).
(Input)

= 0 if tic marks and values are desired;
= 1 if dotted grid and values are desired;
= 2 if solid grid and values are desired;
= 3 if no grid or values are desired. (Input)

6) eq_scale_sw = 0 if normal scaling is desired;
= 1 if the plot is to be scaled equally in both

d i rec t ions. (I npu t)

Entry: plot_$initf

This entry is similar to plot_$init but is callable from
FORTRAN e

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Usage

Page 3
5/25/72

integer xlabel «0», ylabel «n», xlng, ylng, type,
grid_sw, e~scale_sw

real base

equate initf, plot_$initf

call initf (xlabel, xlng, ylabel, ylng, type, base,
grid_sw, eq_scale_sw);

1) xlabel i s the label desired along the x axis. (Input)

2) xlng

3) ylabel

4) ylng

5) type

6) base

i s the length (in characters) of xlabel. (Input)

i s the label desired down the y axis. (Input)

i s the length (in characters) of ylabel.

= 1 for 1 i near-l i near plot;
= 2 for log-l inear plot (log on x axis);
= 3 for linear-log plot (log on y axis);
= 4 for log-log plot. (Input)

i s the logarithm base (for logarithmic
(Input)

= 0 if tic marks and values are desired;
= 1 if dotted grid and values are desired;
= 2 if solid grid and values are desired;

(Input)

plots) •

= 3 if no grid or values are desired. (Input)

8) eq_scale_sw = 0 if normal scaling is desired;
= 1 if the plot is to be scaled equally in both

directions. (Input)

Entry: plot_$scale

This entry allows a user to set his own seal ing by allowing
him to specify the extent of the axes in the x and y directions.
If this scaling feature is desired, this entry must be called
before any call to plot_ (i.e., immediately after a call to
plot_$init or plot_$initf); otherwise, it is ignored.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 4

Usage

1)

2)

3)

4)

declare plot_$scale entry (float bin, float bin,
float bin, float bin);

ca 11 plot_$scale (xmin, xmax, ymin, ymax);

xmin i s the desired low bound of the x axis. (Input)

xmax i s the desired high bound of the x axis. (Input)

ymin i s the desired low bound of the y axis. (Input)

ymax i s the desired high bound of the y axis. (Input)

E~S!mglii:

p_sin: proc;

declare x(I80) float bin,
y(I80) float bin,
i fixed bin,
pi float bin static internal initial (3.1415geO),
three_cyc float bin,
plot_ entry «*)float bin, (*)float bin, fixed bin,

fixed bin, char(I»,
plot_$init entry (char(*), char(*), fixed bin,

float bin, fixed bin, fixed bin),
(sin, float) builtin;

three_cye = beO*pi/I80eO;

do i = 1 to 180;
xCi) = three_cyc * float (i-I);
y(i) = sin (x(i»;
end;

call plot_$init (If this is a sine curve", "automatically
scaled ll ,I,OeO,I,O);

call plot_ (x, y, 180, 1, 1111);

return;
end;

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

- r - -,-- 1- --'--1
I t I I

a
\A

6
ttl
a ..150et00

.at:
I
C"

f 0.000&.;.37

• Y
S
c a
t
e
d

__ ..J.

I I
I I
r--,

I
---L

I
I
I
I

O·oooe -31 • Sooe-lOl
la5De~1 .7sae+ol

*,,;$ is a sine (.Lt ve.

t -,---1
I I

I _L-l
I I

. ,
- -,---t

I :
-~--t

t I
I I
,- 1

I I
t --l
T I
I I
I -f

1" I
f

_--1

Page 5
5/25/72

~ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)*

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
Development System

7/30/71

~: random_

The procedure random_ is a random number generator with
entry points which, given an input seed, generate a pseudo-random
variable with a uniform, exponential, or normal distribution.
The seed is an optional input argument; if it is not included in
the call, an internal static variable is used and updated.

For one set of entry points, each call to random_ produces a
single random number. To obtain a sequence of random numbers
with the desired distribution, repeated calls are made, each time
using the value of the seed, returned from a call, as the input
value of the seed for the nexi call in the sequence.

There is an additional set of entry points which return an
array with a sequence of random numbers. The first element of
the array is generated from the input seed and the last element
corresponds to the returned value of the seed. In addition, for
the uniform and normal distributions, there are entry points
which produce the antithetic random variables, either singly or
as a sequence. For any given seed, the random variable produced
is negatively correlated with that produced at the corresponding
entry.

Entry: random_$uniform

The entry point random_$uniform generates a random number
0.0 < random_no < 1.0. The sequence of random numbers has a
uniform distribution on the interval zero to one.

Usage

or

declare random_$uniform entry (float bin(27»;

call random_$uniform (random_no);

declare random_$uniform entry (fixed bin(3S), float
bin(27»;

call random_$uniform (seed, random_no);

1) seed is the optional (see Notes) seed that is used
to generate the random number. The value of
seed is modified by this entry. The value
returned is the seed that is used to generate
the next random number of the sequence. The

Page 2

value of
integer.

MULTICS PROGRAMMERS' MANUAL

seed must be
(Input/Output)

a nonzero positive

is the random number that is generated.
(Output)

This entry point returns an array of random numbers from the
uniform sequence.

Usage

or

declare random_$uniform_seq entry (float bin(27),
fixed bin);

call random_$uniform_seq (array, array_size);

declare random_$uniform_seq entry (fixed bin(35),
float bin(27), fixed bin);

call random_$uniform_seq (seed, array, array_size);

1) seed is the optional (see Notes) seed used to
generate array. See References (2). The
value returned corresponds to the random
number returned as array (array_size).
(Input/Output)

2) array (n.) is an array of the generated random numbers
where n is greater than or equal to
array_size. (Output)

specifies the number of random variables to
be returned in array. (Input)

Entry: random_$uniform_ant

This entry point generates a uniformly distributed random
number, random_ant, that is negatively correlated with random no
produced by the entry random_$uniform. For any particular value
of the seed, (random_ant + random_no) = 1.0.

Usage

declare random_$uniform_ant entry (float bin(27»;

MULTICS PROGRAMMERS' MANUAL

or

Page 3
7/30/71

declare random_$uniform_ant entry (fixed bin{3S), float
bin(27»;

call random_$uniform_ant (seed, random_ant);

1) seed i s the opt i ona 1 (see Notes) seed used to
generate the random number. (Input/Output)

is the random number that is generated.
(Output)

The entry point random_$uniform ant_seq returns an array,
ant_array, of uniformly distributed random numbers that are
negatively correlated with the array produced by
random_$uniform_seq. For any particular value of the seed,
(ant_array(l) + array(l» = 1.0, for 1 between one and
array_size.

Usage

or

1)

2)

3)

declare random_$uniform_ant_seq entry (float bin(27),
fixed bin);

declare random_$uniform_ant_seq entry (fixed bin(3S), float
bin(27), fixed bin);

seed i s the optional seed used. (Input/Output)

ant_array (n) i s the array of generated random numbers
where n i s greater than or equal to
array_size. (Output)

array_size i s the number of values returned in
ant_array. (Input)

MULTICS PROGRAMMERS' MANUAL

Page 4

Entry: random_$normai

The entry point random_$normal generates a random number,
-6.0 < random_no < 6.0. The sequence of random numbers has an
approximately normal distribution with a mean of zero and a
variance of one. The random number is formed by taking the sum
of twelve successive random numbers from the uniformly
distributed sequence and then adjusting the sum for a mean of
zero.

Usage

or

declare random_$normal entry (float bin(27»;

call random_$normal (random_no);

declare random_$normal entry (fixed bin(3S), float
bin(27»;

call random_$normal (seed, random_no);

Same arguments as above.

The entry point random_$normal_seq generates a sequence, of
length array_size, of random variables with an approximately
normal distribution.

Usage

or

declare random_$normal_seq entry (float bin(27),
fixed bin);

call random_$normal_seq (array, array_size);

declare random_$normal_seq entry (fixed bin(3S), float
bin(27), fixed bin);

call random_$normal_seq (seed, array, array_size);

Same arguments as above.

MULTICS PROGRAMMERS' MANUAL

Page 5
7/30/71

The entry point random_$normal_ant generates a random
number, random_ant, that is negatively correlated with random_no
produced by the entry random_$normal. For any particular value
of the seed, (random_ant + random_no) = 0.0.

Usage

or

declare random_$normal_ant entry (float bin(27»;

declare rando~$normal_ant entry (fixed bin(35), float
bin(27»;

call random_$normal_ant (seed, random_ant);

Same arguments as above.

The entry point random_$normal_ant_seq generates a sequence,
of length array_size, of random variables with approximately
normal distribution. These variables are negatively correlated
with those produced by the entry point random_$normal_seq.

Usage

or

declare random_$normal_ant_seq entry (float bin(27),
fixed bin);

declare rando~$normal_ant_seq entry (fixed bin(35),
float bin(27), fixed bin);

Same arguments as above.

Entry: rando~$exponential

The entry
random number.

point random_$exponential generates a positive
The sequence of random numbers has an exponential

MULTICS PROGRAMMERS' MANUAL

Page 6

distribution with a mean of one. The random number is generated
by taking successive random numbers from the uniformly
distributed sequence and applying the VonNeumann method (see
References (2}) for generating an exponential distributed random
variable.

Usage

or

declare random_$exponential entry (float bin(27)};

call random_$exponential {random_no};

declare random_$exponential entry (fixed bin(3S), float
bin(27)};

call random_$exponential (seed, random_no);

Same arguments as above.

Entry: random_$exponential_seq

The entry point random_$exponential_seq produces an array of
exponentially distributed random variables.

Usage

or

declare random_$exponential_seq entry (float bin(27),
fixed bin};

call random_$exponential_seq (array, array_size);

declare random_$exponential~seq entry (fixed bin(3S), float
bin(27), fixed bin);

call random_$exponential_seq (seed, array, array_size);

Same arguments as above.

The entry point random_$get_seed is used to obtain the
current value of the internal seed (see Notes).

MULTICS PROGRAMMERS' MANUAL

Usage

declare random_$get_seed entry (fixed bin(35»;

Page 7
7/30/71

is the current value of the internal seed.
(Output)

The entry point random_$set_seed is used to set the value of
the internal seed. This internal seed is used as the seed for
the next call to any random_ entry point in which the optional
argument seed is not provided (see Notes).

Usage

Notes

declare random_$set_seed entry (fixed bin(35»;

is the value to which the internal seed is
set. seed_value must be a nonzero positive
integer. (Input)

All non-optional arguments must be included in the call,
even if only the value of some are of interest. For all entry
points (except random_$set_seed and random_$get_seed), if the
oPtional parameter seed is not provided in the call, an internal
seed is used and updated in exactly the same manner as a seed
provided by the caller. This internal seed is maintained as an
internal static· variable. At the beginning of a user's process,
it has a default value or 4084114320. Its value is changed only
by calls to random_$set_seed or by calls to other entry points in
which the oPtional parameter seed is not included.

If the value of a seed is zero, the new value of the seed
and the random numbers will be zero. If the value of a seed is
negative, the low order 35 bits of the internal representation
wi 11 be used as the seed; if nonzero, a va 1 i d va 1 ue wi 11 be
returned for the seed and the random numbers. A given seed will
always produce the same random number from any given entry point.
~Ince all entry points use the same basic method for computing
the next seed, the distribution of the sequence produced by calls
to any given entry point will be maintained, although the input
seed used may have been produced by a call to a different entry

MULTICS PROGRAMMERS' MANUAL

Page 8

point. In other words, the user need keep only a single value of
the next seed even though he calls more than one of the entry
points. However, in general, the different entry points will,
for any given input seed, produce different values for the next
seed.

On the other hand, the user may generate independent streams
of random numbers by beginning each stream with separate initial
seeds and maintaining separate values for the next seed.

The uniformly distributed random number sequence is
generated using the Tausworth method (see References (I) and
{3}}. The algorithm, in terms of abstract registers A and B, is
described below.

The parameter n is one less than the number of used bits per
word (for Multics, use n = 35). The parameter m is the amount
of shift (for Multics, m = 2).

a) Let register A initially contain the previous random
number in bit positions 1 to n with zero in the sign bit
(position 0).

b) Copy register A into register B and then right-shift
register B m places.

c) Exclusive-or register A into register B and also store
the result back into register A. {Registers A and B now
have bits for the new random number in positions m + 1 to
n, but still contain bits from the old n bit random
number in position 1 through m.}

d) Left-shift register B {n-m} positions. (This places m
bits for the new random number in positions 1 to m of
register B and zero bits in positions m + a through n.)

e) Exclusive-or register B into register A and zero out
register A's sign bit. (Register A now contains all n
bits of the new random number.)

f) To obtain a random number between 0.0 and 1.0, we divide
the n bit integer in register A by 2**n. The contents of
register A must be saved for use in generating the next
random number.

In random_, a word is considered as being 36 bits long
including the sign bit. This gives rise to a 35 bit integer
random number. Since in Multics, a floating point number has a
27 bit mantissa, this means different seeds may produce the same
floating point value; however, the interval between identical

MULTICS PROGRAMMERS' MANUAL

Page 9
7/30/71

values of the integer seed is equal to the cycle length of the
integer random number generator. In random_, a shift of 2 is
used, which gives a cycle of (2**35)-1 (see References (1». The
essence of the assembly language code used by random- is given
below.

equ shift, 2 use a shift of 2

ldq seed seed into the Q register

qrl shift shift the seed right

ersq seed exclusive-or to the seed

1dq seed put result in the Q register

qls 35-shift shift left

erq seed exclusive-or the previous result

anq =0377777777777 save only 35 bits

stq seed return the value of the seed

lda seed load the integer value

lde Ob25, du convert to floating point

fad =0., du normalize the floating point

fst random_no return a random number

References

1) Golomb, S. W., Welch, L. R., Goldstein, R. M., and Hales,
A. W., Shift Register Seqyences, Holden-Day, 1967, p. 97.

2) Taub, A. H. , JJ.Q.b.n Vonl~ eumman, Co 11 ec ted
Pergamon Press, 1963, p. 770.

Works, v,

3) Whitt1ese1f, John R. B., IIA Comparison of the Correlation
Behavior of Random Number Generators for the IBM 360 11

,

Commynications Qf ~~, 11, 9, September, 1968.

(END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
7/11/73

This procedure is used to read and convert free-formatted
input data. It reads a series of input values from the I/O
stream tluser_input" and interprets each in terms of the data type
of the corresponding variable in the calling sequence. (See
Notes below for acceptable data types and break characters.) If
an input value is discovered to have incorrect syntax, a comment
is printed asking that the input value (and any following it) be
retyped.

If the line read contains fewer values than were requested
in the calling sequence, by default read_list_ types out a
message of the form:

n more input values expected

and attempts to read another line from the stream "user_input".
This does not occur before the first input line.

Since this procedure can be called with a varying number of
arguments, it is not permissible to include a parameter attribute
list in the declaration of the various entry points.

Usage

declare read_list_ entry oPtions (variable);

call read_list_ (v~, vZ, ••• , va);

1) vi is any variable of the calling program and can be
any scalar quantity. (Output)

This entry works exactly as read_list_ does except that
there is no prompting if the line read contains fewer values than
were requested in the calling sequence. Instead, read_list_
merely attempts to read another line until all requested values
have been supplied.

Usage

declare read_list_$no_prompt entry options (variable);

call read_list_$no_prompt (v~, v2, ••• , va);

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

Ii vi is as above. (Output)

Entry: read_list_$prompt

This entry works as read_list_ does except that alternate
arguments are taken to be prompting messages to be typed on the
stream "user_output". No other prompting is done.

Usage

1) Pi.

2) vi.

declare read_list_$prompt entry options (variable);

is a character string to be typed on the user's
terminal. It is typed out via ioa_$nnl, so there
is no new line after a message unless the last two
characters of the string are 11-.,". (See the MPM
subroutine write-up for ioa_.) If any prompting
argument is a null character string, that
prompting message is not typed. If the number of
arguments is odd, the last (unmatched) prompting
argument is taken as a message to be typed after
reading the last variable. If the user
anticipates input by typing several input values
on one line, intermediate prompting messages are
omitted. (Input)

is as above. (Output)

Entry: read_list_$scan_string

This entry works as read_list_ does except that instead of
reading input from the user's terminal it considers its first
argument to be a character string to be scanned and converted as
though it had been read from "user_input". Subsequent argument
values are suppiied from the contents of the first argument.

Usage

declare read_list_$scan_string entry options (variable);

call read_list_$scan_string (scan_string, nret,
v.1, v.,Z" ••• , vn);

1) scan_string is a character string (char(*» to be scanned as
though it had been read from "user_input".
(Input)

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 3
7/11/73

2) nret is a fixed bin(17) number containing, upon return,
the number of arguments actually supplied in
scan_string. The reason for nret is that there is
no prompting and no way to ask for more values if
there weren't enough to begin with. A value of
nret less than a indicates a syntax error, with
the absolute value of nret indicating which
argument was bad. (The arguments following that
one are not processed.) Counting for nret starts
with vI as argument one. (Output)

Notes

Input conversion is currently implemented for the following
Multics PL/I data types using the rules for the formation of PL/I
constants:

single precision fixed point

double precision fixed point

single precision floating point

double precision floating point

nonvarying character string

varying character string

nonvarying bit string

varying bit string

pointer

Character strings can be typed without enclosing quotation
marks if they don't contain any of the delimiters listed below.

A fixed point number can be typed in octal format if it is
followed by the letter "Oil.

Floating point constants can be typed without an explicit
exponent or decimal point.

Input pointer values are typed as follows:

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 4

means a,.....: - -- _--..-- ... _oo_L __ ...J1 o.o __ ..J
-~~--

IJV I II LCt LV :'Cc.IIICIlL "UIIIUCI U .L, WVIU VI I !:>t:L

0, bit offset O.

d11d2 means a po inter to segment number d1, word offset
d2, bit offset O.

d1Id2(d3) means a pointer to segment number d1, word offset
d2, bit offset d3.

where d1 and d2 are octal integers and d3 is a decimal integer.

Fixed point constants can be typed in binary form; e.g.,
1011b.

Typed character or bit strings which are too large or too
small for the space declared in the calling program are truncated
or padded, respectively, according to the usual PL/I language
rules.

The delimiters allowed in the input line are space (~), tab
(HT), comma (,), and the new-line character (NL). Successive
input values can be separated by any number of blanks and/or
tabs. Other combinations of delimiters have the following
meanings:

,NL

, ,

NL,

NL~,

NLHT,

BNL

=

=

=
=
=
=

NL

no new input value for corresponding
argument

, ,
, ,
, ,

NL

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MUlTICS PROGRAMMERS' MANUAL

~: reversion_

revers ion_/

Subroutine Call
Standard Service System

2/25/72

This procedure causes the handler currently establ ished for
the given condition in the call ing block activation to be
disestablished. If no handler for the given condition is
established in the calling block activation, no action is taken.
A description of the condition mechanism is given in the MPM
Reference Guide section on The Multics Condition Mechanism.

Usage

declare reversion_ entry (char(*»;

call reversion_ (name);

1) name is the name of the condition for which the handler is
to be disestablished. (Input)

Notes

The condition names unclaimed_signal and cleanup are
obsolete special condition names and should not be used.

A call to reversion_ must be used only to revert a handler
established by a call to condition_ (see the MPM subroutine).
reversion_ must not be used to revert a handler established by a
Pl/I on statement.

In Pl/I Version 2, when a call to reversion appears within
the scope of a begin block or internal procedure of a procedure,
the nO_Quick_blocks option must be specified in the procedure
statement of that procedure. The nO_Quick_blocks option is a
nonstandard feature of the Multics Pl/I language and, therefore,
programs using it may not be transferable to other systems.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Name: signal_

Subroutine Call
10/31/73

This procedure signals the occurrence of a given condition.
A description of the condition mechanism and the way in which a
handler is invoked by signal_ is given in the MPM Reference Guide
section, The Multics Condition Mechanism.

Usage

declare signal_ entry (char(*), ptr, ptr);

ca 11 signa 1_ (name, mcptr, i nfo_ptr);

1) name

2) mcptr

Notes

is the name of the condition to be signalled.
(Input)

points to the machine conditions at the time the
condition was raised. This argument is for use by
system programs only in order to signal hardware
faults. In user programs, this argument should be
null if a third argument is supplied. This
argument is optional. (Input)

points to information relating to the condition
being raised. The structure of the information is
dependent upon the condition being signalled;
however, conditions raised with the same name
should provide the information in the same
structure. Important: all structures must begin
with a standard header. The structures provided
with system conditions are described in the MPM
Reference Guide section, System Conditions and
Default On Unit Actions. The format for the
header is described in the MPM Reference Guide
section, The Multics Condition Mechanism. This
argument is intended for use in signalling
conditions other than hardware faults. This
argument is also optional. (Input)

If signal_ returns to its caller, indicating that the
handler has returned to it, the calling procedure should retry
the operation that caused the condition to be signalled.

The PL/I signal statement differs Jfrom the signal_
subroutine in that the above parameters cannot be provided in the
signal statement.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywe 11 I nformat ion Sys terns Inc. (END)

~·1U L TICS PROGRAMf-1ERS I HANUA L

Subroutine Call
Standard Service System

09/23/70

Name: stu_

The stu_ (Symbol Table Utility) procedure provides a number
of entry points for retrieving information from the segment
symbol table section of an object segme~t. Multics compilers
will produce a segment symbol table only when explicitly
instructed to do so (e.g., with the use of the PL/I table
option).

This entry, given an ascI I name and a pointer to any
location in a (possibly bound) object segment, searches the given
segment for the symbol table header corresponding to the given
name.

Usage

1)

2)

3)

4)

declare stu_$find_header entry (ptr, char(32) aligned,
fixed bin(22» returns (ptr);

name

bc

header_pt

points at any location in the object segment.
(I npu t)

is the ascii name of the program whose symbol
header is to be found (same as the nane of
the segment if the object segment is not
bound). (Input)

is the hit count of the object segment; if
zero, find header will determine the bit
count itself. (Input)

will point to the header if it could be found
'or \tJi 11 be null if the header could not he
found. (Output)

f1UL TI CS PRO~RAtU'1FRS I r·';ANUAL

Page 2

Notes

Since determining the bit count of a segment is relatively
expensive, the user should provide the hit count if he has it
available (i.e., as a result of a call to hcs_$initiate_count>.

If seg_pt is not null, decode_object is called; the symbol
header is assumed to start at \'1ord a of the symbol segment. If
seg_pt is null, hcs_$make_ptr is used to locate the
"symbo l_tab 1 e" segdef in the segment \,Ji th the gi ven name.

This entry point, given a pointer to the symbol table header
of a procedure, searches for a procedure symhol block
corresponding to a given block in the object program.

Usage

1)

2)

3)

declare stu_$find_block entry (ptr,
returns (ptr);

char(*) aligned)

header_pt

name

points at a SYMbol table header. (Input)

is the ascii name of the symbol hlock to be
found. The name of a symbol block is the
same as the first name written on a procedure
stat-ement. (I nput)

will point to the symbol block if found or
will be null if the block could not be found.
(Output)

This entry point, given a pointer to the stack frame
corresponding to an active Plf1 procedure or begin block, returns
pointers to the symbol table header and symbol block associated
with the procedure or begin block. Null pointers will be

r"1U L TICS PROGRAr1MERS' MANUA L

Page 3
09/23/70

returned if the stack frame does not belong to a PL/1 program or
if the PL/l program does not have a symbol table.

Usage

declare stu_$get_block entry (ptr, ptr, ptr);

1) stack _pt points at an active stack frame. (Input)

2) header _pt will be set to po i nt at the symbol table
header. (Output)

3) b lock_pt \'J ill be set to point at the symbol block.
(Output)

This entry point, given a pointer to the symbol block
corresponding to a procedure or begin block, searches for the
symbol node associated with a specified variable name. If the
name is not found in the given block, the parent block is
searched. This is repeated until the name is found or the root
block of the symbol structure is reached, in which case a null
pointer is returned.

Usage

1)

declare stu_$finrl_symbol entry (ptr, char(*) al igned, fixed
bin) returns (ptr);

points at the symbol block where the search
is to begin. (Input)

f1UL TI CS PROGRAr"'1~1ERS I f1J\NUAL

Page 4

2) name

3) steps

4) symbo l_pt

is the ascii naMe of the symbol to be found.
name may he a completely qualified structure
name (i.e., "a.b.c"), in Nhich case the
symbol node for the lowest level item will he
found. (I npu t)

wi 11 be set to the number of steps along the
parent chain that were taken before the
symbol \1aS found. steps \.Ji 11 be 0 i f the
symbol was found in the given block.
(Output)

wi 11 po i nt to the symbol node if found or
\oJill be null if the symbol could not be found
in any block. (Output)

This entry point is called to decode values stored in a
symbol node (see Reference Data Section of this manual).

Usage

1)

2)

3)

v

declare stu_$decode_value entry (fixed bin(3S), ptr, ptr,
fixed bin) returns (fixed bin(3S»;

is the value from the symbol node to be
decoded. (Input)

is a pointer to the active stack frame for
the procedure or begin block corresponding
to the symbol block in which the symbol node
whose value to be decoded appears. (Input)

is the value of the reference pointer if the
variable corresponding to the symbol node is
based. (Input)

4) conP.

5) value

will he set to 0
successfully ~eco~prl

~ould not he rl~corlprl.

if the
;,nrl to J
(nutput)

I 1
I stu_ ,
t f

Pa?~ 5
09/23/70

Vo 1 UP \"1;1 S

iF th~ v~lue"

will he the rl~conprl vnlup if cone = O.
(Output)

This entry point, ~iven a pointer to th~ sym~ol norlp
co r res po n rl i n.S!; t a a P' _ / 1 h n sed va r i ? h 1 e, at t pm p t s tor e t urn t" P

value of the pointer vari;lhle that aDnear~rl in t~e hnserl
declaration (i.e., the value of "p" in "ocl a hasen (p);II). A
null pointer vlill he returnen if the ~~clarntion noes not have
the proper form or if the valup o~ thp Dointer coulrl not he
rleterMinerl.

Usage

1) symhol_pt

2)

3)

points at
vnri nhle.

the syrnhol
('npu t)

points at the activp st~c~ frnmp for the
procerlurp or hp.~'n hlo~~ corrpsnonrlin2 to
the symhol hlnc~ in which t~e syrnhnl norlp ,~

found. (, nnut)

will he set to the v?lue of the oointpr
variable or will he null if the valup coul rl

no t be rie te rrn i nen. (Ou t DU t)

MUlTICS PROGRAMMERS' MANUAL

Page 6

Notes

A null pointer will be returned for anyone of a number of
reasons. Some of these are:

1) the based variable was declared as

dcl a based;

2) the pointer base does have an active stack frame.

Entrv: stu_$get_address

This entry point, given a
active stack frame and a vector of
address of the specified variable.

pointer to a symbol node, an
subscriPts, determines the

Usage

1)

2)

3)

declare stu_$get_address entry (ptr, ptr, ptr, ptr) returns
(ptr);

add_pt = stu_$get_address (symbol_pt, stack_pt, ref_pt,
subs_pt);

points at the symbol table node. (Input)

points at the actiye stack frame for th~ Pl/1
procedure or beg n block corresponding to
the symbol block in which the symbol node is
found. (Input)

is the value of the reference pointer to be
used if the symbol node corresponds to a
based variable. If ref_pt is null,
get_address will call get_reference to
determine the value of the pointer appearing
in the original declaration. (Input)

MUlTICS PROGRAMMERS' MANUAL
I J
I stu_ I

4)

5)

Notes

1 1

Page 7
09/23/70

points at a vector of single preCISion fixed
point subscripts. The number of subscripts
is assumed to match the number required by
the declaration. This argument may be null
if the symbol node does not correspond to an
array. (Input)

will point to the full bit address of the
variable corresponding to the symbol node or
will be null if the address could not be
determined. (Output)

Pointers to the· text or linkage segment, if required, are
obtained from the specified stack frame.

This entry point, given a pointer to a symbol node, a vector
of information pointer and a pointer to a vector of subscriPts,
determines the address of the specified variable.

Usage

1)

2)

declare stu_$get_addr entry (ptr, (3)ptr, ptr, ptr) returns
(ptr);

info

points at the symbol table node. (Input)

is an array of pointers. info(l) points at
the active stack frame; info(2) points at the
linkage section; info(3) points at the text
segment. (Input)

Page 8

3)

4)

5)

MULTICS PROGRAMMERS' MANUAL

is the value of the reference pointer to be
used if the symbol node corresponds to a
based variable. If ref_pt is ~ null,
get_address will call get_reference to
determine the value of the pointer appearing
in the original declaration. (Input)

points at a vector of single precision fixed
point subscripts. The number of subscripts
is assumed to match the number required by
the declaration. This argument may be null
if the symbol node does not correspond to an
array. (Input)

will point to the full bit address of the
variable corresponding to the symbol node or
will be null if the address could not be
determined. (Output)

This entry, given a pointer to a symbol table block and an
offset in the text segment corresponding to the block, determines
the line number, starting location, and number of instructions in
the source statement containing the specified instruction.

Usage

1)

2)

3)

block_pt

offset

start

points at the block node. (Input)

is the offset of an instruction in the text
segment. (Input)

will be the offset in the text segment of the
first instruction generated for the source
line containing the specified instruction, or

MUlTles PROGRAMMERS' MANUAL

4) num

5)

Notes

Page 9
09/23/70

will be -1 if the line could not be found.
(Output)

will be the number of instructions generated
by the specified source line. (Output)

will be the line number of
statement which generated
instruction. (Output)

the source
the given

1) If the source program contains include files, all line
numbers refer to the expanded source segment.

2) No distinction is made between several statements occurring
on the same source line. "start" will be the starting location
of the code generated for the first statement on the line and
"num" wi 11 be the total length of all the statements on the
1 i ne.

Entry: stu_$get_location

This entry, given a pointer to a symbol table block and the
line number of a source statement in the block, returns the
location in the text segment of the first instruction generated
by the specified source line.

Usage

1)

declare stu_$get_location entry (ptr,
returns (fixed bin(18»i

fixed

points at the block node. (Input)

bin(18»

MUlTICS PROGRAMMERS' MANUAL

Page 10

2)

3) offset

specifies the source line number. (Input)

will be the offset in the text segment of the
first instruction generated by the given
line, or will be -1 if no instructions were
generated by the given line. (Output)

Example

We will illustrate the use of some of the procedures
documented above by presenting a sample procedure which is called
with

stack_pt a pointer to the stack frame of Pl/I procedure

symbol an ascii string giving the name of a user symbol
in the Pl/I program

a pointer to an array of integers giving subscript
values.

The procedure will determine the address, data type, and size of
the specified symbol. ff any errors occur, the returned address
wi 11 be null.

%;
example: proc (stack_pt, symbol, subs_pt, size) returns (ptr);

declare stack pt
symboT
subs_pt
size

Pte
aligned char(*),
ptr,
fixed bin(3S);

declare (header_pt, block_pt, symbol_pt, ref_pt, sp,
add_pt) pt r,

(i, steps, code) fixed bin,

stu_$get_block entry (ptr, ptr, Ptr),

MU L TICS PROGRAM~1ERS' r,1ANUAL

Page 11
09/23/70

stu_$find_symbol entry (ptr, char(*) aligned,
fixed bin) returns (ptr),

stu_$get_address entry (ptr, ptr, ptr, ptr)
returns (ptr),

stu_$decode_value entry (fixed bin(3S), ptr,
ptr, fixed bin) returns (fixed bin(3S»;

declare 1
2
2

frame based,
skip(32) fixed,
display ptr;

% include symbol_node;

1* determine header and block pointers *1

call stu_$get_block header _pt,
block_pt);

if block_pt = null then return (null);

1* search for specified symbol *1

symbol_pt • stu_$find_symbol (block_pt, symbol,
steps);

if symbol_pt = null then return (null);

1* determine stack frame of block owning symbol
*1

sp • stack_pt;
do t • 1 to steps;

sp· sp~ frame.display;
end;

Page 12

'··1UlTICS PROGRA~~r·~ERS' '·.1ANUAl

/* determine address of symbol */
ref_pt • null;
add_pt = stu_$get_address (symbol_pt, sp,

ref_pt, subs_pt);

if add_pt = null then return (null);

/* determine size */

5 i ze • symbol_pt ~ symbol_node. sf ze;

i f size < 0
then do;

size = stu $decode value
ref _pt; code);-

(size,

if code> = 0 then return (null);
end;

return (add_pt);
end example;

sp,

(END)

MUlTICS PROGRAMMERS' MANUAL

Subroutine Call
8/27/73

This subroutine handles suffixed storage system entry names.
It provides an entry point that creates a properly-suffixed name
from a user-supplied name that mayor may not include a suffix,
an entry point that changes the suffix on a user-supplied name
that mayor may not include the original suffix, and an entry
point that finds a segment, a directory, or a multisegment file
whose name matches a user-supplied name that mayor may not
include a suffix. It is intended to be used by commands that
deal with segments with a standard suffix, but that do not
require the user to-supply the suffix in the command arguments.

Entry: suffixed_name_$find

This entry point attempts to find a directory entry whose
name matches a user-supplied name that mayor may not be properly
suffixed. This directory entry can be a segment, another
directory, or a multi-segment file (MSF).

Usage

declare suffixed_name_$find entry (char(*), char(*},
char(*), char(32) aligned, fixed bin(2),
fixed bin(S), fixed bin(3S»;

call suffixed_name_$find (directory, name, suffix, entry
type, mode, code);

1) directory

2) name

3} suffix

4) entry

5} type

is the name of the directory in which the entry is
to be found. (Input)

is the name that has been supplied by the user,
and that mayor may not be properly suffixed.
(Input)

is the suffix that is supposed to be on name.
should not contain a leading period. (Input)

I t

is a properly-suffixed version of name.
returned even if the directory
directory)entry, does not exist. (Output)

It is
entry,

is a switch indicating the type of directory entry
that was found: (Output)

o no entry was found.
1 a segment was found.
2 a directory was found.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page 2

6) mode

7) code

MULTICS PROGRAMMERS' MANUAL

3 -- a multi-segment file was found.

is the caller's access mode to the directory entry
that was found. See the MPM writeup of
hcs_$append_branch for a description of mode.
Note that the caller's assecc mode to the MSF
directory is returned for a multisegment file.
(Output)

is one of the following status codes: (Output)

o -- the search was successful.

error_table_$noentry -- no directory entry that
matches name was found.

error_table_$no_info -- no directory entry that
matches name was found, and futhermore, the caller
does not have status permission to the directory.

error_table_$incorrect_access a directory
entry that matches name was found, but the caller
has null access to this entry, and to the
directory containing this entry.

error_table_$entlong the properly-suffixed
name that was made is longer than name.

Entry: suffixed_name_$make

This entry point makes a properly-suffixed name out of a
name supplied by the user that mayor may not be properly
suffixed.

Usage

1)

2)

3)

declare suffixed_name_$make entry (char(*), char(*),
char(32) aligned, fixed bin(3S»;

call suffixed_name_$make (name, suffix, priper_name,

name is as above. «(nput)

suffix is as above. (Input)

proper_name i s a properly-suffixed version of name.

code);

4) code is one of the foiiowing status codes: (Output)

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS 1 MANUAL

Page 3
8/27/73

o -- proper name was made successfuiiy,

error_table_$entlong
name that was made
proper_name contains
properly-suffixed name.

the properly-suffixed
is longer that proper_name.
only a part of the

This entry point creates a name with a new suffix by
changing the (possibly existing) suffix on a user-supplied name
to the new suffix. If there is no suffix on the user-supplied
name, then the new suffix is merely appended to the user-supplied
name.

Usage

declare suffixed_name_$new_suffix entry (char(*), char(*),
char(*), char(32), fixed bin(35»;

call suffixed_name_$new_suffix (name, suffix, new_suffix,
new_name, code);

1) name is as above. (Input)

2) suffix is the suffix that mayor may not already be on
name. (I npu t)

3) new_suffix is the new suffix. (Input)

5) code

is the name that was created. If name ends with
.suffix, then .new_suffix replaces .suffix in
new_name. Otherwise, new_name if formed by
appending .new_suffix to name. (Output)

is one of the following status codes: (Output)

o -- new_name was made successfully.

error_table_$entlong -- the properly-suffixed new
name is longer than new_name. new_name contains
only part of the properly-suffixed new name.

If error_table_$no_s_permission is encountered during the
processing for suffixed_name_$find, it is ignored and is not
returned in the status code.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

~: syn

I/O System Interface Module
Standard Service System

9/8/71

The synonym interface module provides a means by which two
stream names can be made equivalent. Two stream names may be
synonymized by the following call:

call ios_$attach <stream1, "syn", stream2, 1111, status);

Once the above call has been executed, all I/O system
calls, with the exception of the attach and detach calls, will be
redirected to stream2 until the synonymization is dissolved by a
call to detach. In other words, all such I/O calls on either
stream will have identical results and are, therefore,
synonymous. The synonym interface module has been heavily
optimized. It is therefore recommended that in cases where I/O
devices are repeatedly detached and reattached within a process,
that this detaching and reattaching be performed with a
synonymized stream rather than detaching and reattaching the
devices themselves.

lLQ SYstem Calls

All I/O system calls are implemented by the synonym module.

Device Identification

The pseudo-device upon which the synonym module operates is
simply a stream, therefore any stream name is a legitimate device
identifier.

Detachment

Detachment results in the dissolution of the synonymization
of the associated stream. No other action can be specified in
the detach call.

Notes

Due to the importance of the synonym module, it has been
given several special properties.

The second stream name, s t ream2, in the ca 11 to a t tach does
not have to exist at attach call time. The attachment will be
completed anyway and, unless stream2 is subsequently attached to
some device, an error will result ""hen a call is made upon
stream1.

~ Copyright, 1971, Massachusetts Institute of Technology
All rights reserved.

MULTICS PROGRAMMERS' MANUAL

Page 2

Since all calls, except attach and detach, made to a stream
attached via the synonym module are simply forwarded to the
object or attached to stream, the synonym module has no modes,
synchronization, element sizes, delimiters, breaks, reference
pointers, or order calls of its own. It simply takes on the
properties of the stream to which it is attached. The mode
argument in the call to attach is ignored by the synonym module.

Currently, when an attempt is made to attach a stream that
is already attached via the synonym module, the synonym
attachment will be automatically detached. This special feature
is only temporary and will be removed. Users are advised not to
take advantage of it.

Copyright, 1971, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

I/O System Interface Module
10/1/73

This procedure is the I/O system Device Interface Module
(DIM) used to access magnetic tapes written in Multics standard
tape format. (See the MPM Reference Guide section, Multics
Standard Magnetic Tape Format.) It is not called directly by the
user's program. Instead, the user provides the name tape_ in a
call to the I/O system attach entry. He then accomplishes the
I/O operations by calling standard I/O system entry points that
are independent of the interface module being used. Further
information on the I/O system can be found in the MPM Reference
Guide section on Input and Output Facilities_ Details about the
I/O system call syntax can be found in the module description of ios __

Notes

Tape label records and end of reel records are written by
the attach/detach functions automatically. Blocking of data into
256-word blocks is done internally by the read/write functions so
that any number of words of data can be transmitted in a single
call.

Permitted 1LQ System Calls

attach
detach
getsize
order
read
seek
write

pevice Identifiers

This DIM accepts any character string of length 6 as a
device identifier for a tape. The character string to be used
should be agreed upon with Multics Operations when the tape is
signed out.

Status Indications

Only standard Multics status codes are returned in the first
half of the status string. The following status codes can be
returned by tape_:

error_table_$argerr
error_table_$bad_index
error_table_$bad_label

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

err6r~table~$bad_mode
error_table_$bad-processid
error_table_$bad_ring_brackets
error_table_$blank_tape
error_table_$buffer_big
error_table_$data_improperly_terminated
error_table_$dev_offset_out_of_bounds
error_table_$device_end
error_table_$device_limit_exceeded
error_table_$device_parity
error_table_$improper_data_format
error_table_$invalid_read
error_table_$invalid_write
error_table_$io_still_assnd
error_table_$ionmat
error_table_$mount_not_ready
error_table_$no_device
error_table_$no_message
error_table_$no_room_for_dsb
error_table_$no_sys
error_table_$not_attached
error_table_$redundant_mount
error_table_$too_many_buffers
error_table_$undefined_order_request
error_table_$undefined_ptrname
error_table_$unimplemented_ptrname

Currently, the only meaningful bits in the second
the status argument are the physical_end_of_data
logical_end_of_data bit, and the stream_name_detached
the MPM Reference Guide section, Use of the Input
System, for more information.

half of
bit, the

bit. See
and Output

The physical_end_of_data bit is currently turned on during
writing when the end of a physical tape reel is reached,
indicating that no more data can be written on the reel.
Checking this bit is the standard way of telling whether the end
of the reel has been reached. It is turned on during reading if
a normal tape termination is reached and it occurs at the
physical end of reel. (A tape is normally terminated if it was
properly detached when written, i.e., if it contains a valid end
of reel record.)

The logical_end_of_data bit has no significance for writing.
During reading, this bit is turned on when the logical end of
data on the tape, i.e., the last relevant record, has been
reached; the situation is further described by the status code
portion of the status argument. For example, if the tape was not
normally terminated, but the data is otherwise good, the code
error_table_$data_improperly_terminated is returned.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 3
10/1/73

The stream_name_detached bit is turned on when the tape and
the stream are detached from the process; this can happen only
during attach or detach requests.

Currently there are some temporary deviations from the
standards described above with respect to the logical_end_of_data
bit. It is turned on during writing, but should be ignored.
When it is turned on during reading, a status code of zero
eventually will mean normal termination, although currently
error_table_$device_end is returned in this case.

Modes

The only modes accepted by the attach call to tape_ are r
(read) and w (write). Any other mode specification, including
rw, results in refusal to attach the stream.

Element ~

Only an element size of 36 is permitted.

Order Requests

The following order requests are implemented by this DIM:

rewind

is permitted only for tapes attached for writing.
It writes out all currently filled write-behind
buffers and returns the count of the total number
of rewrite attempts in a fixed binary(3S) number
pointed to by the argptr argument of the
ios_$order call.

is obsolete and will be removed eventually.
seek request should be used instead.

The

Break Characters and ~ Delimiters

None of these are used by tape_. All transmission is
controlled by the nelem argument of the read/write call. The
only nonerroneous case where nelemt differs from nelem is for end
of data reading.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 4

~ .aD.f! .Dlll Calls

Seek, as currently implemented, is very limited and intended
for rewinding only. pointer_name_1 can be either read or write,
pointer_name_2 must be "fi rst", and offset must be O. (See the
MPM subroutine write-up for ios_$seek.) This causes the tape to
be rewound without unloading and readied for use in the same mode
as before. To change mode, the tape must first be detached, then
reattached in the other mode.

Tell is not currently implemented.

Synchronization

This DIM operates only in
asynchronous mode.

Detaching

read

A tape is unloaded when detached.

Notes

asynchronous, wri te

There are some aspects of the Multics standard tape format
that are not currently implemented by .tape_. There is no
provision for handling multireel logical tapes and the
synchronous indicator of a record header is never set. The
padding bit pattern word used is a word consisting of all ones.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MUlTICS PROGRAMMERS' MANUAL

Subroutine Call
2/20/73

The procedure term_ terminates a segment. That is, it does
the work of removing a segment from the caller's address space
and his combined linkage section. It unsnaps links to the
terminated routine and removes references to it (if any) from the
command processor's memory. For the term_ entry, links to the
segment are not unsnapped unless the segment has a linkage
section.

!J.,sage

declare term_ entry (char(*) aligned, char(*) aligned,
fixed bin(3S}};

call term_ (dirpath, ename, code);

1} dtrpath is the path name of the
segment to be terminated.

parent directory
(J npu t)

of the

2} ename is the entry name of the segment to be terminated.
(Input)

3} code is a standard status code. (Output)

Entry: term_$refname

This entry allows termination of a segment by reference name
rather than path name. For this entry, links to the segment are
always unsnapped even if it has no linkage section.

Usage

declare term_$refname entry (char(*) aligned,
fixed bin(3S});

call term_$refname (refname, code);

1) refname is the reference name of the segment
terminated. (Input)

2} code is a standard status code. (Output)

to

@ Copyr i ght, 1973, r·lassachusetts I nst i tute of Technology
and Honeywell Information Systems Inc.

be

MULTICS PROGRAMMERS' MANUAL

Page 2

This entry allows termination of a segment referenced by a
pointer. Links are not unsnapped unless the segment has a
linkage section.

Usage

declare term_$seK-ptr entry (ptr, fixed bin(3S»;

call term_$seK-ptr (segptr, code);

1) segptr is a pointer to the segment to be terminated.
(Input)

2) code is a standard status code. (Output)

Entry: term_$unsnap

This is a special entry identical to the nomakeunknown entry
execpt that links to the segment are always unsnapped even if it
has no linkage section~

Usage

declare term_$unsnap entry (ptr, fixed bin(3S»;

call term_$unsnap (segptr, code);

Arguments are as above.

® Copyr i gh t, 1973, Massachuset ts Ins t i tu te of Techno logy
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 3
2/20/73

This entry allows termination of a single reference name.
The segment is not terminated unless the specified reference name
was the only reference name by which it' was known. Links to the
segment are always unsnapped even if it has no linkage section.

Usage

declare term_$single_refname (char(*) aligned,
fixed bin(3S»;

call term_$single_refname(refname, code);

1) refname is the reference name to be terminated. (Input)

2) code is a standard status code. (Output)

Notes

The possible status codes returned are:

1) error_table_$invalidsegno;

The subroutine hcs_$terminate_file performs the same
operation as does term, but provides an additional option;
hcs_$terminate_seg is tne same as term_$seK-ptr with an
additional option; and hcs_$terminate performs the same operation
as term_$single_refname.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
Development System

03/29/71

The timer manager is provided to fulfill a specialized need
of certain sophisticated programs. A user should be familiar
with Interprocess Communication in Multics and the pitfalls of
writing programs which may run asynchronously within a process.
These pitfalls may be avoided by using only the
timer_manager_$sleep entry.

The timer manager allows many cpu usage timers and real time
timers to be used simultaneously by a process. The caller may
specify for each timer whether a wakeup is to be issued or a
specified procedure is to be called when the timer goes off.

Generic Argyments

1) channel

2) routine

3) time

is the name of the event channel (fixed
binary(7l» over which a wakeup is desired.
Two or more timers may be running
simultaneously, all of which may, if desired,
issue a wakeup on the same event channel.

is a procedure entry point (entry) that will
be called when the timer goes off. The
routine will be called this way:

declare routine entry (ptr, char(*»;

call routine (mcptr, name);

1) mcptr

2) name

is a pointer to a structure
containing the machine conditions
at the time of the process
interrupt. (inputi

is alrm for a real time timer and
is cput for a cpu timer. (Input)

(See signal_ for a full description of these
arguments.) Two or more timers may be
running simultaneously, all of which may, If
desired, call the same routine.

is the time (fixed binary(7l» at which the
wakeup or ca 11 is des ired.

Page 2

,. \ ,

MULTICS PROGRAMMERS' MANUAL

in just what way time is to be interpreted.
The high order bit indicates whether it is an
absolute or a relative time. The low order
bit indicates whether it is in units of
seconds or microseconds. Absolute real time
is time since January 1, 1901, 0000 hours
Greenwich Mean Time (GMT), i.e., the time
returned by clock_. Absolute cpu time is
total time used by the process, I.e., the
time returned by hcs_$get_usage_values.
Relative time is time from when
timer_manager_ was called.

1I11 lt b means relative seconds
1I10 ll b means relative microseconds
"Olu b means absolute seconds
"OOlib means absolute microseconds

This entry point causes the process to go blocked for a
period of real time. Other timers that are active will continue
to be processed whenever they ring; however, this routine wIll
not return until the real time has been passed.

Usage

declare timer_manager_$sleep entry (fixed bln(71), blt(2»;

call timer_manager_$sleep (time, flags);

The time is always real time; however, it may be relative or
absolute, seconds or microseconds, as explained in the Generic
Arguments.

This entry sets UP a real time timer that will call the
routine specified when the timer goes off.

Usage

declare timer_manager_$alarm_call entry (fixed
bit(2), entry);

bin(71),

call timer_manager_$alarm_call (time, flags, routine);

MULTles PROGRAMMERS' MANUAL

Entry: timer_manager_$alarm_call_inhibit

Page 3
03/29/71

This entry sets up a real time timer that will cal 1 the
routine specified with all interrupts inhibited when the timer
goes off. When the interrupt is returned from, interrupts will
be re-enabled. If the interrupt is not returned from, interrupts
will not be re-enabled.

Usage

declare timer_$manager_$alarm_call_inhibit entry
bin(71), bit(2), entry);

call timer_manager_$alarm_call_inhibit (timer,
routine);

(fixed

flags,

This entry sets up a real time timer that will issue a
wakeup on the event channel specified when the timer goes off.
The event message passed is alarm ___ •

Usage

declare timer_manager_$alarm_wakeup entry (fixed bin(71),
bit(2), fixed bin(71»;

call timer_manager_$alarm_wakeup (time, flags, channel);

This entry sets UP a cpu timer that will call the routine
specified when the timer goes off.

Usage

declare timer_manager_$cpu_call
bit(2), entry);

entry (fixed bin(71),

call timer_manager_$cpu_cal1 (time, flags, routine);

Entry: timer_manager_$cpu_call_inhibit

This entry sets up a cpu timer that will call the routine
specified with all interrupts inhibited when the timer goes off.
~~hen the interrupt is returned from, interrupts wi 11 be
re-enabled. If the interrupt is not returned from, interrupts
will not be re-enabled.

timer_manager_ MULTICS PROGRAMMERS' MANUAL

Page 4

II,. _,..,.,.
yaRns

declare timer_manager_$cpu_call_inhiblt entry (fixed
bin(71), bit(2), entry);

call timer_manager_$cpu_call_inhibtt (time, flags,
routine);

This entry sets up a cpu timer that will issue a wakeup on
the event channel specified when the timer goes off. The event
message passed is cpu_time.

Usage

declare timer_manager_$cpu_wakeup entry (fixed
bit(2), fixed bin(71»;

bin(71),

call timer~anager_$cpu_wakeup (time, flags, channel);

This entry turns off all cpu timers that will call the
routine specified when they go off.

Usage

declare timer_manager_$reset_cpu_call entry (entry);

call timer-manager_$reset_cpu_call (routine);

This entry turns off all cpu timers that will issue a wakeup
on the event channel specified when they go off.

Usage

declare timer_manager_$reset_cpu_wakeup
bin(71»;

entry (fixed

This entry turns off all real time timers that wIll call the
routine specified when they go off.

MULTICS PROGRAMMERS' MANUAL

Page 5
03/29/71

Usage

declare timer_manager_$reset_alarm_call entry (entry);

call timer_manager_$reset_alarm_call (routine);

Thi s entry turns off all real time timers that wi 11 issue a
wa k e u.P 0 nth e even t c ha nne 1 s pe c i fie d wh e nth e y go 0 f f •

Usage

Notes

declare timer_manager_$reset_alarm_wakeup
bin(7l»;

entry (fixed

For most uses of timer_manager_ I a cleanup condition handler
should be set up that will reset all the timers that might be set
by a system of programs. This way, if the system is aborted and
released, any timers set up by the system will be reset instead
of going off at undesired times.

In order to be used, timer_manager_ must be established as
the condition handler for the conditions alrm and cput. This is
done automatically by the standard Multlcs environment.
Subsystems which do not use the standard environment should make
the following calls when establishing their environment:

call condition_ (lIalrm", timer_manager_$alarm_lnterrupt);

call condition_ (IICput",
timer_manager_$cpu_timer_interrupt);

(END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
Development System

6/13/72

~: total_cpu_time_

This procedure returns the total CPU time used by the
calling process since it was created. The time includes time
spent handling page faults, segment faults, and bound faults for
the calling process as well as time spent handling any system
interrupt which occurred while the calling process was executing.

usage

declare total_cpu_time_ entry returns (fixed bin (71»;

time = total_cpu_time_();

1) time is the total CPU time, in microseconds used by the
calling process. (Output)

@ Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MUlTICS PROGRAMMERS' MANUAL

I/O System Interface Module
10/3/73

This procedure is the I/O System Interface Module (IOSIM)
used to control operation of a console typewriter. It is not
directly called by a user program. Instead, the user provides
the name tw_ in a call to the I/O system attach entry. He then
accomplishes the I/O operations by calling standard I/O system
entry points that are independent of the interface module in use.
Further information on the I/O system can be found in the MPM
Reference Guide section on I/O and details of the I/O system call
syntax can be found in the subroutine description for ios_. This
write-up explains how the subroutine tw_ interprets the standard
I/O system calls.

Usage

call ios_$attach (stream_name, "tw_", ttychan, mode,
status);

The normal sequence of process initialization for a local
dialup user inciudes a call to attach the user's typewriter
through tw_ to the stream "user_i/o". Thus, the casual user need
not concern himself about performing the attach call himself
unless he is performing some special operation such as attaching
a second typewriter to his process. However, the remainder of
this section might still be of interest since it details the way
in which the module tw_ interprets the standard I/O system calls
directed to the stream "user_i/o" and any other streams that are
attached to "user_i/o".

Notes

This 10SIM supports all devices used as local consoles in
the Multics system. It expects the device to have both an input
(usually a keyboard) and an output (a printer or a video display)
device. The devices currently supported include the IBM 1050,
IBM 2741, Bell model 33, 35, 37, and 38 Teletypes, ARDS, GE
Terminet 300, Datel 30, and any devices presenting an interface
to the system equivalent to any of the above.

Most data presented to the 10SIM should be standard Multics
character strings (sequences of 7-bit Multics character codes
right adjusted in 9-bit fields). Conversion to the character
code of the device is performed automatically by the 10SIM. The
exceptions occur when in raw input or output mode (see Modes
below) or when in graphic input or output mode when communicating
with graphic devices. In normal operation, the 10SIM performs

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

standard Multics canonicalization and erase-and-kill processing
as described in the MPM Reference Guide section, Typing
Conventions. Tab positions on all terminals are assumed to be
placed in every tenth character position and automatically
replace spaces, when appropriate, on output.

Part of the Multics quit mechanism is included in this
IOSIM. When the key or keys on the terminal designated as the
quit key are activated, the 10SIM immediately aborts and discards
input or output currently being performed on this terminal and
echoes a new line character. It then sends a quit interrupt to
the process that currently owns this terminal. If the process
signalled is in the standard Multics command environment, the
computation in progress is suspended and the process returns to
command level.

Permitted lLQ System Calls

The following I/O system calls are implemented by this
10SIM:

abort
attach
changemode
detach
getsize
order
read
reset read
resetwrite
write

Device Identifiers

Terminals handled by this IOSIM are usually connected to the
system via telephone lines; therefore the identifiers presented
to the IOSIM at attach time correspond to channels connected to
particular lines rather than to the actual device. Therefore,
the same terminal can have different device identifiers in
different terminal sessions. Channel identifiers are character
strings of up to six characters.

Modes

The following modes can be specified in calls to attach and
changemode.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

erkl

can

rawi

rawo

tabs

edited

esc

red

crecho

lln

Page 3
10/3/73

specifies that erase-and-kill processing is
to be performed on input. (Default is on.)

indicates that standard canonicalization is
to be performed. (Default is on.)

indicates that the data specified is to be
read from the device directly without any
conversion or processing. (Default is off.)

indicates that data is to be written to the
device directly without any conversion or
processing. (Default is off.)

indicates that tabs are to be inserted in
output in place of spaces when appropriate.
(Default is off for model 33, 35 and 38
teletypes; default is on for all other
terminal types).

causes printing of characters for which there
is no defined Multics equivalent on the
devi ce referenced to be suppressed. If
edited mode is off, the 9-bit octal
representation of the character is printed.
(Default is off.)

enables escape processing (see the MPM
Reference Guide section, Typing Conventions)
on all i n pu t rea d from the de vic e • (De f a u 1 t
is on.)

specifies that red and black shifts are to be
sent to the terminal. (Default is off for GE
terminet 300s and for all terminals without
an answerback identifier; default is on for
all other terminals.)

specifies that a carriage return is to be
echoed when a line feed is typed. (Default
is off; this mode is only functional with
model 33, 35, 37, and 38 Teletypes and with
GE Terminet 300s.)

specifies the length in character positions
of a console 1 ine. If an attempt is made to
output aline longer than this length, the

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Pa~e 4

p In.

hndlquit

default

Returned Status

~"UL T I rs PROGRA~1MFRS' r~A~JL'ftL

excess characters are placed on the next
1 i n e • (De fa u 1 t 1 i n e 1 eng t his 1 3 0 for I P ~~
10505, 125 for IRM 2741s, 88 for TTY37s, 118
for Terminet 3005, for ARPS, 74 for TTY33s
and TTY35s, and 125 for TTY38s.)

specifies the length in lines of a pa~e.
When an attempt is made to exceed this
length, an AR[,S "DEL" character is printed;
when the user types an erase character, the
output continues with the next page. This
mode is functional only for AROS terminals.
(Default page length is 50 for ARPS.)

specifies that when a quit is detected, a new
line character is echoed and a resetread of
the associated stream is performed. (Default
is on.)

is a shorthand for erkl, can, -rawi, -rawo,
and esc. The settings for other modes are
not affected.

Only standard Multics error codes are returned as the first
half of the status string. The first half of the status string
being nonzero indicates an error. At present, none of the bits
in the second half of the status string are meaningful.

Order Requests

The following order requests are implemented by this DIM:

hangup

listen

info

causes the telephone line connection of the
terminal to be disconnected, if possible.

cause a wakeup to be sent to the process if
the line associated with this device ID is
dialed up.

causes information about the device to be
returned. The pointer ar~ument should point
to the following structure that is filled in
by the call.

@ CopyrJ ~ht, 1973, Massachusetts I nst i tute of Technology
and Honeywell Information Systems Inc.

MULTlrs PROGRAMMERS' MANUAL

1) i d

declare 1 info_structure aii~ned,
2 id char(4) unali~ned,
2 reserved char(8) unalirned,
2 tw_type fixed bin;

is the identifier of the specific device
to Multics by the device when the
i nit i ali zed.

Page 5
10/3/73

as to 1 d
device is

2) reserved is space reserved for compatibility purposes.

identifies the type of device:

1
2
3
4
5
6
7
8

quit_enable

quit disahle

start

printer_off

printer_on

Element Size

=
=
=
=
=
=
=
:;;

IBM 1050;
IBM 2741 (with M.I.T. modifications);
Teletype model 37;
Terminet 300;
ARDSi
IRM 2741 (standard);
Teletype models 33 or 35;
ieletype model 38.

causes quit processing to be enabled for this
device. (Quit processing is initially
disabled.)

causes quit processinr- to be disabled for
this device.

causes a wakeup to be signalled on the event
channel associated with this device. This
request is used to restart processing on a
device whose wakeup may have been lost or
discarded.

causes the printer mechanism of the
to be temporarily disabled if
physically possible for the terminal
so.

console
i tis
to do

causes the printer mechanism of the terminal
to be re-enabled.

Only an element size of nine is permitted.

~ Copyright, 1973, Massachusetts Institute of Technolopy
and Honeywell Information Systems Inc.

~1lJL T I rs PROrRP~~1~~ERS I ~"f\NUA L

Page 6

Rrp~k rh~r~rtprs ~nd Read nelimitprs _·-x x·~x .. --- ~ ~ .-- .. -

The only permitted break character and read delimiter is the
new line character. There is currently an implementation
restriction such that nevI line characters that have been typed in
as escape sequences are not recognized as read delimiters.

Synchronization

This DIM operates only in read asynchronous, write
asynchronous, workspace synchronous mode. The limits of
read-ahead and write-behind are determined by the IOSIM at call
time and are dependent upon the load on the IOSIM by all of its
users on the system and, therefore, can vary from call to call.

(§) Cop y rip; h t , 1 9 73 , ~,1 ass a c h use t t sin s tit ute 0 f T e c h nolo g y
and Honeyv/ell I nformation Systems I nc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
3/19/73

This subroutine returns a unique bit string useful as an
identifier. It is obtained by reading the system clock which
returns the number of microseconds elapsed since January 1, 1901,
0000 hrs GMT. The bit string is unique among all bit strings
obtained in this manner in the history of a Multics installation.

Usage

declare unique_bits_ entry returns (bit(70»;

bit_string = unique_bits_{);

1) bit_string is the unique bit string. (Output)

@ COD y rig h t , 1 9 7 3, Ma 5 sac h use t t sin 5 tit ute 0 f Tee h nolo g y
and HoneY\II/e 11 I nforma t ion Sys tems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
2/15/73

The procedure unique_bits_ provides the user with a source
of bit-string identifiers guaranteed to differ from all other
identifiers generated by that procedure. The procedure
unique_chars_ provides a character string representation of such
a unique bit string.

Usage

declare unique_chars_ entry (bit(*» returns (char(15»;

1) char_string is a unique character string. (Output)

2) bits is a bit string of up to 70 bits. (Input)

Notes

If the bits argument is less than 70 bits in length,
unique_chars_ pads it with zeros on the right to produce a 70-bit
string. If the bits argument equals zero, unique_chars_ calls
unique_bits_ to ~btain a unique bit string. Note that if the
bits argument IS supplied (non-zero) and is not a unique bit
string, the character string returned by unique_chars_ cannot be
guaranteed to be unique.

The first character in the character string produced is
always! (exclamation point) to identify the string as a unique
identifier. The remaining 14 characters, forming the unique
identifier, are alphanumeric. All vowels are omitted to avoid
accidentlY forming a name likely to be chosen by a person.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywe 11 I nforma t ion Sys terns Inc. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
Development System

4/13/72

This procedure must be used to convert certain packed status
codes, returned by system procedures using nonstandard status
codes, into fv1ultics standard status codes, which may be used in
calling com_err_ or command_query_, or which may be compared with
codes defined in the standard status code table. (See the MPM
Reference Guide sections on Strategies for Handling Unusual
Occurrences and List of System Status Codes and Meanings. See
also the MPM Subroutines section for the write-ups of com_err_
and command_query_.)

unpack_system_code_ converts bit strings of length greater
than 12 and less than 36 which have been returned by such
procedures as hcs_$acl_add, hcs_$acl_delete, hcs_$acl_list, and
hcs_$acl_replace to fixed binary(35) aligned values. (See the
MPM Subroutines section for the aforementioned procedures.)

Those procedures which use nonstandard packed status codes
will be phased out in the future, at which time all status codes
Hill be stored in standard form. unpack_system_code_ will no
longer be required then.

Usage

declare unpack_system_code_ entry (bit(*) unaligned)
returns (fixed bin(3S) aligned);

1) pack_code is a packed code. For an example of a packed code,
see the document on hcs_$acl_add. (Input)

2) code is the standard status code corresponding to the
pa c ked val u e g i v en. (Ou t pu t)

Notes

This procedure will only work for packed codes returned by
system subroutines. There is no way to pack user-defined
standard status codes into less than 36 bits.

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS PROGRAMMERS' MANUAL

Subroutine Call
4/5/73

This procedure allows the user to obtain
concerning his login session.

information

Entry: user_info_

This entry returns the user's login name, project id, and
account ida

Usage

call user_info_ (name, proj, acct);

1) name is the user's name from the login line (maximum of
22 characters). {Output}

2) proj i s the user's project 10 (maximum of 9
characters). (Output)

3) acct is the user's account 10 (maximum of 32
characters). (Output)

Entry: user_info_$whoami

This is the same as the user info entry point. The added
name is for mnemonic convenience. - -

Usage

declare user_info_$whoami entry (char(*), char(*),
char(*»;

call user_info_$who~mi (n~me, proj, acet);

Arguments are as above.

This entry returns useful information about how the user
logged in.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 2

Usage

1)

2)

3)

4)

5)

6)

7)

declare user_info_$login_data entry (char(*), char(*),
char(*), fixed bin, fixed bin, fixed bin,
fixed bin(71), char(*»;

call user_info_$login_data (name, proj, acct, anon, stby,
weight, time_login, login_word);

name

proj

acct

anon

stby

weight

time _login

i s as above. (Ou t pu t)

is as above. (Output)

is as above. (Output)

= 1 if the user is an anonymous user. (Output)

= 1 if the user is standby (i.e., may be
preempted) • (Ou tpu t)

= 10 times the user's weight. (Output)

is the time the user logged in.
as a calendar clock readirg
(Output)

It is expressed
in microseconds.

8} login_word is lo~in or enter, reflecting which command the
user loS!:ged in by. (Output)

Usage

This entry returns user usage data.

declare user_info_$usage_data entry (fixed bin,
fixed bin(71), fixed bin(71}, fixed bin(71});

call user_info_$usage_data (nproc, old_cpu,
time_login, time_create);

1} nproc is the number of processes created for this login
session. (Output)

is the CPU time used by previous processes in the
login session. (Output)

@ Copyright, 19J3, t1assachusetts Institute of Technology
anrl Honeywell Information Syste~s Inc.

MULTICS PROGRAMMERS' MANUAL

3} time_login is the time of login. (Output)

Page 3
4/5/13

4} time_create is the time the process was created. (Output)

EntrY: user_info_$homedir

This entry returns the path name of the user's initial
working directory.

Usage

declare user_info_$homedir entry (char(*});

call user_info_$homedir (hdir);

1) hdir is the path name of the user's home directory
(maximum of 64 characters>. (Output)

Entry: user_info_$responder

This entry returns the name of the user's login responder.

Usage

declare user_info_$responder entry (char(*));

call user_info_$responder (respi;

1) resp is the name of the user's login responder (maximum
of 64 characters). (Output)

Entry: user_info_$tty_data

This entry returns information about the user's process'
terminal.

Usage

declare user_info_$tty_data entry (char{*), fixed bin,
char{*»i

call user_info_$tty_data (idcode, type, c~annel)i

~ Copyright, 1973, Massachusetts Institute of Technolo~y
and Honeywell Information Systems Inc.

I user _i nfo_1

Page 4

1) i dcode

2) type

3) channel

MULTICS PROGRAMMERS' MANUAL

is the terminal 10 code of the user's (maximum of
4 characters). (Output)

is the type of terminal:

0 = absentee process or network user;
1 = IBM 1050 ;
2 = I BM 2741 (with MIT modifications);
3 = Teletype Model 37;
4 = Terminet 300 ;
5 = ARDS;
6· = IBM 2741 (unmodified);
7 = Teletype Model 33, Model 35. (Output)

is the channel identification (maximum of
characters). (Output)

8

This entry returns the event channel over which logout is to
be signalled and the process 10 to which the signal is to be
directed.

Usage

declare user_info_$logout_data entry (fixed bin(71),
bit (36) ali gned) ;

1) logout_channel is the event channel over which logouts are
to be signalled. (Output)

is the process 10 of the answering service.
(Output)

This entry returns the
segment for an absentee job.
returned as blanks.

Usage

path name of the absentee input
For an interactive user it is

declare user_info_$absin entry (char(*»;

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS PROGRAMMERS' MANUAL

Page 5
4i5ii3

1) path is the path name of the absentee input
segment. (Output)

Entry: user_info_$absout

This entry returns the
segment for an absentee job.
returned as blanks.

path name of the absentee output
For an interactive user it is

Usage

declare user_info_$absout entry (char(*»;

call user_info_$ahsout (path);

1) path is the path name of the absentee output
segment. (Output)

This entry returns the per-user limit values established by
the user's project administrator, and the user's spending against
the 1 i m i ts •

If a limit is specified as open, the, limit value returned is
1.Oe37.

Usage

1)

2)

3)

declare user_info_$limits entry (float bin, float bin,
fixed bin(71), fixed bin, (0:7) float bin,
float bin, float bin, (0:7) float bin);

ca 11 user_ info _$1 i mi ts (m 1 i m, c 1 i m, cdate, crf, s h 1 i m,
msp, csp, shsP)i

ml im i s the month 1 i mi t in do 11 a r s • (Output)

c 1 i m is the cutoff 1 i mit in do 11 ~rs. (Output)

cdate is the cutoff date. (Output)

@ Copyr i gh t, 19 73, ~1assachuset ts Ins t i tute of Techno logy
and Honeywell Information Systems Inc.

Page 6

4) crf

5) shl im

6) msp

7) csp

8) shsp

MULTICS PROGRAMMERS' MANUAL

is the cutoff refresh code. This indicates
what will happen at the cutoff date:

o - permanent cutoff
1 - add one day
2 - add one month
3 - add one year
4 - add one calendar year
5 - add one fiscal year. (Output)

is the array of shift limits in dollars.
(Output)

is the month-to-date spending in dollars.
(Output)

is the spending against the cutoff limit in
dollars. (Ouput)

is the spending against shift limits in
dollars. (Output)

All entries which take more than one argument will count
their arguments and not attempt to return more values than there
are arguments.

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MUlTICS PROGRAMMERS' MANUAL

Subroutine Call
7/9/73

This procedure is used to print out on the user's terminal
the values of internal variables with two spaces between
succeeding values. The data to be written out must be one of the
five types: real decimal fixed-point number, real decimal
floating-point number, bit-string, character-string, or pointer.

Since this procedure can be called with a varying number of
arguments, it is not permissible to include a parameter attribute
list in the declaration of the various entry points.

Usage

declare write_list entry options (variable);

call write_list_ (arg1, arg2, ••• , argn);

1) argl Is any variable of one of the five types listed above.
(Output)

This entry is identical in usage and output to write_list_,
except that no new line character is appended to the output
string.

Usage

Notes

declare write_list_$nnl entry options (varible);

call write_list_$nnl (arg1, arg2, ••• , argn);

Arguments are as above.

The maximum number of arguments is 64.

The data type of each argument is obtained from the
descriptor, and conversion takes place'to transform the value of
each argument to its appropriate character string representation
on the terminal.

A real decimal floating-point number is printed in E format,
with 8 decimal places for a single preCISion number and 19
decimal places for a double precision number.

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTles PROGRAMMERS' MANUAL

Page 2

A character string is printed without the enclosing quotes.

Example

The following procedure produces the output indicated below.

x: proc;

declare a float, b char(S), c bit(3), d fixed bin;

declare s float, m fixed bin;

declare write_list_ external entry options (variable);

call write_list_ (a,b,c,d);

call write_list_ (IIX=", s, "m=", m);

end X;

The two lines printed on the terminal are:

~~O.17S00000e-04~~namelS~~"101"blS~-S

~~x=lS~-O.21200000e+03lS~m=lSlS3192

€) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS PROGRAMMERS' MANUAL

11/30/73

INDEX

This Index covers only Part II of the manual, namely the
Reference Guide sections 1 to 8, and the command and subroutine
vIr i te-ups.

The is organized around the numerically ordered
Reference Guide sections and the alphabetically ordered commands
and subroutine write-ups, rather than by page number. Thus, for
example, the entry for bulk input and output might read:

bulk I/O
3.4
4.4
dprint
dpunch

The first two items under bulk I/O refer to the Reference Guide
sections 3.4 and 4.4, and the last two to the write-ups for the
dprint ·and dpunch commands. They are referenced in the order
that they appear in this manual. Note that command names can
normally be distinguished from subroutines by the trailing
underscore in the segment name of subroutines.

Some entries are of the form:

I/O (bulk)
see bulk I/O

For simplicity of usage, these entries always refer to other
places in the Index, never to normal Reference Guide, comnand or
subroutine write-ups.

Some entries are followed by information within parentheses.
This information serves to explain the entry by giving a more
complete name or the name of the command under which the actual
entry can be found. For example:

e (enter)
listnames (list)

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

B MULTICS PROGRAMMERS' MANUAL

Page 2

In addition to this Index~ other indexes to information are:

1) MPM Table of Contents
lists names of commands and subroutines with write-up issue
dates

- lists co~mands and subroutines documented under other
write-ups; e.g., console_output: see file_output

2) Reference Guide Section 1.1: The Multics Command Repertoire
- lists commands by function

-3) Reference Guide Section 2.1: The Multics Subroutine
Repertoire
- lists subroutines bV function

4) Reference Guide Section 8.3: Obsolete Procedures

~ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc8

MULTICS PROGRAMMERS' MANUAL

convention
see unique strings

* convention
see star convention

3.6backup
3.5

7-punch cards

<

see seven-punch cards

expandJ>ath_
see directories

= convention

>

see equal convention

expand_path_
see directories
see root directory

abbreviations
1.6
abbrev
do
see alternate names
see command processing

ABEND
see error handling

absentee usage
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
alm_abs
cancel_abs_request
enter_abs_request
exec_com
fortran_abs
how_many_users

{continued>

absentee usage
Ccontinuedj

list_abs_requests
pl1_abs
runoff_abs
who

absin
see absentee usage

absolute path names
expand_path_
see path names
see storage system

access control
see protection

access control list
3.3
3.4
deleteacl

B
Page 3

11/30/73

deletecaci (deleteacl)
listacl
listcacl (listacl)
setael
setcacl (setac1)
cv_acl_
cv_d i r _ac 1_
cv_di r _mode_
cv_mode_
cv_userid_
hcs_$add_acl_entries
hcs_$add_dir_acl_entries
hcs_$delete_acl_entries
hcs_$delete_dir_acl_entries
hcs_$ 1 i s t_ac 1
hcs_$list_dir_acl
hcs_$replace_acl
hcs_$replace_dir_acl
see protection

accounting
resource_usage
user (Active Function)
cpu_time_and_paging_
user _i nfo_
see metering

EJ
Page 4

ACl
see access control list

active functions
1.4
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
active_fnc_err_

address reuse
hcs_$initiate
hcs_$initiate_count
hcs_$terminate_file
hcs_$terminate_name
hcs_$terminate_noname
hcs_$terminate_seg

address space
3.2
bind
get_pathname (Active Function)
new_proc
terminate
where
hcs_$delentry_seg
hcs_$fs-&et_ref_name
hcs_$fs~et_se&-ptr
hcs_$initiate
hcs_$initiate_count
hcs_$make_ptr
hcs_$make_seg
hcs_$terminate_file
hcs_$terminate_name
hcs_$terminate_noname
hcs_$terminate_seg
see directory entry names

aggregate data
5.4

alarms
timer_manager_
see clocks

MUlTICS PROGRAMMERS' MANUAL

algol
7.2

aliases
see directory entry names

alternate names
see directory entry names

anonymous users
1.2
enter
user (Active Function)
user _i nfo_

answering questions
answer

APl
apl

archive segments
5.5

archiving
archive
archive_sort
reorder_archive

ARDS display
see graphics
see terminals

argument count
5.4
cu_

argument descriptors
5.4
decode_descriptor_

argument list pointer
5.4
cu_

MULTICS PROGRAMMERS' MANUAL

argument lists
debug
trace_stack
cu_
decode_descriptor_

arithmetic operations
1.10
divide (Active Function)
minus (Active Function)
mod (Active Function)
plus (Active Function)
times (Active Function)

array data
5.4

ASC II
5.1
5.2

asking questions
1.14
answer
query (Active Function)
response (Active Function)
command_query_

assembly languages
8.5
alm

attach table
4.2
print_attach_table
ios_
see I/O attachments

attachments
see I/O attachments

attention
see process interruption

author
3.3
status
hcs_$star_
hcs_$status_

automatic logout
see logging out

automatic variables
see stack segments

background jobs
see absentee usage

base conversion
see conversion

BASIC
7.2
basic
basic_run

EJ
Page 5

11/30/73

basic_system
print_dartmouth_library
set_dartmouth_library
v5basic

batch processing
see absentee usage

binding
archive
bind
print_bind_map
make_object_map_
see linking

bit counts
3.3
adjust_bit_count
set_bit_count
status
adjust_bit_count_
decode_object_
hcs_$initiate_count
hcs_$set_bc
hcs_$set_bc_seg
hcs_$star_
hcs_$status_

bit-string data
5.4

blocks
see interprocess communication
see storage management

Page 6

brackets
see command language
see protection

branches
see directories
see segments

break
see process interruption

breakpoints
debug

br i ef modes
change_error_mode
ready_off

broadcasting
broadcast_

bulk 1/0
4.1
4.4
5.3
cancel_daemon_request
console_output
dprint
dpunch
file_output
list_daemon_requests
nstd_

cancelling
cancel_abs_request
cancel_daemon_request
see deleting

canonicalization
1.3
tw_

card formats
4.4

cards
see 110
see punched cards

MULTICS PROGRAMMERS' MANUAL

catalogs
see directories
see directory entry names

changing names
see directory entry names

changing working directory
see working directory

character codes
1.3
5.1
5.2

character formats
5.1

character string operations
1.11
index (Active Function)
length (Active Function)
substr (Active Function>

character string output
ioa~
ios_
w r i t e_l i s t_

character string segments
5.5

character-string data
5.4

checking changes
check_info_segs

checksum
8.4

cleanup tools
6.2
6.3
adjust_bit_count
close_f i 1 e
compare
compare_ascii
display_component_name

(continued)

MULTICS PROGRAMMERS' MANUAL

cleanup tools
(continued)

fs_chname
new_proc
release

terminate
truncate
adjust_bit_count_
hcs_$set_bc
hcs_$set_bc_seg
hcs_$terminate_file
hcs_$terminate_name
hcs $terminate noname
hcs:$terminate:seg
hcs_$ t runca te_f i le
hcs_$truncate_seg
term_

clocks
2.6
clock_
convert_date_to_binary_
date_t ime_
decode_clock_value_
timer_manager_

closing files
close_file
see bit counts
see termination

code conversion
see conversion

coding standards
2.5

collating sequence
5.1
5.2
sort_file

combined linkage segment
3.1

combining segments
archive
bind

command environment
Sect ion 1
1.4

command language
1 .. 4
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
abbrev
get_com_l i ne
set_com_l i ne

Page 7
11/30/73

see command processing

command level
1.4
cu_

command names
1.5
abbrev
see directory entry names
see searching

command processing
1.3
abbrev
do
enter_abs_request
exec_com
get_com_l i ne
set_com_l i ne
walk_subtree
active_fnc_err_
cu_
hcs_$star_
see active functions
see searching

command utility procedures
cu_

conmands
1.1

(continued)

Page 8

commands
(continued>

1.4
1.6
Section 9
see command processing

comparing character strings
equal (Active Function>
greater (Active Function>
less (Active Function>

comparing segments
compare
compare_ascii

compi 1 ers
see languages

complex data
5.4

condition names
1.5

conditions
6.1
6.2
6.3
6.5
change_error_mode
program_interrupt
reprint_error
active_fnc_err_
com_err_
condition_
find_condition_info_
reversion_
signal_
see cleanup tools
see process interruption
see unwinding

console line length
see terminal line length

console output
see I/O
see interactive I/O

MULTICS PROGRAMMERS' MANUAL

consoles
see terminals

control characters
1.3
5.1
ioa_
see character codes

conversion
com_err _
convert_binary_integer_
convert_date_to_binary_
cv_bin_
cv_dec_
cv_float_
cv_oct_
date_ti me_
decode_clock_value_
read_list_
wr i te_l i st_
see formatted I/O
see I/O

copy swi tch
3.3
hcs_$initiate
hcs_$initiate_count

copying
copy
copy_acl_
copy_names_
copy_seL

cost saving features
alm_abs
fortran_abs
pl1_abs
see absentee usage
see archiving
see limited service systems

CPU usage
ready
see metering
see time

MULTICS PROGRAMMERS' MANUAL

craw~ing out
see error handling

creating directories
createdir
hcs_$append_branchx

creating links
link
hcs_$append_link

creating processes
enter_abs_request
login
logout
newyroc
see logging in

creating segments
basic_system
copy
create
edm
qedx
hcs_$append_branch
hcs_$append_branchx
hcs_$make_seg

creator
see author

current length
3.3
see length of segments

daemon
cancel_daemon_request
dprint
dpunch
list_daemon_requests
see bulk I/O

daemon_dir_dir
3.1

Dartmouth facilities
7.2
basic
basic_run

(continued)

B
Page 9

11/30/73

Dartmouth facilities
(continued)

basic_system
print_dartmouth_library
set_dartmouth_library
v5basic

. -

data control word
4.2

data conversion
see conversion

data representation
4.2
5.3
5.4
8.4

date and time operations
1.13

date conversion
see conversion

dates
2.6
3.3

DCW

date (Active Function)
date_time (Active Function>
day (Active Function>
day_name (Active Function>
long_date (Active Function)
month (Active Function)
month name (Active Function)
year (Active Function)
clock_
convert_date_to_binary_
date_t ime_
decode_clock_value_

see data control word

debugging tools
change_error_mode
compare
compare_asc i i
debug

(continued)

EJ
Page 10

debugging tools
<continued)

display_component_name
dump_segment
hold
profile
progress
repr i nt_error
trace
trace_stack
stu_

decimal integers
convert_binary_integer_
see conversion

default error handling
6.5
change_error_mode
reprint_error
active_fnc_err_
see process interruption

default status messages
com_err_

default working directory
change_default_wdir
change_wdir
print_default_wdir
get_default_wdir_

deferred execution
see absentee usage

deleting
delete
delete_dir
deleteforce
terminate
unlink
delete_
hcs_$del_dir_tree
hcs_$delentry_file
hcs_$delentry_seg
term_
see address reuse
see cancelling
see canonicalization
see termination

MULTICS PROGRAMMERS' MANUAL

delimiters
4.2

descriptors
5.4
decode_descriptor_

desk calculators
calc
decam

device interface modules
see I/O system interface

dialing up
1.2

DIM
see I/O system interface

directories
3.1
1 is t
1 i s t name s (1 i s t)
listotals (list)
walk_subtree
see creating directories
see default working directory
see deleting
see directory entry names
see home directory
see 1 ibraries
see process directories
see protection
see root directory
see storage quotas
see storage system
see working directory

directory access modes
delete_iacl_dir
list_iacl_dir
set_i ac l_d i r
cv_dir_acl_
cv _d i r _mode_
hcs_$add_dir_acl_entries
hcs_$delete_dir_acl_entries
hcs_$list_dir_acl
hcs_$replace_dir_acl

MULTICS PROGRAMMERS' MANUAL

directory attributes
3.3
delete_iacl_dir
delete_iacl_seg
1 is t
listnames (list)
listotals (list)
1 i st_i acl_d i r
1 i s t_i ac l_seg
set_i ac l_d i r
set_i acl_seg
status
hcs_$add_acl_entries
hcs_$add_dir_acl_entries
hcs_$delete_acl_entries
hcs_$delete_dir_acl_entries
hcs_$list_acl
hcs_$list_dir_acl
hcs_$replace_acl
hcs_$replace_dir_acl
hcs_$star_
hcs_$status_
see protection

directory creation
see creating directories

directory deletion
see deleting

directory entries
see directories
see links
see segments

directory entry names
addname
deletename
entry (Active Function)
fs_chname
1 i s t
listnames (list)
listotals (list)
names
rename
status
strip_entry (Active Function)
suffix (Active Function)
\...,here

(continued)

B
Page 11

11/30/73

directory entry names
{continued}

check_star_name_
get_eQual_name_
hcs_$chname_file
hC5_$chname_seg
hcs_$fs_get_path_name
hcs_$star_
hcs_$status_
match_star_name_
suffixed_name_
see path names
see unique names

directory hierarchy
Section 3
3.5
copy
1 ink
move
status
unlink
walk_subtree
copy_acl_
copy_names_
see storage system

directory names
see default working directory
see directory entry names
see home directory
see process directories
see working directory

directory renaming
see directory entry names

directory restructuring
move
hcs_$fs_move_file
hcs_$fsJllove_seg

discarding output
discard_output_

disconnected processes
see absentee usage

Page 12

disconnections
see logging out

display terminals
4.5
see graphics
see terminals

diverting output
console_output
file_output
i oca 11
discard_output_
see 1/0 streams

dope
see descriptors

dumping segments
dump_segment

dynamic linking
3.2
term_
see address reuse
see linkage sections
see 1 ink i ng
see searching
see termination

e (enter)
see logging in

EBCDIC
5.2

editing
basic_system
edm
qedx

efficiency
see metering

element size
4.2

emergency logout
see logging out

MULTICS PROGRAMMERS' MANUAL

encoding
code
encipher_

end of file
see bit counts

enter
see logging in

enterp
see logging in

entries
see directories
see links
see segments

entry names
see directory entry names
see entry point names

entry point data
5.4

entry point names
pr i nt_l i nk_i nfo
hcs_$make_ptr
see linking

entry points
5.4

EOF

see interprocedure communication
see linking

see end of file

ep (enterp)
see logging in

EPL (obsolete)
see Ptll language

eplbsa (obsolete)
see alm

equal convention
check_star_name_

(continued)

MULTICS PROGRAMMERS' MANUAL

equal convention
(continued)

get_equal_name_
match_star_name

equals convention
1.5

erase characters
1.3

erasing
1.3
see canonicalization
see deleting

error codes
see status codes

error handling
Section 6
6.1
6.2
change_error_mode
reprint_error
active_fnc_err_
com_err_
command_query_
condition_
find_condition info_
reversion_
signal_
see debugging tools
see help

error messages
see status messages

error recovery
6.3
hold
progra~_interrupt
release
see cleanup tools
see debugging tools
see process interruption

error tables
see status tables

error_output
see 110 streams

error_table
see status codes

escape conventions
1.3
5.2

exec_com

EJ
Page 13

11/30/73

see active functions

existence checking
exists (Active Function)

expanded command line
see command processing

expression evaluators
calc
see desk calculators

external data
5.4

external symbols
print_link_info
make_object_map_
see interprocedure communication
see linking

faults
6.1
6.5
see conditions

fi le I/O
f i 1 e_

file mark
see bit counts
see magnetic tapes

f i 1 e s y s t erl
4.2
see storage system

Page 14

f i 1 es
5.3
fi le_
see I/O
see segments

fixed point data
5.4

floating point data
5.4

formats
5.5

formatted I/O
4.1
4.3

see conversion

formatted input
read_l i st_

formatted output
runoff
runoff_abs
ioa_
w r i t e_l i s t_

formatting character strings
format_line (Active Function)
string (Active Function)

FORTRAN
7.2
close_file
fortran
fortran_abs

free storage
see storage management

functions
see active functions
see procedures

gates
see protection

MULTICS PROGRAMMERS' MANUAL

generating calls
cu_
hcs_$make_ptr
see pointer generation

generating pointers
see pointer generation

graphic characters
see character codes

graphic terminals
see display terminals
see terminals

graphics
4.1
4.5
plot_
see display terminals

handling of unusual occurrences
Section 6
6.1

hardware registers
,debug

help
help
peruse_text

hierarchy
see directories

hierarchy searching
see searching

hold
see error recovery
see process interruption

home directory
home_dir (Active Function)
set_search_rules
user (Active Function)
user _info_
see default working directory

MULTICS PROGRAMMERS' MANUAL

I/O
Section 4
iocall
print
ioa_
inc:. -

see conversion
see formatted I/O

I/O (bulk)
see bulk I/O

I/O attachments
4.2
print_attach_table

I/O calls
4.3
ios_

I/O cleanup
close_file
see cleanup tools

I/O commands
console_output
dprint
dpunch
file_output
i oca 11
iomode
1 i ne_l ength

I/O daemon
see daemon

I/O errors
see I/O status

I/O facilities
4.1

I/O modes
4.2
iocall
iomode
ios_

I/O status
4.2
ios

I/O streams
4.2
iocal1
iomode
ios_
syn
see stream names

I/O switch
4.2
4.6
ios_
syn

I/O system flowchart
4.2

I/O system interface
4.2
4.3
4.6
ioeal1
iomode
1 jne_1ength
print_attach_tab1e
broadcast_
fi1e_
ios_
syn
tw_
see 10SIM

IBM 1050
see terminals

IBM 2741
see terminals

include files
2.2
3.2
pll

information
check_info_segs

(continued)

Page 15
11/30/73

Page 16

information
<continued}

help
make_peruse_text
peruse_text
who
see metering
see status

initial access control list
delete_iacl_dir
delete_iacl_seg
list_iacl_dir
1 ist_iacl_seg
set_iacl_dir
set_i ac l_seg
see protection

initial access control lists
3.3

initial ACl
see initial access control list

initialized segments
set_search_rules
see Known Segment Table

initiation
initiate
where
hcs_$initiate
hcs_$initiate_count
hcs_$make_ptr
hcs_$make_seg
see dynamic linking
see linking

input
ios_
read_l is t_
see 110

input conversion
see formatted 110

integer representation
convert_binarY_integer_

MULTICS PROGRAMMERS' MANUAL

interaction tools
answer
program_interrupt
command_query_
see debugging tools
see interactive 110

interactive 110
ioa_
read_l i st_
wr i te_l i st_

intermediate interface modules
see 110 system interface

interprocedure communication
see linking

interrupts
6.5
8.5
program_interrupt
see process interruption

intersegment linking
pr i nt_l i nk_i nfo
make_object_map_
see dynamic linking
see linking

interuser communication
rna i 1

10SIM
nstd_
tape_
see 110 system interface
see synonyms

. IDS 1M examp 1 e
4.6

iteration
index_set (Active Function)

Job Control Language
see command processing

MUlTles PROGRAMMERS' MANUAL

jobs
see absentee usage
see processes

keypunches
1~3

kill characters
1.3

kill i ng
see cancelling

Known Segment Table (KST)
3.1

KST
see Known Segment Table

1 (log in)
see logging in

labei data
5.4

languages
2.2
7.2
alm
apl
basic
bind
calc
debug
decam
edm
exec_com
fortran
1 i sp
lisp_compiler
pl1
qedx
runoff
runoff_abs
v5basic

length of arguments
cu_

length of segment
truncate

length of segments
adjust_bit_count
list
listnames (list)
1 i s to ta 1 s (1 i s t)
set_bit_count
status
adjust_bit_count_
decode_object_
hcs_$initiate_count
hcs_$set_bc
hcs_$star_
hcs_$status_
hcs_$truncate_file
hcs_$truncate_seg
see bit counts

libraries
3.1
3.2

EJ
Page 17

11/30/73

8.2
print_dartmouth_library
print_search_rules
set_dartmouth_library
set_search_dirs
set_search_rules

limited service systems
7.1
7.2

link attributes
3.3
list
1 istnames (1 ist)
listotals (list)
status
hcs_$star_
hcs_$status_

1 ink creation
see creating 1 inks

1 ink deletion
see deleting

Page 18

link names
see directory entry names

link renaming
see directory entry names

link resolution
hcs_$status_

Linkage Offset Table (LOT)
see dynamic linking
see linking

linkage sections
pr i nt_l i nk_i nfo
make_object_map_
see linking

linking
3.2
bind
1 ink
print_search_rules
set_search_dirs
set_search_rules
terminate
unlink
delete_
hcs_$make_ptr
see binding
see creating links
see dynamic linking

links
see linking

LISP
7.2
1 i sp
1 i sp_comp i I er

listener
1.3
cu_

listing
1 i s t
1 i s t name s (1 i s t)
1 i 5 tota 1 s (1 i s t >

(continued>

MULTICS PROGRAMMERS' MANUAL

listing
(continued)

print
see I/O
see storage system

loading
see binding
see linking

logging in
1.2
enter
login

logging out
1.2
logout

logical operations
1.9
and (Active Function)
not (Active Function)
or (Active Function)

login
see logging in

login directory
see default working directory
see logging in

login responder
user (Active Function)
user_info_

login time
user (Active Function)
user _i nfo_

login word
user (Active Fun~tion)
user_info_

logon
see logging in

logout
logout
see logging out

MULTICS PROGRAMMERS' MANUAL

LOT
see Linkage Offset Table

machine conditions
debug
trace_stack

machine languages
8.5
alm
debug

macros
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
abbrev
do
exec_com
qedx
see active functions
see command processing

magnetic tapes
5.3
8.4
nstd_
tape_

rna i 1
see interuser communication

mail box checking
rna i 1

main program
see procedures
see programming environment

making known
see initiation

making unknown
see termination

maps
print_Dind_map
make_object_map_

maximum length
3.3

maximum line length
1 i ne_l ength

mcc
see punched cards

mcc cards
4.4

message of the day
print_motd

messages
see I/O
see status messages

metering
2.6
page_trace
print_linkage_usage
profi le

8
Page 19

11/30/73

progress
resource_usage
cpu_time_and_paging_
hcs_$status_
timer_manager_
tota l_cpu_t i me_

MIX
7.2

modes
3.4
4.2
see protection
see status

modifying segments
debug

mon i to ring
see metering

Page 20

moving names
move_names_
see directory entry names

moving quotas
see storage quotas

moving segments
move
hcs_$fs_move_file
hcs_$fs_move_seg

Multics card code
4.4
5.2
see punched cards

multiple device I/O
see broadcasting

multiple names
see directory entry names

multisegment files
3.5
see I/O

name copying
copy_names_
see directory entry names

name space
see address space

names
1.5
see address space
see directory entry
see path names

naming
see directory entry

naming conventions
1.5
8.1

names

names

see directory entry names

MULTICS PROGRAMMERS' MANUAL

nonlocal gotos
6.3

notes
memo

number conversion
see conversion

object segments
5.5
bind
print_bind_map
decode_object_
make_object_map_
see linkage sections

obsolete procedures
8.3

octal dumping of segments
debug
dump_segment

octa 1 integers
alm
debug
decam
convert_binary_integer_
cv_oct_
see conversion

offline
see bulk I/O

offset data
5.4

offset names
1.5
decode_entryname_

opening files
see initiation

output
4.4
dprint
dpunch

<continued>

MULTICS PROGRAMMERS' MANUAL

output
(continued)

f i 1 e_output
print
discard_output_
i05_
wr j te_l i st_
see I/O

output conversion
see formatted I/O

output line length
see terminal line length

P
see interprocess communication

packing
see archiving
see binding

page faults
page_trace

pages used
see metering
see records used

paging
see storage system

parameters
see argument lists

parentheses
see command language

pa r i ty
8.5

parsing
parse_file_

passwords
see logging in

path names
1.5

(continued)

path names
(continued)

3.1

a
Page 21

11/30/73

directory (Active Function)
get-pathname (Active Function)
home_dir (Active Function)
initiate
1 i s t
listnames (iist)
1 i s tota 1 s (1 is t)
list_ref_names
path (Active Function)
pd (Active Function)
print_default_wdir
print_wdir
strip (Active Function)
wd (Active Function)
where
check_star_name_
decode_entryname_
expand_path_
get_equal_name_
get_pdir_
get_wdi r_
hcs_$fs~et-path_name
hcs_$initiate
hcs_$initiate_count
hcs_$make_seg
hcs_$star_
hcs_$status_
hcs_$truncate_file
match_star_name_
suffixed_name_
see linking

permit list
see protection

PL/I
close_file

PL/ I 1 anguage
pl1
pl1_abs

pointer conversion
hcs_$fs~et_path_name
hcs_$fs~et_ref_name

Page 22

pointer data
5.4

pointer generation
cu_
hcs_$fs-&et_seg_ptr
hcs_$initiate
hcs_$initiate_count
hcs_$make_ptr
hcs_$make_seg

'printer
see bulk I/O

printing
4.1
4.4
dprint
dump_segment
print

procdef
see command processing

procedures
2.1

process creation
see creating processes

process data segment
3.1

process directories
3.1
pd (Active Function)
set_search_rules
get_pd i r_
hcs_$make_seg

process groups
get-&roup_id_

process identifiers
get_process_id_

process information
user (Active Function)
user _i nfo_
see metering

MULTICS PROGRAMMERS' MANUAL

Process Initialization Table (PIT)
3.1

process interruption
6.2
hold
program_interrupt
release
start
timer_manager_
see conditions

process termination
logout
new_proc
see logging out

process_dir_dir
3.1

processes
new_proc
see absentee usage
see logging in
see logging out

program interruption
see process interruPtion

program_interrupt
see process interruption

programming environment
Section 2

programming languages
see languages

programming standards
2.5

programming style
2.5

project names
1.1
user (Active Function)
who
user_info_

MULTICS PROGRAMMERS' MANUAL

protection
3.4
delete_iacl_dir
delete_iacl_seg
deleteacl
deletecacl (deleteacl)
1 ist_iacl_dir
list_iacl_seg
listacl
listcacl (listacl)
set_iacl_dir
set_iacl_seg
setacl
setcacl (setacl)
copy_acl_
cv_acl
cv_di r_acl_
cv_d i r _mode_
c v_mo de_
cv_user i d_
hcs_$add_acl_entries
hcs_$add_dir_acl_entries
hcs_$delete_acl_entries
hcs_$delete_dir_acl_entries
hcs_$fs_get_mode
hcs_$list_acl
hcs_$list_dir_acl
hcs_$replace_acl
hcs_$replace_dir_acl
see access control list

pseudo-device
4.2

punched cards
4.1
4.4
5.2
dpunch
see bulk I/O

quits
see process interruption

quitting
see process interruption

quotas
resource_usage
see storage quotas

quoted strings

Page 23
11/30/73

see command language

radix conversion
decam
see conversion

random number generators
random_

raw
see punched cards

read-ahead
4.2
ios_

reading cards
4.1
see bulk I/O
see punched cards

ready messages
1.2
ready
ready_off
ready_on
cu_

real data
5.4

record quotas
see storage quotas

redirecting output
console_output
file_output
see 110 streams
see output

reference names
1.5
get_pathname (Active Function)
initiate
list_ref_names
where
decode_entryname_
expand_path_

{continued>

Page 24

reference names
(continued)

hcs_$fs-&et_ref_name
hcs_$fs-8et_seg_ptr
hcs_$initiate
hcs_$initiate_count
hcs_$make_ptr
hcs_$make_seg
hcs_$terminate_file
hcs_$terminate_name
hcs_$terminate_noname
hcs_$terminate_seg
term_

referencing_dir
set_search_rules

rel_l ink
see binding

reI_symbol
see binding

reI_text
see binding

relative path names
expand_path_
see path names

relative segments
see termination

release
see error recovery
see process interruption

reminders
memo

remote devices
see terminals

removing segments
see deleting
see termination

renaming
see directory entry names

MULTICS PROGRAMMERS' MANUAL

reserved characters
5.2
see command language

reserved names
6.5
8.1
8.2

reserved segment numbers
hcs_$initiate
hcs_$terminate_file
hcs_$terminate_seg

resource limits
resource_usage
see accounting
see metering
see storage quotas

resource usage
resource_usage

restarting
start

retrieval
3.5

ring brackets
see protection

rings
see protection

root directory
3.1

runtime
see programming environment

runtime storage management
see storage management

safety switch
3.3
safety_sw_off
safety_sw_on

MULTICS PROGRAMMERS' MANUAL

scratch segments
see temporary segments

SOB
see Stream Data Block

search rules
3.2
change_defau1t_wdir
change_wdir
print_defau1t_wdir
print_wdir
set_search_dirs
set_search_ru1es
where
change_wdir_
get_wd i r_
hcs_$make_ptr
see default working directory
see working directory

searching
hcs_$fs_get_path_name
hcs_$make_ptr
see dynamic linking
see search rules

secondary storage device
3.3

segment access modes
de1ete_iac1_seg
1 i st_i ac1_seg
set_i ac l_seg
cv_ac1_
cv_mode_
hcs_$add_ac1_entries
hcs_$de1ete_ac1_entries
hcs_$list_ac1
hcs_$rep1ace_ac1

segment addressing
see pointer generation

segment attributes
3.3
deleteacl
1 i s t
1 istnames (1 ist)

{continued>

segment attributes
(continued)

1istotals (list)
1istac1
safety_sw_off

setac1
status
hcs_$set_bc
h cs_$ se t_bc_seg
hcs_$star _
hcs_$status_

Page 25
11/30/73

see length of segments
see protection

segment copying
see copying

segment creation
see creating segments

segment deletion
see deleting

segment formats
5.5

segment formatting
indent
make_peruse_text

segment initiation
see initiation

segment length
see length of segments

segment name operations
1.12
pd (Active Function)

segment names
1.5
8.1
see directory entry names

segment numbers
1ist_ref_names

Page 26

segment packing
see archiving
see binding

segment referencing
see initiation
see linking
see pointer generation

segment renaming
see directory entry names

segment termination
see termination

segment truncation
see truncation

segments
5.3
see creating segments
see deleting
see directory entry names
see initiation
see length of segments
see protection
see storage system
see temporary segments
see termination

semaphores
see interprocess communication

setting bit counts
see bit counts

seven-punch cards
4.4
dpunch
see punched cards

shriek names
see unique strings

signals
see conditions

simulation
random_

MUlTICS PROGRAMMERS' MANUAL

sleeping
timer_manager_

snapping links
see dynamic linking

sort i ng
archive_sort
reorder_archive
sort_f i 1 e

space saving
see archiving
see binding

special characters
1.3
see character codes

special sessions
see logging in

special subsystems
Section 7

specifiers
see descriptors

spool ing
see bul k I/O

stack frame pointer
cu_

stack frames
debug
trace_stack

stack referencing
debug
trace_stack
cu_

stack segment
3.1

stacks
see stack frames
see stack segments

MULTICS PROGRAMMERS' MANUAL

Standard Data Formats and Codes
Section 5

standard tape formats
see magnetic tapes

standards
2.5

star convention
1.5
fs_chname
check_star_name_
get_equa1_name_
hcs_$star_
match_star_name_

start
see error recovery
see process interruption

start up
1.2
exec_com
see logging in

start_up.ec
see start up

static linking
see binding
see linkage sections
see linking

static storage
new_proc
see storage management

status
check_info_segs
help
how_many_users
1 is t
1 i s tnames (1 i s t)
1 istotals (1 ist)
list_abs_requests
list_daemon_requests
peruse_text
status

(continued)

status
(continued)

who
hcs_$star_
hcs_$status_
see 110 status

status codes
4.2
6.1
6.4
com_err _
unpack_system_code_

EJ
Page 27

11/30/73

see I/O system interface

status formats
4.2

status messages
6.4
reprint_error
active_fnc_err_
com_err_
command_query_

status tables
6.4

storage allocation
see storage management

storage hierarchy
see directories
see storage system

storage management
see address reuse
see archiving
see deleting
see directories
see I/O
see length of segments
see segments
see storage quotas

storage quotas
getquota
movequota

EJ
Page 28

storage system
Section 3
4.2
see directory hierarchy

storage system I/O
4.3
console_output
file_output

Stream Data Block (SOB)
4.6
see I/O system interface

stream names
1.5
8.1

streams
see I/O streams

structure data
5.4

subroutines
2.1
Section 10
see procedures

subsystems
1.2
Section 7
7.2
see languages

suffixes
8.1
strip (Active Function)
strip_entry (Active Function)
suffix (Active Function)
suffixed_name_

symbol tables
stu_

symbolic debugging
debug
stu_
see debugging tools

MULTICS PROGRAMMERS' MANUAL

synchronization
4.2
ios_
see interprocess communication

synonyms
syn
see directory entry names
see I/O system interface

syntax analysis
parse_file_

system libraries
3.1
see 1 ibraries
see search rules

system load
how_many_users
who

system status
help
how_many_users
list_abs_requests
page_trace
peruse_text
print_motd
who

system_control_dir
3.1

system_library_standard
3.1

tapes
see magnetic tapes

teletype model 33,35,37,38
see terminals

temporary files
see temporary segments

MULTICS PROGRAMMERS' MANUAL

temporary segments
hcs_$make_seg
un i que_chars_
see process directories
see storage management
see unique names

temporary storage
see process directories
see storage management
see temporary segments

terminal line length
1 i ne_l ength

terminals
1.2
1.3
4.1
console_output
1 i ne_l ength
set_com_l i ne
user (Active Function)
read_list_
tw_
user_info_
w r i t e_l i 5 t_
see I/O

terminating processes
see process termination

termi nat i on
logout
new_proc
terminate
hcs_$terminate_file
hcs_$terminate_name
hcs_$terminate_noname
hcs_$terminate_seg
term_
see cancelling
see process termination

text editing
see editing

text formatting
runoff
runoff_abs

text scanning
compare_ascii
parse_file_

text sorting
see sorting

time
2.6

Page 29
11/30/73

date_time (Active Function>
hour (Active Function)
minute (Active Function)
time (Active Function)
clock_
convert_date_to_binary_
date_time_
decode_clock_value_
timer_manager_
see metering

transfer vector
4.6

translators
see languages

traps
see faults

truncation
truncate
hcs_$truncate_file
hcs_$truncate_seg

type conversion
see conversion

typing conventions
1.3
abbrev
see canonicalization

udd

unique identifiers
3.3

Page 30

unique names
hcs_$make_seg

unique strings
unique (Active Function)
unique_bits_
unique_chars_

unlinking
un link
delete_
see deleting
see termination

unsnapping
terminate_refname (terminate)
terminate_segno (terminate)
terminate_single_refname

term_
see termination

unsnapping links
see termination

unwinding
6.3

usage data

{terminate

user (Active Function)
user_info_
see metering

usage measures
see metering

useless output
program_interrupt
discard_output_

user names
1.1
3.4
user (Active Function)
who
cv_userid_
user_info_

user parameters
1.15
user {Active Function>

MULTICS PROGRAMMERS' MANUAL

user weight
user {Active Function}
user _i nfo_

user_dir_dir
3.1

user_i/o
see I/O streams
see terminals

user_input
see I/O streams

user_output
see I/O streams

users
how_many_users
\f/ho

v
see interprocess communication

validation level
cu_
see protection

variable length argument 1 ist
cu_

varying string data
5.4

VII-punch cards
see seven-punch cards

virtual memory
see directory hierarchy
see storage system

waiting
2.6
timer_manager_

wakeups
2.6
timer_manager_

MULTICS PROGRAMMERS' MANUAL

wdir
see working directory

\'10 r kin g d ire c tor y
change_wdir
print_search_rules
pr i nt_\lJd i r
set_search_rules
walk_subtree
wd (Active Function)
change_wd i r _
expand_path_
get_wdir_
see default working directory

working set
page_trace

workspace
4.2
ios_

wr i te-beh i nd
4.2
ios_

writing to multiple I/O streams
see broadcasting

Page 31
11/30/73

(END)

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	01-01.01
	01-01.02
	01-01.03
	01-01.04
	01-01.05
	01-01.06
	01-01.07
	01-01.08
	01-02.01
	01-02.02
	01-02.03
	01-02.04
	01-02.05
	01-02.06
	01-02.07
	01-02.08
	01-02.09
	01-02.10
	01-02.11
	01-02.12
	01-03.01
	01-03.02
	01-03.03
	01-03.04
	01-03.05
	01-03.06
	01-03.07
	01-03.08
	01-04.01
	01-04.02
	01-04.03
	01-04.04
	01-04.05
	01-04.06
	01-04.07
	01-04.08
	01-05.01
	01-05.02
	01-05.03
	01-05.04
	01-05.05
	01-05.06
	01-05.07
	01-05.08
	01-05.09
	01-05.10
	01-05.11
	01-05.12
	01-06.01
	01-06.02
	01-06.03
	01-08.01
	01-08.02
	01-09.01
	01-09.02
	01-09.03
	01-09.04
	01-10.01
	01-10.02
	01-10.03
	01-11.01
	01-11.02
	01-11.03
	01-11.04
	01-12.01
	01-12.02
	01-12.03
	01-12.04
	01-12.05
	01-12.06
	01-13.01
	01-13.02
	01-13.03
	01-13.04
	01-14.01
	01-14.02
	01-15.01
	01-15.02
	01-15.03
	02-01.01
	02-01.02
	02-01.03
	02-01.04
	02-01.05
	02-01.06
	02-01.07
	02-01.08
	02-02.01
	02-02.02
	02-05.01
	02-05.02
	02-05.03
	02-05.04
	02-05.05
	02-05.06
	02-05.07
	02-05.08
	02-05.09
	02-05.10
	02-05.11
	02-05.12
	02-06.01
	02-06.02
	02-06.03
	03-01.01
	03-01.02
	03-01.03
	03-01.04
	03-02.01
	03-02.02
	03-02.03
	03-03.01
	03-03.02
	03-03.03
	03-03.04
	03-03.05
	03-04.01
	03-04.02
	03-04.03
	03-04.04
	03-04.05
	03-04.06
	03-04.07
	03-04.08
	03-04.09
	03-05.01
	03-06.01
	03-06.02
	03-06.03
	03-06.04
	03-06.05
	03-06.06
	04-01.01
	04-01.02
	04-01.03
	04-02.01
	04-02.02
	04-02.03
	04-02.04
	04-02.05
	04-02.06
	04-02.07
	04-02.08
	04-02.09
	04-02.10
	04-02.13
	04-02.14
	04-02.15
	04-03.01
	04-03.02
	04-03.03
	04-04.01
	04-04.02
	04-04.03
	04-04.04
	04-04.05
	04-05.01
	04-05.02
	04-05.03
	04-05.04
	04-06.01
	04-06.02
	04-06.03
	04-06.04
	04-06.05
	04-06.06
	04-06.07
	04-06.08
	05-01.01
	05-01.02
	05-01.03
	05-01.04
	05-01.05
	05-01.06
	05-02.01
	05-02.02
	05-02.03
	05-02.04
	05-02.05
	05-02.06
	05-02.07
	05-02.08
	05-02.09
	05-02.10
	05-02.11
	05-02.12
	05-02.13
	05-02.14
	05-03.01
	05-03.02
	05-03.03
	05-03.04
	05-03.05
	05-04.01
	05-04.02
	05-04.03
	05-04.04
	05-04.05
	05-04.06
	05-04.07
	05-04.08
	05-05.01
	05-05.02
	05-05.03
	06-01.01
	06-01.02
	06-01.03
	06-01.04
	06-02.01
	06-02.02
	06-02.03
	06-02.04
	06-02.05
	06-02.06
	06-02.07
	06-02.08
	06-02.09
	06-02.10
	06-02.11
	06-02.12
	06-03.01
	06-04.01
	06-04.02
	06-04.03
	06-04.04
	06-04.05
	06-04.06
	06-04.07
	06-04.08
	06-04.09
	06-04.10
	06-04.11
	06-04.12
	06-04.13
	06-04.14
	06-04.15
	06-04.16
	06-04.17
	06-04.18
	06-04.19
	06-04.20
	06-04.21
	06-04.22
	06-04.23
	06-04.24
	06-04.25
	06-04.26
	06-04.27
	06-04.28
	06-04.29
	06-04.30
	06-04.31
	06-04.32
	06-04.33
	06-05.01
	06-05.02
	06-05.03
	06-05.04
	06-05.05
	06-05.06
	06-05.07
	06-05.08
	06-05.09
	06-05.10
	06-05.11
	06-05.12
	06-05.13
	06-05.14
	06-05.15
	06-05.16
	06-05.17
	06-05.18
	06-05.19
	06-05.20
	06-05.21
	06-05.22
	06-05.23
	06-05.24
	06-05.25
	06-05.26
	06-05.27
	06-05.28
	06-05.29
	06-05.30
	06-05.31
	06-05.32
	07-01.01
	07-02.01
	07-02.02
	07-02.03
	07-02.04
	07-02.05
	08-01.01
	08-01.02
	08-01.03
	08-01.04
	08-01.05
	08-02.01
	08-02.02
	08-02.03
	08-03.01
	08-03.02
	08-03.03
	08-03.04
	08-03.05
	08-03.06
	08-03.07
	08-04
	08-05.01
	08-05.02
	08-05.03
	08-05.04
	09-000
	09-001.01
	09-001.02
	09-001.03
	09-001.04
	09-001.05
	09-002
	09-003
	09-004.01
	09-004.02
	09-004.03
	09-004.04
	09-004.05
	09-004.06
	09-004.07
	09-004.08
	09-004.09
	09-004.10
	09-004.11
	09-004.12
	09-004.13
	09-004.14
	09-004.15
	09-004.16
	09-005.01
	09-005.02
	09-006.01
	09-006.02
	09-007
	09-008.01
	09-008.02
	09-008.03
	09-008.04
	09-008.05
	09-008.06
	09-009
	09-010.01
	09-010.02
	09-011
	09-012.01
	09-012.02
	09-013.01
	09-013.02
	09-013.03
	09-013.04
	09-013.05
	09-013.06
	09-013.07
	09-013.08
	09-013.09
	09-014.01
	09-014.02
	09-014.03
	09-015.01
	09-015.02
	09-016.01
	09-016.02
	09-017
	09-018
	09-019
	09-020.01
	09-020.02
	09-020.03
	09-021
	09-022
	09-023.01
	09-023.02
	09-024
	09-025
	09-026
	09-027
	09-028.01
	09-028.02
	09-028.03
	09-028.04
	09-028.05
	09-028.06
	09-028.07
	09-028.08
	09-028.09
	09-028.10
	09-028.11
	09-028.12
	09-028.13
	09-028.14
	09-028.15
	09-028.16
	09-028.17
	09-028.18
	09-028.19
	09-028.20
	09-028.21
	09-028.22
	09-028.23
	09-028.24
	09-028.25
	09-028.26
	09-028.27
	09-028.28
	09-028.29
	09-028.30
	09-029.01
	09-029.02
	09-029.03
	09-030
	09-031
	09-032.01
	09-032.02
	09-033.01
	09-033.02
	09-034.01
	09-034.02
	09-035
	09-036
	09-037
	09-038.01
	09-038.02
	09-038.03
	09-038.04
	09-039.01
	09-039.02
	09-040.01
	09-040.02
	09-040.03
	09-041.01
	09-041.02
	09-042.01
	09-042.02
	09-042.03
	09-042.04
	09-042.05
	09-042.06
	09-042.07
	09-042.08
	09-042.09
	09-042.10
	09-042.11
	09-043
	09-044.01
	09-044.02
	09-045.01
	09-045.02
	09-045.03
	09-045.04
	09-045.05
	09-046.01
	09-046.02
	09-046.03
	09-046.04
	09-046.05
	09-046.06
	09-046.07
	09-046.08
	09-047.01
	09-047.02
	09-048.01
	09-048.02
	09-048.03
	09-048.04
	09-048.05
	09-048.06
	09-048.07
	09-049.01
	09-049.02
	09-050.01
	09-050.02
	09-051
	09-052
	09-053.01
	09-053.02
	09-053.03
	09-054.01
	09-054.02
	09-055.01
	09-055.02
	09-056.01
	09-056.02
	09-057.01
	09-057.02
	09-057.03
	09-057.04
	09-057.05
	09-058
	09-059
	09-060
	09-061.01
	09-061.02
	09-061.03
	09-061.04
	09-061.05
	09-061.06
	09-062.01
	09-062.02
	09-063.01
	09-063.02
	09-063.03
	09-064.01
	09-064.02
	09-065.01
	09-065.02
	09-066.01
	09-066.02
	09-067.01
	09-067.02
	09-068.01
	09-068.02
	09-069
	09-070.01
	09-070.02
	09-070.03
	09-071
	09-072.01
	09-072.02
	09-073.01
	09-073.02
	09-073.03
	09-074.01
	09-074.02
	09-074.03
	09-074.04
	09-074.05
	09-075
	09-076
	09-077
	09-078
	09-079.01
	09-079.02
	09-080.01
	09-080.02
	09-080.03
	09-080.04
	09-080.05
	09-080.06
	09-080.07
	09-080.08
	09-080.09
	09-081.01
	09-081.02
	09-081.03
	09-081.04
	09-081.05
	09-081.06
	09-082.01
	09-082.02
	09-083.01
	09-083.02
	09-084
	09-085
	09-086
	09-087
	09-088
	09-089
	09-090
	09-091
	09-092
	09-093.01
	09-093.02
	09-093.03
	09-094
	09-095.01
	09-095.02
	09-095.03
	09-096.01
	09-096.02
	09-096.03
	09-096.04
	09-096.05
	09-096.06
	09-096.07
	09-096.08
	09-096.09
	09-096.10
	09-096.11
	09-096.12
	09-096.13
	09-096.14
	09-096.15
	09-096.16
	09-096.17
	09-096.18
	09-096.19
	09-096.20
	09-096.21
	09-096.22
	09-096.23
	09-096.24
	09-096.25
	09-096.26
	09-096.27
	09-096.28
	09-096.29
	09-096.30
	09-096.31
	09-096.32
	09-097
	09-098
	09-099
	09-100
	09-101
	09-102.01
	09-102.02
	09-103.01
	09-103.02
	09-104.01
	09-104.02
	09-104.03
	09-105.01
	09-105.02
	09-105.03
	09-105.04
	09-105.05
	09-105.06
	09-105.07
	09-105.08
	09-105.09
	09-105.10
	09-105.11
	09-105.12
	09-105.13
	09-105.14
	09-105.15
	09-105.16
	09-105.17
	09-105.18
	09-105.19
	09-105.20
	09-105.21
	09-105.22
	09-105.23
	09-105.24
	09-105.25
	09-105.26
	09-106.01
	09-106.02
	09-107
	09-108
	09-109
	09-110
	09-111
	09-112.01
	09-112.02
	09-113.01
	09-113.02
	09-114
	09-115
	09-116.01
	09-116.02
	09-117
	09-118
	09-119.01
	09-119.02
	09-119.03
	09-120.01
	09-120.02
	09-121.01
	09-121.02
	09-122
	09-123
	09-124.01
	09-124.02
	09-125.01
	09-125.02
	09-125.03
	09-126
	09-127.01
	09-127.02
	10-000
	10-001
	10-002
	10-003.01
	10-003.02
	10-003.03
	10-004
	10-005.01
	10-005.02
	10-006
	10-007.01
	10-007.02
	10-008.01
	10-008.02
	10-009
	10-010.01
	10-010.02
	10-011.01
	10-011.02
	10-011.03
	10-011.04
	10-011.05
	10-012
	10-013
	10-014.01
	10-014.02
	10-015
	10-016.01
	10-016.02
	10-016.03
	10-016.04
	10-016.05
	10-016.06
	10-016.07
	10-016.08
	10-016.09
	10-016.10
	10-017
	10-018.01
	10-018.02
	10-019
	10-020
	10-021
	10-022
	10-023
	10-024
	10-025
	10-026
	10-027
	10-028.01
	10-028.02
	10-028.03
	10-029
	10-030.01
	10-030.02
	10-031
	10-032
	10-033.01
	10-033.02
	10-034.01
	10-034.02
	10-034.03
	10-035.01
	10-035.02
	10-036
	10-037.01
	10-037.02
	10-038
	10-039
	10-040
	10-041
	10-042.01
	10-042.02
	10-043.01
	10-043.02
	10-044.01
	10-044.02
	10-045.01
	10-045.02
	10-046
	10-047.01
	10-047.02
	10-048.01
	10-048.02
	10-049
	10-050
	10-051
	10-052.01
	10-052.02
	10-053
	10-054
	10-055
	10-056
	10-057
	10-058.01
	10-058.02
	10-059
	10-060.01
	10-060.02
	10-061.01
	10-061.02
	10-062
	10-063
	10-064.01
	10-064.02
	10-065
	10-066.01
	10-066.02
	10-067
	10-068
	10-069
	10-070.01
	10-070.02
	10-070.03
	10-070.04
	10-070.05
	10-070.06
	10-071.01
	10-071.02
	10-071.03
	10-071.04
	10-071.05
	10-071.06
	10-072
	10-073
	10-074
	10-075
	10-076
	10-077
	10-078.01
	10-078.02
	10-078.03
	10-078.04
	10-078.05
	10-078.06
	10-078.07
	10-079.01
	10-079.02
	10-079.03
	10-079.04
	10-079.05
	10-079.06
	10-079.07
	10-079.08
	10-079.09
	10-079.10
	10-080
	10-081.01
	10-081.02
	10-082.01
	10-082.02
	10-082.03
	10-082.04
	10-082.05
	10-083.01
	10-083.02
	10-083.03
	10-083.04
	10-083.05
	10-084.01
	10-084.02
	10-084.03
	10-084.04
	10-084.05
	10-085.01
	10-085.02
	10-085.03
	10-085.04
	10-085.05
	10-086.01
	10-086.02
	10-086.03
	10-086.04
	10-086.05
	10-086.06
	10-086.07
	10-086.08
	10-086.09
	10-087.01
	10-087.02
	10-087.03
	10-087.04
	10-088
	10-089
	10-090.01
	10-090.02
	10-090.03
	10-090.04
	10-090.05
	10-090.06
	10-090.07
	10-090.08
	10-090.09
	10-090.10
	10-090.11
	10-090.12
	10-091.01
	10-091.02
	10-091.03
	10-092.01
	10-092.02
	10-093.01
	10-093.02
	10-093.03
	10-093.04
	10-094.01
	10-094.02
	10-094.03
	10-095.01
	10-095.02
	10-095.03
	10-095.04
	10-095.05
	10-096
	10-097.01
	10-097.02
	10-097.03
	10-097.04
	10-097.05
	10-097.06
	10-098
	10-099
	10-100
	10-101.01
	10-101.02
	10-101.03
	10-101.04
	10-101.05
	10-101.06
	10-102.01
	10-102.02
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18
	Index-19
	Index-20
	Index-21
	Index-22
	Index-23
	Index-24
	Index-25
	Index-26
	Index-27
	Index-28
	Index-29
	Index-30
	Index-31

