```
                        List of Contents
    Multics Programmers' Manual
Installation-Maintained Library
        7/11/74
```


## Commands

| $8 / 21 / 72$ | bmd |
| :--- | :--- |
| $4 / 18 / 72$ | convert_360_fortran |
| $7 / 11 / 74$ | list_help |
| $1 / 27 / 72$ | online_consultant |
| $2 / 5 / 73$ | trouble_report |

Subroutines

| 10/30/72 | forssp |
| :--- | :--- |
| 9/20/71 | plssp |

Name: bmd

Twelve of the $B M D$ (BioMeDical) programs are available on Multics. They are statistical routines developed by the UCLA Health Sciences Computing Facility and written in Fortran IV. Complete instructions for usage of the programs are available in "Biomedical Computer Programs," edited by W. J. Dixon, University of California Publications in Automatic Computation, No.2. Berkeley: University of California Press, 1971. This memo contains a list of the routines available and a brief description of each one.

The programs are in ">libraries>bmd," and this must be in the user's search path (i.e., enter the command "ssd >libraries>bmd").

## Usage:

bmdxxx
where $x x x$ is the particular routine desired.
Input for the routine, both control cards and data as described in the BMD manual, must be in a file called "file07". The control cards must be in the fixed format the manual specifies. Keywords in control cards, such as "PROBLM," must be in all lower case letters, rather than upper case as the manual describes. The user may wish to keep the control cards in a separate file from the data. In this case, merge the data into the proper place in the control file using the merge subcommand of edm before execution. Errors in input of this file by the BMD programs may result if the file is not closed, so the user must be sure the file is properly closed before execution of any BMD program.

```
bmd
```

MULTICS PROGRAMMERS' MANUAL

Page 2

Several of the routines create scratch files as they run. The user should be careful not to have files with these names. After the program is finished these scratch files should be deleted. The routines with scratch files and the names of the files are:

| bmd02d | file01 |
| :--- | :--- |
| bmd03m | file03 |
| bmd02r file02 |  |
| bmd06s | file01, file file01, file02, file 03 |

The following table lists the routines available:
bmdold Simple Data Description--computes simple averages and measures of dispersion of variables.
bmd02d Correlation with Transgeneration--computes simple correlation coefficients, averages, and measures of dispersion on entering or transgenerated variables from selected cases.
bmd03d Correlation with Item Deletion--computes correlation matrix, ommitting specified values of variables. The punch card option is not available.
bmd07d Description of Strata with Histograms--groups data and prints histograms for each variable; means, standard deviations, and correlation coefficients are computed for each group.
bmd08d Cross-Tabulation with Variable Stacking--computes two way frequency tables of integer data.
bmd03m General Factor Analysis--performs a principal component solution and an orthogonal rotation of the factor matrix.
bmd05m Discriminant Analysis for Several Groups--computes a set of linear functions to classify cases into groups.
bmd02r Stepwise Regression--computes a sequence of multiple linear regression equations in a stepwise manner.
bmd06s This program performs Guttman Scale analysis. bmd07s and bmd08s have been made subroutines of bmd06s. The punch card option is not available. The first line in the data file should be as follows:

Col. 17 if the program should continue with bmd07s, otherwise 0 to stop after bmd06s.

Col. 28 if the program should continue with bmd08s, otherwise 0 to stop after bmd07s.

The next line of data should be the PROBLM card as described in the BMD manual.
bmd02t Autocovariance and Power Spectral Analysis--computes autocovariance, power spectrum, cross-covariance, cross-spectrum, transfer function, and coherence function of time series.

Name: convert_360_fortran, c360f
This command converts an IBM FORTRAN IV program as read in by the Multics card reader to a form acceptable to the Multics FORTRAN compiler.

## Usage:

convert_360_fortran pathl path2
Pathl is the path or entry name of the segment to be converted. This segment name must end in the suffix ". FORTRAN", but the suffix need not be typed in the command. path2 is optional and, if supplied, is the name of the resulting converted segment. This name must have the suffix ".fortran", but, again, the suffix need not be typed. If path2 is omitted, the output segment will have the same name as the input, except that the suffix will be changed from ". FORTRAN" to ".fortran".

## Operation:

convert 360 fortran makes the following changes to the input segment to produce the output segment:

1) All upper case letters appearing outside of literals of commentary are changed to lower case.
2) All single quotes (') appearing outside of literals are changed to double quotes ("). Pairs of single quotes appearing in literals delimited by single quotes are changed to one single quote; double quotes appearing in such literals are replicated. Single quotes appearing in literals delimited by nH are not changed.
3) Trailing blanks and the contents of what were card columns 73-80 are eliminated. Trailing blanks which are a part of a literal are preserved.
4) The card continuation convention is changed to the Multics continuation convention.

MULTICS PROGRAMMERS' MANUAL
Page 2
5) All declaration statements are moved to a position in the segment immediately following the program header, if any. As a result, only comments, SUBROUTINE, FUNCTION and BLOCK DATA statements will precede them. The statements moved are: INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, DIMENSION, and COMMON.

The effect of this is to ensure that DATA and EQUIVALENCE statements appear in the position required by MULTICS FORTRAN, that is, following the above statements. For purposes or rearrangement, commentary is assumed to be associated with the next following non-comment line.
6) Length specifications in declarations are removed. REAL*8 is changed to "double precision."

## Restrictions:

convert _360 fortran makes no claim to translate all the incompatibilities between IBM FORTRAN IV and Multics FORTRAN; it does only those translations specifically listed above. Suggestions for additional translations will be considered.

The continuation convention translation is effected in most cases simply be deleting the continuation character on the input card image. When a literal crossing card boundaries is encountered, the two card images are combined in a single line so that the literal is acceptable to Multics FORTRAN. This is the only case where this is done, therefore programs which have variables or keywords or operators broken across card boundaries will not be translated effectively.

It should be noted that a program which contains statements unnecessarily continued on additional cards may be translated incorrectly. Specifically, a statement must be classifiable on its first card (e.g., the equals sign of an assignment statement must occur on the first card).

Also note that the conversion from REAL*8 is not rigorous. REAL*8 XX, YY becomes "double precision $x x$, yy"; REAL FUNCTION ZZ*8 becomes "double precision function zz "; but REAL XX, YY*8, ZZ*4 becomes "real xx, Yy, zz."

Names: list_help,lh
The list help command may be used to find help (info) files on specified $\begin{aligned} & \text { topics. }\end{aligned}$

Usage: list_help argl ... argn
All arguments which are not control arguments are taken as "topics" to be searched for. All files whose names contain one of the topics will be listed.

Control arguments:

| -all | list the names of all help files <br> rather than looking for topics |
| :--- | :--- |
| -brief | list primary names only |

Examples:
To print the names of files on fortran: list help fortran
To look for lisp and macsyma: Ih lisp macsyma
To list all info files in $>u d d>A>B$ : $\quad$ lh $-p n>u d d>A>B-a l l$

## Notes:

1) The default directories to be searched are:

$$
\begin{aligned}
& \text { >documentation>info segments } \\
& \text { >documentation>iml_Info_segments }
\end{aligned}
$$

2) The names of help (info) files always end with ".info", but list help does not print this suffix, nor is it specified wher. printing the contents of a file using the help command.

Name: online_consultant, olc
This experimental command allows a user to type a message at his terminal which will be transmitted to a logged-in IPC staff member immediately. The staff member may then reply to the user via the "ipc_message_facility."

An IPC staff member is scheduled to be logged in every weekday between the hours of $2 \mathrm{p} . \mathrm{m}$. and $5 \mathrm{p} . \mathrm{m}$. This schedule will be modified if user demand and personnel availability dictate. Outside of the scheduled hours, staff members may sign on as consultant (they are encouraged to do so whenever convenient), but the Center cannot promise an on-line consultant outside scheduled hours.

Usage:
There are two ways to use this command:
online_consultant argument(s)
or
online_consultant
If arguments are supplied, a single message consisting of the arguments, concatenated and separated by blanks, will be transmitted to the current consultant.

If no argument is supplied, online_consultant will respond

## Input

and read lines from the console. Each line will be sent to the current consultant as a separate message as soon as it is completed. The consultant's replies may, of course, be interspersed between message input lines. To exit from this message-input mode, the user types a line consisting of only a period (.).

## Notes:

The on-line consultant will be attempting to complete his normal Multics work while signed on. Sometimes, this may mean that the messages sent to him are delayed until his program completes execution, so please be patient if your question is not answered right away.
online_consultant

## MULTICS PROGRAMMERS' MANUAL

Page 2
If no consultant is signed on, the command will determine whether a consultant is scheduled or not. If not, a short message describing other means of bug reporting will be typed. If a consultant should be signed on, the command will attempt to locate a backup consultant or will type a message giving a telephone extension to call.

The online_consultant command calls the "ipc message_facility" command "accept messages" as it is exiting, to allow the consultant to reply. See Ehe AML writeup for "ipc_message_facility" for details.
trouble_report
Command
Installation-Maintained Library
2/5/73

Names: trouble_report, tr
The command trouble_report is used to report usage problems to the programming consultants at the Information Processing Center. Invoking the command provides a series of prompting messages designed to assure that all the necessary information is reported. The brief option, with only one prompting message, is for experienced users of trouble_report.

Usage: trouble_report or tr
This will cause pertinent questions concerning the user and the problem to be typed out on the console. The user should respond with the requested information or answer yes or no and then hit the carriage return once. If the user fails to give the requested information, he will receive additional prompting.

After trouble_report asks the user to describe his programming problem, it accepts lines from the console until only a period (".") is typed at the beginning of a line. The user is requested to send any source and assembly listings or debugging attempts to Consultant, Room 39-454. The path names of the problem segments should be given and the ACL should be set to re *.*.*

Usage: tr -brief or tr -bf
This types only "Input." Tr then accepts lines from the console until a period (".") is typed at the beginning of a line.

The temporary segment containing all the positive responses to the questions is sent to Consultant IPC by using the mail command. The segment is deleted.

If deemed expedient, the reply to the trouble report will be sent to the user's mailbox. In order to permit this, the user should see that he has a segment in his login directory named "mailbox" and check that the ACL is set to rewa *.*.* If a user wants to restrict the access to his mailbox, the following projects should have at least "rwa" access to the mailbox and at least "e" access to the "home" directory: SysMaint, Multics, PDO, SysLib, and Consult.

When a user wants to restrict the access to the path names of segments that can be used in debugging the problem, he should provide "re" access to all the project groups mentioned in the previous paragraph on the ACL of the directory and on each relevant segment. As an alternative, he could set the CACL to "re" if many segments are involved.

$$
\begin{array}{r}
\begin{array}{r}
\text { forssp } \\
\text { Subroutine }
\end{array} \\
\text { Installation-Maintained Library } \\
10 / 30 / 72
\end{array}
$$

## Name: forssp

Sixteen of the FORTRAN Scientific Subroutine Package (SSP) groups of subroutines are available on Multics. They are Data Screening, Correlation and Pegression, Design Analysis, Discriminant Analysis, Factor Analysis, Time Series, Nonparametric Statistics, Generation of Random Variates-Distribution Functions, Elementary Statistics and Miscellany, Matrices: Storage, Matrices: Operations, Matrices: Inversion, Systems of Linear Equations and Related Topics, Matrices: Eigenanalysis and Related Topics, Polynomials: Operations, Polynomials: Roots, and Polynomials: Special Types. Instructions for usage of the programs are available in the IBM System/360 Scientific Subroutine Package Programmer's Manual (GH20-0205). This memo provides a listing of all the subroutines (in the same order as in the SSP manual) with a brief description of the function of each one.

Double precision versions have been created for most of the routines which did not already have them. These routines are starred in this memo and are not found in the SSP manual. They work exactly like their single precision counterparts except for the typing of their arguments. All real arguments of these routines must be double precision except as indicated in the following descriptions.

The subroutines are in ">libraries>forssp", and this must be in the user's search path (i.e.. enter the command "ssd >libraries>forssp").

## Usage:

call subroutine_name (arg)
The subroutines available are:

|  | Data Screening |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| tally | *dtally | bound | *dbound | subst | *dsubst |  |  |
| absnt | *dabsnt | tab1 | *dtabl | tab2 | *dtab2 |  |  |

forssp

## Page 2

Correlation and Pegression

| corre | *dcorre | misr | *dmisr | order | *dorder |
| :--- | :--- | :--- | :--- | :--- | :--- |
| multr | *dmultr | gdata | *dgdata | stprg | *dstprg |
| probt | *dprobt | canor | *dcanor |  |  |

Design Analysis
avdat *davdat avcal *davcal meanq *dmeanq

Discriminant Analysis
dmatx *ddmatx disc *ddisc
Factor Analysis
trace *dtrace load *droad varmx *dvarmx

Time Series

| auto |  |
| :--- | :--- |
| exsmo | *dauto cross *deross smo |


| Non-Parametric Statistics |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| kolmo | ko 1m2 | smirn | *dsmirn | chisq | *dchisq |
| krank | *dkrank | mpair | *dmpair | qtest | *dqtest |
| rank | *drank | signt | *dsignt | srank | *dsrank |
| tie | *dtie | twoav | *dtwoav | utest | *dutest |
| wtest | * dw |  |  |  |  |

General Random Variates--Distribution Functions
$\underset{\text { gauss }}{\text { *dndtri }}$ ndtr $\quad$ bdndtr $\quad$ edtr $\quad$ ndtri

Elementary Statistics and Miscellany

| momen | *dmomen | ttest | *dttest | biser | *dbiser |
| :--- | :--- | :--- | :--- | :--- | :--- |
| phi | *dphi | point | *dpoint | tetra | *dtetra |
| srate | *dsrate |  |  |  |  |


|  | Hatrices: Storage |  |  |  |  |
| :--- | :---: | :---: | :--- | :--- | :--- |
|  |  |  |  |  |  |
| mcpy | *dmcpy | rcpy | *drcpy | ccpy | *dccpy |
| dcpy | *ddcpy | xcpy | *dxcpy | mstr | *dmstr |
| loc | convt | array | *darray |  |  |

Matrices: Operations

| gmadd | *dgmadd | gmsub | *dgmsub | gmprd | *dgmprd |
| :--- | :--- | :--- | :--- | :--- | :--- |
| gmtra | *dgmtra | gtprd | *dgtprd | madd | *dmadd |
| msub | *dmsub | mprd | *dmprd | mtra | *dmtra |
| tprd | *dtprd | mata | *dmata | sadd | *dsadd |
| ssub | *dssub | smpy | *dsmpy | sdiv | *dsdiv |
| scla | *dscla | dcla | *ddcla | radd | *dradd |
| cadd | *dcadd | srma | *dsrma | scma | *dscma |
| rint | *drint | cint | *dcint | rsum | *drsum |
| csum | *dcsum | rtab | *drtab | ctab | *dctab |
| rsrt | *drsrt | csrt | *dcsrt | rcut | *drcut |
| ccut | *dccut | rtie | *drtie | ctie | *dctie |
| mprc | *dmprc | mfun | *dmfun | recp | *drecp |

Natrices: Inversion, Systems of Linear Equations and Related Topics

| minv | *dminv | sinv | dsinv | sima | *dsimq |
| :--- | :---: | :--- | :---: | :--- | :---: |
| gelg | dgelg | rslmc | *drsimc | factr | *dfactr |
| mfgr | dmfgr | gels | dgels | gelb | dgelb |
| mtds | dmtds | mlss | dmlss | mchb | dmchb |
| mfss | dmfss | mfsd | dmfsd | $11 s q$ | dllsq |

Matrices: Eigenanalysis and Related Topics
eigen *deigen nroot *dnroot ateig *dateig hsbg *dhsbg

Polynomials: Operations

| padd | *dpadd | psub | *dpsub | pmpy | *dpmpy |
| :--- | :--- | :--- | :--- | :--- | :--- |
| pdiv | *dpdiv | pcla | *dpcla | paddm | *dpaddm |
| pval | *dpval | pvsub | *dpvsub | pild | *dpild |
| pder | *dpder | pint | *dpint | pqsd | *dpqsd |
| pcld | *dpcld | pgcd | *dpgcd | pnorm | *dpnorm |
| pecn | dpecn | pecs | dpecs |  |  |

```
forssp
```

Page 4

Polynomials: Roots
polrt *dpolrt prad dprad
pqfb
dpqfb $\quad$ prbm dprbm

Polynomials: Special Types

| cnp | denp | cnps | dcnps | tcnp | dtcnp |
| :--- | :--- | :--- | :--- | :--- | :--- |
| csp | dcsp | csps | dcsps | tcsp | dtcsp |
| hep | dhep | heps | dheps | thep | dthep |
| lap | dlap | laps | dlaps | tlap | dtlap |
| lep | dlep | leps | dleps | tlep | dtlep |

Miscellaneous
digam hist plot

## Data Screening

tally to calculate total, mean, standard deviation, minimum, and maximum for each variable.
dtally * double precision version of tally. Only inputs a, total, aver, and sd are double precision.
bound to select the number of observations above, below, and between two bounds for each variable.
dbound * double precision version of bound.
subst to select a subset from an observation matrix.
dsubst * double precision version of subst.
absnt to tabulate missing or zero-values in an observation matrix.
dabsnt * double precision version of absnt.
tabl to compute frequency tabulation for one variable.
dtabl * double precision version of tabl.
tab2 to compute frequency tabulations for two variables.
dtab2 * double precision version of tab2.
submx to select a submatrix on the basis of results from absnt or subst.
dsubmx * double precision version of submx.

## forssp

Page 6

## Correlation and Regression

| corre | to calculate means, standard deviations, and correlation coefficients. |
| :---: | :---: |
| dcorre* | double precision version of corre. |
| misr | to calculate means, standard deviations, third and fourth moments, correlations, regression coefficients, and regression errors. Considers that data may be missing. |
| dmisr * | double precision version of misr. |
| order | to rearrange intercorrelations. |
| dorder * | double precision version of order. |
| multr | to perform multiple linear regression. |
| dmultr * | double precision version of multr. |
| gdata | to generate data matrix for polynomial regression. |
| dgdata * | double precision version of gdata. |
| stprg | to perform stepwise multiple linear regression. |
| dstprg * | double precision version of stprg. |
| probt | to perform probit analysis. |
| dprobt * | double precision version of probt. |
| canor | to perform canonical correlation. |
| dcanor * | double precision version of canor. |

## Design Analysis

| avdat | to prepare data storage for analysis of variance. |
| :--- | :--- |
| davdat * $\quad$ double precision version of avdat. |  |
| avcal | to perform the calculus for the general k-factorial <br> $\quad$experiment: operators $\Sigma$ and $\Delta$. | davcal * double precision version of avcal. meanq to perform mean square operation. dmeanq * double precision version of meanq. Discriminant Analysis

dmatx to calculate means and dispersion matrix.
ddmatx * double precision version of dmatx.
disc to calculate discriminant functions.
ddisc * double precision version of disc.

```
forssp
```

Page 8

## Factor Analysis

| trace | to compute cumulative percentage of eigenvalues. |
| :--- | :--- |
| dtrace * double precision version of trace. |  |
| load | to compute factor matrix from eigenvalues and <br> associated eigenvectors. |
| dload * double precision version of load. |  |
| varmx | to perform an orthogonal rotation of a factor matrix. |
| dvarmx * double precision version of varmx. |  |

## Time Series

| auto | to compute autocovariances. |
| :--- | :--- |
| dauto * | double precision version of auto. |
| cross | to compute cross covariances. |
| dcross * $\quad$ double precision version of cross. |  |
| smo | to calculate smoothed or filtered series. |
| dsmo * | double precision version of smo. |
| exsmo | to calculate triple exponential smoothed series. |
| dexsmo * double precision version of exsmo. |  |

Page 9

Non-Parametric Statistics

| ko lmo | to perform Kolmogorov-Smirnov one sample test. See program comments for double precision usage. |
| :---: | :---: |
| kolm2 | to perform Kolmogorov-Smirnov two sample test. See program comments for double precision usage. |
| smirn | to compute values of the Kolmogorov-Smirnov limiting distribution. This program was modified to prevent exponent underflows. |
| dsmirn * | double precision version of smirn. |
| chisq | to compute chi-square for a contingency table. |
| dchisq * | double precision version of chisq. |
| krank | to compute the Kendall rank correlation coefficient. |
| dkrank * | double precision version of krank. |
| mpair | to perform Wilcoxin's signed ranks test. |
| dmpair * | double precision version of mpair. |
| qtest | to calculate Cochran's Q. |
| dqtest * | double precision version of qtest. |
| rank | to rank a vector of values. |
| drank * | double precision version of rank. |
| signt | to perform non-parametric sign test. |
| dsignt * | double precision version of signt. |
| srank | to calculate Spearman rank correlation coefficients. |
| dsrank * | double precision version of srank. |
| tie | to calculate correction factor due to ties during ranking. |

Page 10
dtie * double precision version of tie.
twoav to calculate Friedman two-way analysis of variance statistics.
dtwoav * double precision version of twoav.
utest to perform the Mann-Whitney U-test.
dutest * double precision version of utest.
wtest * to compute the Kendall coefficient of concordance. dwtest * double precision version of wtest.

General Random Variates--Distribution Functions

| gauss | to calculate normally distributed random numbers. |
| :--- | :--- |
| ndtr | to compute normal distribution function. |
| dndtr * | double precision version of ndtr. |
| bdtr | to compute beta distribution function. |
| cdtr | to compute chi-square distribution function. |
| ndtri | to compute inverse of normal distribution function. |
| dndtri * double precision version of ndtri. |  |

Page 11

Elementary Statistics and Miscellany

```
momen to calculate first four moments.
dmomen * double precision version of momen.
ttest to test population means.
dttest * double precision version of ttest.
biser to compute biserial correlation coefficients.
dbiser * double precision version of biser.
phi to calculate phi coefficients.
dphi * double precision version of phi.
point to compute point-biserial correlation coefficients.
dpoint * double precision version of point.
tetra to calculate tetrachoric correlation coefficients.
dtetra * double precision version of tetra.
srate to compute survival rates.
dsrate * double precision version of srate.
```

Page 12

## Matrices: Storage

| mepy dincpy * | to copy an entire matrix. double precision version of mcpy. |
| :---: | :---: |
| rcpy | to copy a specified row of a matrix into a vector. |
| drcpy * | double precision version of rcpy. |
| ccpy | to copy a specified column of a matrix into a vector. |
| dccpy * | double precision version of ccpy. |
| dcpy | to copy diagonal elements of a matrix into a vector. |
| ddcpy * | double precision version of dcpy. |
| xcpy | to copy a portion of a matrix. |
| dxcpy * | double precision version of xcpy. |
| mstr | to change the storage mode of a matrix. |
| dmstr * | double precision version of mstr. |
| loc | to compute a vector subscript for an element in a matrix of specified storage mode. |
| convt | to convert numbers from single precision to double precision or vice versa. |
| array | to convert a data array from single to double dimension or vice versa. This subroutine is used to link the user program, which has double dimension arrays, and the SSP subroutines, which operate on arrays of data in a vector fashon. |
| darray | double precision version of array. |

## Matrices: Operations

| gmadd | to add two general matrices to form a resultant general matrix. |
| :---: | :---: |
| dgmadd * | double precision version of gmadd. |
| gmsub | to subtract one general matrix from another to form a resultant matrix. |
| dgmsub * | double precision version of gmsub. |
| gmprd | to multiply two general matrices to form a resultant general matrix. |
| dgmprd * | double precision version of gmprd. |
| gmtra | to transpose a general matrix. |
| dgmtra* | double precision version of gmtra. |
| gtprd | to premultiply a general matrix by the transpose of another general matrix. |
| dgtprd* | double precision version of gtprd. |
| madd | to add two matrices element by element to form a resultant matrix. |
| dmadd * | double precision version of dmadd. |
| msub | to subtract two matrices element by element to form a resultant matrix. |
| dmsub * | double precision version of msub. |
| mprd | to multiply two matrices to form a resultant matrix. |
| dmprd* | double precision version of mprd. |
| mtra | to transpose a matrix. |

Page 14

| dmtra* tprd | double precision version of mtra. <br> to transpose a matrix and postmultiply by another to form a resultant matrix. |
| :---: | :---: |
| dtprd * | double precision version of tprd. |
| mata | to premultiply a matrix by its transpose to form a symmetric matrix. |
| dmata * | double precision version of mata. |
| sadd | to add a scalar to each element of a matrix to form a resultant matrix. |
| dsadd * | doubie precision version of sadd. |
| ssub | to subtract a scalar from each element of a matrix to form a resultant matrix. |
| dssub * | double precision version of ssub. |
| smpy | to multiply each element of a matrix by a scalar to form a resultant matrix. |
| dsmpy * | double precision version of smpy. |
| sdiv | to divide each element of a matrix by a scalar to form a resultant matrix. |
| dsdiv * | double precision version of sdiv. |
| scla | to set each element of a matrix equal to a given scalar. |
| dscla * | double precision version of scla. |
| dcla | to set each diagonal element of a matrix equal to a scalar. |
| ddcla* | double precision version of dcla. |
| radd | to add a row of one matrix to a row of another matrix. |
| dradd * | double precision version of radd |


forssp

Page 16

| dcsrt * | double precision version of csrt. |
| :---: | :---: |
| rcut | to partition a matrix between specified rows to form two resultant matrices. |
| drcut * | double precision version of rcut. |
| ccut | to partition a matrix between specified columns to form two resultant matrices. |
| dccut * | double precision version of ccut. |
| rtie | to adjoin two matrices with the same column dimension to form one resultant matrix. |
| drtie * | double precision verison of rtie. |
| ctie | to adjoin two matrices with the same row dimension to form one resultant matrix. |

dctie * double precision version of ctie.
mprc,dmprc
to permute the rows or columns of a given matrix according to a given transposition vector or its inverse.
mfun
dmfun * doubie precision version of mfun.
recp to calculate the reciprocal of an element. This is a FORTRAN function subprogram that may be used as an argument by the subroutine MFUN.
drecp * double precision version of recp.

Matrices: Inversion, Systems of Linear Equations and Related Topics

```
minv to invert a square matrix.
dminv * double precision version of minv.
sinv,dsinv to invert a symmetric positive definite matrix.
simq to solve simultaneous linear algebraic equations.
dsimq * double precision version of simq.
gelg,dgelg to solve a system of general simultaneous linear
    equations by Gauss elimination.
rslmc to solve simultaneous linear equations with iterative
    refinement.
```

drslmc * double precision version of rslmc. Inputs a, af, b,
$x$, $v$, and per should be double precision. Input epsi
should be single precision.
factr to compute a triangular factorization of a
nonsingular matrix.
dfactr * double precision version of factr.
mfgr,dmfgr to factor a matrix and determine its rank.
gels,dgels to solve a system of general simultaneous linear
equations with symmetric coefficients.
gelb, dgelb to solve a system of general simultaneous linear
equations with band-structured coefficients.
mtds, dmtds to divide a matrix by a triangular matrix.
mlss,dmlss to solve simultaneous linear equations with symmetric
positive semidefinite matrix.
mchb, dmchb to compute a triangular factorization of a symmetric
positive definite band matrix.

```
forssp
```

Page 18

```
mfss,dmfss to compute a triangular factorization and determine the rank of a symmetric positive semidefinite matrix.
mfsd,dmfsd to compute a triangular factorization of a symmetric positive definite matrix.
llsq, dllsq to solve linear least squares problem.
```

Matrices: Eigenanalysis and Related Topics

| eigen | to compute eigenvalues and eigenvectors symmetric matrix. | for a |
| :---: | :---: | :---: |
| deigen * | double precision version of eigen. |  |
| nroot | to calculate eigenvalues and eigenvectors nonsymmetric matrix of the form B-inverse | for a real times A. |
| dnroot * | double precision version of nroot. |  |
| hsbg | to reduce a real matrix into upper almost form (hessenberg form). | triangular |
| dhsbg * | double precision version of hsbg. |  |
| ateig | to compute eigenvalues for a real almost matrix. | triangular |
| dateig * | double precision version of ateig. |  |


| padd <br> dpadd * | to add two polynomials. <br> double precision version of padd. |
| :---: | :---: |
| psub | to subtract two polynomials. |
| dpsub * | double precision version of psub. |
| pmpy | to multiply two polynomials. |
| dpmpy * | double precision version of pmpy. |
| pdiv | to divide one polynomial by another. |
| dpdiv * | double precision version of pdiv. Inputs $p, x$, and $y$ should be double precision. Input tol should be single precision. |
| pcla | to replace one polynomial by another. |
| dpcla* | double precision version of pcla. |
| paddm | to multiply one polynomial by a constant and add it to another polynomial. |
| dpaddm * | double precision version of paddm. |
| pval | to evaluate a polynomial. |
| dpval * | double precision verision of pval. |
| pvsub | to substitute the variable of one polynomial by another polynomial. |
| dpvsub * | double precision version of pvsub. |
| pild | to evaluate a polynomial and its first derivative. |
| dpild * | double precision version of pild. |

Page 20

pecn, dpecn to economize a polynomial for a symmetric range.
pecs,dpecs to economize a polynomial for an unsymmetric range.


Page 22

## Polynomials: Special Types

cnp,denp to compute the values of the Chebyshev polynomials for a given argument $x$ and orders zero up to $n$.
cnps, donps to compute the value of a series expansion in Chebyshev polynomials.
tcnp,dtcnp to transform a given series expansion in Chebyshev polynomials to a polynomial.
csp,dcsp to compute the values of the shifted Chebyshev polynomials for a given argument $x$ and orders zero up to n .
csps, dcsps to compute the value of a series expansion in shifted Chebyshev polynomials.
tcsp,dtcsp to transform a given series expansion in shifted Chebyshev polynomials to a polynomial.
hep, dhep to compute the values of the Hermite polynomials for a given argument $x$ and orders zero up to $n$.
heps, dheps to compute the value of a series expansion in Hermite polynomials.
thep, dthep to transform a given series expansion in Hermite polynomials to a polynomial.
lap, dlap to compute the values of the normalized Laguerre polynomials for a given argument $x$ and orders zero up to $n$.
laps, dlaps to compute the value of a series expansion in normalized Laguerre polynomials.
tlap,dtlap to transform a given series expansion in normalized Laguerre polynomials to a polynomial.
lep, dlep to compute the values of the Legendre polynomials for a given argument $x$ and orders zero up to $n$.

Page 23
leps,dleps to compute the value of a series expansion in Legendre polynomials.
tlep, dtlep to transform a given series expansion in Legendre polynomials to a polynomial.

Miscellaneous
dlgam to compute the double precision natural logarithm of the gamma function of a given double precision argument. This routine is from the Special Functions section and is used by routines bdtr and cdtr from the Random Variates section.
hist to print a histogram of frequencies versus intervals. This routine is from the Special Sample Subroutines section.
plot to plot several cross-variables versus a base variable. This routine is from the Special Sample Subroutines section.

Name: plssp
All but 15 members* of the PL/l Scientific Subroutine Package (SSP) are available on Multics. Instructions for using the subroutines are available in the IBM System/360 Scientific Subroutine Package (PL/l) Program Description and Manual (GH20-0586-0).

This memo contains directions for using the subroutines on Multics and a list of all the subroutines available with a brief description of the function of each one.

The subroutines are in ">libraries>plssp", and this must be in the user's search path (i.e., type "ssd >libraries>plssp").

## Usage:

call subroutine_name (arg)
The subroutines available and descriptions of the functions of these subroutines are on the following pages.

[^0]Page 2

## 1. Mathematics

acfe interpolates the function value yval for a given argument xval using xst, the starting value of the arguments, dx, the increment of the argument values and vector $y$ of function values.
acfm interpolates the function value yval for a given argument xval using a given table ( $x, y$ ) of arguments and function values.
alie interpolates the function value yval for a given argument value xval using xst, the starting value of the arguments, dx , the increment of the argument values and the vector $y$ of function values.
alim interpolates the function value yval for a given argument value xval using a given table ( $\mathrm{x}, \mathrm{y}$ ) of argument and function values.
apc1 sets up the normal equations for a weighted polynomial least squares fit to a given discrete function, using Chebyshev polynomials as fundamental functions.
apc2 sets up the normal equations for a polynomial least squares fit to a given discrete function, using Chebyshev polynomials as fundamental functions.
apll sets up normal equations for a polynomial least squares fit to a given discrete function.
asn computes the solution of normal equations set up by procedures apcl, apc2 and apll.
cell computes the complete elliptic integral of the first kind:

$$
\int_{0}^{\pi / 2} d t / \sqrt{1-k^{2} \sin ^{2} t} \quad 0 \leq k<1
$$

cel2 computes the generalized elliptic integral of the second kind:

$$
\int_{0}^{\pi / 2} \frac{\left[a+(b-a) \sin ^{2} t\right] d t}{\sqrt{1-k^{2}-\sin ^{2} t}} \quad 0 \leq k<1
$$

dere performs one integration step for a system of first order ordinary differential equations $y^{\prime}=f(x, y)$ with given initial values $y$. The stepsize $h$ is adjusted for accuracy requirements and speed considerations.
det3 computes a vector $z=\left(z_{1}, z_{2}, \ldots, z_{\text {dim }}\right)$ of derivative values, given a vector $y=\left(y_{1}, y_{2}, \ldots, y_{\text {dim }}\right)$ of function values whose components $y_{i}$ correspond to dim equidistantly spaced argument values $x_{i}$ with $x_{i}-x_{i-1}=h$ for $i=2, \ldots$, dim.
det5 computes a vector $z=\left(z_{1}, z_{2}, \ldots, z_{\text {dim }}\right)$ of derivative values $y=\left(y_{1}, y_{2}, \ldots, y_{\text {dim }}\right)$ of function values whose components correspond to dim equidistantly spaced argument values $x_{i}$, with $x_{i}-x_{i-1}=h$.
dfeo given argument $x$ and function $f c t(x)$, defined in the onesided interval [ $x, x+h$ ], dfeo computes an approximation $z$ to the derivative.
dfec given the argument $x$ and the function fct(x), defined in the closed interval $[x-|h|, x+|h|]$, dfec computes an approximation $z$ to the derivative of the function fct(x).
dgt3 computes a vector $z=\left(z_{1}, z_{2}, \ldots, z_{\text {dim }}\right)$, of derivative values, when vectors $x=\left(x_{1}, x_{2}, \ldots, x_{\text {dim }}\right)$ of argument values and $y=\left(y_{1}, y_{2}, \ldots, y_{d i m}\right)$ of corresponding function values are given.
eli1 computes the incomplete elliptic integral of first kind for given values of an argument $x$ and complementary modulus ck.
eli2 computes the incomplete elliptic integral of second kind for given values of an argument $x$, complementary modulus $c k$ and constants $a$ and $b$.
exsm develops the triple exponential smoothed series $s$ of the given series x .
jelf calculates the three Jacobian elliptic functions sn, cn and dn.
lgam computes the double-precision natural logarithm of the gamma function of a given double-precision argument.
post transforms a given series expansion in orthogonal polynomials to a polynomial. The independent variable of the given expansion is assumed to be $\mathrm{x}_{0}+\mathrm{x}_{1} \cdot \mathrm{x}$; that is, a linear transforamtion of the range is built in. The coefficient vector $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is given. Procedure post calculates pol $=\left(\mathrm{pol}_{1}, \mathrm{pol}_{2}, \ldots, \mathrm{pol}_{\mathrm{n}}\right)$ satisfying
$\sum_{i=1}^{n} c_{i} f_{i-1}\left(x_{0}+x_{1} \cdot x\right)=\sum_{i=1}^{n}\left(p o l_{i}\right)\left(x^{i-1}\right)$.

For the specified set of orthogonal polynomials $\left(f_{k}\right)$ the user has the choice of:

Chebyshev polynomials ( $t_{0}, t_{1}, \ldots, t_{n-1}$ ) with opt $=" t "$
Legendre polynomials ( $p_{0}, p_{1}, \ldots, p_{n-1}$ ) with opt $=" p$ "
Laguerre polynomials $\left(l_{0}, 1_{1}, \ldots, l_{n-1}\right)$ with opt $=" 1 "$
Hermite polynomials ( $h_{0}, h_{1}, \ldots, h_{n-1}$ ) with opt $=$ " $h$ ".
posv computes the value of the sum

for a given vector $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ and a specified set of orthogonal polynomials ( $f_{k}$ ).
The user has a choice of:
Chebyshev polynomials $\left(t_{0}, t_{1}, \ldots, t_{n-1}\right)$ with opt $=$ "t"
Legendre polynomials ( $p_{0}, p_{1}, \ldots, p_{n-1}$ ) with opt $=" p$ "
Laguerre polynomials ( $1_{0}, 1_{1}, \ldots, l_{n-1}$ ) with opt $=" I "$
Hermite polymonials ( $h_{0}, h_{1}, \ldots, h_{n-1}$ ) with opt $=" h "$.
pov computes the values of the first $n$ orthogonal polynomials. The user has the choice of:

Chebyshev polynomials ( $t_{0}, t_{1}, \ldots, t_{n-1}$ ) with opt $=" t "$ Legendre polynomials ( $p_{0}, p_{1}, \ldots, p_{n-1}$ ) with opt $=" p$ "
Laguerre polynomials $\left(l_{0}, 1_{1}, \ldots, l_{n-1}\right)$ with opt $=" 1 "$
Hermite polynomials ( $h_{0}, h_{1}, \ldots, h_{n-1}$ ) with opt $=" h "$.

AP-81
Page 7
se13 computes a vector $z=\left(z_{1}, z_{2}, \ldots, z_{\text {dim }}\right)$ of smoothed function values. It requires a vector $y=\left(y_{1}, y_{2}, \ldots, y_{d i m}\right)$ where the $y$ components correspond to equidistantly spaced argument values $x_{i}$, assuming $x_{i}-x_{i-1}=h$.
se15 computes a vector $z=\left(z_{1}, z_{2}, \ldots, z_{\text {dim }}\right)$ of smoothed function values, $g i v e n$ a vector $y=\left(y_{1}, y_{2}, \ldots, y_{\text {dim }}\right)$ of function values whose components $Y_{i}$ correspond to dim equidistantly spaced argument values $x_{i}$ with $x_{i}-x_{i-1}=h$ for i = 2, ..., dim.
se35 computes a vector $z=\left(z_{1}, z_{2}, \ldots, z_{\text {dim }}\right)$ of smoothed function values, given a vector $y=\left(y_{1}, y_{2}, \ldots, y_{d i m}\right)$ of function values whose components $y_{i}$ correspond to dim equidistantly spaced argument values $x_{i}$ with $x_{i}-x_{i-1}=h$ for $i=2, \ldots$, dim.
sg 13 computes a vector $z=\left(z_{1}, z_{2}, \ldots, z_{\text {dim }}\right)$ of smoothed function values. It requires a vector $y=\left(y_{1}, y_{2}, \ldots, y_{\text {dim }}\right)$ and $a$ vector $x=\left(x_{1}, x_{2}, \ldots, x_{\text {dim }}\right)$ of argument values, where $y_{i}$ corresponds to $x_{i}$.

Page 8

## 2. Matrix Operations

canc computes the canonical correlations between two sets of variables. It is normally preceded by a call to procedure corr.
mags
computes $\mathrm{c}=\mathrm{a}+\mathrm{b}$ if opt $=$ "l"
$c=a-b$ if opt $=" 2 "$
$c=b-a$ if opt $=" 3 "$
for given matrices $a$ and $b$ which are general and symmetric respectively.
mate reduces a given real matrix to upper almost triangular (Hessenberg) form by means of a sequence of similarities.
matu reduces a given real matrix to almost triangular (Hessenberg) form by means of a sequence of orthogonal transformations.
mdlg for a system of equations $a \cdot x=r$, where $a=1$ e $u$ is $a$ general nonsingular matrix, mdlg performs the following calculations, depending on the character of an input parameter opt:

```
opt = "l" r is replaced by 1-1 • r
opt = "2" r is replaced by u-1 • r
otherwise r is replaced by (1 . u)-1}\cdotr
```

mds for a system of equations a $\quad \mathrm{x}=\mathrm{r}$ with symmetric positive definite matrix $a=t \cdot t^{t}$, mdls performs the following calculations depending on the character of the input parameter opt:
opt $=$ "l" $r$ is replaced by $t^{-1} \cdot r$
opt $=$ "2" $r$ is replaced by $\left(t^{-1}\right)^{t} \cdot r$
otherwise $r$ is replaced by $\left(t \cdot t^{t}\right)^{-1} \cdot r$.
mars for a system of equations $x$ : $a=r$ with symmetric positive definite matrix $a=t \cdot t^{t}$, mdrs performs the following calculations, depending on the character of an input parameter opt:

```
opt = "l" r is replaced by r . (t-1)}
opt = "2" r is replaced by r • t-1
otherwise r is replaced by r e (t | t t)}\mp@subsup{)}{}{-1}\mathrm{ .
```

mdsb depending on the character of the input parameter opt, mdsb performs the following operations on a system of equations a • $x=r$ with symmetric positive definite band matrix $a=t^{t} \cdot t$ :
 opt $=$ "2" $r$ is replaced by $t^{-1} \cdot r$ otherwise $r$ is replaced by $\left(t^{t} \cdot t\right)^{-1} \cdot r$.
meat computes the eigenvalues of a real upper almost triangular matrix (Hessenberg form, see subroutines mate and matu) using double OR iteration.
mebs computes a lower and an upper bound for the eigenvalues of a real symmetric matrix.
mest computes the eigenvalues of a real symmetric tridiagonal matrix (see subroutine mstu).
mfg factorizes a general nonsingular matrix a into a product of a lower triangular matrix 1 and an upper triangular matrix $u$ overwritten on a, omitting the unit diagonal of u.
mfgr performs the following for a given rectangular matrix: determines rank and linearly independent rows and columns
factorizes a submatrix of maximal rank
expresses nonbasic rows in terms of basic rows
expresses basic variables in terms of free variables.
mfs
mfsb computes a triangular factorization of a symmetric positive definite band matrix using the square root method of Cholesky.
mgb1 performs the following operations on an equation system $a \cdot x=r$ with general band matrix $a=1 \cdot u$, depending on the character of an input parameter opt:
opt $=" 1 "$ u replaces $a$ and $1^{-1} \cdot r$ replaces $r$
opt $=" u " u$ replaces $a$ and $u^{-1}$ •r replaces $r$
opt $=" b " \begin{aligned} & u^{-1} \text { ereplaces } r \text { for a given } u \text { on storage } \\ & \text { locations of } a\end{aligned}$
otherwise $u$ replaces $a$ and the solution $x=a^{-1} \cdot r$ replaces r.

Page 10
myb2 performs the following operations on an equation system $a \cdot x=r$ with general band matrix $a=1 \cdot u$, depending on the character of an input parameter opt:

mgdu computes eigenvalues and eigenvectors of a real matrix of the form b-inverse times $a$, where $a$ is symmetric and b is positive definite.
mig inverts a general nonsingular matrix a, which is given in the factored form $a=1 \cdot u$, where the upper triangular matrix $u$ contains the unit diagonal which is not stored.
minv inverts a general square matrix.
mis inverts a symmetric positive definite matrix a, which is given in factored form (Cholesky):

$$
a=t \cdot \text { transpose }(t)
$$

mlsq calculates x satisfying $\mathrm{a} \cdot \mathrm{x}=\mathrm{b}$, that is, the solution of a system of linear equations using Householder transformations. The least squares solution is obtained in case of an overdetermined system of equations.
mmgg computes the standard matrix product $c=a \cdot b$.
mmgs calculates g es if opt = "l" or s • g if opt = "2"
where $g$ is a general and $s$ a symmetric matrix.
mmgt calculates $a \cdot a^{t}$ if opt $=" 1$ " or $a^{t} \cdot a$ if opt $="^{\prime \prime}$
where $a$ is a general matrix.
mmss computes the standard product $\mathrm{p}=\mathrm{a} \cdot \mathrm{b}$ of two symmetric matrices.
mpit calculates the permutation vector corresponding to the inverse of a given permutation if opt = "i" and the transposition vectors of the given permutation and of its inverse if opt = "t".
mprm permutes rows (if opt $=$ "r") or columns (if opt = "c") of a given matrix a according to the permutation $p$ (if inv $=$ " 0 ") or its inverse $\mathrm{p}^{-1}$ (if inv = "1"). The permutation $p$ is given in the form of its transposition vector t.
mscg expands the compressed one-dimensional storage allocation of a symmetric matrix to general two-dimensional form.
mscs compresses the storage allocation of a symmetric twodimensional matrix to a one-dimensional array.
msdu computes eigenvalues and eigenvectors of a real symmetric matrix.
mstu reduces a given real symmetric matrix to tridiagonal form by means of a sequence of orthogonal transformation.
mtpi calculates the permutation vector if inv $=" 0 "$ and the inverse permutation vector if inv = "l" from a given transposition vector.
mvst provides the eigenvector corresponding to a given eigenvalue of a symmetric tridiagonal matrix.

Page 12

## 3. Statistics

abst tests for missing or zero elements in observation matrix a.
avar performs an analysis of variance for a complete factorial design.
boun selects from a set (or a subset) of observations the number of observations under, between and over two given bounds for each variable.
chsq computes chi-square from a contingency table.
corr computes means, standard deviations, sums of cross-products of deviations and correlation coefficients.
dmtx computes means of variables in each group and a pooled dispersion matrix for all the groups. This subroutine is used in the performance of discriminant analysis.
dscr performs a discriminant analysis by calculating a set of linear functions that serves as indices for classifying an individual into one of $k$ groups.
htes calculates the Kruskal-Wallis H-statistic from the ranks of observations obtained from three or more independent samples.
klmo tests the difference between empirical and theoretical distributions using the Kolmogorov-Smirnov test.
klm2 tests the difference between two sample distributions using the Kolmogorov-Smirnov test.
krnk measures the correlation between two variables by means of the Kendall rank correlation coefficient.
load computes a factor matrix (loading) from eigenvalues and associated eigenvectors.
mltr performs a multiple linear regression analysis for a dependent variable and a set of independent variables.
ndti computes $x=p^{-1}(y)$ such that $y=p(x)$, the probability that the random variable $x$, distributed normally $(0,1)$, is less than or equal to $x ; f(x)$, the ordinate of the normal density at x , is also computed.
ndtr computes $y=p(x)$, the probability that the random available $x$, distributed normally $(0,1)$, is less than or equal to $x ; f(x)$, the ordinate of the normal density at $x$, is also computed.
ordr is used to choose a dependent variable and a set of independent variables from a matrix of correlation coefficients and to form a submatrix of correlation coefficients to be used in performing a multiple linear regression analysis.
qtst uses the Cochran Q-test to determine whether three or more matched groups of dichotomious data differ sygnificantly.
rank ranks a vector of data.
sbst derives a subset vector indicating which observations in a set have satisfied certain conditions on the variables.
smir computes values of the limiting distribution function for the Kolmogorov-Smirnov statistic.
srnk tests the correlation between two variables by means of the Spearman rank correlation coefficient.
strg performs a setpwise multiple linear regression analysis for a dependent variable and a set of independent variables.
subm copies a submatrix from an observation matrix. The elements of this submatrix satisfy conditions specified by an input vector. This subroutine is used in preparing data for input to a statistical analysis such as multiple regression.
tab1 tabulates, for one variable in an observation matrix (or a matrix subset), the frequency and percent frequency over given class intervals. In addition, $t$ calculates for the same variable the total, mean, standard deviation, minimum and maximum.
tab2 performs a two-way classification, for two variables in an observation matrix (or a matrix subset), of the frequency, percent frequency and other statistics over given class intervals.
taly calculates total, mean, standard deviation, minimum and maximum for each variable in a set (or a subset) of observations.
tie calculates correction factor due to ties.
trac computes cumulative percentage of eigenvalues greater than or equal to a constant specified by the user.

Page 14
ttst calculates certain t-statistics on the means of populations.
twav tests whether a number of samples are from the same population by the Friedman two-way analysis of variance test.
utst tests whether two independent groups are from the same population by means of the Mann-Whitney U-test.
vrmx performs an orthogonal rotation of a factor matrix.
wtst measures the degree of association among a number of variables by the Kendall coefficient of concordance.


[^0]:    *ahie, ahim,bdtr, cdtr,fft,fftm,fmfp,momn,mvat,mveb,mvsu,mvub, pec, prtc and ptc will not be available until the installation of the new Multics PL/l compiler.

