Commands

10/29/73
4/13/73
2/27/71
1/8/74
1/18/75
2/5/75
8/4/74
11/12/70
7/29/74
178774
8/7/73
4/7/73

2/20/74
T7/9/74
9/6/74

3/11/74
1/8/774
5/10/74
4/7/73
7/29/74
1/18/71
11/5/74
5/15/173
9/6/T4
T/27/74
9/9/71
477773
1/9/74
5/10/T74
11/29/73
3726/72
2/25/74

List of Contents

HULTICS PrROGHAMMEKS ™ MANUAL

Author-iaintained Library
4/30/75

archive_entries

assoc (also an active function)
bepl (installed in maintenance tools)
blip

calc_costs
card_input
clean_up
convert_360 _pll
convert_line_feeds
convert_multics_fortran
convert_radix
decimal_to_octal
directory_ status (refer to subtree _status)
file_output_unique
get_current_charges
get_object_info (also an active function)
global_status (refer to subtree_status)
lock_console
lower_case
number_queued (also an active function)
octal_to_float
print_basic_file
print_login_dir
print_string
punch_paper_tape
push_wdir
read_dartmnouth_tape
reformat_1line
repeat
return_to
ring (also an active function)
subtree_status
teco (installed in maintenance tools)
xpl

(over)

Subroutines

2/25/74
3/12/75
10/21/74
7/27/74
2/25/74
9/8/70
3712775
7/9/74
9/6/74
4713773
9/6/74
4/711/73
4/30/73
11/6/74
2/21/74
9/30/73

1/18/71
5/24/71
2/25/74
2/25/74
9/30/73
9/30/73
9/30/73
2/25/74

Active Functions

12/7/71
2/20/74
9/6/74
10/31/73
2/20/74
1/18/71
11/15/74

ask_ (installed in maintenance tools)
attach_fortran_file_

basic_plot_

check_basic_file_

check_msf_

cv_ (installed in maintenance tools)
detach_fortran_file_
fillin_dprint_str_

fixed_to_english_

get_caller_ptr_

get_line_lengtn_

get_mydir_
get_seg_ptr_
IMSL Library
linear_q_hash
qd
release_seg_ptr_
reverse_index__
scan_

tek_

tek_dim_

xcom

xpl_file
xpl_loader_
xpl_operators_

all
bit_count
center
dwd
exist_any
1d
translate

(installed in maintenance tools)

(refer to get_seg_ptr_)

MULTICS PROGRAMMERS' MANUAL - archive_entries

Command

Author-Maintained Library
Dave Moon

545 Technology Square
Room 501, Ext. 3-6013
10/25/73

Name: archive entries, are
archive calls, arc

. The command archive_entries prints listings of the entry
points of the segments within an archive, and archive calls
prints listings of the entry points called by the segments in
an archive.

Usage:

are pathnamel ... pathnamen

This will produce a list of all the entry points in all the
segments of archives pathnamel.archive to pathnamen.archive.

arc pathnamel ... pathnamen

This will produce a list of all the entry points called by
all the segments in archives pathnamel.archive to pathnamen.archive.

Notes:

Upon encountering bad arguments, are and arc will comment
and then continue with evaluation of the next argument.

By design, arc suppresses printing of calls to pll_operators.

MULTICS PROGRAMMERS' MANUAL assoc

Active Function / Command
Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

4/13/73

Name: assoc

This procedure implements an associative memory, and is use-
ful primarily for implementing exec_com variables.

Usage:
[assoc name]
1) name is a variable name which has been set to some

value by a prior call to assoc_set. (Input)
The returned value is a varying character string representing
the value associated with the supplied name. If the name was not
found in the memory, the null string is returned.

Entry: assoc_set

This entry is used to associate values with names.

Usage:
assoc_set namel valuel ... namen valuen

1) namei is a character string name of up to 32 characters.

2) valuei is a character string value of up to 168 characters.

Entry: assoc_clear

This entry clears the associative memory
Usage:

assoc_clear

There are no arguments.

Entry: assoc_list

This entry lists the contents of the associative memory.

assoc MULTICS PROGRAMMERS' MANUAL

Page 2

Usage:

assoc_list

There are no arguments.

Entry: assoc_seg

This entry is provided to allow assoc to reference an associa-
tive memory in a permanent segment rather than the default
per-process memory.

Usage:

assoc_seg segname

1) segname is the pathname of the segment to be used. If the
segment is not found, it will be created. If seg-
name is missing, or is the null string, assoc will
revert to the per-process associative memory table.

MULTICS PROGRAMMERS' MANUAL bcpl

Command

Author-Maintained Library
Robert F. Mabee

545 Technology Square
Room 518, Extension 5871
27271/71

Name: bcpi

BCPL is a language designed for but not limited to system
building and compiler writing. It 1is easy to read, but s
recommended primarily for experienced programmers.

The bepl command invokes the BCPL compiler to translate a
source segment into a Multics object segment. A listing segment
may optionally be produced. The object and listing segments are
placed in the current working directory.

Usage:
bcpl pathname optionl option2 ... optionn
1) pathname is the pathname of the source segment. The
compiler will append the suffix ".bcpl".
2) Optioni . are chosen from the following set:

source produces a line numbered listing of the input
text, including text inserted by get.

xref produces a cross reference table in the
listing segment.

alist produces a complete assembly-like listing for
the object program.

list combines the effects of the source, xref, and
alist options.

tree produces a listing of the syntax tree in the
listing segment.

check inhibits generating the object segment.

time causes timing information to be printed on
the console after each pass.

crep is a debugging tool. |t compiles input from
the console and directs the listing output to
the console.

bepl MULTICS PROGRAMMERS' MANUAL

Page 2

pprep is a debugging tool. It lists canonical
symbols as they are encountered.

Notes:

The entry name portion of pathname is used as the name for
the object segment. For the listing segment ".1ist" is appended
to the entry name. The name of the source segment is obtained by
appending ".bcpl1" to pathname.

The 'get' preprocesser convention is implemented as follows:

The reserved word get must be followed by a string
constant. All text remaining on the line after the
string constant is ignored. The string identifies a
segment of BCPL source which is to be logically
inserted into the program. The name is formed by
appending '".bcpl" to the string constant. The segment
(or a 1link to it) must be in the current working
directory.

A BCPL manual and Multics implementétion guide will be
available soon.

MULTICS PROGRAMMERS' MANUAL blip l

Command

Author-Maintained Library
Thomas Casey

575 Technology Square
CISL, Fifth Floor
491-6300, Ext. 237

1/8/74

Name: blip

The command blip types a short character string (a "blip")
on the console every few seconds of CPU time used by the user's
process. Both the time between blips and the type of blip may
be specified by the user. A sequence of different blips that
are to be cycled through also may be specified by the user. Blips
will be typed out until the blip off command is given.

Usage:
blip time -options and/or blips-

This command takes an unlimited number of arguments. The
first argument is the time in CPU seconds between blips. Because
this is a floating-point number, times of less than one second
may be specified. This time will be adhered to exactly. If 50
blips are given during the course of working, 50*time seconds
of CPU time were used by the process. The command will even
try to remain faithful if the time specified is less than the
amount of time required to execute the blip program. If the
time is about two seconds or more, it is estimated that the over-
head for the blip program is about 0.1 second per blip.

The rest of the arguments are either options or character
strings to be used as blips after they have been modified as
specified by the options. Because the arguments are processed
from left to right, blip strings can be affected only by options
to the left of the string. The options are:

-red A red ribbon shift is added at the beginning
of the blip string and a black ribbon shift
is added at the end.

-black (-bl) No ribbon shifts are added to the blip string.

-nla (~-nl) A newline character is added at the end of
the blip string (newline after).

-nlb A newline character is added to the beginning
' of the blip string (newline before).

-nnl No newlines are added to the blip strings.

blip MULTICS PROGRAMMERS' MANUAL

Page 2

If no options are specified, the options -red and -nnl
are in effect. If no blip strings are specified, then the 10
decimal digits from 0 through 9 will be the 10 blip strings
to be cycled through. The first blip is typed out during the
blip command, and it is the first blip string. The second
blip is the second blip string. If n blip strings have been
specified, then the n+lst blip will be the first blip string.

Blips are always typed on the console, even when using
file_output.

Entry: blip_ off

This command turns off the blips from the previous use of
the blip command. If a blip is being given, another use of the
blip command will turn off the previous blip automatically.

Examples:

blip 2
Or 1133 1.302 4.108 93
Pll new_program

1PL/1

2345678r 1140 15.137 29.763 749

new_program

901

QUIT /*got into an infinite loop*/

r 1141 8.548 5.296 123

C) Copyright 1974, Massachusetts Institute of Technology

MULTICS PROGRAMMERS® MANUAL caic_costs

Command

Author-Maintained Library
Joseph W. Dehn III

Room 39-2p0,y Ext. 3-7788
1718775

Namet! calc_costs, ccC

This command caliculates the doltar cost of a given amount of
cpu time, memory unijits, and connect time,

Usages
calc_costs cpuil memi « - « Cpun memp -connect X =-shift K

1) cpu} specifies cpu time In seconds. The total <cou
time is calculated by adding together all of the
cpu times that are given.

2) memj specifies memory usagje In the units given {in a
ready message. The total memory usage |is
calcultated by adding together alt of the memory
usage figures that are given. -

3) ~connect X specifles the connect time In minutes.

4) -shift K specifies the shift whose prices are to be used
in the calculation of the dollar cost. If this
control argument is not glveny, a table wil! be

printed showing the cost for all snhifts that are
currently defined.

Exappies?

calc_costs 1.007 6.728 -shift 2

Calc_costs 243 547 1.1 3.5 -connect 3

MULTICS PROGRAMMERS' MANUAL ‘ | card_input J

Command

Author-Malntalned Library
Overlap Project Staff
NEBN-500, M.I.T. Ext. 3-2053
2/5/75

Name: card_input

This routine may be used to read a deck of <cards into a
segment created in the user's working directory at the time the
request is submitted. It supports the conventions about reading
via links, and provides the following services:

1) The user need not be concerned about a 'temporary name"
and a '"'permanent name" =-- the name appearing in the
segment name field of the control card (1) placed at the
beginning of the deck is the name of the segment which
will be <created and into which the card images will be
copied.

2) The user need not be concerned with eliminating a 1link
which may later cause problems, because the program
removes the link when the cards are copied.

Use of this program greatly simplifies the task of reading
cards on f{lultics, to the extent that it may be used with little
instruction, even by a new user, Such instruction might be
succinctly stated, "Put the name you wish the segment to have in
the segment name field of the first (Control) card, submit the
deck for reading, and then execute this program from the
directory in which you want the segment to reside, using the same
name that appears on the control card as the command argument."

The program may also be used to copy an arbitrary segment
via a 1link to it, effectively changing the name on the link to
the name on the segment.

(1) For details concerning the format of and information required
to use control cards, please see the Mol.T. Information
Processing Center publication MS-1, "Bulk 1/0 on Multics." Note,
however, that this publication descrlbes a series of naming rules
that this command makes unnecessary.

card_input MULTICS PROGRAMMERS' MANUAL

Page 2

Usage:
card_input card_deck_name

card_deck_name is the name that appears in the segment name
field on the first (control) card of the deck.

Note:

This command must be invoked from within the same directory
as that appearing in the directory name field on the first
(control) card of the deck.

Method:

The experienced Multics programmer may desire to know the
steps undertaken by the program during execution. An outline of
the steps is:

1) The name supplied in the command line argument is checked
to ensure that it exists and is a link, and that the link
refers to an existing segment.

2) A uniquely named segment 1is created in the working
directory; the segment referred to by the link is copied
into the uniquely named segment.

3) The link is unlinked, and the uniquely named segment s
renamed to the name that was on the link.

If any error. occurs, the program displays a message and
returns.

MULTICS PROGRAMMERS' MANUAL clean_up

Command

Author-Maintained Library

Student Information Processing Board
Room 39~200, Ext. 3-7788

8/04/74

Name : cleah“pp

The clean_up command enables the user to clean a directory or

directory subtree of worthless entries: segments that have not
been used or modified since some specified time; links that point
to a non-existent target, and directories that contaln no entries
at all.

Usage:

1)

2)

clean_up -path- -options- -control args-

path is the pathname of the directory that is to be
cleaned up or "~working directory" ("-wd"). If
neither is given then the current working directory
is assumed.

options indicate which entries are to be deleted. They can

be selected from the following list:

-date_time modified, -dtm
spé61f1es that segments found in the directory
that have not been modified since a particular
time are to be deleted. This argument can be
followed by a string giving the desired time in
format acceptable to convert date_to binary . If
a time is not given by the user, one month prior
to the current time is assumed.

-date_time used, -dtu
specifies that segments found in the directory
that have not been used since a particular time are
to be deleted. As above, the user can specify the
time he desires, or let one month before be assumed.

-link, -1k specifies that links found in the directory that
point to a non-existent target are to be unlinked.

-directory, -dr
specifies that any inferior directories found in

the directory that have no entries themselves are
to be deleted.

If no options are specified, segments not used in
the last month will be deleted.

clean_up MULTICS PROGRAMMERS' MANUAL

Page 2
3) control args are selected from among the following:

-long, -1g produces a listing of the directories searched and
entries deleted. This listing is written on
user output and includes the date/time dumped for
segments and directories and the target of a link.
This is the default.

-brief, -bf suppresses the listing described above. ("-long"
is the default).

-force specifies that entries are to be deleted even if
their safety switch is set. If this argument
does not appear, an error message will be printed
when an attempt is made to delete such an entry.

-walk, -wk specifies that clean up is to walk through all
inferior directories of the directory specified
looking for entries to be deleted. Note that the
contents of a directory are examined for deletion
before a check is made to see if the directory is
empty. As a result, if "-dr" has also been specified
and if all the entries are deleted from an inferior
directory, then that directory will also be deleted.

-walk force, -wf
specifies that inferior directories are to be walked
as above, and that clean up is to ensure that the
user has "sma" access to each inferior directory.

Examples:

To delete all segments in the current working directory that
have not been modified in the last month:

clean_up -date_time modified

To remove all links that point to a non-existent target in
the directory temp and all directories under it:

clean_up temp -link ~walk

To delete all segments that have not been used since July 1,
1974 and all directories that are empty:

clean_up -wd -dtu "July 1, 1974" -dr

To purge the entire directory subtree under "old" of old
segments, null links, and empty directories (including those made
empty by clean up):

clean up old -dtu -dtm -1k -dr -wf

MULTICS PROGRAMMERS' MANUAL : convert 360 pl1

Command

Author-Maintained Library
J.B. O'Connor

Room 39-473, Ext. 6321
11/12/70

Name: convert 360 pll, c360p

This command converts an IBM 360 PL/I program read in by the
Multics card reader to a form acceptable to the Multics PL/I
compiler. Specifically it:

1. maps all upper case letters in the file to lower case,
2. changes all apostrophes (') to quotes ("),

3. deletes any characters appearing in card columns 73 through
© 80 (sequence numbers), and

4, deletes trailing blanks on a line.

Usage:
convert 360 pll pathnamel pathname2

Pathnamel is the name of the segment to be converted and
pathname2 is the name of a new segment to be created to contain
the converted program. If pathname2 is omitted, pathnamel will
be rewritten.

Notes:

The translation does not take into account the 48-character
set used in IBM 360 PL/I. For example, if the operator "LT" is
used in the 360 program, the user must change this to the character
"<" with a Multics editor.

If character constants start on one card and end on another
card in the 360 program, the effect of trimming off trailing
blanks may change the value of the constant.

Example:
c360pl1 ibm.pll multics.pll

This command can be applied to segments that it had previously
produced without effect. It cannot be applied to segments entered
on the console, however, unless tabs have not been used and care
has been taken to follow IBM 360 card conventions (because characters
after the 72nd column on a line will be deleted).

MULTICS PROGRAMMERS' MANUAL convert line feeds

Command

Author-Maintained Library
Joseph W. Dehn III

Room 39-200, Ext. 3-7788
7/29/74

Names: - convert line_feeds, cvlf

This command converts an ASCII segment which contains carriage-
return and line-feed codes as used by other systems into a segment
which uses the Multics new-line character. A combination of line-
feed and carriage-return is replaced with a new-line character,

a carriage-return by itself is left as is, and an isolated line-
feed may be treated in one of three ways: deletion, replacement,
or "simulation" by new-line and spaces. '

Usage:
convert line feeds pathl path2 -cntlargs-

pathl | is the pathname of the segment to be converted

path2 is the name of the segment to be produced; If this

argument is omitted, the conversion will be done in
place (the new segment will replace the original).

Control arguments may be used to specify the handling of
isolated line-feeds:

~delete isolated line-feeds are to be removed
-dl
-replace xxx isolated line-feeds are to be replaced by

the string xxx, which may be up to 32
characters in length

-space isolated line-feeds are to be replaced by
a new-line and spaces to effect the carriage
motion of a line-feed

-tab N specifies the width of a tabulation character
when using the -space option. If this option
is not given, tabs are assumed to be ten
columns wide.

Note:

The ASCII carriage~return code is octal 015. The octal
code for line-feed is 012, Multics uses the code 012 for new-
line. A carriage-return/line-feed combination is treated by
removing the code 015 from the text.

MULTICS PROGRAMMERS' MANUAL convert multics fortran

Command

Author-Maintained Library
Thomas Casey

575 Technology Square
.CISL, Fifth Floor
491-6300, Ext. 237

1/8/74

Name: convert multics fortran, cmf

This command converts Multics FORTRAN programs into a form

acceptable by IBM 360 FORTRAN. The command:

1) changes lower-case characters tc upper-case,

2) changes quotes (") to apostrophes ('),

3) changes the continuation card convention from a "%" to an "X"
in column 6 of the next card,

4) changes horizontal tabs to spaces,

5) puts the first four characters of the output pathname into
columns 73-76,

6) sequences lines in columns 77-80,

7) does not handle implied continuations,

8) will continue lines greater than 72 characters in length onto
the next card(s), and

9) always will put the segment following a continuation character
on the next card.

Usage:

cmf pathnamel pathname?2

Where pathnamel is the name of the segment to be converted

and pathname2 is the name of the segment to contain the converted
program. If pathname2 is omitted, the output will be under
pathnamel”.360".

Example:

cmf multics.fortran 360.fortran
OR

cmf multics.fortran

Pathname2 defaults to multics.fortran.360 in the latter case.

This command cannot be applied to segments which it had pre-

viously produced. Non-FORTRAN lines in the program could con-
ceivably cause incorrect operation.

MULTICS PROGRAMMER'S MANUAL ' convert radix

Command

Author-Maintained Library
Joseph W. Dehn III

Room 39-200, Ext. 3-7788
8/7/73

Name: convert radix, cvr

This command will convert the character string representation
of an integer in one radix into its representation in another radix
and print it on the console. The input and output radices may be
from 2 to 64, and the characters to be used as numerals may be spec-
ified.

Usage: convert radix input input_radix output_radix numerals

1) input is the number to be converted.

2) input_radix is the radix to convert fﬁom.

3) output_radix is the radix to convert to.

4) numerals is a character string of up to 64 numerals.

The "output radix" and "numerals" arguments may be omitted.
The former defaults to ten, and the latter defaults to, in order:
the arabic numerals, the capital letters, and the lower case letters.
Note that if the numerals are to be specified, the output radix must
be specified.

If several numbers are to be converted in the same manner (same
input and output radices and numerals), specifying “*" as the first
argument will put the program into a loop reading input from the
keyboard, one number per line. This mode may be terminated by en-
tering a blank line.

MULTICS PROGRAMMERS' MANUAL decimal_ to_octal

Command
Author-Maintained Library
Student Information Processing Board
Room 39-200, Ext. 3-7788
4/7/73
Name: decimal_to_octal, dto

The decimal to_octal command will convert a decimal argument
to octal and print it on the console.

Usage:
decimal_to_octal decimal number

1) decimal number is a decimal number to be converted to octal.

Entry: octal_to_decimal, otd

This entry will convert an octal argument to decimal and
print it on the console.

Usage:
~octal to_decimal octal_ number

1) octal_number is an octal number to be converted to decimal.

MULTICS PROGRAMMERS' MANUAL | file output unique
| - - i

Command

Author-Maintained Library
John C. Klensin

575 Technology Square
Fifth Floor, Ext. 3-6217
2/20/74

Name: file output_unique, fou

This command facilitates dprinting the results of other
commands.

Usagei
file output unique [dp -options]
command 1~ v
command n
q
where dp -options are zero or more of the options normally passed
to the dprint command. These options include "-ds," "-he," and "-cp."

The differences between the sequence

fou _
command-line 1
command-line 2

command-line n .
q

and the sequence

file _output namel; command-line l; console output
file output name2; command-line 2; console output

file output namen; command-line n; console output
dp -del namel name2 ... namen

are as follows:

1. Each file produced by file output unique begins with a header
consisting of ‘the command line responsible and a time and date

message.

2. Each file produced by file output unique ends with a distinctive
trailer line consisting of "END*END*...*END."

P,)
ifile_output unique MULTICS PROGRAMMERS' MANUAL
i

Page 2
Notes:

1. file_ output unique interprets command lines with the user's
command interpreter, whatever that may be.

2. This version of file output _unique does not require that the
1/0 daemon have any special privileges in the working directory.

3. This routine uses fillin dprint_str_ to evaluate "dprint" options.
See the current description of that subroutine for an exact list
of the options accepted

Example:

fou

pwd; 1ls -dtm

pli big _mother bound_archive
9

(:)Copyright 1974, Massachusetts Institute of Technology

MULTICS PROGRAMMERS' MANUAL get_current charges

Command

Author-Maintained Library
John C. Klensin

575 Technology Square
Fifth Floor, Ext. 3-6217
7/9/74

Name: get current_charges, gcc

This command is used to provide a project administrator with
a variety of information in compact form about a particular user (or
list of users) on a particular project. It can display amounts spent
per shift during the current month, amounts spent absentee, and on io,
and the number of pages in the user's directory. It can display the
limits on the above, if any. In addition, it can display the user's
attributes and the date and device on which he last logged in.

Usage:
get_current _charges project-name user-name user-name ... options
Where:
project-name is the name of the project for which infor-
mation is to be obtained.
user-name is the name of a user on that project for
whom information is to be obtained. Up to
20 user names may be specified.
options are control arguments for the program. These

may occur in any order, and may be intermixed
with user names. Any options that occur apply
to the entire command invocation. These options

are:

-total, -tt Display only the dollar .
total (and limit, if that
option is used).

-limit Display the limits, in
addition to the charges.

-attributes Display the user's current

attributes.

-last_login, -11 Display the time, date and
console id of the user's
last login.

-absolute, -abs Display information about
"absolute" spending and, if
"-1limit" is specified, limit
and cutoff information.

get_current charges MULTICS PROGRAMMERS' MANUAL

Page 2

Output:

If no options are specified, a single line will be displayed
containing the user name, the total charge, the four shift charges,
the io daemon and absentee charges, and the page usage on the user's
directory. 1If -total is specified, only the total charge will appear.

The other options cause additional per-user lines to be displayed.
These are as follows:

For "-1limit", a line showing the total limit, the four shift
limits, and the user's page quota. If "-total" was specified, then
only the total limit is printed.

For "-attributes" a line is displayed showing the attributes
as text strings.

For "-last_login", a line is printed containing the time, date,
and console id, of the user's last login.

Notes:

1) If errors occur for a given user, messages will be printed at
the end of the information for that user. If the person using
this program does not have access to get gquota information,
those fields will be set to zero and a message printed after
other information.

2) This command requires read access to the project definition table
of the project for which information needs to be obtained. As
a consequence, this command is of no use to any Multics user who
is not a project administrator.

(
GS Copyright 1974, Massachusetts Institute of Technology

MULTICS PROGRAMMERS' MANUAL get_object info

Command/Active Function
Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

9/6/74

Names: get_object_info, goi
get_component_info, gci

These commands/active functions give information about the
compilation of an object segment. :

Entry: get object_info, goi
Usage:
(as a command) get_object_info path key

(as an active function) [get_object info path key]

1) path is the path of the object segment.
2) key specifies the information to be printed/returned,
and may be one of the following: .
author the userid of the user who produced the object
at segment.
date_time compiled
dtc the date and time of the compilation.
compiler the name of the translator that produced the
object segment.
version the version of the translator that produced
the object segment.
comment a translator inserted comment. The PL/I
options compiler uses this field to indicate the

options that were specified at compile time.

Entry: get _component_info, gci

This command/active function gives information about the
compilation of a component of a bound object segment.

get_object_info MULTICS PROGRAMMERS' MANUAL

Page 2

Usage:
(as a command) get_component_info path component name key

(as an active function) [get_component info path component name key]

1) path same as above.
2) key same as above.
3) component_ name 'is the name of the component of the object segment

for which the information is to be returned.
Notes:
1) If the "component" argument to get component info is omitted,
it will be assumed to be the same as the entryname portion of
the pathname.

2) If "get object_info" is used on a bound segment, it will return
information about the binding.

Examples:
get_object_info xyz author
get_component_info bound_xyz_ xyz dtc

get_component_info xyz version

MULTICS PROGRAMMERS' MANUAL : [1ock_console

Command

Author-Maintained Library
B. E. Hampson

Room 38-644, DL 9204
03/11/74

Names: lock console, lkc

This command can be used to protect your process from unau-
thorized use in the event you have to leave your terminal for
any length of time. Lock console has two modes of operation:
one in which your process is simply put to sleep awaiting your
return, and one in which lock_console will execute a command
line under its protectlon.

When in command-line-execute mode, lock console will (by
default) establish an on unit for the condition "any other".
The effect of this will be to "catch" any condition signalled
by any procedure invoked by the command line. Lock console
captures the signal and prints a message to the effect that
the signal occurred; but, unlike the system default on unit,
the process -is not returned to command level. Rather, lock_gonsole
calls itself recursively with a basic lock time and grace (see
below) of 24 hours. If the user does not reclaim the terminal
in 48 hours, he is either 1ogged out, or lock_console returns to
its caller. If the terminal is reclaimed, the signalling of the
condition will continue just as if lock console had not inter-
cepted it. Note that, among other things, this feature prevents
someone else answering a question for you (provided the question
is asked in such a way as to cause a condition to be signalled,
e.g., command guery).

There is one exception to the above "signal-catching" scheme:
if a quit is done while executing the command line, the user's
password is requested. If correct, the quit is passed on and
the process gets to command level. If incorrect, the quit is
simply returned from.

Protection is achieved by means of an 8-character password.
Lock console will request this password when invoked (see the
listed exceptions below) either under overprint or with printer
disabled. To reclaim a terminal, the procedure is to strike
the QUIT key, and to enter the same password when it is requested.

1
glock_console

Page 2

Usage:

MULTICS PROGRAMMERS' MANUAL

lock_console =-controll- ... -controln-

The controli are optional control arguments, and may be chosen in
any order from the following list:

-time TTT
—-tm TTT

-no_logout
-nol

-prev_pw
~PpPwW

—defer messages
-dm

—set~pw PPP
-spw PPP

-call CCC
-cl CCC

Sets the basic lock time to TTT minutes.

This value is the time after which lock_console
will take further action (in the absence of a
grace period), if the terminal has not yet
been reclaimed. The default basic lock time

is 10 minutes.

Specifies that, at the expiration of the

basic lock time (and the grace period, if any),
lock_console is to return to its caller in-
stead of logging the user out. The default

is to log the user out.

Specifies that the password from the previous
invocation is to be used (a new password will
not be requested if this argument is used).
This argument will be ignored (with consent)
if it is used in the initial invocation in a
process. .

Specifies that the command "defer messages" is
to be executed (before executing the command
line, if any). The command "immediate messages
-print" will also be executed, just before
lock_cunsole returns to its caller.

Sets the password for this invocation to PPP.
This argument overrides -ppw if both are used.
PPP is limited to eight characters.

Requests that the command line CCC be passed to
the user's command processor for execution under
the protection of lock console. The real time

required to execute the command is counted against

the basic lock time, but the grace period does
not begin until after the command line has fin-
ished executing.

MULTICS PROGRAMMERS' MANUAL lock console

Page 3

-grace GGG .

-gr GGG Sets the grace period to GGG minutes. Lock console
will neither return nor log out, after the basic
lock time has been exceeded (or after the command
line has finished executing, whichever is longer),
until this grace period expires. The default
grace is 0 minutes (no grace).

-no_catch_signals

-ncs Specifies that during the executing of the command
line, lock_console is not to establish an on unit
for the condition any other. The default is to
provide such an on unit. A command line running
in "no catch" mode cannot be quit out of by some-
one who does not know the password; however, if
some error or other condition is signalled and
the user has no on unit for it, the process will
get to command level via the system default on
unit, and then be vulnerable to unauthorized use.

-brief
-bf Causes lock console to be less verbose.

-no print off
-npf - Specifies that the user's terminal does not have
’ the printer off feature, and that therefore the
user desires his passwords be requested under
overprint.

Example:

lock _console -tm 25 -no_logout -grace 2 -cl "ls -p <" -bf

(E) Copyright 1974, Massachusetts Institute of Technology

MULTICS PROGRAMMER'S MANUAL lower case

Command

Author-Maintained Library
J. R. Steinberg

Room 39-427, Ext. 3-7184
1/8/74

Name: lower_ case

This command, given the pathname of an ASCII file, maps all
upper-case letters in the file to lower case. It is intended for
use on card-punched decks which have been input to Multics and which
contain source code for a compiler which expects lower-case keywords
(e.g., PL/I, FORTRAN).

Usage
lower case pathname

Where pathname is the pathname of an ASCII file which is to be
mapped to lower-case.

MULTICS PROGRAMMERS' MANUAL number queued

Active Function/Command
Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

5/10/74

Name: number_queued, ngq

This procedure returns the number of requests in an I/O
daemon queue. :

Usage:

(as active function): [number_queued gnum dvc]

(as command) : number_gueuedvqnum dvc

1) gnum a positive integer which specifies the queue number
2) dvc the name of the device class (optional)

Example:

‘As an active function, the procedure may be used by an
exec com or absin control program to decide in which queue to
submit a request:

&if [greater [ng 3] 15] &then dp -q 2 sample.list
&else dp -g 3 sample.list

MULTICS PROGRAMMERS' MANUAL octal_to_float

Command
Author-Maintained Library
Student Information Processing Board
Room 39-200, Ext. 3-7788
4/7/73
Name: octal_to_float, otf

The octal_to_float command will print the floating point value
of an octal argument on the console.

Usage:
octal_to_float octal_ number

1) octal number is an octal number to be converted to float.

Entry: float_to_octal, fto

This entry will print the octal representation of a floating
binary argument on the console.

USage:
float_to_octal float_number

1) float_number is a float number to be converted to octal.

MULTICS PROGRAMMERS' MANUAL print_basic_file

Command

Author-Maintained Library
Joseph W. Dehn III

Room 39-200, Ext. 3-7788
7/29/74

Name: print basic file
The print basic file command may be used to print the contents

of a file as interpreted by the BASIC language. The file may be
terminal-format, random-string, or random-numeric.

Usage:
print_basic file file spec
where file spec is a string specifying the file to be printed.

If the string contains blanks, it must be enclosed in quotes. The
type of the file will be printed, followed by the contents.

MULTICS PROGRAMMERS' MANUAL print login_dir

Command

Author-Maintained Library
John C. Klensin

575 Technology Square
Fifth floor, Ext. 6217
1/18/71

Name: print_login_dir, pld

The print_login_dir command causes the name of the orlglnal
login directory to be printed on the console.

Usage: print_login dir

MULTICS PROGRAMMERS' MANUAL print_string

Command

Author-Maintained Library
Room 39-2009, Ext. 3-7788
' 5/10/74

Name: print string, ps
print string nnl, psnnl
print_string ht, psht
print_string tb, pstb

This procedure prints on the console the line formed by
concatenating its arguments, with one blank between each argument.
The entries differ only in the character appended at the end of
the line, which is as follows:

Entry Abbreviation Trailing Character
print string _ ps newline
print_string nnl psnnl (none)
print_string ht psht horizontal tab
print string tb pstb space

Usage:

print _string argl ... argn

Example:
print_string [path &l1] as of [date]

MULTICS PROGRAMMERS' MANUAL punch_paper tape

Command

Author-Maintained Library
Joseph W. Dehn III

Room 39-200, Ext. 3-7788
5/15/73

Name: punch_paper tape, ppt

This command punches an ascii segment on the paper tape punch
of a model 33, 35, 37, or 38 teletype. The segment may be punched
as is, or carriage returns may be inserted at the end of each
line. The file is preceeded by a punch-on (device control 2)
character and a leader of nulls, and followed by a trailer and a
punch-off (device control 4). '

Usage: punch_paper_ tape <optl> ... <optn> <pathl> ... <pathn>

Options take effect as found in the argument 1list, and should
normally preceed all path arguments.

-insert_cr enables the insertion of carriage returns and
-icr null padding at the end of each line.

-override causes the fact that you are not on a teletype
to be ignored.

Notes:

When in -icr mode, each \01l2 is replaced by \0l15, \012, \000.
In addition, a punch-on character is added after each punch-off,
to allow the punching to continue. When not in -icr mode, no
processing is done at all. In either mode, all other characters
are sent as is, including \004 and \005, whose effects on the
particular terminal should be considered when trying to punch
out strange segments. Note that this command cannot be used to
punch non-ascii files since the high-order bit of each byte is
lost.

Examples:
| ppt -icr foo.fortran test.basic

punch_paper_tape —override.sample_file

MULTICS PROGRAMMERS' MANUAL push_wdir

Command

Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

9/6/74

Names: push wdir, pop wdir

These commands may be used to change the working directory
while pushing the previous working directory onto a "stack"”. The
previous working directory may then be restored.
Entry: push wdir

This entry changes the working directory and pushes the previous
working directory.

Usage:

push wdir path
1) path is the pathname of the new working directory
Entry: pop wdir

This entry restores the working directory to the value pushed
by the push wdir command.

Usage: pop_wdir -control_arg-
The control argument "-all" specifies that the working

directory should be restored to what it was before the first
push_wdir command, i.e., the "stack" is popped all the way.

MULTICS PROGRAMMERS ' MANUAL © read_dartmouth tape’

Command

Author-Maintained Library
Joseph W. Dehn III

Room 39 -200, Ext. 3-7788
‘ 7/27/74

Names : read_dartmouth tape, rdt

The read dartmouth_tape command ' may be used to read all or
some of the files on a Dartmouth llbrary tape into Multics segments.
The tape is assumed to be a 9-track image of a 7-track "format 1"
ASCII tape, with the first file being a directory.

Usage:
read_dartmouth_tape -control_args- -file names-

1) -tape xxxxx specifies the volume_id of the tape to be read.
If this argument is not specified, it is
assumed that the stream "dart_tape" is already
attached to the appropriate device.

2) -hold specifies that the tape is not to be detached
after the files have been read.

3) -all specifies that all files on the tape are to
be read. If this option is given, no file
names may be specified.

4) -trace specifies that as each file is encountered on
the tape, its number and name are to be printed.

5) -list specifies that a file is to be created with the

name "tapeid.dliblist" listing the name and
type of all files on the tape.

6) -noconversion specifies that no conversion is to be done
for "random-string” and "random~numeric" files.

7) -name specifies that the following argument is to
be treated as a file name, even if its first
character is "-".

Notes:

1) Files on the tape are in one of three formats. "TERMINAL-
FORMAT" files are read with no conversion. "RANDOM" files
are converted into a form suitable for use with the Multics
BASIC language, unless the -noconversion option is specified.

2) Darmouth file names are usually composed of upper-case letters.
When specifying file names, be sure to spell them exactly as
listed in the tape directory.

read_dartmouth_tape MULTICS PROGRAMMERS' MANUAL

Page 2
Examples:
To read all files and create a directory listing:
rdt -tape 12345 -list -all
To read two files and hold the tape:

rdt -tape 54321 -hold RATINV TRUTHTAB

MULTICS PROGRAMMERS' MANUAL reformat_linsg

Command

Author-Maintained Library
Elaine Franklin

575 Technology Square
Cambridge Project

Fifth Floor, Ext. 2054
9/9/71

Name: reformat_line, rfl

The reformat_line command may be used to scan a segment line-
by-line, forcing each line to fit into a specified number of
columns.

Usage H

- reformat_line pathnamel [pathname2][-start ccl][-end cc2][-wrap cc3]
or
rfl pathnamel [pathname2][-start ccl][-end cc2] [-wrap cc3]
Where:
pathnamel is the pathname of the input segment.

pathname2 is the pathname of the output segment. If
pathname2 is not supplied, then the segment
pathnamel will be replaced upon completion of the
command.

ccl is the column in which a line normally starts.
If ccl is not supplied, then it is assumed to be
1. ccl may not be less than 1 nor greater than
132 or cc2. If supplied, ccl must be preceded
by the string "-start".

cc2 is the last column incorporated in a line before
it wraps. If cc2 is not supplied, then it is
assumed to be 80. cc2 may not be greater than
132 nor less than ccl. If supplied, cc2 must
be preceded by the string "-end".

cc3 is the column at which a wrapped line is to start.
If cc3 is not supplied, then it is assumed to
be 1. c¢c3 may not be less than 1 nor greater than
132 or cc2. If supplied, cc3 must be preceded
by the string "-wrap".

reformat line MULTICS PROGRAMMERS' MANUAL

Page 2

The program reformat line is designed to scan a segment line~—
by=-line and reformat it as follows. Any horizontal tabs which are
encountered during processing will be converted to the appropriate
number of blanks before further processing of the line is done.
Lines will be reformated so that they will begin at column ccl and
continue up to and including column cc2. If a line is longer
than cc2-ccl+l characters, it will be broken up or reformated to
continue onto the next line, beginning in the column specified
" for cc3 and continuing through column cc2 of that line. If ccl
or cc3 is greater than 1, blanks will be inserted in columns 1
through ccl-1 or cc3-1, respectively.

Examples:

reformat_line alpha

would take the segment alpha in the current working directory and
reformat it using the default values for ccl, cc2 and cc3 (1, 80
and 1, respectively). The old segment alpha would be replaced by
the new segment alpha in the current working directory.

reformat line -end 132 beta -wrap 60 gamma

would take the segment beta in the current working directory and
reformat it using the default value of 1 for ccl and the values
132 and 60 for cc2 and cc3, respectively. An output segment named
gamma would be formed in the current working directory.

Warning:

This command considers anything of the form "character back-
space character" (e.g., A) to be three separate character positions.
If this action inconveniences anyone, please contact Elaine Franklin,
Ext. 2054.

MULTICS PROGRAMMERS' MANUAL ’ repeat

_ Command

Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

4/7/73

Name: repeat

The repeat command makes it possible to have a command line
repeated any number of times.

Usage:

repeat [-times n] command_line

1) n is the number of times to repeat the command.
If the -times option is omitted, the command
will be repeated indefinitely.

2) command line is the command line to be repeated. It need
not be enclosed in gquotes.

{'..._..‘.-«.‘..
MULTICS PROGRAMMERS' MANUAL | return to]
- -

Command

Author-Maintained Library
Paul Green

Honeywell - DSO

575 Technology Square
491-7300

1/9/74

Name: return_ to, rt

This command will cause a return to a procedure which called
out from a specified stack frame, thus simulating a normal return
from that call.

The return_to command is simply an interface to the system
subroutine "unwinder "; refer to the MPM Subsystem Writer's Guide
for complete information.

Usage:

return_to frame

The command argument "frame" is the octal offset of the stack frame
(in the current ring) to be returned to. This offset may easily be
determined by using the ".t" request to "debug," or the "trace_stack"
command.

Example:
return to 5540

will return to the procedure owning the stack frame at octal offset
5540 in the current ring's stack. :

MULTICS PROGRAMMERS' MANUAL ring

- Active Function/Command
Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

5/10/74

Name: ring
This procedure returns the current ring of execution.
Usage:
(as active function): - [ring]
(as command) : _ ring

Example:

&if [equal (ring]l 5] &then subsys who &l &2 &3 &4
&else who &1 &2 &3 &4

MULTICS PROGRAMMERS' MANUAL subtree status

Command

Author-Maintained Library
Gary M. Palter

Room 39-200, Ext. 3-7788
11/29/73

Names : subtree_status, stst
directory_status, dst
global _status, gstat

This command is related to the status command. It will produce a
listing of a subtree of the hierarchy (or just a single directory)
with complete information about all (or some) of the entries in
each directory. It also will list the quotas and Initial Access
Control Lists of each directory.

Options exist to specify the type of sort to be performed on entries
in a directory, to specify which classes of entries are to be listed
(similar to the list command), and how multi-segment files are to be
treated.

Output is in a format suited almost solely for dprinting. The
field width is 136 characters, and there are form-feeds at the start
of each directory's listing.

Usage: subtree_status, stst
subtree status -directory- optionl- ... -optionn-

1) directory is the relative pathname of the directory which
is the top node of the hierarchy to be listed.
If the directory is omitted, the working direc-
tory will be used.

2) optioni is chosen from the following list of options
(see also Notes below):

-brief, -bf will cause any messages which might be expected
not to be reported through com err . See the
Notes below.

-check, -ck will cause subtree_status to walk any multi-
segment files that do not conform to the rules
" for multi-segment files (in the write-up of
check msf) like any other directory.

-name, -nm specifies that the entries in a directory are to
to be sorted by primary entry name in the listing.

-date_time used, -dtu
specifies that the entries are to be sorted by
date time used in the listing.

-date_time modified, -dtm
specifies that the entries are to be sorted by
date time modified.

-segment, -sm specifies that segments are to be included in the
listing (see Notes).

-directory, -dr specifies that directories are to be included in
the list.

-multisegment file, -msf
specifies that multi-segment files are to be

included.
-1link, -1k specifies that links are to be included.
Notes:
1) The messages suppressed by the -brief option are those concerning

2)

w
~—

5)

insufficient access to a directory, or a directory containing
none of the entries selected for listing.

If any one of the arguments for selection of entry classes for

the listing is present, then information only about those classes
for which an option appears will be given.

- —aa 22 4 e

he sorting options may be given per command.

The defaults for the options are:

-brief off
-check off
sorting none

selection all entry classes

An example of the output produced by this command appears below.

MULTICS PROGRAMMERS' MANUAL subtree status

Page 3

6) The "Records" field of a segment or directory entry is the num-
ber of non-zero pages for that branch. The "Blocks" field is
the length of the segments in blocks of 1024. (These two numbers
will be different only if there are pages containing all zeroes.)

7) The "Bit Count" field of a multi-segment file entry is the number
of segments inferior to the multi-segment file. The "Records"”
field is the number of pages used by the directory portion of
the multi-segment file. The "Total" field is the number of records
in the multi-segment file (the same value that is returned by the
list command) .

8) If the target of a link does not exist, an asterisk will be
placed in the "Null" field of the link's entry.

Usage: directory status, dst
directory status -directory- -optionl- ... -optionn-

The arguments are identical to those for subtree _status. This
entry differs from subtree_status in that it does not walk the sub-
tree of the specified directory, but produces a listing of only that
directory. As a consequence, the -check option is meaningless for
this command.

Usage: global status, gstat

global status -directory- -optionl- ... -optionn-

The arguments are identical to those for directory status. This
entry differs from directory status in that the default sortlng op-

tion is date time used (instead of no sort). This entry is provided
as a replacement for an older version of the gstat command.

11728773 0328.72 est Wed

>udd>Janus>Palfer>subfree_status_exahple_dlrecforv

Records Used?! 69

Inltla) Access Control List = Segments

RINg 41 rew Palter.*,* rw *,SysDaemon.* re *.SIPBADMIN.*
r LIS)
Ring 5% r A_very_Jong_name_.Project.* rw Vanvieckes*.* . r w Roach.*.*
Segmentst 1
Primary Name Ring Author Used Dumped Blt Count Records Safety
Brackets Bit Count Author Modlitled Entry Modlfled Max Length Blocks Copy
Secondary Namels) Mode Access ID Mode Access ID
empty_segment (ybok) Palter.danus.a 11728773 0313 11728773 0326 0 /] otf
Palter.Janus.a 11/28/73 0313 11/28/73 0315 65536 0 off.
- a_second_name rw Palter,Janus.*® rew Palter.*.*
rw *,SysDaemon.* re *,SIPBADMING*
r o¥a ¥ _
No Olrectorlese.
Mufti=Segment Fllest 1
Pr-imary Name Ring Author Used Dumped Blt Count Reécords Safety
Brackets 81t Count Author Moditled Entry Modifled Max Length Total Copy
Secondary Namels) Mode Access ID Mode Access 10
a_mul tisegment_tile (7,7) Palter.Janus.a 11/28/73 0328 11/28/73 0325 5 1 oft
Palter.Janus.a 11/728/73 0310 11/28/73 0310 65536 69 oft

a_nsf

Primary Name

Secondary Name(s)

empty

sma Palter.Janus.*

Linkst

Author

Nut 1 Pathname

Pal tersJanus.a

1

sma

Modltled

11728773 0311

* >user_dlr_dlr>Janus>Palter>empty

.SysDaemon.

Dumped

01701701 1900

MULTICS PROGRAMMERS' MANUAL teco

Command

Author-Maintained Library
Peter B. Pishop

545 Technology Square
Room 536, Ext. 6213
03/26/72

CHAPTER 1
TECO

TECO (Iext Editor and C(COrrector) is a character oriented
text editor modelled after the TECO in general use on the Digital
Equipment Corp. PDP-10, which was originally written at M.I|.T.'s
Artificial Intelligence project. TECO allows many simple editing

requests, macro definitions, iterations, and conditional
statements. These permit the user to do simple "manual' editing
of ASCIl files or to write complex macros which do "automatic"

editing. Although this implementation is modeled after the TECO
in general use, many new commands and features have been added
that make the macro facility really powerful and easy to use.
Some of the additions include adding if ... then ... else ...
statements, allowing the contents of Q-registers to be used as
quoted strings, allowing numeric and string arguments to be
passed to macros, and allowing macros that reside in files to be
called directly from TECO,

1.1 GENERAL DESCRIPTION

TECO 1is basically a character oriented editor, whereas
editors like edm and qedx are line oriented editors., In edm and
qedx it is only possible to position the pointer to the beginning
of the line. The pointer is then considered to point at the whole
line. These editors then supply commands (the substitute or
change command) to edit the current 1line. |In TECO such a
complicated command is unnecessary because the pointer can point
between any two characters in the buffer. The fundamental
character oriented commands are insert, delete, search, and
moving the pointer. With these commands it is very easy to do
what would be complicated operations in a line oriented editor.
The concept of a line as an important entity is not unknown in
TECO, however. There are many commands that can be line oriented.
These are the L, T, K, X, and S commands.

TECO reads command lines from the user's console (actually it
reads from the stream '"user_input") line by line until a line
ending with "$" is typed. Execution of the complete command
string is started when this last line is read. TECO will type "E"
when it is waiting for a new command string.

! teco MULTICS PROGRAMMERS' MANUAL

Page 2

1.2 ENTERING TECO

TECO may be called from the Multics command level by the
Multics command:

teco -pathname- or TECO -pathname-
If pathname 1is specified, TECO automatically reads in the file
by effectively executing the string "El/pathname/J" upon entry.
If no pathname is specified, the buffer will initially be empty.
To create a new file, one should enter TECO (without specifying a
pathname) and then use the "I" request to insert text.

(See section 3.1.8.4(5))

1.3 EXITING FROM TECO

One may exit from TECO by typing the EQ command (followed by
"¢" and a newline).

1.4 TECO DEFINITIONS

A. TECO uses four storage areas:

(1) The buffer is the area where text to be edited is examined
and modified. At all times it contains a (possibly null)
character string. There is a pointer into the buffer,
denoting the current position., This pointer does not point
to a character; it points between two characters. The
pointer may assume any value between 0 and Z, where "Z" is
the number of characters currently in the buffer, 0
indicates that the pointer is to the left of the first
character, and Z would represent the position to the right
of the 1las. <character in the buffer. The value of the
pointer is represented by "."

(2) Commands to TECO are written as a character string which
is read into the Command String Area. TECO interprets the
characters in the command string as a series of commands.
Upper and lower case letters may be used interchangeably
in commands.

(3) The Q-Registers are locations for storing either numeric
quantities or strings of text for later use. Each

Q~Register is designated by a single character name. There
are 95 Q-Registers, one for each printing ASCI! character.
Each Q-Register may contain a positive or negative integer
or a character string.

(L) The G-Pegister pushdown list is a last-in-first-out (LIFO)

list which may be used to temporarily store the contents
of a Q-Register. It is cleared (i.e., the contents are
lost) every time one returns to command level, i.e., a "E"
is typed.

MULTICS PROGRAMMERS' MANUAL tecol
L

Page 3

TECO uses numeric expressions for many of its operations.
These may consist of any combination of decimal or octal
numbers, the unary operator "-", the binary operators '"+",
now o Wen o nyn M (hoolean or), "&'" (boolean and), and
the special valued commands and symbols. All operators are
of equal precedence and expressions are evaluated from
left to right. Note, however, that parentheses may be
used in their normal manner. Spaces are ignored (except
to terminate decimal numbers). |If two numeric quantities
are given with no operator between them, the default
operator "+" is used. Note that a string of digits
followed _immediately by a "." is interpreted as an octal
rather than a decimal number. Division wusing the "W/"
operator is integer division, i.e., the remainder is
ighored. The special symbols allowed in an expression at
any point are:

B (Beginning) equivalent to 0

Z equivalent to the number of <characters in the
buffer

. (pointer) equivalent to the number of characters

to the 1left of the pointer, i.e., the current
value of the pointer.

There is another special symbol related to the
symbols above and this 1is the H (wHole) symbol. This
symbol is equivalent to "0,Z". It is the only symbol in
TECO that has two values., It is useful for referring to
the whole buffer,

Commands which return values may also be used in
expressions, but they may not appear immediately to the
right of an operator. This is because the command will
assume that everything to its left is part of one of its
arguments. If a command appears within parentheses, it
will assume that its arguments are entirely between the
last "(" and the command. Therefore a command will not
read parts of an expression wich are outside the
parentheses in which it appears.

The plus and minus binary operators (excluding the
unary minus) assume a right operand of 1 if none is given.

EXAMPLES
Assume that the current value of the pointer is 500,
expression value

(1) (7 12)/3 = 6

(2) 9+ = 10

(3) b- = =1

(4) - = -]

(5) L+8/2 = 6

(6) 101.

teco MULTICS PROGRAMMERS' MANUAL

Page &
(7) 3j10 = 11
(8) 1++++ ++ +++ + = 11
(9) 9%=2 = =18
(10) 9*--2 = 18
(11) .10 = 510
(12) 10. = 8
C. Qggggg,stringg are strings of text delimited by a quoting

character. The quoting character may be any character not
contained in the string except a letter or a digit. The
contents of a Q-register may be used as a quoted string if
the letter "g" followed immediately by the letter
specifying the Q-register is typed instead of the first
quoting character.

(See section 3.1.4)

EXAMPLES
(1) "hello"
(2) /This is a quoted string/
(3) ,This string is delimited by the comma character and
contains 2 new-line characters.
(4) ql

1.5 ERROR MESSAGES

TECO types out error messages in one of two modes, long or
short. Short error messages are less than 9 characters long while
long error messages are less than 50 characters long. The default
mode is short. To change the error mode TECO is using, give the
following Multics command:

teco$teco_error_mode long
or teco$teco_error_mode short

If a short error message, such as "/: 2" cannot be
understood, the following Multics command will type out the 1long
error message:

teco_error '"/: 2"

The above holds for all error messages except those
informing the user that a file could not be found.

1.6 IMPLEMENTATION RESTRICTIONS

The maximum number of characters allowed in a C-register s
262143, The maximum number of characters allowed in a quoted
string is 262143, as is the maximum number of characters 1in a
TECO command 1line. Note that these sizes are all one segment
long. When the Multics segment size changes, these restrictions

—
MULTICS PROGRAMMERS' MANUAL teco

Page 5

will also change. The maximum number of items in the pushdown
list is 20, The maximum depth of macro calls is 20. The maximum
depth of parentheses is 20,

1,7 LEARNING TECO

This manual contains three logical sections. In the first
section (Chapter 2) commands are described which:

(1) read and write files

(2) examine text within a file

(3) make deletions and insertions

(4) search for strings of text
Examples of using the commands are given at the end of the
chapter. After reading Chapters 1 and 2 the reader should be
able to use most of the common editing requests.

In the second section (Chapter 3), more sophisticated TECO
commands are described, including use of Q-registers, macros,
iterations, conditionals. The commands 1listed in chapter 3
transform TECO from just another editor to one of the most
powerful general purpose text editors in existence.

The third section contains a summary of all the TECO
commands in alphabetical order. This is intended to be used as a
reference section.

teco MULTICS PROGRAMMERS' MANUAL

Page 6

CHAPTER 2
BASIC TECO COMMANDS

2.1 The most general form of a TECO command would be:
m,nX/string/

where m and n are optional numeric arguments, X is the command to
be executed, and /string/ is a quoted string. In most cases the
command will be just one character, though in some cases it may
be two characters. Not all of the commands take arguments. Those
that do generally have default values for missing arguments,
Only a few commands expect quoted strings. The string must not be
omitted if the command expects one. Some commands also return
values, this will be discussed in Chapter 3.

The 1letter chosen for a command generally has some mnemonic
meaning, which is indicated in the description of the command.
Unfortunately, TECO has a fairly long history, having originally
been developed for editing paper tapes, and so some of the
mnemonic meanings are almost lost now, As many commands as one
wishes may be typed at a time. Execution of the commands will not
start until after the "$" followed by a newline character is
typed. Spaces may be inserted anywhere (except in the middle of
numbers) and newline characters may be inserted anywhere except
between a command and its arguments.

Remember that upper case and lower case letters may be used
interchangeably as commands.

2.1.1 ENTERING TECO

See section 1.2.

2.1.2 ADING ILE: - ElI (External lnput)

El/pathname/ reads in the file specified by pathname,
which is assumed to be a standard Multics
pathname. The contents of the file are
inserted in the buffer at the current pointer
position and then the pointer is moved to the

right of the text just inserted.

2.1.3 WRITING A FILE: - EO (External Qutput)

EO/pathname/ writes the contents of the buffer to the file
specified by pathname. This command takes
arguments similar to the "T" command; it

writes out that part of the buffer which

MULTICS PROGRAMMERS' MANUAL teco

Page 7

would be typed by "T", Note, however, that
if no arguments are given, "EQC" assumes "B,Z"
as the default rather than "1".

Note: The pointer is never moved by the "EO" command.

2.1.4 TYPING THE BUFFER - T (Iype)

nT

m,nT

+n

-n

equivalent to "1T"

types out the string of characters beginning
at the current pointer position and
terminating after n newline characters have
been encountered. T types out the rest of the
current line, and 2T types out the rest of
the current line and the next line. The last
character typed by T is a newline unless
there aren't that many lines in the file.
types out starting just after the (n+l)th
newline to the left of the pointer and
finishing at the pointer. 0T types out the
beginning of the 1line up to the current
pointer. Usually two T commands are given at
once, such as O0TT, which types out the entire
line the pointer is in, When OT is useful,
the 1last character it types out is not a
newline. =T types out the previous line and
the beginning of the current line. If the
pointer is at the beginning of a 1line, -T
types out the previous line, the newline at
the end of that line, and nothing more.

Types out the (m+l)th through the nth
characters of the buffer.

Note: The pointer is never moved by the "T" command.

2.1.5 MOVING THE POINTER - J (Jump), C (Characters), R (Reverse),
and L (Lines)

ndJ

nC

nR

Moves the pointer to the right of the nth
character in the buffer, i.e., sets "." to
the value of n., If n is not specified, 0 s

assumed. That is, the pointer is moved to the
left of the first character in the buffer,

Moves the pointer n characters to the right
of its current position (equivalent to .+ndJ).
If n is omitted, 1 is assumed.

Like nC except it moves the pointer to the
left (equivalent to =-nC). If n is omitted, 1

teco

Page 8

nL

.o
[l

2,1.6 DELETING TEXT

nD

m, nkK

+n

-n

+n

-n

MULTICS PROGRAMMERS' MANUAL

is assumed,

Moves the pointer to the right, stopping
after it has passed over n newline
characters. If n is omitted, 1 is assumed., L
moves the pointer to the beginning of the
next line.

Moves the pointer to the left, stopping after
it has passed over n+l newline characters and
then moving it to the right of the 1last
newline character passed over. OL moves the
pointer to the beginning of the current line,
and -L moves the pointer to the beginning of
the previous line.

(See section 3.1.1)

- D (Deiete) and K (Kil1)

Deletes n characters. If n is positive the
characters are deleted to the right of the
pointer, If n is negative the characters are
deleted to the left of the pointer. If n is
omitted, 1 is assumed.

Takes arguments like the "T" command except
that it deletes that text which "T" would
type. The pointer 1is moved to where the
deletion took place. If no arguments are
specified, "1K" is assumed,

deletes all the characters beginning at the
current pointer position and terminating
after n newline characters have been
encountered. K deletes the rest of the
current line and the newline character at the
end of the line, while 2K deletes the rest of
the current line and the next line.

deletes all the characters starting just
after the (n+l)th newline to the left of the
current pointer and ending at the current
pointer. 0K deletes the beginning of the
current line without deleting the newline
character at the end of the previous line. =K
deletes the previous line and the beginning
of the current line. To ensure that only the
previous line is deleted, the command
sequence '"OL-K" can be used.

Deletes the (m+1)th through the nth
characters of the buffer.

MULTICS PROGRAMMERS'

MANUAL teco

Page 9

2,1.7 INSERTING TEXT - | (lnsert)

1/text/

ni

Inserts the text of the quoted string at the
current pointer position and moves the
pointer to the right of the inserted text.

Inserts the character whose ASC!| code value
is n. It moves the pointer to the right of
the inserted character.

(See section 3.1.3.2)

2.1.8 SEARCH FOR TEXT - S (Search)

S/string/

nS/string/

m,nS/string/

:S/string/

equivalent to 1S/string/

Searches for the nth occurrence of the quoted
string. If n is positive the text is searched
from the current pointer through the end of
the buffer for the nth occurrence of the
string. |If found, the pointer is set to the
right of the matching string. Otherwise the
pointer is not moved and an error message is
typed. If n is negative the text is searched
from the current pointer position to the
beginning of the buffer for the nth
occurrence of the quoted string. The pointer
is set to the left of the matched string. If
the string is not found the pointer is not
moved and an error message is typed out,

Instead of searching the entire buffer for n
occurrences of the quoted string, only m
lines from the current pointer are searched.
If m is positive, the only part of the buffer
that will be searched will be from the
current pointer to just after the mth newline
character after the current pointer, Ifm s
0 or negative, the only part of the buffer
that will be searched will be from the
current pointer to just after the (m+l)th
newline before the current pointer,
1,1S/text/ will only search the rest of the
current line. 0,-1S/text/ will only search
the beginning of the current line. If m is
less than or equal to 0, n must be negative.
| f m 1is greater than zero, n must be
positive.

(See section 3.1.1)

teco MULTICS PROGRAMMERS' MANUAL

Page 10

2.1.9 IYPING OUT VALUES - = (Equals)

n= or m,n= types out the decimal value of all the
arguments separated by spaces and ending with
a newline.

2.1.10 LEAVING TECO - EQ (External Quit)

EQ returns to the caller of TECO (e.g., Multics
command level)
Note: don't forget to do an EO command before the EQ.

2.1.11 RESTARTING TECO AFTER "ouliT"

If one M"quits" out of TECO in order to abort a command
string, one may use the 'program_interrupt" ("pi") command to
restart TECO. It will not abort the entire command string; only
those commands which have not vet been executed. The current
command is aborted if the effect of doing so would be identical
to that of not starting the command in the first place. TECO
keeps track of what it is doing, so that if the sequence:

(quit)
program_interrupt (or "pi")

is given, it will pot abort the current operation if it would
leave TECO in an inconsistent state. In other words, the sequence
will only interrupt between TECO commands, not in the middle of a
command.

At times it is desirable to get around this feature. When

doing an "EO", for instance, TECO will not allow the user to "pi"
back to TECO command level once the EO has started until it has

completed writing the file. To get around this, one should type:

(quit)
teco$abort or TECOS$ABORT

When TECO$ABORT is called, the most recent invocation of
TECO aborts its current operation without checking for
consistency of states. Note that TECO will be in a consistent
state whenever it actually accesses a file, and so there should
be no problems encountered if this feature is used to get out of
a runaway "E" command. Under other circumstances, however, it is
wise for the user to type:

-5t5t¢t

to make sure that things are OK, Except for the case of a runaway
EO command, this feature 1is probably totally unnecessary in
normal use.

MULTICS PROGPAMMERS' MANUAL

2,2 ST
2,2.1 ENTERING TECO

a) teco source.pll

~ALONE EXAMPLES

b) TECO <x>y>z>a.ec

c) teco

2.2.3 READING A FILE
a) El/source.pll/

2.2.3 WRITING A FILE

a) EO/new_source.pll/

b) .,zEO0/bottom/

c) 2E0/1ines/

2,24 TYPING TEXT

a) 2T

b) 0T

c) OTT

d) 25,1007

2.2,5 MOVING THE POINTER

a) J

teco

Page 11

enter TECO and read in the file

source.pll from the working
directory.

enter TECO and read in the file

specified.
enter the buffer initially empty.

-text contained in
at the current point in

Insert the
source.pll
the buffer.

Write the whole buffer out into

new_source.pll.

Write out the buffer from the
current pointer to the end into the
file "bottom".

Write out two lines starting at the
current pointer position to the
file "lines".

Type out from . to the end of the

next line.

Type out the current line from its

beginning to ".".

Type out all of the current line.

Type out the 25+1 (26th) through
the 100th character of the buffer.

Position the pointer at the
beginning of the buffer.

d) OL

e) -L

f) R

g) 812-388C

2.2,.6 DELETING TEXT

a) 19,22K

b) 19J 3D

c) HK
d) -D

2.2.7 INSERTING TEXT

a) l/abe
/

b) I.abc.

¢c) 651

MULTICS PROGRAMMERS' MANUAL

Position the pointer at the end of
the buffer.

Position the pointer at the

beginning of the next line in the
buffer,

Position the pointer at the
beginning of the current line.

Position the pointer at the
beginning of the current line.

Back up the pointer by one
character position,

Move the pointer ahead 812-388
(424) character positions.

Delete the 19+1 (20th) through the
22nd character of the file. Set the
pointer to 19,

Move the pointer to the right of
the 19th character and then delete
the next three characters (20-22),

Delete the whole buffer.

Delete the character Jjust to the
left of the pointer.

Insert the line "abc" followed
by a new=-line character at the
current pointer position.

Insert the string "abc" without a

new-1line character.

haracter with ASClI
A") at the current
on.

n

Insert the ¢
code 65 "

(
pointer positi

MULTICS PROGRAMMERS' MANUAL

2,2.9 JYPING VALUES

b) Z,.=

c) =

d) Q6+53 =

2.2.8 SEARCHING FOR TEXT
a) J S/Hello/

b) ZJ -S"Hello"

c) J 3S"x

d) J 1,1S/hello
/

teco

Page 13

Type out how many characters are in
the buffer.

Type out how many characters are in
the buffer followed by the current
pointer position.

Type just a blank line.

Type out 53 plus the value
contained in Q-register 6,

Position the pointer just to the
right of the first occurence of the
string "Hello" in the buffer.

Position the pointer just to the
left of the last occurence of the
string "Hello" in the buffer.

Position the pointer just after
the third occurence of a 1line
ending with a "=*",

Position the pointer just after
the first line in the buffer if it
ends in “hello". If the first 1line
does not end in "hello" type out an
error message.

—

teco MULTICS PROCRAMMERS' MANUAL
| E—— |

Page 14

2.3 EXAMPLES OF BASIC EDITING REQUESTS

Note: In the following examples, underlined text is produced by

TECO.
TECO abc.pll
BS5LTS

dcl a fixed bing

- BS/a/-DI/b/OLTS$

decl b fixed bin:
BS/dcl d/0LKT$

1 £ fi
BK1/dcl g char(2);
/$

HEEO/abc.p11/EQ$

Enter TECO and read in the segment

. abc.pll.

Move to the 6th 1line and type it
out.

Change the "a" to a "b" and retype
the line.

Search for the declaration of d and
delete the 1line that contains it.
Then type out the next line.

Delete this line and then insert a
declaration of g.

Write the edited text out to the
file and then return from TECO.

MULTICS PROGRAMMERS' MANUAL teco

Page 15
CHAPTER 3
ADVANCED TECO COMMANDS
3.1 In Chapter 2 the general form of a TECO command was given.

Some items were left out, however, The actual format is:
m,nXq/stringl//string2/.../stringn/
The q indicates a Q~register on which the command is to act.

It should also be noted that more than one string may be
given, Although no TECO command currently accepts more than one
quoted string, a macro may be called with multiple string
arguments which may be retrieved inside the macro by the :X
‘command.

In Chapter 1 we specified that expressions may be built from
numbers, special valued commands and symbols. Examples of valued
commands will be given in Chapter 3. Care should be taken to
notice that commands with values may appear only on the left side
of the first operator, or within parentheses. Otherwise the part
of the expression preceding the command will be considered an
argument to the command.

3.1.1 The effect of many commands may have their function

changed by preceding the command with a ":". The colon has no
fixed meaning - it is defined for each command individually. The
following commands given earlier may be used as follows.

:lq/string/ or n:lg like the | command except that the specified
string is inserted into Q-register gq. The
former contents of Q-register g are lost.

n:L Equivalent to nLR. Thus TECO moves to the end
of the line rather than the beginning.

:S/string/, n:S/string/, or m,n:S/string/ like S except that it
returns a value. The value is 0 if the search
fails and -1 if it succeeds. Even if the
search fails, TECO continues execution.

:T/string/ types the specified string on the user's
console.
Y (See section 3.1.10)

+ X (See section 3.1.8.3)

teco MULTICS PROGRAMMERS' MANUAL

Page 16

3,.1.2 Numeric Q-Registers

Q-Registers may be wused, as mentioned in section 1.4, to
hold numeric values. These values may be used in expressions
which are arguments to other commands.

3.1.2.1 SAVING A VALUE - U (Update (or what comes after Q?))

Ug sets Q-register g to a very large positive
number,

nlUg sets Q-register q to n,

m, nUqg sets Q-register q to n and returns m as its
value.

3.1,2.2 DING Q-REG ER - Q (Q-Register (Don't ask me why

“Qﬂ))

Qq Return the number stored in Q-register q as

the value. Note that Q 1is not really a
command - it is a special symbol <(as in
section 1.4.2). Thus, in the expression
"5+03" the "5+" is not considered an argument
to Q; the result is the sum of Q3 and 5. Note
if Q-register q contains text, the length of
the text in characters is returned.

3.1.2.3 INCREMENTING Q-REGISTER - % (You figure out the
mnemonic)

N

q Add 1 to Q-register q and return the new
number as the value., Q-register g may not
contain text. Note that &%, 1like Q, is a
special symbol, not a command.

3.1.3 Text Q-Registers

Q-Registers may also be used to hold character strings. They
may be used to move text from one place in the buffer to another,

to save command lines for execution as macros, or to provide
quoted strings for commands which expect them.

3.1.3,1 EXTRACTING TEXT TO A Q-REGISTER - X (eXtract)

Xaq takes arguments like the "T" command, but
copies the text that T would type into
Q-register q. The former contents of
O-register q are deleted. The text is not

MULTICS PROGRAMMERS' MANUAL teco

Page 17

deleted from the buffer and the current
pointer is not moved.

nXqg +n copies all the text from the current pointer
to just past the nth newline character to the
right of the pointer into Q-register g. X1
copies the rest of the current line including
the newline at the end of the 1line into
Q-register 1, 2Xa copies the text on the rest
of the current line and all of the next 1line

into Q-register '"a".

-n copies all the text from just to the right of
the (n+l)th newline that is to the left of
the current pointer to the current pointer
into Q-register q. 0X/ copies the beginning
of the current line into Q-register "/". No
newline characters will be put - into
Q-register "/". -Xa puts the previous 1line
and the beginning of the current line into
O-register "a",

m, nXq copies character number (m+1) through
character number n into Q-register q.

: X (See section 3.1.8.3)

3.1.3.2 INSERTING TEXT DIRECTLY INTO A Q-REGISTER - :I (lnsert)
:lq/string/ This command is identical to the normal "IV
command except that the text is inserted into

Q-register g rather than the buffer. The
former contents of Q-register g are deleted.
The main text buffer is not affected.

n:lq is like :1 except that it puts the character
corresponding to n into the Q-register q.

3.1.3.3 GETTING TEXT FROM A Q-REGISTER - G (Get)

Gqg inserts the text contained 1in Q-register q
into the buffer to the left of the current
pointer. |If the Q-register contains a number,
the decimal representation of the number is
inserted.

3.1.k Obtaining quoted strings from Q-registers.

Whenever TECO expects a quoted string, it is possible to
indicate that the string is in a Q-register, Normally letters

{ teco MULTICS PROGRAMMERS' MANUAL
L |

Page 18

and digits are considered illegal quoting characters. 1f,
however, the letter "@Q" is found where a quoted string is
expected, the next character after the Q will be considered a
Q-register name, Whenever a quoted string is retrieved by any
command, it is loaded into Q-register ". As an example, SQ"
-immediately after another search will search again for the same
string. This notation is illegal if the specified Q-register
contains a number,

3.1.5 The Q-register pushdown stack.

There is one Q-register pushdown stack (not one per
Q-register) in which the values of Q-registers may be saved. It
is organized as a pushdown (Last-In, First-0ut) list. It is
emptied every time TECO waits for a new command string, i.e., a
"g" is typed.

3.1.5.1 PUSHING A VALUE ONTO THE STACK - { (opposite of 1)

[a pushes the current value of Q-register g onto
the top of the stack. The Q-register is not
affected.

3.1.5.2 POPPING A VALUE FROM THE STACK -] (opposite of [)

Ja pops the top value on the stack into
Q-register q. The previous contents of the

Q-register are lost. It is an error to do a
“"I" command if the stack is empty.
3,1.€ Loops

TECO has the ability to execute a command string repeatediy,
much as Fortran or PL/1 provides '"do-loops".

3,1.6.1 BEGINNING A LOOP - < and > (opposite of each other)

< is equivalent to n< except that n is set to a
very big number which is for all practical
purposes infinite.

n< causes TECO to take note of the fact that a
loop 1is beginning. The vaiue of n and the
position of the "<¢" in the command string are
saved.

> causes execution to return to just after < if
the string has not yvet been executed n times.

MULTICS PROGRAMMERS' MANUAL teco !
—

Page 19

n<,..”> this causes the string between the angle
brackets to be executed n times,

1.6.2 JTERMINATING A LOOP BEFORE n EXECUTIONS - ; (think about
)

n; if n is less than 0 then nothing is done.
Otherwise execution of the current loop is
aborted and TECO skips to just after the
closing >. If n is not specified, the result
of the most recent S command is used
(terminate 1loop if search failed). The ;
command may not appear outside of a loop.

3,1.7 Goto's

TECO provides the ability to transfer control to a different
part of the command string.

3.1.7.1 GOTO - 0 (g0to)

O/string/ causes TECO to search the current macro (or,
if we are not in a macro, the command line)
for the string "!string!". If it is found,
TECO begins interpreting commands just after
the label found. If not found, but execution
is currently in a macro, the search is
repeated in the previous execution level,
i.e., the caller of the macro. This s
repeated until TECO has checked all the way
down to the command line typed by the user.
Note that although TECO may exit a macro
using an 0 command, it may not use that
command to exit a loop. Only ";" may be used
to terminate a loop.

3.1.8 Macros

TECO has the ability to execute strings of text (macros)
other than those read from the user's console. The associated
commands are:

3.1.8.1 EXECUTING A MACRO IN A Q-REGISTER - M (Macro)

Mg causes the contents of Q-register q to be
executed as a command string. Note that if
the M command is given any numeric arguments
they are passed to the first command inside
the macro. String arguments may be fetched

teco

Page 20

MULTICS PROGRAMMERS' MANUAL

by the :X command.

3.1.8.2 EXECUTING A MACRO IN A FILE - EM (External Macro)

EM/string/

is just like the M command except that the
command string 1is found in a file named
"string.teco'". This file is 1looked for in
three places: 1) the working directory, 2)
the user's login directory, 3) the TECO
library. TECO$teco_ssd is a command that
takes a single argument, an absolute pathname
for a search directory, and changes the TECO
search rules so that instead of searching the
user's login directory, the search directory
specified is searched. TECO$teco_search is an
external subroutine (See section 3.1.16) that
follows the same search rules used to find a
macro.

3.1.8.3 OBTAINING A STRING ARGUMENT TO A MACRO

: Xq

3.1.8.4 A
1)

2)

3)

causes TECO to suspend execution of the
current macro, return to its caller to fetch
a quoted string into Q-register q, and then
restore the macro that was being executed.
Note that each :X command in a macro fetches
another quoted string. Note that the U
command(s) should be the first command in a
macro if one wishes to fetch numeric

arguments in a macro.

few notes about macros:

Loops may not cross macro boundaries, i.e., a loop may
not start in one macro and end in another. This does
not, however, prohibit the M command from being used
within a loop.

A macro may modify itself if it is in a Q-register.
Note, however, that the current invocation of the macro
will not be affected; only future accesses to the
Q-register. 1f the macro is invoked by the EM command,
the results of modifying the file are hard to predict:
TECO reads the command string directliy from the fiie.

When a macro is invoked by the EM command it should be
noted that the name of the macro will be found in the

C-register named ". Thus one can put several macros in
one segment with the first command in the segment being

0Q". (Pon't forget to put all the appropriate names on

MULTICS PROGRAMMERS' MANUAL ‘ teco .
R

Page 21

the segment.)

4) If an M or EM command is given as the last command in
one macro, the command is interpreted as a goto rather
than a call. Thus one may do unlimited M's in this
manner although there is an implementation-defined
limit to the depth of calls.

5) When TECO is entered, a macro named ‘'start_up" is
searched for, If it is found, the arguments to TECO are
put onto the pushdown stack and the start_up macro 1is
executed. If no start_up macro is found, the string
"El/filename/J" is executed, where filename 1is the
first argument to TECO, At the present time there is a
start_up macro in the TECO library. When the start_up
macro is called, the first thing on the pushdown list
is the number of arguments TECO was called with, The
remaining items in the 1list are the actual string
arguments to TECO going from 1left to right on the
command line,

3.1.8.5 CODING CONVENTIONS FOR MACROS

Since there are only a small number of Q-registers (95),
each with a one character name, there are serious problems in
writing a set of macros that are compatible. A set of macros
become incompatible if one macro uses a Q-register for long-term
storage that any other macro uses at all. There are two ways
this effect can be combated. First, by establishing certain
coding conventions, and second, by use of a documented macro
library. Probably the most important coding convention is the
specification of which Q-registers may be used inside a macro for
temporary storage. Many macro writers now use the ten Q-registers
1,2,3,4,5,6,7,8,9, and 0 for temporary storage. |f one macro
wants to call another macro that will <clobber one of these
registers, the calling macro may save the value of the Q-register
in the pushdown 1list and then restore it after the other macro
has been called. '

Fortunately, calling a macro is a very inexpensive operation
in TECO if the macro is in a Q-register. The EM command is much
more expensive, however. This leads to the practice of creating a
macro in a macro library that will only load a Q-register with a
useful macro. When the user realizes that he wants the macro, he
gives the EM command that will load the macro he wants into a
Q-register, where he may then call it whenever he wishes. It now
becomes necessary to have coding conventions that specify which
registers may be loaded permanently w:th macros. Since it should
be easy to type the macro names, the 1lower case alphabetic
letters should be used for this purpose. Sometimes a macro will
use a Q-register for long-term storage. |f the user will not have

teco ! MULTICS PROGRAMMERS' MANUAL
h—-——_—-J

Page 22

to type the name of this Q-register, names that must be escaped
on a 2741 are good, otherwise other special characters may be
used. This leaves the upper case alphabetic letters entirely to
the user for him to use to store intermediate results in editing.
Also the special characters "-",6 " un_unw unw w/n_ space, tab, and
newline should be reserved for the user since these are all lower
case letters on both a 2741 and a Model 37 teletype.

An extremely useful feature of TECO is that the last quoted
string is loaded into Q-register ". To allow this to continue to
be useful, all macros should make sure that Q-register " either
contains the last quoted string argument to the macro, if there
are any, or contains what it contained before the macro was
called. Q-register " can be saved on the pushdown list on entry
to a macro and then restored just before leaving the macro. Use

of the pushdown list is very inexpensive.

3.1.8.6 RELATIVE COSTS IN TECO

TECO stores the buffer in two pieces. The first piece, all
the characters from the beginning of the buffer to the current
pointer, is stored at the beginning of one buffer segment, while
the second piece, all the characters from the current pointer to
the end of the buffer, is stored at the end of another buffer
segment. An insert merely adds text to the end of the first
buffer segment and increases the number of legitimate characters
in the first buffer segment. A D or X command merely changes the
number of legitimate characters in one of the buffer segments. In
order to move the pointer, a string copy from one buffer segment
to the other must be performed. It does not matter to TECO which
direction the pointer is moved, although a reverse search is
somewhat slower than a forward search, since the Pll index
built-in function can only be used for a forward search,

Any operation tiiat does not move text is less expensive than
an operation that does move text, where the cost of the operation
that does move text is proportional to the amount of text moved.
For the most part, performing input or output is the major cost
involved in editing. This cost can be decreased by using more
sophisticated commands, such as loops or macros, and performing
the same editing operation with fewer interactions. The cost of
i/o operations is comparable to a medium length search (5,000
characters).

Each text Q-register is presently kept in its own segment.
This means that if a start_up macro loads many Q-registers with
macros, then entering TECO for the first time in a process will
be somewhat slow since all these segments must be created, TECO
has 1its own segment manager (get_temp_seg_), that allows it to
re-use segments without calling hardcore to create and delete
segments when the values of Q-registers are changed. Whenever a

MULTICS PROGRAMMERS' MANUAL l tecol

Page 23

string is quoted, or a Q-register loaded with text, a new segment
is retrieved from get_temp_seg_ and loaded with the value. If the
string that is being loaded into the Q-register 1is in another
Q-register, the new Q-register is just made to point to the same
copy of the text in the first Q-register. :1AQB 1is therefore a
very simple operation, as are [(Push) and] (Pop). The feature
of keeping the last quoted string in Q-register " lets the wuser
take advantage of this scheme.

If the user wants to write a macro that must do some editing
on another file, it is much cheaper if he saves the value of .
and Z-. , inserts the text to be edited, edits it, writes it out
or copies it into a Q-register, and then deletes what he was just
editing from the buffer. The net change to the buffer by all
these operations is zero, but the text that the user was editing
was never moved, This method is much cheaper than storing the
entire buffer in one Q-register, the value of the pointer in
another, and then wusing the buffer for the editing within the
macro. :

There are four ways to transfer control in TECO, by the >
command, the ; command, the " or :' command, and the 0 command.
Of these the > command is the fastest since TECO already knows
exactly where to transfer to. The ;, ", and :' commands are next,
since they merely search from where they are forward. Although
the > command and the ; command cannot change macro levels, the
" and :' commands can. This adds a small expense. The ;, ", and
:' commands all have to check so that a ; command will
completely skip over another nested loop and look beyond it for a
>. Similarly the " transfer will skip over nested if statements,
as will the :' command. Usually the matching ' or > is not far
from the transfer, so this only causes a short search. O is the
most general and most expensive transfer of control in TECO. It
must search the entire macro from the beginning, then the entire
macro that called the present macro, etc. until it finds it or
finishes searching the command line and gives an error. Although
this is the most expensive transfer, its cost is proportional to
the distance of the label from the beginning of the macro.

3.1.9 Conditionals

TECO has the ability to conditionally execute strings. The "
command corresponds to the PL/1 statement "if ... then do;" The '
command corresponds to the PL/1 statement "end;". " and ' are
matched much like (and) and may be nisted. The letter following
the " determines what test will be made.

3.1.9.1 NUMERIC COMPARISONS - "E (Equals), "N (Not equal), "G
(Greater than),'"L (Less than)

I teco1 MULTICS PROGRAMMERS' MANUAL

Page 24

m,n"E if m=n then execution continues; otherwise
execution skips to just after the
corresponding '.

n"E identical to n,0"E.

n'N like m,n"E except it tests for m™=n,

n''N identical to n,0"N.

m,n"G like m,n"E except it tests for m>n.

n"G identical to n,0"G.

m,n"L like m,n"E except it tests for m<n.

n'L identical to n,0"L.

3.1.9.2 TESTING FOR A SYMBOL CONSTITUENT - "c (symbol

Constituent)

n"'C if n is the ASCI! code for either a letter, a
digit or one of the characters ".", " ", or
"$' then execution continues; otherwise

execution skips to the corresponding '.

3.1.9.3 TERMINATING A CONDITIONAL DO - ' (matches ")

! is ignored when executed in normal execution.

It is used to close a conditional statement.

This command causes a transfer to the next ',

‘ust as a 1"e does. Since this command looks
iike a ', it can serve to close a conditional
statement. This 1is useful if an if ... then
... else ... statement 1is desired. The if
expression is a " statement, the then
expression is terminated by the :' command

and the else expression is terminated by the
' command.

3.1.10 Reading input from the user's console. - VW (V then MWait
for input)

VW does a V command (presently does nothing on
Multics) and then reads one character from
the user's console. The ASCII value of the

character is returned as the value of the
command. Note that Multics escape/kill

MULTICS PROGRAMMERS' MANUAL teco
I

Page 25

processing is not effected because only one
character is read at a time.

:VWg does a V command and then reads one line from
the wuser's console. The 1line 1is put into
Q-register q. The newline is the last
character read in.

3.1,11 Passing a command to the command processor - EC (External
Command)

EC/string/ passes the specified string to the Multics
command processor for execution.

3.1.12 Examining a character in the buffer - A (Ascii)

nA The ASCI| code for the (.+n)th character in
the buffer is returned as the value of the
command. n must be specified. (Note that 1
indicates the character just to the right of
the current pointer, 0 indicates the
character just to the left.)

3.1.13 Tracing command execution - ? (Asking what happens)

? turns tracing on. When tracing 1is on, each
command executed by TECO is printed on the
user's console just before it is executed.

?? turns off tracing.

3.1.14 Translating numbers to ASCIlI and vice versa - ¢ (You
figure it out)

¢ reads the decimal number found to the right
of the current pointer and returns its value
as the value of the command. The pointer s
moved to the right of the number. The number
may be signed and may be preceeded by any
number of blanks or tabs. It is an error if
no number is found.

n¢ inserts the decimal interpretation of n into
the buffer to the left of the current
pointer.

m, n¢ inserts the decimal interpretation of m into

the buffer to the left of the current

{

teco MULTICS PROCRAMMERS' MANUAL

Page 26

pointer. The interpretation is padded on the
left to be at least n characters wide.
3.1.15 Null command - W (Wipe out?)

W does nothing. It is most useful for throwing
away unneeded numeric arguments.

new_1line has the same effect as W.

$ has the same effect as W.

3.1.16 Subroutines

TECO has the ability to communicate with programs written by
users on Multics. In particular, TECO macros can get information
from programs written to interface with those macros.

3.1.16.1 CALLING A SUBROUTINE - ES (External Subroutine)

m, nESq/prog_name/ prog_name is a relative pathname of a segment
with an optional entry point name. The search
rules are used to find the segment. The entry
point specified is called in the following
way: del prog_name ext entry(char(*)
aligned, fixed bin, fixed bin, fixed bin);
call prog_name (Q_register, m, n, value); g
must be a text Q-register. prog_name will be
called with the Q_register as the first

argument. |If this string is changed, the
Q_register will be changed. This command has
a numeric value that can be set by changing
the fourth argument to prog_name. This is
initialized to zero. |If the ES command is
called with one numeric argument, it will be
passed as the second argument to prog_name
and the third argument will be a very large
positive number. |If no numeric arguments are

given to ES, both the second and third
arguments to prog_name will be very large

positive numbers,
3,11 5.2 A few notes about subroutines:

1) TECO$teco_search is an external subroutine that can be
used. It takes a Q-register that contains the name of
an external macro followed by a blank followed by
enough characters to hold an absolute pathname in the
whole register. TECO$teco_search searches for the macro
(it adds ".teco" tc the name) using the TECO search

|

MULTICS PROGRAMMERS' MANUAL teco

2)

Page 27

rules. If it is not found it returns with the value 0.
If it 1is found, it changes the Q-register to hold an
absolute pathname to the macro followed by enough
blanks to fill up the O-register, as long as it is not
longer than 256 characters. The value returned is the
number of non-blank characters at the beginning of the
O-register,

TECO$teco_no_ES is an entry point in TECO that is very
similar to the main entry point of TECO, except the ES
command is not an implemented feature of
TECO$teco_no_ES. This entry point is meant to be used
by subsystems that cannot allow a user to make a «call
to an arbitrary procedure.

| |
iteco z MULTICS PROGRAMMERS' MANUAL

N N

Page 28

3.2 EXAMPLES OF MACROS

3.2,1 A_WRITING MACRO

This macro writes out the entire buffer into a file whose
name is in Q-register *. The file being edited can be changed
merely by doing :i*/new_name/.

EOQ* This macro assumes that the name of the file

we are editing is in Q-register *, |t writes
out the entire buffer into this file.

3.2.2 A RESTART MACRO

This macro zeroes out the buffer, changes Q-register * to be
a new file name and reads the file into the buffer.

:x* hk eig*}]

tX* This macro takes one string argument and
loads it into Q-register *,.

HK Since we are vrestarting the -editing, we
delete all the text in the current buffer.

E1Q*J We now read the new file into the buffer and
put the pointer at the beginning of the
buffer.

3.2,3 A _START UP MACRO

This macro only uses the first argument to TECO. It treats
it as a file name, loads it into Q-register * and reads the file
into the buffer. It also loads the writing macro into Q-register
w.

31 :iwleog*| gl'"n 1* eig*j '

J1 Pop the top item off the pushdown 1list and
put it into Q-register 1. This will be the
number of arguments TECO was called with.

riw]eog*] Load Q-register w with the writing macro
given in Example 3.2.1.

ql"n If the contents of Q-register 1 are not zero,
then execute the following statements,

otherwise transfer to the ' that ends the
macro.

MULTICS PROGRAMMERS' MANUAL ‘ teco

Page 29

J* Pop the first argument to TECO off the
pushdown list and into Q-register *,.

eiqg*) Read the file into the buffer and move the

pointer to the beginning of the buffer.

! This point is transferred to if there are no
arguments given to TECO.

3.2.4 A SUBSTITUTE MACRO

This macro takes two string arguments. The first string
argument is searched for, then it is deleted and the second
string inserted.

:xl :x2 sql -qld g2

:x1 Load the first string argument into
Q-register 1.

X2 Load the second string argument into
O-register 2.

sql Search for the first string.

-qld Delete the first string when it is found.

g2 Replace the string found with the second

string argument.

When the macro returns, Q-registers 1 and 2 contain the
first and second strings, respectively. Q-register " contains the

second quoted string.

teco | MULTICS PROGRAMMERS' MANUAL

Page 30
CHAPTER &4
A TECO SUMMARY
NAME MNEMONIC SECTION USE EXPLANATION

Ascii 3.1.12 nA The value of the command is the ASCII
code for the (.+n)th character in the
buffer.

Beginning 1.4B B The value of this symbol 1is always
zero,)

Characters 2.1.5 nC Moves the pointer n characters to the
right., If n is omitted, 1 is assumed.

Delete 2.1.6 D deletes the one character to the right
of the pointer.
+nD deletes n characters to the right of
the pointer.
-nD deletes n characters to the left of
the pointer.

ec External Command 3.1.11 EC/command/ passes the string to the

Multics command processor,

ei External lInput 2.1.2 El/file/ reads the file into the buffer

to the left of the current pointer.

em External Macro 3 38.2 EM/macro_name/ searches for the file

"macro_name.teco", first in the
working directory, then the login
directory, then the TECO library, If
found, it executes it as a macro.

eo External Qutput 2.1.3 EO/file_name/ writes out the entire

buffer into the file specified.
+nEO0/file_name/ writes out the next n lines.
(0 or-n)EO/file_name/ writes out the last n lines.
m,nEQ/file_name/ writes out the (m+1l)th through the nth
characters.

eq External Quit 2.1.10 EQ TECO returns to its caller after

zeroing out all Q-registers.

es External Subroutine 3.1.16 m,nESq/prog_name/ Calls subroutine

progname with arguments Q-register q,
m, n, value. The numeric value of the
command is set by prog_name and the
contents of Q-register g may also be
changed.

MULTICS PROGRAMMERS' MANUAL teco |

Page 31

NAME MNEMONIC SECTION USE EXPLANATION

g Get Q-register 3.1.3.3 Gg inserts the text contained in
' Q-register q into the buffer to the

left of the pointer. If Q-register g
contains a number, it is converted to

a character string and inserted.

h wHole 1.4B H This symbol is equivalent to 0,Z . It
is the only symbol that has two
values.

i dnsert 2.1.7 l/string/ inserts the quoted string to the left
of the pointer.
nli n is the ASCII| code for a letter that
is inserted.

di 3.1.3.2 :1g/string/ inserts the quoted string into
Q-register q.
n:lg inserts the single character whose
code is n into register q,.

J Jump 2.1.5 nJ moves the pointer to the right of the
nth character in the buffer. If n is
omitted, 0 is assumed.

k Kill buffer 2.1.6 K deletes the rest of the current line
from the buffer.
+nK deletes the next n 1lines from the
buffer,
(0 or-n)K deletes the 1last n 1lines from the
- buffer.
m,nK deletes the (m+l)th through the nth
characters from the buffer.

1 Lines 2,1.5 L moves the pointer to the beginning of
the next line.
+nL moves the pointer to the beginning of
the next nth line.
(0 or-n)L moves the pointer to the beginning of
the last nth line,

21 3.1.1 oL moves the pointer to the end of the
current line,
+n:L moves the pointer to the end of the
next (n=1)th line.
(0 or=-n):L moves the pointer to the end of the
last (n+l)th line.

m Macro 3.1.8.1 m,nMq/stringl//string2/.../stringn/ starts
executing the text in Q-register q as
a macro. m and n are numeric

ey

teco

—_—

Page 32

NAME MNEMONIC SECTION

USE

MULTICS PROCRAMMERS' MANUAL

EXPLANATION

arguments to the first command in the
macro, stringl through stringn are
string arguments to the macro that can
be retrieved with the :X command. EM
also takes all these arguments.

o gl0to 3.1.7.1 o/label/ transfers control to just after !label!

q Q-register 1.4C Qaq
r Reverse 2.1.5 R
nR

s Search 2.1.8 S/string/

+nS/string/

-nS/string/

+m, +nS/string/

(0 or-m),-nS/string/

3.1.1

in the current macro, 1its caller,
etc., or the command string.

the value of this command is the value
of Q-register q if it is a numeric
Q-register or the number of characters
in Q-register q if it contains text.
This command can also replace any
quoted string if Q-register g contains
text. The contents of the Q-register
are used as the quoted string. (See
also sections 3.1.2.2 and 3.1.4)

moves the pointer one character to the
left.

moves the pointer n characters to the
left.

searches from the current pointer to
the end of the buffer for "“string", if
found it moves the pointer to the
right of the string.

searches for n occurrences of the
string. Moves the pointer to the right
of the nth occurrence.

searches for n occurrences of "string'
from the current pointer to the
beginning of the file. If found, it
moves the pointer to the left of the
nth occurrence.

only searches from the current pointer
to the beginning of the next mth line.
only searches from the current pointer
to the beginning of the last mth line.

Takes arguments in all the ways S
does, except that if S does not find
the string it types out an error
message and returns to TECO command
level. :S does not. Instead, :S has

the value =1 if the search succeeds
and 0 if the search fails.

MULTICS PROGRAMMERS' MANUAL

NAME MNEMONIC SECTION USE

t Lype 2.1.4 T
+nT
(0 or-n)T
m,nT
it v3.1.1 :T/string/

u Update 3.1.2.1 Ug

nUq

m, nUg

vw VieW 3.1.10 VW
VW 3.1.10 : Vg

w Wipe out 3.1.15 W

x eXtract from buffer 3,1.3

+nXqg

(0 or-n)Xg

m, nXq

$ X 3.1.8.3 :Xqg

i

teco

Page 33

EXPLANAT ION

Type out the rest of the current 1line
on the console.

Type out the buffer from the current
pointer to the beginning of the next
nth line.

Type out the buffer from the beginning
of the 1last nth line to the current

pointer.
Type out the (m+l)th through the nth
characters of the buffer.

Type out the quoted string on the
console,

sets Q-register q to a very large
positive number,

sets Q-register g to n.

sets Q-register g to n and returns m
as its value. This may be used inside
a macro to get the numeric arguments
to the macro.

When this command is executed, one
character is read from the console.
The ASCI| code for the character read
is the value of the VW command.

Reads in an entire 1line from the
console and puts it into Q-register q.
The newline is the last character in
the register.

This command does nothing. It is used
for throwing away unwanted numeric
arguments.

.1 Xq loads the rest of the current
line into Q-register gq. _
loads Q-register g with everything
from the current pointer to the
beginning of the next nth line.

loads Q-register q with everything
from the beginning of the last nth
line to the current pointer.

load Q-register q with everything from
the (m+1) character to the nth
character.

loads Q-register g with the next
string argument to the macro we are

1

' teco MULTICS PROGRAMMERS' MANUAL
Page 34

NAME MNEMONIC SECTION USE EXPLANATION

executing in.

z Last Letter 1.u4B yA This symbol's value is the total
number of characters in the buffer. ZJ
will move the pointer to the right of
the last character in the buffer.

% Increment 3.1.2,3 %q |If Q-register q <contains a numeric
value, this command increments the
register by 1, The value of the
command is the new value of the
Q-register.

$ 3.1.15 $ Throws away its arguments and does
nothing.

newline 3.1.15 newline Throws away its arguments and does
' nothing.

? Whats happening? 3.1.13 ? Turns tracing on.

?? 3.1.13 ?? Turns tracjng off.

¢ Number-character 3.1.14 ¢ the value of this command is the
decimal number immediately to the
right of the pointer. It moves the

pointer to just after the number.
n¢ inserts the decimal representation of

n to the left of the pointer.

m,n¢ inserts the decimal representation of
m to the 1left of the pointer. The
representation is padded on the left

to be at least n characters wide,.

C Push 3.1.5.1[q Pushes the contents of Q-register q
onto the pushdown list.

1 Pop 3.1.5.2 Jq Pops the top element off the pushdown
list and into Q-register q.

{ Begin a loop 3.1.6.1 < This marks the place in the command
string that will be transferred to by
the > command., This loop can only be
exited by the ; command. ‘

+n< This loop will only execute n times.
It may be exited by the ; command.

> End a loop 3.1.6.1 > Transfer control to just after the
last < command executed and decrement
the loop count. If we have 1looped

MULTICS PROGRAMMERS' MANUAL _ : teco§
R
Page 35

NAME MNEMONIC SECTION USE EXPLANATION
enough times, this command does

nothing. Nested loops are allowed.

; Terminate if positive 3.1.6.2 ; If the 1last :S command was
unsuccessful, transfer to just after

the next > and exit the present 1loop,
otherwise do nothing.

n; If n is positive, transfer control to
just after the next > command and exit
the present loop, otherwise do
nothing.

“"C If Symbol Constituent 3.1.9.2 n'C if n is the ASCIl code for
either a letter, a digit, ".", "_", or
"g"_ do nothing, otherwise transfer to

just after the next '.

“"e If Equal 31 29.1 m,n"E If m=n then do nothing otherwise go to
just after the next '.
n"E if n=0

"g |f Greater 3.1.9.1 m,n"G if m>n.
n"G if n>0,.

"1 If Less than 3.1.9.1 m,n"L if m<n.
n"L if n<0.

"n If Not equal 3.1.9.1 m,n"N if m™=n.

n''N if n>~=0.
’ Matches " 3.1.9.3 ' marks the location a " command may
transfer to. If executed as a command,
it does nothing.

! 3.1.9.3 :' marks the location a " command may

transfer to. If executed as a command,
it transfers to just after the next '.
If statements may be nested, but "
characters in the command string are
only matched with one ' character.
(See section 3,1.9)

o gOto 3.1.7.1 o/label/ transfers control to just after !label!

! Label 3.1.7.1 !label! This entire construct is ignored if it
is executed.

. Pointer 1.4E . The value of this command is the value
of the current pointer.

i

teco

Page 36

NAME MNEMONI|C SECTION SE

= Equals 2.1.9 = types out a
= types out n

a newline,
m,n= types out
followed by

Note: For descriptions
expressions see section 1.4B

MULTICS PROGRAMMERS' MANUAL

EXPLANATION

newline.
on the console followed by

m followed by a space,
n, followed by a newline.

of operators in numeric

(END)

MULTICS PROGRAMMERS' MANUAL

Name: xpl

The xpl command invokes the XPL
source segment into a Multics object
placed in the user's current working

Xpl

. Command
Author-Maintained Library
: J. M. Broughton
Room 39-200, Ext. 3-7788
2/25/74

compiler to translate an ASCII
segment. The segment will be
directory, as will any listing

segments produced. In general, this command behaves like standard

system translators.

Usage:
xpl pathname -optionl- ... -optionn-

1) pathname is the relative pathname of the segment to be
compiled. A suffix of ".xpl" will be assumed
for the source segment if it does not appear.

2) optioni may be selected from the following list of op-

tions:

-source, -scC

-symbols, -sb

-map
-list, -1s
-execute, -ex

-libraryl, -1libl

produces a line-numbered printable ASCII
listing of the program. The default is
no listing.

gives a listing of the source as above,
and all the names declared in the program
with their attributes. The default is no

symbols.

provides a listing of the source and sym-
bols followed by a map of the object code
generated. The default is no map.

yields all of the above information, plus
an assembly-like listing of the compiled
code. The default is no list.

allows the program to be executed despite
severe errors detected during compilation.
The default is to suppress execution.

causes the program to be compiled using a
null string compaction routine. This is
the default.

xpl MULTICS PROGRAMMERS' MANUAL

Page 2

-library2, -1ib2 causes the program to be compiled using a
real string compaction routine. This mode
should be used by programs doing a large
amount of string manipulation.

-times prints on the stream user output information
regarding the time used by various phases of
the compiler.

The XPL Language

The XPL language was developed at Stanford University as part of
a translator writing system. It is a simple dialect of PL/1 support-
ing only automatic variables; all data types, except floating, are
supported. Strings are implicitly varying, and arithmetic elements
are of fixed scale and precision. It has certain features not found
in PL/1, for instance, a limited macro facility, and built-in func-
tions for performing shifts on full words. The best reference for
the XPL language is found in A Compiler Generator by McKeeman, Hor-
ning, and Wortman (Prentice-Hall, 1970), Chapter 6.

Notes on the Multics Implementation

References to the functions input(i) and output(i) are used to
do I/0. These functions cause data to be read or written on the
streams xpl_input i and xpl output i. The streams for i = 0 are
speCLal -cased and the input comes from the stream user _input and out-
put is directed to the stream user output. The stream “xpl _output_1
is by default attached to error_putput. To use any other stream,
it must first be attached to a device by an appropriate iocall.

References to the function file(i) may be used to move large
blocks (one record, 1024 words) of data to and from files. The files
written or read are xpl file i. By default, these files will be cre-
ated in the process directory; to use a permanent file, one should
put a link in his process directory to the desired file.

All XPL programs on Multics are subject to certain restrictions:
they cannot be bound, and they cannot be called recursively. In the
former case, the binder will refuse to bind them, and though the lat-
ter is possible, unpredictable results will occur.

Certain built-in functions do not appear in this implementation:
addr, clock trap, interrupt trap, monitor link, trace, and untrace.
The built-in functions, arg count, and argument(l) have been added
however. They give the number of arguments and the ith argument re-
spectively. The functions corebyte and coreword have slightly dif-
ferent meanings. Corebyte is overlayed, not on core, but on the
string data area; coreword is overlayed on the arithmetic data area.

MULTICS PROGRAMMERS' MANUAL ask

Subroutine
Author-Maintained Library
Tom Van Vleck

Room 39-513, Ext. 1749
2/25/74

Name: ask

—

The ask_ module provides the programmer with a flexible ter-
minal-input facility for whole lines, strings delimited by blanks,
or fixed-point and floating-point numbers. Special attention is
given to prompting the terminal user.

Entry: Sask_

This entry returns the next string of characters delimited by
blanks or tabs from the line typed by the user. If the line
buffer is empty, "ask " formats and types out a prompting mes-
sage and reads a line from "user_input"”.

Usage:

call ask (ctl,ans,ioca_args...);

1) ctl char(*) (input) This is a control string in
the same format as that used
by "ioa ".

2) ans char(*) (output) The return value.

3) ioa_args (input) Any number of arguments to
be converted according to
n ctl 11 .

Entry: S$ask_clr

This entry clears the internal line buffer. Because the buff-
er is internal static, one program's input may accidentally be
passed to another unless the second begins with a call to this
entry. "ask S$ask clr " also can be called if a value typed by
the user is incorrect and if the program wishes to ask for the
line to be retyped.

Usage:

call ask_Sask clr;

ask MULTICS PROGRAMMERS' MANUAL

‘Page 2

Entry: S$ask_int

This entry works the same as "ask $ask " except that the next
item on the line must be a number. An integer value is returned.
Numbers may be fixed-point or floating-point, positive or nega-
tive. A leading dollar sign or a comma will be ignored. If the
value typed is not a number, the program will type '

"string" non-numeric. Please retype:

and wait for the user to retype the line.

Usage:
call ask_Sask_int(ctl,int,ioca_args);
1) ctl char(*) (input) As above.
2) int fixed bin (output) The return value.
3) ioa_args (input) As above.

Entry: $ask_flo

This works like "S$ask_int" except that it returns a floating
value.

Usage:
call ask_Sask flo(ctl,flo,ioa_args);
1) ctl char(*) (input) As above.
2) flo float bin (output) The return value.

3) ioa_args (input) As above.

MULTICS PROGRAMMERS' MANUAL ask

Page 3

Entry: S$ask _line

This entry returns the remainder of the user-typed line. Lead-
ing blanks are removed. If there is nothing left on the line, the
program will prompt and read a new line.

Usage:
call ask_S$ask _line(ctl,line,ioa_args);
1) ctl char(*) (input) ' As above.
2) line char(*) (output) The return value.
3) ioa_args (input) As above.

Entry: $ask_p

This entry tests if there is anything left on the line. If so,
it returns the next symbol, as in "ask_S$ask_ ", and sets a flag non
zero. Otherwise, it sets the flag to zero and returns.

Usage:
call ask_S$ask c(ans,flaq);
1) ans char(*) (output) The symbol, if any.
2) flag fixed bin (output) =1 if symbol returned.

=0 if none there.

Entry: S$ask_cint

Conditional entry for integers. If an integer is available on
- the line, it will be returned and "flag" set to 1. If the line
is empty, "flag" will be set to 0. If there is a symbol on the
line, but it is not a number, it will be left on the line and
"flag" will be set to -1.

Usage:
call ask_$ask_cint(int,flag);
1) int fixed bin (output) Return value.
2) flag fixed bin (output) =1 if "int" returned.

=0 if line empty.
=-1 if no number.

ask MULTICS PROGRAMMERS' MANUAL

Page 4

Entry: S$ask _cflo

This entry works like "$ask cint" but returns a floating value
if one is available.

Usage:
call ask_$ask_cflo(flo,flag) ;
1) flo float bin (output) Return.
2) flag fixed bin (output) =0 if line empty.

=] if wvalue returned.
=-1 if not a number.

Entry: S$ask_cline

Conditional ask for rest of line.

Usage:
call ask_Sask_cline(line,flag);
1) 1line char(*) (output) Return value.
2) flag fixed bin (output) =1 if line returned.

=0 if line empty.

Entry: S$ask n

This entry "peeks" at the line and returns the next symbol
without changing the line pointer. A call to "$ask_" later will
return the same value.

Usage:
call ask_$ask~n(ans,flag);
1) ans char(*) (output) Return symbol.
2) flag fixed bin (output) =0 if line empty.

=1 if symbol returned.

e
e

MULTICS PROGRAMMERS' MANUAL ‘ ask

Page 5

Entry: S$ask_nint
Peek entry for integers. The second argument will be returned

as -1 if there is a symbol on the line but it is not a number, as
1l if successful, and as 0 if the line is empty.

Usage:
call ask_$ask_pint(int,f1ag);

Arguments as. above.

Entry: $ask_nflo

Peek entry for floating.

Usage:
call ask_S$ask_nflo(flo,flag);

Entry: S$ask_nline

Peek entry for rest of line.

Usage:

call ask_S$ask nline(line,flag);

Entry: S$ask_setline
This entry sets the internal static buffer in "ask " to the
given input line in order that the line may be scanned.
Usage:
call ask_$ask setline(line);
dcl line char (*)

Trailing blanks will be removed from line. A carriage return
is optional at the end of line.

| |
‘ask_ ’ MULTICS PROGRAMMERS' MANUAL

Page 6

Entry: S$ask_prompt

This entry scraps the current contents of the internal line

buffer and prompts for a new line. The line is read in, and the
entry returns.

Usage:

call ask_Sask prompt(ctl,ioca args...)

1) ctl char(*) (input) A control string similar

to that typed by "ioa "

2) ioa args (input) Any number of arguments
to be converted according
to "ctl".

MULTICS PROGKAMMERS® MANUAL attach_fortran_file_

Subroutine Call
Author-Maintained Library
' Josepn W, Dehn III
Rocm 39-200, Ext. 3-7788
3/12/75

Name: attach_fortran_file_

This subroutine allows a program written 1in FOHRTRAN to
specify the attachment for an 1/0 "file number" or "unit number".

Usage: call attach_fortran_file_(ifile,astring,ierr)

1) ifile is a FORTRAN file reference number, which must be
between 1 and 99.

2) astring 1is a character constant or variable which specifies
the attachment. See Chapter 14 of the FORTKAN manual
for the format of attachment specifications.

3) ierr is a standard Multics error code. If the attachment
was successful, ierr will be zero.

call attach_fortran_ssfile_(ifile,path,ierr)

2) path is a character constant or variable which specifies
the pathname of a storage system file (segment or
MSF) .

hotes:

1) The second entry is for convenience only. The following two
statements have the same effect:

call attach_fortran_ssfile_(n,"a>b",ierr)
call attach_fortran_file_(n,"vfile_ a>b",ierr)

2) when the program is done with the file, it should be closed
using the "endfile" statement. The endfile statement will not,
however, detach the file if it was attached using these
subroutines or with the io_call command.

3) If the file specified by "ifile"™ is already attached, it will
be closed and detached automatically when attach_fortran_file_ is
called.

Page 2

Examples:

call attach_fortran_file_(1,"syn_ user_output",ierr)
call attach_fortran_ssfile_(6,"output_seg",ierr)
character¥*32 pathname

read(5,10)pathname

10 format(a32)
call attach_fortran_ssfile_(kunit,pathname,ierr)

MULTICS PROGRAMMERS' MANUAL " | basic_plot_

Subroutine
Author-Maintained Library
Joseph W. Dehn III

Room 39-200, Ext. 3-7783
10/21/74

Name: basic_plot

This subroutine is an interface which allows programs written
in the BASIC language to use the "plot " facility of the Multics
Graphic System. For details of the operation of plot_, please
see the MPM documentation.

Usage:

Initialization

call "basic_plot $init":x$,y$,1,b,q,s

x$ label for the X axis
y$ label for the Y axis
1 =1 for linear-linear

=2 for log-linear
=3 for linear-1log
=4 for log-log

b logarithm base for 1>1

g =0 for tic marks and values
=1 for dotted grid and values
=2 for solid grid and values
=3 for no grid or values

S =0 for normal scaling
=1 for equal scaling

Setting Scales

call "basic_plot_S$scale":x1,x2,y1,y2

x1 minimum X
x2 maximum X
y1 minimum Y
y2 maximum Y
Plotting
call "basic_plot_":x(),v() ,n,v,s$
x() array of X values
y () array of Y values
n number of elements in x() and y()
v =1 for plotting with vectors

=2 for plotting with vectors and symbol
=3 for plotting with symbol only
s$ the symbol for v>1

basic_plot_ MULTICS PROGRAMMERS' MANUAL

Page 2

Notes:

1) If the entry "basic_plot_S$scale" is not called, automatic
scaling will be performed.

2) BASIC programs use zero-origined arrays. Therefore, to
pass N points to basic_plot_, the values should be stored in array
elements zero through N-1.

MULTICS FROGRAMMERS' MANUAL ' check_basic_ﬁileu

Subroutine
Author-Maintained Library
Joseph W. Dehn III

Room 39-200, Ext. 3-7788
7/27/74

Name: check_basic_file

This subroutine, intended primarily for use by BASIC programs,
may be used to get information on a given file specification.
By calling this routine before using the string in a "file" state-

ment, the program can catch certain errors that otherwise would
terminate the program.

Usage:
call "check_basic_file ": a$,c

where a$ is the file specification, and ¢ is an integer as follows:

1 specification was null or blank

2 specification was "**

3 pathname: bad syntax

4 pathname: does not exist

5 pathname: may exist, but no access

6 pathname: exists but is zero length

7 pathname: exists (segment)

8 pathname: exists (msf)

9 pathname: exists (directory)
10 pathname: is the ROOT
11 - ioswitch: exists
12 ioswitch: does not exist
13 ioswitch: exists and attachment specified
14 ioswitch: does not exist, but attachment specified
15 ioswitch: bad syntax
16 undefined error

Note:

The interpretation of the code "c" is left to the calling
program. Values of (1,3,5,9,10,12,15,16) almost certainly indicate
an error. Other codes may indicate an error or not, depending on
how the file is to be used. For example, c=4 means segment does
not exist, which would be an error if the program were going to
read from the file, but not necessarily an error if the program
were to write to it.

Example:
1l print "Name of file";
2 input a$
3 call "check_basic_file ": a$,c
4 on ¢ goto 5,5,5,5,5,5,7,7,5,5,7,5,7,7,5,5
5 print "Bad file name"
6 go to 2
7 file #1: a$

(rest of program)

MULTICS PROGRAMMERS

Name: check msf

This subroutine
multi-segment file.

' MANUAL check msf

Subroutine Call
Author-Maintained Library
Gary M. Palter

Room 39-200, Ext. 3-7788
2/25/74

will determine if a specified directory is a
The definition of a multi-segment file used by

this subroutine is given below.

Usage:

dcl check msf
bin(35));

call check msf

1) directory

2) entry

3) user_area

4) status_code

The possible values

0

entry (char(*), char(*), area(*) aligned, fixed

(directory, entry, user_area, status_code) ;

is the directory portion of the name of the
branch to be tested. (Input) '

is the entry portion of the above name. (Input)
is an area to be used for allocations. (Input)
is a returned status code. (Output)

of status_code are:

The branch is a multi-segment file.

error _table $bad ms file

The branch is a directory, but is not a multi-
segment file.

error table $nondirseg

The branch is not a directory.

Any error code which may be returned by hcs S$star list_ and

hcs $status _long.

Notes:

A directory is considered to be a multi-segment file by this sub-
routine only if it satisfies all of the following conditions:

check _msf _ : MULTICS PROGRAMMERS' MANUAL

Page 2

1) The directory has a non-zero bit count.

2) The directory does not contain any links or directories.

3) The number of entries in the directory is equal to its bit count,
and each entry has exactly one name which is the character string

representation of a number satisfying the condition
O<number<bit count-1l.

MULTICS PROGRAMMERS' MANUAL cv

Subroutine
Author-Maintained Library
Tom Van Vleck

Room 39-513, Ext. 1749
9/8/70

The procedure cv_ performs several useful number conversion
calculations.

Entry: S$hrmin

The entry point hrmin accepts a time in seconds and converts
it to a time in hours and minutes, suitable for printing. The
converted time is rounded up to the next minute, so that any
nonzero input will produce a nonzero time.

Usage:
call cv_$hrmin(ss,hr,min) ;

1) ss fixed (input) Input time in seconds.

2) hr fixed (output) Hours.

3) min char(*) (output) Minutes, 4 chars.

Entry: Sabsdat

The entry point absdat returns the number of days since
January 1, 1901, given the month, day and year as input.

Usage:

call cv_$absdat(mo,da,yr,abs);
1) mo fixed (input) Month
2) da fixed (input) Day
3) yr fixed (input) Year

4) abs fixed (output) Absolute date

cv MULTICS PROGRAMMERS' MANUAL

Page 2

Entry: $shift

The routine shift computes the current accounting shift
numbers.

Usage:
call cv_$shift(mo,da,yr,hr,sh);
1) mo fixed (input) Month
2) da fixed (input) Day
3) yr fixed (input) Year
4) hr fixed (input) Hour
5) sh fixed (output) Shift number
Entry: Smwvf

The routine mwvf converts a floating dollar amount to ASCII
characters.

Usage:
v = cv_s$mwvi(flo);
1) flo float (input)
2) v char(1l5) (output)
The converted value will have a floating dollar sign and
commas every three digits. Blanks will be returned if the

number is all zero. The value is right-justified. Fifteen
characters will be returned.

Example:
Input Returned
1234.567e0 $1,234.57
0.001e0 $.00
0.0e0
-5.7e0 $-5.70

1.234el0 Shk kkk kkk ki

MULTICS PROGRAMMERS' MANUAL CV_J

Page 3
Entry: S$cdate

The entry cdate converts a character-string date into a double-
precision integer in system calendar clock format, i.e., in micro-
seconds since 0000GMT, January 1, 1901, The date may be expressed
flexibly. An invalid date will convert to 0. A date of "*"
returns the current time.

Usage :

call cv_S$cdate(date,time) ;
1) date char(*) (input) ' Date

2) time fixed bin(71) (output) Time

Example:

The date June 1, 1970, may be expressed as:

060170
6/1/70
0601
6/1
06/1
6/01
061/70
6/0170

#ULTICS PROGRAMMERS ™ MANUAL detach_fortran_file_

Subroutine Call
Author-iaintained Library
Joseph W. Dehn III

koom 39-200, Ext. 3-7788
3/12/75

-

Name : detach_fortran_file_

This subroutine allows a program written in FORTRAN to
detach a file that was attached using the "io_call" command or
using the "attach_fortran_file_" subroutine.

Usage: call detach_fortran_file_(ifile,ierr)

1) ifile is a FOUKTRAKN "file number® or "unit number" in the
range 1 to 99.

2) ierr is a standard #ultics error code. If the detach was
successful, ierr will be set to zero.

Example:

call detach_fortran_file_(1,ierrcode)

MULTICS PROGRAMMERS' MANUAL fillin_dprint str

Subroutine
Author-Maintained Library
Edward McCabe

575 Technology Square
Fifth Floor, Ext. 3-1533

7/9/74
Name: f£illin dprint_str_
Usage: declare fillin dprint_str_ entry (char(*) varying,
pointer, fixed binary (35));
call fillin dprint_str (optstring, dpap, ercd);
Where:
optstring is the string used to fill in the dprint_arg
structure based on dpap.
dpap is the pointer to the dprint_arg structure.
' Only structures of version = 1 are accepted
by this subroutine.
ercd is an error code returned by this subroutine

which can assume the following values:

0 no errors were encountered.

1 the structure was not version = 1.

2 an error was encountered in the parsing
of the options.

This routine assumes that the caller will choose and control
the defaults of the dprint arg structure as required by the
dprint_ subroutine. As a result, only those values which are
explicitly specified in optstring will be affected by this sub-

routine.

Structures which are not understood, i.e., version =] will
be rejected. Errors encountered in the parsing of optstring will
cause a message to be prlnted (via com_err_), but any of the rest
of the structure which is appropriate will be filled in.

Finally, if 'dpunch', 'dprint', or 'dp' appear at the beginning
of the string, they will be ignored (since it may be convienent to
pass a string containing them, rather than parsing them out).

This subroutine accepts the following options:

-print specifies that both dprint_arg.pt pch and
dprint_arg.output _module are to be set to
1 (for printed output).

-punch specifies that both dprint _arg.pt_pch and
dprint_arg.output module are to be set to
2 (for punched output). Note that the
default is 7punch.

fillin“dprint“str_ MULTICS PROGRAMMERS' MANUAL

Page 2

The use of any of the three following options results in
setting dprint_arg.pt pch to 2 (for punched output).

-mcc spec1f1es that dprint arg.output module
is to be set to 3 for MCC punch.

-raw SpeleleS that dprint_arg.output module
is to be set to 4 for raw punch.

-7punch, -7p spec1f1es that dprint_arg.output module
is to be set to 2 for 7punch.

-Cp n, -copy n specifies that dprint arg.copies is to
~ be set to n.

-dl, -delete specifies that dprint_arg.delete is to
be set to 1.

-header header, -he header
specifies that dprint_arg.header is to
be set to " for " header. MNote that
this results in the correct header for
the output.

-ds dest, -destination dest
specifies that dprint_arg.dest is to be
set to dest.

-q n, -queue n specifies that dprint_arg.queue is to be
set to n.

-dvc class, -device_class class
specifies that dprint_arg.class is to be
set to class.

Any option can be overridden by a succeeding option except
the -delete, -dl option.

MULTICS PROGRAMMERS' MANUAL fixed to_english_

Subroutine
Author-Maintained Library
Student Information Processing Board
Room 39-200, Ext. 3-7788
9/6/74
Name: fixed to_english_

This subroutine returns the spelled-out English representation
of a fixed binary number.

Entry: fixed to english_

This entry converts a fixed binary value and uses the prefix
"minus” to indicate a negative number.

declare fixed to_english _ entry(fixed bin(35)) returns(char(*));
output_étring=fixed_to_¢nglish_(number):
Entry: fixed to_english Sown_minus

This entry converts a fixed binary value and uses a user-
specified prefix to indicate a negative number.

declare fixed_ﬁo_gnqlish_§own_minus entry(fixed bin(35), char(*))
returns (char (*)) ;

output_string=fixed to_english_$own_minus(number,minus_word) ;

MULTICS PROGRAMMERS' MANUAL ' get_caller ptr

Subroutine Call
Author-Maintained Library
Student Information Processing Board
Room 39-200, Ext. 3-7788
4/13/73
Name: get_caller ptr_
This subroutine is an ALM utility module which returns poin-

ters to the text sections of various ancestors of the calling pro-
gram.

Usage:
declare get_caller ptr_ external entry returns (pointer);
caller ptr = get_caller ptr_ ();
1) caller_ptr is a pointer to the text section of the direct an-
cestor of the procedure calling get_caller ptr .
(Output)
Entry: get_caller ptr Smy ptr

This entry returns to the calling program a pointer to its
own text section.

Usage:

declare get_caller ptr_ $my ptr external entry returns
(pointer) ;

my ptr = get_caller ptr_Smy ptr ();
1) my ptr is a pointer to the text section of the procedure
calling get_caller pointer_ S$my ptr. (Output)
Entry: get_caller ptr S$backstack
This entry returns to the calling program a pointer to the

text section of its nth ancestor, where the 0Oth ancestor is de-
fined as the program calling get _caller ptr_ S$backstack.

Usage:

declare get_caller ptr_S$backstack external entry (fixed
binary) returns (pointer);

any_ptr = get_caller_ptr_S$backstack (n);

i get _caller ptr_

MULTICS PROGRAMMERS' MANUAL

Page 2

1) n

2) any_ptr

is the ancestor for which a pointer to the text
section is desired. If n is zero, the pointer re-
turned is the same as would be returned by
get_caller_ptr_ $my ptr. (Input)

is the pointer to the text section of the nth
ancestor of the program calling
get_caller_ptr_ $backstack. (Output)

MULTICS PROGRAMMERS' MANUAL get_line_length_

Subroutine

Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

9/6/74

Name: get line length_
This subroutine may be used to find the line length of a

specified io-switch. It should normally only be used on an io-
switch that is associated with a terminal.

Usage:
declare get_line length_ entry(char(*)) returns(fixed bin);
line_len=get_line_length_ (switch_name);

1) switch name is the name of the io-switch.

2) line len is the number of characters per line; if this
- value cannot be determined, it will be zero.

MULTICS PROGRAMMERS' MANUAL get_seg ptr_

Subroutine
Author-Maintained Library
Richard H. Gumpertz
Senior House, Ext. 2893
11/5/73

Names: get _seg ptr
get seg ptr arg _
get_seg_ptr full path_
get_seg_ptr search_
release_seg_ptr _

This procedure consists of entries to initiate and terminate
data segments. It also is capable of creating, truncating and
setting the bit count on segments. It is more useful than the
current Multics file primitives because it expands pathnames,
creates segments and initiates all in one call by the user.
Similarly, it sets the bit count, truncates the segment and termi-
nates all in one call.

Entry: get seg ptr _

This entry initiates a segment given a relative pathname and
checks access to the segment. If the segment does not exist, it
will be created if the user so requests.

Usage: declare get_seg ptr external entry

(char(*), bit(6) aligned, fixed bin(24), ptr,
fixed bin(35));

call get_seg ptr_ (pathname, wanted_access, bit_count,
return ptr, return_code) ;

Where:
pathname is a relative pathname to the segment. (Input)

wanted access is the requested access to the segment. The
- first five bits are considered to indicate the

standard Multics access control bits. They
are "t" (trap, not currently implemented), "r
(read) , "e" (execute), "w" (write) and "a"
(append) , respectively. If the segment exists,
then an error code (error_table $moderr) will
be returned if the user does not have at least
the access requested. Note, however, that
return ptr will contain a valid pointer even
if this error occurs. The sixth bit is inter-
preted as a "c¢" (create) bit -- if the segment
does not exist, it will be created if this bit
is on. If a segment is created, it is given
the access bits specified by the t, r, e, w, and
a bits. (Input)

n

get_seg ptr MULTICS PROGRAMMERS' MANUAL

Page 2
bit count is the bit count of the segment. (Output)
return ptr is a pointer to the segment. If the segment
is not initiated, this pointer will be returned
containing the null pointer. (Output)
return_code is the standard Multics error code. The only

condition under which this code will be non-
zero when the return ptr is non-null is if
the error is error_ table $moderr. (Output)

Entry: release seg ptr _

This entry terminates a segment initiated by one of the entries
to get seg ptr . If a bit count is specified, the bit count of
the segment is set and the segment is truncated to the correspond-
ing length.

Usage: declare release seg ptr external entry (ptr, fixed bin(24),
fixed bin(35));

call release_seg ptr _(seg ptr, bit_count, return_code) ;

Where:
seg ptr is a pointer to the segment to be termi-
nated. (Input)
bit_count is the bit count to be set on the segment.
If this argument is negative, it is assumed
that the bit count should remain the same
and no truncation should take place. (Input)
return code is a standard Multics error code. (Output)
Entry: get seg ptr arg

This entry is identical to get seg ptr _except that it obtains
the pathname of the segment to be initiated from the caller's
argument list. It saves a call to cu_Sarg ptr .

Usage: dcl get seg ptr arg external entry(fixed bin, bit(6)
aligned, fixed bin(24) , ptr, fixed bin(35));

call get seg ptr arg (arg number, wanted_access, bit_count,
return_ptr, return _code_;

Where:

arg number is the number of the caller's argument to be
used. (Input)

All other arguments are identical to get seg ptr .

MULTICS PROGRAMMERS' MANUAL get seg ptr_

Page 3
"Entry: get_seg ptr full path

This entry is identical to get _seg ptr_ except that the
pathname is specified as an absolute pathname in directory/entry
form.

Usage: declare get_seg ptr full path_ external entry

(char(*), char(*), bit(6) aligned, fixed bln(24), ptr,
fixed bin(35));

call get_seg ptr full path_(dir_name, entry name,
wanted _access, bit _count,
return_ptr, return code :

Where:
dir name is the absolute pathname of the directory
of the segment. (Input)
entry name is the entry name of the segment. (Input)

All other arguments are identical to get seg ptr_.
Entry: get_seg ptr_search_

This entry is identical to get seg _ptr_ except that just an
entry name is specified. The dlrectory is determined by Multics
search rules. If the segment is not found and if the "c" (create)
bit is on, then the segment is created in the process directory.
Note, however, that if the entry name is not known as a reference
name before a call to get_seg ptr search , this entry will not
cause it to be made known. This procedure initiates the segment
with a null reference name. This has the net effect that full
search rules will be followed each time this routine is called.

Usage: declare get seg ptr search_ external entry
(char(*), bit(6) aligned, fixed bin(24), ptr, fixed bin(35));

call get_seg_ptr search_(entry name, wanted access, bit count,
return_ptr, return code),

Where:

entry name is the entry name of the segment to be
found. (Input)

All other arguments are identical to get _seg ptr .

get_seg ptr MULTICS PROGRAMMERS' MANUAL

Page 4

ExamEles:

l. To read a segment

declare file aligned char(262144) based (file ptr),
r_access bit(6) aligned int static init ("010000" b);

call get _seg ptr_ (file_name, r_access, count, file ptr,

error code) ;
if error_code = 0 then go to error;
count = divide (count, 9, 17, 0);
string variable = substr (file, 1, count);
call release_seg ptr_ (file ptr, -1, error_code);
if error _code™= 0 then go to error;

2. To write a segment

declare file aligned char(262144) based (file ptr),
rwac acess bit(6) aligned int static init ("010111" b);

call get_seg ptr_(file_name, rwac_access, count, file ptr,
error code) ;

if file ptr = null then go to error;

count = length (string variable);

substr (file, 1, count) = string variable;

call release _seg ptr_(file_ptr, count*9, error_code) ;
if error code™= 0 then go to error;

3. To search for a segment

Program "x," whenever entered, does a search for a segment
called "init.x" which, if found, is used to initialize x.
This could be done as follows:

call get_seg ptr_search_("init.x", "010000" b, count, file ptr,

14
erxror_code H

MULTICS PROGRAMMERS' MANUAL

get _seg ptr

if file ptr™= null then /*initiate only if found*/
init: do;

count = divide (count, 9, 17, 0);

.

/*do initialization*/

call release_seg ptr (file ptr, -1, error_code)
if error _code™= 0 then go to error;
end init;

/* rest of program*/

Page 5

MULTICS PROGRAMMERS' MANUAL get_mydir_

Subroutine Call
Author-Maintained Library
Student Information Processing Board
Room 39-200, Ext. 3-7788
4/11/73
Name: get _mydir

This subroutine allows a procedure to ascertain the directo-
ry in which it resides.

Usage:
declare get_mydir external entry (char (*));
call get_mydir (dir_name);
1) dir_name is the name of the directory in which the procedure
calling get mydir resides. (Output)
Entry: get_refdir_

This entry allows a procedure to ascertain the directory in
which its caller resides.

Usage:
declare get_refdir external entry (char (*));
call get_refdir_ (dir_name);

1) dir name is the name of the directory in which the caller of
the procedure calling get_refdir resides. (Output)

MULTICS PROGRAMMERS® MANUAL , | IMSL Library

Subroutine Liobrary
Author=-Maintalned Library
Overiap Project Staff
NEL4LJ=50Jdy 253=-2153
11719774

Nameé IMSL Library

The IMSL Liorary is a <collection of approximately 360
mathematical anu statistical subroutines, written in FORTRAN.,
These routines have been compiled on the MIT Multics machine as
part of work on the Consistent System, They are being mage
available to the community in subroutine form as well.

The tutk of this description is intendeg to give the reauer
an iagea of the range of capavilities of the library. Oocuments
describing it are on file in the IPC Reading Room (39-4303), and
can be purchased from

IMSL
620 Hillcrofty Suite 51
Houstony Texas 77036

Anyone interestea should contact the QOveriap Project Staff at the
agaress above (NE&LO is 57% Technology Sauare) tor more
informatione.

These subroutines are in '">liprarjes>imsi*"™ which must be in the
Juser®*s search pathe To do thisy =2nter the command "ssa
>fiprarjes>imsi®™ or "asr >iibraries>imsi™.

RESTRICTIONS and DISCLAIMER

The lIibrary is proprietary., Its use (i3 iicensed to the
Overjap Prolect ana to the MIT Multics. Attemptling fto carry
the library to another machine is prohibited by the ljicense
agreement. The lease Is on & year by year basisy and tThe
Overlap Project can make no guarantee to the community that
it will rencgw the iease for any gJgiven periode. Finally,
while gparts of the liorary have been tested in the Multics
environment ana founc to be of very hign gquality we can make
no guarantees about the correctness of the routines. IMSL
goes certify them anag is of consiaeraple help if a user of
the library gets into substantive mathematical ftrouble with
ity reaquests for such assistance should be directed to ths
Cverlap Project as holcer of the lecsa. A summary of

- — > - —————— —————— —

| IMSL Library MULTICS PROGRAMMERS® MANUAL

I

Page 2

mocifications we have mage to the librarys, ana for which
IMSL bears no responsibility, appears belows

Capabllities

The library is arranged within subgroucss called "chapters"“.
These chapters are titlea as follonwst (1)
Analysis of Experimental Design Oata
{Inciudes analysis of variance and classification routines)
Basic Statistics ,
{incluces elementary bayesian inferences data screening, andg
elementary classical inferernce)
Categorizea Data Analysis
Jifferential Equationsi Quadrature; Differentiation
Eigenanalysis
Forcastings Econometricss Time Series
Generation and Testing of Random Numbers; Goodness of Fit
Interpolation; Approximation; Smoothing
Linear Atgebraic Equations .
Mathematical and Statistical Special Functions
{inciuces probavitlity cistrioution functions ana special
functions of mathematical physics)
Non=-Parametric Statistics
(incluaes analysis of variunces binomial or multi-nomial
basesy kolmogorov=smirnov tests, randomization pases)
Observation Sftructure
Regression Analysis
Sampling
Utiltity Functions
{see Note 1)
Vector, Maftrix Arithmetic
Zeros anc Extremas Linear Programming

Moalifications

The following list is a summaryy, some knowledga of the tibrary
may be requirea to understana ift.

1} Chapter U; which contains Utility Functionsy, has not ©been
implemented. It contains a serijies of functions tor

—— - ———— o T ———

{1) This material is takeny in large part from IMSL publication
LIB=§60g4

MULTICS PROGRAMMERS® MANUAL IMSL Library

2)

3)

4)

5)

Page 3

input/output and the like, The maintainers are willing to
supply the source to anyone seriously Inferestec in oringing
up this Chapter on Mutltics.

Routines that are indicated in the manual as b=zin3 asvailable
in double or single precisior have bgen provided in single
precision only. :

All catls to the IMSL error message printing routine,
UERTST, have been removed. The routines stiill raturn error
codes,

The names of ali subroutines, functions, ana entries into
tnem have been <changed to insure that conflicts wilil not
occur with the gynamic linking mechanism on Multicse. The
renaming rule is as followss

a) Find the subprogram in the IMSL manuale. At the heag of
the gdescription is a listing of soma comment cardss at
the ena ot which is an eight character *card label".
The first four characters of the *"card label"” is a
four-character "geck labeli™,

) For the mair entry pointy take the deck labeily change its
charscters to lower casey, and prefix them with “cs_i"
to obtain the subroutine name.

c) For any asauitionail enfry points, ada the digit *"1* to
the subroutine name for the first one, "2" for the
sSecondy etce

The library eaqition implemented on Multics was originaliy
designed for the Univac 1138. Due to citferences in Fortran
compilers anc machine structure, changes have bean required
to constants and the order of statementsy, and a special
overflow proceaure written in PL/1 has bpeen provided.
Unless problems arise with themy, these modifications shoulgd
be ftransparent to the user. A complete list of these
modifications is avaiiable from the Overisp Prolecty, and
with the Reading Room copy of the IMSL manuals.

! :
H P
H !

MULTICS PROGRAMMERS' MANUAL [linear_g_hashj

H
o

Subroutine
Author-Maintained Library
Edward J. McCabe

575 Technology Square
Fifth floor, Ext. 3-1533
2/21/74

Name: linear g hash, 1lgh
linear g hash_, 1lgh_

The subroutine linear g _hash is an implementation of the lin-
ear quotient hashing algorithm described by Bell and Kaman in the
November, 1970, issue of the Communications of the Association
for Computing Machinery (pp. 675-677).

Usage:

call linear g hash(result,residue,table_size,word) ;
Arguments:

declare (result,residue,table size) fixed binary(35,0);
declare word char(32) varying;

Where:
result is in the range 0<=re$u1t<table_size. (output)
residue is in the range l<=residue<(2**35)., (output)
table_size is a prime integer. (input)
word is the source word to be hashed. (input)

Entry point for retries:

call lghS$retry(result,residue,table_size);

Although arguments are declared identically, their significance
is different on retries.

result is both input and output. On input, it is
the most recently returned result from lgh
or lgh$retry. On output, it is a new value
of result.

residue is the wvalue of residue last obtained from
lgh or lghS$retry. (input)

table_size is the original prime that defines the
range. (input)

linear_q_hash MULTICS PROGRAMMERS'® MANUAL

Page 2

This subroutine, given a character string (word) and a prime number
(table_size), will produce a pseudo-random result in the range
O<=result<table_size, plus a residue of unpredictable size (less
than 2**35, however). This result may be used to reference a
location in a hash table. If this location is unsuitable, up to
table_size - 1, retries may be made; complete coverage of the
range is guaranteed. Retries must be attempted by returning the
most recently obtained values for "result" and "residue," in

order to ensure complete coverage of the range. The user must
keep track of the number of retries attempted.

Note that the key is constructed using only the information-carrying
bits of the first five characters of the source word (padded on

the right with blanks, if necessary). On Multics, these are the
right-most seven bits of each character.

Note that linear_ g hash, 1lgqh, linear_g hash_ and lgh_ are synony-
mous for both entry points.

e

MULTICS PROGRAMMERS' MANUAL ‘qd{

Subroutine
Author-Maintained Library
. M. Broughton

Room 39-200, Ext. 3-7788
9/30/73

Name: qd

This procedure is used to determine if an instruction with a
given opcode modifies the contents of the g-register.

Usage:
declare gd entry (fixed bin(35)) returns (£ixed bin(35));
modified = gd (opcode) ;

l) modified is one if the instruction alters the g-register,
zero otherwise.

2) opcode is the opcode of the instruction in question.

MULTICS PROGRAMMERS' MANUAL reverse_index _

Miscellaneous Call
Author-Maintained Library
John C. Klensin

575 Technology Square
Fifth floor, Ext. 6217
1/18/71

Name: reverse_index__
This function searches a character string from right to left

for a particular character string. The location returned is in
characters from the left.

Entry: reverse_index $reverse_index _

This entry returns the index position (from the left) of the
first character string (from the right) equal to the specified
string.

dcl reverse_index ext entry(char(*) ,char(*)) returns(fixed bin);

i = reverse_index_ (stringl,string2);

Where:
i is the index position from the left of the string.
It will be 0 if the string specified in string2 is
not in stringl. (output)
stringl is the string to be scanned for string2. (input)
string2 is the comparison string. (input)

Entry: reverse_index $notequal
This entry returns the index position (from the left) of the
first character not equal to the specified character. (This is
useful for finding the last nonblank character in a word.)
dcl reverse_index_$notequal ext entry(char(*),char(l)) returns(fixed bin) ;

i = reverse_index S$notequal(stringl,char) ;

Where:
i is the index position from the left of the string.
It will be 0 if the string is not found in stringl.
(output)
stringl is the string to be scanned for char. (input)
char is the character to be searched for in stringl. (input)

Note: reverse_index is similar to the PL/I "index" built-in
function, except that it searches the string from the opposite direc-
tion; the position in the string is expressed in the same fashion.

MULTICS PROGRAMMERS' MANUAL scan_

Subroutine
Author-Maintained Library
J. Klensin

575 Technology Square
Fifth Floor, Ext. 6217
5/24/71

Name: scan_

The procedure scan_ contains a number of functions that scan
across a supplied character string looking for an occurrence of
any single character from a second string. Functions are supplied
that scan the string from left to right and from right to left,
and that look for the first character equal to and the first
character not equal to any of those in the second string.

Entry: scan_$scan_

This entry is used to find the first character in one string
that matches any character in a second string. It returns, as do
all of the functions below, the index of the located character
from the left of the first string.

Usage:

dcl scan_$scan_ ext entry(char (*),char(*)) returns(fixed bin);
i=scan_$scan_ (stringl,string2);

stringl is the string to be scanned for the first occurrence of
a character in the second string.

string2 is the string containing characters to be located in the
first string.

i is the index (from the left) of the first character in
stringl to match any character in string2. If no
character in stringl matches any character in string2,
"i" is set to zero.

scan__ MULTICS PROGRAMMERS' MANUAL

Page 2

Entry: scan_$scan_notequal

This entry is used to find the first character in one string
that does not match any character in the second string. (Note:
This entry point is equivalent to the VERIFY function existing in
certain implementations of PL/I.)

Usage:

dcl scan_S$scan_notequal ext entry(char(*),char(*)) returns(fixed bin);
i=scan_$scan_notequal (stringl,string2);

stringl is the string to be scanned for the first occurrence
of a character not in the second string.

string2 is the string containing characters to be located in
the first string.

i is the left index of the first character in stringl that
does not match any character in string2.

Entry: scan_$scan_rev

This entry is used in a fashion similar to scan_$scan_,
except that it searches the string from the right. (Note: This
is not the same as AML subroutine reverse_index_.)

Usage:

dcl scan_S$scan_rev ext entry(char(*),char(*)) returns(fixed bin);
i=scan_$scan _rev (stringl,string2);

stringl is the string to be scanned from the right for the first
occurrence of a character in the second string.

string2 is the string containing characters to be located in the
first string.

i is the index (from the left) of the first character in
stringl to match any character in string2. If no
character in stringl matches any character in string2?,

"i" is set to zero. Note that "i" is still a left
index.

MULTICS PROGRAMMERS' MANUAL scan_|

Page 3

Entry: scan_$scan_notequal rev

This entry is used in a fashion similar to scan_S$scan_notegual,
except that it searches the string from the right.
Usage:

dcl scan_S$scan_notequal rev ext entry(char (*),char(*))

returns (fixed bin);
i=scan_$scan_notequal rev (stringl,string2);
stringl is the string to be scanned from the right for the

first occurrence of a character not in the second

string.

string2 is the string containing characters to be located in
the first string.

i is the left index of the first character in stringl
that does not match any character in string2.

Entry: scan_$scan_ptr
scan_$scan_| _ptr notequal
scan $scan _ptr_rev
scan_$scanﬁptr_notequal_rev
These entries correspond to the ones above, except that they
accept a pointer and a length to designate the first string, rather
than having the string passed directly.
Usage:

The first of these is typical of the others.

dcl scan_S$scan_ptr(pointer,fixed bin,char(*)) returns(fixed bin):
i=scan_$scan _ptr(ptr_to stringl,length of stringl,string2);

i and string2 are the same as defined above.
ptr_to_stringl is the pointer to the first string.

length of stringl is the length of the first string.

scan _ MULTICS PROGRAMMERS' MANUAL

Page 4

Disclaimer:

No claim is made that these functions are fast or that they
could not be done more efficiently with in-line code. The
functions have proved convenient to get some types of code work-
ing that could be optimized later or that did not require
optimization.

For the reason mentioned in the note above, the function
scan_$scan_notequal may be withdrawn when the PL/I verify BIF
becomes available.

MULTICS PROGRAMMERS' MANUAL tek

I/0 System Device Interface Module
Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

2/25/74

Name: tek

——

The tek_ DIM allows a user to perform graphic input and out-
put on a Tektronix 4002, 4012, or 4013 type terminal.

Usage:

call ios_Sattach (stream name, "tek ", to_stream, mode,
status) ;

l) stream name is usually "graphic_output"” or "graphic_input".

2) to_stream is usually "user_i/o", but may be any other stream.
(Input)

3) mode is ignored.

4) status is a standard I/0 system status code. (Output)

Permitted 1/0 System Calls:

The following I/0O system calls are implemented by this DIM:

attach
detach
read
write
order

Returned Status:

With the exception of the error returned upon attempted multiple
attachment, this DIM will only reflect status codes from downstream.

Order Request:

Only one order request is implemented by this DIM:

screen_size causes the output and input to be scaled so that
the maximum square physical screen size of the
terminal (760 x 760) represents a virtual screen
size of (N x N), where N is a fixed binary number
pointed to by the pointer argument to ios_$order.
The default is standard for the Multics Virtual
Terminal screen (1024 x 1024).

tek MULTICS PROGRAMMERS' MANUAL

—

Page 2

Graphic Input Format:

Any read call issued through tek_ will activate the cross-
hair cursors for graphic input. The graphic input portion of the
DIM simulates the operation of an ARDS mouse or joystick. To
send any graphic input command, the user must type one character
followed by optional text, followed by a newline character. The
coordinates of the crosshair intersection are sent with the first
character, and the character itself specifies the action to be
taken. Because of the terminal architecture, the desired con-
structs will be echoed on the screen after every request. Allow-
able characters are:

s (setposition) Causes a setposition to the current location
to be sent.

v (vector) Causes a vector to be drawn from the last coordin-
ate point to the current location.

i (shift, stands for "invisible vector") Causes a relative
shift to be generated to the current position.

P (point) Causes a shift to the current position, and dis-
plays a visible point.

t (text) (followed by text before the newline) Causes a text
string to be generated at the current position. If the
current position differs from the position at the last
command, a shift is generated to the new position.

e (escape) (followed by text before the newline) Signifies
that the text string is to be treated as a normal, non-
graphic ASCII string. If this does not occur as the first
entity for any particular read call, it is ignored. This
entity causes termination of the read call.

q (quit) Sends a setposition at the current position, and
terminates the read call.

The input stream is in Multics Graphic Code format, and may be
read and parsed by using the subroutine gf_input_ rather than having
a program issue a read call directly.

i
i

MULTICS PROGRAMMERS' MANUAL tek _dim_

I/0 System Device Interface Module
Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

2/25/74

Name: tek dim_

This is the PL/I procedure which implements the functions of
the tek outer module. It is documented under the writeup for

tek_.

MULTICS PROGRAMMERS' MANUAIL xXcom

Subroutine
Author-Maintained Library
J. M. Broughton

Room 39-200, Ext. 3-7788

9/30/73
Name: xcom
This is the compiler for the XPL language.
Usage:
declare xcom entry options (variable);
call xcom (entry, toggles, time);
1) entry is the character string forming the entry name
for the segment. (Input)
2) toggles contains compiler toggles to be set initially on.
(Input)
3) time is a character string containing a date/time

string for the listing of the program. (Input)

All the above variables should be declared character (*).

MULTICS PROGRAMMERS' MANUAL : xpl_file]

- e o !

Subroutine
Author-Maintained Library
J. M. Broughton

Room 39-200, Ext. 3-7788
9/35/73

Name: xpl file
This routine is used to perform file I/0 for XPL programs. It

moves data in 1024 word blocks. Files are kept in the process di-
rectory, anrd have names of the form xpl file n.

Usage:
declare xpl file (fixed bin(32), fixed bin(32), bit (1)
aligned, fixed bin(32));
call xpl file (file, block, output, dumnmy):;

1) file is the file number of the segment to be read or
written. If it does not exist, it will be cre-
ated. Only zero to nine is allowed.

2) block is the block number of the block to be read or
written. It starts at zero.

3) output if "1"b, the file will be written, if "0"b, it
will be read.

4) dummy is the first word of the block to be read from

or written into.
declare xpl fileS$truncate entry:
call xpl fileStruncate;

This truncates all files used by an xpl program and which are cur-
rently active.

MULTICS PROGRAMMERS' MANUAL xpl loader _

Subroutine
Author-Maintained Library
J. M. Broughton

Room 39--200, Ext. 3-77383
9/32/73

Name: xpl loader

This routine is used to move the data portion of an xpl program
into a scratch segment in the user's process directory. Scalar and
arrary data are placed in the segment "xpl arith data “; string data
are placed in "xpl string data ". It is called with one argument:

a pointer to a structure of pointers to the different areas that are
to be filled in.

Usage:
declare xpl loader _entry (pointer);
call xpl loader (regptr);
1) regptr is a pointer to the structure described above:
declare
1 registers aligned based (regptr),
2 data pointer,
2 string pointer,
2 array pointer,
2 text pointer,
The pointer text is an input parameter, and
points to the base of the object segment.
Note:

This routine is, and should only be, called by the prologue
sequence of an xpl program.

MULTICS PROGRAMMERS' MANUAL xpl_pperators;]

Subroutine
Author-Maintained Library
J. M. Broughton

Room 39-200, Ext. 3-7788
2/25/74

Name: xpl_operators

This routine is called by an xpl program in order to perform
tasks that it cannot do for itself.

Usage:

declare xpl operators_ entry (pointer);
call xpl_operators_ (stack_ptr);

1) stack ptr is a pointer to the stack frame of the calling
procedure.

Notes:

This procedure is, and should only be, called by code as gener-
ated by the xpl compiler.

MULTICS PROGRAMMERS' MANUAL all

Active Function
Author-Maintained Library
John C. Klensin

575 Technology Square
Fifth Floor, Ext. 6217
12/7/71

Name: all

The active function all returns the contents of a designated
segment with all of the new line characters changed to blanks.
It is useful when a list of things must be done by several com-
mands in succession or when a file has been created which con-
tains such a list of items. '

Usage:
command {all path]

Where "path" is the name of a segment containing characters
to be placed on the command line.

Note:

This active function, by its nature, makes it fairly easy
to exceed the default command line length (see set com line)
and the maximum number of arguments accepted by the standard
command processor.

MULTICS PROGRAMMERS'S MANUAL bit_count

Active Function
Author-Maintained Library
John C. Klensin

575 Technology Square
Fifth Floor, Ext. 3-6217
2/20/74

Name: bit count

This active function is used to obtain and return the bit
count on a given segment. It is likely to be useful when the
presence of information in a segment is more interesting than
whether or not it exists.

Usage: bit count segname
Where

segname is the relative pathname of the file whose
: bit count is to be returned.

Note: If the file is not present, a value of "-1" is returned.
Otherwise the bit count is returned. This permits testing
for "present and bit count greater than zero" by a single
test that does not produce errors.

Example: Used in an exec com context, this function might appear
in a statement as follows:

&if [greater [bit _count] mailbox 0]
&then &print maill

(:) Copyright 1974, Massachusetts Institute of Technology

MULTICS PROGRAMMERS' MANUAL center

Active Function

Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

9/6/74

Name: center
This active function returns its first argument centered in

a field of blanks whose length is specified by the second argument.
The return value is enclosed in quotes.

Usage:
| [center string lengthl
1) string is the string to be centered.
2) length is the size of the field of blanks.
Example:

dprint -he {center &1 13] &l.list

MULTICS PROGRAMMERS' MANUAL dwd

Active Function
Author-Maintained Library
John C. Klensin

575 Technology Square
Fifth Floor, Ext. 3-6217
10/31/73

Name : awd

This active function returns the name of the default working
directory (the home directory unless it has been changed by
the command change default wdir (cdwd)) in a fashion similar
to the active functions wd and pd for the working and process
directories.

Usage: dwd

MULTICS PROGRAMMERS'S MANUAL exist any

Active Function
Author-Maintained Library
John C. Klensin

575 Technology Square
Fifth Floor, Ext. 3-6217
2/20/74

Name: exist_any

This active function accepts one or more relative pathnames,
possibly containing stars or question marks, as arguments. If any
of the names is found (or any name is found) that matches one of
the star names, the function returns "true.® Otherwise, it returns
“false."
Usage: exist _any -namel- ...
Where

-namei- are relative pathnames.

Note: The routine returns "true" as soon as a single name match
is found, so it does not scan the rest of the input names.

Example: Used in an exec_com context, this function might appear
in a statement as follows:

&if [exist _any **.list]
&then &print you have list segments

(c) Copyright 1974, Massachusetts Institute of Technology.

MULTICS PROGRAMMERS' MANUAL

s

Active Function
Author-Maintained Library
John C. Klensin

575 Technology Square
Fifth floor, Ext. 6217
1/18/71

Name: 1ld

The active function 1ld returns the pathname of the original
login directory of the process in which it is invoked.

Usage:

command [1d]

MULTICS PROGRAMMERS' MANUAL translate

Active Function
Author-Maintained Library
Joseph W. Dehn IIT

Poom 39-200, Ext. 3-7788
11/15/74

Name: translate
This active function may be used to translate a character
string in a manner similar to the translate built-in function of

PL/I.

Usage:

[translate string new old]
or
[translate string opt]

In the first form, the returned string will be the string
formed by substituting for each character occurring in "old"
the corresponding character in "new". This is identical to the
PL/I function.

In the second form, the translation is specified by a control
option, which may be:

-uc to translate to upper case
-1lc to translate to lower case

Examples:

print string [translate "Test String" -uc]
TEST STRING

print string [translate 10/13/74 - /]
10-13-74

	001
	002
	01-01
	02-01
	02-02
	03-01
	03-02
	04-01
	04-02
	05-01
	06-01
	06-02
	07-01
	07-02
	08-01
	09-01
	10-01
	11-01
	12-01
	13-01
	13-02
	14-01
	14-02
	15-01
	15-02
	16-01
	16-02
	16-03
	17-01
	18-01
	19-01
	20-01
	21-01
	22-01
	23-01
	24-01
	25-01
	25-02
	26-01
	26-02
	27-01
	28-01
	29-01
	30-01
	30-02
	30-03
	30-04
	31-01_teco
	31-02
	31-03
	31-04
	31-05
	31-06
	31-07
	31-08
	31-09
	31-10
	31-11
	31-12
	31-13
	31-14
	31-15
	31-16
	31-17
	31-18
	31-19
	31-20
	31-21
	31-22
	31-23
	31-24
	31-25
	31-26
	31-27
	31-28
	31-29
	31-30
	31-31
	31-32
	31-33
	31-34
	31-35
	31-36
	32-01_xpl
	32-02
	33-01
	33-02
	33-03
	33-04
	33-05
	33-06
	34-01
	34-02
	35-01
	35-02
	36-01
	37-01
	37-02
	38-01
	38-02
	38-03
	39-01
	40-01
	40-02
	41-01
	42-01
	42-02
	43-01
	44-01
	44-02
	44-03
	44-04
	44-05
	45-01
	46-01
	46-02
	46-03
	47-01
	47-02
	48-01
	49-01
	50-01
	50-02
	50-03
	50-04
	51-01
	51-02
	51-03
	52-01_xcom
	53-01_xpl_file
	54-01_xpl_loader_
	55-01_xpl_operators_
	56-01
	57-01
	58-01
	59-01
	60-01
	61-01
	62-01

