
Commands

10/29/73
4113173
2/27/71
1/8/74
1/18/75
2/5175
8/4/74
11112/70
7129/74
1/8/74
8/7/73
4/7/73

2/20/74
7/9174
9/6/74

3/11/74
1/8174
5/10/74
4/7173
7/29/74
1/18/71
11/5/74
5115/73
9/6/74
7/27/74
9/9171
4/7/73
1/9/74
5/10/74
11/29/73
3126172
2/25/74

List of Contents
MULTICS PhOGHAMHERS' MANUAL

Author-Maintained Library
4/30/75

archive_entries
as soc (also an active function)
bcpl (installed in maintenance tools)
blip
calc_costs
card_input
clean_up
convert_360_pll
convert_line_feeds
convert_multics_fortran
convert_radix
decimal_to_octal
directory_status (refer to subtree_status)
file_out put_unique
get_current_charges
get_object_info (also an active function)
global_status (refer to subtree_status)
lock_console
lower_case
number_queued (also an active function)
octal_to_float
print_basic_file
print_login_dir
print_string
punch_paper_tape
push_wdir
read_dartmouth_tape
reformat_line
repeat
return_to
ring (also an active function)
subtree_status
teco (installed in maintenance tools)
xpl

(over)

Subroutines

2/25/74
3/12/75
10/21/74
7/27174
2/25/74
9/8/70
3/12/75
7/9/74
9/6114
4/13/73
9/6/14
4/11/73
4/30/73
11/6/74
2/21/74
9/30/73

1/18/71
5/24/71
2/25/74
2125/74
9/30/73
9/30/73
9/30/73
2/25/74

Active Functions
12/7/71
2120/74
9/6/74
10131/73
2/20174
1/18/71
11/15/74

ask_ (installed in maintenance tools)
attach_fortran_file_
basic_plot_
check_basic_file_
check_msf_
cv (installed in maintenance tools)
detach_fortran_file_
fillin_dprint_str_
fixed_to_english_
get_caller_ptr_
get_line_length_
get_mydir_
get_seg_ptr_ (installed in maintenance tools)
IHSL Library
linear_q_hash
qd
release_seg_ptr_ (refer to get_seg_ptr_)
reverse_index_
scan_
tek_
teK_dim_
xcom
xpl_file
xpl_loader_
xpl_operators_

all
bit_count
center
dwd
exist_any
Id
translate

MULTICS PROGR&~~RS' ~mNUAL

Name: archive entries, are
archive_calls, arc

archive entries

Conunand
Author-Maintained Library

Dave Moon
545 Technology Square
Room SOl, -Ext. 3-6013

10/29/73

_ The command archive entries prints listings of the entry
points of the segments wIthin an archive, and archive calls
prints listings of the entry points called by the segments in
an archive.

Usage:

are pathnamel ••• pathnamen

This will produce a list of all the entry points in all the
segments of archives pathnamel.archive to pathnamen.archive.

arc pathnamel ••• pathnamen

This will produce a list of all the entry points called by
all the segments in archives pathnamel.archive to pathna~en.archive.

Notes:

Upon encountering bad arguments, are and arc will comment
and then continue with evaluation of the next argument.

By design, arc suppresses printing of calls to pll operators.

MULTICS PROGRAMMERS I MANUAL I assoc I
Active Function / Command
Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

4/13/73

Name: assoc

This procedure implements an associative memory, and is use
ful primarily for implementing exec com variables.

Usage:

[assoc name1

1) name is a variable name which has been set to some
value by a prior call to assoc_set. (Input)

The returned value is a varying character string representing
the value associated with the supplied name. If the name was not
found in the memory, the null string is returned.

Entry: assoc set

This entry is used to associate values with names.

Usage:

assoc set namel valuel ••• namen valuen

1) namei is a character string name of up to 32 characters.

2) valuei is a character string value of up to 168 characters.

Entry: assoc clear

This entry clears the associative memory

Usage:

assoc -clear

There are no arguments.

Entry: assoc list

This entry lists the contents of the associative memory.

I assoc I MULTICS PROGRAMMERS' I~NUAL

t I

Page 2

Usage:

as soc list

There are no arguments.

Entry: assoc_seg

This entry is provided to allow assoc to reference an associa
tive memory in a permanent segment rather than the default
per-process memory.

Usage:

assoc_seg segname

1) segname is the pathname of the segment to be used. If the
segment is not found, it will be created. If seg
name is missing, or is the null string, assoc will
revert to the per-process associative memory table.

MULTICS PROGRAMMERS' MANUAL

Name: bcpl

Command
Author-Maintained Library

Robert F. Mabee
545 Technology Square

Room 518, Extension 5871
2/27/71

sePL is a language designed for but not limited to system
building and compiler writing. It is easy to read, but is
recommended primarily for experienced programmers.

The bcpl command invokes the BCPL compiler to translate a
source segment into a Multics object segment. A listing segment
may optionally be produced. The object and listing segments are
placed in the current working directory.

Usage!

bcpl pathname option! option2 optionn

1) pathname

2) Optionl

source

xref

ali s t

1 i s t

tree

check

time

crep

is the pathname of the source segment. The
compiler will append the suffix ".bcpl".

are chosen from the following set:

produces a line numbered listing of the input
text, including text inserted ·by ~.

produces a cross reference table in the
listing segment.

produces a complete assembly-l ike listing for
the object program.

combines the effects of the source, xref, and
alist options.

produces a listing of the syntax tree in the
listing segment.

inhibits generating the object segment.

causes timing information to be printed on
the console after each pass.

is a debugging tool. I t compiles input from
the console and directs the 1 isting output to
the console.

Ob nl I n~t'. I

Page 2

Notes:

pprep

MULTICS PROGRAMMERS' MANUAL

is a debugging tool. It lists canonical
symbols as they are encountered.

The entry name portion of pathname is used as the name for
the object segment. For the listing segment u.1ist ll is appended
to the entry name. The name of the source segment is obtained by
appending lI.bcp1" to pathname.

The '&til preprocesser cO,nvention is implemented as follows:

followed by a string
on the line after the
string identifies a
is to be logically
name is formed by

constant. The segment
the current working

The reserved word ~ must be
con s tan t • A 11 text r ema i n i n g
string constant is ignored. The
segment of SCPl source which
inserted Into the program. The
appending lI.bcp1" to the string
(0 r ali n k to it) mu s t be in
directory.

A SCPl manual and Mu1tics implementation guide will be
available soon.

MULTICS PROGRAMMERS I MANUAL

Name: blip

Command
Author-Maintained Library

Thomas Casey
575 Technology Square

CISL, Fifth Floor
491-6300, Ext. 237

1/8/74

The command blip types a short character string (a "blip")
on the console every few seconds of CPU time used by the user's
process. Both the time between blips and the type of blip may
be specified by the user. A sequence of different blips that
are to be cycled through also may be specified by t~e user. Blips
will be typed out until the blip_off command is given.

Usage:

blip time -options and/or blips-

This command takes an unlimited number of arguments. The
first argument is the time in CPU seconds between blips. Because
this is a floating-point number, times of less than one second
may be specified. This time will be adhered to exactly.· If 50
blips are given during the course of working, 50*time seconds
of CPU time were used by the process. The command will even
try to remain faithful if the time specified is less than the
amount of time required to execute the blip progr~~. If the
time is about two seconds or more, it is estimated that the over
head for the blip program is about 0.1 second per blip.

The rest of the arguments are either options or character
strings to be used as blips after they have been modified as
specified by the options. Because the arguments are processed
from left to right, blip strings can be affected only by options
to the left of the string. The options are:

-red

-black (-bl)

-nla (-nl)

-nIb

-nnl

A red ribbon shift is added at the beginning
of the blip string and a black ribbon shift
is added at the end.

No ribbon shifts are added to the blip string.

A newline character is added at the end of
the blip string (newline after).

A newline character is added to the beginning
of the blip string (newline before) •

No newlines are added to the blip strings.

blip MULTICS PROGRA..~M.ERS I M.ll.NUAL

Page 2

If no options are specified, the options -red and -nnl
are in effect. If no blip strings are specified, then the 10
decimal digits from 0 through 9 will be the 10 blip strings
to be cycled through. The first blip is typed out during the
blip command, and it is the first blip string. The second
blip is the second blip string. If n blip strings have been
specified, then the n+lst blip will be the first blip string.

Blips are always typed on the console, even when using
file_output.

Entry: blip_off

This command turns off the blips from the previous use of
the blip command. If a blip is being given, another use of the
blip command will turn off the previous blip automatically.

Examples:

blip 2
Or 1133 1.302 4.108 93
pll newyrogram
lPL/l
2345678r 1140 15.137 29.163 749
newyrogram
901
QUIT /*got into an infinite loop*/
r 1141 8.548 5.296 123

~ Copyright 1974; Massachusetts Institute of Technology

MUlTICS PROGRAMMERS· MANUAL

Command
Author-Maintained Library

Joseph W. Oehn III
Room 39-200, Ext. 3-7788

1/18115

This command calculates the dollar cost of a given amount of
cpu time, memory units, and connect time.

calc_costs CPU1 meml ••• cpun mema -connect X -shift K

1) cpul

3) -connect X

4) -sh1ft K

specifies cpu time In seconds. The total cpu
time is calculated by adding together all of the
cpu times that are gIven.

specIfies memory usage In the units gIven In a
ready message. The total memory usage Is
calculated by adding together all of the memory
usage figures that are given.

specifles the connect time In minutes.

specIfies the shIft whose prices are to be used
1n the calculation of the dollar cost. If thIs
control argument Is not given, a table will be
printed showing the cost for all Shifts that are
currently defined.

calc_costs 1.001 6.128 -shIft 2

ca.c_costs 2.3 5.1 1.1 3.5 -connect 3

t.,1ULTICS PROGRAt,U¥1ERS' r~ANlJAL

Command
A~thor-Maintained library

Overlap Project Staff
NE40-500, M.I.T. Ext. 3-2053

2/5/75

This routine may be used to read a deck of cards into a
segment created in the user's working directory at the time the
request is submitted. It supports the conventions about reading
via links, and provides the following services:

1) The user need not be concerned about a IItemporary name ll

and a "permanent name" the name appearing in the
segment name field of the control card (1) placed at the
beginning of the deck is the name of the segment which
will be created and into which the card images will be
cop i ed.

2) The user need not be concerned with eliMinating a link
which may later cause problems, because the program
removes the link when the cards are copied.

Use of this program greatly simplifies the task of reading
cards on t1u 1 tics, to the extent that it may be used wi th 1 itt 1 e
instruction, even by a new user. Such instruction might be
succinctly stated, "Put the name you \\fish the segment to have in
the segment name field of the first (Control) card, submit the
deck for reading, and then execute this program from the
directory in which you want the segment to reside, using the same
name that appears on the control card as the command argument."

The program may also be used to copy an arbitrary segment
via a link to it, effectively changing the name on the link to
the name on the segment.

(1) For details concerning the format of and information required
to use control cards, please see the f'4.I.T. Information
Processing Genter publication r.1S-1,-"Bulk I/O on Multics. " Note,
however, that this publication describes a series of naming rlJles
that this command makes unnecessary.

r·1lJ L TICS PRO GRA~,1r1 EqS' ~,1ANUA L

Page 2

Usage:

~:

is the name that appears in the segment name
field on the first (control) card of the deck.

This command must be invoked from within the same directory
as that appearing in the directory name field on the first
(control) card of the deck.

j·1ethod:

The experienced Multics programmer may desire to know the
steps undertaken by the program during execution. An outline of
the steps is:

1) The naJile suppl i ed in the cOJ11l11and 1 i ne ar gU!11ent is checked
to ensure that it exists and is a link, ann that the link
refers to an existing segment.

2) A uniquely named segMent is created in the working
directory; the segment referred to by the link is copied
into the uniquely named segment.

3) The link is unlinked, and the uniquely named segment is
renamed to the name that was on the link.

If any error occurs, the program displays a message and
returns.

MULTICS PROGRAMHERS' HANUAL clean_up.]

Conunand
Author-Maintained Library

Student Infor:mation Processing Board
Room 39-200, Ext. 3-7788

8/04/74

The clean up command enables the user to clean a directory or
directory subtree of worthless entries: segments that have not
been used or modified since some specified time; links that point
to a non-existent target, and directories that contain no entries
at all.

clean_up -path- -options- -control_args-

1) path

2) options

is the pathname of the directory that is to be
cleaned up or !!-working directory" C'-wd"). If
neither is given then the current working directory
is asslLTtled.

indicate which entries are to be deleted. They can
be selected from the following list:

-date time modified, -dtm
- specifies that segments found in the directory

that have not been modified since a particular
time are to be deleted. This argument can be
followed by a string giving the desired time in
format acceptable to convert date to binary. If
a time is not given by the user, one-month prior
to the current time is assumed.

-date time used, -dtu
- specifies that segments found in the directory

that have not been used since a particular time are
to be deleted. As above, the user can specify the
time he desires, or let one month before be assumed.

-link, -lk specifies that links found in the directory that
point to a non-existent target are to be unlinked.

-directory, -dr
specifies that any inferior directories found in
the directory that have no entries themselves are
to be deleted.

If no options are specified, segments not used in
the last month will be deleted.

MULTICS PROGRAMMERS' MANUAL

Page 2

3) control_args are selected from among the following:

-long, -lg produces a listing of the directories searched and
entries deleted. This listing is written on
user_output and includes the date/time dumped for
segments and directories and the target of a link.
This is the default.

-brief, -bf suppresses the listing described above. ("-long"
is the default) •

-force specifies that entries are to be deleted even if
their safety switch is set. If this argument
does not appear, an error message will be printed
when an attempt is made to delete such an entry.

-walk, -wk specifies that clean up is to walk through all
inferior directories-of the directory specified
looking for entries to be deleted. Note that the
contents of a directory are examined for deletion
before a check is made to see if the directory is
empty. As a result, if n-dr" has also been specified
and if all the entries are deleted from an inferior
directory, then that directory will also be deleted.

-walk_force, -wf

Examples:

specifies that inferior directories are to be walked
as above, and that clean up is to ensure that the
user has "sma" access to-each inferior directory.

To delete all segments in the current working directory that
have not been modified in the last month:

clean_up -date time modified

To remove all links that point to a non-existent target in
the directory temp and all directories under it:

clean_up temp -link -walk

To delete all segments that have not been used since July 1,
1974 and all directories that are empty:

clean_up -wd -dtu "July 1, 1974" -dr

To purge the entire directory subtree under "old" of old
segments, null links, and empty directories (including those made
empty by clean_up) :

clean._up old -dtu -dtm -lk -dr -wf

MULTICS PROGRAMMERS' MANUAL

Name: convert_360_pll, c360p

Iconvert_360_Plll
Command

Author-Maintained Library
J.B. O'Connor

Room 39-473, Ext. 6321
11/12/70

This command converts an IBM 360 PL/I program read in by the
Multics card reader to a form acceptable to the Multics PL/I
compiler. Specifically it:

1. maps all upper case letters in the file to lower case,

2. changes all apostrophes (.) to quotes ("),

3. deletes any characters appearing in card columns 73 through
80 (sequence numbers), and

4. deletes trailing blanks on a line.

Usage:

convert_360_pll pathnamel pathname2

Pathnamel is the name of the segment to be converted and
pathname2 is the name of a new segment to be created to contain
the converted program. If pathname2 is omitted, pathnamel will
be rewritten.

Notes:

The translation does not take into account the 48-character
set used in IBM 360 PL/I. For example, if the operator "LT" is
used in the 360 program, the user must change this to the character
"<" with a Multics editor.

If character constants start on one card and end on another
card in the 360 program, the effect of trimming off trailing
blanks may change the value of the constant.

Example:

c360pll ibm.pll multics.pll

This command can be applied to segments that it had previously
produced without effect. It cannot be applied to segments entered
on the console, however, unless tabs have not been used and care
has been taken to follow IBM 360 card conventions (because characters
after the 72nd column on a line will be deleted) .

MULTICS PROGRAMMERS r ~1ANUAL

Names:

Command
Author-Maintained Library

Joseph W. Dehn III
Room 39-200, Ext. 3-7788

7/29/74

This command converts an ASCII segment which contains carriage
return and line-feed codes as used by other systems into a segment
which uses the Multics neW-line character. A combination of line
feed and carriage-return is replaced with a neW-line character,
a carriage-return by itself is left as is, and an isolated line
feed may be treated in one of three ways: deletion, replacement,
or "simulation" by neW-line and spaces.

Usage:

pathl

path2

convert line feeds pathl path2 -cntlargs-

is the pathname of the segment to be converted

is the name of the segment to be produced. If this
argument is omitted, the conversion will be done in
place (the new segment will replace the original) •

Control arguments may be used to specify the handling of
isolated line-feeds:

-delete
-dl

-replace xxx

-space

-tab N

Note:

isolated line-feeds are to be removed

isolated line-feeds are to be replaced by
the string xxx, which may be up to 32
characters in length

isolated line-feeds are to be replaced by
a neW-line and spaces to effect the carriage
motion of a line-feed

specifies the width of a tabulation character
when using the -space option. If this option
is not given, tabs are assumed to be ten
columns wide.

The ASCII carriage-return code is octal 015. The octal
code for line-feed is 012. Multics uses the code 012 for new
line. A carriage-return/line-feed combination is treated by
removing the code 015 from the text.

MULTICS PROGR&~RS I MANUAL

Name: convert_multics_fortran, emf

Iconvert_multics_fortranJ

Command
Author-Maintained Library

Thomas Casey
575 ~echnology Square

CISL, Fifth Floor
491-6300, Ext. 237

1/8/74

This command converts Multics FORTRAN programs into a form
acceptable by IBM 360 FORTRAN. The command:

1) changes lower-case characters to upper-case,

2) changes quotes (") to apostrophes ('),

3) changes the continuation card convention from a II % n to an "X'I
in column 6 of the next card,

4) changes horizontal tabs to spaces,

5) puts the first four characters of the output pathname into
columns 73-76,

6) sequences lines in columns 77-80,

7) does not handle implied continuations,

8) will continue lines greater than 72 characters in length onto
the next card(s), and

9) always will put the segment following a continuation character
on the next card.

Usage:

cmf pathnamel pathname2

Where pathnamel is the name of the segment to be converted
and pathname2 is the name of the segment to contain the converted
program. If pathname2 is omitted, the output will be under
pathnamel".360".

Example:

emf multics.fortran 360.fortran

OR

emf multics.fortran

Pathname2 defaults to multics.fortran.360 in the latter case.

This command cannot be applied to segments which it had pre
viously produced. Non-FORTRAN lines in the program could con
ceivably cause incorrect operation.

MULTICS PROG~~R'S MANUAL

Name: convert_radix, cvr

Command
Author-Maintained Library

Joseph W. Dehn III
Room 39-200, Ext. 3-7788

8/7/73

This command will convert the character string representation
of an integer in one radix into its representation in another radix
and print it on the consoleo The input and output radices may be
from 2 to 64, and the characters to be used as numerals may be spec
ified.

Usa9:e : convert_radix input input_radix output_radix numerals

1) input is the number to be converted.

2) input_ radix is the radix to convert from.

3) output~radix is the radix to convert to.

4) numerals is a character string of up to 64 numerals.

The "output radix" and "numerals" arguments may be omitted.
The former defaults to ten, and the latter defaults to, in order:
the arabic numerals, thecapi tal letters, and the lo\ver case letters.
Note that if the numerals are to be specified, the output radix must
be specified.

If several numbers are to be converted in the same manner (same
input and output radices and numerals), specifying .1*" as the first
argument will put the program into a loop reading input from the
keyboard, one nurnber per line. This mode may be terminated by en
tering a blank line.

MULTICS PROGRAMMERS' MANUAL decimal to octal

Command
Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

4/7/73

Name: decimal_to_octal, dto

The decimal to octal command will convert a decimal argument
to octal and print It on the console.

Usage:

decimal to octal decimal number

1) decimal number is a decimal number to be converted to octal.

Entry: octal_to_decimal, otd

This entry will convert an octal argument to decimal and
print it on the console.

Usage:

octal to decimal octal number

1) octal number is an octal number to be converted to decimal.

MULTICS PROGRAMMERS' MANUAL

Name: file_output_unique, fou

I file output_unique;
L ___________________ -.J

Command
Author-Maintained Library

John C. Klensin
575 Technology Square

Fifth Floor, Ext. 3-6217
2/20/74

This command facilitates dprinting the results of other
commands.

Usage:

file output unique tdp -options]
command 1-

command n
q

where dp -options are zero or more of the options normally passed
to the dprint command. These options include "-ds," "-he," and "-cp."

The differences between the sequence

fou
command-line 1
command-line 2

command-line n
q

and the sequence

file output namel;
file-output name2;

file output namen;
dp -del namel name2

are as follows:

command-line l~
command-line 2;

command-line n;
••• namen

console output
console_output

console_output

1. Each file produced by file output unique begins with a header
consisting of the command line responsible and a time and date
message.

2. Each file produced by file output unique ends with a distinctive
trailer line consisting of-"END*END* ••• *END."

MULTICS PROGRAMMERS' MANUAL

Page 2

Notes:

1. file output unique interprets command lines with the user's
command interpreter, whatever that may be.

2. This version of file output unique does not require that the
I/O daemon have any special-privileges in the working directory.

3. This routine uses fillin dprint str to evaluate "dprint" options.
See the current description of 'that-subroutine for an exact list
of the options accepted

Example:

fou
pWdi" Is -dtm
pli big_mother_bound_archive
q

~copyright 1974, Massachusetts Institute of Technology

MULTICS PROGRAMMERS' MANUAL

Conunand
Author-Maintained Library

John C. Klensin
575 Technology Square

Fifth Floor, Ext. 3-6217
7/9/74

Name: get_current_charges, gcc

This command is used to provide a project administrator with
a variety of information in compact form about a particular user (or
list of users) on a particular project. It can display amounts spent
per shift during the current month, amounts spent absentee, and on io,
and the number of pages in the user's directory. It can display the
limits on the above, if any. In addition, it can display the user's
attributes and the date and device on which he last logged in.

Usage:

get_current_charges project-name user-name user-name .•• options

Where:

project-name

user-name

options

is the name of the project for which infor
mation is to be obtained.

is the name of a user on that project for
whom information is to be obtained. Up to
20 user names may be specified.

are control arguments for the program. These
may occur in any order, and may be intermixed
with user names. Any options that occur apply
to the entire command invocation. These options
are:

-total, -tt

-limit

-attributes

-last_login, -11

-absolute, -abs

Display only the dollar .
total (and limit, if that
option is used).

Display the limits, in
addition to the charges.

Display the user's current
attributes.

Display the time, date and
console id of the user's
last login.

Display information about
"absolute" spending and, if
"-limit" is specified, limit
and cutoff information.

get current charges - - MULTICS PROGRAMMERS f MANUAL

Page 2

Output:

If no options are specified, a single line will be displayed
containing the user name, the total charge, the four shift charges,
the io daemon and absentee charges, and the page usage on the user's
directory. If -total is specified, only the total charge will appear.

The other options cause additional per-user lines to be displayed.
These are as follows:

For "-limit", a line showing the total limit, the four shift
limits, and the user's page quota. If "-total" was specified, then
only the total limit is printed.

For "-attributes" a line is displayed showing the attributes
as text strings.

For "-last login", a line is printed containing the time, date,
and console id,-of the user's last login.

Notes:

1) If errors occur for a given user, messages will be printed at
the end of the information for that user. If the person using
this program does not have access to get quota information,
those fields will be set to zero and a message printed after
other information.

2) This command requires read access to the project definition table
of the project for which information needs to be obtained. As
a consequence, this command is of no use to any Multics user who
is not a project administrator.

~ Copyright 1974, Massachdsetts Institute of Technology

MULTICS PROGRAMMERS' MANUAL get_object_info

Student

Command/Active Function
Author-Maintained Library

Information Processing Board
Room 39-200, Ext. 3-7788

9/6/74

Names: get object info, goi
get component_info, gci

These commands/active functions give information about the
compilation of an object segment.

Entry: get_object_info, goi

Usage:

(as a command) get_object_info path key

(as an active function) [get_object_info path key]

1) path

2) key

author
at

is the path of the object segment.

specifies the information to be printed/returned,
and may be one of the following:

the userid of the user who produced the object
segment.

date time compiled
dtc - the date and time of the compilation.

compiler

version

comment
options

the name of the translator that produced the
object segment.

the version of the translator that produced
the object segment.

a translator inserted comment. The PL/I
compiler uses this field to indicate the
options that were specified at compile time.

Entry: get_component_info, gci

This command/active function gives information about the
compilation of a component of a bound object segment.

get_abject_info MULTICS PROGRAMl1ERS I MANUAL

Page 2

Usage:

(as a command) get_component_info path component_name key

(as an active function) [get_component_info path component_name key]

1) path

2) key

3) component_name

Notes:

same as above.

same as above.

is the name of the component of the object segment
for which the information is to be returned.

1) If the "component" argument to get component info is omitted,
it will be assumed to be the same as the entryname portion of
the pathname.

2) If "get object info" is used on a bound segment, it will return
information about the binding.

Examples:

get_object_info xyz author

get_component_info bound~yz_ xyz dtc

get_component_info xyz version

HULTICS PROGRA.'-1MERS I MA.~UAL

Names: lock_console, lkc

[lOCk_conSOle I
Command

Author-Maintained Library
B. E. Hampson

Room 38-644, DL 9204
03/11/74

This command can be used to protect your process from unau
thorized use in the event you have to leave your terminal for
any length of time. Lock console has two modes of operation:
one in which your process-is simply put to sleep awaiting your
return, and one in which lock console will execute a command
line under its protection. -

When in command-line-execute mode, lock console will (by
default) establish an on unit for the condition "any other".
The effect of this will be to "catch" any condition signalled
by any procedure invoked by the command line. Lock console
captures the signal and prints a message to the effect that
the signal occurred; but, unlike the system default on unit,
the process-is not returned to command level. Rather, lock console
calls itself recursively with a basic lock time and grace (see
below) of 24 hours. If the user does not reclaim the terminal
in 48 hours, he is either logged out, or lock console returns to
its caller. If the terminal is reclaimed, the signalling of the
condition will continue just as if lock console had not inter
cepted it. Note L~at, among other things, this feature prevents
someone else answering a question for you (provided the question
is asked in such a way as to cause a condition to be signalled,
e.g., command_query_).

There is one exception to the above "signal-catching ll scheme:
if a quit is done while executing the command line, the user's
password is requested. If correct, the quit is passed on and
the process gets to command level. If incorrect, the quit is
simply returned from.

Protection is achieved by means of an 8-character password.
Lock console will request this password when invoked (see the
listed exceptions below) either under overprint or with printer
disabled. To reclaim a terminal, the procedure is to strike
the QUIT key, and to enter the same password when it is requested.

1
~ lock console
I -

MULTICS PROGRMlMERS' MANUAL

Page 2

Usage:

lock console -controll- •.• -controln-

The controli are optional control arguments, and may be chosen in
any order from the following list:

-time TTT
-tIn TTT

-no logout
-nol

-prevyw
-ppw

-defer messages
-dm -

-setyw PPP
-spw PPP

-call CCC
-cl CCC

Sets the basic lock time to TTT minutes.
This value is the time after which lock console
will take further action (in the absence of a
grace period), if the terminal has not yet
been reclaimed. The default basic lock time
is 10 minutes.

Specifies that, at the expiration of the
basic lock time (and the grace period, if any),
lock console is to return to its caller in
stead of logging the user out. The default
is to log the user out.

Specifies that the password from the previous
invocation is to be used (a new password will
not be requested if this argument is used).
This argument will be ignored (with consent)
if it is used in the initial invocation in a
process.

Specifies that the command "defer messages" is
to be executed (before executing the command
line, if any). The command "immediate messages
-print" will also be executed, just before
lock console returns to its caller.

Sets the password for this invocation to PPP.
This argument overrides -ppw if both are used.
PPP is limited to eight characters.

Requests that the command line CCC be passed to
the user's command processor for execution under
the protection of lock console. The real time
required to execute the command is counted against
the basic lock time, but the grace period does
not begin until after the command line has fin
ished executing.

MULTICS PROGRAMMERS' MANUAL I lock _ console I
Page 3

-grace GGG
-gr GGG

-no catch signals

Sets the grace period to GGG minutes. Lock console
will neither return nor log out, after the basic
lock time has been exceeded (or after the command
line has finished executing, whichever is longer),
until this grace period expires. The default
grace is 0 minutes (no grace) •

-nes - Specifies that during the executing of the command

-brief

line, lock console is not to establish an on unit
for the condition any other. The default is to
provide such an on unft. A command line running
in "no catch" mode cannot be quit out of by some
one who does not know the password; however, if
some error or other condition is signalled and
the user has no on unit for it, the process will
get to command level via the system default on
unit, and then be vulnerable to unauthorized use.

-bf Causes lock console to be less verbose.

-no print off
-npf -

Example:

Specifies that the user's terminal does not have
the printer off feature, and that therefore the
user desires his passwords be requested under
overprint.

lock console -tIn 25 -no_logout -grace 2 -cl "Is -p <If -bf

~ Copyright 1974, Massachusetts Institute of Technology

MULTICS PROGRAMMER'S MANUAL

Name:' lower case

Command
Author-Maintained Library

J. R. Steinberg
Room 39-427, Ext. 3-7184

1/8/74

This command, given the pathname of an ASCII file, maps all
upper-case letters in the file to lower case. It is intended for
use on card-punched decks which have been input to Multics and which
contain source code for a compiler which expects lower-case keywords
(e.g., PL/I, FORTRAN).

Usage

lower_case pathname

Where pathname is the pathname of an ASCII file which is to be
mapped to lower-case.

MULTICS PROGRAMMERS' MANUAL I number_queued

Active Function/Command
Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

5/10/74

Name: number_queued, nq

This procedure returns the number of requests in an I/O
daemon queue.

Usage:

(as active function) : [number_queued qnum dvc]

number_queued qnum dvc (as command) :

1) qnum a positive integer which specifies the queue number

2) dvc the name of the device class (optional)

Example:

As an active function, the procedure may be used by an
exec com or absin control program to decide in which queue to
submIt a request:

&if [greater [nq 3] 15] &then dp -q 2 sample. list
&else dp -q 3 sample. list

MULTICS PROGRAMMERS' MANUAL J octal_to_float I

Conunand
Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

4/7/73

Name: octal_to_float, otf

The octal to float command will print the floating point value
of an octal argument on the console.

Usage:

octal to float octal number

1) octal number is an octal number to be converted to float.

Entry: float_to_octal, fto

This entry will print the octal representation of a floating
binary argument on the console.

Usage:

float to octal float number

1) float number is a float number to be converted to octal.

r-ruLTICS PROGRAM1.fERS I MANUAL

Name: print basic file

Command
Author-Haintained Librarv

Joseph W. Dehn III
Room 39-200, Ext. 3-7788

7/29/74

The print basic file command may be used to print the contents
of a file as interpreted by the BASIC language. The file may be
terminal-format, random-string, or random-numeric.

Usage:

print_basic_file file_spec

where file_spec is a string specifying the file to be printed.
If the string contains blanks, it must be enclosed in quotes. The
type of the file will be printed, follo\,led by the contents.

MULTICS PROGRAMMERS' MANUAL

Name: print_login_dir, pld

Iprint _log in _ dirl

Command
Author-Maintained Library

John C. Klensin
575 Technology Square

Fifth floor, Ext. 6217
1/18/71

The print login dir command causes the name of the original
login directory to be printed on the console.

MULTICS PROGRM1MERS I MANUAL

Name: print string, ps
print-string nnl, psnnl
print-string-ht, psht
print=string:tb, pstb

Command
Author-Maintained Library
Room 39-2009, Ext. 3-7788

5/10/74

This procedure prints on the console the line formed by
concatenating its arguments, with one blank between each argument.
The entries differ only in the character appended at the end of
the line, which is as follows:

Entry

print string
print-string nnl
print-string-ht
print:string-tb

Usage:

Abbreviation

ps
psnnl
psht
pstb

print_string arg1 ••• argn

Example:

print_string [path &1] as of [~ate]

Trailing Character

newline
(none)
horizontal tab
space

MULTICS PROGRAMMERS' MANUAL punchyaper _tape 1
Command

Author-Maintained Library
Joseph W. Dehn III

Room 39-200, Ext. 3-7788
5/15/73

Name: punchyaper~tape, ppt

This command punches an ascii segment on the paper tape punch
of a model 33, 35, 37, or 38 teletype. The segment may be punched
as is, or carriage returns may be inserted. at the end of each
line. The file is preceeded by a punch-on (device control 2)
character and a leader of nulls, and followed by a trailer and a
punch-off (device control 4).

Usage: punch yaper _tape < optl> ••• < optn> < pa thl> ••• < pa thn>

Options take effect as found in the argument list, and should
normally preceed all path arguments.

~insert cr
-icr

-override

Notes:

enables the insertion of carriage returns and
null padding at the end of each line.

causes the fact that you are not on a teletype
to be ignored.

When in -icr mode, each \012 is replaced by \015, \012, \000.
In addition, a punch-on character is added after each punch-off,
to allow the punching to continue. When not in -icr mode, no
processing is done at all. In either mode, all other characters
are sent as is, including \004 and \005, whose effects on the
particular terminal should be considered when trying to punch
out strange segments. Note that this command cannot be used to
punch non-ascii files since the high-order bit of each byte is
lost.

Examples:

ppt -icr foo.fortran test.basic

punchyaper_tape -override sample_file

MULTICS PROGRru1MERS' MANUAL push_wdir

Command
Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

9/6/74

Names: push_wdir, pop_wdir

These commands may be used to change the working directory
while pushing the previous working directory onto a "stack". The
previous working directory may then be restored.

Entry: push_wdir

This entry changes the working directory and pushes the previous
working directory.

Usage:
push_wdir path

1) path is the pathnarne of the new working directory

Entry:

This entry restores the working directory to the value pushed
by the push_wdir command.

Usage: pop _t-Tdir -control_ arg-

The control argument u-alltl specifies that the working
directory should be restored to what it was before the first
push_wdir command, i.e., the "stack ll is popped all the way.

1-1ULTICS PRodRAMME'iffi ,,' MAi~UAL'· : read 'dartmouth,.:.tape !
Corrunand

Author-Maintained Library
Joseph W. Dehn III

Room 39-200, Ext. 3-7788
7/27/74

Names: read_dartmouth_tape, rdt

The read dartmouth tape command'may 'be used to read all or
some of the files on a Dartmouth library tape into Multics segments.
The tape is assumed to be a9-track image of ' a 7-track "format 1"
ASCII tape, with the first file being a directory.

Usage:

read_dartmouth_tape -control_args- -file names-

1) -tape xxxxx

2) -hold

3) -all

4) -trace

5) -list

6) -noconversion

7) -name

Notes:

specifies the volume id of the tape to be read.
If this argument is not specified, it is
assumed that the stream "dart tape" is already
attached to the appropriate device.

specifies that the tape is not to be detached
after the files have been read.

specifies that all files on the tape are to
be read. If this option is given, no file
names may be specified.

specifies that as each file is encountered on
the tape, its number and name are to be printed.

specifies that a file is to be created with the
name "tapeid.dliblist" listing the name and
type of all files on the tape.

specifies that no conversion is to be done
for :1 random-string" and II random-numeric II files.

specifies that the following argument is to
be treated as a file name, even if its first
character is II_"

1) Files on the tape are in one of three formats. !ITERl·1INAL
FOR~T" files are read with no conversion. "RANDOM II files
are converted into a form suitable for use with the Multics
BASIC language, unless the -noconversion option is specified.

2) Darmouth file names are usually composed of upper-case letters.
When specifying file names, be sure to spell them exactly as
listed in the tape directory.

Page 2

Examples:

MULTICS PROG~1MERS' MANUAL

To read all files and create a directory listing:

rdt -tape 12345 -list -all

To read two files and hold the tape:

rdt -tape 54321 -hold RATINV TRUTHTAB

MULTICS PROGRAMMERS' MANUAL feformat_lin~
Command

Author-Maintained Library
Elaine Franklin

575 Technology Square
Cambridge Project

Fifth Floor, Ext. 2054
9/9/71

Name: reformat_line, rfl

The reformat line command may be used to scan a segment line
by-line, forcing-each line to fit into a specified number of
columns.

Usage:

reformat line pathnamel [pathname2] (-start cell [-end cc2] [-wrap cc3]

or

rfl pathnamel [pathname2] [-start cell [-end cc2] [-wrap cc3]

Where:

pathnamel

pathname2

cel

cc2

cc3

is the pathname of the input segment.

is the pathname of the output segment. If
pathname2 is not supplied, then the segment
pathnamel will be replaced upon completion of the
command.

is the column in which a line normally starts.
If ccl is not supplied, then it is assumed to be
1. ccl may not be less than 1 nor greater than
132 or cc2. If supplied, ccl must be preceded
by the string "-start".

is the last column incorporated in a line before
it ,wraps. If cc2 is not supplied, then it is
assumed to be 80. cc2 may not be greater than
132 nor less than ccl. If supplied, cc2 must
be preceded by the string "-end".

is the
If cc3
be 1.
132 or
by the

column at which a wrapped line is to start.
is not supplied, then it is assumed to
ce3 may not be less than 1 nor greater than
cc2. If supplied, cc3 must be preceded
string "-wrap".

keformat line]
I -

MULTICS PROGRAMMERS' MANUAL

Page 2

The program reformat line is designed to scan a segment line
by-line and reformat it as follows. Any horizontal tabs which are
encountered during processing will be converted to the appropriate
number of blanks before further processing of the line is done.
Lines will be reformated so that they will begin at column ccl and
continue up to and including column cc2. If a line is longer
than cc2-ccl+l characters, it will be broken up or reformated to
continue onto the next line, beginning in the column specified

- for cc3 and continuing through column cc2 of that line. If ccl
or cc3 is greater than 1, blanks will be inserted in columns 1
through ccl-l or cc3-l, respectively.

Examples:

reformat_line alpha

would take the segment alpha in the current working directory and
reformat it using the default values for ccl, cc2 and cc3 (1, 80
and 1, respectively). The old segment alpha would be replaced by
the new segment alpha in the current working directory.

reformat_line -end 132 beta -wrap 60 gamma

would take the segment beta in the current working directory and
reformat it using the default value of 1 for ccl and the values
132 and 60 for cc2 and cc3, respectively. An output segment named
gamma would be formed in the current working directory.

Warning:

This command considers anything of the form "character back
space character" (e.g., h.) to be three separate character positions.
If this action inconveniences anyone, please contact Elaine Franklin,
Ext. 2054.

MULTICS PROGRAMMERS I MANUAL I repeat I

Name: repeat

Command
Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

4/7/73

The repeat command makes it possible to have a command line
repeated any number of times.

Usage:

repeat [-times n] command_line

1) n

2) command line

is the number of times to repeat the command.
If the -times option is omitted, the command
will be repeated indefinitely.

is the command line to be repeated. It need
not be enclosed in quotes.

MULTICS PROGRAMMERS' MANUAL

Name: return_to, rt

rr;~~rn tol
L . -._ I

Command
Author-Maintained Library

Paul Green
Honeywell - DSO

575 Technology Square
491-7300

1/9/74

This command will cause a return to a procedure which called
out from a specified stack frame, thus simulating a normal return
from that call.

The return to command is simply an interface to the system
subroutine "unwinder II; refer to the MPM Subsystem Writer's Guide
for complete information.

usage:

return to frame

The command argument IIframe" is the octal offset of the stack frame
(in the current ring) to be returned to. This offset may easily be
determined by using the lI.t" request to "debug," or the "trace stack 1

'

command.

Example:

return to 5540

will return to the procedure owning the stack frame at octal offset
5540 in the current ring's stack.

MULTICS PROGRAMMERS' MANUAL [;;J

Name: ring

Active Function/Command
Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

5/10/74

This procedure returns the current ring of execution.

Usage:

(as active function):

(as command) :

Example:

&if [equal [ring] 5]

[ring]

ring

&then subsys who &1 &2 &3 &4
&else who &1 &2 &3 &4

MULTICS PROGRAMMERS' MANUAL subtree status

Command
Author-Maintained Library

Gary M. Palter
Room 39-200, Ext. 3-7788

11/29/73

Names: subtree status, stst
directory status, dst
global_status, gstat

This command is related to the status command. It will produce a
listing of a subtree of the hierarchy (or just a single directory)
with complete information about all (or some) of the entries in
each directory. It also will list the quotas and Initial Access
Control Lists of each directory.

Options exist to specify the type of sort to be performed on entries
in a directory, to specify which classes of entries are to be listed
(similar to the list command), and how multi-segment files are to be
treated.

Output is in a format suited almost solely for dprinting. The
field width is 136 characters, and there are form-feeds at the start
of each directory's listing.

subtree_status, stst

subtree status

1) directory

2) option.!,

-brief, -bf

-check, -ck

~directory- option!- ••• -option~-

is the relative pathnarne of the directory which
is the top node of the hierarchy to be listed.
If the directory is omitted, the working direc
tory will be used.

is chosen from the following list of options
(see also Notes below) :

will cause any messages which might be expected
not to be reported through com_err_. See the
Notes below.

will cause subtree status to walk any multi
segment files that-do not conform to the rules
for mUlti-segment files (in the write-up of
check_rnsf_) like any other directory.

Page 2

-name, -nm

~1ULTICS PROGRlLM_~R I S r.1.~.NUAL

specifies that the entries in a directory are to
to be sorted by primary entry name in the listing.

-date_time_used, -dtu
specifies that the entries are to be sorted by
date time used in the listing.

-date time modified, -dtm
- specifies that the entries are to be sorted by

date time modified.

-segment, -sm specifies that segments are to be included in the
listing (see Notes) •

-directory, -dr specifies that directories are to be included in
the list.

-multisegment_file: -msf

-link, -lk

Notes:

specifies that multi-segment files are to be
included.

specifies that links are to be included.

1) The messages suppressed by the -brief option are those concerning
insufficient access to a directory, or a directory containing
none of the entries selected for listing.

2) If anyone of the arguments for selection of entry classes for
the listing is present, then information only about those classes
for which an option appears will be given.

3) Only one of the sorting options may be given per command.

4) The defaults for the options are:
-brief off
-check off
sorting none
selection all entry classes

5) An example of the output produced by this command appears below.

MULTICS PROGRAMMERS' MANUAL subtree status

Page 3

6) The "Records" field of a segment or directory entry is the num
ber of non-zero pages for that branch. The "Blocks" field is
the length of the segments in blocks of 1024. (These two numbers
will be different only if there are pages containing all zeroes.)

7) The "Bit Count" field of a multi-segment file entry is the number
of segments inferior to the multi-segment file. The "Records"
field is the number of pages used by the directory portion of
the mUlti-segment file. The "Total" field is the number of records
in the multi-segment file (the same value that is returned by the
list command) •

8) If the target of a link does not exist, an asterisk will be
placed in the IINull" field of the link's entry.

usage: directory_status, dst

directory_status -directory- -option!- •.• -option~-

The arguments are identical to those for subtree status. This
entry differs from subtree status in that it does not walk the sub
tree of the specified directory, but produces a listing of only that
directory. As a consequence, the -check option is meaningless for
this command.

Usage: global_status, gstat

global_status -directory- -optionl- ••• -option~-

The arguments are identical to those for directory_status. This
entry differs from directory status in that the default sorting op
tion is date time used (instead of no sort). This entry is provided
as a replacement for an older version of the gstat command.

11/28/73 0326.72 est Wed

Ring ~I rew Palter.·.·
r •••••

Records Used' 69

Initial Access Control list - Segments

r w ·.SYSDaemon.· re ·.StPB4D~tN.·

Ring 51 r A_very_'ong_name_.Prolect.· r w ~an~leck.· •• r w Roach.·.·

Pr"'U!lIry Name

Secondary ~ame(.)

Prllllary ~a",e

Secondary Name(s)

Pr "',ary Name

Secondary Name(s)

emoty

Ring
Brackets

Segmen ts. 1

Author
Bit Count Aut hoI'

Mode Access 10

(~.4,4) Palter.Janus.a
Palter.Janus.a

r w Paiter.Janus.·
r w •• SysOaemon ••
r •••••

No Directories.

Used
Modlf led

HOde

11/28/13 0313
11/28113 0313.

r.w
r.

Hu'tl-Se~ment Files. 1

Rin<J
Brackets

Author
Bit Count Author

Mode Access 10

Palter.Janus.a
Palter.Janus.a

Used
Modified

Mode

11/28113 0328
11/26/73 0310

Dumped Bit Count Records Safety
Ent ry Mod If I ed Max length Blocks COpy

Access 10

11/26/73 0326 0 a off
11/26113 0315 65536 0 off.

Palter.·.·
·.SIPBAOMIN.·

Dumped Bit Count Records Safety
Entry Modified Max length Tota. COpy

Access to

11/26/73 0325
11/26/73 0310

5
65536

1
&9

off
off

sma Palter.Janus.· sma •• SvsOaemon.·

links' 1

Author Modified Dumped
Nufi 1 Pathname

Palter.Janus.a 11/28/73 0311 01/01/01 1900
• >user_dlr_dlr>Janus>Pa,ter>emptv

MULTICS PROGRAMMERS' MANUAL

CHAPTER 1

TEeO

Command
Author-Maintained Library

Peter B. Pishop
545 Technology Square

Room 536, Ext. 6213
03/26/72

TECO (Text ~ditor and COrrector) is a character oriented
text editor modelled after the TECO in general use on the Digital
E qui pme n t Cor p • PDP -1 0 , w hie h was 0 rig ina 1 1 y w r itt e nat 1-;1. I • T • I S
Artificial Intell igence project. TECD allows many simple editing
requests, macro definitions, iterations, and conditional
statements. These permit the user to do simple "manual" editinr.
of ASCI J files or to write complex macros which do "automatic'
editing. Although this implementation is modeled after the TECD
in general use, many new commands and features have been added
that make the macro facil ity really powerful and easy to use.
Some of the additions include adding if ••• then •.• else •••
statements, allowing the contents of Q-registers to be used as
quoted strings, allowing numeric and string arguments to be
passed to macros, and allowing macros that reside in files to be
called directly from TECO.

1.1 GENERAL DESCRIPTION

TECO is basically a character oriented editor, whereas
editors like edm and qedx are line oriented editors. In edm and
qedx it is only possible to position the pointer to the beginning
of the line. The pointer is then considered to point at the whole
line. These editors then supply commands (the substitute or
c han g e comma n d) toe d itt he cur r en t 1 i n e . I n T E CDs u c h a
complicated command is unnecessary because the pointer can point
between £nY two characters in the buffer. The fundamental
c h a r act e r 0 r i en ted comma n d s arE' ins e r t , d ~ 1 e t e , sea r c h, and
moving the pointer. With these commands it is very easy to do
what would be compl icated operations in a line oriented editor.
The concept of a line as an important entity is not unknown in
TECD, however. There are many commands that can be 1 ine oriented.
These are the L, T, K, X, and S commands.

TECD reads command lines from the user's console (actually it
reads from the stream "user_input") line by line until a line
ending with "$" is typed. Execution of the complete command
string is started when this last line is read. TECD will type "f"
when it is waiting for a new command string.

MULTICS PROGRAMMERS' MANUAL

Page 2

1.2 ENTERING TECD

TECD may be called from the Multics command level by the
tvlu 1 tic s command:

teco -pathname- TEeD -pathname-

If pathname is specified, TECO automatically reads in the file
by effectively executing the string "EI/pathname/J" upon entry.
If no pathname is specified, the buffer will initially be empty.
To create a new file, one should enter TECO (without specifying a
pathname) and then use the "I" request to insert text.

(See section 3.1.8.4(5»

1.3 EXITING FROM TEeD

One may exit from TECO by typing the EQ command (followed by
.. $" and a n e\"J 1 i n e) •

1.4 TECODEFINITIONS

A. TECO uses four storage areas:
(1) The buffer is the area where text to be edited is examined

and modified. At all times it contains a (possibly null)
character string. There is a pointer into the buffer,
denoting the current position. This pointer does not point
to a character; it points between two characters •. The
pointer may assume any value between 0 and Z, whe're liZ" is
the number of characters currently in the buffer. 0
indicates that the pointer is to the left of the first
character, and Z would represent the position to the right
of the las~ character in the buffer. The value of the
pointer is represented by ".".

(2) Commands to TEeO are written as a character string which
is read into the Command String Area. TECO interprets the
characters in the command string as a series of commands.
Upper and lower case letters may be used interchangeably
in commands.

(3) The O-Registers are locations for storing either numeric
quantities or strings of text for later use. Each
Q-Register is designated by a single character name. There
are 95 Q-Registers, one for each printing ASCII character.
Each Q-Register may contain a positive or negative integer
or a character string.

(4) The O-Pegister pushdown ~ is a last-in-first-out (LIFO)
list which may be used to temporarily store the contents
of a Q-Register. It is cleared (i .e., the contents are
lost) every time one returns to command level, i.e., a "I"
is typed.

MULTICS PROGRAMMERS' MANUAL

Page 3

B. TECO uses numeric expressions for many of its operations.
These may consist of any combination of decimal or octal
numbers, the unary operator "_II, the binary operators "+",
"_", "*", "/", 11111 (boolean or), "&" (boolean and), and
the special valued commands and symbols. All operators are
of equal precedence and expressions are evaluated from
left to right. Note, however, that parentheses may be
used in their normal manner5 Spaces are ignored (except
to terminate decimal numbers). If two numeric quantities
are given with no operator between them, the default
operator "+" is used. Note that a string of digits
followed immediately by a "." is interpreted as an octal
rather than a decimal number. Division using the "/"
operator is integer division, i.e., the remainder is
ignored. The special symbols allowed in an expression at
any point are:

B (~eginning) equivalent to 0
Z equivalent to the number of characters in the

buffe r
(pointer) equivalent to the number of characters
to the left of the pointer, i.e., the current
value of the pointer.

There is another special symbol related to the
symbols above and this is the H (wHole) symbol. This
symbol is equivalent to "O,Z". It is the only symbol in
TECO that has two values. It is useful for referring to
the whole buffer.

Commands which return values may also be used in
expressions, but they may not appear immediatelY to the
right of an operator. This is because the command will
assume that everything to its left is part of one of its
arguments. If a command appears within parentheses, it
will assume that its arguments are entirely between the
last "(" and the command. Therefore a command will not
read parts of an expression wich are outside the
parentheses in which it appears.

The plus and minus binary operators (excluding the
unary minus) assume a right operand of 1 if none is given.

EXAMPLES

Assume that the current value of the pointer is 500.

(1)
(2)
(3)
(4)
(5)
(6)

expression value
(7 12)/3 = 6
9+ = 10
b- = -1

4+8/2
101.

= -1
= 6
= 65

MULTICS PROGRAMMERS' MANUAL

Page 4

(7) 3110 = 11
(S) 1++++ ++ +++ + = 11
(9) 9*-2 = -18
(IO) 9*--2 = IS
{II} .10 = 510
(12) 10. = 8

c. Quoted strings are strings of text del imited by a quoting
character. The quoting character may be ~ character not
contained in the string except a letter or a digit. The
contents of a Q-register may be used as a quoted string if
the letter "q" followed immediately by the letter
specifying the Q-register is typed instead of the first
quoting character.

(See section 3.I.4)

EXAMPLES
(1) "hello"
(2) finiS is a quoted string/
(3) ,This string is delimited by the comma character and

contains 2 new-line characters.
,

(4) qI

1.5 ERROR MESSAGES

TECO types out error messages in one of two modes, long or
short. Short error messages are less than 9 characters long while
long error messages are less than 50 characters long. The default
mode is short. To change the error mode TECO is using, give the
following Multics command:

teco$teco_error_mode long
or teco$teco_error_mode short

If a short error message, such as "I: ?" cannot be
understood, the following Multics command will type out the long
error message:

teco_error "I: ?"

The above holds for all error messages except those
informing the user that a file could not be found.

1.5 IMPLEMENTATION RESTRICTIONS

The maximum number of characters allowed in a Q-register is
262143. The maximum number of characters allowed in a quoted
string is 262143, as is the maximum number of characters in a
TECD command 1 ine. Note that these sizes are all one segment
long. When the Multics segment size changes, these restrictions

NUL TICS PRDGRAfvlMERS' tvlANUAL

Page 5

will also change. The maximum number of items in the pushdown
1 ist is 20. The maximum depth of macro calls is 20. The maximum
depth of parentheses is 20.

1.7 LEARNING TECD

This manual contains three logical sections. In the first
section (Chapter 2) commands are described which:

(1) read and write files
(2) examine text within a file
(3) make deletions and insertions
(4) search for strings of text

Examples of using the commands are given at the end of the
chapter. After reading Chapters 1 and 2 the reader should be
able to use most of the common editing requests.

In the second section (Chapter 3), more sophisticated TECD
commands are described, including use of Q-registers, macros,
iterations, conditionals. The commands 1 isted in chapter 3
transform TECD from just another editor to one of the most
powerful general purpose text editors in existence.

The third section contains a summary of all the TECD
commands in alphabetical order. This is intended to be used as a
reference section.

EJ
Page 6

MULTICS PROGRAMMERS' MANUAL

CHAPTER 2

BASIC TECO COMMANDS

2.1 The most general form of a TECO command would be:

m,nX/string/

where m and n are optional numeric arguments, X is the command to
be executed, and /string/ is a quoted string. In most cases the
command will be just one character, though in some cases it may
be two characters. Not all of the commands take arguments. Those
that do generally have default values for missing arguments.
Only a few commands expect quoted strings. The string must not be
omitted if the command expects one. Some commands also return
values, this will be discussed in Chapter 3.

The letter chosen for a command generally has some mnemonic
meaning, which is indicated in the description of the command.
Unfortunately, TECD has a fairly long history, having originally
been developed for editing paper tapes, and so some of the
mnemonic meanings are almost lost now. As many commands as one
wishes may be typed at a time. Execution of the commands will not
s tar tun til aft e r the .. $ II f 0 1 lowe d by a new 1 i n e c h a r act e r i s
typed. Spaces may be inserted anywhere (except in the middle of
numbers) and newline characters may be inserted anywhere except
between a command and its arguments.

Remember that upper case and lower case letters may be used
interchangeably as commands.

2.1.1 ENTERING TEeO

See sec t ion 1. 2 •

2.1.2 READING A FILE: - EI (~xternal ~nput)

EI/pathname/ reads in the file specified by pathname,
which is assumed to be a standard Multics
pathname. The contents of the file are
inserted in the buffer at the current pointer
position and then the pointer is moved to the
right of the text just inserted.

2.1.3 WRITING A FILE: - EO (~xternal Output)

EO/pathname/ writes the contents of the buffer to the file
specified by pathname. This command takes
a r gum en t s s i mil art 0 the II Til c omm and; i t
writes out that part of the buffer which

MULTICS PROGRAMMERS' MANUAL

Page 7

would be typed by "T". Note, however, that
if .!lQ. arguments are given, liED" assumes "B,Z"
as the de fau 1 t ra the r than "111.

Note: The pointer is never moved by the "EO" command.

2.1.4 TYPING THE BUFFER - T (Type)

T

nT

m,nT

+n

-n

equivalent to "IT"

types out the string of characters beginning
at the current pointer position and
terminating after n newline characters have
been encountered. T types out the rest of the
current 1 ine, and 2T types out the rest of
the current 1 ine and the next 1 ine. The last
character typed by T is a newl ine unless
there aren't that many 1 ines in the file.
types out starting just after the (n+l)th
newline to the left of the pointer and
finishing at the pointer. OT types out the
beginning of the 1 ine up to the current
pointer. Usually two T commands are given at
once, such as OTT, which types out the entire
1 i net he po i n t e r i sin. Hh e nOT i sus e f u 1 ,
the last character it types out is not a
newline. -T types out the previous line and
the beginning of the current 1 ine. If the
pointer is at the beginning of a line, -T
types out the previous line, the newl ine at
the end of that 1 ine, and nothing more.

Types out the (m+l)th through the nth
characters of the buffer.

Note: The pointer is never moved by the "Til command.

2.1.5 MOVING THE POINTER - J (4ump), C (~haracters), R (Reverse),
and L (1.ines)

nJ

nC

nR

Moves the pointer to the right of the nth
character in the buffer, i.e., sets "." to
the value of n. If n is not specified, 0 is
assumed. That is, the pointer is moved to the
left of the first character in the buffer.

Moves the pointer n characters to the right
of its current position (equivalent to .+nJ).
If n is omitted, 1 is assumed.

Like nC except it moves the pointer to the
left (equivalent to -nC). If n is omitted, 1

I teeD I
\ I

Page 8

nl +n

-n

:l

is assumed.

Moves the
after it
cha rac te rs.
moves the
next line.

MUlTICS PROGRAMMERS' MANUAL

pointer to the right, stopping
has passed over n newline
If n is omitted, 1 is assumed. L

pointer to the beginning of the

Moves the pointer to the left, stopping after
it has passed over n+1 newline characters and
then moving it to the right of the last
newl ine character passed over. OL moves the
pointer to the beginning of the current line,
and -l moves the pointer to the beginning of
the previous line.

<See section 3.1.1)

2.1.6 DELETING TEXT - D (Qelete) and K (Kill)

nO

K

+n

-n

m, nK

Deletes n characters. If n is positive the
characters are deleted to the right of the
pointer. If n is negative the characters are
deleted to the left of the pointer. If n is
omitted, 1 is assumed.

Takes arguments 1 ike the "T" command except
that it deletes that text which liT" would
type. The pointer is moved to where the
deletion took place. If no arguments are
specified, "lK" is assumed.
deletes all the characters beginning at the
current pointer position and terminating
after n newline characters have been
encountered. K deletes the rest of the
current line and the newline character at the
end of the line, while 2K deletes the rest of
the current line and the next line.
deletes all the characters starting just
after the (n+1)th newline to the left of the
current pointer and ending at the current
pointer. OK deletes the beginning of the
current line without de.leting the newl ine
character at the end of the previous line. -K
deletes the previous line and the beginning
of the current line. To ensure that only the
previous 1 ine is deleted, the command
sequence tlOl-K" can be used.

Deletes the (m+1)th through the nth
characters of the buffer.

MULTICS PROGRAMMERS' MANUAL

Page 9

2.1.7 INSERTING TEXT - I (~nsert)

I/text/

nl

: I

Inserts the text of the quoted string at the
current pointer position and moves the
pointer to the right of the inserted text.

lnserts the character whose ASCII code value
i s n • I t mo ve 5 the po i n t e r tot her i g h t 0 f
the inserted character.

(See section 3.1.3.2)

2.1.8 SEARCH FOR TEXT - S (~earch)

S/string/

nS/string/

m,nS/string/

:S/string/

equivalent to 1S/string/

Searches for the nth occurrence of the quoted
string. If n is positive the text is searched
from the current pointer through the end of
the buffer for the nth occurrence of the
string. If found, the pointer is set to the
rig h t 0 f the rna t chi n g s t r i n g. 0 the rv!i set he
pointer is not moved and an error message is
typed. If n is negative the text is searched
from the current pointer position to the
beginning of the buffer for the nth
occurrence of the quoted string. The pointer
is set to the left of the matched string. If
the string is not found the pointer is not
moved and an error message is typed out.

Instead of searching the entire buffer for n
occurrences of the quoted string, only m
lines from the current pointer are searched.
If m is positive, the only part of the buffer
that will be searched will be from the
current pointer to just after the mth newl ine
character after the current pointer. If m is
a or negative, the only part of the buffer
that will be searched will be from the
current pointer to just after the (m+1)th
newl ine before the current pointer.
1,lS/text/ will only search the rest of the
current 1 ine. a,-lS/text/ will only search
the beginning of the current line. If m is
less than or equal to a, n must be negative.
If m is greater than zero, n must be
positive.

(See section 3.1.1)

MULTICS PROGRAMMERS' MANUAL

Page 10

2.1.9 TYPING OUT VALUES - = (Equals)

n= m,n= types out the dec ima 1 va 1 ue of a 11 the
arguments separated by spaces and ending with
a newl ine.

2.1.10 LEAVING TEGO - EQ (£xterna1 ~uit)

EQ returns to the caller of TEGO (e.g., Multics
command level)

Note: don't forget to do an EO command before the EQ.

2.1.11 RESTARTING TEGO AFTER A "aUIT"
If one "quits" out of TEGO in order to abort a command

string, one may use the "program_interrupt" (lIpi") command to
restart TEGO. I t wi 11 not abort the ent i re command stri ng; on1 y
those commands which have not yet been executed. The current
command is aborted if the effect of doing so would be identical
to that of not starting the command in the first place. TEGO
keeps track of what it is doing, so that if the sequence:

(quit)
program_interrupt (or "pi")

is given, it will nQ1 abort the current operation if it would
leave TEGO in an inconsistent state. In other words, the sequence
will only interrupt between TECa commands, not in the middle of a
command.

At times it is desirable to get around this feature. When
doing an "EO", for instance, TEGO will not allow the user to "pi"
back to TEC 0 command 1 eve 1 once t he EO has s ta rted un til i t has
completed writing the file. To get around this, one should type:

(quit)
teco$abort .QL TEGO$ABORT

When TECO$ABORT is called, the most recent invocation of
TECO aborts its current operation without checking for
consistency of states. Note that TEGO will be in a consistent
state whenever it actually accesses a file, and so there should
be no problems encountered if this feature is used to get out of
a runaway "E" command. Under other circumstances, however, it is
wise for the user to type:

-5t5t
to make sure that things are OK. Except for the case of a runaway
EO command, this feature is probably totally unnecessary in
normal use.

MULTICS PROGRAMMERS' MANUAL

2.2 STAND-ALONE EXAMPLES

2.2.1 ENTERING ~

a) teco source.p11

b) TECa <x)y)z)a.ec

c) teco

2.2.3 READING A FILE

a) EI/source.p11/

2.2.3 WRITING A FILE

a) EO/new_source.p11/

b) e,zEO/bottom/

c) 2EO/1 ines/

2.2.4 TYPING TEXT

a) 2T

b) OT

c) OTT

d) 25, lOOT

2.2.5 MOVING THE POINTER

a) J

Page 11

enter TECO and read in the file
source.p11 from the working
directory.
enter TEea and read in the file
specified.
enter the buffer initially empty.

Insert the text contained in
source.p11 at the current point in
the buffer.

Write the whole buffer out into
new;....source.pl1.

Write out the buffer from the
current pointer to the end into the
file "bo t tom" •

Write out two 1 ines starting at the
current pointer position to the
fi 1e "1 ines".

Type out from • to the end of the
nex t 1 i ne .

Type out the current 1 ine from its
beginning to tI.".
Type out all of the current 1 ine.

Type out the 25+1 (26th) through
the 100th character of the buffer.

Position the pointer at the
beginning of the buffer.

teco

Page 12

b) ZJ

c) L

d) OL

e) -L

f) R

g) 812-388C

2.2.6 DELETING TEXT

a) 19,22K

b) 19J 3D

c) HK

d) -0

2.2.7 INSERTING TEXT

a) 1/ abc
/

b) I. abc.

c) 65 I

MULTICS PROGRAMMERS' MANUAL

Position the pointer at the end of
the buffer.

Position
beginning
buffe r.

Position
beginning

Position
beginning

Back up
character

Move the

the pointer at the
of the next 1 ine in the

the pointer at the
of the current 1 i ne.

the po inter at the
of the current 1 i ne.

the po i nte r by one
position.

pointer ahead 812-388
(424) character positions.

Delete the 19+1 (20th) through the
22nd character of the file. Set the
pointer to 19.

Move the pointer to the right of
the 19th character and then delete
the next three characters (20-22).

Delete the whole buffer.

Delete the character just to the
left of the pointer.

Ins e r t the 1 i n e "a b c " f 0 1 1 owed
by a new-l ine character at the
current pointer position.

Insert the string "abc" without a
new-line character.

Insert the character with ASCII
code 65 ("A") at the current
pointer position.

MULTICS PROGRAMMERS' MANUAL

2.2.9 TYPING VALUES

a) Z =

b) Z,.=

c) =

d) Q6+53 =

2.2.8 SEARCHING FOR TEXT

a) J S / He 1 1 0/

b) ZJ -S"Hello"

c) J 3S"*
"

d) J 1,lS/hello
/

teco

Page 13

Type out how many characters are in
the buffer.

Type out how many characters are in
the buffer followed by the current
pointer position.

Type just a blank line.

Type out 53 ~ the
contained in Q-register 6.

value

Position the pointer just to the
right of the first occurence of the
string "Hello" in the buffer.

Position the pointer just to the
left of the last occurence of the
string "Hello" in the buffer.

Position the pointer just
the third occurence of a
ending with a "*"

after
1 i ne

Position the pointer just after
the first 1 ine in the buffer if it
ends in "hello". If the first 1 ine
does not end in "hello" type out an
error message.

G=l MULTICS PROGRAMMERS' MANUAL
I I

Page 14

2.3 EXAMPLES DF BASIC EDITING REOUESTS

Note: In the following examples, underlined text is produced by
TECD.

TECO abc.pl1

.ISLT$

dcl a fixed bin;
I.S/a/-DI/b/OLT$

del b fixed bin;
.lS/dcl d/OLKT$

de 1 f fixed b in;
IKI/dcl g char(2);
/$

I.EO/abc.pll/EQ$

Enter TECD and read in the segment
abc.pl1 .
t-1ove to the 6 th 1 i ne and type i't
out.

Change the "a" to a lib" and retype
the line.

Search for the declaration of d and
delete the line that contains it.
Then type out the next line.

Delete this line and then insert a
declaration of g.
Write the edited text out to the
file and then return from TEeD.

MULTICS PROGRAMMERS' MANUAL

CHAPTER 3

ADVANCED TEce COMMANDS

Page 15

3.1 In Chapter 2 the general form of a TEeO command was given.
Some items were left out, however. The actual format is:

m,nXq/stringl//string2/ ••• /stringn/

The q indicates a Q-register on which the command is to act.

It should
given. Although
quoted string,
arguments which
command.

also be noted that more than one string may be
no TECO command currently accepts more than one

a macro may be called with multiple string
may be retrieved inside the macro by the :X

In Chapter 1 we specified that expressions may be built from
numbers, special valued commands and symbols. Examples of valued
commands will be given in Chapter 3. Care should be taken to
notice that commands with values may appear only on the left side
of the first operator, or within parentheses. Otherwise the part
of the expression preceding the command will be considered an
argument to the command.

3.1.1 The effect of many commands may have their function
changed by preceding the command with a 1t:1t. The colon has no
fixed meaning - it is defined for each command individually. The
following commands given earlier may be used as follows.

:Iq/string/ or n:lq like the I command except that the specified
string is inserted into Q-register q. The
former contents of Q-register q are lost.

n:L Equivalent to nLR. Thus TECe moves to the end
of the 1 ine rather than the beginning.

:S/string/, n:S/string/, or m,n:S/string/ 1 ike S except that it

:T/string/

:vw

:x

returns a value. The value is 0 if the search
fai 1 sand -1 if it succeeds. Even if the
search fails, TECO continues execution.

types the specified string on the user's
console.

(See section 3.1.10)

(See section 3.1.8.3)

teco MULTICS PROGRAMMERS' MANUAL

Page 16

3.1.2 Numeric Q-Registers

Q-Registers may be used, as mentioned in section 1.4, to
hold numeric values. These values may be used in expressions
which are arguments to other commands.

3.1.2.1 SAVING A VALUE - U (Qpdate (or what comes after Q?»

Uq

nUq

m,nUq

sets Q-register q to a very large positive
numbe r.

sets Q-register q to n.

sets Q-register q to n and returns m as its
value.

3.1.2.2 READING Q-REGISTERS
uQit))

Q (~-Register (Don't ask me why

Qq

3.1.2.3
mnemonic)

Return the number stored in Q-register q as
the value. Note that Q is not really a
command - it is a special symbol (as in
section 1.4.2). Thus, in the expression
"5+Q3" the "5+" is .D..Q1. considered an argument
to Q; the result is the sum of Q3 and 5. Note
if Q-register q contains text, the length of
the text in characters is returned.

INCREMENTING Q-REGISTERS % (You figure out the

Add 1 to Q-register q and return the new
number as the value. Q-register q may not
contain text. Note that ~~, 1 ike Q, is a
special symbol, not a command.

3.1.3 Text Q-Registers

Q-Registers may also be used to hold character strings. They
may be used to move text from one place in the buffer to another,
to save command 1 ines for execution as macros, or to provide
quoted strings for commands which expect them.

3.1.3.1 EXTRACTING TEXT TO A Q-REGISTER - X (eXtract)

Xq takes arguments 1 ike the tiT II command, but
copies the text that T would type into
Q-register q. The former contents of
Q-register q are deleted. The text is not

MULTICS PROGRAMMERS' MANUAL

nXq +n

-n

m,nXq

:X

Page 17

deleted from the buffer and the current
pointer is not moved.

copies all the text from the current pointer
to just past the nth newl ine character to the
right of the pointer into Q-register q. Xl
copies the rest of the current line including
the newline at the end of the line into
Q-register 1. 2Xa copies the text on the rest
of the current 1 ine and all of the next line
in to Q-reg i ster Ita ll

•

copies all the text from just to the right of
the (n+l)th newline that is to the left of
the current pointer to the current pointer
into Q-register q. OX/ copies the beginning
of the current 1 ine into Q-register "/". No
newl jne characters wi 11 be put - into
Q-register II/". -Xa puts the previous line
and the beginning of the current line into
Q- reg i s te r "a".

copies character number (m+l) through
character number n into Q-register q.

(See section 3.1.8.3)

3.1.3.2 INSERTING TEXT DIRECTLY INTO A Q-REGISTER - :1 llnsert)

: Iq/string/

n: I q

This command is identical to the normal "I"
command except that the text is inserted into
Q-register q rather than the buffer. The
former contents of Q-register q are deleted.
The main text buffer is not affected.

is 1 ike :1 except that it puts the character
corresponding to n into the Q-register q.

3.1.3.3 GETTING TEXT FROM A Q-REGISTER - G (Get)

Gq inserts the text contained in Q-register q
into the buffer to the left of the current
pointer. If the Q-register contains a number,
the decimal representation of the number is
inserted.

3.1.4 Obtaining quoted strings from Q-registers.

\>Jheneve r TEce expec ts a quo ted s t ring, i t
indicate that the string is in a Q-register.

is possible to
'Normally letters

R MULTICS PROGRAMMERS' MANUAL

Page 18

and digits are considered illegal quoting characters. If,
however, the letter "QIt is found \'Jhere a quoted string is
expected, the next character after the Q will be considered a
Q-register name. Whenever a quoted string is retrieved by any
command, it is loaded into Q-register ". As an example, SQ"

- immediately after another search will search again for the same
string. This notation is illegal if the specified Q-register
contains a number.

3.1.5 The Q-register pushdown stack.

There is one Q-register pushdown stack (not one per
Q-register) in which the values of Q-registers may be saved. It
is organized as a pushdown (Last-In, First-Out) list. It is
emptied every time TECO waits for a new command string, i.e., a
"Ii" is typed.

3.1.5.1 PUSHING A VALUE ONTO THE STACK - ((opposite of J)

(q pushes the current value of Q-register q onto
the top of the stack. The Q-register is not
affected.

3.1.5.2 POPPING A VALUE FROM THE STACK -] (opposite of [)

]q

3.1.£ Loops

pops the top value on the stack into
Q-register q. The previous contents of the
Q-register are lost. It is an error to do a
"J" command if the stack is empty.

TECD has the ability to execute a command string repeatediy,
much as Fortran or PL/1 provides "do-loopsll.

3.1.6.1 BEGINNING A LOOP - < and> (opposite of each other)

<

n<

>

is equivalent to n< except that n is set to a
very big number which is for all practical
purposes infinite.

causes TECO to take note of the fact that a
loop is beginning. Ine value of n and the
position of the "<" in the command string are
saved.

causes execution to return to just after < if
the string has not yet been executed n times.

MULTICS PROGRAMMERS· MANUAL teco

n < ••• >

Page 19

this causes the string between the angle
brackets to be executed n times.

3.1.6.2 TERMINATING A LOOP BEFORE n EXECUTIONS -; (think about
it)

n;

3.1.7 Goto's

if n is less than 0 then nothing is done.
Otherwise execution of the current loop is
aborted and TECO skips to just after the
closing >. If n is not specified, the result
of the most recent S command is used
(term ina tel 00 p i f sea r c h fa i 1 e d) . The;
command may not appear outside of a loop.

TECO provides the abil ity to transfer control to a different
part of the command string.

3.1.7.1 GOTO - 0 (gOto)

O/string/

3 • 1. 8 ,.,la c ro s

causes TECD to search the current macro (or,
if we are not in a macro, the command 1 ine)
for the string U!string!". If it is found,
TEeD begins interpreting commands just after
the label found. If not found, but execution
i s cur r e n t 1 yin a ma c r 0 , the sea r chi s
repeated in the previous execution level,
i.e., the caller of the macro. This is
repeated unt i 1 TECO has checked all the way
down to the command line typed by the user.
Note that although TECD may exit a macro
using an 0 command, it may not use that
command to exit a loop. Only ";" may be used
to terminate a loop.

TECO has the abil ity to execute strings of text (macros)
other than those read from the user·s console. The associated
commands are:

3.1.8.1 EXECUTING A MACRO IN A Q-REGISTER - M (Macro)

Mq causes the contents of Q-register q to be
executed as a command string. Note that if
the M command is given any numeric arguments
they are passed to the first command inside
the macro. String arguments may be fetched

teco MULTICS PROGRAMMERS' MANUAL

Page 20

by the :X command.

3~1.8.2 EXECUTING A MACRO IN A FILE - EM (External Macro)

E t·U s t r i n g / is just like the M command except that the
command string is found in a file named
"string.teco". This file is looked for in
three places: 1) the working directory, 2)
the user's login directory, 3) the TECO
1 ibrary. TECO$teco_ssd is a command that
takes a single argument, an absolute pathname
for a search directory, and changes the TECO
search rules so that instead of searching the
user's login directory, the search directory
specified is searched. TECO$teco_search is an
external subroutine (See section 3.1.16) that
follows the same search rules used to find a
macro.

3.1.8.3 OBTAINING A STRING ARGUMENT TO A MACRO

: Xq causes TECO to suspend execution of the
current macro, return to its caller to fetch
a quoted string into Q-register q, and then
restore the macro that was being executed.
Note that each :X command in a macro fetches
another quoted string. Note that the U
command(s) should be the first command in a
macro if one wishes to fetch numeric
arguments in a macro.

3.1.8.4 A few notes about macros:

1) Loops may not cross macro boundaries, i.e., a loop may
not start in one macro and end in another. This does
not, however, prohibit the M command from being used
within a loop.

2) A macro may modify itself if it is in a Q-register.
Note, however, that the current invocation of the macro
will not be affected; only future accesses to the
Q-register. If the macro is invoked by the E~1 command,
the results of modifying the file are hard to predict:
TEeo reads the command string directly from the fiie.

3) When a macro is invoked by the EM command it should be
noted that the name of the macro will be found in the
Q-register named ". Thus one can put several macros in
one segment with the first command in the segment being
DQ". (Do,,'t forget to put all the appropriate names on

MULTICS PROGRAMMERS' MANUAL

Page 21

the segment.)

4) I f an M or Et'-'l command is given as the 1 ast command in
one macro, the command is interpreted as a goto rather
than a call. Thus one may do unl imited M's in this
manner although there is an implementation-defined
1 imit to the depth of calls.

5) When TECO is entered, a macro named "start_up" is
searched for. If it is found, the arguments to TECO are
put onto the pushdown stack and the start_up macro is
executed. If no start_up macro is found, the string
IIEI/filename/J" is executed, where filename is the
first argument to TECO. At the present time there is a
start_up macro in the TECO library. When the start_up
macro is called, the first thing on the pushdown 1 ist
is the number of arguments TECO was called with. The
r e ma i n i n g i t ems i nth eli s tar e the act u a 1 s t r i n g
arguments to TECO going from left to right on the
command line.

3.1.8.5 CODING CONVENTIONS FOR MACROS

Since there are only a small number of Q-registers (95),
each with a one character name, there are serious problems in
writing a set of macros that are compatible. A set of macros
become incompatible if one macro uses a Q-register for long-term
storage that any other macro uses at all. There are two ways
this effect can be combated. First, by establ ishing certain
coding conventions, and second, by use of a documented macro
1 ibrary. Probably the most important coding convention is the
specification of which Q-registers may be used inside a macro for
temporary storage. Many macro writers now use the ten Q-registers
1,2,3,4,5,6,7,8,9, and 0 for temporary storage. If one macro
wants to call another macro that will clobber one of these
registers, the call ing macro may save the value of the Q-register
in the pushdown 1 ist and then restore it after the other macro
has been called.

Fortunately, call ing a macro is a very inexpensive operation
in TECO if the macro is in a Q-register. The EM command is much
more expensive, however. This leads to the practice of creating a
macro in a macro 1 ibrary that will only load a Q-register with a
useful macro. When the user real izes that he wants the macro, he
gives the E~l command that ltd 11 load the macro he wants into a
Q-register, where he may then call it whenever he vJishes. It now
becomes necessary to have coding conventions that specify which
registers may be loaded permanently w:th macros. Since it should
be easy to type the macro names, the lower case alphabetic
letters should be used for this purpose. Sometimes a macro will
use a Q-register for long-term storage. If the user wi 11 not have

Q
I
I

Page 22

~lUL TICS PRDGRAf,H.1ERS' t·1ANUAL

to type the name of this Q-register, names that must be escaped
on a 2741 are good, otherwise other special characters may be
used. This leaves the upper case alphabetic letters entirely to
the user for him to use to store intermediate results in editing.
Also the special characters "_", ",", ".", "/", space, tab, and
newl ine should be reserved for the user since these are all lower
case letters on both a 2741 and a Model 37 teletype.

An extremely useful feature of TECD is that the last quoted
string is loaded into Q-register If. To allow this to continue to
be useful, all macros should make sure that Q-register .. either
contains the last quoted string argument to the macro, if there
are any, or contains what it contained before the macro was
called. Q-register .. can be saved on the pushdown 1 ist on entry
to a macro and then restored just before leaving the macro. Use
of the pushdown list is very inexpensive.

3.1.8.6 RELATIVE CDSTS IN TECD

TECD stores the buffer in two pieces. The first piece, all
the characters from the beginning of the buffer to the current
pointer, is stored at the beginning of one buffer segment, while
the second piece, all the characters from the current pointer to
the end of the buffer, is stored at the ~nd of another buffer
segment. An insert merely adds text to the end of the first
buffer segment and increases the number of legitimate characters
in the first buffer segment. A 0 or X command merely changes the
number of legitimate characters in one of the buffer segments. In
order to move the pointer, a string copy from one buffer segment
to the other must be performed. It does not matter to TECe which
direction the pointer is moved, although a reverse search is
somewhat slower than a forward search, since the Pl1 index
built-in function Lan only be used for a forward search.

Any ope ra t ion tiia t does not move tex tis 1 ess expen s i ve than
an operation that does move text, where the cost of the operation
that does move text is proportional to the amount of text moved.
For the most part, performing input or output is the major cost
involved in editing. This cost can be decreased by using more
sophisticated commands, such as loops or macros, and performing
the same editing operation with fewer interactions. The cost of
i/o operations is comparable to a medium length search (5,000
characters).

Each text Q-register is presently kept in its own segment.
This means that if a start_up macro loads many Q-registers with
macros, then entering TECD for the first time in a process will
be somewhat slow since all these segments must be created. TEee
has its own segment manager (get_temp_seg_), that allows it to
re-use segments without calling hardcore to create and delete
segrnents when the values of Q-registers are changed. vJhenever a

MULTICS PROGRAMMERS' MANUAL teco

Page 23

string is quoted, or a Q-register loaded with text, a new segment
is retrieved from get_temp_seg_ and loaded with the value. If the
string that is being loaded into the Q-register is in another
Q-register, the new Q-register is just made to point to the same
copy of the text in the first Q-register. :IAQB is therefore a
very simple operation, as are [(Push) and] (Pop). The feature
of keeping the last quoted string in Q-register II lets the user
take advantage of this scheme.

If the user wants to write a macro that must do some editing
on another file, it is much cheaper if he saves the value of .
and Z-., inserts the text to be edited, edits it, writes it out
or copies it into a Q-register, and then deletes what he was just
editing from the buffer. The net change to the buffer by all
these operations is zero, but the text that the user was editing
was never moved. This method is much cheaper than storing the
entire buffer in one Q-register, the value of the pointer in
another, and then using the buffer for the editing within the
macro.

There are four ways to transfer control in TECD, by the >
command, the ; command, the II or :' command, and the 0 command.
Of these the> command is the fastest since TECD already knows
exactly where to transfer to. The ;, .. , and :' commands are next,
since they merely search from where they are forward. Although
the > command and the; command cannot change macro levels, the
", and :' commands can. This adds a small expense. The ;, ", and
:' commands all have to check so that a ; command will
completely skip over another nested loop and look beyond it for a
> • S i mil a r 1 y the II t ran s fer w ill ski p 0 v ern est e d i f s tat erne n t s ,
as will the :' command. Usually the matching' or > is not far
from the transfer, so this only causes a short search. D is the
most general and most expensive transfer of control in TECD. It
must search the entire macro from the beginning, then the entire
rna c rot hat calle d the pre sen t mac r 0 , etc. un til i t fin d sit 0 r
finishes searching the command 1 ine and gives an error. Although
t his i s the mo s t ex pen s i vet ran sf e r , its cos tis pro po r t ion a 1 to
the distance of the label from the beginning of the macro.

3.1.9 Conditionals

TECD has the abil ity to conditionally execute strings. The II

command corresponds to the PL/1 statement "if •.• then do;" The'
command corresponds to the PL/1 statement "end;". II and I are
matched much like (and) and may be n~sted. The letter following
the II determines what test will be made.

3.1.9.1 NUMERIC COMPARISONS
(Greater than),IIL (less than)

liE (.E.quals), "N (liot equal), "G

teco

Page 24

m, n liE

nilE

m, n liN

n liN

m, n "G

n "G

m, n "l

n "l

tv1UL TICS PROGRArv1~lERS' MANUAL

if m=n then execution continues; otherwise
execution skips to just after the
corresponding '.

ide n t i cal to n, 0" E •

like m,n"E except it tests for m~=n.

identical to n,O"N.

like m,n"E except it tests for m>n.

identical to n,O"G.

like m,n"E except it tests for m<n.

identical to n,O"L.

3.1.9.2 TESTING FOR A SYMBOL CONSTITUENT lie {symbol
~on s tit uen t)

n ftC if n is the ASCII code for either a letter, a
digit or one of the characters ".", "_tl, or
"$" then execution continues; otherwise
execution skips to the corresponding'

3.1.9.3 TERMINATING A CONDITIONAL DO - I (matches ")

. , .

is ignored when executed in normal execution.
It is used to close a conditional statement •

This command causes a transfer to the next "
ust as a life does. Since this command looks

i ike a I, it can serve to close a conditional
s tat e me n t • T his i sus e f u 1 i fan if... the n
••• else ••• statement is desired. The if
expression is a " statement, the then
expression is terminated by the :' command
and the else expression is terminated by the
I command.

3.1.10 Reading input from the user's console. - VW (V then Wait
for input)

VW does a V command (presently does nothing on
Multics) and then reads one character from
the user's console. The ASCI I value of the
character is returned as the value of the
command. Note that r,lul tics escape/ki 11

MULTICS PROGRAMMERS' MANUAL

:VWq

Page 25

processing is not effected because only one
character is read at a time.

does a V command and then reads one 1 ine from
the user's console. The 1 ine is put into
Q-register q. The newline is the last
character read in.

3.1.11 Passing a command to the command processor - EC (Ixternal
.c.ommand)

EC/string/ passes the specified string to the Multics
command processor for execution.

3.1.12 Examining a character in the buffer - A (Ascii)

nA The ASCI I code for the (.+n)th character in
the buffer is returned as the value of the
command. n must be specified. (Note that 1
indicates the character just to the right of
the current pointer, 0 indicates the
character just to the left.)

3.1.13 Tracing command execution - ? (Asking what happens)

?

??

turns tracing on. When tracing is on, each
command executed by TECO is printed on the
user's console just before it is executed.

turns off tracing.

3.1.14 Translating numbers to ASCII and vice versa
figure it out)

¢ (You

¢

n¢

m,n¢

reads the decimal number found to the right
of the current pointer and returns its value
as the value of the command. The pointer is
moved to the right of the number. The number
may be signed and may be preceeded by any
n urn be r 0 f b 1 an k s 0 r tab s. I tis an err 0 r i f
no number is found.

inserts the decimal interpretation of n into
the buffer to the left of the current
po i n te r.

inserts the decimal interpretation of minto
the buffer to the left of the current

I teeD I

Page 26

MULTICS PROCRAMMERS' MANUAL

pointer. The interpretation is padded on the
left to be at least n characters wide.

3.1.15 Null command - W (Wipe out?)

does nothing. It is most useful for throwing
away unneeded numeric arguments.

new_l i ne has the same effect as W.

$ has the same effect as W.

3.1.16 Subroutines

TECO has the ability to communicate with programs written by
users on '.1ultics. In particular, TECD macros can get information
from programs written to interface with those macros.

3.1.16.1 CALLING A SUBROUTINE - ES (~xternal ~ubroutine)

m,nESq/prog_name/ pro&-name is a relative pathname of a segment
with an optional entry point name. The search
rules are used to find the segment. The entry
point specified is called in the following
way: dcl prog_name ext entry(char(*)
aligned, fixed bin, fixed bin, fixed bin);
call prog_name (~register, m, n, value); q
must be a text Q-register. prog_name will be
called with the ~register as the first
a r g ume n t • 1ft his s t r i n g i s c han g ed, the
~register will be changed. This command has
a numeric value that can be set by changing
the fourth argument to prog_name~ This is
i nit i ali zed to z e r 0 • 1ft h e ESc omma n dis
called with one numeric argument, it will be
passed as the second argument to prog_name
and the third argument will be a very large
positive number. If no numeric arguments are
given to ES, both the second and third
arguments to prog_name will be very large
positive numbers.

3.1l 6.2 A few notes about subroutines:

1) TECO$teco_search is an external subroutine that can be
use d ~ Itt a k e s a Q - reg i s t e r t hat con t a ins the n a me of
an external macro followed by a blank followed by
enough characters to hold an absolute pathname in the
whole register. TECD$teco_search searches for the macro
(it adds ".teco" to the name) using the TECD search

MULTICS PROGRAMMERS' MANUAL

Page 27

rules. If it is not found it returns with the value O.
If it is found, it changes the Q-register to hold an
absolute pathname to the macro followed by enough
blanks to fill up the Q-register, as long as it is not
longer than 256 characters. The value returned is the
number of non-blank characters at the beginning of the
Q-register.

2) TECO$teco_no_ES is an entry point in TECO that is very
similar to the main entry point of TECO, except the ES
command is not an implemented feature of
TECO$teco_no_ES. This entry point is meant to be used
by subsystems that cannot allow a user to make a call
to an arbitrary procedure.

\ teco MULTICS PROGRAMMERS' MANUAL

Page 28

3.2 EXAMPLES OF MACROS

3.2.1 A WRITING MACRO

This macro writes out the entire buffer into a file whose
name is in Q-register *. The file being edited can be changed
merely by doing :i*/new_namel.

EOQ* This macro assumes that the name of the file
we are editing is in Q-register *. It writes
out the entire buffer into this file.

3.2.2 A RESTART MACRO

This macro zeroes out the buffer, changes Q-register * to be
a new file name and reads the file into the buffer.

:x* hk eiq*j

:X*

HK

This macro takes one string argument and
loads it into Q-register *.

Since we are restarting the editing, we
delete all the text in the current buffer.

We now read the new file into the buffer and
put the pointer at the beginning of the
buffer.

3.2.3 A START UP MACRO

This macro only uses the first argument to TECO. It treats
it as a file name, loads it into Q-register * and reads the file
into the buffer. It also loads the writing macro into Q-register
w.

Jl :iwleoq*1 ql"n J* eiq*j ,

Jl

:iwleoq*1

q 1 "n

Pop the top item off the pushdown list and
put it into Q-register 1. This will be the
number of arguments TECD was called with.

Load Q-register w with the writing macro
given in Example 3.2.1.

If the contents of Q-register 1 are not zero,
then execute the following statements,
otherwise transfer to the ' that ends the
macro.

MULTICS PROGRAMMERS' MANUAL

Page 29

Pop the first argument to TECD off the
pushdown 1 ist and into Q-register *.

Read the file into the buffer and move the
pointer to the beginning of the buffer.

This point is transferred to if there are no
arguments given to TECD.

3.2.4 A SUBSTITUTE MACRO

This macro takes two string arguments. The first string
argument is searched for, then it is deleted and the second
string inserted.

:xl :x2 sql -qld g2

:xl

:x2

sql

-qld

g2

Load the first string
Q-register 1.

Load the second string
Q-register 2.

Search for the first string.

Delete the first string when

Replace the string found
strjng argument.

argument into

argument into

i t i s found.

wi th the second

When the macro returns, Q-registers 1 and 2 contain the
first and second strings, respectively. Q-register II contains the
second quoted string.

I teco r'lUl TICS PROGRA~1~1E RS' ",1ANUAl
I

Page 30

CHAPTER 4

A TECD SUf'.1MARY

NA~1E tvlNEf·10N I C SECT I ON ~ EXPLANATION

a

b

c

d

Asc i i 3.1.12

lleginning 1.4B

~haracters 2.1.5

nA The value of the command is the ASCII
code for the (.+n)th character in the
buffer.

B The value of this symbol is always
zero.

nC Moves the pointer n characters to the
rig h t • I f n i s om itt ed, 1 i s ass ume d •

Qelete 2.1.6 0 deletes the one character to the right
of the pointer.

+nD deletes n characters to the right of
the po i n t e r •

-nO deletes n characters to the left of
the po inter.

ec ~xternal £ommand 3.1.11 EC/command/ passes the string to the
Multics command processor.

ei ~xternal input 2.1.2 EI/file/ reads the file into the buffer
to the left of the current pointer.

em Ixternal Macro 3~ ~8.2 EM/macro_name/ searches for the file
"mac ro_name. teco", fir s tin the
working directory, then the login
directory, then the TECD 1 ibrary. If
found; it executes it as a macro.

eo Ixternal Qutput 2.1.3 EO/file_name/ writes out the entire
buffer into the file specified.

+nEO/file_name/ writes out the next n lines.
(0 or-n)ED/file_name/ writes out the last n lines.

m,nEO/file_name/ writes out the (m+1)th through the nth
characters.

eq Ixternal Quit 2.1.10 EQ TECD returns to its caller after
zeroing out all Q-registers.

es lxternal ~ubroutine 3.1.16 m,nESq/prog_name/ Calls subroutine
progname with arguments Q-register q,
m, n, value. The numeric value of the
command is set by prog_name and the
contents of Q-register q may also be
changed.

MULTICS PROGRAMMERS' MANUAL I teco !

Page 31

NA~11E fv1NEMONIC SECTION USE EXPLANATION

g Get Q-register 3.1.3.3 Gq inserts the text contained in
Q-register q into the buffer to the
left of the pointer. If Q-register q
contains a number, it is converted to

h

.
: I

J

a character string and inserted.

wHole 1.48 H This symbol is equivalent to O,Z It
is the only symbol that has two
values.

~nsert 2.1.7 I/string/ inserts the quoted string to the left
of the pointer.

.!:Lump

nl n is the ASCI I code for a letter that
is inserted.

3.1.3.2 :Iq/string/ inserts the quoted string into
Q-register q.

2.1.5

n:lq inserts the single character whose
code is n into register q.

nJ moves the pointer to the right of the
nth character in the buffer. If n is
omitted, 0 is assumed.

k Kill buffer 2.1.6 K deletes the rest of the current line

.hi ne s

: 1

m Macro

from the buffer.
+nK deletes the next n lines from the

buffer.
(Oor-n)K deletes the last n lines from the

buffer.
m,nK deletes the (m+1)th through the nth

2.1.5 L

+nL

(0 or-n)L

3.1.1 :L

+n:L

(0 or-n):L

characters from the buffer.

moves the pointer to the beginning of
the next line.
moves the pointer to the beginning of
the next nth line.
moves the pointer to the beginning of
the last nth 1 ine.

moves the pointer to
current 1 ine.
moves the pointer to
next (n-1)th line.
moves the pointer to
last (n+1)th line.

the

the

the

end

end

end

of the

of the

of the

3.1.8.1 m,nMq/string1//string2/ ••• /stringn/ starts
executing the text in Q-register q as
a macro. m and n are numeric

J

teco MULTICS PROGRAMMERS' MANUAL

Page 32

NA~1E ',1NEMON I C SECT I ON .!J..§..E. EXPLANATION

arguments to the first command in the
macro. string1 through stringn are
string arguments to the macro that can
be retrieved with the :X command. EM
also takes all these arguments.

o gOto 3.1.7.1 o/label/ transfers control to just after !label!
in the current macro, its caller,
etc., or the command string •

q .Q.-register 1.4C

r Reverse 2.1.5

Qq the value of this command is the value
of Q-register q if it is a numeric
Q-register or the number of characters
in Q-register q if it contains text.
This command can also replace any
quoted string if Q-register q contains
text~ The contents of the Q-register
are used as the quoted string. (See
also sections 3.1.2.2 and 3.1.4)

R moves the pointer one character to the
left.

nR moves the pointer n characters to the
left.

s ~earch 2.1.8 S/string/ searches from the current pointer to
the end of the buffer for "string", if
found it moves the pointer to the
right of the string.

+nS/string/ searches for n occurrences of the
string. Moves the pointer to the right
of the nth occurrence.

-nS/string/ searches for n occurrences of "string"
from the current pointer to the
beginning of the file. If found, it
moves the pointer to the left of the
nth occurrence.

+m,+nS/string/ only searches from the current pointer
to the beginning of the next mth line.

(0 or-m),-nS/string/ only searches from the current pointer
to the beginning of the last mth line.

:s 3.1.1 Takes arguments in all the ways S
does, except that if S does not find
the string it types out an error
message and returns to TECO command
level. :S does not. Instead, :S has
the value -1 if the search succeeds
and 0 if the search fails.

MULTICS PROGRAMMERS' MANUAL I teco ;
i '

Page 33

NAMf MNEMONIC SECTION ~ EXPLANATION

t 2.1.4 T

+nT

(0 or-n)T

m,nT

Type out the rest of the current 1 ine
on the console.
Type out the buffer from the current
pointer to the beginning of the next
nth line.
Type out the buffer from the beginning
of the last nth line to the current
po in te r.
Type out the (m+1)th through the nth
characters of the buffer.

:t 3.1.1 :T/string/ Type out the quoted string on the

u

vw

:vw

w

conso 1 e •

.!lpdate 3.1.2.1 Uq sets Q-register q to a very large
positive number.

Vie ~'J 3.1.10

3.1.10

tAli pe ou t 3.1.15

nUq
m,nUq

sets Q-register q to n.
sets Q-register q to n and returns m
as its value. This may be used inside
a macro to get the numeric arguments
to the macro.

V~J When th i s command is execu ted, one
character is read from the console.
The ASCI I code for the character read
is the value of the VW command.

: VtAJq Reads i n an ent i re 1 i ne from the
console and puts i t into Q-register q.
The newl ine i s the last character i n
the reg is te r.

~'J This command does nothing. I t i s used
for throwing away unwanted numeric
arguments.

x eXtract from buffer 3.1.3.1 Xq loads the rest of the current
line into Q-register q.

:x

+nXq loads Q-register q with everything
from the current pointer to the
beginning of the next nth 1 ine.

(0 or-n)Xq loads Q-register q with everything
from the beginning of the last nth
line to the current pointer.

3.1.8.3

m,nXq load Q-register q with everything from

:Xq

the (m+1) character to the nth
character.

loads
string

Q-register q with the next
argument to the macro we are

: teeo I MULTICS PROGRAMMERS' MANUAL

Page 34

NAr .. 1E MNEr,,10N I C SECT I ON ~ EXPLANATION

executing in.

z Last Letter 1.4B Z This symbol's value is the total
number of characters in the buffer. ZJ
will move the pointer to the right of
the last character in the buffer.

% Increment 3.1.2.3

$ 3.1.15

%q If Q-register
value, this
register by
command is
Q-register.

q contains a numeric
command increments the
1. The value of the
the new value of the

$ Throws away its arguments and does
nothing.

newl i ne 3.1.15 newl ine Throws away its arguments and does
nothing.

? Whats happening? 3.1.13 ? Turns tracing on.

?? 3.1.13 ?? Turns tracjng off.

¢ Number-character 3.1.14 ¢ the value of this command is the
decimal number immediately to the
right of the poi nter. I t moves the
pointer to just after the number.

[Push

j Pop

n¢ inserts the decimal representation of
n to the left of the pointer.

m,n¢ inserts the decimal representation of
m to the left of the pointer. The
representation is padded on the left
to be at least n characters wide.

3.1.5.1 [q

3.1.5.2 Jq

Pushes the contents of Q-regi~ter q
onto the pushdown list.

Pops the top element off the pushdown
list and into Q-register q.

< Begin a loop 3.1.6.1 < This marks the place in the command
string that will be transferred to by
the> command. This loop can only be
exited by the; command.

+n< This loop will only execute n times.
It may be exited by the; command.

> End a loop 3.1.6.1 > Transfer control to just after the
last < command executed and decrement
the loop coun t. I f we have looped

MULTICS PROGRAMMERS' MANUAL teco

Page 35

NAM& MNEMONIC SECTION USE EXPLANATION

enough times, this command does
nothing. Nested loops are allowed.

; Terminate if positive 3.1.6.2; If the last :S command was
unsuccessful, transfer to just after
the next> and exit the present loop,
otherwise do nothing.

n; If n is positive, transfer control to
just after the next> command and exit
the present loop, otherwise do
nothing.

"C If Symbol ,C.onstituent 3.1.9.2 nfle if n is the ASCI I code for
e i the r ale t t e r, a dig it, '1. II , 1._ II, 0 r
n$", do nothing, otherwise transfer to
just after the next '.

lie If .,E.qual 31 :.9.1 m,n"E If m=n then do nothing otherwise go to
just after the next '

nilE if n=O

fig If Greater 3.1.9.1 m,n"G if m>n.
n "G if n> O.

"1 If 1.ess than 3.1.9.1 m,n"L if m<n.
n"L if n<O.

lin If Not equal 3.1.9.1 m,n"N if m =n.
nflN if n =O.

• f .

Matches II 3.1.9.3 marks the location a II command may
t ransfe r to. I f executed as a command,
it does nothing •

3.1.9.3 : I marks the location a II command may
transfer to. If executed as a command,
it transfers to just after the next t.

If statements may be nested, but"
characters in the command string are
only matched with one I character.
(See section 3.1.9)

o gOto 3.1.7.1 ollabell transfers control to just after !label!

Label 3.1.7.1 !label! This entire construct is ignored if it
is executed.

Pointer 1.4B The value of this command is the value
of the current pointer.

B MULTICS PROGRAMMERS' MANUAL

Page 36

NAME fvlNE~10N I C SECT ION USE EXPLANATION

= Equals 2.1.9 = types out a newT ine.
n= types out n on the consoTe fo 11 owed by

a new1 ine.
m,n= types out m fo 1T owed by a space,

fo 11 owed by n, followed by a newline.

Note: For descriptions of operators in numeric
expressions see section 1.4B

(END)

MULTICS PROGRAMMERS' MANUAL

Name: xpl

Command
Author-Maintained Library

J. M. Broughton
Room 39-200, Ext. 3-7788

2/25/74

The xpl command invokes the XPL compiler to translate an ASCII
source segment into a Multics object segment. The segment will be
placed in the user's current working directory, as will any listing
segments produced. In general, this command behaves like standard
system translators.

xpl pathname -optionl- ••• -option~-

1) pathname

2) option!

-source, -sc

-symbols, -sb

-map

-list, -Is

-execute, -ex

is the relative pathname of the 'segment to be
compiled. A suffix of n. xp l51 will be assumed
for the source segment if it does not appear.

may be selected from the following list of op
tions:

produces a line-numbered printable ASCII
listing of the program. The default is
no listing.

gives a listing of the source as above,
and all the names declared in the program
with their attributes. The default is no
symbols.

provides a listing of the source and sym
bols followed by a map of the object code
generated. The default is no map.

yields all of the above information, plus
an assembly-like listing of the compiled
code. The default is no list.

allows the program to be executed despite
severe errors detected during compilation.
The default is to suppress execution.

-libraryl, -libl causes the program to be compiled using a
null string compaction routine. This is
the default.

Page 2

-library2, -lib2

-times

The XPL Language

MULTICS PROGRAt.'-1::·1ERS I HANUAL

causes the program to be compiled using a
real string compaction routine. This mode
should be used by programs doing a large
amount of string manipulation.

prints on the stream user output information
regarding the time used by various phases of
the compiler.

The XPL language was developed at Stanford University as part of
a translator writing system. It is a simple dialect of PL/l support
ing only automatic variables; all data types, except floating, are
supported. Strings are implicitly varying, and arithmetic elements
are of fixed scale and precision. It has certain features not found
in PL/l, for instance, a limited macro facility, and built-in func
tions for performing shifts on full words. The best reference for
the XPL language is found in ~ Compiler Generator by McKeeman, Hor
ning, and vlortman (Prentice-Hall, 1970), Chapter 6.

Notes on the Multics Implementation

References to the functions input(i) and output(i) are used to
do I/O. These functions cause data to be read or written on the
streams xpl input i and xpl output i. The streams for i = 0 are
special-cased and-rhe input-comes from the stream user input and out
put is directed to the stream user output. The stream~xpl output 1
is by default attached to error output. To use any other stream,
it must first be attached to a device by an appropriate ioeal1.

References to the function file(i) may be used to move large
blocks (one record, 1024 words) of data to and from files. The files
written or read are xpl file i. By default, these files will be cre
ated in the process directory; to use a permanent file, one should
put a link in his process directory to the desired file.

All XPL programs on Multics are subject to certain restrictions:
they cannot be bound, and they cannot be called recursively. In the
former case, the binder will refuse to bind them, and though the lat
ter is possible, unpredictable results will occur.

Certain built-in functions do not appear in this implementation:
addr, clock trap, interrupt trap, monitor link, trace, and untrace.
The built-in functions, arg-count, and argument(i) have been added
however. They give the number of arguments and the ith argument re
spectively. The functions corebyte and coreword have slightly dif
ferent meanings. Corebyte is overlayed, not on core, but on the
string data area; coreword is overlayed on the arithmetic data area.

MULTICS PROGRAMMERS' ~UAL

Name: ask

ask

Subroutine
Author-Maintained Library

Tom Van Vleck
Room 39-513, Ext. 1749

2/25/74

The ask module provides the programmer with a flexible ter
minal-input facility for whole lines, strings delimited by blanks,
or fixed-point and floating-point numbers. Special attention is
given to prompting the terminal user.

Entry: $ask_

This entry returns the next string of characters delimited by
blanks or tabs from the line typed by the user. If the line
buffer is empty, flask II formats and types out a prompting mes
sage and reads a line-from "user_input".

Usage:

call ask_(ctl,ans,ioa_args •••) i

1) ctl char(*) (input)

2) ans char(*) (output)

3) ioa_args (input)

Entry: $ask_clr

This is a control string in
the same format as that used
by"ioa_fl

•

The return value.

Any number of arguments to
be converted according to
"etl".

This entry clears the internal line buffer. Because the buff
er is internal static, one program's input may accidentally be
passed to another unless the second begins with a call to this
entry_ lIask $ask clr " also can be called if a value typed by
the user is Incorrect-and if the program wishes to ask for the
line to be retyped.

Usage:

eall ask_$ask_clr~

I

I
I.
I

I
lask _ MULTICS PROGRAMMERS I MANUAL

·Page 2

Entry: $ask int

This entry works the same as "ask $ask " except that the next
item on the line must be a number. An integer value is returned.
Numbers may be fixed-point or floating-point, positive or nega
tive. A leading dollar sign or a comma will be ignored. If the
value typed is not a number, the program will type

"string" non-numeric. Please retype:

and wait for the user to retype the line.

Usage:

I}

2}

ctl char(*} (input)

int fixed bin (output)

3} ioa_args (input)

Entry: $ask flo

As above.

The return value.

As above.

This works like "$ask_int" except that it returns a floating
value.

Usage:

I} ctl char(*} (input) As above.

2) flo float bin (output) The return value.

3} ioa_args (input) As above.

MULTICS PROGRAMMERS' MANUAL

Page 3

Entry: $ask_line

This entry returns the remainder of the user-typed line. Lead
ing blanks are removed. If there is nothing left on the line, the
program will prompt and read a new line.

Usage:

1) ctl char(*) (input) As above.

2) line char(*) (output) The return value.

3) ioa_args (input) As above.

Entry: $ask_c

This entry tests if there is anything left on the line. If so,
it returns the next symbol, as in flask $ask ", and sets a flag non
zero. Otherwise, it sets the flag to zero and returns.

Usage:

call ask_$ask_c(ans,flag);

1) ans char(*) (output)

2) flag fixed bin (output)

Entry: $ask cint

The symbol, if any.

=1 if symbol returned.
=0 if none there.

Conditional entry for integers. If an integer is available on
the line, it will be returned and "flag" set to 1. If the line
is empty, "flag" will be set to O. If there is a symbol on the
line, but it is not a number, it will be left on the line and
"flag" will be set to -1.

Usage:

call ask_$ask_cint(int,flag);

1) int fixed bin (output)

2) flag fixed bin (output)

Return value.

=1 if "int" returned.
=0 if line empty.
=-1 if no number.

I laSk_ MULTICS PROGRAMMERS' MANUAL

Page 4

Entry: $ask cflo

This entry works like "$ask cint" but returns a floating value
if one is available.

Usage:

call ask_$ask_cflo(flo,flag) i

1) flo float bin (output)

2) flag fixed bin (output)

Entry: $ask cline

Conditional ask for rest of line.

Usage:

call ask_$ask_cline(line,flag);

1) line char(*) (output)

2) flag fixed bin (output)

Entry: $ask n

Return.

=0 if line empty.
=1 if value returned.
=-1 if not a number.

Return value.

=1 if line returned.
=0 if line empty.

This entry "peeks" at the line and returns the next symbol
without changing the line pointer. A call to tI$ask_tI later will
return the same value.

Usage:

call ask_$ask_n(ans,flag) i

1) ans char(*) (output) Return symbol.

2) flag fixed bin (output) =0 if line empty.
=1 if symbol returned.

MULTICS PROGRAMMERS' MANUAL

Page 5

Entry: $ask_nint

Peek entry for integers. The second argument will be returned
as -1 if there is a symbol on the line but it is not a number, as
I if successful, and as 0 if the line is empty.

Usage:

call ask_$ask_nint(int,flag) i

Arguments as above.

Entry: $ask_nflo

Peek entry for floating.

Usage:

call ask_$ask_nflo(flo,flag) i

Entry: $ask_nline

Peek entry for rest of line.

Usage:

call ask_$ask_nline(line,flag) ;

Entry: $ask setline

This entry sets the internal static buffer in "ask " to the
given input line in order that the line may be scanned.

Usaqe:

call ask_$ask_setline(line) ;

dcl line char(*)

Trailing blanks will be removed from line. A carriage return
is optional at the end of line.

MULTICS PROGRAMMERS' MANUAL

Page 6

Entry: $ ask_prompt

This entry scraps the current contents of the internal line
buffer and prompts for a new line. The line is read in, and the
entry returns.

Usage:..

call ask_$ask_prompt(ctl,ioa_args •••)

1) ctl char(*) (input)

2) ioa_args (input)

A control string similar
to that typed by "ioa ".

Any number of arguments
to be converted according
to nctl".

MULTICS PfiOGftAMMERS' MANUAL

Name:

Subroutine Call
Author-Maintained Library

Joseph w. Dehn III
Room 39-200, Ext. 3-7788

3/12/75

This subroutine allows a program written in FORTRAN to
specify the attachment for an 1/0 "file number" or "unit number".

Usage:

1) ifile

call attach_fortran_file_(ifile,astring,ierr)

is a FORTRAN file reference number, which must be
between 1 and 99.

2) astring is a character constant or variable which specifies
the attachment. See Chapter 14 of the FORTRAN manual
for the format of attachment specifications.

3) ierr

2) patl?

Notes:

is a standard Multics error code. If the attachment
was successful, ierr will be zero.

call attach_fortran_ssfile_(ifile,path,ierr)

is a character constant or variable which specifies
the pathname of a storage system file (segment or
HSft') •

1) The second entry is for convenience only. The following two
statements have the same effect:

call attach_fortran_ssfile_(n,"a)b",ierr)
call attach_fortran_file_(n,"vfile_ a)b",ierr)

2) When the program is done with the file, it should be closed
using the "endfile" statement. The endfile statement will not,
however, detach the file if it was attached using these
subroutines or with the io_call command.

3) If the file specified by "ifile lf is already attached, it will
be closed and detached automatically when attach_fortran_file_ is
called.

Page 2

~xamples:

MULTICS PROGriAMMERS' MANUAL

call attach_fortran_file_(l,"syn_ user_output",ierr)

character*32 pathname
read(5,lO)pathname

10 format(a32)
call attach_fortran_ssfile_(kunit,pathname,ierr)

MULTICS PROGRAMMERS I HANUAL basicylot_

Subroutine
Author-Haintained Library

Joseph W. Dehn III
Room 39-200, Ext. 3-7788

10/21/74

This subroutine is an interface which allows programs written
in the BASIC language to use" the "plot II facility of the Multics
Graphic System. For details of the operation of plot_, please
see the ~1PH documentation. . .

Initialization

call "basicylot_$init":x$,y$,l,b,g,s

x$ label for the X axis
y$ label for the Y axis
1 =1 for linear-linear

=2 for log-linear
=3 for linear-loq
=4 for log-log

b 10garitl1m base for 1>1
g =0 for tic marks and values

=1 for dotted grid and values
=2 for solid grid and values
=3 for no grid or value~

s =0 for normal scaling
=1 for equal scaling

Setting Scales

call "basic_plot_$scale" :xl ,x2 ,y1 ,y2

xl minimum X
x2 maximum X
yl minimum Y
y2 maximum Y

Plotting

call "basic_plot_":x() ,y() ,n,v,s$

x () array of X values
y () arr ay of Y values
n number of elements in x() and y()
v =1 for plotting with vectors

=2 for plotting with vectors and symbol
=3 for plotting with symbol only

5$ the symbol for v>1

MULTICS PROGRAMMERS i J'.'lANUAL

Page 2

Notes:

1) If the entry "basic plot $scale" is not called, automatic
scaling will be performed. - -

2) BASIC programs use zero-origined arrays. Therefore, to
pass N points to basic plot , the values should be stored in array
elements zero through N l. -

HULTICS I-ROGRAMMERS' MANUAL

Name: check basic file

[che~k _basic Jile _

Subroutine
Author-Maintained Library

Joseph W. Dehn III
Room 39-200, Ext. 3-7788

7/27/74

This subroutine, intended primarily for use by BASIC programs,
may be used to get information on a given file specification.
By calling this routine before using the string in a "file" state
ment, the program can catch certain errors that otherwise would
terminate the program.

Usage:

call flcheck_basic_file_": a$,c

where a$ is the file specification, and c is an integer as follows:

1 specification was null or blank
2 specification was "*11
3 pathname: bad syntax
4 pathname: does not exist
5 pathname: may exist, but no access
6 pathname: exists but is zero length
7 pathname: exists (segment)
8 pathname: exists (msf)
9 pathname: exists (directory)

10 pathname: is the ROOT
11 ioswitch: exists
12 ioswitch: does not exist
13 ioswitch: exists and attachment specified
14 ioswitch: does not exist, but attachment specified
15 ioswitch: bad syntax
16 undefined error

Note:

The interpretation of the code "C fl is left to the calling
program. Values of (1,3,5,9,10,12,15,16) almost certainly indicate
an error. Other codes may indicate an error or not, depending on
how the file is to be used. For example, c=4 means segment does
not exist, which would be an error if the program were going to
read from the file, but not necessarily an error if the program
were to write to it.

Example:

1 print IIName of file!!;
2 input a$
3 call "check basic file II: a$,c
4 on c goto 5~5,5,5~5,5,7,7,5,5,7/5,7/7,5,5
5 print IIBad file name"
6 go to 2
7 file #1: a$

(rest of program)

MULTICS PROGRAMMERS' MANUAL check msf

Subroutine Call
Author-Maintained Library

Gary M. Palter
Room 39-200, Ext. 3-7788

2/25/74

Name: check msf

This subroutine will determine if a specified directory is a
multi-segment file. The definition of a multi-segment file used by
this subroutine is given below.

Usage:

dcl

call

check msf entry (char(*), char(*), area(*) aligned, fixed
bin (35)) ;

check msf (directory, entry, user_area, status_code);

1) directory is the directory portion of the name of the
branch to be tested. (Input)

2) entry is the entry portion of the above name. (Input)

3) user area is an area to be used for allocations. (Input)

4) status code is a returned status code. (Output)

The possible values of status code are:

o The branch is a multi-segment file.

error table $bad ms file
- The-branch is a directory, but is not a multi

segment file.

error table $nondirseg
- - The branch is not a directory.

Any error code which may be returned by hcs $star list and
hcs_$status_long.

Notes:

A directory is considered to be a multi-segment file by this sub
routine only if it satisfies all of the following conditions:

check msf MULTICS PROGRAMMERS i MANUAL

Page 2

1) The directory has a non-zero bit count.

2) The directory does not contain any links or directories.

3) The number of entries in the directory is equal to its bit count,
and each entry has exactly one name which is the character string
representation of a number satisfying the condition
O<number<bit count-I.

MULTICS PROGRAMMERS' MANUAL

Subroutine
Author-Maintained Library

Tom Van Vleck
Room 39-513, Ext. 1749

9/8/70

The procedure cv_ performs several useful number conversion
calculations.

Entry: $hrmin

The entry point hrmin accepts a time in seconds and converts
it to a time in hours and minutes, suitable for printing. The
converted time is rounded ~ to the next minute, so that any
nonzero input will produce a nonzero time.

Usage:

call cv_$hrmin(ss,hr,min) ;

1) ss fixed (input)

2) hr fixed (output)

3) min char(*) (output)

Entry: $absdat

Input time in seconds.

Hours.

Minutes, 4 chars.

The entry point absdat returns the number of days since
January I, 1901, given the month, day and year as input.

Usage:

call cv_$absdat(mo,da,yr,abs) i

1) mo fixed (input) Month

2) da fixed (input) Day

3) yr fixed (input) Year

4) abs fixed (output) Absolute date

MULTICS PROGRAMMERS' ~~NUAL

Page 2

Entry: $shift

The routine shift computes the current accounting shift
numbers.

Usage:

call cv_$shift(mo,da,yr,hr,sh) i

1) roo fixed (input) Month

2) da fixed (input) Day

3) yr fixed (input) Year

4) hr fixed (input) Hour

5) sh fixed (output) Shift number

Entry: $mwvf

The routine mwvf converts a floating dollar amount to ASCII
characters.

Usage:

v = cv_$mwvf(flo)i

1) flo float (input)

2) v char(15) (output)

The converted value will have a floating dollar sign and
commas every three digits. Blanks will be returned if the
number is all zero. The value is right-justified. Fifteen
characters will be returned.

Example:

Input

l234.567eO
O.OOleO
O.OeO
-5.7eO
1.234e10

Returned

$1,234.57
$.00

$-5.70
$**,***,***.**

MULTICS PROGRAMMERS' MANUAL

Page 3

Entry: $cdate

The entry cdate converts a character-string date into a double
precision integer in system calendar clock format, i.e., in micro
seconds since OOOOGMT, January 1, 1901. The date may be expressed
flexibly. An invalid date will convert to O. A date of "*"
returns the current time.

Usage:

call cv_$cdate(date,time) ;

1) date char(*) (input) Date

2) time fixed bin(71) (output) Time

Example:

The date June 1, 1970, may be expressed as:

060170
6/1/70
0601
6/1
06/1
6/01
061/70
6/0170

HULTIes PROGRAMMERS' MANUAL

Name:

Subroutine Call
Author-Maintained Library

Joseph W. Dehn III
Room 39-200, Ext. 3-7788

3/12/75

This subroutine allows a program written in FORTRAN to
detach a file that was attached using the Ilio_call" command or
using the lIattach_fortran_file_It subroutine.

Usage:

1) ifile

2) ierr

Example:

is a fORTRAN Iffile number" or "unit number" in the
range 1 to 99.

is a standard Multics error code. If the detach was
successful, ierr will be set to zero.

MULTICS PROGRAMMERS' MANUAL I fillin_dPrint_str_l

Subroutine
Author-Maintained Library

Edward McCabe
575 Technology Square

Fifth Floor, Ext. 3-1533
7/9/74

Name: fillin_dprint_str_

Usage: declare fillin dprint str entry (char(*) varying,
pointer, fixed binary (35»;

call fillin_dprint_str_(optstring, dpap, ercd);

Where:

optstring

dpap

ercd

is the string used to fill in the dprint_arg
structure based on dpap.

is the pointer to the dprint arg structure.
Only structures of version-= 1 are accepted
by this subroutine.

is an error code returned by this subroutine
which can assume the following values:

o no errors were encountered.
1 the structure was not version = 1.
2 an error was encountered in the parsing

of the options.

This routine assumes that the caller will choose and control
the defaults of the dprint arg structure as required by the
dprint subroutine. As a result, only those values which are
explicitly specified in optstring will be affected by this sub
routine.

Structures which are not understood, i.e., version =1 will
be rejected. Errors encountered in the parsing of optstring will
cause a message to be printed (via com err), but any of the rest
of the structure which is appropriate will-be filled in.

Finally, if 'dpunch', 'dprint', or 'dp' appear at the beginning
of the string, they will be ignored (since it may be convienent to
pass a string containing them, rather than parsing them out).

This subroutine accepts the following options:

-print

-punch

specifies that both dprint arg.pt pch and
dprint arg.output module are to be set to
1 (for-printed output).

spe~ifies that both dprint_arg.pt-?ch and
dpr1nt arg.output module are to be set to
2 (for-punched output). Note that the
default is 7punch.

MULTICS PROGRAMt:mRS I MANUAL

Page 2

The use of any of the three following options results in
setting dprint_arg.pt-pch to 2 (for punched output) .

-mcc

-raw

-7punch, -7p

-cp !'!, -copy n

-dl, -delete

-header header,

specifies that dprint arg.output module
is to be set to 3 for-MCC punch.-

specifies that dprint arg.output module
is to be set to 4 for-raw punch.-

specifies that dprint arg.output module
is to be set to 2 for-7punch. -

specifies that dprint_arg.copies is to
be set to n.

specifies that dprint_arg.delete is to
be set to 1.

-he header
specifies that dprint arg.header is to
be set to It for" header. Note that
this results in the correct header for
the output.

-ds dest, -destination dest

-q !!, -queue !!

specifies that dprint_arg.dest is to be
set to dest.

specifies that dprint_arg.queue is to be
set to n.

-dvc clas~, -device class class
specifies that dprint_arg.class is to be
set to class.

Any option can be overridden by a succeeding option except
the -delete, -dl option.

MULTICS PROGRAMMERS' MANUAL fixed_to_english_

Name: fixed_to_english_

Subroutine
Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

9/6/74

This subroutine returns the spelled-out English representation
of a fixed binary number.

Entry: fixed_to_english_

This entry converts a fixed binary value and uses the prefix
"minus" to indicate a negative number.

declare fixed_to_english_ entry(fixed bin(3S» returns(char(*»;

output_string=fixed_to_english_(number) i

Entry: fixed_to_english_$own_minus

This entry converts a fixed binary value and uses a user
specified prefix to indicate a negative number.

declare fixed to english Sown minus entry(fixed bin(3S) , char(*»
returns(char(*»; - -

output string=fixed to english Sown minus(number,minus word); - - - - - -

MULTICS PROGRAMMERS' MANUAL tget_caller-Ptr_l

Subroutine Call
Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

4/13/73

Name: get_caller-ptr_

This subroutine is an ALM utility module which returns poin
ters to the text sections of various ancestors of the calling pro
gram.

Usage:

declare get_caller-ptr_ external entry returns (pointer);

caller-ptr = get_caller-?tr_ ();

1) callerytr is a pointer to the text section of the direct an
cestor of the procedure calling get_callerytr_.
(Output)

Entry: get_callerytr_$my-ptr

This entry returns to the calling program a pointer to its
own text section.

Usage:

declare get_callerytr_$my-ptr external entry returns
(pointer);

1) myytr is a pointer to the text section of the procedure
calling get_calleryointer_$my_ptr. (Output)

Entry: get_callerytr_$backstack

This entry returns to the calling program a pointer to the
text section of its nth ancestor, where the Oth ancestor is de
fined as the program-calling get_callerytr_Sbackstack.

usage:

declare get_callerytr_$backstack external entry (fixed
binary) returns (pointer);

f

get_callerytr_l MULTICS PROGR~~MERS' ~_~NUAL

Page 2

1) n

2) any-ptr

is the ancestor for which a pointer to the text
section is desired. If n is zero, the pointer re
turned is the same as would be returned by
get_ca1ler-ptr_$my-ptr. (Input)

is the pointer to the text section of the nth
ancestor of the program calling
get_caller-ptr_$backstack. (Output)

MULTICS PROGRAMMERS' ~1ANUAL get_line_length_

Subroutine
Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

9/6/74

Name: get_line_length_

This subroutine may be used to find the line length of a
specified io-switch~ It should normally only be used on an io
switch that is associated with a terminal.

Usage:

declare get_line_length_ entry(char(*» returns(fixed bin);

line_len=get_line_length_(switch_name)i

1) switch name

2) line len

is the name of the io-switch.

is the number of characters per line; if this
value cannot be determined, it will be zero.

MULTICS PROGRAMJ."1ERS· MANUAL /get_seg_ptr_

Subroutine
Author-Maintained Library

Richard H. Gumpertz
Senior House, Ext. 2893

11/5/73

Names: get_seg_ptr_
get seg ptr arg
get seg:ptr=fulI~ath_
get_seg-ptr_search_
release_seg-ptr_

This procedure consists of entries to initiate and terminate
data segments. It also is capable of creating, truncating and
setting the bit count on segments. It is more useful than the
current Multics file primitives because it expands pathnames,
creates segments and initiates all in one call by the user.
Similarly, it sets the bit count, truncates the segment and termi
nates all in one call.

This entry initiates a segment given a relative pathname and
checks access to the segment. If the segment does not exist, it
will be created if the user so requests.

Usage: declare get_seg-ptr_ external entry

vJhere:

(char(*), bit(6) aligned, fixed bin(24), ptr,
fixed bin(35» i

call get_seg_ptr_ (pathname, wanted access, bit count,
return~tr, return_code); -

pathname is a relative pathname to the segment. (Input)

wanted access is the requested access to the segment. The
first five bits are considered to indicate the
standard Multics access control bits. They
are "t" (trap, not currently implemented), "rll
(read), "en (execute), "\,y" (\,yrite) and "all
(append), respectively. If the segment exists,
then an error code (error table $moderr) will
be returned if the user does not have at least
the access requested. Note, however, that
return-ptr will contain a valid pointer even
if this error occurs. The sixth bit is inter
preted as a "c" (create) bit -- if the segment
does not exist, it wi~l be created if this bit
is on. If a segment is created, it is given
the access bits specified by the t, r, e, w, and
a bits. (Input)

get_seg_ptr_ J
Page 2

bit count

return_ptr

return code

MULTICS PROGRN4MERS' !~NUAL

is the bit count of the segment. (Output)

is a pointer to the segment. If the segment
is not initiated, this pointer will be returned
containing the null pointer. (Output)

is the standard Multics error code. The only
condition under which this code will be non
zero when the return ptr is non-null is if
the error is error_table._$moderr. (Output)

Entry: release._seg_ptr

This entry terminates a segment initiated by one of the entries
to get .. _segytr_. If a bit count is specified, the bit count of
the segment is set and the segment is truncated to the correspond
ing length.

Usage:

~ihere :

declare release seg ptr external entry (ptr, fixed bin(24) ,
fixed bin(35»;- - -

segytr is a pointer to the segment to be termi
nated. (Input)

bit count is the bit count to be set on the segment.
If this argument is negative, it is assumed
that the bit count should remain the same
and no truncation should take place. (Input)

return code is a standard Multics error code. (Output)

This entry is identical to get seg ptr except that it obtains
the pathname of the segment to be Initiated from the caller's
argument list. It saves a call to cu_$arg_ptr_.

Usage:

~'lhere :

dcl get seg ptr arg external entry(fixed bin, bit(6)
aligned; fixed bin(24), ptr, fixed bin(35» i

call get seg ptr arg (arg number, wanted access, bit_count,
- - - - return-ptr, return-code~;

arg number is the number of the caller's argument to be
used. (Input)

All other arguments are identical to get_seg ~_ptr._.

MULTICS PROGRAr4..\ffiRS' MANUAL jget_seg_ptr_

Page 3

This entry is identical to get_seg-ptr_ except that the
pathname is specified as an absolute pathname in directory/entry
form.

Usage: declare get_seg_ptr_full-paL~_ external entry

(char{*), char(*), bit(6) aligned, fixed bin(24), ptr,
fixed bin(35»;

Where:

call get_seg_ptr_full-path_(dir_name, entry_name,
wanted access, bit count,
return-ptr, return--code_;

dir name is the absolute pathname of the directory
of the segment. (Input)

entry_name is the entry name of the segment. (Input)

All other arguments are identical to get._seg_ptr __

Entry: get_seg~tr_search_

This entry is identical to get seg ptr except that just an
entry name is specified. The directory is-determined by Multics
search rules. If the segment is not found and if the "c" (create)
bit is on, then the segment is created in the process directory.
Note, however, that if the entry name is not known as a reference
name before a call to get seg ptr search , this entry will not
cause it to be made known:- This procedure initiates the segment
with a null reference nane. This has the net effect that full
search rules will be foIIO'~'led each time this routine is called e

Usage: declare get_seg_ptr_search_ external entry

(char{*), bit(6) aligned, fixed bin(24), ptr, fixed bin(35»;

call get seg ptr search (entry name, wanted access, bit_count,
- - - - return-ptr, return_code);

Hhere:

entry_name is the entry name of the segment to be
found e (Input)

All other arguments are identical to get_seg_ptr_e

MULTICS PROGRA.1I.1HERS I MANUAL

Page 4

Examples:

1. To read ~ segment

declare file aligned char(262l44) based (file ptr) ,
r_access bit(6) aligned int static init (HOlOaOO" b);

call get seg ptr (file name, r access, count, file_ptr,
- - - error_code);-

if error code~= 0 then go to error;

count = divide (count, 9, 17, 0);

string_variable = substr (file, 1, count);

call release_seg~tr_ (file_ptr, -1, error_code);

if error code~= 0 then go to error;

2. To write a segment

declare file aligned char(262l44) based (file ptr) ,
rwac_acess bit(6) aligned int static init C'OlOlll" b);

call get_seg~tr_ (file name, rwac access, count, file~tr,
error_code) i -

if file~tr = null then go to error;

count = length (string_variable);

substr (file, 1, count) = string_variable;

call release_seg-ptr_ (file~tr, count*9, error_code);

if error code~= 0 then go to error;

3. To search for ~ segment

Program "x," whenever entered, does a search for a segment
called Uinit.x" which, if found, is used to initialize x.
This could be done as follows:

call get_seg~tr_search_("init.xn, "010000" b, count, fileytr,
.- r-o- ,,;:t,,' •
~ _"'...,u. ... , I

MULTICS PROGRAK.1\ffiRS' MANUAL

if file~tr~= null then /*initiate only if found*/

init: do;

count = divide (count, 9, 17, 0);

.
/*do initialization*/

I get_seg_ptr_ J
Page 5

call release_seg_ptr_ (file_ptr, -1, error~code)

if error code~= 0 then go to error;

end init;

/* rest of program*/

• f
MULTICS PROGRAMMERS I MANUAL I get - rnydir -I

Subroutine Call
Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

4/11/73

Name: get_mydir_

This subroutine allows a procedure to ascertain the directo
ry in which it resides.

Usage:

declare get_mydir_ external entry (char (*»;

call get_mydir_ (dir_name)i

1) dir name is the name of the directory in which the procedure
calling get_mydir_ resides. (Output)

Entry: get_refdir_

This entry allows a procedure to ascertain the directory in
which its caller resides.

Usage:

declare get_refdir_ external entry (char (*»;

call get_refdir_ (dir_name);

1) dir name is the name of the directory in which the caller of
the procedure calling get_re£dir_ resides. (Output)

MULTICS PROGRAMMERS· MANUAL

Nam~: IMSL Library

Suoroutine LIbrary
Author-Maintained Library

Overtap Pr~Ject Staff
NE4J-50J, 253-2053

11/1g/74

The IMSL Library is d collection of approximately 300
mathematlcai ana statistical subroutines, written in FORTRAN.
These routines hav~ been compi.€o on the MIT Multic~ machine as
part of work on the Conslst~nt System. They are being maoe
avalJabje to thE community in subroutine form as well.

The bulk of this description is intendea to give the rea~er

an iaea of the range of capabilities of the .lbr3ry. Documents
descrIbing it are on fite in the IPC Redoing Room (3g-~3Q), and
can be purchaseo from

IMSl
6200 HIIJcroft, Suite S1C

Houston, Texas 77036

Anyone interestea shoula contact The Overtdp Project STaff at the
aaaress above (N~40 is 575 Technology S~udre) tor more
information.

These subroutines are in ">Iibrarles>ims'" whIch must be in The
user·s search path. To do this, .anter thd command IISSQ

>librdries>lms,1I or u asr >'ibrarles>lms

RESTRICTIONS and DISCLAIMER

ThE library is proprietary. Its use is ticensed to the
O~erlap ProJect ana to the MIT Mu'tics. Attempting to carry
the library to anoth~r machine is prohibItEd oy the license
agreement. The lease Is on a year by y~ar basis, ana the
Overlap Project can make no guarantee to the community that
it will renew the tease for any given period. Finally,
whIte parts of the 'iorary have been Te::ite.J in the Muttics
environment ana foune to be of vary high qua.ity we can make
no guarantees about the corrtctness of the routines. IHSL
aoes certify them ana is of conslaerabJe he'p if a user of
the library gets into substantive mdth~matical trouble with
it; r~Quests for such assisTance should be directed to thE
Overtap ProJ~ct as hotGer of the je~se. A summary of

MULTICS PROG~AHMERS· ~ANUAL

Page 2

mooifications we have maae to the library, lna for whIch
IHSL bears no responsibility, appears b~low.

The .ibrary is arranged within subgroucs, csjled "chapters".
These chapters are titleo as follows' (1)
Analysls of Experimental Oasign Data

(includes analysis of variance and cta~sification routInes)
Basic Statistics

(incluaes elementary bayesian inference, data scr~~ning, ana
elementary classica' infer~~ce)

Categorize~ Data Analysis
Differentia; EQuations; Quadrature; Differentiation
Eigenanalysls
Forcasting; Econom~trics; Time S~ries
Generation ana TestIng of Random Numbers; Goodn~s5 of Fit
Interpolation; Approximation; SmoothIng
Linear Algebraic EQuations
Math6maticdl and Statistical Special Funct!o~s

(lncJuGes probaoi'ity olstrio~tlon functions dna special
functions of mathematical physics)

No~-Parametrlc Statistics
(inctuoes analysis of vari~nce~ binomial or multi-nomial
bases, kolmogorov-smlrnov '~sts, ranaomizatLon oases)

Observation Structure
Regression Analysis
Sampling
Utllitv Functions

(ie~ Note 1)
Vector, Matrix Arithmetic
Zeros ana Extrema; Linear Programming

The fol lowing list Is a summary, some knowleog~ of the library
may be reQuirea to understana it.

.; ,
•• Chapter U, which contains utility Functions,

impJem~nt~d. It contains a series of
hdS not been
functions tor

(it This material is taken, in largE: part from IMSL publIcatIon
LIB-G004

MULTICS PROGRAMMERS· MANUAL

Page .3

input/output and the 'ike. The maintainers are ~itling to
supply th~ source to anyone seriously interested in oringing
UP thl~ Chapter on Muftlcs.

2) Routines that are indicated in the manual as oein~ available
In couble or single precisJor have been provlJe~ in single
precision only.

AI. calls
UERTST,
codes.

to the IMSL &rror message printing routjne~

have been removed. The routines stitt r~turn error

4) The names of al. SUbroutines, functions, ~n~ dntries into
tnem have been changea to ~nsure that conflicts will not
occur with the oynamic 'inking mechanism on Multics. The
renaming rule is as follows:

a) Find the subprogra m In the IMSl manual. At th€ heao of
the oescrlpt jon is a tlstlng of som~ comment cards, at
the eno of which is an eight character ··-card J at e J I ••
The f 1 rs t four characters of the "car-l 'abe." is a
four-character I·aeck label fl

•

0) For the m~ln entry poInt, take the deck labet, change its
characters to lower cas~y and prefIx them with "cs_i"
to obtain the suoroutine name.

c) For any a~altional entry points, adO the Jiglt
the subrout ine name for the first one, "2 11

second, etc.

"1" to
for the

5) The library eoition imp'ementea on Hultics was originally
deSigned for the UnIvac l1ti8. Due to aiff~r~nces in Fortran
compl'ers anQ machine structure, changes have bedn required
to constants and the oroer of statement~, and a special
overflow proceaure written in PL/I has oeen provided.
Unjess problems arise with them, thes~ modifications shoula
be transparent to the UStr. A comptete Jist of these
moalficatlons is avai'ab'e from the Overtop Project, and
with the Reading Room copy of tne IMSl manuals.

MULTICS PROG~w.mRS' MANUAL linear_q_haS~

Subroutine
Author-Maintained Library

Edward J. McCabe
575 Technology Square

Fifth floor, Ext. 3-1533
2/21/74

Name: linear q hash, lqh
linear:q_hash_, lqh_

The subroutine linear q hash is an implementation of the lin
ear·quotient hashing algorithm described by Bell and Kaman in the
November, 1970, issue of the Communications of the Association
for Computing Machinery (pp. 675-677).

Usage:

call linear_q_hash(result,residue,tab1e_size,word) i

Arguments:

declare (result,residue,table size) fixed binary(35,O) i
declare word char(32) varying;

Where:

result is in the range O<=result<table size. (output)

residue is in the range 1<=residue«2**35). (output)

table size is a prime integer. (input)

word is the source word to be hashed. (input)

Entry point for retries:

call lqh$retry(result,residue,table_size) i

Although arguments are declared identically, their significance
is different on retries.

result

residue

table size

is both input and output. On input, it is
the most recently returned result from lqh
or lqh$retry. On output, it is a new value
of result.

is the value of residue last obtained from
lqh or lqh$retry. (input)

is the original prime that defines the
range. (input)

L . . .1
llinear_q_hashl MULTICS PROGRAMMERS; MANUAL

Page 2

This subroutine, given a character string (word) and a prime number
(table size), will produce a pseudo-random result in the range
O<=result<table size, plus a residue of unpredictable size (less
than 2**35, however). This result may be used to reference a
location in a hash table. If this location is unsuitable, up to
table size - 1, retries may be made; complete coverage of the
range-is guaranteed. .Retries must be attempted by returning the
most recently obtained values for "result" and "residue," in
order to ensure complete coverage of the range. The user must
keep track of the number of retries attempted.

Note that the key is constructed using only the information-carrying
bits of the first five characters of the source word (padded on
the right with blanks, if necessary). On Multics, these are the
right-most seven bits of each character.

Note that linear q hash, lqh, linear_q_hash_ and lqh_ are synony
mous for both entry points.

MULTICS PROGRMll{ERS' !~NUAL ~

Name: qd

Subroutine
Author-Maintained Library

J. H. Broughton
Room 39-200, Ext. 3-7788

9/30/73

This· procedure is used to determine if an instruction with a
given opcode modifies the contents of the q-register.

declare qd entry (fixed hin(35» returns (fixed bin(35»;

modified = qd (opcode);

1) modified

2) opcode

is one if the instruction alters the q-register,
zero otherwise.

is the opcode of the instruction in question.

MULTICS PROGRAMMERS' MANUAL /reverse_index_1

Miscellaneous Call
Author-Maintained Library

John C. K1ensin
575 Technology Square

Fifth floor, Ext. 6217
1/18/71

Name: reverse index

This function searches a character string from right to left
for a particular character string. The location returned-rs-rn
characters from the left.

This entry returns the index position (from the left) of the
first character string (from the right) equal to the specified
string.

dcl reverse index ext entry(char(*) ,char(*» returns(fixed bin);

i = reverse_index_(stringl,string2) ;

Where:

i

stringl

string2

is the index position from the left of the string.
It will be 0 if the string specified in string2 is
not in stringl. (output)

is the string to be scanned for string2. (input)

is the comparison string. (input)

Entry: reverse index_$notequal

This entry returns the index position (from the left) of the
first character not equal to the specified character. (This is
useful for finding the last nonblank character in a word.)

dcl reverse_index_$notequal ext entry(char(*) ,char(l» returns(fixed bin);

i = reverse_index_$notequal(stringl,char) i

Where:

i

stringl

char

is the index position from the left of the string.
It will be 0 if the string is not found in stringl.
(output)

is the string to be scanned for char. (input)

is the character to be searched for in string1. (input)

Note: reverse index is similar to the PL/I "index" built-in
function, except that it searches the string from the opposite direc
tion; the position in the string is expressed in the same fashion.

MULTICS PROGRM~1ERS' MANUAL Iscan_1
Subroutine

Author-Maintained Library
J. Klensin

575 Technology Square
Fifth Floor, Ext. 6217

5/24/71

Name: scan

The procedure scan contains a number of functions that scan
across a supplied character string looking for an occurrence of
any single character from a second string. Functions are supplied
that scan the string from left to right and from right to left,
and that look for the first character equal to and the first
character not equal to any of those in the second string.

This entry is used to find the first character in one string
that matches any character in a second string. It returns, as do
all of the functions below, the index of the located character
from the left of the first string.

Usage:

dcl scan $scan ext entry(char{*) ,char(*» returns(fixed bin);
i=scan_$scan_-(stringl,string2)i

stringl

string2

i

is the string to be scanned for the first occurrence of
a character in the second string.

is the string containing characters to b~ located in the
first string.

is the index (from the left) of the first character in
stringl to match any character in string2. If no
character in stringl matches any character in string2,
"in is set to zero.

I 1
, scan_I

Page 2

MULTICS PROG~1MERS' MANUAL

Entry: scan_$scan_notequal

This entry is used to find the first character in one string
that does not match any character in the second string. (Note:
This entry point is equivalent to the VERIFY function existing in
certain implementations of PL/I.)

Usage:

dcl scan $scan notequal ext entry{char{*),char{*» returns{fixed bin);
i=scan_$scan=notequal {stringl,string2)i

stringl

string2

i

Entry:

is the string to be scanned for the first occurrence
of a character not in the second string.

is the string containing characters to be located in
the first string.

is the left index of the first character in stringl that
does not match any character in string2.

scan $scan rev - -
This entry is used in a fashion similar to scan $scan ,

except that it searches the string from the right. (Note: This
is not the same as AML subroutine reverse_index_.)

Usage:

dcl scan $scan rev ext entry{char{*) ,char{*» returns(fixed bin);
i=scan_$scan=rev (stringl,string2)~

stringl

string2

i

is the string to be scanned from the right for the first
occurrence of a character in the second string.

is the string containing characters to be located in the
first string.

is the index (from the left) of the first character in
stringl to match any character in string2. If no
character in stringl matches any character in string2,
"i" is set to zero. Note that "i" is still a left
index.

MULTICS PROGRA~~4ERS' MANUAL I scan_I
Page 3

Entry: scan_$scan_notequal_rev

This entry is used in a fashion similar to scan $scan noteaual,
except that it searches the string from the right. - - --

Usage:

dcl scan $scan notequal rev ext entry{char{*),char(*»
returns (fixed bin) i -

i=scan_$scan~otequal_rev (stringl,string2);

stringl

string2

i

Entry:

is the string to be scanned from the right for the
first occurrence of a character not in the second
string.

is the string containing characters to be located in
the first string.

is the left index of the first character in stringl
that does not match anx character in string2.

scan $scan ptr
scan-$scan-ptr notequal
scan -$ scan - ptr--rev
scan=$scan=ptr=notequal_rev

These entries correspond to the ones above, except that they
accept a pointer and a length to designate the first string, rather
than having the string passed directly.

Usage:

The first of these is typical of the others.

dcl scan $scan ptr{pointer,fixed bin,char{*» returns (fixed bin);
i=scan_$scan=ptr{ptr_to_stringl,length_of_stringl,string2);

i and string2

ptr_to_stringl

length_of_stringl

are the same as defined above.

is the pointer to the first string.

is the length of the first string.

I
Iscan_ MULTICS PROGRAMMERS' MANUAL

Page 4

Disclaimer:

No claim is made that these functions are fast or that they
could not be done more efficiently with in-line code. The
functions have proved convenient to get some types of code work
ing that could be optimized later or that did not require
optimization.

For the reason mentioned in the note above, the function
scan $scan notequal may be withdrawn when the PL/I verify BIF
becomes available.

HULTICS PROGRAr.fi-1ERS' MANUAL

Name: tek

G
I/O System Device Interface Module

Author-Maintained Library
Student Information Processing Board

Room 39-200, Ext. 3-7788
2/25/74

The tek DIM allows a user to perform graphic input and out
put on a Tektronix 4002, 4012, or 4013 type terminal.

Usage:

call ios $attach (stream_name, "tek_", to_stream, mode,
status) ;

1) stream name is usually "graphic_output" or "graphic_input".

2) to stream is usually "user_i/o", but may be any other stream.
(Input)

3) mode is ignored.

4) status is a standard I/O system status code. (Output)

Permitted I/O System Calls:

The following I/O system calls are implemented by this DIM:

attach
detach
read
write
order

Returned Status:

With the exception of the error returned upon attempted multiple
attachment, this DIM will only reflect status codes from downstrean.

Order Request:

Only one order request is implemented by this DIM:

screen size causes the output and input to be scaled so that
the maximum square physical screen size of the
terminal (760 x 760) represents a virtual screen
size of (N x N) , where N is a fixed binary number
pointed to by the pointer argument to ios $order.
The default is standard for the Multics Virtual
Terminal screen (1024 x 1024).

Itek_ I ~ruLTICS PROGRAMMERS' MANUAL

Page 2

Graphic Input Format:

Any read call issued through tek will activate the cross
hair cursors for graphic input. The-graphic input portion of the
DIM simulates the operation of an ARDS mouse or joystick. To
send any graphic input command, the user must type one character
follo\.,ed by optional text, followed by a ne\vline character. The
coordinates of the crosshair intersection are sent with the first
character, and the 'character itself specifies the action to be
taken. Because of the terminal architecture, the desired con
structs will be echoed on the screen after every request. Allow
able characters are:

s (setposition) Causes a setposition to the current location
to be sent.

v (vector) Causes a vector to be dratffl from the last coordin
ate point to the current location.

i (shift, stands for "invisible vector") Causes a relative
shift to be generated to the current position.

p (point) Causes a shift to the current position, and dis
plays a visible point.

t (text) (followed by text before the newline) Causes a text
string to be generated at the current position. If the
current position differs from the position at the last
command, a shift is generated to the new position.

e (escape) (followed by text before the newline) Signifies
that the text string is to be treated as a normal, non
graphic ASCII string. If this does not occur as the first
entity for any particular read call, it is ignored. This
entity causes termination of the read call.

q (quit) Sends a setposition at the current position, and
terminates the read call.

The input stream is in Multics Graphic Code format, and may be
read and parsed by using the subroutine gf_input_ rather than having
a program issue a read call directly.

MULTICS PROGRAMMERS' MANUAL

Name: tek dim

1 I I tek dim I - -I

I/O System Device Interface Module
Author-Maintained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

2/25/74

This is the PL/I procedure which implements the functions of
the tek outer module. It is documented under the writeup for
tek •

~lULTICS PROGRA!>1MERS I MANUAL I xcom I

Name: xcom

Subroutine
Author-Maintained Library

J. M. Broughton
Room 39-200, Ext. 3-7788

9/30/73

This is the compiler for the XPL language.

Usage:

declare xcom entry options (variable) i

call xcom (entry, toggles, time);

1) entry

2) toggles

3) time

is the character string forming the entry name
for the segment. (Input)

contains compiler toggles to be set initially on.
(Input)

is a character string containing a date/time
string for the listing of the program. (Input)

All the above variables should be declared character (*).

I'iULTICS PROGRAi-li-iERS I MANUAL [:-"---"--1 xpl_file

Subroutine

Author-Maintained Library
J. ~l. Broughton

Room 39-200, Ext. 3·-7788
9/3()/73

This routine is used to perform file I/O for XPL programs. It
moves data in 1024 word blocks. Files are kept in the process di
rectory, and have names of the form xpl file n.

Usage:

declare xpl_file (fixed bin(32), fixed bin(32), bit (l)
aligned, fixed bin(32» i

call xpl_file (file, block, output, dummY)i

1) file is the file number of the segment to be read or
written. If it does not exist, it will be cre
ated. Only zero to nine is allowed.

2)

3)

4)

block is the block number of the block to be read or
written. It starts at zero.

output if "l"b, the file will be written, ',c
1.J.. I!O"b I it

will be read.

dummy is the first word of
or written into.

declare xpl._file$truncate entrYi

call xpl_file$truncatei

the block to be read from

This truncates all files used by an xpl program and which are cur
rently active.

lI1ULTICS· PROGRfuVIMERS' rJIANUAL [
""_._--_._-_.- "--- --]
xpl~loader_

~-----.------

Subroutine
Author~Maintained Library

J. M. Broughton
Room 39-"200, Ext. 3-7783

9/30/73

This routine is used to move the data portion of an xpl program
into a scratch segment in the user's process directory. Scalar and
arrary data are placed in the segment "xpl arith data '; string data
are placed in uxpl string data II". It is called with one argu.'11ent:
a pointer to a structure of poInters to the different areas t~at are
to be filled in.

declare xpl_loader_ entry (pointer);

call xpl_loader_ (regptr);

1) regptr is a pointer to the structure described above:

Note:

declare

1 registers
2 data
2 string
2 array
2 text

aligned based
pointer,
pointer,
pointer,
pointer,

(regptr) ,

The pointer text is an input para~meter, anu
points to the base of the object segment.

This routine is, and should only be, called by the prologue
sequence of an xpl program.

MULTICS PROGRAMMERS I MANUAL xpl_operators_

Subroutine
Author-Maintained Library

J. M. Broughton
Room 39-200, Ext. 3-7788

2/25/74

Name: xpl_operators_

This routine is called by an xpl program in order to perform
tasks that it cannot do for itself.

Usage:

declare xpl operators entry (pointer);
call xpl_operators_ (stack-ptr);

1) stack_ptr is a pointer to the stack frame of the calling
procedure.

Notes:

This procedure is, and should only be, called by code as gener
ated by the xpl compiler.

MULTICS PROGRA}mERS' MANUAL

Name: all

Active Function
Author-M~intained Library

John C. Klensin
575 Technology Square

Fifth Floor, Ext. 6217
12/7/71

The active function all returns the contents of a designated
segment with all of the new line characters changed to blanks.
It is useful when a list of things must be done by several com
mands in succession or when a file has been created which con
tains such a list of items.

Usage:

command [all path]

Where "path" is the name of a segment containing characters
to be placed on the command line.

Note:

This active function, by its nature, makes it fairly easy
to exceed the default command line length (see set corn line)
and the maximum number of arguments accepted by the standard
command processor.

ivruLTICS PROGRAMMERS' S MANUAL

Name: bit count

[bit count J

Active Function
Author-Maintained Library

John C. Klensin
575 Technology Square

Fifth Floor, Ext. 3-6217
2/20/74

This active function is used to obtain and return the bit
count on a given segment. It is likely to be useful when the
presence of information in a segment is more interesting than
whether or not it exists.

Usage: bit count segname

Where

segname is the relative pathname of the file whose
bit count is to be returned.

Note: If the file is not present, a value of ii-I" is returned.
Otherwise the bit count is returned. This permits testing
for "present and bit count greater than zero" by a single
test that does not produce errors.

Example: Used in an exec com context, this function might appear
in a statement as follows:

&if [greater [bit count] mailbox 0]
&then &print mail!'-

~ Copyright 1974, Massachusetts Institute of Technology

MULTICS PROGRru·1HERS' M&.~UAL center

Active Function
J'1 ... uthor-r.1ain tained Library

Student Information Processing Board
Room 39-200, Ext. 3-7788

9/6/74

Name: center

This active function returns its first argument centered in
a field of blanks whose length is specified by the second argument.
The return value is enclosed in quotes.

Usage:

[center string length]

1) string is the string to be centered.

2) length is the size of the field of blanks.

Example:

dprint -he (center &1 13] &l.list

MULTICS PROGRAMMERS I MANUAL

Name: dwd

Active Function
Author-Maintained Library

John C. Klensin
575 Technology Square

Fifth Floor, Ext. 3-6217
10/31/73

This active function returns the name of the default working
directory (the home directory unless it has been changed by
the command change default wdir (cdwd» in a fashion similar
to the active functions wd-and pd for the working and process
directories.

Usage: dwd

MULTICS PROGRru~1ERS'S MANUAL

Name: exist_any

I exist_any I
Active Function

Author-Maintained Library
John C. Klensin

575 Technology Square
Fifth Floor, Ext. 3-6217

2/20/74

This active function accepts one or more relative pathnames,
possibly containing stars or question marks, as arguments. If any
of the names is found (or any name is found) that matches one of
the star names, the function returns "true.!! Otherwise, it returns
lifalse. !I

Usage: exist_any -namel-

Where

-namei- are relative pathnames.

Note: The routine returns "true" as soon as a single name match
is found, so it does not scan the rest of ~he input names.

Example :. Used in an exec com context, this function might appear
in a statement as follows:

&if [exist any **.list]
&then &print you have list segments

~ Copyright 1974, Massachusetts Institute of Technology.

MULTICS PROGRAMMERS' MANUAL

Name: Id

Active Function
Author-Maintained Library

John c. Klensin
575 Technology Square

Fifth floor, Ext. 6217
1/18/71

The active function Id returns the pathname of the original
login directory of the process in which it is invoked.

Usage:

command [Id]

MULTICS PROGRAMI4ERS I 1-1ANUAL

Name: translate

[translate

Active Function
Author-Maintained Library

Joseph W. Dehn III
Room 39-200, Ext. 3-7788

11/15/74

This active function may be used to translate a character
string in a manner similar to the translate built-in function of
PL/I.

[translate string new old]

or

[translate string opt]

In the first form, the returned string will be the string
formed by substituting for each character occurring in flold"
the corresponding character in "new". This is identical to the
PL/I function.

In the second form, the translation is specified by a control
option, which may be:

-uc to translate to upper case
-lc to translate to lower case

print string [translate "Test String" -ucJ
TEST STRING

print string [translate 10/13/74 - /]
10-13=-74

	001
	002
	01-01
	02-01
	02-02
	03-01
	03-02
	04-01
	04-02
	05-01
	06-01
	06-02
	07-01
	07-02
	08-01
	09-01
	10-01
	11-01
	12-01
	13-01
	13-02
	14-01
	14-02
	15-01
	15-02
	16-01
	16-02
	16-03
	17-01
	18-01
	19-01
	20-01
	21-01
	22-01
	23-01
	24-01
	25-01
	25-02
	26-01
	26-02
	27-01
	28-01
	29-01
	30-01
	30-02
	30-03
	30-04
	31-01_teco
	31-02
	31-03
	31-04
	31-05
	31-06
	31-07
	31-08
	31-09
	31-10
	31-11
	31-12
	31-13
	31-14
	31-15
	31-16
	31-17
	31-18
	31-19
	31-20
	31-21
	31-22
	31-23
	31-24
	31-25
	31-26
	31-27
	31-28
	31-29
	31-30
	31-31
	31-32
	31-33
	31-34
	31-35
	31-36
	32-01_xpl
	32-02
	33-01
	33-02
	33-03
	33-04
	33-05
	33-06
	34-01
	34-02
	35-01
	35-02
	36-01
	37-01
	37-02
	38-01
	38-02
	38-03
	39-01
	40-01
	40-02
	41-01
	42-01
	42-02
	43-01
	44-01
	44-02
	44-03
	44-04
	44-05
	45-01
	46-01
	46-02
	46-03
	47-01
	47-02
	48-01
	49-01
	50-01
	50-02
	50-03
	50-04
	51-01
	51-02
	51-03
	52-01_xcom
	53-01_xpl_file
	54-01_xpl_loader_
	55-01_xpl_operators_
	56-01
	57-01
	58-01
	59-01
	60-01
	61-01
	62-01

