
SECTION IX

SERVICES OF PAGE CONTROL

This section describes the services that page control performs for the
system. Foremost among these is the handling of page faults. Other services
are performed for segment control, traffic control, and other supervisor
subsystems. Although all of these services have been briefly described in
Section V, the descriptions in this section explain the implementation of these
services in terms of the mechanisms explained in Section VIII.'

Other than the page fault handler, whose main path encompasses most of ALM
page control, and the post purge function used by traffic control, all of these
services are implemented in PLII programs that operate on segments or portions
of segments, calling the interfaces described in the previous secti~n on each
affected page, and multiplexing resultant wait events. The main memory and
paging device reconfiguration services operate on portions of main memory or
paging device instead of segments, again calling the ALM interfaces on each
affected frame or record, and multiplexing the wait events.

All of the s.rvices of page control to segment control are implemented in
the single PL/I program "pc", which, as noted in the previous section, has some
code duplicating or subsuming functions of ALM page control were convenient.

PAGE FAULT HANDLING

The single most important function of page control is the handling and
resolution of page faults. This code is implemented in the program page_fault,
at the label "fault", transferred to by the fault vector directly, after the
fault vector code has stored the SCU data for the page fault in
pds$page_fault_data.

The essence of the page fault handler is to locate the page that must be
paged in, and invoke the page-reading function to allocate a main memory frame
and read it in. If successfully read in, the SCU data (machine conditions) is
restarted; if liD is started but not complete, the process must be made to wait
for a completion of the liD. If any of various error conditions prevail, the
process must be caused to signal an appropriate condition, or restart the page
fault to take a segment fault.

The most difficult task of the page fault handler is to locate the PTW for
the page faulted on. Between the time that the processor actually takes the
page fault and the page table lock is successfully locked to this process, it is
possible that a "setfaults" operation (destruction of SDWs) might be performed
on the segment containing the page, or the page of the descriptor segment
containing the SDW for the segment might be paged out.

AN61

Although these events are highly unlikely, considering that the SDW must exist
and be in main memory for the processor to observe that the PTW was faulted
(modulo the associative memories), the page fault handler must be prepared to
deal with these cases. The page fault handler needs the SDW for the segment to
locate the page table for the segment and identify the particular PTW for the
page on which the fault was taken, as only a segment number and computed address
are supplied by the processor appending unit in the fault data.

The page fault handler depends upon non-local transfers by subroutines in
the page-reading function; specifically, record quota overflow and
out-of-physical-volume conditions in this function cause special action,
including transfers back to the main path of the page fault handler.

The basic actions involved in handling a page fault are these:

1. Save all the processor machine conditions other than the SCU data,
which was already saved. The page fault handler, unlike the segment
fault handler, is the actual fault interceptor for this type of fault.
Reset the processor mode register.

2. Mask to sys_level (it is not legal to accept interrupts during page
control functions), and establish a stack frame on the base of the
PRDS (processor data segment, wired per-processor stack) for the ALM
page control environment (see "Stack Managemerit," Section VIII).

3. Check for illegal conditions (page fault in ring 0 while the PRDS is
in use as a stack) indicating system problems, crash if so.

4. Establish the ALM page control environment (initialize save stack,
pointer register for the SST).

5. Try to lock the page table lock. Execute "Page Table Lock Wait1ng".
Code if unsuccessful. (See "Page Table Lock Waiting," Section VIII.)

6. Perform the paging device housekeeping and replacement function, which
ensures a small number of free PD records and currency of the PDMAP
image on the bulk store (see Section VIII for details).

1. Determine whether this is a page fault taken on the descriptor segment
when the processor needed on SDW (DSPTW APU cycle), a page fault taken
pre-paging an EIS operand (PTW2 APU cycle), or a normal page fault on
a page of a segment (PTW APU cycle). If none of the above, the
processor. is in error. In the first case, locate the page table for
the descriptor segment of this process, and the page on which the
fault was takeri. The SDW for the descriptor segment is guaranteed to
be in main memory. Proceed to step 9 ~n this case.

~. For a normal PTW or PTW2 cycle, try to obtain the SDW for the segment
faulted on. If the descriptor segment is unpaged (as during
initialization), there is no problem. Otherwise, check the PTW for
the page of this process' descripton segment containing the SDW for
the segment on. which the fault was taken. If this page is in main
memory now, it can be read without taking a page fault. Pick up this
SDW: a setfaults operation could have 'destroyed it at any time until
this very instruction. If so, restart this page fault, abandoning the
environment set up and unlocking the lock, causing the processor to
take a segment fault by accessing that SDW~ Otherwise, locate the
page table and specific PTW for the page of the segment on which the
fault was taken. (1)

9. Having located the PTW for the page on which the fault was taken,
locate the AST entry for its segment.

(1) In the case of a PTW2 EIS prepage cycle, the computed address reported by
the control unit in the SCU data must be adjusted one page up.

9-2 AN61

10. Check for two window situations involving some other process handling
a page fault on that page before this process got the lock locked. In
the first case the page is completely read in, and no page fault
exists. In this case, unlock the lock, abandon the environment, and.
restart the machine conditions. The processor will then proceed to
use that page. In the second case, the page could be being read in
now, and is out-of-service on a read ("short page fault"). In this
case, develop the wait event for the PTW and proceed to step 18.

11. Check for an error bit (ptw.er) set on by the interrupt side at the
completion of a read from a previous page fault. If .there was a read
error, it turned on this bit (See "Error Strategy", Section VIII) and
notified this process, so that it might take the fault over again and
perform this step. Turn off the error bit, abandon the environment,
unlock the lock, and transfer to the signaller (signaller$signaller)
to cause the faulting process to signal page_fault_error.

12. Invoke the page-reading function (read_page) to find a main memory
frame for the page and begin (and possibly complete) reading it in.
This operation might possibly perform non-local exits in the case of
record quota overflow (in which case that condition will be signalled
in a manner identical to the signalling of page_fault_error in the
previous step) or physical volume overflow (in which case the SDW will
be faulted, the environment abandoned, the lock unlocked, and the
machine conditions restarted to produce a segment fault). If the
page-reading function encounters an RWS in progress on the page
faulted on, set the abort bit ('pdme.abort) in the PDME for that page,
causing the interrupt side to resolve the page fault (See "I/O
Posting", Section VIII) with an "RWS abort", and proceed to step 18 to
wait for this occurrence.

13. Meter this page fault. Compute the main memory usage charge of this
process. Meter ring zero, directory, per-process, and level-one page
faults. Compute the page-fault interarrival time histogram (displayed
by print_paging_histogram) in the segment page_fault_histogram.

14. Execute the replacement algorithm write-behind function. This will
cause writes to be queued, while the page read started by step 12 is
in progress.

15. Now meter time spent processing this page fault.

16. If the page faulted on is not out-of-service, i.e., was either
completely read in by step 12 or posted as complete by some actions
occurring during step 14, the page fault is complete, and satisfied.
Unlock the lock, abandon the environment, and restart the machine
conditions. The process and processor will proceed to use that page.

17 • The process must be made to wait for that page. If the page is
involved in a bulk store transfer, "run" the bulk store (see "DIM
Interface", Section VIII) until the page is no longer out-of-service,
at which time go to step 16.

18. The process must be made to wait for a disk or RWS event. The
page-reading function (or step 10) has developed the wait event.
Transfer into the traffic controller environment as described in
"Stack Management and Traffic Controller Interface" in Section VIII,
causing the process to wait for this event, unlocking the lock, and
abandoning the environment.

19. When such an event has occurred, or at least probably occurred, the
traffic controller will transfer to page_fault$wait_return to restart
the machine conditions. There is no page control environment or stack
frame, and the page table lock is not locked. If indeed the interrupt
side has posted this page, the process will resume and use the page.
If indeed it has not (either the wakeup was spurious, as it is allowed
to be, or the page has again been paged out in the window, the
sequence of events starting at step 1 will be repeated.

9-3 AN61

SERVICES FOR S~GMENT CONTROL

Page control fills page tables and AST entries with information supplied by
segment control, reports that information back to segment control as it changes
dynamically, and performs operations upon those segments on behalf of segment
control. The latter. operations include truncating active segments, and evicting
all of their pages from main memory and/or the paging device, so that segment
control can deactivate the segments.

All of these functions, among others, are implemented in the PL/I program
"pc". This program has available to it, via the transfer-vector "page", most of
the functions in ALM page control described in the last section. Other than the
activation-time service (fill_page_table), all of these operations are performed
under the protection of the global page table lock. The program pc, as well as
the other programs in call-side page control, use the entries pmut$lock_ptl and
pmut$unlock_ptl to wire the current stack (3 pages of PDS), mask to sys_level,
lock the page table lock, and undo all of these operations. In many cases, the
entry page$cam is called before any unlocking (including that performed by the
call-side wait coordinator) to make sure that any changes to PTWs are noticed by
all of the system processors.

Actiyation-Time Service

This is the only fundamental service of page control that does not involve
the page table lock. The entry pc$fill_page_table is called by segment control
and the hierarchy salvager (among other parts of the system) to transform a file
map in a VTOCE (see Section II) into a page table for use by page control. The
routine is passed the AST entry painter, the current length of the segment, and
the PVT index to which the addresses in the file map refer. This routine does
nothing more than translate the segment-control format addresses (see "Record
Addresses" at the beginning of Section VI) and convert them into page-control
format disk record addresses and null addresses, placing them in the PTW device
address fields (mptw.devadd), initializing the rest of the PTWs as it goes. The
PTW "first" bits, for the first-time PD performance optimization (See
descrip·tion of sst. ptw_first in Section VI) is initialized from that SST
variable. A check is made, for each live address passed in, that it is indeed
marked as "used" in the FSDCT (via a call to page$check_devadd). It is for this
reason that the PVT index is passed as a parameter. This detects introduction
of re-used device addresses into page control.

This service may be performed without the page table lock being locked.
The caller guarantees that the segment whose page table is being filled is
inaccessible, that no SDWs point at its page table, or will be made to point to
it until after pc$fill_page_table returns. The check for reused addresses may
also be made without the global lock locked; if the address is not reused, it
will not be deposited in any possible window. If it is reused, it will stay
that way whether or not the lock is locked.

9-4 AN61

File-map/Activation Attribute Reporting

Segment control requires a reporting of the status of a segment and its
addresses both at the time the segment is deactivated and at the time of the AST
trickle. This information is used to update the VTOCE of the segment. The
state of the addresses reported by this service to segment control is critical:
it is a basic feature of the address management policy (see Section VII) that no
nulled address ever be reported to a VTOCE file map. Thus a critical part of
the file-map reporting service is the determination of whether or not an address
should be reported to segment control at all. Part of the information returned
to segment control is a list of nulled addresses that are to be deposited
(returned to the free pool). The activation attributes of the segment are
reported to the caller by filling in a complete copy of the AST entry for the
segment, from a copy made under the protection of the page table lock. This
copy must be made under the page table lock, in order for the "records used",
"current length", and other fields to be consistent with themselves and with the
list of addresses and list of addresses to be deposited that are returned.

Another action performed by the activation attribute reporting service is
the maintenance of the "date-time-used" and "date-time-modified" fields in the
AST entry. These fields are updated conditionally, depending upon the
transparency attributes of the activations (see Section II), and the "file
modified switch" (aste.fms).

All live addresses are reported to the VTOCE file map buffer passed in.
Wholesale null addresses (representing no assignment of a record of disk) are
also reported to this file map. The action taken for a nulled address depends
upon several factors. A nulled address found in a PDME or CME (page on paging
device or in main memory) must remain there; as long as a page has a frame of
main memory or a PD record associated with it, it ~ have a disk record
associated with it. A special nYll address (get_file_map_vt_null_addr, see
"null_addresses.incl.pll") is reported to the VTOCE for that page. The VTOCE
will record no assignment for that page, as the nulledness of the address
implied that the record of disk does not contain the page. A nulled address
found in the PTW implies that the page has no main memory frame or paging device
record associated with it (only disk addresses can be nulled). Normally, the
action taken in this case is to report the address, not to the file map, but to
a list of such addresses returned to" the caller (the deposit list). The PTW is
changed to contain a nMll address (get_file~map_vt_null_addr, again), and the
caller is responsible for depositing all of the addresses in that list once it
is known that the VTOCE has been successfully updated with the record address
being deposited no longer in it. However, there is a class of circumstances in
which the file-map reporting function may be inhibited from "culling" nulled
addresses in this way. In these cases, nulled addresses in PTWs are left
~ntact, and nQ1 reported to the deposit list of the caller. The caller may
specify this behavior by passing the pointer to the deposit list as a null
pointer. This action is also taken for segments with the switches aste.ehs and
aste.dnzp both on. Such switches are set for hardcore segments in the normal
AST used lists (and thus subject to AST trickle) which are prewithdrawn (such as
the PDS of most processes). This action makes sure that prewithdrawn addresses
stay withdrawn, i.e., are not deposited. See "Special Casing of Per-Process
Hardcore Segments" in Section IV for motivation for this action.

The procedure pc$get_file_map is called with a pointer to the AST entry
about which information is sought, a pointer to an ASTE image into which the AST
information is to be copied, a pointer to a file map area in a VTOCE, into which
the file map is to be placed, and a pointer to an array into which to put the
deposit list. (As stated above, this pointer may be null). It returns, in
addition to filling up the ASTE image, file map, and deposit list, a count of
addresses put in the deposit list.

AN61

The procedure pC$get_file_map is also responsible for converting the page
control format addresses into segment-control format (see Seciion VI), and
turning off the bits aste.fms and aste.fmchanged (see Section II), indicating
that any modification or file-map change for the segment has been noticed, and
any further modification must be noticed independently.

Deactivation Service

(pc$cleanup)

At the time a segment is deactivated, any pages it may have
or on the paging device must be evicted from these media. This
satisfy the definition of a non-active segment, and to stabilize
the AST entry and file map.

in main memory
must be done to

the state of

The routine pc$cleanup is supplied a pointer to an AST entry for a segment
to be so processed. The caller has ensured that no agency can bring pages of
this segment in, either by having performed a "setfaults" operation on the
segment, or being the only agency that has ever had access to the segment.

This routine is a prime example of routines that use ALM primitives and the
multiplex wait protocol to process the pages of a segment in parallel, achieving
state transitions by determ~nistic step.

Witb the page table lock locked, the following actions are performed for
each page of the segment. The actions are repeated by reiterating over the
segment until all pages of the segment are off the paging device, not undergoing
RWS or paging 1/0, and out of main memory. All addresses at that time will be
in the PTWs.

1. Any page that is out-of-service (being read in or written out, perhaps
by an earlier loop) has its wait event remembered, for potential
waiting via the multiplex wait protocol.

2. Any page in main memory that is not out-of-service must be evicted;
if it is modified (ptw.phm)· the page-writing and purification function
of ALM page control is invoked to purify it. If this puts it
out-of-service, the PTW wait event is remembered for the multiplex
wait protocol.

3. Any pure page is evicted by turning off its access bit and clearing
the system caches and PTW associative memories via a call to
page$cam_cache. If the page was modified in this window, restore the
access and go back to step 2. The page then requires writing. If the
page was successfully evicted, perform eviction cleanup (See Section
VIII) not by a call to cleanup_page, but by inline PL/I code.

4. If the page still has a paging device record associated with it at
this point (one may have actually been assigned in step 2, but this is
rare), invoke the PD eviction subroutine (flush_one_pdrec) of pc to
start an RWS, evict the page, or remember an RWS wait event as
appropriate.

Wben all of the steps above have been performed for every page in the
segment, and no steps (1, 2, or 4) remembered a wait event, the cleanup is
complete.

9-6. AN61

Call-Side PO Eyiction Subroutine

This powerful subroutine is called by several services in the program pc,
notably the deactivation service, PD reconfiguratioQ seryice, truncation,
post-crash-flush and shutdown services.

It is called with the variable "pdmep" pointing to a PDME describing a PD
record that is to be vacated. The entries "flush_one_pdrec" and
"delete_one_pdrec" differ only in the actions taken at the time the PD record is
taken out of use; in one case the PDME is returned to the free list,and in the
other case it is marked as deconfigured. Both of these entries evi~t the page
from the paging device. The ent~y "truncate_one_pdrec" , on the other hand,
causes the destruction of the page, and the freeing of its PD record.

This subroutine, when not "truncating", starts an RWS for a PD record (via
a call to page$pd_flush), which is modified with respect to disk, and not
already undergoing RWS. It sets the multiplex wait variable Hind" to wait for
any RWS that it starts (and does not find finished), or for any page
out-of-servibe for paging 1/0. For pages on the paging device not modified with
respect to disk, it updates CMEs and PTWs, and frees or deconfigures the PDME.

One form of eviction from the paging device that is unique to this
subroutine is that performed ~~r pages in maln memory (although not undergoing
paging 1/0). The paging devi;e replacement algorithm does not evict pages from
the paging device which have 00pies in main memory, because this is considered
evidence of recent use. When eviction for such pages mus~ be performed, ho~ever
(as is the case in all call-side entries that need it), it is very simple to
effect. The disk address from the PDME simply replaces the paging device
address in the CME. The PDME"modified" bit (pdme.mod) is "or'ed" into the PTW
"modified" bit (ptw.phm), using a key-line instruction. This causes the page to
be written out to disk when it is evicted from main memory, in the. case where
the paging device contents were different from the copy of the page on ~isk, but
the same as those in main memory.

This subroutine must not free PDMEs for PD records that have undergone RWS
on behalf of the post-crash PD flush.'

This subroutine sets "notify requested" bits in CMEs and PDMEs when it
returns a wait event. This is superfluous, as the call-side wait coordinator
will do this if such wait event is actually passed to it.

Truncation Service

The truncation of segments is performed for bot~ segment control (from the
Segment Control Truncation functitin(See Section IV}) and' for supervisor
subsystems that deal with non-hierarchy segment.s, in order to free thei.r disk
record resources.

9-7 AN61

Truncating a segment to length n (n given in pages) involves truncating all
pages of page number equal to or greater than n. Truncating a page means
associating zeros with the contents of that page; in fact, the actions performed
to truncate a page in main memory are identical to those taken by the
page-writing function (see Section VIII) when a page of zeros is discovered.
Truncating a page which is neither on the paging device nor in main memory
consists of no more than nulling its disk address (and updating the. necessary
ASTE quantities and quota cells). Recall that a nulled address i~ paged in by
the page-reading functions as a page of zeros. Truncating a page on the paging
device, whether or not it is in main memory, involves freeing the associated PD
record by placing the PDME for it in the PD used list.

Truncating a segment consists of little more than performing the above
actions, as is the case for each page. For pages that have paging 1/0 gOing on
(ptw.os is on), the completion of this 1/0 is awaited via the multiplex wait
protocol, For pages on the paging device, the call-side PD eviction subroutine
(see preceding) is invoked (at the entry "truncate_one_pdrec"). Among the
actions taken by this subroutine is the remembering of any RWS in progress on
that page, for later waiting via the multiplex wait protocol. When all pages in
the segment have been processed and no wait events remembered, the truncation is
complete.

A large part of the complexity of the segment truncation primitive is the
determination of whether or not a page being truncated was charged against
quota. Basically, any page in main memory is charged against quota. Any page
with a live disk address is charged against quota. Those pages with null
addresses, or with nulled addresses but not in m~in memory, are not charged
against quota.

At the end of the processing, the ASTE fields describing the number of
records used and the current-length of the segment are updated. If quota
checking is not inhibited for this segment (i.e., aste.nqsw is off), the quota
utility quotaw$cu_for_pc is called to adjust the quota account against which the
segment's record quota is charged. If any pages were actually truncated, the
file-map-changed bit (aste.fmchanged) is set, indicating that segment control
should update the VTOCE as soon as convenient, for addresses can be deposited,
and must be r~moved frpm the VTOCE. Segment control's VTOCE update function
will do both these things.

The page control truncation service does nQ1 require that no other agency
in the system be creating pages while it is trying to truncate them. That is
the problem of the subsystem or user code whicn invoked the storage system's
truncation facility, not of page control. The only issue here is that the
truncation service must be quite careful to multiply count pages it truncates
multiple times. It is impossible for malice or accident to force the truncation
service into a loop by so doing: only when the page table lock is unlocked while
pc$truncate waits can such pages be created. The user cannot force paging-ins
of nonzero pages in the truncated region, or their paging-out, or RWSs which are
the only activities that will cause pc$truncate to wait.

The arguments to pq$truncate are the AST entry pointer of the segment and
the length (n) to which it is to be truncated.

9-H . AN61

Boundsfault Service

The segment control processing of a boundsfault usually involves the
allocation of a new ASTE/page table pair for a segment, and the establishment of
that ASTE and page table as the sole ASTE/page table for that segment. From the
segment control side, the most critical operation here is the hashing of the old
one out of the AST hash table, and the hashing of the new one in.

However, when such an operation is performed, if there are pages of the
segment on which the boundsfault has taken place in main memory or on the paging
device, there are page control data bases that describe the original ASTE and
page table (PTWs) of the segment. Sometime during the processing of a
boundsfault, page control must be invoked to construct a valid page table for
the new ASTE, and modify all page control data bases that referenced the old
ASTE/page table to reference the new one. This service is provided by
pc$move_page_table, called with the two AST entry pointers involved.

It is also critical that all of the page control maintained data items in
the ASTE be copied from old to new during the ,same locking of the page table
lock (only one such locking will be required, there is no I/O involved) as that
which the page table .is reconstructed. This must be so in order that the
interrupt side will reference the correct ASTE should any I/O on this segment
complete, and so that any paging-out activity will do the same. The caller of
pc$move_page_table (the bou~dsfault handler of segment control) ensures that
neither ASTE is accessible, i e., no process can access the segment on which the
boundsfault has taken place.

The task of the page control boundsfault service is simple: all pages in
main memory or on the paging device or on disk remain exactly as they are,
whether or not I/O or RWSs are in progress on them. The essence of the task is
to walk the old page table and new page table in parallel, chasing down any CMEs
or PDMEs deSignated by the PTWs in the old page table, and changing the pOinters
in these CMEs and PDMEs to point to the new page table. The old PTW contents
are copied to the new PTWs. The ASTE relative-pointers in the CMEs are
similarly modified. The PTWs in the extent of the new page table beyond the
extent of the old are similarly modified. The page table lock remains locked·
during the entire operation, ensur~ng that no process can use the data objects
or change their state while they are being modified. Before the lock is
unlocked, the entire ASTE contents (other than its threads and pool number) are
copied from the old to the new ASTE.

One subtlety of the boundsfault service requires some clarification. The
relative offset of PTWs into the SST segment is used as a wait event ID by
processes awaiting the completion of non-RWS paging I/O (See "Wait Events", in
Section VIII). When the page table has successfully been moved, the interrupt
side will post any I/O whicn completes after that point by notifying the event
ID associated with a ~ PTW. Thus, processes waiting for the page which began
this waiting before the page table was moved are no longer waiting for the
correct event, and will not be notified. Thus, the boundsfault service
explicitly notifies any PTW event for which the CME notify-requested bit is on.
This causes any process waiting for a PTW event associated with the old page
table to run; when it successfully locks the page table lock, it will retry
whatever it was doing, either via taking a segment fault or a page fault, and
ultimately find the new PTW, and go to wait on that.

AN61

Modified-Switch Setting

(pc$updates)

Directories are normally activated with the transpa~ent-modification
attribute (see Section II for more illumination). ThLs means that changes to
the contents of the directory do not cause the file-modified switch of the
directory to be set. This, in turn, means that the date-time-modified of a
directory or its superiors is not advanced solely by modifying a directory.
Although this convention dates from times when date-time-used was stored in.a
directory (it is now in the VTOCE for a segment) and change to this field had to
be made without updating the date-time-modified of the directorYt there is still
a small class of operations (segment moving and online-salvaging) which modify
directories in ways such that the directory date-time~modified should not be
advanced.

The date-time-modified of a directory is defined recursively as the latest
date-time-modified of any segment or directory under it, or such time that t~
directory was explicitly modified by directory control. In the case whe~
segments are modified, the page control page-writing function notices the
"modified" bit in the PTW (See "page-writing function" in Section VIII), and
turns on the file-modified switch (aste.fms) in the ASTE of that segment and all
of its superior directories (this bit is reported by the file-map and
activation-attribute. reporting service described earlier in this section). For
the case of explicit modification of directories by directory control, an
address-space management utility (sum$dirmod), to update certain fields of the
directory. One of the actions taken by this program is to obtain an AST entry
pointer for the modified dire6tory via a call to "activate" (See "Significance
of Activate," Section IV) and pass it to pc$updates. This entry, with the page
table lock locked, does no more than chase up the ASTEs from that ASTE o~ up
setting ASTE "fms" (file modified switch) bits explicitly.

POST-CRASH PD FLUSH

The management of the paging device is such that it contains information
(copies of pages) that is not identical to copies of the same pages on disk.
Records containing such pages are called "modified" PD records. In order to
evict such pages from the paging device, a read-write sequence (RWS) must be
performed. Part of the task of shutdown, normal or emergency, is to flush the
paging device, i.e., evict all pages from it. This implies read-write sequences
for all "modified" PD records. However, should a successful shutdown not be
possible, the "modified" records of the paging device contain information
duplicated nowhere else. The next bootload of Multics must copy the contents of
these records back to the disk records to which they belong. This is known as
repatriation of these pages. Repatriation of pages that had nulled disk
addresses also involves resurrection of these addresses, implying modification
of VTOCEs. The post-crash PD flush is the page control service that performs
these tasks. -

AN61

The paging device may be said to come in instances. An instance of a
paging device is the paging device, its map, and all the pages which have ever
been on it from the time that map is initialized, to the earliest of a
successful shutdown, or flushing of the last record off of the paging device by.
post-crash flush, or abandonment by the operator "force_pd_abandon" ring-1
command (see the Multics Operators' Handbook, Order No. AM81). An instance of
the paging device exists during only one bootload if that bootload shuts down
successfully. Otherwise, it may exist during two or more bootloads. An
instance of the paging device is uniquely identified by the "paging device
time," the field pdmap_header.time_of_bootload, set to the clock time at which
the paging device map was initialized. This field, along with the rest of the
paging device map, is written out to the first few records of the bulk store
every second by the PD housekeeping function in the page-fault handler. It is
also written out by explicit calls to pc$write_pdmap.

An instance of a paging device that was created during the current bootload
is said to be an active paging device; the system is said to have an active
paging device. The bit fsdct.pd_active in the FSDCT header indicates this. An
instance of a paging device that was created during some boot load other than the
c~rrent bootload, and not successfully flushed (i.e., successful shutdown was
not achieved) is called an unflushed paging device. When a hierarchy (or a
bootload) has a paging device in this state, the system is said to have an
unflushed paging device. The bit fsdct.pd_unflushed is on when this is the
case.

Whenever a physical vOlume is accepted by a system with an active paging
device, or an instance of a paging device is created (the paging device becomes
active) during a bootload, the physical volume is said to have been exposed to
that instance of the active figing device. Whenever a physical volume is
accepted, the paging device time of the instance of the active paging device, if
there is one, is written to the label of that volume before any segments 6n it
are allowed to be activated. Whenever a paging device is made active during a
bootload, a call is made (to the program fsout_vol, for each volume, see Section
XIV) to write the paging device time to the labels of all volumes before that
paging device is actually made available to the PD record allocator. Thus, any
physical volume contains in its label the PD time of the last instance of the
paging device to which it was exposed.

The label of the root physical volume (RPV) contains a bit
(label.pd_active) which says whether it, and therefore the entire hierarchy
which it commands, was exposed to an active paging device, this bit being
cleared when the system is successfully shut down. If the system comes up after
a crash and this bit is on, then the system must have an unflushed paging
device, otherwise the system would have been successfully shut down and that bit
cleared. Thus, the paging device map is read from the bulk store, and the PD
time in the PDMAP header compared to that of the instance of the paging device
to which the RPV was last exposed. If these are not the same, tHe paging device
contents have been damaged (probably by the use of another hierarchy) since that
RPV was last used (and not shut down). The system will not come up in this
case; the operator must zero the paging device. If the system finds the paging
device time on the bulk store zero, when the RPV was indeed exposed to an active
paging device and not shutdown, it implies that the operator cleared it. A
message is typed, and a new instance of the paging device is created. If the
times indeed match, however, the system has an unflushed paging device, which
must be flushed. The bit fsdct.pd_unflushed is turned on to this effect. All
of th~ records of the paging device that are not "modified" have their PDMEs
cleared (set to zero). Those marked as "deleted" by the PAGE CONFIG card (see
"PD Reconfiguration" later in this section) are deleted. The state of the
"modified" PDMEs left by these actions is regularized. There is no PD used list
on an unflushed paging device. The map is written out in its new state. The
records on th~ paging device will be repatriated as volumes are accepted. The
manipulations described above are all performed in the program "init_pvt".

9-1} AN61

Whenever a physical volume is accepted by the system, it can tell whether
or not it has been successfully demounted. Shutdown, it will be recalled,
demounts all volumes (See Section XIV). Whenever a physical volume that has not
been shut down is accepted, the physical volume salvager is invoked by volume
management to salvage it. This physical volume salvaging, among other things,
reconstructs the map of free· addresses, and checks each VTOC ~ntry (VTOCE) for
consistency.

Whenever a physical volume that has not been successfully demounted is
accepted by a system with an unflushed paging device, there exists the
possibility that that volume was exposed to that instance of the paging device.
If the volume was" shut down successfully, it cannot have any records on any
instance of the paging device. Only volumes present at the time of the crash
can have records on this instance, the unflushed, current instance, of the
paging device. Those volumes are exactly the set of volumes not successfully
demounted which were exposed to this instance of the paging device. Whenever a
volume that was not successfully demounted is accepted by a system with an
unflushed paging device, comparing the PD time in the label of that volume to
the PD time of the current, unflushed, paging device tells whether or not this
is the case. Such a volume is said to have been exposed 1.Q .an un flushed PD.

Whenever a volume exposed to an unflushed PD is being salvaged, records on
that paging device will be repatriated to that volume. The task of identifying
these records is facilitated by the recording of the physical volume table index
of the volume containing the page in the PDMAP entry. This PVT index identifies
the drive on which the volume was mounted during the boot load that crashed,
which may not be the same as during the current bootload. However, the physical
volume table index, as well as the PD time, is recorded in the pack label at the
time the volume is "accepted. Since the volume is guaranteed not to have been
successfully demounted, it is impossible that any other volume could have had
that PVT index after that during thatbootload, and hence have pages on" the
unflushed paging device. Thus, by comparing the PVT index in the volume with
that of each disk record stored as the "devadd" in a PDMAP entry, it can be
determined precisely whether that PDME describes a record to be repatriated to
this pack, and if so, to what disk address.

Repatriating the pages is only half of the task. Many of the "modi~ied"
pages on the paging device contain pages that were never written to disk; their
entries in the file map of their segments' VTOCEs contain null addresses. Thus,
simply writing back these pages to the disk is not enough, as a fault on that
page will produce zeros, as the address in the VTOCE is null. Thus, in effect,
such repatriations are resurrections; live addresses must be reported to the
VTOCE. It is for this purpose that segment unique ID and page number are stored
in the PDMAP entry. As each VTOCE (each segment) of a physical volume exposed
to an unflushed paging device is processed by the physical volume salvager, a
special service of" page control (pc$flush_seg_old_pd) is called, passing the
address of the file-map region of the VTOCE image, the old and current PVT
indices of the physical volume, and the UID of the segment whose VTOCE is being
processed as input parameters.

The entry pc$flush.-:seg_old_pd scans the entry PDMAP looking for PD records
containing pages belonging to this segment; such entries have a matching UID,
placed there by the PD record allocator (see Section VIII). For each such
entry, an RWS is initiated by the use of the call-side PD eviction subroutine,
flush_one_pdrec (see earlier description in this section). All of these RWSs
are performed in parallel, and waited for in parallel via the multiplex wait
protocol. A speCial bit (pdme.flushing) is turned on before each RWS is
initiated, so that the interrupt side will neither clear ~or free the PDME (see
"I/O Posting", Section VIII). In order for the RWS mechanism to work, the PVT
index in the PDME must be the PVT index of the volume in the current bootload,
if the volume has moved. Thus, before invoking the call-side PD eviction
subroutine, pc$flush_seg_old_pd saves the old PVT index in mpdme.save_old_pvtx,
and places the new one in. This is done so that should the system crash during
the processing of this segment, the next bootload can detect this (pdme.flushing
will be on), and cleverly place the old PVT index back.

AN61

As the interrupt side completes each such RWS, it leaves the PDME intact.
In all cases except the case of RWS (read or write) error, the disk address in
the PDME will be a live disk address (RWS completion always causes a
resurrection, if the disk address was nulled). However, a null address will
have been left by the interrupt side if there was an error. In all cases except
the last (RWS error), the live address from the PDME is moved to the appropriate
slot in the VTOCE file map passed in as an argument (pdme.pageno says which
slot), and two output parameters, representing segment current length and
"records used w, are adjusted if a resurrection took place. The PDME is then
zeroed, but not freed.

The post-crash PD flush repatriation
time required to do a physical volume
scanned for each VTOCE processed.

procedure substantially increases the
salvage, as the whole PD map must be

The placing of a UID in a PDME
the last time the map was written out
PD record. Were this not the case,
segment.

ensures that there are no windows between
and the last time data was written to that

the wrong data might be flushed to some

After all VTOCEs have been processed by the physical volume salvager, a
special primitive (pc$cleanout_old_pd_pv) is called to clear PDMAP entries for
"parasite" segments (i.e., those with no VTOCEs), such as descriptor segments on
the RPV (see Section VII). This primitive also checks that no records exist on
the paging device which belonged to the volume being salvaged; they should all
have been repatriated. If there are any, very little can be said or done about
them, and nothing would be gained by crashing the system. An informative
message about the curiosity is typed out.

SHUTDOWN AND DEMOUNTING SERVICES

The aims of both shutdown and demounting are to ensure that the paging
device and main memory contain no pages of a set of physical volumes; in the
case of demount, it is one physical volume. In the case of shutdown, it is all
of the volumes present. Demounting causes this to occur by deactivating all of
the segments on the volume. Shutdown, however, although it goes through the
demount procedures for all volumes present, does not attempt these
deactivations.

Shutdown flushes the paging device (evicts all pages on it) as early as
possible. This is so that the system should not have an unflushed paging
device, should shutdown fail. Obviously, only active paging devices can be
flushed. The entry pc$pd_flush_all exists for this purpose. It calls the
call-side PD eviction subroutine flush_one_pdrec (see earlier description in
this section) to flush each page off of t~e paging device (initiating RWSs if
modified), and uses the multiplex wait protocol to multiplex the wait events.
When this routine returns, the paging device may be declared inactive.

Shutdown also flushes all of main memory before doinS its update_vtoce
loop; this is so that any disk record addresses for pages in main memory (the
paging device has been flushed, as above, at this time) are resurrected prior to
the VTOCE updates. The routine pc$flush is called for this purpose. It calls
the page writing/purification function in ALM page control (See description in
Section VIII) to initiate writes on all pages that are modified with respect to
main memory. AlII/Os are awaited (whether or not this action started them)
via the multiplex wait protocol. This action also causes all pages of zeros in
main memory to be evicted, nulling their addresses.

9/78 9-13 AN61A

I

Normal and emergency shutdown call the primitive pc$write_pdmap several
times to write out the PD map t6 the bulk store when significant changes to its
state are made. Writes performed by this primitive are done via using the
segment pdmap_seg as an abs-seg over the bulk storej such writes are done via
calls on the page-writing function in ALM page control, and are posted normally
via the interrupt side. This does not conflict with writes to the map performed
by the PD housekeeping function, which may even be going on simultaneously; .~
these writes do not involve PTWs or CMEs, and will not even be reported by the
bulk store DIM to the interrupt side upon completion. The function is also used
by PD Reconfiguration, see Section X.

Volume demounting does not require any special services from page control;
all of the flushing of pages out of main memory and off of the paging device are
performed by pc$cleanup, invoked by segment control when segments on that volume
are deactivated (see Section IV). However, a special entry in page control is
called by the volume demounting function after all segments have supposedly been
deactivated. This entry, pc$check_p~demount, does no more than check that no
pages belonging to that volume are still on the paging device. This is solely
as a check for bugs; it should never be the case that there are such records.

RECORD ADDRESS DEPOSITING SERVICES

pc$deposit_list
pc$list_deposited_add
pc$truncate_deposit_all

Page control, as the maintainer of the FSDCT bit maps for mounted volumes,
is charged with the depositing of addresses on behalf of segment control" and
other agencies.

The entry pc$deposit_list is called with a "deposit list", an array of
addresses to be deposited, and a PVT index identifying their volume. Such a
"deposit list" is produced by the file-map reporting service (pc$get_file_map),
and by the segment control segment truncation facility in the program
truncate_vtoce. The number of entries in this array is also a parameter.
Basically, this entry does nothing more than iterate over the array supplied and
call the withdraw/deposit mechanism in the program free store (See "Individual
Mechanisms" in Section VIII) with" each address and the PVT index. This
operation is performed without the protection of the page table lock: depositing
is a unitary operation that involves no races, as only one process can deposit a
given address at one time.

The entry pc$list_deposited_add is an entry that performs that function of
the file-map reporting service which is the reporting of nulled addresses and
their replacement in PTWs by null addresses. This entry places the addresses so
gathered into a "deposit list", such as that accepted by pc$list_deposit above.
This operation must be performed under the protection of the page table lock.
The criteria for reporting an address are the same as those in pc$get_file_mapi
i.e., the address must be nulled and in a PTW. Addresses so reported are
replaced in the PTW by the null address "list_deposit_null_addr" (See
null_addresses.incl.pl1). This entry is used by code dealing with non-hierarchy
segments, such as some initialization code, and by the segment mover (See
"Segment Moving" in Section IV).

The entry pc$truncate_deposit_all is a macro operation consisting of
successive calls to pc$truncate (to zero length), pc$list_deposited_add, and
pc$deposit_list. It is used to destroy RPV parasite segments (e.g., PRDSs and
descriptor segments). It is supplied an AST entry pointer as an argument.
There is no window between the truncation and the depositing: these seg~ents
have no VTOCEs, and are not under consideration by any subsequent bootload •.

9-14" AN61

PAGING DEVICE RECORD DELETION

The paging device reconfiguration service is
"Peripheral Services of Page Control", as it does
mainstream of page control, and in general only deals
device records. However, one part of the paging device
involves taking paging device records out of use. This
services of the kernel of page control.

described in Section X,
not interact with the
with deconfigured paging
reconfiguration software
involves the use of the

All paging device reconfiguratidn
delete_pd_records, which wires itself via the
X) when invoked. In all cases except the use
it deals with unflushed paging devices and
involve PTWs, CMEs, or pages of segments.

is managed by the
wire_proc mechanism (See
o~ the "delpage" operator
deconfigured records. It

program
Section

command,
does not

However, the "delpage" operator command may involve the eviction of pages
from in-use paging device records. In this case, delete_pd_records, which is at
that point running masked and wired with the page-table lock locked, invokes the
entry pc$delete_pd_records with the first index and number of paging device
records to be deleted. Using the call-side PD eviction subroutine,
flush_one_pdrec (called at the delete_one_pdrec entry) (See earlier description
of thiS subrdutine), this routine evicts pages, starting RWSs where necessary,
and waiting for all paging and RWS I/O via the multiplex wait protocol.

The eviction of pages from PD records performed for record deletion is
different from those evictions performed for deactivation, truncation, or the PD
replacement algorithm, etc., llsofar as the PDME for the PD record is not to be
threaded into the PD used list, but left out, with a word of all ones set in its
thread word. This marks the "deconfigured" state of the paging device re60rd.
When a nonmodified page is evicted by delete_one_pdrec, this subroutine performs
this deletion. Otherwise, the bit pdme.removing is set on before or during RWS,
so that the interrupt side (See "I/O posting" in Section VIII) will deconfigure
the record instead of threading the PDME into the used list.

Paging device records are also deleted automatically by the interrupt side
when paging device I/O errors have occurred; see "Error Strategy" in Section
VIII.

FORCED SEGMENT I/O AND WIRING

Several agencies in the system have the need to "wire" portions of segments
(make their pages nonremovable from main memory). In some cases, this is
accomplished by turning on "wired" bits in the PTWs for tbe affected pages and
simply touching them. This technique is generally used to wire regions of
stacks. A less ad-hoc facility is available though, through the entries
pc_wired$wire, pc_wired$wire_wait, and pc_wired$unwire. Typical uses of this
facility are for wiring data bases to be used at interrupt time by facilities
that "are not always enabled (such as the ARPANET software), and by wire_proc,
the manager of procedure-wiring requests (described in Section X), which
temporarily wires procedures that must not take page faults.

AN61

The program· pc_wired implements all of these functions, along with a few
others described below. In all cases, it is passed the AST entry pointer for
some segment (it is the caller's responsibility to ensure that the segment is
either a supervisor segment or cannot be deactivated while pc_wired is operating
upon it), a first page number, and a number of pages to be
read/written/wired/unwired. In all cases, a number of ~ages of -1 indicates
that all pages from the "first page" specified to the end of the segment are to
be read/written/wired/unwired.

The service provided by pc_wired$wire_wait is the most often used. It
wires the pages of the segment specified, if they are not already wired, and
does not return until they are all in main memory. it operates by turning on
all of the "wired" bits in the affected PTWs that are not already on, and
initiates reads via calls to the page-reading function (See Section VIII) via
the transfer-vector page$pread. All 1/0 operations on these pages, whether
noticed or started by this module or reported back by page$pread (which may
include FSDCT pagings, RWS events, etc.) are awaited via the multiplex wait
protocol, until all specified pages are in main memory, with no 1/0 in progress
on them.

The service provided by pc_wired$wire is similar, but it does not retry
calls to ALM page control or wait for liD completions. Thus, its effect is
little more than to turn on all of the wired bits involved and start some of the
I/Os. This service is not particularly useful, and is not used.

The service provided by pc_wired$un'wire is commonly
unwires the pages wired by either of the two above entries.
is nothing ~ore thari turning off the PTW "wired" bits.

used. It simply
In all cases, this

The module pc_wired also provides a set of services to perform paging 1/0
on demand upon segments. These are used by the physical volume salvager to
pre-page (i.e., start asynchronous paging-in) segments used to address VTOCs,
and by the segment mover to force zero pages to be notiQed (and thus have their
addresses nulled) by the page-writing function (See Section VIII). A special
form of this service is available to the directory control directory unlocking
primitive, via pc_wired$write_wait_uid. This entry is used when a directory is
unlocked which directory control knows to have been modified; it causes all the
modified pages to be written from main memory (perhaps to the paging device) as
a hedge against crashing. It is different from the service provided by
pc_wired$wri te_wai t in that the calle"r makes no guarantee that the AST entry
pointer provided will remain valid during the operation of pc_wired; therefore,
a segment unique ID (UID) is supplied by the caller so that pc_wired can check
the AST entry each time the page table lock is relocked, to ensure that it still
designates the same segment.

The entry pc_wired$write_wait is the most generally used. Given that the
caller ensures that no process may be modifying the segment, it ensures that no
modified pages of the segment (in the range specified) exist in main memory when
it returns. The entry pc_wired$write performs similar actions, but does not
wait, and makes no s~atement about the state of the segment when it returns, and
thus is not used.

9-16" AN61

The entry pc_wired$read is used to start page-reads for all pages in the
range specified. It makes no guarantees about when these reads will be
complete; this is used solely as a performance optimization feature, for those
supervisor subsystems that can anticipate their page reference patterns. There
is no entry pc_wired$read_wait; if there were, it could not possibly guarantee'
that pages which it had read would stay in main memory when it returned, for any
paging activity at all could evict them. The concept of reading pages in
nonevictably is the concept of wiring, treated above.

The entries pc_wired$read, pc_wired$write, and pc_wired$write_wait all
operate by oalling the page-reading and page-writing functions in ALM page
control, and iterating in the "wait" cases via the multiplex wait protocol.

ABS-WIRING SERVICE

Peripheral device operation via the 10M (Input-Output Multiplexer) requires
oontiguous regions of main memory for data buffers. The 10M provides a faoility
whereby arbitrary user-supplied channel program~ may be run in a given region of
main memory, preventing them from damaging ottier regions of main memory via a
per-channel limit register. The same faoility also relocates addresses
appearing in such channel programs with respect to the base of the region, such
that the writer of such a channel program need not even know where in main
memory the channel program (and the data) will appear. The use of this facility
is managed by the I/O interfac~r.

A critical part of this facility is the ability to acquire successive page
frames of main memory that can be made to form a contiguous region. When
storage system segments are to be used as buffers for the 10M, they must be
paged into such regions of pages, in address order, .and not be evicted from
those page frames for any reason, including deconfiguration of memory. Such
pages may not be moved around main memory, as is done by some of the functions
described in Section VIII. Such pages are said to be nabs-wired", as are the
segments to which they belong at the time that their pages are in this state •

. The use of abs-wired buffers, Tor the 10M (and the FNP6600 Communications
Processor boot load software, through the 10M) is managed by a program called the
I/O buffer manager (iobm). This program calls the page control segment
abs-wiring service to allocate regions of main memory and aba-wire segments into
them. It uses timers and request queues to schedule re-use and unwiring of
these buffers. The I/O buffer manager also performs the unwiring of these
buffers when that act is appropriate; it turns off CME aba-wired bits and PTW
wired bits, operations that need not be protected by the page-table lock.

The program pc_contig is responsible for abs-wiring portions of segments.
To abs-wire a portion of a segment, a number of usable main memory frames equal
to the number of pages of the segment to be abs-wired must be found. A main
memory frame is usable if it is in a non-deconfigurable system controller, is
not deconfigured already, is not already in use by an abs-wired segment, and is
in the first 256K of main memory. All frames found must be in the same system
controller. (The issue of the first 256K involves an 10M design issue known 'as
"backup list servioe".

AN61

The entry pc_contig$wire is called with the AST entry pointer of the
segment whose pages are to be abs-wired, the number of the first such page, and
the number of such pages. It returns a core map entry pointer to the fi~st core
map entry of the region into which it allocated and paged in and abs-wired the
pages of the segment, from which the I/O buffer manager computes the main memory
address of the region. This pointer 'is returned as null if the requested
allocation could not be performed. A flag is also passed indicating whether or
not this entry has been called on the interrupt side; currently, it never is.

The entry pc_contig$wire locks the page table lock and scans the core map
for a sufficient number of usable main memory frames;. if there are not enough,
it tries several times to call the I/O buffer manager to release any frames it
possibly can which it is holding. Only if this repeatedly fails is the caller
informed that the requested allocation cannot be performed.

Once a region of main memory is decided upon, all pages currently residing
there are evicted via the demand eviction function described in Section VIII.
All I/O and RWSs in these frames are waited out. The pages of the segment to be
abs-wired are read in via the page abs-wiring function described in Section
VIII. For each page, this -reading does not commence until the previous contents
of the frame have been evicted, and I/Os already in progress there waited out.
All of these operations are paralleled and. waited for in parallel via the
multiplex wait protocol.

Another interface to the abs-wiring service is maintained for historical
reasons in the program pc_abs, at· the entries pc_abs$wire_abs and
pc_abs$unwire_abs. _ These entries are called w'ith AST entry pOinters, number of
pages to.be wired or unw~red, and the number of the first such page. In the
wiring case, this entry does nothing more than call pc_contig$wire. I~ the
unwire case, the CME nabs-wired" bits and the PTW "wired" bits are turned off,
again not· requiring the protection of the page-table lock. This s,et of
interfaces is currently used only by the ARPANET software to create buffers for
the Interface Message Processor (IMP).

MAIN MEMORY DECONFIGURATION SERVICE

The Multics Dynamic Reconfiguration Software (See the Multics
Reconfiguration fl,J1, Order No. AN71) ·provides the ability t.o take single frames
of main memory out of use, and to take many out of use in order to take an
entire system controller out of use. The commands which perform these
activities are the "delmain" and "delmem" commands (see the Multics Operators'
Hapdbook, Order No. AM81). Taking frames out of use in this way is performed by
the pa~e control main·memory deconfiguration service provided by the entry
pc_abs$remove_core. The entire power of this program is derived from the demand
eviction function described in Section VIII and the multiplex wait protocol.

The program pc_abs, when invoked at this entry, with the first frame n'umber
and number of frames' to be deleted, starts off by making legitimacy checks; the
system must be left with enough main memory to function, and no frame that
contains an abs-wired page may be deleted. The program wires itself via the
procedure temp-wiring service described in Section X, and locks the page table
,lock, 'masking and wiring its stack via pmut$lock_ptl (see Section VIII, "Lock
Conventions").

9 ... 18' AN61

The program iterates over the region to be deleted, assured of the
legitimacy of the request, turning on the "removing" bit (cme.removing) in the
core map entry for each main memory frame to be deleted. This ensures that the
main memory frame allocator (find core) will never allow this frame to be
allocated to a page; ~ ensures-the deterministic success of the eviction that
follows. The demand page eviction function is invoked on each frame that is not
already deleted, until all frames are deleted. The wait events returned by
page$evict are multiplexed by the multiplex wait protocol. Each frame from
which a page has been evicted, with no wait event, is threaded out of the main
memory used list, and given a thread word of -1.

The program returns, unlocking the page table lock, unwiring its stack, and
unwiring itself.

SERVICES FOR TRAFFIC CONTROL

Traffic control performs many services for page control, notably
implementing the wait/notify mechanism by which the waiting for of many page
control events occurs. Page control also performs three services for traffic
control: the loading and unloading of processes, and the post-purging of a
process.

Process Loading

The two critical pages of a process (the first page of the descriptor
segment and the process data segment (PDS» must be wired before a processor is
allowed to run in that process. A process in this state is known as loaded.
The loading of a process is performed at the time it acquires eligibility. The
loading of processes is performed by the program wired_plm, which has as its
sole entry point the entry wired_plm$load.

The process-loading function is different from any other service in page
control insofar as it performs its taSk on behalf of some other process than the
one in which it is invoked. The process-loading function is invoked from the
traffic controller's "getwork" routine (with the traffic control lock unlocked)
at the time a process is being made eligible. Since loading a process may
involve waiting for the reading (or RWS completion) of the two critical pages,
waiting must be performed if this is the case. The process that is currently
running in the traffic controller cannot and should not be made to wait for
these events, involved in the loading of some arbitrary process. Thus, the
process that is being loaded is made to wait for the events involved in its own
loading itself. The traffic controller will not try to run any process that ~s
waiting for an event, whether or not that process is loaded. When an event is
notified, the traffic controller will usually try to run a process that had been
waiting for that event. However, if that process is not loaded, a call will be
made to the page control process-loading function to achieve or continue the
loading of that process. Only when the loading function returns the result that
the loading of the process is complete does the traffic controller mark it as
"loaded", begin to run it, and interpret notifications of wait events in the
normal way.

AN61

Thus, when a process is made eligible (it is never loaded at the time it is
made eligible) a call is made to the loading function to start as many
operations as can be started in 'parallel to accomplish its loading. If the
process-loading function returns the fact that the process is loaded upon return
from this function, then that is the case. Otherwise, the process-loading
function returns a wait even~ of some operation that it started which was not
completed. Since the traffic controller will cause the process beLng loaded to
wait for that everit, and call the loading function back when that process is
notified, the effect is that of the process-loading function being called back
when that event has been notified. Thus, in effect, the process loading
function is called in a loop for each loading, returning either a wait event or
an indication of loading having been successfully achieved each time. It i~
called again and agai~ each time it returns a wait event, after that event has
occurred, until it returns an indication of complete loading. This is a
strategy very much parallel to the simple and multiplex wait protocols used
elsewhere in page control.

The loading function is invoked without the traffic controller lock locked.
It locks the page table lock, and unlocks it when done. Since the traffic
controller locks its lock, upon return from the process-loading function after
the latter has unlocked the page table lock, there is a window between these two
events during, which the event handed back by the process-loading function might
oocur. Thus, the traffic controller "validates" such events by actually
checking PTWs and PDMEs designated by such events for valid out-of-service or
RWS states (See Section VIII for further discussion of this anomaly). If such
an event is found to be "invalid", the process being loaded is set up so that
the process-loading function will be called again for it as soon as possible,
i.e., the ~rocess-Ioading function will be retried without any wait.

The code of the process-loading function itself is very simple: it
develops wait event IDs for either of the two critical pages it rinds
out-of-service or undergoing RWS, and invokes the page-reading function of ALM
page control (page$pread) to read in either of the two pages not in main memory,
remembering the event ID of any event detected by this primitive. It returns to
the traffic controller any of the wait events encountered in either of these
ways; if there are none (both pages are in main memory), it returns to the
traffic controller the fact that the process is loaded. This code also turns on
the "wired" bi ts in the PTWs of the two critical pages if they are not alreoady
on; this is part of its contract, and ensures completion of the read operations
in a deterministic number of steps.

Process Unloading

Process unloading consists solely of turning off the "wired" bits in the
PTWs for a process' two critical pages. This operation, which need not be
performed under the page table lock, is done by the routine "unload_old_process"
in page fault, invoked solely by the traffic controller and returning to it.

Post-Purging

The post-purging service of page control is used as a performance
optimizing algorithm to bias the page replacement algorithm' in favor'of
replacing pages of a process that loses eligibility. This service is invoked by
the traffic controller at the time that a process loses eligibility, for any
process whose work class indicates that post-purging is to be performed. Part
of the post-purging service also consists of estimating the "working set" of the
process, used by the traffic controller in the decision to grant eligibility.

AN61

The basic task of the post-purging function i~ to scan the per-process
trace list of pagings performed by a process (see Section VIII for the "per
process page trace list") (this function runs in the process it is processing),
and to classify the pages involved in the various paging-ins as part of th€
process' working set or not, and bias the page replacement algorithm in favor of
their replacement in various ways.

The post-purge function is implemented in the ALM program post_purge,
called by the traffic controller with the traffic control lock not locked. It
locks the page table lock at the start of its processing, and unlocks it only at
the end of its processing, before returning to the traffic controller.

The post-purge function considers each page reading in the trace list,
between the last time the process was post-purged and the current time. It also
makes an entry in the trace list, a "scheduling" entry, for use by the
"page_trace" command. It considers six attributes of each page in the trace
list, and performs up to four potential actions for each page based upon them.
These attributes are:

1. The page being in main memory at the time it is seen.

2. The page being on the paging device.

3. The page being part of a per-process (aste.per_process on. segment.

4. The page having its "used bit" (ptw.phu) on, indicating recent use.

5. The page having its
indicating use sin~e
are selected.

"used in quantum" bit (ptw.phu1) bit on,
the last post-purging if certain options below

6. The page having its "modified" bit on.

The four actions that can be taken for each page are:

1. Call the page_writing function to write the page out.

2. Move the main-memory page frame for the page in the used list to the
least-recently-used (most replaceable) position.

3. Turn off the used and used-in-quantum (ptw.phm and ptw.phm1. bits.

4. Count the bit in the working set of the process.

The mapping from all sixty-four possible combinations of these attributes
into any sub set of the four possible actions is determined by the table
"code_tree" in this program. The actions specified by this table in release 5.0
are:

1. Call the page-writing function to write the page out. This is NEYER
selected.

2. Move the page to the least-recently-used position of the main memory
used list. Done for any page meeting criteria 1 and 3, i.e., in main
memory and part of a per-process segment.

3. Turn off the "used" and "used in quantum" bits.
selected.

This is NEYER

4. Count the page in the process' working set. Done for pages meeting
criterion (4), i.e., the used bit is on.

AN61

The basic task of the post-purging function is to scan the per-process
trace list of pagings performed by a process (see Section VIII for the "per
process page trace listlt) (this function runs in the process it is processing),
and to classify the pages involved in the various paging-ins as part of th€
process' working set or not, and bias the page replacement algorithm in favor of
their replacement in various ways.

The post-purge function is implemented in the ALM program post_purge,
called by the traffic controller with the traffic control lock not locked. It
locks the page table lock at the start of its processing, and unlocks it only at
the end of its processing, before returning to the traffic controller.

The post-purge function considers each page reading in the trace list,
between the last time the process was post-purged and the current time. It also
makes an entry in the trace list, a "scheduling" entry, for use by the
"page_trace" command. It considers six attributes of each page in the trace
list, and performs up to four potential actions for each page based upon them.
These attributes are:

1. The page being in main memory at the time it is seen.

2. The page being on the paging device.

3. The page being part of a per-process (aste.per_process on. segment.

4. The page having its "used bit" (ptw.phu) on, indicating recent use.

5. The page having its
indicating use sin~e
are selected.

"used in quantum" bit (ptw.phu1) bit on,
the last post-purging if certain options below

6. The page having its "modified" bit on.

The four actions that can be taken for each page are:

1. Call the page_writing function to write the page out.

2. Move the main-memory page frame for the page in the used list to the
least-recently-used (most r.eplaceable) position.

3. Turn off the used and used-in-quantum (ptw.phm and ptw.phm1. bits.

4. Count the bit in the working set of the process.

The mapping from all sixty-four possible combinations of these attributes
into any sub set of the four possible actions is determined by the table
"code_tree" in this program. The actions specified by this table in release 5.0
are:

1. Call the page-writing function to write the page out. This is NEYER
selected.

2. Move the page to the least-recently-used position of the main memory
used list. Done for any page meeting criteria 1 and 3, i.e., in main
memory and part of a per-process segment.

3. Turn off the "used" and "used in quantum" bits.
selected.

This is NEYER

4. Count the page in the process' working set. Done for pages meeting
criterion (4), i.e., the used bit is on.

AN61

There are no installed tools to change the contents of this table, or
interpret them.

The post-purge function marks the bit ptw.processed (also known as ptw.er
or ptw.pre_paged) in every ptw it processes; it turns off all bits it so turned
on before it finishes. Any pag~ it finds with this bit on must already have
been processed by this pass; such occurrences are considered evidence of
"thrashing", and ar~ counted in the meter sst. thrashing. They indicate the
occurrence of a process not being able to keep a page it was using in main
memory during one period of eligibility. This action might also turn off PTW
error flags by virtue of sharing of this bit, but the worst effect of this woul~
be to cause a proc~ss to take an extra page fault to retry and perhaps
rediscover a disk or paging device read error.

AN61

SECTION X

PERIPHERAL SERVICES OF PAGE CONTROL

This section covers three mechanisms used by the supervisor that can be
construed as being part of page control. These three mechanisms are:

1. The facility that temp-wires procedures and their linkage.

2. Paging device reconfiguration.

3. Main memory frame freeing.

These mechanisms do not directly deal with page control objects that are in
use. In the first case, no page control objects are dealt with at all; all
manipulation of pages is performed by calls upon the services described in
Section IX. In the second and third case, objects (CMEs and PDMEs) are threaded
into their respective used lists, under the protection of the page table lock.
Part of paging device reconfiguration is involved with taking PD records that
are in use out of use; this is perfotmed by a page control service describ~d in
the previous section ("Paging Device Record Deletion").

PROCEDURE WIRING

Many procedures in the Multics supervisor are wired, i.e., may not be
removed trom main memory. Often this is on account of the fact that they are
used during page or traffic control operations, or in processing interrupts.
Code invoked in such circumstances may not take page faults, for the taking of
page faults may involve page control or traffic recursively, or cause the
processor to be lost ~hile a per-processor resource is in use.

Some procedures that may not take page faults are not invoked often; such
procedures include much of the code that implements the reconfiguration, and
much of the code of the ARPANET interface. Such procedures cause themselves to
become wired when they are invoked, and unwired when they return. This
procedure wiring/unwiring function is performed by the program wire_proc.

The program wire_proc does not deal with page control data bases at all;
it calls pc_wired$wire_wait and pc_wired$unwire (described under "Forced Segment
I/O and Wiring," Section IX) to wire and unwire the segments and parts of
segments it deals with. The program wire_proc is not itself wired, and does not
deal with the page control environment. The basic task of this program is to
multiplex requests to wire the same segment; a table is kept of segments it has
wired, in the region "sst.wire_proc_data" in the SST. When a request is made to
wire a procedure, a check is made to see if that procedure has already been
wired by this mechanism, in which case an entry in this table exists for that
segment. If not, an entry is made for the segment, and a call to pc_wired is
made to wire the segment. In any case, a counter of processes that have called

10-1 AN61

to wire that segment, kept in the table entry, is incremented. When a process
palls to unwire the segment, the counter in the table entry (which must exist)
is decremented. If and only if the counter reaches zero, a call is made to
pc_wired -to unwire the segment. Thus, the segment remains wired from the time
the first process calls to wire it until the last process calls to unwire it.

Whenever wire~proc wires or unwires a segment, the region of the
appropriate supervisor linkage section that contains the linkage for that
segment (if it has any), is wired or unwired as well. The program wire_proc
checks that it does not try to wire portions of unpaged segments: this case may
occur during initialization, when procedures that call wire_proc, which later
become paged (See the Multics Initialization PLM, Order No. AN70) are still
unpaged, and in cases of procedures with the "wired" attribute defined for their
linkage sections in the MST Header (See "generate_mst" in the System Tools PLM,
Order No. AZ03, and AN70). -

The operations of the program wire_proc, and its table in the SST (which is
defined in wire_proc_data.incl.pI1) are protected by a lock, the cell
wpd.temp_w. lock in, sst.wire_proc_data. Since wire_proc is used by system
initialization in collection'1, before the system locking facility is available,
wire_proc locks and unlocks this lock, and waits for its unlocking via explicit
calls to "stacH and "stacq", with calls to pxss$a4devent, pxss$delevent, and
pxss$notify for synchronization. The value of the event ID for the unlocking of
this lock is "200000000000"b3, and is stored (by init_sst) in the cell
sst.temp_w_event in the SST.

The program wire_proc has .two sets of entries, wire_proc/unwire_pr9c, and
wire_me/unwire_me. 'The first two are very rarely used; th~ir caller provides a
pointer to the segment to be wired or unwired. The latter are the common pair;
the program (i.e. the segment) that calls these entries is assumed to b~ the
target of the wiring or unwiring, and is wired or unwired accordingly.

pAGING DEVICE RECONFIGURATION

, (See also the discussion in the " Multics Reconfiguration E1H, Order No.
AN71.)

The storage system provides the ability to remove records of the bulk store
paging device from 'use, and add them back. This facility is made available
through the operator "addpage" and "delpage" commands. It is implemented in the

'procedure "delete_pd_records", a part of system reconfiguration that wires
itself (via the procedure-wiring service described earlier in" this section) and
locks the page table lock (via pmut$lock_ptl, see Section VIII) when it actually
deals with in-use page control data bases. This procedure also has several
entries, called by the ring-1 operator environment (See the MYl~ Operators'
Handbook, Order No. AMa1) to deal with unflushed paging devices (See "Post Crash
PD Flush", Section IX). Among these are included entries that allow the number
of unflushed records to' be determined, the unflushed instance of the paging
device to be abandoned, and a new instance of the paging device to be created
and made active.

10-2' AN61

Except for the part of record deletion that involves evicting pages
occupying PD records to be deleted, none of these operations involve dealing
with PD records or their PDMEs that are actually in use. Even the operations
that free records simply make them available for use. The operation of evicting
pages from regions of the paging device being taken out of use is performed by
the entry pc$delete_pd_records, which utilizes the methods and routines of the
page control kernel to accomplish this. Thus, the procedure delete_pd_records
never concerns itself with PTWs, CMEs, or pages of segments.

The entries that add and delete PD records (add_pd_records,
delete_pd_records) are called with the first number and number of PD records to
be added/deleted. They wire themselves and lock the page table lock when
inspecting the paging device map. They both check the validity of their
arguments before so doing. The entry to delete PD records does nothing more
(once wired, masked and locked) than call pc$delete_pd_records to delete the
records; the entry to add PD records does nothing more than thread entries in
the region to be added, clearing them and checking before so doing that they
were in fact deconfigured previously (first word = -1). Note that entries can
be deconfigured by initialization (the program init_pvt) as well as
delete_pd_records. Both procedures invoke a subroutine
(check_pd_free_and_using) to scan the changed PD map and compute from scratch
the parameters sst.pd_free and sst.pd_using, and update the PDMAP header (see
Section VI). They call pc$write_pdmap (see Section IX, "Services for
Shutdown/Demounting") to write out the changed map to the bulk store. These
routines also change the actual "PAGE" CONFIG card in the Multics configuration
deck image to indicate up to five pairs of deleted regions of the paging device.
If there are more than five deletions, the non-fatal syserr 'message
"delete_pd_records: page card cannot be generated" is issued, and only the
first five placed on the card. The PAGE card image, created by the subroutine
"build_page_card", is provided only for the use of the "print_config_deck" (pcd)
command. The entries add_pd_records may not be used if an unflushed paging
device exists. .

The four entries scrap_entire_pd, check_pd, scrap_pd_recs, and enable_pd
are for use of the ring-1 initializer operator environment for dealing with
un flushed paging devices. None of them deal with active paging devices, and
thus, they do not wire the procedure delete_pd_records, or lock the page table
lock or mask.

The entry delete_pd_records$scrap_entire_pd is invoked by the ring
"force_pd_abandon" command. It scans'the PD map of an unflushed paging device
for any records still in use, (i.e., unflushed, containing unrepatriated pages).
As long as such records exist, the system cannot be brought out of ring 1. This
entry marks these records as no longer in use, thereby acknowledging that their
repatriation has been deemed to be impossible. This operator command is used
when a physical volume has been destroyed, and repatriation of PD records to it
has become impossible.

The entry delete_pd_records$scrap_pd_recs is similar to
delete_pd_records$scrap_entire_pd, but only the PD records pertaining to one
physical volume are "scrapped". This facility is not currently used.

The entry delete_pd_records$check_pd is used by the ring operator
environment to determine if there are unflushed (unrepatriated) paging device
records on an unflushed paging device. It returns the number of such records,
and the number of physical volumes on which they appear (the count of distinct
PVT indices in the PDMAP entries). Only if there are no such records may the
system be brought up. Such records may be taken out of this state by either
repatriation (via accepting the physical volumes from whence they came) or the
"force_pd_abandon" command, which scraps them.

10-3" AN61

The entry delete_pd_records$enable_pd is called by the ring-1 operator
environment to initialize a new instance of the paging device and its map. It
is called at the time the system leaves ring 1, which can only happen if there
are no unflushed records on an unflushed paging device. This facility is only
used in the case of an unflushed paging device; its first step is to check that
this is the case, and in fact that there are no unflushed records (via a scan of
the map). This entry scans the map, zeroing all PDMAP entries that are not
marked (by init_pvt) as deconfigured, and threads them into the PD used list (as
free entries). This action does llQt allow them to be used; only the variable
sst.pd_using being set to a nonzero value enables the PD allocator. Thus, this
threading need not even be performed under the page table lock. When all or
these entries have been threaded in, the clock is read which produces the unique
time value that identifies the instance of the paging device being c~eated,
which will be used at post-crash PD flush time (see Section IX) should the
system crash non-recoverably with this instance of the paging device active.
The subroutine check_pd_free_and_using, described above under the description of
add_pd_records and delete_pd_records, is invoked to set the SST variables
sst.pd_free and sst.pd_using, and copy relevant parameters into the PDMAP
header. The setting of sst.pd_using actually puts the paging device into use,
and enables the PD allocator, The labels of all mounted physical volumes are
written out, via calls to fsout_vol (see Section IV). This causes the fact that
they were exposed to the"new instance of the paging device to be recorded in
their labels, for possible later use by the post-crash PD flush. As a final
action, the active map is written out to the bulk store (via pc$write_pdmap),
and a syserr message issued.

MAIN MEMORY FRAME FREEING

Initialization adds page fra~es of main memory to the paging pool (i.e.,
removes them from the deconfigured state in which init_sst creates the~) as
initialization progresses. Similarly, system reconfiguration adds page frames
to the paging pool on behalf of the operator "addmem" and "addmain" commands.
This facility is provided by the program freecore, which wires itself (via the
procedure-wiring facility described earlier in this section) and masks and locks
the page table lock (via pmut$lock_ptl, see Section VIII) when invoked. This
procedure never deals with main memory frames that are actually in use; thus,
it never deals with PTWs, PDMEs, or pages of segments. It is called with the
main memory address (as a page frame index into main memory) of a page frame to
be freedj it checks, under the page table lock, that indeed, that page frame is
deconfigured before proceeding any further.

The program free core checks the page frame that is to be added for parity
errors (via a call to pmut$check_parity_for_use) prior to adding it, typing a
syserr message if a parity error occurred. Otherwise, the main memory frame's
CME is threaded into"the main memory used list, starting this list if it is the
first frame so added. Various CME flags and fields are cleared at this time,
and the pointers sst.usedp and sst.wusedp (See "Main Memory Replacement
Algorithm," Section V) a~e set to point to this page frame's CME. Counters and
meters in the SST and SCS are updated as well.

10-4 AN61

SECTION XI

QUOTA MANAGEMENT

Quota (page quota, record quota) is the mechanism by which the consumption
of segment storage space is administratively controlled. Each nonzero page of a
segment consumes a record or Ynii of quota. Each page of a segment that is in
main memory, whether or not it contains zeros, consumes a record of quota. The
consumption of quota is controlled by the existence of quota accounts, possessed
by certain directories in the storage system. Every segment 'in the storage
system is said to be charged 1Q some quota account. A quota account consists of
two numbers, a quota limit (or "quota" proper) and a "used" (or "records used"),
being the sum of all of the quota consumptions of all segments charged to this
account.

As page control is responsible for the creation and destruction of pages,
page control bears the ultimate responsibility for quota management. When page
control creates or destroys a page, not only must the "records used" of the
concerned segment be adjusted, but the quota account of the directory against
which the segment's records are charged appropriately adjusted. Since page
crea tion happens in the page-reading primi ti ve, and des truction on 'the
page-writing and truncation functions, any quota cell against which any active
segment's records are charged must be in wired storage, so that it may be
referenced via these functions, which run as part of page control, with the page
table lock locked. Each AST entry has room for a quota cell, and thus, only the
quota cells in ASTEs of directories bearing quota accounts are actually used
(although the "records used" field of each directory which does not have a quota
account is maintained as though it did; this allows the "get_quota" (gq) command
to be used on suCh directories to report page record usage). The need to keep
these quota cells in wired storage requires that all superior directories of a
given segment be active. This is the current reason for this need. For each
page creation or destruction, page control chases the chain of ASTEs of superior
directories of a segment until an ASTE with a quota account (aste.tqsw on) is
found; by definition, this is the quota account to which the segment's records
are charged.

There are two classes of record quota, segment Quota and directory quota,
being for pages of non-directory and directory segments, respectively. Each
quota cell in the system (in ASTEs and VTOCEs) has space for both types of quota
accounts. A directory may have either o~ both or neither type of quota account.
Page control charges segments' pages against the correct type of quota account,
as appropriate. However, when creating a page of a directory, quota checking
(i.e., checking the appropriate account to see if the quota limit has been
passed) is suppressed (as are all page faults with an effective reference ring
of zero). This means that directory quota limiting is essentially not
implemented in release 5.0; this is due to the impropriety of signalling
record_quota_overflow as a means of conveying the exceeding of such limits ,to
directory control.

11-1· AN61

~ince the checking and adjustment of quota cells by page control is
performed under the page table lock, adjustment of quota cells via user command
or other storage system action must be protected by the page table lock
(although some higher lock could have been devised, one would still have to be
wired and masked to lock this lock). Thus, page control provides a procedure,
"quotaw" (the "w" is for wired), in bound_page_control, which locks the page
table lock and adjusts quota cells. It is given as a. parameter the AST entry
pointer for either a directory whose quota cells are being adjusted, or in some
cases the AST entry pointer for a segment, the quota account against which it is
charged having to be located and adjusted. This means that all quota cell
adjustment must be performed on active directories only; directory
control/segment control ensure that this is the case by activating directories
to be involved in quota transactions, and passing pbinters to their ASTEs to
quotaw. The utility program "quota" in bound_file_system is the user visible
interface to quota cell manipulation; it identifies directories given their
pathnames, locks them and checks access to manipulate quota, handles "master
directory quota," activates directories to be involved in quota transactions
(using the "activate" primitive; see "Significance of 'activate'", Section IV),
and finally, with the AST locked, passes ASTE pointers to quotaw. Segment
control, in the segment truncation primitive, similarly activates the parent
directory of a. segment being truncated, in order to pass its ASTE pointer to
quotaw to adjust the relevant quota cell.

The program quotaw has three general entries, "cu", "sq", and "mq", to
change the records-used of a quota account, set the quota limit of a quota
account, and "move quota" between a quota account and an inferior quota account
(decrease limit of one by a certain amount, incrementing inferior's limit by
that much). In all cases, a number of records, a quota type (directory or
segment quota), and a pointer to the ASTE of a segment (which is charged against
the relative quota account, or the directory ASTE itself) is provided as input.
The "mq" entry (move quota) takes another ASTE pointer in addition, being the
"inferior" ASTE to which quota is to be moved. All of the entries lock the 'page
table loc~ (via pmut$lock_ptl, see Section VIII) and loop up the AST parent
threads to find the correct quota account, and perform the necessary adjustment.
The "cu" entry, (change-used, which is generally used to adjust the records-used
number of an account) also supports the function of checking whether or not a
contemplated change in records-used is valid; an input switch specifies this.
All of the entries return a standard status code.

The program quo taw also has a "side-door" (quotaw$cu_for_pc) which is used
by the segment-truncation function (in pc$truncate) and the deactivation-time
service (pc$cleanup) to adjust quota cells when these functi6ns destroy (or find
zero) pages. This entry is similar to quotaw$cu, except that it is called with
the page table lock locked, and the process wired and masked, and re~urns with
these circumstances prevailing as well.

11-2 AN61

SECTION XII

RING ZERO VOLUME MANAGEMENT

INTRODUCTION AND OVERVIEW

Volume management concerns itself with the relation between physical
volumes and logical volumes, and between physical volumes and disk drives. It
is the responsibility of volume management to ensure the integrity of
information upon a given physical or logical volume, and to perform the
necessary binding and unbinding operations in the supervisor when volumes are
mounted and demounted.

Volume management, as described in these sections, does not concern itself
with the operator interface for mounting and demounting, nor the completeness or
regis~ration of logical volumes.

such
IV.

There are four sections i1 this portion of the book:

Section XII
Section XIII
Section XIV
Section XV

Introduction and Overview
Data Bases of Ring 0 Volume Management
Operations of Ring 0 Volume Management
Interaction of the Physical Volume Salvager
with the Storage System

Many of the operations that may be ~onsidered part of volume management,
as segment moving and physical volume assignment, are covered in Section

Unlike the other subsystems described in this document, no sections
describing functions or services of volume management are provided. The only
services provided are the mounting and demounting of physical and logical
volumes, and the determination of whether or not a given physical or logical
volume is in fact mounted~ There are no lower-level mechanisms to speak of.
Thus, the functions and services of ring zero volume management are placed
together under the section "Operations of Ring Zero Volume Management."

CONCEPTS

A physical yolume is a disk pack that is described by registration
information maintained by the volume registration package in ring 1. A physical
volume is divided into records of 1024 words each. These records may contain
pages of segments, or be part of the ~ (Volume table of contents) of the
physical volume, be part of partitions, or be part of the yolume header. The
VTOC consists of entries (VTOCEs), five to a page, that describe the segments
whose pages are on this physical volume, one VTOCE per segment. The partitions
are conterminous regions of disk set aside for special use, such as FDUMP images
and the syserr log. The volume header, which is at a fixed location on the
disk, contains information describing the extent and location of the partitions

12-1- AN61

and VTOC, as well as a map (the volume m£Q) of which records are in use by pages
of segments. All of the area not in use by the volume header, VTOC, or
partitions is called the paging region of the volume, and it is from here that
records are used by pages of segments. Every segment described by a VTOCE on
this pack has all of its pages on this pack; no segment has pages on several
packs. The most important data item in the volume header is the volume label,
or label. This data item contains duplication of the registration information
kept for this volume, identifying it, and a history of the last use of this
volume by Multics. It is this latter information that allows volumes to be used
in a consistent fashion across crashes.

The liQQ1 Physical Volume, or RPV is the physical volume that contains the
root directory, ">", as one of its segments. It is special-cased by the system
in many ways. It is the only volume known to the system at the time it is
bootloaded. Another segment on the RPV is the disk table, a ring-1 data base
that describes the drives on which all packs were located during the last
bootload. From this data base, the ring 1 software can bring other volumes into
use at the time the system is brought up.

A logical v6lume is· a user-visible collection of physical volumes,
designated as such by the volume registration data in ring 1. With the
exception of the RPV, no physical volume may be in use by Multics unless all
other physical volumes in the logical volume to which it belongs are also in
use. Thus, logical volumes are mounted and demounted as a unit. Each directory
in the storage system hierarchy has a unique logical volume on whose physical
volume all segments immediately contained in that directory reside. This
logical volume is called the son's logical volume of that directory.

The £QQ1 logical volume, or RLV, is that logical volume of which the RPV is
a member. The RLV is the only logical volume that may be partially in use. The
RLV is the only logical volume that contains directory segments. Although the
segments inferior to any given directory reside on the son's logical volume of
that directory, the directories reside on the root logical volume.
Operationally, the root logical volume is the only one necessary to bring the
system up to ring 4 command level, through answering-service startup. The root
physical volume is the only physical volume necessary to bring-the system up to
ring-1 command level.

To mount a physical volume is to physically place it on a drive and cycle
up that drive. This action is performed by the operator, not by software.

To accept a physical volume is to make the necessary calls to the
supervisor, for a drive on which a given physical volume has been mounted, to
establish in the supervisor the binding between that drive and the physical
volume on it. Critical in this binding is the placement of the 36-bit
Physical Volume ID (PVID) read from the label of that physical volume in a table
entry (the PVTE) associated with that drive. The descriptions of segments in
directory branches are in terms of these physical volume IDs, and VTOC indices.
Thus, placing this ID in this table entry indicates that the volume is indeed
online, and segments on it may be used (via the process of activation, see
Section II.

A logical volume is mounted (or "mounted to the system") when all of the
physical volumes in it are mounted and accepted, and calls have been made to the
supervisor to establlsh the presence of this complete logical volume on line.
Unless a logical volume is mounted, the system will refuse to honor initiations
of segments, segment control calls, and segment faults for segments on physical
volumes of that logical volume, even though the physical volumes may have been
accepted. It is via this policy that the usage of "incomplete" logical volumes
is interdicted. One exception to this rule is the root logical volume.

12-2 AN61

It is mounted even if it is incomplete; it is mounted as soon as the RPV is
accepted in system initialization. The system maintains a table of mounted
logical volumes, the LYI, or Logical ~olume Table. Each entry in it, or LVTE,
describes one mounted logical volume, containing per-logical volume information,
as well as the start of a chain of PVTEs of accepted physical volumes in this.
logical volume. Ring 1 will not make the call to mount a logical volume until
it has verified that all physical volumes known (from the volume registration
data) in it have been accepted.

The system maintains a table, the Physical volume Table or PVT, containing
information about each accepted physical volume. It has one entry, or PVTE, per
each disk drive known to the system. This'entry contains information about the
physical volume mounted on that drive, including its PVID and Logical Volume ID
(LVID) of the logical volume to which it belongs. Parameters about this volume,
read in from its volume header at the time it was accepted, that are used by
page control and segment control in dealing with segments upon this volume and
their pages, are kept in the PVTE. The PVTE also contains information used' by
page control and the disk DIM describing the physical drive associated with the
PVTE, such as its device number and device type.

A logical volume may be mounted to a given process or not, if it is mounted
at all. A mounted logical volume is mounted to a given process if it is either
a public logical volume, or (a private logical volume) a call has been made by
RCP in ring 1 in that process to attach the private logical volume to the
process. RCP will allow a private logical volume to be attached to a process
pendant on whether or not that process has access to the logical volume, as
defined by the ACS (access control segment) for that volume, created by the ring
1 registration software. Unless a logical volume is mounted to a given process,
the process will act as though the logical volume were not mounted at all;
segment faults and initiations are not honored, and segment control calls may
not be made. Thus, only those processes selected by the ACS of a private
logical volume may use the segments on it, while all processes may use the
segments on a public logical volume, subject to the normal Multics access
control mechanism and AIM access control. The table of private logical volumes
attached (and therefore mounted) to a process is kept in a region of the KST
(Known Segment Table) of a process. This set of logical volumes attached to the
process is necessarily a subset of the logical volumes that are mounted (to the
system), as kept in the LVT. A logical volume that was attached by a given
process may be detached by that process, via a call through RCP in ring 1. When
this occurs, the logical volume is no longer mounted to the process and segments
on it may no longer be used by this process (a local setfaults operation (see
Section II) is performed).

A logical volume may be demounted by calling the supervisor to remove the
Logical Volume Table entry for it. This prevents further attachments to the
logical volume, but does not stop use of the segments in it until each physical
volume in the logical volume is demounted. These calls are made by ring 1
volume management in the initializer process.

A physical volume is demounted by making a call to the supervisor (from
ring 1 of the initializer process) to stop all processes from using segments on
this volume, deactivate all of these segments, flush VTaC buffers of all
information relating to this volume, update the volume header of the volume, and
remove information from the PVTE for the drive containing that volume which
describes it. This unbinds the volume from the drive. At system shutdown time,
all volumes are demounted, the RPV being demounted last. At this time, however,
a modified form of deactivation is performed that does not involve freeing AST
entries or dealing with AST threads (see Section IV).

12-3 AN61

PREACCEPTANC};;

The RPV is accepted, like all other volumes, before segments on it are
available for use. For the RPV, this happens duri~ collection 2 of system
initialization. However, the RPV is used prior to this, but not segments on it.
All of this activity occurs in the hardcore partition of the RPV, and consists
of the running of initialization from the running of the program init_pvt up
until the acceptance of the RPV. This may involve a volume salvage of the RPV
if it had not been shutdown properly during the last boot~ad. The hardcore
partition exists to satisfy the need for a fixed, usable area, for paging by the
supervisor, when the validity of the RPV volume map may not be trusted. (See
Section VII for more detail on this.)

..,
The point in collection 1 initialization at which the use of the hardcore

partition is established, and thus the first paging in initialization begins, is
called the preacceDtance of the RPV. The RPV label is read, th~ partition
extents on it determined, and the use of the hardcore partition set up. Global
system parameters in the FSDCT, relevant to the success of the last shutdown,
are determined from the RPV label, as well as the active/unflushed status of any
paging device that must exist.

Between the preacceptance and acce.ptance of the RPV, no VTOC I/O nor
segment faults occur on the RPV. No activations occur, nor is the paging region
nor VTOC used at all (except the former by the physical volume salvager). The
bit-map for the RPV during this time is not the bit-map from the volume-map of
the RPV, but rather a special one fabricated by the preacceptance code. It
defines the hardcore partitio~.

The preacceptance of the RPV is performed in the program init_pvt.

12-4 AN61

SECTION XIII

DATA BASES OF RING ZERO VOLUME MANAGEMENT

This section describes the detailed structure and function of those
supervisor data bases that are used to manage the set of physical and logical
volumes known to the supervisor. A large part of the visible interface of
volume management, however, is that presented by the ring 1 volume management
package, responsible for the operator interface and volume registration
functions. The data bases of these functions, in particular the Disk Table, the
Logical Volume Attach Table, and the Registration Files, are not described
herein.

Some of the critical data bases used by ring zero volume management are not
seen in the Multics supervisor at all; they are resident on regions of disks,
and are explicitly read in and written out at the times that they must be
inspected or modified. These data bases, in the volume header of each pack,
reside at fixed record addresses on each pack, given in the include file,
disk_pack.incl.p11. These data bases will be described first.

VOLUME LABEL

The volume label resides on the first Multics record of each storage system
physical volume. It is generated by the program init_disk_pack_ (for all
volumes except the RPV, in which case it is generated by the program
init_empty_root) in the ring 1 volume management environment. It is read in at
the time a volume is accepted, and written out at the time it is demounted. It
is also written out at the time it is accepted, to indicate that the volume was
not shut down, until it is written out at the time it is demounted. The label
record is divided into five regions, on sector boundaries:

1. GCOS region, sectors 0 to 4 (label.gcos). This region is skipped over
entirely, as the Series 6000 GCOS system uses this part of packs as a
label area. Avoiding use of this region avoids accidental overwriting
of Multics data by labeling a pack under GCOS at a site running both
operating systems, and allows some future compatability.

2. Permanent region, sector 5 (label.Multics to label.pad1). This data
is per-physical volume information that is never changed. It is
written out identically from the copy read in every time the pack
label is written. Were it possible to write-protect single sectors,
this sector would be so protected at the time the pack was initialized
for Multics use. This is permanent identifying information (although
some of it is subject to change by the disk rebuilder).

3. Dynamic information, Sector 6 (label. time_mounted to label.pad2).
This information relates to the use of this physical volume: the time
last mounted, demounted, etc. This information allows the storage
system to ensure integrity of data on the physical volume, via its
dynamic state.

13-1· AN61

4. hoot information, Sector 7 (label.root to label.pad3). This
information is defined only on the root physical volume (RPV) of a
hierarchy. It is dynamic information about the entire storage system
hierarchy: how successfully if at all it was shut down, and
information relative to crash recovery, and bootstrapping the
initialization of the directory hierarchy at bootload time.

5. Partition map (sector 10 (octal) (label.parts). A map giving the
location and length of any partitions defined on this physical volume.
This information is set up at the time that a volume is initialized,
and never .changed (except by the disk rebuilder).

The rest of the label record (sectors 11-15, octal) is reserved for
future expansion.

Detailed breakdown of the label:

dcl label based (labelp) aligned,

2 gcos (5*64) fixed bin,

2 Multics char (32) init ("Multlcs Storage System Volume"),
2 version fixed bin,
2 mfg_serial char (32),
2 pv_name char (32),
2 lv_name char (32),
2 pvid bit (36),
2 Ivld bit (36),
2 root_pvid bit (36),
2 time_registered fixed bin (71),
2 n_pv_in_lv fixed bin,
2 vol_size fixed bin,
2 vtoc_size fixed bin,
2 not_used bit (1) unal,
2 private bit (1) unal,
2 flagpad bit (34) unal,
2 max_access_class bit (72),
2 min_access_class bit (72),
2 p~ssword bit (72),
,2 padl (16) fixed bin,
2 time_mounted fixed bin (71),
2 time_map_updated fixed bin (71),
2 time_unmounted fixed bin (71),
2 time_salvaged fixed bin (71),
2 time_of_boot fixed bin (71),
2 pd_time fixed bin (71),
2 last_pvtx fixed bin,
2 padla fixed bin,
2 n_bad_tracks fixed bin,
2 err_hist_size fixed bin,
2 time_last_dmp(3) fixed bin(71),
2 dmpr_hd(2) fixed bin,
2 bk_dmpr_hd(2) fixed bin,
2 curn_dmpr_item(3) fixed bin,
2'pad2 (35) fixed bin,
2 root,

3 here bit (1),
3 root_vtocx fixed bin (35),
3 shutdown_state fixed bin,
3 pd_active bit (1) aligned,
3 disk_table_vtocx fixed bin,
3 disk_table_uid bit (36) aligned,
3 esd_state fixed bin,

13-2 AN61

2 pad3 (60) fixed bin,
2 nparts fixed bin,
2 parts (47),

3 part char (4),
3 frec fixed bin,
3 nrec fixed bin,
3 pad5 fixed bin,

2 pad4 (5*64) fixed bin;

label.gcos
Reserved for compatability with the GCOS system. See above.

label.Multics
Contains the character string "Multics Storage System Volume" on
every pack. Used for gullibility checks against unlabeled packs,
and by resource control to avoid accidental overwriting or
disclosure of information on storage system packs.

label.version
Currently must be 1.

label.mfg_serial
Intended to be the manufacturer's serial number for a pack, this is
currently set to be physical volume. name.

label.pv_name
The physical volume name of the pack.

label. lv_name

label.pvid

label.lvid

Is the logical volume name of the logical volume to which this
physical volume belongs.

Is the 36-bit unique ID (PVID) of the physical volume. This same
number is contained in the directory branches of all segments
contained on this physical volume.

is the 36-bit unique ID (LVID) of the logical volume to which this
physical volume belongs. It is contained in all directories for
which that logical volume is the sons-logical-volume.

label.root_pvid
is the 36-bit PYID of the RPV of the hierarchy of which this volume
is part. This information defines which packs belong to a given
hierarchy.

label. time_registered .
is currently. set to the 52-bit clock time that the volume was
initialized for use by the storage system.

label.n_pv_in_Iv
is currently not used.

label.vol_size
is the number of Multics records physically available on this
volume, regardless of how they are used.

label.vtoc_size
is the number of Multics records used by the Volume Table of
Contents (VTOC) ~ the volume header.

label.private
is "1"b if and only if the logical volume to which this physical
volume belongs is a private logical volume.

13-3· AN61

label.max_access_class
is the maximum AIM access class for segments on the logical volume
to which this physical volume belongs. No segments of higher access
class (in the AIM sense) can be allocated on that logical volume.

label.min_access class
is the minimum AIM access class for that logical volume.

label.password
is currently not used.

label. time_mounted
is the last time that this physical volume was accepted by the.
supervisor.

label.time_map_updated
is the last time at which the
written. Please note that
extremely important quantity,
salvage (see Section
"label.time_label_written".

label
this

which
XIV)

of this physical volume was
name is very misleading; this

determines the need to volume
should be thought of as

label. time_unmounted
is the last time that this volume was demounted, including for
shutdown.

label. time_salvaged
is the time that the label was last written out at the cbmpletion of
processing of this volume by the physical volume salvager.

label.time_of boot
is the time reco~ded as "time of bootload" for the system (in the
FSDCT) for the last Multics bootload that accepted this volume ..

label. pd_time
is the time ("paging device time") identifying the last instance of
the paging device to which this physical volume w~s exposed. By
comparing this paging device time to that of an unflushed paging
device, repatriation of records may be aocomplished. (See
"Post-Crash PD Flush" in Section IX).

label.last_pvtx
is the physical volume table index (PVTX) of the drive on which this
volume resided at the last time it was accepted by the stora~e
system. By comparing this value with that in paging-device map
entries in the PDMAP of the instance of the paging device identified
by label.pd_time, repatriation of records may be accomplished. (See
"Post-Crash PD Flush" in Section IX.)

label.n_bad_tracks
not currently used.

label.err_hist_size
not currently used.

label.time_last_dmp
reserved for the physical volume dUmper.

label.dmpr_hd
reserved for the physical volume dumper.

label.bk_dmpr_hd
reserved for the physical volume dumper.

label.curn_dmpr_item
reserved for the physical volume dumper

label.root
substructure covering the "root information" in the label.

13-4 AN61

label.here
identifies this physical volume as the RPV of a hierarchy (although
other tests will suffice).

label.root_vtocx
is the index in the VTOC of this pack of the directory">".

label.shutdown_state
is set to various values during the course of shutdown. It is
essentially obsolete.

label.pd_active
is "1"b if the system has an active .Q.r. unflushed paging device. If,
at bootload time, when the ~PV is interrogated, this bit is on, the
system has an unflushed paging device.

label.disk_table_vtocx
is the index in the VTOC of this pack of the segment ">disk_table".
Reserved for future use.

label.disk_table_uid
is the unique segment ID of the segment ">disk_table". Reserved for
future use.

label.esd_state

label.nparts

label.parts

is set to zero by the stages of normal shutdown, and to nonzero
values by the stages of emergency shutdown. The nonzero value of
this variable at the time the RPV is first inspected during a
bootload implies that the previous boot load had a successful
emergency shutdown. This triggers RPV salvage to collect pages of
RPV parasite segments. (See Section VII.)

is the number of partitions on this volume.

is an array defining the partitions on this volume. The number of
valid entries is given by label.nparts.

label.parts.part
is the four-character ASCII name of a partition.

label.parts.frec
is the first record number on this pack of the partition.

label.parts.nrec
is the number of Multics records used by this partition.

VOLUME MAP

The volume map details which records of the paging region of a physical
volume are in use. Although this information may be derived from analysis of
every VTOCE on the pack, it is duplicated in the volume map so that record
allocations can be performed by page control without inspection of every VTOCE
on the pack. If a pack is not shut down properly, this information is
considered to be wholly invalid, and is reconstructed by the physical volume
salvager via inspection of every VTOCE on the pack. When a volume is accepted,
the information in the volume map is copied into the free-store bit-map (see
"Disk Record Allocation" in Section VIII) for the drive on which the pack is
mounted. It is written back to the volume map on the disk at the time the
volume is successfully demounted. The information in the header of the volume
map is copied to and from the so-called "fsmap parameters" (see Section VI) in
the PVTE for that drive.

13-5 AN61

dcl 1 vol_map based (vol_mapp) aligned,

2 n_rec fixed bin(17),
2 base_add fixed bin(17),
2 n_free_rec fixed bin(17),
2 bit_map_n_words fixed bin(17),
2 pad (60) bit(36),
2 bit_map (3*1024 ~ 64) bit(36) ;

vol_map.n_rec
is the number of records in the paging region of the pack, and
hence, the number of records represented by the volume map.

vOl_map. base_add
is the Multics record number of the first record of the paging
region of the pack, and thus the record number of the first bit in
the volume map.

vol_map.n_free_rec
is the number of records in the paging region of the pack whic~ are
not allocated. It should be equal to the number of bits which are
"l"b in the volume map.

vol_map.bit_map_n_words
is the number of words in the volume map's bit map. If the nvmber
of records in the paging region is not a multiple of 32, the last
bits of the last word (the "fsmap tail") will be "O"b, but are !1Q.t.
considered part of the bit map.

vOl_map. bit_map
is the array of words that constitute the bit map described by' toe
parameters just described. Neither the first bit nor the last three
bits of each word are used, being "O"b in all cases. This leaves 32
bits per word, representing 32 Multics records in each word of the
bit map. The value "l"b indicates a free record, and "O"b indicates
a record in use.

The volume map is considered to be wholly invalid between the time that a
physical volume is accepted and the time that it is suocessfully shut down or
salvaged (see Section XIV).

VTae HEADER

The VTae header describes the extent, and global parameters, of the VTae of
a pack. These parameters are copied into the PVTE for the drive on which the
pack ~s. mounted at the time it is accepted, and update to the VTae header from
there every time the label is written out. Like the volume header, it is
considered wholly invalid (at least the dynamic param,eters therein) from the
time the volume is accepted to the time the volume is successfully demounted,
and must be reconstructed by the physical volume salvager if the volume is
accepted without having been shut down.

vtoc_header.version
currently must be 1.

vtoc_header.n_vtoce
is the number of VTae entries (VTaeEs) in the VTae of this pack,
used or free. This is constant, modulo the disk rebuilder.

13-6 AN61

vtoc_header.vtoc_last_recno
is the Multics record number of the last record occupied by the VTOC
of this pack. The first record is currently a constant VTOC_ORIGIN,
defined in disk_pack.incl.pI1.

vtoc_header.first_free_vtocx
is the VTOC index of the VTOCE on this pack which is the first in
the free chain. This index is maintained in the PVT by the VTOC
manager while the pack is in use.

The rest of the VTOC header record is reserved for the physical volume
dumper.

BAD TRACK LIST

This information is not currently maintained by Multics.

FSDCT

The letters "FSDCT" stand for "file sy~tem device configuration table."
This name is largely historical, for the segment that contains free-store bit
maps and per-hierarchy information, and has ceased to have any significance.

The FSDCT contains two distinct regions. The FSDCT header contains global
data about the state of ring zero volume management. Much of it is derived 'from
the RPV label at the time the RPV is preaccepted during collection 1. Much of
it is derived from CON FIG cards, and much of it is writien out to the RPV label
at various stages of shutdown. It defines the state of shutdown, and the state
of ring zero with respect to volume management.

The region of the FSDCT beyond the header consists of the bit maps for disk
record allocation for each drive. One region is allocated for each drive, and
the volume map bit map from each physical volume is copied in at the time that
the volume is accepted. The relative offset of the bit map for each region is
defined by the field pvte.fsmap_rel in the fsmap parameters in the PVTE for that
drive. The FSDCT is a pageable data base; the withdrawal of disk records from
it at page fault time is accomplished via an esoteric maneuver described fully
in Section VIII.

The following include file and discussion describe the FSDCT header.

fsdct.shutdown_state
is zero while Multics is running, and set to various nonzero values
during normal and emergency shutdown. It is updated to the field
label.root.shutdown_state each time the label of the RPV is written
out.

fsdct.oos_dir
is obsolete.

fsdct.esd_state
is zero while Multics is running, and set to various nonzero values
during emergency shutdown. It is updated to the field
label.root.esd_state in the label of the RPV each time the label of
the RPV is written out.

13-7 AN61

fsdct.prev_shutdown_state
is the value of the label.root.shutdown_state in the label of the
RPV at the time that the RPV is preaccepted during collection 1
initialization. Thus, it describes the shutdown state of the
previous bootload of this hierarchy.

fsdct.prev_esd_state
is the value of label.root.esd_state in the label of the RPV at the
time that the RPV is preaccepted during collection 1 initialization.
Thus, it tells whether or not this hierarchy last witnessed a
successful emergency shutdown.

fsdct.rpvs_requested
is set to "1"b if the operator issued a BOOT RPVS request to boot
the system, requesting an RPV salvage (RPVS).

fsdct.root_lvid
is the 36-bit Logical Volume ID (LVID) of the RLV of this hierarchy.

fsdct.root_pvid
is the 36-bit Physical Volume ID (PVID) of the RPV of this
hierarchy.

fsdct.root_pvtx
is the physical volume table index (PVTX) of the drive on which the
root physical volume (RPV) is mounted. This value is duplicated for
various functions in the SST, as sst.root_pvtx. It is derived from
the ROOT eONFIG card.

fsdct.root_vtocx
is the index in the VTOe of the RPV of the directory">", copied
from label.root.root_vtocx on the RPV label.

fsdct.rlv_needs_salv
is "1"b if a volume of the RLV needed a salvage at the time it was
accepted, and was salvaged. This bit informs the operator interface
that a hierarchy salvage of selected directories must be performed
at system startup time. (This is because all directories reside on
the RLV, and the fact that some volumes of it were not properly shut
down may indicate that some directories were damaged.)

fsdct.n_volumes
is not used.

fsdct.dump_part_pvtx
is the physical volume table index (PVTX) of the drive on which the
volume with the system's DUMP (BOS FDUMP) partition exists. This
drive is selected by the PART DUMP card in the eONFIG deck. It is
zero if there is no DUMP partition.

fsdct.dump_part_frec
is the first record number of the DUMP partition, if one exists, on
the pack on the drive selected by fsdct.dump_part_pvtx.

fsdct.syserr_log_pvtx
is the physical volume table index (PVTX) of the drive on which the
volume with the system's syserr log partition exists. This drive is
selected by the PART LOG card. It is zero if the system is not
using syserr logging.

fsdct.syserr_Iog_frec
is the first record number of the syserr log partition, if one
exists, on the pack on the drive selected by fsdct.syserr_Iog_pvtx.

fsdct.syserr_Iog_nrec
is the number of records in the syserr log partition, if one exists,
otherwise zero.

13-8 AN61

fsdct.free
is not used.

fsdct.hc_exists
is obsolete, and is always "1"b.

fsdct.hc_using
is set on during the
turned off during
indicates that the
partition.

preacceptance of the RPV in collection 1, and
the acceptance of the RPV in collection 2. It
system is running totally in the hard core

fsdct.hcp_frec
is the first record number on the RPV of the hardcore partition.
The RPV must have a hardcore partition defined on it. This number
is obtained from the RPV label during preacceptance of the RPV.

fsdct.disk_table_vtocx
is the index in the VTOC of the RPV of the VTOCE describing the
segment ">disk_table". It is read in from the root area of the RPV
label, but is not now used.

fsdct.disk_table_uid
is the unique segment ID of the segment ">disk_table". Not now
used.

fsdct.pd_active
is "1"b if and only if the system has
is set during RPV preacceptance in
and is managed dynamically by the
management policies. (See Section IX
unflushed paging devices.)

an active paging device. It
collection 1, and by shutdown,
cross-bootload paging device
for a discussion of active and

fsdct.rpv_needs_salv
is . set to "1"b during RPV preacceptance if the RPV
shut down during the last bootload. This triggers
later.

was not properly
an RPV salvage

fsdct.pd_unflushed
is set to "l"b if and only if the system has an unfl~shed paging
device (see Section IX.)

fsdct.pd_time
. is the paging device time- identifying the instance of the paging
device to which this hierarchy was last exposed. If this bootload
never had an unflushed paging device, this is the same as
fsdct.time_of_bootload. If the paging device is unflushed, this
variable has the value of the variable fsdct.time_of_bootload from
the bootload during which that instance of the paging device was
active. Otherwise, if the paging device was dynamically enabled
during this bootload, this is the time at which that was done. (See
Section IX, "Post-Crash PD Flush.")

fsdct.old_root_pvtx

fsdct.maps

is the value of the cell label.last_pvtx in the label of the RPV.
It is used to repatriate RPV pages during acceptance of the RPV.
(See Section IX, "Post-Crash PD Flush.")

is (~, not contains) the first word of the bit-map region of the
FSDCT.

13-9 AN61

']lic:. phy:::ical .,lum-.? t'lble, or' £\;':.1, ~,~ 1":-'8 single rncst im! nY"":3r;~, cata ba~:
,'i' 1~i0p:-zer') vcL.:rr,< ftanagement. It ccr,~:;.i{l<) an entry, or .;,':1':" ':l (;;-,eil di~]k

dr]v~ ~nuwn ~o Lhe system (including so-called "I/O drives"). ;t also has an
entry for the bulk store subsystem (at the end) if one exists, as this is
required by page control. The information in the PVTE for each drive desoribes
information needed by the disk DIM to describe that drive with respect to the
former's data bases. This includes the device number apd subsystem name, as
well as the device type. This information stays constant in each PVTE. The
PVTE, however, also is filled in with information about the volume mounted on
the corresponding drive at the time that such volume is accepted. This
information consists of the quantities from the volume's volume header,
specifically the VTOC header and volume map. This data is used by segment
control and page control to manage the VTOC and the free store bit-map of the
volume. Included in the PVTE is also data that describes a region of the FSDCT
which is used as the bit-map for each volume mounted on that drive. This
information is permanent. The specific parameters for ~hatever bit-map may be
there as a given volume is used is not permanent. The PVT is a paged, wired,
deciduous segment, which is used by page control, and thus must not be pageable.

dcl 1 pvt based (pvtp) aligned,

2 n entries fixed bin (17),
2 max_n_entries fixed bin (17),
2 n_in_use fixed bin (17),
2 rwun_pvtx fixed bin,
2 pad (4) bit (36),

2 array (0 refer (pvt.n_entries» like pvtej

dcl 1 pvte based (pvtep) aligned,

2 pvid bit (36),

2 lvid bit (jb),

2 dmpr_in_use (3) bit (1) unaligned,
2 pad3 bit (24) unaligned,
2 brother_pvtx fixed bin (8) unaligned,

2 devname char (4),

(2 device_type fixed bin (8),
2 logical_area_number fixed bin (8),
2 used bit (1),
2 storage_system bit (1),
2 permanent bit (1),
2 testing bit (1),
2 being_~ounted bit (1),
2 being_demounted bit (1),
2check_read_incomplete bit (1),
2 device_inoperative bit (1),
2 rpv bit (1),
2 paging_device bit (1),
2 salv_required bit (1),
2 being_demounted2 bit (1),
2 vol_trouble bit (1),
2 vacating bit (1),

13-:-10, AN61

2 pad bit (4),

2 first_free_vtocx fixed bin (17),
2 n_free_vtoce fixed bin (17),

2 vtoc_size fixed bin (17),
2 vtoc_segno fixed bin (17),

2 fsmap_rel bit (18),
2 bad_addrs_consecutive fixed bin (1J),
2 dbmrp (2) bit (18» unaligned,

-2 curwd bit (18),
2 wdinc bit (18),
2 temp fixed bin,
2 baseadd fixed bin,
2 tablen bit (18) unaligned,
2 tablen_allocation fixed bin (17) unaligned,
2 nleft fixed bin,
2 relct fixed bin,
2 totrec fixed bin,

2 dim_info bit (36),

2 curn_dmpr_vtocx (3) fixed bin unaligned,
2 n_vtoce fixed bin unaligned;

pvt.n_entries
is the number of entries, used or otherwise, in the PVT array.

pvt.max_n_entries
is the same as pvt.n_entries.

is number of entries corresponding to accepted volumes.

pvt.rwun_pvtx
is the PVT index of a drive (only one may be in this state at a
time) expecting an interrupt from the 1/0 interfacer for cycling
down the drive at demount time.

pvt.array

pvte.pvid

pvte.lvid

is the array of PVTEs.

is the 36-bit Physical Volume ID (PVID) of the accepted volume
mounted on this drive, zero if none.

is the 36-bit logical volume ID (LVID) of the logical volume to
which the accepted volume on this drive belongs, zero if none. As
pvte.pvid, this parameter is read in from the volume label at
acceptance time.

pvte.dmpr_in_use
. is reserved for the physical volume dumper.

13-11 AN61

pvte.brother_pvtx
is the PVT index of the next volume in the chain of physical volumes
belonging to the same logical volume as the one to which the
accepted volume on this drive belongs.

pvte.devname
is the four-character ASCII name of the disk subsystem to which this
drive belongs.

pvte.device_type
is the hardware device type, as defined in fs_dev_types.incl.pI1, of
this disk drive.

pvte.logical_area_number

pvte.used

is the hardware drive number of this disk drive.

is "l"b if and only if there is an accepted volume on this drive.
It is Qff in the PVTE of the RPV until the RPV has been accepted.

pvte.storage_system
is "l"b for a drive that is not an "I/O drive" defined by a "UDSK"
CON FIG card.

pvte.permanent

pvte.testing

is "l"b for a drive designated by aPART card, and is also "l"b for
the RPV. No pack except the one mounted there at bootload time may
ever be mounted on this drive during this bootload.

is set to "l"b by the program read_disk (see Section XIV) before a
special call is -made to disk_control. This bit tells the disk_dill1
interrupt side to set pvte. device_inoperative according to' the
relative success of a "request status" operation on this drive.
Disk control ~urns off this bit when the latter bit has been set.

pvte.being_mounted
is "l"b during the acceptance of a volume on this drive.
informational.

Primarily

pvte.being_demounted
is set to "l"b at the start of the demount procedure for a volume on
this drive. Prevents activations of segments on this volume. (See­
Sections IV and XIV.)

pvte.being_demounted2
is set to "l"b during the latter part of- the demount procedure for a
volume on this drive. Prevents VTOC I/O from being initiated. (See
Sections IV and XIV.)

pvte.check_read_incomplete
causes page control to store special patterns into core frames into
which records of this volume will be read, and check for their
presence at the posting of the operation. There is no way to turn
this feature on other than patching this bit.

pvte.device_inoperative

pvte.rpv

is used by the program read_disk, along with the bit pvte.testing,
to determine if a drive is operative. (See pvte.testing, above, and
Section XIV.)

is "l"b in the PVTE of the RPV.

pvte.paging_device
is "l"b in the PVTE of the bulk store subsystem, required by page
control to perform abs-seg I/O on the PDMAP.

13-12- AN61

pvte.salv_required
is set
properly
received

to "l"b during the acceptance of a volume if it was not
shutdown during its previous use, and thus required and
a volume salvage.

pvte.vol_trouble
is set by various recovery procedures (and ESD) if there is reason
to believe that an operation upon the VTOC of a volume is
interrupted in such a way that the volume is inconsistent, and will
require a volume salvage at some time. This bit being on causes the
volume to be shut down in such a way (at the time it is demounted)
that it will appear that it was not properly shut down, the next
time it is accepted, and thus require and receive a volume salvage.

pvte.vacating
inhibits VTOC allocation (segment creation) upon this physical
volume. It is used by the on-line physical volume utility, sweep_pv
(see the Multics Operators' Handbook, Order No. AM81, and Section
IV, "Segment Control Services" for sweep_pv).

pvte.first_free_vtoc
is the index, in the VTOC of the physical volume accepted on this
drive, of the VTOCE that is the head of the free VTOCE chain for
this volume. It is maintained by the VTOC manager (see Section
III), and copied to and from vtoc_header.first_free_vtocx and
acceptance and demount time, respectively.

pvte.n_free_vtoce
is the number of free VTOCEs in the VTOC of
accepted on this drive. It is maintained by the
copied to and from vtoc_header.n_free_vtoce
demount time, respectively.

the physical volume
VTOC manager, and
at acceptance and

pvte.vtoc_size
is the number of Multics records in the VTOC and volume header of
the physical volume accepted on this drive. Read in at acceptance
time from label.vtoc_size.

pvte.vtoc_segno
is a temporary used by the physical volume salvager.

pvte.fsmap_rel
an "fsmap parameter," is the relative offset into the FSDCT of the
region allocated for bit-maps for volumes on this drive.

pvte.bad_addrs_consecutive
is not used.

pvte.dbmrp
is reserved for the physical volume dumper.

pvte.tablen_allocation

pvte.curwd
pvte.wdinc
pvte.t~mp

pvte.baseadd
pvte.tablen
pvte.nleft
pvte.relct

an "fsmap parameter," is the length, in words, of the region in the
FSDCT allocated for bit-maps for volumes on this drive.

are the "fsmap parameters," copies of information in the volume map
of the physical volume mounted here, and information needed by and
maintained by the free-store allocation algorithm. These fields are
described in the PVTE writeup in Section VI.

13-13 AN61

pvte.dim_info
is information stored by disk DIM initialization for this drive,
which the disk DIM needs to perform address computations on this
drive, and identify its subsystem.

pvte.curn_dumper_vtocx
is reserved for the physical volume dumper.

is the number of VTOCEs, free or used, in the VTOC of the physical
volume accepted on this drive.

LOGICAL VOLUME TABLE (LVT)

The logical volume table (LVT) is used to describe all mounted logical
volumes. It contains all per-Iogical-volume data for such logical volumes, and
contains threads of the PVTEs of accepted physical volumes that are members of
each logical volume. The logical volume ID, however, is duplicated in each PVTE
for physical volumes in that logical volume. This enables the segment creation
function to operate without a lock. (See Section IV for a description of this
activity.) The LVT is a pageable segment, used at segment creation and segment
moving time, as well as the time that logical volumes are mounted and demounted
(see Section XII).

The LVT contains an entry, a ~, for each mounted logical volume. The
LVTE for the RLV is set up during initialization (collection 2). The LVTEs for
other volumes are set up at the time that they are mounted. The LVT also
contains a hash table, hashing LVTEs by their LVIDs of the logical volumes that
they describe.

dcl 1 lvt aligned based (lvtp),
2 max_lvtex fixed bin (17),
2 high_water_lvtex fixed bin (17),
2 free_lvtep ptr,
2 pad1 (4) bit (36),
2 ht (0:63) ptr unal,
2 lvtes (1:1 refer (lvt.max_lvtex)) like lvte;

dcl 1 lvte aligned based (lvtep),
2 lvtep ptr unaligned,
2 pvtex fixed bin (17),
2 lvid bit (36),
2 access_class aligned,

3 min bit (72),
3 max bit (72),

2 flags unaligned,
3 public bit (1),
3 read_only bit (1),
3 pad bit (16),
3 cycle_pvtx fixed bin (17);

lvt.max_lvtex
is the index of the highest-indexed LVTE that can ever exist in this
LVT, as defined by the size of the LVT segment.

Ivt.high_water_lvtex
is the highest LVT index that was ever used in this bootload. This
is a meter.

13-14 AN61

Ivt.free_lvtep

Ivte.ht

Ivt.lvtes

Ivte.lvtep

lvte.pvtex

is a pointer to the first in a list of free LVTEs.
created as needed, this list is non-empty only if LVTEs
freed.

As they are
have been

is a hash table, containing pointers to the first LVTEs in the hash
threads of each hash equivalence class.

is the array of LVTEs.

for an LVTE in use, is the pointer to the next LVTE in the same LVID
hash equivalence class as this one, null if this is the last one.
For a free LVTE, it is a pointer to the next LVTE in the chain of
free LVTEs, null if this is the last one.

is the PVT index of the first PVTE in the
containing physical volumes belonging to
chain is threaded through the PVTEs as
marks the end of the chain.

chain of PVTEs for drives
this logical volume. This
pvte.brother_pvtx. Zero

lvte.cycle_pvtx

lvte.lvid

is used by the segment creation function of segment control (see
Section IV) to allocate VTOCEs in the logical volume. See that
description for its use.

is the logical volume ID (LVID) of this logical volume.

lvte.access_class
describes the AIM access class limits of the logical volume.

lvte.public
is "1"b for a public logical volume, "O"b for a private one.

lvte.read_only
is reserved.

PVT HOLD TABLE

The~VT hold table resides in the static section of the program get_pvtx.
It is a table of process IDs of processes that start operations on a given
physical volume that requires more than one call to the VTOC manager, or a call
to the VTOC manager and an action upon the bit-map of the volume. The table
consists of an array of marks made by such processes, each mark consisting of
the catenation of part of the process' process ID and the PVT index of the
volume being modified. These marks are removed when the inconsistent operation
is finished.

The purpose of this table is to prevent the volume from being demounted
while such an operation is in pr~gress. No process may make a mark in this
table if a demount operation has started for a volume on which an operation was
about to begin (pvte.being_demounted prevents this). Similarly, the demounting
procedure demount_pv will wait for all marks in this table relative to a
particular physical volume to vanish before the demount procedure can continue.

13-15 AN61

If a process suffers a crawlout at such a time that it had made a mark in
this table, and thus left a volume in an inconsistent state, not only is its
mark or marks removed from the table, but that volume is scheduled for a salvage
via setting of the bit pvte.vol_trouble (see earlier description of this bit).
This is also the case if an ESD occurs after a system cra~h at which time
processes had marks in this table. .

The segment mover marks two volumes at a time in this way.

The PVT hold table can be located, for crash analysis and debugging
purposes, from the sppointer sst.pvthtp.

13-16 AN61

SECTlUN XI \j

The aLueptance of physical volumes is the most fundam~t ~~~ ~nd important
operation of ring zero volume manRge~ent. This service is prc.~Jed for ring 1
volume management, which controls the operator and cross-pr0cE~: interface, at
the time that the latter wishes to make a logical volume available for use. All
of the physical volumes in a logical volume are accepted jy ring 1 volume
management before the logical volume is declared to be mounted (entered in the
LVT)~ The main procedure of volume acceptance is accept_fs_disk.

Physical volumes are accepted by calling initializer_gate_$accept_fs_disk,
with the PVT index of the drive on which the physical volume to be accepted is
mounted. The ring 1 volume management and registration package ensures that the
volume on the drive is the crrrect one requested by the operator or requesting
processes. Ring zero volume management assumes that it is correct, and derives
all data from the label of that volume. The RPV is accepted in a spe~ial
fashion during collection 2 of bootloading; the operator, by issuing the BOOT
command, and by use .of the ROOT CONFIG card, has assured that the drive
described by that card is the legitimate RPV. Thus, this physical volume is
accepted automatically in ring zero without having been validated by ring 1.

The essence of physical volume acceptance is to initialize the PVTE for the
drive on which the volume being accepted is mounted with data from the label,
VTOC header, and volume map of that volume, and mark the PVTE as belonging toa
volume in use. This latter step is the last step. Thus, there are no race
conditions in determination of whether or not this volume is actually accepted.
Since segment creation is driven off the logical volume table, and initiation
checks there as well, it is only in the case of non-RPV volumes of the RLV that
there is even an issue, for only in this case is there a LVT entry before all
PVT entries are set up.

An auxiliary task of physical volume acceptance is to copy the volume map
into the region allocated in the FSDCT for bit maps of volumes mounted on that
drive. This function is performed in the procedure load_vol_map, which
constructs a PTW-level abs-seg to read the volume map from the disk. This
pr~cedure also takes responsibility for reading the VTOC header (via the same
abs-seg) and initializing PVTE parameters derived from the latter from it. In
the case of the loading of the volume map of the RPV, page control activity is
halted, via wiring, masking, and locking the page table lock, while the volume
map is being copied. This is because the bit-map region of the FSDCT for the
RPV will contain the bit-map of the hardcore partition at this time, and will
actually be in use at that time. Although all pages of the supervisor should be
withdrawn at that stage, and thus no activity on this bit map should take place
during the copy, this policy assures that none in fact will take place. This
policy dates from a time before all supervisor pages were prewithdrawn. The
program load_vol_map also takes responsibility for filling in these PVTE
parameters derived from the volume map. .

14-1· AN61

lt is also the responsibility of physical volume acceptance to determine if
a physical volume needs salvaging, and call the physical volume salvager if so.
A physical volume needs salvaging if it was in use, not properly shut down, and
not salvaged since it was used. The volume map and VTaC may not be used validly
unless this salvage is performed. Each time that a physical volume is accepted,
the label is written out at the end of the acceptance procedure (via a call to
fsout_vol), which sets label.time_map_updated to the current time. ~ach time
that a physical volume is properly demounted (including shutdown), the label is
wri tten out, but this time, setting both label. time_map_updated and
label. time_unmounted to the current time. Thus, if an attempt is made to accept
a physical volume for which ~he value of label.time_map_updated and the value of
label. time_unmounted are not equal, then this volume was not properly shut down.
If, however, the volume has been salvaged since it was last used, it need not be
salvaged again. The volume salvager writes out the label with
label.time_map_updated and label. time_salvaged equal to the current time. The
equality of these two label fields implies the completion of a volume salvage
since last use. The procedure accept_fs_disk makes these checks for all volumes
except the RPV; init_pvt, at RPV preacceptance time, makes these checks for the
RPV.

The automatic salva~ing of volumes during acceptance includes the
repatriation of pages from that volume left on the paging device during the
previous (or earlier) bootload. This is done in the case where the system has
an unflushed paging device, and the physical volume salvager detects that the
volume was not previously shut down, and exposed to the system's instance of the
paging device. (see Sections IX and XV.)

PHYSICAL VOLUME DEMOUNTING

The demounting of physical volumes involves reversing all of the steps
taken at acceptance time, and physically cycling down the disk drive on which a
physical volume is mounted. Physical volume demounting is complicated by the
fact that at the time that a physical volume is demounted, any number of
processes may be using information on that physical volume, and may be depending
upon its mounted and accepted status. The problems of demounting are thus two,
the flushing of supervisor data bases of all information about the physical
volume, and the stopping of processes that are using information on it, in a
recoverable way.

The principal goal of demounting is the updating of all information on that
physical volume with the latest copies of information resident in the AST,
FSDCT, and in frames and records of main memory and paging device. This implies
writing back all pages in main memory and paging device to their assigned
addresses on that physical volume, and the updating of all VTOCEs for segments
on that volume from the AST. These two steps are accomplished by deactivating
all segments (see Sections II and IV) from that physical volume which are active
at demount time. The VTaC manager's VTOC buffer segment must be flushed of all
vtoce-parts from this volume, and all pendent I/O on it awaited. This step,
clearly, is performed after the deactivation of all segments on the volume. The
volume map, VTOC header, and label of the volume must be updated from the FSDCT
and PVTE for the volume.

The procedure that coordinates demounting is demount_pv, also known as the
demounter. The final stages of demounting, viz., updating the volume map, VTOC
header, and volume label, are performed by fsout_vol, called from demount_pv.
It is essential to realize that all volumes are demounted at shutdown time, both
emergency and regular. There are only two differences between normal demount
and shutdown demount,

1. At normal demount ~ime, the drive containing the volume to be
demounted is cycled down via a series of calls to the I/O Interfacer.
At shutdown time, no drives are cycled down.

14-2 AN61

2. At normal demount time, segments are deactivated via a call to
"deactivate,~ the normal segment control deactivation procedure. At
shutdown time, explicit calls are made to pc$cleanup and update_vtoce
(the two procedures at the heart of deactivation) to avoid dealing
with possibly bad AST threads (and to allow deactivation of
directories with active inferiors. Directories are all on the RLV,
which cannot be demounted via normal demounting).

The demounter begins by turning on the bit pvte.being_demounted, and
waiting for all processes engaged in multistep operations on this volume to
finish. Turning on this bit, as explaine4 below under "Demount Protection,"
prevents the inception of any new multistep operations on this volume after the
time it is turned on. The demounter then locks the AST and deactivates (or, in
the shutdown case, simulates deactivation of) all segments on this volume. This
deactivation is performed under the AST lock; all processes seeking to activate
a segment check the bit pvte.being_demounted at such time as they acquire the
AST lock. Thus, since no process except that of the demounter holds the AST
lock at this deactivation time, any process except that of the demounter holds
the AST lock at this deactivation time, any process attempting to activate a
segment, that did not succeed in fully activating it before the demounter
acquired the AST lock, will acquire the AST lock after the demounter, and thus
find the bit pvte.being_demounted Qll, and fail to activate the segment.
Therefore, the deactivation of all segments on the volume is total and
irreversible; it deactivates all segments that were active when it acquired the
lock, and no segments (on that volume) will be activated after it releases it.
The deactivation purges all data relevant to the volume being demounted from the
AST and from page control, and makes the copies of all segments on the disk, and
all VTOeEs accurate. This is what is normally done by deactivation (see Section
IV); it is simply being performed here for all active segments on the volume.

The second phase of the demounter is the cessation of VTOe I/O activit1 for
the volume. This begins by setting the bit pvte.being_demounted2, which
prevents the inception of any VTOe I/O activity for the volume not already under
way. As the deactivation phase of demounting starts a great deal of VTOe I/O
activity for the volume, which does not complete in that phase, this phase must
follow the deactivation phase. A call is made to the VTOe manager
(vtoc_man$cleanup_pv, see Section III) to await all I/O in progress for
vtoce-parts of this volume, and make a final attempt at flushing "hot"
vtoce-part buffers (those that have suffered write errors). Before this call
returns, all data relevant to the physical volume being demounted will have been
flushed by the VTOe manager from its data bases. This call involves the VTOe
manager locking its VTOe buffer lock. All other calls to the VTOe manager check
the bit pvte.being_demounted2 under the protection of this lock, and return an
error code (error_table_$pvid_not_found) if the PVTE of a volume specified to it
has it on. Therefore, all VTOe I/O operations underway at the time the
demounter acquires the VTOe buffer lock will be awaited to completion by the
demounter, and, since any potential operation not under way by then will acquire
the lock after the demounter and find pvte.being_demounted2 on, no new operation
may be started after the demounter has released the lock. Therefore, the purge
of information about the volume is total and irreversible; all VTOe I/O activity
is complete for the volume, and no new activity may be started.

The thlrd phase of demounting is performed by fsout_vol, which, in general,
updates labels on disks. In the case of a demount, all parameters in the volume
map (including the bit map itself), and the VTOe header are updated as well.
The cells label. time_unmounted and label.time_map_updated are set to the same
value (the current time), which itidicates to the next attempt to accept this
volume that it was successfully shut down. These policies are explained under
"Physical Volume Acceptance" in this section. Once the label has been written
out, the parameters in the PVTE for the volume's PVID to fail, and allowing
~euse of the drive for acceptance of a (probably different) physical volume.

14-3 AN61

Ihe final phase of demounting, which is not performed at shutdown time, is
the cycling down of the drive on which the volume being demounted is mounted.
This is performed via a "hardcore" attachment to the 1/0 interfacer to issue an
"unload" command to the drive. An attachment is made, for the demounter
process, via direct calls to the 1/0 interfacer. The resource control program
(Rep) is not involved in any way. A workspace segment is set up by the 1/0
interfacer, and the procedure fs_unload_disk_interrupt is set up as the
interrupt handler for the attachment. A connect is issued to the drive, to
execute the "unload" command. The demounter sets a cell (pvt.rwun_pvtx) to the
PVT index of the drive to which the "unload" command was issued before issuing
the connect, and loops awaiting the zeroing of this cell. The interrupt-side
program (fs_unload_disk_interrupt), after making a few checks, zeros this cell
upon receipt of 10M status from the unload operation. The use of this single
shared cell prohibits the demounting of several volumes in parallel; this fact
is enforced by the restriction that only the initializer process can perform
demounting. A single shared cell is used because the 1/0 interfacer provides no
facility for its interrupt side to identify a device to a subsystem's interrupt
handler in terms known to that subsystem. Thus, as there is no simple way to
determine the PVT index of a drive to which an "unload" was issued at interrupt
time, a single cell is used.

Demoynt Protection

The demounter poses to segment control the problem of the validity of PVT
indices; a PVT index derived via search of the PVT for a given PVID is valid if
and only if pvte.being_demounted was not on (volume was not being demounted) at
the exact instant that the PVID was .found in the PVT, and remains valid only as
long as this is so. By "valid," we mean that use of this PVT index, by page
control or VTOe management, will indeed result in a reference to the physical
volume whose PVID was sought to determine this PVT index. Thus, a PVT index
which was "validly" derived via PVT search can become invalid instantaneously as
another process executes the demounter. Thus, without further mechanism, PVT
indices would be useless, as they could be invalidated at any time. Mechanisms
therefore exist to implement demount protection, via which processes can either
ensure or determine the validity of PVT indices at any time.

The simplest of these mechanisms is the "unitary operation" facility
provided by the VTOe manager. This can be used by any function that involves
only a single interaction with the volume, and that interaction must be via the
VTOe manager. Such an operation is the reading of "VTOe attributes" (see
Section IV). A single call to the VTOe manager is adequate to supply such
iriformation. Another is the allocation of VTOeEs (see "Segment Creation,"
Section IV), for which exactly one call to the VTOe manager allocates and writes
out a VTOeE. Such operations are said to be "unitary;" either the VTae manager
will succeed in performing them totally, or report that the physical volume is
not mounted. These operations are made possible by supplying the PVID of a
volume on which an interaction is necessary along with a possibly-valid PVT
index for the drive on which that volume is (probably) mounted. This PVT index
can be obtained via a call to get_pvtx$get_pvtx, which will make a perfunctory
check for a being-demounted bit, and return the PVT index of the physical volume
(if any) with that PVID. It is no matter that the volume may be demounted
(pvte,being_demounted turned on, or fully demounted) after this· search has been
performed; the VTae manager will check the PVTE specified by the PVT index
supplied against the PVID supplied under the protection of the VTae buffer lock
before commencing any operation. If the PVID does. not correspond, or the bit
pvte.being_demounted2 is on (the point at which VTae 1/0 request inceptions will
no longer be honored), the request is refused. If the PVID corresponds, and the
bit pvte.being_demounted2 is not on, the demounter cannot proceed, or even turn
on this bit, until it acquires the VTae buffer lock (see the preceding
discussion) and cannot complete .until the operation that is being requested here
has finished (no vtoce-part buffer out_of_service bits are on).

14-4 AN61

If the operation being requested requires several vt00e-part lias, with
intervening unlocks of the VTaC buffer lock, the operation may fail in an
intermediate state. However, the design of the VTaC manager is such (see "VTaC
Manager, General Policies," Section III) that no irreversible action will hav~
been taken until all vtoce-parts are acquired in buffers under the protection of
the VTaC buffer lock.

Another form of protection against demounting is provided to those
procedures which operate under the protection of the AST lock. This
specifically includes segment deactivation. Since the demounter must lock the
AST in order to deactivate all segments, and, as shown above, no new segments
can be activated after it has finished this activity, any PVT index obtained.
(under protection of the AST lock) from an ASTE is valid as long as the AST is
locked tb the process that obtained it, in the same locking. Any process that
derives a PVT index by other means (PVT search, for example), while the AST is
locked, is ensured of the validity of that PVT index for as long as the AST is
locked, provided that pvte.being_demounted was not on at the time that it
derived it (shortly before, or after, so long as the check is made with AST
locked).

A similar form of protection is provided to the VTDC manager; if an
operation is commenced under the protection of the VTaC buffer lock, and
pvte.being_demounted2 was determined not to be on shortly after this lock was
locked, the demounter cannot acquire the VTaC buffer lock as long as it is held
by the current process, and thus the validity of the PVT indlces so validated is
ensured.

The most general form of demount protection is provided by the "demount
protection brackets" implemeuted by the entries get_pvtx$hold_pvtx and
get_pvtx$release_pvtx. Between a call to get_pvtx$hold_pvtx that does not fail
(return an indi~ation of demounted or demounting volume) and a call to
get_pvtx$release_pvtx with the returned PVT index, by the same process, the
volume specified by PVID to get_pvtx$hold_pvtx will not be demounted. The first
call places, and the second call removes, a "mark" in the PVT hold table,
specifying the process and the PVT index of the volume concerned. The demounter
waits for all such marks for a given volume being demounted to be cleared from
the PVT hold table as one of the first steps in demounting. To ensure that no
new marks for a given physical volume are made once the demounter awaits the
removal of all marks for that volume, the bit pvte.being_demounted is turned on
before the demounter awaits the removal of these marks. The entry
get_pvtx$hold_pvtx will return a failure indication if this bit is on before it
makes its mark, and will remove its mark and return a failure indication if this
bit is found on after it makes its mark. The entry get_pvtx$drain_pvtx is used
by the demounter to await the removal of all marks relative to a given physical
volume.

The demount protection brackets are used to "bracket" multistep
interactions with a physical volume, protecting the entire interaction against
the demounter. When such an operation has commenced, the demounter may not
progress in such a way tha~ would invalidate that operation until the operation
is over. If a demount is in progress, such an operation may not even begin.
Typical multistep volume interactions are truncation and deletion of segments.
Truncation involves calling the VTaC manager to write back a VTOCE without
certain addresses, followed by the depositing of these addresses (to the FSDCT).
Should the volume concerned be demounted between the VTaCE write and the
deposition, the deposition would address an invalid volume map in the FSDCT.
Similarly, deletion of a segment involves truncation and freeing of a VTOCE;
should the volume be demounted between the truncation and the freeing, a
zero-length segment would appear on the volume the next time that the volume is
accepted. Thus, these multistep operations must be bracketed by calls to
get_pvtx$hold_~vtx and get_pvtx$release_pvtx, protecting the volume against
demounting, and allowing the PVT index produced by the former to be used validly
(without the pr6tect~on of the AST lock).

14-5 AN61

Should a process encounter an ansychronous interruption (such as a
"crawlout," process termination, or a crash followed by an emergency shutdown)
at the time that a volume is "held" by the demount protection bracket mechanism,
the procedure verify_lock (in the first two cases, or wired_shutdown in the
third) will clear the mark from the PVT hold table, and schedule the volume for
later salvage via the setting of the bit pvte.vol_trouble. This will cause
later demounting of that volum~ to write out the label in such ~ way that it is
volume-salvaged the next time that it is accepted.

The segment mover holds two volumes at a time, the two engaged in the
segment move.

RING ZERO LOGICAL VOLUME MANAGEMENT

The logical volume is an instrument of convenience used to compensate for
the inadequacy of a physical volume, in size, to hold an arbitrary number of
segments. As such, the mounting of logical volumes is little more than the
acceptance of s~veral physical volumes, and the demounting of several physical
volumes. Thus, the mounting and demounting of logical volumes is little more
than the preparation and destruction of entries in the logical volume table
describing the logical volume. Ring zero logical volume management also
consists of the maintenance in the KST of each process of a small table of
logical volume IDs (LVID's of private logical volumes mounted to that process.

Other than the setting of per-process (KST) and per-system (LVT) table
entries, marking logical volu'mes as mounted or not mounted to the system or the
calling user process, logical volume management provides only two services to
the rest of the supervisor:

1. Answering the question of whether or not a given logical volume is
mounted to the calling process. For a public logical volume, this is
equivalent to whether or not it is mounted at all (to the system).
For a private logical volume, it must be mounted to the system and
attached to the invoking process. The procedure "mountedp" answers
this question in general, given the LVID of a given volume. This code
is duplicated in the segment fault handler for efficiency.

2. Providing the head of the PVT chain for a given logical volume, for
the segment (VTOCE) creation function, described in Section IV. This
service is provided by logical_volume_manager$lvtep, which returns a
pointer to the appropriate LVTE, or null if that volume is not mounted
to the system. This pointer may be invalidated at any time; the LVIDs
of physical volumes as stored in the PVT are cross-checked by the
segment creation function to account for this fact.

The logical volume table is manipulated without a lock; this is because
only the mount/demount process (the Initializer) may modify it. Processes that
search it are aware that the results of searching it may be instantaneously
invalidated. Only in the case of segment creation is this an issue; at other
times, subsequent calls to the VTOC manager will fail if physical volumes are
demounted after a subsequently invalidated logical volume presence is deduced
from the LVT. The LVT is managed by the program logical_volume_manager. The
entrie~ to add and delete logical volumes from the logical volume table
(logical_volume_manager$add and logical_volume_manager$delete, respectively),
are called by the ring 1 volume management package in the initializer process,
which implements the operator interface, via the gate initializer_gate_. The
"add" entry builds the LVTE from information supplied, and threads together the
PVT chain of all existent PVTEs with an LVID equal to the LVID of the volume
being added to the LVT.

14-6 AN61

The "delete" entry destroys this thread, and frees the L~TE. An entry exists
(logical_volume_manager$add_pv) which adds a PVTE (and thus a physical volume)
to an alreadymounted logical volume. This is used by the ring 1 volume
management package when other physical volumes of the RLV than the RPV are
accepted, at which time the RLV is already mounted, and at the time that new
physical volumes are created and accepted while a logical volume is mounted.

The table in the KST (kst.lv) of private logical volume LVIDs is used to
answer the question of whether or not a private logical volume is mounted to the
process owning the KST. A call to private_logical_volume$connect, from the ring
1 Resource Control Package (RCP), adds an LVID to this table. Before this call
is made, RCP validates the caller's access to the logical volume, and the fact
that it is mounted to the system (at least immediately before the call is made).
This call is made via the gate admin_gate_. The complementary call to
private_logical_volume$disconnect removes an LVID from this table. At the time
any segment on a private logical volume is initiated in a process, its index in
this table is stored in its KST entry (kste.infcount, multiplexed because all
directories, the only segments with nonzero inferior counts, are on the RLV, a
public volume). At the time that an LVID is removed from a process' KST, a
setfaults operation (setfaults$disconnect, see Section II) is performed on each
known segment in this process on that logical volume. This causes the immediate
revocation of access to that volume for the process, as the segment fault
handler ~hecks whether or not a logical volume is mounted to a process (defined)
before honoring a segment fault on that volume for that process.

The entry private_logical_volume$lvx exists to answer the question as to
whether a given LVID appears in the calling process' KST, i.e., is mounted to
that process given that it is mounted to the system (as determined by
logical_volume_manager$lvtep).

BOOTSTRAPPING OF LOGICAL VOLUME HIERARCHY (THE RPV)

The system must be booted to command level before the operator can issue
commands to cause the acceptance of physical volumes and the mounting of logical
volumes. However, the running of the operator software, and the loading of the
system library segments into the hierarchy, involves directories in which to put
them, and thus the existence of the root logical volume, before these commands
can be issued. Thus, it would at first seem that the RLV must be mounted before
the system comes up. Mounting of logical volumes automatically by ring zero is
undesirab~e, as it requires that ring zero be informed of the location of these
volumes via CONFIG cards, or various inflexible forms of contract based upon
configurations during the ,last bootload. The responsibility of validating
labels resets upon the ring 1 volume management package. Thus, the compromise
is made that only one physical volume of the root logical volume must be present
at boot load time; this volume is the RPV, and the description of its drive via
the ROOT CONFIG card constitutes validation of the RPV pack as the RPV by
operator. All of the directories needed by bootloading, that already exist,
must be on this particular volume of the RLV,. Furthermore, the segment used by
cross-bootload ring 1 volume management (>disk_table) to specify the location of
packs during the last bootload, must be available on this volume, as all volumes
are assumed, by covenant with the operator, to assume their positions during the
last boot load unless otherwise specified.

All of the directories so needed are either the root directory itself (»
or one of its immediate descendants (>dumps, >system_library_1, or
>process_dir_dir.) Thus, by placing the cross-boot load disk configuration
segment (>disk_table) in the root directory, the rule can be made that all
immediate descendants of the root directory (segments or directories) must be
allocated on the RPV. The segment creation function (see Section IV) carries
out this policy; any segment or directory created off the root directory can
only be created on the RPV. The segment mover will not move such segments off
the RPV.

14-7 AN61

An implication of this policy is that the RLV must be mounted to the system
(so that segment creations and segment faults may be honored upon it) while only
the RPV is accepted. System initialization causes this to be the case by
calling logical_volume_manager$add for the RLV at such a time during
initialization that the RPV has been accepted. Ring zero has no notion of the
cbmpleteness of volumes~ any time that a call is made to
logical_volume_manager$add, that volume becomes usable, and consists of all of
the physical volumes in it accepted at that time. All segment creations will be
restricted to those volumes. Thus, all segments created by initialization
reside on the RPV.

RPV-only Directories

When the system arrives at ring 1 command level, the RPV is the only
physical volume accepted, and the RLV the only logical volume mounted. In order
to register other logical volumes, and check their labels, the logical volume
registration data base must be present. ~hus, the logical volume registration
segments used by the ring 1 volume management and registration package must be
on the RPV. Rather than put these segments in the root directory, a directory
exists (>lv) which has the property, like the root directory, that all of its
inferior segments are restricted to allocation upon the RPV. The bit
dir.force_rpv in this directory's header (set by set_sons_lvid$set_rpv, see the
following discussion), has the same effect upon the segment creation function as
creation of an immediate descendant of the root directory.

One peculiarity in this policy exists. Segments created by boot loading in
>system_library_1 are not 'bound to stay on the RPV, and may be subject to
segment moving. If the next bootload, which generally deletes all segments in
>system_library_1 that appear on the new boot load tape, finds such a segment,
which has been segment-moved, it cannot delete it. Initialization renames it in
order to load the new one, with a message from make_branches$delete indicative
of this fact. Such segments may be deleted by the "ldelete ff command by system
maintenance personnel, when the system is fully up (the entire RLV accepted).

Cold Boot of the RPV

During a cold system boot, when there is no hierarchy at all, the system
must arrive at ring 1 command level before any volume registration commands can
be issued. The RPV must be fully initialized and registered before it can be
used, but before the system comes up. Therefore, the program init_pvt, when it
detects a cold boot situation, "registers" the RPV by generating an LVID and
PVID for it based upon the clock value. The program init_empty_root is called
in this case, which writes a valid label for the RPV, including in it
information placed on the special-format PART cards used in such a circumstance
(see the Multics Operators' Handbook, Order No. AM81). The volume map, VTOC
header, and VTOC are initialized, using default parameters generated by
init_empty_root. The program that initialized the volume map, VTOC header, and
VTOC, init_vol_header_, is available in all rings (a deciduous segment, see
Section VII), and is used by the ring 1 volume management package to initialize
other volumes. It takes as an argument an entry variable, specifying a routine
that is used to write to the pack.

The ring 1 volume registration package (at mdx$reregister) constructs the
RPV's registration information (as well as the RLV's initial registration
information) based upon the information generated by initialization in ring a
and written to the RPV label.

14-8 AN61

SONS-LUID SETTING

The directory field dir.sons_lvid is the logical volume ID (LVID) of that
logical volume on which all immediately inferior segments to that directory will
be allocated; this value is used by the segment creation function to obtain (via
logical_volume_manager$lvtep) the head of the PVT chain of that logical volume.
This value is also "inherited" as a' son's-LVID by all directories created
inferior to this directory. In all cases except the case of the creation of a
master directory, this quantity is in fact inherited by the directory control
directory creation primitive. In the case of a master directory, this value is
specified by master directory control.

The sons-LVID of a directory may be changed dynamically, via the
set sons_Ivid command (see the Multics Administrators' Manual System
Administrator, Order No. AK50) if that directory has no immediately inferior
segments (but may have inferior directories). This primitive accesses the
program set sons_Ivid in ring zero via the gate hphcs_. This program simply
changes the sons-LVID field of the directory, and marks it as (implicitly) a
master directory, marking the ASTE as well as necessary. This feature is useful
to cause process directory segments to be allocated on logical volumes other
than the RPV; boot load re-creates >process_dir_dir each bootload, after renaming
the old one. Thus, >process_dir_dir (and the initializer's process directory,
>pdd>lzzzzzzbBBBBBb) , have a son's logical volume of the RLV. Setting the
son's-LVID of >process_dir_dir to some other logical volume after the system is
up causes newly created process directories to inherit that son's-LVID, rather
than the RLV.

RPV-ONLY DIRECTORY SETTING

The program set_sons_lvid also includes. an entry, set_sons_lvid$set_rpv, to
set the RPV-only bit (dir.rpv_only) for some directory whose son's-LVID is
already the root logical volume (RLV). This facility, accessed through the gate
hphcs_, is used by the ring volume management package, to force volume
registration files in the directory >lvto be on the RPV, so that they will be
available in the ring 1 operator environment at boot load time, whether or not
any other physical volumes of the RLV have been accepted.

DISK TABLE LOCATION SETTING

A facility exists to store the VTOC index (in the RPV VTOC) and unique ID
of the segment >disk_table in the label of the RPV. The ring-O primitive
set_disk_table_loc is called (via the gate initializer_gate_) at the time the
ring 1 volume management package is initialized to set this information. It
obtains it from the branch of that segment, and stores it via reading and
writing the RPV label. This information is placed there for the use of an
unimplemented facility whereby BOS SAVE would be able to determine the location
of physical volumes by reading the disk table, rather than receiving volume
location specifications on individual request lines.

EXPLICIT DISK READING, WRITING. AND TESTING (read_disk)

Volume management provides a utility program (read_disk), which, given a
(guaranteed valid) PVT index, record number, and data buffer, reads or writes
that record from/to that data buffer. This is accomplished via the use of a
PTW-Ievel abs-seg (see Section VII), rdisk_seg. In the reading case
(read_disk), a live device address, the record address desired, is placed as a
"disk devadd" (see Section VI) in the single used PTW for this segment, and data
copied from rdisk_seg to the caller's buffer. In the write case, a nulled "disk

14-9- AN61

devadd" describing the record described is placed in the PTW, and the data
copied from the caller's buffer to rdisk_seg. The nulled address prevents the
old data.from being read in in order to page the new data out. This is relevant
performance of this primitive in cases where it is used in a loop (such as
volume initialization). After either call, pc$cleanup is used to force the page
of rdisk_seg out of main memory (see Section IX, "Deactivation Service"), in the
write_disk case, causing the actual write, and guaranteeing its completion to
the caller. ThePVT index supplied, in either case, is placed in the ASTE for
rdisk_seg before the reference to this abs-seg. This selects the drive to be
addressed.

The primitives read_disk and write_disk call a special entry in the disk
DIM (disk_control~test_drive) to determine if a drive is patently inoperable
before attempting to use it via abs-seg (paging) 110, which would generate disk
DIM and page control error messages in that case. This special entry is used by
turning on the bit pvte.testing in the PVTE for the drive concerned, calling it,
and looping on the bit pvte.testing, w~iting for it to be turned off by the disk
DIM interrupt side. The DIM issues a "RQS" (Request Status) operation on behalf
of this entry, and sets .the bit pvte.device_inoperative to report the outcome of
this operation. The bit pvte.testing is turned off once pvte.device_inoperative
is set appropriately. If ~his test indicates an inoperative drive, read_disk
and write_disk return an appropriate error code, and do not attempt paging 1/0
on the volume. This testing function is also available explicitly via the entry
read_disk$test_drive.

The read_disk and write disk entry points are used by acceptance and
physical volume demounting to read and write labels, VTOe headers, and volume
maps (although load_vol_map uses its own abs-segs). These facilities are also
available to the . ring 1 volume management package via
initializer_gate_$read_disk and initializer_gate_$write_disk, to verify labels,
and perform volume initializations. As there is only one ASTE for the abs-seg
rdisk_seg, all of these activities are confined to the initializer process, or
the process performing emergency shutdown.

14-10 AN61

SECTION XV

INTERACTION OF THE PHYSICAL VOLUME SALVAGER WITH THE STORAGE SYSTEM

This section describes the actions performed by the physical volume
salvager as they are relevant to the actions performed and assumptions made by
volume management, segment control, and pag~ control. It does not attempt to
explain the internal organization of the physical volume salvager, its interface
with the rest of the Multics salvager subsystems, or the interpretation of its
printed diagnostics. For these details, see the Multics storage System Salvager
PLM, Order No. AN62, and the Multics Operators' Handbook, Order No. AM81.

The physical volume salvager is invoked upon a single physical volume. It
may be invoked either by explicit operator command (the salvage_vol Initializer
command, see the MOH), or automatically by physical volume acceptance (see
Section XIV) if the latter determines that the volume being accepted was not
properly demounted during its last use. The physical volume salvager inspects
a·nd modifies the label, volume map, VTOC header, and VTOC of a physical volume,
using abs-seg I/O. The tasks of the physical volume salvager are two:

1. To make valid a set of assumptions about the VTOC and
physical volume, on which the proper operation of
page control, and volume management depend. These
detailed below.

volume map of a
segment control,
assumptions are

2. To detect and correct random and unexplained damage, due to hardware
or software failure, to the VTOC and volume header of a volume.

The first objective repairs "damage" to a physical volume that occurs any
time use of that volume is stopped (by a crash, or drive failure, for instance),
without proper demounting as detailed in Section XIV. For instance, any volume
whose use is stopped without proper demounting will contain an invalid volume
map, for no attempt is made to update the volume map until demount time. Such a
volume may contain an invalid VTOCE free list, as VTOCEs are freed and disk
requests are executed in not necessarily the same order.

The second objective repairs damage that cannot come about simply by
improper shutdown; there is no way that the storage system will allow
inconsistent states to exist wherein reused addresses appear. If a reused
address appears in a VTOC, it is due to undetected hardware or software failure.
This is also the case if the static parameters of the volume map, for example,
become inconsistent with the volume label. No accounting can be made for such
damage, nor can the actual "correct" state ever be exactly dete~mined. Such
damage, which is rare, must be "corrected" to satisfy the primary goal of the
physical volume salvager, the validation of storage system assumptions.

15-1 AN61

AS~UMPTlu~S MAnt VALID BY THE PHYSICAL VOLuME SALVAGER

The following are the assumptions about the state of a volume, which may
not be true if the volume is not properly shut down, which ar~ made true by the
physical volume salvager:

1. The current-length (vtoce.csl) of each segment, .in its VTOCE,
describes·the 1-relative page number of the highest nonnull address in
the file map.

2. The records-used (vtoce.records) of each segment, in its VTOCE, is the
number of nonnull addresses in its file map. Like vtoce.csl, this
will not be true for active segments that suffered page creation or
deletion while active and received VTOCE updates before use of the
volume was interrupted.

3. The volume-map has a "O"b for every record address cited in a VTOCE on
this volume, and a "l"b for every other address in the paging region.

4. The volume map has the correct number of "O"b bits in the volume map,
when (3) is true.

5. Every free (vtoce.uid ~ "O"b) VTOCE is part of a consistent, nonlooped
chain, whose head is kept in vtoc_header.first_free_vtocx. The end of
the chain is -1.

6. The cell vtoc_header.n_free_vtoce describes the number of VTOCEs in
the chain as described by (5).

If these assumptions are not true for a volume that is accepted, segment
control, page control, and volume management will malfunction. These
assumptions are always true for a volume that has been demounted properly.
Thus, the acceptance of any volume that has not been properly demounted implies
a volume salvage to force these assumptions true.

The physical volume salvager reports any deviance from assumptions 1 and 2.
These reports may be taken as cues to the damaging of active segments by
improper shutdown.

FORMS OF DAMAGE CORRECTED BY THE PHYSICAL VOLUME SALVAGER

The following further forms of damage to physical volumes are corrected,
via various assumptions, by the physical volume salvager. Such damage cannot
result simply from improper or non-existent shutdown. Software or hardware
damage to the volume is a prerequisite.

1. An address appearing in more than one VTOCE. If one page so affected
is a page of a directory and one is not, the directory is awarded the
page. Otherwise, zeros (via a null address) are assigned to both
pages.

2. Inconsistent maximum length (vtoce.msl less than vtoce.csl).
set to current-length.

It is

3. Addresses not on the legal boundaries of the paging region Of the
volume. They are replaced in the VTOCE file map by null addresses.

4. Inconsistency of the global volume map parameters (there were software
problems creating these inconsistencies in release 4.0). They are
corrected on these assumption that these known software problems (in
the disk rebuilder) caused them.

15-2 AN61

OTHeR VULUMe SALVAGER ACTIUNS

The running of the physical volume salvager is primarily a walk through the
VTOC of the physical volume being salvaged, recreating the volume map and
checking individual VTOCEs. In the case where a volume that has not been
properly shut down is being salvaged, and the system has an unflushed paging
device, the physical volume salvager makes a call to page - control
(pc$flush_seg_old_pd) for each VTOCE processed, in order to repatriate pages of
the segment owning the VTOCE trapped (at crash time) on the paging device. This
service of page control, the post-crash PD flush, is fully described in Section
IX. This service of page control is pa~sed the file map region of the VTOCE as
a parameter; page control may place disk record addresses in it, in the case
where the post-crash flush resurrects addresses. The physical volume salvager's
checking of current length and records-used is postponed until such resurrection
has been performed.

The physical volume salvager terminates by setting the label variables
label.time_map_updated and label. time_salvaged to the same value, the current
time. This will cause subsequent acceptance of the volume to r~alize that the
volume is consistent, i.e., satisfies the conditions above, and need not be
salvaged again. See "Physical Volume Acceptance" in Section XIV.

THE DISK REBUILDER

The disk rebuilder is a special version of the volume salvager that copies
one physical volume onto 2nother, reassigning address and reallocating
partitions. The disk rebuilder is invoked via the "rebuild_disk" operator
command, described in the Multics Operators' Handbook, Order No. AM81. The disk
rebuilder copies the contents of partitions, and copies VTOCEs from the source
physical volume to the target. Addresses on the target volume are allocated by
the rebuilder, and the contents of pages of segments copied from the target
volume to the addresses so allocated via the explicit disk reading and writing
mechanism described in Section XIV.

The disk rebuilder updates the VTOCEs of all active segments by searching
the AST for each segment, and performing the page-control deactivation service
(see Section IX) and a VTOCE update (See Section IV) for each segment found
active before it is copied. This updates the VTOCE and segment pages on the
disk.

The shutdown state and label times of the disk being copied are
by the disk rebuilder in the case where an accepted physical volume
copied. Were this not the case, a volume being so copied would appear
crashed during the middle of a disk rebuild.

ASSUMPTIONS NOT CHECKED BY THE VOLUME SALVAGER

falsified
is being
to have

The following assumptions about the storage system hierarchy must be true
in order to ensure correct operation of the system. They can become invalid by
interruption of operation or use of a physical volume. However, since all of
these assumptions take great expenditures of real time to be made true, the
system is prepared to operate without their being true. The adverse effect
which will result is detailed in each case.

15-3 AN61

1. All directories have valid threads and formats. This assumptions is
made valid by a full run of the hierarchy salvager. If a directory is
encountered with any of various invalid threads and formats during
normal operation, a crawlout will occur. The online salvager will
salvage that directory, and cause this assumption to be valid.

2. Bvery VTOCB that is designated by a PVID-VTOC index pair in a segment
or directory branch in fact is in use, and indeed is the VTOCE for
that segment or directory (vtoce.uid must be the same as entry.uid).
A segmeqt or directory for which this is not true i~ said to suffer a
connection failure (See Sections II and IV). Any primitive which
accesses a VTUCE, from a branch, is prepared for this occurrence, and
will return error_table_~vtoce_connection_fail. Such "segments" may
be deleted, but not activated. A full run of the hierarchy salvager
in "check_vtoce" mode (see the MUH) will detect and delete all such
branches.

3. For every VTOCE, there must be a branch which, via a PVID-VTOC index
pair, designates this VTOCE. A VTOCE for which this is not true is
said to suffer reverse connection failure. The effect of this problem
is wasted VTOCBs, and wasted disk records (the records designated by
the file maps in such VTOCEs), as the "segments" they describe are not
in any way accessible. The tool sweep_pv (see the Multics QQerators'
Handbook, Order No. AMb1), invoked for "garbage collection and
deletion", reports apd deletes such "orphan" VTOCEs (See "Special
Services for sweep_pv", Section IV).

4. The "quota used" cell of every directory must contain a number equal
to the sum of the "records-used" fields of all immediately inferior
segments, and of the "quota used" cells of all immediately inferior
directories that do not have their own quota accounts. This is the
definition of "quota used". When this is not so, users experience
negative used figures and other false used figures, being charged for
nonexistent pages or not being charged for existent pages. A full run
of the hierarchy salvager in "check_vtoce" mode remedies this
situation. Similarly for directory quota.

The assumptions 1, 2, and 4 are made valid by the hierarchy salvager for
all directories critical to the booting of the system, during bootload, if it
was determined that the system was not shut down properly (and hence the RPV,
and thus the RLV, on which all directories exists) during the previous bootload.
It is only in this case that these anomalies can occur. The system forces these
assumptions to be true for these critical directories by automatic invocation of
the hierarchy salvager during bootload and system startup.

15-4 AN61

SECTION XVI

SCENARIOS

This section gives two scenarios of typic~l operations in
system, showing who calls what and how, and what data is affected.
of a typical segment fault and a typical page fault are detailed
These sequence. are intended to be typical, not canonical.

A SEGMENT FAULT

the storage
The handling
in this way.

We will consider a segment fault on)udd>x>y>z. >udd>x>y is known with a
segment number of 243, and >udd>x>y>z with 244. The segment >udd>x>y>z is
described by VTOCE 2045 on physical volume pubOl, which is mounted on the drive
whose PVT index is seven. The current length of this segment is lOOK. >, >udd,
and >udd>x are active, and >udd>x>y and >udd>x>y>z are not.

A reference to 244:14 is ~ade by the processor. A directed fault 0 ocriurs.

The module "fim" is invoked, recognizes this directed fault as a segment
fault, and invokes the segment fault handler, seg_fault.

The segment fault handler determines that indeed there is· no SDW for
segment 244, and it is not a process stack.

seg_fault calls sum$getbranch_root_my with the pointer 244114, hoping to
obtain a pointer to its branch.

sum$getbranch_root_my inspects the KST entry for segment 244, determining
from kste.entryp that its branch resides (as seen by this process) at
24315730, in >udd>x>y. sum$getbranch_root_my calls 10ck$dir_Iock_read
to lock this directory to validate the branch.

10ck$dir_Iock_read tries to touch >udd>x>y, but takes a segment fault. A
directed fault 0 occurs.

The module "fim" is invoked recursively, recognizes the segment fault, and
invokes the segment fault handler recursively_

The segment fault handler processes the segment fault on 243:10, performing
the actions now being recursively described.

The fim is returned to,
10ck$dir_Iock_read.

and restarts the reference made by

10ck$dir_Iock_read places an entry in the dirlock_table, locking >udd>x>y
to this process.

sum$getbranch_root_my calls validate_entryp to ensure that 24315730 is
still the branch for z.

sum$getbranch_root_my returns the pointer 24315730 to ses-fault, with
>udd>x>y locked to this process.

16-1 AH61

I seg_fault checks the time in that branch against the time in the KSTE to
ensure that the access calculated at initiate time is still valid.

9178

seg_fault calls activate with the pOinter to z's branch, 24315730, to
receive an AST entry pointer with the AST locked.

activate copies critical information out of the branch at 24315730 into its
stack, and locks the AS!, in order to determine if >udd>x>y>z is
active.

activate calls search_ast with the UID of z to search the AST for z.
search_ast replies that z could not be found, and is thus not active.
activate unlocks the AST.

activate calls get_pvtx with the physical volume
the branch at 24315730), to get a PVT index.
This number can be invalidated at any time.

10 of volume pub01 (from
This program returns "7".

activate calls vtoc_man$get_vtoce with the PVT index 7, the PVID of pub01,
and the VTOC index of z's VTOCE, 2045, the latter two items culled from
the branch at 24315730. The first vtoce-part is requested.

vtoc_man$get_vtoce locks the VTOC buffer lock, and calls GET_BUFFERS_READ
to see if PVT index 7, VTOCE 2045, first vtoce-part is present. It is
found by SEARCH in vtoce-part buffer 33. It is copied out to
activate's stack frame, and the VTOC buffer lock is unlocked.

activate sees that z is longer than 96K,
will be required to get the
vtoc_man$get_vtoce asking for PVT
vtoce-part.

and that the second vtoce-part
file map. Acti vate - calls

index 7, VTOCE 2045 r second

vtoc_man$get_vtoce locks the VTOC buffer lock, anp calls GET_BUFFERS_READ
to find the second vtoce-part of PVT index 7, VTOCE 2045. It is not
found. A vtoce-part buffer (15) is pre-empted from PVT index 6, VTOCE
1011, third vtoce-part, and the disk DIM is called to read the second
vtoce-part of PVT index 7, VTOCE 2045 into it.

vtoc_man unlocks the VTOC buffer lock, having set buffer 15 out-of-service,
and calls pxss$wait to wait for the event 333000000015.

The disk DIM interrupt side calls vtoc_interrupt with the main memory
address of VTOC buffer 15. The out-of-service bit is turned off, and
pxss$notify is called to notify the event 333000000015.

pxss$wait returns to vtoc_man, which relocks the VTOC buffer lock, and
copies buffer 15 into activate's stack frame.

vtoc_man unlocks the VTOC buffer lock, and returns to activate.

activate locates the ASTE for segment 243 in this process, >udd>x>y. It is
at 17120444.

activate calls get_aste to obtain a 256-word AST entry to hold the segment
z.

get_aste inspects the first ASTE on the 256K used list.
>udd>m>joe>bill.list, which has 12 pages in main memory.

It is for

get_aste inspects the second ASTE on the list. It is for >udd>m>cp>temp,
which has no pages in main memory, and has had none come in since
get_aste last saw this ASTE. It will be deactivated.

get_aste calls deactivate, passing it 17124644, the address of the AST
entry of >udd>m>cp>temp.

deactivate calls setfaults to destroy all SOWs for >udd>m>cp>temp.

16-2 AN61A

l
.. ~

setfaults runs down the trailer list
and, accessing the descriptor
SDW-Ievel abs-seg, removes these
system's associative memories.

for >udd>m>cp>temp, locating all SDWs
segments of various processes via an

SDWs. Setfaults calls to clear the

deactivate calls pc$cleanup to get all pages out of main memory.

pC$cleanup locks th~ page tablelock, and finds that no pages are in main
memory for >udd>m>cp>temp. It unlocks the page table lock.

deactivat~ calls update_vtoce to update VTOCE 2311, PVT index 6 which, as
determined from aste.pvtx and aste.vtocx in the ASTE at 17:24644, are
the PVT index and VTOC index of 'the VTOCE for >udd)m>cp>temp.

update_vtoce finds that >udd>m>cp>temp is 13hK long, and no vtoce-parts
will have to be read.

update_vtoce calls pC$get_file_map, passing it the AST address 17124644, to
get a copy of the AST, with definitive information.

pc$get_file_map locks the page table lock, constructs a valid copy of that
ASTE in its stack, unlocks the page table lock, and copies it out to
update_vtoce's stack frame. This includes the file map.

update_vtoce constructs an image of VTOCE 2311 on PVT index 6, first two
vtoce-parts, from the :i,.nformation returned by pc$get_file_map.

update_vtoce callsvtoc_man$put_vtoce with a zero as PVID, the PVT index 6,
the VTOC index 2311, the image of the first two vtoce-parts of this
VTOCE, and a request to write out these vtoce-parts.

vtoc_man$put_vtoce locks the VTOC buffer lock, and searches for buffers
containing these vtoce-parts. None do. GET_BUFFERS_WRITE causes two
other vtoce~parts to be preempted, and returns to vtoc_man$put_vtoce
their indices, 23 and 16.

vtoc_man~put_vtoce copies the two vtoce-parts supplied by update_vtoce into
buffers 23 and 16 respectively, setting these buffers out-of-service.

vtoc_man$put_vtoce calls the disk DIM to start writing the two buffers 23
and lb, and unlocks the VTOC buffer lock.

vtoc_man$put_vtoce returns to update_vtoce with the 1/0 still in progress;

update_vtoce determines that no nulled addresses were culled by
pc$get_file_map, and VTOCE 1/0 completion will not have to be awaited.

update_vt~ce returns to deactivate, having updated VTOCE 2311 on PVT index
6.

deactivate calls put_aste to free the ASTE at 17/24644. It is moved to the
head of the used list.

get_aste returns the ASTE at 17:24644, now free, to activate.

activate connects the ASTE for >udd>x>y (17:20444) with the ASTE to be used
for >udd>x>y>z at 17:24644.

activ.te calls pc$fill_page_table to fill in the ASTE's page table with
information in the VTOCE (2045) on PVT index 7 which has been read in.

pc$fill_page_table converts the formats of the device addresses, and
initializes the PTWs in this ASTE. A check is made for reused
addresses.

The disk DIM interrupt side calls vtoc_interrupt, placing VTOC buffer 23 no
longer out-of-service.

16-3 AN61

activate fills in the activation attributes of >udd>x>y>z into the ASTE at
17:24644, along with other information.

activate returns to seg_fault with the AST locked, returning the ASTE
pointer 17:24644 for >udd>x>y>z.

seg_fault sets the encacheability state of >udd>x>y>zto "one process,
reading and writing, encacheable".

seg_fault constructs an SDW for >udd>x>y>z, and places it at slot no. 244
in this process' descriptor segment.

seg_fault constructs a trailer entry in str_seg for this descriptor, giving
the number 244 and the ASTE offset of this process' descriptor segment.

seg_fault unlocks the AST.

The disk VIM interrupt side calls vtoc_interrupt, placing VTOe buffer 16 no
longer out-of-service.

seg_fault calls lock~dir_unlock to unlock >udd>x>y.

seg_fault returns to the fim.

The fim restarts the machine conditions for the segment fault.

The process proceeds, and the segment fault has been resolved.

A PAGE FAULT, IN PAGE MULTILEVEL

Having resolved a segment fault on >udd>x>y>z, our user process next
attempts to access location 14.

The appending unit finds PTW 0 for segment 244 (at 17:14660) to have ptw.df
off. A directed fault 1 occurs.

The page fault handler, page_fault, is invoked. It saves all registers and
machine state at pds$page_fault_data. It sets up a stack frame on the
PRDS.

page_fault attempts to lock the page table lock, but finds it locked.

page_fault branches to pxss$ptl_wait to wait for the page table lock.

Pxss$ptl_wait locks the traffic controller lock.
table lock is indeed still locked. The
incremented.

This process is made to wait for the "PTL Event".

It finds that the page
cell sst.ptl_wait_ct is

The process which had been holding the page table lock unlocks it, but
notices sst.ptl_wait_ct nonzero.

The process which had been holding the
pxss$page_notify to notify the "PTL Event".

page table lock calls

Our process resumes. pxss$ptl_wait returns to page_fault$wait_return, and
the page fault is restarted.

The appending unit finds PTW 0 for segment 244 (at 17:24660) to have ptw.df
off, allover again. A directed fault 1 occurs.

The page fault handler, page_fault, is invoked. It saves all registers and
machine state at pds$page_fault_data. It sets up a stack frame on the
PRDS.

16-4 AN61

9/78

page_fault attempts to lock the page table lock, and succeeds.

page_fault calls pd_util$check_pd_free_and_update to see if the paging
device needs housekeeping.

pd_util$check_pd_free_and_update determines that the PDMAP has been written
out in the last second, and will not write it out.

pd_util$check_pd_free_and_update sees that only 8 PD records are free. 10
must be free or being freed.

pd_util$check_pd_free_and_update walks down the PD used list to find
entries to free. Eight PD records are skipped, and the one at 17:6440
is found. It is found to describe a PTW at 17:15262, which describes a
page in main memory. It is not a good candidate for replacement.

The next PD record on the used list, at 17:6224, similarly describes a page
in main memory, and is skipped.

The next PD record on the used list, at 17:6030, describes a page not in
main memory. It is not "PD Mod" (pdme.mod = "O"b).

pd_util$check_pd_free_and_update evicts this page from the paging device,
taking the disk device address at 17:6031 and placing it in the PTW
(17:17327) pointed at by pdme.ptwp at 17:6032.

pd_util$check_pd_free_and_update calls pd_delete_ in the same program to
put the PDME at 17:6030 in the used list as free. The count of free
PDMEs is now 9.

pd_util$check_pd_free_and_update considers the next PDME in the list, the
one at 17:6204. It describes a page whose PTW is at 17:22137, and a
nulled disk address (401512) on PVT index 6.

pd_util$check_pd_free_and_update calls rws in the same program, to start
an RWS for the PD record whose PDME is-at 17:6204.

rws_ calls page_fault$find_core to find a main memory frame in which to
perform the RWS.

page_fault$find_core picks up sst.usedp, which has the value 1550.

The core map entry at 17:1550 is inspected. It describes a page whose PTW
at 17:21532 is modified with respect to paging device or disk (ptw.phm
= "1"b). This page is not acceptable for eviction.

The core map entry at 17:1304 is pointed at by cme.fp of the one at
17:1550. It describes a page whose PTW at 17116120 describes a pure
page which was recently used. This page is not acceptable for
eviction.

The core map entry at 17:1340 is pointed at by cme.fp of the one at
17:1304. It describes a page whose PTW at 17:17172 indicates that this
page is pure, and not "not-yet on paging device".

The access to the page whose PTW is at 17:17172 is turned off, by turning
off the directed fault bit in that PTW, and clearing the system's
associative memories, and clearing the caches of that page's words.

find core calls page_fault$cleanup_page, which puts the PD address in the I
CME at 17: 1340 back in the PTW at 17:17172, and adjusts the AST entry
for this segment at 17:17154. The CME at 17:1340 is freed.

find_core returns the CME at 17:1340 to rws_.

rws_ threads out the PDME at 17:6204 and the CME at 17:1340, and
cross-relates them to indicate the read cycle of an RWS.

16-5 AN61A

rws_ calls the bulk store DIM to read PO record 41 (whose POME is at
17:&204) into location 700000 in main memory whose CME is at 17:1340.
The bulk store DIM starts this read.

rws_ returns to pd_util$check_pd_free_and_update, who now notes that there
are 10 PO records free or being freed.

pd_util$check_pd_free_and_update notes that there are incomplete RWS reads.
and calls the bulk store DIM in a loop until there are none.

At one of these times, the bulk store DIH notices status for the read into
location 700000. and calls page_fault$done_ with the address 700000.
and an error code of zero.

page_fault$done_ locates the CME at 17:1340. and inspects it. noting that
an RWS read was in progress. The routine read_write_sequence in done_
is invoked.

page_fault$done_ acknowledges the RWS read completion, and indicates in the
CME at 17:1340 that an RWS write is in progress. The disk DIH is
called (via device_control$dev_write) to write the address 001512 on
PVT index 6 from location 700000.

page_fault$done_ returns to the bulk store DIM.

The bulk store DIM returns ~o pd_util$check_pd_free_and_update.

pd_util$check_pd_free_and_update notices that there are no more RWS reads
outstanding, and returns to the page fault handler.

the page fault handler inspects the SCU data at pds$page_fault_data, and
determines that this is not a descriptor segment page fault.

The page fault handler locates the SOW for segment 244, implicated in the
machine conditions, and subsequently its page table at 17124660 and its
ASTE at 17124644.

The page fault handler inspects the PTW at 17124660, and determines that
indeed a page fault situation exists.

The page fault handler calls read_page, passing it the PTW address 24660
(relative to the SST), requesting the allocation of a main memory frame
and subsequent read in of a page.

read_page checks that a nonnull address exists in the PTW at 17124660. It
is address 002167 on PVT index 5, which is, by virtue of its format,
nonnull and nonnulled (live). Thus, no quota check or allocation will
be necessary.

read_page calls find_core to get a main memory frame into which to read
that address.

find_core inspects the first CME on the main memory used list. This CHE,
at 1712200, was pointed to by cme.fp of the one at 1711340, which is
now threaded out as an RWS is in progress there.

The CHE at 1712220 describes a page whose PTW
ptw.nypd, requiring allocation to the paging
suitable for eviction. Its cme.fp pointer
17:2214.

(at 17114140) indicates
device. This page is not
designates the CHE at

The CHE at 1712214 designates a page that is neither modified nor "not yet
on the paging device". Its PTW is at 17:15150, and it will be evicted.

The access to the page whose PTW is at 17:15150 is turned off, by turning
off the directed fault bit in that PTW, and clearing the system's
associative memories, and the caches of that page.

16-6 AN61

9178

find_core calls page_fault$cleanup_page, which puts the PD address in the I
CME at 17:2214 back in the PTW at 17:15150. The AST entry at 17:15130
is adjusted appropriately, and the CME at 17:2214 is freed.

find_core returns the CME at 17:2214 to read_page.

read_page sets the CME at 17:2214 to indicate a page out-of-service on a
read. The disk address 002167 is copied from the PTW at 17:24660 to
this CME. It is threaded out of the core used list. The main memory
address, 230000 is placed in the PTW at 17:24660, but ptw.df is still
off.

The disk DIM is invoked, via device_control$dev_read, to read the record
002167 from the disk on PVT index 5 into location 230000 in main
memory, the location described by the CME at 17:2214. The read is
started.

read_page returns to the page_fault_handler, informing it that waiting will
be necessary.

The page fault handler calls claim_mod_core to start all I/Os that were
skipped by find_core during this page fault.

claim_mod_core inspects sst.wusedp, which describes the CME at 17:1550.
This page was skipped because it needed writing.

claim_mod_core calls write_page,
17:1550.

passing it as an argument the CME at

write_page checks this page for zeros. It does not contain zeros.

write_page calls allocate_pd to see if this page requires allocation to the
paging device.

allocate_pd notices that this page is already on the paging device (at
record 101), and returns this fact to write_page.

write_page threads the CME at 17:1550 out of the used list, marks the PTW
(at 17:21532) out-of-service, and marks the CME out-of-service on a
write.

write_page calls the bulk store DIM to write the main memory frame at
location 264000 (described by the CME at 17\1550) to record 101 of the
bulk store.

claim_mod_core inspects the next CME that was in the used list, at 17:1304.
ThisCME was skipped because its PTW at 17:16120 described a recently
used page. The bit indicating this (ptw.phu) in this PTW is turned
off, as demanded by the main memory replacement algorithm.

claim_mod_core inspects the next CME
17:2200 was skipped because it
migration to the paging device.

that was in the used list, the one at
designated a page which required

claim_mod_core calls write_page, passing the CME at 17/2200 as an argument.

write_page notices that this page is pure, and does not check .for zeros.

write_page calls allocate_pd to see if this page needs allocation to the
paging device.

allocate_pd sees that the bit ptw.nypd is on in the PTWat 17:14140, and
determines that this page must be allocated a record of paging device.

allocate_pd inspects the first PDME on the PD used list. It is at 17:6044,
describing record 11 of the bulk store, and is free.

16-7 AN61A

allocate_pd moves the PDME at 1716044 to the tail of the PO used list, and
fills it with information from the CME at 1712200. The CKE at 1112200
is changed to designate record 11 of the paging device as the home for
the page.

allocate_pd returns to write_page the fact that a PO record was allocated ,~
during this call.

write_page sets the CME at 1712200 out-of-service, threading it out of the
used list, and marks the PTW at 17114140 out-of-service.

write_page calls the bulk store DIM to write the main memory frame at
240000 (described by, the CME at 1112200) to record 11 of the bulk
store.

claim_mod_core notices that sst.usedp and sst.wusedp are equal, and all
operations skipped by find core have been processed. _

claim_mod_core returns to the page fault handler.

The page fault handler determines that the PTW for the page faulted on
(page 0 of segment 244) is still marked out-of-service (at 11124660).
Since it is not a page on the paging device, the traffic controller
will be used for waitin$.

The page fault handler meters the page fault and the time spent in
processing it.

The page fault handler develops the event ID for the
024660, and stores it in pds$arl-l for
cme.notify_requested is set in the CME at 1112214.

page faulted
pxss. The

on,
bit

The page fault handler branches to pxss$page_wait, with the page table
locked.

pxss$page_wait locks the traffic controller lock.

pxss$page_wait unlocks the page table lock.

pxss$page_wait sets the process to waiting on the event 024660, and uses
the PRDS frame to switch processes to another process.

Our process goes waiting.

The I/O operation in location 100000 completes, and the disk DIM interrupt
side calls page$done with this number as a parameter.

page$done locks the page table lock and calls page_tault$done_ with that
main memory address.

page_fault$done_ locates the core map entry at 1711340, and seeing that an
RWS was in progress there, calls the routine read_write_sequence in
done_. The PDME at 1716204 is located.

page_tault$done_ notices that a write
401512 (nulled) is resurrected
1716204 and placed in the PTW at
paging device address 000041.

cycle completed. The disk address
to 001512, and taken from the PDME at
11115263, which had contained the

page_fault$done_ frees the PDME at 1716204, and frees the main memory at
location 700000, placing the CME at 1111340 into the core used list.

page_fault$done_ returns to page$done, which unlocks the page table lock.

page$done returns to the disk DIM.

16-~ AN61

The I/U in location 230000 completes. The disk DIM interrupt side calls
page$done.

page$done locks the page table lock and calls page_fault$done_.

page_fault$done_ finds the CME at 1712214, and sees that no RWS was gOing
on there.

page_fault$done_ marks the CME at 1712214 as no longer out-of-service,
threading it back into the used list.

page_fault$done_ locates the PTW at 17124660 from the CME at 1712214. The
directed-fault bit is turned on, allowing access to the page, and the
out-of-service bit turned off.

page_fault$done_ notices the bit cme.notify_requested in the CME at
1712214, and calls pxss$page_notify with the event 024660.

pxss$page_notify locks
process, which was
connect to CPU B.

the traffic
waiting on

controller lock, and notifies our
event 024660, and sends a pre-empt

pxss$notify unlocks the traffic controller lock, and returns to
page_fault$done_.

page_fault$done_ returns to, page_done, which unlocks the page table lock.

page$done returns to the disk DIM.

CPU B takes a pre-empt connect, and calls pxss$pre_empt.

pxss$pre_empt locks the t~affic controller lock, and performs a "getwork"
. operation, abandoning the process that took the connect.

pxss (getwork) finds our process ready, and switches to it, setting it as
running.

pxss (getwork) returns to pxss$page_wait in our process.

pxss$page_wait unlocks the traffic controller lock, abandons its PRDS stack
frame, and transfers to page_fault$wait_return.

page_fault$wait_return
pds$page_fault_data)
fault.

restarts
indicating

the machine conditions (at
an Appending Unit address preparation

CPU B's Appending Unit successfully fetches and uses the PTW at 17124660,
and resolves the virtual address 244114 to absolute address 230014.

16-~ AN61

SECTION XVII

GLOSSARY

abort
See RWS abort.

abs~seg «'

Not a segment at all. A segment number used for addressing as a segment an
arbitrary main memory, disk, or paging device extent, the location of the
extent being a parameter at the time that it must be addressed. See
PTW-Ievel abs-seg and SDW-Ievel abs-seg.

abs-usable
A main
cannot
pages.

memory frame, part of the paging pool, in a system controller that
be deconfigured. Only abs-usable page frames can contain abs-wired

abs-wire
Of a page or segment. To make that page or segment abs-wired.

abs-wired
1. Of a page. A page in main memory, which not only is wired, but may

not be moved around main memory. Pages wired but not abs-wired may be
moved around by abs-wiring pages or deconfiguring memory. Used
principally for I/O buffers.

2. Of a segment. A segment having some or all of its pages abs-wired.

accept
Of a physical volume. To make those supervisor calls, which, by placing
label information in the PVTE for a given drive, establish the binding, or
association, between that drive and that volume.

access control segment (ACS)
A segment whose ACL effectively determines access to a resource. ACSs for
peripheral devices are in)sc1)rcp, and are maintained and used by RCP.
ACSs for logical volumes are usually, but need not be, in)lv.

activate
To make a segment active. Done by getting an ASTE, reading the VTOCE of
the segment, filling in the ASTE, and hashing it into the AST hash table.
See active. The parent directory of a segment must be locked in order to
activate it.

activation attributes
or activation information

Those attributes of a segment that are read from the VTOCE every time a
segment is activated, copied into the ASTE, changed while the segment ,is
active, and updated back to the VTOCE. Examples: current length, maximum
length, date-time modified. See permanent information.

17-1 AN61

active
1. Of a segment. Having a page table (and AST entry) in main memory; the

criterion for whether or not a segment is active is whether or not it
is hashed into the AST hash table.

2. (loosely) of a page. Belonging to an active segment.

3. Of the paging device, or an instance thereof. In use, having pages
being allocated, read and written from it. The bit fsdct.pd_active
tells whether or not the paging device is active. See unflushed.

add_type
A subfile of page control device addresses (devaddS) that specifies whether
it is a record of disk, a record of PD, a main memory frame, or a null
address.

append
(verb) To combine an address (effective address) produced by the processor
control unit, with a segment number (th~ effective segment number)
maintained by the appending unit, and produce, by fetching and inspecting
PTWs and SDWs, either a main memory address or a page or segment fault.

appending unit (APU)
That portion of the 66/bO processor responsible for the implementation of
segmentation and paging. It performs appending, maintains all segment
numbers, performs control operations on its data, and coordinates the
taking of faults.

appending unit cycle
One of the operations of the appending unit that results in an address
being· presented to the'proces~or ~ort logic. For an append that does not
result in a fault, the last such address (final address) is the address of
the data requested by the control unit. Other APU 6ycles are to obtain and
modify PTWs or SDWs. Each CU cycle (see control unit cycle) may produce
many APU cycles.

associative memory

AST

ASTE

A content-addressable semiconductor memory in the processor appending unit.
There are two: the PTW associative memory, which maintains the last 16
PTWs fetched from main memory, and similarly the SDW associative memory.
The associative memories can be cleared via the CAMS and CAMP instructions.
Used for speed, to avoid continual PTW and SDWfetching from main memory.

For active segment table. The collection of ASTEs that describe all of the
active segments in the system. (See ASTE.) The AST is the uppermost part
of the SST.

For active segment table entry.

1. (ASTE proper). A collection of attributes, other than file map or
page tables, describing an active segment.

2. That collection of attributes, taken along with the page table and
file map of a segment.

AST hash table
A table, kept in active_sup_linkage, that holds the heads of hash threads,
so that the UlD of any segment may be used to find its ASTE, if it .is
active, or the fact that it is not active.

AST pool
There are four sizes of AST entries, those containing page tables of 4, 16,
64, and 256 PTWs. Those of each size form four pools, that are managed
separately.

17-2 AN61

AST trickle
A mechanism implemented in the AST replacement algorithm that periodically
updates, from the AST, the VTOCEs of segments·whose VTOCEs would benefit by
so being updated. It is driven by AST traffic.

AST used lists
One of seven lists of AST entries, the four normal lists being "used lists"
of each size, and others being lists of ASTEs selected by some special
criteria. See used list.

atomic
See unitary.

attached
1. A private logical volume is attached to a process if an entry in that

process' KST so attests. Only private logical volumes that are
attached to a given process can be used by that process.

2. There are definitions of this term relative to user-ring I/O and
resource control.

auxiliary service
A service provided by a subsystem that, although it is not one of the
fundamental ones for which the subsystem exists, involves much of the
central code of the subsystem. See peripheral service and basic service.

bad track list
A reserved area of the volume header of a physical volume, that will be
used to contain bad track information in future releases.

basic service
A service provided by a subsystem that is one of the fundamental ones for
which it exists. See auxiliary service and peripheral service.

bit map
A one-bit-per-record map
given physical volume.
reside in the FSDCT.

of all of the disk records usable for paging on a
All bit maps (those for mounted physical volumes)

bootload
1. (verb) To initiate the operation of the Multics system, when it is

down, i.e., to bring it up via issuing the BaS BOOT command.

2. (noun) The act of bootloading.

3. The life-span
shutdown, or
performed.

of a Multics hierarchy from time of bootload to
next bootload, in the case where shutdown cannot be

branch
As used in this document, a data structure in a directory that describes a
segment or directory. A segment's branch contains a physical volume ID and
VTaC index for the VTOCE of a segment or directory. The ACL, names,
author, bit count, etc., of a segment may be found in or from its branch.

bulk store

cache

A core memory storage medium used as a paging device. The term is used
when it is not relevant that it is being used as a paging device as opposed
t~ any other storage medium.

A 2048-word semiconductor buffer memory in the processor port logic. An
attempt is made to maintain the last 2048 words fetched from main memory in
the cache. The cache provides a substantially faster access time than that
of main memory. As each processor contains its own cache, strategies are
needed to prevent confusion about main memory contents. See encacheable.

17-3- AN61

call side
Those programs in page control that are explicitly invoked by processes
that need services performed upon segments. See fault side and interrupt
side.

call-side wait coordinator
The program (page$pwait) used by call-side page control to wait for a given
event, via an appropriate mechanism, and set whatever bits will be
necessary to cause the occurrence of the event to perform the necessary
notification.

claim
When
have
have

the PD or main memory replacement algorithm selects a page frame to
its contents evicted, and thus be freed, the page frame is said to
been claimed.

connected
Of a process and a segment. A segment is said to be connected to a
process, or vice versa, if the descriptor segment of that process contains
an SDW that describes that segment, and is not faulted. See trailer.

connection failur~
or forward connection failure

A situation that exists when a directory branch describes a certain VTOCE,
but that VTOCE describes some other (or no) segment. This can be
determined by comparing UIDs. This situation can come about by accident or
by deliberate salvager action. See also reverse connection failure.

contract
The action performed by a program, the conditions that must be true when it
is invoked, and the circumst~nces describing the meaning and validity of
the result.

control unit (CU)
That portion of the 68/80 processor that is responsible for decoding
instructions, performing indirections, and routing data around the
processor. The control unit develops effective addresses of words in
segments; see appending unit. The control unit status can be stored via
the SCU instruction, when a control unit cycle is aborted due to a page or
segment fault.

control unit (CD) cycle

core

A control unit operation resulting in an effective address being presented
to the appending unit or port logiC. Typical CU cycles are "instruction
pair fetch," "operand fetch," "indirect word fetch," etc. Any CU cycle can
result in a page or segment fault when appending is performed for that
cycle. Restart of that fault retries the aborted CU cycle.

An obsolete term used in many program listings and comments for main
memory.

core map
A page control data base
for frame of main memory.
Section VI for its layout.

core used list
or main memory used list

in the SST that contains a four-word entry (CME)
It is protected by the page table lock. See
See core.

A used list of core map entries (CMEs) describing the order of recency ,of
use of main memory frames.

crawlout
A cross-ring signal that causes abandonment of a stack in the inner ring.
Crawlouts out of ring 0 require supervisor data bases to be cleaned up.
Crawlouts result from hardware problems or faulty software, or damaged
directories, and cause the software running at the time to be interrupted
and not continued.

17-4- AN61

critical process pages
The first page of a process' descriptor segment and PDS. These two pages
must be wired (the process is then loaded) before the process can actually
run.

deactivate
Of a segment. To remove it from the state of being active. To deactivate
a segment, its pages are driven out of main memory and paging device, its
VTOCE updated from its AST entry, and the ASTE freed. See active.

deadlock
or deadly embrace

A situation wherein-a process having a given resource is waiting for some
other process to free a second resource, but, unfortunately, the process
having the second resource is waiting on the first process to free that
first resource. See locking hierarchy.

deciduous
Of a segment. A segment read in as part of the bootload tape in collection
1 or 2 (i.e., part of initialization's, therefore the initi~lizer's,
hardcore address space) and placed into the hierarchy by the program
init_branches. Deciduous segments reside entirely in the hard core
partition. See also reverse-deciduous.

Examples:)sll>pll_operators_, >pdd>lzzzzzzbBBBBBBB)pds

defined
Of a logical volume. Either a mounted public logical volume, or a mounted
private logical volume attached to a given process. A process is said to
have a given logical volume either defined or not defined.

demount
1. Of a physical volume. To dissociate a physical volume from the drive

on which it is mounted, stopping use of it by processes.

2. Of a logical volume. To remove the logical volume table entry for a
logical volume.

demounter
The procedure demount_pv, that coordinates the demounting of physical
volumes.

deposit
To deposit an
volume (bit
withdrawing.

address to the free pool of records of a given physical
map) is to mark it as free, and available for subsequent
See withdraw and bit map.

descriptor segment (sometimes DSEG)
An array of hardware control words (SDWs) that specifies the mapping
between segment numbers and either segments or taking a segment fault.
Each process has its own descriptor segment; it is a segment, and may be
paged, in which case it is described by the descriptor segment page table.
The first page of the descriptor segment of a loaded process is wired.

desperation
Action taken
Desperation
can be found

by paging device allocator when there are no free PD records.
consists of evicting some nonmodified page from the PD, if it
near the head of the PD used list.

devadd (device address)

DIM

A page control format for all main memory, paging device, and disk
addresses. The upper 18 bits are a record number or address, and the lower
four bits (add_type) specify whether it 1s main memory, disk, paging
device, or null.

For device interface module. The
managing the physical operation
(viz., the disks or bulk store).

program that contains the code for
(as opposed to logical use) of a device

17-5- AN61

double-write
A disk write performed
device write. Double
CONFIG card, and tends

as a reliability feature after a successful paging
writing is controlled by a parameter on the DEBG

to keep paging device pages pure.

eligible
A process is made eligible by the traffic
latter describes that the former should be
resources (i.e., take page faults). Only
although they must be loaded first.

controller at the time that the
allowed to consume main memory
eligible processes can run,

emergency shutdown (ESO)
A set of procedures, invoked via the BOS ESO command, that attempt to
produce an orderly shutdown of the system after a crash has occurred. This
shutdown must be performed in order to update the disk records and VTOCEs
for segments that were active at the time of the crash.

encacheable

entry

evict

Said of a segment. A segment is encacheable if words of that segment are
allowed to be put (and hence subsequently found) in a processor's cache.
An SOW bit (sdw.cache) controls encacheability. This is used to control
sharing and prevent confusion about cache contents. Segments accessible to
the 10M or FNP are routinely nonencacheable.

(loosely) same as branch.

Of a page. To drive a page out of a given main memory frame, or PO record,
by writing it, moving it, or simply changing the state of its data bases as
appropriate. Note that the eviction of pages that are identical to copies
on disk or PO does not involve writing.

exposed

fatal

A physical volume is exposed to an instance of a paging device if that
instance is active while that volume is mounted.

Of a crash. A crash for which a successful emergency shutdown could not be
attained. Fatal crashes involve salvaging all physical volumes mounted at
the time of the crash.

fault side
Those
fault.

programs in page control that are
See call side and interrupt side.

invoked in response to a page

fault vector
A pair of instructions at a fixed location in main memory associated with a
specific type of fault condition. When the processor recognizes such a
condition, it "takes" the fault by executing these instructions. In
Multics, they are always SCU (store control unit) and TRA (unconditional
transfer).

file map
A mapping between the pages of a segment and disk record addresses on some
physical volume. Each page is mapped into either one such address, or a
null address, indicating zero contents. File maps appear in VTOCEs. When
a segment is active, the file map is distributed between the various page
control data bases.

file-system time

frame

A 36-bit representation of real clock time used in directories
recording date-time used, date-time-modified, and other storage
times. It is the upper 36 bits of a 52-bit clock time.

or "main memory frame"

and in
system

A 1024-word block (on a 1024-word boundary) of main memory. See page.

9178 17-6 AN61A

FSDCT

fsmap

For file system device configuration table. A paged data base containing
many global volume management parameters, and all bit maps.

Either the bit map of the volume map of a physical volume, or the bit map
in the FSDCT for that volume, when it is accepted.

fsmap tail
in the fsamp of a paging region that is not a multiple of 32 10 pages, the1
bits of the last word of the fsmap that are not part of the valid portion
of the bit map. They must be zero.

function
A body of code that performs some particular action as part of the
operation of some subsystem. A function is used in this book to mean an
important internal interface. See service for comparison.

half lock
or-read lock

A data object that allows many processes
data object or data base, but does not
until no processes are performing any
second kind). A process performing the
process attempting to do the first
"multiple-reader one-writer" lock.

to perform certain actions upon a
let certain other actions begin
actions at all (either first or
second kind of action causes any

kind to wait. Also called

hardcore partition
A partition used for holding the pages of the supervisor. It is always on
the root physical volume (RPV).

hard core segment
A segment addressable in the hardcore address space of all processes. All
such segments are created via initialization.

hierarchy
A set of directories, segments, and volumes that describe each other
completely. Normally each site maintains one hierarchy, although some
maintain others for development use. All unique IDs and PVT indices,
paging device information, etc., are valid only with respect to one
hierarchy.

higher
Of locks. See locking hierarchy.

"hot" buffer
A vtoce-part buffer, that although not out-of-service., is known to have
contents differing from disk. Hot vtoce-part buffers arise only as a
result of write errors, and must be flushed at demount time.

inhibit
Of a physical volume.
volume, by the setting
done via the inhibit_pv

To prevent segment (and VTOCE) creation upon that
of a bit (pvte.vacating) in its PVTE. This can be
command, or the sweep_pv command.

initialization
The set of programs that run when Multics is bootloaded, until it is up to
command level. Initialization is responsible for creating the supervisor
data bases, and building the hard core address space of all processes, among
other tasks.

instance

9/78

Of the paging device. The paging device, and all of the pages that are and
have been on it, and its map, from the time its map is initialized to the
time it is shut down or the last record is flushed from it, whichever
happens first.

17-7 AN61A

interrupt side
Those programs in page
respond to the completion
only invoked on behalf
invoke it as well.

control that are called by storage system DIHs to
of an I/O operation. The interrupt side- is not
of interrupts; "running" and other activity can_

kernel ~
Of page control. The ALH programs in the main path of the pale fault,
handler.

known segment table (KST)
A per-process table describing the mapping between segment numbers in that
process and storage system segments. The segments are identitied via
pOinters to their branches (using other segment numbers in that process)
and unique IDs. The KST also contains a list of private 10lical volumes
attached to the process. The KST is a reverse-deciduous selment.

label
or volume label

live

The first Hultics record of a physical volume. It identifies the volume,
and gives parameters about its last use.

Said of a disk address. A disk address that represents a liven record of
disk and the data in it. See nulled for c~mparison.

loaded

lock

A process is loaded when its two critical process pales have been wired.
Processes are loaded by the traffic controller when they are made eligible.
Only loaded processes can actually run.

A data object used to serialize processes performing certain actions' and
using or modifying certain data bases. A process locks a lock before
performing these actions or using these data bases, and unlocks it when
done. Only one process may have a lock locked at one time. A process
trying to lock a lock that is locked by (or !2) another process must wait
for that lock. Processes are also said to ~ locks when they have them
locked.

In Hultics, locks are single words of storage that are zero when not locked
and contain the process ID of the process that has it locked when it is
locked. See protect.

locking hierarchy
A conceptual partial-ordering of a set of locks via the arbitrary relation
"higher" (». If lock A >lock B, and lock B >lock C, then lock A >lock C.
There is no inverse, and two locks may be totally unrelated. The locking
hierarchy is used to prevent deadlock. The rule used by the Hultics
supervisor, states that no process may wait for the unlocking of a lock
unless that lock is higher than every lock it has locked (sometimes called
the "Bensoussan Algorithm").

logical volume
A set of physical volumes
the creation of segments.
volume for a creation is
move automatically between

defined as a group, to which the user may direct
The choice of physical volumes with a logical
a dynamic choice of the system, and segments may
physical volumes of a logical volume.

logical volume table (LVT)
A system data base (in the segment "lvt") that contains per-logIcal volume
parameters for each mounted logical volume, as needed by the hardcore.
Included in such information is access class, and the heads of a thread of
PVTEs of physical volumes belonging to that logical volume.

LVTE
For logical volume table entry. See logical volume table (LVT).

17-8 AN61

machine conditions
A 40-word description of a processor state at the time of a fault or
interrupt. It contains the contents of all program-accessible registers,
the state of an aborted control unit cycle, and various other information.
To restart a set of machine conditions is to cause the processor to load·
its registers from that machine state, and resume the interrupted program.

main memory
(formerly core)

The core or MOS memory device from which the processor normally fetches
instructions and data. All pages must be in main memory to be directly
used by the processor. See also core.

master directory
A directory whose quota is not derived from its parent, and cannot be
returned to it. Master directories are the only directories whose sons
logical volume can be different from that of the parent directory. The
setting of quota accounts on master directories, and the creation and
deletion of master directories, is controlled by master directory control
in ring 1.

migrate
To migrate a page to the paging device is to allocate a PD record for it,
and write it to that record. From then on, it will be read from that
record, until it is migrated off it.

mounted
1. Of a physical volume. Being physically mounted, and having the PVT

entry for the drive on which it is mounted filled with parameters of
that pack (pvte.used will be on).

2. Of a logical volume. Having all of its physical volumes mounted (1),
and having an entry in the LVT.

multiplex wait protocol
The technique used by call-side page control to wait for a large number of
events in parallel; it involves the simplex wait protocol and waiting for
an arbitrary event.

multistep operation
An operation conSisting of many unitary operations. See unitary operation.

nondeactivateable activation
Same as semipermanent activation.

nondeciduous hardcore segment
A paged hardcore segment that is not deciduous. Such segments a~e not in
the storage system hierarchy, and thus have no pathnames.

Examples: bound_file_system, bound_system_faults.

not-yet-on-paging-device (nypd)

null

A pure page in main memory that has not yet been migrated to the paging
device. Such pages are important because their eviction requires migrating
them to the paging device.

An address that represents a record of any device, and a logical page
content of zeros. A null address. in a VTOCE is represented by having its
high-order bit on. In page control, it is represented by an "add_type" ,of
zero. The low-order 17 bits of a null address contain a debugging code
that reflects the manner in which it was generated.

nulled
Of a disk address. One that represents a given record of disk, but a
logical content of zeros. Nulled addresses appear only in page control
data bases, never in VTOCEs. They may not be reported to VTOCE file maps.
See null and live.

17-9· AN61

oopv
For out of physical volume. A condition where no more free records exist
on a physical volume.

orphan
(Of a segment or its VTOCE.) A segment that has a VTOCE but no branch 1n
the storage system hierarchy. Orphans may result via certain. actions of
the salvager or certain crashes. They can be located via the sweep_pv
command. See reverse connection failure.

out of service

pack

page

Undergoing I/O. Does nQ1 imply inaccessible.

A demountable unit of disk storage. Same as physical volume.

A 1024-word extent of data at a 1024-word boundary of some segment. Pages
belong to segments; they can exist in main memory frames, or on disk
records or PD records.or any combination of those.

page fault
An exception condition detected by the processor hardware (the appending
unit) when an attempt is made to use a PTW that specifies that some page of
some segment is not in main memory~ This is indicated by the bit ptw.df
being off. This causes the unconditional exe.cution of a specific fault
vector that effects a transfer to the page fault handler.

paging region
That extent of a physical volume described by the volume map, in which all
records described in VTOCEs reside.

page table
The array of PTWs that specifies the mapping between addresses in a segment
and either main memory frames or page faults. The page table of a segment
is part of the ASTE; only active segments have page tables. The SOW of a
segment (a paged segment) contains the absolute address of its page table.

paging device (PD)
An optional storage device from which pages are read
memory, on which copies of disk pages are maintained
Only a bulk store subsystem can currently be used as
bulk store.

and written from main
for faster access.

a paging device. See

paging device map
or PD map
Or PDMAP

A page control data base in the SST
for each record of paging device.
See Section VI for its layout.

that contains a four-word entry (POME)
It is protected by the page table lock.

parasite
A segment residing on
segments on the RPV).
existence implies the

a physical volume that has no VTOCE (e.g., descriptor
All such segments are currently on the RPV. Their

need for a "short RPVS" in the case of a crash.

partition

PO

A region (extent) of a physical volume, other than the VTOC and label area,
used for some other purpose than pages of storage system segments.

See paging device.

PD flush
The software that runs in subsequent bootloads after a fatal crash which
repatriates pages on an unflushed paging device to their disk records.

17-10 AN61

PDS
For process data segment. A per-process (reverse-deciduous) hardcore
segment that contains all per-process information needed by a process other
than that describing its segment number to segment mapping. The first page
of the PDS of a loaded process is wired. See KST.

PD used list
A used list of paging device map entries (PDMEs), describing the order of
recency of use of paging device records.

peripheral servic~
A service of a subsystem highly removed from the main path and procedures,
that may only call very high-level interfaces of that subsystem. See basic
service and auxiliary service.

permanent attributes
or permanent information

Those attributes of a segment, stored in the third vtoce-part of its VTOCE,
that are rarely read or changed. Examples: UID pathname, date-time VTOCE
created. See activation information.

perm wired
1. Permanently (i.e., since bootload) wired. See wired.

2. Sometimes used to mean unpaged, since such segments, indeed, cannot be
removed from main memo~y in any way. See "temp wired."

physical volume
Same as pack. A (usually) detachable storage medium of disk storage,
containing entire segments, and a VTOC containing VTOCEs describing these
segments. Each segment resides wholly on one physical volume. Each
physical volume belongs to one and only one logical volume.

physical volume table (PVT)
A wired table of entries
parameters for mounted packs.
segment control, and volume
per-logical-volume information

(PVTEs) describing almost all of the per-pack
There is information here for page control,

management. The bit map for the pack, and
is not stored here.

port logic

post

That portion of the 68/80 processor that selects system controllers,
transfers commands and addresses to them, and receives data and
notification from them. The port logic receives data from the processor,
but addresses only from the appending unit. It contains the cache as well.

To post an liD operation that was initiated by page control is to perform
those actions taken by the interrupt sid~ when told of the completion of
this action by· the appropriate DIM. Posting operations mayor may not
involve notification.

post-crash PD flush
See PD flush.

private
A logical volume is private if it was registered with this attribute. A
private logical volume must be explicitly attached by any process that
wishes to use segments on it; this is done conditionally depending upon the
ACS of that volume.

preacceptance
The actions taken in
hardcore partition,
Preacceptance of the

initialization to use the partitions,
on the RPV, before the RPV has

RPV is performed by init_pvt.

I

17-11

including the
been accepted.

AN61

prewithdraw
To assign a
segment is
first use.
make_sdw.

disk record address to a page of a segment at the time the
created, or at a given explicit time, as opposed to time of

All supervisor segments have their pages prewithdrawn by

preseek
An action taken by the main memory replacement algorithm to find a page
frame to claim. It "looks ahead" for a usable page, postponing writing
(see "writebehind") for later.

private
Of a logical volume. One to which access by users is restricted to those
specified by the ACLof the ACS for that volume. Users wishing to use
segments on private logical volumes must explicitly attach them. See
public.

protect
A lock protects a data base or data objects, and lor operations on it, if
such operations on that object or data base cannot be undertaken unless the
process attempting to do so has the lock locked. For instance, the AST
lock protects deactivations.

pseudoclock

PTW

A counter that is incremented every time an event occurs. Via appropriate
protocols, an old value of a pseudoclock may be saved, and compared with a
new value, an equal comparison implying that no occurrences of the event
have happened.

For page table word. A processor hardware control word, an element of a
page table, that specifies either a main memory frame address or that the
processor should take a page fault when attempting to use this PTW.

PTW-level abs-seg
An abs-seg implemented via a page table; the SDW for this segment number
describes that page table, and the PTW contents and PVT index in the ASTE
are varied to describe the extent of disk or bulk store being addressed.

public

pure

Of a logical volume. One on which access to segments is restricted solely
by the ACLs on the segments. See private.

or purify
A pure page is one that has a good (i.e., identical) copy on secondary
storage or the paging device. To purify a page is to write it out so that
this is so.

PV hold table
or PVT hold table

PVT

PVTE

quota

A table of half-locks, protecting nonunitary VTOC operations against the
physical volume demounter. Also used to schedule salvages if crawlouts
occurred with a volume "held" (half-locked).

See physical volume table.

For physical volume table entry. See physical volume table.

An administrative limit on disk record consumption. The quota of a
directory is the maximum number of nonzero or in-main-memory pages allowed
to be created for segments charged to the quota account of that directory.

17-12 AN61

quota account
A data structure associated with a directory (in the VTOCE and/or ASTE of
that directory) that allows segments inferior (not necessarily immediately
inferior) to that directory to have their record consumption charged
against a single pool. See quota.

quota cell
The information in an ASTE or VTOCE for a directory with a quota account
that describes the quota limits and records currently charged against that
quota account.

read-write sequence (RWS) ,
A sequence of operations by means of which the copy of a page on the paging
device is written back to a record of disk. This is only performed for
pages for which the paging device copy is different than the disk copy. An
RWS consists of allocation of a main memory frame, reading in the page from
bulk store, and writing it to disk, freeing the frame when done.

record
1. (Disk record) A 1024-word, contiguous extent of disk that can hold a

copy of a page.

2. (PO record) A 1024-word, contiguous extent of paging device that can
hold a copy of a page.

repatriation
The act of locating the segment to which pages "trapped" on an unflushed
paging device belong, and writing these pages back to the appropriate disk
record. Performed by the post-crash PO flush.

residue
The data left over in a record of disk or bulk store or a frame of main
memory after a given pag6 no longer resides there. It is impossible' to
read residues~

resource control package (RCP)
Multics subsystem (running in ring 1) that
peripheral devices. RCP also controls the
private logical volumes to user processes.

controls and mediates access to
attachment (see attached) of

resurrection
The act of converting a nulled address into a live address, which allows it
to be reported to a VTOCE file map. See nulled. Resurrection is performed

'upon the successful completion of a write, double write, or RWS.

reused address
A disk address simultaneously in use by two different pages. Such a
situation is theoretically impossible. See unprotected address.

reverse connection failure
A situation that exists when a VTOCE describes a segment, but no branch in
any directory in the storage system describes that VTOCE (or therefore that
segment). Such a segment is said to be an orphan. See connection failure.

reverse-deciduous

RLV

A segment in the storage system hierarchy that is placed into the hardcore
address space of some or all processes via semipermanent activation.
Examples are the POS of any process except the initializer and
>online_salvager_output. See deciduous.

See root logical volume.

root logical volume (RLV)
The logical volume, which cOhtains the RPV, on which all directories exist.
It is the only logical volume necessary for system,operation.

17-13· AN61

root physical volume (RPV)

RPV

The disk, residing on the drive pointed to by the root config card, on
which the root directory (» and the hardcore partition (in which the
supervisor resides) exist. It is a member of the root logical volume.

See root physical volume.

RPV-only directory

RPVS

run

RWS

A directory, whose sons logical
and directories may only be
directory, as is >lv.

volume is the RLV, whose inferior segments
placed on the RPV. The root is such a

BOS keyword for root physical volume salvage. A
physical volume (RPV), that is performed
initialization when necessary or requested.
involve some automatic directory salvaging. See

volume salvage of the root
by the system during
Most cases of RPVS also

short RPVS.

Said of disks, the bulk store, or their DIMs. To call the appropriate
hardware interface mbdules for a device, and See if operations have
completed, invoking the interrupt side of page control when this has
happened. One can "run" a device in a loop until an arbitrary number of
operations or an arbitrary operation has completed. Simulates an
interrupt, in effect.

See read-write sequence.

RWS abort

scrap

SDW

The action taken by the page fault handler when a page fault is taken on a
page from which an RWS is in progress. When the RWS is posted as complete,
the page fault will be resolved by the interrupt side of page control.

Of paging device records on an unflushed paging device. To cause the
system to ignore the contents of such records, forgetting the fact that
they are unflushed and in need of repatriation.

For segment descriptor word. A hardware control word, an element of the
descriptor segment, that gives the absolute address of an unpaged segment,
or the absolute address of the page table of a paged one. The SDW also
contains access mode and ring brackets, as well as other information. The
SDW can also specify taking a "segment fault."

SDW-level abs-seg
An abs-seg implemented as a variable SDW slot; various SDWs either
describing main memory or page tables are inserted in that slot to describe
the main memory extent or segment to be addressed.

secondary storage
P~rmanent storage as opposed to the paging device. Interchangeable, in
most contexts, with "disk."

segment fault,
An exception condition detected by the processor (the appending unit), when
an attempt is made to use an SDW that describes a segment not yet connected
to the process in whose descriptor segment the SDW appears. This ds
indicated by the bit sdw.df being off. A segment fault causes a specific
fault vector to be unconditionally executed, ultimatelj invoking the
segment fault handler.

semipermanent activation
Activating a segment in such a way that it will remain active even after
the AST is unlocked. This is performed by the program grab_aste, and is
done by turning on the bit ~ste.ehs, the "entry hold switch."

17-14- AN61

service
An action performed by a subsystem on behalf of some other subsystem, a
class of action so provided. The services performed by a subsystem are its
reason for existence. See function for comparison.

setfaults
An operation performed by the procedure of the same name, at the time a
segment is deactivated or its access attributes are changed.· This
operation modifies or faults all of the SDWs for a given segment, located
via the trailer list. The associative memories of all processors are
always cleared as the last step of a setfault.

short RPVS
A root physical volume salvage
bootload after a successful
because no directory salvaging

(see RPVS) performed automatically upon
emergency shutdown. It is called "short"

of any kind is performed in this case.

simplex wait protocol
The technique used by the page-fault handler and the
protocol to await the occurrence of a page control event.
involves the assumption that the "occurrence" of the event
happened when indicated, and the status of the operation
having to be reevaluated.

multiplex wait
This technique
may not have

being performed

sons logical volume

SST

Of a directory. The logica~ volume on which all segments created inferior
to this directory will reside. A directory inherits its sons logical
volume from its parent unless it is a master directory.

For system segment table. A supervisor segment (sst_seg) that contains
almost all page control data bases, all AST entries, and many meters. It
is contiguous in main me@ory (unpaged), as it contains page tables used· by
the hardware. See core map, PD map and AST.

temp wired
1. Temporarily wired, via calls to the wiring interfaces (pc_wired) in

page control.

2.

trailer

Sometimes used to mean paged and wired, as opposed to unpaged.
perm wired.

See

An entry in the system trailer segment (str_seg) attesting to the fact that
a process has an SDW for a given active segment. Each active segment
possesses a trailer ~ of such processes. The trailer identifies the
process via the AST offset of its descriptor segment's ASTE, and contains
the segment number of the segment in that process. See setfaults.

trickle
See AST trickle.

unflushed
Said of the paging device, or an instance thereof. Containing pages from a
previous boot load , that are in need of repatriation. See active for
comparison. No new pages are migrated to an unflushed paging device, and
the system will not come up if it has one.

unique· 10 (UIO)
A 36-blt number assigned to a segment at the time it is created. It ,is
different from any other UIO for any other segment in that hierarchy. It
is stored in the VTOCE, ASTE, [STE, and branch for a segment, and must
match for all of these objects. UIOs are also stored on the paging device
to facilitate repatriation.

17-15· AN61

unitary
or atomic operation

An operation performed upon a data base or data object by a process, in
such a way that no other process attempting to perform or succeeding in
performing the same or other operations upon that data base can affect the
operation being performed in any way.

unprotected address
A disk address in
use in the bit
impossible.

use by some page of some segment that is not marked as in
map for that volume. Such a situation is theoretically

used list
See PD used list, AST us~d list, and core used list.

"Used lists" in Multics are circular, double-threaded lists of similar
objects, containing both free and in-use objects. All of the free objects
are maintained at the head of the list.

Used lists generally implement replacement algorithms, with the entries at
the head of the list that are not free the most likely candidates for
replacement.

vacate
1. Of a physical volume. To drive all of the segments on a physical

volume onto some other physical vol~me in that logical volume. Done
by the sweep_pv command.

2. Of a main memory frame or PD record. To evict any page from that
frame or record, s~ch that the frame or record becomes free.

volume header
The first eight records of a .physical volume, containing the label; the
volume map, the VTOC header, and the bad track list.

volume map
A data
paging
are in

base in the volume header of a physical volume that describes the
region of that volume, and includes a bit m*p telling which records

use.

VTOC
For volume table of contents. An array of entries (VTOCEs) describing each
segment on a physical volume. The VTOC occupies a fixed, contiguous extent
at the beginning of a physical volume.

VTOC header
A data base in the volume header of a physical volume, that tells the
extent of the VTOC, and contains the head of the free VTOCE thread.

vtoce-parts
One of
contains
The file

the three physical 64-word parts of a VTOCE. The first vtoce-part
the activation information, the third the permanent information.
map is in all three.

wire
Of a page or segment. To make that page or segment wired.

wired
1.

2.

Of a page. A page that may not be removed from main memory. The bit
ptw.wired tells page control not to replace this page.

Of a segment. A segment having some or all of its pages wired.
also aba-wired.

17-16

See

AN61

withdraw
To withdraw an address from the free pool of records of a given physical
volume (bit map) is to request an unused record and mark it as used,
obtaining the address of that record. (Also said "address withdrawn
against a given bit map.") See bit map and deposit.

writebehind
A feature of the main memory page replacement algorithm whereby the basic
path of the algorithm skips (see preseek) writing, and this writing is done
later (at the end of page fault processing).

17-11· AN61

APPENDIX A

CHANGES FOR MR 6.0

This appendix describes storage system implementation details that are
markedly different in Multics Software Release 6.0 from descriptions found
elsewhere in this manual. Areas affected, and described in this appendix, are:

1. prewithdrawing policy
2. per-process hardcore segment policy
3. volume dumper support
4. page posting queue
5. page control traffic control interface
6. page control consistency strategy
7. page control error strategy
8. large volume map space
9. damaged segments

10. quota validator
11. support of hierarchy salvager
12. limited update backlog
13. partial shutdown

PREWITHDRAWING POLICY

The algorithm given in Section IV under "PDS and KST Management" for
prewithdrawing segments is incorrect. Step 4, if it causes a segment move,
causes all the prewithdrawn addresses to be deposited during the segment move.
Instead of the conjunction of bits aste.dnzp and aste.ehs indicating "don't
deposit nulled pages" (5.0 policy), a new bit, aste.ddnp, indicates precisely
this. This bit inhibits reporting of nulled addresses for deposition in
pc$get_file_map and pc$list_deposited_add. Thus, segments with this bit on in
the ASTE do not get nulled addresses reported to segment control, even after
truncation. What is more, the segment mover copies this bit into the new ASTE
of a segment move before copying the data. Since nulled pages have disk
addresses at the time the segment mover attempts to copy the data, it copies,
and thus prewithdraws, nulled pages against the new segment, exactly as desired.

The bit aste.ddnp is seen by the AST replacement algorithm as an entry-hold
switch; it is metered against steps-ehs. Thus, no segment with this bit on can
be deactivated. However, it can be segment moved, and its ddnp-quality
preserved. Thus ddnp implies that the segment ought not to be deactivated
because of the prewithdrawn quality of its addresses, as opposed to someone
sequestering the page table address, which is the normal reason for setting an
entry-hold switch.

When ddnp segments are released from the entry-hold state, the ddnp switch
is turned off so that addresses of the segments may be reported and deposited
after truncation.

Notice that ddnp does not imply dnzp or vice versa; segments with
prewithdrawn addresses can benefit perfectly well from not having zero pages
written out/read in, but just created in place.

9/78 A-l AN61A

The entries grab_aste$prewithdraw and grab_aste$release_prewithdraw are
used to prewithdraw segments (turning on ddnp) and turn off ddnp. In fact, the
existence of ddnp simplifies grab_aste radically. This routine now uses this bit
(turning it on only to turn it off later, if not the $prewithdraw entry) to
force a segment into a sufficiently large ASTE. The algorithm given in
Section IV under "Semi-Permanent Activation" is no longer necessary. By turning
on aste.ddnp, and touching the needed page, without storing into it, grab_aste
can be sure that the segment cannot be deactivated as long as aste.ddnp is on.
When a boundsfault occurs, boundfault moves the page's PTW as well as the bit
aste.ddnp, causing the page not to go away until the bit is turned off.

PER-PROCESS HARDCORE SEGMENT POLICY

The descriptor segment of a process is now a reverse-deciduous segment. So
are all PRDSs, except the bootload-time PRDS, which is deciduous. This has the
effect of eliminating par~sitic segments (see Section VII, "RPV Parasite
Segments") for all cases except scratch segments used by the volume salvager and
disk rebuilder. Thus, in release 6.0, descriptor segments appear in the
hierarchy, in the process directory. They are prewithdrawn as are PDSs, as
described in "PDS and KST Management" in Section IV.

The motivation for dOing this was to eliminate the need for the "short
RPVS" performed automatically after a successful ESD. The need for the short
RPVS (see Section VII) was engendered by addresses withdrawn from a volume map
but neither deposited nor reported to a VTOCE (for deletion by normal means) at
shutdown time.

Thus, the pages occupied by descriptor segments at the time ofa successful
emergency shutdown are deposited when the old PDD is deleted by delete_old_pdds.
This places descriptor segments on any packs where process directories go, as
opposed to constraining them to the RPV. Although this has the effect of
diluting the I/O load of the RPV, this subjects segment control (setfaults in
particular) to the vagaries of many disks.

In release 6.0, therefore, there is no "short rpvs". The volume salvager
and the disk rebuilder use the PV hold table (See Section XIV) to cause full
volume salvaging of the RPV if the system should crash while their parasitic
temporary segments are in use.

PRDSs for all configured CPUs are created and entry-held (and prewithdrawn)
for all configured processors at bootload time, by tc_init.

Xhe program "plm", which was used to create parasitic segments, no longer
exists. Descriptor segment initialization logic was moved into act_proc,
creator of processes.

VOLUME DUMPER SUPPORT

Unlike hierarchy backup, the new volume backup facility is an integral part
of the supervisor. Volume backup accesses segments directly via their VTOCEs,
avoiding the overhead of scanning directories to seek out and initiate these
segments. There are several important facilities of the volume dumper in
segment control, and several important ramifications of its existence.

The volume dumper maintains in the label area of each pack (see
Section XIII in the "VTOC HEADER" records, '4 and 5), a bit map of segments that
have been modified since dumped. When a volume is accepted, load_vol_map causes

9178 A-2 AN61 A

(via the program dbm_man) a region
segment dbm_seg to contain this map.
the PVTE for the volume. When the
the "dumper bit map".

to be allocated in the global hard core
It is read in, and a pOinter to it left in

label of the volume is written back, so is

When the volume is in use, all primitives that modify or detect
modification to a segment or a VTOCE (notably pc$get_file_map, truncate_vtoce,
create_vtoce, and delete vtoce) call an entry in dbm_man to set the bit
corresponding to that VTOC Index (the dumper bit map is indexed by VTOC index).

Like record address depositing, setting dumper bit map bits is an operation
that must be protected from volume demounting in the window after segment
modification has been noted. Thus, the demount protection brackets (described
in Section XIV under "Demount Protection") protect dumper bit map setting as
well. Since this is now done in create_vtoce, this program now uses the demount
protection-bracket mechanism where it did not before, and thus the unitary
quality of vtoc_man$alloc_and_put_vtoce is no longer necessary.

The incremental volume dumper scans the dumper bit map to locate segments
to be dumped, turning off the bit once they have been dumped. The volume dumper
dumps segments and directories in the same way: it dumps binary images. (The
volume dumper does, however, lock directories by UID--anonymously, i.e., no
pointer--when dumping them, in order to get a consistent copy of the binary
object, i.e., no one should be modifying it.)

The volume dumper (incremental, consolidated, or complete) accesses
segments via a special entry to "activate", which activates a segment given its
PVID and VTOC index, without its branch. This "parentless activation" is
performed only for the volume dumper. When the volume dumper wishes to activate
a segment for dumping, activate first hashes it into the AST (as for any
activation) to see if it is already active, and returns the AST entry pOinter if
it is active. When activate so does, it turns on the "dumper in use switch"
(aste.dius) to prevent any other process from deactivating the segment (get_aste
knows to skip such segments). If the segment is not active, activate activates
it again setting aste.dius. Any other attempt to activate this segment finds
this ASTE, as it is hashed in normally. The bit aste.dius is not turned off
until the dumper is finished. When parentless activation is accomplished for
the volume dumper, quota checking is suppressed (aste.nqsw turned on) so that
page control does not chase up a nonexistent parent pointer.

When the dumper finishes dumping a segment, it must deactivate it if it
activated it, and the segment has not yet acquired a parent pointer.

The dumper uses the hard core segment number of "backup_abs_seg" to
construct abs-segs to reference the segments it activates by the above means.
It puts itself on the trailer of the segment (see "Trailers and Setfaults" in
Section II), such that if the segment is deleted while the dumper is dumping it,
the dumper takes a fault, and cleans up. The various entries in trailer
management are cognizant of the possibility of a trailer with a hardcore segment
number for this purpose.

The volume retriever operates by using the standard VTOCE/segment creation
primitive (create_vtoce) to create new segments, creating the VTOCE and segment
for an extant branch if there is one (forward connection failure). If a VTOCE
(and thus segment) already exists for a segment being retrieved, it simply
copies the new data into it. Directory contents are merged (see the program
retv_copy) in ring zero. When the volume retriever is called upon to retrieve a
segment whose branch does not exist, a special entry in directory control's
"append" primitive is called upon to create a branch from saved binary
information, as opposed to user-supplied symbolic data, without regard to access
checks. In this case, the VTOCE/segment being retrieved is connected to this
branch.

9178 A-3 AN61A

The volume reloader is not part of the supervisor; it constructs complete
physical volumes from volume backup tapes, placing VTOCEs and segment contents
on it as appropriate. It uses user-ring disk I/O, and works on Volumes not now
in use by the storage system.

, v

,
The segment adopter, and the -adopt option to sweep_pv construct a ~

directory branch for a segment whose VTOCE is extant, but has no branch. As
such, it is not part of segment control. The primitive u$ed by both is the same
entry to directory control's append primitive used by the volume reloader to
construct a branch for an item whose VTOCE (and actual data) it is retrieving.

PAGE POSTING QUEUE

Page control posting strategy (see "I/O Posting" in Section VIII) has been
modified to make it no longer necessary for the disk DIM interrupt side to
loop-lock the global page table lock. On multi-cpu systems, where the disk DIM
interrupt side (on a real interrupt, as opposed to a run) can find the page
table lock locked, this loop locking consumed a substantial share of system
resources prior to release 6.0.

The solution to this problem was to construct a queue of coreadd/errcode
(the parameters to page control supplied by the disk DIM in a posting call)
pairs that the disk DIM wanted to report to page control, but rather would not,
because the page table lock was locked at the time. Any program at all that
unlocks the page table lock is responsible for checking out this queue, and
calling page$done_ (see Section VIII) with each coreadd/errcode pair in it.

This queue is called the "disk posting delay queue", or the "coreadd
queue", due to its content, and resides in the segment "disk_post_queue_seg".
The locking policies involved make sure that everything that is put in the delay
queue is processed as soon as possible, and that no requests are lost are quite
involved, and are further described below. The maintenance of the delay queue
is all performed in the program core_queue_man, in bound_page_control.

The locking policy of the coreadd queue may be expressed as follows: The
coreadd queue has a lock on it (in disk_post_queue_seg), which must be
loop-locked. This lock is higher than the page table lock (see "Locking
Hierarchy" in the glossary). Absolutely no lock-looping is performed with the
coreadd queue locked (i.e., no lock is higher than the coreadd queue lock). The
only code in the entire system (during normal operation, i.e., not ESD) which
unlocks the page table lock is in core_queue_man, and does so only while the
coreadd queue is locked. Thus, before actually unlocking the page table lock, a
potential unlocker of the page table lock is in a position to inspect the
coreadd queue. If the queue is empty, the page table lock can be unlocked and
then the coreadd queue lock can be unlocked. If there are posting requests in
the coreadd queue, the first one must be taken out, the coreadd queue unlocked
(the page table lock is still locked), and call page$done_ while the page table
lock is still locked, to perform the posting. It is then necessary to try again
to unlock the page table lock, starting by locking the coreadd queue lock.
Among the unlockers of the page table lock are page$done, called by the disk DIM
interrupt side, in the case where it did not initially find the page table lock
locked (i.e., could lock it), and has called page$done_. An attempt must be
made to lock the page table lock before the coreadd queue is unlocked when a
process has locked it to queue a request for posting there; otherwise, the
request might stay forever in the coreadd queue if the page table lock indeed
became unlocked between the time the interrupt side found it locked and the time
the interrupt side locked the coreadd queue lock (once the coreadd queue lock is
locked, the page table lock cannot be unlocked except by the process which has
it locked). If the attempt to lock the page table lock is successful, all
postings must be done by this process. If not, the process can rest assured
that whoever has it locked is going to have to unlock it, and can't possibly
unlock it until the current process unlocks the coreadd queue lock, which it has

9178 A-4 AN61A

locked, and thus, that other process will find the request just queued as soon
as it unlocks the page table lock.

The coreadd queue must be processed at "run" time, and flushed at ESD time
as well.

See core_queue_man.alm for more information.

9/78 A-5 AN61A

917b

,
• I
I
I
I

A_
POSTPARMS

DONE (A)

,­
" , , , ,

p,e

p,e succeed

I " I p,e "

\ "
\, A-+QE ",

" " -- ----_._-----

lEGEND:
There are two entry points, DIM POST and UNLOCK PTl
Locking notation is 81 follows:

'"~~,~
succiJeded

SYMBOLS USED ARE:

P ,C c PTl and CQl both locked

Unlock a lock

P ,AC - PTl locked, CQl not locked
Ap ,C c PTl not locked, CQl locked
Ap ,AC ~ neither PTl nor CQl locked
PTl c page table lock
CQl coreadd queue lock
QE = coreadd queue entry
DONE (A) c real Dosti~g routine
A Set of posting parameters (coreadd, errcode)
CQl is locked in the region outlined by __ _

IIpe
(q~eue overflows)

(pre·MR6.0
page table loop lock)

P'II e succeed

Figure A-l. Coreadd Queue Locking

A-6 AN61A

I ~

PAGE CONTROL TRAFFIC CONTROL INTERFACE

The implementation of the disk posting queue involved cleanup in page table
locking and unlocking. The unlocking of the page table lock under protection of
the traffic controller lock (Section VIII under "Stack Management and Interface
with the Traffic Controller") is no longer done. In release 6.0, page control
unlocks the page table lock before the traffic controller lock is locked, when
going to wait. Taking advantage of some features of the new lockless scheduler,
page control does a standard "addevent" when it is going to branch to the
traffic controller, storing a wait event (which it knows has not yet been
notified, this decision made under the protection of the page table lock, under
which all page control notifies are done) in the APT entry of the waiting
process. If the traffic controller finds, under the traffic control lock, that
this event has been notified (become zero), the traffic controller returns to
page control to restart the fault or call side opera~ion.

These changes allowed a new mechanism for waiting for the page table lock
from the call side to be implemented. When the call side of page control
attempts to lock the page table lock (in device_control.alm), a branch is taken
to the traffic controller for page-table lock waiting if it cannot be locked.
By the identity of the entry point called, as encoded in the ,alue of
pds$pc_call (as for waiting for paging events), the traffic controller returns
to device_control$dvctl_retry_ptlwait to reattempt to lock the page table lock
when it has become unlocked.

Thus, the only times that the page table lock is looped on are at
process-loading time, and if the coreadd queue is full.

Page control no longer uses regular traffic-control waiting for the page
table lock; a special traffic controller state is used exclusively for this type
of waiting. Also, traffic control returns to a point in the page fault handler

.~ instead of restarting a page fault when ptlocking-waiting 1s complete, in order
to avoid the fault overhead. This relies on the fact that the page fault data
stored in the PDS cannot have possibly changed since the page fault was taken.

Traffic control no longer needs to validate page control events under the
traffic control lock (described in Section VIII under "Global Page Lock"). The
above interface wherein page control stores wait events directly in the APT
entry of a waiting- process (even during the process loading function) obviates
the need for this validation. If an event becomes invalid, a notify clears it
out of all APT entries.

PAGE CONTROL CONSISTENCY

Until release 6.0, emergency shutdown (ESD) has been a fairly risky
proposition, because of the unknown state of page control data bases at the time
the system crashed. Whether or not the system crashed in page control, or
because of some problem detected in page control, there was not (and is not now)
anything to prevent the system from crashing when some CPU was in page control
or the disk or bulk store DIM. This is critical because ESD relies on the
correct functioning of page control, not only to write out pages of segments,
but to support the virtual memory in which much of ESD runs. The assumption
that page control could be used reliably after a crash wa$ therefore not always
valid: inconsistently threaded data objects could often cause faults to be
taken, and I/O requests in the process of being queued or posted often get lost,
causing the system to hang indefinitely awaiting their completion. At worst,
these inconsistencieS led to misrouting of data, and most often to failure of
emergency shutdown in one way or another, with all concomitant grief.

9/78 A-7 AN61A

,
Thus, all data and state manipulation in page control was redesigned and

reimplemented to make the following statements true at every point (at all
times) :

1. If page control is interrupted at this point, a procedure running at
ESD time can compute distinctly, fully deterministically, a valid
state of the entire data base of page control, reflecting its state
either before or after· a database change that was interrupted
completed or would have completed.

2. If page control (or the disk or bulk store DIM) is interrupted at this
point by a system crash, a procedure running at ESD time can
regenerate any liD that was queued, in progress, or in the process of
being queued, posted, or performed, without fear of the original liD
ever being posted.

The "procedure running at ESD time" is pc_recover_sst in
bound_page_control, also well worth time reading. This procedure places the
entire page control data base (the SST) in a consistent state before any paging
or page control operations are attempted by ESD.

The fundamental truth that allows this technique to operate is that very
little of page control is actually changing the data base, or therefore, the
state of page control. Most of page control is making decisions, and calling
subroutines. It is only at the very lowest level, almost entirely in ALM page
control that the data base is changed. Most of PL/I page control is Simply
making decisions and mapping the actions of ALM page control over segments.
Thus, in order to recompute the consistent state of interrupted page control, we
need not know what decisions were being made, or what segment-wide operations
were being performed. All low-level page control operations involve only one
page of one segment; when one page replaces another in memory, this is really
two operations: an eviction and a paging-in. Between the two operations, the
main memory frame is distinctly free. During the eviction, or during the paging
in, the page under consideration is either in main memory or not: there is no
inconsistency involving two pages. Other page control operations are comparably
defined. .

Typical of the operations under consideration that may be interrupted and
must have their state recomputed are:

1. Binding a page of a segment to main memory (paging-in),
2. Unbinding them (eviction),
3. Binding a frame of PD to a page of a segment (PD Migration),
4. RWS initiation,
5. RWS completion, and
6. Unbinding a page from a PD record, either at RWS completion time or

during PD Housekeeping.

Each of these operations involves the establishment or revocation of
bindings between at most one page of one segment, one main memory frame, and one
PD record. As a matter of fact, each such operation consists of the
establishment or revocation of at most one (usually bilateral) binding. Each
such bilateral binding is usually two values that designate each other. For
instance, the binding between a page of a segment and a page of main memory is
expressed by the fact that a PTW has a main-memory type address in it,
designating a CME that has the address of the PTW in it •. The binding between a
page of a segment and a record of paging device (PD) is expressed by the page of
the segment (PTW pointer) being in the PD map entry, and the PD address being in
either the PTW or CME, depending on whether or not the page is in main memory.
During a Read-Write Sequence (RWS), a similar bilateral binding between a PD
record and a main memory frame exists in crossing pointers in the CME and PDME
involved. Therefore, the establishment or revocation of any binding involves,
in essence, the setup of two (perhaps conceptual) pointers. Bindings of objects
are never changed (except in one case in evict_page, which is quite special)

9/78 A-8 AN61A

' ...

from "bound to this" to "bound to that", but only from "free" to "bound to this"
or vice versa. Thus, every page control object can be viewed as "bound to
something" or free at any instant, by looking at some critical pointer or field
in it. For instance, if a CME has a nonzero cme.ptwp (or mcme.pdmep), it may be
considered to be bound to that page of a segment (or PDMAP entry during an RWS),
or else none. If a PTW has a main-memory type devadd in it, then that page is
bound to that frame of main memory, or else none. The presence of a PD-type
devadd in a PTW or CME (which itself is bound to some page (PTW)) says that that
page is bound to that PD record, or else none. The presence of pdme.used in a
PDMAP entry says that that PD record is bound to the page whose PTW is
designated by pdme.ptwp, or else none.

Thus, certain critical fields determine distinctly, at any real time
instant, whether or not a given object is bound to some other kind of object
(and if so, which one). Before an object is marked a bound to some other
object, all other fields except the critical field are filled in to their final
values. If page control is interrupted before the critical field is filled in,
pc_recover_sst finds tbe critical field not filled in (usually zero, see last
paragraph), and the noncritical fields are essentially garbage; the binding is
considered not to have started at all. If the critical field is found filled
in, all other fields must be valid, and the binding was entirely complete.

The problem is therefore reduced to consistency between halves of a
bilateral binding. This is accomplished by simply stating an order in which
halves of bilateral binding are accomplished; the unbinding being accomplished
in the opposite order. Thus, if pc_recover_sst finds two valid bindings, which
are halves of a bilateral binding, the entire bilateral binding must be
complete. If it finds one half of such a binding complete (after determining
completeness by the rules of the last paragraph), it can either complete the
binding or complete the unbinding, without regard to whether a binding or
unbinding was in progress at the time page control was interrupted.

9/78

The following rules govern the establishment of bilateral bindings:

Pages to main memory frames, and vice versa:
when binding (reading-in), first bind the CME to the PTW, then change
the PTW to designate main memory. When evicting, do the opposite.

Pages to PD records, and vice versa:
When binding (PD migrating--always happens when page in main memory),
first bind the PDME to the PTW, and then change the CME to the PDME.
When performing PD eviction, either at the completion of an RWS or a
pure eviction during PD housekeep, do the opposite (i.e., first change
the PTW or CME, then free the PDME). At all of these times
(migration, RWS complete, pure eviction, and in-core PD eviction in
pc.pI1) the copy of the page on disk or in main memory is, or is the
same as, the most recent.

PD records to main memory frames, and vice versa (during RWS):
First bind the PDME to the CME, and then the CME to the PDME. At RWS
complete time, do the opposite.

A-9 AN61A

The handling of 1/0 in progress at the time of the crash is made trivial by
the action of page$esd_reset, which calls entries in the disk DIM and the Bulk
Store DIM to throwaway the entire contents of their queues, and reinitialize
their data bases. Thus, any page that is seen as out-of-service by
pc_recover_sst may be simply evicted if it was a read in progress, knowing that '~
the read is not actually in progress (the system crashed), and is not posted -
(the queues are flushed). If a write was going on, the modified bit is turned
back on when this is done, because the action of initiating the write caused the
modified bit to be turned off by write_page (the latter knowing that the page
would be written). The modified bit is not turned back on, however, a page that
is being updated as pure ("nypd write") to the paging device. The bit
cme.pd_upflag, reclaimed for this purpose, indicates during a write that this is
the case.

The routine pc_recover_sst can tell if the above rules have been violated,
due either to bug, processor or memory malfunction, or damage to the page
control data base by other parts of the operating system. Even in this case, it
attempts to make the page control data bases consistent so that ESD can succeed.
When such unexplained damage (i.e., inconsistency that cannot happen by virtue
of the above rules) is detected, segments are marked as damaged and involved
pages zeroed where appropriate.

The flushing of DIM queues at ESD time substantially simplifies the ESD
strategy of the VTOC manager (see Section III, "ESD Strategy"). The VTOC
manager can now decide distinctly that no lias queued before the crash are ever
going to be posted. The bit b.ioq is now superfluous.

PAGE CONTROL ERROR POLICY

Release 6.0 makes radical changes to the handling of disk errors as
detected by page control. First of all, errors are not reported to the operator
console or the syserr log unless a page is actually damaged. The disk DIM has
already reported all device error information for any 1/0 operation involved. A
differentiation is made between device errors that affect a particular record
gone bad, and those that are an indication of a device problem. In the latter
case, it is almost always true that the operator can re-ready the device, or it
will re-ready itself, or some nonautomatic remedial action can be taken. Thus,
in any of these cases, it is unwise to perform irreversible action such as
damaging a segment, or even wasting syserr log space with messages. The disk
DIM differentiates between the device error case and other cases in the value of
the error code at posting time. Errors reading either therefore replace the
disk address in the PTW with a null address or not (as the disk error was a
per-record error or a device error) before setting ptw.er. When such a page
fault is restarted, a successful page fault either pages in zeros or the correct
page, respectively.

Write errors determined to be due to an inoperative device cause the
posting to cause the modified bit of the page to be turned back on (disk writes
only--bulk store cannot be inoperative by this standard), and the core frame to
be threaded back in as MHU. This means that the replacement algorithm will
reissue the write again when it comes around. If the call side started the
write, it calls in again to write it again, as it comes back to see that the
page is still modified (or yet modified) when it is notified. Similarly,
device-inoperative errors on the write cycle of an RWS cause the PD record not
to be freed, but placed back in the PD used list (its modified bit was never
turned off), and the free-or-being-freed count (sst.pd_free) decremented. The
PD replacement algorithm retries that record at a later time.

The system no longer signals page_fault_error on a read if the cause of the
read error is an inoperative device (as opposed to a bad page). This is to
avoid signalling errors that might well terminate an absentee process or the
initializer in cases where the operator's readying of a disk could allow all

9178 A-l0 AN61A

--

software to proceed without error if the supervisor cooperated. Other
problematic cases of signalling page_fault_error, such as on a descriptor
segment which goes offline during a setfaults operation, are avoided in this way
as well.

Instead of signalling page_fault_error, processes that seek to read pages
on inoperative devices are made to wait upon a global event, in ring zero,
"144163153176"b3, being "dskw" in ASCII, until any disk coming back online
notifies this event. The disk DIM performs this notification, and now maintains
the bit pvte.device_inoperative, previously used only for drive-test operations,
as a copy of its "broken" bit for a given device, notifying this event whenever
such a bit is turned off. Any time such a bit is turned on the disk DIM has
beeped a "Device requires attention" message to the operator.

The maintenance of pvte.device_inoperative has several implications: when
a disk goes off line, the VTOC manager can see that at once, and reject a
requested write forthwith, without wasting hot VTOC buffers where not necessary.
The create_vtoce primltive can avoid creating segments on inoperative devices.
More critically, update_vtoce must be prepared to handle error codes from
vtoc_man for inoperative disks, realizing that the vtoce-parts requested were
not even put in hot buffers. For this reason, update_vtoce$deact now has an
error-code argument.

The implementation of this "disk-offline waiting" feature is facilitated by
the fact that all callers of page-reading primitives must obtain the event to be
waited on from the primitive in question, because volume-map paging issues
preclude any other routine from deducing the wait event. Thus, page reading
primitives can now return this global disk offline event, and cause any number
of mechanisms to wait and retry on this event. There are exactly three
interfaces that call read_page: the page_fault handler, the PL/I-side interface
page$pread, and evict_page$abs_wire. These primitives all now check for the
presence of ptw.er from a previous read before calling read_page. Thus, if a
page read error is posted by the "done" side, an immediate notify causes one of
those three interfaces to be reinvoked (via repeated page fault or call-side
retry protocol), notice ptw.er, and take special action.

This special action consists of calling page_fault$disk_offlinep to
determine if the reason for this error is the disk being offline or some other
reason. This is determined by inspecting the PVTE bit set by the disk DIM
(there is a window here--it might have been inoperative at one time, but
operative now--this is acceptable). If the answer is that the disk is offline,
the process page-faulting, call-side (or process-loading-side) reading, or
abs-wiring is made to wait on the global disk-offline event. The bit ptw.er is
turned OFF at this time, before the process is set waiting, so that when the
disk comes back online, a retry of the page fault/reading is made as though no
error happened, instead of the detection of the previously set error bit (which
this time would be guaranteed to find the disk not inoperative, and thus signal,
which is precisely what we are trying to avoid).

If page_fault$disk_offlinep determines that the disk is not offline, an
alternate return is made. The page fault handler signals in the way it always
used to in this case, and the other two entries just retry desperately and
hopelessly as they used to do. (This is the case of a descriptor segment page
going bad or similar--an unsolved problem as of this time.).

The call-side wait coordinator, and the notify-requested bit setter in
wired_plm (process loading) have been made cognizant about global paging events.

9/78 A-ll AN61A

LARGE VOLUME MAP SPACE

In releases 4.0 and 5.0, the single paged unwired segment fsdct held all
volume maps. This was an unreasonable space limitation. Volume maps are now in
s~gments fsmap_segO to fsmap_seg15, created dynamically by init_pvt at bootload -~~
tlme, as many as are necessary to contain the volume maps for all configured
drives. The segment fsdct now contains only what used to be the fsdct header;
it is small, unpaged, and wired now.

The code in free store that returns a PTW pointer and an ASTE pointer to
read_page now deduces these quantities from the SDWs of the fsmap_seg, rather
than from a fixed pOinter in the SST.

Therefore, all references to "FSDCT Paging" in this document should now be
read as "Volume map paging".

DAMAGED SEGMENTS

A new VTOC attribute (see Section II, "VTOC Attributes"), thus an ASTE and
VTOCE bit, called the "damaged switch", has been introduced (aste.damaged and
vtoce.damaged). Although settable and resettable by user-invoked file system
calls, the intended function of this bit is to inform the user that page control
or the physical volume salvager has either perpetrated or detected damage to
this segment. The segment fault handler observes this bit when connecting a
process to an ASTE (i.e., constructing an SDW for a segment in a process), and
causes "seg_fault_error" with the error code of error_table_$seg_busted to be
Signalled if it is on. As with other VTOC attributes, the bit is activated and
deactivated with the segment., The segment fault handler does not make this
check for directories, or in the initializer process (so that the system might
always be bootable).

The physical volume salvager and page control construct a standard format
binary syserr message (see segdamage_msg.incl.pI1) whenever damage to a segment
is created, and log a message with it. This message identifies the segment
involved via physical volume ID, LVID, UID, and UID pathname, with other
information (e.g., page number) when appropriate.

The physical volume salvager constructs this information from a VTOCE being
processed, the UID pathname being copied from the third vtoce-part. Page
control deduces it from AST entries, chasing up the AST parent pointers to
develop the UID path (this logic is in the module page_error). The physical
volume salvager "damages" segments whenever any VTOCE inconsistency is
discovered: the case where segment control deliberately introduces an
inconsistency during VTOCE update before a fatal crash is particularly important
here. Page control damages a segment when a disk error on reading or writing
occurs that is due to a bad record as opposed to a bad device.

The counter sst$damaged_ct is incremented whenever such a binary message is
logged. The answering service's accounting-update metering program (as_meter_)
inspects this variable at each accounting update. If it has increased (since
the last update, or bootload time, initially), the syserr log is scanned for
such messages. They are read out, the UID pathnames in them converted to ASCII
pathnames, and the interpreted messages logged in the ans~ering service log.

9178 A-12 AN61A

-

QUOTA VALIDATOR

Reimplementation of what had been the salvager in release 5.0 and earlier
for this release removed the function of computing quota-used from it:
Quota-used computation was the only part of the salvager that could not be done
by a top-down hierarchy scan; one cannot compute correct quota-used for a
directory until correct quota-used totals have been computed for inferior
directories; this severely limits the implementation flexibility of salvaging
functions. What is lliore, the algorithms up to now for correcting quota-used
required the entire hierarchy to be quiescent: thus crashes for which ESD has
failed (almost guaranteed to create quota-used inconsistencies see below)
required a "long salvage" while no one was logged in (the only way the salvage~
could be run).

The discovery of an algorithm to compute correct quota-used totals in a
nonquiescent hierarchy has obsoleted all of this, and is now the only way that
quota-used is corrected. The hierarchy salvager is now nothing more than a
program that reformats a single directory, optionally cross-ctecking VTOCEs.
Conventional ring-4 programs are used to map the salvager over s lbhierarchies.
Quota and quota-used are now out of its domain.

In order to understand the on-line correction algorithm, it is necessary to
understand how quota-used inconsistency arises. A subhierarchy is said to have
inconsistent quota-used if any directory in it has inconsistent quota-used. A
directory is said to have inconsistent quota-used if its quota-used figures (for
segments or directories) are anything but what they should be. The (directory
or segment) quota-used figure of a directory should be the sum of the (directory
or segment) quota-used figures of all immediately inferior directories that do
not have terminal (directory or segment) quota accounts, plus the sums of the
records-used of all immediately inferior directories or segments. This is
dependent upon all subhierarchies being quota-used consistent.

A directory becomes quota-used inconsistent in the following way: a
segment is deleted or some pages are created. Several directories have their
quota-used figures adjusted by page control (in the ASTE) at the time this
happens. At some later time, the VTOCE for one of the directories is updated;
perhaps the lower one is deactivated, or the AST trickle updates one 0f them.
The VTOCEs now reflect an inconsistent quota-used situation, for the VTOCE of
one directory claims records charged to it, but the other does not. If the
system shuts down successfully there is not problem, as all VTOCEs are vpdated.
Before the system shuts down, anyone who wants to know the quota-used figures
goes to VTOCE or ASTE as appropriate, and the inconsistency of the VTOCEs is not
a problem. However should the system crash and not shut down, the next boot load
relies solely on VTOCE information, and a quota-used inconsistency results.

It may be seen that quota-used inconsistency is not the result of a
supervisor malfunction, but rather a misfeature of fatal (no ESD) crashes. They
are a consequence of not stopping the entire system to update disk-resident data
every time a pag~ is created or destroyed. Quota-used inconsistencies dc· not
develop while the system is running.

The online correction algorithm is based upon the
a given directory is either right or wrong at any time.
with, it cannot go wrong while the system runs. If it
the amount by which it is wrong is a constant from
bootloaded to the time it is fixed. It cannot get more
voli tion.

fact that quota uset! for
If it is right to start

was wrong to start with,
the time the system was
or less wrong by its own

The task of the quota validator is thus to determine exactly how much (if
at all) a given quota-used figure is wrong and fix it. It can fix it at any
time after it determines by how much it is wrong--a certain number is to be
added or subtracted. The quota-used figure is not just replaced.

9/78 A-13 AN61A

9178

52
:D
m
n
d
:D
-<
g
C;; ,
o
n
~
m
o

---r--
-- Segments in D cannot be .activated or truncated

r----- --.----- - ----

~
m

~ -i ~ --~ -+-N-o-pa-ges-can ---+- - ----- - ---TO

-I ,be created
C;; ,
o
n
~
m
o

o
n
~
m
o

"> No segments can
be deactivated

- }-::~DTABLE -----+---------

-----,- - -- - - __ I-- - --- - --

!:
o
-I »
III ,
m
m
X

~

> Deactivations
can occur

Read vtoces of
) segments not in table

(not active It TO)

- ----r--------L....----

TIME

C;; Ouota Used
-+----l~ -, - - --. - -----r--- - --CORRECTED

I- _.a...._~_~_ --'~=I ________ _
Figure A-2. Quota Valida tor

A-14

-
AN61A

To understand this more fully, hypothesize that there were a tool available
that corrected quota used, say set quota used <dirname>. A system administrator
might want to figure out the correct number, and set it. However, this would be
inordinately difficult to use, because even the wrong number is constantly
changing. Thus, the only kind of tool that would be of value is one that added
or subtracted its argument from the quota-used figure, regardless of what it
was--a tool that added or deleted phantom segments.

The quota validator operates precisely in this way. The entry
vtoc attributes$correct qused performs precisely the function of adding a signed
difference to a quota-used total for a directory, either in a VTOCE or in an
ASTE, once the correct difference has been determined. The determination of the
value of this difference is a very intricate operation, involving several
locking games. We can approach this algorithm by successive refinement.

Given our choice, we would quiesce the entire subhierarchy of the directory
(which we will call D) whose quota-used is being computed. We would lock the
page-table lock and the AST lock, read all the VTOCEs and AST entries for
immediately inferior segments and directories, adding their page totals and
quota-used figures (for directories), from the AST for active segments and from
the VTOCEs for nonactive segments. Comparing that total to the current
quota-used gives us the difference we seek. However, we cannot randomly go
locking locks like that, or quiesce the subhierarchy in this way. We therefore
choose one moment in time for which we will strive to compute D's correct
quota-used total. For any given instant, we can quiesce all of page control
activity (creating and deleting pages of active segments in particular) by
locking the page table lock. Call that instant TO. We choose such an instant,
and lock the page table lock before it. At that instant, with the page table
lock locked, we compute the sum of the records-used totals of segments
immediately inferior to D, that subset of them that is active at TO, plus the
sum of the quota-used figures of immediately inferior (nonterminal) directories,
that subset of them that was active at TO. This figure is an approximation to
the correct sum of records-used plus inferior quota-used for this directory at
TO. It is inaccurate by precisely the sum of the records-used plus nonterminal
quota used of exactly that set of immediately inferior segments and directories
that were not active at TO. Thus, once the page table lock is unlocked, we need
only add up the figures for these segments. However, we do not wish to read all
the VTOCEs, or scan D with the page table locked. If we unlock the page table
lock, other segments may be activated or deactivated, and we would have no way
or determining which segments were active at TO and which were not.

Pages are created only by touching them, and since only pages of active
segments can be touched, no pages can be created for inactive segments if we
prevent them from being activated. Similarly, pages can be destroyed by two
means: manipulations on active segments (truncations, page zeroings), and
file-system calls (truncate, delete) on inactive segments. Thus, if we prevent
new segments in D from being activated between TO and the time quota-used of D
is corrected, and prevent file system operations on segments in D in this
interval at well, we can be sure that the quota-used subtotal for segments
inactive at TO will not change between TO and the time quota-used of D is
corrected. It turns out that locking D prior to the start of this whole
operation accomplishes precisely this.

With this in mind, we know that no segments that were not active at TO can
be activated after the page table lock is unlocked. What is more, they cannot
be otherwise affected (e.g., truncated). So at this stage of development, our
algorithm is to unlock the page table, scan D, and check each segment in it for
activity at time TO (it couldn't be active now if it wasn't active then) and add
its quota-used or records-used to the total from time TO. This does not work
because segments can get deactivated between the time the page table lock was
unlocked and the time we check the AST to see if it was counted in the total at
time TO. Segments can be prevented from being deactivated by having locked the
AST after first locking D, but before locking the page table lock. Thus, when

9/78 A-15 AN61A

,
we scan D, the AST will still be locked, and the set of active inferiors of this
directory will not have changed since time TO.

The deficiency here is that one may not touch a directory with the AST
locked (see the general considerations of the locking algorithm in "Locking
Conventions", Section II). To determine which segments were active et time TO
we lock the AST lock before locking the page table lock, and unlock the AST lock
after unlocking the page table lock. But before unlocking the AST lock (at a
time when the set of active segments cannot have changed since TO), we build a
little table of the UIDs of all active inferiors of this directory in automatic
storage. It is with this table that we check while scanning the directory
adding up Quota and records figures from VTOCEs.

Having added the active and
value of the Quota-used figure of
the finite and invariant error.
Quota-usecd figure of D.

inactive figures, they are compared with the
this directory read at time TO to determine

It is this error that is deducted from the

This
Quotaw$rvQ
table lock.

algorithm is
performs the

implemented in the
manipulations and

program correct_Qused. The entry
Quota cell readings under the page

The bottom-up walking features of do_subtree (or walk_subtree) are used to
drive the tool fix_Quota_used (the ring 4 interface to the Quota validator)
bottom-up.

SUPPORT OF HIERARCHY SALVAGER

The mechanism used by the hierarchy salvager to activate, deactivate, and

L.... __ IIi

access segments, dating from the time that the salvager had its own tape, is .~
entirely gone in release 6.0. The entire activation/file map mechanism
described in "Services on Behalf on the Hierarchy Salvager" in Section IV has
been removed. The hierarchy salvager is now a directory-control program that
operates on one directory at a time, given its pathname. It initiates
directories and takes segment faults upon them, as any other directory control
program in Multics. It has no more involvement with segment control. The
removed interaction with segment control had been a major source of bugs.

The central control program of the hierarchy salvager, salv_directory, is
usually driven by ring-4 subtree walk. It does not recurse.

The hierarchy salvager no longer uses abs-segs or any abs-seg mechanism; it
no longer checks, validates, or corrects Quota or Quota-used.

The hierarchy salvager retains a "VTOCE-checking" feature, used to check
for (forward) connection failure, optionally delete branches suffering this, and
correct part III (permanent attributes) information. These functions are
provided in the program salv_check_vtoce, which is not even called if VTOCE
checking was not specified to the hierarchy salvager. The program
salv_check_vtoce calls vtoc_man$get_vtoce to obtain a VTOCE image, to check UID
match and part III information. If information need be corrected in the VTOCE,
the entry "sal v_update" in vtoc_attributes is called tQ correct and write back
information to be updated. As usual, vtoc_attributes is cognizant of all rules
regarding directory and AST locks for such operations (see Section II). Thus,
the hierarchy salvager no ·longer directly writes VTOCEs in any case.

9178 A-16 AN61A

To delete branches suffering forward connection failures, salv_check vtoce
calls a special entry in directory control's "del entry" primitive, that-which
deletes branches.

The hierarchy salva~er makes use of the
described above and in Section IV to cause
scratch and directory-copy segments.

LIMITED UPDATE BACKLOG

grab_aste/prewithdraw mechanism
semi-permanent activation of its

The 6.0 storage system tries to enforce an upper bound on the time the AST
trickle takes to circumnavigate each AST used list (see Section II). By placing
an upper bound on this time, file map changes cannot stay in the AST (not be
reported to the VTOCE) for longer than this maximum time. This is done solely
as a hedge against fatal crashes under light load. In these cases, it has often
been reported that a segment modified hours before the crash appears empty (all
zeros) at the next bootload. This was because of failure to update its VTOCE
within a reasonable period of time. in release 6.0, the initializer calls into
get_aste$flush_ast_pool with a pool index every accounting update if it has been
determined that fewer steps in that pool than the number of entries in it were
taken since the last such update (the accounting update routinely inspects
meters in the SST). The entry get_aste$flush_ast_pool circumnavigates the
specified AST list one entire time, calling update_vtoce on each ASTE whose file
map has changed (aste.fmchanged). This fa~rly expensive action is invoked if
and only if load is so light that there was not a reasonable number of AST steps
in the last accounting interval.

A similar attempt is made to set an upper bound on the amount of time a
page may stay in main memory and not be written out. This, again a hedge
against fatal crashes, is to guard against the phenomenon where a
heavily-modified page remains in memory under light load, and does not get
written out, and appears zero or nonexistent at the next bootload. A page is
written out if load is light, i.e., the circulation speed of sst.usedp is slow,
and continual use and modification biases the replacement algorithm against
writing this page out.

The new entry pc$flush_core, and the new CME bit cme.phm_hedge implement
this facility. The entry pc$flush_core is called five minutes before every
accounting update (by the initializer) to call page$pwrite on all pages not
written out since the last such call. The five-minute interval is to make sure
that the accounting update that follows, calls get_aste$flush_ast_pool, is able
to report new page creations to VTOCES, i.e., to ensure that writes started
complete successfully before VTOCE updating is attempted (see "Address
Management Policy" in Section VII for why the VTOCE can't be updated until
successful completion of writes is acknowledged). The entry pc$flush_core scans
the core map for all in-core pages that need to be written out, and calls
page$pwrite, multiplexing activity in the normal page control manner (see
Sections VIII and IX). These pages are identified by the presence of the flag
cme.phm_hedge. This bit is turned on by pc$flush_core for every in-core page
having ptw.phm on, that it is not calling page$pwrite to write out. Page
control (page$pread and the "write" side of the interrupt side, page$done_) turn
this bit off any time a page is read into this frame, or a successful write is
completed from it. Thus, if pc$flush_core finds (the next time it is called)
that this bit is still on, it can deduce that this frame had a modified page in
it one accounting interval ago, and has not been evicted or written out since.
This is precisely the condition for issuing a write for the page in that frame.

9/78 A-17 AN61A

PARTIAL SHUTDOWN

Page and segment control primitives called at shutdown time (Emergency or
Regular) have been changed to check the PVTE bit pvte.device_inoperative before
attempting to update a VTOCE (including calling pc$cleanup), flush a main memory
page or initiate an RWS. All drives are tested at the time shutdown is started
(earlier still in ESD),. in the procedure disk_emergency (in
bound_disk_util_wired). By calling the standard drive-testing primitive
(read_disk$test_drive, see "Explicit Disk Reading, Writing, and Testing" in
Section XIV) the operative/inoperative status of all drives is determined. What
is more, the interrupt sides of page control and of the VTOC manager call an
entry in disk_emergency which evaluates whether or not to set
pvte.device_inoperative whenever they receive a "device-inoperative"-type error
from the disk DIM. The program disk_emergency sets the bit only during
shutdown; otherwise, the disk DIM maintains it. At shutdown time,
disk_emergency also notifies the Operator about disks which went offline during
(or before the start of) shutdown.

Thus, during shutdown, all drives not inoperative are completely shut down.
The complete shutdown of the RPV is not indicated unless all other drives were
shut down; this is to force a hardcore directory salvage and paging device flush
on the next bootload. All packs not shut down will be salvaged the next time
they are accepted, as is usual.

The code and variables of Emergency Shutdown have been so reorganized that
ESD may be attempted any number of times after a partial shutdown, if drives can
be brought back up. If the drives have indeed become operative (all drives are
tested afresh each time), a completely successful ESD will be attained.
Unflushable contents of the paging device and main memory will be kept around
until this is the case.

The avoidance of complete shutdown of the RPV causes the next bootload to

.- ,..

take cognizance of the un flushed paging device, which is necessary. .~

OTHER CONSIDERATIONS

In Section VI, cme.devadd now points to the PDME during the entire RWS.

The variable "did" iri pxss_page_stack (the ALM page
stack frame) has justly and finally been renamed "pvtx",
meant since release 4.0.

control environment
which is what it had

A fairly baroque error-message generating facility has been built into
page_error.alm, taking advantage of the new macro processor in the ALM
assembler. Incorporated in this facility is the logging of binary syserr
messages indicating segment damage. The page_error program includes a system of
macros for declaring variables and generating PL/I-like calls automatically, and
is worth investigation by those interested in ALM or assembler technology.

In Section VIII, the "second trace facility", or "disk_meters" has been
totally removed.

9/78 A-18 AN61A

The subroutine cleanup_page is now the only agency in the system (outside
of pc_recover_sst, that is a highly special case) that evicts pages. The
routines in pc.p11 have been changed to call it, as page$pcleanup. Consistency
required by pc_recover_sst motivated this change.

In Section X, some reorganization of utility subroutines, particularly in
pd_util, was performed.

A (privileged) user-callable facility to entry-hold a segment and wire its
pages via calls to pc_wired has been provided.

The updating of time-page product to a directory's parent at the time of
its deletion was found to be lacking in Releases 4.0 and 5.0. This function was
added in delete_vtoce, which, in the case of a directory with terminal quota
being deleted, performs several VTOCE manipulations under the AST lock to update
this VTOCE-resident quantity from the directory being deleted up.

Reused and unprotected disk addresses, as well as bad VTOC threads, no
longer cause the system to crash. Volumes suffering these symptoms are placed in
a state (pvte.nleft = 0) where no new allocations can take place on these
volumes, and scheduled for salvage (pvte.vol_trouble = "l"b). These new
policies are due to a belief in the current stability of the supervisor: that
such symptoms can not occur as a result of a software malfunction in the current
bootload, but are more likely symptoms of disk malfunction or bad data from a
previous bootload.

The "PD Writeahead" experimental feature has been r~moved.

The disk record allocator has been recoded to be more straightforward: the
remnants of older schemes have been replaced by code which has the same effect,
but by explicit design.

The disk-reading primitive (read_disk, Section XIV) is now used by volume
backup in many processes, and thus can no longer use the unshareable supervisor
ASTE (PTW-Ievel abs-seg) read_disk_seg in all processes. It continues to use
this ASTE if running in the initializer process, initialization, or shutdown.
in any other process, an ASTE is gotten via normal means (get_aste) to use a an
abs_seg.

The VTOC attribute array for record quota Caste.quota, vtoce.quota) is
redefined as seg_vtoce.usage_count and seg_aste.usage_count, a count of page
faults on a segment maintained by page control, for nondirectory segments. A
file system call through mhcs_ is available to obtain this VTOC attribute. It
is not in hcs_ because the observing of this datum constitutes an AIM write-down
path, and discretionary access control to this meter may be desired at some AIM
sites.

9178 A-19 AN61A

