
PREfACE

Multics Program Logic Manuals (PLMs) are intended for use by Multics system
maintenance personnel, development personnel, and others who are thoroughly
familiar with Multics internal system operation. They are not intended for
application programmers or subsystem writers.

The PLMs contain descriptions of modules that serve as internal interfaces
and perform special system functions. These documents do not describe external
interfaces, which are used by application and system programmers.

Since internal interfaces are added, deleted, and modified as design
improvements are introduced, Honeywell does not ensure that the internal
functions and internal module interfaces will remain compatible with previous
versions. To help maintain accurate PLM documentation, Honeywell publishes a
special status bulletin containing a list of the PLMs currently available and
identifying updates to existing PLMs. This status bulletin is distributed
automatically to all holders of the System Programmers' Supplement 12 the
Multics Programmers' Manual (Order No. AK96) and to others on request. To get
on the mailing list for this status bulletin, write to:

Large Systems Sales Support
Multics Project Office
Honeywell Information Systems Inc.
Post Office Box 6000 (MS K-28)
Phoenix, Arizona 85005

This PLM explains and describes the subsystems and data bas~s involved in
the reader's understanding of the organization, goals, and design of the
software involved. This is not- to say that explanations as detailed and
thorough as in more traditional PLMs do not appear. However, these discussions
are not intended, to be read unless all of the Sections preceding these
discussions have been understood. It is hoped that the reader will appreciate
this approach.

This Program Logic Manual (PLM) -describes the internal organization of
those parts of the Multics supervisor responsible for implementing the Multics
virtual memory. This information is accurate as of Multics Release 5.0. The
subsystems described by this document are commonly known as page control,
segment control, and volume management.

This PLM assumes famili~rity with the bverall functional organization of
the Multics Operating System, and the user ~nterface as presented in the Multics
Programmers' Manual, Order Nos. AG91, AG921, AG93, AK92, AX49. Some familiarity
with the Honeywell 68/80 processor is assum~d.

Other relevant Program Logic Manuala are:

Order No ~

AN71 Reoonfiguration

AN70 System Initialization

~ 1977, Honeywell Information Systems Ino. File No.: 2L13

AN61

Section

Section 2

Section 3

Section 4

9/78

CONTENTS

Introduction •••••••••.•••••.

Segment Control Overview and Concepts . . .
VTOC, and Disk-resident Segment Images .

Activation Information ••••
File Map ••••••••••
Permanent Information • • .

Active and Nonactive Segments.
VTOC Attributes. . • • • • •• • ••
AST Hash Table and Determining Activity.
AST Hierarchy ..••.•••.•.••••.
Breakdown of the AST Entry ••••.
AST Lists and Threads •.•
AST Replacement Algorithm •..••••
AST Trickle •.••••
Locking Conventions •...•.•.••.
Trailers and Setfaults
Boundsfaults • • • • • • • • • •
Segment Moving • • • • • • • • . . • •
Encacheability Control . • ••••

The VTOC Manager •.••••••••
Introduction and Overview •.••••
General Policies • • • • •
VTOC Buffer Segment ••.•

Description of the VTOC Buffer Control
Word, vtoc_buffer.b. • • •••

Organization of the VTOC Manager •
VTOC Buffer Replacement Strategy •..•
Error Strategy . • • • • • . • • • • • .
ESD Strategy . • • . • • • . • . • • • .
VTOCE AllocationlDeallocation Service of

VTOC Manager ••••..••.•.•••
Services of VTOC Manager for Demounting.

Services of Segment Control·. . • • . . • .
Creation of Segments • • • . • • . • •

Physical Volume Selection Algorithm.
Deletion of Segments • . . • .
Segment Truncation • • • • •
Satisfying Segment Faults ••

Significance of +activate+ ••.
Segment Fault Handler ••••••••
Activation . • .. • ••••.•••
Deactivation •.•••
VTOCE Updating ..•••
Descriptor Segment Management.
Boundsfault Handling • . • • • . . • • •
Setting and Reporting on VTOC Attributes • .
PDS and KST Management • • • • . • . . •

iii

Page

1-1

2-1
2-1
2-4
2-7
2-7
2-9
2-10
2-10
2-10
2-11
2-17
2-18
2-19
2-19
2-21
2-22
2-22
2-22

3-1
3-1
3-2
3-3

3-4
3-5
3-7
3-8
3-8

3-9
3-9

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-12
4-13
4-14
4-17
4-18
4-20
4-21

AN61A

Section 5

Section 6

Section 7

Section 8

9178

CONTENTS (cont)

Semi-Permanent Activation (grab_aste).
101 and FNP6600 Buffer Segment
Special-Casing .•••••••.••.•

Segment Moving . • • • • • . • • • • •
Special Services for sweep_pv ••.••
Services on Behalf of the Hierarchy Salvager
Demand Deactivation of Segments ••
Services at Demount/Shutdown Time •.••

Page Control Overview and Concepts •••••
Basic Goals and Services of Page Control
Basic Organization of Page Control • • • • .
Page Table Lock. . • • • • • • • • . • •
Outline of the Data Bases of Page Control ••
Zero Pages • • • • . • • • • • • •
Main Memory Replacement Algorithm.
Paging Device Management Algorithm (Page
Multilevel) ••.•••••

Page Control Data Bases • • • •
Page Control Device (devadd) •
Paging Data Objects. • • • •••
PTW, or Page Table Word. • • • • • •
Core Map • • • • • • • • • • . • • • •
Core Map Entry (CME) ••••••••••
Paging Device Map ••••••
Paging Device Map Entry (PDME)
PDMAP Header • • • • . • • • •
PVTE Variables for Page Control •.
Synopsis of Relevant SST Variables •

Page

4-23

4-25
4-25
4-29
4-31
4-34
4-34

5-1
5-2
5-4
5-6
5-6
5-9
5-9

5-12

6-1
6-1
6-4
6-4
6-7
6-7
6-10
6-10.1
6-14
6-15
6-16

Address Management Policy • • • • • • • • • • • 7-1
Introduction and Nulled Address. • . • • • • 7-1
Implications of Finite Packs . • • • • 7-4
Non Segment-Movability of the Supervisor 7-5
Guaranteed Bootability of the Supervisor 7-5
RPV Parasite Segments. • • • • • • • • • 7-7
abs-segs (Explicit Address Management) 7-8

Mechanisms ...•...••.••.•.•
Policies, Protocols, and Organizations.

Global Page Lock. • • . • • • . • •
Wait Events Used by Page Control ••
Wait Protocols of Page Control .•
DIM Interface and +Running+ . • .
ALM Page Control Environment .••
Error Strategy •••••••••••
Stack Management and Interface with the
Traffic Controller .

Page States . • . • • • • • . • • . • • •
Tracing Mechanisms •••...••.

Individual Mechanisms •••..•••
Waiting for the Page Table Lock .••..
FSDCT Paging ••••••.•.•
Per-Process Trace List •••.•.••••
Disk Record Allocation/Deallocation •

Internal Interfaces •.••...•••
Main Memory Frame Allocation .•••
Replacement Algorithm Writebehind •
Page Writing/Purification ••••••••
Page Reading .•.••.•••••
Paging Device Record Allocator.

iv

8-1
8-1
8-1
8-4
8-6
8-11
8-14
8-15

8-18
tl-21
8-29
8-29
8-29
8-30
8-32
8-32
8-33
tl-35
8-35
8-36
8-38
8-39

AN61A

.:

Section 9

Section 10

Section 11

Section 12

Section 13

Section 14

9178

CONTENTS (cont)

RWS Initiator . • • • • . • • • •
Paging Device Housekeeping and

Replacement •••.•••
Eviction Cleanup. . • • .
Per-Page Cache Management
Demand Eviction . •
Page abs-wiring • •
I/O Posting . • • •
Utility Subroutines •

Services of Page Control ••
Page Fault Handling. ~ ••
Services for Segment Control •

Activation-Time Service •
File-map/Activation Attribute Reporting •
Deactivation Service •.•••
Call-Side PD Eviction Subroutine ••
Truncation Service. . .• • •••••
Boundsfault Service • • • • • •
Modified-Switch Setting . • •

Post-Crash PD Flush. • • • • •• • •••
Shutdown and Demounting Services •••.
Record Address Depositing Services •••••
Paging Device Record Deletion ••••••.•
Forced Segment I/O and Wiring .•••.
Abs-Wiring Service • • • • • . . • •
Main Memory Deconfiguration Service ••
Services for Traffic Control •

Process Loading • • • • • • • .
Process Unloading . • • • • •
Post-Purging ••••.

Page

8-40

8-41
8-42
8-43
8-43
8-45
8-46
8-49

9-1
9-1
9-4
9-4
9-5
9-6
9-7
9-7
9-8
9-9
9-10
9-13
9-14
9-15
9-15
9-17
9-18
9-19
9-19
9-20
9-20

Peripheral Services of Page Control
Procedure Wiring • • • •

• . • 10-1
• 10-1

Paging Device Reconfiguration ••
Main Memory Frame Freeing.

Quota Management ...••••.

Ring Zero Volume Management • •
Introduction and Overview .•
Concepts • . . • • • • • . .
Preacceptance ..•••...

• • •• 10-2
• •• 10-4

• • • 11-1

• • 12-1
. • • • 12-1

• • • 12-1
•••• 12-3

Data Bases of Ring Zero Volume Management .•• 13-1
Volume Label. .•••. • •.•.. 13-1
Volume Map • • • . . • •• ..•• • 13-5
VTOC Header. • • • • • • . . 13-6
Bad Track List .•••.••• 13-7
FSDCT. • • • • • . •••..•• 13-7
Physical Volume Table (PVT) ••.••••.. 13-10
Logical Vol ume Table (LVT) . . . • 13-14
PVT Hold Table. . • • . . . 13-15

Operations of Ring-O Volume Management.
Acceptance of Physical Volumes • • •
Physical Volume Demounting • • . . • •

Demount Protection ••••.••..

· . 14-1
· . 14-1

14-2
• .• 14-4

• 14-6 Ring Zero Logical Volume Management ••
Bootstrapping of Logical Volume Hierarchy

(the RPV) • • .• •• • •
RPV-only Directories •.••••.•
Cold Boot of the RPV.

v

· 14-7
• 14-8

• • 14-8

AN61A

Section 15

Section 16

Section 17

Appendix A

9178

CONTENTS (cont)

Page

Sons-LVID Setting •.••..•.•.•••• 14-8
RPV-only Directory Setting •••.••••• 14-9
Disk_Table Location Setting •••.••.•. 14-9
Explicit Disk Reading, Writing, and Testing

(read_disk) ..•.•••.•••••.•• 14-9

Physical Volume Salvager Interaction •••••• 15-1
Assumptions Made Valid By the Physical

Volume Salvager •.•••••••••••• 15-2
Forms of Damage Corrected by the Physical

Volume Salvager .•••.•.••••••• 15-2
Other Volume Salvager Actions. • • •• 15-3
The Disk Rebuilder . • .• • • .• • 15-3
Assumptions Not Checked By the Volume
Salvager. • • • • .•. • • 15-3

Scenarios • • . •• •• • •
A Segment Fault. • •••••
A Page Fault, In Page Multilevel •

Glossary •.••.•

Changes for MR 6.0 •••••
Prewithdrawing Policy.
Per-process Hardcore Segment Policy .•
Volume Dumper Support •.•••••••
Page Posting Queue • • • . • • • . .
Page Control Traffic Control Interface •
Page Control Consistency •
Page Control Error Policy.
Large Volume Map Space . • • •
Damaged Segments • • • • • •
Quota Validator •.•••••

16-1
• 16-1
• 16-4

• • 17-1

A-1
A-l
A-2
A-2
A-4
A-7
A-7
A-10
A-12
A-12

Support of Hierarchy Salvager. • . • • • • •
Limited Update Backlog •

A-13
A-16
A-17

Partial Shutdown • • • • • •
Other Considerations • . . • •

vi

A-18
A-18

AN61A

,-'

CONTENTS (cont)

Page

ILLUSTRATIONS

Figure 5-1 The Clock Algorithm · · · · · · · · · · · · 5-10
Figure 6-1 Page Control Data Bases Page not in Main

Memory or on Paging Device · · · · · · · · 6-25
Figure 6-2 Page Control Data Bases Page in Main Memory

not on Paging Device · · · · · · · · · · · 6-26
Figure 6-3 Page Control Data Bases Page in Main Memory

and on Paging Device · · · · · · · · · · · · · 6-27
Figure 6-4 Page Control Data Bases Page on Paging Device,

not in Main Memory · · · · · · · · · · · · · · 6-28
Figure 6-5 Page Control Data Bases: Read-Write Sequence. · 6-29
Figure 8-1 Traffic Controller Interface Stack Management · 8-20
Figure 8-2 States of Page. . . · · · · · · · 8-23
Figure 8-3 States of Page in Macro States. · · · · · · · · 8-24
Figure 8-4 Read-Evict, Write-Mod Cycles. · · · · · · · · · 8-25
Figure 8-5 States of Main Memory Frames. · 8-26
Figure 8-6 States of Paging Device Record. · 8-27
Figure 8-7 States of Disk Address. · · · · · · · · · · 8-28
Figure 8-8 ALM Page Control Call Flow. · · · · · · · 8-34
Figure 8-9 Page Control Interrupt Side, normal posting 8-48
Figure 8-10 Page control Interrupt Side, RWS posting. · 8-49
Figure A-1 Coreadd Queue Locking · · · · · · · · · · A-7
Figure A-2 Quota Valida tor . . · · · · · · · · · · · · A-15

9178 vii AN6lA

•

SECTION 1

INTRODUCTION

This PLM describes the construction, modularization, operation, and
interaction of those subsystems of the Multics supervisor that implement the
Multics virtual memory. The subsystems are:

o Segment Control; responsible for maintaining the disk-resident images
of segments and their attributes (the VTOC), and creating and
multiplexing the Active Segment Table Entries, that allow disk-resident
segments to be accessed as part of user address spaces. Segment
control is responsible for performing physical operations (creation,
deletion, truncation, max-length setting) upon nonactive segments, and
relaying responsibility for performing these operations upon active
segments.

o Page Control; responsible for bringing pages of segments in and out of
maln memory and the paging device (bulk store), if present. It manages
the movement of all pages, and the assignment and deassignment of
secondary storage addresses. Page control performs services on behalf
of diverse subsystems such as traffic control (to load and unload
processes at time of gain/loss of eligibility) and reconfiguration
(vacating memory controllers at deconfiguration time) when use or nouse
of pages of segments or frames of any kind of storage are an issue.
Page control is also responsible for performing physical operations
upon active segments, and implementing the main-memory sharing (page
replacement algorithm of the system).

o Volume Management; responsible for the dynamic introduction and removal
of pnyslcal and logical storage system volumes from the running system.
It is also responsible for maintaining the integrity of volumes across
multiple bootloads and crashes, and the repatriation of permanent
volume-resident information in case of crash. Volume management
implements as well the logical volume sharing policy, and the
per-process attachment concept.

The following two subsystems, although intimately related to the storage
system, are not described here.

9/78

o Directory Control; responsible for creating, maintaining, and
lnterpretlng the contents of directories, being branches for segments
and directories, Access Control Lists (ACLs), names, and pointers to
segment VTOC entries (VTOCEs). Directory control is accessed primarily
through the user gate (hcs) and implicitly relies upon the services of
the other subsystems of the virtual memory, directories being simply
segments to these sUbsystems.

1-1 AN61A

I

o The directory and physical volume salvager subsystems, although not
invoked during normal operation of Multics, playa critical role in
ensuring the integrity of the storage system, and automatic invocation
of these salvagers is relied upon to force the truth of certain
predicates about disk contents. The Directory Salvager, a descendant
of the old Regular Salvager of systems of earlier genre than 4.0,
checks and corrects the physical structure of directory contents. The
Physical Volume Salvager reconstructs critical tables on packs that
must be developed from scratch after a fatal (ESD fails) crash, and
ensures the consistency of VTOC entries (VTOCEs).

These subsystems are logical, rather than actual, organizations of code and
data bases. Many critical and interesting programs fall into several of them
simultaneously, or none exactly. These artificial functional divisions are
created as an attempt to guide the description, and help the reader focus
attention more precisely. Therefore, this PLM is divided into three sections,
describing segment control, page control, and volume management independently.

9178 1-2 AN61A

,~

SECTION II

SEGMENT CONTROL OVERVIEW AND CONCEPTS

Segment control is that subdivision of the Multics supervisor that is
responsible for the maintenance of disk-resident segment images (VTOC entries),
and the management of active segments. A large part of segment control consists
of the mechanism necessary to activate and deactivate segments: another major
part is the buffering and reading/writing of VTOC entries. These terms will all
be clarified later.

The segment control portion of this PLM is organized in three sections:

1. Section II, Control Overview and Concepts

2. Section III, The VTOC Manager

3. Section IV, Services of Segment Control

The plan of discourse is to lead up to Section IV. Segment control, as all
subsystems in a c6mputer system, performs a set of services fulfilling a set of
needs of the rest of the system. Among these services, in the case of segment
control, are the activation of segments in response to segment faults, the
truncation of segments, and the reporting of dynamic attributes of segments. In
order to understand the implementations of the mechanisms that perform these
services, detailed in Section IV, the overall organization and basic internal
mechanisms of segment control must be understood. These are stated in Section
IV. Included herein is a detailed breakdown of the data bases used by segment
control, the ASTE, the VTOCE, and the VTOC buffer segment, and an explanation of
locking policies used.

The VTOC manager is a large and important part of segment control, which is
fairly well isolated. An entire chapter is devoted to its organization and
implementation.

VTOC. AND DISK-RESIDENT SEGMENT IMAGES

Since release 4.0, each segment of the Multics storage system resld~~ on
one and only one secondary storage physical volume. This is a basic design
policy that limits the amount of damage caused by the failure of one physical
volume of the hardware on which it is mounted. For a segment to "reside" on a
physical volume means that all of the pages of the segment are allocated. This
means that nonzero pages of the segment are assigned page frames (records) on
that physical volume, from which they are read, and to which they are written
when and if each such page is evicted from main memory or the paging device.

2 .. '" . AN61

Therefore, each physical.volume contains a complete set of segments. This set
of segments is described by the Volume Table of Contents, or VTOC of the
physical volume. The VTOC is an array of fixed-length elements called VTOC
Entries (VTOCEs). The VTOC is at a fixed place on each physical volume (see
disk-pack.incl.pll). Each VTOCE either describes a segment or is ~,
available for later assignment to a segment. The VTOC is of fixed size, and is
created at pack initialization time.·

Each segment residing on a given pack is therefore uniquely identified by
the VTOC index of its VTOCE on that pack. VTOC indices are origined at zero.
Therefore, the pair of physical volume and VTOC index uniquely identifies any
segment in the storage system hierarchy. It- is this form of identification, in
the form (physical volume ID, VTOC index) that appears in directory branches.
Free VTOC entries are chained in a list on each pack, the head of this list
being maintained in the Physical Volume Table Entry (PVTE) while the volume is
mounted or the ~ Header of the pack when not. (The VTOC Header is actually a
small collection of parameters such as this, kept at a fixed place on each pack.
(See disk_pack.incl.pll».

Each VTOCE consists of three logical parts, which are designated as the
activation information, the ~ ~, and the permanent information of the
segment. The activation information is all other information than the file map
that is needed to use the segment, or more technically, to activate it. It also
holds all of the information that is likely to be changed by virtue of the
segment having been active (used). Such information includes some information
implicit in the file map but expensive to determine, such as current length and
number of records used, some information necessary for checking, such as the
segment unique identifier (QIQ), and date-times of last modification and use.
Quota cells and accounts for directories reside in the VTOCEs of the directories
as well, among the activation information. This is because simply being active
(having inferior segments gain and lose pages) can affect this information~
Almost all of the activation information resides in the Active Segment Table
Entry (described later) while the concerned segment is active.

The file map is an array of 256 record addresses or null addresses detailing
where on the physical volume each page of the segment resides. A nYll address
(not to be confused with the nulled addresses used internally by page control
(see Section V) is an 16-bit quantity, which, when appearing in a file map,
means that no record of the pack is assigned to that. page of the segment, the
page logically contains zeros, and does not count against quota used, or the
current length of the segment. For example, when a segment is created, the file
map of its VTOCE is filled entirely with null addresses as the contents of the
segment is logically zero. Null addresses in VTOCE file maps are recognized by
their high-order bit (400000 DU) being QN. The lower bits are debugging
information, describing by which agency the null address was created. (See
null_addresses.incl.pll). A record address is the address of a record of the
physical volume. All volumes are divided into key-word records, and start at
record zero. It is one' of the design goals of page control that no record
address ~ appears or is allowed to remain in a VTOCE file map unless it is
known for a fact that data from that page actually appears on the physical pack;
this eliminates the possibility of windows during which if the system crashed,
the VTOCE file map would describe a record containing uninitialized data,
potentially a security problem. .

The permanent information in a VTOCE consists of attributes that are either
determined forever at segment creation time, or rarely changed. Such
information includes the unique ID pathname (array of segment unique IDs of
superior directories) access class, date/time dumped by the physical volume
dumper, and the primary segment name, placed there only for debugging and the
physical volume salvager.

2-2 AN61

The structure of a VTOC entry in detail is spelled out below. The current
VTOC entry is 192 words long, consisting of three sectors of MSU0400 or MSU0451
disk. Most of this entry is the file map (12b words). Thus, most accessing of
VTOCEs deals only with the activation information and a small portion of the
file map (most segments are only a few records long). Therefore, VTOCEs were
organized such that the activation information (about 20s10S words) is at the
beginning of the VTOCE, followed by the file map, and then the permanent
information. This makes it so that most interactions with VTOCEs deal with only
the first few (say 30s10S) words. In order to take advantage of this fact,
VTOCEs are accessed via sector-by-sector 1/0, as opposed to residing in pages of
segments. Were the latter the case, each reference to a VTOCE would require
paging in 1024 words when perhaps as few as thirty, or at most 192, were needed.
A large complex mechanism (the ~ Manager, vtoc_man) and program exist to
manage these sector-by-sector I/Os and their buffering. However, the physical
volume salvager and other subsystems, notably BOS SAVE, prefer to deal uniformly
with pages. In the case of the physical volume salvager, this allows it to use
read-ahead entries in page control to optimize performance. Therefore, the VTOC
is laid out in pages, such that any VTOCE can be accessed by reading/writing a
given record, preferably by accessing it via paging, so as to leave the other
VTOCEs unaffected. This allows five and one-third VTOC entries per page
(1024/192). Due to the possibility of having pages split across cylinders,
which wo~ld create "slow" pages, Multics does not use fractional pages at ends
of cylinders. Therefore, if VTOCEs were packed 5-1/3 per page, some VTOCEs
would not in fact be contiguous on the disk, eliminating the possibility (not
now realized) of single-operation I/O in a uniform manner to transfer an entire
VTOCE. Th~s, VTOCEs are packed five per page, with a 64-word unused region at
the end of each page. Each VTOCE therefore consists of three (192/64)
contiguous 64 word sectors. These sectors define three physical regions of the
VTOCE, or vtoce-Darts; known as Part I, Part II, and Part III. Part I contains
the activation information and the start of the file map, Part II the middle of
the file map, and Part III the end of the file map and the permanent
information. Thus, most VTrCE transactions consist of reading or writing Part
I, 64 words, 1 sector, of some VTOCE.

We now consider the individual items in a VTOC entry (VTOCE), with some
discussion of their significance.

dcl 1 vtoce based (vtocep) aligned,

(2 next_free_vtocx fixed bin (17),
2 incr_dmpr_thrd fixed bin (17), -

2 uid bit (36),

2 msl bit (9),
2 csl bit (9),
2 records bit (9),
2 pad2 bit (9),

2 dtu bit (36),

2 dtm bit (36),

c nqsw bit (1) ,
-,
~ deciduous bit (1) ,
2 nid bit (1) ,
2 dnzp bit (1) ,
2 gtpd bit (1) ,
2 per_process bit (1) ,
2 pad3 bit (12) ,
2 dirsw bit (1)

2-3 AN61

2 master_dir bit (1),
2 pad4 bit (16),

2 infqcnt (0:1) fixed bin (17),

2 quota (0:1) fixed bin (17),

2 used (0:1) fixed bin (17),

2 received (0:1) fixed bin (17),

2 trp (0:1) fixed bin (71),

2 trp_time (0:1) bit (36),

2 fm (0:255) bit (1 b) ,

2 pad6 (10) bit (36) ,

2 ncd bit (1) ,
2 pad7 bit (17) ,
2 cons_dmpr_thrd fixed bin (17) ,

2 dtd bit (36) ,

2 volid (3) bit (36) ,

2 master_dir_uid bit (36) ,

2 uid_path (0:15) bit (36) ,

2 primary_name char (32),

2 time_created bit (36) ,

2 par_pvid bit (36) ,

2 par_vtocx fixed bin (17) ,
2 branch_rp bit (11:3)) unaligned,

2 cn_salv_time bit (36),

2 access_class bit (72),
2 checksum bit (36),
2 owner bit (36);

Actiyation Information

next_free_vtoce
is meaningful only in free VTOCEs. It is the VTOC index of the next
free VTOCE in the free VTOCE chain. Note that -1 is the end of the
chain. In an occupied VTOCE, this field is zero.

incr_dmpr_thread
is not used.

2-4 AN61

uid

msl

csl

records

dtu

dtm

nqsw

deciduous

is the segment unique identifier, assigned at segment creation time.
This matche~ an identical field in the directory branch for the
segment. It must be zero in a free VTOCE, and zero UID implies a
free VTOCE. This quantity is checked every time the VTOCE is used,
to check that the right VTOCE is being accessed, and that no damage
has occurred to the VTOC or the pack. Failure of the segment unique
ID (UID) to check is known as a connection failure.

is the maximum
into the SDW
segment fault.

segment length, in pages.
(segment descriptor word)

This
of a

information is put
process handling a

is the current length of the segment, in pages. This may be defined
as one plus the index (starting at zero) of the highest nonnull
address in the file map. The physical volume salvager computes it
this way. The most interesting property of vtoce.csl is that it
tells those reading the VTOCE whether or not they have to read Part
II, or even Part III, to acquire the entire nonnull portion of the
file map.

is the number of nonnull addresses in the file map. Again, this is
computed by evaluating this criterion by the physical volume
salvager. This number may also be viewed as the number of quota
units consumed by the segment. When the segment is active, a
parallel quantity is maintained by page control, and periodically
updated to vtoce.records. Since there can be records that count
against quota that do not appear in the VTOCE file map yet, as they
have not been written, (see the discussion of record address above),
the statement "Records used changed from <number> to <smaller
number>" by the VTOC salvager indicates that a segment has lost
pages in this way. This number exists to avoid the necessity to
recompute it every time the segment is activated, as page control
needs it.

is the "file system time" (upper 36 bits of real-time clock)
recording the "date-time used" attribute of the segment. Other than
segments activated with "transparent usage" (such as by the
Hierarchy Dumper), this is generally the time that the VTOCE was
last updated (from the AST).

is the file-system time recording the "date-time modified" attribute
of the segment. This quantity is maintained by page control (as
aste.dtm) when the segment is active. It, like other activation
attributes, is updated from the Active Segment Table.

is a switch indicating that page control should suppress checking of
quota overflow for this segment. This switch is never intentionally
turned on in a VTOCE; it is simply a reflection of an AST switch
used for certain special segments.

similarly is a reflection of an AST switch, which is never, and
cannot be explicitly turned on in a VTOCE. It marks the VTOCE of a
deciduous segment, primarily so that the physical volume salvager
may reclaim pages of such segments. A full discussion of deciduous
segments is given in the Multics Initialization PLM, Order No. AN70.
The definition is repeated here:

A deciduous segment is one that is loaded by system
initialization in collections 1 or 2, is part of the global or
initializer's hard core address space, and acquires ~ branch in
the hierarchy, via the program init branches in collection 2.

2-5 AN61

nid

rinzp

I

gtpd

per_process

dirsw

master dir

infqcnt

I
quota

used

9178

for n~u incremental dump". A so-called "VTOC Attribute" (see later
discussion of "VTJC Attributes"), restraining the physical volume
dumpe,· from dumpinr; thj s segment in an incremental dump.

for "don't nul] zero page". Both a "VTOC Attribute" and used for
deciduous and other special-case segments. When this segment is
active, the AST reflection of this bit (aste.dnzp) prevents page
control from detecting, and thus scheduling for deposit, pages of
zeros, A zero page of a "dnzp segment" is as good as any other
page. This is necessary for "PTW-Ievel abs-segs" and the
prewithdrawing policy (see Section VII).

for "global transparent to paging device". Prt'\i'~'its page.:; of this
segment from migrating to the paging device (bul~ ~tore subsystem).
Just about everything said for vtoce.dnzp is true !0r vtoce.gtpd as
well.

developed at VTOCE creation time and at update time. If on, the
segment owning this VTOCE is either >process dir dir or a descendant
of a segment with vtoce.per process on. PrincIpal use of this bit
is to allow the physical volume salvager to discard such VTOCEs and
free the pages they claim.

identifies the VTOCE of a directory. Principally informative, it
must check with th~ directory switch in the branch of the segment at
activation time, or a connection failure is indicated. Biases the
physical volume salvager in favor of this segment in resolving page
conflicts.

marks the VTOCE of a master directory. This i~ necessary to
facilitate the redistribution of quota at directury deletion time:
the delete vtoce prueram ~ust know whether or not to pass quota back
up based on this bit. (See "Segment Deletion".)

previously count of inferior directories with quota accounts, for a
directory VTOCE, this field is now considered obsolete.

is the amount of quota assigned to the directory (must be the case
if nonzero) owning this VTOCE. Like vtoce.infqct, vtoce.used,
vtoce.received, vtoce.trp, and vtoce.trp time, this field is
actually a two-element array, the zeroth Tleft-hand) element for
segment quota, and the first, (right-hand) for directory page quota,
currently partially implemented. ----

is the amount of quota used by inferior segments and directories,
(see vtoce.quota above)-.---It can be recomputed only by recursively
summing the vtoce.records fields of all VTOCEs for segments inferior
in the hierarchy. This is the number reported by hcs $quota get
(the get quota command, for example) as used, it does not include
used totals of inferior acc0unts. Maintainea-for active segments by
page control, vtoce.used is rlerived from the ASTE. Validly nonzero
only for directory VTOCEs.

2-6 AN61A

I •

received

trp

File Map

fm

is the sum of the quota given to this (directory) and the
vtoce.received for all inferior directories, if any. Of course,
validly nonzero only for directory VTOCEs. This quantity is
necessary in order to determine if any quota has been delegated
below any point of the hierarchy. It is a peculiar quantity (also
true of vtoce.trp) in that it is one of two items in the VTOCE
activation information that must be read in from the VTOCE, i.e.,
cannot be derived solely from bits and fields of the Active Segment
Table, at VTOCE update time. This field, like vtoce.trp and
vtoc.trp_time, is only used for directories with quota accounts,
i.e., vtoce.quota (0 or 1)i O.

is the page-second time-record usage
quota-account-owning directory that must own
vtoce.received, above.

product for
this VTOCE.

the
See

is the file-system time at which vtoce.trp was updated; this is
always the time of a VTOCE update (see "VTOCE Updating," in Section
IV) .

is the array of packed, 18-bit null addresses and record addresses
describing which pages of the segment owning this VTOCE are
logically nonzer~, and where the images reside. The interesting
(containing other than null addresses) extent of the file map' is
told by vtoce.csl. Those who need the file map are satisfied not to
read the particular null addresses that may appear; the differences
between the types of null addresses is solely for debugging.

Permanent Information

ncd
for "no complete dump". Treated like a "VTOC Attribute". When on,
restrains the physical volume dumper, when performing a complete
dump, from dumping the segment owning the VTOCE. Among the
permanent information (in Part III) due to the relative infrequency
of complete dumps.

cons_dmpr_thrd

dtd

volid

is not used.

is the file-system time that this VTOCE, and its segment, were
dumped by the physical volume dumper.

is an array of backup medium identifiers, set by the physical volume
dumper, identifying the volumes of backup medium (tape) on which the
last incremental, consolidated, and complete dumps of this segment
and its VTOCE were performed. Inspection of those volumes produces
maps giving earlier volumes, and so forth through the life of the
segment.

AN61

master_dir_uid

primary_name

time_created

par_pvid

par_vtocx

is the segment UID of the master directory against whose master
directory quota account the pages of the segment owning this VTOCE
are counted. This information is used by master directory control,
and is updated by the hierarchy salvager, if necessary, when running
in connection-checking mode.

is an array of the Segment Unique IDs (UIDs) of all directories
superior .t..Q ~ segment. Thus, the zeroth element of
vtoce.uid_path for every VTOCE in the system except the VTQCE of the
root (» is the .!.U.Q Qf 1M..I:QQ.t. ("777777777777"b3). The VTOCE of a
son of the root (e.g., >user_dir_dir) contains only one element, the
UID of the root, etc. The UID of the segment owning the VTOCE,
which appears among the activation information in Part I, is llQ1 in
vtoce.uid_path. This UID path places the VTOCE exactly in the
hierarchy. It is only used explicitly by master directory control,
to identify directories that have been given master directory quota
accounts, in a manner insensitive to renaming of these directories.
It is checked and corrected (given that forward connection failure,
the kind described previously, does not exist), by the hierarchy
salvager when running in VTOCE-checking mode. The array
vtoce.uid_path can also be used, if assumed accurate, to determine
if a segment has no branch, no parent, or no grandparent, etc. Such
a segment, which can arise in certain crash situations and salvaging
situations, is called an orphan, and is said to suffer a reverse
connection f~jl~re. The online pack utility sweep_pv is capable of
locating and deleting such VTOCES, which can tie up pages. (See
"Special Services for sweep_pv" in Section IV.)

is the name appearing in the branch for the segment at the time the
segment was created. Ordinary rename operations will not u~date
vtoce.primary name, due to the expense of reading and writing Part
III to update permanent information. The hierarchy salvager,
running in VTOCE-checking mode, however, will. The name in the
VTOCE is never seen by users. The physical volume salvager prints
it out when VTOCE problems are encountered. Since it is not
accurate, it is only a clue to the identity of the segment. As long
as the VTOCE was not freed by the physical volume salvager, the
vtoc_pathname tool may be given the volume name and VTOC index
printed out by the physical volume salvager. The BOS SST name table
filler (SSTN) also picks up these names and puts them in the segment
sst_names_ at crash time." Thus, it is these names that appear in
BOS dumps and FDUMPS.

is the file-system time at which the VTOCE (and therefore the
segment owning it) was created. Principally of historical value
(sweep_pv reports it when deleting orphans).

is the physical volume ID of the volume containing the directory
containing the segment owning this VTOCE. Not transparent to
segment-moving (see "Segment Moving" below), this field is set, but
not now used.

is the VTOC index of the VTOCE of the .directory containing the
segment owning ~ VTOCE in its physical volume. As vtoce.par_pvid
above, it is not transparent to segment moving and not currently
used.

is the relative offset of the directory branch describing this VTOCE
in its directory. Intended for debugging, it is maintained by the
hierarchy salvager operating in VTOCE-checking mode. Note that
online salvaging of a directory causes branches to move around.

AN61

cn sal v time

access class

checksum

owner

is not currently used. It was intended to be the time at which lack
of reverse-connection-failure was last checked by the reverse-going
(branch-checking) mode of the physical volume salvager, since
decommissioned.

is the AIM access class of the segment owning this VTOCE.

currently not used.

intended to be the physical volume ID of the volume on which this
segment and its VTOCE reside, this field is not used.

ACTIVE AND NONACTIVE SEGMENTS

The VTOC entry and the records designated by its file map are the permanent
record of a segment on disk. They are the entire and accurate record of the
segment when the pack is not mounted or the system is shut down. In order for a
segment to be accessed via the hardware, it must have a page table in main
memory, and much of the VTOC information, specifically the file map and
activation information, must be in main memory where page control can use it to
resolve page faults, and modify it as pages are created and zeroed. A segment
in this state is called an active segment. A segment not in this state is
called a nonactive segment. The repository of activation information for a
segment is the system data base, the Active Segment Table (AST). This table,
which resides in the System Segment Table (SST), consists of AST entries
(ASTEs). An ASTE contains, when in use, the activation information for one
segment. Following each ASTE, part of the ASTE in some sense, although not part
of the ASTE proper, is the page table for that segment. The page table is
maintained by page control, which uses and updates the activation information
resident in the ASTE as the segment is used. The file map is handed to page I
control by placing it in the page table.

The AST is an unpaged data base. Since it is finite, the number of AST
entries is limited. Currently, there are four fixed sizes, those whose page
tables can describe 4, 16, 64, and 256 pages respectively. The AST is thus
divided into four pools, whose sizes are set by the four specifications on the
SST CONFIG card, a critical system tuning parameter. Since we have just defined
activity as the state of having page table and activation information in main
memory, and this is a precondition for use of the segment, only active segments
can actually be addressed by the hardware. Thus, all segments must be made
active before they can actually be used. Therefore, the fixed number of AST
entries must be multiplexed among all of the segments in the hierarchy. It is
one of the prime responsibilities of segment control to multiplex this resource.
When an attempt is made to reference a segment that is not active (this is one
of the possible outcomes of a segment fault), the segment must be activated, or
made active (given an ASTE, and the activation information and file map copied
out of the VTOCE into it). If there are no free ASTEs of the appropriate size
available, some segment must be deactivated to free an ASTE. This deactivation
consists of making the segment inaccessible to user processes, evicting all
pages of the segment from main memory and the paging device, updating the VTOCE
by copying the (possibly modified) activation information back into it-rrom the
ASTE, depositing nulled addresses (see "Address Management Policy", Section
VII), and freelng the ASTE. Once this has been done, the segment deactivated is
in the same state as one that has not been activated, and a segment fault and
subsequent activation result from an attempt to reference it. Choosing a proper
segment to deactivate is a complex issue that must choose that segment which
will probabilistically and heuristically be reactivated at the furthest time in
the future. The algorithm used to make this choice (in the program get aste) is
described further on under "AST Replacement Algorithm" in this section.-

9/78' 2-9 AN61A

t~

There are segments that are active during the entire life of a bootload;
all hardcore supervisor and all deciduous segments are this way. These segments
are used by software, such as the virtual memory control software being
described here, that are not dependent upon the dynamic activation/deactivation
features that they implement in order to operate; similarly, the page control
software does not itself take page faults. There are segments that may not be -"
deactivated for long periods of time: such segments are the PDS (Process Data
Segment) and KST (Known Segment Table) of processes, for they become part of the
supervisor in some processes, and thus are used to implement the virtual memory
in that process. There are segments, namely the paged, nondeciduous segments of
the supervisor, and the descriptor segments of processes, that do not have
VTOCEs, but only have ASTEs. They are always active.

VTOC ATTRIBUTES

When a normal, VTOCE-owning segment is nonactive, the VTOCE is the
repository of the file map and activation information. All requests for this
data must go to the VTOCE of the segment. When a segment is active, however,
the ASTE is the only valid repository of this information. Information such as
current segment length can change as processes store data into the segment.
Quota used can change as such operations are performed on segments inferior to a
given directory.

User-interface programs, and directory control, who have need to know
activation attributes must therefore go to either one of two places to get these
attributes. In o~der to localize this knowledge, all programs outside of
segment control that need to ascertain or set activation attributes of segments
call the procedure vtoc attributes at one of its many entry points to obtain or
set this information. -This procedure determines whether or not the segment is
active (see "AST Hash Table and Determining Activity" below), and irispects or
modifies the appropriate data object. These attributes, which have been called
"activation attributes" in the context of the VTOCE, are called "VTOC J'
attributes" in the context of other storage-system features such as bit count,
access mode, etc. It is through this means, for instance, that hcs $status long
(through the hard core module "status") obtains current length/rec~rds usea for
segments.

AST HASH TABLE AND DETERMINING ACTIVITY

Every segment that has a branch in the hierarchy (this excludes
nondeciduous hard core segments, unpaged supervisor segments, descriptor
segments, and PRDSs) can either be active at any instant or not. A process that
attempts to use such a segment, by performing a segment fault upon it, must
determine whether or not it is active. If it is, it is a simple matter to add
an SDW (Segment Descriptor Word) describing the page table in the segment's ASTE
to the descriptor segment of that process. If not, the segment must be
activated (which may, as outlined above, entail deactivating other segments)
before an SDW can be so added. Similarly, vtoc attributes must know whether or
not a " segment is active to know where to obtaIn or change these parameters.
Thus, a hash table is kept, called the AST Hash Table, which locates the ASTE of
any active segment, or the fact that i~s not active. This table is an array
of thread heads, kept in the internal static of the procedure search ast (in the
supervisor, this makes it a global data base as opposed to per-process internal
static) (but also locatable from the pointer sst.asthp for debugging and dump
analysis). Each bucket starts a list (which ends in zero) of AST entries the
UIDs of whose segments have the same low six bits. Thus, given the UID of any
segment, we can find the bucket numbered by the low six bits of this UID, and
chase the thread (through the field aste.ht fp) until either a zero is
encountered (segment not active), or an ASTE whose field aste.uid contains the
UID we have been given, in which case this is the ASTE for that segment, and of
course, it is active.

9178 2-10 AN61

The AST hash table is protected by the AST lock (see "Segment Control
Locking Policies" below). Deciduous segments are hashed into this table as soon
as they acquire branches, at which point they acquire the UlD in that branch and
stay hashed in for the life of that bootload.

AST HlER~

The root directory (» cannot be deactivated. Other than that, no segment
may be active unless its parent is active. This is so because the quota account
parameters against which a segment's records-used are charged is maintained in
(is an activation attribute of) the ASTE of one of its ancestors (its parent, or
that one's parent, etc.). Another reason for requiring the activity of parents
is that date-time modified for directories is in fact date-time modified for the
last-modified segment in the subtree rooted at that directory; this allows the
hierarchy dumper to determine if a subtree need be walked by inspecting the
date-time modified of its root. Keeping date-time modified, a VTOC (activation)
attribute up to date for a straight line back to the root, requires all
directories in that line to be active, so that page control can modify this
attribute. Thus, it is necessary that each ASTE have a pointer to its parent's
ASTE (the root has zero in this field, otherwise like all pointers in the SST
segment other than aste.strp, it is a relative offset into the SST segment).
There exists.an operation called a boundsfault, wherein a segment grows, and
requires a larger ASTE. Should this happen to 'a directory with active inferior
segments and directories, all of the parent-pointers in the inferior ASTEs would
become wrong when the directory changed ASTEs. Therefore, a first-son-brother
thread is maintained among ASTEs, so that all inferior ASTEs can be located in
the case of a boundsfault. This technique is also used at segment-move time
(see "Segment Moving", below).

BREAKDOWN OF THE AST ENTRY

The following is a detailed discussion of all of the fields and bits in an
ASTE (AST entry). Remember that many of these fields and bits are but
reflections of similar fields in the VTOCE. Such fields are marked with an (*).

dcl 1 aste based (astep) aligned,

(2 fp bit (18),
2 bp bit (18),

2 infl bit (18),
2 infp bit (18),

2 strp bit (18),
2 par_astep bit (18),

2 uid bit (36),

2 msl bit (9),
2 pvtx fixed bin (8)~
2 vtocx fixed bin (17),

2 usedf bit (1),
2 init bit (1),
2 gtus bit (1),
2 gtms bit (1),
2 hc bit (1),
2 hc_sdw bit (1),
2 any_access_on bit (1),
2 write_access_on bit (1),
2 inhibit_cache bit (1),
2 explicit_deact_ok bit (1),

2-11· AN61

2 pad1 bit (9) ,
2 ehs bit (1) ,
2 nqsw bit (1) ,
2 dirsw bit (1),
2 master_dir bit (1),
2 pad4 bit (1),
2 tqsw (0:1) bit (1),
2 ic bit (10),

2 dtu bit (36),

2 dtm bit (36) ,

2 quota (0:1) fixed bin (17) ,

2 used (0: 1) fixed bin (17) ,

2 csl bit (9) ,
2 fmchanged bit (1),
2 fms bit (1),
2 npfs bit (1),
2 gtpd bit (1),
2 dnzp bit (1),
2 per_process bit (1) ,
2 pad2 bit (3),
2 records bit (9) ,
2 np bit (9),

2 ht_fp bit (18),
2 fmchanged1 bit (1),
2 pcos bit (1),
2 pack_ovfl bit (1),
2 pad3 bi t (7),
2 ptsi bit (2),
2 marker bit (6» unaligned;

aste.fp

aste.bp

aste.infl

aste.infp

is the forward pointer (reI pointer in SST segment) to the next ASTE
in the so-called "used list". There is one used list (ASTE chain)
for each pool (size) of ASTE. Free ASTEs are at the head of this
chain, others follow .. Some nondeactivatable ASTEs are not in the
list, such as supervisor segments (including deciduous ones),
descriptor segments, and PRDSs. There are special lists for special
segments. See "AST Replacement Algorithm".

is the backward pointer to the previous ASTE in the appropriate used
list.

for "inferior list", is a (relative) pointer ~o the next ASTE in a
list of ASTEs whose segments have the same parent as the ASTE of
this segment. We will contract this terminology to say "a list of
ASTEs who have the same parent ASTE". See "AST Hierarchy" above.
This is really a "brother's list".

is a (reI) pointer to the first ASTE in the li.i (through aste.infl,
described above) of ASTEs of which ~ ASTE is the parent. Like
all ASTE lists and pointers, it is ~ if there is none.

AN61

aste.strp
is a relative pointer to the first trailer in the system trailer
segment, str_seg, zero if there are none, for this ASTE .. An ASTE
acquires a trailer for each SOW constructed via a segment fault,
which describes the page table in this ASTE. It facilitates
revocation of SOWs when the segment is deactivated, deleted, or
suffers an access change (see "Trailers and Setfaults" below). For
nondeciduous supervisor and initialization segments, this
system-wide segment number is stored here.

aste.par_astep

aste.uid

aste.msl

aste.pvtx

aste.vtocx

aste.usedf

aste.init

is a relative pointer to the parent ASTE of ~ASTE, if this ASTE
is for any segment in the hierarchy other than the root directory
(». Page control uses this quantity to chase up the hierarchy to
find quota cells at page creation time, and to update aste.fms (see
below) up the hierarchy to trigger the hierarchy dumper.

*is the UIO of the segment owning this ASTE. It agrees with
vtoce.uid, which must be the same as the UIO in .the directory
branch. Not only is this field necessary to allow the AST hash
table to be used, but is necessary to reconstruct Part I of the
VTOCE at deactivation/update time without reading it, as the UIO of
the segment is among this informa"tion.

*is the maximum segment length in pages. An activation attribute,
attempted connections to this segment at segment fault time check
their address of reference against this quantity, and, shifted
appropriately, it is placed into the SOW constructed. (See "Segment
Fault Handling".)

is the Physical Volume Table Index (PVTX)
volume on which this segment appears. See
Physical Volume Table in Section XIII.
mounted physical volume.

for the mounted physical
the discussion of the
This number identifies a

is the VTOC index of the VTOCE of the segment owning this ASTE on
the physical volume on which it resides. This is gotten from the
directory branch for the segment, and is used to specify the VTOCE
of the segment at deactivation/update time.

when on, differentiates an in-use AST entry from a free one. See
"AST Replacement Algorithm" below.

turned on by page control when the last page of a segment migrates
out of main memory. One of the inputs of the AST replacement
algorithm. Turned Off when any page comes in. (See "AST
Replacement Algorithm" for motivation.)

2-: 13- AN61

aste.gtus

aste.gtms

aste.hc

*(A VTOC attribute) "global transparent usage switch". When this is
on, the segment is in "transparent usage". This means that the
date-time used in the VTOC entry is saved in aste.dtu and put back
intact at deactivation time, thus leaving no evidence that the
segment had been used. The hierarchy dumper causes all segments it
dumps to be activated fbr "transparent usage" by setting switches in
its KST. This allows the dumper to run without advancing the
date-time used of segments it dumps. Like aste.gtms and aste.dnzp
below, this segment attribute is cumulated as processes connect (to
satisfy segment faults on, construct SDWs for) this segmen~.

. .

*see aste.gtus above. "global transparent modified switch" causes
page control not to set the file modified switch", thus preventing
advancing of aste.dtm (date-time modified) as modification of pages
is noticed. This is used principally for directories, whose
date-time modified is not the time that they were stored into, but
the time that either directory control deems that they were modified
(calls sum$dirmod) or inferior segments were modified.

is set for ASTEs of segments created by initialization (supervisor
and initialization segments) that are neither deciduous nor unpaged.
These are un threaded and delete-at-shutdown segments. See the
Multics Initialization fLM, Order No. AN70. This bit is principally
historical.

is on for all ASTEs for segments created by initialization,
deciduous, delete-at-shutdown, or unthreaded. If aste.uid (and
therefore segment is in the hierarchy), this segment is deciduous.
Therefore, this bit reflects into the VTOCE as vtoce.deciduous ..

aste.any_access_on
aste.write_access_on

are the encacheability control bits. The following table describes
the number and access of all SDWs pointing at this segment (used
only for segments for whom SDWs are created by segment faults):

~
o
1

o

KaQ
o
o

No SDWs point at this segment.
One or more SDWs describe this segment.
None of them allow write access.
Exactly one SDW describes this segment.
It allows write access.
More than one SDW describes this segment.
At least one of them allows write access.

See "Encacheability Control" later in this section.

aste.inhibit_cache

aste.ehs

prohibits the .resetting of the encacheability bits to state "00"
above upon "set acl" or "set max length" operations (setfaults).
Used for I/O buffer segments that are not encacheable because of 10M
access, not multiprocessor sharing. See "Encacheability Control"
and "Trailers and Setfaults" below.

is the entry-hold switch. Although many entries that may not,b~
deactivated are threaded out of the AST used lists, some segments
acquire and lose this property dynamically, such as PDSs and I/O
buffer segments. This bit is placed on for all segments in the used
lists that may not be deactivated, and causes the AST replacement
algorithm to skip this ASTE. It is also put on in all segments that
have aste.hc_sdw (see above) for consistency. It also has an effect
upon the interpretation of aste.dnzp (see below).

AN61

aste.nqsw

aste.dirsw

*suppresses quota checking on this segment. On for all segments
that have no parent, such as supervisor segments, all initialization
and initialization-created segments, and the root. Notably, this
flag prevents page control from chasing a nonexistent parent pointer
at page creation time.

*on for a directory's
deactivation/VTOCE update
parameter updating.

ASTE.
time to

Used for metering,
make decisions about

and at
quota

a~te.master_dir
*Same as vtoce.master dir, which see.

aste.tqsw

aste.ic

aste.dtu

aste.dtm

aste.quota

aste.used

aste.csl

an array, one for each kind of quota. Says that this is the ASTE of
a directory with a terminal quota account. Causes page control to
stop looking upward and check here when making a record-quota
overflow decision. Tells VTOCE updater to read in Part I in order
to get time-record product parameters in order to update them.

is the count of inferior ASTE entries. This nonzero parameter is an
input to the AST replacement algorithm (simply if nonzero). Since
aste.infp has the same information, ,this field is superfluous.

*is the file-system date-time used copied from the VTOCE field of
the same name. Normally, vtoce.dtu is set to the time of VTOCE
update; it is only for segments activated in "transparent usage"
(see aste.gtus above) that this field is updated, unchanged, to the
VTOCE.

is the file-system date-time-modified, initialized by reading in
vtoce.dtm at activation time. This field is advanced to the current
time every time aste.fms (see below) is seen on. This includes all
VTOCE updates, and whenever vtoc_attributes asks for this value.
The advanced value is set back in the VTOCE at deactivation/update
time.

*is an array (segment qUbta, directory quota) with the same meaning
as vtoce.quota, the quota account values of a directory that has
one.

*is similarly the reflection of vtoce.used. When aste.used tries to
surpass aste.quota, and aste.tqsw is on (all for segment or
directory quota consistently), a l'ecord quota overflow will occur.
The aste.used field, as vtoce.used, has totals for all segments (or
directories) below this point for any directory, not only those with
quota accounts.

*is the current length of the segment, in pages. It is maintained
by page control as the end of the segment goes up and down.

aste.fmchanged
is the "file map changed" bit. This bit is put on by page control
any time the state of the file map of the segment has been changed.
This happens at page allocation time and page address resurrection
time, as well as at zero detection time. The fact that address
reporting to the VTOCE is inhibited (see "Address Management Policy"
in Section PC) causes the creation of a page to trigger a VTOCE
update

AN61

aste.npfs

aste.gtpd

aste.dnzp

the "no page fault switch" causes page control not to honor page
faults on this segment, but convert them into segment faults. It is
never set except gratuitously, and is obsolete.

*"Global transparent to paging device" causes page control not to
allow pages of this segment on the paging device. Its principal
uses are for abs-segs, where paging is being used to address
portions of disk as opposed to implementing segments, and as a
user-settable performance control (as a VTOC attribute).

*"Don't null zero page". Causes page control not to recognize zero
pages. See the remarks under vtoce.dnzp When aste.dnzp and aste.ehs
are on cojointly, this bit causes pc$get_file_map, which reports
file maps and activation attributes to update_vtoce, to not notice
nulled addresses, but to leave them in the page table. This
prevents the trickle update (see "AST Trickle" below) from negating
the effects of prewithdrawing PDSs (Process Data Segments) (see
"Address Management Policy" in Section VII).

aste.per_process

aste.nid

aste.ncd

*is used to get vtoce.per_process, and for metering. It also
propagates recursively.

*for "no incremental dump". Same asVTOCE bit vtoce.nid. Tells the
volume dumper, when running an incremental dump, that incremental
backup of this segment is not to be performed.

*for "no complete dump". Same as VTOCE bit vtoce.ncd. Tells the
volume dumper, when running a complete dump, that complete dumping
of this segment is not to be performed.

aste.explicit_deact_ok

aste.records

aste.np

Constructed from KSTE bits of all processes connected to this
segment, this bit allows the procedure demand_deactivate to
explicitly deactivate the segment in response to a user call to
phcs_$deactivate, generally on behalf of the hierarchy dumper. Only
if all processes connecting to this segment have this bit on in the
KST does it remain on in the ASTE.

*is the number of records (pages) used by this segment.
this quantity is loaded from VTOCE quantity. The only
this quantity is its use as a user-readable VTOC
available 'without scanning the page table.

Typically,
reason for
attribute,

Number of pages in main memory. Used solely as an input to the AST
replacement algorithm. Maintained by page control. The aste.init
field is turned on when this becomes zero.

forward pointer in the AST hash chain of ASTEs with UIDs of the same
low six bits. Zero at end of chain. See "AST Hash Table and
Determining Activity" above.

aste.fmohanged1
this bit is turned on when aste.fmchanged is turned off, and turned
off by'update_vtoce when the VTOCE has been updated. Should the
system crash between the turning off of aste.fmchanged and the
turning off of aste.fmchanged1, the presence of the latter will
signify to emergency-shutdown to reinstate the bit aste.fmchanged,
for in fact, this critioal bit has been turned on and the 'VTOCE
possibly not updated~

AN61

aste.pcos
page control out-of-service. Not used yet, this bit causes a
segment fault error with code error_table_$seg_busted when an
attempt is made to connect to this ASTE. This will be used to
notify users when the system has committed an error upon the
segment.

aste.pack_ovfl

aste.ptsi

aste.marker

is turned on by page control when an attempt to allocate a new page
for this segment has failed. In this case, page control faults the
SDW for the segment, and restarts the fault. This causes a segment
fault to occur, and the segment fault handler, noticing
aste.pack_ovfl, invokes the· segment mover to initiate a segment
move. (See the general discussion, "Segment Moving" below.)

is the page table size index, 0, 1, 2, or 3, being the index of the
AST pool to which this ASTE belongs. This and aste.marker, below,
are attributes of the ASTE even when empty.

always contains "02"b3, which can never be the last six bits of a
PTW (page table word). This used to be used for searching backwards
through PTWs for the end of the ASTE, but has not since ASTE
pointers began to appear in the core map. It is now looked at by
the AST walking loop of demount_pv, simply as a check that it has
not gone awry due to destroyed parameters in the SST header.

AST LISTS AND THREADS

AST entries may be threaded onto one of several lists, via the relative
pointers aste.fp and aste.bp, or none at all. There are seven such lists;
auxiliary lists such as the hash threads and father-son-brother lists are not
under consideration in this discussion. These lists are the four "used" lists,
the "init" seg list, the "temp" seg list, and the "hardcore" list. The four
"used" lists, as mentioned above, contain all free ASTEs and those managed by
the AST replacement algorithm. The "init" and "temp" seg lists receive "init"
and "temp" segs of initialization (See Multics Initialization fLM, Order No.
AN70), allocated and placed there by the initialization ASTE allocator,
make_sdw. These lists are traversed at the end of initialization and the end of
each collection of initialization in order to delete these segments, deletion in
this case being tantamount to freeing of the ASTEs and the records allocated to
these segments.

The "hardcore" list, which used to contain all nondeciduous segments loaded
by initialization that were not "init" or "temp" segments, now contains only
those that are deleted at shutdown time, for only these need be sought out.
These "delete-at-shutdown" segments are large segments that obtain record
allocations as parasites on the Root Physical Volume (RPV) instead of being
prewithdrawn against the hardcore partition. Thus, in a successful shutdown
situation, their records must be relinquished. See "Address Management Policy"
in Section VII for full details of this mechanism.

The four AST "used" lists thread all free and replaceable ASTEs of each
(pool) size. The array of four reI-pointers in aste.level.ausedp points ,to
either the first free ASTE in the list, if any, or the first candidate for
inspection for replacement if there are none. All of the free ASTEs are
contiguous in the list. All of the AST lists are double-threaded circular
lists: therefore, in the used lists, aste.bp of the ASTE pointed to by
aste.l~vel.ausedp of this pool is the one that is the last candidate for
inspection by replacement.

AN61

It is useful to note that all active segments in the hierarchy are in the
four used lists, except the deciduous segments, for it is known at the time
deciduous segments are created that they will never be deactivated or subject to
deactivation. The deciduous segments, therefore, have their ASTEs threaded QY1.

AST REPLACEMENT ALGORITHM

The AST replacement algorithm is that algorithm, implemented in the
procedure get_aste, that returns a free ASTE in a given pool on demand. When
there are no free ASTEs in the appropriate pool, this algorithm must select an
active 'segment for deactivation. Since activating segments is expensive, it is
advantageous to this algorithm to choose those segments to deactivate that will
cause the fewest number of reactivations per time. This is a classic example of
a demand replacement multiplexing algorithm, identical in purpose to page
replacement algorithms, and index register management algorithms in compiler
code generators, and the area is well covered in the literature. It can be
shown that the best choice of segment to deactivate is the one that will next be
used furthest in the future; this result follows from classic work in this
area.

Of course, it is impossible to predict, in a general-purpose computer
utility, the future use patterns. Therefore, the replacement algorithms try to
predict the future based on the past. The AST replacement algorithm under
consideration uses list position in the used list and number of pages in main
memory as indications of frequency and intensity of use; the more lightly and
less recently used, the lesser the indicated probability that the segment will
be needed in the near future. Number of pages in main memory is also an
important factor to consider in choosing a candidate for deactivation because
work (page writing) is required for the modified fraction of such pages, to
evict them from mairi memory.

The "following is a description of the AST replacement algorithm. For full
details, read the listing of get_aste.

If there are free ASTEs of the needed size available, return the first one,
moving aste.level.ausedp at the appropriate level forward one, to make the ~
(possibly free) ASTE available to the next invocation of the algorithm. This
also puts the returned ASTE in the least likely position for replacement, should
the caller of get_aste decide to leave it there. This is consistent with the
fact that the segment that will own the ASTE is now being used.

If there are no free ASTEs available, the used list at the required pool
level is circumnavigated possibJy several times: essentially once to find a
segment with 0 pages in main memory, that failing, then for a segment with l
page in main memory, then g, etc., etc., until a number equal to the page table
size of the pool is reached. In each pass, segments with fewer than the sought
number of pages in main memory (not seen earlier because the system is moving
while all this goes on) are accepted, too. When such a segment is found, it is
thus, modulo the window mentioned above, one of the segments with the fewest
number of pages in main memory, in that used list. This segment is chosen for
deactivation, and deactivated via a call to the procedure "deactivate". The
newly-freed ASTE (deactivation frees the ASTE) is returned.

When the list-scanning settles at a particular ASTE for deactivation, the
list-head pointer aste.level.ausedp is moved up to that ASTE, and after
deactivation, to right ahead of it (as in the "some are free" case above). This
tends to give the ASTEs skipped over in the scan a property of being "rejected
for deactivation", and thus promoted to a less likely position to be seen next
time, by virtue of this observation of "being recently used".

2-18 AN61

The replacement algorithm skips over ASTEs that cannot be deactivated; not
only are these the ones with aste.ehs. on (see the discussion of this flag
above), but those with active inferior (directories who claim this ASTE as ASTE
of their parent). All of the various reasons for skipping and moving on cause
meters to be incremented, as well as file_system_meters (see the Multics System
Metering ELM, Order No. AN52) that displays these statistics.

There is one circumnavigation of the required used list done before the
"zero" pass: a preliminary "zero" pass is made that seeks segments with zero
pages in main memory ~ the flag aste.init being off. This pass also turns off
the flag aste.init when on, and all succeeding passes skip segments that have it
on. Referring back to the description of aste.init, it is seen that this flag
is turned on by page control when a segment acquires the property of having no
pages in main memory. The effect of this policy is to allow segments that have
zero pages in main memory to survive exactly one dircumnavigation of the AST
used list for that pool before being considered for replacement. This pass is
the so-called "grace lap". It is an implementation of the policy: "if a segment
just happens to have all of its pages float out of main memory, give it just one
chance to get some back in before jumping on it to deactivate it." The
file_system_meters command reports sllch skips as -"skips init".

AST TRICKLE

Since the AST replacement algorithm is constantly inspecting all portions
of the AST used lists, the opportunity is taken in that algorithm to notice
ASTEs whose file maps have changed, and to update their VTOCEs at this time.
This redttces the loop time of the AST replacement algorithm (reported as "grace
time" by file_system_meters") to be a lower bound on the amount of time by which
a VTOCE can be out of date. This is totally a hedge against fatal crashes;
successful shutdown updates all VTOCEs of active segments. As mentioned before,
this periodic update causes the physical volume salvager to notice certain
incongruencies. Unfortunately, however, at times of light load, this lower
bound is rather long.

LOCKING CONVENTIONS

There is one lock that protects the AST data base; it is called the "AST
Lock", and is, in fact, sst.astl. It is a standard-format wait-type lock,
managed by the procedure "lock". There are special entry pOints, lock$lock_ast
and lock$unlock_ast to manipulate this lock, and limit knowledge of its location
and format. The event for waiting on this lock is "400000000000"b3.

The AST lock has no cleanup mechanism; a crawlout with the AST lock locked
(one is said to "have the AST locked" in this state), detected by verify_lock,
or a process termination with the AST locked, crashes the system. The AST lock
"protects" certain activities: this means that these activities may not be done
unless the process attempting to perform them has the AST locked before
comme~cing. These activities are:

1. Deactivation

2. Updating of VTOCEs (from the AST)

3. Manipulating the AST used lists, or following them, including the
allocation and deallocation of ASTEs.

4. Using, following, or changing the AST hash table,
determination of activity.

2~19'

and thus,

AN61

5. The calling of call-side page control entries on deactivatable
segments.,

6. Setfaults (see "Trailers and Setfaults" below).

The AST lock also protects against completion of the following activities:
this is to say, these activities may be commenced by a process, but will not
complete until that process ~ (holds, i.e., locked to that process) the AST
lock.

1. Activation

2. Volume Demounting

The AST lock holds a position in the locking hierarchy above all directory
l~cks and below wired locks as the traffic control and page control locks. It
is below the VTOC buffer lock (see "VTOC Manager": "General Policies").

Since touching any nonsupervisor segment, such as a directory, can cause a
segment fault, which would lock the AST, no directories or user-supplied
supervisor arguments may be referenced by a process that holds the AST lock.

Note two major differences in the above . policies from pre-4.0 locking
policies:

1. The parent directory lock is nQ longer protection against deactivation
of a segment.

2. Locked directories are n21 guaranteed to remain active, and thus
cannot be locked by a process holding the AST lock.

The AST lock does n21 protect modification of VTOCEs. The directory lock
of the directory containing the branch for the segment that owns a given VTCOE
is the lock on that VTOCE if ang Qllly if the segment is DQi active. Since, when
it is active, it may be deactivated at any time that a process seeking to
deactivate it has the AST locked, the AST lock protects VTOCEs ~ ~ the
segment owning the particular VTOCE is active. Thus, a procedure (such as
vtoc_attributes) seeking to modify a VTOCE must perform the following protocol:

1. Lock the parent directory .. If the segment is not active, it cannot
become active while we hold the directory lock, for a directory lock
fully protects activation Q! ~ inferiors. Procedures that wish to
deal with segments and their VTOCEs in this way usually have the
directory lock locked anyway.

2. Lock the AST lock. We cannot determine whether or not the segment is
active without the AST locked, for not only is it Dot permissible to
inspect the AST hash table without the AST locked, but lest the AST be
locked to us, i.e., prevented from being locked by others, the segment
might be deactivated at any time, or is being deactivated as we watch.

3. Determine if the segment is active. If it is, it may be sufficient to
inspect or modify the activation attributes in the AST. Otherwise, in
the case where the segment is active and dealing with the AST will not
suffice, we must perform the. modification while we have the AST
locked, otherwise, another process might be trying to deactivate the
segment, and thus engage in a simultaneous-update race with our
process.

4. If we did Dot do so in step 3, unlock the AST and
change and write back the VTOCE. Since it was
segment was n21 active in step 3, it cannot become
hold the parent directory lock, and this parent
protects the VTOCE.

read and possibly
determined that the
active now, as we
directory lock thus

AN61

5. End of protocol; procedure may unlock the parent directory lock. See
also "Services of Segment Control," in Section IV for utility of this
behavior.

Note that in 4.0 and later systems, one can lock a directory without
actually touching or inspecting the directory, simply by handing the directory's
UID to the lock procedure. Thus, one can protect a VTOCE simply by inspecting
its permanent information (vtoce.uid_path) to determine the UID of its parent,
and handing this to the lock primitive. The procedure priv_delete_vtoce
performs such machinations to delete orphans.

As mentioned above in passing, the lock on the parent directory of a
segment totally protects activation of any segment; activation cannot commence
until the activating process holds the parent directory lock.

There is a system of multiple-reader single-writer half-locks protecting
against demounting; this is covered in Sections XIII and XIV.

TRAILERS AND SETFAULTS

One major
set_acl command
immediately take
operations known

feature of Multics is dynamic
is performed upon a segment,

faults. This is implemented via
as setfaults, implemented by the

access control; as soon as a
processes using the segment

the trailer mechanism, and the
procedure of the same name.

Descriptor segments of processes contain SDWs. SDWs pOint to page tables,
that reside in ASTEs. When ASTEs are replaced, all SDWs that point to that ASTE
must be found, and faulted. Faulting an SDW consists of removing the bit
sdw.df, and perhaps changing other information in the SDW. Setting this bit
off, followed by a call to clear all the associative memories of the processors
of the systems (privileged_mode_ut$cam) that might contain this SDW, causes the
process attempting to use this SDW to take directed fault 0, which is known to
Multics as a segment fault. Since this faulting is always done by deactivation,
which has the AST locked, the process attempting to process the segment fault
cannot determine whether or not the segment on which the fault was taken was
even active until it can procure the AST lock, i.e., until the process doing the
deactivating has fully deactivated the segment.

Since all SDWs pointing to a given segment must be revoked (faulted to be
invalid) when a segment is being deactivated (or boundsfaulted on or
segment-moved (see "Segment Moving", below), it is more efficient to keep a list
of such SDWs, rather than search all of the descriptor segments in the system.
This list is called the trailer list of the segment, and is stored in the
segment (nondeciduous, paged, nonwired supervisor segment) str_seg. An entry in
this list is described by the include file str.incl.p11. Each entry consists of
a forward thread to the next (zero if none), the AST offset of the ASTE for the
descriptor segment of a process, and the segment number of the segment of whose
ASTE this is the trailer, in that process. The ASTE field aste.strp gives the
relative offset in str_seg of the first trailer entry of the trailer for the
segment that owns the ASTE.

Trailer entries are threaded onto the front of the list for an ASTE each
time the segment fault mechanism (in the procedure seg_fault) constructs an SDW
(while protected by the AST lock). The manipulation or use of the trailer
segment is protected by the AST lock. The SDWs constructed by segment-faulting
upon deciduous segments in nonhardcore rings acquire trailer entries. The SDWs
for deciduous (and all other hardcore and initialization segments) constructed
by System Initialization do not, as they cannot be and are never revoked.

9/78 2-21 AN61A

The trailer mechanism also locates all
performed upon an active segment (as via user
faults in all processes (see the description of
"Services of Segment Control"). These segment
of access by these processes.

SDWs when an access change is
command). This causes segment

"Segment Fault Handling" under
faults will cause recalculation

Needless to say, deletion of segments is a special case of the deactivation
of active segments. This causes similar setfaults actions to be performed.

Set faults are performed via the procedure "setfaults". The entry of
greatest interest to segment control is setfaults$setfaults, which given an AST
entry, "cuts the trailer", removing all trailer entries and revoking all SDWs.
Setfaults also play a crucial role in encacheability management (see
"Encacheability Control" below.) See also "Descriptor Segment Management" under
"Service of Segment Control" for more about setfaults.

BOUNDSFAULTS

A boundsfault is the detection of a reference, by a process, to a word
outside of the legal limit for the segment set in the SDW in that process. If
outside of the maximum length of the segment (aste.msl), a boundsfault is
signalled (the out_of_bounds condition). If Rot, this is simply a request tol
find a larger ASTE for the segment. This involves performing a "setfaults" on
the old one, finding a new one, updating page control data bases
(pc$move_page_table) and rethreading inferior father pointers. This operation
is described in detail under "Services of Segment Control."

SEGMENT MOVING

It is possible for a segment to try to grow by a page when there are no
more records available on the volume of its residence. If there is only one
physical volume in the logical volume, this causes an error to be signalled
(error_table_$logical_volume_full, as a subcondition of seg_fault_error). If
however, there are other physical volumes in the logical volume, one of which
has enough space to hold the grown segment, it is the system's responsibility to
move that segment there transparently. This operation is known as segment
moving, and involves a very complex interaction of page control and segment
control, and is the most involved single service of segment control. Segment
moving may also be performed on demand via the gate hphcs_, on behalf of the
online pack utility sweep_pv, in order to vacate physical volumes (logical
volume compression) and volume rebalancing. The details of this operation are
given under "Services of Segment Control."

ENCACHEABILITY CONTROL

It would seem that the most appropriate place for the description of the
policy used to manage the 68/80 cache is at this point.

The 6i:l/80 cache is an associative memory of words from main memory in each
68/80 Multics processor. It is a write-through cache. That is to say, no word
that the processor stores modifies a location in cache without modifying the
encached location of main memory.

9178 2-22 AN61A

,,,

The fact that this cache is not transparent to the software, i.e., needs to
be managed at all is a reflection of the fact that it is in the processors (for
purpose of speed and modularity), and not in the 6000 SCU. Thus, words which a
processor fetches from cache may have their copies on main memory mOdified by
other processors, an 10M (or FNP6600 Communications Processor via the 10M), or a
Bulk Store Subsystem, and the processor would not be able to observe these
changes.

The Multics cache has a novel and powerful feature known as the
encacheability Q! segments. This is to say that each Segment Descriptor Word
(SDW) contains a bit (sdw.cache, bit 57) whose absence prohibits the processor
port logic from loading words of that segment into the cache. Note that in
absolute mode, where no SDW is used, all loaded words are eligible to be put in
the cache. Thus, there are encacheable and non-encacheable segments, with
sdw.cache "1"b and "O"b respectively. All SDWs used for a segment, be they
created via segment faulting, or via initialization, must agree on
encacheability.

For a start, all segments that are read or written by the 10M or bulk store
for any reason other than paging, are nonencacheable. This includes a finite
set of supervisor segments (e.g., tty_buf, dn355_mailbox, bulk_store_mailbox,
iom_data, etc.), and all segments used as 101·Buffer segments (see "101 Buffer
Segments" under "Services of Segment Control" below). For the supervisor
segments, the SDWs used are all created by initialization or copied from them.

Other supervisor segments are encacheable or not depending upon their
"access". This "access" is the access that appears in all descriptor segments,
developed from the one created by initialization for the initializer. Any
segment with write acceS5 is not encacheable; all others are. Since
segmentation restricts which segments are writeable ai ~, let alone by
multiple processors, the only supervisor segments that are writeable at all are
not encacheable. Thus, no supervisor segments may suffer the anomaly of being
modified by one CPU while still visible in the cache of another. Two important
exceptions to this rule are the PDS and PRDS created in the initializer prOcess
by initialization, and all KSTs, PDSs and PRDSs created thereafter. PRDSs
(Processor data segments), after being initially created, are carried around by
processors from process to process. After their creation, they are referenced
by ~ one processor. Since only one processor can reference a given PRDS, it
is encacheable; it is very important that it be encacheable, as it is used as a
stack in wired and interrupt side ring zero. PDSs and KSTs are a special case
of per-process segments, described immediately below.

Any segment may be encacheable if all of the SDWs describing it allow no
write access (only read or execute). This has the same truth as for supervisor
segments as above. However, if we take the same approach, we find that no
writeable segments may be encacheable. This is unduly restrictive, for some
writeable segments,· such as stacks, linkage segments and KSTs, are among the
most heavily used segments. It has been discovered that any segment accessible
to only one process can be made encacheable if a simple rule is followed: any
time a process switches processors (nQ1 the inverse), the ~ew processor taking
up that process must totally clear its cache. This sp~cifically means that
every processor as it switches to a new process need n21 necessarily clear its
cache.

The proof of this theorem is as follows: assume a process P runs on CPU'A,
and some words of per-process segment X come into CPU A's cache. With no loss
of generality, assume that CPU B has no words of segment X in its cache. As CPU
A switches processes to and fro, there cannot be a problem until P runs on some
other CPU, say B. This is because, by hypothesis, P has not run on B, and since
it only has run on A, all words in A's cache are accurate, because the only
process that can modify segment X, being P, has never run, by hypothesis, on any
other CPU. When P finally runs on B, there is still no problem, because by
hypothesis, CPU B's cache contains no words of segment X. Assume now that P
modifies and fetches words from X liberally while running an B, specifically

AN61

changing words that are still in A's cache. As long as P runs on B, whether or
not other processes run in between runs of P, there is no problem, as these
wrong words appear only in A's cache, and P is running only on B. When P is run
the next time on A, the problem appears. There are words in A's cache that are
inaccurate. The solution is simple: clear the entire cache of A. Thus, it is
simple to do this every time when a process runs on a processor that is nQ1 the
last one it ran on, clear the new processor's cache. This, of course, also
fixes any potential problem when P transfers back to CPU B. Thus, are
per-process segments like PDSs and KSTs encacheable. The traffic controller
maintains the identity of the last processor on which a process ran, so the
decision to clear the cache is easy.

The computation of encacheability for all nonhardcore segments is done in a
uniform manner, in the procedure seg_fault. It will be seen that this policy
allows per-process segments to be encacheable as a corollary.

Two bits in the AST entry of a segment describe one of four possible states
with respect to the encacheability of the segment. Since only active segments
have pages in main memory or SDWs describing them, only active segments are an
issue. These states are:

1. No SDWs describe this segment. Its encacheability is not an issue.

2. One or more SDWs describe this segment.
access. The segment ~ encacheable.

None of them allow write

3. Only one SDW describes this segment. It allows write access. Since
this is, at this time, a per-process segment by implication, as only
one process can reference it, it ~ encacheable.

4. More than one SDW describes this segment, and at least one of them
allows write access. The segment is n21 encacheable.

These bits are aste.any_access_on and aste.write_access_on. See the ASTE
structure breakdown earlier for the corresp~ndence between the states above and
these bits.

All segments, when activated, are in state 1 above. Since only active
segments have pages in main memory, the segment, when activated, has no pages in
main memory. Page control clears out-of all processor caches all words of a
page being evicted from main memory (see Section VIII). Thus, a segment being
activated has none of its words in any cache of the system, allowing the
hypotheses of the preceding proof to be valid.

When any SDW, including the first, for an active segment, is created, the
seg_fault procedure changes the encacheability state of the segment by modifying
the two encacheability control bits in the ASTE of the segment. If it is moving
from an encacheable state to a nonencacheable state, then setfaults$cache is
called to revoke all of the cache bits in all of the SDWs that describe this
segment, and cause an associative memory clear to force- all processors to
recognize this bit. This special setfaults entry does nQ1 revoke the SDWs,
which would cause segment faults. This is· not necessary here. The
encacheable/nonencacheable status of the new SDW being added is derived from the
encacheability status indicated in the ASTE.

When a system-wide setfaults is done, including a setfaults$cache, a clear
of all processor's associative memories ~ caches is conducted by setfaults, by
calling page$cam. When setfaults revokes all SDWs for a segment, therefore, it
resets the cache state to state (1) above, for no SDWs describe the segment and
no words of it appear in any processor's cache.

AN61

101 Buffer segments, and the segment used to load the FNP6600
communications processor, cannot be encacheable, as stated above, even though
they are only used i~ one process. Thus, at the time that they are
force-activated, (see "101 Buffer segments" in "Services of Segment Control")
grab_aste_grab_aste_io sets the encacheability state to state 4 above, causing
all SDWs constructed for the segment to specify nonencacheability, and sets
aste.inhibit_cache on, whose sole purpose is to prevent setfaults from resetting
the encacheability state when all SDWs are revoked (e.g., a set_acl was done on
a buffer segment). This bit is reset by grab_aste$release_io.

Directories are not encacheable generally for historical reasons; they used
to be addressable outside of the segment-fault-trailer mechanism, and thus were
not subject to the policy above. Still, they are left nonencacheable, as it is
felt that the referencing patterns of directories make it more desirable to not
let them replace other segments in the cache, and thus ought to stay
nonencacheable.

The encacheability attribute of hardcore segments is supplied by the MST
generator; it is developed from the "access" and "cache" header statements.
(See the Multies System Tools Reference Manual, Order No. AZ03.)

A limitation of the above encacheability policy is the. lack of
recalculation of encacheability as processes vanish or terminate $egments,
withdrawing their SDWs. It was felt that the class of segments that would
benefit by such recalculation was small, and the overhead of being ablr to do
this properly would be large.

AN61

SECTION III

THE VTOC MANAGER

INTRODUCTION AND OVERVIEW

Critical to the operation of Release 4.0 and all later systems is the
concept of VTOC, the Volume Table of Contents, already detailed in the Segment
Control Overview and Data Bases sections. VTOCEs are not part of the virtual
memory, except when accessed by the physical volume salvager. This allows more
efficient single-sector 1/0 to be performed on the VTOCEs. In order to make
this 1/0 efficient, a buffering scheme for VTOCEs and their fractions must
exist. This scheme is implemented by the VTOC manager, the procedure vtoc_man.

All VTOCEs are divided into three logical sections: the activation
information, the file map·, and the permanent information. A VTOCE may also be
viewed as being divided into three physical parts, Part I, Part II, and Part
III, as detailed earlier. Each physical subsection of a VTOCE comprising 64
words, is called a vtoce-part. The three vtoce-parts comprise the VTOCE.

All access to VTOCEs other than that performed by the Physical Volume
Salvager (and of course, BOS), is performed by calling entries in vtoc_man. The
most general entries, vtoc_man$get_vtoce and vtoc_man$put_vtoce, read and write
whole VTOCEs or single vtoce-parts. Other entries free a whole VTOCE
(vtoc_man$free_vtoce), await completion of 1/0 on a VTOCE (vtoc_man$await_vtoce)
and write a VTOCE to a free VTOCE, making it not free, and returning its VTOe
index (vtoc_man$alloc_and_put_vtoce). There are also "global" entries to the
VTOC manager that deal with no single VTOCE: vtoc_man$cleanup_pv, called at
volume demount and shutdown time (see Section VM), and vtoc_man$stabilize,
called at ESD time to ensure consistency in the state of the VTOC manager's data
base.

The VTOC manager uses the segment vtoc_buffer_seg as a data base,
containing all variables needed in VTOC management, which are not global
parameters to a given volume. Many of the variables in the Physical Volume
Table, (PVT), such as the heads of VTaCE free chains, and number of free VTOCEs.
are for use by the VTOC manager. The VTaC buffer segment, vtoc_buffer_seg,
contains up to sixty-four vtoce-part buffers. Each buffer, 64 words long, is
either free or contains one vtoce-part. Vtoce-parts may be from any mounted
physical volume, and no two buffers contain the same vtoce-part. There is no
free list of any kind. Thus, any vtoce-part of a mounted volume is either in
exactly one vtoce-part buffer or not in any. Note that a vtocQ-part buffer
containing a vtoce-part of a ~ VIOCE is llQi a free vtoce-part buffer; the
latter is one that contains llQ vtoce-part of ~ VTOCE.

There is a table in the VIaC buffer segment containing single word buffer
descriptors, also known as buffer control words. Each describes the status of
one vtoce-part buffer, stating which part of which VTaCE if any is contained
there, and other status information. The format of this control word is
described later.

3-1 AN61

I

, .
It is the goal of the VTOC manager to provide interface to VTOCEs, for

segment control programs, without these programs being aware of the buffers
their existence or their organization. The VTOC manager must implement a buffe;
multiplexing, and therefore, a sharing algorithm. The VTOC manager is unaware
of the content of VTOCEs, other than the manipulation and maintenance of the
VTOe free thread. It is also the responsibility of the VTOC manager to
interface to the disk control software to actually perform the VTOC I/O.

GENERAL POLICIES

The VTOC manager, at its lowest level, manages vtoce-parts and their
buffering. At any given entry to the VTOC manager, the vtoc buffer segment
contains a given set of vtoce-parts: in order to satisfy a request for most
calls, the requested set of vtoce-parts are either among the set in the buffers
in part, in whole, or not at all. If they are all there, this data may be used
or returned without any I/O. If the requested vtoce-parts are in part or in
whole not in the buffers, they must be brought in.

Searches and replacements of vtoce-part buffers are protected by the VTOC
Buffer Lock. This lock is standard-format wait-lock, managed by the locking
procedure "lock." Its notify event is "3330000xxxxx"b3, where xxxxx is one
greater than the number of vtoce-part buffers. It is higher than the AST lock.
When the VTOC manager waits for 1/0, it unlocks this lock so as not to tie up
this resource. Therefore, vtoce-parts that were present when this I/O was
started may not be present when the I/O is complete, for operations involving
more than one vtoce-part. This situation is analogous to the paging behavior of
multi-operand EIS decimal instructions: they continue to fault, with no
assurance that they will be satisfied in any given time constraint, until all
pages are found present at once.

The policy of getting together all buffers at once (implemented via the
internal routines GET_BUFFERS_READ and GET_BUFFERS_WRITE described below) is the
implementation of a design constraint that all calls to the VTDC manager be
unitary operations with respect to volume demounting. This is to say, when
modifying VTOCEs, a call to the VTOC manager will cause either all requested
vtoce-parts to be modified as needed or none, given a volume demounting at any
stage of the operation. This policy allows procedures such as vtoc_attributes
to read VTOCEs and write them back via only two calls to the VTOe manager, the
second call either wholly succeeding or wholly failing. Thus, such a procedure
need not be explicitly protected against demounting. (See Section XIV for a
discussion of Demount Protection.)

Furthermore, operations to modify vtoce-parts, which write them wholesale
. (the VTOe manager does not modify or inspect parts of vtoce-parts), must use the
buffers occupied by these vtoce-parts if there are any; were this not the case,
some vtoce-parts would have more than one buffer associated with them, and a
question of relative legitimacy would arise, as well as issues of multiple I/O
operations on a given vtoce-part at once. Thus, this policy of only one buffer
per vtoce-part assures not only a finite small set of buffer states, but a
similar small set of states of any vtoce-part in the system with respect to the
VTOC manager.

The VTOC manager receives requests in terms of VTOeEs, with masks
specifying which vtoce-parts are being dealt with, in the "get" and "put"
entries, as well as pointers to data areas to copy to and from. The
specification of a VTOCE is via a PVT index (the PVT is the Physical Volume
Table, the table of all mounted physical volumes) and a VTOe index. The
circumstances under which Physical Volume Table indices may validly be derived
and used are given in Section XIV of this document. It is part of that protocol
that no volume demount may complete while the demounting process does not have
the VTOC buffer lock locked. Therefore, the VTOe manager is protected against
demounting. However, procedures that call the VTOC manager are not protected

9178 3-2 AN61A

,

against demounting. Therefore, the PVID (phy~ical val~me ID) of the volu~e that
the caller expects to be dealing with is pass2d as an argument to the VTae
manager. If, while the VTOC buffer lock is lockej, the supplied PVT index
indeed checks with this PVID (by inspecting the PVT), all is well. Every time
the VTae buffer lock is relocked, this check must be made. If it does not, the
caller is informed that the volume being referenced was demounted
(err_table_$pvid_not_found). If this parameter is passed as "O"b, it means that
the caller has some other protection against demounting such as having the AST
locked.

The procedure vtoc_interrupt is the interrupt side of the VTae manager. It
is called from the disk DIM at any time that the disk DIM processes status.
This procedure does nQl lock the VTOe buffer lock. As vtoc_interrupt is called
in a wired, masked enVironment, in which the running process may even have the
global page table lock set (see Section XIII), were it to lock the VTOe buffer
lock, that would mean that all procedures that lock this lock, notably vtoc_man,
would have to run in masked, wired environments, which ere expensive to obtain.
Thus, the interrupt side of the VTOe manager runs asynchronously. This
procedure modifies bits in the VTOe buffer control words, specifically b.os and
b.err, completely asynchronously. The rest of the VTOe manager must be prepared
for these bits to change for any buffer for which I/O is in progress, at any
time.

Every call to the VTae manager, other than the global call
vtoc_man$stabilize, deals with one specific mounted physical volume. A Variable
is kept in the VTOe buffer segment, vtoc_buffer.unsafe_pvtx, which designates a
physical volume being processed. Should the system crash, ESD will inspect this
f~eld and schedule that volume for volume salvage (see Section XIV).

The individual procedures and entry pOints of the VTOe manager are clearly
documented in the program listing. Thus, we now provide a detailed breakdown of
the data structures of the VTOe manager, being the VTae buffer segment and the
buffer control words therein, and describe after that the basic subroutinization

'__ strategy of the program vtoc_man.

VIoe BUFFER SEGMENT

lock
is the VTOe buffer lock. It is a standard format wait-lock, whose
event ID is stored in vtoc_buffer.lock.ind.

is the number of vtoce-part buffers in the VTOe buffer segment. It
is computed by init_vtoc_man, from a parameter on the PARM VTS
eON FIG card.

is the absolute address of the base (word 0) of the VTOe buffer
segment. It is contiguous in main memory. This allows the VTOe
manager to compute the absolute address of each buffer for calls to
the disk DIM.

event constant
- is a constant from which all VTOe buffer

current

constructed. This constant is "333000000000"b3.
the completion of I/O in buffer
vtoc buffer. event constant + n. For example,
awaiting I/O on b~ffer 5 is "333000000005"b3.

wait events
The wait event
number n
the wait event

are
for
is

for

is the current replacement pointer, a buffer index.
Buffer Replacement Algorithm" below.

See "VTOe

3-3 AN6t

is the index in the Physical Volume Table (PVT) of the single
physical volume on which operations are in progress when the VTOC
buffer lock is locked on behalf of an operation on a specific
volume. It is inspected by Emergency Shutdown to schedule a salvage
for that volume if found nonzero. It is cleared when the VTOC
buffer lock is unlocked.

inhibit_await

mtr

is for debugging use only. When nonzero, it inhibits the feature of
awaiting successful completion of VTOC 1/0 before addresses are
deposited (the function performed by vtoc_man$await_vtoce). This
feature is critical to the address management policy of Multics (see
"Address Management Policy" in Section VII).

is a group of meters, most
vtoc_buffer_meters tool.
vtoc_buffer.mtr.parts_read and
are distributions of read
combinations of vtoce-part.

of which are printed out by the
Of particular interest are
vtoc_buffer.mtr.parts_write, which

and write requests, indexed by

Description of the VTOC Buffer Control Word. ytoc buffer.b

b.used

b.os

indicates whether or not this buffer contains a vtoce-part. If
b.used is "D"b, no other bits in the buffer control word are valid.

for "out-of-service" indicates that 1/0 has been queued for this
buffer, and has not been posted (completed). This bit is turned on
by vtoc_man prior to calling the disk DIM, and turned off only by
vtoc_interrupt, asynchronously (and by vtoc_man$stabilize, called

,'"

only at ESD time). This bit and b.err, below, are the only two bits ~
managed asynchronously. As in page control, "out-of-service" means

b.op

b.waitsw

b.ioq

b.err

9178

"1/0 in progress", not "damaged" or "unusable".

indicates the last operation, or the one in progress, on this
buffer. Zero is read, one is write.

tells whether or not (1 equals "yes") some process is waiting for
1/0 complete on this buffer. If on, vtoc_interrupt will call the
traffic controller to notify the event constructed as described
under vtoc_buffer.event_constant. This bit also prejudices the
replacement algorithm (See "VTOC Buffer Replacement Algorithm",
below) against this buffer.

Is set to "on" after a request for 1/0 has been queu~d. This is
used to reduce uncertainty about whether or not 1/0 completion will
be posted at ESD time. Any buffer encountered at ESD time with both
b.os and b.ioq on can expect a completion posting from the disk DIM.
See the "VTOC Manager ESD Strategy" description below.

is set on asynchronously by vtoc_interr~pt, at buffer 1/0 completion
time if this 1/0 completed with an error. When found on for a read
operation, the process that was waiting for this read to complete
notices this and returns error_table_$vtoc_io_err out of vtoc_man,
and frees the buffer, as it contains no good vtoce-part. For a
write request, the vtoce-part becomes "hot": this is to say that it
is known that this buffer must be updated to disk at some later
time, for the VTOCE on disk is known not to have these
modifications. See "Error Strategy" below.

3-4 AN61A

-/i

-b. partno

b.pvtx

t'o~vtocx

tells which vtoce-part of a VTOCE, 01, 10, or 11, resides here.

is the PVT index of the mounted physical volume to which this
vtoce-part belongs.

is the VTOC index of the VTOCE, in the VTOC of the mounted physical
volume to which this vtoce-part belongs.

There are also two internal static variables of vtoc_man: alloc_state and
select_state. These are pseudoclocks that are advanced whenever an allocation
or VTOC buffer selection, respectively, is performed. By saving and comparing
these values to their saved values, vtoc_man is able to determine whether or not
these operations have occurred during an unlocking of the VTOC buffer lock.

ORGANIZATIQN QF THE YTQC MANAGER

The structuring of the VTOC manager must be comprehended
understand and diagnose problems and changes in this area.
vtoc_man should be on hand to best follow this section.

in order to
A listing of

The critical intermediate level subroutines are the two named
GET BUFFERS READ and GET_BUFFERS_WRITE. These subroutines receive the
specification of the VTOCE to be dealt with (PVT index and VTOC index) via
global program variables: a :.hree-bit vtoce-part mask is passed as an argument,
as is a return code. The fun~~ion of both of these procedures is to ar:~aI~~e
~ 1Q three Qy!!~r~ w~th the r~Qu~s~~~ ytoce-parts. For _______ ,
(GET_BUFFERS_READ) this includes perforping (initiating and completing) 1/0 to
read in these vtoce-parts if they are not already in the VTOe buffer segment.
For writing, this means finding buffers containing any of the requested
vtoce-parts, if any, and allocating new buffers for those not already in the
VTOC buffer segment. In both cases, these routines return the indices of the
foundlfilledlallocated buffers via the array "A", being in A(l), A(2), A(3) for
the respective'vtoce-parts, when requested. In both cases, the routines are
responsible for performing these operations consistently, which means observing
changes that happen during unlocking, and retrying the buffer-gathering when
necessary (see the "General Policies" discussion earlier).

These two primitives are very powerful; the implementation of
vtoc_man$get_vtoce is little more than a call to GET_BUFFERS_READ. The
implementation of vtoc_man$put_vtoce is little more than a call to
GET_BUFFERS_WRITE, copying of the data supplied into these buffers, and calls to
the WRITE subroutine to start 1/0 on those vtoce-parts. Thus we proceed to
discuss the operation of GET_BUFFERS_READ and GET_BUFFERS_WRITE.

Both routines start by establishing a retry pOint. If any operation causes
an unlocking, and subsequent relocking shows that buffers involved in this
operation have been replaced, 'the operation is restarted from this retry point
(label START in both routines.) Both routines then call the subroutine INIT, to
fill up the array A with either -1 (vtoce-part wanted, not yet found) or gotten
orr-2 '(vtoce-part not even wanted), and get the minimum and maximum part number
out of 1, 2, and 3. The routine SEARCH is now called to scan the VTOC buffers.
to fill in "A" with the indices of all found vtoce-parts (that are needed) of
this VTOCE. The value returned by this routine is the number of vtoce-parts
found. At this point, GET_BUFfERS_READ and GET_BUFFERS_WRITE differ.
GET_BUFFERS_READ proceeds by first selecting a new buffer and ~ starting a
read (subroutine READ) for each vtoce-part wanted but not found by SEARCH. The
buffer' selector, SELECT_BUFFER, which implements the buffer replacement
algorithm, is careful not to disturb buffers already pointed at by "A".
GET BUFFERS READ then calls WAIT, to wait for any of the gotten buffers which
were, or are now, out-of-service (1/0 in progress). Since this waiting

3-5 AN61

I

(performed by calling WAIT_OS on each out-of-service buffer) may unlock the
buffers, it is necessary to check that each buffer described by "A" still
contains the vtoce-part it did when put in A. This check is performed by the
routine "VANISHED", which makes preciseiy this check. A branch to the retry
pOint START is performed if it fails. This check is bypassed if it is
determined that the select pseudoclock (see above) has not moved during the
unlocking. The WAIT routine is intelligent about seeing that s.ll buffers in AJ
are not out-of-service when it returns.

GET_BUFFERS_WRITE, having searched for all relevant vtoce-parts, proceeds
by calling WAIT so that they are no longer out-of-service. While this waiting
is not strictly necessary in the write case, it is a very conservative action.
At the end of this operation, the check for "VANISHED" and conditional branch
back to the retry point are undertaken. Then the selector, which is careful
about not disturbing buffers described by A, is called to get buffers to
associate with those vtoce-parts that were ~ found by SEARCH.

All the rest of the subroutines are basically support for GET_BUFFERS_READ
and GET_BUFFERS_WRITE: these and the few other subroutines will be described
below.

csyser

LOCK_BUFFERS

subroutine to crash system by calling syserr. It exists in order to
common code printing out drive identification, and set
vtoc_buffer.unsafe_pvtx to schedule a volume salvage.

a debugging subroutine that checks the third vtoce-part for
reasonability. From times when there were problems in this area.

A lowest-level primitive to wait for the buffer specified by its
first argument to stop being out-of-service. This subroutine
concerns itself with the traffic controller wait-retry-addevent
protocol, and the locking and unlocking of the VTOC buffer lock
around real waiting. The event for which it waits is described
under the description of vtoc_buffer.event_constant. The code
returned is that returned by LOCK_BUFFERS, if nonzero. See that
description below.

calls the system lock primitive lock$lock_fast to lock the VTOC
buffer lock. It also checks, upon every relocking, that the PVID
supplied by the caller of vtoc man still corresponds to the PVT
index given, and that a demount has not started, nor the drive
become inoperative. The occurrence of these conditions is reflected
in LOCK_BUFFERS' return code.

UNLOCK_BUFFERS

VANISHED

INIT

WAIT

9178

unlocks the VTOC buffer lock, using the system unlocking primitive,
lock$unlock_fast.

Described above. Scans the array A to see if the buffers described
by "A" still contain the vtoce-parts of the VTOCE being processed
(in the right order), after an unlocking during which the select
pseudoclock has moved.

described above, initialized the array "A" for GET_BUFFERS_READ and
GET_BUFFERS_WRITE. -1 is wanted but not yet found or got, -2 is not
even wanted.

calls WAIT as for each vtoce-part in a VTOCE being processed that is
out-of-service. Returns only when none are out-of-service.

3-6 AN61A

SEARCH
Fills up the ar~ay A with buffer indices for all vtoce-parts needed,
by searching the VIOC buffer segment for all vtoce-parts that are
there already.

READ and WRITE
Given the
call disk
routines
progress)
control.

vtoce-part number (part number) these routines actually
control to start 1/0 on the vtoce-part and buffer. These
set up the buffer control words, placing b.os (lID in
Qn, and b.ioq Qn after the return from the call to disk

RECORD, SECTOR and CORE
are used by READ and WRITE to convert VTOC indices into Multics
record number and sector within that record (taking the particular
vtoce-part into account), and to get the absolute main memory
address (see description of vtoc_buffer.abs_address.)

VERIFY_ERROR_FREE
is used by the vtoc_man$await_vtoce entry to wait for all
vtoce-parts of a given VTOCE to complete their lias, and report
whether or not all of these lias were successful. The successful
completion of the 1/0 for a write is a necessary prerequisite for
address deposition (see "Address Management Policy" in Section VII,
and "Segment Truncation" under "Segment Control Services").

SELECT_BUFFER
is used to obtain a new buffer for GET_BUFFERS_READ or
GET BUFFERS_WRITE when a requested vtoce-part is not already in the
VTOC buffer segment. It gets a new one by replacing an old one. It
does not unlock the VTOe buffer lock in any case. In replacing an
old one, it imylements the VTOC buffer replacement str~tegy
described below.

YTOC BUFFER REPLACEMENT STRATEGY

Free vtoce-part buffers are need'ed by GET_BUFFERS_READ and
GET_BUFFERS_WRITE when not all requested vtoce-parts are found in the VTOe
buffer segment. The routine SELECT_BUFFER in vtoc_man allocates buffers in an
essentially FIFO manner. A circulating pointer (vtoc_buffer.current) marks the
next point to be inspected for ~eplacement, behind this being the last one
alloc~ted. Buffers are allocated by circumnavigating the buffer segment a very
large number of times, if necessary, until a buffer is found which is not
out-of-service or "hot" (see "Error Strategy" below), and is not a vtoce-part of
the VTOCE for whom buffers are being sought. (This prevents it from undoing its
previous work by accident). Unused buffers fall into this category, as well as
just ordinary buffers that meet these criteria. The first pass around the
buffers, in a given call to SELECT_BUFFER, buffers with b.waitsw are skipped.
These are buffers on which 1/0 was completed (remember, b.os was found QIf), and
processes have been notified for, and will use when they get the VTOC buffer
lock. Since these are only preempted in a bad case (second pass), this is not a
performance problem. The process which comes back will find that the primitive
"VANISHED" is now true, and will retry its buffer-gathering.

The pointer vtoc_buffer.current is advanced as each new buffer is
allocated. When a very large number of passes over the VTOe buffer segment have
failed, system operation is terminated. Note that the longer one scans, the
more 1/0 operations complete, and buffers become claimable.

3-7 AN61

I

ERROR STRATEGY

We speak here of the "errors" encountered by the VTOC manager as a result
of I/O operations completing with an error (b.err is on). The expectable
"errors" of volumes being demounted or buffers vanishing are not errors at all,
but designed features, and have been covered.

Disk errors can occur on reads and on writes, the only two operations
performed by the VTOC manager. The strategy for a failing VTOC read is simple.
If the buffer has not vanished by the time the process (or any process) which
wanted to read it, this process notices the error (b.err is on), frees the
buffer (so that the next call will llQ1 find it here, as it does not contain the
vtoce-part it is supposed to, and so that the next call retries the operation),
and returns error_table_$vtoc_io_err to its caller.

Write errors are substantially more difficult. In general, the completion
of a write operation is not waited for by any process, and there is thus in
general no process that can be relied upon to process the buffer in error. When
a buffer is posted with a write error (vtoc_interrupt issues a syserr message in
this case), the buffer concerned enters a state called "hot" (a hot buffer). It
is so called, when b.op = b.err = "l"b, because the vtoce-part in it !!!.l4.§.1 be
written to disk at some time before the system is shut down or the volume
demounted, and if it cannot be, the volume must be salvaged before ever being
mounted again. Furthermore, the "hot" buffer cannot be replaced, because it is
the only valid copy of that vtoce-part, because, by hypothesis, we could not
write it to disk. Thus, all calls to GET_BUFFERS_READ or GET_BUFFERS_WRITE must
find the vtoce-part in this buffer. This buffer may not be replaced, so that
vtoc_man$await_vtoce will find that the writes that were requested via
vtoc_man$put_vtoce have failed, and so that the caller will know in this case
that the VTOCE was not successfully written to disk. In this case, the usual
callers (truncate_vtoce, update_vtoce, etc.) must not deposit addresses culled
from the file map, for should the system crash before the VTOCE is written out,
those addresses find their way into some other VTOCE, and a reused address
results. (See "Address Management Policy" in Section' VII, and "Segment
Truncation" under "Services of Segment Control," Section IV.) ,

Every time some new caller of vtoc_man tries to issue a write on that
buffer, the error bit is turned off, and mayor may not be turned on depending
on whether the operation succeeds, or fails again. Thus, each attempt to do a
put_vtoce on that vtoce-part retries the failing operation, until successful.

One last try to write out all hot buffers is made at volume demount time
(regular or emergency shutdown is effectively demount time for all volumes
mounted then). If this last try fails, the disk being demounted is scheduled
.for salvage the next time it is mounted. This operation is performed in
vtoc_man$cleanup_pv.

ESD STRATEGY

The basic problem of the VTOC manager at ESD time is to restart all I/O for
buffers that are marked out-of-service, but for which the disk DIM does not
currently have I/O under way. Since there is no way to determine this by
interrogating the disk DIM, heuristics are used. The idea is to restart those
and only those operations that are in this indeterminable state. If I/O is
requeued for a buffer for which the disk DIM later posts completion, a double
posting and double I/O, reading or writing of the wrong data will happen.

9178 3-8 AN61A

,"

This would be detected by vtoc_interrupt when a buffer was not out-of-service
received an I/O completion. On the other hand, if we do not start 1/0 for a
buffer for which I/O was nQ1 actually pendent in the disk DIM, we would wait
forever for its completion. Since b.os being on the b.ioq being off identify
all buffers in this uncertain state, if there are any, a wait of thirty-five
seconds is performed, for the disk DIM to post it if it is ever going to be
posted. If it is not posted in this time, it is declared not-to-be
out-of-service, and the I/O is requeued.

Emergency shutdown, as all shutdown, flushes "hot" buffers as described
under "Error Strategy" above.

VTOCE ALLOCATION/DEALLOCATION SERVICE OF VTOC MANAGER

The VTOC manager is responsible for allocating and deallocating VTOCEs upon
request. As mentioned before, a free chain of actual free VTOCEs on each volume
is kept threaded through them, the head of the chain being in the PVT entry for
that volume.

Deallocating VTOCEs is rather simple: a vtoce-part of zeros, with a free
thread logically replaoes the first vtoce-part of the VTOCE being freed. The
VTOC index of this VTOCE becomes the new head of the chain in the PVT.
GET BUFFERS WRITE is used herein. Allocating is more complicated. It is
necessary to read the VTOCE that is designated as the head of the free chain in
order to get the next fr~e chain head. Since a waiting (with consequent
unlocking of the VTOC buffers: must be performed to do this, it is possible that
another process can attempt to allocate the same VTOCE as this process is
allocating. Th~s is because the PVT chain head cannot be changed until 'this
VTOCE has been (first vtoce-part thereof) read in. Thus, the pseudoclock
"alloc_state" is used every time this first phase of allocation is undertaken.
If, upon relocking, an allocating process notices that this clock has moved, the
operation is restarted. The nonmoving of the pseudoclock signifies that no
other process has attempted to allocate that VTOCE during the unlocking. The
entry vtoc_man$alloc_and_put_vtoce writes the new contents of the VTOCE out,
once it has succeeded in allocating it. This protects the allocate-and-put
primitive from demounting: if it got as far as changing the PVT thread head
(actually performed the allocation), it actually started the writes. The writes
being in progress (b.os is on) when the VTOC buffers are unlocked prevent the
volume from demounting until the writes are complete (see Section XIV). The
routines GET_BUFFERS_READ and GET_BUFFERS_WRITE are both used to fullest
advantage in the allocate-and-put primitive.

SERVICES OF VTOC MANAGER FOR DEMOUNTING

When a volume is being demounted (recall that both normal and emergency
shutdown are special cases of volume demounting for the entire mounted
hierarchy), vtoc_man$cleanup_pv is invoked on behalf of that volume as one of
the last stages of demounting. (See Section XIV). The vtoc_man routine makes a
final try at outputting all "hot" buffers. Then vtoc_man waits for ~ VTOC 1/0
on the volume to cease; it has been guaranteed that no more can start by the
setting of the bit pvte.demounting2 by demount_pv. (This bit is inspected by
all attempts to lock the VTOC buffers: see th~ description of LOCK_BUFFERS
above). No more VTOC I/O transpires on this volume; the VTOC is updated and
quiescent. All vtoce-part buffers that had contained vtoce-parts of the
demounted volume are marked as empty (free).

3-9 AN61

SECTION IV

SERVICES OF SEGMENT CONTROL

This section describes the meaning, organization, and implementation of the
services provided by segment control to Multics. These are the functions that
segment control performs; its reason for being. These services are built upon
the mechanisms and data structures described earlier in this section.

These are the basic services of segment control:

1. Creating segments.

2. Destroying (deleting) segments.

3. Truncating segments.

4. Making segments addressable by processes (satisfying segment faults).
This involves activation and deactivation as described.

5. Descriptor segment management.

6. Handling boundsfaults.

7. Setting and reporting "VTOC attributes" of segments.

These are the auxiliary services of segment control:

1. Special-casing per-process hardcore segments (PDSs and KSTs) with
forced activations and special address management policies.

2. Special-casing of 101 buffer and FNP6600 Communications Processor
bootloading segments.

3. Performing segment moving, both on demand and in response to physical
volume overflows.

4. Performing special services on behalf of the online pack utility,
sweep_pv, such as anonymous VTOCE deletion.

5. Supporting the hierarchy salvager.

6. Demand deactivation.

7. Shutting down segment control.

4-1 AN61

The segments above are only segments in the storage system hierarchy; the
nondeciduous hardcore segments, PRDSs and descriptor segments are created by
means external to segment control (see the Multics Reconfiguration and Multics
Initializatj9n PLMs, Order Numbers AN71 and AN70), and are dealt with by other
parts of the supervisor by direct interaction with page control. Such segments
have neither branches nor VTOCEs, do not count against any record quota, and are
never activated or deactivated or in any AST list, hash thread, or
father-son-brother chain.

Many of the top-level services of segment control (creation, truncation,
deletion) are performed by similarly-named procedures (create_vtoce,
truncate_vtoce, and delete_vtoce) in bound_vtoc_man. These deceptively named
procedures do not in general perform operations upon VTOCEs, but either upon
VTOCEs, AST entries, or some combination of the two, usually by calling page
control primitives when operations upon ASTEs are required. It is these
procedures that decide where the appropriate data about the segment being dealt
with lies, and call appropriate entries to the VTaC manager when necessary.
These procedures are called by the directory control programs append, truncate,
and delentry, which create and delete directory branches, and check access and
locate branches in all cases. Thus, create_, truncate_, and delete_vtoce should
be thought of as create_, truncate_,. and delete_segment.

The procedure vtoc_attributes falls right into this model, as an
intermediary between the directory control primitives "set" and "status",
setting or returning the so-called VTOe attributes in either the ASTE or VTOCE
as necessary.

All of these primitives are called with the parent directory of the segment
under consideration locked.

Among the descriptions of the services provided by segment control will be
found a description of the VTOC update function, update_vtoce. While this
function is entirely organizational, an artifact of implementation rather than
of services, its critical role in the segment control panorama requires that it
be described in detail in this section.

CREATION OF SEGMENTS

Creation of segments is performed via creating VTOCEs for them, by the
procedure create_vtoce. The input parameter to this program is a complete
directory branch. The principal output parameters are a physical volume ID
(PVID) and VTOC index of a VTOCE that was created. The VTOCE creation function
is called both by append (normal creation of segments) and the segment mover,
segment_mover (See the detailed description later on in this discussion of
Segment Moving).

The principal goals of V}C~~ creation, as performed by create_vtoce, are
these:

1. Create a local image of the VTOCE to be clc~ted. Fill in UID, primary
name, VTOCE permanent information, initial v~llles of activation
information, a null (all pages null addresses) file map. Determine
the Uln path and fill that in too.

2. Find an appropriate physical volume for residence of the new segment.
This must be one of the physical volumes of the logical volume that is
the sons_Ivid of the directory in which the given branch appears.
Special case the rpv_only directory, ">lv". Select the most
appropriate physical volume, as described below under "PV Selection
Algorithm". (See Section XIV for motivation for this policy.)

4-2 AN61

3. Invoke the VTOC manager (vtoc_man$alloc_and_put_vtoce) to allocate a
VTOCE on a selected physical: volume, and write out the VTOCE
constructed in step 1 to it. Receive back the VTOC index of the VTaC
chosen by the VTOC manager.

4. Return to PVID of the physical volume selected by step 2 and the VTOC
index of the VTOCE selected by step 3 to the caller, who usually
places them in the branch (entry.pvid and entry.vtocx).

This function is not protected against demounting of volumes. However, nothing
it does until the call of vtoc_man$alloc_and_put_vtoce has any side effect.
Thus, should the call to vtoc_man fail because of demounting, create_vtoce will
simply go back, select another physical volume and retry, until either no more
physical volumes that are acceptable are left, or the logical volume becomes
unavailable.

When operating on behalf of the segment mover, create_vtoce does not
consider all physical volumes in the logical volume as potential candidates for
the new VTOCE, but only those not yet inspected during this segment move. (See
"Segment Moving", later in this section.)

Physical Volume Selection Algorithm

This algorithm is used by create_vtoce to find an appropriate volume for a
new VTOCE, and thus segment, being created. Its main goal is to try, when not
being invoked on behalf of the segment mover, to optimize balancing segments
over the physical volumes of a logical volume, without causing undue I/O
contention by placing many new segments in the same place.

The algorithm is to walk the chain (through pvte.brother_pvtx) of mounted
physical volumes of a mounted logical volume. The head of this chain is kept in
the logical volume table (LVT) (See Section XIII of this document for more
details on these data bases.) In the case of the segment mover, this chain is
walked from the last point it was at during this segment move until any
acceptable physical volume is found; in the normal case, the whole chain is
walked until the "optimal" physical volume is found. No physical volume is
acceptable in any case if it is "vacating" (pvte.vacating is on, signifying that
sweep_pv is trying to vacate this volume, or inhibit creation upon it), or has
no free records left (records left is recorded and maintained by page control in
the PVT entry). For segments that must be on the RPV (sons of the ROOT
directory (» or sons of >lv), no volume but the RPV is acceptable. The optimal I
physical volume, for all cases except per-process segments, is that which has
the highest percentage of space available, in terms of unused paging records.
This criterion, rather than absolute amount of paging space available, allows
different capacity packs to be put in the same logical volume and fill up
uniformly.

Per-process segments, those with entry. per_process in their branches, are
dealt with differently. This is because these segments see heavy use, and the
policy used above for other segments would place many new per process segments
in the same place, such as a new pack added to a logical volume, causing a
severe I/O bottleneck on that pack. Thus, a rotating pointer through the
logical volume chain, lvte.cycle_pvtx is maintained by create_vtoce, pointing to
the next Physical Volume in the round robin that will receive the next segment
creation in that logical volume. The other acceptability criteria are still
used; rpv-only creations, those on behalf of the mover, and those for which this
round robin technique causes detectable looping (volumes seem to become
unacceptable as they are inspected) cause the non-per-process algorithm to be I
defaulted to.

The significance of zero in lvte.cycle_pvtx is that it has either never
been used, or has cycled around to the end of the chain.

9/78 4-3 AN61A

The create_vtoce procedure operates with the knowledge that neither the
logical volume table nor the PVT thread are protected by locks, and therefore,
treats these quantities as asynchronously variable.

D,LETION OF SEGMENTS

Deletion of segments, at the segment control level, is performed by the
procedure delete_vtoce. The input parameter to this procedure is a directory
branch (this implies that the directory in which it resides is locked to this
process). There are no output parameters, other than the obligatory status
code. The segment deletion function is called from the directory control
program "delentry", which resolves pathname or segment number references to
segments to be deleted, locates the branch for the segment, and checks that the
caller's access is adequate to perform this deletion.

Deletion at the segment control level consists of the following main steps:

1. Make the segment inaccessible, if active, via a setfaults. Recall
that the parent directory is locked, and segment faults on this
segment cannot be processed by other processes until this process
releases the parent directory lock. The entry setfaults$if_active
performs exactly the flavor of setfaults needed here. .

2. Truncate the segment to zero-length. The procedure truncate_vtoce
comes right into play here, almost exactly as if called by the
directory control truncate primitive. This releases all disk, bulk
store, and main memory pages occupied by the segment. No more can be
created, since all SDWs were revoked in Step 1, and the segment is
inaccessible.

3. If this is a directory with a quota account being deleted, call the
page control quota move primitive, quotaw$mq, to relinquish its quota
to its superior. If this is any kind of a directory being deleted,
directory control has already made sure that there are no segment or
directory branches in this directory, so it has no inferiors, or
inferior segments which might count against Quota.

4. If this segment is active, deactivate it. This releases its ASTE.
All pages of the segment were released in Step 2.

5. Free the VTOCE with a call to vtoc_man$free_vtoce.

Among the fine points of delete_vtoce:

This procedure, as described, is not protected against volume demounting.
Thus, were a volume on which delete operation were under way demounted while the
delete operation was between steps 2 and 5, a truncated segment would appear the
next time this pack were mounted: whereas we desire either the original segment,
or the lack of a segment. Thus, for multistep operations such as VTOCE
deletion, a form of demounting protection known as "demount protectioo
brackets", described fully in Section XIV of this document, was developed.
Basically, a call to get_pvtx$hold_pvtx before step 1 prevents th~ vblume tro~
being demounted, or returns the fact that it has already been demounted, before
step 1 above even begins. A call to get_pvtx$release_pvtx after step 5 releases
the volume for demounting. See Section XIV of this document to find out what
happens when a crawlout, process termination or crash happens while a process
has such a grip on a volume. Since truncate_vtoce normally also makes such
calls, a special entry to truncate_vtoce (truncate_vtoce$truncate_vtoce_delete)

,.-

is used, which avoids making such calls knowing that delete_vtoce is doing it J
instead.

4-4 . AN61

The program truncate_vtoce is capable of indicating a connection failure:
this is to say the VTOCE designated by the PVID and VTOCX in the branch is
either free or contains a UID other than the one in the supplied branch. In
this case, delete_vtoce wryly notes that it is being asked to delete something
which has clearly vanished of its own accord (can happen in crashes; the
Physical Volume Salvager also sometimes creates this situation deliberately),
buries the error, and returns indicating successful completion (after releasing
the physical volume for demounting, of course).

SEGMENT TRUNCATION

Truncation of segments is performed by the procedure truncate_vtoce. This
procedure is invoked both by the directory-control program "truncate", which
converts pathname and segment number references to segments to be truncated into
branch pointers, and checks appropriate access, and the segment deletion
primitive already described. The inputs to this procedure are a branch pointer
(with the directory of course locked) and a page number from which to start
truncating. For the delete case, this number is assumed zero. The only output
parameter is the error code.

Truncation may be defined as associating logical zeros with the contents of
all pages beyond a certain point in a segment. For active segments, this is
done by the page control primitive pc$truncate (which can also be used on
nonstorage-system-hierarchy segments). For nonactive segments, it is done by
freeing nonnull record addresses in the VTOCE file map, and replacing them with
null device addresses.

Among the major issues in truncation is the implementation of the address
management policy as described in Section VII of this document. The
repercussion here is that record addresses may not be deposited (placed in the
free storage pool for that pack, by calling pc$deposit_list) until it is known
for a fact that the VTOCE from which they were removed has been successfully
written out to disk. Were this not so, it would be possible that some addresses
might be deposited, picked up by a new segment, and written out to that VTOCE.
Then, if the VTOCE which ~ the addresses originally was not yet successfully
written out, or badly written out, and the system crashed at that point, two
VTOCEs would both contain the same record address, a situation known as a
"reused address" which is a bad security violation. Thus, the primitive in the
VTOe manager, vtoc_man$await_vtoce, 1S provided for just the purpose of waiting
for successful I/O completion on the writing of VTOCEs.

Another issue
figures for the
This involves some
quota account.

in truncation of segments is the updating of quota used
quota account against which the truncated segment is charged.
machination in the program truncate_vtoce to locate t~is

The truncation of active segments is performed entirely by pc$truncate,
there is not as much as an error code in this case. Records are not deposited,
but rather, "nulled", by page control, as described in "Truncation" under "Page
Control Services" in Section IX of this document.

The basic steps of truncation are:

1. Determine if the segment is active, which involves locking and
searching the AST. If not, it cannot become active, (parent directory
is locked) so unlock the AST and proceed with step 2 secure in this
knowledge. If active, invoke pc$truncate on the segment, unlock the
AST, and return, the truncation being complete.

AN61

2. Read in the VTOCE file map. This must be done by obtaining the first
vtoce-part, containing the current length and the first part of the
file map (also the UID: here is the check for connection failure), and
using the current length to determine which other vtoce-parts, if any,
are needed. Get them if any.

3. Begin the indivisible operation which must be bracketed by calls to
get_pvtx$hold_pvtx and get_pvtx$release_pvtx. Replace the real record
addresses in the portion of the file map being truncated with null
addresses. Save the addresses in the file map so being replaced, for
step 5.

4. Write back the VTOCE with a call to vtoc_man$put_vtoce.
only those vtoce-parts which were read in.

Write back

5. If there were any record addresses collected in step 3, i.e., real
truncation was performed, first await the successful completion of the
VTOCE writing started by step 4, via a call to vtoc_man$await_vtoce,
and second, upon this successful completion, call pc$deposit_list upon
the collection of record addresses gathered in step 3, making them
available for use in 6ther segments. This step (5) is skipped for
deciduous segments, as their addresses belong to the hardcore
partition, and are managed differently (See "Address Management
Policy" in Section VII).

6. End of critical section bracketed by get_pvtx calls. Find the record
quota account to which this segment's pages are charged, by activating
its parent (via a call to activate), and passing the ASTE returned by
this activation and the incremental quota change to the page control
quota cell manager, quotaw, at entry quotaw$cu.

A fine point of the truncate_vtoce function is the special service
performed on behalf of priv_delete_vtoce, described later along with other
auxiliary segment control services. If the "owner" field of the supplied branch
is "777777777776"b3, which cannot be the UID of any directory, then this branch
is a dummy branch for an orphan VTOCE being deleted by sweep_pv. This
suppresses step 6 above, as the segment's parent may not even exist, let alone
be addressable in this process.

The special treatment of demount protection (i.e., not calling get
pvtx$release_pvtx or get_pvtx$hold_pvtx) for calls on behalf of delete_vtoce has
already been described under the description of that function.

SATISFYING SEGMENT FAULTS

The most important externally visible manifestation of segment control is
that part of it which satisfies segment faults for Multics processes. The
technique for using a Multics segment, as implemented by the procedures called
through hcs_$initiate, and similar, is as follows: it is called "making a
segment known":

1. Use the directory portion of the pathname given to make the parent
directory of the requested segment known. When this is done, the
Multics virtual memory interprets hardware references to the resultant
segment number as references to that directory.

2. Search this directory for the branch that has the entry name supplied
to hcs_$initiate in this call.

3. Search the KST (Known Segment Table) of this process, for a segment
that has the UID (saved in the KST) the same as the one in the branch
found in step 2. If found, the segment is already known; the index of
the KST entry is its segment number.

4-6 AN61

4. If not found in step 3, allocate a new entry in the KST of this
process. Put in it the UID of the segment, from the branch found in
step 2, and a pointer to that branch. Both are necessary because
branches (i.e., segments) can be deleted, or simply moved around by
the on-line Salvager. This double-check ensures the binding between
branch and segment. Again, the index in the KST of this entry is the
segment number.

These operations as described are more properly a part of Address Space
Management. The point of restating them here is that they are the preparation *
in any process for segment control to add the segment to the address space of
the process, when that segment number is used in that process. Basically, an
attempt to use the segment number gotten in step 3 or 4 causes a segment fault,
(directed fault 0, the result of there being "no SDW", i.e., one with sdw.df =
"O"b). The segment fault handler (seg_fault, the basis of much of the following I
discussion) inspects the KST entry in this process specified by the segment
number faulted upon (which is in the Appending Unit information in the SCU data
stored by the segment fault (see the Multics Processor Manual, Order No. AL39».
The UID therein may be used to find if the requested segment is active; if so,
an SDW may be constructed describing the ASTE of the segment. If not active,
the segment may be activated from information in the branch of the segment, and
then the SDW may be constructed.

Clearly, the construction and use of SDWs, as well as the interrogation of
the AST requires all kinds of locking protection, as has been described
previously_ Thus, this operation of satisfying a segment fault is somewhat more
complicated than this. Central to these proceedings is the procedure
"activate"; before we describe activation, we first describe the functional
interface and purpose of the procedure "activate".

Significance of "activate"

The procedure "activate" is called with a pointer to a directory branch,
and returns an ASTE pointer for the segment whose branch was supplied, and a
status code. This statement alone says much about what this procedure does; it
is the contract of "activate" to ~ 2. segment active if it is not, and in
either case, return the ASTE (via a pointer) of the segment. Since a decision
about whether or not a given segment is active is not even meaningful unless the
deciding process has the AST locked, "activate" returns to its caller with the
AST locked. It had to lock the AST to find out whether the segment was active
in the first place, and once it was active, the usefulness of its activity is
limited to operations protected by the AST lock.

The procedure "activate" is given a branch pointer. In general, branch
pointers are not valid unless the process using them has the containing
directory locked. (The branch pointers in the KST are an exception to this
generalization: the UlD in the KST entry allows them to be dynamically
revalidated every time they are used.) Thus, activate is called, and returns
with, the parent directory of the supplied branch locked to the calling process.
This fact makes the parent directory lock of a segment implicitly a protection
against simultaneous activation; "activate" does not unlock the parent
directory at any time.

9178 4-7 AN61A

I

The operation of the procedure "activate" is thus to obtain information
from the branch given (such as the UID),(1) lock the AST, search it for that
UID, and return the found ASTE pointer if found, with the AST still locked. If
not found, activate proceeds to activate the segment as described under
"Activation" below.

SEGMENT FAULT HANDLER

Having set up the necessary framework for understanding of the segment
fault handler, seg_fault, we proceed to describe the action taken. in response to
a segment fault.

The segment fault handler, seg_fault, is invoked by the module "fim" (fault
interceptor module, see the Multics Process and Processor Control PLM, Order No.
AN60) in response to a directed fault zero. As the segment fault handler
returns a zero (successful) or nonzero (error) status code to fim, so does fim
restore the machine conditions for that fault (so that the interrupted Control
Unit cycle may be retried (see the Multics Processor Manual» or cause the
condition "seg_fault_error" to be signalled at the point at which the fault
occurred.

The basic steps of the segment fault handler are as follows:

1. Obtain the segment number faulted upon from the machine conditions at
the time of the fault, passed by fim as a parameter. If this is in
the range of valid stack segment numbers, and pds$stacks for that

2.

number is null, call makestack. .

Locate the KST entry for the segment (call get_kstep). If this is the
root being faulted on, obtain its ASTE pointer (the root is always
active: aste.ehs = "1"b, and thus the ASTE need not be locked to use
this pointer) skip steps 3 to 6, lock the AST, and proceed directly
with step 7.

3. Obtain a valid pointer to the branch of the segment. The procedure
sum$getbranch_root_my (see the Multics Address and Name Space
Management PLM) is used to do this; it makes the necessary validation
checks as described previously, and returns with the parent directory
locked, ensuring the validity of this pointer (as well as the
existence of the segment and a protection against another process
trying to simultaneously activate this segment) for as long as this
process leaves that directory locked to it.

4. Obtain access, ring-brackets, entry-bound, and other
directory-resident information about the segment from the branch. The
procedure update_kste_access is used to obtain the access mode that
will be put in the SDW to be constructed. It manages a copy of the
access mode kept in the access field of the SDW, and checks whether or
not this information is obsolete by comparing date-time-branch
modified in the branch given with a copy saved in the KST entry of the
segment. If the branch is ahead of the KST, directory control must be
called to recompute the access. Recall that this process has this
directory locked; no process is now changing the ACL of the segment.
See below.

(1) Note that the AST must not be locked to touch directories: see "Locking
Conventions", thus it is part of activate's calling rule that the AST is not
locked to the calling process at time of call.

9178 4-8 AN61A

5. Check that the logical volume on which the segment resides is either
public or private and mounted to this user. Check that it is mounted
at all. logical_volume_manager$lvtep and private_Iogical_volume$lvx
provide these services. (See Section XIV of this document.)

6. Call "activate" to obtain an ASTE pOinter for this segment, and lock
the AST to this process in so doing. As stated, this causes the
segment to be activated if not active: other segments may be
deactivated in the course of so doing.

7. The AST is now locked to this process, and we inspect the ASTE for the
segment being faulted upon. If the referencing address is greater
than the maximum length in the ASTE, cause the segment fault handler
to return to fim (after appropriate unlockings, of course), so that an
error can be signalled. If pack overflow has been observed on this
segment (see "Segment Moving" below), invoke the segment mover, and
return to fim with the status code returned by the segment mover.

8. Construct a trailer entry in the system trailer segment describing
this process' connection to this segment. The fact that we are now
committed to constructing and using an SDW means that we must make a
trailer entry. See "Trailers and Setfaults" earlier.

9. Compute the new encacheability state of the segment based upon the
current encacheability state (see "Encacheability Control" earlier)
and the access mode of the SDW being constructed. Directories are
generically unencacheable.

10. Build an SDW out of a page table address derived from the ASTE pointer
gotten in step 6 (or 2 for the root); mode, ring-brackets and
entry-bound derived from the information gotten in step 4 (zero ring
brackets, read-write access for any directory); and the encacheability
derived in step 9. Install this SDW in the descriptor segment, making
it liable to revocation (see "Trailers and Setfaults" earlier) when
the AST is unlocked. The process is now said to be "connected" to the
segment.

11. Assuming that the operation has
(subjecting the SDW to setfaults
the parent directory (allowing
deletion of the segment). Return

Some notes on segment fault handling:

progressed this far, unlock the AST
and the segment to deactivation) and

access change, reactivation, or
"no error" to fim.

The segment fault handler uses the SDW in the descriptor segment as an
information repository even at times when the SDW is not valid. These fields I
(address, ring-brackets, and access entry-bound) are used to avoid recomputation
when the reason that the SDW was revoked did not involve changing these
quantities. For instance, if a segment is activated and deactivated several
times, revoking and re-creating SDWs in many processes, no access or
ring-bracket fields need to be changed if no set-acl or set-ring-bracket
operations have been performed on the segment. Similarly, if SDWs were revoked
because of a set-ael, set-ring-brackets or similar operation, the address in the
SDW need not be invalid (or the trailer cut; see "Trailers and Setfaults" above)
if the ASTE is not being freed.

Any time that access, ring-brackets, entry-bound, or maximum length
(segment bound) of a segment are changed, directory control calls the procedure
change_dtem to advance the "date-time-entry-modified" (entry.dtem field of the
directory branch). Saving old values and comparing to new values of this
pseudoclock can thus be used to see if an older computation of any of these
attributes has since been invalidated. This technique is used, as described in
step 4 above, to avoid expensive access recalculation in the case of SDW
revocation as a result of deactivation. Similarly, the nonzero quality of the
SDW field sdw.add is used to avoid freeing and re-creating trailers in the case
of access change on an active segment. The procedure setfaults follows these
conventions when revoking SDWs, being careful not to destroy these fields of the
SDW.

9178 4-9 AN61A

The global transparency attributes (so-called page control switches)
aste.gtpd, aste.dnzp, aste.gtu3, aste.gtms, (See the ASTE breakdown earlier) are
computed from the old values and KST flags each time an SDW is added by the
segment fault handler. Thus, segments have these attributes in their ASTE only
if the only process that is connected to the segment requests these attributes.

The special case of segment faults on the stack segments of processes is
part of the scheme wherein stacks are automatically initialized to the necessary
contents for processes to run in the ring of that stack. These references are
noticed by the segment fault handler, which does nothing else except call the
procedure "makestack", if this has not yet been done for that ring (pds$stacks
is an array of per-ring pointers, whose null or nonnull content indicate this).
This procedure creates a stack segment, and in initializing it, takes a
"recursive" segment fault the first time it touches it. However, it will have.
changed pds$stacks for that ring to be nonnull by that time, so that segment
fault will not be one corresponding to this special case.

A critical aspect of segment fault handling is that any process can
"invoke" the segment fault handler (by taking a segment fault) any time it
touches any nonhardcore segment ~ directory. Since such segments can be
deactivated at any time that the AST is not locked, any reference to a
nonhardcore segment (such as user-supplied arguments) or directories is subject
to taking a segment fault at that point. Since segment faults cause directories
aug ~ ASI to be locked, any process touching ~~ segments ~ directories can
lQQk directories ~ ~ ASI ~ simply a result Qf ~ reference. One
implication of this statement is that a process that has a directory locked may
not touch any directory or user segment unless it has the following property: A
segment fault at that instant would result in locking only such directories that
would not cause the process (given that it has this directory locked) to violate
the locking hierarchy. One implication of that fact is that every reference ~D
a locked ~e9~ry is subject to such a segment fault; since a segment fault
upon any directory (or segment) will cause locking of its parent, and a
directory's parent's lock is higher in the hierarchy than its own (for this ~
reason) directories·may be referenced without causing deadly embraces in the .~
case where a process has a single directory (explicitly) locked.

Another consequence of this implementation is that a directory may be
referenced with the AST locked to a process 1£ ~ Qllly ~ that directory can be
established as being active at the time that the AST was locked (for with the
AST locked, it, and consequently its parents, cannot be deactivated). Multics
does not now make use of this feature~ However, the contrapositive of this
statement asserts that in general nQ directorY may ~ touched with the AST
locked, for lest it be shown to be active at the time the AST was locked, the
resulting segment fault would cause a "mylock" on the AST (which crashes the
system), as well as an attempt to lock the (higher) lock of the parent of the
directory being faulted upon.

ACTIVAI.IQH

The most important step in segment fault handling, the connection of
processes to segments, is the activation of the segment faulted upon, in the
case where it is not active at the time the segment fault handler locks the AST.
The code for activation of segments is in the procedure "activate", whose
interface and significance have already been described.

Activation is that action taken by activate when it finds that the segment
whose branch was passed in is found, under the AST lock, not to be active.

4-10 AN61

These are the basic steps of activation:

1. Unlock the AST, having found the segment not active. Since the parent
directory is locked, and the segment was found not active, no other
process can be attempting to activate it.

2. Get as much of the VTOCE as is necessary to obtain the entire file
map. Read the first vtoce-part to determine this; also check the UID
of this VTOCE against that in the branch to determine if a connection
failure eXists; return an error if so.

3. It will be necessary to ensure that the parent of this segment is
active (of course, under the AST lock), due to the requirement that
all active segments other than the root have active parents. Once we
have threaded this segmerits ASTE into the inferiors list of the
parent, it will stay this way. But we must get it this way. This is
done by locking the AST, and checking the SDW for this segment to see
it has not been revoked (since the AST is locked to this process, it
now cannot be). If it has not been revoked, the SDW may be used to
find the parent's ASTE (remember that SDWs contain page table
pointers, and the page table is in the ASTE). If it ~ been revoked,
unlock the AST, touch the parent, relock the AST and retry this until
it is found active under the AST lock. Although a more complex
approach that does not involve nondeterministic retry is possible,
this action is no more nondeterministic than a process trying to
satisfy a page fault.

4. Obtain a new free ASTE for the segment being activated via a calIon
the AST replacement algorithm in procedure get_aste (see "AST
Replacement Algorithm" earlier). This may involve deactivating some
other segment (Ho~efully not the parent obtained in step 3 -- see
below) .

5. Thread the ASTE gotten in step 4 into the inferior list of the parent
ASTE found in step 3. Fill in the ASTE with all of the VTOCE
"activation information" (See the discussion of the VTOCE structure
earlier), and initialize cumulated flags (aste.dnzp, aste.gtus,
encacheability, etc., see the last section) to default values.

6. Invoke page control (pc$fill_page_table), passing it the VTOCE file
map, to initialize the page table and other page control information.
Since we are activating this segment, and the parent directory is
locked, no one is tryin~ to use this segment, or even knows it is
active or being activated, other than this process.

7. Place the UID in the ASTE (see below) and hash it into the AST hash
table.

8. Return, with the AST locked, the AST entry (as a pointer) from step 4.

Some subtleties of activation:

The nondeterministic looping and unlocking to obtain the parent ASTE must
be done before the obtaining of the new ASTE in step 4. Otherwise, the new ASTE
would be in a peculiar inconsistent state during these unlockings. Thus, we
determine the parent ASTE before getting the new ASTE. However, there is a
distinct danger that the AST replacement algorithm might choose the very ASTE of
the parent as the segment to deactivate to provide the new ASTE. Not only would
this invalidate the saved pointer to the parent ASTE, but would cause the new
ASTE to be threaded as its own parent, causing infinite looping at page control
quota management time. Thus, the bit aste.ehs (entry hold switch) is saved, and
temporarily s~t on, and restored, in the parent's ASTE, to prevent the parent
from being deactivated by the AST replacement algorithm. The same is true
during a boundsfault (see "Boundsfaults" later on).

AN61

The UID is the last item placed in an AST entry. This is so that if the
system should crash while filling in the AST entry, emergency shutdown could use
the fact that the UID is zero as a cue to avoid invoking a VTOCE update on an
inconsistent, invalid ASTE. Normally, shutdown (emergency and regular) causes
VTOCE updates on all active hierarchy segments. Since the AST hash table
manager (search_ast) relies on aste.uid, it cannot be called until step 7 has
filled in this field.

DEACTIVATlQN

Deactivation is the removal of a segment from the AST, the revocation of
its "active status". Deactivation is a simple mechanism that is invoked on
behalf of the AST replacement algorithm, to free an ASTE to make room for a new
one, deletion of segments (see "Deleting Segments", above) to relinquish their
AST resources, and volume demounting, to take the segment out of use and update
its VTOCE and file map to make the disk being demounted accurate (see Section
XIV).

Deactivation, performed by the procedure "deactivate", is composed of the
following steps:

1. Check for segments which may not be deactivated, (such as those with
the flag aste.ehs on, those with no parent (hardcore) or those with
active inferiors). The demand deactivator (see "Demand Deactivation"
in this section) can cause this to occur.

2. The AST is locked as a precondition of deactivation. Totally cut the
trailer, revoking all SDWs for this segment (setfaults). No process
can now use the segment until the AST, at least, is unlocked.

3. Call page control (pc$cleanup) to remove all pages of the segment from
the bulk store sUbsystem or main memory, writing all modified pages to
disk (see "Services of Page Control" in Section IX). This resurrects
all assigned addresses and finds all zero pages, nulling their
addresses (see "Address Management Policy" in Section VII).

4. Update the VTOCE from the now quiescent ASTE, putting final values of
file map and all activation information in the VTOCE (see "VTOCE
Updating" below).

5. Thread the entry out of inferior lists, decrement parent's inferior
count, hash it out of the AST hash table.

6. Make the ASTE free. The put_aste procedure is called to do this: it
clears all fields, reinitializes the page table to debugging values,
and places the entry at the head of the appropriate used list.

VTOCE updating is not strictly a service of segment control or an artifact
of its implementation; it is a necessity of the data organization and function
of Multics segmentation.

4-12 AN61

VTOCE updating consists of observing the activation attributes and file map
of an active segment, and making the activation attributes and file map in the
VTOCE of that segment reflect any changes that have occurred since the VTOCE was
last updated, or the segment activated. VTOCE updating is performed routinely
every time a segment is deactivated (see "Deactivation" earlier), and when the
system is shut down (all VTOCEs of active segments are updated, for both
emergency and regular shutdown). VtOCE updating is also invoked periodically by
the AST trickle in get_aste (see the earlier discussion "AST Trickle") as
necessary, and at certain times in segment moving.

VTOCE updating is performed by the procedure update_vtoce, upon an AST
entry (hence the AST is always locked when this activity is performed). In the
case of trickle-initiated updates, the information updated may become invalid
while it is being updated, but yet, it is a snapshot of some valid state of the
segment at some time. The trickle update is a hedge against a fatal crash.
Should a fatal crash occur, the pages of the segment that appear in the next
bootload, and the state of the segment as a whole, will be that state reflected
the last time the VTOCE was updated. Thus the trickle causes periodic and
regular update (except under times of very light load) of segments that stay
active a long time, and thus, do not enjoy the VTOCE update performed at
deactivation. VTOCE updating manifests a critical facet of the system address
management policy (see "Address Management Policy, Section VII). Record
addresses reported to a VTOCE must be guaranteed to have data from the segment
owning the VTOCE, lest the system crash and "uninitialized" pages containing
other people's data appear. Furthermore, no record address may ever be freed
(added to the free pool of record addresses) unless it is guaranteed that it is
not in the VTOCE from which it was culled (See the discussion of "Segment
Truncation" earlier in this section).

The steps of VTOCE updating are few and simple.

1. Obtain, from the VTOC manager, as many vtoce-parts as
necessary to reconstruct the new image of those vtoce-parts
be changed (see below). For most segments, this is none at
the first vtoce-part is usually constructable entirely from
(See below).

will be
that will
all, as

the ASTE.

2. Call page control (pc$get_file_map) to put the latest file map (record
addresses and null addresses) in the copy of the VTOCE being prepared.
Also, get the latest activation information from a copy ASTE handed
out by pc$get_file_map, and-put this information in the copy of the
VTOCE being prepared. pc$get_file_map also returns a list of record
addresses that must be deposited ~ ~ VTOCE ~ ~ successfully
written.

3. Compute and update time-record products if this is the VTOCE of a
directory with a quota account.

4. Call the VTOC manager to write out the new copy of the VTOCE, actually
initiating its update onto disk.

5. If step 3 returned any record addresses to be deposited, first call
vtoc_man$await_vtoce to await the successful completion of the I/O
started in step 3, and second, _pendent this successful completion,
call pc$deposit_list to free these addresses. Again, see the earlier
discussion "Segment Truncation".

6. Turn off aste.fmchanged1 if aste.fmchanged was on in the copy of the
ASTE returned in step 2 (see below).

4-13 AN61

It is quite difficult to determine which vtoce-parts have to be read by
step 1. If step 3 must be executed, the current time-record product must be
obtained, and thus, the first vtoce-part must be read. Otherwise, the first
vtoce-part can be written with information wholly derived from the ASTE, and
thus need not be read. The second vtoce-part need never be read; either it will
be filled with some record addresses and some null addresses as obtained from
the file map in step 2, or it will describe a region beyond the current length
of the segment when updated, and thus be invalid, and hence not written. If
parts of the file map residing in the third vtoce-part must be updated, this
vtoce-part must be read, as the permanent information residing there cannot be
reconstructed from the ASTE. We cannot know whether or not the third part of
the file map will have to be written until step 2 is done. Thus, we make a
guess based upon the current length of the segment at the time that step 1 is
executed. If, upon getting the current length, it turns out that the segment
has shrunk between steps 1 and 2, then the read was unnecessary, and nothing is
lost. If, however, we do QQ1 read it, and the segment grows, we then read it
after we have gotten the snapshot in step 2.

The entry point pc$get_file_map turns off the "file map changed" bit in the
ASTE, aste.fmchanged. The semantics of this bit are that the file map has been
changed since the last pc$get_file_map. When segment control receives that
ASTE, with this bit on, and its file map, it is obliged to update the VTOCE.
Should the system crash, however, before this is done, but after page control
has turned off the bit aste.fmchanged, the VTOCE update performed at emergency
shutdown time will DQ1 find the bit on, and thus not know to update the file map
in the VTOCE. Therefore, page control turns on the bit aste.fmchanged1 when it
turns off aste.fmchanged; update_vtoce turns this Qff once it· has updated the
VTOCE. Should ESD find this bit Qll in any ASTE (see the procedure demount_pv),
ESD will take its presence as an indication that this has occurred, and
reinstate aste.fmchanged.

A file map, as reportable to a VTOCE, has changed only when addresses are
resurrected following successful writes (See "Address Management Policy") or
when pages have become zero. However, page control turns on fmchanged when
records are allocated to a segment (at new-page fault time) even though they may
nQ1 be reportable to the VTOCE. A VTOCE, when updated in this state, will have
vtoce.records reflecting the real number of records used by the segment
(including the new ones) but the file map will not have these new addresses.
Should the system crash fatally (no ESD) before such a segment is again updated,
or deactivated, the Physical Volume Salvager will notice that records-used is
inconsistent with the file map, implying that pages have been lost in this way.

DESCRIPTOR SEGMENT MANAGEMENT

Segment control provides the service of removing descriptors (SDWs) from
descriptor segments, in addition to that of creating and installing them
(segment fault handling). Often, this service is performed on behalf of segment
control itself, such as during the deactivation of a segment, when all SDWs must
be revoked. (See the earlier "Segment Fault Handling", including the
"Deactivation" discussion therein). Although segment control, via the segment
fault handling mechanism, is the only agency in the system that constructs SDWs
for hierarchy segments (other than deciduous SDWs and PDS/KST SDWs), several
other system functions require revocation or total removal of SDWs. All of
these functions are implemented in the procedure "setfaults". The basis of the
revocation and trailer mechanism has already been described in the "Overview and
Concepts" section (see "Trailers and Setfaults").

All procedures in directory control that change access attributes, such as
ACLs (access control lists) or access class must revoke all SDWs for the segment
whose attributes are being changed, if that segment is active. This is so that
the segment fault handler will find that date-time-entry-modified has changed,
recompute the attributes, and give the process a new SDW. Changing maximum
length or entry bound causes this same behavior.

AN61

The entry setfaults$if_active is called w~th the UrD of the segment to
perform such functions. Internal to this procedure, it locks the AST, hashes in
this Uln to find if the segment is active, performs the setfaults if so, and
unlocks the AST.

Another service of the setfaults routine is to remove the SDW for a segment
in a given process when that process terminates the segment. This is done
because the process no longer wishes the segment to be addressable; it ~ be
removed from the process' address space, because the segment number will be
reused (the KST entry has been freed). It is necessary to invoke segment
control to remove this SDW because deleting the SDW implies removing the trailer
entry in the system trailer segment describing it (which must, incidentally, be
done under the protection of the AST lock, which protects the trailer segment).
Were this not done, a setfaults on the first segment would randomly destroy the
SDW for the next segment that that process had used with that segment number.
This entry to setfaults, setfaults$disconnect, supplied with a segment number,
also clears the associative memory of the running processor, to remove this SDW
from it should it be there. Of course, it is possible that the segment might
not be active at the time a process terminates it; in this case, there is no SDW
to revoke, but the access information kept there is cleared out. This service
is also inVOked at the time a process detaches itself from a private logical
volume, to make initiated segments on it inaccessible. (See Section XIV.)

Segment control must also be invoked to destroy descriptor segments of
processes being destroyed. Each SDW in such a descriptor segment which is for a
segment still active at the time of this destruction, has a trailer entry for
the process being destroyed, which must be deleted from the trailer list for
that segment. The entry setfaults$deltrailer is called on each such SDW, by the
process-destruction primitive deactivate_segs (See "PDS and KST Management"
later on). Since this is done ~ masse for all segments in the descriptor
segment of the process being destroyed, deactivate_segs locks the AST and calls
setfaults$deltrailer for each SDW with a nonzero "sdw.add" field. If a trailer
entry is not found at this time, the message "setfaults: missing trailer"
appears and a system crash results.

A special kind of setfaults, setfaults$cache is used by the encacheability
control algorithm (see "EncacheabilityControl" in "Concepts and Overview") to
revoke all SDW encacheability control bits.

All versions of set faults . other than setfaults$disconnect and
setfaults$deltrailer clear the associative memories of the system to force the
changed SDWs to be noticed by the system processors. All set faults other than
system-wide setfaults (other than setfaults$cache, setfaults$deltrailer and
setfaults$disconnect) also reset the encacheability state of the segment, as no
SDWs then describe it. (This action is inhibited by aste.inhibit_cache for 101
buffer segments and the like: see "Encacheability Control".)

BOUNDSFAULT HANDLING

A boundsfault is the occurrence of an attempted reference to an address
beyond the current length of a segment ~ defined ~ ~ ~ bounds field (DQi
the current number of records, etc.) If the maximum length of the segment is
equal to or smaller than the current page table size allocated for this segment,
then this situation is simply an error and is signalled at the point of the
faulting reference. If, however, the reference is within the maximum length of
the segment, but beyond the current page table size, then segment control must
allocate a new page table, and thus a new ASTE for this segment, being in a
larger pool. Therefore, a boundsfault (nonsignalled case) involves getting a
new ASTE and freeing an old one, and thus shares some of the flavor of both an
activation and a deactivation.

4-15 AN61

The boundsfault handler is the procedure "boundfault". Like the Segment­
Fault Handler, it is invoked from the fault interceptor, fim, and causes a
machine condition restart or signal depending upon the status code returned to
fim. Boundsfaults are technically a sub-case of access violation, detected by
the 68/80 processor Appending Unit during the SDW appending cycle (see the
processor manual).

The basic steps of a boundsfaUlt are these:

1. From the segment number in the machine conditions, find the branch for
the segment, locking its parent directory when so doing (a call to
sum$getbranch_root_my, just like in the segment fault handler).

2. Lock the AST, so that the old ASTE can be found. If the segment turns
out to have been deactivated by the time we lock the AST, it is just
as well, as restarting the machine conditions will reactivate it.

3. Find the old ASTE via the SDW in this process (get_ptrs_$given_segno).
See step 2 for the notfound case. Get the maximum length from it
(aste.msl). If attempted reference is beyond this, unlock the AST and
the directory and cause the boundsfault handler to return an error,
causing "out_of_bounds" to be signalled.

4. Setfaults the old ASTE. Again, the AST is locked to us, as is

5.

necessary to perform this class of setfaults. This inhibits all
processes from referencing the segment via the old ASTE.

Obtain a new ASTE from get_aste, via the AST replacement algorithm.
Temporarily entry-hold the parent ASTE (which is easy to find in this
base, as the son is already active (the boundsfaulted segment, and the
parent must thus be active) while so dOing, so that the AST
replacement algorithm does not accidentally deactivate the parent (See
the explanation in the description of the segment fault handler for
more light on this problem). The new ASTE is guaranteed to be in a
different pool than the old ASTE, for that is why we are taking a
boundsfault, and thus cannot be accidentally deactivated in these
proceedings.

6. Call page control (pc$move_page_table) to move all ASTE information,
including the page table (but not the threads) from the old to the new
ASTE, and update all page control data bases necessary to move all of
the page table (see "Services of Page Control").

7. Rethread all inferior lists and parent pointers affected. If this is
a directory being boundsfaulted on, all of the father pointers of
inferior segments' ASTEs will have to be updated to point to the new
ASTE. This step is the entire reason for the existence of the
inferior list in the AST.

8. Hash out the old ASTE, hash in the new, as the segment is still
active, but in a different place in the AST.

9. Deposit (put_aste), or free, the old ASTE.

10. Unlock the AST and the parent directory, and return a zero status code
to fim.

Fine points:

The most difficult part of the boundsfault operation is that performed by
page control, described in Section IX. This is a consequence of the fact that I
page tables are permanently associated with AST entries.

9178 4-16 AN61A

I

I

Very peculiar machine conditions are stored by the PTW2 prepage append
cycle used by EIS decimal instructions. This is a consequence of the design
that the computed address for the PTW2 page is developed by the Appending Unit
of the processor, and not stored as the Control Unit computed address in the
machine conditions. Therefore, both the boundsfault handler and the page fault
handler (see Section IX) must be aware of these peculiarities of the machine
conditions.

SETTING AND REPORTING ON VTOC ATTRIBUTES

As defined in Section II, VTOC attributes are those properties of a segment
that are stored in its VTOCE and/or AST entry, as opposed to its directory
branch and associated data structures. Typical VTOC attributes are maximum
length, current number or records used, date-time-modified, quota used, quota,
time-page product. Typical branch attributes are bit count, author, ACL, names.

Directory control primitives, available both through the gate hcs_ and more
privileged gates available to the backup system, have need to obtain this
information about segments, and set it. The procedure vtoc_attributes performs
all of these functions, deciding when to go to the ASTE, when to go to the
VTOCE, and which vtoce-parts to deal with.

There are a multitude of entries to vtoc_attributes, which are all either
"set" or "get" entries. All of these entries specify a segment via PVID and
VTOC index, usually derived from a branch. These entries also receive a segment
UID; this allows the segment to be searched for in the AST, and allows a check
for connection failure (as in delete_vtoce and truncate_vtoce; see the
introduction to "Segment Control Services"). All of the entries are called with
the parent directory of the segment locked, and engage in the locking/nonlocking
protocol much as given under "Locking Conventions" in Section II.

The vtoc_attributes procedure is protected by the AST lock when modifying
attributes. This is a conservative action.

Some notes:

Whenever vtoc_attributes changes a max-length, SDWs may have to be
recalculated. Thus, setfaults$setfaults, the most powerful type, is called to
fault all SDWs, causing all SDWs to acquire the new bounds field. Of course,
all processes using SDWs for this segment then take segment faults, which wait
for the unlocking of the parent directory by the caller of vtoc_attributes.

Whenever vtoc_attributes is asked to report date-time used and date-time
modified, it updates these quantities in the AST (in the active case).
Date-time-used is always updated (the storage system considers used to mean the
same as active, in terms of date-time used), (unless aste.gtus is on,
suppressing this), and if aste.fms is on (signifying that page control has
noticed modified pages), aste.dtm (the date-time modified in the AST) is updated
to the current clock value as well, and aste.fms turned off. This ritual is
also performed by pc$get_file_map, which reports date-time-used and
date-time-modified along with other activation information to the VTOC updater,
update_vtoce. (See "VTOC Updating" earlier).

9178 4-17 AN61A

PDS AND KST MANAGEMENT

Each new Multics process (i.e., other than the initializer) inherits the
entire hardcore address space from the initializer with a few exceptions. These
exceptions are the descriptor segment, the Known Segment Iable (KST) and the
~rocess Qata ~egment (PDS) of the process, and the segment PRDS (lRocessor Qata
~egment). This is to say that any reference in a hard core program, via symbolic
link (e.g., "call setfaults$deltrailer" or "if active_hardcore_data$x = 7" etc.)
refers to the same segment, when the supervisor is running in any process for
all segments with these few exceptions. This is because all of the SDWs for a
given segment number in different processes (among the SDWs of the supervisor),
are copies of each other, never changed or revoked. However, the se·gments of
the supervisor that belong to a particular process must in fact be different
from each other. Thus, a reference to segment 60, resulting from a link to,
say, pds$processid, refers to different segments in different prOcesses.

The descriptor segment is not created or destroyed by segment controlj it
is created by the program "plm", which copies the initializer's descriptor
segment (the hardcore region) or deals with prelinked processes as appropriate.
It is not managed by segment control at all. The conten~s and m~aning of the
descriptor segment are, however managed by segment control, as explained
previously under "Descriptor Segment Management" and "Segment Fault Handling".

The Processor Data Segment (PRDS), carried around from process to process
by a processor as it switches processes, is similarly not dealt with at all by
segment control, as a segment, or as a data base. Its meaning, identity, and
purpose are explained in the Multics Reconfiguration ~, Order No. AN71.

The PDS and KST of a process, however, are segments in the storage system
hierarchy, in fact, in the process directory of the process to which they
belong. The have VTOCEs, branches, and AST entries at times as any other

, .

storage system segments.) These segments are created by the hardcore process .~
creation program (act_proc , and deleted by the hardcore process destruction
program, using the normal directory control segment creation/deletion
primitives, append and delentry. In this respect, these segments are peculiar
only insofar as that they are created at a validation level of zero, in the
ring-O supervisor. The process creation primitive fills in the new PDS with all
relevant and useful information about the new process, having appended it- as a
segment to the hierarchy, and initiated it as is usual.

However, the use of a piece of the hierarchy as a piece of the supervisor
requires special treatment. Note that all deciduous segments are both part of
the hierarchy and part of the supervisor (examples: hcs_, sys_info,
active_all_rings_data). They, too, are in directories, have valid pathnames,
and are described by SDWs constructed by other-than-segment-fault means. These
hardcore SDWs, however, which all processes inherit, were produced by
initialization, and are not subject to revocation or destruction in any living
process. They have no trailers. Now, since these segments are part of the
supervisor, in all processes, they may not be deactivated, nor the SDWs revoked,
lest the supervisor take a segment fault while performing some operation, such
as processing a page fault or a segment fault, which would make this cumbersome,
if not impossible. The segment-fault handling code, and all that it relies on
(virtually all of the supervisor, as may be inferred from the previous sections)
thus cannot be deactivated, nor have its SDWs revoked. There are no KST entries
or branches for such segments. They are supposed to handle segment faults, not
be subjected to them.

AN61

Thus, those segments that will be used as part of the supervisor in a new
process must acquire something of the nature of deciduous segments; having
nonrevocable SOWs that describe nondeactivatable AST entries. When a POS and
KST have been readied by process creation for a new process, segment control is
invoked to transform these segments into reverse deciduous segments, segments
which were created in the hierarchy and become part of the hardcore address
space. The procedure activate_segs is responsible for this.

The task of activate_segs is making a POS, and KST nondeactivatable, and
returning SOWs for them, describing the ASTEs in which they were
nondeactivatably activated. The procedure grab_aste, described below, is used
to activate them nondeactivatably. When they have been semi-permanently
activated, activate_segs returns their SOWs, with the "encacheable" bit Qll, as
explained under "Encacheability Management". For the PDS, a special operation
known as "prewithdrawing" is performed. This means that record addresses are
assigned to all pages of the segment, to ensure that this POS, when used as a
ring-O stack in the new process, never is unable to grow a page or itself
because there is no more room on the pack that it was on. The POS cannot be
subject to segment moving, when in use by the new process, for it is the very
segment that the segment mover uses as a stack in that process. For the KST, we
are content to let the process terminate if this highly unusual event happens.
For the POS, however, the system is not even able to invoke the
process-terminating software were the POS unable to grow, and the system loops
and/or crashes.

The prewithdrawing is accomplished as foliows:

1. The segment has been forcibly activated, nondeactivatably.

2. The bit aste.dnzp is turned on, indicating that no addresses should
ever be reported by page control to update_vtoce, thus all addresses
ever assigned to this segment stay there (see "Address Management").
This bit is now updated to the VTOCE and reactivated to the ASTE
should this segment be deactivated.

3. The segment is released from being held active (grab_aste$release).

4. Each page is touched. This causes a device address to be assigned to
each page.

5. The segment is reforcibly activated. It may have been segment-moved
in step 4.

At process destruction time, simply releasing these segments from forced
activity (grab_aste$release) reverts them to their normal status.

SEMI-PERMANENT ACTIVATION (GRAB ASTE)

The procedure grab_aste is used, by ,the POS/KST forcible activator as
described above, and the IOM/FNP660 Communications Processor buffer facilities
as described below. It has a dual task; given a segment pointer (implying that
the segment is known in the calling process, and a length, it must activate the
segment into an ASTE capable of containing a segment of at least that length,
and while the AST is locked, turn on aste.eh~ so that the segment becomes
nondeactivatable while the AST is unlocked, and unlock, the AST and return the
AST entry pointer. Since it ensures that the segment is nondeactivatable, the
AST entry pointer is valid even after the AST is unlocked.

The steps for forcibly activating a segment into a given-sized ASTE are as
follows. The basic technique is to force the segment to be that size, and then
ac~ivate it.

AN61

1. Locate the branch of the segment, thereby locking the parent directory
to this process. This, as in the segment-fault and boundsfault
handlers, is done via a call to "sum".

2. Save the word of the segment at the given length. Store something
nonzero into it. This may cause a segment fault, and may cause a
boundsfault. This is valid, for we do not have the AST locked, but we
do have the parent directory locked. The segment fault and
boundsfault handlers are both prepared to deal with a "mylock" (this
lock is locked to my process, so neither will lock it or unlock it)
situation.

3. Invoke "activate", as described under "Segment Fault Handling". This
procedure returns with the AST locked, and the segment active, and
tells us where.

4. Using the ASTE pointer gotten in step 3, turn on aste.ehs (the entry
hold switch). This means that the ASTE pointer is still valid when
the AST is unlocked.

5. Unlock the AST. The ASTE pointer gotten in step 3 is still valid, for
in step 4, the segment became nondeactivatable.

6. Restore the contents of the word changed in step 2.
parent directory is still locked.

7. Unlock the parent directory.

8. Perform cache machinations
grab_aste$grab_aste_io.

as described

9. Return the AST entry pointer gotten in step 3.

below

Remember, the

if this is

The entry grab_aste$grab_aste_io semi-permanently activates 10M and FNP6600
buffer segments (the FNP bootloading segment, 101 buffer segments). As
described under "Encacheability Control", theSe segments must be made
irreversibly nonencacheable before subjected to such use, as the processor cache
management policy cannot be cognizant of main memory changes produced by the
10M. Thus, when called at this entry, step 8 sets the cache state to
"Non-encacheable, multiple SDWs", and sets aste.inhibit_cache so that a set-acl
operation will not change this state. It then calls setfaults$cache to revoke
all SDW cache bits, so that this nonencacheability takes effect.

The releasing entries, grab_aste$release and grab_aste$release_io, simply
turn off the bit aste.ehs, and in the 1/0 case, aste.inhibit_cache.

101 AND FNP6600 BUFFER SEGMENT SPECIAL-CASING

As described immediately above, and under "Encacheability Control",
segments to be used as 1/0 buffer segments by the 1/0 interfaces or in
bootloading the FNP6600 Communications Processor, must receive special treatment
by segment control. When actually in use as buffers or boot load segments, AST
entry pointers to these segments are saved in 1/0 Interfaces data bases, and
page control performs unusual acts upon these segments which prohibit their
deactivation during such use. All of these restrictions boii down to the fact
that the segments must be semi-permanently activated, for 1/0 use, as explained
above under "Semi-Permanent Activation". Both MCS and the 1/0 interfacer deal
with grab_aste.

AN61

I

SEGMENT MOVING

Segment moving is the single most involved and esoteric action performed by
segment control. A segment move is what happens when an attempt is made to grow
a segment, there is no more room on the pack, and the segment is wholesale moved
to another physical volume in the logical volume where there is room to grow,
transparently. Segment moving may also be invoked on demand, via the highly
privileged gate hphcs_, in order to move segments between packs to rebalance
them or compress a logical volume (remove a pack from it). These online utility
operations are coordinated by the online pack utility, sweep_pv.

The essence of segment moving is that it is basically a creation of one
segment and a deletion of an old one, as seen by segment control and page
control. However, all of the remainder of the system, particularly directory
control and the user ring, must see no change; the new segment must replace the
old segment, and its contents, in situ. In this regard, it shares some of the
flavor of a boundsfault, where one ASTE for a segment replaces another, wholly
and entirely in the AST hierarchy (see "AST Hierarchy" in Section II).

The creation of a new segment to replace an old one involves the creation
of a new VTOCE. All of the attributes, permanent and activation attributes,
other than the file map, of the new segment must be the same as the old. The
new segment must have the same contents and unique ID as the old; thus, it is
the same segment, once the segment move is over. The directory branch must be
changed to designate the new physical volume and the new VTOC index.

Directories may be moved as well as segments. This complicates matters
only insofar as AST hierarchy threads must be reorganized in such cases.

Segment moves are
(See "Special Services
known as pack overflow
segment fault handler.

provoked either by a call from the interface vacate_pv
for sweep_pv" later on) or as a result of a condition
(or "out of physical volume, 'OOPY'") detected in the

Page control, upon trying to grow a page for a segment, notices that there
are no more records available on its current volume of residence. This may only
happen in response to a page fault (see Section IX). The situation requires
actions that cannot be invoked by page control, which may deal only with wired
data bases in the environment in which it handles a page fault. Therefore, it
sets on the bit aste.pack_ovfl in the ASTE, sets a fault in the page-faulting
process' SDW for this segment, and restarts the machine conditions. This causes
the process to take a segment fault. The segment fault handler (See "Segment
Fault Handler", earlier) finds the ASTE, and notices this bit, and calls the
segment mover (segment_mover). Upon return from the segment mover, the segment
has either been moved (in which case a zero status code is the result) or not
(in which case an error code, probably error_table_$log_vol_full is returned),
and the resulting error code is returned to fim to signal or restart the fault.
When the segment fault is restarted, another segment fault occurs (the segment
mover will have revoked all SDWs for the segment, even though page control
revoked the one in this process), and the process reconnects to the "new"
segment. When that segment fault is restarted, a page fault occurs and the
segment, now on a new volume, grows as intended.

The segment mover is invoked, and returns, with the AST and the parent
directory of the segment to be moved locked. It does not unlock this directory.
It locks and unlocks the AST many times during the course of the segment move.
It is passed the ASTE pointer (ensured valid by the lock) and the branch pointer
(which it may not use until the AST is unlocked) by the segment fault handler,
describing the "old ASTE".

9178 4-21 AN61A

The most basic outline of the segment-move operation is as follows.

1. Make the old ASTE inaccessible with a "setfaults".

2. Create an ASTE (the "new ASTE") for the new segment. (It cannot be
activated, for no-one except segment mover can distinguish it from the _~
~ ASTE, which is active.)

3. Call create_vtoce$createv_for_segmove (see "Segment Creation" earlier
in this section) to create a new segment, given the branch of the old.
on some other, suitable physical volume, to create a "new VTOCE".

4. Copy the contents of the segment as it now stands (~ segment is
unambiguous; it is designated by the segment number faulted upon in
this process, the VTOCE, ASTE, and branch it had before the segment
mover was invoked) into the VTOCE-Iess, branchless, anonymous, segment
described by (defined by) this "new ASTE". This segment is on the
"new" physical volume. Null pages are not copied, to avoid
withdrawing records.

5. Copy all the activation attributes from the old ASTE to the new ASTE,
make the new ASTE describe the "new VTOCE" from step 2. Update that
VTOCE from the new ASTE. Both ASTEs and both VTOCEs now describe
identical segments with identical attributes.

6. Change the directory branch (remember, we have the directory locked)
to describe the ~ VTOCE (i.e., change entry.pvid and entry.vtocx).
The old VTOCE is now an impostor, the new one is real. Even a crash
at this point would affirm this.

7. Unthread and unhash from the AST the old ASTE, thread in (including
AST hierarchy threads) the new ASTE, and hash it in as the valid ASTE
for the segment under consideration.

8. At this point, the move is essentially complete. The old VTOCE and
the old ASTE describe a segment that is not designated by any branch
in the hierarchy: an active orphan, not threaded into any structure in
the AST. The new VTOCE, the new ASTE, and the branch are consistent.
Truncate the segment described by the old ASTE, releasing its disk,
bulk store, and main memory resources (it is inaccessible). Free the
old ASTE (call put_as.te). Free the old VTOCE (call
vtoc_man$free_vtoce).

9. The segment move is complete. Return to the segment fault handler or
vacate_pv.

The segment mover uses a vast artillery of complex supervisor programming
techniques. It involves many of the mechanisms described already, such as
segment/VTOCE creation/updating/truncation/deletion, and VTOCE successful-write
awaiting. It protects both old and new physical volumes against demount (see
Section XIV) during critical regions. There is not much to be gained by a
detailed analysis of this little-used and obscure program, when the listing can
be read. The outline above indeed explains the basic flow; a few more points
will be illuminated, which are critical to the understanding of the basic
machination of this operation.

In a .situation where a physical volume has experienced pack overflOW, it is
likely that the logical volume is near full, and all packs or many in the
logical volume are near overflow. Thus, if the normal VTOCE creation primitive
were invoked on behalf of the segment mover, the volume it chose (See "Segment
Creation" earlier) might in fact overflow while step 4 above was being executed.
Then the segment mover would recurse. At any rate, the segment mover ~
prepared for a pack overflow on the new physical volume during step 4, by means
of a condition handler for segment_fault error (in this case, an invalid segment
number will be the cause of the segment-fault error, although aste.pack_ovfl
Hill be on in the new ASTE). However, even given this, the second choice of a
phy~ical volume, should this target pack overflow occur,. cannot be influenced by

4-22 AN61

the fact that this first overflow occurred. Thus, segment_mover needs and has a
way of trying all physical volumes in the logical volume in sequence, walking
the logical volume PV chain (See "Segment Creation" earlier) as a coroutine with
create_vtoce. This is to say that create_vtoce is called in a lQQQ on each
segment- move, at a special entry that walks down the chain finding ~
acceDta~ physical volume each time, until segment_mover can perform step 4
without an overflow on the "new" physical volume. A variable (corout_pvtx)
passed between segment_mover and create_vtoce$createv_for_segmove keeps track of
how far down the chain create_vtoce has gone for this segment move. If step 4
fails on every physical volume though acceptable in the logical volume, or there
are none (one criterion on acceptability is at least as many records free as the
"old segment" had ~.tM ~ record .t..hn started ~ all), the segment move
fails with error_table_$log_vol_full. Needless to say, more arcane machination
is performed when step 4 fails in order to relinquish the VTOCE gotten in step
3, recoordinate all of the data bases and retry steps 3 and 4.

The page control entry pc_wired$write_wait is called at several points in
the segment mover. The purpose of doing this is to force all pages of zeros in
main memory to be noticed by page control, and "nulled" (see "Address Management
Policy," Section VII), to shrink the segment to its minimum possible size
(number of records). As a matter of fact, if this operation, performed upon the
original segment yields ten or more records, the pack is no longer considered to
be in an overflow state, and the segment move is abandoned and declared
successfully over. This cannot be the case for segments activated by vacate_pv.

The segment mover updates VTOCEs and deposits record addresses several
times; all necessary protocols about waiting for successful write completion
(calls to vtoc_man$await_vtoce) are followed.

The updating of record quota used of a directory from old to new ASTE's is
difficult, as active segments inferior to a directory being segment-moved may be
shrinking and growing.

The segment mover ~akes use of the segment number by which the segment
being moved was known in the running process to construct an abs-seg (see
Section VII) with which to reference the old segment; the original SDW was
removed by a setfaults call in step 1 above. The abs_seg "abs_seg" is used to
reference the segment represented by the "new ASTE". A recursive pack overflow
on this segment therefore causes an immediate se&-fault_error, as the segment
fault handler refuses to deal with ha~dcore segments. This causes a signal,
that is caught by step 4, and avoids getting into the segment mover recursively
although page control induced a pack overflow on the ASTE and revoked the SDW
for abs_seg in this case the same as a pack overflow not encountered during a
segment move.

SPECIAL SERVICES FOR sweep py

The online pack maintenance tool sweep-pv (see the Multics Operators' Handbook,
Order No. AH8l) can be used to perform operations upon VTOCEs directly from a
highly privileged process. Among these operations are:

1. Listing the VTOC of a pack, i.e., reporting the pathnames of the
segments owning all VTOCEs.

2. The location of all orphan VTOCEs, (see Section II), VTOCEs not
described by any branch in the hierarchy.

3. The deletion of such VTOCEs.

AN6l

4. The rebalancing of packs via demand segment moving.

5. The vacating of packs (moving of all VTOCEs) via demand segment
moving.

The fundamental primitive used by sweep_pv is phcs_$get_vtoce. This entry,
supplied a PVT index and a VTOC index, calls vtoc_man$get_vtoce to retrieve this
VTOCE, and copies it into the caller's buffer. This entry is nQi, in its
current implementation, protected against volume demounting; it is the user
responsibility of the sweep_pv command not, to demount volumes to which sweep_pv
is being applied.

This entry alone is enough for listing of VTOCs and orphan location. The
UID pathname in the third vtoce-part is used to locate a hierarchy branch
(develop a pathname). The on-line subroutine vpn_cv_uid_path_$ent performs this
UID path (with segment UID) to pathname conversion. This subroutine recursively
scans directories by picking them out from ring zero. If this subroutine
indicates that either the segment UID in the VTOCE or some UID in the UID path
is not the UID of a segment/directory in the directory it claims, an orphan is
indicated.

The highly privileged gate hphcs_$delete_vtoce is used to delete orphans.
It will delete any VTOCE, be it an orphan or not. The exact description of the
act of deleting a VTOCE of a nonorphan is that a (forward) connection failure is
caused. There are no tools to cause connection failures in this manner. This
gate calls the program priv_delete_vtoce to do the work. This program locks the
parent directory; the UID of the parent directory is determined from the VTOCE
to be deleted (which is checked, by the way, agaiQst a UID supplied by the
caller). Note that all that is needed to lock a directory is its UID, notably
nQt a pointer to that directory. The AST is locked and checked to make 'sure
that the segment is not active; if active, it is surely no orphan, and ordinary
means (such as the "delete" command (see the Multics Programmers' MiinYli
Commands gnQ Actiye Functions, Order No. AG92» may be used to delete it. The
operation is aborted in this case, with error_table_$illegal_deactivation as an
outcome. The AST is then unlocked; a dummy branch is then created for the
segment in the stack frame of priv_delete_vtoce. It has the field entry. owner
equal to "777777777776"b3, which will suppress quota movement by truncate_vtoce.
The normal program delete_vtoce (see "Segment Deletion" and "Segment Truncation"
earlier) is then called, being passed the dummy branch, which has been filled
with the physical volume ID and the VTOC index in that volume. The directory is
unloQked, and the error code of the delete_vtoce command returned.

The motivation for deleting orphans is not only that the VTOCE is unusable;
the VTOCE designates pages in its file map that are unusable. The physical
volume salvager does not know that such a VTOCE is an orphan, therefore, its
pages are not recovered until the VTOCE is deleted by this means.

The priv_delete_vtoce primitive has a deep dread of accidentally deleting
something that 1s active. It has no qualms about deleting some VTOCE whose
segment is not active, and causing a connection failure for that segment. If
the UID in the third vtoce-part is correct (not damaged in some unspecified way)
the locking of the parent directory and AST scan ensure that the segment cannot
be active, or it will be found if it is, and the operation aborted. But, should
the third vtoce-part be damaged, AHQ this primitive is invoked (maliciously) on
some segment which II active (sweep_pv, of course, will .n2.t. do this) chaos will
result when that segment is deactivated into a VTOCE which some other segment
owns (~.s1 VTOCE syndrome). The cras,h message "vtoc_man: UID = 0 in a free
VTOCE" at some later time will be one of the outcomes of such behavior.

I

AN61

I

The sweep_pv tool may also be used to force segment moves, either for the
purpose of vacating a pack or rebalancing a logical volume. Three primitives
are provided for this purpose.

1. The entry vacate_pv$vacate_pv, invoked via hphcs_$vacate_pv, which
makes a volume unacceptable for segment creation, whether on behalf of
the segment mover or normal creation (pvte.vacating is turned on,
which is respected by create_vtoce at both entries).

2. The entry vacate_pv$stop_vacate, invoked via hphcs_$stop_vacate_pv,
which reverts the state set above.

3. The entries vacate_pv$move_seg_file and vacate_pv$move_seg_set,
invoked via hphcs_$pv_move_file and hphcs_$pv_move_seg.

The vacate and vacate-stop entries are used in two ways: sweep_pv turns on
vacating (inhibits) volumes being vacated or moved from, and uses this feature
as a control to target segment moves in such operations. These features are
directly accessible to the privileged user via the tool inhibit_pv. (See the
Multics Operators' Handbook, Order No. AMB1.)

The sweep_pv tool uses hphcs_$vacate_pv and hphcs_$stop_vacate_pv to
inhibit all volumes, in the physical volume chain of the logical volume on which
moves are taking place, between the beginning of the chain and the one where it
believes is best for the move to be targeted. As explained in "Segment Moving"
before, the mover finds the first acceptable volume to target a given segment
move. Thus, the "optimizer" internal procedure of sweep_pv uses these
"vacating" bits to manipulate and corner the segment mover, to obtain a balanced
distribution of segments and pages, particularly in the case where a volume is
being vacated. The sweep_pv optimizer is baroque; read the listing for any more
detail.

The demand segment move entries, vacate_pv$move_seg_seg and
vacate_pv$move_seg_file, are used to force segment moves on a given segment. As
explained above, sweep_pv targeted the move by manipulating "vacating" bits;
these entries specify no target volume, the source volume is wherever the
segment resides. Both these entries operate by locating the branch for the
segment, using either directory control or address space management primitives
as necessary, making the segment known (irrespective of the caller's access to
the segment), calling activate (see "Segment Fault Handler" for a discussion of
the significance of calling activate), and invoking the segment mover upon the
ASTE and the branch in hand. The entry to the mover is the same as the one used
by the segment fault handler: the only difference is that a referencing address
of -1 (corresponding to the address page-faulted upon which causes a segment
move) tells the mover that there is no referencing address. The segment is made
unknown and the directory unlocked upon completion (the segment mover unlocks
the AST).

SERVICES ON BEHALF OF THE HIERARCHY SALVAGER

The hierarchy salvager, when operating in other than 'online-salvager'
mode, recursively walks the tree of the Multics hierarchy, walking downward to
find directory and segment branches, and returning upward to accumulate and
verify quota and quota used totals. The hierarchy salvager maintains its own
mechanisms for activating and deactivating directories to be scanned; this is
basically historical in origin, dating from the times the the hierarchy salvager
was a stand-alone subsystem. In order to perform these activations and
deactivations, the salvager must utilize the services of the VTOC manager in
order to access and update the VTOCEs of the directories being activated. When
running in "-check_vtoce" mode, the hierarchy salvager also reads, inspects,
checks and updates VTOCEs of all segments.

9178 4-25 AN61A

The procedure "salv_check_map" in the hierarchy salvager is used by it to
read VTOCEs, calling the "get_vtoce" entry in the VTOC manager as appropriate.
This procedure maintains an array of VTOCE images, with one entry for each level
of directory (and the last level, possibly a segment at each instant) being
scanned. During the checking of the branch for each segment or directory,
performed in salvage_entry, the parameters in the VTOCE are cross-checked and

· .

updated. This includes the primary name, UID pathname, and branch ~'
relative-pointer in the "permanent information" in the third vtoce-part.
(Again, we reiterate that this checking is done for directories all the time,
and for segments only when the salvager is "checking VTOCEs", i.e., in
"check_vtoce" mode). When the salvager collles back lW. the hierarchy,
salvage_directory accumulates recursive information for inferior quo~a and used
figures for each directory being salvaged and includes this among the
information being checked by salvage_entry in the VTOCE for that directory. At
the end of processing each branch, the procedure "salv_truncate" is invoked.
This procedure serves principally to write out the (possibly modified) VTOCE by
calling the "put_vtoce" entry of the VTOC manager. If invoked at an appropriate
entry, salv_truncate also frees all records claimed by the file map of the
VTOCE, thus destroying the contents of the segment. When this is done,
salvage_entry, which requested this service, usually destroys the branch as
well, and salv_truncate frees the VTOCE via a call to vtoc_man$free_vtoce. This
is the hierarchy salvager's mechanism for destroying segments, used in such
cases as connection failure, totally unrecoverable directories, etc.

As stated before, the hierarchy salvager has its own mechanism for
activating and deactivating directories; it must activate directories in order
to check their contents for whatever qualities ~t seeks. It never ~ctivates
segments.

Since the entire processing' of directories is done as part of the branch
checking ~ ~ directory, (this is to say that salvage_entry, the branch
processor, calls salvage_directory, the recursive directory processor, during
other branch checks), the time during which each directory need be activated is
completely contained in the time during which the VTOCE for that directory is in
the array described above (salv_data$vtoce), having been read there by
salv_check_map, and to be written out by sal v_truncate. The procedure
salv activator is used to maintain a set of sixteen ASTEs, associated with the
segm;nt numbers for page-table abs-segs salv_abs_seg_OO to salv_abs_seg_15, into
which directories are activated and deactivated from the array salv_data$vtoce
as the hierarchy salvager goes up and down the hierarchy. This number
corresponds to hierarchy depth. The program salv_activator calls the page
control entries usually used by the storage system activation and VTOCE update
functions, pc$fill_page_table and pc$get_file_map, to fill and find information
about these ASTEs. The entry pc$cleanup is also used by sal v_activator, as in
normal deactivation, to finalize the state of a segment (See "Deactivation"
under "Seg~ent Fault Handling", .earlier in this section.)

It is possible that a directory grows during salvaging; in this case, pages
are withdrawn in the usual manner; the directories being salvaged reside on
whatever volume they do, and are so marked in the ASTE set up by salv_activator,
via the field aste.pvtx. The growing of pages against directories is noticed at
the time salv activator "deactivates" each directory, for in this case the bit
aste.fmchanged Is on. The shrinking of directories by the hierarchy salvager,
which can also cause this bit to be turned on, is much more common.

4-26 AN61

DEMAND DEACTIVATION OF SEGMENTS

The ability to deactivate segments on explicit call is provided via th~
gate phcs_$deactivate. This is available principally as a performanc'e
optimization for the hierarchy dumper. The hierarchy dumper activates large
numbers of segments while dumping them. Since it knows that it will never use
them after dumping them, it can free its AST resources explicitly, making the
ASTEs used by these segments immediately available.

The ability to demand-deactivate segments, as this facility is called, is
provided by the procedure demand deactivate. This procedure locks the AST,
checks if the segment specified via segment number is active (the validity of
the SDW implies that it is), and if so calls "deactivate" to deactivate it (~r
fail if it is nondeactivatable; see "Deactivation" under "Segment Fault
Handling" earlier in this section). The AST is unlocked, and the error code of
"deactivate" returned.

The ability to demand-deactivate any segment is conditional upon the ASTE
bit, aste.demand_deact_ok. All processes that have connected to the segment
must have had a bit in their KSTEs for this segment stating that they wanted it
to be activated with this bit on. Thus, if at least one process is connected to
the segment. that did nQt want it to be ~ctivated with the possibility of
demand-deactivate, it may not be deactivated on demand. This is in order to
implement the policy of the demand-deactivation facility being solely a
performance optimization for single-process use of a segment when that process
fully knows its intended usage pattern for the segment.

One view of this policy is that
use of a segment (via the linker or
deactivation, mo~t shared segments
demand-deactivated.

SERVICES AT DEMOUNT/SHUTDOWN TIME

all activators must agree. Since "normal"
hcs_$initiate) does not permit demand
(library programs, for example) cannot be

The basic goals of demounting a physical volume are to make its contents
inaccessible and cause all of the pages and VTOCEs on that volume to contain the
latest, up-to-date information. The goals of shutdown, emergency and normal,
are the same, except that it applies to each physical volume mounted at the time
of shutdown. Therefore, shutdown is implemented as a call to demount each
physical volume present at the time of shutdown, with the exception that packs
are not unloaded.

Demounting is described more fully in Section XIV. The steps of demounting
are these, as seen by segment control:

1. Turn on pvte.being_demounted for the volume being demounted, to cause
all activation attempts after this point to fail.

2. Deactivate all segments on the volume being demounted.

3. Turn on pvt.being_demounted2 for the volume being demounted, causing
all future attempts to start VTOC I/O to fail.

4. Await the completion of all VTOC I/O for the volume; purge the VTOC
buffer segment of all vtoce-part buffers containing vtoce-parts of
this volume.

5. Clean up the volume, write out the label, etc. (see Section XIV).

4-27 AN61

The first two steps stop all activations and deactivate all segments: all
attempts to activate check the bit pvte.being_demounted under the AST lock, so
that any attempt to activate must either be before or after the AST locking of
step 2, and thus either have its activation reverted by step 2 or fail by virtue
of finding this bit on as the,case might be.

The bit pvte.being_demounted2 is checked by the VTOC manager each time the
VTOC buffer lock is locked or relockedj this is the signal of demounting that
causes VTOCE operations to unitarily $ucceed or fail (see "General Policies" in
Section III).

The steps outlined above are conducted by the procedure demount_pv,
described in Section XIV. Step 4 is conducted by vtoc_man$cleanup_pv, in the
VTOC manager, also discussed in Section III.

The deactivate loop in demount_pv, which implements step 2, generally calls
the procedure "deactivate" to perform these deactivationsj however, in the case
of a system shutdown, the critical steps of deactivation, performed by
pc$cleanup (finalizing segment state) and update_vtoce (the updating of the
VTOCE from the ASTE) are performed by explicit calls to these procedures. This
is to avoid dealing with possibly bad AST threads in the case of an emergency
shutdown: deactivate generally frees the AST entry being deactivated by
rethreading it (via a call to put_aste) in its used list.

The program demount_pv tries to optimize by parallel-processing of many
volumes, in the case where many are being demounted. Thus, in its scan of the
AST for deactivation, it deactivates segments on any volume that is being
demounted. Currently, only shutdown makes use of this featurej normal
operator-invoked demounting operates fully one volume at a time.

4-28 AN61

