
Chapter 6 

PAGE FAULT HANDLING 

1. INTRODUCTION 

In the Multics Operating System, segments are composed of 
l024-word contiguous blocks of data called pages. At a 
given time, any number of pages of a segment may be located 
in core memory, but since that memory is limited in size, ' 
the hardware blocks of l024-word core registers must be 
multiplexed among the many pages of data and procedures which 
may be referenced. It is the purpose of this chapter to 
de'tail the structure of the mechanism which accomplishes 
(block or) page multiplexing in Multics. 

The page multiplexing strategy is similar in broad outline 
to the page table multiplexing perform,ed by the segment fault 
handling module (see Chapter 5). However, there are differ-
ences in detail which arise in great part due to the 645 
hardware used in page fault handling. Page fault handling 
is closely bound to the various registers and logic functions 
which the 645 processor can perform; indeed the major purpose 
of the paging modules is to create the proper environment 
for hardware access to pages. This access is made through 
several registers" but the one which uniquely concerns page 
multipleXing is the page table word (or PTW). This 36-bit 
register, located in the page table for a segment, contains 
all of the information used by the 645 processor to deal 
with a page. The proper maintenance of a PTW is page 
multiplexing's most basic job. 

As a vehicle for carrying the description of page multiplexing, 
there is a convenient set of machine configurations whose 
physical capabilities obviate the need for various parts of 
the page multiplexing function. Considered in order of increas
ing likelihood they are: 

1) Infinite core storage and no secondary storage, 
2) Infinite core storage, with secondary storage, and 
3) Finite core storage with secondary storage. 

Although no multiplexing is required in the first two cases, 
we shall describe the Multics page fault handling strategy 
as it would be performed on each of these three configurations, 
since in this way the real strategy can be described incre
mentally. 
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Before discussing the handling of page faults in detail, 
we shall describe briefly the environment which allows a 
page fault to occur. It is important to remember that a 
page fault cannot occur if there is no page table for the 
segment in question - for a page fault is only generated 
by hardware reference to a page table. The table is 
provided for a segment by the segment fault handler when it 
activates the segment. Also at this time, the Active Segment 
Table Entry for the segment is initialized by the segment 
fault handler with all the information needed by the page 
fault handler. Finally, the page table is set with page 
faults for each page of the segment, so that the page fault 
handler will be invoked upon first reference to each page. 
These actions prepare the environment for page fault handling. 

2. PAGE FAULT HANDLING ON A MACHINE WITH INFINITE CORE 
AND NO SECONDARY STORAGE 

When a process attempts to reference a page whose PTW has 
a fault set, the paging modules are invoked to remove the 
fault and insert the proper core location of the page into 
the PTW. The first action, upon receiving notification of 
the fault, is to locate the page being sought. From the 
PTW address, the address of the Active Segment Table Entry 
(ASTE) for the segment can be found. The ASTE contains the 
segment map (the list of page locations) which yields the 
actual address of the page (as described in Chapter 7). 
The segment map is actually split between the ASTE and the 
page table; however, we will ignore this complication for 
the moment. " 

Since we are now assuming a configuration involving only 
core, the address must be that of a 1024-word block of 
core. Hence, the paging module need only insert the 
proper core address into the PTW and fill in the page 
fault field of the PTW to prevent further page faul~ on 
this page. Thereafter, references to the page through the 
PTW would proceed by hardware without interruption. 

The repairing of a page fault in a PTW need be done only 
once in the environment we are assuming, because all Segment 
Descriptor Words (SDW's) for a segment pOint to the same 
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page table and, therefore, to the same PTW for each page. 
If, however, a segment were deactivated (its page table 
destroyed), then before further references could be made 
to the segment, the page faults set by segment activation 
would have to be satisfied in the way described above. 
Page locations being constant assures us that the infonna
tion stored in a PTW is valid as long as the page table is. 

3. THE ADDITION OF SECONDARY STORAGE 

If we introduce secondary storage into our ~chine 
configuration, we add two problems to the page fault 
handling mechanism. Since the location of a page can now 
be outside of core, there is a need to transport that page 
from its resident device; and also, we must find an appro
priate core block into which to put it. The page fault path 
becomes slightly longer and necessitates referencing a new 
data base - the core map free list. For, in order to pick 
an appropriate block of core for the page, we must avoid 
those blocks currently in use. Since we are postulating 
infinite core, we need not be concerned with depleting the 
free page supply. The functions required in this configura- . 
tion are: 

1) Receive the fault, go from the PTW to the ASTE to 
get the segment map and determine the secondary 
storage location of the page. 

2) Access the core map free list to obtain a l024-word 
block and delete it from the list, and 

3) call a Device Interface. Module (DIM) to retrieve the 
page and deposit it in the newly acquired block of 
storage. 

The DIM's functions in transporting pages are to queue 
requests for pages, to make the device perform as effi
ciently as possible in satisfying the requests, to monitor 
the device operation, and to notify the page fault handler 
when input has been completed. 
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The notification function is performed in such a way as to 
allow the process which took the page fault to wait for the 
page without wasting processor time or making unnecessary 
memory accesses. The page fault handler in the faulting 
process, after calling the DIM to initiate page transpor
tation, calls the System Traffic Controller to wait for the 
page. At some later time, when the page has been imported, 
the Traffic Controller will be called to inform the waiting 
process that it may continue its computation. 

4. RESTRICTION IN CORE SIZE 

When we restrict our configuration to have a finite amount 
of core, we reach the true Multics case where multiplexing 
is necessary. In addition to the functions previously 
described, the page multiplexor must also be responsible 
for finding a free block of core when all blocks are being 
used. This condition requires a selection algorithm for 
removing pages from core to secondary storage; and this 
algorithm reqUires a new data base - the core map used block 
list. 

The two lists of core blocks - free and used - are implemented 
by means of an entire core map. The core map consists of one 
core map entry (CME) for each I024-word block of core. Each 
entry serviced by the page fault handler is threaded into one 
of the two queues - free or used - depending upon its current 
status, but the entry and its physical block remain associa
ted throughout any change in status. The free list is 
singly threaded, since only its first element ~s ever used, 
but the used list is circularly threaded to allow continuous 
searching. 

The actual information contained in a CME can be deduced from 
the part it plays in the removal algorithm. Clearly 'it must 
allow one to obtain the absolute core location of the 
beginning of the I024-word block. But a pOinter to the PTW 
for the page currently residing in the block is also 
necessary if the block is being used, since the removal of 
the page means that access to it should be inhibited by 
setting a page fault in the PTW which controls it. 
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The sequence of actions for handling a page fault in the 
limited core environment is: 

1) As before, get the fault, find the device address 
from the segment map in the ASTE. 

2) Access the core map free list to obtain a free 
block: if successful, place a pointer to the 
PTW in the CME selected, unthread the CME from 
the free list, flag it as being used for I/O and 
thread it into the used list. (Continue at Step 
-6) • 

3) If the free list is el1i>ty, perform the replenishment 
algorithm to find a block in which the referenced 
page can be put. 

The replenishment algorithm is driven by a bit in 
the ·PrW called the "Page has been used" or PHU bit. 
This bit is set by the 645 hardware whenever the 
page is accessed. When a page must be removed, 
the used block .. list of the core map is accessed 
and the entries are examined in the order of their 
threading, starting where the last search stopped. 
Each entry is examined to determine whether the 
PHU bit has been turned on. Each page's PHU bit is 
turned on by the software when the page is brought 
to core, but after each examination during the 
removal algorithm the page fault ~ndler turns it 
off. Therefore, the effective criterion for removal 
is whether the page has been used since it was last 
examined for removal. (For further infonnation 
about the philosophy of this algorithm, see "A 
paging experiment with the Multics System",F. J. 
Corbato, Multics Repository Document MOl04.) 

4) Having found a candidate for removal, set a page 
fault in the PTW, determine the device address 
from the ASTE and call the DIM to transport the 
page to secondary storage. 
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In order to avoid unnecessary page transportation, 
the 645 hardware maintains a "page has been,modified" 
bit in each PTW which is turned on only if the page 
has been written into. Unless this bit is on, the 
page need not be returned to secondary storage. 

5) In contrast to the page important strategy, do not 
wait for this page to be moved, but continue to 
select candidates for removal and call the DIM to 
transport them until a block appears on the free 
list. This block will have been placed on the free 
list by the DIM when a page has been completely 
transported. 

6) Using the device address developed in step 1), call 
the DIM to import the desired page into the newly 
acquired block of core. 

7) Call the Traffic Controller to wait for the page 
to arrive. 

8) Since the PTW's page fault switch and CME's I/O 
busy switch are reset by the process which called 
the Traffic Controller to awaken the waiting pro
cess, the page fault has been entirely repaired 
and the page fault handler may return. 

Figure 1 is a gross flow chart ·of the page fault handling 
strategy as described in Section 4. Special pOints of 
interest are: 

1) Any call to the DIM, whether for reading or writing, 
causes all transactions to be observed and the com
pleted ones to be "posted". The posting process 
for a write operation consists of threading the 
CME out of the used list and into the free list. 
For a read, posting requires that the page fault 
switch be reset and that any processes which might 
be waiting for the page to be imported be informed 
of its arrival (through the Traffic Controller). 

2) The call to the Traffic Controller to wait for a 
page to be read is only made for reasons of 
efficiency and plays no logical part in the page 
fault handling strategy. 
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Figure 1. The Page Fault Handler 
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5. RECAPITULATION OF PAGE FAULT DATA BASE USE 

Having followed the basic paths through the page fault 
handler, we have seen all of the data bases used by page 
multiplexing. However, not all of the items in these data 
bases have been specified, only those portions significant 
to a general understanding of page fault handling. This 
section describes all of the data items referenced by the 
page multiplexor and indicates their uses. (See also 
Figures 2 and 3). 

The most basic page multiplexing data base for a segment 
is the page table, which contains the page table words for 
each page. Page tables in Multics are allocated at system 
initialization time i.n a permanently core-resident system
wide segment, the System Segment Table (see Figure 3). 
Hence, references to a page table are made through the 
normal segment addressing mechanism - although no page 
faults are ever taken on such references. Each PTW has 
six types of data used by the page fault handler. These 
types can be divided further into hardware referenced data 
and solely software referenced. Both types are important 
to page multiplexing. 

The set of hardware referenced data in a PTW consists of 
three items - the page fault switch, the core address 
field and the page has been modified/used bits. Whenever 
the core address is not meaningful, the page fault switch 
is set to inhibit processor attempts to access through 
that address. Since the address field is not used when 
the page fault switch is on, the page multiplexor makes 
use of the storage thus provided by placing part of the 
device address in that field. Logically, the entire address 
can be considered to be in the Active Segment Table Entry 
as mentioned earl{er, but to save storage space, the 
"segment map entry" for a page is stored in the core address 
field of its PTW when the page is not in core. The PHM and 
PHD bits, set by the hardware and reset by the software 
when appropriate, have already been described. 

The data in the PTW which is only referenced by software 
consists of two flags used by the I/O handlers and a ,bit 
which designates "wired down" status. The latter is 
interpreted by the page fault handler during the page 
removal algorithm to mean that this page may not be removed". 
The two former flags are: one to signify that there is I/O 
pending for this page (and whether read or write) and another 
which is set if an r/o error is encountered while transport-

'-

ing the page. '~ 
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Figure 2. Data Base Inter-relationships 

Notes for Figure 2. 

A. To bring in a page from secondary storage, start with the PTW 
which took the fault. Go to the ASTE to get the Device I.D. 
Use the core map free list to get a suitable CME. Fill in the 
pointer to the PTW and transfer the file map to the CME, then 
read in the page and remove the fault. 

B. To remove a page from core, start with the CME picked from the 
core map used list. Go to the PTW by the pointer and set a 
fault; thence to the ASTE for the Device I.D. to complete the 
secondary address. Move the file map back to the PTW. If the 
page has been modified, write it out. 

NOTE: It may seem that Multics has two copies of a data page when the 
data is in core. Logically there is only one and we could 
easily free the storage used by the old page each time it was 
read in. There are three reasons of efficiency why we do not 
do so. 

1) Assigning and reassigning secondary storage blocks takes 
processor time. 

2) If the page to be removed from core has not been modified and 
we have retained the old copy, we do not need to write it out. 

3) If the system were to crash, losing core but not secondary 
storage contents, we would still have a (possibly obsolete) 
copy of the data. 
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A fourth item of information, the address of the segment's 
ASTE, although not contained in the PTW, is implicit in its 
address; the ASTE's (which are fixed in length) are stored 
in an array parallel to the page tables, thereby yielding 
the ASTE address from the page table (or PTW) address. This 
i.nformation is necessary to provide the rest of the device 
address for a page when reading it in from secondary storage. 

Another data base important to page fault handling is the 
Active Segment Table Entry (ASTE) for a segment. The ASTE 
contains more data than is used by the page multiplexor, but 
that portion which is used consists of the device 1.0., the 
page fault count, a "no page fault" switch, the number of 
pages in core for the segment and the current segment length, 
in pages. Of these, only the device 1.0. (see Chapter 7) is 
crucial to page fault handling - tne others are measurements 
for tuning purposes and aids to Segment Activation and 
Deactivation which can be best provided by the page multi
plexor. Additional comment is made on these items in Section 
6 of this paper. 

The third, and last data base used by the page fault handler 
is the core map. The core map is also allocated in the System 
Segment Table whose header contains pointers to the head of 
the free list and to the next entry to be examined on the 
used list. Each core map entry (CME) has two threading 
pointers: the entries in the free list use only the "forward" 
pointer, since entries are removed from the top and added 
there, while the used list employs both "forward" and 
"backward" pointers to allow insertion of an entry between 
any two other entries. A CME on the free list has no other 
useful information contained in it •. The core location of 
the block controlled by a CME is implicit in its position 
within the core ~p, since as many CME's are allocated as 
there are l024-word blocks of core. We note that not all 
CME's are put on the free OY used threads - only those 
blocks to be serviced by the page fault handler. All 
permanently core-resident pages of core are represented by 
CME's which are not pOinted to by entries on one of the 
threads. In this way, the removal algorithm need not 
explicitly check entries which could never bE: removed. 
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Two other items are kept in the CME for a page only if the 
CME is on the used list. First, the segment map entry for 
the page, which was kept in the PTW while the page resided 
in secondary storage, is transferred to the CME before the 
core address is inserted into the PTW. Clearly the core 
address could be kept in this space in the CME when it was 
threaded on the free list if the infonnation were not 
implicitly available. Second, a pOinter to the PTW is 
maintained to permit the segment map entry to be replaced 
and the page fault switch to be reset when the page is 
removed from core. 

We are now in a position to understand the initial 
requirements of the page fault handler in order that it 
be able to function. First, the core map entries for 
multiplexible blocks must all be threaded onto the free 
list. Then, for each segment which is to be referenced, 
each page table word must be filled .in with a segment map 
entry and page fault switch setting; and also the Active 
Segment Table Entry must be initialized in its Device I.D. 
and other entries. This work would allow a page fault to 
be serviced for non-page-fault-handling procedures. 

But what of the page multiplexor itself? May it use the 
same page fault mechanism which it provides?' Not entirely. 
While selected parts of the data and procedures of 'the 
multiplexor could be transportable, at least one path 
through the multiplexor must be guaranteed page-fault free 
to prevent infini te recursion. In Multics, the choice has 
been made to prevent any page faults whatever from occurring 
during the handling of a page fault. To this end, all of 
the page fault handling procedures are permanently core
resident, and for this reason the ASTE is used by the page 
multiplexor. For although all of the necessary information 
about the pages of a segment can be found in the branch for 
that segment, branches are not wired down and are, therefore, 
susceptible to page faults'. Hence, that part of the infor
mation kept in the branch which must be referenced by,the 
page fault handler is transferred to the ASTE at segment 
activation time, to keep it in a permanently core-resident 
data base. This choice permits Multics to follow a more 
predictable and shorter path while handling page faults. 
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6. ADDITIONAL REMARKS 

Several important functions of the page multiplexor nave 
been excluded from the previous discussion since they are 
not necessary to allow page multiplexing. Some of these 
functions receive additional coverage in chapters written 
to explicate the areas in which they are used, but their 
appearance in this paper is germaine to a better unuer
s~anding of the page fault handler's importance in Multics. 

An especially complex area in any multiplexed computing 
system is that of synchronization of processes. Empirical 
evidence has led Multics to the path of least complexity where 
possible. An example is the synchronization of multiple 
processes, all of which may desire the handling of a page 
fault at the same time. To prevent interference between the 
various processes in handling common data, only one process 
is allowed to execute in the page multiplexor at a time. 
Other processes wishing to deal with a page fault are 
forced to wait their turn. 

It is also necessary to synchronize the physical devices 
which transport pages and the processes which have requested 
the transportation. As we have seen, there is no problem 
of synchrony when writing pages. Any process which needs 
to have a write operation completed in order to continue its 
computation simply loops on the core map free list and calls 
to the DIM until a block appears in the free list. When 
reading pages, synchrony is established through communication 
with the Traffic Controller - both to wait and to notify. 
The only remaining problem is to ensure that the DIM is 
called subsequent to the completion of every read so that· 
notification can be performed. 

The DIM is normally called by the next process to take a 
page fault. But if the DIM is not called in a sufficiently 
long time (this could happen if each process were waiting for 
a pagel), the secondary storage devices cause interrupts 
which are directed to a special process whose sole purpose 
is to wait for these interrupts and call the DIM in response 
to them (see Chapter 8). 
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Another function performed by the page multiplexor is 
the assignment of blocks of secondary storage (see 
Chapter 7). No secondary storage is assigned to a page 
until it has been referenced. A special device address 
(the "null" address) is assigned to all pages of a· 
segment which have never been referenced. When such an 
address is encountered by the page fault handler, it 
creates a page of zeroes in core rather than reading in 
data. Ideally, then, the page need not be written out 
until the page-has~been-modified (PHM) bit has been turned 
on by the hardware. In fact, the Multics page fault handler 
causes the assignment of a secondary storage address at 
first reference and sets the PHM bit to force write-out of 
the page. This sometimes results in storing a page of 
zeroes in secondary storage but eliminates a check for "null" 
addresses in the page removal path. 

Actual device storage handling is incorporated into a 
separate module whose algorithm for assigning storage on a 
particular device can be easily changed to accommodate any 
system discipline (such as directory segments on Drum and 
non-directory segments on Disk). 

The movement of data from one device to another is also 
accomplished in the page multiplexor. Chapter 7 describes 
the function in detail, but the basic mechanism used is 
an additional item in the ASTE for a segment which can 
specify a "move device 1.0." and a bit in the segment map 
entry which specifies whether or not the page (which must 
be in core) has already been moved. Using these items, a 
segment can be moved by setting the move device to 1.0. when 
activating the segment. Then, whenever a page is brought 
to and subsequently removed from core, it is rewritten onto 
the new device. 

The final functional area incorporated into the page 
multiplexing modules is that of services to the segment 
activation and deactivation module. A special set of 
entry-points allows individUal page manipulation on demand. 
Specifically, the functions are: 

1) To read or write a page from/to secondary storage. 

2) To "wire" or "unwire" a page by setting the "wired 
down" bit in the PTW which allows a page to be 
skipped by the removal algorithm (this function is 
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used only for temporary wiring). Pages are 
"wi red" (made permanently core-resident) by 
leaving their CME's off the core-map used list. 

3) To truncate a segment by destroying all pages 
beyond a certain page and returning their 
secondary storage to the free pool. 

4) To cleanup all traces of a segment in preparation 
for its deactivation. This function consists 
of exporting the entire segment (removing all of 
its pages) and waiting until the pages have all 
been exported to their resident secondary storage. 

7. THE HISTORY OF THE MULTICS PAGE MULTIPLEXOR 

The entire Multics file system has gone through two 
incarnati.ons. The original version carried the Multics 
penchant for elaborate original design to some lengths and 
was successfully implemented. Its performance and amenability 
to debugging left something to be desired. Therefore, this 
second attempt was made, using the knowledge gained from the 
first to avoid areas of difficult implementation and slow 
execution. 

There were two principal changes respecting paging. First, 
a single page size of 1024-words was chosen, replacing the 
previous strategy in which pages of two sizes, 1024-words 
and 64-words, were allowed. This simplification resulted in 
the elimination of elegant but time-consUming algorithms for 
page removal and for "change-making" and coalescing free 
blocks in core and in secondary storage. Second, a single 
segment size of 64 pages (implying a single page table size 
of 64 words) was chosen, replacing the previous strategy 
in which segments could vary in size from 64 to 256 pages 
(always in units of 64 pages). This simplification resulted 
in a greatly simplified Page Table-Active Segment Table 
Entry arrangement to the benefit of all the modules involved: 
page control, segment control, core control. As a result of 
these changes, the present implementation has avoided several 
lengthy computations in the most frequently used path in 
page fault handling, achieving a great advantage in average 
execution time over the former implementation. 
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Chapter 7 

SECONDARY STORAGE MANAGEMENT 

1. INTRODUCTION 

Secondary storage management cuts across many parts of 
the Multics virtUal memory system. In this chapter, we 
shall try to minimize repetition by discussing only those 
pOints which have not been discussed elsewhere. 

We shall discuss the assignment of a segment to a secondary 
storage device and the assignment to its pages of blocks of 
secondary storage. We shall also discuss "moving" a segment 
from one secondary storage device to another, i.e., changing 
a segment's assigned device. 

2. ORGANIZATION OF SECONDARY STORAGE 

The physical devices used for storing information in Multics-
core, disks, drums--are divided into 1024-word "blocks" 
corresponding to the division of segments into l024-word 
"pages". Addresses of blocks in secondary storage are given 
as pairs: 

block address ~ (device identifier, block number) 

For the most part, the "device identifier" specifies a 
particular physical device. It is possible, however, that 
one device identifier specifies part of.a large device or 
a collection of small devices. We should, therefore, use 
the phrase "logical device identifier." 

Each (logical) device of secondary storage has an associated 
"Device Map" which records which of its blocks are assigned 
to pages of segments and which are free. The "Device Map" 
contains one bit per block of the device. This bit is set 
to "1" to indicate tha t the ·block is free and to "0" to 
indicate that the block is assigned to a page. 

To assign a block on a device to a page, it suffices to 
search the appropriate Device Map for a bit set to "1", note 
the corresponding block number, and reset the "1" to "0". 
To free a block (when a page is destroyed, for instance) it 
suffices to reset the corresponding bit in the Device Map 
from "0" to "1". 
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3. SECONDARY STORAGE OF SEGMENTS AND PAGES 

3.1. Strategy for Secondary Storage of Segments and 
Pages 

3.1.1. S~ent Assignment. Devices of secondary storage 
are not equivalent. Due to differences of latency and 
transmission timings and to differences in the accessing 
code, some devices prove to be faster than others. For 
example, in the present Multics configuration, the drum is 
faster than the disk. Because of this non-uniformity, each 
segment is assigned to a single secondary device: segments 
expected to be used often are assigned to fast devices, 
segments expected to be used more rarely are relegated to 
slower devices. (When we say that a segment is assigned to 
a device, we mean that the pages of the segment are to be 
stored in blocks of that device.) 

A segment is assigned to a device of secondary storage when 
the segment is created. The algorithm by which segments are 
initially assigned to devices of secondary storage is called 
the "Multi~Level Storage Algorithm". The phrase "Multi
Level" emphasizes the differences in device characteristics. 
A discussion of the Multi-Level Storage Algorithm is beyond 
the scope of this paper. We shall examine only the 
mechanisms used to execute this algorithm's decisions. 

3.1.2. Page Assignment. When a segment is created, its 
64 pages are also, in a sense, created. But before a page 
is referenced for the first time, it cannot contain any 
information. 

Although a few segments may ultimately contain 64 information
filled pages, many segments never contain more than a few 
such pages. It would be wast~ful to tie up blocks of secon
dary storage for pages that contain no information and may 
never be referenced. Therefore, pages are assigned blocks 
in secondary storage only after they have been referenced. 

3.2. Data Relating to Secondary Storage of Segments 
and Pages 
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3.2 • 1. Segment Hap ~ We may now spec ify the "Segment r.1ap" , 
that attribute of a segment which tells where the pages of 
the segment a re stored in seconda ry storage. The Segment 
Map consists of: 

• device identifier 
• 64 block numbers 

3.2.2. The "Null"Block. A special block number, called the 
"null" block nt.Unber, is used to indicate that a page has 
not been assigned a block of secondal~ storage. We often 
say of such a page that it is assigned the "the null block". 
The null block may be regarded as a page of zeros. 

3.3. Procedural Implications of Secondary Storage 
Strategy 

3.3.1. Creating a Segment. When a segment is created, the 
Multi-Level Storage Algorithm is used to assign the segment 
to a device of secondary storage. The segment's 64 pages, 
which have not been referenced, are all assigned the "null" 
block. The device identifier and the 64 "null" block 
numbers are all recorded in the segment's Segment Map. 

3.3.2. Bringing a Page to Core. When a page is referenced 
for the first time, the Page Fault Handler (PFH) is asked 
to "bring to core" a page which is "stored" in the "null" 
block. The PFH handles such a request by: 

• assigning a block to the page ,from the segment's 
assigned device. 

• zeroing out the block in core which is to contain 
the new page. 

• setting the "page has been modified" switch in the 
page's PTW to make sure that the page will ulti
mately be moved to its newly assigned block. 

3.3.3. Removing a Page from Core. When the PFH wishes to 
use a block of core presently occupied by a page, it inspects 
that page's "page has been modified" switch. If the page 
has been modified, then it must be written into its assigned 
block in secondary storage. If the page has not been modi
fied, then it may be overwritten directly since it is equi
valent to the information in the assigned block of secondary 
storage. 
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4. 

4.1. 

MOVING A SEGMENT FROM ONE SECONDARY STORAGE DEVICE 
TO ANOTHER 

Strategy for Moving a Segment 

It is occasionally necessary to "move" a segment from one 
secondary storage device to another. A "move" is necessary, 
for instance, if a secondary storage device becomes full 
or if a segment's usage changes substantially. The decision 
to re-assign a segment to a new device (to "move" a segment) 
is made by the same Multi-Level Storage Algorithm which 
assigned the segment to a device at segment creation time. 

4.2. The Segment Map Revised to Permit "Moves" 

The Segt.lent Map must be revised if it is to be possible to 
move a segment from one .device to another. The Segment Map 
must indicate not only the device to which the segment is 
assigned (in the case of a move, the segment is assigned to 
the new device) but also the device to which the segment 
was assigned. During the move, information must also be 
stored to show to which of these two devices the segment's 
64 pages are assigned. Last, the Segment Map must show 
whether or not a "move" is in process. 

The revised Segment Map has the form: 

4.3. 

• device identifier (or, in case of a move, 
"old device identifier") 

• new device identifier 

• 64 block numbers 
• 64 "moved" switches 

(non-zero only· if a move is 
in progress; thus acts also 
as a "move in progress" switch) 

(a page's "moved" switch shows 
to which 9f the two devices the 
pages are assigned; the "moved" 
switch is meaningful on1y.when 
a "move" is in progress) 

Procedural Implications of uMoves" 

108 -' 



4.3.1. Bringing a Pag2 to Core. When a page is brought to 
core, it must be brought from its presently assigned block 
in secondary storage 0 The Page Fault Handler (PFH), by 
inspecting the "new device identifier", "old device 
identifier", and the page T s "moved~Y switch, can determine 
the device to which the page is assigned. The page's secon
dary storage address then consists of the device identifier 
so calculated and the page's block number. 

In the case of a !lnu:_l" block assignment, the page referenced 
for the first time i~ assigned to a block of the new device. 

4.3.2. Removing a Pag,s: from Core. When the PFH removes a 
page from core it must see that the page is removed to a 
block in the correct device. This means that: 

(a) If the segment is being moved from one secondary 
storage device to another, and 

(b) if the t:. ,:;2' S "moved" switch shows that the page 
has NOT teen moved, then the PFH must 

(c) release ~he block assigned to the page on the 
"old" device, 

(d) assign a tllock to the page on the "new" device, 

(e) record t;":,E: new assignment in the Segment Map J 

setting the "moved" switch» and 

(f) move the ~age from core to its newly assigned 
block in :seconda ry storage. 

4.3.3. Deactivating ",_"Segment - Completing a Change of Devices. 
We kn~N that when a segment is deactivated, the Segment Fault 
Handler calls a specl21 entry of the paging module to force 
the segment!s rerr18.in"::1g pages out of core. Before it removes 
any pages from core, this procedure checks to see if the 
segment being aeactiv2ted is being moved from one device to 
another. If the segm,,::;nt is being moved, code is executed 
which brings to core those pages of the segment which are 

109 



stored in blocks of the "old" device (that is, pages which 
have non- '!null" block nt.nnbers and whose "moved" switches say 
"not moved".) When this has been done, the job of removing 
the segment's pages from core is performed. The pages are 
removed from core as described in the previous paragraph. 
Thus, at the end of the page removal, all of the segment's 
pages are necessarily assigned to blocks of the "new" device. 

When the page removal procedure returns to the Segment 
Fault Handler, the latter updates the Segment Map to show 
the correct device identifier, a zero new device identifier, 
and all "moved" switches showing "not moved"'. With this, 
the move is complete; we see that deactivation completes a 
"move" • 

4.3.4. Performing a "Move". We may now describe the procedure 
which the Multi-Level Storage Algorithm uses to move a segment 
from one device to another. The "new-device" identifier is 
placed in the Segment Map of the segment (in the branch if the 
segment is not active, in the ASTE if the segment is active). 
If the segment is not active, it is made active. Finally, 
the segment is deactivated by means of a call to a special 
entry of the Segment Fault Handler. By supplying a "new
device" and activating the segment, the "move" is initiated. 
By forcing the deactivation of the segment" the "move" is 
terminated, as described in the previous paragraph. 
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Chapter 8 

DEVICE INTERFACE MODULES 

1. INTRODUCTION 

The responsibility of the Device Interface Module (DIM) 
respecting paging is (a) to initiate transfers of pages 
between blocks of core and blocks on secondary storage 
devices as requested by the Page Control Module, and (b) 
to notify the Page Control Module upon the completion of 
these transfers. In general, there is a considerable time 
lapse between the performance of these two functions. 

Page Control uses the DIM by (a) initiating a transfer and 
then (b) waiting to be notified by the DIM. of the completion 
of the transfer. The DIM must, therefore, perform its 
notification function with respect to a given transfer 
without being called by the process which requested that 
transfer. 

Notification of completed transfers is usually performed 
by the DIM just after the latest transfer is initiated. 
The DIM inspects its data bases, determines which transfers 
(by whatever process requested) have been completed, and 
performs the necessary notifications. It then returns 
to its caller which may in turn wait for notification. 

It may happen that all processes are waiting and, thus, that 
no process will (by taking a page fault) invoke the DIM. 
Therefore, as a precaution, the DIM arranges to have an 
interrupt sent to the processor by the secondary storage 
device sometime after it completes its last pending transfer. 
This interrupt will cause a special process to be wakened 
which will call the DIM and cause the required notifications 
to be performed. The DCW (see below) which causes this 
interrupt also disconnects the controller; we call it the 
" la s t" DCW. 

2. GENERALITIES 

2.1. DCW's 

We are concerned with the I/O transactions of transferring 
a page from a block of core to a block of secondary storage 
(or vice versa) involving the GE-645 computer and its peri
pheral units. The Page Control Module "requests" such a 
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transfer by a call to the DIM of the appropriate device. 
The DrM passes the request along to the device controller 
via a special word, called a DeW - Data Control Word. 
A DeW contains the follOWing information of interest to 
us in this paper: 

- op-code 

- core address 

- device address 

- disconnect bit 

- interrupt bit 

2.2. DeW Lists 

read, write, or no-op (on ~ome 
devices) 

causes the device to disconnect 
after satisfying the request 
specified in the op-code 

causes the controller to send an 
interrupt to the processor after 
the request has been satisfied 

Each device controller is driven by a list of DeW's which 
it runs through, consecutively, interpreting the new's, 
until it encounters a DeW with a disconnect bit set after 
satisfying which the controller disconnects itself and 
waits to be reconnected. The DeW lists are all regarded as 
circular in the sense that the controller accesses the new's 
consecutively, modulo some N. The DCW lists are finite in 
the sense that the DIM's always store a DCW with a disconnect 
bit somewhere in each DeW list. This new, whose interrupt 
bit is also set, is called the "last'Y new. 

2.3. Status Queues 

While the device controllers obtain their instructions from 
Dew lists, they record the status of requested transfers 
in special "status queues". A word in the status queue 
is associated with a DeW and written into by the controller 
after the transfer specified by the DeW is begun. The 
status word will show whether the action begun was completed, 
whether there was a parity error, etc. 
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2 .f.. Function of the DIM 

The DIM for a particular device interfaces with the device 
through the two data bases discussed above, the DOW lists 
and the status queues. The DIM interfaces with the user 
(the Page Control Module, in Our case) as follows: 

- on being called, the DIM- sets up appropriate new's, 
- makes sure that the interrupt and disconnect bits 

are set in the proper DCW, and 
- connects the controller if necessary. 

After acting for the particular user, as above, the DIM 

- inspects the status queue, 
- "posts" all completed transfers in the associated 

Page Table Words, 
- "notifies" the processes waiting for the completed 

transfers, and 
- cleans up the SDW list and status queue as required. 

2.5 Normal Operation 

It is expected that enough page faults will occur that 
"requests" for page transfers will, in general, occur while 
each DCW list is non-empty. This means "that the controller 
has not yet reached the "last" DCW with its disconnect and 
interrupt bits set. The DIM accordingly establishes new 
DCW's (as indicated above) and then advances the "last" 
DeW, that is, reset~ the disconnect and interrupt bits in 
the DeW in which they are presently set and sets them instead 
in the now appropriate DeW, further along on the circular new 
list. (We will discuss in detail below just which DCW is 
"last".) In this way, it is expected that the controller 
will run for a long time without reaching the "end" of the 
DeW list and will consequently remain connected and will 
not have to send interrupts. Since the purpose of the 
interrupts would be to force the invocation·of the DIM to 

""notice" the completion of transfers, and since the DIM will 
be called quite often as part of paging, there is no need 
for interrupts. The interrupt associated with the "last" 
DeW takes care of the unlikely case that all processes are 
waiting for page I/O and that no more calls to the DIM from 
the "user" will occur. In this case, the interrupt will 
force a special process to be wakened which will call the 
DIM and so enable the not~cing of completed transfers, 
their "posting", and the associated notification. 
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3.1. Drum Configuration 

The drum contain:> M*N blocks of 1024 words as shown in Figure 1. 
As the mth row of blocks comes under the read/write head, any of the 
N blocks in the row can become part oi a transfer. 

--------------.---- .---------1"'-----

~;...--

\ 
\ 

Reitd/Write Head 

----r.l-'hf=--RDw #3 
,--,-- .~~ • " • .1,-

I .. .-, 
" 

\. 
\. , 

Figure 1. DrUm Configuration 

3.2. Drum's DCW List Configuration 

The drum,DIM maintains a circular DCW list for the drum of 
length L*M where L»N. Each DCW contains the following 
information: 

(read, write, or no-op), core address, m, n, ("last" 
or "not-last") 

where "last" means the disconnect and interrupt bits are 
set (in one DCW only), m is the row number, and n is the 
number of the block in'the row. The drum's DeW list is 
initialized with all of the mrs set, in order, so that: the 
DCW list consists of L one-entry-per-row coverings of the 
drum. As the drum rotates and as the controller advances 
through the DCW list, the number of the drum's "presenting" 
row equals the row number ~f the DCW then pOinted at by the 
controller. For this reason, the drum DCW may have a no-op 
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op-code to specify that no transfer is. to occur involving 
a block on the mth row at this time. See Figure 2. It 
should be emphasized that this L-fold "covering" of the 
drum by the DeW list and the consequent parallelism 
between the drum's physical position and the words of the 
DeW list is not required by the hardware but is a software 
construct (of some beauty.) 

pointer 
(1IP8) 

Drum Physical Position (Row-B) 

Alternative View of Drum 
DCW List as L-fold Coverinb 

Figure 2. Drum DeW List Configuration 

3.3. The "l~st" Dew 

Whenever it is called, the drum DIM resets the "last" DeW 
to be the new last passed by the controller, that is, the 
DeW for which the drum controller has just completed the 
recording of final status. This guarantees that the drum 
controller will never generate an interrupt (and disconnect) 
until L revolutions of the drum after the last call to the 
drum DIM. The drum DIM maintains a pOinter to the "last" 
Dew and, upon being called, erases the "last" information 
from the presently "last" DeW and writes it into the Dew 
just passed by (as explained above), resetting the "last" 
pointer. 
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3.4. Dew List Management for the Dl"'lDll 

When a transfer request is sent to the drum DIM, a pair 
(m,n) is sent as drum block address. The DIM examines the 
DeW list and finds that unique DeW in the L*M DCW's of the 
list which (a) will first be in the controller's pat.h·, 
(b) has a no-op op-code, and (c) has the given valu~ of 
m in its row number slot. There are L Dew's with rO\\1 number 
m and it is expect~d that at least one of them is no-ope 
(If all L of them are in real use, the DIM loops, waiting 
for one of them to come free.) When such a DeW is found, 
the DIM writes the appropriate ,~lue of n into the DeW 
and sets the appropriate op-code (read or write). The 
DIM then goes through the usual steps of setting the "last" 
position correctly, observing, posting, and notifying for 
completed transactions. One pa'rt of cleaning up after com
pleted transactions is to reset to "no-op" the op-code of 
Dew's whose requests have been serviced. 

It is expected that the drum cont'roller will, in general, 
continuously run through the circular DCW list, the "last" 
DeW running along L ~-~volutions behind it, with a bEand of 
non-null DeW's just in front of the current controller posi
tion in the list. See Figure 3. 

"Las t" new 

,£ Requests which are Cumplet.d but not 
~~r, / :/"',/' "Posted" 

I ...... \ i (1./ ~ ~ _____ Cont:roller's DCl-l Pointer 

I "',. I j .. l~ ~-:z---- Requests not yet Serviced 

Figure 3. Density of Non-Null DeW's in Drum's DeW List 
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4. . DISK 

4.1. Disk Configuration 

The "disk" consists of 1 platters each with one movable 
I/O head. The I/O head for any platter may be moved to any 
of J tracks. Each track has K blocks which come under the 
I/O head as the disk rotates. ~ disk DCW specified: 

(read or write), core address, i, j, k, ("last" or 
"not-last") 

4.2. Disk DCW List Configuration 

The disk's DCW list is circular only in the sense that its 
DCW's are accessed by the controller consecutively modulo 
the list length. DCW's are put on the list in the order 
received; there are no no-op DCW's, and the last DCW to be 
put on the list is always the "last" DCW in the sense that 
it contains the disconnect and interrupt bits. 

4.3. Expected Operation 

The Disk DCW list is ordered randomly in the sense that 
requests are put on the list as received and hence without 
regard for the position of the disk (k) or of the 1 arm 
positions j(i). This technique is chosen because of the 
large amount of processing that would otherwise have to be 
done to keep track of the arm positions, the value of k, 

. and the list of unsatisfied DCW's; and because of the low 
probability that such processing would payoff. 

No interrupt and disconnect will occur as long as there is 
at least one request in the queue. Since no reuse of old 
DCW's is made (as in the drum's case), there is no need, 
in cleaning up, to erase the contents of the DCW's of 
completed requests. 
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B. Access Control to the Multics Virtual Memory 
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INTRODUCTION 

An important trend in the design of large computer 
systems is th~ inclusion of hardware and software for 
the sharing of information, both procedure and data. 
Thus, the concept of pure, re-entrant procedure has lost 
its novelty and the sharing of data, as in multiuser 
information retrieval systems, has become commonplace. 
The introduction of sharing into large systems hab, how
ever, brought the difficult problem of access control 
into the realm of the computer system. The comparatively 
easy problem of protecting the supervisor in a batch 
environment has grown into the complex task of permitting 
the flexible sharing of information between system and 
user and between user and user. 

The Multics access control system has been described in 
a number of places with a number of purposes. Graham3 
discusses the fundamental reasoning behind the chotce of 
the Multics ringed access control system; Organick dis
c~sses the details of the implementation and use of this 
system; and the Multics System Programmers' Manual goes 
into even greater detail on implementation. The purpose 
of the present paper is not to duplicate any of the ex
cellent material already available but rather to high
light certain aspects of the Multics ringed access control 
system which are thought to be of particular interest to 
system programmers. 

In this paper we shall develop the ides of the ringed 
access control system as an approximation of access con
trol conditioned on the identity of the procZdure in 
execution, as suggested by Evans and Leclerc ; we shall 
describe "ringed hardware" to support the ringed access 
control system; we shall show how this "ringed hardware" 
is simulated on the 645 processor; and we shall discuss 
at some length the software mechanisms which are implied 
by the concept of "ring". 

This paper was written in conjunction with, and lo~ically 
follows, another paper, The Multics Virtual Memory. 
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Chapter 1 

ACCESS CONTROL PHIlDSOPHY 

In the Multics virtual memory, the segment is the unit 
of information to which access is controlled. In fact, 
the possibility of controlling access to shared infor
mation was a principal justification for designing a 
segmented memory system. In M.lltics,every -segment is 
directly addressable and it is, therefore, necessary, 
upon each attempted memory access, for the accessing 
hardware to answer the question: 

Shall this attempted access be permitted? 

The answer to this question, with respect to a given 
segment, is obtained by interpreting a data base associat
ed with the segment, the segment's "access control attri
butes". It is the purpose of this chapter to discuss the 
basis on which the hardware might go about answering this 
question, hence, to specify the content of a segment's 
access control attributes. 

We feel that, at the least, a segment I s acces·s control 
attributes should indicate: 

1. who may access the segment; a segment may 
be accessible to a single user only or 
shared by a number of users. 

2. how each of these users may access the 
segment; distinct users may have distinct 
access rights. 

3. in what circumstances each user may exercise 
his-access' rights to a segment; a user's 
rights may be made to depend, in some way, 
on what he is doing. 
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User-Name. Let us look at these points in turn. To 
begin with, it is a process executing on a processor 
which attempts to access memory, not a user. For this 
reason, every process has associated with it the name 
("user-name") of the user on whose behalf it is ex
ecuting; all access rights of the process derive from 
the process' user-name. 

We note that the security of an access control mechanism 
depending in this way on the user-name depends strongly 
on the technique by which a process is assigned a user
name. 

A simple and perhaps sufficient technique for assigning 
user-names to processes is to reCN-ire each user, when 
he "logs in", t{1 specify a user-name and then give a 
secret password which validates his right to use the 
given user-name. All processes which subsequently act 
for him as a result of this "login" will then do so 
with the authority of the given, validated user-name. 

Access-Mode. The basic types of memory access are READ, 
WRITE, and EXECUTE. We use the term "access-mode" to 
refer to any combination of these types including the 
null combination. It is clear that a process' access 
rights respecting a segment are at any moment char
acterizable in an access-mode. 

If a process' access rights were to be independent of 
its activities, chen a segment's access control attributes 
could be recorded in a list of user-name/access-mode 
pairs. A process' right to access a segment. in a given 
way would then be determined by (a) whether the process' 
user-name appeared in the segment's list and (b) whf·ther 
the given access type appeared in the corresponding 
access-mode. This system of access control is illustrated 
in Figure 1. The access control mechanism takes as 
arguments the process' user-name, the type of the attempted 
access, and the name of the target segment. It then 
searches the target segment's access control attributes 
list for the given user-name. If it is found, the 
corresponding access-mode is then searched for the given 
access type. The access is permitted only if the user
name and access type are found. 
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The system of access control just described is 
already quite powerful. It permits a user who has 
created a segment to grant himself READ-and WRITE
access to it, to store information in the segment, 
and then to give a number of other users READ-access 
to it. He and these others may now read the segment 
whereas he retains for himself the right to change it. 

1. target segment 

access-mode, 
2. user-name 
3. access-type 

obtain target segment's 
access control 
attribute list - --

----
user-name· 

J 
access-mo e. 

is "access-type" In 
the associated 
access-mode? 

~--------~--------

--no ------
-

no ,. 
f-

cause the appropriate 
access violation 
fault to occur 

-

Target Segment's Access 
Control Attribute List 

Figure 1. Illustrating an Access Control Mechanism 
Depending on User-name and Access-type 
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Circumstance-Dependence of Access Rights. There are two 
reasons why a process' access rights should somehow be 
made to depend on the process' current business. First, 
the problem of error may suggest that access, particular
ly WRITE-access, to a segment should be lindted to de
bugged procedures or groups of procedures. Second, the 
problem of intentional ndsuse of a segment may suggest 
that send-trusted users be forced to access the segment 
via procedures or groups of procedures specifically 
designed for their use. 

As an example of the latter, consider a Management In
formation System with a data base including individual 
salary information. This data base would generally be 
'ireadable" by all users of the system; but the less pri
vileged users would have to "read" the segment via pro
cedures designed not to disclose individual salaries. 

In the remainder of this chapter we shall take for 
granted the dependence of access rights on user-name and 
shall concentrate on finding a good and workable way to 
make a process' access rights to a segment circumstance
dependent. 

1. ACCESS CONTROL BY PROCEDURE 

The most obvious way to achieve circumstance dependence 
in access control would be to condition a process' access 
rights on the procedure by which the access is attempted. 
A segment's access control attributes would then be 
recorded, in effect, in a user-name versus procedure table 
whose entries are access-modes. 

Figure 2 illustrates this system of access control. The 
access control mechanism takes as arguments the process' 
user-name, the type of attempted access, the name of the 
procedure in execution, and the name of the target seg
ment. The target segment!s access control attribute 
table is then searched for an entry corresponding to the 
given user-name and procedure. If the entry is found, 
the corresponding access-mod~ is then searched for the 
given access type. The access is permitted only if an 
entry with a suitable access-mode is found. 
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This type of control would permit access control as 
illustrated in the following example: 

user-l "owns" data segment D and procedure P and 
gives user-2 WRITE-access to D only when executing 
P and EXECUTE-access to P only when executing in 
procedure P (and, of course, P itself). 

This implies that user-2 can only write in D by calling 
P from P (to which user-2 has access 'from ,some source 
other ,than user-l). 

target segment 
user-name 

3. access-type 
4. procedure 

obtain target segment's 
access control 

Uri bute tabl e 

I : 

1 .... 1 
I Q) , 
I\,. I 

::J i 

user-name1 

rio 
----~~--r-1--+--~~--;--user-name. 

is "access-type" in 
the corresponding 
access-mode'! 

yes 
~----''-

permit the 
access 

" J 

/ 

I 

" ...... 

-". -
" --- "-

J 
+--+--1-'· " , .... 

- --- - -- _ - .: -=t acces s-m51 
--,-
no 

Target Segment's Access 
Control Attribute Table 

cause the appropriate 
access violation 
faul't to occur' 

Figure 2. Illustrating an Access Control Mechanism 
Depending on User-name, Access-type, and 
Procedure 
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2. ACCESS CONTROL BY SET 

The idea of conditioning access rights on the proce~ure
in-execution has been proposed by Evans and Leclerc and 
is an idea that occurs to many system programmers at 
some point when they are struggling with difficult access 
control problems. We would recommend this technique were 
it not for some difficulties which render it infeasible. 
The principal hindrances to the conditioning of access 
rights on the procedure-in-execution are: 

• no hardware presently exists which would permit 
this type of access control to be practiced in 
any but an interpretive mode 

• too much effort and space must be expended in 
constructing and updating each segment's table 
of access control attributes 

• too much must be foreseen: This technique require$ 
knowledge of all of the uses to which each segment 
may legitimately be put. 

A natural idea for approximating the procedure-in
execution strategy is based on grouping related procedure 
segments into "sets" and basing access rights. to segments 
on the identity of the set to which the procedure 
attempting the access belongs. 

There is no reason, by the way, to suppose that these 
sets of procedures would be disjoint; indeed,service 
procedures such as PL/I runtime routines would probably 
be included in every set. 

Access control by procedure-set appears to have two advan
tages over access control by procedure. First, 'each seg
ment would have a somewhat smaller table of access control 
attributes, a practical system presumably having fewer sets 
than procedures in sets. Second, updating the per-segment 
access control attributes tables should be easier, since 
adding another procedure to a set would mean revising the 
definition of the set, not amending the access control 
attribute tables of a large number of segments. 
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Figure 3 illustrates access control based on set-in
execution. The form of a segment's access control at
tributes and the interpretation of these attributes by 
the access control mechanism are just as in access con
trol by procedure, as described in Section 1 above, 
except that "set" replaces "procedure" wherever it 
occurs. 

The concept of "sets" introduces a number of interesting 
problems. Given that each procedure is potentially an 
element of several sets, and stipulating that a change· 
of set can only occur upon a change of procedure (i.e., 
upon a call or return), how shall the access control 
mechanism determine to which set to change (if any) 
upon each transition between procedures? How shall the 
composition (membership) of sets be initially defined 
and by what mechanism shall the compo~ition of sets 
be changed? Shall the composition of sets be determined 
in a system-wide way or per-user or per-project? And 
so on. 

We have introduced this concept of "sets" of procedures 
in order to make the definition of "rings" (see below) 
less abrupt and also to put the concept of "rings" in 
perspective. 

3. ACCESS CONTROL BY RING 

The implementation of an access control strategy based 
on sets, as described above, is judged infeasible due 
to the difficulty of defining sets, of unambiguously 
defining all transitions between sets, etc. It is use
ful to define a restricted theory which produces the 
more useful concept of "rings". 

We use the term "rings" to refer to "sets" (as described 
above) to which access rights to all segments are 
assigned in such a way that the sets can unambiguously 
by ordered by increasing power or privilege. Precisely, 
we say that a collection of ~ is a collection of 
rings if the sets can be numbered 0, 1, 2, ••• in such 
a way that the possession by a particular user of an 
access right to a segment in set k implies the pos
session by that user of that segment for all sets j, 
j<k. 
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A corollary of this definition is that a user's 
access rights to a segment can in part be expressed 
as an access-mode and a triple of ring numbers -
r(READ) , r(WRITE), and r(EXECUTE) - indicating that 
a given access type, X, if present in the access-mode, 
is to be available to the user in the rings O-r(X), 
inclusive. We shall defer to the next chapter con
sideration of how a process changes from one ring to 
another. 

Figure 4 illustrates access control base on the ring 
in which the process is executing. The essential 
point to notice is that a segment's access control 
attributes can be very concisely recorded. The 
interpretation of the access control attributes is as 
discussed in the preceding paragraph. 

A few comments about rings may be in order. First, 
the introduction of rings greatly simplifies the 
recording of a segment's access control attributes, 
as indicated above. Second, the fact that rings are 
ordered removes the ambiguity about the changing of 
power that was inherent in the idea of a transition 
between sets: when the processor changes from ring 
i to ring j, j>i implies an increase (or at least no 
decrease) of power or privilege with respect to all 
segments; and j<i implies a decrease. This homo
geneous and evident change of power with the change 
of ring makes it nruch easier to think about the 
problems of changing rings than it could ever have 
been to think about the changing of sets. As we 
shall see, and notwithstanding the previous remark, 
most of the difficulty in the fully worked out 
strategy of access control by ring nevertheless 
resides in the mechanics of changing rings. 

The following points seem to De necessary elements of 
any access control strategy based on the idea of rings: 

• Attempts by the processor to pass control from 
one ring to another nrust be supervised by the 
access control mechanism. 
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• The transition from one ring to another can 
only occur upon a call or return; the 
transition (if any) associated with every call 
and return must be unambiguously defined. 

• The concept of a "return" from a call must be 
extended to imply returning to the ring from 
which the call was made. 

3.1 Multics TerminologYi Gates 

In Multics the term "inward" is used to characterize 
a transition from one ring to a more privileged ring, 
the term "outward" to characterize a transition in 
the other direction. Procedures which may be called 
by "inward" calls are called "gate" procedures since 
they are, in effect, gates through which the processor 
may enter the more privileged ring. We shall see 
that the major difficulties in the design of a ringed 
access control system relate to allowing outer ring 
procedures to use inner ring procedures without 
allowing them to defeat the protection purposes 
responsible for the existence of rings. 
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Chapter 2 

HJLTICS RING STRUCTIJRE PHILOSOPHY 

In Chapter 1 we discussed access control and dev
eloped the idea of rings in a general (i.e., non
M.1ltics) way· We now turn to Multics itself. In 
this chapter we shall enlarge on the subjects of 
rings and gates, state and justify the full Hultics 
ring structure strategy, and show how this strategy 
can be implemented with the aid of suitable hard
ware. 

In this and the following chapters, the emphasis 
in the definition of "ring" will shift slightly. 
We will think of a ring not as a process state de
fined by a set of procedures, but rather as an 
abstract process state in which, by virtue of the 
access control rules of the system, a particular 
set of procedures may be permitted to execute. 
There are 64 rings in MJltics which are conventionally 
numbered, in order of d~creasing power, from 0 to 63. 

1. THE PRELIMINARY STRATEGY 

A preliminary (and conceptually useful) idea for the 
use of rings is based on specifying a·user's access 
rights to a given segment with an access-mode, a 
single ring number "r", and a gate-switch. 

The Rules. The ring number r, gate-switch and access
mode are interpreted as follows. (Note that all ring 
intervals are inclusive). 

a. If the user's access-mode contains WRITE, 
the user may, in rings (O,r), write in the 
segment. 

b. If the user's access-mode contains READ, 
the user may, in rings (O,r), read the 
!:Iegment. 
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c. If the user's access-mode contains EXECUTE, 
the user may, 

1. in ring r, call and execute the segment 

2. in ring R<r, call the segment, switching 
to ring r to execute it 

3. in ring R<r, but only if the gate-switch 
is set, call the segment, switching to 
ring r to execute it 

Every attempt by the process to 
switch to a lower numbered ring 
in this way must pass a legitimacy 
test imposed by the access control 
mechanism and by the procedure 
being entered. 

d. All ring switching must be done under the 
supervision of the access control mechanism. 

e. The concept of "return from a call" must be 
extended to imply a return to caller's ring. 

The Need for "Gates". Since an "inward" call (i.e., 
a call through a "gate") increases the processor's 
power, it is necessary that a test be made to verify 
that the process has attempted to enter the more 
powerful ring on a legitimate errand. For, if the 
process could freely change its ring so as to increase 
its power, the protection offered by the ring aspect 
of the access control mechanism would be wholly 
illusory. The kind of testing is occasioned by an 
attempted inward ring change will be discussed in 
detail in Chapter 3. As an obvious example, we note 
that a call to a gate segment should be permitted only 
if the target address is in fact an entry point of 
the segment. 

2. TIlE "RING BRACKET" STRATEGY 

The principal difficulty with the "preliminary" 
strategy described above is that procedure segments may 
be executed in one ring only. This means that a pro
cedure likely to be called in several rings will often 
be called from a ring other than its ring of execution, 
occasioning a great deal of ring changing, an expensive 
business as we shall later see. A second difficulty 
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with the "preliminary" strategy is that users with 
both READ- and WRITE-access rights for a segment have 
these rights equally in all of the rings from 0 to r. 
Since the ability to write in a segment is intrinsi
cally more powerful than the ability to read it, it 
would be desirable to be able to grant write permission 
to a user in a (relatively privileged) s\Jbset of the 
rings in which he may read. As a result of these and 
other considerations, Multics has rejected the "pre
liminary" strategy for a "ring bracket" strategy. 

Under the "ring bracket" strategy, a user's access 
rights respecting a given segment are encoded in an 
access-mode and a triple of ring numbers, (rl, r2, r3), 
called the user's "ring brackets" for the given segment. 

The Rules. The ring brackets, (rl, r2, r3), which 
must satisfy the relations rl<r2~r3, are interpreted as 
follows. (Note that all ring-intervals are inclusive). 

a. If the user's access-mode contains WRITE the 
user may, in rings (O,rl), write in the segment. 

b. If the user's nccess-mode contains READ the 
user may, in rings (O,r2), read the segment. 

c. If the use.r's access-mode' contains EXECUTE 
the user may, 

1. in rings (rl,r2) call the segment without 
changing ring 

2. in rings (O,rl-l), call the segment, 
switching to ring rl 

3. in rings (r2+1, r3), call the segment, 
switching to ring r2 

Every attempt by the process to· switch 
to a lower numbered ring in this way 
must pass a legitimacy test imposed by 
the access control mechanism and by the 
procedure being entered. 
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d. All ring switching must be done under the 
supervision of the access control mechanism. 

e. The concept of "return from a call" must be 
extended to imply a return to the caller's 
ring. 

Under these rules we see that a utility routine may 
be given ring-brackets (0,63,63) and so be callable 
in all rings, but never occasion a change of rings 
upon being called. On the other hand, a critical 
system procedure might have ring brackets (0,0,0) and 
so be callable and executable only in ring O. 

We also see that a user who has read and write per
mission for a data segment may be given ring brackets 
,a,b;b) wit:h a<b so that the domain in which he has 
write permission, rings (O,a) is a relatively pri
vileged subset of the domain in which he has read 
permission, rings (O,b). These comments show how the 
ring bracket slrategy corrects the defects which we 
noticed in the preliminary strategy. 

Ring Changing Calls. Let us now discuss inward and 
outward calls. The "rules IT provide that every pro
cedure segment for whichO<rl may be entered via an 
outward call (from ring 0, for instance) and that 
those procedure sE'gments for which r2<r3 are "gate" 
segments and may, therefore, be entered via inward 
calls (from ring 13, for instance). What is the 
nature of such calls? 

An inward call is made when a procedure in an outer 
ring wants to inClease the power of its process tem
porarily in order to do a job requiring such increased 
power. For example, a user procedure may call a 
system procedure in ring 0. The notion of "inward 
call" brings to mind ITthe t~il wagging the dog", since 
lesser power dire<.ts the use of greater power. The 
only segments whic~ can be entered via inward calls 
are, therefore, th.~ "gate" segments. The duty of a 
gate segment, as a gate segment, is to perform a test 
of the legitimacy t..f the inward call, that is, to see 
that the caller has not, by accident or design, asked 
the gate segment tc behave irresponsibly. Whether 
or not a segment is a ITgate" for a particular user 
depends on that usee's ring brackets and access-mode 
respecting that segnent. 
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An outward call is made when a procedure executing 
in an inner ring wants a job done which can (and 
perhaps must) be accomplished with the comparatively 
feebler power of an outer ring. For example, a 
process in Multics initializes itself ( a system 
function) in ring 0 but calls out to a user ring when 
ready to do the user's work. In this case, the pro
cess must callout since a Multics convention forbids 
user work to be done in ring O. For another example, 
a programmer with a collection of more or less 
debugged procedures may use several rings, keeping 
the more debugged procedures and their data in the 
inner rings so that damage from the other procedures 
will be isolated in the outer rings. If these pro
cedures call each other freely, outward calls will 
presumably occur. 

3. RECORDING AND RECOVERING ACCESS CONTROL RIGHTS 

In "The Multics Virtual Memory"l, we find that all of 
e segment's attributes of interest to the system are 
~tored in the segment's "branch" in a "directory" 
segment. The access control attributes of a segment 
ere stored in its branch in a variable length table 
called the access control list (ACL). Each entry of 
a segment's ACL specifies a particular user's access 
rights respecting the segment and is af the form: 

user-name, access-mode, ring brackets 

The procedure responsible for determining a user's 
access rights for a given segment searches that seg
[:lent's ACL for the user's user-name. If it is not 
found, then the user has no rights. If it is found, 
then the user's access rights are determined by the 
Qssociated access-mode and ring brackets. 
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4. "RINGED HARDWARE" 

In "The Multics Virtual Memory"l we discussed the 
use of the 645's descriptor segment and Segment 
Descriptor Word (SOW) in providing the Virtual 
Memory. It was noted that part of each SOW was 
reserved for an access control field. In this sec
tion we shall discuss hardware similar to the 
645'5 which is consistent with the description 
given in "The r-Lltics Virtual Memory" and which per
mi.ts a simply described implementation of the Mlltics 
ringed access control strategy. In Chapter 4, we 
shall describe the actual 645 hardware and discuss 
the software modifications needed to provide for the 
differences from the hardware described here. 

We propose "ringed hardware" with the following 
features: 

1. The processor has a ring register whose value 
defines the process' ring. This register 
may be changed £y instructions only in ring 0, 
that is, when its value is O. 

2. The SOW's access control field contains the 
process' access-mode and ring brackets. 

3. The processor has an access control mechanism 
which checks attempted memory accesses 
according to the rules stated in Section 2 
and causes the processor to fault (trap) to 
an appropriate procedure in ring 0 in cases 
where the attempted access cannot be (or 
cannot be directly) performed. Such a 
fault causes the hardware to set the ring 
register to o. 

It should be clear that a procedure executing in ring 
n should not be able to change the value of the ring 
register to m, m<n, simply by executing an instruction. 
It might, however, seem that ring changing should be 
accomplished by the hardware itself, during the 
execution of a transfer instruction, by a simple change 
of the contents of the ring registe~ We have 
avoided specifying such hardware, for, as .. we shall 
see in Chapter 3, changing rings is quite complex and 
requires considerable software assistance. In light 
of this fact and considering the hardware organization 
d2scribed above, we may describe the functioning of 
this system as follows: 
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When a memory access is attempted, the type of 
access (read, write, or execute) and the pro
cessor's ring register are compared, by the pro
cessor's access checking mechanism, with the 
access-mode and ring brackets fields of the target 
segment's sow. As a result of the comparison, 
three actions may be taken: 

1. The memory access 1s performed and the 
ring register is unchanged. 

2. The memory access 1s a ring changing 
transfer; the processor faults to the 
ring changing fault handler, in ring O. 

3. The access attempted is illegal; the pro
cessor faults to a suitable access violation 
fault handling procedure, in ring O. 

Note that the fault handling mechanism must have the 
power to change the ring register. This is achieved 
by making the fault handling procedure executable 
in ring-O only, making the hardware enter ring 0 
upon taking a fault, and making the ring register 
changeable (by instruction) in ring 0 only. 
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Chapter 3 

SOFTWARE FUNCTIONS IN RING CHANGING 

We indicated, in Chapter 2, that ring changing is a 
complex activity requiring considerable software 
assistance. In this chapter we will discuss various 
aspects of an operating system imposed by a ringed 
access control system and will discuss the software 
functions consequently required in ring changing. 

We will structure our exposition by separately des
cribing the four types of ring changes, inward and 
outward calls and returns, attending to points of 
interest as they arise. That done, we will conclude 
with a discussion of important facts and concepts and 
a quick once-over of the ring changing software. 

Many of the functions to be described below might be 
performed, at least in part, in the inner-ring pro
cedure involved in the change of ring rather than in 
the procedures of the ring changing mechanism, and 
some of the functions might more naturally be per
formed there. We take the point of view, however, 
that the code required to perform ring changes should 
be concentrated in a single place and we give the ring 
changing mechanism responsibility for performing all 
of these functions. In order to handle ring changing 
in this way, it is necessary to establish certain 
conventions between the ring changing mechanism and 
the inner-ring procedures involved in ring changes, as 
we shall see below. 

1 • INWARD CALLS 

Detection. An inward ring changing call is detected 
when an inward ring changing fault occurs as the 
result of a "call" (rather than of a "return") type of 
instruction. The fault handler obtains the number of 
the target ring from the process' ring brackets for 
the target segment; according-to the rules of Chapter 
3, Section 2, the target ring is "r2". 
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Gate Address Validation. The handler's first business 
is to verify that the address to which the caller wish
es to transfer is indeed a gate entry point for the 
process. This verification is based on a "gate-list" 
(i.e., a list of gate entry points) associated with the 
target segment; this gate-list may be system-wide in 
the sense that all users who may use the segment as a 
gate may use the same gate entry points or may be per
user in the sense that each user who may use the seg
ment as a gate has a private gate-list. In today's 
Multics, the gate-list is system wide and is stored in 
the procedure segment (rather than, for instance, in 
the segment's access control attributes in the seg
ment's branch). 

Per Ring Data. We must now consider the nature of the 
"workspaces" of the calling and of the called pro
cedures. In the ringed environment, all data must be 
"ring bracketed", including workspace data, e.g., the 
PLll static and automatic data. Since a procedure 
executing in ring r may freely copy into the (ring r) 
workspace any data readable in ring r, including all 
such data not readable in ring r+l, it is clear that 
ring r must use a workspace with ring brackets (r,r,r). 
Thus, assuming that any workspace segment has an 
access-mode implying read and write permission, the 
workspace for ring r is readable and writeable in rings 
a to r and cannot be accessed at all in the rings r+l 
to 63. The above considerations imply that the pro
cess needs distinct workspace segments corresponding 
to the rings in which the process executes. Hence, 
the inward ring changing fault handler will have to 
provide the proper workspace for the called procedure. 

The Environment. We may generalize from the idea of a 
workspace segment to the idea of an environment. Object 
procedures expect to execute and, therefore, to be. 
transferred to, in a conventional environment defined 
by various appropriately valued hardware registers and 
data structures. Among other things, the environment 
specifies the workspace to be used by the procedure. 
(Thus, for example, Multics procedures expect certain 
processor base registers to be pointing to appropriate 
"stack" and "linkage" segments). Since this conven
tional environment is assumed, it is obviously a duty 
of the ring changing mechanism to create the environ
ment which the procedure being entered will expect to 
use. 
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Argument Validation. Now let us consider the arguments 
which may be passed by the caller to the called (gate) 
procedure. To begin with, providing a suitably ini
tialized environment for the called procedure involves 
copying the address of the argument-list (or copying 
the argument-list itself) into the environment 015 the 
called procedure. Certain precautionary measures then 
become necessary which relate to the need for a "gate" 
to act responsibly, as discussed in Sections I and 2 
of Chapter 2. Let us motivate the discussion of these 
precautions by considering two examples of inward calls 
which should be aborted by a careful ring changing 
mechanism. 

1. A ring-50 procedure calls a gate procedure in 
ring-32 and specifies a return argument in 
the workspace of ring-40. If the call is not 
aborted, the gate procedure may write in the 
ring-40 segment at the explicit request of 
the ring-50 procedure. The gate procedure 
would thus in effect permit the ring-50 
procedure to overwrite the ring-40 segment, a 
clear violation of the access control phil-
osophy. . 

2. A ring-50 procedure calls a gate procedure in 
ring-32, specifying return arguments in ring-
50 segments and input arguments in ring-40 
segments. If the call is not aborted, the 
gate procedure may copy ring-40 data into ring-
50 segments. The gate procedure would thus in 
effect permit the ring-50 procedure to read 
ring-40 data, another violation of access con
trol philosophy. 

The responsibility of a gate procedure may be character
ized as avoiding the improper use, on behalf of an 
outer ring procedure, of that part of its accessing 
power which exceeds that of its ~aller. To fulfill this 
responsibility, a gate procedure ~st, before accessing 
memory via an address obtained from its caller (or from 
any other outer ring source), verify that the intended 
type of access could have been performed by the caller. 
We shall refer to this as "validating the address". 
Once all addresses obtained from outer rings have been 
validated, the gate procedure may freely proceed, 
since it is clearly safe to use all other addresses. 
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Although this "address validation" can all be done 
by the gate procedure itself, our point of view 
suggests that as much of it as reasonably possible 
be done by the ring changing mechanism. Since most 
of the addresses supplied to a gate procedure by its 
caller are the addresses af arguments, we assign the 
business of validating these addresses to the ring 
changing mechanism and we leave it to the gate pro
cedure itself to validate all other suspect addresses. 
Checking the addresses of the arguments is called 
"argument validation". Argument validation should 
include checking that the caller has READ-access for 
all of the arguments being passed and WRITE-access 
for those arguments, including "return" arguments, 
in which the called procedure may write. Argument 
validation implies a further step in inward ring 
changing: argument-list copying. For, if a pointer 
is checked to see that its value may safely be used, 
then the pointer may not safely be left in a seg-
ment where it may be changed by a process executing 
in a ring less privileged than the gate's. Therefore, 
all addresses to be checked must be copied into the 
gate segment's workspace prior to such checking. 

It is clear that the argument validation mechanism 
must make use of an argument-list-descriptor, pre
surna.bly coded as data, associated with the gate 
entry pOint. This descriptor tells how many 
arguments are expected and how they are to be used 
(i.e., whether they will be read and/or written in). 

The argument-list-descriptor(s) for a gate segment 
may be implemented in many ways, for example, as 
part of the gate segment's gate-list. In any case, 
it is clear that the argument-list-descriptor, like 
the gate-list, must be supplied to the ring changing 
mechanism by the gate (inner-ring) procedure rather 
than by the calling procedure. 

Figure 5 illustrates a gate procedure segment, with 
its gate-list and argument-list-descripto,rs, in a 
straightforward implementation. When this segment· 
is called from an outer ring, the ring changing 
mechanism validates the attempted transfer address 
by finding it on the gate-list and validates arguments 
by checking that the caller has the access rights to
ward the arguments which are specified in the argument
list-descriptor associated with the transfer address. 
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2. OUTWARD RETURNS 

The Detection Problem. The detection of an outward 
return is not straightforward. Since the procedure 
to be returned to may well have ring brackets per
mitting it to execute in the returner's ring and, 
indeed, in a number of other rings, one may well 
wonder how the ring changing fault associated with 
the return is generated and how the ring changing 
mechanism decides which ring to retqrn to. 

An example may make these remarks clearer. Consider 
a call from ring-20 to a procedure P with ring 
brackets 5-10-20 and a call by it to a procedure Q 
with ring brackets 3-7-12. The first call takes the 
process into ring-10 and the second takes it into 
ring-7. It is clear that an ordinary return from 
procedure Q would not cause a ring changing fault. 
It is also clear that if it did cause a fault, the 
fault handler would have to choose a ring to return 
the process to from the interval ring-5 to ring-10. 

Forcing A Fault. We see that in the case of a ring 
changing return, the ring bracket mechanism cannot 
by itself be dependent upon to cause the necessary 
ring changing fault or to provide the information 
required to identify the caller's ring. A special 
trick is, therefore, used to cause the fault. The 
normal return pointer in the returner's workspace 
is over-written with a conventional replacement so 
that when the process attempts to return via this 
"return pointer", a fault will occur which is 
associated with the ring changing return fault handler. 
This device for forcing a return fault applies equally 
to inward returns and is also used in that case. 
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The Return Stack. When the artificial ring changing 
.return fault occurs, as a result of a "return" type 
of instruction,the ring changing return mechanism 
is invoked. It must not look in the returner's work
space to find the information that it needs to per
form the return - caller's ring number and the return 
pointer - for these items could be manufactured by 
the "returner" to imply a "return" to a more privileged 
ring. The ring changing mechanism, therefore, main
tains a ring-O data base called the "return stack" in 
which it records all the information needed to perform 
all uncompleted ring changing returns, both inward 
and outward. At any time, the last entry on this stack 
specifies the return from the ring in which the pro
cess is then executing. We may now say that an outward 
ring changing return is a return which causes a ring 
changing return fault and whose entry in the return 
stack indicates a return to an outer ring. 

Address and Argument Validation. There is no need, 
from an access control viewpoint, to validate a return 
address for an outward return since an inner ring 
procedure may in any case freely enter an outer ring 
at any point. However, to protect against error, the 
return pointer recorded in the return stack may be 
compared against a "validation return pointer" stored 
in the returner's workspace. Both the validation 
return pointer and the return pointer in the return 
stack would be recorded at the time of the correspond
ing call by the ring changing mechanism. If these 
return pointers disagree, then the ring changing 
return can be regarded as an error and treated according
ly. 

There is no need for argument validation at the time of 
an outward return; the work was done at the time of the 
corresponding call. 

The Restoration of the Environment. Finally, let us 
note that it is necessary, in servicing an outward 
return, to re-establish the environment that existed 
at the time of the corresponding call. The caller's 
workspace must be re-established, base registers must 
be restored, the entry on the return stack must be 
removed, etc. Any information which may be needed 
for this work must be found in the return stack entry 
for this return and must thus have been stored there 
at the time of the call. 
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3. OUTWARD CALLS 

An outward ring changing call is detected when an 
outward ri ng changing fault occurs as the result 
of a "call" type of instruction. The ring to be 
entered is determined from the target procedure's 
ring brackets; according to the rules of Chapter 2, 
Section 2, the target ring is "ri". There is no 
need to validate the target address of the call, 
for gates govern inward calls only. As with the 
inward call, there is a need to establish the 
environment required by the called procedure. 

Argument Copying. If, as is usual, the caller's 
arguments are stored in the caller's workspace, the 
arguments will be inaccessible to the called pro
cedure in its outer ring. It is, therefore, 
insufficient to copy only a pointer to the argument
list or the argument-list itself into the work
space of the called procedure. It is necessary to 
copy the arguments themselves. This in turn 
implies that a new argument-list must be fabricated 
in the workspace of the called procedure which 
contains the addresses of the local copies of the 
arguments. 

There is no need to perform access validation on 
the arguments. The inner ring procedure may judge 
for itself what data to pass to the outer ring. 
The copying of arguments is done, of course, with 
the authority of the calling procedure's ring, if 
not by the calling procedure itself. If the copying 
is actually done in a ring more privileged than the 
caller's, e.g., by the ring changing fault handler 
(which executes in ring-O), then the arguments must 
be access validated to make sure that no data are 
copied into the workspace of the called procedure 
to which the caller itself does not have access. 

Note that argument copying depends on information, 
represented as a "copying descriptor", associated 
with the outward call (see Figure 6). The copying 
descriptor tells how many arguments there are, how 
they are to be used (i.e., whether or not they are 
to be written into), and what their lengths are (so 
that they can be correctly copied). We will dis~ 
cuss the question of arguments which are to be 
written into by the called procedure in the follow
ing section. 
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First Outward Call 

Second Outward Call 
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1 word - R,W 
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----I 
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Executable 
Code 
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- -t--
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Constant 
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for Second Outward 
Call 

Figure 6. Example of a Procedure which makes two 
Outward Calls Showing Copying Descriptors 
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4 • INWARD REW RN S 

Inward returns are detected when the artificial 
ring changing fault occurs (see the discussion of 
outward returns in Section 2) and the return stack 
entry indicates an inward return. The return 
pointer in the return stack entry may be compared 
with a validation return pOinter in the returner's 
workspace in order to avoid erroneous ring changing 
returns. 

The arguments which the outer ring procedure may 
have written in, as identified in the copying des
criptor, are then copied from the returner's work
space into the locations specified for them in the 
caller's (original) argunent-list. Validation of 
these addresses is only necessary if the copying 
is done in a ring more privileged than that being 
returned to, e.g., by the ring changing fault handler 
which executes in ring O. 

Once these arguments have been copied, the ring 
changing mechanism re-establishes the environment 
of the calling procedure and returns to it. 

5. REVIEW AND DISCUSSION 

Detection. A ring changing transfer is detected when 
the ring changing mechanism is invoked in response to 
a suitable fault. The ring bracket mechanism (i.e., 
a mechanism respecting the rules set forth in Chapter 
2, Section 2) will produce such a fault in the case 
of inward and outward calls; such calls are in fact 
so defined. Ring changing returns, though, are de
f~ned as returns from ring changing calls and the ring 
b ,:-acket mechani sm cannot be depended on to detect these 
r·.~turns. The strategy of the f:artificial ring changing 
rt~turn fault!! was introduced (see Section 2) to guar
antee that these returns would always be detected. 
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Transfer Address Validation. The basic fact about a 
ringed access control system is that a process' power 
depends on the ring in which it executes. This is 
meaningful only because of the rules which govern . 
in~er-ring transfers. The basic rule is that outward 
(power decreasing) transfers may be made at the pro
cedure's dis~retion whereas inward (power increasing) 
transfers may be made only with "the permission of . 
the ring to be entered". Transfer address validation, 
which consists of making sure that the target 
address is an address at which the target ring will 
permit entry, thus applies only to inward transfers. 

In t~e case of an inward call, the target address is 
valida~ed by finding it on the target procedure's 
gate-list, that is, finding it to be the address of 
a gate entry pOint. In the case of an inward return, 
the target address (which is obtained from the 
return stack) is validated implicitly by virtue of 
the fact that it was earlier supplied to the ring 
changing mechanism by the outward calling procedure, 
the very procedure being returned to. 

The Return Stack. The return stack was introduced 
(see Section 2) as the data base in which the ring 
changing mechanism stores the ring number and return 
address of a caller so that the ring changing return 
mechanism can subsequently validate the return. 
The return stack must thus be accessed by the ring 
changing mechanism upon every ring changing call and 
return, being "pushed" at each such call and "popped" 
at each such return. To the extent that the ring 
changing mechanfsmmay profit from storing other 
information from the time of a call to the time of 
the corresponding return 2 the return stack is 
evidently the "right" data base to use. Without 
going into detail we suggested, for example, that the 
return stack was a good place to record information 
needed for the restoration of the calling procedure's 
environment. 
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Argument Validation. Whenever an inner ring pro
cedure accesses memory via an address obtained from 
an outer ring source, there is the danger that the 
supplier of the address is "using" the more pri
vileged procedure to "get around" access control 
restrictions. Addresses obtained from outer rings 
are, therefore, suspect and must be used with 
discretion. 

The most outstanding examples of suspect addresses 
are the addresses of arguments associated with in
ward calls. "Argument validation" is a technique 
by which the ring changing mechanism, acting on 
behalf of the class of gate entry points, does a 
standard and generally sufficient job of checking 
these addresses. 

Argument validation is not only used in the case of 
inward calls but in the case of those outward calls 
where arguments are copied as well. When the 
arguments for an outward call are copied into the 
workspace of the called procedure and later, when 
the return arguments are copied back into the work
space of the calling procedure, the copier of these 
arguments, being part of the ring-O ring changing 
mechanism, obtains its arguments from the rings of 
the calling and called procedures and must validate 
these addresses. 

Although argument validation doesn't handle all 
cases of "suspect" addresses, the existence of argument 
validation does have the useful effect of isolating 
the cases which aren't covered, making life easier 
for the programmer of a gate procedure. For, if he 
can make sure that all of' the suspect addresses to 
be used by the gate procedure and its dynamic des
cendents are the addresses of arguments, he may be 
assured that he has written a proper gate procedure. 
And if there are a few other addresses requiring 
checking, he can handle them on a case by case 
basis. 
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6. OUTLINE OF RING CHANGING SOFTWARE 

A. Inward Calls 

.. 

1. Check that the specified address is a gate 
entry point. 

2. Store information in the "return stack" 
specifying the caller's environment, in
cluding caller's ring number and the 
return address specified by caller. 

3. ~termine the ring (NEW-RING) to be 
entered; that is the value r2 from the 
called procedure's ring brackets. 

4. Create an environment for the called pro
cedure in NEW-RING. 

5. Copy the addresses of the arguments into 
the environment of the called procedure 
and perform "argument validation" • 

6. Associate a ring-changing-return fault 
with the normal return from the called 
procedure. 

7. Set the ring register to NEW-RING. 

8. Perform the call. 

B. Outward Returns 

1. Check that this return corresponds to the 
last entry in the "return stack". 

2. Clean up the environment of the returning 
procedure (undo A-4). 

3. Determine the ring to be returned to, 
OLD-RING, from the "return stack". 

4. Restore the caller's environment, as. 
specified in the "return stack". 

5. Set the ring register to OLD-RING. 

6. Return to the caller at the address specified 
in the return stack. 
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c. Outward Calls 

1. Store infonnation in the "return stack" 
describing the caller's environment. 

2. Determine the ring, NEW-RING, to be 
e:-terec.; this is the value rl from the 
called procedure's ring brackets. 

3. Create an environment for the called pro
cedure in NEW-RING. 

4. Copy the caller's arguments into the new 
environment and create an argument-list 
pOinting to the copied values, also in 
the new environment. 

5. Associate a ring-changing-return fault 
with the normal return from the called 
procedure. 

6. Set the ring register to the value NEW
RING. 

7. Perform the call. 

D. Inward Returns 

1. Check that this return corresponds to the 
last entry in the "return stack". 

2. Determine the ring, OLD-RING, to be 
returned to from the "return stack". 

3. Copy the return arguments back into the 
caller's environment (in OLD-RING). 

4. Clean up the returning procedure's environ
ment. 

5. Restore the caller'S enVironment, as 
specified in the "return stack". 

6. Set the ring register .to OLD-RING. 

7. Return to caller at the address specified 
in the return stack. 
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Chapter 4 

SIMULATION OF RINGS USING THE 645 

The 645 differs from the "ringed hardware" 
described in Chapter 2 in several respects which, 
taken together, add up to the fact that the 645 
is a 2-ring rather than a 64-ring machine. In 
this chapter we shall discuss the relevant aspects 
of the 645 hardware and show how the ringed access 
control strategy described in Chapters 2 and 3 can 
be simulated on the 645. 

1. FEATURES OF THE 645 NEEDED FOR 'DiE SIMULATION 

1.1 The 645 does not have a "ring register" but 
does have two states, called master mode and slave 
mode. The processor has greater power when in 
master mode than when in slave modej in particular, 
(a) certain instructions can only be executed when 
the processor is in master mode and (b) the access 
control field of the 645's SJl.I permits the specifica
tion, in addition to the access-mode, of a limiting 
descriptor - "accessible in master mode only." 

1.2 The access control field of the 645's SDW con
tains no information about rings; in particular it 
does not contain ring brackets. It does, however, 
contain either: 

a. access-mode information possibly including 
either of the two descriptors: 

acceSSible in master mode only 
master mode procedure 

b. the specification of one of eight special 
"directed" faults (traps) which is to 

. occur whenever the SDW is accessed. 
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The processor is only "in master mode" when 
executing a procedure whose S~ indicates a "master 
mode procedure." The processor may enter master 
mode while executing a slave mode procedure by: 

faulting 
taking an interrupt 

There is another way of switching from slave mode to 
master mode; it will be discussed later since it 
invokes a hardware feature that is not needed to 

.simulate a ringed machine. 

1.3 The 645 processor's access control machinery 
interprets the SDW during the addressing cycle and 
causes an appropriate action to occur depending on 
the SOW and (usually) on the attempted access, as 
follows: 

a. If the SDW implies a particular "directed 
fault", then that fault occurs. 

b. Otherwise, if the SDW does not permit t~e 
attempted access, the appropriate access 
violation fault occurs. 

c. Otherwise, the SDW permits the attempted 
access and the access is performed. 

When a fault occurs, the 645 enters master mode and 
transfers control to the appropriate master mode 
fault handling procedure. 

1.4 Among the instructions which are "master mode 
only" are those which access the processor's DBR 
(the Descriptor Base Register, which contains the 
absolute address of the descriptor segment currently 
in effect) and all I/O connect instructions. 

2. SHULATING THE "RINGED HAR~ARE" ON mE 

The technique of simulating the "ringed hardware" on 
the 645 can practically be deduced from the require
ments of that simulation: 
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1. It must" be possible to simulate being in a 
given ring. 

2. It must be possible to simulate changing 
from one ring to another. 

To simulate being in a ring; it must be possible to 
set up a 645 descriptor segment to define the same 
set of potential actions in response to potential 
attempted accesses as is defined by any given 
"ringed descriptor segment, ring register" pair. 
The potential actions will be the same in the 645 
as on the "ringed hardware" if (a) permitted acc
esses are performed by the 645 without causing a 
fault and (b) if accesses which would cause a 
fault.on the "ringed hardware" cause a fault on 
the 645. 

To simulate changing from one ring to another it 
is obviously necessary to be able to change the 
645 descriptor segment. This may be done in two 
ways. If space is felt to be at a premium, the 
645's master mode fault handlers may "change rings" 
by over-writing the existing descriptor segment 
with the values appropriate to the other ring. On 
the other hand, if processing time is felt to be 
more important than space, the fault handler in 
master mode may "change rings" by altering the DBR 
to point to that descriptor segment (waiting in the 
wings, so to speak) which corresponds to the ring 
being entered. This second technique, used in 
Multlcs, requires one descriptor segment per-ring 
for each process. The per-ring descriptor segment 
thus becomes part of the "environment" which 
pertains to each ring~ and Switching descriptor 
segments becomes part of the job of the ring chang
ing mechanism. 
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3. AN ADDITIONAL FEAIDRE OF THE 645 

The 645 processor has the ability of switching from 
slave mode to master mode without invoking the trap 
mecharism, as follows: 

A slave mode procedure can transfer to a master mode 
procedure M provided that: 

a) the segment descriptor of M contains the 
"accessible in slave mode" attribute, and 

b) the transfer be directed to location zero 
of M. 

This technique for increasing a process' power differs 
from ring changing in the sense that ,no fault is 
generated. However, the philosophy remains the same. 
By checking that conditions (a) and (b) are true, 
the hardware perfonns the "gate validation". The 
fact that the transfer is guaranteed to be into 
location zero permdts one to code explicitly any type 
of subsequent validation in the procedure M and to 
guarantee that the validation code will be executed. 
(The only system responsibility is to make sure that 
the transfer is directed to a gate; the gate pro
cedure must take care of the rest.) This feature is 
used in Multics as explained below. 

4. MASTER MODE AND SLAVE mDE IN RING ZERO 

Master mode is the most powerful state of the 645 
processor; ring zero is the most powerful state of 
the ringed processor Simulated on the 645. It 
should follow that executing in ring zero meanS 
executing in master mode, and it would so follow, 
were it not for the 645 feature discussed in Section 
3 above. That feature is used in order to permit 
the ring zero supervisor to execute partly in master' 
mode and partly in slave mode, easily Switching 
from one mode to the other. 

160 

-



The Multics ring zero can be regarded as being 
itself composed of two concentric rings. The 
more powerful or "master ring 0" contains all 
master procedures and also all data accessible 
only in master mode. The less powerful or "slave 
ring 0" contains all slave procedures and also 
all data accessible in slave mode. Going from 
slave ring 0 to master ring 0 can be done through 
gates provided by master ring 0; these gates are 
in fact master procedures accessible in slave 
mode, with the entry point at location zero of 
the segment. This technique permdts efficient 
s~tching between slave and master mode in the 
supervisor and this is the motivation for this 
additional hardware feature in the GE 645. 

Two questions are raised by this discussion. 
First, why don't "ring zero" and "master mode" 
coincide? And second, why isn't the special 
mechanism for entering master mode more generally 
used? 

The supervisor should use master mode only for 
jobs requiring its special power. To use it for 
other purposes would increase the chance of dis
astrous errors due to hardware and software bugs 
since, for example, all I/O connect instructions 
are executable in master mode only. But since 
the supervisor must use master mode fairly frequently, 
it is desirable that the supervisor have a way of 
entering master mode which involves just enough 
validation to prevent accidental entry. Thus the· 
special mechanism. And thus the restriction of 
the use of the special mechanism to "slave ring 
zero." 
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Experience to date with the M:xiel 645 hardware and the Multics software 
llaS uncovered many areas in which system perfo:r:mance and maintainability 
could be substantially i.nproved by certain IOOClifications of the 645 
specifications. rbur areas have been investigated and shown to be of major 
inp)rtance to the perfonnance of Multics. The Multics extensions of Series 
6000 processors roth allCM execution of Multics on these processors and 
provide considerable iJrprovanents in systan performance. '!hese features 
incluJe: 

1. Hardware aids for i.nproved ~tibility with other 
product line software. 

2. refinements of the paging and segmentation hardware to 
i.nprove the perfonnance of the system software. 

3. ~larentation of Multics ring protection nechanism 
entirely in hardware to i.nprove system perfonnance 
and reduce software catt'lexity. 

4. hidi. tion of instru:::tions for string manipulation and 
decimal ari t:hnetic. 

lJARIltlARE CXI1PATIBILI'IY 

The issue of ccmpatibility with product line software is really two 
issues stamting fran two distinctly different notivations. One issue 
is that of "stand-alone canpatibility," which allows the running of standard 
prcxiuct line software (e.g., oca3, T and D roonitor) on a stand-alone machine. 
The other issue is that of "slave prcqram canpatibility," which allows for 
the efficient execution of Series 600/6000 slave programs under the control 
of the z..tJ1.tics system. A ccmpatibility switch on the processor is used. to 
handle the problem of stand-alone canpatibili ty, while a program-settable 
ncde is used as a sofblare aid in handling the problem of slave program 
OCIIp!tibility. '!he issues of stand-alooe and slave program canpatibility 
are treated. separately in the follOWing discussion. 

l«>DIFlCATlOOS OF PAGING AND SEGlENI'ATlOO HARI:WARE 

'Ibis paper describes a nunber of IOOClifications of the 645 paging and 
segmentation hardware which i.nprove the perfo:rmance of the Multics 
software and si.nplify sane· areas new fel t to have been overdesigned in 
the 645. The changes in 645 specifications are surmarized below (and 
are descz:i.bed in detail later in the paper) : 

1. '!he address fi~ld in the segment descriptor ~rd is extended 
to a full 24-bit absolute address to all(1"; page tables (and 
unpaged. segments) to begin on any legal mem::>ry address. This 
rrodification allC10tJS the software a great deal nore flexibility 
in the allocation of page table space and greatly reduces the 
amount of wired-dc:7tm oore storage reserved for page tables. 
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2. The processor supp:>rts only a single page size rather 
than the two page sizes supported by the 645. Provision 
is made to allaN the page size to be m::xlified by field 
engineering in an orderly and well understcxxi fashion. 

3. Each of the eight p:>inter registers of the processor is ex
tended to contain toth a segrrent nunber and a \t,Ord nunber 
portion. The 645 concept of internal and external base 
regiscL s ana oontrol fields is dropped. Each of the eight 
pointer registers on the processor behaves as a 645 base 
register pair. III addition, each of the new pointer registers 
contains a bit offset field for use by new instructions for 
string manipulation and decimal arithmetic., 

o 4. Sare minor changes have been made in the de fin i tion of the 
645 master and slave m:xies, which are renamed respectively 
as the privileged and unprivileged modes to avoid confusion 
wi th existing tenninology. A minor change has also been made 
in the treatment of execute-only segments, to allow entry at 
locations other than zero. 

5. The access control infonnation contained in the 645 page table 
word (not used in Mul tics) has been reroovecl. In the new pro
cessor, all access control is iIcq:>lemented in the segment des
criptor word. 

HARI:MARE IMPLEMENTATlOO OF MULTICS RING PBOl'EX:l'ICN 

'lbe Mul tics concept of protection rings, ring crossing, and argunent 
validation has been iIcq:>lemented as an integral part of the paging and 
segroontation hardware on the processor. The hardware iIcq:>lementation of 
rings is really a further roodification of the 645 paging and segmentation 
hardware. However, the m:xlification is introduced separately at this point 
since it involves perhaps the rrost significant deviation fran the 645 spec
ification and, as such, deserves sarewhat rrore rrotivation. In the current 
version of Multics rurming on the 645, the ring protection mechanism is, 
of necessity, c:x:rtt:>letely simulated by the Multics software. 'lbe current 
system maintains, in parallel, separate descriptor segments for each ring 
of each process. The ring crossing is simulated by a rather costly and 
CCltplex fault processing mechanism which inclu:les the oopying and validation 
of argunent pointers and the switching of descriptor segments to simulate 
the effect of SWitching rings. The cost of the current simulation aIYDunts 
to approximately °10-20 percent of' the useful chan.Jeable CPU time and con
tributes substantially to the overall carplexity of the systan.In the 
new processor, ring crossing and argunent validation are handled directly 
by the hardware without costly software intervention. ]l..s a result, a call 
to an inner ring will require no, rrore CPU time that a call to a procedure 
in the same ring. 
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INSTROCl'IONS FOR STRING ~IPUI.ATlOO AND DECIMAL ARITHMETIC 

Extension of the 645 instruction set to incltrle instructions for string 
manipulation and decimal arithmetic allows considerable simplification of 
both supervisor and user programs. '!be Series 6000 Extended Instruction 
Set (EIS) provides ccmnands to directly process bytes, BCD characters, 
packed decimal data, and strings. The supervisor will take full advantage 
of the savings all~ by these new instructions. The language cx:mpilers 
will also take advantage of these space and tiJre saving instructions. 

'Ihissection describes in detail the segmentation and paging hardware for 
the new processor. In ll¥:)st respects, the rrechanisrn is quite similar to the 
645 appending hardware, with the addition of sane refinements to improve 
the perfonnance of the system software. '!be single substantial deviation 
fran the 645 specification is the addition of hardw'are to implerrent the 
Multics ring protection mechanism. 

§ec1nent I:escriptor Word 

In order to accarmodate the hardware-implerented ring crossing and 
argurent validation and other changes, the Segment Descriptor Word (SfloJ) 
has been extended to a 72-bi t double precision \t«)rd to be interpreted as 
described below. 

Word 0 

Word 1 

ADDR (0-23) 

Rl (24-26) 

R2 (27-29) 

RJ (30-32) 

~~_D_R __ ~n~ __________ ~R_l~I~R_2~R_3~IF~IF~cl 

Is a full 24-bit absolute address and specifies the 
core address of either a page table (for a paged 
segment) or the first location of an unpaged segment. 

Specifies the highest ring number of the readjwrite 
bracket for this segment (O-Rl) 1. 

Specifies the highest ring number of the read/execute 
bracket of this segment (Rl-R2) 1. , 

Specifies the highest ring number of the call bracket 
of this segment «R2 + 1) - RJ) 1. 

1 
See following section an Rings and Ring Brackets. 
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F (33) 

Fe (34-35) 

BOUND (1-14) 

R (15) 

E (16) 

W (17) 

Is a directea fault indicator and if off (=0) specifies 
that the processor is to execute the directed fault 

. specified in the Fe field (see below). 

Indicates (if F is off) which of the four directed 
faults (DFO-DF3) the processor is to execute. 

Is t~e boundary field and indicates the highest l6-word 
block of the segment which can be addressed without 
causing an out-of-bounds fault. If the high order 14 
bits of an address to this segment is greater than the 
value of the boundary field, an out-of-bounds fault is 
generated. A boundary field of 14 bits is chosen be
cause sane instructions (e.g., the new version of STB) 
reference up to 16 contiguous words. (The boundary 
field could be maintained to the nearest word, but 
special checks would have to be made for instructions 
which reference two or IOClre contiguous words.) A 
further implication is that the software is expected to 
alloc.ate unpaged segments in' a zero IOClde 16-word boundary. 

Is the read-penni t indicator. Data fetches by other 
segments are penni tted to this segment only if this 
indicator is on (=1) and if the processor is executing 
in a ring less than or equal to R2 (Le., within the 
read/write or read/execute bracket).l 

Is the execute-penni t indicator. Instruction fetches 
fran this segment are pennitted only if this indicator 
is on (=1) and if the processor is executing in a ring 
greater than or equal to Rl and less than or equal to 
R2 (Le., within the read/execute bracket; see below) . 
Note that when the E indicator is on and the R indicator 
is off, the segment is to be treated as an "execute-only" 
procedure segment. An execute-only procedure segment 
is pennitted to reference data within itself (Le., within 
the same segment) in spite of the lack of the read in
dicator. However, read pennission is denied to other 
segments. 

Is the write-penni t indicator. Attempts to store into 
this segment are honored only if this indicator is on 
(=l) and if the processor is executing in a ring less 
than or equal to Rl (Le., within the readjwrite bracket; 
see below) . 

lSee following section on Rings and Ring Brackets. 
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P (18) 

U (19) 

G (20) 

CL (22-35) 

Page Table W:lm 

Is the pri ',ilegoo. rrode indicator. If this indicator 
is on (=1) a.~ if the processor is executing in ring 0, 
the procedure segment is pennitted to execute privileged 
instructions and inhibit interrupts under oontrol of 
bit 28. Privileged procedures need no further p:Mers 
and are subject to all other access checking (read, 
write pennission bounds checking, etc.). Since pri vi
leged prcx::edures can be executed only in ring 0, it is 
no longer neoessaIy to lirni t calls to privileged pro
cedures to enter via word 0 of the segrcent. 

Indicates whether the segnent is paged (=0) or unpagoo. 
(=1). If the segment is unpagoo., ADDR is the full 
absolute address of the first word (\fJOrd 0) of the seg
ment. If the segment is paged, ADDR is the full ab
solute address of the beginning of the page table for 
the segment. 

Is the gate indicator and if off (=0) any call to this 
segment fxan a different segment must be directed to 
an address value less than the value of the cr. field 
(see below). 

Is the call limiter. If G is on, any external transfer 
to this segment via the new CALL instruction (described 
below) must be directoo. to a word nunber less than the 
value of this field. 

'l11e fOJ:lllat of the page table word (PlW) has been ~t simplified fran 
the 645 version in that no access oontrol is perfonned at the PlW level. 
'l11e P'IW foJ:lllat is described below. 

ADDR 

ADDR (0-17) 

s 

Is the high order 18 bits of the 24-bit absolute ad
dress of the' first 'WOrd of the page. The hardware 
assunes that all pages begin on addresses which are zero 
m:xiulo the page size. For exarctlle, if the page size is 
set to 1024 \toOrds, the hardware assureS that each page 

, begins on a zero roodulo 1024 address and that the low 
order 10 bits of the 24-bit absolute address are zero. 
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S (18-23) 

U (26) 

t-1 (29) 

F (33) 

Is reserved for the use of the system software for the 
maintenance of page status information and is never 
roodified (or used) by the hardware. 

Indicates whether (=1) or not (=0) the page has been used 
since the last time this bit was interrogated (and reset) 
by the system software. Whenever this hit is zero and the 
orocessor addresses any word wi thin the page (corresponding 
l:.O this P'IW), the processor sets this bit to 1 using a 
3-bit storE~-by-zone carmand for bits 24-26. '!'he store-by
zone is used to avoid a race condition with another pro
cessor att.errpting to set the "rrodified" bit (see below) 
for the same page. lhis technique is necessitated by 
the lack of a read-alter-rewrite cx:mnand in the marory 
controller. A further llr'plication of the lack of read
alter-rewrite is that the software must reset this bit 
via a store to the third 9-bit field (character) in the 
P'IW in order not to disturb the IOOdified bit. Note that 
any usage of the page between the time the used bit is 
read by the software and then r~set (if on) is not noticed 
by the software. Since the used bit is used only for 
maintaining the core-usage statistics, this race between 
hardware and software has no effect, insanuch as (1) if 
the page is heavily used (Le., needed in core) it will 
be used again turning the used bit back on, and (2) the 
software does not reset the bit if it is already zero. 

Indicates whether (=1) or not (=0) the page has been nod
ified since the last tine this bit was interrogated (and 
reset) by the system software. Whenever this bit is zero 
and the processor IIDdifies any word within the page, the 
processor sets this bit and the usage bit to 1 using a 
6-bit store-by-zone oammand for bits 24-29. The software 
uses this bit to determine whether or not the cx:mtents of 
a page must be written on secx:mdary storage before the core 
is released for other usage. As a result, the software is 
expected to store a directed fault in the P'IW and clear the 
associative memories of all processors before the modified 
bit may be safely tested and then reset. In addition, the 
directed fault must be stored using a store to the sixth 
6-bit field (character) of the P'IW to canpensate for the 
lack of read-alter~rewrite. 

Is the directed fault indicator and if off (=0) j,ndicates 
that the directed fault indicated in the FC field is to be 
executed by the processor. 
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F2 (34-35) Indicates (if F is off) which of the four directed 
faults (DFO-DF3) is to be executed by the processor. 

t-bdifying the Page Size 

As indicated by the fOll'Clat of the SLW, the new processor supports only 
a single page size (the 645 allONs two page sizes). HaNever, it is ex
tremely desirable to have the ability to change the page size in order 
to allow system optimization with respect to oore "breakage" and storage 
device access tll"iles. For exanple, replacing the current highspeed drun 
with a bulk core would IOOSt likely give even better perfonnance with a page 
size smaller thar. 1024 words. 

Since a decision to change the page size is not a casual one and should net be 
made very often, the page size is changeable: by field nOOificationto any 
power of 2 fran 64 words to 4096 werds. 

Absolute Address Fonnation 

For each marory reference we assune the program presents the processor 
wi th the follONing address: 

SEGNO WORDNO 

SEGNO (15 bits) Specifies the desired segment (i.e., index into the 
descriptor segment). The segment nunber is constrained 
to 15 bits (rather than 16) Qy considerations described 
later in this docllnent.. 

WORCNO 
(18 bits) 

Specifies the desired word address (18 bits) within the 
specified segment. 

We also assune (for discussion only) that the processor has the following· 
two internal registers: 

PN (12 bits) Is used to hold the page nllnber (i. e. I index into page 
table) when fonning an absolute address within a paged 
segrrent. 

PO (12 bits) Is used to hold the offset within the page when fOl:ndng 
an absolute address within a paged segment. 

PN is initialized with the t.igh-order portion of WORCNC to obtain an index 
relative to the base of the page table of the se:gme.nt. PO is initializerl 
wi th the remaining portion of WORLNO and is au;pnented by the ADCR field of 
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the P'IW to 'fonn the absolute address. The "break" in \-l)Rl:U) is determined 
by the curr'ent page size. For example, if the page size is 1024 words 
(initial setting), the high order 8 bits of \-l)RCN) are used to initialize 

PN and the low order 10 bits of WORLNO are used to initialize PO. 

Figw-e 1 smmarizes the major steps necessary to transfontl a program gen
erated address (SE'GJO~RrnO) into an absolute address (ABSADDR). In most 
respects, t-l1€ addrE:ss formation is simpler than the 645 mechanism, in that 
thE:re is onl~· one page size to consider and that no access control is 
specified at thE: P _.J le~1. 

Note that Figure 1 and all the flow charts in this paper make use of the 
following PL/l notations: 

1. A.B is used to denote the quantity B contained in A. 
For example, P'IW .ADDR denotes the ADDR field wi thin the 
P'IW. 

2. The double vertical bar (II) is used to denote con
catenation (e.g., P'IW. ADDR II 000000). 

3. The single vertical bar (I) is used to denote the logical 
inclusive OR. 

Descriptor Segment Base Register 

ThE: Descriptor Segment Base Register (DSBR) is an internal prccessor registt:... 
used to locate the current descriptor segment. In the new prccessor, the 
CSER has been exter.ded to 51 bits to acc:cmoodate the longer address and 
round fields and to contain a stack offset. The DSBR is loade.d fran and 
stored into a doubleword having the same format as a Segment Descriptor 
Word (S~) with the excef'tion that mused fields are ignored during loading 
of the DSBR and are set to zero when the DSBR is stored. Only the following 
four SrM fields have meaning when loacied into a DSBR. 

1. ADD~ (24 bits) 

2 • BOlli"D ( 14 bi t.s ) 

3. U (pageci/unpaged switch; 1 bit) 

4. STACK (12 bits) 

The STACK field specifies the upper 12 bits cf the IS-tit stack segment 
r.urber. This register is used only during the execution of a CALL in
struction. 

ruNGS AND RING BRACKEI'S 

A Mul tics process consists of procedure and data segments which are a] 1 
directly addressable throu:jh the descriptor segme:nt of that process. ~1-
ever, a process rr.ay access a segment only when the process is rtmning at 
an appropriate level of privilege. For example, all the segments of the 
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hardcore supervisor are shared and accessible to all MUltics processes 
but only when E'..xecuting at the highest level of privilege. 

The tI.ul tics system allONs segments to be qrouped into an ordered set of 
collections called rings in which segments requiring the highest level 
of privilege to reference can be accessed only fran within the innennost 
ringo[ ~e set. Each ring is identified with a ring nunber designating 
the rcqUJ.red leveJ of privilege necessary to access segments in that ring. 
In Multics, the ring \ ._th the highest privilege is ring 0, which contains 
the procedures and data bases of the hardcore supervisor. Each user pro
ce3S has at least two rU1gs, one for the hardoore supervisor and one for 
usel: program.<; und data. 'The user process may generate roc.re rings (levels 
of lesser privilege) if desired. 

Frequently, it is useful to allow a segment to be accessible in rrore than 
one r~ng. For example, it is often useful for a data base which is writeable 
.ir. an ilmer ring to be readable in an outer ring. Fbr this reason, the oon
cept of ring brackets was introduced. 

The access of a user to a specific segment is oontrolled by two quantities: 
the access attributes (e.g., read, execute, write) and the ring brackets. 
The ring brackets of a segment are specified by three integers (Rl, R2, 
and P"'::') each of which must be greater than or equal to the preceding 
m.rnber. The fir.·st. nl.ll1ber (IU) specifies the top (highest ring nunber) 
of el~ read/write bracket, the second nl.ll1ber (R2) specifies the top of the 
read/execute bracket, and the last number (R3) specifies the top of the 
call bracket. 

Read/Writc Bracket (Rings O-Rl) 

Attempts to read or write a segment by a procedure executing in a ring 
wiHlin the read/write bracket are allowed if the appropriate (read or 
write) access indicators are on for the segment being referenced. Execution 
of a procedure in a ring within this bracket is permitted only at the top 
of the read/write bracket (Rl), which is also the oottan of the read/execute 
bracket. Note that the highest ring fran which a segment can be written is 
specified by Rl. As a result, the data in the segment is no more reliable 
than the procedure segments which operate in that ring. 

Read/Execute Bracket (Rings Rl-R2) 

Attempts to read or execute ·(transfer to) a segment by a procedure executing 
in a ring wi thin the read/execute bracket are allONed if the appropriat~ 
(read and execute) indicators are on for the segment being referenced. 
Writing of a segment within its read/execute bracket is permitted only fram 
the r·ing at the oottan of the bracket (Rl), which is also the top of the 
read/write bracket. If R2 is equal to Rl, the read/execute bracket specifies 
a single ring (Rl). 
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Call Bracket (Rings (R2 + 1) - R3) 

AttE!'!pts to call a (procedure) segment fran a segment executing in a 
ring above the read/execute bracket but within the call bracket of 
the procedure to be called are allowed if the execute indicator of the 
IJrocedure to be called is on and if the new CALL instruction (described 
below) is used. When the CALL instruction is directed to a procedure 
in an imler ring which has the apprcpriate execute access and call 
bracket, the prcx::essor at\Xltlatically switches to the ring speci fied as 
the R2 of the procedure being called. The call bracket and the CALL 
inst...-uction are the only means (except for faults) by which control 
can be passed fran an outer ring to an inner (rrore privileged) ring. 
If R3 is equal to R2, the call bracket is null and the procedure 
cannot be called fran an outer ring. 

Assuning that the appropriate (read, execute, or write) indicators are 
on, the following list sunnarizes the effects of the three ring 
brackets: 

1. Writing is pe~tted fran a ring within the read/Write 
brackets only (Le., if ring .::. Rl) • 

2. Reading is pe~tted fran a ring within the read/write 
bracket or the read/execute bracket (Le., ring < R2). 

3. Execution (or transfer of control) is pe~tted only 
fran a ring within the read/execute bracket (Le., Rl 
< ring < R2) • 

4. Calling (via CALL only) is peIInitted fran a ring within the 
read/execute or call brackets (Le., Rl < ring < R3) .. 

5. The CALL instruction is the only instruction which may be 
used to access a segment in a ring within its call bracket 
(L e., R2 < ring.::. R3) . 

6. No access is permitted to a segment fran a ring higher than 
the call bracket (Le., ring > R3) • 

ProcESSOR ADDRESS REGIS'IERS 

~e the 645, the new processor has 10 address or pointer registers 
(PRs) . Eight of these pointer registers can be directly accessed and 

roodified by the software, one is used to locate the current instruction, 
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and one is used exclusively by the processor for effective address cal
culations. Unlike the 645, each of the eight program addressable pointer 
registers specifies a full segmented address including the segment number 
and the word number in a single pointer register. These registers have 
also been extended to inclwe a bit number. 

Instruction, Pointer Pegister 

The instruction pointer register (IPR), is used by the processor to' locate 
the current instruction and may be m:xlified by the software to effect a 
transfer of control. The IPR is actually an extension of the PBR and Ie 
of the 645. The contents of the 36-bit IPR are outlined belCM. 

PSR IC 

PRR (3 bits) Is the procedure ring register and specifies the ring 
(level of privilege) in which the processor is currently 
executing. PRR may be set to a higher value only by an 
RJU) or OCU instruction. It may be set to a lCMer value 
only by a CALL instruction (see belCM) or by a fault or 
interrupt. 

PSR (15 bits) Is the procedure segtrent register (same as the PBR in the 
645) and specifies the segment number of the current pro
cedure segment. 

Ie (18 bits) Is the instruction oounter (same as in the 645) . 

Temporary Pointer Register 

The terrporary pointer register ('IPR) is used exclusi vely by the processor 
for operand address calculations and serves the same general purpose as 
the TBR and caTputed address (CA) of the 645. 

TSR CA BITNO 

TRR (3 bits) Is the temporary ring register and is used to maintain 
the lowest level of privilege (i.e., highest ring num
ber) enoountered during operand address calculation. 
The TRR is initialized with the value of the PRR field 
of the IPR at the beginning of each instruction. During 
the operand address calculation, TRR is used to reoord the 
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[ RN 

TSR (15 bits) 

CA (18 bits) 

BITNO 
(6 bits) 

highest value of SJ:l'J.Rl (the top of the read/write 
bracket) of any segment used, in the address calculation. 
For exarcple, if an indirect address is fetched fran segment 
X, TRR is set to the larger of TRR. (its current value) and 
the Rl field in the SJ:l'J for segment X. Note that during 
the operand address calculation, the value of TRR may get 
larger but never smaller. 

Is the terrp:>rary segment register ('same as the TBR in the 
645) and is initialized with the value of the PSR field 
of the IPR at the beginning of each instruction. During 
operand address calculation, TSR contains the segment 
nunber portion of the current address calculation. 

Is the canputed address and serves the same function as 
the 645 register of the same name. The canputed address 
is initialized at the beginning of each instruction with 
the contents of the instruction oounter of the IPR. 
During operand address calculation, CA contains the word 
nunber portion of the current address calculation. 

Is a bit-offset relative to the first bit in the word 
specified by CA. This field is ignored by all instructions 
except the new instructions specifically designed for string 
manipulation or decimal arithmetic. 

<:nce an operand address calculation is canplete, the value of TRR is can
pared with the ring brackets of the segment containing the operand ad
dress to determine whether the operation is to be alICMed. For example,· 
if the instruction intends to store into this operand, the value of TRR 
must be less than or equal to the Rl (in the SIl'l) of the segment to be 
m:x:lified. 

Eight Pointer Registers 

The new processor contains eight program accessible pointer registers, which 
replace the eight address base registers (ABRs) of the 645. The PRs of the 
new processor differ fran the ABRs in that each PR contains both a segment 
nunber and a word nunber portion. In effect, each PR of the --new processor; 
behaves """is a 645 base register pair. The oontents of each 42-bit PR are 
outlined below. 

SEGNO WORDNO BITNO 
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RN (3 bits) 

SEGlO 
(15 bits) 

Vl)R[NO 
(18 Lits) 

BITNO 
(6 bits) 

Is used by the software to specify the leVEl of privilege 
(i.e., ring number) at which the processor is to treat the 
address contained in the address register. When the pro
cessor uses the contents of a PR for address modification 
(e.g., bit 29 in the instruction word is on) the value of 
TRR is set to the larger of TRR (its current value) and the 
RN field of the specified PR. '!be use of the RN field of 
a PR allONS the software to save the TRR of an operand ad
dress calculation - e.g., throUJh the use of an EAP (ef
fective address to pointer) instruction. 

Specifies the segment mnlber portion of the segmented 
address. 

Specifies the word number portion of the segmented address. 

Specifies a bit-offset relative to WORrNO and is ignored 
by all instructions except those designed specifically for 
string manipulation or decimal arithmetic. 

The software may store the contents of a PR into an ITS (indirect to 
segrrent) word pair with the use of an STP (store pointer) instruction. 
The software may then address indirectly throUJh the ITS indirect word 
rather than using the original PR. Alternatively, the software may reload 
another PR fran the ITS word pair throUJh the use of the EAP instruction. 
In ei ther case, it is necessary to save the value of the RN of the PR in 
the ITS word pair so that the privilege level of the original operand 
address calculation is not lost. As a result, the ITS word pair is mod
ified to inclwe a ring mnlber field as outlined belON. 

[Xl SEGNO ITS 

WORDNO L><J BITNO C><I MOD 

SEXiNO (3-17) Is the segment number field (as in the 645). Note that 
bits 0-2 of the ITS word pair are set to zero for can
patibility with 645 programs e>q?eCting all l8-bit segment 
number in the upper half of the first word. 

RN (18-20) Is set to the value of the RN field of the PR during the 
. STP instruction. If the processor attempts to indirect 

throUJh an ITS word pair, TRR is set to the larger of 
TRR, RN (of the ITS), and Rl of the segment containing 
the ITS. Note that an improper value of RN in an ITS word 
pair has no ill effect, since the processor always takes 
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ITS (30-35) 

W)RI:NO 
(0-17) 

BI'INO 
(21-26) 

t-DD (30-35) 

the maximun of TRR and m. In other words it is . . , 
l.Illf?O~sible for an ITS ~rd pair to specify a higher 
pr1 v11ege than the se:Jnent in which it resides. 

Specifies the rrociifier code- (octal 43) for the ITS 
roodifier (same as in the 64:i>. 

Is the ~rd nunber portion of the saved PRo 

Is the bi t-offset of the PR saved by the STP instruction. 
The strange placement of the BI'INO field is necessary to 
remain canpatible with the current PL/l software inq?lemen
tation of bit-offsets. 

Is set to zero by the STP instruction but may be set by 
the software to specify further address rocdification 
(same as in the 645). 

Since rrost Multics caopilers (notably PL/l) calculate addresses via an 
EAP instruction, i t ~ be expected that CXltpo.er generated code can take 
full advantage of the 'hardware protection mecmuusm with little m:xlification. 
If all addresses of all input parameters are calculated and saved (for use 
as outgoing arguoont pointers) via the use of the EAP and STP instructions, 
it will be possible for a procedure operating in ring 1 to pass to ring 0 
a parameter given to the procedure fran ring 2, without checking the address 
of the parameter. The access checki .. lg is fully autanatic as long as the 
TRR of the original address calculation continues to be maintained and 
passed along as the RN field of a PR or ITS word pair. 

The STCD (store control double) instruction is roodified to store the PRR 
in the same manner as STP stores the RN field of a PRo The PRR is stored 
by the STCD to allCIN an RI'CD (retum control double) instruction to return 
to the proper ring. 

Figures 2 throU:Jh 6 attempt to fICIN chart the entire access control mech
anism fran the instruction fetch tp to actual execution of the instruction. 
In order to <Xll'lcentrate on the access control mechanism, many details have 
been left out of the fICIN charts (indexing, IT rocdifiers, etc.). If all 
the access <Xll'ltrol checks are successfully root, control will end up in a 
circle marked "done." The contents of the fICIN charts are s1.J'\1l'la.I'ized belCM. 

Figure 2 begins with the instruction fetch and continues throU;h the ini
tial address calculation. 
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Figure 3 sho.vs how indirect addressing affects the access c::x:nputation. 
(The notation "Rl (ITS)" is used to denote the Rl of the segment oon
taining the ITS word pair.) 

Figure 4 shONs the access checks made for all instructions except for 
transfer of control. 

Figure 5 sho.vs tJ1e aCcess checks perfnnned on all transfer instruct ions 
with the exception of the CALL instruction. tbte that the PRR canr:)t 
be changed by a noJJna.l. transfer instruction (even to a higher valu;). 
However, it is possible to set the PRR to a higher value with the nod
ified RTCD(described below). 

Figure 6 shows the access checks perfonned by the CALL instruction (the 
only slave instruction pennitted to set the PRR to a lower valoo) . 

c::ALL INSTRLCI'ICN 

The CALL instruction is provided as the only means by which a procedure 
segment may call a procedure in an inner ring (i.e., set PRR to a lONer 
val~). The CALL instruction is to be used in all standard interprocedure 
calls and is intended to replace the transfer instruction as the last in
struction of the standard Mul tics calling sequence. 

The CALL instruction uses two PRs: PRn and PRn+l, where n is even. 
The value of n is wired into the processor and is currently 6. It is 
possible for a fielJ. engineer to change this vallE to 4, 2, or 0 by an 
orderly procedure. It must not be possible, however, to change this vallE 
under user program control. (This use of a pair of PRs involves two full 
PRs (RN, SEGJO, ~RI::NO, and BI'lID) and should not be confused with a 645 
base register pair.) When the CALL instruction is used to trans fer cantrol 
to another ring, the assunption is made (by oonventian) that the stack 
segment of the tar-get ring has a segment nunber (qual to the ring nunber 
of the target ring (Le., the st.ack segment for 1 ing X is a segment nunber 
X). The CALL instruction behaves as a TRA (transfer) instruction with the 
following exceptions: 

1. The access checking for a CALL instruction allows PRR 
to be set to a lower value, provided that the call is 
made fran a ring wi thin the call bracket of the target 
segment (see Figure 6). 

2. If an atterrpt is made to call a procedure in an outer ring 
(a relatively rare case), an access violation occurs. Be
cause of the necessity of copying all argunents, the standard 
call, save, and return sequ:mces carmot handle calls to an 
outer ring without excessive software overhead. 'Iherefore, 
calls to outer ring procedures will oontinue to cause a fault 
to allow the system software to inte:rpret the call. 
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3. At the beginning of the CALL, the oontents of PRn are 
assUted to point to a location (Le., the beginning of the 
current stack frame) within the stack segment of the calling 
ring. During the execution of the CALL, the processor sets 

,the oontents of PRn+ 1 to point to \'.Ord 0 of the stack segment 
of the target ring in one of two ways: 

a. If control is to ranain in the current ring (i.e., 
'::'RR = PRR), the SRN) portion of PRn+ 1 is set to 
the SEXNJ of PRn and the ~RrNO portion of PRn+ 1 is 
set to zero. 

b. If control is to be passed to an inner ring (L e. , 
TRR < PRR), the SEQ.lO portion of PRn+ 1 is set to the 
value of the target ring nl.lnber (TRR) and the WORIN) 

of PRn+ 1 is set to zero. 

If an attempt is made to call to an outer ring (Le., TRR > PRR), an 
access v,-olation is generated as indicated in Figure 6. 

Figure 7 details the operation of the CALL instruction after the effective 
address oa:rputation has been canpleted (Le.·, TPR has been cx:rrputed), and 
'l'RR is set to the target ring nunber (see Figure 6). ' 

'!he software stores a pointer to the end of the current (or last used) 
stack frane in the beginning of that stack. '!he standard call and save 
sequences might then be nOOified as follows: 

Calling Sequence: ZEro AlGLIST ZERQpoints to AlG..IST 
STCD 6 l 20 Set return location 
CALL EN'1'RYPOINT Call extemal procedure 

Save Sequence: FAPl 71 NEXI',* load pointer with base 
of new stack frane 

STP6 It 16 Save pointer to old 
frane 

FAP6 11 0 SWitch to new frame 

FAPl 61 'lD1P Canpute pointer to next 
frame (allocate new frane) 

S'lPl 61 18 Save pointer to next frCl'ne 

STPl 71 NEXl' qxlate stack base 

S'l'PO 61 26 Save ARGLIST PR 
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00 ... 0 II TRR

PRn + 1.SEGNO 

N 

TRR -

PRn + 1.RN 

00 ... 0 --

PRn + 1.WORDNO 

00 ... 0 -

PRn + 1.BITNO 

TRR PRR 
TSR - PSR 
CA - IC 

y 

PRn.SEGNO -

PRn + 1.SEGNO 

Figure 7. Execution of ('.ALL Instruction 
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ASSOCIATIVE ~1EM)'RY 

As in the 645, the new processor requires a small associative IreITOry in 
order to a'J'Oid mE!lory fetches of frequently used SI:Ws and P'IWs. A series 
of rreasurements and experiments has determined the effectiveness and be
havior of the 645 associative IUEITOry. The exper.i.Jrents were conducted and 
measurerents taken during normal Multics operation, under varying user 
loads. 

TIle experirrents indicate that the c:.rrrent 645 associative mcm:ny is quite 
effective. It appears that the rrost significant aspect of the associative 
merrory is in the speed. of the search, since it is not possible to over lap 
completely the associative lookup w~th other work. This aspect suggests 
that a one-pass lookup would be a desirable objective. '!'here are at least 
three ways in which the effect of a one-pass lookup can be achieved: 

1. One approach is derived fran the fact that the "hit rate" 
on SI:Ws for paged segrrents on the 645 is extremely low 
(about 0.21 percent). This fact suggests a one-pass search 
of an associative rnE!IDry containing only P'IWs and SI:Ws for 
unpaged segments. TIle search \yould look for an unpaged 
SI:W for the referenced page within the segment. TIle copy 
of the P'IW in the associative mem::>ry must be extended to 
inclu:le access control information fran the original su.v for 
tile segnent. This approach has the drawback that any change 
in the operating environment (e.g., the use of smaller page 
sizes) wr~ch causes SOWs for paged segments to be in higher 
demand would begin to degrade system performance. 

2. Another approach is to achieve the effect of a one-pass search 
using a two-pass search and overlapping the first pass during 
address preparation. In this approach, the single associative 
rrerrory contains both SDWs (paged and unpaged) and P'lWs extended 
with access control infonnation. During address preparation, 
the associative rnEmJry is searChed for the SOW of the segment 
to be referenced. After address preparation, a second pass is 
made to locate the PIW for the page to be referenced. Only if 
the second. pass fa.l.ls are the results of the first pass inter
rogated. If the first pass had succeeded, only the P'IW must be 
fetched fran core merrory. OtherWise, both the SI:W and the P'lW 
must be fetched fran core narory. 

3. A third approach is to search two associative rnEmJries in 
parallel, one for SOWs and the other for P'lWs. If either the 
SDW or P'lW is not found in its respective associative rrerrory, 
it is re~ieved fran core me:rory and updated into the appropriate 
associative me:rory. Although this approach requires duplicate 
circuitry, it is appealing in its logical simplicity and is the 
rrethod chosen. 
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ADDR 

AST 

ASTE 

CA 

CM 

CME 

DBR 

DC 

DCW 

DID 

DIM 

OS 

DSBR 

IC 

IPR 

rrP 

ITS 

KST 

KSTE 

MC 

PC 

PHM 

PHU 

PN 

PO 

D. Abbreviations and Acronyms 

Address portion of PTW 

Active Segment Table 

Active Segment Table Entry 

Computed Address 

Core Map 

Core Map Entry 

Descriptor Base Register 

Directory Control 

Data Control Word 

Device Identifier 

Device Interface Module 

Descriptor Segment 

Descriptor Segment Base Register 

Instruction Counter 

Instruction Pointer Register 

Indirect to Pointer Register 

Indirect To Segment 

Known Segment Table 

Known Segment Table Entry 

Memory Controller 

Page Control 

Page Has Been Modified 

Page Has Been Used 

Page Nwnber 

Page Offset 
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PR Pointer Register 

PRR Procedure Ring Register ' "-" 

PSR Procedure Segment Register 

PT Page Table 

PTW Page Table Word -

RA Ring Alarm register 

RN Ring Number 

SC Segment Control 
, 

SOW Segment Descriptor Word 

SFH Segment Fault Handler 

SST Systems Segment Table 

TPR Temporary Pointer Register 

TRR Temporary Ring Register 

TSR Temporary Segment Register 
J 

UID Unique Identifier 
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