
.Multics

PL/I
Programmin&

with M"ultic.s
·,·'1

Subroutines

Reference Handbo"ok

Course Code FISC

ISS UE DATE: Apr il 1, 1981

REVISION: 1

REVISION DATE: September, 1983

Copyright (0) Honeywell Information Systems Ino., "1983.

The information oontained herein is the exolusive pro'perty of Honeywell
Information Systems, Inc., exoept as otherwise indioated i ',and shall
not be reproduoed, in whole or in part, without explicit· written
authorization from the oompany. .

Honeywell disolaims the implied warranties of merohantab'ility" and fitness
for a partioular purpose and makes no express warranties exoept as may
be stated in its written agreement with and for its customer'.;

In no event is Honeywell liable to anyone for any indireot',. speoial or
consequential damages. The information and specifications~ in this
dooument are subject to change without notice.

Printed in the United States of America
All rights reserved

COURSE DESCRIPTION

~ rhLl Programming ~ Multics Subroutines

Duration: Five Days

. Intended For: Advanced Mul tics PL/I programmers who need to use Mul tics
subroutines to perform IIO, manipulate files in the
storage system, and/or wTite commands and active
functions.

Synopsis: This course introduces the student to the system
subroutine repertoire to include subroutines that:
create, delete, develop pointers to, and return status
information about storage system entities (hcs); perform
stream and record I/O to files and devices via I/O
switches (iox); enable commqnd and active function
procedures to properly interface to the standard command
processing environment (cu). Interactive workshops
are included to reinforce the material presented.

Objectives: Upon completion of this course, the student should be
able to: write PL/I programs containing calls to system
subroutines which:

1 •

2.

3.

Create, destroy, and obtain status information on
segments, directories, and links.

Address and manipulate data directly in the virtual
memory (without input/output statements).

Interface directly with the Multics I/O System (ioa ,
iox_) • -

4. Implement n system standard" commands and active
functions.

Prerequisite.s:: Advanced Multics PL/I Programming (F15B) or equivalent

Maj or 'To pic s:
.... ~. ..

. ex per ience.
If"... . C

Advanced Use of Based Variables
Subroutine Interfaces to the Storage System

and ACL
Mul tics Implementation of Condition Handling
The Multics I/O System
Writing Commands and Active Functions

i F15C

DAY

1

2

3

4

5

F15C TOPIC MAP

MORNING TOPICS

WELCOME/ADMINISTRATION
- - - - - - - - - - - - - - -

REVIEW OF PLII ATTRIBUTES
- - - - - - - - - - - - - - -

PLII STORAGE MANAGEMENT
- - - - - - - - - - - - - - -

WORKSHOP 11

INTRODUCTION TO SUBROUTINES
- - - - - - - - - - - - - - -
ADVANCED BASED VARIABLE USAGE
- - - - - - - - - - - - - - -

WORKSHOP 13

THE MULTICS 1/0 SYSTEM

- - - - - - - - - - - - - - -
WORKSHOP !l5

STORAGE SYSTEM SUBROUTINES

- - - - - - - - - -
WORKSHOP 17

COMMANDS & ACTIVE

- - - - - - - - -
WORKSHOP

-
J'" 1'~

- - - - -

FUNCTIONS

- - - - -

ii

AFTERNOON TOPICS

BASED STORAGE

- - - - - - - - - - - - - - - -
WORKSHOP 112

MULTICS CONDITION MECHANISM

- - - - - - - - - - - - - - - -
WORKSHOP 114

THE MULTICS iox SUBROUTINE -- - - - - - - - - - - - - - - -
THE MULTICS ioa SUBROUTINE

- - - - - - - - - - - - - - - -
WORKSHOP 116

STORAGE SYSTEM SUBROUTINES
(CONTINUED)

- - - - - - - - - - - - - - - -
WORKSHOP 118

REVIEW, QUESTIONS AND

- - - - -WORKSHOP COMPLETION

F15C

Topic XI

Topic XII

Appendix W

CONTENTS (con I t)

Page

Multics Storage System Subroutines--Continued •• 11-1·
Naming and Moving Directory Entries • • • • • 11-1
Affec ting the Leng th 0 f a Fil e. • • • • • • • 11-4
Manipulating the Address and Name Spaces ••• 11-8
Examining the Address and Name Spaces •••• 11-15
Pathname, POinter, Reference Name Conversion. 11-16

Commands and Active Functions ••••
Command s. • • • • • • • • • • • •

Characteristics of a Command"
Differences Between a Command and a

Program •••••••••
Reporting Errors. • • • •
Command I/O • • • • • • • • • •
Other Subroutines Used in Writing

Comm and s . • . . • . • •
An Ex am pl e Of A Command • • • • •

Active Functions •••••• " •••••
Subroutines Used for Writing Active
Functions ••••• > •••••

Reporting Errors ••••••••••

. I.

• 12-1
• 12-1
o 12-1

• 12-2
• 12-3
• 12-5

• 12-8
• • 12-14

• 12-16

12-17

An Ac t i v e Fun c ti 0 n Ex am pl e. • • • • •
Commands and Active Functions •••••••

An Example Of a Command/Active Function
Other Useful Subro utines. • •

• 12-19
12-20

• 12-22
12-23

• 12-26

Workshops • • • • • •
Worksho pane. • •
Workshop Two ••
Workshop Three. • •
Worksho p Fo ur • • •
Workshop Five ••••
Worksho p Six. •
Wor ksho p Seven.

. . • • • • • • W-1
• • W-1

• • • • • • • • W-3
W-4

• W-6
• • • • • W-7
• • • . . W-8
• • • • • W-9

Worksho p Eig ht. • • • • • • • W-11
• • • W-12 Worksho p Nine • • • • • • . . .

v F15C

STUDENT BACKGROUND

PL/I Programming with Multics Subroutines (F15C)

NAME: _____________________________ PHONE: ________________ __

TITLE: __ ___

COMPANY ADDRESS: __ ___

MANAGER: ___________________________ OFFICE PHONE: _____ _

INSTRUCTOR'S NAME:

1. Do you meet the prerequisi te as stated in the" Course Description"
of the student text? If yes, check" a" or "b".
If no, check "c" or ltd".

a [] Prerequisite satisfied by attending course indicated in· "Course
Description" •

b (] prerequisi te by (dv ... 1;
... ';A~. CI.U

c [] Elected or instructed to attend course anyway.

d (] Was not aware of prerequisite.

2. What related Honeywell courses have you attended? Furnish dates
and instructors if possible.

(P·LEASE TURN OVER)

vii F15C

STUDENT BACKGROUND

PLII Programming with Multics Subroutines (F15C)

3. Check the boxes for which
be other than Honeywell's)

you have .!!!1 related ex perience. (May

[] PL1 [] COBOL [] FORTRAN [] ASSEMBLY

[] JCL [] OPERATIONS [-] GCOS [] MULTICS

[] NPS [] GRTS [] CP6 [] OTHER

4. Detail any experience you have had which is related to the
material in this course.

5. Obj ectives for attending this course (May check more than one) •

[] Require information to provide support for a system

[] To maintain an awareness of this product

[] To evaluate or compare its po ten tial s

[] Required to use or implemen t

(] Need update from a pr ev ious release

[] Require a refresher

[] Other:

viii F15C

HONEYWELL MARKETING EDUCATION

COURSE AND INSTRUCTOR EVALUATION FORM

INSTRUCTOR

COURSE

START DATE

LOCATION

STUDENT NAME _______________________________ (OPTIONAL)

In the interest of developing training courses of high quality,

and then improving on that base, we would like you to complete

this questionnaire. Your information will aid us in making

future revisions and improvements to this course. Both the

instructor and his/her manager will review these responses.

Please complete the form and return it to the instructor

upon the completion of the course. In questions 1 through

14, check the appropriate box and feel free to include additional

comments. Attach additional sheets if you need more room

for comments. Be objective and i concrete' in your comments

-- be critical when criticism is appropriate.

ix F15C

TOPIC I

"Review of PL/I Attributes

Classification of Attributes • • • • • •
Usage Examples of Selected Attributes ••
Aggregate Descr.iptors •••••••••

1-i

Page

• • • 1-1
• • 1-2
. . 1-7

F15C

Topic I REVIEW OF PL/1 ATTRIBUTES Topic I

OBJECTIVES:

Upon completion of this topic, students should be able to:

1. Declare variables in PL/1 using full range of variable
attributes.

2. Determine which instance of a variable is being referenced at
anY given point in a program.

3. Manipulate storage aggregates (arrays and structures).

4. Write and use external procedures.

5. Set UP the proper
procedures.

entry declarations to use external

Multics 1-1 F15C

CLASSIFICATION OF ATTRIBUTES

• A REVIEW LIST OF ATTRIBUTES. STARRED ATTRIBUTES ARE COVERED IN
DETAIL IN TOPICS 2, 3 AND 4. THIS CHAPTER PRESENTS USAGE EXAMPLES
TO REVIEW/CLARIFY SOME OF THE NON-STARRED ATTRIBUTES

storage description
storage type

data type
computational

arithmetic
mode: real complex
scare: fixed float
base: binary decimal
~ision: precision(p,q)

strlng
string type: character(n) bit(n) picture"ps"
varlabllity: varying nonvarying

~-computational
address

statement: label entry format
data
---rocator: pointer* offset*

flle: fil e
area: -a:i='ia(n).!l

aggreg~type
array: dimension(bp, •••)
structure: structure member

alignment: aligned unaligned
management class

storage class
allocation: automatic ~tatic controlled* based(lq)*
sharing: based(lq)* defined(r)* position(i)* parameter

scope: internal external
category: variable constant
initial: initial (x, •••)

usage description
entry: entry(d, •••) returns(d, •••) options(variable)
offset: offset(a)*
flle constant

operation: input output update
organization

stream: stream print environment(interactive)
record: record sequential direct keyed

environment(stringvalue)
non-valued names
---compile time: like r

intrinsic names: builtin condition*

Not To Be Reproduced 1-1 F15C

USAGE EXAMPLES OF SELECTED ATTRIBUTES

• ARITHMETIC DATA TYPES

o dcl x real fixed binary precision (17,0) aligned;

o dcl x; /* SAME AS PREVIOUS DECLARATION */

o dcl salary float decimal (6);

• STRING DATA TYPES

o dcl string_1 char(4) init ("ABC");

o dcl string_2 char(4) varying init ("ABC");

string_1 A B C

O •• e t ... e e • 11 G • e •• e $, e 011

A I B-1 C I / / /

Not To Be Reproduced 1-2 F15C

USAGE EXAMPLES OF SELECTED ATTRIBUTES

• STATEMENT LABEL PREFIX (DECLARED BY USAGE, NOT IN FORMAL DECLARATION)

D continue 1: x = x + 1; /* label internal constant */

D output_1: format (a(9),f(6,2)); /* format internal constant */

D prog_1: proc; /* entry constant */

n alternate: entry (a,b); /* entry constant */

• ALIGNMENT

D dcl string char(4) aligned; /* DEFAULT IS unaligned */

D dcl number fixed bin unaligned; /* DEFAULT IS aligned */

• STATIC VS. AUTOMATIC

o dcl a init(O);
dcl b init(O) static;

a= a+ 1;
b = b + 1;
put skip list (a,b);

Not To Be Reproduced

/* automatic BY DEFAULT */

1-3 F15C

USAGE EXAMPLES OF SELECTED ATTRIBUTES

• AGGREGATES

o ARRAY

o del array 1 (iO);
del array-2 (-6:4);
dcl arraY-3 (10,3);
del array:4 dimension (S);

o STRUCTURE

o dcl 01 x structure,
02 y char(S) member,
02 z fixed bin(3S) member;

o del 01 x, 02 y char(S), 02 z fixed bin(3S);

0 LIKE ATTRIBUTE

0 dcl 1 record 1,
2 employee info,

3 name cnar(10) ,
3 salary fixed dee(10,2);

0 dcl record 2 like record 1 .
-'

0 dcl 1 employee like record _1 • employee_info .name;

• PARAMETER

o sub 1: proe (a:b);

dcl a char(3) parameter;
dcl b char(6); /* parameter ATTRIBUTE USUALLY OMITTED */

Not To Be Reproduced ·1-4 F1SC

• USAGE EXAMPLES OF SELECTED ATTRIBUTES

• SCOPE OF VARIABLES

0 A: proc;

dcl x external;
dcl y;

.
B: proc;

dcl x· ,

.
end B· ,

end A· ,

DC: proc;

dcl x ex ternal;

.
end C;

n D: proc;

dcl xi
del y;

end D;

Not To Be Reproduced

1* SOURCE SEGMENT A.pl1 *r

I¥- SitAt{ c bv cl~t+1
I

1* SOURCE SEGMENT C.pl1 *1

1* SOURCE SEGMENT D.pl1 *1

1-5 F15C

USAGE EXAMPLES OF SELECTED ATTRIBUTES

• VARIABLE VS. CONSTANT

o dcl x internal static in it (125) options (constant);
dcl (file 1, file 2) file;
dcl file_out file-variable;

file out = file 2;
put file (file_out) list ("Test line");

o TYPES OF IDENTIFIERS THAT ARE USUALLY USED AS CONSTANTS, BUT MAY
BE DECLARED AND USED AS VARIABLES: label, entry, format, file

• INITIALIZATION

o dcl array 1(5) init(1,2,3,4,5)j
dcl array-2(5) init(1,2,(3)*); '* LAST 3 ELEMENTS UNDEFINED */
dcl array:3(3,2) init(1,2,3,4,5,6);

• ENVIRONMENT ATTRIBUTES

n open file (sysprint) stream output environment (interactive);

put list ("line ,");
put list ("line 2");

/* ~INEFEED ADDED AT END AUTOMATICALLY */

n dcl line char(150) varying;
....a ... ,- ""'.;,&'",""".
U~. ~W'~QW_~ •• ~ ~ •• ~,

open file (stream file) environment (stringvalue) record input
ti tle ("record_stream_ user_input");

read file (stream_file) into (line);

'* MAKES POSSIBLE TAKING ENTIRE LINE FROM TERMINAL WITH EMBEDDED
BLANKS WITHOUT USING QUOTES */

Not To Be Reprod uced 1-6 F15C

AGGREGATE DESCRIPTORS

• DESCRIPTORS DESCRIBE THE DATA TYPE AND LAYOUT OF AN IDENTIFIER WITHOUT
REFERENCE TO ANY VARIABLE NAMES OR IDENTIFIERS

• DESCRIPTORS ARE USED IN "PARAMETER DESCRIPTOR" LISTS, AND IN "RETURNS
DESCRIPTOR" LISTS

n EXAMPLES

n declare foo$bar entry (fixed bin, ptr, char(·));

n declare how_many entry (fixed bin) returns (fixed dec(3,O));

Not To Be Reproduced 1-7 F15C

AGGREGATE DESCRIPTORS

• DESCRIPTORS ARE FORMED FOR AGGREGATES AS FOLLOWS:

o ARRAY DESCRIPTORS

o ARE DERIVED BY ELIMINATING THE IDENTIFIER FROM THE DECLARATION

o THE ARRAY BOUNDS MAY BE PRECEDED BY THE 'dimension' OR 'dim'
KEYWORD, OR THE KEYWORD MAY BE OMITTED IF THE ARRAY BOUNDS
PRECEDE THE DATA TYPE

n EXAMPLES

B del X(12,3) fixed dec(7);

o del get_X entry «12,3) fixed dec(7»;

o del return_X entry() returns (dim(12,3) fixed dec(7»;

n STRUCTURE DESCRIPTORS

o ARE DERIVED FROM THE DECLARATION AS FOLLOWS:

n ELIMINATING ALL IDENTIFIERS

o NORMALIZING THE LEVEL NUMBERS

o THE KEYWORDS 'structure' AND 'member' MAY BE OMITTED FROM THE
DESCRIPTORS

Not To Be Reproduced 1-8 F15C

AGGREGATE DESCRIPTORS

o EXAMPLE

dcl 1 A al igned ,
2 C (3) fix ed bin,
~ F ptr;

o dcl get A entry (1 structure aligned, 2 dim(3) fixed bin
- member, 2 ptr member);

o dcl returns_A entry () returns (1 aligned, 2 (3) fixed bin,
2 ptr);

o dcl get_A entry (1 like A);

o dcl returns A entry () returns (1 like A);

Not To Be Reproduced 1-9 F15C
(End Of Topic)

1. Considering the stated objectives of this course, rate the overall
length of the course.

2.

CAN'T
JUDGE

9
COMMENTS

TOO
SHORr

I 1 I 2 3

ABOUT
RIGHT

4 I 5 I 6 7 ,. 8

TOO
LONG

9 I

Considering the objectives, rate the technical level at which the
course was taught.

NOT
CAN'T TECH ABOUT TOO
JUDGE ENOUGH RIGHT TECH

9 I 2 ~ ~ I ~ 6 Z a ~ I
COMMENTS

3. Considering the objecti-ves, rate the emphasis placed on the more
important to pics.

CAN'T
JUDGE

'01
POOR

I 2 ~ ~

GOOD EXCELLENT
5 I 6 z 8 '91

COMMENTS __ _

•

4. Rate the sequence in which the topics were presented.

CAN'T
JUDGE

o I
POOR

1 I 2
GOOD

3 4 1
EXCELLENT
891

COMHENTS __ __

x F15C

5. Rate the format and quality of the learning materials (slides,
student handbooks, supplementary handouts, etc.).

CAN'T
JUDGE POOR GOOD EXCELLENT

I 0
, I 1 j ~ I 3 li -, S , ~ , -Z- I 8 , 9

COMMENTS

6. Rate the amoun t of time given for the completion of the worksho ps.

TOO TOO
CAN'T LITTLE ABOUT MUCH
JUDGE TIME RIGHT TIME

0 I I i ~ ~ 4 I S I b Z a I ~
COMMENTS

7. Rate the workshops' ability to relate back to and reinforce the
mater ial pr esen ted.

CAN'T
JUDGE

o I

COMMENTS

POOR GOOD EXCELLENT

~ 3 4 5 b 1 891

--

8. Rate the physical condition of the classroom (space available,
temperature, lighting, etc.).

f9AM''''' 'JAn ...

JUDGE POOR GOOD EXCELLENT

9 1 2 3 4 -I 5 I 6 7 8 I 9

COMMENTS

xi F15C

9. Rate the physical condition of the lab or workshop room. (systems
configuration, space available, learning tools, terminals, tables,
etc.) •

CAN'T
JUDGE

o

COMMENTS

POOR

1 2 3

GOOD EXCELLENT
4 s 6 7 891

10. Rate your instructor's demonstrated knowledge of the course material.

CAN'T
JUDGE

o
POOR

1 2 3

GOOD EXCELLENT
4 5 I 6 7 I 8 9 I

COMMENTS __ ___

11. Rate your instructor's ability to convey the technical aspects of
the various topics.

CAN'T
JUDGE

o I
COMMENTS

POOR GOOD EXCELLENT
2 3 4 5 6 7 891

12. Rate the classroom and workshop assistance given you by your
instructor.

CAN'T
JUDGE

6

COMMENTS

POOR GOOD

2 3 4 5 6 7
I 8

EXCELLENT
a
<

xii F15C

!

"

· 13. Rate the instructor's ability to create an env ironmen t in which
you fel t free to ask questions.

CAN'T
JUDGE POOR GOOD EXCELLENT

I (5 I I j I , I ~ ~ I S I b I % I a ~
COMMENTS

14. Rate the relevance of the skills learned in the course with respect
to yo ur job or fur ther tr ain ing •

CAN'T
JUDGE

o I
POOR

1 2 3

GOOD EXCELLENT
4 5 I 6 1 8 '91

COMMENTS __ __

15. What did you like most about this course?

16. What did you like least about this course?

)

xiii F15C

17. Other comments please:

18. Of the following job categories, check the ones which most nearly
represent the bulk of your experience, and to the right of your
responses indicate the number of years you have acted in that
capacity.

(] Applications Programmer. · · · years

(] Field Eng ineering Anal yst. years

(] Manager. . . · · · · • years

(] Marketing Anal yst. • · · • · · years

[] Salesperson. • · · • · · · · years

[] Secretary. . • · · · · • · years

[] Systems Anal yst. · · · • · years

[] Systems Programmer · · · · years

[] Other. . · · · · · · · · · years

Please give n other" title

xiv F15C

TOPIC II

PL/I Storage Management

Declaring PL/I Variables • • • • • •
Defining the PL/I Storage Management Class

Abbreviations and Defaults •••
'controlled' STORAGE CLASS •••••

Characteristics ••••••••••
Allocation and Freeing • • • • •
STACKING 'controlled' VARIABLES ••
Variable Expressions in Attributes
GUIDELINES FOR USING 'controlled' STORAGE.

'defined' STORAGE CLASS •••

. . . .

Page

• • 2-1
• • • 2-2

• • 2-3
• 2-4

• • 2-4
• • 2-5

.2-6
• • 2-7

• 2-8
2-10

Characteristics. • • • • • • • • ••• • 2-10
Simpl e De fin ing. • '. • • • • • • • .. • • 2-12
String Overlay Defining. • • • • ••••••• • .. 2-13

• 2-15
• • • • 2-17

'isub' DEFINING ••••••••••••••••••
GUIDELINES FOR USING 'defined' STORAGE ••••••

2-i F15C

Topic II PL/1 STORAGE MANAGEMENT Topic II

OBJECTIVES:

Upon completion of this toPiC7 students should be able to:

1. Allocate and free controlled variables" to implement a stack
or a variable-extent data item such as a string or array.

2. Use defined variables to change the interpretation of a
particular area of storage.

3. Manipulate cross-sections of arrays using "isubfl-defined
variables.

Multics 11-1 F15C

DECLARING PL/I VARIABLES

• THE DECLARATION OF AN IDENTIFIER IS USUALLY DIVIDED INTO TWO PARTS

o THE STORAGE TYPE

o DESCRIBES THE TYPE OF VALUES WHICH CAN BE ACCOMMODATED

o DESCRIBES THE AMOUNT AND INTERPRETATION OF STORAGE GENERATED

n THE STORAGE MANAGEMENT CLASS

o SPECIFIES VARIOUS INFORMATION ABOUT THE HANDLING OF THE STORAGE
GENERATED FOR THE IDENTIFIER INCLUDING

o THE ALLOCATION AND FREEING MECHANISM TO BE USED

o THE LOCATION OF THE STORAGE TO BE GENERATED

o INITIALIZATION OF STORAGE

n AN EXAMPLE

n del x real fixed binary(10,O) automatic variable init(5);

o 'real fixed binary(10,O)' IS THE STORAGE TYPE

o 'automatic variable init(5)' IS THE STORAGE MANAGEMENT CLASS

Not To Be Reproduced 2-1 F15C

DEFINING THE PL/I STORAGE MANAGEMENT CLASS

• FOUR ATTRIBUTES SPECIFY THE STORAGE MANAGEMENT CLASS

o THE 'usage category' ATTRIBUTE

o DESCRIBES HOW THE STORAGE IS USED

o VALUES ARE 'variable' AND 'constant'

o MOST OFTEN, THE USAGE CATEGORY ATTRIBUTE IS OMITTED

o THE 'scope' ATTRIBUTE

o PARTIALLY DETERMINES THE REGION IN WHICH THE STORAGE IS ALLOCATED

o AFFECTS THE ACCESSIBILITY OF THE IDENTIFIER

o VALUES ARE 'internal' AND 'external'

D THE 'storage class' ATTRIBUTE

D SELECTS THE MECHANISM TO BE USED FOR THE ALLOCATION AND FREEING
OF THE STORAGE GENERATED

•
o VALUES ARE 'automatic', 'static', 'controlled', 'based',

'defined! AND ?par-ameter-?

o THE 'initial value' ATTRIBUTE

o WHEN PRESENT, SPECIFIES A VALUE TO BE ASSIGNED TO THE IDENTIFIER
WHEN IT IS ALLOCATED

o VALUE IS 'initial (value_list)'

Not To Be Reproduced 2-2 F15C

DEFINING THE PL/I STORAGE MANAGEMENT CLASS

ABBREVIATIONS ~ DEFAULTS

• VALID ABBREVIATIONS FOR STORAGE MANAGEMENT ATTRIBUTES

ATTRIBUTE

internal
external
automatic
controlled
defined
parameter
initial

ABBREVIATION

int
ext
auto
ctl
def
param
init

• STORAGE MANAGEMENT DEFAULT VALUES

OMITTED ATTRIBUTE

usage category

scope

storage class

DEFAULT VALUE

'variable'
(exception: 'constant' if the data
type is 'entry' or 'file')

'internal'
(exception: 'external' if the data
type is 'entry' or 'file')

, automatic'
(exception: 's~atic' if the
'external' attribute is
present or implied)

n NOTE: THE DEFAULTS APPLY TO IDENTIFIERS DECLARED IN A FORMAL
DECLARATION STATEMENT. FOR EXAMPLE:

n A LABEL FORMALLY DECLARED IS A variable BY DEFAULT

n A LABEL DECLARED BY USAGE AS A LABEL PREFIX IS A constant

Not To Be Reproduced 2-3 F15C

'controlled' STORAGE CLASS

CHARACTERISTICS

• 'controlled' STORAGE ALLOWS THE PROGRAMMER TO CONTROL THE GENERATION
OF STORAGE FOR A VARIABLE

o IT IS DRIVEN BY EXPLICIT PROGRAM STATEMENTS

o STORAGE IS ALLOCATED BY THE 'allocate' STATEMENT, AND FREED BY
THE 'free' STATEMENT

n A 'controlled' VARIABLE IS THEREFORE AVAILABLE FOR WHATEVER PORTION
OF EXECUTION OF THE PROGRAM THE PROGRAMMER DESIRES

o A SHALL CONTROL BLOCK ASSOCIATED WITH THE 'controlled' VARIABLE
IS USED TO LOCATE ITS CURRENTLY ALLOCATED STORAGE

o 'controlled' VARIABLES CAN BE "STACKED"

n THEY CAN HAVE EITHER 'internal' OR 'external' SCOPE (internal IS
THE DEFAULT)

Not To Be Reproduced 2-4 F15C

'controlled' STORAGE CLASS

ALLOCATION AND FREEING

• A 'controlled' VARIABLE IS ALLOCATED BY EXECUTION OF THE 'allocate'
STATEMENT

D allocate.!.s!;

• A 'controlled' VARIABLE IS FREED BY THE EXECUTION OF THE 'free'
STATEMENT

n free ls!;

o fr e e i d 1, i d2, ..., i d N ;

Not To Be Reproduced 2-5 F15C

'controlled' STORAGE CLASS

STACKING 'controlled' VARIABLES

• PL/I ALLOWS US TO ALLOCATE A 'controlled' VARIABLE MORE THAN ONCE
BEFORE FREEING ITS STORAGE .

n THE HISTORY OF ALLOCATIONS FOR EACH VARIABLE IS MAINTAINED ON A
STACK SO THAT:

o EACH 'allocate' STATEMENT LEAVES EARLIER ALLOCATIONS OF THAT
VARIABLE UNDISTURBED

o A 'free' STATEMENT FREES THE MOST RECENTLY ALLOCATED SPACE
FOR THAT VARIABLE

o EACH TIME THE VARIABLE IS REFERENCED, THE ONE "ON THE TOP OF
THE STACK" IS ACCESSED (MOST RECENTLY ALLOCATED BUT NOT FREED)

U EXAMPLE

Pl: proc;

dcl x float bin controlled;

· · · (Computation 111)

allocate x· ,
x = 10;

· · · (Computation 112)

allocate x· ,
x = 20 ;

· · · (Computation 13)

free x· ,
· · · (Computation 14)

free x· ,
· · · (Computation 115)

end;

Not To Be Reproduced 2-6 F15C

'controlled' STORAGE CLASS

VARIABLE EXPRESSIONS IN ATTRIBUTES

• WHEN A 'controlled' VARIABLE IS ALLOCATED, ANY EXTENT EXPRESSIONS
AND INITIAL VALUE EXPRESSIONS ARE EVALUATED

o EXTENTS ARE ARRAY BOUNDS, MAXIMUM STRING LENGTH, OR AREA SIZE

o EXTENTS MUST BE SET BEFORE THE EXECUTION OF AN 'allocate' STATEMENT

o EXTENTS ARE SAVED IN A SYSTEM TEMPORARY

o EXAMPLE

P1: proc;

dcl n fixed bin init(O);
float bin controlled

n = 2;
allocate Aj

:_:f.II_."l\I"'\\.
J.U J. ~ \ \ U~~ J v J ,

n = 0; /*HAS NO EFFECT ON EXTENT*/
put skip list (A);
free A;

Not To Be Reproduced 2-7 F15C

'controlled' STORAGE CLASS

GUIDELINES FOR USING 'controlled' STORAGE

• 'controlled' STORAGE IS GENERALLY MORE EXPENSIVE THAN THE BUILT-IN
STORAGE MANAGEMENT MECHANISM OF AUTOMATIC OR STATIC STORAGE CLASSES

• POSSIBLE APPLICATIONS:

n WHEN A STACK OF VARIABLES IS NEEDED (THIS ALLOWS A PROGRAM WHICH
USES STATIC VARIABLES TO BECOME REENTRANT BY REPLACING STATIC
VARIABLES WITH 'controlled' VARIABLES)

o WHEN AN EXTERNAL VARIABLE MUST HAVE VARIABLE EXTENTS (' based'
VARIABLES, WHICH COULD HAVE VARIABLE EXTENTS, CANNOT HAVE' ex ternal '
SCOPE)

o WHEN CONTROLLING THE AMOUNT OF STORAGE REQUIRED FOR A PROGRAM
BECOMES CRITICAL

Not To Be Reproduced 2-8 F15C

'controlled' STORAGE CLASS

GUIDELINES FOR USING 'controlled' STORAGE

• NOTE: PROGRAMS USING 'controlled' VARIABLES SHOULD PROVIDE AN 'on
uni t' FOR THE 'cleanup' CONDITION IN ORDER TO FREE ANY ALLOCATED
STORAGE

n THE 'allocation' BUILTIN FUNCTION RETURNS (IN A fixed bin(17))
THE CURRENT ALLOCATION DEPTH OF STORAGE FOR A 'controlled' VARIABLE

n EXAMPLE

dcl cleanup condition;
dcl x controlled;

on cleanup begin;

end;

Not To Be Reproduced

do i = 1 to allocation (x);
free x;

en.d;

2-9 F15C

'defined' STORAGE CLASS

CHARACTERISTICS

• A 'defined' VARIABLE IS USED TO ASSOCIATE A NEW NAME WITH AN EXISTING
VARIABLE OR PART OF AN EXISTING VARIABLE

• IT SUPPLIES A POTENTIALLY DIFFERENT INTERPRETATION (REDEFINITION)
OF AN EXISTING GENERATION OF STORAGE

D IT MUST HAVE THE SAME DATA TYPE AS THE PART OF THE BASE VARIABLE
BEING REDEFINED (EXAMPLE: A BIT STRING CANNOT BE 'defined' ON A
CHARACTER STRING)

o IT ALWAYS HAS 'internal' SCOPE

n SINCE IT NEVER HAS STORAGE ALLOCATED FOR IT, A 'defined' VARIABLE
CANNOT HAVE AN 'initial' ATTRIBUTE -

• NOTE: USE OF 'defined' VARIABLES IS NOT THE SOLE MEANS OF
"REDEF INITION" OF VARIABLES (' based' VARIABLES W ILL BE DISCUSSED
LATER)

Not To Be Reproduced 2-10 F15C

'defined' STORAGE CLASS

CHARACTERISTICS

• THE 'defined' ATTRIBUTE CONSISTS OF THE KEYWORD 'defined' FOLLOWED
BY A REFERENCE TO A BASE VARIABLE

• THERE ARE THREE WAYS TO USE 'defined' VARIABLES:

n SIMPLE DEFINING

II STRING OVERLAY DEFINING

n 'isub' DEFINING

Not To Be Reproduced 2-11 F15C

'defined' STORAGE CLASS

SIMPLE DEFINING

• EACH SCALER IN THE 'def.ined' VARIABLE AND THE CORRESPONDING SCALER
IN THE BASE VARIABLE HAVE IDENTICAL STORAGE TYPES

n EXAMPLE 1

del array(5,5) ehar(4);
del same array(5,5) ehar(4) defined array;
del vector 1(5) ehar(4) defined array;
del veetor:2(5) ehar(4) defined array(2,1);

n EXAMPLE 2

del a,
2 b(n) ,

3 e flo at bin, .
3 d noat bin,

2 e ehar(6);

del x float defined(a.b(i-2).d);

del Y(rt) float defined(a.b(*) .d);

del z defined(a .b(j» ,
2 z1 float bin,
2 z2 float bin;

• NOTE: THE BASE VARIABLE MAY NOT BE A 'defined' VARIABLE OR A NAMED
CONSTANT

Not To Be Reproduced 2-12 F15C

'defined' STORAGE CLASS

STRING OVERLAY DEFINING

• A STRING 'defined' VARIABLE IS MAPPED ONTO ALL OR PART OF THE STORAGE
OF A STRING BASE VARIABLE

n VALID FOR ALL STRING TYPES AS LONG AS THEY"ARE 'nonvarying unaligned'

D MUST MATCH BITS ONTO BITS OR CHARACTERS ONTO CHARACTERS

o PICTURED STRINGS CAN BE USED AS THE BASE VARIABLE, A FACT THAT
PROVIDES 'defined' STORAGE ONE OF ITS MOST POWERFUL FACILITIES

o EXAMPLE

dcl a pic "999v.99ges99";
dcl exponent char (3) defined (a) position (9);

n THE' posi tion' OR 'pos' ATTRIBUTE CAN BE USED TO START THE' defined'
VARIABLE AT SOME BIT OR CHARACTER POSITION OTHER THAN THE FIRST

Not To Be Reproduced 2-13 F1SC

'defined' STORAGE CLASS

STRING OVERLAY DEFINING

o EXAMPLES

d cl A (S) char (2) un a 1 ;
dcl B char(S) def(A);
dcl 1 C def(A),

2 X char(S) unal,
2 Y char(S) unal;

dcl D char(S) def(A) pos(6);
dcl E char(S) def(A(2» pos(2);

A(1) A(2) A(3) A(4)

C.Y

I I

I

Not To Be Reproduced . 2-14

A(S)

F1SC

'defined' STORAGE CLASS

'isub' DEFINING

• A FACILITI OF PLII WHICH ALLOWS A 'defined t ARRAY TO MAP ONTO A
BASE ARRAY IN' A SPECIALIZED MANNER

n THE VALUE OF THE 'isub' REFERS TO THE SUBSCRIPT OF THE DEFINED
ARRAY, NOT THE BASE ARRAY

n EXAMPLE

del A(3,4) float bin;
del Q(3) float bin defined A(1sub,4);
del TRANS(4,3) float bin defined(A(2sub,1sub);

Q (1) --> A (1 , 4)

Q (2) --> A (2 , 4)

Q (3) --> A (3 , 4)

n THE ARRAY 'Q' DEFINES THE FOURTH COLUMN OF 'A'

D THE ARRAY 'TRANS' REPRESENTS THE TRANSPOSE OF ARRAY 'A'

n IT REPRESENTS AN INTERPRETATION OF 'A' STORED IN COLUMN-MAJOR
ORDER INSTEAD OF ROW-MAJOR ORDER

n THIS CAN BE USEFUL FOR PASSING ARRAY ARGUMENTS FROM FORTRAN
TO PLII PROGRAMS AND VICE VERSA

Not To Be Reproduced 2-15 F15C

'defined' STORAGE CLASS

'isub' DEFINING

o CONSIDER A PL/l 2 X 2 ARRAY:

A(1,1) = 1

A(2,1) = 3

A(1 ,2) = 2

A(2,2) = 4

I PL/1 WOULD STORE IT IN MEMORY IN ROW MAJOR ORDER

2 3 4

o FORTRAN WOULD, HOWEVER, STORE IT IN COLUMN MAJOR ORDER

WHE E FORTRAN EXPECTS TO FIND A(2,1)

o PL/I MUST THEREFORE PASS FORTRAN A TRANSPOSE!

Not To Be Reproduced

dcl A(2;2) fixed bin;
dcl transpose A (2,2) fixed bin

de1ined A(2sub , 1 sub) ;

.
call fortran_prog (transpose_A);

2-16 F15C

'defined' STORAGE CLASS

GUIDELINES EQ! USING 'defined' STORAGE

• 'defined' STORAGE MANAGEMENT IS "IN COMPETITION" WITH 'based' STORAGE
MANAGEMENT

n 'based' STORAGE MANAGEMENT IS MUCH MORE GENERAL

n FOR MULTICS, 'based' IS GENERALLY PREFERRED OVER 'defined' STORAGE
MANAGEMENT

• USUALLY USED ONLY FOR THE ONE UNIQUE FEATURE PROVIDED -- 'isub'
DEFINING

YOU ARE NOW READY FOR WORKSHOP

#1

Not To Be Re prod uced 2-17 F15C
(End Of Topic)

TOPIC III

'based' Storage

Page

CHARACTERISTICS OF 'based' STORAGE. • • • • • 3-1
THE 'based' ATTRIBUTE. • • • • • • • • • • 3-2
EXPLICITLY ALLOCATED 'based' VARIABLES. • • •• • 3-4

THE 'allocate' AND 'free' STATEMENTS. • •••••• 3-5
'area' DATA TYPES. • • • • • . • • • • • • • • •• •• 3-7
Creating PL/I Areas. • • • • • • • •. •••• • . 3-8
Locator Data Types. . • . . . • • . • • . . 3-10
LOCATOR 'buil tin' FUNCTIONS. • •.• • • e 3-14
USING EXPLICITLY ALLOCATED 'based' STORAGE. . . • . 3-18
THE 'refer' OPTION • • • • • . • • • • • . 3-21
USING 'area' VARIABLES. • • •. ••••• 3-23

EQUIVALENCED 'based' STORAGE. • • . • a 3-24
AN APPLICATION FOR 'based' VARIABLES. . 3-28

Linked Information Structures. • . • • • • • •.. 3-28

3-i F15C

Topic III BASED STORAGE Topic III

OBJECTIVES:

Upon completion OT this topic, students should be able to:

1. Allocate and free based variables in the same manner as
controlled variables.

2. Differentiate between packed and unpacked pointers.

3. Use builtin functions to manipulate
(pointers and offsets).

locator variables

4. Use based variables to redefine the interpretation of a
particular area of storage.

s. Use the "refer" option to implement self-defining data.

6. Manipulate areas.

Multics 111-1 F15C

CHARACTERISTICS OF 'based' STORAGE

• ADVANCED AND POWERFUL STORAGE MANAGEMENT TECHNIQUE HAVING THREE MAJOR
APPLICATIONS

n EXPLICITLY ALLOCATING AND FREEING SPACE MUCH LIKE CONTROLLED STORAGE

n EQUIVALENCING TO OR OVERLAYING A TEMPLATE UPON THE STORAGE GENERATED
FOR SOME OTHER VARIABLE, MUCH LIKE DEFINED STORAGE

I ACCESSING A SEGMENT IN THE VIRTUAL MEMORY DIRECTLY, THUS ENABLING
IIO TO A SEGMENT WITHOUT USING IIO STATEMENTS

• THE SCOPE OF A 'based' VARIABLE IS ALWAYS 'internal'

• THE DECLARATION OF A 'based' VARIABLE DESIGNATES ONLY THE DATA TYPE
AND STORAGE TYPE ATTRIBUTE VALUES FOR THAT VARIABrr--

n IT DOES NOT DESIGNATE THE LOCATION OF THE VARIABLE

n HENCE, EVERY REFERENCE TO A 'based' VARIABLE MUST BE QUALIF lED
WITH A LOCATOR VALUE

n LOCATOR VALUES CAN BE 'pointer' OR 'offset' VALUES

Not To Be Reproduced 3-1 F15C

THE 'based' ATTRIBUTE

• A 'based' VARIABLE IS DECLARED WITH THE KEYWORD 'based' OPTIONALLY
FOLLOWED BY A PARENTHESIZED LOCATOR VARIABLE

B del x fixed bin based;

R EVERY REFERENCE TO 'x' MUST BE QUALIFIED BY A LOCATOR VARIABLE

R del x fix ed bin based (p) ;
del p pointer;

n THE LOCATOR VARIABLE 'p' IS IMPLICITLY ASSOCIATED WITH 'x'

o EXPLICIT LOCATOR QUALIFICATION IS NOT NECESSARY (BUT IS
RECOMMENDED)

• EVERY 'based' VARIABLE REFERENCE MUST BE QUALIFIED BY A LOCATOR
VALUE, EITHER:

n' EXPLICITLY (USING THE -> OPERATOR)

'n OR IMPLICITLY (IF THE VARIABLE WAS DECLARED WITH THE' based(locref)'
ATTRIBUTE) .

Not To Be Reproduced 3-2 F15C

THE 'based' ATTRIBUTE

. 0 EXAMPLE (EXPLICITLY QUALIFIED)

dcl A dec(5,2) based init(O);
dcl p pointer;
dcl sysprint file;.

allocate A set(p);

p->A = 5;

put list (p->A);

free p->A;

n EXAMPLE (IMPLICITLY QUALIFIED)

Not To Be Reproduced

dcl n fixed bin;
,.f"" ~ ,.."' I ~' lo.._ Aflo. ~_'e
"'''-... .., "- UQ1 , 1.1"'" I "'CI~'C'U \ ..,'C' ~ClI ,

dcl beta pointer;

n = 4;
allocate S;

S = "abcdef";

f'r ee S;

3-3 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

• JUST AS IN THE CASE OF 'controlled' VARIABLES, BASED VARIABLES MAY
BE EXPLICITLY ALLOCATED AND FREED

. B THE 'allocate' AND 'free' ARE USED

• 'based' VARIABLES MAY BE ALLOCATED IN TWO DIFFERENT WAYS:

D USING THE 'in (area_name)' OPTION

D ALLOCATED IN THE 'area' SPECIFIED (ONLY 'based' VARIABLES MAY
BE ALLOCATED IN AN 'area')

n OMITTING THIS OPTION

B ALLOCATED IN USER FREE AREA WITHIN [pd]>[unique].area.linker

No t To Be Re prod uc ed 3-4 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

THE 'allocate' AND 'free' STATEMENTS,

• THE 'allocate' AND 'free f STATEMENTS HAVE THE FOLLOWING FORM WHEN
USED FOR 'based' VARIABLES:

n allocate id (set(locref)] [in(arearef)];

n WHERE

n id IS THE NAME OF THE 'based' VARIABLE

n set(locref) IS US.ED TO DESIGNATE THE LOCATOR VARIABLE locref
AS THE "ADDRESS" OF THE BEGINNING OF STORAGE GENERATED FOR
THE 'based' VARIABLE id;

n MAY BE OMITTED IF THE VARIABLE id WAS DECLARED WITH THE
'based(locref), ATTRIBUTE

D locref MUST SPECIFY A pointer OR offset

0- inC arearef) SPECIF IES THE' area' IN WHICH id IS TO BE ALLOCATED

D MAY BE OMITTED

n free ~ [in(arearef)];

n WHERE

I id IS THE 'based' VARIABLE TO BE FREED AND MIGHT HAVE TO
BE PTR QUALIF rED

n inC arearef) IS USED IF THE VARIABLE id WAS ALLOCATED IN
THE 'area' arearef (AND IS- OTHERWISE OMITTED)

o NOTE: POINTER IS NULLED AFTER 'based' VARIABLE IS FREED

Not To Be Reproduced 3-5 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

.THE 'allocate' AND 'free' STATEMENTS

• EXAMPLE

P 1 : proc;

dcl a{S,2) fixed based;
dcl c char(40) based(p1)j
dcl AREA area; /* INTERNAL AUTOMATIC, BY DEFAULT .*/
dcl (p1,p2) pointer;
dcl sysprint file;

allocate a set(p2);
p2 -> a = 0;
allocate c in(AREA);
c = "abcdefg";

put skip(2) data(p2 -> a);
free p2 -> a, c in(AREA);

end P1;

Not To Be Reprod uced 3-6 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

'area' Q!!! TYPES

• THE PL/I DATA TYPE 'area' PROVIDES A POWERFUL FACILITY FOR STORAGE
MANAGEMENT

• BENEFITS OF 'area' MANAGEMENT

n OPTIONS LIKE AND
EXTENSIBILITY

n ENABLES THE USE OF PL/1 OFFSETS

n EASY FREEING WITH 'empty' BUILTIN

• AN 'area' VARIABLE IS USED BY THE PROGRAMMER AS A MANAGED "POOL" OF
FREE STORAGE, TO HOLD 'based' VARIABLES

• THE MAXIMUM SIZE OF A NON-EXTENSIBLE iarea i IS 256K WORDS

n THE CAPACITY IS ALWAYS SOMEWHAT LESS THAN THIS

I THE "OCCUPATION RECORD" WHICH RESIDES AT THE BEGINNING OF AN
'area' CATALOGS THE USAGE OF SPACE IN THE 'area'

D "ALLOCATION RECORDS" PRECEDE EACH BLOCK OF ALLOCATED STORAGE

Not To Be Reproduced 3-7 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

CREATING PL/I AREAS

• AN 'area' MAY BE CREATED IN THREE WAYS:

D BY THE 'declare' STATEMENT (dcl A area(~);)

o area size SPECIFIES THE NUMBER OF WORDS TO BE ALLOCATED FOR
THE 'area' VARIABLE 'A' (THE DEFAULT IS 1024 WORDS)

o THE LOCATION OF THE 'area' IS DETERMINED IN THE NORMAL FASHION,
BY THE EVALUATION OF THE STORAGE CLASS ATTRIBUTE

D POSSIBLE ATTRIBUTES ARE static, automatic, internal,
external, controlled AND based

o dcl A area;

1* automatic - 'A' WOULD BE ALLOCATED ON THE STACK *1

o dcl B area based (get system free area (»;
del get_system_free_area_ entry returns (ptr);

1* 'B' WOULD BE ALLOCATED IN "SYSTEM FREE STORAGE" *1

o BY THE 'define_area_' SUBROUTINE

n THE CALLER SPECIFIES THE LOCATION OF THE iarea' BY SUPPLYING
A POINTER TO A SEGMENT IN WHICH THE 'area' IS TO BE ALLOCATED

n IF A NULL POINTER IS SUPPLIED, THE SYSTEM ACQUIRES A SEGMENT
FOR THE 'area' FROM THE PROCESS DIRECTORY TEMP SEG POOL

n MUST BE USED IF A BASED AREA IS OVERLAYED UPON ARBITRARY
STORAGE

Not To Be Reprod uced 3-8 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

CREATING PL/I AREAS

o BY THE 'create area' COMMAND (AG92)

o THE COMMAND-LEVEL INTERFACE TO 'define area '

n AT COMMAND-LEVEL: create_area area_seg -extensible

IN PROGRAM: dcl area_seg$ external area;

Not To Be Reproduced 3-9 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

LOCATOR Q!!! TYPES

• LOCATORS SPECIFY THE n ADDRESS" OF AN OBJECT, AND ARE USED TO QUALIFY
'based' VARIABLE REFERENCES

• TWO TYPES OF 'locator' VARIABLES:

n 'pointer'

n CONTAINS THE ABSOLUTE ADDRESS OF A BIT IN THE VIRTUAL MEMORY

n MAY BE ALIGNED OR UNALIGNED

B AN ALIGNED POINTER (DEFAULT)

o IS DOUBLE WORD ALIGNED

I IS A PAIR OF WORDS CONTAINING:

15-BIT SEGMENT NUMBER

3-BIT RING NUMBER

6-BIT TAG FIELD CONTAINING OCTAL 43

l8-BIT WORD OFFSET

6-BIT BIT OFFSET

D IS DECLARED

dcl my_pointer pointer;

I IS SOMETIMES REFERRED TO AS AN ITS (INDIRECT TO SEGMENT)
PAIR

Not To Be Reproduced 3-10 F15C

0 AN

n

n

B

n
n

EXPLICITLY ALLOCATED 'based' VARIABLES

LOCATOR DATA TYPES

UNALIGNED POINTER

IS BIT ALIGNED

IS A SINGLE WORD CONTAINING

6-BIT BIT OFFSET

12-BIT SEGMENT NUMBER

18-BIT WORD OFFSET

IS DECLARED

del my_po inter unal ptr;

IS SOMETIMES REFERRED TO AS A PACKED POINTER

IS HANDLED BY SPECIAL HARDWARE INSTRUCTIONS

n SINCE ONE Or THE COMPONENTS OF A t pointer t IS THE SEGMENT
~UMBER, THE t po in ter' VALUE IS INVALID ACROSS PROCESS BOUNDARIES

Not To Be Reprod ueed 3-11 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

LOCATOR DATA TYPES

o 'offset'

o AN ADDRESS TO A BIT IN AN 'area', RELATIVE TO THE BASE OF
THAT 'area'

o COMPOSED OF A 18 BIT WORD OFFSET AND A 6-BIT BIT OFFSET

B AN 'offset' DECLARATION MUST BE QUALIFIED BY THE NAME OF THE
'area' INTO WHICH THE 'o1TSit' REFERS IF IT IS TO BE USED IN
A 'based' VARIABLE REFERENCE

B AN 'offset' IS VALID ACROSS PROCESS BOUNDARIES, SINCE IT DOES
NOT REFER! TO A SEGMENT NUMBER

n THE PL/I 'offset' ATTRIBUTE IS USED TO DECLARE AN 'offset'
VARIABLE

n del offi offset;

U del off2 offset(A); WHERE 'A' HAS BEEN DECLARED AN 'area'

Not To Be Reproduced 3-12 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

LOCATOR DATA TYPES

• EXAMPLE USING POINTERS AND OFFSETS

based_prog: proc;

dcl sysprint file;
dcl A area; 1* DEFAULT SIZE IS 1024 WORDS *1
dcl x fixed bin based;
dcl c char (8) based;
dcl p ptr;
del 0 offset(A);

allocate x set (0) in (A) ;
o -> x = 15;
allocate c set (p) ;
P -> c = "abcdefgh" ;
put skip data (0 -> x, P -> c) ;
free 0 -> x in (A) ;
free p -> c· ,

end based _prog;

n RESULT OF RUNNING ABOVE EXAMPLE

x= 15 c= t, abcd efg hi. ;

Not To Be Reproduced 3-13 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

LOCATOR 'builtin' FUNCTIONS

• PL/I BUILTIN FUNCTIONS (AM83) ARE PROVIDED TO CONVERT BETWEEN' pointer'
AND 'offset' LOCATOR DATA TYPES:

n THE 'pointer' BUILTIN FUNCTION

n CONVERTS AN 'offset' IN AN 'area' INTO A 'pointer'

o pointer(X,A)
ptr(X, A)

D RETURNS A POINTER POINTING TO 'offset' 'X' IN 'area' 'A'

D THE 'offset' BUILTIN FUNCTION

« CONVERTS A 'pointer' WHICH POINTS TO A LOCATION IN AN 'area'
INTO THE 'offset' OF THAT LOCATION IN THE 'area'

D offset(P,A)

o RETURNS AN 'offset' TO THE 'based' VARIABLE LOCATED BY
I po in t e r ' , P' IN' ar eat 'A t

Not To Be Reprod uced 3-14 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

LOCATOR 'builtin' FUNCTIONS

• ADDITIONAL BUILTIN FUNCTIONS FOR THE MANIPULATION OF 'locator' AND
'area' VARIABLES:

n THE 'null' BUILTIN FUNCTION

n RETURNS THE VALUE OF THE NULL POINTER, THAT IS, A POINTER TO
SEGMENT NUMBER -1 WITH WORD OFFSET 1

ii IS USED TO TEST THE VALIDITY OF 'pointer' VALUES OR TO INITIALIZE
THEM

n NOTE THAT A 'pointer' VARIABLE CAN BE IN ONE OF THREE STATES:

n UNDEFINED - NO VALUE HAS BEEN ASSIGNED, AND IF USED,
'fault_tag~1' CONDITION IS USUALLY SIGNALLED

B NULL - THE 'null' BUILTIN HAS BEEN USED TO INITIALIZE THE
'pointer' - AN ATTEMPT TO USE SUCH A 'pointer' USUALLY
RESULTS IN THE SIGNALLING OF THE 'null_pointer' CONDITION

B NON-NULL - A LEGITIMATE ADDRESS HAS BEEN ASSIGNED

n THE 'nullo' BUILTIN FUNCTION

n IS USED TO TEST THE VALIDITY OF 'offset' VALUES AND TO INITIALIZ E
THEM

n A NULL OFFSET IS ALL "ONES"

Not To Be Reproduced 3-15 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

LOCATOR 'builtin' FUNCTIONS

o THE 'addr' BUILTIN FUNCTION
~

B RETURNS THE ADDRESS OF ITS ARGUMENT AS A 'pointer' VALUE

n addr(x) RETURNS A 'pointer' WHICH LOCATES THE GENERATION OF
STORAGE FOR 'x'

o THE 'empty' BUILTIN FUNCTION
t s

n RETURNS THE "EMPTY" OR "NULL" VALUE OF DATA TYPE 'area'

o IS USED TO DETERMINE IF AN 'area' IS EMPTY AND IS ALSO USED
TO INITIALIlE AN 'area'

o A "QUICK AND DIRTY" FREEING MECHANISM

n THE NONSTANDARD 'pointer' BuiLTIN FUNCTION

n RETURNS A 'pointer' VALUE GIVEN A 'pointer' POINTING ANYWHERE
IN A SEGMENT AND A -WORD OFFSET EXPRESSED AS AN ARITHMETIC OR
BIT STRING VALUE

o pointer(P,N) OR ptr(P,N) RETURNS A 'pointer' TO THE Nth WORD
OF THE SEGMENT

n IS DISTINGUISHED FROM THE STANDARD 'pointer' BUILTIN FUNCTION
BY THE DATA TYPE OF THE ARGUMENTS

No t To Be Re prod uc ed 3-1~ F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

LOCATOR 'builtin' FUNCTIONS

o THE NONSTANDARD 'addrel' BUILTIN FUNCTION

n RETURNS A 'pointer' TO A WORD RELATIVE TO ANOTHER POINTER

n addrel (P,N) POINTS TO A WORD N WORDS AWAY FROM P

n THE RESULTING POINTER HAS A 0 BIT OFFSET, REGARDLESS OF
P 'S BIT OFFSET

n N IS AS IN THE ABOVE NONSTANDARD pointer BUILTIN

No t To Be Re prod uc ed 3-17 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

USING EXPLICITLY ALLOCATED 'based' STORAGE

• EXPLICITLY ALLOCATED 'based' STORAGE IS GENERALLY USED FOR ONE OF
THREE PURPOSES:

I TO DIRECTLY CONTROL THE ALLOCATION AND FREEING OF STORAGE

n TO PROVIDE STORAGE FOR DATA ITEMS WHOSE EXTENTS ARE NOT KNOWN AT
COMPILE TIME

I TO TAKE ADVANTAGE OF CERTAIN FEATURES MADE AVAILABLE THROUGH THE
USE OF 'area' VARIABLES

I ZERO ON ALLOCATION

B ZERO ON FREEING

I MASS FREEING OF ALLOCATED VARIABLES

n EXTENSIBILITY OF AREAS

Not To Be Re prod uc ed 3-18 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

USING EXPLICITLY ALLOCATED 'based' STORAGE

• EXPLIC ITLY ALLOCATED 'based' VARIABLES CAN BE USED TO PROVI DE STORAGE
FOR DATA ITEMS WHOSE EXTENTS ARE NOT KNOWN AT COMPILE TIME

n ADJUSTABLE EXTENTS ARE ARRAY BOUNDS, MAXIMUM STRING LENGTHS, AND
, area' SIZES

n UNLIKE 'controlled' VARIABLES, FOR 'based' VARIABLES, THE VALUES
OF VARIABLE EXTENTS ARE COMPUTED FOR EACH REFERENCE

o THAT IS, THE ADJUSTED EXTENTS ARE NOT SAVED WHEN THE VARIABLE
IS FIRST ALLOCATED

n IT IS THE RESPONSIBILITY OF THE PROGRAM TO PRESERVE SUCH EXTENTS
TO AVOID VIOLATING THE PL/I CONSISTENCY RULES

No t To Be Re prod uc ed 3-19 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

USING EXPLICITLY ALLOCATED 'based' STORAGE

o EXAMPLE OF AN INVALID PROGRAM

P1: proc;

dcl n fixed bin;
dcl S char(n+2) based(beta);
dcl beta pointer;

n = 4;
allocate S;

~ . . .
'-"n = 1 00;

S = "abcdef";

fr ee S;
end;

o THIS PROGRAM IS INVALID

I WHEN THE 'based' VARIABLE'S' IS ALLOCATED, IT IS GIVEN 6
BYTES OF STORAGE

n WHEN IT IS REFERENCED IN THE ASSIGNMENT STATEMENT, THE
EXTENTS ARE RECOMPUTED TO 102, AND THE STRING "abcdef"
WILL BE PADDED TO A LENGTH OF 102 BEFORE BEING ASSIGNED

Not To Be Reproduced 3-20 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

THE 'r.efer' OPTION

• SINCE THE VARIABLE EXTENTS OF 'based' VARIABLES ARE NOT SAVED BY
PLII, A SPECIAL FEATURE, THE 'refer' OPTION IS PROVIDED

n

n

IT IS USED TO SAVE THE VALUE CALCULATED FOR VARIABLE EXTENTS OF
A 'based' VARIABLE WHEN IT IS ALLOCATED

IT IS USED WITHIN A STRUCTURE VARIABLE TO CREATE A "SELF-DEFINING
STRUCTURE", WHICH CARRIES ITS OWN EXTENTS·

Not To Be Reproduced 3-21 F15C

EXPLI.CITLY ALLOCATED 'based' VARIABLES

THE· 'refer' OPTION

o A VALID EXAMPLE

P3: proc;

del n fixed bin;
del 1 Spair based(beta),

2 n2 fixed bin,
2 S char(n+2 ref.er(n2» ;

del beta ptr;

n = 4;
allocate Spair;

n = 100;
Spair.S = "abcdef";

fr ee Spair;
end P3;

n NOTE: A PARENTHESIZED REFERENCE FOLLOWING THE KEYWORD 'refer'
MUST DESIGNATE A SCALAR MEMBER DEFINED EARLIER IN THE SAME STRUCTURE

n AT ALLOCATION TIME, ANY INITIAL EXTENT EXPRESSION IS EVALUATED,
AND IS .SAVED IN THE MEMBER REFERENCED BY THE 'refer' OPTION
CLAUSE

n ON SUBSEQUENT REFERENCES TO THE 'based' ADJUSTABLE VARIABLE, THE
EXTENT IS DETERMINED BY REFERRING TO THE MEMBER

Not To Be Reproduced 3-22 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

USING 'area' VARIABLES

• EXPLICITLY ALLOCATED 'based' VARIABLES MAY BE USED TO TAKE ADVANTAGE
OF THE STORAGE MANAGEMENT F ACI-LITIES OFFERED BY THE· PL/I 'area'
VARIABLES

• NOTE THAT THE ONLY TYPE OF VARIABLE WHICH MAY BE ALLOCATED IN AN
'area' IS AN EXPLICITLY ALLOCATED 'based' VARIABLE

• NOTE ALSO THAT PL/1 'offset' VALUES CAN ONLY LOCATE STORAGE WITHIN
AREAS

Not To Be Reproduced 3-23 F15C

EQUIVALENCED 'based' STORAGE

• THE USE OF EQUIVALENCED 'based' VARIABLES IS ONE OF THE MOST POWERFUL
STORAGE MANAGEMENT CAPABILITIES OFFERED BY PL/!

• UNLIKE EXPLICITLY ALLOCATED' based' VARIABLES, AN EQUIVALENCED t based'
VARIABLE:

D IS SUPERIMPOSED ON OR EQUIVALENCED TO A PREVIOUSLY ALLOCATED
"BASE" VARIABLE

D NEVER HAS STORAGE OF ITS OWN, AND THUS IS NEVER ALLOCATED OR
FREED

• THE LOCATOR VALUE USED TO REFERENCE THE BASE VARIABLE IS OBTAINED
BY THE 'addr' BUILTIN FUNCTION

• E'XAMPLE

del a fixed bin (35);
del b fixed bin (35) based (addr(a»;

a = 5;
b = 2;
put skip list (a,b);

Not To Be Reproduced 3-24 F15C

EQUIVALENCED 'based' STORAGE

• ADDITIONAL EXAMPLES (NOTE: FOR THESE EXAMPLES, THE DATA TYPE OF
THE 'based' VARIABLE IS THE SAME AS THAT OF THE BASE VARIABLE)

n EXAMPLE 1

n EXAMPLE 2

P1: proc;

dcl x fixed dec(5, 2);
del y fixed dec(5,2) based;
dcl p ptr;
dcl (sysin,sysprint) file;

p = addr(x) ;
get 1 ist(x) ;
put skip list(2 * p->y);

end P1;

dcl 1 A(5) ,
2 x fi x ed bin,
2 y char(6);

dcl B based,
2 r fixed bin,
2 s char(6);

dcl p ptr;

p = ad d r (A(3)) ;

P -> B.s = "third";

/* SETS A(3) .y TO "third" */

No t To Be Re prod uc ed 3-25 F15C

EQUIVALENCED 'based' STORAGE

• IT IS ALSO POSSIBLE FOR THE DATA TYPES OF THE 'based' AND BASE
VARIABLE TO DIFFER

D EXAMPLE 1

o EXAMPLE 2

del x fixed bin(35);
del y bit(36) based (addr(x»;

x = 5;
put skip list (x,y);

del number(1024) float bin;
del 1 float num based,

2 sign bit(1) unal,
2 exponent bit(7) unal,
2 m sign bite 1) unal,
2 mantissa bit(27) unal;

p = addr(number(43»;

o P -> float_num MEANS number(43)

o p -> sign MEANS bit 0 of number(43)

o p -> mantissa MEANS bits 9-35 of number(43)

Not To Be Reproduced 3-26 F15C

EQUIVALENCED 'based' STORAGE

del x char(8) varying inite' ABC") ;

del 1 y based (addr(x»,

2 length fixed bin (35),

2 actual_string char (8);

length 1 _____ --I-I----r-----,
- aetum_string I I I ~

x = "BONJOUR";
if y .Iength = 7
then put list (y.actual_string);

Not To Be Reproduced 3-27 F15C

![APPLICATION FOR 'based' VARIABLES

LINKED INFORMATION STRUCTURES

• EQUIVALENCED 'based' STRUCTURES CAN BE USED TO PROVIDE STORAGE FOR
DATA ITEMS WHICH HAVE BEEN ORGANIZED INTO AN ARBITRARILY LINKED
INFORMATION NETWORK

I SINGLY AND DOUBLY LINKED LISTS

I TERMINATING LISTS

I CIRCULAR LISTS

n TREES AND OTHER DIRECTED GRAPHS

n OTHER INFORMATION NETWORKS

• IT SHOULD BE NOTED THAT SUCH STRUCTURES ARE HEAVILY USED IN THE
SUPERVISOR, AND THAT MOST OF THE SUPERVISOR DATABASES ARE 'based'
STRUCTURES DEFINED IN "INCLUDE FILES" SUBORDINATE TO >ldd>include

Not To Be Reproduced 3-28 F15C

AN APPLICATION FOR 'based' VARIABLES -- --- ------- ---------
LINKED INFORMATION STRUCTURES

• AN EXAMPLE (from stack.-frame .incl.pl1)

dcl 1 stack frame based(sp) aligned,
2 pointer registers(O : 7) ptr,
2 prev sp-pointer, 1* points to previous stack frame *1
2 next-sp painter, 1* points to next stack frame *1
2 return ptr pointer,
2 entry ptr pointer,
2 operator and lp ptr ptr,
2 arg ptr pointer~
2 static ptr ptr unaligned,
2 support 'ptr ptr unaligned,
2 on unit-relp1 bite 18) unaligned,
2 on-un i t - r e 1 p2 bit (1 8) un ali g ned ,
2 transl ator . id bi t(1 8) un al ig ned,
2 operator return offset b i t(18) un al ig ned,
2 x(O: 7) bite 18)-unaligned,
2 a bit(36),
2 q bit(36),
2 e bit(36),
2 timer b i t(27) unal ig ned,
2 pad bit (6) un a 1 ig ned ,
2 ri!'lg_alarm_reg bit(3) unaligned;

• THERE ARE OVER 2000 SUCH INCLUDE FILES IN >ldd> include (TOPIC 5
DEMONSTRATES THEIR USAGE)

Not To Be Reproduced

YOU ARE NOW READY FOR WORKSHOP

112

3-29
(End Of Topic)

II

F15C

TOPIC IV

Introduction to Multics Subroutines

What are System Subroutines? • •
System Subroutine Conventions ••
Using System Subroutines •
Status Codes • • • • • • • • • • • • • • • • •

4-i

Page

. 4-1
. 4-2

• 4-3
.'. 4-4

F15C

Topic IV INTRODUCTION TO MULTICS SUBROUTINES Topic IV

OBJECTIVES:

Upon completion of this topic, students should be able to:

1. Give reasons for having a set of Multics subroutines.

2. Gi ve general guidelines for use of' Multics system
subroutines.

3. List some of the conventions followed when using Multics
system subroutines.

Multics IV-1 F15C

WHAT ill SYSTEM SUBROUTINES?

• SYSTEM SUBROUTINES ARE CALLABLE PROCEDURES USED BY THE MULTICS
OPERATING SYSTEM

R THEY ARE THE SUBROUTINES THAT THE PROGRAMMER USES TO PERFORM
COMMAND LEVEL LIKE FUNCTIONS

n THEY ARE THE PROCEDURES ACTUALLY CALLED BY COMMAND PROCEDURES
(EXAMPLE: THE delete COMMAND PROCEDURE CALLS THE delete
SUBROUTINE)

o SOME SUBROUTINES HAVE A ONE-TO-ONE RELATION WITH MULTICS COMMANDS
(EXAMPLE: send message SUBROUTINE PERFORMS THE send_message
COMMAND FUNCTION FROM WITHIN A PROGRAM)

D OTHER SUBROUTINES PERFORM ONLY A SMALL PART OF WHAT AN ENTIRE
COMMAND DOES. EXAMPLES:

n iox SUBROUTINES ARE USED BY SEVERAL COMMANDS

-R convert date to binary IS JUST ONE OF MANY SUBROUTINES
CALLED BY THE enter_abs_request AND memo COMMANDS-

Not To Be Reprod uced 4-1 F15C

SYSTEM SUBROUTINE CONVENTIONS

• SYSTEM SUBROUTINE ENTRY NAMES END IN AN UNDERSCORE (_)

• MANY SUBROUTINES HAVE SEVERAL ENTRY POINTS

n hes_$list_ael

hes_$make_seg

he s_$ status_

• THEY ARE DOCUMENTED IN MULTICS SUBROUTINES & IIO MODULES (AG93)

-
• THEY ARE LOCATED PRIMARILY IN >system_library_stand.ard AND

>system_library_'

• THEY ARE WRITTEN IN PL/I OR ALM

Not To Be Reprod ueed 4-2 F15C

USING SYSTEM SUBROUTINES

• SINCE THEY ARE EXTERNAL SUBROUTINES, EACH MUST BE DECLARED IN THE
USER'S PROGRAM AS 'external entry'

n THE DATA TYPES FOR THE PARAMETER LIST CAN BE FOUND IN THE MANUAL
DESCRIPTION OF THE SUBROUTINE

n IF THEY ACCEPT A VARIABLE NUMBER OF ARGUMENTS, THEY ARE DECLARED
'entry options (variable)'

• SEVERAL MAKE USE OF STRUCTURES TO PASS DATA TO AND FROM THE CALLING
PROCEDURE

n IN THIS CASE, ONE OF THE ARGUMENTS PASSED TO THE PROCEDURE IS A
POINTER TO THAT STRUCTURE

n THE DECLARATIONS REQUIRED FOR THESE STRUCTURES ARE FOUND IN THE
DOCUMENTATION FOR THE SUBROUTINE

n THE DECLARATIONS OF SOME·OF THESE STRUCTURES ARE FOUND IN INCLUDE
FILES IN >ldd>include

n EXAMPLE: hc s_$ status_

o THIS SUBROUTINE IS PASSED A- POINTER TO A STRUCTURE INTO WHICH
IT IS TO PUT ITS INFORMATION

n A DECLARATION FOR THAT STRUCTURE IS FOUND IN
>ldd>include>status structures.incl.p11 (FURTHER DISCUSSED IN
TOPIC 10) -

Not To Be Reproduced 4-3 F15C

STATUS CODES

• ONE OF THE OUTPUT ARGUMENTS OF A SUBROUTINE IS USUALLY A 'status
code'

o THE 'status code' IS THE MEANS BY WHICH THE CALLED PROCEDURE MAY
REPORT ANY UNUSUAL OCCURRENCE TO ITS IMMEDIATE CALLER

n THE VARIABLE THAT RECEIVES THE 'status code' MUST BE DECLARED
'fi-xed bin(35)'

o IF THE SUBROUTINE RUNS TO COMPLETION WITH ABSOLUTELY NO ABNORMAL
CONDITIONS TO REPORT, THE STATUS CODE IS 0 (ZERO)

• com err

o USED TO REPORT ERRORS FROM WITHIN A PR.OGRAM

n TYPICAL USAGE

dcl com err entry options (variable);
dcl code fix ed bin(35);

call hcs $ status - (•••••••••••••• ,code) ;
if cod e ~ = 0 - .
then do;_

call com err (cod e ;; gamma") · - - ~, ,
return · .,.........--,

end;

I IF AN ERROR OCCURRED, IT MIGHT PRINT SOMETHING LIKE:

gamma: Incorrect access to directory containing •••

o SOME NON-ZERO STATUS CODES DO NOT INDICATE AN ERROR

No t To Be Re pr a d uc ed 4-4 F15C

STATUS CODES

D STATUS CODES AND THEIR MEANINGS ARE LISTED IN CHAPTER 7 OF THE
MULTICS PROGRAMMER'S REFERENCE GUIDE (AG91)

D THE STANDARD STATUS CODES AND THEIR CORRESPONDING MESSAGES ARE
IN A SEGMENT CALLED error_table_, WHICH IS IN >s11

n IT IS POSSIBLE TO TEST FOR A FARTICULAR STATUS CODE VALUE USING
THE SYMBOLIC REPRESENTATION

..

del error_table_$segknown external fixed bin(35)j

if eode = error_table_$segknown
then do;

end;

Not To Be Reproduced

call com err (code, "beta");
goto try:agaTn;

4-5 F15C

STATUS CODES

o THE probe 'display' REQUEST CAN· BE USED TO DISPLAY THE ERROR
MESSAGE ASSOCIATED WITH A STATUS CODE

segknown: proc;

dcl initiate file - -
dcl seg ptr
dcl bit-count
dcl code
dcl null

call initiate file

end 1* segknown * I;

r 11: 41 O. 100 3

segknown

entry (char(*), char(*), bite *), ptr,
fixed bin(24), fixed bin(35»;

pointer;
fixed bin (24);
fixed bin (35);
buil tin;

(">udd>MED>jcj>15c", "faa", "101"b, seg_ptr,
bit_count, code);

Stopped after line 10 of segknown. (level 5)
sc
call initiate file

v seg ptr
seg ptr = null
v code
code = 8589679427
display code code
error_table_$noentry
q
r 1 1 : 42 O. 733 86

Is faa
list: foo not found
r 1 1 : 42 0 .. 21 2 1 1

Not To Be Reproduced

(,,> ud d > M ED> j c j > 1 5 c", "fa 0", "1 0 1 "b, s e g_ pt r
bit_cotmt, code);

"Entry not found."

4-6 F15C
(End Of To pic)

-TOPIC V

Advanced Based Variable Usage

Gaining Direct Access to Segments. • •
Motivation • • • • • • • • • • • •
Obtaining a Pointer to a Segment
An Ex ample • • • • • • • • •

5-i

Page

• • 5-1
• • • • • 5-1

• 5-2
• 5-9

F15C

Topic V ADVANCED BASED VARIABLE USAGE Topic V

OBJECTIVES:

Upon completion of this topic, students should be able to:

1. Use Multics subroutines to manipulate segments directly
instead of using PL/1 1/0 statements.

2. Manipulate archive components using Multics subroutines.

3. Examine some system databases using based structures and
Multics subroutines.

Multics V-1 F15C

GAINING DIRECT ACCESS TO SEGMENTS

MOTIVATION

• EQUIVALENCED BASED VARIABLES CAN BE USED TO GAIN DIRECT ACCESS TO
SEGMENTS IN THE VIRTUAL MEMORY

n IN THIS WAY, AN ENTIRE DATA SEGMENT CAN BE ACCESSED WITHOUT
RESORTING TO LANGUAGE IIO

n ONE MUST OBTAIN A 'pointer' TO THE SEGMENT IN ORDER TO GAIN
DIRECT ACCESS TO IT

n THE FOLLOWING PAGES SHOW SUBROUTINES THAT RETURN A POINTER TO A
SEGMENT

Not To Be Reprod uced 5-1 F15C

GAINING DIRECT ACCESS !Q SEGMENTS

OBTAINING ! POINTER !Q ! SEGMENT

• MULTICS SUBROUTINES WHICH OBTAIN A 'pointer' TO A SEGMENT:

o BASIC FUNCTIONS

I SEGMENT CREATION IF IT DOES NOT EXIST

I SEGMENT INITIATION

n USAGE

dcl hcs $make seg entry
(char(*) ,
char(*) ,
char(*) ,
fixed bin(5) ,
ptr 1

fixed bin(35»;

call hCB $make seg
(dir name-;
entryname,
ref name,
"mode,
seg ptr,
code) ;

Not To Be Reproduced

/* INPUT */
/* INPUT */
/* INPUT */
/* INPUT */ '* OUTPUT *'
/* OUTPUT */

/* PATH OF CONTAINING DIR"*/
/* SEGMENT NAME */ :: U I-i

/* DESIRED REFERENCE NAME */
/* ACCESS FOR THIS USER */
/* POINTS TO CREATED/FOUND SEG */
/* STATUS CODE */

5-2 F15C

o NOTES

GAINING DIRECT ACCESS TO SEGMENTS

OBTAINING A POINTER TO A SEGMENT - -----

I IF SEGMENT DOESN'T EXIST, APPEND PERMISSION REQUIRED ON
CONTAINING DIRECTORY

n MAKING-KNOWN REQUIRES NONNULL ACCESS ON SEGMENT

n IF entryname IS NULL, UNIQUE SEGNAME IS GENERATED

n IF dir_name IS NULL, SEGMENT IS CREATED IN PROCESS DIRECTORY

n ref_name USUALLY NULL

n mode ENCODES THUSLY

READ -> 01000b
EXECUTE -> 00100b
WRITE -> 00010b

o seg_ptr IS RETURNED NULL IF REAL TROUBLE WAS ENCOUNTERED

n code MIGHT BE NON-ZERO UNDER 'NORMAL' CIRCUMSTANCES:

error table $ named up
error:table:$segknown

No t To Be Re prod uc ed 5-3 F15C

GAINING DIRECT ACCESS TO SEGMENTS

OBTAINING A POINTER TO A SEGMENT

o IF THE PROGRAMMER DOESN'T CARE IF THE SEGMENT ALREADY EXISTS
OR IS ALREADY INITIATED HE RELIES ONLY ON THE NON-NULL seg_ptr

dcl hcs $make seg entry (char (*), char (*), char (*),
- - fixed bin (5), ptr, fixed bin (35»;

dcl com_err_ entry options (variable);

.
call hcs $make seg(••••••• seg ptr, code);
if seg ptr = null() -
then de;

call com_err _ (code, "al pha lt
) ;

end;

o IF THE PROGRAMMER EXPECTS' TO BE CREATING A NEW SEGMENT AND
DOES NOT WANT TO REFERENCE AN ALREADY EXISTING SEGMENT, HE
MUST CHECK THE CODE"

dcl hcs $make seg entry (char (*), char (*), char (*),
- - fixed bin (5), ptr, fixed bin (.35»;

dcl com err entry options (variable);
dcl error table $namedup fixed bin(35) ext static;
dcl error:table:$segknown fixed bin(35) ext static;

.
call hcs $make seg (••••••••• seg ptr, code);
if seg ptr = null() i code = error table $segknown

- I code = error:tabl e:$ named up
then do;

call com_err _ (code, "al pha lt) ;

end;

Not To Be Reproduced 5-4 F15C

GAINING DIRECT ACCESS TO SEGMENTS

OBTAINING A POINTER TO ! SEGMENT

o BASIC FUNCTIONS

n

n MAKES A SEGMENT KNOWN WITH A NULL REFERENCE NAME

n CHECKS THAT THE USER'S PROCESS HAS AT LEAST THE DESIRED
ACCESS ON THE SEGMENT

n RETURNS A POINTER TO THE SEGMENT

n RETURNS A BIT COUNT

USAGE

dcl in i t i ate fi 1 e entz:oy
(char(*)-; 1* INPUT *1
char(*) , 1* INPUT *1
bit(*), 1* INPUT *1
pointer, 1* OUT PUT *1
fixed binary (24), 1* OUT PUT *1
fixed binary (35» ; 1* OUT PUT *1

call initiate file
(d i r n am e -; - I * PAT H OF ·C 0 NT A I N IN G D I R * I
entryname, 1* SEGMENT NAME *1
mode, 1* REQUIRED ACCESS MODE *1
seg ptr, 1* POINTS TO INITIATED SEG *1
bi t-co un t, 1* BIT COUNT OF SEGMENT *1
code); 1* STANDARD SYSTEM CODE *1

Not To Be Reproduced 5-5 F15C

o NOTES

GAINING DIRECT ACCESS TO SEGMENTS

OBTAINING A POINTER TO ! SEGMENT

I THE SEGMENT MUST EXIST

D MAKING-KNOWN REQUIR"ES NONNULL ACCESS ON THE SEGMENT, AS
WELL AS THE REQUIRED MODES SPECIFIED IN THE CALL

D mode ENCODES THUSLY

READ -> "100"b
EXEC UTE -> "010 "b
WRITE -> "001"b

(>ldd)include>access mode values.incl.pl1 CONTAINS NAMED
CONSTANTS FOR THESE ACCESS MODES)

n seg_ptr IS NULL IF THE SEGMENT IS NOT MADE KNOWN

n code IS A STANDARD STATUS CODE AND COULD BE:

error table $no r permission
error-table-$no-e-permission
error:table:$no:w:permission

Not To Be Reproduced 5-6 F15C

GAINING DIRECT ACCESS TO SEGMENTS

OBTAINING ! POINTER TO ! SEGMENT

o BASIC FUNCTIONS

n MAKES EITHER A SEGMENT OR AN ARCHIVE COMPONENT KNOWN WITH
A NULL REFERENCE NAME

n IF NO COMPONENT NAME IS SPECIFIED, THIS ENTRY POINT IS
IDENTICAL TO initiate_file

o USAGE

dcl initiate file $component entry
(char (*i, - 1* INPUT *1
char (*), 1* INPUT *1
char (*), 1* INPUT *1
bit (*), 1* INPUT *1
pointer, 1* OUTPUT *1
fixed binary (24), 1* OUTPUT *1
fixed binary (35»; 1* OUTPUT *1

call initiate file $ componen t
(dirname~ - 1* PATH OF CONTAINING DIR *L
entryname, 1* NAME OF SEGMENT OR ARCHIVE *1
component name, 1* NULL OR NAME OF COMPONENT *1
mode, - 1* REQUIRED ACCESS MODE *1
component ptr, 1* PTR TO SEGMENT OR COMPONENT *1
bit count~ 1* BIT COUNT OF SEGMENT OR COMPONENT *1
code); 1* STANDARD SYSTEM CODE *1

o NOTES

B THE ARCHIVE COMPONENT MAY NOT BE MODIFIED (ONLY READ ACCESS
IS PERM ITTED)

o ONLY THE DATA STARTING AT THE POINTER AND EXTENDING AS FAR
AS THE BIT COUNT MAY BE REFERENCED (NO DATA BEFORE OR
AFTER THE COMPONENT MAY BE REFERENCED)

Not To Be Reprod uced 5-7 F15C

GAINING DIRECT ACCESS TO SEGMENTS

OBTAINING A POINTER TO ! SEGMENT

o TO OBTAIN A POINTER TO A COMPONENT WITHIN AN ARCHIVE SEGMENT SEE

• NOTE THAT THE SUBROUTINES DISCUSSED REQUIRE AN ABSOLUTE DIRECTORY
PATHNAME

• THE expand pathname SUBROUTINE CAN BE USED TO CONVERT A PATHNAME
(WHETHER R~LATIVE O~ ABSOLUTE) INTO THE REQUIRED DIRECTORY PATHNAME
AND ENTRYNAME STRINGS

B USAGE

c

dcl expand pathname entry
(ohareI') , char("!'), char(*), fixed bin(35»;

call ex pand pathname
(rel_path, 7* RELATIVE OR ABSOLUTE PATHNAME

TO BE EXPANDED *1
dir _name,

entr yname,

code) ;

1* RETURNED DIRECTORY PORTION OF
PATHNAME */

/* RETURNED ENTRYNAME PORTION OF
PATHNAME */

Not To Be Reprod uced 5-8 F15C

GAINING DIRECT ACCESS TO SEGMENTS

AN EXAMPLE

stack_tracer: proc;

Sincl ude stack header;
Sincl ude stack:frame;

options (variable);
() returns (char (168»;

dcl
dcl
dcl

dcl

com err
get-pdir
initiate-file - -

entry
entry
entry (char (*), char (*), bit (*), po in ter ,

fixed binary (24), fixed binary (35»;
(ptr, ptr, ptr);

dcl bit co un t
dcl code
dcl ME

dcl no fr ames
dcl 1 oWner,

2 message
2 segname
2 entryname

dcl (save_ptr ,7f,
shp)

dcl sysprint
dcl (addr,

1 trim,
null)

fixed binary (24);
fixed bin (35);
char (12) static
init ("stack tracer") options (constant);
fixed bin; -

char (64),
char (32),
char (33);

ptr;
file;

buil tin;

1* GET POINTER TO BASE OF STACK SEGMENT *1

call initiate file - -
if shp = null ()
then do;

(get pd ir ()," stac k 4", "100 lib ,
shp~ bit:count, code);

call com err (code,
return; - -

end 1* then do *1;

ME) ;

1* WALK FRAMES TO FIND LAST ONE *1

no fr am es = 0;
do- sp = shp -> stack_head er .stack.-beg in_ptr

repeat sp -> stack fr ame .nex t sp
while (sp A= shp -> stack heaaer .stack_end_ptr);

save ptr = sp;
no frames = no frames + 1;

end IT do sp *1; -

1* NOW TRACE BACKWARDS AND DUMP.·I

No t To Be Re prod uc ed 5-9 F15C

GAINING DIRECT ACCESS TO SEGMENTS

AN EXAMPLE

do sp = save ptr
repeat sp -> stack frame .prev sp
while (sp ~= null T»; -

call interpret_ptr_ (sp -> stack frame.entry ptr, sp,
addr (owner»; -

put skip (2) edit ("FRAME", no frames, " IS OWNED BY ",
rtrim(owner:segname), rtrim(owner.entryname»

(a,f(3),a,a,a);
put skip list (" FRAME STARTS AT", sp);
put skip list (" ARG POINTER IS", sp -> stac~frame.arg_ptr);
no frames = no frames -1;

end IT do sp *1; -

1* ALL DONE *1

put skip (2) list ("End stack_tracer");
put skip;
close file (sysprint);

end 1* stack tracer *1;

r 14:08 0.237 6

stac k tr acer

FRAME 5 IS OWNED BY stack_tracer$st~ck tJacer
FRAME STARTS AT pointer(234:5040)
ARG POINTER IS pointer(234:5202)

FRAME 4 IS OWNED BY command processor $ command processo r
FRAME STARTS AT pointer(234l;OOO> - -
ARG POINTER IS pointer(234:4274)

FRAME 3 IS OWNED BY abbrev$ abbrev cp
FRAME STARTS AT pointer(234:2700)
ARG POINTER IS pointer(234:2564)

FRAME 2 IS OWNED BY listen $listen
FRAME STARTS AT pointer(234l2400)
ARG POINTER IS pointer(234:2236)

FRAME 1 IS OWNED BY initialize process $initialize process
FRAME STARTS AT pOinter(234l2uOO) - -
ARG POINTER IS pointer(234:0)

End stack tracer
r 14:09 07658 46

Not To Be Reproduced 5-10 F15C

GAINING DIRECT ACCESS IQ SEGMENTS

AN EXAMPLE

I
II

Not To Be Re prod uced

YOU ARE NOW READY FOR WORKSHOP
113

5-11
(End Of Topic)

II

F15C

TOPIC VI

Multics Condition Mechanism

Page

Introduction • • • • • • • • • • • • • • • • • • 6-1
Establ ishing and Reverting Cond ition Handler s. • ••••• 6-6
A Special Catch-All Condition Handler. • • • • • • 6-10
ACTION TAKEN IF NO 'on unit' IS FOUND ON STACK. 6-11
'program interrupt' CONDITION. • • • • • .6-14
Summary of Condition Handling Mechanism. • • • 6-18
Review of PL/I Defined Conditions. • • • • • • • • • • • 6-19
Some System-Defined Conditions • • • •• ••••••••• 6-22

6-i F15C

Topic VI MULTICS CONDITION MECHANISM Topic VI

OBJECTIVES:

Upon completion of this topic, students should be able to:

1. Describe the actions taken by Multics ~hen a condition is
sisnalled.

2. Write handlers for the follo~ing conditions:

cleanup

program_interrupt

finish

User-defined and PL/1-defined conditions

3. Write an "any_other U handler.

4. Discuss the circumstances under which· the sYstem-defined
conditions occur.

Multics VI-1

INTRODUCTION

• THE MULT!CS CONDITION MECHANISM IS A FACILITY THAT NOTIFIES A PROGRAM
OF AN EXCEPTIONAL CONDITION

n A CONDITION IS A STATE OF THE EXECUTING PROCESS

n A CONDITION MAY OR MAY NOT INDICATE THAT AN ERROR HAS OCCURRED

• IN MULTICS, THERE ARE THREE BROAD CATEGORIES OF CONDITIONS:

n SYSTEM-DEFINED CONDITIONS (MULTICS LEVEL)

n ARE DEFINED AS PART OF THE MULTICS SYSTEM

n ARE DETECTED BY THE MULTICS HARDWARE OR SOFTWARE

a ARE SIGNALLED BY THE MULTICS SUPERVISOR

n EXAMPLES

cleanup

out of bound s - -
quit

I

n

o

o

n

n

record_ quota_ over flow .

AND OTHERS, TO BE DISCUSSED LATER

Not To Be Reproduced 6-1 F15C

INTRODUCTION

o LANGUAGE-DEFINED CONDITIONS

H ARE DEFINED AS PART OF PL/I

I ARE DETECTED AND SIGNALLED BY THE PL/I RUNTIME PROCESSOR

I EXAMPLES

I conv er sion

o end file

o AND OTHERS •••

o PROGRAMMER-DEFINED CONDITIONS

H ARE DEFINED BY THE PROGRAMMER

I ARE DETECTED AND SIGNALLED EXPLICITLY BY THE PROGRAMMER

n EXAMPLES

loops

n OR WHATEVER ONE DESIRES ••.

Not To Be Reproduced 6-2 F15C

INTRODUCTION

• THE MULTICS CONDITION MECHANISM IS INVOKED WHEN A CONDITION IS DETECTED
AND SIGNALLED BY:

n THE SYSTEM

n EXAMPLE: zerod iv ide OCCURS

n THE USER PROGRAM

n EXAMPLE: "signal zerodivide;"

Not To Be Reprod uced 6-3 F15C

INTRODUCTION

• THE SIGNALLING OF A CONDITION:

n IMMEDIATELY STOPS THE PROGRAM AT THE CURRENT POINT OF EXECUTION

n CAUSES A BLOCK ACTIVATION OF THE MOST RECENTLY ESTABLISHED ON
UNIT FOR THAT CONDITION

n THE APPROPRIATE ON UNIT IS FOUND BY MAKING A BACKWARDS TRACE
OF THE STACK

n EACH BLOCK ACTIVATION ON THE STACK CAN HAVE ONLY ONE ON UNIT
ESTABLISHED FOR EACH CONDITION AT ANY GIVEN TIME

sub2$sub2

sub1$sub1 ~ ON UNIT ESTABLISHED FOR zerodivide

main$main ~ ON UNIT ESTABLISHED FOR zerodivide

command _processor _

abbrev

listen
-

ini tial ize _process_

USER STACK

Not To Be Reprod uced 6-4 F15C

INTRODUCTION

o IF zerodivide IS SIGNALLED IN sub2, A BLOCK IS ACTIVATED FOR THE
ON UNIT ESTABLISHED IN sub1

sub1$zerodivide.n

(signal_)

(p11_signal_from_ops_)

sub2$sub2

sub1$sub1 i ON UNIT ESTABLISHED FOR zerodivide

main$main ~ ON UNIT ESTABLISHED FOR zerodivide

command _processor _

abbrev

listen -
ini tial i ze_process_

USER STACK

Not To Be Reprod uced 6-5 F15C

ESTABLISHING AND REVERTING CONDITION HANDLERS

• EXAMPLES OF ESTABLISHING CONDITION HANDLERS

B on zerodivide begin;

end;

B on zerodivide system;

B on zerodivide snap system;

n IF THE CONDITION SPECIFIED IS SIGNALLED, THE 'probe' COMMAND
IS IMMEDIATELY INVOKED BEFORE THE 'on unit' IS INVOKED (FOR
AN ABSENTEE PROCESS, THE 'trace stack' COMMAND IS EXECUTED)

o on zerodiv ide call probe;

• THERE ARE THREE WAYS TO REVERT AN 'on unit'

o PL/I 'revert' STATEMENT (EXAMPLE: . revert zerodivide;)

o BLOCK DEACTIVATION CAUSED BY REACHING A BLOCK 'end' STATEMENT

n NON-LOCAL 'go to' WHICH CAUSES DEACTIVATION OF OF ALL BLOCKS
FROM THE TOP OF THE STACK TO THE PROCEDURE CONTAINING THE LABEL
THAT IS THE TARGET OF THE 'go to'

Not To Be Reproduced 6-6 F15C

ESTABLISHING AND REVERTING CONDITION HANDLERS

This Page Intentionally Left Blank

Not To Be Reproduced 6-7 F15C

ESTABLISHING AND REVERTING CONDITION HANDLERS

• EXAMPLE OF THE CONDITION MECHANISM

Not To Be Reproduced

example: proc;

dcl sub1 external entry;
dcl sub2 external entry;
dcl overflow condition;

on overflow <on unit 1>;

call sub1;

< statement 1>;

call sub2;
end 1* ex ample * I;

sub1: proc;

del overflow condition;

< statement 2>;

on overflow <on unit 2>;

< statemen t 3>;
end 1* sub1 -I;

sub2: proc;

dcrl overflow condition;

<statement 4>;

on overflow <on unit 3>;

< statement 5>;

revert overflow;

< statement 6>;
end 1* sub2 *1;

6-8 F15C

ESTABLISHING AND REVERTING CONDITION HANDLERS

• ASSUME THAT EACH OF THE 6 NUMBERED STATEMENTS IN THE 3 PROCEDURES
ON THE PREVIOUS PAGE IS A SIMPLE ASSIGNMENT STATEMENT (THERE ARE NO
goto t s)

FILL IN THE CHART SHOWING WHICH ton unit' WOULD BE INVOKED IF 'overflow'
OCCURRED IN THE NUMBERED STATEMENT SPECIFIED

STATEMENT CAUSING over flow
TO BE SIGNALLED

1

2

3

4

5

6

Not To Be Reproduced

ON UNIT INVOKED

6-9 F15C

A SPECIAL CATCH-ALL CONDITION HANDLER

• THE 'any other' CONDITION REFERS TO CONDITIONS FOR WHICH NO 'on
unit' HA~BEEN SPECIFICALLY ESTABLISHED

n EXAMPLE

del (zerodivide, overflow, any_other) condition;

on zerodivide begin;

end;

on any_other begin;

end;

signal overflow;

n BACKWARD TRACE OF STACK LOOKS FOR CONDITION HANDLER TWICE FOR
EACH FRAME:

D LOOKS FOR SPECIFIC CONDITION HANDLER FIRST

n LOOKS FOR CONDtTION HANDLER FOR 'an y_ other' SECOND

n THE 'cleanup' CONDITION IS AN EXCEPTION IN THAT IT DOES NOT
INVOKE THE any_other HANDLER

Not To Be Reproduced 6-10 F15C

ACTION TAKEN IF NO 'on unit' IS FOUND ON STACK ----- ------ - - - - - -----

• THERE IS A DEFAULT HANDLER 'default_error handler_!

• THE PROGRAM, initialize process, HAS ONLY ONE 'on unit' (FOR THE
CONDITION any_other) - - -

o THE any_other CONDITION HANDLER CALLS default_error_handler_$wall

o defaul t_ error_handIer_CHECKS TO SEE WHICH CONDITION WAS SIGNALLED

a EXECUTES DIFFERENT CODE BASED ON THE CONDITIo-N

a NOTIFIES USER IF IT WAS NOT SET UP TO HANDLE CONDITION (EXAMPLE:
USER DEFINED CONDITIONS AND program_interrupt

~ SEVERAL CONDITIONS RESULT IN CALL TO get_to_cl_$unclaimed_signal

Not To Be Reproduced 6-11 F15C

ACTION TAKEN IF !Q ~ unit' IS FOUND ON STACK

listen $release_ stack -
get_ to_ cl $ unclaimed_signal

d _e_h_$wall ~ ON UNIT ESTABLISHED FOR any_other

an y_ other. 2

signal_

p11_signal_ from_ops_

':lser _prog i SIGNAL XYZ

command _processor _

abbrev

listen -
ini tial ize _process_ ~ ON UNIT ESTABLISHED FOR any=other

Not To Be Reproduced 6-12 F15C

ACTION TAKEN IF NO 'on unit' IS FOUND ON STACK ----- - ---

D defaul t error handler $wall SETS UP CONDITION HANDLER FOR any other
THAT RESULTS IN A CALL TO defaul t_error _handler _$wall_ignore_pi

o THUS, A "CONDITION WALL" IS SET UP BETWEEN PROGRAMS RAISING
CONDITIONS THAT HAVE NO HANDLERS FOR THEM & -PROGRAMS RUN AT A
NEW COMMAND LEVEL THEREAFTER

K THE WALL IS TRANSPARENT TO THE 'program_interrupt' AND 'finish'
CONDITIONS

Not To Be Reproduced 6-13 F15C

'program interrupt' CONDITION

• THE PSEUDO CODE FOR program_interrupt IS AS FOLLOWS:

program_interrupt: pi: proc;

del program interrupt condition;
del signal -entry options (variable);
dcl start entry options (variable);

call signal ("program interrupt", •••);
if handler was found -
then call start;
el se call com err - - (••• , "prog ram in terr upt", "Ther e is no sus pend ed

invocation of-a subsystem that supports the use of
this command.");

end 1* program_interrupt */;

Not To Be Reproduced 6-14 F15C

'program interrupt' CONDITION

• EXAMPLE DEMONSTRATING THAT' program_interrupt' "PENETRATES THE WALL"

handler: proc;

dcl (program interrupt,
qui t, -
zerodiv ide)

dcl syspr int
condition;
file;

on zerodivide go to A;
on program_interrupt go to B;

signal qui t;

A: put skip list ("ZERODIVIDE HAPPENED");
put skip;

B: put skip list ("PROGRAM INTERRUPT HAPPENED");
put skip;

end 1* handler */j

r 1 4 : 52 o. 153 2

handler
QUIT
r 14:52 0.265 3 level 2

signal zerod iv id e

Er r 0 r : At t em pt to d i v id e b y z e r 0 at s i g n al $: 1 1 0 1
(>system library standard>bound command env)
system handler fer error returns to command-level
r 14:52 0.524 20 level 3

signal program_interrupt

PROGRAM INTERRUPT HAPPENED
r 1 4 : 52 o. 221 7

No t To Be Re prod uc ed 6-15 F15C

::u
CD
'C .,
o
0.
C
()

CD
0.

0\
I
0\

"Tl

U1
n

PARTIAL STACK HISTORY OF EXAMPLE

.,
OJ
a
.....
::s
("t

C'D ., .,
C

("t -
n
0
:z:
0
H
~
H
0
:z:

'program interrupt' CONDITION

• NOTE: ' an yother' CONDITION
'program interrupt' CONDITION
find_condition_info_)

HANDLERS SHOULD PASS ON
(SEE contin ue_ to_signal_

No t To Be Re prod uced 6-17

THE
AND

F15C

SUMMARY OF CONDITION HANDLING MECHANISM

CONDITION X RAISED

EXAMINE MOST
RECENT
ACTIVATION

~ ,
IS THERE A HANDLER

- ESTABLISHED IN THIS
.- ACTIVATION FOR

CONDITION X?

NO f YES

EXAMINE NEXT INVOKE THE PREVIOUS HANDLER ACTIVATION
~ 't

I

)'
l YES ~

~~
IS THERE A DEFAULT ~

HANDLER ESTAB- ~~
LJSHED IN THIS ~
ACTIVATION FOR ~~
ANY OTHER? - \P

+ NO ,
NO IS THIS THE ~ YES DOES HANDLER

OLDEST WANT SEARCH ---.
ACTIVATION? CONTINUED?

,~ YES t N o

NO HANDLER 1
FOR THIS RETURN
CONDITION

Not To Be Reproduced 6-18 F15C

REVIEW OF PL/I DEFINED CONDITIONS

Default Error Undefined if hit Can be Enabledl Disabled by Handler Signals End of On Unit Disabled Default Error

area X X

error (X) X

storage X X

fixedoverflow X X X

overflow X X X

size X X X X
stringrange X X X X
subscriptrange X X X X
zerodivide X X X

conversion I X X

endfile X·
key X

record X

transmit
~

X
undefinedfile X -
underflow X

stringsize X X
name

endpage

finish

')

NOTE THAT THE 'size' CONDITION IS ENABLED DURING PLII 110
(pl1 signal from ops), AND CONSEQUENTLY, A PLII PROGRAM WHICH IS
EXECUTING 'put' -STA'TEMENTS TO THE 'sysprint' FILE MAY CAUSE 'size'
CONDITIONS TO BE SIGNALLED EVEN THOUGH THE CONDITION IS NOT ENABLED IN
THE PROGRAM ITSELF

Not To Be Reproduced 6-19 F15C

REVIEW OF PL/I DEFINED CONDITIONS --- - - --- -----

• CONDITIONS IN THE PRECEDING TABLE WERE COVERED IN EARLIER COURSES,
HOWEVER, THE 'finish', 'area' AND 'storage' CONDITIONS ARE COVERED
BELOW SINCE THEY ARE NOT USUALLY FULLY UNDERSTOOD IN AN INTRODUCTORY
COURSE

I 'finish' CONDITION

I THE FINISH CONDITION IS SIGNALLED JUST PRIOR TO RUN UNIT OR
PROCESS TERMINATION

n IT IS SIGNALLED BY A STOP STATEMENT OR BY COMMANDS SUCH AS
, sto p_run', 'logout' AND 'new_proc'

o IT BEHAVES JUST LIKE 'program_interrupt' IN THAT IT "PENETRATES
THE WALL"

o ALL CONDITION HANDLERS, WHETHER THEY HANDLE 'finish' OR NOT,
SHOULD PASS THIS CONDITION ON (BY CALLING continue to signal)
SO THAT ALL PROGRAMS WILL BE NOTIFIED OF THE IMPENDING-PROCESS,
OR RUN UNIT, DESTRUCTION

No t To Be Re prod uced 6-20 F15C

REVIEW QE PL/I DEFINED CONDITIONS

o 'area' CONDITION

B AN ATTEMPT HAS BEEN MADE TO ALLoe·ATE STORAGE IN A PL/I t area f
VAR IABLE WHICH DOES NOT HAVES UFFIC lENT STORAGE F OR THE ATTEM PTE D
ALLOCATION

B PRINTS A MESSAGE AND SIGNALS THE ERROR CONDITION

n EXAMPLE

dcl (p,q,r) ptr;
dcl (A, B) (1000) fixed bin based;
dcl C area(2000) static;
dcl d float bin based;

allocate A set(p) in (C) ;

allocate d set(q) in (C) ;

allocate B set(r) in (C) ;

i* causes 'area' condition (unless lntervening
'free' statements were executed) *1 _

o 'storage' CONDITION

n AN ATTEMPT HAS BEEN MADE TO GROW A STACK SEGMENT PAST ITS
MAXIMUM LENGTH

I GENERALLY OCCURS AS A RESULT OF ATTEMPTING TO GENERATE A LARGE
AMOUNT OF 'automatic' STORAGE J OR AS A RESULT OF A RUNAWAY
RECURSIVE PROCEDURE

I IS ALSO SIGNALLED IF A PL/I PROGRAM OVERFLOWS THE SYSTEM FREE
STORAGE AREA

Not To Be Reproduced 6-21 F15C

SOME SYSTEM-DEFINED CONDITIONS

• THE MULTICS SYSTEM HAS DEFINED SOME CONDITIONS OF ITS OWN

• SOME OF THE USEFUL SYSTEM-DEFINED (NON-PL/I) CONDITIONS ARE LISTED
BELOW:

o ARE SIGNALLED BY THE active_fnc_err_ AND com err SUBROUTINES
RESPECTIVELY

n DEFAULT HANDLER FOR command error PRINTS A MESSAGE AND RETURNS

n DEFAULT HANDLER FOR active function error PRINTS AN ERROR
MESSAGE AND RETURNS TO A NEW-COMMAND LEVEL

n cleanup

o SIGNALLED TO THOSE PROCEDURES OWNING STACK FRAMES TO BE DISCARDED
AS A RESULT OF A NON-LOCAL TRANSFER

n THIS IS A VERY ATYPICAL USE OF THE CONDITION MECHANISM, SINCE
'clean up' IS SIGNALLED IN EVERY FRAME BETWEEN THE CUR RENT
STACK FRAME AND THE FRAME CONTAINING THE TARGET OF THE NON-LOCAL
TRANSFER

I TYPE OF THING USUALLY DONE IN A 'cleanup' HANDLER

I CLOSE FILES WHICH HAD BEEN OPENED "IN THAT ACTIVATION BLOCK

I FREE ALLOCATED 'controlled' OR 'based' VARIABLES

n REINITIALIZE STATIC VARIABLES

I SHOULD!Q! QQ ! !£[-LOCAL 'goto'

o THIS WOULD INTERFERE WITH THE ONE ALREADY IN PROGRESS

Not To Be Reproduced 6-22 F15C

SOME SYSTEM-DEFINED CONDITIONS

I SIGNALLED WHEN AN A TTEMPT IS MADE TO ACCESS THROUGH AN
UNINITIALIZED POINTER OR A POINTER CONTAINING INVALID DATA

n illegal_opcode , illegal_procedure

o SIGNALLED WHEN AN ATTEMPT IS MADE TO EXECUTE AN INVALID OR
PRIVILEGED MACHINE INSTRUCTION

n linkage_error·

o SIGNALLED WHEN THE DYNAMIC LINKING MECHANISM OF MULTICS CAN
NOT LOCATE AN EXTERNAL OBJECT

I_ lockup

SIGNALLED WHEN A PROGRAM IS
-FOR TOO LONG- A TIME

'T"T,....U'T"
.L 4UO.L

o SIGNALLED WHEN AN ATTEMPT IS MADE TO USE AN INVALID (NULL)
POINTER

n out of bound s

o SIGNALLED WHEN AN ATTEMPT IS MADE TO REFER TO A LOCATION
BEYOND THE CURRENT LENGTH OF A SEGMENT

No t To Be Re prod uc ed 6-23 F15C

~ SYSTEM-DEFINED CONDITIONS

o program_interrupt

o SIGNALLED WHEN THE USER HAS ISSUED THE 'program_interrupt'
COMMAND

R qui t

o SIGNALLED WHEN THE USER HITS THE 'break' OR 'attention' KEY
ON HIS/HER TERMINAL (THE DEFAULT HANDLER PRINTS THE WORD "QUIT"
ON THE USER'S TERMINAL, ABORTS THE PROGRAM, AND ESTABLISHES A
NEW COMMAND LEVEL)

o IN GENERAL, USER PROGRAMS SHOULD NOT HANDLE THE 'qui t' CONDITION

D SIGNALLED WHEN A USER ATTEMPTS TO ALLOCATE A RECORD IN SECONDARY
STORAGE WHICH WILL OVERFLOW HIS/HER ALLOTTED LIMIT

o SIGNALLED WHEN AN ATTEMPT IS MADE TO USE A POINTER WITH AN
INVALID SEGMENT NUMBER, AND CAN BE CAUSED BY:

I THE DELETION OR TERMINATION OF A SEGMENT AFTER THE POINTER
IS INITIALIZED

i THE POINTER IS NOT INITIALIZED IN THE CURRENT PROCESS

I THE USER HAS NO ACCESS TO THE SEGMENT

Not To Be Reprod uced 6-24 F15C

No t To Be Re prod uc ed

SOME SYSTEM-DEFINED CONDITIONS

YOU ARE NOW READY FOR WORKSHOP
/14

6-25
(End Of Topic)

II

F15C

TOPIC VII

The Multics Input/Output System

Page

Characteristics. • • • • • • • • ••••• • • 7-1
The Multics I/O Mechanism. • • • • • 7-2

Protocols Supported. • • • • • • • • • • • 7-4
The More Popular I/O Modules •••••••• 7-6
Per forming Mul tic s I/O ••••• ••• • ••• 7-7

THE 'iox ' SUBROUTINE. • • • • • • • • • • • • • •• • 7-12
I/O Control Blocks • • • • • • • • • • • • . •• 7-15

7-i F15C

Topic VII THE MULTICS I/O SYSTEM Topic VII

OBJECTIVES:

Upon completion of this topic, students should be able to:

1. Define the following terms:

I/O switch

I/O module

stream 1/0

record sequential I/O

record blocked 1/0

inde:<ed" 1/0

2. List the more popular 1/0 modules.

3. List the steps required to perform 1/0.

4. Describe an I/O control block (IOCB).

Multics VII-1 F15C

CHARACTERISTICS

• THE MULTICS INPUT/OUTPUT SYSTEM IS A FLEXIBLE, GENERALIZED I/O SYSTEM
CAPABLE OF SUPPORTING SEVERAL PROTOCOLS OF DATA TRANSMISSION TO A
FULL COMPLEMENT OF FILES AND DEVICES

• I/O SYSTEM BASIC CHARACTERISTICS:

n LOGICAL INPUT/OUTPUT REQUESTS ARE USED RATHER THAN DEVICE-SPECIFIC
PHYSICAL REQUESTS

n DEVICE INDEPENDENCE IS ACHIEVED VIA THE MULTICS I/O SWITCH MECHANISM

n UNFAMILIAR OR NEW DEVICES CAN BE ADDRESSED VIA THE IMPLEMENTATION
OF SITE-PREPARED INPUT/OUTPUT INTERFACE MODULES

Not To Be Reproduced 7-1 F15C

~ MULTICS I/O MECHANISM

• THE I/O MECHANISM USES THE FOLLOWING CONSTRUCTS:

I SWITCH, SWITCHNAME

I A SWITCH· IS A LOGICAL CONSTRUCT USED TO DESIGNATE THE TARGET
OF AN INPUT OR OUTPUT REQUEST

I ASSOCIATED WITH AN I/O SWITCH IS A If SWITCHNAME"

o ALL I/O REQUESTS ARE DIRECTED TO A "SWITCH" WHICH IS It ATTACHED"
BY A DEVICE-DEPENDENT PROGRAM, CALLED AN I/O MODULE, TO A
PARTICULAR DEVICE OR FILE

I THE SUPPORTING DATA STRUCTURE OF A SWITCH IS AN I/O CONTROL
BLOCK (IOCB)

a INPUT/OUTPUT 'MODULE

I A DEVICE-DEPENDENT COMMUNICATION MODULE WHICH ACTS AS THE
INTERFACE BETWEEN THE USER'S LOGICAL I/O REQUESTS AND THE
HARDWARE-LEVEL IIO SYSTEM

I TRANSLATES THE USER'S LOGICAL REQUESTS INTO THE PHYSICAL REQUESTS
APPROPRIATE TO THE TYPE OF DEVICE OR FILE FOR WHICH IT WAS
WRITTEN

I SYSTEM STANDARD MODULES SUPPORT I/O TO/FROM BASIC DEVICES (TAPE,
REMOVABLE DISK, TERMINAL DEVICES, CARD READERS, ETC.) AND
FILES (SEGMENTS IN THE VIRTUAL MEMORY)

Not To Be Reproduced 7-2 F15C

THE MUtTICS I/O MECHANISM

PROGRAM

I
00 []

Not To Be Reprod uced 7-3 F15C

THE MULTICS I/O MECHANISM

PROTOCOLS SUPPORTED

• FOUR BASIC I/O PROTOCOLS (FILE STRUCTURES) SUPPORTED

B THE TYPE OF PROTOCOL BEING USED LIMITS THE REQUESTS THAT CAN BE
SATISFIED

I CERTAIN I/O MODULES SUPPORT ONLY ONE PROTOCOL, SOME I/O MODULES
SUPPORT ALL THE PROTOCOLS

n THEY ARE:

n 1) STREAM INPUT/OUTPUT

I A STREAM FILE IS A SEQUENCE OF ASCII CHARACTERS, SEPARATED
BY NEWLINE AND NEWPAGE CHARACTERS

I OFTEN CALLED AN "UNSTRUCTURED" FILE

I EXAMPLES: TERMINAL DIALOG, TEXT EDITOR CREATED SEGMENTS,
TAPES WRITTEN VIA tape_mult_

o 2) RECORD SEQUENTIAL INPUT/OUTPUT

B A "STRUCTURED" FILE OF VARIABLE LENGTH RECORDS, EACH RECORD
REPRESENTING ONE STRUCTURE

B A RECORD FILE MAY BE ACCESSED IN "SEQUENTIAL" PROTOCOL,
WHICH MEANS THAT THE CURRENT RECORD AND NEXT RECORD ARE
WELL-DEF INED

D EXAMPLES: TAPES WRITTEN VIA tape ibm OR tape ansi ,CERTAIN
VIRTUAL MEMORY SEGMENTS - - --

Not To Be Reproduced 7-4 F15C

1[[MULTICS I/O MECHANISM

PROTOCOLS SUPPORTED

o 3) RECORD BLOCKED INPUT/OUTPUT

n A RECORD FILE MAY BE CREATED IN LOGICAL BLOCKS, THUS ALLOWING
IIO TO BE DONE A BLOCK AT A TIME

I BLOCK SIZE IS FIXED

n A BLOCK CONTAINS

n ONE RECORD (WITH POTENTIAL WASTED SPACE) IF IN A VIRTUAL
MEMORY FILE

lONE OR MORE RECORDS IF ON ANSI OR IBM TAPE

n SPECIFY BLOCKED MODE AT ATTACH TIME

n 4) INDEXED INPUT/OUTPUT

n AN IN·DEXED FILE IS A "KEYED" FILE, IMPLEMENTED AS A
MULTI-SEGMENT FILE WITH ONE (OR MORE) COMPONENTS HOLDING
THE "KEY VALUES", AND ONE (OR MORE) COMPONENTS HOLDING THE
"DATA RECORDS" .

o AN INDEXED FILE MAY BE ACCESSED IN EITHER "KEYED SEQUENTIAL"
MODE, OR "KEYED DIRECT" MODE

« MUST BE IN THE VIRTUAL MEMORY

n EXAMPLE: "RELATIONS" IN A MRDS DATABASE

B PL/I DEDUCES THE PROTOCOL BY EXAMINING LANGUAGE I/O STATEMENTS
AND/OR THE ATTACH DESCRIPTION

Not To Be Re prod uced 7-5 F15C

THE MULTICS IIO MECHANISM

THE MORE POPULAR IIO MODULES

• SOME OF THE SYSTEM STANDARD IIO MODULES, THEIR FUNCTIONS, AND THE
PROTOCOLS SUPPORTED ARE:

~

1) vfile

3) discard

5) rdisk

8) tape ibm
tape:ansI_

10) bisync_

11) aud it

No t To Be Re prod uc ed

FUNCTION

IIO TOIFROM SEGMENTS IN
THE VIRTUAL MEMORY

PROTOCOLS SUPPORTED

ALL

IIO TOIFROM TERMINAL
DEVICES

OUTPUT SINK

ALLOWS ONE SWITCH TO SERVE
AS A SYNONYM FOR ANOTHER
SWITCH

IIO TOIFROM REMOVABLE, NON
MULTICS DISK PACKS

ALLOWS RECORD IIO OPERATIONS
TO BE DIRECTED TO A STREAM
FILE AND VICE VERSA

IIO TOIFROM A MULTICS
FORMAT TAPE

IIO TOIFROM A TAPE FILE IN
IBM OR ANSI FORMAT

STREAM

ALL

ALL

SEQUENTIAL,
KEYED, OR
BLOCKED

STREAM
<->
SEQUF;NTIAL

STREAM

SEQUENTIAL,
BLOCKED

IIO TOIFROM TAPES IN NON-STANDARD SEQUENTIAL
OR UNKNOWN FORMATS

IIO ACROSS A BINARY SYNCHRONOUS
COMMUNICATIONS CHANNEL

INTERCEPTS IIO ACTIVITY ON A
GIVEN SWITCH, ALLOWING LOGGING
AND EDITING OF DATA

7-6

STREAM

STREAM

F15C

!tl[MULTICS IIO MECHANISM

PERFORMING MULTICS IIO

• STEPS REQUIRED TO PERFORM IIO

I 1) THE SPECIFIED SWITCH MUST BE "ATTACHED" (INITIALIZED) BY A
SPECIFIED IIO MODULE TO SOME TARGET DEVICE OR FILE (SUBSEQUENT
REQUESTS DIRECTED TO THE SWITCHNAME OPERATE VIA THE IIO MODULE
ON THE TARGET DEVICE OR FILE)

o 2) THE SWITCH MUST BE "OPENED" IN A MODE COMPATIBLE WITH THE
TYPE OF DEVICE OR FILE BEING MANIPULATED

H 3) INPUT/OUTPUT OPERATIONS CAN NOW BE DIRECTED TO THE SWITCH
(OPERATIONS MUST BE CONSISTENT WITH THE ATTACHMENT AND OPENING
MODE OF THE SWITCH)

n 4) THE SWITCH MUST BE "CLOSED" LEAVING THE SWITCH IN THE STATE
IT WAS PRIOR TO THE "OPENING" (THAT IS, IT MAY NOW BE OPENED
WITH A DIFFERENT MODE)

n 5) THE SPECIFIED SWITCH MUST BE "DETACHED" BREAKING THE ASSOCIATION
BETWEE.N THE SWITCHNAME AND THE IIO MODULE AND TARGET (HENCE, THE
SWITCH MAY BE ATTACHED IN A NEW WAY)

Not To Be Reproduced 7-7 F15C

~-----.--.,

THE MULTICS I/O MECHANISM

PERFORMING MULTICS I/O

SWITCH SWITCH CLOSE ATTACH_ - OPEN _
-~--------~------~~----------~------~ MODE2-IOCB

uu --- .. ~------

DETACH SWITCH _ CLOSE SWITCH --------- - ---- -------IOCB IOCB
I I I I

I I I I
I I I / . I I I

/ I I I ' I I .

_ OPEN

-MODE 1

IOCB

, I I
I I I

I " , I' 01 ,'/

: '~I EJ
SWITCH -- -- - - - -- -- -IOCB

-' 1//
I I I I

I I
I I I I

LI//
tj' 1.' I I

a
l

u IIio. I

EJ EJ

SWITCH ATTACH _ SWITCH OPEN ... SWITCH ETC. -... ~ ... -----.-. ---------- ----------.- - MODEi -IOCB IOCB IOCIt

\ \ \ \ \\~ \ \ \ \ \ \ \
\ \ \ \ \ \ \

\ \ \ \ \ \ \

n r9
\ \ \

fI fI FI 00
)

L ,.J L # L J

Not To Be Reproduced 7-8 F15C

~ -

1[[MULTICS IIO MECHANISM

PERFORMING MULTICS IIO

• ALL IIO OPERATIONS CAN BE PERFORMED AT THREE BASIC LEVELS:

n LANGUAGE LEVEL .. 'open', 'close', 'get', 'read', 'put', 'write'

o COMMAND LEVEL - THE 'io call' COMMAND

n SUBROUTINE LEVEL - THE 'iox ' SUBROUTINE

n EXAMPLES (THE FOLLOWING ARE EQUIVALENT):

H PLII

< open file (x) title ("vfile_ user_file") stream output;

" ,.. f"IU U A lr n T 1:''''1:' T II \lVa-lnn..I1V w~ V~W

io call attach x vfile user file
io:call open x stream_output-

o SUBROUTINE LEVEL

call iox $attach name (fiX", ioeb ptr, "vfile user_file",
- - ref ptr,-code); -

call iox_$ open (iocb_ptr, 2-; "0 fib, code);

n LANGUAGE VS. IIO SYSTEM

PLII STATEMENT

open

c ose

Not To Be Reprod uced

EQUIVALENT IIO CALLS

attach
open

c ose
detach

1-9 F15C

THE MULTICS IIO MECHANISM

PERFORMING MULTICS IIO

• THE ATTACHMENT AND DETACHMENT OF A SWITCH CAN BE PERFORMED EITHER
EXTERNALLY TO A PROGRAM OR INTERNALLY BY THE PROGRAM ITSELF

n IF THE SWITCH IS ATTACHED EXTERNALLY, THE PROGRAM RECOGNIZES
THIS ATTACHMENT, HONORS THIS PRIOR ATTACHMENT, AND IGNORES THE
SPECIFIED INTERNAL ATTACH DESCRIPTION (THUS YIELDING DEVICE
INDEPENDENCE)

o IF THE SWITCH HAS NOT BEEN ATTACHED EXTERNALLY, THE ATTACH
DESCRIPTION SUPPLIED BY THE PROGRAM (EITHER EXPLICITLY OR
IMPLICITLY) WILL BE USED TO ATTACH THE SWITCH

n IF THE SWITCH IS ATTACHED EXTERNALLY, IT MUST BE DETACHED EXTERNALLY

n IF THE SWITCH-IS ATTACHED INTERNALLY BY EXECUTION OF THE 'open'
STATEMENT, IT WILL BE DETACHED BY EXECUTION OF THE 'close'
STATEMENT

• THE ABOVE STATEMENTS SIMILARLY APPLY TO THE OPEN AND CLOSE OPERATIONS

Not To Be Reproduced 7-10 F15C

n EXAMPLE

THE MULTICS I/O MECHANISM

PERFORMING MULTICS IIO

x: proc;

dcl ·line char(80);
dcl (abc, x yz) file;
dcl i;

open file (abc) input;
open file (xyz) output;

do i = 1 to 50;
get file (abc) list
put file (xyz) list

end;

close file (abc), file

end 1* x *1;

(line) ;
(line) ;

(xyz) ;

n TO HAVE OUTPUT SENT TO TERMINAL INSTEAD OF FILE xyz USER COULD
TYPE THE FOLLOWING:

io call attach xyz syn_ user_output

x

io call detach x yz

No t To Be Re prod uc ed 7-11 F15C

THE 'iox ' SUBROUTINE

• iox IS THE USER-RING INTERFACE TO THE MULTICS INPUT/OUTPUT SYSTEM

n ALL IIO OPERATIONS ISSUED AT THE USER-RING LEVEL (WHETHER FROM
COMMAND LEVEL, LANGUAGE LEVEL, OR DIRECT iox CALL) RESULT IN A
CALL TO iox_

o iox PROVIDES ENTRY POINTS FOR ALL INPUTIOUTPUT OPERATIONS

n EVERY iox ENTRY POINT REQUIRES AN ARGUMENT DENOTING THE PARTICULAR
IIO SWITCH (ACTUALLY THE IOCB) INVOLVED IN THE OPERATION

n IF AN ENTRY POINT REQUIRES THE IIO SWITCH TO BE OPEN, AND IF IT
IS NOT, THE CODE 'error_table_$not_open' IS RETURNED

n IF THE IIO SWITCH IS OPEN, BUT THE OPERATION IS NOT ALLOWED FOR
THAT OPENING MODE, THE CODE 'error_table_$no_operation' IS RETURNED

Not To Be Reproduced 7-12 F15C

THE 'iox ' SUBROUTINE

• THE MAJOR ENTRY POINTS OF iox CAN BE CLASSIFIED AS FOLLOWS:

R ATTACHING/DETACHING

R iox_$ attach_name

D iox_$attach_ptr

n iox_$detach_iocb

D iox_$destroY_iocb

D iox_$ find iocb -
P iox_$look_ iocb

n iox_$move_attach

D OPENING/CLOSING

·n iox_$open

il iox_$close

n STREAM I/O REQUESTS

n iox_$get_chars

n iox_$get_line

D iox_$put_chars

Not To Be Reproduced 7 -13 F15C

~ 'iox ' SUBROUTINE

0 RECORD IIO REQUESTS

I iox_$delete record -
0 iox_$ read _key

n iox_$read_length

n iox_$read record -
n iox_$ rewr i te_ record

0 iox_$ seek_ke y

n iox_$write record -

D CONTROL REQUESTS

I iox_$control

n iox_$modes

n iox_$ posi tion

No t To Be Re prod uc ed 7-14 F15C

IIO CONTROL BLOCKS

• WHAT IS AN IIO CONTROL BLOCK (IOCB)?

o EVERY SWITCHNAME HAS ASSOCIATED WITH IT AN 'IOCB'

o AN 'IOCB' IS A STANDARD DATA STRUCTURE

n IT IS THE PHYSICAL REALIZATION OF A SWITCH

n THEY ARE FOUND IN THE USER'S PROCESS DIRECTORY

n AN 'IOCB' IS CREATED BY iox WHEN A SWITCHNAME IS USED IN AN
n ATTACH STATEMENT" OR "ATTACH COMMAND" FOR THE FIRST TIME IN A
PROCESS

n IF THE SAME SWITCHNAME IS USED LATER IN THE PROCESS, THE SAME
'IOCB' IS REUSED

n THUS THERE IS A ONE TO ONE MAPPING BETWEEN SWITCHNAMES AND
IOCB'S

n ONCE AN 'IOCB' IS CREATED, IT LIVES THROUGHOUT THE PROCESS (UNLESS
EXPLICITLY DELETED)

Not To Be Reproduced 7-15 F15C

1/0 CONTROL BLOCKS

/* BEGIN INCLUDE FILE ••••• iocb.incl.pll
13 Feb 1975, M. Asherman *1

1* Modified 11/29/82 by S. Krupp to add new entries and
to change version number to IOX2. *1

1* format: style2 *1

dcl 1 iocb aligned based,
1* 1/0 control block. *1

2 version character (4) aligned,
1* IOX2 *1

2 name char (32),
1* 1/0 name of this block. *1

2 actual iocb ptr ptr,
1* IOCB ultimately SYNed to. *1

2 attach descrip ptr ptr,
1* P!r to prIntable attach description. *1

2 attach data ptr ptr,
1* P!r to-attach data structure. *1

2 open descrip ptr ptr,
I*-Ptr to printable open description. *1

2 open data ptr ptr,
I*-Ptr to open data structure (old SOS). *1

2 reserved bit (72),
1* Reserved for futur e use. * I

2 detach iocb entry (ptr, fixed (35»,
1* detach iocb(p,s) *1

2 open - entry (ptr, fixed, bi t (1) al igned ,
fix ed (3 5 » ,

1* open(p,mode,not used,s) *1
2 close entry (ptr, fixed (35»,

1* close (p , s) * I
2 get_line entry (ptr, ptr, fixed (21),

fixed (21), fixed (35»,
1* get line(p,bufptr,buflen,actlen,s) *1

2 get chari . entry (ptr, ptr, fixed (21),
- fixed (21), fixed (35»,

1* get chars(p,bufptr,buflen,actlen,s) *1
2 put chari entry (ptr, ptr, fixed (2i),

- fixed (35»,
1* put chars(p,bufptr,buflen,s) *1

2 modes - entry (ptr, char (*), char (*),
fixed (35»,

1* modes(p,newmode,oldmode,s) *1
2 position entry (ptr j fixed j fixed (21);

fi xed (35»,
1* position(p,u1,u2,s) *1

2 control entry (ptr, char (*), ptr,
fi xed (35»,

1* control(p,order,infptr,s) *1
2 read record entry (ptr, ptr, fixed (21),

- fixed (21), fixed (35»,
1* read record(p,bufptr,buflen,actlen,s) *1

2 write_record entry (ptr, ptr, fixed (21),

Not To Be Re prod uced 1-16 F15C

I/O CONTROL BLOCKS

fix ed (35»,
1* write record(p,bufptr,buflen,s) *1

2 rewrite record .entry (ptr, ptr, fixed (21),
- fix ed (35»,

1* rewrite record(p,bufptr,buflen,s) *1
2 delete record entry (ptr, fixed (35»,

;* delete record(p,s) *1
2 seek key - entry (ptr, char (256) varying,

- fix ed (2 1), fix ed (3 5 » ,
1* seek key(p,key,len ,s) *1

2 read key - entry (ptr, char (256) varying,
- fix ed (2 1), fix ed (3 5 » ,

1* read key(p,key,len,s) *1
2 read length entry (ptr, fixed (21), fixed (35»,

I*-read length(p,len,s) *1
2 open file- entry (ptr, fixed bin, char (*),

- bit (1) al ig ned, fix ed bin (35»,
1* open file(p,mode,desc,not used,s) *1

2 close file entry (ptr,-char (*), fixed bin (35»,
1* close file(p,desc,s) *1

2 detach - entry (ptr, char (*), fixed bin (35»;
1* detach(p,desc,s) *1

declare iox $iocb version sentinel
- - character (4) aligned external static;

1* END INCLUDE FILE •.••• iocb.incl.p11 */

dcl 1 attach descrip based aligned,
2 1 eng th fi xed bin (, 7) ,
2 string char (0 refer (attach_descrip.length»;

Not To Be Reproduced 7-17 F15C

IIO CONTROL BLOCKS

• AN ATTACH DESCRIPTION IS A CHARACTER STRING CONVEYING THE FOLLOWING
INFORMATION:

n MODULE NAME

I MODULE-SPECIFIC ARGUMENTS, SUCH AS:

D PATHNAME (vfile_)

D CHANNEL NAME (tty_, bisync_)

D MODULE-SPECIFIC CONTROL ARGUMENTS, SUCH AS:

D - bloc ked (vfil e_)

o COMPLETE DESCRIPTIONS OF THE IIO MODULES AND THE ARGUMENTS SPECIF lED
AT ATTACH TIME ARE IN Multics Subroutines & IIO Modules (AG93)

Not To Be Reproduced 7-18 F15C

IIO CONTROL BLOCKS

• THE PRINCIPAL COMPONENTS OF AN 'IOCB' ARE 'pointer' VARIABLES AND
'entry' VARIABLES

• THERE IS ONE 'entry' VARIABLE FOR EACH IIO OPERATION, WITH THE
EXCEPTION OF THE ATTACH OPERATION

• TO PERFORM AN IIO OPERATION THROUGH THE SWITCH, THE APPROPRIATE
ENTRY VALUE IN THE CORRESPONDING 'IOCB' IS CALLED

I FOR EXAMPLE:

CAN BE THOUGHT OF AS:

call iocb_ptr->iocb.put_chars(.••••);

No t To Be Re prod uc ed 7-19 F15C

I/O CONTROL BLOCKS

• WHEN iox_$attach_name IS CALLED IT:

n CREATES/LOCATES THE 'IOCB' ASSOCIATED WITH THAT SWITCHNAME

n INITIALIZES SOME OF THE ELEMENTS IN THE 'IOCB' STRUCTURE

n CALLS <mod ule_name)$ <mod ule_name) attach

o THUS THERE NEED BE NO ENTRY FOR THE ATTACH OPERATION IN THE
'IOCB'

n THIS ENTRY POINT IN THE I/O MODULE FINISHES THE INITIALIZATION
OF THE I IOCB'

o FOR EXAMPLE, IF THE I/O MODULE INVOLVED IN THE ATTACHMENT WAS
v file :

n vfile_$vfile_attach IS CALLED

R AFTER THE ATTACHMENT (INITIALIZATION) IS COMPLETE:

n iocb.open CO~TAINS THE ENTRY TO vfile_$open

o iocb.close CONTAINS THE ENTRY iox_$err_not_open

Not To Be Reproduced 7-20 F15C

IIO CONTROL BLOCKS

• AFTER THE ATTACHMENT OF THE SWITCH, EVERY IIO OPERATION ON THAT
SWITCH REFERENCES THE CORRESPONDING 'IOCB' TO FIND THE ENTRY POINT
AT WHICH TO START EXECUTION

R ONE OF TWO ACTIONS MAY RESULT:

R iox GENERATES AN ERROR MESSAGE (IF IT IS AN ILLEGAL OPERATION)

D EXECUTION STARTS AT THE APPROPRIATE ENTRY POINT OF THE
APPROPRIATE MODULE

R THIS EXECUTION UPDATES THE 'IOCB', USUALLY REPLACING SOME
ENTRY VALUES CAUSING ERROR MESSAGES WITH ENTRY VALUES
INDICATING ENTRY POINTS IN THE MODULE (AND VISA VERSA)

D EXAMPLE (IN THE ABOVE CASE):

rOCB MEMBER BEFORE OPENING AFTER OPENING

ioeb .open

ioeb.close

• IT IS THE RESPONSIBILITY OF THE IIO MODULE TO MAINTAIN THE ACCURACY
OF THE 'IOCB'

• ONLY THE iox ENTRY POINTS RESULTING IN ATTACHMENT OF A SWITCH
REQUIRE THE M~DULE AS AN INPUT ARGUMENT

n AFTER THAT TIME, THE 'IOCB' "POINTS TO" THE APPROPRIATE ENTRY
POINTS IN THE APPROPRIATE MODULE (THE USER NEED ONLY PROVIDE A
POINTER TO THE 'IOCB')

Not To Be Reproduced 7 -21 F15C

1LQ CONTROL BLOCKS

• IN VIEW OF THE ABOVE DISCUSSION OF IOCB' S AND SWITCHES, THE TERM
!t SWITCH" SHOULD MAKE MORE SENSE

n A SWITCH/IOCB CAN BE THOUGHT OF AS A STRUCTURE CONTAINING TRANSFER
VECTORS

No t To Be Re prod uc ed

YOU ARE Ndw READY FOR WORKSHOP
115

7-22
(End or Topic)

F15C

TOPIC VIII

The iox Multics Subroutine

INTRODUCTION TO USING iox •••••••••
iox OPENING MODES • • • :
Stand ard Swi tc h At tac hm en ts. •
iox ENTRY POINTS. • • • • • • • •
AN EXAMPLE USING iox • • • • • • • • • • •

8-i

Page

8-1
8-2
8-3
8-5
8-16

F15C

Topi c VIII THE IOX_ SUBROUTINE Topic VIII

OBJECTIVES:

Upon completion of this topic, students should be able to:

1. Open and close I/O switches using iox_.

2. Read data from the user's terminal.

3. Display information on the user's terminal.

4. Read and write stream files.

5. Read and write s~quential and keyed files.

VIII-1 F15C

INTRODUCTION TO USING iox -----_ - - --

• WHY USE iox RATHER THAN PLII 110 STATEMENTS?

o iox IS MORE EFFICIENT

R WRITTEN IN aIm-

o NUMBER OF MEMORY ACCESSES

n iox ACCESSES 'IOCB' ONLY

n PL/I STATEMENTS ACCESS 'FSB' (FILE STATE BLOCK) AND 'IOCS'

o MORE POWERFUL

R BETTER ERROR DETECTION

n ACCEPTED CONVENTION FOR SYSTEM CODE

• WARNING: SHOULD NOT MIX iox AND PL/I IIO DUE TO INCONSISTENCIES
(DIRECT CALLS TO iox DO NOT MAINTAIN 'FSB')

Not To Be Reproduced 8-1 F15C

12.L OPENING MODES

• iox OPENING MODES SUPPORTED AND THE iox_ OPERATIONS PERMITTED FOR
EAC'B OPENING:

NO

1 str eam in put
2 stream-output
3 stream:input_output

4 sequen tial in put
5 sequential-output
6 sequential-input output
7 sequential:update

8 keyed_sequential_input

9 keyed sequential output
10 keyed:sequential:update

11 direc t in put
12 d1rect-output
13, d1rect:update

IIO OPERATIONS PERMITTED

get line, get_chars, position
put-chars
1 +-2

read record, read_length, position
write record
4 + 5-
4, rewrite_record, delete_record

read record, read length, position,
- see k ke y, read ke y .

seek key,-write record
8 + 9,rewrite_record,delete_record

read record, read length, seek key
seek-key, write record -
11 +-12,rewrite:record,delete record

SEE >ldd>include>iox_modes.incl.pl1

• NOTE:

B THE 'open' , 'close' , 'controi' , AND 'modes' OPERATIONS ARE PERMITTED
WITH ANY OPENING MODE

I THE ABOVE NUMBERS ARE USED IN CALLS TO iox TO SPECIFY OPENING
MODES

n THE LONG NA~E (AS GIVEN ABOVE) IS USED WITH 'io call'

o PL/I SPECIFIES THE OPENING MODE IN THE FILE DESCRIPTION

Not To Be Reproduced 8-2 F15C

STANDARD SWITCH ATTACHMENTS

PROCESS

user_input error _output user _output

user_i/o

(TERMINAL J

Not To Be Reprod uced 8-3 F15C

STANDARD SWITCH ATTACHMENTS

• THE MULTICS STANDARD PROGRAMMING ENVIRONMENT MAKES USE OF FOUR SWITCHES
WHICH ARE ATTACHED AND OPENED AS PART OF THE PROCESS CREATION CYCLE

• THE STANDARD ATTACHMENTS ARE:

user i/o tty -login channel
stream input output - .

user input - syn user i/o
user-output . syn user-i/O -
error_output - syn: user_i/o

• IN TERMS OF iox , THESE SWITCHES ARE IDENTIF IED BY THE FOLLOWING
DECLARATIONS: -

n dcl iox_$user_io external pOinter;

a dcl iox_$user_input external pointer;

U dcl iox_$user_output external pOinter;

U dcl iox_$error_output external pointer;

n EXAMPLE

call iox_$put_chars (iox $user output, buffer ptr,
buffer_length, code); -

Not To Be Reproduced '8-4 F15C

iox ENTRY POINTS

• THERE ARE OVER 25 ENTRY POINTS FOR THE iox SUBROUTINE (SEVERAL ARE
PRESENTED IN THE REMAINDER OF THIS TOPIC) -

• THE FIRST 7 ENTRY POINTS:

I ARE SUMMARIZED ON THE NEXT 2 PAGES

n WILL BE STUDIED IN DETAIL BY REFERRING TO THE SUBROUTINES MANUAL

n WILL BE USED IN WORKSHOP 6

n REPRESENT SOME COMMONLY USED ENTRY POINTS THAT WOULD BE USED TO
PROMPT A USER FOR A KEY AND THEN FIND THE CORRESPONDING RECORD
IN A KEYED FILE

• THE OTHER ENTRY POINTS (STARTING ON PAGE 8-7) WILL BE COVERED IN
MUCH LESS DETAIL

• SEVERAL OPERATIONS INVOLVE THE USE OF A BUFFER

o A BUFFER IS A BLOCK OF STORAGE PROVIDED BY THE CALLER OF THE
OPERATION AS THE TARGET FOR INPUT OR THE SOURCE FOR OUTPUT

R A PTR TO THE BUFFER IS PASSED TO iox SUBROUTINES

Not To Be Re prod uced 8-5 F15C

~ ENTRY POINTS

o ACCEPTS A SWITCHNAME

I RETURNS A POINTER TO THE 'IOCB' FOR THE CORRESPONDING SWITCH

B ATTACHES THE SWITCH IN ACCORDANCE WITH THE SUPPLIED ATTACH
DESCRIPTION

o OPENING MODE IS SPECIF lED BY A NUMBER (SEE PAGE 8-2)

U THE NEWLINE CHARACTER SIGNIFIES THE END OF THE LINE

I A CODE OF ZERO IS RETURNED ONLY IF A NEWLINE CHARACTER IS READ

K THE NEWLINE ITSELF IS READ INTO THE BUFFER

Not To Be Reproduced 8-6 F15C

iox ENTRY POINTS

n THE NEXT RECORD POSITION AND CURRENT RECORD POSITION ARE SET TO
THE RECORD WITH THE GIVEN KEY

n USED BEFORE DOING A read, delete, rewrite, ETC.

n READS THE NEXT RECORD IN A STRUCTURED FILE

n KEYED READS FIRST REQUIRE A CALL TO iox_$seek_key

..

o DOES NOT FREE THE IOCB'S STORAGE

No t To Be Re prod uc ed 8-7 F15C

~ ENTRY POINTS

• THE REST OF THIS TOPIC WILL SERVE AS AN OVERVIEW OF OTHER iox
ENTRY POINTS

n BEHAVES LIKE iox $ attach name, EXCEPT iocb_ptr IS AN INPUT NOT
AN OUT PUT VARIABLE -

o call iox_$ find_iocb (swi tchname, iocb_ptr, code);

n GIVEN A SWITCHNAME, RETURNS A POINTER TO THE IOCB, BUT DOES NO
ATTACHMENT (IF THE BLOCK DOES NOT ALREADY EXIST, IT IS CREATED)

o call iox_$lo0k.-iocb (swi tchname, iocb_ptr, cod e) ;

n BEHA VES LIKE iox $ find iocb, HOWEVER DOES NOT C REATE A BLOCK IF
ONE DOES NOT ALREADY EXIST

Not To Be Reproduced 8-8 F15C

~ ENTRY POINTS

R INCLUDED FOR COMPLETENESS (NOT FOR NOVICE USERS)

o MOVES AN ATTACHMENT FROM ONE ATTACHED SWITCH TO ANOTHER DETACHED
SWITCH

R THE PERFECT EXAMPLE (FOR WHICH move attach WAS WRITTEN) IS THE
CASE OF file output, IN WHICH A TEMPORARY SWITCH IS CREATED, THE
CURRENT ATTACHMENT OF user output IS MOVED TO THAT TEMPORARY
SWITCH, AND THEN user_output IS ATTACHED TO THE OUTPUT FILE.

n FREES THE STORAGE USED BY A DETACHED CONTROL BLOCK

Not To Be Reprod uced 8-9 F15C

iox ENTRY POINTS

I USER REQUESTS n BYTES (CHARACTERS) FROM A STREAM FILE OR DEVICE
(ACTUALLY NUMBER READ IS n_read BYTES)

o IF n = n read THEN code = 0

I IF n read < n THEN code = error_table_$short_record

D IF NEXT BYTE IS "END OF FILE" THEN code = error table $end of info
(NOTE THAT THE 'end fil e' CONDITION IS NOT SIGNALLED WHEN US ING
iox_) - ---

D READS NEWLINE CHARACTERS INTO BUFFER JUST LIKE ANY OTHER CHARACTER

m IF n IS GREATER THAN THE SIZE OF THE RECEIVING BUFFER, OVERFLOW
CHARACTERS WILL BE WRITTEN PAST THE END OF THE BUFFER, YIELDING
POTENTIALLY DISASTROUS RESULTS

n BUFFER OUGHT TO BE EXPLICITLY FLUSHED PRIOR TO CALL, BECAUSE
JUST n_read CHARACTERS WILL BE OVERWRITTEN

n ALTERNATIVE:

dcl max buff char(80) based (buff_ptr);
)

dcl buff char (n_read) based (buff_ptr);

Not To Be Reproduced 8-10 F15C

iox ENTRY POINTS

R WRITES n BYTES (CHARACTERS) TO THE UNSTRUCTURED FILE OR DEVICE

R BUFFER SHOULD CONTAIN A NEWLINE, IF ONE IS INTENDED (THERE IS NO
'put_line' ENTRY POINT)

D IF OPEN FOR stream output THE CHARACTERS ARE APPENDED TO THE END
OF THE FILE. IF -OPEN FOR stream input output FILE TRUNCATION
OCCURS JUST BEFORE THE NEXT BYTE - -

n ADDS A RECORD TO A STRUCTURED FILE

R IF OPEN FOR sequential output, THE RECORD IS APPENDED TO THE
FILE. IF OPEN FOR sequential input output, FILE TRUNCATION OCCURS
JUST BEFORE THE NEXT RECORD - -

R iox $ seek key MUST BE CALLED BEFORE DOING A KEYED WRITE IN ORDER
TO "SET THE KEY" FOR INSERTION

Not To Be Re prod uced 8-11 F15C

iox ENTRY POINTS

n REPLACES THE CURRENT RECORD IN A STRUCTURED FILE THAT HAS BEEN
OPENED FOR "UPDATE"

o IF THE CURRENT RECORD POSITI.ON IS NULL, error_table_$no_record
IS RETURNED

n THUS IT IS FIRST NECESSARY TO "LOCATE" THE RECORD TO BE REPLACED
(USING read_record, see~key OR position ENTRY POINTS)

H RETURNS THE LENGTH OF THE NEXT RECORD IN A STRUCTURED FILE

I IF THE NEXT RECORD POSITION IS AT
error _ table_$ end_ of_in fo

THE END OF code -

o APPLICATION: TO DETERMINE HOW LONG THE BUFFER MUST BE IN ORDER
TO HOLD THE NEXT RECORD TO BE READ (EXAMPLE: VARIABLE LENGTH
RECORDS)

Not To Be Reproduced 8-12 F15C

~ ENTRY POINTS

n DELETES THE CURRENT RECORD FROM THE STRUCTURED FILE, WHOSE SWITCH
MUST BE OPENED FOR "UPDATE"

D IF THE CURRENT RECORD IS NULL, code = error_table_$no_record

n AGAIN, IT IS FIRST NECESSARY TO "LOCATE" THE RECORD TO BE DELETED
(USING read_record, seek_key OR position ENTRY POINTS)

n RETURNS BOTH THE KEY AND THE LENGTH OF THE NEXT RECORD IN AN
INDEXED FILE

n code = error table $end of info IF THE NEXT RECORD POSITION IS
AT THE END OF FILE - --

n code = error_table_$no_record IF THE NEXT RECORD POSITION IS
NULL

Not To Be Reproduced 8-13 F15C

iox ENTRY POINTS

o call iox_$position (iocb_ptr, type, n, code);

n POSITIONS TO THE BEGINNING OR END OF A FILE, OR SKIPS FORWARD OR
BACKWARD OVER A SPECIFIED NUMBER OF LINES OR CHARACTERS
(UNSTRUCTURED FILES) OR RECORDS (STRUCTURED FILES)

o type IDENTIF IES THE TYPE OF POSITIONING (INPUT)

o -1 GO TO THE BEGINNING OF FILE (n = 0)

o +1 GO TO THE END OF FILE (n = 0)

o 0 SKIP NEWLINE CHARACTERS OR RECORDS (n posi tive or negative)

o 2 POSITION TO AN ABSOLUTE CHARACTER OR RECORD (n)

n 3 SKIP CHARACTERS (stream_input) (n positive or negative)

Not To Be Reproduced 8-14 F15C

iox ENTRY POINTS

n USED TO OBTAIN OR SET MODES THAT AFFECT THE SUBSEQUENT BEHAVIOR
OF THE SWITCH (BEST KNOWN MODES ARE THOSE ASSOCIATED WITH tty :
echoplex ,tabs,polite ,etc.) -

n SWITCH MUST BE ATTACHED VIA AN 1/0 MODULE THAT SUPPORTS MODES
(EXAMPLE: tty_ SUPPORTS MODES, vfile DOES NOT)

D FOR A LIST OF THE VALID MODES, SEE THE DESCRIPTION OF THE MODULE
INVOLVED

n call iox_$control (iocb_ptr, order, info_ptr, code);

H info ptr IS NULL OR POINTS TO DATA WHOSE FORM DEPENDS ON THE
MODULE

n PERFORMS A SPECIFIED CONTROL ORDER ON AN 1/0 SWITCH; THE ALLOWED
ORDERS DEPEND ON THE IIO MODULE VIA WHICH THE SWITCH IS ATTACHED
(REFER TO THE 1/0 MODULE WRITE UPS)

o EXAMPLES OF tty CONTROL ORDERS: set_delay, set_editing_,chars,
quit_enable, hangup

n EXAMPLE OF vfile CONTROL ORDt:R: read position (RETURNS THE
ORDINAL POSITION- (0, 1, 2 •••) OF THE- NEXT RECORD/BYTE AND
THE END OF THE FILE)

Not To Be Reproduced 8-15 F15C

![EXAMPLE USING iox

print~file: proe;

del iox_$a~taeh_name,entry (char (*), ptr, char (*), ptr, fixed bin (35»;
del iox $detaeh ioeb entry (ptr, fixed bin (35»;
del iox-$open entry (ptr, fixed bin, bit (1) unaligned, fixed bin (35»;
del iox-$close entry (ptr, fixed bin (35»;
dcl iOX-$put chars entry (ptr, ptr, fixed bin (21), fixed bin (35»;
del iox-$read record entry (ptr, ptr, fixed bin (21), fixed bin (21),

- - fixed bin (35»;
del iox $read length entry (ptr, fixed bin (21), fixed bin (35»;
del lox-$get line entry (ptr, ptr, fixed bin (21), fixed bin (21),

- - fi xed bin (35»; ..
del lOX $eontrol entry (ptr, char (*), ptr, fixed bin (35»;
del lox-$user output ext ptrj
del ioeb ptr ptr init (null (»j
del code-fixed bin (35) init (0);
dcl com err entry opt"ions (variable);
del ME char-(1 0) static init ("print file") options (constant);
del LF char (1) sta tic options (constan t) in it (" ..) ;
del 1 in fo ,

2 n ext po Sl t io n fi x ed bin (34),
2 last-posltion fixed ·bin (34);

del buffer char (buf len) based (buf ptr);
del, ouf len fixed bin (21); - -
del uuf-ptr ptr init (null())j
del ree-len flxed bin (21);
del ~ fix ed bin;
del (null, addr) builtin;
del cleanup condition;

on cleanup call WRAPUP;

call iox $a~tach name ("sw", iocb_ptr, "vfile sample_file ll , null () 1 code);
i f c OQ e .,. = 0 -
then call WRAPUP;

call iox $open (iocb ptr, 4, "0 "b, code);
if cod e .,. = 0 -
then call WRAPU P;

call iox $control (iocb_ptr, "read_position", addr(info), code);
if code -:="= 0
then call WRAPUP;

call iox $read length (iocb_ptr, ree_len, code);
if code ""'= 0 -
then call WRAPUP;

bur len = ree leh + 40;
allocate buffer set (buf_ptr);

Not To Be Reprod uced 8-16 F15C

!! EXAMPLE USING iox

do i = 1 to last position;
call iox~$reaa_record (~'ptr, b~r, buf_len, re~ri, c~;'
if code = 0
then call WRAPUP;
substr (buffer, rec len+1, 1) = LF;
call iox $put chars-(iox $user output, buf_ptr, rec len + 1, code);
if code ~= a - --
then call WRAPUP;

end 1* do i *1;

call WRAPUP;

~: proc;

if code A= a
then call com err (code, ME);

if iocb. ptr A= null ()
then do;

call iox $close (iocb ptr, code);
call iox-$detach iocb-Ciocb_ptr, code);

end 1* then-do *1; -

if buf ptr A= null ()
then free buf_ptr -> buffer;

gato FINIS;

end 1* WRAPUP *1;

FINIS:

end 1* pr in t _ fil e * I ;

r 14:40 0.259 32

vfs sample file
type: sequential
record s: 5
r 1 4: 41 o. 261 1 9

print file
This Is record number
THIS IS RECORD TWO
Hi, I'm the third record
Would you believe four?
I am the last record
r 14:41 0.288 7

Not To Be Reproduced 8-17
(End Of Topic)

F15C

Characteristics ••
Entry Points • • •
Control String • •

TOPIC IX

The 'ioa ' Multics Subroutine

9-i

• • • 9-1
• 9-2
. 9 4

F15C

Topic IX THE IOA_ SUBROUTINE Topic IX

OBJECTIVES:

Upon completion of this topic, students should be able to:

1. Write simple character strings to the user's terminal.

2. Use iteration and conditional evaluation to form complex
output strings for display on the terminal.

3. Write to a file via an I/O switch.

4. Write to a file using the Multics Virtual Memory.

Multics IX-1 F15C

CHARACTERISTICS

• USED FOR FORMATTING A CHARACTER STRING FROM FIXED-POINT NUMBERS,
FLOATING-POINT NUMBERS, CHARACTER STRINGS, BIT STRINGS, AND POINTERS

n THE CHARACTER STRING IS FORMATTED ACCORDING TO THE CONTROL
CHARACTERS EMBEDDED IN AN 'ioa ' CONTROL STRING

R THE ENTIRE PROCEDURE IS SIMILAR TO FORMATTING OUTPUT IN PL/I OR
FORTRAN

• SEVERAL ENTRY POINTS ARE PROVIDED IN 'ioa ' TO PROVIDE VARIOUS OPTIONS

n SINCE ALL OF THE ENTRY POINTS CAN BE CALLED WITH A VARIABLE
NUMBER OF ARGUMENTS, THEY ALL MUST BE DECLARED 'entry
options(variable),

o 'ioa' NORMALLY APPENDS A NEWLINE CHARACTER TO THE END OF THE
STRING CREATED

n A CORRESPONDING ENTRY POINT IS PROVIDED FOR EVERY STANDARD ENTRY
POINT WHICH SPECIFIES THAT "NO NEWLINE" IS TO BE APPENDED

Not To Be Reprod uced 9-1 F15C

ENTRY POINTS

• ENTRY POINTS IN ioa ARE:

o call ioa (control_string, argl, ••• , argl!>;

n FORMAT THE INPUT DATA ACCORDING TO THE CONTROL STRING, AND
WRITE THE RESULTING STRING ON 'user_output'

D call ioa_$ ioa_stream (swi tchname, control_string, argl, ••• ,
arg!!> ;

n FORMAT THE RESULTING STRING AS ABOVE, BUT THE STRING IS THEN
WRITTEN TO AN IIO SWITCH SPECIFIED BY THE SWITCHNAME ARGUMENT

o call ioa_$ioa_switch (iocb ptr, control_string, argl, ••• ,
arg!T;

n IDENTICAL TO THE ioa $ioa stream AND ioa $ioa $stream nnl ENTRY
POINTS EXCEPT THAT THE IIO SWITCH IS DESIGNATED BY-A POINTER
TO ITS IOCB, RATHER THAN BY SWITCHNAME (HENCE, THESE ENTRY
POINTS ARE A BIT MORE EFFICIENT)

No t To Be Re prod uc ed 9-2 F15C

ENTRY POINTS

n call ioa_$rs (control string, ret_string, ret_length, argl,
••• , arg!!);

I EDITING OCCURS AS IN THE ABOVE CALLS, BUT INSTEAD OF BEING
WRITTEN TO AN 1/0 SWITCH, THE STRING IS PASSED BACK TO THE
CALLER IN A CHARACTER STRING VARIABLE

I THE CHARACTER STRING VARIABLE PROVIDED BY THE CALLER MAY BE
VARYING OR NONVARYING, ALIGNED OR UNALIGNED AND OF ANY LENGTH

n THE LENGTH OF THE CREATED STRING IS ALSO RETURNED

o THESE ARE IDENTICAL TO THE ioa $rs AND ioa $rsnnl ENTRY POINTS
EXCEPT THAT THEY DO "NO PADDING" OF A STRING RETURNED INTO A
NONVARYING CHARACTER STRING

Not To Be Reproduced 9-3 F15C

CONTROL STRING

• A NON-VARYING CHARACTER STRING CONSISTING OF TEXT TO BE COPIED ANDIOR
ioa CONTROL CODES

• ioa CONTROL CODES ARE ALWAYS IDENTIFIED BY A LEADING CIRCUMFLEX
(A)-CHARACTER, AND SPECIFY THE TYPE OF EDITING TO BE DONE FOR THEIR
CORRESPONDING argl

• PROCESSING BY ioa BEGINS BY SCANNING THE CONTROL STRING UNTIL A
CIRCUMFLEX IS FOUND, OR THE END OF THE STRING IS REACHED

n ANY TEXT (INCLUDING BLANKS) PASSED OVER IS COPIED TO THE OUTPUT
STRING

I CONTROL CODES ARE INTERPRETED, GENERALLY BY EDITING THE NEXT
argi INTO THE OUTPUT STRING IN A FASHION DICTATED BY THE CONTROL
CODE'

No t To Be Re prod uced 9-4 F15C

CONTROL fQQ[

Ad And

e Ane

o Ano

AW nw

a Ana

p

A/ AnI

.... n-

.... x nx

.... n

.... s Ans

.... nt n.m t

Not To Be Reprod uced

CONTROL STRING

ACTION

Edit a fixed-point decimal integer

same as Ad (FOR COMPATIBILITY WITH FORTRAN)

Edit· a floating-point number

Edit a floating-point number in exponential
form

Edit a fixed-point number in octal

Edit a full machine word in octal

Ed ita char ac ter str ing in ASC II

Edit a bit string

Edi t a po inter

Insert formfeed character(s)

Insert newline character(s)

Insert horizontal tab character(s)

Insert space character(s)

Insert circumflex character(s)

Ski p arg umen t(s)

Start an iteration loop

End an iteration loop

Start an if/then/else or case selection group

Limit the scope of a "[

Use as a clause delimiter between [....]

Insert enough space to reach col umn n

9-5 F15C

CONTROL STRING

• WHEN n ANDIOR d APPEAR IN A CONTROL CODE, THEY GENERALLY REFER TO A
FIELD-WIDTH oit A REPETITION FACTOR (THE EXACT MEANING DEPENDS ON
THE CONTROL CODE WITH WHICH THEY APPEAR)

o THE n OR d MUST BE SPECIFIED AS UNSIGNED DECIMAL INTEGERS, OR AS
THE LETTER "v", IN WHICH CASE, THE' NEXT argi ARGUMENT (WHICH
MUST BE FIXED BINARY) IS USED TO OBTAIN THE ACTUAL VALUE

• IF NO FIELD WIDTH IS SPECIFIED, ioa USES A FIELD LARGE ENOUGH TO
CONTAIN THE DATA TO BE EDITED

• IF TOO SMALL A FIELD WIDTH IS SPECIFIED, ioa IGNORES THE WIDTH AND
SELECTS AN APPROPRIATE WIDTH

• NUMERIC CONTROL CODES TAKE ANY PL/I NUMERIC DATA TYPE, INCLUDING A
NUMERIC CHARACTER STRING, AND USE STANDARD PL/I CONVERSION ROUTINES
IF Nt::CESSARY

• ARGUMENTS THAT ARE EDITED INTO THE CONTROL STRING MAY BE ARRAYS

n THE ELEMENTS ARE TREATED SEPARATELY IN ROW MAJOR ORDER

Not To Be Reproduced , 9-6 F15C

CONTROL STRING

• THE FOLLOWING EXAMPLES ILLUSTRATE MANY, BUT NOT ALL, OF THE FEATURES
OF THE ioa. SUBROUTINE. THE SYMBOL ~ IS USED TO REPRESENT A SPACE
IN THE PLACES WHERE THE SPACE IS SIGNIFICANT

Source:

Resul t:

Source:

Resul t:

So urce:

Result:

So urce:

Resul t:

Source:

Result:

Source:

Resul t:

Source:

Resul t:

So urce:

Result:

call ioa_("This is ... a the third of ... a" ,"Mon" ,"July");

This is Mon the third of July

call ioa_("date "'d/"'d/Ad, time "'d:"'d",6,20,74,2014,36);

date 6120174, time 2014:36

call ioa_("overflow at "'p,,',ptr);

over flow at 271 : 4671

call io a _ (If A 2 (""2 (''' w "')"'1"')", w 1 , w 2, w 3, w 4) ;

112233445566 000033004400
000000000001 777777777777

bit="110111000011"b;
call ioa_CttAvxoct= 3b hex:"' .• 4b" ,6,bit,bit);

~~~~~~oct=6703~hex:DC3 

call ioa_(11 .... f .... e .... f .... 5.2f",1.0,1,1e-10,1); 

1. ~1. eO )51. e-1 0 ~1. 00 

call ioa_( ...... C .... d .... )",1,2,56,198,456.7,3e6); 

1 2 56 198 456 3000000 

abs sw=O; 
call ioa $rsnnl( " .... vC Absentee user .... ) ""a .... a logged out.", 

- out str out cnt abs sw "LeValley" "Shop")· - , - , -' , , 
out cnt:25; 
o ut:str: "Le Valley Sho p logged out." 

Not To Be Reproduced 9-7 F15C 



Source: 

Resul t: 

Source: 

Resul t: 

Source: 

Resul t: 

So urce: 

Resul t: 

Source: 

Result: 

Source: 

Resul t: 

Source: 

Resul t: 

Source: 

Resul t: 

CONTROL STRING 

abs sw=l; 1* Using same call to ioa $rsnnl *1 
call ioa $rsnnl( " .... v(Absentee user Aj .... a .... a logged out.", 

- out str out cnt abs sw "LeValley" "Shop") Q - , - , -' , , 
out ent=39; 
out:str="Absentee user LeValley Shop logged out." 

dcl a(2,2)fixed bin init(1,2,3,4); 
e all i 0 a _ ( " .... d .... sAd A wIt , a) j 

1 3 000000000004 

del b(6:9)fixed bin init(6,7,8,9)j 
call i 0 a _ ( " .... v ( .... 3 d .... ) " , d im ( b , 1 ) , b) ; 

6 7 8 9 

sw:"O"bj 
call ioa ("a= .... d ... [b= .... d ... j AS .... ] c= .... d" ,5,sw,7,9); 

a=5 0=9 

sw.: "1 lIb; 
call i 0 a ( " a= .... d .... [ b= ... d .... ; ... s ... ] c= .... d" , 5 , s w , 7 , 9 ) ; 

a=5 b=7 c=9 

d ir= n) "; en ame= "faa" ; 
call ioa ("Error in segment Aa"'[) .... ]"'a", dir, 

- (d i r .... = 11 > 11), en am e) ; 

Error in segmen t > foo 

d ir= If> foo"; en am e= "bar" ; 
call ioa {"Error in segment .... a .... [) .... ] .... a·', dir, 

- (dir .... = If> It), ename); 

Error in segment > foo> bar 

option=2; /* Assume following call is on one line */ 
call ioa (·'Insurance 'option selected: 
.... [no fau'It .... ;bodily injury .... ;propertydamage .... ]", option); 

Insurance option selected: bodily injury 

No t To Be Re prod uc ed 9-8 F15C 



CONTROL STRING 

II YOU ARE NOW RE!gy FOR WORKSHOP II 

No t To Be Re prod uc ed 9-9 F15C 
(End or Topic) 



TOPIC X 

Multics Storage System Subroutines 

Page 

The Multics Storage System. • • • • • •• • ••••••• 10-1 
Summary of Discussed Subroutines • • • • • 10-3 
Creating Storage System Entities • • • • •• • •••••• 10-5 
Deleting Segments, Directories, and Links ••••••••••• 10-12 
Obtaining Status Information. • 10-13 

An Ex am pI e e • e e • e e • • a a a • • .. • 10-20 
Security ••••••• a • • • • • • • • • • 10-22 
Access Control Lists • • • • • • • • • • •• •••• • 10-23 
Working, Default, and Process Directories ••••••••••• 10-29 
Manipulating Pathnames • • • • • • • . • • • • • • • . • 10-32 

10-i F15C 



Topic X MULTICS STORAGE SYSTEM SUBROUTINES Topic X 

OBJECTIVES: 

Upon completion of this topic, students should be able to: 

1. Add and remove entries to and from the Multics Storage 
System. 

2. Manipulate pathnames using Multics subroutines. 

3. Obtain status information on entries in the storage system. 

4. Change the access control lists (ACLs) of various entries in 
the storage system. 

5. Use Multics subroutines to obtain information about a user's 
home," working, and process directories. 

6. Discuss the access required to perform any of the above 
o pe I" a t ion s • 

Multics X-"1 F15C 



THE MULTICS STORAGE SYSTEM 

• THE STORAGE HIERARCHY IS ORGANIZED INTO AN INVERTED TREE ST·RUCTURE 

R THIS TREE IS MADE UP OF DIRECTORY SEGMENTS, SEGMENTS, MULTI-SEGMENT 
FILES AND LINKS 

• FOR NON-DIRECTORY SEGMENTS: 

R SUBJECT TO THE THREE ACCESS CONTROL MECHANISMS, THE USER IS FREE 
TO CREATE, DESTROY, AND MODIFY THE CONTENTS OF SEGMENTS 

R USER-CREATED SEGMENTS NORMALLY "RESIDE" IN THE RING OF THE CREATOR. 
THE USER IS FREE TO ACCESS SUCH SEGMENTS WITHOUT HAVING TO "CROSS" 
ANY RING BOUNDARIES 

• FOR DIRECTORY SEGMENTS: 

R THE USER MAY CREATE, DESTROY, AND MODIFY DIRECTORY SEGMENTS, BUT 
NOT DIRECTLY (THEY ARE PROTECTED AGAINST DIRECT ACCESS VIA THE 
RING MECHANISM) 

D ALLOWING USERS TO MANIPULATE DIRECTORY SEGMENTS DIRECTLY WOULD 
BE INVITING CHAOS, SINCE DIRECTORY SEGMENTS DETERMINE THE INTEGRITY, 
SECURITY AND CONSISTENCY OF THE HIERARCHY 

R DIRECTORY SEGMENTS ARE PLACED IN RING 0 AND USERS ULTIMATELY 
ACCESS SUCH SEGMENTS BY USING A SYSTEM-PROVIDED GATE PROCEDURE 
CALLED hcs_ 

Not To Be Reproduced 10-1 F15C 



THE MULTICS STORAGE SYSTEM 

• THE hcs_ SUBROUTINE 

I PROVIDES VARIOUS ENTRY POINTS FOR MANIPULATION OF THE STORAGE 
SYSTEM AND VIRTUAL ADDRESS SPACE 

I ALL ACCESS TO THE STORAGE SYSTEM IS ACCOMPLISHED VIA THIS GATE 
PROCEDURE 

• THE STORAGE MANIPULATION SUBROUTINES COVERED IN THIS COURSE ARE 
SUMMARIZED BELOW: 

No t To Be Re prod uc ed 10-2 F15C 



SUMMARY OF DISCUSSED SUBROUTINES 

CREATING STORAGE SYSTEM· ENTITIES 

hes $append branch 
hes-$ append-branchx 
hes-$ append-link 
he s-$ create-branch 
hes:$make_seg -

DELETING STORAGE SYSTEM ENTITIES 

delete $ path 
delete:$ ptr 

OBTAINING STATUS INFORMATION 

hes $ status 
he s-$ status-long 
hcs-$ status-minf 
he s:$ status:mins 

SECURITY 

get group id 
get-group-id-$tag star 
hes-$ add ael-entries 
hes-$add-dir-ael entries 
hes-$delete ael entries 
he s-$ del ete - dir - ael en tr ies 
hes-$fs get-mode -
he s-$list acl 
hes-$list-dir ael 
hes-$replaee ael 
he s:$ replaee:dir _ael 

. WORKING, DEFAULT, AND PROCESS DIRECTORIES 

change default wdir 
ehange-wdir - -
get de1aul t-wdir 
get-pdir - -
get:wd 1r-: 

Not To Be Reprod ueed 10-3 F15C 



SUMMARY OF DISCUSSED SUBROUTINES 

MANIPULATING PATHNAMES 

absol ute pathname 
absol ute-pathname-$ add suffix 
ex pand pathname - -
ex pand-pathname-$ add suffix 
ex pand-pathname-$ comPonent 
expand-pathname-$component add suffix 
get shortest path -
pathname - -
pa thn am e -$ com po n en t 
pathname:$ componen t_ check 

NAMING AND MOVING DIRECTORY ENTRIES 

he s $ chname fil e 
he s-$ chname-seg 
he s-$ fs move file 
hc s:$ fs:mov e:seg 

AFFECTING LENGTH OF ENTRIES 

adj ust bi t coun t 
hes $set be -
hcs-$truncate file 
terminate file - -
MANIPULATING THE ADDRESS AND NAME SPACES 

hc s $ fs get pa th name 
hc s-$ fs-get-ref name 
hcs-$ fs-get-seg-ptr 
hc s-$ make seg -
initiate file 
term $ re1name-
term-$ seg ptr - .. -term $single refname 
term-$term -
term-$ unsnap 
terminate fil e - -

Not To Be Reproduced 10-4 F15C 



CREATING STORAGE SYSTEM ENTITIES 

Thi s Pag e In ten tiona11 y Le ft B1 an k 

Not To Be Reproduced 10-5 F15C 



CREATING STORAGE SYSTEM ENTITIES 

~~ ~~i- ~/ 
~ 'O~'I$ 'O~~ ,$~ 

4J b/ b/ '0 
0/ ~ ~ ~0/ 

~~ ~'Q'Q~ ~'Q(J~ ~~e~ 
~ ~ ~ ~ 

~/ ~/ ~/ ~/ 
~ ~ ~ ~ 

Requ ires append permission X X X X 
Can use to create segments X X X X 

Gives full access to •• SysDaemon •• X X X X 

Obeys i~itial ad X X X X 

Can set access for one user _ id X X X X 
Can specify the user _id X X 

Can use to create directories X X 

Can set ring brackets X X 

Can set copy switch X X 

Can set bit count X X 

Can be told to chase links X 

Can move quota to directory X 

Can manipulate aim X 
Requires info structure X I 
I nitiates created segment X 

Not To Be Reproduced 10-6 F15C 



• 

• 

• 

CREATING STORAGE SYSTEM ENTITIES 

MiLe) 
call hcs_$make_seg (dir name, entryname, ref_name, mode, 

seg:ptr, code); 

call hcs_$append_branch (dir_name, entryname, mode, code); 

call hcs $ append branchx (dir name; entryname,' mode,' ~s~ \.I.4M.....J I 

- -~r-sw, -copy SW, bit count, code); . - -,~..... - . 

Not To Be Reproduced 10-7 F15C 



CREATING STORAGE SYSTEM ENTITIES 

• call hcs_$create_branch_ (dir _name, entryname, info_ptr, code); 

n info_ptr POINTS TO THE FOLLOWING STRUCTURE: 

1* BEGIN INCLUDE FILE - - - create branch infooincl.pl1 
- - - created January 1915 *1 - -

1* this include files gives the argument structure for 
create_branch_ *1 

dcl 1 create branch info aligned based, 
2 versIon fix~ bin, 

1* set this to the largest value given below */ 
2 swi tches unal ig ned, 

3 dir sw bit (1) unaligned, 
/¥ if on, a directory branch is wanted */ 

3 copy sw bi t (1) unaligned, 
I*-if on, initiating segment will be done by copying */ 

3 chase sw bit (1) unal igned , 
1* if on, if pathname is a link, it will be chased */ 

3 pr i v upg r ad e sw bit (1) un al ig ned, 
I*-privileged creation (ring 1) of upgraded object */ 

3 par en t ac s w bit (1) un a 1 ig ned , 
1* i1 on, use parent's access class for seg or 

dir created */ 
3 mbz1 bit (31) unaligned, 

/* pad to full word * / 
2 mod e bit (3) un al ig ned , 

/* segment or directory for acl for userid */ 
2 mbz2 bit (33) unal igned , 

/* pad to full word * / 
2 r in g s (3) fix ed bin (3), 

1* branch's ring brackets *1 
2 userid char (32), 

1* user's access control name *1 
2 bitcnt fixed bin (24), 

1* bit count of the segment */ 
2 quota fixed bin (18), 

1* for directories, this am' t of quota will be moved 
to it * / 

2 access class bit (12); 
1* is the access class of the body of the branch *1 

1* The following v"ersions are implemented . ill 
1* (Changes to structure require defining new static 

initialized variable) *1 . 

dcl create branch version 1 static fixed bin init (1); 
1* branch info valid through access class field */ 

1* Er~D INCLUDE 

Not To Be Reproduced 10-8 F15C 



CREATING STORAGE SYSTEM ENTITIES 

• NOTES: 

n THE BIT COUNT AND COPY SWITCH ARE SET TO 0 

n THE SPECIFIED MODE IS SET FOR Person_id.Project_id.* 

o FOR hcs $make seg, hcs $append branch AND hcs_$append_branchx ~ 
MODE IS-SPECIFIED AS FOLLOWS: -
~ 

n FOR SEGMENTS: 

read the 8-bit is 1 (01000b) 
execute the 4-bit is 1 (OO100b) 
write the 2-bit is 1 (OO010b) 

n FOR DIRECTOR IES: 

status the 8-bit is 1 (01000b) 
modify the 2-bit is 1 (OOO10b) 
append the 1-bit is 1 (OOO01b) 

o THE MODE FOR hcs $create branch IS SPECIFIED IN SIMILAR MANNER, 
USING ONLY 3 BITS - -

Not To Be Reproduced 10-9 F15C 



CREATING STORAGE SYSTEM ENTITIES 

1* BEGIN INCLUDE FILE ••• access_mode_values.incl.p11 

Values for the n access mode" argument so often used in hardcore 
James R. Davis 26 Jan 81 MeR 4844 
Added constants for 3M access 4/28/82 Jay Pattin 

*1 

dcl (N ACCESS 
R-ACCESS 
E-ACCESS 
W_ACCESS 
RE ACCESS 
REW ACCESS 
RW_ACCESS 

S ACCESS 
M-ACCESS 
A-ACCESS 
SA ACCESS 
SM-ACCESS 
SMA ACCESS 

bi t (3T internal 

dcl (N ACCESS BIN 
R-ACCESS-BIN 
E-ACCESS-BIN 
W-ACCESS-BIN 
RW ACCESS BIN 
RE-ArCCESS-BIN 
REW_ACCESS_BIN 

S ACCESS BIN 
M-ACCESS-BIN 
A-ACCESS-BIN 
SA ACCESS BIN 
SM-ACCESS-BIN 
SMA_ACCESS_BIN 

fixed bin (5 ) 

init ("OOO"b), 
in it ("100"b), 
ini t ("010 "b) , 
init (n001"b), 
init (n11 O"b) , 
init "(n111 nb), 
init (n101"b), 

init ("100"b), 
in it ("01 0 "b) , 
init ("001"b) , 
init ("101"b), 
init (n110"b), 
init ("111"b» 

static options (constant); 

init (OOOOOb) , 
init (01000b) , 
init (00100b) , 
init (00010b) , 
init (01010b), 
init (01100 b) , 
init (01110b) , 

init (01000b) , 
init (00010b), 
init (00001b) , 
init (01001b), 
init (01010b)J 
init (01011b» 

internal static options ( constan t) ; 

1* END INCLUDE FILE ••• access_mode_values.incl.p11 *1 

Not To Be Reproduced 10-10 F15C 



CREATING STORAGE SYSTEM ENTITIES 

o call hcs_$ append_link (dir _name, entryname, path, code); 

n CREATES A LINK IN SPECIFIED DIRECTORY 

n LINK'S TARGET NEEDN'T EXIST AT CREATION TIME (CODE OF ZERO STILL 
RETURNED) 

n APPEND PERMISSION REQUIRED ON CONTAINING DIRECTORY 

Not To Be Reproduced 10-11 F15C 



DELETING SEGMENTS, DIRECTORIES, AND LINKS 

• delete -
o HAS TWO ENTRY POINTS 

I delete_$ path 

o GIVEN AN ENTRYNAME, DELETES SEGMENTS, MSFs, DIRECTORIES, 
AND LINKS 

I delete_$ ptr 

o GIVEN A POINTER, DELETES SEGMENTS ONLY 

n call delete_$path (dir_name, entryname, switches, caller, code); 

I call delete_$ ptr (se~_ptr, swi tches, caller 1 code); 

U DIRECTORY TO BE DELETED NEED NOT BE EMPTY 

n UNSNAPS ANY LINKS THIS PROCESS HAS SNAPPED TO THE OBJECTS DELETED 

I NOTE: delete CAN'T PREVENT DISASTER WHEN ONE PROCESS DELETES 
ANOTHER'S SHA~ED SEGMENT 

n THE 6 BIT INPUT VARIABLE 'switches' MAKES THIS SUBROUTINE EXTREMELY 
FLEXIBLE 

I SEE THE SUBROUTINES MANUAL FOR DETAILS OF THE 6 SWITCHES 
(force sw, question_sw, directory_sw, segment_sw, link_sw, 
chase_sw) 

'Not To Be Reproduced 10-12 F15C 



OBTAINING STATUS INFORMATION 

• THE FOLLOWING 4 ENTRY POINTS RETURN STATUS INFORMATION FOR A DIRECTORY 
ENTRY (LISTED IN ORDER OF INCREASING COMPLEXITY) 

~ hcs_$status_mins 

-1 hes_$ status_minf 

he s_$ status_ 

~he s_$ status_long 

n ALL THE ABOVE ENTRY POINTS HAVE A CURIOUS ACCESS REQUIREMENT 

R INFORMATION IS RETURNED IF CALLER HAS STATUS ON THE CONTAINING 
DIRECTORY, OR NON-NULL ACCESS ON THE ENTRY 

n ENTRYNAMES ARE NOT RETURNED UNLESS THE CALLER HAS STATUS ACCESS 
ON THE CONTAINING DIRECTORY 

R TO THE STATUS ENTRY POINTS, DIRECTORIES AND MULTI-SEGMENT FILES 
LOOK IDENTICAL 

R THE ONLY DISTINGUISHING ATTRIBUTE IS THE BIT COUNT 

H BIT COUNT = 0 FOR A DIRECTORY 

n BIT COUNT = NUMBER OF COMPONENTS FOR A MSF 

Not To Be Reprod ueed 10-13 F15C 



o 

OBTAINING STATUS INFORMATION 

call hcs_$status_minf (dir name, entryname, chase sw, 
type, bit_count, code); -

RETURNS BIT COUNT AND ENTRY TYPE OF ENTRY, GIVEN A PATH 

I · TYPE OF ENTRY: 

o MEANS link 
1 MEANS segmen t 
2 MEANS msf OR directory 

o OFTEN USED WHEN TRYING TO DISTINGUISH BETWEEN DIR AND MSF 

-n call hcs_$status_mins (seg_ptr, type, bit .... couAt, code); 

I RETURNS BIT COUNT AND ENTRY TYPE OF A SEGMENT GIVEN A POINTER TO 
THE SEGMENT 

Not To Be Reproduced F15C 



o 

OBTAINING STATUS INFORMATION 

call hc s_$ status_ (dir. name, en tryname, chase sw, status_ptr, 
status_area_ptr, code); -

RETURNS INFORMATION ABOUT A SEGMENT, DIR, MSF, OR LINK: 

R INFORMATION INCLUDES ENTRY TYPE, DATE TIME CONTENTS LAST 
MODIFIED, DATE TIME LAST USED, NUMBER OF RECORDS USED, USER'S 
RAW MODE, USER'S EFFECTIVE MODE AND ENTRYNAMES (NO BIT COUNT) 

n CALLER MUST PROVIDE 

I POINTER TO CALLER-ALLOCATED INFO STRUCTURE 

R POINTER TO CALLER-DESIGNATED AREA TO CONTAIN "names" (IF NULL, 
NO NAMES RETURNED) 

Not To Be Reprod uced 10-15 F15C 



OBTAINING STATUS INFORMATION 

1* --- BEGIN include file status_structures.incl.p11 --- *1 

/* Revised from existing include files 09/26/78. 
by C. D. Tavares */ 

/* This include file contains branch and link structures 
returned by hc s_$ status_ and hc s_$ status_long. * / 

dcl 1 status branch aligned based (status ptr) , 
2 short al igned , -

3 type fixed bin (2) unaligned unsigned, 
/* seg, dir, or link *1 

3 nnames fixed bin (16) unaligned unsigned, 
/* number of names */ 

3 names relpbit (18) unaligned, 
/* see entry names dcl *1 

3 d tam bit (36) Un al ig ned , 
1* date/time contents last modified *1 

3 dtu bit (36) unaligned, 
1* datel time last used * I 

3 mode bit (5) unaligned, 
1* caller's effective access */ 

3 raw mode bit (5) unaligned, 
/ri caller I s raw "rew" modes * / 

3 pad 1 bi t (8) un al igned , 
3 records used fixed bin (18) unaligned unsigned, 

1* number of NON~ERO pages used *1 

1* Limit of information returned by hcs_$status_ *1 

2 long al ig ned, 
3 d td bit (36 r un al ig ned , 

1* date/ time 1 ast dumped * I 
3 dtem bi t (36) unal igned , 

1* date/time branch last modified */ 
3 1 v id bit (36) un al ig ned , 

1* logical volume ID */ 
3 current length fixed bin (12) unaligned unsigned, 

/* number of last page used *1 -
3 bit count fixed bin (24) unaligned unsigned, 

IT reported length in bits *1 
3 pad2 bit (8)· un al ig ned , 
3 copy switch bit (1) unaligned, 

I*-copy switch *1 
3 t pd swi tc h bit (1) un al ig ned, 

IT transparent to paging device switch */ 
3 mdir swi tch bit (1) un al igned , 

I*-is a master dir *1 
3 damaged switch bit (1) unaligned, 

1* salvager warned of possible damage * i 
3 synchronized_switch bit (1) unaligned; 

1* DM synchronized file */ 
3 pad3 bit (5) unaligned, 

Not To Be Reprod uced 10-16 F15C 



OBTAINING STATUS INFORMATION 

3 ring brackets (0:2) fixed bin (6) unaligned unsigned, 
3 uid cit (36) unaligned; 1* unique ID *1 

dcl 1 status link aligned based (status ptr) , 
2 type fixed bin (2) unaligned unsigned, 1* as above *1 
2 nnames fixed bin (16) unaligned unsigned, 
2 names rel p bit (18) unal igned , 
2 dtem bit (36) unal igned , 
2 d td bit (36) un al ig ned, 
2 pathnamelength fixed bin (17) unaligned, 

1* see-pathname * I 
2 pathname_relp bit (18) unaligned; 1* see pathname *1 

del status entry names (status branch.nnames) 
character T32) aligned based 
( po in ter (status area ptr, status branc h.n ames rel p) ) , 

1* ar ray 0 f name s ret ur n ed * I - -
status pathname character (status link.pathname length) 

al igned based - -
(pointer (status· area ptr, status link.pathname reI p» , 

1* link target-path-*I - -
status area ptr pointer, 
status:ptr pOinter; 

dcl (Link initial (0), 
Segment initial (1), 
n.; ... .A. ......... ~ ..... ..;""'.; ... .;"", I~\\ 
U.l.1 C,",,",V11 .l.U.I.,",.l.Q.I. \c:;// fixed bin internal static 

options (constant); 
1* val ues for type field-s declared above *1 

1* --- END include file status_structures.incl.p11 --- *1 

No t To Be Re prod uc ed 10-17 F15C 



OBTAINING STATUS INFORMATION 

o call hcs_$status_long (dir name, entryname, chase sw, status_ptr, 
status_area_ptr, code); -

R RETURNS E.VERYTHING hc s_$ status_ RETURNS PLUS: 

n DATE-TIME-LAST-DUMPED (SEGS ONLY) 

o CURRENT LENGTH IN 1024-WORD UNITS (SEGS, MSFS) 

o BIT COUNT (SEGS, MSFS) 

n PHYSICAL VOLUME ID OF STORAGE DEVICE ON WHICH ENTRY CURRENTLY 
RESIDES 

I COpy AND DAMAGED SWITCH VALUES 

SEE THE swi tCh_on and swi tch off COMMANDS (AG92) 

n RING BRACKETS 

n SEGMENT UNIQUE ID 

Not To Be Reproduced 10-18 F15C 



OBTAINING STATUS INFORMATION 

• OTHER ENTRY POINTS THAT RETURN STATUS TYPE INFORMATION 1 

• TO OBTAIN STATUS INFORMATION FOR ARCHIVE COMPONENTS SEE 

o ar chi v e _$1 i s t _ com po n e n t s 

• 

COVERED IN MULTICS COURSE F15D 

No t To Be Re prod uc ed 10-19 F15C 



Status: proc; 

OBTAINING STATUS INFORMATION 

!! EXAMPLE 

dcl 1 status branch aligned based (status ptr) , 
2 type-fixed bin (2) unaligned unsigned, 
2 nnames fixed bin (16) unal ig ned un signed, 
2 names rel p bit (18) unal igned , 
2 dtcm bit (36) unaligned, 
2 dtu bit (36) unaligned , 
2 mod e bit (5) un al ig ned , 
2 raw mod e bit (5) un al ig ned , 
2 padT bit (8) unaligned, 
2 records used fixed bin (18) unaligned unsigned; 

dcl status entry names (status branch.nnames) character (32) aligned 
based (poi'nter (get system free area (), status branch.names relp»; 

dcl pointer builtin; - - - - - -
dcl get system free area entry() returns( ptr); 
dcl status ptr~ptr;- -
dcl (ioa , -

com - er r ) en tr y 0 pt ion s (v ar i a b 1 e) ; 
dcl hcs-$status entry (char (*), char (*), fixed bin (1), ptr, 

- - ptr, fixed bin (35»; 
del code fixed bin (35); 
dcl i; 

allocate status branch; 
call hcs $statui (")udd)MEDclass)F15C", "s1", 0, status ptr, 

- - get_system_free_area_(), code); -
if code .... = 0 
then do; 

call com err (cod e, "Status"); 
return; - -. 

end 1* then do *1; 

call ioa ("~/s1 is a ~[link"";segment"";directory""] with .... d names:", 
- status branch.type + 1, status branch.nnames); 

do i ~ 1 to status branch~nnames: -
call ioa (" - .... a", status entry names(i»; 

end 1* do i-*I; --

end 1* Status *1; 

Not To Be Reproduced 10-20 F15C 



OBTAINING STATUS INFORMATION 

AN EXAMPLE 

r 1 5: 00 o. 148 1 9 

Status 

s1 is a directory with 2 names: 
Student 01 
s1 -

r 15: 00 o. 124 6 

No t To Be Re prod uc ed 10-21 F15C 



SECURITY 

• MULTICS HAS THREE ACCESS CONTROL MECHANISMS 

I THE ACCESS CONTROL LIST MECHANISM (ACLS) 

o THE ACCESS ISOLATION MECHANISM (AIM) 

o THE RING MECHANISM 

• hes AND OTHER SUBROUTINES ENABLE US TO MANIPULATE THESE MECHANISMS 

Not To Be Re prod ueed 10-22 F15C 



ACCESS CONTROL LISTS 

o call hcs_$add_acl_entries (dir name; entryname, aCl_ptr, 
acl:count, code); 

n ADDS OR CHANGES ("SETS") ACL ON A SEGMENT (rewn) 

o CALLER MUST ALLOCATE AND FILL IN AN ARRAY OF STRUCTURES 

I "MATCHING" ACCESS NAMES ACCEPTABLE TO THE set acl COMMAND ARE 
NOT ACCEPTABLE 

I SEE msf_manager_$acl_add FOR MULTI-SEGMENT FILES1 

o call hcs_$add_dir_acl_entries (dir name, entryname, aCl_ptr, . 
acl:count, code); 

n ADDS OR CHANGES ("SETS") ACL ON DIRECTORIES (sman) 

o SIMILAR TO hcs $add acl entries EXCEPT STRUCTURE MISSING 
ex tended mode - -

COVERED IN MULTICS COURSE F15D 

Not To Be Reproduced 10-23 F15C 



ACCESS CONTROL LISTS 

1* Beg in incl ud e fil e 
1* format: style3 *1 

acl_structures.incl.p11 BIM 3/82 */ 

declare 
declare 

declare 

declare 

acl ptr 
acl-coun t 

1 segment acl 
2 version 
2 count 
2 entries 

1 segmentacl entry 
2 access name 
2 mode -
2 ex tended mode 
2 status code 

pointer; 
fixed bin; 

aligned based (acl_ptr), 
fixed bin, 
fixed bin, 
(acl co un t refer (segment acl .count) ) 
aligned like segment_acl:entrYi 

aligned based, 
character (32) unaligned, 
bit (36) al igned , 
bit (36) al ig ned, 
fixed bin (35); 

declare· 1 segment_acl_array (acl count) aligned like 
segiiient_ acl_ entr y based (acl_ptr») 

. declare directory acl 
2 version-
2 count 
2 entries 

aligned based (acl ptr) , 
fixed bin, -
fixed bin, 
(acl count refer (directory acl.cour 
aligned like directory_acl:entry; 

declare 1 directory acl entry based, 
2 access name- character (32) unaligned, 

declare 

declare 

declare 

declare 

2 mode - bit (36) aligned, 
2 status_code fixed bin (35); 

directorY acl array Cacl count) aligned like 
-- - directory_acl_entry based (acl_ptr); 

delete acl entry 
2 access name .. 
2 status-code 

delete acl 
2 versIon 
2 count 
2 entries 

al igned based, 
character (32) unaligned, 
fix ed bin (35); 

based (acl ptr) al igned , 
fixed bin ,-
fixed bin, 
(acl count refer (delete acl.count» 
aligned like delete_acl:entry; 

(acl count) aligned like 
del"ete_acl_en·try based (acl_ptr); 

internal static fixed bin init 
options (constant); 

f 1 , 
" i I 

/* End include file acl_structures.incl.pl1 */ 

Not To Be Reproduced 10-24 F15C 



ACCESS CONTROL LISTS 

n call hcs_$delete_acl_entries (dir name, entryname, aCl_ptr, 
acl:count, code); 

n DELETES ONE OR MORE ENTRIES FROM A SPECIFIED SEGMENT'S ACL 

n USES A STRUCTURE ALLOCATED BY CALLER 

"MATCHING" ACCESS NAMES ACCEPT ABLE TO THE del ete acl COMMAND 
ARE !Q! ACCEPTABLE TO hcs_$delete_acl_entries -

n SEE msf_manager_$acl_delete FOR MULTI-SEGMENT FILES1 

n call hcs_$delete_dir acl entries (dir name, entryname, aCl_ptr, 
- - acl:count, code); 

n DELETES ONE OR MORE ENTRIES FROM A SPECIFIED DIRECTORY'~ ACL 

n OTHERWISE SIMILAR TO hcs_$delete_acl_entries 

COVERED IN MULTICS COURSE F15D 

Not To Be Re pr 0 d uc ed 10-25 F15C 



ACCESS CONTROL LISTS 

o call hcs_$list_ael (dir name., entryname, area ptr, 
area_ret_ptr, ·ael_ptr, aeI_ coun t, cod e) ; 

R RETURNS ALL OR PART OF A SEGMENT'S ACL IN A 'segment ael' STRUCTURE 
(SAME STRUCTURE AS USED~es_$add_ael_entries) -

o THERE ARE TWO DIFFERENT WAYS TO USE THIS ENTRY POINT: 

B IF ENTIRE ACL REQUIRED: 

i SET n area_ptrn NON-NULL AND EXPECT BACK nael co un tit AND 
" area_ret_ptr" 

D SUBROUTINE ALLOCATES AN ARRAY OF STRUCTURES 

I IF JUST SOME MODE ENTRIES REQUIRED: 

n SET" area_ptr" NULL 

I USER ALLOCATES AN ARRAY OF PARTIALLY FILLED IN STRUCTURES 

I PASS A PTR TO THIS ARRAY (ael_ptr) 

o MODES AND CODES WILL HAVE BEEN FILLED IN UPON RETURN 
.. 

o call hes_$list_dir_acl (dir name, entryname, area ptr, 
area_ret_ptr, ael_ptr, acI_coun t, code); 

n RETURNS ALL OR PART OF A DIRECTORY'S ACL 

I SIMILAR TO he s_$list_ael EXCEPT USES d ir ael STR UCTURE 

Not To Be Reproduced 10-26 F15C 



ACCESS CONTROL LISTS 

D call hcs_$replace_acl (dir n·ame, entryname, acl ptr, acl_count, 
no_sysdaemon_sw, code); -

n REPLACES ENTIRE ACL FOR A SEGMENT WITH A USER-SUPPLIED ONE 

n CAN (OPTIONALLY) ADD "rw" FOR *.SysDaemon.* 

n CAN BE MADE TO DELETE ENTIRE ACL (IF acl_count=O) 

n call hcs_$replace_dir_acl (dir name, entryname, acl ptr, 
acl:count, no_sysdaemon_sw, code); 

n REPLACES ENTIRE ACL FOR A DIRECTORY 

I USES SAME STRUCTURE AS hcs_$'dd_dir_acl_entries AND 
hcs_$list_dir _acl 

o CAN (OPTIONALLY) ADD" sma" FOR * .SysDaemon.* 

n CAN BE MADE TO DELETE. ENTIRE ACL 

Not To Be Reprod uced 10-27 F15C 



ACCESS CONTROL LISTS 

I RETURNS THE EFFECTIVE ACCESS MODE (rew) OF THE CALLER ON A SPECIFIED 
SEGMENT 

o TAKES INTO ACCOUNT ACL, RING BRACKETS AND CURRENT VALIDATION 
LEVEL 

n NOTE: SINCE A POINTER IS PASSED, SEGMENT MUST HAVE BEEN MADE 
KNOWN, WHICH IMPLIES USER HAS NON-NULL ACCESS 

n RETURNS IN A char(32) nonvarying Personid.Projectid.tag 

c 

n RETURNS Personid.Projectid.* 

Not To ·Be Reproduced 10-28 F15C 



WORKING, DEFAULT, AND PROCESS DIRECTORIES 

o call chang e_ wd ir _ (pa th, cod e) ; 

n CHANGES THE WORKING DIRECTORY TO THE SPECIFIED DIRECTORY 

n REQUIRES ABSOLUTE PATHNAME 

n COMMAND INTERFACE: cwd 

n RETURNS THE· ABSOLUTE PATHNAME OF THE USER'S CURRENT WORKING 
DIRECTORY IN A char(168) nonvarying 

o COMMAND INTERFACE: pwd 

No t To Be Re pr 0 d uc ed 10-29 F15C 



WORKING, DEFAULT, ~ PROCESS DIRECTORIES 

« THIS FUNCTION RETURNS THE ABSOLUTE PATHNAME OF THE USER'S PROCESS 
DIRECTORY IN A char(168)nonvarying 

o COMMAND INTERFACE: pd 

« RETURNS THE ABSOLUTE PATHNAME OF THE CALLER'S DEFAULT WORKING 
DIRECTORY IN A char(168) nonvarying 

n COMMAND INTERFACE: pdwd 

No t To Be Re prod uc ed 10-30 F15C 



WORKING, DEFAULT, AND PROCESS DIRECTORIES 

o call chang e ...... de fa ul t ...... wd ir _ (pa t h, cod e) ; 

I CHANGES THE USER'S CURRENT DEFAULT WORKING DIRECTORY TO THE 
DIRECTORY SPECIF lED 

I COMMAND INTERFACE: cdwd 

Not To Be Reproduced 10-31 F15C 



MANIPULATING PATHNAMES 

o call expand_pathname_ (pathname, dirname, entryname, code); 

~ 

n CONVERTS A RELATIVE OR ABSOLUTE PATHNAME INTO A DIRECTORY PATHNAME 
AND AN ENTRYNAME 

I COVERED IN TOPIC 5 

U call expand_pathname_$add_suffix (pathname, suffix, dirname, 
entryname, code); 

n SAME A.S expand pathname , BUT ALSO ADDS A SPECIFIED SUFFIX ONTO 
THE ENTRYNAME, -IF THAT ~UFFIX IS NOT ALREADY PRESENT 

n call expand_pathname_$component (pathname, dirname, entryname, 
componentname, code); 

n EXPANDS A :'RELATIVE OR ABSOLUTE PATHNAME INTO A DIRECTORY NAME, 
AN ARCHIVE NAME, AND AN ARCHIVE COMPONENT PORTION (OR INTO A 
DIRECTORY NAME AND ENTRYNAME PORTION IF NO COMPONENT NAME IS 
PRESENT) 

Not To Be Reproduced 10-32 F15C 



n 

n 

MANIPULATING PATHNAMES 

call. expand pathname $component add suffix (pathname, suffix, 
.... - dirname, entrYname, componentname, code); 

SAME AS expand pathname $component, BUT ALSO ADDS A SPECIFIED 
SUFFIX TO EITHER THE ENTRYNAME OR THE COMPONENT NAME, IF NOT 
ALREADY PRESENT 

V. absol ute_pathname_ 

n call absolute_pathname_ (pathname, full_pathname, code); 

11 
11 CONVERTS A RELATIVE OR ABSOLUTE PATHNAME INTO AN ABSOLUTE PATHNAME 

o call absolute_pathname_$add_suffix (pathname, suffix, 
full_pathname, code); 

I SAME AS absolute pathname , BUT ALSO ADDS A SPECIFIED SUFFIX IF 
THAT SUFFIX IS NOT ALREADY PRESENT 

Not To Be Reproduced 10-33 F15C 



MANIPULATING PATHNAMES 

• pathname_ 

o path = pathname_ (dirname, entryn ame) ; 

I GIVEN A DIRECTORY NAME AND AN ENTRY NAME, RETURNS THE PATHNAME 
OF THE ENTRY IN A char (168) 

o IF THE RESULTING PATHNAME IS >168 CHARACTERS, THE LAST 20 
CHARACTERS OF THE RESULT ARE SET TO "<PATHNAME TOO LONG>" 

• pathname_$ component 

o path = pathname_$component (dirname, entryname, component_name); 

I GIVEN A DIRECTORY NAME, AN ENTRY NAME, AND OPTIONALLY, AN ARCHIVE 
COMPONENT NAME, CONSTRUCTS A PATHNAME OR AN ARCHIVE COMPONENT 
PATHNAME 

I IF COMPONENT NAME IS NULL AND THE RESULTING PATHNAME IS >168 
CHARACTERS, THE LAST 20 CHARACTERS OF THE PATHNAME ARE SET TO 
"(PATHliAME TOO LONG)" 

o IF COMPONENT NAME IS NOT NULL AN.D THE RESULTING PATHNAME IS 
>194 CHARAC"TERS, THEN THE LAST 20 CHARACTERS OF THE 
d irname> entryname PORTION OF THE ARCHIVE PATHNAME ARE CHANGED 
TO "<PATHNAME TOO LONG>" AND THE comoonent name REMAINS IN 
THE PATHNAME - -

Not To Be Reproduced 10-34 F15C 



MANIPULATING PATHNAMES 

n call pathname_$component_check (dirname, entryname, 
component_name, path, code); 

n SAME AS pathname $component EXCEPT A STATUS CODE INDICATES 
TRUNCATION INSTEA~ OF AN INVALID PATHNAME CONTAINING "<PATHNAME 
TOO LONG)" 

• NOTE: NONE OF THE PREVIOUS SUBROUTINES CHECK TO SEE IF THE E·NTRY 
EXISTS 

Not. To Be Reproduced 10-35 F15C 



Not To Be Reprod uced 

ANIPULATING PATHNAMES 

YOU ARE NOW READY FOR WORKSHOP 
117 

10-36 
(End Of Topic) 

F15C 



TOPIC XI 

Multics Storage System Subroutines--Continued 

Naming and Moving Directory Entries •••• 
Affecting the Length of a File •••••• 
Manipulating the Address and Name Spaces 
Ex amining the Address and Name Spaces. • • 
Pathname, Pointer, Reference Name Conversion 

11-i 

. . . 

Page 

• • 11-1 
11-4 

• • 11-8 
• • 11-15 

• 11-16 

F15C 



Topic XI MORE MULTICS STORAGE SYSTEM SUBROUTINES Topic XI 

OBJECTIVES: 

Upon completion of this topic, students should be able to: 

1. Move entries from one place in the storage system to another. 

2. Change the lengths and names of entries in the storage 
system. 

3. Add and remove entries to and from the user's name space. 

Multics· XI-1 F15C 



NAMING AND MOVING DIRECTORY ENTRIES 

o call hcs_$chname_file (dir name, entryname, ·oldname, 
newname, code); 

R ADDS, DELETES, OR CHANGES NAMES OF SEGMENTS, DIRECTORIES, MSFS, 
OR LINKS (SPECIFIED BY NAME) 

o EITHER oldname OR newname·( BUT NOT BOTH) MAY BE null ("") 

o MODIFY PERMISSION ON CONTAINING DIRECTORY REQUIRED 

o call hcs_$chname_seg (seg_ptr, oldname, newname, code); 

R ADDS, DELETES, OR CHANGES NAMES OF A SEGMENT, GIVEN A POINTER TO 
IT 

I OTHERWISE. SIMILAR TO hcs_$chname_file 

Not To Be Re prod uced 11 -1 F15C 



NAMING ~ MOVING DIRECTORY ENTRIES 

o e all he s _$ fs _ move _ fi 1 e (fr om d i r, from en try, at s w , 
to_dir, to_entry, eode);-

n MOVES CONTENTS OF ONE SEGMENT TO ANOTHER SEGMENT 

I at_sw HAS 2 BITS (fixed bin(2» 

o THE APPEND BIT ON FORCES CREATION OF NEW SEGMENT IF IT 
DOESN'T EXIST 

I THE TRUNCATE BIT ON FORCES TRUNCATION OF NEW SEGMENT IF IT 
EXISTS 

n OLD (ZEROED OUT) SEGMENT REMAINS 

n RECORD LENGTH = 0 

n BIT COUNT NOT CHANGED 

n NEW SEGMENT'S BIT COUNT NOT ADJUSTED 

I ACCESS REQUIRED 

I READ AND WRITE ON OLD SEGMENT 

I READ, WRITE ON NEW SEGMENT (IF IT EXISTS) 

o APPEND ON NEW SEGMENT'S CONTAINING DIRECTORY (IF SEG MUST 
BE CREATED) 

D FOR A SHORT TIME, 2 IMAGES EXIST (POSSIBLE QUOTA PROBLEM) 

Not To Be Re prod ueed 11-2 F15C 



NAMING AND MOVING DIRECTORY ENTRIES 

n MOVES CONTENTS OF ONE SEGMENT TO ANOTHER, GIVEN POINTERS TO EACH 

R trun sw HAS ONLY ONE BIT 

No t To Be Re prod uced 11-3 F15C 



AFFECTING Ili! LENGTH OF ! FILE 

o call hcs_$truncate_file (dir_name, entryname, length, code); 

I TRUNCATES A SEGMENT TO A SPECIFIED LENGTH (IN WORDS), GIVEN ITS 
NAME AND CONTAINING DIRECTORY NAME 

i TRAILING FULL PAGES ARE DISCARDED 

I ZEROES ARE STORED (IN LAST PAGE) BEYOND SPECIFIED LENGTH 

I WRITE. PERMISSION ON TARGET REQUIRED 

I THE BIT COUNT IS NOT SET (USE EITHER hcs_$set_bc OR 
adjust_bit_count_) 

D truncate COMMAND PERFORMS BOTH hcs_$truncate_file AND 
hcs_$ set_be 

No t To Be Re prod uc ed 11-4 F15C 



AFFECTING THE LENGTH OF ! FILE 

n SETS THE BIT COUNT OF A SEGMENT TO A SPECIFIED NUMBER, GIVEN ITS 
NAME AND CONTAINING DIRECTORY 

n ALSO SETS BIT COUNT AUTHOR TO USER ID OF CALLER 

n WRITE PERMISSION ON SEGMENT REQUIRED 

n MODIFY PERMISSION ON DIRECTORY NOT REQUIRED 

n COMMAND INTERFACE: set_bit_count (sbc) 

o call adj ust_bi t_ coun t_ (dir name 1 entryname, char _sw, 
bit: co un t, cod e) ; 

I SETS THE BIT COUNT TO THE LAST NON-ZERO WORD OR BYTE 

I WORKS ON SEGMENTS AND MULTISEGMENT FILES 

I char sw DETERMINES WHETHER THE BIT COUNT IS ADJUSTED TO THE 
LAST-WORD OR CHARACTER 

I COMMAND INTERFACE: adjust_bit_count (abc) 

Not To Be Reproduced 11-5 F15C 



AFFECTING THE LENGTH OF A FILE ------........... - - - - --

• terminate file - -

o call terminate file (seg_ptr, bit_count, switches, code); 

n PERFORMS COMMON OPERATIONS OFTEN NECESSARY AFTER A PROGRAM HAS 
FINISHED USING A SEGMENT, SUCH AS 

I SETTING THE BIT COUNT 

I TRUNCATING THE SEGMENT 

I ENSURING THAT BITS IN THE LAST WORD OF THE SEGMENT AFTER THE 
BIT COUNT ARE ZERO 

I TERMINATING A NULL REFERENCE NAME 

I ENSURING THAT ALL MODIFIED PAGES OF THE SEGMENT ARE NO LONGER 
IN MAIN MEMORY 

I USES THE terminate file switches STRUCTURE 

Not To Be Re prod uced 11-6 F15C 



AFFECTING THE LENGTH OF ! FILE 

1* BEGIN INCLUDE FILE ••• terminate file.incl.pl1 *1 
1* format: style2,"inddcls,idind32 -'1 

declare 1 terminate file switches 
2 truncate 

decl are 

declare 

declare 

declare 

decl are 

decl are 

decl are 

2 set bc 
2 terminate 
2 force write 
2 delete 

TERM FILE TRUNC 
- -static options 

TERM FILE BC 
- -static options 

TERM FILE TRUNC BC 
- -static options 

TERM FILE TERM 
- -static options 

TERM FILE TRUNC BC TERM 
- -static options 

TERM FILE FORCE WRITE 
- . -static options 

TERM FILE DELETE 
- -static options 

based, 
bit (1) unal igned , 
bit (1) un al ig ned, 
bit (1) unaligned, 
bit (1) un al ig ned , 
bit (1) un al ig n ed ; 

bit 
( constant) 

bit 
(constan t) 

bit 
( constant) 

bit 
( constant) 

bit 
( constant) 

bit 
( constant) 

bit 
( constant) 

( 1) in ternal 
ini tial ("1 "b) ; 
(2) in ternal 
in it i al ("0 1 "b) ; 
(2) internal 
initial ("11 "b) ; 
(3) internal 
initial ("001"b); 
(3) in ternal 
initial ("111"b); 
(4) in ternal 
initial ("0001"b); 
(5) internal 
initial ("00001"b); 

1* END INCLUDE FILE ••• terminate_file.incl.pl1 *1 

D terminate file SHOULD NEVER BE CALLED FROM A CLEANUP HANDLER 
WITH THE truncate OR set bc SWITCHES ON (seg_ptr MAY CONTAIN AN 
INVALID SEGMENT NUMBER) -

G force write SHOULD BE USED ONLY WHEN DATA INTEGRITY IS ABSOLUTELY 
ESSENTIAL AS IT MAY INTRODUCE A SUBSTANTIAL REAL TIME DELAY IN 
EXECUTION 

Not To Be Reprod uced 11-7 F15C 



MANIPULATING THE ADDRESS ~ ~ SPACES 

• DEFINITION OF TERMS 

I ADDRESS SPACE IS 

I THE PER-PROCESS COLLECTION OF SEGMENTS THAT CAN BE DIRECTLY 
REFERENCED VIA HARDWARE 

I EXPANDING AND CONTRACTING DURING A PROCESS' LIFE 

I A COLLECTION OF "KNOWN" SEGMENTS 

I REFLECTED IN THE DSEG (AND KST) 

D MANAGED 

I AUTOMATICALLY BY THE DYNAMIC LINKER 

I IMPLICITLY, BY A CALL TO SOME SYSTEM COMMAND 

EXAMPLE: print my_dir>my_seg 

o EXPLICITLY, BY USER CALLS TO SYSTEM COMMANDS OR SUBROUTINES 
THAT MANAGE THE ADDRESS SPACE 

No t To Be Re prod uc ed 11-8 F15C 



MANIPULATING THE ADDRESS AND NAME SPACES - --

o ~ SPACE IS 

I THE PER-PROCESS COLLECTION OF "REFERENCE" NAMES (OPTIONALLY) 
ASSOCIATED WITH EACH "KNOWN" SEGMENT 

I EXPANDING AND (RARELY) CONTRACTING DURING A PROCESS' LIFE 

n REFLECTED IN THE !EFERENCE !AME !ABLE (RNT) 

D . AN IMPORTANT PART OF SEARCH RULES (INITIATED SEGMENTS LIST) 

D MANAGED 

n AUTOMATICALLY BY THE DYNAMIC LINKER 

n EXPLICITLY, BY USER CALLS TO SYSTEM COMMANDS OR SUBROUTINES 
THAT MANAGE THE NAME SPACE 

I MAKING-KNOWN INVOLVES 

I DEVELOPING A POINTER TO A SPECIFIED~EGMENT (ASSIGNING A SEGMENT 
NUMBER) ., 

o ADDING AN ENTRY TO THE KST AND DSEG 

n INITIATING (A REFERENCE NAME) INVOLVES 

I EXPANDING THE PROCESS' NAME SPACE 

i ADDING AN ENTRY TO THE RNT 

Not To Be Reprod uced 11-9 F15C 



MANIPULATING THE ADDRESS AND ~ SPACES 

o TERMINATING (A REFERENCE NAME) INVOLVES 

I CONTRACTING THE PROCESS' NAME SPACE 

I REMOVING AN ENTRY FROM THE RNT 

I MAKING-UNKNOWN INVOLVES 

I MAKING A. PREVIOUSLY VALID SEGMENT NUMBER INVALID 

I FREEING UP THAT SEGMENT NUMBER FOR FUTURE REASSIGNMENT 

No t To Be Re prod uc ed 11-10 F15C 



MANIPULATING THE ADDRESS ~ ~ SPACES 

• NOTES 

I INITIATING A REFERENCE NAME !ill TRIGGER THE MAKING-KNOWN OF A 
SEGMENT 

n TERMINATING A REFERENCE NAME MAY TRIGGER THE MAKING-UNKNOWN OF A 
SEGMENT 

n AN UNKNOWN SEGMENT CAN NOT HAVE A REFERENCE NAME 

n A KNOWN SEGMENT MAY HAVE A NULL REFERENCE NAME . 

n PRESENCE IN THE RNT IMPLIES PRESENCE IN THE DSEG (AND KST) 

Not To Be Reprod uced 11-11 F15C 



MANIPULATING THE ADDRESS AND NAME SPACES 

• TERMINATING SEGMENTS USING term 

n call term_$term_ (dir_path, entryname, code); 

R REMOVES ALL REFERENCE NAMES FROM RNT 

I REMOVES SEGMENT FROM CALLER'S ADDRESS SPACE 

I REMOVES SEGMENT FROM COMBINED LINKAGE SECTION 

I UNSNAPS LNKS IN COMBINED LINKAGE QECTION THAT CONTAIN 
REFERENCES TO THE SEGMENT 

R USER SUPPLIES dir_path AND entryname 

n COMMAND INTERFACE: terminate (tm) 

n call term_$seg_ptr (seg_ptr, code); 

R LIKE term_$term_, BUT ACCEPTS A PTR TO SEGMENT 

I COMMAND INTERFACE: terminate_segno (tms) 

D term_$refname 

• 

R LIKE term_$term_, BUT ACCEPTS A REFERENCE NAME 

I COMMAND INTERFACE: terminate refname (tmr) 

Not To Be Reproduced 11-1 2 F15C 



MANIPULATING !li[ ADDRESS ~ ~ SPACES 

o call term_$ single_refname (ref_name, code); 

I REMOVES A SINGLE REFERENCE NAME FROM RNT 

I BEHA YES LIKE term $refname (I. E. SEGMENT IS NOT MADE UNKNOWN) 
IFF REFNAME SPECIFIED WAS SEGMENT'S ONLY INITIATED REFNAME 

R COMMAND INTERFACE: terminate_single_refname (tmsr) 

o call term_$.unsnap (seg_ptr, code); 

R UNSNAPS ~INKS ONLY 

H DOESN'T TERMINATE REFERENCE NAMES OR MAKE SEGMENT UNKNOWN 

I NO COMMAND LEVEL INTERFACE 

Not To Be Reproduced 11-1 3 F15C 



MANIPULATING ~ ADDRESS AND NAME SPACES 

• initiate file 

o MAKES A SEGMENT KNOWN WITH A NULL REFERENCE NAME 

I (PREVIOUSLY DISCUSSED IN TOPIC 5) 

• terminate file - -

o TERMINATES A NULL REFERENCE NAME 

n (PREVIOUSLY DISCUSSED IN THIS TOPIC) 

No t To Be Re prod uc ed 11-14 F15C 



·EXAMINING THE ADDRESS AND NAME SPACES - --~......-.--

D call hc s_$ fs_get_path_name (seg ptr, d ir name, Idn, 
entryname, code); 

n GIVEN A POINTER TO A SEGMENT, RETURNS A PATHNAME FOR THE SEGMENT, 
WITH THE DIRECTORY AND ENTRYNAME PORTIONS SEPARATED (THE ENTRYNAME 
RETURNED IS THE PRIMARY NAME ON THE ENTRY) 

n RETURNS A SPECIFIED (I.E., FIRST, SECOND, ETC.) REFERENCE NAME 
OF A SPECIFIED SEGMENT, GIVEN A POINTER TO THE SEGMENT 

n GIVEN A REFERENCE NAME OF A SEGMENT, RETURNS A POtNTER TO THE BASE 
OF THAT SEGMENT 

No t To Be Re pr 0 d uc ed 11-15 F15C 



PATHNAME, POINTER, REFERENCE NAME CONVERSION 

No t To Be Re prod uc ed 11-16 F15C 



PATHNAME, POINTER, REFERENCE NAME CONVERSION 

II II II YOU ARE NOW RE!~Y FOR WORKSHOP II 

Not To Be Reproduced 11-17 F15C 
(End Of Topic) 



TOPIC XII 

Commands and Active Functions 

Page 

Commands ••••••••••••••••••••••••••• 12-1 
Characteristics of a Command. • • • • • • • • • 12-1 
Differences Between a Command and a Program. • 12-2 
Reporting Errors • • • • • • • • • • • • • • • • • • 12-3 
Command I/O. • • • • • • • • • • • • • • •• • •••• 12-5 
Other Subroutines Used in Writing Commands. • 12-8 
An Ex am ple Of A Comm an d. • • • • • • eo. • • 12 -1 4 

Active Functions. • • • • • • • • • • • • • • • • 12-16 
Subroutin.es Used for Writing Active Functions. • • .12-17 
Reporting Errors. • • • • • • • • • • • • • ••••• 12-19 
An Active Function Example. • • • • • • • ••••• 12-20 

Commands and Active Functions. • • • • • • • • 12-22 
An Example Of a Command/Active Function. • • ••••• 12-23 

Other Useful Subroutines • • • • • • • • • ~ • • • • • • 12-26 

12-i F15C 



Topic XII COMMANDS AND ACTIVE FUNCTIONS Topic XII 

OBJECTIVES: 

Upon completion of this toPicr students should be able to: 

1. Describe the differences between a command and an active 
function. 

2. Write a command which takes a varying number of arsumentsr 
validates themr and performs some task. 

3. Write an active function which accepts a varying number of 
argUments7 validates them, and returns an appropriate value. 

4. Use Multics subroutines to report errors encountered during 
execution of a command or active function. 

5. Use Multics subroutines to acquire and release temporarY 
workins storase. 

6. Use the Multics clock and timer functions. 

Multics XII-1 F15C 



COMMANDS 

CHARACTERISTICS OF A COMMAND 

• A COMMAND PROCEDURE IS AN OBJECT PROGRAM WHICH IS DESIG.NED TO BE 
INVOKED FROM COMMAND LEVEL 

• A COMMAND PROCEDURE MUST OPERATE WITHIN STRICT OPERATIONAL LIMITATIONS, 
AND IT IS THESE LIMITATIONS THAT MAKE IT DIFFERENT FROM OTHER PROCEDURES 

• MANY SYSTEM SUBROUTINES CALLED BY COMMAND PROCEDURES RETURN PL/I 
POINTER VALUES, THUS FORCtNG THE AUTHOR TO CODE THE COMMAND PROCEDURE 
IN PL/I 

Not To Be Reprod uced 12-1 F15C 



COMMANDS 

DIFFERENCES BETWEEN A COMMAND AND A PROGRAM 

• THE DIFFERENCES WHICH EXIST BETWEEN A COMMAND PROGRAM AND A REGULAR 
PROGRAM ARE DEFINED BY THE THREE RESTRICTIONS BELOW: 

I BECAUSE THE COMMAND IS CALLED BY THE MULTICS COMMAND PROCESSOR 
(OR A USER-DESIGNED COMMAND PROCESSOR) 

o INPUT ARGUMENTS ARE LIMITED TO Inonvarying unaligned character 
str ing Sl 

n HENCE, A COMMAND IS RESPONSIBLE FOR CONVERTING THESE STRINGS 
TO WHATEVER DATA TYPES ARE REQUIRED 

I A COMMAND CAN RECEIVE ONLY INPUT ARGUMENTS 

I THE COMMAND CANNOT CHA'NGE THE VALUE OF ANY OF THESE INPUT 
ARGUMENTS 

H THE COMMAND MUST BE PREPARED TO HANDLE AN ARBITRARY NUMBER OF 
ARGUMENTS - THERE ARE NO PARAMETER DECLARATIONS ALLOWED ,-

I IF THE COMMAND IS PASSED TOO MANY ARGUMENTS, IT MUST COMPLAIN 
AND ABORT (CONSIDER HOW THE SYSTEM HANDLES "pwd a") 

o OTHER RULES FOR MULTICS SYSTEM COMMANDS 

I USE com err_ TO REPORT ERRORS 

11 
.I 

un "1' IT T In 
11 V r- l.. I ~ .l. I V 

No t To Be Re prod uc ed 12-2 

1\ IT''' nnu 

F15C 



COMMANDS 

REPORTING ERRORS 

• WHEN A COMMAND PROCEDURE DETECTS SOME ERROR, IT IS RESPONSIBLE FOR 
REPORTING IT TO THE USER IN A STANDARD FASHION: 

I com err 

a THE PRINCIPAL SUBROUTINE USED BY COMMANDS FOR PRINTING ERROR 
MESSAGES 

I IT IS GENERALLY CALLED WITH A NONZERO STATUS CODE TO REPORT 
SOMETHING UNUSUAL 

n IT MAY ALSO BE CALLED· WITH A CODE OF 0 TO REPORT AN ERROR NOT 
ASSOCIATED WITH A STATUS CODE 

n declare com_err_ entryoptions( variable)'; 

call com err (code, caller, control string, argl, ••• , 
- - argN): -- . 

n control string IS AN OPTIONAL ioa SUBROUTINE CONTROL STRING 
(INPUT)- -

n arg1, ••• , argN ARE ioa SUBROUTINE ARGUMENTS TO 'BE 
SUBSTITUTED INTO-THE contrOl_string (INPUT) 

Not To Be Reprod uced 12-3 F15C 



COMMANDS 

REPORTING ERRORS 

o THE ERROR MESSAGE PREPARED BY com_err HAS THE FORM: 

n caller: system_message user_message 

o FOR SYSTEM COMMANDS caller IS THE NAME OF THE PROGRAM 
DETECTING THE ERROR 

I EXAMPLE: (IF code = error_table_$wrong_no_of_args AND nargs 
= 5) 

o PL/I STATEMENT: 

call com err (code, n sample command", 
""'/You furnished .... d args.", nargs); 

I RESULT: 

sample command: Wrong number of arguments supplied. 
You furnished 5 args. 

n IF CODE = 0 ONLY A user_message IS PRINTED 

Not To Be Reprod uced 12-4 F15C 



COMMANDS 

COMMAND I/O 

• IN WRITING COMMAND PROCEDURES NO LANGUAGE LEVEL I/O STATEMENTS ARE 
EVER USED 

• STANDARD INPUT/OUTPUT IS DONE USING THE FOLLOWING SUBROUTINES: 

I ioa 

o USED FOR FORMATTING A CHARACTER STRING 

n iox 

o THE SUBROUTINE-LEVEL INTERFACE ro THE MULTICS I/O SYSTEM 

D THE STANDARD SYSTEM PROCEDURE INVOKED TO ASK THE USER A QUESTION 
AND OBTAIN AN ANSWER 

°1 IT PRINTS THE QUESTION ON THE USER'S TERMINAL, AND THEN READS 
THE 'user_i~put' SWITCH TO OBTAIN THE ANSWER 

I declare command_query_ entry options( variable); 

call command query (ptr, answer, caller, control string, 
- - argl, ••• , arg!i>; -

I ptr POINTS TO THE query info STRUCTURE DESCRIBED ON THE 
FOLLOWING PAGE (INPUT) -

Not To Be Re prod uced 12-5 F15C 



COMMANDS 

COMMAND 1/0 

1* BEGIN INCLUDE FILE query info.incl.p11 TAC June 1, 1973 *1 
1* Renamed to query info.inol.p11 

and cp escape control added, 08/10/78 WOS *1 
1* version number changed to ~~ 08/10/78 WOS *1 
1* Version 5 adds explanation (ptr len) 05/08/81 S. Herbst */ 
1* Version 6 adds literal sw,-prompt after explanation switch 

- - 12715/82 S. Herbst */ 

dcl 1 query info aligned, 
1* arg lIIlen t struc tur e for command_ query_ call * / 

2 version fixed bin, 
1* version of this structure - must be set, see below */ 

2 s"wi tches al igned , 
1* various bit switch values *1 

3 ye s or no sw bit (1) un al ig ned in it ("0" b) , 
/Vi not a yes-or-no que stion, by defaul t * I 

3" suppress name sw bit (1) unaligned init ("O"b), 
1* do not suppr ess command nam"e * / 

3 cp escape control bit (2) unaligned init ("OO"b), 
7* obey-static defaul t val ue * / 
1* "01" -> invalid, "10" -> don't allow, "11" -> allow */ 

3 suppress_spacing bit (1) unaligned init ("O"b), -
/* whether to print extra spacing *1 

3 literal sw bit (1) un"aligned init ("O"b), 
1* ON-:> do not strip leading/trailing white space */ 

3 prompt after explanation bit (1) unaligned init ("O"b), 
. /* ON :> repeat question after explanation */ 

3 padd-ing bit (29) unaligned init (""b), 
I * pad sit 0 ut to t wo rd * / 

2 status code fixed bin (35) init (0), 
1* query not prompted by any error, ay default *1 

2 query code fixed bin (35) init (0), 
/* currently has no meaning */ 

/* Limit of data defined for version 2 *1 

2 question iocbp ptr init (null (», 
1* IO switch to write question */ 

2 answer iocbp ptr init (null (», 
1* Ie swi tch to read answer *1 

2 repeat time fixed bin (71) init (0), 
1* repeat question every N seconds if no answer */ 
1* mini~um of 30 seconds required for repeat *1 
1* otherwise, no repeat will occur */ 

/* Limit of data. defined for version ~ */ 

2 explanation ptr ptr init (null (», 
/* explanation of question to be printed if */ 

2 explanation len fixed bin (21) init (0); 
/* user answers "?" (disabled if ptr: null or len:O) */ 

Not To Be Reproduced 12-6 F15C 



dcl 

dcl 

dcl 

dcl 

COMMANDS· 

COMMAND IIO 

query_info_ version_3 fixed bin int static 
options ( constant) init 

query_info_ version 4 fixed bin int static 
options (constan t) init 

query_info_ version_5 fixed bin int static 
options ( constant) init 

query_info_ ver sion 6 fixed bin int static 
options ( constant) init 

1* the current version number *1 

1* END INCLUDE FILE query_info.incl.p11 *1 

No t To Be Re prod uc ed 12-7 

(3) ; 

(4 ) ; 

(5 ) ; 

( 6 ) ; 

F15C 



COMMANDS 

OTHER SUBROUTINES USED l! WRITING COMMANDS 

o USED TO MANIPULATE THE COMMAND ENVIRONMENT IN FUNCTIONS LIKE: 

n SETTING THE READY MESSAGE 

I CALLING THE COMMAND PROCESSOR 

n CHANGING THE COMMAND PROCESSOR 

n EXAMINING STACK FRAMES 

No t To Be Re prod uc ed 12-8 F15C 



COMMANDS 

OTHER SUBROUTINES ~ IN WRITING COMMANDS 

• THE FOLLOWING ENTRIES ARE USED TO OBTAIN THE ARGUMENTS PASSED TO 
THE COMMAND 

R USED TO DETERMINE THE NUMBER OF ARGUMENTS SUPPLIED WHEN THE 
PROCEDURE WAS CALLED 

I RETURNS A POINTER TO AND THE LENGTH OF ONE OF THE ARGUMENTS 

R arg no IS AN INTEGER SPECIFYING THE NUMBER OF THE DESIRED 
ARGUMENT (INPUT) 

o NOTE THAT A BASED VARIABLE IS NORMALLY USED FOR INPUT ARGUMENTS 
AND IS DECLARED AS FOLLOWS: 

n declare argument char( arg_len) based( arg_ptr); 

Not To Be Reproduced 12-9 F15C 



COMMANDS 

OTHER SUBROUTINES ~ IN WRITING COMMANDS 

• EXAMPLES 

sample_command: proc; 

dcl cu $arg count entry(fixed bin, fixed bin(35»; . 
dcl narg s fIxed bin; 
dcl error table $wrong no of args fixed bin(35) external; 
dcl com_err_ entry o·ptions( variable); 
dcl code fixed bin( 35); 

call cu $ arg coun t (narg s, code); 
if nargs A: "0 
then do; 

call com err (error table $wrong no of args, 
- - n sam pI e comiii an d ") · - - -- , return; 

end 1* then do */; 

sample_command2: proc; 

del cu $arg ptr entry (fixed bin ,ptr ,fixed bin(21) ,~ixed bin(35»; 
del argument char-(arg len) based(arg ptr); 
del arg len fixed binT21); -
del arg:ptr ptr; 
dcl code fixed bin(35); 
dcl (com_err _, ioa_) entry o-ptions( variable) ; 

call cu $arg ptr (1, arg_ptr, arg_len, code); 
if code-A: 0-
then do; 

call com err (code, ;1sample_command2!!), 
return; - -

end /* then do */; 
call ioa_(IIFirst argument is Aa",argument); 

Not To Be Reproduced 12-10 F15C 



COMMANDS 

OTHER SUBROUTINES USED IN WRITING COMMANDS -- ----- - - ---- ----

• THE FOLLOWING SUBROUTINES ARE USED FOR ARGUMENT CONVERSION: 

o call expand_pathname_ (pathname, dirname, entryname, code); 

U PREVIOUSLY DISCUSSED IN TOPICS 5 AND 10 

n NOTE THAT SOME CRITICAL MULTICS SUBROUTINES REQUIRE A PATHNAME 
ARGUMENT SPECIFIED IN TWO PORTIONS, THE DIRECTORY PATHNAME 
AND THE ENTRYNAME, AND THIS IS ONE OF THE MAIN REASONS 
expand_pathname_ IS AVAILABLE 

n THIS FUNCTION CONVERTS A VIRTUAL POINTER TO A POINTER VALUE 
(A VIRTUAL POINTER IS A CHARACTER-STRING REPRESENTATION OF A 
P9INTER VALUE, SUCH AS "foo$bar" OR ")udd)PROJ)PERS)seg: 1200") 

Not To Be Reproduced 12-11 F15C 



COMMANDS 

OTHER SUBROUTINES ~ IN WRITING COMMANDS 

o OTHER CONVERSION SUBROUTINES AND FUNCTIONS 

D cv bin -
D cv bin..;..$dec 

0 cv bin $oct - -
0 cv dec -' cv dec check - -
0 cv oct_, cv oct check -
0 cv hex -' cv hex check -
0 cv float -
n cv float double u 

0 cv_ptr _ $ terminate 

n cv_entry_ 

n cv mode -
0 cv dir mode -
0 cv userid - -
0 cv error 

0 cv error $name -

Not To Be Reproduced 12-12 F15C 



COMMANDS 

OTHER SUBROUTINES USED IN WRITING COMMANDS ----------

This Page Intentionally left Blank 

Not To Be Reproduced 12-13 F15C 



COMMANDS 

AN EXAMPLE OF A COMMAND 

how_long: proc; 

dcl cu $arg count entry (fixed bin, fixed bin (35»; 
dcl cU-$arg-ptr entry (fixed bin, ptr, fixed bin(21), fixed bin (35»; 
dcl expand pathname entry (char (*), char (*), char (*), fixed bin (35»; 
dcl hcs_$status_min1 entry (char( *), char( *), fixed bin( 1), fixed bin(2), 

fixed bin(24), fixed bin(35»; 
dcl long bit (1) init ("O"b); 
dcl arg char (argl) based (argp); 
dcl (i, narg s) fix ed bin; 
dcl argl fixed bin(21); 
dcl arg p ptr ; 
dcl type fix ed bin (2); 
dcl code fixed bin (35); 
dcl dir char (168); 
dcl entry char (32); 
dcl (com err , 

ioa -) - entry 0 ptions (var iable) ; 
dcl ME - char (8) static init ("how long") options (constant); 
dcl bc fixed bin (24); -
dcl null builtin; 
dcl error_table_$wrong_no_of_args fixed bin(35) external; 

1* chec k number 0 f arg s *-1 

call cu $arg count (nargs, code); 
if (naris < T) I (nargs> 2) 
then do; 

call com err (error table $wrong no of args, ME); 
return; - - - - - - -

end 1* then do *1; 

1* evaluate args *1 

do i.= 1 to nargs; 
call cu_$ arg_ptr (i, arg p, argl, cod e) ; 

if i = 1 
then do; 

call expand pathname (arg, dir, entry, code); 
if code A= 0 -
then do; 

call com err (code, ME); 
return; 

end 1* then do */j 
call hcs $ status minf (dir, entry, 1, type, bc, code); 
if code ~= 0 -
then do; 

call com err (code, ME); 
return; - -

end 1* then do *1; 

Not To Be Reproduced 12-14 F15C 



COMMANDS 

AN EXAMPLE OF A COMMAND 

bc = bc/36; 
end 1* then do */j 

el se do; 
1* second arg must be -long or -lg *1 
if (arg = "-long") I (arg = "_lg") 
then long = "1"b; 
el se do; 

call com_err_ (0, ME, "Control arg must be -long or -lg" 
return; 

end 1* else do */j 
end 1* else do */j 

end 1* do i *1; 

call ioa_("~[Number of words for Aa>A a is A;A2sA]Ai", long, dir, entry, bc) 

end 1* how_long *1; 

r 1 4: 03 o. 197 1 8 

how long 
how-long: Wrong number of arguments supplied. 
r 14: 04 o. 183 11 

how_long how_long 
~~,.. oou 
r 1 4: 04 0 .. 105 0 

how long how long .p11 -Ig 
Number of words for >user dir dir>MED>Jackson>15c>how long.pl1 is 544 
r 1 4: 04 0.088 0 - - -

how long how long .p11 -short. 
how-long: Control arg must be -long or -lg 
r fJf: 04 O. 143 1 

Not To Be Reprod uced 12-15 F15C 



ACTIVE FUNCTIONS 

• AN ACTIVE FUNCTION RETURNS A CHAR VARYING VALUE TO THE COMMAND 
PROCESSOR FOR SUBSTITUTION INTO THE COMMAND LINE 

n IT IS CALLED BY THE COMMAND PROCESSOR FOR THE PURPOSE OF RETURNING 
A VALUE !Q. THE COMMAND PROCESSOR 

n THE COMMAND PROCESSOR MUST PREPARE A LOCATION FOR THE RETURNED 
VALUE 

I THE ACTIVE FUNCTION MUST KNOW THIS LOCATION IN ORDER TO RETURN A 
VALUE 

• AN ACTIVE FUNCTION DIFFERS FROM A STANDARD PROCEDURE IN THE THREE 
WAYS SPECIFIED FOR COMMANDS (TAKES ONLY CHARACTER-STRING ARGUMENTS, 
HANDLES ONLY INPUT ARGUMENTS, TAKES A VARYING NUMBER OF ARGUMENTS) 
AND HAS ONE ADDITIONAL DIFFERENCE: 

n AN ACTIVE FUNCTION MUST RETURN A VARYING CHARACTER-STRING ARGUMENT 
TO THE COMMAND PROCESSOR IN· A LOCATION SPECIFIED BY THE COMMAND 
PROCESSOR 

• A COMMAND PROCEDURE CAN BE WRITTEN TO IMPLEMENT EITHER A COMMAND OR 
AN ACTIVE FUNCTION 

• SUCH A PROCEDURE'S EXECUTION DEPENDS ON THE MANNER IN WHICH IT WAS 
INVOKED 

Not To Be Reproduced 12-16 F15C 



ACTIVE FUNCTIONS 

SUBROUTINES USED FOR WRITING ACTIVE FUNCTIONS ---------- -- - --------- _ ......... -- - ................... ~..;.. 

• THE SUBROUTINES USED FOR WRITING AN ACTIVE FUNCTION MUST BE ABLE TO 
DETERMINE TWO VERY IMPORTANT THINGS: 

R THE LOCATION INTO WHICH IT SHOULD PLACE ITS RETURN VALUE 

n WHETHER OR NOT IT WAS INVOKED AS A ACTIVE FUNCTION 

n RETURNS THE NUMBER OF INPUT ARGUMENTS 

n IF THE CALLER WAS NOT INVOKED AS AN ACTIVE FUNCTION, A NON-ZERO 
STATUS CODE IS RETURNED (error_table_$not_act_fcn) 

n OPERATES LIKE cu $arg ptr EXCEPT THAT IT RETURNS A NULL arg_ptr 
IF IT WAS NOT CALLED AS AN ACTIVE FUNCTION 

n USUALLY USED IN WRITING PROGRAMS THAT CAN ONLY BE CALLED AS 
ACTIVE FUNCTIONS 

Not To Be Reproduced 12-17 F15C 



ACTIVE FUNCTIONS 

SUBROUTINES ~ EQ! WRITING ACTIVE FUNCTIONS 

o call cu_$af_return_arg (nargs, rtn_string_ptr, max_length, 
code) ; 

n PERFORMS THE JOB OF cU$af_arg_count AND 

o MAKES THE ACTIVE FUNCTION'S RETURN ARGUMENT AVAILABLE 

.~-.'" n Crtn striggJ-ptb IS A POINTER TO THE VARYING STR ING RETUR N ARGUMENT 
O~~FUNCTION (OUTPUT) 

.-==----
O! length IS THE MAXIMUM LENGTH OF THE VARYING STRING POINTED 

_string_ptr (OUTPUT) 

o IF THE CALLER WAS NOT INVOKED AS AN ACTIVE FUNCTION, A NON-ZERO 
STATUS CODE IS RETURNED (error_table_$not_act_fcn) 

n NOTE THAT THE ACTIVE FUNCTION DECLARES ITS RETURN ARGUMENT AS 
FOLLOWS: 

declare return string char (max length) varying 
- based (rtn_string_ptr); 

Not To Be Reprod uced 12-18 F15C 



ACTIVE FUNCTIONS 

REPORTING ERRORS 

• AN ACTIVE FUNCTION USES A DIFFERENT SUBROUTINE FOR REPORTING ERRORS 
TO THE USER: 

D CALLED BY AN ACTIVE FUNCTION WHEN IT DETECTS AN ERROR 

n FORMATS AN ERROR MESSAGE MUCH LIKE com err AND THEN SIGNALS 
THE 'active_function_error' CONDITION - -

n USAGE 

I declare active_fnc_err_ entry options( variable); 

call active fnc err - - - (code, caller, control string, argl, 
••• , arg,!p; -

I THE USAGE IS SIMILAR IN ALL RESPECTS TO com err 

Not To Be Reproduced 12-19 F15C 



.CTIVE FUNCTIONS 

AN ACTIVE FUNCTION EXAMPLE 

me: proe; 

del 
del 
dcl 
del 
dcl 
del 
del 
dcl 

eu_$af_return_arg 
nargs 

entry (fixed bin, ptr, fixed bin(21), fixed 
fixed bin; 

del 
del 
del 
del 

return arg 
rslength 
rsptr 
code 
user info 

char (rslength) varying based (rsptr); 
fixed bin (21); 
ptr; 
fixed bin (35); 
entry (char (*), char (*), char (*»; 

(ae tive fnc err , 
com err) - - entry options (variable); 
error table $wrong no of args fixed bin (35) external; 
per son id - char (22); 
proj ect id char (9); 
acct - char (32); 

1* DETERMINE IF INVOKED AS ACTIVE FUNCTION *1 

call cu $af return arg (nargs, rsptr, rslength, code); 
if code-A = 0 -
then do; 

call com err ( cod e "me")· - - , , 
return; 

end 1* then do *1; 

if nargs A= 0 
then do; 

call active fnc err (error table $wrong no of args,ftmeft ); 
return; - - - - - - - -

end 1* then do *1; 

1* SO FAR, SO GOOD - GET PERSON ID *1 

call user info (person id, project_td, acct); 
return_ari = person_id;-

end 1* me ~/; 

Not To Be Reproduced 12-20 F15C 

bin (35); 



ACTIVE FUNCTIONS 

AN ACTIVE FUNCTION EXAMPLE 

r 15:19 0.143 0 

me 
me: This active function cannot be invoked as a command. 
r 1 5: 1 9 O. 1 97 5 

who (me] 
J ac kson .MED 

r 15:20 0.524 5 

who [me Jac kson] 
me: Wrong number of arguments supplied. 

Error: Bad call to active function me 
r 15:20 0.206 9 level 2 

Not To Be Reproduced 12-21 F15C 



COMMANDS AND ACTIVE FUNCTIONS 

• THE SUBROUTINES DISCUSSED PREVIOUSLY ARE USED IN WRITING PROCEDURES 
THAT MAY BE CALLED AS BOTH COMMANDS AND ACTIVE FUNCTIONS 

• THE FOLLOWING SUMMARIZES THE IDIOSYNCRASIES TO BE CONSIDERED IN 
CHOOSING APPROPRIATE SUBROUTINES 

ACT. 
cu ENTRY COMMAND FUNC. COMMENTS 

a rg_coun t X X IF INVOKED AS AN ACTIVE FUNCTION 
COUNT INCLUDES RETURN ARGUMENT 

a rg_ptr X X 

a f_arg_count X X COUNT EQUALS INPUT ARGUMENTS ONLY 

-

a f_arg_ptr X NULL arg_ptr IF INVOKED AS A COMMAND 

a f_return_arg X X COUNT EQUALS IN PUT ARGUMENTS ONLY 
NULL rtn_ptr IF INVOKED AS A COMMAN D 

• IT IS ALWAYS POSSIBLE TO WRITE ANY COMMAND OR ACTIVE FUNCTION USING 
ONLY THE TWO ENTRY POINTS, cU_$af_return_arg AND cu_$arg_ptr 

No t To Be Re prod uc ed 12-22 F15C 



COMMANDS AND- ACTIVE FUNCTIONS 

AN EXAMPLE OF A COMMAND/ACTIVE FUNCTION 

how_long_both: proc; 

dcl expand pathname entry (char (*), char (*), char (*), fixed bin (35»; 
del eu $arg ptr entry (fixed bin, ptr, fixed bin(21), fixed bin(35»j 
del cu-$af return arg entry(fixed bin, ptr, fixed bin(21), fixed bin (35): 
dcl aetive-fnc err entry options (variable); 
del ncs $status minf entry (char(*), char(*), fixed bin(1), fixed bin(2), 

- - fixed bin(24), fixed bin(35»; 
dcl long bit (1) init ("O"b); 
dcl arg char (argl) based (argp); 
dcl complain entry variable options (variable); 
dcl af bit (1) init ("O"b); 
del return string char (rslength) var based (rsptr); 
dcl rslength fixed bin (21); 
dcl r sptr ptr; 
dcl (i, nargs) fixed bin; 
dcl argl fixed bin (21); 
del arg p ptr; 
dcl type fix ed bin (2); 
dcl code fix ed bin (35); 
d~l dir char (168); 
dcl entry char (32); 
del (com err, ioa ) entry options (variable); 
del ME- char-( 13) static ini t ("how long both") options (constant); 
del be fixed bin (24); --
dcl error_table_$wrong_no_of_args fixed bin(35) external; 

1* check number of args *1 

call cU_$af_return_arg (nargs, rsptr, rslength, code); 

1* command or active function invocation??? *1 

if code = 0 
then do; 

af = "1 lib; 
complain = active fnc err ; 

end 1* then do *1- - - -. ' . else complaln = com_err_; 

if (narg s < 1) : ( narg s > 2) 
then do; 

call complain (error table $wrong no of arg s, ME); 
ret ur n ; - - - - -

end 1* then do *1; 

1* evaluate args *1 

do i = 1 to nargs; 
call cu_$ arg_ptr (i, arg p, argl, code); 

No t To Be Re prod uc ed 12-23 F15C 



COMMANDS AND ACTIVE FUNCTIONS 

AN EXAMPLE OF ! COMMAND/ACTIVE FUNCTION 

1* relative pathname argument *1 

if i = 1 
then do; 

call expand pathname (arg, dir, entry, code); 
if code A= 0 -
then do; 

call complain (code, ME); 
return; 

end 1* then do *1; 

call hcs $ status minf (dir, entry, 1, type, bc, code); 
i f cod e '"W = 0 -
then do; 

call complain (code, ME); 
return; 

end 1* the do */j 
bc = bc/36; 

end 1* then do *1; 
el se do; 

1* second arg must be -long or ~lg *1 

if (arg = "-long") I (arg = "-lg") 
then long = "1"b; 
el se do; 

call complain (0, ME, "Control arg must be -long or -Ig"); 
return; 

end 1* else do *1; 
end 1* el se do * I; 

end 1* do i *1; 

if af 
then do; 

return string :: 
return; 

end 1* then do *1; 

call i 0 a _ ( "A [ N um be r 0 f wo r d s r 0 r A a> A a i SA; .... 2 SA] A i tI, 1 0 n g, d i r, en try, b c) ; 

end 1* how_long_both *1; 

Not To Be Reproduced 12-24 F15C 



COMMANDS AND ACTIVE FUNCTIONS 

AN EXAMPLE OF A COMMAND/ACTIVE FUNCTION 

r 1 5 : 59 o. 284 7 

how long both 
how-Iong-both: Wrong number of arguments supplied. 
r 15: 59 O. 152 11 

ho w long both foo -lg 
how-Iong-both: Entry not found. 
r 10': 00 O. 11 8 a 
how long both how_long_both 
776- -
r 1 6 : 00 o. 076 a 
how long both how long both -long 
Number of words tor >user dir dir>MED>Jackson>f15c>how long_both is 776 
r 16:01 0.098 a - - -

octal [how long both how_lang_both] 
1410 --. 
r 1 6 : 01 O. 1 96 6 

octal (how long both] 
how_long_both: Wrong number of arguments supplied. 

Error: Bad call to ac ti v e 
r 16:01 0.169 7 level 2 

Not To Be Reproduced 12-25 F15C 



OTHER USEFUL SUBROUTINES 

• user info - -

o RETURNS INFORMATION CONCERNING A USER'S LOGIN SESSION (ALL ARGUMENTS 
ARE OUTPUT ARGUMENTS) 

I OTHER ENTRY POINTS: 

I call user in fo _$ ab sen tee_ que ue (que ue) ; -

H call user in fo_$ absen tee_request_ id ( request_id) ; -
a call user in fo_$ ab sin ( pa th) ; -
I call user in fo_$ ab so ut ( path) ; -
I call user info_$ attr ibutes (attr); -
I call user in fO_$ homed ir ( hd ir) ; -
n call user info_$limi ts (mlim, clim, cdate, cr f, shlim, msp, - csp, shsp); 

I call user_info_$load_ctl info (group, stby, preempt_time, 
weight) ; 

I call user_info_$login_arg_count (count, max length, 
total_length) ; 

a call user_info_$login_arg_ptr (arg no, arg_ptr, al'°g_len, 
code) ; 

Not To Be Reprod uced 12-26 F15C 



OTHER USEFUL SUBROUTINES 

n call user ... info_$login_data (person id, project id, acct, 
anon, stby, weight~ time login, 
login_word); -

n call user_info_$responder (resp); 

I call user_info_$terminal_data (id code, type, channel, 
1 ine_ type, c harg e_ type) ; 

n call user_info_$usage_data (nproc, old cpu, time login, 
time create, old mem~ 
old_io_cps); -

Not To Be Reproduced 12-21 F15C 



OTHER USEFUL SUBROUTINES 

• value 

D READS AND MAINTAINS VALUE SEGMENTS CONTAINING NAME-VALUE PAIRS 
ACROSS PROCESS BOUNDARIES 

n CREATING A VALUE SEGMENT 

I CREATE A SEGMENT WITH A SUFFIX OF .value 

o call value_$init_seg (seg ptr, seg type, remote_area_ptr, 
seg:si ze, code); 

n DEFAULT VALUE SEGMENT IS [home_dir]>[user_name] .value 

o call value_$set_path (path, create_sw, code); 

I call val ue_$ get_pa th (pa th, cod e) ; 

I CREATING AND MAINTAINING NAME-VALUE PAIRS 

I call value_$set (seg ptr, switches, name, new_value, 
old: val ue, cod e) ; 

I call value_$test_and set (seg ptr, switches, name, new_value, 
old:val ue, code); 

n call value_$get (seg_ptr, switches, name, value_arg, code); 

n call value $list (set--ptr, switches,match info ptr, area ptr, 
- val ue_list_in fo_ptr, eoae); - -

I call value_$defined (seg_ptr, switches, name, code); 

I call val ue_$delete (seg_ptr , switches, name, code); 

Not To Be Reproduced 12-28 F15C 



OTHER USEFUL SUBROUTINES 

II YOU ARE NOW READY FOR WORKSHOP II 
II #9 II 

Not To Be Reprod uced 12-29 F15C 
(End Of Topic) 



APPENDIX W 

Workshops 

Page 

Workshop Une W-1 
Workshop Two . \. W-3 
Workshop 1bree W-4 
Workshop Four. • W-6 
Workshop l"i v e. W-7 
Workshop ::iix • W-8 
Workshop Seven W-10 
Workshop t:ignt W-12 
Workshop Nine. W-13 

W-i F15C 



WORKSHOP ONE 

Controlled Variables and 'isub' Defining 

1. Write a procedure called ~ allocate array.p11} that will ask the 
user for the size of one dfiiiensiona! fixed bln (17) arrays he/she 
wishes to allocate. For example, if the user provides the number 
7, your program is to allocate an arra.1 with .Lfixed bin (17J 
elements. 

The program should 1000.,. repeatedly asking for the size of the 
next array, ",allocating that 9rray and then ini tializing enl elements 
of that array to the current allocation Level ( i.e., the fir st 
array would be initialized to 1, the second array would be inItialized 
to 2, etc.). Use the 'allocation' hJ1j 1 tiR_to determine the depth. 

The program should continue allocating and initializing until the 
user responds with zero (0). Again using the 'allocation' builtin 
to determine the allocation depth, it should then free all the 
allocated arrays, printing each array just before freeing it. 

Test your program asking for arrays of size 1, 2, 3, and 4. 
Observe ·the order in which the arrays are freed. 

Not To Be Reproduced W-1 F15C 



WORKSHOP ONE 

2 • Th e s egm en t > ud d> M E Dc 1 as s> F 15 C > s 1 > pr in tit. for t ran con t a ins a fo r t ran 
subroutine that accepts a 2 by 3 array as an argument and prints 
it out a row at a time. 

Copy the segment, print it, compile it and write a PL/I procedure 
called 'call fortran .pl1' declaring a 2 by 3 array and the 3 by 2 
transpose of-this array (use isubs). The program should: 

Note: 

a. Initialize the 2 by 3 array as follows: 

1 
4 

2 
5 

3 
6 

b. Call the fortran subroutine, passing to it the 
untransposed array. 

c. Call the fortran subroutine, passing to it the 
transposed array. 

1) 'printit' must be declared an entry, and since it will be 
passed both a 2.by 3 and a j by 2 array, its descriptor must use the 
star convention (dim(*,*)). 

2) The ~~ of the array shGuld be declared fixed bin (35) 
since that is~e data type for fortran integers. 

3) The final compilation of the PL/I program will still have a 
"by value" warning since 'isub' defined variables are always passed by 
value. Recall this means that the called procedure will not be able 
to change the variable passed to it. How can this warning be avoided? 
That is, how could the array be passed by reference? 

4) When you compile the PL/I program wi th the t~ble option (the 
defaul t) J you will receive a warning that the transposed array will 
not appear in the symbol table. 

Not To Be Reproduced W-2 F15C 



WORKSHOP TWO 

Based Variables and Areas 

This workshop has three parts. Be sure you understand the mechanism 
used in parts 1 and 2 (based variables), since they form the basis for 
workshop three and the remainder of this course. 

1. The following declarations are 
>udd>MEDclass>F15C>s1>include>w2.incl.p11. 

1* Begin w2.incl.pl1 *1 

dcl string 
dcl .1 string parts 

2 length 
2 characters 

dcl number 
dcl 1 float num 

2 sign 
2 ex ponent 
2 m sign 
2 mantissa 

char (10) varying; 
based (addr (string», 
fixed bin (35), 
char (10); 

flo a t bin a r y ; 
based (addr (number», 
b i 1; (1) un al , 
bit (7) un al , 
bit (1) un al , 
bit (27) un al; 

1* End w2.incl.p11 *1 

in the segmen t 

Write a short program that~nters data into the two BASE variables "
,"-string and number) and then prints out tRe values in the BASED 
(overlay) variables in order to see exactly how 'char varxing' and 
, flo at bin ar .1' . number s are s tor ed • ( fJ s e QU t data.) -

2. Change your working directory to >udd>MEDclass>F15C>s1. Print the 
segment get message.p11. Execute the corresponding object segment 
and follow the directions given in the message. 

3. In your working directory create an area named AREA (all caps) 
using the create area command. In the segmen t, 
>udd)MEDclass>F15C>s1>fill area.pl1, is a program that allocates 2 
numbers in that area. print the program and make sure you understand 
what it is doing. Execute the object segment. Use the dump segment 
(ds) command to look at your AREA segment. Notice how the-pointer 
values printed by the program correspond to locations in the segment. 
Also notice the extra area manager information in the segment. 

Not To Be Reproduced W-3 F15C 



WORKSHOP THREE 

Gaining Direct Access to a Segment 

The segment, >udd>MEDcl ass>F 15C>s 1 >invoices , contains invoices for a 
number of diff'erent vendors •. At the base of the segment is a header .. 
The remainder of the segment is a series of linked structures, each 
one representing a single invoice for a particular vendor. The declaration 
to be used for the linked structure is: 

dcl 1 invoice based (p), 
2 n ex t bit (1 8) , 
2 invoice number dec (3), 
2 vendor number dec (3), 
2 charge- fixed dec (8,2); 

The structure member, invoice.next, is a non-standard offset (word 
offset from the base of the segment) indicating the location of the 
next structure in the linked list. 

Write a program called ~invoices ePl0). Your program should prompt 
the user for a vendor number (3 a1g1ts) and .. then print out all invoice 
numbers and the corresponding charges belonging to that vendor~ 

Actually, the segment does not contain just one linked list. There 
are, in fact, 10 linked lists below the header. The header is used to 
determine which list is to be searched for that particular vendor. 
The declaration to be used for the header is: 

dcl 1 invoice file header based (seg ptr) , 
2 number of lnvoices fixed bin,-
2 hash_table (0:9) bit (18) unal; 

The hash table is made up of 10 non-standard offsets. Each offset 
points to the start of one of the linked lists of invoice structures. 
Which linked list a particular vendor is found in is determined by the 
last digit in the vendor number. For example, invoices for vendor 351.-
would be in the list pointed to by 'hash_table ~ 

Thus, en a user ives ou a vend9r number ¥,,?~I:~!J,,t~t_,_ over*&] ~ 
e tr _ at th ase 0 he se men an get the offset~_ orCjle-

,...start 9a' t e appropriate 1n e 1S. Then you must_ get a J2oinj~e'r- to 
the start of the linked 11st and _move the invoice structure ,down the 
Tlst checking~for the appropriate vendor. If the vendor matches, print 
out the invoice number and tne charge ..... ~ntinue scanning th'e li"'St" 

,until you reach the. end. The last 1nV01ce in any list is indicated by 
invoice.next = "O"b. 

Not To Be Reproduc~d W-4 1\15C 



WORKSHOP THREE 

As an example, to find invoices for vendor 357, the statement p = 
ptr( seg ptr ,hash table( 7» would generate a pointer 'p' which locates 
the first invoice for a vendor wi th low order digit 7. The vendor 
number for this invoice can be compared to 357, and printed out if 
matched. Then, the pOinter p could be adjusted to the next invoice in 
this list by coding the statement p = ptr( segptr, p ->next) and so 

" == on. 

Test your program by pr·inting out the invoice number and charges of 
atl invoices for vendor number 029. 

e- :;::z: 

You may wish to use the following declarations which are in the segment, 
>udd>MEDclass>F15C>s1>include>w3.incl.pl1. 

/* Beg in w3. incl.pl1 */ 

dcl 

dcl 
dcl 
dcl 
dcl 

in i tiate fil e - -
code 
bit coun t 
seg::ptr 
p 

entry (char (*), char (*), bit (*), pointer, 
fixed bin (24), fixed bin (35»; 

fi x ed bin (35); 
fixed bin (24); 
ptr; 
ptr ;. 

dcl 1 invoice 'file header based (seg ptr) , 
2 number of invoices fixed bin,-
2 hash_tabfe (0:9) bit (18) unaligned; 

dcl 1 invoice based ( p) al igned , 
2 next- bit (18), 
2 invoice number dec (3 ) , 
2 vendor number dec (3 ) , 
2 charge- fixed dec (8,2); 

dcl com err 
dcl (sys1n, -

s yspr in t) 

entry options (variable); 

file; 

/* End w3.incl.pl1 */ 

'For the more curious, you may wish to study 
> udd>t-tEDclass)F i5C)s i >set_up> put_invoice .pi i . 

No t To Be Re prod uc ed W-5 F15C 



WORKSHOP FOUR -

The Multics Condition Handling Mechanism 

1. Printthe segment >udd>MEDclass>F1SC>s1>test_any_other .pl1 (tao .pl1) 
and execute the corresponding object segment. 

Examine your user stack using the 'stack' request of 'orobe'. 
Notlce where, on the stack, the program you just executed is compared 
to the 'wall' laid down by default error handler. 

Using the 'signal' command, execute the following commands: "signal 
zerodivide", "signal any_other", "signal finish", "signal 
program interrupt". How do you explain the difference in these 
four cases? 

Note: the above program is not well behaved in that it should 
have continued to signal the 'finish' condition. 

BE SURE TO DO A 'release -all' BEFORE PROCEEDING!!! 

2. Print the segment )udd>MEDclass>F1SC>s1>test cleanup.p11 (tcu.p11) 
and execute the corresponding object segment TWO times. BE SURE 
YOU EXECUTE IT AT LEAST TWO TIMES (more than two won't hurt, but 
is wasteful). 

.. 

Examine the user stack using the' stack' request of I probe'. Notice 
the numerous occurrences of 'test cleanup' on the stack. Now examine 
the stack using the' trace stack'-Cts) command. Notice the' cleanup' 
handlers in several stack frames. (While you are at it, also 
notice that 'initialize process' and 'default error handler f have 
only one condition handler.) - - - -

Execute a "release -all". Can you explain what happened? 

Print the segment >udd>MEDclass>F1SC>s1>test finish 1.pl1 (tf1.pl1) 
and execute the corresponding object segment AT LEAST THREE TIMES. 

Signal the finish condition. 

Do a "release -all" and then repeat the above procedure using 
> udd>MEDcl ass>F 1 SC >s 1 >test_fin iSh_2. pl1 (tf2. p11 ) • 

No t To Be Re prod uc ed W-6 F15C 



WORKSHOP FIVE 

IOCB structure 

1. Print the segment >udd>MEDclass)F15C>s1)examine iocb.pl1 and read 
it carefully to see what it does. -

2. Execute the print attach table (pat) command to examine the swi tches 
currently attached. -

3. While in your own directory, execute the following command lines: 

io call attach zoo vfile zoo 
io-call open zoo stream_output 
pat 

Now execute the program >udd>MEDclass>F15C>s1>exarnine iocb and 
carefully examine the results .. Notice that all pointers-and entry 
points printed are in one of 3 segments. 

4. Recall that the list reference names (lrn) command, if given a 
segment number, will -return the pathname and reference names of 
that segment. Use this command to determine the three segments 
whose numbers were found in the IOCB. Notice especially which 
entries in the IOCB point to iox and which point to the IIO 
module, vfile. Do these make sense, considering the file is 
o.pened for stream output'? 

5. Execute the command line, 'io call close zoo'. Again execute the 
'pat' command. Run the program, examine iocb, again and notice 
the different resul ts. Can you ex plain What happened'? If not, 
ask your instructor. 

6. Now that you have looked directly at an iocb using .an overlay, 
you should try using the command that gives you the same information. 
Execute the command line' io_call print_iocb zoo'. 

7. Using 'io call print iocb <switch>' one can easily look at the 
contents of an locb. -Try the following: delete the segment zoo, 
and then use io call to open zoo "keyed sequential output" and to 
display the contents of the iocb. - -

No t To Be Re pr od uc ed W-7 F15C 



WORKSHOP SIX 

Mul tic sIlO Wor ksho p 

Write a PL/I procedure called ~ numb~r .pW which cJ?rompts the 
user for a 6 digit number, and uses that as a key into an lndexed file 
of lucky numbers. The file of numbers is in the segment: 

• )udd)MEDclass)F15C)s1)lucky_nos 

The data records are 32 characters or less in length. 

Display the records. Do not use any language-level I/O. Use only 
iox and ioa calls in your program. 

Test your program with the numbers 180101, 180116, and 111225. 

You may wish to use the following declarations which are in the segment, 
)udd)MEDclass)F15C)s1)include)w6.incl.p11 

. f" Begin w6.incl.p11 "1 

~dcl iox_$ attach_name entry ( char ( ") , ptr, char ( ") ; ptr, 
fixed bin (35»; 

dcl iox $close entry (ptr, fixed bin (35»; 
.<1cl iox-$detach iocb entry (ptr, fixed bin (35»; 
dcl iox:$open - entry (ptr, fixed bin, bit ( 1 ) al igned , 

fixed bin(35»; 
dcl iox_$read record entry (ptr, ptr, fixed bin (21 ) , - fixed bin (21 ) , fixed bin (35» ; 
del iO::<_$ seek_ke y entry ( ptr J char (256) varying, 

fixed bin (21 ) , fixed bin (35»; 
dcl iox_$get_ line entry (ptr, ptr, fixed bin (21 ) , 

fixed bin (21 ) , fixed bin (35»; 
dcl iox $ user _input ex ternal static ptr; 
dcl (ioa= , 

com err ) entry options (variable); 
dcl error_table_$no_ record fixed bin (35) ex ternal; 
dcl code fixed bin (35) ; 
dcl buff char (32) ; 
dcl buff ptr ptr; 
dcl rec len fixed bin (21 ); 
~ .... , .;,.. ...... ~ ..... ~ ..... _ ....... 
Y'W'&' .V'W~_J:oI"'1 J:oI "'. , 

dcl n read fixed bin (21 ); 
del n"Umber char (256) varying; 
dcl cleanup condition; 
del (addr, 

null, 
substr) buil tin; 

f" End w6.incl.pl1 "f 

Not To Be Re prod uced W-8 F15C 



WORKSHOP SIX 

Be sure that you provide an 'on unit' for the' c~eanup' condition. 
Also, you should check for the ~oae, error table $no record (indicating 
an invalid key), after doing the seek_key7 --

Not To Be Reprod uced W-9 F15C 



WORKSHOP SEVEN 

A Storage System Workshop 

Apply the concepts discussed in Topic Ten by writing a PL/I procedure 
called 'new subsystem.pll' which, when invoked, will do the following: 

-+:-- --- ~ 

1 • Determine whether or not a s.ubdirectory called "F15C" exists~ 
the callers Jiefaul t working directory. _If it does, proceetr to 

s - below. If it does not, proceed to <iGsk "2:Dbelow. ~ 
or link called "Fl CIt exists in the caller' sedefaul t working 

directory, delete/un ink it, notify the caller of your action, an-a-
,proceed to@e p 3) -=:0.. .~ 

Since .no "F15C" subdirectory exists in the caller's defaul t working 
directory, create this dlrectory. You should make sure that, besides 
the s.tandard ACL entries, the directory also has an ACL entry 
giving .~sma" access to Student 01.*.*. ~port the ___ cr~ation of 
this directory to the c"aller. ---~. 

Chan~e the caller's WQrking directory to the "F15C" directory, and 
ij~ti_y the user of this action. 

Compile and test out your procedure. 
/-

(CONTINUED ON NEXT PAGE) 

Not To Be Reproduced W-l0 F15C 



WORKSHOP SEVEN 

You may wish to use the following declarations which are in the segment, 
)udd)MEDclass)F15C)s1)include)w7.incl.pl1. 

/* Beg in w7. incl.pl1 */ 

-dcl delete $path entry (char (*), char (*), bit (6), char (*), 
- fixed bin (35»; 

-dcl hcs $add dir acl entries entry (char (*), char (*), ptr, 
- - - - fixed bin, fixed bin (35»; 

-dcl hcs $append branchx entry (char (*), char (*), fixed bin (5), 
- (3) fixed bin (3), char (*), fix ed bin (1), fix ed bin (1), 

fixed bin (24), fixed bin (35»; 
dcl hcs $status minf entry (char (*), char (*), fixed bin (1), 

- fix ed bin ( 2 ), fix ed bin ( 2 4 ), fix ed b in (3 5 ) ) ; 
dcl get group' id $tag star entry returns (char (32»; 
dcl get-default wdir - entry returns (char (168) aligned); 
dcl change wdir- - entry (char (168), fixed bin (35»; 
dcl absolute pathname entry (char (*), char (*), fixed bin (35»); 
dcl (ioa , - -

com-err ) entr y 0 ptions (var iable) ; 
dcl error table $nomatch fixed bin (35) external; 
dcl error-table-$noentry fixed bin. (35) external; 
dcl addr - - builtin; 
dcl rings (3) fixed bin (3) internal static init (4, 4, 4) 

options (constant); 
dcl 1 dir acl al ig ned, 

2 access name 
2 dir modes 
2 status code 

/* End w7.incl.p11 */ 

Not To Be-- Re prod uctfd 

char (32) in i t (" St ud en t 01. * . * ") , 
b it (36) in it (" 111 "b) , -
fi xed bin (35); 

F15C 



WORKSHOP EIGHT 

User Address and Name Space 

1. Wr i te a PL/I proced ure called "_my tmsr .pI1" that will 2rompt the 
J:!.,ser for a reference name to betermlnated •. Using the appropr iate 
etry point in term.:, duplicate the action of the 
termlnate sl.n.sle_rJ!!I'!~,co~man<:! ( l..s. terminate the reference name, 
but do not make the segment Uii1mown unless it was the last refname 
in the RNT for that segment). The program _should end by Qotif~ing 
the user that the terminationisc,omple~e ;~INCLUDE IN THE MESSAGE, 
THE ABSOLUTE PATHNAME OF TH"E·"-SE~GM·~N1'~ASSOCIATED WITH THAT REFNAME. 

2. fxecute a simple command (ex. who, memo, pwd, list). T~ your 
program u~ing that r~ference ~ ~ input. 

3.k-Look at the contents or4>udd)MEDClaSS)F15C)S1)Call sub1.pl1 and 
*,)udd)MEDclass)F15C)s1)sUb1.pl1. At command level, -initiate the 

obJect segment for the first program with the r:.,eference name "~" 
,~~"lnitiate )udd)MEDclass)F15C)s1)call sub1 cs1"). Now execute the 

program II simply .>:yping "cst". This, of course, works no matter 
what your wo·rking directory 1S at the time of initiation or execution. 

4.* Use your "my_tmsr" procedure to terminate the reference name" sub1". 
Again execute the call sub1 program using the name "cs1". It should 
work ex ac tl y as it did before. 

Not To Be Reproduced W-12 F15C 



( 

1 • 

WORKSHOP NINE 

Writing a Command/Active Function 

is, issuing 

it! parent >udd>MEDclass>F15C)s1>foo 

would resul t in's l' being output to the terminal. Used as an 
act i v e fun c t ion 

i [ parent > udd>MEDcl ass>F 15C)s 1 )foo] , 

it would return the string ts1'~ 

Note of course, the argument needn't be an absolute pathname. 

Try your command out on. various segments. 

Test it's ability to work as an active function by issuing the 
COiiiiii an d : 

where ?? 

status <[parent 11] 

segment in 1.1'",,"J ..... .... working directory. 

4. Test. your program both as a 'command' and as an 'active function' 
giving it the wrong number of arguments. 

No t To Be Re prod uc ed W-13 F15C 



WORKSHOP NINE 

You may wish to use the following declarations which are in the segment, 
>udd)MEDclass)F15C)s1)include)w9.incl.pl1. 

"/--* 8egiA w9.inel.p11 

dcl cu_$ arg_ptr 

dcl cU_$af_return_arg 

dcl expano_pathname_ 

dcl compl ain 
dcl (ioa_, 

-/ 

entry 

entry 

entry 

entry 

(fixed bin, ptr, fix ed bin, 
fixed bin (35»; 

(fixed bin, ptr, fixed bin (21), 
fixed bin (35»; 

(char (*), char (*), char (*), 
fixed bin (35»; 

variable options (variable); 

com err , 
active fnc err ) entry options (variable); 

dcl error_table:$wrong no of args external fixed bin (35); 
dcl nargs fixed bin; 
dCl (arg ptr, 

rtn-string ptr) 
dcl rtn_string -

dcl 
dCl 
dcl 
dcl 
dcl 
dcl 

arg 
max leng th 
arg-len 
code 
af 
ME 

dcl en tr yn ame 
dcl dir _name 

1- End w9.inc' pl1 1!/ 

Not To Be Heproduced 

ptr; 
char (max length) varying 
based (rtn str ing ptr) j 
char (arg Ten) based (arg ptr); 
t"i x ed bin - ( 2 1 ) ; -
fixed bin; 
fixed bin (35); 
bit (1) init ("O"b); 
char (6) static init ("parent") 
optio"ns (constant); 
char (32); 
char (256); 

W-14 
(End'Of Topic) 


	0001
	0002
	001
	002
	005
	006
	007
	008
	009
	01-001
	01-002
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	010
	011
	012
	013
	014
	02-001
	02-002
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	03-001
	03-002
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	04-001
	04-002
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-001
	05-002
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	06-001
	06-002
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	07-001
	07-002
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	08-001
	08-002
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	09-001
	09-002
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	10-001
	10-002
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	11-001
	11-002
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	12-001
	12-002
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	W-001
	W-01
	W-02
	W-03
	W-04
	W-05
	W-06
	W-07
	W-08
	W-09
	W-10
	W-11
	W-12
	W-13
	W-14

