
HONEYWELL

MULTICS MENU
CREATION

. F ACILITIE S

SOFTWARE

MULTIes MENU CREATION FACILITIES

SUBJECT

Description of the Multics Menu Creation Facilities

SPECIAL INSTRUCTIONS

This publication superesedes the previous edition of the manual. Order No. CP51-D1.
dated July 1982. and its addenda CP51-o1A. dated August 1982. CP51-01B. dated
February 1983. and CP51-o1C. dated December 1983.

Throughout the document change bars are used to indicate technical changes and
additions; asterisks denote deletions.

Refer to the Preface for "Significant Changes."

SOFTWARE SUPPORTED

Multics Software Release 11.0

ORDER NUMBER

CP51-o2

DATE

February 1985

PREFACE

The publication is intended for application programmers who are building menu
interfaces to existing software. The Multics menu system consists of several commands and
subroutines which can be used to create and manage menus.

The major topics presented are:

• A description of the terminal-management software that provides a means of dividing
the terminal screen into different regions and of performing real-time editing. The
terminal-management software is referred to in text as the "video system."

• A description of the Multics commands and subroutines provided for creation and
manipulation of video screens and creation and display of menus.

• A description of the Multics I/O modules that support terminal-management functions.

There are some manuals that are prerequisites to this one in that they describe tools
that the application writer uses. The writer must be familiar with Multics I/O processing.
commands. and subroutines. The manuals describing these are as follows:

Multics Programmer's Reference Manual
(Order No. AG91)

Multics Commands and Active Functions
<Order No. AG92)

Multics Subroutines and I/O Modules
(Order No. AG93)

Programmer's Reference

Commands

Subroutines

The information and specifications in this document are subject to change without notice. This
document contains information about Honeywell products or services that may not be available
outside the United States. Consult your Honeywell Marketing Representative.

@) Honeywell Inf ormation Systems Inc., 1985 File No.: 1L13, 1U13 CP51-o2

The Programmer's Reference manual describes I/O processing and contains specific
details for the use of screen terminals. The Commands manual contains the descriptions of
commands that are referenced in text, such as exec_com. The Subroutines manual contains
Multics subroutine descriptions.

In addition, this publication assumes the programmer is familiar with PL/I, FORTRAN.
or COBOL, and the Multics exec_com facility. (The exec_com examples in this -document use
Version 20f exec_com.) The PL/I language is described in the PLII Language Specification,
(Order No. AG94); the FORTRAN Language is described in the FORT RAN Reference
Manual, Order No. AT58); the COBOL Language is described in the COBOL Reference
IVianual, (Order No. AS44).

Significant Changes in CP51-02

The video system now supports windows which do not extend across the full width of
the screen. See Section 2 for details.

The video system editor now accepts either upper or lower case letters when you use
default escape sequences. See Section 4 for details.

The "suppress_redisplay" field has been added to the line_editor_info structure. See
Section 4 for details.

The "window_call" command now accepts the "-width NC (-wid NC)" control argument
which specifies the width of. a region for a request See the "window_call" command in
Section 5.

The "change_window" and "create_window" arguments to the "window_call" command
now accept the "-column C" and "-width NC" control argument. See Section 5.

A "-line_speed (-Is)" control argument has been added to "window_call invoke". This
allows you to specify the speed of your connection to Multics when you use the video
system. If no "-line_speed" is specified. the current line_speed is used. See Section 5 for
details.

The "window_$edit_line" entry which allows applications to preload the video editor
input buffer with a string. has been added to the window_ subroutine. See Section 6 for
details"

The "window_$write_raw_text" entry in the window_ subroutine now causes the cursor
position to become undefined and sets the screen_invalid window status flag. See Section 6.

iii CP51-o2

I Support for the "set_term_type" control order has been added to the tc_io_ I/O
I module. This control order or the set_tty command allows you to change the terminal type
I in a video session.
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
i
I
I
I
I
I
I
I
I
I
I
I

Two new control arguments have been added to window_io_ switch. The "-first_column
COL_NO" (control argument) is the column number on the screen where the window is to
begin. The "-width N eOLS" (control argument) is the number of columns in the window.
See Section 7.

The "set_output_conversion" and "get_output_conversion" control orders have been added
to the window_io_ I/O module. The "get_output_conversion" control order obtains the
current contents of the specified table. The "set_output_conversion" control order provides a
table to use in formatting output to identify certain kinds of special characters. See Section 7
f or details.

The "get_special" and "set_special" control orders have also been added to window_io_.
The "get_special" control order obtains the contents of the special_chars table currently in
use. The "set_special" control order provides a table that specifies sequences to be substituted
for certain output characters. See Section 7.

A "get_editor_key_bindings" control order, which returns a pointer to the
line_editor_key_binding structure describing the key bindings, has been added to window_io __
The "set_edi tor_key _bindings" control order has been changed. New fields have been added to
the line_editor_key_binding structure. The control arguments "-name STR" , "-description
STR", and "-info_pathname PATH" have been added to the io_call support set_editor_key_bindings
control order_

A new mode, uedited, Aedited" suppresses printing of characters for which there is not
defined Multics equivalent on the device referenced. See Section 7 for details.

iv CP51-02

Section 1

Section 2

Section 3

Section 4

CONTENTS

Introduction to the Menu System
What is a Menu .
The Connection Between the Menu System and the

Video System

Introduction to the Video System . . .
What is a Window

Window Capabilities
Positioning the Cursor
Selective Erasure
Scrolling
Selective Alteration ..
Miscellaneous

Window /Video Commands and Subroutines
Attaching the Video System
Detaching the Video System
Design Requirements for Windows
Window Operations

Create Window Operation .
Important Window Requests . . .

Change Window Operation ..
Destroy Window Operation
Clear Window Operation
Other Useful Operations

Menu Applications
Guidelines for Function Keys
The exec_com Example
The PL/I Example

Video System Details . .
Reaj-Time Editing .

The Erase Character
The Kill Character . .
The Line Editor

Moving the Cursor
Deleting Characters and Words
Retrieving Deleted Text

Other Editor Requests
Writing Editor Extensions ..

Line Editor Routines ..
Window Editor Utilities
End-Of -Window Processing

More Processing ..
Output Buffering .
Subroutine Interface .

v

1-1
1-1

1-5

2-1
2-1
2-3
2-3
2-4
2-4
2-4
2-4
2-5
2-5
2-7
2-8
2-9
2-9
2-9
2-12
2-12
2-13
2=14

3-1
3-1
3-2
3-4

4-1
4-1
4-2
4-2
4-2
4-2
4-2
4-3
4-4
4-5
4-5
4-8
4-10
4-10
4-11
4-11

CP51-02

Section 5

Command Line In terf ace

Commands
menu_create
menu_delete
menu_describe
menu_display ..
menu~et_choice
menu_list
window_call .. .
Argument Descriptions

Section 6

Section 7

Section 8

Section 9

PL/I Subroutine Interface
menu_
video_data_
video_utils_
window_

I/O Modules ...
tc_io_
window_io_

Fortran In terf ace . . .
ft_menu_
ft_menu_$initl
ft_menu_$init2
ft_window_

Cobol Interface
cb_menu_
cb_window_

Appendix A I/O Switch Attachments

Appendix B Error Code Handling

Index

Figure 2-1. Windows on a Screen
Figure A-I. Standard Attachments
Figure A-2. Attachments After the Invocation of Video
Figure A-3. Attachments After Execution of the doc_sys.ec exec_com

vi

4-11

5-1
5-2
5-4
5-5
5-6
5-7
5-9
5-10
5-11

6-1
6-2
6-12
6-13
6-15

7-1
7-2
7-5

8-1
8-2
8-8
8-8
8-14

9-1
9-2
9-14

A-I

B-1

i-I

Illustrations

2-3
A-3
A..;..6
A-7

CP51-02

SECTION 1

INTRODUCTION TO THE MENU SYSTEM

Multics is a large-scale, interactive system with a rich repertoire of commands,
subroutines, tools and many interrelated subsystems. There are over 2,000 commands and
subroutines alone. Effective use of the power this system has to offer is a specialty not
every user masters. In many cases there is no reason to master it. The majority of users
have specific tasks to accomplish online and require only a small subset of the available tools.
What they do need to know is what tools exist to get their job done most efficiently. The
easier it is to figure that out, the better. Since many of these people are not trained in
computer use, the system should be made easy to understand, provide flexibility and keep
training at a minimum. The Multics menu system provides a means of accomplishing this.

WHAT IS A MENU

A menu is a list of options presented to the user on a video terminal. By typing a
single key, designating an option choice, an action is performed. The most important feature
the menu system has to offer is permitting the user who knows very little about the system
to interact with the computer. No knowledge of commands is required since the system calls
the command to do the job once the user indicates an option. Ali the actions required for a
s~ific task are displayed on the terminal, selections are made, and the user is ushered
through a given task by being prompted. You can design menus for all different levels of
expertise and for any number of tasks. The easiest way to explain the menu system and to
provide application ideas is to give examples of menus. The menu "Games" is shown here.

Type a number and the corresponding action will be performed.

GAMES
1) Pr i nt a maze 6) Play Star Trek
2) Print a large maze 7) Play Adventure
3) Play Football 8) Guess the Animal
4) Play Baseba 11 9) Play Backgammon
5) Do a Simulated Parachute Jump

==

1-1 CP51-o2

Imagine that the boxes in all the examples in this section are on terminal screens. This
entire display is defined by the menu application. The screen is divided into two sections
with the top part of the screen for menu display and the bottom part of the screen for user
input/ output.

The user of this menu selects one of the options and the screen changes from the list
of menu options to the description of a specific game. The screen is no longer divided into
two parts and the user input/ output section of the screen is expanded to full size. For
example, if Option 5 is selected, the transactions appear as follows. In this example,
user-typed input is preceded by an exclamation point

Welcome to "splat"--the game that simulates a parachute jump.
Try to open your chute at the last possible moment without
going splat.

Select your own altitude? !yes
What altitude (ft)? !5000

When the user is finished playing this game, the screen goes back to the original menu
display. Another option is selected or the user exits this particular menu.

The next example is a menu for Tess True-Heart, a new terminal operator. Other than
knowing how to login, Tes& is a Multics novice. She needs to learn a little bit about the
Multics system, i.e., how a command works, how to read her mail, and what manuals to read
for details. Tess is at an advantage because the word processing system she worked on in her
previous job also used menus, so she understands the concept This is an important advantage
for the application writer too. Since menus are used widely throughout the industry, people
who use your menus will not find the concept a foreign one. As illustrated below, the menu
system quite effectively "fences off" the Multics system into an understandable set of tools
for personal use. The following example was written for Tess as an introduction to Multics.

1-2 CP51-Q2

«<MULTICS TUTORIAL»>

1) What is a command?
2) What commands do i use everyday?
3) What commands are helpful but not essential?
4) How do I read and send mail?
5) What manuals are helpful for a beginner?
6) Where do I go from here?

==

As an example of the material in some of these options, Option 2 might discuss the
list, help, and dprint commands. All the commands Tess is likely to use in her daily work
are candidates for this option.

The commands in Option 3 would be more sophisticated and might include exec_com
and the absentee commands.

Another example of a menu user is Percival C. Monday. Percy has no former
experience with a computer and it is peripheral to his job. He uses it essentially as a filing
system. This application is not unlike one intended for ticket agents at an airline counter,
who use a computer strictly for one set of tasks. Percy must be able to read orders received,
process orders. file the orders, cheek the budget allocation/expenditures, charge a department,
maintain an inventory and change the inventory as orders are filled and shipments arrive. A
menu to accomplish these tasks might look like this:

«<MANUAL ORDERS»>

Enter the number corresponding to the function to be performed.

1) List orders to be processed
2) Lis t orders processed th is month
3) List budget information
4) Enter bill i ng i nformat ion
5) Update Inventory

==

1-3 CP51-02

In the previous examples, the user went from a menu to the game "parachute jump" or
to explanations of commands. In this example, Percy is going from the first menu to other
menus. If Percy selects Option 5, the screen might look like this:

1) List of parts available
2) Additions made to inventory list
3) Deletions made to inventory list

Percy selects one of the options in this list and performs the appropriate action.

The first three examples are for inexperienced users and the advantages for such persons
are obvious. However, the menu system can be tailored for the experienced user as well. The
next example is a manager's application. The manager is Gloria VanDerMint, who has five
people working for her in the research and development department. In addition to her
development work, she has a number of tasks that must be performed routinely, so you can
incorporate them all into one menu. You can set up a number of data bases containing
information such as weekly status reports from her unit, and from these she writes the unit
status report or performance appraisals, and updates schedules. You may also include the
memo command to remind her when performance appraisals and status reports are due.
Another convenient command to incorporate is calendar, which reminds her of meetings and
trips. Gloria's menu is given below.

«<The Good, The Bad, and The Boring»>

1) Read memos 6) Personal Schedules
2) Send memos 7) Produce Schedules
3) Calendar 8) Performance Appraisal Form
4) Modify calendar
5) Unit Status reports

==

1-4 CP51-02

An additional menu for more complex tasks is one that offers a choice of programming
procedures. This is helpful for people who have programmed on other systems but not on
Multics and discusses the languages and editors available, tells them about formatting programs
explain compiling on Multics and discusses debugging tools. It might contain the following:

«<Programming Procedures»>

1) Name Your Language 4) Format Your Program
2) Enter New Program 5) Execute Your Program
3) Update Existing Program 6) Debug Your Program

==

THE CONNECTION BETWEEN THE MENU SYSTEM AND THE VIDEO SYSTEM

In the next section, the video system. is introduced. A more detailed discussion is
presented in Section 4. Menu application programs use the video system to manage the
display on the terminal screen. As noted above, all these examples have the screen divided
into portions which have different uses. Since we cannot physically divide the screen, we
must do it logically. This is the job of the video system, and this terminal management is
required to support the menu software.

1-5 CP51-o2

SECTION 2

INTRODUCTION TO THE VIDEO SYSTEM

The advent of comparatively low cost video terminals has brought a new dimension to
the computing industry. Today's video terminals have many more capabilities than hard copy
ones. Real-time editing, and higher speed communication are available and the display can
change easily and quickly with varied functions.

The video system is a terminal-independent presentation interface. This means that an
application can run on any supported terminal and produce essentially the same display. The
video system enables the application writer to divide the terminal screen into "windows" to
partition the display. The menu writer must have a thorough understanding of windows; how
to invoke the video system (the first step in the process of creating windows), how to revoke
the video system, and how to create, destroy, change and clear windows. This section
discusses design considerations involved in using windows and covers the video material most
important to the menu application writer. For a more detailed description of the features of
the video system, see Section 4 of this manual.

WHAT IS A WINDOW

A window is an area of the screen whose contents can be manipulated without affecting
the rest of the display. For example, the user may scroll the contents of a segment in one
window without moving the contents of the segment displayed on any other part of the
screen.

Each window behaves like an individual video terminal. Many possible operations may
be performed on a window. These include displaying characters, moving the cursor, erasing
lines, inserting lines, and others. Characters are normally sent to a window via the Multics
I/O system and the iox_ subroutine (see the Multics I/O and Subroutines manual, Order
No. AG93). Additional operations specific to the capabilities of video terminals are
performed by the window_ subroutine (described in Section 6), which is analogous to iox_.

A window is a rectangular region of the screen. The screen can be divided into several
windows that can be viewed simultaneously but the windows may not overlap. The number of
line and columns in each window can vary. A window can be one column wide or it can
extend across the full width of the screen.

The size of a window is specified at the time the window is created. Character
positions are identified by line and column with the origin (or home) located at the upper
left hand corner of the window. Each window has its own home, line 1, column 1, and
character positions are always with respect to the home of the specific window.

2-1 CP51-o2

If you want to create a window from command level, use the window_call command
with the create_window argument You can also use the window_create entry to the window_
subroutine to create a window on the terminal screen. (Refer to the description of window_
subroutine later in this manual.)

The command syntax for creating windows from command level is:

window call create window -io switch WINDOW
{-li~e L -column-C -height ijL -width NC}

window_call, wdc
this command provides a command interface to the video system

create_window, crwd
this argument creates a new window on the screen

-io_switch WINDOW 1 -io_switch
WINDOW 1 specifies the window associated with the given I/O switch.

-line L
specifies the line number on the screen where the window is to begin. To create a
window beginning on the third line, use -line 3. If -line is not specified, the default is
line 1.

-column C, col C
specifies the column number on the screen where the window is to begin. To create a
window beginning in the third column, use -column 3. If -column is not specified, the
default is column 1.

height NL, -hgt NL
specifies the height of the window. To create a window 10 lines high, use -height 10. If
-height is not specified, the default is the remainder of the screen.

-width NC, -wid NC
specifies the width of the window .. To create a window 20 columns wide, use -width 20.
If -width is not specified, the default is the remainder of the screen.

Figure 2-1 is an example of three different types of windows that you can create on a
screen. You can create a window called WINDOW _1 that is 20 columns wide and 10 lines
high. This window begins on the third line and the second column. To create WINDOW_1
(shown in Figure 2-1). type the following command line:

wdc crwd -is WINDOW_1 -line 3 -column 2 -height 10 -width 20

You can also create a second window on the same screen called WINOOW_2. This
window is 3 columns wide and begins in column 25. Since line and height are not specified,
the window begins in line one and fills the remainder of the screen. To create WINDOW_2
(shown in Figure 2-1), type:

wdc crwd -is WINDOW_2 -column 25 -width 3

2-2 CP51-Q2

You can create a third window on the screen called WINDOW _3. This window is 14
columns wide and 7 lines high. This window begins at line 17 and column 32. To create
WINDOW _3 (shown in Figure 2-1), type:

wdc crwd -is WINDOW_3 -line 17 -column 32 -height 7 -width 14

Refer to Section 5 for more information on these commands and other commands used
by the menu and video software.

H

WINDOW_l

Window Capabilities

W
I
N
o
o
W

2

H

Figure 2-1. Windows on a Screen

The capabilities defined for a window are grouped into five categories: positioning the
cursor, selective erasure, scrolling, selective alteration, and miscellaneous. Window operations
may be performed with the window_call command or by a call to the window_ subroutine.
These are described in Sections 5 and 6 respectively.

2-3 CP51-o2

POSITIONING THE CURSOR

Each window has its own logical cursor. This cursor exists even when the terminal's
cursor is performing operations in another window. The position of this cursor may be
explicitly changed in a variety of ways. The cursor can be positioned absolutely or relatively.
Absolute positioning can be to the home position or to an arbitrary line and column.
Relative positioning can be up, down, left, or right any number of positions. The cursor also
moves as characters are displayed in the window.

SELECTIVE ERASURE

Selective Erasure (or clearing) means changing some region of the display so that no
visible characters appear in that region, without changing any other area of the window. Most
video terminals are capable of at least some selective erase operations. Where possible, the
video system uses any special terminal features present to clear regions. When the terminal
has no useful feature for clearing the specified region, regions are cleared by overwriting
them with spaces. This can be a rather slow operation.

A region is a rectangle contained within a window. Like a window, it has an extent
(height and width) and a position. All erasure operations pertain to regions. The definition of
the region may be explicit (position and extent supplied in the call) or implicit (the region
begins at the current cursor location, or at home). The cursor is always left at the origin of
the region.

A window may be cleared: entirely, from the home to the end of the window; from
the current cursor position to the end of the current line in the window; from the current
cursor position to the end of the window. An arbitrary region may also be cleared.

SCROLLING

A window may be scrolled up or down by a given number of lines. Scrolling up means
moving lines up from the bottom of the window - deleting lines at the top, and adding new,
blank lines at the bottom. Scrolling down means moving lines from the top of the window
down, deleting at the bottom and adding at the top. Scrolling is usually done automatically
by the video system when output fills the window, but it can also be requested explicitly.

SELECTIVE ALTERATION

Selective alteration means adding or deleting characters or lines in the middle of the
window. When characters (or lines) are added, adjoining characters (or lines) move over to
make room for the new ones. When characters (or lines) are deleted, characters (or lines)
move in to fill up the gap. This differs from selective erasure, which only affects the
characters erased.

MISCELLANEOUS

Among other things, entries are provided in the window_ subroutine and the
window_call command to sound an audible alarm. to obtain the current cursor position. and
to output an arbitrary character sequence.

2-4 CP51-o2

Window /Video Commands and Subroutines

The command supporting windows is introduced here but is explained in detail In

Section 5 of this manual.

window_call
is the command interface to the video system. This is used in exec_com applications
while the window_ subroutine is used in PL/I, ft_windo-w_ is used in FORTRAN, and
cb_ window_is used in COBOL applications.

ine subroutines supporting windows and the video system are described in detail in
Section 6 of this manual and are as follows:

video_utils_
activates and deactivates the video system.

video_data_
is a data segment containing information about the video system.

window_
is the subroutine interface to the video system. It is the corresponding subroutine to the
window_call command.

Attaching the Video System

You must check whether or not the users of the proposed menu have the video system
turned on. It is not likely that novice users would do this initially but it might be included
in a project start_up. If it is on, it is important that you leave it alone. Do not turn it on
again or you will get an error message. If you have determined that tl1e video system is
turned on, you should then haVe your application use the space allocated to the
user_input/output window instead of the whole screen. Thus, if the user creates a separate
window for interactive messages, an application should not use that space. Using the space
allocated to the user_io window respects the user's explicit wishes and prevents violation of
the restriction against using two overlapping windows at the same time.

When the video system is invoked, the entire screen is covered by a window associated
with the user_i/o I/O switch. Determine how much of the screen you have and divide up
that amount for use by your application. Since terminals vary in the length of the screen,
and some users already may have some lines devoted to their own video display, you are
probably dealing with less than 20 lines, so design with that in mind. As long as there are
eight or ten lines available for user input/output that should be sufficient

The first step then is determining whether or not the video system is turned on and, if
not, turn it on. This should be included at the beginning of all menu applications. The
following is the exec_com example. The lines are numbered only for the purpose of
explanation and should not be included in your exec_com.

2-5 CP51-o2

1 &set already_video &[io attached user_terminal_]
2 &if &[not & (already_video)]
3 &then window call invoke
4 &set first line &[window call get first line] n_lines

&[window_cal1 get_window=height] - -

where:

1. determines whether or not the video system is attached to the user's terminal.
2. turns it on if it isn't already on.
3. invokes window_call initiating the window environment.
4. sets the lines f or the window. This is part of the first step because when you revoke

the video system at the end of the exec_com, you must set the screen to the size it
was originally.

The following is the PL/I example that does the same thing. Declare statements are included
in the example. Again. the lines are numbered for the purpose of explanation and the
numbers should not be included in your program.

dcl (addr t null) bui 1 ti n;

dc 1 i ox_$contro 1 entry (ptr t char (,te) t ptr, fixed bin (5»;
dcl com_err_ entry 0 options (variable);
dcl iox $user io ptr ext static;
dcl video utilS Sturn on login channel entry

(fixed bi~ (35): char (*f);
dcl video data $terminal iocb ext static ptr;
dc 1 ME char (32) in it (lites t_program") stat i copt ions (constant);
dcl code fixed bin (35);
dcl already video bit (1);
dcl reason char (128);

1 %include window_control info;
2 dcl 1 my_window_info like window_position_info;
3 my_window_info.version = window_position_info_version~l;
4 if video data.$terminal iocb = nullO then do;
5 call video=uti ls_$turn_on_login_channel (code, reason);
6 if code A= 0 then do;

7

8
9

10

ca 1 1 corn_er r _ (code t ME, IIAa", reason);
return;

end;
already_video = "O"b;

end;
else already_video = "1"b;
ca 11 i ox $contro 1 (j ox $user i 0, "get_w i ndow_ info",

addr (my_wi ndow_i nfo) , code);
if code A= 0 then do;

ca 1 1 com_ er r _ (code t ME, Ilget_w i ndow_ i nf a") ;
return;

end;

2-6 CP51-Q2

where:

1. includes appropriate structure declarations
2. declares an automatic copy of window L.1.fo
3. sets the version number of window info
4. determines if the video system is not activated then does 4 through 6
5. turns on the video system and
6. if there is an error, reports it to the caller and quits
7. makes a note to the effect that video was invoked by this program
8. goes to here if the video system is already activated (video was not activated by this

program)
9. gets the current size and location (beginning line number) of the user_i/o window

10. prints error message

Detaching the Video System

At the end of the exec_com, you have to turn off video and leave things as you found
them. First, is the exec_com example for revoking the video system. The lines are numbered
only for the purpose of explanation and these numbers should not be included in your
exec_com.

1 &if &(already_video)
2 &then window call change window -line &(first_line)

-height &(~_l ines) -
3 &else window_call revoke

where:

1. determines whether or not video was activated by this exec_com.
2. if video was activated by another exec_com, then user_i/o window is returned to

previous size and it is cleared.
3. otherwise, the window interface to the video system is deactivated and the user_i/o

window goes to full screen.

The PL/I example:

1 if already_video then do;
2 call video_uti 1 s_$turn_off_logi n_channel (code);

3

if code A=O then do;

end;
end;
else do; call iox $control (iox $user io, IIset_window_info",

a~~ .. ("'v •. ,~ ,., :-.... & \ _ ,.." ~ - -
,,"WI \111, _" I """"'"_' III \JI' \..\JUII;;/,

if code A=O then do;

end;
end;

2-7 CP51-o2

where:

1. determines whether or not video was activated by this program.
2. if video was previously attached, then the user_i/o window is returned to its previous

size.
3. if the video system was activated by this program, it is then deactivated and the

user_i/o window goes to full screen.

DeSign Requirements for Windows

In Section 1, all of the examples used two windows: the top window which displayed
the menu itself and the bottom window which was for user input/output As part of the
menu design process, you decide ahead of time how the display will look and from that
determine the number of windows that will be advantageous.

As an example, you may have the screen divided into three windows. The top window
could display the status of the user with the user name, a description of what he's doing and
a clock. The middle window could contain various menus and could grow or shrink
depending on the selection made. The bottom window could be for unformatted· output and
for typing in input

The number of windows technically permitted is quite large and probably more than you
will need. Knowing how many functions are to be performed, you should carefully select the
number of windows to be used by an application. It is possible on a 24 line terminal to
have 24 windows but rarely, if ever, would that be useful. Each window would be too small
and the screen would be too cluttered. Practically, there should not be more than five. In
the examples in Section 1, there are lines marking the division between top and bottom

* windows. This is a trailer line specified in the exec_com or program. It is not necessary, but
does make the delineation obvious and aids readability. Windows may not overlap. Each
window has its own extent (height and width) and location (the position of its home on the
screen). Windows can change their extent and location as long as they never overlap. The
initial extent and location of a window is determined in the attach description of the window.

Window Operations

The rest of this section discusses the operations of window _call and window_that are
most essential. These include: create, change. destroy, and clear. Specific examples are given
for exec_com and PL/I applications.

2-8 CP51-o2

CREATE WINDOW OPERATION

Now you need to define windows and this is done with arguments to window _call or
with the entry points of the window_ subroutine. The first action discussed is create_window.
Part of the creation process is the naming of windows. Windows are associated with iox_
I/O switches. The "name of the window" is just the name of the switch. or as it is
sometimes caned, the iocb name. Since many Multics commands and subroutines make use of
the standard switches user_io, user_input, error_output. and user_output, it is usually necessary
to have these switches connected -to some window. This is done by- windo-w~e-all invoke- Of

video_utils_$turn_on_login_channel. By convention, the bottom window of the screen is used
for user_i/o.

Important Window Requests

Before a window can be created you must decide on its starting line number as
discussed above in "Attaching Video" and its length (in number of lines). As mentioned
earlier, it is customary to get space for a new window from the user_i/o window and to
position the new window at the top of the user_i/o window. Therefore, one of the first
things to do is find out where the user_i/o window is. Once this is known you must
determine just how high, in lines, the new window must be and shrink the user_i/o window
by that amount. It is a good idea to always check to make sure there is enough space left
in the user_i/o window to allow meaningful communication once it has been shrunk. In our
examples we will insist on at least a five line user_i/o window.

2-9 CP51-o2

To do all that has been discussed so far in an exec_com. we would have the following:

&- stored in the default value segment as the_menu.

&set io start &[window call get first line]
&set io=height &[window_call get_window_height]
&set menu_height &[menu_describe the_menu -height]

&- Now calculate the new positions of both windows.

&set menu start &(io start)
&set io start &[plus-&(io start) & (menu height)]
&set io=height &[minus &(To_height) &(menu_height)]

&- The label referenced below would, of course, need to be
&- defined and would include an appropriate error message.

&if &[nless &(io_height) 5]
&then &goto USER_I/O_TOO_SMALL

&- Now shrink user_i/o

window_call change_window -line & (io_start) -height &(io_height)

&- And define the new window, called able

window call create window -io switch able -line & (menu_start) -height
& (menu_height) - -

The real work of creating the n.ew window above was done by the window _call
command with the create_window argument This command created the necessary iox_ I/O
switch attachments to make "able" an I/O switch which describes a video system window that
occupies the first "menu_height" lines of what was user_i/o.

2-10 CP51-Q2

THE PLII EXAMPLE

A window can be created either at command level or from a PL/I subroutine. To do
the same thing in PL/I you would use the following code fragment:

/* Get the variables initialized. We assume the menu has */
/* been created and the requirements for the menu are */
/* stored in the menu_needs structure (see menu_ for dcl) */

%include window control info;
dcl 1 io_window=info 1 ike (wi ndow_posi tion_info) ;
dell menu_window_info like (window_position_info);

io window info.version = window position info version 1;
caTl iox Scontrol (iox $user io-; IIget_window_Tnfoll, addr

(ie_wTndow_info), code);
if code A= 0 then do;

process the error

end;
menu_window_info = i~_window info;

/* Now calculate the new positions of both windows. */

menu_window_info.origin. line = io_window_info.origin.line;
io_window_info.origin. line = io_window_info.origin.line

+menu_window_info.extent.height;
io_window_info.extent.height = io_window_info.extent.height

-menu_window_info.extent.height;
if io_window_info.extent.height < 5
then do;

if code A= 0 then do;

process the error

end;
end;

/* Now shrink user_i/o */

call iox $control (iox $user io, "set_window_info", addr
(io_window_info), code); -
if code A= 0 then do;

process the error

end;

/* And define the new window */

call window $create (video data_$terminal iocb, addr (menu_window_info),
menu_wTndow_iocbp, code);

2-11 CP51-o2

CHANGE WINDOW OPERATION

In the above examples we have seen that it was necessary to change or shrink the
user_i/o window in order to create a new window. When we discuss destroying windows
below we will see a need to expand the user_i/o window to recover the space freed by the
destruction of a window. .

Command level changes are done with the window_call keyword change_window. In
PL/I the changes are made by the set_window_info control order. In general this will be
preCeded by a get_window_info control order and some calculations.

DESTROY WINDOW OPERATION

Once a window is no longer needed it must be destroyed, i.e., the I/O switch must be
closed and detached thus freeing up the space on the screen that was occupied by the
window. In addition, this space should be returned to some active window so that it can be
used. If the freed space is adjacent to the user_i/o window it should be consumed by that
window, but it can be added to any adjacent window. In our examples we will add it back
to user _i / o.

To reverse the effects of the exec_com window creation example above we would have:

&- destroy the able window

&- and let user_i/o have the space back

&set io start & (menu start)
&set io=height &[plui &&nenu_height) &(io_height)]
&set menu_start 0 menu_height 0

window_call change_window -line & (io_start) -height &(io_height)

In PL/I we would have:

/* destroy the able window */

ca 11 wi ndow_$des troy (•••);
if code A= 0 then do;

process the error

end;

2-12 CP51-o2

/* and let user_i/o have the space back */

io_window_info.origin.line = menu_window_info.origin.line;
io_window_info.extent.height = menu_window_info.extent.height

+io_window_info.extent.height;

call iox $control (iox $user io, IIset window infoll,
addr (io_window_info), code); - -

if code A= 0 then do;

process the error

end;

CLEAR WINDOW OPERATION

Another very useful operation is the clear_window operation. This clears the entire
window to all spaces and leaves the cursor positioned at the upper left hand corner of the
window. There are other clearing operations. but this one is the simplest and most useful.

From command level we can clear the user_i/o window by:

If we had wanted to clear. say the able window, we would have included the -io_switch
control argument specifying able as the window to operate on.

This same effect, clearing the able window of our examples, can be accomplished from
PL/I by:

call window_$clear_window (menu_window_iocbp, code);
if code A= 0 then do;

process the error

end;

The clear_window operation is useful when an application wants to start with a clean
slate in the user_i/o window. For example. before printing out a description of some menu
option it might be desirable to clear the user_i/o window.

2-13 CP51-o2

OTHER USEFUL OPERATIONS

Once window status is set, any operation performed on that window (except for a create
or destroy operation) returns the status code video_et_Swindow _status_pending until the status
is reset To reset the status, perform a get_window_status control order on the window
switch. Refer to "Control Operations" for window_io_ later in this manual.

There are many other operations that can be perf ormed on windows using the video
system. These are all described in the window_call command in Section 5 or in the window_
subroutine description in Section 6 or the control orders or modes of Lite window_io_ I/O
module in Section 7.

2-14 CP51-o2

SECTION 3

MENU APPLICATIONS

This section discusses the use of function keys and the building of a menu application.
It includes a sample exec_com, and PL/I programs. FORTRAN and COBOL programmers
refer to Section 8 and Section 9, respectively.

GUIDELINES FOR FUNCfION KEYS

A set of keys that are integral to the menu system are the function keys. These are
used to get information. move from one menu to another. or to exit from a menu and
return to Multics command level. The reason that the function keys are used at all is to
reserve the numbers for the options and also to eliminate the need to include these functions
in every list of options in every menu. Ease of use is enhanced when the function keys are
doing the same thing from application to application. The following example shows the
definitions of the function keys in the "Games" menu.

Press Fl - Gives definitions of the function keys
Press F2 - Returns to the first menu
Press F3 - Goes to the previous menu
Press F4 - Returns to Multics command level

If there are no function keys on the terminal. then the user could type specially
assigned keys in sequence. In the following example the escape key has been chosen in
conjunction with a letter that is related to the action performed. The selection would then
be:

ESC d - Gives definitions of the function keys
ESC f - Returns to the first menu
ESC p - Goes to the previous menu
ESC r - Returns to Multics command level

Since not all terminals have function keys. you must include a call to
ttt_info_$function_key_data (described in Multics Subroutines and 110 Modules, Order No.
AG93) in your program, which will return information about the terminal being used. This
information covers whether or not there are function keys and how many there are.

For those terminals without function keys, or which do not have enough. you must
designate keY4t to be used in their place. It is helpful to the end user if the first of these
keys is a "special" key such as the escape key. This should be followed by a regular key that
is somewhat related to the action to be performed. You can use a single key, but the
advantage of two in sequence is that it does not interfere with the option numbers or letters
that have been used. The sequence can also be more than two keys. but the longer it is the
greater the chance of typing errors.

3-1 CP51-o2

Summary of function key recommendations:

• Assign the same meaning to specific keys for every menu.

• Include a call to ttt_info_$function_key_data in your program.

• There is no command level interface to ttt_info_$function_key_data so this
cannot be done with exec_com.

If function keys are not available, follow the above suggestions plus:

• Use a combination of characters such that the first character is not the same
as any menu option character. A suggestion is using a special key (not @ or
#) such as <ESC> in conjunction with a character related to the action
performed. For example, <ESC> p for previous menu, or <ESC> r for
returning to command level.

• Do not use numbers or single letters as they are reserved for options.

• Do not use two digit numbers because only the first digit is "heard" and an
option would therefore be selected. In other words, if you have a function
numbered 12 only the first digit is processed so option 1 would be selected.

THE EXEC_COM EXAMPLE

There are four ways in which menu applications may be built: one using exec_com and
written in the Multics command language; the others using PL/I, FORTRAN or COBOL
programs. The exec_coms provide a quick and easy way to implement very simple menu
applications whereas PL/I, FORTRAN or COBOL programs provide for more powerful and
robust ones. The Multics menu system provides commands and subroutines to facilitate either
type of implementation.

Below is an example of an exec_com interface to the menu system. It is a very simple
application and it illustrates how you can begin. The example is a document menu for
everyday office use. It is called "Document System". The user will be able to enter, edit,
display, print, list or delete documents. The last option available is to exit the document
system. So, there are seven options in all and they will be displayed in the top window,
Since you will probably want them displayed in the fewest number of lines possible, make
space in this window for 6 lines allowing for the headers, the trailers, and the list of menu
options printed in two columns. The area from line seven to the end of the screen is the
user_i/o window. To see how the standard I/O switch attachments change when you use an
exec_com to create a menu, refer to Appendix A, especially Figure A-3. Line numbers are
used in this example to indicate new lines, e.g., line 18 is all one line in the exec_com and a
new line does not occur till the number 19 appears. Line numbers should not be included in
your exec_com.

3-2 CP51-Q2

1 &version 2
2 &trace off

&- First we will see if the video system is enabled
&- in the users process. This is done by checking
&- to see if the i/O switch user terminal is
&- attached. If it isn't we invoke the video
&- system. We need to do this so that we can later
&- return the user to his/her normal environment.

3 &set already_video &[io attached user_terminal_J
4 &if &[not & (already_video)]
5 &then window_call invoke

&- Now
&- real
&- saved

we will create our demonstration menu. In
applications this menu would most likely be

in some value segment containing other menus.

6 menu create main -option "enter new document"
-option "edit old document" -option "print document on
terminal" -option "print document on printer" -option
IIlist documents" -option IIdelete document" -columns 2
-header "«< DOCUMENT SYSTEM »>" -center headers
-trailer II_" -trailer IIUSE FUNCTION KEY 1-TO EXIT"
-trailer II_II -center_trailers -pad II_II

&- Here we determine where the windows will go.
&- What we will attempt to do is split the user i/o
&- window into two windows. The top window is named
&- using a unique name to avoid confl ict with other
&- I/O switch names in the process and will contain
&- the menu. The bottom window will be user i/o.
&- This split of user_i/o is done to allow this
&- appl ication to run while other video applications
&- windows exist on the screen.

7 &set menu start &[window call get first line]
8 &set menu=height &[menu_describe main -heightJ
9 &set io_start &[plus & (menu_start) &(menu_height)J

10 &set io_height &[minus [window_call get_window_height] &(menu_height)J

&- We must have at least 5 1 ines left in user_i/o.
&- This is an arbitrary limit that this exec_com
&- will enforce.

11 &if &[n1ess & (io_height) 5J
12 &then &do
13 &print There is not enough room on the screen to run.
14 &quit
15 &end

&- Now establish the window to be used to display
&- the menu. It takes its space on the screen from
&- user_i/o, so first shrink user_i/o. The menu

3-3 CP51-02

&- window is given a name using the unique active
&- function to avoid conflicts with I/O switch names
&- already in existence.

16 window_call change_window -line & (io_start) -height &(io_height)
17 &set menu_switch &[unique].menu
18 window call create window -io switch &(menu_switch) -line

& (menu=start) -height &(menu_height)

&- We are now ready to display the menu and get a
&- choice. We must display the menu each time
&- through the loop due to the fact that
&- menu_get_choice will modify the menu display in
&- the window. We will set a local exec_com
&- variable to the choice made just in case we want
&- it in the future (in this example we don't, but
&- its a good idea anyway).

19 &label GET-CHOICE

20 menu_display main -io_switch & (menu_switch)
21 &set choice &[menu_get_choice main -io_switch &(menu_switch)]

&- Now that we have either (1) a valid menu choice
&- in the form of a decimal integer, or (2) a
&- function key selection in the form "F" followed
&- by the function key number, let's perform the
&- requested action.

22 &goto CHOICE-&(choice)

&- This choice is "enter a new document." It will
&- first create the new document and then enter ted
&- to allow entry of the text. Before doing
&- anything, this action, like all others, will
&- clear the user_i/o window. This gives a feeling
&- of starting some new action that we want at this
&- point (this is done for all actions).

23 &label CHOICE-l

24 window call clear window
25 io control user i70 reset more
26 do "create &&1;ted -pn &&1" [response "new document name:"]
27 &goto GET-CHOICE

&- This choice is "edit an old document." It will
&- enter ted for editing of the requested document.

28 &label CHOICE-2

29 window call clear window
30 io control user i70 reset more
31 ted -pn [response "old document name:iij
32 &goto GET-CHOICE

3-4 CP51-o2

&- This choice is "print document on terminal. 1I It
&- will just print the specified document in the
&- user_i/o window.

33 &label CHOICE-3

34 window call clear window
35 io control user i70 reset more
36 print [response-lidocument-name:"]
37 &goto GET-CHOICE

&- This action is "print document on printer." It
&- wiii simpiy enter a dprint request of the
&- specified document.

38 &label CHOICE-4

39 window call clear window
40 io control user i70 reset more
41 dprint [response IIdocument name: lI

]

42 &goto GET-CHOICE

&- This is the "1ist documents" action. It will
&- simply list the names of all of the documents
&- defined. Our convention for document naming is
&- simple - any single component segment name will
&- do.

43 &label CHOICE-5

44 window call clear window
45 io control user_i70 reset_more
46 list * -name -primary
47 &goto GET-CHOICE

48

49
50
51
52

&- This is the "delete document ll action. It deletes
&- the document specified by the user.

&labe1 CHOICE-6

window call clear window - -
io control user i/o reset more
delete [response IIdocument name:"]
&goto GET-CHOICE

&- This is the action for function key #1. This
&- action exits the document subsystem~ At this
&- point we will destroy the menu window and either:
&- (1) return the user i/o window to its former
&- state, or (2) revoke the window system entirely.
&- This choice is based on whether the video system
&- was in effect when we started this exec_com.

53 &label CHOICE-Fl

3-5 CP51-o2

54 window call delete window -io switch & (menu switch)
55 &if &(already_video) - -
56 &then &do
57 window_call change_window -line & (menu_start) -height

&[plus &(menu_height) &(io_height)]
58 window_call clear_window
59 &end
60 &else window_call revoke

61 &qu it

&- One last thing to check for are undefined
&- function keys. For these we will simply ring the
&- bell (in the video system tradition that's what
&- it does for undefined control character input
&- sequences).

62 &label CHOICE-&(choice)

63 window_call bell
64 &goto GET-CHOICE

THE PL/I EXAMPLE

Below is the PL/I example setting up the same menu, Document System. Your first
reaction may be that it is far more complicated and much longer than the exec_com example.
If the document system menu were going to staJ'. this simple it probably wouldn't be
reasonable to do it in PL/I. But if the menu is going to be enhanced with more capabilities
and power, PL/I is the better approach. You can add a great deal of versatility and correct
errors with a PL/I application, something that just cannot be done with exec_com.

md 1 :
proc 0;

/,,< Automat i c */

dcl choice fixed bin;
dc 1 cho ices (6) char (30) var;
dcl code fixed bin (35);
dcl fkey bit (1) aligned;
dc 1 headers (1) char (30) var;
dcl key shift idx fixed bin;
dcl menu_io ptr init (null);
dcl menu_io_switch_name char (32);
dcl menu_ptr ptr;
dcl my_area area (4095);
dcl 1 my_menu_format like menu_format;
dcl 1 my_menu_requirements like menu_requirements;
dcl 1 new window info like window_position_info;
dcl reason char (512) ;
de 1 term type char (32);
dcl trailers (2) char (30) var;
dcl 1 user io window info like window Dosition info;
dcl video_was=already_on bit (1) align~d; -

3-6 CP51-Q2

/* Based */

/)'(Builtin 1e/

dcl (addr, empty, length, null) builtin;

/* Cond it ions)'c/

dcl cleanup condition;

/* Entries */

dcl com_err_ entry () options (variable);
del ioa_ entry 0 options (variable);
del ttt_info_$funetion_key_data entry

(char ("c), ptr, ptr, fixed bin (35»;
de 1 un i que chars entry (b it (*» returns (char (15»;
dcl user info $terminal data

- entry (char (*), char (*), char U:), fixed bin, char (,'c»;
dcl video utils Sturn off login channel entry (fixed bin (35»;
dcl video=utils=$turn=on_login_channel entry (char (*), fixed bin (35»;

/'!e Externa 1 1e/

dcl video data_Sterminal iocb pointer external;

/* Static */

dcl ALTERNATE_F1_STRING char (2) static options (constant) init ("tt);
/* ESC q 1:/

dc 1 ME char (3) s ta tic opt ions (cons tant) in i t ("md 1") ;
dcl MIN_USER_IO_HEIGHT fixed bin static options (constant) init (5);
dcl USER_IO char (8) static options (constant) init (lluser_i/o");

on cleanup call terminate_sys ();

/* Set up the menu. */

/* Invoke the window system if it1s not.already invoked. */

if Avideo_was=already_on then do;
call video_uti1s_$turn_on_login_channel (code, reason);
if code A= 0 then

call quit (code, reason);
end;
call window_$clear_window (iox_$user_io, code);

if code A= 0 then
call quit (code, USER_IO);

/* Create the menu. */

3-7 CP51-o2

choices (1) = "enter new document";
choices (2) = "edit old document";
choices (3) = "print document on terminal";
choices (4) = "print document on printer";
choices (5) = "list documents";
choices (6) = "delete document";

headers (1) = "«< DOCUMENT SYSTEM »>";
trailers (1) = "USE FUNCTION KEY 1 TO EXIT";
trailers (2) = "_II;

call user_info_Sterminal_data «""), term_type, ("11), CO), ("11»;
call ttt_info_Sfunction_keY_data (term_type, addr (my_area),

funct ion_key _data_ptr, (code»;

if code A= 0 then
call quit (code, "Unable to determine terminal type")

/* See if we have to use an escape sequence for F1 */

if fkey data.highest < 1 then do;
trailers (1) = "USE ESC-q TO EXIT";
free fkey_data in (my_area);
function_keY_data_highest = 1;

end;

allocate fkey_data in (my_area) set (function_key_data_ptr);
fkey_data.version = function_key_data_version_1;
fkey data.seq ptr = addr (ALTERNATE Fl STRING);
fkey=data.seq=len = length (ALTERNATE_Fl_STRING);
do key_shift_idx = 0 to 3;

fkey_data.home.sequence_length
(key_shift_idx) = 0;

fkey_data.left.sequence_length
(key_shift_idx) = 0;

fkey data.up.sequence length
- (key_shift_idx) = 0;

fkey_data.right.sequence_length
(key_shift_idx) = 0;

fkey_data.down.sequence_length
(key_shift_idx) = 0;

fkey data. function keys.sequence length
- (0, key_shift_idx) = 0;-

fkey_data.function_keys.sequence_length
(1, key_shift_idx) = 0;

end;
fkey_data.function_keys.sequence_index (1, KEY_PLAIN) = 1;
fkey_data.function_keys.sequence_length (1, KEY_PLAIN) =

length (ALTERNATE_Fl_STRING);

my menu format.version = menu format version 1;
my-menu-format.max width = 80; -
my=menu=format.max=height = 6;
my_menu_format.n_columns = 2;
my_menu_format.center_headers = 1I1"b;
my_menu_format.center_trailers = 1I1"b;

3-8 CP51-02

my_menu_format.pad = "O"b;
my_menu_format.pad_char = "_II;

/* Now we can create the menu. *1

call menu Screate (choices, headers, trailers, addr
(my_menu_format) ,

MENU OPTION KEYS, addr (my_area), addr (my_menu_requirements),
-menu_ptr, code);

if code A= 0 then
call quit (code, "Unable to create menu. II);

/* Now carve the menu I/O window out of the user i/o window.
This program insists that the user i/o window-must be at
least 5 lines high after this is done. The menu I/O window
is given a unique name so that this program can be invoked
recursively. */

user_io_window_info.version = window_position_info_version_l;
ca 11 i ox_Scontro 1 (i ox_Suser _ i 0, IIget_w i ndow_ i nfoll ,

addr (user_io_window_info), code);
if code A= 0 then

call quit (code, USER_I 0) ;

if user_io_window_info.height
< my menu requirements.lines needed + MIN USER 10 HEIGHT then
call-quit-(O, "Window IIlIuser=i/ollll is too-small.");

new window info.version = window position info version 1;
new=window=info.line = - - - -

user_io_window_info.line + my_menu_requirements.lines_needed;
new_window_info.width = user_io_window_info.width;
new_window_info.height =

user_io_window_info.height - my_menu_requirements.lines_needed;
ca 11 i ox $contro 1 (i ox $user i 0, "set window i nfoll,
addr (ne;_window_info): code); - -
if code A= 0 then

call quit (code, IIUnable to shrink window IIlIuser_i/ollll.II);

menu io switch name = IImenu_i/o_1I I I unique_chars_ ("Ollb);
call-ioi_$find=iocb (menu_io_switch_name, menu_io, code);
if code A= 0 then

call quit (code, IIUnable to get 10CB pointer for menu window. II);

new_window_lnfo.Jine = user_io_window_info.line;
new_window_info.height = my_menu_requirements.lines_needed;

call window $create (video data $terminal iocb,
addr (ne;_window_info) ,-menu=io, code);

if code A= 0 then
call quit (code, IIUnable to create the menu_i/o window. II

);

3-9 <:P51-Q2

/* Now that we have the window system all set up we can go ahead and
display the menu and start processing. */

call menu_$display (menu_io, menu_ptr, code);
if code A= 0 then

. call quit (code, "Unable to display menu.");

/* Now start processing input from the user. */

do whi le (" 1 lib) ;

/* Get an option number or function key value from the user. */

call menu $get choice (menu io, menu_ptr, function_key_data_ptr,
fkey, choice, code); -

/* Perform an action depending on the user's selection. */

if code A= 0 then
call quit (code, "Unable to get choice.");

if fkey then
if choice = 1 then do;

call terminate_sys 0;
if video_was_a1ready=on then

call window_$c1ear_window (iox_$user_io, (0»;
goto EXIT;

end;
else ca 11 wi ndow_$be 11 (menu_ i 0, (0»;

else do;
if choice = 1 then

call create_document o ;
else if choice = 2 then

call edit_document 0;
else if choice = 3 then

ca 11 display_document o ;
else if choice = 4 then

call print_document o ;
else if choice = 5 then

call list documents 0;
else if choice; 6 then

call delete document o ;
else call wi ndow_$be 11 (menu io,

end;
end; /* do wh i 1 e ole/

EXIT:
return;

/* procedures for options */

create document:
proc ();

- (0)) ;

call ioa_ (liTo be provided.");

3-10 CP51-o2

end create_document;

edit document:
- proc 0;

ca 11 i oa_ (iiTo be prov i ded. Ii) ;

end edit_document;

display_document:
proc 0;

ca 11 i oa (liTo be prov i ded. ") ;

end display_document;

print_document:
proc 0;

call ioa_ (liTo be provided. II
);

end print_document;

list_documents:
proc 0;

call ioa_ (liTo be provided. Ii
);

end list_documents;

delete document:
p-;oc 0;

ca 11 i oa_ (liTo be prov i ded. II) ;

end delete_document;

/* internal procedures */

/* This procedure is called whenever we must leave the
subsystem we have set up (if an error occurs or the
user wants to leave). It rearranges things back to
the way they were before. *1

terminate_sys:
proc 0;

if menu i 0 A= nu 11 0 then
call window_Sdestroy (menu_io, (0»;

if video was a1ready on then
ca 1 1 i ox_Scontro1 (i ox_Suser _i 0, "set_wi ndow_i nfoll,

3-11 CP51-Q2

addr (user i 0 window info), (0»;
else call video_utils_$turn_off_login_channel ({O»;

end terminate_sys;

quit:
proc (code, explanation);

dcl code fixed bin (35);
dcl explanation char (*);

call terminate sys ();
call com_err_ (code, ME, explanation);
go to EXIT;

end quit;

%include iox_dcls;
%page;
%include wi ndow_dcl s;
%page;
%include function_key_data;
%page;
%include menu_dcls;
%page;
%include window_control info;

end md 1 ;

3-12 CP51-02

SECTION 4

VIDEO SYSTEM DETAILS

This section describes the Multics Video System. The Multics Video System is an
upwards compatible extension to the Multics Communications System. The basic features of *
the Multics Video System are:

• Dividing the user's terminal into one or more windows. Windows are described
in detail in Section 2 of this manual.

• A powerful real-time editor for input lines. The erase and kill characters take
eff eet as soon as they are typed. Additional characters allow the user to delete
words and to retrieve deleted text.

• Flexible control over output When a window is full of output it can scroll
(removing lines from the top of the window, adding new ones to the bottom),
or wrap (output begins at the top of the window, optionally clearing the
window first).

• MORE Processing. The video system pauses when a window is full of output
until the user indicates that the window has been read. This is an extension to
End Of Page processing. The user can also choose to discard unseen all
pending output.

REAL-TIME EDITING

Real-time editing is markedly different from usual Multics editing. All editing requests
take effect immediately. The screen changes to show the effect of the characters or lines
deleted. In addition, the set of editing characters expands to include several control
characters.

Control characters are characters entered using the control key.. The control key is a
key that acts like the shift key. By itself it generates no characters; it is used to change the
meaning of some other key. When the key "A" is typed while the control key is held down,
the character sent by the terminal is control A, which is written as A A. The control
characters are the first 32 ASCII characters, 000 through 037 octal.

Alphabetic characters are given in capitals~ but either an upper or lower case letter (as
for N or n) can be used with default escape sequences. If an upper case letter is used with
a user-defined sequence, both the upper and lower case keys must be bound in order for
both keys to work. The letters ESC represent the escape key. For ESC P, you would press
the escape key, release it and type an f or F.

4-1 CP51-o2

Although most Multics users keep the system default erase (#) and kill (@) symbols,
the video system recognizes and then assumes the values of any erase and kill characters that
may have been set via the set_tty command.

The . Erase Character

The erase character removes the character to the left of the cursor. The cursor moves
to the left, and exactly one character is deleted. This is different from usual Multics editing
where an erase character typed after white space deletes all whitespace, and otherwise deletes
all characters from a column position. The erase character is settable for each window. In
addition, the DEL character (\177) and the backspace character (\010) are always erase
characters.

The Kill Character

The kill character deletes the entire line to the left of the cursor. The cursor then goes
back to the beginning of the line. Again, this happens immediately. The deleted line is
saved, and can be recovered. See "Retrieving Deleted Text" below. The kill character is
settable per-window.

The Line Editor

Additional editing is possible using sequences of one and two characters. The
two-character sequences all begin with the ASCII ESC character, (A [, octal 033), which is not
the same as the Multics input escape character ("\").

MOVING THE CURSOR

The line editor can move the cursor forward or backward within the current line while
repositioning the cursor either a character at a time or a word at a time. A word is an
unbroken string of uppercase and lowercase alphabetics, numerals, underscores, backspace
characters, and hyphens. (This is the default definition of a word, which can be changed
with the set_token_delimiters order, described in the window_io_ writeup.) The cursor can
also move explicitly to the beginning or the end of the current line. The requests that
perform these actions are listed under "Other Editor Requests" below.

DELETING CHARACTERS AND WORDS

The line editor can delete a single character or an entire word at a time. Various
editing requests described below can delete the character or word immediately to either the
left or the right of the cursor. The deleted text (only words, not characters) is saved and
can be retrieved. For example, typing ESC DEL (or ESC followed by the current erase
character) deletes the word to the left of the cursor. The word is saved on the kill ring (see
below). -

4-2 CP51-02

RETRIEVING DELETED TEXT

Text deleted by the word and line kill characters is saved, and can be restored. The
text is saved on a kill ring. A kill ring is a set oi kill slots. Each slot holds deleted text
Successive word kills share one kill slot, so if several words are deleted one after another, all
of them will be retrieved by a single retrieve command.

Deleted text is saved with previously deleted text if two delete characters are typed in
succession. If intervening characters are typed, the kill ring is rotated: a new slot is selected
to hold saved text

Text is entered when the user types text followed by a carriage return. Each input line
is added to the kill ring. This provides editing of the previous input line.

The following control characters are used to retrieve deleted text:

I\y

ESC Y

(or yank) retrieves deleted text from the kill ring. This is the only way
to recover from an erroneous kill character.

can be typed only after either 1\ Y or ESC Y. It deletes the text just
retrieved, without saving it on the kill ring, rotates the ring (to the
next most recently killed text) and retrieves the text from the new top
slot

The following example is given in triplets. The first line shows what the user types, the
second line shows what one line of the display looks like afterwards, and the third line (or
lines) shows the kill ring. The top item on the kill ring is at the top of the column.

User Types: This is a sentence
Display is: This is a sentence
Kill Ring: <empty>

NOTE: The kill ring is empty because the user has just invoked the video system.

One

User Types: ESC DEL
Display is: This is a
Kill Ring: sentence

word is deleted, and it begins

User Types: ESC DEL
Display is: This is
K iii Ring: a sentence

the kill ring.

4-3 CP51-o2

Another word is deleted; it is merged into the same kill slot

User Types: an example sofa

Display is: This is an example sofa
Kill Ring: a sentence

User Types: ESC DEL
Display is: This is an example
Kill Ring : sofa

a sentence

This deleted word is not merged, because there has been typing since the last kill command.
There are now two slots on the kill ring.

User Types: of Ay
Display is: This is an example of sofa
Kill Ring : sofa

a sentence

The top kill slot is yanked back.

User Types: ESC Y
Display is: This is an example of a sentence
Kill Ring: a sentence

sofa

The kill ring is rotated, the previously yanked contents are deleted from the line. and the
new top item from the ring is yanked to replace it

If a carriage return were typed at the end of "This is an example of a sentence'" the
kill ring would then contain a new slot containing the entire input line.

Other Editor Requests

Alphabetic characters are given in capitals, but either an upper or lower case letter
(ESC F or ESC f) can be used. The following control characters are also recognized by the
line editor:

I\F

ESC F

ESC B

Clears the window and redisplays the input line.

"quotes" the next character, causing it to have no special
meaning. This is useful for entering control characters. It serves
some of the same purposes as the input escape character (\).

moves the cursor forward one character.

moves the cursor backward one character.

moves the cursor forward one word.

moves the cursor backward one word.

4-4 CP51-o2

"A moves the cursor to the beginning of the current line.

"E moves the cursor to the end of the current line.

"D deletes the current character (deletes forward).

DEL, # deletes the character to the left of the cursor (deletes backward).

ESC D deletes the current word (deletes forward).

ESC DEL, ESC # deletes the word to the left of the cursor (deletes backward).

ESC C

ESC U

ESC L

ESC T

capitalize initial word.

capitalize word.

lower case word.

twiddle word.

By default, no other control characters have meaning. If any are typed, the only action
they cause is an audible alarm. You can create additional editor requests by writing PL/l
programs that conform to a standard calling sequence (see "Writing Editor Extensions").

The set of characters used to define a word for control characters such as ESC F can
be changed via the set_token_characters control order. See the description in the window_io_
I/O module later in this manual.

Writing Editor Extensions

The video system provides a full input line editor, including the ability to edit in the
middle of the line. Of course, there are many potential editor functions that people might
like to use (see the Emacs Text Editor Usem Guide Order No. CH27), and not all of these
are provided. Rather than attempt to anticipate every possible editor request, the video system
allows users who are familiar with PL/l to write their own editor requests and associate
sequences of keystrokes (key bindings) with these requests.

The key binding mechanism can be used for a wide variety of applications. Since editor
requests are executed immediately by single or multiple keystroke sequences, highly interactive
facilities can be built into the input line editor.

LINE EDITOR ROUTINES

Editor request routines are PL/I programs that conform to a standard calling sequence.
The request procedure is given complete control of the input buffer and can add or delete
characters or modify the current contents of the buffer. The video system editor's redisplay
facility manages all display updates; the individual editor .routines need no knowledge of the
video enviroment or the screen contents.

*

4-5 CP51-o2

A library of editor utility routines is provided (see "Editor Utilities"). These can be
called by user-written editor routines to perform such actions as insertion and deletion of
text from the buffer, manipulation of the kill ring, and manipulation of words within the
input buffer.

A line editor routine is declared as follows:

USAGE

del twiddle_words entry (pointer, fixed bin(3S»;

ARGUMENTS

line_editor_info_ptr
is a pointer to the line_editor_info data structure (described below).

code
is a standard status code. (Output) If the status code returned by the editor routine is
error_table_$action_not_performed, the editor will ring the terminal bell to indicate that
the editor routine was used improperly. Any other code will reported in a more drastic
manner, via the sub_err_ mechanism.

The line_editor_info structure (declared in window_line_editor.incl.pll) is declared as
follows:

dcl line_editor_info
2 version
2 iocb_ptr
2 repetition_count
2 flags,

3 return_from_editor
3 merge_next_kill
30ld_merge_next_kill
3 last_kill_direction
3 numarg_given
3 suppress_redisplay
3 pad

2 user_data_ptr
2 cursor_index
2 line_length
2 input_buffer
2 key_sequence

aligned based (line editor info ptr),
char (8) , - --
pointer, /* to current window */
fixed bin,

b tel) unal gned,
b t (1) unal gned,
b t (1) una 1 gned,
b tel) unal gned,
b tel) unal gned,
b t (1) unal gned
b t(30) una igned,
pointer, /* for user state info */
f j xed bin (21) ,
fixed bin (21) ,
character (1024) unaligned;
character (128) ;

dcl 1 ine_editor_input_line char(line_editor_info.line_length) based (addr
(line_editor_info.input_buffer» ;

dc 1 line ed i tor info vers i on 2 char (8) stat i copt ions (cons tant) in it
("l e i 00002"); - -

4-6 CP51-o2

STRUCTURE ELEMENTS

version
is string for this structure. (Input) The current version string, "leiOOOO2". is the value of
the variable line_editor_info_version_2. declared in the same include file.

iocb_ptr
is the pointer to the current window. (Input)

repetition_count
is the value of the numeric argument specified by the user. and is undefined if no
numeric argument was specified (i. e.. numar~ven flag = "O"b). (Input)

return_from_editor
is a flag which is set by the editor routine if the editor invocation is to be terminated
and the input line returned to the caller. The input buffer is redisplayed before the
buffer is returned to the caller. unless overriden by the line_editor_info.suppress_redisplay
flag.

merge_next_kill
is a flag' which should be set when text is deleted and added to the kill ring if
subsequent deletions are to be added to the same kill ring element (Input/Output) This
flag is managed by the editor utility routines. If the editor utility routines are used for
all input buffer modifications. the user-written editor routine need never set this flag.

old_merge_next_kill
is an internal editor state flag and should not be modified. (nQt used)

last_kill_direction
direction of last kill (forward or backward).

numar~ven
is "l"b (i.e. true) if a numeric argument was supplied by the user via ESC-NNN or AU.

suppress_redisplay

pad

is a flag that stops the redisplay of the input buffer when line_editor_info.return_from_editor
is set

reserved for future use.

user _data_ptr
points to a user data structure which the video system ignores, other than passing this
pointer to requests that follow.

cursor_index
is the index of the character in the input buffer on which the cursor is currently
located. (Input/Output) This index must be updated if characters are added or deleted
before the cursor, or the cursor is moved by the editor routine. The cursor index must
be no larger than one greater than the input_line_length. If the editor utility routines
are used for all input buffer manipulations. the cursor_index will be updated
appropriately.

4-7 CP51-o2

line_length
is a count of the number of characters in the current input line. (Input/Output) This
variable must be updated if any characters are inserted or deleted from the input buffer.
The value of the line_length variable must always be non-negative, and must never be
larger than the length of the input buffer. If the line editor utility routines are used for
all input buffer manipulations, the line_length variable will be updated automatically.

input_buffer
is a character string containing the current input line. (Input/Output) Any manipulations
may be performed on this string by the editor routine. It is recommended that the
editor utility routines be used for all insertions and deletions to ensure that the various
state variables and flags remain consistent The line_editor_input_line variable can be
used to address the valid part of the input buffer as astring.

key_sequence
A character string that contains the sequence of key strokes that invoked this editor
routine.

Window Editor Utilities

As was mentioned above, a library of editor utility routines is provided for the benefit
of user-written editor routines. Some operations can be performed simply by a user-written
editor routine. For example, to position the cursor 10 the end of the line, simply set the
cursor_index variable to one greater than the value of the line_length variable. However,
most actions are more complex than this and it is recommended that the editor utility
routines be used to perform most operations. The following is a description of these routines.
In all cases, line_editor_info_ptr is the pointer to the editor data structure that is supplied as
an argument to user-written editor routines.

dcl window_editor_utils_$insert_text entry (ptr, char(*), code);
call window editor utils $insert text (line editor info ptr, "text",

code) ;- - - - - --

Inserts the supplied character string into the input buffer at the current cursor
location. If the string is too large to fit in the remaining buffer space, the code
error_table_$action_not_performed is returned. This routine updates the line_length
field of the line_editor_info structure, and the cursor_index if necessary.

dcl window_editor_uti1s_$delete_text entry (ptr, fixed bin, code);
call window editor utils $delete text (1 ine editor info ptr, count,

code) ;- - - - - - -

Deletes a specified number of characters (supplied by the variable count) from the
input buffer at the current cursor location. If there are not enough characters
remaining between the cursor and the end of the line, error_table_$action_not_performed
is returned and no characters are deleted. The line_length component of the
line_editor_info_structure is updated, and the cursor_index if necessary.

4-8 CP51-o2

dcl window_editor_utils_$delete_text_save entry
(pt r, fixed bin, bit (1), code);

call window_editor_utils_$delete_text_save
(line_editor_info_ptr, count, kill_direction, code);

This entrypoint is idenentical to delete_text. but the deleted text is added to the kin
ring. The kill_direction flag is used during kIll mergng to decide whether the killed
text will be concatenated onto the beginning or end of the current kill ring element
"l"b is used to specify a forward kill (e.g. FORWARD_DELETE_WORD). "0" a
backward kill.

dcl window_editor_utils_$move_forward entry (ptr, fixed bin, code);
call window_editor_utils_$move_forward (line_editor_info_ptr, count, code);

Advances the cursor forward a specified number of characters (supplied by the
variable "count") in the input line. If there are not enough characters between the
cursor and the end of the line, error_table_$action_not_performed is returned.

dcl window_editor_utils_$move_backward entry (ptr, fixed bin, code);
call window editor utils $move backward

(line_editor_info_ptr, count, code);

Moves the cursor backward a specified number of characters (supplied by the variable
"count") in the input line. If there are not enough characters between the cursor and
the end of the line, error_table_$action_not_performed is returned.

dcl window_editor_utils_Smove_forward_word entry (ptr, code);
ca 11 wi ndow_ed i tor _ut i 1 s_$move_forward_word (1 i ne_ed i tor _i nfo_ptr, code);

Updates the cursor_index to a position after the next word (or token) in the input
line. A word is defined via the editor's set of token delimiters, set via the
set_token_delimiters control order.

dcl window editor utils $move backward word entry (ptr, code);
call windo; editor utils $mov; backward word

(line_editor_info_ptr, cod;); -

Updates the cursor_index to a position before the preceeding word (or token) in the
input line. A word is defined via the editor's set of token delimiters, set via the
set_token_delimiters control order.

dcl window_editor_utils_$get_top_kil1_ring_element entry
(ptr, char ("e), fixed bin 35»

call window_editor_utils_$get_top_kill_ring_element
(1 ine_editor_info_ptr, text code),

Returns the top kill ring elemenL

4-9 CP51-o2

dcl window_editor_utils_Srotate_kill_ring entry (ptr, fixed bin (35))
call window_editor_utils_Srotate_kill_ring

(line_editor_info_ptr, code)

Rotates the kill ring.

End -Of - Window Processing

When output has filled a window, old lines must be removed to make way for new
ones. This is usually done by scrolling old lines off the top of the window. But for windows
that cannot be scrolled (usually because the terminal cannot scroll) it is possible to move the
cursor back to home, and output new lines overwriting the old ones. This is known as
wrapped output A variation on wrapped output is to clear the window after moving the
cursor home. The action taken when a window is full is controlled on a per-window basis by
anyone or the following more_mode modes:

• clear the window is cleared, and output starts at the home position.

• fold output begins at the first line and moves down the screen a line at a
time replacing exisitng text with new text Prompts for a MORE response
when it is about to overwrite the first line written since the last read or
MORE break.

• scroll lines are scrolled off the top of the window, and new lines are printed
in the space that is cleared at the bottom of the screen. This is the default
for all terminals capable of scrolling (i.e., those terminals that have the
capability to insert and delete lines).

• wrap output begins at the first line and moves down the screen a line at a
time replacing existing text with new text Prompts (or a MORE response at
the bottom of every window of output This is the default for terminals
incapable of scrolling.

For more information, refer to window_io_ in Section 7.

MORE PROCESSING

As lines are displayed in the window, old lines are scrolled off the top of the window
or otherwise removed. When output would cause a line to be removed that has been
displayed since the most recent input, it is assumed that the user may not have had a chance
to read it, and MORE processing occurs. The question "MORE?" appears on the screen, and
no further output occurs until the user indicates that pending output is to be either displayed
or discarded. MORE processing is controlled by the "more" mode, which is enabled by
default

Output resumes if the user strikes CR. and is discarded if the user strikes DEL. The
characters used can be set by a control order. Type ahead characters are not seen by MORE
processing. The· response to MORE must be typed after the prompt appears. All other
characters are buffered to be returned later.

4-10 CP51-o2

When output is discarded, the video system simply ignores output until a get_line or
gee.chars call is made, a "reset_more" control order call is made, or the window is cleared,
or the cursor is moved to home. WARNING: a prompt sent just before a get_line call will
not be printed if output is discarded, unless the prompting program first issues a
"reset_more" control order (or otherwise resets more processing).

OUTPUT BUFFERING

The video system sometimes buffers output internally. sending it to the terminal when
certain internal conditions are satisfied. All buffered output is sent to the terminal whenever
an input call is made (e.g.. window _$get_echoed_chars). This ensures that all output, including
prompts, is seen by the user before input is read. An application program that calls window_
entrypoints directly should take this buffering into account to perform correctly. If it is
necessary to send output to the terminal when no read request is to be done (e.g., displaying
an incremental message during a long computation), the application should call window_$sync
on the I/O switch after the output has been requested (e.g., via a call to window_$overwrite_texd.
See the description of window_$sync in the window_ subroutine description later in this
manual.

SUBROUTINE INTERFACE

The video system provides.a standard set of operations for windows available through
the window_ subroutine. Some terminals are not capable of supporting all of these operations.
In addition, the standard iox_ operations of get_line, get_chars, and put_chars are provided.
Some manipulations on windows are made via iox_ control orders (the window_io_ description
in Section 7). Some of these are compatible with existing tty_ control orders. The iox_ and
tty_ subroutines are both described in the Multics Subroutines and I/O Modules manual,
Order No. AG93. Other manipulations control features that are specific to the window
environment

The iox_ operations are defined in terms of the more primitive window_operations.
For example, the window_primitive, window _$overwrite_text, can only display a string of
characters that fit on a terminal line. The iox_$put_chars wraps long strings onto multiple
lines, and displays control characters with the conventional octal representation. For this
reason special care must be taken when using window_applications on a window when iox_
operations are in use as well. For more details see the description of the reset_more control
order in the window_io description in Section 7.

COMMAND LINE INTERFACE

The command level interface to the video system is the window_call command. This
command can perf orm most of the operations on a window supported by window_directly
from command level. The window_can command is described in Section 5.

4-11 CP51-o2

SECTION 5

~n'kAM A l\.TT\S
'-'"' iV.I..1 J.L"'1..1 't.lJ

This section contains descriptions of the commands used by the menu and video
software. presented in alphabetical order.

5-1 CP51-o2

Name: menu_create

SYNTAX AS A COMMAND

FUNCTION

The menu_create command creates a menu description, assigns it a specified name, and stores
the description in a segment The menu description may be used with other menu commands,
active functions, and subroutines.

ARGUMENTS

menu_name
is the name assigned to the menu when it is stored.

CONTROL ARGUMENTS

-pathname PATH, -pn PATH
is the pathname of the segment in which the menu is stored. Menus are stored in value
segments. If the specified segment does not exist, the user is asked argument). The value
suffix is assumed. If this control argument is omitted, the user's default value segment
(>udd>Project_id>Person_id>Person_id.value) is used to store the menu.

-brief, -bf
means that if the segment specified by the -pathname control argument does not exist, it
is to be created without querying the user.

-option STR, -opt STR
specifies a menu option. The options appear in the menu in the order given. At least
one option must be supplied. If STR contains blanks or special characters, it must be
quoted.

-header STR, ~he STR
specifies a line of header. All header lines specified appear in the menu in the order
given. If STR contains blanks or special characters, it must be quoted.

-trailer STR, -tr STR
specifies a trailer line. All trailers appear in the menu in the order given. If STR
contains blanks or special characters, it must be quoted.

The remaining control arguments control the format of the menu. All are optional.

-columns N, -col N
where N is a positive decimal integer, sets the number of columns in the menu to N.
The default is one column.

-center_headers, -ceh
causes an header lines to be centered.

5-2 CP51-02

-no_center_headers, -nceh
causes header lines to be flush left This is the default

-center_trailers. -cet
causes all trailer lines to be centered.

-no_center_trailers, -ncet
causes trailer lines to be flush left This is the default.

-option_keys STR, -okeys STR
. specifies the keystrokes to be associated with each option. Each character in STR is

associated with the corresponding option, so that if it is typed, the corresponding option
is selected. There must be at least as many characters in STR as there are options. If
this control argument is not given, the string
"123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" is used.

-pad C
where C is one character, specifies the padding character for centering. The default is
the space character.

-line_length N, -11 N
where N is a positive decimal integer. specifies the line length for the menu. If not
supplied, the line length will be the line length of the user's terminal at the time the

.. command is invoked.

ACCESS REQUIRED

The u....~r must have rand w access on the value segment

EXAMPLES

The following example sets up a small menu named compile.

menu_create compile -pn [pd]>temp -pad = -he "SAMPLE MENU" -tr
-columns 2 -11 78 -opt "Compile with No Options"
-opt "Symbol Table" -opt "Profile Info"

Creates a menu that looks like this:

-ceh -cet

=================================SAMPLE MENU==================================
(1) Compile with No Options (3) Profile Info
(2) Symbo 1 Tab 1 e

==

5-3 CP51-o2

Name: menu_delete

SYNTAX AS A COMMAND

FUNCTION

The menu_delete command deletes a menu description from a specified value segment

ARGUMENTS

menu_name
is the name that was assigned to the menu when it was stored.

CONTROL ARGUMENTS

-pathname PATH, -pn PATH
is the pathname of the value segment in which the menu is stored. If this control
argument is not givent the u..~r's default value segment is searched for the menu. The
value suffix is assumed.

5-4 CP51-o2

Name: menu_describe

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

[menu_describe menu_name -control args]

FUNCTION

The menu_describe command prints or returns information about a menu.

ARGUMENTS

menu_name
is the name that was assigned to the menu when it was stored.

CONTROL ARGUMENTS

-count, -ct
returns the number of options defined in the menu.

-height
returns the height of the menu.

-pathname PATH, -pn PATH
is the name of the value segment in which the menu has been stored. The value suffix
is assumed. If this control argument is omitted, the user's default value segment is
searched f or the menu.

-width
returns the width of the menu.

NOTES

When used as an active function, exactly one of -count, -height, or -width must be given.

As a command, any number are allowed. If none are given, all attributes are displayed.

5-5 CP51-o2

Name: menu_display

SYNTAX AS A COMMAND

FUNCTION

The menu_display command displays a menu in a window.

ARGUMENTS

menu_name
is the name that was assigned to the menu when it was stored.

CONTROL ARGUMENTS

-io_switch STR -is STR
specifies the name of an I/O switch for a window. The default is user_output

-pathname PATH, -pn PATH
is the name of the value segment in which the menu has been stored. The value suffix
is assumed. If this control argument is omitted, the user's default value segment is
searched f or the menu.

5-6 CP51-02

Name: menu--I:et_choice

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

[menu_get_choice menu_name {-control args}]

FUNCTION

The menu~et_choice command, given the menu called menu_name on display in a window,
gets a menu choice from the user and prints or returns it

ARGUMENTS

menu_name
is the name that was assigned to the menu when it was stored.

CONTROL ARGUMENTS

-pathname PATH, -pn PATH
is the name of the value segment in which the menu has been stored. The value suffix
is assumed. If this control argument is omitted, the user's default value segment is
searched for the menu.

-io_switch STR. -is STR
where STR is the name of an I/O switch for a window. The default is user_i/o.

-default_fkeys STR, -fkeys STR
specifies the keys to be used if the terminal does not have function keys or if the
terminal does not have the proper set of function keys. See "Notes on Function Keys"
below.

-function_keys SlR -fkeys STR
specifies the keys to be used to simulate function keys. This control overrides any
function key definitions already established for the terminal. See "Notes on Function
Keys" below.

5-7 CP51-o2

NOTES ON FUNCTION KEYS

Many terminals have function keys. On many of these terminals (such as the Honeywell
VIP780l) they are labelled "Fl", "F2", etc. If you type one of these function keys.
menu~et_choice returns the string "F*", where * is a one or two digit number signifying
which function key was pressed. It is possible to specify your own set of keystrokes to be
used in lieu of the terminal's function keys, or to specify a set of keystrokes to be used if
the terminal does not have enough function keys. These are done by using the -fkeys and
-dfkeys control arguments. Each of these control arguments is followed by a string. Each
character in this string is used to simulate a function key. The first character is used to
simulate function key 0, the next to simulate function key 1. etc. To simulate a given
function key, type esc-C, where C is the character corresponding to the function key. Thus
if the string is "0123456789", typing esc-2 will return F2.

The -fkeys control argument is used to specify keystrokes to be used instead of any which
might be defined for the terminal. If this control argument is given, then the simulation of
function keys always takes place.

The -dfkeys control argument is used if you want to use the terminal defined function keys
if possible, but wish to specify key sequences to be used to simulate function keys if
necessary. Each character in the string following -dfkeys corresponds to one function key. If
the character is a space, it means it makes no difference if the terminal has a function key
corresponding to that position. If the character is not a space, that character will be used to
simulate a function key if necessary. If the terminal does not have a function key for every
non-space character in the string, then the -dfkeys string is used to simulate function keys.
Thus, the string "1'1 ?p q" means that you do not care whether the terminal has a function
key 0 or a function key 3. but you wish to use function keys 1.2, and 4. If any of these 3
function keys is not present on the terminal, then esc-? will substitute for F1, esc-p will
substitute for F2, and esc-q will substitute for F4.

5-8 CP5l-02

Name: menu_list

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION

[menu_list {menu_starname} {-control_arg}]

FUNCTION

The menu_list command lists the names of the menu descriptions stored in a value segment

ARGUMENTS

is a starname that is used to search for menu descriptions. If it is omitted, the default
is **.

CONTROL ARGUMENTS

-pathname PATH, -pn PATH
is the pathname of the value segment in which the menu has been storec1. The value
suffix is assumed. If this control argument is not given, the user's default value segment
(udd > Project_id >Person_id >Person_id. value) is searched for the menu.

5-9 CP51-o2

window_call

Name: window_call

SYNTAX AS A COMMAND

window_call arguments {-contro1_args}

SYNTAX AS AN ACTIVE FUNCTION

[window_call arguments {-control args}]

FUNCTION

The window_call command provides a command interface to the video system.

ARGUMENTS

are listed below. A detailed description follows the control arguments section.

be 11
change_window, chgwd
clear_region, clrgn
c1ear_to_end_of_line, c1eol
c1ear_to_end_of_window, cleowd
clear_window, clwd
create_window, crwd
delete_chars, dlch
delete_window, d1wd
get_echoed_chars, gech
get_first_line, gfl
get_one_unechoed_char, gouch
get_position, gpos

CONTROL ARGUMENTS

-column C, -col C

get_terminal_height, gtmhgt
get_terminal_width, gtmwid
get_unechoed_chars, guch
get_window_height, gWdhgt
insert_text, itx
invoke
overwrite_text, otx
revoke
scroll_region, scrgn
set_position, spos
set_position_re1, sposrel
supported_terminal
sync
video_invoked
write_sync_read, wsr

specifies a column on the screen. The leftmost column is 1. If -column is not specified,
the default is the remainder of the screen.

-count N, -ct N
specifies a count See the specific requests for details.

-height NL, -hgt NL
specifies the height of a region or a window for a request If -height is not specified,
the default is the remainder of the screen.

5-10 CP51-02

window_call

-io switch WINDOW, -is Wn~"TIOW
,.... where WINDOW is an I/O switch. The operation is performed on the window associated

with the named I/O switch.

-line L
specifies a line on the screen. The top line is line 1.

-line_speed N, -Is N
specifies the speed of the terminal's connection 10 Multics. N is in characters per
second.

-terminal_type STR, -ttp STR
where STR is a terminal type. Information on accepted terminal types can be obtained
with the print_terminal_types (ptt) command.

-string TEXT. -str TEXT
specifies a text string for display. If TEXT contains blanks or other special command
processor characters it must be enclosed in quotes.

-width NC. -wid NC
specifies the width of a region for a request If -width is not specified. the default is
the remainder of the screen.

Argument Descriptions

bell

SYNTAX AS A COMMAND

wdc bell {-io_switch WINDOW}

FUNCTION

activates the terminal bell. On some terminals. this may produce a visual indication instead of
an audible tone. The cursor position must be defined. The cursor is positioned to the current
position of the specified window, if it is elsewhere on the screen. If -io_switch is not
specified. user_i/o is assumed.

5-11 CP51-o2

change_window, chgwd

SYNTAX AS A COMMAND

wdc chgwd {-line L} {-column C} {-height NL} {-width NC}
{-io_switch WINDOW}

FUNCTION

window_call

changes the origin or size of the specified window. At least one of -line, -column, -height.
or -width is required. -line L specifies the line number or the screen where the window is
to begin. If -line is not supplied, the default is column 1. If only the -line control
argument is given (changing the top line of the window). the window length is automatically
adjusted. That is, if the -line control argument increases the value of the top line number
(moving the window down), the window length shrinks accordingly. However, if the -line
control argument decreases the top line number (moving the window up), the length remains
the same. -column C specifies the column number on the screen where the WIndow is to
begin. If -column is not supplied, the default is column 1. If only the -column control
argument is given (changing the first column on the left). the window width is automatically
adjusted. -height NL specifies the height of the window. If height is not specified. the
default is the remainder of the screen. If only the -height control argument is given
(changing the window length). the origin line remains the same. -width NC specifies the
width of the window. If width is not specified, the default is the remainder of the screen.
If only the -width control argument is given (changing the window width), the origin column
remains the same. If -io_switch is not specified. user_i/o is assumed. See Section 2 for
more information on the use of this command.

SYNTAX AS A COMMAND

wdc clrgn -line N -column N -height N -width N {-io_switch WINDOW}

FUNCTION

clears the specified rectangular region of the window to blanks. The region may be part or
all of the window. If -io_switch is not specified, user_i/o is assumed. See Section 2 for
more information on the use of this command.

SYNTAX AS A COMMAND

wdc cleol {-io_switch WINDOW}

5-12 CP51-o2

FUIVCTJON

clears the line from the current cursor position to the end of the line to blanks. The current
cursor position must be defined. If -io_switch is not specified, user_i/o is assumed.

SYNTAX AS A COMMAND

wdc cleowd {-io_switch WINDOW}

FUNCTION

clears the window from the current cursor position to the end of the window to blanks. The
current cursor position must be defined. If -io_switch is not specified, user_i/o is assumed.

clear_window, clwd

SYNTAX AS A COMMAND

wdc clwd {-io_switch WINDOW}

FUNCTION

clears the specified window so that its content becomes entirely blank. The current cursor
position is defined to be at Line 1, Column 1 of the specified window. If -io_switch is not
specified, user_i/o is assumed. See Section 2 for more information on the use of this
command.

create_window, crwd

SYNTAX AS A COMMAND

wdc crwd -io_switch WINDOW {-line L -column C -height NL -width NC}

FUNCTION

creates a new window on the screen with name (and I/O switch) WINDOW. -line L specifies
the Hne number on the screen where the window is to begin. If -line is not supplied, the
default is line 1. -column C specifies the column number on the screen where the window is
to begin. If -column is not supplied, the default is column 1 -height NL specifies the height
of the window. If -height is not specified, the default is the remainder of the screen.
-width NC specifies the width of the window. If -width is not specified, the default is the
remainder of the screen. The window is blank when created, and the cursor position is Line
1, Column 1 of the new window. See Section 2 for more information on the use of this
command.

5-13 CP51-o2

window_call

delete_chars, dlch

SYNTAX AS A COMMAND

wdc dlch -count N {-io_switch WINDOW}

FUNCTION

deletes N characters to the right of the current cursor position on the current line. The
cursor remains stationary; characters to the right of the deleted characters move to the left to
fill the vacated space. The current cursor position must be defined. If -io_switch is not
specified, user_if 0 is assumed.

delete_window, dlwd

SYNT AX AS A COMMAND

wdc dlwd -io_switch WINDOW

FUNCTION

destroys the specified window. The I/O switch is closed and detached. See Section. 2 for
more information on the use of this command.

SYNT AX AS A COMMAND

wdc gech -count N {-io_switch WINDOW}

FUNCTION

reads characters from the terminal until either N characters or a break character is read. All
characters except the break are echoed on the screen in the current window. For information
on break characters, see the break_table control order in the description of window _io_ in
Section 7. Tne current cursor position must be defined. If -io_switch is not specified,
user_i/o is assumed.

5-14 CP51-02

window_call

ACTIVE FUNCTION USAGE

two strings are returned. The first contains any nonbreak characters read, and the second
contains the break character. if any.

SYNTAX AS A COMMAND

wdc gfl {-io_switch WINDOW}

FUNCTION

prints the line on the screen where the specified window begins. If -io_switch is not
specified, user_if 0 is assumed.

ACTIVE FUNCTION USAGE

returns the line on the screen where the specified window begins. If -io_switch is not
specified, user_if 0 is assumed.

SYNTAX AS A COMMAND

wdc gouch {-io_switch WINDOW}

FUNCTION

reads a single unechoed character from the terminal. If -io_switch is not specified, user_i/o
is assumed.

ACTIVE FUNCTION USAGE

returns a single unechoed character from the terminal.

get_position, gpos

SYNTAX AS A COMMAND

wdc gpos {-io_switch WINDOW}

FUNCTION

prints the current line and column position of the cursor.

5-15 CP51-o2

window _call window_call

ACTIVE FUNCTION USAGE

returns the line and column position as a pair of integers separated by a space. If -io_switch
is not specified, user_i/o is assumed.

SYNTAX AS A COMMAND

wdc gtmhgt

FUNCTION

prints the total number of lines on the user's terminal.

ACTIVE FUNCTION USAGE

returns the total number of lines on the user's terminal.

get_terminal_ width, gtmwid

SYNTAX AS A COMMAND

wdc gtmwid

FUNCTION

prints the total number of columns on the user's terminal.

ACTIVE FUNCTION USAGE

returns the total number of columns on the user's terminal.

SYNTAX AS A COMMAND

wdc guch -count N {-io_switch WINDOW}

FUNCTION

reads characters from the terminal until either N characters or a break character are read.
The current cursor position must be defined. If -io_switch is not specified, user_i/o is
assumed.

5-16 CP51-02

ActiVE FUNCTION USAGE

returns two strings. The first contains any nonbreak characters read, and the second contains
the break character, if any.

get_window _height, gwdhgt

SYNTAX AS A COMMAND

wdc gwdhgt {-io_switch WINDOW}

FUNCTION

prints the height of the specified window.

insert_text, itx

SYNTAX AS A COMMAND

wdc itx -string window {-io_switch WINDOW}

FUNCTION

displays the text string window at the current cursor position. If there are any characters to
the right of the current position on the current line, they are moved to the right to
accommodate the new string. There is no wraparound feature; if text goes off the screen it
is dropped. The text string window may contain only printable ASCII characters. Use the
io_call put_chars command to display nonprintable characters in a readable form. If
-io_switch is not specified, user_i/o is assumed.

invoke

SYNTAX AS A COMMAND

wdc invoke {-line_speed N, -ls N}

FUNCTION

activates the video system on the user's terminal. If no line speed is specified. the current
line speed is used. The user's terminal must be attached with the tty_ I/O module. If.
graphics or auditing are in use they must be removed before this command is given. The
settings of the following tty_ modes are copied when the video system is invoked: vertsp.-
can, erkl, esc. red, and ctl_char. In addition. if ApI is set on video system invocation, Amore.
will be set in the video system. (For more details on modes, see the window_io_ I/O
module in Section 7.) Similarly, the settings of the current erase and kill characters are
copied when the video system invoked. (See "Real-Time Editing" in Section 4 for details.)
See Section 2 for more information on the use of this command.

5-17 CP51-o2

I

window_call

overwrite_text, otx

SYNTAX AS A COMMAND

wdc otx -string STR {-io_switch STR}

FUNCTION

displays the text string STR at the current cursor position in the window. If there is any
text to the right of the current position in the window. it is overwritten with the supplied
string. The text string STR may contain only printable ASCII characters. Use the io_call
put_chars command to display nonprintable characters in a readable form. If -io_switch is
not specified. user_i/o is assumed.

revoke

SYNTAX AS A COMMAND

wdc revoke

FUNCTION

removes the video system from the user's terminal. The standard tty_attachment is restored.
The settings of the following modes are copied when the video system is revoked: vertsp,
can, erkl, esc, red, and ctl_char. If Amore is set while in the video system, ApI mode will
be set after revoking the video system. (Por more details on modes, see the window_io_ I/O
module in Section 7.) Similarly, the settings of the current erase and kill characters are
copied when the video system is revoked. (See "Real-Time Editing" in Section 4 for details.)
See Section 2 f or more information on the use of this command.

scroll_region, scrgo

SYNTAX AS A COMMAND

wdc scrgn -count N {-line L -height C -io_switch WINDOW}

FUNCTION

scrolls the specified region N lines as specified by -count. The specified region is the whole
width of the screen. It can be a whole window or part of a window. If -count N is
negative the window is scrolled down, and if it is positive the window is scrolled up. If lines
are scrolled off the screen they are dropped. If -line is not supplied, the default is 1. If
-height is not supplied, the remainder of the window is scrolled. If -io_switch is not
specified, user _i/o is assumed.

5-18 CP51-02

window_call

set_positiony spos

SYNTAX AS A COMMAND

wdc spos -line L -column C {-io_switch WINDOW}

FUNCTION

positions the cursor to the specified line and column of the specific window. If -io_switch is
not specified, user_i/o is assumed.

SYNTAX AS A COMMAND

wdc sposrel -line L -column C {-io_switch WINDOW}

FUNCTION

changes the cursor position by N lines and N columns. If -io_switch is not specified,
user_i/o is assumed. The current cursor position must be defined. One of the control_args
must be specified and both may be specified. Whichever control_arg is not specified defaults
to zero.

supported_terminal

SYNTAX AS A COMMAND

wdc supported_terminal {-ttp terminal_type}

FUNCTION

returns "true" if the video system can be invoked on the specified terminal type. If no
terminal type is specified, the current terminal type is used.

sync

SYNTAX AS A COMMAND

wdc sync {-io_switch WINDOW}

FUNCTION

waits for the last operation performed on the window to be completed. Over certain
networks it may not be possible to actually wait for delivery of the characters to the
terminals. If -io_switch is not specified, user_if 0 is assumed.

5-19 CP51-o2

window_call window_call

SYNTAX AS A COMMAND

wdc video_invoked

FUNCTION

returns "true" if the video system is in use in the user's process.

SYNTAX AS A COMMAND

wdc wsr -string STR -count N {-io_switch WINDOW}

FUNCTION

displays a prompting string STR at the current cursor position in the window, and then reads
input typed in response to the prompt Characters are read unechoed. until either N
characters or a break character is read. If -io_switch is not specified, user_i/o is assumed.

ACTIVE FUNCTION USAGE

prints a prompting string and returns the characters read.

5-20 CP51-o2

SECTION 6

PL/I SUBROUTINE INTERFACE

This section contains descriptions of the PL/I subroutines used by the menu and video
software, presented in alphabetical order.

6-1 CP51-o2

Name: menu_

The menu_ subroutine provides menu display and selection services. It can display a menu in
a window and get a selection from the user. The entries work with menu objects. A menu
object is a . pointer to an internal description of a menu. The caller is expected to preserve
the pointer, and to perform no operation on it other than comparison with the null pointer
or with another menu object, except through the menu_ subroutine. Declarations for the
entries and the associated structures are in the include file menu_dcls.incl.pll described below
in "Data Structures".

Entry: menu_Screate

This entry creates a menu object given its description. The menu data structure is allocated
in a caller supplied area, and may be saved across processes by calling menu_$store. A
pointer to the new menu is returned, also with the minimum size of a window to hold the
menu.

USAGE

dec 1 are menu Screate entry «~'c) char (tc) vary i ng, (*) char (*) vary i ng,
(*) char (,~) vary i ng, ptr, (*) char (1) una 1, ptr, ptr, ptr,
fixed bin (35»;

call menu Screate (choices, headers, trailers, format_ptr, keys, area_ptr,
needs_ptr, menu, code);

ARGUMENTS

choices
is an array of the names of the options. (Input)" If the maximum number of choices is
exceeded, the code menu_et_$too_many_options is returned. The current maximum is 61.

headers
is an array of headers. (Input) If the length of the first header is zero. then no headers
are used. This allows the caller to specify no headers, without resorting to a zero-extent
array, which is invalid PL/I.

trailers
is an array of trailers. (Input) As for headers, a zero-length first trailer means that no
trailers are displayed.

format_ptr
points to a structure, menu_format. that controls formatting of the menu. (Input) This
structure is described below in "Data Structures".

6-2 CP51-02

keys
is an array specifying the keystroke for each option. (Input) The array must have at
least as many elements as the array of option names. If not, the error code
menu_et_$too_few_keys is returned. It may have more keys than choices. Each item of
the array must be unique, or menu_et_$keys_not_unique is returned. If the valid keys
(the keys for which there are choices) are either all upper case or all lower case,
menu_$get_choice will treat upper and lower case letters identically.

area_ptr
is a pointer to an area where the menu description is allocated. (Input) If the area is
not large enough, the area condition is signalled. If this pointer is nUll, the system free
area is used.

needs_ptr
points to the menu_requirements structure giving requirements to display the menu.
(Input) The structure is described below in "Data Structures". The caller supplies this
structure and fills in the version number menu_requirements_ version_I, the remaining
members are output from this entry.

menu
is a newly created menu object (Output)

code
is a standard system error code, or an error code from menu_et_o (Output)

Entry: menu_Sdelete

This entry deletes a menu object from a specified value segment

USAGE

dec 1 are menu_$de 1 ete entry (char (*) ~ char (ic) , char (ic) , fixed bin (35»;

call menu_$delete (dirname, entryname, menu_name, code);

ARGUMENTS

dirname
is the pathname of the containing directory. (Input)

entryname
is the entryname of the segment (Input) It must have the vaiue suffix.

menu_name
is the name that was assigned to the menu when it was stored (see the description of
menu_$store). (Input)

code
is a standard system error code. (Output)

6-3 CP51-Q2

Entry: menu_Sdescribe

This entry fills in a caller-supplied data structure describing some of the aspects of a menu
object The caller can use this to ensure a window is sufficiently large to hold a menu.

USAGE

declare menu_$describe entry (ptr, ptr, fixed bin (35»;

call menu_$describe (menu, needs_ptr, code);

ARGUMENTS

menu
is the menu object to describe. (Input)

needs_ptr
points to a structure declared like menu_requirements described in "Data Structures"
below. (Input) The caller fills in the version to be menu_requirements_ version_I, and the
remaining members are f iIled in by this en try.

code
is a standard system error code. (Output)

Entry: menu_Sdestroy

This entry is used to delete a menu object The caller uses this to free storage of a menu,
since the representation of a menu is not known outside the menu_ subroutine. This entry
has no effect on screen contents or on stored menus.

USAGE

declare menu $destroy entry (ptr, fixed bin (35»;

call menu_$destroy (menu, code);

ARGUMENTS

menu
is the menu object to destroy. (Input)

code
is a standard system error code. (Output)

6-4 CP51-o2

Entry: menu_Sdisplay

This entry displays a menu object on a supplied window.

USAGE

declare menu_$display entry (ptr, ptr, fixed bin (35});

call menu $display (window, menu, code);

ARGUMENTS

window
is a pointer to an IOCB for an I/O switch attached through window_io_. (Input) This
window must be large enough to hold the menu. A menu window should be used ONLY
for menu I/O, if redisplay optimizations are desired.

menu
is the menu object to be displayed. (Input)

code
is a standard system error code. (Output)

This entry returns a choice from a menu. The menu is assumed to be already displayed in
the window.

USAGE

declare menu_$get_choice entry (ptr, ptr, ptr, bit (l) aligned, fixed bin,
fixed bin (35»;

call menu_$get_choice (window, menu, function_key_info, fkey, selection,
code) ;

ARGUMENTS

window
is a pointer to the IOCB for the I/O switch used to display the menu. (Input)

menu
is the menu object on display in the window. (Input)

function_key _info
is a pointer to a data structure describing the function keys available on the terminal.
(Input) This data structure is obtained by the caller from the ttt_info_$function_key_data
subroutine. If this pointer is nUll, no function keys are used.

6-5 CP51-o2

fkey
returns a value of "l"b if a function key was hit instead of a menu selection. (Output)

selection
gives· the option number or function key number chosen by the user. For an option, it
is a number between 1 and the highest defined option, inclusive. For a function key, it
is the number of the function key.

code
is a standard system error code. (Output)

NOTES

If a terminal has no function keys, the caller can define input escape sequences for function
keys. These may be chosen to have mnemonic value to the end user. For example, if
Function Key 1 is used to print a help file, the input sequence ESC h could replace it In
some applications, this will be easier for the end user to remember than an unlabelled
function key. The caller can define these keys by allocating and filling in the same function
key structure normally returned by the ttt_info_ subroutine.

If a key is hit that is not one of the option keys and is not a function key. then the
terminal bell is rung.

Entry: menu_Slist

This entry lists the menu objects stored in a specified value segment

USAGE

dec 1 are menu $1 is t entry (char (*), char Uc), char ()'c) , ptr, fixed bin, ptr,
fixed bin (35»;

call menu_$list (dirname, entryname, menu_starname, area_ptr,
menu_list_info_version, menu_list_info_ptr, code);

ARGUMENTS

dirname
is the pathname of the containing directory. (Input)

entryname
is the entryname of the segment (Input) It must have the value suffix.

menu_starname
is matched against the names of the menus stored in the segment. (Input) Only names
that match menu_starname are returned. (see the description of menu_$store).

area_ptr
is a pointer to an area in which to allocate the structure containing the menu names.
(Input) If it is nUll, the system free area is used.

6-6 CP51-o2

menu_list_inf 0_ version
is the version of the menu_list_info structure that the caller expects. (Input) It must be
a supported menu_list_info structure version. The only supported version is
menu_Iist_inf 0_ version_l.

menu_list_inf o_ptr
is a pointer to the menu_list_info structure, described below under "Data Structures".
(Output)

code
is a standard system error code. (Output)

Entry: menu_Sretrieve

This entry retrieves a menu from a specified segment The segment must be a value segment
The menu data structure is allocated in a caller-supplied area. The menu information is
copied from the menu object stored in the segment into the newly allocated structure.

USAGE

dec 1 are menu S retr i eve entry (char Uc), char (*), char (,,:) , ptr, ptr,
fixed bin (35»;

call menu_Sretrieve (dirname, entryname, menu_name, area_ptr, menu_ptr, code);

ARGUMENTS

dirnarne
is the pathname of the containing directory. (Input)

entryname
is the entryname of the segment (Input) It must have the value suffix.

menu_name
is the name that was assigned to the menu when it was stored (see the description of
menu_$store). (Input)

area_ptr
is a pointer to an area where the menu object is allocated. (Input) If this argument is
nUll, the system free area is used. If the area is not large enough, the area condition is
signalled.

menu_ptr
is a pointer to the menu object that is retrieved from the segment (Output)

code
is a standard system error code. (Output)

6-7 CP51-o2

Entry: menu_Sstore

This entry stores a menu object in a specified segment. The specified segment must be a
value segment.

USAGE

dec 1 are menu $s tore entry (char {"c) , char Uc), char (*), bit (1) ali gned, ptr,
fixed bin (35»;

call menu_$store (dirname, entryname, menu_name, create_sw, menu_ptr, code);

ARGUMENTS

dirname
is the pathname of the containing directory. (Input)

entryname
is the entryname of the segment. (Input) It must have the value suffix.

menu_name
is a name to be assigned to the menu. (Input)

create_sw
determines whether or not the segment is created if it does not already exist. If the
segment does not exist, a value of "l"b will cause it to be created. (Input)

menu_ptr
is a pointer to the menu object that is to be stored in the segment (Input)

code
is a standard system error code. (Output)

DATA STRUCTURES

A menu is described by the "menu_format" structure. It is declared in menu_dcls.inc1.pll.

dcl 1 menu format
2 version
2 constraints,

3 max_width
3 max_height

2 n_columns
2 flags,

3 center_headers
3 center_trailers
3 pad

2 pad_char

aligned based (menu_format_ptr),
fixed bin,

fixed bin,
fixed bin,
fixed bin,

bit (1) una 1 ,
bit (1) una 1 ,
bi t (34) unal,
char (1);

6-8 CP51-02

STRUCTURE ELEMENTS

menu_format
specifies the format for menu display. (Input) It gives limits for number of lines and
characters per line. specifies the number of columns (of options). and controls centering
of headers and trailers.

version
must be menu_f ormat_ version_I. (Input)

max_width
is the width of the window the menu will be displayed on. (Input) This value is used
for centering headers and aligning columns.

maX_height
is the maximum height of the window. in lines. (Input)

n_columns
is the number of columns to use in displaying options. (Input)

center _headers
if set, header lines will be centered using the window width supplied above. (Input) If
not set, they are flush with the left edge of the window.

center_trailers
same as center_headers, but for trailers. (Input)

pad
must be "O"b. (Input)

pad_char
is the character used for centering headers and/or trailers. (Input)

THE MENU LIST INFO STRUCTURE - -
This entry returns information in the menu_list_info structure. found in the include file
menu_list_info.incl.pll. shown below:

dcl 1 menu_list_info
2 version
2 n names
2 name_string_length
2 names

3 position
3 length

2 name_string character

aligned based (menu_list_info_ptr),
fixed bin,
fixed bin,
fixed bin (21),
(menu list n names refer

(menu list-info.n names» aligned,
fixed bin (21), -
fixed bin (21),
(menu_list_name_string_length
refer (menu_list_info.name_string_length»
unaligned;

6-9 CP51-Q2

STRUCTURE ELEMENTS

version
is the version of this structure, menu_list_info_version_l. (Output)

n_narnes
is the number of menu object names that matched the supplied starname. (Output)

name_strintt-Iength
is the total length of all the names that matched the supplied starname, concatenated
together. (Output)

names
is an array of information with one entry for each name that matched the specified
starname. (Output)

position
is the position in the string menu_list_info.name_string of this menu name. (Output)

length
is the length of this menu name in the string menu_list_info. name_string. (Output)

name_string
contains all the returned names, concatenated together. (Output) The PL/I "defined"
attribute can be used to advantage to refer to individual names. For example, we wish to
print the menu name indexed by name_index.

begin;
declare this_name character (menu_list_info.length (name_index»

defined (menu_list_info.name_string)
position (menu_list_info.position (name_index»;

call ioa_ (liThe "'d'th menu name is: "'a", name_index, this_name);
end;

6-10 CP51-02

THE MENU REQUIREMENTS STRUCTURE

The requirements for a menu are specified by the menu_requirements structure. It is declared
in menu_dcls.incl. pll.

del 1 menu_requirements
2 version
2 lines_needed
2 width_needed
2 n_options

STRUCTURE ELEMENTS

version

aligned based (menu_requirements_ptr),
fixed bin,
fixed bin,
fixed bin,
fixed bin;

is set by the caller. and must be menu_requirements_version_1. (Input)

lines_needed
is the number of lines required. (Output) If the window does not have this number of
lines, menu display will fail.

width_needed
is the number of columns needed. (Output)

n_options
is the number of options defined. (Output)

The include file, menu_dcls.incl. pU, also provides an array of key characters that may be
used in the menu to select options. This array can be used by the caller as input to the
menu_$create entry. Its name is MENU_OPTION_KEYS.

6-11 CP51-o2

The video_data_ subroutine is a data segment containing information about the video system.

This is the terminal control switch IOCB pointer. If the video system is activated for the
user's terminal, this pointer is nonnull, and points to the 10CB for the switch user_terminal_.

USAGE

fnt typ declare video_data_$terminal_iocb pointer external static;

NOTES

User programs may use this pointer for two purposes:

1. Inquiring as to whether the video system is activated. by checking to see if the pointer
is nUll.

2. Determining the physical characteristics and capabilities of the terminal. This may be
accomplished with the get_capabilities control order, described under the window_io_ I/O
module. The height and width returned will be that of the physical terminal screen.

No other manipulations of this switch are permitted.

6-12 CP51-o2

This subroutine provides interfaces for activating and de-activating the video system.

This entry removes the existing attachment of the user's terminal, replacing it with the video
system. When this entry returns successfully, the switch user_terminal_ is attached through
tc_io_ to the user's terminal. The switch user_ i/o is attached through window_io_ to a
window covering the entire screen. invoked: vertsp, can, erkl, esc, red, and ctl_char. In
addition, if ApI is set on video system invocation, Amore will be set in the video system.
(For more details on modes, see the window_io_ I/O module.) Similarly, the settings of the
current erase and kill characters are copied when the video system is invoked. (See
"Real-Time Editing" for details.) To see how the standard I/O switch attachments change
when you activate the video system on your terminal, refer to Figure A-2 in Appendix A.

USAGE

ARGUMENTS

code
is a standard system error code. (Output)

reason
contains information about the error, if there is one. (Output) (128 characters are enough
to hold any message that may be returned in reason~)

NOTES

If the video system is already in service on the user's terminal, the status code
video_et_$wsys_invoked is returned, and the value of reason is not defined.

If the activation of the video system fails, the original attachment of the terminal (through
tty -> is restored, and inf ormation is returned in reason and code.

In particular, if the switch user_i/o is not currently attached through tty_, the code
video_et_$switch_not_attached_with_tty_ is returned. This may indicate that the user has
auditing or the graphic system in place. The message returned in reason advises the user to
remove graphics or auditing and try again.

6-13 CP51-o2

This entry reverses the actions of video_utils_$turn_oo_login_channel. That is, it removes the
window attachment of user_i/o, detaches terminal control from the user's terminal, and
attaches user_i/o to the user's terminal via tty_. The settings of the following modes are
copied when when the video system is revoked: vertsp, can, erkl, esc, red, and ctl_char. If
Amore is set while in the video system, ApI mode will be set after revoking the video system.
(For more details on modes, see the window_io_ I/O module.) Similarly, the settings of the
curren t erase and kill characters are copied when the video system is revoked. (See
"Real-Time Editing" for details.) It is the user's responsibility to detach any windows other
than user _io before calling this en try poin t

USAGE

ARGUMENTS

code
is a standard system error code. (Output) It is nonzero if and only if the video system
can not be removed from the user's terminal.

6-14 CP51-02

window_ window_

Name: window_

The window_ subroutine provides a terminal independent interface to video terminal
operations. More specifically, it controls and performs I/O to a window.

The window_ subroutine is used in conjunction with the iox_ subroutine call entry points in
the window_io_ I/O module. The window_ and video_utils_ subroutines together perform the
same functions as the window_call command.

The virtual terminal implemented by window_ corresponds closely to common video terminals.
The features of the terminal are defined implicitly by the entries below. Not all entries can
be supported on all terminals. The result of calling an unsupported feature is the error code
video_et_$capability _lacking. Programs can determine whether the device in question supports
a given operation by using a get_capabilities control order, described under the window_io_
I/O module.

Additional terminals may be supported by defining their video attributes in the Terminal Type
File (TTF). The TIF is described in the Multics Programmer's Reference Manual, Order
No. AG91.

Some entry points require that the current cursor posItIOn be defined when they are called.
The current position is defined unless a call is made to the write_raw _text entry point, or an
asynchronous event changes the window contents. If the current position is not defined, these
entry points will return the status code video_et_$cursor_position_undefined.

If an asynchronous event changes the state of the window, status will be set for the window.
Once window status is set, all calls to window_on that window will return the status code
video_et_$window_status_pending until a get_window_status control order is used to pick up
the status.

The calling sequences for all the entry points are in the include file window_dcls.incl.pU.

Entry: window_Shell

This entry activates the terminal alarm. For most terminals, this will be the audible bell. For
some it will be a visible signal.

USAGE

dec 1 are w i.ndow_$be 11 entry (ptr, fixed bin (35»;

caii wi ndow_$beiI (iocb_ptr, code);

ARGUMENTS

iocb_ptr
is a pointer to an IOCB for a switch attached with window_io_. (Input)

code
is a standard system error code. (Output)

6-15 CP51-o2

window_ window_

NOTES

The current cursor position must be dfined for this call. If the cursor is in some other
window on the screen when this call is made, it is moved to the current position in this
window.

Entry: window _Schange_column

This entry moves the cursor to a different column on the current line, without changing the
line.

USAGE

declare window_$change_column entry (ptr, fixed bin, fixed bin (35»;

call window_$change_column (iocb_ptr, new_column, code);

ARGUMENTS

iocb_ptr
is a pointer to an IOCB for a switch attached with window_io_. (Input)

new_column
is the new column. (Input)

code
is a standard system error code. (Output)

NOTES

The current cursor position must be defined.

This entry moves the cursor to a new line without changing the column.

USAGE

declare window_$change_line entry (ptr, fixed bin, fixed bin (35»;

ARGUMENTS

iocb_ptr
is a pointer to an lOeB for a switch attached with window_io_. (Input)

new_line
is the new line. (Input)

6-16 CP51-o2

window_

code
is a standard system error code. (Output)

This entry replaces the contents of the region specified with spaces, and leaves the cursor at
the upper left~hand corner of the region. The region is defined by giving the upper
left-hand corner (line and column), and the width and height of the region.

USAGE

declare window_$clear_region entry (ptr, fixed bin, fixed bin, fixed bin,
fixed bin, fixed bin (35»;

call window $clear region (iocb_ptr, start_line, start_col, n_lines, n_cols,
code); -

ARGUMENTS

iocb_ptr
is a pointer to an IOCB for a switch attached with window_io_o (Input)

start_line
is the number of the line where clearing will begin. (Input)

start_col
is the nu..mber of Lhe column where clearing will begin. (Input)

n_lines
is the number of lines which will be cleared. (Input)

n_cols
is the number of columns which will be cleared. (Input)

code
is a standard system error code. (Output)

NOTES

The rectangular region described in cleared. The cursor position defined at (start_line,
start_coI).

6-17 CP51-02

window_ window_

This entry clears everything to the right of the cursor -on the current line to spaces. Positions
to the left of the cursor are not affected. The cursor is not moved.

USAGE

ARGUMENTS

iocb_ptr
is a pointer to an IOCB for a switch attached with window_io_. (Input)

code
is a standard system error code. (Output)

NOTES

The cursor position must be defined.

This entry clears all of the window between the cursor and the end of the window. This
includes everything to the right of the cursor on the current line, and all lines below the
cursor. The cursor is not moved.

USAGE

ARGUMENTS

iocb_ptr
is a pointer to an IOCB for a switch attached with window_io_. (Input)

code
is a standard system error code. (Output)

NOTES

The current cursor position must be defined.

6-18 CP51-o2

window_ window_

This· entry clears the entire window to spaces, and leaves the cursor at home.

USAGE

declare window_$clear_window entry (ptr, fixed bin (35»;

call window_$clear_window (iocb_ptr, code);

ARGUMENTS

iocb_ptr
is a pointer to an IOCB for a switch attached with window _io_. (Input)

code
is a standard system error code. (Output)

NOTES

The cursor position is defined to be at line 1, column 1 after the screen is cleared.

Entry: window _Screate

This entry creates a new window on the terminal screen.

USAGE

declare window_$create entry (ptr, ptr, ptr, fixed bin (35»;

call window $create (terminal_iocb_ptr, window_info_ptr, window_iocb_ptr,
code);

ARGUMENTS

terminal_iocb _ptr
is a pointer to an IOCB for the terminal control switch. (Input) Normally this should be
video_data_$terminal_iocb.

window _inf o_ptr
is a pointer to a standard window_position_info structure, as declared in
window _control_inf o.incl. pl!. (Input)

window_iocb_ptr
is a pointer to a detached IOCB pointer. (Input) It may be obtained with iox_$find_iocb
which must be done before the call to window_$create. For example:

where the value returned for window_iocb_ptr is used in the call to window_$create.

6-19 CP51-o2

window_ window_

code
is a standard system error code. (Output)

NOTES

The window_info_ptr must point to a window_position_info structure. as declared in
window_control_info.incl.pll. If window_position_info.width is set to zero. the window will
occupy the full width of the screen. Currently windows must occupy the full width of the
screen. If tc_io_.*.*in window_position_info.height is set to zero. the remainder of the screen
is used. The iocb_ptr is an input argument. iox_$find_iocb may be used to obtain an
ioc b _ptr for a new switch.

Entry: window _Sdelete_chars

This entry deletes characters on the current line. Characters to the right of the cursor are
moved to the left Character positions opened up on the right margin are filled with spaces.
It is an error to call this entry point if the terminal does not support the delete chars
operation.

USAGE

declare window_$delete_chars entry (ptr, fixed bin, fixed bin (35»;

ARGUMENTS

iocb_ptr
is a pointer to an IOCB for a switch attached with window_io_. (Input)

n_chars
is the number of characters (starting at the current cursor position) that will be removed
from the screen. (Input) If n_chars is zero. no action is taken.

code
is a standard system error code. (Output)

NOTES

The current cursor position must be defined. The number of characters specified by n_chars
are deleted, and the remaining characters on the line, if any, move leftward to occupy the
space.

6-20 CP51-o2

Entry: window _$destroy

This entry destroys an existing window, leaving its IOCB in a detached state.

USAGE

declare window $destroy entry (ptr, fixed bin (35»;

call window $destroy (window_iocb_ptr, code);

ARGUMENTS

window _iocb_ptr
is a pointer to an lOeB attached with window_$create. (Input)

code
is a standard system error code. (Output)

Entry: window _$edit_line

This entry allows applications to preload the video editor input buffer with a string.

USAGE

declare window_$edit_line entry (pointer, pointer, pointer, fixed bin (21),
fixed bin (2 1), fixed bin (35»;

call window $edit line (iocb ptr, window edit line info ptr, buffer_ptr,
buffe~_len,-~_returned: code); - - - -

ARGUMENTS

window _iocb_ptr
is a pointer to an IOCB for a switch attached with window_io. (Input)

window _edit_line_inf o_ptr
is a pointer to a window_edit_line_info structure, as declared in window_control_info.incl.pll
(described below). (Input)

version
is the version number of the structure. (Input) This is currently window~edit_line_version_1.

line_ptr
is a pointer to the initial text string to be loaded into the input buffer before editing
begins. (Input)

line_length
is the length of the string pointed to by line_ptr. (Input)

6-21 CP51-02

window_ window_

buffer_ptr
is a pointer to a buffer where the users input will be put (Input)

buffer_len
is the size of the input buffer. (Input)

n_returned
is the number of characters in the final output line. (Output)

code
is a standard system error code. (Output)

This entry is used to return the current position of the cursor. If the last operation done to
the terminal was in some other window, this will not be the actual position of the cursor on
the screen.

USAGE

declare window $get cursor position entry (ptr, fixed bin, fixed bin, fixed
bin (35»; - -

call window_$get_cursor_position (iocb_ptr, line, col, code);

ARGUMENTS

iocb_ptr
is a pointer to an IOCB for a switch attached with window_io_. (Input)

line
is the line number. (Output)

col
is the column poSition. (Output)

code
is a standard system error code. (Output)

NOTES

The current cursor position must be defined.

6-22 CP51-02

window_ window_

This entry accepts input from the typist, echoing the characters as typed, until either a
specified number of characters are read, or a break character is encountered. By default, the
break characters are the control characters plus DEL (177 octal).

USAGE

declare window_$get_echoed_chars entry (ptr, fixed bin (21), char (*), fixed
bin (21), char (1) vary i ng, fixed bin (35»;

call window_$get_echoed_chars (iocb_ptr, n_to_get, buffer, n_got, break,
code) ;

ARGUMENTS

iocb_ptr
is a pointer to an IOCB for a switch attached with window_io_. (Input)

n_to~et

is the number of columns (N) between the cursor and the end of the line. (Input) At
most N characters will be returned.

buffer
is the caller-supplied buffer that holds characters returned. (Input)

n~ot
is the number of characters returned. (Output) Each character is echoed.

break
is the character that causes the echoing to stop. (Output) This character is not echoed.

code
is a standard system error code. (Output)

NOTES

This entry point returns no more than n_to~et characters in buffer. It reads and echoes
characters until either (1) it has read n_to~et characters, or (2) it has read a break
character. If it stops due to a break character, the break character is returned in break,
otherwise break is equal to ''''

6-23 CP51-o2

window_ window_

This entry reads a single character, unechoed, from the terminal. Optionally, it can return
instead of waiting if there are no characters available.

USAGE

declare window_$get_one_unechoed_char entry (ptr, char (1) varying, bit (1)
ali gned, fixed bin (35»;

ARGUMENTS

iocb_ptr
is a pointer to an IOCB for a switch attached with window_io_. (Input)

char_read
is the read character. (Output) If block_flag is "O"b, and no input is typed ahead, then
this will be a zero length character string.

block_flag
if this flag is "1 "b, input from the terminal is awaited if none is available. (Input) If it
is "O"b, and no input is available, then this entry returns immediately, and sets char_read
to ""

code
is a standard system error code. (Output)

NOTES

Beware of the PL/I language definition of character string comparisons when using this entry
with a block flag of "O"b. In PL/I, both of the following comparisons are true:

(II II = II II)

(1111 = \I II)

That is, a zero length varying string compares equally to a single space. To test if char_read
is nonem pty, use an expression like:

(length (char_read) > 0)

6-24 CP51-02

window_

This entry accepts inpui from the typist, jeaving it unechoed. untii either a specified number
of characters are read, or a break character is encountered.

USAGE

declare window_$get_unechoed_chars entry (ptr, fixed bin (21), char (*), fixed
bin (21), char (1) vary i ng, fixed bin (35»;

call window_$get_unechoed_chars (iocb_ptr, n_to_get, buffer, n_90t, break,
code) ;

ARGUMENTS

iocb_ptr
is a pointer to an IOCB for a switch attached with window_io_. (Input)

n_to-!et
is the number of columns (N) between the cursor and the end of the line. (Input) At
most N characters will be returned.

buffer
is the caller-supplied buffer that holds characters returned. (Input)

n-$ot
is the number of characters returned. (Output) Each character is echoed.

break
is the character that causes the echoing to stop. (Output) This character is not echoed.

code
is a standard system error code. (Output)

NOTES

This entry point will read no more than n_to-!et characters from the terminal, without
echoing them to the typist. The characters are returned in the buffer. Characters are read
until either (1) n_to-!et characters are read, or (2) a break character is read. If reading
stops due to a break character. then the break character is returned in break. Otherwise
break is ""

6-25 CP51-o2

window_ window_

Entry: window _Sinsert_text

This entry inserts text at the current cursor position: Text at the cursor or to the right of
the cursor is shifted to the right. to accommodate the new text. It is an error to call this
entry if the terminal does not support the insertion of text

USAGE

declare window_$insert_text entry (ptr, char (*), fixed bin (35»;

call window_$insert_text (iocb_ptr, text, code);

ARGUMENTS

iocb_ptr
is a pointer to an IOCB for a switch attached with window_io_. (Input)

text
is the character string to be written. (Input) When converted to output, each character in
this string must occupy exactly one print position. The length of this string must be such
that characters moved to the right will remain on the current line in the window. If
these conditions are not met. the result is undefined. The cursor is left after the last
character inserted.

code
is a standard system error code. (Output)

NOTES

The current cursor position must be defined. The string "text" must contain only printable
ASCII graphics. If it contains any other characters, the status code video~et_$strin~not_printable
is returned.

Entry: window _$overwrite_text

This entry writes text on the window in the current cursor location. If there is any text at
or to the right of the current cursor position in the window, it is overwritten with the
supplied string.

USAGE

declare window_$overwrite_text entry (ptr, char (*), fixed bin (35»;

call window_$overwrite_text (iocb_ptr, text, code);

ARGUMENTS

iocb_ptr
is a pointer to an lOeB for a switch attached with window_io_. (Input)

6-26 CP51-02

window_ window_

text
is the character string to be written. (Input) This string should consist of only printable
ASCII graphics (octal codes 040 through 176 inclusive), and may not be longer than the
space remaining on the current line.

code
is a standard system error code. (Output)

NOTES

The cursor position must be defined. The string "text" may contain only printable ASCII
graphics. If it contains anything else the status code video_et_$strinLnot_printable is
returned.

Entry: window _SpositioD_cursor

This entry moves the cursor to any requested position in the window. It defines the current
cursor position if it is undefined.

USAGE

declare window $position cursor entry (ptr, fixed bin, fixed bin,
fixed bin (35»; -

call window_$position_cursor (iocb_ptr, line, col, code);

ARGUMENTS

iocb_ptr
is a pointer to an IOCB for a switch attached with window_io_. (Input) line is the line
number. (Input)

col
is the column position. (Input)

code
is a standard system error code. (Output)

The entry moves the cursor relative to the current location.

USAGE

declare window_$position_cursor_rel entry (ptr, fixed bin, fixed bin,
fixed bin (35»;

6-27 CP51-o2

window_ window_

ARGUMENTS

iocb_ptr
is a pointer to an IOCB for a switch attached with window_io_. (Input)

line_inc
is the change in line number. (Input) If line_inc is a positive number, the cursor is
moved down. If it is a negative number, the cursor is moved up. If it is zero, the
cursor's line number is not changed.

col_inc
is the change in column position. (Input) If col_inc is a positive number, the cursor is
moved to the right. If it is a negative number, the cursor is moved to the left. If it is
zero, the cursor's column position is not changed.

code
is a standard system error code. (Output)

This entry scrolls a region up or down a given number of lines. A positive scroll count
scrolls the window up, deleting lines from the top of the window and adding new blank lines
to the bottom. The cursor's new position is at the beginning of the first new blank line. A
negative count scrolls the window down, deleting lines from the bottom and adding lines to
the top. The cursor is left at home. If this entry is called and the terminal does not
support either scrolling or insert and delete lines, the result is an error status,
video_et_$capabilities_Iacking.

USAGE

declare window_$scroll_region entry {ptr, fixed bin, fixed bin, fixed bin,
fixed bin (35»; I

call window $scroll region (iocb_ptr, start_line, n_lines, scroll_distance,
code); -

ARGUMENTS

iocb_ptr
is a pointer to an IOCB for a switch attached with window_io_. (Input)

start_line
is the number of the first line of the region. (Input)

n_lines
is the number of lines that compose the region. (Input)

scroll_distance
is the distance in lines by which the region win be scrolled. (Input)

6-28 CP51-02

window_

code
is a standard system error code. (Output)

NOTES

The cursor position is defined to be column one on first_line. The region from first_line for
n_lines is scrolled scroll_distance lines. which may be negative.

Entry: window _$sync

This entry synchronizes the process with the typist by writing any pending output to the
terminal.

USAGE

declare window_$sync entry (ptr, fixed bin (35»;

call window_$sync (iocb_ptr, code);

ARGUMENTS

iocb_ptr
is a pointer to an IOCB for a switch attached with window _io_. (Input)

code
is a standard system error code. (Output)

NOTES

The calling process is made to wait until the typist types something after the last text output
has been transmitted to the terminal.

This entry is used to output a terminal dependent sequence. The current cursor position
becomes undefined after this call is made. This entry should not be used to output sequences
that put graphics onto the terminal screen, as the video system's internal screen image will
become inconsistent This entry is used for terminal-specific features that cannot be accessed
via the video system.

declare window_$write_raw_text entry (ptr, char (*), fixed bin (35»;

call window_$write_raw_text (iocb~ptr, text, code);

6-29 CP51-o2

window_

ARGUMENTS

iocb_ptr
is a pointer to an IOCB for a switch attached with window_io_. (Input)

text
is any string of printable ASCII characters to be transmitted to the terminal. (Input)

code
is a standard system error code. (Output)

NOTES

Any call to window_$write_raw_text causes the cursor position to become undefined and sets
the screen_invalid window status flag. Subsequent calls to write_raw _text will ignore this flag,
but all other window_ entrypoints will return the status code video_et_$window_status_pending
until the status flag is cleared. It is the responsibility of the application performing the raw
output call to perform a get_window_status control order to clear the status flag.

This entry writes a prompt, synchronizes input to the output of the prompt, and reads a
response. This entry is useful for queries where it is important to avoid interpreting
type-ahead as a response to a question.

USAGE

declare window $write sync read entry (ptr, char (*), fixed bin (21),
char ()'c):- fixed-bin (21), char (1) varying, fixed bin (35»;

call window_$write_sync_read (iocb_ptr, prompt, n_to_get, buffer, n_got,
break, code);

ARGUMENTS

iocb_ptr
is a pointer to an IOCB for a switch attached with window_io_. (Input)

prompt
is a string of printable ASCII characters which must fit on the current line. (Input)

n_toJet
is the number of columns (N) between the cursor and the end of the line. (Input) At
most N characters will be returned.

6-30 CP51-02

window_ window_

buffer
is the caUer-supplied buffer that holds characters returned. (Input)

n~ot

is the number of characters returned. (Output) Each character is echoed.

break
is the character that causes the echoing to stop_ (Output) This character is not echoed.

code
is a standard system error code. (Output)

NOTES

The current cursor position must be defined. This entry overwrites the text string Uprompt"
at the current cursor position. It then reads characters typed after the prompt has been
transmitted to the terminal. The characters are read in the same fashion as the
get_un echoed_chars entry point Any characters read before the prompt is transmitted, are
buffered and returned to get_echoed_chars or subsequent get_unechoed_chars calls.

6-31 CP51-o2

SECTION 7

T In "-/fonT TT 1:S
.J../ '-' l.Y.J.. J..J V.l....lJ...j

This section contains descriptions of the I/O modules used by the menu and video
software, presented in alphabetical order. For details on I/O processing. see the Multics
Programmer's Reference Manual, Order No. AG91.

7-1 CP51-o2

The tc_io_ I/O module supports terminal independent I/O to the screen of a video terminal.

Entry points in this module are not called directly by users; rather, the module is accessed
through the I/O system interfaces iox_.

ATTACH DESCRIPTION

ARGUMENTS

device
* is the channel name of the device to be attached If a device is not given, the

-login_channel control argument must be given.

CONTROL ARGUMENTS

-login_channel
specifies attachment to the user's primary login channel. If a device is not specified,
then the user's login channel is used. This control argument flags this switch for
reconnection by, the process disconnection facility. If the user's login device should hang
uP. this switch will be automatically closed, detached. attached, and opened on the user's
new login channel when the user reconnects. if permission to use this facility is specified
in the SAT and PDT for the user.

-destination DESTINATION
sPecifies that the attached device is to be called using the address DESTINATION. In
the case of telephone auto_call lines, DESTINATION is the telephone number to be
dialed. See the dial_manager_ subroutine in the Multics Subroutines and 110 Modules
manual, Order No. AG93. for more details.

-no_block
specifies that the device is to be managed asynchronously. The tty_ subroutine will not

* block to wait for input to be available or output space to be available. This control
argument should not be used on the login channel, because it will cause the command
listener to loop calling get_chars.

-no_hangup_on_detach
prevents the detach entry point from hanging up the device. This is not meaningful for
the login channel.

-hangup_on_detach
causes the detach entry point to hang up the device automatically. This is not meaningful
f or the login channel.

7-2 CP51-02

OPEN OPERATION

Opens the module for stream_input_output

GET LINE OPERATION

The get_line operation is not supported.

CONTROL OPERATION

The following control orders are supported:

clear_screen
clears the entire terminal screen. The info_ptr is null. It is intended for use when the
screen image may have been damaged due to communications problems, for example.

get_capabili ties
returns information about the capabilities of the terminal. The info structure is described
in the description of the "get_capabilities" control order in the window _io_ module.

get_break_table
returns the current break table. The info pointer should point to a break table, declared
as follows (window_control_info.incl.pll):

del 1 break_table_info
2 version
2 breaks

STRUCTURE ELEMENTS

version

aligned based (break_table_ptr),
fixed bin,
(0:127) bit (1) unaligned;

must be set by the caller to break_table_infc_ version_I. (Input)

breaks
has a "l"b for each character that is a break character. (Output)

set_break_table
sets the break table. The info pointer should point to a break table as defined by the
get_break_table order. above. By default, the break table has "l"b for all nonprintable
characters, and "O"b elsewhere. Applications that set the break table must be careful to
reset it afterwards, and establish an appropriate cleanup handler.

set_Hne_speed
sets the speed of the terminal's connection to Multics. The info_ptr should point to a
fixed binary number representing the Hne speed in characters per second. Negative line
speeds are not allowed.

7-3 CP51-o2

set_term_type
changes the terminal type. The info pointer should point to a set_term_type_info
structure, described below. This sets window_status_pending for all windows and sets the
Up_change field in the window_status structure along with the screen_invalid. This
operation re-initializes all the terminal specific video system information such as the
video sequences, length and width of the screen, and capabilities. It is equivalent to
doing "window_call revoke; stty -ttp new_terminal_type; window_call invoke", except no
windows are destroyed. The set_term_type_info structure is declared in
set_ term_ type_inf o. incl. pll:

del I set_term_type_ info ali gned based (stt i p)
2 version fixed bin
2 name ehar (32) una Ii gned
2 flags unaligned

3 send_ in it i a 1 _string bit (1)
3 set_modes bit (1)

3 ignore_l ine_type bit (1)

3 mbz bit (33) ;

STRUCTURE ELEMENTS

version
is the version of this structure. (Input) It must be stti_ version_l.

name
is the name of the new terminal type. (Input)

NOTES

The send_initial_string, set_modes and ignore_Hne_type flags are all ignored by the video
system. The initial string will always be sent

reconnection
determines the new terminal type (which mayor may not be the same as before the
disconnection). Performs a set_term_type control order to inform the rest of the system
of the change in terminal type. If the set_term_type fails then the
video_utils_$turn_off _login_channel is invoked in an attempt to re-attach tty _. Reconnection
(a field in window _status) is set to indicate to an application doing get_window _status
that a reconnection has occurred.

The window_status_info structure is declared in window_status.incl.pll.

7-4 CP51-o2

The window_io_ 110 module supports 110 to a window. In addition to the usual iox_
entries, the module provides terminal independent access to special video terminal features,
such as a moveable cursor, selective erasure, and scrolling of regions. The module provides a
real-time input line editor and performs output conversion and "MORE" processing.

Entry points in this module are not called directly by users; rather, this module is accessed
through the 110 system interfaces iox_ and window_.

ATTACH DESCRIPTION

ARGUMENTS

switch
is the name of an 110 switch attached to a terminal via the tc io I/O module. The
window created by this attach operation will be mapped onto the screen of that terminal.
Use window_$create to attach and open, and use window_$destroy to detach and close
windows on the login terminal.

CONTROL ARGUMENTS

-first_line LINE_NO
LINE_NO is the line number on the screen where the window is to begin. If omitted,
the window starts on the topmost line of the screen (line 1).

-height N_LINES. -n_lines N_LINES
N_LINES is the number of lines in the window. The default is to use all lines to the
end of the screen.

-first_column COL_NO
COL_NO is the column number on the screen where the window is to begin. If omitted,
the window starts on the leftmost column of the screen (column 1).

-width N_COLS, -n_columns N_COLS
N_COLS is the number of the columns in the window. The default is all columns to the
end of the screen.

NOTES

The attach description control arguments must specify a region which lies within the terminal
screen. If not, the attachment is not made, and the error code video_et_$out_of_terminal_bounds
is returned.

When the window is attached, it is cleared and the cursor is left at home.

7-5 CP51-o2

OPEN OPERATION

The following opening mode is supported: strea.m_input_output

PUR CHARS OPERATION

This operation is used to output a character string to the window. If rawo mode (see below)
is disabled, the characters are processed according to the output conversions defined for the
terminal. If necessary, the string is continued on subsequent lines of the window. If output
passes the last line of the window, the placement of additional lines is controlled by the
setting or' the more_mode mode (see below). If an output line must be erased from the
window to make room for this new output, and there has been no intervening input in this
window, and more_mode (see below) is enabled, the user is queried for the disposition of this
new output (See MORE processing in Section 4.)

In rawo mode, the characters are written directly to the terminal, without any of the above
processing.

GET CHARS OPERATION

This operation returns exactly one character, unechoed, regardless of the size of the caller's
buffer. The line editor is not invoked by this call.

GET LINE OPERATION

The get_line operation invokes the real-time input line editor, and returns a complete line
typed by the user. A description of the typing conventions is given in Section 4. The
put_chars and get_line operations retrieve and reset any statuses that they encounter, so that
applications that make these calls need not be changed to check for
video_et_Swindow _status_pending.

CONTROL OPERATION

The control operations below are supported. Note that many of the control operations can be
issued at command level via io_call commands; these inciude any control orders that do not
require an info structure, and those described below. The following relations must hold when
changing windows (set_window_info). These relations are always true when obtaining
information about a window (get_window_info):

o < column + width <= screen width
o < line + height <= scrren height

7-6 CP51-02

get_window _info
returns information about the position and extent of the window. The info ptr points to
the following structure (declared in window_control_info. incl. pll):

del 1 window_position_info
2 version
2 origin,

3 column
3 1 i ne

2 extent,
3 width
3 height

STRUCTURE ELEMENTS

version

based (wi ndow_pos i tion_i nfo_ptr) ,
fixed bin,

fixed bin,
fixed bin,

fixed bin,
fixed bin;

is the version number of this structure. (Input)
window _position_inf 0_ version_2.

column

It must be

is the column of the upper left-hand corner of the window. (Output) If the column
of the upper left-hand corner is zero, then the first column will be used, to allow
old programs written when this was a mbz field to run without modification.

line
is the line of the upper left-hand corner of the window. (Output)

width
is the width of the window (columns). (Output)

height
is the height of the window (lines). (Output)

set_window _info
causes the window to be relocated or to change size (or both). The info ptr points to
the same structure used in the "get_window_info" control order. The values have the
same meaning, but are the new values for the window when setting (Input), and are
returned by get_window_info (Output).

*

7-7 CP51-o2

•

get_ window_status, set_window _status
window status is used to inf orm the application that some asynchronous event has
disturbed the contents of the window. When window status is set for a window, all calls
to window_ will return video_et_$window_status_pending until the status is reset. To
reset the status, make a get_window_status control order on the switch. The info pointer
should point to the following structure (declared in window_control_info.inc1.pll):

dcl window_status_info
2 version
2 status_string

aligned based (wi ndow_status_i nfo_ptr) ,
fixed bin,
bit (36) aligned;

STRUCTURE ELEMENTS

version
is the version of this structure. (Input) It must be window _status_ version_l.

status_string
is the window status information. (Input) To interpret the actual status_string, use
the include file window_status.inc1.pll:

dcl 1 window_status_info
2 screen_invalid
2 async_change
2 ttp_change
2 reconnection
2 pad

STRUCTURE ELEMENTS

screen_invalid

aligned based (window_status_info_ptr),
bit (1) unaligned,
bit (1) unal igned,
bi t (1) unal igned,
bit (1) unal igned,
bit (32) unaligned;

indicates that the contents of the window have become undefined. (Input for set,
Output for get) Tnis will happen, for example, in the event of a
disconnection/reconnection of the terminal.

async_change
indicates that a timer or event call procedure has made a modification to the
window. (Input for set, Output for get)

ttp_change
indicates that the terminal type has changed. (Input for set, Output for get) This
re-initializes all the terminal specific video system information such as the video
sequences, length and width of the screen, and capabilities.

7-8 CPS 1-02

reconnection
determines the new terminal type (which mayor may not be the same as before the
disconnection). (Input for set, Output for get) Performs a set_term_type control
order to inform the rest of the system of the change in terminal type.

pad
reserved for future expansion and must be "O"b.

NOTES

The get_window_status and get_window_status control orders are available from command level
and as active functions with the following io_call commands:

io call control window switch get_window_status status_key_l
-{status key 2} N -

io call control window switch set_window_status status_key_l
-{status key N} -

where status_key_N is either screen_invalid. asynchronous_change. ttp_change. or reconnection.

get_capabilities
returns information about the generic capabilities of the terminal. These are the "raw"
physical characteristics of the terminal. The video system may simulate those that are
lacking. For example, the system simulates insert and delete characters, but does not
simulate insert and delete lines. The info ptr should point to the following structure
(declared in terminal_capabilities.incl. pll):

dcl 1 capabilities_info aligned based(capabilities_info_ptr),
2 version fixed bin,
2 screensize,

3 columns fixed bin,
3 rows fixed bin,

2 flags,
3 scro 11_reg i on b t (1) una 1 ,
3 insert_chars b t (1) una 1,
3 insert_mode b t (1) una 1 ,
3 delete_chars b t (1) una 1 ,
3 overprint b t (1) una 1,
3 pad b t (28) una 1 ,

2 line_speed f xed bin,

STRUCTURE ELEMENTS

version
is the version number of this structure. (Input) It must be capabilities_info_version_l,
also declared in the include file.

7-9 CP51-o2

columns
is the number of columns on the terminal. (Output)

rows
is the number of rows (lines) on the terminal. (Output)

scroll_region
is true if the terminal is capable of scrolling, with insert and delete lines. (Output)

insert_chars
is true if the insert_chars function is supported. (Output)

insert_mode
is true if the terminal is capable of going into and out of insert mode. (Output)

delete_chars
is true if the delete chars function is supported. (Output)

overprint
is true if the terminal is capable of printing overstrike characters. (Output) It is
currently always set to "O"b (false).

pad
reserved for future expansion and must be "O"b.

line_speed
is the speed of the communications channel to the terminal, in characters per second.
(Output)

reset_more
causes MORE Processing to be reset All lines on the window may be freely discarded
without querying the user.

get_editinlLchars
is identical to the operation supported by the tty_ I/O module.

set_editinLchars
is identical to the operation supported by the tty_ I/O module.

7-10 CP51-02

NOTES

The get_editinLchars and set_editinLchars control orders are available from command level
ahd as active functions with the following io_call commands:

io_call window_switch get_editing_chars
io_call control window_switch set_editing_chars erase_kil1_characters

get_more_responses _
returns information about the acceptable responses to MORE processing. The info pointer
should point to the following structure (declared in window_control_info.incl.pll):

dcl 1 rnore_responses_info
2 version
2 n_yeses
2 n_noes
2 yeses
2 noes

STRUCTURE ELEMENTS

version

aligned based (more_responses_info_ptr),
fixed bin,
fixed bin,
fixed bin,
char (32) una 1 i gned,
char (32) una 1 i gned;

is the version number of this structure and must be set to more_responses_info_version_l.
also declared in the include file. (Input)

n-yeses
is the number of different affirmative responses, from zero to 32. (Output)

n_noes
is the number of different negative responses. (Output)

yeses

noes

is the concatenation of all the affirmative responses. (Output) Each response is one
character. Only the first "nJeses" are valid.

is the concatenation of all negative responses. (Output) Each response is one
character. Only the first "n_noes" are valid.

set_more_responses
sets the responses. The data structure is the same as the one used for the
"get_more_responses" order except that all fields are Input At most, 32 yeses and 32
noes may be supplied. It is highly recommended that there be at least one yes, so that
output m~y continue. The "yes" and "no" characters must be distinct. If they are not,
the error code video_et_$overlappinLmore_responses is returned, and the responses are
not changed.

7-11 CP51-02

NOTES

The get_more_response and set_more_response control orders are available from command
level and as active functions with the following io_call command:

io_call control window_switch get_more_responses
io_call control window_switch set_more_responses yes_responses

no_responses

where the yes_responses and no_responses will be used as arguments to the get_more_responses
control order. If either of the response strings contains blanks or special characters. it must
be quoted.

get_more_prompt set_more_prompt
sets the prompt displayed when a more break occurs. The current more responses can be
displayed as part of the more prompt. by including the proper ioa_ control codes as part
of the prompt string. For example the default video system more prompt string is
"More? ("a for more; "a to discard output)". With the default more responses of
carriage return f or more and the delete f or discard, the final string displayed is "More
(RETURN for more; DEL to discard output)." The info pointer should point to the
following structure (declared in window_control_info.incl.pll):

del 1 more_prompt_info
2 version
2 more_prompt

STRUCTURE ELEMENTS

version

aligned based (more_prompt_info_ptr),
char (8),
char (80);

is the version number of this structure (currently more_prompt_info_version_l).
(Input)

more_prompt
is the ioa_ control string to serve as the more prompt (Input for set, Output for
get)

7-12 CP51-o2

The get_more_prompt and set_more_prompt contiol oideis aie available from command level
and as active functions with the following io_call command:

io_call control window_switch get_more_prompt
io_call control window_switch set_more_,::,"ompt prompt_string

where window_switch is a valid window_io_ switch and prompt_string is the ioa_ control
string described above. .

get_more_handler set_more_handler
Sets the handler for video system more breaks to the specified routine. The info pointer
should point to the following structure (declared in window_control_io.inc1.pll):

del 1 more_handIer_info
2 version
2 flags

3 old_handIer_valid
3 pad

2 more_handler
2 old_more_handler

aligned based (more_handler_info_ptr),
fixed bin,
unaligned,
bit(1),
bit (35) ,
entry (pointer, bit(1) al igned) ,
entry (pointer, bit(l) aligned);

dcl (more_handler_info_version_3);
fixed bin internal static options (constant) init (3);

STRUCTURE ELEMENTS

version
is the version number of this structure, and must be set to more_handler_info_version_3
(also declared in the include file). (Input)

more_handler
is the entry to be called at a more break. (Input for set) (Output for get) It will
be passed two arguments, described below.

old_handler_valid
is a flag specifying whether some other user-supplied more handler was in effect
when the order call was made. (Output) (This can only be used with get)

old_more_handler
is the user supplied entry that was acting as more handler before the order call was
made. (Output) Its value is only defined if the old_handler_valid flag is on. (This
can only be used with get.)

The more handler routine is called with two arguments. The first is a pointer to a
structure containing information of interest to a more handler (see below), and the
second is a flag which the more handler sets to indicate whether or not output should
be flushed ("l"b to continue output, "O"b to flush output).

7-13 CP51-o2

*

The structure can be found in the include file window_more_handler.incl.pll, and is
declared as follows:

dc 1 1 more_ info
2 version
2 more_mode
2 window_iocb_prt
2 more_prompt
2 more_responses,

3 n_yeses
3 n_noes
3 more_yeses

STRUCTURE ELEMENTS

version

aligned base (more_info_ptr),
fixed bin,
fixed bin, /* which flavor */
pointer, /* for window that MORE'd */
character (80), /* MORE? */

fixed bin,
fixed bin,
character (32) una 1 i gned,

/* at most 32 yeses */
character (32) unaligned;

is the version number of the structure (declared as more_handler_info_ version_2 in
the include file). (Input)

window _iocb_ptr
is a pointer to the iocb for the window in which the more break occurred. (Input)
Prompt output should be written to this switch, and responses should be read from
it

more_mode
is the current more mode. (Input) Constants for the different more modes are
declared in the include file window_io_attach_data.incl.pll.

more_prompt
is the current more prompt. (Input) This is the string "More? (Aa for more; I"a to
discard output)" and is user-settable.

more_responses
is the current set of more responses. and is declared similarly to the more_responses_info
structure in the get_more_responses order description above. (Input)

7-14 CP51-02

NOTES

The get_more_handler and set_more handler control orders are available from command level
and as active functions with the following io_call command:

io_call window_switch get_more_handler
io_call window_switch set_more_handler more_handler

where more_handler is the entryname of the routine to be used as the more handler routine.
The name is converted to an entry using the user's search rules and is then used as described
in the set_more_handler control order.

get_break_table set_break_table
break table determines action of the get_echoed_chars, get_unechoed_chars, and
write_sync_read entry points of the window_ subroutine. The array "breaks" has a 1 for
each character that is to be considered a break. By default, the break table has "l"b for
all the nonprintable characters, and "O"b elsewhere. Applications that set the break table
must be careful to reset it afterwards, and establish an appropriate cleanup handler.

del 1 break_table_info
2 versions
2 breaks

STRUCTURE ELEMENTS

versions

aligned based (break_table_ptr),
fixed bin,
(0: 127) bit (1) una 1 i gned ;

must be set by the caller to break_table_info_version_l. (Input)

breaks
has a "l"b for each character that is a break character. (Input/Output)

reset_more_handler
cancels the last user-defined more_handler. The reset_more_handler control order is
available from command level with the following io_call command:

7-15 CP51-02

get_output_conversion
this order is used to obtain the current contents of the specified table. The info_ptr
points to a structure like the one described for the corresponding "set" order below,
which is filled in as a result of the call (except for the version number, which must be
supplied by the caller). If the specified table does not exist (no translation or conversion
is required), the status code error_table_$no_table is returned.

set_output_conversion
provides a table to be used in formatting output to identify certain kinds of special
characters. The info_ptr points to the following structure (declared in tty_convert.inc1.pll).
If the info_ptr is nUll, no transaction is to be done.

del 1 ev_trans_strue al i gned
2 version fixed bin,
2 default fixed bin,
2 ev trans ali gned

3 value (0: 255) fixed bin (8) una 1 i gned

STRUCTURE ELEMENTS

version
is the version number of the structure. It must be 2 and declared in tty_convert inc1. pll.

default
indicates, if nonzero, that the table is the one that was in effect before video was
invoked.

values
are the elements of the table. This table is indexed by the value of a typed input
character, and the corresponding entry contains the ASCII character resulting from
the translation.

get_special
is used to obtain the contents of the special_chars table currently in use. The info_ptr
points to the following structure (defined in tty_convertinc1.pll):

del 1 get_special_info_strue
2 area_ptr
2 table_ptr

al igned
ptr,
ptr;

7-16 CP51-o2

STRUCTURE ELEMENTS

area_ptr
points to an area in which a copy of the current special_chars table is returned.
(Input)

table_ptr
is set to the address of the returned copy of the table. (Output)

set_special
provides a table that specifies sequences to be substituted for certain output characters,
and characters that are to be interpreted as parts of escape sequences on input Output
sequences are of the following form (defined in tty_convert incl. pll):

dcl 1 c_chars
2 count
2 chars (3)

STRUCTURE ELEMENTS

count

based aligned,
fixed bin (8) unaligned,
char (1) una 1 i gned;

is the actual length of the sequence in characters <0<= count <=3). If count is zero,
there is no sequence.

7-17 CP51-o2

chars

NOTES

are the characters that make up the sequence. The info_ptr points to a structure of
the following form (defined in tty_convert incl. pll):

dcl 1 special_chars_struc aligned based,
2 version fixed bin,
2 default fixed bin,
2 special_chars

3 nl _seq al gned ke c_chars,
3 cr _seq al gned ke c_chars,
3 bs_seq al gned ke c_chars,
3 tab_seq al gned ke c_chars,
3 vt_seq al gned ke c_chars,
3 ff _seq al gned ke c_chars,
3 printer_on al gned ke c_chars,
3 printer_off al gned ke c_chars,
3 red_ribbon_shift al gned ke c_chars,
3 black_ribbon_shift al gned ke c_chars,
3 end_of_page al gned ke c_chars,
3 escape_length fixed bin
3 not_edited_escapes (sc_escape_len refer

(special_chars.escape_length»
like c_chars,

3 edited_escapes (sc_escape_len refer
(special_chars.escape_length»

like c_chars,
3 input_escapes aligned,

4 len fixed bin (8) una 1 i gned,
4 str char (sc_input_escape_len refer

(special_chars. input_escapes. len»
una 1 i gned,

3 input_results aligned,
4 pad bit (9) unaligned,
4 str char (sc_input_escape_len refer

(special_chars". input_escapes. len»
una 1 i gned;

Video ignores cr_seg. bs_seg, tab_seg, vt_seg, ff_seg, printer_on, printer_off, end_of_page,
input_escapes, and input results.

7-18 CP51-02

STRUCTURE ELEMENTS

version
is the version number of this structure. It must be 1.

default
indicates, if nonzero, that the default values for the current terminal type and baud
rate are to be used and that the remainder of the structure is to be ignored.

nl_seq
is the output character sequence to be substituted for a newline character. The
nl_seq.count generally should be nonzero.

cr_seq
is the output character sequence to be substituted for a carriage-return character. If
count is zero, the appropriate number of backspaces is substituted. However, either
cr_seq.count or bs_seq.count should be nonzero (i.e., both should not be zero).

bs_seq
is the output character sequence to be substituted for a backspace character. If count
is zero, a carriage return and the appropriate number of spaces are substituted.
However, either bs_seq.count or cr_seq.count, should be nonzero (i.e., both should
not be zero).

tab_seq
is the output character sequence to be substituted for a horizontal tab. If count is
zero, the appropriate number of spaces is substituted.

vt_seq
is the output character sequence to be substituted for a vertical tab. If count is
zero, no characters are substituted.

ff_seq
is the output character sequence to be substituted for a formfeed. If count is zero,
no characters are substituted.

printer_on
is the character sequence to be used to implement the printer_on control operation.
If count is zero, the function is not performed.

printer_off
is the character sequence to be used to implement the printer_off control operation.
If count is zero, the function is not performed.

red_ribbon_shift
is the character sequence to be substituted for a red-ribbon-shift character. If count
is zero, no characters are substituted.

7-19 CP51-o2

black_rib bon_shift
is the character sequence to be substituted for a black_ribbon_shift character. If
count is zero, no characters are substituted.

end_of_page
is the character sequence to be printed to indicate that a page of output is full. If
count is zero, no additional characters are printed, and the cursor is left at the end
of the last line.

escape_length
is the number of output escape sequences in each of the two escape arrays.

not_edited_escapes
is an array of escape sequences to be substituted
terminal is in "Aedited" mode. This array is indexed
in the corresponding output conversion table
set_output_conversion order above).

f or particular characters if the
according to the indicator found
(see the description of the

edited_escapes
is an array of escape sequences to be used in edited mode. It is indexed in the
same fashion as not_edited_escapes.

input_escapes
is a string of characters each of which forms an escape sequence when preceded by
an escape character.

input_results
is a string of characters each of which is to replace the escape sequence consisting
of an escape character and the character occupying the corresponding position in
input_escapes.

get_token_characters, set_token_characters
changes the set of characters that are used by the video system input line editor to
define a word f or such requests as ESC DEL. The set of characters supplied in the
structure replace the existing set of characters. The info_ptr points to the following
structure (declared in window_control_info.incl.pU):

2 version
2 token_characters_count
2 token_characters

STRUCTURE ELEMENTS

version

aligned based
(token_characters_info_ptr) ,

char (8) ,
fixed bin,
char (128) una 1 i gned;

is the version string for this structure. (Input) Its current value is
token_characters_info_version_l, also declared in the include file.

7-20 CP51-o2

token_characters_count
is the number of characters in the token_characters string. (Input)

token_characters
is a character string containing the new set of token characters. {Input}

NOTES

The set_toke~_characters and get_token_characters control orders are available from command_level
and as active functions with the following io_call commands:

io_call control w~ndow_switch get_token_characters
io_call control window_switch set_token_characters token_char_string

where token_char_string is a character string containing the new set of token characters.
get_token_character returns its result as a string if it was invoked as an active function,
otherwise it prints out the token characters.

get_editor _key_bindings
returns a pointer to the line_editor_key_binding structure describing the key bindings.
io_call support points out the pathname of each editor routine. listing only the names of
builtin requests in capital letters, with the word "builtin" in parentheses. The control
order prints or returns current information about the key bindings. Use the
set_editor_key_bindings control order to change the bindings. This control order prints or
returns current information about the key_bindings. Use the set_editor_key_bindings
control order to change the bindings.

The info_ptr points to the following structure (declared in window_control_info.incl.pll):

2 version
2 flags,

3 entire_state
3 mbx

2 key_binding_info_ptr
2 entire_state_ptr

STRUCTURE ELEMENTS

version

aligned based
(get editor key binding info ptr) ,
char(8) , - - --

bit (1) unaligned;
bit (35) unaligned,
ptr,
ptr;

is get_editor_key _bindin8-info_ version_I. (Input)

entire_state
is "l"b if the entire state is desired, "O"b if only information about certain
keybindings is desired. (Input)

7-21 CP51-o2

key _bindin!-inf o_ptr
if entire_state = "O"b, then this points to a line_editor_key _bindin!-structure. (Input)
The bindings component of this structure is. then filled in based upon the value of
each key_sequence supplied.

entire_state_ptr

NOTES

is set to point to the "state" of the key bindings, if entire_state
This is suitable input to the set_editor_key _bindings control order.

"l"b. (Output)

The get_editor_key_bindings control order is available from command level and as an active
function with following io_call command:

The get_editor_key_bindings control order prints or returns information about a key binding.
When you use it as an active function the information is returned in a form suitable as
arguments to the set_editor_key_bindings control order.

set_editor _key_bindings
A line editor routine is bound to a sequence of keystrokes via the set_editor_key
bindings control order. The sequence of characters that triggers an editor request may be
of any length, with multiple-key sequences working like the Emacs prefix characters.
This allows the use of terminal function keys (which often send three or more character
sequences) to invoke line editor requests. More than one binding can be set in one
invocation of this control order.

The info_ptr points to the following structure (declared in window_control_info.inc1.pll):

dc1 set_editor_key_bindings_info aligned based
(set_editor_key_bindings_info_ptr) ,

2 vers i on char (8),
2 flags,

3 replace bit (1) unaligned,
3 update bit (1) unaligned,
3 pad bit (34) unaligned.

2 key_bindin9_info_ptr;

STRUCTURE ELEMENTS

version
is the version of the structure. (Input) It must be set_editor_key_bindings_info_version_l.

replace
if "l"b then key_bindin!-info is considered to be returned by a previous
get_ooitor_key_bindings operation with entire_state = "l"b and will be used to
replace the keybinding state of the editor. (Input)

7-22 CP5l-02

window.:50_

update
if "l"b then key_bindinLinfo_ptr is considered a pointer to a
line_editor_key _bindinLinfo structure, which will be used to update the keybinding
state of the editor. (Input)

Note: only one of replace and update may be true, but at least one of them must
be true.

key _bindinLinf o_ptr
is a pointer received from get_editor_key bindings operation or a pointer to a
line_editor_key_bindinLinfo structure, depending on the value of the replace and
update flags. (Input)

Notes on freeing: The video system's internal data structures are freed at the following
times: video system revocation and when a set_editor_key _bindings control order with
replace = "l"b is done.

NOTES

The set_editor_key _bindings control order is available from command level and as an active
function with the following io_call command:

io_call control window_switch set_editor_key_bindings key_sequencel
{user rout i ne l} {contro 1 args l} .•• key sequenceN

{user_routineN} {control_argsl} {control_argsN}

where user_routine is the name oi a user-written editor request

control args are:

-external user_routine
-builtin builtin_request_name
-numarg_action numarg_action_name

The line_editor_key_bindings_info structure is described in Section 7.

At least one user_routine or one of -external/-builtin must be specified for each key
sequence, with the rightmost editor request specifier taking precedence (for example, io
control window_switch set_editor_key_binings foo -builtin FORWARD_word') will bind control
-a to the forward word builtin, not the user routine foo.

numarLaction_name
the type of automatic numeric argument to be taken when the editor routine is invoked,
must be one of the following and can only be given for external editor routines

REPEAT
(the default is PASS). This can be entered in upper or lower case. Call the user routine I
n times, where n is the numeric argument supplied by the user.

7-23 CP51-Q2

REJECT
ring the terminal bell and don't call the user routine if a numeric argument is given.

PASS
pass any numeric argument to the user routine, without any other action.

IGNORE
same as PASS but implies the user routine will not make use of the numeric argument

-name STR
specifies the name of the editor command being assigned to the key. If this is the null
string, then a default name is used (for builtins this is the name of the builtin, otherwise
it is segname$entrypoint). STR must be quoted if it contains whitespace.

-description STR
specifies a description string to be associated with the key binding. If this is the null
string, a default description is used. The defaults can be found in the include file
window_editor_values.incl.pll. STR must be quoted if it contains whitespace.

-info_pathoame PATH
specifies an info segment pathname to be associated with this key binding. This info
segment is expected to have more information about the editor_routine. If this is not
specified, it defaults to >doc>info>video_editing.gi.info if -builtin, otherwise no info
segment is associated with the key. The info suffix is assumed on PATH.

MODES OPERATION

The modes operation is supported by window_io_. The recognized modes are listed below.
Some modes have a complement indicated by the circumflex character (") that turns the mode
off (e.g. "more). For these modes, the complement is displayed with that mode. Some modes
specify a parameter that can take on a value (e.g. more_mode). These modes are specified as
MODE= VALUE, where MODE is the name of the mode and V ALUE is the value it is to be
set to. Parameterized modes are indicated by the notation (P) in the following description:

more, "more
Turns MORE processing on. Default is on. If "pI is set before you invoke the video
system, "more will be set when you invoke the video system.

more_mode = STR
controls behavior when the window is filled. The value for STR may be one of the
following:

clear

fold

the window is cleared, and output starts at the home position.

output begins at tbe first line and moves down the screen a line at a time replacing
existing text with new text Prompts for a MORE response when it is about to
overwrite the first line written since the last read or MORE break.

7-24 CP51-o2

seToli
lines are scrolled off the top of the window, and new lines are printed in the space
that is cleared at the bottom of the screen. This is the qefault for full width
windows on all terminals capable of scrolling.

wrap
output begins at the first line and moves down the screen a line at a time replacing
existing text with new text Prompts for a MORE response at the bottom of every
window of output This is the default for all terminals that are incapable of
scrolling or when using partial width windows.

vertsp, Avertsp
is only effective when more mode is on. When vertsp mode is on, output of a FF
or VI will cause an immediate MORE query. When you invoke the video system, it
copies the current setting of this mode before attaching the window_io_ module. The
default is Avertsp.

rawo, Arawo
causes characters to be output with no processing whatsoever. The result of output in
this mode is undefined.

can, Acan
causes input lines to be canonicalized before they are returned. When you invoke the
video system, it copies the current setting of this mode before attaching the
window_io_ module. The default is on.

ctl=char, Actl=char
specifies that ASCII control characters that do not cause newline or linefeed motion
are to be accepted as input except for the NUL character. If the mode is off all
such characters are discarded. When you invoke the video system, it copies the
current setting of this mode before attaching the window_io_ module. The default is
off.

edited, Aedited
suppresses printing of characters for which there is nc defined Multics equivalent on
the device referenced. If edited mode is off, the 9-bit octal representation of the
character is printed. When you invoke the video system, it copies the current setting
of this mode before attaching the window_io_ module. The default is off.

erkl, Aerkl
controls the editing functions of get_line. When you invoke the video system, it
copies the current setting of this mode before attaching the window_io_ module. The
default is on, which allows erase and kill processing and the additional line editor
functions.

7-25 CP51-o2

esc, "'esc
controls input escape processing. When you invoke the video system, it copies the
current setting of this mode before attaching the window_io_ module. The default is
on.

rawi, "'rawi
acts as a master control for can, erkl, and esc. If this mode is on, none of the
input conventions are provided. The default 15 on.

11 = STR
is the width of the window, in characters, and it can only be changed with the
set_window _inf 0 con trol operation.

pI = STR
is the height of the window (i.e., number of lines), and it can only be changed with
the set_window_info control operation.

red, "red
controls interpretation of red shift and black shift characters on output. When you
invoke the video system, it copies the current setting of this mode before attaching
the window _io_ module. The default is "'red, which ignores them. In red mode, the
character sequence given in the TIF is output The effect is undefined and
terminal-specific. In some cases, "red shifted" output appears in inverse video, but
this is not guaranteed.

CONTROL OPERATIONS FROM COMMAND LEVEL

Those control operations which require no info_ptr and those additional orders described
above may be performed from command level using the io_call command, as follows:

io_call control switch_name control_order

ARGUMENTS

switch_name
is the name of the I/O switch.

control_order
can be any control order described above under "Control Operation" that can accept a
null info_ptr.

7-26 CP51-02

SECTION 8

FORTRAN INTERFACE

This Section contains descriptions of the FORTRAN subroutine interface to the menu
and video software. Two sample FORTRAN programs are provided that illustrate menu
creation using automatic window management. and the FORTRAN video interface capabilities.

In the FORTRAN environment. window management can be performed automatically. By
using arguments to the FORTRAN window management functions ft_menu_$initl. ft_menu_$init2.
and fl_menu_$terminate. applications that do not require sophisticated window management
can employ automatic window management When using automatic window management. your
application works in two-window mode: the window in which the menu is displayed and the
user i/o window.

If your application requires greater window management capabilities, the menu interface
capability lets you build menu applications using the ft_window_$create, ft_window_$destroy,
ft_window_$clear, and ft_window_$change capabilities.

Of course, FORTRAN applications, can still use command or PL/l video management
capabilities.

Note that it is not possible to call the ft_menu_ routines with both ANSI77 and
ANSI66 character strings. Currentiy, oniy ANSI77 character strings are' allowed.

8-1 CP51-o2

The ft_menu_ subroutine allows a FORTRAN program to use the Multics menu facility
(menu.J. Through ft_menu_ a FORTRAN program may create a menu object, display the
menu, and get a user-entered selection from a menu. Once a menu object has been created,
the FORTRAN program can use this menu object by referencing it via a menu-id returned to
the caller when the menu object was created or when a stored menu object was retrieved.

The functionality available is provided through the various entry points defined below. Also
ref er to the FORTRAN include file at the end of this section.

Entry: ft_menu_$create

Utilized to create a menu object It returns a menu identifier (menu_id) which is
subsequently used to reference the menu object

USAGE

declarationsi

characten'(n 1
character*n2
character*n3
character*l
character*l
integer
integer
integer
integer

cho ices (m 1)
header s (m2)
tra i 1 ers (m3)
keys (m4)
pad char
menu format (6)
menu:needs (3)
menu_id
code

call ft_menu_Screate (choices, headers, trailers, pad_char, menu_format,
key, menu_needs, menu_id, code)

STRUCiURE ELEMENTS

choices
is an array of character variables which are the text of the options that the user wlsnes
to display in the menu. (Input) n1 is the length, in characters, of the longest character
string comprising the text of an option. ml is the extent of the array, i.e., the number
of options in the menu being described. This array must be at least of extent 1.

8-2 CP51-Q2

headers
is an array of character variables to be displayed at the top of the menu. (Input) n2 is
the iength. in characters, of the longest header specified. m2 is the extent of the array,
i.e., the number of headers (lines) desired. At least one header must be specified (if' the
first variable is set to blanks, no headers will be used).

trailers
is an array of trailers (displayed immediately below the menu). (Input) n3, m3. are
analogous to n2, m2 respectively.

menu_format
is an array, which specifies the format of the menu being created. (Input) Prior to
calling this entry point, the FORTRAN programmer is responsible for setting the
following variables:

menu format (menu version) = version number of menu
- (currently, only version 1 is defined) • -

menu_format (max_width) = maximum width of the window
on which the menu will be displayed.

menu_format (max_heigth) = maximum height of window
on which menu is to be displayed.

menu_format(no_of_columns) = number of columns to be used
by the menu manager to display the options.

menu_format (center_headers) = 0 or 1; 0 = no, 1 = yes.
menu_format(center_trailers) = 0 or 1; 0 = no, 1 = yes.

pad_char

keys

is the character that the menu facility will display at the right and left of a centered
header or trailer to fill out the line. (Input)

is an array (maximum value of m4 is 61) that identifies the keystroke to be associated
with each choice. (Input) This array must be at least as long as the number of choices
in the menu. Each element in the array must be unique.

menu_needs
an array that contains menu related information on successful execution of call. (Output)

Returned information:

menu_needs(lines_needed) the number of lines required
to display the menu.

menu_needs (width_needed) the number of columns required
to display the menu.

menu_needs (no_of_options) the number of options defined
in the menu.

8-3 CP51-o2

menu_id
the menu identifier (i.e., the menu object "identifier"). (Output)· It must not be altered
in any way by the application program.

code
return code. (Output) (See Appendix B.)

Deletes a menu object from a given value segment. (See ft_menu_Sstore.)

USAGE

declarations:

character*168 dir_name
character*32 entry_name
character*32 menu_name
integer code

STRUCTURE ELEMENTS

dir_name
pathname of the directory containing the menu object (Input)

entry_name
entry name of value segment containing the menu object. (Input) The suffix "value" need
not be specified.

menu_name
name used to identify the menu object when the menu object was stored. (Input)

code
return code. (Output) (See Appendix B.)

Returns information about a menu object. It returns the number of options in the menu, the
number of lines and number of columns required to display the menu. It is primarily used
to determine if the menu can be displayed in a given window.

8-4 CP51-02

USAGE

declarations:

i nteg-er
integer
integer

menu id
menu=needs (3)
code

STRUCTURE ELEMENTS

menu_id
the menu identifier returned by ft_menu_$create or ft_menu_$retrieve. (Input)

menu_needs
an array into which menu related information is returned. (Output)

code

Returned information:
menu_needs(lines_needed) the number of lines required

to display the menu.

the number of columns needed
to display the menu.

the number of options defined
in the menu.

return code. (Output) (See Appendix B.)

Entry: ft_menu_Sdestroy

Invoked to delete a menu object from storage. (Not to be confused with ft_menu_$delete,
which deletes the menu object from a value segment.) Deleting the menu object has no
effect on the screen contents.

USAGE

declarations:

integer
integer

menu id
code

8-5 CP51-Q2

STRUCTURE ELEMENTS

menu_id
menu identifier returned by ft_menu_$create or ft_menu_$retrieve. (Input/Output) Set to
an invalid value on return to prevent the old menu_id from being accidentally used.

code
return code. (Output) (See Appendix B.)

Invoked to display a menu in a given window.

USAGE

declarations:

integer
integer
integer

window_id
menu_id
code

STRUCTURE ELEMENTS

window_id
a window identifier returned by ft_ window _$create. (Input) If usage_mode
argument will be. ignored (see ft_menu_$init2).

menu_id
menu identifier returned when the menu object was created or retrieved. (Input)

code
return code. (Output) (See Appendix B.)

o this

Returns the choice made by the user, i.e., an integer representing either the menu item
chosen or the function key (or its equivalent escape sequence) entered.

8-6 CP51-o2

USAGE

declarations:

character,"n 1
integer
integer
integer
integer
integer

function_key_info
window_id
menu_id
fkeys
selection
code

call ft_menu_$get_choice (window_id, menu_id, function_key_info, fkeys,
se 1 ect i on, code)

STRUCTURE ELEMENTS

window_id
a window identifier returned by ft_ window _$create. (Input) If usage_mode
argument will be ignored. (see ft_menu_$init2)

menu_id
menu identifier returned by ft_menu_$create or ft_menu_$retrieve. (Input)

function_key _info

o this

a character variable (n1 as required) used to specify the role of function keys (if they
exist for the terminal being used) or an equivalent set of escape sequences if the
terminal does not have function keys or not the function keys required by the
application. (Input) The objective is to let the application use the terminal's function
keys if -possible. else specify key sequences to be used to simulate function keys. Each
character in the string corresponds to one function key. If the character is a space. then
it is not relevant if the corresponding function key exists or not. If the character is not
a space. that character will be used to simulate a function key if the terminal does not
have function keys. If the terminal does not have a function key for every non-space
character in the string. then function keys will be simulated. Thus. the string " ?p q"
means that the caller does not care whether the terminal has function key 0 or 3. but
the caller does wish to use function keys 1,2. and 4. If any of these 3 function keys is
not present on the terminal, then esc-? will substitute for PI, esc-p will substitute for
P2, and esc-q will substitute for P4.

fkeys
if fkeys = 1 user entered a function key or escape sequence if fkeys
an option (Output)

selection

o user selected

is an integer representing the choice made by the user. (Output) If the user has chosen
an option. it is a number between 1 and the highest defined option. If the user has
entered a function key. or escape sequence simulating a function key, it is the number
associated with the function key.

8-7 CP51-o2

code
return code. (Output) (See Appendix B.)

These must be the first calls made to the menu manager. They set up the necessary
environment for the menu application and return information concerning the user i/o window.

USAGE

declarations:
integer
integer

code
usage_mode

call ft_menu_$init2 (usage_mode,user_window_lines,user_window_columns,
user_window_id,code)

STRUCTURE ELEMENTS

usage_mode
usage_mode = 0 means that the caller does not wish to do any window management at
all. (Input) When he/she wishes to display a menu, the window required will be
automatically created. This means that the application will operate in a two window
mode, the window containing the menu, and the user_io window. Both windows will be
managed automatically for the user. If the user specifies this mode, all calls to the
ft_window_ subroutine will be ignored and will return an appropriate error code. See
Error Code Handling (Appendix B), below. All calls to the ft_rnenu_ subroutine that
require a window identifier will ignore the user provided window_id.

usage_mode = 1 means that the user wishes to define the number and characteristics of
the windows to be used in the application. Thus, calls to ft_ window_will be supported
and, for the entry points of ft_menu_ that require a window identifier, the caller must
use a legal window _id (returned by ft_ window _$create).

user_window _lines
the number of lines (rows) in the user i/o window at the time the user invokes
ft_menu_$init (which must be the first call to the menu manager in the application).
(Output) Undefined if usage_mode = O.

user_ window_columns
the number of columns of the user i/o window when ft menu $init invoked. (Output) - -.
Undefined if usage_mode = O.

user_window _id
window identifier of the user i/o window. (Output) Undefined if usage_mode = O.

code
return code (See Appendix B.) (Output)

8-8 CP51-o2

Entry: ft_menD--Slist

Used to list the menu· object(s) stored in value segment The names selected are those that
match a user provided string.

USAGE

declarations:
character)'c168
character)'c32
character*32
character)'~32

integer
integer

dir name
names_array (ml)
entry_name
match_string
no_of_matches
code

call ft menu_Slist (dir name, entry_name, match_string, no_of_matches,
names_array, code)

STRUCTURE ELEMENTS

dir_name
pathname of directory containing the menu object (Input)

entry_name
entry name of value segment containing the menu object. (Input) The suffix "value" need
not be specified.

match_string
a character variable that is to be used as the selection criteria to determine what menu
object, if any, is contained in the specified value segment that match (or contain) this
string. (Input) If set to space(s), all names returned.

no_of_matches
the number of matches found. (Output) If none, then is is O.

names_array

code

an array, of extent ml. (Output) The user should insure that ml is sufficiently large to
contain all matches that may be found. Contains the names of all menu objects, in the
specified value segment, that match the character string match_string.

return code. (Output) (See Appendix B.)

8-9 CP51-o2

Used to retrieve a menu object previously stored via the ft_menu_$store. Once retrieved, the
user can reference the menu object via the menu identifier (menu_id).

USAGE

declarations:
character)': 168
character)'c32
character jc 32
integer
integer

d i r _name
entry_name
menu name
menu_id
code

call ft menu_Sretrieve (dir_name, entry_name, menu_name, menu_id, code)

STRUCTURE ELEMENTS

dir_name
pathname of the directory containing the menu object. (Input)

entry_name
entry name of value segment containing menu object (Input) The suffix "value" need not
be specified.

menu_name
name of the menu object used when the object was stored. (Input)

menu_id
is the menu id returned by the call. (Output) It is used as the menu object identifier.

code
return code. (Output) (See Appendix B.)

Used to store a menu object in a specified value segment

USAGE

declarations:

character*168
character*32
character)':32
integer
integer
integer

di r _name
entry_name
menu_name
create_seg
menu_id
code

8-10 CP51-o2

call ft menu $store (dir name,entry name, menu_name, create_seg,
menu_id, code) - -

STRUCTURE ELEMENTS

dir_name
pathname of directory into which the menu object is to be placed. (Input)

entry_name
entry name of value segment into which the menu object is to be placed. (Input) The
suffix "value" need not be specified.

menu_name
it is the name to be assigned to the stored menu object (Input)

create_seg
create_seg 0 means do not store if value segment identified by entry_name does not
already exist. (Input)

create_seg = 1 means create value segment. if it does not already exist. and store menu
object in it.

menu_id
it is the menu object identifier returned when ft_menu_$create or ft_menu_$retrieve was
called. (Input)

code
return code. (Output) (See Appendix B.)

Entry: ft_men1L-$terminate

Must be the last call to the menu manager in the menu application. It will remove the
special environment created by ft_menu_$initl and ft_menu_$init2.

USAGE

declarations: none

8-11 CP51-o2

FORTRAN INCLUDE FILE

This include file contains the following declarations:

external
external
external
external
external
external
external
external
external
external
external
external
external
external

nteger
nteger
nteger
nteger
nteger
nteger
nteger
nteger
nteger
nteger
nteger
nteger

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

ft_menu_$create (descriptors)
ft_menu_$delete (descriptors)
ft_menu_$describe (descriptors)
ft_menu_$destroy (descriptors)
ft_menu_$display (descriptors)
ft_menu_$get_choice (descriptors)
ft_menu_$ in it 1 (descr i ptors)
ft_menu_$init2 (descriptors)
ft_menu_$l ist (descriptors)
ft_menu_$retrieve (descriptors)
ft_menu_$store (descriptors)
ft_window_$change (descriptors)
ft window $create (descriptors)
ft=window=$destroy (descriptors)

menu_version
max_width
max_height
no_of_columns
lines_needed
width_needed
no_of_options
center_headers
center _tra i 1 ers
user_window_id
user_window_lines
user_window_columns

(menu version = 1)
(max ~i dth = 2)
(max=he i ght = 3)
(no of co 1 umns = 4)
(center headers = 5)
(center - tra i 1 ers = 6)
(lines ~eeded = 1)
(wi dth -needed = 2)
(no_of=options = 3)

8-12 CP51-02

This is the basic video interface subroutine to be used by FORTRAN to create/destroy/change
windows. (This subroutine should not be called if usage_mode = 0 (see ft_menu_Sinit2».

Its facilities are available through the following entry points.

Entry: ft_ window _$cbange

This entry point is used to change the size of an existing window. The size of a window can
always be "shrunk", however it can be increased only it does not overlap with another
defined window. (This entry point should not be called if usage_mode = 0 (see
ft_menu_$init2).)

USAGE

declarations:
integer
integer
integer
integer

wi ndow_id
first_line
height
code

call ft_window_$change (window_id, first_line, heigth, code)

STRUCTURE ELEMENTS

window_id
window identifier returned by ft_window_$create (or by ft_menu_$init in the case of the
user if 0 window). (Input)

first_line
new first line number for the window being changed. (Input) Positive integer.

height
new height for the window being changed. (Input) Positive integer.

code
return code. (Output) (See Appendix B.)

8-13 CP51-o2

Entry: ft_ window _Sclear_ window

used to clear a specified window.

USAGE

declarations:
integer
integer

window_id
code

STRUCTURE ELEMENTS

window_id
The window identifier (returned by ft_window_$create) of the window to be cleared.
(Input)

code
return code. (Output) (See Appendix B.)

Entry: ft_ window _Screate

Used to create a new window on the terminal screen. (This entry point should not be called
if usage_mode ~ 0.) (see ft_rnenu_$init2)

USAGE

declarations:

character)'c32
integer
integer
integer
integer

sw itch_name
window id
first_line
height
code

call ft window $create (first_line, height, switch_name, window_id,
code) -

STRUCTURE ELEMENTS

first_line
is the line .number where the window is to start (Input)

height
the number of lines u...~ by the window. i.e .• its hei!-ht (Input)

8-14 CP51-o2

ft_window_

switch_name
the name that the caller wishes to associate with the switch. (Input) (The caller may use
the switch name, for example, in the FORTRAN "open" statement)

window_id
the returned id of the window just created. (Output) It must not be altered in any way
by the application program.

code
return code. (Output) (See Appendix B.)

Entry: ft_ window _Sdestroy

Used to destroy a previously created window. (This entry point should not be called if
usage_mode = 0 (see ft_menu_$init2).)

USAGE

declarations:
integer window id
integer code

STRUCTURE ELEMENTS

window_id
window identifier (returned by the ft_window_$create). (Input/Output) It is reset to an
illegal value by this call.

code
return code. (Output) (See Appendix B.)

FORTRAN MENU APPLICATION EXAMPLES

In the following two FORTRAN examples, a "Message" menu application is created that
allows you to display, print, discard, or forward messages. Example 1 is a simple FORTRAN
program that interfaces with the Multics menu manager via the ft_menu_ routine. Note in
Example 1 that window management functions are called automatically through arguments in
the ft_menu_$init2 subroutine.

Examp1e 2 is a FORTRAN program that interfaces with the Multics menu manager through
ft_menu_routine; in example 2, however, window management functions are performed by the
ft_ window_routine.

8-15 CP51-o2

EXAMPLE 1:

In this example. all window management is done automatically.

subroutine testcase1 0

%inc1ude ft_menu_dc1s

external ft menu $init1 (descriptors)
external ft-menu-$init2 (descriptors)
character*15 choices (6)
character*12 headers (1)
character*27 trailers(l)
character*l keys (6)
character*168 dir_name
character*32
character*32
character*12
character*32
char ac ter)"9

nteger
nteger
nteger
nteger
nteger
nteger
nteger
nteger
nteger
nteger
nteger

entry_name
menu_name
function_key_info
switch_name
ME
create_seg
no_of_matches
window_id
fkeys
selection
usage_mode
menu format (6)
menu=needs (3)
menu_id
code
zero

external com_err_(descriptors)

integer
integer
integer

too_few_keys
bad_arg
keys_not_unique

ME = IItestcasel ll

zero = 0

cho ces (1) = "Display Message"
cho ces (2) = IIPrint Message"
cho ces (3) = "Discard Message"
cho ces (4) = "Forward Message"
cho ces (5) = "Reply Message"
cho ces (6) = IIList Messages"
headers (l) = IIREAD MAILII
tra i 1 ers (1) = "Press F1 (or esc-q) to quit ll

keys (1) = liill
keys (2) = "2"

8-16 CP51-02

c
c
c

10

20

40
&

c
c

keys (3) = 113 11

keys (4) == 114 1•

keys (5) = u5 ii

keys (6) = 116 11

pad_cnar == It_II

menu format {menu version) = 1
menu-format (max ;idth) = 79
menu-format (max-height) = 10
menu-format (no of columns) = 2
menu-format (center headers) = 1
menu=format(center=trailers) = 1

code = 0
usage_mode = 0 Window management will be done automatically

by the system, i.e., usage_mode is set to O.
! by the system, i.e., usage_mode is set to O.

ca 11 f t menu Sin it 1 0
call ft=menu=Sinit2 (usage_mode,user_window_lines,user_window_columns,

user window id,code)
Calling ft_;enu_Sinit MUST
be the first call to ft_menu_ in the program.

if (code .eq. zero) go to 5
call com_err_ (code, ME, II (calling ft_menu_Sinit2)")
pr i nt, "Unab 1 e to set up the appropr i ate env ironment for the app 1 i cat i on .11

go to 999

The following calls to cv_error_Sname are used retrieve and store
the error codes associated with certain errors of interest returned
by calls to the menu manager or the system.

ca 11 cv error Sname (llerror tab 1 e Sbad argll, bad_arg, code)
if (code ~eq. z;ro) go to 10 - - -
call com_err_ (code, ME, lIerror_table_Sbad_arg")
go to 999

call cv error Sname ("menu et Stoo few keys",too few keys,code)
if (code ~eq. z;ro) go to 20- - - - --
call com_err_ (code, ME, IImenu_et_Stoo_few_keysll)
go to 999

call cv error Sname (llmenu et Skeys not unique", keys_not_unique, code)
if (code ~eq. z;ro) go to 40- - --
call com_err _ (code, nE, !!menu_et_$keys_not_unique::)
go to 999

call ft_menu_Screate (choices,headers,trailers,pad char,menu format,
keys,menu_needs,menu_id,code) -

This call creates the menu object and returns the menu object identifier,
IImenu_id".

8-17 CP51-o2

ft_window_

if (code .eq. zero) go to 45
call com_err_ (code, ME, II (calling ft_menu $ceate)")
print, '.'The menu could not be created. 1I

go to 999

c The created menu is now stored for future use.

45 d i r name = lI>udd>m>r i" ! pathname of directory

50

60

c
c
c
c
c
c

70

entry_name = IImenus_seg" entry name of IIva 1ueil segment
menu_name = "ft_read_mail_menu" name of menu
create_seg = 1 ! create "value" seg if it does not already exist.

call ft_menu_$store (dir_name, entry name, menu name,
create_seg, menu=id, code)

if (code .eq. zero) go to 50

call com_err_ (code, ME, " (calling ft_menu $store)")
print, "The menu could not be stored."
go to 999

window id = 0
call ft_;enu_$display(window_id,menu_id,code) This call displays

! the menu in its own window at top of screen. Since the usage_mode
was set to 0, the program does not have to create the window
before calling ft_menu_$display. The window_id argument is ignored.

if (code .eq. zero) go to 60
ca 11 com er r _ (code, ME, " (ca 11 i ng f t_menu_$d i sp 1 ay) ")
print, "The menu could not be displayed."
go to 999

function_key_info = "q" ! Defines the function key requirements, i.e,
! if the terminal has function key 1 (Fl) then Fl wi 11 be used

to "quit", otherwise "esc_q" will be used to "quit".

call ft_menu_$get_choice(window_id,menu_id,function_key_info,fkeys,
se 1 ect i on, code)

This call accepts the user input from the menu. On return, the variable
IIselectionli will contain a number (1,2,3 , or 4) representing the option
chosen by user.
Note: if the user entered anything other than or 2 or 3 or 4
the terminal "beeped", and the user input was ignored.
Since usage_mode is 0, the window_id argument is ignored.

if (code .eq. zero) go to 90
if (code .ne. too_few_keys) go to 70
call com_err_ (0, ME, "Number of keys less than number of options. lI)
go to 999

if (code .ne. keys_not_untque) go to 80
call com_err_ (0, ME, HOption keys not unique.!!)
go to 999

8-18 CP51-o2

80 call com_err_ (code, ME, II (calling ft_menu_$get_choice).
An internal programming error has occurred. lI)

go to 999
90 if (fkeys .eq. zero) go to 110

if (fkeys .eq. 1) go to 100
print, IIAn internal program error has occurred. Quitting. 1I

go to 999
100 if (selection .ne. 1) go to 61

print, lIyou entered II11F11111 or IIl1esc qllll. Quitting. 1I

go to 999
110 print 103,se1ection
103 format (llyou selected option IIi 1)

go to 50

999 call ft menu_Sterminate()
return
end

EXAMPLE 2:

In this example, FORTRAN interfaces with the Multics menu manager and the Multics
window manager via the ft_menu_ and ft_window_ subroutines.

subroutine testcase2 ()

ex terna 1 f t menu $ i nit 1 (descr i ptors)
external ft-menu-Sinit2(descriptors)
external ft-wind;w $clear window (descriptors)
character*9- choices one(2)
character*21 choices-three (4)
character*21 headers(l)
character*49 trailers(l)
character*l keys (6)
character*168 dir name
character"'32
char acter)'c32
character"c12
character)'c32
character"c32
character ic32
character*9
integer
integer
integer
integer
integer
integer
integer

entry_name
menu name
function_key_info
match_string
names_array (l0)
switch_name
ME
create_seg
no of matches
window_idl
window id2
fkeys
selection
usage_mode

8-19 CP51-o2

nteger
nteger
nteger
nteger
nteger
nteger
nteger
nteger
nteger
nteger

menu format (6)
menu-needs one(3)
menu-needs-two(3)
menu=needs=three(3)
curr_window_id
menu_idl
menu_id2
menu_id3
code
zero

external com_err_(descriptors)

integer
integer
integer

bad_window_id
nonexistent_window
insuff_room_for_window

ME = "testcase2"
zero = 0

cho ces one (1) = "Read Ma i 111
cho ces-one(2) = "Send Mail ll

cho ces-three{l) = "Send New Messsage"
cho ces-three (2) = IISend Deferred I\.essage"
cho ces - three (3) = IIPr i nt Sent Message ll

cho ces - three (4) = "Save Sent Message ll

tra lers(l)= IIF1 (or esc-q) = quit; F2 (or esc-f) = first menu II
keys(l) = 11111
keys (2) = "211
keys (3) = 113 11
k"eys (4) = 114"
keys (5) = "5"
keys (6) = "6"
pad char = "_II
menu format (menu version) =
menu-format (max ;idth) = 79
menu-format (max-height) = 8
menu-format (no ~f columns) = 2
menu-format(cente~ headers) = 1
menu=format(center=trailers) = 1

code = 0
call ft menu_$initl 0
usage_mode = 1 Window management will be done by user
call ft menu $init2 (usage mode,user window lines,user window columns,

& user_;indo;_id,code) -Calling ft_menu_Sinit MUST be the-
first call to ft_menu_ in the program.

8-20 CP51-02

if (code .eq. 0) go to 5
call com_err_ (code, ME, II (calling ft_menu_$init)"}
print, "Unable to set up the appropriate -environment for the

& application."

c
c
c

5

10

20
&

c

40

&

c
c

go to 999

The following calls to cv_error_$name are used retrieve and store
the error codes associated with certain errors of interest returned
by calls to the menu manager or the system.

call cv error $name ("video et $bad window id", bad_window_id, code)
if (code ~eq. z;ro) go to 10 - - - -
call com_err_ (code, ME, "video_et_$bad_window_id")
go to 999

call cv error $name (livideo et $nonexistent window",
- - nonexistent wi ndow, code)

if (code .eq. zero) go to 20 -
call com_err_ (code, ME, "video_et_$nonexistent_window")
go to 999

call cv error $name ("video et $insuff room for window",
- - insuff room for window, code)

if (code .eq. zero) go to 40 - - -
call com err (code, ME, "video_et_$insuff_room_for_window")
go to 999

Create first menu

headers(l) = "MULTICS MAIL"
call ft_menu_$create (choices one,headers,trai1ers,pad char,menu format,

keys ,;enu_needs_one,menu_i d1 ,code) -

This call creates the menu object and returns the menu object identifier.
This menu is referenced by menu_idle

if (code • eq. 0) go to 41
call com err (code, ME, II (calling ft_menu_Sceate)lI)
print, liThe first menu could not be created. 1I

go to 999

c For the second menu use a menu object which was stored in a IIvalue ll seg.
c First determine if menu object exists.

41 dir_name = lI>udd>m>ri"
entry_name = IImenus_seg"
match string = "ft read mail menu"
call ft_menu_$list-(dir=name~entry_name,match_string,no_of_matches,

& names array,code)
if (code .eq. zero) go to 42
call com_err_ (code, ME, II (calling ft menu_$list)lI)
go to 999

42 if (no_of_matches .eq. zero) then

8-21 CP51-o2

c

43

c

44

c

45

&

50

print, "Stored menu not found."
go to 999
~lse
if (no_of_matches .eq. 1) go to 43
print, "Internal error. Quitting."
go to 999
end if

Retrieve stored menu.

menu name = 11ft read mail menu"
call ft menu $retrieve-(dir-name,entry name,menu name,menu id2,code)
if (code .eq: zero) go to 44 - - -
ca 11 com_er r _ (code, ME, II (ca 11 i ng f t_menu_$ retr i eve) ")
go to 999

Get attributes of retrieved menu.

call ft menu $describe (menu id2,menu needs two,code)
if (code :eq. zero) go to 45 - --
call com_err_ (code, ME, II (calling ft_menu_$describe)lI)
go to 999

Create third menu

headers(l) = "SEND MAIL"
call ft_menu_$create (choices_three,headers,trailers,pad_char,

menu_format,keys,menu_needs_three,menu_id3,code)

if (code .eq. 0) go to 50
call com_err_ (code, ME, II (calling ft_menu_$ceate)lI)
print, liThe third menu could not be created. 11

go to 999

"-111 indicates that there is no current menu
being displayed; otherwise, curr_window_id
contains the menu window id

52 call change_menu (user_window_id,curr_window_id,menu_idl,menu_needs_onej
& user_window_lines,window_idl,code)

if (code) 51,53,51
51 call com_err_ (code,"change_menu","lnternal error while changing menus.")

go to 999
53 call ft_window_$clear_window (user_window_id, code)

60 call get_choice (menu_idl,window_idl,fkeys,selection,code)

c This call accepts the user input from the menu. On return, the variable
c IIselection" will contain a number (0, 1, 2) representing the option or
c the function key (or its equivalent escape sequence) entered by the user.
c If fkeys = 1 then the user entered .Fl or F2 (or esc-q or esc-f):

8-22 CP51-o2

c if Fl (or esc-q) was entered, then selection = 0
c if F2 (or esc-f) was entered, then selection =
c If fkeys = 0 then the user selected option:
c if first option was chosen, then selection =
c if second option was chosen, then selection = 2
c Note: if the user entered anything other than Fl or F2 or 1 or 2
c the terminal "beeped", and the user input was ignored.

if (code .eq. zero) go to 70
call com_err_ (0, "get_choi ce" , "Internal program error

while getting user choice")
go to 999

70 if (fkeys .eq. zero) go to 90 user selected an option
if (fkeys . eq. 1) then
go to 80 user entered function key
else Something is wrong
print, "An internal program error has occurred. Quitting."
go to 999
end if

80 go to (81,82), se 1 ect ion
ca 11 com_er'r _ (code, ME, "An i nterna 1 program has occurred. Qu itt i ng .11)
go to 999

81 pr i nt, II Ex it i ng" (user has entered F 1 or esc-q. Wants to ex i t)
go to 999

82 print, "You already are in the first menu." User want to go to
first menu

go to 60
90 go to (100~ 170) ~ selection Display either "Read Mai 1" or "Send Mai 1"

menu
call com_err_ (code, ME, IIlnternal program error. Quitting.")
go to 999

100 call change menu (user window id,window idl,menu id2,menu needs two,
& - user-window-lines, window id2,-code) - -

if (code .eq. zero) go t~ 110 - -
ca 11 com_err _ (code, "change_menu", III nterna 1 error occurred

wh i 1 e swi tch i ng menus")
go to 999

110 call get_choice (menu_id2, window_id2, fkeys, selection, code)
if (code . ne. zero) then
call com_err_ (code, "get_choice", Illnternal error

go to 999
end if
go to (160, 150), 'fkeys + 1

wh i 1 e gett i ng user cho i ce"),

call com_err_ (code,ME, "Interna1 program error. Quitting.")
go to 999

150 go to (151,152), selection user entered function key
go to 110

151 print, "Exiting at your request"
go to 999

152 curr_window_id = window_id2

8-23 CP51-o2

go to 52
160 print 300, selection
300 format ("You selected option "i 1)

go to 110

c User chose "Send Mai1" option

170 call change_menu (user_window_id, window_idl,menu_id3,menu_needs_three,
& user window 1ines,window id2,code)

if (code) 171, 180, 171 - - -
171 call com_err_ (code, "change_menu", "Interna1 error

wh i 1 e chang i ng menus ")
go to 999

180 call get choice (menu id3,window id2,fkeys,se1ection,code)
if (code) 181,190,181 - -

181 call com err (code, "get choice", "Interna1 error
- - wh i 1 e gett i ng user cho i ce")

go to 999
190 go to (210,200), fkeys + 1

print, ." Internal error. Quitting"
go to 999

200 go to (201,202), selection
go to 180

201 print, "Exiting at your request."
go to 888

202 curr_window_id = window_id2
go to 52

210 print 301, selection
301 format (llyou selected option "i 1)

go to 180
c Delete second menu from the value seg.

888 call ft menu $delete (dir_name,entry_name,menu_name,code)
if (code :eq. zero) go to 999
print, "Menu could not be deleted from value segment. 1I

999 call ft_menu_$terminateO
return
end

8-24 CP51-o2

subroutine get_choice (menu_id,window_id,fkeys,selection,code)

external ft menu $get choice (descriptors) - - -
character1:2
integer
integer
integer
integer
integer

code = 0

function_key_info
fkeys
selection
mem.l_id
wi ndow id
code

function_key_info = "qf" Defines the function key requirements, i.e,
if the terminal has function keys 1 and 2 (Fl and F2) then Fl
will be used to IIquit" and F2 to switch to the first menu,
otherwise "esc_q" will be used to "quit" and "esc-f" to switch
to the first menu

call ft_menu_$get_choice(window_id,menu_id,function_key_info,fkeys,
& selection,code)

return
end

subroutine change_menu (user window id,curr window id,menu id,menu needs,
user_;indow_lines,window_id~code) - -

external
external
external
external
external

ft window $chanae (descriotors)
ft=window=Screate (descriptors)
ft_window_$destroy (descriptors)
ft_menu_Sdisplay (descriptors)
com_err_ (descriptors)

character*32 switch_name

nteger
nteger
nteger
nteger
nteger
nteger
nteger
nteger
nteger
nteger

menu_needs (3)
user window id - -user_window_columns
user window lines - -curr_window_id
menu id
window id
code
first_line
height

parameter (lines_needed = 1)

8-25 CP51-o2

c Destroy the current menu-window

if (curr window id + 1) 90,100,90
90 call ft_window_$destroy (curr_window_id,code)

if (code) 999, 100,999

c Change the size of the user i/o window to accomodate the new menu-window

100 first line = 1 + menu needs (1 ines needed)
height; user_window_lines - menu_needs(lines_needed)
call ft_window_$change (user_window_id,first_line,height,code)
if (code) 999, 11 0,999

c Create window for new menu

110 switch name = "menu window"
call ft window $create (1 ,menu needs(lines needed) ,switch name,window id,

& - - code)- - .- -
if (code) 999, 120,999

c "0 i sp 1 ay the menu in the menu-w i ndow

999 return
end

8-26 CP51-o2

SECTION 9

COBOL INTERFi\CE

This section contains descriptions of the COBOL interface to the menu and video
software. Two sample COBOL programs are provided that illustrate menu creation using
automatic window management, and the COBOL video interface capabilities.

In the COBOL environment, window management can be performed automatically. By
using the COBOL window management functions cb_menu_$initl, cb_menu_$init2, and
cb_menu_$terminate, applications that do not require sophisticated window management can
employ automatic window management activity. When using automatic window management,
your application works in two-window mode: the window in which the menu is displayed and
the user_i/o window.

If your application requires greater window management capabilities, the menu interface
capability lets you build viable menu applications ' using the cb_ window _$create,
cb_window_$destroy, and cb_window_$change capabilities.

Of course, COBOL applications can still use command or PL/l video management
capabili ties.

9-1 CP51-o2

The cb_menu_ subroutine allows a COBOL program to use the Multics menu facility (menu->.
Through cb_menu_ a COBOL program may create a menu object. display the menu. and get
a user-entered selection from a menu. Once a menu object has been created, the COBOL
program can use this menu object by referencing it via a menu-id returned to the caller
when the menu object was created or when a stored menu object was retrieved.

The functionality available is provided through the various entry points described below.

Utilized to create a menu-object Returns a menu-id which may be subsequently used by
other entry points.

USAGE

declarations:

01 choices-table.
02 choices PIC X(n1) OCCURS (m1) TIMES.

01 headers-table.
02 headers PIC X(n2) OCCURS (m2) TIMES.

01 trailers-table.
02 trailers PIC X(n3) OCCURS (m3) TIMES.

01 keys-table.
02 keys PIC X (1) OCCURS (m4) TIMES.

01 menu-format.
02 menu version USAGE IS COMP-6
02 constraints USAGE IS COMP-G

03 max-width.
03 max-height.

02 no-of-columns USAGE IS COMP-G.
02 flags.

03 center-headers PIC 9 (1) •
03 center-tra i 1 ers PIC 9 (1) •

02 pad-char PIC X (1) •

01 menu-needs USAGE IS COMP-G.
02 lines-needed.
02 width-needed.
02 no-of-options •

•
77 menu-id
77 ret-code

USAGE IS COMP-G.
USAGE IS COMP-G.

9-2 CP51-02

call I cb_menu_Screate" USING choices-table, headers-table,
trailers=table j menu-format, keys-table, menu-needs, menu-id,
ret-code.

STRUCTURE ELE~ENTS

choices-table
is a table of elementary data items which are the text of the options that the user
wishes to display in the menu. n1 is the length. in characters. of the longest character
string comprising the text of an option. m1 is the extent of the table. i.e .• the number
of options in the menu being described. This table must be at least of extent 1.

headers-table
is a table of elementary data items to be displayed at the top of the menu. (Input) n2
is the length. in characters. of the longest header specified. m2 is the extent of the
table. i.e .• the number of headers (lines) desired. At least one header must be specified
(if the first header is set to space(s). no headers will be used).

trailers-table
is an table of trailers (displayed immediately below the menu). (Input) n3. m3. are
analogous to n2, m2 respectively.

menu-f ormat
is a group item defining the format of the menu being created. (Input)

9-3 CP51-o2

In the COBOL program the caller is responsible for setting the following elementary data
items:

menu-version

max-width

max-height

no-of-columns

center-headers
center-trailers

keys-table

the version number of the menu facility.
(only version 1 is currently defined)

maximum width of the window on which .the
menu is to be displayed.
maximum height of window on which the
menu is to be displayed.
number of columns to be used to display
the options.
o or 1; 0 = no, 1 = yes.
o or 1 (same as center-headers)

is a table (maximum value of m4 is 61) that identifies the keystroke to be associated
with each choice. (Input) This table must be at least as long as the number of choices
in the menu. Each element in the table must be unique.

menu-needs
a group item that contains menu related information on successful execution of call.
(Output)

Returned information:

lines-needed

width-needed

no-of-options

menu-id

the number of lines required
to display the menu.
the number of columns needed
to display the menu.
the number of options defined
in the menu.

the menu-object identifier (i.e .• it is the menu object "pointer".) (Output) It must not be
altered in any way by the application program.

ret-code
return code. (Output) (See Appendix B.)

9-4 CP51-Q2

Deletes a menu object from a given value segment.

USAGE

declarations:

77
77
77
77

dir-name
entry-name
name-of-menu
ret-code

PIC X (j 68) •
PIC X (32) •
PIC X (32) •
USAGE IS COMP-G.

call IIcb_menu_$delete ll USING dir-name, entry-name, name-of-menu,
ret-code.

STRUCTURE ELEMENTS

dir-name
pathname of the directory containing the menu object (Input)

entry-name
entry name of value segment containing the menu object. (Input) The suffix "value" need
not be specified.

name-of -menu
name used to identiiy the menu object when the menu object was stored. (Input)

ret-code
return code. (Output) (See Appendix B.)

Returns information about a menu object. It returns the number of options in the menu, the
number of lines and number of columns required to display the menu. It is primarily used
to determine if the menu can be displayed in a given window.

9-5 CP51-o2

USAGE

declarations:

01 menu-needs USAGE IS COMP-6.
02 lines-needed.
02 width-needed.
02 no-of-options.

77 menu-id
77 ret-code

USAGE IS COMP-6.
USAGE IS COl'\p-6.

call "cb menu_$describe" USING menu-id, menu-needs, ret-code.

STRUCTURE ELEMENTS

menu-id
the menu identifier returned by cb_menu_$create (or cb_menu_$retrieve in cases where
the menu object bas been stored). (Input)

menu-needs
a group item that contains menu related information on successful execution of call.
(Output)

Returned information:

lines-needed

width-needed

no-of-option

ret-code

the number of lines needed to
display the menu.
the number of columns needed
to display the menu.
the number of options defined
in the menu.

return code. (Output) (See Appendix B.)

Entry: cb_menu_Sdestroy

Used to free storage of a menu (not to be confused with cb_menu_$delete, which is used to
delete the menu object from a value segment). Destroying the menu has no effect on the
screen contents.

9-6 CP51-o2

USAGE

declarations:

77 menu-id
77 ret-code

USAGE IS COMP-6.
USAGE IS COMP-6e

STRUCTURE ELEMENTS

menu-id
menu identifier returned by cb_menu_$create or cb_menu_Sretrieve. (Input/Output) (If
usage-mode is 0 (see cb_menu_$init2) this operand will be ignored.) Set to an invalid
vall:le on return to prevent the old menu-id from being accidentally used.

ret-code
return code. (Output) (See Appendix B.)

Invoked to display a menu in a given window.

USAGE

declarations:

77 window.&.id
77 menu-id
77 ret-code

USAGE IS COMP-6.
USAGE IS COMP-6.
USAGE is COMP-6.

call "cb_menu_$display" USING window-id, menu-id, ret-code.

STRUCTURE ELEMENTS

window-id
a window identifier returned by cb_window_Screate entry point (Input) If usage-mode
o this operand will be ignored (see cb_menu_Sinit2). .

menu-id
menu identifier returned when the menu object was created or retrieved. (Input)

ret-code
return code. (Output) (See Appendix B.)

9-7 CP51-o2

Returns' the choice made by the user, i.e., a number representing either the menu item chosen
or the function key (or its equivalent escape sequence) entered.

USAGE

declarations:

77
77
77
77
77
77

function-key-info
window-id
menu-id
fkeys
selection
ret-code

PIC X (n 1) •
USAGE IS COMP-b.
USAGE IS COMP-b.
USAGE IS COMP-b.
USAGE IS COMP-b.
USAGE IS COMP-b.

call "cb_menu_$get_choicell USING window-id, menu-id, function-key-info,
fkeys, selection, ret-code.

STRUCTURE ELEMENTS

window-id
a window identifier returned by the cb_window_$create entry point (Input) If
usage-mode = 0 this operand win be ignored (see cb_menu_$init2),

menu-id
menu identifier returned by cb_menu_$create or cb_menu_$retrive. (Input)

function-key-info
a character elementary data item (n1 as required) used to specify the role of function
keys (if they exist for the terminal being used) or an equivalent set of escape sequences
if the terminal does not have function keys or not the function keys required by the
application. (Input) The objective is to let the application use the terminal's function
keys if possible, else specify key sequences to be used to simulate function keys. Each
character in the string corresponds to one function key. If the character is a space, then
it is not relevant if the corresponding function key exists or not If the character is not
a space, that character will be used to simulate a function key if the terminal does not
have function keys. If the terminal does not have a function key for every non-space
character in the string. then function keys will be simulated. Thus, the string " ?p q"
means that the caller does not care whether the terminal has function key 0 or 3, but
the caller does wish to use function keys 1,2, and 4. If any of these 3 function keys is
not present on the terminal, then esc-? will substitute for FI. esc-p will substitute for
F2, and esc-q will substitute for F4.

fkeys
fkeys = 1 user entered a function key or escape sequence fkeys
option (Output)

9-8

o user selected an

CP51-Q2

selection
is a number representing th.e choice made by the user. (Output) If the user has chosen
an option, it is a number between 1 and the highest defined option. If the user has
entered a function key, or escape sequence simulating a function key, it is the number
associated with the function key.

ret-code
return code. (Output) (See Appendix B.)

These must be the first calls made to the menu manager. They set up the necessary
environment for the menu application and return information concerning the user I/O
window.

USAGE

declarations:

inter code
integer usage-mode

call cb menu $init2 (usage-mode, user-window-lines, user-window-columns,
user-window-id, ret-code)

STRUCTURE ELEMENTS

usage-mode
usage-mode = 0 means that the caBer does not wish to do any explicit window
management (Input) When he/she wishes to display a menu, the window required will
be automatically created. This means that the application will operate in a two window
mode. the window containing the menu, and the user_io window. Both windows will be
managed automaticaBy for the user. If the user specifies this mode, all calls to the
cb_window_ subroutine will be ignored and will return an appropriate error code. See
Error Code Handling, below. All calls to the cb_menu_ subroutine that require a window
identifier will ignore the user provided window-id.

usage-mode = 1 means that the user wishes to define the number and characteristics of
the windows to be used in the application. Thus, calls to cb_window_ will be supported
and, iot the entry points of cb_menu_ that require a window identifier, the caller must
use a legal window-id (returned by cb_ window _$create).

user-window-lines
the number of physical lines (rows) of the user i/o window when cb_menu_$init is
called (which must be the first cb_menu_ call in the application.) Undefined if
usage-mode = O. (Output)

9-9 CP51-o2

user-window-columns
the number of columns of the user i/o window at time that cb_menu_$init is called (see
immediately above). (Output) Undefined if usage-mode = O.

user-window-id
window identifier of the user i/o window. (Output) Undefined if usage-mode = O.

ret-code
return code. (Output) (See Appendix B.)

Used to list the menu object(s), stored in value segment The menu objects selected are those
that match the string input by the caller.

USAGE

declarations:

01 matched-names.
02 no-of-matches
02 menu-names

USAGE IS COMP-6.
PIC X(32) OCCURS (ml) TIMES.

77 dir-name
77 entry-name
77 match-string
77 ret-code

PIC X (168) •
PIC X (32) .
PIC X (32) •
USAGE IS COMP-6.

call I cb_menu_$list" USING dir-name, entry-name, match-string,
matched-names, ret-code.

STRUCTURE ELEMENTS

dir-name
pathname of directory containing the menu object. (Input)

entry-name
entry name of value segment containing the menu object. (Input) The suffix "value" need
not be specified.

match-string
a character elementary data item that is to be used as the selection criteria for
determining what menu object, if any, is contained in the specified value segment that
match (or contain) this string. (Input)

no-of -matches
the number of matches found. (Output) If none, then it is O.

9-10 CP51-o2

menu-names
On return, contains the names of all menu objects, in the specified value segrr.,ent, that
match the character string match-string. (Output) Note, if m1 is not large enough to
contain all the names, only m1 names will be returned.

ret-code
return code. (Output) (See Appendix B.)

Entry: cb_men~$retrieve

Used to retrieve a menu object previously stored via the cb_menu_$store subroutine.

USAGE

declarations:

77 dir-name
77 entry-name
77 name-of-menu.
77 menu-id
77 ret-code

PI C X (168) •
PIC X (32) •
PIC X (32) •
USAGE IS COMP-6.
USAGE IS COMP-6.

call "cb_menu_Sretrieve" USING dir-name, entry-name, name-af-menu,
menu-id, ret-code.

STRUCTURE ELEMENTS

dir-name
pathname of the directory containing the menu object (Input)

entry-name
entry name of value segment containing menu object (Input) The suffix "value" need not
be specified.

name-of-menu
name of the menu object used when the object was stored. (Input)

menu-id
is the menu id returned by the call. (Output)

ret-code
return code. (Output) (See Appendix BJ

9-11 CP51-o2

Used to store a menu object in a specified value segment

USAGE

declarations:

77
77
77
77
77
77

dir-name
entry-name
name-of-menu
create-seg
menu-id
ret-code

PI C X (168) •
PIC X (32) •
PIC X (32) •
USAGE IS COMP-6.
USAGE IS COMP-6.
USAGE IS COMP-6.

call "cb_menu_Sstore" USING dir-name, entry-name, name-of-menu,
create-seg, menu-id, ret-code.

STRUCTURE ELEMENTS

dir-name
pathname of directory into which the menu object is to be placed. (Input)

entry-name
entry name of value segment into which menu object is to be placed. (Input) The suffix
"value" need not be specified.

name-of -menu
is the name to be assigned to the stored menu object (Input)

create-seg
create-seg = 0 means do not store if value segment identified by entry-name does not
already exist (Input) create-seg = 1 means create value segment, if it does not already
exist. and store menu object in it.

menu-id
is the menu object identifier returned by cb_menu_$create or cb_menu_$retrieve. (Input)

ret-code
return code. (Output) (See Appendix B.)

9-12 CP51-o2

Entry: cb_menu_Sterminate

Must be the last call to the menu manager in the menu application.

USAGE

declarations: none

call IIcb menu_Sterminate".

STRUCTURE ELEMENTS

There are no arguments.

9-13 CP51-o2

This is the basic video interface subroutine to be used by COBOL to create/destroy/change
windows. (If usage-mode = 0 (see cb_menu_$init2) this subroutine should not be called.}

Its facilities are available through the following entry points.

This entry points provides a facility for changing the size of an existing window. The size of
a window can always be "shrunk", however it can be increased only it does not overlap with
another defined window. (If usage-mode = 0 (see cb_menu_$init2) this entry point should not
be called.}

USAGE

declarations:

77 window-id
77 first-line
77 height
77 ret-code

USAGE IS COMP-6.
USAGE IS COMP-6.
USAGE IS COMP-6.
USAGE IS COMP-6.

call "cb_window_$change" USING window-id, first-line, height,
ret-code.

STRUCTURE ELEMENTS

window-id
window identifier returned by cb_window_$create. (Input)

first-line
new first line number for the window being changed. (Input) A positive ·value.

height
new height for the window being changed. (Input) A positive value.

ret-code
return code. (Output) (See Appendix B.)

9-14 CP51-02

Used to clear a specified window.

USAGE

declarations:

77 window-id
77 ret-code

USAGE IS COMP-6.
USAGE IS COMP-6.

call "cb_window_$clear_window" USING window-id, ret-code.

STRUCTURE ELEMENTS

window-id
the window identifier (returned by cb_window_Screate) of the window to be cleared.
(Input)

ret-code
return code. (Output) (See Appendix B.)

This entry is used to create a new window on the terminal screen. (If usage-mode 0 (see
cb_menu~Sinit2) this entry point should not be called.)

USAGE

declarations:

77 switch-name
77 first-line
77 height
77 window-id
77 ret-code

PIC X (32) •
USAGE IS COMP-6 ..
USAGE IS COMP-6.
USAGE IS COMP-6.
USAGE IS COMP-6.

ca11 IIcb_window_$create" USING first-line, height, switch-name,
window-id, ret-code.

STRUCTURE ELEMENTS

first-line
is the line number where the window is to start (Input)

height
the number of lines used by the window, i.e., its height (Input)

9-15 CP51-o2

switch-name
the name that the caller wishes to associate with the switch. (Input)

window-id
the returned id of the window just created. (Output) It must not be altered in any way
by the application program.

ret-code
return code. (Output) (See Appendix B.)

Entry: cb_ window _$destroy

Used to destroy a previously created window. (If usage-mode
entry point should not be called.)

USAGE

declarations:

77 wi ndow- i d
77 ret-code

USAGE IS COMP-6.
USAGE IS COMP-6.

call "cb_window_$destroy" USING window-id, ret-code.

STRUCTURE ELEMENTS

window-id
window identifier (returned by the cb_window_Screate). (Input/Output) It is reset to an
illegal value by this call.

ret-code
return code. (Output) (See Appendix B.)

COBOL MENU APPLICATION EXAMPLES

in the following two COBOL examples. a "Message" menu application is created that allows
you to display. print. discard. or forward messages. Example 1 is a simple COBOL program
that interfaces with the Multics menu manager via the cb_menu_ routine. Note in example 1
that window management functions are called automatically through arguments in the
ft_menu_Sinit2 subroutine.

Example 2 is a COBOL program that interfaces with the Multics menu manager through the
cb_menu_routine; in example 2. however, window management functions are performed by the
cb_window_ rou~ine.

9-16 CP51-o2

EXAMPLE 1:

In this example, all window management is done automatically.

/***********~**** •• *** * A simple COBOL program interfacing with the Multics *
* menu manager via the cb_menu_ routine. *
**

CONTROL DIVISION.
DEFAULT GENERATE AGGREGATE DESCRIPTORS.
IDENTIFICATION DIVISION.

PROGRAM-ID.
cbtestl.

R. I.
AUTHOR.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.

Multics.

OBJECT-COMPUTER •.
Multics.

/**
DATA DIVISION.

WORKING-STORAGE SECTION.

01 choices-table.
02 choices PIC X(15) OCCURS 6 TIMES.

01 headers-table.
02 headers PIC X(14) OCCURS 1 TIMES.

01 trailers-table.
02 trailers PIC X(32) OCCURS 1 TIMES.

01 keys-table.
02 keys PIC X(l) OCCURS 6 TIMES.

01 menu-format.
02 menu-version USAGE
02 constraints USAGE

03 max-width VALUE
03 max-height VALUE

02 no-of-columns USAGE
02 flags.

03 center-headers
03 center-trailer

IS COMP-6 VALUE 1.
IS COMP-6.
79.
10.
IS COMP-6 VALUE 2.

PIC 9(1) VALUE 1.
PIC 9(1) VALUE 1.

9-17 CP51-o2

02
02
02

02 padder PIC X(1) VALUE "_II.

01 menu-needs USAGE IS COMP-6.
lines-needed.
width-needed.
no-of-options.

77 di r-name PIC X (168) •
77 entry-name PIC X (32) •
77 menu-name PIC X (32) •
77 function-key-info PIC X (1) VALUE IIq".
77 me PIC X (7) VALUE "cbtest1".

77 menu-id
USAGE IS COMP-6.

77 ret-code USAGE IS COMP-6.
77 window-id USAGE IS COMP-6.
77 fkeys USAGE IS COMP-6.
77 option USAGE IS COMP-6.
77 easy-mode USAGE IS COMP-6 VALUE zero.
77 user-window-l ines USAGE IS COMP-6.
77 user-window-columns USAGE IS COMP-6.
77 user-window-id USAGE IS COMP-6.
77 create-seg USAGE IS COMP-6.

77 keys-not-unique USAGE IS COMP-6.
77 too-few-keys USAGE IS COMP-6.
77 bad-arg USAGE IS COMP-6.

/***
PROCEDURE DIVISION.

* The call to the cv_error_$name are used to collect the code for
* certain error messages that are of interest this application.
* Once these codes are retrieved the occurrence of that error can
* be easily tested for.

START-IT.
CALL "cb menu $initl".

CALL IIcb_menu_Sinit2" USING easy-mode, user-window-lines,
user-window-columns, user-window-id, ret-code.

* The calls to cb_menu_$initl & 2 MUST be the first calls to cb_menu_.
* They set up the appropriate environment for the menu appl ication.

IF ret-code EQUAL TO zero GO TO NEXT-ERR-CODE.
CALL "com_err_" USING ret-code, me, "Internal error.

Could not set up appropriate environment.".
GO TO STOP-IT.

CALL "cv_er ror _$name ll US I NG "menu_et_Skeys_not_un i quell,
keys-not-unique, ret-code.

9-18 CP51-02

call "joa_" USING "Error code for keys-not-unique = Ad", keys-not-unique.
IF ret-code EQUAL TO zero GO TO NEXT-ERR-CODE.
CALL "com_err_" USING ret-code, me, II (call~ng cv_error_$name) ".
GO TO STOP-IT.

NEXT-ERR-CODE.
CALL IIcv_error_$name" USING "error_table_$bad_arg", bad-arg, ret-code.
IF ret-code EQUAL TO zero GO TO LAST-ERR-CODE.
CALL "com_err_" USING ret-code, me t II (calling cv_error_Sname)lI.
GO TO STOP-IT.

LAST-ERR-CODE.
CALL "cv_error_$name" USING "menu_et_$too_few_keys", too-few-keys,

ret-code.
IF ret-code EQUAL TO zero GO TO SET-UP.
CALL "com_err_" USING ret-code, me, " (calling cv_error_$name) 11.
GO TO STOP-IT.

SET-UP.
MOVE 1 TO menu-version.

MOVE 110 i sp 1 ay Message ll TO cho ices (1) •
MOVE IIPrint Message ll TO choices (2) •
MOVE IIDiscard Message" TO choices (3) .

MOVE "Forward Message" TO choices (4) •
MOVE IIReply Message" TO choices(S).

MOVE "List Messages il TO choices (6) •
MOVE " MULTI CS MA I L " TO headers (1) •
MOVE IIPress Fl or enter esc-q to quit" TO trailers(1).
MOVE "1" TO keys (1) •

MOVE n2 H TO keys (2) •
MOVE "3" TO keys (3) .

MOVE "4" TO keys (4) •
MOVE IISI1 TO keys (S) •
MOVE "6 11 TO keys (6) •

MENU-CREATE.
DISPLAY choices-table.

DISPLAY menu-version.
CALL "cb_menu_Screate" USING choices-table, headers-table,

trailers-table, menu-format, keys-table, menu-needs,
menu-id, ret-code.

* This call creates a menu object and return the menu object
,,, i dent i f i er. Th i s menu obj ect is ref erenced as "menu- i d" •

IF ret-code EQUAL TO zero GO TO STORE-MENU.
CALL "com_err _" US I NG ret-code, me, II (ca 11 i ng cb_menu_Screate) II.
GO TO STOP-IT.

STORE-MENU.
MOVE ">udd>m>ri" TO dir-name.
MOVE "menus_seg" TO entry-name.
MOVE "cb_read_mai1_menu ll TO menu-name.

MOVE 1 TO create-seg.

9-19 CP51-02

CALL "cb_menu_$store" USING dir-name, entry-name, menu-name,
create-seg, menu-id, ret-code.

IF ret-code EQUAL TO zero GO TO DISPLAY-MENU.
CALL "com_err _" US I NG ret-code, me, II (ca 11 i ng cb_menu_Sstore) ".
GO TO STOP-IT.

DISPLAY-MENU.
CALL Icb_menu_$disp1ay" USING window-id, menu-id, ret-code.

* This call displays the menu in its own window at top of screen.
* Since the usage-mode was set to 0, the program does not have to
* create the window before calling cb_menu_$display.
* The window-id argument is ignored.

IF ret-code EQUAL TO zero GO TO GET-CHOICE.
CALL "com err II USING ret-code, me, "Interna1 error.

Menu-could not be displayed."
GO TO STOP-IT.

GET-CHOICE.

* Defines the function key requirements, i .e' 9 * if the term ina 1 has funct i on key 1 (F 1) then F 1 wi 11 be used
* to "quit", otherwise "esc q" will be used to "qu it".

CALL "cb_menu_$get_choice" USING window-id, menu-id,
function-key-info, fkeys, option, ret-code.

IF ret-code EQUAL TO zero GO TO TEST-FKEY.
CALL "com err II USING ret-code, me, IIlnternal error. While getting

user's choice. lI •
GO TO STOP-IT.

TEST-FKEY.
IF fkeys EQUAL TO

CALL II i oa_1I US I NG IIEx it i ng at your reques t .11

GO TO STOP-IT
ELSE

CALL lIioa_" USING lIyou chose option "'d.", option
GO TO GET-CHOICE.

STOP-IT.
CALL "cb menu $terminate ii

•

* cb_menu_$terminate MUST be the last call to cb menu in the
* application. It terminates the environment set up cb_menu_$init.

EXIT PROGRAM.

9-20 CP51-o2

EXAMPLE 2:

In this example, COBOL interfaces with the Multics menu manager and the Multics window
manager via the cb_menu_ and cb_window_ subroutines.

/***
'Ie A simple COBOL program interfacing with the Mu1tics

menu manager and window manager via the cb_menu_ and
cb_window_ routines, respectively. *

**
CONTROL DIVISION.
DEFAULT GENERATE AGGREGATE DESCRIPTORS.
IDENTIFICATION DIVISION.

PROGRAM-ID.
cbtest2.

AUTHOR.
R. I.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.

Multics.
OBJECT-COMPUTER.

Multics.

/**
DATA DIVISION.

WORKING-STORAGE SECTION.

01 choices-table1.
02"choicesl PIC X (9) OCCURS 2 TIMES.

01 choices-table2.
02 choices2 PIC X (1S) OCCURS 6 TIMES.

01 choices-table3.
02 choices3 PIC X (21) OCCURS 4 TIMES.

01 headers-table.
02 headers PIC X (23) OCCURS 1 TIMES.

UI traiiers-tabie.
02 trailers PIC X(S2) OCCURS 1 TIMES.

01 keys-table.
02 keys PIC X(l) OCCURS 6 TIMES.

01 menu-format.
02 menu-version USAGE IS COMP-6 VALUE 1.
02 constraints USAGE IS COMP-6.

03 max-width VALUE 80.

9-21 CP51-o2

03 max-height VALUE
02 no-of-columns USAGE
02 flags.

03 center-headers
03 center-trailer

02 padder PIC

01 menu-needs 1
02 lines-neededl.
02 width-neededl.
02 no-of-optionsl.

01 menu-needs2
02 lines-needed2.
02 width-needed2.
02 no-of-options2.

01 menu-needs3
02 lines-needed3.
02 width-needed3.
02 no-of-options3.

77 dir-name
77 entry-name
77 menu-name

10.
IS COMP-6 VALUE 2.

PIC 9(1) VALUE 1.
PIC 9(1) VALUE 1.
X (l) VALUE "_".

USAGE IS COMP-6.

USAGE IS COMP-G.

USAGE IS COMP-G.

PIC X (168) .
PIC X (32) •
PIC X (32) •

77 function-key-info PIC X (2) VALUE "qf".
77 me
77 switch-name

77 1 i nes-needed
77 first-line

77 height
77 menu-id
77 menu-idl
77 menu-id2
77 menu-id3
77 ret-code
77 curr-window-id
77 window-id
77 window-idl
77 window-id2
77 fkeys
77 option
77 do-it-yourself
77 user-window-lines
77 user-window-columns
77 user-window-id
77 create-seg

77 bad-window-id

PIC X (7) VALUE "cbtest211.
PIC X (32) •

USAGE
USAGE

USAGE
USAGE
USAGE
USAGE
USAGE
USAGE
USAGE
USAGE
USAGE
USAGE
USAGE
USAGE
USAGE
USAGE
USAGE
USAGE
USAGE

IS COMP-6.
IS COMP-6.

S COMP-G.
S COMP-G.
S co",p-6~
S cOMP-6.
S cOMP-6.
S COMP-G.
S cOMP-6.
S COMP-6.
S COMP-G.
S COMP-G.
S COMP-G.
S COMP-G.
S COMP-6 VALUE 1.
S COMP-6.
S cOMP-6.
S COMP-6.
S COMP-6.

USAGE IS COMP-G.

9-22 CP51-02

77 nonexistent-window
77 insuff-room-for-window

USAGE IS COMP-6.
USAGE IS COMP-G.

/***
PROCEDURE DIVISIONe

* The call to the cv_error_Sname are used to collect ~he code for
* certain error messages that are of interest this application.
* Once these codes are retrieved the occurrence of that error can
* be easily tested for.

START-IT.
CALL IIcv_error_$namell USING "video_et_$bad_window_id",

bad-window-id, ret-code.
IF ret-code EQUAL TO zero GO TO NEXT-ERR-CODE.
CALL IIcom_err_" USING ret-code, me, " (calling cv_error_$name) ".
GO TO STOP-IT.

NEXT-ERR-CODE.
CALL IIcv_error_$namell USING IIvideo_et_$nonexistent_window",

nonexistent-window, ret-code.
IF ret-code EQUAL TO zero GO TO LAST-ERR-CODE.
CALL "com_err_" USING ret-code, me , II (calling cv_error_$name)".
GO TO STOP-IT.

LAST-ERR-CODE.
CALL "cv_error_$name" USING "video_et_$insuff_room_for_window",

insuff-room-for-window, ret-code.
IF ret-code EQUAL TO zero GO TO SET-UP.
CALL "com_err~" USING ret-code, me, II (calling cv_error_$name) II.
GO TO STOP-IT.

SET-UP.
MOVE IIRead Ma i 111 TO cho ices 1 (1) •
MOVE "Send Ma i]ll TO cho ices 1 (2) •

MOVE "Display Message" TO choices2(1).
MOVE IIPrint Messagell TO choices2(2).

MOVE IIDiscard Messagell TO choices2(3).
MOVE IIForward Message ll TO choices2(4).

MOVE IIReply Message" TO choices2(5).
MOVE "List Messages" TO choices2(6).

MOVE "Send New Message" TO choi ces3 (l) .
MOVE IISend Deferred Message" TO choices3(2).

MOVE IIPrint Sent Messagell TO choices3(3).
MOVE IISave Sent Messagell TO choices3(4).

MOVE Ill" TO keys (1) •
MOVE 11211 TO keys (2) •

MOVE "3" TO keys (3) •
MOVE 114" TO keys (4) •

9-23 CP51-Q2

cb_window_ cb_window_

MOVE "5" TO keys(S).
MOVE "6" TO keys (6) .

CALL "cb menu Sinitl".
CALL II cb=menu=Sinit2 11 USING do-it-yourself, user-window-lines,

user-window-columns, user-window-id, ret-code.

* The call to cb_menu_Sinit1 & 2 MUST be the first call to cb_menu_.
* It sets up the appropriate environment for the menu application.
* The application must do the window management, since
'Ie "do-it-youself" is set to 1.

IF ret-code EQUAL TO zero GO TO CREATE-FIRST-MENU.
CALL "com err II USING ret-code, me, "Internal error. Could not set up

appropriate environment.".
GO TO STOP-IT.

CREATE-FIRST-MENU.

* Create first menu object.

MOVE "Fl (or esc-q) = quit'l TO trailers(l).
MOVE "MUL TICS MA I L II TO headers (1) •
CALL "cb_menu_Screate" USING choices-tablel, headers-table,

trailers-table, menu-format, keys-table, menu-needs 1 ,
menu-idl, ret-code.

IF ret-code EQUAL TO zero GO TO CREATE-SECOND-MENU.
CALL "com_err_1I USING ret-code, me, II (calling cb menu_Screate)II.
GO TO STOP-IT.

CREATE-SECOND-MENU.

* Create second menu object.

MOVE "Fl (or esc-q) = quit; F2 (or esc-f) = first menu ll TO trailers(1).
MOVE "READ MAIL" TO headers(l).
CALL II cb_menu_Screate ll USING choices-table2, headers-table,

trailers-table, menu-format, keys-table, menu-needs2,
menu-id2, ret-code.

IF ret-code EQUAL TO zero GO TO CREATE-THIRD-MENU.
CALL IIcom_err_" USING ret-code, me, II (calling cb_menu_Screate)lI.
GO TO STOP-IT.

CREATE-THIRD-MENU.

* Create third menu object.

MOVE IISEND MAl L" TO headers (l) •
CALL Icb_menu_Screate" USING choices-table3, headers-table,

trailers-table, menu-format, keys-table, menu-needs3,
menu-id3, ret-code.

9-24 CP51-o2

IF ret-code EQUAL TO zero GO TO STORE-MENU.
CALL "com_err_" USING ret-code, me, II (calling cb~menu=$create)lI.
GO TO STOP-IT.

STORE-MENU.
MOVE ">udd>m>ri" TO dir-name.
MOVE "menu_segll TO entry-name.
MOVE "cb_test_menu_1I TO menu-name.

MOVE 1 TO create-seg.
CALL "cb_menu_Sstore" USING dir-name, entry-name, menu-name,

create-seg, menu-idl, ret-code.
IF ret-code EQUAL TO zero GO TO DISPLAY-IT.
CALL IIcom_err_" USING ret-code, me, lI{calling cb_menu_Sstore)".
GO TO STOP-IT.

DISPLAY-IT.
MOVE -1 TO curr-window-id.

* Setting curr-wind-id to 11-111 means that there is no current window
* defined.

MOVE menu-idl TO menu-ide
MOVE lines-neededl TO lines-needed.

DISPLAY-FIRST-MENU.

PERFORM CHANGE-MENU THRU GOBACK.
,'t The user i/o wi ndow has been "shrunk", the wi ndow for the first menu
* has been created, and the first menu has been displayed.

MOVE window-id TO window-idle
IF ret-code EQUAL TO zero GO TO GET-iT.
CALL "com err II USING ret-code, me, "Internal error.

Menu could not be displayed. 1I

GO TO STOP-IT.
GET-IT.

PERFORM GET-CHOICE.
* Get the user input. Two values are returned. (1) fkey. If fkey = 1,
* then the user entered a function key (or its equivalent escape
* sequence). If fkey = 0 then the user has selected an option~ (2) optionQ
,,: If fkey = 1 then opt i on is the funct i on key number entered. (F 1 = l,
* F2 = 2, etc.). If fkey = 0, then option is the option number selected,
* option = 1 means option 1 selected, etc.

IF ret-code EQUAL TO zero GO TO TEST-FKEY.
CALL "com_err_" USING ret-code, me, IIlnternal error.

While getting useris choice. ii
•

GO TO STOP-IT.
TEST-FKEY.

IF fkeys EQUAL TO 1
IF option EQUAL TO

CALL "ioa_1I USING "Exiting at your request."
GO TO STOP-IT

ELSE
GO TO GET-IT

9-25 CP51-o2

ELSE
IF option EQUAL TO 1

MOVE menu-id2 TO menu-id
MOVE lines-needed2 TO lines-needed

PERFORM CHANGE-MENU THRU GOBACK
ELSE

MOVE menu-id3 TO menu-id
MOVE lines-needed3 TO lines-needed
PERFORM CHANGE-MENU THRU GOBACK.

IF ret-code NOT EQUAL TO zero
CALL IIcom_err_" USING ret-code, me, IIlnternal error.

While trying to display menu. 1I

GO TO STOP-IT
ELSE

MOVE window-id TO window-id2.
NEXT-GET-IT.

PERFORM GET-CHOICE.
IF fkeys EQUAL TO zero GO TO CHOSE-OPTION.
IF option EQUAL TO 1

CALL lIioa_1I USING "Exiting at your request. 1I

GO TO STOP-IT .
ELSE

IF option GREATER 2
GO TO NEXT-GET-IT

ELSE
MOVE menu-idl TO menu-id
MOVE iines-neededl TO lines-needed
GO TO DISPLAY-FIRST-MENU.
CHOSE-OPTION.

CALL lIioa_1I USING lIyou chose option "'d. II , option.
GO TO NEXT-GET-IT.

GET-CHOICE.
CALL IIcb_menu_$get_choice" USING window-id, menu-id,

function-key-info, fkeys, option, ret-code.

CHANGE-MENU.

* Destroy the current menu window.
!F (curr-window-id) EQUA~ TO -1 GO TO CHANGE-USER-WIND.
CALL II cb_window_$destroy" USING curr-window-id, ret-code.

IF ret-code EQUAL TO zero GO TO CHANGE-USER-WIND.
GO TO GOBACK.

CHANGE-USER-WIND.
COMPUTE first-l ine = lines-needed + 1.
COMPUTE height = user-window-lines - lines-needed.
CALL "cb_window_$change ll USING user-window-id, first-l ine, height,

ret-code.
IF ret-code EQUAL TO zero GO TO CREATE-NEW-WIND

ELSE GO TO GOBACK.
CREATE-NEW-WIND.

MOVE IImenu-window" TO switch-name.

9-26 CP51-02

MOVE 1 TO first-line.
CALL IIcb_window_$create ll USING first-line. lines-needed,

switch-name, window-id, ret-code.
IF ret-code EQUAL TO zero GO TO DISPLAY-MENU
ELSE GO T-G G-6S-ACK.

DISPLAY-MENU.
MOVE window-id TO curr-window-id.

CALL IIcb menu Sdisplay" USING window-id, menu-id, ret-code.
CALL iicb_window_$clear_window" USING user-window-id, ret-code.

GOBACK.
EXIT.

STOP-IT.
CALL "cb menu Sterminate"~

* cb_menu_Sterminate MUST be the last call to cb menu in the
* application. It terminates the environment set-up cb_menu_Sinit.

EXIT PROGRAM.

9-27 CP51-02

APPENDIX A

I/O SWITCH ATTACH~.1ENTS

This appendix reviews the standard I/O switch attachments, then describes how these
attachments change when you activate the video system on your terminal and create a menu.

There are four standard switches which are attached when your process is created. These
switches are as follows:

(1) user_i/o: this switch acts as a common collecting point for all terminal I/O. It's
attached to your terminal through the I/O module tty_, and is opened for stream
input and output

(2) user_input: this switch controls command and data input at your terminal. It's
attached to user_if 0 through the I/O module syn_, and through that to your terminal.
It's opened for stream input

(3) user_output: this switch controls command and data output at your terminal. It's
attached to user_if o· through the I/O module syn_, and through that to your terminal.
It's o~ned for stream output

(4) error_output this switch controls output of error messages at your terminal. It's
attached to user_i/o through the I/O module syn_, and through that to your terminal.
I t's opened for stream output

To get information about I/O switch attachments, you can use the print_attach_table
(pat) command. If you type "pat" on your terminal right after you log in, the system will
print the following:

error_output
user input
user:i/o

syn_ user_i/o -inh close get_line get_chars
syn_ user_i/o -inh close put_chars
tty_ -login_channel

stream input output
user_output - sy"_ user_i/o -inh close get_line get_chars

A-I CP5I-02

You can see from this that user_input, user_output, and error_output are all attached
via syn_ to user_i/o, which in turn is attached via tty_ to your terminal. Figure A-l
illustrates these standard I/O switch attachments.

When you activate the video system, by issuing a call to video_utils_$turn_on_login_channel
or by executing the window_call invoke command, the existing tty_ attachment of your
terminal is removed and replaced with video system attachments. The I/O switch user_i/o is
now attached through the I/O module window_io_ to a new I/O switch, user_terminal_o
User_terminal_ is attached through the I/O module tc_io_ to your terminal.

A-2 CP51-02

user_i/o

Figure A-l. Standard Attachments

A-3 CP5l-02

If you type "pat" on your terminal after invoking video. the system will print the
following:

user_terminal tc_io_ -login_channel
stream_input_output

error_output syn_ user_i/o -inh close get_line get_chars
user_input syn_ user_i/o -inh close put_chars
user_i/o window_io_ user_terminal -first_line 1 -n_lines 24

stream_input_output Video
user_output syn_ user_i/o -inh close get_l ine get_chars

You can see from this that user_input. user_output, and error_output are still attached
via syn_ to user_i/o, but that user_i/o is now attached via window_io_ to user_terminal_,
which is in turn attached via tc_io_ to your terminal. User_i/o is now a window as well as
a switch. It begins on line 1 of your screen and is 24 lines long. On a VIP7801 terminal,
this means that the window covers the entire screen. Figure A-2 illustrates these changes to
the standard I/O switch attachments.

When you execute an exec_com to create a menu, the necessary attachments for your
menu are built on top of those already set up by your activation of the video system. If
you run the exec_com discussed in Section 3 {doc_sys.ec), then type "pat" on your terminal,
the system will print the following:

user terminal tc_io_ -login_channel
stream input output

error_output - syn_ user_i/o -inh close get_line get_chars
user_input syn_ user_i/o -inh close put chars
user_i/o window_io_ user_terminal -first_line 8 -n_lines 17

stream input output Video
user_output - syn_ user_i/o -inh close get_l ine get_chars
!BBBJLXDqDbMNnn.menu

window_io_ user_terminal_ -first line -n 1 ines 7
stream input output Video

811007l44650.613707.exec com
~c_input_ ">udd>ProJect>Person>doc_sys.ec ll stream_input

A-4 CP51-02

You can see from this that user_input, user_output, and error_output are still attached
via syn_ to user_i/o, that user_i/o is still attached via window _io_ to user_terminal_, and
that user_terminal_ is still attached via tc_ic_ to your terminal. But in addition, the
!BBBJLXDqDbMNnn.menu is now attached through window_io_ to user_terminal_ also. (The
unique character string "!BBBJLXDqDbMNnn" is generated by using the unique active function,
as in the construction [unique] .menu, used in doc_sys.ec.) The user_i/o window still begins
on iine 1, but now it is only 7 lines long. The ! BBRJLXDqDbMNnn. menu, which, like
user_i/o, is a window as well as a switch, begins on line 8, and is 17 lines long.

The last two lines printed above provide information about attachments made to
support the execution of the exec_com. They are of no concern to you in this discussion.
Figure A-3 illustrates I/O switch attachments after the video system has been activated and
an exec_com creating a menu has been run.

For more information on the print_attach_table command and the unique active
function. refer to the Multics Commands and Active Functions manual, Order No. AG92.

A-5 CP51-o2

Figure A-2. Attachments After the Invocation of Video

A-6 CP51-o2

Figure A-3. Attachments After Execution of doc_sys.ec exec_com

A-7 CP51-o2

APPENDIX B

ERROR CODE HANDLIl'".JG

The subroutine cv_error_$name is provided in order to allow the FORTRAN and
COBOL programmer to test return codes in a way similar to that provided by PL/I.

It provides a means to associate an error "name", e.g., "menu_et_$too_few_keys" with
the numeric value of the returned code. Once this is done the programmer can test for a
given error code by using the name associated with it

SYNTAX IN FORTRAN

call cv _error_$name (error_name, converted_code, code)

SYNTAX IN COBOL

CALL "cv_error_$name" USING error-name, converted-code, ret-code.

ARGUMENTS

error_name (error-name)
a quoted string, e.g., "menu_et_$too_many _options", which is name of the error. (Input)

converted_string (converted-string)
an integer (USAGE IS COMP-6 in COBOL) variable where the returned numeric value
of the code is to be stored. (Outpui)

code (FORTRAN)
o if call was successful, nonzero otherwise. (integer) (Output)

ret-code (COBOL)
o if call was successful, nonzero otherwise. (USAGE IS COMP-6) (Output)

NOTES

"code" must be declared as "integer" in a FORTRAN program and "ret-code" as USAGE IS
COMP-6 in a COBOL program. In every call, to any entry point defined in this document,
a return code of zero always means that the call was executed successfully.)

B-1 CP51-o2

Error codes of particular interest are:

menu_et_$too_m3.J.9).y _options
(A menu can contain at most 61 choices.)

menu_et_Stoo_f ew _keys
. .' (There are fewer keys than choices.)

menu_et_Skeys_not_unique
(Each key must be unique.)

menu_et_Shigher_than_max
(The menu will not fit within the specified maximum height)

video_et_Sbad_ window _id
(The supplied window id was not valid.)

video_et_Soverlappin8-windows
(Two windows may not overlap on the screen.)

video_et_Swindow_too_big (The screen is too small to accommodate a window of the
requested size.)

video_et_Sinsuff _room_f or_window
(Insufficient room to create window.)

video_et_Swindow _too_small
(Tried to adjust window past minimum size.)

video_et_Snegative_screen_size
(Negative screen size specified.)

video_et_Snegative_ window_size
(Negative windo~ size specified.)

video_et_Snonexistent_ window
(Specified window does not exist)

video_et_$overlaps_other_ window
(Specified window overlaps other windows.)

video_et_Sunable_to_create_ window
(Unable to create window.)

video_et_Sunable_to_dest_ window
(Unable to destroy window.)

video_et_Sswitch_not_ window
(The specified switch is not attached as a window.)

error_table_Sno_operation
(Cannot call this entry point in your current mode. Requested operation could not be
performed.)

B-2 CP51-o2

"A 4-5

"8 4-4

"0 4-5

"E 4-5

"F 4-4

"L 4-4

"Q 4-4

"y 4-3

4-5

MISCELLANEOUS

A

arguments for window_call
be i i 5- i i
change_window 2-12, 5-12
clear_region 5-12
clear_to_end_of_line 5-12
clear_to_the_end_of_window

5-13
clear_window 2-13, 5-13
create_window 2-9, 5-13

INDEX

i-I

arguments for window call
(cont) -

delete_chars 5-14
delete_window 2-12, 5-14
get_echoed_chars 5-14
get_first_line 5-15
get_one_unechoed_char 5-15

5-16
5-16
5-16

5-17

get_position 5-15
get_terminal_height
get_terminal_width
get_unechoed_chars
get_window_height
insert_text 5-17
invoke 2-9, 5-17
overwrite_text 5-18
revoke 5-18
scroll_region 5-18
set_position 5-19
set_position_rel 5-19
supported_terminal 5-19
sync 5-19
video_invoked 5-20
write_sync_read 5-20

attaching video system 2-5

at'tacnments
review of
see also video attachments
see standard attachments

CP51-02

B

backspace key 4-2

backward character
"'B 4-4

backward word
ESC B 4-5

beginning line
"'A 4-5

C

capitalize initial word
ESC C 4-5

cap i ta 1 i ze word
ESC U 4-5

cb_menu_ 9-2
cb menu Screate 9-2
cb-menu-Sdelete 9~5
cb-menu-Sdescribe 9-5
cb-menu-Sdestroy 9-6
cb-menu-Sdisplay 9-7
cb=menu=Sget_choice 9-8
cb menu Sinitl . 9-9
cb-menu-Sinit2 9-9
cb-menu-Slist 9-10
cb - menu'-Sretr i eve 9-11
cb-menu-Sstore 9-12
cb=menu=Sterminate 9-13

cb window 9-14
~b wind~w Schange 9-14
cb=window=Sclear_window

9-15
cb window Screate 9-15
cb=window=Sdestroy 9-16

clear and redisplay
ESC AL 4-4

clear_window example 2-13

COBOL interface 9-1

control characters
backward character

"'B 4-4

i-2

backward word
ESC B 4-5

beginning line
"'A 4-5

capitalize initial word
ESC C 4-5

capitalize word
ESC U 4-5

clear and redisplay
ESC "'L 4-4

delete character
"'0 4-5

delete word
ESC 0 4-5

end of line
"'E 4-5

erase 4-2
backspace key 4-2
DEL, # 4-5

erase word
ESC DEL, ESC # 4-5

forward character
"'F 4-4

forward word
ESC F 4-4

kill 4-2
lower case word

ESC L 4-5
quoting character

"'Q 4-4
real-time editor 4-1
redisplay

"'L 4-4
retrieving deleted text

ESC y 4-3
Ay 4-3

twiddle word
ESC T 4-5

two characters 4-2
deleting words 4-2
retrieving deleted text

4-3

create window example 2-10

CP51-02

o

data structures
menu_format 6-8
menu _li -s t ~+nfo -- 6-9
menu_requirements 6-11

DEL 4-5

delete character
"'0 4-5

delete word
ESC 0 4-5

delete_window example 2-12

deleting words 4-2

detaching video system 2-7

end of line
"'E 4-5

E

end of window processing

erase character 4-2
4-5
backspace key 4-2
DEL 4-5

erase word
ESC DEL, ESC # 4-5

error_output switch

ESC # 4-5

ESC B 4-5

ESC C 4-5

ESC 0 4-5

A-I

4-10

i-3

ESC DEL 4-5

ESC F 4-4

ESC L 4-4, 4-5

ESC T 4-5

ESC u 4-5

ESC y 4-3

examples
exec_com

attaching video 2-5
clear_window 2-13
create_window 2-10
delete_window 2-12
detaching video 2-7
document system 3~2

function keys 3-1
function keys alternative

3-1
pll

attaching video 2-6
detaching video 2-7
document system 3-6
window_$clear_window
window Screate 2-ii
window=Sdestroy 2-12

2 -1~ . .,

extensions
writing editor 4-5

F

forward character
"'F 4-4

forward word
ESC F 4-4

ft_menu_ 8-2
ft menu Screate 8-2
ft-menu-Sdelete 8-4
ft-menu-Sdescribe 8-4
ft=menu=Sdestroy 8-5

CP51-02

f t menu (cont)
ft_me~u_$display 8-6
ft menu $get choice 8-6
ft-menu-$initl 8-8
ft-menu-$init2 8-8
ft-menu-$retrieve 8-10
ft-menu-$store 8-10
ft=menu=Sterminate 8-11

ft window 8-13
ft_wind~w_$change 8-13
ft_window_$clear_window

8-14
ft window $create 8-14
ft=window=$destroy 8-15

function keys
alternatives 3-2
guidelines for 3-1
recommendations 3-2
ttt_info_$function_key_data

3-1

I/O modules
tc_io_ 7-2
window_io_ 7-5

K

kill character 4-2

kill ring 4-3

lower case word
ESC L 4-5

L

menu
definition 1-1
games example 1-1
managerial example 1-4
manual orders example 1-3
Multics tutorial example

1-3
programming example 1-5

menu and video
connection between 1-5

menu commands
menu_create 5-2
menu_delete 5-4
menu_describe 5-5
menu_display 5-6
menu_get_choice 5-7
menu_l i st 5-9

menu 6-2
me~u $create 6-2
menu-$delete 6-3
me~lU - $descr i be 6-4
menu=$destroy 6-4
menu_$display 6-5
menu_$get_choice 6-5
menu $list 6-6
menu-$retrieve 6-7
menu=$store 6-8

menu_create command 5-2

menu_delete command 5-4

menu_describe command 5-5

menu_display command 5-6

menu_format data structure
6-8

menu_list command 5-9

i-4 CP51-02

menu_list_info data structure
6-9

menu_requirements data
structure 6-11

miscellaneous capabilities
in windows 2-4

MORE processing 4-1, 4-10

o

operations
on windows 2-8

change_window
clear_window

2-12
2-13

create_window 2-9
set_window_info 2-12

output buffering 4-11

output control 4-1

overlap rule for windows 2-8

p

positioning the cursor
in windows 2-3

print_attach_table description
see the Commands manual

Q

quoting character
"'Q 4-4

R

real-time editor 4-1
control characters 4-1
del etingwords 4-2
erase and kill values 4-1
erase character 4-2

i-5

kill character 4-2
retrieving deleted text 4-3

redisplay
"'L 4-4

requirements for windows 2-8

retrieving deleted text 4-3
ESC y 4-3
"'y 4-3

routines
line editor 4-6

S

scrolling
in windows 2-4

selective alteration
in windows 2-4

selective erasure
in windows 2-4

standard attachments
after invoking video
illustration of A-3
via syn_ A-2
via tty_ A-2

A-I
A-4

standard I/O switch A-I

standard I/O switch
attachments

see also standard
attachments

CP51-02

standard switch names
error_output A-I
u~er_input A-I
user_io switch A-I
user_output A-I

switch attachments
see also video attachments
see standard attachments

syn_
see the Subroutines manual

T

tc_io_ 7-2
attach description 7-2
control operations

clear_screen 7-3
get_break_table 7-3
get_capabilities 7-3
reconnect ion 7-4
set_break_table 7-3
set_line_speed 7-3
set_term_type 7-4

get line operation 7-3
open operation 7-3

trailer lines 2-8

tty_
see the Subroutines manual

twiddle word
ESC T 4-5

u

unique active function
see the Commands manual

user_input switch A-I

user_iO switch A-I

user_io window 2-5, 2-9, 2-12,
2-13, 3-2

size of 2-5

user_output switch A-I

utilities
window editor 4-8

v

video and menu
connection between 1-5

video attachments A-2
after exec_com execution

A-4
illustration of A-6
tc_io_ A-4
via window_io_ A-4

video command
window_call 5-10

video subroutines
video data 6-12
video=data=Sterminal iocb

6-12
video utils 6-13
vi deo=ut i 1 s=S

turn_off_login_channel
6-14

turn_on_login_channel
6-13

window 6-15
window=$

clear_to_end_of_window
6-18

get_one_unechoed_char
6-24

2-9,

window $bell 6-15
window=$change_column 6-16
window $change line 6-16
window=$clear_~egion 6-17
window_$clear_to_end_of_line

6-18
window_$clear_window 6-19

i-6 CP51-02

video subroutines (cent)
wi ndow_$cl ear_wi ndow example

2-13
window Screate 6-19
window-$create examp1e 2-11
wi flaOW~Saele-fe--chars--- 6--20
window=$destroy 6-21
window_$destroy example

2-12
window Sedit line 6-21
window=$get_~ursor_position

6-22
window_$get_echoed_chars

6-23
window_$get_unechoed_chars

6-25
window Sinsert text 6-26
window-SoverwrTte text 6-26
window=Sposition_~ursor

6-27
window_Sposition_cursor_rel

6-27
window $scroll region 6-28
window=Ssync 6-29
window_Swrite_raw_text 6-29

video system
attaching 2-5
command interface 4-11
detaching 2-7
features 4-1

end of window processing
4-10

MORE processing 4-1, 4-10
output control 4-1
real-time editing 4-1
windows 2-1

subroutine interface 4-11

w

wi ndow
window_editor_utils_$

backward 4-9
backward word 4-9
delete_text 4-8
delete_text_save 4-9

window (cont)
window_editor_utils S

get_top_kill_rin9_eiement
4-9

i nserJ~t~x t_ _ 4 -A- _ __
move_backward word 4~9

move_forward 4-9
move_forward word 4-9
rotate_kil1_Fing 4-10

windows
definition 2-1
height of 2-9
miscellaneous capabilities

2-4
naming of 2-9
number permitted
operations 2-1,

change_window
clear_window
create_window

2-8
2-8
2-12

2-13
2-9

2-3

set_window_info 2-12
overlap rule 2-8
positioning cursor
requirements 2-8
scrolling 2-4
selective alteration 2-4
selective erasure
trai1er lines 2-8
width of 2-8

'-I.
- "'t

window 4-11, 6-15
wind;w_$

clear_to_end_of_window
6-18

get_one_unechoed_char

i-7

6-24
window Sbell 6-15
window-Schange column 6-16
window-Schange-line 6-16
window=$clear_~egion 6-17
window_$ciear_to_eno_of iine

6-18
window_$clear_window 6-19

examp1e 2-13
window_$create 6-19

examp 1 e 2-11
window $delete chars 6-20
window=Sdestroy 6-21

CP51-02

wi ndow (cont)
window_$destroy

example 2-12
window $edit line 6-21
window:$get_cursor_position

6-22
window_$get_echoed_chars

6-23
window_$get_unechoed_chars

6-25
window $insert text 6-26
window-$overwrlte text 6-26
wi ndow:$posi tion_cursor

6-27
window_$position_cursor_rel

6-27
window_$scrol1_region 6-28
window_$sync 6-29
window $write raw text 6-29
window:$write:sync_read

6-30

window_call 4-11

window_call arguments
see arguments for

wi ndow_ca 11

window_call command 5-10

window_io_ 7-5
attach description 7-5
control operations

get_break_table 7-15
get_capabilities 7-9
get_editing_chars 7-10
get_more_responses 7-11
get_output_conversion

7-16
get_special 7-16
get_token_characters 7-20
get_window_info 7-7
get_window_status 7-8
reset_more 7-10
set_break_table 7-15
set_editing_chars 7-10
set_more_responses 7-11
set_output_conversion

7-16

i-8

window_io_ (cont)
control operations

set_special 7-17
set_token_characters 7-20
set_window_info 7-7
set_window_status 7-8

control operations from
command level 7-26

get chars operation 7-6
get line operation 7-6
modes operations

can, "'can 7-25
ctl_char, "'ctl_char 7-25
erkl, "'erkl 7-25
esc, "'esc 7-26
11 7-26
more, "'more 7-24
more_mode 7-24
pl 7-26
rawi, "'rawi 7-26
rawo, "'rawo 7-25
red, "'red 7-26
vertsp, "'vertsp 7-25

open operation 7-6
put chars operation 7-6

CP51-02

w
Z

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE I MULTICS MENU CREATION FACILITIES

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply. check here. D

FROM: NAME ----------~---------------------------------
TITLE ________________________ . _____________ _

COMPANY --------
AODRESS _______________________________________ __

ORDER NO. I ~C_P_5_1_-0_2 ________ ~

DATED I FEBRUARY 1985

DATE

PLEASE FO LD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM. MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I
I
I
I
I
I W

I ~
I <:J
I Z
~g

<C
o
..J
o
u..

W
Z
..J

I <:J , Z ...co
I ~
I 0

10
I u..

Together, we can find the answers.

Honeywell
Honeywell Information Systems

U.S.A.: 200 Smith St., MS 486, Waltham, MA 02154
Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7

U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano
Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. Japan: 2-2 Kanda Jimbo-cho, Chiyoda-ku, Tokyo

Australia: 124 Walker St., North Sydney, N.S.w. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K.

42356, 7.5C385, Printed in U.S.A. CP51-02

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	i-1
	i-2
	i-3
	i-4
	i-5
	i-6
	i-7
	i-8
	replyA
	replyB
	xBack

