
HONEYWELL

MULTICS TEXT
EDITOR (TED)
'REFERENCE
MANUAL

SOFTWARE

SUBJECT

MULTICS TEXT EDITOR (TED)
REFERENCE MANUAL

Introduction and Description of the Multics Ted Text Editor

SPECIAL INSTRUCTIONS

This manual presupposes some basic knowledge of the Multics system provided
by the 2-volume set, New Users'Introduction to Multics - Part I, (Order No.
CH24) and Part II, (Order No. CH25), referred to in text as New Users'
Introduction.

SOFTWARE SUPPORTED

Multics Software Release 9.0

ORDER NUMBER

CP50-00 December 1981

Honeywell

PREFACE

Throughout this document, the convention used in discussing the editor is as follows:

TED when used on title pages, covers, and when used for section title.

Ted when referring to the "subsystem" invoked by the command (Le., Ted refers to the
Text EDitor).

ted when referring to the command that invokes the editor.

This manual provides a detailed description of Ted including all the necessary information to
edit text and programs online, describe text processing, arithmetic manipulation, evaluation
processing, etc.

Until such time as a Ted Text Editor Users' Guide is available, refer to the Qedx Text Editor
Users' Guide, Order No. CG40, for qedx compatible request usage within the Ted subsystem. The
most basic manual available (for qedx) that presupposes no user knowledge of either Multics or a
text editor subsystem is the Guide to Multics WORDPRO for New Users, Order No. DJ18.

The only aspect of word processing on Multics covered in this document is the use of the ted
command; other aspects are described in the WORDPRO Reference Manual, Order No. AZ98.

The information and specifications in this document are subject to change without notice. Consult
your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc., 1986 File No.: ILI3 CP50·00B

10/85

This manual contains references to the Multics Commands and Active Functions, Order No.
AG92 referred to as the Commands and the Subroutines and Input/Output Modules, Order No.
AG93 reierred to as me Subroutines.

Often. user typed lines and lines displayed by Multics are shown together in the same
examples. To differentiate between these lines, an exclamation mark 0) precedes user-typed
text. This is done only to distinguish user text fronl system-generated text, it is not to be included
as part of the input line. Also, a "carriage return" (moving the display mechanism to the first
column of the next line, called a newline or NL on Multics) is implied at the end of every
user-typed line.

Note: Because of page constraints in this document. certain character strings of data used
in examples may not match exactly the information as seen on a user's terminal.
That is, the character strings in examples may be folded or multiple lined, whereas
the actual interactive (live) session may display the same information on a single line
or multiple lines with different line breaks than shown.

SIGNIFICANT CHANGES IN THIS ADDENDUM

Ted now accepts multiple -request control arguments (see Appendix A). Other
documentation changes are associated with trouble reports and customer orginated Tech Pub
Remark Forms.

iii CP50-00B

Section 1

Section 2

Section 2

10/85

CONTENTS

General Information
Introduction
Abbreviations, Metasymbols, and Special Characters
Basic Operation

Responses from the Editor . . .
Addressing Conventions ..

Absolute Addressing
Relative Addressing . .
Contextual Addressing
Using "7" Prefix
Compound Addresses .
Addressing Errors . . .
Mode Change

Concealing Special Characters .
Editor Request Format
Multiple Requests on a Line
Spacing
Modes of Operation

Input Mode
Bulk Mode.
Read Mode
Break Mode
Edit Mode.

Line Mode
String Mode

Example Using String Mode
Ted Execution
Buffers

Use of Buffers
Absolute Buffer Referencing.
Repeated Editor Sequences . . .

Input Functions
Calling Ted as an Active Function
Ted Request Grouping
Using The Help Facilities

Multics System "help" Facility .
"Where am I" Ted Facility
Ted "help" Facility

ted_corns .
Initialization of ted_corns
Notes on ted_com Use
Conditional Execution
External Functions . . .

iv

1-1
1-1
1-1
1-1
1-2
1-2
1-3
1-4
1-4
1-7
1-8
1-8
1-8
1-9
1-9

1-11
1-11
1-11
1-11
1-12
1-13
1-14
1-14
1-14
1-14
1-16
1-16
1-20
1-20
1-21
1-22
1-22
1-25
1-26
1-28
1-28
1-29
1-29

2-1

2-1
2-2
2..:3
2-3
2-4

CP50-00B

Section 3

Section 4

Using Debug Features
Generating A ted_com
Using Trace
Using Breakpoints
Using Pause

Evaluations
Use of Evaluations

Requests ...
Input Function
Editing Function

Evaluation Description
<exact> An Evaluation
<part> Evaluation Part
<lpart> Evaluation Last Part .
< lexp> Logical Expression ..
<cat> Concatenate Operation
<assign> Assignment
<aexp> Arithmetic Expression
<term> Arithmetic Term
<factor> Unary-Operator Expression
<fact> Arithmetic Factor.
<data> Data Elements

Literal .
Variable
Buffer
Addressed Data
Addressed Functions
String
n _____ + __ ,.

.r 41411Jt;t.t;J;:> ••••••

String Functions ...
Arithmetic Functions

<mask> fak Conversion Options . .
Evaluation Examples
Mask Examples

Appendix A Ted Command . . .
ted
Ted in Qedx Mode
List of Ted Requests

Appendix B ted Requests
Request Descriptions

" (comment) ..
(if line) ...
"'# (if-not line)
% (call buffer)
* (if expression found)
"'* (if expression not-found)
.. (execute)
: (define label)
> (transfer of contro})
1\ > (error exit) .
= (print linenumber) .

10/85 v

3-1
3-1
3-2
3-4
3-8

4-1
4-1
4-2
4-2
4-2
4-2
4-2
4-3
4-3
4-3
4-4
4-4
4-5
4-5
4-5
4-5
4-6
4-6
4-6
4-7
4-71
4-8
4-8
4-8
4-9
4-9

4-12
4-13
4-14

A-I
A-2
A-7
A-8

B-1
B-1
B-2
B-2
B-3
B-3
B-6
B-7
B-7
B-7
B-7
B-8
B-9

CP50-o0B

10/85

\? (where am I?) .
{} (evaluate)
I xxx (external request call)

,.., (return)
a (append)
!a (bulk append)
b (change buffer)
!b (change buffer remembering)
,,\ b (delete buffer) .
c (change)
!c (bulk buffer)
d (delete)
e (execute) '.'
!e (execute)
f (fileout into buffer)
!f Uileout into buffer)
g (global)
g* (global-if)
h (process out pseudo-tabs)
help (online information)

Conventions for Ted Info Files
i (insert)
!i (bulk insert).
j (sort)
!j (special sort).
k (kopy)
!k (kopy-append)
1 (linefeed to user_output)
!l (linefeed to error_output) .. .
m (move)
!m (move-append)
n (nothing)
o (option)
p (print)
!p (print with linen umber)
q (quit)
!q (force-quit>
qhold (quit-hold)
r (read)
!r abbrev-expand-read)
AT (force pathname)
s (substitute)
!s (no-fail substitute)
t (type string to user_output) .
!t (type string to error_output)
u (translate to lowercase) .
!u (translate to uppercase) .
v (exclude)
w (write)
!w (abbrev-expand-write)
x (buffer status) . . .
!x (buffer status) ..
y (tabin)
z.fi.ad (fill/adjust) .

vi

. . '\ .

B-I0
B-I0
B-l1
B-12
B-12
B-13
B-14
B-15
B-16
B-16
B-17
B-17
B-18
B-19
B-19
B-20
B-20
B-22
B-24
B-26
B-28
B-29
B-31
B-31
B-36
B-37
B-38
B-39
B-4O
B-4O
B-41
B-42
B-43
B-46
B-47
B-48
B-48
B-48
B-48
B-51
B-51
B-51
B-54
B-54
B-54
B-54
B-55
B-56
B-57
B-58
B-58
B-59
B-59
B-60

CP50-00B

10/85

z.fi.na (fill/no-adjust) ...
zdump (dump octal/ASCII)
zif (conditional test)

AppendiX C Abbreviations, Metasymbols, and Special Characters .
Abbreviations
Metasymbols
Special Characters (or literals)

Appendix D Error Messages
Example

Appendix E Using and Writing External Requests

Index

User-Written Requests
How An External Request and ted Work Together
Global External Requests
Regular Expression Use
Request Info

vii

B-61
B-61
B-62

C-l
C-1
C-1
C-2

0-1
0-5

E-1
E-2
E-2
E-3
E-4
E-5

i-1

CP50-00B

10/85

SECTION 1

GENERAL INFORMATION

I1\.rrR,ODUCTION

Ted is an extended version of the Qedx text editor. Although the primary purpose of an
editor is to provide for interactive creation and modification of textual material. Ted additionally
provides for the execution of text editing requests which are stored in a Multics segment instead
of being typed from a user terminal. What makes Ted special is that its request set provides for all
of the functions generally available in a programming language such as branching, assignment,
arithmetic manipulation, and subroutine invocation.

ABBREVIATIONS, METASYMBOLS, AND SPECIAL CHARACTERS

A number of abbreviations. metasymbols. and special characters are used throughout this
document. For user convenience, all of these cases have been consolidated in Appendix C.

BASIC OPERATION

To create a new ASCII segment. a user might perform the following steps:

1. Invoke ted and enter input mode by typing one of the input requests (e.g .. append)
as the first ted request.

a. Enter ASCII text lines into the buffer from the terminal.

b. Leave input mode by typing the appropriate escape character sequence as the
first characters of a new line.

2. Inspect the coritents of the buffer and make any necessary corrections using edit or
input requests.

3. Write the contents of the buffer into a segment using the write request.

4. Exit from the editor using the quit request.

To edit an existing ASCII segment. a user might perform the following steps:

1. Invoke ted and read the segment into the buffer by giving a read request as the first
ted request.

2. Edit the contents of the buffer using edit and input requests as necessary. (The
editor makes all changes on a copy of the segment, not on the original. Only when
the user issues a write request does the. editor Overwrite the original segment with
the edited version.)

3. Using the write request. write the contents of the modified buffer either back into
the original segment or, perhaps, into a segment with a different name.

4. Exit from the editor using the quit request.

The user can create and edit any number of segments with a single invocation of the editor as
long as the contents of the buffer are deleted before work is started on each new segment or a new
buffer is selected in which to work.

1-1 CP50-00B

10/85

Note: While most users interact with ted through a terminal, the editor is designed to
accept input through the user_input I/O switch and transmit output through the
user_output I/O switch. These switches can be controlled (using the iox_
subroutine described in the Subroutines or the io_call or file_output commands
described in the Commands) to interface with other devices/files in addition to the
user's terminal. For convenience, this description assumes that the user's
input/ output device is a terminal.

Responses from the Editor

In general, the editor does not respond with output on the terminal unless explicitly requested
to do so (e.g., with a print or print line number request). The editor does not comment when the
user enters or exits from the editor or changes to and from input and edit modes. The use of
frequent print requests is recommended for new users of Ted.

ADDRESSING CONVENTIONS

Lines in the buffer can be addressed by three basic means (also see the description under
"Buffers" below, specifically "Absolute Buffer Referencing," as regards addressing the current or
auxiliary buffers):

• Absolute addressing

• Relative addressing (i.e., relative to the "current line")

• Contextual addressing

In addition. a line address can be formed using a combination of the above techniques.

An address consists of two major parts: the line part and the byte part (both parts are
optionaI). The general format is:

< line-address> «byte-address»

The line address references a line within a buffer. The byte address references a byte within a
line. (However, for an exception to this, refer to "Mode Change" described below.) A byte
address is generally of the saine form as a line address except that it is enclosed in parentheses.

When two addresses occur to form a range, they can be separated in one of two ways:

a comma as an address separator means that the following (or right half of the) address is
to be searched for from the same starting point as the past (or left half of the) address.

a semicolon· as an address separator means that the following (or right half of the)
address is to be searched for from the location found by the past (or left half of the)
address.

A special shorthand address form is available in certain circumstances. The following three
forms are identical in meaning, with the last being the shorthand version.

/abel (2); • (10)
I abel (2) t I abel (10)
label (2 t 10)

In other words, when the line part is the same on both addre-sse-s. then the byte portions may be
combined within the same parentheses.

1-2 CP50-OOB

10/85

Absolute Addressing

Each line in the buffer can be addressed by a decimal integer which indicates the current
position of the line within the buffer. The first line in the buffer is line 1, the second line is 2, etc.
The last line in the buffer can be addressed either by line number or by using the "$" character,
which is interpreted to mean "the last line currently in the buffer." In certain cases it is possible to
address the (fictitious) line preceding line 1 in the buffer by addressing line O. This technique is
used to insert text before the first line in a buffer using the Oa (append) request

As lines are added to or deleted from the buffer. the line numbers of all lines that follow the
added or deleted lines are changed accordingly. For example. if line 15 is deleted from the
buffer. line 16 becomes line 15. 17 becomes 16. and so on.

If an attempt is made to address a line not contained in the buffer, an error message is printed
by the editor. No address is considered valid if the buffer is currently empty.

When the first portion of a given address is a number (e.g.,!, 50. 266) then the reference is
said to be absolute. The address "0" is a special case of an absolute address. It refers to the
beginning of the buffer. O(n) refers to the n'th character of the buffer. Ted, depending on the
use of line mode or string mode (described in Section 1), permits two versions of absolute
addressing (either by line number or character number within a line). In the following examples,
there are several cases where an address can be given in more than one format. The standard
format is always shown on the first line, followed by the short or abbreviated format on the
second line.

For example:

(I),O)d (standard format)
{l,3)d (short format)

describe the same address.

3;5p
is an absolute line range in the buffer. (ThIS example Instructs ted to print lines 3
through 5 of the current buffer, whether in line or string mode.)

(1) , (3) d
(1 , 3) d

is an absolute character number reference within the current line in the buffer. (This
example instructs ted to delete the first. second, and third characters of the current line.)
After execution, and if in string mode -- entered via "\s", the line pointer retains
character orientation.

If the above request is followed with a p (print) request, the display produced is the next
(or fourth) character only. not the entire line contents.

If the request had been executed in line mode. then the print request would have resulted
in a display of the remainder of the line (i.e., characters remaining in the line after
deletion of the first three characters).

o (5) ,0 (45) p
prints the 5th through 45th character of the buffer without any consideration of how
many lines it may be.

When the "$" character is included in an address it refers to the "end-of" the buffer or line. e
The "$" in a byte address explicitly references the NL (or, in the case of the last line of a file which
does not end in NL, "$" references the (fictitious) byte which would contain the NL if it were
present). For example:

1-3 CP50-OOB

10/85

5,$d
deletes lines of the buffer (from line 5 to the end).

(6 t S) d
deletes a group of characters in the current line (deletes character positions 6 through the
last character of the line including the NL character. if present). This has the effect of
inserting characters 1 through 5 of the current line at the beginning of the next line since
the iast line delimiter (i.e .• NL) was deleted.

And finally. when the "." character is included in an address, it refers to the current position,
either line-in-buffer or byte-in-line. For example:

.p
prints current line of the buffer.

Relative Addressing

Ted maintains the notion of a "current line" that is specified by using the character "."
(period). Normally, the current line is the last line addressed by an edit request or the last line
entered from the terminal by an input request.

Addressing may be done relative to the current position (in a forward or reverse direction) by
utilizing signed integers (either "+" or n_") in the address. The "+" character is optional when not
the first character of the address. Thus, ".+4" is the same as ".4", which is the same as "+4". Some
examples are:

S-5P
displays the fifth line preceding the last line ($) of the buffer. (This request also displays
the line number of the selected line.)

(S-5) t (S) d
deletes the last five characters of the current line and the NL character (if one exists).
An error message is provided in the event that the line contains less than five characters.

15 (S) d
deletes the NL of line 15. If the last character is a NL character. then the NL is deleted.
(This is one case where referencing something which does not exist does not result in a
ted response.) Additionally, if a line 16 exists. then line 16 is merged with line 15 .

. , ·+5p
• t .5p

displays six lines of the buffer. the current line and the following five lines.

(20) ; (. +6) p
displays seven characters of the current line starting with the 20th character and
continuing with the following six characters.

Contextual Addressing

Addressing may be accomplished using an <R£> (regular expression) search within a buffer.
An <RE> search is accomplished by starting on the line following the current line and searching
through to the end of the buffer if necessary. If the <RE> is not found, the search continues using
the wraparound feature. to the beginning of the buffer and searches forward from this point up
to and including the current line (or original starting point). The n I" character is the required
delimiter in this use of an <RE> (e.g., /abc/-4).

1-4 CPSO-OOB

10/85

An <RE> search within a line is accomplished starting with character position (.+1) except
when included after a line address. (Conceptually the line address locates the O'th byte of the
selected line so the <RE> search within the line begins at character position (0+1». The" In
character is also the required delimiter in this use of an <RE> (e.g., "(13/somestring/)").

A backup search capability also exists by utilizing "</<RE>/". This search looks for an
expression by moving backward one line ai a time (the current line is not searched ~~ search starts
at location ".-1"). If after examining the buffer contents no match is located~ then the backup
search fails (i.e., unlike the forward search that wraps around from the end-of-buffer to the
beginning-of-buffer. the backup search does not wraparound). The "I" character need not be
used as a delimiter in this case (e.g., $<"end;" is a valid <RE> that uses quotes as a delimiter).
Some examples of the backup search follow.

Example 1

Buffer contents:

one
two

11.11_> three
four
five

Request:

<!four! =
Terminal output:

backup search failed. lI!four!1I

Example 2

Buffer contents:

(Same as Example 1, ".. is also the same)

Request:

<Ionel =

Terminal output

1

meaning that the <RE> was found in line 1 of the buffer (the = request says to print the
linenumber).

Example 3

Assume the current buffer contains a text segment and you are interested in
determining in reverse order how many lines within the file contain the string
"then", further assume that each find is to be displayed with linenumber.

Request

$n
~':/then/ p
</thenl P >-0

(set pointer to last-line of buffer)
(test the last line, since the next request will not)

1-5 CP50-OOB

10/85

results in a backup search through the buffer, displaying each line containing
"then", with associated line number, and then repeats the request line with the ">-0"
request (see the > request for additional information).

The above searching procedure may not always be what is needed. The range to be searched
may be limited by placing an address enclosed in brackets ([]) immediately before the search
specifier. For example:

[5, 12j/abc/
[5, 12]</abc/

(searches forward for "abc" from lines 5 through 12 only)
(searches in reverse for "abc" beginning on line 12. then 11, on down to 5)

The address within the brackets can use any means of specification (other than buffer selection).

An <RE> is a description of a string. Most characters in an <RE> are taken literally. The
following have a special meaning:

$

/

as the first character of an <RE>. it matches the (fictitious) character preceding the first
character on a line.

as the last character of an <RE>. it matches the NL at the end of the line. However. the
NL is not considered part of the matching string. The matching string is referenced by &
in the <REPL> part of an s (substitute) request. (Also see "String Mode" described in
Section 1.) This fails on the last line of a buffer if it does not end with a NL.

matches ZERO or more occurrences of the character which immediately precedes the
"*" in the <RE>.

matches any character.

normally used to delimit an < RE> used as an address. If any of the special characters
("$*.) are used as a delimiter then their corresponding special function cannot be used in
the <RE>.

\[N] x
matches N occurrences of character x.

\[N] .
matches N occurrences of any character.

\[N]\c.
matches N occurrences of "." (period).

The following list of examples is a smali sampling of addressing by context. The examples
include an <RE> with a description of the editor action.

/a/
matches the letter "an anywhere on a line.

/abc/
matches the string "abc" anywhere on a line.

/ab)',c/
matches "ac", "abc", "abbe", "abbbc", etc. anywhere on a line.

1-6 CP50-OOB

10/85

lin .. tol
matches "in" followed by any two characters followed by "to" anywhere on a line.

/in.)':to!
matches "in" followed by any number of any characters (including none) followed by
"to" anywhere on a line.

/Aabc/
matches a line beginning with "abc".

labcSI
matches a line ending with "abc".

/Aabc. "cdef$/
matches a line beginning with "abc" and ending with "def".

/A. ,':$/
matches any line.

/A$/
matches an empty line (a line containing only a NL character).

/abc/-5 .
references the fifth line preceding the line containing string "abc" (the <RE> in this
case).

(/abc/+2)
references the "c" of the first occurrence of "abcii on the current line.

01 J/ Uk/)
references the first "k" on the first line containing a "J" (starting the search on line 1 of
the buffer).

(I a • "cz/) d
deletes the string beginning with "an and ending with "z" on the current line.

\s (I abel) ; (+5) d \ 1
deletes a string beginning with "abc" and the 3 characters following "abc" (i.e .• 6
characters deleted in alI). This string may be anywhere in the buffer after the current
line since string mode is specified.

Using "?" Prefix

A "7" character preceding an address is used for testing the validity of the address. This is
known as an address prefix. The address prefix has the same form as an address and results in the
same address processing. but does not act as an address to the request An address prefix can only
be present before the first address.

Syntax
Format 1 Format 2 Format 3

?ADR, ... ?ADR; ... ?ADR <request>

Format 1 tests for validity and then has no further effect. Format 2 tests for validity and
then leaves the effective "." at the location found by the address. Format 3 appears to
<request> as though no address had been present.

1-7 CP50-OOB

10/85

If any part of an address cannot be found, all processing of the request line stops. (No .
notification or message of this occurrence is provided to the user; ted merely ignores the rest of
the request line and continues.) However, since all address processing is completed, the user may
want to be at that location. This is accomplished by separating the prefix from the following
address with a ";". For example,

?/Charly/;.;.+ld >-0

finds each line in the buffer containing "Charly" (starting at n. n), deletes each line containing the
<RE> which in this case is "Charly" and the following line. Actually this is not fail-safe. To
cover the possibility of the match beginning on the last line of the buffer (important when writing
a ted_com where control must be retained), the user should enter:

?/Char1y/+l;.-1;.+ld >-0

In the above two examples, ">-0" is a transfer of control request (re-execute current line).

An example utilizing Format 3 is:

?1 t/Data left over/ 1

Compound Addresses

An address can be formed using a combination of the techniques described above. The
following rules are a general guide in the formation of these compound addresses.

1. If an absolute part is to appear in an address. it must be the first component of the
address. (A "." or "$" cannot appear anywhere except first.)

2. A relative line number can appear anywhere in a compound address.

3. An <RE> can appear anywhere in a compound address.

a. An absolute line number can be followed by an <RE>. This construct is used to
begin the <RE> search after a specific line number. For example, the address
"10/abe/" starts the search for "/abc/" immediately after line 10.

b. An <RE> can follow, or be followed. by an address specified by a relative line
number. For example, the address tI-S/abc/" starts the search eight lines before the
current line, while" labc/+StI addresses the line eight lines after the first occurrence
of "abc".

c. An <RE> can be followed by another <RE>. For example. the address
"/abcl /def /" matches the first line containing "def" appearing after the first line
containing "abc". As mentioned earlier, an <RE> can be followed by a decimal
integer. For example, the address "/abc/-lO/def /+5" starts the search for
.. /def /" 10 lines before the first line to match" label" and if" /def /" is matched,
the value of the compound address is the fifth line following the line containing the
match for" /def /".

Note: The second search could wraparound and find a match which' is
actually before the first search match.

Addressing Errors

Refer to "Error Messages" in Appendix D for a complete list of all ted error messages.

1-8 CPSO-OOB

10/85

Mode Change

Characteristics of addressing functions may give different results (i.e., other than expected)
depending on the use of line or string mode. Changing between line mode and string mode
(invoked by \1 and \s) may be accomplished at any time within an invocation of the ted command
except when in input mode.

CONCEALING SPECIAL CHARACfERS

The special meanings of "In, t;*"" ;;$'\ "1\'\ and n.n within an <RE> can be removed by
preceding the special character with the escape sequence \c (i.e., the special character is taken
literally).

Concealing may be done in any <RE> in the replace portion of an s (substitute) request. and
in input mode. At any time you may conceal \b. \ {, \r, or <NL>. In order to input the sequence
\f into text while in input mode, the user would have to enter:

\c\f

otherwise the \f by itself would terminate the input mode and switch ted to edit mode.

I\c/\c*f

matches the string "I *" anywhere on a line.

Within an invocation of ted, the last <RE> used in any context, with the exception of g*. is
remembered. The user can reinvoke the last used <RE> by using a null <RE> (i.e., f f). In
addition. an <RE> can be followed by a signed decimal integer in the same manner as when
addressing relative to the current line number. For example, the addresses" fabc/+5-3",
"/abc/+2" or "fabc/2" all address the second line following a line containing "abc".

The two uses of "." and "$" as line numbers and as special characters in an <RE> are
distinguished by con text.

EDITOR REQUESf FORMAT

Ted requests normally take one of the following three general formats:

<request>

ADR<request>

ADR1,ADR2<request> -or- ADR1;ADR2<request>

where ADR is a one-line address, ADR1 and ADR2 are the first and second components of an
address range (address prefixes may precede any of these ADR forms), and <request> is a ted
request. When addressing a series of lines for a specific request (ADRl,ADR2<request». any of
the three address types (absolute, contextual, or relatiVe) can be used for either ADRl or ADR2.

For example, if line 1 is the current line and the buffer contains:

b:procedure;
a=r;
c=s;
k=t;
end b;

1-9 CP50-OOB

10/85

you could display lines 2 through 4 by executing a p (print) request preceded by one of several
address combinations; a few of the possible address combinations are:

2,4p
2,+3p
2, /'''k/p
+1 ,/,"k/p
/a=/,+3p
/a=/,/Ak/p

Note: If you attempt to try more than one of the above combinations (for test
purposes), be sure to relocate the pointer to line I by doing an n (nothing)
request. (This is accomplished by executing a "In" request prior to each new
request.)

Some editor requests require no address, some require a single address, and others require a
pair of addresses. In most cases, however. the user can issue a request omitting one or both of the
required addresses and let the editor provide the missing address information by default. The
following general rules apply to the use of addresses.

1. If a request requiring an address pair is issued with the second address missing, the
(missing) second address is assumed to be the same as the first. Fer example,

ADR <request>

is interpreted as:

ADR.ADR<request> or equivalently, ADR;.<request>

and addresses a single line in the buffer (i.e .. the line addressed by ADR).

2. If a request requiring an address pair is issued with both addresses missing. one of the
following address pairs is assumed depending on the request issued .

. ,.<request> for all editor requests except write, global. exclude, zif, and
evaluate

1.$ <request> for write. global. and exclude

<request> for zif and evaulate (there is no default)

3. If a request requiring a single address is issued with no address specified, one of the
following addresses is assumed depending on the request issued .

. <request> for all editor requests except read

$< request> for read requests

4. If a request is given with more addresses than the request will accept. an error message is
displayed.

1-10 CPSO-OOB

10/85

V AL1JE OF ".t!

1. There is a current line pointer for each buffer.

2. Its name is "."

3. All editor requests that alter the contents of the buffer, or print from the buffer, change
the value of "." (i.e., the current line). Usually, the value of "." is set to the last address
specified (either explicitly or by default) in the editor request. The one major exception
to this rule is the delete request, which sets ". It to the line AFTER the last line deleted. (If
the line deleted was the last line in the buffer. then "." is set to "$+1" (beyond end of the
buffer). Negative relative addressing can be used at this point, but any other references
to "." result in an "undefined" message.)

MULTIPLE REQUESTS ON A LINE

In general. any number of editor requests can be issued in a single input line. However, the
following requests must be terminated with an NL character, (i.e., each must appear on a line by
itself or be at the end of a line containing multiple editor requests.

r read
w write
q quit with buffer check
e execute command line

Whereas the following must appear at the beginning of a line and also must appear on a line by
itself.

execute command line without input function processing
\i Where am Ii
help online information

SPACING

The following rules govern the use of spaces in editor requests.

1. Spaces are taken as literal text when appearing inside of regular expressions. Thus,
/the<SP>n/ is not the same as /then/.

2. Spaces cannot appear in numbers (e.g., if 13 is written as I<SP>3, it is an error),
pathnames (e.g., if foobar or foo_bar is written as "foo<SP>bar", it is an error), or
between a function name and the "(n (e.g .. if fkaC .. " is written as "fka<SP>(. .. ". it is an
error). _j

3. Spaces within addresses except as indicated above are ignored.

4. The treatment of spaces in the body of an editor request depends on the nature of the
request. For example:

t!ab<SP><SP>de!

results in two literal spaces between "ab" and "de" in the typed line. Also refer to "Input
Mode" below. concerning spaces following a request.

1-11 CP50-o0B

10/85

MODES OF OPERATION

Ted functions in one of five basic modes: input. bulk. read. break or edit Each mode is
discussed individually and includes examples.

Input Mode

Ted can be placed in input mode with one of the three input requests: a. c, or i (append,
change, and insert). If the input request is followed immediately by a SP or NL, that character (SP
or NL) is discarded. If in blank mode, anything following the request other than SP or NL is an
error (refer to Appendix B. "0" request. for a description of the blank mode). If not in blank
mode, then the character immediately following the request (other than SP or NL) is part of the
input data or literal text. If the user wants the first character of the text (or line) to be a space.
then two spaces must be input (e.g., "a<SP><SP>text. .. "). The first space is discarded as noted
above, leaving the second space intact. The literal text can contain any number of text lines. To
exit from input mode and terminate the input request. the escape sequence \f (or \F) is typed,
usually as the first characters of a new line. The \f escape sequence can be followed immediately
with more editor requests on the same line. The usual form of an input request is as follows:

ADR <input request>
TEXT

\f

except for the c request which may take an address pair to replace several lines by the new TEXT.

It is important to remember to terminate the input request with the \f escape sequence
before typing another request. Otherwise, the editor remains in input mode. and the (would be)
editor request is regarded as input and included in the text rather than executed as a request.

Upon leaving input mode. the value of n." is set to point to the last line input from the
terminal.

The \ U, \b. and \r are input functions. In general, ted input is obtained a line at a time.
Input comes from user_input and from invoked buffers. Each time ted needs another line it calls
the input routine. This routine takes from the input until an NL is encountered. Along the way it
looks for input functions and processes them.

All input functions are processed while in input mode, however, they may be entered as
literal data by means of the conceal escape sequence (\c). (All of these sequences are described
later in this section under "Input Functions. ")

Ted knows nothing about any input functions which may have existed. The input routine
knows nothing about what will be done with the line retrieved. The result of this is that all input
functions on a line are processed before any requests in the line. You might consider the input
functions as having higher priority than requests. This means that with a line typed as:

2,4k(x) Sa \bx\f

you might think that you are moving data to buffer x and then appending it to the end of the
current buffer. However, since the \b has higher priority, it is done first and the data is not in
buffer x yet. If you are lucky and b(x) has not been used, then you will get an error message

1-12 CP50-00B

10/85

indicating that the buffer does not exist Otherwise it uses the contents of b(x) and continues. In
this case it could be some time before you find that it did not do as expected. (Also refer to "Input
Functions" described below.)

Bulk Mode

Ted can be placed in bulk input mode with the use of one of three bulk input requests: la, !c,
or !i (bulk append, bulk change, and bulk insert). These requests accept lines of data without
processing of any kind. The only thing being looked for is the terminate sequence (a line
consisting only of a "."). In this mode, what you see is what you get (i.e., \b, \r, \ {}. \c, and \f
are just treated as data). This is very handy for entering ted_corns because you can forget about
how much concealing an input function needs; you simply type.

Bulk requests differ frem input requests in that all bulk data is literal whereas input data is
examined for possible input functions.

Requests may follow on the same line as a bulk request These are pot input data; they are
requests executed after completion of the bulk input request. For example,

10~a 11p

data1

data2

data3

data1

Read Mode

-bulk append after line 10 in current
buffer.

-terminate bulk append and switch to edit
mode.

-displayed by the "lIp" request above.

Ted can be placed in read mode with the \r input function. This gets a line from the
terminal. When this function is encountered, a line is read from user_input and used as if it
replaced the \r. The NL character on the line read is not included with the replacement data and
the line is not scanned for input functions. Several examples follow.

1-13 CP50-00B

10/85

ted
a Now is the time
TEST
to the aid of their country.
\f
2s/TEST/\r/ P
for all good men to come

2 for all good men to come

1, $P

1 Now is the time
2 for all good men to come

-invoke ted command
-append data

-terminate input mode.
-substitute, replacing with user_input
-user_input replaces "TEST"

-print with line number--second request
on substitute request line above.

3 to the aid of their country.

The request line:

1,$s/abc/\r/ s/def/\r/

requires two user responses before the line is executed. Ted then replaces all occurrences of "abc"
in the buffer with whatever is entered from the terminal (user_input) first, and then replaces all
occurrences of "def" (last line only as the second request does not contain an address) with
whatever is entered second.

ted
a
abc Now is the time
def for all good men
abc to come to the aid
def of their country.abcdef.
\f
1,$s/abc/\r/ s/def/\r/
TEST1
TEST2
1, $P

TEST1 Now is the time
def for all good men
TEST1 to come to the aid

-invoke ted
-append

-user_input for first substitute
-user_input for second substitute
-print buffer contents

1

2

3

4 TEST2 of their country.TEST1TEST2.

The substitute for "der" did not touch line 2 because the second substitute request (sider I ...) did
not contain an address pair. The , pointer was set to $ (last line of buffer) after execution of the
first substitute therefore only the last line was acted upon. (Also refer to "Input Functions"
described below.)

1-14 CP50-OOB

10/85

Note: If a \f is given in response to a \r it causes the request line to be aborted. (If in input
mode, it is properly terminated.) The action is then like "search-fail", see "Ted
Execution" below. The request line:

/\r/+l s/xxx/\r/ >-0

loops indefinitely, getting two responses each time the request line is executed. If
either response is \f the processing immediately stops. Also refer to \r (input
function) below for additional detail.

Break Mode

This mode is entered by encountering a breakpoint. It has all the functionality of edit mode
except that input mode, if entered. must be exited on the same line. Refer to "Using Breakpoints"
in Section 3.

Edit Mode

All requests other than a, c, i, !a, !c, and !i function in the edit mode. The functions described
as "line mode" and "string mode" (below) provide a powerful tool to manipulate data.

LINE MODE

Line mode treats a file as a series of lines (separated by the NL character). The current
location in this mode is a line in the file. Line mode is entered during address processing by \1.
(Default)

STRING MODE

String mode treats a file as a character string. The current location in this mode is a character
in the file. String mode is entered during address processing by \s. String mode interacts slightly
with line and byte addressing and with string search. The following table identifies the
diff erences between line and string modes.

\s

\1

Note:

Line Mode String Mode

Goes to string mode.

Stays in line mode.

The \land \s are considered address parts.
times during an address.

The file is searched for "a" starting
on the line following the current
line, proceeding to the end of the
buffer, then from the beginning of
the buffer to the current line. If
"a" is found, then "b" must follow

1-15

Stays in st!ing mode.

Goes to line mode.

The mode can change any number of

Same as line mode as regards the
search for "a". If "a" is found, then
"b" must follow "aU in the buffer
(i.e., the "." can match an NL).

CP50-o0B

12($+1)

12(-1)

2(3)= .

2(3)= =

l,s/c/X/

10/85

"a" on the same line (i.e., "." cannot
match an NL).

"a" is looked for in the current line,
starting at the current byte (first
byte of line, unless a previous byte
address part has been given in the
address).

Displays the error message:
"Addr- after line end".

Displays the error message "Addr
before line begin".

Displays the line-byte address:

2(3)

The byte portion of the current
location IS NOT maintained from
the first request to the second.

2 (3)
2

Buffer before:
1 abc
2 crb

Buffer after:
1 abX
2 crb

The NL is used in finding the string
but IS NOT included in it.

1-16

"a" is looked for in the rest of the
buffer, starting at the current byte.

Addresses the first character of line
13.

Addresses the NL character of line
11.

Displays both the file address and
line-byte address:

o (9) 2 (3)

The byte portion of the current
location IS maintained from the first
request to the second.

o (9) 2 (3)
o (9) 2 (3)

Buffer before:
1 abc
2 crb

Buffer after:
1 abXcrb

The NL is used in finding the string
and IS included in it.

Note: This function may be
accomplished in line mode by a
conceal of the NL as:

1,$s/c\c\012/X/

CP50-00B

10/85

Example Using String Mode

Buff er contents:

Now is the time for all good
men to ... This request may
also be given as xxx. come to
the aid of their country.

Assume that ted is in line mode and you want to do a search for the following <RE>:

/This request may also be given as xxx\c./

The search f ails and ted responds with the message:

Line search failed. "/This request ••. /"

The only way to find a line of this format (when you do not know how much of the
expression is on a common line) is to enter string mode (\s). and then make the search.

\s /This.request.may.also.be.given.as.xxx\c.!

ted responds with:

men to .•. This request may
also be given as xxx. come to

The dot "." is used between each word to match the possible NL character that could
appear after any of the search words.

TED EXECUTION

When you inadvertently request a large amount of terminal output from the editor and wish
to abort the output without abandoning all previous editing, simply issue the QUIT signal (by
pressing the proper key on the terminal, e.g., BRK, ATTN. INTERRUPT), and, after the QUIT
response, reenter the editor by invoking the program_interrupt (pi) command (described in the
Commands manuaI). This action causes the editor to abandon its printout. but leaves the value of
"." as if the printout had gone to completion. Execution continues with what follows the print
request.

To ABORT anything, issue the QUIT signal and then type "ted -reset" (see Appendix A). This
acts as if an error has just occurred and unwinds execution back to ted request level. An buffers
are as they were at the time the interrupted request began (except for uppercase and lowercase
requests (u and U) which work in place). That is to say, no change to buffer data is effective until
a request successfully completes.

If a ted_com (refer to Section 2) is running and it appears to be in a loop, execution can be
suspended to allow examination of conditions. Issue the QUIT signal and then type "ted -pause".
The next time a line of input is requested in edit mode it acts as if a breakpoint had been
encountered (refer to Section 3).

If an error is encountered by ted, an error message (refer to Appendix D) is printed on the
user's terminal and any further editor requests on the same line (i.e .. multiple requests on one
line) are discarded.

1-17 CP50-00B

10/85

It is important to note when using multiple requests on a single line that only the requests
following an error condition are discarded; the requests preceding the request that fails are
executed. For example.

ted
a
1

2

3

PROGRESS
4

5
END
\f
1. $P

1

2

3

4

5

6

1

2

3

PROGRESS
4

5

7 END

-invoke ted command
-append -- enter input mode
-data entered

-terminate input mode and enter edit mode
-print request

4s/PROGRESS/TEST/ P 1.3d 7s/END/something/ P
4 TEST

Addr- after buffer
1. $P

1 TEST
2 4

3 5

4 END

The substitute request (4s/ ... /), the print (P), and the deletion of lines 1-3 (l-3d) above are
accomplished. This results in a buffer of four lines. Thus the error condition is related to the
substitution (7s/ .. ./). This substitution and the following print request (P) are discarded.

If a user gets out of ted by issuing the QUIT signal. and subsequently invokes ted in the same
process without first using the release or program_interrupt command (at Multics command
leven, ted assumes the user intends to work on another file or wants to produce a new file. The
original, or first invocation of ted "quit from" is not lost to the process (unless the user logs out)
and can be returned to at anytime the user wishes. For example,

1-18 CP50-OOB

10/85

ted
r test_1

20
something
QUIT
r 10:23 0.339 22 level 2

ted
r test_2

20
xyz123

\?
ted(2.5c) EDIT MODE[02]
w

q

r 10:24 0.625 60 level 2

pi

\?
ted(2.5c) EDIT MODE[01]
20
something

s/something/anythlng/

w

q

r 10:25 0.360 19

-first invocation of ted
-read segment "test_I"
-print line 20
-data in line 20
-invoke QUIT by pressing BRK, etc.
-Multics ready message

-second invocation of ted
-read segment "test_2"
-print line 20
-data on line 20
-other editing requests

-"Where am I?"

-write modified file back to original
location. "test_2"

-normal quit request -- user is done

-program_interrupt -- Multics command
returns to previous invocation of ted. (In
this case, nstarf' could also have been
used.)

-"Where am I?"

-substitute request

-write modified file back to original
location. "test_I"

-normal quit request
-Multics ready message

Another possibility is to use the e (execute) request and call for another invocation (up to a
maximum of 14) of ted. For example,

ted
r test_4

1,5P
.fif

-first invocation of ted

1-19 CP50-00B

10/85

2

3

4

5

1d

e ted

r test 16 -
1.5P

1

2

3
4

5

e ted

r test 2 -
1.5P

1

2

3
4

S

1d

\?
ted(2.6)
q

.pdw 72

.pdl 66

.sr fw 101S"

.ale

.pdw 79

-second invocation of ted

80-03-13

.spb

MULTICS MANUALS COMPLETED -- PAGE 1

.fif

FW ORDER NO.

command_line off

ab
&goto &2

&label interactive

long_date

EDIT MODE[03]

-third invocation of ted

-"Where am IT'

Modified buffers exist:

-> (0) >user_dir_dir>Multics>test_2

ted:

w
q

1. SP

2
3
4

S

q

1. SP

1

2

3
4

S

q

Do you still wish to quit? no

.pdw 79

-write data back to "test_2"
-normal quit request -- returns process to
second invocation of ted

-prin t request used to verify second
invocation of ted

80-03-13
.spb

MULTICS MANUALS COMPLETED -- PAGE 1

.fif

FW ORDER NO.

.pdw 72

.pdl 66

.sr fw "01S"

.alc

-normal quit request -- returns process
back to first invocation of ted

-print request used to verify first
invocation of ted

.ur PROJECT STATUS REPORT -- FW~fw%

Modified buffers exist:

->(0) >user_dir_dir>Multics>test_4

1-20 CP50-OOB

10/85

ted: Do you still wish to quit? no
w -write data back to "test_ 4"
q

riO: 14 1.620 128

BUFFERS
A buffer is a named set-of-data consisting of text. its length. a remembered address, and

assorted flags. Buffer requests allow the user to create buffers, move text from one buffer to
another. and check on the status of all buffers currently in use. A buffer may be used to hold the
text actually being edited, a ted_corn to be executed, pieces of the text being edited which have
been moved or copied, arguments from the Multics call of the ted command, or other
miscellaneous values. The buffer currently being edited is called the current (or working) buffer.
Actually, ted supports a virtually unlimited number of buffers. One buffer at a time is designated
as the "current buffer"; any other buffers are referred to as "auxiliary buffers." Any named
buffer may be made the current buffer by invoking the b{) or !b{) request.

Each buffer is given a symbolic name of 1 to 16 ASCII characters not including the
parentheses O. In addition, the buffer name cannot contain the characters "," or "."When ted is
invoked, a single buffer (buffer 0) is created and designated as the current buffer. Additional
buffers can be created merely by changing to. moving data to, or copying data to a previously
undefined buffer name.

Buffer names of more than one character must always be enclosed in parentheses; for
example, the buffer name Fred is typed as (Freel). A buffer name consisting of a singie character
can be typed with or without the enclosing parentheses (e.g., "y" is taken to be n(y)"). In this
document, (X) represents a general buffer name of 1 to 16 characters. A buffer name may also be
represented as (X,ADRl,ADR2) to define an address range. Use of this form indicates that some
part of a buffer is to be referenced. A buffer name in an M or K request may also be represented
by (X,ADR) to define a location. If a range is given, the end of the range is the location used. In
both cases of (X,ADR1,ADR2) and (X,ADR) the parentheses are required. Buffers cannot be
referenced with addresses unless they already exist.

Buffers exist for only the current invocation of ted. That is, if the user creates several
buffers, issues the q (quit) request and then invokes ted again. the buffers created earlier are gone
(unrecoverable). This should not be confused with the situation where a user has multiple
invocations of ted in process. All current invocations of ted (up to a maximum of 14) are
recallable with buffers intact.

Use of Buffers

Perhaps the most common use of buffers is for moving text from one part of a segment to
another. A typical pattern is to place the text to be moved into an auxiliary buffer (see below)
with an m (move) request. For example,

1,5m (temp)

moves lines 1 through 5 of the current buffer into the auxiliary buffer (temp) replacing its former
contents, if any, and deletes lines 1 through 5 from the current buffer. Once the lines are moved

1-21 CP50-OOB

10/85

to an auxiliary buffer, they can be used as literal text in conjunction with an input request For
example, to insert the lines in buffer (temp) immediately before the last line in the current
buffer, one of the following two sequences might be used.

S i
\b(temp)\f

In this case, the literal text in buffer (temp) replaces the \b input function in the input line.
Notice that the \f immediately follows the \b. If the \f is put on the line following the \b, a
blank line follows the literal text of buffer (temp) that was just inserted in the current buffer.
(The blank line is caused by the two successive NL characters: one is the last character in buffer
(temp) and the other is inserted between the \b and the \f.)

$-lr(temp)

also puts the data in the same place. However, there is a difference between these two methods.
The \b method scans the data for input functions; the rO method does not. If there are no input
functions in the data, it is cheaper to use the rOo If there are functions there but you do not want
them to be expanded, you must use rO to avoid it.

Ted requests may be p1aced in a buffer and then called. Assume the current buffer is b(a) and
a call is made to b(name) by typing the call request %(name). The current buffer remains b(a) and
b(name) simply is the execution buffer. The'" request stops execution in the execution buffer
(assumed in this case to be b(name» and reverts to the previous level which is request level.

Each buffer is implemented as a separate segment in the user's process directory (however,
see -safe control argument in Appendix A) and. thUS, is capable of holding any segment. Any
buffer which has an associated pathname is assumed to contain meaningful data, otherwise it is
considered as temporary data which just disappears when ted is exited. The buffer "b(O)" is
considered meaningful even if there is no pathname. Whenever such a buffer is modified, it is
flagged. When the buffer is written to permanent storage, or if all the data is deleted, the flag is
turned off. This is a flag which is tested by the q request.

Whenever data is moved to a buffer, it no longer exists in its old location. The new buffer is
the only place where the data exists. It is therefore flagged as "not-pasted" (from cut/paste
terminology). This flag is turned off by either doing a read. "r(x)", by invoking the whole buffer,
"\b(x)", or by deleting the entire buffer. This is a flag which is tested by the q request.

The active function ted_buffer is used to reference data in ted buffers. It returns the
pathname of the segment containing the data in b(x). The bitcount of this segment gets set to
properly reflect the amount of data present. After returning from the "e" request, the bitcount of

. the segment is used to determine the new length of the buffer data. For example:

e ds [ted_buffer 0] .

dumps the segment which contains the data of b(O).

Absolute Buffer Referencing

The "current buffer," described above, is the buffer normally used when executing ted
requests such as p or 1d. However, any buffer may be referenced at any time in an "absolute"
sense (i.e .. regardless of which buffer is "current"). The presence of the absolute buffer name is
indicated by the @ character followed by a buffer name and a comma separator if address parts
are included. The normal use of the @ character in both Multics and ted is to delete the entire

1-22 CP50-OOB

10/85

contents oi the current Hne being buiit Tnerefore, in order to use this feature. and to prevent the
default erase character from accomplishing its normal "kill" function. it must be preceded with a
backslash (\) character at the time of entry (typing) when it is intended as reference to an absolute
buffer. For example:

ted

p

Buffer empty.

\@3p

Buffer empty. (i n b(3»

\@l3a forst line
\f
x

o (0)

1 (3)

\@l3. (2) c ; \ f

\@l(3),1

f ; rst 1 ; ne

in ten tional typo

verifies current buffer is "0"

corrects typo noted above
Os included but not required in this case.

If an error occurs while working in a buffer which is not the current buffer, the error
message contains a trailer to identify the buffer where the error occurred (see example above).

Repeated Editor Sequences

Another common use for buffers is for the definition of frequently used editing sequences.
For example. the user is faced with the task of adding the same source code sequence in several
places in a program, but instead elects to type the editing sequence into a buffer only once and
then invoke the contents of the buffer as many times as necessary. In the following example,
buffer NEW contains the necessary editor requests and literal text to append four lines of text at
any point in the current buffer. Assume the contents of buffer NEW is:

a
if code A=O then do;

ca 11 er ror (code);
return;
end;

\f , , ..
• -,+,.Ip

W

and the user invoked request is:

ADR\b(NEW)

This results in ADR becoming the address of the append request in buffer NEW and specifies the
point at which the literal text is to be appended to the current buffer. The four lines of text in
buffer NEW (lines 2-5) are appended to the current buffer; the \f terminates the append request;

1-23 CP50-00B

10/85

and the print request prints the line preceding the appended lines, the four appended lines, and
the line following the appended lines in the current buffer.

INPUT FUNCfIONS

Ted input can be viewed as a Stream of ASCII characters. Depending on the context, some of
these characters are interpreted as editor requests and others are interpreted as literal text The
following are recognized by ted, in either context, as directives to alter the input character stream
in some fashion.

Note: The special meanings of \b, \r. and \ {} can be suppressed by preceding the input
function with a \c escape sequence.

\b(X)
\ b(X,ADR1.ADR2)

Sequence used to redirect the editor input stream to read subsequent input from buffer
(X). That is, replace the invoke sequence \b(X) with the contents of the specified buffer
or with the selected portion of the contents of the invoked buffer. This is similar to the
% request except no arguments can be passed. Also conditional execution is completely
different.

Conceptually, the content of the buffers replace the invoke sequence. In actuality, the
contents is used one line at a time and is scanned, looking for input functions that may
result in nesting. In input mode the lines are used in sequence (assuming no \f therein).
The \f sequence results in a return to EDIT mode. In edit mode the lines are used in
sequence unless a goto (» request is encountered. If another \b is encountered while
accepting input from buffer (X), the stream is again redirected and the newly
encountered input sequence is also replaced by the contents of the named buffer. The
editor allows the recursive replacement of \b functions by the contents of named
buffers to a recursion depth of 500.

The \b(X,ADRl,ADR2) form can be used to select a portion (or window) of buffer (X).

The buffer to which the input stream is redirected can contain editor requests, literal
text or both. If the editor is executing a request obtained from a buffer (rather than
from the terminal) and the request specifies a regular expression search for which no
match is found, the usual error comment is suppressed and the remaining contents of the
buffer are skipped. If one thinks of the input function \b(X) as a subroutine call
statement, the failure to match a regular expression specified by some request in buffer
(X) can be thought of as a return "statement".

Reading the contents of buffer (X) does not delete or alter in any way the contents of the
buffer. The content of buffer (X) remains constant. Thus, ted can read input from
buffer (X) many times (see "Repeated Editor Sequences" above).

Syntax

Format 1: \b (X)

Format 2: \b (X, ADR 1 , ADR2)

Format 1 invokes all of buffer X. "All" here is true only if no imbedded return
requests are encountered. Also, use of the goto request can make portions be reused.
Format 2 invokes part (window) of buffer X. However. if the portion invoked

1-24 CP50-o0B

\r

10/85

executes a goto (» request, then the window is "broken" and any portion may be
accessed.

This function may also be entered as "\B ... ".

Example 1

An invoke sequence may look like:

\bx \b(XXX) \b(XXX,5;/abc/)
but the sequence cannot contain any input functions such as "\b(\ba)".

Example 2

Request:

\bx

invokes buffer x. Whereas:

\b (x, 1)

-or- \b (x)

invokes just the first line of buffer x, and:

\b (x,O (1) ,0 (20»

invokes the first 20 characters of buffer x.
Notes

Suppose a ted_com is executing and an error occurs on line 147 because one
delimiter was missing on a substitute. You can go to the buffer containing the
ted_com, fix line 147, return to the buffer being operated upon, and continue
execution (in most every case). You would continue in this fashion:

\b(exec,147,$)

The ",$" is very important. otherwise only line 147 would be executed.

Sequence used to temporarily redirect the input stream to read a single line from the
user's terminal. It is normally used when executing editor requests contained in a buffer.
That is. replace the read sequence (\r) with a line read from user_input. The NL
character from the line read is not included (unless running in ted$qedx mode -- see
Appendix A). The line is not scanned for input functions. If the \f sequence is entered
from user_input. the line being built is aborted and an error message is displayed if at
console level. In a ted_com. there is no error message; this condition causes the
I"VI",.nt;nl'!' 'hnttl"'- t" 'h~ ~v;t~ ':Inn th~ ~n""V1n". 'hlltt~~ t-" ,."nt;n110 Tn tlu. C't~1nn- ,.1-..,t
""'4.....,.., "'1..1.0 UW.l. J. J. .,'" V~n..I."'~ u..I.~"" ".1..1.I.J.J l' '-'0...1..1..1.0 "" J..1. ""'1 &.oV '-'V.l..I.I..I..&""'''-''. .L.I..l LJ..I."'" .;,,,.&. J.J..I.f> "'.I..I.&,&,I"

replaces the \r sequence, additional \r or \b sequences have no effect. (Also refer to
"Read Mode" above.)

Syntax

\r

This sequence may also be entered as n\R"

Example

1-25 CP50-o0B

\{}

10/85

Request:

s/abc/\r/ s/def/\r/

requires two responses from user_input before the line is executed. First, replace all
occurrences of "abc" (current line only as no address is given) with the response
entered for the first \r request, and second, replace all occurrences of "def" with
the response entered for the second \r request If either response contains "\f" then
the line is not executed.

Sequence used to temporarily redirect the input stream to read any value "returned" as a
result of an evaluation. That is, replace the evaluation sequence (\ {}) with the value
returned from the evaluation. If the evaluation returns nothing, then a null value is
assumed. This input function cannot contain any input functions (i.e., no \b or \r).

Syntax

\{<eva1>}

Note

Refer to Section 4 for more details regarding <eva1>.

Example

The multiline request sequence:

{In:=O}
a \{In:-ln+l0; LN:fak (In,"OOOOOII); LN: LN} \r\012\f >-1

accepts lines of input, automatically prefixing each one with a 5~digit line number
which is incremented by 10. The loop is terminated by a user response of U\ftf. (The
\r terminates execution of the buffer when the \f is input.) (Also refer to Section 4,
"Arithmetic Factor" for an alternate form of the above example.)

Commentary to the above example is:

line 1
Initialize the counter.

line 2
Has two input functions (\ n and \r). The first functions as follows:

In:=ln+l0
increments the counter.

LN:=fak(ln,"OOOOO")
converts the number to a character string with leading zeros and
assigns it to LN.

LN:
displays the converted number without a NL.

LN
returns this same number for use in the request line.

The second function is the \r request which accepts the line the user types.

1-26 CPSO-OOB

10/85

line 3
Terminates input mode and loops back to get the next line.

CALLING TED AS AN ACfIVE FIJNCfION

Ted can be called as an active function. This means that if a function does not exist in the
system to do what is desired, then the user can get ted to do it. For example. you want to use the
information "how many lines are in a segment?". The status active function provides bit count. or
maximum length. or current length. or records used. but no line count. Following is a function
which does just that. Line numbers are shown on the example for purposes of commentary
immediately following the example.

1 ted

2 !a

3 zif {ag"=1} !tlusage: [ted lines pathname]I !l Q

4 r \b(arg1)

5 {lines:=fln(be)}

6 b(argn) a \{lines}\f Q

7

8 w lines.ted

9 q

10 r 15:00 143.804 9013

11

12 ioa_ "File lines.ted contains "a lines." [ted lines lines.ted]

13 File lines.ted contains 4 lines.

14 r15 : 01 0.901 152

line 1
Invoke ted

line 2-9
Build an active function ted_com "lines. ted"

line 3
The first line of the ted_com. complains if it is not called with exactly 1 argument.

line 4
The second line of the ted_com. reads the specified file.

line 5
The third line of the ted_com. sets the variable "lines" to the value of the function
linenumber (end-of -buffer).

line 6
The fourth line of the ted_com, places the value of the variable "lines" into b(argn) and
quits (Q).

line 12
Actually uses the active-function and prints the result which is displayed on line 13.

1-27 CP50-OOB

10/85

line 13
The display requested. The ted_com is contained in four lines of the buffer (Le., the
data which was entered on lines 3-6 of the example).

When ted is called as an active function the following control arguments are not allowed:

-lshow
-Jset
-pause
-reset
-restart
-status

TED REQUESf GROUPING

The following list is intended to acquaint the user with associated groupings of requests (all of
which are described in detail in Appendix B). Many of the requests can be invoked in more than
one way (e.g., gP or g!p, !p or Pl.
Basic Requests

\7
d
g=
gd
gp
g!p
help
o
!p
p
!q
q
r
v
w
=

Input Requests

!a
a
!e
e
I' • I

Where am 11
delete
global linenumber
global delete
g10 ba1 prin t
global print with linenumber
online information
options
print with linenumber
print
quit-force
quit with buffer check
read
exclusive global--inverse action to the 9 requests
write
print linenumber

bulk append
append
bulk change·
change (replace) text
bulk insert
insert

Intermediate Requests

b change buffer
! e execute a command line after printing it
e execute command line
h process out pseudo-tabs

1-28 CPSO-OOB

10/85

j
!j
k
m
n
, r
! s
s
u
!u
!w
wm
! x
x
xm
y
zdump
z. f i . ad
z. f i . na

Ixxx

Advanced Requests

!b
bO
"'b
! f
f
g:"
! k
! 1
1
!m
qhold
"'r
! t
t
II

{. .. }

Fiow-Oi-Controi

sort
special sort
kopy (or copy)
move
nothing. sets "." to address
read with abbrev expansion of pathname
no-fail substitute
substitute
translate to lowercase
translate to uppercase
write with abbrev expansion of pathname
write all modified buffers to their respective segments (blank mode only)
status of named or current buffer
status of all buffers
status, modified buffers only (blank mode only)

. tabin, process in horizontal tab characters
dump octal/ascii
fill/adjust
fill / no-adjust
execute command line without input function processing,
beginning-of -line only
external call to ted_xxx_

remem ber current buffer, then change
change current buffer, going to a remembered one

fBeout to a buffer, no auto reversion
fileout into a buffer, auto reversion
global-if
kopy-append
linefeed to error_output
linefeed to user_output
move-append
exit ted while maintaining the -safe environment
force pathname
type string to error _output
type string to user_output
comment, ignore rest of line
evaluate

Requests

if line
if-not line
call buffer with optional arguments
if expression found
if expression not-found
label define, must be at beginning-of -line
transfer of control (go to)
error exit

1-29 CP50-00B

10/85

z i f { ••• } conditional test
return from buffer

USING THE HELP FACILITIES

Three options are available to the user:

1. Multics System "help" Facility

2. "Where am I" Ted Facility

3. Ted "help" Facility

Multics System "help" Facility

This facility displays information in the form of online documentation (called info segments)
which include descriptions of system commands (such as the ted command), active functions,
subroutines, miscellaneous information about system status, system changes, and general
information. For example. if you are in Ted and wish to ask a question about a system command,
simply invoke the e request as:

. e he 1 p <REST>

to display the online documentation describing the system command <REST>. For a detailed
description of the Multics help command, refer to the Commands manual.

"Where am I" Ted Facility

This facility is invoked within ted by typing "\1" (see Appendix B) on a line by itself. It is a
means of reorienting the user to the current invocation of ted. The feature can be used by persons
working on more than one invocation of ted, who may be interrupted, and simply want to know
"Where am 11" in order to get back to the point where left off.

It can also be used when an expected response is not forthcoming (i.e .. it could tell you that
you are in input mode. Then you would know why there has been no response to entered
requests).

Ted "help" Facility

This facility is called within ted. It is invoked by typing "help" and is a means of accessing
information segments about many subjects concerning the ted command. This facility should not
be confused with the Multics system "help" facility described above.

1-30 CP50-OOB

10/85

SECTION 2

TED COMS

A ted_com is an editor request sequence (commonly referred to as "macro" in Qedx). They
may be placed in auxiliary buffers and used by ted as an interpretive programming language. In
this context, it is useful to regard the executable editor requests in a buffer as a subroutine and to
view the \b (input function) or the % (call buffer) request as a call statement when using auxiliary
buffers. (Also refer to "Generating a ted_com" in Section 3.)

In the example discussed below, a ted_com is implemented to read ASCII text from the
terminal until an input terminating sequence, a line consisting only of ".", is typed. When the
terminating sequence is typed, the ted_com asks the user for a name under which the input is filed
and exits from ted. The ted_com is implemented with an executable buffer (subroutine) named
read and is invoked by diverting the input stream to the read buffer (Le .• by calling the read
subroutine).

The content of buffer read (excluding line numbers) is:

1 t I Type I 1
2 :a $a
3 \r
4 \f
5 A*/A\C.$/ >a
6 d
7 tlGive me a segment name: I
8 w \r
9 q

line 1
The first request (t) prints the message "Type" on the user's terminal. The second request
(1) adds an NL.

line 2
The colon (:) defines a label referred to in line 5 request n>a". The second request ($a)
places ted in input mode to append text to the end of the current buffer.

line 3-4
One line is read from the user's terminal with the \r input function on line 3 and the
append request is terminated with the \f on line 4.

line 5
If the current line does not match the expression "A \c.$" (which checks for a n." on a line
by itseif) , then go back to iabel !!a".

line 6
The terminating sequence is deleted with the d request if the test from line 5 is satisfied.

line 7
The ted_com asks the user for a segment name in which the input lines

2-1 CP50-OOB

10/85

line 8
The content of the current buffer containing the input Hnes is written into a segment
with the w (write) request; the name of which is read from the terminal by the \r (input
function).

line 9
The ted_com exits from ted with the q (quit) request If the quit request were not
included, ted would expect further instructions from the user's terminal.

INITIALIZATION OF TED_COMS

Ted provides a means through which a ted_com can be initiated directly from command
level. Ted cart be invoked in the following manner:

ted ted_com

The above command is equivalent to entering ted with the simple command:

ted

and immediately executing a series of requests such as:
b (exec)
r ted_com. ted
bO
\b (exec)

This request sequence reads the initial ted_com segment into buffer exec, changes the current
buffer back to buffer 0, and executes the contents of buffer exec.

The ted command can also be invoked with more than one argument. Thus, the command
line:

ted get path

is the equivalent of:

ted
b (exec)
r get. ted
b (args)
a
path
\f
b (arg 1)
a path\f
bO
\b (exec)

The above is only a partial equivalence since neither b(args) nor b(argl) are created until first
referenced. Because an argument is present, these buffers have a "right" to exist, but are not
created unless needed. The presence of these buffers is not apparent to the user (i.e., the buffers
are not displayed upon execution of an x request) until they have been used.

2-2 CP50-OOB

10/85

If the contents of get ted is:

r \b (args)

then the contents of the exec and args buffers become:

exec a,rgs

r \b (args) path

and the request \b(exec) reads the segment path into buffer O. The editor then waits for further
commands from the user.

With the same contents of get ted, the invocation:

ted get path 1,$s/x/y/ w q

enters the following into the exec and args buffers:

exec

r \b (args)

args

path
1,$s/x/y/
w
q

This causes ted to read the segment path into buffer 0, substitute the character y for every
occurrence of x. write out the buffer to the segment path. and then quit and return to command
level.

NOTES ON TED_COM USE

There is no safeguard to prevent ted from modifying a ted_com buffer which is currently
executing (i.e .• a self -modifying ted_com). If this is attempted, havoc can well be the result,
unless the line which does the modifying ends with a > (goto) request

Refer to Section 4 and the % (call buffer with optional arguments) request in Appendix B for
other examples of ted_coms.

When a ted_com is running and a search-fail condition is encountered (either substitute or
address search), this is not considered an error. It causes the current level of execution to be
terminated and execution continues where the ted_com was called from. This could result in ted
sitting there waiting for the user to enter something and the user sitting there waiting for ted to
finish. (Refer to the "-abort" argument in Appendix A for additional information on this
situation.)

CONDITIONAL EXECUTION

A number of different ted requests test for various conditions and then execute according to
the specific request Each of the following are fully described in Appendix B.

<REST>
test current buffer, and if it contains data. execute <REST>. (See "Note" below.)

ADR# <REST>
test current line. and if it is ADR. execute <REST>. (See "Note" below.)

2-3 CP50-OOB

10/85

ADR1,ADR2# <REST>
test current line, and if it is in the range of ADR1 through ADR2, execute <REST>. (See
"Note" below.)

ADR1,ADR2*/<RE>/ <REST>
search the addressed text for the <RE>, and if found, execute <REST>. (See "Note"
below.)

ADR1,ADR2zif {<eva1>} <REST>
test <eval>, and if other than "0" or "false" is returned, execute <REST>.

ADR1,ADR2gX/<RE>/
global-inclusive, goes through the buffer a line at a time searching for the <RE> and
does X to the line if a match is found. X can be =, p, !p, P, or d.

ADR1,ADR2vX/<RE>/
global-exclusive, goes through the buffer as above and does X to the line if a match is
not found. X can be =, p, !p, P, or d.

ADR1,ADR2g*
global-if, goes through the buffer as above testing for logical conditions made up of
<RE>s and < eval>s; if a "true" results, then a number of operations may be done.

Note: The "n, and "1\" characters may be used in the above case to invert the sense of the
request (e.g., # or '# or "#).

EXTER.!~AL FUNCfIONS

Values of active functions may be obtained while in ted. Active functions are described in
the New Users' Introduction.

Executing "ted_act" from within ted results in args being placed into b(act) of the current
invocation of ted. These args may contain abbreviations and/or active functions. If multiple
arguments are received by ted_act, they are placed into b(act) separated by a vertical tab (\013).
The user may then change this to whatever is wanted. For example,

2-4 CPSO-OOB

10/85

ted
x

o -> (0)
e ted_act [date_time]
x

o -> (0)

1 (act)
t!\b(act) is today!
OS/23/80 1408.7 mst Fri is today
tlOr should I say \b(act,1(1,8»,
Or should I say OS/23/80, perhaps?

-invoke ted
-display the status of buffers

-invoke ted act

-type string to user_output

perhaps? I 1

b(act) -set current buffer
1 p -print

1

U/./ P
OS/23/80

OS/23/80 1408.7 mst Fri<no NL>

x

0
1

b1 x

0
1

0

a

->

->

1408.7 MST FRI<NL>

(0)
(act)

(0)

(act)
(1)

\b(act) will be on a friday.
\f

P

-uppercase and print

-NL required only for purpose of this
example

-change current buffer and status

-append

-terminate input

OS/23/80 1408.7 MST FRI will be on a friday.
x

o (0)
(act)

1 -> (1)

f(ACT) e date_time
x

o

->

1

b(ACT) 1P

(0)
(act)
(1)

(ACT)

-fileout into buffer and execute

" there is a NL here, while b(aet) had none
q

r 14:23 13.8 386

2-5 CP50-OOB

10/85

SECTION 3

USING DEBUG FEATURES

There are several debugging features which make the checking efforts of a string processing
program much easier. They are:

-trace -break -label
-no_trace -no_break -no_label
-trace_edit -pause
-trace_input

If any of the tracing control_args are supplied as part of the ted invocation, the current state
of tracing is saved, the specified state is set, and ted is executed. When leaving ted. the saved state
is restored. If none are specified. the execution is under whatever state is current

GENERATING A TED_COM

The following ted_com provides a simple question and answer session. It asks for the square
root of 49 and expects a user response of "7". Any response other than "7" results in the ted_com
looping until the right answer is supplied. The ted_com shown below is purposely designed to
force a looping sequence for testing purposes. (Looping starts and continues indefinitely if the
first user response is not equal to 7.) The missing element in the ted_com which forces the
looping is associated with line 5. Had the additional request "l,$d" been provided between the "1"
and ">" requests (to clear the buffer after each user-supplied response). then the program would
terminate upon any response of "7".

Bulk input mode (!a) is used to enter the ted_com as it is easier to enter the input functions
(\b and \r). Several of the lines below include line numbers which are included for explanation
purposes (i.e .• references are made to these line numbers in the next example's discussion).

3-1 CP50-00B

10/85

1

2

3

4

5

ted
!a
: (loop)
tlEnter the square root of 49. I 1

a \r\f
zif {\b(0)=7} tlThat's right! I 1 q
tlSorry, \bO is not right. Try again. I 1 >(loop)

1, $P

3

4

5

w math. ted
q

: (loop)
tlEnter the square root of 49. I 1

a \r\f
zif {\b(0)=7} tlThat's right!1 1 q
tlSorry, \bO is not right. Try again. I 1 >(loop)

r 09:07 1.315 256

USING TRACE

The -trace control_arg turns on the trace mechanism so that when a ted_com is invoked, each
line of the program is displayed (including the "mode in" where applicable) before the line is
executed. The following example uses the ted_com generated and stored in "math. ted" above.
Line numbers are shown on the example for purposes of commentary immediately following the
example.

3-2 CP50-00B

10/85

6 ted -trace math
7 **EDIT** b(exec) r math. ted
8 **EDIT** bO :(loop)
9 **EDIT** tlEnter the square root of 49. r 1
10 Enter the square root of 49.
11 99
12 **EDIT** a 99\f
13 **EDIT** zif {99=7} tlThat's right!1 1 q
14 **EDIT** tlSorry, 99 is not right. Try again. 1 1 >(loop)
15 Sorry, 99 is not right. Try again.
16 **EDIT** :(loop)
17 **EDIT** tlEnter the square root of 49.1 1
18 Enter the square root of 49.
19 7

20 **EDIT** a 7\f
21
22
23
24
25
26
27
28

EDIT zif {997=7} tlThat's right!1 1 q
EDIT tlSorry, 997 is not right. Try again. I
Sorry, 997 is not right. Try again.
EDIT :(loop)
EDIT tlEnter the square root of 49. I 1
Enter the square root of 49.
\f
EDIT

29 0 Atrace
30 **EDIT** 0 Atrace
31 b(exec) 4
32 zif {\b(0)=7} tiThat's right!ll q
33 ! i

34 \037
35
36 1, $P w
37 : (loop)

tlEnter the square root of 49. I 1
a \r\f
\037
zif {\b(0)=7} tlThat's right! I 1 q

>(loop)

38
39
40
41
42
43

2

3

4

5

6 tlSorry, \bO is not right. Try again. I 1 >(loop)
q

44 Modified buffers exist:
45 (0)
46
47
48

line 6

ted: Do you still wish to quit?
r 09:08 4.366 408

yes

Run the ted_com with the input and edit trace options on.

line 7-10
Lines are displayed one-at-a-time before use.

3-3 CP50-OOB

10/85

line 11
First user response.

line 12-18
Lines are displayed one-at-a-time.

line 23
It should be obvious at this point that the buffer was not cleared before testing (line 4 of
the ted_corn "zif" request). but for the sake of Lie example we will debug it "as is."

line 27
The \f input. in reply to the \r request (see line 3 of example). stops execution of the
buffer when it appears on a line by itself.

line 29
Turn off (stop) tracing mechanism. From this point (lines 27 through line 49) the
program is being modified to be set up for breakpoints.

line 31
Change to b(exec), and examine line 4 (previous example), the one that you would expect
to make the first breakpoint on.

line 32
Verifies the contents of line 4 of the ted_com.

line 33
Enter a breakpoint before line 4 using "Hn. This is accomplished in bulk input mode to
ensure that it actually gets input A \037 is discarded if in EDIT mode with break mode
off (see "Using Breakpoints" below). You cannot set a breakpoint with:

4s/''' 1\0371

but you can with:

line 35

4s/A /\r/
\037

-or- 4s/"/\c\0371

Terminate the insert request (H) on line 33.

line 36
Verify that the breakpoint is in place, then write the buffer back to the file. In the
"breakpoint" example below it is now set up to stop immediately after the user response
to the math ted_corn request for input

line 43
The intent here is to quit. but because the ted_com caused bO to be modified, the ted
request "q" complains with a response (lines 44 through 47).

line 47
The "yes" reply (end-of-line) informs ted that the user wishes to quit

USING BREAKPOINTS

The breakpoint is used for stopping a program for examination (when embedded within the
ted_com text). When the \037 is included (at the user's option) in a ted_com, and the break mode
is enabled (i.e., the break option is set), the program stops at each \037, displays the break

3-4 CP50-00B

10/85

message, and waits for user intervention. The following message is displayed when a breakpoint is
encountered in the break mode:

BREAK: b{X), line n, level m[dd]

where:

X is the buffer being executed
n is the line being executed
m is the buffer invocation depth
dd is the ted recursion number

From this point the user may enter most ted requests. However, if input mode is entered. it
must also be exited on the same line. For example, n$a q\012\f" adds a line to the end of the
current buffer consisting of a "q". Note that the input mode begins and ends on the same line. To
continue after a break, enter "><NL>" which is the "goto" request (i.e., restart at point of
interruption).

If \'1 is entered while at a BREAK. ted redisplays the break message followed by the line on
which the break occurred with the point of break being indicated. Therefore it is best to place a
break on a line with a request instead of on a line by itself.

To turn the breakpoint mechanism on, enter:

ted -break path

To turn it off. enter:

ted -no_break path

The breakpoint facility can also be set/reset using the 0 request (refer to Appendix B for a
description of the break and "break options).

The break character (\037) is recognized only in edit mode and functions as follows:

nobreak mode
all occurrences of \037 are ignored.

break mode
all occurrences of \037 are treated as NLs (i.e., the current request line is terminated at
this point and is then executed). When the next input line is asked for. the break message
is displayed. The data following the \037 begins a new request line after continuation
from the breakpoint. This means that a breakpoint should not be set after a conditional
request. If a breakpoint is placed in the fashion:

zif {1>2} +ld \037 -2d

then the following would occur:

1. get request line "zif {1>2} +ld"

2. execute it Since the condition is false; the "+10" is ignored.

3. BREAK ...

4. continue from break

5. get request line "-2d"

6. execute it

As you can see, without the breakpoint, neither "d" request would be executed, but with
the breakpoint. the second "d" request is executed.

3-5 CP50-OOB

10/85

Note: A literal \037 may be entered by concealing it with a \c.

The following is a continuation of the "trace" example which was set up (by the requests in
line 29 through 35 above) to stop at a breakpoint immediately after the user response to the math
ted_com request for input Commentary associated with the example immediately follows. and
relates to the line numbers shown.

1 ted -break math
2 Enter the square root of 49.
3 99
4 BREAK: b (exec). 1 i ne 4, 1 eve 1 1 [01]

5 1.$p

6 99 x

7 1 -> mod (0)

8 6 (exec) >udd>Multics>math.ted

9 >
10 Sorry. 99 ;5 not right. Try again.
11 Enter the square root of 49.
12 7
13 BREAK: b(exec). line 4, level 1[01]
14 1. $p

15 997 Q

16 quit during BREAK
17 r 09:09 2.764 227

line 1
Run math ted_com with breakpoints enabled.

line 4
The breakpoint is encountered.

line 5
Examine the current buffer contents.

line 6
The "x" request (end-of-line), invoked by the user, requests ted to display buffer status
(i.e.. a pseudo "where-are-we" request).

line 9
Continue the program at the point of interruption.

line 13
Breakpoint encountered again.

line 14
Examine the current buffer contents. At this point it should be obvious that the "old
data" is still in the buffer.

line 15
The "Q" request (end-of-line), invoked by the user, informs ted that the user wishes to
quit-force from ted and return to Multics command level. Quit-force is used since the
source of the problem is known. At this point the ted_com writer may ie=edit the math

3-6 CP50-OOB

10/85

too_com. make the necessary correction alluded to in "Generate a ted_com" above
(insert the "l,$d" request), and proceed.

Another example of using breakpoints follows. The ted_com "breaking. ted" consiSts of:

t!first! 1
t!second ! \037 tlthirdl 1 tI4th ••• ! \037 tl5thl 1
\037 t:last---: 1 q

Now we run it with and without breaks enabled.

ted -break breaking

2 fi rst

3 second BREAK: b(exec), 1 ine 2. level 1 [01]

4 \?
5 BREAK: b(exec). line 2, level 1[01j

6 2 t!second ! \037 <BREAK> tlthirdl 1 t!4th ... ! \037 tl5thl 1

7

8 >

9 th; rd

10 4th ... BREAK: b(exec). 1 ine 2. level 1 [01]

11 \?
12 BREAK: b(exec) i 1 ine 2 level 1 [01]

13 2 t!second ! \037 tlthird! 1 t!4th ... ! \037 <BREAK> tl5th! 1

14

15 >
16 5th

17 BREAK: b(exec). 1 ine 3, level 1 [01]

18 \7

19 BREAK: b(exec). line 3. level 1[01]

20 3 \037 <BREAK> t: last---: 1 q

21

22 >
23 1 ast---

24 r 07:58 1.83197

25

26 ted -no_break breaking

27 first

28 second third

29 4th ... 5th

30 1 ast---

31 r 07:59 0.543 28

line 1
Run the ted_com, with breaks enabled.

line 2
The result of executing the first line of the ted_com.

line 3
The result of executing the first part of line two (second) in the ted_com. The response
following "second" from ted indicates a breakpoint has been encountered.

3-7 CP50-00B

10/85

line 4
Now we don't remember what is on line 2, so we ask where we are.

line 5
This tells the same thing as before.

line 6
This shows what line 2 of the ted_com looks like, with the marker "<BREAK>" (with an
11."-T on either side) showing which break you are currently at

line 7
Finishes up the response.

line 8
We tell ted to continue.

line 9
The next part of the line gets executed.

line 10
The next part executed (4th ...) followed by another break message.

line 11
Again we ask where we are.

line 13
This is just like before, except that the second breakpoint is marked.

line 15
Continue again.

line 16
Next execution.

line 20
Now we see that we are at the beginning of line 3. This example shows why it is not
advisable to put breaks on separate lines (e.g., the "\"1" would not be able to give you any
clues as to where you are).

line 23
Finish up the execution.

line 26
Now let's run it straight through.

line 27-30
The uninterrupted execution output

USING PAUSE

The pause mechanism can be invoked at any time while a ted_com is being executed to cause a
pause at the next request time. Any ted edit requests can then be executed except \b and \r.

The "><NL>" request restarts the program at the point of interruption. For example, assume
that a program is running that is suspected of looping. The program can be stopped by pressing
the QUIT key and entering the command:

ted -pause

Note the line being executed, enter "><NL>" (to restart). and repeat the sequence several times to
verify that looping is actually occurring.

3-8 CP50-OOB

10/85

The following is a "do-nothing" example used to describe the use of the pause mechanism.
Commentary associated with the example immediately follows.

1 ted
2 a
3 !a
4 nothing but the best,
5 my dear!
6

7 in
8 :(loop)
9 s/n/n/
10 >(loop)
11 \f w loopforever.ted
12 q

13 r 09: 10 3 1 . 1 2 1 45

14

15 ted 100pforever
16 «hit QUIT»
17 QUIT
18 r 09: 10 1.121 42 level 2

19

20 ted -pause
21 BREAK: b(exec), line 7 level 1[01]

22
23

x
2 -> mod (0)

24 B (exec)
25

26

27
28

29
30

31

32

33

b(exec)
1

2
3

4

5

6

7

8

34 Q

1, $P

!a

nothing
my dear!

in
:(loop)
s/n/n/
>(10013)

35 qu it dur i ng BREAK
36 r 09:11 1.400 194

lines 1-14

but

>udd>MultiCS>loopforever.ted

the best,

These lines are associated with the generation of the ted_com.

line 15
Invoke ted_com loopforever.

line 16
This is not a ted response, but a user-initiated action of "pressing the QUIT key on the
terminal."

3-9 CPSO-OOB

10/85

line 20
tells ted a break -in is requested.

line 21
Ted responds as if a breakpoint had just been encountered.

line 22
Display buffer status (i.e., a pseudo "where-are-we" request).

line 25
Display the contents of b(exec)-the ted_com being executed.

line 34
Execute Quit-force (the problem is identified). The user could fix the ted_com at this
point before quitting and save system overhead by not reinvoking ted a second time.

3-10 CP50-OOB

10/85

SECTION 4

EV ALUATIONS

Evaluations are a process of doing arithmetic and/or string operations within ted. The user
may place numbers or strings into variables and t.llen use t.llese variables at a later time, but within
the same invocation of the ted command (i.e., variables are destroyed when the ted invocation is
exited). This facility allows the user to implement counters. parse strings. build strings, etc.
Braces" {}" must always be used to delimit evaluations normally referred to in this manual as
"<eval>".

Refer to Appendix C for a description of literals used within evaluations. Metasymbols used
throughout this section include:

<aexp>
Arithmetic expression within an <eval>.

<assign>
Assignment within an <eval>.

<cat>
Concatenation within an <eval>.

<data>
Data elements within an <eval>.

<eva1>
Evaluation.

<factor>
Arithmetic factor within an <eva1>.

<lexp>
Logical expression within an <eval>.

<lpart>
Last part within an <eval>.

<mask>
Fak conversion options within an <eva1>.

<number>
Any numeric digit or combination of digits made up of 0-9.

<part>
Part within an <eval>.

<term>
Arithmetic term within an <eval>.

<ucat>
Unary-operator expression within an <eval>.

USE OF EVALUATIONS

Following is a brief description of the use of evaluations.

4-1 CP50-OOB

10/85

Requests

The evaluation request is not expected to return any value. It may be given an address t or an
address pair (to define a range), however it does not have a default address. This lack of a default
address allows evaluations within an empty buffer.

{ <eval> }
Does not expect <eval> to return anything; its purpose is to just "do" something.

zif {<eval>}
Does expect a result so it can test for true / false.

Note: Neither of these may reference the buffer-related built-ins (lb, sb t se, Ie) unless an
address is present

"Not expecting a value" means that ted prints a warning message if a value is
returned. "Expecting a value" does not mean that ted complains if nothing is
returned, it merely uses a null value in whatever context it is. (Refer to Appendix B
for additional detail regarding the above ted requests.)

Input Function
\{ <eva1> }

Does expect a value to be returned; this value is used as if it replaced the \ { <eva1>} .

However. no value need be returned. A way to fill in a form is:

a
\{"Name:
\{"Addr:
\{"Age:
\f

":}Name: \r
":}Addr: \r
":} Age: \r

This is using the "print" functionality of evaluation (a string in quotes followed by a
colon) to supply a prompt for the "\r"s embedded in the ted_com.

Editing Function

Can be used to reference the value of the string matched by the "g*" requests.

\g{ <eva1> }

Does expect a value to be returned.

"Not expecting a value" means that ted prints a warning message if a value is returned.
"Expecting a value" does not mean that ted complains if nothing is returned, it merely uses a null
value in whatever context it is. (Refer to Appendix B for additional detail regarding the above ted
requests.)

EV ALUATION DESCRIPTION

Following is a BNF-like description of the evaluation syntax. The meta language does not use
" I" to mean OR.

4-2 CP50-OOB

10/85

<eval> An Evaluation
{ <part> ••• <lpart> }

An evaluation may be a list of <part>s followed by an <lpart>.

where "parts" are used-up by either assigning or printing. An lpart is used-up by either assigning
or returning. If lpart was assigned, null is returned. If no Ipart, null is returned. The contexts
vary as appropriate for the type. Note that spaces may be included between tokens in an <eval>;
space can be before or after ":=" but not within.

zif {i := i+3; j<j} >a

{i :=i+2}

\ {f s (IiNow is the time for II tit]) }

\U

<part> Evaluation Part
<cat> ;

The value of <cat> is printed followed by an NL.

<lexp> ;
The value of <lexp> is printed as either "true" or "false" followed by an NL.

<cat> :
The value of <cat> is printed without an NL.

<lexp> :
The value of <lexp> is printed as either "true" or "false" without an NL.

<assign> ;
The value is "used up" by being assigned, so there is no further action.

d (<cat» ;
This requests a dump of variables. <cat> must result in a string consisting of only the
characters "akKv". If "a" is present. all non-zero a [*] are shown. If "k" is present, all
non-null k [*] are shown. If "K" is present. all non-null K [*] are shown. If "v" is
present, all user-defined variables are shown regardless of content (type). (Refer to
"Variable" below for a description of a [*], k [*], and K [*] variables.)

<lpart> Evaluation Last Part
<cat>

The value of <cat> is returned as a character string.

<lexp>
The value of <lexp> is returned as either "true" or "false".

<assign>
A null value is returned.

If no <lpart>, a null is returned.

4-3 CP50-OOB

10/85

<lexp> Logical Expression

<cat> <rel> <cat>
This compares two values. The result is always either "true" or "false". If the <cat>'s are
not of the same type, conversion is done to the "higher" of the two types. The order, low
to high is:

arithmetic
logical
string

<rel>
Is any of these operators:

<cat> Concatenate Operation

<cat> II <aexp>

A=, >=, <=, <, or >.

This means a series of expressions may be concatenated. If any are not strings, they are
converted.

<aexp>
There may be no concatenation. In this case, no conversion is done.

<cat> <aexp>
This is an obsolete form, present only for compatability. It has the same meaning as
<cat> II <aexp>.

<assign> Assignment

a[<cat_l>] := <cat_2>
The value of <cat_2> is assigned to an element of the "a" numeric array. <cat_2> and
<cat_1> must both be convertible to a number.

k[<cat_l>] := <cat_2>
The value of <cat_2> is assigned to an element of the "k" short string array. <cat_1>
must be convertible to a number. <cat_2> is converted to a string.

K[<cat_l>] := <cat_2>
The value of <cat_2> is assigned to an element of the "K" long string array. <cat_1>
must be convertible to a number. <cat_2> is converted to a string.

<var> := <cat>
The value of <cat> is assigned to the variable <var>. The type of <var> is determined by
the type of <cat> and may change from assignment to assignment

An example of each type:

a[lO]:= p[2]+1
k[a[lO]]:= p[3]
K[fs(p[3], 1, 1)]:= p[l] I I"-"I Ip[3]+a[10]
i :=0

A variable name can be from 1 to 16 characters, beginning with a letter and consisting of
letter, digits, and underscore. A few names are reserved because they are the names of built-ins
(i.e., bn, dn, and cs). There is no conflict with function references because they end with "(" (i.e.,
fs(, fln(, ifO.

4-4 CP50-OOB

10/85

<aexp> Arithmetic Expression
<aexp> + <term>

Terms may be added. They must be convertible to numbers.

<aexp> - <term>
Terms may be subtracted. They must be convertible to numbers.

<term>
A term may be left unchanged.

<term> Arithmetic Term

<term> * <factor>
Factors may be multiplied. They must be convertible to numbers.

<term> / <factor>
Factors may be (integer) divided. They must be convertible to numbers.

<term> I <factor>
Factors may be mod'ed (remainder when dividing). They must be convertible to
numbers.

<factor>
A factor may be left unchanged.

<factor> Unary-Operator Expression
+ <fact>

A unary plus may precede a <fact> which must be convertible to a number.

- <fact>
A unary minus may precede a <fact> which must be convertible to a number.

<fact>
There may be no unary-operator at all. The type may then be anything.

<fact> Arithmetic Factor
<data>

A factor may be one of several types of data, either literal, built-in, variable, or
function.

<cat>)
It may also be an expression in parentheses. There is no implied conversion by the fact
that it is used in this fashion.

<1 exp>)
A factor can be an <lexp>.

<assign>)
The specified assignment is done and the value assigned is also "passed onn for
subsequent use in the context where it occurs.

\ { (a: =a+ 1) }

has the same effect as

4-5 CP50-00B

10/85

\ {a: =a+ 1 ; a}

Following is an alternate example to that given in Section 2, "Input Functions" for the \ {}
sequence.

{In:=O}
a \{(LN:=fak((1n:=ln+10) ,"00000")): LN} \r
\f >-1

<data> Data Elements

Data elements consist of a number of items which are categorized as:

literal
variable

. buffer
addressed
addressed functions
string
parameters
string functions
arithmetic functions

These items have a further breakdown and are listed below. Each is prefixed with a reference
number. Following the "Arithmetic Functions" grouping below, is an alphabetized list of all
items with a cross reference to this number.

LITERAL

1. <integer>
Numeric data may be in decimal. ALL numeric data is carried as fixed bin(35,0).

2. II ••• "0

Numeric data may be given as an octal integer string. The string must contain only
the characters "01234567" (e.g., "377"0).

3. II ••• II X

4. II

VARIABLE

Numeric data may be given as a hexadecimal integer string. The string must be
composed of only these characters, "012345678abcdef ABCDEF" (e.g., "lF72"x).

II

String data may be entered as a quoted string. Any internal quotes must be doubled
(e.g., ""smartly""). A string has no inherent max length. It must fit in a segment
with all other data which exists (including internal temporaries) at any given time.

5. <var>
Reference to a user-defined variable. The variable must have previously been
assigned some value. Its type is dependent upon the last assignment.

6. a [<cat>]
A reference to an element of the arithmetic array. <cat> must be convertible to a
number in the range -200:200.

4-6 CP50-OOB

10/85

7. k L <cat>]
A reference to an element of the short-character array. Each element is restricted
to 32 characters. <cat> must be convertible to a number in the range -200:200.

8. K [<cat>]
A reference to an element of thelong-..charact-er array_ Each element is restricted to
500 characters. <cat> must be convertible to a number in the range -10:10.

BUFFER

These buffer built-ins do not give correct results when used in \ {} context For example:

a \ {enl . p 11

does not work. However ~

{e: =enl
a \{el.p11
\f

does work.

9. bn

10. dn

The name of the current buffer.

The directory name of the file associated with the current buffer. Null if no
pathname on the buffer.

11. en
The entry name of the file associated with this buffer. Null if no pathname on the
buffer.

12. sk

13. sn

The subfile type of the file associated with this buffer.

":" archive component
" I" superfile component (obsolete)
" " no subfile

The archive component name (subfile name) of the file associated with this buffer.
Null if no archive component name associated with buffer.

ADDRESSED DATA

These data are available in {} and zif { }. but only if an address is present. For example:

/abc/{a:=sb}
0(\ {a}) p

prints "an and

/abc/{fs (Kb,sb, 1) ;}

also prints "a".

14. Ks
The string addressed. If no byte-address is given. then this is identical to Kl.

4-7 CP50-OOB

10/85

15. K 1

16. Kb

The line addressed. Or more precisely, it begins at the beginning of the line where
Ks begins and ends at the end of the line where Ks ends. It is possible for this to
span lines; it is all dependent on the address given.

The contents of the whole buffer.

1~ lb .

18. sb

19. se

20. 1 e

21. be

The byte index in the buffer of the place where KI starts. (The first character of a
buffer is index 1.)

The byte index in the buffer of the place where Ks starts.

The byte index in the buffer of the place where Ks ends.

The byte index in the buffer of the place where KI ends.

The byte index in the buffer of the place where the buffer ends (i.e., the number of
characters in the buffer).

ADDRESSED FUNCTIONS

There can be no spaces between the function name and the n(n. This is true of all functions.

22. f 1 n (1 b)
Yields the line number of where lb is.

23. f 1 n (1 e)
Yields the line number of where Ie is.

24. f 1 n (be)

STRING

25. cs

Yields the line number of where be is (i.e., the number of lines in the buffer).

A string containing the ASCII collating sequence (PL/I collate9(».

PARAMETERS

26. ag
The number of arguments which were given when ted was called.

27. p [<cat>]
A reference to an element in the parameter array. <cat> must be convertible to a
number in the range O:pn. p [0] is a special case which represents the whole string
following the buffer name in the % request The first character of this string is the
delimiter of the parameters.

4-8 CP50-00B

10/85

28. pn

29. em

Specifies how many buffer parameters are present Parameters are present only
when a buffer is called via the % request When a buffer is invoked via \b, this value
is O.

The full text of the last error message, whether printed or not Messages have the
form:

Xxx) text

where Xxx is the message identifier and text is the part which is normally printed.

30. emt 0
Returns the message text, as described under em.

STRING FUNCTIONS

3L fs(<cat_I> , <cat_2>)
Yields a substring of <cat_1> which is converted to string, if necessary. <cat_2> is
converted to a number which specifies where to begin taking the string. If negative,
it means to count from the end of the string. The string returned is everything after
the beginning point (inclusive).

32 fs(<cat_i> , <cat_2> , <cat_3>)
Yields a string of a specified length. <cat_1> and <cat_2> are as described above.
<cat_3> is converted to a number which specifies the length of the string to return.
If there are not sufficient characters in <cat_1>, then the result is padded to the
required size with spaces. If <cat_3> is negative, and padding is needed, it is done
on the left

33. f s (<ca t_l > , <cat_2> : <ca t_3)
Similar to the form above, except that <cat_3> specifies the ending POSITION of
the string to take. If <cat_3> is negative it means to count from the right end of the
string.

34 frs(<cat_I> , <cat_2> , <cat_3>)
Rearranges a string. First an index of <cat_2> in <cat_1> is done. This breaks the
<cat_1> into parts which may then be selected by the contents of <cat_3> which
must consist of only these characters:

"b" give the before part If no match, this is <cat_1>.
"m" give the matched part (this is null if no match).
"a" give the after part
"s" give the value of <cat_2>

This means that

f r s (name, II • P 1 1" , "bs ")

yields a string with the suffix ".pU", taking into account the presence of one to start
with.

35. if (<1 exp> , <cat_l> , <cat_2>)
Yields <cat_1> if <lexp> is TRUE. Otherwise, it yields <cat_2>.

36. if (<1 exp> , <cat>)
Yields <cat> if <lexp> is TRUE. Otherwise, it yields nothing.

4-9 CP50-00B

10/85

ARITHMETIC FUNCTIONS

37. fka (<cat>)
Converts a string to arithmetic. It is included for compatability only.

38. fl «cat»
Yields the length of <cat>. If <cat> is not a string, it is converted.

3~ fi (<cat_l> t <cat_2>)
The index function. Both arguments are converted to strings. The value returned is
the position in <cat_I> where string <cat_2> is found. The result is 0 if it is not
there (PL/I index).

40. fir (<cat_l> , <cat_2>)
Does an index function on the reverse of <cat_1>.

4L ff(<cat_l> , <cat_2>)
Finds a character of <cat_2> in <cat_1>. If none exist, 0 is returned (PL/I search(».

42. ffr (<cat_l> , <cat_2>)
Finds, except it looks from the end of the string (PL/I search(reverseO».

43. fv (<cat_l> , <cat_2>)
Verifies the presence of some character in <cat_2> in <cat_I>. If all match, 0 is
returned (PL/I verify).

44. fvr (<cat_l> , <cat_2>)
Verifies except it looks from the end of the sttjng (PL/I verify(reverse(»).

45. ff (<cat> , S (xxx))
Finds a member of a specified set of characters which is specified by the value of
xxx, which is made up of one or more of the selectors:

"n" numeric
"un uppercase letter
"1" lowercase letter
"a" letters plus "_"
"0" octal
"x" hexadecimal
"g" graphic, \041->\176
"m" motion, BSP HT NL VT FF SP

46. ffr (<cat> , S (xxx))
Finds, but from the end of <cat>.

47. fv (<ca t> , S (xxx))
Verifies, with a set

48. fvr (<cat> , S (xxx))
Verifies, but from the end of the string.

49. fak (<cat_l> , <mask>)
Converts a number, <cat_I>, to a string under the control of a mask, <mask> (see
below).

50. fmx (<cat ••. >)
Returns the maximum of all the arguments given to it The arguments are separated
by commas.

4-10 CP50-OOB

10/85.

51. fmn (<cat ••• >)
Returns the minimum of all the arguments given to it

52. met ()
Returns the number of matches which occurred on the last non-g* substitute
executed. Is -1 if no substitute has been done.

Following is an alphabetical listing (in ascii collating sequence) of all data elements shown
above. The number preceding each item identifies the associated numbered item in text

4 I! I!

2 II ••• 110

3 " ••• IIX

1 <i nteger>
5 <var>
8 K[<cat>]

16 Kb
15 K 1
14 Ks
6 a[<cat>]

26 ag
21 be

9 bn
25 cs
10 dn
29 em
30 emt 0
11 en
49 fake <cat 1> , <mask>
45 ff (<cat> -, 5 (xxx))
41 ff(<cat 1> , <cat 2>
46 ffr(<cat> , 5 (xxx))
42 ffr(<cat 1> , <cat 2>)
39 f i (<cat 1> , <cat 2>)
40 fire <cat 1> , <cat 2>)
37 fka (<cat>) -
38 f1 «cat»
24 f 1 n (be)
22 f 1 n (1 b)
23 f 1 n (1 e)
51 fmn(<cat ..• >
50 fmx(<cat .•. >)
34 frs(<cat 1> , <cat 2> , <cat 3>)
31 fs(<cat_1> , <cat_2>) -
32 fs(<cat 1> ,<cat_2> <cat 3>)
33 fs(<cat-1> , <cat 2> <cat=3)
47 fv (<ca t> , S (xxx) -)
43 fv{ <cat 1> , <cat 2>
48 fvr(<cat> , S(xxx»
44 fvr{ <cat 1> , <cat 2>
36 if(<lexp> , <cat»
35 if(<lexp> , <cat_1> , <cat_2>
7 k[<cat>]

17 lb

4-11 CP50-00B

10/85

20 le
52 met 0
27 p[<eat>]
28 pn
18 sb
19 se
12 sk
13 sn

<mask> fak Conversion Options

The result of the conversion is exactly as long as the <mask>. The significant digits of the
number and the <mask> are processed from right to left All numeric, alphabetic, and special
characters may appear in <mask>. However. some of the characters have special meanings:

11",11

"011

II II

"_II

"$"

"*11

11011

II II ,

II II .

causes a space in the results.

this (zero) is replaced by a digit if one is left; otherwise. it remains in the result.

is replaced by a digit if one is left; otherwise it is replaced by a fill character. After being
used a fill character becomes a " " if it is not ".". All zeros should occur to the right of
the spaces in the mask. The rightmost space or zero is the units position.

in the units position, signals floating minus sign. The fill character is set to "_" or <SP>,
as appropriate.

in the leftmost position. signals a fixed minus sign. It is set to either "_" or <SP>, as
appropriate.

in the units position, signals floating dollar sign. The fill character is set to "$".

in the units position. signals asterisk protection. The fill character is set to ".".

in the units position. signals octal conversion is to be done on the value. The result is a
string, not a signed value.

in the units position, signals hexadecimal conversion is to be done on the value. The
result is a string, not a signed value.

is replaced by a fill character if no digits are left Otherwise, it remains in the result

is replaced by a fill character if no digits are left Otherwise, it remains in the result

Any character not having a special meaning remains in the result

4-12 CP50-OOB

10/85

EVftT·UAT!ON EXAMPLES

" examples of all kinds of evaluations

xyz

50 -> (exee) >udd>m>jaf>inst.l1>.~~~~T~s.tedleva1

This is the data addressed in most of the following things:
(the address will not be displayed each time, however)

0(63),0(75)p ->

"12345678

{var1:="123abc456"}

Things which have arithmetic type
{ff(var1,"bc");} -> 5
{ffr(var1,"bc");} -> 4

{fi("abcdedcba","c");} -> 3
{fir("acbdefdeccba","c");} -> 3
{f 1 (Ks) ;} - > 13

{fln(lb);} -> 2
{fln(le);} -> 3

{fln(be);} -> 50
{fv("3241","12468");} -> 1
{fvr(p3241","12468 H);} -> 4

{fvr("3241","02468");} -> 1
{lb;} -> 40
{le; } -> 77
{sb;} -> 63
{se;} -> 75
{be;} -> 2338

Things which have character type
O(63),O(75){Ks;} -> xyz

"12345678

The line above actually prints without a NL at the end
{fak(1234,"OO,OOO");} -> 01,234
{k[2]'="abcdefgGG"}

{"+.,/ k[2] II"+";} -> +abcdefgGG+

{"+"I fs(k[2], 2 >1 !"+";} -> +bcdefgGG+
{"+"I fs(k[2]'-2)11 "+";} -> +GG+
{H+"I fs(k[2], 4)II"+";} -> +defgGG+
{"+"I fs(k[2], 2, 4)1 I"+";} -> +bcde+
{"+"I fs(k[2], 2,-4)11"+";} -> +bcde+
{"+"I fs(k[2],-2, 4)1 I"+";} -> +GG +
{II+"I fS(k[2],-2,-4)11"+";} -> + GG+
{ "+" i f s (k [2], 2: 4) i I II + H ;} - > +bcd+

{II+"/ fs(k[2], 2:-4)1 I"+";} -> +bcdef+
{bn ;} -> exec

{dn ;} -> >udd>m>Falksenj>install
{en ;} -> examples. ted

{em ;} -> Xrq) Invalid request \011.
{emt();} -> Invalid request \011.
{sn ;} -> eval
{sk ;}->

4-13 CP50-OOB

10/85

Following is an excerpt from the actual execution of an annotated ted_com. Each line of
commentary is marked with:

"***"
The basic format is 1) a ted request, 2) the result of the request, and 3) some notes on what

happened. This list illustrates just evaluations.

{ 34: -<-->": 19; "result"}
34<-->19
{ has result "result".

"***" A value followed by a ":" is printed without a NL. A
"***" value followed by a ";" is printed with a NL. A value
"***" followed by a "}H is returned. In this circumstance it
"***" is an error.

{ a[1] := 1}

"***" An arithmetic array is available, and is named "a". You
"***" may assign numeric values to it.

{ a[2]:= "00021i}
{ a[-40]:= (7=3)}

"***" The values, however, need not be numbers, they just need
"***" to be convertible to numbers. The logical value of "(7=3)" is

"***" converted to a -0" in order to be stored in a [-40]

a[3]:= "invalid"}
Bad decimal digit. "invalid H

H***" It doesn't like it if it is not convertible.

{ a[4oo]: = 4oo}
Subscript not in a[-2oo:200].

H***" There are not an infinite number of elements there.

{k[1] := II any thing at all"}
"***" There is also a short character array. "k".

{ k[2] : = 5280}
{ k[-40]:= (3=7)}
{ k[3] := "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"}

"***" This array has room for 32 characters per element, so
h***" this last one gets truncated. The logical value of "(3=7)" is
"***" converted to "false" in order to be stored in k[-40]

{ k [-225] : = 1}

Subscript not in k[-200:200].
"***" This also is not infinite in size.

K[8] : = Hsomething"}
"***" There is an array of long character strings, "K". It
H***" has 500 character elements.

4-14 CPSO-OOB

10/85

{ K[9] :~ k[1]}

{ K[3] := "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"}

"***" So this doesn't get truncated.

{K[100]:='II'}
Subscript not in K[--10: 10].

"***" There are much fewer of these available.

{ a := 1; bf := "able to run"; collie:= (3)4)}
"***" There are also arbitrarily named variables. The names
"***" are up to 16 characters in length. The data type of one
"***" of these is determined by the type of the last datum to
"***" be assigned to it. A variable is not defined until it
"***" has been assigned a value. A variable may not be
"***" referenced until it is defined.

{em:= "zilch"}
Syntax- eval. "{em:= "

"***" These names cannot conflict with the few reserved names
"***" which exist. If you try to assign a value to one of
"***" these, it complains.

{fmn:=fmn(4,1,6)}
"***" None of the function names are reserved, because the "(,,
"***" IMMEDIATELY following (no whitespace) shows the
"***" difference.

{deNa");}

a[i] = 1

a[2] = 2

"***" You may request a display of the "a" array (all non-zero
"***" elements are displayed)

{de "kK") ;}
k[-40] "false"
k[1] "anything at all"
k[2] "5280"
k[3] "abcdefghijk1mnopqrstuvwxyzabcdef"
K[3] "abcdefghijk1mnopqrstuvwxyzabcdefghijk1mnopqrstuvwxyz"
K[8] "something"
K[9] "anything at all"

"***" You may request a display of the "k H and "K" arrays

{d("v");}

fmn = 1

collie = false
bf = "able to run"
a = 1

,,***u You may request a display of the user variables. In
"***" fact the quoted string which is an argument to the
"***" display function is any combination of the characters
"***" "akKv".

{ a:= bf bf:= "1234"; co11ie:=1234}
{d(Uv");}

4-15 CP50-OOB

10/85

fmn = 1
co 1 1 i e = 1 234

bf = "1234"

a = "able to run"
"***" Note that the data types are now different.

bx a Now is the time for all good men
to come to the aid of their ...
\f

"***" Now we change to another buffer.

x
4 mod (0)

2 -> (x)

"***" This shows the status of all the buffers.
x

2 -> (x)

"***" This shows the status of only the current buffer.

(10,25) { "I": Ks: "I"; }
10 the aid of thel

11***" The built-in Ks references the string addressed.

(10.25) { "I": Kl: "I"; }
Ito come to the aid of their ...

I
"***" The built-in Kl references the line addressed.

(10, 25) { II I ": Kb: "III; }

INow is the time for all good men
to come to the aid of their ...

"***" The built-in Kb references all of the current buffer.

fake 135, "OOO.O");}

013.5

"***" The function fak converts arithmetic to character under
"***" the control of a mask.

(fs("123456789 11 , 3);}

3456789

{ fs("123456789", 3, 6);}

345678
(fs("123456789",-3);}

789

"***" The function fs ;s like PL/I substr with an extension to
"***11 handle negative starting values (they count from the end
"***11 of the sting).

fs("123456789", 3: 6);}

3456

(fs("123456789", 3:-3);}

3456

4-16 CPSO-OOB

10/85

"***0 Also, there is this extension. In this form, the 2nd
"***"
"***"
"***"

number represen~s the character position in the string
to end the string instead of the length. Again you can
count from the end of the string.

{ frs(Hcopydumpl ist H, "dumpH, "ab");}
listcopy

{

{

"***"
"*** "

"*** H

"***"
"***"

"***"
"***"

The frs function "re-arranges" a string. The first
argument is divided into 3 parts by indexing into it
with the second argument. This then defines parts:

before, match, after
The third argument must then be a string made of of only
the characters "bmas". (s means "searched", in other
words, the value of the 2no argument. This 3rd argument
tells what pieces you want an in which order you want
them. In this example, the after and then before is

selected.

if(3>4, "zebra") ;}

if(3<4, IIzebra"); }
zebra
{ if(3>4, "zebra H , "1 ion mane II);}
1 ion mane
{ if(3<4, "zebra" • ii 1 ; on mane Ii);}
zebra

"***"
"***"

The if function returns its 2nd argument if the 1st
argument is TRUE otherwise it returns its 3rd argument,
if present.

{fs(cs,GO:70);}
;<=>?~ABCDE

"***" The function cs gives the value of PL/I col1ate().

{ bn;}
x

"***" The built-in bn is the name of the current buffer.

{ dn;}

"***" The built-in dn is the directory portion of the pathname
,,***n associated with the current buffer, if any.

{ en;}

"***" The built-in en is the entry portion of the pathname
"***" associated with the current buffer, if any.

{ sn;}

"***" The built-in sn is the subfile/component portion of the
"***" pathname associated with the current buffer, if any.

sk;}

4-17 CP50-OOB

10/85 .

"***" The built-in sk is the subfile/component kind associated
"***" with the current buffer, if any.
"***" ":"-> archive component "1"-> subfile ""-> segment

em; }
Vxx) Syntax- eval. "(em:= "

"***" The bUilt-in em gives the current error message. It has
"***" this form:
"***" Xxx) text ...

(emt();}
Syntax- eval. "{em:= "

"***" This function returns the error message text, the
"***" text... part of the error message.

{ + 3*4;}
12

{ - 3*4;}
-12

{ - 5 + 1;}

-4
"***" Unary +,- are available for forming expressions. If the
"***" expression following is not numeric, a conversion is
"***" attempted.

{ " abc" I I "def" ; }
abcdef

"***" The I I operator is used for concatenation.

{"stmt"111311" in error";}
stmt13 in error

"***" If the arguments for concatenation are not character
"***" strings, they are converted.

{ "abc H <"jaf";}
true
{ 0013 < 9 ;}
false
{ "OO13"<"S";}
true
{ "12"< 13;}
true

H***" Logical expressions are available, also. The data types
H***" may be different.

{ 4+6;}
10

"***" Addition
{ 4-6;}
-2

"***" Subtraction
{ 4*6;}

4-18 CP50-OOB

10/85

24
"***. Multiplication

{ 4/6;}
o

" * * * II 0 i vis i on
{ 4IS;}

4
II * * * II Modu 1 0

{ 4* (3+7);}

40
"***" Expressions may be enclosed in parentheses.

{ 4* (3<7);}

4

{ 4* (3)7);}

o
"***" If a logical expression is used in an arithmetic context
"***" it will assume the value 0 for false and 1 for true.

{i:=10;i;}
10
{ 4* (i: = i -5) ; i ; }

20
5

"***" An assignment may also be enclosed in parentheses. The
"***" value of it is the value which was assigned. Note that
"***" i=10 to begin with and 1=5 after the expression is
"***" calculated.

{ a[137/2];}

o
"***" Any expression may be used for a subscript value. The
"***" subscript expression is that enclosed within the []/S.

"***" Unset arithmetic array values default to O.

{ ag;}
o

"***" This built-in gives the number of arguments which ted was
"***" called with.

{ pn;}
o

"***" This tells the number of parameters present in the
"***" current buffer invocation. If the buffer were called by
"*" ,then this is >=0. Otherwise it is =0.

{p[O];}

"***" This represents the whole parameter string present on a
"*" then this
"***" is a null string. The first character of this string is
"*" the delimiter for this call.

4-19 CP50-OOB

10/85

"***" The values p[1] - p[pn] represent the various parameters
"***" available to the current buffer invocation. These are
"***" "local" values and are not known to any buffers nested
"***" from this one.

{ mct ();}

"***" This function returns the number of matches found on the
"***" last substitute done. The value is -1 if no substitute
"***" has been done yet in this invocation of ted.

1 b;}

Not def i ned- 1 b "{ 1 b"
"***" This and the next 3 built-ins are not defined when no
"***" address is given.

· { lb; }
34

"***" This built-in gives the character count in the current
"***" buffer of where the addressed 1 i ne beg i ns .

· { sb;}
34

"***" This built-in gives the character count in the current
"***" buffer of where the addressed string begins.

· { se;}
64

"***" This bUilt-in gives the character count in the current
"***" buffer of where the addressed string ends.

, { 1 e;}
64

"***" This bUilt-in gives the character count in the current
"***" buffer of where the addressed line ends.

be;}
64

"***" This bUilt-in gives the character count in the current
"***" buffer of where the buffer ends, i.e. the length of the
.. ***" buffer.

{ fmx(1.10.-3.6);}
10

"***" The function fmx is the max function.
{ fmn(1,10,-3,6);}
-3

"***" The function fmn is the min function.
{ fmn(fmx(1,10).fmx(-3,6»;}
6

"***" They may be nested.

{bf := "Smithsonian Institute"}
{ f 1 (bf);}

4-20 CP50-OOB

10/85

21
- ••• - The function fl gives the length of its argument.

{ ff(bf • At;·);}
3

_ ••• U The function ff is the Dfind- function, the PL/I search
- ••• - built-in.

{ ffr(bf , ati-);}
2

_ ••• U Function ffr is find-reverse.

{ fi(bf , -tiD);}
16

-•• *" Function fi is the PL/I index function.

{ fire bf , -ti-);}
4

-***- Function fir is index-reverse.
{ fv(bf , ·Smite");}
5

"*.*,, Function fv is the PL/I verify function.

{ fvr(bf • -Smite");}
3

-***" Function fvr is verify-reverse.

{ ff(bf , 5(1));}

2
{ ffr(bf • S(u)) ;}

9
{ fv(bf , S(ul));}

12

{ fvr(bf , S(ul));}
10

. {
2

"***" These 4 forms are like mentioned above except that the
"***"
"***"
n*.*"

-***"
" •• *"
.***"

f i n(

set to look for is specified generically instead of
literally. Within the S() may be these selectors:

u - upper case 1 - lower case
a - ul plus "_" n - decimal digits
o - octal digits x - hex digits
m - motion character g - graphic character

i b);}

,,***. This function gives the line number where the beginning
II *** " addressed 1 i ne is .

. { fln(le);}
2

,,*.* .. This gives the line number where the ending addressed
.. * * *.. 1 i ne is.

4-21 CP50-OOB

10/85

{ fln(be);}

2
"***,, This gives the line number of the end of the buffer.

MASK EXAMPLES

n examples of masks in {fak(n,mask)}

a[1] 12345
a[2] -654321
a[3] -9

=====

Given a value of: 12345

If mask is $_

then result is $123.45

If mask ;s *"
then result is *****123.45

If mask is _-
then result is 123.45

If mask is 0"

then result is 123.45

If mask is I 00.0*-

then result is *****123.45

If mask is . 00.0-"

then result is 123.45

If mask is
then result is 12345

If mask is "*fOfOfOfOfO"
then result is *f1f2f3f4f5

If mask is "-
then result is 123.45

If mask is "- 00.0*"

then result is ****123.45

If mask is "- I 00.00"

then result is 123.45

=====

4-22 CPSO-OOB

Given a value of: -654321

If mask is $11

then result is $6,543,21

If mask is *11

then result is ***6,543.21

If mask is _II

then result is -6,543.21

If mask is 011

then result is 6,543.21

If mask is , 00.0*"
then result is ***6,543.21

If mask is , 00.0- 11

then result is -6,543.21

If mask is
then result is -654321

If mask is lI*fOfOfOfOfO"
then result is *f5f4f3f2f1

If mask is "_

then result is 6,543.21

If mask is ii_ , 00.0*"
then result is -**6,543.21

If mask is "- , 00.00"
then result is 6,543.21

=====

Given a value of: -9

If mask is $"

then result is $9

If mask is *,.

then result is **********9

If mask ;s _II

then result is -9

If mask is 0"
then result is 9

If mask is , 00.0*11
then result is ******00.09

10/85 4-23 CP50-OOB

If mask is 00.0-"

then result is -00.09

If mask is
then result is -9

If mask is "*fOfOfOfOfO"

then result is *fOfOfOfOf9

If mask is "-
then result is 9

If mask is "- 00.0*"
then result is -*****00.09

If mask is fI_ 00.00"
then result is 00.09

Given a value of: 0

If mask is $"

then result is $0

If mask is *"
then result is ***"'******0

If mask is -"
then result is 0

If mask is 0"
then result is 0

If mask is , 00.0*"
then result is ******00.00

If mask is 00.0-"
then result is 00.00

If mask is
then result is 0

If mask is "*fOfOfOfOfO"
then result is *fOfOfOfOfO

If mask is "-
then result ;s

If mask is "- 00.0*11 ,
then result is *****00.00

10/85 4-24 CPSO-OOB

10/85

If mask is
then resuit is

11- 00.00"
00.00

4-25 CP50-OOB

10/85

APPENDIX A

TED COMMAND

This section describes the Multics ted command and its associated requests. The command
description contains the name of the command, discusses its purpose, and shows the correct usage.
Notes and examples are included as necessary for clarity.

A-1 CP50-OOB

ted

10/85

Name: ted

The ted command is used to create and edit ASCII segments and is used to perform many
kinds of text processing. It can be called as an active function (see "External Functions" in
Section 2) and be invoked recursively to a depth of 14.

SYNTAX AS A COMMAND

ted {ted_com} {-control_args}

ARGUMENTS

ted_com
reads the contents of the named segment into buffer (exec) and executes it The ted
suffix is supplied if not present When the contents of buffer (exec) is exhausted,
request lines are read from user_input unless the -abort argument (below) is present.

CONTROL ARGUMENTS

See "Notes" below as regards the execution sequence of arguments, and list of
undocumented control segments.

-abort
exit the program if an error occurs while executing a ted_com instead of returning to ted
request level. (For historical compatibility. "-com" may be used for this function.)

-arguments args, -ag args
makes the argument list args available during the processing of a ted_com. The args may
be referenced either in buffers (arg!), (arg2), etc., or line I, line 2, etc. of buffer (args).
None of these buffers show up on an x request list until they have been referenced.

-debug, -db
instructs ted to display "Edit" before accepting a request line from user_input This
control is useful for detecting when a ted_com "falls" back to request level. The -abort
argument (above) detects when a ted_com "falls" back to request level, but does not
leave you in a position to examine the environment

-Jset {X ... }
this control argument is obsolete. An old usage of:

e ted -Jset X •••

should become

j/s=X •• • 1

Refer to Appendix B, sort request, for a description of the preferred usage.

-Jshow
this control argument is obsolete. An old usage of:

e ted -Jshow

A-2 CPSO-OOB

10/85

should become

ji?i

Refer to Appendix B, sort request, for a description of the preferred usage.

-option STR1 {, ... STRn}, -opt STRl {, ... STRn}
sets the options specified by STRi before anything else is accomplished during ted
startup. STR is any option setting which may be given to the "0" request (see Appendix
B). Multiple options must be separated by either a comma (,) or a space () character. If
space is utilized as the separator, then the whole string must be in quotes.

-pathname path, -pn path
begin ted execution by reading segment path into buffer(O). (See -request control
argument for an example of use.)

-pause
interrupts execution of a ted_com (to ted, this simulates encountering a breakpoint at
the beginning of the next line in EDIT mode). The next time a request line is fetched, the
input routine enters the break sequence (refer to Section 3). This argument is valid only
after having interrupted a ted execution. (This argument is mutually exclusive with all
other control arguments.)

-request STR, -rq STR
executes STR as a ted request line before entering the request loop. For example:

ted -rq gd/something/ ted_com

deletes all instances of "something" before executing the ted_com.

ted -pn foo -rq "gd/abc/ w" -rq "q"

deletes all instances of "abc" in the foo segment, writes it back, and then quits (q).

-reset {level}
breaks out of a ted_com loop and returns to ted request level. The optional "level" is a
two-digit number specifying the ted recursion level to be returned to. If level is not
specified, then the most recent invocation is assumed. This argument is valid only after
having interrupted a ted execution. (This argument is mutually exclusive with all other
control arguments.)

-restart
restarts a -safe environment which was left due to a system crash, process interruption,
or overt user action (see Appendix B, qhold request). If only one environment exists, it is
restarted. If more than one exists, all are listed and the user is asked which invocation to
restarL

ted

A-3 CP50-OOB

ted

10/85

ted -restart
More than one environment exists.

Started, by whom, as what
1 07/13/82 1706.5 mst Tues
2 07/13/82 1706.8 mst Tues

comment=weekly report
Which one do you want?
xi

o -> (0)
Which one do you want?
2

Able.Multics
Able.Muitics

(ted[O])
(ted[O))

Restarting session of 07/13/82 1707.1 mst Tues.

Answers to the above query, "Which one do you want?", may be "?" for info on what you
can answer, "N" to restart number N, "xN" to do a pseudox request on N, "dN" to
cleanup N, and "q" to exit without restarting. (This argument is mutually exclusive with
all other control arguments.)

-safe
places the active ted work segments in the user's default working directory so that the
environment is saved in case of a loss such as a system crash. It also displays a warning if
there are any existing environments. For example:

! ted -safe
ted: 2 environments already saved.

(Refer to -restart above.)

-status, -st
generates a list of existing "safe" environments. (This argument is mutually exclusive
with all other control arguments.) For example:

ted -status
Started, by whom, as what
1 07/13/82 1706.5 mst Tue Able.Multics (ted[O])
2 07/13/82 1706.8 mst Tue Able.Multics (ted[O])
3 07/13/82 1707.1 mst Tue Able.Multics (ted[O])

The [0] tells the recursion level of the environment

A-4 CPSO-OOB

10/85

.. ted -st
1/ Started, by whom. as what
1 07/13/82 1706.8 mst Tue Able.Multics (ted[O})
2* 07/13/82 1707.1 mst Tue Able.Multics (ted[1])

(*=now active)

-temp_dir path, -td path
saved environments are normally kept in the home directory. In some cases there may
not be enough quota for the work to be done. This argument allows an environment to
be placed elsewhere. When this control argument is given, a link is created in the
home_dir to the data base for the environment, so that -status and -restart know what
exists. The link is removed in cleaning up an environment The -status listing indicates
where any remote environments actually are.

NOTES

Several of the arguments cause a portion of a "script" to be created for ted to follow. The
sequence in which arguments contribute to the script. regardless of the sequence used in the
command line (top to lowest priority) is:

-option, -pathname, -request, ted_com, -abort, and -debug

For example, if the command is entered as:

ted ted_com -debug -request -option

the sequence of execution by ted is: -option, -request, ted_com. and -debug.

The following control arguments have been deleted from the command description in this
issue. They are fully supported as control arguments but will no longer be documented. The
intent is to specify options using the -option control argument (Refer to the "0" request in
Appendix B for a complete description of all options.)

OLD USE NEW USE DESCRIPTION

-blank
-no_blank
-break
-no_break
-trace_edit
-trace_input
-label
-no_label
-read
-no_read
-trace
-no_trace
-part_blank

blank
"blank
break
"break
edit
input
labei
"label
read
"read
trace
"trace
(na)

requires blank character between multiple requests on a line.
opposite to blank.
enables tracing of labels.
opposi te to break.
display each ted request before execution.
display each line of data before insertion.
enables tracing of labels.
opposite to label.
turn read option ON. (Default)
turn read option OFF.
equivalent to (combination of) edit and input
equivalent to "edit "input
this control argument is obsolete.

ted

A-5 CP50~B

10/85

An example of "old" usage is:

ted -blank -label -no_read

whereas the "new" usage is:

ted -option blank,label,l\read

A-6 CP50-OOB

10/85

TED INQEDX MODE

Ted may he run in "qedx mode" and is invoked as:

ted$qedx

-or-

qedx (when ted has been initiated with the reference name qedx)

To use ted in "qedx mode" by typing qedx, you must issue the command:

initiate [where ted] qedx

once in each process hef ore typing the command:

qedx

The initiate command could be placed in your start_up.ec.

The differences when running in qedx mode are:

1. The suffix ".qedx" is supplied on a ted_com name. In either mode, a suffix of either
".ted" or ".qedx" is accepted. A suffix is added only in the absence of both.

2. The \r sequence includes the NL (and therefore terminates the line being fetched
for execution). This means that you cannot use the construct:

s/abc/\r/

3. A . \f in response to a \r input function is treated as data.

4. The "not-pasted" flag is not set on the m request

5. Certain error messages are prefixed by "qedx" instead of "ted."

6. There is no processing of archive pathnames (names containing "::" in the final
entryname) in read request pathnames.

7. If a request requiring a single address is supplied with an address pair, one of the
addresses is ignored and a warning is provided telling which address was ignored.
Likewise any request provided with any address where none is wanted, also results in
a warning message.

All other qedx requests have identical actions as ted requests.

A-7 CP50-OOB

10/85

LIST OF TED REQUESTS

The requests flagged below with an "X" in the qedx column identify those ted requests that
are compatible with the qedx command requests of the same name. These requests were
maintained intact to minimize user confusion when changing over from Qedx to Ted usage.
(Refer to "Ted in Qedx Mode" above.) Following is a list of all ted requests. Many of these
requests can be invoked in more than one way (e.g' t \g n or \G n, h or H).

qedx ted Requests Description

Regular Requests

X
X

X
X

X
X
X

x

x

x
X

X
X

X
X

X
X

X

\7
II

=
{ ... }
Ixxx
a
b
bO
c
d
e

f
9
h
help

j
k
1
m
n
o
p
q
qhold
r
s
t
u
v
w
wm
x
xm
y
zdump
z. f i . ad
z. f i . na

Where am 11
commentt ignore rest of line
print linen umber
evaluate
external request call to ted_xxx_
append
change buffer
change current buffer, going to a remembered one
change (replace) text .
delete
execute command line
execute command line without input function processing
(beginning-of-line only)
fileout into a buffer, auto reversion
(see "Global Requests" below)
process out· pseudo-tabs
online information
insert
sort
kopy (or copy)
linef eed to user _output
move
nothing, sets "." to address
option
print
quit with buffer check
exit ted while maintaining the safe environment
read
substitute
type string to user_output
translate to lowercase
(see "Global Requests" below)
write
write modified buffers (blank mode only)
status of all buffers
status. modified buffers only (blank mode only)
tabin, process in HT characters
dump octal/ASCII
fill/adjust
fill/no-adjust

A-8 CPSO-OOB

10/85

Alternate Requests

a
b
c
e
f

j
k
1
m
p
q
r
s
t
u

.w
Ix

Global Requests

X g=
X gd
X gp

glp
g.
g)'c

X v=
X vd
X vp

vIp

Flow-of-control Requests

AN
%
* A*

>
A>
zif { ... }

delete buffer
force pathname
bulk append
remember current buffer, then change
bulk change
execute a command line after printing it
fileout to a buffer, no auto reversion
bulk insert
special sort
kopy-append
linefeed to error_output
move-append
print with linenumber
force-quit
read with abbrev expansion of pathname
no-fail substitute
type string to error_output
translate to uppercase
write with abbrev expansion of pathhame
status of named or current buffer

global linenumber
global delete
global print
global print with linenumber
print in the manner specified by the null = option
global-if
exclusive global--inverse action to the g requests

if line
if-not line
call buffer with optional arguments
if expression found
if expression not-found
label define, must be at beginning-of-line
t1"~nc:fp1" nf r.nnt1"nl (",ntn'
...... _ _ .. - .. - .. .".."""'.&& "' .. '-1:>"''''''

error exit
conditional test
return from buffer

A-9 CP50-00B

10/85

i\PPENDIX B

TED REQUESTS

REQUEST DESCRIPTIONS

The request descriptions inciude several standard headings (not ali of the headings are used
f or each request):

Request Name (e.g.. a (append»

Immediately following the request name is a description of the request.

Syntax

Shows the proper format(s) to use when invoking the request.

Default

Tells what is assumed if no address is given. When no addresses are expected. this
heading is not present.

Value of "."

Identifies the position of the current line AFTER the request operation is completed.
This value is normally always set to the last line dealt With. therefore it is only included
on individual requests that have unusual or unexpected end results. The value of "." is
normally included as ("."» within examples.

Examples

Shows correct usage of the request, induding buffer contents before and after the
execution of the request, and shows lines displayed on the terminal as a result of the
request.

Notes

As required.

The ted request descriptions are in the following order: special characters first (i.e .• ", #. %.
*. etc.). followed by the alphabetized list (a. !a. b. !b, 'b, Ab etc.). Also, a number of abbreviations.
metasymbols, and special characters are utilized in the request descriptions (refer to Appendix C
when in doubt, or if unfamiliar with specific terms. usage, etc.).

B-1 CP50-00B

"

10/85

" (comment)

Is generally used to annotate ted_corns and online work. The remainder of the request
line following (n) is ignored by ted. If an address is included with the request, n." (or
current line) is set to that address location.

Syntax

ADR" STR

Default

If no address is present, "." is not changed.

Example

Buff er con ten ts:

(if line)

"This ted_com enters special headers
"for subroutine descriptions
b (heads)
a
<This is the ted_com> •..

Tests for various conditions of buffer status dependent upon the address configuration
(i.e., if the condition is satisfied then execute the rest of request line.)

Since n#" normally means "delete character" to Multics, it must be handled in a special
way (i.e., in order to get past Multics it must be entered as "\#n). The examples show
what ted expects, not what you type.

The value of "." is unchanged by this request.

Syntax

Format 1 Format 2 Format 3

<REST> ADR# <REST> ADR1,ADR2# <REST>

Format 1 tests for data being in the buffer (i.e., buffer not empty). Format 2 tests for ":'
being the line addressed. Format 3 tests for fl." being within the range addressed.

Example 1

Request:

$11 Q

says, if the current line (".") is at the end-of-buffer, execute Q (force-quit).

Example 2

Request:

$*-9,$ # Q

says, ii ;;.;; is within the last-ten-lines of the buffer, execute Q (force-quit).

B-2 CP50-OOB

10/85

1\# (if - not line)

Tests for the absence of various conditions of buffer status deoendent on the address
configuration (Le., if the condition is not satisfied. then execute the rest of the request
line).

This request may also be entered as n •• .'# ... ".

The value of "." is unchanged by this request

Syntax
Format Format 2

."# <REST> ADR"# <REST>

Format 3

ADR1,ADR2"# <REST>

Format 1 tests for no data being in the buffer (i.e .• buffer empty). Format 2 tests for "." I
not being the line addressed. Format 3 tests for "0" being outside the range addressed ..

Example 1

Request

$"# Q

says, if the current line is anything other than the last-line of the buffer, execute
force-quit (Q).

Example 2

Request

$-9;$"# Q

says, if the current line is not within the last-ten-lines of the buffer, execute force-quit
(Q).

% {call buffer}

Invokes execution of a buffer (similar to the input function \b(x», optionally passing
parameters. These parameters are available as p [N] within <eval>. See Example 3
(below) fo.r more information. The current buffer remains the same buffer. The called
buffer becomes the new executing buffer. The""" request stops execution in the execution
buffer and reverts control to the prior level of execution. "Falling out" the end of the
buffer also reverts control to the prior level.

Syntax

% (X) I p 1 I p2 •••

where the first character after the buffer name is a delimiter that begins a parameter.
The delimiter may be a blank.

Example 1

Request:

% (X) I a I b I

B-3 CP50-00B

%

10/85

provides three parameters, the third being a null string.

Example 2
Buffer contents:

(where b(O) is the current buffer with data and b(a) contains a ted_com to be
executed)

Current Buffer

first
second
third

Request:

Buffer Ca)

ln
:a ,'c/e/-
?+1; • n >a
tldidn't find itl 1

o trace (turn on tracing so the execution
of the ted com in b(a) can be observed)

%a (call the ted_com in b(a) into execution)

Terminal output:

1)'(*EO I T** %a
2)>;''(EOIT** ln
3 *'';EO I T**
4)'(*EOIT)"*
5 **EOIT**

:a */e/-
?+l;.n >a
:a */e/-

the line numbers above are not part of the terminal output, but are included for
explanation purposes as follows:

line 1
Trace of the call (%a) request.

line 2-5
Trace of the execution of b(a).

line 2
Set the current line to the first line of b(a).

line 3
Test for the presence of an "e" on the current line (which is "first" at this time). It is
not found. so skip the rest of the request line.

line 4
Test for the presence of a line following the current line of the buffer. If one exists.
set the current line to the following line and then loop back to label a.

line 5
Again test for the presence of an "e" on the current line (which is now "second").
This time it succeeds and the return "-" is executed. At this point ted waits for user
input.

Request:
p (you wan t to see the line the test succeeded on.

including the line number)

%

B-4 CP50-OOB

10/85

Terminal output

)'cED I T''c P
2 second

(trace of previous request)
(the result)

Request:

s/ e/EI o/oa (remove the "e" which was matched and recall b(a) again)

Terminal output:

1 io'cED I T,':1, s/e/E/ %a
2 io'cED I T1,,'c In
3)'c)'cED I T,':1: :a ic/e/ '"
4 *~cED I r1c,'c 1+ 1 ; • n >a
5)'deED I T10" :a 1'/e/ '"
6)'o'cED I T''o'c 1+ 1 ; • n >a
7 ,':1'E D I T1,)', :a)'c/el '"
8 io'cED I Tf,)', 1+ 1 ; • n >a
9)h"E D I T10': tldidn't find it I 1

10 didn't find it

line 1
Trace of the substitute and call request.

line 2-7
Trace of the execution of b(a). Same sequence as first call, except this time no match
is found. The current line now contains "third" (last line of b(O).

line 8
This time there is no next (following) line, so the rest of the line is ignored (i.e .• the
"goto label an is ignored).

line 9
Trace of the failure message contained in b{a).

line 10
Message displayed for the user to indicate failure of the ted_com.

Example 3

Request:

% (exec) first of all we can use spaces

provides values for evaluation:
pn =7
p[O]=lIfirst of all we can use spaces"
p[l]="first"
p[2]=" 0 f"
p [3] =11 a 1 1"
p [4] ="we"
p[S]="can"
p[6]="use"
p[7]="spaces"

%

B-5 CP50-OOB

10/85

Request:

% (exec) !nothing would please me more!

values:
pn =2
p[O]=II!nothing would please me more'"
p[1]=lInothing would pleqse me more"
p[2]=1111

Request:

% (exec)

values:
pn =0
p[O] =1111

Request

Note

% (exec)/first/second/third/fourth//sixth

values:
pn =6
p[O]="/first/second/third/fourth//sixth"
p[l]="f i rst ll

p[2]="second"
p [3] =tl th i rd" .
p[4]=lIfourth ll

p[S] =1111

p[6]:!IS i xth tl

Refer to zif request for additional examples.

* (if expression found)

Searches the addressed text for an <RE>, and if it succeeds. executes the rest of the
requests on the same line.

The value of "." is unchanged by this request The addresses only specify where to look
and have nothing to do with the current location.

Syntax

ADR1,ADR2*/<RE>/ <REST>

Default

If no address is present, "." is assumed.

Note

Refer to the % request for examples.

*

B-6 CP50-o0B

10/85

A* (if expression not-found)

Searches the addressed lines for an <RE>, and if it fails. executes the rest of the requests
on the same line.

This request may also be entered as " .. : * ... ".
The value of n." is unchanged by this request.

Syntax

ADRi,ADR2 A */<RE>/ <REST>

Default

If no address is present, n." is assumed .

•. (execute)

If any request line begins with fl •• ", it is passed to the Multics command processor for
execution without any input function processing.

Syntax

<command line>

(define label)

Names a location in a ted_com to which control may be transferred. Labels must appear
at the beginning-of-line only.

Syntax

Format Format 2

:c : (STR)

Format 1 defines a single-character label. Format 2 defines a multiple-character label.
STR may be from 1 to 14 characters.

Notes

The labels "en, n(e)", and "(e<sp»" are three different labels representing three
distinct buffer locations.

A label search consists of looking through the buffer, starting at the beginning. looking
for the string <NL>:(e) for example. There is no attempt to try to determine if a given
location in a buffer would be in input mode or edit mode. The user must ensure that no
data which is in input mode can mistakelily be found as a label.

> (transfer of control)

Unconditional transfer (or goto) to a label (for looping purposes) or to a relative line for
the next request sequence.

>

B-7 ep50-OOB

>

10/85

Syntax
Format

>C

Format 4

>-N

Format 2 Format 3

> (STR) >+N

Format 1 specifies goto label C (label to be found must have the form n:c" and consist of
only one character). Format 2 specifies goto label STR (label to be found must have the
form ":(STR)" with STR being from 1-14 characters). Format 3 specifies to go forward
from the current line, up to lines (N must be a single digit). Format 4 specifies to go
backward from the current line, up to 9 lines. If N is "0", that is, >+0 or >-0, then the
current line is re-executed.

Note

Refer to the ":" request for a description of labels.

Example

Assume the current buffer contains a text segment and you are interested in searching
the file for instances of "xxx" which you want to change to "something else" each time it
is found. For example, the requests:

On (set pointer to the line ahead of the first line of the buffer. This ensures that
the search begins on line 1.)

/xxx/ s//\r/ >-0

finds the first occurrence of "xxx" and substitutes whatever is entered from user_input
(\r request). and then continues the search looking for the next occurrence of xxx.

Another method of accomplfshing the same results as above is:

:a /xxx/ s//\r/ >a

1\ > (error exit)

Set up to catch a potential error condition. It means do not goto the specified label, just
remember it for the rest of the request line. If any error occurs, then goto this label
instead of displaying the error message. Normally when an error message is displayed,
all ted_com execution is aborted and the next input is from request level. If this request
is in effect when an error occurs, the request aborts, but control remains in the current
level of ted_com execution (assuming that the label is defined in the ted_com).

This request may also be entered as '" > ••• ".

Syntax
Format Format 2 Format 3

"'>C "'> (STR) "">+N

">

CP50-00B

10/85

Format 4

Format 1 specifies goto label C (label to be found must have the form ":C" and consist of
only one character). Format 2 specifies goto label STR (label to be found must have the
form ":(STR)" with STR being from 1-14 characters). Format 3 specifies to go forward
from the current line, up to lines (N must be a single digit). Format 4 specifies to go
backward from the current line. up to 9 lines. If N is "0", that is, >+0 or >-0, then the
current line is re-executed.

Note

The error message text can be displayed later by entering ,. {emtO;} n. (Refer to "Data
Elements" in Section 5 for a description of "emtO".)

Example

Request:

"'>+ 1 r \b (arg 1)

executes the following line even if the r (read) request fails. The error message
associated with a read failure is also suppressed.

= (print linen umber)

Displays the linenumber of the addressed line.

Syntax
ADR=

Default

If no address is presen t, "." is assumed.

Example 1

Buffer contents:

a: procedure;
x=y;
p=q;
end a;

Request:

/q;/=

Terminal output:

3
Example 2

Buffer contents:

Same as above.

=

B-9 CP50-OOB

10/85

Request:

$=

Terminal output:

4

\? (where am I?)

Query asking for current status, mode, etc. It is a means of reorienting the user to the
current invocation of ted. This feature normally is used by persons working on more
than one invocation of ted or if a person thinks he/she is in edit mode but doesn't seem
to be getting a response. This request is executed as the only thing on a line.

Syntax

\?<NL>

Example

Request:

\?<NL>

Terminal output:

ted (2.6) EDIT MOOE[Ol]

This output is in this form:

ted(v.r)xxx MOOE[rc]safe

where:

v. r

xxx

rc

is the current version/revision of ted.

can be any of the following: INPUT. EDIT. READ, BULK, or BREAK (refer
to "Modes of Operation" in Section 1).

is the current recursion level of ted.

safe
indicates that ted is operating in safe mode; not present if "not safe."

{} (evaluate)

Evaluate request. This does not expect a return value. it simply means to just "do
something." If <eval> does return a value. a warning message displays the value.

In contrast, the input function \ { <eval> J does expect a return value and uses it as a
replacement for the \ {<eval>} sequence in the input stream. (Refer to "Input
Functions" in Section 1.)

Syntax
{<eval>}

{}

B-IO CP50-00B

n

10/85

Note

Refer to Section 4 for more details regarding <eva1>.

Example

The multiline request sequence:

1 {k: =114 75446535"}
2 {a : =0 ; j: = 1}
3 :a {a:=a+fs(k,j,2)}
4 z if {(j: = j+2) <f 1 (k)} >a
5 Sa \ {a}
6 \f

line 1 .
Sets up a string to work on.

line 2
Ini tializes a and j.

line 3
Picks up the first two digits of k ("47") and adds them to a. Each return to this line then
picks up the next two successive digit pairs to the right.

line 4
Increments the value of j and then tests to see if any more pairs of digits remain (i.e., if j
is not less than the length of k. then there is not a pair of digits left).

line 5
Appends the sum (which is 47+54+46+53=200> to the end of the current buffer.

line 6
Terminates the append request. The data is now available for the user.

I xxx (external request ll)

Calls an external request named ted_xxx_. The routine is looked for via the system
search rules. The way that the addressed portion of the buffer and <REST> are utilized
is determined by each particular routine. In this way, a user may add requests to ted.

Syntax

ADR1,ADR2Ixxx <REST>

<REST> is made available to the external request. It may be utilized as arguments to it
It may be defined to be ignored. It may be defined as other requests which will be
executed or not depending on the result of the external request. This action is entirely up
to the writer of an external function.

Default

If no address is present. " . " is assumed.

However, when the current buffer is empty, then "." is set as undefined. No error
message results.

Note

Refer to Appendix E for details on how to code user_written requests.

I xxx

B-11 CP50-OOB

10/85

'" (return)

Stops execution of the running ted_com and reverts to t.he prior level. This request may
be used no matter which way the ted_com was called (i.e., % request or \b input
function).

Syntax

Notes

Refer to the % request for additional description and example of its use.

If execution reaches the last character of a ted_com it also reverts to the prior level.

a (append)

Enters input lines from the terminal to create a new segment, or to append input lines
after the line addressed by the request. Ted looks for and processes input functions. The
request is terminated with a "\f".

Syntax

ADRa
TEXT
\f

Default

If no address is present. "." is assumed.

Notes

Refer to "Input Mode" (under Modes of Operation in Section 1) for a description of
how Ted handles a SP or NL immediately following the "a" request (i.e., on the same line
as the request).

The request Oa can be used to append text before line 1 of the buffer.

Example 1

Buff er con ten ts:

<buffer empty>

Request:

a
This can be
a letter,
memo, report,
or user manual.
\f

Resulting buffer con ten ts:

This can be
a letter,

a

B-12 CP50-o0B

a !a

10/85

memo, report,
11.11_> or user manual.

Example 2

Buffer con tents:

This can be
a 1 etter,
or user manual.

Request

2a
memo, report,
\f

Resulting buffer contents:

This can be
a letter,

-or-

11./1_> memo, report,
or user manual.

!a (bulk append)

/letter/a
memo, report,
\f

Accepts lines of data from the terminal to create a new segment, or to append lines of
data after the line addressed by the request. Ted does not process input functions. The
request is terminated with a n." on a line by itself (beginning-of-line only).

Syntax

ADR!a <REST>
LINES

Default

If no address is present, "." is assumed.

Notes

The request O!a can be used to append text before line 1 of the buffer.

<REST> which may follow the request does not represent input data. It represents
requests which are executed when the input mode is terminated. For example:

2!a l,$p

if included in Example 2 below, would display the buffer conteniS afIer the termination
of the bulk append request.

Example 1

Buffer contents:

<buffer empty>

B-13 CP50-OOB

!a

10/85

Request:

!a
This can be
a letter,
memo, report,
or user manual.

Resulting buffer contents:

This can be
a 1 etter,
memo, repor t,

II. "_> or user manua I .

Example 2

Buffer contents:

This can be
a letter,
or user manual.

Request:

2!a
memo, report,

Resulting buffer contents:

This can be
a letter,

-or-

"."_> memo, report,
or user manual.

b (change buffer)

/letter/!a
memo, report,

Designates an auxiliary buffer as the current buffer. The previously designated current
buffer becomes an auxiliary buffer.

Restored to the value of n." when this buffer was last used as the current buffer (i.e .• the
value of n." is maintained separately for each buffer and saved as part of the buffer
status). If a new buffer is created, then n." is undefined. If a window is being selected
and the existing value of n." is not within this window, then it becomes undefined.

Syntax

Format Format 2 Format 3

b (x) b (X,ADRI ,ADR2) bO

Format 1 changes to the named buffer. Format 2 changes to a window within the buffer.
This window may be one or more lines. Until the next buffer change, all requests act as
though the buffer contained oniy data within the window (i.e., Ip prints the first line of
the window regardless of what line it might be in the whole buffer). Format 3 changes

b

B-14 CP50-OOB

b

10/85

L1.e CUiient buffei to the last iemembeied auxiliaiY buffer (see!b request, up to 10 may
be remembered).

Example

Line numbers are shown on the example for the purpose of commentary immediately
following example.

1 bO 1, $P

2 1 first 1 i ne
3 2 second 1 ine
4 3 third 1 i ne
5 b(0,1(7).2) 1, $P

6 2 1 i ne
7 3 second 1 ine
8 !b(O) 1, $P

9 1 first 1 ine

10 2 second 1 ine
11 3 third 1 ine
12 b() 1, $P

13 1 first 1 ine
14 2 second 1 ine
15 3 third 1 ine

line 1
Shows what is in buffer O.

line 5
Changes to a window within bO and shows what is accessible.

line 8
Remembers where we are and changes to bOo then shows that all is available again.

line 12
Changes to the remembered buffer. The window is normally remembered, but was lost
due to the fact that the buffer was referenced in its entirety while remembered.

!b (change buffer remembering)

Causes the current buffer to be remembered in a last-in-first-out stack before going to
the new one. This remembered buffer may be utilized by means of the b() request.

Restored to the vaiue of ;;.H when this buffer was last used as the current buifer (i.e .• the
value of ft. tt is maintained separately for each buffer and saved as part of the buffer
status). If a new buffer is created, then"." is undefined. Also."." becomes undefined if
a window is selected which does not include the existing value of ft.".

Syntax

Format Format 2

! b (X) ! b (X, ADR 1 ,ADR2)

!b

B-15 CP50-00B

!b

10/85

Format 2 addresses a window within the called buffer. This window may be one or more
lines. Until the next buffer change. all requests act as though the buffer contained only
data within the window. A single part address results in a window consisting of only the
line addressed.

Note

The stack can only hold 10 remembered buffers. If this count is exceeded, ted displays
an error message. This stack is cleared whenever an error occurs.

"b {delete buffer}

Deletes a buffer (removes from known buffer list).

This request may also be entered as "'b ... ".

Syntax
"'b (X)

X must not be the current buffer or in the buffer sta.ck.

c (change)

Enters input lines from the terminal and inserts the new text in place of the addressed
line or lines. Ted looks for and processes input functions. The request is terminated
with a "\f".

Syntax

ADR1,ADR2c
TEXT
\f

Default

If no address is present. n." is assumed.

Note

Refer to "Input Mode" (under Modes of Operation in Section 1) for a description of
how Ted handles a SP or NL immediately following the "c" request (i.e .• on the same line
as the request). .

Example

Buff er con ten ts:

This can be
a letter,
memo,
report
or user manual.

Request:

3,4c
memo, report,
\f

-or-

-or-

This can be
a letter,
memo
or user manual.

3c
memo, report,
\f

c

B-16 CP50-00B

c

10/85

Resulting buffer contents:

This can be
a letter,

".11_> memo, report,
or user manual.

!c (bulk change)

Accepts lines oi data irom the terminal and inserts them in place of the addressed line or
lines. Input functions are not processed by ted. The request is terminated with a n." on a
line by itself (beginning-of-line only).

Syntax

ADR1,ADR2!c <REST>
LINES

Default

If no address is present, "" is assumed.

Note

<REST> which may follow the request does not represent input data. It represents
requests which are executed when the input mode is terminated.

Example

Buffer contents:

This can be
a letter,
memo,
report
or user manual.

Request

3,4!c
memo, report,

Resulting buffer contents:

This can be
a letter,

-or-

-or-

"."_> memo, report,
or user manual.

d {delete}

This can be
a letter,
memo
or user manual.

3!c
memo, report,

Deletes the addressed line or set of lines from the buffer. After completion of this
request, all linenumbers within the buffer are automatically reassigned.

d

B-1? CPSO-oOB

d

10/85

Set to the line immediately following the last line deleted. When the last line of a buffer
is deleted, n." is set to $+ 1. Thereafter, negative relative addressing works, but any other
kind of reference to "." results in an "undefined" message.

Syntax

ADR1,ADR2d

Default

If no address is present, n." is assumed.

Example

Buff er con ten 1$:

a: procedure;

Request:

3,4d

x=y;
q=r;
s=t;
end a;

-or-

Resul ting buffer con ten ts:

/q=/,/s=/d

a: procedure;
x=y;

"."_> end a;

e (execute)

Invokes the Multics command processor without exiting from ted. When the execute
request is used, the rest of the request line is passed and executed at Multics command
level. The execute request can be followed by any valid Multics command.

A similar request is ".. <command line>".

Syntax
e <command line>

Example

Request:

e print report

can be used to display the segment in your working directory named report After the
segment is displayed on the terminal, you can continue work in ted as though you had not
issued the execute request (i.e., you are still in ted).

Request:

e list; print_mail

e

B-18 CP50-00B

e

10/85

lists the contents of the working directory and displays Lie contents (if any) of the users
mailbox.

!e (print and execute)

Invokes the Multics command processor without exiting from ted. When the execute
request is used, the rest of the request line is passed (after first being dispiayed on the
terminal) and then is executed at Multics command level. The execute request can be
fonowed by any valid 1-.1ultics command.

This request may also be entered as "E <rest>".

Syntax

!e <command line>

Example

Request:

!e print report

displays the segment named report in the current working directory.

Request:

Ie list; print report

lists the contents of the current working directory and displays the segment named
"report".

f (fileout into buffer)

Causes user_output to be diverted into a buffer (i.e., replaces the contents of the target
buffer). At the end of the request line user_output is automatically reverted. The
current buffer may be the target of the fileout request as no change is made to the target
until the action is complete.

The current address of the current buffer is not changed by this request unless the target
buffer is the current buffer; this is only at completion time. The current address of the
target buffer becomes undefined when the action is complete.

Syntax

f (X) <REST>

Exampie

At times it may be desirable to have output that would normally be sent to the terminal
be placed instead in a buffer. One use of this facility would be to have the contents of a
segment, in terminal output form, available for user manipulation. Line numbers are
shown on the example for purposes of commentary immediately following the example.

1 r a.pll
2 f(O) vd/:/ 1,$P<NL>

f

B-19 CP50-OOB

f

10/85

line 1
Read segment "a.pll".

line 2
Start fBeout (in current buffer (0», produce a list of all the labels in "a.pll" by
deleting all lines not containing ":'\ then generate line numbers for all label lines.
The <NL> character terminates the fileout request. The contents of b(O) now
contains a numbered list of all the lines containing n:" for the user.

!f (fileout into buffer)

Causes user_output to be diverted into a buffer (i.e., replaces the contents of the target
buffer). The current buffer may be the target of the fileout request as no change is made
to the target until the action is complete.

This request may also be entered as "F ... ".

The current address of the current buffer is not changed by this request unless the target
buffer is the current buffer; this is only at completion time. The current address of the
target buffer becomes undefined when the action is complete.

Syntax

Format Format 2

! f (X) !f<NL>

Format 1 causes user_output to be diverted to a temporary segment in the process
directory. Format 2 causes user_output to be switched back; then the contents of the
temporary segment become the contents of b(X). The temporary segment is then
deleted. In other words, Format 1 starts it and Format 2 stops it.

Example

To instruct ted to send this output to a buffer, enter:

! f (name)

Then any request used to enter direct output to the terminal, instead places that output in
buffer (name). For example,

g (global)

! f (s i zes)
:a
r • 1 \b (a r 9 • s)
! xl, $d
b (args) d
?1 >a
! f
b(sizes) w sizes

-start fHeout
-label
-read file named on line 1 of b(args)
-show path and number of lines, then clear out data
-delete name used
-go back to label a if still more
-terminate fHeout
-save results

The global and exclude (v) requests operate on all lines of a range which do or do not
satisfy a given condition.

The value of "." is set to ADR2 of request if an address range is given. or to the last line
in the buffer if no address is given.

g

B-20 CP50--OOB

g

10/85

Syntax
Format Format 2

ADR1,ADR2gX/<RE>/ ADR1,ADR2vX/<RE>/

where X must be one of the following:

d delete lines
p print lines
! p P print lines with the associated line number

print in the manner specified by the null= option
= print the line numbers

The character immediately following the X is taken to be the regular expression
delimiter and can be any character not appearing in <RE>. If any of the special
characters ("$*.) are used as a delimiter then their corresponding special functions
cannot be used in the expression.

Format 1 goes through the addressed range one line at a time and does X for each line
which contains a match for <RE>. Format 2 goes through the addressed range and does
X for each line which does not contain a match for <RE>.·

Defauit

Note: For all but the delete request, a NL is displayed to signal completion
whether or not any lines matched the expression.

If no address is present, "1,$" is assumed. Any byte address given is ignored (Le., the line
begin/line end is used for the range to be processed).

Example 1

eagle
whale
wolf
baby sea 1 ion
star

Request:

gd/w/

Resulting buffer contents:

eagle
baby sea lion

".',-> star

Example 2

Buffer contents:

The text editor,
ted, is a
line or string oriented
text editor.

g

B-21 CP50-OOB

g

10/85

Request:

gp/xl

Terminal output:

The text editor,
text editor.

g* (global-if)

Bears a slight resemblance to the global request. It goes through the file a line at a time
and decides whether something is to be done or not done to the line. However, in this
case the test can be a complex expression and many things can be done when a match is
found.

The value of "." is set to the last line processed, unless the g* request terminates by
executing the goto request. In this case "." is set to the line which was last examined.

Syntax

Format 1 Format 2

ADR1,ADR2g* <REST> ADR1,ADR2g*<exp> <REST>

Format 3 Format 4

ADR1,ADR2g*= =<NL> ADR1,ADR2g*11 <REST>

Format 1 processes every line. <REST> is one or more requests separated by spaces.

Format 2 <exp> is a (possibly) complex logical expression made up of / <RE> /s and
<eval>s (" I" is the required delimiter on the / <RE> I). The following operators may be
used in making up the expression:

&
I
()

negates the sense of whatever item follows it
does the AND of the item on either side of it.
does the OR of the item on either side of it.
groups in order to change precedence.

<SP>s (spaces) cannot surround these operators. The first <SP> encountered terminates
the <exp>.

Format 3 uses the same g* as the last one (both selections and requests).

Format 4 uses the same selection criteria as the previous g* but executes a new list of
requests.

Allowable requests are:

[($)] a<SP>str i ng\f
[(1,$)] c<SP>string\f
[(1)] i <SP>str i ng\f
[(1,$)] d
[(1 , S)] m (X)
[(1,$)] !m(X)
[(1 ~ $)] k (X)
[(1 , $)] ! k (X)

g*

B-22 CP50-00B

10/85

r I, ... \ .,
L \ I , ~) J P
[(1,$)] P

! 1
{<eval>}
> (e)
>C
>+n
>-n
t/ ... /
! t/ ... /
= Prints a 6-digit linenumber, with no NL.

[(1 ,$)] u/<RE>/
[(1 , $)] ! u/<RE>/
[(1,$)] s/<RE>/<REPL>/

The above request line is like the!s or S request, in that a substitute-failed does
not cause any message and does not abort processing of the g*.

Notes

If the g* NL option is set and <REST> contains any p, =, t, or 1 requests, a NL is displayed
as a signal of completion.

The goto causes the g* to be prematurely aborted with "." set to the line which met the
match criteria.

The total global-if expanded request line is limited to 512 characters.

The only addressing available is numeric byte address. "(1,3)" and "($-10,$)" are
examples. If either address specified does not exist on any particular line, then the
request is skipped on that line. (l.10)p is skipped if there are not 10 characters on the
line.

The logical expression is processed in an optimal fashion. The / <RE> / is TRUE if a
match is found, otherwise it is FALSE. The returned value of {<eval>} is examined (i.e .•
"0" or "false" is false, anything else is true).

/a/&/b/&/c/ fails immediately if "a ll is not found.
/a/I/b/I/c/ matches immediately if "a" is found.

This means that "/ abc / & {a [10] :=a [10] + 1} increments a [10] whenever a line
containing an "abc" is found.

Example

Buffer contents:

first
second
third
forth->

Now use the deferred evaluation function to give a different value each time. Note the
functionality of using the value of an assignment as a value for some other purpose.

Request:

9 ,', s /'" /\ 9 { f a k ((i : = i + 1 0) ," 0000 ") } /
1 ,$p

B-23 CP50-00B

10/85

Terminal output:

OOlOfirst
0020secohd
0030third
0040forth->

Now use the input function to give the same value each time.

Request

g* s/S/ \{(i:=i+10)}/
1 t Sp

Terminal output

OOlOfirst 50
0020second 50
0030third 50
0040forth-> 50

Request

g*/A __ / s/those/these/ s\which\that\

changes "those" to "these" and "which" to "that" on every line which begins with a "--".

Request

1,200g*/if/\/then/ p

prints every line in the first 200 which contain either an "if" or a "then".

Request

{ i : =o} 9 ~'c / : S / & { i : = 3; l} I {i} P {i: = i - 1}

prints, with line number, every line which ends with a n:n and the two lines which follow.
The logical expression proceeds like this: if:$ is found, then sets i:= 3 and returns a 1 for
successful, otherwise return i, which is successful if 1\=0. On success, print/linenumber
and decrement i by 1.

Request

all occurrences of "SEE" in a file are to be followed by a ":". This request shows all
which do not.

h (process out pseudo-tabs)

Modifies the text of the addressed lines by changing all occurrences of the pseudo-tab
character, specified by the request, into the appropriate number of spaces. Additionally,
text can be left- or right-justified, or centered. This tab-to-space conversion makes the
physical length of the segment being edited somewhat longer since one pseudo-tab
character is replaced by several consecutive spaces.

h

B-24 CP50-00B

h

10/85

A file with horizontal tabs can be difficult to process because two lines which print as
though they are the same length might radically differ in terms of actual character
length. Performing byte-addressing where horizontal tabs are involved can lead to
confusion. After using the h request, there are no horizontal tabs to cause trouble, but
ba.ckspace characters can still upset things.

This request may also be entered as " ... H ... ".

Syntax

Format Format 2

ADR1,ADR2h/C,n,n ..• / ADR1,ADR2h/C/

where C (pseudo-tab) is any character (even ",") which the user wishes to use as a tab
character. Spaces replace the pseudo-tab character using tabstops defined by n.n
Tabstop specifications are of the form:

n set text left
n L set text left
nC set text centered
nR set text right

where n represents the column position where the character following the pseudo-tab is
to be placed. It must be in the range af 1 through 200.

If tabstops (Format 2) are not specified, ted uses the standard Multics tabstops (11, 21,
31, etc.).

Default

If no address is present. "." is assumed.

Left-justification is assumed, if not specified.

Note

Also refer to the y (tabin) request

Example 1

Buffer contents (uses "I" character as the pseudo-tab):

6 •••• + 1 •••• + 2 •••• + 3 •••• + ...• 4 •••• + 5
7 iCoiumn llCoiumn 2iColumn 31
8
9

10
11
12

alaalaaa
bblbbbib
ccclcicc

Request (assumes the above data is contained in lines 21-27):

6, 12h/ I ,5,20,35/

Resulting buffer contents:

6 •.•. + 1 •••• + 2 •••• + 3 + 4 + 5
7 Column Column 2 Column 3
8
9 a aa aaa

h

B-25 CP50-o0B

h

10/85

10
1 1

-> 12

bb
ccc

bbb b
c cc

The first column specified cannot be column 1. If the first column is to begin in column
1. omit the first delimiter.

Example 2

Centered or right-justified tabbing may also be accomplished. In this case, the lines in
the file must be terminated with the pseudo-tab character and the beginning character
position of the righthand column +1 must be specified as well as a tab position.

Buff er con ten ts:

6 ~ ~ ~ .+~ ... 1 •••• + •..• 2 •••• + •... 3 •••• + 4 •••• + .•.. 5
7 IColumn 1 IColumn 21Column 31
8
9 alaalaaa

10 bblbbbib
11 ccclcicc
12

Request:

6,$h/I,5,20c,35 1,50r /

The first column (always) begins in position 1.
The second column begins in position 5.
The third column begins in position 20.
The fourth column begins in position 35.
The fifth column begins in position 50.

The "2Oc" means that in tabbing to column 20 the data being tabbed over is centered.

Resulting buffer contents:

6 •••• + .•.. 1 •••• + 2 •••• + 3 •••• + .•.. 4 •••• + •••• 5
7 Column 1 Column 2 Column 3
8
9 a aa aaa

10 bb bbb b
11 ccc c cc

-> 12

help (online information)

Gives additional information about the last error which occurred or about some
requested subject. If t.here is no last error, then information about the help request is
given. The ted help facility is implemented via the same subroutine used by the Multics
system help command. Thus, all question/answer sequences are the same as the user is
accustomed to. (Refer to Appendix D for an example of using this facility.)

This request can be invoked at any time during the current invocation of ted (i.e., the
user does not need to request the expanded error message immediately after an error
condition; it can be asked for at any time, but only as regards the "last error
encountered"),

help

B-26 CP50-00B

help

10/85

The info file (ted_help.info) contains many different subdivisions, known as "inios".
This request interfaces with the help_ subroutine so that its interaction is like that of the
~1ultics help command. Most of the infos are not available via the Multics help
command. The file however, may be dprinted (see "Notes" below).

Syntax
he 1 p {args}

this request must appear on a line by itself. The args are optional (when no args are
present, then further information is given on the last error which occurred) and may
be chosen from the following:

info
is a request for specific information about "info", It begins by listing all the section
titles in the info and then asks if you want to see the first one. (If there is only one
section, then the title list is omitted and the section is displayed.) Most infos are
made up of several sections. A list of some of the inf os can be displayed via:

help help list

When an info has multiple sections, a table of these is shown first. Then ted asks if
you wish to see the first one.

info sec
tries to find section "sec" in info "info", It begins by displaying the named section
and then asks if you want to see more {if there is other data to be seen). Titles are
not automatically given.

If "info" is given as "**", then all infos are displayed which have a section "sec". For
example. if you say "help ** overview" it displays all Overview sections of all infos.

-about topic
asks to see all sections (of all infos) which contain a given character string. This is
not a true word search. This form should be used cautiously since the use of

help about b

would probably match every info available.

info -about topic
finds a section of a given info which contains a given "word."

-from date
displays all infos which have been modified since the specified date. It displays the
info name, the header line (which shows the date), and the size of the info.

** change -from date
displays all the change notices of infos which have been modified since the specified
date. It selects the section "mm/dd/yy Change" from all infos which have been
updated since "date". It begins displaying with the selected section. If a section by
that name does not exist (i.e.,an info is new or has never been changed, then no
display occurs.

I func
attempts to find info about the external function ted_func_. If it exists, it is in a
segment named ted_func_.info. The search consists of looking for ted_func_ via
the linker search rules. If it is found, then ted_func_.1nfo is looked for in the

help

B-2? CP50-OOB

help

10/85

directory where ted_func_ exists. If ted_func_ is not found. then no info is looked
for.

Ifunc info
attempts to find info "info" in an external function info file.

Note

To get a dprint of the ted help segment (at Multics command level) type:

dprint [wsp info ted. info]

CONVENTIONS FOR TED INFO FILES

Many info sections describe one or more constructs. In general. the title of a section gives a
summary of the constructs it contains. This summary is enclosed with brackets" [] ". Thus a
section title like:

Basic [a c i]

indicates that the "a", "c". and "i" requests are described therein.

When a request form is shown. the default address is shown enclosed in brackets" []" as:

[.,.] p

which means that the p request can have two addresses and defaults to the current line if no
address is given.

When a new info is added to ted.info it gets the current date. If any changes are made to the
technical content of the info, a section is added which is named "mm/dd/yy Change" and is
inserted ahead of any prior change indicators.

Many request descriptions begin with a section named "Basic". This gives the ordinary form
of the request Some infos have a section named "Overview" and contain auxiliary information
which is not absolutely necessary to know, but which may be of benefit to have read at least once.
All request names will lead to an info. Following is a list of other ted infos.

<REPL> active_function execute not
<aexp> address expression options
<assign> alternate fileout prefix
<cat> arg global print
<data> assign if quit
<eval> break input quote
<factor> buffers label read
<lexp> call line / string sort
<lpart> copy linen umber status
<mask> cut modes substitute
<part> delete move trace
<term> escape nop write
<ucat>

help

B-28 CP50-OOB

help

10/85

The following is an exarnple of the ted "help" request.

help b
11/30/78 Buffers

Bas i c [b] (3)

Windowing [b(X,a)] (5)

Push/Pop [!b b()] (9)

Delete [/b Ab] (3)

Overview (7)

Names (11)

Related topics (2)

Basic (b] (3 lines). More help? yes

Basic [b]:
b(X)

change current buffer to buffer X.

Windowing [b(X,a)] (5 lines). More help? yes

Windowing [b(X,a)]:
b(X,a)

change current buffer to buffer X, but set a window as specified
by the addresses. Until the next buffer change, all requests
will act as though the buffer contained only data within the
window.

Push/POp [!b be)] (9 lines). More help? skip

Delete [/b Ab] (3 lines). More help? skip

Overview (7 lines). More help? yes

Overview: Input and editing operations are not performed directly on the
target segments but in a temporary workspace known as a buffer. ted supports a
virtually unlimited number of them. One buffer at a time is designated as the
"current buffer". Most requests operate on the current buffer.

When ted is entered, a single buffer named 0 is created and designated as
current.

Names (11 lines). More help? no

At this point the help request is exited and ted awaits further user requests.

(insert)

Enters input lines from the terminal and inserts the new text immediately before the
addressed line. Ted looks for and processes input functions (\b and \r). The request is
terminated with a "\f".

B-29 CP50-OOB

10/85

Syntax
ADRi
TEXT
\f

Default

If no address is present, "" is assumed.

Note

Refer to "Input Mode" (under Modes of Operation in Section 2) for a description of
how Ted handles a SP or NL immediately following the "i" request (i.e., on the same line
as the request).

Example 1

Buffer contents:

This can be
memo, repor t,
or user manual.

Request:

2 i
a letter,
\f

Resulting buffer contents:

This can be
11.11_> a letter,

-or-

memo, report,
or user manual.

Example 2

Buff er con ten ts:

The text editor,
ted f is a
text editor.

Request:

3i
line or string oriented
\f

Resulting buffer contents:

The text editor,
ted, is a

-or-

11.11_> line or string oriented
text editor.

/memo/i
a 1 etter,
\f

$ i
line or string oriented
\f

i

B-30 CP50-OOB

, .
• 1

10/85

Ii (bll1k insert)

Accepts lines of data from the terminal and inserts them immediately before the
addressed line. Input functions are not processed by ted. The request is terminated with
a n," on a line by itself (beginning-of-line only).

Syntax

ADR!i <REST>
LINES

Default

If no address is present, n." is assumed.

Note

<REST> which may follow the request does not represent input data. It represents
requests which are executed when the input mode is terminated.

Example

j (sort)

Buffer contents:

This can be
memo, report,
or user manual.

Request:

2! i
a 1 etter,

Resulting buffer contents:

This can be
".11_> a 1 etter,

-or-

memo, repor t,
or user manual.

/memo/! i
a letter,

Sorts addressed text lines on specified keys.

Syntax
Format 1 Format 2

ADR1,ADR2j/key ••• / j/s=/

Format 3 Format 4

j/s=X ... / j/?/

Format 1 sorts the addressed lines using the given key specifications.

Format 2 sets the special collating sequence to its default value (i.e., lowercase maps into
uppercase). This format replaces the obsolete "-Jset" control argument.

j

B-31 CP50-00B

j

10/85

Format 3 sets the special collating sequence using the supplied information. The special
sequence is first reset to the default and then is adjusted as specified by x... (see
description of X below). This format replaces the obsolete n-Jset x ... n control
argument.

Format 4 displays the special collating sequence. This format replaces the obsolete
"-Jshow" control argument.

where key... is a list of comma-separated keys each in one of these forms:

{a d =}

and:

{a d =}n:m
{ad=}n,l

<LQ>xxx (where <LQ> is the left single quote (octal 140))

m

n

a

d

=

can precede the first key to specify the record delimiter used (where <LQ>xxx
is three octal digits). The DEFAULT value of <LQ>xxx is <LQ>012 (NL
character).

represents the character number where the field ends. The key need not end in
all records. If the record ends before the key, it is compared as if it were
padded with spaces. Beginning and ending keys may be either "X", "$", or
"$-X", where "X" represents digits, "$" references the location of the record
delimiter, "$-1" the last visible character in the record, etc.

represents the character number where the field begins. The key need not exist
in all records. Any missing key sorts as LOW. The key cannot begin before the
record.

represents the length of the key, with "-" meaning the rest of record.

represents ascending-order sort (Default).

represents descending-order sort. When multiple keys are present, they can
intermix ascending and descending orders. The first key present is the major
key. The rest are minor keys of decreasing importance.

eliminates duplicates.

Duplicates (if they exist and are not being eliminated) remain in the original file order.

Duplicates (if they exist and are being eliminated) are eliminated first to last (i.e .• the last
of the duplicates in the original file is the one retained. all others being discarded).

The "=" form states that duplicates are to be removed. The "=n,l" or n=n:m" forms
specify that the duplication count be placed in the record, beginning at character "n"
with length "1". This is a zero-filled number of length 1. It will contain the value 1 when
there is no duplication. If this field is not large enough to hold the count, the count is
truncated on the left without comment.

Note: If a record is not long enough to hold the specified count field, the record
is extended so it fits.

j

B-32 CP50-00B

j

10/85

The following examples show several sample keys:

j/d/
sorts the whole record in descending order.

j/$-5:$-1,1,30/
given lines which begin with a person~s last name~ first name~ address, ZIP code,
sorts in order by ZIP and then the first 30 characters of name.

j/=11:13/
sorts with "al:$" eliminating duplicates~ placing the number of occurrences of each
record in positions 11, 12, and 13.

Each X in Format 3 represents a mapping pair in one of the forms:

CC map first character to second
x> YC map range of characters to second
x> YX> Y map range of characters to range of characters. Ranges must be

of equal size.

where:

C is any of three forms:

1000 000

IC C
C C

A character mapped

is three octal characters
is any character
is any character not conflicting with

to I 777 is meant to be ignored.

the first two forms

Note: The ~ and '-> are necessary (i.e., a literal' is entered as "; if the string -> is
literally required, it is entered as '-».

X -> Y means the contiguous characters X through Y, where X must be less than Y in the
9=bit collating sequence. X and Yare any of the C forms.

The default collating sequence (uppercase=}owercase) is as if the following string had
been supplied:

1000->1177 1000->1 177 1200->1777 1777a->zA->Z

where:

Default

1000->1177 1000->1177
!200->1777 1777
a->zA->Z

maps characters 000 through 177 to themselves
maps all other to Hignore."
maps lowercase to be the same as uppercase.

If no address is present, "1:$" is assumed. If no order is specified, ascending is assumed. ·If
no field is specified, the default is "1:$".

in addition. if no keys are given, then ;'a1:$'; is assumed.

Example 1

Buff er con ten ts:

S = Select a device
CO= Controller type
FM= Designates the meaning of bits 9-23
SP= Magnetic tape speed

j

B-33 CP50-o0B

j

10/85

op= Type of operation
TD= Magnetic tape density

Request:

1,$j/1,2/

. Resulting buffer contents:

CO= Controller Type
FM= Designates the meaning of bits 9-23
OP= Type of operation
S = Select a device
SP= Magnetic tape speed
TD= Magnetic tape density

The sort could have been in descending sequence by preceding the first number within
slashes by the d character (l,$j/dl,2/).

Example 2

Sort all of the lines in a buffer which begin (in character position 1) with dates (in the
form mm/dd/yy) into calendar sequence of yy /mm/dd.

Request

j/7 ,2, 1 ,51

To accomplish the same sort as above, except delete duplicates:

j/=,7,2,1,51

To accomplish the same sort. delete duplicates, and count

1,$s/A/OOOOO I j/17,2, 11,5,=1,51

where the first request makes room for the count. Then since ten characters were added
to the front of each line, the offsets into the record were adjusted by ten.

Example 3

Buff er con ten ts:

1 11
2
3 jul es
4 !
5 bakti
6 !
7 amble
8
9 zz

The buffer is really just a string of data. The first line below represents this, with n@n
representing <NL>. The second line represents the way the string is broken into nine
records by these <NL>s.

j

B-34 CP50-00B

j

10/85

11@!@jules@!@bakti@!@amble@!@zz@
--1-2-----3-4-----5-6-----7-8--9

However, when expecting the sort request below, only a portion of the buffer is being
used and "!" is the record delimiter. This results in the five records indicated below.
Note that the first record is empty, i.e .• there is only a delimiter. Note also that the fifth
record consists of a single character and has no delimiter.

11@!@jules@!@bakti@!@amble@!@zz@
1-------2-------3-------4

Request:

2 t 8j / I 041 t 1 ,2/

This sorts lines 2 thru 8 in columns 1 and 2 with n!n delimiting the records.

Resul ting buffer con ten ts:

1 1 1
2
3
4
5
6
7
8
9

amble
!
bakti
!
jules
! !zz

From our normal perspective this looks very strange. but is exactly what was asked for.
Look at the resulting buffer string delimited by the n!"s and using the same record
numbers as shown above:

11@@@amble@!@bakti@!@jules@!!zz@
5-------4-------2-------31

But instead. use the following request on the original data:

2 ($) ,8 (1) j / I 041 , 1 ,2/

This will look at the buffer like this:

ll@i@jules@i@bakti@i@ambie@i@zz@
-------1-------2-------3

This will print in a manner we think is "right".

1 1 1
2 !
3 amble
4 !
5 bak t i

j

B-35 CP50-OOB

j

10/85

6
7
8
9

!
jul es
!
zz

!j (special sort)

Sorts addressed text lines on specified keys with a user-specified collating sequence.

This request may also be entered as "oo.J. o. ".

Syntax

ADR1,ADR2!j/key ••• /

Note

See j (sort) request above for "Syntax" description and "Default" conditions.

Example

The following example utilizes both the j and !j requests to contrast them.

Buff er con ten ts:

First
second
first
Secod
last
First

Request:

j// (default is "j/al,-/")

Resulting buffer contents:

First
First
Secod
first
last
second

The file is sorted (ascending order in ASCII sequence), but assume this is not the
intended order. The!j sort collating sequence can be modified by calling "ted -Jset"
(default collating sequence is like ASCII except uppercase and lowercase are equivalent).
Refer to the ted command, -Jset control argument, for additional information.

Request:

!j/ / (default is "!j/al,-/")

Resulting buffer contents:

First
First

,.
.J

B-36 CP50-OOB

,.
.J

10/85

first
last
Secod
second

At this point, assume you want to eliminate duplicates.

Request

j/=, 1,-/

Resulting buffer contents:

First
Secod
first
last
second

Now, to further eliminate duplicates (i.e., First, first) and retain a count of how
many there were of each, use the "=n,l" parameter which says to eliminate
duplicates, pJacing the count in the field beginning at n and which is I characters
long. Additionally, sort in ascending (default) order with special collating sequence.
At this time it becomes necessary to open up a location in the file where the
"duplication" count will be stored. This could be done as:

lj$s/A/<SP><SP><SP><SP><SP>/

Request:

!j/=1,4,6,-/

Resulting buffer contents:

0002 first
000 1 1 ast
0001 Secod
0001 second

The duplication count (0002 first) does not reflect the actual count as regards the initial
file duplicates (i.e., duplicates were eliminated twice in this example--the first eliminate
request did not count eliminated duplicates).

k (kopy)

Copies (duplicates) the addressed test from the current buffer into buffer (X). The
copied data over'!Nrites the previous contents of b{X); that is, the previous contents of
b(X) are destroyed. If the target buffer contains a modified or not-pasted file (see the m
(move) request), ted asks if you wish to overwrite it, unless running in -abort mode or
running ted$qedx (refer to Appendix A).

The current buffer cannot be the target of the "kopy".

In the target buffer, the value of "." is undefined.

In the source buffer, the value of "." is last line copied.

k

B-37 CP50-00B

k

10/85

Syntax

ADR 1 • ADR2k (X)

Default

If no address is present, "." is assumed.

Example

Buffer contents (assuming b1 is the current buffer):

Current Buffer

a
b
c
d
e

Request

2, 4k (2)

Resulting buffer contents:

Current Buffer

a
b
c
d
e

!k (kopy-append)

Buffer 2

m
n
o

Buffer 2

b
c
d

Copies (duplicates) the addressed text in buffer(X). The copied data is appended
somewhere in buffer(X). Data that existed in buffer(X) before the kopy-append
execution is not affected. neither is the data in the buffer copied from. The current
buffer may be the target of the kopy-append (i.e., no restrictions exist where the data
can be copied).

This request may also be entered as " ... K ... ft.

In the target buffer, the value of "." is undefined.

In the source buffer, the value of "." is last line copied.

Syntax

Format 1 Format 2

ADR 1 , ADR2 ! k (X) ADR1,ADR2!k(X,ADR)

Format 1 causes the data to be placed at the end of buffer (X). Format 2 specifies the
line after which the data is to be appended in b(X).

!k

B-38 CP50-00B

!k

10/85

Defan1t

If no address is present, "." is assumed.

Example

Buffer contents (assuming bl is the current buffer):

Current Buffer Buffer 2

a
b
c
d
e

Request:

2,4!k (2)

Resulting buffer contents:

Current Buffer

a
b
c
d
e

m
n
o

Buffer 2

m
n
o
b
c
d

If the above request had been "2,4!k(2,l)" then the resulting buffer contents would
be:

Current Buffer

a
b
c
d
e

Uinefeed to user_output)

Sends a NL to the user_output switch.

Syntax

1

Note

Buffer 2

m
b
c
d
n
0

Refer to the description of the "%" request (above) for examples that include the "1"
request.

B-39 CP50-OOB

!l

10/85

!l Oinefeed to error_output)

Sends a NL to the error_output switch.

This request may also be entered as "L".

Syntax

! 1

m (move)

Moves the addressed text from the current buffer into buffer (X). The moved data is
deleted from the current buffer upon execution. The moved data overwrites the
previous contents of b(X); that is, the previous contents of b(X) are destroyed. If the
target buffer contains a modified or not-pasted file, ted asks if you wish to overwrite it,
unless running in -abort mode or running ted$qedx (refer to Appendix A).

The current buffer cannot be the target of the "move".

The value of "." is set to the line after the last line moved in the source buffer.

The value of "." is set to undefined in the target buffer. .

Syntax
ADR 1 , ADR2m (X)

where X is the name of the auxiliary buffer to which the lines are to be moved.

Default

If no address is present. "." is assumed.

Note

When data is moved, it no longer exists where it was. The target buffer contains the only
copy of the data. To protect this data from being lost, the target is flagged as
"not-pasted". This flag is reset when a \bX or reX) is done. This flag is then tested by
the quit request as·a reminder that nothing has been done with the data.

Example

Buff er con ten ts:

Current Buffer

eagle.
whale
baby sea lion
wolf
star

Request:

3, 4m (B) -or-

Buffer B

a letter
a memo

/bab/ , /wo/m (B)

m

B-4O CP50-OOB

m

10/85

Resulting buffeT contents:

Current Buffer

eagle
whale

"."-> star

!m (move-append)

Buffer B

baby sea lion
wolf

Also called "cut and paste." Moves the addressed data from the current buffer and
appends them in buffer (X). Data that existed in buffer (X) before the move-append is
not affected. The moved data is deleted from the current buffer upon execution. The
current buffer may be the target of a move-append, but the place specified must not be
within the range being moved. When data is moved to another buffer, it is marked
"not-pasted" until it is utilized via the r or \bx requests, or is deleted. The q request
complains if there is unused data left in a buffer.

This request may also be entered as " ... M ... n.

The value of n." is set to the line after the last line moved in the source buffer.

The value of "." is set to undefined in the target buffer.

Syntax

Format Format 2

ADR 1 , ADR2 ! m (X) ADR1,ADR2!m(X,ADR)

Format 1 appends the data at the end of buffer (X). Format 2 specifies the line after
which the data is to be appended in b(X).

Default

If no address is present, "." is assumed.

Note

The user must take into account the fact that each of the move requests change the line
numbers of the buffer by deleting same after execution. The request line shown in
Exampie 2 beiow (three distinct move requests) changes the current buffer line numbers
three different times.

Example 1

Assume you are in b(O) and want to move lines 3 through 5 after line 8.

Buf fer con ten ts:

1 Now is
2 the time
3 to the
4 aid of
5 their country.
6 for all
7 good men
8 to come

!m

x

B-41 CP50-00B

!m

10/85

Request:

3,5!m (0,8)

Resulting buffer contents:

1 Now is
2 the time
3 for all
4 good men
5 to come
6 to the
7 aid of
8 their country_

Example 2

Again assume b(O), but this time you want to move more than a single group of lines.

Buff er con ten ts:

Current Buffer

1 ten
2 one
3 two
4 three
5 six
6 eight
7 four
8 five
9 seven

10 nine

Request:

2 , 4m 1 4 , 5 ! m 11M 1

Resul ting buffer con ten ts:

n (nothing)

Current Buffer

1 six
2 eight
3 seven
4 nine

Buffer 1

1 moose
2 duck
3 deer
4 robin

Buffer 1

1 one
2 two
3 three
4 four
5 five
6 ten

Sets the value of "." to a particular line if an address is present. No other action is taken.

Syntax

ADRn

n

B-42 CPSO-OOB

n

10/85

Example

Buffer contents:

read
"."_> write

substitute
change
delete

Request:

/ch/n

Resulting buffer contents:

read

o (option)

write
substitute

"."_> change
delete

Sets/resets various ted options.

Syntax

Format Format 2

o<NL> o <STR><NL>

Format 1 displays the current option settings. Format 2 sets/resets options, <STR> is a
space- or comma-separated list of option settings.

The display format is:

NAME (V.R) [NN] global-options local-options
{comment=non-empty-comment-string}

where:

NAME

V.R

NN

is the name under which ted is being used (could be "ted" or "qedx").

is the current version/revision of ted (e.g .• u2.5").

is the recursion number (e.g., "01" for one activation of ted, "02" indicating the
second (recursive) activation, etc.).

global-options
are options which are shared between all invocations of ted (good for the
current process only).

local-options
are options which are effective only within this invocation of ted.

o

B-43 CP50-OOB

o

10/85

The options may be set/reset by choosing from the following list of keys. When a key
begins with '" it means to turn the option off (opposite meaning to the following
description), otherwise it means to turn the option on. (Refer to Appendix A for an
alternate method to setting options -- see n-option" control argument.)

Global-options:

blank, "'blank
blanks between requests on the same line are required/ optional. If blank
is specified, a blank character is required between all multiple requests
issued in a single input line. The option this sets is global (i.e., it affects any
current and future invocation of ted in this process). In general, any
number of requests can be issued in a single input line. However, the !e, E,
e, !q, Q, q, !r, R. r, .. ~ !w, W. and w requests use up the remainder of the
entry line because an NL character is required for termination. Each of
these requests must therefore appear on a line by itself or at the end of a
line containing multiple requests. The a, c, and i requests are terminated by
\f. If the \f appears on the same line as the request, then these requests
can be embedded in a multiple request line. For the a, c, Ie, E. e, i, !q, Q, q,
!r, R, r, !w, W, and w requests, a blank is required immediately after the
request character(s), that is, between the request name and the remaining
request data (e.g., w<SP>path<NL>, not wpath<SP><NL». This should
not be confused with requests such as substitute which has the valid entry
of "s/full/null/ <SP>" and not "s<SP> /full/null/". (The suggested mode
of operation is "blank".)

caps, ""caps
capital letters are permitted/not permitted as requests. (Default is caps.)

resetread, ""resetread
executes a resetread on user _input if an error occurs. (Default is
resetread.)

Local-options:

break, "'break
process \037 characters (as a break) in edit mode/ignore completely (refer
to Section 3).

comment="STR"
stores STR for display by the "0" request and when invoking ted with the
-restart or the -status control arguments. If several environments are
being saved, then this request provides the user with a way of adding some
ID so that at a later restart time. the user knows which is which at a glance.
For example:

o comment=*'weekly report*'

ted4 -st
Started. by whom. as what
1 07/26/82 1420.2 mst Able.Multics (ted[1]

comment=weekly report

edit, ""edit
edit mode lines traced/not traced.

o

B-44 CP50-OOB

o

10/85

g,'cN L; "g"eN L
when g*NL is enabled. a NL is displayed for the g* request as a signal of
completion. (See g* request above for additional information.)

input, "input
input mode lines traced/not traced.

label, "label
labels encountered are traced/not traced.

nu 11 =X
sets the action executed by the null request. X may be P. !P. or P. (Default
is "nul1=p".)

When no request is given, that is. an address followed by a NL, it is called
the null request. It causes the addressed data to be displayed. The null=
option selects the specific print format desired (also applies to "g.").

For "example:

ted -opt nul1=p
r foo
l,$<NL>

results in the complete file being displayed, the same as if
the user had entered "1,$ pU.

o nul1=!p
l,$<NL>

results in the complete file now being displayed with
linenumbers, as if the user had entered "l,$!p".

old-style "old-style
when old-style is enabled (Default). buffers containing old-style escape
sequences work. When disabled, only the \f. \r, \c. and \b forms are
recognized.

read "read
if read is turned OFF ("read) and a read is done in an empty buffer, the file
is actually referenced in-place and not copied into the buffer until an
attempt is made to modify the buffer. This in no way inhibits the editing
which may be done on the segment. When a change is made. the segment is
then copied into the buffer. Thus if the segment is only being examined,
use of "read eliminates the overhead of copying the segment. (Default is
read.)

string "string
implies string mode ("string is line mode). set/reset by invoking \1 and \s
requests only; it is displayed here for information purposes oniy.

tab 1 it "tab 1 it
HT characters in an h request are literal (I.e .• whenever HTs are enclosed in
a quoted string. do not remove, just account for the space used up).

trace, "trace
equivalent to "edit input" /""edit "input". (Refer to Section 3.)

o

B-45 CP50-OOB

p

10/85

p (print)

Displays the addressed line or set of lines on the terminal. (Also refer to "Note" below.)

Syntax

ADR1,ADR2p

Default

If no address is present. "." is assumed.

Note

There is a special case of the print request that sets the value of n." to a specific line and
prints the line. This usage needs no call-letter or call-character to tell ted what
operation to perform; you merely type a valid address (generally a context address
although any type is permitted) followed by an NL character (ADR<NL». In context
addressing (I ... I). a search is done through the file starting with the first line after the
current line to the last line in the file, and then from line number 1 to the current line.
For example.

Buffer contents:

aardvark
11.11_> emu;

3276

Request:

IAkl

gnu
kiwi
rhea

Terminal output:

kiwi

Request:

1,2

Terminal output

aardvark
emu

Example 1

Buff er con ten ts:

-or-

a: procedure;
x==y;

Request

2,4p

q=r;
s=t;
end a;

-or-

+2 -or- 4

/x=/,/s=/p

p

B-46 CPSO-OOB

p

10/85

Terminal output:

x=y;
q=r;
s=t;

Example 2

Request:

1, $p

Terminal output:

a: procedure;
x=y;
q=r;
s=t;
end a:

!p (print with linenumber)

:procedure/ P

/a:procedure/ P

Displays the addressed text with linenumbers.

This request may also be entered as " ... P".

Syntax

ADR1,ADR2!p

Default

If no address is present, "." is assumed.

Example

Buffer contents:

a:procedure;
x=y:
q=r:
s=t;
end a;

Request

2,4!p -or- /x=/,/s=/P

Resulting buffer contents:

a:procedure;
x=y;
q=r;

B-47

!p

CP50-OOB

!p

10/85

"."_> s=t;
end a;

Terminal output

2 x=y;
3 q=r;
4 s=t;

q (quit with buffer check)

Is used to exit from ted after checking for modified buffers. If any buffers are flagged
as having been modified (or "not-pasted"), they are listed, and the user is asked if
he/she still wishes to quit. The force-quit request (!q or Q) is available which quits ted
without the buffer check.

Syntax

q

Note

The quit request cannot have an address and must be the last request on a line.

!q (force-quit)

Bypasses the buffer check.

This request may also be entered as "Q".

Syntax
!q

Note

The force-quit request cannot have an address and must be the last request on a line.

qhold (quit - hold)

Exits from ted without destroying the -safe environent. The environment may then be
restarted at a later time. This request is not valid if not running in a safe environment.

Syntax
qhold

r (read)

Puts the contents of an already existing segment into a buffer. This request appends the
contents of a specified segment to a buffer after the addressed line.

This request may also be entered as " ... !r ... ft.

r

B-48 CP50-o0B

r

10/85

Syntax
Format

ADRr path

Format 4

ADRr (X, ADR 1 ,ADR2)

Format 2 Format 3

ADRr ADRr (X)

where path is the pathname of the segment to be read into the buffer. The pathname
may be preceded by any number of spaces and must be followed immediately by an NL
character. Format 2. with the path omitted. uses the default pathname for the buffer. If
the buffer has no default pathname. the message "No pathname given" is displayed and
no action is taken. If the default pathname is not trusted. ted asks if you want to use it
anyway. Formats 3 a.nd 4 read data from a ted buffer. Format 3 reads the whole buffer
while Format 4 reads a selected portion of it.

The path can specify various kinds of files. The forms available to the read request are:

A: : b which references component b of the archive A (the form A!b may be used
for compatibility). .

A which references segment A.

f or example:

r help.list -or- r bound_help_::help.pl1

Any path which begins with the string" [pd] " has these four characters replaced with the
name of the process directory.

Default

If no address is present. "$" is assumed.

Notes

This request always uses the rest of the line.

The request "Or path" inserts the contents of a segment before line 1 of the buffer.

The read request sets the default pathname for the buffer to the pathname given in the
request. if the buffer was empty before the request. If the buffer is not empty. then the
new path is not remembered. Also. if the buffer already has an associated pathname. it is
flagged as not trusted ("'trust). This "'trust flag is also set when a write is done of less
than the whole buffer.

In addition, when a read is being done, a check is made to see if the sum of the present
data and the new data exceeds the maximum segment size. If this is true. then the
resulting number of pages is displayed and the request is not performed. (Also refer to
the w (write) request.) For example.

Buffer contents:

<buffer empty>

r

B-49 CP50-OOB

r

10/85

Request:

r fi lel

reads the contents of file1 into the buffer; if you edit file1 and then issue a write request:

w

the edited version is written to the default pathname~ filel.

However~ a read request issued in a nonempty buffer flags the default pathname for the
buffer as not trusted and will not remember the subsequent pathnames. Thus~ you can
read an unlimited number of segments into the buffer~ but when you attempt to issue a
write~ you must specify a pathname (i.e .• those segments are "protected" from being
destroyed). For example,

Buffer contents:

<buffer empty>

Request:

rfilel
r f i 1 e2
w

Terminal output:

Do you want to w with the untrusted pathname > ••• >filel?
(where the user response must be "yes" or "no")

Example 1

Buffer contents:

You can input:
text,
programs

Request:

2r extra -or- /text/r extra

where extra is a segment containing the following text:

(such as
letters, memos,
1 engthy reports)

Resulting buffer contents:

You can input:
text,
(such as
letters, memos,

II ."_> 1 engthy repor ts)
programs

Example 2

Buf i er con ten ts:

<buffer empty>

r

B-50 CP50-OOB

r

10/85

Request:

r b.pl1

where b.pU is the following:

b: p-rocedure;
c=d;
end b;

Resulting buffer contents:

b: procedure;
c=d;

11.11_> end b;

Example 3

Several examples of the r(X) request are:

r (1)

says to read the contents of buffer 1 after the last ($) line (Default).

6r(a,2,4)

says to read lines 2 through 4 of buffer a after the addressed line (line.6 in this case).

r (a, 2 (1 ,3))

says to read characters 1 through 3 of line 2 of buffer a after the last ($) line (Default).

12r (a, 2)

says to read the entire line 2 of buffer a after the addressed line (line 12 in this case).

!r (abbrev-expand -read)

The same as the r (read) request except that the pathname is abbrev expanded before use.

This request may also be entered as "R".

t\r (force pathname)

Does not read a specified file; it merely forces the pathname of the buffer to be "path".
This path can then never be removed. Thereafter, r path and w path are not allowed on
the buffer.

This request may also be entered as " .. .'r

Syntax
A r path

s (substitute)

Modifies the contents of the addressed lines, by replacing all strings that match a given
regular expression <RE> with a specified character string <REPL>.

s

B-51 CP50-00B

s

10/85

Syntax
ADR1,ADR2s/<RE>/<REPL>/

The first character after the "s" is taken to be the request delimiter and can be any
character other than <SP> and <NL>. It must be the same in all three instances. The
delimiter should be one which is not in either <RE> or <REPL> as this would necessitate
concealing the internal occurrences. (This greatly increases the probability of making a
typing error.)

Some special features are available in <REPL> by using the special sequences "&",
"X\=". and "\g {}" in the <REPL> string. The "&" is replaced by the matched string.
The "X\=" is replaced by a string of "X"s which is as long as the matched string. The
"\g {<eval> 1" calls for an evaluation whose returned value is substituted in. The string
matching <RE> is available as "Ks" during evaluation. It differs from \ {} in that \ n is
expanded while the request line is being bUilt, whereas this form is expanded each time
the <REPL> is used. (See Example 4 below.)

Notes

Each character string in the addressed line or lines that matches the <RE> is replaced
with the character string REPL>. If REPL~ contains the special character &. each & is
replaced by the string matching the <RE>. The special meaning of & can be suppressed
by preceding the & with the \c escape sequence. However, when used in an <RE> the &
character has no special meaning. If <RE> ends with a $ character, it means that the NL
(i.e., the end-of-line indicator) is used in the search, but is not included in the match.
The NL is skipped over before the next search is begun since some expressions could
again match the NL. Also, the $ character at the end cannot succeed on the last line of a
buffer if there is no NL there. (Refer to "String Mode" in Section 1 for variations.)

The number of matches found during a substitute request is available within <eval>.
One way this could be displayed after a substitute is with the request:

{limatch="llmct 0 ;}

If the expression has no match when typed from the console. a "Substitute failed"
message results. If the expression has no match, and a buffer is being executed, then
execution reverts to the previous level with no error message displayed. This condition
can be caught however (see the II> request).

Example 1

Buff er con ten ts:

The quick brown sox

Request:

s/sox/fox/

Resulting buffer contents:

The quick brown fox

s

B-52 CP50-OOB

s

10/85

Example 2

Buffer contents:

a=b
c=d

lI.tf_> x=y

Request

1,sii;i

Resulting buffer contents:

a=b;
c=d;

".11_> x=y;

Example 3

Buffer con ten ts:

The text editor,
ted, is a
line or string oriented
text editor.

Request:

1,$ s/A/?1

Resulting buffer contents:

?The text editor,
?ted t is a
?line or string oriented
?text editor.

Example 4

Buffer contents:

1
2
3
4 PROJECT NAME

Request:

4s/PROJECT/(&)! P

Terminal output:

4 (PROJECT) NAME

Request

4s/PROJECT/<\=&>\=/ P

Terminal output:

4 ««««PROJECT»»»» NAME

B-53

s

CP50-00B

s

10/85

Resulting buffer con ten ts:

1
2
3
4 ««««PROJECT»»»» NAME

!s (no-fail substitute)

Acts the same as the s request except that a fail condition never occurs. It is used when
you do not care if the string appears in the buffer or not The intent is to do something
to any of the strings which might exist

This request may also be given as "S".

t (type string to user_output)

Sends a specified string of data to the user_output switch. No NL is included.

Syntax

tlSTRI

Note

The character immediately following "t" is used as the delimiter. Any character not in
STR can be used. Following this request with the I request (t I STR I n results in a
linefeed also being sent.

See the "%" request "Examples" for correct usage.

!t (type string to error_output)

Sends a specified string of data to the error_output switch. No NL is included.

This request may also be given as "T".

Syntax

!tISTRI

Note

By following this request with the I request (t I STR I + n. a linefeed is also sent

u <translate to lowercase)

Provides the user with the ability to translate each string that matches a given <RE> in
the user-specified address range to lowercase. Uppercase and lowercase translation
leaves numbers and punctuation unchanged.

Syntax

ADR1,ADR2u/<RE>/

u

B-54 CP50-OOB

u

10/85

Default

If no address is present, "." is assumed.

Example

Assume a number of compose controls have been entered into a file in uppercase, but
should have been lowercase. Further, assume they are dispersed throughout the file.

Buffer contents:

.AL

.BB

.TA

.WRT

Request:

1 t $u/"\C .. 1'$/

Resulting buffer contents:

• a 1
.bb

.ta
owrt

!u (translate to uppercase)

Provides the user with the ability to translate each string that matches a given <RE> in
the user-specified address range to uppercase characters.

This request may also be entered as "un.

Syntax
ADR1,ADR2!u/<RE>/

Default

If no address is presen t. "" is assumed.

Example

Assume a number of items (each preceded with a number, a period, and a space) exist in a
file, some of which utilize multiple lines of data, and the intent is to initial capitalize
only the lines preceded by a number.

Buff er con ten ts:

1. now is the
time for all ••••

2. the quick

!u

B-55 CP50-OOB

!u

10/85

brown fox ••••
3. i pledge ••••

Request

1,$!u/".\c •• /

Resulting buffer contents:

v {exclude}

1. Now is the
time for all ••••

2. The quick
brown fox ••••

3. I pledge ••••

A variation of the g (global) request which performs an action when a condition is NOT
true. Refer to the g (global) request for additional details.

The value of ". n is set to ADR2 of request if an address range is given, or to the last line
in the buffer if no address is given.

Syntax

ADR1,ADR2vX/<RE>/

Default

If no address is present, "1,$" is assumed.

Example 1

Buffer contents:

eagle
whale
baby sea lion
wolf
star

Request

v=/w/

Terminal output;

1
3
5

Example 2

Buff er con ten ts:

The text editor,
ted, is a
line or string oriented
text editor.

v

B-56 CP50-OOB

v

10/85

Request:

vp/x/

Terminal output:

ted~ is a
1ine or string oriented

w (write)

Writes the addressed line or set of lines from the buffer into a specified segment The
buffer and current line are unchanged.

Syntax

Format 1 Format 2 Format 3

ADR1,ADR2w path ADR1,ADR2w ADR 1 ,ADR2w (X)

Format 4

wm

where path is the pathname of the segment whose contents are to be replaced by the
addressed lines in the buffer. If the segment does not already exist, a new segment is
created with the specified name. If the segment does already exist, the old contents are
replaced by the addressed lines. The old segment contents are destroyed.

The pathname may be preceded by any number of spaces, may not contain any imbedded
spaces (e.g., "foo bar"). and must be followed immediately by an NL character. Format
2. with the path omitted, uses the default pathname for the buiier. Ii the buiier has no
default pathname, the message "No pathname given" is displayed and no action is
taken. If the default pathname is not trusted, ted asks if you want to use it anyway.

Format 3 writes the data to buffer (X). In this context, X must be enclosed in Os even if
it is a single character. This form is basically the Uk" request with a different default
address. It is present for symmetry with the "r (X)" form.

Format 4 (not available in qedx mode) writes all modified buffers to their respective
pathnames. (This format is only available when in blank mode. That is, if not in blank
mode, "wm" would write the current buffer to segment "m".)

Any path which begins with the string" [pel]" has these four characters replaced with the
name of the process directory.

Note

The write request must be the last request on a line. If pathname is not given, then the
buff er in question must have a trusted pathname. See the discussions on "trust" of
pathnames under the "r" request.

Example 1

Buffer contents:

A regu1ar expression
searches for a

w

B-57 CP50-OOB

w

10/85

certain character
string in the buffer

Request:

w reg_exp

Resul ting buf fer con tents:

The buffer contents are unchanged.

Example 2

Buffer contents:

The text editor,
ted, is a
line or string oriented
text editor.

Request (assumes that you are in b(O) and the buffer contents are as shown in Example 1):

1 ,2w (X)

Resulting buffer contents (b(X»:

A regular expression
searches for a

!w (abbrev-expand-write)

The same as the w (write) request except that the path name is abbrev expanded before
use.

This request may also be entered as "W".

x (buffer status)

Displays a summary of the status of all known buffers. The name and length (in lines) of
each buffer is listed; the current buffer is marked with a right arrow "->" to the left of
the buffer name. Finally, each buffer's default pathname, if any, is listed.

Syntax

Format Format 2

x xm

Format 1 displays information about all the buffers. Format 2 displays a list of all
modified or un pasted buffers. (This format is only available when in blank mode).

Example

Four buffers are presently in existence.

Request:

x

x

B-58 CP50-00B

x

10/85

Terminal output

3 -> mod (0)
555 mod (a) [Atrust] >udd>m>jaf>install>ted_info.ec

15 (farble) m from b (a)
1816 (info) >ud-d>-m->jaf>instal1>ted_info.-cOl11-ptn

Column 1 indicates how many lines are in the buffer. Column 2 has an -> symbol to
mark the current buffer. Column 3 indicates mod when the buffer has its modify status
on. Note that b(O) has this status even though there is no associated pathname. Column 4
indicates the name of the buffer and the last column contains the associated pathname, if
any (it has a prefix of [Atrust] when the name is not trusted). After the pathname a "*"
character is included if the file is not-read, that is, it is being referenced directly instead
of having a copy in a buffer segment.

Note

Refer to the "-ag args" control argument in Appendix A for additional information
about this request.

!x (buffer status)

Displays the buffer status of the current buffer or a named buffer.

This request may also be entered as "X".

Syntax

Format Format 2

! x (X) !x

Format 1 displays the status of buffer (X). Format 2 displays the status of the current
buffer. Refer to the "x" request for information about the format, etc. of the display.

y (tabin)

Processes the addressed text replacing all possible blanks with horizontal tab characters.
It also removes any trailing whitespace to compact lines. Whitespace can end up on the
end of lines as a result of a combination of operations. This whitespace can be
troublesome as it does not show up when data is displayed. Canonical form says that
there is no trailing whitespace. This then gets rid of any which may exist.

After use of the h request, the file may be 2-3 times as long as it was. The y request goes
through the file (the addressed part) and puts in horizontal tabs wherever possible. This
minimizes the quota requirements when you write the file out.

This request does not accept specified tabstops, therefore ted uses the standard Multics
tabs tops (11,21,31 etc.).

Syntax

ADR1,ADR2y

Default

If no address is present, "." is assumed.

y

B-59 CP50-o0B

y

10/85

Note

Also refer to the h (process out pseudo-tabs) request

z.fi.ad (fill/adjust)

Fills the addressed lines. moving text from line to line and adding spaces as necessary in
order to right-justify the- text

Syntax

ADR1,ADR2z.fi .ad<SP>/STR/Nl,N2{,N3}/

where:

STR

N1

N2

N3

Default

All lines beginning with this literal string are untouched. Empty lines are also
untouched. If STR is null then all lines are processed.

Lines are indented to this position. 1 is the first position of the line.

Lines end up in this position. This is not line length unless Nl=1.

"Initial" lines are indented to this location (optional). "Initial" lines are those
which are at the beginning of the range to be processed or any non-empty line
which follows an empty line. If N3 is not supplied then N1 is used.

If no address is present. "." is assumed.

Example

Request: .

1,$z.fi .ad //6,40,1/

would result in a block text format of:

xxxxxx ... xxxxx
x ... xxxxx
x ... xxxxx
x ... xxxxx

xxxxxx ... xxxxx
x ... xxxxx
x ... xxxxx

etc.

Request:

1 , $2. f i • ad //1,40,6/

would result in a block text format of:

z.fi.ad

B-60 CP50-00B

z.fi.ad

10/85

Note

v vvvvv
/\ ... /\/\/\/\/\

xxxxxx ... xxxxx
xxxxxx ... xxxxx
xxxxxx ... xxxxx

etc.

Blank lines are not affected (i.e .• they remain as blank lines).

z.fi.na (fill/ no-adjust)

Fills the addressed lines by moving text from line to line, but does not pad with spaces to
right-justify the text (i.e., the right margin is ragged).

Syntax
ADR1,ADR2z.fi .na<SP>/STR/Nl,N2{,N3}/

This has the same format and considerations as z.fi.ad except that no justification is done
of the line.

Default

If no address is present, n" is assumed.

zdump (dump octal/ASCII)

A line-oriented dump that includes the octal and ASCII representation of each line
referenced in the request invocation. Each NL encountered causes the current line of
output to be terminated and the next line begins anew at the left margin. When
non-integral-line addresses are given, the first byte within the line number is the
number given by the byte address.

Syntax
ADR1,ADR2zdump

Default

If no address is present, "" is assumed.

Example

Output format:

+-----------line number
+---byte within line

I
V V <-------------------- octal --------------------> <---- ASCII --->

2

1

17
146151162163 164011163145 143157156144 040040164150
151162144040 040040040040 146157162164 150012

1 011040040040 040040040040 040155157162 145012

first.second th
i rd forth

more

zdump

B-61 CP50-00B

zdump

10/85

Some of the "." characters in the ASCII portion of the dump represent unprintable or
carriage motion characters (e.g., the NL character (012), horizontal tab character (011),
pad character (177), etc.). All of the n. "s must be checked against the associated octal
representation to verify if the character is a literal "." or a flag for an unprintable or
carriage motion character.

rif (conditional test)

Tests the result of the given evaluation. If it is either "0" or "false" then the remainder of
the request line is ignored (i.e., any result other than these two values allows the
remainder of the request line to be executed).

Syntax

ADR1,ADR2zif<SP>{<eval>} <REST>

Default

There is no default address. Certain built-ins within <eval> can reference buffer data.
These built-ins are not defined if no address is given.

Example

The following example shows differences between \b (input function) and the % request
and shows how these differences interact with conditional execution. These differences
apply to any of the conditional requests. Assume b(O) is the current buffer and that the
buffer contents are:

Note

b(O) b(abc)

t!first!
t! second! 1
{lIpn=": pn;}

Refer to Section 5 for more details regarding <eval>.

Then execute these requests:

zif

B-62 CP50-00B

zif

10/85

o trace

%(abc)

EDIT (abc)
EDIT t!first! 1
first

EDIT t!second! 1
second
EDIT {"pn=": pn;}

pn=O
%(abc) abc d
EDIT (abc) abc d

EDIT
first

**EDIT"'*
second
EDIT
pn=4
\b(abc)

EDIT
first
EDIT
second

t!first!

t! second! 1

{"pn=": pn;}

t!fir·st! 1

t! second! 1

EDIT {"pn=": pn;}
pn=O
EDIT
zif {1=2} \b(abc)

EDIT zif {1=2} t!first! 1

"'*EDIT*~ t!second! 1
second
EDIT {"pn=": pn:
pn=O
EDIT
zif {1=2} (abc)

EDIT zif {1=2} (abc)

-Turn on tracing so the execution of b(abc)
can be observed.

-Call b(abc) into execution without any
arguments.

-The trace of the execution.

-call b(abc) into execution with argum.ents.

-Input function, one line at a time from
b(abc).

-This is the NL after \b(abc).
-Attempt to conditionally execute b(abc)

by means of the \b form.

-zif fails, <REST> is ignored. Note that
<REST> is just the rest of the first line.
not the rest of the buffer.

-Another attempt to conditionally execute.
this time with the % request

-zif fails. % is ignored. This means that
the buffer is not called at all. This
correctly does conditional buffer
execution.

zif

B-63 CP50-00B

10/85

APPENDIX C

ABBREVIATIONS, MbT ASYMBOLS,
AND SPECIAL CHARACTERS

Abbreviations and metasymbols within syntax indicate the user is required to provide a
substitute "string" in their place (i.e., they are not literal occurrences of the characters). Special
characters on the other hand are literal occurrences and must be entered exactly.

ABBREVIATIONS

LINES

N

NL

Lines of input characters (with no input functions processed) terminated by a line
consisting only of a "." followed by an NL character (related to bulk input requests).
(Also see "TEXT").

A single digit or character.

Newline character (i.e .• the terminal key NL pressed by the user to move the display
mechanism to the beginning of a new line).

PATH

STR

Pathname of a storage system entry; unless otherwise indicated, it can be either a relative
or an absolute pathname.

More than one digit or character and implies "string".

TEXT

X

Single or multiple lines of text or data (with input functions processed) terminated by
"\ftl (related to basic input requests). (Also see "LINES").

All buffer names in this document are referred to as "X" (Le., X implies either a
1-character or up to 16-character name).

METASYMBOlS

A continuation of the line (i.e., it olay corlsist of any combination of data, text, requests,
or nothing).

A continuation of lines (i.e., it may consist of strings or lines of text. data. requests. or
nothing).

<GA>
The user must provide the grave accent (octal 140) character in the location flagged.

C-1 CP50-OOB

10/85

<NL>
The user must provide an NL (newline) character in the location flagged (i.e., the user
must press the NL key on the terminal to provide a terminating sequence).

<RE>
Any regular expression.

<REPL>
A character string used to replace an <RE>.

<request>
Single or multiple sequence of requests (also see "<REST>").

<REST>
Represents everything out to the end of the line. The meaning of <REST> varies
depending on circumstances.

<SP>
The user must provide a space in the location flagged.

ADR
A single address.

ADRl
First half of expected address pair.

ADR2
Second half of expected address pair.

SPECIAL CHARACfERS OR LITERALS
II

$

&

o

Delimits quotes within an <eval> (quotes within a quoted string must be doubled, for
example, "a''''bcd''''e'').

Error correction character (used to delete previous entered character or characters).
This is a Multics default erase character.

In a line address, the last-line of the buffer.

In a byte address, the NL, or where the NL would be if there is none.

In an <RE>, match the end-of-line.

Special character in the <REPL> string of a substitute request, meaning "give me the
string which was matched ft.

Logical AND operator in the g* request.

Special character (apostrophe) meaning "not".

Used to bracket byte addresses, multicharacter buffer names, multicharacter labels,
arithmetic grouping within <eval>, and logical grouping in g*.

C-2 CP50-OOB

+

/

:=

<

=

>

@

10/85

Operator in an <RE> (matches O-or-more occurrences of the character which precedes
it).

Multiply operator within an <eval>.

As a prefix on a number in line or byte addresses. represents forward relative addressing.

Addition operator within an <eval>.

As an address separator (comma), the following (or right half of the) address is to be
"searched for" from the same starting point as the previous (or left half of the) address
(also see ";").

As a prefix on a number (hyphen) in line or byte addresses, represents backward relative
addressing.

Subtraction operator within an <eval>.

The current-line in a line address or the current-byte in a byte address.

Terminates bulk input requests when entered on a line by itself.

Matches any character in an <RE>.

Normally used wi thin a line or byte address to delimit a search expression.

Division operator within an <eval>.

Separator within an <evai>.

Assignment operator within an <eval> (not to be confused with the = (equality)
operator).

As an address separator, the following (or right half of the) address is to be "searched
for" from the location found by the previous (or left half of the) address (also see ",").

Used as a separator within an <eval>.

Less-than operator within an <eval>.

Equality operator within an <eval>.

Greater-than operator within an < eval > .

Error correction character (used to delete the entire contents of the current line being
built). This is a Multics default erase character.

Absolute buffer referencing character. Must be entered as \@.

C-3 CP50-OOB

10/85

[]
Brackets subscripts within <eval>.

Surrounds limit address for address expression searching.

Special character (circumflex) meaning "not".

{ ... }
A literal delimiter for evaluations { <eval>} .

Logical OR operator within an <eval> or the g* request.

II
Concatenate operator within an <eval>.

C-4 CP50-DOB

10/85

APPENDIX D

ERROR MESSAGES

This section contains an alphabetically sorted list of ted error messages that may be displayed
on the terminal during a ted session. The actual ted message is shown on the first line, the second
line further describes the error condition and is available to the user if "help" is invoked after an
error message display. This expanded message can be invoked at any time during the invocation
of ted (and once called, the message extension is related to the last error condition which
occurred). The extended or second message (invoked by "help") is available as shown below with
the exception that line length of messages on the terminal probably will not be folded as shown
here. A sample ted session describing an error situation immediately follows the error messages
listing.

Most messages are followed by information which specifies the string in error. Usually, the
string begins at the last place known to be valid and ends with the character in error .

. *\[...] not handled.
This form of an <RE> search is not supported.

II undefined.
The search expression I / means to use the last one specified. There is none.

? can only appear first.
The "1" character signals an address prefix. An address prefix can only be present before
the first address.

Abbrev result >512.
The result of trying to abbrev expand the pathna..TIle exceeded 512 characters.

Addr- after buffer.
The given address attempts to reference beyond the end of the buffer.

Addr- after line.
The given address attempts to reference beyond the end of the line.

Addr- before buffer.
The given address attempts to reference before the beginning of the buffer.

Addr- before line.
The given address attempts to reference before the beginning of the line.

Addr- wrap-around.
The location of the second address is before that of the first

Backup search failed.
The backward search reached the beginning of the buffer without finding a match for
the given <RE>.

b(xxx) not found.
The named buffer is being used in a circumstance which requires that it exist, but it does
not.

Bad ? form.
An address prefix cannot have the form given.

D-1 CP50-OOB

10/85

Bad char in byte addr.
A character was encountered which is not valid within a byte address.

Bad decimal digit.
Only "0123456789" are allowed.

Bad hex digit.
Only "0123456789abcdef ABCDEF" are allowed.

Bad move spec.
A string cannot be mo~ed in the current buffer to a place within that string.

Bad octal digit.
Only "01234567" are allowed.

Buffer empty.
No address may be given when the buffer is empty.

-or-
When a buffer is empty, the only requests allowed which use addresses are the "r" and
"a" requests.

Can't delete current buffer.
The current buffer may not be deleted.

Can't m/k to current buffer.
The m/k requests delete the contents of the target buffer. This does not work if the
source is the target, because the data to be used will be lost

Can't process multisegment file.
MSFs must be handled one component at a time.

Can't trust saved pathname.
Due to the sequence of events which have occurred~ ted cannot be sure that the pathname
saved truly reflects the status of the buffer. The user must be explicit in intent

Can't write to an archive.
This operation is not supported by ted.

Char search failed.
The <RE> specified in a byte address could not be found.

Entry not found.
The * I function requested was not found using the current system search rules.

External function error.
The last error was in an external function. The implementer of this function has made
no additional information available about the error.

External symbol not found.
The *, function requested was found, but did not contain the necessary entry point This
condition can result from adding a name to an object segment which is not defined
within the object

Incorrect buffer name.
A buffer cannot be named "," or ")".

-or-
You are running under a limited system which does not allow the buffer request to be
used. Therefore b(O) is the only buffer available. You must use the form M(O,address)
or K(O.addre.ss),

0-2 CPSO-OOB

10/85

Invalid addr char.

Invalid option.
Only the options shown when o<NL> is typed may be specified.

Invalid request.
A request was expected at this poin~ but what was present is not a valid request

Label > 16 chars.
A multicharacter label is limited to 16 characters including the parentheses. The closing
")" must be found within 16 characters of the opening "(". A buffer name specification
which begins with a n(" must have the matching ")" present

Label Y not defined in b(X).
The specified label is not present in the buffer mentioned. Labels must always begin
lines (otherwise they are not labels).

Level > 500.
Buffer nesting cannot go beyond a depth of 500.

Line search failed.
The <RE> specified in a line address could not be found.

Linkage section not found.
The * I function requested was found, but it is not an executable segment This condition
can result from inadvertent over-writing of the object segment

Misplaced.
A character (which appeared in the message) was in an improper place among g*
subrequests.

Missing quote.
A quoted string was begun but never terminated.

Missing right parenthesis.
There is no closing n)" to match an existing open "(".

Name> 16 char.
Buffer names are restricted to 16 characters.

No blank after Z
Global-if subrequests are always in blank mode. One or more blanks must separate
subrequests on the line.

-or~

Ted is running in blank or part-blank mode. One or more blanks must separate requests
when more than one request occurs on a line. However. since "r", "w", "e", and "0"
requests use up the rest of the line, then the required blank is between the request and the
rest of the line. The requests which are under the scope of part-blank are: a, c, i. d, r, e,
w .

.. I ... ,

... "" I •

A ">(" was given in a global-if but the closing ")" was left out Only absolute addresses
are available for global-if subrequests (i.e., n or $n).

No 1st addr.
Some address part must precede the "," or n;" character.

No 1st delimiter.
Neither blank nor NL may be a delimiter.

D-3 CPSO-OOB

10/85

No 2nd delimiter.
An <RE> was started t but no terminal delimiter was present The character which began
the expression serves as a delimiter and thus must appear a second tim~

No 3rd delimiter.
A substitute request must have a third delimiter which specifies the end of the replace
string.

No NL.
This condition comes about when the buffer request line is exceeded.

No \f.
A g* a/c/i request does not have the EOI mark (\f).

No buffer remembered.
The current-buffer stack is empty.

No char for \=.
The nequals convention" of the substitute request must have a character before it which
is the character to be replicated.

No pathname given.
An r or w request can be given without a pathname only when there is a pathname
remembered for the current buffer.

No }.
Either a "{n or "\g {n was specified but the matching n}" was not present

No routine name supplied.
The call external support routine request needs to have a name immediately after the
n I n. The name must be terminated with a "<sp>n if any arguments are to follow or if
other requests follow on the same line. Otherwise it must be followed by an NL.

Not allowed on this buffer.
The status of this buffer is such that the operation attempted is not allowed.

Not-defined-
Buffer related built-ins are not defined in \ { ... } context, or when no address is given for
t .. } or zif I. . .}. .

Null buffer name.
Buffer names may not be zero-length.

One address allowed.
The given global-if subrequest can only have a single address.

Only 2 addr allowed.
Only two addresses may be present However, there can be any number of address
prefixes.

Out_of_bounds occurred. Request aborted.
The operation being performed attempted to form a file which is larger than the
maximum segment size of the system.

Pathname ignored, buffer was forced to
The "Ar" request has been issued in this buffer. The name given at that time is the only
name which is allowed for this buffer. Any given by the user are ignored.

Remembered >10 buffers.
Only 10 buffers can be remembered in the current-buffer stack.

D-4 CP50-OOB

10/85

Search addr not al1owed-
Oniy absolute addressing is available in global-if subrequests.

Subfile name too long.
The length cannot exceed 32 characters.

Substitute failed.
The specified <RE> was not found in the area addressed.

System error code.
This error code is not normally expected. No further information is available.

Unknown X* request x.
The apparent subrequest encountered is not one of the valid ones for use with global-if.

Zero-length segment.
The segment read contains no data. This is a warning that the patbname has been '
associated with the buffer.

\r ~ead \f.
While trying to fill a "\rn function from request level, a "\f" wa:s reCeived.

curline undefined.
The value of "." (current line) for a buffer becomes undefined under the following
circumstances: 1) data is moved or copied into it, 2) a fileout is executed into it, 3) the
last lines of a buffer are deleted, or 4) a window is defined which does not contain the
current location.

q rejected.
Whenever a buffer with an associated filename is modified, a flag is set It is reset when
the whole buffer is written. Whenever data is moved to a buffer, a flag is set on the
target buffer. It is reset when a read is executed from that buffer, or the whole buffer is
invoked (\b(X». The q request checks these flags. If any are set, warnings are printed
and the user is asked if the quit is really intended. If the reply to this query is "no", then
the q is rejected. Also, if the q request has any address, or is not followed by an NL, it is
also considered an error.

substr from outside string
An fs(...) request tried to begin either at location 0 or at a location greater than the
length of the string extracted from.

EXAMPLE

The following example describes but two of many possibilities resulting in ted error
conditions. The standard error message is shown first (prefaced with a message identifier, in this
case"Abe") followed by a more detailed message resulting from the user invoked "help" request

D-5 CPSO-OOB

10/85

ted
d

Buffer empty
help
Abe) Buffer empty

When a buffer is empty, the only requests allowed which use addresses are
"rll and "a".
labcl
Buffer empty.
help
Abe) Buffer empty.

No address may be given when the buffer is empty.

D-6 CPSO-OOB

10/85

~A;LPPEND IX E

USING .AND WRITING EXTERNAL REQUESTS

Ted can be used to invoke external requests. These requests can be standard system routines
or user-suppiied. This facility allows a user to add specialized editing requests to ted.

Following is a summary of standard support functions:

[.] I ax
append LINES after addressed line (after Speed type expansion).

[.,.] lex <REST>
change addressed lines, replacing with LINES (after Speedtype expansion).

[.] I i x <R EST>
insert LINES before addressed line (after Speed type expansion).

Note: LINES are read from user_input, with Speedtype expansion being done as
each line is received. The end-of-input signal is "\f". <REST>, which
may follow the request, does not represent input data, but requests which
are executed when the input mode is terminated.

[. ,.J I comment
add comments to addressed lines. Each nonblank line is displayed without a NL. Then,
whatever is typed is added to the end of the line. However. the last two characters can be
one of the following control sequences:

\d delete the displayed line
\F \ f end of input
\ i insert next line typed, then examine for "\a"
\a append next line typed, then examine for another "\a"

[.,.] Itabin
convert spaces to HTs where possible and remove trailing white space from all lines.

[. , .] I tabout IC, n, n ••• I
convert pseudo-tab C to spaces using tabstops defined by n,n,... Tabstop specifications
are in the form:

n set text left
n L set text left
nC set text centered
nR set text right

where n represents the column where the character following the tab character is to be
placed. It must be in the range 1 through 200.

When the left or center options are selected, they apply to the text leading up to the
tabstop. The location of each tabstop in turn is remembered. Then when a left/center is
called for, the data since the last tabstop is involved. The number of spaces needed is
calculated. If centering, half of this number is placed before the data and the rest after;
otherwise, all the spaces are placed before the data.

E-1 CPSO-OOB

10/85

[.,.] Igtabout /RE/C,n,n ••• /
(global I tabout) convert pseudo-tab C to spaces on all lines which match the expression
RE.

[',.J Ivtabout /RE/C,n,n ••• /
(exclusive I tabout) convert pseudo-tab C to spaces on all lines which do not match the
expression RE.

[.,.J Ifiad /STR/L,R{,I}/
fill the addressed data and adjust to make an even right margin.

[. , • J If i na /STR/L, R {I} /
fill the addressed ~ata without adjusting.

In respect to the two fill functions above:

STR is a literal string for line exclusion.
L is the left (beginning) character position.
R is the right (ending) character position.
I is the indention character position. The indention position is assumed to be the same as

the left if not given. Indentation applies to each "first" line. The first line of data
addressed is a "first" as well as anyone which follows an empty line. All empty lines
within the addressed range remain as such. If STR is non-null, any line which begins
with this string is left intact and filling begins at the left again on the next line. The line
following is not a "first". one. .

[. , • J I dump 1
dump (Iong) addressed string in octal and ASCII 20 across (needs 110 print positions).

[.,.J Idumps
dump (short) addressed string in octal and ASCII 10 across (needs 65 print positions).

[.,.J Idumpvs
dump (very-short) addressed string in octal and ASCII 5 across (needs 39 print
positions).

[.,.J I dump
dump addressed string in octal and ASCII using long, short, or very-short, depending on
current linelength.

USER-WRlITEN REQUESTS

A ted external request is a PL/I program conforming to certain design criteria. The
procedure accepts three arguments: a pointer to the ted_support data structure, a char (168)
varying string which may be used to return information about an error condition, and a return
code.

A RESOLVE ted external request must have a segname and entryname of
ted_RESOL VE_$ted_RESOL VE_. It is invoked by entering:

[.,.] I RESOLVE <REST>

HOW AN EXTERNAL REQUESf AND TED WORK TOGETHER

It is assumed that most external requests work in the same general fashion. The ted
command, thereiore, tries to remove as much burden as possible from the writer by doing all the
work that is common to this model. Processing is done from an input string to an output segment

E-2 CPSO-OOB

10/85

The whole buffer content is available for reference and the input string is the addressed portion
of that data. A request may do whatever it is called upon to do to the output segment, but it can
not modify the input data in any way, and may not count on the string being in the same IQCa,tion
if called again in the same buffer. The actions performed are:

1. Copy all of the input string which precedes the addressed range into the output segment

2. Call the routine. <REST> (any remaining characters on the request line) is passed along
for whatever the routine wishes to use it for. The call is:

dcl ted_xyz_ entry (ptr, char (168)var, ·fixed bin (35»;
call ted_xyz_ (addr (ted_support), msg, code);

3. Replace the input data up to the end-of -address location with the contents of the output
segment The end-of-address location may be updated by the request to end-of-string
if it has modified all of the input data.

4. Set the current location, if specified.

The return code may specify that Step 3 is to be omitted, that Steps 3 and 4 are to be omitted
(no change), or that an error occurred. <REST> is passed to the request with the assumption that
everything which follows is information for the request The request may then:

1. Do nothing. A new line is read for execution.

2. Set the next location after any data utilized by the request In this case, execution
continues on the rest of the line.

3. Supply a new value and length for the data in the request line and set the next location
back to 1. In this case, execution begins with the line supplied by the request

GLOBAL EXTERNAL REQUESTS

or
I function /expression/additional-info/ <REST>

I function / expression/ <REST>

A global processing mechanism is available whereby the writer of a request may accomplish
global types of action (g or v) without having to know all the necessary details. The ted_support
structure contains a pair of entry variables for this purpose.

The first procedure below is invoked when a global expression needs to be processed. A
globally executing function could be (but is usually not) written to always use the remembered
expression; in that case this procedure would not be called.

call proc_expr (ted_support_p, msg, code);

The arguments to proc_expr are exactly the ones which the request receiVed. proc_expr takes the
first nonblank character as the delimiter, scans and compiles the expression, and leaves the second
delimiter as the current character. If ted responds with a zero return code, everything is ready to
process any additional information which the function may require. If there are no arguments
for the request and it allows other requests to follow in the request line, the current location must
be advanced over this second delimiter.

The second procedure accomplishes all the global overhead.

call d0--810bal (worker, mode, ted_support_p, msg, code);

E-3 CPSO-OOB

10/85

where:

worker
is an internal procedure, having no arguments. that actually performs the function. It is
called once for each line in the addressed range which matches the cri teria. When called,
"inp.sb" points to the first character of the line to be processed and "inp.se" points to the
NL of this line. These two values may not be modified.

mode
is either a "g" or "v" to indicate which kind of operation is needed.

The remaining three arguments are the same ones with which the function itself was called.

REGULAR EXPRESSION USE

Information is also available in the ted_support include file which allows a request writer to
make use of ted's regular expression searching facility. Using this facility is a 3 step process.

Step 1. Initialization of an Expression Area

This step is usually not needed. It exists so that a function can· make use of regular
expressions without impacting the remembered expression in ted.

call tedsrch_$init_exp (addr (someplace), size (someplace»;

The first argument identifies the hold area location, and the second argument describes
its length in words.

Step 2. Compilation of an Expression

This step may also be optional. If a null expression (i.e., "I I") is given to a request, it
means "use the remembered expression." In this case the step is skipped.

Here a regular expression is compiled into its internal form. Usually, an expression is
compiled once and then used for searching many times.

call tedsrch_$compile (ex_p, ex_I, re_p, linemode, REmode,
msg, code);

where:

ex_p
points to first -character of the expression to be compiled.

ex_l
is the number of characters in the expression.

re_p
points to the area where the compiled expression is held (the ted default area may be
utilized by referencing "ted_supportre8-exp_p").

linemode
is "l"b for line mode or n"b for string mode.

E-4 CPSO-OOB

10/85

REmode
is "l"b for regular expression mode or ""b for literal mode.

The remaining two arguments are the ones which were passed to the procedure=

Step 3. Searching For a Match

This step is not likely to be optional. It is the one which searches an area of a buffer looking
for a string which matches the expression.

Searching may be done in the input string, but not the output segment since it is not a buffer.

call tedsrch_$search (re_p. cb_p, strinLb, strinLe, match_b,
match_e, match_e2, msg, code);

where:

re_p
points to the area containing the compiled expression.

cb_p
points to the control block associated with the input data.

strin9_b
is the offset in the buffer string where the search is to begin.

strin9_e
is the offset where the search is to end.

match_b
is the offset where a match begins.

match_e
is the offset where a match ends.

match_e2
is the last character used to find the match -(sometimes higher than "match_en).

The remaining two arguments are the function parameters.

REQUEST INFO

An external request may also have info available for the ted help request

The info is in standard help file format The help file must be named ted_RESOLVE_.info.
The ted help request looks for ted_RESOLVE_.info in the directory where ted_RESOLVE_ is

- found (via system search rules). The info is requested in ted with one of these forms (see help):

help I RESOL VB
help I RESOLVE section
help I RESOLVE -about topic

The last two are usually not of any use because the info is usually not complicated enough to
have more than one section. .

E-5 CPSO-OOB

10/85

Following is an example of a request to convert vowels to uppercase, both regular and
globally.

ted_uppercase_: proc (ted_support_p, msg, code);
/* This routine converts all vowels to uppercase in the range addressed. */
/* It also can do this action globally (g I v). */
/* It does not allow any request to follow in the same line. */
/* Usage: {$,$} luppercase {ignored} */

mode = II ";

goto common;

ted_guppercase_: entry (ted_support_p, msg, code);
/* Usage: {.,.} Iguppercase /regexp/ {ignored} */

mode = "g";
go to common;

ted_vL!ppercase_: entry (ted_support_p, msg, code);
/* Usage: {".J Ivuppercase /regexp/ {ignored} */

mode = "v";

common:
if (ted_support_version_2 A= ted_support.version)
then do; /* check for proper version */

code = error table $unimplemented version;
return; - - 7* can't handle this one. */

end;
if (inp.de = 0)
then do; /* must be some data to work on */

msg = "Buffer Empty."; /* supply the message text */
code = tederror_table_$Error_Msg;/* say that a message is present */

end;
else do;

i f (mode = II ")

then call worker;
else do;

call proc_expr (ted_support_p, msg, code);
if (code A= 0)
then return;
call do_global (worker, mode, ted_support_p, msg, code);

end;
current = out.de; /* and say that 11.11 is there */
code = tederror_table_$Copy_Set; /* tell ted to finish up */

end;

worker: proc;
i = inp.se - inp.sb + 1;
substr (ostr, out.de+l, i)

= translate (substr (istr,
"AE I DU", lIae i ou") ;

out.de = out.de + i;
end worker;

E-6

/* calc how much to process

i np. sb, i),
/* translate that much
/* update the output length

*/

*/
*/

CPSO-OOB

10/85

dc 1 (msg char (168) var ,
code fixed bin (35» parm;

dcl mode char (1);
del i fixed bin (24);
%include ted_support;

end ted_uppercase_;

The next example is a request to renumber a range of a buffer.

ted~renumber_: proc (ted_support_p, msg, code);

/* This routine renumbers the addressed portion of the buffer. It takes 1 or */
/* 2 arguments within a delimited string. The 1st argument is the beginning */
/* number; the 2nd argument specifies the increment to use (assumes 10). */
/* Whatever follows the argument string will be left for further ted */
/* execution. */

/*
/)'C

/*

This is not robust code. It does not include exhaustive error
checking. It is intended only to show how to use the interface
stucture's various data.

*/
*/
*/

/* Usage: {1,$} Irenumber /from,incr/

dcl msg char (168)var, /* error message text
/1c er ror code

*/

(OUT) */
(OUT) */ code fixed bin (35);

if (ted_support_version_2 A= ted_support.version)
then do; /* make sure its correct version

code = error_table_$unimplemented_version;
return; /* can1t handle this

end;
if (j np. de = 0)
then do; /* must be some data to process

msg = "Buffer Emp'ty.";
code = tederror_table_$Error_Msg;
return;

end;
/**** 1) Parse the arg list

req.nc = req.cc;
del i m = r c h r (r eq • n c) ;
if (delim = II II) I (delim = NL)
then do;

code = tederror_table_$No_Deliml;
return;

end;

/* move back to current location
/* save the delimiter char

*/

*/

*/

req.nc = req.nc + 1; /* skip over it */
i = ver i fy (subs tr (rs tr, req. nc), "0 123456789") -1;
In = fixed (substr (rstr, req.nc, i»; /)'c get starting 1 ine number */
req.nc = req.nc + i; /* skip over part used up */
if (rchr (req. nc) = II, ")
then do; /* 2nd arg is present */

req.nc = req.nc + 1; /* skip over the comma */
i = ver i fy (subs tr (rs tr, req. nc), "0 123456789") -1;

E-7 CP50-OOB

10/85

incr = fixed (substr (rstr, req.nc, i»; /* get increment
req.nc = req.nc + i; /* skip over part used up

end;
else incr = 10; /* supply the default
if (rchr (req • nc) ;'>.= de 1 i m)
then do;

msg = "Only 2 args allowed";
code = tederror_table_$Error_Msg;
return;

end;
req.nc = req.nc + 1; /* leave "next" for continued

/* execution of request line data

*/
*1

*/

*/
*/

/**** 2) see if default address needed
if addr_ct = 0

*/

then do;
inp.sb = 1; /* the default is 1,$ */
inp.se = inp.de;
out.de = 0; /* forget anything already done here */

end;
/**** 3) do all lines in address range */

do while (inp.sb <= inp.se);
i = verify (substr (istr, inp.sb), "0123456789") -1;
inp.sb = inp.sb + i; /* strip any existing line number */
pic5 = In; /* get display form of line number */
substr (ostr, out.de+l, 5) = pic5;
out.de = out.de + 5; /* place new number in output */
i = index (substr (istr, inp.sb), NL); /* find line length */
substr (ostr, out.de+l, i) = substr (istr, inp.sb, i);
out.de = out.de + i; /* add in the line of data */
inp.sb = inp.sb + i; /* account for used-up input data */
In = In + incr; /* move on to next number value */

end;
/**** 4) tell ted its AOK */

dcl
dcl
dcl
dcl
dcl
dcl
") ;

code = tederror_table_$Copy_Set;

i fixed bin (24);
delim char (1);
In fixed bin;
incr fixed bin;
pic5 pic "99999";
NL char (1) i nt stat i copt ions

%inc1ude ted_support;

end ted_renumber_;

/* arg list delimiter
/* line number value
/* line number increment
/* display form of line number

(cons tant) in j t ("

The ted_supportinc1.pll segment contains the interface information needed to write an
external request as well as an example of a simple request

*/
*/
*/
*/

/* BEGIN INCLUDE FILE ••••• ted_support.inc1.p11 ••••• 03/16/81 */

/* more information may be found in ted_support.gi.info */

E-8 CPSO-OOB

10/85

del ted_support_p ptr;
dcl ted support version 2 fixed bin int static init(2);
del 1 ted_support based(ted_support_p) t

2 version fixed bin, /* 1 */
(I N) */
(J N) */

*/
*/

2 addr ct fixed bin, /* number of addresses given: 0,1,2
2 checkpoint entry (/* routine to update "safett status

fixed bin(21), /* amount of input used up
fixed bin(21», /* amount of output used up

2 i np,

3 pt ptr,
3 sb fixed bin (21) ,
3 1 no fixed bin (21) ,
3 se fixed bin(2l),
3 de fixed bin (21) ,

2 out,
3 pt ptr,
3 de fixed bin (21) ,
3 m 1 fixed bin (21) ,

2 req,
3 pt ptr,
3 cc fixed bin (21) ,
3 nc fixed bin (21) ,
3 de fixed bin (21) ,
3 m 1 fixed bin (21) ,

/***)'c*. input str i ng parameters
/* The input data may NOT be modified.
/* pointer to base of data string
/* index of addressed string begin
/* linenumber in data string of sb
/* index of addressed string end
/* index of data end

*/
*/

(I N) */
(I N) */
(I N) */

(I N/OUT) */
(I N) */

/***** output string parameters */
/* pointer to base of output string (IN) */
/* index of data end (already copied) (IN/OUT) */
/* max length of output string (IN) */

/***** request string parameters
/* pointer to base of request string
/* index of current character
/* index of next character
/* index of data end
/* max length of requsest buffer

*/
(I N) */
(I N) */

(I N/OUT) */
(I N/OUT))'c/

(IN) 1e/

/* req.nc is initialized to req.de, i.e. request line used-up. A routine */
/* can set req.nc to 1, put some data into req and set req.de */
/* appropriately. The data will be the .next ted requests executed after */
/* the routine returns. */

/* Or if req.nc is set equal to req.cc then the rest of the request line */
/* will be executed after return. */

2 string_mode bit(l),
2 current fixed bin(21),

2 get_req entry 0,

2 proc_expr entry
(ptr,
char (168) var,
fixed bin (35»,

2 do_global entry
(entry (),
char (1),
ptr,
char (168) var,

/* 0- line mode, 1- string mode (IN) */
/* current location (IN/OUT) */
/* current is initialized to "undefined" */
/* fill the request string with the next line */
/* from ted's input stream" req.de will be */
/* updated to reflect the new length. */
i* req.cc and req.nc are not changed. */
/* process the expression for global execution */
/* -> ted_support structure [IN] */
/* message text [OUT] */
/* completion code [OUT] */
/* globally execute some action */
/* worker procedure [IN] */
/·lc wh i ch ac t i on, "g" or "V'I [I N] */
/* -> ted support structure [IN] */
/* message text [OUT] */

E-9 CPSO-OOB

10/85

fixed bin (35»,
2 reg_exp_p ptr,
2 bcb_p ptr;

/* completion code [OUT] */
/* -> the remembered regular expression area */
/* -> buffer control block */

/* */
/* ENTRY CONDITIONS */

/* --------~--------------------~--~------~------~--~--~-- */ /* Upon entering, three substructures describe the environment in which the */
/* request iS,to operate. (Refer to the INPUT diagram) Note that the */
/* "normal" operational steps are: */
/* 1) ted copies the string from l:inp.sb-l to the output string */
/* 2) ted_xyz_ takes care of the data from inp.sb:inp.se */
/* 3) ted copies the string from inp.se+l:inp.de to the output string */
/* 4) ted sets ".11 as (possibly) specified by xyz */

/* The following 3 diagrams "represent conditions upon entering ted_xyz_: */
/* */
/* req.pt (\ represents NL) */
/* I */
/* [REQUEST] x 2,3lreq /farfle/ 1,$P\....................... */
/* I I I */
/* req.cc req.de req.ml */
/* req.nc */
/* */
/* inp.pt (\ represents NL) */
/* I */
/* [INPUT] now is\the time\for all\good men\to come.\..... */
/* I I I */
/* inp.sb inp.se inp.de */
/* The request may make no modifications to the input string. It may make no */
/* assumptions about its location, i.e. that it occupies a segment all by */
/* itself. */
/* */
/* out.pt (\ represents NL) */
/* I */
/* [OUTPUT]? now is\.. */
/* I I */
/* current out.de out.ml */
/* */

/* */
/* EXIT CONDITIONS */
/* */
/* Assume a request replaces each addressed line with the string following */
/* it, '(in this case "farfle") and leaves ".11 at the beginning of the range. */
/* out.pt (\ represents NL) */
/* I */
/* [OUTPUT] now is\farfle\farfle\.......................... */
/* I I I */
/* current out.de out.rnl */

/* */
i* 1) if the data after the string are to be treated as more ted requests, *i
/* the request data would be left like this. */

E-10 CP50-OOB

10/85

1*
/*

req.pt (\ represents NL)

/)'c [REQUEST]
I
x 2,31req /farfle/ 1 , $ P\ of e '0 ••••• ::I C

*1
*/
*/
*/
*/
*/

/*
/* reqonc

i
req.de

I
req.ml

/* ~---lie 2) If the request is going to return a string to be executed, the request */
/*
/*
/*
/*
/*
/*

data (and buffer) would be left like this: */
req.pt (\ represents NL) */

[REQUEST]
I */
-1,. lp w\ /farfle/ 1 ,$P\ ••••• 0 0 0 0.00000 •• 000 •• 0 */
I I I */

req.nc reqode req.ml */

/* These are special return codes relating to ted: */
dcl (tederror _table_$Copy_Set,/i, copy rest of input to output, and set 11.11 */

/)'c from current 0 "rest of i nput" is the */
/* string which begins at char inp.se+l and */
/* extends to inp.de. If the input has all */
/* been processed, then inp.se should be set */
/* to inp.de+1. */

tederror_table_$NoChange,/* dont copy, dont set current */
tederror table $Set, /* dont copy, set current (in input buffer) */
tederror:table:SError_Msg,l* msg is being returned. */

/* no copy or set is done */
tederror table $No Oeliml,/* missing 1st delimiter */
tederror-table-$No-Oelim2,/* missing 2nd delimiter */
tederror:table:$No:Oe1im3)/* missing 3nd delimiter */

fixed bin(35)ext static;
/* Any other codes returned must be standard system codes. */
dcl error_table_$unimplemented_version fixed bin(35) ext static;

dcl istr char (inpode) based (inpopt) ; /* the input string
dcl ichr (inp.de) char (1) based (inp.pt);
dcl ostr char (out.m1) based (out.pt) ; /* the output string
dc1 ochr(out.m1) char(l) based (out.pt) ;
dc1 rstr char(req.m1) based (req.pt) ; /* the request string
dc 1 rchr (req om 1) char (1) based (req 0 pt) ;

*/

/* These declarations are used if the expression search is needed by the */
/* request. There are 2 parts to getting an expression search done: */
/* 1) compiling 2) searching */
/* If a function uses the remembered expression, it does this: */
/* call tedsrch_$search (ted_supportoreg_exp_p, */
/* ted_support.bcbp, string_begin, string_end, match_begin, */
/* match_end, search_end, msg, code); */

/* If a function utilizes an expression the user supplies, it must first be */
/* compiled:
/* if (express i on_1 ength > 0) ,'c/
/* then call tedsrch_$compile (addr (ichr (expression_begin», */
/* expression_length, ted_support 0 reg_exp_p, */
/,'c ted_suppor t. s tr i ng_mode, II lib , msg, code);)'c/

E-11 CP50-OOB

10/85

/* This results in the remembered expression being changed to the one just */
/* compiled. */

/* If a function wishes to util ize a function without it being remembered */
/* by ted, it may declare an area of its own and compile into it. It first */
/* must be initialized: */
/* dcl expr_area (200) bit (36); */
/* call tedsrch_$init_exp (addr (expr_area), size (expr_area»; */
%include tedsrch_;

/* END INCLUDE FILE ••••• ted_support.incl.pll ••••• */

E-12 CPSO-OOB

10/85

The tedsrchjnclpl1 segment invoked in t.l}e previous example "% inc 1 ude tedsrch_;"
contains:

/* BEGIN INCLUDE FilE

dcl tedsrch_$init_exp entry
ptr,
fixed bin (21);

del tedsrch_$compile entry
ptr,
fixed bin (21),
ptr,
bit (1) ali gned,
bi t (1) al igned,
char (168) var,
fixed bin (35)

) ;

dcl tedsrch_$search entry
ptr,
ptr,
fixed bin (21),
fixed bin (21),
fixed bin (21),
fixed bin (21),
fixed bin (21),
char (168) var ,
fixed bin (35)

) ;

tedsrch_o incl.pl1 ••••• 10/21/82 J Falksen *1

/* initialize an expression area
/* -> compiled expression area
1* length of area in words

1* compile a regular expression

*/
[IN] */
[I N] */

/* -> regular expression to compile
/* length thereof

*1
[I N] */
[I N] */
[I N] */
[IN] */
[I N] */

/* -> compiled expression area
/* 0- line mode 1- string mode
/* 0- reg expr 1- literal expr
/* error message
1* error status code

/* search for expression
/* -> compiled expression' area
/* -> buffer ctl block for file
/* beginning of string to search
/* end of string to search
/* beginning of match
/* end of match
/* end of string used for match
/* error message return
/* error status code

[OUT] '/e/
[OUT] */

*/
[I N] */
[I N] */

in f i 1 e [I N] */
[I N] *1

[OUT] */
[OUT] */
[OUT] */
[OUT] */
[OUT] */

/* END INCLUDE FILE ••••• tedsrch_.incl.pll ••••• */

E-13 CP50-OOB

MULTICS TEXT EDITOR(TED)
REFERENCE~UAL

ADDENDUMB

SUBJECT

Changes to the Manual

SPECIAL INSTRUCTIONS

This is the second addendum to CP50-00, dated December 1981. Refer to the
Preface for "Significant Changes:'

This manual is being reissued complete due to a production style change. The
reader need only be concerned with those pages containing change bars or
asterisks.

Insert the attached pages into the manual according to the collating instructions
on the back of this cover. Throughout the manual, change bars in the margin indi
cate technical additions and asterisks denote deletions.

Note: Insert this cover after the manual cover to indicate the updating of the
document with Addendum B.

SOFrWARESUPPORTED

Multics Software Release 11.0

ORDER NUMBER

CP50-00B

46524
1086
Printed in U.S.A.

October 1985 ,

Hone)"'ell

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove

With the exception of the
Front Cover, remove the
manual in its entirety.

Insert

Insert the Addendum Self Cover
behind the existing Front Cover,
then insert the entire manual.

The information and specifications in this document are subject to change without notice. Consult
your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc., 1986 File No.: ILI3 CP50-00B

10/85

see exclamation

&
see requests (s)

"***"
see evaluations

see bulk mode
<eval> 4-1
<request> 1-9
\037

see debug
\b

\c

\f

\1

\r

\s

see input functions

see escape sequence

see terminate input

see line mode

see input functions
see read mode

see string mode
\{}

see input functions
abbreviations C-l
abort (QUIT signal) 1-17, 1-18
active function

see ted
address 1-9

comP9und 1-8
default 1-10
prefix 1-7

syntax 1-7
use of

? B-4 B-20
special print' request B-46

addressing 1-.2 .. 1. 1-9
!:I'hsc1ntt:> 1_·..(

absoiute buffer 1-21
backup search 1-5
con textual 1-4

examples 1-6
errors 1-8
~xample 1-15
bterals 1-6
relative 1-4

ADR 1-9

10/85 i-I

ADRI 1-9
ADIU 1-9
annotate (") B-2

INDEX

auxiliary buffer 1-20. B-l1
basic operation 1-1
braces n 4-1
break mode 1-14
breakpoin ts

see debug
buffer 1-1. 1-20

"rigqt" to exist 2-2
abSQl.ute referencing 1-21
auxlbary 1-20

~~
ast remembered B-14

b 0 1-21
b) 1-20 .
curren t 1-20
modified (flag) 1-21
name 1-20

restriction 1-20
not-pasted 1-21. B-41
range 1-20
recursion 1-23
use of

Os 1-20
window 1-23 B-14
working buffer 1-20

bulk mode 1 ~ 12
termination (.) 1-12

centered data
see requests (h)

command
Multics B-7, B-IS B-19
ted A-2 '

concealing (\c)
see escape sequence

conditional execution
see ted_com

copy (or kopy)
see requests (k, !k)

current
buffer 1-20
line 1=10

see value of "."
cut and paste B-41

see requests (!m)

data format
centered

see r~uests (h)
left-justified

see requests (h)

CP50-OOB

data format (cont)
right-justified

see requests (h)

debug
breakpgint

\037 3-4, 3-5
use of 0 3-5

features 3-1
interactive example 3-1, 3-2, 3-6, 3-7, 3-9

edit mode 1-14
editing sequence 1-22
edi tor request format 1-9
error messaK.es D-l

example D-5
errors

addressing 1-8
escape sequence (\c) 1-9, 1-12, 1-22
evaluations 4-1

"***". (commentary) 4-14
arithmetic expresslon 4-5
arithmetic factor 4-5
arithmetic term 4-5
assignment 4-4
concatenate o~ration 4-4
data elements 4-6
description 4-2
edi ting function 4-2
examples 4-13
fak conversion options 4-12
input function 4-2
last ~rt 4-3
logical expression 4-4
metasymbOls 4-1
part 4-3
request 4-2
unary-operator expression 4-5

exclamation point iii
external functions

see ted
external request

writing E-l
falling out

see requests (%)

format
edi tor request 1-9

goto
see requests (»

help Jacility 1-28
Multics sxstem 1-28
ted "help 1-29, B-26
ted (\7) 1-29

I/O switches 1-2
info

file B-26
segmen ts 1-28

.......... nt .r" ... ~t'~"'''' 1_1" 1_""
UJ.p~'" J. YU..,"lVU,;) ~ ~~, ~ ~~

\b 1-23
use of 1-12, 1-21, 1-22, 1-23. 1-25, 3-1,

10/85 i-2

input functions (cont)
B-62

\r 1-24
use of 1-13, 1-24. 3-1, 3-2

\ {} 1-24
concealing 1-12

input mode 1-11
termination (\f) 1-12

interactive example 1-13, 1-17, 1-18. 1-25,
B-29, B-62

in terrupt request 1-17
kopy (or copy)

see requests (k. !k)
labels

see requests (:)
left-justified data

see requests (h)
line and string mode differences 1-15
line mode (\1) 1-14

example 1-15.
literals C-l, C-2
macro

see ted_com
metasymbols C-l

see evaluations
mode change 1-9
modes of o~ration 1-11

break 1-1.4
bulk 1-12

termination (.) 1-12
edit 1-14

line mode 1-14
string mode 1-15

input 1-11
termination (\f)

see terminate
read 1-13

Multics command B-7, B-18. B-19
multiple requests on a line 1-11
not-pasted 1-21, B-41
online documentation 1-29
pause

see debug
program_interrupt (pi) 1-16, 1-18
qedx mode A-7

diff erences A-7
QUIT signal 1-16, 1-18
read mode 1-13. 1-24

\r 1-13
requests

,... B-12
use of 1-21, B-3, B-4

!a B-13
use of 1-13. 1-25. 3-1

!b B-15

CP50-OOB

requests (cont)
!c B-17
!e B-19
!f B-20
!i B-31
!j B-36
!k B-38
!l B-40
!m B-41
!p B-47
!q B-48
!r B-51
!s B-54
!t B-54
!u B-55
!w B-58
!x B-59

use of B-20
B-2
% B-3

use of 1-21. B-62
" B-2
* B-6

use of B-4
. (see bulk mode)
.. B-7
: B-7

use of B-4
: (IabeI)

use of 3-1. 3-2
= B-9
> B-7

use of 1-23 3-6 B-4
? (see address prefix)
\1 B-I0

use of 3-5
\b (see input function)
\c (see escape sequence)
\f (see innut mode)
\1 isee line mode) \r see input function)
\r see read mode)
\s see string mode) \ n (see input function)
AU B-3
A* B-7
A> B-8
Ab B-16
Ar B-51
a B-12

use of 1-13
b B-14

use of 2-4, B-20, B-ll
c B-16
d B-17
e B-18

use of 1-18, 2-4
f B-19
g B-20
g* B-22
h B-24
help B-26

use of D-5
i B-29

use of 1-21
j B-31

use of B-36
k B-37
1 B-39

use of 2-4, 3-1, 3-2

10/85 i-3

m B-40
use of 1-20, B-42

n B-42
use of 1-10

o B-43
use of B-62

P B-46
use of 1-10, 1-13

q B-48
use of 3-6

qhold B-48
r B-48

use of 1-21, 1-25, B-9, B-19, B-20
s B-51

use of 1-13, 1-16
t B-54

U$e of 2-4, 3-1, 3-2, B-62
u B-54

use of 2-4
v B-20 B-56
w B-57
x B-58

use of 2-4
y B-59
z.fi.ad B-60
z.fi.na B-61
zdump B-61
zif B4>2

use of 1-25 3-1 3-2 3-5, B-11
{} B-10 ' , ·

use of 1-25
'" B-7

requests discarded 1-17. 2-3
return statement 1-23
right-justified data

see requests (h)

search-fail 1-14. 2-3
spacing 1-11
special characters C-1, C-2
string and line mode differences 1-15
string mode (\s) 1-15
ted

active function 1-25. 2-4
command A-2

list of requests A-8
execution 1-16
external functions 2-4
pung (t;lothing happening) 2-3
lDvocatlon 1-18

examl?le 1-18
options B-43
1"PIl11 pc:t OT{'\l1n;no- 1_""7 ... -"1---"" c£.,. ... r c ..I.. M'

requests
see requests

ted$qedx A-7
ted_act 2-4
ted com 2-1

conditional execution 2-3
generating 3-1
Initializatlon 2-2
interactive example 2-4

CP50-OOB

terminate
bulk mode (.) 1-12
input

\f 1-12, 1-13, 1-21, 1-22. 1-23. 1-24
trace

see debug
transfer control

see requests (:. >)

trust flag B-49

10/85 j-4

user-input
see read mode

user output see requests (f. !f)

value of "." 1-10
writing external request E-1

X\=
see requests (5)

xxx B-11
{}

see braces

CP50-00B

w
Z
..J

t:l
Z
o
..J
<t:
r
::>
u

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE MULT!CS TEXT EDITOR (TED)
REFERENCE MANUAL

ERRORS IN PUBUCATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel

and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

PLEASE FILL IN COMPLETE ADDRESS BELOW.

FROM: NAME __ __

TITLE _____________________________________ __

COMPANY _________________________________ ___

ADDRESS ________________________________ _

ORDER NO. CP50-00B

DATED OCTOBER 1985

DATE ______ _

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA 02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

I
I
I
I
I

• :::i
C)
z
o
..J
«
t
:::>
(J

w
Z
..J

C!)
Z ,. 9
«
Cl
..J
o
U.

w
Z
..J

C!)
z

iC 9 « I
!
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~

Cl
....J
o
U.

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Smitli Street, MS486, Waltham, Massachusetts 02154
In Canada: 155 Gordon Baker Road, Willowdale, Ontario M2H 3N7

In the U.K.: Great West Road, Brentford, Middlesex TW8 90H
111 Australia: 124 Walker Street, North Sydney, N.S.w. 2060

In Mexico: Avenida Nuevo Leon 250, Mexico 11, O.F.

34577, 7.5C582, Printed in U.S.A. CP50-00

	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	B-39
	B-40
	B-41
	B-42
	B-43
	B-44
	B-45
	B-46
	B-47
	B-48
	B-49
	B-50
	B-51
	B-52
	B-53
	B-54
	B-55
	B-56
	B-57
	B-58
	B-59
	B-60
	B-61
	B-62
	B-63
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	_001
	_002
	i-1
	i-2
	i-3
	i-4
	replyA
	replyB
	xBack

