
SUBJECT

LEVEL 68

ivlULTICS PAGE
PROCESSING SYSTEM

UTILITY MANUAL

Description of Software for the Support of the Honeywell Page Processing
System on Multics

SPECIAL INSTRUCTIONS

The software documented in this manual supports both the Honeywell Page
Printing Sytem (PPS) and the Honeywell Page Processing System (PPS II).

Some sections of this manual are written for users already familiar with the
procedures for making input/output tape attachments. The Multics I/O system
is described in the l\.1Pl\1 Reference Guide (Order No. AG91), and lIO module
descriptions can be found in MPM Subroutines (Order No. AG93) and MPM
Peripheral Input/Output (Order No. AX49).

SOFTWARE SUPPORTED

Multics Software Release MRS.O
NIPOLOS IBM Support Release 3.21

ORDER NUMBER

CJ97-00 May 19S0

Honeywell

PREFACE

This document describes the current state of the Multics Page Processing
System support. The software described here is compatible with NIPOLOS IBM
support release 3.21. Changes in PPS software may have an effect on the Multics
interface described here.

The software described in this manual was previously installed in the
Multics experimental library. This is its first official release.

When the term Multics is used as a noun in this document, it is meant to
refer to the Multics operating system. Similarly, when the acronym PPS is us~d
without parentheses, it is meant to refer to both the Page Printing System (PPS)
and the Page Processing System (PPS II).

~ Honeywell Information Systems Inc., 1980 File No.: 1L13

CJ97-00

Section 1

Section 2

Section 3

Section 4

Section 5

Appendix A

Appendix B

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 3-1.
Figure 3-2.
Figure A-1.
Figure A-2.

CONTENTS

Introduction •... • . . • .
The Page Processing System .
Multics Interfaces •..

Use of the pps 1/0 Module
Using the 170 Module • • .

Using the 1/0 Module with Language 1/0
Using the 1/0 Module with iox

Programming Examples
PL/I
FORTRAN .••.
COBOL • .
BASIC

Limitations of PPS Support on Multics .
Page Format •. ..•.
Character Sets •

Multics Commands Used With PPS
cv ppscf •
make_pps_tape

PPS 1/0 Module
pps

Attach Description
Open Operation
Close Operation
Detach Operation
put chars Operation .
Control Operation •
Modes Operation

Multics PPS Character Sets

Multics PPS Tape Format ...

ILLUSTRATIONS

A Simple PL/I Example.
An Example of Writing Multiple Reports
Another Example of Writing Multiple Reports.
A Simple FORTRAN Example.
An Example of Use of the Open Statement.
A COBOL Program to List a File on the PPS.
A Sample BASIC Program.
Character Positions Per Line ..
Lines Per Page•
The ppf6023 Character Table.
The ppf6025 Character Table.

iii

Page

1-1
1-1
1-2

2-1
2-1
2-1
2-1
2-1
2-2
2-5
2-6
2-7

3-1
3-1
3-1

4-1
4-3
4-5

5-1
5-2
5-2
5-3
5-3
5-3
5-3
5-4
5-7

A-1

B-1

2-3
2-~
2-5
2-5
2-5
2-6
2-7
3-2
3-2
A-2
A-3

CJ97-00

SECTION 1

INTRODUCTION

This document describes the software provided in the Multics system to
support the Honeywell Page Processing System.

THE PAGE PROCESSING SYSTEM

The Page Processing System (PPS) is an off-line, non-impact printing system
capable of printing up to 210 pages per minute (equivalent to 18,000 lpm). The
PPS consists of one or more read-only tape drives, a system controller, a print
unit, and one or more stacker units.

The read-only tape units are capable of reading tapes written at 556, 800,
or 1600 bpi.

The system controller is a Honeywell 716 or Level-6 processor.

The print unit employs a fixed electrographic print mechanism that moves
the paper at a constant rate of 30 inches per second (20 ips on slower models)
past a format drum containing the image of a "preprinted form" for fixed data
such as horizontal lines or company logo. This format drum is mounted by the
operator.

After passing this drum the paper passes a print station capable of
printing 132 character lines read from the input tape. This unit is capable of
printing with 4, 6, 8, or 10 lines per inch vertically and 10 or 12 characters
per inch horizontally. The print unit is also capable of printing up to 255
copies of a report while reading the input tape only once. Also included in the
print mechanism is a paper cutter and hole punch which allow a variety of page
sizes and punched hole configurations.

Each stacker unit provides 8 trays, each capable of holding up to 500
sheets. Stacker algorithms supported include stacKIng one report per tray, one
copy per tray (for multiple copy reports), and simple overflow from one tray to
the next with or without separator sheets (a separator sheet is a blank page
slightly longer than a printed page).

1-1 CJ97-DD

MULTICS INTERFACES

Two user interfaces to the
described in this document.
make_pps_tape command.

PPS are available
They are: the

on Multics. They
pps_ 1/0 module

are both
and the

The first, the pps 1/0 module, requires the user to take an active part in
the preparation of the PPS tape. The user (or user's program) must attach,
open, write to, close and detach the 1/0 switch being used. This method also
requires access to use a tape drive on the Multics system. Examples
demonstrating the use of the pps 1/0 module are given in Section 2, and a
complete description of the 1/0 module can be found in Section 5. A complete
description of the make_pps_tape command can be found in Section 4.

the second interface, the make_pps_tape command,
on the part of the user or the system administrator.
access to write the PPS tape on the Multics system.

requires no extra effort
The user need only have

The 1/0 module approach is usually better for producing large reports
because it offers the user maximum control over the PPS functions employed in
the production of the output and does not require that an intermediate copy of
the report be online. The make pps tape command allows individual users (or
groups of users) with printable fIles-to produce tapes that can be processed on
a PPS system.

1-2 CJ97-00

SECTION 2

USE OF THE pps_ lID MODULE

The pps lID module is designed to give the user maximum control over the
PPS reports produced. It provides for the generation of multiple report tapes
while allowing full control over page format (i.e., page labels, indentation,
channel stops, etc.).

USING THE lID MODULE ----- --- ---

The pps lID module can be used with the lID features of the Multics
programming languages or by calling the iox subroutine directly to produce
tapes that can be printed offline on the Page- Processing System. There are no
special restrictions on the number of reports per volume or the number of
volumes per report.

Using the 1/0 Module with Language 1/0

The pps 1/0 module should be used to attach and then open an 1/0 switch
for each separate file being copied. The only opening mode supported is
stream output. Each time the 1/0 switch is attached and opened a new report is
started on the output tape. Once the report has been written on the pps tape,
the I/O switch is closed and detached and is then ready for another report.
Subsequent reports simply require that the user repeat this attach, open, write,
close, detach sequence as often as necessary.

For multiple reports, each attachment except the last one should be made
with the -retain all option. The last attarihment should be made with the
-retain none option. These attachments can also be made with the retain all and
retain none control orders rather than. the -retain control argument.

Using the 1/0 Module with iox

When the iox subroutine is called directly, multiple report generation can
be simplified greatly by using the new report control order. For details, see
the example in figure 2-3 and the descrIption of the new_report control order in
Section 5.

PROGRAMMING EXAMPLES

The examples that follow in this section show how a
output reports using the supported languages of Multics.
complete description of the pps_ 1/0 module.

2-1

user can produce PPS
See Section 5 for a

CJ97-00

PL/I

The PL/I example in figure 2-1 is designed to transfer a single report to
an output tape. It queries the user for two arguments: the name of the file to
be printed and the tape on which the output is to be placed. The program opens
the input and output files, reads and writes the text, and finally closes the
two files.

The example of figure 2-2 shows the steps that must be taken to produce
multiple reports on the same tape. The extra steps involved are required by the
operation of PL/I liD.

Figure 2-3 shows yet another method of producing multiple reports on the
same tape, but it does not use the -retain all control argument. Instead it
uses the control order new report, which is pr.eferable because the program does
not open and close the output file for each report and thus avoids the risk of
leaving the output tape mounted but unattached.

example1: proc ();

dcl buffer char (1000) varying; 1* text buffer *1
dcl com err entry options (variable);
dcl endfile-condition; 1* the end of file condition *1
dcl file name char (168); 1* file to be displayed *1
dcl input file; 1* the input file *1
dcl output file; 1* the output file *1
dcl p11 io $error code entry (file) returns (fixed bin (35»;
dcl sysIn Input fIle; 1* user input *1
dcl sysprint print file; 1* user-output *1
dcl tape name char (32); 1* reel-id of the output tape *1
dcl undefinedfile condition; 1* in case of error *1

put skip list ("File name ?");
get list (file name);
on undefinedfile (input) begin;

call com err (p11 io $error code (input), "example1",
"Cannot-open inPUt file: Fil.e name = "'a.", file_name);

go to exit;
end;
open file (input) title ("vfile " I I file_name) stream input;
revert undefined file (input);

put skip list ("Tape name ?");
get list (tape name);
on undefinedfile (output) begin;

end;

call com err (p11 io $error code (output), "example1",
"Cannot-open 'Output fife. Volume = "'a", tape name);

close file (input); -
goto exit;

open file (output) title ("pps -volume" : I tape_name) print stream output
revert undefined file (output);

all done:

on endfile (input) goto all done; 1* watch for end of file *1
do while ("1"b); -

end;

read file (input) into (buffer); 1* get a line *1
write file (output) from (buffer); 1* and write it *1

1* we have read all data *1
close file (input), file (output); 1* close all files *1

exit: return;
end example1;

Figure 2-1. A simple PL/I example.

2-2 CJ97-00

example2: proc ();

dcl buffer char (1000) varying; 1* text buffer *1
dcl code fixed bin (35); 1* error code from iox *1
dcl com err entry options (variable);
dcl endfile-condition; 1* the end of file condition *1
dcl file name char (168); 1* file to be displayed *1
dcl input file; 1* the input file *1
dcl output file; 1* the output file *1
dcl output opened bit (1) init ("U"O); 1* ON => tape was opened once *1
dcl p11 io-$error code entry (file) returns (fixed bin (35»;
dcl sysIn Input fIle; 1* user input *1
dcl sysprint print file; 1* user-output *1
dcl tape name char (32); 1* volume name for output tape *1
dcl undefinedfile condition; 1* in case of error *1

TRY AGAIN:

put skip list ("Tape name ?");
get list (tape_name);

do while ("1"b);

put skip list ("File name ?");
get list (file name);
if file name =-"*,, then goto EXIT;
on undefinedfile (input) begin;

call com err (p11 io $error code (input), "example2",
"Cannot-open Input file-:- File name = "'a.",

ALL DONE:

EXIT:

end;

file name);
goto TRY_AGAIN;

end;
open file (input) title ("vfile " :: file name) stream input;
revert undefinedfile (input);

on undefined file (output) begin;

pnn o _ .. - ,

call com err (p11 io $error code (output), "example2",
"Cannot-open output file. Volume = "'a.", tape_name);

close file (input);
goto EXIT;

open file (output) title ("pps_ -volume" :: tape_name:: " -ret all")
print stream output ;

revert undefined file (output);
output_opened = "1"b;

on endfile (input) go to ALL_DONE; 1* watch for end of file *1
do while ("1"b);

end;

read file (input) into (buffer); 1* get a line *1
write file (output) from (buffer); 1* and write it *1

1* we have read all data *1
close file (input), file (output); 1* close all files *1

if output_opened then do; 1* tape .ever attached? *1
open file (output) title ("pps -volume" :: tape name:: " -ret none")

print stream output; - -
close file (output);

end;
return;

end example2;

Figure 2-2. An example of writing multiple reports.

2-3 CJ97-00

example3: proc ();

dcl buffer char (1000) varying; /* text buffer */
dcl com err entry options (variable);
dcl endfile-condition; /* end of file condition */
dcl file name char (168); /* file to be displayed */
dcl input file; /* the input file */
dcl output file; /* the output file */
dcl iocbp ptr; /* output IOCB ptr */
dcl iox $control entry (ptr, char (*), ptr, fixed bin (35»;
dcl code fixed bin (35); /* error code */
dcl p11 io $error code entry (file) returns (fixed bin (35»;
dcl p11-io-$get iocb ptr entry (file) returns (ptr);
dcl sysln Input-file; /* user input */
dcl sysprint print file; /* user-output */
dcl tape name char (32); /* reel-id of output tape */
dcl undefinedfile condition; /* in case of error */

put skip list ("Tape name ?");
get list (tape name);
on undefinedfile (output) begin;

call com err (p11 io $error code (output), "example3",
"Cannot o'pen output file. - Volume = a", tape_name);

goto EXIT;
end;

open file (output) title ("pps -volume" :: tape_name)
print stream output; -

revert undefined file (output);

do while ("1"b);
put skip list ("File name ?");
get list (file name);
if file_name =-"*" then goto ALL_DONE;
on undefinedfile (input) begin;

call com err (p11 io $error code (input), "example3",
"Cannot open input-file. -File name = a." ,
file name);

goto NEXT;
end;

open file (input) title ("vfile " :: file_name) stream input;
revert undefined file (input);
iocbp = p11 io $get iocb ptr (output);
call iox $control (IocbP: "new report", null (), code);
if code ~= 0 then do; -

call com err (code, "example3",
"Unable to begin new report.");

goto EXIT;
end;
on endfile (input) begin;

close file (input); /* close this input file */
goto NEXT;

end;
do while ("1"b);

read file (input) into (buffer); /* get a line */
write file (output) from (buffer); /* and write it */

end;
NEXT: end;

ALL DONE: close file (output); /* close all files */

EXIT: return;

end example3;

Figure 2-3. Another example of writing multiple reports.

2-4 CJ97-00

FORTRAN

The FORTRAN example of figure 2-4 is simply a program to print the first 25
powers of 2. Before executing this program, the user must attach 1/0 switch
file03 using the pps_ 1/0 module with an io command, such as follows:

io attach file03 pps_ w-100

where w-100 is the name of a tape volume. Another version of this program with
the file attachment specified in an open statement is shown in figure 2-5. Note
that this sample program always asks for tape volume w-100.

do 10 i=1,25
10 write (03,11)i,2**i
11 format(1x,i5,i12)

stop
end

Figure 2-4. A simple FORTRAN example.

open (03,form="formatted",attach="pps w-100",mode="out",
&access=~sequential") -

do 10 i = 1 ,25
10 write (03~11)i~2**i
11 format(1x,i5,i12)

stop
end

Figure 2-5. An example of use of the open statement.

2-5 CJ97-00

COBOL

The COBOL example program in figure 2-6 reads the file attached to the insw
1/0 switch and writes the content of this file on the PPS tape. Before
executing this program, the user must attach both insw and outsw 1/0 switches
using an io command, such as follows:

io attach insw vfile xyz
io attach outsw pps_ w-100

where xyz specifies the file to be printed and w-100 is the name of a tape
volume. Note that the COBOL program treats the PPS attachment as a printer and
that the resultant report will be double spaced.

identification division.
program-ide example6.
environment division.
configuration section.
source-computer. Multics.
object-computer. Multics.
input-output section.
file-control.

select external pps assign to outsw-printer.
select external qaz assign to insw;
organization is stream.

data division.
file section.
fd pps data record is pps-rec,

label records are omitted.
01 pps-rec picture x(120).
fd qaz data record is qaz-rec,

label records are omitted.
01 qaz-rec picture x(120).
working-storage section.
procedure division.
open-files.

open input qaz.
open output pps.

loop.
read qaz record; at end go to close-files.
move qaz-rec to pps-rec.
write pps-rec after advancing 2 lines.
go to loop.

close-files.
close qaz, pps.
stop run.

Figure 2-6. A COBOL program to list a file on the PPS.

2-6 CJ97-00

BASIC

The BASIC example
program in figure 2-5.
volume w-l00.

shown in figure 2-7 is the equivalent of the FORTRAN
Note that this sample program always asks for tape

0010 file '1: ":foo pps -volume w-l00"
0020 for i = 1 to 25 -
0010 print '1: i; 2

A

i
0040 next i
0050 end

Figure 2-7. A sample BASIC program.

2-7 CJ97-00

SECTION 3

LIMITATIONS OF PPS SUPPORT ON MULTICS

There are limitations placed on the Multics user by the PPS interface
described in this document. Some are avoidable by extra user coding, some are
due to limitations of the Multics PPS support software, others are due to the
PPS system itself.

PAGE FORMAT

The page format limitations are due to physical limitations of the PPS
hardware. The PPS line length is limited to 132 print positions. That is, no
print line can represent more than 132 columns of printed output. The page
length is limited to a maximum of 93 lines per printed page. These values may
be restricted further, of course, by the physical page dimensions. Tables 3-1
and 3-2 show the line length and page length limits for all of the allowable
page sizes.

CHARACTER SETS

In' all cases the Multics PPS support software attempts to produce PPS
output that is visually similar to output produced by Multics on a terminal or
line printer. With the PPF6025 hardware option on the destination PPS system
almost all underscored text and many other overstruck character combinations are
possible. If the user specifies the "-char table ppf6025" control argument in
the pps attach description, any overstruck character combination that can be
reproduced on the PPS will be accommodated. Any combination not representable
on the PPS will be displayed as a special "black box" character. This "black
box" character is just as its name suggests - a one character black rectangular
box. With the standard PPS font (known as NIP optimized), any underscored text
will have the underscores removed and any other overstruck character
combinations that cannot be reproduced on the PPS will be displayed as a "black
box".

It is possible, using the cv ppscf command, to define Multics ASCII strings
(either single characters or sequences of overstruck characters) that represent
any of the 8 bit characters of the PPS. See Section 4 for a description of
cv ppscf and Section 5 for a description of the -char table control argument to
the pps_ 1/0 module.

3-1 CJ97-00

paper width
(inches)

5.0
5.5
7.5
8.0
8.5
11 .0

characters per line
(physical line length)

small characters
(pitch = 12.8)

58
64
89
96
102
132

large characters
(pitch = 10)

46
51
71
76
81
106

Figure 3-1. Character positions per line.

sheet length usable lines per page
(inches) (physical page length)

lpi = 4 lpi = 6 lpi = 8 Ipi = 10

3.0 8 14 20 26
3.5 10 17 24 31
4.0 12 21 28 36
4.5 14 23 32 41
5.0 16 26 36 46
5.5 18 29 40 51
6.0 20 32 44 56
7.0 24 38 52 66
8.0 28 44 60 76
8.5 30 47 64 81

10.0 36 56 76 93
11 .0 40 62 84 93
12.0 44 68 93 93
14.0 52 80 93 93

Figure 3-2. Lines per. page.

3-2 CJ97-00

SECTION 4

MULTICS COMMANDS USED WITH PPS

The commands described in this section allow the user to create tables to
control character conversions done by pps and to create listings tapes for
printing on the PPS. The discussion below briefly describes the context of the
various divisions of the command descriptions.

Name

The "Name" heading for each command lists the full command name and any
abbreviated form. The name is usually followed by a discussion of the purpose
and function of the command and the expected results from the invocation.

This part of the command description first shows a single line that
demonstrates the proper format to use when invoking the command and then
explains each element in the line. The following conventions apply in the usage
line.

1. Optional arguments are enclosed in braces (e.g., {path}, {User_ids}).
All other arguments are required.

2. Control arguments are identified in the usage line with a leading
hyphen (e.g., {-control args}) simply as a reminder that all control
arguments must be preceded by a hyphen ·in the actual invocation of the
command.

3. To indicate that a command
argument, an "s" is added to
{-control_args}).

accepts more than one
the argument name (e.g. 1

of a specific
paths, {paths} s

NOTE: Keep in mind the difference between a plural argument name that is
enclosed in braces (i.e., optional) and one that is not (i.e.,
required). If the plural argument is enclosed in braces, clearly no
argument of that type need be given. However, if there are no
braces. at least one argument of that type must be given. Thus
"paths" in a usage line could also be written as:

pathl {path~ ..• path~}

The convention of using "paths" rather than the above is merely-a
method of saving space.

4-1 CJ97-00

Notes

Comments or clarifications that relate to the command as a whole are given
under the "Notes" heading. Also, where applicable, the required access modes,
the default condition (invoking the command without any arguments), and any
special case information are included.

Examples

The examples show different valid invocations of the command.
exclamation mark (!) is printed at the beginning of each user-typed line.
is done only to distinguish user-typed lines from system-typed lines.
results of each example command line are either shown or explained.

An
This

The

4-2 CJ97-00

Name: cv ppscf

The cv ppscf command converts a data file known as a pp~ character tIle
into a source segment that is then assembled to create a PPS character table.
This character table can then be used to control the translation of Multics
ASCII characters and overstruck character sequences to PPS characters (a
modified EBCDIC character set).

cv_ppscf path {-control_args}

where:

1 . path
is the pathname of the PPS character file. If the suffix ppscf is
not supplied it is assumed.

2. control args

Notes

can be chosen from the following:

-list, -Is
causes a listing file to be produced. The name of this file is the
source path with the ppscf suffix replaced by the ppsctl suffix.

-long, -lg
causes a message reporting the usage of the available positions in
the character matrix to be printed.

Execution
path.alm. The
assembler. The
Order No. AK92.

of this command
output segment
aIm command is

results in the creation of a segment called
must then be assembled using the Multics ALM
described in the MPM Subsystem Writers' Guide,

The PPS character file consists of lines of character definitions. The
first line of the file is used to specify the default character and space
character as two hexadecimal values separated by white space. The default
character is used to represent any character or sequence that is not defined in
the remainder of the character file. The space character defines the PPS
equivalent for the ASCII space character. The remaining lines define Multics
ASCII equivalents for the PPS characters (one definition per line).

A PPS character is defined by specifying the hexadecimal value for the
character followed by the ASCII equivalent. This ASCII equivalent can be a
series of ASCII characters, in which case the overstruck combination of these
characters is defined. The sequence of ASCII characters can only contain
printable characters.

A PL/I like comment can be specified at the end of any line in the PPS
character file.

4-3 CJ97-00

The delimiters used in parsing these definition lines are white space.
This includes the characters space and horizontal tab.

The one restriction on any overstruck sequence that is being defined is
that all subsets of the overstruck sequence must also be defined in the
character file. This means that if a user is defining "A" overstruck with" "
(i.e. "!") both "A" and" " must also be defined in the character file.

Examples

Listed below is the input file for the cv ppscf command which defines three
PPS characters (plus, minus, and underscore)-and all of their combinations as
overstruck characters. The hexadecimal representation is that of the ppf6025
character table shown in figure A-2 in Appendix A.

ff 40
04 +-
6d
4e +
60 -
31 -
24 +

1* define default and space characters */
1* now define PPS hex values for ASCII *1
1* sequences listed *1

4-4 CJ97-00

make_pps_tape

The make pps tape command is a convenient means by which a user can create
a magnetic tape which can be printed on the PPS.

make pps_tape target_spec paths

where:

1. target_spec
can be one of the following~

-volume volume name, -vol volume name
specifies- the name of the tape volume to be used.
below).

-target description attach desc, -tds attach desc

(see Notes

specifies the attach description to be used (See Notes below).

2. path
is the pathname of a file to be processed.

Notes

If the -volume control argument is specified the make pps tape command
attaches a uniquely named 1/0 switch using an attach description-of the form
"pps -volume volume name". If the -target de~cription control argument is
specIfied the make_pps_tape command will attach a uniquely named 1/0 switch
using the attach description specified. Use of the -volume control argument is
recommended rather than -target_description because it is simpler.

Examples

In the following example all of the segments in the user's working
directory with the suffix list will be written to tape 12763:

! make_pps_tape -vol 12763 [segs **.list]

The next example shows the use of -target_description:

make_pps_tape -tds "pps_ 12763 -ct ppf6025" [segs **.list]

4-5 CJ97-00

SECTION 5

PPS 1/0 MODULE

This section describes the PPS 1/0 module. The description is similar to
the 1/0 module descriptions found in MPM Subroutines (Order No. AG93) and MPM
Peripheral InputlOutput (Order No. AX49).

For a general description of the 1/0 system see "Multics InputlOutput
System" in section V of MPM Reference Guide (Order No. AG91).

5-1 CJ97-00

Name: pps_

This I/O module attaches a uniquely named target I/O switch using the
tape ibm I/O module, such that a tape suitable for processing on the PPS will
be produced.

Entry points in this module are not called directly by users; rather the
module is accessed through the I/O system.

Attach Description

The attach description has the following form:

pps_ {volids} {-control_args}

where:

1. volid
is the name of a tape volume to be used for output.

2. control args
can be chosen from the following:

-bottom label XX, -blbl XX
specifies that the string XX is to
of every page of output until it
control order.

be used as a label at the bottom
is modified by the page_labels

-char table XX, -ct XX
specifies the pathname of the PPS character table to be used. The
default character table is ppf6023 (see Appendix A). This character
table is created using the cv_ppscf command.

-density n, -den n
specIfies the density of the tape to be produced, where n can be
either 1600 or 800. If this control argument is not given,-the tape
will be produced at 1600 bpi.

-label XX, -lbl XX
specifies the string XX as a label at the top and bottom of every
page until it is modified by the page_labels control order.

-modes XX, -mds XX
specifies the initial mode string XX to be used.
Operation" below.)

-number n, -nb n

(See "Modes

specifies the file number at which this report is to begin. This
control argument can be used to add new reports to an existing tape
or overwrite specific reports on a tape (see tape ibm in MPM
Peripheral Input/Output, Order No. AX49, for details). - Since a
single attachment can result in multiple output files being placed
on the tape, care must be taken when using this control argument.

5-2 CJ97-00

-retain XX, -ret XX
specifies the disposition of the PPS tape on detachment of this
switch. Valid values for XX are "all" and "none". The default is
"none".

-top label XX, -tlbl XX
-speclfies the string XX as a label to be used at the top of every

page of output until it is modified by the page_labels control
order.

-volume XX, -vol XX
specifies the tape volume XX as an output tape volume for the target
attachment. This control argument must be used when a volume name
begins with a hyphen (-).

Open Operation

The only opening mode supported is stream output. Opening the 1/0 switch
results in the attachment and opening of the target switch.

Close Operation

Closing the 1/0 switch results in the closing and detachment of the target
switch, thus terminating the current PPS output report.

Detach Operation

Detaching the 1/0 switch releases any temporary segments created during the
attachment.

put chars Operation

The put chars operation formats the data into a form acceptable to the PPS
and writes it on the output tape.

5-3 CJ97-00

Control Operation

The 110 module supports the following control operations.

channel stops
end of page
get-:-count
get-error count
get-positIon
insIde page
new report
outside page
page labels
paper info
pps paper info
reset -
retain all
retain-none
runout­
set_position

In the descriptions below, info ptr is the information pointer specified in the
iox $control call. Unless specified otherwise, the 110 switch can be either
open or closed when processing control orders.

channel stops
sets the software channel stops.
following structure in which the
(prt_order_info.incl.pI1):

The info ptr must point to the
channel- stops are specified

dcl channel_stops(256) bit(16) based(info_ptr) unaligned;

where:

channel stops
defines which of the 16 possible channel stops have been set in
each of the 256 possible lines on -a physical page

end of page
positions the output to the end of the current page and writes the
bottom page label if specified. The liD switch must be open.

get_count
returns information about the current page format and print position.
The info ptr must point to the following structure
(prt_order_Info.incl.pI1):

dcl 1 counts
2 line

based(info ptr) aligned,
fixed bin,-

where:

line

2 page length
2 lmarg
2 rmarg
2 line count
2 page=count

fixed bin,-
fixed bin,
fixed bin
fixed bin,
fixed bin;

is the current line number.

5-4 CJ97-00

page length
-is the current page length.

lmarg
is the current left margin column.

rmarg
is the current right margin column.

line count
is the number of lines printed since the last reset.

page count
-is the number of pages printed since the last reset.

get error count
- is sImply provided for compatibility with the printer software. The

info ptr must point to the following return value
(prt=order_info.incl.p11):

dcl ret error count fixed bin based(info_ptr);

where ret error count is always returned as zero.

get_position
returns the current print position

to
and

the
certain statistics. The

info ptr must point following structure
(prt=order_info.incl.p11):

dcl 1 position data
2 line number
2 page-number
2 total lines
2 total-chars
2 pad

where:

line number

based(info ptr) aligned,
fixed bin(35),
fixed bin(35),
fixed bin(35),
fixed bin(35),
(4) fixed bin;

-is the current line on the page.

page number
-is the current page number.

total lines
Is the number of lines printed since the last reset order.

total chars
Is the number of characters processed since the last reset order.

pad
is reserved for future use.

inside page
moves the current print position to the top of the next page. The 1/0
switch must be open.

new report
- starts a new report on the current PPS tape. This implicitly does a

reset control order. The 1/0 switch must be open.

5-5 CJ97-00

outside page
moves the current print position to the top of the next page. The 1/0
switch must be open.

page_labels
sets the current page labels. If the info ptr is null the page labels
are reset and will not appear on output-produced. If the Aendpage
mode has been specified an error will result. To set page labels the
info_ptr must point to the following structure
(prt_order_info.incl.p11):

dcl 1 page labels
2 top label
2 bottom label

where:

top label

based(info ptr) aligned,
char(136),-
char(136);

- is the label placed at the top of every page.

bottom label
is the label placed at the bottom of every page.

paper info
sets the current page size. If an invalid paper size is specified an
error will occur (see figure 3-1). The pitch is always set to 12.5
characters per inch by this control order. This order is supported
for compatibility with the printer software. The info ptr must point
to the following structure (prt_order_info.incl.p11):

dcl 1 paper info

where:

2 phys page length
2 phys-line-length
2 lines_pe()nch

phys page length

based(info ptr) aligned,
fixed bin,-
fixed bin,
fixed bin;

is the number of lines that would be printed on the page if all
lines were printed (as when in Aendpage mode).

phys line length
-is the number of print positions per line on the page.

lines per inch
Is the number of printed lines per inch of paper.

pps paper info
- sets-the page size being processed. This control order should be used

rather than paper info whenever possible. The info ptr must point to
the following structure (pps_paper_info.incl.p11):

dcl 1 pps paper info
2 sheet wId th
2 sheet-length
2 lines-per inch
2 chars=per=inch

5-6

aligned based(info ptr),
fixed dec(5,1), -
fixed dec(5,1),
fixed dec(5,1),
fixed ded(5,1);

CJ97-00

reset

where:

sheet width
Is the width in inches of the paper to be used.
are: 5.0, 5.5, 7.5, 8.0, 8.5, and 11.0.

sheet length

Valid values

Is the length in inches of the paper to be used. Valid values
are: 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0, 8.0, 8.5, 10.0,
11.0, 12.0, and 14.0.

lines per inch
Is the number of lines per inch. Valid values are: 4.0, 6.0,
8.0, and 10.0.

chars per inch
Is the number of characters per inch (pitch). Valid values are:
10.0 and 12.5.

sets the default mode, and resets the number of lines printed and the
number of characters processed. This control order is included to
make programs written for printer software compatible with PPS
software.

retain all
causes the retain all order to be passed to the target 1/0 switch.
This causes the output tape to be retained when the 1/0 switch is
detached. This control order should be used as described in Section
2.

retain none
resets This control order should be used as described in
Section 2.

runout
causes all data buffered internally by the pps_ 110 module to be
written to the tape.

set position
- sets the

info ptr
control
control
software

Modes Operation

line, page and character counts kept by the 1/0 module. The
must point to the same structure as for the get position

order. The line number value supplied is ignored. This
order is included to make programs written for printer
compatible with PPS software.

The modes operation is supported whenever the switch is attached. The
recognized modes are listed below. These modes are also accepted following the
-modes control argument in the pps_ attach description.

default
resets
setting
pl<PL>,
<PL> is
inch.

all modes to their default values. This is equivalent to
the modes endpage, vertsp, edited, fold, A esc , print, II<LL>,
inO, stopO where <LL> is the current physical line length and
the current physical page length minus the number of lines per

5-7 CJ97-00

debug, Adebug
causes the 1/0 module to enter debug mode.
recommended for users. (Default is Adebug.)

This mode is not

edited, Aedited
specifies that ASCII control characters that do not affect carriage or
paper motion are to be escaped (e.g., \177 for DEL). Otherwise, these
control characters are ignored. (Default is Aedited.)

endpage, Aendpage
specifies that when the normal printed area of a page is overflowed,
printing is continued on the next page. Otherwise, text is printed on
every line of the physical page. (Default is endpage.)

esc, esc
specifies that the special processing of the ASCII ESC character is to
be enabled. (Default is Aesc.)

fold, Afold

inn

lIn

pl~

pll~

ppl~

specifies that lines that are longer than the line length are folded
to the next line. Otherwise, such lines are truncated to n print
positions (where n is the current line length). (Default is fold.)

specifies that each line of output is to preceded by n spaces.
(Default is in 0.)

specifies the length in print positions of the output line. When an
attempt is made to use more than n print positions on a line the
remaining text is moved to the next line or discarded depending on the
setting of the fold mode. (Default is 11 132.)

specifies the length in lines of the printed page. When an attempt is
made to print the n+1th line on the page a form feed character is
inserted causing the output to proceed on a new page unless the
end page mode is off. (Default is pI 60.)

specifies the physical line length in characters. This value cannot
be smaller than the line length. (See figure 3-1). (Default is pll
132.)

specifies the physical page length in lines. This value must be
chosen to correspond to a valid PPS paper size (see figure 3-2).
(Default is ppl 64.)

vertsp, Avertsp
performs the vertical tab and form
characters are simply mapped into
vertsp.)

feed functions. Otherwise, these
newline characters. (Default is

In order to provide some compatibility with the printer software, some
additional modes are supported:

1pg
has no effect on the pps_ 1/0 module.

non edited, ~non edited
is the complement of edited (i.e., non edited = Aedited).

5-8 CJ97-00

noskip
is the complement of end page (i.e., noskip = Aendpage).

print, Aprint
has no effect on the pps_ 1/0 module.

single, ASingle
is the complement of vertsp (i.e., single = Avertsp).

stopn
-has no effect on the pps_ 1/0 module.

truncate, Atruncate
is the complement of fold (i.e., truncate = Afold).

Notes

Because the target 1/0 switch uses the tape ibm 1/0 module, the user's
process may get queries from tape ibm. See Peripheral InputlOutput (Order No.
AX49) for a description of tape_ibrn_.

The volume names specified in the attach description are used in the order
they appear in the attach description.

There are two character tables supplied as part of the released PPS
software. They are ppf6023 and ppf6025. The ppf6023 character table contains
92 printable ASCII characters with all of the underscored characters mapped to
remove the underscores. The ppf6025 character table contains these same 92
printable characters as well as these characters overstruck with the underscore
character. For a full description of these character tables see Appendix A.

The 1/0 module may hold data in buffers between operations. For this
reason no operations should be attempted on the target 1/0 switch while it is
being used with the pps_ 1/0 module.

5-9 CJ97-00

APPENDIX A

MULTICS PPS CHARACTER SETS

There are two PPS character sets supported by the Multics
package. The character set in figure A-1 is the ASCII character
underscored characters (ppf6023). The second character set allows
overstruck character sequences in addition to the characters in
These additional characters are shown in figure A-2.

PPS support
set without
a number of
figure A-1.

The figures that follow show the correspondence between the PPS character
set and the Multics ASCII character set. The PPS characters are shown in
hexadecimal and the ASCII characters or character sequences are shown without
backspaces. Figure A-1 for example shows that the ASCII string A is the same as
the PPS character represented by C1(16).

A-1 CJ97-00

HEX ASCII HEX ASCII HEX ASCII HEX ASCII HEX ASCII

40 fl 1 c2 B e6 W 92 k -5a f1 1 c3 C e6 W 92 k
5a f2 2 - c3 ,.. e7 x- 93 1 -\J -7f " f2 2 c4 D e7 X 93 1 - -7f " f3 3 c4 D e8 y 94 m - -7b /I f3 3 c5 E e8 y 94 m -7b /I f4 4 c5 E e9 Z 95 n - -5b $ f4 4 c6 F e9 Z 95 n
5b $ f5 -5 c6 F ad [96 0

6c % - f5 5 c7 G
- ad [96 0 -6c % f6 6 c7 G eO \ 97 p

50 & - f6 6 c8 H - eO \ 97 p
50 & f7 7

- c8 H bd] 98 -q
7d f7 7 c9 I - bd] 98 q - -7d f8 8 c9 I 5f 99 r
4d (- f8 8 d1 J 5f 99 r
4d (f9 9 - d1 J 3d "T a2 I s
5d) f9 9 d2 K - 3d "I a2 I s
5d) 7a - d2 K 6d a3 t -
5c *

- 7a d3 L 81 - a3 t a
5c * 5e d3 L 81 a a4 u - -4e + 5e '- d4 M 82 b a4 u
1 1 +- 4c < d4 M 82 b a5 v
11 +- 8c <= d5 N 83 c a5 v -4e + 8c <= d5 N 83 c a6 w
6b 4c < d6 0

- 4a cT a6 w
6b 7e = d6 0 4a cl a7 x -60 ae => d7 p 84 d a7 x
32 -< ae => d7 P 84 d a8 y -
32 -< 7e = d8 Q 85 e a8 y
07 be _T d8 Q 85 a9 --= -I e z
07 be _I d9 R - 86 f- a9 -= -I Z

60 6e > d9 R 86 f 8b {
8f T 6e > e2 S - 87 8b { -I g -8f I 6f ? e2 S 87 4f -I g
4b 6f ? e3 T - 88 h - 4f -4b 7c @ e3 T 88 h 9b - -61 / 7c @ e4 U 89 i 9b
61 / c1 A - e4 U 89 i - - -fa a c1 A e5 V 91 j
fa 0 c2 B- e5 V 91 j-

Figure A-i. The ppf6023 character table.

A-2 CJ97-00

HEX ASCII HEX ASCII HEX ASCII HEX ASCII HEX ASCII

40 f1 1 49 B e6 W 92 k
5a 36 1 c3 C 71 W cc k
25 f2 2 - 51 C e7 x- 93 1
7f "

- 37 2 c4 D- 72 X cd 1
26 " f3 3 - 52 D e8 y- 94 m - -7b If 38 3 c5 E 73 y cf m - -27 II f4 4 53 E e9 Z 95 n - -5b $ 39 4 c6 F 74 Z dO n
28 $ f5 -5 54 F ad [- 96 0

6c % - 3a 5 c7 G db [da 0 - -
29 % f6 6 55 G eO \ 97 p
50 &

- 3b 6 c8 H - eO \ dc
- p-

2a & f7 7 56 H bd] 98 q
7d 3c 7 c9 I - 75] dd q
2b f8 8 - 57 I 5f 99 -r -4d (3e 8 d1 J 22 de r
2c (f9 9

- 58 J 3d AT a2 1 s
5d)- 3f 9 d2 K - 3d "I df 1 s
2d) 7a - cb K 6d a3 t -

5c *
- 41 d3 L 81 - t a ea

2e * 5e 59 L e1 a a4 u
4e 42 d4 M- 82 b - eb + '- u
11 +- 4c < 62 M 78 b a5 v
04 +- 8c <= d5 N 83 c ed v
24 + 23 <= 63 N 79 c a6 w
6b 43 < - d6 0- 4a ,.,' ee ._,

VI ..
33 7e = 64 0 17 ci a7 x
60 ae => d7 P 84 d ef x
32 -< 16 => 65 P 80 d a8 y
07 -= 44 = d8 Q- 85 e fa y-
31 be _T 66 Q 8a . e a9 z -I

8f T 18 _I d9 R- 86 f- fb z -I -I

4b 6e > 67 R 90 f 8b {

30 45 > e2 S- 87 g fc {
61 I - 6f ?

- 68 S 9a 4f - g-
02 iO 46 ? e3 T 88 h fd i
be 1= 7c @- 69 T aa h 9b }-
18 1= 47 @ e4 U - 89 i fe }

34 I c1 A- 6a U ba i
fO 0- 48 A e5 V - 91 j -
35 0 c2 B- 70 V ca j -

Figure A-2. The ppf6025 character table.

A-3 CJ97-00

APPENDIX B

MULTICS PPS TAPE FORMAT

The tapes produced by the Multics PPS support package are described in
detail in "OS and DOS Support for the Page Processing System" (Order No. AR86).
This format in terms of a Multics tape_ibm_ attach description is:

tape_ibm_ -vol volid -format fb -rec 133 -block 1596 -mode ascii

The tape is written using the ASCII mode due to the fact that character
translation to the PPS character set is accomplished using the PPS character
table.

See MPM Peripheral Input/Output (Order No.
description of tape_ibm_.

B-1

AX49) for a complete

CJ97-00

B

BASIC 2-7

black box 3-1

C

channel stops 1-2

character conversion 3-3, 4-2

character file 4-2

character table 4-2, 5-2, 5-9, A-2,
B-1

COBOL 2-6

commands
cv ppscf 3-1, 4-2
make_pps_tape 1-2, 4-4

cv ppscf command
see commands

font 3-1

FORTRAN 2-5

hole punch 1-1

1/0 modules
language 1/0 2-1

PL/I 2-2

F

H

I

pps 1-2, 2-2, 2-4, 2-5, 2-7, 4-5
tape ibm 5-2, 5-9, B-1
vfile 2-2, 2-3, 2-4

indentation 1-2

iox subroutine 1-2, 2-1, 5-4

L

language 1/0
see 1/0 modules

INDEX

i-l

make pps tape command
see commands
see Multics interfaces

Multics interfaces
see commands

make pps tape
see 1/5 modules

pps_

multiple report tapes 1-2, 2-3, 2-4

multiple reports 2-2

o

overstruck character 3-1, 4-2, 5-9

P

page format 1-1, 3-1, 5-2
line length 3-1, 5-6, 5-8
page length 3-1, 5-6, 5-8

page labels 1-2

paper cutter 1-1

PL/I 2-1, 2-2, 2-3, 2-4

PPS components
print unit 1-1
read-onlY tape drive 1-1
stacker unit- 1-1
system controller 1-1

pps_
see 1/0 modules

preprinted form 1-1

print unit
see PPS components

R

read-only tape drive
see PPS components

S

separator sheets 1-1

stacker unit
see PPS components

system controller
see PPS components

CJ97-DD

w
Z
-.J

t:J
Z
o
-.J
«
I­
:::J
U

t
I
I
J
I
I
I

HONEYWELL 'NfORMAT'ON SYSTEMS
Technical Publications Remarks Form

LEVEL 68
MULTICS PAGE PROCESSING SYSTEM
UTILITY MANUAL

ERRORS IN PUBLlCATlo.N

SUGGESTIONS Fo.R IMPRo.VEMENT TO. PUBLICATlo.N

Your comments will be investigated by approp:-iate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

FRo.M: NAME -----

TITLE ______________ _

Co.MPANY

ADDRESS ________________________________ __

o.RDER NO.. CJ97-QQ

DATE 0 I-I_~_ n_ ... V_~ _1_9_8_0 ___ ..-.J

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

l)
z
o
-.J
<{

I­
:::>
u

I
I
I
I
I
I ~
I -.J'

I l:J
I Z

.... 0
I ;;.
I 0

I ~
I u.

I
I
I
i
I
I
I
I
I
I
I

[
I
I
I
I
I
I
I w
I Z
I -.J

I l:J
. Z

........ 0
I ~
I 0

I ~I
I u.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Honeywell

Honeywell Information Systems
In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5

In the U.K.: Great West Road, Brentford, Middlesex TWa 90H
In Australia: 124 Walker Street, North Sydney, N.S.W. 2060

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

27531, 5C580, Printed in U.S.A. CJ97-00

	001
	002
	003
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	4-01
	4-02
	4-03
	4-04
	4-05
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	A-01
	A-02
	A-03
	B-01
	i-1
	replyA
	replyB
	xBack

