
c

.-~--.---.----------

PcUA..l McJones

SERIES 60 (LEVEL .68) .

MULTles
EMACS EXTENSION WRITERS' GUIDE

SUBJECT

Guide for Programmers Writing Exten.sions and 'terminal Control Modules
(CTL) in the LISP Programming Language for the Emacs 'lext Editor

SPECIAL INSTRUCTIONS

This manual presupposes thorough familiarity with the Emacs text editor,
which is described in the Emacs '!ext Editor Users' Guide. Extensions and CTLs
can be written by those without programming experience, but familiarity with
some programming language is valuable. Experience with Lisp is useful, but
not necessary.

SOFrWARE SUPPORTED

Multics Software Release 8.0

ORDER NUMBER

CJ52-00 January 1980

Honeywell

PREFACE

This manual describes how to write user extensions to the
Multics Emacs editor. The reader should be thoroughly familiar
with the Emacs editor, proficient in its use, and acquainted with
its visible organization. The Emacs Text Editor Users' Guide,
Order No. CH27, provides this necessary information. The
methods for writing terminal c~ntrol modules (CTLs) to support
additional terminal types are also described here.

Programming knowledge is not necessary to write extensions
successfully, although it is helpful. Section 1 is a short
introduction to extension writing. Section 2 provides a short
course in Lisp, the programming language used for writing
extensions, and the language in which the Emacs editor itself is
written. Basically, the extension writer only needs to learn
enough about Lisp to be able to imitate examples.

"Section 3 shows, by example, how to write extensions. It
includes the functions and forms most likely to be needed by the
extension writer. Section 4 describes LDEBUG"mode, the Emacs
mode for debugging the Lisp code used in extensions. Finally,
Section 5 demonstrates how to write a CTL to support a new
terminal type. Again, the CTL writer uses existing CTLs to learn
to write his own.

This manual contains sufficient information to effectively
write and debug Multics Emacs extensions. However, it is not
intended to be a reference document for either Lisp, in general,
or Multics MacLisp. Reference documentation for MacLisp is
available from:

MIT Information Processing Center
Publications Office
60 Vassar Street
Cambridge, MA 02139

© Honeywell Information Systems Inc., 1980 File No.: 1L13

CJ52-00

:.J

.J.).~
. I

(/1

Section

Section 2

Section 3

CONTENTS

Introduct ion. .

An Introduction to Lisp
Predicates

Predicates for Numbers ..
Predicates for Strings
Predicates for Any Objects .•.

Lisp Special Forms
The if Special Form
The setq Spe~ial Form
The do-forever and stop-doing
Special Forms

The let Special Form.
The prog and go Special Forms .
The or And and Special Forms, And

no t.
The progn and prog2 Special Forms .

Symbols.
Lisp Lists

Wri ting Emacs Extensions.
Using Emacs Requests in Extension

Coding
Marks and Their Management

The set-mark, release-mark and
wipe-point-mark Functions.

The with-mark Special Form
The save-excursion Special Form

Cleanup Handlers •
The unwind-protect Special Form . .

Useful Predicates
Whitespace Management
Extracting Text From the Buffer ..
Talking to the User

Message Printing Functions
Variables.

Example of Local Variables .
Registered Variables
Large Scale Output"
Manipulating Buffers

Creating a Temporary Buffer .
Variable for Buffer Manipulation ..
The save-excursion-buffer Special

iii

---""---------

Page

1-1

2-1
2-4
2-5
2-5
2-5
2-6
2-6
2-8

2-8
2-9
2-9

2-10
2-10
2-11
2-11

3-1

3-2
3-4

3-4
3-5
3-6
3-7
3-7
3-8
3-10
3-11
3-12
3-13
3-15
3-16
3-17
3-18
3-20
3-21
3-23

CJ52-00

Section 4

Section 5

Index

CONTENTS (cont)

Form
Calling the Redisplay.
EIS Tables

Functions Using the Charscan Table.
Opt ions.
Name Scope Issues..
Modes.

Major Modes . . .
l"1inor Modes ..

Character Dispatching.
Program Development

Coding Problems .
Compilation
Documenting Requests
Window Management ..
Writing Searches
Calling Multics Commands ..
Multics Error Table ..
Defining Requests with defcom.

Ldebug Mode
LDEBUG Buffers
Emacs and Lisp Debug Mode
Error Trap Entries to LDEBUG .
Code Breakpoints
Function Tracing with LDEBUG

Writing Emacs Terminal Control Modules
(CTLs) ..

iv

).
Page

3-23
3-25
3-26
3-26
3-27
3-29
3-29
3-30
3-30
3-31
3-34
3-37
3-38
3-39
3-40
3-45
3-47
3-48
3-49

4-1
4-1 ,J 4-2
4-2
~-3
4-4

5-1

i-1

CJ52-00

SECTION 1

INTRODUCTION

An editor extension is a user-provided capability, which is
added to the editor to extend its power. It is different from a
macro, which is simply a collection of editor requests gathered
up and (perhaps) given a name. Extensions are programs; they are
written in the language of the Multics Emacs environment. An
extension is a body of code that augments the editor's
capability, but does not embed or require knowledge of how data
in the editor is stored or manipulated. In this sense, all of
the word, sentence, paragraph, and Lisp-list requests, and the
various "modes" (e.g., PL/I mode) are extensions.

C~) The person who wishes to add to his Emacs environment any
powerful or sophisticated capability must learn to write
extensions. The keyboard macro facili ty ("'X(, "'X)) is not
intended for such usage. This manual explains how to write
extensions.

One of the guiding design principles in the Emacs editor was
that the creation of editor extensions, either by the editor
implementors or end users, should be in a programming language of
established elegance and power. Lisp was the language chosen.
This primer gives you a starting point for writing Lisp code to
run as editor extensions in the Emacs environment. If you have
some knowledge of Lisp already, it will be of value. However, it
is assumed in this manual that the reader has no familiarity with
Lisp, but does, perhaps, with PL/I or BASIC.

For examples of extension coding, the extension writer's
ultimate reference material will be the Emacs source. The Emacs
mail system (RMAIL), FORTRAN and PL/I modes, and the code for the
word, sentence, and paragraph requests (along with most of the
other code in the Emacs module e macops .lisp) are standard
examples of extension code. Techniques, styles, and subtleties

C
· \ difficult to convey in print may be gleaned by careful study of
,_./i trlis code.

1 - 1 CJ52-00

" ,

I ---------

__ (./i

----------_._------

SECTION 2

AN INTRODUCTION TO LISP

Lisp programs are built of functions, which are similar to
procedures or subroutines in other languages, although more akin
to PL/I and ALGOL functions. You write a Lisp program by
creating a file full of function definitions. A function
definition specifies the name of a function, and what it does.
Here is a sample function definition:

(defun addandmult (a b c)
(* (- a b)

(+ a b c))

;This is a comment

This defines a function named addandmult that takes three
arguments, called a, b, and c. The addandmult function computes
the result of multiplying the difference of a and b by the sum of
a, b, and c, and returns that number as a result, or value. The
semicolon on the first line above begins a comment; comments
throughout the examples provide some additional information about
the code.

Here is another function definition:

(defun squareprint (arg)
(print liThe square of II)
(print arg)
(print "is")
(print (* arg arg»
5)

This function prints th~ message liThe square of", prints the
value of its argument, prints the word "is", and prints the value
of the square of its argument. In addition, it returns the value
5. The function "squareprint" has side effects: it causes
output on the terminal. It also returns a value, the number 5.
Note that all Lisp functions produ~e a value; only some produce
side effects. The first function defined returns the product of
those numbers as a value; the second returns 5.

2-1 CJ52-00

If you look at squareprint, you see that it consists of
several statements, the "print statements" that print things.
These statements are called forms, and they are, in fact, calls
to other functions, in this case the builtin print function. In
the form:

(print "The square of")

the string "The square of" is being passed as an argument to the
print function. Like all functions, print returns a value, which
is not used in this case. The side effect of printing something
does occur. In the form:

(+ a b c)

you are invoking the "+" function, which is
values of the parameter variables a, b, and c
arguments. It returns a value, which is the
produces no side effects.

also builtin. The
are passed to it as

requested sum, and

There are five forms in the function-definition for
squareprint:

(print "The square of")
(print arg)
(print "is")
(print (* arg arg»
5

Forms immediately inside a function definition are executed
sequentially, like statements in other programming languages.
The value produced by the last form is the one the function
itself returns. What does it mean to "execute" a 5? Execute is
not exactly the right term; what really happens is that these
forms are evaluated. This means that a value is produced from
them. Evaluating a 5 produces the number 5; evaluating the form:

(+ a b c)

calls the n+" function with the appropriate arguments, and
produces whatever value the "+" function returns. The value
produced by the "print" function is something that is not
interesting, but a value is produced.

Numbers, like 5, and strings, like "The square of", are said
to evaluate to themselves. Things between parentheses, like:

(+ a b c)
(print "The square of")

are calls to functions, which are evaluated by calling the
function indicated, and producing the value it returns.

2-2 CJ52-00

-----------_ .•

(.)

Function calls have the syntax:

(FUNCTIONNAME ARGFORM1 ARGFORM2 ARGFORM3 ARGFORMn)

where FUNCTIONNAME is the name of the function to call and the
ARGFORMs are themselves forms, which are evaluated to produce the
arguments to gi ve to the function. Thus, to evaluate (i. e. ,
"execute" and find the value returned) a form like:

(+ (* a b)
15
c)

• evaluate the inner form (* a b) to produce a value

• evaluate the 15 to produce 15 (remember, numbers and
strings evaluate to themselves)

• evaluate the variable c to produce its value

• pass these three values on to the "+" function, and
return what it returns.

The newlines are ignored.

Thus, forms are either numbers like 5, strings like "is",
variables like b, or function calls like (* a b).

Variables are much like variables in other languages. A
v ar iable has a value, whi ch is called its bi nd ing . At thi s
stage, assume that this value must be a string or a number. When
a function is invoked, the parameter variables (like a, b, and c
above) of the function acquire the arguments of the function call
as bindings. Evaluating a variable produces its binding as a
value. For instance, if someplace in a function you evaluate the
form:

(addandmult 2 (+ 3 2) 6)

a, b, and c will have the bindings 2, 5, and 6 while the forms in
the defini tion of addandmul t are being evaluated. This is not
unlike the subroutine parameter mechanism in other languages. It
is different insofar as it specifies what value a variable has
during "subroutine" execution. In PL/I or FORTRAN, a parameter
is associated with a variable in the calling program, not a
value, during subroutine execution.

There
variables,
the kind
evaluation

are parameter variables, as used above, temporary
described below, and global variables. Regardless of
of variable, they all· have bindings (values), and
of the variable produces that value.

2-3 CJ52-00

To summarize:

1. Lisp programs are built of functions.

2. Function definitions consist of the word "defun", the
function's name, a parameter list, and a number of
forms, which are to be sequentially evaluated at
function call time, with a pair of parentheses around
the whole thing.

3. The value of the last form in a function is the value
returned by that function.

4 . Forms can
functions.
which are
results.

be strings, numbers, variables, or calls to
Forms are evaluated to produce values,

passed between functions as arguments and

5. Strings and numbers evaluate to themselves.

6. Variables evaluate to the datum to which they are
bound, which, for a parameter, is the corresponding
argument to the containing function.

7. Function calls contain the name of a function to call
and forms that are evaluated to produce the arguments
to the function. Function calls may produce side
effects. Like any form, when a function call is
evaluated, it produces a value.

PREDICATES

Programming languages need conditional execution. In order
to control conditional execution, you need things upon which to
base a decision. Two data objects in the Lisp world correspond
to truth and falsity, for the purposes of parts of the Lisp
system that deal with conditions. A set of functions called
predicates return these objects as values. For instance, a
function called ">", invoked as: .

(> 4 6)

returns the indicator of falsity, and when invoked as:

(> 4 1)

returns the indicator of truth. Predicates work just like other
builtin and nonbuiltin functions, like print, addandmult,
squareprint, and +. They take arguments, and produce a result.
In the case of predicate~, however, the result is not a string or
a number, but an indication of truth or falsity. The result of a
predicate can be used by the if special form (see below) to)
control the execution of a function.

2-4 CJ52-00

~ ---~~-~-~-------.-----.---.------.

(
.\.

The following are some of the most useful Lisp predicates.
In all of these examples, A1, A2, S1, 01, etc., stand for forms,
which means they can be 12, (+ 6 q), (myfun 33 (- a b)), etc.
"A1 is a number," below, means that A1 is some form which
evaluates to a number, such as 3, (+ 6 2), or x49, if x49's value
is indeed a number.

Predicates for Numbers

A1 and A2 are numbers~

Predicate Example Returns TRUTH if . . . , otherwise falsity.

=
>
<

(= A 1 A2)
(> A 1 A2)
« A 1 A2)

Predicates for Strings

S1 and S2 are strings:

samepnamep
(samepnamep S1 S2)

A1 and A2 are the same number.
A1 is a bigger number than A2.
A1 is a smaller number than A2.

31 and S2 are strings of identical content, i.e., the
"same string". This is the standard way to see if two
strings are the same, as in (samepnamep test "-hold")

alphalessp
(alphalessp S1 S2)

S1 collates before S2 alphabetically, e.g.,
(alphalessp "Able" "Baker") returns truth, but
(alphalessp "Zeke" "Joe") does not.

Predicates for ~ Objects

01 is some object, of perhap~ unknown type (objects are
discussed later):

eq (eq 01 02) 01 and 02 are the same symbol
or the same cons.

fixp (fixp 01) 01 is a number, as opposed to
some other kind of object.

stringp (stringp 01) 01 is a string, as opposed to
anything else.

symbolp (symbolp 01) 01 is a symbol, as opposed to
anything else.

2-5 CJ52-00

" ... ----------------r-"--------- --------_._ ... _------ ------

null (null 01)

LISP SPECIAL FORMS

01 is not only a symbol, but
the important and
critical symbol named "nil".

A number of special forms in Lisp do not go by the simple
rules given above. You have already seen one. The
function-defining form, which begins with the word "defun", is
not simply a function call with forms to produce the function's
arguments. By all rights, a form like:

(defun square (x)
(* x x»

should evaluate, in order, to produce arguments for "defun":

1. A variable named "square".

2. The form, (x), calling a function named "x" with no
arguments.

3. The form, (* x x), multiplying the value of a variable
named "x" by itself,

This form should then pass these three values on to the defun !" ... ,' ..)
function. This, however, is not what actually happens. _
Evaluating the defun form causes a function named square to be
defined, whose parameter list and "body" are as given. Defun is
a special form, and when Lisp sees "defun ll as the function name
in a form,~acts in a spe9ial way. In this case, Lisp defines
a function built out of this form itself. The above is not a
call to defun with arguments. ~may seem unusual, but you must
have at least one such special form in order to have an operative
Lisp system.

The if Special Form

A special form in the Multics Emacs Lisp environment, called
if, controls conditional evaluation. An example of its use:

(defun which-is-greater (first second)
(if (> first second)

(print "The first one is the greater.")
else
(if (> second first)

(print "The second one is greater")
else
(print "They are equal"»)

2-6 CJ52-00

c.:

The syntax of if is as follows:

(if <PREDICATE>
<THEN-FORM-1>
<THEN-FORM-2>

<THEN-FORM-m>
else

<ELSE-FORM-1>
<ELSE-FORM-2>

<ELSE-FORM-n>)

Any number, including none, of THEN-FORMs can be supplied.
Similarly, any number, including none, of the ELSE-FORMs can be
given. If there are no ELSE-FORMs, then the keyword "else" may
be omitted, too.

Note that all the forms in the if are not sequentially
evaluated; the word else is not even intended to---be a form. If
all of the forms inside the if were evaluated, it would be
useless, for evaluation would no~be conditional. That is why if
is a special form; there are special rules about how forms inside
it are to be evaluated. The rule for all nonspecial forms is the
same: you evaluate all the subforms sequentially to produce the
arguments to the function. Each special form has its own rules.

The if special form evaluates the PREDICATE: if it results
in truth-,- the THEN-FORMs are sequentially evaluated, and the
value of the last one is returned as the value of the if.
Otherwise, the ELSE-FORMs are evaluated sequentially, and the
value of the last returned. If there are none, the symbol nil
(see below) is returned, but is useless in these cases.

There are two global variables
"nil", whose bindings are 'always
indicators, respectively. Thus:

(if t
(print "Truth")

else
(print "Not so truth"))

when evaluated, always prints "Truth".

2-7

in Lisp, called
the truth and

"t" and
falsity

CJ52-00

The setq Special Form

Variables acquire values by being parameters, and acquiring
values at function call time. In addition, variable values can
be changed by the special form setq:

(defun adder-of-one (x)
(print "The value of x is")
(print x)
("And the value of x plus one is")
(setq x (+ x 1»
(print x»

A setq form has the word "setq", the name of a variable, and an
inside form. The inside form is evaluated, and that value
assigned to the variable. It is like an assignment statement in
other languages.

The do-forever and stop-doing Special Forms

The construct for looping in the Emacs Lisp environment is
also a special form, called do-forever:

(do-forever
(print "Yay Multics")
(print "scitluM yaY"» ')

",j

When evaluated, it prints these two sayings forever. The way you
stop doing in a do-forever is to evaluate the stop-doing special
form:

(defun print-n-times (n)
(do-forever

(if (: n O)(stop-doing»
(print "foo")
(setq n (- n 1»»

This function, given a number as an argument, prints "foo" that
many times. The ":" builtin function/predicate compares its two
arguments, which must be numbers, and returns truth or falsity
depending on whether or not they are numerically equal. The
arguments to : are not nand 0, but rather, the numbers that are
the bindings of n al1dO. The number which is the binding of n is
different each time around the loop; that is the point of the
program. It is setq that changes the value of n each time
around, as do-forever executes the loop. A do-forever form
generally returns something useless (nil), unless you exit by
saying (return 5) or (return nil), or (return a). In the latter
case, the value of the variable a is returned.

2-8 CJ52-00

------_._-------_.

c:,

The let Special Form

You can acquire temporary variables via the let special
form:

(defun sumtimesdif (x y)
(let «sum (+ x y»

(dif (- x y»)
(print "Sum times difference is II)
(P r i n t (* sum' d if))
(print "Sum squared is")
(print (* sum sum»»

This function has two temporary variables,' sum and dif, which are
initialized to the values of (+ x y) and (- x y). The general
syntax of let is:

(let «VAR1 VAL1)
(VAR2 VAL2)

(VARn VALn»
<FORM1)
<FORM2)

<FORMm»

The temporary variables VAR1 ... VARn exist only within the
let. They get the initial values of VAL1-VALn, which are forms
that will be evaluated. All the VALs are evaluated before any of
their values are assigned to the VA~s. Then, with all these
temporary variables set up and initialized, each FORMi is
evaluated sequentially, and the value of the last FORMi is
returned by let.

The ~ and a£ Special Forms

Another, less useful way of acqulrlng temporary variables is
via the special form~. Forms :inside a prog are evaluated
sequentially, like forms in a function definition. However, the
first form in a prog is not really a form at all, but a list of
temporary variables used in the prog, such as "(a b c)". That is
why prog is a special form. The value returned by prog is
usually useless, unless (return ...) is used to return something
meaningful.

Inside a prog, you can put labels, to use for go-to's:

2-9 CJ52-00

-------,-.

(defun bar2 (x y)
(prog () jnote the empty variable list

(if « x y)(go lab1»
(print "X is not less than Y")
(return nil) jreturn "false" indication

lab1
(print "so be it II)
(return t») jreturn "true" indication

In the special form go, its
which to go, i.e., continue
prog. Labels are rarely

operand (not argument) is a label to
sequential evaluation of forms in the
needed, due to the powerful if and

do-forever constructs.

The or And and Special "Forms, And not

There are special forms for or-ing and and-ing predicate
results: they are special because they stop evaluating their
operands (from which arguments are produced) when they "know"
their answer for certain:

(if (and (not (= x 0»
(> (II 10 x) 5»

(print "Quotient too large."»

The not function inverts truth and falsity. The double slash
indicates division, because slash is the escape character in)
Lisp.

The and does not attempt. to evaluate the second form within
it if the-first produces falsity. This prevents an error that
would result if an attempt were made to divide by zero.
Sequential execution and stopping at an intermediate result are
defined and useful features here, as opposed to the logical
operators of, say, PL/I.

The progn and prog2 Special Forms

Two more special forms are progn and prog2. To force
sequential execution of forms and return the value of the last,
use progn. For instance:

(if (and (> x 3)
(progn (print "Oh dear this is getting serious")

(> y 5»
(print "Fatal difficulty"»)

In the above, progn returns the value of its last form. Thus,
the and tests whether x is greater than 3, and y ~s greater than
5, before the "print" of "Fatal difficulty" is evaluated. The
printing of "Oh dear ... " occurs as part of the evaluation of the

2-10 CJ52-00

progn, but the and sees only the second value in the progn. The
progn is used to-force evaluation of the print form.

A prog2 is Just like progn, except that it returns its
second argument, evaluated, rather than its last. It must have
at least two arguments. It is useful for saving some value that
is subsequently going to be destroyed. The following form, when
evaluated, interchanges the values of x and y:

(setq x (prog2 0

y

(setq y x)))

this zero is evaluated to 0,
and its value thrown away.
the value of y is obtained here,
and remembered as it is here.
x is evaluated, and that value
assigned to y. The value of
setq form is that value.

In the above, however, the value of prog2 is that value of y as
it was before it was assigned into y, and now the outer setq
assigns that to x.

SYMBOLS

Another type of data object in Lisp is called the symbol.
Symbols are named data objects kept in a registry of symbols, by
Lisp. For current purposes, there is only one symbol of any
name. Symbols are used in Emacs to represent buffer names, and
various quantities associated with buffers. Lisp uses symbols to
keep track of functions, ~nd internally to keep track of global
variables.

To use
preceded by
form:

a symbol in a program, give the name
the ASCII quote character, For

(setq x 'Brunhilde)

of the symbol
instance, the

assigns the symbol named Brunhilde to x.
different from:

Note that this is

(setq x "Brunhilde")

which assigns the string Brunhilde to x, and from:

(setq x Brunhilde)

which assigns the value of the variable Brunhilde to x.

2-11 CJ52-00

LISP LISTS

The fi nal Lisp data type of importance in wr i t in g extens ions.)'
is the cons (for construct), and the larger data type built out
of it, the list. A cons is a block that relates to two (usually
other) objects in the environment, known as its car and its cdr.
The function cons, given two objects, produces a-new cons, whose
car and cdr, respectively, are the two objects given. For
instance, if the variable x has a value of. the string
"Brunhilde", as above, then:

(cons 7 x)

produces a cons whose car is the number 7 and
string "Brunhilde", returning it as a value.
and cdr can be used to obtain the car and cdr
set the variable c to the result of the form
then:

(car c)

produces the number 7 as a value.

whose cdr is the
The functions car

of a cons. If you
(cons 7 x) above,

Usually, you make larger and larger structures out of
conses, by setting up conses whose car and cdr are more conses,
and so forth, until you have a large enough structure to
represent all the values you need. The resulting construction
serves the same purpose as a PL/I structure: its various parts
have mean~ng assigned by the programmer.

The most common construction of conses is the list. A list
is defined as a chain of conses, each of which has the next one
in the chain as its cdr, except the last one, which has the
symbol "nil" as its cdr. A list built in this way of n conses is
called a list of n element-s-,--the elements being the n objects
that are the cars of the conses. The cons at the head of the
list is identified as being "the list": its car is the first
element in the list, its cdr is the cons whose car is the second
element of the list, and so forth. To construct a list of the
numbers 2, 4, 5, and 7, in that order, and set the variable b to
it, you would\need:

(setq b (cons 2 (cons 4 (cons 5 (cons 7 nil)))))

(Note that the variable "nil" is peculiar insofar as its value is
always the symbol "nil", thus you need not say 'nil.)

).
)

A function that ~implifies the writing of such forms, for
constructing lists, builds lists directly and accepts any number .
of arguments. It pro d u·c est he sam e result as the t y p e 0 f)
construction shown above. It is called "list":

2-12 CJ52-00

------.• -----.---------,-.. ------------~-.

(

(setq b (list 2 4 5 7»

To get the third element of the list, once this form is
evaluated, you could evaluate the form:

(car (cdr (cdr b»)

(i.e., the car of the cons that is the cdr of
the cdr of the cons that is the value of b).
Lisp functions to simplify such constructions.
equivalent to:

(caddr b)

the cons that is
Again, there are·

The above form is

In general, for up to 4 cars and cdrs deep, total, functions like
cadr, cdar, caddr, cadar, and so forth, are provided (up through
caaaar and cddddr). The first four elements of a list are gotten
by car, cadr, caddr, and cadddr (it is a good exercise to work
that through and verify why this is the case).

When lists are printed out by Lisp, they are represented as
a pair of parentheses around the printed representations of all
of the elements, in sequence, separated by spaces. Thus, if Lisp

.printed out the list that was b's value above, it would appear:

(2 4 5 7)

A cons whose cdr is the symbol nil can always be viewed as a list
of one item, and is so printed out by Lisp, unless- it is in the
process of printing a larger list of which the cons at issue is a
chain-link. A cons whose cdr is neither nil nor another cons is
printed with a dot preceding the cdr. Thus:

(cons ' a 'b) => (a . b)
(cons ' a nil) => (a) ; a list of one element
(cons ' a (cons 'b ' c)) =) (a b . c)
(cons ' a (cons 'b nil» => (a b) ;list of two elements
(cons ' a (cons (cons 'b 'c) (cons 'd nil»)

=> (a (b . c) d) ;list of three elements

Lists can be put into programs, by quoting them, as symbols
are quoted:

(setq b1 '(this is (a list)(of lists»)

2-13 CJ52-00

---------_._ .. _--------------

Two functions are provided to redefine the car or cdr of an
existing cons. They can be very dangerous if misused, especially ()._.
if they alter a list as in the form above, which is written into ~
a program as a constant. The rplaca function (replace car) and
the rplacd function (replace cdr) each take two arguments. The
first is the cons that is to be altered, and the second is the
new car or new cdr, respectively. The returned value is the cons
itself.

2-14 CJ52-00

)

SECTION 3

WRITING EMACS EXTENSIONS

The starting point for writing extensions is building
functions out of those, provided in the Emacs Lisp environment,
and hooking them up to keys. The Emacs set-key and
set-permanent-key extended requests can connect keys to Lisp
functions that you provide, as well as to the standard requests
and keyboard macros.

Many simple and useful extensions are just groups of Emacs
requests strung together. For instance, to go to the beginning
of a line, delete all whitespace there, go to the end of the
line, do the same, and then return to the beginning of the line,
you could type:

Alternatively, you could write a furiction, called shave-line
here, to do the same:

(defun shave-line () ;keystroke functions take no args.
(go-to-beginning-of-line)
(delete-white-sides)
(go-to-end-of-line)
(delete-white-sides)
(go-to-beginning-of-line))

Write this function into a file. When in
loadfile PATHNAME CR, to load it in as code.
perhaps by typing:

ESC X set-key AXA shave-line CR

Emacs, type ESC X
Then hook it up,

Thereafter, hitting AXA causes the chosen sequence of actions to
happen.

To use conditionals and variables, you might, for example,
want a function that goes to the beginning of a line and deletes
all words that start with "foo" from the beginning of the line.

3-1 CJ52-00

--------_._ ..•. _-------------

(%include e-macros)

(defun foodeleter ()
(go-~o-beginning-of-line)
(do-forever

(if (looking-at "foo")
(delete-word)
(delete-white-sides)

else (stop-doing»»

The (%include e-mapros) must be at the beginning of any file that
uses the Emacs environment Lisp macros. The e-macros.incl.lisp
file should be in your "translator" search path in .order to do
any Emacs extension development work.

What this function does in essence is type ~A, and as long
as the first three characters on the line are "foo", does an ESC
D, followed by ESC \ to remove the whitespace after the word.
When the first three characters are no longer "foo", it returns.
The "looking-at" is an Emacs predi~ate (to be described in detail
below) that tests whether a given string is to the right of the
current "cursor". For this function and any others that you
write, you could set a key as described above (~XA for
shave-line).

of printing,
The screen or

by the Emacs
about in coding

The code for the foodeleter makes no mention
output, or displays because it does not need to.
printing terminal is managed automatically
redisplay. The display need never be thought
Emacs extensions.

USING EMACS REQUESTS IN EXTENSION CODING

Many of the Emacs requests can and should be used in coding
extensions, for example, go-to-end-of-line, forward-char,
go-to-beginning-of-buffer, delete-word and skip-over-indentation.
Some requests, however, should not be used in extension code.
For example, if you want to search for some string, you do not
want to invoke string-search (~S), since that prompts the user in
the minibuffer for a search string. The following table lists
some important keystroke requests whose command names you should
not use and gives alternative functions to use.

KEY DO NOT USE USE INSTEAD

next-line-command next-line
The next-line-command function is unnecessarily
expensive in considering screen position, and handles
numeric arguments. The next-line function always goes
to the beginning of the next line.

3-2 CJ52-00

I),

c'
"P prev-line-command prev-line

Same reasons as above. The prev-line function always
goes to the previous line.

~K kill-lines kill-to-end-of-line
delete-char (at eol)

The kill-lines function is complex, has many cases, and
handles numeric arguments.

~S string-search forward-search

~R

The forward-search function takes a string as a Lisp
argument, does not prompt, moves the cursor if the
search succeeds, and returns truth or falsity to
indicate result.

reverse-string-search
Same as ~S.

reverse-search

"XAR read-file read-in-file
The read-in-file function takes a Lisp argument for
pathname, does not prompt.

AX"W write-file
Same as "X~R.

write-out-file

~W wipe-region wipe-point-mark
Use local marks, see below.

ESC / regexp-search-command regexp-search
Same issues as "s. Takes a Lisp argument, no slashes.
Returns falsity if not found or moves cursor to after,
and returns mark to before, matched string. Be careful
to release this mark (see below).

AXB select-buffer go-to-or-create-buffer
Takes an argument, does not prompt.

~X"F find-file find-file-subr
Takes an argument, does not prompt .

. Requests that accept a positive numeric argument as meaning
repeat that number of times, e.g., AB, ~D, "F, ESC B, ESC D, ESC
F, #, ESC #, etc., are acceptable in extensions; they do not
inspect their arguments. They are invoked multiple times by the
Emacs listener if appropriate. Requests whose names include the
word "command" (other than "G, command-quit) are usually not
intended to be used in code.

3-3 CJ52-00

-- ~----~~~~~~~--~~~~--- ---------_._ ..• _------------

The value of a numeric argument, e.g., 5 in ESC 5 ~B, is
available as the binding of the global variable "numarg"j if no
numeric argument is given, this variable is set to the symbol
"nil" (not to be confused with the global variable nil, whose
binding is the symbol nil), which is the representation of
falsity. The defcom facility, discussed later, can be used to
advantage as well.

The normal printing characters are bound to the self-insert
function, which inserts the last physical character typed at the
current point in the buffer. This is clearly unusable from code,
if your desire is to insert text into the buffer. For this
purpose, the Emacs environment provides the insert-string
function, whose argument is a string to be inserted into the
buffer at the cursor. As in typing in text manually, the cursor
is left after the inserted text:

(defun make-a-point ()
(go-to-beginning-of-line)
(insert-string "CASE IN POINT: II))

This make-a-point function, when invoked, goes to the
beginning of the line, and inserts the string "CASE IN POINT: "
in the buffer. The cursor is left after the inserted string.

As used here, phrases like, "the cursor is moved around" or
"a $tring is inserted" in a function, do not imply that the user
watching the screen can see all these things happen. No action
on the screen occurs until the entire function has finished
running, at which time the screen is updated all at once, showing
the cumulative effect of what has happened, regardless of how it
happened.

MARKS AND THEIR MANAGEMENT

Like the cursor, a mark is a conceptual pointer to the
position between two characters in the current buffer. Marks
remain between. these two characters regardless of other
insertions or deletions in the same buffer, even on the same line
as the mark. Marks are valuable because regions of. text in the
buffer are specified as the extent between the current conceptual
cursor, (the point), and a given mark. Marks are a type of data
object in the EmacS Lisp environment, like strings, numbers, and
symbols. The value of any variable can be made to be a mark.
The value of several variables might even be the same mark. The
words "the-mark" used in Emacs descriptions designate one mark
that is the value of a global variable that many supplied
functions know about. Emacs functions use many temporary marks.

3-4 CJ52-00

------.-----"---.-----.-.. ~--------.---

- i
!

c:~)

(

The set-mark, release-mark and wipe-point-mark Functions

The set-mark function creates a new mark, which points to
the current point in the current buffer. ~t stays around, and is
updated by the editor, any time text is inserted or deleted in
this buffer. This is expensive, so you must take car& to
discard, or release marks when you are done using them. This is
done by giving them to the release-mark function. An example of
a function which deletes three words and everything between them
follows:

(defun delete-three-words ()
(let «temp-mark (set-mark»)

(do-times 3 (forward-word»
(wipe-point-mark temp-mark)

(release-mark temp-mark))

;make a mark in
;8 temp var.
;3 words forward
;wipe out the stuff
;between point and
;where point was.

The variable temp-mark is set to a mark representing the point at
the time delete-three-words is entered. The "do-times" is a
special form that repeats the evaluation of one or more forms a
given number of times. Its syntax is:

(do-times <HOWMANY> <FORM1) <FORM2> .. <FORMn»

The wipe-point-mark is a function that, given a mark, takes all
the text between point at the time it is invoked and that mark
(i.e., point at the time that mark was created) and deletes it
from the buffer. It is, however, pushed on to the kill ring, so
that Ay can be used to retrieve it. If you do not want it pushed
onto the kill ring, use:

(without-saving (wipe-point-mark temp-mark»
'.

instead of:

(wipe-point-mark temp-mark)

and no saving occurs. After the computation, the mark is freed,
(for better performance).

The with-mark Special Form

The sequence of seiting a mark, using it, and releasing it
is so common that a special construct in the Emacs Lisp
environment is provided that takes care of all of this, including
the creation of a temporary variable, so no ~ or let is
needed. It is called with-mark. The delete=three-words
function, rewritten to use it, looks like this:

3-5 CJ52-00

(defun delete-three-words ()
(with-mark m jm is usually used for the name of a mark

(do-times 3 (forward-word))
(wipe-point-mark m)))

The syntax of the with-mark construct is:

(with-mark <MARKNAME>
<FORM1>
<FORM2)

<FORMn))

It means: "Where I am now, call that <MARKNAME>. Evaluate the
forms <FORM1> to <FORMn>, sequentially, returning the value of
the last one as a value. Before returning anything, however,
free the mark I made."

Marks allow
time you started
line longer than
tabs properly:

you to return easily to where you were at the
something. The following function truncates a
50 print positions, and handles backspaces and

(defun trunc-50 ()
(with-mark m

(go-to-end-of-line)
(if (> (cur-hpos) 50.)

(go-to-hpos 50.)

;remember where you started

jdot is for decimal
jdefault is octal

(kill-to-end-of-lin~)) jwhat ~K does a~ not e.o.l.
(go-to-mark m))) jreturn to where you were

A function that tells you the horizontal position (on a
dprint, not on the screen) of the current point is cur-hpos (the
left margin is considered to be 0). It takes no arguments. The
function go-to-hpos moves point to a position on the current line
whose horizontal position is its argument, or th~ end of the
line, if the line is shorter than that.

The "(go-to-mark m)" above tells the editor to move the
current point in this buffer to the point where it was at the
time the mark, to which the variable m is bound, was oreated.

3-6 CJ52-00

C.)

The save-excursion Special Form

Although moving the editor's point to previously saved marks
is extremely common, just using the mark mechanism to remember
where you were before some excursion and get back there is so
common that a special mechanism is provided just for this: it is
called save-excursion, and it deals with all the issues of
temporary variables and releasing the mark when done. The sample
function trunc-50 recoded to use it looks like this:

(defun trunc-50 ()
(save-excursion

(go-to-end-of-line)
(if (> (cur-hpos) 50.)

(go-to-hpos 50.)
(kill-to-end-of-line»»

The save-excursion special form does the following: remembers
where you are, via a mark saved in an internal variable,
evaluates all of the forms within the save-excursion, and returns
as a value the value of the last one. Before returning anything
however, it moves the editor point back to where it was when the
save-excursion was first entered, and releases the mark used to
remember this place.

If point were at print position 75. at the time trunc-50
was called, it winds up at position 50, even though the mark to
which it wants to return points to what was at position 75. No
error is indicated, or has occurred. Marks remain even if
characters to the right or left of them are deleted.

CLEANUP HANDLERS

You may have wondered, in the previous section, what happens
if an extension encounters an error while executing, and never
gets to release a mark it has set. When errors occur (for
example, moving past the end of the buffer), Emacs aborts
execution of request functions, returns to its listener, and
beeps (as when a AG is performed).

The unwind-protect Special Form

Since the releasing of marks is important, a facility like a
cleanup-handler is needed to make sure that marks get released
when code is aborted. There is such a facility in Lisp that is
useful for many other things, too: save-excursion returns the
cursor to the point at which it found it if aborted through;
save-excursion-buffer . returns to the buffer where it found the
editor if aborted through; all the mark-handling forms release
their mark, and so forth. These Emacs-environment primitives use
the cleanup-handler facility internally, so you need not worry

3-7 CJ52-00

-------_. -_._ ..•. _---------------

about cleanup-handlers if you use them. However, occasionally
(see the code for columnating the Emacs wall chart, for example)
you must use cleanup-handlers explicitly. The Lisp form i..J
unwind-protect is the primitive cleanup-handler. Its syntax is:

(unwind-protect
<SUBJECTFORM>
<CLEANUPFORM1>
<CLEANUPFORM2>

<CLEANUPFORMn»

The <SUBJECTFORM> is evaluated, and then <CLEANUPFORM1> to
<CLEANUPFORMn> (any number of cleanup forms are permissible), and
the value of the <SUBJECTFORM> returned. So far, unwind-protect
is much like prog2 or progn. The difference, however, is that
<CLEANUPFORM1> to <CLEANUPFORMn> are executed even if the
execution of <SUBJECTFORM> fails and aborts. Similarly, the
cleanup forms are executed even if things like a return from a
prog inside the <SUBJECTFORM> causes its execution to terminate
prematurely.

If you want more than one <SUBJECTFORM>, you should use progn to
encompass them, and make your <SUBJECTFORM> this progn.

Unlike Multics/PL/I cleanup handlers, unwind-protect cleanup
forms are executed upon normal termination of the subject form,
too.

USEFUL PREDICATES

The following predicates in the Emacs environment are basic
to all extension-writing; they are used to test various
hypotheses about point, marks, and the buffer:

(eolp)
End of line predicate. True if point is at end of a
text line right before the newline character.

3-8 CJ52-00

--~-.---------.----.-----------.-.---------------

c·····
~ .. ~'

(./'

. -- --------------

(bolp)
Beginning of line predicate. True if point is at the
start of a text line, either before the first character
of the buffer, or after a newline.

(firstlinep)
First line predicate. True if point is on the first
text line of the buffer.

(lastlinep)
Last line predicate. True if on last buffer line.

(at-beginning-of-buffer)
True if point is right before the first character in
the buffer.

(at-end-of-buffer)
True if point is right before the newline on the last
line of the buffer. You cannot go past it.

(looking-at <STRING-VALUE»
True if <STRING-VALUE> appears in the buffer
immediately to the right of point. Restriction:
<STRING-VALUE> can not contain a newline character,
except as its last character.

(at-white-char)
True if the character to the right of point is a space,
newline, or tab.

(point>markp <MARK»
True if the current point is further in the buffer than
the position defined by <MARK>. This is expensive, and
should not be used casually in loops.

(mark-reached <MARK»
True if the current point is up to or beyond <MARK> in
the buffer. Intended for use in controlling
character-by-character loops; it expects that point
starts to the left of <MARK> and moves toward it. The
function (order-mark-last <MARK» can be used to switch
point and mark if needed at the start of such loops.
Does not terminate unless executed with mark and point
on same line.

(mark-at-current-point-p <MARK»
True if the mark <MARK> represents the same position as
the current point.

(mark-on-current-line-p <MARK»
True if the mark <MARK> represents a position on the
same line as the current point.

3-9 CJ52-00

(mark-same-line-p <MARK1> <MARK2»
True if two marks that are arguments represent
posi tions on the same line. !.)

(line-is-blank)
True if current line is all blanks or empty.

(empty-buffer-p <BUFFER-SYMBOL»
True if the buffer identified by <BUFFER-SYMBOL> is
empty, i.e., contains exactly one line with only a
newline character in it. The form (empty-buffer-p
current-buffer) may be used to test the emptiness of
the current buffer. See below for a discussion of
buffer symbols.

This function that Itrims all the lines in the buffer
demonstrates the use of these predicates:

(defun Itrim-all-lines ()
(save-excursion ;be polite, restore point

(go-to-beginning-of-buffer)
(do-forever ;loop on lines thru buffer
(do-forever ;loop thru chars on line
(if (eolp)(stop-doing» ;stop at eol .

. (i f (at-whi te-char) (de lete-char) ; do the work
else (stop-doing») ;non-white char, next line

(if (lastlinep)(stop-doing»;quit when did last line
(next-line»» ;leaves you at b.o.l.

WHITESPACE MANAGEMENT

Neatly formatted editor output and displays,
program and document formatting, require good
management. The following functions exist to
whitespace:

as well as
whi tespace
deal with

skip-over-whitespace
Takes no arguments.
blanks, and newlines
end of the buffer is

skip-back-whitespace

Moves point forward over all tabs,
until a non-white character or the
reached.

Takes no arguments. Moves point backward over all
tabs, newlines, and blanks until the character to the
left of point is none of these, or the beginning of the
buffer is reached.

skip-to-whitespace
Moves forward until
blank, or newline.
be a newline, there

character to right of point is tab,
Since last character in buffer must
is no special end condition.

3-10 CJ52-00

....)

\
)

--------r-- --_._--------------_._._--_._----------

skip-back-to-whitespace
Moves backward until
point is a tab, blank,
the buffer is reached.

the character to the right of
or newline, or the beginning of

delete-white-sides
Deletes leading or trailing blanks from anything, or
deletes space between words.

skip-over-whitespace-in-line
Same as skip-over-whitespace, but stops before the
newline character at the end of the line (i.e., stops
at the end of the line) if it gets that far.

skip-back-whitespace-in-line
Same as skip-back-whitespace, but does not proceed
backward beyond the beginning of the line.

You often need to generate whitespace to reach a given
horizontal position (column), for tabbing and page layouts. The
function whitespace-to-hpos performs this service; it generates
tabs and spaces as appropriate, moving point until the horizontal
position that is its argument is reached. The following function
moves all lines in the buffer seven spaces over, regardless of
their original indentation, with the right amount of tabs and
spaces:

(defun move-over-7 ()
(save-excursion
(go-to-beginning-of-buffer') jall do-for-all-lines
(do-forever ;start like this.

(skip-over-indentation) ;This is ESC M
(let «hpos (cur-hpos»)

;let hpos be the curro pos.
(delete-white-sides)

;close up all original space
(whitespace-to-hpos (+ hpos 7)))

;make just enough
(if (lastlinep)(stop-doing))
(next-line»))

A related need is to space to a given position, leaving a
single space if you are already. there or beyond. This 'is useful
for producing oolumnar output whe~e overlength fields 'must be
separated (as AXAB does in its local. display). The
whitespace-to-hpos does not do this; it stops if it is far
enough. However, format-to-col takes a single argument, a
horizontal position to be spaced to. If the current point is
already that far, it inserts a space ..

3 .. 11 CJ52-00

EXTRACTING TEXT FROM THE BUFFER

The function point-mark-to-str ing gets a Lisp string whose,) ,
value is the string of characters between point and the mark that
is its argument. To demonstrate, a function that finds a
vertical bar (:) on a line, aeletes it, and swaps the two
line-halves around it is defined below. For instance, the line:

An Indian with a zebra : never trips in the snow

comes out:

never trips in the snowAn Indian with a zebra

The function is:

(defun swap-around-bar ()
(go-to-beginning-of-line)
(if (not (forward-search-in-line ":"~)) ;check for one

(display-error "Hey, there is no "":"" II))
(rubout-char) ;what # does
(with-mark m ;m in middle of line

(go-to-end-of-line)
(let «temp (point-mark-to-string m))) ;get

;middle
;to end

(without-saving (wipe-point-mark m))
(go-to-beginning-of-line)
(insert-string temp)))) ;put in text

The forward-search-in-line is just like forward-search, except
that it indicates failure if it cannot find its search string in
the current line. If the vertical bar is not found,
display-error lets you know and does a command-quit, (AG), which
stops the execution of this function at once and return~ to Emacs
command level (see below). This is useful by itself to search
for some string only in a given line. There is also a
reverse-search-in-line, and a regexp-search-in-line, which are
similar in their relation to AR and ESC I.

TALKING TO THE USER

You cannot use the Lisp 1/0 system to print out messages
andlor query the user. The Emacs redisplay manages the screen
itself, entirely. Thus, you can not use "print", or "read", or
other Lisp functions that you may be familiar with.

3-12 CJ52-00

\J
\

)

---------_._,,-----------_._--

c.:)

c)

A function called mini buffer-print prints all the messages
that Emacs outputs in the mini buffer screen area. It takes any
number of arguments, which must be strings. The function
decimal-rep is provided to convert numbers into strings for
inserting them in the buffer or handing them to display-error.
The following function counts the number of As in the current
line:

(defun a-counter ()
(let «n 0»

(save-excursion
(go-t'o-beginning-of -1 ine)
(do-forever

iinitial count.
iwhy not?

(if (not (forward-search-in-line "A"»
(mini buffer-print "Found " (decimal-rep
(stop-doing»

(setq n (+ 1 n»») icount them.

11) "As.")

The forward-search-in-line moves to the right of what it
finds (like ~S), so that it does not find the same occurrence the
next time.

To prompt the user for input, via the minibuffer, use the
function minibuf-response. It takes two arguments. The first is
the prompting string. The second should be specified by the
value of one of the global variables, ESC or NL, which are bound
to special symbols known to minibuf-response. If the value of
ESC is used, minibuffer input terminates on an ESC. If the value
of NL is used, (NL, not CR), minibuffer input terminates on a
carriage return. Thus-:--

(minibuf-response "Type new division name: " NL)

returns the user's response to this question when he terminates
it with a carriage return. The value of minibuf-response is a
Lisp string. The carriage return does not appear in it, nor does
the prompt.

To display an error message in the minibuffer, and then
abort execution of an extension, i.e., execute a command-quit
(~G), use display-error. The display-error is like
minibuffer-print, except that it does not return, but aborts to
Emacs top level immediately after printing its error messag~ in
the minibuffer. Lik~ minibuffer-print, it takes any number of
string arguments.

3-13 CJ52-00

Message Printing Functioris

Messages printed by mini buffer-print are
keyboard macro execution, just as search
displayed, and other gratuitous messages are
following set of functions describes the
message-printing:

suppressed ~uring
strings are not

suppressed. The
repertoire of

--~-~-,---.------.---

display-error
P-rints a message
top level. It
printing.

in the minibuffer and aborts to editor
is intended for use in error message

display-error-noabort
Prints a message
execution. This
nonfatal errors
messages ... " .

in the mini buffer and continues
function is intended for reporting

such as "User not accepting

minibuffer-print
Prints a message in the minibuffer, but not during
macro execution. This function is intended for use by
extensions that print messages in the normal process of
their execution, such as the line count from AX=. For
this' function, as well as the others below~ in
multiline minibuffer situations, an appropriate line is
chosen based upon availability of empty lines and
several other criteria.

mi nibuffer-pr i,nt-noclear
Prints a message in the mini buffer (not during macro
execution), but does not erase the previous contents.
Output is appended to th~ last mini buffer line used.

display-corn-error
Prints a message in the minibuffer and aborts to editor
top level. Its first argument is a Multics standard
error code. Its remaining arguments are character
strings or symbols. See "Multics Error Table" below
for the technique used to get error table values into
your program.

display-com~error-noabort
Prints a message in
execution. Its first
error code.

mini buffer-clear

the mini buffer and continues
argument is a Multics standard

Clears out the ·last minibuffer line that was written,
except during macro execution. This function should be
used to clear out minibuffers written in by 'J'~
minibuffer-print and minibuffer-print-noclear at the '.~
end of subsystem invocation.

3-14 CJ52-00

--_._-_._-------------_._._---------------

c:)

display-error-remark

VARIABLES

Identical to display-error-noabort, except that the
particular mini buffer line on which this remark is
printed becomes the next one overwritten for any
minibuffer remark or output. This function should be
used for transient remarks (such as "Writing",
"Modified", etc.), that you wish to remove from the
screen as soon as possible.

Many groups of Emacs requests need global variables to
communicate among themselves and the functions they call. A
global variable is a Lisp variable that is not the parameter of
any particular function; its value can be accessed or set by any
function. Some of the global variables in Emacs are highly
user-visible, for example, "fill-column", which contains the
column number of the fill column as set by ~XF, and used by the
filling requests and fill mode. Similarly, the character string
that is the comment prefix is the binding of the global variable
"comment-prefix". Extensions often need global variables to
communicate among their parts.

Normally, global variables in Lisp are accessed just like
other variables, i.e., those that are parameters of functions or
~ or let variables. For instance, a function to set the fill
column to 30 if it is over 40, might contain the code:

(if (> fill-column 40.)(setq fill-column 30.))

When a global variable is used in your program, say one
named "my-global", the "declaration"

(declare (special my-global))

must appear in the program before its first use, to tell the
compiler about this "special" varfable (the Lisp term for a
global variable). The e-macros include file declares many of the
provided global variables, which you need not declare.

The global variable situation is complicated by the fact
that editing activity is usually local to each buffer. That is,
if a set of global variables contains a set of values about what
is being edited, it usually pertains to what is going on in only
one editor buffer. If you switch to a different buffer, and use
the same editor facility, you do not want to use or change the
values of those global variables that pertained to activity in
the other buffer. At first, this would seem to make global

(
variables unusable, because all functions would have to keep

_) track of what buffer they are talking about before using any
global variables, and therefore maintain several sets of them.

3-15 CJ52-00

Fortunately, it is a lot easier than that. The buffer-switcher
in Emacs saves and restores values of global variables as buffers
are switched, if you tell it what variables you want so saved and
restored, when the buffer you are operating in is exited and
reentered, respectively. Such a variable is called a per-buffer
variable, and the act of telling the buffer-switcher -about it,
thereby associating its current value with this buffer, is called
registering it. Once a variable has been registered in a given
buffer, the functions that use it can assume that its value will
be what it last was in that buffer whenever the editor enters
that buffer. Another term for a per-buffer variable is a local
variable. The following two primitives exist for registering
local variables; there are no primitives for setting or
retrieving their values, because the whole point of this
mechanism is to allow them to be accessed as normal Lisp
variables.

register-local-variable
Called with one argument, the symbol whose name is the
name of the local variable you wish to register.
Registers it in the current buffer, if not already
registered there, and the variable initially inherits
its "global value". If registered, its value is. left
alone. If it has no global value, it acquires the
symbol "nil" as its value if this is its first
registration in this buffer.

establish-local-var
Just like register-local-variable, but takes a second
argument, a default value to be initially assigned to
the variable the first time it is registered in this
buffer, if it has nD global value.

The global value of a per-buffer variable is the value it
has in buffers in which it is not registered. It is this value
that is set if you set this variable while in a buffer in which
it is not register~d. A local variable "inherits" its global
value when it is first registered in a given buffer. For
variables that have no global value (i.e., were never assigned
one), establish-local-var can be used to provide default
initialization.

EXAMPLE OF LOCAL VARIABLES

Three functions that maintain a "problem count" in a given
buffer are started up by typing ESC X monitor-problems CR. Once
started, use AXP to count a problem, and AXR to report the number
of problems noted:

3-16 CJ52-00

)

----~-------.----------.-... --------------

(defun monitor-problems () ;command-level function
(set-key ,AXP 'note-a-problem) ;set the keys needed,
(set-key ,AXR 'report-problems) ;only in this buffer
(establish-local-var 'problem-count 0» ;register the

;local var, initial value 0 here.

(defun note-a-problem () ;executed on AXP
(setq problem-count (+ 1 problem-count») jIncrement the

;variable

(defun report-problems () ;o~ AXR
(mini buffer-print "There have been "

(decimal-rep problem-count)
" problems in this buffer."»

By calling establish-local-var on the symbol
"problem-count", the
problem-counts in each
maintained separately.

programmer here has ensured that the
buffer in which he counts problems will be

REGISTERED VARIABLES

The following per-buffer variables are automatically
registered by the editor. Their values can be inspected or set
in extension code.

buffer-modified-flag
Contains t or nil, indicating that this buffer has or
has not been modified since last read in or written.
Set automatically by the editor. Modification of a
buffer executed within the special form:

(without-modifying <form1><form2> ... <formn»

does not set this flag.

read-only-flag
Contains t or nil in~icating whether or not this is
read-only buffer. The editor does not set this flag;
it is set only by extensions. An attempt to modify the
text in this buffer produces an error and a quit to
editor command level if this flag is on and
buffer-modified-flag is off (nil). The buffer can be
modified, however, by functions executed from within
~xtension code within a "(without-modifying ...)".

fpathname
Contains the full Multics pathname associated with this
buffer by the last file read or written int%ut of it,
or by find-file. It is nil if there is none. Changing
it from extension code modifies or "forgets" the
pathname as you set it.

3-17 CJ52-00

I
. I

I

I

der-wahrer-mark
Contains the mark associated wi th the user-visi ble mark (",.')-
that AXAX and other related requests see. Is nil if
the user set no mark in this buffer. Do not set this
variable; call set-the-mark to do so.

current-buffer-mode
Contains the major mode in effect in this buffer. The
value is a symbol. To state that a major mode of your
construction is in effect in a buffer, simply set this
variable.

comment-column
Contains the comment column, measured from O.

comment-prefix
Contains the string, which can be a null string, that
is the comment prefix.

tab-equivalent
Contains the number of spaces for a tab. Initialized
to 10., the Multics standard, this can be set either in
code or by ESC ESC to edit code from other operating
systems. The redisplay obeys this variable too, but
not in two-window mode.

buffer-minor-modes
Contains the Lisp list of symbols representing the
minor modes in effect in this buffer.

LARGE SCALE OUTPUT

Output of multiline information, or information longer. than
about 60 characters, should not be done via mini buffer printing,
but via the local-display, or printout facility. This is the
facility with which buffer listings, global searches, apropos,
and other requests display their output. On display terminals,
it displays lines at the top of the screen, asking for "MORE?"
as each screen fills up, pausing for the next Emacs request at
the end of the display, and restoring the screen. On printing
terminals, the data is simply printed line by line, with no
"MORE?" processing or pausing at the end. The local display
facility is an integral part of the Emacs redisplay.

Three functions used in generating local displays are:

init-local-displays
Is called with
It sets up
initializing it

no arguments to
the necessary
to the top of the

3-18

start a local display.
redisplay mechanism,
screen.

CJ52-00

(..
",,,, •• ,<

local-display-generator
This function is called with a string, whose last
character must be a newline, and displays it as the
next line (or lines, if continuation lines are
required) of local output. If you do not have a
newline at the end of your string, calling
local-display-generator-nnl instead provides one
automatically. There must be no embedded newlines in
strings for local output. A null string causes an
empty line.

end-local-displays
Finishes a local display, restoring the screen. Causes
the next redisplay to be su~pressed, so the local
display remains visible on the screen.

The sequence of calls:

(init-local-displays)
(local-display-generator{-nnl} ...)

(end-local-displays)

correctly produces a local display.

;perhaps many
;times

The best way to generate a well-formatted local display is
to set up a temporary buffer (see "Manipulating Buffers" below),
build some text in it, and display its content, in part or in
whole, as a local display. Three functions are provided to
facilitate this:

local-display-current-line
Does a local-display-generator on the current editor
line in this buffer.

display-buffer-as-printout
Does an init-local-displays, and displays all lines of
the current buffer as local output. It does not do an
end-local-displays; you have to do that yourself,
hopefully after you have gotten out of your temporary
buffer and cleaned up whatever else you had to.

view-region-as-lines
Displays the entire point-to-user.-v,isible-mark as local
display, making all the necessary calls, including
end-local-displays.

3-19 CJ52-00

While in a function that has a local display in progress,
you must never call the redisplay (see "Calling the Redisplay"
below), or call minibuf-response or any other function that
causes redisplay, for that instantaneously restores the screen
contents to the windows on display, obliterating the local
display in progress.

The following function locally displays all lines in the
buffer that contain the string "defun":

(defun look-for-defuns() juse ESC X look-for-defuns CR
(save-excursion jremember where you are.

(go-to-beginning-of-buffer)
(init-local-9isplays) jset up for printout.
(do-forever jloop the buffer

(if (forward-search-in-line "defun") jlook for
j"defun"

(local-display-current-line» jcause printout
jof it

(if (lastlinep)(stop-doing» jcheck for E08.
(next-line») jGo to start of

jnext line
(end-local-displays» jwait for user, and

jnext request

A special form, display-as-printout, is available. It \)
generates a new buffer, executes your contained forms, displays
the whole buffer as local display, destroys the buffer, and
returns. Its syntax is:

(display-as-printout
(FORM1>
(FORM2>

(FORMn>

MANIPULATING BUFFERS

Often, the easiest way to do string processing in the editor
environment, i.e., handle strings, catenating, searching, etc.,
is to use the primitives of the editor itself, since it is a
string-processing language. To do this, temporary buffers are
necessary. To 'create a buffer, you should use the primitive
go-to-or-create-buffer (what AXB uses), which goes to a buffer
associated with the symbol you give it as an argument.

3-20 CJ52-00

... -_ _ .. _ .. _------------,-._---

()

Most symbols are kept in a registry: this registry is
called the obarray, and there is only one symbol of any given
name in it. A symbol registered in the obarray is said to be
interned. Only one interned symbol named "joe" exists, but you
can create many un interned symbols named" joe". If you refer to
a symbol named "joe" in a program, however, by saying "'joe", you
always get the interned one.

A major feature of symbols in Lisp is that they can be given
properties, arbitrary user-defined attributes. These attributes
are catalogued "in" the symbol via indicators, symbols that
indicate what property you want. The Lisp functions "putprop"
and "get" store and retrieve properties.

(putprop 'Fred 'blue 'eyes) jGives the interned symbol
jnamed "Fred" an lIeyes"
jproperty of "blue".

(get 'Fred 'eyes) iretrieves the property under the
jindicator "eyes", and thus returns
ithe interned symbol "blue".

In Emacs, symbols represent buffers. All of the information
associated with a buffer is catalagued as properties of some
symbol whose name is the name of the buffer. Thus, it is
possible to have two buffers of the same name, which would imply
that of the symbols representing them, only one is interned. The
AXB request always uses the interned symbol of the name given~
that is why you can AXB back to an existing buffer instead of
creating a new one each time.

Creating ~ Temporary Buffer

To create a temporary buffer', you must first create an
uninterned symbol, to make sure that you are not going to switch
to a buffer that is already real. To do this, you give a string
to be used in naming the symbol to the Lisp cliche:

(maknam (explodec "A string"»

The explodec blows the string apart into a Lisp list of
characters; the maknam builds a symbol out of it. The value of
this form is the new symbol. You can then go to a (guaranteed)
new buffer of that name, i.e.,

(go-to-or-create-buffer (maknam (explodec "A string"»)

3-21 CJ52-00

-~-,---,----

and the global variable "current-buffer" will have that symbol as
its value. A temporary buffer is one that is destroyed
automatically by the editor upon switching out of it. To make a
buffer temporary, all you have to do is give the symbol that
represents it (the "buffer symbol") a "temporary-buffer" property
of the symbol "til. This can be done by the Lisp form:

(putprop current-buffer t 'temporary-buffer)

(The variable "t" is always bound to the symbol "t"). Once this
has been done, you must be careful not to switch out of this
buffer until you are done with it. If your code involves
manipulating many buffers, some of them temporary, you must give
the temporary buffers their temporary-buffer properties at the
end of your manipulations.

A better way to do this is via the set-buffer-self-destruct
function. Calling this function upon the buffer-symbol, as
below:

(set-buffer-self-destruct current-buffer)

schedules the buffer for deletion as soon as the buffer is
exited. Using this, you find out sooner if you mistype this
function name than if you mistype the temporary buffer property.

When a new buffer is created, it contains one line, which
consists of a linefeed only. There are no truly empty buffers in
Emacs. The predicate empty-buffer-p can be applied to a buffer
symbol to determine if that buffer is in this state. When
buffers are switched, all information related to the old buffer
is stored as properties of the buffer symbol: this includes not
only the local variables registered in that buffer, but the
location of point, the user-visible (and all other) marks, etc.
Thus, when 'buffers are switched back and forth, the cursor
retains its position in each buffer (as can be seen while
editing), although the redisplay might choose to display a screen
differently after visiting another buffer and coming back.

Some applications require
putting some text in it, and
Therefore, you might want to go
interned buffer symbol:

making a nontemporary buffer,
going back there on oc'casion.

into a nontemporary buffer of an

(go-to-or-create-buffer 'name-and-address-buffer)

or perhaps keep a global (not per-buffer) variable that you set
once to an un interned symbor:-

(setq name-and-address-keep-track
(maknam (explodec "Name and Address Buffer")))

3-22 CJ52-00

i ')----" :

"" '!

and switch into it by saying:

(go-to-or-create-buffer name-and-address-keep-track)

The function buffer-kill can be called with a buffer symbol
to destroy a buffer. The function destroy-contents-of-buffer (of
no arguments) can be called to reduce the current buffer to a
single "empty" line.

Variable for Buffer Manipulation

The following two
manipulation:

current-buffer

variablE~s are relevant to buffer

The value of this variable is the buffer symbol of the
current buffer. Do not change it, or incorrect
operation results. Use go-to-or-create-buffer.

previous-buffer
The value of this variable is the buffer symbol of the
last buffer, which is returned to when AXB CR is typed.
It is acceptable to setq this variable.

The go-to-or-create-buffer function accepts a buffer-name of
"" as meaning go to that previous buffer'.

The save-excursion-buffer Special Form

The special form save-excursion-buffer is invaluable when
writing functions that switch buffers. It provides for
remembering which buffer you were in, and switching back to it
when you are done. It also saves and restores the state of
"previous-buffer". The save-E~xcursion-buffer is like
save-excursion; it executes its contained forms while pushing the
buffer-state of the editor on an internal stack, and returns the
value of the last form within it.

The following program, when invoked after typing somebody's
name (say you hook it up to a key), follows it with his title in
parentheses. Assume the file >udd>FamNam>personnel_data looks
like this:

Washington, G. :Lumberjack
Duck, D. :Pessimist
Nietzsche, F. :Existentialist
Mouse, M. :Optimist
Eisenhower, D. D. :Golfer

3-23 CJ52-00

(defun insert-perspn-title ()
(let «name (save-excursion ;save guy's point

«
skip-back-whi tespace) ; get to end of word '.,,)
with-mark m ;m = end of word

(backward-word) ;go to beg. of wd.
(catenate (point-mark-to-string m)

" , ")))))
; retur'n the word with a ", It after it.

(insert-string ;insert
(catenate " (" ; open paren and sp

(save-excursion-buffer ;save the old buff
(go-to-or-create-buffer 'name-position-records)

;go to stuff
(if (empty-buffer-p current-buffer) ;read it

;once
(read-in-filE~ ">udd>FamNam>personnel data"»

(go-to-beginning-of-buffer) ;set up for search
(do-forever ;scan lines
(if (looking-at name) ;Is point at

;"name,"?
(forward-search "=") ; look for the -.
(return (with-mark n' ;get to the end.

(go-to-end-of-line)
(point-mark-to-string n»»

(if (lastlinep)(return "???"» ;couldn't

(next-line»
") "»»)

;find him
;move on

This function picks out the name you just typed by skipping
back over whitespace, and pi~king up all between there and the
start of the previous (current) word. It then inserts, between
parentheses, the portion of that line of the data file that
contains the sought name at its front after the equals sign. The
buffer name-position-records is read into once, and contains the
data file thereafter.

The initial save-excursion remembers the user's point
location while the word is collected. The save-excursion-buffer
remembers what buffer and where in it all its modes, local
variables, etc., are, while you operate in the data file buffer.

The function catenate is a valunble one in
Emacs; it takes any number of strings (or
print-name will be used), builds a string by
first-to-last, and returns it.

the context of
symbols, whose
catenating them

Another useful function in this context is apply-catenate,
which takes as an argument a list of any number of strings or ')
symbols and builds a string by catenating the strings and names ~
of the symbols, first to last.

CJ52-00

c.)

(I

CALLING THE REDISPLAY

The Emacs redisplay decides what lines of the current buffer
should be shown on the screen, determines how to modify the
curr~nt screen to show the contents of those lines, and updates
the screen in an optimal manner. It is called by the editor
whenever there is no more input available. It is very simple to
call. It takes no arguments, i.e., you just say:

(redisplay)

The redisplay does not know or care by what means the buffer
was modified; if you delete several words with ESC D, ~D, or ~W,
it is all the same to the redisplay, and it acts similarly in
updating the screen. Normally, the extension writer need not be
concerned at all about the redisplay. A major feature of Emacs
is that only the total effect of a com~lex manipulation is
displayed, not every small operation that the manipulation used
to achieve its effect.

In some situations, however, it :Ls advantageous to call the
redisplay explicitly from extension code. One example is a
function that takes a tremendous amount of computer time and
might wish to update the screen every so often as it finishes
some major section. You do not tell the redisplay what to
display or how to display it; it displays some excerpt of the
current buffer that contains the current line, and shows the
cursor where the current point is. If you call it during a
buffer excursion, i.e., while in some special buffer in a
function, it displays that buffer around its "point". As soon as
that function returns to editor command level, the screen is
overwritten with the original buffer's lines. Thus, calling
redisplay is not to be considered a substitute for local
displays.

The most common need for calling redisplay is in functions
that add text (or change text) on a line, and move to another
line. For example, the electric semicolon of electric PL/I mode
adds a semicolon to the current line and moves to the next. On a
printing terminal, the user would never see the semicolon unless
special action were taken. The text in the buffer would indeed
be right, but by the time the next redisplay occurred (the
electric semicolon request returned), the editor would be off
that line, and thus would display the next line, where the
electric semicolon request left it. While this is correct, the
printing terminal user looking at his type-in would, with some
validity, complain that "all the semieolons seem to be missing".
Thus, the electric PL/I semicolon request calls the redisplay
i mm e d i ate 1 y aft e r it ex e cut e s "(ins e r t .. s t r in g ";")".

3-25 CJ52-00

The following is a function for a "card-numbering FORTRAN
mode", which when invoked (perhaps hook it up to CR) puts a

t
Shequencte In~mber lI'nt cOlutmn 7

1
' 21 (71 from 0) and goes to column 7 of ~~)

e nex lne. mus ca the redisplay so that, o~ a printing
terminal, the card numbers get shown:

(defun fortran-next-line ()
(whitespace-to-hpos 71.)
(insert-string (decimal-rep cardno»

(setq cardno (+ 1 cardno»

(redisplay)

(new-line)

(whitespace-to-hpos 6.»

;go to col 72.
;cardno is a local
;buffer var
;up the next
;card number
;let printing
;user see.
;get to
;next line
;6 reI = card col 7.

Another commonly called redisplay function is
full-redisplay, of no arguments, which clears and rewrites the
screen, as with AL.

EIS TABLES

The Emacs environment provides a facility for utilizing the
sophisticated 68/80 processor instructions for scanning for t,)
characters in, or not ih, a particular set of characters. These
operations correspond to the PL/I "search" and "verify" builtins.
The word requests operate using these facilities.

A set of characters is represented by a charscan table, a
compound Lisp object occupying about 200 words of storage. You
can get a charscan table by giving a set of charac~~rs, as a
string, to the function charscan-table. It returns a charscan
table representing that set of characters:

(setq number-verify-table (charscan-table "0123456789+-"»

Functions Using the Charscan Table

Given such a table, there are a set of functions that can be '
called to utilize it to search for characters in or out of that
set, backward, forward, whole buffer, or only one line. All the
following functions take one argument, a char.scan table
representing a set of characters (called S here). They return
nil (falsity) if they hit the end of the buffer or line (as
appropriate) without finding what they are looking for. If they
succeed, they move point and return a truth indication. If they
fail, they do not move point. _)

3-26 CJ52-00

--~-------------"---

j

(

"(

search-for-first-charset-line
Scans current line forward from point.
stopping to the left of a character in S.

search-for-first-not-charset-line

Success is

Same as above, but success is stopping to the left of a
character not in S.

search-back-first-charset-line
Scans current line backward from point.
stopping to the right of a character in S.

Success is

search-back-first-not-dharset-line
Same as search-back-first-charset-line, . but success is
stopping to the right of a character not in S.

search-char set-forward
Scans the buffer from point to the end of the buffer.
Success is stopping to the left of a character in S.

search-char set-backward
Scans the buffer backward from point to the beginning
of the buffer. Success is stopping to the right of a
character in S.

search-not-charset-forward
Scans the buffer forward from point to the end.
Success is stopping to the left of a character not in
S.

search-rrot-charset~backward
Scans the buffer backward from point to the beginning
of the buffer. Success is stopping to the right of a
character not in S.

The following function finds the first nonnumeric character
on the line it is invoked on:

(defun find-first-non-numeric ()
(establish-local-var numscan-table nil)

.(if (not numscan-table) jif nil, i.e.,
(setq numscan-table (charscan-table

(go-to-beginning-of-line)

jdoes
jvar exist

not init yet,
"0123456789")))

(if (not (search-for-first-not-charset-line
numscan-table))

(minibuffer-print "Line is O.K. "))) jfailure

3-27

jis all are
jin,charset

CJ52-00

OPTIONS

The Emacs option mechanism provides for user-settable :)
variables in the Lisp environment. The only difference between
an "option" and any other "global Lisp vari'able in the editor
(basic or extended) is that the options are listed at the
user-visible level by typing ESC X opt list CH, and can be set or
interrogated via the opt request. The option mechanism also
provides for checking that numer'ic variables stay numeric, and
t hat va ria b 1 e s res t ric ted to '" t " 0 r " nil" a s val u e sst a y
restricted to those values.

Thus, options can control per-buffer or truly global
variables; the option mechanism imposes no restraints upon the
dynamic scope of the variables managed by it. The option
mechanism also pr?vides for a default global value of variables
it manages.

A global variable is registered with the option mechanism by
invoking the function register-option upon the Lisp symbol that
represents (has the name of) that variable, and its default
global value. If that value is a number, the option mechanism
restricts the variable's value to numbers; if it is one of t or
nil, the option mechanism restricts its values to t or nil (which
you indicate as "on" or "off").

The choice of whether a variable should be m~de an official
option or not depends upon whether or not you want the user to
see it when an "opt list" is done, "and whether finer control than
that provided by the option mechanism over the values assigned to
it is necessary. It is acceptable to register an option the
first time some code is executed; only then does it appear in the
option list. It is usual to have forms invoking register-option
at "top-level" in a file full of code, i. e., outside of any
function. Such code is executed when the code is brought into
the editor environment.

The following code registers an option describing default
paragraph indentation, and shows"a function that creates a new
paragraph (that should probably be hooked up to a key). Like all
Lisp global variables, options must be declared "special" for the
Lisp compiler (see "Compilation" below):

(declare (special paragraph-indentation» ;for compiler.

(register-option 'paragraph-indentation 10.) ;default is ten

(defun new-paragrapD ()
(new-line) ;two new-lines
(new-line)
(whitespace-to-hpos parag~aph-indentation» ;tab out

3-2B CJ52-00

\

)

By issuing the request:

ESC X opt paragraph-indentation 5 CR

You can set the amount of indentation inserted by new-paragraph
to 5.

NAME SCOPE ISSUES

All of the functions and variables in the Lisp environment
are accessible to all functIons running in it. At times, this
can be a problem. When adding your own extensions to the editor
environment, nothing prevents you from choosing a name for one of
your functions that happens to be the name of some internal (or
user-visible) function in Emacs. Occasionally, there may be
reason to do this deliberately, e.g., writing your own version of
next-line to do something special. This is dangerous, and not
recommended.

In general, you want to make sure that none of ~our
functions or variables conflict with those of the editor. The
best way to do this is to choose some set of names that cannot
possibly conflict. To achieve this, use capital letters anywhere
(such as initial capitals) or use~ underscores or double hyphens
in your names. No Emacs or Lisp system functions have leading
capitals or trailing underscores. There are a few Lisp system
functions with embedded underscores, but other than make atom, it
does not hurt if you accidentally redefine them. -The Lisp
compiler also warns you if yoU! attempt to redefine a system

. function. No functions in Emacs contain underscores in their
names.

Another technique that·· has been used is the use of double
hyphens.

Another way to avoid name scope conflicts is to prefix all
of your names in a given package with some prefix indicative of
the facility that you are trying to implement. For instance, if
you are implementing a SNOBOL edit mode, you might name your
funct ions· "snobol-find-match-str ing", n snobol-get-branch-tar get" ,
etc. The same holds true for global variable names. This is the
standard, recommended, and most mnemonic way ..

You can also be reasonably certain that names constructed
somewhat whimsically (e.g.,"Johns-special-tsplp-hack",
"find-third-foo", etc.) will not conflict.

3-29 CJ52-00

MODES

The major and minor mode mel:::hanism of Emacs is a way for the '.)
user to switch in and out of large sets of key-bindings and
column settings, and to be infdrmed of this via the mode line.

Major Modes

A major mode involves a large body of optional code (e.g.,
PL/I mode), sets up for editing code written in a particular
language, or sets up buffer for some highly specialized task
where very common keys (e.g., CR) do nonobvious things (e.g., the
Message mode buffers of the Emacs message facility). Minor modes
generally involve the way that whitespace or delimiters are
interpreted, e.g., fill mode and speedtype mode.

A major mode is set up by a user-visible function called
"XXX-mode", where XXX is the name of the mode. This "mode
function" establishes key-bindings (using set-key), and sets
columns (e.g., fill-column, comment-column) and prefixes as
necessary. The mode function establishes the mode by setting the
per-buffer-variable "current-bufrer-mode" to a symbol whose name
indicates the mode. The name of the symbol appears in the mode
line when the redisplay is invoked while in this buffer. The
following function sets up a major mode for editing FORTRAN
programs:

(defun fortran-mode () ;the mode function.
(setq current-buffer-mode 'FORTRAN)

(setq fill-column 70.)
(setq fill-prefix" II)
(set-key 'CR 'fortran-new-line)
(setq comment-column 0)
(setq comment-prefix "C II)~

;symbol
;for mode
;set columns

;six spaces on CR
;set up CR key

;that begins cmts

The function fortran-new-line is assumed to be one that does
something appropriate, such as numbering cards. The use of the
function set-key implies that this key binding (of the carriage
return key) is local to this buffer, and will be reverted when
this buffer is exited.

Minor Modes

Minor modes are less straightforward. Minor modes such as
speedtype and fill mode have different actions associated with
the keys they affect (for instance, all the punctuation keys),
and the minor modes have to have detailed and specialized
interaction between themselves. There is no way to generalize
the interactions between the minor modes; no completely adequate
solution to this proble~ has been developed.

3-30 CJ52-00

c·····,
... ~.,/

Minor modes are asserted and turned off in a given buffer by
calling the functions "assert-minor-mode" and "negate-minor-mode"
while in that buffer, with an interned symbol that identifies the
mode (and ,appears in the mode line). A per-buffer variable
called buffer-minor-modes has as a value a Lisp list of all the
symbols identifying the mino~ modes in effect in this buffer.
The Lisp predicate memq can be used to test whether a given
interned symbol is a member of a list, and thus, whether a given
minor mode is in effect in the current buffer:

(memq 'fill buffer-minor-modes)

returns a truth indication if fill mode is in effect in this
buffer; otherwise, it returns "nil" (false). Functions
implementing the actions of keys in minor modes should check in
this way to see what other minor modes are in effect, and what
they ought do in that case.

The global variable fill-mode-delimiters is bound to a Lisp
list of keys that act as punctuation in many minor modes. By use
of the Lisp function mapc, all punctuation can be s~t to trigger
a given action. The mapc function takes two arguments, a
function and a Lisp list; the function is called upon each
element of the list:

(defun no-punc-mode-word-on-a-line-mode-on () ;mode function
(mapc 'word-on-a-line-setter fill-mode-delimiters) ;set

;keys
(assert-minor-mode 'word-on-a-line» ;get in mode line

(defun word-on-a-line-setter (key) ;key is the key
(set-key key 'word-on-a-line-responder» ;set these keys

(defun word-on-a-line-responder () ;key function
(delete-white-sides) ;get rid of whitespace
(self-insert) ;insert the typed character
(new-line» ;start a new line.

This set of functions establishes a minor mode in .which each word
goes on a separate line as it is typed.

CHARACTER DISPATCHING

Several special forms and functions facilitate the making of
decisions based upon the identity of the character to the right
(or left) of the current point. All of these functions and forms
accept either of two ways of describing characters: either a
single-character string (e.g., "."), or a symbol whose name is
that character (e. g., 'a, as it would appe'ar in a progr:-am). The
first kind, is called the "string form", and the second kind,
"character objects" .

3-31 CJ52-00

The function curchar, of no arguments, returns the character
to the right of the current point as a character object (this is .)-
done for storage efficiency; character objects are unique, .while .
strings require allocation). You can test for two character
objects b~ing the same unique object (or any two objects, in
general) via the Lisp predicate eq:

(if (eq (curchar) 'a)
(display-error "You are looking at an ""a""."»

You could do this with the looking-at predicate described above,
but for single characters, looking-at is a lot less efficient, in
both time and storage.

You cannot use eq to test if two strings have the same
characters in them; Lisp strings are not uniquely defined in the
same way that symbols are uniqueJLy defined via the obarray. Use
samepnamep instead.

In order to facilitate
linefeeds, spaces, quotes,
variables have values of
characters:

the use of special characters (tabs,
etc.) in this way, several global

the character objects for these

ESC
CRET
NL
SPACE
TAB
BACKSPACE
DOUBLEQUOTE
SLASH

ASCII ESC, Ascii 033.
ASCII carriage return (Ascii 015)
ASCII newline (linefeed), Ascii 012.
ASCII blank, Ascii 040.
ASCII tab, Ascii 011.
ASCIJ backspace, Ascii 010.
", Ascii 042.
I, Ascii 057, hard to type in Lisp code.

A (eq (curchar) NL) is equivalent to (eolp).

A special form to test if the current (to the right of
point) character is a given character is called if-at:

(if-at "&" (display-error "You can't have an ampersand here "»

Its syntax is the same as if, i.e., it has one, none, or many
" the n" and lor " e 1 s e" c 1 a use s-, - s epa rat e d by the key w 0 r d " e 1 s e " i f
there are any else clauses. However, instead of a predicate,
if-at takes either a single-character string or a character
object to be compared to the current character. If the current
charac~er is that character, the then forms are evaluated, etc.
The if-at converts the character string to a character object at
Lisp compile time, if necessary. The specification of the
character must be a form that evaluates to·the character of
interest (e.g., "a", 'a, variable··bound-to-an-a) ::)

3-3~~ CJ52-00

(\

()

(I

(if-at TAB (delete-char)
(whitespace-to-hpos next-field» ;tab to next field.

The exact effect (and actual implementation) of if-at is as
though it were shorthand for:

(if (eq (curchar)))

Similarly, a function called lefthand-char is like curchar
except that it returns the character to the left of the current
point; if the current point is at t.he beginning of the buffer, it
returns a character object for a newline (which is almost always
what you waht). Similarly, an if-back-at special form exists,
whose syntax and semantics are identical to if-at, except that it
deals with the character to the left of the current point.

Two special forms for dispatching on the current (lefthand
or righthand) character are called dispatch-on-current-char and
dispatch-on-l~fthand-char they dispatch upon the character to the
right and the left of the current point, respectively:

(declare (special parentable» ;global variable
(setq parentable nil) ;done when code is

;loaded into editor

(defun count-parens-in-buffer ()
(if (not parentable) ;if not initialized

(setq parentable (charscan-table "C)"»~) ;init it
(let «leftcount O)(rightcount 0» ;init the counts

(save-excursion ;be nice
(go-to-beginning-of-buffer)
(do-forever
(if (not (search-charset-forward parentable»

;look for (or)
(stop~doing» ;exit the do

(dispatch-on-current-char ;see which
("(" (setq leftcount (+ 1 leftcount»)
(")" (setq rightcount (+ 1 rightcount»»»

(minibuffer-print (decimal-rep leftcount) " opens, "
(decimal-rep rightcount)

"closes."»)

The general syntax of dispatch-on-current-char and
dispatch-on-lefthand-char is as follows:

3-33 CJ52-00

(dispatch-on-current-char
(CH1 <CH1-form1>

(CH2

<CH1-form2>

<CH1-formn»
<CH2-form1>
<CH2-form2>

<CH2-formn2»
.

(CHk

(else

<CHk-form1>
<CHk-form2>

< CHk- formnk>')
<else-form1>
<else-form2>
.
<else-formn»)

CHi can be any form that evaluates to a single-character
string or to a character object. When the current character
(left or right as appropriate) matches a CHi, all of the
<CHi-form> in that clause are evaluated sequentially, and the
value of the last returned as the value of the
dispatch-on-current-char (nil is returned if there are no
<CHi-form». If no CHi matches, the else clause is evaluated as
though it were a matching clause. The else clause is optional;)
if omitted, and no CHi matches, nil is returned.

PROGRAM DEVELOPMENT

The editor itself provides many powerful tools for
developing extension code and testing it while editing it. The
following is a typical scenario in the development of an
extension.

You decide to write an extension. You sit down and think
about it, and decide to code it. You enter Emacs. You do a AXAF
on the shaver.lisp file to go into a new buffer with a proper
file name and select Lisp major mode (assuming that you have the
option for find-file-set-modes "on"). Then type the form:

(%include e-macros)

at the top of your file; this is necessary to compile it (see
"Compilation" below), or to use the load it request, described
below. The file e-macros.incl.lisp should be in the "translator"
search rules for your process. For efficiency, put a link to it
in the directory in which you do Emacs extension development.
Now beg in' tot y p e ina fun c t ion: I'')

... _-1

3-34 CJ52-00

)

(

(%include e-macros)

(defun shave-line ()
(go-to-beginning-of-line)

At this point, to type the next line, lining it up with the last
Lisp form, use the indent-to-lisp request, which is on ESC CR in
Lisp mode, and the next form automatically indents properly:

(delete-white-space) ;wrong name given deliberately here

When typing in Lisp in general, ESC CR (in Lisp mode) indents you
on the next line the right amount. So, continue with:

(go-to-end-of-line)
(delete-white-space)

Now you are looking at the buffer with the code for
"shave-line". To try it, load the code in the buffer into the
editor. ESC AZ in Lisp mode does this. Immediately, you get the
message:

Unbalanced parentheses.

This means that there were not enough close parentheses
somewhere: Emacs could not find the boundaries of the Lisp form.
Fix the program problem. You are on the last line, so just type
the close parenthesis:

(delete-white-space»

Now do the ESC AZ again. The cursor returns to the function you
are trying to edit. To see if it works, invoke it from Lisp:

ESC ESC shave-line CR

ESC ESC puts parentheses around what you type, evaluates it, and
types out the Lisp value so returned. However, you find the
message:

lisp: undefined function: delete-white-space

printed in
must have
key, type:

the minibuffer, with the terminal bell rung, so you
the wrong function name. Since you know it is on a

ESC X apropos white CR

and learn about delete-white-sides. Now go to the first line
that has the bad function name, do an @ to clear the line, ESC AI
to line up to retype ~he form, and:

(delete-white-si~es)

3-35 CJ52-00

Fix the other bad line, too, and again type:

ESC ESC shave-line CR

Surprisingly, it still says:

lisp: undefined function: delete-white-space

as though you had not changed anything. Indeed, fixing it in the
buffer is not good enough. You must reload it into the editor
environment; use ESC ~Z again. Now try it again:

ESC ESC shave-line CR

and immediately your function on the screen changes appearance;
all the whitespace on the ends of the last line of the function
disappears. It works, but its appearance is messy. This is a
problem with editing what you are testing: it must either be
innocuous, i.e., do something harmless, or you must be prepared
to reconstruct damage your function does, or switch to a test
buffer before running it.

Fix your function, and you are almost done. Although it
exists in an editor buffer, and in the editor Lisp environment,
you must remember to write it out:

writes it out to shaver.lisp as you set up
you have an operative Lisp program that you
in a future invocation of the editor, you
type:

for initially. Now
,c a nus e a g a in. If,

need to use it, you

ESC X loadfile <path)shaver.lisp CR

and get it into the environment.
this, however:

There are two problems with

1. Whoever loadfiles must have e-macros.incl.llsp in his
translator search rules.

2. The code is executed
interpreter in the Lisp
Lisp, and compiled Lisp
than interpreted Lisp and

interpretively by the Lisp
subsystem; Emacs is compiled
runs up to 100 times faster
has fewer problems.

Thus, the file shaver.lisp should be compiled. Then, the
compiled object segment can be loaded into the editor with:

ESC X loadfile <path)shaver

See below for a description of how to compile Lisp programs.

3-36 CJ52-00

rJ·'
"

\) --

(

Coding Problems

Some other problems are of immediate interest to the
extension writer. It is possible, and fairly common, to write
loops that do not terminate, or that generate infinite garbage.
If you invoke your request, and the cursor never leaves the
minibuffer, and AG seems to have no effect, you are in a loop.
Hit QUIT, and use the program interrupt (pi) Multics command to
reenter Emacs. If you are siniularly unfortunate, you get:

lisp: (nointerrupt t) mode, unable to accept interrupt

in which case you are stuck in the process of generating infinite
garbage. In this case, you must release, and your editing
session is lost. If you are more fortunate, you will get your
screen back, with the cursor at the place your function left it.
Often, by looking at exactly where it left it, you can get a good
idea of what kind of thing was giving your program a hard time.

If you get messages from Multics that tend to indicate that
there is no more room in your process directory, you are probably
generating an infinite number of lines, i.e., an infinite buffer.

Another thing that can happen is you might expose some bug,
or what you believe to be a bug, in Emacs, or worse yet, Multics
Lisp. Use the trouble report forwarding mechanism to describe
what you encountered and why you think it is a bug.

You can also destroy the editor environment by bad coding.
This is particularly true in running compiled code that was not
checked out interpretively (i.e., via ESC AZ). Storing into
"nil" is one common way to do this. If the entire editor seems
broken, and the redisplay does not even show the screen, this is
what you have done. Quit and release and start allover again.

A function called debug-e is called as:

ESC X debug-e CR

It sets
unsnaps
QUIT/pi
with the

"(*rset t)" mode
all "lisp links".
handling. To use
debugging features

and other Lisp debugging aids, and
It also reverts to native Maclisp

this, however, you must be familiar
of Multics Maclisp.

To get the value of a global variable to be printed out,
say, fill-column, type:

ESC ESC progn fill-column CR

3-37 CJ52-00

Be careful, for values typed out are in octal.

A Lisp code debugging facility within Emacs, called LDEBUG,
or Lisp Debug mode, allows for the setting of breakpoints,
dialogue with Lisp within Emacs, tracing, and so forth. See
Section 4.

COMPIL'ATION

All production Multics Lisp programs are compiled. This
results in a tremendous performance improvement, both for the
user and the system.' Compiled Lisp programs are executed
directly by the Multics processor; interpreted programs are
interpreted by the Lisp interpreter. Emacs is compiled Lisp.

The Lisp compiler is a Multics program that can be invoked
from command level. It has the names lcp and lisp_compiler. To
compile a program named myfuns.lisp, you say:

lcp myfuns

to Multics, and you get an object program named "myfuns", which
can be loadfiled, in the working directory.

'The compiler diagnoses Lisp syntax errors. It warns you of
implied special variables (if you did not declare a variable
special, and it is not a local variable in the function in which
it was referenced, you probably made a mistake. All global
variables should be declared for this reason; e-macros declares
the provided Dnes.)

At the end of compilation, the compiler prints out the names
of tunctions referenced in the code but not defined in the file.
This is normal; howe~er, you should inspect the list it prints
out to see if any are ones that you thought you defined; if so,
you have a problem. Check also for ones that are obvious typing
errors.

While editing a large extension program, you may wish to
load only the function that you are looking at on the screen into
the editor environment. The function compile~function, on ESC ftC
in Lisp mode, compiles the function you are looking at (whose
start is found by ESC ftA from where you are now) out of a
temporary segment in the process directory, loads the object
segment, and displays the compiler diagnostics via local
printout. It should be used with care by any except experienced
Emacs extension coders. When using it, remember to write out i,J

3-38 CJ52-00

(;

your changes, and recompile your whole program, because a program
incrementally debugged in this mode~ gives the impression that it
is working properly when it is only doing so in the current
editor environment.

DOCUMENTING REQUESTS

The automatic documentation system (apropos, ESC?)
provides customized Emacs request documentation. Documentation
for supplied requests is kept in a special file in the Emacs
environment directory. You can provide documentation for your
own requests by placing a string, which is that documentation, as
the "documentation" property of the symbol that is the request
being documented. For instance, if' the symbol
remove-every-other-word has the documentation property of:

"Removes every other word from the sentence in which the
cursor appears."

this information is displayed by ESC? when used on some key set
to remove-every-other-word, or by:

ESC X describe remove-every-other-word CR

Documentation properties are assigned most conveniently via
(! the Lisp special form "defprop", whose general syntax is:
'-"".' "

(defprop SYMBOL WHAT PROPERTY)

This assigns the symbol (SYMBOL) a property (PROPERTY) of WHAT.
The defprop is a special form because the actual symbols
appearing in the form are used; they are not variables, as in "(+
a b c)". Thus,

(defprop Joe Fred father)

gives the symbol "Joe" a "father" property of "Fred". (The
"defprop" is a special-form way of '.do:ing the same thing as the
"putprop" function, but it is a special form because its
"arguments" are not forms to be evaluated to produce symbols
whose properties are to be dealt with, but the symbols
themselves). To use defprop to establish Emacs request
documentation, place forms like:

(defprop remove-every-other-word
"Removes every other word from the current sentence. Will
not work on se'ntences ending in ""?"" For indented
sentences, use $$remove-other-word-from-indented-sentences$.
$$$ is a powerful, dangerous, command."

documentation)

3-39 CJ52":OO

Note several things about the documentation string:

1. It does not need to end in a newline, and can contain
newlines.

2. Quotes (II) inside of it must be doubled.

3. The string "$$$" will be replaced by the key being
asked about (e.g., "ESC "Z" or "ESC X
remove-every-other-word'U) at the time the documentation
is displayed.

4. The keys used to invoke other requests can be
referenced by stating two dollar signs, the name of the
request, and one dollar sign. Thus,
$$go-to-end-of-line$ appears as "E in most
environments; the point of this and the previous
paragraph is to make documentation expansion
independent of a user's key-bindings.

The entire documentation st~ing is "filled" (ESC Q) after
all command-name substitutions are made; thus, the placement of
newlines in the documentation string is ignored. Two consecutive
newlines, however, are preserved, and thus, lines can be set off
for examples, etc., by surrounding them with blank lines.

It is slightly more efficient, but clearly less readable, to
place the defprop documenting a request before the defun defining
the request itself. The defcom facility can also be used to
document requests; see "Defin~ng Requests With defcom" below.

WINDOW MANAGEMENT

Although buffers appear in windows on request, and are
switched between automatically by the redisplay when you switch
windows with "X"O, "X4, etc., there are times when you may want
to take advantage of multiple windows explicitly. Good examples
in supplied code are RMAIL reply mode and the comout-command
("X"E).

Most of the extensions ~f interest are ones in which the
extension writer wants to place some information in a buffer, or
else prepare some buffer to have information placed in it (e.g.,
RMAIL reply) and then display that informatiQn in a window.
Usually, all that is required is to "go to" that buffer (e.g.,
with go-to-buffer or go-to-or-create-buffer). The redisplay
"finds" the editor in that buffer at the time of the next
redisplay, and replaces the contents of the selected window on
the screen. Such requests are called autophanic (self-showing).)'
Examples are "XB (select-buffer) and "I"F (find-file).-

3-40 CJ52-00

(

However, some requests set up buffers in some window other
than the current window, usually for multi-window operations such
as mail reply, so as not to disturb the contents of the current
window. They are called heterophanic (other-showing). The
standard examples are dired-examine, maii reply, and
comout-command ("X"E). All the examples given are sub-requests
of larger, autophanic requests.

Heterophan ic bu ffer behav ior is prov ided by the funct ion
find-buffer-in-window. It takes as an argument a buffer-symbol
(Lisp symbol representing a buffer). That buffer is created if
it does not now exist, and is gone to, as if go-to-buffer had
been used. If Emacs is in single-window mode, the effect is the
same as that of go-to-or-create-buffer. In two-window mode, that
buffer is put on display as follows:

• If it is already on display in some window, it is left
there.

• If it is not, it i sp I.l t on display in
window, one~ which the cursor is not, and
moves to that window, as if a "X"Q had been
least-recently used window is chosen.

some other
the cursor
done. The

Thus, on printing terminals and in single-window mode, the
effect of find-buffer-in-window is indistinguishable from that of
go-to-or-create-buffer. In multi-vJindow mode, it is equivalent
to go-to-or-create-buffer, displaying that buffer in another
window.

You must not use find-buffer-in-window to place a buffer on
the screen once you have already gone to it; if you think of
find-buffer-in-window as a kind of go-to-or-create-buffer, you
will find no need for doing so.

An extension must establish multiple windows if it needs
them; no current Emacs code requires multiple windows, al though
the fae iIi ties ment ioned above are more usefu 1 when al ready in
it.

3-41 CJ52-00

Most extensions that place an auxiliary buffer on display
via find-buffer-in-window provide some request to return to the
"main" buffer (e.g., the RMAIL Incoming Message buffer, the
buffer from which ~X~E was issued, etc.). If you enter a buffer
via find-buffer-in-window, you should probably return to the
buffer from whence you came via find-buffer-in-window as well;
the effect of this is to restore not only the original buffer,
but also the original window. Thus, save-excursion-buffer cannot
be used effectively to return from buffers entered via
find-buffer-in-window; an attempt to use save-excursion-buffer
results in both windows' showing the same buffer, since the
selected window (i.e., the cursor-bearing window) is changed a~d
a new buffer selection means a new buffer in that window.

The ~X~Q key sequence should be used to exit auxiliary
buffers used by extensions to return to their main buffer, and
usually switch windows as well, if the multiple-window strategy
outlined above is used.

Pop-up window mode, in essence, makes all requests
heterophanic. Requests or subrequests that are naturally
heterophanic need not worry about pop-up window mode, because
find-buffer-in-window takes the appropriate action in either
pop-up or non-pop-up mode. However, if proper heterophanic
behavior under pop-up windows is desired, naturally autophanic
requests and subrequests must call a window-management primitive I)
to obtain heterophanic behavior in pop-up window mode. This
primitive is called select-buffer-window. It takes two
arguments, a buffer-symbol, and a "kE~Y" that gi ves pop-up window
management a preferred window size.

In non-pop-up window mode, select-buffer-window is
equivalent to go-to-or-create-buffer, and the key is ignored. In
pop-up mode, it is equivalent to find-buffer-in-window, with the
key suggesting the new window size.

The following values for the key argument to
select-buffer-window are accepted. They specify the window size
in pop-up mode if the window does not exist already:

any number
That many lines ..

'cursize

nil

Make a choice based on the current number of lines in
the buffer.

Chooses some reasonable fraction of the screen.

3-42 CJ52-00

.J

'cursize-not-empty
Same as nil if the buffer is empty; same as 'cursize if
it is not. For example, AXAF uses this, because you
can type into a new buffer.

'default-cursize
If this buffer has never been d.isplayed
choice based on the number of lines.
the same size was chosen last time.

before, makes a
Otherwise, uses

The find-buffer-in-window can
"current buffer" heterophanically.

not be used to display the
If you attempt to do this:

(find-buffer-in-window current-buffer)

you find it appearing in both the old and new windows, for the
window manager finds that you were in this buffer in the current
window (a truth) before you went to another one (you had to go to
another one, as per heterophanic behavior), and indicates that
the current buffer is to be displayed in the old window as well,
for that was the last buffer you were in in that window. To
avoid this, use select-buffer-find-window (of two arguments, the
buffer and a key as for select-buffer-window) if heterophanic
display of the current buffer is needed:

(select-buffer-find-window current-buffer nil)

This is rare, since you seldom go to a buffer and then want to
find-buffer-in-window it; in Emacs, only AXAE does this.

Since all things using these features are moderately
sophisticated, only an outline of an extension using them is
given here. It is a typical sub-subsystem (e.g., dired) that
sets itself up in an autophanic buffer display, with specific key
bindings, etc., and has a heterophanic subdisplay by which it
displays a "menu" in addition to the main display:

3-43 CJ52-00

(defun unusual-mode () ;Setup function for this mode

(go-to-or-create-buffer (maknam
(eiplodec "Unusual buffer"»)

(set-key 'ESC-AS 'unusual-mode-show-menu)
(select-buffer-window current-buffer nil)
(register-Iocal-var 'unusual-mode-buffer-to-return-to)
............)

(declare (special unusual-mode-buffer-to-return-to»;for compiler
(defun unusual-mode-show menu ()

(setq unusual-mode-~uffer-to-return-to current-buffer)
;save buffer

(find-buffer-in~window 'Unusual-Menu) ;Display menu
(set-key 'r 'unusual-mode-select-item) ;Set key bindings
(set-key ,AXAQ 'unusual-mode-menu-return)
(insert-string "Unusual menu delicacies") ;Fill it up
;; Will not actually be displayed until request finishes.

(go-to-beginning-of-buffer)
(setq current-buffer-mode 'Unusual! Menu

buffer-modified-flag nil read-only-flag t))
(defun unusual-mode-menu-return ()

(find-buffer-in-window unusual-mode-buffer-to-return-to»
;;Return to calling buffer.

The following are several primitives available to deal with
windows by window number. The topmost window on the screen is
window number 1; the next orie down, if any, is number 2, etc.,
(the mini buffer and mode line do not count as windows). The
selected window is the one in wh:ich the cursor currently appears.

selected-window
This variable contains the number of the currently
selected window. Do not attempt to setq it to select a
window; use select-wi"j1;jow instead.

nuwindows
This variable
screen; do not
windows; uS"e
functions to do

select-window

contains the number of windows on the
at tempt to setq- it to create or de lete
delete-window and the AX2 and AX3
these things.

This function (of one argum~nt, a window number)
selects that window (as AX4 with an argument does).

3-44 CJ52-00

(

delete-window
This function (of one argument, a
removes that window from the screen,
space to the other windows.

window number)
distributing its

buffer-on-display-in-window
This predicate function (of one argument, a
buffer-symbol) returns truth if the specified buffer is
on display in some window on the screen. If used as a
function, i.e., the value returned is inspected, the
returned value the window number in which the specified
buffer is on display (if it is not on display, the
symbol "nil", representing falsity, is returned).

window-info
This function (of one argument, a window number)
returns information about that window. The information
is in the form of a piece of Lisp list structure, which
can be interpreted by the Lisp list destructuring
functions; assuming that "info" has the result of
window-info, the following forms return the information
as follows:

(caar info)

(cdar info)
(caddr info)

(cadddr info)

window-ad just-upper

=>

=>
=>

=>

The top line-number on the screen of
the window. The topmost is o.
The number of lines in the window.
The buffer-symbol of the buffer on
display in the window.
A string duplicating the contents of
the "cursor line" of the window,
including its newline character. The
cursor line of a buffer is that line
where the cursor is (if it is in the
selected window) or would be if that
window became selected (e.g., with
"'XO).

A function of two arguments, the first a window number,
and the second a signed number of lines to move its
upper divider-line down (negative is up).

window-adjust-lower
Same as window-adjust-upper', but deals with lower
divider line.

WRITING SEARCHES

Several functions aid in providing search-type requests.
These functions prompt for the search string, provide default
search strings, and announce search failure in a standardized

(\ w~y. All supplied Emacs searches use them.

3-45 CJ52-00

get-search-string
Takes one argument, the prompt. The prompt should
contain the word "sE~arch". The get-search-string
prompts the user for a search string, which the user
must terminate with a CR, and returns it as a string.
If the user gives a null string, the last search string
is used and echoed. The last search string is set to
the returned string for the next defaulting.

search-failure-annunciator
Causes the "Search Fails." message to appear in the
minibuffer, and a command-quit (AG) to be performed.
This aborts any keyboard macro collection or execution
in progress.

When writing a search-type request, you should provide two
interfaces, a "command", which calls the above two primitives,
and a "search primitive", also called by the "command". The
search primitive should return t (truth) if the search succeeds,
leaving point at the' proper place, as the search defines. If the
search fails, the primitive must return nil (falsity), and leave
point where it was when the primitive was invoked.

A simple implementation of a wraparound search, below, first
looks from point to the end of the buffer for the search string. ')'
If that fails, it goes to the top and searches again. It is not .
optimal because it needlessly scans farther than the original
point when starting from the top. Using point)markp and
searching a' line at a time would be very expensive, due to
point)markp's expense. Searching a line at a time using
forward-search-in-line and mark-on-current-linep would be
acceptable, but more complex than this example need be. For a
search that is probably going to be used only as a user interface
(i.e., not internally), this implementation is adequately
efficient. Recall that with-mark releases its ma~k and returns
·t last value.

3-46 CJ52-00

(

(~ !

Here is the internal primitive for wraparound search:

(defun wraparound-search-primitive (string)
(with-mark m jRemember starting point

(if (forward-search string)jLook to end of buffer
t iReturn truth
else
(go-to-beginning-of-buffer)
(if (forward-search string) iLook from top

t
else
(go-to-mark m) jReturn to orig. place
nil»») jReturn falsity

" wi th-mar_k and this function
" ret urn the val u e 0 f the 0 ute r "i f I,

The request for calling the primitive:

(defun wraparound-search ()
(if (not (wraparound-search-primitive

(get-search-.str ing "Wraparound Search: "»)
(search-failure-annunciator»)

The wraparound-search request should have some key bound to
it if this type of search is to be made available from the
keyboard.

CALLING MULTICS COMMANDS

In some extensions, especially those like DIRED that
manipulate the. Multics environment, you must call Multics
commands, or execute Multics command lines.

Multics command lines are strings submitted to cu Scp for
execution. This is the Multics agency to which the "e" Fequests
of the Multics edm and qed x E~di:tors, the " " requests of
read_mail, send_mail, and debug, and other subsystems submit
command lines. The two primi ti VE!S for executing Mul tics .command
lines are:

e cline
Taies· one argument, a string, which .is passed t~ cu_Scp
for execution. No reattachment of output takes place.
If the command line produces output, it messes up the
screen. This should only be used when no output is
anticipated, and should be used, then in preference to
comout-get-output, since it is much faster.

3-4'7 CJ52-00

comout-get-output
Takes any number of arguments, which may be strings or ')-
symbols, and catenates them with one space between them·
to form a Multics command line, facilitating things
like:

(comout-get-output 'delete this-seg '-bf)

Reattaches user output and error output during the
execution, rerouIi~g them to a process directory file.
When the command execution completes, the contents of
the current buffer are obliterated (!) - and the
temporary file read in to .it. This is the primitive
that comout-command (AXAE) uses; e cline is used by
comout-get-output internally.

These primitives set up a condition handler that catches all
abnormal Multics signals and atiorts to a second Multics command
level with a message if one occurs. However, requests for input
by these command lines cannot at this time be dealt with well.
In the case of e cline ,the user gets the query in raw teletype
modes, and has to answer it in raw, nonedited teletype modes. In
the case of comout-get-output, the query never appears, having
been routed to the temporary segment, and the user's process
hangs since the user, having never seen the query, does not know
to respond.

MULTICS ERROR TABLE

To get the value of standard Multics error codes, from
error table , into a program to see if a given Multics interface
has In fact returned it, the function "error_table_" (with
underscores, not hyphens) is used. Its single argument is a
symbol, whose name is the name of the error table entry whose
value is sought, and the returned result is'tKat vilue, or 1 if
it is not a valid entry.

The error table function optimizes finding the same name
over and over igain,-so you need not go through machinations to
save an error table value computed by these means. An example
of the use of. error table follows:

(let «status-result (hcs $get user effmode dir entry"")))
(i f (not (= (cadr s tatus=result). 0) ; the retu rn code

(if (= (cadr status-result) .
(error table 'incorrect access))

(display-error-~oabort "Warning: ~ot checking
access")

)

else .~

(display-corn-error (cadr status-result) dir ">" ..)
entry))))

3-48 CJ52-00

Defining Reguests With defcom

The defcom (for define-command) facility' simplifies the
definition of Lisp functions~~ used as Emacs requests.
Defcom cooperates with the Emacs command reader to provide
prompting and defaulting of unspecified arguments, rang-e-checking
of numeric arguments, automatic repetition for numeric arguments,
cross-connecting symmetrical functions via negative arguments,
and other features.

Defcom is a relatively new facility in the Emacs extension
environment; not all of Emacs' internal code has been converted
to use it. Perusing the Emac~ source, you will find examples of
defcom's use intermixed with older examples using defun to define
request functions.

Defcom should only be used for defining functions actually
to be used as Emacs requests; internal and auxiliary functions to
be used by these functions should still be defined with defun.
Emacs requests defined with de fun will work, but those defined
with defcom produce better diagnostics and offer more features.
Defcom is a technique whereby the necessary defuns are generated
automatically, so functions defined with defcom can be called
from other functions, as well.

To define a function with defcom, use defcom instead of
defun, and supply no Lisp argument list:

(defcom one-word-from-beginning
(go-to-beginning-of-buffer)
(forward-word»

This is the simplest form of defcom; optional features are
supplied by placing, between the function name and the function
code, various keywords, all of which begin with the "&"
character, and some of which take optional arguments, expressed
as lists.

The most common optional specification is &numeric-argument,
(or &na), which specifies what to do with a supplied numeric
argument. The keyword &numeric-argument must be followed by a
list of specifications, which must include one of the following
major processing types:

&reject
Any numeric argument is rejected as invalid. No other
specifications are valid in this case. This is the
default if &numeric-argument is not given.

&ignore
A numeric argument is ignored~

3-49 CJ52-00

&repeat
If the argument is positive, the request is repeated .~).
that many times._

&pass
The value of the Lisp var:lable "numarg" is set, as in
nondefcom requests

In addition to the major processing type, optional bounds
can be specified by the keywords &upp~r-bound (&ub) or
&lower-bound (&lb). These, in turn, must be followed by either
an integer representing the bound, or the keyword &eval followed
by an expression to e~aluate at the time command execution is
attempted, which then produces a value (such an expression is
called an "&eval expression".) Here are some examples of
&numeric-argument specifications:

&numeric-argument (&pass)

&numeric-argument
(&repeat &lower-bound

&upper-bound &eval (+ max-foos 2»

&numeric-argument
(&pass &upper-bound 15.)

A request defined with defcom may elect to receive Lisp
arguments, values that are to be prompted for or supplied as
extended request arguments. They can be provided automatically,
and prompted for,- by the Emacs command reader, and supplied as
Lisp arguments to the request function. Instead of a normal Lisp
argument list, the keyword &arguments (or &args or &a) are
followed by a list of argument specifications, one for each Lisp
argument to be supplied.

Each argument specification consists of the Lisp name of the
argument, i.e., the name of the variable to be referred to inside
the function, and any number of argument qualifiers, separated by
spaces. Each argument qualifier can consist of several tokens,
as necessary. Argument qualifiers specify the prompts, defaults,
etc., for an argument. An argument specification may also be.
given as the name of the variable alone, as opposed to a list of
it and qualifiers. In this case, it is equivalent to having its
own name as a prompt for its value.

When a defcom-defined request is invoked as an extended
request, (i.e., via ESC X), the Emacs command reader checks the

i .. J

type and number of request arguments supplied and necessary, and -
prompts for those not supplied, or defaults them as specified. \~)

3-50 CJ52-00

(

When a defcom-defined request that has arguments is invoked from
a key, it is as if it were invoked as an extended request with no
request arguments given, and all are either prompted for or
defaulted.

The valid argument qualifiers are

&string
&symbol
&integer

Specifies how
prompted for,
Only one of
specification,
default.

&default

the argument, when read by ESC X or
is to be converted before being passed.
these is valid in a given argument
and &string (i.e., no conversion) is the

Must be followed by either a string, symbol, or
integer, as consistent with the expected data type for
this argument, or an &eval expression. Specifies the
default value to be used if this argument is not
supplied, or a null response is given to a prompt for
this argument, if any.

&prompt
Specifies the prompt for this argument, if not supplied
via ESC X. Prompts are put to the user before defaults
are evaluated or used; a null string causes the
&default value to be used. I An &prompt is followed by a
pro~pt string (in quotes), or an &eval expression, and
one of the two optional keywords N~ or ESC, specifiying
the prompt terminator (NL is the default).

&rest-as-list
Valid o~ly for the last argument. Causes this variable
to be given, as a value, a list of all of the remaining
supplied arguments. If &rest-as-list is used, the
caller of this function from Lisp (including start-ups
wri tten by not-Lisp-consc,ious users) must know that the
number and organization of Lisp arguments is different
from the apparent argument array given to ESC X.

&rest-as-string
Valid only for the last argument; causes all remaining
arguments to be supplied as a single string to the
function, as they appeared to ESC X, with spaces and so
forth included. Same cautions as for &rest-as-list
apply.

3-51 CJ52-00

-

A function definition that accepts three arguments follows:

(defcom replace-n-times
,&arguments
«oldstring &string -&default &eval

(get-search-string "Old: II»~
(newstring &string &prompt "New String: " NL)
(count &integer &prompt "How many times? " NL

&default 1»

(do-times count
(if (not (forward-search oldstring»

(search-failure-annunciator»
(do-times (stringlength oldstring)(rubout-char»
(insert-string newstring»)

It can be invoked as:

ESC X replace-n-times Washington Lincoln, 2 CR

or:

ESC X replace-n-times CR

in which case all arguments are prompted for, or:

set-perm-key AZ9 replace-n-times

followed by striking AZ9 at some time, prompts for all arguments,
too. This function is defined so that it can be called from Lisp
as:

(replace-n-times "this" "that" 17)

or whatever, i.e., it is a Lisp function of three arguments.

When defcom-defined requests are reexecuted by AC, they are
repeated with identical arguments. This is what makes
search-repetition by AC work.

In addition to numeric arguments and request arguments,
defcom can be used to specify prologues, documentation, and
negative functions of request functions. Documentation is
specified by the keyword &documentation (or &doc) followed by a
documentation string subject to the same rules as given above
under "Documenting Requests". Prologues are functions or code to
be executed before any arguments are prompted for, perhaps to
check for valid circumstances for calling this request. Negative
functions are functions or code to be executed if the request is
given a negative numeric argument: the negative function is
given the negative numeric argument made positive. Negative
functions are specified by the keyword &negative-function (&nf),
followed by the name of the appropriate function, or forms,

3-52 CJ52-00

(i

terminated by &end-code. Prologues are specified by the keyword
&prologue, and the name of a prologue function or an &eval
expression. The following is an example of the use of some of
these features:

(defcom forward-topic
&doc "Goes forward one or more topics. See also

$$backward-topic$."
&numeric-argument (&repeat)
&negative-function backward-topic
(with-mark m

(forward-search "Topic::"

3-53 CJ52-00

•.)
i

/

SECTION 4

LDEBUG MODE

Emacs LDEBUG mode (Lisp Debug) provides an interactive Lisp
env1ronment designed for the debugging of Emacs extension code.
Facilities are provided for tracing the Lisp stack, breakpointing
code. and interacting with the native MacLisp trace facility.
LDEBUG mode is specifically optimized for multiple-window
interaction.

LDEBUG BUFFERS

The heart of the LDEBUG mode facilities is the LDEBUG
buffer. The buffer named LDEBUG, when created by ldebug mode

('" (e i the r i n res p 0 n set 0 a b rea k poi n t's be i n g ex e cut ed, a t rap p e d
l,.) Lisp error, or the explicit "ldebug'" extended request), evaluates

any Lisp form typed into it when carriage return is struck after
it. The form must be on one line; an-error occurs if the ·form
has syntactic errors (e.g., miscounted parentheses). The result
of the evaluation is placed in the LDEBUG buffer on the next
line, following the sign "=>", which indicates the result of such
an evaluation. The Lisp variable "*,, is set to the result of
each successive evaluation, as at raw Lisp top level; this may be
used to reference, the last printed result.

Random Lisp forms such as "(+ 2 3)" or "current-buffer" can
be typed at LDEBUG buffers, and the resulting buffer contents
will in effect be a dialogue of an interaction with Lisp. Such
buffers are often dprintable for later perusal. The values of
variables can be set by evaluating the normal Lisp setq form,
e.g., (setq var (+ foo 27». As lines are placed into the LDEBUG
buffer by the LDEBUG facility, the window (if any) containing it
scrolls, if necessary.

Lisp values "printed" into the LDEBUG buffer are by default
limited in length to ten and depth to six. The values of the
option variables "ldebug-prinlength" and "ldebug-prinlevel '~ can
be set to alter these defaults. The default input and output

(_.) radices are both 8: these can be altered as the option variables
"Ide bug- i base" and "Ide bug-ba se!I .

4-1 CJ52-00

Most Emacs requests can be used in LDEBUG buffers; they are
in Lisp Debug mode, which is an extension of ordinary Lisp mode,
with requests differing as detailed below.)

EMACS AND LISP DEBUG MODE

The Ide bug (ESC X ldebug CR) extended request can be invoked
at any time, in the usual way Emacs extended requests are
invoked. It places Emacs in the LDEBUG buffer as described
above, and also sets up a system of Lisp error handlers "under" a
new invocation of the Emacs request loop. Should any Lisp error
occur while these handlers exist, the LDEBUG buffer is entered,
placed on display if not already on display, the terminal's bell
is beeped, and the Lisp error message is entered in the LDEBUG
buffer. You are then at a "second (or greater) level" of LDEBUG,
similar to being at Multics command level when an error occurs.
The level number is part of the message entered in the LDEBUG
buffer.

Recursive (level greater than 1) LDEBUG buffers can be
released (aborting all executing code between the LDEBUG level
being released and the previous level) via the ESC G
(ldebug-return-to-emacs-top-Ievel) request, the analogue of the
Mul tics release command. It beE~ps and types "$g" in the LDEBUG
buffer. The value of the variable ldebug-Ievel tells the current
level of LDEBUG buffers.

ESC P (for proceed) is the analogue of the Multics start
command; more about its meaning for each different type of entry
to an LDEBUG buffer is described below. In general, it restores
the buffer and window from which the LDEBUG buffer entered.

ERROR TRAP ENTRIES TO LDEBUG

When an error trap entry to the LDEBUG buffer has occured,
the Lisp stack can be traced via the ESC T (ldebug-trace-stack)
request, and the value of variables can be inspected simply by
typing their names (since they are Lisp forms) to the LDEBUG
buffer. For this to work most effectively, at least one level of
LDEBUG should be in the stack before the error is encountered.

A value can be returned to the Lisp error handler by typing
it on a line, and instead of ending the line with carriage return
(which 'would evaluate and "print" the result), ending it with ESC
P. Lisp error handlers often want a list of the value to replace
some erroneous value. For instance, in the following dialogue,
an LDEBUG trap was entered because of the" unbound variable
"stuff": the programmer returned the symbol "value-i-wanted" as
the intended value of the unbound variable:

4·-2 CJ52-00

I
J

c.)
(myfun huff stuff)

Lisp breakpoint unbnd-vrbl at level 1 in buffer LDEBUG:
lisp: undefined atomic symbol stuff

('value-i-wanted)$p

All correctable Lisp error breakpoints accept a retry value to be
used to retry the failing operation; the undefined function
breakpoint ("undf-fnctn") also accepts a list of a new value, in
this case a function to be used instead.

The "$p" is always printed by ESC P, to remind the user of
the $p which is used in raw Multics MacLisp to restart breaks.
ESC P can also be used alone on a line (i.e., no value to be
returned preceding it) to restart a break and let Lisp's default
action occur.

ESC G can be used as usual to release a level of errors to
the next lower LDEBUG level; AG (command-quit) does not release
past LDEBUG levels.

CODE BREAKPOINTS

Breakpoints can be set in interpreted extension code being
debugged by typing ESC & in a Lisp Mode buffer with the cursor at
the point in some function being debugged where you would like
this break set. The LDEBUG mechanism creates this breakpoint by
putting a call to a tracing, function (n%%n) in the code in the
buffer, and evaluating the function definition it is looking at.
This break code is left in the function to let ,you know that it
is there: it includes a break number (they are assigned
sequentially) to which this breakpoint can be referred by
requests yet to be described.

You should be in at least one level of LDEBUG buffers before
setting a break: thus, you should have said "ESC X ldebug CR"
some time before setting breaks.

Having set a break, you can run the code being debugged.
When the breakpoint is entered, the LDEBUG buffer is entered at a
new higher level. A message of the form:

Break 4 in function testfun

is put in the buffer, and the LDEBUG buffer is put on display.
'As in all LDEBUG buffers, arbitrary forms can be evaluated

(' (including inspecting variables), and ESC T can be used to trace
-) the Lisp stack. Again, ESC G releases a level of LDEBUG buffers.

4-3 CJ52-00

ESC P is used to restart code breakpoints as well. A given
breakpoint can be set for some number of proceeds (i.e., "3"
means proceed, and proceed this breakpoint the next two times it
is encountered automatic~lly) by giving that number as a numeric
argument to ESC P (i.e., ESC 3 ESC Pl. A message indicating th~
number of proceeds is inserted in the LDEBUG buffer. ESC P
should be used alone on a line (i.e., no retry value) when
restarting code (or trace) breaks.

When in a code break, ESC R (ldebug-reset-break) resets the
current breakpoint, before restarting or releasing. The break
code is removed from the function definition (visibly, if it is
on display), and the function definition is reevaluated. ESC R
with a numeric argument can be used to reset a break by number.

In an LDEBUG buffer, ESC L (ldebug-list-breaks) lists all
the .known code breakpoints: their numbers, the function in which
each break appears, the buffer that function appears in, and the
status of each break.

The source for the current breakpoint can be shown by
issuing the request ESC S (ldebug-show-bkpt-source). It is
placed in an available window (if in multiple window or
pop-up-window mode), and the cursor is moved to the break code.
Use Axa to get back, or, in one-window mode, AXB CR.

During function breakpointing, to determine where the editor
was (i.e., what was the current buffer, and where was the current
point) at the time the breakpoint was encountered use ESC AS
(ldebug-display-where-editor-was). It selects the appropriate
buffer, moving the cursor to the point in it where the current
point was when the breakpoint was taken. If the buffer is
already on display in some window (or pop-up windows are being
used), that window is selected, and Axa returns you to the LDEBUG
buffer for further probing or restarting. In one-window mode,
the correct buffer is switched to, and AXB gets you back. If the
current point is moved by you explicitly (i.e., via normal Emacs
requests) while visiting the buffer where the breakpoint was
taken, it has its new position when the breakpoint is restarted.
This is analogous to setting a variable before restarting with
usual Multics debugging.

Using two or three windows to contain the LDEBUG buffer, the
breakpoint source (function being debugged), and the buffer-the
functions being debugged are working on, is highly effective.

CJ52-00

FUNCTION TRACING WITH LDEBUG

The standard MacLisp trace package can be used while in
Emacs; extensibility features of the former allow LDEBUG to take
control of the trace output and breakpointing provided by it.

All the facilities of the standard trace package can be
used, by invoking trace from ESC ESC minibuffers. The trace
package allows tracing of entries and exits to functions,
arguments," and return values, and breakpoints when functions are
entered. Some sample forms to trace the function testfun are
given here: these are in Lisp syntax, and can be typed as such
to LDEBUG mode. When typed to an ESC ESC minibuffer, the outer
set of parentheses should not be supplied.

(trace testfun)
Traces the input arguments and returns value of testfun
each time it is invoked.

(trace (testfun break « x 3»)
Traces input and returns value of testfun, enters a
breakpoint when entered and x (x can be an argument to
testfun) is less than 3.

(trace (testfun break t»
Same, but enters a breakpoint at every entry to
testfun.

(trace (testfun entry (a b) exit (c»)
Traces input arguments and returns value. Also prints
out the values of a and b when testfun is entered and
the value of c when it is exited.

The general
indicate optional
variables):

syntax of
clauses,

trace invocations
and angle brackets

is (brackets
are syntactic

(trace <fnname-or-clause-1> <fnname~or-clause-n»

where <fnname-or-clause> is either a function "name to be traced
for input arguments only and return value, or:

«fnname> [break <break-condition>] [entry «entry-vals»]
[exit «exit-vals»J)

4-5 CJ52-00

When a function is traced within Emacs (it is not
recommended to trace internal Lisp or Emacs primitives, and no
part of the redisplay should be traced in this way), trace output._)
for entry and exit tracings are placed (and scrolled) directly
into the LDEBUG buffer if it is on display; if it is not on
display, this output is put in the LDEBUG buffer, and locally
displayed as it is produced. The line of dashes and asterisks of
local displays is not produced, as it cannot be known when the
end of trace output has been reached. Thus, traced functions
invoked from the mini buffer may often leave the cursor in the
mini buffer awaiting clearing of the local display via linefeed or
.... L.

Trace output generally looks like:

(3 enter testfun (3 5 (a . b» 1:/: (4 5»

The indentation level gives the depth in currently active traced
functions. The "3" is the recursion depth of the given function
(e.g., t~stfun) being traced. The "enter" is the type of trace
(enter vs. exit), (3 5 (a b» is the list of arguments (in
this case, three arguments). The 1:/: sets off the entry values
and exit values optionally selectable by the entry and exit
keywords in the trace-invoking form. Exit traces look like:

(3 exit testfun 17)

If trace is used to set an entry breakpoint, the LDEBUG
buffer is trapped to at the time the traced function is entered,
in a way very much like a Lisp error break to LDEBUG. A message
such as:

Entry breakpoint to function testfun

is printed into the LDEBUG buffer, and the terminal beeped. As
with LDEBUG code breaks, ESC G releases, ESC P restarts, ESC R
resets, and ESC S shows wh~re the editor was at the time the
break was taken. When in entry breakpoints to interpreted
functions, the arguments can be inspected by name. ESC T can
trace the Lisp stack, but unless *rset t mode was in effect
(setting up an LDEBUG level does this automatically), trace
information may not be present.

It is not necessary to have invoked Ide bug before invoking
trace in Emacs; LDEBUG is invoked automatically if an attempt is
made to use trace in Emacs. If some critical mechanism is being
debugged and normal trace handling (i.e., breakpointingltracing
to user ilo from Lisp, not the Emacs handling just described) is
necessaFy, the variables trace-printer and trace-break-fun should
be made unbound (e.g., ESC ESC makunbound 'trace-printer) before
the first reference to trace in a given invocation of Emacs.

4-6 CJ52-00

(I

SECTION 5

WRITING EMACS TERMINAL CONTROL MODULES (CTLS)

Support of video (and printing) terminals in Emacs is
accomplished via terminal-dependent modules known as CTLs (from
the typical name, e.g., "super58ctl" for a "super58" terminal).
There are about two dozen supplied CTLs. Emacs attempts to
locate an appropriate CTL in this directory at the time it is
entered, based upon the terminal type maintained by Multics L and
optional Emacs control arguments.

To support a type of terminal not supported by a supplied
CTL, you must write a new CTL. A CTL is written as a Lisp source
program, name TTYTYPEctl.lisp, where TTYTYPE is the name of the
terminal type to be supported. If this terminal type is in your
site's Terminal Type File (TTF), the name chosen should appear
the same as it appears in the TTF, except that the name of the
CTL should be all lowercase (Emacs lowercases terminal types when
looking for CTLs).

CTLs are
Personnel with
successfully.
before it can
compiler, lcp.

usually written by example from supplied CTLs.
no knowledge of Lisp at all have achieved this
Once the CTL is written, it must be compiled
be used. Compilation is performed via the Lisp
A typical command line to compile a CTL is:

lcp super58ctl

This produces an object segment, super58ctl,
debugged, can be installed in the "otls" directory.
being debugged, invoke emacs with the -ttp control
the full pathname of the compiled CTL:

which, when
To use a CTL
argument and

emacs -ttp >udd>Support>Jones>emacs development>super58ctl

5-1 CJ52-00

Three control arguments for" setting the terminal type are
recognized by Emacs when given as the first command line
argument. These are:.)

emacs -terminal type STR or emacs -ttp STR
where STR is your tlerminal type. The
can be any recognized edi tor terminal
pathname of a control fi le to load.
type given by STR is set permanently.
Mul tics terminal type does not affect
of this STR.

value of STR
type or the

The terminal
Changing your
Emacs' memory

emacs -reset
Emacs forgets any characteristics of the terminal set
by the -ttp option. Instead, Emacs checks the
Multics terminal type, as is the normal case.

emacs -query
Emacs queries the user for the terminal type without
checking th-e Multics terminal type first. The answer
you give may be any STR accepted by the -ttp option.

Once a CTL has been debugged, it should be installed (using
normal Multics online installation conventions) in the ctls
directory. Added names and links can be used to support many TTF
terminal types via one CTL. When Emacs is given a terminal type
(either from Multics Communication System or the -ttp control i.).
argument) for which it cannot find a CTL in the ctls directory,
it lists the known terminal types by listing the primary names of
all segments and links in the ctls directory, stripped of the ctl
suffix. The choice between added names and links (or added names
to links) should be made based upon whether Emacs should list a
gi ven name in. this context.

The most effective method of writing a new
one that· was written for a similar terminal
Almost all of the extant CTLs were written in
sources are Lisp source segments, generally one
pages long. Good starting points are:

CTL is to take
and modify it.
this way. The
or two printed

• vip7200ctl.lisp, typical of terminals that do not have
the ability to insert or delete lines or characters.

5··2 CJ52-00

• vip7800ctl.lisp, typical of terminals that do have
these a bi.l i ties. The two fac il i ties are independent,
either one, both, or neither may be present, although
use of terminals wi thout insert/delete lines at less
than 300 baud may be found to be unacceptable.

The interfaces (function c1efini tions) in a CTL are
standardized. They have the same names in all CTLs. The Emacs
screen manager calls these interfaces anonymously after the
appropriate CTL has been loaded. The interface DCTL-init is
called at Emacs start up time; it has the responsibility of
setting various flags, and initializing the terminal. It should
contain the statements:

(setq idel-lines-availablep t)
if the terminal can insert/delete lines

(setq idel-lines-availablep nil)
if it cannot

(s~tq idel-chars-availablep t)
if the terminal can insert/delete/ characters

(setq idel-chars-availablep nil)
if it cannot

(setq screenheight N.)
where N is the number of lines on the screen (note
the dot after the N).

(setq screenlinelen M.)
Where M is one less the number of characters in a
line on this terminal. Again, note the dot.

(setq tty-type 'TYPENAME)
Where TYPENAME is a word like IIsuper58" that
identifies the terminal type.

At the time DCTL-init is invoked, the variable ospeed is set
to the speed of the communications line in characters per second.
This can be used to perform padding ca,lculations. Thrs-value is
usually computed fr'om the line speed maintained by the Multics
Communicat ion Sy stem. The -1 ine speed control ar gumen t c an be
used to specify terminal speed for users logged in via the
ARPANET.

5-3 CJ52-00

Also before DCTL-ini t is invoked, the variable
given-tty-type is set to the name by which the CTL was loaded
wit h the " c t 1 " s u f fix s t rip p e d . T his v a ria b 1 e can be use d i nJ ..
DCTL-init (and elsewhere) to enable and use different features of
a terminal dependent on the name used to reference that terminal.
To ensure that gi ven-tty-type is different for various versions
of a terminal, gi ve the addi tional varieties of the terminal as
links in the ctls segment. For example, there are 1 inks for
vt100wctl and vt100wsctl to vt100ctl. These links allow the
VT100 CTL to distinguish between various screen widths and
heights by using the value of given-tty-type. The "eq" predicate
(i. e., (eCl gi ven-tty-type 'dd4000» can be used to check the
value of this variable. The var'iable tty-type should be set by
the CTL to a generic terminal type, e.g., vt100 for all varieties
of VT100, as opposed to the type given in given-tty-type.

The following functions are available to the CTL writer:

• Rtyo takes one argument, a number (fixnum), and outputs
that number as ASCII data. For example, (Rtyo 141)
outputs an "a", and (Rtyo 33) outputs an ESC.

• Rprinc takes one argument, a character string, and
outputs it. For example, (Rprinc "]1") outputs a right
bracket and an I.

Both of these functions buffer their output until the Emacs
screen manager dumps this buffer" This is always dlolne at the end '~:J
of any redisplay at all, and after DCTL-init is ca ed.

The CTL writer must maintain the values of the special
(global) variables X and Y relative to a zero origin screen
position where the cursor was left. In return, you get to
inspect these variables to do positioning optimization.

The CTL writer must provide thE! following interfaces to. be
called by the Emacs screen manager:

• DCTL-init (no arguments). Must set the flags listed
above, initialize the terminal (if necessary), clear
the terminal screen, and leave the cursor at posi tion
(0, 0) (home).

5-4 CJ52-00

• DCTL-posi tion-cursor (two arguments, a new X posi tion
and a new Y posi tion) . Move the terminal's cursor to
the given position. Position 0, 0 is defined as the
upper left hand corner of the screen. This function
must check the variables X and Y, and output no
characters if the cursor is known to be already at the
desired position. Otherwise, it must use the values of
X and Y to determine what type of motion is necessary,
output characters to move the cursor, and update X and
Y to the input parameters (the delay of the buffered
output is not an issue).

Typically, DCTL-position-cursor determines which is the
optimal movement based upon the relative positions of the cursor
and the desired position. For terminals that have many forms of
cursor movement, some combination of backspaces, linefeeds, and
carriage returns may be adequate to effect some forms of cursor
movement. Sometimes the sequences generated by the arrow buttons
on the terminal may be used for relative positioning. Just about
all terminals include some form of absolute posi tioning. The
choice of optimal cursor positioning should be based upon which
will output the fewest character's to effect the desired move.
See hp2645ctl.risp for an example of a very well optimized cu~sor
positioner.

One useful trick in the writing of DCTL-position-cursor is
the use of recursion. See adds980ctl.lisp for an example. If
you choose to use terminal tabs, then your DCTL-ini t must set
them, and you must take care not to clear them. No supplied CTLs
(other than the extremely special-case printing terminal
controller) use tabs.

• DCTL-display-char-string (one argument, a character
string to be displayed). Must output this character
string to the terminal at the current assumed cursor
pOSition. The string is guaranteed to contain no
control or other nonprinting characters, and each
character in it is guaranteed to take up ~nly one print
position. Be careful t.o update cursor position after
printing the string; the lisp function st~inglength may
be used to ascertain the length/printing length of the
string.

5-5 . CJ52-00

• DCTL-kill-line (no arguments). Clear the line from the
current assumed cursor position to the end of the line,
and leave the cursor at that original assumed position.
Most video terminals have a clear-to-end-of-line
feature; it should be used here if available. Some
terminals do not, yet this function must be provided
anyway. The machinations for simulating clear to end
of line are somewhat involved; see adm3actl.lisp for an
example of clearing to end of line by overwriting with
blanks. Performance df this technique at 300 baud is
generally completely unacceptable, rendering such
terminals unfit for use with Emacs at that speed.

• DCTL-clear-rest-of-screen (no arguments). Clear the
screen from the current assumed cursor position to the
end. Leave the cursor where it was supplied. Some
terminals have a "clear whole screen" function, but not
clear to end of screen. Currently, you can use the
clear whole screen function. If your terminal does not
even have a clear-whole-screen function, it is probably
not worth using with Emacs. If you choose to use'tabs
in cursor positioning, be wary of clearing them via
this funct'ion.

Those are all the required functions. Some terminals
require control sequences to change modes between normal Multics
operation and operation within Emacs. (For example, a terminal
might be switched between line-at-a-time transmission and
character-at-a-time transmission.) Yet other terminals might use
features during the operation of Emacs that should be
disabled/reset when using Mul tics. (For example, the Digital
Equipment Corporation VT100 uses "scroll" regions to simulate
insert/delete lines. However, if a scroll region exists, it
makes parts of the screen unusable when using Multics.) It is
possible and quite common to switch between Multics and Emacs by
using the ATTN key and the program interrupt command. In such
cases, the terminal is in the wrong mode at various times. If
the terminal for which you are writing a CTL exhibits this
behavior,You should add the following statements to DCTL-init:

(setq DCTL-prologue-availablep t)
to specify that certain functions must be performed
each time Emacs is entered from Multics.

(setq DCTL-epilogue-availablep t)
to specify that certain functions must be performed
each time Multics is entered from Emacs.

5-6 CJ52-00

rJ.

I

/ I

I

I
I

c./!

Ci

In addition, you must then supply the following two functions:

• DCTL-prologue (no ar guments) . Perform any operations
that are required when Emacs is entered from Multics.
This function is invoked immediately after DCTL-init is
called and after Emacs is reen.tered after a QUIT via
either the Multics progr-am_interrupt or start commands.

• DCTL-epilogue (no arguments). Perform any operations
that are required when Mul tics is to be entered from
Emacs. This function is invoked immediately before
Emacs is exited when the AXAC (quit-the-editor) request
is invoked, and immediately before Emacs is suspended
when the AZAZ (quit) request is invoked or the ATTN key
is hit on the terminal.

If you have stated that insert/delete lines is available,
via setting the flag idel-lines-availablep to t, you must supply
the following two functions. If you set this flag to nil, you
need not write these functions:

• DCTL-insert-lines (one argument, a number of lines to
be inserted). Open up the given number of lines on the
screen. There are that many blank lines (created by
DCTL-delete-lines) at the bottom of the screen at the
time this function is invoked. The cursor is at
position 0 of some line at the time DCTL-insert-lines
is invoked. It must push the contents Of that line
down the supplied number of lines, leaving the cursor
in the same place, and the line the cursor is on and
the n-1 succeeding lines blank.

• DCTL-delete-lines (one argument, a number of lines to
be deleted). Delete from the screen the supplied
number of lines, starting with the line the cursor is
on and proceeding downward. The cursor is to be left
in the same place it was given. That many blank lines
are assumed to be pulled up on the bottom of the
screen.

5-7' CJ52-00

If the flag idel-chars-availablep is set to t, indicating
that insertion and deletion of characters is available, the
following two functions must be supplied:

• DCTL-insert-char-string (one argument, a character
string to be inserted at the current assumed cursor
position). Insert the character string supplied at the
current cursor position. Push to the right all
characters at, and to the rigbt of, the current cursor
posi tion. There are only blanks on the screen in the
region being pushed off. Leave the cursor (and so
update) after the last character of the inserted
string.

• DCTL-delete-chars (one argument, the number of
characters to be deleted). Physically delete from -the
screen the supplied number of characters, starting with
the character at the cursor and on to the right. Move
all characters to the right of these characters that
many pOSitions to the left. That many blanks are
assumed to be moved in from the right edge. Leave the
cursor where it was supplied.

Writing a CTL usually involves editing an existing one,
trying it, modifying it, and iterating until it is solid. You
use the -t tp control argument many timE~s to swi tch back and forth <",,')'
between printing terminal mode and the new CTL when logged in '
from the terminal on which the CTL is being developed. For
terminals wi th insert/delete features, it may be convenient to
debug the CTL first without these features (claim they are not
there in the DCTL-init), and add them later. Similarly, you are
encouraged to write a better DCTL-position-cursors once you have
one that works at all, for the eonvenience of edi ting the CTL
with Emacs substantially reduces the effort of improving it.

For some terminals, padding may be necessary for some
operations at some or all line speeds. If terminal behavior
appears random, or garbage is left on the screen after a AL or
AK, this may be the problem. Check: the manual for your terminal
about padding requirements. It may be convenient to define a
function called DCTL-pad, which takes a number of microseconds or
milliseconds as an argument, and issues enough pad characters to
perform this padding. (Rtyo 0) or (Rtyo 177) are common, but
check your terminal manual for what your terminal expects; (Rtyo
0) generally works. The variable ospeed gives the line speed in
characters per second, for use in such calculations. G~tting the
padding right may involve quite a bit of tinkering on some
terminals; one proven method in cases where padding is felt to be
a problem is to specify a very large amount of padding (e. g., a
second) and cut it down until it works. See dd40QOctl.lisp for
an example of terminal padding. (~

",~ J

5-8 CJ52-00

The Lisp special forms cond and do are used heavily in CTLs.
Since Emacs environment macros (do··forever, if, etc) should not

(! be used in CTLs, the native Lisp forms are necessary. Here are
-' the descriptions of cond and do:

.(/'

(cond «= this that) (thingl)(thing2»
«> a b)(second)(third) 27)
«< c 15)(other»
(t (best 5)(chance»)

means:

"If this equals that, call thing1 of no arguments, then call
thing2 of no arguments, and return as the value of the cond
the 'value returned by thing2. Otherwise, if a is greater
than b, call "second" wi th no arguments, then call "third",
and return 27 as a value. Yet otherwise, if c is less than
15 (all numbers octal), return the value obtained by
applying "oth'er" to no arguments. If none of the above are
true, call "best" with an argument of 5, and then return the
value obtained by calling "chance" with no arguments."

The cond special form is much like PL/I's

if (....) then do;

end;
else if (....) then do; ·
end;
else if (....) then do;

·
end;
else do; ·
end;

5-9 CJ52-00

The format of Lisp "do" used in CTLs to iterate is:

(do VARIABLE IN IT IAL- VALU-E HEP EA.T - VALU E TEST form 1 form2
form3..) .

It is equivalent to PL/I's: .

do VARIABLE = INITIAL-VALUE
repeat REPEAT-VALUE
while (~ TEST);

form 1 ; form2; ...
end;

which, itself, is equivalent to:

VARIABLE = INITIAL-VALUE;
1: if TEST then go to e;

form 1 ; form2; ...
VARIABLE = REPEAT-VALUE;
go to 1;

e:

The variable VARIABLE is locally defined inside the do. It may
be used in the forms inside the do, in the "end test" TEST, and
in the repeat value REPEAT-VALUE.

5-10 CJ52-00

\J',

(/

(~)

MISCELLANEOUS

+ function 2-1

< predicate 2-5

= predicate 2-5

> predicate 2-5

(*rset t) mode 3-37

A

alphalessp predicate 2-5

and special form 2-10

apply-catenate function 3-24

arguments 3-50

assert-minor-mode function
3-30

at-beginning-of-buffer
predicate 3-9

at-end-of-buffer predicate
3-9

at-white-char predic~te 3-9

INDEX

i-1

attribute
see symbol, property

autophanic request 3-40

B

binding 2-3

bolp predicate 3-8

br~~akpoint 4-3

buffer
ldebug 4-1
non temporary 3-22
symbol 3-21, 3-41
temporary. 3-21

buffer-creating 3-20

buffer-kill function 3-23

buffer-minor-modes variable
3-18

buffer-modified-flag v~riable
3-17

buffer-on-display-in-window
function 3-45
predicate 3-45

builtin function
+ 2-1

CJ52-00

builtin
list
print
rplaca
rplacd

function
2-12

2-1
2-14
2-14

C

car 2-11

(cont)

catenate function 3-24

cdr 2-11

character object 3-32

characters
searching for 3-26

charscan-table function 3-26

cleanup-handler
unwind-protect 3-7

command executing
Multics 3-47

comment 2-1

comment-column variable 3-18

cumment-prefix variable 3-18

comout-get-output 3-47

compilation 3-38

compiling an extension 3-38

cond special form 5-8

cons 2-11

.construct
see cons

control argument
-line_sp·eed 5-3
-query 5-2
-reset 5-2

i··2

control argument (cont)
-t~rminal_type 5-2

CTL 5-1

CTL functions
see DCTL

cur-hpos function 3-6

cur char function 3-32

current-buffer variable 3-23

current-buffer-mode variable
3-18, 3-30

cursor position
cur-hpos 3-6
.go-to-hpos 3-6

D

DCTL-clear-rest-of-screen
function 5-6

DCTL-delete-chars functions
5-8

DCTL-delete-lines function
5-7

DCTL-display-char-string
function 5-5

DCTL-epilogue function 5-7

DCTL-init function 5-3, 5-4,
5-6

DCTL-insert-char-string
function 5-8

DCTL-insert-lines functions
5-7

DCTL-kill-line function 5-6

DCTL-position-cursor function
5-5

CJ52-00

\

)

..)
. ./

()
.... ~¥ •• '

()

DCTL-prologue function 5-7

de9imal-rep funct:lon 3-12

defcom 3-49
keywords 3-49

defprop special form 3-39

defun special form 2-1, 2-6

delete-white-sides function
3-11

delete-window function 3-45

der-wahrer-mark variable 3-17

do-times special form 3-5

documentation 3-52

documenting requests 3-39

E

element 2-12

~lse keyword 2-7

empty-buffer-p predicate 3-10,
3-~~ .

end-Iocal-displays function
destroy-contents-of-buffer 3-19

function 3-23

dispatch-on-current-char
special form 3-33

dispatch-on-lefthand-char
special form 3-33

display 3-19

display-as-printout special
form 3-20

display-buffer-as-printout
function 3- 'J 9

display-com-error function
3-14

display-com-error-noabort
function 3- 'J 4

display-error function 3-13

display-error-noabort function
3-14

display-error-remark function
3-14

do special form 5-10

do-forever special form 2-8

i-3

lentry value 4-3

eolp predicate 3-8

eq predicate 2-5, 3-32, 5-4

4error 3-7
handling 4-1
table 3-48
trap entry 4-2

error table function 3-48

ESC & (ldebug) 4-3

l~SC G (ldebug) 4-2, 4-3

ESC global variable 3-13

l~SC L (ldebug) 4-4

ESC P (ldebug) 4-2, 4-4

ESC R (ldebug) 4-4

ESC S (ldebug) 4-4

ESC T (ldebug) 4-2

ESC "'s (ldebug) 4-4

CJ52-00

establish-Iocal-var function
3-16

evaluation 2-2
conditional 2-6
of functions calls 2-2
of numbers 2-2
of strings 2-2

execution
see evaluation

extension
definition of 1-1

e cline 3-47

F

fill-mode-delimeters variable
3-31

find-buffer-in-window function
3-41

. firstlinep predicate 3-9

fixp predicate 2-5

form 2-1, 2-3, 2-4
not 2-10
special 2-6

and 2-10
cond 5-8
defprop 3-39
defun 2-6
dispatch-on-current-char

3-33
dispatch-on-Iefthand-char

3-33
display-as-printout 3-20
do 5-10
do-forever 2-8
do-times 3-5
go 2-9
if 2-6
if-at 3-32
if-back-at 3-33
let 2-9
prog 2-9

i-4

form (cont)
special

prog2 2-11
progn 2-10
save-excursion 3-7
save-excursion-buffer

3-23
setq 2-8
unwind-protect 3-7
with-mark 3-5

stop-doing 2-8

format-to-col function 3-·11

fpathname variable 3-17

full-redisplay function 3-26

function 2-1, 2-4
apply-catenate 3-24
assert-minor-mode 3-30
buffer-kill ·3-23
buffer-on-display-in-window

3-45
catenate 3-24
charscan-table 3-26
cur·-hpos 3-6
curchar 3-32
DCTL-clear-rest-of-screen

5-6
DCTL-delete-chars 5-8
DCTL-delete-lines 5-7
DCTL-display-char-string

5-5
DCTL-epilogue 5-7
DCTL-init 5-4
DCTL-insert-char-string 5-8
DCTL-insert-lines 5-7
DCTL-kill-line 5-6
DCTL-position-cursor 5-5
DCTL-prologue 5-7
decimal-rep 3-12
definition 2-1
d~lete-white-sides 3-11
delete-window 3-45
destroy-contents-of-buffer

3-23
display-buffer-as-printout

3-19
display-corn-error 3-14
display-com-error-noabort

3-14

CJ52-00

J •
, '

-'" i

(

(~)

function (cont)
display-error 3-13
display-error-noabort 3-14
display-error-remark 3-14
end-local-displays 3-19
error table 3-48
establish-local-var 3-16
find-buffer-in-window 3-41
for CTLs 5-3
format-to-col 3-11
full-redisplay 3-26
get-search-string 3-46
go-to-hpos 3-6
go-to-mark 3-6
init-local-displays 3-18
insert-string 3-4
lefthand-char 3-33
local-display-current-line

3-19
local-display-generator

3-18
mapc 3-31
minibuf-response 3-13
minibuffer-clear 3-14
minibuffer-print 3-12
minibuffer-print-noclear

3-14
negate-minor-mode 3-30
point-mark-to-string 3-11
register-local-variable

·3-16
register-option 3-28
release-mark 3-4
Rprinc 5-4
Rtyo 5-4
search-back-first

-char set-line 3-27
search-back-first-not

-charset-line 3-27
search-charset-backward

. 3-27
search-char set-forward 3-27
search-failure-annunciator

3-46
search-for-first

-charset-line 3-26
search-for-first-not

-char set-line 3-27
search-not-charset-backward

3-27
search-not-charset-forward

3-27

i-5

function (cont)
select-window 3-44

~set-buffer-self-destruct
3-22

set-mark 3-4
skip-back-to-whitespace

3-10
skip-back-whitespace 3-10
skip-back-whitespace-in-line

3-11
skip-over-whitespace 3-10
skip-over-whi~espace-in-line

3-11
skip-to-whitespace 3-10
stringlength 5-5
view-region-as-lines 3-19
whitespace-to-hpos 3-11
window-adjust-lower 3-45
window-adjust-upper 3-45
window-info 3-45
wipe-point-mark 3-5
without-saving 3-5

function call 2-4
syntax 2-3

G

get-search-string function
3-46

given~tty-type variable 5-4

global variable
nil 2-7
see variable, global
t 2-7

go special form 2-9

go-to-hpos function 3-6

go-to-mark function 3~6

go-to-or-create-buffer 3-20

CJ52-00

H

heterophanic request 3-41

I

if special form 2-6
syntax 2-7

if-at special form 3-32

if-back-at special f9rm 3-33

indicator 3-21

init-local-displays function
3-18

insert-string function 3-4

interned symbol 3-20

keyword
else 2-7

label 2-9

K

L

lastlinep predicate 3-9

ldebug mode

ldebug-display-where
-editor-was

ESC AS 4-4

ldebug-list-breaks
ESC L 4-4

ldebug-reset-break
ESC R 4-4

i-6

ldebug-return-to-emacs
-top-level

ESC G 4-2

ldebug-show-bkpt-source
ESC S 4-4

ldebug-trace-stack
ESC T 4-2

lefthand-char function 3-33

let special form 2-9
syntax 2-9

line-is-blank predicate 3-10

Lisp debug mode
see ldebug

list 2-11

list function 2-12

loading an extension 3-35

local display 3-18

local variable
see variable, local

local-display-current-line
function 3-19

local-display-generator
function 3-18

looking-at predicate 3-2, 3-9

lo~ping

see do-forever 2-8

major mode
see mode

M

mapc function 3-31

mark 3-4

CJ52-00

.... J.

!
/ .

I

(,:/

(,)

mark (cont)
go-to-mark 3-6
predicates 3-9
release-mark 3-4
save-excursion 3-7
set-mark 3-4
temporary 3-5
wipe-poi nt-mark 3-5
with-mark 3-5

mark-at-current-point-p
predicate 3-9

mark-on-current-line-p
predicate 3-9

mark-reached predicate 3-9

mark-same-line-p predicate
3-9

memq predicate 3-30

minibuf-response function
3-13

minibuffer 3-12
functions 3-14

. mini buffer-clear function
3-14

minibuffer-print function
3-12

minibuffer-print-noclear
function 3-14

minor mode
see mode

mode
ldebug 4-1
major 3-30
minor 3-30

multiple windows
see windows

i-7

N

names
ehoosing 3-29

negate-minor-mode function
3-30

negative function 3-52

negative-function 3-52

nil global variable 2-7

nil symbol 3-3

NL global variable 3-13

not form 2-10

null predicate 2-5

numarg global variable 3-3

numeric arguments 3-3
clo-times 3-5

numeric-argument 3-49

nuwindows variable 3-44

o

obarray 3-20

object 2-5

object program 3-38

opE!rand 2-10

opt.ion 3-27

ospeed variable 5-3

CJ52-00

p

parentheses 2-2

per-buffer variable
see variable, local

point-mark-to-string function
3-11

point)markp predicate 3-9

pop-up window mode 3-42

predicate 2-4
< 2-5
= 2-5
) 2-5
alphalessp 2-5
at-beginning-of-buffer 3-9
at-end-of-buffer 3-9
at-white-char 3-9
bolp 3-8
buffer-on-display-in-window

3-45
empty-buffer-p 3-10, 3-22
eolp 3-8
eq 2-5, 3-32, 5-4
firstlinep 3-9
fixp 2-5
lastlinep 3-9
line-is-blank 3-10
looking-at 3-2, 3-9
mark-at-current-point-p 3-9
mark-on-current-line-p 3-9
mark-reached 3-9
mark-same-line-p 3-9
memq 3-30
null 2-5
point)markp 3-9
samepnamep 2-5
stringp 2-5
symbolp 2-5

previous-buffer variable 3-23

print function 2-1

problem
monitoring 3-16

prog special form 2-9

prog2 special form 2-11

progn special form 2-10

prologue 3-52

prompting
minibuf-response 3-13

property 3-21
documentation 3-39

R

read-only-flag variable 3-17

red:isplay 3-25

register-local-variable
function 3-16

register-option function 3-28

reg:lstering- a variable
functions 3-15

release-mark function

returned value 2-1

rplaca function 2-14

rplacd function 2-14

Rprinc function 5-4

Rtyo function 5-4

s

3-4

samepnamep predicate 2-5

i-a

save-excursion special form
3-7

CJ52-00

(.:)
save-excursion-buffer special

form 3-23

search-back-first-charset-line
function 3-27

search-back-first-not
-char set-line function 3-27

search-charset-backward
function 3-27

search-ch~rset-forward
function 3-27

search-failure-annunciator
function 3-46

search-for-first-charset-line
function 3-26

search-for-first-not
-charset-line function 3-27

search-not-charset-backward
function 3-27

search-not-charset-forward
function 3-27

searching 3-46
forward-search-in-line
regexp-search-in-line
reverse-search-in-line

select-buffer-find-window
3-43

3-12
3-12

3-12

select-buffer-window variable
3-42

select-window function 3-44

selected-window 3-44

set-buffer-self-destruct
function 3'-22

set-mark function 3-4

setq special form 2-8

skip-back-to-whitespace
function 3-10

skip-back-whitespace function
3-10

skip-back-whitespace-in-line
function 3-11

skip-over-whitespace function
3-10

skip-over-whitespace-in-line
function 3-11

skip-to-whitespace function
3-10

spE~cial form
see form

stop-doing form 2-8

string form 3-32

stringlength function 5-5

stringp predicate 2-5

symbol 2-5
definition of 2-11
interned 3-20
property 3-21
Iregistry 3-20

symbolp predicate 2-5

T

t global variable 2-7
,

tab-equivalent variable 3-18

i-9

temp-mark variable 3-5

temporary mark 3-5

terminal support 5-1

Terminal Type File 5-1

CJ52-00

the-mark global variable 3-4

trace 4-5-

tracing function 4-3

tty-type variable 5-4

u

unwind-protect special form
3-7

v

variable 2-3
binding 2-3
current-buffer 3-23
given-tty-type 5-4
global 2-3, 3-15, 3-28

character object 3-32
current-buffer 3-21
ESC 3-13
fill-mode-delimeters 3-31
nil 2-7
NL 3-13
numarg 3-3
t 2-7
the-mark 3-4
X, Y 5-4

Idebug-level 4-2
local 3-15

automtically registered
3-17

current-buffer-mode 3-30
nuwindows 3- 4J~
option

Idebug-base 'l-1
ldebug-ibase 4-1
Idebug-prinlength 4-1
ldebug-prinlevel 4-1

ospeed 5-3
parameter 2-3
previous-buffer 3-23
registering 3-15
selected-window 3-44
temp-mark 3-5
temporary 2-3, 2-9

variable (cont)
trace-break-fun 4-6
trace-printer 4-6
tty-type 5-4

view-region-as-lines function
3-19

w

whitespace
functions 3-10
management 3-10

whitespace-to-hpos function
3-11

window
number 3-44
pop-up window mode 3-42
selected 3-44

window-adjust-lower function
3-45

window-adjust-upper function
3-45

window-info function 3-45

windows
multiple 3-40

wipe-point-mark function 3-5

with-mark special form 3-5

without-saving function 3-5

X

X global variable 5-4

Y

Y global variable 5-4

i-10 CJ52-00

--- ------- -,---

)

-~
/

--

I
I
I
I ,
I
I

(----'
-.....,,-,.

I
! ,

__ I

(C)
I

I
I ,

.. _ I

(~:I

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

SERIES 60 (LEVEL 68)
TITLE HULTICS

. EHACS EXTENSION WRITERS' GUIDE

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. 0

FROM: NAME ----

TITLE

COMPANY
ADDRESS _______ ~ ______________________________ _

ORDER NO. CJ52-00

DATED I JANUARY 1980

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

IIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I
I
I
I
I
I

<~

I
I
I
I
I
I z
I =,
I <.:J
I Z
~g

-0::
C
...J
o
~

(~)
•.. ~

UJ
Z
...J

<.:J
Z

1(0
I ~
I c
I <5
I ~'
I .
I
I
I
I
I
I
I
I
I
I
I

.)

