
SUBJECT

SERIES 60 (LEVEL 68)
EMACS TEXT EDITOR

USERS' GUIDE

Tutorial Introduction to the Emacs Text Editor, Full Description of the Editing
Requests Available, and Instructions for Using Special Features of Emacs

SPECIAL INSTRUCTIONS

This manual presupposes some basic knowledge of the Multics system provided
by the two-volume set, New Users' Introduction to Multics. Some of the prelimi
nary information covered in that set is summarized briefly here, however, so
that users at any level of experience can comprehend the techniques presented
in this manual.

SOFTWARE SUPPORTED

Multics Software Release 8.0

ORDER NUMBER

CH27-00 December 1979

Honeywell

PREFACE

This book is a detailed description of the Multics Emacs
text editor, a real-time editing and formatting system designed
for use on video terminals. It is intended for all users; both
those who have relatively little experience on the Multics
operating system (or any other computer system) and experienced
programmers will find this a complete description. Users are,
however, expected to be familiar with the Multics concepts
described in the 2-volume set, New Users' Introduction to Multics

Part I (Order No. CH24), and -- Part II (Order No. CH25),
referred to in this manual as New Users' Introduction.

Although Multics Emacs is easily used by technically
inexperienced people, those with some programming experience can
utilize it even more effectively by writing their own extensions.
Examples of supplied extensions are the Emacs message subsystem
and the various language modes, described in Appendices Band C (J'-~ /
of this manual. Information about extensions and instructions
for writing them are provided in the Emacs Extension Writers'
Guide, Order No. CJ52, which is referred to in this book as
Extension Writers' Guide.

Many video terminal types are supported by Emacs, as
supplied. Information on how to support additional terminal
types is also available in the Extension Writers' Guide. It is
recommended that at least one person at your site have a copy;
someone should also be familiar with the Emacs installat:on
information.

The term "file" is used interchangeably with "segment" in
this manual, since many of the editing requests have the word
"file" as part of their command names.

~ Honeywell Information Systems Inc., 1979 File No.: 1113

CH27-00

--,--,-----

C: ('--

The sections of this manual fully describe the Emacs editor
and explain the steps required to edit effectively any type of
user text. In general, the basic techniques are explained first;
more powerful or efficient requests are introduced as you proceed
through this book. The first sixteen sections are tutorial;
Section 17 summarizes, by editing function, all the Fundamental
mode requests, including both those described in the tutorial and
some additional requests that are used less frequently.

Section 1 is a brief introduction.

Section
logging into
environment.

2 describes
the Multics

how to begin:
system, and

using
entering

the terminal,
the Multics

Section 3 tells how to enter text, move the cursor, make
simple corrections, and log out.

Section 4 describes a few requests for deleting text and
retrieving deleted text.

Section 5 explains how to read and write files (segments).

Section 6 describes some simple search requests for locating
character strings.

Section 7 introduces requests for manipulating blocks of
texts.

Section 8 describes numeric arguments and various other ways
to reexecute editing requests.

Section 9 defines an Emacs "word" and describes the requests
that operate on words.

Section 10 deals with screens and buffers, telling
display different areas of the buffer on your screen,
switch buffers, list them, and delete them.

iii

how to
how to

CH27-00

Section 11 includes the help facilities available on Emacs.
The editor is completely documented online, so information is
always available during editing.

Section 12 defines Emacs sentences and paragraphs, and
describes requests that operate on them.

Section 13 includes many requests for handling white space,
indentation, and formatting.

Section 14 gives more information on manipulating blocks of
text, inserting files, and using named regions and marks.

Section 15 describes keyboard macros that can easily be
created to perform special editing tasks.

Section 16 describes the use of multiple windows, the window
editor, and the buffer editor.

Section 17 contains descriptions of all the Fundamental mode
requests, arranged by function.

Appendix A documents the emacs command
alphabetically, all the Fundamental mode requests.

and lists,

Appendix B describes the Emacs mail mode for sending and
reading electronic mail.

Appendix C describes the Emacs programming language modes
and their requests, which are tailored for use in writing and
editing programs in Lisp, FORTRAN, PL/I, and ALM.

Appendix D describes the Macro Edit mode for editing
keyboard macros.

Appendix E gives instructions for using Emacs on printing
and glass teletype terminals.

Appendix F describes the Emacs message facility for
accepting and responding to interactive messages.

iv CH27-00

"y ... __ .)

,(- ,
\~-

Appendix
customize the
entered.

G details how to write
environment automatically

an Emacs start-up to
each time Emacs is

Appendix H describes pop-up-windows mode, which dynamically
creates and removes windows as they are needed.

One other manual referred to in this book is the
Multics Programmers' Manual (MPM)-Commands and Active Functions,
Order No. AG92. It is referred to as the MPM Commands.

Multics Emacs was modelled after the EMACS editor at the MIT
Artificial Intelligence Lab. EMACS (on the AI Lab PDP-10's) was
written, in TECO, by staff, members of the MIT AI Lab and the
(MIT) Laboratory for Computer Science (LCS), without whose
encouragement and support this project wouYd not have been
possible.

v CH27-00

.. ---.--~----.-~-

Section

Section 2

Section 3

CONTENTS

Introduction. •
Getting Started . . •

The Terminal • . • •. •.
The Screen.. .•....•.•
The Keyboard. • •

Control Key. ..• . •.
Escape Key . . • . .
Linefeed Key .,. . • .
Delete Key . . • • .
Carriage Return Key ..•..

The Modem . • • . . . • . .
Technical Requirements

Logging In . • . . . • . .• .•.
Invoking the emacs Command .••.

The Ini tial Display .,
Summary of Terms • .

Entering Text and Simple Cursor Movements
Typing in Text • • . . . • .
Editing with Emacs Requests.

Correcting Typing Errors with Emacs
The Erase Character (#)
The Delete Key (\177).
The Kill Character (@) .

Moving the Cursor .•••....•..
Getting to the Right Line ••.

A P • • • • • • • • • .. • • ..
Moving Within the Line ..••.•.

A F • • • •• ...,...
A B • • • • •

Getting Back to the Right Line.
AN • •• •••••• . .

The Ends of the Line •..• ~ .
"A .. • • • •
AE • • • • •

Gettin~ Stopped. • • . • .
Q • • • • • • • • •

Exiting from the Editor.
AX A C • • • • • • • • •
Summary of Terms • • .

Logging Out . . • • • .

vi

Page

1 -1

2-1
2-1
2-1
2-4
2-4
2-4
2-4
2-5
2-5
2-5
2-5
2-6
2-8
2-8
2-9

3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-4
3-4
3-4
3-4
3-5
3-5
3-6
3-6
3-6
3-6
3-6
3-7
3-7
3-9
3-9

CH27-00

c.
Section 4

Section 5

Section 6

Section 7

CONTENTS (cont)

Simple Deleting and Killing
Deleting Characters

Deleting One Character at a Time •.
AD. • • • • • •• •••••

Deleting Lines.
AK • • • • • • • • •

Retrieving Killed Lines
The Kill Ring

Summary of Terms
Yanking Text Back

Ay . • . • . . . •
More about AK. . .

Writing and Reading Files
Writing a File Out.

AX At. W • • • • • • • • • • • •
Is Your New File Really There?

Reading a File In.
AX A F

Counting the Lines in a File.
AX=. • . • • . • • • . . .

Saving (Rewriting) a File.
AX AS. . • • • • • •

Additional Notes on Writing Files.
Access Restrictions
The Default Pathname with AXA W.

Summary of Terms

Locating a Sequence of Characters
Searching Forward.

AS. • • • • • • • • • • • • • •
Getting Out of Trouble

A G • • • • • • • • • • •
AXA G, AZA G, and ESC AG

Searching Backward
A R • • • • • • • • • • • • •

General Rules for Searching.
Locating and Replacing Strings

Automatically . '"
ESC %.

Page

4-1
4-1
4-2
4-2
4-2
4-2
4-2
4-2
4-4
4-4
4-4
4-5

5-1
5-1
5-1
5-2
5-2
5-3
5-3
5-3
5-5
5-5
5-5
5-5
5-5
5-6

6-1
6-1
6-1
6-2
6-2
6-3
6-3
6-3
6-4

6-4
6-4

Working with Blocks of Text. 7-1
Marking a Region 7-1

Setting the Mark.. 7-1
A@ • • • • • • • • • • • • • • • 7-2

Exchanging the Mark and the Point. 7-3
AX A

X • . • . . . • • 7-3
Deleting a Region. 7-3

A W • • • • • • • • • • • 7-3
Yanking a Region Back 7-3

vii CH27-00

--_ .. _._.--_._---------

Section 8

Section 9

Section 10

CONTENTS (cont)

.... "\

Page \)

ESC Y. . .
Summary of Terms .

Repeating Requests
Numeric Arguments.

Requests Accepting Numeric
Arguments.

Numeric Arguments with Regular
Characters

Reexecuting a Request
he

Multiple Executions of a Request .
AU. • • • • • • • • • • • •

Going to a Specific Line Number
ESC G.

Working With Words ..
What's in a Word
Moving Forward and Backward

ESC F. . .
ESC B. .

Deleting Words
ESC #.
ESC \177
ESC D..

Capitalization.
ESC L, ESC U, ESC C•.

Changing the Case of Regions
AXA L, AXA U

Underlining Words
ESC
A -Z • • •

Locating-Words
"'XW. • •
Locating Words by Their Prefix

7-4
7-4

8-1
8-1

8-2

8-3
8-3
8-3
8-4
8-4
8-4·
8-4

9-1
9-1
9-1
9-2
9-2
9-3
9-3
9-4
9-4
9-4
9-4
9-6
9-6
9-6
9-7
9-7
9-7
9-8

with *. 9-9

Manipulating Screens and Buffers. .. 10-1
Moving Through a Buffer Screen By

Screen. 10-1
A V • • •• ••••••••• 1 0-1
ESC V. 10-1

Moving to Either End of a Buffer ... 10-2
ESC <. 1 0-2
ESC >. 1 0-2

Editing More than One Buffer 10-2
Going from One Buffer to Another .. 10-3

AXE. 1 0-3
Listing the Buffers and Local
Displays. 10-4

viii CH27-00

(~)

Section 11

(e l
Section 12

Section 13

CONTENTS (cont)

The Linefeed Key and AJ.
A Garbled Screen

Page

.. 10-4
10-4

· .. 10-5
1\ L • • • •• •••••• 1 0-5

Markin~ an Entire Buffer. 10-5
XH. 1 0-6

Killing an Entire Buffer. 10-6
"XK. . . . • 10-6
Summary of Terms · .. 10-6

Help 11-1
What Does This Key Do? 11-1

ESC ? 11-1
Extended Requests 11-2

ESC X. 11 - 3
What Keys Do This Job? 11-3

apropos. 11-3
What Does This Extended Request Do? . 11-4

describe 11-4
Tangible Help•...• 11-4

make-waIl-chart •..•....• 11-4
More Help and What Did I Just Do? .. 11-5

A • • • • • • • • • • • 11-5

Sentences and Paragraphs ••....•.. 12-1
Sentences ••..•••. " ..• 12-1

Moving Forward or Backward by
Sentences •...•..

ESC A.
ESC E. . . •. .•

Killing Sentences

12-2
. • . . 12-2

• .• 12-2
· 12-2

AX#
AX\ 177 . . •. •.•.
ESC K. . • • •

· 12-2
· .. 12-3

· 12-3
• 12-4 Paragraphs • . . . • • • •

Mov~ng Forward or Backward by
Paragraphs . . • · 12-4

· 12-5 ESC [. • • . •
ESC]. . . . • 1 2-5

Marking a Paragraph · 12-5
12-5 ESC H. . . • • . .
12-5

• • • • • • 1 2-5
Formatting a Paragraph.

ESC Q. • • • • •

Indentation and Spacing 13-1
Blank Lines. .• 13-1

Adding Them. . • • .. 13-1
"'0• 13-1

Removing Them•. 13-1
AXAO • • • • • •• • •••• 13-2

ix CH27-00

Section 14

CONTENTS (cont)

Page '"J
Dealing with White Space on a Line .. 13-2

Spacing Over Indentation 13-2
ESC M 13-2

Deleting White Space 13-2
ESC \. 1 3-2
ESC A. 1 3-3

Fill Mode. 13-4
Esc X fillon and Esc X filloff . 13-4

Margins.. 13-5
Setting the Margins. 13-5

AX •••.•••••.•.•••• 13-5
AX]'. • • • • • • 1 3-5

Centering a Line. 13-6
ESC S. 1 3-6

More About Lines and White Space. 13-6
Shearing a Line 13-6

ESC A 0 1 3-6
Undenting to the Fill Prefix 13-7

ESC AI 13-7
Indentation .. " 13-7

ESC I.13-7
ESC Carriage Return 13-8

Two-Column Format 13-9
Summary of terms 13-9\J)

Moving Blocks of Text . • • 14-1
Inserting an Entire File . . . · 14-1

AXI. · 14-1
Copying a Region · 14-2

ESC W. · 14-2
Selecting and Joining Text on the
Kill Ring 14-2

ESC AW 1 4-2
Named Regions 14-2

Storing the Region to a Variable .. 14-2
"'XX •••••••.•••.•.• 14-2

Inserting a Variable.. 14-3
AXG. • • • • • • • • . • 14-3

Listing Your Variables 14-3
Esc X lvars ..•........ 14-3

Named Marks. 14-3
Setting a Named Mark. 14-4

A Z"@ • • • • • • • • 14-4
Going to a Named Mark. . ••. 14-4

"'ZG ..••..••••..•.. 14-4
Listing Your Named Marks. . •. 14-5

Esc X list-named-marks 14-5
Summary of Terms. 14-5

x CH27-00

:."}
' .. - ,

./

Section 15

Section 16

Section 17

\

CONTENTS (cont)

Page

Keyboard Macros • • . • . • . • . . · 15-1
Creating a Macro •

"X (an d "X). • • •
· 1 5-1
· 1 5-1

Executing a Macro ..•...•. · 15-2
AXE. . • . • • • • . • . • · 15-2

Mid-Macro Query · 15-3
A XQ • • • • • • • . . .

Displaying a Macro .
. . · 15-3

. . . . 15-4
A X*.

Saving a Macro
. . · 15-4

. . . . 1 5-4
· 15-4 Esc X save-macro •

Displaying a Saved Macro •..
Esc X show-macro

· 15-5
. . . 1 5-5

Editing a Macro 15-5
ESC X edit-macros

Setting and Changing Key Bindings.
· 15-5

15-5
ESC X set-key and ESC X

set-permanent-key .•..... 15-5
Examples of Acceptable Forms of

Key Names 15-7

Multiple Windows and the Buffer Editor .. 16-1
Adding Windows. 16-3

""'X2. • • • • • • • • • •• • 1 6-3
"X3. . " ••.•• • . 16-3

Removing Windows•..... 16-3
""X1. . • . • • • • 16-3
AXO. • • • • • • • • • . . . • . 1 6-3

Selecting a Window 16-3
AXO. . • • • . • •. .••. 1 6-3
AX4. 1 6-4

Edi ting with Multiple Windows.. . 16-4
ESC "'v • • • . . •. ••.. 1 6-4

Dedicated Buffers. 16-5
The Window Editor. 16-5

"'"ZAW. • • • • • • • • •• • 16-6
Window Editor Requests .• ~ 16-7

Leaving the Window Editor. . 16-8
The Buffer Editor. 16-8

"'Z"'B . • . • • • • . • .. . 16-9
Buffer Edi tor Requests. • .. . 16-9

Leaving the Buffer Editor.. 16-10

Summary of Emacs Fundamental Mode
Requests . • . •

List of Editing Functions and the
Keys that Perform Them.

Movements Forward/Backward. . ..
Deletion.
Retrievals/Yanks ..

xi

• 17-1

· 17-1
· 17-1
· 17-1
• 17-1

CH27-00

CONTENTS (cont)

Page

Marks, Regions, Variables .. . 17-1
Searches and Substitutions.. . 17-2
Files 17-2
Insertion. . •. 17-2
Entry and Exit..• 17-2
He 1 p ••.. 1 7 - 2
Error Recovery.. 17-2
New Lines/Blank Lines. . . 17-2
Indentation and White Space. . 17-2
Comments 17-2
Formatting. 17-3
Literal Character Entry 17-3
Special Purpose Keys. 17-3
Macros 17-3
Characters (Moving by/Deleting) .. 17-3
Lines (Moving in and by/Deleting) . 17-3
Words " 17-3
Sentences. 17-3
Parag'raphs. 17-4
Screens•. 17-4
Buffers. 17-4
Multiple Windows.. 17-4
Mail/Messages 17-4
Typing Shortcuts. . . . 17-4
Programming Modes . 17-4
Printing Terminal Usage. . 17-5
Extension Writing. 17-5
Additional Optional Settings. . 17-5

Descriptions of the Requests 17-5
Movements Forward/Backward. 17-5
Deletion 17-8
Retrievals/Yanks 17-10
Marks, Regions, Variables. .. 17-11
Searches and Substitutions. 17-12
Files. 17-15
Insertion. 17-16
Entry and Exit. 17-16
Help. 17-17
Error Recovery. 17 -18
New Lines/Blank Lines . 17-19
Indentation and White Space 17-19
Comments. 17-21
Formatting. 17-21
Literal Character Entry 17-23
Special Purpose Keys.. 17-23
Macros 17-24
Characters (Moving by/Deleting) .. 17-25
Lines (Moving in and by/Deleting) . 17-26
Words 17-27
Sentences 17-29

xii CH27-00

()

()'":
-j

Appendix A

Appendix B

Appendix C

Appendix D

c)
\. ' .. ~

CONTENTS (cont)

Page

Paragraphs. 17-30
Screens. 17-30
Buffers. 17-31
Multiple Windows 17-33
Mail/Messages. 17-34
Typing Shortcuts 17-35
Programming Modes. 17-36
Printing Terminal Usage. . 17-37
Extension Writing. . • . . 17-37
Additional Optional Settings. . 17-38

The Multics emacs Command
Alphabetized List of Fundamental Mode

Requests. • . • .,

Emacs Mail ...
Sendin~ Mail

XM. • • • • . . .
Reading Mail

"'XR. • • • . •

Programming Language Modes
Fundamental Mode Requests for

Programming Use. • ..
AX;. • • • .• .• • • . • •
A Z;.. .•.•...
ESC ;.
ESC N.
ESC P.
ESC "B • .' • • •
ESC A F
ESC X set-comment-prefix
ESC X set-compile-options ..
ESC X set-compiler
ESC ESC. • . .
ESC X ldebug . •

ESC X fundamental-mode
Lisp Mode.
FORTRAN Mode
PL/I Mode ..•............

Electric PL/I Mode.
ALM Mode

Macro Edit Mode
Entering Macro Edit Mode.
Editing the Macros .. .
Redefining Macros

ESC "z and ESC X
load-these-macros .

Writing Macros Out to a File.

xiii

A-1

A-2

B-1
B-1
B-1
B-3
B-3

C-1

C-1
C-1
C-1
C-2
C-2
C-2
C-2
C-2
C-2
C-3
C-3
C-3
C-3
C-3
C-4
C-7
C-10
C-12
C-12

D-1
D-1
D-2
D-3

D-3
D-3

CH27-00

Appendix E

Appendix It'

Appendix G

Appendix H

Figure 2-1.
Figure 2-2.
Figure 3-1.
Figure 7-1 .

CONTENTS (cont)

Using Macros Previously Written to
a File

ESC X load-macrofile

Using Emacs on Printing Terminals and
Glass Teletypes.

Notes

The Message Facility..
ESC X accept-msgs
A X:. . • • • • • . • • • • .
AX '. • • • • • • . • • • • • • •

Emacs Start-ups
Compiling a Start-up
More Features You Might Want . . .

Pop-Up Windows.
Index

ILLUSTRATIONS

A Screen Terminal
A Terminal Keyboard
Editor Entry and Exit
The Cursor and The Point

xiv

'\

Page r,)

D-3
D-3

E-1
E-4

J!"-1
F-1
l!"-1
F-2

G-1
G-5
G-7

H-1

i-1

,)"')

2-2
2-3
3-7
7-2

CH27-00

,---------,--------------- ,,--------------

SECTION 1

INTRODUCTION

Multics Emacs is an integrated editing, text preparation,
and screen management system designed to take advantage of the
features of modern display terminals. Text entry and editing on
these video screen display terminals are done interactively.
You, the user, can see the effects of Emacs editing on the screen
as you type.

This manual is arranged so that you, as a new Emacs user,
can learn Emacs by immediately beginning to use it. The first
part, Sections 2 through 16, are tutorial in nature, and cover
text entry and the more basic Emacs requests. Section 17
summarizes the requests covered in the preceding sections, and

«~\ introduces the remaining Fundamental mode (basic Emacs mode)
'\ ,--- requests. Advanced users should immediately turn to this

section, which provides short descriptions of every Fundamental
mode request. The requests are presented there in functional
groups, i.e., for a particular type of editing task, all the
requests available to perform that task are described.

Users who work through the first sixteen sections will also
find Section 17 useful for reference and for learning the
additional requests not covered in the tutorial.

The appendices describe specialized uses of Emacs, including
the Emacs mail system and programming language modes. Appendix A
provides the emacs command description, and an alphabetized list
of the Fundamental mode requests.

Throughout this manual, "Emacs" designates the system, and
the all lowercase "emacs" design~tes the Multics command invoked
to use the system.

1 -1 CH27-00

--"-"--"--------, ------

(.)

SECTION 2

GETTING STARTED

THE TERMINAL

Although it can be used on printing terminals, Emacs has
been designed especially for use on screen terminals. Sit down
at your screen terminal and note the three parts you will be
using as you edit:

• the screen

• the keyboard

• the modem communicating between the terminal and Multics

I(...
\. ~... Figure 2-1 shows a typical screen terminal and Figure 2-2

shows a typical keyboard and the special keys described below.

The Screen

The screen of your terminal is like a television screen, and
displays the information needed to communicate with Multics and
Emacs. Messages from the system appear on the screen, and your
responses, typed on the keyboard, also appear.

2-1 CH27-00

2-2 CH27-00

--------- -----

f\)

I
Vl

(")

/'~
{

.~.
< :

CONTROL KEY I I ESCAPE KEY

DELETE KEY I I LINEFEED KEY, ~ --_.....I

R3 I CARRIAGE RETURN KEY r •
---.:J
I
o
o

Figure 2-2. A Terminal Keyboard

(\

The Keyboard

Your keyboard resembles the keyboard of a typewriter, with --J----

its letters and special characters, but has additional keys. -
Several of them are important for Emacs usage. They include the
following:

• control key

• escape key

• linefeed key

• delete key

• carriage return key

CONTROL KEY

Terminals vary, but you should be able to locate a key
labelled with the letters CTL, CTRL, CONTROL, CNTRL, or something
similar. This is the control key. It operates like a shift key
in that it must be held down while you hit one or more normal
characters. Simply pressing it and releasing it has no effect.
For example, if you press the "p" key, you get a lowercase p. If
you press the "p" key while holding down the shift key, you get
an uppercase P. If you press the "p" key while holding down the ' __ --~).)'
control key, you get something called a control P. This control .~_
P is a control character. All control characters are interpreted
as requests to Emacs. Control characters are used to control
Emacs, to manipulate the cursor and text. In this manual, the A

symbol re~resents the control key; alphabetic characters
following the A symbol are represented as uppercase, even though,
for them, a control character is the same whether the shift key
is held down or not (and generally you would not hold it down).

ESCAPE KEY

The next key you should locate is the escape key. The
escape key is commonly labelled with the letters ESC, ESCAPE,
ALT, or ALTMODE. On some terminals, you may have to hold down
the shift key to get an escape. Unlike the control key, which is
held down while a normal character is typed, the escape key is
typed sequentially, i.e., before or after a normal character.
You use the escape key for some Emacs requests and to terminate
your response to a few of the Emacs prompts. Be sure to release
the ESC key quickly, to avoid getting two (or more) escapes in a
row. In this manual, the letters ESC represent the escape key.

2-4 CH27-00

------.-----.---------.-----.~.------------------

LINEFEED KEY

Your keyboard should have a linefeed key labelled with the
letters LINEFEED, LF, or NEW LINE. The linefeed key is sometimes
used in Emacs.

DELETE KEY

The delete key transmits the ASCII DEL character, octal code
177. The key is generally labelled with the letters DEL or
RUBOUT. As its name suggests, its use is to rubout, or erase,
the previously typed character(s). In this manual, the character
sequence \177 represent the delete key.

CARRIAGE RETURN KEY

On Multics, a carriage return returns you to the left margin
and inserts a newline character in your input. This key is often
labelled either RETURN or CR.

The Modem

Your terminal must be connected to the Multics system in
some manner for emacs, or any other Multics command, to work.
The modem or an acoustic coupler provides an interface to the
communications link between your terminal and Multics. Many
modems are equipped with a telephone receiver and dial. For this
type of modem, you dial a specific number to begin the logging in
procedure and make the connection to Multics. However, a wide
variety of modems exist; if you do not know how to establish the
connection between your terminal and Multics, you should ask a
technically qualified person at your site to help you log in.

Technical Requirements

Two technical requirements that your terminal must meet are
that it be an ASCII terminal, and that it be capable of running
in full duplex mode (i.e., have controllable local echo). Either
your terminal or your modem may have a switch that can be
positioned to half or full duplex mode; you should set this
switch to full duplex. If your terminal does not have
controllable local echo (printer on/off), you should log in in
full duplex and echoplex modes. Generally, your site will have
arranged for appropriate terminal modes to be set automatically
when you log in. If you find characters are printed out twice,
setting the modes and/or switches should correct the problem.
Again, if you have a question about either of these requirements,
ask someone for help.

2-5 CH27-00

... _ .. _ .. _._--._-----
---~----------------------

If your terminal has an auto-linefeed key or switch, be sure
it is off, and use lfecho mode to achieve its effect. Failure to
do this results in certain displays vanishing from the screen
prematurely.)

LOGGING IN

The first thing you want to do is establish a connection
with the computer. This is called logging in. To log in, you
must be registered on the system, as a member of a certain
project. You are given a unique User id, user identification,
which consists of a Person id (name)-and Project id (project
name). For example, Mary Smith, working in the sales-department,
may be given the following User id:

Smith.Sales

This User id belongs to Mary alone; no one else can use it. Mary
also has a password, which along with her User id allows her to
use the system.

The procedure for logging in is explained in depth in the
New Users' Introduction - Part I. Briefly, however, to log in
you turn power on for the terminal, dial the appropriate
telephone number, and when you hear a beep signal, either press a
button or place the telephone receiver in the modem and wait. ."))
(This method is employed unless your terminal is directly .
connected to Multics, in which case you do not need to dial a
phone number.) When a connection has been established, a header
of the following type is displayed by Multics on the terminal:

Multics 8.0: PCO, Phoenix, Az.
Load = 26.0 out of 100.0 units: users = 26

At this point, type the login command and
separated by a blank, and then a carriage return.

login Smith
Password:

your Person id,
For example:

Multics then requests your password (the second line, above).
Depending on your terminal, the display of the password is either
suppressed or hidden in a string of cover-up characters typed by
the system. Video terminals usually just suppress tha password.
If you make an error while logging in, the system informs you of
it and asks you to try again.

2-6 CH27-00

(~ .

(C!
... :_"'.

Login incorrect.
Please try again or type "help" for instructions.
l.ogin Smith
Password:

After you have successfully typed your password, the system
responds with information regarding your last login.

Smith Sales logged in 06/07/80 0937.5 mst Tue from ...
Last login 06/06/80 1359.8 mst Mon from terminal ...

The last line of system-generated text in the log-in
sequence is the ready message. This message is printed to
indicate that Multics is at command level and ready to receive
the next command. The ready message consists of the letter "r"
followed by the time of day and two numbers t4at reflect system
resource usage. For more information about the ready message,
refer to the ready command in the MPM Commands.

r 12:22 3.229 1799

The complete log-in sequence for Mary Smith is:

login Smith
Password:

Smith Sales logged in 06/07/80 0937.5 mst Tue from ...
Last login 06/06/80 1359.8 mst Mon from terminal ...
r 12:22 3.229 1799

2-7 CH27-00

INVOKING THE emacs COMMAND

You have logged in and received the ready message indicating
that you are at command level. To enter Emacs, type the emacs')'
command on your keyboard, followed by a carriage return (Multics \~
command lines are always terminated by a carriage return):

emacs

Depending upon the facilities available at your site, Emacs may
or may not ask you:

What type terminal do you have?

It will ask this once per process (generally, per login session,
if it asks at all, and you respond by typing in the name of the
type of terminal that you are using. If you type an unacceptable
name, Emacs displays the names of all terminals it knows how to
support. Among these names, you should be able to find the
acceptable form of the name of your terminal. Type it in,
followed by a carriage return.

If you cannot find your terminal listed, type:

quit

followed by a carriage return,to return to command level so that
you can log out. You may want to try again on a different ,-)'"
terminal type. (Instructions for supporting new terminal types '-)
are available in Emacs Extension Writers' Guide, Order No. CJ52,
"Writing Emacs Terminal Control Modules.")

The Initial Display

Once Emacs has recognized
automatically or by querying you
several seconds to get started.
clears the screen, and displays the

Emacs (Fundamental) - main

your terminal type, either
as described above, it takes

When it has started up, it
line:

at the lower left of the screen. This line is called the mode
line. It tells you several things, the most important of wliICli
rs-that you are talking to Multics Emacs, rather than to the
command processor or to another editor. The name of the major
mode you are in is parenthesized, and here it is Fundamental
major mode. Emacs has several modes best suited for different
tasks, such as preparing text or programs in the various
programming languages. Major modes each have a distinct set of
key bindings (typed key sequences that specify particular request
instructions to Emacs). Minor modes provide "fine tuning" to
modify the way the Emacs works, but do not have a special set of)
key bindings. The names of minor modes, if you are using any,'-

2-8 CH27-00

------~------------------- --------------

c

rC·i \ -" /

(
\

appear right after the major mode name in the mode line, enclosed
in angle brackets «». Fundamental mode is the simplest major
mode.

You can edit several things at once with Emacs. Each
separate thing being edited is edited in a separate "sub-editor"
called a buffer. The buffers are named so that you can
differentiate between them. The buffer name of the buffer you
start out in is "main". This is the last---rtem displayed in the
mode line above.

The area between the top of the screen and the mode lines is
where text appears, and where you deal with the text. This area
of the screen is called the window. The window always displays
about twenty consecutive lines of the document you are editing.
Of course, if your document is shorter than that, part of the
window is empty.

At this point, the only sign of life in your window is a
blinking object in the upper left corner. This is the cursor.
It may be a blinking underline, or a blinking or solid box,
depending on your terminal. The cursor is the most important
object in Emacs. It is always on some position on the screen,
and all "action" occurs at the cursor. All the text you enter is
entered at the cursor (and the cursor moves), and all the text
you delete is deleted at the cursor.

SUMMARY OF TERMS

When the emacs command is invoked, the first screen
displayed is pretty simple, since it is practically empty. You
should, however, be familiar with the following terms, and be
able to relate them to what appears on the screen.

• mode line

• major mode

• key bindings

• minor mode

• buffer

• buffer name

• window

• cursor

2-9 CH27-00

,)

:))

----"--"-"-----

"

SECTION 3

ENTERING TEXT AND SIMPLE CURSOR MOVEMENTS

TYPING IN TEXT

Now you are going to enter some text. To do so you simply tq/~~G'c'<":
begin typing. Type the following on the terminal, and stop after), .,,.(
typing the period:

This is sample text.

In general, you may have to wait a few moments for the characters
you are typing to appear on the screen, especially if it has been
a few minutes since the last time you typed. If the user load on
Multics is especially heavy, the wait is correspondingly longer.

The text appears at the top of the screen as you type. This
line is the beginning of your document; the way it looks is
exactly the way your document is. Stop and look at the screen.
The cursor is to the right of the period in the sentence just
typed. You should get into the habit of thinking of yourself as
being Hat" some point in your document. That point is indicated
on the screen by the cursor.

At the bottom of the screen, an asterisk (*) appears in the
line below the mode line. This indicates that the buffer has
been modified, i.e., changed in some way. It remains until the
modified buffer is written out, and reappears thereafter whenever
new modifications occur that have not been written out. This is
discussed more in Section 5.

Now add another line. Hit the carriage return key (for a
Multics newline). This puts a carriage return into your text and
moves the cursor to the beginning of the next line. Type:

Here is more text yet.

Again, the text appears on the screen as you type it. The first
line you typed stays where it is, with the second line appearing
under it. Your document is now two lines long, and you could

3-1 CH27-00

I

continue to type in more text indefinitely.
using a typewriter.

EDITING WITH EMACS REQUESTS

It is just like

Emacs performs all of its editing functions by carrying out
programmed instructions when you issue a request. You issue, or
invoke, a request by typing certain keys or key sequences. Each
request (key or key sequence) is individually attached, or bound,
to a command name, which tells Emacs what set of instructions to
follow when you issue the request associated with it. A command
name is a hyphenated, abbreviated (sometimes) name that describes
the action of the request to you, and specifies the appropriate
instructions to Emacs. As you learn Emacs, command names serve
to remind you of what the requests do. When you are proficient
in Emacs, however, the command names can be used in computer
programs to construct your own requests. As a matter of fact,
you can "connect" (bind) any key of your choice to any command
name of your choice if you do not like the default requests
provided. The section on keyboard macros describes how to do so.

Correcting Typing Errors with Emacs

Even the best typist makes an occasional error. The
following are special characters useful for making corrections
with a single keystroke:

• # (The erase character)

• \177 (the delete key)

• @ (the kill character)

To see how these characters
line with an error in it. Go
carriage return, and type:

Multix

Stop as soon as you type the "x".

THE ERASE CHARACTER (#)

work, you will have to type a
to the next line, by typing a

On Multics, if you type a wrong letter, you use the # (pound
or number sign) character to erase it. The same is true in
Emacsi the command name of the # request is rubout-char. Type
the ff character and watch what happens. The "x" in Multix
disappears from the screen, leaving no trace of itself or the
erase character. The cursor, which was positioned right after
the x, backs up a space and is now positioned right after "i" in '\)
Multi. No trace or record of the mistake remains. You could, at

3-2 CH27-00

this point, simply type in the letters c and s, and your
correction would be completed. Howeve-r, type an "x" back in, so
that you can see another way to correct typing errors.

THE DELETE KEY (\177)

The screen should be set up now exactly the same as it was
when you tried the erase character a minute ago. With the cursor
right after the "x" in Multix, hit the delete key once. Again,
the x disappears and the cursor moves back one space to appear
right after the "i" in Multi.

Typing either a # or a \177 erases the previous character,
i.e., the character right before the cursor. The command name of
the \177 request, as you might expect, is also rubout-char.

THE KILL CHARACTER (@)

Suppose that you decide you would like to erase the whole
li~e, which now consists of the letters "Multi." The cursor is
still positioned directly to the right of the trailing i. On
Multics, you use the @ (commercial-at sign) character to erase
everything typed so far on the current line. In Emacs, the @
also erases everything on the current line to the left of the
cursor, and the remaining text moves to the beginning of the

fC' line. Try typing it. You see the five letters displayed
'\ ~< disappear, and the cursor move to where the "M" was. The @

request's command name is kill-to-beginning-of-line.

,--

C./
\.

MOVING THE CURSOR

You could continue to add text to your two-line document by
just typing it, ending lines with carriage returns whenever you
want to go on to the next line, and corre~ting any mistakes you
catch with the #, \177, and @. However, you would probably soon
wish to change or modify some text already entered. In order to
do so, you need to know how to move the cursor to the place
requiring the change. The following paragraphs demonstrate how
to move the cursor:

• to the Erevious line (Ap)

• to the next line (AN)

• forward a character (A F)

• backward a character (AB)

• to the beginning of the line (AA) -

• to the end of the line ("E)

3-3 CH27-00

Getting to the Right Line

In order to change the line you entered that reads:

"This is sample text"
to

"This is some sample text"

you first have to
on your screen to
that first line.
a time by telling

"p

get from the beginning of the empty third line
the first line, and then to the right place in
To do this, you move the cursor up one line at
Emacs to go to the previous line.

The Emacs request that moves the cursor to the previous line
is "p (control p). The command name is prev-line-command.
Locate the control key, hold it down while you press the p key,
and then release both keys. Now watch the screen: you see the
cursor move up to the previous line, to a place right above where
it had been. Note also that when you type the "P, you do not
"see" it appear on the screen, but only its effect. What you see
on the screen is what you have in your document, and it does not
matter what you used to achieve that state.

You still need to go up one more line, so type another "P.

Moving Within the Line

"F

Now that you are on the line in which the change is to be
made, you need to be able to move the cursor forward to the
correct point on that line. The Emacs request for moving forward
a character at a time is "F, forward-char. Hold down the control
key and slowly press the f key a few times. The cursor moves to
the right, one character at a time, as many times as you type "F.
Continue to ty~e "Fs until the cursor is under (or covering, on
some terminals) the letter s of the word "sample". This is wher'e
you plan to add the word "some".

If you go too far to the right, you have to "back up" to the
s in "sample!!. The Emacs request for moving backward a character
at a time is "B, backward-char. So, regardless of whether you
did in fact go too far or not, try moving the cursor backward.

))

Again, hold down the control key and hit the b key several times. ..')
The cursor moves backward to the left one position for each "B :'"
you type. Soon you reach the beginning of the line. You cannot

3-4 CH27-00

"-"-"-------

(.1 .,

go any further back, since this is the beginning of your text, so
Emacs causes your terminal to beep, indicating that you have made
an error. Simply wait for the beeping to stop, and release the
control key.

Now, go ahead and move the cursor forward again to the s in
"sample". To add the word "some", just type it in. Emacs moves
the rest of the line over and displays your text:

This is somesample text.

Obviously, this is not quite the way you want this sentence to
appear. To add the space between the two words, simply hit the
space bar. Now you see:

This is some sample text.

with the cursor still under the s in "sample". The text is
fixed.

Note that you did not have to do anything special to type in
the new word. You just moved the cursor to the right place and
started typing.

Getting Back to the Right Line

In order to add a few more lines to the end of your
document, you must move the cursor down a couple of lines. You
do this by going to the next line, and then the next line after
that. As you may have guessed, the Emacs request for going to
the next line is AN, next-line-command. Hold down the control
key and type an n. The cursor moves down to the next line, but
note its position in that line. Emacs tries to keep you in the
same column when going between lines, so the cursor is under the
initial t in the word "text". When you hit the n key again,
still holding down the control key, the cursor moves down another
line but goes all the way over to the left. This line is empty.
Although Emacs tries to keep you in the same column, it chooses
the column in a reasonable fashion. In general, you would not
consider it useful to be positioned in the middle of an empty
line. Likewise, if the word "Multix" had still been on this
line, Emacs would have placed the cursor immediately to the right
of the x, the closest column on this much shorter line.

3-5 CH27-00

The Ends of the Line

"A i.~)

To tryout the next two line-movement requests, type in:

using Emacs is easy

To say instead, "I think using Emacs is easy," you could type a
string of "Bs to move backwards to add the first two words.
However, an easier way exists (using Emacs really is easy).
Emacs provides the "A request (go-to-beginning-of-liner-to move
the cursor to the beginning of the current line. Type a "A and
watch your screen. The cursor moves to the u in "using". You
can now type:

I think

remembering to end with a space so that the "somesample" problem
does not recur.

"E

The only thing now missing from your sentence is
punctuation. Rather than typing a series of AFs to move forward
a character at a time, you can skip right to the end of the ..•.. \.,'
current line with a "E, go-to-end-of-line. The ~request __))
positions the cursor right after the last character, and before
the carriage return if the line has one. On a line with nothing
on it (nothing in it but a carriage return), "E does nothing.
Try the "E, watch~he screen, and then type either a period or an
exclamation point, depending on your state of enthusiasm!

GETTING STOPPED

You may wish to practice and experiment with the Emacs
requests you have just learned. Feel free to do so, since none
of this text will be saved (reading in and writing out files is
covered in Section 5). If you have wondered how to actually
insert one of the special characters, like the #, into your
experimental text, here is an additional thing to tryout. When
you are finished you can exit from Emacs and log out of Multics.

"Q

The "Q request, quote-char, "ruotes" the character
immediately following it, i.e., it te Is Emacs to insert it
literally into the buffer. For example, if you hold the control
key down and type a q, then release the control key and type a
pound si~n (holding down the shift key on your terminal if
necessary), a # appears in your text. No characters are deleted.

3-6 CH27-00

: ")-
" / '" /

((..)

(" .
. ~"., '--'

Exiting from the Editor

When you began this session, you logged into the Multics
system. You were then at command level, and, therefore, able to
invoke the Multics command, emacs, to enter Emacs. When you want
to leave Emacs~ou must return to command level by issuing an
Emacs request. Once returned to command level, you can invoke
the Multics l~gout command, and end the session. Figure 3-1
illustrates this process; an imaginary "you are here" arrow would
point to the lower Emacs box.

I t
10 in logout

Multics
Command level

emacs

Emacs

Figure 3-1. Editor Entry and Exit

The Emacs request that returns you to command level is nXnC,
quit-the-editor. The control key must be held down while you
depress first the x and then the c keys. Try it. As you watch
the screen, the top several lines of your text is replaced by the
following message from Emacs:

Modified Buffers:
> * main

3-7 CH27-00

At the same time, Emacs writes a message and question, called a
prompt, in the area below your mode line at the bottom of the
screen (the prompt is called that because Emacs is "prompting"
you for a response). This area where the prompt appears is \)
called a minibuffer, and normally occupies two lines (though both
are not always used). Emacs prints this message in the
mini buffer:

Modified buffers exist. Quit?

Since your buffer has changed, from being empty to having text in
it, it is now modified. Emacs is telling you that you have done
work that will not be saved, and doublechecking to be sure you
really want to quit under these circumstances. If you had saved
your work by writing it out to a file, Emacs would not prompt you
at all, but simply return you immediately to command level.

However, since you are not going to save this practice work,
simply type your response:

yes

and a carriage return. Prompts require not only a response, but
also a termination character, generally a carriage return, to
indicate the response's end. ·When you type the carriage return,
angle brackets «» appear in the r,ninibuffer at the en,d of your
response. Emacs clears the screen and returns you to Multics '
command level. A ready message appears at the top of your screen i))
to indicate that you are, indeed, at command level. '~.

Just in case you mistype "yes", you should know that Emacs
will indicate an inappropriate response to its query. At the top
of the screen, the line that said "Modified Buffers:" will say
instead:

Please answer "yes " or "no"

This not only lets you know you have given the wrong response,
but also provides you with the acceptable choices, either of
which you can now type. If you catch the error before typing a
carriage return to end the prompt, you can edit your response
just as you would edit text.

3-8 CH27-00

.. __ .. _-. __ ._._--_.

C,)

SUMMARY OF TERMS

A few new terms have been introduced that you should
remember, since they are going to be mentioned frequently.

• request

• command name

• prompt

• minibuffer

• modified buffer

Logging Out

From command level, you can now invoke the Multics command
for logging out, logout. Logging out breaks the connection
between your terminal and Multics. After you have typed it, the
system responds by displaying your identification, the date and
time of the log out, and the total CPU time and memory units
used.

logout
Smith Sales logged out 06/07/80 1249.4 mst Tue
CPU usage 17 sec, memory usage 103.1 units.
hangup

The word "hangup"
up the telephone
broken on purpose.

is displayed by Multics to remind you to hang
and to indicate that the connection has been

3-9 CH27-00

---~ ---

i~)

)
"'- I

j

c

SECTION 4

SIMPLE DELETING AND KILLING

DELETING CHARACTERS

You already know how to use the # to delete mistyped
characters. This is especially useful if you catch an error
immediately after typing it, since it erases the single character
to the left of the cursor. To learn another method, log in again
and invoke the emacs command. You can now type in the following
text, exactly as it appears here so that you' can follow this
lesson easily (do not type a carriage return after
"computerized."):

There's no denying that computer technology has made
our lives easier. Computers serve us at home and at
our jobs. In publications wirk, three areas made much
faster by automation include text entry, editing, and
formatting. Someday even typesetting will be computerized.

The cursor should now be to the right of the period following
"computerized". In reviewing this text, you see that in the
third line, "wirk" should actually say "work". To correct this
in Emacs, first you have to "go" to that point, by moving the
cursor. Type two A pS , the previous line request, and your cursor
moves to after the "h" in "much". The backward character
request, A B, gets you to the letter "i" in the offending "wirk".
Since you have to move backward several characters, ·you should
hold down the control key and hit the b a dozen or so times. If
you go too far, use AF to ~o forward to the correct spot. The
cursor should end up under (or covering) the "i" like this (the
cursor is represented as an underscore):

our jobs. In publications w~rk, three areas made much

4-1 CH27-00

;~~eting One Character at a Time

You now want to change the i at the cursor to an o. In
Emacs, this change is made by deleting the unwanted character(s),
and typing in the desired one(s). You delete characters, one
character at a time, by typing AD, delete-char. Type one AD and
watch the screen. The third line now appears as:

our jobs. In publications wrk, three areas made much

The "i" has been removed from the line, the
and the cursor is under the "r". Now type
and the line reads:

text has closed up,
the correct letter,

our jobs. In publications wo~k, three areas made much

The cursor is again under "r" that follows the "0" that you
added.

Deleting Lines

AK

,) Often, you need to delete a lot more than a few characters; , }
you want to remove entire lines, large pieces of lines, or many
lines. The kill lines request, AK (kill-lines), does this. For
example, typesetting already is computerized, so you might want
to replace that sentence with something else. Again, you must
reposition the cursor and then correct the text.

First, get to the -' letter "S" in "Someday" by using the
backward character, forward character, next line, and previous
line (AF, "B, AN, Ap) requests. When the cursor is under the "S"
type a AK, and watch the screen. All the text between the cursor
and the end of the line vanishes.

RETRIEVING KILLED LINES

You could replace the line just killed by typing in a new
sentence right here and now, but suppose you decide instead that
you really want it back. (The terms "delete" and "kill" both
mean to erase text, but generally delete applies to characters
deleted one at a time, and kill applies to characters deleted as
groups, i.e., lines and sentences.) You can get it back intact
because it has been preserved in a special place called the kill
ring.

4-2 CH27-00

.-----~----------

fi~"''''
\(.. ii

The Kill Ring

The AK request puts killed text in the kill ring, and it
stays there so that you can retrieve it, either right away or
many requests later. Often it is useful to purposely kill text
so that you can move it from one place to another by killing it
at one position in your text, repositioning the cursor, and then
retrieving it from the kill ring. Whether you purposely or
accidentally kill text, however, the kill ring provides the
security of being able to conveniently recover it.

The kill ring has ten "slots" for saving your text. When
you issue a kill request (you know only two so far, @ and AK),
the killed text goes into the first slot. (The # and AD requests
do not put the characters they delete into the kill ring. If you
accidentally delete a character, it is easy enough to retype it;
if you delete many characters by hand, it is probably not a
mistake and thus not important to be able to recover them.) If
you later issue another kill request, the text previously killed
moves into the second slot, and the newly killed text goes into
the first slot just vacated. Killed text keeps rotating down a
slot in this fashion until all ten slots are filled. At the next
kill request, the very first killed text would be discarded, ~ I'
since no eleventh slot is available in which to save it. /,.J\ "'/"',.0.1 &.z: {"I'~'

/ rlr{t.J.I' ,(}.' p",,/~,
t./ /-\~;,',~,,:,'t f ;' .. -:-":./~"':/ " ,~::~ j

Kill merging is a feature that allows you to save r~la:tea"
ki11e~xt in the same slot in the kill ring. For example, if
you are looking at several lines, and decide to kill them, you
probably start at the top and delete them line by line. Since
you delete them as one, they should be stored as one, so that
they can be brought back as one. Kill merging provides this; if
you type successive kill requests that kill text in the same
direction, the text killed by each request is merged and occupies
only one slot.

So, for kill merging, the kill requests must be:

• successive kill requests

• in the same direction

Successive kill requests have no intervening keystrokes between
them; you cannot type in any neW-text or issue any non-kill Emacs
requests. If you do, the killed text goes into separate slots.
These successive kill requests must also kill text in the same
direction in order to merge, i.e., the requests must both/all
eliminate text from either right to left (forward), or left to
right (backward). The AK kills forward. The @ kills backward
(however, note that you cannot do successive @ kills, so they
would never merge anyway).

4-3 CH27-00

SUMMARY OF TERMS

Before moving on to see
retrieved, you should be sure
with where it is retrieved from:

• kill ring

• kill merging

• successive kills

Yanking Text Back

how killed
to understand

While you
typesetting ... "
Maybe you want
look.

have been reading the above,
sentence has been sitting

to reconsider using it, and

"y

text actually is
the terms dealing

the "Someday even
in the kill ring.
would like another

You can "yank" it back out of the kill ring by typing a "Y.
The Ay request, named yank, is useful for letting you fix damage
done by mistaken or inadvertent killing, and for moving lines
around. Type a Ay and watch the screen. The sentence is back,
and the cursor is positioned after it.

Reposition the cursor, by means of the requests you know, to
the "S" in "Someday ll. Remove the sentence again with AK and type
in:

Spee~ is essential, since technological
advances must be documented to be used.

The correction is made, and this new sentence begins where the
killed one began.

4-4 CH27-00

.-- ----... -.-----~--.------~---------

(')
~.

MORE ABOUT "K

The "K request does different things depending on whether it
is used at the end of a line or not. Type about four "Ns to get
to a fresh place on the screen to enter some new text. Note that
the cursor is at the left margin; these lines are empty. Type
the following well-known verse:

I wandered lonely as a cloud
That floats on high o'er vales and hills,
When all at once I saw a crowd,
A host, of golden daffodils;
Beside the lake, beneath the trees,
Fluttering and dancing in the breeze.

Position the cursor to under the "I" starting the verse.
Now kill all the text on that line with a "K. Observe the
screen: the line becomes blank. Now type "K again (a successive
forward kill), and watch the screen. All the 'rest of the poem
moves up. To summarize the actions of "K:

• When anywhere but at the end of a line
beginning or in the middle of a line),
text between the cursor and the end
leaving the cursor at what is now the end

(i. e . , at the
"K deletes all
of the line,
of the line.

• When at the end of a line, "K removes the carriage
return, or "sticks the next line onto the end of this
one," making one line. If the line that the cursor is
on has nothing in it (except the carriage return), this
makes the line go away. If the line that the cursor is
on contains more than a carriage return, the next line
is tacked onto the end, as though you never hit a
carriage return between them.

Now type another "K. The line:

That floats on high o'er vales and hills,

empties out. Type it once more, and that (now empty) line
disappears, and the cursor is at the beginning of the next line
of the poem. Typing successive "Ks deletes lines one by one as
you type them.

To yank these lines back, type one "Y. Both lines come back
because the text was merged in the first slot on the kill ring.
Try typing another "Y, and watch the screen. If you were
expecting to get the "Someday even typesetting ... " sentence

("\ yanked back, you will be surprised to see the two poetry lines be
~;j duplicated on your screen. Just because they have been yanked

4-5 CH27-00

back once does not mean they are no longer in the kill ring. In
fact, they still occupy the first slot, and you can yank them
back into your text anywhere as many times as you want, as long
as they remain in the kill ring. The Ay yanks text from the
first slot. When text is pushed into succeeding slots by
subse~uent kills, it is retrieved by giving a numeric argument to
the Y request (essentially, providing the number of the slot
from which text should be yanked). Numeric arguments are
explained in Section 8.

One additional note:
than you actually want.
unwanted text that you have
retype killed text that you

sometimes more text gets yanked back
However, going back and killing any
yanked is much easier than having to
couid not yank.

4-6 CH27-00

SECTION 5

WRITING AND READING FILES

This section explains how to save your edited text by
writing it out to a file, and how to read existing files into
Emacs for editing (files and the Multics storage system are
explained in detail in the New Users' Introduction - Part I).

WRITING A FILE OUT

Before you write the contents of the "main" buffer out to a
file, put about twenty more lines into it. Just type in
additional short lines of any text you choose. The object is to
have enough text to experiment with while learning the remalnlng
Emacs requests. Be sure, however, to embed these lines somewhere
in what you add:

"x "W

Now is the time, and the only time,
for those who have the time to
give their time.

The Emacs request for writing a file is "x"w, write-file.
When you finish adding text, type "x"w and watch the screen.
Emacs prompts in the minibuffer:

Write File:

The cursor has jumped from the last character you typed into the
minibuffer, and is waiting for you to supply the pathname of the
place you want to write the buffer's contents. Type in a
pathname, and end the prompt with the carriage return. For
example:

first.practice

This creates a segment named first.practice in your working
directory. As Emacs writes this file, the word "Writing' ... "
appears in the minibuffer. When the word "Written." replaces
"Writing ... ," you know that the file has been successfully

5-1 CH27-00

written out to the Multics storage system. At the same time, the
full pathname of the file appears right below the mode line.
This is called the fath line, and tells you exactly what file you :)"
are working with. You are, in fact, only working with a copy of_
the file; any additional changes you make would not be reflected
in first.practice until you write it out again.) You may have
noted the asterisk (*) that began the path line. It appears
there whenever a modified buffer has not yet been written out.
Hence, when you issued the AXAW, it disappeared. It reappears
with subsequent modifications, remaining until the next writing
out of the buffer. It is a convenient indicator for determining
whether or not you need to write out the buffer in order to save
your work.

The bottom of your screen now looks something line this:

Emacs (Fundamental) - main
)udd)Sales)Smith)first.practice

Write File: first.practice<)
Written.

You have the mode line and the path line, followed by the two
lines in the minibuffer that provide extra "status" information.

Is Your New File Really There?

To verify that you have indeed written out a segment called
first.practice, leave Emacs and return to command level. The
AXA C request does this. Now you can invoke the Multics list
command, which lists the segments (in your working directory in
this case). (The list command is described in detail in the New
Users' Introduction - Part I.) Type:

list

The segment named first.practice should be the first file listed.

READING A FILE IN

When your files have been listed, and you have a ready
message, reenter Emacs by invoking the emacs command:

emacs

You can now read in a file.

When you read in a file, it is read into a
file read in goes into its own buffer. The first

5-2

-----"~"---------

buffer; every
twenty or so

CH27-00

"')

(\ (~-- .

lines appear on the screen. Although you see only these first
several lines, the whole file is there. If you try to position
the cursor to an unseen line, either by dOing ANs so that the
cursor tries to go off the bottom, or ApS so that the cursor
tries to go off the top, Emacs displays the lines so that the one
you want is indeed shown.

The find file request for reading in files is AXA F,
find-file.~pe~and watch the screen. The cursor drops below
the mode line, into the minibuffer, which reads:

Find File:

with the cursor after the colon. Emacs is prompting you for the
pathname of the file to be read in.

Type the pathname of the file that you previously wrote out,
ending with a carriage return. In our example, you would type
either:

)udd)Sales)Smith)first.practice

or, if you are in the directory that contains first.practice,
simply:

first.practice

If you make a mistake while typing in the minibuffer, you can
edit it with #, AB, AD, AF, or any other request, before you type
the carriage return. Assuming you have typed it correctly, Emacs
prints "Reading ... " in the minibuffer, and strikes it out when
it has finished reading. The screen fills up with the first
windowful of the file. The cursor is at the first character of
the first line.

Now look at the mode line. The buffer is no longer "main,"
but "first." The buffer name is taken from the first component
of the entry name of the file read in (in this case, the file was
first.practice, so the buffer is named "first"). The path line,
below the mode line, gives the full pathname of the file in this
buffer.

Counting the Lines in a File

Once a file is read in, you may want to know how big it is.

5-3 CH27-00

The line counter reQuest tells you
your document, the number of the line
currently positioned, and the cursor's
This reQuest is AX=, linecounter.

how many lines are in
in which the cursor is
dprint column position.

Type a AX and an eQual sign (=). Be sure to release the
control key before striking the eQual sign. Also, remember to
hold the shift key down if the eQual sign reQuires a shift on
your terminal.

Emacs prints something similar to this in the minibuffer:

38 lines, current =

This sample document is 38 lines long, and the cursor is on the
first line.

Now type ANs slowly until the cursor is on the line right
above the minibuffer. Be careful, just this time, to type slowly
enough so that the cursor stays in the window currently
displayed. Now note the contents of the line it is on. Then
strike one more AN. Emacs rewrites many lines on your screen,

l)

and, if your terminal has the capability to do so, moves many ~\
lines around. When it is finished, the cursor is on a line in _/)
the middle of your screen. Look at the line above that one. You
see that it is the same line that was at the bottom of the screen
a minute ago.

Type another AX=.
this:

The minibuffer now says something like

38 lines, current = 22

If you look at the screen, the cursor is on about the twelfth
line, not the 22nd. However, you are editing the file (or the
buffer), not the screen. The line you are on is, in fact, the
22nd line of the buffer. Since only about 21 lines can be
displayed at once, Emacs automatically chooses which 21 lines to
display in order to make sure that the line you want is on the
screen.

You can now edit this file as though you had
using all the reQuests you know. Try putting in a
killing a line. At once, the word:

Modified

typed it in,
new word or

appears in the minibuffer, letting you know that you have changed

5-4 CH27-00

c. ,

the file since you read or wrote it,· and have to write it out if
you want your work to be saved.

SAVING (REWRITING) A FILE

Having made some editing changes to the file, you must write
it out to save them.

The request that writes out the same file that you .read in
is AXAS, save-same-file. This request uses the default pathname
of the file when writing out the buffer's contents. This means
that when you type a AXAS, Emacs recognizes that you wish to use
a pathname that it already knows. Essentially, you are telling
Emacs, "Since no pathname is supplied here, you should, by
default, use one already supplied." The default pathname is
always the pathname that appears in the path line. The AXA F
request sets the default pathname, and typing AX~S causes Emacs
to "go get" that pathname and write the buffer out to the segment
named therein.

Try typing ~X~S. You notice that Emacs does not prompt for
a pathname, but does repeat the "Writing ... /Written." message in
the minibuffer to let you know when it is done.

ADDITIONAL NOTES ON WRITING FILES

Access Restrictions

You may encounter a problem sometimes when you try to write
out a file that you have read in without any trouble. This
occurs if you have read (r) access to the file, but do not have
write (w) access (access requirements are discussed in the New
Users' Introduction - Part I). You will be notified that you
have an access problem by an error message like this:

Incorrect access on entry.

If Emacs displays such a message, you cannot use ~X~S; you must
write out the file with ~X~W and supply a different pathname from
the one used to read in the file.

The Default Pathname with ~X~W ----
When. writing out a file with ~X~W, Emacs prompts you for a

pathname. If you wish to write the file out to the default
pathname set by AXA F , simply type a carriage return in response

5-5 CH27-00

to the prompt. The AXA S request performs the same action, and
is, of course, slightly more convenient.

SUMMARY OF TERMS

Two new terms introduced above that you need to remember
are:

• path line

• default pathname

5-6 CH27-00

(_i

(I
~_/

SECTION 6

LOCATING A SEQUENCE OF CHARACTERS

A fundamental ability needed in editing is that of looking
for a particular sequence of characters, or searching. In Emacs,
this means finding a given sequence of characters in the buffer,
and moving the cursor to that pOint.

To tryout these next requests, you shou~d start at the
beginning of your file. Use "Ps to get there.

SEARCHING FORWARD

When you search forward, Emacs starts where the cursor is
and searches toward the end of the buffer.

AS

The string search request is AS, string-search. To locate
the first occurrence of the word "time," type a "S. Emacs
responds in the minibuffer:

String Search:

The response to this prompt is to type in the string to search
for, in this case, the letters t, i m, and e. Then type a
carriage return. Almost all prompts in ~ultics Emacs, including
those for search strings, end with CR. When you type the CR, you
see the cursor return to the main window, but it is now
immediately after the e in the first occurrence of the word
"time. 1I

6-1 CH27-0'J

_ .. _----------------"-------------------- ----------------

Try looking now for the word "grime." Type a "s, type the
letters g, r, i, m, and e, and hit the CR key. Emacs responds:

Search fails.

in the minibuffer, since no "grime" was found between the
cursor's position at the end of "time" and the end of the buffer.
The cursor remains where it was.

Try locating "time" again as you did before. The cursor
advances to the right of the next "time" in the buffer. The AS
only searches forward, never backward. It puts·the cursor after
the end of the string it finds so that Emacs will not keep
finding the same one.

You can take a shortcut in locating the third "time." Type a
AS, but when Emacs prompts for the string, simply hit the CR key.
Emacs puts the word "time" in the minibuffer just as though you
had typed it. When you answer a search request's prompt with an
"empty" search string, i. e., a CR only, Emacs reuses the last
search string (sequence of characters) you were searching for.
This use of a default search string applies to all the search
requests. This way, you can search for the same thing many times
without retyping it into the minibuffer. Search for "time" a
couple more times, just so you will be positioned after the
embedded sentence.

GETTING OUT OF TROUBLE

AG

An important Emacs request lets you "get out" of what you
are doing. This is the- "G, command-quit. Try typing it; your
terminal beeps. The AG does more than jusb beep, however. Type
another AS, and Emacs again prompts:

String Search:

Suppose you decide that you did not want to search for anything,
or you typed AS in error. Simply type AG; the cursor exits from
the minibuffer, the terminal beeps, and the search request is
aborted. This request can always be used to exit the minibuffer
to abort any prompting request, such as "XAF or AX"W, that you
change your mind about in midstream. If you ever find yourself
in the minibuffer with a prompt that you do not understand, or
think you did not ask for, typing AG will get you out without
doing any harm.

6-2 CH27-00

:.J)

--------------------_. --------------

(.:
',-.

(~i
\,

The fact that AG causes a beep can also be used to let you
know when Emacs has "caught up" to you after a large number of
cursor movement requests. When you type a AG at the end, you
know that the beep means that Emacs is responding to the last
request, so the others are done. This is sometimes useful when Ll5(
the system is slow.

The AXAG, AZAG, and ESC AG requests are similar to AG. When
you type a prefix character, i.e., AX, AZ, or an ESC, by mistake,
these requests undo it, i.e., they flush the prefix character.
So, if you type AX, AZ, or ESC in error, just go on to type AG
right after them to get out of it. All three requests also cause
the terminal to beep. However, unlike AG, they do not exit the
minibuffer. These requests are all named ignore-prefix.

SEARCHING BACKWARD

To search in a backward, or reverse direction, type AR
(reverse-string-search). Emacs prompts in the minibuffer:

Reverse String Search:

Search for the word "time" again; since that was the same string
used in your last search request, you need type only a CR in
response to the prompt. The string "time" appears in the
minibuffer, and the cursor is left before (i.e., under the first
character of) the first occurrence of "time" going backward from
where the cursor was when you typed AR. If the cursor was right
after a "time," it is now right at the front of the same one.

Repeat the process.
time, until there are
beginning of the buffer.

Search fails.

in the minibuffer.

The cursor goes one "time"
no more between the cursor
Emacs then responds:

6-3

back each
and the

CH27-00

GENERAL RULES FOR SEARCHING

The ~S and ~R requests both:

• prompt in the minibuffer

• take a string terminated by CR to use for a search
target

• use an empty string (just a CR) to indicate that the
last search string used should be used again.

The reverse string search (~R) goes:

• backward to the beginning of the buffer

• leaves the cursor before the located string

The string search (~S) goes:

• forward from the beginning of the buffer to the end

• leaves the cursor after the located string.

When searching for something in Emacs, you generally know if
you want to search forward or backward for it. If you do not
know, search forward. If the search fails, just type a ~R and a
CR, and Emacs searches backward for the same string. If the
search fails again, the string is not in the buffer.

LOCATING AND REPLACING STRINGS AUTOMATICALLY

ESC %

A powerful request that allows you to search forward for a
specified string, and replace that string with another, is ESC %,
query-replace. After you type and release the escape key, type
the % character, and you are prompted for the string to search
for and the replacement string. Type both in the mini buffer
(they are individually prompted for), and end both prompts with
CR. This request locates, by searching forward, the first
string, positions the cursor immediately after the string, and
waits for one of the following responses ,(type the appropriate
keys):

space

.J

replaces this occurrence of the first string with the
second. Then searches for the next occurrence of the , ~
first string and waits for a response again. \~~

6-4 CH27-00

(
"-.'

;'

\.-.. /

"

CR

",.. u

leaves this occurrence of the first string unchanged
and searches for the next occurrence of the first
string, again waiting for a response after locating
it.

(period)
replaces this occurrence of the first string with the
second and then terminates the query replace.

leaves this occurrence of the first string unchanged
and terminates the query replace.

This request allows you to substitute one string
selectively throughout your buffer. Try replacing
occurrences of "time" with "grime."

for another
some of the

6-5 C1127-00

i~)"

\,~)

SECTION 7

WORKING WITH BLOCKS OF TEXT

MARKING A REGION

Often you wish to delete an arbitrary extent of text, i.e.,
from "here to there," without the tedium of carefully killing
individual lines or characters. This extent, or block of text,
is called a region in Emacs. In order to delete a whole region,
you first must be able to define its limits, or boundaries.

Setting the Mark

One limit of the region to be deleted is determined by the
position of the point at the time the region-deleting request is
given. The cursor, on most terminals, is under or over a
character. Its left edge, however, can be described as being
always BETWEEN two characters, the character at the cursor and
the character preceding that one. The point is this position
between the characters, indicated by the left edge of the cursor.

A further distinction between the cursor and the point is
rather fine. However r the point is the theoretical location of
the cursor's left edge at a specific time, or where it would be
if it had gotten there by the time Emacs 'takes action as though
it had already. The cursor itself is often a moving object; its
actual location at a specific time may be somewhere between where
it was and where it was going to be when Emacs interrupts its
journey to send it somewhere else. Emacs knows where it was
going to be, however, and that is the point! Figure 7-1
graphically illustrates the difference between the cursor and the
point.

7-1 CH27-00

First Stage

Cursor and point
between Ds.

AA
BB
CC cursor
DD <point

Second Stage

User types ~p~pApAD.

Point between A and A.

Cursor on way up.

AA <point
BB t
cc cursor
DD I

Third Stage

Cursor and point
at top line
between A and the
newline.

cursor
A <point
BB
CC
DD

Figure 7-1. The Cursor and The Point

So, one of the region's limits is the point. The other
limit is specified by an "invisible cursor" called the mark.
Each buffer has only one current· mark, and has none at all until
you set it. However, whenever you reset the mark (i.e., set it
in a new position), the old value of the mark is saved on a mark
ring that works like the kill ring. Section 8 describes how to
retrieve these "saved" marks. You cannot delete a region until
both limits define its boundaries.

To set the mark, you first must move the cursor to where you
want the mark to be. You are going to delete this portion of the
Wordsworth poem:

Beside the lake, beneath the trees,
Fluttering and

Move the cursor to under the B in "Beside." Set the mark there
(i.e., at the POi)t in front of this "Btl) by typing A@,
(set-or-pop-the-mark. This may be tricky if your terminal
requires a shift to get the commercial at sign, since you will
have to hold down both the control and shift key while you hit @.
On some terminals, e.g., Digital Equipment Corporation terminals,
you have to type the space bar while holding down the control key
to send the A@ character. The word "Set" appears in the
minibuffer to let you know the mark is set.

7-2 CH27-00

~~ ..•. '

C·,-
\.'_.

Now move the cursor to the space between
in the next line, i.e., right after the last
word to be deleted. This is the point,
defined by the two limits.

"and" and "dancing"
letter of the last

and your region is

Exchanging the Mark and the Point

Before deleting a region, you often want to verify that you
do indeed know where the mark is. By exchanging them, i.e.,
switching the cursor and the mark's positions, you can do this at
a glance.

"x"x
The "x"x request, exchange-point-and-mark, makes this

exchange. Try it. The cursor suddenly appears under the B in
"Beside." Type another "x"x and everything is as before.

DELETING A REGION

"w
You are now ready to "wipe" out,

region. Type "w (wipe-region). All the
and the point disappears from the screen.
within the region also is gone, so you end

or delete, the marked
text between the mark

The newline character
up with:

A host of golden daffodils;
dancing in the breeze.

You still have a space before "dancing;" this is because the
space was not included in the region to be deleted.

Yanking ~ Region Back

The "w request, like the "K request, puts whatever it
removes into the kill ring. Type a "y and watch the text
reappear. A, useful feature of the "y request is that it
automatically sets the mark (or resets it if it was previously
set) at the beginning of the text it retrieves, and leaves the
cursor after it. This has two implications that should be noted:

• After yanking text with "Y, for any reason, you can
delete it again simply by typing "w, since the cursor
and the mark exactly specify the limits of what was
yanked.

• After yanking text with "Y, for any reason, you can
move the cursor to the beginning of the yanked text by
exchanging the point and the mark with "x"x.

7-3 CH27-00

,----------------'

Your cursor, now in the middle of the last line of poetry,
can go to the B in "Beside" if you type "X"X. Try it. Now, even
though the cursor is at the beginning, and the mark at the end of
this region, try typing "W. The region disappears. As long as a)
region has both limits set, "w works whether the point or the '-
mark is the first limit.

ESC Y

Sometimes you kill some text, move the cursor, kill more
text, and then decide that killing that first text was a mistake.
What you want to do in this case is return to where you killed
that first text and yank it back. So you move the cursor back
and type "Y. Unfortunately, that retrieves the text of the
second kill; the most recently deleted text occupies the first
slot on the kill ring. So now you want to get rid of the
retrieved text and retrieve the~xt of the previous kill.

Well, ESC Y, wipe-this-and-yank-previous, does this. It
deletes and discards the text just yanked, thus freeing the first
slot on the kill ring so that text from the previous kills moves
up a slot, and then it retrieves the text now in the first slot.
Try a couple more "Ws, and then ESC Y (hit and release the escape
key before typing a y). By doing many ESC Ys in a row, until you
"find the kill that you want," you can "go shopping" in the kill
ring for saved text. Just bear in mind that this type of ,','.)' ',",,)
shopping can "leave the store sold out." '.

SUMMARY OF TERMS

Many Emacs requests besides "w use regions.
therefore, understand the following terms:

• region

• point

• mark

7-4

You should,

)

CH27-00

,

SECTION 8

REPEATING REQUESTS

Emacs provides a variety of ways for repeati~g the action of
a request, either once or many times. Requests for which it is
meaningful and useful to specify "how many times" to do them
generally accept a numeric argument. ~ numeric argument is
essentially a repetition count, a number that means "repeat this
action this number of times." Positive numeric argument
generally repeat the request's action in a straightforward
manner. Negative numeric arguments generally reverse the action
of the request and repeat it; i.e., they cause a request to act
like its complement, if it has one.

NU~ERIC ARGU~ENTS

If you want to say, "Go five characters forward," or, "Go
four next lines down," you can give the AF and. AN request
positive numeric arguments of 5 and 4, respectively.

You give a numeric argument by typing the escape key, ESC,
then typing the number you want, and, finally, typing the
request. For example, ~b delete six characters, you would type;

ESC 6 AD

(spaces are unnecessary and incorrect, but have been included for
legibility.) That is, strike and release the escape key, type a
6, and then type a AD. All the characters disappear at once.
Try it.

Similarly, if you type:

ESC 249 AN

while on the first line of a large file, the screen would fill
immediately with lines 240 to 260 (approximately) of the file,
with line 250 and the cursor in the middle of the screen (you can
verify the line number with AX:). You do not have to watch the
cursor step through 250 lines one by one. Experiment with your

8-1 Cf-I27-00

._--------------_.

file and the AN and Ap requests. Deliberately give a numeric
argument too large for your file, and observe what happens.

A negative numeric argument is given by typing ESC -N, where
N is the number, before typing the request. With negative
arguments, AF goes backward the specified number of characters,
AN goes to the Nth previous line, AD acts like II or \177 and
deletes N characters to the left of the cursor, etc. ~n argument
of ESC -1 or, simply, ESC-, just reverses the action and performs
it once. Some requests do not accept negative arguments; you
receive a message in the mini buffer stating this if you give them
one by mistake.

Requests Accepting Numeric Arguments

Of the requests already learned, the following accept
numeric arguments.

AF
"B
"N
"p
II
\177
"D

Forward Character
Backward Character
Next Line
Previous Line
Rubout Character
Rubout Character
Delete Character

"K Kill Lines
"y Yank
"@ Set/Pop the mark

The first seven, when given either a positive or negative numeric
argument, perform the action that number of times. The last
three act in a special manner, and do not accept negative
arguments.

When you give AK a positive numeric argument, it kills that
many entire lines, starting at the current point on the current
line. Everything killed is put, as one, on the kill ring, and
will kill merge with preceding or following killed text as
described earlier. Where as ESC 4 "K kills four lines, four "Ks
would not, since you generally must type two "Ks to kill one line
of text.

When you give Ay a positive numeric argument, it yanks text
out of the slot on the kill ring that corresponds to the number
given. As you have seen, a simple " Y request retrieves the i\.):
latest thing killed, from the first slot. If you want, for

8-2 CH27-00

example, the second latest thing killed (from the second slot),
simply give the Ay request a numeric argument of 2 by typing:

ESC 2 Ay

When you give A@ a positive numeric argument, it "pops" the
mark off the slot on the mark ring that corresponds to the number
given; i.e., it sets the current mark at the position where the
saved mark was originally set. If text was deleted from around
that position, the current mark is set at the position closest to
its former position.

Try all of these requests with numeric arguments until you
feel comfortable with them.

Numeric Arguments with Regular Characters

Whether you realized it or not, regular letters and numbers
are actually Emacs requests, too. For instance, you know that AD
means "delete the character at the cursor." What does an
ordinary d mean? What happens when you type an ordinary d, or
any number, letter, or punctuation mark? It goes into the buffer
and appears on the screen. Printing characters (other than #, @,
and \), are said to be self-inserting, because if you type one,

(it inserts itself into the text.
(~.

Giving a positive
character causes it to
instance, if you type:

ESC 24 Q

numeric argument to
insert itself that

a self-inserting
many times. For

you see 24 Qs appear on the screen all at once. This is a good
way to get lines of dashes, underscores, asterisks, etc.

If ever you type a numeric argument, or are in the middle of
typing one, and decide that you did not mean it, type a AG to get
you out of it. The reassuring beep verifies that any possible
numeric argument has been discarded.

REEXECUTING A REQUEST

"C

After typing a request, you may just want to repeat it once,
or to repeat it several times without determining exactly how
many times. The AC request, reexecute-command, lets you
reexecute the last keystroke request entered. This request is

8-3 cr~27 -00

not especially useful for repeating many of the requests learned
SC) far, since it is just as easy. to retype them as it is to type
"C. Some requests, however, require that you type a sequence of --"'.
keys (e.g., ESC F in the section on word requests); typing "Cs_J
prevents you from making an error when repeating these. In
addition, when you use "c to re-execute a search request, it does
so, reusing the same search string.

MULTIPLE EXECUTIONS OF A REQUEST

"U

A rather special request lets you repeat requests in a
couple of different ways. The "u request (multiplier) multiplies
the next request 4 times for each use. For example, "U"F moves
forward 4 characters; "U"U"F moves forward 16 characters. This
request can also be followed by a number, in which case it
behaves like ESC followed by a number; "U13"F moves forward 13
characters and "U-13"F moves backward 13 characters. A AU with
no following number is considered a positive numeric argument.

Try using "u with various requests that accept numeric
arguments (except Ay an A@). If you experiment with it, you will
get an ide~ of the approximate "space" covered by 4, 16, or 64
repetitions of the various requests. Then, when something "looks --~\\

about that far," you can type an appropriate number of "Us to get-./")
in the right neighborhood, at least.

GOING TO A SPECIFIC LINE NUMBER

ESC G

A request that lets you move the cursor to a line specified
by its line number is ESC G, go-to-line-number. This request is
especially useful when editing ~ultics programs, since many
~ultics tools give diagnostics in terms of line numbers in tQeir
input files. If you happen to be positioned on the first line of
the buffer, going to the 241st line is easy; just do 240 "Ns by
typing:

ESC 240 AN

However, if you are on some other line, it is easier to use ESC
G. This request takes a positive numeric argument that is the
number of the line to which you want to go. Typing:

ESC 241 ESC G

moves the cursor to the beginning of line 241,
line you are currently on. If that line is not

8-4

no matter what
on the screen,

CH27-00

(i

Emacs selects the appropriate area of the buffer and displays it.
Try it out.

When you are finished, write out your practice file with
AXAS or AXAW. For the rest of the tutorial, you can log in or
out whenever you want a break, and your file will always be there
to read in if you want some ready-prepared text to work with.
Otherwise, you can create new text, and files, if you prefer.

8-5 CH27-00

1\)

))

\

SECTION 9

WORKING WITH WORDS

WHAT'S IN A WORD

Some of the most useful requests in Emacs are those which
relate to words. Even if you are typing computer programs or
other non-English text material, the facility to move around word
by word, delete words, etc., is very helpful.

The word movement and deletion requests have a deliberate
~arallelism with the character movement and deletion requests:

F, AB are forward character, backward character; ESC .F, ESC B
are forward word, backward word. Similarly, AD and # are delete
character and rubout character, while ESC D and ESC # are delete
word and rubout word.

A "word" in Emacs consists of an unbroken string of upper
and lowercase alphabetics (a-z and A-Z), numbers, underscores,
and backspaces. Lower and uppercase letters can be mixed in any
way. For example, "new_payroll", "zeBra," and "begin" are each
one word; "delete-char" and "segname$entry" are each two words.
"March, I said," is three words.

It will help in learning the following requests if you
picture to yourself the point, rather than the cursor. Think of
the point at the left edge of the cursor, between the character
at the cursor and the character or space just preceding it.

Also remember that the letters ESC represent the escape key;
when followed by a space and a character, you type the escape key
and the character, but not the space. Alphabetic characters are
given in capitals, but you can type either an upper or lowercase
letter. Thus, for ESC F, you should type just the escape key,
release it and type an f or F.

9-1 CH27-00

MOVING FORWARD AND BACKWARD

ESC F)

The forward word request, ESC F (forward-word), moves the
cursor forward over one word.

• If the cursor is currently on a character that is part
of some word, it moves to the first character after
that word.

• If the cursor is currently on a character between two
words (even if they are separated by many blank lines,
punctuation, breaker bars, etc.), it moves to the first
character after the second of those two words.

For example, type in this sentence and position the cursor at the
beginning of the line (first case, above):

Yes, it is true.

Type an ESC F, and the cursor, on the "Y,"
Now type another ESC F (second case, above).
the space after "it." Re:('osition the cursor
in "Yes," and try again (first case, above).
moves to the comma.

moves to the comma.
The cursor moves to
to under the e or s

Again, the cursor

THE ESC F request also accepts numeric arguments. To go six
words forward, you type ESC 6 ESC F. Or, you can type ESC F and
then ACS to move forward a word at a time. This request goes
backward with negative numeric arguments.

ESC B

To move backward by words, you use ESC B, backward-word.

• If the cursor is currently on some character of a word
other than the first, it moves to the first character
of that word.

• If the cursor is on a character between two words, or
on the first character of a word (the point would then
be between two words), it moves to the first character
of the preceding word.

Put your cursor under the t in "it" in the sentence just
typed, and do an ESC B (first case, above). Now, with the cursor
under the i in "it," try again (second case, above).

9-2 CH27-00

This reQuest also
backward the specified
argument is negative).

accepts a numeric argument,
number of words (or forward,

moving
if the

The complementary use of ESC F and ESC B is well illustrated
by the problem Qf adding parentheses to "Tony" in the following:

Anthony Tony Burns.

If the cursor is at the period, the seQuence:

ESC B ESC B (ESC F

does it. Try it out for yourself.

DELETING WORDS

ESC #

Deleting words is perhaps the second most common editing
operation (after deleting characters) when entering text. To
delete the last word you typed, i.e., the word to the left of the
cursor, you use ESC~, rubout-word. It deletes the word to the
left of the cursor, or deletes that part of the word to the left
of the cursor if the cursor is in the middle of a word. The
action of ESC # is best described as though it were dOing A@

(setting the mark), then ESC B (backward word), and finally A W
(wiping the region). That is to say, ESC # removes all text
between the cursor's starting point and where it winds up after
an ESC B. Note, however, that the mark is not really set.

To summarize:

• If the cursor is immediately after a word, ESC #
deletes only the characters of the word it follows.

• If the cursor is in the middle of a word, ESC # deletes
that part of the word to the left of the cursor.

• If the cursor is at
characters between
and that preceding
spaces are deleted,

any other point, ESC # deletes all
the cursor and the preceding word,

word (intervening punctuation and
too). .

In your sentence, "Yes, it is true," put the cursor under various
letters and try to predict what will be deleted before doing
ESC #s. Be sure to try with the cursor under the i in "it."

Successive ESC #s remove words farther and
This reQuest does kill merging, so if successive

9-3

farther back.
words, and the

CH27-00

punctuation and white space between them, are deleted by ESC #,
one Ay retrieves the whole deleted area as it initially stood. A
numeric argument can also be used with ESC #, deleting backward
the specified number of words (or forward, if the argument is \~')
negative). J

ESC \177

Just as the # and the rubout key, represented as \177, had
the same effect on characters, the ESC # and ESC \177 requests
have the same effect on words. You can use these two requests
interchangeably. The command name for ESC \177 is also
rubout-word.

ESC D

Forward word deletion is performed by
It deletes the word, or part of a word,
point, i.e., to the right of, and including
cursor. It deletes forward from the point
to the place where ESC F would go.

ESC D, delete-word.
to the right of the

the character at, the
where the cursor is,

• If the cursor is on the first character of a word, ESC
D removes the entire word.

• If the cursor is in the middle of a word, ESC D removes
all the characters from the one at the cursor to the
last character of the word.

• If the cursor is between words, ESC D removes all white
space and punctuation up to the second word, and the
second word.

Consider the sente~ce:

We have no melons today, Mrs. Johnson.\

with the cursor under the r of "Mrs." To replace "melons" with
"pears", you type: ESC B ESC B ESC B ESC D and then the word
"pears." The ESC D request accepts numeric arguments. Again,
try these requests out with your own text by predicting the
action before typing the request sequences.

CAPITALIZATION

ESC L, ESC U, ESC C

A unique set of capabilities is provided by three requests
that control the "case" of words, i.e, lowercase (jack), \
uppercase (JACK), or capi talized ini tial letter (Jack). These _~)

9-4 CH27-00

c ..
'\

three requests are:

• ESC L to lowercase a word (lower-ease-word)

• ESC U to uppercase a word (upper-ease-word)

• ESC C to capitalize the initial letter of a word
(capitalize-initial-word)

Each of these requests can be issued with the cursor either:

• on any character of a word, or

• immediately after a word to alter its case.

For example, type:

thomas

and leave the cursor right after the "s." To capitalize the
initial character, merely type an ESC C, and you have:

Thomas

The cursor is always left immediately after the word whose case
is transformed. If you wish to capitalize the initial characters
of several words, say:

thomas alva edison

you can move the cursor to any letter of the word "thomas," type
ESC C, leaving you on the space after "Thomas," AF to go to
"alva," another ESC C, leaving you between "Alva" and "edison,"
and AF and a final ESC C, leaving you after "Edison."

All three word-ease-altering requests leave the cursor
immediately after the word whose case is altered. Since that
position is a good place from which to issue such a request, you
can posi tion the cursor after "·Thomas" and type, ESC U ESC L ESC
C ESC U etc., and watch THOMAS, thomas, Thomas, THOMAS, etc.,
replace each other on the screen while you decide which form you
like.

These requests deal with all the characters in a word.
Thus, a word like "MaGicAL" can be converted to "Magical,"
"magical," or "MAGICAL" by use of these requests. Also, if you
hold a shift key down .too long, ESC C can easily change, for
example, "MAgical" to "Magical" when you finish typing the "1."

9-5 CH27-00

• If a
words,
alters
cursor

word-case-altering reQuest is issued between
but not immediately after the first one, it
the case of the second word and leaves the

after it.

Changing the Case of Regions

"X"L "x"u ,

Two similar requests that also alter case are "X"L
(lower-case-region) and "x"u (upper-case-region). These two
reQuests operate on regions; all letters within the limits of a
region are made lowercase by "X"L, or uppercase by "X"U. You
must, of course, set the mark first, move the cursor to the other
end of the region, and then issue the appropriate reQuest. For
example, to add emphasis to this sentence:

The boy survived for sixteen days in the desert.

you could set the mark at the "S" of "sixteen," or the space
before it, move the cursor to the space after "days" (or even to
the "i" in "in"), and type "X"U. The sentence would then appear
like this:

The boy survived for SIXTEEN DAYS in the desert.

For these two requests, the cursor remains where it is,
i.e., the cursor is not left after the region whose case is
changed (as it is lef-t--after the word with ESC U or ESC L).
However, you can type these requests one after the other to see
which result you like best, since the region remains the same.
You can also make use of "x"x to verify the limits of your
region.

UNDERLINING WORDS

Related to the word-case-altering reQuests are the
underlining and underline-removing requests. They cause a word
to be underlined, or remove the underlining from an underlined
word. Most current video terminals either do not have the
ability to underline text at all, or can only do it in a very
limited way. Therefore, underlined text in Emacs appears as:

where "Hello" is wanted. The \010s are backspaces; they are
shown in this way because almost no video terminals can overprint
characters, even among those with a limited underlining
capability. The text in your buffer that will be written out to .~

your file actually contains the proper number and placement of ._)
backspaces, even if the appearance is disconcerting. However, to

9-6 CH27-00

(~)
"',~.-

avoid problems with dprinting text or editing it
editors, do not use backspaces for underlining;
instead.

ESC

with other
use ESC

Typing in backspaces in order to underline words is
confusing and error-prone, especially on a video terminal. Thus,
Emacs provides ESC ,underline-word, for automatically underling
words. To use this-request, position the cursor to:

• any place within a word to be underlined, or

• immediately after the word

just as for the word-case-altering requests. The ESC request
then underlines the word correctly, leaving the cursor
immediately after the word. In order to get "begin," for
instance, type b,e,g,i,n, and then ESC

"z
The "z request, remove-underlining-from-word, removes the

underscores and backspaces from an underlined word. Again:

• the cursor can be at any point in the word, or

• the cursor can be immediately after the word.

Since this request also leaves the cursor immediately after the
"de-underlined H word, successive ESC and "z s add and remove
underlining from the same word, in alternation.

LOCATING WORDS

In addition to searching for and locating a given sequence
of characters, Emacs can also locate words. In the sentence:

Yes, I know, Miss Smith's theater
is the One for me

Assume that the cursor is on a previous line or in the word
"Yes," and you want to find the word "is." With "s, the string
search request, prompting with the string "is" gets you to the
"is" in "Miss." You could, of course, keep repeating ASS until
the right occurrence is located.

9-7 CH27-00

"XW

However, the word searching request, "xw
(mul ti-word-search), locates a word. Type in the above sentence ,--)
if you have not already, and posi tion the cursor as suggested .'"-,,
Now type a "XW. Emacs prompts:

Word Search:

Then type in the word, is, and a CR. The cursor is left
immediately after "is."

.
This word search request finds words regardless of

capitalization or underlining. You can locate "One" or "me" in
the above sentence by providing "one" or "me" in answer to the
prompt.

This request can also find sequences of
say, several sequential words, separated
punctuation or white space. If the cursor
above the sample sentence, you could find it
prompt:

Word Search: i know miss smith CR

words, which is to
by any amount of

were several lines
by answering "XW's

The cursor is left after the "h" in "Smith." Punctuation and
capi talization make no difference. If you search for the ---)--)
sequence "theater is the," you will see that white space is also. ~
ignored.

Actually, punctuation and white space are not really
ignored, but they are treated the same, as separating one word
from another. Thus, the sequence:

"xw jack knife CR

locates:

jack knife
Jack, knife
Jack. .. "KNIFE

but not

jackknife

which is one word, not two.

9-8 CH27-00

(,

LOCATING WORDS BY THEIR PREFIX WITH *

The word search request can also locate words by searching
for words that start with a given string. This is useful for
searching for long words. To indicate that a word-prefix is to
be searched for, type the first letters of the word followed by
an asterisk (*). For example, type a ~XW, then anted*, and the
escape key to search for "antediluvian" or "antedated." You can
use word-prefixes in this way as part of a word sequence being
searched for, as well. To search for The "Antediluvian" Era, for
example, you could answer the prompt with:

the anted* era CR

Like most other Emacs search requests, typing just a CR to
its prompt uses the last search string provided. The search
proceeds from the current point in the buffer to the end of the
buffer.

There is no reverse word search, but if you su~ply any
positive numeric argument to ~XW, e.g., ESC 1 ~XW or ~U XW, the
search begins at the beginning of the buffer. Because this
request checks for so many things, it can be slow. Therefore, if
you know what exact characters you are looking for, ~S or ~R is
faster. If you know the words~ but not the case, intervening
punctuation, etc., use ~XW.

9-9 CH27-00

SECTION 10

MANIPULATING SCREENS AND BUFFERS

MOVING THROUGH A BUFFER SCREEN BY SCREEN

Often you wish to "page" through a document, reading through
it, or glancing over it to locate a certain section to read or
edit. This is accomplished on Emacs by paging through the text
screen by screen. You need to be able to see succeeding windows
to do this.

,..V

In order to view the next screen, you issue the ,..v request,
next-screen, read in your longest practice file and ",..V through
it." Each time you strike a ,..v, the cursor is left at the upper
left corner of your screen; not only does the window fill with
new text, but the cursor also moves to a new place in the buffer.
If you type a "'P after a ,..v, Emacs chooses a different portion of
the buffer to display, centering the line of interest.

With a positive numeric argument, ,..v pages forward the
specified number of next screensful, and displays it. With a
negative numeric argument, it pages backward the specified number
of screensful (previous screens).

Note that as you type these "'Vs, the first line on the new
screen is always the same as the last line on the old screen.
This helps orient you as you go through the text.

ESC V

You can also page backward through a buffer. The two-key
sequence, ESC V, lets you view the previous screen. With this
request, the first line of the old screen is displayed as the
last line of the new screen. The command name is prev-screen.

10-1 CH27-00

With a positive numeric argument, ESC
specified number of previous screensful and
negative numeric argument, it pages forward
of screensful (next screens).

MOVING TO EITHER END OF A BUFFER

V moves backward the
displays it. With a
the specified number

Now you can go forward and backward through the buffer
character by character (AF, AS), line by line (AN, AP), word by
word (ESC F, ESC B) and windowful by windowful (AV, ESC V).
However, as with lines, you often need to get to the beginning or
end of a buffer. What AA and AE do for lines, ESC < and ESC> do
for buffers.

ESC <

The request for going to the beginning of a buffer is ESC <,
go-to-beginning-of-buffer. Think of the less-than sign as an
arrow pointing to the buffer's beginning. Th~ ESC < request
displays the first windowful of the buffer and puts the cursor at
the very first character.

ESC >

The ESC> request, go-to-end-of-buffer, displays the last
windowful of the buffer and puts the cursor on the newline
character (the carriage return) that ends the last line of the
text in the buffer. You cannot move the cursor beyond that
character. If, after typing ESC >, you see the cursor on a line
by itself, that simply means that an empty line, one with only a
newline in it, is at the end of your buffer.

You can, of course, get
last with the other requests
numeric arguments, or ESC
desired.

EDITING MORE THAN ONE BUFFER

to any line between the first and
learned, especially Ap or AN with

G when you know the line number

In an Emacs session, each use of the find file request,
AXAF, results in a new buffer. The AXAF request prompts for a
filename (pathname of a file), terminated by a carriage return.

If no eXisting buffer contains that file yet, AXAF reads the
file into a buffer, names the buffer by the first component of
the entry portion of the filename (e.g., names the buffer "first"
when the filename is >udd>Sales>Smith>first.practice), and sets
the default file of this ~uffer to the file just read.

10-2 CH27-00

i~)

i)

If one or more buffers containing the named file do exist,
they are listed on the screen (see "Listing the Buffers,"below).
You are then prompted to specify the buffer you wish to use:

Buffer:

Type a name and end the prompt with a carriage return. If you
type one of the listed buffer names, ~X~F switches to it and its
version of the file. If you decide instead to use a new buffer,
give a new buffer name, and ~XAF reads the file into it and gives
this buffer the new name. A blank response for the buffer name
reuses the buffer named for the first component of the entry
portion of the filename.

For example, the first time you read in a file named
ibm.data, it goes into the buffer named ibm. If you read that
file again for some reason, Emacs lists the buffers containing
the file, only one in this case, the buffer named ibm, and
prompts you for a buffer name. You decide to use a new buffer
for this copy of the file, and type "new."

If you read ibm.data in a third time, Emacs lists both "ibm"
and "new" as buffers containing the file (though they may contain
different versions of ibmAdata if you have edited them). You can
use yet another buffer by typing a different name, or reuse one
of these two by typing its name. If you simply type a carriage
return, Emacs reuses "ibm."

Going from One Buffer to Another

~XB

When you have several buffers containing many different
files, or containing versions of the same file, you often need to
switch from one to the other. The request that does this is ~XB
(when typing this request, you must release the control key
before typing b, or you will end up with the AXAB request
described below). The AXB request, select-buffer, prompts for
the name of the buffer to which you want to go. Type the buffer
name and a carriage return.

If the buffe~ eXists, Emacs refreshes the screen with the
last windowful that you were editing in that buffer, and the
cursor is placed at the same point where it last was.

If the name given to the prompt is not that of an existing
buffer, Emacs creates such a buffer, and displays it on the
screen (you see an empty window, since the buffer is empty).

10-3 CH27-00

If you respond to the prompt by typing only a carriage
return, you return to the last buffer you were in before entering
the current buffer.

When you switch buffers with ~XB, the mode line changes to
reflect the name and mode of the buffer switched to. The path
line also changes to let you know the pathname of the file that
was read into this buffer, or last written out from it.

Listing the Buffers and Local Displays

To list the buffers in use in an Emacs session, issue the
~XAB request, list-buffers. This request displays a list of
buffers as a local display. A local display consists of
information displayed at the top of your screen that temporarily
replaces the text being edited. A line of dashes and stars, like
this:

__ I * * * * * * * * * * * __

is also displayed so that you can tell that your buffer has not
been destroyed, but simply that a local display is being shown
" i n fro n t 0 f " you r t ext .,:)~;

The local display for ~X~B contains the name of each buffer
and the pathname of the file in it, if any. For some buffers,
two symbols, greater-than sign (» and asterisk (*), appear to
the left of the buffer names. The greater-than sign indicates
the buffer you are currently editing. An asterisk indicates a
modified buffer, i.e., a buffer that contains modifications or
additions that have not yet been written out. Only when no
buffers have an asterisk beside their names will ~X~C let you
exit Emacs without the query, "Modified buffers exist. Quit?"

When you finish viewing the list of buffers in the local
display, you want to remove it from the screen. If you type ~
editor requests, the local display vanishes and is replaced by
what was there before it. However you may not want to issue any
such requests when you cannot see the cursor's location.

THE LINEFEED KEY AND ~J

A request is provided for just such circumstances. It is
the "no operation" request that does nothing at all! Since
typing any editor request removes a local display, this request
can be used to do so without doing anything else. You issue it

10-4 CH27-00

by striking the linefeed key on your terminal (this is the same
as AJ, noop, on all terminals), preferably two or three times.

Sometimes, local displays take more than one screen. In
this case, the last line of the screen says:

--More?-- (Space = yes, CR = no)

If you see this, hit the space bar once to see each successive
screen of the local display. The last screen of the local
display is indicated by the line of dashes and asterisks; you
restore the buffer to the screen with linefeeds, when ready. If,
during a multi-screen local display, you decide you have seen
enough, typing a carriage return (CR) instead of a space
terminates the display and restores the buffer to the screen.

A GARBLED SCREEN

Occasionally, you may not believe what you see on the
screen. Sometimes bad telephone lines, or unexpected messages
from Multics, or something you just do not understand may cause
the screen's contents to become invalid. This may be due to
hardware problems, bugs in new versions of Emacs, or bugs in your
terminal. At any rate, you need to clear the entire screen and
put it back the way it ought to be.

AL

This is accomplished with the redisplay request, AL,
redisplay-command. Try typing AL; the screen clears and is
refilled, with the cursor in the middle of the screen (unless you
are at the top of the buffer, in which case the cursor is at the
top). On fast terminals, AL can be used to reposition the window
so that the line with the cursor on it is at the middle, or to
remove a local display (using AL for either of these purposes is
not so useful on slow terminals).

With a numeric argument, AL redisplays and repositions the
window so that the line with the cursor appears at a place of
your choice in the window. A positive argument gives the number
of lines below the top of the window that you want the cursor's
line to be, where the top line is 1 (or 0). For example, ESC 1AL
moves the current line to the top, ESC 6 AL moves it six lines
from the top, etc. With a negative numeric argument, the
cursor's line moves to the specified number of lines above the
bottom of the screen, where the bottom line is -1. For example,
ESC -2 AL moves to two lines from the bottom, etc.

10-5 C!i27-00

MARKING AN ENTIRE BUFFER

The most common reason for marking an entire buffer is that
you want to move the text and insert it in another buffer. The
AXH request, mark-whole-buffer, sets the mark at the end of a
buffer and the point (cursor) at the beginning. This marks the
whole buffer, although the linefeed at its end is not in the
marked region. A AW would delete it. The sequence, AXH AW
AXB... go to place in new buffer where you want the marked
buffer .•. Ay, effectively moves an entire buffer.

KILLING AN ENTIRE BUFFER

The AXK request, kill-buffer, kills an entir,e buffer. You
are prompted for the name of the buffer to be killed, and end the
prompt with a carriage return. Buffers are usually killed to
conserve storage or to remove them from buffer listings given by
requests like AXAC or AXAB. When you try to kill the current
buffer, you are asked for a new buffer to go to.

SUMMARY OF TERMS

Two new terms for you to learn are:

• local display

• redisplay

10-6 CH27-00

,)

(~\
\",

SECTION 11

HELP

By this point you may be having trouble keeping track of all
the requests learned so far. However, whenever your memory of a
particular request lapses, help is at hand!

WHAT DOES THIS KEY DO?

ESC ?

When your are not sure what a given key does, you can type
the ESC ? request, describe-key. This request displays the
documentation for the request you are unsure of. For example, to
find out what AV is and does, type ESC? Emacs prompts in the
minibuffer:

Explain Key:

Now actually type a AV, in the usual manner.
what AV does appears as a local display at
screen:

AV next-screen

A. description of
the top of your

Display next screenful of this buffer. Leave cursor
at upper left hand corner of screen.

--* * * * * * * * * * * *--

The command name associated with
next-screen (Emacs refers, in prompts

the AV request is
and Emacs-produced

The documentation
the key name and

documentation, to requests as "commands").
describing next-screen follows the line giving
command name.

11-1 CH27-00

To clear away the local display describing AV, hit linefeed
a couple of times. Try ESC? with a few more requests.

When you forget what request a given key invokes, or need to
find out what you just did by accidentally typing the wrong
request. You can ask for the command name invoked by a given key
without the documentation to save time. By giving ESC ? a
numeric argument, e.g., ESC 1 ESC ?, you get this prompt:

Show Key Function:

Then type the key in question, say, AW. Emacs responds in the
minibuffer:

AW = wipe-region

EXTENDED REQUESTS

Some requests are issued by a single keystroke, such as AD,
which invokes the delete character request, delete-char. Other,
less common ones, are invoked by two-key sequences beginning with
ESC, such as ESC? for describe-key. Still less common requests
are invoked by two-character sequences beginning with AX or AZ
(e.g., AXAW). Requests that are the least common have to be
invoked by actually typing in their command names.

Though some requests are "less common", they are no less
important. They require more keystrokes simply because you have
less occasion to use them. Single keystroke requests are
reserved for those tasks that you perform often while editing.

The requests known as "~xtended requests" are those invoked
by typing their command names to Emacs. An example of an
extended request is "fillon," which enters "fill mode" in a
buffer. Fill mode sets up a buffer so that you do not need to
worry about the ends of lines when typing text, and never need to
type carriage returns (except, of course, when ending prompts, or
when you want explicit control over the format and line-breaks of
your document). Fill mode is ideal for typing in text from a
written page, or composing a document spontaneously. You just
keep typing; the lines get broken automatically.

11-2 CH27-00

To invoke an extended request such as filIon, you clearly
cannot just. type "filIon." If you did, it would simply go into
the buffer like any other characters. You have to let Emacs know
that the next characters are the name of an extended request.

ESC X

The request that notifies Emacs to expect
request's command name is ESC X, extended-command.
two-key sequence. Emacs prompts in the minibuffer:

Command:

an extended
Type this

Now type the word "filIon" (no quotes, just
a carriage return. The name of the "fill"
the mode line after the name of the
Fundamental.

the six letters), and
minor mode appears in
current major mode,

In general, you invoke an extended request in this way:

• type ESC X

• type the name of the extended request

• if the request takes any arguments, type a space and
then the argument(s)

• type a carriage return

WHAT KEYS DO THIS JOB?

apropos

A very important extended request provides you with all the
command names, and their associated keys, that relate to a given
topic. It is used if you remember something about a particular
request, but you cannot remember the key that invokes it, or what
its command name is. The apropos extended request finds all
requests that have a . given character string in their command
name, and provides a local display telling you what keys invoke
them. The topic that you are interested in is typed, after a
space, as an argument to apropos.

For instance, suppose you forget which request goes to the
end of a line. Choose a topic you think is appropriate, since
apropos must have an argument. If it does not, you get this
error message:

Wrong number of arguments to extended command apropos.

11-3 Cfi27-00

In this case, "end" seems a reasonable choice. So, type ESC X
apropos (no spaces yet), a space, the argument (end) and a
carriage return. The apropos request displays the command names
of all requests available in this buffer whose names contain the
character string "end." You see "E (go-to-end-of-line), ESC>
(go-to-end-of-buffer), a few surprises, such as "XM (send-mail),
and others. Once you learn from apropos what requests are
available, you may be jolted into recognition ("Right, "E is
go-to-end-of-line!"), or you may need more information ("Hmm, "E
looks right, but I'd like to know exactly what it does.") You
can, in the latter case, type ESC? "E to get the full
documentation.

The apropos request also lists all relevant extended
requests if their names contain the specified character string.
However, you cannot use ESC? (describe-~) to find out about
extended requests, since ESC? prompts for a single key, and
then describes it. If you try to type "fillon" to ESC ?, for
example, it reads the "f" and tells you that "f" puts an f into
the buffer. The remaining letters, ilIon, would go into your
buffer.

WHAT DOES THIS EXTENDED REQUEST DO?

describe

To find out, then, what an extended request does, you need
another help request. The describe extended request retrieves
the documentation for extended requests. Like apropos, it also
requires an argument;" in describe's case, the argument (separated
by a space from the last character of "describe") is the command
name of the extended request you are interested in.

For example, to find out about filIon, you type ESC X,
describe, space, fillon, carriage return. The documentation for
filIon is then shown on your screen as a local display. Try
describe out with the other two extended requests you know,
describe itself and apropos.

TANGIBLE HELP

make-waIl-chart

If you want help in a more permanent and tangible form than
that provided by ESC?, apropos, and describe, you can try the
make-waIl-chart extended request. This puts a list of all the
currently defined command names and their associated keys into a i)"
buffer.

11-4 CH27-00

You should then write the contents out to a file and dprint
a copy. The list produced in this way, "suitable for framing",
is a handy reference that you might want to keep near your
terminal. The wall chart produced is 132 columns wide and the
requests are divided into three columns. ~ sample (of one column
only) appears below.

esc-F
esc-G
esc-H
esc-I
esc-K
esc-L

forward-word
go-to-line-number
mark-paragraph
indent-relative
kill-to-end-of-sentence
lower-case-word

MORE HELP AND WH~T DID I JUST DO?

The ~ request, help-on-tap, provides several forms of help,
depending on the character that follows it. On some terminals,
you may have to type ~? to send the A character. A A ?

.((.-\ displays the current repertoire of A. A A-!-i shows where to get
\,_ more help. The A A and A 0 requesti are shortcuts for the ESC X

apropos and ESC X describe extended requests; they work in the
same way as those two extended requests, respectively. A A AG
does a AG, as usual, in case you want to get out of help-on-tap.

Sometimes when y.ou are happily edi ting away, things happen
that you do not expect. If you want to trackdown your error
(reconstruct the scene" of the crime, as it were), you can get a
local display of the last 50 charact~s typed in. The A L
request provides this, and is very useful as a learning tool. It
lets you examine what you did so that you can identify and
correct any problems.

11-5 CH27-00

--,,~-, -----

/

(,)

()
<"~,'.

SECTION 12

SENTENCES AND PARAGRAPHS

Besides being able to recognize and manipulate words, Emacs
alEo performs useful manipulations on sentences and paragraphs.

SENTENCES

Emacs can go to the beginning or end of a sentence (ESC A,
ESC E), and can kill sentences either backward (AX# or AX\177) or
forward (ESC K). In order to dO these editing tasks, it must be
able to recognize what a sentence is.

Basically, to find a sentence, Emacs looks for period (.),
question mark (?), or exclamation point (!) followed by at least
one space or tab. Capital letters have no meaning; Emacs
sentences need not start with one. If you have numbered items,
e. g. :

1 . Measure one cup of flour

2. Add a teaspoon of baking soda

Emacs considers "1." to be the end of a sentence (or possibly a
complete sentence depending on preceding text). The period is
the last character of that sentence. The second sentence starts
with the first printed character following the end of the first
sentence, and contains "Measure one cup of flour," a newline, the
number "2," and the period. The third sentence starts with the
"A" of "Add." The end of this third sentence does not appear
above. However, if the line following this is blank, then "soda"
ends the sentence; "a" is the last character in it.

Emacs also considers itself to be at the end of a sentence
if the point is at the beginning or end of a buffer.

12-1 CH27-00

So, to summarize: Emacs actually defines a sentence by its
ending. Sentences start with the first printed character after a
previous sentence's end. Sentences end with:

• a period, ~uestion mark, or
that is followed by white space

exclamation point

• the last character preceding an empty line

• the buffer's end

Conversely, sentences begin with:

• the first printed character following a period,
~uestion mark, or exclamation point that is followed by
a space

• the first letter following an empty line

• the first letter at the buffer's beginning

Moving Forward or Backward Ex Sentences

ESC A

\)

The ESC A re~uest, backward-sentence, moves the cursor to)'
the first character of the current sentence, i.e., if the cursor-)
is on a character in a sentence, it goes to the first character
of the sentence. If the cursor is already at the beginning of a
sentence, it moves to the first character of the preceding
sentence. If you supply a numeric argument to ESC A, the cursor
moves forward the given number of sentences.

ESC E

The forward-sentence re~uest, ESC E, moves the cursor to the
end of the current sentence, leaving it right after the sentence.
If the cursor is already at the end of a sentence, it goes to the
end of the following sentence. Anything defined to be the end of
a paragraph (see "Paragraphs" below) is automatically the end of
a sentence as well. This re~uest also accepts numeric arguments.

Experiment with these two re~uests until
comfortable with the concept of Emacs sentences.

Killing Sentences

12-2

you feel

CH27-00

"X#

Remember what ESC # did for words? Well, "X#,
kill-backward-sentence, does it for sentences. This re~uest
kills backward from the point to the beginning of the sentence,
i.e., the first letter following the end of the previous
sentence. Thud, in the following text, start with the cursor
under the ~uestion mark:

1. Measure one cup of flour. 2. Add
an egg. 3. Mix well

Voila! You have noodle dough. What
kind of noodles, you ask?

After the first "X#, the ~uestion mark, with the cursor still
under it, is located where the "W" of "What" was, and that
sentence is gone. The? remains because it was not included in
the text between the point and the beginning of the sentence.
Subse~uent "X#s leave the? and cursor where the "Y" of "You"
was, the "V" of "Voila," the "M" of "Mix." Note that the blank
line is deleted as simply being so much white space between
sentences. It is this blank line, however, that makes "Voila!"
be a sentence on its own, rather than a continuation of the "Mix
well" sentence, even though no end-of-sentence punctuation
follows "well." The next "X#s puts you at the former position of
"3," the "A" of Add," and so on.

Sentences killed successively with "X#s merge on the kill
ring. One "y retrieves them, as well as the intervening white
space, so your text looks the same as it did. This re~uest also
accepts a numeric argument, killing the specified number of
sentences backward and entering them on the kill ring.

"X\177

The "X\177 re~uest (type a AX and then the delete key) is
also kill-backward-sentence, and behaves the same way as "X#.

ESC K

As promised at the beginning of this section, Emacs kills
sentences forward via the ESC K re~uest, kill-to-end-of-sentence.
This deletes text going foward from the cursor to the end of the
current sentence. If you are at the end of a sentence, e.g., the
cursor is on the space immediately after a period, this re~uest
deletes forward to the end of the next sentence. Sentences
killed successively are merged, and can be retrieved with a
single Ay. Also, ESC K accepts a numeric argument, killing

12-3 CH27-00

forward the specified number of sentences; these sentences enter
the same slot on the kill ring.

Try ESC K out with the sample sentences above. If you typed
them in before, and killed them with AX#S, you can, of course,
retrieve them with Ay to avoid retyping.

PARAGRAPHS

Emacs defines a paragraph in one of two ways, both
controlled by the "paragraph-definition-type" option of the ESC X
opt extended request (see Section 17). When this option is set
to 1, as it is by default, a paragraph is defined as being all
text between two blank lines. In other words, a paragraph begins
immediately after a blank line, and ends with the last character
preceding another blank line. If, after a blank line, you type
spaces or a tab before entering text on the line, that white
space is still considered part of the paragraph (unlike white
space preceding a sentence).

When the option is set to 2, an indented line starts a
paragraph, i.e., any spaces or tabs at the beginning of a line
begin a paragraph, and the paragraph ends with the last character
on the line preceding the next indented line.

With either option setting, a control line for the runoff or
compose Multics commands (e.g., a line containing only .sp or
.spb) is a paragraph all by itself. Paragraphs also begin with
the line following a "control" paragraph.

By the above definitions, then, a paragraph always begins at
the beginning of a lin~, and the lines must be:

T;y]~e 1

• preceded by an empty line

• a runoff or compose control line

• the beginning of the buffer

• preceded by a runoff/compose control line

T;y]~e 2

• indented

• a runoff or compose control line

• the beginning of the buffer

• preceded by a runoff/compose control line

12-4 CH27-00

i.)\

--)

Moving Forward or Backward Ez Paragraphs

ESC [

The ESC [re~uest, beginning-of-paragraph, moves the cursor
to the beginnins of the current paragraph. If you are already at
the beginning of a paragraph, you move to the beginning of the
previous paragraph. This re~uest accepts a numeric argument and
moves back the specified number of paragraphs.

ESC]

The re~uest for end-of-paragraph is, as you might expect,
ESC]. This moves you to the end of the current paragraph, or
the end of the next paragraph if the cursor is already after the
last character of paragraph. You can use a numeric argument to
move forward many paragraphs. Both ESC [and ESC] can be tried
out with the sample recipe, since you have two paragraphs (the
blank line separates them because they are type 1 paragraphs by
default). With this type of paragraph, you can type in text,
spacing your paragraphs one or two lines apart for an appearance
both practical and pleasing. Each paragraph can be indented as
well, but the empty lines determine the paragraph breaks, unless
you deliberately redefine paragraphs with ESC X opt.

,

((.\

\ .~ Marking ~ Paragraph

c)
',~ ..

ESC H

You may decide to delete or move a paragraph, or rearrange
your text by deleting or moving an entire paragraph. To do this
you could mark the region with A@, after getting to the beginning
of the paragraph, then ESC] to the end of it and issue the AW
re~uest. However, ESC H, mark-paragraph, makes this easier. It
puts the mark at the beginning of the current paragraph, and the
cursor at the end. Your region, in this case a paragraph, is
marked in one step, and a AW wipes it out. The paragraph is
saved on the kill ring, and can be reinserted where you please
with a Ay.

Formatting a Paragraph

When you just type in text without regard for line breaks,
your screen's left edge begins to look pretty messy with all the
continuation lines (\c preceding the text). Since this is such a
convenient way to enter text, however, Emacs provides a re~uest
that "tidies up" your text, paragraph by paragraph.

12-5 CH27-00

ESC Q

The ESC Q request, runoff-fill-paragraph, formats paragraphs \,).
for you. It rearranges your text so that words are not broken in
the middle at the ends of lines. The continuation lines are
broken, instead, between words, giving you a neat "ragged right"
margin, and no "\c" lines on the left margin. (You can also set
your margins; see Section 13.)

Type in about three lines of text without any carriage
returns. Type an ESC Q and watch the screen. The text is
rearranged automatically. Your new paragraph takes up a few more
spaces since the sentences have to be rewritten to accommodate
the new line breaks. You can type in text forever, issuing ESC
Qs at the end of each paragraph to format it.

If you want an adjusted right margin, issue ESC Q with a
positive numeric argument, e.g., ESC 1 ESC Q. To try this with
the test paragraph just typed, issue an ESC H, AW, and ESC 2 Ay.
You have marked the formatted paragraph and deleted it, and
yanked the contents of the kill ring's second slot. These
contents are the original paragraph, continuation lines and all!
That is because ESC Q put the unformatted paragraph into the kill
ring when it formatted it, and it was pushed into the second slot
by the A W you just did.

So, ESC Q, without an argument:

• formats the current paragraph with a ragged right
margin

• puts the original paragraph into the kill ring

With a positive numeric argument, ESC Q:

• formats the current paragraph with both left and
right-justified margins (padding if necessary)

• puts the original paragraph into the kill ring

To set your margins, see AXF and AX. in Section 13.

12-6 CH27-00

SECTION 13

INDENTATION AND SPACING

Emacs provides numerous requests that deal with indentation
and the management of white space. White space is any
combination of tabs, spaces, formfeeds, or vertical tabs. Among
other things, the Emacs requests discussed here allow you to add,
delete, and skip over white space characters, as well as add
varying levels of indentation.

BLANK LINES

Adding Them

After you have typed in some text, and perhaps formatted it
with ESC Q, you may decide to add another paragraph or two, or an
example, or simply a few more lines. The·O request, open-space,
allows you to insert as many empty lines as you wish so that you
have a fresh space on the screen in which to work. This request
also saves the time it might take on some terminals for Emacs to
continually rewrite lines if you were just typing additional text
in without first opening a space for it.

Typing a AO puts a newline into your buffer ahead of the
current point. Text after the current point moves down a line
and over to the left margin and pushes succeeding lines down one.
The cursor remains immediately before the inserted newline, and
successive AOS keep opening up new empty lines. Thus, to insert
empty lines above a line of text, issue AO while the cursor is at
the line's beginning. Your cursor is then positioned so that you
can issue as many AOS as desired, and then immediately start
typing the new text, since the cursor is right after the last
inserted newline at the top of the stack of empty lines. With a
positive numeric argument, ~O inserts the specified number of

/" newlines. Thus, AUAUAO, or ESC 16 ·0, opens up 16 lines.
_oj

'-"""

13-1 CH27-00

Removing Them

"'X"O

If you open
blank lines that
removes them.

up more space than
you do not want,

you need, or simply have
AXAO, delete-blank-lines,

If the cursor is anywhere on a non-blank line, issuing AXAO
deletes all blank lines after the end of the current line. The
cursor is left at the end of the deleted blank lines, i.e., at
the beginning of the next non-blank line which has moved up (with
all succeeding lines as we.ll) under the line in which AX nO was
issued.

If the cursor is on a blank line when you issue AX"O, again,
all blank lines after the end of the current line are deleted.
Thus, you still have one blank line remaining (blank lines above
also remain, of course). The cursor is left at the beginning of
the next non-blank line.

Try these two requests out for yourself to
is to open up space, type, and delete the extra.

DEALING WITH WHITE SPACE ON A LINE

Spacing Over Indentation

ESC M

see how easy it

A simple request, ESC M (skip-over-indentation) lets you
move the cursor over the white space beginning the current line.
The cursor moves to the first non-blank position on the line.
This helps get you right to the text after you have issued a "A,
ESC [, or similar request moving you to the beginning of an
indented line. In fact, if you are anywhere in an indented line,
ESC M moves the cursor to the non-blank at the beginning of the
line, so it is frequently more useful than a "A when working on
indented text.

Deleting White Space

ESC \

The ESC \ request, delete-whi te-sides, deletes all whi te \ .)~
space surrounding the point on the current line, and closes up

I 13-2 CH27-00

the line accordingly. Thus, issuing an ESC \ with the cursor at
any of the spaces between "have" and "too" or on the "t" of "too"
in the following:

I have too much space here.

gives you

I havetoo much space here.

with the cursor left under the "t." Putting the cursor under "I"
and typing ESC \ removes the indentation. The point is always
left before the first non-white space character that followed its
prior position.

ESC "

The ESC • re~uest is not issued by typing the escape key and
the control key. The "." here represents the caret character on
your keyboard, so you type the escape key and then the caret.
This character is commonly referred to in Multics as the "not
symbol." ESC ", delete-line-indentation, deletes all the white
space at the beginning of the cu~rent line and merges it with the
previous line. The cursor can be anywhere in the line when you
type the escape and caret key sequence, and it moves to the first
non-blank character that began that line. Thus, it usually ends
up somewhere in the middle or toward the end of the previous
line. Following text moves up to the vacated line.

With a positive numeric argument, ESC A does a AN first,
deleting indentation on the next line and adding it onto the
current one. In this manner you can connect lines to each other
and remove indentation if you decide to change the appearance of
your text. For example, to change the following:

to:

Mail copies to:
Bob Burns
Cindy Hatter
Jake Voit

Mail copies to: Bob Burns, Cindy Hatter, Jake Voit.

simply put the cursor on
characters indicated within
letters enclosed):

the top line and
the brackets, not

type (type the
the brackets and

AU ESC· <2 spaces> "u ESC· <,~pace> "u ESC· <,space> hE <.>

13-3 CH27-00

Alternatively, you can start with the cursor on the last line,
and type:

ESC h <,space> ESC h <,space> ESC h <2 spaces> hE <.>

The first way, using a numeric argument, is a little more
intuitive.

FILL MODE

Fill mode is a minor mode that can be turned on or off in
each buffer. If it is on, i.e., you are "in fill mode," text is

. broken automatically at the end of each line so that it does not
extend past the fill column. The fill column determines the
right margin, and is the first column in which text is not to be
placed by ESC Q or fill mode formatting. Typing a space~ab, or
punctuation mark following a word that passes the fill column
signals Emacs to "back up" to the whitu space preceding that word
and break the line there. In addition, the fill prefix, if set,
is inserted at the beginning of each new line typed in while in
fill mode. The fill prefix determines the left margin, and is
empty unless set to contain some combination of spaces and
characters (see "Margins," below for changing the rill prefix and
fill column). If the fill prefix is not set, i.e., it is empty,
the left margin is the left edge of your screen.

While in fill mode, if you do want characters in or beyond :~))
the fill column, type a carriage return immediately after the
word instead of a space, tab, or punctuation. Or, if you want
more than a word, precede each character after the word with "Q.
Alternatively, you could reset the fill column for that line.

Fill mode is an excellent means of entering text without
ever having to worry about the ends of lines. Your text is
formatted automatically as you type, so you can enter your
document rapidly and see how it looks immediately. Use this mode
whenever entering English text I'or maximum convenience.

ESC X fill on AND ESC X filloff

These two extended requests, as their names imply, turn fill
mode on or off in a buffer. When entering text, you generally
want to be in fill mode, since you can then simply type without
ever worrying about carriage returns or line breaks. Your text
is formatted as you type.

13-4 CH27-00

()
MARGINS

Your right and left margins are generally set automatically
to accommodate your terminal's screen size, thus maximizing your
working space. You can, however, change these margins. The left
margin can be reset by setting the fill prefix, which is inserted
automatically ~y carriage return, fill mode, and ESC Q. The fill
prefix can contain characters and spaces and it "prefixes" all
text following a carriage return or formatted by fill mode or ESC
Q. Generally, you want only spaces in the fill prefix. The
right margin is determined by the fill column, which is the first
column in which text is not to be placed by ESC Q or fill mode
formatting.

Setting the Margins

AX.

The AX. request, set-fill-prefix, sets the' fill prefix in
the current buffer. You position the cursor on a line and type
AX.. Whatever is between the cursor and the beginning of the
line becomes the fill prefix. So, if you want a fill prefix of
five spaces, put the cursor on the sixth character of a line
beginning with at least five spaces and issue this request. A
good way to do this is to choose a line indented the way you want
it and type an ESC M and then AX.. Existing text does not
change, but subsequent ESC Qs and carriage returns indent text.
If fill mode is on, future lines are also indented.

By positioning on a line whose beginning contains non-blank
characters, you can include them in your fill prefix. You might
want a fill prefix containing asterisks or dashes, for example,
to set off a section of your text. To return things to normal,
i.e., have no fill prefix, issue AX. at the beginning of a line
(AA gets you out to the left edge before the fill prefix).

"XF

To set the fill column for the current buffer, use AXF,
set-fill-column. The column in which the cursor is located when
you type AXF is set as the fill column. Fill mode and ESC Q use
this column as the right margin. When you set it, the value is
displayed in the minibuffer like this:

Fill column = 65

13-5 CH27-00

~~ ~"----~~-~-~~-~-~-~~----'---------'

This request accepts an optional positive numeric argument, which
is the value to be assigned to the fill column, e.g., AU 65 A XF
sets column 65 as the fill column and makes column 64 be the last

f
colUmnttin which tesxctQcan be placed when you are in fill mode, or :) .

orma ing with E .

If you are dprinting a file on a device that accommodates
more characters/line. than your terminal, you may want to set the
column to an appropriately higher value to save time and paper.
Remember, if you do this, that your text on the screen will
necessarily include many continuation lines (\c inserted at the
beginning of the lines, with words broken randomly).

Centering a Line

ESC S

The ESC S request, center-line, centers the current line
between the left edge and the fill column. This is useful for
headings and titles, but only if~e fill prefix is not set. If
it is, you end up with everything ncentered n too far to the left.
Experiment with ESC S with different settings of the fill prefix
and fill column.

MORE ABOUT LINES AND WHITE SPACE

Shearing a Line

ESC "'0
,

This request, ESC A O, named split-line, breaks the line at
the point. The text beginning at the cursor is moved down a line
and indented so that it stays in the same column vertically. The
cursor maintains its original position. Thus, you can change:

to:

Kit contains: embroidery thread, stamped cloth
Items needed: needle, hoop

Kit contains:
embroidery thread, stamped cloth

Items needed:
needle, hoop

by putting the cursor at the ne" of "embroideryn and typing:

13-6 CH27-00

(-)

Since AN tries to stay in the same column, it is simple to move
the cursor down to the "e" again. The second AN is all that is

(''- necessary in this case since "needle" was already directly below
,_ "embro idery. " In your ed it ing, however, you will have to make

sure the cursor is positioned where you want the line to be
sheared.

Now recall what ESC A (caret character) does with a numeric
argument. It removes the indentation from the next line and
tacks the remaining characters onto the current line. So, after
you type the sequence above, leaving the cursor two spaces after
"needed:", you can simply type AU ESC A to rejoin the bottom
lines. A -P followed simply by ESC - rejoins the top two (since
ESC .. by itself removes indentation on the current line and tacks
the remaining characters onto the previous line.

Undenting to the Fill Prefix

ESC AI

If you have an indented ·line that you no longer want
indented, you "undent" it with ESC "'I, indent-to-fill-prefix.
This only works if the indentation is caused by something other
than the fill prefix, since the request removes leading white
space and replaces it with the fill prefix. When the fill prefix
is not set, ESC "'I effectively moves the first non-blank
character of the line over to the screen's left edge (moving the
rest of the line with it, of course). When it is set, ESC AI
simply removes the white space, leaving the first non-blank
character after the fill prefix. In either case, the cursor,
which can be anywhere on the line when ESC "'I is issued, moves to
the first non-blank character.

lNDENTATION

Emacs provides a sophisticated method for indenting when you
are preparing outlines, programs, tables, and other indented
text.

ESC I

ESC I, indent-relative, is a very powerful Emacs request.
It indents the current line like the previous non-blank line.
Thus, if you want to set in several lines, and line them up with
each other, you can simply type an ESC I anywhere on each line as
you are typing the text, or add them while editing.

13-7 CH27-00

You can easily add another "level" of indentation by typing
ESC I on a line that is already indented. Doing so re-indents
the first non-blank character on the current line to the column
occupied by the first letter of the next word on the right,
above. Thus, if you have:

Top level, no indentation on this line.
Second level, line indented five spaces.
Current line, indentation varies.

you can type another ESC I on the third line to get:

Top level, no indentation on this line
Second level, line indented five spaces.

Current line, indentation varies.

As you can see, the third line is now indented to line up under
"level," the first word beginning to the right of "Current."
When re-indenting with ESC I, Emacs again uses the previous
non-blank line, so the effect of typing ESC I twice on the third
line would be the same if it were the fourth line and followed a
blank line.

Generally, however, you prefer your "re-indentations" to be
less haphazard than lining up with the next word above, so you
would probably use the space bar for the first level of
indentation, type in your additional line(s) at that level, and
again use the space bar to set a second level. Each ESC I after
indenting a line to this second level also indents to the second
level, since ESC I uses the previous non-blank line's
indentation. However, if you are typing data into a table, for
example, ESC I can be very effective in re-indenting, since the
"next words" in the lines above start in the desired columns.

ESC CARRIAGE RETURN

If you are indenting several lines, you do not have to type
a carriage return (CR) after each line and then an ESC I to
indent the next. The ESC CR request, cret-and-indent-relative,
combines these two functions for you (very useful unless you are
in fill mode so you are not typing carriage returns anyway).
This request does a carriage return and an ESC I in one step.
So, you can end the current line and start a new one indented the
same just by typing ESC CR. If the current line is not indented,
the new line starts under the first letter of the second ~,[ord on
the original line. Try this out by entering the following:

13-8 CH27-00

c ..

~=

Document preparation should be made as easy as possible.
(Documents is used loosely here to include memos,
business letters, theses, professional papers, user
manuals, instructional booklets, advertising copy,
and any other informational type of text that we need
for doing our jobs.)

Emacs helps by simplifying text entry and editing.

In addition to trying the above, experiment with ESC I and
ESC CR with several levels of indentation.

Two-Column Format

Section 17 describes, under "Comments" several requests that
can be used to format your work in two columns. You can
manipulate the comment column and comment prefix (somewhat like
the fill column and prefix) so that you have two columns. If you
wish to do this, see Section 17 and experiment with these
requests.

SUMMARY OF TERMS

Some new formatting terms introduced in this section
include:

• fill mode

• fill prefix

• fill column

13-9 CH27-00

SECTION 14

MOVING BLOCKS OF TEXT

Regions, paragraphs, and buffers can be marked, deleted, and
yanked back into new positions whenever you want to move them.
The A@, AXH , and ESC H requests are the principal means of
marking large sections of text that you have learned so far, and
AW deletes any section so marked. The Ay and ESC Y requests are
available for retrieving killed text blocks and inserting them at
the cursor. In addition to these requests, Emacs provides some
more sophisticated methods of marking and moving blocks of text.

INSERTING AN ENTIRE FILE

(C::/ A XI

\.

The AXI request, insert-file, allows you to read additional
files into your text. You position the cursor to where you want
the file inserted, and issue this request. You are prompted for
the pathname of the file you want:

Insert File:

Type the pathname and end it with a carriage return. The word
"Reading" flashes on in the minibuffer while the file is read in
before the cursor, i.e., to the left of the cursor. The cursor,
and the text of the original buffer at and following the cursor,
are then left after the contents of the inserted file - after the
newline at its end. Your buffer's previous contents are
preserved, and the new file becomes part of them. The default
file for the buffer remains the same. So, if you originally read
in "first.practice" with "XAF, and insert "second.practice" with
AXI , a ftX"S or nXAW with an empty prompt response still writes
the file out to "first.practice."

With nXI you can insert as many additional files into the
current buffer as you wish, or insert the same file at many
places. You can, of course, insert other people's files by
glvlng the appropriate pathname (you must have the proper
access). This can be very helpful if several people are working

14-1 CH27-00

on. different sections of a document; you can "assemble" the
various pieces by inserting the files in any desired sequence.
(Alternatively, you can assemble a document with the runoff or
compose command's insert file controls.)

COPYING A REGION

ESC W

Sometimes rather than moving a block of text from one place
to another, you simply want a copy of it in one or more
additional places in your text. Rather than wipe it with Ai and
then yank it back into both the original and secondary
position(s) with A ys , you can ~ it with ESC Wand Ay it into
the new position(s) only. ESC - W (copy-region), then, copies the
region between the cursor and the mark, placing a copy in the
kill ring without affecting the original.

SELECTING AND JOINING TEXT ON THE KILL RING

ESC AW

To join two disparate pieces of text, you can issue the ESC
nW request, merge-last-kills-with-next. This causes the next
kill requests, which must follow immediately, to merge what they
kill with the last saved kill on the kill ring. Then one Ay
retrieves them as a single entity. For example, typing:

catenates two disjoint lines on the kill ring.

~AMED REGIONS

Emacs provides a way to assign a region to a variable, whose
name you choose, so that you can manipulate it at any time during
an editing session, i.e., during the same invocation of emacs. A
variable is simply a stored region. Variables are maintained for
the entire session, so you can work with several named regions at
once, instead of the single one defined by the mark and pOint.

Storing the Region to a Variable

AXX

The AXX request, put-variable, stores a region away by name.
To use this request, ,you set the mark and point around your
chosen region, and type AXX. Emacs prompts you for a name to be

14-2 CH27-00

~---~----.------------'----"---------

(-j
"-.

associated with the stored region:

Variable:

Type whatever name you choose, ending with a carriage return.
The region then disappears from the screen, and the cursor
returns to the character which preceded the region. You have not
lost this text; it is merely stored away, and is retrievable by
name. You can store as many regions in this manner as you wish.
However, be careful not to duplicate names, because Emacs
overwrites a previously stored region if you try to store another
one in the same variable.

Inserting a Variable

"XG

You use "XG, get-variable, to retrieve or insert a stored
region at the cursor. You are again prompted for the variable
name, and the named region reappears in your text at the cursor
after you type the carriage return. The cursor is put after the
reinserted region, and the mark is set before it. You still have
this same region stored as a variable, however, so you can move
the cursor and issue additional "XGs to get more copies into your
text.

Listing Your Variables

ESC X lvars

If you forget what your variable names are, or you want to
check them to avoid duplication, the ESC X lvars extended request
lists them for you in a local display. It also provides the
length of each variable, which may give you a clue to what is in
them if you cannot remember. The display looks like this:

Current string variables

Name

footnote
stars
disclaimer

#Chars

29
12
53

You can type a linefeed ("J) or resume editing to get rid of the
local display.

14-3 CH27-00

NAMED MARKS

You can also assign names to marks in. much the same manner i",)'
as you assign them to regions as variables. This can be,
extremely helpful for setting up a series of places in your text
to which you want to return for some reason. Perhaps you want to
doublecheck several items, but do not wish to keep interrupting
your text entry or editing. Or you may be considering a format
change that will affect several parallel points. Even if you
simply have several "rough spots" that you know will require
further work, you can return quickly and easily to any spot where
you have set a named mark. However, named marks, unlike
variables, are valid only in the buffer in which they are set.

Setting a Named Mark

The "Z"@
current point.
to the prompt:

Mark Name:

request, set-named-mark:, sets a named mark at the
You position the cursor, type "Z"@, and respond

with whatever name you choose, terminated by a carriage return.
The minibuffer prints a message telling you that the mark is set
and giving its name. Until you set, or set and name, another):
mark, this named mark remains the effective mark, so you could
move the cursor and "w whatever region the named mark and point
define. Remember, too, that if you change buffers, you can reuse
the names assigned to marks set in different buffers, since
"Z"@-created named marks are valid only in the buffer in which
they were set. If you do not change buffers, reusing a name
reassigns the named to the current mark.

Going to a Named Mark

The "ZG request, go-to-named-mark, moves the cursor to the
point where the named mark was set by "Z"@. You are prompted for
the name. Use this request to return to any point where you had
the forethought to set a named mark.

14-4 CH27-00

------- ----,

('
\.~.

~~ ..

Listing Your Named Marks

ESC X list-named-marks

The ESC X list-named-marks extended request is provided for
the same reasons as ESC X lvars. It lists the line number and
the name for each named mark in a local display that looks like
this:

Line #

5
12
53

SUMMARY OF TERMS

Mark name

snow
white
disclaimer

You can move text by several means now, including inserting
entire files and copying regions. You can also move text, or
simply move around, by assigning names to regions and marks. The
following terms are important for you to remember:

• variable

• named region

• named mark

14-5 CH27-00

.... _. __ . __ .. _._--
.-----"~~"

i !

--------~

SECTION 15

KEYBOARD MACROS

A keyboard macro is a sequence of requests (and, possibly,
characters to be entered) that are performed, in order, when you
issue a macro-executing request. It is a "mini-program" that you
devise to perform some editing task that you must do several
times. You can create and use a macro, and then create a new
one, or you can save your macros for later use by assigning names
and keys to them. The most important thing to know about a
macro, though, is that it is easy to create one. Basically, you
issue requests to perform some task, only before doing so, you
tell Emacs to remember the requests as a macro.

CREATING A MACRO

When would you create a macro? Well, suppose you are
preparing a document and decide that you want a section of text
to be highlighted by a column of leading asterisks and
doublespaced. You can write a macro that inserts the asterisks
and blank lines for you.

AX(AND AX)

The "'X(request, begin-macro-collection, is the first thing
you type to start writing a macro. When you type it, Emacs
begins "remembering" your next keystrokes as a macro. So, before
typing it, you should always define your problem and decide what
Emacs requests you would issue to correct it once ~you could
actually make the correction one time to verify this). Then type
"'X(. This appears in your mode line, after the name of ~major
mode:

<Macro Learn>

Macro Learn is a minor mode, entered via AX(. Now everything you
type, until you make an error or issue the AX) request,
end-macro-collection, becomes part of your macro. When you do
type AX), the "Macro Learn" message disappears.

15-1 CH27-00

._-------,----,--
I I

Thus, to insert the asterisks and blank lines you would
define this macro:

• "'X (begins the macro definition.

• AA puts you at the beginning of the line.

• * and two spaces following inserts an asterisk and two
spaces before the rest of the line.

• AE puts you at the end of the line, which now begins
with an asterisk.

• "'0 inserts a blank line after the current line.

• ESC 2 AN moves you two lines down, past the new blank
line to the next line with text, leaving you ready to
repeat the macro.

• AX) ends the macro definition

The AX) request accepts a numeric argument; if
executes the macro as well as ends its definition.
times it executes it depends on the numeric
"Executing a Macro~ below for details.

given one, it
The number of

argument. See

EXECUTING A MACRO

After a macro has been defined, AXE,
execute-Iast-editor-macro, executes it once. The macro to be
executed with this request must be the latest one written with
"'X (and AX). With a numeric argument, "XE executes the macro the
number of times specified by the argument, according to the
following:

Numeric Argument

o
(i.e., ESC 0 AXE)

1 - 9999
(e.g., ESC 6 AXE)

>9999

Executions

Repeats execution, with a pause
after each, as long as you type
a space during the pause.
Typing a carriage return or
"'G stops the repetition.

Repeats execution the
specified number of times.

Repeats execution until an
error occurs.

15-2 CH27-00

The hX) request, which ends a macro definition, can be given
a numeric argument, too, specified right in the macro. The
numeric arguments are interpreted the same as those for hXE,
above. After you type the hX), execution starts automatically.
Try executing the macro you typed that inserts paragraph "breaker
lines."

MID-MACRO QUERY

"XQ

What if you want to execute a macro selectively, i.e., have
it affect some cases and ignore others, or stop executing
altogether? While you are creating a macro, you can write the
"XQ request, macro-query, into it so that Emacs will stop in
mid-execution, letting you control how or whether it continues.
You simply type a "XQ into your macro at the point where you want
the pauses to occur. A message appears in the ~inibuffer:

Inserting query at this point.

During execution of the macro, Emacs performs as much of the
macro as precedes the query, then stops and asks you, in the
minibuffer, '''ok?''. You must the type one of the following
responses:

•
•

A space (hit the space bar) continues execution of the
macro; the requests following are performed.

A carriage
beginning,
the query.

return
without

starts the macro over from its
performing the requests following

• A "G stops the macro altogether.

Using AXQ, then, type in this macro (spaces should not be
typed, or they will be inserted into your buffer. They are
included in the examples only for readability.)

4 X(ESC] ·XQ ·0 ** ____________ ** AX)

This macro goes to the end of the current paragraph (by finding a
blank line or indented line), queries you, and then opens a new
blank line and inserts the asterisks and hyphens. During its
execution, you are queried at the end of each paragraph. Typing
a space in response to the query opens a blank line and fills it
with the supplied characters to form a more visual break between
paragraphs. Typing a carriage return (perhaps because the
"paragraph end" is not really the end of one of your paragraphs
or you do not want the current paragraph to be set off) goes to

15-3 CH27-00

the end of the next paragraph without adding a blank line and the
~sterisks and hyphens.

DISPLAYING A MACRO

""X*

The "X* request, show-last-or-current-macro, provides a
local display of the last macro defined with "X(and "X). The
requests are shown as keystrokes, like this:

esc-J "XQ "0 "**------------**,,

Character strings within the macro are quoted.

If you give this request a numE!ric argument, e.g. "U"X*,
the keystrokes and command names are displayed. Try it out to
see what this display looks like for the macro you typed in.

SAVING A MACRO

l!:SC X save-macro

..)

You can save the current macro by assigning a command name ._)
to it. At the same time, you can assign a key to the named
macro, so that you only need type the assigned key to execute the
macro. When you invoke the ESC X save-macro extended request,
you are prompted for a command name to assign to the macro, and a
key sequence:

Macro Name? paragr-'aph-stars
On what key?

If you type "X9, for example, to the second prompt above, you
get:

On what key? AX (prefix char): 9

A null response to the
to any key; the ESC X
can be used later to
ESC X save-macro and
current buffer.

key prompt does not assign paragraph-stars
set-key extended request, described below,
assign a key. Keys assignments made with
ESC X set-key are only effective in the

Once a key has been assigned, typing it invokes the macro to
which it is assigned. The key can be given any of the numeric
arguments accepted by "XE. Be careful when setting the key that
auto-linefeed is turned off on your terminal, or you end up with
-J as your key every time.

15-4 CH27-00

c.!
\.

To check your key assignment, invoke ESC?
key. This display appears:

"X9 paragraph-stars

with the new

"X9 is a keyboard macro. Type esc-X show-macro
paragraph-stars to display its definition.

Had you assigned one of the keys already used for a Fundamental
mode request, you could still issue the Fundamental mode request
as an extended request. Simply type an ESC X and the command
name to do so, e.g., ESC X put-variable, if you wish to assign
"XX to a macro. Actually, you can issue any standard Emacs
request as an extended request, at any time.

Displaying a Saved Macro

ESC X show-macro

The ESC X show-macro extended request displays a macro that
you have defined with "X(and AX), and then assigned a name to
with ESC X save-macro. When invoking this request, you must type
the name of the macro as an argument, after typing ESC X
show-macro and before typing the carriage return that terminates
the prompt. The local display is the same as that for "X* .

.b}DITING A MACRO

ESC X edit-macros

The ESC X edit-macros extended request produces a symbolic
file of all keyboard macros defined in the current buffer, and
places it in a new buffer called "Macro Edit." The keyboard
macros can then be written out for later loading, and can be
edited, redefined, or compiled into Lisp code. This request is
also helpful if you have forgotten what macros are available to
you. For information on the other uses of ESC X edit-macros, see
Appendix D.

SETTING AND CHANGING KEY BINDINGS

ESC X set-key and ESC X set-permanent-key

You can assign your own key bindings to requests and named
macros with the ESC X set-key and ESC X set-permanent-key
extended requests. The former assigns the key only in the
current buffer, and the latter assigns the key in all buffers.
Aside from this, both requests work in the same way.

15-5 CH27-00

After typing in either request, you must provide two
arguments before ending the prompt with a carriage return. The
first argument is the key name; the I:lecond is the command name.
These requests make the key, assigned by the key name, execute
the request, specified by the command name (either in the current
or all buffers, depending on which key-setting request is used).

the
The command name can be
command name that you

any standard Emacs command name, or
have assigned to a macro via ESC X

save-macro.

The key n.ame can be the typed representation of a key, i. e. ,
you must type out the letters or characters that represent any of
the special keys, rather than typing the special key. For
example, in a key name, you can type the word "control" or the
caret character, but not the control key. Likewise, you can type
the letters "meta" or "m", but not the meta key (found, for
example, on Massachusetts Institute of Technology Knight TV
consoles or Stanford Artificial Intelligence Laboratory
consoles). Key names can have any of the following forms (angle
brackets are included to delineate components that are not
literal):

•
•

•

<syllable>

esc-<syllable>
escape-<syllable>
meta-<syllable>
m-<syllable>

<syllable><syllable>
<sYllable>-<syllable>

A syllable can be:

• " (caret character)

• "<character>

---------------_.

e. g. , "f (caret f) a single
keystroke

e. g. , esc-f or ESC-f
escape-f
meta-f
m-f (2 keystrokes, where the
first is
keystroke
held down)

"X" e.g., C
e. g. " Z- "@

the first
charaeter -

the ESC, or a single
where the meta key is

(2 keystrokes, where
is some prefix

not the ESC key)

(this represents the actual caret
key, as in esc-A)

(where character can be any of
the upper or lowercase
alphabetics, which are
equi valent, or [, J, \," , ,or
@. These are interpreted as
control characters)

15-6 CH27-00

)

.. J ..

'I..

•

•

•

c-<character>

ctl-<character>
control-<character>

esc
CR
\177
TAB
space or sp

<character>

(character is the same as above;
these are also control
characters)

(where these are all letters or
characters representing special
keys, and upper and lowercase
letters are equivalent)

(where, if the first syllable is
A in the <syllable><syllable>
forms, the character is
restricted as above. If the key
name is simply this one syllable,
uppercase assigns a different key
from lowercase. This is the only
syllable type where upper and
lowercases are not equivalent.

Always remember that you do not actually type any special
keys, but only their representations. In general, if you are
unsure if a key name is acceptable or not, use a form like one of
those found in this manual. Some choices that are valid are not
suitable, e.g., a space or alphabetic alone, since you probably
need those characters when entering text.

EXAMPLES OF ACCEPTABLE FORMS OF KEY NAMES

AX
"Xq
ESC-ESC
c-p
control-p
\177

X
sp

"x
A p
esc-Af
CR
"X_AF
"X-CR
meta-f
TAB
SPACE

See the wall chart (made via ESC X make-wall-chart) for more
examples of valid key names.

15-7 CH27-00

.-.. -.---. ---

Two examples of setting keys are given below:

ESC X set-key hT quit-the-editor

allows you to quit the editor, from the current buffer, in one
keystroke. After setting this key (by typing in a caret and a
t), you quit the editor by typing, in the usual way, a AT.

ESC X set-permanent-key h X9 paragraph-stars

locates the end of the current paragraph and inserts a blank line
and a breaker line of asterisks and dashes whenever you type a
AX9 in any buffer.

The user should
between characters.
generates a A J , etc:

be aware of
On any ASCII

\010 = hH = backspace
\011 = hI = TAB
\012 = "J = linefeed
\013 = hK = vertical tab
\014 = "L = formfeed
\015 = "M = carriage return

15-8

the following equivalences
terminal, the linefeed key

CH27-00

,')'" ':
'- ,

SECTION 16

MULTIPLE WINDOWS AND THE BUFFER EDITOR

Emacs allows the editing of many documents at once;
documents are read into buffers, and Emacs can have as many
buffers as needed. A unique feature of Emacs, however, is that
of displaying multiple documents on the screen at once. This is
very useful when writing one document while reading another, such
as responding to mail, correcting programming errors while
reading compiler diagnostics, merging or comparing programs, and
so forth.

Multiple documents (more precisely, multiple buffers) can be
displayed by dividing the screen into windows. Normally, the
screen consists of one window, called the main window. When you
switch buffers (for instance, with the~B (select-buffer)
request, the new buffer is displayed in the main window, and the
mode line is updated to indicate which buffer is on display in
that window.

You create new windows with the window-creating requests,
described below, and can display any buffer in any of these
windows. The windows are divided from each other on the screen
by lines of dashes (--------). The cursor is always in some
particular window; that window is called the selected window.
You select a window i.e., move the cursor into it, with the
window-selecting requests, or the window editor. When a window
is selected, the buffer on display in that window is being
edited, and all the Emacs requests can be used on text it
contains.

An optional feature, called pop-up-windows, in which windows
are created as needed by various Emacs requests, and windows are
destroyed as space is needed, is described in Appendix H.

16-1 CH27-00

------.. ~--

Before the descriptions of the common window-manipulation
requests, here are some terms used in talking about windows:

• buffer - a body of text in Emacs identified by a buffer
name. You are already familiar with this concept.

• window - an area of the screen delimited by "boundary
lines", i.e., lines of (-----), the top of the screen,
or the mode line. A window is said to be displaying a
buffer if the text of that buffer can be seen in that
window.

• "on display in" a buffer is on display in a given
window if the text of that buffer can be seen in that
window.

• topline - the boundary line on the top of a window.
The uppermost window has no topline.

• bottomline the boundary line on the bottom of a
window. The bottom-most window has no bottomline.

• selected window - the window in which the cursor now
appears (when not in the minibuffer).

• current buffer - the buffer on display in the selected
window. The mode line gives the name of the current
buffer.

• LRU window - the least recently used window, i.e., the
window which has been the selected window least
recently.

• previous window the next-most recently used window
other than the selected window itself. The selected
window is always the most recently used.

There are several basic techniques for manipulating windows.
The simple keyboard requests AXO, nXO, AX1 , AX2 , AX3 , and nX4 can
be used to create, destroy, and select windows. At low speed,
this may be the only convenient way to edit several "pages" at
once. Alternatively, the "window editor" can be used. The
window editor, invoked by AZA W, puts up a display of the numbers,
positions, sizes, and contents of all extant windows, and allows
destruction, selection, and size-adjustment of windows by
positioning to the line describing the window to be dealt with
and issuing requests.

16-2 CH27-00

:)

(~)
\

ADDING WINDOWS

The A X2 request, create-new-window-and-go-there, creates a
new window at the bottom of the screen, and selects that window.
The window sizes adjust so that all windows are the same size.
The buffer placed on display in the new window is one whose name
is constructed as "Window ## Default" (where ## is the window
number, the top one being window 1). Thus, if you issue A X2 when
you have only one window, the second window displays a buffer
named "Window 2 Default." No arguments are accepted by A X2 .

The AX3 request, create-new-window-and-stay-here, creates a
new window at the bottom of the screen, but keeps the currently
selected window selected. The name of the buffer placed in that
window is constructed as described above. The new window becomes
the LRU window, so a "X4 request selects the window created by
AX3 if it is not used before the AX4 is issued (see A X4 , below).

REMOVING WINDOWS

AX1

The AX1 request, expand-window-to-whole-screen, removes all
windows except the currently selected window, which then grows to
occupy -the whole screen. Removing a window does not mean getting
rid of the text or buffer that is on display in that window; it
just means taking the window off the screen.

"xo

The AXO request (control x zero), remove-window, removes the
selected window from the screen, giving the space it occupied to
the windows that were on either side of it. The previous window
becomes the new selected window. With a positive numeric
argument, removes the window specified, where the topmost window
is 1.

SELECTING A WINDOW

AXO

The AXO request (control x "oh"), select-other-window,
selects the previous window, which is the window you were last in
before you were in this window. With only two windows, A XO

16-3 CH27-00

selects the "other" window. The cursor appears at the point
where it last was in this window. Note that the window in which
you issue the "XO now becomes the previous window, so successive i. -.-). '.

hXOS switch windows back and forth. Selecting a window, of
course, may potentially (and usually does) switch buffers, too.
The mode line always tells you what buffer is current; the cursor
tells you what window is selected.

hX4

The
window.
selects
topmost

"X4 request, select-another-window, selects the LRU
With a positive numeric argument, e.g., ESC 3 hX4, it
the specified window (window 3, in this case). The

window is window 1.

A good use for this request with no numeric argument is to
select a window you have not been using much (hence, its LRU
status) whose contents you can therefore afford to overwrite for
some other purpose, such as "XB or "XAF. Selecting the LRU
window makes it the most recently used (i.e., selected) window.
So some other window is now LRU, and another "X4 selects that
window. Thus, success i ve "X4' s (or "X4 "c "C ...) cycles
through all windows on the screen.

EDITING WITH MULTIPLE WINDOWS i},
._,)

The standard Emacs requests work in their usual fashion when
you are editing with more than one window. You can edit the
material in one window, switch to another (via "XO, "X4, and some
requests provided by the window and buffer editors described
below), and edit the mat .. erial there. You can, however, only edit
in one window at a time. While you are editing the material in
that window, you frequently refer to the display(s) in the other
window(s). If you need to see more of the buffers displayed in
the other windows, switching to them simply to display another
set of lines, and then switching back, is very inconvenient.
This is especially true if you are using several windows, so that
each portion displayed is relatively small. The ESC hV request
solves this problem.

ESC "V

If you want to "turn the pages" in the windows that are not
selected, you can do so without switching to them. The ESC "V
request, page-other-window, is only valid when more than one
window exists. Without a numeric argument, ESC "V displays the
next windowful (as with a "V) of the "other" window. The other
window is the unselected window when only two windows exist; when
more than two exist, the other window is the next most recently _)
used window. With a positive numeric argument, e.g., "u ESC "V, -
this request goes forward the specified number of screensful (4

16-4 CH27-00

----_._._-- ----

c:
\ ..

in this case) and displays it. With a negative numeric argument,
it pages the other window backward the specified number of
screensful.

The ESC "'V request is, of course, most useful if you need to
refer frequently only to one other window (if you are, for
example, responding to mail). If you have to update several
windows, however, you must switch windows. Use ~X4 to go to
whichever window(s) you want, then use "'V or ESC V as usual, and
return to the original windows with A X4 .

One word of warning with multiple-window editing: if you
display the same buffer in more than one window at once, Emacs
becomes slower, less efficient, and substantially more expensive
to use while the buffer is so displayed. Avoid entering text
into such a buffer if any of these issues are a concern.

DEDICATED BUFFERS

Several Emacs requests always switch you into a new buffer
dedicated to their exclusive use, and leave you in that buffer.
The window editor (AZ"'W), the comout-command request ("'XAE)
described in Section 17, which allows you to execute a Multics
command and displays the output of that command in a
"file_output" buffer, and the Emacs mail requests ("'XM and "'XR)
described in Appendix B, are all examples of requests requiring
their own buffers. These requests are often issued while you are
in the midst of editing, and you generally do not want them to
obliterate your work from the screen. Thus, when you use any of
them, you probably want at least one extra window available. The
AX2 or "'X3 request is a good way to get the extra window.

Some dedicated-buffer requests select the window that
already contains their appropriate buffer (e.g., "'X"'E selects
"file output" if it is on display in any window). If the
appropriate buffer does not exist, they either select the LRU
window, replacing that window's previous contents with their
display, or they use the current window for their display. The
choice of LRU or current window depends on the request. The
"'XAE, AXM, and "'XR requests choose the LRU window, but AZAW
chooses the current window. To make a window available without
endangering. any windows already in use, use AX2 for those
dedicated-buffer requests utilizing the current window, and "'X3
for those utilizing the LRU window. This process of selecting
the window with the appropriate buffer is called
find-buffer-in-window (and is available to programmers writing
extensions. See the Extension Writers' Guide).

16-5 CH27-00

THE WINDOW EDITOR

The window editor provides an interactive way to manipulate
windows, allowing you to reorganize the screen conveniently. The
window editor puts a formatted display in a dedicated buffer.
The display appears on the screen :in the selected window (the
window where the cursor is currently f3itting). The window editor
buffer is named WINDOWSTAT. If you want WINDOWSTAT to appear in
a window other than the current one, issue AZA W with a numeric
argument, e. g., AU A Z,..W . If WINDOWS~rAT is already displayed in
another window, the new display appears there; otherwise, the new
display appears in the LRU window.

1 0
2* 2
3 4

o
13
17

12
3
2

term-paper appear on
WINDOWS TAT 2*
Messages from COMSAT

Each line relates to the contents of one window on the screen at
the time the window editor was entered. There are as many lines
as there are windows. You cannot use standard Emacs requests to
change the contents of the display; it is read-only. You can,
however, use standard Emacs requests (e.g., search requests,
etc.) to position the cursor in it. The cursor, when in the
window editor's buffer, is always on some line of the buffer (the
buffer may be larger than the window it is in, like most Emacs
buffers). That line relates to one of the windows; the window's
window-number from the top of the screen is the first number on
that line. The window designated by the line on which the cursor
is will be called the "designated window" (do not confuse this
with the selected window, which is the window containing the
window editor's display while you are working in the window
editor).

The window number followed by a star shows which window was
the selected window at the time the window editor was entered.
The next number on each line is called the internal window
number, and is usually not of interest. The remaining two
numbers on each line are the position and size of each window.
The position is the screen's line number at which the window
starts (the screen's top line is 0). The size is the number of
lines in the window.

16-6 CH27-00

Following the position and size is the buffer name of the
buffer currently on display in that window. Following the buffer

("- \ name are the first ten characters of the point line in that
.~ window. The point line is the line in the window that the cursor

goes to if that window is selected (generally the line where the
cursor last was in that window).

Window Editor Requests

You operate the window editor by invoking it, positioning to
some line, thus designating some window, and issuing window
editor requests to affect that window. The following requests
are recognized (note that they are printing characters, instead
of control characters, for ease of typing, since you cannot enter
text into a read-only buffer).

.. _------. ---

g

f

k

d

Goes to (selects) the designated window, leaving the
window editor, and moving the cursor to this window.

Goes to the designated window (same
compatibility with the buffer editor).

as g, for

Kills (removes) the designated window from the screen.
This is done immediately, and the buffer editor display
is updated to reflect the new screen layout. The space
occupied by this window is distributed among its
neighbors.

Kills the designated window (same as k, for
compatibility with the directory editor. See -XD in
Section 17 for information on the directory editor) .

.... (caret)

v

a

Moves the the topline of the designated window up one
line, increasing its size, and deducting one line from
its neighbor above. With a numeric argument, moves up
that many lines instead of one. The buffer editor
display is updated to reflect the new screen layout.
(The shapes of the A V, A, and U requests suggest
their function.)

Moves the bottomline of the designated window down,
same rules and features as

Moves the topline of the designated window down, same
rules and features as

16-7 CH27-00

u
Moves the bottomline of the designated window up, same
rules and features as A

The following requests do not deal with the designated
window, and can be issued at any time in the window editor:

n

p

b

c

3

Goes to the next line
You could use AN as
read-only buffer. If
first.

of the window editor display.
always, but n is easier in a
on the last line, goes to the

Goes to the previous line.
to the last.

If on the first line, goes

Exits the window editor by entering the buffer editor
in the window now occupied by the window editor's
display.

Creates
window
reflect

a new window (like
editor's display.
the new state of

window as designated window.

AX3), and leaves you in the
The display is updated to

the screen, with the new

Creates a new window (same as c, for mnemonic ease with
"'X3) .

LEAVING THE WINDOW EDITOR
,

The window editor is usually exited by selecting some other
window with the g request; indeed, you may often enter the window
editor for no other reason than to do this. You can also exit
via the b request to the buffer editor, or just issue a -XB or
AXAF to go elsewhere. Window editor windows left on the screen
after you exit the window editor are not updated dynamically by
Emacs when windows and buffers are changed around.

THE BUFrER EDITOR
\

The buffer editor. provides a facility for deleting,
examining, and selecting buffers, similar to the window editor.
The buffer editor creates a read-only display in a dedicated
buffer. The display appears on your screen in the selected
window. As with the window e.di tor, several buffer edi tor

,),
'- I

requests, invoked by typing selected printing characters, allow -)
you to manipulate the buffer designated by the cursor's position'~ .
in the display.

16-8 CH27-00

((/

The buffer editor is entered via AZA B. It puts its display,
a buffer named BUFED, in the window in which it was invoked. If
you do not want to overwrite the selected window, issue "ZA B with
a numeric argument, e.g., AUAZA B. The buffer editor's display
then appears in the window already displaying it, if one exists;
otherwise, it appears in the LRU window.

Each line of the buffer editor's display contains a buffer's
name, a pathname if the buffer has a pathname associated with it,
and, possibly, flags. The flags appear at the left margin, and
they are:

* >

x

This buffer is modified (needs writing out).
This buffer was current when the buffer
entered.
This buffer
editor.

is marked for deletion by

editor was

the buffer

There may be more buffers (i.e., lines in the buffer
editor's display) than are on display in the window in which this
display appears; like any other 'Emacs buffer on display, AV, ESC
V, or any other standard Emacs request can be used to position
the cursor in it.

Buffers can be killed (as AXK does) with the buffer editor k
or d request. Buffers so killed are not actually destroyed until
the buffer editor is exited via a g, w, f, q (or nXnQ) request,
at which time you are asked if you really want to delete them
(they are listed in a local display).

Buffer Editor Requests

The following requests are known to the buffer editor:

n

p

k

d

Goes to the next line, or the first line if now on the
last.

Goes to the previous line, or the last line if now on
the first line.

Marks the designated buffer for deletion when the
buffer editor is exited and moves to the next line.

Marks the designated buffer for deletion (same as k,
for compatibility with the directory editor).

16-9 CH27-00

s

u

e

Writes the designated buffer
pathname (it must have one).
unmodified.

out to
This

its
marks

default
it as

Undoes the effects of k or d on the designated buffer,
i.e., unmarks it. The X flag is removed from the
display, and the cursor is positioned to the next line.

Examines the designated buffer. In one-window mode,
you should just go there. With two or more windows,
Emacs selects a window via find-buffer-in-window for
the designated buffer, putting it on display if not
already on display. A message is printed in the
minibuffer about where (in what window) it appears.

LEAVING THE BUFFER EDITOR

These next requests cause the buffer editor to be exited;
you are queried about pending deletions if you have any:

g
Goes to the designated buffer, exiting the buffer
editor, replacing its display in the current (selected)

(..)- .

\ ..

window, with this buffer. This is just like doing a) .. \
AXB. As a matter of fact, the buffer editor can be ~ I

f

w

used for just seeing what buffers there are and going
to one, to save typing. This is especially useful for
buffers with long and complex names, like "Messages
from Brzezinski."

Selects a window and displays the designated buffer via
find-buffer-in-window. Since the buffer editor makes
its own window LRU when it exits, if you "f" a buffer
not currently on display in any window, it is the same
as going to it via the g request, replacing the buffer
editor's window.

the screen
that window

use multiple
all the time,

However, if the designated buffer is on
somewhere, the cursor simply moves into
(and thus, into that buffer). If you
windows, you will find that you use "f"
and rarely use "g".

Exits the buffer editor by entering the window editor
in the window now occupied by the buffer editor's
display.

16-10 CH27-00

..')

I.~/

"C.O:
\~, ,----'

g
Exits the buffer editor and enters, in the current
window, the buffer from which it was invoked by AZAB.
If you invoked the buffer editor with a numeric
argument, e.g., AijAZA B, this exits the buffer editor
and enters, in the appropriate window, the buffer from
which you invoked it.

Exits the buffer editor in the same manner as with "g."

16-11 CH27-00

;) I
'-- /

/

SECTION 17

SUMMARY OF EMACS FUNDAMENTAL MODE REQUESTS

The following requests have been grouped according to the
functions they perform. They are the requests available in
Fundamental mode, which is the default mode entered in new
buffers. Some may appear more than once if they serve more than
one purpose. To invoke the extended requests, type an ESC X
followed by the command name. If the extended request requires
an argument, type it after the command name (with a space
separating the two). Then, with or without argument(s), type a
carriage return. The following is a list of the functions and
the requests (by key) documented within each group. After this
list, full descriptions of each request in each of the groups are
given.

LIST OF EDITING FUNCTIONS AND THE KEYS THAT PERFORM THEM

Movements Forward/Backward-

Deletion

"B
"N
ESC A
"V
ESC G

"K
"w
"XK
"Z;

Retrievals/Yanks

"y

"F
"p
ESC E
ESC V
ESC "B

\177
ESC #
"X#
ESC "w

ESC Y

"A
ESC B
ESC [
ESC <
ESC "F

"D
ESC \177
"X\ 177
ESC "y

ESC "y

17-1

AE
ESP ~'
ESC]
ESC >

@

ESC D
ESC K
AX "0

CH27-00

Marks, Regions, Variables

"@ ESC H "XH "x"x
'\ "Z"@ "ZG "w ESC W ;\,, __ i

"X" L "x"u "XX "XG
ESC X lvars

Searches and Substitutions

"R "s ESC / "xw
"xs ESC %
ESC X replace

Files

"X"F "X"R "x"s "x"w

Insertion

"XI "Z"F

Entry and Exit -- ---
"X" C "XCR "X"E "z"z i,)) "XD

Help

ESC ?
ESC X apropos
ESC X describe
ESC X make-waIl-chart

Error Recover;y:

"G "X"G "Z"G ESC "G

New Lines/Blank Lines

CR "0 "x"o ESC "0

Indentation and White SEace

ESC \ ESC M "X. "XF
ESC I ESC CR ESC "I ESC "

'\,
\ __ /

17-2 CH27-00

l"
.)('. '\: ~,

,(:'

Comments

"X; ESC ; "Z;
ESC P
ESC X set-comment-prefix

Formatting

"X.
ESC X
ESC X
ESC X

"XF ESC S
filIon
fill off
runoff-fill-region

Literal Character Entry

\ "Q

Special Purpose Keys

Macros

"J
"XESC

"X(
"XQ
ESC X
ESC X
ESC X

"L
ESC X

"X)

save-macro
edit-macros
show-macro

"X*

Characters (Moving by/Deleting)

Lines (Moving in and by/Deleting) ---
AA "E "N
"X= ESC G @

Words

ESC B ESC F ESC
ESC D ESC C ESC
ESC "z

17-3

L

ESC N

ESC Q

ESC

"XE

\177

"p
"K

ESC \177
ESC U

CH27-00

Sentences

ESC A ESC E "X# "X\177 --'\
ESC K1

ParagraJ2hs

ESC [ESC] ESC H

Screens

"V ESC V "L ESC R
"z"'v

Buffers

ESC < ESC > "'XB "X "B
"XH "XK ESC ~ "'Z"'B

MultiJ2le Windows

"xo "'X1 "X2 "X3
"X4 "xo ESC "V "Z"W

Mail/Messages
':_)'i

"XM "XR
ESC X accept-msgs

T;ZJ2ing Shortcuts

AC AT AU
ESC X setab
ESC X speedtype
ESC X speedtypeoff

Programming Modes

ESC X alm-mode
ESC X electric-p11-mode
ESC X fortran-mode
ESC X fundamental-mode
ESC X lisp-mode
ESC X p11-mode
ESC X set-compile-options
ESC X set-compiler "

: \ ESC X ldebug ,J
,

/

17-4 CH27-00

Printing Terminal Usage

Extension Writing

ESC ESC
ESC X ldebug
ESC X loadfile
ESC X loadlib

Additional Optional Settings

ESC X opt
ESC X option
ESC X set-mini buffer-size
ESC X reset-mini buffer-size
ESC X set-screen-size
ESC X reset-screen-size
ESC X set-key
ESC X set-permanent-key
ESC X set-search-mode

DESCRIPTIONS OF THE REQUESTS

Movements Forward/Backward

~B backward-char
Moves backward one character in the buffer. Tabs and
the newline characters at the ends of lines count as
one character. Beeps as for AG at the beginning of
the buffer. Repeats wit~ a positive numeric
argument; moves forward and repeats with a negative
numeric argument.

~F forward-char
Moves forward one character. Tabs and newlines count
as one character each. Beeps as for AG at the end of
the buffer. Repeats with a positive numeric
argument; moves backward and repeats with a negative
numeric argument.

hA go-to-beginning-of7 line
Positions to the beginning of the current line of the
buffer, i.e., right before the first character.

go-to-end-of-line
Positions to the end of the current line, i.e., after
the last character and before the linefeed. On an
empty line, this is the same as the beginning of the
line.

17-5 CH27-00

next-line-command
Positions to the next line of the buffer. If on the
last line, appends a new empty line to the bottom of
the buffer, and positions to the beginning (and end)
of it. Successive ANs and ApS try to maintain the
same horizontal position. Repeats with a positive
numeric argument; performs ApS and repeats with a
negative numeric argument.

Ap prev-line-command
Moves to previous line of the buffer. Beeps as for
AG if on first line of the buffer. Attempts to
maintain the same horizontal position; successive
Ap'S and AN's try to maintain the original horizontal
position. Repeats with a positive numeric argument;
moves to next line and repeats with a negative
numeric argument.

ESC B backward-word
Goes backward one word. If in the middle of a word,
goes to before the beginning of that word. Skips
backward over all white space to get to the next
word. Underscores and backspaces count as parts of
words. Repeats with a positive numeric argument;
goes forward and repeats with a negative numeric
argument.

.-"'" (.j

ESC F forward-word ~
Goes forward one word. If in the middle of a word, _))
moves to the end of the current word. Leaves point
immediately after that word. Passes over all
punctuation and white space before the word.
Underscores and backspaces count as parts of words.
Repeats with a positive numeric argument; moves
backward and repeats with a negative numeric
argument.

ESC A backward-sentence
Goes to the beginning of the current sentence, i.e.,
just before the first letter. If already at the
beginning of a sentence, goes to the beginning of the
previous sentence. The beginning of the first word
after a blank line always counts as the beginning of
a sentence. Repeats with a positive numeric
argument; goes forward and repeats with a negative
numeric argument.

ESC E forward-sentence
Moves forward to the end of this sentence. If at the
end of a sentence, moves forward to the end of the
next sentence. Ends of paragraphs are implicitly
ends of sentences, whether or not an end-of-sentence
punctuation (per iod, question mark, exclamation-"
point) appears. Repeats wi th a posi ti ve numer ic __ .../·

17-6 CH27-00

c·
\..

argument; moves backward and repeats with a negative
numeric argument.

ESC [beginning-of-paragraph
Moves to the beginning of the current paragraph. If
already at the beginning of a paragraph, moves to the
beginning of the previous paragraph. The beginning
of a paragraph is the beginning of the first line of
the paragraph. The definition of paragraphs is
controlled by the paragraph-definition-type option:
if 1, blank lines separate paragraphs; if 2, an
indented line starts a paragraph. The Multics runoff
or compose command's control lines count as
individual paragraphs. Repeats with a positive
numeric argument; moves forward and repeats with a
negative numeric argument.

ESC] end-of-paragraph
Moves to the end of the current paragraph. If at the
end of a paragraph, moves to the end of the next
paragraph. The end of a paragraph is the end of the
last line of the paragraph. The definition of
paragraphs is controlled by the
paragraph-definition-type option: if 1, blank lines
separate paragraphs; if 2, an indented line starts a
paragraph. The Multics runoff or compose command's
control lines count as paragraphs. Repeats with a
positive numeric argument; moves backward and repeats
with a negative numeric argument.

AV next-screen
Displays next screenful of the current buffer.
Leaves cursor at upper left hand corner of screen.
With a positive numeric argument, pages forward the
specified number of screensful and displays it; with
a negative numeric argument, moves backward the
specified number of screensful (previous screens) and
displays it.

ESC V prev-screen

ESC <

Displays the previous screen (one back) of this
buffer, leaving cursor at the top of it. With a
positive numeric argument, moves backward the
specified number of screensful and displays it; with
a negative numeric argument, moves forward the
specified number of screensful and displays it.

go-to-beginning-of-buffer
Moves to the beginning of the
before the first character in
of the document being edited.

current buffer, i.e.,
the buffer at the top

ESC > go-to-end-of-buffer
Moves to the end of the current buffer, i.e., before
the newline on the last line of the current buffer at

17-7 CH27-00

the bottom of the document being edited. You cannot
position beyond that newline.

ESC G go-to-line-number
Goes to a given line, specified by line number, from
the top of the buffer. The positive numeric argument
specifies the line number. For instance, ESC 25 ESC
G goes to line 25.

ESC AB balance-parens-backward

ESC AF

Deletion

Skips backward over one set of balanced parentheses.
Searches backward until a set of parentheses is
found. Does not handle quoting or any programming
language conventions.

balance-par ens-forward
Skips forward over one set
Searches forward until a set
Does not handle quoting,
language conventions.

rubout-char

of balanced parentheses.
of parentheses is found.

or any other programming

Deletes the previous characte~ (before the cursor,
which is usually the last character typed). Note
that # deletes the character to the left of the
cursor, while AD deletes the character at the cursor.
Repeats with a positive numeric argument, deletes the
character at the cursor and repeats with a negative
numeric argument.

\177 (delete key) rubout-char
Deletes the previous character (before the cursor,
which is usually the last character typed). Note
that \177 deletes the character to the left of the
cursor, while AD deletes the character at the cursor.
Repeats with a positive numeric argument; deletes the
character at the cursor and repeats with a negative
numeric argument.

AD delete-char

@

Deletes the character to the right of the current
point. This is the character on which the cursor
sits. Moves the rest of the line one to the left,
closing up the space. Deleting a newline at the end
of a line merges lines. Repeats with a positive
numeric argument; deletes the previous character and
repeats with a negative numeric argument.

kill-to-beginning-of-line
Kills all the text to the left of
current line. The killed text is
.ring, and may be retrieved wi th Ay.

17-8

the cursor on the
saved on the kill

CH27-00

... ~) .'

I

c.·

"K kill-lines
Kills to end of line; when already at end of line,
deletes the linefeed (merges lines). If on an empty
line, deletes it. If given a positive numeric
argument, deletes that many lines, starting from the
current point on the current line. Successive "Ks
merge killed text on the kill ring.

ESC # rubout-word
Deletes the word to the left of the current pOint.
More specifically, deletes going Qackward, deleting
characters until the beginning of a word. Successive
words deleted with ESC # are merged and can be
retrieved with one "Y. Repeats with a positive
numeric argument; deletes forward and repeats with a
negative numeric argument.

ESC \177 rubout-word
Deletes the word to the left of the current point.
More specifically, deletes going backward, deleting
characters until the beginning of a word. With a
positive numeric argument, deletes the specified
number of words. Deletes forward the specified
number of words with a negative numeric argument.
Successive words deleted with ESC \177 are merged and
may be retrieved with one "Y.

ESC D delete-word
Deletes the word to the right of the current point.
More specifically, deletes forward, deleting all
white space and punctuation and characters until the
end of the next word. Repeats with a positive
numeric argument; deletes backward and repeats with a
negative numeric argument.

"w wipe-region
Wipes (kills) all text between cursor and the mark.
Does not participate in kill merging i.e., successive
"Ws do not merge text on the kill ring. The killed
text is saved on the kill ring, and can be retrieved
with "Y.

"X# kill-backward-sentence
Kills backward to the beginning of this sentence;
kills as much of the sentence as thus far typed.
Successive kills via "X# and other reverse-killing
requests (e.g., ESC #) merge, and may be retrieved
with one "Y. Repeats with a positive numeric
argument; kills forward and repeats with a negative
numeric argument.

"X\177 kill-backward-sentence

(
_ Kills backward to the beginning of this sentence;

• _: kills as much of the\sentence as thus far typed.
~ _ Successive kills via "X 177 and other reverse-killing

17-9 CH27-00

commands (e.g., ESC #) merge, and may be retrieved
with one Ay. Repeats with a positive numeric
argument; kills forward and repeats with a negative
numeric argument.

ESC K kill-to-end-of-sentence
Deletes text going forward from the cursor to the end
of the current sentence. If at the end of a
sentence, deletes forward to the end of the next
sentence. Sentences and other text killed
consecutively in this fashion are merged, and may be
retrieved with a single Ay. With a positive numeric
argument, kills the specified number of sentences.
Kills backward the specified number of sentences with
a negative numeric argument.

kill-buffer Kills (destroys) a buffer.
the buffer's name, terminated by CR.
CR kills the current buffer. Buffers
to conserve storage, to prevent their
buffer listings, or to prevent being
quitting with AXA C.

Prompts for
A response of
can be killed
appearance in
queried when

ESC AW merge-last-kills-with-next
Causes the next kill~type request (e.g., AK, ESC D),
which must follow immediately, to merge what it kills
with the last saved kill on the kill ring, in the
same direction as the next re~uest kills. For
instance, AA AK AK AN AN ESC AW K AK catenates two
disjoint lines on the kill ring.

ESC Ay yank-minibuf
Yanks back the last contents of the minibuffer,
without a prompt string. The mark is set in the
minibuffer, so AXAX can be used to position around
it, and AW to delete it. The real mark in the main
buffer is not destroyed.

delete-blank-lines
Deletes blank lines
vertical white space.
leaves one blank line;
lines after this line's

AZ; kill-comment

around cursor: gets rid of
If issued on a blank line,

otherwise, deletes all blank
end. See AO.

Removes the comment and the white space preceding it
from the current line. The deleted text is saved on
the kill ring, accessible to Ay. The text is saved
in such a way that following AKs and other
forward-killing requests merge properly with the
deleted text.

17-10 CH27-00

o

,J)
/

\),
~

c:
Retrievals/Yanks

"'Y yank
Yanks (retrieves) killed text into place at cursor.
Retrieves last killed word, line, or region. With a
positive numeric argument, goes that many killings
down the 10-position kill ring. Leaves the mark at
the front of the retrieved text, and the point at the
end.

ESC Y wipe-this-and-yank-previous

ESC "'Y

Deletes the text between the point and the mark
without saving it, rotates the kill ring one position
(slot 2 text now occupies slot 1), and retrieves the
text just moved to the first slot of the kill ring.

yank-minibuf
Yanks back the last contents of the minibuffer,
without a prompt string. The mark is set in the
minibuffer, so ,..x"x can be used to position around
it, and "w to delete it. The real mark in the main
buffer is not destroyed.

Marks, Regions,.Variables

ESC R

set-or-pop-the-mark
With no argument, sets the mark in this buffer where
the cursor is now, and leaves it there. The current
value of the mark, if any, and if different from the
current point, is pushed on to the mark ring. The
mark relocates to the nearest point if the text
around it is deleted. See "x,..x to verify where the
mark is. With a positive numeric argument, e.g., "u
"@, pops a mark off the mark ring, and positions to
it. Successive "u "@s "try" all marks on the mark
ring.

mark-paragraph
Puts the mark
paragraph; puts
paragraph. See

at the beginning of the current
the cursor at the end of the current
ESC [for a definition of paragraphs.

"XR mark-whole-buffer
Puts the mark at the end of the buffer and the cursor
at the beginning. This "marks" the whole buffer, so
that ,..w deletes it, etc. The linefeed at the end of
the buffer is not in the marked region, but "XR "w
"'XB ... "'Y effectively moves a whole buffer.

exchange-point-and-mark
Exchanges the cursor and the mark, to verify their
positions before typing "w or similar requests. Puts
the cursor where the mark is and vice versa. Typing
"'x"z X"'X quickly verifies the extent of the

1 7-11 CH27-00

pOint/mark region visually and returns
mark to their original ~ositions.
positive numeric argument (e.g., AU A@)
settings of the mark in this buffer.

AZA@ set-named-mark

the cursor and
Use A@ with a
to visit older

Prompts for a name to be associated with a mark, and
sets that named mark to be where the cursor is now.
Named marks are valid only in the buffer in which
they were created. Use AZG to go to a named mark.

AZG go-to-named-mark
Prompts for the name of a named mark, and moves the
cursor to the point where that mark was saved. Use
AZA@ to set a named mark.

AW wipe-region
Wipes kill merging i.e., successive AWS do not merge
text on the kill ring. The killed text is saved on
the kill ring, and can be retrieved with Ay.

ESC W copy-region
Copies the text between the cursor and the mark on to
the top of the kill ring. This means that the next
Ay copies the text now between the cursor and the
mark to wherever the cursor is when the Ay is issued.

lower-case-region
Lowercases all letters between point and the mark.

Uppercases all letters between point and the mark.

AXX put-variable
Stores away pOint/mark region to a variable, whose
name is prompted for, terminated by CR. Use AXG to
retrieve this value, and ESC X lvars to list such
variables.

AXG get-variable
Gets back a variable stored by AXX. The name of the
variable is prompted for; the cursor is put after it,
and the mark before it.

ESC X lvars
Displays the names and lengths of all variables saved
by AXX. Type AJ to resume, or just continue editing.
See AXX and AXG.

Searches and Substitutions

reverse~string-search
Reverse searches. Leaves cursor positioned before
matching string; does not move cursor if not found.

17-12 CH27-00

(!
\..

Prompts for search string in minibuffer, which must
be ended with CR.

string-search
Searches for a character string, from current point
in buffer to end. Prompts for search string in
minibuffer, and leaves point, if search succeeds,
after the matched string. End search string with CR.
Typing AS CR reuses last search string. If search
fails, point does not move.

ESC / regexp-search-command

A XW

Searches forward for a regular expression that is
prompted for and terminated by CR. A regular
expression is a character string in which the
following special characters can be included:

*

$

matches any number, including none, of the
character preceding it.

matches any character (*. matches everything).

represents an imaginary character preceding the
first character on a line (this character is the
caret,
key) .
regular
for the

not the representation for the control
~ must be the first character in a
expression; its use allows you to search
line beginning with the next characters.

represents an imaginary character following the
last character on a line. It must be the last
character in a regula~ expression; its use
allows you to search for a line ending with the
preceding characters.

To include any of these special characters in
the regular expression without their special
meaning, you must precede each occurrence of
them with \c.

Searches forward from cursor, and can find many
occurrences of the regular expression on one
line. Leaves the cursor and the mark around the
string it finds, so that:

s/(fo.*)/(a b &)/ (qedx)
is equivalent to:

ESC / (fo.*)CR AW (a b Ay) (Emacs)

multi-word-search
Searches for words. Prompts for one or more words,

17-13 CH27-00

terminated by CR. (This is a search string; typing
just a CR in response to the prompt reuses the last
search string). Searches from current point to the.-)
buffer's end for those words appearing in order, -~
regardless of case of letters, underlining,
intervening punctuation, white space, or line breaks.
Finds whole words, not parts of words. A partial
word ending with * in the search string is matched by
any word beginning with the letters provided. With a
positive numeric argument, e.g., hUh XW , goes to
beginning of buffer before searching.

hXS global-print-command
Prints all lines containing a given string. Prompts
for the string, terminated by CR. With a positive
numeric argument, e.g., ~UhXS, takes a regular
expression, i.e., the search string can include the
special characters *, ., $, and h (not the control
key, but the caret symbol). See ESC / for the
meanings of these special characters in a regular
expression. Type A J or continue editing to restore
buffer display.

ESC % query-replace
Interactively replaces all occurrences of one string
with another. The request prompts for both strings
in the minibuffer, terminated by CR, and then
searches forward for each occurrence of the first-)"
string. It positions the cursor immediately after_)
this string and waits for one of the following
responses (type the appropriate keys):

space

CR

replaces this particular
string with the second.
next occurrence of the
for a response again.

occurrence of the first
Then searches for the

first string and waits

leaves this occurrence of the first string alone
and searches for the next occurrence of the
first string.

(period)
replaces
with the
replace.

this occurrence of the first string
second and then terminates the query

terminates the query replace without modifying
this occurrence of the first string.

ESC X replace
Globally replaces one string with another, from the
current point to the end of the buffer. Prompts for

17-14 CH27-00

,.

Files

two strings,
is not found,
second string,
% if you want
occurs.

terminated by CR. If the first string
ESC X replace does not prompt for the
and does not move the cursor. Use ESC
to be queried before each replacement

find-file
Reads in a file.
terminated by CR.
a buffer (see AXB)

Prompts for a file's pathname,
This request attempts to switch to
that contains the specified file.

If no such buffer exists, AXAF reads the file into
the buffer whose name is the first component of the
entry portion of the filename, and sets the default
file of this buffer to the file just read. If the
find-file-set-modes option is on, AXAF sets the major
mode of the buffer according to the last component of
the entry portion of the filename. For example, for
the filename ")ldd)include)sst.incl.p11", the buffer
chosen is "sst" and the major mode is "PL/I."

If one or more such buffers exist, they are listed as
if by AXA B. You are then prompted for the name of
the buffer you wish to use, terminated by CR. If the
buffer specified is one of those listed, AXAF
switches to it. If a new buffer name is specified,
AXAF reads the file into that buffer as described
above. A blank response for the buffer name uses the
original buffer named by the first component of the
entry portion of the filename.

read-file
Reads in a file. Prompts for a file's pathname,
terminated by CR. Reads that file into the current
buffer, destroying anything which was in the buffer,
and sets this buffer's default file to the file read.
The cursor is left at the first position of the first
line of the file read. If a blank response is given
for the filename, the buffer's default file is read.
The default file is set by AXA R, AXA F, and AXA W.
This is useful for starting again after big mistakes.

save-same-file
Writes out the buffer contents to the same file last
read in or written out, i.e., writes the buffer to
its default file. This request is equivalent to
AXA WCR .

write-file
Writes the current buffer out
pathname is prompted for in
terminated by CR. If a blank or

17-15

to a file, whose
the minibuffer,
null response is

CH27-00

Insertion

"XI

given, writes it out to this buffer's default file.
The file specified becomes the buffer's default file.
See "X"S.

insert-file
Inserts a file into the current buffer. Prompts for
a file's pathname, terminated by CR. Reads that file
into the current buffer without destroying the
previous contents of the buffer. The file is read in
to the left of the cursor and the cursor is left
after the contents of the file just read. The
default file for the buffer is not changed. (See
"X"S.)

get-filename
Inserts the pathname (as seen in the buffer's mode
line) of the current buffer at the cursor.

Entry and Exit

"XCR

"XD

quit-the-editor
Exits the editor. If modified buffers exist, they
are listed as if by "X"B; "x"c then asks you if you
really want to exit the editor.

eval-multics-command-line
Prompts for a Multics command line, terminated with
CR, and executes it. Multics commands that produce
output may well ruin your screen; if this occurs, use
"1. If you expect output, use "X"E instead of "XCR.
A "X"M is equivalent to "XCR.

comout-command
Executes a Multics command line (prompted for, end
with CR), and displays the command line's output in
buffer "file output." If buffer "file_output" is
already on display in a window, the cursor moves to
that window, and "file_output" stays there.

signalquit
Signals QUIT
Restores the
usage before
restores the
environment.

edit-dir

to Multics and clears the screen.
tty modes suitable for Multics command
doing so, and after you type start, it
appropriate tty modes for the Emacs

Enters the directory editor, editing the working
directory. With a positive numeric argument, e.g.,
"U"XD, prompts for some other directory name.
Position to a line with some segment's name on it,

17-16 CH27-00

!.J \
. . I

)

and the following requests
(lowercase is acceptable):

(keys) can be used

D

u

E

Q

N

p

Deletes this segment when directory editor is
exited.

Undeletes, i.e., cancels previous D on this
line.

Examines (i.e., takes a look at) this segment,
in a separate buffer. Use AXA Q to get back, and
the examine buffer disappears automatically.

Quits the directory editor. A list of files is
shown, and you are queried if you want to delete
them or not. To exit without any action, use
A XB .

Same as AN.

Same as Ap.

ESC? describe-key
Displays the documentation for a given key sequence.
For example, to find out what a AD does, type ESC?
and, when prompted, a AD. With a positive numeric
argument, e.g., AU ESC ?, displays in the minibuffer
just the command name to which' the key is currently
connected.

help-on-tap
Gets help7documentation at any time.
repertoire is:

A H
Shows where to get more help.

17-17

The current

CH27-00

" A
Works like the ESC X apropos extended request.

" D
Works like the ESC X describe extended request.

ESC X apropos <string>
Lists all requests and extended requests that contain
a given string in their command names, and tells
what, if any, keys invoke them in the current buffer.
For instance,

ESC X apropos forw

lists forward-word, forward-char, etc. This is the
most common way to find a request that does something
you are looking for.

ESC X describe <extended-request>
Displays the documentation for an extended request.
The request's command name is given as the argument
to describe. For example,

ESC X describe apropos CR

describes the "apropos" extended request.

ESC X make-wall-chart
Puts into a buffer a listing of all the currently
defined requests, and what keys invoke them in the
current buffer. This buffer can be dprinted for a
convenient wall chart of Emacs requests.

Error Recovery

command-quit
Quits out of the current minibuffer prompt, if any,
and rings the bell (or beeps). Can be used to exit a
minibuffer you did not intend to get into, or just to
tell when Emacs has "caught up."

ignore-prefix
Flushes a prefix character. Used when a prefix
character such as AX is entered by accident; causes
an audible signal to indicate that the AXA G has been
executed. Unlike AG, "X"G does not exit the
minibuffer.

AZ"G, ignore-prefix

(J" "
" ,

Flushes a prefix character. Used when a prefix
character such as "z is entered by accident; causes
an audible signal to indicate that the "Z"G has been ")'
executed. Unlike "G, "Z"G does not exit the.
minibuffer. ~

17-18 CH27-00

c.)

(' l(.
~~.::::)

()
\.

ESC AG ignore-prefix
Flushes a prefix character. Used when a prefix
character such as ESC is entered by accident; causes
an audible signal to indicate that the ESC AG has
been executed. Unlike AG, ESC AG does not exit the
minibuffer.

New Lines/Blank Lines

carriage return (CR) new-line

AO

Inserts a newline character into the buffer at the
current pOint, ending the current line, and starting
a new one. If entered in the middle of a line,
breaks the line at the current point. If the next
line is empty, i.e., was made by a single CR or AO,
CR just goes to it, and does not insert a newline.
If there is a fill prefix (see AX.), CR inserts it
after any newline character it inserts. A AM is
e~uivalent to a carriage return.

open-space
Opens up space by putting a newline ahead of the
current point. Pushes all lines of the buffer below
the current line down one. With a positive numeric
argument, e.g., AUAUAO, opens up the s~ecified number
of lines (16 in this case). See XAO to remove
(extra) blank lines.

delete-blank-lines
Deletes blank lines
vertical white space.
leaves one blank line;
lines after this line's

around cursor: gets rid of
If issued on a blank line,

otherwise, deletes all blank
end. See AO.

ESC AO split-line
Breaks the line at this point, shearing it
vertically. Puts the text to the right of the cursor
on the next line, with enough indentation so that it
is still in the same place horizontally, i.e., the
same column. This can be undone by AU ESC A

Indentation and White Space

ESC \ delete-white-sides
Deletes all white space characters on the current
line adjacent to the character at the cursor. A
white space character is a space, a tab, a formfeed,
or a vertical tab.

ESC M skip-over-indentation
Moves the cursor to the first non-white space (i.e.,
not tab, space, formfeed, or vertical tab) position

17-19 CH27-00

"x.

on this line. In other words, skips over the
indentation on this line.

set-fill-prefix
Sets fill prefix in this buffer to be whatever is
between the beginning of the line and the cursor
(spaces and characters). The fill prefix is inserted
automatically by CR, autofill, and
runoff-fill-paragraph (ESC Q) into lines after the
first line in the buffer. If the cursor is at the
beginning of the line when "X. is issued, the fill
prefix is reset (i.e., there is no fill prefix). It
can be used to establish a left margin.

"XF set-fill-column
Sets the fill column in the current buffer to be the
horizontal position where the cursor is now. The
fill column is the "right margin" used by ESC Q to
fill and adjust text, by fill mode to fill and adjust
text, and by ESC S to determine where to center. The
fill column is the first column in which text is not
to be placed. The new value of the fill column is
printed out in the minibuffer. If a positive numeric
argument is given, e.g., "u 72 "XF, the fill column
is set to that value.

ESC I indent-relative
Indents the current line like the previous non-blank (J--,)\
line. Use for tabbing at the beginning of lines when - __
building indented paragraphs, tables, etc. If the
current line is already indented, reindents it to the
next word on the right above the first non-blank on
this line. With a positive numeric numeric argument,
e.g., "u ESC I, reindents it like the last line that
has less indentation than the current line, i.e.,
goes back up "levels" of outline, paragraph, etc.
Thus, you can type ESC I "u ESC I on a fresh line to
indent it one level less than the previous line. On
a completely empty line, you can request "u ESC I
many times to "try" different levels of indentation.

ESC CR cret-and-indent-relative
Does a carriage return and ESC I. Thus, if the
current line is indented, ESC CR ends it and starts a
new line, indented the same as the line just ended
(the original line). If the original line is not
indented, the new line starts under the first
character of the second word of the original line.
Use this request while you are typing an indented
body of text. ESC "M is equivalent to ESC CR.

ESC "I indent-to-fill-prefix
Deletes the indentation (leading white space) of the
current line, and replaces it with the fill prefix in
this buffer, which can be set by "X ..

17-20 CH27-00

()

ESC A (caret, not control key) delete-line-indentation
Deletes all white space at the beginning of this line
and then merges it with the previous line. With a
positive numeric argument, e.g., AU ESC A, does a AN
first, effectively connecting the next line to this
one, without the next line's indentation.

Comments

.._ __ .. ---

AX_ ,

ESC

ESC N

set-comment-column
Sets the comment column in this buffer to the
horizontal position where the cursor is now. With a
positive numeric argument, sets the comment column at
the specified column.

indent-for-comment
Searches for this line's comment. If one exists,
indents it to the comment column in this buffer (see
AX;). If one does not exist, starts one at the
comment column on this line. Uses the comment prefix
to search for an old one or start a new one. See
also ESC X set-comment-prefix.

kill-comment
Removes the comment and the white space preceding it
from the current line. The deleted text is saved on
the kill ring, accessible to Ay. The text is saved
in such a way that following AKs and other
forward-killing requests merge properly with the
deleted text.

down-comment-line
Properly indents the comment on the next line, or
puts a comment on the next line if one is not there
already. Effectively the same ,as AN ESC;. See ESC . , .

ESC P prev-comment-line
Properly indents the comment of the previous line, or
puts one on the previous line if one is not there
already. Effectively the same as Ap ESC;. See
ESC ;.

ESC X set-comment-prefix "string"
Sets the comment prefix in. this buffer. This is
usually set automatically by entering a major mode.
The comment prefix is given as an argument to this
request, in quotes. The comment prefix is used by
ESC ;, ESC N, and ESC P to find comments, and start
them.

17-21 CH27-00

Formatting

AX. set-fill-prefix
Sets fill prefix in this buffer to be whatever is
between the beginning of the line and the cursor
(spaces and characters). The fill prefix is inserted
automatically by CR, autofill, and
runoff-fill-paragraph (ESC Q) into lines after the
first line in the buffer. If the cursor is at the
beginning of the line when AX. is issued, the fill
prefix is reset (i.e., there is no fill prefix). It
can be used to establish a left margin.

"XF set-fill-column
Sets the fill column in the current buffer to be the
horizontal position where the cursor is now. The
fill column is the "right margin" used by ESC Q to
fill and adjust text, by fill mode to fill and adjust
textJ and by ESC S to determine where to center. The
fill column is the first column in which text is not
to be placed. The new value of the fill column is
printed out in the minibuffer. If a positive numeric
argument is given, e.g., "u 72 "XF, the fill column
is set to that value.

ESC X fill on
Turns on Fill mode (a minor mode) in this buffer. In
Fill mode, text is wrapped around lines so as not to
exte~d past the fill column (see "XF to set that).
When a space, tab, or punctuation mark is placed
after a word which passes the fill column, the line
is broken at the first white space back from the end
of the line. To insert a character to cause a line
deliberately to extend past the fill column, either
type CR or precede the character with "Q.

17-22 CH27-00

r)

(

ESC X filloff

ESC X

Turns off Fill mode in this buffer, if it is on.

runof~-fill-region
Fills/adjusts an entire region in the same way as ESC
Q does to a paragraph. It does not respect paragraph
breaks: this makes it only marginally useful.

Literal Character Entry

\ escape-char
A \NNN inserts the character whose value is NNN into
the buffer, where NNN are 1 to 3 octal digits. For
example, \14 inserts a formfeed (AL). A \\ inserts a
\; \# inserts a #; \@ inserts an @. A \ followed by
any other character inserts \ and that character.

quote-char
"Quotes" the next character, i.e., inserts it into
the buffer literally. This is used to enter control
characters and other "funny" characters into the
buffer, e.g., AQ# to insert a pound sign.

Special Purpose Keys
A

J noop
Linefeed; ignored. See also AL. Good for exiting
local displays (such as AXAB, apropos, etc.)

AL redisplay-command
Clears the screen, and displays the current window of
the current buffer, centered about the current line.
Useful if your screen is messed up by messages
(preventable with ESC X accept-msgs), non-Emacs
output, etc. With a positive numeric argument, moves
current line to that many lines below top of screen;
ESC OAL or ESC 1 AL moves current line to top, for
example. With a negative numeric argument, moves the
current line to that many lines above the bottom of
the screen; ESC -1 AL moves to the bottom of the
screen, ESC _2AL moves to two lines from the bottom,
etc.

AU multiplier

ESC

\vhen not followed by a posi ti ve number, multiplies
the next request by 4 for each use, e.g., AUAD
deletes 4 characters. Typing AUAUAD deletes 16.
With a positive number, uses the number, e.g., AU13x
inserts an x 13 times. A AU is considered a positive
numeric argument.

escape
Used to enter two-keystroke key sequences, and to

17-23 CH27-00

supply numeric arguments to requests. For example,
to enter the ESC K request, type ESC, then a K. To
supply a numeric argument to a request, type ESC, the
numb e) r (negative numbers are preceded by a minus \\J
sign, and the request. For example, ESC 3 AD
deletes 3 characters.

AXESC escape-dont-exit-minibuf
Is the same as ESC, and can be used for all requests
beginning with ESC, and numeric arguments. However,
can be used in the minibuffer when typing ESC would
terminate the minibuffer, as in some of the special
search stirngs.

ESC X extended-command

Macros

A X (

AX)

Prompts for the name and arguments of an extended
request in the minibuffer, terminated by CR. To find
out about an extended command, type:

ESC X describe <name-of-command> CR

begin-macro-collection
Starts learning all that follows as a macro, until
AX) or an error occurs. All requests and input
between AX(and AX) are remembered as a macro, which
can be executed by AXE, or saved and assigned to a
key by ESC X save-macro, and displayed by AX*.

end-macro-collection
Ends a macro definition.
typed since AX(become the
AXE. If given, a numeric
defined macro as AXE does
AX(for what a macro is.

The requests and input
"last macro defined" for
argument, re-executes the
(see that request). See

AX* show-last-or-current-macro
Displays the requests (as keystrokes, e.g., AA,
esc-B, etc.) in the last macro defined (see AX(and
AX)). If given a positive numeric argument, e.g.,
"UAX*, displays the keystrokes and command names.

AXE execute-last-editor-macro
Executes the last macro defined (by AX(and AX)), one
or many times depending on the numeric argument to
this request.

With:

No argument
Executes it once.

17-24 CH27-00

. ..)

. c:!
\,

o(i.e., ESC OAXE)
Executes it over and over, pausing after
each execution. Type a space to go on to
the next, CR or AG to stop repeating.

1-9999
Does it that many times.

9999-infinity
Does it until an error occurs.

AXQ macro-query
Queries the user during the execution of a macro so
that he can:

continue execution by typing a space

stop execution by typing a AG

restart execution from the beginning by typing a
CR or other character

This request can only be used by including it in a
macro definition. Thus:

locates occurrences of "form" and queries the user
before uppercasing them.

ESC X save-macro

ESC X

Saves a macro, assigning it to a key. Invoke it
after a macro has been defined. Prompts for a
command name to assign to the macro, and a key. A
null response for the key does not assign it to any
key; ESC X set-key can be useq later. When a key has
been assigned, this key invokes that macro; it takes
arguments identical to AXE.

edit-macros
Produces a symbolic file of all keyboard macros
defined in the current buffer and places it in a new
buffer. The keyboard macros may then be written out
for later loading, edited, redefined, or compiled
into Lisp code. See Appendix D for full information.

ESC X show-macro <macro-name>
Displays an editor macro (defined with AX(and AX)
the same as show-last-editor-macro does, but takes
the name assigned to the macro (by ESC X save-macro)
as an argument .

17-25 CH27-00

Characters (Moving by/Deleting)

backward-char
Moves backward one character in the buffer. Tabs and
the newline characters at the ends of lines count as
one character. Beeps as for AG at the beginning of
the buffer. Repeats with a positive numeric
argument; moves forward and repeats with a negative
numeric argument.

AF forward-char
Moves forward one character. Tabs and newlines count
as one character each. Beeps as for AG at the end of
the buffer. Repeats with a positive numeric
argument; moves backward and repeats with a negative
numeric argument.

rubout-char
Deletes the previous character (before the cursor,
which is usually the last character typed). Note
that # deletes the character to the left of the
cursor, while AD deletes the character at the cursor.
Repeats with a positive numeric argument, deletes the
character at the cursor and repeats with a negative
numeric argument.

\177 (delete key) rubout-char
Deletes the previous character (before the cursor,
WhiCh\ is usually the last character typed). Note .)')
that 177 deletes the character to the left of the _
cursor, while AD deletes the character at the cursor.
Repeats with a positive numeric argument; deletes the
character at the cursor and repeats with a negative
numeric argument.

AD delete-char
Deletes the character to the right of the current
pOint. This is the character on which the cursor
sits. Moves the rest of the line one to the left,
closing up the space. Deleting a newline at the end
of a line merges lines. Repeats with a positive
numeric argument; deletes the previous character and
repeats with a negative numeric argument.

Lines (Moving in and by/Deleting)

AA go-to-beginning-of-line
Positions to the beginning of the current line of the
buffer, i.e., right before the first character.

AE go-to-end-of-line
Positions to the end of the current line, i.e., after -
the last charaoter and before the linefeed. On an\J

/

17-26 CH27-00

Words

empty line, this is the same as the beginning of the
line.

next-line-command
Positions to the next line of the buffer. If on the
last line, appends a new empty line to the bottom of
the buffer, and positions to the beginning (and end)
of it. Successive ANs and ApS try to maintain the
same horizontal position. Repeats with a positive
numeric argument; performs ApS and repeats with a
negative numeric argument.

Ap prev-line-command
Moves to previous line of the buffer. Beeps as for
AG if on first line of the buffer. Attempts to
maintain the same horizontal position; successive
Ap'S and AN's try to maintain the original horizontal
position. Repeats with a positive numeric argument;
moves to next line and repeats with a negative
numeric argument.

linecounter
Displays in the
this buffer, the
1) of the line
column position.

minibuffer the number of lines in
line number (the first line is line

the cursor is on, and the dprint

ESC G go-to-line-number

@

Goes to a given line, specified by line number, from
the top of the buffer. The positive numeric argument
specifies the line number. For instance, ESC 25 ESC
G goes to line 25.

kill-to-beginning-of-line
Kills all the text to the left of
current line. The killed text is
ring, and may be retrieved with Ay.

the cursor on the
saved on the kill

AK kill-lines
Kills to end of line; when already at end of line,
deletes the linefeed (merges lines). If on an empty
line, deletes it. If given a positive numeric
argument, deletes that many lines~ starting from the
current point on the current line. Successive AKs
merge killed text on the kill ring.

ESC B backward-word
Goes backward one word. If in the middle of a word,
goes to before the beginning of that word. Skips
backward over all white space to get to the next
word. Underscores and backspaces count as parts of
words. Repeats with a positive numeric argument;

17-27 CH27-00

goes forward and repeats with a negative numeric
argument.

ESC F forward-word
Goes forward one word. If in the middle of a word,
moves to the end of the current word. Leaves point
immediately after that word. Passes over all
punctuation and white space before the word.
Underscores and backspaces count as parts of words.
Repeats with a positive numeric argument; moves
backward and repeats with a negative numeric
argument.

ESC # rubout-word
Deletes the word to the left of the current point.
More specifically, deletes going backward, deleting
characters until the beginning of a word. Successive
words deleted with ESC # are merged and can be
retrieved with one Ay.. Repeats with a positive
numeric argument; deletes forward and repeats with a
negative numeric argument.

ESC \177 rubout-word
Deletes the word to the left of the current point.
More specifically, deletes going backward, d~leting
characters until the beginning of a word. With a
positive numeric argument, deletes the specified
number of words. Deletes forward the specified
number of words with a negative numeric argument.
Successive words deleted with ESC \177 are merged and
may be retrieved with one Ay.

ESC D delete-word
Deletes the word to the right of the current point.
More specifically, deletes forward, deleting all
white space and punctuation and characters until the
end of the next word. Repeats with a positive
numeric argument; deletes backward and repeats with a
negative numeric argument.

ESC C capitalize-initial-word
Capitalizes the initial letter of a word, e.g., Word.
If the cursor is in a word or immediately after a
word, capitalizes the first letter of that word.
Otherwise, acts on the next word. Leaves cursor
immediately after the word capitalized.

ESC L lower-case-word
Converts a word to all lowercase, e.g., word. If the
cursor is in a word or immediately after a word,
lowercases that word. Otherwise, lowercases the next
word. Leaves cursor immediately after the word acted
upon.

17-28 CH27-00

:)

ESC U upper-case-word
Converts a word to all uppercase, e.g., WORD. If the
cursor is in a word or immediately after a word,
uppercases that word. Otherwise, uppercases the next
word. Leaves cursor immediately after the word acted
upon.

ESC underline-word

Sentences

Canonically underlines a word. If the cursor is in a
word or immediately after it, underlines that word.
Otherwise, underlines the next ~ord. Leaves the
cursor immediately after the underlined word.
Although the underlined word looks peculiar on the
screen, it is correct.

remove-underlining-from-word
Removes underlining from the current
word; the rules for selecting which word
as those used by uppercase-word (see ESC

or previous
are the same
u) •

ESC A backward-sentence
Goes to the beginning of the current sentence, i.e.,
just before the first letter. If already at the
beginning of a sentence, goes to the beginning of the
previous sentence. The beginning of the first word
after a blank line always counts as the beginning of
a sentence. Repeats with a positive numeric
argument; goes forward and repeats with a negative
numeric argument.

ESC E forward-sentence
Moves forward to the end of this' sentence. If at the
end of a sentence, moves for~ard to the end of the
next sentence. Ends of paragraphs are implicitly
ends of sentences, whether or not an end-of-sentence
punctuation (period, question mark, exclamation
point) appears. Repeats with a positive numeric
argument; moves backward an.d repeats with a negative
numeric argument.

AX# kill-backward-sentence
Kills backward to the beginning of this sentence;
kills as much of the sen.tence as thus far typed.
Successive kills via AX# and other reverse-killing
requests (e.g., ESC #) merge, and may be retrieved
with one Ay. Repeats with a positive numeric
argument; kills forward and repeats with a negative
numeric argument.

A X\177 kill-backward-sentence
Kills backward to the beginning of this sentence;
kills as much of the sentence as thus far typed.

17-29 CH27-00

Successive kills via A X\177 and other reverse-killing
commands (e.g., ESC #) merge, and may be retrieved
with one Ay. Repeats with a positive numeric -")
argument; kills forward and repeats wi th a negati ve J

numeric argument.

ESC K kill-to-end-of-sentence

Paragraphs

Deletes text going forward from the cursor to the end
of the current sentence. If at the end of a
sentence, deletes forward to the end of the next
sentence. Sentences and other text killed
consecutively in this fashion are merged, and may be
retrieved with a single Ay. With a positive numeric
argument, kills the specified number of sentences.
Kills backward the specified number of sentences with
a negative numeric argument.

ESC [beginning-of-paragraph
Moves to the beginning of the current paragraph. If
already at the beginning of a paragraph, moves to the
beginning of the previous paragraph. The beginning
of a paragraph is the . beginning of the first line of
the paragraph. The definition of paragraphs is
controlled by the paragraph-definition-type option:
if 1, blank lines separate paragraphs; if 2, an)
indented line starts a paragraph. The Multics runoff '
or compose command's control lines count as
individual paragraphs. Repeats with a positive
numeric argument; moves forward and repeats with a
negative numeric argument.

ESC] end-of-paragraph

ESC H

Moves to the end of the current paragraph. If at the
end of a paragraph, moves to the end of the next
paragraph. The end of a paragraph is the end of the
last line of the paragraph. The definition of
paragraphs is controlled by the
paragraph-definition-type option: if' 1, blank lines
separate paragraphs; if 2, an indented line starts a
paragraph. The Multics runoff or compose command's
control lines count as paragraphs. Repeats with a
positive numeric argument; moves backward and repeats
with a negative numeric argument.

mark-paragraph
Puts the mark
paragraph; puts
paragraph. See

at the beginning of the current
the cursor at the end of the current
ESC [for a definition of paragraphs.

17-30 CH27-00

i)
.,._

Screens

next-screen
Displays next screenful of the current buffer.
Leaves cursor at upper left hand corner of screen.
With a positive numeric argument, pages forward the
specified number of screensful and displays it; with
a negative numeric argument, moves backward the
specified number of screensful (previous screens) and
displays it.

ESC V prev-screen

"L

Displays the previous screen (one back) of this
buffer, leaving cursor at the top of it. With a
positive numeric argument, moves backward the
specified number of screensful and displays it; with
a negative numeric argument, moves forward the
specified number of screensful and displays it.

redisplay-command
Clears the screen, and displays the current window of
the current buffer, centered about the current line.
Useful if your screen is messed up by messages
(preventable with ESC X accept-msgs), non-Emacs
output, etc. With a positive numeric argument, moves
current line to that many lines below top of screen;
ESC O"L or ESC 1 "L moves current line to top, for
example. With a negative numeric argument, moves the
current line to that many lines above the bottom of
the screen; ESC -1 "L moves to the bottom of the
screen, ESC -2"L moves to two lines from the bottom,
etc.

ESC R move-to-screen-edge
Moves to top, bottom, or other point on screen. ESC
1 ESC R or ESC 0 ESC R moves to the top line of the
screen, ESC 6 ESC R moves to 6 lines from the top,
"u"u"u ESC R or ESC -1 ESC R moves to the bottom.
ESC -2 ESC R moves to the second line from the
bottom, etc. Leaves the cursor at the start of the
selected line.

"Z"V scroll-current-window

Buffers

Scrolls the current window up a line, with the cursor
maintaining its position relative to the text. With
a positive numeric arguemnt, e.g., "U"Z"V, scrolls up
the specified number of lines. With a negative
numeric argument, e.g. ESC -3 "Z"V, scrolls down the
specified number of lines.

ESC < go-to-beginning-of-buffer
Moves to the beginning of the current buffer, i.e.,

17-31 CH27-00

before the first character in the buffer at the top
of the document being edited.

ESC > go-to-end-of-buffer !,)
Moves to the end of the current buffer, i.e., before

"XB

"XH

the newline on the last line of the current buffer at
the bottom of the document being edited. You cannot
position beyond that newline.

select-buffer
Switches to another buffer. Prompts for the name of
that buffer, terminated with CR. If that buffer does
not already exist, it is created. All key bindings,
fill column, comment column, comment prefix, etc.,
associated with that buffer are put in effect. The
last point that you were at in that buffer becomes
the current point. Responding to "XB's prompt with
only a CR goes to the last buffer you were in.

list-buffers
Produces listing of buffers and their pathnames. A
i'>" marks buffer you came from, "*" says buffer is
modified since it was last read or written. Proceed
with editing, or type linefeed to refresh screen.

mark-whole-buffer
Puts the mark at the end of the buffer and the cursor
at the beginning. This "marks" the whole buffer, so
that "w deletes it, etc. The linefeed at the end of
the buffer is not in the marked region, but "XH "w
"XB ... "y effectively moves a whole buffer.

"XK kill-buffer
Kills (destroys) a buffer. Prompts for the buffer's
name, terminated by CR. A response of CR kills the
current buffer. Buffers can be killed to conserve
storage, to prevent their appearance in buffer
listings, or to prevent being ~ueried when ~uitting
with "X"C.

ESC ~ unmodify-buffer
Marks the current buffer as not modified. Emacs does
not mention this buffer when ~uerying before ~uitting
the editor. This is useful after accidentally
modifying a buffer which you only intended to
examine.

edit-buffers
Enters the buffer editor. If "Z"B is given no
argument, the buffer editor sets up its display in
the current window. If given a positive numeric
argument, e.g., "u "Z"B, the buffer editor finds some
other appropriate window (if in two-or-more-window

17-32 CH27-00

.,J)

mode) to set itself up in. See Section 16 for full
information on the buffer editor.

Multiple Windows

"XO remove-window
Removes the window in which the cursor appears from
the screen. The cursor is moved to the window that
had been visited just before the current window was
entered (that is, the next-mos~-recently visited
window). The space occupied by the departing window
is divided among its neighbors. With a positive
numeric argument, removes the window specified, where
the topmost window is 1.

"X1 expand-window-to-whole-screen

"X3

Expands the window in which the cursor appears to
fill the whole screen; all other windows are removed.
This in essence returns to "one window mode" from
having any number of windows. The cursor retains its
position in the text.

create-new-window-and-go-there
Creates a new window at the bottom of the screen,
redividing the screen equally among all the windows.
The cursor moves to the new window, which has a
default buffer name created from its window number.

create-new-window-and-stay-here
Creates a new window at the bottom of the screen,
redividing the screen equally among all the windows.
The cursor remains where it is. The new window,
which has a defaul t buffE~r name created from its
window nu.mber, becomes thE~ "least-recently visi ted
window."

"X4 select-another-window

A XO

Moves the cursor to the least-recently visited window
on the screen. That window then becomes the
most-recently visited. Thus, successive applications
of "X4 visit all windows on the screen. This is a
good request to use when you want to visit some new
buffer or file, but not overwrite windows containing
information you have been looking at recently. With
a positive numeric argument~ e.g., ESC 3 A X4 , goes to
that window, i.e., window 3.

select-other-window
Moves the cursor to the other window (in two-window
mode), or to the previous window, implicitly
(usually) switching buffers. The mode line is
updated to reflect the new buffer. The cursor
appears at the last point it was in the new window.
In general, the cursor enters the window used last,

17-33 CH27-00

immediately before the current window was entered, so
this request switches you back and forth between the
two most-recently used windows.

ESC "V page-other-window
Valid only when more than one window exists.
Displays the next screenful of the other window's
buffer (i.e., the one the cursor is not now in).
With a positive numeric argument, pages forward the
specified number of screensful, and displays it.
With a negative numeric argument, pages the other
window backward. When more than two windows are in
use, the next most recently visited window is
considered to be the "othEH window". Very useful for
"paging" through compiler diagnostics while editing a
program.

edit-windows
Enters the window editor to create, realign, destroy,
or visit windows. If "Z"W is given no argument, the
window editor sets up its display in the current
window. If given a numeric argument, e.g., "u "z"w,
the window editor finds some appropriate window to
set itself up in. See Section 16 for full
information on the window editor.

Mail/Messages

"XM send-mail
Enters the Emacs mailer (RMAIL) to compose outgoing
mail. This request prompts for the mail subject
terminated by CR. For full information on reading
and sending mail, see Appendix B.

"XR rmail
Enters the Emacs RMAIL subsystem to read mail.
Without a numeric argument, uses your default
mailbox. With a positive numeric argument, e.g., "u
"XR, prompts for a mailbox name, which can take a
form like Washington. States , Salter,
>udd)Sales)Complaints, etc. The first message in the
mailbox is placed in a buffer in RMAIL mode. Type
'q" to exit RMAIL and delete all mail queued for
deletion during RMAIL. Refer to Appendix B for full
information on RMAIL and reading and sending mail.

ESC X accept-msgs
Accepts Multics interactive terminal messages into
Emacs buffers, one buffer per correspondent.
Messages are displayed as a local display as they
arrive. All correspondence to and fro]I1 each
correspondent is maintained in a buffer named
"Messages from <PersonName>. II In such a buffer, I.)
carriage return is bound to respond-from-buffer, ./

17-34 CH27-00

(

which transmits messages when you type a line into
that buffer. In these buffers, conversations
"transcript" as with the Multics send message command
in input mode (see the MPM Commands): The following
key bindings are set up globally by accept-msgs (see
Appendix F for more information):

AX: message-response-command
Responds to last sender from minibuffer.

AX' go-to-new-message-buffer
Goes to a message buffer.

Typing Shortcuts

AC re-execute-command

AU

Reexecutes the last keystroke (request), other than
AJ or AC. Useful for skipping successive words, etc.
Repeats with a positive numeric argument. Reexecutes
search requests using the same search string.
Reexecutes extended requests, using the same
arguments (if any).

twiddle-chars
Transposes (interchanges) the
typed, e.g., I like MutlATics
"I like Multics because .•. "

multiplier

last two characters
becuaATse ... , becomes

When not followed by a positive number, multiplies
the next request by 4 for each use, e.g., AUAD
deletes 4 characters. Typing AUAUAD deletes 16.
With a positive number, uses the number, e.g., AU13x
inserts an x 13 times. A AU is considered a positive
numeric argument; however, AU -6, for example, is an
argument of -6.

ESC X setab <abbrev1> <expansion1> <abbrevn> <expansionn>
Defines one word as an abbreviation-for another,-for
Speedtype mode. For instance:

ESC X setab edr editor

defines edr as the abbreviation for editor. Accepts
multiple pairs of arguments. If the second string
(the thing being abbreviated) is many words, or has
special characters in it, put it in quotes. The
abbreviation can be 4 characters or less.

ESC X speedtype
Enters Speedtype minor mode in this buffer.
Speedtype allows words to be used as abbreviations
for other words. ESC X setab defines abbreviations.
When a space, newline, tab, or punctuation mark is

17-35 CH27-00

typed after an abbreviation, the abbreviation is
removed from the text and replaced by its expansion.
Precede punctuation or spaces with AQ to deliberately
avoid Speedtype expansion when in this mode.

ESC X speedtypeoff
Turns off speedtype mode in this buffer, if it is on.

Programming Modes

ESC X alm-mode
Enters ALM major mode in this buffer. ALM mode
consists of many requests and variable settings
suitable for the creation and editing of ALM programs
(see Appendix C).

ESC X electric-p11-mode
Enters Electric PL/I mode in the current buffer.
Electric PL/I mode is a variant of PL/I mode in which
semicolons and colons have violent automatic
"electric" action which may be disturbing to some,
but useful to others. See Appendix C.

ESC X fortran-mode

ESC X

ESC X

Enters FORTRAN major mode in this buffer. FORTRAN
mode consists of many requests and variable settings
suitable for the creatlon and editing of FORTRAN ...) .. \
programs. See Appendix C for a list of the requests.)
and a description of this mode. You can issue the
request ESC X apropos fortran CR in a FORTRAN mode
buffer for a list of relevant requests in this mode.

fundamental-mode
Enters Fundamental major mode, the
bindings and variable settings)
start out in. This can be used to
major mode that you may have set.

mode (set of key
that all buffers

"undo" any other

lisp-mode
Enters Lisp major mode ln this buffer.
consists of many requests and variable
suitable for the creation and editing
programs. See Appendix C for a list of the
and a description of this mode.

Lisp mode
settings
of Lisp
requests

ESC X p11-mode
Enters PL/I major mode in this buffer. PL/I mode
consists of many requests and variable settings
suitable for the creation and editing of PL/I
programs. See Appendix C for a list of the requests
and a description of thL:~ mode. You can issue the
request ESC X apropos p11 CR in a PL/I mode buffer
for a list of relevant requests in this mode.

17-36 CH27-00

c)
\

ESC X set-compile-options "option string"
In language modes that support ESC Ae for
compile-buffer, e.g., P1/I, FORTRAN, sets non-default
compilation options to be given to the appropriate
compiler.

ESC X set-compiler <compiler>
Sets the name of the compiler to be used by the
compile-buffer re~uest (usually ESC Ae) in those
language modes that compile buffers this way, e.g.,
P1/I, FORTRAN. The single a~gument to ESC X
set-compiler is the compiler name.

ESC X ldebue
Enters ~t "TJi.sp 'rCl) "Lt3vel" buffer in Lisp Debug mode.
Forms typed into this buffer are evaluated and the
value is displayed by placing it in this buffer.
When ESC X ldebug has been used, all Lisp errors in
Emacs trap into this buffer. ESC P restarts a break.
See the Extension Writers' Guide for more
information.

Printing Terminal Usage
A XV view-lines

For printing terminals, prints the current line.
With a positive non-zero numeric argument, prints the
specified number of lines, beginning with the current
and continuing on down. With a negative numeric
argument, prints the specified number of preceding
lines. Leaves you after them, unless argument is 1
or not supplied, in which case it leaves you on the
current line, after printing it. ESC OAXV views the
region (between cursor and the mark). Thus, AXH ESC
OKXV prints the whole buffer.'

AXA T toggle-redisplay
Turns off all screen updating until the next AXA T, AG
(not AXA G or AZA G), or error happens. This re~uest
can be used on slow terminals with no insert/delete
facilities to avoid excessive printing time for
operations such as typing in the middle of a line.

AO open-space
Opens up space by putting a newline ahead of the
current point. Pushes all lines of the buffer below
the current line down one. With a positive numeric
argument, e.g., AUAUAO, opens up the s~ecified number
of lines (16 in this case). See XAO to remove
(extra) blank lines.

17-37 eH27-00

Extension Writing

ESC ESC eval-lisp-line (... ~~).
Prompts for a string for Lisp to evaluate; puts a _
pair of parentheses around it, evaluates it in Lisp
(with ibase = 8), and prints out the Lisp value in
the minibuffer ,base = 8, *nopoint nil). To get a
variable value, use ESC ESC progn <varname> CR.

ESC X ldebug

ESC X

Enters a "Lisp Top Level" buffer in Lisp Debug mode.
Forms typed into this buffer are evaluated and the
value is displayed by placing it in this buffer.
When ESC X ldebug has been used, all Lisp errors in
Emacs trap into this buffer. ESC P restarts a break.
See the Extension Writers' Guide for more
information.

loadfile <path>
Loads a private Emacs
editor. The argument
Extension Writers' Guide

extension package into the
is its pathname. See the
for more information.

ESC X loadlib <library>
Loads an extension 'package into Emacs. Normally,
such packages are "autoloaded" when'requests in them
are invoked, but from time to time, new,
experimental, or highly specialized packages may
require being loaded in this way. The single
argument is the name of the package to be loaded.
Loading a package makes the requests in it available.
See the Extension Writers' Guide for more
information.

Additional Optional Settings

ESC X opt
Sets internal flags and defaults, each of which have
names. Takes three forms:

opt list
Lists all options and settings.

opt NAME VALUE
Sets option value.

opt status NAME
Reports setting of one option.

Where:
NAME is an option name and VALUE is an
acceptable value for the named option. Values
may be on, off, or numbers, depending on the
option. Code, such as start-ups, can set these

17-38 CH27-00

.) .. \

. '..)

" i .. J

Lisp variables (on/off
options are:

display-ctlchar-with-~

=> t/nil). Current.

Causes control characters to print as Ap
instead of \020.

suppress-ctlchar-display
Suppresses the
characters. Any
print as \NNN
displayed.

suppress-rubout-display

display of
character which

(except \177)

control
would

is not

Suppresses the display of rub out
characters. Causes \177 to never be
displayed. Useful when reading ALM listing
segments.

suppress-backspace-display
Suppresses the display
Causes underlined "foo"

of backspaces.
to print as

" f 0 0".

rdis-whitespace-optimize
Avoids printing white
terminal control would
at less than 1200
expensive.

space when clever
go faster. Default

baud; moderately

rdis-wosclr-opt
Wipes out screen
screen. Try it both
means.

lines before filling
ways to see what this

paragraph-definition-type
1 (default) = blank lines
paragraphs.
2 = indented line starts one.

find-file-set-modes

precede

When on, find-filing foo.pl1 sets PL/I
mode, etc.

track-eol-opt
When on, AN, Ap at end of line stick to
ends of lines.

default-fill-column
Sets fill column for new buffers.

default-comment-column
Sets comment column for new buffers (0
origin) .

17-39 CH27-00

pop-up-windows
When on, AXE, AX"F, AX"E, etc., find an
appropriate place on the screen to put up a ,",',',-)
window as opposed to replacing contents of _
current window (experimental; see
Append ix H).

ESC X option
Is the same as ESC X opt.

ESC X set-mini buffer-size <size>
Sets the size of the mini buffer/prompting area on the
screen to any value. The single argument to ESC X
set-mini buffer-size is the decimal number of lines
that should be devoted to this function, from 1 to 6.
The default is two. With many-line minibuffers, many
messages and errors may appear at once. Use ESC X
reset-mini buffer-size to reset the minibuffer size to
its default of two lines.

ESC X reset-mini buffer-size <size>
Resets the size of the mini buffer/prompting area to
its default of two lines. See ESC X
set-minibuffer-size.

ESC X set-screen-size <size>
Sets the size of the main editing area (the area
above the mode line). The default is all of the area
above the mode line. The decimal argument to ESC X
set-screen-size is the number of lines in the main
editing area. ESC X reset-screen-size resets the
main editing area size to its default value. ESC X
set-screen-size is usually used to reduce the amount
of redisplay at low terminal speeds.

I,) \
_~ I

ESC X reset-screen-size <size>
Resets the size of the main editing area of the
screen to its default, namely, all of the space above
the mode line. See ESC X set-screen-size.

ESC X set-key <keyname> <command-name>
Assigns key bindings in the current buffer. Takes
two arguments, the key name and the command name.
Makes that key execute that reQuest in this buffer.
The command name is what describe, apropos, or
make-waIl-chart give; the key name can be anything
like the names in this documentation, e.g., "X, "x,
ESC ESC, ··XQ, control-p, c-p, meta-f, ESC Af, CR, .. X
AF, .. X CR, \177, #, A, "P, etc. See Section 15 for a
full description of acceptable key names.

ESC X set-permanent-key <keyname> <command-name>
Sets permanent (default in all buffers) key bindings. \ ~
Otherwise, works exactly like ESC X set-key.,~,

17-40 CH27-00

J

ESC X

c-)

set-search-mode <search-mode>
Sets the bindings of AS and
different forms of searching.
search mode, and can be:

AR to
The

invoke several
argument is the

string
Searches forward/backward (depending on whether
you are searching with -S/AR) for the exact
character string typed (the default).

regular-expression or regexp
Interprets the search string as a regular
expression (AS now behaves as ESC I). No
reverse searching is available if this search
mode is set (AR is unbound).

character
Searches for the single character typed, (end
with an ESC) unless that character is one of the
following, which are interpreted specially:

A
J

AM

"'Q

AS

invokes the ITS string search request, or
reverse ITS string search request (AR).
(See ITS-string-search for more details.)

aborts the search

finds next/beginning of a line, or
previous/end of line ("R) .

finds next/beginning of a line, or
previous/end of 1 ine ,("R) .

reads another character and searches for it
regardless of its value. You should use -Q
when searching for control characters.

reverses the direction of the search and
reads another character. The character
read is then processed as if it were read
by AR, or AS when searching with -R.

searches for the current default string.
The default is diElplayed in the mini buffer.
If the search succeeds, the cursor is left
after/before the character(s) found.

. 17-41 CH27-00

--~- .. --.---.---

ITS-string
A AS or AR reads characters and either adds them
to the search string, or performs some action as
specified by the character. All non-control
characters are added to the search string. With
the exception of the control characters listed
below, all the control characters are invalid
and are ignored. The special control characters
recognized by AS and/or AR are:

\177

removes the last character from the search
string. If there are no characters in the
search string, the search aborts.

is the same as \177.

changes the starting point for searches
reCluested by "s or ESC. When AS is
entered, searches are made starting from
the current cursor position. A AB starts
searches from the beginning of the buffer.
A subseCluent B starts searches from the
current cursor position, etc.

)

replaces the search string wi th the current \,) ...)
default search string, and "rotates" the .

"L

"Q

list of defaults. The default search
string is the last string used by any other
search request, or by the use of"S (see
below) to this request. A AD permits you
to "walk" through the last sixteen strings
you searched for to find the one you wish
to search for again.

aborts the search.

redisplays the screen.

reads a character and adds it to the search
string regardless of its nature. A Qis
the only way to place control characters
into the search string.

reverses the direction
characters read after
by the AR request, or
you are using AR.

17-42

of the search. Any
the AR are processed
by the AS request if

CH27-00

(~ .•..

(
' ...

AS

"y

ESC

searches forward/backward for the current
search string. If found, the cursor is
placed after/before the string. In any
event, the current search string is pushed
onto the top of the list of default search
strings.

adds the current default search string to
the search string typed so far. Thus,
"S"Y"Y"S searches forward for two
successive occurrences of the default
search string and "R"Y"Y"R searches
backward.

searches forward/backward for the current
search string and then exits the AS/"R
request. If the previous character typed
to AS was AS, ESC only exits and does not
search. The search done by ESC is
identical to that done by a -So

incremental
Searches by character forward/backward (AS or
"R) for a string character as you type the
string. The string accumulates in the
minibuffer. That is to say, the cursor moves in
the main window finding more and more accurate
matches for the string you are typing as you
specify further characters of it. The general
idea is to find the string you are looking for
before you finish typing it, at which point you
type ESC. The cursor is left after/before the
string found in the buffer. It is recommended
only for high speed lines: try it in order to
get the general idea. The following characters
have special meaning when typing the search
string to incremental-search; all normal
"printing" characters are searched for:

"S

"S

for "s, finds the next match for the
current search string. If the current
search string is empty, retrieves the
default search string set by the last
search command.

for A R, reverses the direction of search,
entering incremental-search. The first
occurrence of the search string is found
going forward in the buffer.

17-43 CH27-00

- -~------~---------

ESC

"G

ends the incremental search to allow other
requests to be typed. It is very important
to remember to type ESC.

aborts the incremental search, and returns
to the place from which it was started.

or \177

"L

"Q

removes the last character from the search
string, and moves the cursor to the place
it was before you typed that character.

redisplays

quotes the next character, i.e., puts it
into the search string literally.

for "s reverses direction of searching.
This enters reverse-incremental-search,
searching backward for the first occurrence
of the current search string \which is
always at the current ~oint in the buffer).

for "R, repeats the search, going backward,
for the current search string, i.e., finds
the next occurrence of it. If the current
search string is empty, retrieves the
default search string.

If an attempt is made to add a character to the
search string which produces a search string
that cannot be found, Emacs rings the terminal
bell and removes the character from the
minibuffer, leaving the cursor in place. If
this occurs during a macro execution, however, a
normal Emacs AG is done, aborting macro
execution.

All searches prompt, telling the type of search that
has been invoked.

17-44 CH27-00

\,.

A.PPENDIX A

THE MULTICS EMACS COMMAND

SYNTAX AS A COMMAND:

emacs t-control_argsf tpathsl

FUNCTION: Enters the Emacs text editor, which has a large
repertoire of requests for editing and formatting text and
programs. Emacs is a display-orientE~d edi tor designed for use
on CRT terminals. Several modes of operation for special
applications (e.g., RMAIL, PL/I, FORTRAN) are provided; the
default mode entered is Fundamental major mode, whose requests
are listed below.

ARGUMENTS:

paths
are pathname(s) of segments to be rE3ad in.
its own appropriately named buffer.

CONTROL ARGUMENTS:

-terminal type STR, -ttp STR

Each is put into

specifies your terminal type to Bmacs, where STR is any
recognized editor terminal type or the pathname of a control
segment to be loaded. The terminal type is set permanently;
changing the Multics terminal type during a login session does
not affect the type "remembered ll by Emacs. If STR is not a
recognized type, Emacs queries you after entry, providing a
list of recognized types. This control argument must precede
any other arguments and cannot be used with -reset or -query.

-reset
specifies that Emacs disregard the terminal type set by the
-ttp control argument and set it in accord with the Multics
terminal type instead. This control argument must precede any
other arguments, and cannot be used with -ttp or -query.

A-1 CH27-00

-query
causes Emacs to query the user for a terminal type without
checking the Multics terminal type first. The query response (J
can be any recognized editor terminal type. This control
argument must precede any other arguments and cannot be used
with -ttp or -reset.

-line speed N
indicates linespeed to obtain proper padding (for ARPANet
users), where N is the output line baud rate in bits/second.
This control argument can follow anyone of the above three,
but must precede paths.

NOTES: None of the control
they are only used for
problems.

arguments is generally necessary;
solving various communications

ALPHABETIZED LIST OF FUNDAMENTAL MODE REQUESTS

The following is a list of Emacs]'undamental mode requests,
alphabetized by the last character. Everything preceding the
last character of each request is arranged in this suborder,
under that last character: ~, ESC, ESC", "X, "X", "Z, "Z".
Extended requests a~e listed separately at the end.

ESC #
"X#

@

"@
~Z"@

CR
ESC CR
"XCR

ESC
ESC ESC
~XESC

\
ESC \

\177
ESC \177
"X\177

"X(
"X)

"X*

rubout-char
rubout-word
kill-backward-sentence

kill-to-beginning-of-line
set-or-pop-the-mark
set-named-mark

new-line
cret-and-indent-relative
eval-multics-command-line

escape
eval-lisp-line
escape-dont-exit-minibuf

escape-char
delete-white-sides

rubout-char
rubout-word
kill-backward-sentence

begin-macro-collection
end-macro-collection

show-last-or-current-macro

A-2 CH27-00

)i

AX. set-fill-prefix

(~-
ESC indent-for-comment
~X; set-comment-column
A Z; kill-comment

AX= linecounter

ESC % query-replace
A

help-on-tap
ESC underline-word
"z remove-underlining-from-word

ESC / regexp-search-command

ESC < go-to-beginning-of-buffer
ESC > go-to-end-of-buffer

ESC ? describe-key

ESC [beginning-of-paragraph
ESC J end-of-paragraph

ESC ...
delete-line-indentation

ESC ~

unmodify-buffer

«(~) "xo remove-window
"'X1 expand-window-to-whole-screen AX2 create-new-window-and-go-there
"X3 create-new-window-and-stay-there
"X4 select-another-window

AA go-to-beginning-of-line
ESC A backward-sentence

"B backward-char
ESC B backword-word
ESC "B balance-parens-backward
"XB select-buffer
AX "B list-buffers
"Z"B edit-buffers

"c re-execute-command
ESC C capitalize-initial-word ... x ... c quit-the-editor

AD delete-char
ESC D delete-word
"'XD edit-dir

(AE go-to-end-of-line

-""-- ESC E forward-sentence

A-3 CH27-00

"------.. ----_._--------

"XE execute-last-editor-macro
"x "E comout-command

"F forward-char _ ..

ESC F forward-word)
ESC "F balance-par ens-forward ---'

"XF set-fill-column
"X AF find-file
"Z"F get-filename

"G command-:-quit
ESC G go-to-line-number
ESC "G ignore-prefix
"XG get-variable
"XAG ignore prefix
"ZG go-to-named-mark
"ZAG ignore-prefix

ESC H mark-paragraph
"XH mark-whole-buffer

ESC I indent-relative
ESC AI indent-to-fill-prefix
"XI insert-file

"J noop

"K kill-lines
.....) ESC K kill-to-end-of-sentence

AXK kill-buffer :) .. -

AL redisplay-command
ESC L lower-case-word
AX"L lower-ease-region

ESC M skip-ever-indentation
"XM send-mail

AN next-line-command
ESC N down-comment-line

"0 open-space
ESC "0 split-line
"xa select-another-window
"x"a delete-blank-lines

"p prev-line-command
ESC P prev-comment-line

"Q quote-char
ESC Q runoff-fill-paragraph
"XQ macro-query

"R reverse-string-search
ESC R move-to-screen-edge

A-4 CH27-00

"XR rmail
AX "R read-file

(\
"s string-search
ESC S center-line
"xs global-print-command
AX "S save-same-file

AT twiddle-chars
"X" T toggle-redisplay

"U multiplier
ESC U upper-case-word
"X"U upper-case-region

,..v next-screen
ESC V prev-screen
ESC "V page-other-window
"'xv view-lines
"'Z"'V scroll-current-window

"'w wipe-region
ESC W copy-region
ESC "w merge-Iast-kills-with-next
,..xw multi-word-search
,..x"w write-file
"'z"w edit-windows

(C': ESC X extended-command ,..xx put-variable
"x"x exchange-point-and-mark

"y yank
ESC Y wipe-this-and-yank-previous
ESC "'y yank-minibuf

"z"z signalqui t

Extended Requests

ESC X accept-msgs
ESC X aIm-mode
ESC X apropos <string>
ESC X describe <extended-request>
ESC X edi t-macros
ESC X 0Iectric-p11-mode
ESC X filloff
ESC X filIon
ESC X fortran-mode
ESC X fundamental-mode
ESC X Idebug
ESC X lisp-mode
ESC X list-named-marks

\., ESC X loadfile <path>

A-5 CH27-00

ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X

loadlib <library>
lvars
make-waIl-chart
opt <option>
pl1-mode
replace
reset-mini buffer-size <size>
reset-screen-size <size>
runoff-fill-region
save-macro
set-comment-prefix "stringlt
set-compile-options "option string"
set-compiler <compiler>
set-key <keyname> <command-name>
set-mini buffer-size <size>
set-permanent-key <keyname> <command-name>
set-screen-size <size>
set-search-mode <search-mode>
setab <abbrev1> <expansion1> <abbrevn> <expansio~>
show-macro <macro-name> -
speedtype
speedtypeoff

A-6 CH27-00

,)

c:/

APPENDIX B

EMACS MAIL

The Emacs mail system provides a facility for reading,
sending, and responding to Multics mail within Emacs, utilizing
the standard Emacs features and the interfaces of the Multics
mail system. There are two basic functions, sending mail and
reading mail.

SENDING MAIL

"XM

The Emacs request for sending mail is:

"XM, send-mail

Issuing this request puts you in MAIL mode and prompts for a
"Subject," which should be supplied and terminated by a carriage
return. This subject is incorporated into the buffer name, so it
should be short. A buffer is formatted with the mail in it,
header prefabricated. The buffer is placed in an available
window, as with "X"E (comout-command). Fill mode is turned on
with a fill column of 72. The buffer is now in MAIL mode, which
defines the following requests:

AXA mail-append

"XT

Goes to the end of the body of the mail. Use this to
enter the text after you have set the destination, or
to go back to the text after editing some header
field.

mail-to
Goes to the end of the "To:" line, to add a
recipient. You are left here when the MAIL buffer is
entered, to enter the first recipient. Then use "XA
to continue. Separate recipients (like all header
fields) with commas, e.g.,

To: Smith.Sales, Consultant.c

B-1 CH27-00

"XF mail-from

"XJ

Goes to the end of the HFrom:" line, to edit it or
add more sender's names.

mail-subject
Goes to the end of the "Subject:" line, to edit it.

"XC mail-cc
Goes to the end of the "Ce:" (carbon copy recipients)
line, making one if therE3 is none, so that you can
type in the destination of a carbon copy recipient.

"XY mail-reply-to
Generates a "Reply-To" field, if none exists, and
goes to it. The destination put here is used for
replies if a recipient of your mail uses RMAIL mode
(or another mail system) to reply automatically to
your message.

send-the-mail
Sends the buffer to the recipients specified in the
header. A message appears as a local display to
confirm that the mail is sent (2 linefeeds to restore
display) .

ESC AF forward-mail-field
Moves forward one field (recipient, cc recipient,
etc.) on this (header) line. Circles around at end.

ESC "B backward-mail-field
Moves backward one field (recipient, cc recipient,
etc.) on this (header) line. Circles around at end.

ESC AD delete-mail-field
Deletes, including necessary
header item (recipient, etc.)

"XL rmail-logger-append

commas, the single
that the cursor is on.

Logs the message into a file, placing it at the end,
separated by a formfeed. Prompts for the pathname of
the log file with a numeric argument, or the first
time it is used. Otherwise, uses the same file last
used by -XL or "XP.

"XP rmail-logger-prepend
Same as ··XL, but puts message at the front of the
file.

B-2 CH27-00

i))

Three forms of recipient (or cc recipient) destinations are
accepted:

Smith. Sales (standard Multics Person.Project)
Jones (link mailbox in Daemon mailbox dir)
Mxyptlk at KRYPTON-KL10 (ARPANET address,

Person at SITE)

Parenthetical comments in destinations are ignored, thus:

Muhammad (I am the Greatest) Ali at (the) WBA

gets sent to Muhammad Ali at site WBA.

Net mail sending is done via the Network Mailer Daemon; net
connect access is NOT required; you should be prepared for an
acknowledgment message from the Mailer Daemon.

Your name is given as:

From: Smith.Sales

or, if this site is on the ARPANET:

From: Smi th. Sales at MUL1'IX

(C_) If RMAIL knows your real name, your namEl is given as:

From: Sarah M. Smith <Smith.Sales at MULTIX>

RMAIL is the mail reading mode. RMAIL knows your name if either
your site Emacs expert has placed it in the
"rmail-full-name-table" in the "emacs environment directory" (see
him about this) or if you have a form settting "my-personal-name"
in your startup, e.g.,

(setq my-personal-name "Sarah M. Smith")

READING MAIL

"XR

Mail reading is performed via the request:

"XR, rmail

By default, mail is read from your personal default mailbox. If
"XR is given a numeric argument, e.g., "U"XR, the "mailbox name"
is prompted for. This may take any of the forms:

B-3 CH27-00

Person.Project
<pathname) (wi th or without" .mbx" suffix)
Person (if a link to Person.mbx exists in the

ARPANET mailbox link directory)

If you have no mail in the selected mailbox, a message is issued
to this effect. Otherwise, the first message in the mailbox is
displayed in a buffer, in RMAIL mode. This buffer is read-only;
the following extra requests (all standard requests work here,
too) apply in RMAIL model these are mostly not control characters,
but regular characters): ---

n rmail-go-forward
Moves on to the next message.

p rmail-go-backward
Moves back to the previous message.

rmail-go-first-msg
Moves to the first message in your mailbox.

I rmail-go-Iast-msg
Moves to the last message in your mailbox.

g rmail-go-command

d

Moves to the message numl)er specified by the numeric
argument, e.g., ESC 3 g to go to message #3.

rmail-queue-delete-forward
Deletes (i.e., queues for deletion
exited) this message, moves on to
message.

when rmail is
next undeleted

D rmail-queue-delete-backward
Same as d, but moves backward.

u rmail-undelete

c

q

Brings back the last (stacked) deleted message.

rmail-copy
Copies the message to some other mailbox. Prompts
for a mailbox name; anything acceptable to "XR (as
above) is acceptable here.

rmail-quit
Quits out
rmail was
deletion.

of rmail, returning to buffer from which
invoked, deleting all messages marked for

s rmail-summarize

"XL

Summarizes (in a local display) all undeleted
messages; may take a little time for full mailboxes.

rmail-Iogger-append
Logs the message into a file, placing it at the end

B-4 CH27-00

(. "XP

I'

of the file. See the description above under the
mail-sending requests.

rmail-Iog~er-prepend
Same as XL, but "prepends" to the front. See the
description above under mail-sending requests.

rmail-reply
Formats a MAIL mode buffer to reply to the current
message, copying the subject (if any), or making one
up, and setting up as the destination the sender's
,I reply-to" address. Responses are not sent to other
recipients. This request is extremely effective in
2-window mode, in which case the response is put in
the other window, and ESC AV (page-other-window) can
be used to "page" the letter you are responding to as
you respond.

rmail-quit
Quits out of rmail, returning to the buffer from
which rmail was invoked, deleting all messages marked
for deletion.

Once you have invoked the r request, you can
mode requests as well as the standard Emacs
addition, the following two requests are available:

use the MAIL
requests. In

"X"Q return-to-rmail
Returns to RMAIL and its window without sending the
message.

AX"S send-from-rmail
Sends the reply and return to RMAIL and its window.

It is important to quit (q) out of RMAIL before leaving
Emacs; Messages do not actually get deleted unless you quit out
of RMAIL (or, equivalently, answer "yes" to "All messages
deleted. Quit RMAIL?").

B-5 CH27-00

J

----'"-----

APPENDIX C

PROGRAMMING LANGUAGE MODES

Emacs, in addition to the Fundamental major mode for general
editing tasks, provides four programming language major modes.
Modes are sets of key bindings and variable settings; different
modes allow more elastic environments for different editing
probloms. The Lisp, FORTRAN, PL/I, and ALM modes facilitate both
programming in, and editing programs written in thope languages.

Each of these major modes is entered via an appropriate
extended request (see the applicable paragraphs below) or via the
"X"F request. Also, the following Fundamental mode requests that
deal with comments have certain language-specific applications.

Fundamental Mode Requests for Programmir~ Use

Most of the Fundamental mode reque~!ts listed below deal wi th
comments. Programming languages generally each have a preferred
column in which the programmer's comments begin, and this is
called the comment column. Since the comments must be
distinguishable from the program, they are delimited in some way,
either by being begun and ended by certain character strings, or
by being restricted to certain column~!. The comment prefix is
the comment's beginning delimiter. Several of the requests below
use the comment prefix to recognize a comment.

These comment requests are also u~!eful in Fundamental mode
for preparing two-column text.

The "X; request, set-comment-column, sets the comment column
in the current buffer at the horizontal position where the cursor
is currently located. With a positive numeric argument, sets the
comment column at the column number specified. See ESC; below
for additional information.

C-1 CH27-00

"Z;

The AZ; request, kill-comment, removes the comment and white
space preceding it from the current line. The deleted text is-,,\
saved on the kill ring, accessible to Y. The text is saved in ,,~
such a way that following AKs and other rorward-killing requests
merge properly with the deleted text.

ESC ;

The ESC ; request, indent-for-comment, searches for the
current line's comment. If one exists, it indents it to the
comment column in this buffer (set by AX;). If none exists, this
request starts one at the comment column on this line. It uses
the comment prefix to search for an old one or start a new one
(see the extended request, ESC X set-'comment-prefix).

ESC N

The ESC N
comment on the
none is there
sequence AN ESC

ESC P

request, down-comment-line, properly indents the
next line, or puts a comment on the next line if
already. This is effectively the same as the
; (see ES C ;).

The ESC P request, prev-comment-line, properly indents the
comment on the previous line, or puts one there if none is there
already. This is effectively the same as the sequence "p ESC ;
(see ESC ;).

ESC "'B

The ESC A] request, balance-parens-backward, skips backward
over one set of balanced parentheses. It searches backward until
a set of parentheses is found. However, it does not handle
quoting or any programming language conventions. This cannot be
used in Lisp mode, which has its own ESC "'B function.

ESC "F

The ESC AF request, balance-parens-forward, skips forward
over one set of balanced parentheses. It searches forward until
a set of parentheses is found. However, it does not handle
quot,ing, or any other programming language conventions. This
cannot be used in Lisp mode, which has its own more powerful ESC
"F function.

C-2 CH27-00

ESC X set-comment-prefix

'cr. The set-comment-prefix extended request sets the comment
'- prefix in this buffer. The comment prefix is usually set

automatically by entering a major mode. However, it can be set
by giving the comment prefix you want as an argument to this
request. The argument must be in quotes, and should follow the
request. The ESC;, ESC N, and ESC P requests all use the
comment prefix to find and start comments.

,

ESC X set-compile-options

The set-compile-options extended request sets non-default
compilation options to be given to the appropriate compiler in
language modes that support ESC "C for "compile buffer" (e.g.,
PL/I, FORTRAN).

ESC X set-compiler

The set-compiler extended request sets the name of the
compiler to be used by the compile buffer request (usually ESC
AC) in those language modes that compile buffers this way (e.g.,
PL/I, FORTRAN). The single argument to ESC X set-compiler is the
compiler name. It must follow the request and be quoted.

The ESC ESC request, eval-lisp-line, prompts for a string
for Lisp to evaluate, parenthesizes it, evaluates it in Lisp
(with ibase = 8), and displays the Lisp value in the minibuffer
(base = 8, *nopoint nil). To get a variable value, type ESC ESC
progn <variable name> CR.

ESC X ldebug

The ldebug extended request enters a "Lisp Top Level" buffer
in Lisp Debug mode. Forms typed into this buffer are evaluated
and the value is displayed by placing it in this buffer. When
ESC X ldebug has been used, all Lisp errors in Emacs trap into
this buffer. See the Extension Writers Guide for more
information.

ESC X fundamental-mode

The fundamental-mode extended request enters the mode that
all buffers start out in. This request allows you to exit any
other major mode that you may have entered.

C-3 CH27-00

The following paragraphs describe the programming language
major modes and their special key bindings and variable settings.

LISP MODE

Lisp mode facilitates the construction and editing of Lisp
programs in Multics Emacs. Requests for positioning over Lisp
expressions, and indenting and commenting Lisp code are
available.

A facility within Emacs for debugging programs is available.
It is called LDEBUG, and is described in the Extension Writers'
Guide.

Lisp major mode is entered by issuing the ESC X lisp-mode
extended request, or by responding to "X"'F (find-file) wi th any
file with a last component name of ".lisp" when the
find-file-set-modes option is selected. When in Lisp major mode,
the comment column is set to 50 (eolumn 51), and the comment
prefix to ";". The Fundamental mode comment requests, ESC P, ESC
N, and ESC ; act according to these settings.

The
mode:

TAB ("I)

ESC Q

ESC "A

ESC "B

following is the current request repertoire of Lisp'

indent-to-lisp
On a blank or empty line, ereates enough leading white
space so that the first S-expression typed on this line
lines up properly according to conventional Lisp
indenting rules. Normally, this means line it up with
the start of the previous S-expression, but in other
circumstances other actions may be taken. On a
non-blank line, readjusts the line's indentation to
effect conventional Lisp indenting.

lisp-indent-function
Puts point and mark around the
(see ESC -A). For all lines
re-indents them according
indentation.

begin-defun

current Lisp function
other than the first,

to conventional Lisp

Moves point to the beginning
The beginning of a function
the last open parenthesis at

of the current "function".
is defined as right before
the left margin.

backward-sexp
Moves backward over exactly one balanced S-expression.
All comments, quoted strings, and slashified characters
are considered properly. Aborts (and beeps) if
unbalanced. Avoid invoking this from inside comments

C-4 CH27-00

.)

\\~))

c

o
\

or quoted strings. Skips trailing open parentheses.
Accepts numeric arguments for repetition count.

compile-function
Compiles and loads the current Lisp function via the
Multics Lisp Compiler (lcp). Does this by writing it
out into a process directory temporary, with special
declarations in it, calling lcp to compile into the
process directory, and loadfiling the (unique) object
segment. Puts the name of the function compiled on the
kill ring, so it can be yanked into an ESC ESC
minibuffer for trial. Displays compiler diagnostics as
local display. Be careful to write out changes you
make and debug via this facility; this is a common
trap: you see what you have in front of you "working",
and you think you are done.

down-list-Ievel
Goes down one level of list structure. Basically the
same as looking forward for an open parenthesis, but it
detects and handles Lisp comments, quotes, etc.

end-defun
Goes to right after the last close parentheses of the
current function. See begin-defun above for a
definition of the current function. Useful to see if
function balances parentheses correctly.

forward-sexp
Skips forward over exactly one S-expression,
positioning to after the appropriate close parenthesis,
or before the appropriate white space. Accepts numeric
arguments for repetition count. Skips leading close
parentheses. Avoid invoking inside quoted strings or
comments.

mark-defun
Puts point and mark around the current function. See
begin-defun for a definition of the current function.

kill-sexp
Kills one (or many) S-expressions forward, i.e., from
point to the point aftE~r that many complete
S-expressions. Argument is the number of
S-expressions. Merges kills forward.

ESC CR (ESC AM) lisp-cret-and-indent
Identical to a CR (newline) followed by indent-to-lisp;
this is the normal way to terminate an input line in
Lisp mode. It puts you on a new line and indents
correctly for the next S-expression. Done in the
middle of a line, it breaks the line at that point,
correctly indenting the S-expression which was to the
right of point on the new line.

C-5 CH27-00

ESC &

forward-list
Moves to right
Basically, the
parenthesis, but
quoting, etc.

after the end of current Lisp list.
same as searching for a close
detects and handles Lisp comments,

backward-list
Moves to right before the
list. Basically the same
open parenthesis, but
comments, quoting, etc.

lisp-indent-region

beginning of the current Lisp
as searching backward for an
detects and handles Lisp

Re-indents all lines (other than the first) in the
point-to-mark region for conventional Lisp indentation.

move-defun-to-screen-top
Moves the current function (see begin-defun above for
definition) to the top of the current screen, leaving
point at function beginning.

mark-sexp
Puts point and mark around the current S-expression.
If point is currently before the close parenthesis of a
list, sets point and mark around that list. If point
is before white space, marks the next S-expression.

view-defun
Prints out current function: puts point and mark
around the current Lisp function (see begin-defun above
for a definition), and displays it (prints it out, on
printing terminals) as a local display.

eval-top-Ievel-form
Evaluates the current top level form and displays its
value in the minibuffer. A top-level form has the same
definition as a function. (See begin-defun above for
the definition). Loads the file "e-macros.incl.lisp"
to ensure the presence of the Emacs macros (see the
Extension Writers Guide). This facility is int~ded
for use in debugging extensions, as is
compile-function, but runs your code interpreted rather
than compiled to aid in debugging. Be careful to write
out changes you make and debug via this facility

Sets an LDEBUG breakpotnt at the cursor (see the
Extension Writers' Guide for more information).

C-6 CH27-00

-)- .•. ~
J

'(_I
'- ..

\-

The following extended request is available in Lisp mode:

ESC X eval-buffer
Evaluates the contents of the buffer and displays the
value of the last form in the buffer via the
mini buffer. Loads the tOile e-macros. incl. lisp" to
ensure the presence of the Emacs macros. This request
is used to "load" a buffer of Lisp code into the Emacs
environment for debugging. The eval-top-level-form
function (ESC "Z) can then be used to "reload" any
functions whose definition you change while debugging.
Be careful to write out changes you make and debug via
these facilities.

FORTRAN Mode

Emacs FORTRAN mode aids in the construction and debugging of
FORTRAN programs. Requests are provided for producing comment
and continuation cards and for other commonly used formatting
operations.

FORTRAN major mode is entered by issuing the ESC X
fortran-mode extended request. This mode can also be entered by
responding to "XAF (find-file) with any file with a last
component name of ".fortran" when the find-file-set-modes option
is selected.

The current list of special requests in Fortran mode is:

Carriage

AI

ESC CR

ESC

return (CR) new-line
Returns the cursor to column 7. This also inserts
comment prefixes ("C ") in the appropriate places.
If desired, the cursor can be moved back by hand to
delete spaces or comment prefixes.

fortran-indent-statement
Causes a tab done in column 1 to tab
Subsequent tabs move to the usual places.
for successive tabs is 7,10,20,30 ...

to column 7.
The sequence

(ESC "M) fortran-continue
Ends the current line when the next line is a
continuation. A newline is done, unless the current
line is blank or empty, and the prefix II & " is
inserted, leaving the cursor in column 9. This is the
continuation for standard FORTRAN rather than for
Multics.

fortran-comment-line
Begins a single comment line. A newline is done,
unless the current line is blank or empty, and the
prefix "C II inserted, leaving the cursor in column

C-7 CH27-00

~XC

ESC

ESC -C

7. This can be used to end a line when the next line
is a comment.

fortran-begin-comment-block
Begins a block of comments. Ends the current line, if
any, and inserts a comment block header line. Any
future lines added are prefixed by the standard comment
~refix "c ". This minor mode is exited by a second

XC. Notice that AXAC exits the editor. Don't miss

fortran-label
Positions a fortran label. Since a line usually starts
in column 7, this request is provided to correctly
position statement numbers. Type the statement number,
then ESC: to place the label in column 1 .

compile-buffer
Compiles the buffer. Writes current buffer, if
changed, out to its default pathname (as for AXAS), and
then compiles it. Compiler diagnostics are displayed,
in the other window if in two-window mode. The
extended requests ESC X set-compiler and ESC X
set-compile-options can be used to select the compiler
and options to be used.

locate-next-error
Finds the next error; used following a compilation in
two-window mode. It scans the compiler output and the
source buffer in parallel, pointing a simulated cursor
to consecutive errors and placing the real cursor on
the line referred to in the error message. This mode
terminates itself when you advance past the last error,
do another compilation, or exit it by keying A XT .
Since this mode locks the buffer used for compilations,
you are strongly advised to exit it when you are
finished.

fortran-abbrev-expander
Expands abbreviations. The two characters immediately
preceding the cursor when this character is struck are
taken as an abbreviation and expanded. The 'may
itself be inserted by quoting it with '"Q. These
abbreviations are initially supplied:

in integer su subroutine
di dimension co continue
fu function re return
eq equivalence ex external
au automatic' cn common
fo format im implicit

Note that, with the exception of cn for common, all of
these abbreviations are the first two characters of the
word. Other abbreviations may be defined using the
extended request ESC X set-fortran-abbrev. The

C-8 CH27-00

:)

(i
\

abbreviations co (continue) and re (return) are very
special. Since these words almost always have a label
and sit on a line by themselves, these abbreviations do
an ESC: and a newline, so that typing (in column 7):

1 23co'

expands to:

123 continue

leaving you on the next line. The
format, does labels, but not newlines.

In addition, several extended requests are
various parameters. They are:

For comment blocks:

ESC X fortran-set-begin-comment CR
Sets the begin line.

ESC X fortran-set-end-comment CR
Sets the end line.

abbrev fo, for
Try them.

provided to set

Both of these requests prompt for the line in the
minibuffer. The line supplied is inserted exactly as given, and
must therefore include the "c" at the beginning. Default values
for these lines are:

"c ============================:============"
These are set by buffer.

For compilations:

ESC X set-compiler compiler-name CR
Sets the compiler to be used. Default is "ft".

ESC X set-compile-options options CR
Sets compile options. These are given as on the
compiler command. The default is "-tb".

These are set by buffer.

And, for abbreviations:

ESC X set-fortran-abbrev abbrev expansion label eol
can be used to define new abbreviations. In tiLe above,
abbrev must be a two character abbreviation that will
be replaced with expansion. Arguments must be enclosed

C-9 CH27-00

in quotes if they contain special characters, including
spaces. The optional arguments label and eol cause
this abbrev to handle labels and newlines,
respectively, just like co and reo The label option
does not require a label, but processes it if it is
present. Abbreviations are defined globally and apply
to all buffers in FORTRAN mode. For example:

ESC X set-fortran-abbrev as "common /xyz/ y(100)" eol

defines an abbrev, as, that expands.to:

common /xyz/ y(100)

and does a newline, but does not handle labels.

Currently, the recommended debugging method is to do a
run your program one level up. Return to Emacs
program_interrupt command.

"z"z and
with a

PL/I mode provides an automatic assistance in PL/I progam
formatting in the real-time editing context of Multics Emacs.
The basic racility provided at this time is that of lining up
untyped PL/I statements, although on a one-for-one basis it lines
up typed one~, too.

t

PL/I major mode is entered by issuing the ESC X p11-mode
extended request, or by responding to "X"F (find-file) with any
file with a last component name of l. p11" when the
find-file-set modes aption is selected. It takes a couple of
seconds to "load itself." When in P1/I ;node, which shows up on
the mode line as "PL/I" as a major mode, the following
non-default key bindings apply:

TAB (AI) indent-p11-statement
Indents this PL/I statement properly (if not yet typed
in, tab out to it; otherwise, readjusts its indentation
properly) .

ESC CR (ESC AM) p11-cret-and-indent
Like carriage return and TAlL

ESC "c compile-buffer
Compiles the buffer. Writes current buffer, if
changed, out to its default pathname tas for "X"S), and
then compiles it. Compiler diagnostics are displayed,
in the other window if in two-window mode. The
extended requests ESC X set-compiler and ESC X
set-compile-options can be used to select the compiler
and options to be used.

C-10 CH27-00

") , ,
"

'C)

(~/
\. ...

p11dcl
Tries to find a declaration for the entry point whose
name is to the left of the cursor, and inserts it. A
library of such entry points exists. If the
declaration is not in the library, ESC AD attempts to
figure it out from inbound parameter descriptors in an
object segment responding to that name. Can also
declare error table entries.

ESC AH (ESC Backspace) roll-back-p11-indentation
Deletes 5 columns of indentation. Intended for
undenting ends.

ESC TAB (ESC "I) pI1-tab-one-more-level

"'XC

Adds 5 columns of indentation. Intended for asserting
your own style.

locate-next-error
Finds next error. This request is used following a
compilation in two-window modE~. It scans the compiler
output and the source buffer in parallel, pointing a
simulated cursor to consecutive errors and placing the
real cursor on the line referred to in the error
message. This mode terminates itself when you advance
past the last error, do another compilation, or exit it
by keying "'XT. Since this mode locks the buffer used
for compilations, you are strongly advised to exit it
when you are finished.

pI1-comment-box
Starts or ends a comment. Text following this is set
off as a comment. A second ... xc ends the comment.

All the standard commentation requests (ESC ;, etc.) are
set for PL/I. Word requests (ESC F, etc.) in PL/I mode buffers
consider the dollar sign to be part of a word.

The indentation rules which are followed are:

Any fragment of an incomplete statement gets lined up 5
spaces after the start of that statement. The statement
after a DO or BEGIN gets indented 5 times one less than the
number of IF's in the DO or BEGIN. In "inding style 2", the
statement after an end gets lined up 5 less than the end
statement; the first statement in a program gdtS lined up at
column 11 (Multics reckoning). Otherwise, each statement
lines up with the previous one. .

T~o styles are available; the defa.ult is 1. You can get 2
by saylng ESC X opt p11-inding-style 2 CR (i.e., it is managed by
the Emacs option mechanism).

C-11 CH27-00

In style 1, you get:

if x = 6 then do;
bar = 5;
foo = 6;

en.d;

In style 1, you are expected to line the end up yourself (use ESC
AH) because it is impossible in realtime to predict that an
untyped statement is gOing to be an end. You must undent the end
yourself, because the next statement lines up with it.

In style 2, you get:

if x = 6 then do;
bar = 5;
foo = 4;
end;

next = 17;

Emacs is happier with this, because it can figure out the next
statement after the end once you have typed it.

There are no known bugs in the mode's PL/I parsing: it can
parse any valid PL/I statement, exeept that multi-dimensional
label constants are not supported.. (Multics PL/I does not
support them either). _))

Electric PL/I Mode

A minor mode called "electric PL/I mode" is available, which
can be obtained by ESC X electric-mode CR once in PL/I mode, or
ESC X electric-p11-mode CR. To get it by default as your mode
for PL/I programs, put the statement:

(defprop p11 electric-p11-mode suffix-mode)

in your start up.emacs. Some users have found electric PL/I mode
overly violent, so it remains an option. It connects semicolon
to a function which automatically indents for the next statement
after inserting a semicolon; use ftQ; to get a semicolon in
without the "electric" action. Also, this action is suppressed
if there is a next line, and it is not empty. The "electric
semicolon" also moves ends back for you (in inding-style 1), when
you type the ";" of the end statement. (Be careful to ~uote
semicolons with "Q in strings, or you may have problems.)
Electric PL/I mode also gives "." electric action, i.e.,
indenting after labels.

C-12 CH27-00

ALM MODE

(, ALM mode provides several variable settings suitable for the
"-.. creation ·and edi ting of ALM programs.

ALM major mode is entered by issuing the ESC X aIm-mode
extended request, or by responding to "XAF (find-file) with any
file with a last component name of ".alm" when the
find-file-set-modes option is selected.

In ALM mode:

the comment column is set to 41

the comment prefix is set to null

the fill prefix is
automatically indents
statement)

set to tab (a carriage return
to the opcode field of the ALM

In addition, carriage return is treated in such a way that
extra fill prefixes and blank lines are deleted whenever
possible. ALM mode also removes the ind~ntation preceding labels
typed before a colon.

C-13 CH27-00

(.
"-...

APPENDIX D

MACRO EDIT MODB

The Macro Edit major mode is available for a number of
purposes. With it, you can enter a dedicated buffer to:

• display a symbolic file of all named keyboard macros
currently defined

• edit the displayed macros

• redefine macros after editing them

• . write the macros out to a file, for dprinting, or for
using them in later invocations of emacs.

ENTERING MACRO EDIT MODE

You enter the Macro Edit mode by issuing the ESC X
edit-macros extended request, or by iSEming the "X"F request to
read in a file with the .emacro suffix when the
find-file-set-modes dption is selected. This puts you in a
buffer displaying, in editable form, all the macros that you have
saved with ESC X save-macro. The di.splay includes PL/I-like
comments (1* comment */). The comment column in this buffer is
automatically set to 51, and the ESC;, ESC P; and ESC N comment
requests act accordingly. The macro definitions look like this:

macro paragraph-stars on "X9
esc-J "XQ "0 n** ____________ **"

end-macro paragraph-stars

The key setting, e.g., "on "'X9," is optional. If present, it
sets the key permanently, i.e., in all 'buffers, to that macro.

D-1 CH27-00

bDITING THE MACROS

In Macro Edit mode, the following reQuests are available for
editing the macros lthey are designed to parallel Lisp mode):

ESC "A

ESC "C

ESC AF

ESC AH

ESC "K

ESC "N

ESC "P

ESC AS

macedit-find-beginning-of-macdef
Moves to the beginning of the current macro
definition.

macedit-backward-term
Moves backward one term in the macro.

macedit-compile-to-lisp
Compiles the macro being pointed at into Lisp (so
that you get it permanently incorporated into
Emacs). Many cases are not yet handled by the
macro compiler, so you should not use this reQuest
unless you can verify that the Lisp code is
correct.

macedit-find-end-of-macdef
Moves to the end of the current macro definition.

macedit-forward-term
Moves forward one term in the current macro
definition.

macedit-mark-whole-macro
Puts point and mark around the current macro
definition.

macedit-kill-term
Kills forward to the end of the current (or next)
term in the current macro definition.

macedit-forward-macdef
Moves forward to the beginning of the next macro
definition.

macedit-backward-macdef
Moves backward to the beginning of the previous
macro definition.

macedit-state-keyboard-macro
Prompts for a key and places
keyboard macro on that key
current point.

D-2

the definition of the
in the buffer at the

CH27-00

-"
.)

REDEFINING MACROS

(I ESC "z and ESC X load-these-macros

(j
"

After you edit a macro, you can redefine it so that it works
according to the new version, rather than the old. You must
issue the ESC "2 re~uest, macedit-take-up-definition, while still
in Macro Edit mode. It replaces the old definition of the macro
being pointed at with the new definition just edited. If you do
not issue this re~uest (or the one below), the old definition
continues to apply during this Emacs session.

The ESC X load-these-macros extended re~uest has the same
actions and restrictions as ESC A Z; the difference is that it
redefines all the macros in the buffEH. So, if you edi t more
than one macro, this re~uest is more convenient.

WRITING MACROS OUT TO A FILE

If you want to use your macros in later Emacs sessions, or
if you want a printed copy of them, you must write the Macro Edit
buffer's contents to a file. The AX"W re~uest does this. If you
write the macros out to a file whose suffix is ". emac ro,"
however, subse~uent hXA Fs on that file will automatically read it
into Macro Edit mode, saving you a step.

Using Macros Previously Written to a File

ESC X load-macrofile

When you write your macros out to a file, with or without
the .emacro suffix, you can reuse the same macros in later Emacs
sessions. They can be automatically defined in the current
session if you issue the ESC X load-macrofile extended re~uest.
This re~uest takes the pathname of the file containing your macro
definitions as an argument; type the pathname after typing the
command name, and end the prompt with a carriage return.

D-3 CH27-00

-------'""-------

APPENDIX E

USING EMACS ON PRINTING TERMINALS AND GLASS TELETYPES

Emacs was specifically designed for use on intelligent video
terminals, but you can use it on printing terminals and IIglass
teletypes." Glass teletypes have screens, but do not have cursor
addressing or the usual display management capabilities e.g., the
TELERAY 3700 and Honeywell Model 7700 Visual Information
Projection system. If you are accustomed to using. Emacs, you may
wish to use it on such terminals. Emacs also may have features
and extensions that you wish to use that other editors do not
offer. If possible, however, you should first learn how to use
it on a video terminal.

The usage of Emacs on a printing or glass teletype terminal
is designed to be as close to video terminal usage as possible;
all Emacs requests and features operate on any type of terminal
(with the exception of specifically video-oriented features such
as multiple-window mode). Thus, once you learn a sizable number
of requests, or have perhaps written some keyboard macros or
extensions, you can use them on any type of terminal.

Printing terminals use the print-head or print-wheel (or
actual cursor of a glass teletype) as a cursor. The single line
of the buffer being edited upon which the point "appears" is
always displayed, and the print-head is moved to the position to
the right of the point, as is the cursor on a video terminal.
Whenever you want to move the cursor to a new line, e.g., with
the AN or Ap requests, Emacs prints that line and repositions the
cursor. If you move many lines at once, with a search, ESC G, or
ESC <, for example, Emacs displays only the line on which the
cursor "stops." If a line longer than the width of the terminal
is to be displayed, all portions of it (i.e., the whole buffer
line) are displayed. Once a line has been displayed in this
manner, the print-head is moved to the pOint's position .. As
requests to move the point back and forth are issued, e.g., AB,
.... F, ESC B, "'A, the print-head moves around on the displayed line
accordingly. Printing and glass teletype terminals are treated
very much like video terminals wi th a onE~-line window.

E-1 CH27-00

When you invoke emacs on a printing or glass teletype
terminal, Emacs prints the mode line. It is reprinted every time
it changes. Similarly, the path line is printed every time it :.,.,)"
changes. Local displays are simply printed out (with a "More?"
~uery when a glass teletype screen has been filled), followed by
the reprinting of the current buffer line; no line of dashes and
stars appears, and no linefeed is needed. A record of the local
display appears on the terminal paper, or scrolls up the screen
on the glass teletype. Messages normally destined for the
minibuffer are also simply printed out; Emacs prompts are typed
on a new line and the responses awaited. Enter the responses as
usual, ending with a carriage return as usual. After you supply
a response, Emacs displays the current line, and repositions the
print-head appropriately.

Typing a AL , redisplay-command, at any time prints the mode
line, path line, and current line.

Since only one buffer line is shown at once, you need some
way to view many lines at once. Simply repositioning the cursor
does this on video terminals. On printing terminals and glass
teletypes, the "XV re~uest, view-lines, fills this need in a
manner similar to the "print" re~uests of line-oriented editors·
like edm and ~edx. The AXV re~uest, with no argument, displays,
as a local display, the current line. (Try this on a video
terminal for t'un!) Wi th a numer ic argument of zero, e. g., ESC 0 ., .. , .•.. ~)' ~
AXV , it displays a region; thus, "XH ESC 0 "XV displays the whole __ I)
buffer. With any other positive numeric argument, e.g., AU "U
"XV, it prints the specified number of lines (16 here) from the
current line on down,and leaves you on the next line after them
(type another "XV to see that line printed). With a negative
numeric argument, th~ specified number of lines preceding the
current line are printed.

On a video terminal, Emacs keeps the image of the buffer
that is on the screen current by erasing and correcting text as
re~uests are issued. Hardcopy terminals obviously cannot erase
or correct what is already printed. Instead, whenever a line
changes, Emacs performs a linefeed, scrolling the paper
vertically, and prints the portion of the line that changed, and
all of the line to the right of the change. Thus, deleting a
character in the middle of a line prints all of the line
following the deleted character on a new line.

On glass teletypes, the modified right-hand portion of the
line is simply rewritten in place (this also occurs on video
terminals that do not support insert/delete characters), with no
linefeed.

E-2 CH27-00

c=)
Typing or deleting characters in the middle of a line

creates a lot of output as the remainder of the line is
continually reprinted. The continual repeating, besides being
annoying, takes time, even on fully cursor-addressable video
terminals that do not support insert/delete characters. Two
techniques minimize this problem.

The AX~T request, toggle-redisplay, suppresses all printing.
If you issue a "X"T, all "updatingll, including seeing what you
type (echoing) is inhibited. Another AXAT, or a AG or any error,
performs all the updating at once and turns off the suppression
of printing. You can see the current line by issuing a ~XV; all
editing changes that occurred while printing was suppressed are
reflected.

The second technique is to issue the AO request, open-lines,
at the point in the line where you wish to make a change. This
inserts a newline character, pushing the rest of the line down a
line, and leaves you editing at the new "end" of the line. When
you finish editing, a AD or AK deletes the newline and brings
back the last part of the original line, reprinting it also.

Bear in mind that a complex editing operation that affects
many lines, e.g., ESC Q or ESC K, places the cursor wherever that
particular request leaves it, printing that line out if it was
not the last line printed. Other lines may change as well, but
they are not printed. As on a video terminal after a request
that changestext over a large region of a buffer, the cursor is
left as it is positioned at the end of the operation. An
important difference is that you do not have a whole windowful of
text surrounding the current line with which to reorient
yourself.

The best way to discover how Emacs works on printing
terminals is to sit down at one and experiment with the various
requests. You will soon become accustomed to the editing methods
required. If your terminal is not one of the types specifically
recognized by Emacs, invoke the emacs command with the
"-terminal type printing" control argument, or type the word
"printing"-when Emacs asks you for your terminal type.

E-3 CH27-00

Notes

Very commonly, use of Emacs printing terminal support is
accidental! If you are logged in on a video terminal, your
start up.ec or the person using the terminal before you may have
incorrectly or inadvertently specified to Multics that you are
using some type of hardcopy terminal. Then, when you invoke
emacs, this misinformation is used, and you enter Emacs in
printing terminal mode. This is indicated if, upon entry to
Emacs, you find that the screen is not cleared, the mode line is
displayed and scrolled up, the cursor is left on the line after
the mode line, and attempts to clear the screen with ~L repeat
these actions. In this case, exit Emacs with ··X C as usual, and
reinvoke emacs with the -query control argument. Emacs will
query you for an acceptable terminal type (a? or null response
prints a list of acceptable terminal types), and reset it
accordingly for the rest of the login session. Then, edit your
start_up.ec if it caused the problem.

A common problem encountered by those using Emacs on a
printing terminal for the first time is that of characters
appearing twice. This is always the result of a terminal's
echoing characters locally. If this happens, exit Emacs and make
certain that both your modem and terminal are set for full-duplex
operation. For terminals like the TermiNet 300, which have a
controllable local printer, Emacs turns the printer off
automatically, and this is not necessary. Otherwise, use full
duplex (fulldpx) and echoplex modes, with a full duplex
connection, modem, and terminal. This should be the case for
video terminals as well as for printing and glass teletype
terminals.

Every video terminal can operate as a glass teletype. If
you have a video terminal for which no support package (CTL) is

'supplied, glass teletype usage is preferable to printing terminal
'usage, since lines are corrected by erasing and rewriting. Glass
teletype usage is entered by invoking emacs with the
-terminal type glasstty control argument, or by typing the word
"glasstty" when Emacs asks you for your terminal type. You can
use Emacs this way until a CTL can be constructed for your
terminal type (see the Extension Writers' Guide for information
on constructing CTLs). In fact, this mode is useful for editing
and debugging a new CTL until it works reliably.

E-4 CH27-00

(~)

i.J

\

APPENDIX F

THE MESSAGE FACILITY

You can receive interactive messa.ges, sent via the Multics
send message commands, while editing in Emacs. The ESC X
accept-msgs extended request is provided so that those messages,
which appear on your screen as a local display, are then
conveniently saved in bu:f:fers :from whieh you can respond to their
senders.

ESC X accept-msgs

I:f you have not issued an ESC X accept-msgs request, or
included it in your start_up, messagef:1 appear on your screen as
Multics output, destroying the current display. If you do issue
this request, however, it displays each incoming message, causes
the terminal to beep, and enters the message into a buf:fer named
"Messages from <Person name). All correspondence to and from an
individual is maintained in its own separate, appropriately named
buffer. This request also provides the :following response
capabilities. .

To respond to the sender o:f the last message received, type
the "X: request, message-response command. Suppose Sarah Smith
just sent you a message, you are prompted :for your response to
her in the minibuf:fer:

To Smith:

Type your message; when you type a carriage return, it is
sent to Sarah. With this method, you remain in your current
buffer, send the reply from there, automatically enter the reply
into the Messages from Smith buffer, and can immediately resume
your work.

F-1 CH27-00

With a numeric argument, -X: switches you to the message
buffer of the last sender, so you can see the previous messages
to and from that person, while you type a reply to them if you
wish. Then you can -XB back to your working buffer .:)

"X'

The AX' re~uest, go-to-new-message-buffer, always switches
you to a message buffer. You are prompted for the name of the
person whose message buffer you wish to enter~

Messages to/from:

You can type in the Person name (not Person.Project) of someone
who already has a message-buffer, Le., they are or have been
corresponding with you during the current Emacs session. You can
give a null response to go to the message buffer of the last
sender (as wi th "X: wi th a numeri.c argument). Finally, to
switch to the message buffer of a person not currently
communicating with you, you give the name in the form of
Person.Project (e.g., Smith.Sales), or Person at Net-Host-Name
(or Person @ Host). In any of these cases, you then simply start
typing your message, and send it with your first carriage return.

A further convenience of the message facility is its use
with multiple windows. When the message buffers are on display,
incoming messages are displayed immed.iately in the ir appropriate i -")

windows, without appearing as local d.isplays. You can carryon 'oj
several "conversations" at once, and can write any of the buffers
out if you want a record of them.

F-2 CH27-00

APPENDIX G

EMACS START-UPS

Emacs can be instructed to execute a sequence of requests at
the time it is invoked. This allows you to customize your
environment, i.e., to set up things that are not provided by
default. You do this with a file called an Emacs start-up. You
do no~ need one: it is optional. If you do not have one, Emacs
performs in precisely the manner descr:lbed in this manual. If,
however, you want to do things like enable the Emacs message
system every time you use Emacs, you will want to have one. Your
best bet in making a start-up is to copy someone else's and
modify it. However, instructiens for writing start-ups are
provided here.

Here is just about the simplest pOElsible start-up:

1 (accept-msgs)
2 (default-emacs-start-up)

The numbers on the left-hand side are not part of the file; they
are here simply for reference. If you put these two lines in a
segment called "start up.emacs" in your home directory, Emacs
will accept messages (i.e., activate the Emacs console message
system described in Appendix F) every time it starts up. Note
that there are two lines in this start-up: Line 1 invokes the
ESC X accept-msgs extended request (jUElt as though you had typed
ESC X accept-msgs), and line 2 tells Bmacs to go ahead and do
everything it normally does when it starts up, such as read in
the file whose name was given on the Emacs command line. The
parentheses around each of these two "request names" (i.e.,
accept-msgs and defaul t-emacs-start-up) tell Emacs .that "this is
something to do," i.e., that the name i.n parentheses is the name
of an extended request to be executed. The request
"default-emacs-start-up" must always be the last thing specified
in a start-up, for everybody except advanced users attempting to
use Emacs to implement specialized SUbsystems.

G-1 CH27-00

Here is a slightly more complicated start-up:

1 Sally's start-up
2
3 (accept-msgs)
4 (setq my-personal-name "Sarah M. Smith")
5 (default-emacs-start-up)

Line is a comment. It has no meaning other than to let
anyone reading the file know that this is Sally's start-up. The
semicolon at the beginning of the line indicates that the rest of
the line is to be ignored. Blank lines, such as line 2, also
have no meaning, and are ignored. Line 2 is provided simply for
readability.

On line 3, Sally activates the Emacs message system.
Although this is the most common thing people want to do in
start-ups, not everyone wants this to be/done, since those just
beginning to use Emacs might not know how to use the Emacs
message system. They should defer messages while using Emacs,
instead of having messages destroy their screens.

On line
Appendix B i'or
is. This is
headers. When

4, Sally is telling the Emacs mail system (See
a full description of it) what her "personal name"
used by the send-mail request (.... XM) for mail

Sally uses RMAIL, she will get header lines like:

From: Sarah M. Smith <Smith.Sales>

in messages she sends. The "setq" is a keyword meaning "set the
value of a variable," in this case the variable
"my-personal-name." Variables are named boxes in which things
are kept (you may have used Emacs text variables, which are
manipulated by the "XX and "XG requeBts). The Emacs mail system
looks in the box named my-personal-name for your full name, so
this is the name of the variable you must supply. Note that
Sarah's full name is between quotation marks; you must quote your
name, so that its beginning and end ean be determined. You must
have a statement just like this in your Emacs start-up if you
want the Emacs RMAIL system to know your full name when you
compose mail. (Alternatively, you can request your site's Emacs
expert to place your name in the "rmaJ.1-fu11-name-tab1e," of full
names of people at your site. He or she has been supplied
instructions on how to do this when your site received Emacs).

On line 5, as our earlier
the usual things it does when
the things she asked it to do
start-up must end by invoking

user did, Sally tells Emacs to do
starting up, after it has done all

specifically for her. Again, every
"defau1t-emacs-start-up."

G-2 CH27-00

(J)

..)

c·.·
\ --

Once more,
start up.emacs in
use it.

this text must appear
Sally's home directory

in a segment named
if Emacs is indeed to

A more complex start-up yet does the same things that
Sally's does, except that it is expressed in a form that allows
for faster, more efficient execution at the time Emacs is started
up. If your start-up does many things, you will want to do this
to your start-up as well:

1 ;Nick Romanov's start-up
2 ;Function definition is used to make it execute faster
3 ;Petrograd 10/17
4
5 (defun Nick-start-up ()
6 (setq my-personal-name "Nicholas A. Romanov")
7 (accept-msgs)
8 (opt 'find-file-set-modes 'on)
9 (default-emacs-start-up))

10
11 (Nick-start-up)

As you know already, lines 1-4 are simple comments, stating what
this start-up is and where it came from. They have no meaning to
~macs and are ignored. You will recognize lines 6, 7, and 9 from
the earlier examples. Line 6 sets Nick's name for use when he
composes mail, line 7 activates the :Emacs message system, and
line 9 invokes the default actions that Emacs does when starting
up without a start-up. Line 10 is blank, and is treated as a
comment. Lines 5, 11, and 8 are explained below.

Lines 5 and 11 are interesting onE3S. Line 5 says, "See the
things on lines 6 to 9? They are a set of things to do." Line 9
is the end of the set because of the last close-parentheses on
that line, which matches the one at the beginning of line 5. In
line 5, the name "Nick-start-up" is given to that set of things
to do. That is what defun means, "define function." Thus,
"defun Nick-start-up" means that the definition of a function,
(i.e., a set of tasks to do) named Nick-start-up begins here.
The fact that Nick coalasced all his start-up time tasks allows
this "function" to be compiled for faBter execution. The open
and close parentheses ending the line, (), are necessary and must
not be omitted: they mean that "Nick-start-up" has no arguments.

G-3 CH27-00

Line 11 of Nick's start-up says, "Do the thing called
Nick-start-up" in the same way that line 1 of the first example
says, "Do the thing called accept-msgs." It says to invoke,
execute, or carry out the set of re<luests and commands that has
the name "Nick-start-up," i.e., the set of commands and re<luests ',)
just defined. Why can they not simply be stated instead of
assigning this name to them, as was done in the first two
examples? You could, indeed, do this, but the runction
definition achieves increased efficiency.

Note that lines 6 to 9 are indented, and line up with each
other. This is stylistically proper for function definitions;
since extra white space is ignored, it is not strictly necessary.

The name "Nick-start-up" is completely arb i trary. You
should, however, call your start-up-function something like that,
except substitute your own name for Nick. The name of the
start-up function is not used anywhere except on the line (e.g.,
line 11 of the last example) that invokes it. It is not the same
as "my-personal-name," and is not used by RMAIL.

You may have been wondering about line 8. This is a re<luest
in Nick's start-up that invokes the :B:SC X opt extended re<luest,
described in Section 17. The particular line here:

(opt 'find-file-set-modes 'on)

has the exact same effect as if Nick had typed:

ESC X opt find-file-set-modes on CR

as soon as he had ente:red Emacs. The ESC X opt extended re<luest
is being used here to invoke the find-f~le-set-modes option, a
very popular and common option that most users familiar with
Emacs elect to have on. It causes automatic entry into PL/I mode
when find-file (AXAF) is used to read in a PL/I program, FORTRAN
mode when a FORTRAN program is read in, and so forth. It is not
on by default, since a beginning Emacf3 user might not know how to
use PL/I mode. New users should be able to edit PL/I (or any
other language) in Fundamental mode until they aC<luire
proficiency in these special modes.

G-4 CH27-00

()

Any Emacs extended request can be invoked in this way from a
start-up. You will note two differences between the way extended

'(' requests are issued to Emacs and the way they are stated in
'- start-ups. First, instead of typing an ESC X, and ending with a

carriage return, you put the extended request and its arguments
in parentheses, as for accept-msgs (which had no arguments) in
the first example. Second, you put the apostrophe character
before all arguments to the extended requests (in this case, the

(
' .. '

extended request is "opt" and the arguments are
"find-file-se t-modes" and "on") . This is necessary to
differentiate constant arguments (e.g., the keyword "on") from
variables (e.g., a variable named "on"). If you leave out the
apostrophes, you receive an error about undefined variables,
which is in fact what you have specified.

The opt extended request is by far the most common extended
request to use in start-ups, other than accept-msgs. The full
description of all of the options to the opt extended request may
be found in Section 17.

Compiling a Start-up

As was mentioned before, start-ups may be compiled, i.e.,
translated into hardware machine language, to effect faster
execution. Emacs start-ups 'are actually computer programs
written in Lisp programming language, a very powerful and
flexible language, in which Emacs itself is written. More
information about Lisp can be found in the Extension
Writers' Guide. If you achieve proficiency in extension writing,
you can vastly increase the power and sophistication of your
start-up as well.

However, to compile an Emacs start-up, all you
is how to use the Lisp compiler. This is easy; it
any other Multics compiler. You invoke it, giving
segment in the Lisp language (an Emacs start-up
above is such a segment), and it producEls an object

need to know
is just like
it a source

as described
segment.

To compile an Emacs start-up, this is what you must do:

1 • Find out the pathname of the Lisp compiler from a
knowledgeable' person at your si te. If your site has
Emacs, it must have the Lisp compiler as well. Its
name is lisp compiler, or lcp for short. It is
probably in the same directory as the segment "lisp."
If you have used Emacs in your process, use the Multics
-where command (type: wh lisp) to determine the name of
this directory.

G-5 CH27-00

2. Prepare the Emacs start-up as described above, with·
requests, function definitions, and comments in it.
Write it out to a segment (file) named i",
"start up.emacs.lisp" (make sure the nameJ
"start-up.emacs" is not on this segment, or you will be
in danger of destroying it).

,. Invoke the Lisp compiler:

4.

lisp_compiler path

where path is the pathname of
segment you just prepared;
underscores (not hyphens) in
compiler.

the start-up.emacs.lisp
watch out for the

the name of the Lisp

The compiler may issue diagnostics.
form:

Warnings of the

and:

"my-personal-name undeclared -- henceforth assumed
special"

"laccept-msgs default-emacs-start-up opt)
-functions referenced but not defined"

are normal. Any other
of an error. Check
back to step 2.

diagnostic may be an indication
your start_up.emacs.lisp and go

5. Assuming compilation was successful, you now have an
object segment called start up (not start up.emacs, as
might be expected) in your working directory. Copy or
rename it to start up.emacs, and place it in your home
directory, making- sure you have read and execute
access. You now have a compiled start_up.emacs.

It is not good to let others share your start-up, because of
the personal name in it: start-up's are personal. If your
associates want to use your start-up, either prepare start-ups
for them, or let them copy and edit yours.

G-6 CH27-00

iJ-'\ , ,
\. /

MORE FEATURES YOU MIGHT WANT

Below are some other lines you might want to put in your
start-up, or take as examples. If you use them, or lines like
them, they should be put wherever you put the rest of the
requests you invoke at start-up time, either in your start-up
function before "(default-emacs-start-up)" if your start-up is
compiled, or standing alone before ",default-emacs-start-up)", as
in the second example, if your start-up is interpreted (i.e., not
compiled). In general, the order is not important, although
" (default-emacs-start-up)" must be the last request executed.

Here are the sample forms (the correct Lisp term for these
requests) :

(and (eq tty-type 'vip7801) (set-screen-size 10.))

This says, "If I am using a lHoneywell) VIP7801 terminal, set my
screen size to ten." The tty-type is a variable that contains
the terminal type you are using -- the terminal type is just like
the name of the terminal in the system's Terminal Type File,
except it is all lowercase. The "eq" mE3ans "equal, the same as."
The set-screen-size extended request is being used here, with an
argumen t of 10. Note the dec imal po int:: all numbers in Lisp are
in base eight (octal) unless followed by a decimal point, which
puts them in base ten, the base that people usually use ror
numbers. An apostrophe is not necessary before numeric
arguments, but you can include one. Again, this is the same as
if the user had issued the extended request:

ESC-X set-screen-size 10 CR

This form:

(and « ospeed 120.)(create-new-window-and-stay-here))

says, "If I am logged in over a communications line operating at
less than 120 characters per second ,1200 baud), do a A X3
(create-new-window-and-stay-here), putting me in 2-window mode
and leaving me in the first window." This is often what people
want to do on low-speed lines, cutting down the amount of
printout. Note that the command names (e.g.,
create-new-window-and-stay-here) associated with a given
keystroke (e.g., A X3), are useful in a start-up.

In the above two examples, "ospeed" and
variables, and it is normal to receive warnings
the compiler, which will :!Declare them special."
can be ignored.

r, '7
\X-I

"tty-type" are
about them from

These warnings

CH27-00

The form:

(set-permanent-key lIAHlI 'backward-char)

is an example of a form that changes a default key binding. The
person using this form wants the backspace \control H) key on his
or her terminal to go backward a character \do what control B
does). In this way, you can switch the assignment of any keys in
your customized Emacs environment. The set-permanent-key
extended request operates the same as described in Section 15 and
creates all-buffer key bindings during the oourse of an Emacs
invocation.

Note that the circumflex and the H (not a real control H)
are in quotes instead of behind an apostrophe. This is
recommended for key names, which can contain special characters
like semicolon or parentheses, which otherwise have meaning.
When quotes are used, the apostrophe (') is not necessary.

The form:

(defprop p11 electric-p11-mode suffix-mode)

("defprop" is peculiar insofar as no quotes are needed on its
arguments) says, "Invoke electric-p11-mode every time a segment

\.)

with a suffix of ".pI1" is read in v:l.a "X"F." Thus, this elects
electric PL/I mode as the mode to be emtered for all programs. i))

Similarly:

(defprop compin filIon suffix-mode)

says invoke filIon, i.e., enter fill moae, whenever a "compin"
segment is read in.

G-8 CH27-00

(.).

APPENDIX H

pop-up WINDOWS

Emacs provides an option which causes windows to be created
and destroyed dynamically as new bufferf:l are swi tched into and as
dedicated buffers are created and destroyed. This option causes
new windows to· "sprout" on v ar ious po ints of the screen, cutt ing
up or removing old windows, or dynamically reorganizing the
screen as new buffers are selected. One goal of this technique
is to display simultaneously as many as possible of the things
that you were working on recently by packing the screen full.

This option, pop-up windows,
users like it, and many do not.
"opt" (option) extended request:

ESC X opt pop-up-windows on

is experimental;
It can be turned

and turned off similarly. It is off, by default.

many Emacs
on via the

When in pop-up window mode, the standard window-selecting,
creating, and destroying requests are used as in non-pop-up
window mode. You will find that windows appear less frequently
in pop-up mode if there is only one window on the screen to start
with (the assumption is that if you have only one window, you are
doing that deliberately), so it is often necessary to divide the
screen yourself to get pop-up-windows "rolling."

In pop-up window mode, requests that create or switch to a
buffer create a new window if the buffer being switched to is not
already on the screen. If the buffer is already displayed, these
requests switch to the appropriate window. It is virtually
impossible to get two windows displaying the same buffer in
pop-up window mode.

H-1 CH27-00

- --'"------

((:
\. '---~

MISCELLANEOUS

8-2, 17-8, 17-26
rubout-char 3-2

-line speed control argument
A-2

-query control argument A-1

-reset control argument A-1

-terminal type control
argument A-1

@ 1 7 -8, 1 7 -11, 1 7 -27
kill-to-beginning-of-line

3-3

\
escape-char 17-23

\177 8-2,17-8,17-26,17-28
rubout-char 3-3
see delete key

A

abbreviations
ESC X setab 17-35
ESC X speedtype 17-35

INDEX

access 5-5

aIm-mode, ESC X 17-36, C-12

apropos, ESC X 11-3, 17-18

asterisk
in word searches 9-9
special use of 3-1, 5-1,

16-9
use in regular expression

17-13

B

backward-char, AB 3-4, 17~5,
17-25

backward-sentence, ESC A 12-2,
17-6, 17-29

backward-word, ESC B 9-2,
17-6, 17-27

balance-parens-backward, ESC
AB 17-8, C-2

balance-parens-forward, ESC AF
17-8, C-2

begin-macro-collection, AX(
15-1, 17-24

(.) accept-msgs, ESC X 17-34, F-1 beginning-of-paragraph, ESC [
12'-5,17-7,17-30

i-1 CH27-00

blank lin'es 13-1
descriptions of requests

17-19
list of requests 17-2

bottomline 16-2

break 17-16

bufed buffer 16-8

buffer 2-9, 10-1
dedicated 16-5
deleting 10-6, 16-9
descriptions of requests

17-31
displaying multiple buffers

16-1
editing more than one 10-2
editor 16-8

requests 16-9
list of requests 17-4
listing 10-4
main 2-9
marking 10-6
marking as unmodified 17-32
modified 3-8, 5-1
moving to ends of 10-2
name 2-9, 5-3
switching 10-3
windowstat 16-5

C

capitalize-initial-word, ESC C
9-4-, 17-28

capitalizing words 9-4

carriage return key 2-5,
17-19

center-line, ESC S 13-6,
17-22

character search mode 17-41

clearing the screen
after local display 10-4
redisplay 10-5

command level 3-7, 5-2

command name 3-2

command-quit, AG 6-2, 17-18

i-2

comment
column C-1
descriptions of requests

17-21
list of requests 17-2
prefix C-1, C-2
"Z; 17-10

comout-command, AXA E 17-16

compiler C-3

control
character 2-4
key 2-4

control argument A-1

copy-region, ESC W 14-2,
17-12

correcting errors 3-2, 4-1

CR
new-line 17-19
see carriage return key

create-new-window-and
-go-there, AX2 16-3, 17-33
-stay-here, AX3 16-3, 17-33

cret-and-indent-relative, ESC
CR 13-8, 17-20

cursor 2-9, 3-1, 7-1
movement 3-3

descriptions of requests
17-5

list of requests 17-1

customizing the Emacs
environment G-1

CH27-00

(,
"-- .'

:(. , , __ I

D

dedicated buffer 16-5

default pathname 5-5

delete key 2-5

delete-blank-lines, AXAO 13-2,
17-10, 17-19

delete-char, AD 4-2, 17-8,
17-26

delete-line-indentation, ESC A
13-3, 17-20

delete-white-sides, ESC \
13-2,17-19

delete-word, ESC D 9-4, 17-9,
17-28

deletion 4-2
buffer 10-6
descriptions of requests

17-8
indentation 13-3
list of requests 17-1
region 7-3
sentence 12-2
white space 13-2
word 9-3

describe, ESC X 11-4, 17-18

describe-key, ESC? 11-1,
17-17

directory editor 17-16

dired buffer 17-16

down-comment-line, ESC N
17-21, C-2

E

echoplex mode 2-5

edit-buffers, AZA B 17-32

edit-dir, A XD 17-16

edit-macros, ESC X 15-5,
17-25

edit-windows, AZA W 17-34

editing
macro 15-5
minibuffer . 3-8

editor
buffer 16-8
directory 17-16
macro D-1

requests D-2
window 16-5

electric-p11-mode, ESC X
17-36, C-12

emacs command 2-8, A-l

empty search string 6-2

end-macro-collection, AX)
15-1, 17-24

end-of-paragraph, ESC] 12-5,
17-7, 17-30

entering Emacs 2-8

entering text 3-1

error correction 3-2, 4-1

error recovery 6-2
descriptions of requests

17-18
list of requests 17-2

ESC ~,unmodify-buffer 17-32

ESC; 17-21
indent-for-comment C-2

ESC
escape 17-23
see E~scape key

i-3 CH27-00

ESC # 17-9, 17-28
rubout-word 9-3

ESC % 1.7-14
query-replace 6-4

ESC /
regexp-search-command 17-13

ESC < 17-7, 17-31
go-to-beginning-of-buffer

10-2

ESC <N> or ESC <-N>
numeric argument 8-1

ESC> 17-7, 17-31
go-to-end-of-buffer 10-2

ESC? 17-17
describe-key 11-1

ESC A 17-6, 17-29
backward-sentence 12-2

ESC B 17-6, 17-27
backward-word 9-2

ESC C 17-28
capitalize-initial-word 9-4

ESC CR 17-20
cret-and-indent-relative

13-8

ESC D 17-9, 17-28
delete-word 9-4

ESC E 17-6, 17-29
forward-sentence 12-2

ESC ESC 17-37
eval-lisp-line C-3

ESC F 17-6, 17-28
forward-word 9-2

ESC G 17-8, 17-27
go-to-line-number 8-4

ESC H 1 7 -1 1, 1 7 - 30
mark-paragraph 12-5

i-4

ESC I 17-20
indent-relative 13-7

ESC K 17-10, 17-30
kill-to-end-of-sentence

12-3

ESC L 17-28
lower-case-word 9-4

ESC M 17-19
skip-over-indentation 13-2

ESC N 17-21
down-comment-line C-2

ESC P 17-21
prev-comment-line C-2

ESC Q 17-22
runoff-fill-paragraph 12-5

ESC R
move-to-screen-edge 17-31

ESC S 17-22
center-line 13-6

ESC U 17-28
upper-case-word 9-4

ESC V 17-7, 17-31
prev-screen 10-1

ESC W 17-12
copy-region 14-2

ESC X 17-24
extended-command 11-3

ESC X <command-name>
see entries under their

command-names

ESC Y 17-11
wipe-this-and-yank-previous

7-4

ESC [17-7, 17-30
beginning-of-paragraph 12-5

ESC \ 17-19

CH27-00

\)

\.

\

ESC \ (cont)
de'lete-whi te-sides 13-2

ESC \177 17-9
rubout-word 9-4

ESC] 17-7, 17-30
end-of-paragraph 12-5

ESC" 17-20
delete-line-indentation

13-3

ESC "B
balance-parens-backward

17-8, C-2

ESC "F
balance-parens-forward 17-8,

C-2

ESC "G 17-19
ignore-prefix 6-3

ESC "I 17-20
indent-to-fill-prefix 13-7

ESC "0 17-19
split-line 13-6

ESC "V 17-34
page-other-window 16-4

escsape-char, \ 17-23

eval-lisp-line, ESC ESC 17-37"
C-3

eval-multics-command-line,
"'XCR 17-16

exchange-point-and-mark, "x,.x
7-3, 17-11

execute-last-editor-macro, "XE
15-2, 17-:24

executing a Multics command
17-16

expand-window-to
whole-screen, "X1

17-33
16-3,

extended request 11-2
alphabetized list A-5

extended-command, ESC X 11-3,
17-24

extension writing
descriptions of requests

17-37
list of requests 17-5

ESC"'W 17-10 F
merge-Iast-kills-with-next

14-2

ESC"y 17-11
yank-minibuf 17-10

ESC 17-29
underline-word 9-7

escape key 2-4, 17-23
use for numeric arguments

8-1

escape, ESC 17-23

escape-dont-exit-minibuf "XESC
17-24

file length 5-3

filename
inserting 17-16

fill
column 13-4

... x}!' 13-5
mode 13-4
prefix 13-4, 13-7

AX. 13-5

filloff, ESC X 13-4, 17-22

filIon, ESC X 13-4, 17-22

i-5 CH27-00

formatting 12-5
centering a line 13-6
descriptions of requests

17-21
fill mode 13-4
indentation 13-7
list of requests 17-3
two-column 17-21, C-1

fortran-mode, ESC X 17-36,
C-7

forward-char, AF 3-4, 17-5,
17-26

forward-sentence, ESC E 12-2,
17-6,17-29

forward-word, ESC F 9-2, 17-6,
17-28

full duplex mode 2-5, E-4

fundamental mode 2-8
list of requests 17-1

fundamental-mode, ESC X 17-36,

go-to-beginning-of-line, AA
3-6, 17-5, 17-26

go-to-end-of-buffer, ESC>
10-2, 17-7, 17-31

go-to-end-of-line, AE 3-6,
17-5,17-26

go-to-line-number, ESC G 8-4,
17-8, 17-27

go-to-named-mark, AZG 14-4,
17-12

H

help
descriptions of requests

17-17
ESC? 11-1
ESC X apropos 11-3
ESC X describe 11-4
ESC X make-wall~chart 11-4
list of requests 17-2
.. 11 -5

C-3 help-on-tap, 11-5, 17-17

G

get-filename, AZAF 17-16

get-variable, AXG 14-3, 17-12

glass teletype usage E-1

global requests
ESC X replace 17-14
AXS 17-14

global-print-command, A XS
17-14

go-to-beginning-of-buffer, ESC
< 10-2, 17-7, 17-31

i-6

I

ignore-prefix
ESC AG 6-3, 17-19
AXA G 6-3, 17-18
A ZAG 6-3, 17-18

incremental search mode 17-43

indent-for-comment, ESC
17-21, C-2

indent-relative, ESC I 13-7,
17-20

indent-to-fill-prefix, ESC AI
13-7, 17-20

indentation 13-7

CH27-00

\(/

.. (
\

indentation (cont)
deleting 13-3
descriptions of requests

17-19
list of reque3ts 17-2
skipping over 13-2

insert-file, "XI 14-1, 17-16

inserting files 14-1

interrupt 17-16

ITS-string-search mode 17-41

K

key binding 2-8, 3-2, 11-1,
15-4

setting and changing 15-5

key name 15-6, 15-7

keyboard 2-1, 2-4
macro 15-1

kill
merging 4-3
ring 4-2, 4-5, 12-3, 14-2
successive 4-3

kill-backward-sentence
"X# 12-2, 17-9, 17-29
"X\177 12-3, 17-9, 17-29

kill-buffer, "XK 10-&, 17-10,
17-32

kill-comment, "Z; 17-10,
17-21, C-1

kill-lines, "K 4-2, 17-9,
17-27

kill-to-beginning-of-line, @
3-3, 1 7 -8, 1 7 -27

kill-to-end-of-sentence, ESC K
12-3, 17-10, 17-30

1

Idebug, ESC X 17-37, 17-38,
C-·3

line
centering
shearing

13-6
13-6

line number 8-4

linecounter, "X= 5-3, 17-27

linefeed key 2-4
"J 1 0-4

linespeed A-2

i-7

lisp debug mode C-3

lisp-mode, ESC X 17-36, C-4

list comma~d 5-2

list-buffers, "X"B 10-4,
17-32

list-named-marks, ESC X 14-5

literal insertion
descriptions of requests

17-23
list of requests 17-3
of characters 3-6

loadfile, ESC X 17-38

loadlib"ESC X 17-38

local display 10-4, 14-3,
14-5

of a macro 15-4
of a saved macro 15-5
window editor 16-5
with ESC? 11-1

logging in 2-6

logging out 3-7, 3-9

login command 2-6

CH27-00

---------------_.

logout command 3-7, 3-9

lower-case-region, hXAL 9-6,
17-12

lower-case-word, ESC L 9-4,
17-28

LRU window
see window 16-2

lvars, ESC X 14-3, 17-12

M

macro
creating 15-1
descriptions of requests

17-24
displaying 15-4, 15-5
editing 15-5
executing 15-2
including a query 15-3
list of requests 17-3
saving 15-4

macro edit mode D-1

macro learn mode 15-1

macro-query, hXQ 15-3, 17-25

mail
descriptions of requests

17-34
list of requests 17-4
reading B-3
sending B-1

mail mode B-1

main window 16-1

major mode 2-8
aIm C-12
fortran C-7
fundamental 2-8, C-3

list of requests 17-1
lisp C-4
lisp debug C-3

i-8

major mode (cont)
macro edit D-1
mail B-1
pl1 C-10
programming language modes

C-1
programming languages

descriptions of requests
17-36

rmail B-3

make-waIl-chart, ESC X 11-4,
17-18

margins 12-6, 13-5

mark 7-2
descriptions of requests

17-11
exc:hanging with pOint 7-3
list of requests 17-1
marking a buffer 10-6
marking a paragraph 12-5
named 14-3
setting 7-2

mark-paragraph, ESC H 12-5,
17-11,17-30

mark-whole-buffer, AXH 10-6,
17-11,17-32

merge-Iast-kills-with-next,
ESC "'w 14-2, 17-10

messages
descriptions of requests

17-34
interactive F-1
list of requests 17-4

minibuffer 3-8
editing 3-8
ESC "'y 17-10
setting its size 17-40
"'XESC 17-24

minor mode 2-8
electric pl1 C-12
fill 13-4
macro learn 15-1

CH27-00

C:.l mode
see major mode or minor mode

mode line 2-8, 3-1, 5-3

modem 2-1, 2-5

modified buffer 3-1, 3-8, 5-1
ESC - 17-32

move-to-screen-edge, ESC R
17-31

moving the cursor 3-3

multi-word-search, AXW 9-8,
17-13

multiple buffers 10-2, 16-1

multiple windows
descriptions of

17-33
list of requests

16-1
requests

17-4

multiplier, AU 8-4, 17-23,
17-35

N

named mark 14-3

named region 14-2

new-line, CR 17-19

newline 2-5, 3-1, 13-1

next-line-command, AN 3-5,
17-6, 17-27

next-screen, AV 10-1, 17-7,
17-30

noop, A J 10-4, 17-23

numeric argument
ESC 8-1
for executing macros 15-2
negative 8-1

numeric argument (cont)
positive 8-1
AU 8-4

o

open-space, AO 13-1, 17-19,
17-37

opt
paragraph definition 12-4
pop-up-windows H-1

opt, ESC X 17-38

option, ESC X 17-40

optional settings
description of requests

17-38
list of requests 17-5

p

page-other-window, ESC A V
16-4, 17-34

paragraph
definition of 12-4
descriptions of requests

i-9

17-30
formatting 12-6
list of requests 17-4
marking 12-5

parenthesis
ESC "B 17-8
ESC "F 17-8

password 2-6

path line 5-1, 5-3

pathname 5-1
default 5-5

p11-mode, ESC X 17-36, C-10

CH27-00

point 7-1

pop-up-windows 16-1, H-1

prev-comment-line, ESC P
17-21, C-2

prev-line-command, Ap 3-4,
17-6,17-27

prey-screen, ESC V 10-1, 17-7,
17-31

printing terminal usage E-1
descriptions of requests

17-37
list of requests 17-5

programming language modes
C-1

descriptions of requests
17-36

list of requests 17-4

prompt 3-8, 6-1, 6-4

put-variable, AXX 14-2, 17-12

Q

query
macro-query, AXQ 15-3
query-replace, ESC % 6-4

query-replace, ESC % 6-4,
17-14

quit 17-16

quit-the-editor, AXAC 3-7,
17-16

quote-char, AQ 3-6, 17-23

R

re-execute-command, AC 8-3,
17-35

read-file, AXAR 17-15

reading files 5-3
descriptions of requests

17-15
list of requests 17-2

ready message 2-7

redisplay 10-5

redisplay-command, AL 10-5,
17-23, 17-31

regexp-search-command, ESC /
17-13

region 7-1
capitalizing 9-6
copying 14-2
descriptions of requests

17-11 '
list of requests 17-1
named 14-2

regular expression 17-13

regular expression search mode
17-41

remove-underlining-from-word,
A Z 9-7, 17-29

. d AXO remove-Wln ow, 16-3,
17-33

replace, ESC X 17-14

requests 3-2
alphabetized list A-2
blank lines 17-19

descriptions 17-19
buffers 17-4

descriptions 17-31
characters (moving

by/deleting) 17-3
descriptions 17-25

comments 17-2
descriptions 17-21

deletion 17-1
descriptions 17-8

entry and exit 17-2

i-10 CH27-00

(J

·c\

l)
\

requests (cont)
entry and exit

descriptions 17-16
error recovery 17-2

descriptions 17-18
extension writing 17-5

descriptions 17-37
files 17-2

descriptions 17-15
formatting 17-3

descriptions 17-21
help 17-2

descriptions 17-17
indentation and white space

17-2
descriptions 17-19

insertion 17-2
descriptions 17-16

lines (moving in and
by/deleting) 17-3

descriptions 17-26
literal character entry

17-3
descriptions 17-23

macros 17-3
descriptions 17-24

mail/messages 17-4
descriptions 17-34

marks, regions, variables
17-1

descriptions 17-11
movements forward/backward

17-1
descriptions 17-5

multiple windows 17-4
descriptions 17-33

new lines/blank lines 17-2
descriptions 17-19

optional settings 17-5
descriptions 17-38

paragraphs 17-4
descriptions 17-30

printing terminal usage
17-5

descriptions 17-37
programming modes 17-4

descriptions 17-36
retrievals/yanks 17-1

descriptions 17-10
screens 17-4

descriptions 17-30

requests (cont)
searches and substitutions

17-2
descriptions 17-12

sentences 17-3
descriptions 17-29

special purpose keys 17-3
descriptions 17-23

typing shortcuts 17-4
descriptions 17-35

words 17-3
descriptiqns 17-27

reset-minibuffer-size, ESC X
17-40

reset-screen-size, ESC X
17-40

retrieving
deleted text 4-2
descriptions of requests

17-10
list of requests 17-1
previous kills 7-4
region 7-3

reverse-string-search, AR 6-3,
17-12

rmail mode B-3

rmail, A XR 17-34, B-3

rubout-char
3-2, 17-8, 17-26
\177 3,-3,17-8,17-26

rubout-word
ESC # 9-3, 17-9, 17-28
ESC \177 9-4, 17-9, 17-28

runoff-fill-paragraph, ESC Q
12-5, 17-22

runoff-fill-region, ESC X
17-23

i-11 CH27-00

S

save-macro, ESC X 15-4, 17-25

save-same-file, AXA S 5-5

screen 2-1
see window

scroll-current-window, AZAV
17-31

searching 6-1
character 17-41
descriptions of requests

17-12
incremental 17-43
ITS-string 17-41
list of requests 17-2
printing lines containing a

given string 17-14
regular expression 17~13,

17-41
setting search mode 17-40
string 6-1, 6-4, 17-41
with * 9-9
word 9-7

select-another-window, AX4
16-4, 17-33

select-buffer, AXB 10-3,
17-32

select-other-window, AXO 16-3,
17-33

selected window 16-1

send-mail, AXM 17-34, B-1

sentence
definition of 12-1
descriptions of requests

17-29
list of requests 17-3

set-comment-column, AX;
C-1

17-21 ,

set-comment-prefix, ESC X
17-21, C-2

set-compile-options, ESC X
17-36, C-3

set-compiler, ESC X 17-37,
C-3

set-fill-column, AXF 13-5,
17-20, 17-22

set-fill-prefix, AX. 13-5,
17-20, 17-21

set-key, ESC X 15-5, 17-40

set-mini buffer-size, ESC X
17-40

set-named-mark, AZA@ 14-4,
17-12

set-or-pop-the-mark, A@ 7-2,
17-11

set-permanent-key, ESC X 15-5,
17-40

set-screen-size, ESC X 17-40

set-search-mode, ESC X 17-40

setab, ESC X 17-35

show-last-or-current-macro,
"X* 15-4, 17-24

show-macro, ESC X 15-5, 17-25

signalquit, "z"z 17-16

skip-over-indentation, ESC M
13-2, 17-19

speedtype, ESC X 17-35

speedtypeoff, ESC X 17-36

split-line, ESC AO 13-6,
17-19

i-12 CH27-00

Ci
start-up G-1

string search mode 17-41

string-search, AS 6-1, 17-13

substitution 6-4, 17-14

successive kill 4-3

syllable 15-6

T

terminal
-ttp control argument A-1
glass teletype E-1
printing terminal usage E-1

descriptions of requests
17-37

list of requests 17-5
requirements 2-5
types 2-8

r(: text entry 3-1
\"--_/

toggle-redisplay, AXA T 17-37,
E-3

topline 16-2

transposing characters
AT 17-35

twiddle-chars, AT 17-35

U

underline-word, ESC 9-7,
17-29

underlining words 9-6

unmodify-buffer, ESC - 17-32

updating
suppressing 17-37

. ",x ... u
upper-case-reg~on, 9-6,

17-12

upper-case-word, ESC U 9-4,
17-28

User id 2-6

v

variable 14-2
descriptions of requests

17-11
list of requests 17-1

view-lines, "'xv 17-37, E-2

w

white space 13-1
deleting 13-2
descriptions of requests

17-19
list of requests 17-2

window 2-9, 5-4, 10-1
creating additional 16-3
descriptions of requests

17-30
editor 16-5

requests 16-7
least recently used (LRU)

16-2
list of requests 17-4
main 16-1
multiple 16-1
paging multiple windows

16-4
removing 16-3
repositioning

ESC R 17-31
scrolling

"'ZA V 17-31
selected 1 6-1
selecting 16-3
setting its size 17-40

windowstat buffer 16-5

i-13 CH27-00

wipe-region, ~W 7-3, 17-9,
17-12

wipe-this-and-yank-previous,
ESC Y 7 -4, 1 7 -1 1

word
capitalizing 9-4
definition of 9-1
descriptions of requests

17-27
list of requests 17-3
underlining 9-6

write-file, ~X~W 5-1, 17-15

writing extensions
descriptions of requests

17-37
list of requests 17-5

writing files 5-1, 5-5
descriptions of requests

17-15
list of requests 17-2

y

yank, Ay 4-4, 17-10

yank-minibuf, ESC Ay 17-10,
17 -11

see control key

A@ 8-2
set-or-pop-the-mark 7-2

AA 17-5,17-26
go-to-beginning-of-line 3-6

ftB 8-2, 17-5, 17-25
backward-char 3-4

Ae (cont)
re-execute-command 8-3

AD 8-2, 17-8, 17-26
delete-char 4-2

"E 17-5,17-26
go-to-end-of-line 3-6

"F 8-2, 1 7 - 5, 1 7 - 2 6
forward-char 3-4

~ G B-3, 1 7 -1 8
command-quit 6-2

~J 17-23
noop 10-4

AK 4-5, 8-2, 17-9, 17-27
kill-lines 4-2

A1 17-23, 17-31, E-2
redisplay-command 10-5

"N 8-2, 17-6, 17-27
next-line-command 3-5

"0 17-19, 17-37, E-3
open-space 13-1

~p 8-2, 17-6, 17-27
prev-line-command 3-4

AQ 17-23
quote-char 3-6

"R 17-12
reverse-string-search 6-3

"s 17-13
string-search 6-1

AT
twiddle-chars 17-35

AU 17-23, 17-35
multiplier 8-4

AV 17-7, 17-30
next-screen 10-1

A W 17-9, 17-12

i-14 CH27-00

(J

"w (cont)
wipe-region 7-3

"X; 17-21
set-comment-c0lumn C-1

"x
show-last-or-current-macro

15-4

"X# 17-9, 17-29
kill-backward-sentence 12-2

AX(17-24
begin-macro-collection 15-1

"X) 17-24
end-macro-collection 15-1

"X* 17-24

"X. 17-20, 17-21
set-fill-prefix 13-5

"xo 17-33'
remove-window 16-3

"X1 17-33
expand-window-to-whole

-screen 16-3

"X2 17-33
create-new-w~ndow-and

-go-there 16-3

"X3 17-33
create-new-window-and

-stay-here 16-3

"X4 17-33
select-another-window 16-4

"X= 17-27
linecounter 5-3

"XB 16-8, 17-32
select-buffer 10-3

"XCR
eval-multics-command-line

17-16

"XD
edit·-dir 17-16

"XE 17-24
execute-last-editor-macro

15-2

"XESC
escape-dont-exit-minibuf

17-24

"XF 17-20, 17-22
set-fill-column 13-5

"XG 17-12
get-variable 14-3

"XH 17-11, 17-32
mark-whole-buffer 10-6

"XI 17-16
insert-file 14-1

"XK 17-10, 17-32
kill-buffer 10-6

"XM 17-34
send-·mail B-1

"xo 17-33
select-other-window 16-3

"XQ 17-25
macro-query 15-3

"XR 17-'4
rmail B-3

"xs
global-print-command 17-14

"xv E-·2
view-lines 17-37

"xw 17-13
multi.-word-search 9-8

"XX 17-12
put-variable 14-2

"X\177 17-9, 17-29
kill-·backward-sentence 12-3

i-15 CH27-00

"X"B 17-32
list-buffers 10-4

"X"C 17-16
quit-the-editor 3-7

"X"E
comout-command 17-16

"X"F 10-2, 16-8, 17-15, C-4,
C-7, C-10

default pathname 5-5
find-file 5-3

"X"G 17-18
ignore-prefix 6-3

"X"L 17-12
lower-ease-region 9-6

"X"O 17-10, 17-19
delete-blank-lines 13-2

"XAR
read-file 17-15

"X"S 8-5
save-same-file 5-5

"X"T E-3
toggle-redisplay 17-37

"x"u 17-12
upper-ease-region 9-6

"XAw 8-5, 17-15
default pathname 5-5
write-file 5-1

"XAX 17-11
exchange-point-and-mark 7-3

"y 7-3, 8-2, 17-10
yank 4-4

"Z; 17-21
kill-comment 17-10, C-1

"ZG 17-12
go-to-named-mark 14-4

"Z"@ (cont)
set-named-mark 14-4

"Z"B 17-32
edit-buffers 16-9

"Z"F
get-filename 17-16

"Z"G 17-18
ignore-prefix 6-3

"Z"V
scroll-current-window 17-31

"z"W 17-34
edit-windows 16-6

"z"z
signalquit 17-16

"z 17-29
remove-underlining-from-word

9-7

i-16

17-17
-help-on-tap 11-5

A? 11-5
A-A 11-5
"-D 11 -5
"-H 11-5
"-L 11-5

CH27-00

, ~\

i)

I
I HONEYWELL INFORMATION SYSTEMS
I Technical Publications Remarks Form
I
I
I

w
Z
...J

(!)
Z
o
...J
«
I
:::J
U

J:~
I
I
I
I
I
I

SERIES 60 (LEVEL 68)
TITLE EMACS 'l'EXT EDITOR USERS' GUIDE

ERRORS IN PUBLICATION

SUGGESTIONS FeR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME -----------------------------------.---------
TITLE ______________ . __________ _

COMPANY---------------
ADDRESS _______________________________________ _

ORDER NO. CH27-00

DATED I DECEMBER 19791

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

IIIIII
BUSINESS REPLY MAIL
FI RST CLASS PERMIT NO. 39531 WA L THAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM. MA 02154

ATTN: PUBLICATIONS. MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

J
z
o
..J
<!
I
::>
u

I
I
I
I
I
I ~
I ..J

I (:J

I Z
~o
I ;l
I 0

I 0
I u.

I
I
I
I
I
I
I
I
I
I

.---~)
_-('!

I
I
I
I
I
I
I UJ

I Z
I ..J

I ~
-c3

<!
o
..J
o
U.

)

