
HONEYWELL

MULTICS EMACS
TEXT EDITOR
USER'S GUIDE

SOFTWARE

SUBJECT

MULTICS

EMACS TEXT EDITOR USER'S GUIDE

Tutorial Introduction to the Emacs Text Editor, Full Description of the Editing
Requests Available, and Instructions for Using Special Features of Emacs

SPECIAL INSTRUCTIONS

This manual presupposes some basic knowledge of the Multics system provided
by the two-volume set, New Users' Introduction to Multics. Some of the pre
liminary information covered in that set is summarized briefly here, however, so
that users at any level of experience can comprehend the techniques presented
in this man ual.

SOFTWARE SUPPORTED

Multics Software Release 10.2

Includes update pages issued as Addendum A in July 1981, Addendum B in Jan
uary 1982, Addendum C in August 1982, Addendum D in February 1983, and
Addendum E in December 1983.

ORDER NUMBER

CH27-00 December 1979

Honey\tVell

PREFACE

This book is a detailed description of the Multics Emacs
t ext e d ito r , are a 1- tim e e d i tin g and form a t tin g s y s t em des i g ned
for use on video terminals. It is intended for all users; both
those who have relatively little experience on the Multics operating
system (or any other computer system) and experienced programmers
will find this a complete description. Users ;:tre, however, expected
to be famil iar with the Multics concepts described in the two-volume
set, New Users' Introduction to Multics--Part I (Order No. CH24),
and--Part II (Order No. CH25)-,- referred to in this manual as New
Users' Introduction .

Although Multics Emacs is easily used by technically
inexperienced people, those with some programming experience can
utilize it even more effectively by writing their own extensions.
Examples of supplied extensions are the Emacs message subsystem
and the various language modes, described in Appendices Band C
of this manual. Information about extensions and instructions
for writing them are provided in the Emacs Extension Writers'
Guide, Order No. CJ52, which is referred to in this book as Extension

I Wri ters' Guide. The Introduct ion to Emacs, Order No. CP31, is
recommended for users interested in a simpler introductory manual
that describes a basic subset of Emacs editor requests.

Many video terminal types are supported by Emacs, as supplied.
Information on how to support additional terminal types is also
available in the Extension Writers' Guioe. It is recommended
that at least one person at your site have a copy; someone should
also be familiar with the Emacs installation information.

The information and specifications in this document are subject to change without notice. This
document contains information about Honeywell products or services that may not be available
outside the United States. Consult your Honeywell Marketing Representative.

©Honeywell Information Systems Inc., 1983 File No.: 1L33, 1 U33 CH27-00

The term "file" is used interchangeably with "segment" in
this manual, since many of the editing requests have the word
"file" as part of their command names. Emacs requests operate
both on single-segment and multisegment files. Zeros are slashed
in this manual (0) in a few instances when they might be confused
with the letter O.

The sections of this manual fully describe the Emacs editor
and explain the steps required to edit effectively any type of
user text. In general, the basic techniques are explained first;
more powerful or efficient requests are introduced as you proceed
through this book. The first sixteen sections are tutorial;
Section 17 summarizes, by editing function, all the Fundamental
mode requests, including both those described in the tutorial and
some additional requests that are used less frequently.

Section 1 is a brief introduction.

Section
logging into
environment.

2 describes
the Multics

how to
system,

begin: using the terminal,
and entering the Multics

SectIon 3 tells how to enter text, move the cursor, make
simple corrections, and log out.

Section 4 describes a few requests for deleting text and
retrieving deleted text.

Section 5 explains how to read and write files (segments).

Section 6 describes some simple search requests for locating
character stringsa

Section 7 introduces requests for manipulating blocks of
texts.

Section 8 describes numeric arguments and various other ways
to reexecute and reverse editing requests.

Section 9 defines an Emacs "word" and describes the requests
that operate on words.

11/86 iii CH27-00F

Section 10 deals with screens and buffers, telling
display different areas of the buffer on your screen,
switch buffers, list them, and delete them.

how to
how to

Section 11 includes the help facilities available on Emacs.
The editor is completely documented online, so information is
always available during editing.

Section 12 defines Emacs sentences and paragraphs, and
describes requests that operate on them.

Section 13 includes many requests for handling white space,
indentation, and formatting.

Section 14 gives more information on manipulating blocks of
text, inserting files, and using named regions and marks.

Section 15 describes keyboard macros that can easily be
created to perform special editing tasks.

Section 16 describes the use of multiple windows, the window
editor, and the buffer editor.

Section 17 contains descriptions of all the Fundamental mode
requests, arranged by function.

Appendix A documents the emacs command and
alphabetically, all the Fundamental mode requests.

lists,

Appendix B describes the Emacs mail mode for sending and
reading electronic mail.

~ppendix C describes the Emacs programming language modes
and their requests, which are tailored for use in writing and
editing programs in Lisp, FORTRAN, PL/I, and ALM.

Appendix D describes the Macro Edit mode for editing
keyboard macros.

Appendix E gives instructions for using Emacs on printing
and glass teletype terminals.

8/82 iv CH27-00C

Appendix F describes the Emacs message
accepting and responding to interactive messages.

facility for

Appendix
customize the
entered.

G details how to write
environment automatically

an Emacs start-up to
each time Emacs is

Appendix H describes pop-up-windows mode, which dynamically
creates and removes windows as they are needed.

Appendix I describes the list emacs ctls command, which
lists all known Emacs terminal types.

Appendix J describes the overwrite-mode minor mode, which
alters the ways characters are inserted into the buffer.

Multics Emacs was modelled after the EMACS editor at the MIT
Artificial Intelligence Lab. EMACS (on the AI Lab PDP-10's) was
written, in TECO, by staff members of the MIT AI Lab and the
(MIT) Laboratory for Computer Science (LCS), without whose
encouragement and support this project would not have been
possible.

Significant Changes in CH27-00F

Emacs now supports multisegment files (MSFs). The much
larger capacity MSFs can be read and written, using the same
Emacs commands used to read and write single-segment files.
Thus, multisegment file is assumed throughout this manual, where
file and segment are used interchangeably.

Emacs affords greater protection against inadvertent
destruction of file and buffer modifications by querying whether
to proceed with write-file, save-file, read-file, and find-file
requests, when file or buffer contents have changed since last
read or written.

In compliance with above, new options have been added to the
opt command (see find-file-check-dtcm, save-same-file-check-dtcm,
read-file-force, and write-file-overwrite). Also, defaults have
changed for the find-file-set-modes, remember-empty-response, and
paragraph-definition-type options.

The default compiler option for pI1-compile-option is now
the null string.

11/86 v CH27-00F

This page intentionally left blank.

11/86 CH27-00F

Section

Section 2

Section 3

CONTENTS

Introduction

Getting Started .
The Terminal .

The Screen •
The Keyboard . . •

Control Key . . • .
Escape Key .
Linefeed Key
Delete Key
Carriage Return Key • . . .

The Modem • .
".,,,,...,~V"\..; ,,""', D __ ,lI": --. ______ "-
J.CCllll.LCal.. nC"-jU.Ll CIIICllL,L:)

Logging In
Invoking the emacs Command .

The Initial Display •..
Summary of Terms . • .

Entering Text and Simple Cursor Movements
Typing in Text . . . • . . .
Editing with Emacs Requests

Self-Inserting Characters
Correcting Typing Errors with Emacs

The Erase Character (n) ••..
The Delete Key (\177)
The Kill Character (@) ...

Typing in Special Characters
A Q • • • • • • • • • • • • • • •

Moving the Cursor •
Getting to the Right Line

A p • • •• •••
Moving Within the Line

"F • • • •• ••••
A B • • • •• •••

Getting Back to the Right Line

The Ends of the Line
A A • • • • • • • • • • • • • • •
" E • •• •••••••

Getting Stopped•.•..
Exiting from the Editor •.••.•

vii

Page

1-1

2-1
2-1
2-1
2-4
2-4
2-4
2-5
2-5
2-5
2-5
") C
c:..-~

2-6
2-8
2-9
2-10

3-1
3-1
3-2
3-2
3-3
3-3
3-3
3-3. 1
3- 3. 1
3- 3. 1
3-4
3-4
3-4
3-5
3-5
3-5
3-6
3-6
3-6
3-6
3-6. 1
3-6. 1
3-7

CH27-00D

I

Section 4

Section 5

Section 6

Section 7

CONTENTS (cont)

.... X C • • •
Summary of Terms .

Logging Out • • . • .

Simple Deleting and Killing •
Deleting Characters •••..

Deleting One Character at a Time
"D • • • • •

Deleting Lines
.... K • • • • •

Retrieving Killed Lines
The Kill Ring ••..

Summary of Terms .
Yanking Text Back .

.... y • • • •
More About K

Writing and Reading Files
Writing a File Out •.

.... X "'W • • • • • •
Is Your New File Really There?

Reading a File In . • . . • . •
A X A F • • • • • • • • • • •

Counting the Lines in a File
A X = • • • •• •••••

Saving (Rewriting) a File
AX AS • • • • • • • •

Additional Notes on Writing Files
Access Restrictions • • e , • • • •

The Default Pathname with "'X"'W
Summary of Terms • . • .

Locating a Sequence of Characters ••
Searching Forward • • .

AS . . . • • • •
A Word About Search Strings •

Getting Out of Trouble •••
A G • • • • • • • • • • •
"'X"'G, "'Z G, and ESC G •

Searching Backward • • • • . .
"R • • • . • • • • • •

General Rules for Searching . • .
Locating and Replacing Strings

Automatically ••
ESC % - ••••

Working with Blocks of Text
Marking a Region • . . .

viii

Page

3-7
3-9
3-9

4-1

4-2
4-2
4-2
4-2
4-2
4-3
4-4
4-4
4-4
4-5

5-1
5-1
5-2
5-3
5-3
5-4
5-4
5-6
5-6
5-6
5-6
5-7
5-7

6-1
6-1
6-1
6-2
6-2. 1
6-2. 1
6-3
6-3
6-3
6-4

6~4

6-4

7-1
7-1

CH27-00D

Section 8

Section 9

CONTENTS (cont)

Setting the Mark
A. @ • • • • • • •

Exchanging the Mark and the Point •
A X AX • • • • • • • •

Deleting a Region
"w

Yanking a Region Back •
ESC Y . . .
Summary of Terms .

Repeating and Undoing Requests ..•
Numeric Arguments • • . • . •

Requests Accepting Numeric
Arguments •••.. • . •

Numeric Arguments with Regular
Characters • • • . • • . .

Re-executing a Request ••...
"'C • • • • • • • • • • • • •

Multiple Executions of a Request .
"'U

Undoing the Action of a Request
A \ • • • • • • • • • • • • •

"'\ and Self-Inserting Characters
Going to a Specific Line Number

ESC G . • . . . • • •

Working With Words .•.
What's in a Word.
Moving Forward and Backward

ESC F
ESC B • • • • • • •

Deleting Words
ESC /I • • •
ESC \177 ...•.
ESC D . . •

Capitalization•
ESC L, ESC U, ESC C •..

Changing the Case of Regions
""X"'L, "'XAD •••

Underlining Words • . . • . . . • . .
ESC •..•.
"'z

Underlining Regions
AX

Locating-Words
AXW
Locating Words by Their Prefix

Page

7-1
7-2
7-3
7-3
7-3
7-3
7-3
7-4
7-4

8-1
8-1

8-2

8-4
8-4
8-4
8-5
8-5
8-5
8-5
8-5
8-6
8-6

9-1
9-1
9-2
9-2
9-2
9-3
9-3
9-4
9-4
9-5
9-5
9-6
9-6
9-7
9-7
9-7
9-8
9-8
9-8
9-8

with * 9-9

ix CH27-00D

I

I

Section 10

Section 11

Section 12

CONTENTS (cont)

Manipulating Screens and Buffers
Moving Through a Buffer Screen by

Screen . . • • .
"V • • • •
ESC V

Page

• • 10-1

10-1
10-1

• 10-1
Moving to Either End of a Buffer 10-2

ESC <
ESC >

.• 10-2
10-2

Editing More than One Buffer. • 10-2.1
Going from One Buffer to Another • 10-3

"'XB • . .. •....• 1 0- 3
Listing the Buffers and Local
Displays. • . • ••• 10-4

"XAB 10-4
The Linefeed Key and "'J •• 10-5

A Garbled Screen • • •••.••• 10-5
"'L. • • • • • • • • • 10-5

Entire Buffer 11'\ t:..
IV-V Marking an

"'XH 10-6
Killing an Entire Buffer .•••••. 10-6

"'XK • • • • . • . • • • 10-6
Summary of Terms • • • • • • 1 0-6

Help • • . • •• ..• 11-1
What Does This Key Do? •• 11-1

ESC? • • . • •.•. 11-1
Extended Requests e • e e ~ ~ e e 11-2

ESC X • .. .•• • • 11-3
What Keys Do This Job? . . •••• 11-3

apropos • • • •• • •••• 11-3
What Does This Extended Request Do? • 11-4

describe .••••.•••.•• 11-4
Tangible Help ..••....•••• 11-4

make-waIl-chart • • 11-4
More Help and What Did I Just Do? •• 11-5

" . . . • . • 11-5

Sentences and Paragraphs
Sentences . • . • .

12-1
12-1

Moving Forward or
Sentences

Backward by

ESC A • • • •
ESC E

Killing Sentences • • • •
A X II • • • • • • •
"X\177
ESC K

Paragraphs • •

x

12-2
12-2
12-2
12-2
12-3

· • • • 12- 3
• • • • . 12-4

12-4

CH27-00D

Section 13

Section 14

CONTENTS (cont)

Moving Forward or Backward by
Paragraphs • • . • • • • • • •

ESC [••.• ••••••
ESC] •••• ••••••

Marking a Paragraph • • • • • • •
ES C H . . . • • • • • • • •

Formatting a Paragraph
ESC Q • . . .

Page

12-5
• 12-5
• 12-5
· 12-5

12-5
• 12-5
• 12-6

Indentation and Spacing. • ••••• 13-1
Blank Lines • . • . • • •.•• 13-1

Adding Them. . • . 13-1
""0 • • • • • •••• 13-1

Removing Them. . ..••.•• 13-2
""X""O • • . • 13-2

Dealing with White Space on a Line 13-2
Spacing Over Indentation .•••• 13-2

ESC M •.•••••.•••.. 13-2
Deleting White Space • • . •• 13-3

ESC \ . . • . •••• 13-3
ESC"" •.•• 13-3

Fill Mode • • . . . 13-4
ESC X filIon and ESC X filloff • 13-5

Margins • • . 13-5
Setting the Margins Q ••••• 13-5

AX. • • • • • •••• 13-5
""XF .• e _ 13-6

Centering a Line •.•.••••• 13-6
ESC S ••..•.......• 13-6

More About Lines and White Space ••• 13-7
Shearing a Line • • . •• 13-7

ESC ""0 • • • • • • •• 13-7
Undenting to the Fill Prefix . 13-8

ESC ""I • • . . •••• 13-8
Indentation • • • 13-8

ESC I •••.••..•.••• 13-8
ESC Carriage Return 13-9
""X""I • .•..• 13-10
Summary of Terms • . • 13-10

Moving Blocks of Text . • .
Inserting an Entire File • .

"" XI ...
Copying a Region • . • . .

ESC W . • . . • . •

14-1
• • • • • 14- 1
. • • . • 14- 1

· 14-2
• 14-2

Selecting and Joining Text on the Kill
Ring . . • • . • • . ••••• 14-2

ESC ""w ••••••••••••• 14-2

xi CH27-00D

Section 15

Section 16

CONTENTS (cont)

Page

Named Regions •••••••••••• 14-3
Storing the Region to a Variable • 14-3

"XX • • • • • • • • •• •• 14-"3
Inserting a Variable • • • 14-3

"XG • • • • • • •• •• 14-3
Listing Your Variables •••• 14-4

ESC X lvars •••••••••• 14-4
Named Marks • . . • . . • •• 14-4

Setting a Named Mark • . • 14-5
AZ""@ •••••••••••••• 14-5

Going to a Named Mark •.••••• 14-5
"ZG •• 14-5

Listing Your Named Marks ••.•• 14-6
ESC X list-named-marks ••• 14-6
Summary of Terms . • 14-6

Keyboard Macros • .
Creating a Macro

AX(and AX)

. • . • 15-1

. . . • 15-1
. 15- 1

Executing a Macro · . · · 15- 3
"XE •••• · · .. • 15 - 3

Mid-Macro Query · · · · 15 - 3
"XQ • • • · 15-3

Displaying a Macro • • . .. 15-4
A X *

Saving a Macro • • •
Esc X save-macro .

15-4
15-4. 1
15-4.1

Displaying a Saved Macro
Esc X show-macro •

Editing a Macro

. 15 - 5
. . • 15-5
. . . 15-5

ESC X edit-macros •••.
Setting and Changing Key Bindings

ESC X set-key and ESC X
set-permanent-key •

Examples of Acceptable Forms of
Key Names • . • . •

· 15-5
15-6

15-6

15-7

Multiple Windows and the Buffer Editor • 16-1
Adding Windows • .••. · · • 16- 3

A X 2 • • • • • • • • • • • · 16-3
A X 3 • • • . • • • • • • .

Removing Windows . • . • • • • • .
· 16-3

16-3
At Xl. • • • • • • • •
"VrA

A 'I.J • • •

Selecting a Window ..••
A XO • • • • • • • •
A X 4 • • • • • • • •

Editing with Multiple Windows

xii

· 16-3
it: ..,
IV-j

16-4
16-4
16-4
16-4

CH27-00D

Section 11

CONTENTS (cont).

Page

ESC AV • • • • 16-5
Dedicated Buffers • • .• • .•• 16-5
The Window Editor ••..•••• 16-6

AZA W • • • • • • • • • • 16-6
Window Editor Requests ••.• 16-1

Leaving the Window Editor ••• 16-9
The Buffer Editor •.•••.••.• 16-9

A ZA B • • • • • • . • • • • • • • 16-9
Buffer Editor Requests ..•••• 16-10

Leaving the Buffer Editor ••• 16-11

Summary of Emacs Fundamental Mode
Requests . • • • 11- 1

List of Editing Functions and the Keys
That Perform Them.• . 11-1

Descriptions of the Requests . . 11-6
Movements Forward/Backward .• 11-6
Deletion .•...•..•••.• 11-10
Retrievals/Yanks . . • • . • 11-12
Marks, Regions, Variables •••.• 11-13
Searches and Substitutions ••.. 11-15
Files •..........•••. 11-11.1
Insertion . • . . . • • . 11-20
Entry and Exit ..••• 11-20.1
Help •••.•• 17-21
Error Recovery ...•...•.. 17-22
New Lines/Blank Lines • . 11-23
Indentation and White Space • . 17-24
Comments •• 17-25
Formatting . . . •• . •• 11-26
Literal Character Entry .••••• 17-27
Special Purpose Keys . 11-28
Macros 17-29
Characters (Moving by/Deleting) .• 17-30
Lines (Moving in and by/Deleting) • 17-31
Words 17-32
Sentences •• 17-34
Paragraphs 17-36
Screens • •. 17-36
Buffers • • . . ••••• 17-37
Multiple Windows .•.•..•.. 17-39
Mail/Messages ••.. 17-40
Typing Shortcuts 17-41
Programming Modes . 17-44
Printing Terminal Usage .•.••. 17-44.2
Extension Writing. 17-45
Additional Optional Settings 17-46

xiii CH27-00D

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

CONTENTS (cant)

The Multics emacs Command .•••.
Alphabetized List of Fundamental Mode

Requests • .. • • • • • • • •

Emacs Mail
Senolng Mail .

AXM
Reading Mail .

AXR

Programming Language Modes
Fundamental Mode Requests for

Programming Use . • •
A X ; ••• •••••
A Z ; •••
ESC
ESC N • • • • • • • • • • •
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC

P
A8 •
A F • • •
X set-comment-prefix •
X set-compile-options
X set-compiler • • • .
ES C • • • • • • • • • • • •
X ldebug . • • • . • • • • •
X fundamental-mode • •

Lisp Mode . • • • • •
FORTRAN Mode . • • • • • • • • •
PL/T Mode • . • • . . . • • • • • • •

PL/T Options ...•••••
Electric PL/T Mode • • •

ALM Mode • . .. ••••
Electric ALM Mode • . • • • • • • .

A-1

A-3

B-1
B-1
B-1
B-4
B-4

C-1

C-1
C-1
C-2
C-2
C-2
C-2
C-2
C-2
C-3
C-3
C-3
C-3
C-3
C-3
C-4
c-8
C-12
C-14
C-11
C-18
c-18

Macro Edit Mode . • • . • • . . . • • • • D-1
Entering Macro Edit Mode • . . . • • • D-1
Editing the Macros . • • . • • • • • • D-2
Redefining Macros • • . • . D-3

ESC AZ and ESC X
load-these-macros • • • • . • • D-3

Writing Macros Out to a File • • D-3
Using Macros Previously Written to

a File ..•.••.•.•.•.. D=3
ESC X load-macrofile

Using Emacs on Printing Terminals and
Glass Teletypes • . • . • • • •

xiv

D-3

E-1

CH21-00D

Appendix F

Appendix G

Appendix H

Appendix I

Appendix J

T _ ...l __ _

..LflUeX

Figure 2-1.
Figure 2-2.
Figure 3-1.
Figure 3-1.

CONTENTS (cant)

Page

The Message Facility . • • • • • • F-1
ESC X accept-messages • • • • • F-1
AX: ••••••••• F-1
"X' F-2
"X' F-2
"x- F-2
ESC X accept-messages-path . F-3

Emacs Start-ups • • . • G-1
Compiling a Start-up. . . • • . G-5
More Features You Might Want . . • . • G-6

Pop-Up Windows

Listing Emacs Terminal Types •
list emacs ctls

Overwrite Mode

ILLUSTRATIONS

A Screen Terminal . . .
A Terminal Keyboard • •
Editor Entry and Exit .
The Cursor and The Point

xv

H-1

1-1
1-2

J-1

i-i

2-2
2-3
3-7
7-1

CH27-00D

SECTION 1

INTHODUCTIOIJ

Multics Emacs is an integrated editing, text preparation,
and screen management system designed to take advantage of the
features of modern display terminals. Text entry and editing on
these video screen display terminals are done interactively.
You, the user, can see the effects of Emacs editing on the screen
as you type.

This manual is arranged so that you, as a new Emacs user,
can learn Emacs by immediately beginning to use it. The first
part, Sections 2 through 16, are tutorial in nature, and cover
text entry and the more basic Emacs requests. Section 17
summarizes the requests covered in the preceding sections, and
introduces the remaining Pundarnental mode (basic Emacs mode)
requests. Advanced users should immediately turn to this
section, which provides short descriptions of every Fundamental
mode request. The requests are presented there in functional
groups, i.e., for a particular type of editing task, all the
reqQests available to perform that task are described.

Users who work throUGh the iirst sixteen sections will also
find Section 17 useful for reference and for learning the
additional requests not covered in the tutorial.

The appendices describe specialized uses of Emacs, including
the Emacs mail system and programming language modes. Appendix A
provides the emacs command description, and an alphabetized list
of the Fundamental mode requests.

Throughout this manual, ".6macs" designates the system, and
the all lowercase "emacs" designates the Nultics command invoked
to use the system.

1 -1 Ci127-00

SECTION 2

GETTING STARTED

THE TERMINAL

Although it can be used on printing terminals, Emacs has
been designed especially for use on screen terminals. Sit down
at your screen terminal and note the three parts you will be
using as you edit:

• the screen

• the keyboard

• the modem communicating between the terminal and Multics

Figure 2-1 shows a typical screen terminal and Figure 2-2
shows a typical keyboard and the special keys described below.

The Screen

The screen of your terminal is like a television screen, and
displays the information needed to communicate with Multics and
Emacs. Messages from the system appear on the screen, and your
responses, typed on the keyboard, also appear.

2-1 CH27-00

N
I

N

o
p:.::
N
-.J
I
o
o

Figure 2-1 . A Screen Terminal

f\.)

I
V.J

(")

CONTROL KEY I ESCAPE KEY

DELETE KEY I LlNEFEED KEY t------

~ CARRIIAGE RETURN KEY-----
-.J
I
o
o

Figure 2-2. A Terminal Keyboard

The Keyboard

Your keyboard resembles the keyboard of a typewriter, with
its letters and special characters, but has additional keys.
Several of them are important for Emacs usage. They include the
following:

• control key

• escape key

• linefeed key

• delete key

• carriage return key

CONTROL KEY

Terminals vary, but you should be able to locate a key
labelled with the letters CTL, CTRL, CONTROL, CNTRL, or something
similar. This is the control key. It operates like a shift key
in that it must be held down while you hit one or more normal
characters. Simply pressing it and releasing it has no effect.
For example, if you press the "p" key, you get a lowercase p. If
you press the "p" key while holding down the shift key, you get
an uppercase P. If you press the "p" key while holding down the
control key, you get something called a control P. This control
P is a control character. All control characters are interpreted
as requests to Emacs. Control characters are used to control
Emacs, to manipulate the cursor and text. In this manual, the A

symbol represents the control key; alphabetic characters
following the A symbol are represented as uppercase, even though,
for them, a control character is the same whether the shift key
is held down or not (and generally you would not hold it down).

ESCAPE KEY

The next key you should locate is the escape key. The
escape key is commonly labelled with the letters ESC, ESCAPE,
ALT, or ALTMODE. On some terminals, you may have to hold down
the shift key to get an escape. Unlike the control key, which is
held down while a normal character is typed, the escape key is
typed sequentially, i.e., before or after a normal character.
You use the escape key for some Emacs requests and to terminate
your response to a few of the Emacs prompts. Be sure to release
the ESC key quickly, to avoid getting two (or more) escapes in a
row. In this manual, the letters ESC represent the escape key.

2-4 CH27-00

LINEPE.ED KEY

Your keyboard should have a linefeed key labelled with the"
letters LINEFEED, LF, or N~W LINB. The linefeed key is sometimes
used in Emacs.

DB1ETE KEY

The delete key transmits the ASCII DB1 character, octal code
177. The key is generally labelled with the letters DEL or
RUBOUT. As its name suggests, its use is to rubout, or erase,
the previously typed character(s). In this manual, the character
sequence \177 represent the delete key.

CARRIAGB RETURN KEY

On Multics, a carriage return returns you to the left margin
and inserts a newline character in your input. This key is often
labelled either RETUH~ or CR.

,]~he Modem

Your terminal must be connected to the Multics system in
some manner for emacs, or any other Multics cOQmand, to work.
The modem or an acoustic coupler provides an interface to the
communications link between your terminal and Multics. Many
modems are equipped with a telephone receiver and dial. For this
type of modem, you dial a specific number to begin the logging in
procedure and make the connection to rvIul tics. dOvlever 7 a wide
variety of modems exist; if you do not know how to establish the
connection between your terminal and Multics, you should ask a
technically qualified person at your site to help you log in.

Technical Requirements

Two technical requirements that your terminal must meet are
that it be an ASCII terminal, and that it be capable of running
in full duplex mode (i.e., have controllable local echo). Either
your terminal or your modem may have a switch that can be
positioned to half or full duplex mode; you should set this
switch to full duplex. If your terminal does not have

+ 11 h1 ..L1n0P,1..L Qr>h" ("'.,...~"'+r-.Y> r.v./r..p-.p-\ ·~o"" _l_-U'..:J '0" .. can "ro..J...,L..aOJ,L..e ~~~ C;vdV \ 1-11 .l.lluc.:l UU/ U.l...L) , .y u. oilU J..U J.. 0 1n 1n
full duplex and echoplex modes. Generally, your site will have
arranged for appropriate terminal modes to be set automatically
when you log in. If you find characters are printed out twice,
setting the modes and/or switches should correct the problem.
Again, if you have a question about either of these requirements,
ask someone for help.

2-) C1I27-00

If your terminal has an auto-linefeed key or switch, be sure
it is off, and use lfecho mode to achieve its effect. Pailure to
do this results in certain displays vanishing from the screen·
prematurely.

LOGGING IN

The first thing you want to do is establish a connection
with the computer. This is called logging in. To log in, you
must be registered on the system, as a member of a certain
project. You are given a unique User id t user identification~
which consists of a Person id (name)-and Project id (project
name). Por example, f1ary Smith, working in the sales-department,
may be given the following User id:

3mith.Sales

This User id belongs to Nary alone; no one else can use it. Mary
also has a password, which along with her User id allows her to
use the system.

The procedure for logging in is explained in depth in the
New Users' Introduction - Part I. Briefly, however, to log in
you turn power on for the terminal, dial the appropriate
telephone number, and when you hear a beep signal, either press a
button or place the telephone receiver in the modem and wait.
(This method is employed unless your terminal is directly
connected to Multics, in which case you do not need to dial a
phone number.) When a connection has been established, a header
of the following type is displayed by Multics on the terminal:

Multics 8.0: peo, Phoenix, Az.
~oad = 26.0 out of 100.0 units: users = 26

At this point, type the login command and
separated by a blank, and then a carriage return.

login Smith
Password:

your Person_id,
For example:

Multics then requests your password (the second line, above).
Depending on your terminal, the display of the password is either
suppressed or hidden in a string of cover-up characters typed by
the system. Video terminals usually just suppress tha password.
If you make an error while logging in, the system informs you of
it and asks you to try again.

2-6 C1I27-00

Login incorrect.
Please try again or type "help" for instructions.
l-ogin Smi th
Password:

After you have successfully typed your password, the system
responds with information regarding your last login.

Smith Sales logged in 06/07/80 0937.5 mst Tue from .••
Last login 06/06/80 1359.8 mst Mon from terminal ..•

The last line of system-generated text in the log-in
sequence is the ready message. This message is printed to
indicate that Multics is at command level and ready to receive
the next command. The ready message consists of the letter "r"
followed by the time of day and two numbers tqat reflect system
resource usage. For more information about the ready message,
refer to the ready command in the MPM Commands.

r 12:22 3.229 1799

The complete log-in sequence for Mary Smith is:

login Smith
Password:

Smith Sales logged in 06/07/80 0937.5 mst Tue from •••
Last login 06/06/80 1359.8 mst Mon from terminal .•.
r 12:22 3.229 1799

2-7 CH27-00

INVOKING THE emacs COMMAND

You have logged in and received the ready message indicating
that you are at command level. To enter Emacs, type the emacs
command on your keyboard, followed by a carriage return (Multics
command lines are always terminated by a carriage return):

emacs

I Emacs then checks your terminal type against the list of known

~:~~~~:~ ~~~~~o~~~~~rttC;L~:) .emaIc;, i ~h~~~d~r~ kcno~~~~OalsleErma~~r v~~~~
terminal, Emacs uses that controller. If your terminal type is
not found, it checks the current terminal modes to see if your
terminal is a video display terminal (CRT) or a hardcopy printing
terminal. If your terminal is a printing terminal, Emacs displays
the file the best that it can, given the limited capabilities of
printing terminals. If you have a video terminal of an unknown
type, Emacs tells you:

I Unknown terminal type.

I Do you want a list of known terminal types?

If you type "yes", Emacs displays the names of all termindls it
knows how to support. (This list is the same as the one generated
by the list emacs ctls command, described in Appendix I.) Among
these names -; you -should be able to find the acceptable form of
the name of your terminal, or the name of a supported terminal
that most closely matches the characterist ics of your terminal.
After displaying the list, Emacs asks:

I What type terminal do you have?

I Type it in, followed by a carriage return. If you cannot find
the name of an acceptable terminal type, type:

I quit

I followed by a carriage return, to return to command level. You
may want to try again on a different terminal type. (Instructions
for supporting new terminal types are available in Emacs Extension
Writers' Guide, Order No. CJ52, "Writing Emacs Terminal Control
Modules. "j---

8/82 2-8 CH27-00C

The Init~~! Display

Once Emacs (las recognized your terminal type, ei ther
::iutomatically or by querying you as described above, it takes
several seconds to get started. When it has started up, it clears
the screen, and displays the line:

Emacs 11. 11 (Fundamental) - main I
at the lower left of the screen. This line is called the mode I
line. The mode line tells you several things, the most important
of which is that you are (:()ilHi1iElic~tlne with Multics Emacs, rather
th~~ with the command processor or with another editor. A number
may follow the word "Emacs"; it gives the Emacs version in use.
Thf~ n3'ne of the major mode you are in is parenthesized, and here
in the above example it is the simplest major mode, Fundamental I
mode. Emacs has several modes best suited for different tasks,
such as prepar lng text or programs in the various programming
lClnguages. Major modes each have a distinct set of key bindings
(typed key sequences that specify particular request instructions
to Emacs). Minor modes provide "fine tuning" to modify the way
the Emacs works, but do not have a special set of key bindings.
The names of minor modes, if you are using any, appear right
after the major mode name in the mode line, enclos8d in angle
brackets «»:

Emacs 11.11 (Fundamental <overwrite» - main I

You can edit several different items at once with Emacs. I
Each item being edited is edited in a separate editing environment I
called a buffer. The buffers are named so th2t you can identify
them. The buffer name in the mode line above is "main".

The area betHeen the top of the screen and the mode line is
where text being edited appe2 r·s. This area of the sc reen is I
called the window. The window always (li:3p lays about twenty
consecutive lines of the text you are editing. Of course, if I your text is shorter than that, part of the window is empty.

At this point, the only sign of life in your window is a
blinking object in the upper left corner. This is the cursor.
It may be a blinking underline, or a blinking or solid box, depending
on your terminal. The cursor is the most important thing to I
watch on your screen. It is al ways on S0:ne posi t ion on the sc reen,
and all "action" occurs at the cursor. All the text you enter is
entered at the cursor (and the cursor moves), and all the text
you delete is deleted ::it the cursor.

8/82 2-9 CH27-00C

SUMMARY OF TERMS

When the emacs command is invoked, the first screen displayed
is pretty simple, since it is practically empty. You should,
however, be familiar with the following terms, and be able to
relate them to what appears on the screen.

• mode line

• major mode

• key bindings

• minor mode

• buffer

• buffer name

• window

• cursor

8/82 2-10 CH27-00C

SECTION 3

ENTERING TEXT AND SIMPLE CURSOR MOVEMENTS

TYPING IN TEXT

Now you are going to enter some text. To do so, you simply
begin typing. Type the following on the terminal, and stop after
typing the period:

This is sample text.

In general, you may have to wait a few moments for the characters
you are typing to appear on the screen, especially if it has been
a few minutes since the last time you typed. If the user load on
Multics is especially heavy, the wait is correspondingly longer.

The text appears at the top of the screen as you type~ This
line is the beginning of your document; the way it looks is exactly
the way your document is. Stop and look at the screen. The
cursor is to the right of the period in the sentence just typed.
You should get into the habit of thinking of yourself as being
"at"·some point in your document. That point is indicated on the
screen by the cursor.

At the bottom of the screen, an asterisk (*) appears in the
line below the mode line. This indicates that the buffer has
been modified, i.e., changed in some way. It remains until the
modified buffer is written out, and reappears thereafter whenever
new modifications occur that have not been written out. This is
discussed more in Section 5.

1/82 3-1 CH21-00B

Now add another 1 ine Hi t the carriage return key (for a
Multics newline) This puts a carriage return into your text and
moves the cursor to the beginning of the next line Type:

Here is more text yet.

Again, the text appears on the screen as you type it. The first
line you typed stays where it is, with the second line appearing
under it, Your document is now two lines long, and you could
continue to type in more text indefini tely. It is just like
using a typewriter.

EDITING WITH EMACS REQUESTS

Emacs performs all of its editing functions by carrying out
programmed instructions when you issue a request. You issue, or
invoke, a request by typing certain keys or key sequences. Each
request (key or key sequence) is individually attached, or bound,
to a command name, which tells Emacs what set of instructions to
follow when you issue the request associated with it. A command
name is a hyphenated, abbreviated (sometimes) name that describes
the action of the request to you, and specifies the appropriate
instructions to Emacs. As you learn Emacs, command names serve
tor em i n d you 0 f wh at the r e que s t s do. Wh e n you are pro f i c i en t
in Emacs, however, the command names can be used in computer
programs to construct your own requests. As a matter of fact,
you can "connect" (bind) any key of your choice to any command
name of your choice if you do not like the default requests provided.
The section on keyboard macros describes how to do so.

Self-Inserting Characters

Wh en yo u t y p e inn e w t ext, you are act u a 11 y iss u in g Em a c s
requests. Printing characters (other than II, @. and \, whose
special meanings are explained later)' are called self-inserting
because when you type one, it inserts itself intOEhe text in
your buffer. So typing the letter "d", for example, tells Emacs:

Wh at: to ins e r t a " d "
Where: at the cursor

2/83 3-2 CH21-00D

Correcting Typing Errors with Emacs

Even the best typist makes an occasional error. The following
are special characters useful for making corrections with a single
keystroke:

• # (The erase character)

• \177 (the delete key)

• @ (the kill character)

To see how these characters work, you will have to type a
line wi th an error in it. Go to the next line, by typing a
carriage return, and type:

Multix

Stop as soon as you type the "x".

THE ERASE CHARACTER (#)

On Multics, if you type a wrong letter: you use the # (pound
or number sign) character to erase it. The same is true in Emacs;
the command name of the # request is rubout-char. Type the #
character and watch what happens. The "x" in Mul tix disappears
from the screen, leaving no trace of itself or the erase character.
The cursor, which was positioned right after the x, backs up a
space and is now posi tioned right after "i" in Mul ti. No trace
or record of the mistake remains. You could, at this point,
simply type in the letters c and s, and your correction would be
completed. However, type an "x" back in, so that you can see
another way to correct typing errors.

THE DELETE KEY (\177)

The screen should be set up now exactly the same as
when you tried the erase character a minute ago. With the
right after the "x" in Mul tix, hi t the delete key once.
the x disappears and the cursor moves back one space to
right after the "i" in Multi.

it was
cursor
Again,
appear

Typing ei ther a II or the delete key erases the previous
character, i.e., the character right before the cursor. Use
whichever is most convenient. The command name of the delete key
request, as you might expect; is also rubout-char.

2/83 3-3 CH27-00D

THE KILL CHARACTER (@)

Suppose that you decide you would like to erase the whole
1 in e, w hi c h now con sis t s 0 f the 1 e t t e r s " M u 1 t i . " Th e cur so r i s
s till po sit ion e d d ire c t 1 Y tot her i g h t 0 f the t r ail in g i. On
Multics, you use the @ (commercial-at sign) character to erase
everything typed so far on the current 1 ine . In Emac s, the @
also erases everything on the current line to the left of the
cursor, and the remaining text moves to the beginning of the
1 ine. Try typing it. You see the five letters displayed disappear,
and the cursor move to where the "M" was. The @ request's command
name is kill-to-beginning-of-line.

Typing in Special Characters

If you are wondering how to actually insert one of the special
characters, like the II, into your experimental text, here is an
additional thing to tryout.

"Q

The "Q request, whose command name is quote-char, "quotes"
the c h a r act e rim me d i ate 1 y follow i n g it, i . e., itt ell s Em a c s to
insert it literally into the buffer. For example, if you hold
the control key down and type a q, then release the control key
and type a pound sign (holding down the shift key on your terminal
if necessary), a # appears on your third line. No characters are
deleted. Now type a II without preceding it by a "Q, and the # in
your text disappears.

2/83 3- 3 . 1 CH27-00D

MOVING THE CURSOR

You could continue to add text to your two-line document by

I just typing it, ending each line with a carriage return, and
simply typing at the end of the document to add more lines (but
always ending that last with a carriage return), and correcting
any mistakes you catch with the II, \177, and @. However, you
would probably soon wish to change or modify some text already
entered. In order to do so, you need to know how to move the
cursor to the place requiring the change. The following p'aragraphs
demonstrate how to move the cursor:

• to the pr~vious line (Ap)

• to the next line (AN)

• forward a character (AF)

• backward a character (A8)

• to the beginning of the line (AA)

• to the end of the line (AE)

Getting to the Right Line

In order to change the line you entered that reads:

"This is sample text"
to

"This is some sample text"

you first have to get from the beginning of the empty third line
on your screen to the first line, and then to the right place in
that first line. To do this, you move the cursor up one line at
a time by telling Emacs to go to the previous line.

The Emacs request that moves the cursor to the previous line
is Ap (control P). The command name is prev-line-command. Locate
the control key, hold it down while you press the p key, and then
release both keys. Now wa tch the screen: you see the cursor
move up to the previous line, to a place right above where it had
been. Note also that when you type the Ap, you do not "see" it
appear on the screen, but only its effect. What you see on the
screen is what you have in your document, and it does not matter
what you used to achieve that state.

You still need to go up one more line, so type another AP.

7/81 3-4 CH21-00A

Moving Within the Line

Now that you are on the line in which the change is to be
made, you need to be able to move the cursor forward to the
correct point on that line. The Emacs request for moving forward
a character at a time is AF, forw~rd-char. Hold down the control
key and slowly press the f key a few times. The cursor moves to
the right, one character at a time, as many times as you type AF.
Continue to type AFs until the cursor is under (or covering, on
some terminals) the letter s of the word "sample". This is where
you plan to add the word "some".

If you go too far to the right, you have to "back up" to the
s in f!sample". The Emacs request for moving backward a character
at a time is A B, backward-char. So, regardless of whether you
did in fact go too far or not, try moving the cursor backward.
Again, hold down the control key and hit the b key several times.
The cursor moves backward to the left one position for each AB
you type. Soon you reach the beginning of the line. You cannot
go any further back, since this is the beginning of your text, so
Emacs causes your terminal to beep, indicating that you have made
an error. Simply wait for the beeping to stop, and release the
control key.

Now, go ~head and move the cursor forward again to the s in
"sample". To add the word "some", just type it in. Emacs moves
the rest of the line over and displays your text:

This is somesample text.

Obviously, this is not quite the way you want this sentence to
appear. To add the space between the two words, simply hit the
space bar. Now you see:

This is some sample text.

wi th the cursor sti 11 under the s in "sa!Tlple". The text is fixed.

Note that you did not have to do anything special to type in
the new word. You just moved the cursor to the right place and
started typing.

7 /81 CH27-00A

Getting 83ck to the Right Line

In order to add rt few more lines to the end of you~ document,
you must move the cursor down a couple of lines. You do this by
go i n g tot hen ext 1 in e , and the nth e n ext 1 in e aft e r t hat. As
you may have guessed, the Emacs request for going to the next
1 ine is AN, next-line-command. Hold down the control key and
type an n. The cursor moves down to the next line, but note its
position in that line. Ernrlcs tries to keep you in the S8me column
when going between lines, so the cursor is under the initial t in
the word "text". When you hit the n key again, still holding
down the control key, the cursor moves down another line but goes
all the way over to the left. This 1 ine is empty. Al though
Smacs tries to keep you in the same column, it chooses the column
in a reasonable fashion. In general, you would not consider it
useful to be positioned in the middle of an empty line. Likewise,
if the word "Multix" had still been on this line, Emacs would
have placed the cursor immediately to the right of the x, the
closest column on this much shorter line.

The Ends of the Line

To tryout the next two line-movement requests, type in:

using Em8cs is easy

To say instead, "I think using Emacs is easy," you could type a
string of ABs to move backwards to Cidd the first two words. However,
rtn easier way exists (using Emacs really is easy). Emacs provides
the AA request (go-to-beginning-of-line)to move the cursor to
the beginning of the current line. Type (1 AA 8nd watch your
screen. The cursor moves to the u in "using". You can now type:

I think

remembering to end with a sp8.ce so that the "somesample" problem
does not recur.

7 /81 CH27-00A

The only thing now missing from your sentence is punctuation.
Rath~r than typing a series of AFs to move forward a character at
a time, you can skip right to the end of the current line with a
AE, go-to-end-of-line. The AE request positions the cursor right
after the last character, and before the carriage return if the
line has one. On a line with nothing on it (nothing in it but a
carriage return), AE does nothing. Try the AE, watch the screen,
and then type either a period or an exclamation point, depending
on your state of enthusiasm!

GETTING STOPPED

You may wish to practice and experiment with the Emacs requests
you have just learned. Feel free to do so, since none of this
text will be saved (reading in and writing out files is covered
in Section 5). When you are finished you can exit from Emacs and
log out of Multics.

1/81 j -6. 1 CH27-00A

Exiting from the Editor

When you began this session, you logged into the Multics
system. You were then at command level, and, therefore, able to
invoke the Multics command, emacs, to enter Emacs. When you want
to leave Emacs, you must return to command level by issuing an
Emacs request* Once returned to command level, you can invoke
the Multics l~gout command, and end the session. Figure 3-1
illustrates this process; an imaginary "you are here" arrow would
point to the lower Emacs box.

I

I

I t
10 in logout

Multics
Command level

emacs

!
Emacs I

Figure 3-1. Editor Entry and Exit

The Emacs request that returns you to command level is AXAC,
quit-the-editor. The control key must be held down while you
depress first the x and then the c keys. Try it. As you watch
the screen, the top several lines of your text is replaced by the
following message from Emacs: .

Modified Buffers:
) * main

3-7 CH27-00

At the same time) Emacs writes a message and question, called a
prompt» in the area below your mode line at the bottom of the
screen. The ques t ion is called a prompt beca use Emac sis" prompti ng"
you for a response. This area where the prompt appears is called
a minibuffer, and normally occupies two lines (though both are
not always used). Emacs prints this message in the minibuffer:

Modified buffers exist. Quit?

Since your buffer has changed, from being empty to having text in
it it is now modified. Emacs is telling you that you have done
work that will not be saved, and making sure that you really want
to quit under these circumstances. If you had saved your work by
writing it out to a file, Emacs would not prompt you at all, but
simply return you immediately to command level.

However, since you are not going to save this practice work,
simply type your response:

yes

and a carriage return. Prompts require not only a response; but
also a termination character, generally a carriage return, to
indicate the response's end. When you type the carriage return,
angle brackets «» appear in the minibuffer at the end of your
response.

I In the case of the prompt above, when you type "yes" and a
carriage return, Emacs clears the screen and returns you to Multics
command level. A ready message appears at the top of your screen
to indicate that you are, indeed, at command level.

If you mistype your response, Emacs indicates that you've
typed an inappropriate response to its query. At the top of the
screen, the line that said "Modified Buffers:" will say instead:

Please answer "yes" or "no"

This not only lets you know you have given the wrong response,
but also provides you with the acceptable choices. You can answer
either "yes" or "no" (or use short forms "y" for "yes" and "n"
for "no"). If you catch the error before typing a carriage return
to end the prompt, you can ed it your response just as you would
edit text.

2/83 3-8 CH21-00D

SUMMARY OF TERMS

A few new terms have been introduced that you should·
remember, since they are going to be mentioned frequently.

• request

• com:nand name

• prompt

• minibuffer

• modified huffer

From command level, you can now invoke the Multics command
for logging out, logout. Logging out breaks the connection
between your terminal and Multics. After you have typed it, the
system responds by displaying your identification, the date and
time of the log out, and the tot~l CPU time and memory units
used.

logout
Smith Sales logged out 06/07/80 1249.4 mst Tue
CPU usage 17 sec, memory usage 103.1 units.
hangup

The 'J'lord "hangup"
up the telephone
broken on purpose.

18 displayed hy ~ultics to
and to indicate that the

remind you to hang
connection has been

3-9 CH21-00

SBCTlorr 4

SIMPLE DELETING AND KILLING

DELETING CIIARACT8R8

You already know how to use the # to delete mistyped
characters. This is especially useful if you catch an error
immediately after typing it, since it erases the single character
to the left of the cursor. To learn another method, log in again
and invoke the emacs command. You can now type in the following
text, exactly as it appears here 80 that you can follow this
lesson easily (do not type a carriage return after
"computerized."):

The cursor should now be to the right of the period following
"computerized". In reviewing this text, you see that in the
third line, "wirk" should actually say "work". To correct this
in Emacs, first you have to" go" to that point, by moving the
cursor. Type two A pS , the previous line request, and your cursor
moves to after the "h" in "much". The backward character
request, A B, gets you to the letter "i" in the offending "wirk".
Since you have to move backward several characters, you should
hold down the control key and hit the b a dozen or so times. If
you go too far, use A p to go forward to the correct spot. The
cursor should end up under (or covering) the "i" like this (the
cursor is represented as an underscore):

our jobs. In publications wlrk, three areas made much

4-1 CH27-00

Deleting One Character at a Time

You now want to change the i at the cursor to an o. In
Emacs, this change is made by deleting the unwanted character(s),
and typing in the desired one(s). You delete characters, one
character at a time, by typing AD, delete-char. Type one AD and
watch the screen. The third line now appears as:

our jobs. In publications w~k, three areas made much

The 11i H has been removed from the line, the
and the cursor is under the "r". Now type
and the line reads:

text has closed up,
the correct letter,

our jobs. In publications wo~k, three areas made much

The cursor is again under "r" that follows the "0" that you
added.

Often, you need to delete a lot more than a few characters;
you want to remove entire lines, large pieces of lines, or many
lines. The kill lines request, AK (kill-lines), does this. For
example, typesetting already is computerized, so you might want
to replace that sentence with something else. Again, you must
reposition the cursor and then correct the text.

First, get to the letter "S" in "Someday" by using the
backward character, forward character, next line, and previous
line (AF, A B, Ali, "'p) requests. When the cursor is under the "S"
type a AK, and watch the screen. All the text between the cursor
and the end of the line vanishes.

RETRIEVING KILLED LINES

You could replace the line just killed by typing in a new
sentence right here and now, but suppose you decide instead that
you really want i t back. (The te rms "del ete" and "ki 11" both
mean to erase text, but generally delete applies to characters
deleted one at a time, and ~ill applies to characters deleted as
groups, i.e., lines and sentences.) You can get it back intact
because it has been prcGsrved In a special place called the kill
ring.

4-2 CH27-00

The K request puts killed text in the kill ring, and it
stays there so that you can retrieve it, either right away or
many requests later. Often it is useful to purposely kill text
so that you can move it from one place to another by killing it
at one position in your text, repositioning the cursor, and then
retrieving it from the kill ring. Whether you purposely or
accidentally kill text, hOTtlever, the kill ring provides the security
of being able to conveniently recover it.

The kill ring normally has ten "slots" for saving your text. I
When you issue a kill request (you know only two so far, @ and
.... K), the killed text goes into the first slot. (The II and D
requests do not put the characters they delete into the kill
ring. If you accidentally delete a character, it is easy enough
to retype it; if you delete many characters by hand, it is probably
not a mistake and thus not important to be able to recover them.)
If you later issue another kill request, the text previously killed
moves into the second slot, and the newly killed text goes into
the first slot just vacated. Ki lled text keeps rotating down a
slot in this fashion until all ten slots ~re filled. At the next
kill request, the very first killed text would be discarded, since
no eleventh slot is available in which to save it.

Kill merging is a feature that allows you to save related
killed text in the same slot in the kill ring. For example, if
you are looking at several lines, and decide to kill them, you
probably start at the top and delete them line by line. Since
you delete them as one, they should be stored as one, so that
they can be brought back as one. Kill merging provides this; if
you type successive kill requests that kill text in the same
direction, the text killed by each request is merged andC;CCupies
only one slot.

So, for kill merging, the kill requests must be:

• successive kill requests

• in the same direction

Successive kill requests have no intervening keystrokes between
them; you cannot type in any new text or issue any non-kill Emacs
requests. If you do, the killed text goes into separate slots.
These successive kill requests must also kill text in the same
direction in order to merge, i.e., the requests must both/all
eliminate text from either right to left (forward), or left to
right (backward). The AK kills forward. The @ kills backward
(however, note that you cannot do successive @ kills, so they
would never merge anyway).

7 /81 4-~ CH27-00A

SUMMARY OF TERMS

Before moving on to see
retrieved, you should be sure
with where it is retrieved from:

• kill ring

• kill merging

• successive kills

Yanking Text Back

how killed
to understand

While you have been reading the above,
typesetting ... " sentence has been sitting
Maybe you want to reconsider using it, and
look.

"'y

text actually is
the terms dealing

the "Someday even
in the kill ring.
would like another

You can "yank" it back out of the kill ring by typing a Ay.
The "'Y request, named yank, is useful for lettine you fix damage
done by mistaken or inadvertent killing, and for moving lines
around. Type a "'Y and watch the screen. The sentence is back,
and the cursor is positioned after it.

Reposition the cursor, by means of the requests you know, to
the "s" in "Someday". Remove the sentence again with K and type
in:

Speed is essential, since technological
advances must be documented to be used.

The correction is made, and this new sentence begins where the
killed one began.

4-4 CH21-00

MORE ABOUT AK

The AK request does different things depending on whether it
is used at the end of a line or not. Type about four ANs to get
to a fresh place on the screen to ehter some new text. Note that
the cursor is at the left margin; these lines are empty. Type
the following well-known verse:

I wandered lonely as a cloud
That floats on high o'er vales and hills,
When all at once I saw· a crowd,
A host, of golden daffodils;
Beside the lake, beneath the trees,
Fluttering and dancing in the breeze.

Position the cursor to under the "I" starting the verse.
Now kill all the text on that line with a AK. Observe the
screen: the line becomes blank. Now type AK again (a successive
forward kill), and watch the screen. All the rest of the poem
moves up. To summarize the actions of AK:

• When anywhere but at the end of a line (i.e., at the
beginning or in the middle of a line), AK deletes all
text between the cursor and the end of the line,
leaving the cursor at what is now the end of the line.

• When at the end of a line, ~K removes the carriage
return, or "sticks the next line onto the end of this
one," making one line. If the line that the cursor is
on has nothing in it (except the carriage return), this
makes the line go away. If the line that the cursor is
on contains more than a carriage return, the next line
is tacked onto the end, as though you never hit a
carriage return between them.

Now type another AK. The line:

That floats on high o'er vales and hills,

empties out. Type it once more, and that (now empty) line
disappears, and the cursor is at the beginning of the next line
of the poem. Typing successive AKs deletes lines one by one as
you type them.

To yank these lines back, type one Ay. Both lines come back
because the text was merged in the first slot on the kill ring.
Try typing another Ay , and watch the screen. If you were
expecting to get the "Someday even typesetting ... " sentence
yanked back, you will be surprised to see the two poetry lines be
duplicated on your screen. Just because they have been yanked

4-5 CH27-00

back once does not ,mean they are no longer in the kill ring. In
fact, they still occupy the first slot, and you can yank them
back into your text anywhere as many times as you want, as long
as they remain in the kill ring. The Ay yanks text from the
first slot. When text is pushed into succeeding slots by
subse~uent kills, it is retrieved by giving a numeric argument to
the Y request (essentially, providing the number of the slot
from which text should be' yanked). Numeric arguments are
explained in Section 8.

One additional note: sometimes more text gets yanked back
than you actually want. However, going back and killing any
unwanted text that you have yanked is much easier than having to
retype killed text that you could not yank.

4-6 CH27-00

SECTION 5

WRITING AND READING FILES

This section explains how to save your edited text by
writing it out to a file, and how to read existing files into
Emacs for editing (files and the Multics storage system are
explained in detail in the New Users' Introduction - Part I).

WRITING A FILE OUT

Before you write the contents of the "main" buffer out to a
file, put about twenty more lines into it. Just type in
additional short lines of any text you choose. End the last
line, as all lines, with a carriage return (if you do not, your
file will not end in a newline character, and many Multics
programs will not operate properly on that file). The object is
to have enough text to experiment with while learning ~ne
remaining Emacs requests. Be sure, however, to embed these lines
somewhere in what you add:

Now is the time, and the only time,
for those who have the time to
give their time.

The Emacs request for writing a file is AXAW, write-file.
When you finish adding text, type AXAW and watch the screen.
Emacs prompts in the minibuffer:

Write File:

The cursor has jumped from the last character you typed into the
minibuffer, and is waiting for you to supply the pathname of the
place you want to write the buffer's contents. Type in a
pathname, and end the prompt with the carriage return. For
example:

first.practice

1/82 5-1 CH27-00B

This creates a segment named first. practice in your working
directory. As Emacs writes this file, the word "Writing ... "
appears in the minibuffer. When the word "Written." replaces
"Writing ... ," you know that the file has been successfully
written out to the Multics storage system. At the same time, the
full pathname of the file appears right below the mode line.
This is called the path line, and tells you exactly what file you
are working with. (You are, in fact, only working with a copy of
the file; any additional changes you make would not be reflected
in first.practice until you write it out again.) You may have
noted the asterisk (*) lhat began the path lin~. It appears
there whenever a modified buffer has not yet been written out.
Hence, when you issued the AXAW, it disappeared. It reappears
with subsequent modifications, remaining until the next writing
out of the buffer. It is a convenient indicator for determining
whether or not you need to write out the buffer in order to save
your work.

The bottom of your screen now looks something line this:

Emacs (Fundamental) - main
>udd)Sales)Smith)first.practice

Write File: first.practice<>
Written.

You have the mode line and the path line, followed by the two
lines in the minibuffer that provide extra "status" information.

If you already have a file named first.practice in your
directory, Emacs verifies the write-file request with the query

first.practice already exists. Overwrite it?

This gives you the opportunity to reconsider before overwriting
the file contents, by specifying yes or no to the query in the
minibuffer.

You can disable this protection feature either by preceding
write-file with a numeric argument (e.g., AUAXAW) or by turning
on the write-file-overwrite option (it is off by default) as
described under "Additional Optional Settings" in Section 17.

11/96 5-2 CH27-00F

~ Your New File Really There?

To verify that you have indeed written out a segment called
first.practice, leave Emacs and return to command level. The
AXAC request does this. Now you can invoke the Multics list
command, which lists the segments (in your working directory in
this case). (The list command is described in detail in the New
Users' Introduction - Part I.) Type:

list

The segment named first.practice should be the first file listed.

READING A FILE IN

When your files have been listed, and you have a ready
message, reenter Emacs by invoking the emacs command:

emacs

You can now read in a file.

When you read in a file, it is read into a buffer; every
file read in goes into its own buffer. The first twenty or so
lines appear on the screen. Although you see only these first
several lines, the whole file is there. If you try to position
the cursor to an unseen line, either by doing ANs so that the
cursor tries to go off the bottom, or APS so that the cursor
tries to go off the top, Emacs displays the lines so that the one
you want is indeed shown.

The find file request for reading in files is AXAF,
find-file.~pe~and watch the screen. The cursor drops below
the mode line, into the minibuffer, which reads:

Find File:

with the cursor after the colon. Emacs is prompting you for the
pathname of the file to be read in.

11/86 5-3 CH27-00F

Type the pathname of the file that you previously wrote out,
ending with a carriage return. In our example, you would type
either:

>udd>Sales)Smith)first.practice

or, if you are in the directory that contains first.practice,
simply:

first.practice

If you make a mistake while typing in the minibuffer, you can
edit it with #, AB, AD, AF, or any other request, before you type
the carriage return. Assuming you have typed it correctly, Emacs
prints "Reading ... " in the minibuffer, and strikes it out when
it has finished reading. The screen fills up with the first
windowful of the file. The cursor is at the first character of
the first line.

Now look at the mode line. The buffer is no longer "main,"
but "first." The buffer name is taken from the first component
of the entry name of the file read in (in this case, the file was
first.practice, so the buffer is named "first"). The path line,
below the mode line, gives the full pathname of the file in this
buffer.

If the buffer already contains first.practice and the file
being read in has been changed since the buffer was last read or
saved (perhaps by another user or program), Emacs responds with a
local display at the top of the screen

Buffer first contains an old version of first.practice

A query in the minibuffer offers several choices, including a
help option to explain the possible actions

Select "overwrite", "use", "skip", "new" buffer, or "help":

Respond with help and you are told

Since buffer first was last saved or read, the file
first.practice has been modified.
The buffer HAS NOT been modified since then.

Respond with one of:
overwrite - to reread the file into this buffer
use - to use this buffer as is
new - to select a new buffer
skip - to skip the current file

11/36 5-4 CH27-00F

The cursor is then placed back at the prompt so that you can make
your selection.

You may first be queried on which buffer to use before
having to select an action, if for example, the default buffer is
already in use or several buffers contain the same file.

If you have made modifications to the buffer, the local
display will say

Modified buffer first contains an old version of
first.practice

and the help message will contain the words HAS ALSO instead of
HAS NOT.

You can bypass this check and just read in the file by
turning off the find-file-check-dtcm option (it is on by default)
as described under "Additional Optional Settings" in Section 17.

A more convenient way to read in this file is to supply the
file!s pathname a~ an argument to ~ne emacs command. To do so,
simply type the emacs command, a space, and then the pathname:

emacs first.practice

Thus, instead of invoking the emacs command, starting in the main
buffer, and then reading first.practice into the buffer "first",
you enter Emacs and read first.practice directly into the buffer
"first" in one step, bypassing the "main" buffer.

Counting the Lines in ~ File

Once a file is read in, you may want to know how big it is.

The line counter request tells you how many lines are in
your document, tne number of the line in which the cursor is
currently positioned, and the cursor's dprint column position.
This request is AX=, linecounter. Additionally, if your file
does not end in a newline character, AX= informs you.

11/86 5-5 CH27-00F

Type a AX and an equal sign (=). Be sure to release the
control key before striking the equal sign. Also, remember to
hold the shift key down if the equal sign requires a shift on
your terminal.

Emacs prints something similar to this in the minibuffer:

38 lines, current = 1, column = 1

This sample document is 38 lines
first line in the first column.

cursor is on the

Now type ANs slowly until the cursor is on the line right
above the minibuffer. Be careful, just this time, to type slowly
enough so that the cursor stays in the window currently
displayed. Now note the contents of the line it is on. Then
strike one more AN. Emacs rewrites many lines on your screen,
and, if your terminal has the capability to do so, moves many
lines around. When it is finished, the cursor is on a line in
the middle of your screen. Look at the line above that one. You
see that it is the same line that was at the bottom of the screen
a minute ago.

Type another AX=. The minibuffer now says something like
this:

38 lines, current = 22, column = 1

If you look at the screen t the cursor is on about the twelfth
line, not the 22nd. However, you are editing the file (or the
buffer), not the screen. The line you are on is, in fact, the
22nd line of the buffer. Since only about 21 lines can be
displayed at once, Emacs automatically chooses which 21 lines to
display in order to make sure that the line you want is on the
screen.

You can now edit this file as though you had
using all the requests you know. Try putting in a
killing a line. At once, the word:

Modified

typed it in,
new word or

appears in the minibuffer, letting you know that you have changed
the file since you read or wrote it, and have to write it out if
you want your work to be saved.

11/86 5-6 CH27-00F

One service AX= performs is to warn you if your file does
not end in a newline (carriage return). If it does not, because
you forgot to end the last line in it with a carriage return, AX=
prints a message like this:

38 lines (NO NEWLINE), current = 23, column = 15

In such a case, you should go to the end of the last line and
insert a carriage return.

SAVING (REWRITING) ! FILE

Having made some editing changes to the file, you must write
it out to save them.

The request that writes out the same file that you read in
is AXAS, save-same-file. This request uses the default pathname
of the file when writing out the buffer's contents. This means
that when you type a AXAS, Emacs recognizes that you wish to use
a pathname that it already knows. Essentially, you are telling
Emacs, "Since no pathname is supplied here, you should, by
default, use one already supplied." The default pathname is
always the pathname that appears in the path line. The AXAF
request sets the default pathname, and typing AXAS causes Emacs
to "go get" that pathname and write the buffer out to the segment
named therein.

Try typing AXAS. You notice that Emacs does not prompt for
a pathname, but does repeat the "Writing ... !Written." message in
the minibuffer to let you know when it is done.

If Emacs discovers that the file being saved has changed
since the buffer was last read or written, it queries whether to
proceed with the save-same-file request

<pathname) has changed since last read or written. Save
anyway?

This allows you to reconsider before overwriting the contents of
the file (answer yes or no as appropriate).

You can disable this protection feature either by preceding
save-same-file with a numeric argument (e.g., AUAXAS) or by
turning off the save-same-file-check-dtcm option (it is on by
default) as described under "Additional Optional Settings" in
Section 17.

11/86 5-7 CH27-00F

ADDITIONAL NOTES ON WRITING FILES

Access Restrictions

You may encounter a problem sometimes when you try to write
out a file that you have read in without any trouble. This
occurs if you have read (r) access to the file, but do not have
write (w) access (access requirements are discussed in the New
Users' Introduction--Part I). You will be notified that you have
an access problem by an error message like this:

Incorrect access on entry.

If Emacs displays such a message, you cannot use AXAS; you must
write out the file with AXAW and supply a different pathname from
the one used to read in the file.

The Default Pathname with AXAW

When writing out a file with AXAW, Emacs prompts you for a
n ~ -+- J.-, V'I '3\"1'1 r"\ T of' .. 1',.... " •. 1''; J,.., -+- "" T.1'; -+- "" -+- J,..,,, of''; 1,.... ,.... •• -+- ,.. t..,.. ...::a ,.. ~ , pu. ..,~U'U.UJ~. .1..1. YVI,.,l VV.L.:lll VV VVl. .1. vG vLlG .1. .L.LG UUV VU vl1~ U~.l.au..L v

pathname set by AXAF, simply type a carriage return in response
to the prompt. The AXAS request performs the same action, and
is, of course, slightly more convenient.

If Emacs discovers that the file has been modified since it
was last read into the buffer, it will query whether to proceed
with write-file to the default pathname

<pathname) has changed since last read or written. Save
anyway?

You can disable this protection feature either by preceding
write-file with a numeric argument (e.g., AUAXAW) or by turning
off the save-same-file-check-dtcm option (it is on by default) as
described under "Additional Optional Settings" in Section 17.

SUMMARY OF TERMS

Two new terms introduced above that you need to remember
are:

011 path line

011 default pathname

11/86 5-,9 CH27-00F

SECTION 6

LOCATING A SEQUENCE OF CHARACTERS

A fundamental ability needed in editing is that of looking
for a particular sequence of characters, or searching. In Emacs,
this means finding a given sequence of characters in the buffer,
and moving the cursor to that point.

To tryout these
beginning of your file.

SEARCHING FORWARD

nex t requests, you should
Use "Ps to get there.

start at the

When you search forward, Emacs starts where the cursor is
and searches toward the end of the buffer.

The string search request is "s, string-search. To locate
the first occurrence of the word "time," type a S. Emacs responds
in the minibuffer:

String Search:

The response to this prompt is to type in the string to search
for, in this case, the letters t, i m, and e. Then type a carriage
return. All ~rnpts in Multics Emacs, including those for search
strings, end wit~~. When you type the CR, you see the cursor
return to the main window, but it is now immediately after the e
in the first occurrence of the word "time."

1/82 6-1 CH21-00B

Try looking now for the word "grime." Type a AS, type the
letters g, r, i, m, and e, and hit the CR key. Emacs responds:

Search fails.

in the minibuffer, since no "grime" was found between the cursor's
posi tion at the end of "time" and the end of the buffer. The
cursor remains where it was.

Try locating "time" again as you did before. The cursor
advances to the right of the nex t "time" in the buffer. The "s
only searches forward, never backward. It puts the cursor after
the end of the string it finds so that Emacs will not keep finding
the same one.

You can take a shortcut in locating the third "time." Type a
"S, but when Emacs prompts for the string, simply hit the CR key.
Emacs puts the word "time" in the minibuffer just as though you
had typed it. When you answer a search request's prompt with an
"empty" search string, i. e., a CR only, Emacs reuses the last
search string (sequence of characters) you were searching for.
This use of a defaul t search string applies to all the search
requests. This way, you can search for the same thing many times
wi thout retyping it into the minibuffer. Search for "time" a
couple more times, just so you will be positioned after the embedded
sentence.

! Word About Search Strings

The string for which you search does not have to be a cOloplete
word; it can be any number of characters. Emacs searches for the
string exactly as typed, so you can include whitespace characters
in your search str ing to define it more narrowly. Since a CR
ends the prompt, however, you must use the quote-char request,
"Q, before any CR that you wish to include in your search string.

1/82 6-2 CH21-00B

GETTING OUT OF TROUBLE

An important Emacs request lets you "get out" of what you
are doing. Thi s is the "'G, command-qui t. Try typing it; your
terminal beeps. The "'G does more than just beep, however. Type
another "'s, and Emacs again prompts:

String Search:

Suppose you decide that you did not want to search for anything,
or you typed "s in error. Simply type "G; the cursor ex its from
the minibuffer, the terminal beeps, and the search request is
aborted. This request can always be used to exit the minibuffer
to abort any prompting request, such as "'X"'F or "'X"'W, that you
change your mind about in midstream. If you ever find yourself
in the minibuffer wi th a prompt that you do not understand, or
think you did not ask for, typing "'G will get you out without
doing any harm.

1/32 6-2. 1 Cfl?7-00B

The fact th~t AG causes a beep can 81so be used to let you
know when Emacs has "caught up" to you a fter a 1 arge number of.
cursor movement requests. When you type a G rlt the end, you
know that the beep means that Emacs is responding to the last
request, so the others rlre done. This is sometimes useful when
the system is slow.

The XAG, AZAG, and ESC AG requests are similar to AG. When
you type a prefix chrlracter, i.e., AX, AZ, or an ESC, by mistake,
these requests undo it, i.e., they flush the prefix character.
So, if you type AX, AZ, or ESC in error, just go on to type G
right after them to get out of it. All th~ee requests also cause
the terminal to beep. However, un~ike AG, they do not exit the
minibuffer. These requests are all named ignore-prefix.

SEARCHING BACKWARD

To search in a backward, or reverse direction, type R
(reverse-string-search). Em8cs prompts in the minibuffer:

Reverse String Search:

Search for the word "time" again; since th8t was the same string
used in your last search request, you need type only a CR in
response to the prompt. The string "tim~" appears in the minibuffer,
and the cursor is left before (i.e., under the first character
of) the first occurrence of "time" going b8ckward from where the
cursor wa s when you typed A R. If t he cursor was right a fter a
"time," it is no'.-/ right at the front of the same one.

Repeat the process. The cursor goes one "time" back each
time, until there are no more between the cursor and the beginning
of the buffer. Emacs then responds:

Search fails.

in the minibuffer.

7/81 6-1 CH27-00A

I

GENERAL RULES FOR SEARCHING

The AS and AR requests both:

• prompt in the minibuffer

• take a string terminated by CR to use for a search
target (a CR within the search string must be preceded
by the AQ request)

• use an empty string (just a CR) to indicate that the
last search string used should be used again

The reverse string search (AR) goes:

• backward to the beginning of the buffer

• leaves the cursor before the located string

The string search (AS) goes:

• forward from the cursor to the end of the buffer

• leaves the cursor after the located string

When searching for something in Emacs, you generally know if
you want to search forward or backward for it. If you do not
know, search forward. If the search fails, just type a AR and a
CR, and Emacs searches backward for the same string. If the
search fails again, the string is not in the buffer.

LOCATING AND REPLACING STRINGS AUTOMATICALLY

ESC %

A powerful request that allows you to search forward for a
specified string, and replace that string with another, is ESC %,
query-replace. After you type and release the escape key, type
t he ~ character, and you are prompted for the string to search
for and the replacement string. Type both in the minibuffer (they
are individually prompted for), and end both prompts with CR.
This request locates, by searching forward, t he first string,
positions the cursor immediately after the string, and waits for
one of the following responses (type the appropriate keys):

7/81 6-4 CH27-00A

space

CR

"G

ESC

.... L

?

replaces this occurrence df the first stri.gwith the
second. Then searches for the next occurrence of the
first string, updates the screen and waits for a response
again.

leaves this occurrence of the first strine unchanged
and searches for the next occurrence of the first
string, again wai ting for a response after locating
it.

(period)
replaces this occurrence of the first string with the
second and then terminates the query replace.

leaves this occurrence of the first string unchanged
and terminates the query replace.

replaces all occurrences of the first string from the
current point to the end, without querying again.

(comma)
replaces this occurrence of the first string with the
second, immediately updating the screen. Then searches
for the next occurrence of the first string and waits
for a response again .

redisplays the screen.

displays a description of the allowable responses (i.e. ,
prints this list).

same as

This request allows you to substi tute one string for another
selectively throughout your buffer. Try replacing some of the
occurrences of "time" with "grime."

2/83 6-5 CH27-00D

SECTION 7

WORKING WITH BLOCKS OF TEXT

MARKING A REGION

Often you wish to delete an arbitrary extent of text, i.e.,
from "here to there," without the tedium of carefully killing
individual lines or characters. This extent, or block of text,
is called a region in Emacs. In order to delete a whole region,
you first must be able to define its limits, or boundaries.

Setting the Mark

One limit of the region to be deleted is determined by the
position of the point at the time the region-deleting request is
given. The cursor, on most terminals, is under or over a,
character. Its left edge, however, can be described as being
always BETWEEN two characters, the character at the cursor and
the character preceding that one. The point is this position
between the characters, indicated by the left edge of the cursor.

A further distinction between the cursor and the point is
rather fine. However, the point is the theoretical location of
the cursor's left edge at a specific time, or where it would be
if it had gotten there by the time Emacs takes action as though
it had already. The cursor itself is often a moving object; its
actual location at a specific time may be somewhere between where
it was and where it was going to be when Emacs interrupts its
journey to send it somewhere else. Emacs knows where it was
going to be, however, and that is the point! Figure 7-1
graphically illustrates the difference between the cursor and the
point.

7-1 CH27-00

First Stage

Cursor and point
between Ds.

AA
BB
CC cursor
DD <point

Second Stage

User types ApApApAD.
Point between A and A.

Cursor on way up.

IAA I <point
"0"0 .u.u T CC cursor
DD· t

Third Stage

Cursor and point
at top line
between A and the
newline.

cursor
A <point

Ig~

Figure 7-1. The Cursor and The Point

o~ ~-~ ~~ +~~ -~~~~~,~ 1;~;+~;~ +~o ~A;~+ ~hA n+vhA~ uU, uue Ui vue .LC;5.J.uu,;:) ...L.1.W.1.UO.1.0 uJ.J 1"V.L.L.LU. _~. __ •• _.

limit is specified by an "invisible cursor" called the mark.
Each buffer has only one current mark, and has none at all until
you set it. However, whenever you reset the mark (i.e., set it
in a new position), the old value of the mark is saved on a mark
ring that works like the kill ring. Section 8 describes how to
retrieve these "saved" marks. You cannot delete a region until
both limits define its boundaries.

To set the mark, you first must move the cursor to where you
want the mark to be. You are going to delete this portion of the
Wordsworth poem:

Beside the lake, beneath the trees,
Fluttering and

Move the cursor to under the B in "Beside." Set the mark there
(i. e. , at the EOiyt in front of this "B") by typing A@,
(set-or-pop-the-mark. This may be tricky if your terminal
requires a shift to get the commercial at sign, since you will
have to hold down both the control and shift key while you hit @.
On some terminals, e.g., Digital Equipment Corporation terminals,
you have to type the space bar while holding down the control key
to send the A@ character. The word "set" appears in the
minibuffer to let you know the mark is set.

7-2 CH27-00

Now move the cursor to the space between "and" and "dancing"
in'the next line, i.e., right after the last letter of the last
word to be deleted. This is the point, and your region is
defined by the two limits.

Exchanging the Mark and the Point

Before deleting a region, you often want to verify that you
do indeed know where the mark is. By exchanging them, i.e.,
switching the cursor and the mark's positions, you can do this at
a glance.

"x"'x

The "'x"'x request, exchange-point-and-mark, makes this
exchange. Try it. The cursor suddenly appears under the B in
"Beside." Type another "'x"'x and everything is as before.

DELETING A REGION

You are now ready to "wipe" out, or delete, the marked
region. Type "'w (wipe-region). All the text between the mark
and the point disappears from the screen. The newline character
within the region also is gone, so you end up with:

A host of golden daffodils;
~--~~-~ ~- ~~~ ~-~~-~ ua.,U\,.;.LU5 .LU vue; Ui ce;;uc.

You still have a space before "dancing;" this is because the
space was not included in the region to be deleted.

Yanking ~ Region Back

The "'w request, like the AK request, puts whatever it
removes into the kill ring. Type a "'Y and watch the text
reappear. A useful feature of the "'y request is that it
automatically sets the mark (or resets it if it was previously
set) at the beginning of the text it retrieves, and leaves the
cursor after it. This has two implications that should be noted:

• After yanking text with A
y , for any reason, you can

delete it again simply by typing A W, since the cursor
and the mark exactly specify the li~its of what Nas
yanked.

• After yanking text with A y , for any reason, you can
move the cursor to the beginning of the yanked text by
exchanging the point and the mark ~ith ftXA X.

7-3 CE27-00

Your cursor, now in the middle of the last line of poetry;
can go to the B in "Beside" if you type AXAI. Try it. Now, even
though the cursor is at the beginning, and the mark at the end of
this region, try typing AW. The region disappears. As long as a
region has both I lmi ts set, AW works whether the point or the
mark is the first limit.

ESC Y

Sometimes you kill some text, move the cursor, kill more
text, and then decide that killing that first text was a mistake.
What you want to do in this case is return to where you killed
that first text and yank it back. So you move the cursor back
and type Ay. Unfortunately, that retrieves the text of the second
kill; the most recently deleted text occupies the first slot on
the kill ring. So now you want to get rid of the retrieved text
and retrieve the text of the previous kill.

I Well, ESC Y, wipe-this-and-yank-previous, does this. It
deletes the text just yanked, and rotates the kill ring so that
text from the previous kills moves up a slot, and then it retrieves

•

the text now in the first slot. Trv a couole more AWS. and then
ESC Y (hit and release the escape "key before typing 'a y). By
doing many ESC Ys in a row, until you "find the kill that you
want," you can "go shopping" in the kill ring for saved text •

SUMMARY OF TERMS

Many Emacs requests besides AW use regions.
therefore, understand the following terms:

• region

• point

• mark

7/81 7-4

You should,

CH27-00A

SECTION 8

REPEATING AND UNDOING REQUESTS

Emacs provides a ~ariety of ways for repeating the action of
~ request, either once or many times. Requests for which it is
meaningful and useful to specIfy "how many times" to do them
generally accept a numeric argument. A numeric argulIlent:, is
essentially a repetition count, a number that IIJe8.ns "repeat this
action this number of times." Positive numeric argument generally
repeat the request's action in a straightforward manner. Negative
n~meric arguments generally reverse the action of the request and
repeat it; i.e., they cause a request to act like its complement,
if it has one.

NUMERIC ARGUMENTS

I f you want to say, "Go fi ve characters forward, tI or, "Go
four next lines down, ~~ you can give the A,F and AN request positive
nu~eric arguments of 5 and 4, respectively.

You give a numeric argument by typing the escape key, ESC,
then typing the number you want, and, finally, typing the request.
For example, to delete six characters, you would type;

ESC 6 D

(spaces are unnecessary and incorrect, but have been included for
legibility.) That is, strike and release the escape key, -type a
6, and then type a AD. All the characters disappear at once.
Try it.

Similarly, if you type:

ESC 249 "'N

8/82 8-1 CH27-00C

I

I

I

w hi 1 e on the fir s t 1 in e 0 f a 1 a r g e f i 1 e , the s c r e en wo u 1 d fill
immediately with lines 240 to 260 (approximately) of the file ~
with line 250 and the cursor in the middle of the screen (you can
veri fy the line number wi th "X=). You do not have to watch the
cursor step through 250 lines one by one. Experiment with your
file and the "N and "p r eques ts. Del iber ately give a numeric
argument too large for your file, and observe what happens.

A negative numeric argument is given by typing ESC -N, where
N is the number, before typing the request. Wi th negative arguments,
.... F goes backward the speci fied number of character s, N goes to
the Nth previous line, 0 acts like II or \177 and deletes N
characters to the left of the cursor, etc. An argument of ESC -1
or, simply, ESC-. just reverses the action and performs it once.
Some requests do not accept negative arguments; you receive a
message in the minibuffer stating this if you give them one by
mistake.

Requests Accepting Numeric Arguments

Of the requests already learned, the following accept numeric
arguments.

....F

.... B

.... N
"p
II
\177
"0

"K
.... Y
.... @
"s
.... R

Forward Character
Backward Character
Next Line
Previous Line
Rubout Character
Rubout Character
Delete Character

Kill Lines
Yank
Set/Pop the mark
String Search
Reverse String Search

The first seven, when given either a positive or negative numeric

I argument, perform the action that number of times. The last five
act in a special manner.K, "y and "@ do not accept negative

_ arguments. "s and" R accept ei ther posi ti ve or negative arguments.

2/83 8-2 CH27-000

When you give ~K a positive numeric argument, it kills that
many entire lines, starting at the current point on the current
1 ine. Everything killed is put, as one, on the kill ring, and
will kill merge wi th preced ing or following killed text as described
earlier. Whereas ESC 4 ~K kills four lines, four ~Ks would not,
since you generally must type two ~Ks to kill one line of text.

When you give ~y a positive numeric argument, it yanks text
out of the slot on the kill ring that corresponds to the number
given. As you have seen, a simple ~y request retrieves the latest
thing killed, from the first slot. If you want, for example, the
second latest thing killed (from the second slot), simply give
the Xy request a numeric argument of 2 by typing:

ESC·2 ~y

When you give ~@ any positive numeric atgument , it "pops"
the previous mark off the slot on the mark ring and sets the
current mark at the position where that saved mark was originally
set. If text was deleted from around that position, the current
mark is set at the position closest to its former position.

When you give ~S a positive numeric argument, for example 5,
it searches forward for the 5th occurrence of the string. If
there aren't 5 occurrences, it leaves the point immediately after
the last occurrence, gives you a message saying how many occurrences
it found, and sets the mark at the original location.

When you give ~R a positive numeric argument, for example 5,
it searches backward for the 5th occurrence of the string. If
there aren't 5 occurrences, it leaves the point in front of the
last occurrence, gives you a message saying how many occurrences
it found, and sets the mark at the original location.

When you give ~ S a negative numer ic argument, for example
-5, it searches backward for the 5th occurrence of the string.
In other words, it acts like ESC 5 ~R.

2/83 8-3 CH21-00D

I When you give A R a negative numeric argument, for example
-5, it searches forward for the 5th occurrence of the string. In
other words, it acts like ESC 5 AS.

Try all of these requests with numeric arguments until you
feel comfortable with them.

Numeric Arguments with Regular Characters

Whether you realized it or not, regular letters and numbers
are actually Emacs requests, too. For instance, you know that AD
means "delete the character at the cursor." What does an ordinary
d mean? What happens when you type an ordinary d, or any number,
letter, or punctuation mark? It goes into the buffer and appears
on the screen. Printing characters (other than 0, @, and \), are
said to be self-inserting, because if you type one, it inserts
itself into the text.

Giving a positive numeric argument to a self-inserting character
causes it to insert itself that many times. For instance, if you
type:

ESC 24 Q

you see 24 Qs appear on the screen all at once. This is a good
way to get lines of dashes, underscores, asterisks, etc.

If ever you type a numeric argument, or are in the middle of
typing one, and decide that you did not mean it, type a AG to get
you out of it. The reassuring beep verifies that any possible
numeric argument has been discarded.

RE-EXECUTING A REQUEST

"'C

After typing a request, you may just want to repeat it once,
or to repeat it several times wi thout determining exactly how
many times. The "'c request, re-execute-command, lets you re-execute
the last keystroke request entered. This request is not especially
useful for repeating may of the requests learned so far, since it
is just as easy to retype them as it is to type "'C. Some requests,
hI"\I.'o"o....0""; 0 +-h!:!+- tll"\"~O a C!0",10n"0 I"\f" },Otls (0 n C'~r C' ; n •• "' " , • 'i, v, J"'vt ""Jt'.... 'i, " V'~ ~ J , 1:)., wLJV'

the section on word requests); typing "'Cs prevents you from making
an error when repeating these. In addition, when you use AC to
re-execute a search request, it does so, reusing the same search
string.

2/83 8-4 CH27-00D

MULTIPLE EXECUTIONS OF A REQUEST

"U

A rather special request lets you repeat requests in a couple
of different ways. The "u request (multiplier) multiplies the
next request 4 times for each use. For example, "U"F moves forward
4 char acter s; "U'" U" F moves forward 16 character s. Thi s request
can· also be followed by a number, in which case it behaves 1 ike
ESC followed by a number; "'U13"'F moves forward 13 characters and
"U-13"'F moves backward 13 characters. A "'u with no following
number is considered a positive numeric argument.

Try using "'u with v arious requests that accept numeric arguments
(except "y an "'@). If you experiment wi th it, you will get an
idea of the approximate "space" covered by 4, 16, or 64 repetitions
of the various requests. Then, when something "looks about that
far," you can type an appropriate number of "Us to get in the
right neighborhood, at least.

UNDOING THE ACTION OF ! REQUEST

"'\

In addi tion to using negative numeric arguments to reverse
requests, you can use the "\, undo-prefix request as a prefix to
a request to reverse the effect of the usual action of that request.
For example, "X (described in "Underlining Words") underlines an
entire region; "\"'X de-underlines an entire region. If a particular
request does not accept the undo-prefix, Emacs tells you.

~ and Self-Inserting Characters

The undo-prefix request can also be used as a prefix to a
self-inserting character. In this case, the undo-prefix request
searches backwards on the current line for the last occurrence of
the self-inserting character, deletes the character, then returns
the cursor to its original position. For example, d "inserts" a
d at the cursor; "'\d "undoes" the last d you inserted.

2/83 8-5 CH21-00D

GOING TO A SPECIFIC LINE NUMBER

ESC G

A request that lets you move the cursor to a line specified
by its line number is ESC G,. go-to-l ine-number. This request is
especially useful when editing Multics programs, since many Multics
tools give diagnostics in terms of line numbers in their input
files. If you happen to be positioned on the first line of the
buffer, going to the 241 st line is easy; just do 240 "'Ns by
typing:

ESC 240 "'N

However, if you are on some other line, it is easier to use ESC
G. This request takes a positive numeric argument that is the
number of the line to which you want to go. Typing:

ESC 241 ESC G

moves the cursor to the beginning of line 241, no matter what
1 ine you are currently on. If that line is not on the screen,
Emacs selects the appropriate area of the buffer and displays it.
You can also simply type:

ESC G

and you will be prompted in the minibuffer for the line number
you wish. End the prompt with CR, as usual. Try it out.

When you are finished, wri te out your practice file wi th
"'X'" S or "'X"'W. For the rest of the tutorial, you can log in or
out whenever you want a break, and your file will always be there
to read in if you want some ready-prepared text to work with.
Otherwise, you can create new text, and files, if you prefer.

2/83 8-6 CH27-00D

SECTION 9

WORKING WITH WORDS

WHAT'S IN A WORD

Some of the most useful requests in Emacs are those which
relate to words. Even if you are typing computer programs or
other non-English text material, the facility to move around word
by word, delete words, etc., is very helpful.

The word movement and deletion requests have a deliberate
~ara~lelism with the character movement and deletion requests:

F, B are forward character, backward character; ESC F, ESC B
are forward word, backward word. Similarly, AD and # are delete
character and rubout character, while ESC D and ESC # are delete
word and rubout word. .

A "word" in Emacs consists of an unbroken string of upper
and lowercase alphabetics (a-z and A-Z), numbers, underscores,
and backspaces. Lower and uppercase letters can be mixed in any
way. For example, "new payroll", "zeBra," and "begin" are each
one word; "delete-char"-and "segname$entry" are each two words.
"March, I said," is three words.

It will help in learning the following requests if you
picture to yourself the point, rather than the cursor. Think of
the point at the left edge of the cursor, between the character
at the cursor and the character or space just preceding it.

Also remember that the letters ESC represent the escape key;
when followed by a space and a character, you type the escape key
and the character, but not the space. Alphabetic characters are
given in capitals, but you can type either an upper or lowercase
letter. Thus, for ESC F, you should type just the escape key,
release it and type an f or F.

9-1 CH27-00

MOVING FORWARD AND BACKWARD

ESC F

The forward word request, ESC F (forward-word), moves the
cursor forward over one word.

• If the cursor is c~rrently on a character that is part
of some word, it moves to the first character after
that word.

• If the cursor is currently on a character between two
words (even if they are separated by many blank lines,
punctuation, breaker bars, etc.), it moves to the first
character after the second of those two words.

For example, type in this sentence and position the cursor at the
beginning of the line (first case, above):

Yes, it is true.

Type an ESC F, and the cursor, on the "Y," moves to the comma.
Now type another ESC F (second case, above). The cursor moves to
the space after "it." Re:()osition the cursor to under the e or s
in "Yes," and try again (first case, above). Again, the cursor
moves to the comma.

THE ESC F request also accepts numeric arguments. To go six
words forward, you type ESC 6 ESC F. Or, you can type ESC F and
then ACS to move forward a word at a time. This request goes
backward with negative numeric arguments.

ESC B

To move backward by words, you use ESC B, backward-word.

• If the cursor is currently on some character of a word
other than the first, it moves to the first character
of that word.

• If the cursor is on a character between two words, or
on the first character of a word (the point would then
be between two words), it moves to the first character
of the preceding word.

Put your cursor under the t in "it" in the sentence just
typed, and do an ESC B (first case, above). Now, with the cursor
under the i in "it," try again (second case, above).

9-2 CH27-00

This request also accepts a numeric argument, moving backward
the specified number of words (or forward, if the argument is
negative).

The complementary use of ESC F and ESC B is well illustrated
by the problem of adding parentheses to "Tony" in the following:

Anthony Tony Burns.

If the cursor is at the period, the sequence:

ESC B ESC B (ESC F)

does it. Try it out for yourself.

DELETING WORDS

ESC /I

Deleting words is perhaps the second most common edi ting
operation (after deleting characters) when entering text. To delete
the last word you typed, i.e., the word to the left of the cursor,
you use ESC If, rubout-word. It deletes the word to the left of
the cursor, or deletes that part of the word to the left of the
cursor if the cursor is in the middle of a word. The action of
ESC II is best described as though it were doing A@ (setting the
mark), then ESC B (backward word), and finally AW (wiping the
region). That is to say, ESC II removes all text between the
cursor's starting point and where it winds up after an ESC B.
Note, however, that the mark is not really set.

To summarize:

•

•

•

If the cursor is immediately after a word, ESC II deletes
only the characters of the word it follows.

If the cursor is in the middle of a word, ESC II deletes
that part of the word to the left of the cursor.

If the cursor is at any other point, ESC II deletes all
characters between the cursor and the preceding word,
and that preceding word (intervening punctuation and
spaces are deleted, too).

In your sEntence, "Yes, it is true," put the cursor under various
letters and try to predict what will be jeleted before doing
ESC /I s . Be s i1 ret 0 try wit h the cur so run d (~- the i in" it. "

1/82 9-3 CH27-00B

Successi ve ESC lis remove words farther and farther back.
This request does kill merging, so if successive words, and the
punctuation and whi te space between them, are deleted by ESC ,I,
one Ay retrieves the whole deleted area as it initially stood. A
numeric argument can also be used wi th ESC II, deleting backward
the specified number of words (or forward, if the argument is
negative).

t:'~r \177
J..vv 'I"

Just as the /I and the rubout key, represented as \ 177, had
the same effect on characters, the ESC II and ESC \ 177 requests
have the same effect on words. You can use these two ~equests
interchangeably. The command name for ESC \ 177 is al so rubout-word.

ESC D

Forward word deletion is performed by ESC D, delete-word.
It deletes the word, or part of a word, to the right of the
point, i.e., to the right of, and including the character at, the
cursor. It deletes forward from the point where the cursor is,
to the place where ESC F would go.

•

•

•

If the cursor is on the first character of a word, ESC
D removes the entire word.

If the cursor is in the middle of a word, ESC D removes
all the characters from the one at the cursor to the
last character of the word.

If the cursor is between words, ESC D removes all white
space and punctuation up to the second word, and the
second word.

Consider the sentence:

We have no melons today, Mrs. Johnson.

wi th the cursor under the r of "Mrs." To replace "melons" wi th
"pears", you type: ESC B ESC B ESC B ESC D and then the word
"pears." The ESC D request accepts numeric arguments. Again,
try these requests out with your own text by predicting the action
before typing the request sequences.

1/82 9-4 CH27-00B

CAPITALIZATION

ESC L, ESC U, ESC C

A unique set of capabilities is provided by three requests
that control the "case" of words, i.e, lowercase (jack), uppercase
(JACK), or capitalized initial letter (Jack). These three requests
are:

• ESC L to lowercase a word (lower-case-word)

• ESC U to uppercase a word (upper-case-word)

• ESC C to capitalize the initial letter of a word
(capitalize-initial-word)

Each of these requests can be issued with the cursor either:

• on ~ character of a word, or

• immediately after a word to alter its case.

For example, type:

thomas

and leave the cursor right after the "s." To capitalize the
initial character, merely type an ESC C, and you have:

Thomas

The cursor is always left immediately after the word whose case
is transformed. If you wish to capitalize the initial characters
of several words, say:

thomas alva edison

you can move the cursor to any letter of the word "thomas," type
ESC C, leaving you on the space after "Thomas," F to go to
"al va," another ESC C, leaving you between "AI va" and "ed ison,"
and F and a final ESC C, leaving you after "Edison."

All three word-ease-altering requests leave the cursor
immediately after the word whose casl~ is al tered. Since that
position is a good place from which to issue such a request, you
can position the cursor after "Thomas" and type, ESC U ESC L ESC
C ESC U etc., 8nd watch THOMAS, thomas, '~homas, THOMAS, etc.,
rep I ace e a c hot b e r' 0 nth esc r e e n w h i I f' J' C) u c.~:;, c ide w hie h for m you
like.

1/(32 9-5 CH27-00B

These requests deal with all the characters in a word. Thus,
a word like "MaGicAl" can be converted to "Magical," "magical,"
or "MAGICAL" by use of these requests. Also, if you hold a shift
key down too long, ESC C can easily change, for example, "MAgical"
to "Magical" when you finish typing the "1."

I Each of these requests also accepts a numeric argument. With
I a positive argument, they affect the next specified number of
I words. If the cursor is currently within a word, that word counts
i as one 01 ~ne specI1led number. With a negative numeric argument,
I these requests act on the specified number of previous words.

• If a word-case-altering request is issued between words,
but not immediately after the first one, it alters the
case of the second word and leaves the cursor after it.

Changing the Case of Regions

Two similar requests that also al ter case are "X"L
(lower-case-region) and "'X"'U (upper-case-region). These two
requests operate on regions; all letters within the limits of a
region are made lowercase by "'X"'L, or uppercase by "'X"'U. You
must, of course, set the mark first, move the cursor to the other
end of the region, and then issue the appropriate request. For
example, to add emphasis to this sentence:

The boy survived for sixteen days in the desert.

you could set the mark at the "S" of "sixteen," or the space
before it, move the cursor to the space after "days" (or even to
the "in in "in"), and type "X"'U. The sentence would then appear
like this:

The boy survived for SIXTEEN DAYS in the desert.

For these two requests, the cursor remains where it is, i.e.,
the cursor is not left after the region whose case is changed (as
it is left after-the word with ESC U or ESC L). However, you can
type these requests one after the other to see which result you
like best, since the region remains the same. You can also make
use of "'x"'x to verify the limits of your region.

1/82 9-6 CH27-00B

UNDERLINING WORDS

Related to the word-case-altering requests are the underlining
and underline-removing requests. They cause a word to be underlined J

or remove the underlining from an underlined word. Most current
video terminals either do not have the ability to underline text
at all, or can only do it in a very limited way. Therefore,
underlined text in Emacs may appear as:

H\010 \010e \0101 \0101 \0100

where "Hello" is wanted. The \010s are backspaces; they are shown
in this way because almost no video terminals can overprint
characters, even among those with a limited underlining capability.
The text in your buffer that will be written out to your file
actually contains the proper number and placement of backspaces,
even if the appearance is disconcerting. However, to avoid problems
with dprinting text or editing it with other editors, do not use
backspaces for underlining; use ESC instead.

ESC

Typing in backspaces in order to underline words is confusing
and error-prone, especially on a video terminal. Thus, Emacs
provides ESC , underline-word, for automatically underlining words.
To use this request, position the cursor to:

• any place within a word to be underlined, or

• immediately after the word

just as for the word-case-al tering requests. The ESC request
then underlines the word correctly, leaving the cursor immediatel~
after the word. In order to get "begin," for instance, type
b,e,g,i,n, and then ESC

"z
the The "z request, remove-underlining-from-word,

underscores -and backspaces from an underlined word.
removes

Again:

~ the cursor can be at any point in the word, or

the cursor can be immediately after the word.

Since this request also leaves the cursor i.mmediately after the
"deunderlined" word, successive ESC and "z s add and remove
ur,d er 1 in ing from the same word, in al te rn at 1 on .-

1.'82 9-7 CH27-00B

• Underlining Regions

• AX

• You can underline an entire region in one keystroke by issuing
• the "X request, underline-region. When given any numeric argument,
• "X removes the underlining from a region. White space within
i the region is underlined (or "deunderlined") by this request if
I you set the ESC X opt underline-whitespace option to "on" (see
I ESC X opt).

LOCATING WORDS

In addition to searching for and locating a given sequence
of characters, Emacs can also locate words. In the sentence:

Yes, I know, Miss Smith's theater
is the One for me

Assume that the cursor is on a previous line or in the word
"Yes," and you want to. find the word "is." Wi th "S, the str ing
search request, prompting wi th the string "is" gets you to the
"is" in "Miss." You could, of course, keep repeating "Ss until
the right occurrence is located (or search for the string "er"QCRis").

"xw

However, the word searching request, "xw (multi-word-search),
locates a word. Type in the above sentence, if you have not
already, and posi tion the cursor as suggested. Now type a "XW.
Emacs prompts:

Word Search:

Then type in the word, is, and a CR. The cursor is left immediately
after "is."

This word search request finds words regardless of
capitalization or underlining. You can locate "One" or "me" in
the above sentence by providing "one" or "me" in answer to the
prompt.

1/82 9-8 CH27-00B

This request can also find sequences of words, which is to
say, several sequential words, separated by any amount of punctuation
or white space. If the cursor were several lines above the sample
sentence, you could find it by answering AXW'S prompt:

Word Search: i know miss smith CR

The cur so r i s 1 eft aft e r the n h" in Ii S mit h . r~ Pun c t u a t ion and
capitalization make no difference. If you search for the sequence
"theater is the," you will see that white space is also ignored.

Actually, punctuation and white space are not really ignored,
but they are treated the same, as separating one word from another.
Thus, the sequence:

AXW jack knife CR

locates:

jack knife
Jack, knife
Jack... "KNIFE

but not

jackknife

which is one word, not two.

LOCATING WORDS BY THEIR PREFIX WITH *

The w 0 r d sea l~ c h r e que s t can a Iso I 0 cat e wo r d s by sea r chi n g
for words that start wi th a given string. This is useful for
searching for long words. To indicate that a word-prefix is to
be searched for, type the first letters of the word followed by
an asterisk (*). For example, type a AXW, then anted*, and the
escape key to search for "antediluvian" or "antedated." You can
use word-prefixes in this way as part of a word sequence being
searched for, as well. To search for The "Antediluvian" Era, for
example, you could answer the prompt wIth: ---

the anted* era CR

1/82 9-9 CH27-00B

Like most other Emacs search requests t typing just ·a CR to
its prompt uses the last search string provided. The search proceeds
from the current point in the buffer to the end of the buffer.

There is no reverse word search, but if you supply ~ positive
numeric argument to "XW, e.g., ESC 1 "xw or "U"XW,tlie search
begins at the beginning of the buffer. Because this request checks
for so many things, it can be slow. Therefore, if you know what
exact characters you are looking for, "s or "R is faster. If you
know the words, but not the case, intervening punctuation, etc.,
use "'XW.

1 /82 9-10 CH27-DOB

SECTION 10

MANIPULATING SCREENS AND BUFFERS

MOVING THROUGH A BUFFER SCREEN BY SCREEN

Often you wish to "page" through a document, reading through
it, or glancing over it to locate a certain section to read or
edit. This is accomplished on Emacs by paging through the text
screen by screen. You need to be able to see succeeding windows
to do this.

In order to view the next screen, you issue the AV request,
next-screen, read in your longest practice file and nAV through
it." Each time you strike a AV, the cursor is left at the upper
left corner of your screen; not only does the window fill with
new text, but the cursor also moves to a new place in the buffer.
If you type a Ap after a AV 1 Emacs chooses a different portion of
the buffer to display, centering the line of interest.

With a positive numeric argument, AV pages forward the
specified number of next screensful, and displays it. With a
negative numeric argument, it pages backward the specified number
of screensful (previous screens).

Note that as you type these AVS, the first line on the new
screen is always the same as the last line on the old screen.
This helps orient you as you go through the text.

ESC V

You can also page backward through a buffer. The two-key
sequence, ESC V, lets you view the previous screen. With this
request, the first line of the old screen is displayed as the
last line of the new screen. The command name is prev-screen.

10-1 CH27-00

With a positive numeric argument, ESC V moves backward the
specified number of previous screensful and displays it. With a
negative numeric argument, it pages forward the specified number
of screensful (next screens).

MOVING TO EITHER END OF A BUFFER -- --- -- - ------
Now you can go forward and backward through the buffer character

by -character (AF, AB), line by line (AN, AP), word by word (ESC
F, ESC B) and windowful by windowful CAy; ESC V)e However, as
with lines, you often need to get to the beginning or end of a
buffer. What A A and AE do for 1 ines, ESC < and ESC > do for
buffers.

ESC <

The request for going to the beginning of a buffer is ESC <,
go-to-beginning-of-buffer. Think of the less-than sign as an arrow
pointing to the buffer's beginning. The ESC < request displays
the first windowful of the buffer and puts the cursor at the very
~~,+- ". ~ ~,,+-o
.L..LA.;II" """"c;a..a. c;...L"", ,,'-I. •

ESC >

The ESC > request, go-to-end-of-buffer, displays the last

I windowful of the buffer and puts the cursor after the last character
or newline character (if the buffer ends with a newline) in the
buffer. If, after typing ESC >, you see the cursor on a line by
itself, that means that an empty line, one with only a newline in

I
it, is at the end of your buffer. If the cursor does not go onto
a line by itself, you should type a carriage return ~that the
file does end in a newline.

7/81 10-2 CH27-00A

You can, of course, get to any line between the first and
last wi th the other requests learned, especially "p or "N wi th
numeric arguments, or ESC G when you know the line number desired=

EDITING MORE THAN ONE BUFFER ------- ---- ---- --- ------
In an Emacs session, each use of t he find file request,

"XAF, results in a new buffer. The X F request prompts for a
filename (pathname of a file), terminated by a carriage return.

If no existing buffer contains that file yet, AX"F reads the
file into a buffer, names the buffer by the first component of
the entry portion of the filename (e.g., names the buffer "first"
when the filename is >udd>Sales>Smith>first .practice) , and sets
the default file of this buffer to the file just read.

7/81 10-2. 1 CH21-00A

If one or more buffers containing the named file do exist,·
they are listed on the screen (see "Listing the Buffers,"below).
You are then prompted to specify the buffer you wish to use:

Buffer:

Type a name and end the prompt wi th a carriage return. If you
type one of the listed buffer names, AXAF switches to it and its
version of the file. If you decide instead to use a new buffer,
give a new buffer name, and AXAF reads the file into it and gives
this buffer the new name. A blank response for the buffer name
reuses the buffer named for the first component of the entry
portion of the filename.

For example, the first time you read in a file named ibm.data,
it goes into the buffer named ibm. If you read that file again
for so mer e a son, Em a c s lis t s the b u f fer s con t a in in g the f i Ie,
only one in this case, the buffer named ibm, and prompts you for
a buffer name. You decide to use a new buffer for this copy of
the file, and type "new."

If you read ibm.data in a third time, Emacs lists both "ibm"
and "new" as buffers containing the file (though they may contain
different versions of ibm.data if you have edited them). You can
use yet another buffer by typing a different name, or reuse one
of these two by typing its name. If you simply type a carriage
return, Emacs reuses "ibm."

Going from One Buffer to Another

AXB

When you have several buffers containing many different files,
0' containing versions of the same file, you often need to switch
from one to the other. The request that does this is AXB (when
typing this request, you must release the control key before typing
b, or you will end up with the AXAB request described below).
The AXB request, select-buffer, prompts for the name of the buffer
to which you want to go. Type the buffer name and a carriage
returne

If the buffer ex ists, Emacs refreshes the screen wi th the
last windowful that you were editing in that buffer, and the
cursor is placed at the same point where it last was.

·1/82 10-3 CH27-00B

If the name given to the prompt is not that of an existing
buffer, Emacs creates such a buffer, and displays it on the screen
(you see an empty window, since the buffer is empty).

If you respond to the prompt by typing only a carriage return,
you return to the last buffer you were in before entering the
current buffer.

When you switch buffers with "'XB, the mode line changes to
reflect the name and mode of the buffer swi tched to. The path
line also changes to let you know the pathname of the file that
was read into this buffer, or last written out from it.

Listin~ the Buff~ and Local Displ~~

To list the buffers in use in an Emacs session j issue the
.... X"'B request, list-buffers. This request displays a list of buffers
as a local display. A local display consists of information displayed
at the top of your screen that temporarily replaces the text
being edited. A line of dashes and stars, like this:

--* * * * * * * * * * * *--

is also displayed so that you can tell that your buffer has not
been destroyed, but simply that a local display is being shown
"in front of" your text.

The local display for "'X"'B contains the name of each buffer
and the pathname of the file in it, if any. For some buffers,
two symbols, greater-than sign (» and asterisk (*), appear to
the left of the buffer names. The greater-than sign ind icates
the buffer you are currently editing. An asterisk indicates a
modified buffer, i.e., a buffer that contains modifications or
additions that have not yet been written out. Only when no buffers
have an asterisk beside their names will "'X"'C let you exit Emacs
without the query, "Modified buffers exist. Quit?"

Wh en yo u fin ish vie win g the 1 i s t 0 f b u f fer sin the 10 cal
display, you want to remove it from the screen. If you type ~
editor requests, the local display vanishes and is replaced by
what was there before it. However you may not want to issue any
such requests when you cannot see the cursor's location.

1/82 10-4 CH21-00B

THE LINEFEED KEY AND AJ

A request is provided for just such circumstances. It is
the "no operation" request that does nothing at all! Since typing
any editor request removes a local display, this request can be
used to do so without doing anything else. You issue it by striking
the linefeed key on your terminal (this is the same as AJ, noop,
on all terminals).

Sometimes, local displays take more than one screen. In
this case, the last line of the screen says:

--More?-- (Space = yes, CR = no)

If you see this, hi t the space bar once to see each successi ve
screen of the local display. The last screen of the local display
is indicated by the line of dashes and asterisks; you restore the
buffer to the screen wi th linefeeds, when ready. If, during a
multiscreen local display, you decide you have seen enough, typing
a carriage return (CR) instead of a space terminates the display
and restores the buffer to the screen.

A GARBLED SCREEN

Occasionally, you may not believe what you see on the screen.
Sometimes bad telephone lines, or unexpected messages from Multics,
or something you just do not understand may cause the screen's
contents to become invalid. This may be due to hardware problems;
bugs in new versions of Emacs, or bugs in your terminal. At any
rate, you need to clear the entire screen and put it back the way
it ought to be.

This is accomplished with the redisplay request, AL,
redisplay-command. Try typing AL; the screen clears and is refilled,
with the cursor in the middle of the screen (unless you are at
the top of the buffer, in which case the cursor is at the top).
On fast terminCils, L can be used to reposition the window so
that the line wi th the cursor on it is at the middle, or to
remove a local display (using AL for either of these purposes is
not so useful on slow t~rminals).

1/82 10-5 CH27-00B

Wi th a numeric argument, AL red isplays and reposi t.ions the
window so that the line wi th the cursor appears at a place of
your choice in the window. A positive argument gives the number
of lines below the top of the window that you want the cursor's
line to be, where the top line is 1 (or 0). For example, ESC lAL
moves the current line to the top, ESC 6 AL moves it six lines
from the top, etc. With a negative numeric argument, the cursor's
line moves to the specified number of lines above the bottom of
the screen, where the bottom line is -1. For example, ESC -2 AL
moves to two lines from the bottom, etc.

MARKING AN ENTIRE BUFFER

AXH

The most common reason for marking an entire buffer is that
it in another buffer. The
the mark at the end of a
beginning. This marks the
at its end is not in the

you want to move the text and insert
AXH request, mark-whole-buffer, sets
buffer and the point (cursor) at the
whole buffer, al though the 1 inefeed
marked region. A ~W would delete it.
go to place in new buffer where you
Ay, effectively moves an entire buffer.

The sequence, AXH AW AXB .. .
want the marked buffer .. .

KILLING AN ENTIRE BUFFER

The AXK request, kill-buffer, kills an entire buffer. You
are prompted for the name of the buffer to be killed, and end the
prompt with a carriage return. Buffers are usually killed to
conserve storage or to remove them from buffer listings given by
requests like AX C or "'XAB. When you try to kill the current
buffer, you are asked for a new buffer to go to.

SUMMARY OF TERMS

Two new terms for you to learn are:

• local display

• redisplay

1/82 10-6 CH27-00B

SECTION 11

HELP

By this point you may be having trouble keeping track of all
the requests learned so far. However, whenever your memory of a
particular request lapses, help is at hand!

WHAT DOES THIS KEY DO? ---- ---- ---- ---

ESC ?

When your are not sure what a given key does, you can type
the ESC ? request, describe-key. This request displays the
documentation for the request you are unsure of. For example, to
find out what AV is and does, type ESC? Emacs prompts in the
minibuffer:

Explain Key:

Now actually type a AV, in the usual manner.
what AV does appears as a local display at
screen:

AV next-screen

A. description of
the top of your

Display next screenful of this buffer. Leave cursor
at upper left hand corner of screen.

--* * * * * * * * * * * *--

The command name associated with
next-screen (Emacs refers, in prompts

the AV request is
and Emacs-produced

The documentation
the key name and

documentation, to requests as "commands").
describing next-screen follows the line giving
command name.

11-1 CH27-00

To clear away the local display describing AV, hit linefeed
a couple of times. Try ESC 1 with a few more requests.

When you forget what request a given key invokes, or need to
find out what you just did by accidentally typing the wrong
request. You can ask for the command name invoked by a given key
without the documentation to save time. By giving ESC 1 a
numeric argument, e.g., ESC 1 ESC 1, you get this prompt:

Show Key Function:

Then type the key in question, say, AW. Emacs responds in the
minibuffer:

AW = wipe-region

EXTENDED REQUESTS

Some requests are issued by a single keystroke, such as AD,
which invokes the delete character request, delete-char. Other,
less common ones, are invoked by two-key sequences beginning with
ESC. such as ESC 1 for describe-key. Still less common requests
are"invoked by two-character sequences beginning with AX -or AZ
(e.g., AXAW). Requests that are the least common have to be
invoked by actually typing in their command names.

Though some requests are "less common", they are no less
important. They require more keystrokes simply because you have
less occasion to use them. Single keystroke requests are
reserved for those tasks that you perform often while editing.

The requests known as "extended requests" are those invoked
by typing their command names to Emacs. An example of an
extended request is "filIon," which enters "fill mode" in a
buffer. Fill mode sets up a buffer so that you do not need to
worry about the ends of lines when typing text, and never need to
type carriage returns (except, of course, when ending prompts, or
when you want explicit control over the format and line-breaks of
your document). Fill mode is ideal for typing in text from a
written page, or composing a document spontaneously. You just
keep typing; the lines get broken automatically.

11-2 CH27-00

To invoke an extended request such as filIon, you clearly
cannot just type "filIon." If you did, it would simply go into
the buffer like any other characters. You have to let Emacs know
that the next characters are the name of an extended request.

ESC X

The request that notifies Emacs to expect
request's command name is ESC X, extended-command.
two-key sequence. Emacs prompts in the minibuffer:

Command:

an extended
Type this

Now type the word "filIon" (no quotes, just the six letters), and
a carriage return. The name of the "fill" minor mode appears in
the mode line after the name of the current major mode,
Fundamental.

In general, you invoke an extended request in this way:

• type ESC X

• type the name of the extended request

• if the request takes any arguments, type a space and
then the argument(s)

• type a carriage return

WHAT KEYS DO THIS JOB? ---- ---- -- ----

apropos

A very important extended request provides you with all the
command names, and their associated keys, that relate to a given
topic. It is used if you remember something about a particular
request, but you cannot remember the key that invokes it, or what
its command name is. The apropos extended request finds all
requests that have a given character string in their command
name, and provides a local display telling you what keys invoke
them. The topic that you are interested in is typed, after a
space, as an argument to apropos.

For instance, suppose you forget which request goes to the
end of a line. Choose a topic you think is appropriate, since
apropos must have an argument. If it does not, you get this
error message:

Wrong number of arguments to extended command apropos.

11- 3 CY27-QO

In this case, "end" seems a reasonable choice. So, type ESC X
apropos (no spaces yet), a space, the argument (end) and a.
carriage return. The apropos request displays the command names
of all requests available in this buffer whose names contain the
character string "end." You see "E (go-to-end-of-line), ESC>
(go-to-end-of-buffer), a few surprises, such as "XM (send-mail),
and others. Once you learn from apropos what requests are
a v ail a b Ie , you may be j 0 1 ted i n tor e cog nit ion (" Rig h t , " E i s
go-to-end-of-line!"), or you may need more information ("Hmm, "E
looks right, but I'd like to know exactly what it does.") You
can, in the latter case, type ESC? "E to get the full
documentation.

The apropos request also lists all relevant extended
requests if their names contain the specified character string.
However, you cannot use ESC? (describe-key) to find out about
extended requests, since ESC? prompts -r0r a single key, and
then describes it. If you try to type "fillon" to ESC ?, for
example, it reads the "f" and tells you that "f" puts an f into
the buffer. The remaining letters, ilIon, would go into your
buffer.

WHAT DOES THIS EXTENDED REQUEST DO?

describe

To find out, then, what an extended request does, you need
another help request. The describe extended request retrieves
the documentation for extended requests. Like apropos, it also
requires an argument; in describe's case, the argument (separated
by a space from the last character of "describe") is the command
name of the extended request you are interested in.

For example, to find out about filIon, you type ESC X,
describe, space, filIon, carriage return. The documentation for
filIon is then shown on your screen as a local display. Try
describe out with the other two extended requests you know,
describe itself and apropos.

TANGIBLE HELP

make-waIl-chart

If you want help in a more permanent and tangible form than
that provided by ESC?, apropos, and describe, you can try the
make-waIl-chart extended request. This puts a list of all the
currently defined command names and their associated keys into a
buffer.

11- 4 CH27-00

You should then write the contents out to a file and dprint
a copy. The list produced in this way, "suitable for framing",
is a handy reference that you might want to keep near your terminal.
The wall chart produced is 132 columns wide and the requests are
divided into three columns. A sample (of one column only) appears
below.

esc-F
esc-G
esc-H
esc-I
esc-K
esc-L

forward-word
go-to-line-number
mark-paragraph
indent-relative
kill-to-end-of-sentence
lower-ease-word

MORE HELP AND WHAT DID I JUST DO? ---- ---- --- ---- --- - ---- ---

The A request, help-on-tap, provides all of the above forms I
of hel p and some additional forms, depend ing on t he character
that follows itD (On some terminals, you may have to type A? to
send the A character.) A A? displays the current repertoire
of A. A -A H shows where to get more help. The A A and A D
requests are- shortcuts for the ESC X apropos and ESC X describe
extended requests; they work in the same way as those two extended
requests, respectively. A A C works just like ESC?, describe-key. 1-
A A AG does a AG, as usual, in case you want to get out of
help:on-tap.

Sometimes when you are happily editing away, things happen
that you do not expect. If you want to track down your error
(reconstruct the scene of the crime, as it were), you can get a
local display of the last 50 characters typed in. The A L request
provides this, and is very useful as a learning tool.- It lets
you examine what you did so that you can identify and correct any
problems.

7/81 11-5 CH27-00A

SECTION 12

SENTENCES AND PARAGRAPHS

Besides being able to recognize and manipulate words, Emacs
also performs useful manipulations on sentences and paragraphs.

SENTENCES

Emacs can go to the beginning or end of a "sentence" (ESC A,
ESC E), and can kill sentences either backward (AXn or AX DELETE
key) or forward (ESC K). In order to do these editing tasks, it
must be able to recognize what a sentence is.

Basically, to find a sentence, Emacs looks for period (.),
question mark (?), or exclamation point (!) followed by at least
one space or tab. Capital letters have no meaning; Emacs sentences
need not start with one. If you have numbered items, e.g.:

1. Measure one cup of flour
2. Add a teaspoon of baking soda

Emacs considers "1." to be the end of a "sentence" (or possibly
a complete sentence depending on preceding text). The period is
the last character of that sentence. The second sentence starts
with the first printed character following the end of the first
sentence, and contains "Measure one cup of flour," a newline, the
number "2," and the period. The third sentence starts with the
"A" of "Add." The end of this third sentence does not appear
above. However, if the line following this is blank, then "soda"
ends the sentence; "a" is the last character in it.

Emacs also considers itself to be at the beginning of a I
sentence if the cursor is at the beginning of a buffer, and at
the end of a sentence if the cursor is at the end of the buffer.

8/82 12-1 CH27-00C

So, to summarize: Emacs actually defines a sentence by its
ending. Sentences start with the first printed character after a
previous sentence's end. Sentences end with:

• a period, question mark, or
that is followed by white space

exclamation

• the last character preceding an empty line

• the buffer's end

Conversely, sentences begin with:

point

• the first printed character following a period, question
mark, or exclamation point that is followed by a space

• the first letter following an empty line

• the first letter at the buffer's beginning

Moving Forward or Backward Ez Sentences

ESC A

The ESC A request, backw3rd-sentence, moves the cursor to
the first character of the current sentence, i.e., if the cursor
is on a character in a sentence, it goes to the first character
of the sentence. If the cursor is already at the beginning of a
sentence, it moves to the first character of the preced ing sentence.

I If you supply a numeric argument to ESC A; the cursor moves backward
the given number of sentences.

ESC E

The forward-sentence request, ESC E, moves the cursor to the
end of the current sentence, leaving it right after the sentence.
If the cursor is already at the end of a sentence, it goes to the
end of the following sentence. Anything defined to be the end of
a paragraph (see "Paragraphs" below) is automatically the end of
a sentence as well. This request also accepts numeric arguments.

Experiment with these two requests until you feel comfortable
with the concept of Emacs sentences.

Killing Sentences

7/81 12-2 CH21-00A

Remember what ESC # did for words? Well, AX#,
kill-backward-sentence, does it for sentences. This request
kills backward from the point to the beginning of the sentence,
i.e., the first letter following the end of the previous
sentence. Thus, in the following text, start with the cursor
under the question mark:

1. Measure one cup of flour. 2. Add
an egg. 3. Mix well

Voila You have noodle dough. What
kind of noodles, you ask?

After the first AX#, the question mark, with the cursor still
under it, is located where the "W" of "What" was, and that
sentence is gone. The? remains because it was not included in
the text between the point and the beginning of the sentence.
Subsequent AX#S leave the? and cursor where the "Y" of "You"
was, the "V" of "Voila," the "M" of "Mix." Note that the blank
line is deleted as simply being so much white space between
sentences. It is this blank line, however, that makes "Voila"
be a sentence on its own, rather than a continuation of the "Mix
well" sentence, even though no end-of-sentence punctuation
follows "well." The next AX#S puts you at the former position of
"3," the "An of Add," and so on.

Sentences killed successively with AX#S merge on the kill
ring. One Ay retrieves them, as well as the intervening white
space, so your text looks the same as it did. This request also
accepts a numeric argument, killing the specified number of
sentences backward and entering them on the kill ring.

The AX\177 request (type a AX and then the delete key) is
also kill-backward-sentence, and behaves the same way as AX#.

1/82 12-"'> CH27-00B

ESC K

As promised at the beginning of this section, Emacs kills
sentences forward via the ESC K request,. kill-to-end-of-sentence.
This deletes text going forward from the cursor to the end of the
current sentence. If you are at the end of a sentence, e.g., the
cursor is on the space immediately after a period, this request
deletes forward to the end of the next sentence. Sentences
killed successively are merged, and can be retrieved with a
single Ay. Also, ESC K accepts a numeric argument, killing
forward the specified number of sentences; these .sentences enter
the same slot on the kill ring.

Try ESC K out with the sample sentences above. If you typed
them in before, and killed them with AX#S, you can, of course,
retrieve them with Ay to avoid retyping.

PARAGRAPHS

Emacs defines a paragraph in one of two ways, both
controlled by the "paragraph-definition-type" option of the ESC X
opt extended request (see Section 17). When this option is set

* to 1, a paragraph is defined as being all text between two blank
lines. In other words, a paragraph begins immediately after a
blank line, and ends with the last character preceding another
blank line. If, after a blank line, you type spaces or a tab
before entering text on the line, that white space is still
considered part of the paragraph (unlike white space preceding a
sentence).

When the option is set to 2, as it is by default, an
indented line starts a paragraph, i.e., any spaces or tabs at the
beginning of a line begin a paragraph, and the paragraph ends
with the last character on the line preceding the next indented
line.

With either option setting, a control line for the runoff or
compose Multics commands (e.g., a line containing only .sp or
.spb) is a paragraph all by itself. Paragraphs also begin with
the line following a "control" paragraph. Compose control .unh
(hanging undent) is special-cased so that paragraph-recognizing
functions consider the second line after .unh to be the first
line of the paragraph acted upon (e.g., ~SC Q,
runoff-fill-paragraph. does not merge the line following .unh
with subsequent lines forming the paragraph to be filled).

11/86 12-4 CH27-00F

By the above definitions, then, a paragraph always begins at
the beginning of a line, and the lines must be:

Type 1
• preceded by an empty line

• a runoff or compose control line

e the beginning of the buffer

• preceded by a runoff/compose control line

Type 2
• indented

• a runoff or compose control line

• the beginning of the buffer

• preceded by a runoff/compose control line

1/82 12-4.1 CH27-00B

Moving Forward or Backward by Paragraphs

ESC [

~ne ESC [request, beginning-of-paragraph, moves the cursor
to the beginning of the current paragraph. If you are already at
the beginning of a paragraph, you move to the beginning of the
previous paragraph~ This request accepts a numeric argument and
mov~s back the specified number of paragraphs.

ESC]

The request for end-of-paragraph is, as you might expect,
ESC]. This moves you to the end of the current paragraph, or
the end of the next paragraph if the cursor is already after the
last character of paragraph. You can use a numeric argument to
move forward many paragraphs. Both ESC [and ESC] can be tried
out with the sample recipe, since you have two paragraphs (the
blank line separates them because they are type 1 paragraphs by
default). With this type of paragraph, you can type in text,
spacing your paragraphs one or two lines apart for an appearance
both practical and pleasing. Each paragraph can be indented as
well, but the empty lines determine the paragraph 'breaks, unless
you deliberately redefine paragraphs with ESC X opt.

Marking ~ Paragraph

ESC H

You may decide to delete or move a paragraph, or rearrange
your text by deleting or moving an entire paragraph. To do this
you could mark the region with A@, after getting to the beginning
of the paragraph, then ESC] to the end of it and issue the A W
request. However, ESC H, mark-paragraph, makes this easier. It
puts the mark at the beginning of the current paragraph, and the
cursor at the end. Your region, in this case a paragraph, is
marked in one step, and a A W wipes it out. The paragraph is
saved on the kill ring, and can be reinserted where you please
with a Ay.

Formatting ~ Paragraph

When you just type in text without regard for line breaks,
your screen's left edge begins to look pretty messy with all the
continuation lines (\c preceding the text). Since this is such a
convenient way to enter text, however, Emacs provides a request
that "tidies up" your text, paragraph by paragraph.

12-5 CH27-00

ESC Q

The ESC Q request, runoff-fill-paragraph, formats paragraphs
for you. It rearranges your text so that words are not broken in
the middle at the ends of lines. The continuation lines are
broken, instead, between words, giving you a neat "ragged right"
margin, and no "\c" lines on the left margin. (You can also set
your margins; see Section 13.)

Type in about three lines of text without any carriage
returns. Type an ESC Q and watch the screen. The text is
rearranged automatically. Your new paragraph takes up a few more
spaces since the sentences have to be rewritten to accommodate
the new line breaks. You can type in text forever, issuing ESC
Qs at the end of each paragraph to format it.

If you want an adjusted right margin, issue ESC Q with a
positive numeric argument, e.g., ESC 1 ESC Q. To try this with
the test paragraph just typed, issue an ESC H, AW, and ESC 2 Ay.
You have marked the formatted paragraph and deleted it, and
yanked the contents of the kill ring's second slot. These
contents are the original paragraph, continuation lines and all!
That is because ESC Q put the unformatted paragraph into the kill
ring when it formatted it, and it was pushed into the second slot
by the A W you just did.

So, ESC Q, without an argument:

• formats the current paragraph with a ragged right
margin

• puts the original paragraph into the kill ring

With a positive numeric argument, ESC Q:

• formats the current paragraph with both left and
right-justified margins (padding if necessary)

• puts the original paragraph into the kill ring

To set your margins, see AXF and AX. in Section 13.

12-6 CH27-00

SECTION 13

INDENTATION AND SPACING

Emacs provides numerous requests that deal with indentation
and the management of white space. White space is any combination
of tabs, spaces, formfeeds, or vertical tabs. Among other things,
the Emacs requests discussed here allow you to add, delete, and
skip over white space characters, as well as add varying levels
of indentation.

BLANK LINES

Adding Them

"0

After you have typed in some text, and perhaps formatted it
with ESC Q, you may rlecide to add another paragraph or two, or an
example, or simply a few more lines. The "0 request, open-space,
a 11 ow s you to ins e r t 'a sma n y em p t y 1 i n e s ,:1 S yo U wi s h sot hat you
have a fresh space on the screen in which to work. This request
also saves the time it might take on some terminals for Emacs to
continually rewrite lines if you were just typing additional text
in without first opening a space for it.

Typing a "0 puts a newline into your buffer ahead of the
current point. Text after the current point moves down a line
and over to the left margin and pushes succeeding lines down one.
The cursor remains immediately before the inserted neHline, and
successive "Os keep opening up new empty ~ines. Thus, to insert
empty lines above a line of text, issue "0 while the cursor is at
the line's beginning. Your cursor is then positioned so that you
can issue as many "Os as desired, and then immediately start
typing the new text, since the cursor is right before the new I
stack of blank lines. With a positive numeric argument, "0 inserts
the specified number of newlines. Thus, "u"u"o, or ESC 16 "0,
opens up 16 lines.

8/82 13-1 CH27-00C

Removing Them

If you open up more space than you need, or simply have
blank lines that you do not want, AXAO, delete-blank-lines, removes
them.

If the cursor is anywhere on a non-blank line, issuing AXAO
deletes all blank lines after the end of the current line. The
cursor is left at the end of the deleted blank lines, i. e., at
the beginning of the next non-blank line which has moved up (with
all succeeding lines as well) under the line in which AXAO was
issued.

If the cursor is on a blank line when you issue AXAO, again,
all blank lines after the end of the current line are deleted.
Thus, you still have one blank line remaining (blank lines above
also remain, of course). The cursor is left at the beginning of
the next non-blank line.

Try these two requests out for yourself to see how easy it
is to open up space, type, and delete the extra.

DEALING WITH WHITE SPACE ON A LINE

Spacina Over Indentation

ESC M

A simple request, ESC M (skip-over-indentation) lets you move
the cursor over the white space beginning the current line. The
cursor moves to the first non-blank position on the line. This
helps get you right to the text after you have issued a AA, ESC
[, or similar request moving you to the beginning of an indented
line. In fact, if you are anywhere in an indented line, ESC M
moves the cursor to the non-blank at the beginning of the line,
so it is frequently more useful than a AA when working on indented
text.

1/82 13-2 CH21-00B

Deleting White Space

ESC \ .

The ESC \ request, delete-white-sides, deletes all white space
surrounding the point on the current line, and closes up the line
accordingly. Thus J issuing an ESC \ wi th the cursor at any of
the spaces between "have" and "too" or on the "t" of "too" in the
following:

I have too much space here.

gives you

I havetoo much space here.

with the cursor left under the "t." Putting the cursor under "I"
and typing ESC \ removes the indentation. The point is always
left before the first nonwhite space character that followed its
prior position.

ESC "

The ESC A request is not issued by typing the escape key and
the control key. The n " here represents the caret character on
your keyboard, so you type the escape key and then the caret.
This character is commonly referred to in Mul tics as the "not
symbol." ESC", delete-line-indentation; deletes all the white
space at the beginning of the current line and merges it with the
previous line. The cursor can be anywhereln the line when you
type the escape and caret key sequence, and it moves to the first
nonblank character that began that line. Thus, it usually ends
up somewhere in the middle or toward the end of the previous
line. Following text moves up to the vacated line.

With a positive numeric argument, ESC" does a "N first,
deleting indentation on the next line and adding it onto the
current one. In this manner you can connect lines to each other
and remove indentation if you decide to change the appearance of
your text. For example, to change the following:

to:

1/82

Mail copies to:
Bob Burns
Cindy Hatter
Jake Voit

Mail copies to: Bob Burns, Cindy Hatter, Jake Voit.

13-3 CH27-00B

simply put the cursor on the top line and type (type the characters
indicated within the brackets, not the brackets and· letters
enclosed) :

Al ternatively, you can start wi th the cursor on the last line,
and type:

ESC A <,space> ESC A <,space> ESC A <2 spaces> AE <.>

The first way, using a numeric argument, is a little more intuitive.

FILL MODE

Fill mode is a minor mode that can be turned on or off in
each buffer-.-If it is on, i.e., you are "in fill mode," text is
broken automatically at the end of each line so that it does not
extend past the fill column. The fill column determines the right
margin, and is the first column in which text is not to be placed
by ESC Q or fill mode formatting. Typing a space, tab;"Or punctuation
mark following a word that passes the fill column signals Emacs
to "back up" to the white space ~receding that word and break the
line there. In addition, the fi 1 prefix, if set, is inserted at
the beginning of each new line typed in while in fill mode. The
fill prefix determines the left margin, and is empty unless set
to contain some combination of spaces and characters (see "Margins,"
below for changing the fill prefix and fill column). If the fill
prefix is not set, i.e., it is empty, the left margin is the left
edge of your screen.

While in fill mode, if you do want characters in or beyond
the fill column, type a carriage return immediately after the
word instead of a space, tab, or punctuation. Or, if you want
more than a word, precede each character after the word with AQ.
Alternatively, you could reset the fill column for that line.

Fill mode is an excellent means of entering text wi thout
ever having to worry about the ends of lines. Your text is formatted
automatically as you type, so you can enter your document rapidly
and see how it looks immediately. Use this mode whenever entering
English text for maximum convenience.

1/82 13-4 CH27-00B

ESC X filIon AND ESC X filloff

These two extended requests, as their names imply, turn fill
mode on or off in a buffer. When entering text, you generally
want to be in fill mode, since you can then simply type without
ever worrying about carriage returns or line breaks. Your text
is formatted as you types

MARGINS

Your right and left margins are generally set automatically
to accommodate your terminal's screen size, thus maximizing your
working space. You can, however, change these margins. The left
margin can be reset by setting the fill prefix, which is inserted
automatically by carriage return, fill mode, and ESC Q. The fill
prefix can contain characters and spaces and it "prefixes" all
text following a carriage return or formatted by fill mode or ESC
Q. Generally, you want only spaces in the fill prefix. The
right margin is determined by the fill column, which is the first
column in which text is not to be placed by ESC Q or fill mode
formatting.

Setting the Margins

AX.

The AX. request, set-fill-prefix, sets the fill prefix in
the current buffer. You posi tion the cursor on a line and type
AX. • Whatever is between the cursor and the beginning of the
line becomes the fill prefix. So, if you want a fill prefix of
five spaces, put thE: cursor on the sixth character of a line
beginning with at least five spaces and issue this request. A
good way to do this is to choose a line indented the way you want
i~· and type an ESC M and then AX.. Ex isting tex t does not change,
but subsequent ESC Qs and carriage returns indent text. If fill
mode is on, future lines are also indented.

By positioning on a line whose beginning contains non-blank
characters, you can include them in your fill prefix. You might
want a fill prefix containing asterisks or dashes, for example,
to set off a section of your text. To return things to normal,
i.e., have no fill prefix, issue AX. at the beginning of a line
(AA gets you out to the left edge before the fill prefix).

13-5 CH27-00B

To set the fill column for the current buffer, use AXF,
set-fill-column. The column in which the cursor is located when
you type AXF is set as the fill column. Fill mode and ESC Q use
this column as the right margin. When you set it, the value is
displayed in the minibuffer like this:

Fill column = 65

This request accepts an optional positive numeric argument, which
is the value to be assigned to the fill column, e.g., AU 65 AXF
sets column 65 as the fill column and makes column 64 be the last
column in which text can be placed when you are in fill mode, or
formatting with ESC Q.

If you are dprinting a file on a device that accommodates
more characters/line than your terminal, you may want to set the
column to an appropriately higher value to save time and paper.
R em em be r: i f yo \.J dot his i t hat you r t ext 0 nth esc r e en wi 11 nee e s s a r i 1 Y
include many continuation lines (\c inserted at the beginning of
the lines, with words broken randomly).

Centerina a Line

ESC S

The ESC S request, center-line, centers the current line
between the left edge and the fill column. This is useful for
headings and titles, but only ir-rhe fill prefix is not set. If
it is, you end up with everything "centered" too far to the left.
Experiment with ESC S with different settings of the fill prefix
and fill column.

1/82 13-6 CH27-00B

MORE ABOUT LINES AND WHITE SPACE

Shearing a Line

ESC "0

This request, ESC AO, named spl it-line, breaks the line at
the point. The text beginning at the cursor is moved down a line
and indented so that it stays in the same column vertically. The
cursor maintains its original position. Thus, you can change:

Kit contains:
Items needed:

to:

Kit contains:

Items needed:

embroidery thread, stamped cloth
needle, hoop

embroidery thread, stamped cloth

needle, hoop

by putting the cursor at the "en of "embroidery" and typing:

Since AN tries to stay in the same column, it is simple to move
the cursor down to the "e" again. The second AN is all that is
necessary in this case since "needle" was already directly below
"embroidery." In your edi ting, however, you will have to make
sure the cursor is positioned where you want the line to be sheared.

Now recall what ESC ~ (caret character) does with a numeric
argument. It removes the indentation from the next line and tacks
t!:e remaining characters onto the current line:-- So, after you
type the sequence above, leaving the cursor two spaces after
"needed:", you can simply type AU ESC A to rejoin the bottom
lines. A "'p followed simply by ESC A rejoins the top two (since
ESC A by itself removes indentation on the current line and tacks
the remaining characters onto the previous line.

1/82 13-7 CH27-00B

Undentins to the Fill Prefix

ESC AI

If you have an indented line that you no longer want indented,
you "undent" it with ESC AI, indent-to-fill-prefix. This only
works if the indentation is caused by something other than the
fill prefix, since the request removes leading white space and
repl aces it wi th the fi 11 prefi x . When the fi 11 prefix is not
set, ESC AI effecti vely moves the first non-blank character of
the line over to the screen's left edge (moving the rest of the
line with it, of course). When it is set, ESC AI simply removes
the white space, leaving the first non-blank character after the
fi 11 prefix. In ei ther case, the cursor, which can be anywhere
on the line when ESC AI is issued, moves to the first non-blank
character.

INDENTATION

Emacs provides a sophisticated method for indenting when you
are preparing outlines, programs, tables, and other indented text.

ESC I

ESC I, tab-to-previous-columns, is a very powerful Emacs
request. It indents the current point and any part of the line
to the right of the current point. The amount of indentation is
determined by looking at the previous nonblank line. The printed
character following the first whi tespace character to the right
of the current column determines the new current column. Successi ve
ESC lsI ine the poi nt up in that manner across the 1 i ne e For
example, starting with the cursor at the beginning of the second
line below, the numbers represent the cursor's posi tion after
each successive ESC I:

1/82

Name
1

Phone
2

Mint Choc Gran Pnut
3 456

13-8 CH27-00B

This request is ideal for building columnated tables. You
can type in the first line, spacing your fields by hand,then use
ESC I for the remaining lines. Type in an item, ESC I to move to
the next field, type that item, ESC I, type, etc. Try creating a
table something like the one below:

Name
Harold
Clumbs
French
Revere

Phone
867-1066
258-1492
714-1789
417-1775

Mint
3
5
o
1

Choc
1
3
2
1

Gran
o
3
o
1

Pnut
5
2
o
12

With a numeric argument, ESC I "unindents" one level each
time it is invoked. This is especially helpful when creating
outlines or similarly structured material.

ESC CARRIAGE RETURN

If you are indenting several lines, you do not have to type
a carriage return (CR) after each line and then an ESC I to
indent the next. The ESC CR request, cret-and-indent-relative,
combines these two functions for you (very useful unless you are
in fill mode so you are not typing carriage returns anyway).
This request does a carriage return and an ESC I in one step.
So, you can end the current line and start a new one indented the
same just by typing ESC CR. If the current line is not indented,
the new line starts under the first letter of the second word on
the original line. Try this out by entering the following:

1/82

Document preparation should be made as easy as possible.
(Documents is used loosely here to include memos,
business letters, theses, professional papers, user
manuals, instructional booklets, advertising copy,
and any other informational type of text that we
need for doing our jobs.)

Emacs helps by simplifying text entry and editing.

13-9 CH.::.'/-OOB

To indent or reindent an entire region by a specified amount,
use the AXAI request, indent-rigidly. It takes a numeric argument
that specifies the number of spaces to indent (positive argument),
or unindent (negative argument) the region. All lines having any
characters within the region defined by the mark and point are
indented.

SUMMARY OF TERMS

Some new formatting terms introduced in this section include:

• fill mode

• fill prefix

• fill column

1/82 13-10 CH27-00B

SECTION 14

MOVING BLOCKS OF TEXT

Regions, paragraphs, and buffers can be marked, deleted, and
yanked back into new positions whenever you want to move them.
The A@, AXH, and ESC H requests are the principal means of
marking large sections of text that you have learned so far, and
AW deletes any section so marked. The Ay and ESC Y requests are
available for retrieving killed text blocks and inserting them at
the cursor. In addition to these requests, Emacs provides some
more sophisticated methods of marking and moving blocks of text.

INSERTING AN ENTIRE FILE

The AXI request, insert-file, allows you to read additional
files into your text. You position the cursor to where you want
the file inserted, and issue this request. You are prompted for
the pathname of the file you want:

Insert File:

Type the pathname and end it with a carriage return. The word
"Reading" flashes on in the minibuffer while the file is read in
before the cursor, i.e., to the left of the cursor. The mark is
left at the beginning of the inserted text. The cursor, and the
text of the original buffer at and following the cursor, are then
left after the contents of the inserted file - after the newline
at its end (if it ends with one). Your buffer's previous
contents are preserved, and the new file becomes part of them.
The default file for the buffer remains the same. So, if you
originally read in "first.oractice" with AXAF, and insert
"second.practice" with AXI, a AXAS or AXAW with an empty prompt
response still writes the file out to "first.practice."

11/86 14-1 CH27-00F

With AXI you can insert as many additional files into the
current buffer as you wish, or insert the same file at many
places. You can, of course, insert other people's files by
giving the appropriate pathnarne (you must have the proper
access). This can be very helpful if several people are working
on different sections of a document; you can "assemble" the
various pieces by inserting the files in any desired sequence.
(Alternatively, you can assemble a document with the runoff or
compose command's insert file controls.)

The AXI request also accepts archive component pathnames.
An archive component pathname is a (relative) pathnarne of an
archive segment followed by two colons (::) and a component name.
Starnarnes are accepted, too. For example, to insert
Additions.list at the current point, typing AXI Add*.* does it as
long as Add*.* is unambiguous. Stars can also be used in archive
component pathnarnes.

COPYING A REGION

ESC W

Sometimes rather than moving a block of text from one place
to another, you simply want a copy of it in one or more
additional places in your text. Rather than wipe it with AW and
then yank it back into both the original and secondary
position(s) with Ays, you can copy it with ESC Wand Ay it into
the new position(s) only. ESC -w-Tcopy-region), then, copies the
region between the cursor and the mark, placing a copy in the
kill ring without affecting the original.

SELECTING AND JOINING TEXT ON THE KILL RING

To join two disparate pieces of text, you can issue the ESC
AW request, merge-Iast-kills-with-next. This causes the next
kill requests, which must follow immediately, to merge what they
kill with the last saved kill on the kill ring. Then one Ay
retrieves them as a single entity. For example, typing:

catenates two disjoint lines on the kill ring.

1/82 14-2 CH27-00B

NAMED REGIONS

Emacs provides a way to assign a region to a variable, whose
name you choose, so that you can manipulate it at any time during
an editing session, i.e., during the same invocation of emacs. A
variable is simply a stored region. Variables are maintained for
the entire session, so you can work with several named regions at
once, instead of the single one defined by the mark and point.

Storing the Region to a Variable

"'XX

The "'XX request, put-variable, stores a region away by name.
To use this request, you set the mark and point around your chosen
region, and type "'XX. Emacs prompts you for a name to be associated
with the stored region:

Variable:

Type whatever name you choose, end ing wi th a carriage return.
The region then disappears from the screen, and the cursor returns
to the character which preceded the region. You have not lost
this text; it is merely stored away, and is retrievable by name.
You can store as many regions in this manner as you wish. However,
be careful not to duplicate names, because Emacs overwrites a
previously stored region if you try to store another' one in the
same variable.

Inserting a Variable

"'XG

You use "'XG, get-variable, to retrieve or insert a stored
region at the cursor. You are again prompted for the variable
name, and the named region reappears in your text at the cursor
after you type the carriage return. The cursor is put after the
reinserted regio~, and the mark is set before it. You still have
this same region stored as a variable~ however, so you can move
the cursor and issue additional "'XGs to get more copies into your
text.

1 /82 14-3 CH27-00B

Listing Your Variables

ESC X lvars

If you forget what your variable names are, or you want to
check them to avoid duplication, the ESC X lvars extended request
lists them for you in a local display. It also provides the
length of each variable, which may give you a clue to what is in
them if you cannot remember. The display looks like this:

Current string variables

Name

footnote
stars
disclaimer

nChars

29
12
53

You can type a linefeed (AJ) or resume editing to get rid of the
local display.

NAMED MARKS

You can also assign names to marks in much the same manner
as you assign them to regions as variables. This can be extremely
helpful for setting up a series of places in your text to which
you want to return for some reason. Perhaps you want to doublecheck
several items, but do not wish to keep interrupting your text
entry or editing. Or you may be considering a format change that
will affect several parallel points. Even if you simply have
several "rough spots" that you know will require further work,
you can return quickly and easily to any spot where you have set
a named mark. However, named marks, unlike variables, are valid
only in ~buffer in which they are set.

1/82 14-4 CH21-00B

Setting a Named Mark

The "Z"'@
current point.
to the prompt:

Mark Name:

request, set-narned-mark, sets a named mark at the
You position the cursor, type "'Z"'@, and respond

with whatever name you choose, terminated by a carriage return.
The rninibuffer prints a message telling you that the mark is set
and giving its name. This named mark is not the effective mark,
but is remembered by its name while you set, or set and name,
other marks. To go back to this mark, use "ZG, the go-to-named-mark
requ~st. To delete a region that begins at this named mark, you
must reset the effective mark at this point, since "'w always
wipes out the region between the effective mark and the cursor.
Rem em b e r , too, t hat i f you c han g e b u ffe-r-s , you can r e use t, h e
names assigned to marks set in different buffers, since "'Z"@-created
named marks are valid only in the buffer in which they were set.
If YGU do not change buffers, reusing a name reassigns the name I
to the current mark.

Going to a Named Mark

"'ZG

The "'ZG request, go-to-named-mark, moves the cursor to the
point where the named mark was set by "'Z"'@. You are prompted for
the name. Use this request to return to any point where you have I
previously set a named mark.

8/82 14-5 CH27-00C

Listing Your Named Marks

ESC X list-named-marks

The ESC X list-named-marks extended request is provided for
the same reasons as ESC X Ivars. It lists the line number and
the name for each named mark in a local display that looks like
this:

Line Ii

5
12
53

Mark name

snow
white
disclaimer

You can move text by several means now, including inserting
entire files and copying regions. You can also move text, or
simply move around, by assigning names to regions and marks. The
following terms are important for you to remember:

• variable

• named region

• named mark

1/82 14-6 CH27-00B

SECTION 15

KEYBOARD MACROS

A keyboard macro is a sequence of requests that are
performed, in order. when you issue a macro-executing request.
It is a "mini-program" that you devise to perform some editing
task that you must do several times. You can create and use a
macro, and then create a new one, or you can save your macros for
later use by assigning names and keys to them. The most
important thing to know about a macro. though, is that it is easy
to create one. All you have to do is tell Emacs that you're I
about to issue some requests which it should remember as a macro,
then issue the requests, and finally, tell Emacs that the macro
is finished.

CREATING A MACRO

When would you create a macro? Well, suppose you are
preparing a document and decide that you want a section of text
to be highlighted by a column of leading asterisks and
doublespaced. You can write a macro that inserts the asterisks
and blank lines for you.

"X(AND AX)

The "X(request, begin-macro-collection, is the first thing
you type to start writing a macro. When you type it. Emacs
begins "remembering" your next keystrokes as a macro. So, before
typing it, you should always define your problem and decide-what
Emacs requests you would issue to correct it once (you could
actually make the correction one time to verify this). Then type
"X(. This appears in your mode line, after the name of the major
mode~

<Macro Learn>

2/83 15-1 CH27-00D

Macro Learn is a minor mode, entered via AX(. Now everything you
type is remembered as part of your macro as well as having its'
normal editing effect on the buffer. In addition, macro definition
ends if any request encounters an error during the macro definition.
When you type the AX) request, end-macro-collection, definitior'l
of the mac ro ends and the "Mac ro L2 ~('n!1 me:;:3.lge disappears.

Thus, to insert the asterisks and blank lines you would define
this macro:

• AX(begins the macro definition.

• AA puts you at the beginning of the line.

• * and two spaces following inserts an asterisk and two
spaces before the rest of the line.

• AE . puts you at the end of the l.i'1e, IIlhich now begins
with an asterisk.

• AO inserts a blank line after the current line.

• ESC 2 AN moves you two lines down, past the new blank
line to the next line with text, leaving you ready to
repeat the macro.

• AX) ends the m3.cr'u :jefl'lition

The AX) request accepts a numeric argulnent; 1 f given one, it
executes 'the macro as well as ends its definition. The number of
time::> It executes it depends on the numeric argument. See "Executing
a Macro" below for details.

8/82 15-2 CH27-00C

EXECUTING A MACRO

"'XE

After a macro has been defined, "XE, execute-last-editor-macro,
executes it once. The macro to be executed with this request
must be the latest one written with "X(and "X). With a numeric
argument, AXE execu i::':?:3 the macro the number of times specified by
the argument, according to the following:

Numeric Argument

o
(i.e., ESC a "'XE)

- 9999
(e.g., ESC 6 "XE)

>9999

Executions

Repeats execution, with a pause
after each, as long as you type
a space during the pause.
Typing a carriage return or
"G stops the repetition.

Repeats execution the
specified number of times.

Repeats execution until an
error occurs.

The AX) request, which ends a macro definition, can be given
a numeric argument, too, specified right in the macro. The numeric
arguments are interpreted the same as those for "XE, above. After
you type the "X)~ execution starts automatically. Try executing
the macro you typed that inserts paragraph "breaker lines."

MID-MACRO QUERY

"XQ

What if you want to execute a macro selectively, i.e_, have
it affect some cases and ignore others, or stop executing altogether?
While you are creating a macro, you can write the "XQ request,
macro-query, into it so that Emacs will stop in mid-execution,
letting you control how or whether it continues. You simply type
a "XQ into your macro at the point where you want the pauses to
occur. A message appears in the minibuffer:

Inserting query at this point.

8/82 15-3 CH27-00C

During execution of the macro, Emacs performs as much of the
macro as precedes the query, then stops and asks you, in the
minibuffer, "ok?". You must then type one of the following responses:

• A space (hit the space bar) continues execution of the
macro; the requests following are performed.

• A carriage return st"arts the macro over from its beginning,
without performing the requests following the query.

• A AG stops the macro altogether.

Using AXQ, then, type in this macro (spaces should not be
typed, or they will be inserted into your buffer; they are included
in the e.xamples only for readability).

AX(ESC] AXQ AM ** ____________ ** AX)

This macro goes to the end of the current paragraph (by finding a
blank line or indented line), queries you, and then opens a new
blank line (AM is equivalent to CR and is used here in the definition
of the macro to avoid confusion wi th the CR response to the mid-macro
query during execution of the query) and inserts the asterisks
and hyphens. During its execution, you are queried at the end of
each paragraph. Typing a space in response to the query opens a
blank line and fills it wi th the supplied characters to form a
more visual break between paragraphs. Typing a carriage return
(perhaps because the "paragraph end" is not really the end of one
of your paragraphs or you do not want the cur'rent paragraph to be
set off) goes to the end of the next paragraph without adding a
blank line and the asterisks and hyphens.

DISPLAYING A MACRO

The AX* request, show-last-or-current-macro, provides a local
display of the last macro defined with AX(and AX). The requests
are shown as keystrokes, like this:

I esc-] AXQ AM ,,**------------*."

Character strings within the macro are quoted.

8/82 15-4 CH21-00C

If you give this request a numeric argument, e. g. "U"X·,
the keystrokes and command names are displayed. Try it out to
see what this display looks like for the macro you typed in.

SAVING A MACRO

ESC-X save-macro

You can save the current macro by assigning a command name
to it. At the same time, you can assign a key to the named
macro, so that you only need type the assigned key to execute the
macro. When you invoke the ESC X save-macro extended request,
you are prompted for a command name to assign to the macro, and a
key sequence:

Macro Name? paragraph-stars
On what key?

If you type I'. X 9 , for example, to the second prompt above, you
get:

On what key? I'.X (prefix char): 9

A null response (typing a carriage return) to the key prompt does
not assign paragraph-stars to any key; the ESC X set-key extended
request, described below, can be used later to assign a key. Key
assignments made with ESC X save-macro and ESC X set-key are only
effective in the current buffer. Be careful when setting the key
that auto-linefeed is turned off on your terminal, or you will
end up with I'.J as your key every time.

Once a key has been assigned, typing it invokes the macro to
which it is assigned. The key can be gi ven any of the numeric
arguments accepted by I'.XE. ..

2/83 15-4.1 CH27-00D

To check your key assignment, invoke ESC ? with the new
key. This display appears:

paragraph-stars

AX9 is a keyboard macro. Type esc-X show-macro
paragraph-stars to display its definition.

Had you assigned one of the keys already used for a Fundamental
mode request, you could still issue the Fundamental mode request
as an extended request. Simply type an ESC X and the command
name to do so, e.g., ESC X put-variable, if you wish to assign
AXX to a macro. Actually, you can issue any standard Emacs
request as an extended request, at any time.

Displaying ~ Saved Macro

ESC X show-macro

The ESC X show-macro extended request displays a macro that
you have defined with AX(and AX), and then assigned a name to
with ESC X save-macro. When invoking this request, you must type
the name of the macro as an argument, after typing ESC X
show-macro and before typing the carriage return that terminates
the prompt. The local display is the same as that for AX*.

"[;1T"\TmT~T"" A lI.JI'A~nl"\
CJU..L..L..Ll'li\.l' i'i. 1'1i'i.vf\.V

ESC X edit-macros

The ESC X edit-macros extended request produces a symbolic
file of all keyboard macros defined in the current buffer, and
places it in a new buffer called "Macro Edit." The keyboard
macros can then be written out for later loading, and can be
edited, redefined, or compiled into Lisp code. This request is
also helpful if you have forgotten what macros are available to
you. For information on the other uses of ESC X edit-macros, see
Appendix D.

1/82 15-5 CH27-00B

SETTING AND CHANGING KEY BINDINGS

ESC X set-key and ESC X set-permanent-key

You can assign your own key bindings to requests and named
macros with the ESC X set-key and ESC X set-permanent-key
extended requests. The former assigns the key only in the
current buffer, and the latter assigns the key in all buffers.
Aside from this, both requests work in the same way.

After typing in either request, you must provide two
'arguments before ending the prompt with a carriage return. The
first argument is the key name; the second is the command name.
These requests make the ke~assigned by the key name, execute
the request, specified by the command name (either in the current
or all buffers, depending on which key-setting request is used).

the
The command name can be
command name that you

save-macro.

any standard Emacs command name, or
have assigned to a macro via ESC X

The key name can be the typed representation of a key, i.e.,
you must type out the letters or characters that represent any of
the special keys, rather than typing the special key. For
example, in a key name, you can type the word "control" or the
caret character, but not the control key. Likewise, you can type
the letters "meta" or "m", but not the meta key (found, for
example, on Massachusetts Institute of Technology Knight TV
consoles or Stanford Artificial Intelligence Laboratory
consoles). Key names can have any of the following forms (angle
brackets are included to delineate components that are not
literal):

11/>16

<syllable>

esc-<syllable>
escape-<syllable>
A[<syllable>

A[-<syllable>
meta-<syllable>
m-<syllable>

e.g., f (caret
keystroke

e.g. ,esc-f or ESC-f
escape-f

f) - a single

.... [f (.... r and A[_ are valid
representations of esc)
A[_f
meta-f
m-f (2 keystrokes, where the
first is the ESC, or a single
keystroke where the meta key is
held down)

15-6 CH27-00F

<syllable><syllable>
<syllable>-<syllable>

e.g., AXAC
e.g. AZ_A@ (2 keystrokes, where
the first is some prefix
charact~r - not the ESC key)

The following key names cannot be changed:

esc-<digit>
esc-- (esc-<minus sign»
esc-+ (esc-<plus sign»

A syllable can be:

A (caret character)

A<character>

11/86

(this represents the actual caret
key, as in esc_A)

(where character can be any of
the upper or lowercase
alphabetics, which are
equivalent, or [, 1, \, A, or
@. These are interpreted as
control characters)

15-6.1 CH27-00F

•

•

•

c-<character>

ctl-<character>
control-<character>

esc
CR
\177
TAB
space or sp

<character>

(character is the same as above;
these are also control
characters)

(where these are all letters or
characters representing special
keys, and upper and lowercase
letters are equivalent)

(where, if the first syllable is
A in the <syllable><syllable>
forms, the character is
restricted as above. If the key
name is simply this one syllable,
uppercase assigns a different key
from lowercase. This is the only
syllable type where upper and
lowercases are not equivalent.

Always remember that you do not actually type any special
keys, but only their representations. In general, if you are
unsure if a key name is acceptable or not, use a form like one of
those found in this manual. Some choices that are valid are not
suitable, e.g., a space or alphabetic alone, since you probably
need those characters when entering text.

EXAMPLES OF ACCEPTABLE FORMS OF KEY NAMES

AX
"Xq
ESC-ESC
c-p
control-p
\177

X
sp

AX
A p
esc- f
CR
A

X
_

F
"X-CR
meta-f
TAB
SPACE

See the wall chart (made Vla ESC X make-waIl-chart) for more
examples of valid key names.

15-7 CH27-00

Two examples of setting keys are given below:

ESC X set-key' AT quit-the-editor

allows you to quit the editor, from the current buffer, in one
keystroke. After setting this key (by typing in a caret and a
t), you quit the editor by typing, in the usual way, a AT.

ESC X set-permanent-key A X9 paragraph-stars

locates the end of the current paragraph and inserts a blank line
and a breaker line of asterisks and dashes whenever you type a
~X9 in any buffer.

The user should
between . characters.
generates a A J , etc:

be aware of
On any ASCII

\010 = AH = backspace
\011 = AI = TAB
\012 =

A
J = linefeed

\0;3 = ~K = vertical tab
\014 = AL = formfeed
\015 = AM = carriage return

15-8

the following equivalences
terminal, the linefeed key

CH27-00

SECTION 16

MULTIPLE WINDOWS AND THE BUFFER EDITOR

Emacs allows the editing of many documents at once;
documents are read into buffers, and Emacs can have as many
buffers as needed. A unique feature of Emacs, however, is that
of displaying multiple documents on the screen at once. This is
very useful when writing one document while reading another, such
as responding to mail, correcting programming errors while
reading compiler diagnostics, merging or comparing programs, and
so forth.

Multiple documents (more precisely, multiple buffers) can be
displayed by dividing the screen into windows. Normally, the
screen consists of one window, called the main window. When you
switch buffers (for instance, with the~B (select-buffer)
request, the new buffer is displayed in the main window, and the
mode line is updated to indicate which buffer is on display in
that window.

You create new windows with the window-creating requests,
described below, and can display any buffer in any of these
windows. The windows are divided from each other on the screen
by lines of dashes (--------). The cursor is always in some
particular window; that window is called the selected window.
You select a window i.e., move the cursor into it, with the
window-selecting requests, or the window editor. When a ~indow
is selected, the buffer on display in that window is being
edited, and all the Emacs requests can be used on text it
contains.

An optional feature, called pop-up-windows, in which windows
are created as needed by various Emacs requests, and windows are
destroyed as space is needed, is described in Appendix H.

16-1 CH27-00

Before the descriptions of the common window-manipulation
requests, here are some terms used in talking about windows:

• buffer - a body of text in Emacs identified by a buffer
name. You are already familiar with this concept.

• window - an area of the screen delimited by "boundary
lines", i.e., lines of (-----), the top of the screen,
or the mode line. A window is said to be displaying a
buffer if the text 'of that buffer can be seen in that
window.

• "on display in" a buffer is on display in a given
window if the text of that buffer can be seen in that
window.

• topline - the boundary line on the top of a window.
The uppermost window has no topline.

• bottomline the boundary line on the bottom of a
window. The bottom-most window has no bottomline.

• selected window ~ the window in which the cursor now
appears (when not in -4-"'~ _~"",~h •• ..p..p".,..\

llll c; 111.1. 1J..l. IJ lA..l. .l. vi I •

• current buffer - the buffer on display in the selected
window. The mode line gives the name of the current
buffer.

• LRU window - the least recently used window, i.e., the
window which has been the selected window least
recently_

• previous window the next-most recently used window
other than the selected window itself. The selected
window is always the most recently used.

There are several basic techniques for manipulating windows.
The simple keyboard requests A XO , AXO, A X1 , A X2 , AX3 , and A X4 can
be used to create, destroy, and select windows. At low speed,
this may be the only convenient way to edit several "pages" at
once. Alternatively, the "window editor" can be used. The
window editor, invoked by AZA W, puts up a display of the numbers,
positions, sizes, and contents of all extant windows, and allows
destruction, selection, and size-adjustment of windows by
positioning to the line describing the window to be dealt with
and issuing requests.

16-2 CH27-00

ADDING WINDOWS

"'X2

The "'X2 request, create-new-window-and-go-there, creates a
new window at the bottom of the screen, and selects that window.
The window sizes adjust so that all windows are the same size.
The buffer placed on display in the new window is one whose name
is constructed as "Window 11/1 Default" (where 1111 is the window
number, the top one being window 1). Thus, if you issue "'X2 when
you have only one window, the second window displays a buffer
named "Window 2 Default." No arguments are accepted by "'X2.

"'X3

The "'X3 request, create-new-window-and-stay-here, creates a
new window at the bottom of the screen, but keeps the currently
selected window selected. The name of the buffer placed in that
window is constructed as described above. The new window becomes
the LRU window, so a "'X4 request selects the window created by
"'X3 if it is not used before the "X4 is issued (see "X4, below).

REMOVING WINDOWS

"'x 1

The "Xl request, expand-window~to=whole-screen, removes all
windows except the currently selected window, which then grows to
occupy the whole screen. Removing a window does not mean getting
rid of the text or buffer that is on display in that window; it
just means taking the window off the screen.

The "'X0 request (control x zero), remove-window, removes the
selected window from the screen, giving the space it occupied to
the windows th~t were on either side of it. The previous window
becomes the new sele~t~d window. With a positive numeric argument,
removes the window specified, where the topmost window is 1.

1 /8~; 16-3

SELECTING A WINDOW

.... xo

The XO request (control x "oh"), select-other-window, selects
the previous window, which is the window you were last in before
you were in this window. With only two windows, XO selects the
"other" window. The cursor appears at the point where it last
was in this window. Note that the window in which you issue the
.... XO now becomes the prev ious window, so successi ve XOs swi tch
windows back and forth. Selecting a window, of course, may
potentially (and usually does) switch buffers, too. The mode
line always tells you what buffer is current; the cursor tells
you what window is selected.

The X4 request, select-another-window, selects the LRU window.
With a positive numeric argument, e.g., ESC 3 X4, it selects the
specified window (window 3, in this case). The topmost window is
window 1.

A good use for this request with no numeric argument is to
select a window you have not been using much (hence, its LRU
status) whose contents you can therefore afford to overwrite for
some other purpose, such as XB or XAF. Selecting the LRU window
makes it the most recently used (i.e., selected) window. So some
other window ---rs-now LRU, and another X4 selects that window.
Thus, successive X4's (or X4 C C ...) cycles through all
windows on the screen.

EDITING WITH MULTIPLE WINDOWS

The standard Emacs requests work in their usual fashion when
you are editing with more than one window. You can edit the
material in one window, switch to another (via XD, X4, and some
requests provided by the window and buffer editors described below),
and edit the material there. You can, however, only edit in one
window at a time. While you are ed i ting the material in that
window, you frequently refer to the display(s) in the other window(s).
If you need to see more of the buffers displayed in the other
windows, switching to them simply to display another set of lines,
and then switching back, is very inconvenient. This is especially
true if you are using several windows, so that each portion displayed
is relatively small. The ESC AV request solves this problem.

1/82 16-4 CH27-00B

ESC "V

If you want to "turn the pages" in the windows that are not
selected, you can do so wi thout swi tching to them. The ESC "V
request, page-other-window, is only valid when more than one window
exists. Wi thout a numeric argument, ESC "V displays the next
windowful (as with a "V) of the "other" window. The other window
is the unselected window when only two windows exist; when more
than two exist, the other window is the next most recently used
window. With a positive numeric argument, e.g., "U ESC "V, this
request goes forward the specified number of screensful (4 in
this case) and displays it. With a negative numeric argument, it
pages the other window backward the specified number of screensful.

The ESC "V request is, of course, most useful if you need to
refer frequently only to one other window (if you are, for example,
responding to mail). If you have to update several windows, however,
you must switch windows. Use "X4 to go to whichever window(s)
you want, then use "V or ESC V as usual, and return to the original
windows with "'X4.

One word of warning wi th mul tiple-window edi ting: if you
display the same buffer in more than one window at once, Emacs
becomes slower, less efficient, and substantially more expensi ve
to use while the buffer is so displayed. Avoid entering text
into such a buffer if any of these issues are a concern.

DEDICATED BUFFERS

Several Emacs requests always switch you into a new buffer
ded icated to their exclusi ve use, and leave you in that buffer.
The window editor ("ZAW), the comout-command request (AX"E) described
in Section 17, which allows you to execute a Multics command and
di~;plays the output of that command in a "file output" buffer,
an,! the Emacs mail requests ("'XM and "'XR) descrIbed in Appendix
B, are all examples of requests requiring their own buffers. These
requests are often issued while you are in the midst of editing,
and you generally do not want them to obliterate your work from
the screen. Thus, when you use any of them, you probably want at
least one extra window available. The "'X2 or "'X3 request is a
good way to get the extra window.

1/82 16-5 CH27-00B

Some dedicated-buffer requests select the window that already·
contains their appropriate buffer (e.g., AXAE selects "file output"
if it is on display in any window). If the· appropriate buffer
does not exist, they either select the LRU window, replacing that
window's previous contents wi th their display, or they use the
current window for their display. The choice of LRU or current
window depends on the request. The AXAE, "XM, and AXR requests
choose the LRU window, but AZ"'W chooses the current window. To
make a window available without endangering any windows already
in use, use "'X2 for those dedicated-buffer requests utilizing the
current window, and "'X3 for those utilizing the LRU window: This
process of selecting the window wi th the appropriate buffer is
called find-buffer-in-window (and is available to programmers
writing extensions. See the Extension Writers' Guide).

THE WINDOW EDITOR

The window editor provides an interactive way to manipulate
windows, allowing you to reorganize the screen conveniently. The
window editor puts a formatted display in a dedicated buffer.
The display appears on the screen in the selected window (the
window where the cursor is currently sitting). The window editor
buffer is named WINDOWSTAT. If you want WINDOWSTAT to appear in
a window other than the current one, issue "'Z W with a numeric
argument, e.g., U Z"W. If WINDOWSTAT is already displayed in
another window, the new display appears there; otherwise, the new
display appears in the LRU window.

1 0
2* 2
3 4

o
13
17

12
3
2

term-paper appear on
WINDOWSTAT 2·
Messages from COMSAT

Each line relates to the contents of one window on the screen at
the time the window editor was entered. There are as many lines
as there are windows. You cannot use standard Emacs requests to
change the contents of the display; it is read-only. You can
however, use standard Emacs requests (e.g., search requests, etc.~
to posi tion the cursor in it. The cursor, when in the window
editor's buffer, is always on some line of the buffer (the buffer
may be larger than the window it is in, like most Emacs buffers).
That line relates to one of the windows; the window's window-number
from the top of the screen is the first number on that line. The
Vi i n dow des i g nat e d by the 1 in eon wh i c h the cur so r is \-1 i 11 be
called the "designated window" (do not confuse this with the selected
window, which is the window containing the window editor's display
while you are working in the window editor).

1/82 16-6 CH27-00B

The window number followed by a star shows which window was
the selected window at the time the window editor was entered.
The next number on each line is called the internal window'number,
and is usually not of interest. The remaining two numbers on
each line are the position and size of each window. The position
is the screen's 1 ine number at which the window starts (the screen's
top line is 0). The size is the number of lines in the window.

Following the posi tion and si ze is the buffer name of the
buffer currently on display in that window. Following the buffer
name are the first ten characters of the point line in that window.
The point line is the line in the window that~ cursor goes to
if that window is selected (generally the line where the cursor
last was in that window).

Window Editor Requests

You operate the window editor by invoking it, positioning to
some line, thus designating some window, and issuing window editor
requests to affect that window. The following requests are
recognized (note that they are printing characters, instead of
control characters, for ease of typing, since you cannot enter
text into a read-only buffer).

g

f

k

d

1 '82

Goes to (selects) the designated window, leaving the
window editor, and moving the cursor to this window.

Goes to the designated window (same as g, for compatibility
with the buffer editor).

Kills (removes) the designated window from the screen.
This is done immediately, and the buffer editor display
is updated to reflect the new screen layout. The space
occupied by this window is distributed among its neighbors.

Kills the designated window (same as k, for compatibility
wit h the d ire c tor y ed i to r . See A X Din Sec t i on 11 for
information on the directory editor).

16-1

A (caret)

v

a

u

Hoves the the topline of the designated window up one
line, increasing its size, and deducting one line from
its neighbor above. With a numeric argument, moves up
that many lines instead of one. The buffer editor display
is upd ated to reflect the new screen layout. (The shapes
of the A V, A, and U requests suggest their function.)

Moves the bottomline of the designated window down, same
rules and features as A

Moves the topline of the designated window down, same
rules and features as

Moves the bottomline of the designated window up, same
rules and features as A

The following requests do not deal with the designated window,
and can be issued at any time in the window editor:

n

p

b

c

3

1/82

Goes to the next line of the window editor display.
You could use AN as always, but n is easier in a read-only
buffer. If on the last line, goes to the first.

Goes to the previous line. If on the first line, goes
to the last.

Exits the window editor by entering the buffer editor
in the window now occupied by the windowed i tor's display.

Creates a new window (like AX3), and leaves you in the
window editor's display. The display is updated to reflect
the new state of the screen, wi th the new window as
designated window.

Creates a new window (same as c, for mnemonic ease with
AX3) .

16-8 CH21-00B

LEAVING THE WINDOW EDITOR

The window editor is usually exited by selecting some other
window with the g request; indeed, you may often enter the window
ed i tor for no other reason than to do thi s. You can al so ex it
via the b request to the buffer ed i tor, or just issue a "XB or
"X"F to go elsewhere. Window editor windows left on the screen
after you exit the window editor are not updated dynamically by
Emacs when windows and buffers are changed around.

THE BUFFER EDITOR

The buffer editor provides a facility for deleting, examining,
and selecting buffers, similar to the window editor. The buffer
editor creates a read-only display in a dedicated buffer. The
display appears on your screen in the selected window. As with
the windowed i tor, several buffer ed i tor requests, invoked by
typing selected printing characters, allow you to manipulate the
buffer designated by the cursor's position in the display.

The buffer editor is entered via "ZAB. It puts its display,
a buffer named BUFED, in the window in which it was invoked. If
you do not want to overwrite the selected window, issue "Z"B with
a numeric argument, e.g., "U"Z"B. The buffer editor's display
then appears in the window already displaying. it; if one exists;
otherwise, it appears in the LRU window.

Each line of the buffer editor's display contains a buffer's
name, a pathname if the buffer has a pathname associated with it,
and, possibly, flags. The flags appear at the left margin, and
they are:

*
>
X

This buffer is modified (needs writing out).
This buffer was current when the buffer editor was entered.
This buffer is marked for deletion by the buffer editor.

There may be more uuffers (i.e., lines in the buffer editor's
display) th8n are on dis~lay in the windcw in which this display
appears; J ike any ot.her Emacs buffer on display, "V, ESC V, or
any other standard Emacs request can be used to posi tion the
cursor in it.

1/82 16-9

Buffers can be killed (as AXK does) with the buffer .editor k
or d request. Buffers so killed are not actually destroyed until
the buffer editor is exited via a g, w, f, q (or AXAQ) request,
at which time you are asked if you really want to delete them
(they are listed in a local display).

Buffer Editor Requests

The following requests are avaliable in the buffer editor
I (the uppercase equi valent of each request is also acceptable,
, e.g., n or N goes to next line):

n

p

k

d

s

u

e

1/82

Goes to the next line, or the first line if now on the
last.

Goes to the previous line, or the last line if now on
the first line.

Marks the designated buffer for deletion when the buffer
editor is exited and moves to the next line.

Marks the designated buffer for deletion (same as k,
for compatibility with the directory editor).

Writes the designated buffer out to its default pathname
(it must have one). This marks it as unmodified.

Undoes the effects of k or d on the designated buffer,
i.e., unmarks it. The X flag is removed from the display,
and the cursor is positioned to the next line.

Examines the designated buffer. In one-window mode,
you should just go there. Wi th two or more windows,
Emacs selects a window via find-buffer-in-window for
the designated buffer, putting it on display if not
already on display. A message is printed in the minibuffer
about where (in what window) it appears.

16-10 CH27-00B

LEAVING THE BUFFER EDITOR

These next requests cause the buffer editor to be exited;
you are queried about pending deletions if you have any (uppercase I
equivalent of each request is also acceptable): I

g

f

q

1/82

Goes to the designated buffer, exiting the buffer editor,
replacing its display in the current (selected) window,
with this buffer. This is just like doing a AXB. As a
matter of fact, the buffer editor can be used for just
seeing what buffers there are and going to one, to save
typing. This is especially useful for buffers with long
and complex names, like "Messages from Brzezinski."

Selects a window and displays the designated buffer via
find-buffer-in-window. Since the buffer editor makes
its own window LRU when it exits, if you "f" a buffer
not currently on display in any window, it is the same
as going to it via the g request, replacing the buffer
editor's window.

However, if the designated buffer is on the screen
somewhere, the cursor simply moves into that window (and
thus, into that buffer). If you use mul tiple windows,
you will find that you use "f" all the time, and rarely
use "g".

Ex its the buffer ed i tor by en ter ing the wi ndow ed i tor
in the window now occupied by the buffer editor's display.

Ex its the buffer ed i tor and enters, in the current window,
the buffer from which it was invoked by AZAB. If you
inv0ved the buffer editor with a numeric argument, e.g.,
AUAZAB, this exits the buffer editor and enters, in the
appropriate window, the buffer from which you invoked
it.

Exits the buffer editor in the same manner as with "q."

16-11 CH27-0CB

SECTION 11

SUMMARY OF EMACS FUNDAMENTAL MODE REQUESTS

The following requests have been grouped according to the
functions they perform. They are the requests available in
Fundamental mode, which is the default mode entered in new buffers.
Some may appear more than once if they serve more than one purpose.
To invoke the extended requests, type an ESC X followed by the
command name. If the extended request requires an argument, type
it after the command name (with a space separating the two).
Then, wi th or wi thout argument(s), type a carriage return. The
following is a list of the functions and the requests (by key)
documented within each group. After this list, full descriptions
of each request in each of the groups are given.

LIST OF EDITING FUNCTIONS AND THE KEYS THAT PERFORM THEM

Movements Forward/Backward

Deletion

AB
AN
ESC A
AV
ESC G

II
AK
"W
AXK
AZ;

Retrievals/Yanks

1/82

AF
Ap
ESC E
ESC V
ESC AB

\111
ESC II
"XII
ESC AW

ESC Y

AA
ESC B
ESC [
ESC <
ESC AF

AD
ESC \117
AX \ 177
ESC Ay

ESC Ay

11-1

AE
ESC F
ESC]
ESC >

@

ESC D
ESC K
AXAO

CH27-00B

Marks, Re~ions, Variables

"@ ESC H "XH "x"x
"Z"@ "ZG "w ESC W
"X"L "x"u "XX "XG
"X
ESC X lvars

Searches and Substitutions

"R "s ESC / "xw
"XS ESC %
ESC X replace

Files

"X"F "X"R "x"s "'X"W

I "ZF

Insertion

"XI "Z"'F

Entry and Exit -- ---
"X"C "XCR "'X"E "z"z
"XD

Help

ESC ?
ESC X apropos
ESC X describe
ESC X make-waIl-chart

Error Recoverl

"G "X"G "Z"G ESC "G

New Lines/Blank Lines

CR "0 "X "0 ESC "'0

8/82 17-2 CH27-00C

Indentation and White Space

ESC \ ESC M AX. AXF
ESC I ESC CR ESC AI ESC A
AXAI AO

Comments

AX; ESC ; AZ; ESC N
ESC P
ESC X set-comment-prefix

Formatting:

AX. AXF ESC S ESC Q
ESC X filIon
ESC X filloff
ESC X runoff-fill-region

Literal Character Entr;y

\ AQ

SEecial PurEose Ke;ys

AJ AL AU ESC
AXESC ESC X AZAL , I

Macros

AX (AX) AX· AXE
AXQ
ESC X save-macro
ESC X edit-macros
ESC X show-macro

Characters (Movins: b;y/Deleting:j

AB AF II \177
AD

8/82 17-3 CH27-00C

Lines (Movins in and bllDeletin8)

AA AE AN Ap
AX= ESC G @ AK

Words

ESC B ESC F ESC 11 ESC \177
ESC D ESC ,.. ESC T OCtI"" n \., u r:...:>\" u

ESC AZ ESC T

Sentences

ESC A ESC E AXil AX \ 177
ESC K

Para~raEhs

ESC r" ESC , 1":' ("t ro IT
l J co.:>\" n

Screens

AV ESC V AL ESC R
AZAV

Buffers

ESC < ESC > AXB AXAB
AXH AXK ESC AZAB

MultiEle Windows ----
AX0 AX 1 AX2 AX3
AX4 Axa ESC AV AZAW

Mail/Messa8es

AXM AXR
ESC X accept-messages
r.lcoro v accept-messages=path r:...::>\" A

8/82 17-4 CH27-00C

T;Y:Ein~ Shortcuts

AC AT AU A\ I ESC T
ESC SPACE
ESC X setab
ESC X speed type
ESC X speedtypeoff

Programming Modes

ESC X aIm-mode
ESC X electric-aIm-mode
ESC X electric-pI1-mode
ESC X fortran-mode
ESC X fundamental-mode
ESC X lisp-mode
ESC X pl1-mode
ESC X set-compile-options
ESC X set-compiler
ESC X ldebug
ESC X text-mode I

Printing Terminal Usage

AXV AXAr AO AZAL I

Extension Writing

ESC ESC
ESC X ldebug
ESC X load file
ESC X loadlib

Additional 0Etional Settings

ESC X opt
ESC X option
ESC v set-mini buffer-size .A

ESC X reset-mini buffer-size
ESC X set-screen-size
ESC X reset-screen-size
ESC X set-key
ESC X set-permanent-key
ESC X set-search-mode

8/82 17-5 CH27-00C

DESCRIPTIONS OF THE REQUESTS

Movements Forward/Backward

1/82

AB backward-char
Moves backward one character in the buffer. Tabs and
the newline characters at the ends of lines count as
one character. Beeps as for "G at the beginning of
the buffer. Repeats with a positive numeric argument;
moves forward and repeats wi th a negati ve numeric
argument.

AF forward-char
Moves forward one character. Tabs and newlines count
as one character each. Beeps as for "G at the end of
the buffer. Repeats with a positive numeric argument;
moves backward and repeats wi th a negati ve numeric
argument.

"A go-to-beginning-of-line
Positions to the beginning of the current line of the
buffer, i.e., right before the first character.

"E go-to-end-of-line
Positions to the end of the current line, i.e., after
the last character and before the newline. On an
empty line, this is the same as the beginning of the
line.

AN next-line-command
Positions to the next line of the buffer. If on the
last line, appends a new empty line to the bottom of
the buffer, and positions to the beginning (and end)
of it. Successive "Ns and APS try to maintain the
same horizontal position. Repeats with a positive
numeric argument; performs "Ps and repeats wi th a
negative numeric argument.

17-6 CH27-00B

Ap prev-line-command
Moves to previous line of the buffer. Beeps as for
"'G if on first line of the buffer. Attempts to maintain
the same horizontal position; successive "'P's and AN's
try to maintain the original horizontal position.
Repeats wi th a posi ti ve numeric argument; moves to
next line and repeats wi th a negati ve numeric argument.

ESC B backward-word
Goes backward one word. If in the middle of a word,
goes to before the beginning of that word. Skips
backward over all white space to get to the next word.
Underscores and backspaces count as parts of words.
Repeats with a positive numeric argument; goes forward
and repeats with a negative numeric argument.

ESC F forward-word
Goes forward one word. If in the midd Ie of a word,
moves to the end of the current word. Leaves point
immediately after that word. Passes over all
punctuation and whi te space before the word.
Underscores and backspaces count as parts of words.
Repeats wi th a posi ti ve numeric argument; moves backward
and repeats with a negative numeric argument.

ESC A backward-sentence
Goes to the beginning of the current sentence, i.e.,
just before the first letter. If already at the
beginning of a sentence, goes to the beginning of the
previous sentence. The beginning of the first word
after a blank line always counts as the beginning of
a sentence. Repeats with a positive numeric argument;
goes forward and repeats with a negative numeric
argument.

17-7 CH27-00B

1/82

ESC E forward-sentence
Moves forward to the end of this sentence. If at the
end of a sentence, moves forward to the end .of the
next sentence. Ends of paragraphs are implicitly ends
of sentences, whether or not an end-of-sentence
punctuation (period, question mark, exclamation point)
appears. Repeats wi th a posi ti ve numeric argument;
moves backward and repeats wi th a negati ve numeric
argument.

ESC [beginning-of-paragraph
Moves to the beginning of the current paragraph. If
already at the beginning of a paragraph, moves to the
beginning of the previous paragraph. The beginning
of a paragraph is the beginning of the first line of
the paragraph. The definition of paragraphs is
controlled by the paragraph-defini tion-type option:
if 1, blank lines separate paragraphs; if 2, an indented
line starts a paragraph. The Mul tics runoff or compose
command's control lines count as individual paragraphs.
Repeats wi th a posi ti ve numeric argument; moves forward
and repeats with a negative numeric argument.

ESC] end-of-paragraph
Moves to the end of the current paragraph. If at the
end of a paragraph, moves to the end of the next
paragraph. The end of a paragraph is the end of the
last line of the paragraph. The definition of paragraphs
is controlled by the paragraph-definition-type option:
if 1, blank lines separate paragraphs; if 2, an indented
line starts a paragraph. The Multics runoff or compose
command's control lines count as paragraphs. Repeats
with a positive numeric argument; moves backward and
repeats with a negative numeric argument.

17-8 CH27-00B

1/82

AV next-screen
Displays next screenful of the current buffei. Leaves
cursor at upper left hand corner of screen 0 Wi th a
positive numeric argument, pages forward the specified
number of screensful and displays it; with a negative
numeric argument, moves backward the specified number
of screensful (previous screens) and displays it.

ESC V prev-screen
Displays the previous screen (one back) of this buffer,
leaving cursor at the top of it~ With a positive
numeric argument, moves backward the specified number
of screensful and displays it; with a negative numeric
argument, moves forward the specified number of
screensful and displays it.

ESC < go-to-begir.ning-of-buffer
Moves to the beginning of the current buffer, i.e.,
before the first character in the buffer at the top
of the document being edited.

ESC > go-to-end-of-buffer
Moves to the end of the current buffer, i.e., after
the last character or newline character at the bottom
of the document being edited.

ESC G go-to-line-number
Goes to a given line, specified by line number, from
the top of the buffer. The positive numeric argument
specifies the line number. For instance, ESC 25 ESC
G goes to line 25.

ESC AB balance-parens-backward
Skips backward over one set of balanced parentheses.
Searches back~ard until a set of parentheses is found.
Does not hand Ie quoting or any programming language
conventions.

ESC AF balance-parens-forward
Skips forward over one set of balanced parentheses.
Sedrches forward until a set of parentheses is found.
Doe-s not handle quoting, or any other programming
language conventions.

17-9 CH27-00B

Deletion

1/82

,

\177

rubout-char
Deletes the previous character (before the cursor,
which is usually the last character typed). Note that
II deletes the character to the left of the cursor,
while AD deletes the character at the cursor. Repeats
wi th a posi ti ve numer ic argument, deletes the character
at the cursor and repeats wi th a negati ve numeric
argument.

(delete key) rubout-char
Deletes the previous character (before the cursor,
which is usually the last character typed). Note that
\177 deletes the character to the left of the cursor,
while ~D deletes the character at the cursor. Repeats
wi th a posi ti ve numeric argument; deletes the character
~ the cursor and repeats wi th a negati ve numeric
argument.

AD delete-char
Deletes the character to the right of the current
point. This is the character on which the cursor
si ts. Moves the rest of the I ine one to the left,
closing up the space. Deleting a newline at the end
of a line merges lines. Repeats with a positive numeric
argument; deletes the previous character and repeats
with a negative numeric argument.

kill-to-beginning-of-line
Kills all the text to the left of the cursor on the
current line. The killed text is saved on the kill
ring, and may be retrieved with Ay.

~K kill-lines
Kills to end of line; when already at end of line,
deletes the newline (merges lines). If on an empty
line, deletes it. If given a positive numeric argument,
deletes that many lines, starting from the current
point on the current line. Successive AKs merge killed
text on the kill ring.

ESC n rubout-word
Deletes the word to the left of the current point.
More specifically, deletes going backward, deleting
characters until the beginning of a word. Successive
words deleted wi th ESC II are merged and can be retrieved
wi th one Ay. Repeats wi th a posi ti ve numeric argument;
deletes forward and repeats wi th a negati ve numeric
argument.

17-10 CH27-00B

1/82

ESC \177 rubout-word
Deletes the word to the left of the current point.
More specifically, deletes going backward, deleting
characters until the beginning of a word. Wi th a
positive numeric argument, deletes the specified number
of words. Deletes forward the specified number of
words with a negative numeric argument. Successive
words deleted wi th ESC \ 177 are merged and may be
retrieved with one Ay.

ESC 0 delete-word
Deletes the word to the right of the current point.
More specifically, deletes forward, deleting all white
space and punctuation and characters until the end of
the next word. Repeats with a positive numeric argument;
deletes backward and repeats with a negative numeric
argument.

AW wipe-region
Wipes (kills) all text between cursor and the mark.
Does not participate in kill merging, since AWS cannot
be successive. The killed text is saved on the kill
ring and can be retrieved with Ay.

AXil kill-backward-sentence
Kills backward to the beginning of this sentence; kills
as much of the sentence as thus far typed. Successive
kills via AXil and other reverse-killing commands (e.g.,
ESC II) merge, and may be retr ieved wi th one Ay. Repeats
with a, positive numeric argument; kills forward and
repeats with a negative numeric argument.

AX\177 kill-backward-sentence
Kills backward to the beginning of this sentence; kills
as much of the 3entence as thus far typed. Successive
kills via "X\ 177 and other reverse-killing requests
(e.g., ESC II) merge, and may be retrieved with one
Ay. Repeats with a positive numeric argument; kills
!orwar~ and repeats with a negative numeric argument.

E~C K kill-to-end-of-sentence
Dele~es text going forward from the cursor to the end
of the CL'irent sentence. If at the end of a sentence,
delEtes !:'or 1-Jard to the end of the next sentence.
Sentences and other text killed consecutively in this
fashion are merged, and may be retrieved with a single
'Y. Wi.th ? positive numeric argument, kills the
specified number of sentences. Kills backward the
specifi~d number of sentences with a negative numeric
argunent.

17 -11 CH2?-GOB

AXK kill-buffer
Kills (destroys) a buffer. Prompts for the buffer's
name, terminated by CR. A response of CR kills the
current buffer. Buffers can be killed to conserve
storage, to prevent their appearance in buffer listings,
or to prevent being queried when quitting with "'X"'C.

ESC "'w merge-last-kills-with-next
Causes the next kill~type request (e.g., K, ESC D),
which must follow immediately, to merge what it kills
wi th the last saved kill on the kill ring, in the
same direction as the next request kills. For instance,
"'A "K "'K "'N "'N ESC "'w "'K "'K catenates two disjoint
lines on the kill ring.

ESC "'y yank-minibuf
Yanks back the last contents of the minibuffer, without
a prompt string. The mark is set in the minibuffer,
so "'X"'X can be used to position around it, and "'w to
delete it. The real mark in the main buffer is not
destroyed.

~X"'O delete-blank-lines
Deletes blank lines around cursor: gets rid of vertical
white space. If issued on a blank line, leaves one
blank line; otherwise, deletes all blank lines after
this line's end. See AO.

"'Z; kill-comment
Removes the comment and the white space preceding it
from the current line. The deleted text is saved on
the kill ring, accessible to "'Y. The text is saved
in such a way that following Ks and other
forward-killing requests merge properly with the deleted
text.

Retrievals/Yanks

1/82

"y yank
Yanks (retrieves) killed text into place at cursor.
Retrieves last killed word, line, or region. With a
positive numeric argument, goes that many killings
down the 10-posi tion kill ring. Leaves the mark at
the front of the retrieved text, and the point at the
end.

ESC Y wipe-this-and-yank-previous
Deletes the text between the point and the mark without
saving it, rotates the kill ring one position (slot 2
text now occupies slot 1), and retrieves the text
just moved to the first slot of the kill ring.

11-12 CH21-00B

ESC "'y yank-minibuf
Yanks back the last contents of the minibuffer; wi thout
a prompt string. The mark is set in the minibuffer,
so "'X"'X can be used to position around it, and "'w to
delete it. The real mark in the main buffer is not
destroyed.

Marks, Regions, Variables

1/S?

"'@ set-or-pop-the-mark
With no argument, sets the mark in this buffer where
the cursor is now, and leaves it there. The current
value of the mark, if any, and if different from the
current point, is pushed on to the mark ring. The
mark relocates to the nearest point if the text around
it is deleted. See "x"x to verify where the mark is.
Wi th a posi ti ve numeric argument, e. g., AU A@, pops
the previous mark off the mark ring, and positions to
it. Successi ve AU A@S "try" all marks on the mark
ring.

ESC H mark-paragraph
Puts the mark at the beginning of the current paragraph;
puts the cursor at the end of the current paragraph.
See ESC [for a definition of paragraphs.

"XH mark-whole-buffer
Puts the mark at the end of the buffer and the cursor
at the beg inn i n g . T his !! iii ark s H the whole b u f fer, so
that "'w deletes it, etc. The linefeed at the end of
the buffer is not in the marked region, but "XH W
.... XB ... "y effectively moves a whole buffer.

exchange-point-and-mark
Exchanges the cursor and the mark, to verify their
positions before typing "w or similar requests. Puts
the cursor where the mark is and vice versa. Typing
"'X"'X AX"'): quickly verifies the extent of the point/mark
regj.on visually and returns the cursor and mark to
their original positions. Use A@ with a positive numeric
arLument (e.g., AU A @) to visit older settings of the
mdrk in t~is buffer.

set-named-r;;ark
Prompts for a name to be associated wi th a mark, and
set") that named mark to be where the cursor is now.
N3med mark3 are valid only in the buffer in which
they were created. Use ZG to go to a named mark.

17-13 CH27-0CB

I
I
I
I

• I

1/82

AZG go-to-named-mark
Prompts for the name of a named mark, and moves the
cur sor to the point where that mark was saved. Use
AZA@ to set a named mark.

"w wipe-region
Wipes (kills) all text between cursor and the mark.
Does not participate in kill merging, since "Ws cannot
be successive. The killed text is saved on the kill
ring and can be retrieved with "Y.

ESC W copy-region
Copies the text between the cursor and the mark on to
the top of the kill ring. This means that the next
"Y copies the text now between the cursor and the
mark to wherever the cursor is when the "y is issued.

"X"L lower-case-region
Lowercases all letters between point and the mark.

Uppercases all letters between point and the mark.

"XX put-variable
Stores away point/mark region to a variable, whose
name is prompted for, terminated by CR. Use "XG to
retrieve this value, and ESC X Ivars to list such
variables.

"XG get-variable

"X

Gets back a variable stored by "XX. The name of the
variable is prompted for; the cursor is put after it,
and the mark before it.

underline-region
Underlines the entire region. When given any numeric
argument, "X removes underlining from the entire
region. Whife space within the region is handled if
you set the ESC X opt underline-whitespace option to
on.

ESC X Ivars
Displays the names and lengths of all variables saved
by "XX. Type "J to resume, or just continue editing.
See "XX and "XG.

17-14 CH27-00B

Searches and Substitutions

1/82

AR reverse-string-search
Reverse searches. Leaves cursor posi tioned before
matching string; does not move cursor if not found.
Prompts for search string in minibuffer, which must
be ended with CR.

AS string-search
Searches for a character string, from current point
in buffer to end. Prompts for search string in
minibuffer, and leaves point, if search succeeds, after
the matched string. End search string with CR. Typing
AS CR reuses last search string. If search fails,
point does not move.

ESC / regexp-search-command
Searches forward for a regular expression that is
prompted for and terminated by CR. A regular expression
is a character string in which the following special
characters can be included:

*

$

matches any number, includ ing none, of the
character preceding it.

matches any character (.* matches everything).

represents an imaginary character preceding the
first character on a line (this character is the
caret, not the representation for the control
key). It must be the first character in a regular
expression; its use allows you to search for the
line beginning with the next characters.

represents an imaginary character following the
last character on a line. It must be the last
character in a regular expression; its use allows
you to search for a line ending with the preceding
characters:

To include any of these special characters in
the regular expression without their special
meaning, you must precede each occurrence of them
with \c.

17-15 CH27-00B

1/82

Searches forward from cursor, and can find many
occurrences of the regular expression on one line.
Leaves the cursor and the mark around the string it
finds, so that:

s/(fo.*)/(a b &)/ (qedx)

is equivalent to:"

(Emacs)

AXW multi-word-search
Searches for words. Prompts for one or more words,
terminated by CR. (This is a search string; typing
just a CR in response to the prompt reuses the last
search string). Searches from current point to the
buffer's end for those words appearing in order,
regardless of case of let ters, underlining, intervening
punctuation, white space, or line breaks. Finds whole
words, not parts of words. A partial word ending
wi th * in the" search string is matched by any word
beginning with the letters provided. With a positive
numeric argument, e. g., AU AXW, goes to beginning of
buffer before searching.

AXS global-print-command
Prints all lines containing a given string. Prompts
for the string , terminated by CR. With a positive
numeric argument, e.g., AUAXS, takes a regular
expression, i. e., the search string can include the
special characters *, ., $, and A (not the control
key, but the caret symbol). See ESC / for the meanings
of these special characters in a regular expression.
Type AJ or continue editing to restore buffer display.

ESC % query-replace
Interactively replaces all occurrences of one string
with another. The request prompts for both strings
in the minibuffer, terminated by CR, and then searches
forward for each occurrence of the first string. It
positions the cursor immediately after this string
and waits for one of the following responses (type
the appropriate keys):

space
replaces this particular occurrence of the first
st ring wi th the second. Then searches for the
next occurrence of the first string, updates the
screen, and waits for a response again.

11-16 CH27-00B

2/83

CR

"G

ESC

leaves this occurrence of the first string alone
and searches for the next occurrence of the first
string.

(period)
replaces this occurrence of the first string with
the second and then terminates the query replace.

terminates the query replace wi thout modifying
this occurrence of the first string.

same as AG.

replaces all occurrences of the first string from
the current point to the end, wi thout querying
again.

t (comma)

?

replaces this occurrence of the first string with
the second, immediately updating the screen. Then
searches for the next occurrence of the first
string and waits for a response again.

redisplays the screen.

displays a description of the allowable responses
(i.e., prints this list).

same .as

ESC X replace
Globally replaces one string with another, from the
current point to the end of the buffer. Prompts for
two strings, term"inated by CR. If the first string
i~ not found, ESC X replace does not move the cursor.
Use ESC % if you want to be queried before each
replacement occurs.

17-17 CH27-00D

I

Files

2/83

"'X"'F find-file
Reads in a file. Prompts for a file's pathname,
terminated by CR. This request attempts to switch to
a buffer (see "'XB) that contains the specified file,
if the file is already in a buffer.

17-17.1 CH27-00D

I
I

1/82

If no such buffer exists, X F reads the file into
the buffer whose name is the first component of the
entry portion of the filename, and sets the default
file of this buffer to the file just read. If the
find-file-set-modes option is on, X F sets the major
mode of the buffer according to the last component of
the entry portion of the filename. For example, for
the filename ")ldd)include)sst.incl.pll", the buffer
chosen is "sst" and the major mode is "PL/I." In
cases where buffer name duplications could arise
(e.g., reading sst.incl.pI1 and then sst.list), X F
adds the second component to the subsequent buffer
names.

If the file is in more than one buffer, those buffers
are listed as if by AXAB. You are then prompted for
the name of the buffer you wish to use, terminated by
CR. If the buffer specified is one of those listed,
"'XAF switches to it. If a new buffer name is
specified, AXAF reads the file into that buffer as
described above. A blank response for the buffer
name uses the original buffer named by the first
component of the entry portion of the filename.XAF
accepts archive component pathnames. An archive
component pathname is a (relative) pathname of an
archive file followed by two colons (::) and a
component name (archive::component). AXAF also
accepts starnames (including stars in the archive and
component names). AXAF ignores directories that
match the starname. When more than one star match is
found, a "'X"'F is done for each file/archive component
selected. For example, to read in Additions.list:

.... X F Add* .. *

For example, to edit a system source file:

AX F)ldd)h)s)bound_p*.**::page_fault.alm

To edit a subset of segments in the same archive and
read each file into its appropriate buffer:

To read all of an archive into its appropriate
buffers:

17-18 CH27-00B

If a buffer contains the requested file and the file
being read in has been modified since last read or
saved, a local display informs you that the buffer
contains an old version of the file, and the
minibuffer prompts you to select a choice of actions,
after prompting you to select the appropriate buffer,
if necessary. See the description of AXAF in Section
5 for more information on the Emacs query and choices
of action.

AXAR read-file
Reads in a file. Prompts for a file's pathname,
terminated by CR. Accepts archive component
pathnames; also accepts starnames, but no more than
one file or archive component can match the starname.
Reads that file into the current buffer, destroying
anything which was in the buffer, and sets this
buffer's default file to the file read. The cursor
is left at the first position of the first line of
the file read. If a blank response is given for the
filename, the buffer's default file is read. The
default file is set by AXAR, AXAF, and AXAW. AXAR is
useful for starting again after big mistakes.

If the buffer was modified since last read or
written, Emacs queries whether to proceed with
read-file. Turning the read-file-force option on (it
is off by default) or supplying a numeric argument to
the read request (e.g., AUAXAR) disables this
protection feature.

AXAS save~same-file

11/86

Writes out the buffer contents to the same file last
read in or written out, i.e., writes the buffer to
its default file. This request is equivalent to
AXAWCR. Files cannot be written out to an archive
component pathname. When the ESC X opt check-newline
option is on, this request queries you if you are
trying to write out a file that does not end in a
newline (this occurs only if you have set the ESC X
opt add-newline option off, however).

If the file being saved has been modified since the
buffer was last read or written, Emacs queries
whetner to proceed with the save. See the
description of AXAS in Section 5 for more information
on this condition.

17-19 CH27-00F

write-file
Writes the current buffer out to a file, whose
pathname is prompted for in the minibuffer,
terminated by CR. If a blank or null response is
given, writes it out to this buffer's default file.
The file specified ,becomes the buffer's default file.
Files cannot be written out to an archive component
pathname. When the ESC X opt check-newline option is
on, this request queries you if you are trying to
write out a file that does not end in a newline (this
occurs only if you have set the ESC X. opt add-newline
option off, however).

If the response to the pathname prompt is blank
(i.e., same as save-same-file) and the file being
written has been modified since the buffer was last
read or written, Emacs queries whether to proceed
with the save request. If pathname is specified and
a file of that name already exists, Emacs queries
whether to overwrite the existing file. Both of
these conditions are further described under AXAW in
Section 5~

AZF object-mode-find-file

11/86

Enters the object-mode major mode, which is used for
editing files in octal. Prompts for the name of the
file, then displays the file in the form of four
words of storage per line. Each line in the buffer
contains three items: 1) the word offset for the
first word of storage displayed on that line, ~) the
ASCII octal representation of the next four words of
the storage in the file, and 3) the printing
characters of those four words of storage. Edits by
overwriting existing characters only; no editing is
allowed for white space. Both octal words and
printing characters can be edited. lf you edit the
octal representation, Emacs adjusts its corresponding
printing character representation, and if you edit
the printing character, its octal representation is
adjusted.

17-20 CH27-00F

Insertion

insert-file
Inserts a file into the current buffer. Prompts for
a file's pathname, terminated by CR. Accepts archive
component pathnames; also accepts starnames, but no
more than one file or archive component can match the
starname. Reads that file into the current buffer
without destroying the previous contents of the
buffer. The file is read in to the left of the
cursor and the cursor is left after the contents of
the file just read. The mark is left at the
beginning of the inserted text. The default file for
the buffer is not changed. (See ""X""S.)

get-filename
Inserts the pathname (as seen in the buffer's mode
line) of the current buffer at the cursor. With a
numeric argument, inserts only the entryname of the
pathname; if the pathname is an archive pathname,
inserts only the component name. This request is
most useful for getting a file's name into the
minibuffer.

Entry and Exit

""XCR

""z""Z

11/86

quit-the-editor
quit
Exxits the editor. If modified buffers exist, they
are listed as if by AXAB; AXAC then asks you if you
really want to exit the editor.

eval-multics-command-line
Prompts for a Multics command line, terminated with
CR, and executes it. Multics commands that produce
output may well ruin your screen; if this occurs, use
AL. If you expect output, use AXAE instead ofAXCR.
A ""XAM is equivalent to AXCR.

comout-command
Executes a Multics command line (prompted for, end
with CR), and displays the command line's output in
buffer "file output." If buffer "file_output" is
already on dlsplay in a window, the cursor moves to
that window, and "file_output" stays there.

signalquit
Signals QUIT to Multics and clears the screen.
Restores the tty modes suitable for Multics command
usage before doing so, and after you type start, it
restores the appropriate tty modes for the Emacs
environment.

17-20.1 CH27-00F

""XD edit-dir

11/86

Enters the directory editor, editing the working
directory. With a positive numeric argument, e.g.,
""U""XD, prompts for some other directory name. The
pathname of the directory being edited is displayed
on the path line. Position to a line with some
segment's name on it, and the following requests
(keys) can be used (lowercase is acceptable):

D

U

this C!oO'mon+
toJ"- OU.L'-.&..1. V -r:lhen editor is

exited.

Undeletes, i.e., cancels previous D on this
line.

17-20.2 CH27-00F

E

Q

R

N

. p

Examines (i. e., takes a look at) this 'segment,
in a separate buffer. Use AXAQ to get back, and
the examine buffer disappears automatically.

Quits the directory editor. A list of files is
shown, and you are queried if you want to delete
them or not. To ex it wi thout any action, use
AXB.

Renames a segment (modify access on the directory
is required). It prompts for the new name.

Sa-me as AN •

Same as AP.

ESC? describe-key
Displays the documentation for a given key sequence.
For example, to find out what a AD does, type ESC?
and, when prompted, a AD. With a positive numeric
argument, e.g., AU ESC ?, displays in the minibuffer
just the command name to which the key is currently
connected.

help-on-tap
Gets help/documentation at any time.
repertoire is:

" H
Shows where to get more help.

" ?
Displays the current repertoire of A

A L

The current

Displays the last 50 characters typed in.

" "G
Does a AG as usual.

" A
Works like the ESC X apropos extended request.

" C
Works like ESC ?, des2ribe-key.

CH27-00B

A D
Works like the ESC X describe extended request.

ESC X apropos <string>
Lists all requests and extended requests that contain
a given string in their command names, and tells what,
if any, keys invoke them in the current buffer. For
instance,

ESC X apropos forw

lists forward-word, forward-char, etc. This is the
most common way to find a request that does something
you are looking for.

ESC X describe <extended-request>
Displays the documentation for an extended request.
The request's command name is given as the argument
to describe. For example,

ESC X describe apropos CR

describes the "apropos" extended request.

ESC X make-waIl-chart
Puts into a buffer a listing of all the currently
defined requests, and what keys invoke them in the
current buffer. This buffer can be dprinted for a
convenient wall chart of Emacs requests.

Error Recovery

1/82

AG command-quit
Quits out of the current minibuffer prompt, if any,
and rings the bell (or beeps). Can be used to exit a
minibuffer you did not intend to get into, or just to
tell when Emacs has "caught up."

AXAG ignore-prefix
Flushes a prefix character. Used when a prefix character
such as AX is entered by accident; causes an audible
signal to ind icate that the AX AG has been executed.
Unlike AG, AXAG does not exit the minibuffer.

17-22 CH27-00B

AZAG ignore-prefix .
Flushes a prefix character. Used when a prefix character
such as AZ is entered by accident; causes an audible
signal to indicate that the AZAG has been executed.
Unlike AG, AZAG does not exit the minibuffer.

ESC AG ignore-prefix
Flushes a prefix character. Used when a prefix character
such as ESC is entered by accident; causes an audible
signal to indicate that the ESC AG has been executed.
Unlike AG, ESC AG does not exit the minibuffer.

New Lines/Blank Lines

1/82

carriage return (CR) new-line
Inserts. a newline character into the buffer at the
current point, ending the current line, and starting
a new one. If entered in the middle of a line, breaks
the 1 in eat the cur r en t po in t . If the n ext 1 in e i s
blank, i.e., was made by a single CR or AO, CR just
goes to it and does not insert a newline, except in
the case of the last blank line before a nonblank
line. If there is a fill prefix (see AX.), CR inserts
it after any newline character it inserts. A AM is
equivalent to a carriage returna

AO open-space
Opens up space by putting a newline ahead of the current
point. Pushes all lines of the buffer below the current
line down one. With a positive numeric argument, e.g.,
AUAUAO, opens up the specified number of lines (16 in
this case). See AXAQ to remove (extra) blank lines.

AXAO delete-blank-lines
Deletes blank 1 ines around cursor: gets rid of vertical
white space. If issued on a blank line, leaves one
blank line; otherwise, deletes all blank lines after
this line's end. See AQ.

ESC AQ sp~. i t-l ine
Breaks the line at this point, shearing it vertically.
Puts the text to the right of the cursor on the next
line, with ·~nough indentation so that it is still in
the same place horizontally, i.e., the same column.
This can be undone by AU ESC A

11-23 CH27-00B

Indentation and White Space

1/82

ESC \ delete-white-sides
Deletes all white space characters on the current line
adjacent to the character at the cursor. A whi te
space character is a space, a tab, a formfeed, or a
vertical tab.

ESC M skip-over-indentation
Moves the cursor to the first non-white space (i.e.,
not tab, space, formfeed, or vertical tab) posi tion
on t his lin e . In 0 the r wo r d s, ski p s 0 v e r the in den tat ion
on this line.

AX. set-fill-prefix
Sets fill prefix in this buffer to be whatever is
between the beginning of the line and the cursor (spaces
and characters). The fill prefix is inserted
aut.omatically by CR, autofill, and
runoff-fill-paragraph (ESC Q) into lines after the
first line in the buffer. If the cursor is at the
beginning of the 1 ine when AX. is issued, the fill
prefix is reset (i.e., there is no fill prefix). It
can be used to establish a left margin.

AXF set-fill-column
Sets the fill column in the current buffer to be the
horizontal position where the cursor is now. The fill
column is the "right margin" used by ESC Q to fill
and adjust text, by fill mode to fill and adjust text,
and by ESC S to determine where to center. The fill
column is the first column in which text is not to be
placed. The new value of the fill column is printed
out in the minibuffer. If a positive numeric argument
is given, e.g., AU 72 AXF, the fill column is set to
that value.

ESC I tab-to-previous-columns
Indents the current point (and rest of line) to line
up with the next column to the right in the previous
nonblank line. That column begins at the printed
character after the first whi te space character to
the right of the current point. Successi ve ESC Is
line the point up in that manner across a line. With
a numeric argument, ESC I "unindents" the point.

17-24 CH27-00B

ESC CR cret-and-indent-relative
Does a carriage return and ESC I. Thus, if the ~urrent
line is indented, ESC CR ends it and starts a new
line, indented the same as the line just ended (the
original line). .If the original line is not indented,
the new line starts under the first character of the
second word of the original line. Use this request
while you are typing an indented body of text. ESC
~M is equivalent to ESC CR.

ESC AI indent-to-fill-prefix
Deletes the indentation (leading white space) of the
current line, and replaces it with the fill prefix in
this buffer, which can be set by AX ..

ESC A (caret, not control key) delete-line-indentation
Deletes all white space at the beginning of this line
and tnen merges it with the previous line. With a
positive numeric argument, e.g., U ESC , does a N
first, effectively connecting the next line to this
one, without the next line's indentation •

.... X I indent-rigidly
Indents all lines in the region defined by the point
and the mark by the amount specified by the numeric
argument. The argument can be negative to unindent.
All lines having any characters within the region are
indented.

Comments

1/82

.... x; set-comment-column
Sets the comment column in this buffer to the horizontal
position where the cursor is now. With a positive
numeric argument, sets the comment column at the
specified column.

ESC indent-for-comment
Searches for thi s 1 ine' s comment. If one ex ists, indents
it to the comment column in this buffer (see AX;).
If one does not exist, starts one at the comment column
on this line. Uses the comment prefix to search for
an old one or start a new one. See also ESC X
set-comment-prefix •

.... z; kill-comment
hemoves the COr:lment and th·.~ whj. te space preced ing it
from ~he current line. The del~ted text is saved on
thE; kill ring} accessible 'c,f'I "'Y. The text is saved
ir'l ::;'.J~h a way that following AKs and other
f)rward-killing ~"equests me, ge properly with the deleted
t; ~ ~~ ~~ .•

17-25 CH27-00B

ESC N down-comment-line
Properly indents the comment on the next l.ine, or
puts a comment on the next line if one is not there
already. Effecti vely the same as AN ESC See ESC

ESC P prev-comment-line
Properly indents the comment of the previous line, or
puts one on the previous line if one is not there
already. Effecti vely the same as Ap ESC See ESC

ESC X set-comment-prefix "string"
Sets the comment prefix in this buffer. This is usually
set automatically by entering a major mode. The comment
prefix is given as an argument to this request, in
quotes. The comment prefix is used by ESC ;, ESC N,
and ESC P to find comments, and start them.

Formatting

1/82

AX. set-fill-prefix
Sets fill prefix in this buffer to be whatever is
between the beginning of the line and the cursor (spaces
and characters). The fill prefix is inserted
automatically by CR, autofill, and
runoff-fill-paragraph (ESC Q) into lines after the
first line in the buffer. If the, cursor is at the
beginning of the line when AX. is issued, the fill
prefix is reset (i.e., there is no fill prefix). It
can be used to establish a left margin.

AXF set-fill-column
Sets the fill column in the current buffer to be the
horizontal position where the cursor is now. The fill
column is the "right margin" used by ESC Q to fill
and adjust text, by fill mode to fill and adjust text,
and by ESC S to determine where to center. The fill
column is the first column in which text is not to be
placed. The new value of the fill column is printed
out in the minibuffer. If a positive numeric argument
is given, e.g., AU 72 AXF, the fill column is set to
that value.

ESC S center-line
Centers the current line, according to the fill column
set by AXF.

17-26 CH27-00B

Words

empty line, this is the same as the beginning of the
line.

AN next-line-command
Positions to the next line of the buffer. If on the
last line, appends a new empty line to the bottom of
the buffer, and positions to the beginning (and end)
of it. Successive ANs and ApS try to maintain the
same horizontal position. Repeats with a positive
numeric argument; performs ApS and repeats with a
negative numeric argument.

ft p prev-line-command
Moves to previous line of the buffer. Beeps as for
AG if on first line of the buffer. Attempts to
maintain the same horizontal position; successive
Ap'S and AN's try to maintain the original horizontal
position. Repeats with a positive numeric argument;
moves to next line and repeats with a negative
numeric argument.

A X= linecounter
Displays in the minibuffer the number of lines in
this buffer, the line number (the first line is line
1) of the line the cursor is on, and the dprint
column position.

ESC G go-to-line-number

@

Goes to a given line, specified by line number, from
the top of the buffer. The positive numeric argument
specifies the line number. For instance, ESC 25 ESC
G goes to line 25.

kill-to-beginning-of-line
Kills all the text to the left of
current line. The killed text is
ring, and may be retrieved with Ay.

the cursor on the
saved on the kill

AK kill-lines
Kills to end of line; when alread~ at end of line,
deletes the linefeed (merges lines). If on an empty
line, deletes it. If given a positive numeric
argument, deletes that many lines, starting from the
current point on the current line. Successive ftKs
merge killed text on the kill ring.

ESC B backward-word
Uoes backward one word. If in the middle of a word,
goes to before the beginning of that word. Skips
backward over all white space to get to the next
word. Underscores and backspaces count as parts of
words. Repeats with a positive numeric argument;

17-27 CH27-00

goes forward and repeats with a negative numeric
argument.

ESC F forward-word
Goes forward one word. If in the middle of a word,
moves to the end of the current word. Leaves point
immediately after that word. Passes over all
punctuation and white space before the word.
Underscores and backspaces count as parts of words.
Repeats with a positive numeric argument; moves
backward and repeats with a negative numeric
argument.

ESC # rubout-word
Deletes the word to the left of the current point.
More specifically, deletes going backward, deleting
characters until the beginning of a word. Successive
words deleted with ESC # are merged and can be
retrieved with one Ay. Repeats with a positive
numeric argument; deletes forward and repeats with a
negative numeric argument.

ESC \177 rubout-word
Deletes the word to the left of the current point.
More speclIlcaLLY, aeLetes going backward, deleting
characters until the beginning of a word. With a
positive numeric argument, deletes the specified
number of words. Deletes forward the specified
number of words with a negative numeric argument.
Successive words deleted with ESC \177 are merged and
may be retrieved with one Ay.

ESC D delete-word
Deletes the word to the right of the current paint.
More specifically, deletes forward, deleting all
white space and punctuation and characters until the
end of the next word. Repeats with a positive
numeric argument; deletes backward and repeats with a
negative numeric argument.

ESC C capitalize-initial-word
Capitalizes the initial letter of a word, e.g., Word.
If the cursor is in a word or immediately after a
word, capitalizes the first letter of that word.
Otherwise, acts on the next word. Leaves cursor
immediately after the word capitalized.

ESC L lower-case-word
Converts a word to all lowercase, e.g., word. If the
cursor lS In a word or immediately after a word,
lowercases that word. Otherwise, lowercases the next
word. Leaves cursor immediately after the word acted
upon.

17-28 CH27-00

8/82

AXESC escape-dont-exit-minibuf

ESC X

Is the same as ESC, and can be used for all requests
beginning with ESC, and numeric arguments. However,
can be used in the minibuffer when typing ESC would
terminate the minibuffer, as in some of the special
search strings.

extended-command
Prompts for the name and arguments of an
request in the minibuffer, terminated by CR.
out about an extended command, type:

ESC X describe <name-of-command> CR

17 -28. 1

extended
To find

CH27-00C

Macros

8/82

AX(begin-macro-collection
starts learning all that follows as a macro, until
AX) or an error occurs. All requests and input between
AX(and AX) are remembered as a macro, which can be
executed by AXE, or saved and assigned to a key by
ESC X save-macro~ and displayed by AX*.

AX) end-macro-collection
Ends a macro definition. The requests and input typed
since AX (become the "last macro defined" for AXE.
If given a numeric argument, re-executes the defined
macro as AXE does (see that request). See AX (for
what a macro is.

AX. show-Iast-or-current-macro
Displays the requests (as keystrokes, e.g., AA, esc-B,
etc.) in the last macro defined (see AX (and AX)).
If given a positive numeric argument, e.g., AUAX*,
displays the keystrokes and command names.

AXE execute-Iast-editor-macro
Executes the last macro defined (by AX(and AX)), one
or many times depending on the numeric argument to
this request.

With:

No argument
Executes it once.

D(i.e., ESC DAXE)
Executes it over and over, pausing after
each execution. Type a space to go on to
the next, CR or AG to stop repeating.

1-9999
Does it that many times.

9999-infinity
Does it until an error occurs.

AXQ macro-query
Queries the user during the execution of a macro so
that he can:

continue execution by typing a space

stop execution by typing a AG

restart execution from the beginning by typing a
CR or other character

11-29 CH21-DDC

I

I
I

ESC X

This request can only be used by including it in a
macro definition. Thus:

locates occurrences of "form" and queries the user
before uppercasing them.

save-macro
Saves a macro, assigning it to a key. Invoke save-macro
after a macro has been defined while still in the
same buffer. Prompts for a command name to assign to
the macro, and a key. A null response for the key
does not assign it to any key; ESC X set-key can be
used later. When a key has been assigned, this key
invokes that macro; it takes arguments identical to
AXE. Assigned keys are only valid while in the buffer
in which they were assigned; command names are valid
in any buffer.

ESC X edit-macros
Produces a symbolic list of all keyboard macros defined
in the current buffer and places it in a new buffer
called emacs-macros. The keyboard macros may then be
written out for later loading, edited, redefined, or
compiled into Lisp code. See Appendix D for full
information.

ESC X show-macro <macro-name>
Displays an edi tor macro (defined wi th AX (and AX)
the same as show-last-editor-macro does, but takes
the name assigned to the macro (by ESC X save-macro)
as an argument.

Characters (Moving by/Deleting~

8/82

AS backward-char
Moves backward one character in the buffer. Tabs and
the newline characters at the ends of lines count as
one character. Beeps as for AG at the beginning of
the buffer. Repeats with a positive numeric argument;
moves forward and repeats wi th a negative numeric
argument.

AF forward-char
Moves forward one character. Tabs and newlines count
as one character each. Beeps as for AG at the end of
the buffer. Repeats with a positive numeric argument;
moves backward and repeats wi th a negati ve numeric
argument.

11-30 CH27-00C

\177

AD

rubout-char
Deletes the previous character (before the cursor,
which is usually the last character typed). Note that
II deletes the character to the left of the cursor,
while AD deletes the character at the cursor. Repeats
wi th a posi ti ve numeric argument, deletes the character
at the cursor and repeats wi th a negati ve numeric
argument.

(delete key) rubout-char
Deletes the previous character (be·fore the cursor,
which is usually the last character typed). Note that
\177 deletes the character to the left of the cursor,
while AD deletes the character at the cursor. Repeats
wi th a posi ti ve numer ic argument; deletes the character
at the cursor and repeats wi th a negati ve numeric
argument.

delete-char
Deletes the character to the right of the current
point. This is the character on which the cursor
sits. Moves the rest of the line one to the left,
closing up the space. Deleting a newline at the end
of a line merges 1 ines. Repeats wi th a posi ti ve numeric
argument; deletes the previous character and repeats
with a negative numeric argument.

Lines (Moving in and by/Deleting)

J /02

AA go-to-beginning-of-line
Positions to the beginning of the current line of the
buffer, i.e., right before the first character.

AE go-to-end-of-line
Positions to the end of the current line, i.e., after
the last character and before the linefeed. On an
empty line, this is the same as the beginning of the
line.

AN next-line-command
Pos}tlons to the next line of the buffer. If on the
last line, appends a new empty line to the bottom of
the buff~r, and positions to the beginning (and end)
of it. Su('cessi ve ANs and APS try to maintain the
same horizontal position. Repeats with a positive
11umeric argument; perform:) APS and repeats wi th a
negative numeric argument.

17-31 CH27-00B

Words

1/82

Ap prev-line-command
Moves to prev ious 1 ine of the buffer. Beeps as for
AG if on first line of the buffer. Attempts to maintain
the same horizontal position; successive Ap'S and AN's
try to maintain the original horizontal position.
Repeats wi th a posi ti ve numeric argument; moves to
next line and repeats wi th a negative numeric argument.

AX= linecounter
Displays in the minibuffer the number of lines 1n
this buffer, the line number (the first line is line
1) of the line the cursor is on, and the dprint column
position.

ESC G go-to-line-number
Goes to a given line, specified by line number, from
the top of the buffer. The positive numeric argument
specifies the line number. For instance, ESC 25 ESC

. G goes to line 25.

kill-to-beginning-of-line
Kills all the text to the leit oi the cursor on the
current line. The killed text is saved on the kill
ring, and may be retrieved with Ay.

AK kill-lines
Kills to end of line; when already at end of line,
deletes the linefeed (merges lines). If on an empty
line, deletes it. If given a positive numeric argument,
deletes that many lines, starting from the current
point on the current line. Successive AKs merge killed
text on the kill ring.

ESC 8 backward-word
Goes backward one word. If in the middle of a word,
goes to before the beginning of that word. Skips
backward over all white space to get to the next ~ord.
Underscores and backspaces count as parts of words.
Repeats with a positive numeric argument; goes forward
and repeats with a negative numeric argument.

17-32 CH27-00B

1/82

ESC F forward-word
Goes forward one word. If in the middle of a word,
moves to the end of the current word. Leaves point
immed iately after that word.. Passes over all
punctuation and whi te space before the word ..
Underscores and backspaces count as parts of words.
Repeats wi th a posi ti ve numeric argument; moves backward
and repeats with a negative numeric argument.

ESC n rubout-word
Deletes the word to the left of the current point.
More specifically, deletes going backward, deleting
characters until the beginning of a word. Successive
words deleted with ESC II are merged and can be retrieved
wi th one "Y. Repeats wi th a posi ti ve numeric argument;
deletes forward and repeats wi th a negative numeric
argument.

ESC \177 rubout-word
Deletes the word to the left of the current point.
More specifically, deletes going backward, deleting
characters until the beginning of a word. With a
positive numeric argument, deletes the specified number
of words. Deletes forward the specified number of
words with a negative numeric argument. Successive
words deleted wi th ESC \ 177 are merged and may be
retrieved with one "Y.

ESC D delete-word
Deletes the word to the right of the current point.
More specifically, deletes forward, deleting all white
space and punctuation and characters until the end of
the next word. Repeats wi th a posi ti ve numeric argument;
deletes backward and repeats with a negative numeric
argument.

ESC C capitalize-initial-word
Capitalizes the initial letter of a word, e.g., Word.
If the cursor is in a word or immediately after a
word, capitalizes the first letter of that word.
Otherwise, acts on the nex t word. Leaves cursor
im~ediDtely a~ter the word capitalized. Acts on the I
next N '..lords with a positive numeric argument; acts I
on the prev ~_ous N words wi th a negative numeric argument. i

1'7-33 CH27-00B

ESC L lower-case-word
Converts a word to all lowercase, e.g., word. If the
cur sor is in a word or immed iately after a word,
lowercases that word. Otherwise, lowercases the next
word. Leaves cursor immediately after the word acted

• upon. Lowercases the the next N words with a positive
• numeric argument; acts on the previous N words with a
• negative numeric argument.

• • •
• I
I
I

• •

ESC U upper-case-word

ESC T

ESC

Converts a word to all uppercase, e.g., WORD. If the
cursor is in a word or immediately after a word,
uppercases that word. Otherwise, uppercases the next
word. Leaves cursor immediately after the word acted
upon. Uppercases the nex t N word s wi th a posi ti ve
numeric argument; acts on the previous N words with a
negative numeric argument.

twiddle-words
Transposes (interchanges) the last two words typed,
e.g., "like I ESC T Multics because ... ," becomes "I
like Multics because ... " If you are currently in the
middle of a word, the cursor goes to the end of the
word before the transformation.

underline-word
Canonically underlines a word. If the cursor is in a
word or immediately after it, underlines that word.
Otherwise, underlines the next word. Leaves the cursor
immediately after the underlined word. Although the
underl ined word looks pecul iar on the screen, it is
correct.

AZ remove-underlining-from-word
Removes underlining from the current word; the rules
for selecting which word are the same as those used
by uppercase-word (see ESC U).

Sentences

1/82

ESC A backward-sentence
Goes to the beginning of the current sentence, i.e.,
just before the first letter. If already at the
beginning of a sentence, goes to the beginning of the
previous sentence. The beginning of the first word
after a blank line always counts as the beginning of
a sentence. Repeats with a positive numeric argument;
goes forward and repeats with a negative numeric
argument.

17-34 CH27-00B

i /82

ESC E forward-sentence
Moves forward to the end of this sentence. If at the
end of a sentence, moves forward to the end of the
next sentence. Ends of paragraphs are implicitly ends
of sentences, whether or not an end-of-sentence
punctuation (period, question mark, exclamation point)
appears. Repeats with a positive numeric argument;
moves backward and repeats wi th a negati ve numeric
argument.

AXil kill-backward-sentence
Kills backward to the beginning of this sentence; kills
as much of the sentence as thus far typed. Successive
kills via AXil and other reverse-killing requests (e.g.,
ESC /I) merge, and may be retrieved wi th one Ay. Repeats
wi th a posi ti ve numeric argument; kills forward and
repeats with a negative numeric argument.

AX\177 kill-backward-sentence
Kiils backward to the beginning of this sentence;
kills as much of the sentence as thus far typed.
Successive kills via AX\177 and other reverse-killing
command s (e. g ., ESC II) merge, and may be retr ieved
wi th one Ay. Repeats wi th a posi ti ve numeric argument;
kills forward and repeats with a negative numeric
argument.

ESC K kill-to-end-of-sentence
Deletes text going forward from the cursor to the end
of the current sentence. If at the end of a sentence,
deletes forward to the end of the next sentence.
Sentences and other text killed consecutively in this
fashion are merged, and may be retrieved with a single
Ay. With a positive numeric argument, kills the
specified number of sentences. Kills backward the
specified number of sentences with a negative numeric
argument.

17-35 CH27-00B

Parasraphs

ESC [beginning-or-paragraph
Moves to the beginning otthe current paragraph. If
already at the beginning of a -paragraph, moves to the
beg inn ing of the prev ious paragraph. The beg inning
of a paragraph is the beginning of the first line of
the paragraph. The definition of paragraphs is
controlled by the paragraph-definition-type option:
if 1, blank lines separate paragraphs; if 2, an indented
1 ine starts a paragraph. The Mul tics runoff or compose
command's control lines count as individual paragraphs.
Repeats wi th a posi ti ve numeric argument; moves forward
and repeats with a negative numeric argument.

ESC] end-of-paragraph
Moves-to the end of the current paragraph. If at the
end of a paragraph, moves to the end of the next
paragraph. The end of a paragraph is the end of the
last line of the paragraph. The definition of paragraphs
is controlled by the paragraph-definition-type option:
if 1, blank lines separate paragraphs; if 2, an indented
1 ine starts a paragraph. The Mul tics runoff or compose
command's control lines count as paragraphs. Repeats
with a positive numeric argument; moves backward and
repeats with a negative numeric argument.

ESC H mark-paragraph
Puts the mark at the beginning of the current paragraph;
puts the cursor at the end of the current paragraph.
See ESC [for a definition of paragraphs.

Screens

1/82

AV next-screen
Displays next screenful of the current buffer. Leaves
cur sor at upper left hand corner of screen. Wi th a
positive numeric argument, pages forward the specified
number of screensful and displays it; with a negative
numeric argument, moves backward the specified number
of screensful (previous screens) and displays it.

ESC V prev-screen
Displays the previous screen (one back) of this buffer,
leav ing cur sor at the top of it. Wi th a posi ti ve
numeric argument, moves backward the specified number
of screensful and displays it; with a negative numeric
argument, moves forward the specified number of
screensful and displays it.

17-36 CH27-00B

AL redisplay-command
Clears the screen, and displays the current window of
the current buffer, centered about the current line.
Useful if your screen is messed up by messages
(preventable with ESC X accept-msgs), non-Emacs output,
etc. With a positive numeric argument, moves current
line to that many lines below top of screen; ESC QAL
or ESC 1 AL moves current line to top, for example.
With a negative numeric argument, moves the current
line to that many lines above the bottom of the screen;
ESC _1AL moves to the bottom of the screen, ESC _2AL
moves to two lines from the bottom, etc.

ESC R move-to-screen-edge
Moves to top, bottom, or other point on screen. ESC
1 ESC R or ESC Q ESC R moves to the top line of the
screen, ESC 6 ESC R moves to 6 lines from the top,
AU AU AU ESC R or ESC -1 ESC R moves to the bottom.
ESC -2 ESC R moves to the second line from the bottom,
etc. Leaves the cursor at the start of the selected
line.

AZAV scroll-current-window

Buffers

Scrolls the current window up a line, with the cursor
maintaining its position relative to the text. With
a positive numeric argument, e.g., AUAZAV, scrolls up
the specified number of lines. Wi th a negati ve numeric
argument, e.g. ESC -3 AZAV, scrolls down the specified
number of lines.

ESC < go-to-beginning-of-buffer
Moves to the beginning of the current buffer, i.e.,
before the first character in the buffer at the top
of the document being edited.

ESC > go-to-end-of-buffer
Moves to the end of the current buffer, i.e., after
the last character or newline character (if the buffer
ends with a newline) at the bottom of the document
being ed i ted.

17-37 CH27-00B

1/82

AXB select-buffer
Switches to another buffer. Prompts for the name of
that buffer, terminated with CR. If that buffer does
not already exist, it is created. All key bindings,
fill column, comment column, comment prefix, etc.,
assoc iated wi th that buffer are put in effect. The
last point that you were at in that buffer becomes
the current point. Responding to AXB' s prompt wi th
only a eR goes to the last buffer you were in.

AXAB list-buffers
Produces listing of buffers and their pathnames. A
">,, marks buffer you came from, "." says buffer is
modified since it was last read or written. Proceed
with editing, or type linefeed to refresh screen.

AXH mark-who Ie-buffer
Puts the mark at the end of the buffer and the cursor

-at the beginning. This "marks" the whole buffer, so
that AW deletes it, etc. The linefeed at the end of
the buffer is not in the marked region, but AXH AW
AXB ... Ay effectively moves a whole buffer.

AXK kill-buffer
Kills (destroys) a buffer. Prompts for the buffer's
name, terminated by CR. A response of CR kills the
current buffer. Buffers can be killed to conserve
storage, to prevent their appearance in buffer listings,
or to prevent being queried when quitting with AXAC.

ESC - unmodify-buffer
Marks the current buffer as not modifiedc Emacs does
not mention this buffer when querying before quitting
the editor. This is useful after accidentally modifying
a buffer which you only intended to examine.

AZAB edit-buffers
Enters the buffer editor. If AZAB is given no argument,
the buffer editor sets up its display in the current
window. If given a positive numeric argument, e.g.,_
AU AZAB, the buffer editor finds some other appropriate
window (if in two-or-more-window mode) to set itself
up in. See Section 16 for full information on the
buffer editor.

11-38 CH21-00B

Multiple Windows

l/H2

AX0 remove-window
Removes the window in which the cursor appears from
the screen. The cursor is moved to the window that
had been visi ted just before the current window was
entered (that is, the next-most-recently visited
window). The space occupied by the departing window
is divided among its neighbors. With a positive numeric
argument, removes the window specified, where the
topmost window is 1.

"'Xl expand-window-to-whole-screen
Expands the window in which the cursor appears to
fill the whole screen; all other windows are removed.
This in essence returns to "one window mode'l from
having any number of windows. The cursor retains its
position in the text.

"'X2 create-new-window-and-go-there
Creates a new window at the bottom of the screen,
redividing the screen equally among all the windows.
The cursor moves to the new window, which has a default
buffer name created from its window number.

"'X3 create-new-window-and-stay-here
Creates a new window at the bottom of the screen,
redividing the screen equally among all the windows.
The cursor remains where it is.
has a defaul t buffer name created from its window
number, becomes the "least-recently visited window."

"'X4 select-another-window
Moves the cursor to the least-recently visited window
on the screen 0 That window then becomes the
most-recently visited. Thus, successive applications
of X4 visi t all windows on the screen. This is a
good request to use when you want to visit some new
buffer or file, but not overwrite windows containing
information you have been looking at recently. With
a positive numeric argument, e.g., ESC 3 AX4, goes to
that window, i.e., window 3.

17-39 CH27-00B

Axa select-other-window .
Moves the cursor to the other window (in two-window
mode), or to the previous window, implicitly (usually)
switching buffers. The mode line is updated to reflect
the new buffer. The cursor appears at the last point
it was in the new window. In general, the cursor
enters the window used last, immediately before the
current window was entered, so this request switches
you back and forth between the two most-recently used
windows.

ESC AV page-other-window
Valid only when more than one window exists. Displays
the next screenful of the other window's buffer (i.e.,
the one the cursor is not now in). With a positive
numeric argument, pages forward the specified number
of scree"nsful, and displays it. Wi th a negati ve numeric
argument, pages the other window backward. When more
than two windows are in use, the next most recently
visited window is considered to be the "other window".
Very useful for "paging" through compiler diagnostics
while editing a program.

AZAW edit-windows
Enters the window editor to create, realign, destroy,
or visit windows. If AZAW is given no argument, the
window editor sets up its display in the current window.
If given a numeric argument, e.g., AU AZAW, the window
editor finds some appropriate window to set itself up
in. See Section 16 for full information on the window
editor.

Mail/Messages

1/82

AXM send-mail
Enters the Emacs mailer (RMAIL) to compose outgoing
mail. This request prompts for the mail subject
terminated by CR. For full information on reading
and sending mail, see Appendix B.

AXR rmail
Enters the Emacs RMAIL subsystem to read mail. Without
a numeric argument, uses your default mailbox. With
a positive numeric argument, e.g., AU AXR, prompts
for a mailbox name, which can take a form like
Washington.States, Salter,)udd)Sales)Complaints, etc.
The first message in the mailbox is placed in a buffer
in RMAIL mode. Type "q" to exit RMAIL and delete all
mail queued for deletion during RMAIL. Refer to Appendix
8 for full information on RMAIL and reading and sending
mail.

17-40 CH27-00B

ESC X accept-messages
Accepts Mul tics interacti ve terminal messages into Emacs
buffers, one buffer per correspondent. Messages are
displayed as a local display as they arrive. All
correspondence to and from each correspondent is
maintained in a buffer named "Messages from
<PersonName>." In such a buffer, carriage return is
bound to respond-from-buffer, which transmits messages
when you type a line into that buffer. In these buffers,
conversations "transcript" as wi th the Mul tics
send message command in input mode (see the MPM
Commands). The following key bindings are set up
globally by accept-messages (see Appendix F for more
information) :

AX: message-response-command
Responds to last sender from minibuffer.

AX' go-to-new-message-buffer
Goes to a message buffer.

AX' send-a-message
sends a message, like AX:, but to anyone
you specify.

AX- repeat-Iast-message
displays the last message again.

ESC X accept-messages-path
The ESC X accept-messages-path request allows receipt
of messages in mailboxes different from your default
mailbox. The request requires an argument, which is
ei ther a mailbox pathname, a Person name (for si tes
using the ARPANet mail daemon), or a Person.Project.
Up to 50 mail boxes can be accepting messages in a
process.

Typing 'Shortcuts

1/82

AC re-execute-command
Reexecutes the last keystroke (request), other than
AJ or AC. Useful for skipping successive words, etc.
Repeats with a positive numeric argument. Reexecutes
search requests using the same search string.
Reexecutes extended requests, using the same arguments
(if any).

AT twiddle-chars
Transposes (interchanges) the last two characters typed,
e.g., I like MutlATics becuaATse ... , becomes "I like
Multics because ... "

17-41 CH27-00B

I

AU multiplier
When not followed by a positive number, multiplies
the next request by 4 for each use, e.g., AUAD deletes
4 characters. Typing AU""'UAD deletes 16. With a positive
number, uses the number, e.g., AU13x inserts an x 13
times. A AU is considered a positive numeric argument;
however, AU -6, for example, is an argument of -6.

. A\ undo-prefix

8/82

Used as a prefix to another Emacs request to reverse
the usual action of the request it precedes. For
example, AX underlines an entire region; A\AX
de-underlines the region.

ESC T twiddle-words
Transposes (interchanges) the last two words typed,
e.g., "like I ESC T Multics because ••• ," becomes "I
like Multics because ••• " If you are currently in the
middle of a word, the cursor goes to the end of the
word before the transformation.

ESC SPACE complete-command
Used by the AXB, AXK, and ESC X requests to complete
a minibuffer response. You can type enough of a
minibuffer response to unambiguously indicate a known
buffer name (for AXB and XK) or extended request
name (ESC X), then type ESC SPACE to complete the
minibuffer response automatically. If ESC SPACE cannot
complete the response because more than one completion
is possible, Emacs types an error message. When the
ESC X opt cmp:allow-ambiguous option is on (which it
is by default), ESC SPACE attempts to complete your
minibuffer response even if several possible completions
eXist, i.e., even if your typed input does not
unambiguously specify the completion. In this case,
ESC SPACE completes the response with the first match
in the current list of completions. Typing another
ESC SPACE after a successful completion removes the
one just inserted and inserts the next match found;
..... U ESC SPACE displays the current completions. If no
more possible completions exist, the terminal bell
rings and the last completion displayed is removed.

17-42 CH27-00C

8/82

ESC X setab <abbrevl> <expansionl> <abbrevg> <expansionn>
Defines one word as an abbreviation for another, for
Speedtype mode. For instance:

ESC X setab edr editor

defines edr as the abbreviation for editor. Accepts
mul tiple pairs of arguments. If the second string
(the thing being abbreviated) is many words, or has
special characters in it, put it in quotes. The
abbreviation can be 4 characters or less.

The pairs entered during one or more of these commands
are cumulative for the entire Emacs session. The only
entry that overrides a previous entry is one that
redefines an earlier abbreviation. To turn an
abbreviation off, redefine it to itself, i.e., to turn
off the abbreviation above, type:

ESC X setab edr edr

ESC X speedtype

I

Enters Speedtype minor mode in this buffer. Speedtype
allows words to be used as abbreviations for other
words. ESC X setab defines abbreviations. When a
space or punctuation mark (period, comma, colon, or I
semicolon) is typed after an abbreviation, the
abbreviation is removed from the text and replaced by
its expansion. Precede punctuation or spaces with AQ
to deliberately avoid Speed type expansion when in this
mode.

ESC X speedtypeoff
Turns off speedtype mode in this buffer, if it is on.

17-43 CH27-00C

Programming Modes

8/82

ESC X aIm-mode
Enters ALM major mode in this buffer. ALM mode consists
of many requests and variable settings suitable for
the creation and editing of ALM programs (see Appendix
C).

- ESC X electric-aIm-mode
Enters Electric ALM mode in the current buffer. Electric
ALM mode is a variant of ALM mode in which colons and
carriage returns are automatic.

ESC X electric-p11-mode
Enters Electric PL/I mode in the current buffer.
Electric PL/I mode is a variant of PL/I mode in which
semicolons and colons have violent automatic "electric"
action which may be disturbing to some, but useful to
others. See Appendix C.

ESC X fortran-mode
Enters FORTRAN major mode in this buffer. FORTRAN
mode consists of many requests and variable settings
suitable for the creation and editing of FORTRAN
programs. See Appendix C for a list of the requests
and a description of this mode. You can issue the
request ESC X apropos fortran CR in a FORTRAN mode
buffer for a list of relevant requests in this mode.

ESC X fundamental-mode
Enters Fundamental maj or mode, the mode (set of key
bindings and variable settings) that all buffers start
out in. This can be used to "undo" any other major
mode that you may have set.

ESC X lisp-mode
Enters Lisp major mode in this buffer. Lisp mode
consists of many requests and variable settings suitable
for the creation and editing of Lisp programs. See
Appendix C for a list of the requests and a description
of this mode.

17-44 CH27-00C

8/82

ESC X p11-mode
Enters PL/I major mode in this buffer. PL/I mode
consists of many requests and variable settings suitable
for the creation and editing of PL/I programs. See
Appendix C for a list of the requests and a description
of this mode. You can issue the request ESC X apropos
p11 CR in a PL/I mode buffer for a list of relevant
requests in this mode.

ESC X set-compile-options "option string"
In language modes that support ESC AC for compile-buffer,
e.g., PL/I, FORTRAN, sets non-default compilation
options to be given to the appropriate compiler.

ESC X set-compiler <compiler>
Sets the name of the compiler to be used by the
compile-buffer request (usually ESC AC) in those
language modes that compile buffers this way, e. g. ,
PL/I, FORTRAN. The single argument to ESC X set-compiler
is the compiler name.

ESC X Idebug
Enters a "Lisp Top Level" buffer in Lisp Debug mode.
Forms typed into this buffer are evaluated and the
value is displayed by placing it 1n this buffer.
When ESC X ldebug has been used, all Lisp errors in
Emacs trap into this buffer. ESC P restarts a break.
See the Extension Writers' Guide for more information.

ESC X text-mode
This major mode can be used for editing text files.
It automatically puts you into fill mode, sets the
comment column at 0, the comment prefix to "", and
changes the ESC A request's action so that ESC A inserts
a space between the two lines that it has forced together.
If find-file-set-modes is on, .runoff or
.. compin-suffixed files instate text mode when read
into Emacs.

11-44.1 CH21-00C

I

Printing Terminal Usage

8/82

AXV view-lines
For printing terminals, prints the current line. With
a positive non-zero numeric argument, prints the
specified number of lines, beginning with the current
and continuing on down. With a negative numeric
argument, prints the specified number of preceding
lines. Leaves you after them, unless argument is 1
or not supplied, in which case it leaves you on the
current line, after printing it. ESC OAXV views the
region (between cursor and the mark). Thus, AXH ESC
OAXV prints the whole buffer.

redisplay-this-line
Prints only the current line.

17-44.2 CH27-00C

toggle-redisplay
Turns off all screen updating until the next AXAT, AG
(not AXAG or AZAG), or error happens. This request
canbe used on slow terminals with no insert/delete
facilities to avoid excessive printing time for
operations such as typing in the middle of a line.

open-space
Opens up space by putting a newline ahead of the current
point. Pushes all lines of the buffer below the current
line down one. With a positive numeric argument, e.g.,
AUAUAO, opens up the specified number of lines (16 in
this case). See AXAO to remove (extra) blank lines.

Extension Writin~

1/82

ESC ESC eval-lisp-line
Prompts for a string for Lisp to evaluate; puts a
pair of parentheses around it, evaluates it in Lisp
(wi th ibase = 8), and prints out the Lisp value in
the minibuffer (base = 8, *nopoint nil). To get a
variable value, use ESC ESC progn <varname> CR. If I
the ESC X opt eval: eval option is off, ESC ESC is I
bound to the extended-command request. I

ESC X ldebug
Enters a "Lisp Top Level" buffer in Lisp Debug mode.
Forms typed into this buffer are evaluated and the
value l.S displayed by placing it in this buffer.
When ESC X Idebug has been used, all Lisp errors in
Emacs trap into this buffer. ESC P restarts a break.
See the Extension Writers' Guide for more information.

ESC X loadfile <path>
Loads a private Emacs extension package into the editor.
The argument is its pathname. See the Extension Writers'
Guide for more information.

ESC X load lib <library>
Loads an extension package into Emacs. Normally, such
packages are "autoloaded" when requests in them are
invoked, but from time to time, new, experimental, or
highly specialized packages may require being loaded
in this way. The single argument is the name of the
package to be loaded. Loading a package makes the
requests in it available. See the Extension Writers'
Guide for more information.

17-45 CH27-00B

Additional Optional Settings

8/82

ESC X opt
Sets internal flags and defaults, each of which have
names. Takes three forms:

opt list
Lists all options and settings.

opt NAME VALUE
Sets option value.

opt status NAME
Reports setting of one option.

Where:
NAME is an option name and VALUE is an acceptable
value for the named option. Values may be on,
off, or numbers, depending on the option. Code,
such as start-ups, can set these Lisp variables
(on/off ;) t/nil). Current options are:

add-newline
When on, adds a newline to the end of the
buffer being wri t ten out, if is does not
already end with one. Default is on.

autoload-inform
Prints a minibuffer message, "Autoloading
<function name) ••• ", whenever Emacs performs
an automatic load, and notifies you when
autoload is completed. Default is off.

check-newline
When on, queries user writing a buffer out
(with AXAW or AXAS) if the buffer does not
end in a newline. Default is off.

command-bell
When set to a real number, performs a user
notification (rings the bell) whenever a
command takes longer than that many real
seconds to complete. Default is off.

11-46 CH21-00C

8/82

command-bell-count
When set to an integer, rings the bell that
many times during user notification (see
command- bell above). If set to a symbol,
that symbol is called as a function (hook)
with the number of seconds used by the last
command as an argument. Default is off.

cmp:allow-ambiguous I
When on, allows ambiguous completions for
the complete-command request, ESC SPACE.
Successi ve ESC SPACE invocations find new
completions in the current completion list.
If no more possible completions exist, the
bell sounds and the last completion displayed
is removed. Default is on.

default-comment-column
Sets comment column for new buffers (0
origin). Default is 60.

17-46.1 CH27-00C

This page intentionally left blank.

8/82 CH21-00C

11/86

default-fill-column
Sets fill column for new buffers. Default
is 78.

display-ctlchar-with-A
Causes control characters to prlnt as Ap
instead of \020. Default is off.

eval:assume-atom
When on, considers a string given to the
eval-lisp-line request without spaces or
parentheses as an atom instead of a
function. Default is off.

eval:correct-errors
When on, corrects syntax errors (including
unbalanced parentheses, vertical bars, and
double quotes) in eval-lisp-line input
lines. When off, does not attempt syntax
correction. Default is off.

eval:eval
When on, ESC ESC is bound to the
eval-lisp-line request. When off, ESC ESC
is bound to the extended-command request.
Default is off.

eval:prinlength
Limits the length of list structures
printed by the eval-lisp-line request.
When off, any length is allowed. Default
is 6.

eval:prinlevel
Limits the depth of list structures printed
by the eval-lisp-line request. When off,
any depth is allowed. Default is).

fill-messages
When on, formats (fills) messages as ESC Q
does. Default is on.

find-file-check-dtcm
When on, AXAF causes
date-time-contents-modified of the file to
be compared to the time buffer was last
read or written. If the buffer contains an
old version of the file, Emacs prompts for
a specified aaction. Default is on.

17-47 CH27-00F

11/86

find-file-set-modes
When on, ""XAF reads the file into an
appropriate major mode buffer (according to
the last component), e.g., ""XAF foo.pl1
sets PL/I mode. Default is on.

gratuitous-marks
When on, a successful
AR request sets a
position. Default is

kill-ring-max-size

ESC
mark
off.

Sets the kill ring size.
default is 10.

meter-commands

>, ESC <, S, 0 r
at the current

Maximum is :28;

If set on, prints in the minibuffer the
number of real seconds used after
completion of each command. rf set to a
symbol, 8cts like command-bell-count above,
but independent of command-bell. Default
is off.

no-minibuffer-<>
Suppresses the display of the
brackets at the termination of
minibuffer input. Default is off.

paragraph-definition-type

angle
your

1 = only blank lines separate p8ragraphs.
~ (default) = blank lines or leading white
space separate paragraphs.

pop - up - \'1 i n dow s
When on, AXB, "'X""F, ""X"'E, etc., find an
appropriate place on the screen to put up a
window as opposed to replacing contents of
current window (experimental; see
Appendix H). Default is off.

quit-an-break
When on, pressing the BREAK (or ATTN) key
causes Emacs to abort, instead of just
pushing a Multics level. Default is off.

read-file-force
When on, AX"'R reads the requested file into
a modified buffer, without pause for
verification. Default is off.

17-48 CH27-00F

11/86

remember-empty-response
This option is used by the ESC Ay request;
when off, last-minibuffer-response is not
set to blank when a blank response is
given~ Default is offQ

rdis-whitespace-optimize
Avoids printing white
terminal control would
is on.

rdis-wosclr-opt

space when clever
go faster. Default

Wipes out screen lines before filling
screen. Try it both ways to see what this
means. Default is off.

rmail-header-format
Controls the header of the mail being
displayed. It can have one of the
following values (which are the standard
mail system formatting modes):

brief-formatting-mode
Specifies that the brief form of the
header be included in the message.

default-formatting-mode
Specifies that the default form of the
header be included in the message.
This value gets rid of redundant or
unnecessary fields. This is the
default value.

long-formatting-mode
Specifies that the long form of the
header be included in the message.

none-formatting-mode
Specifies that the head~r be excluded
from the message.

NOTES: Since Lisp accepts dashes and PL/I
accepts underscores, either is allowed as a
delimiter (e .. g" 7 "brief formatting mode" is
the same as "brief-form~tting-modeW).

You can use the Lisp "setq" command to
change these options in your start up.emacs
before RMAIL has been loaded. For-example:

(setq rmail-header-format
'default-formatting-mode)

17-49 CH27-00F

11/86

rmail-reply-include-authors
Includes the authors of the original
message, or the addresses in the original
message's "Reply~To" field, as primary
recipients of the reply, Default is on.

rmail-reply-include-recipients
Includes the primary, secondary, and blind
recipients of the original message as
secondary and blind recipients of the
reply. Default is off.

rmail-reply-include-self
Includes the user as a recipient of the
reply message if he is the author or
recipient of the original message. Default
is off.

rmail-request-acknowledgment
Requests an acknowledgment when sending
mail. Default is off.

rmail-send-acknowledgment
Sends an acknowledgment after reading a
piece of mail for which an acknowledgment
has been requested by the sender. Default
is on.

rmail-original-yank-indent
Sets the indentation of retrieved original
mail. Default is 4.

rubout-tabs-into-spaces
When on, turns a tab into one minus the
number of spaces necessary to reach the
current column when deleting characters
backward (with # or the delete key). In
effect, it makes rubout-char always delete
one visible character position. Default is
off. (This option has an effect only when
rubout-char is called from the keyboard,
not from inside Lisp code.)

save-same-file-check-dtcm
When on, AXAS and AXAW with no pathname
cause date-time-contents-modified of the
file to be compared to the time buffer was
last read or written. If the file has been
modified since the buffer was last read or
written, Emacs queries whether to proceed
with the save request. Default is on.

17-49.1 CH27-00F

11/86

screen-overlap
Sets the number of lines from the current
screenful of text that should appear in the
next screenful displayed by a AV or ESC V
request. Default is 1.

short-message-accept
When on, messages are not put on the screen
in local display; a message of the form,
"Messages received from Green.ACRE" appears
under the mode line instead. Default is
off.

suppress-backspace-display
Suppresses the display
Causes underlined "faa"
" f a 0". Default is off.

suppress-ctlchar-display

of
to

backspaces.
print as

Suppresses the display of control
characters. Any character which would
print as \NNN (except \177) is not
displayed~ DefRult iR off~

suppress-mini buffer
Suppresses all Emacs output to the
minibuffer, e.g., error messages such as
"search fails," and "no default pathname
for this buffer". Prompts are not
suppressed. Default is off.

suppress-remarks
When on, suppresses all remarks to the
minibuffer, such as notifications of
writing and reading files. Default is off.

suppress-rubout-display
Suppresses the display of rubout
characters. Causes \177 to never be
displayed. Useful when reading ALM listing
segments. Default is off.

track-eol-opt
When on, a AN or Ap at end of line sticks
to ends of lines. Default is off.

17-49.2 CH27-00F

11/96

underline-whitespace
When on, underlines white space within the
region being underlined by the
underline-region request (AX_). Default is
off.

write-file-overwrite
When on, AXAW with pathname overwrites a
file of the same name, without pause for
verification~ Default is off.

17-49.) CH27-00F

1/82

In addition, ESC X opt sets several options for use
in PL/I major mode. They are listed below and
described in the "Programming Language Modes"
section:

p11-comment-column
p11-comment-column-delta
p11-comment-style
p11-compile-options
p11-dcl-column
p11-dcl-style
p11-first-column
p11-indentation
p11-inding-style
p11-line-length

ESC X option
Is the same as ESC X opt.

ESC X set-minibuffer-size <size>
Sets the size of the mini buffer/prompting area
on the screen to any value~ The single argument
to ESC X set-mini buffer-size is the decimal
number of lines that should be devoted to this
function, from 1 to 6. The default is two.
With many-line minibuffers, many messages and
errors may appear at once. Use ESC X
reset-minibuffer-size to reset the minibuffer
size to its default of two lines.

ESC X reset-minibuffer-size <size>
Resets the size of the mini buffer/prompting area
to its default of two lines. See ESC X
set-minibuffer-size.

ESC X set-screen-size <size>
Sets the size of the main editing area (the area
above the mode line). The default is all of the
area above the mode line. The decimal argument
to ESC X set-screen-size is the number of lines
in the main editing area. ESC X
reset-screen-size resets the main editing area
size to its default value. ESC X
set-screen-size is usually used to reduce the
amount of redisplay at low terminal speeds.

ESC X reset-screen-size <size>
Resets the size of the main editing area of the
screen to its default, namely, all of the space
above the mode line. See ESC X set-screen-size.

17-50 CH27-00B

2/83

ESC X set-key <keyname> <command-name>
Assigns key bindings in the current buffer. Takes
two arguments, the key name and the command name.
Makes that key execute that request in this buffer.
The command name is what describe, apropos, or
make-waIl-chart gi ve; the key name can be anything
like the names in this documentation, e.g., AX,
"'x, ESC ESC', "'Xq, control-p, c-p, meta-f, ESC
"'f, CR, AX "'F, "'X CR, \177, II, A, "'P, etc. See
Section 15 for a full description of acceptable
key names.

ESC X set-permanent-key <keyname> <command-name>
Sets permanent (default in all buffers) key
bindings. Otherwise, works exactly like ESC X
set-key.

ESC X set-search-mode <search-mode>
Sets the bindings of "'s and AR to invoke several
different forms of searching. The argument is
the search mode, and can be:

string
Searches forward/backward (depending on
whether you are searching with AS/"'R) for
the exact character string typed (the
defaul t) .

regular-expression or regexp
Interprets the search string as a regular
express ion (A S now behaves as ESC /). Reverse I
searching is also available.

character
Searches for the single character typed, (end
wi th an ESC) unless that character is one
of the following, which are interpreted
specially:

"'A

AG

"'J

invokes the ITS string search request,
or reverse ITS string search request
(AR). (See ITS-string-search for more
details.)

aborts the search

finds next/beginning of a line, or
previous/end of line (AR).

17-51 CH27-00D

I

2/83

ITS-string

finds next/beginning of a line, or
previous/end of line (AR).

reads another character and searches
fo~ it regardless of its value. You
should use AQ when searching for control
characters.

reverses the direction of the search
and reads another character (or searches
again for the default string if AR is
the character read). The character read
is then processed as if it were read
by A R, or AS when searching with AR.

searches for the current default string.
The default is displayed in the

the cursor is left
character(s) found.

.......... ,.........." '-"1.,.
,;,o;;;;a.a. \..011 ,;,U\..O\..OO;;;;O;;;;U';',

after/before the

displays a description of the allowable
responses (i.e., prints this list).

A AS or AR reads characters and either adds them
to the search string, or performs some action as
specified by the character. All non-control
characters are added to the search string. With
the exception of the control characters listed
below, all the control characters are invalid
and are ignored. The special control characters
recognized by AS and/or AR are:

\111
removes the last character from the search
string. If there are no characters in the
search string, the search aborts.

is the same as \111.

11-52 CH21-00D

"8

"G

AL

Ay

2/83

changes the starting point for searches
requested by AS or ESC. When AS is entered,
searches are made starting from the current
cursor position~ A AB starts searches from
the beginning of the buffer. A subsequent
"8 starts searches from the current cursor
position, etc.

replaces the search string with the current
default search string, and "rotates" the list
of defaults. The default search string is
the last string used by any other search
request, or by the use of AS (see below) to
this request. A AD permits you to "walk"
through the last sixteen strings you searched
for to find the one you wish to search for
again.

aborts the search.

redisplays the screen.

reads a character and adds it to the search
string regardless of its nature. A AQ is
the only way to place control characters
into the search string.

reverses the direction of the search. Any
characters read after the AR are processed
by the AR request, or by the AS request if
you are using A R.

searches forward/backward for the current
search string. If found, the cursor is placed
after/before the string. In any event, the
current search string is pushed onto the
top of the list of default search strings.

adds the current defaul t search string to
the search string typed so far. Thus,
"SAy"yAS searches forward for two successive
occurrences of the default search string and
ARAyAY"R searches backward.

17-53 CH27-00D

I

2/83

ESC
searches forward/backward for the current
search string and then exits the AS/AR
request. If the previous character typed
to AS was AS, ESC only exits and does not
search. The search done by ESC is identical
to that done by a AS.

displays a description of the allowable
responses (i.e., prints this list).

incremental
Searches by character forward/backward (AS or AR)
for a string character as you type the string.
The string accumulates in the minibuffer. That
is to say, the cursor moves in the main window
finding more and more accurate matches for the
string you are typing as you specify further
characters of it. The general idea is to find
the string you are looking for before you finish
typing it, at which point you type ESC. The
cursor is left after/before the string found in
the buffer. It is recommended only for high speed
lines: try it in order to get the general idea.
The following characters have special meaning when
typing the search string to incremental-search;
all normal "printing" characters are searched for:

AS

ESC

AG

for AS, finds the next match for the current
search string. If the current search string
is empty, retrieves the defaul t search string
set by the last search command.

for AR, reverses the direction of search,
entering incremental-search. The first
occurrence of the search string is found
going forward in the buffer.

ends the incremental search to allow other
requests to be typed. It is very important
to remember to type ESC.

aborts the incremental search, and returns
place from which

17-54 CH27-00D

2/83

/I or \177

AQ

removes the last character from the search
string, and moves the cursor to the place
it was before you typed that character.

redisplays

quotes the next character, i.e., puts it
into the search string literally.

for AS reverses direction of searching. This
enters reverse-incremental-search, searching
backward for the first occurrence of the
current search string (which is always at
the current point in the buffer).

for A R, repeats the search, going backward,
for the current search string, i.e., finds
the next occurrence of it. If the current
search string is empty, retrieves the defaul t
search string.

displays a description of the allowable I
responses (i.e., prints this list).

If an attempt is made to add a character to the
search string which produces a search string that
cannot be found, Emacs rings the terminal bell
and removes the character from the minibuffer,
leaving the cursor in place. If this occurs during
a macro execution, however, a normal Emacs AG is
done, aborting macro execution.

All searches prompt, telling the type of search that
has been invoked.

17-55 CH27-00D

APPENDIX A

THE MULTICS EMACS COMMAND

SYNTAX AS A COMMAND:

emacs {-control_args} {paths}

FUNCTION: Enters the Emacs text editor, which has a large repertoire
of requests for editing and formatting text and programs. Emacs
is a display-oriented editor designed for use on CRT terminals.
Several modes of operation for special applications (e.g., RMAIL,
PL/I, FORTRAN) are provided; the default mode entered is
Fundamental major mode, whose requests are listed below.

ARGUMENTS:

paths
are pathname(s) of segments to be read in. Each is put into
its own appropriately named buffer (a find-file operation is
done on each path).

CONTROL ARGUMENTS:

-terminal type STR, -ttp STR
specifIes your terminal type to Emacs, where STR is any recognized
editor terminal type or. the pathname of a control segment to
be loaded. The terminal type is set permanently; changing the
Multics terminal type during a login session does not affect
the type "remembered" by Emacs. If STR is not a recognized
type, Emacs queries you after entry, providing a list of recognized If
types.

8/82 A-1 CH27-00C

-reset
specifies that Emacs disregard the terminal type set by the
-ttp control argument and set it in accord with the Mu1tics

* terminal type instead.

-query
causes Emacs to query the user for a terminal type wi thout
checking the Mu1tics terminal type first. The query response * can be any recognized editor terminal type.

-line length N, -11 N
overrides the terminal controller default for line length, and * sets it to the number of characters specified by N.

-page length N, -p1 N
overrides the terminal controller default for page length, and * sets it to the number of lines specified by N.

-line speed N
indicates lines peed to obtain proper padding (for ARPANet users) , * where N is the output line baud rate in bits/second.

-no startup, -ns * prevents use of the user's startup (start_up.emacs).

-macros path, -mc path
loads the segment, specified by path, as Lisp, so that features
therein are available.

-apply function name arg1 arg£ ••• argi, -ap function name argl
arg2 ••• argi - -
evaluates l' function name 'arg1 'arg2 ••• ' argi), where the args
are arguments to the named Lisp function (e. g. -; an Emacs request) •
This is valuable for constructing abbrevs. This control argument
must be the last argument~

NOTES: None of the terminal type control arguments (-ttp, -reset,
I -query, -line speed, -page length, -line length) is generally * necessary; they are only used for solving various communications

problems.

Argument evaluation order, in relation to pathnames, macro
pathnames, and -apply arguments, is:

8/82

1. Evaluate pathnames and macro pathnames in the order given
in the command line.

20 Evaluate the -apply arguments~

A-2 CH27-00C

ALPHABETIZED LIST OF FUNDAMENTAL MODE REQUESTS

The following is a list of Emacs Fundamental mode requests,
alphabetized by the last character. Everything preceding the
last character of each request is arranged in this suborder,
under that last character: A, ESC, ESC A, AX, AX A, AZ, AZA.
Extended requests are listed separately at the end.

II
ESC II
AXIl

CR
ESC CR
AXCR

ESC
ESC ESC
AXESC

\
A\

ESC \

\177
ESC \177
AX \ 177

AX (
AX)

ESC
AX;
AZ;

AX:

ESC %

8/82

rubout-char
rubout-word
kill-backward-sentence

kill-to-beginning-of-line
set-or-pop-the-mark
set-named-mark

new-line
cr.et-and-indent-relative
eval-multics-command-line

escape
eval-lisp-line
escape-dont-exit-minibuf

escape-char
undo-prefix
delete-white-sides

rubout-char
rubout-word
kill-backward-sentence

begin-macro-collection
end-macro-collection

show-last-or-current-macro

set-fill-prefix

indent-f~r-comment

set-comment-column
kill-comment

linecounter

query-replace

help-on-tap
underline-word
underline-region
remove-underlining-from-word

A-3 CH27-00C

I

I

ESC / regexp-search-command

ESC < go-to-beginning-of-buffer
ESC > go-to-end-of-buffer

ESC ? describe-key

ESC [beginning-of-paragraph
ESC] end-of-paragraph

ESC A delete-line-indentation

ESC ... unmodify-buffer

AX0 remove-window
"'X 1 expand-window-to-whole-screen
"'X2 create-new-window-and-go-there
"'X3 create-new-window-and-stay-there
"'X4 select-another-window

"'1\ go-to-beginning-of-line n

ESC A backward-sentence

AB backward-char
ESC B backword-word
ESC AB balance-parens-backward
"'XB select-buffer
"'X"'B list-buffers
"'Z"'B edit-buffers

"'c re-execute-command
ESC C capitalize-initial-word
"'x"'c quit-the-editor (quit)

"'D delete-char
ESC D delete-word
AXD edit-dir

"'E go-to-end-of-line
ESC E forward-sentence
"'XE execute-last-editor-macro
"'XAE comout-command

"'F forward-char
ESC F forward-word
ESC AF balance-parens-forward
"'XF set-fill-column
"'X"'F find-file

I "'-- object-mode-find-file z.r-
..... Z F get-filename

8/82 A-4 CH27-00C

AG command-quit
ESC G go-to-line-number
ESC AG ignore-prefix
AXG get-variable
AXAG ignore prefix
AZG go-to-named-mark
AZAG ignore-prefix

ESC H mark-paragraph
AXH mark-whole-buffer

ESC I tab-to-previous-columns
ESC AI indent-to-fill-prefix
AXI insert-file
AXAI indent-rigidly

AJ noop

AK kill-lines
ESC K kill-to-end-of-sentence
AXK kill-buffer

AL redisplay-command
ESC L lower-case-word
.... XAL lower-case-region
AZAL redisplay-this-line I
ESC M skip-over-indentation
AXM send-mail

AN next-line-command
ESC N down-comment-line

AO open-space
ESC AO split-line
AXO select-another-window
""XAO delete-blank-lines

Ap prev-line-command
ESC P prev-comment-line

8/82 A-5 CH27-00C

"Q
ESC Q
"XQ

"R
ESC R
"XR
"X"R

"s
t:"<:.'f"' <:.'
1;. oJ \.I oJ

"XS
"X"S

"T , ESC T
"X"T

"U
ESC U
"X "U

" ... v
ESC V
ESC "V
"XV
"Z"V

"w
ESC W
ESC "w
"xw
"X"W
"ZAW

ESC X
"XX
"X"X

"y
ESC Y
ESC "y

"ZAZ

1 /82

quote-char
runoff-fill-paragraph
macro-query

reverse-string-search
move-to-screen-edge
rmail
read-file

string-search
center-line
global-print-command
save-saMe-file

twiddle-chars
twiddle-words
toggle-redisplay

multiplier
upper-case-word
upper-ease-region

next-screen
prev-screen
page-other-window
view-lines
scroll-current-window

wipe-region
copy-region
merge-last-kills-with-next
multi-word-search
write-file
edit-windows

extended-command
put-variable
exchange-point-and-mark

yank
wipe-this-and-yank-previous
yank-minibuf

signalquit

A-6 CH27-00B

Extended Requests

ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X·
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X

. ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X
ESC X

8/82

accept-messages
accept-messages-path <address>
aIm-mode
apropos <string>
describe <extended-request>
edit-macros
electric-aIm-mode
electric-pI1-mode
filloff
filIon
fortran-mode
fundamental-mode
Ide bug
lisp-mode
list-named-marks
loadfile <path>
loadlib <library>
lvars
make-waIl-chart
opt <option>
option <option>
overwrite-mode
overwrite-mode-off
pl1-mode
replace
reset-minibuffer-size <size>
reset-screen-size <size>
runoff-fill-region
save-macro
set-comment-prefix "string"
set-compile-options "option string"
set-compiler <compiler>
set-key <keyname> <command-name>
set-mini buffer-size <size>
set-permanent-key <keyname> <command-name>
set-screen-size <size>
set-search-mode <search-mode>
setab <abbrev1> <expansion1> <abbrevn> <expansion>
show-macro <macro-name> -
speed type
speedtypeoff

A-7 CH27-00C

I

APPENDIX B

EMACS MAIL

The Emacs mail system provides a facility for reading,
sending, and responding to Multics mail within Emacs, utilizing
the standard Emacs features and the interfaces of the Multics
mail system. There are two basic functions, sending mail and
reading mail.

SENDING MAIL

"XM

The Emacs request for sending mail is:

"XM, send-mail

Issuing this request puts you in MAIL mode and prompts for a
"Subject," which should be supplied and terminated by a carriage
return. This subject is incorporated into the buffer name, so it
should be short. A buffer is formatted with the mail in it,
header prefabricated. The buffer is placed in an available
window, as with ~X~E (comout-command). Fill mode is turned on
with a fill column of 72. The buffer is now in MAI1 mode, which
defines the following requests:

"XA mail-append
Goes to the end of the body of the mail. Use this to
enter the text after you have set the destination, or
to go back to the text after editing some header
field.

"XT mail-to
Goes to the end of the "To:" line, to add a
recipient. You are left here when the MAIL buffer is
entered, to enter the first recipient. Then use A XA
to continue. Separate recipients (like all header
fields) with commas, e.g.,

To: Smith.Sales, Consultant.c

B-1 CH27-00

I

AXF mail-from
Goes to the end of the "From:" line, to edit it or
add more sender's names.

AXJ mail-subject

12/83

Goes to the end of the "Subject:" line, to edit it.

AXC mail-cc
Goes to the end of the "Cc:" (carbon copy recipients)
line, making ,one if there is none, so that you can
type in the destination of a carbon copy recipient.

AXY mail-reply-to

.... X S

Generates a "Reply-To" field, if none exists, and goes
to it. The destination put here is used for replies
if a recipient of your mail uses RMAIL mode (or another
mail system) to reply automatically to your message.

request-acknowledgment
Requests an acknowledgment when sending mail .

send-the-mail
Sends the buffer to the recipients specified in "(.ne
header. A message appears as a local display to confirm
that the mail is sent (2 linefeeds to restore display).

ESC "'F forward-mail-field
Moves forward one field (recipient, cc recipient, etc.)
on this (header) line. Circles around at end.

ESC AB backward-mail-field
Moves backward one field (recipient, cc recipient,
etc.) on this (header) line. Circles around at end.

ESC AD delete-mail-field
Deletes, including necessary commas, the single header
item (recipient, etc.) that the cursor is on.

AXL rmail-Iogger-append
Logs the message into a file, placing it at the end,
separated by a formfeed. Prompts for the pathname of
the log file wi th a numeric argument, or the first
time it is used. Otherwise, uses the same file last
used by AXL or "'XP.

AXP rmail-logger-prepeod
Same as AXL, but puts message at the front of the
file.

B-2 CH27-00E

The Emacs send-mail request recogni zes the following forms of
mail addresses. In the syntax of messages, braces ({}) must be
cod ed ass pe c i f i.e d; bra c k e t s ([]) are use d to in d i cat e 0 pt ion a 1
information and must not be entered as part of the request.

12/83

1 • Person id
Multics Person id only.. This form is possible only if
the Person id Is an· entry in the mail table.

2. Person id at SYSTEM [address-route]

3.

or
Person id@SYSTEM [address-route]
Identifies an address on another computer system.
"Person id" is the user(s) to receive the message and
is not Interpreted by the local system, and "SYSTEM" is
the name of the foreign system where the address is
located. If [address-route] is given, the foreign system
name does not have to be known to the local system; if
not supplied, SYSTEM is the primary name of the foreign
system as specified in the local system's network
information table (NIT). This format address is valid
only for systems connected to the ARPA network.

Person id.Project id
Specifies either a user's default
(>udd> Proj ect id> Per son id .mbx) or a user's
(>udd>Project=id>Person=id>Person_id.sv.mbx).

mailbox
logbox

4: {forum PATH}
Identifi.es a Forum meeting by pathname, where "forum"
is a fixed field and "PATH" is a variable field that
specifies the absolute pathname of the meeting, excluding
the "control" suffix.

5. {list PATH}
Identifies a mailing list, where "list" is a fixed field
and "PATH" is a variable field that specifies the absolute
pathname of the mailing list segment, excluding the "mls"
suffix.

6. {logbox}
Is specified only in the syntax of new messages and
identifies the user!s logbox
(>udd>Project id>Person id>Person id.sv.mbx). When the
message is delivered, the syntax of this address is
converted to the Person id. Project id format described
above. --

1 . {mbx PATH}
Identifies an arbitrary mailbox by pathname. "PATH" is
the absolute pathname of the mailbox excluding the "mbx"
suffix.

B-3 CH21-00E

I 8. {save PATH}
Appears only in the syntax of new messages and identifies
a savebox. "PATH" is the absolute pathname of the savebox
excluding the "sv.mbx" suffix.

Parenthetical comments in destinations are ignored, thus:

Muhammad (I am the Greatest) Ali at (the) WBA

gets sent to Muhammad Ali at site WBA. Quote processing is done,
and a field between angle brackets «» makes all outside it, in
a given address, a comment.

Net mail sending is done via the Network Mailer Daemon; net

I connect access is NOT required. The Mailer Daemon does not send
an acknowledgment message. Your name is given as:

I

I

or,

From: Smi th

if this site 15 on .L 1- _ "n n" "11:::- rr •
~ U t:: t1 n r 11. 1" 1:. .1 •

From: Smith at MULTIX

If RMAIL knows your real name, your name is given as:

From: Sarah M. Smith <Smith at MULTIX>

I The mail system looks in the default value segment for
Person id.full name. or full name. to find your real name;
otherwise, the-"From:" field is set to your mail table entry.

READING MAIL

The Emacs request for reading mail is:

AXR, rmail

12/83 B-4 CH27-00E

By default, mail is read from your personal default mailbox. With
a positive numeric argument (.e.g, AU), AXR prompts for the "mailbox
name." This may take any of the forms:

Person id.Project id
<pathname) -
Person id

{logbox}
{save PATH}
{mbx PATH}

(with or without ".mbx" suffix)
(if Person id is an entry in
the system-mail table)

If you have no mail in the selected mailbox, a message is issued
to this effect. Otherwise, the first message in the mail box is
displayed in a buffer, in RMAIL mode. This buffer is read-only.
Now, when you are perusing the mailbox and then use AXB or AZAB
to go to another buffer, a subsequent AXR or AUAXR returns to the
mailbox currently active without giving a warning or notification.
To change mailboxes, you must issue a q request while in RMAIL
mode to end reading of one mailbox. With the next AXR or AUAXR,
you access another mailbox. The following extra requests (all
standard requests work here, too) apply in RMAIL mode(these are
mostly not control characters, but regular characters). Numeric
argumenrs-for these requests do not require that ESC precede them,
e.g., 3g goes to the third message.

12/83

n rmail-go-forward
Moves on to the nex t message.
argument.

Accepts a numeric

p rmail-go-backward
Moves back to the previous message. Accepts a numeric
argument.

1 rmail-go-last-msg
Moves to the last message in your mailbox.

g rmail-go-command
Moves to the message number specified by the numeric
argument, e.g., 3g to go to message #3, or 19 to go
to the first message.

j rmail-go-command
Same as g.

d rmail-queue-delete-forward
Deletes (i.e., queues for deletion when rmail isexited)
this message, moves on to next undeleted message.

D rmail-queue-delete-backward
Same as d, but moves backward.

B-5 CH27-00E

I

I

u rmail-undelete

c

q

s

"'XL

"'XP

r

m

"'X"'Q

12/83

Brings back the last (stacked) deleted message.

rmail-copy
Copies the message to some other mailbox. Prompts
for a save mailbox name. It takes a pathname.

rmail-quit
Qui ts out of rmail, returning to buffer from which
rmail was invoked, deleting all messages marked for
deletion.

rmail-summarize
Summarizes (in a local display) all undeleted messages;
may take a little time for full mailboxes.

rmail-logger-append
Logs the message into an ASCII file, placing it at
the end of the file. See the description above under
the mail-sending requests.

rmail-logger-prepend
Same as "'XL, but "prepends" to the front. See the
description above under mail-sending requests.

rmail-reply
Formats a MAIL mode buffer to reply to the current
message, copying the subject (if any), or making one
up, and setting up as the destination the sender's
"reply-to" address. Responses can be sent to other
r e c i pie n t s a s we 11 i fan urn e ric a r gum en t (e • g ., 1 r)
is supplied. This request is extremely effective in
two-window mode, in which case your response is put
in one window, the letter you are replying to in the
other, and ESC "'V (page-other-window) can be used to
"page" the letter as you respond. ESC "'y can be used
while preparing the reply to "yank" the original piece
of mail.

send-mail-from-rmail
Sends mail that is not necessarily a reply (see r).
Identical to "'XM, send-mail, but also allows use of
"'X"'Q, "'X"'S, and ESC "'y (described below).

rmail-quit
Quits out of rmail, returning to the buffer from which
rmail was invoked, deleting all messages marked for
..J~' "'~.; ,..."'" UC.L'l::u.LVU.

B-6 CH27-00E

Once you have invoked the r request, you can use the MAIL
mode requests as well as the standard Emacs requests. In addition,
the following three requests are available:

AXAQ return-to-rmail
Returns to RMAIL and its window without sending the message.

AXAS send-from-rmail
Sends the reply and return to RMAIL and its window.

ESC Ay rmail-yank-mail
Yanks and indents the text and header of the original mail being
responded to. Defaul t indentation is 4; can be reset by ESC X
opt rmail-original-yank-indent.

It is important to qui t (q) out of RMAIL before leaving
Emacs; Messages do not actually get deleted unless you quit out
of RMAIL (or, equivalently, answer "yes" to "All messages deleted.
Quit RMAIL?").

If the rmail-mode-hook Lisp variable is bound by the user,
the atomic symbol to which it is bound is called as a function
wi th no arguments before the first message is displayed. This
can be used to set rmail-mode key binding.

12/83 B-7 CH27-00E

APPENDIX C

PROGRAMMING LANGUAGE MODES

Emacs, in addition to the Fundamental major mode for general
editing tasks, provides four programming language major modes.
Modes are sets of key bindings and variable settings; different
modes allow more elastic environments for different editing
problems. The Lisp, FORTRAN, PL/I, and ALM modes facilitate both
programming in, and editing programs written in those languages.

Each of these major modes is entered via an appropriate
extended request (see the applicable paragraphs below) or via the
AXA F request. Also, the following Fundamental mode requests that
deal with comments have certain language-specific applications.

Fundamental Mode Requests for Programming Use

Most of the Fundamental mode requests listed below deal with
comments. Programming languages generally each have a preferred
column in which the programmer's comments begin, and this is
called the comment column. Since the ,comments must be
distinguishable from the program, they are delimited in some way,
either by being begun and ended by certain character strings, or
by being restricted to certain columns. The comment prefix is
the comment's beginning delimiter. Several of the requests below
use the comment prefix to recognize a comment.

These comment requests are also useful in Fundamental mode
for preparing two-column text.

The AX; request, set-comment-column, sets the comment column
in the current buffer at the horizontal position where the cursor
is currently located. With a positive numeric argument, sets the
comment column at the column number specified. See ESC; below
for additional information.

C-1 CH27-00

The AZ; request, kill-comment, removes the comment and white
space preceding it from the current line. The deleted text is
saved on the kill ring, accessible to Y. The text is saved in
such a way that following AKs and other rorward-killing requests
merge properly with the deleted text.

The ESC request, indent-for-comment, searches for the
current line's comment. If one exists, it indents it to the
comment column in this buffer (set by AX;). If none exists, this
request starts one at the ·comment column on this line. It uses
the comment prefix to search for an old one or start a new one
(see the extended request, ESC X set-comment-prefix).

ESC N

The ESC N request, down-comment-line, properly indents the
comment on the next line, or puts a comment on the next line if
none is there already. This is effectively the same as the
sequence AN ESC; (see ESC ;).

ESC P

The ESC P request, prev-comment-line, properly indents the
comment on the previous line, or puts one there if none is there
already. This is effectively the same as the sequence A p ESC ;
(see ESC ;).

The ESC AB request, balance-parens-backward, skips backward
over one set of balanced parentheses. It searches backward until
a set of parentheses is found. However, it does not handle
quoting or any programming language conventions. This cannot be
used in Lisp mode, which has its own ESC hB function.

The ESC AF request, balance-parens-forward, skips forward
over one set of balanced parentheses. It searches forward until
a set of parentheses is found. However, it does not handle
quot.ing, or any other programming language conventions. This
cannot be used in Lisp mode, which has its own more powerful ESC
AF function.

C-2 CH27-00

ESC X set-comment-prefix

The set-comment-prefix extended request sets the comment
prefix in this buffer. The comment prefix is usually set
automatically by entering a major mode. However, it can be set
by giving the comment prefix you want as an argument to this
request. The argument must be in ·quotes, and should follow the
request. The ESC;, ESC N, and ESC P requests all use the
comment prefix to find and start comments.

ESC X set-compile-options

The set-compile-options extended request sets non-default
compilation options to be ·given to the appropriate compiler in
language modes that support ESC "c for "compile buffer" (e.g.,
PL/I, FORTRAN).

ESC X set-compiler

The set-compiler extended request sets the name of the
compiler to be used by the compile buffer request (usually ESC
A C) in those language modes that compile buffers this way (e.g.,
PL/I, FORTRAN). The single argument to ESC X set-compiler is the
compiler name. It must follow the request and be quoted.

ESC ESC

The ESC ESC request j eval-lisp-line j prompts for a string
for Lisp to evaluate, parenthesizes it, evaluates it in Lisp
(with ibase = 8), and displays the Lisp value in the minibuffer
(base = 8, *nopoint nil). To get a variable value, type ESC ESC
progn <variable name> CR.

ESC X ldebug

The ldebug extended request enters a "Lisp Top Level" buffer
in Lisp Debug mode. Forms typed into this buffer are evaluated
and the value is displayed by placing it in this buffer. When
ESC X ldebug has been used, all Lisp errors in Emacs trap into
this buffer. See the Extension Writers Guide for more
information.

ESC X fundamental-mode

The fundamental-mode extended request enters the mode that
all buffers start out in. This request allows you to exit any
other major mode that you may have entered.

C-3 CH27-00

The following paragraphs describe the programming language.
major modes and their special key bindings and variable settings.

LISP MODE

Lisp mode facilitates the construction and editing of Lisp
programs in Multics Emacs. Requests for positioning over Lisp
expressions, and indenting. and commenting Lisp code are
available.

A facility within Emacs for debugging programs is available.
It is called LDEBUG, and is described in the Extension Writers'
Guide.

Lisp major mode is entered by issuing the ESC X lisp-mode
extended request, or by responding to "X"'F (find-file) with any
file with a last component name of ".lisp" when the
find-file-set-modes option is selected. When in Lisp major mode,
the comment column is set to 50 (column 51), and the comment
prefix to n;". The Fundamental mode comment requests, ESC P, ESC
N, and ESC ; act according to these settings.

The following is the current request repertoire of Lisp
mode:

TAB (hI) indent-to-lisp

ESC Q

ESC AA

ESC AB

On a blank or empty line, creates enough leading white
space so that the first S-expression typed on this line
lines up properly according to conventional Lisp
indenting rules. Normally, this means line it up with
the start of the previous S-expression, but in other
circumstances other actions may be taken. On a
non-blank line, readjusts the ~lneis indentation to
effect conventional Lisp indenting.

lisp-indent-function
Puts point and mark around the
(see ESC AA). For all lines
re-indents them according
indentation.

begin-defun

current Lisp function
other than the first,

to conventional Lisp

Moves point to the beginning of the current "function".
The beginning of a function is defined as right before
the last open parenthesis at the left margin.

backward-sexp
Moves backward over exactly one balanced S-expression.
All comments, quoted strings, and slashified characters
are considered properly. Aborts (and beeps) if
unbalanced. Avoid invoking this from inside comments

C-4 CH27-00

ESC ... c

ESC "D

ESC "E

7 /81

or quoted strings. Skips trailing open parentheses •.
Accepts numeric arguments for repetition count.

compile-function
Compiles and loads the current Lisp function via the
Multics Lisp Compiler (lcp). Does this by loading lcp
into the Emacs environment (the first time it is used
in an Emacs invocation), utilizing it, and loadfiling
the result. ESC "C. automatically incorporates/compiles
the correct version of e-macros.incl.lisp into your
environment (the first time) as well. Puts the name of
the function compiled on the kill ring, so it can be
yanked into an ESC ESC minibuffer for trial. Displays
compiler diagnostics as local display. Be careful to
write out changes you make and debug via this facility;
this is a common trap: you see what you have in front
of you "worki ng", and you think you are done. Forms
compiled via ESC "c are treated as though they had been
encountered at top level by the compiler; macro
definitions, declarations, and side effects from
compilation to compilation are all handled correctly.
De fini tions, macro d efini t ions, and reader macro
definitions other than those in e-macros.incl.lisp must
be ESC "Ced explicitly. Information produced during any
ESC "c remains for all future ESC "Cs in an Emacs
invocation; the regnant Emacs environment is used as
both the compile and load time environments. Thus, macro
and other definitions ESC "Zed or ESC ESCed are seen by
the compiler. See the Exension Writers' Guide for more
info rm at ion.

down - lis t -1 ev e I
Goes down one level of list structure. Basically the
same as looking forward for an open parenthesis, but it
detects and handles Lisp comments, quotes, etc.

end-de fun
Goes to right after the last close parentheses of the
current function. See begin-defun above for a definition
of the current function. Useful to see if function
balances parentheses correctly.

C-5

ESC AF forward-sexp
Skips forward over exactly one S-expression, positioning
to a fter the appropr iate c lose parenthesis, or before
the appropriate white space. Accepts numeric arguments
for repetition count. Skips leading close parentheses.
Avoid invoking inside quoted strings or comments.

ESC AH mark-defun
Puts point and mark around the current function. See
begin-defun for a definition of the current function.

ESC AK kill-sexp
Kills one (or many) S-expressions forward, i.e., from
point to the point after that many complete S-expressions.
Argument is the number of S-expressions. Merges kills
forward.

ESC CR (ESC AM) lisp-cret-and-indent
Identical to a CR (newline) followed by indent-to-lisp;
this is the normal way to terminate an input line in
Lisp mode. It puts you on a new I ine and indents correctly
for the next S-expression. Done in t he mid dIe of a
line!! it breaks the line at that point, correctly indenting
the S-expression which was to the right of point on the
new line.

ESC AN forward-list
Moves to right a fter the end of current Lisp list.
Basically, the same as searching for a close parenthesis,
but detects and handles Lisp comments, quoting, etc.

ESC Ap backward-list
Moves to right before the beginning of the current Lisp
list. Basically the same as searching backward for an
open parenthesis, but detects and handles Lisp comments,
quoting, etc.

ESC AQ lisp-indent-region

1/81

Re-indents all lines (other than the first) in the
point-to-mark region for conventional Lisp indentation.

C-6 CH27-00A

ESC "'R

ESC "'T

ESC 'V

ESC "'z

ESC (

ESC)

ESC &

7/81

move-defun-to-screen-top
Moves the current function (see begin-defun above for
definition) to the top of the current screen, leaving
point at function beginning.

mark-sexp
Puts point and mark around the current S-express1on.
If point is currently before the close parenthesis of a
list, sets point and mark around that 1 1st. If point
is before white space, marks the next S-express1on.

view-defun
Prints out current function: puts point and mark around
the current Lisp function (see begin-defun above for a
definition), and displays it (prints it out, on printing
terminals) as a local display.

eval-top-level-form
Evaluates the current top level form and displays its
value in the minibuffer. A top level form has the same
definition as a function. (See begin-defun above for
the definition). Loads the file "e-macros.incl.lisp"
to ensure the presence of the Emacs macros (see the
Extension Writers Guide). This facility is intended
for use in debugging extensions, as is compile-function,
but runs your code interpreted rather than compiled to
aid in debugging. Be careful to write out changes you
make and debug via this facility.

lisp-one-less-paren I
Removes one close parenthesis from the end of the last
S-expression prior to the current line, and reindents
the current line accordingly. Accepts numeric arguments
for repetition count. Use this when the line seems
indented (automatically) too few levels, probably due
to an extra close parenthesis on the previous line.

lisp-one-more-paren
Adds one close parenthesis to the end of the last
S-expression prior to the current line, and reindents
the current line accordingly. Accepts numeric arguments
for repetition count. Use this when the line seems
indented (a~tomatically) too many levels, probably due
to a missing close parenthesis on the previous line.

Sets an LDEBUG breakpoint a~ ~ne cursor (see the Extension
Wr'iters' Guide for more information).

CH27-00A

ESC X

The following extended request is available in Lisp mode:

eval-buffer
Evaluates the contents of· the buffer and displays the
value of the last form in the buffer via the minibuffer.
Loads the file "e-macros.incl.lisp" to ensure the presence
of the Emacs macros. This request is used to "load" a
buffer of Lisp code into the Emacs environment for
debugging. The eval-top-Ievel-form function (ESC AZ)
can then be used to "reload" any functions whose definition
you change while debugging. Be careful to write out
changes you make and debug via these facilities.

FORTRAN Mode

Emacs FORTRAN mode aids in the construction and debugging of
FORTRAN programs. Requests are provided for producing comment
and continuation cards and for other commonly used formatting
operations.

FORTRAN major mode is entered by issuing the ESC X fortran-mode
extended request. This mode can also be entered by responding to
AXAF (find-file) with any file with a last component name of
".fortran" when the find-file-set-modes option is selected.

The current list of special requests in Fortran mode is:

Carriage return (CR) new-line
Returns the cursor to column 1. This also inserts comment"
prefixes ("c ") in the appropriate places. If
desired, the cursor can be moved back by hand to delete
spaces or comment prefixes.

AI fortran-indent-statement
Causes a tab done in column 1 to tab to column 1. Subsequent
tabs move to the usual places. The sequence for successi ve
tabs is 1,10,20,30 ...

ESC CR (ESC AM) fortran-continue

1/82

End s the curren t line when the nex t I ine is a continuation.
A newline is done, unless the current line is blank or
empty, and the prefix" &" is inserted, leaving
the cursor in column 9. This is the continuation for
standard FORTRAN rather than for Multics.

C-8 CH21-00B

ESC

ESC

ESC "c

1/82

fortran-comment-line
Begins a single comment line. A newline is done, unless
the current line is blank or empty , and the prefix
"c " inserted, leaving the cursor in column 1. This
can be used to end a line when the next line is a
comment.

fortran-begin-comment-block
Begins a block of comments. Ends the current line, if
any, and inserts a comment block header line. Any future
lines added are prefixed by the standard comment prefix
ftc "This minor mode is exited by a second "XC.
Notice that "X"C exits the editor. Don't miss

fortran-label
Positions a fortran label. Since a line usually starts
in column 7, this request is provided to correctly posi tion
statement numbers. Type the statement number, then ESC

to place the label in column 1.

compile-buffer
Compiles the buffer. Writes current buffer, if changed,
out to its defaul t pathname (as for "X"S), and then
compiles it. Compiler diagnostics are displayed, in
the other window if in two-window mode. The ex tended
requests ESC X set-compiler and ESC X set-compile-options
can be used to select the compiler and options to be
used.

locate-next-error
Finds the next error; used following a compilation in
two-window mode. It scans the compiler output and the
source buffer in parallel, pointing a simulated cursor
to consecuti ve errors and placing the real cursor on
the line referred to in the error message. This mode
terminates itself when you advance past the last error,
do another compilation, or exit it by keying "XT. Since
this mode locks the buffer used for compilations, you
are strongly advised to exit it when you are finished.

C-9 CH27-00B

fortran-abbrev-expander
Expands abbreviations. The two characters immediately
preceding the cursor when this character is struck are
taken as an abbreviation and expanded. The' may itself
be inserted by quoting it with AQ. These abbreviations
are initially supplied:

in integer su subroutine
di dimension co continue
fu function re return
eq equivalence ex external
au automatic cn common
fo format im implicit

Note that, with the exception of cn for common, all of
these abbreviations are the first two characters of the
word. Other abbreviations may be defined using the
extended request ESC X set-fortran-abbrev. The
abbreviations co (continue) and re (return) are very
special. Since these words almost always have a label
and sit on a line by themselves, these abbreviations do
an ESC: and a newline, so that typing (in column 7);

123co'

expands to:

123 continue

leaving you on the next line. The abbrev fo, for format,
does labels, but not newlines. Try them.

In addition, several extended requests are provided to set
various parameters. They are:

For comment blocks:

ESC X fortran-set-begin-comment CR
Sets the begin line.

ESC X fortran-set-end-comment CR
Sets the end line.

Both of these requests prompt for the line in the minibuffer.
The line supplied is inserted exactly as given, and must therefore
include the "e" at the beglnning~ Default values for these lines
are:

"c ==".
These are set independently for buffer.

8/82 C-10 CH27-00C

For compilations:

ESC X set-compiler compiler-name CR
Sets the compiler to be used. Default is "ft"~

ESC X set-compile-options options eR
Sets compile options. These are given as on the compiler
command. The default is "-tb".

These are set by buffer.

And, for abbreviations:

ESC X set-fortran-abbrev abbrev expansion label eol
can be used to define new abbreviations. In the above,
abbrev must be a two character abbreviation that will
be replaced with expansion. Arguments must be enclosed
in quotes if they contain special characters, including
spaces. The optional arguments label and eol cause this
abbrev to handle labels and newlines, respectively, just
like co and re. The label option does not require a
label, but processes it if it is present. Abbreviations
are defined globally and apply to all buffers in FORTRAN
mode. For example:

ESC X set-fortran-abbrev as "common /xyz/ y(100)" eol

defines an abbrev, as, that expands to:

common /xyz/ y(100)

and does a newline, but does not handle labels.

Currently, the recommended debugging method is to do a AZAZ and
run your program one level up. Return to Emacs with a
program_interrupt command.

1/82 C-11 CH27-00B

PL/I MODE

PL/I mode provides an automatic assistance in PL/I progam
formatting in the real-time editing context of Multics Emacs.
The basic facility provided at this time is that of lining up
untyped PL/I statements, although on a one-for-one basis it lines
up typed ones, too.

PL/I major mode is entered by issuing the ESC X p11-mode
extended request, or by responding to AXAF (find-file) with any
file wi th a last component name of" .pI1" when the find-file-set-modes
option is selected. It takes a couple of seconds to "load itself."
When in PL/I mode, which shows up on the mode line as "PL/I"
major mode, the following non-default key bindings apply:

TAB (AI) indent-pI1-statement
Indents this PL/I statement properly (if not yet typed
in, tab out to it; otherwise, readjusts its indentation
properly).

ESC CR (ESC AM) pI1-cret-and-indent
Like carriage return and TAB.

ESC AC compile-buffer
Compiles the buffer. Writes current buffer, if changed,
out to its defaul t pathname (as for AX AS), and then
compiles it. Compiler diagnostics are displayed, in
the other window if in two-window mode. The extended
requests ESC X set-compiler and ESC X set-compile-options
can be used to select the compiler and options to be
used.

ESC AD pl1dcl
Tries to find a declaration for the entry point whose
name is to the left of the cursor, and inserts it. A
library of such entry points exists. If the declaration
is not in the library, ESC AD attempts to figure it out
from inbound parameter descriptors in an object segment
responding to that name. Can also declare error table
entries.

ESC AH (ESC Backspace) roll-back-pI1-indentation

ESC TAB

1/82

Deletes 5 columns of indentation. Intended for undenting
ends.

(ESC AI) pI1-tab-one-more-Ievel
Adds 5 columns of indentation. Intended for asserting
your own style.

C-12 CH21-00B

AXAD locate-next-error
Find s nex terror. This request 1s used following a
compilation in two-window mode. It scans the compiler
output and the source buffer in parallel p pointing a
simulated cursor to consecutive errors and placing the
real cursor on the line referred to in the error message.
This mode terminates itself when you advance past the
last error, do another compilation, or exit it by keying
AXT. Since this mode locks the buffer used for
compilations, you are strongly advised to exit it when
you are finished.

ESC SPACE p11-skip-to-dcl-column
Moves cursor to pI1-dcl-column (set by ESC X
opt p11-dcl-column; see "PL/I Options" below). If the
statement already extends beyond this column on the current
line, the cursor moves to that column on the next line.
If you are already at the declaration column, the cursor I
goes to the next line for declarations. This request.
is. useful for indenting attributes in declare statements
when ESC AD cannot be used and the pI1-dcl-style option
is set to 2.

ESC AA p11-backward-statement
Moves backward over PL/I statements. Accepts a numeric
argument specifying the number of statements to move
backward.

ESC AE pI1-forward-statement

ESC *

AZD

1/82

Moves forward over PL/I statements. Accepts a numeric
argument specifying the number of statements to move
forward.

pl1-comment-end
Moves to the end of the line (as determined by ESC X
opt pI1-line-Iength) and places a comment suffix (*/)
at the end of a comment line.

pI1-line-between-procs
Generates a dividing line between major blocks of code
in a PL/I program to provide visual separation. The
line extends through the pl1-line-Iength column and is
of the form:

1* * * * * * *1

If the cursor is at the beginning of a dividing line,
AZD inserts a new page as well as a new divider. With
a numeric argument, AZD inserts a divider, a new page,
and a second divider.

C-13 CH21-00B

"'xc p11-comment-box
Starts or ends a comment. When a new comment box is
created, fill mode is entered to facilitate typing of
commen t tex t (to ex it or then reen ter fi 11 mode, use
ESC X filloff and ESC X filIon). The ESC X opt
p11-1ine-length option controls the filling of comment
lines. A subsequent ... xc exits the comment mode and
completes the comment box by placing a comment suffix
(*/) at the ends of all box lines. IfAXC is typed to
begin a comment while the cursor is already wi thin an
existing comment box, new comment lines are inserted
above the line on which the cursor is positioned. Filling
occurs only for the new lines; old lines remain unchanged.

AZC p11-refill-comment-box-region
Fills (fill mode) the comment box lines between, and
including, the lines containing the cursor and the mark.

AZI p11-include-file-comment-start-end
Generates a comment line at the start and end for PL/I
include files. The lines have the form:

1* START OF:
1* END OF:

xxx.incl.pll
xxx.incl.pll

• * • *1
* * • *1

All the standard comment requests (ESC ;, ESC N, ESC P, etc.)
are set for PL/I and observe the comment style in effect (set by
ESC X opt p11-comment-style, described below). ESC N and ESC P
accept a numeric argument specifying the number of lines up or
down the cursor should move before commenting the 1 ine. Word
requests (ESC F, ESC N, ESC P, etc.) in PL/I mode buffers consider
the dollar sign to be part of a word.

PL/I Options

Several options can be set to give you more flexibility in
writing and editing your PL/I programs. They are set by the
ESC X opt request; you simply type ESC X opt, and then the option
name and value (see the ESC X opt request if you need more
information). When in a pIll-mode buffer, setting a PL/I option
chang es its val ue onl yin the current buffer. When not in a
pll-mode buffer, setting a PL/I option changes the value for all
new pll-mode buffers. Setting these options in a start up.emacs
segment sets the defaults for all your pll-mode buffers.-

1/82 C-14 CH27-00B

The PL/I options are:

ESC X opt pl1-comment-column
pl1-comment-column-delta
pl1-comment-style
p11-compile-options
pl1-dcl-column
pl1-dcl-style
p11-first-column
pl1-indentation
pl1-inding-style
p11-line-length

The pl1-comment-column
comments start. The default
beyond this column when one
given, then the placement
pl1-comment-style.

option sets the column in which
is 61. If non-comment text extends

of the line comment requests is
of the comment depends upon the

The pl1-comment-style option controls how comments are
handled when non-comment text extends into the
pl1-comment-column. It can have the following values:

1 Comment is placed on the current line following the
non-comment text.

2 If non-comment text extends beyond pl1-comment-column +
pl1-comment-column-delta (another option), then the
comment is placed on a new line below the current line.
Otherwise, it is placed on the current line.

3 Comment is placed on a new line following the current
line.

The default value for p11-comment-style is 1. The
pl1-comment-column-delta option's default value is 10.

The pl1-compile-option option specifies the default
compilation options used by ESC AC to compile the program. The
default compiler option is the null string.

The pl1-dcl-style option determines the format
declaration. It can have the following values:

o No formatting is performed.

11/86 C-15

of a

CH27-00F

1 Formats like the indent command. It assumes that the
word "dcl" begins in column 1, followed by 2 spaces and
the name. Lines longer than pI1-line-Iength are
folded, being continued from column 11.

2 Formats like the format pl1 command with indattr mode.
It assumes that dcl is- located between columns 1 and
10, and that the name is in column 11. The declaration
begins at the column set by the pI1-dcl-column option.
Lines linger than pI1-line-Iength are folded, being
........ ""+-.;"",,"',-1 .p"""1'Y'I 1-1 ,-1~1 ~,,1,,1'Y'IV'I I t:::
vVlt v..Ll1U.CU .I...L VIU):J..I.. I -uv..l..-vU..I..U.1Ull T ../.

rhe default value for pI1-dcl-style is 1.
option's default value is 41.

The pI1-dcl-column

The pI1-inding-style
indentation, 1 and 2. The
are:

option provides two styles of
general indentation rules followed

Any fragment of
spaces after the

an incomplete statement gets lined up 5
start of that statement. The statement

~.p+-_~ ~ nn ~ DQnThl ~,,+-~ ';"",-1" +-",,-1 t::: +-';I'Y'I"'~ """" 1"cc +-~~V'I +-~c
c:1..LvCI.. c:1 UV VI.. UL:JU..LI~ 5C::vu .1.L1UC::Llvc::U.J v.1.IUC::U Ull>...; ...Le....,...., v11U.ll v11

number of IF's in the DO or BEGIN. In pl1-inding style 2,
the statement after an end gets lined up 5 less than the end
statement; the first statement in a program gets lined up at
column 11 (can be changed by resetting the pI1-first-column
option, whose default is 10). Otherwise, each statement
lines up with the previous one. The pl1-indentation option
sets the indentation increment for successive indentation
levels. Its default value is 5.

In style 1, you get:

if x = 6 then do;
bar = 5;
foo = 6;

end;

In style 1, you are expected to line the end up yourself (use
ESC AH) because it is impossible in realtime to predict that an
untyped statement is going to be an end. You must undent the end
yourself, because the next statement lines up with it. The
default value for p11-inding-style is 1.

1/82 C-16 CH27-00B

In style 2, you get:

if x = 6 then do;
bar = 5;
foo = 4· ,
end;

next = 17 ;

With style 2, Emacs can figure out the next statement after the
end once you have typed it.

The p11-line-length option controls the length of lines
generated by p11 dcl (ESC AD) and several of the other requests
described above. The line length is specified in terms of column
positions, with a default value of 112.

There are no known bugs in the mode's PL/I parsing: it can
parse any valid PL/I statement, except that multi-dimensional label
constants are not supported.

Electric PL/I Mode

A minor mode called "electric PL/I mode" is available, which
can be obtained by ESC X electric-mode CR once in PL/I mode, or
ESC X electric-p11-mode CR. To get it by defaul t as your mode
for PL/I programs, put the statement:

(defprop p11 electric-p11-mode suffix-mode)

in your start up.emacs. Some users have found electric PL/I mode
overly violent, so it remains an option. It connects semicolon
to a function which automatically indents for the next statement
after inserting a semicolon; use AQ; to get a semicolon in without
the "electric" action. Also, this action is suppressed if there
is a next line, and it is not empty. The "electric semicolon"
also moves ends back for you (in inding-style 1), when you type
the ";" of the end statement. (Be careful to quote semicolons
wi th AQ in str ings, or you may have problems.) Electric PL/I
mode also gives "." electric action, i.e., indenting after labels.

, 182 C-17 CH27-00B

ALM MODE

ALM mode provides several variable settings suitable for the
creation and editing of ALM programs.

ALM major mode is entered by issuing the ESC X aIm-mode extended
request, or by responding to AXAF (find-file) with any file with
a last component name of ".alm" when the find-file-set-modes option
is selected.

In ALM mode:

the comment column is set to 41

the comment prefix is set to null

the fill prefix is set to tab (a carriage return automatically
indents to the opcode field of the ALM statement)

In addition, carriage return is treated in such a way that
extra fill prefixes and blank lines are deleted whenever possible.
ALM mode also removes the indentation preceding labels typed before
a colon.

• Electric ALM Mode

• A minor mode called "electric ALM mode" is available, and
• can be obtained by ESC X electric-mode CR once in ALM mode, or
• ESC X electric-aIm-mode CR. To get it by defaul t as your mode
I for ALM programs, put the statement

I (defprop aIm electric-aIm-mode suffix-mode)

I in your start up .emacs. This mode does automatic colons and carriage
I returns. -

1/82 C-18 CH27-00B

APPENDIX D

MACRO EDIT MODE

The Macro Edit major mode is available for a number of
purposes. With it, you can enter a dedicated buffer to:

• display a symbolic file of all named k'eyboard macros
currently defined

• edit the displayed macros

• redefine macros after editing them

• write the macros out to a file, for dprinting, or for
using them in later invocations of emacs.

ENTERING MACRO EDIT MODE

You enter the Macro Edit mode by issuing the ESC X
edit-macros extended request, or by issuing the AXAF request to
read in a file with the .emacro suffix when the
find-file-set-modes option is selected. This puts you in a
buffer displaying, in editable form, all the macros that you have
saved with ESC X save-macro. The display includes PL/I-like
comments (/* comment */)& The comment column in this buffer is
automatically set to 51, and the ESC;, ESC P, and ESC N comment
requests act accordingly. The macro definitions look like this:

macro paragraph-stars on AX9
esc-J AXQ "0 n** ____________ **"

end~macro paragraph-stars

The key setting, e.g., "on "'X9," is optional. If present, it
sets the key permanently, i.e., in all buffers, to that macro.

D-1 CH27-00

EDITING THE MACROS

In Macro Editomode, the following requests are available for
editing the macros {they are designed to parallel Lisp mode):

ESC AA

ESC "c

ESC AE

ESC. AF

ESC "K

ESC AN

ESC "'P

ESC AS

macedit-find-beginning-of-macdef
Moves to the beginning of the current macro
definition.

macedit-backward-term
Moves backward one term in the macro.

macedit-compile-to-lisp
Compiles the macro being pointed at into Lisp (so
that you gOet it permanently incorporated into
Emacs). Many cases are not yet handled by the
macro compiler, so you should not use this request
unless you can verify that the. Lisp code is
correct.

macedit-find-end-of-macdef
Moves to the end of the current macro definition.

macedit-forward-term
Moves forward one term in the current macro
definition.

macedit-mark-whole-macro
Puts point and mark around the current macro
definition.

macedit-kill-term
Kills forward to the end of the current tor next)
term in the current macro definition.

macedit-forward-macdef
Moves forward to the beginning of the next macro
definition.

macedit-backward-macdef
Moves backward to the beginning of the previous
macro definition.

macedit-state-keyboard-macro
Prompts for a key and places the definition of the
keyboard macro on that key in the buffer at the
current pOint.

D-2 CH27-00

REDEFINING MACROS

ESC AZ and ESC X load-these-macros

After you edit a macro, you can redefine it so that it works
according to the new version, rather than the old. You must
issue the ESC AZ request, macedit-take-up-definition, while still
in -Macro Edit mode. It replaces the old definition of the macro
being pointed at with the new definition just edited. If you do
not issue this request (or the one below), the old definition
continues to apply during this Emacs session.

The ESC X load-these-macros extended request has the same
actions and restrictions as ESC AZ; the difference is that it
redefines all the macros in the buffer. So, if you edit more
than one macro, this request is more convenient.

WRITING MACROS OUT TO A FILE

If- you want to use your macros in later Emacs sessions, or
if you want a printed copy of them, you must write the Macro Edit
buffer's contents to a file. The AXAW request does this. If you
write the macros out to a file whose suffix is ".emacro," however,
subsequent AXAFs on that file will automatically read it into
Macro Edit mode, saving you a step.

Using Macros Previously Written to a File

ESC X load-macrofile

When you wri te your macros out to a file, wi th or wi thout
the .emacro suffix, you can reuse the same macros in later Emacs
sessions. They can be automatically defined in the current session
if you issue the ESC X load-macrofile extended request. This
request takes the pathname of the file containing your macro
definitions as an argument; type the pathname after typing the
command name, and end the prompt with a carriage return.

You can load more than one macrofile and still have the
earlier ones effective. Once loaded, these macros can be used in
any buffer by using the command name after ESC X {extended-command}
or by using the assigned key. They also exist in a buffer whose
name is the same as the segment name without the .emacro suffix.

8/82 D-3 CH27-00C

APPENDIX E

USING EMACS ON PRINTING TERMINALS AND GLASS TELETYPES

Emacs was specifically designed for use on intelligent video
terminals, but you can use it on printing terminals and "glass
teletypes." Glass teletypes have screens, but do not have cursor
addressing or the usual display management capabilities e.g., the
TELERAY 3700 and Honeywell Model 7700 Visual Information
Projection system. If you are accustomed to using Emacs, you may
wish to use it on such terminals. Emacs also may have features
and extensions that you wish to use that other editors do not
offer. If possible, however, you should first learn how to use
it on a·video terminal.

The usage of Emacs on a printing or glass teletype terminal
is designed to be as close to video terminal usage as possible;
all Emacs requests and features operate on any type of terminal
(with the exception of specifically video-oriented features such
as multiple-window mode). Thus, once you learn a sizable number
of requests, or have perhaps written some keyboard macros or
extensions, you can use them on any type of terminal.

Printing terminals use the print-head or print-wheel (or
actual cursor of a glass teletype) as a cursor. The single line
of the buffer being edited upon which the point "appears" is
always displayed, and the print-head is moved to the position to
the right of the point, as is the cursor on a video terminal.
Whenever you want to move the cursor to a new line, e.g., with
the AN or Ap requests, Emacs prints that line and repositions the
cursor. If you move many lines at once, with a search, ESC G, or
ESC <, for example, Emacs displays only the line on which the
cursor "stops." If a line longer than the width of the terminal
is to be displayed, all portions of it (i.e., the whole buffer
line) are displayed. Once a line has been displayed in this
manner, the print-head is moved to the point's position. As
requests to move the point back and forth are issued, e.g., hB,
hF, ESC B, AA, the print-head moves around on the displayed line
accordingly. Printing and glass teletype terminals are treated
very much like video terminals with a one-line window.

E-1 CH27-00

When you invoke emacs on a printing or glass teletype
terminal, Emacs prints the mode line. It is reprinted every time
it changes. Similarly, the path line is printed every time it
changes. Local displays are simply printed out (with a "More?"
query when a glass teletype screen has been filled), followed by
the reprinting of the current buffer line; no line of dashes and
stars appears, and no linefeed is needed. A record of the local
display appears on the terminal paper, or scrolls up the screen
on the glass teletype. Messages normally destined for the
minibuffer are also simply prlnted out; Emacs prompts are typed
on a"new line and the responses awaited. Enter the responses as
usual, ending with a carriage return as usual. After you supply
a response, Emacs displays the current line, and repositions the
print-head appropriately.

Typing a A L , redisplay-command, at any time prints the mode
line, path line, and current line.

Since only one buffer line is shown at once, you need some
way to view many lines at once. Simply repositioning the cursor
does this on video terminals. On printing terminals and glass
teletypes, the "XV request, view-lines, fills this need in a
manner similar to the "print" requests of line-oriented editors
like edm and qedx. The AXV request, with no argument, displays,
as a local display, the current line. (Try this on a video
terminal for run!) With a numeric argument of zero, e.g., ESC 0
"'XV, it displays a region; thus, ··XH ESC 0 ,..xv displays the whole
buffer. With any other positive numeric argument, e.g., AU AU
"XV, it prints the specified number of lines (16 here) from the
current line on down, and leaves you on the next line after them
(type another AXV to see that line printed). With a negative
numeric argument, the specified number of lines preceding the
current line are printed.

On a video terminal, Emacs keeps the image of the buffer
that is on the screen current by erasing and correcting text as
requests are issued. Hardcopy terminals obviously cannot erase
or correct what is already printed. Instead, whenever a line
changes, Emacs performs a linefeed, scrolling the paper
vertically, and prints the portion of the line that changed, and
all of the line to the right of the change. Thus, deleting a
character in the middle of a line prints all of the line
following the deleted character on a new line.

On glass teletypes, the modified right-hand portion of the
line is simply rewritten in place (this also occurs on video
terminals that do not support insert/delete characters), with no
linefeed.

E-2 CH27-00

Typing or deleting characters in the middle of a line creates
a lot of output as the remainder of the line is continually reprinted.
The continual repeating, besides being annoying, takes time, even
on fully cursor-addressable video terminals that do not support
insert/delete characters. Two techniques minimize this problem.

The ~X~T request, toggle~redisplay, suppresses all printing.
If -you issue a ~XAT, all "updating", including seeing what you
type (echoing) is inhibited. Another AX~T, or a AG or any error,
performs all the updating at once and turns off the suppression
of printing. You can see the current line by issuing a AXV; all
editing changes that occurred while printing was suppressed are
reflected. However, if you turn screen updating off with the I
"X"T request, then ~V, ESC V, and the other window-modifying requests
are disabled until you turn screen updating back on (with another
"X"T request or wi th a AG request).

The second technique is to issue the AO request, open-lines,
at the point in the line where you wish to make a change. This
inserts a newline character, pushing the rest of the line down a
line, arid leaves you editing at the new "end" of the line. When
you finish editing, a AD or AK deletes the newline and brings
back the last part of the original line, reprinting it also.

Bear in mind that a complex editing operation that affects
many lines, e.g., ESC Q or ESC K, places the cursor wherever that
particular request leaves it, printing that line out if it was
not the last line printed. Other lines may change as well, but
they are not printed. As on a video terminal after a request
that changes text over a large region of a buffer, the cursor is
left as it is positioned at the end of the operation. An important
difference is that you do not have a whole windowful of text
surrounding the current line with which to reorient yourself.

The best way to discover how Emacs works on printing terminals
is to sit down at one and experiment with the various requests.
You will soon become accustomed to the editing methods required.
If your terminal is not one of the types specifically recognized
by Emacs, invoke the emacs command wi th the "-terminal type printing"
control argument, or type the word "printing" when~macs asks you
for your terminal type.

2/83 E-3 CH27-00D

Notes

Very commonly, use of Emacs printing terminal support is
accidental! If you are logged in on a video terminal, your
start up.ec or the person using the terminal before you may have
incorrectly or inadvertently specified to Multics that you are
using some type of hardcopy terminal. Then, when you invoke
emacs, this mistnformation is used, and you enter Emacs in
printing terminal mode. This is indicated if, upon entry to
Emacs, you find that the screen is not cleared, the mode line is
displayed and scrolled up, the cursor is left on the line after
the mode line, and attempts to clear the screen with -L repeat
these actions. In this case, exit Emacs with ··XAC as usual, and
reinvoke emacs with the -query control argument. Emacs will
query you for an acceptable terminal type {a? or null response
prints a list of acceptable terminal types), and reset it
accordingly for the rest of the login session. Then, edit your
start_up.ec if it caused the problem.

A common problem encountered by those using Emacs on a
printing terminal for the first time is that of characters
appearing twice. This is always the result of a terminal's
echoing characters locally. If this happens, exit Emacs and make
certain that both your modem and terminal are set for full-duplex
operation. For terminals like the TermiNet 300, which have a
controllable local printer, Emacs turns the printer off
automatically, and this is not necessary. Otherwise, use full
duplex (fulldpx) and echoplex modes, with a full duplex
connection, modem, and terminal. This should be the case for
video terminals as well as for printing and glass teletype
terminals.

Every video terminal can operate as a glass teletype. If
you have a video terminal for which no support package (CTL) is

·.supplied, glass teletype usage is preferable to printing terminal
usage, since lines are corrected by erasing and rewriting. Glass
teletype usage is entered by invoking emacs with the
-terminal type glasstty control argument, or by typing the word
"glasstty" when Emacs asks you for your terminal type. You can
use Emacs this way until a CTL can be constructed for your
terminal type {see the Extension Writers' Guide for information
on constructing CTLs). In fact, this mode is useful for ed~ting
and debugging a new CTL until it works reliably.

E-4 CH27-00

APPENDIX F

THE MESSAGE FACILITY

You can receive interactive messages, sent via the Multics
send_message commands, while editing in Emacs. The ESC X I
accept-messages extended request is provided so that those messages,
which appear on your screen as a local display, are then conveniently
saved in buffers from which you can respond to their senders.

ESC X accept-messages

If you have not issued an ESC X accept-messages request, or
included it in your start up, messages appear on your screen as
Mul tics output, destroying the current display. If you do issue
this request, however, it displays each incoming message, causes
the terminal to beep, and enters the message into a buffer named
"Messages from (Person name>. All correspondence to and from an
individual is maintained in its own separate, appropriately named
buffer. This request also provides the following response
capabilities.

AX:

To respond to the sender of the last message received, type
the AX: request, message-response. Suppose Sarah Smith just sent
you a message. You are prompted for your response to her in the
minibuffer:

To Smith:

Type your message; when you type a carriage return, it is
sent to Sarah. Wi th t his method, you remain in your current
buffer, send the reply from there, automatically enter the reply
into the Messages from Smith buffer, and can immediately resume
your work.

7/81 F-1 CH27-00A

I

Wi th a numeric argument, AX: swi tches you to the message
buffer of the last sender, so you can see the previous messages
to and from that person, while you type a reply to them if you
wish. Then you can AXB back to your working buffer.

I The AX" request, send-a-message, is similar to AX: but allows
you to send a message to anyo"ne. It prompts for a Person_name of
someone who already has a message buffer, i.e., they are or have
been corresponding with you during the current Emacs session, or
a Person.Project (e.g., Smith.Sales) for someone who has not yet
been in correspondence with you (or Person at Net-Host-Name, or
Person @ Host). It then prompts for a message to send to that
person. Again, you have not switched to a message buffer, so can
resume work as soon as the message is sent.

The AX t request, go-to-new-message- buffer, always swi tches
YUU l,U d message buffer. You are prompted for the name of the
person whose message buffer you wish to enter:

Messages to/from:

You can type in the Person name (not Person.Project) of someone
*who already has a message buffer. You can give a null response

to go to the message buffer of the last sender (as with AX: with
a numeric argument). Finally, to switch to the message buffer of

*a person not currently communicating with you, you give the name
in the form of Person. Project, or Person at Net-Host-Name (or
Person @ Host). In any of these cases, you then simply start
typing your message, and send it with your first carriage return.

I When AX t is given a numeric argument, it lists message buffers
(conversations), and the direction of the last interaction. Thus,
buffers in which you sent the last message are marked =>, and
those in which the other party did are marked <=.

The AX- request, repeat-last-message, repeats the last message
as a local display. It is more convenient than AX' if a message
flashes on and off your screen before you were able to read it.

7/81 F-2 CH27-00A

ESC X accept-messages-path

The ESC X accept-messages-path request allows receipt of
messages in mailboxes different from your default mailbox. The
request requires an argument, which is either a mailbox pathname,
a Person name (for sites using the ARPANet mail daemon), or a
Person. Project. Up to 50 mailboxes can be accepting messages in
a process •

. A further convenience of the message facility is its use
with multiple windows. When the message buffers are on display,
incoming messages are displayed immediately in their appropriate
windows, without appearing as local displays. You can carryon
several "conversations" at once, and can write any of the buffers
out if you want a record of them.

1181 F-3 CH21-00A

.1

APPENDIX G

EMACS START-UPS

Emacs can be instructed to execute a sequence of requests at
the time it is invoked. This allows you to customize your
environment, i. e., to set up things that are not provided by
default. You do this with a file called an Emacs start-up. You
do not need one: it is optional. If you do not have one, Emacs
performs as described in this manual, unless administrators at I
your site have set up project-wide or system-wide start-ups.

Normally, when you invoke Emacs, it searches first in your I
home directory for a personal start up called start up.emacs. If
it doesn't find one, - it then looks for
>udd>Project id>start up.emacs, in case your project administrator
has created -a start up for all members of your project. If it
doesn't find one - there ei ther , it finally looks for
>site>start up.emacs, in case your system administrator has created
one for all- the users on your system. If you want to do things
like enable the Emacs message system every time you use Emacs,
you will want to have your own personal start up, which overrides
any global ones. Your best bet in making a -start-up is to copy
someone else's and modify it. However, instructions for writing
start-ups are provided here. (In the sample start ups throughout
this section, multi-line start ups include a number in the first
column of each line. The numbers are not part of the file; they
are here simply for reference.)

Here is just about the simplest possible start-up:

(accept-messages)

8/82 G-1 CH27-00C

If you put this line in a segment called "start_up.emacs" in your
home directory, Emacs will accept messages (i.e., activate the
Emacs message system described in Appendix F) every time it starts
up," The line above invokes the ESC X accept-messages extended
request just as though you had typed ESC X accept-messages). The
parentheses around this "request name" (i. e., accept-messages)
tell Emacs that "this is something to do," i.e., that the name in
parentheses is the name of an extended request to be executed.

8/82 G-1.1 CH27-00C

I
...

...

Here is a slightly more complicated start-up:

1 Sally's start-up
2
3 (accept-messages)
4 (setq my-personal-name "Sarah M. Smith")

Line is a comment. It has no meaning other than to let
anyone reading the file know that this is Sally's start-up. The
semicolon at the beginning of the line indicates that the rest of
the line is to be ignored. Bla.nk lines, such as line 2, also
have no meaning, and are ignored. Line 2 is provided simply for
readability.

On line 3, Sally activates the Emacs message system. Although
this is the most common thing people want to do in start-ups, not
everyone wants this to be done, since those just beginning to use
Emacs might not know how to use the Emacs message system. They
should defer messages while using Emt3.cs, instead of having messages
destroy their screens.

On line 4, Sally is telling the Emacs mail system (See Appendix B
for a full description of it) what her "personal name" is. This
is used by the send-mail request ("XM) for mail headers. When
Sally uses RMAIL, she will get header lines like:

From: Sarah M. Smith <Smith. Sales>

in messages she sends. The "setq" is a keyword meaning "set the
value of a variable," in this case the variable "my-personal-name."
Variables are named boxes in which things are kept (you may have
used Emacs text variables, which are manipulated by the "XX and
"'XG requests). The Emacs mrtil system looks in the box named
my-personal-name for your full name, so this is the name of the
variable you must supply. Note that St3.rah's full name is between
quotation marks; you must quote your n8me, so that its beginning
and end can be determined. You must have a statement just like
this in your Emacs start-up if you want the Emacs RMAIL system to
know your full name when you compose mail. (Alternatively, you
can request your si te' s Emt3.cs expert to place you!" name in the
"rmail-full-nt3.me-table," of full n~mes of people at your site •

Once more,
start up.emacs in
use it.

this text must appear in a segment named
Sally's home directory if Emacs is indeed to

A more complex start-up yet does the same things that Sally's
does, except that it is expressed in a form that allows for faster,
more efficient execution at the time Emacs is started up. If
your start-up does many things, you will want to do this to your

7/8, G-2 CH27-00A

start-up as well:

1 ;Nick Romanov's start-up
2 ;Function definition is used to make it execute faster
3 ; Petrograd 10/17
4
5 (defun Nick-start-up ()
6 (setq my-personal-name "Nicholas A. Romanov")
7 (accept-messages) I
8 (opt 'find-file-set-modes 'on»
9 *

10 (Nick-start-up)

As you know already, lines 1-4 are simple comments, stating what
this start-up is and where it came from. They have no meaning to
Emacs and are ignored. You will recognize lines 6 and 7 from the I
earlier examples. Line 6 sets Nick's name for use when he composes
mail, and line 7 activates the Emacs message system. Line 9 is
blank, and is treated as a comment. Lines 5, 10, and 8 are *
explained below.

Lines 5 and 10 are interesting ones. Line 5 says, "See the
things on lines 6 to 8? They are a set of things to do." Line 8
is the end of the set because of the last close-parentheses on
that line, which balances the one at the beginning of line 5. In
line 5, the name "Nick-start-up" is given to that set of things
to do. That is what defun means, "define function." Thus, "defun
Nick-start-up" means that the definition of a function, (i.e., a
set of tasks to do) named Nick-start-up begins here. The fact
that Nick coalesced all his start-up time tasks allows this "function"
to be compiled for faster execution. The open and close parentheses
ending the line, (), are necessary and must not be omitted: they
mean that "Nick-start-up" has no arguments.

Line 10 of Nick's start-up says, "Do the thing called
Nick-start-up" in the same way that line 1 of the first example
says, "Do the thing called accept-messages." It says to invoke, I
execute, or carry out the set of requests and commands that has
the name "Nick-start-up," i.e., the set of commands and requests
just defined. Why can they not simply be stated instead of assigning
this name to them, as was done in the first two examples? You
could do this, but the function definition achieves increased
e ffic iency.

Note that lines 6 to 8 are indented, and line up with each
other. This is stylistically proper for function definitions;
since extra white space is ignored, it is not strictly necessary.

7/81 G-3 CH27-00A

The name "Nick-start-up" is completely arbitrary. You should·,
however, call your start-up function something like that, except
substitute your own name for Nick. The name of the start-up
function is not used anywhere except on the line (e.g., line 10
of the last example) that invokes it. It is not the same as
"my-personal-name," and is not used by RMAIL. --

You may have been wondering about line 8. This is a request
in Nick's start-up that invokes the ESC X opt extended request,
described in Section 17. The particular line here:

(opt 'find-file-set-modes 'on)

has the exact same effect as if Nick had typed:

ESC X opt find-file-set-modes on CR

as soon as he had entered Emacs. The ESC X opt extended request
is being used here to invoke the find-file-set-modes option, a
very popular and common option that most users familiar with Emacs
elect to have on. It causes automatic entry into PL/I mode when
find-file ("'X"'F) is used to read in a PL/T program, FORTRAN mode
when a FORTRAN program is read in, and so forth. It is not on by
default, since a beginning Emacs user might not know how to use
PL/I mode. New users should be able to edit PL/I (or any other
language) in Fundamental mode until they acquire proficiency in
these special modes.

Any Emacs extended request can be invoked in this way from a
start-up_ You will note two differences between the way extended
requests are issued to Emacs and the way they are stated in start-ups.
First, instead of typing an ESC X, and ending with a carriage

I return, you put the extended request and its arguments in parentheses,
as for accept-messages (which had no arguments) in the first example.
Second, you put the apostrophe character before all arguments to
the extended requests (in this case, the extended request is "opt"
and the arguments are "find-file-set-modes" and "onlt). This is
necessary to differentiate constant arguments (e.g., the keyword
"on") from variables (e.g., a variable named "on"). If you leave
out the apostrophes, you receive an error about undefined variables,
which is in fact what you have specified.

The opt extended request is by far the most common extended

I request to use in start-ups, other than accept-messages. The
full description of all of the options to the opt extended request
may be found in Section '7~

7/81 G-4 CH27-00A

Compiling a Start-up

As was mentioned before, start-ups may be compi led, i. e. ,
translated into hardware machine language, to effect faster
execution. Emacs start-ups are actually computer programs written
in Lisp programming language, a powerful and flexible language,
in which Emacs i tsel f is written. More information about Lisp
can be found in the Extension Writers' Guide. If you achieve
profic iency in extension writing, you can vast ly increase the
power and sophistication of your start-up as well.

However, to compile an Emacs start-up, all you need to know
is how to use the Lisp compiler. This is easy; it is just like
any other Multics compiler. You invoke it, giving it a source
segment in the Lisp language (an Emacs start-up as described above
is such a segment), and it produces an object segment.

7/81

To compile an Emacs start-up, this is what you must do:

1. Find out the pathname of the Lisp compiler from a
knowledgeable person at your site. If your site has
Emacs, it must have the Lisp compiler as well. Its
name is lisp compiler, or lcp for short. It is probably
in the same-directory as the segment "lisp." If you
have used Emacs in your process, use the Multics where
command (type: wh lisp) to determine the name of this
directory.

2. Prepare the Emacs start-up 3S described above, with
request s, funct ion d efin it ions, and comments in it. Wr i te
it out to a segment (file) named "start up.emacs.lisp"
(make sure the name "start up.emacs" is not on this
segment, or you will be in danger of destroying it).

3. Invoke the Lisp compiler:

lisp_compiler path

where path is the pathname of the start-up.emacs.lisp
segment you just prepared; watch out for the underscores
(not hyphens) in the name of the Lisp compiler.

G-5 CH27-00A

I

I

4. The compiler may issue diagnostics. Warnings of the·
form:

and:

"my-personal-name undeclared -- henceforth assumed
special"

"(accept-messages default-emacs-start-up opt)
-functions referenced but not defined"

are normal.
of an error.
to step 2.

Any other diagnostic may be an indication
Check your start_up.emacs.lisp and go back

5. Assuming compilation was successful, you now have an object
segment called start up.emacs in your working directory.
Place it in your home directory, making sure you have
read and execute ---access. You now have a compiled
start_up.emacs.

It is not good to let others share your start-up, because of
the personal name in it: start-up's are personal. If your associates
want to use your start-up, either prepare start-ups for them, or
let them copy and edit yours.

MORE FEATURES YOU MIGHT WANT -- ---
Below are some other I ines you might want to put in your

start-up, or take as examples. If you use them, or lines like
them, they should be put wherever you put the rest of the requests
you invoke at start-up time, either in your start-up function if * your start-up is compiled, or standing alone, as in the second
example, if your start-up is interpreted (i.e., not compiled).
In general, the order is not important.

*
Here are the sample forms (the correct Lisp term for these

requests) :

(and (eq tty-type 'vip7801)(set-screen-size 10.»

This says, "If I am using a (Honeywell) VIP7801 terminal, set my
screen size to ten." The tty-type is a variable that contains
the terminal type you are using -- the terminal type is just like
the name of the terminal in the system's Terminal Type File,
except it is all lowercase. The "eq" means "equal, the same as.~
The set-screen-size extended request is being used here, with an
argument of 10. Note the decimal point: all numbers in Lisp are
in base eight (octal) unless followed by a decimal point, which
puts them in base ten, the base that people usually use for numbers.
An apostrophe is not necessary before numeric arguments, but you

7/81 G-6 CH27-00A

can include one. Again, this is the same as if the user had
issued the extended request:

ESC-X set-screen-size 10 CR

This form:

(and « ospeed 120.)(create-new-window-and-stay-here»

says, "If I am logged in over a communications line operating at
less than 120 characters per second (1200 baud), do a AX3
(create-new-window-and-stay-here), putting me in 2-window mode and
leaving me in the first window." This is often what people want
to do on low-speed lines, cutting down the amount of printout.
Note that the command names (e.g., create-new-window-and-stay-here)
ass 0 cia ted wit hag i v e n key s t r 0 k e (e. g ., A X 3), are use fu lin a
start-up.

In the above two examples, "ospeed" and "tty-type" are
variables, and it is normal to receive warnings about them from
the compiler, which will "Declare them special." These warnings
can be ignored.

The form:

(set-permanent-key "AH" 'backward-char)

lS an example of a form that changes a default key binding. The
person using this form wants the backspace (control H) key on his
or her terminal to go backward a character (do what control B
does). In this way, you can switch the assignment of any keys in
your customized Emacs environment. The set-permanent-key extended
request operates the same as described in Section 15 and creates
all-buffer key bindings during the course of an Emacs invocation.

Note that the circumflex and the AH (not a real control H)
are in guotes instead of behind an apostrophe-.-This is recommended
for key names, which can contain special characters like semicolon
or parentheses, which otherwi se have meaning. When quotes are
used, the apostrophe (') is not necessary.

The form:

(defprop pl1 electric-pI1-mode suffix-mode)

("defprop" is peculiar insofar as no quotes are needed on its
arguments) says, "Invoke electric-pI1-mode every time a segment
with a suffix of ".pI1" is read in via AXAF." Thus, this elects
electric PL/I mode as the mode to be entered for all programs.

7/81 G-7 CH27-00A

Similarly:

(defprop compin filIon suffix-mode)

says invoke filIon, i. e., enter fill mode, whenever a "compin"
segment is read in.

7/81 G-8 CH27-00A

APPENDIX H

pop-up WINDOWS

Emacs provides an option which causes windows to be created
and destroyed dynamically as new buffers are switched into and as
dedicated buffers are created and destroyed. This option causes
new windows to "sprout" on various points of the screen, cutting
up or removing old windows, or dynamically reorganizing the
screen as new buffers are selected. One goal of this technique
is to display simultaneously as many as possible of the things
that you were working on recently by packing the screen full.

This option, pop-up windows,
users like it, and many do not.
"opt" (option) extended request:

ESC X opt pop-up-windows on

is experimental;
It can be turned

and turned off similarly. It is off, by default.

many Emacs
on via the

When in pop-up window mode, the standard window-selecting,
creating, and destroying requests are used as in non-pop-up
window mode. You will find that windows appear less frequently
in pop-up mode if there is only one window on the screen to start
with (the assumption is that if you have only one window, you are
doing that deliberately), so it is often necessary to divide the
screen yourself to get pop-up-windows "rolling."

In pop-up window mode, requests that create or switch to a
buffer create a new window if the buffer being switched to is not
already on the screen. If the buffer is already displayed, these
requests switch to the appropriate window. It is virtually
impossible to get two windows displaying the same buffer in
pop-up window mode.

H-1 CH27-00

APPENDIX I

LISTING EMACS TERMINAL TYPES

This appendix contains a description of the list emacs ctls
command, which lists all known terminal types.

8/82 I-1 CH27-00C

list emacs ctls

Name: list emacs ctls

This command produces a list
types, or verifies the existence
specified Emacs terminal controllers.

list emacs ctls

of all known Emacs terminal
in your search rules of

where terminal type can be a single starname.

Example

When given with no arguments, this command lists all Emacs
terminal types:

list emacs ctls
ListIng of-Emacs terminal controllers:

in >system library unbundled
aa-ambassador -

11/86

adm2
ambassador
ambassador 301
ambassador-601
concept100-
dg132b
dg132b60
dm1521
dm3000
glasstty
hazeltine1510
hp~645
ibm"3101
ibm3101 2x
infoton100
iriscope200
micromind
ow11200
printing
smart ascii
S ll1"'\rll1~ upuup

tdv2220
tek4025
teleray1061
terditor
tvi912

1-2

adds980
adm,a
ambassador 241
ambassador-481
cdc713 -
delta4000
dg1"12b120
dku7102
dm2500
fox1100
h19
heath19
hp2648
ibm,101 1x
infoton
iq120
ktm2
mmind
pe550
regent200
smarterm
supdup output
tek4023
tek4027
te1eray3700
translex
tvi920

CH27-00F

list emacs ctls

tvi950
video system
vip7201
vip7300
vip7801
vip7814
vis200
vt100
vt100w
vt100ws
vt102 132c
vt102-S0c
vt102-oflow
vt132-S0c
vt132-oflow
vt132p SOc
vt132p-oflow
z19 -

umind
vip7200
vip7205
vip7800
vip7813
vip7823
vistar
vt100fc
vt100wfc
vt102

list emacs ctls

vt102 132c of 1 ow
vt102-90c of 1 ow
vt132-
vt132 SOc of 1 ow
vt132p -
vt132p BOc of 1 ow
vt52 - -

When given with the name of a terminal type as an argument,
list emacs ctls either verifies the existence of any Emacs
termInal controller in your search rules that matches the
starname, or prints the message "No Emacs terminal controllers
found."

11/86 I-3 CH27-00F

APPENDIX J

OVERWRITE MODE

The Overwrite minor mode is an offshoot of Emacs Fundamental
mode that changes the way characters are inserted into the
buffer. With Overwrite mode turned on, inserted characters
overwrite existing characters, rather than being inserted in
their place and pushing them to the right. Some users prefer
this minor mode when editing tables of statistics.

To enter overwrite mode, type ESC X and then overwrite-mode.
Emacs adjusts the mode line accordingly:

Emacs (Fundamental <overwrite>) - main

To see the results of editing in overwrite mode, let's edit
a line without overwrite mode and then with overwrite mode turned
on. To fix the line:

The wirk is dune.

in the usual manner, you move the cursor to the letter i in
"wirk", delete the i, and insert the letter o. To change "dune"
to "done", you would repeat the same procedure to change the u to
an o.

In overwrite mode j place the cursor under the i in "wirk"
and type an o. The 0 overwrites the i. Position the cursor
under the u in dune and type an 0, and again, the letter is
overwritten.

8/82 J-1 CH27-00C

When you actually insert and
rather than merely replacing them,
change:

delete characters in this mode
it gets more complicated. To

The work is done.

to:

The project is done.

without overwrite-mode, you would delete the word work and insert
the word project in its place. Fundamental mode understands that
you are replacing a word and keeps the space between the words
intact.

With overwrite-mode turned on,
reacts differently. If you delete the
word project, you end up with:

The projecte.

however, Fundamental mode
word work and type in the

since, true to its name, it overwrites--regardless of spacing,
exactly as you type.

To turn overwrite-mode off, type ESC X overwrite-mode-off.

8/82 J-2 CH27-00C

New Emacs
Features

Norman E. Powroz
Department of National Defence

Ottawa, Canada

Paul Benjamin
Honeywell Bull Inc.

Phoeniz, Arizona

September 15, 1988

Abstract

Since Multics release MRl1.0, Emacs, the Multics full-screen text
editor, has undergone a series of enhancements, and more new features
are planned. In MR12.0, the ability to process multi-segment files was
added, and Emacs was made more sensitive to external file changes.
In MR12.1, new features for program development and compilation
were provided. In the upcoming release MR12.2, Emacs will be further
upgraded with the addition of support for 8-bit character sets, and the
inclusion of a facility to manage vertical windows on certain devices.

This paper describes the implementation of these new features,
and discusses ways in which to utilize the new capabilities. The impact
on existing user extensions to Emacs will be reviewed, and advice
provided on how to avoid problems.

1 Introduction

Emacs, the Multics full-screen text editor, has long been recognized as one
of the best pieces of software of its kind. Originally designed to ease the
task of textual file manipulation, its ease of use, and extensibility have led
to it becoming a mainstay on most Multics systems. As well, its collection
of powerful extensions has made Emacs into one of the most significant
productivity aids within the Multics environment.

Since its introduction in the early 1970s, Emacs has continually grown in
capability. Many internal features have been added, and others improved.
Literally dozens of Multics users and developers have built external pack
ages for use with Emacs, and many of these have been incorporated into
the standard product offering, thereby increasing both the power, and the
attractiveness of Emacs for use either as a development tool, or as a compo
nent of a production application. Examples of this type include the various
programming language "modes" , and some of the features described in later
sections of this paper.

2 Multics Rele::lse MR12;O Rnhancements

2.1 Multi-Segment File Improvements

The major improvement to Emacs for MR12.0 was the addition of the
capability to process multi-segment files (MSFs). The lack of this feature
had been a long-standing limitation of Emacs; elimination of the restriction
was not a simple problem, however.

Since its initial design, Emacs has been oriented toward the use of a single
segment to contain the text or other data being manipulated. Its earlier
versions were also not so well-defined in terms of the internal modularity of
the software in comparison to the function being performed. Improvements
in this area have taken place over the years, with the result that the majority
of the work to implement MSF handling could be localized.

Even so, implementation of the feature required that the Lisp program

1

ejJ}ultics~les_ be completely rewritten. The "ripple" effect of this ma
jor change meant that any Emacs program which created or modified files
might no longer work. Generally speaking, the external view of the func
tions provided within eJIlultics~les_ had not changed. However, many
programs used the internal lower-level functions of eJIlultics--.:files_. All of
these programs required modification. In most cases, the affected programs
were user-written extensions to Emacs, including some of the most popular
such as forum-mode, and find-lisp-source. Unfortunately, the required
changes were not necessarily trivial.

Along with the changes to eJllultics--.:files_, the Multics system subroutine
msfJIlanager _ required some minor changes in order to provide the nec
essary functionality required by the new Emacs file handler. These changes
had no impact an any existing programs, and thus could be largely ignored
by the M ultics user.

2.2 Other File-Handling Improvements

Along with the MSF capabilities added to eJllultics~les_, improvements
in the general file interfaces were also made. These changes have a much
less drarllatic impact on the average Emacs user, as they do not affect the
types of files that Emacs can handle, but rather they build in a few safety
factors which prevent inadvertent damage to files.

In previous versions, Emacs was not cognizant of any file activity occurring
in other processes, or even in other parts of the same process. As a result,
the results of simultaneous update activity could easily be lost. For exam
ple, if two users each had write access to a file, and both were attempting
to change the file, Emacs would not notice that the file had been modified
during the period in which a copy existed in an Emacs buffer. In the end,
the work of one user would be lost, as Emacs would simply overwrite the
file with its buffer contents.

Another problem was that Emacs would not test for existing files when it
attempted to write out a buffer. When the write-file command was given,
Emacs did just that-it wrote the file, regardless of whether a like-named
file already existed. It was therefore extremely easy to overwrite an existing,

2

possibly very important file, with the contents of the current Emacs buffer.
This behaviour often led to a sudden cry of anguish from the novice user,
and from many not-so-novice users,

Fortunately, these problems have now been eliminated. Whenever a file
is read into a buffer, Emacs fetches the date_time_contents_modified
field from the directory entry for the file, and stores it in the internal file
information structure for the buffer. Whenever the buffer is to be written
out, Emacs compares the value of the saved field with the current value
of the field in the directory entry for the file. If the two match, Emacs
proceeds with the output, and the contents of the buffer are written to
the file. If however the two do not match, then Emacs assumes that some
external process has modified the file, and it first queries for permission to
write to the file, in order to avoid the possible loss of other changes.

The same type of action takes place when a buffer is to be written to a
newly-specified file. Emacs first tests for the presence of an existing file
with the same name. If none is found, the output proceeds, and a new file
is created. If an existing file is found, then Emacs queries for permission
to overwrite the file, or to cancel the output request, in order that a new
filename may be specified.

2.3 Using the New Features

Making use of the new MSF capability is straightforward. Simply put,
any of the standard Emacs commands for file manipulation, such as find
file, write-file, and save-same-file now will accept any MSF as input, or
will create an MSF on output, if necessary. It is no longer necessary to
manipulate the individual components of an MSF as separate segments;
Emacs views the entire MSF as a contiguous whole, in the same manner as
any other Multics file manipulation software.

In a similar fashion, using the other new file-handling features is quite
straightforward. All of these features are controlled by the Emacs option
mechanism, thus permitting users to tailor the settings to individual pref
erences. Those who are used to living dangerously may continue to do so
by the appropriate option settings, and the changes will effectively become

3

invisible. For those who prefer to err on the side of caution, a simple mod
ification to the emacs start_up will provide all of the protection necessary.

2.4 Avoiding the Pitfalls

On the whole, there are very few problems that can arise when manipulating
files using the new capabilities of Emacs, and the services provided by
eJIlulticsJiles_.

First, for the general Emacs user about the only caution necessary pertains
to the specific type of MSF to be read or written by Emacs. Standard
stream files, as created by other text editors, or by other utilities, such
as the write request of forum, can be read and written without regard to
specifics of the internal format. After all, a stream file is a stream file,
regardless of what created it.

However, non-stream MSFs abound on the average Multics system. In
many cases, these are indexed files created by vfile_. To vfile_, these files
have a specific organization, namely that the first component contains the
index, and remaining components contain the data comprising the contents
of the file. In Emacs, however, this type of special organization is ignored,
as Emacs expects to see only a stream file. As a result, if one reads an
indexed vfile_ MSF, and then writes it back out, the original organization
of the file will be destroyed. Emacs will rather nicely convert the file from
indexed to stream organization; unfortunately, this can tend to play havoc
with the average application as it will no longer be capable of locating its
data records at the appropriate places in the file.

The more technically oriented user, especially one who wishes to develop
extensions to Emacs, should be aware that the changes in e_multicsJiles_
can have an impact on the design of the particular extension. In general,
only the well-documented, external interfaces of this program should be
used. This type of approach ensures that the extension will continue to
work across new versions of Emacs, or that any required forward-fitting will
generally be fairly trivial in nature. The danger of using the undocumented
internal interfaces of Emacs, as with all other Multics software, is that
the Honeywell Bull developers do not guarantee that these interfaces will

4

remain the same from release to release. They may undergo radical changes
in calling sequence or functionality, or they may even disappear entirely in
a new release.

3 Release MR12.1 Improvements

3.1 Improved file_output Buffer Handling

With the issue of Multics Release MR12.1, a collection of minor enhance
ments was added to Emacs, mainly to improve the use of Emacs as a de
velopment tool for the compilation and error scanning of programs. These
changes all affected the manner in which Emacs dealt with buffers cre
ated by various uses of the file_output commands. The Emacs commands
compz"le-buJJer and comout-command both use the Multics file_output com
mand to accomplish the majority of their work.

3.2 How They Work

The contpile-bufJer cOHlluand now places any error luessages in a buffer
named "Compilation Errors" instead of "file-output". This removes the
conflict between this command and its cousin, comout-command. If the
option one-error-scan-buffer is turned off, then the error messages will go
into a buffer named "buffer Errors" , where buffer is the name of the buffer
that had been compiled. This approach allows for the separate compilation
and error scanning of multiple programs.

If the option compz"le-two-wz"ndows is on, then comp£le-buffer will automat
ically split the screen, if necessary, putting the error message buffer in the
second window. If the option compz"le-local-dz"splay is on, and compZ"le-two
wz"ndows is off, then the error messages are shown as a local display, in
addition to being put into a buffer. If neither of these options are set, then
a one-line local display gives an indication as to whether the compilation
was successful.

If comout-command is given a numeric argument, it executes the command

5

comout-command-to-buffer. This command operates in the same manner
as comout-command, except that it first prompts for the name of the buffer
in which the output should be placed. In this case; the contents of the
file-output buffer are not affected.

If the output buffer for the comout-command or comout-command-to-buffer
commands is marked as read-only, or if it has an associated pathname and
has been modified, then the user is warned when the prompt for the Multics
command is issued. If the user aborts the command, the buffer will be left
undisturbed; if the user enters a command line, then the command will be
executed, the current contents of the buffer will be replaced, the read-only
flag will be removed, and the pathname will be dropped from the buffer.

While the combination of all of these options seems a bit daunting at first,
a little experimentation quickly leads to a preferred mode of operation.
After that, a minor change to the user's Emacs start_up, and everything
will function as desired.

4 Planned MR12.2 Enhancements

The major enhancements to Emacs in Multics Release MR12.2 were ac
tually developed originally in 1984 and 1985, and were first installed in a
version of Emacs operating under Release 10.2. These enhancements en
abled Emacs to process 8-bit character sets, and to manage a screen whose
windows divided it vertically, rather than the typical horizontal window
management used in previous versions of Emacs.

The impetus for these new features came from a requirement of the Cana
dian Department of National Defence. DND was embarking upon the de
velopment of an electronic publishing system, and Emacs was to be used
within the system for text editing, and manipulation of raw manuscripts,
prior to final composition and formatting. By law, the Department pub
lishes all documentation in the two official languages of Canada, namely
English and French. Manipulation of the special characters of the French
language, such as e, ~, and A required the use of an 8-bit expanded char
acter set, as well as specially engineered terminals. In addition, part of the

6

publication process includes a comparative analysis of the two languages of
a document. A side-by-side visual presentation of the two languages is the
most natural approach for this type of work, so the Department contracted
for the development of such a facility in Emacs.

4.1 Expanded Character Sets

Implementation Details

As part of the development of the 8-bit facility, one other change was
required-the Multics Communications System needed a modification to
allow it to pass 8-bit characters, as the MCS was only designed for older,
7 -bit character sets. This change was installed on the Department's system
under Release MRIO.2, and was officially released to the rest of the Multics
community as part of MR12.0. The change itself is extremely minor, and
simply removes a restrictive test.

The Emacs changes themselves were somewhat more major, as parts of the
outer PL/l shell were affected, in addition to the main Lisp internals of
Emacs. As it turned out, Emacs was rife with tests to trap and eliminate
any character with an octal value of higher than 177. Everyone of these
tests had to be found, and either be eliminated, or be bounded by addi
tional code to cater to the special case of processing an 8-bit character.
Unfortunately, even the Lisp compiler itself contains many checks for char
acters that do not fit the 7-bit set. As such, special handling is necessary to
present 8-bit characters within program code, making the job of program
design a little more difficult.

Eliminating simple tests for 8-bit characters was fairly straightforward,
however other cases were not quite so easy. For example, a very real require
ment existed to allow 8-bit characters to be assigned to Emacs commands.
Implementation of this feature alone required modifications to the character
parsing routines, and the key-binding functions, as well as a new method of
representing the assigned character string in error and help displays. The
designation ext- is used to indicate such characters in key-bindings, thereby
making it simpler than having to specify the octal value of the character.

7

~lany of the 8-bit character tests existed in the PL/l shell, especially in ar
eas dealing with MCS negotiation to establish proper echo handling, break
tables, and communications mode setting. Expansion of the breaktables
was necessary, in conjunction with the MCS change mentioned previously,
as both the MCS and Emacs otherwise treated an 8-bit character as a break
indicator to be mercilessly thrown away, rather than incorporating it into
the incoming text stream. Synchronization of this activity is necessary, as
the use of an 8-bit Emacs with a 7-bit MCS causes an immediate FNP
crash. Conversely, the use of a 7-bit version of Emacs with an 8-bit MCS
is quite acceptable, as many sites are now unknowingly doing.

Although an ISO standard for 8-bit character sets exists, it is fairly recent,
and not all terminals follow the standard. As a result, the specific map
ping of a certain pattern of eight bits to a specific displayable character
is therefore left to the imagination of the terminal designer. To avoid this
problem, Emacs makes no assumptions about the pairings of 8-bit values to
displayable characters. Its only assumptions remain those assigned to 7-bit
characters; this is a safe approach as the 7-bit standard has been in exis
tence for a number of years, and is slavishly followed by all manufacturers
of ASCII-based communications devices.

Specification of the specific pairings for a. given terminal can easily be ac
complished via the the mechanism of the Emacs Terminal Controller, known
as the CTL. As each different type of terminal requires a unique CTL mod
ule to define the display control sequences for the terminal, specification
of additional characters can easily be built into the CTL, to be executed
every time that Emacs initializes the terminal. As well, a new global vari
able, DCTL-extended-ascii, was defined for use by the CTL. Defining the
variable as true specifies that the terminal is capable of supporting 8-bit
characters. The addition of a table defining the precise pairings within
the CTL completes the necessary interfaces to individual terminal devices.
This approach also caters to national character requirements that may not
fit within the ISO 8-bit standard, without the need to replace characters
from other portions of the standard 7-bit character set definition.

8

4.2 Vertical Window Management

The requirement for a vertical window capability in Emacs came as a natu
ral extension of the standard used for the presentation of bilingual material
in Canadian government publications. Typically, bilingual documents are
formatted using a two-column side-by-side layout, with English text in one
column, and equivalent French text in the other. As this approach eases the
comparison of the two languages, it was desirable to carryover the same
capability into the text-editing software.

A contract was let to Honeywell Canada for the development of the verti
cal window management capability, as well as a series of support functions
which would use the new features within the Department's publishing sys
tem.

Implementation Details

In order to implement this facility, the concept of the splz"t was defined, thus
creating a new object for Emacs to handle. As Emacs already knew about
such global objects as buffers and windows, the same type of approach could
hp annl;prl t,o t,hp _emla Hal":ir~ llv ~ _~'f)la hal": mOI":t. of t.hp I":~mp nronprtlPI": -- -rr~~-- -- -~-- -r---- --------." - -r--- ---- ------ -- ---- ------ r--r------

as a window. If it is not on display, then it does not exist. While it is on
display, it contains a buffer of information in the same manner as a normal
Emacs window. The major difference between a split and a window is the
orientation of the object when it is on display, as a window represents a
horizontal division of the screen while a split represents a vertical division.

One other difference between the two is not as immediately obvious. Emacs
manages and displays windows with no external assistance from the hard
ware of the terminal in use. All decisions concerning the placement of text
within one or more windows are made by Emacs itself, as are all recalcula
tions concerning the repainting of the screen to ensure that the content of
each individual window is consistent at all times. However, in the case of a
split, Emacs requires that the terminal in use be capable of differentiating
among the separate splits. Effectively, the terminal must act as if each
split is an independent screen, such that update activity in one split has
no impact on the display contained in another active split. In this manner,

9

each split can be managed independently without the need to worry about
interference with another displayed split. This approach lessens the amount
of work needed by the Emacs Window Manager, as it can safely assume
that update activity in one split requires no adjustment of any other split
on display. Conversely, the Window Manager must constantly be aware of
adjacent window intrusion whenever a normal window is modified.

Admittedly, while an approach that uses terminal hardware is simpler to
implement, it does lessen the transferability of the overall functionality.
The contract between the Department and Honeywell did not specify the
manner in which the functionality was to be achieved; this decision was left
to the Honeywell development staff.

As with the 8-bit character capability, vertical window management is ac
tivated via functions contained within the CTL module. A second global
variable, DCTL-hardware-wz"ndows-availablep, is used to indicate to Emacs
that the particular terminal is capable of supporting split-screen displays.
In addition, the CTL must contain a function which will instruct the termi
nal to create a new split. This function, called DCTL-create-split, must
accept the split number, home column and line position of the split on the
screen, and the width of the split in columns and lines. It must then emit
the necessary control characters to the terminal to cause creation of the
split.

Emacs extensions can then take advantage of this new display capability,
simply by calling the appropriate entrypoints within Emacs. Buffers can
then be displayed in splits or windows, with Emacs providing the necessary
management of each. One cautionary note, however is that the Emacs
minibuffer should be placed in a split that spans the entire width of the
screen. As the minibuffer cannot be scrolled to handle overlength lines, a
split that is too small would mean that much of the minibuffer's contents
would not be on view. This situation can make some commands a little
frustrating to use.

Within the Department of National Defence publishing system, Emacs ex
tensions have been developed to utilize the vertical display facility, primar
ily for the visual comparison of two files in different languages. This same
type of display is also extremely useful as a programming tool, as two ver-

10

sions of a program can be easily be compared for consistency, without the
need to modify vertical reference points as occurs with "over and under"
windows.

5 Conclusion

The Emacs refinements offered in Multics Releases 12.0 and 12.1 offer new
functionality for the full range of Emacs users, and remove a long-standing
limitation on the size of a file that Emacs could handle. With today's larger
applications, enormous source files are in common use, so elimination of
the single segment limit is highly desirable in order to expand the range of
available text editors, and provide more packaging options for the source
code files.

The soon to be released extensions for MR12.2 remove one more limitation,
and also offer the Emacs user with a new flexibility in screen display man
agement. Restrictions on character sets have plagued non-English users
of Multics since its inception. The 8-bit capability now provides the full
range of displayable characters offered by most commercially available ter
minals; removing the need for character set juggling that had been the
only available option in the past. As well, the new vertical window man
agement facility extends the range of possible screen display configurations,
and makes Emacs even more attractive for use as part of an application, or
as a text-entry or programming tool.

While the MR12.2 extensions will not be generally available to Multics
users for a few months, they have been in use within the Department of
National Defence for three years, and have been extremely stable during
that time. A few annoyances and troublesome side effects were discovered
and eliminated within a short time after initial delivery, but since then the
modifications have proven trouble-free.

11

INDEX

. MISCELLANEOUS

II 8-2,17-10,17-31
rubout-char 3-3

-line speed control argument
A-2

-query control argument A-2

-reset control argument A-2

-terminal type control
argument A-1

@ 17-10, 17-13, 17-32
kill-to-beginning-of-line

3-3.1

\
escape-char 17-27

\ 177 8-2, 17-10, 17-31, 17 - 3 3
rubout-char 3-3
see delete key

see control key

A@ 8-3

AA 17-6, 17-31
go-to-beginning-of-line 3-6

AB 8-2, 17-6, 17-30
backward-char 3-5

i-1

AC 17-41
re-execute-command 8-4

AD 8-2,17-10,17-31
delete-char 4-2

AE 17-6, 17-31
go-to-end-of-line 3-6.1

AF 8-2, 17-6, 17-30
forward-char 3-5

AG 8-4, 17-22
command-quit 6-2.1

AJ 17-28
noop 10-5

AK 4-5, 8-3, 17-10, 17-32
kill-lines 4-2

AL 17-28, 17-37, E-2
redisplay-command 10-5

AN 8-2, 17-6, 17-31
next-line-command 3-6

AO 17-23, 17-45, E-3
open-space 13-1

Ap 8-2, 17-7, 17-32
prev-line-command 3-4

AQ 17-27
quote-char 3-3.1

in searches 6-2

CH27-00D

"'R 17-15
reverse-string-search 6-3

"'s 17-15
string-search 6-1

"'T
twiddle-chars 17-41

"'U 17-28, 17-42
multiplier 8-5

"'V 17-9, 17-36
next-screen 10-1

"'w 17 - 1 1, 1 7 - 1 4

"'X; 17-25
set-coMment-column C-1

"'XI 17-11, 17-35
kill-backward-sentence 12-3

"'X(17-29
begin-Macro-collection 15-1

"'X) 17 -29
end-Macro-collection 15-1

AX·
show-last-or-current-macro

15-4, 17-29

AX. 17-24, 17-26
set-fill-prefix 13-5

"'X~ 17-39
remove-window 16-3

"'X1 17-39
expand-window-to

-whole-screen 16-3

"'X2 17-39
create-new-window-and

-go-there 16-3

"'X3 . 17-39
create-new-window-and

-stay-here 16-3

"'X4 17-39

i-2

"'X4 (cont)
select-another-window 16-4

"'X= 17-32
linecounter 5-4

"'XB 16-9, 17-38
select-buffer 10-3

"'XCR
eval-multics-command-line

17-20.1

"'XD
edit-dir 17-20.1

"'XE 17-29
execute-last-editor-macro

15-3

"'XESC
escape-dont-exit-minibuf

17-28.1

"'XF 17-24, 17-26
set-fill-column 13-6

"'XG 1 7 - 1 4
get-variable 14-3

"'XH 17 -13, 17 - 38
mark-whole-buffer 10-6

"'XI 17-20
insert-file 14-1

archive file 14-2
starname 14-2

"'XK 17-12, 17 - 38
kill-buffer 10-6

"'XM 17-40
send-mail B-1

"'xo 17-40
select-other-window 16-4

""XQ ;7-29
macro-query 15-3

"'XR 17-40
rmail B-4

CH27-00D

"'XS
global-print-command 17-16

"'xv E-2
view-lines 17-44.2

"'xw 17-16
multi-word-search 9-8

"'xx 17-14
put-variable 14-3

"'X\ 177 17-11, 17-35
kill-backward-sentence 12-3

"'X"'B 17-38
list-buffers 10-4

"'X"'C 17-20.1
quit 17-20.1
quit-the-editor 3-7

"'X"'E
comout-command 17-20.1

"'X"'F 10-2.1, 16-9, 17-17.1,
C-4, C-8, C-12

default pathname 5-6
find-file 5-3

archive file 17-17.1
starname 17-17.1

"'X"'G 17-22
ignore-prefix 6-3

"'X '" I
indent-rigidly 13-10

"'X"'L 17-14
lower-case-region 9-6

"'X"'O 17-12, 17-23
delete-blank-lines 13-2

"'X"'R
read-file 17-19

"'X"'S 8-6
save-same-file 5-6

"'X"'T E-3
toggle-redisplay 17-45

i-3

"'X"'u 17-14
upper-case-region 9-6

"'X""W 8 - 6 , 17 -1 9
default pathname 5-7
write-file 5-1

"'X "'X 17-13

"'x
underline-region 9-8, 17-14

"'Y 8-3, 17-12
yank 4-4

"'Z; 17-25
kill-comment 17-12, C-2

"'ZF 17-2
object-mode-find-file 17-20

"'ZG 17 -14
go-to-named-mark 14-5

"'Z"'@ 17-13
set-named-mark 14-5

"'Z"'B 17-38
edit-buffers 16-9

"'Z"'F
get-filename 17-20

"'Z"'G 17-23
ignore-prefix 6-3

"'Z"'L 17-3
redisplay-this-line 17-28,

17-44.2

"'Z"'V
scroll-current-window 17-37

"'Z"'W 17-40
edit-windows 16-6

"'z"'z
signalquit 17-20.1

"'z 17-34
remove-underlining-from-word

9-7

CH27-00D

A\ 17-5, 17-42
undo-prefix 8-5

17-21
-help-on-tap 11-5

A? 11-5
A-A 11-5
A-C 11-5
A-D 11-5
A-H 11-5
A-L 11-5
A-AG 11-5

A

abbreviations
ESC X setab 17-43
ESC X speedtype 17-43

accept-messages, ESC X 17-41,
F-1

accept-messages-path, ESC X
17-41, F-3

access 5-6

aIm-mode, ESC X 11-44, C-18

apropos, ESC X 11-3, 17-22

archive file 14-2, 17-17.1

asterisk
in word searches 9-9
special use of 3-1, 5-2,

16-9
use in regular expression

11-15

B

backward-char~ AB 3-5~ 17-6,
17-30

backward-sentence, ESC A 12-2,
17-7, 17-34

i-4

backward-word, ESC B 9-2,
17-7, 17-32

balance-parens-backward, ESC
AB 17-9, C-2

balance-parens-forward, ESC AF
17-9, C-2

begin-macro-collection, AX(
15-1, 17-29

beginning-of-paragraph, ESC [
12-5, 17-8, 17-36

blank lines 13-1
descriptions of requests

11-23
list of requests 11-2

bottomline 16-2

break 11-20.1

bufed buffer 16-9

buffer 2-9, 10-1
dedicated 16-5
deleting 10-6, 16-9
descriptions of requests

11-37
displaying multiple buffers

16-1
editing more than one

10-2. 1
editor 16-9

requests 16-10
list of requests 17-4
listing 10-4
main 2-9
marking 10-6
marking as unmodified 11-38
modified 3-8, 5-2
moving to ends of 10-2
name 2-9, 5-4
switching 10-3
windowstat 16-6

CH21-00D

C

capitalize-initial-word, ESC C
9-5, 17-33

capitalizing words 9-5

carriage return key 2-5,
17-23

center-line, ESC S 13-6,
17-26

character search mode 17-51

clearing the screen
after local display 10-5
redisplay 10-5

command level 3-7, 5-2

command name 3-2

command-quit, AG 6-2. 1, 17 -22

comment
column 17-46.1, C-1
descriptions of requests

17-25
list of requests 17-3
prefix C-1, C-3
AZ; 17-12

comout-command, AXAE 17-20.1

compiler C-3

complete-command, ESC SPACE
17-42

control
character 2-4
key 2-4

control argument A-1

copy-region, ESC W 14-2,
17-14

correcting errors 3-3, 4-1

i-5

CR
new-line 17-23
see carriage return key

create-new-window-and
- go - the r e , A X 2 1 6 - 3 , 1 7 - 39
-stay-here, AX3 16-3, 17-39

cret-and-indent-relative, ESC
CR 13-9, 17-25

CTLs 1-2

cursor 2-9, 3-1
movement 3-4

descriptions of requests
17-6

list of requests 17-1

customizing the Emacs
environment G-1

D

dedicated buffer 16-5

default pathname 5-6

delete key 2-5

delete-blank-lines, AXAQ 13-2,
17 -12, 17 -23

delete-char, AD 4-2, 17-10,
17-31

delete-line-indentation, ESC A
13-3, 17-25

delete-white-sides, ESC \
13-3, 17-24

delete-word, ESC D 9-4, 17-11,
17-33

deletion 4-2
buffer 10-6
descriptions of requests

17-10
indentation 13-3

CH27-00D

deletion (cont)
list of requests 17-1
sentence 12-3
white space 13-3
word 9-3

describe, ESC X 11-4, 11-22

describe-key, ESC? 11-1,
i1-2i

directory editor 11-20.1

dired buffer 11-20.1

down-coMment-line, ESC N
11-26, C-2

E

echoplex mode 2-5

edit-buffers, AZAB 17-38

edit-dir, AXD 17-20.1

edit-macros, ESC X
11-30

edit-windows, AZAW

editing
macro 15-5
minibuffer 3-8

editor
buffer 16-9
directory 17-20.1
macro D-1

requests D-2
window 16-6

15-5,

11-40

electric-aIm-mode, ESC X
17-44

electric-p11-mode~ ESC X
11-44, C-17

emacs command 2-8, A-1

i-6

empty search string 6-2

end-Macro-collection, AX)
15-1, 11-29

end-of-paragraph, ESC] 12-5,
11-8, 11-36

entering Emacs 2-8

entering text 3-1

error correction 3-3, 4-1

error recovery 6-2.1
descriptions of requests

11-22
list of requests 11-2

ESC -, unmodify-buffer 17-38

ESC; 17-25
indent-for-comment C-2

ESC
escape 11-28
see escape key

ESC 11 11-10, 11-3 3
rubout-word 9-3

ESC % 17 -16
query-replace 6-4

ESC /
regexp-search-command 17-15

ESC < 11-9, 11-37
go-to-beginning-of-buffer

10-2

ESC <N> or ESC <-N>
numeric argument 8-1

ESC> 17-9, 17-37
go-to-end-of-buffer 10-2

ESC? 17 -21
describe-key 11-1

ESC A 17-1, 11-34
backward-sentence 12-2

CH21-00D

ESC B 17-7, 17-32
backward-word 9-2

ESC C 17-33
capitalize-initial-word 9-5

ESC CR i7-25
cret-and-indent-relative

13-9

ESC D 17-11, 17-33
delete-word 9-4

ESC E 17-8, 17-35
forward-sentence 12-2

ESC ESC 17-45
eval-lisp-line C-3

ESC F 17-7, 17-33
forward-word 9-2

ESC G 17-9, 17-32
go-to-line-number 8-6

ESC H 17-13, 17-36
mark-paragraph 12-5

ESC I i7-24
tab-to-previous-columns

13-8

ESC K 17-11, 17-35
kill-to-end-of-sentence

12-4

ESC L 17-34
lower-case-word 9-5

ESC M 17-24
skip-over-indentation 13-2

ESC N 17 -26
down-comment-line C-2

ESC P 17-26
prev-comment-line C-2

ESC Q 17-27
runoff-fill-paragraph 12-6

i-7

ESC R
move-to-screen-edge 17-37

ESC s 17-26
center-line 13-6

ESC SPACE
complete-command 17-42

ESC T
twiddle-words 17-34, 17-42

ESC U 17-34
upper-case-word 9-5

ESC V 17-9, 17-36
prev-screen 10-1

ESC W 17-14
copy-region 14-2

ESC X 17-28.1
extended-command 11-3

ESC X <command-name>
see entries under their

command-names

ESC Y 17-12

ESC [17-8, 17-36
beginning-of-paragraph 12-5

ESC \ 17-24
delete-white-sides 13-3

ESC \ 177 17-11
rubout-word 9-4

ESC] 17-8, 17-36
end-of-paragraph 12-5

ESC A 17-25
delete-line-indentation

13-3

ESC AB
balance-parens-backward

17-9, C-2

CH27-00D

ESC AF executing a Multics command
balance-parens-forward 11-9, 11-20.1

C-2

ESC AG 11-23
ignore-prefix 6-3

ESC AI 11-25
indent-to-fill-prefix 13-8

ESC AQ 11-23
split-line 13-1

ESC AV 11-40
page-other-window 16-5

ESC AW 11-12
merge-Iast-kills-with-next

14-2

ESC Ay 11-13
option 17- LH:S
yank-minibuf 11-12

ESC 11-34
underline-word 9-1

escape key 2-4, 11-28
use for numeric arguments

8-1

escape, ESC 11-28

escape-char, \ 11-21

escape-dont-exit-minibufAXESC
11-28.1

eval-lisp-line, ESC ESC 11-45,
C-3

options 17~47

eval-multics-command-line,
AXCR 11-20.1

exchange-point-and-mark, AXAX
17-i3

execute-Iast-editor-macro, AXE
15-3, 11-29

i-8

expand-window-to-whole-screen,
AXl 16-3, 17-39

extended request 11-2
alphabetized list A-1

extended-command, ESC ESC
11-45

extended-command, ESC X 11-3,
11-28.1

extension writing
descriptions of requests

11-45
list of requests 11-5

F

file length 5-4

filename
inserting 11-20

fill
column 13-4, 17-47

AXF 13-6
mode 13-4
prefix 13-4, 13-8

"'X. 13-5

filloff, ESC X 13-5, 11-27

filIon, ESC X 13-5, 11-21

find-file, AXAF 5-3, 11-11.1
archive file 11-11.1
starname 11-11.1

formatting 12-5
centering a line 13-6
descriptions of requests

17-26
fill mode 13-4
indentation 13-8
list of requests 11-3
two-column 11-25, C-1

CH21-00D

fortran-mode, ESC X 17-44,
C-8

forward-char, AF 3-5, 11-6,
17-30

forward-sentence, ESC E 12-2,.
17-8, 17-35

forward-word, ESC F 9-2, 17-7,
17-33

full duplex mode 2-5, E-4

fundamental mode 2-9
list of· requests 17-1

go-to-named-mark, AZG 14-5,
17-14

H

help
descriptions of requests

17-21
ESC? 11-1
ESC X apropos 11-3
ESC X describe 11-4
ESC X make-waIl-chart 11-4
list of requests 17-2
,. 11-5

fundamental-mode, ESC X 17-44, help-on-tap, A
C-3

11-5, 17-21

G

get-filename, AZAF 17-20

get-variable, "XG 14-3, 17-14

glass teletype usage E-1

global requests
ESC X replace 17-17
AXS 17 -16

global-print-command, AXS
17-16

go-to-beginning-of-buffer, ESC
< 10-2, 17-9, 17-37

go-to-beginning-of-line, AA
3-6, 17-6, 17-31

go-to-end-of-buffer, ESC >
10-2, 17-9, 17-37

go-to-end-of-line, AE 3-6.1,
17-6, 17-31

go-to-line-number, ESC G 8-6,
17-9, 17-32

I

ignore-prefix
ESC AG 6-3, 17-23
AXAG 6-3, 17-22
AZAG 6-3, 17-23

incremental search mode 17-54

indent-for-comment, ESC;
17-25, C-2

indent-rigidly, AXAI 13-10

indent-to-fill-prefix, ESC AI
13-8, 17-25

indentation 13-8
deleting 13-3
descriptions of requests

17-24
list of requests 17-3
skipping over 13-2

insert-file, AXI 14-1, 17-20
archive file 14-2
starname 14-2

inserting files 14-1

interrupt 17-20.1

i-9 CH27-00D

1TS-string-search mode 11-52

K

key binding 2-9, 3-2, 11-1,
15-4.1

setting and changing 15-6

key name 15-6, 15-1

keyboard 2-1, 2-4
macro 15-1

kill
merging 4-3
ring 4-3, 4-6, 12-3, 14-2

setting its size 11-48
successive 4-3

AXI 12-3, 11-11, 11-35
AX\ 117 12-3, 17-11, 17-35

kill-buffer, AXK 10-6, 17-12,
17-38

kill-comment, AZ; 17-12,
17-25, C-2

kill-lines, AK 4-2, 17-10,
17-32

kill-to-beginning-of-line, @
3-3.1, 17-10, 11-32

kill-to-end-of-sentence, ESC K
12-4, 17-11, 11-35

L

ldebug, ESC X 17-45, 17-44.1,
C-3

line
centering
shearing

13-6
13-7

line number 8-6

linecounter, AX= 5-4, 11-32

linefeed key 2-5
A J 10-5

linespeed A-2

lisp debug mode C-3

lisp=mode, ESC X 17-44, C-4

list command 5-2

list-buffers, AXAB 10-4,
11-38

list-named-marks, ESC X 14-6

list emacs ctls command 2-8,
-1-2

descriptions of requests
17-27

list of requests 17-3
of characters 3-6.1

loadfile, ESC X 17-45

loadlib, ESC X 17-45

local display 10-4, 14-4,
14-6

of a macro 15-4
of a saved macro 15-5
window editor 16-6
with ESC? 11-1

logging in 2-6

logging out 3-7, 3-9

login command 2-6

logout command 3-7, 3-9

lower-ease-region, AXAL 9-6,
11-14

lower-case-word, ESC L 9-5,
17-34

i-10 CH27-00D

LRU window
see window 16=2

1 vars, ESC X 14-4, 17-14

M

macro
creating 15-1
descriptions of requests

17-29
displaying 15-4, 15-5
editing 15-5
executing 15-3
including a query 15-3
list of requests 17-3
saving 15-4. 1

macro edit mode D-1

macro learn mode 15-1

macro-query, "XQ 15-3, 17-29

mail
descriptions of requests

17-40
list of requests 17-4
reading B-4
sending B-1

mail mode B-1

main window 16-1

major mode 2-9
aIm C-18
find-file-set-modes 17-47
fortran C-8
fundamental 2-9, C-3

list of requests
lisp C-4
lisp debug C-3
macro edit D-1
mail B-1
pl1 C-12
programming language modes

C-1

major mode (cont)
programming languages

descriptions of requests
17-44

rmail B-4

make-waIl-chart, ESC X 11-4,
17-22

margins 12-6, 13-5

mark
descriptions of requests

17-13
gratuitous-marks option

17-47
list of requests 17-2
marking a buffer 10-6
marking a paragraph 12-5
named 14-4

mark-paragraph, ESC H 12-5,
17-13, 17-36

mark-whole-buffer, "XH 10-6,
17-13, 17-38

merge-Iast-kills-with-next,
ESC"W 14-2, 17-12

messages
descriptions of requests

17-40
fill mode 17-47
interactive F-1
list of requests 17-4
optional display of 17-49

minibuffer 3-8
editing 3-8
ESC SPACE 17-42
ESC Ay 17-12, 17-48
options 17-48, 17-49
setting its size 17-50
"XESC 17-28.1

minor mode 2-9
electric aIm
electric pl1
fill 13-4
macro learn

i-11

C-18
C-17

15-1

CH27-00D

mode
see major mode or minor mode

mode line 2-9, 3-1, 5-4

modem 2-1, 2-5

modified buffer 3-1, 3-8, 5-2
ESC· - 17-38

move-to-screen-edge, ESC R
17-37

moving the cursor 3-4

multi-word-search, AXW 9-8,
17-16

multiple buffers 10-2. 1, 16-1

multiple windows 16-1
descriptions of requests

17-39
list of requests 17-4

multiplier, AU 8-5, 17-28,
17-42

N

named mark 14-4

named region 14-3

new-line, CR 17-23

newline 2-5, 3-2, 13-1, 17-46

next-line-command, AN 3-6,
17-6, 17-31

next-screen, AV 10-1, 17 -9,
17-36

noop, AJ 10-5, 17-28

numeric argument
ESC 8-1
for executing macros 15-3
negative 8-1

numeric argument (cont)
positive 8-1
AU 8-5

o

object-mode-find-file, AZF
1'7 ')" I, -c;,.v

open-space, AO 13-1, 17-23,
17-45

opt
paragraph definition 12-4
pop-up-windows H-1

opt, ESC X 17-46

option, ESC X 17-50

optional settings
description of requests

17-46
list of requests 17-5

overwrite-mode, ESC X J-1

overwrite-mode-off ESC X J-2

p

page-other-window, ESC AV
16-5, 17-40

paragraph
definition of 12-4
descriptions of requests

17-36
formatting 12-6
list of requests 17-4
marking 12-5

parenthesis
ESC AB 17-9
ESC AF 17-9

password 2-6

1-12 CH27-00D

path line 5-1, 5-4-

pathname 5-1
default 5-6

p11-mode, ESC X 17-44.1, C-12

pop-up-windows 16-1, H-1

prev-comment-line, ESC P
17-26, C-2

prev-line-command, Ap 3-4,'
17-7, 17-32

R

re-execute-command, AC 8-4,
17-41

reading files 5-3
descriptions of requests

17-17.1
list of requests 17-2

ready message 2-7

prev-screen, ESC V 10-1, 17 -9, redisplay 10-5
17-36

printing terminal usage E-1
descriptions of requests

17-44.2
list of requests 17-5

programming language modes
C-1

descriptions of requests
17-44

list of requests 17-5

prompt 3-8, 6-1, 6-4

put-variable, AXX 14-3, 17-14

Q

query
macro-query, AXQ 15-3
query-replace, ESC % 6-4

query-replace, ESC %
17-16

6-4,

quit, AXAC 17-20.1

quit-the-editor, AXAC 3-7,
17-20. 1

quote-char, AQ 3-3.1, 17-27
in searches 6-2

redisplay-command, AL 10-5,
17-28, 17-37

redisplay-this-line, AZAL
17-28

regexp-search-command, ESC /
17-15

region
capitalizing 9-6
copying 14-2
descriptions of requests

17-13
list of requests 17-2
named 14-3
underlining 9-8

white space with 17-49.1

regular expression 17-15
search mode 17-51

remove-underlining-from-word,
AZ 9-7, 17-34

remove-window,
17-39

1t:. 3 IV- ,

replace, ESC X 17-17

requests 3-2
alphabetized list A-3
blank lines 17-23

descriptions 17-23
buffers 17-4

i-13 CH27-00D

requests (cont)
buffers

descriptions 17-37
characters (moving

by/deleting) 17-3
descriptions 17-30

comments 17-3
qescriptions 17-25

deletion 17-1
descriptions 17-10

entry and exit 17-2
descriptions 17-20.1

error recovery 17-2
descriptions 17-22

extension writing 17-5
descriptions 17-45

files 17-2
descriptions 17-17.1

formatting 17-3
descriptions 17-26

help 17-2
descriptions 17-21

indentation and white space
17-3

descriptions 17-24
insertion 17-2

descriptions 17-20
lines (moving in and

by/deleting) 17-4
descriptions 17-31

literal character entry
17-3

descriptions 17-27
macros 17-3

descriptions i7-29
mail/messages 17-4

descriptions 17-40
marks, regions, variables

17-2
descriptions 17-13

movements forward/backward
17-1

descriptions 17-6
multiple windows 17-4

descriptions 17-39
new lines/blank lines 17-2

descriptions 17-23
ootional settings 17-5

Adescriptions -17-46
paragraphs 17-4

descriptions 17-36

requests (cont)
printing terminal usage

17-5
. descriptions 17-44.2

programming modes 17-5
descriptions 17-44

retrievals/yanks 17-1
descriptions 17-12

screens 17-4
descriptions 17-36

searches and substitutions
17-2

descriptions 17-15
sentences 17-4

descriptions 17-34
special purpose keys 17-3

descriptions 17-28
typing shortcuts 17-5

descriptions 17-41
words 17-4

descriptions 17-32

reset-minibuffer-size, ESC X
17-50

reset-screen-size, ESC X
17-50

retrieving
deleted text 4-2
descriptions of requests

17-12
list of requests 17-1

reverse-string-search, AR 6-3,
17-15

rmail mode B-4

rmail, AXR 17-40, B-4

rubout-char
II 3-3, 17-10, 17-31, 17-49
\177 3-3, 17-10, 17-31,

17-49

rubout-word
ESC II 9-3, 17-10, 17-33
ESC \ 177 9-4, 17-11, 11-33

runoff-fill-paragraph, ESC Q
12-6, 17-27

i-14 CH27-00D

runoff-fill-region, ESC I
17-27

S

save-macro, ESC X 15-4.1,
17-30

save-same-file, AXAS 5-6

sentence (cont)
descriptions of requests

17-34
list of requests 17-4

set-comment-column, AX; 17-25,
C-1

set-comment-prefix, ESC X
17-26, C-3

set-compile-options, ESC X
screen 2-1 17-44.1, C-3

see window

scroll-current-window, AZAV
17-37

searching 6-1
character 17-51
descriptions of requests

17-15
incremental 17-54
ITS-string 17-52
list of requests 17-2
printing lines containing a

given string 17-16
regular expression 17-15,

17-51
setting search mode 11-51
string 6-1, 6-4, 17-51
with· 9-9
word 9-8

select-another-window, AX4
16-4, 17-39

select-buffer, AXB 10-3,
17-38

set-compiler, ESC X 17-44.1,
C-3

set-fill-column, AXF 13-6,
17-24, 17-26

set-fill-prefix, AX. 13-5,
17-24, 17-26

set-key, ESC X 15-6, 17-51

set-minibuffer-size, ESC X
17-50

set-named-mark, AZA@ 14-5,
17-13

set-or-pop-the-mark, A@ 17-13

set-permanent-key, ESC X 15-6,
17-51

set-screen-size, ESC X 17-50

set-search-mode, ESC X 17-51

select-other-window, Axa 16-4, setab, ESC X 17-43
17-40

selected window 16-1

self-inserting character 3-2,
8-5

send-mail, AXM 17-40, B-1

sentence
definition of 12-1

show-last-or-current-macro,
AX· 15-4, 17-29

show-macro, ESC X 15-5, 17-30

signalquit, AZAZ 17-20.1

skip-over-indentation, ESC M
13-2, 17-24

i-15 CH27-00D

speedtype, ESC X 17-43

speedtypeoff, ESC X 17-43

split-line, ESC AQ 13-7,
17-23

starname 14-2, 17-17.1

start-up A-2, G-1

string search mode 17-51

string-search, AS 6-1, 17-15

substitution 6-4, 17-17

successive kill 4-3

syllable 15-6

T

tab-to-previous-columns, ESC I
13-8, 17-24

terminal
-ttp control argument A-1
glass teletype E-1
printing terminal usage E-1

descriptions of requests
17-44.2

list of requests 17-5
requirements 2-5
types 2-8

terminal types 1-2, 1-3

text entry 3-1

text-mode, ESC X 17-44.1

toggle-redisplay, AXAT 17-45,
E-3

topline 16~2

transposing
characters

AT 17-41

transposing (cont)
words

ECS T 17-34, 17-42

twiddle-chars, AT 17-41

twiddle-words, ESC T 17-34,
17-42

u

underline-region, AX
17-14

underline-word, ESC
17-34

underlining
words 9-7

9-8,

9-7,

undo-prefix, A\ 8-5, 17-42

unmodify-buffer, ESC - 17-38

updating
suppressing 17-45

upper-case-region, AXAU 9-6,
17-14

upper-case-word, ESC U 9-5,
17-34

User id 2-6

v

variable 14-3
descriptions of requests

17-13
list of requests 17-2

view-lines, A

AV i7-44.2, E-2

i-16 CH27-00D

w

white space 13-1
deleting 13-3
descriptions of requests

11-24
list of requests 11-3
underlining

region 11-49. 1

window 2-9, 5-5, 10-1
creating additional 16-3
descriptions of requests

11-36
editor· 16-6

requests 16-1
least recently used (LRU)

16-2
list of requests 11-4
main 16-1
mu 1 t i pI e 1 6 - 1
overlap size forAV and ESC V

11-49
paging multiple windows

16-4
removing 16-3
repositioning

ESC R 17-37
scrolling

AZAV 11-31
selected 16-1
selecting 16-4
setting its size 11-50

windowstat buffer 16-6

wipe-region, AW 11-11, 11-14

wipe-this-and-yank-previous,
ESC Y 11-12

word
capitalizing 9-5
definition of 9-1
descriptions of requests

11-32
list of requests 11-4
underlining 9-1

write-file, AXAW 5-1, 11-19

writing extensions
descriptions of requests

11-45
list of requests 11-5

writing files 5-1, 5-6
descriptions of requests

11-19
list of requests 11-2

y

yank, Ay 4-4, 11-12

yank-minibuf, ESC Ay 11-12,
11-13

option 11-48

i-11 CH21-00D

w
z
:::i
(!)
z
o
.J
«
I
:::>
u

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE

l-1ULTICS EI'-1ACS TEXT EDITOR
USER'S GUIDE ADDENDUM F

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnei

and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. 0

FROM: NAME __ _

TITLE __ _

COMPANY ______________________________________ ___

ADDRESS _______________________________ _

OROERNO. I CH27-00F

DATED I NOVEMBER 1986

DATE _____ _

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA 02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

HoneYM'ell

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

I
I
I
I
I

t
:::i
(!)
z
o
..J
<t
I
::::>
u
I
I
I
I
I
I
I
I
I
I

UJ
Z

I ..J

I (!)

I Z
-,III(g

(

<t
CI
..J
o
LL

UJ
Z
..J

(!)
Z

-rc g
<t
CI
..J
o
LL

t

MULTICS EMACS TEXT EDITOR
USER'S GUIDE
ADDENDUMF

SUBJECT

Changes to the Manual

SPECIAL INSTRUCTIONS

This is the sixth addendum to CH27, Revision 0, dated December 1979. Refer to
the Preface for "Significant Changes;'

Insert the attached pages into the manual according to the collating instruc
tions on the back of this cover. Tnroughout the manuai, change bars in the mar
gins indicate technical additions and changes; asterisks denote deletions. These
changes will be incorporated in the next revision of this manual.

Note: Insert this cover after the manual cover to indicate the updating of the
document with Addendum F.

SOFrWARESUPPORTED

Multics Software Release 12.0

ORDER NUMBER

CH27-00F

46226
5C986
Printed in U.S.A.

November 1986

Honeywvell

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove

iii through vi

Section 5

12-3, 12-4

-j 4 - -j, -j 4 - 2

15-5, 15-6
15-6.1, blank

17-19, 17-20
17-20.1, blank

17-47, 17-48
17-48.1, 17-48.~
17-49, blank
17-49.1, 17-50

C-15, C-16

Appendix I

The information and specifications in this document are subject to change without notice. Consult
your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc., 1986 File No.: 1L33

Insert

iii, iv
v, blank

Section 5

12-), 12-4

14-1, 1 4-2

15-5, 15-6
15-6.1, blank

17-19, 17-20
17-20.1, 17-20.2

17-47, 17-48
17-49, blank
17-49.1, 17-49.2
17-49.3, 17-50

C-15, C-16

Appendix I

11/86
CH27-00F

TogE'lhPr. WE' can find th(> anSWE'rs.

Honeyweii
Honeywell Information Systems

U.S.A.: 200 Smith St., MS 486, Waltham, MA 02154
Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7

U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano
Mexico: Avenida Nuevo Leon 250, Mexico 11, O.F. Japan: 2·2 Kanda Jimbo·cho, Chiyoda·ku, Tokyo

Ausiraiia: 124 Waiker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K.

40367, 4C584, Printed in U.S.A. CH27·00

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	01-01
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03.0
	03-03.1
	03-04
	03-05
	03-06.0
	03-06.1
	03-07
	03-08
	03-09
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	06-01
	06-02.0
	06-02.1
	06-03
	06-04
	06-05
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-01
	10-02.0
	10-02.1
	10-03
	10-04
	10-05
	10-06
	11-01
	11-02
	11-03
	11-04
	11-05
	12-01
	12-02
	12-03
	12-04.0
	12-04.1
	12-05
	12-06
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	15-01
	15-02
	15-03
	15-04.0
	15-04.1
	15-05
	15-06.0
	15-06.1
	15-07
	15-08
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17.0
	17-17.1
	17-18
	17-19
	17-20.0
	17-20.1
	17-20.2
	17-21
	17-22
	17-23
	17-24
	17-25
	17-26
	17-27
	17-28.0
	17-28.1
	17-29
	17-30
	17-31
	17-32
	17-33
	17-34
	17-35
	17-36
	17-37
	17-38
	17-39
	17-40
	17-41
	17-42
	17-43
	17-44.0
	17-44.1
	17-44.2
	17-45
	17-46.0
	17-46.1
	17-46.2
	17-47
	17-48
	17-49.0
	17-49.1
	17-49.2
	17-49.3
	17-50
	17-51
	17-52
	17-53
	17-54
	17-55
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	G-01.0
	G-01.1
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	H-01
	I-01
	I-02
	I-03
	J-01
	J-02
	_00
	_01
	_02
	_03
	_04
	_05
	_06
	_07
	_08
	_09
	_10
	_11
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	index-14
	index-15
	index-16
	index-17
	replyA
	replyB
	x-01
	x-02
	xBack

