
HONEYWELL

MULTICS EXTENDED I
MAIL SYSTEM .
USER'S GUIDE

SOFTWARE

SUBJECT

MULTICS EXTENDED MAIL SYSTEM
USER'S GUIDE

Tutorial Introduction to the Multics Extended Electronic Mail System

SPECIAL INSTRUCTIONS

Refer to the Preface for ttSignificant Changes".

This document supersedes Order No. CH23, Revision 0, dated September 1981.

The manual has been extensively revised. Change bars in the margins indicate
technical changes and additions; asterisks denote deletions.

This manual assumes basic knowledge of the Multics system provided by the
2-volume set, New Users' Introduction to Multics - Part I Order No. CH24 and
Part II Order No. CH25.

SOFTWARE SUPPORTED

Multics Software Release 10.1

ORDER NUMBER

CH23-01 February 1983

Honeywell

PREFACE

The purpose of this manual is to help you become familiar
with the Multics extended electronic mail system. This manual
provides you with an illustrated discussion of the print mail and
read mail commands for receiving mail, the send mail command for
creating and sending mail, and a large variety of useful requests
and control arguments to aid you in utilizing the full capacity
of the extended mail system.

Readers are expected to know the Multics concepts and terms
described in the 2-volume set, New Users' Introduction to Multics
(Order Nos. CH24 and CH25). These two manuals are referred to
throughout this manual as the New Users' Intro - Part I and Part
II. Also very useful is the Qedx Text Editor Users' Guide (Order
No. CG40) which is referred to as the Qedx Users' Guide.

Section 1 of this manual introduces the Multics extended mail
system.

Section 2 reviews the print_mail command.

Sections 3 and 4 introduce the
commands respectively, detailing the
arguments most useful for novice users.

send mail
requests

and read mail
and control

In Section 5 you learn how to send messages to more than one
person, how this affects message headers, and how to make further
adjustments yourself to the header information.

The information and specifications in this document are subject to change without notice. This
document contains information about Honeywell products or services that may not be available
outside the United States. Consult your Honeywell Marketing Representative.

© Honeywell Information Systems Inc., 1982 File No.: 1L13, 1 U13, 1L53, 1 US3 CH23-01

Section 6 demonstrates several requests that the mail system
~.~~~~ ~~~ ~~~~~~~ ~~~,
V.L. .L. II:.L;:) .L. V.L ;:) I.. V.L .L "':;1 Ula.L.L..

Section 7 suggests a variety of techniques for advanced use
of the mail system.

The reference descriptions for the three mail system commands
discussed in this manual are found in Appendix A. Mailbox
commands are described in Appendix B.

A glossary of the terms introduced in this manual is in
Appendix C.

Manual Conventions

A few conventions and special symbols should be recalled
before you begin to explore the Multics mail system.

Throughout the manual, the term "mail system" is used to
indicate the "extended electronic mail system".

Terms within angle brackets « ••• » are used to convey the
kind of word that you are to provide in the indicated space. For
example, <User id> means that you are to type a User_ide Any
exceptions to this usage are noted.

Technical or other unfamiliar terms are CAPITALIZED when used
for the first time, and are included in the glossary (Appendix
E) •

In examples, an exclamation point is used to indicate a line
that you type at the terminal. You do not type the exclamation
point, nor does Multics type it as a way of prompting you. It is
strictly a typographical convention, to distinguish between
typing done by you and typing done by Multics.

All commands, and most requests and
short names. The short names are
throughout the manual.

iii

control arguments, have
used in most examples

CH23-Ql

Mail system messages are referred to as both "messages" and
"mail" in this manual. However, you will also encounter other
types of messages as you work on Mu1tics. "Interactive messages"
are created by users with the send message command. Messages
from the Mu1tics operating system are generally called "system
notices". "Error messages" are also sent by the operating
system, although these messages often begin with the name of the
particular command that has been used incorrectly. Here are
examples of all three of these types of messages:

interactive
message ==> From Lotte.ProjDog 08/01/80 09:03 mst Fri: Hi

system
notice

error

==> Mail delivered to Mnemosyne.ProjCat.

message ==> send mail: No project name supplied. FNewton

Significant Changes in CH23-01

Information on abbrev processing within the mail system has
been added to Section 7.

The first two appendixes of the original manual contained
information on interactive messages and the memo command. These
have been removed from the current revision. See the Commands
manual for descriptions of these topics. .

Appendix A, which contains information on the mail system
commands, has been extensively revised and has no change bars.
It contains many new requests and control arguments.

For purposes of clarity and ease of use, the MPM set has
been reorganized. The six former MPM manuals, the Tools manual,
and the RCP Users' Guide have been consolidated into a new set of
three manuals.

Multics Programmer's Reference Manual (AG91)
contains all the reference material from the former
eight manuals. It is referred to in text as the
Programmer's Reference manual.

Multics Commands and Active Functions (AG92)
contains all the commands and active functions from the
former eight manuals. It is referred to in text as the
Commands manual.

iv CH23-01

Multics Subroutines and Input/Output Modules (AG93)
contains all the subroutines and I/O modules from the
former eight manuals. It is referred to in text as the
Subroutines manual.

The following manuals are obsolete:

Name

MPM Peripheral Input/Output
MPM Subsystem Writers' Guide
Programming Tools
MPM Communications I/O
Resource Control Users'Guide

v

Order No.

AX49
AK92
AZQ3
CC92
CT38

CH23-Ql

Section 1

Section 2

Section 3

*

Section 4

CONTENTS

Page

Introduction •• • • • • • • • • • • 1-1
The Mailbox • • • • • • . • • • • 1-2

Users With Multiple Projects • • • 1-2
The Message • . • • • • • • • • • 1-3
Requests (read mail and send mail) 1-4

Control Arguments and Requests 1-5
How to Use Your Mailbox • • • 1-6

The Print Mail Command

The Send Ma i I Command • • • • • • • •
Basic-send mail Command •••
The Reque s t Loop • • • • • • • • •
Viewing Your Message •• •••

The print Request • • • • • • •
The print header Request •••

Editing Your-Message •••••••
Sending Your Message • • • •
Message Filling .•• • • •
Quitting .•••.••••••••
Assistance • • . . • • • • •

The? Request •• • • •
The list requests Request •
The help-Request •••. • • •

The list help Request •••
send_mail Control Arguments •••

The read mail Command • • •
Basic-read mail Requests •••
Listing and printing • • • • • • •

The list Request • • •
The print Request • • • •

Message Spec i f iers .• • • • • • •
Keywords •• • • • • • •
Ranges . • • . • • • . • •

print Request Control Arguments •••
Replying to Messages •. •• •
Forwarding a Message •• •••
Deletion and Retrieval • •••

The delete Request
The retrieve Request

Quitting. • • • •••.

vi

2-1

3-1
3-1
3-2
3-3
3-3
3-4
3-4
3-7
3-8
3-9
3-9
3-10
3-10
3-11
3-12
3-12

4-1
4-1
4-3
4-3
4-4
4-4
4-4
4-5
4-6
4-7
4-8
JI_O
~ v

4-8
4-10
4-11

CH23-01

Section 5

Section 6

Section 7

Appendix A

CONTENTS (cont)

Assistance . • • • • • • • . • • • • •
The? Request ••••••
The 1 i st request s Request • • • • •
The help-Request ••••••••.

The list help Request • • • • • • • •
read_mail Command Control Arguments

More On Sending a Message • • • • . • . •
Sending To Several People

The to Request •• . . • • • • • •
The send Request •• • • • • • . •
The cc Request ••• • • • • • • •

Related Header Modifications •.•••
The remove Request . • • •
The subject Request . . • • • • • •
The from Request •• .• •••
The -comment Control Argument .

Storing Your Mail ~ ~ ~ Q ~ 0 • a

Your Logbox • .
The log Request . • .
Examining Your Logbox . . •

Additional Mailboxes
The save Request
The send Request • • •

Examining Other Mailboxes
Your Saveboxes . • • • • • • . • •
Other People's Mailboxes ••.

Mail Segments •• a _ ••• a

The append Request • . • • • . • .
The write Request • • . • 0

The preface Request • • • •

Advanced Mail Features . • • . • . .
Abbreviations •••...
More on Control Arguments • •

Control Arguments and start up.ec
Segmen t s • • . . • . • • • -. • • •

Escaping to Command Level • • • .
The .. Escape ••••••••••
Re-entering the Mail System ..••

Active Requests .••...•
More Requests • • • . • .

The execute Request . •••
The apply Request • . . • ~
The exec_com Request .••••

Mail System Commands
print_mail (prm) .

vii

Page

4-12
4-12
4-13
4-14
4-15
4-15

5-1
5-1
5-1
5-3
5-4
5-5
5-5
5-6
5-7
5-7

6-1
6-1
6-1
6-2
6-3
6-3
6=4
6-4
6-5
6-5
6-5
6-6
6-6
6-7

7-1
7-1
7-3

7-4
7-5
7-5
7-6
7-7
7-8
7-8
7-9
7-9

A-1
A-2

CH23-01

Appendix B

Appendix C

Index

CONTENTS . (e on t)

read mail (rdm)
send=mail (sdm)

. . . . · · . .
Mailbox Commands • •

mbx create (mber) •
mbx-delete ael (mbda)
mbx-list ael (mbla)
mbx=set_ael (mbsa) ••

Glossary

viii

.

.0.
· . .

Page

A-6
A-47

B-1
B-3
B-4
B-5
B-7

C-I

i-I

CH23-0I

SECTION 1

INTRODUCTION

The Multics extended mail system allows you to receive, send,
edit, and save messages in a variety of ways, using a set of
three interactive (prompting) commands. The send_mail command
enables you to send mail to as many recipients as you want, with
the option of changing the elements of the message, such as who
the message is to and from, what the title is, and the text of
the message. A choice of two commands, read_mail or print_mail,
lets you manipulate your incoming messages with either a complete
and versatile mail processing system or a simple subset of this
system, respectively.

The read mail and send mail commands are complementary;
although theIr primary tasks are different, they share several
functions. For examole. each command has access to a group of
internal mail syste~ info segments explaining read mail and
send mail requests. The two commands also have many similar
requests and control arguments. This can seem rather confusing
at first, but as you read on in this manual and become more
familiar with the mail system, you will see that two identical
requests are usually part of a feature that is shared by the two
commands, and therefore the requests both perform the same
action. The manual is organized around the major features of the
mail system and their related requests, in order to clarify these
relationships~

1-1 CH23-01

THE MAILBOX

You must have a mailbox to be able to receive messages. The
mail system automatically creates a permanent mailbox for you,
the first time you issue either the print_mail or the read_mail
command. (This mailbox can also be created by issuing the
accept messages or print messages commands, because the same
mailbox also stores incoming interactive messages.) The pathname
for this default mailbox is:

>udd>Project id>Person id>Person id.mbx - - -
as, for example, in this pathname:

>udd>ProjCat>Willow>Willow.mbx

for the user willow registered on the ProjCat project.

Your mailbox is a container for messages, with its own set of
extended access modes. Extended access modes provide a
specialized form of control, specifying what one can do with
individual messages in a mailbox. Full access is granted to you:
the default access for other users gives them permission to send
messages to your mailbox, and to read and delete only their own
messages. You may extend or curtail the access using mailbox ACL
commands. Extended access modes and mailbox commands are
described in Appendix B.

Users With Multiple Projects

Some users are registered on more than one project, and could
thus have more than one personal mailbox. In this case it is
important to create a mailbox in only one of your home
directories, and to then make "links" from each other home
directory to this mailbox, so that when you are logged in on one
project and receive mail at another project, you can get
immediate notice of the message and process it without having to
log into the other project.

As an example, user Ching is registered on three projects:
ProjCat, Doc, and SoftWork. To make links to one of her
directories (ProjCat) from the other two, she creates a mailbox
in her ProjCat directory, with the pathname:

>udd>ProjCat>Ching>Ching.mbx

After she has created one mailbox, she logs out and logs into
another of her projects (Doc). There she types the link command,
followed by the pathname of the mailbox from her first home
directory:

link >udd>ProjCat>Ching>Ching.mbx

1-2 CH23-Q1

She logs out again, and repeats this from within her third
project:

login Ching SoftWork

•

r 10:37 1.485 32
link >udd>ProjCat>Ching>Ching.mbx

If she had already created a mailbox in her SoftWork project, the
link command would ask her:

link: Do you wish to delete the old mailbox
>udd>SoftWork>Ching>Ching.mbx ?

She would answer yes to this question, because she wants only one
mailbox.

THE MESSAGE

Messages all have a common format within the mail system.
Each one begins with a header consisting of information about the·
message. The standard header tells you who wrote the message and
to whom it was sent, the date and time the message was sent, and
what the subject of the message is. This information is
displayed in header fields, one field to a line. Here is an
example of a standard header:

Date: 1 August 1980 09:14 mst
From: Moch.ProjCat
Subject: picnic
To: Willow.ProjCat

The first line, the Date field, informs you of the date and time
the message was actually written. The person who wrote the
message is noted in the From field, and the title of the message
is in the Subject field. The To field lists the person or people
who received the message.

1-3 CH23-01

The text
line between.

of the message follows the header, with one blank
Here is an example of a complete message:

Date: 1 August 1980 09:14 mst
From: Moch.ProjCat
Subject: picnic
To: Willow.ProjCat

There will be a meeting at 9:30 on Tuesday to discuss
plans for the umpteenth annual office picnic.
Everyone is asked to attend -- please inform
the others in your project.

As incoming mail, the entire message can be read, kept, or
deleted using the print_mail command. Within the read mail
command you can also answer the message, save it in one (or more)
of several kinds of segments, and forward copies to other users.
As outgoing mail, after you create the message with the send_mail
command you can edit both the text and the header information,
save a copy for yourself, send it to one or many people, and
receive an automatic acknowledgement as soon as those users read
it.

REQUESTS (read mail AND send mail)

All of the read mail and send mail options are
issuing requests in the command's request loop, a
mail system that reads the request you type,
specified operation, and finishes with a prompt
another request.

available by
part of the

performs the
to you for

Request usage is governed by regular command language rules:
therefore, you construct request lines just the way you construct
command lines. For example, you can use semicolons to separate
multiple requests on one line:

send mail: print;send:quit

and parentheses can be used for iteration (repetition):

read mail: (print delete) 1

Refer to The New Users' Intro for a review of the Multics command
language.

1-4 CH23-01

Control Arguments and Reguests

Control arguments and requests in the mail system can
occasionally become bewildering. The read mail and the send mail
commands together have over 60 control arguments. Mail system
requests often have the same names as control arguments. In
addition, many requests have their own control arguments, some of
which are identical to command control arguments! It is
important to employ these terms at their correct level (command
level or request level).

As noted in The New Users' Intro - Part I, a command typed to
Multics, possibly including one or more control arguments,
constitutes a command line:

rdm -log -list

A request plus any of its arguments, called a request line, is
typed after a mail system prompt:

read mail: list OR send mail: log

Be careful not to type a request on a command line:

! rdm print
I
I

read mail: Entry not found.
r 09:36 0.231 53

>udd>ProjCat>Willow>print.mbxl

or a command control argument as a request line:

rea d rna i 1 : ! - 1 i s t
read-mail: Unknown request "-list". Type "?" for

a request list.

I ,

Control arguments for both command lines and request lines are
discussed in this manual. For the sake of clarity, most
references to control arguments explicitly indicate "command
control argument" or "request control argument", in order to
differentiate between the two levels. In examples, command lines
always begin with the command's short name (rdm), and request
lines with the prompt (read_mail:).

1-5 CH23-01

HOW TO USE YOUR MAILBOX -- -- ----
A few pointers will help you to use your mailbox and the mail

system successfully and effectively.

Keep your personal mailbox empty, either by
deleting its contents regularly, or by storing
elsewhere for later examination (see Section 6,
Mail", for various ways to do this). This practice
a minimum the amount of mail you must read through
look at your mailbox.

reading and
your messages
"Storing Your
helps keep to
each time you

Interactive messages are one-line messages sent, via the
send message (sm) command, directly to the recipient's terminal.
The notice telling you that a mail system message has arrived is
an interactive message:

From Moch.ProjCat 08/01/80 09:14 mst Fri: You have mail.

You cannot receive interactive messages such as this one until
you issue the accept messages (am) command. By far the easiest
way to issue this command is to place it in your start up
exec com segment, so that you accept messages automatically each
time - you log in. See the New Users' I ntro - Part I I for
information about exec corns, the start up.ec, and accepting and
sending interactive messages. -

Another useful command to place right at the end of the
start_up.ec is read mail (or print mail), or the command line
rdm -list. In this way you can -check the contents of your
mailbox immediately after you log in.

To learn
start_up.ec,
Features".

more about
see Section

including the mail commands in your
7 of this manual, "Advanced Mail

1-6 CH23-01

SECTION 2

THE PRINT MAIL COMMAND

The print_mail command
designed for people who
infrequently.

is
will

a simple interactive command,
be using the mail system

Type the command name print mail (short name prm). The
command prints a banner telling you how many messages you have.
If you have no messages, you are informed of this and returned to
command level. If you have any messages, the command immediately
prints your first message: header and then text. It also prints
a line of information just before the header, noting who mailed
the message and how many lines of text it contains.

After each message
question "Delete IN?".

prm

you are prompted for a
For example:

You have one message.

response with the

#1 (4 lines) 08/01/80 09:14 Mailed by: Moch.ProjCat
Date: 1 August 1980 09:14 mst
From: Moch.ProjCat
Subject: picnic
To: Willow.ProjCat

There will be a meeting at 9:30 on Tuesday to discuss
plans for the umpteenth annual office picnic.
Everyone is asked to attend--please inform
the others in your project.

print mail: Delete #1? ! <type response here>

2-1 CH23-01

Six responses are available:

B ?

Byes (y)

no (n)

print the list of acceptable responses, and
then repeat the query

delete the message and go on

do not delete the message, and go on

reprint (print, pr, p)
print the message again

B abort
delete nothing and return to command level

B quit (q)
delete as directed and return to command level

As soon as you type a response, another message is printed
(unless you have typed ?, abort, or quit); if you have no further
messages, a ready message is printed, indicating that you have
returned to command level.

If you are in the middle of a long message and you decide you
don't want to read any more, press the BREAK or QUIT key on your
terminal. (See the New Users' Intro manual for a description of
issuing the QUIT signal in this manner.) When the system
responds with a QUIT message, type the program_interrupt (pi)
command, which returns you to the print mail query. You can then
delete or save the message, and continue to the next message.

If you supply an incorrect response (for instance, if you
misspell the response), the command suggests that you type a"?"
for the list of responses. If you delete a message and then
decide you still want it, use the abort response to return to
command level, rather than the quit response; the abort response
leaves your mailbox just the way it was when you issued the
print mail command.

2-2 CH23-01

A useful control argument to the print mail command is -list
(-Is). It prints a summary of your messages before going on to
print the first message. Here is a sample for the above message:

prm -Is
You have one message.

Msg# Lines Date Time
1* (4) 08/01/80 09:14

<message #1 is printed here>

From
Moch.ProjCat

Subject:
picnic

This control argument can refresh your memory and save you time,
especially when used in conjunction with the QUIT signal.

2-3 CH23-Q1

*

SECTION 3

THE SEND MAIL COMMAND

The send mail command provides you with the ability to create
and send messages. It also gives you the opportunity to examine
and edit your message before sending it, if you wish.

The first part of this section presents a review of the most
basic use of the send_mail command. After reading this part, you
can go directly to a terminal, write and deliver a message to
another user, and be returned to command level. When you wish to
learn more about' the basic send mail vocabulary of viewing,
editing, sending, and gaining assisIance, you can read on in this
section. Later sections (5, 6, and 7) describe additional
capabilities of the Multics mail system.

BASIC send mail COMMAND

Enter send mail by typing the send mail command (short name
sdm) and the-User id of the person Io whom you are writing.
(Within the mail system, the User id is considered one form of
address, because the mail system uses this information to deliver
the message to the correct mailbox~) Remember that a User id
consists of both a Person id and a Project ide After you type a
newline, send_mail prompts you for the subject of your message:

sdm Willow.ProjCat
Subject:

(A subject line gives the recipient a very useful way of
remembering what the message concerns.) Type in a title and
another newline directly after this prompt. Now send mail
responds with another prompt, indicating that you may proceed
with your message.

3-1 CH23-01

sdm Willow.ProjCat
Subject: ! and you?
Message:

As you type in your message, keep in mind that
characters are always available for correcting or
line you are currently working on.

the # and @
erasing the

The simplest way to conclude your message is to type a period
alone on a line, and then a newline. As soon as you do this, the
message is sent to the person you specified, and you receive a
confirming system note that looks like "Mail delivered to
Willow.ProjCat". Then a ready message is printed, indicating
that you have been returned to command level automatically.

Here is
Note the use
message text.

an example of one complete session in send mail.
of the # character to correct a mistake In the

sdm Willow.ProjCat
Subject: ! and you?
Message:
Are you going to the picnic meeting on Thu##uesday? I hope
to go, but I don't know if
it will be possible • .
Mail delivered to Willow.ProjCat.
r 10:26 0.272 94

THE REQUEST LOOP

The send mail command has several requests that are as useful
to the new user as to more experienced users. As you see from
the example above, however, you have had no opportunity to give
send_mail any requests you are automatically returned to
command level when you finish typing in your message. In order
to issue requests, you must enter the send mail request loop.
The request loop, described in "Requests" in Section 1, is a
repeating cycle consisting of a send mail prompt, your request,
and a resulting send_mail action, followed by another prompt.

3-2 CH23-01

Several ways of entering the send mail
explained in this section. One method -is to
with a "\q" instead of a period. You will be
send mail prompt, indicating that you are
request loop:

sdm Willow.ProjCat
Subject: ! and you?
Message:

request loop are
end your message

answered with the
in the send mail

Are you going to the picnic meeting on Tuesday? I hope
to go, but I don't know if
it will be possible.
\q

send mail:

At this point, you are ready to type any request you wish.

Other methods for entering the request loop are described in
"Editing Your Message" just below, and in "send mail Command
Control Arguments" at the end of this section. For-now, though,
simply type "\q" as the last line of your message.

VIEWING YOUR MESSAGE

The print Request

The send mail print (pr) request displays the message text,
and is preceded by a shortened version of the message header.
The example message from above is used for illustration:

send mail: ! pr

(2 lines in te~t):
Subject: picnlc
To: Willow.ProjCat

Are you going to the picnic meeting on Tuesday? I
hope to go, but I don't know if it will be possible.

send mail:

Notice that the message text does not appear just the way you
typed it in. See "Message Filling" later in this section for a
complete explanation.

3-3 CH23-Ql

*

When you want to see the entire message, header and all, use
the -header (-he) control argument with print:

send mail: pr -he

To view only the text of your message, use the -no header (-nhe)
control argument:

send mail: pr -nhe

The print header Request

The print_header (prhe) request enables you to see the
complete header of a message, without its text:

send mail: ! prhe

(1 line in text):
Date: 1 August 1980 09:14 mst
From: Moch.ProjCat
Subject: picnic
To: Willow.ProjCat

send mail:

To obtain just the shortened header, as illustrated for the print
request above, add the -brief (-bf) control argument:

send mail: prhe -bf

EDITING YOUR MESSAGE

One of the most useful aspects of send mail is its built-in
editor. A version of the qedx editor, it -allows you to change,
delete, and add to your message while you remain in send mail.
However, you do not need to type "w" before you end your editing
session -- the editor does this automatically.

The send mail editor operates like the qedx editor introduced
in the New Users' Intro - Part I, and explained fully in the Qedx
Users' Guide. You are strongly encouraged to turn to one or both
of those manuals, because in this manual only a review of the
simplest subset of editor requests is given.

3-4 CH23-01

When you are first typing in your message and you want to
make chanoes. tvoe "\f" alone on a line. iust as vou do in qedx
when you ~ish to· move 'from input mode to"edit mode:-

Message:
There will be a meeting at 11:00#
\f

When you are already in the send mail request loop and you want
to enter the built-in editor, you should use the qedx (qx)
request:

send mail: qx

Once you are in the editor, you issue editor requests, as opposed
to send mail requests. Here is a list of basic editor requests:

REQUEST

p

=

d

a

s/old/new/

s/old/new/p

DESCRIPTION

prints the specified line(s)

prints the line number of the
specified line

deletes the specified line(s)

adds lines of text after the
specified line

substitutes every occurrence of
the first character string with
the second character string, on
the specified line(s)

same as above, but also prints
the changed line

EXAMPLES

P 2p 1,3p

= $=

d 3d l,Sd

a 2a

s/hte/the/
1,$5/11:00/9:30/

s/hte/the/p

If you wish to abort all changes made within the editor, type
the qedx request 1,$dr on a line by itself. This restores the
original message text to the qedx buffer.

To leave the send_mail editor, simply type q and you will be
returned to the send_mail request loop_ Note that this q request
is the editor quit request, not the send mail quit request {see
"Quitting" below}.

3-5 CH23-Ql

Here is an extended example of how an answer to the previous
message could be constructed. Supplemental comments are
displayed to the right of the example. Spaces that would not
necessarily be in an actual session are included here for
clarity.

sdm Willow.projCat
Subject: ! your talk
Message:
I thik your talk
was good.
If you wtanto to @
If you would like more spcefic
comments, let me know.
\f

Is/k/nk/p
I think your talnk

s/lnk/lk this morning/

s/ink/ought/

1,$p
I thought your talk this morning
was good.

If you would like more spcefic
comments, let me know.
4p
If you would like more spcefic
s/spce/speci/p
If you would like more specific

3d

q

send mail: send

Mail delivered to Willow.ProjCat.

send mail: quit
r 13:02 0.478 92

<a first draft>

<a first draft>

<enter edit mode>

<correct one error, >
< but cause another!>

<fix second error on >
< current line, and>
< add more info >

<another change>

<print entire message>

<--

<correct another error,>
< and print the line >

<delete empty line>

<leave editor>

Further editing features are discussed in Sections 5 ("Mail
Segments") and 7 ("The apply Request").

3-6 CH23-01

SENDING YOUR MESSAGE

Once you are 1n the send mail request loop, it is important
to know the send request -- otherwise your message will not get
delivered. The send mail command delivers mail automatically
only when you bypass the request loop by ending your message with
".", as described in "Basic send mail" at the beginning of this
section.

The simplest way to use this request is to type send~ If you
entered the send mail command with an address, as described in
the beginning of this section, then the message is immediately
sent to the mailbox of the person you specified on the command
line. A notice is printed confirming delivery, as well as the
usual send mail prompt:

send mail: ! send
Mail-delivered to Willow.ProjCat.

send mail:

If the message cannot be delivered, you receive immediate notice
of the cause:

send mail (sena): Some directory in the path specified
does not exist. >udd>ProjCat>Wilow>Wilow.mbx

send_mail (send): The message was not sent.

send mail:

The cause here was a missing "1" in the User id (which you can
correct with the remove and to requests, descrIbed in Section 5).

You may ascertain that the recipient of your message has read
the message by supplying the -acknowledge (-ack) request control
argument with the send request. When the person reads your
message, you automatically receive an interactive message like
this one:

From Willow.projCat 08/01/80 15:41 mst Fri:
Acknowledging your message of 1 August 1980 09:14 est;
Subject: your talk

3-7 CH23-01

Another consequence of using -acknowledge with the send request
is that it adds an extra field to the message header:

(2 lines in text):
Date: 1 August 1980 13:02 mst
From: Merce.ProjDog
Subject: your talk
To: . Willow.ProjCat
Acknowledge-To: Merce.ProjDog

The acknowledgement is sent by
recipient's mailbox automatically.

MESSAGE FILLING

the mail system from the

Once you send your message by typing "." alone on a line
followed by a newline, the message is automatically reformatted.
The right margin of the text is adjusted so that no line has more
than a certain number of characters. This process of message
reformatting is called FILLING. For example, when user willow
reads the text of the picnic message, it looks like this:

There will be a meeting at 9:30 on Tuesday to discuss
plans for the umpteenth annual office picnic. Everyone
is asked to attend -- please inform the others in your
project.

If you type a message onli~e and then use the qedx editor
before sending it, the message 1S filled automatically after you
exit qedx. See Appendix A for further details on filling in qedx
within send mail.

Within send mail, the fill (fi) request allows you to fill
the message text as described above, and to set the line length
of the filled text. By default, the maximum line length of
filled text is set at 72 characters. If you prefer, you can
specify another length with the -line length (-11) control
argument followed by the maximum number of-characters you want:

fi -11 50

3-8 CH23-01

This makes the message text look like this:

There will be a meeting at 9:30 on Tuesday to
discuss plans for the umpteenth annual office
picnic. Everyone is asked to attend -- please
inform the others in your project.

The send mail control argument -line length (-11) also formats
the text In the manner described above:

QUITTING

Leaving send mail is usually easy: just type "quit" or "q".
When you have left unfinished business, though, send mail checks
to make sure that you really want to exit:

send mail: ! q
send-mail (quit): Message has not been sent, saved, or

written. Do you still wish to quit?

If you purposely wish to leave send mail without sending a
message, you can avoid send mail's query with the -force (-fe)
control argument to the quit-request:

send mail: q -fc
r 13:07 0.332 116

As the ready message shows, you are immediately returned to
command level.

ASSISTANCE

The send mail command has four means of assistance available
while you are working.

3-9 CH23-Q1

The 1 Request

When you forget the name of a request, or which letter is the
short name for what request, type the? request. It prints a
multi-columnar list of all requests and their short names. Here
is an abbreviated version of the? request and response, listing
only the requests discussed in this section:

sen d rna i 1 : !?

Summary of send requests:

quit, q
send

print, pr, p
qedx, qx

fill, fi help
print_header, prhe

Type "list_requests" for a short description of the
requests.

send mail:

The list requests Request

If you want to obtain a brief description of the available
requests, type the list requests (lr) request. It prints a list
of all requests, plus a memory-jogging, one-line description of
each request. The lr request also provides several lines of
significant information preceeding the list of requests. Here is
an example of the list_requests request and response (only the
requests already discussed in this section are listed):

sen d rna i 1 : ! 1 r
Summary of send mail requests:

use " •• COMMAND LINE" to escape a command line to Multics.
Type "list_help" for a list of topics available to

the help request.
Type "help TOPIC" for more information on a given topic.

quit, q
print, pr, p
print header,

prhe
qedx, qx
fill, fi
help
?

send mail:

Leave send mail.
Print the specified message.

Print the message's header.
Edit the message.
Reformat text to fit given width.
Obtain detailed information on send mail.
Produce a list of the most common requests:

3-10 CH23-01

In addition, you can specify a topic name with the lr
request, and receive a list of all requests which contain that
topic name. For example, you may want to know what requests
contain the word "list" in send mail:

send mail: lr list

list help, lh
list:requests, lr

List topics for which help is available.
List brief info on send mail requests.

send_mail:

The help Reguest

For detailed information on how to use a particular request,
type "help" followed by the name of the request:

send mail: ! help quit
(6 lInes follow; 16 in info)
09/26/82 send_mail request: quit, q

Syntax: quit {-control_args}

Function: exits send mail.

Control arguments (8 lines). More help? yes

Control arguments:
-force, -fc

causes send mail to exit even though the message has
been modified since it was last sent, saved, or written.

-no force, -nfc
causes send mail to query the user for permission to
exit if the-message has been modified since it was last
sent, saved, or written. (Default)

send mail:

The help request is similar to the Multics help command, but it
is simpler and more restricted. It offers an internal set of
info segments on every send mail request, and on selected other
topics concerning send mail. For a list of topics, use the
list_help request (descrIbed below).

3-11 CH23-01

Most of the control arguments accepted by the Multics help
command are accepted by the help request. The -brief (-bf)
control argument is particularly useful: it produces a summary of
the request, including the syntax line, arguments, and control
arguments. For a complete description of the help request, type
"help help".

The help request is a prompting request, asking you at
several points if you want more information. The example above
illustrates one of the possible responses to the help prompt:
"yes". If you want a list of all the responses that you could
give while inside the help request, type a "?" in answer to the
help prompt.

If you type
response which
information.

the help request with no arguments, you get a
explains several ways to obtain online

The list help Request

For a list of available info segments on send mail topics, type
the list_help (lh) request. If you specify a topic after the
request, you receive a list of all send mail info segments
pertaining to that topic. For example:

send mail: ! list_help print

Topics available for send mail:

print
print_header

send mail:

send mail CONTROL ARGUMENTS

All the control arguments discussed up to this point have
been request control arguments, added to the request line after
the request to which they belong as, for example:

send mail: ! pr -nhe or send mail: ! q -fc

3-12 CH23-01

The send mail command itself also has a set of control arguments,
as noted in Section 1; you include them on the command line,
after typing "send_mail" and a User_ide Here are two that may be
useful to you.

The best method for entering the send_mail request loop is
via the command control argument -request_loop (-rql):

send mail Willow.ProjCat -rql

After you are prompted for the
you may conclude the text with
with a send mail prompt:

subject and text of your message,
a period, and you will be greeted

<text of message>
! .

send mail:

An interesting and handy control argument is called
-input_file <path> or -if <path>. This permits you to send a
regular ASCII segment as a message. For instance, a list of
picnic foods in a segment named "victuals" can be sent this way:

sdm willow.ProjCat -if victuals
Subject: ! picnic stuff

sen d rna i 1 : ! sen d; q
Mail-delivered to Willow.ProjCat.
r 16:11 0.291 86

The segment that you send should contain only the message text,
because send mail supplies the message header.

Notice that when using the -input file control argument you
can still provide a subject for the message. Also, you can use
the built-in editor or other send mail requests, because you are
put into the send mail request loop after you provide the message
subject.

3-13 CH23-01

When sending a message using the -if control argument, the
message text is not automatically filled. It is assumed that you
have already formatted the file before sending it. If you wish
to reformat the file while sending it, use the fill request.
This request causes the text to be reformatted in the manner
described in "Message Fillingn earlier in this section. For
example, user Moch.ProjCat sends an input file which is filled to
the default line length of 72 characters, with the following
lines:

sdm Willow.ProjCat -if victuals
Subject: picnic stuff

send mail: fill: send
Mail-delivered to Willow.ProjCat.

send mail:

The -acknowledge (-ack) command control argument provides you
with a confirmation of your message being read, without you
having to enter the request loop.

The send mail command has many more control arguments. Most
of them are presented in later sections of this manual. A
complete list of the available control arguments is in
Appendix A.

3-14 CH23-01

SECTION 4

THE READ MAIL COMMAND

The read mail command is a flexible interactive command. It
is designed to be completely accessible to the novice, and also
useful for a variety of advanced purposes.

The first part of this section presents, in brief, the most
basic use of the command. After reading this part, you can go
directly to a terminal and perform the simplest tasks of reading
and discarding one or more of your messages, and returning to
command level. When you wish to learn more about the basic
read mail vocabulary, you can read on in this section. Later
sectIons (5, 6, and 7) present additional capabilities within the
read mail and send mail commands.

BASIC read mail REQUESTS

When you type read mail (short name rdm), the command prints
a banner telling you how many messages you have. It then skips a
line, and types a prompt:

I
I rdm
I You have 2 messages.
I
I read mail:
L_

4-1 CH23-Ql

The command waits for you to type a read_mail request in response
to this prompt. (If you have no mail, a notice is printed
telling you this, and you are returned to command level.) When
you type a request, read_mail performs the task you have
requested and then prompts you again for another request. The
four most basic requests are:

~ list (Is) prints a heading line, and then one line of
information about each message. The first
column contains the message number, denoting
the position of that message in the mailbox.

read mail: ! Is

Msg#
1*
2

Lines Date
(4) 08/01/80
(2) 08/01/80

read mail:

Time
09:14
10:26

From
Moch.ProjCat
Brie.ProjDog

Subject
picnic
and you?

I B print (pr, p) prints the header and text of the message or
messages you specify; a message is specified
by its message number. Type the message
number directly after the request (e.g.,
print 1).

read mail: ! pr 2

#2 (1 line) 08/01/80 10:26 Mailed by: Brie.ProjDog
Date: 1 August 1980 10:26 mst
From: Brie.ProjDog
Subject: and you?
To: Willow.ProjCat

Are you going to the picnic meeting on Tuesday? I
hope to go, but I don't know if it will be possible.
---(2)---

read mail:

4-2 CH23-Ql

B delete (dl, d) deletes the message or messages you specify.
Type the message number directly after the
request.

read mail: dl 2

aD quit (q) returns you to command level.

read mail: q
r 14:22 0.445 325

LISTING AND PRINTING

The list Reguest

The list (15) request serves as a handy reference tool in
many situations. It provides a one-line summary of relevant
information about each of your messages; this aids in deciding
what you want to do with them. Here is a sample list summary
from a mailbox with four messages:

Msg#
1*
2
3
4

Lines
(4)
(2)
(2)

(27)

Date
08/01/80
08/01/80
08/01/80
08/01/80

Time
09:14
10:26
13:02
16:47

From
Moch.ProjCat
Brie.ProjCat
Merce.ProjDog
Edgar.ProjDog

Subject
picnic
and you?

I
I
I
I

your talk I
comments y<MORE>I

I

The Message Number column shows the position of each message in
this mailbox at this time. The Lines column includes only the
lines of text in a message, not the number of header lines. The
date and time that the message was sent to you are recorded also,
as is the person who sent it to you. If the sender has included
a subject, the Subject column includes as much of the subject as
will fit on the rest of the line. The asterisk next to a message
number indicates which is the current messageo

4-3 CH23-01

You can use the list request to give you a summary line about
a single message: simply follow the request name with a message
number:

rea d rna i 1 : ! 1 s 4

Msg# Lines Date Time
4* (27) 08/01/80 16:47

From
Edgar.ProjDog

Subject
comments

I
I
I
I

y<MORE>I
I

At the end of the summary line, "<MORE>" indicates that the title
is longer than can fit on the line. Also notice the asterisk
after message #4 -~ listing a message makes it become the current
message.

The print Request

As noted above, the print (pr, p) request prints both header
and text of the message or messages you specify. With a summary
of messages in front of you, you can use the print request more
effectively. If you have many messages, you can choose which
message to print first, or you can decide not to read certain
ones at this time.

MESSAGE SPECIFIERS

In order to print your messages so far, you have issued the
print request followed by a message number. A message number is
one of several MESSAGE SPECIFIERS: ways of indicating which
messages you want to see.

Keywords

Another kind of message specifier is the keyword. These
keywords are used just like message numbers:

• current (short name c)

• next (n)

II previous (p)

II first (f)

B last (1)

B all (a)

4-4 CH23-01

When you type "current" directly after the print request ("pr
current"), you get the message that is currently being worked on
by the read mail command. The current message is always message
#1 at first, and it shifts when you issue a request that deals
with some other message; for example, when you first enter
read mail, message #1 is the current message, but when you type
"pri~t 2" then message #2 becomes the current one. You can also
type simply "print" to see the current message.

The "next" and "previous" keywords refer to the messages
relative to the current message, so they shift as the current
message shifts. The "first" and "last" keywords operate on the
first and last remaining messages in the mailbox.

Ranges

There are also several ways to print more than one message
at a time. When you know exactly which messages you want to see,
you may type several message numbers separated by spaces:

P 3 1 4

The messages are printed in the order you specify_

If you want to see several messages in a row, you can specify
a range by typing a message specifier for the earliest message
you want, then a colon, and then a message specifier (no
intervening spaces) for the last message you want, like this:

pr 2:4

This prints messages #2, #3, and #4 for you. The keyword "all"
prints all the undeleted messages in your mailbox.

When specifying a range, you can use any combination of the
above-mentioned message specifier types. For example, assuming
there are four messages in your mailbox and message #1 is the
current message, all of the following expressions yield the same
result:

print r:last
pr c:4
pall
print 1:3 last

p i:4
pr 1 2 3 4
pr c:last

For further information on message specifiers, see Appendix A.

4-5 CH23-01

print REQUEST CONTROL ARGUMENTS

In some cases you know that you
particular message after you read it.
argument is useful then:

will not want to keep a
The -delete (-dl) control

p first -dl

This request line is equivalent to:

p first:d first

After the message you specify is printed out for you, it is
deleted.

If you wish to bypass printing the full header when reading a
message, you can supply the print request with its -no_header
(-nhe) control argument. A shortened header is then printed
before the text of the message, including only essential
information:

read mail: ! pr 3 -nhe

#3 (2 lines) 08/01/80 13:02 Mailed by: Merce.ProjDog
From: Merce.ProjDog
Subject: your talk

I thought your talk this morning was good. If you
would like more specific comments, let me know.

---(3)---

read mail:

The first line of the shortened header includes the date and time
the message was sent to this mailbox, which can be different from
when the message was written or first sent.

4-6 CH23-01

There may be times when you need more information about a
message than you can get from the list request, but you don't
want to read through the text of the message. The read mail
request print_header functions just as the send_mail print_header
request dOes:

read mail: ! prhe 3

#3 (2 lines) 08/01/80 13:02 Mailed by: Merce.ProjDog
Date: 1 August 1980 13:02 mst
From: Merce.ProjDog
Subject: your talk
To: Willow.ProjCat

read mail:

The need for the print header request occurs more frequently as
~ou (or the people sending you messages) learn to send messages
ln more complex ways. Several of the additional read_mail and
send_mail requests add extra header fields to message headers.

REPLYING TO MESSAGES

In many cases the most efficient way of responding to the
messages you receive is with the reply (rp) request. When you
supply the reply reauest with one messaQe soecifier. vou are
immedlately placed in-send mail and prompted for the text of your
reply:

read mail: ! rp 2
Replying to Brie.ProjDog
Message:

The subject of your message is automatically taken from the
Subject field of the message you are replying to:

Subject: Re:

unless you specify another subject with the send mail subject
request. You can reply to only one message at a time.

To send the reply, simply type a period, as you would a
regular message. Because you create the reply using send mail,
you can also type "\q" to enter the send mail request loop.- When
you leave send mail (via the quit request or "."), you are
returnee to read-mail.

4-7 CH23-01

When reply is used, the In-Reply-To field is added to the
message header of the reply:

In-Reply-To: Message of 1 August 1980 10:26 mst from Brie.ProjDog

This tells the recipients which message is being answered. Many
of the send_mail command control arguments can be used on the
reply request line. See Appendix A for details on this request.

FORWARDING A MESSAGE

You have the option of sending on copies of the messages you
receive, with the forward (fwd, for) request. Follow the request
name with the message specifier and the address(es) of
recipients:

read_mail: ! fwd 1 Scout.ProjCat When you use forward,
several new fields are added to the message header:

Redistributed-Date: 1 August 1980 15:32 mst
Redistributed-By: Willow.ProjCat
Redistributed-To: Scout.ProjCat

This indicates to recipients how the forwarding was performed.

DELETION AND RETRIEVAL

The delete Request

Once you have read a message and kept it in this mailbox as
long as you want, you can delete it from your mailbox easily with
the delete (dl, d) request and a message specifier. In fact, you
may include several message specifiers in your delete request
line:

read mail: d 4 2

read mail:

4-8 CH23-01

Notice that message specifiers may appear in any order, and they
may have any number of spaces separating them. When you issue
the list request after deleting messages, you receive a summary
of the remaining messages, still with their original message
numbers:

Msg#
1
3*

Lines
(4)
(2)

Is

Date Time
08/01/80 09:14
08/01/80 13:02

From
Moch.ProjCat
Merce.ProjDog

Subject:
picnic
your talk

l
I
I
I
I
I
I
I
I

Message numbers do not get reassigned to the remaining messages
until you quit the read_mail command.

If you try to delete a message which hasn't been listed,
printed, saved, or written, you are queried with a prompt:

read rna i 1 : ! dl 3

read_mail (delete): Message #3 has not been processed.
OK to delete? ! no

read~rnail (delete): No messages deleted.

read mail:

If you answer "no" to the query, no messages are deleted, as in
the example above. If you answer "yes", the message is deleted.
There is no acknowledgment of the deletion; you are simply
prompted for another request.

When you have deleted each message in the mailbox, you are
sent the notice:

All messages have been deleted.

4-9 CH23-01

The retrieve Request

Deleted messages are not really deleted. They are merely
"marked for deletion". They actually remain in the mailbox until
you leave the mail system (with the quit request) and return to
command level. If you have not yet left read mail, you can
return your deleted messages to your mailbox by issuing the
retrieve (rt) request with the message numbers of your deleted
messages:

read mail: dl 4

read mail: rt 2 4

read mail:

Because message numbers are not reassigned when a message is
deleted, you simply type the message number that that message had
before you marked it for deletion. Other forms of message
specifier should not be used.

To check on the correct message number of a deleted message,
type the list request with the -include deleted (-idl) control
argument. Assume the current message is message #2, and observe
the following:

read mail:

read mail:

Msg#
1
21
3*
4

Lines
(4)
(2)
(2)

(27)

read mail:

dl 2

Is -idl

Date
08/01/80
08/01/80
08/01/80
08/01/80

Time
09:14
10:26
13:02
16:47

From
Moch.ProjCat
Brie.ProjDog
Merce.ProjDog
Edgar.ProjDog

Subject:
picnic
and you?
your talk
comments y<more>

The -include deleted control argument to the list request lists
all messages, including deleted ones. An exclamation point
beside a message number signifies a deleted message. Note that
once message #2 is deleted, the current message automatically
becomes #3.

4-10 CH23-01

The print request also has the -idl control argument,
performing the parallel operation with deleted messages, If
message #2 has been deleted, then this request line:

read mail: p 1:3

prints only messages #1 and #3, but this line:

read mail: p 1:3 -idl

prints messages #1, #2, and #3=

Remember: no message is truly gone until you issue the quit
request. Once you leave read_mail, though, you can no longer
retrieve deleted messages.

QUITTING

All you need to do to leave read mail is type quit, or just
q. But even the quit request has a couple of special features.

If you have been trying out various combinations of lists,
message specifiers, deleting, and retrieving, you may be confused
and worried about quitting and possibly deleting messages that
you want to keep. Now is the time to use the -no delete (-ndl)
control argument of the quit request: -

I-

I <too many requests>
I
I read mail: q -ndl
i r 11:43 0.343 133
I

This discards all modifications that you have made during this
session with read mail. Next time you enter read_mail you will
find your mailbox just the way you found it this time (plus any
messages that have arrived since then). This control argument
can be better than aspirin.

4-11 CH23-01

*

Sometimes when you issue the quit request you receive a note
like this:

read mail (quit): A new message has arrived. Do you
stIll wish to quit?

You must answer either yes, in which case you are returned to
command level, or no, which gives you another read mail prompt.
If you use the -force (-fc) request control argument-with quit:

read mail: ! q -fc
r 11:43 0.0703 286

you are returned to command level with no questions asked.

ASSISTANCE

The read mail command has
available while you are working.

several means of assistance

The 1. Request

When you forget the name of a request, or which letter is the
short name for what request, type the? request. It prints a
multi-columnar list of all requests and their short names. Here
is an abbreviated version of the? request and response, listing
only the requests discussed so far in this section:

read mail: !?

Summary of read mail requests:

help
quit, q

print, pr, p
list, ls

delete, dl, d
retrieve, rt

reply, rp

Type "list requests" for a short description of the
requests. -

read mail:

4-12 CH23-Ql

The list requests Request

If you want to obtain a brief description of the available
requests, type the list requests (lr) request. It prints a list
of all requests, plus a memory-jogging, one-line description of
each request. The lr request also provides several lines of
significant information preceeding th-e·list of requests. Here is
an example of the list requests request and response (only a few
of the requests already discussed in this section are listed):

rea d rna i 1 : ! 1 r
Summary of read mail requests:

use " •• COMMAND LINE" to escape a command line to Multics.
Type "list help" for a list of topics available to

the help-request.
Type "help TOPIC" for more information on a given topic.

quit, q
print, pr, p
list, Is
delete, dl, d

read mail:

Leave read mail.
Print the specified messages.
List the specified messages.
Delete the specified messages.

In addition. you can specify a topic name with the lr
request, and receive a list of all requests which contain that
topic name. For example, you may want to know what requests
contain the word "list" in read mail:

read mail: lr list

list, Is
list help, Ih
list-requests, lr

read mail:

List the specified messages.
List topics for which help is available.
List brief info on read mail requests.

4-13 CH23-Ql

The help Request

For detailed information on how to use a particular request,
type "help" followed by the name of the request:

read mail: ! help quit
(6 lInes follow; 27 in info)
09/28/82 read_mail request: quit, q

Syntax: quit {-control_args}

Function: deletes any message marked for deletion and
exits read mail.

Control arguments (7 lines). More help? yes

Control arguments:
-delete, -dl

specifies that messages marked for deletion should indeed
be deleted before exiting. (Default)

-no delete, -ndl
specifies that messages marked for deletion are not to be
deleted.

7 more lines. More help? no

read mail:

The help request is similar to the Multics help command. It
offers an internal set of info segments on every read_mail
request, and on selected other topics concerning read mail. For
a list of the topics, use the list_help request described below.

The help request is a prompting request, asking you at
several points if you want more information. The example above
illustrates two of the possible responses to the help prompt,
"yes" and "no". If you want a list of all the responses that you
could give while inside the help request, type a? in answer to
the help prompt.

Most of the control arguments accepted by the Multics help
command are accepted by the help request. The -brief (-bf)
control argument is particularly useful: it gives you a summary
of the request, including the syntax line, arguments, and control
arguments. For a complete description of the help request, type
"help help".

4-14 CH23-01

If you type
response which
information.

the help request with no arguments, you get a
explains several ways to obtain online

The list help Reguest

For a list of available info segments on read_mail topics, type
the l.ist help (lh) request. If you specify a topic after the
request, you receive a list of all read mail info segments
pertaining to that topic. For example: -

read mail: ! list_help print

Topics available for read mail:

print
print_header

read mail:

read mail CONTROL ARGUMENTS

All the control arguments discussed up to this point have
been request control arguments, added to the request line after
the request to which they belong -- as, for example:

read mail: pr 4 -nhe or read mail: q -fc

The read mail command itself also has a set of control arguments:
you include them on the command line, just after typing
"read_mail".

4-15 CH23-Q1

One command control argument may be of particular use to you
at this point. By now you may rely on the list request so much
that you would like to see a list of your messages as soon as you
enter read mail. In this case, use the -list (-ls) control
argument:

! rdm -Is
yo~ have 4 messages.

Msg#
1*
2
3
4

Lines
(4)
(1)
(2)

(27)

read mail:

Date
08/01/80
08/01/80
08/01/80
08/01/80

Time
09:14
10:26
13:02
16:47

From
Moch.ProjCat
Brie.ProjDog
Merce.ProjDog
Edgar.ProjDog

Subject
picnic
and you?
your talk
comments y<MORE>

After the list summary is printed, you are prompted for your
first request.

You may wish to have your messages printed with the brief
type of header each time you issue the print request, rather than
seeing the complete header. To have this as your default action,
add the -no header (-nhe) command control argument to the
read mail command line:

rdm -nhe

For those times that you do wish to see the full header, you can
specify the -header (-he) request control argument on the print
request line:

read mail: p -he

The read mail command has many more control arguments. Most of
them are-presented in later sections of this manual. A complete
list of the available control arguments is in Appendix A.

4-16 CH23-01

SECTION 5

MORE ON SENDING A MESSAGE

With the send mail command, you have learned how to create,
edit, and send a message to one person. The first part of this
section describes various ways of sending a message to as many
users as you like.

Most of the requests described below affect the message
header, because message headers contain the entire "history" of
their messages, including information such as who sent the
message and all the people who received it. So far, when you
have sent messages, the mail system has gathered this information
and automatically compiled the full header, with you adding only
the title. In the second part of this section, you learn ways of
modifying the header yourself.

SENDING TO SEVERAL PEOPLE

The to Request

The best way to send your message to several people is to use
the to request in conjunction with the send request. There are
many times when you already know all the people who should read a
particular message. Perhaps it is also desirable that the
recipients know who else receives the message. The to request
lets you create a list of recipients for the message, which you
can add to at any point:

to Edgar.ProjDog

5-1 CH23-01

When your message is completely ready to go, you just type the
send request with no addresses; and the message gets delivered to
all the people you've listed:

send mail: to Edgar.ProjDog

send mail: <other requests>

send mail: to FNewton.ProjDog

send mail: send
Mail-delivered to Willow.ProjCat.
Mail delivered to Edgar.ProjDog.
Mail delivered to FNewton.ProjDog.

send mail:

You may also type "to" without any addresses, to obtain the
complete list of recipients:

send mail: to
To: -Willow.ProjCat, Edgar.ProjDog, FNewton.ProjDog

send mail:

Now if you type the print header request you will see an expanded
To field in the message header:

send mail: prhe

(4 lines in text):
Date: 1 August 1980 09:14 mst
From: Moch.ProjCat
Subject: picnic
To: Willow.ProjCat, Edgar.ProjDog, FNewton.ProjDog

5-2 CH23-Ql

The send Request

The most obvious way to send one message to several people is
to use the send request several times:

send_mail: send Edgar.ProjDog
Mail delivered to Edgar.ProjDog.

send_mail: send FNewton.ProjDog
Mail delivered to FNewton.ProjDog.

send mail:

This certainly works, and if you keep remembering more people to
send the message to after you've already sent it, this is the
quickest way. However, the fact that this message has been sent
to two people does not appear in anyone's message header. You
are the only person who knows all the people who received this
message, when you use the send request.

Most requests that accept address arguments at all acceot as
many addresses as you want to type. A more efficient way of
sending a message to the users listed above is:

~cn~ ma~'. ~on~ ~~"~~ o~~~n~" ~Ue~~-~ n~-~D-~ _u. &\oA ""' 'ju v J .&JV':::! ... - 1" "\,. VI' • ~.L V J v~

Mail delivered to Edgar.ProjDog.
Mail delivered to FNewton.ProjDog.

send mail:

In this situation, the default is that if the message cannot be
delivered to one of the specified recipients (because of a
misspelled address, for instance), it is not sent to any
recipients. To reverse this default action, type the -no abort
control argument to the send request: now the message wIll be
sent to all valid addresses.

Of course, you can accomplish the same result as above by
typing the names of all the recipients on the send mail command
line:

send mail Edgar.ProjDog FNewton.ProjDog

5-3 CH23-Ql

The ££ Reguest

You also have the option of sending "carbon copies" of a
message to users who are not directly involved in the topic you
are writing about, but who nevertheless are interested in or
otherwise connected with the topic. The cc request thus
simulates letter and memo procedure in a typical office
environment.

Use this request just like the to request:

send mail: cc scout.ProjCat Merce.ProjDog

send mail: cc
cc: -scout.ProjCat, Merce.ProjDog

send mail:

You can also type the request without addresses, to see whom you
already have on your cc list.

These secondary recipients will receive the message as soon
as you type the next send request with no addresses:

send mail: cc scout.ProjCat Merce.ProjDog

send mail: send
Mail-delivered to Scout.ProjCat.
Mail delivered to Merce.ProjDog.
Mail delivered to Edgar.ProjDog.
Mail delivered to FNewton.ProjDog.

send mail:

As the example shows; all recipients from all lists receive the
message when you type the send request with no addresses, even if
they have already received a copy. Thus, when using the to and
cc requests, you should not issue a send request until after you
have included all recipients.

When you do type send with addresses, only the people who are
listed on this send request line receive the message at this
time, even if you also have unprocessed lists of other
recipients.

5-4 CH23-Ql

To see how the cc request changes a header, type the
print_header request:

send mail: prhe

(4 lines in text):
Date: 1 August 1980 09:14 mst
From: Moch.ProjCat
Subject: picnic
To: Willow.ProjCat, Edgar.ProjDog, FNewton.ProjDog
cc: Scout.ProjCat, Merce.ProjDog

send_mail:

The cc field has been added to the header information.

RELATED HEADER MODIFICATIONS

Once you are using the mail system for much of your written
communication, you will probably start wishing that you could
make more changes, not just in the text of your messages, but in
the headers. What if you accidentally include an inappropriate
address in the To field? How can you give an edited version of
one message to a completely new set of people? Below are several
more requests that help you tailor one message to suit varying
requirementso

The remove Request

Almost as important as knowing how to add recipients for a
message is knowing how to delete a recipient's name, before you
send the message. This is one of several tasks that the remove
request can easily accomplish for you.

The simplest way to delete addresses from lists of recipients
is to type the remove (rm) request followed by all the addresses
of those people whom you do not want to receive the message:

send mail: rm FNewton.ProjDog Scout.ProjCat

This request deletes FNewton and Scout from all lists in which
they appear (if you had placed FNewton.ProjDog on both the To and
the cc lists by mistake, both occurrences of that User id would
now be deleted). The remove request control argument -all (-a):

send mail~ rm -all

removes all addresses from the To and cc lists.

5-5 CH23-01

To be more specific as to which field you wish to delete
from, you can use one of the remove control arguments. They are
named after header fields, although the control arguments are, of
course, in lowercase. For instance, to delete an address from
only the cc field, this is the correct request line to type:

send mail: rm -cc scout.ProjCat

Another remove control argument allows you to delete all
addresses from the given field: use the -all (-a) control
argument after the appropriate field control argument:

send mail: rm -cc -all

This also removes the ec field from the header.

If you become confused at any time about what you have done,
remember that you can check the contents of any list by typing
just the original request with no addresses (to or ce) or you can
examine the entire header with the print_header request.

The subject Request

The title of a message, in the Subject field, may be both
viewed and changed with the subject (sj) request:

send mail: subject
Subject: picnic

<viewing the title>

send mail: sj meeting for picnic <changing the title>

send mail:

Following the subject request
deletes the previous title.
Subject field, use the remove
control argument:

send mail: rm -sj

with a new
In order to
request with

title automatically
entirely erase the

the -subject (-sj)

In general, though, people appreciate seeing the subject of the
messages they receive.

5-6 CH23-Ql

The from Request

Although with you as the sender of a message, your User_id
must be present somewhere in the header, you may modify what is
in the From field, with (what else?) the from request. This
request is also useful for including several names or User_ids:

send mail: from Willow.ProjCat Scout.ProjCat

when more than one person is responsible for the message.

When you change the From field, a new field is automatically
added to the header -- the Sender field -- so as to indicate who
actually delivered the message to this mailbox:

(1 line in text):
Date: 1 August 1980 17:11 mst
From: Willow.ProjCat, Scout.ProjCat
Subject: that meeting
Sender: Willow.ProjCat
To: Moch.ProjCat

As with the other requests, issuing the from request alone gives
you a look at what is currently in the From field. To remove the
entry, use the "remove -from -all" request line: in this case,
your User id replaces the previous entries, and the Sender field
is deleted from the header.

The -comment Control Argument

You can add information to the recipients' addresses in much
the same way that you use the from request to supplement your own
User_ide The send mail command and any request that accepts
addresses also accepts the -comment (-com) control argument,
followed by a quoted character string. Here are two examples:

sdm Moch.ProjCat -comment FYI

send mail: from Willow.ProjCat -com "pil Willow"

Quotation marks are unnecessary for comments without blanks or
punctuation marks, as in the first example above.

5-7 CH23-Q1

The resulting comment is placed in parentheses within the
header, next to the address:

(3 lines in text): .
Date: 1 August 1980 16:21 mst
From: Willow.ProjCat (pil Willow)
Subject: I can't go
Sender: Willow.Projeat, scout.Projeat
To: Moch.ProjCat (FYI)

If you delete the commented addres~, any following comments are
also deleted.

5-8 CH23-01

SECTION 6

STORING YOUR MAIL

The read mail and send mail commands have in common a group
of requests that can store your mail in several types of segment,
depending on how you plan to use the messages. Although there
are slight differences between the read_mail and send_mail
versions of the requests discussed in this section, the functions
are the same for both.

YOUR LOG BOX

Just as every Multics user creates a personal mailbox for
collecting incoming messages, everyone can have a default logbox
made in which to log or keep messages. With this extra mailbox
you can more thoroughly examine messages at your convenience, and
yet keep your regular mailbox clear for new messages.

The logbox operates just like your regular mailbox. When you
log messages from your personal mailbox into your logbox, the
complete header as well as the text of each message is logged,
ready to be examined. The only differences are that the logbox
has a different name, and your mail does not get delivered
directly to the logbox -- in fact, no users other than you are
allowed to place mail in your logbox unless you give them
permission by changing the extended access modes (Appendix B)a

The l£g Request

As soon as you first use the log request (in either send mail
or read mail), you receive a system note letting you know-your
logbox Is being created. Its pathname is:

>udd>Project_id>Person_id>Person_id.sv.mbx

Notice the suffix ".sv.mbx" as part of the logbox name. You will
probably never need to use this pathname, though, because in both
read mail and send mail the log request delivers messages to your
logb~x aj~·omatically.

6-1 CH23-Q1

FROM read mail

When you are in read mail, and you wish to place copies of
some messages into your logbox, type the log request, and message
specifiers to indicate which messages you wish to log:

read mail: log 2 4

If you would like your logged messages to be deleted from your
regular mailbox, you may use either the delete request or the
-delete (-dl) request control argument of the log request:

read mail: ! log 2 4: dl 2 4 OR read mail: ! log 2 4 -dl

You may also log already deleted messages (as long as you have
not exited from read_mail since you deleted those messages!) by
using the log -include_deleted (-idl) request control argument.
Assuming message #1 has been deleted, this request line:

log 1:4 -idl

logs all four of the indicated messages. You may include the
-delete request control argument along with the -idl request
control argument here:

log 1:4 -idl -dl

which deletes the remaining undeleted messages (messages #2, #3
and #4) within that range.

FROM send mail

Inside send mail, you may log a copy of the message you are
creating simply-by typing the log request:

send_mail: log

No message specifiers or control arguments are necessary here,
because you have only one message in send mail at a time.

You can also direct the send mail command to log messages by
adding the send mail -log control-argument to the command line as
you enter:

sdm Willow.ProjCat -log

By including -log on the command line, you are also adding your
own User id to the cc header field.

6-2 CH23-Q1

Examining Your Logbox

Because your logbox is one form of mailbox, you uSe the
read mail command to examine its contents. To specify that you
want-to see the logbox, include the -log command control argument

. after the command name, with any other command 'control arguments
you want:

rdm -log -list

The -log control argument causes read mail to read only the
contents of the logbox. All read mail requests and control
arguments are available for your use.

ADDITIONAL MAILBOXES

The save Reguest

The save request enables you to "file" your messages by
topic, anywhere that you have access. This request creates extra
mailboxes whenever and wherever you need them, and then, like the
log request, stores the specified messages in whichever mailbox
you indicate. This kind of mailbox is called a savebox; its
pathname is:

>udd>Working_Directory>Name.sv.mbx

where "Working_Directory" is the directory you are currently in,
and "Name" is chosen by you. User willow's "outgoing" savebox,
in her "canine" directory, has this pathname:

>udd>ProjCat>Willow>canine>outgoing.sv.mbx

WITHIN send mail

To create your first savebox for a message
type a save request line as if the desired
existed. Following the send mail prompt, type
pathname you have chosen for the new mailbox:

send mail:

you are sending,
savebox already
"save" and the

The mail system automatically adds on the ".sv.mbx" suffix and
then verifies your intentions with this message:

I
send_mail (send): >udd>ProjCat>Willow>picnic_info.sv.mbx notl

found. Do you wish to create it? I
.......-. ____ . __ .. I

6-3 CH23-Ql

Answer "yes", and a copy of your message is now stored in your
new "picnic_info" savebox.

If you know before you even enter send mail that you will
want to save the message you are about to create, you can enter
send mail with the -save <path> (-sv <path» control argument to
direct the coming message to the named savebox:

sdm FNewton.ProjDog -save picnic_info

As with the send mail -log control argument, your User id is
placed in the cc- header field, and a copy is saved In the
specified savebox whenever the message is sent.

WITHIN read mail

When you are in read mail, you receive the same response as
in send_mail from the mail system, when you use the save request
with a new savebox name. In read_mail, though, you should supply
message specifiers before typing the savebox name, to make clear
which message or messages you wish saved:

read mail: save 2 5 picnic_info

The read mail save request allows the use of a -delete (-dl)
request control argument:

read mail: save 2 5 picnic_info -dl

so that you can clear your regular mailbox of messages as soon as
they have been placed elsewhere. It also allows the
-include deleted (-idl) request control argument, described above
in "The log Request".

The send Reguest

Among its many other features, the send request includes the
two control arguments -log and -save <path>. These request
control arguments perform the same actions to the messages
specified on the send request line as do their request namesakes.
For example, this request line:

send mail: send Scout.ProjCat -save picnic_info

sends the message to scout.ProjCat
sender's picnic info.sv.mbx savebox,
request would do:

6-4

and saves a
just as a

copy in the
separate save

CH23-01

EXAMINING OTHER MAILBOXES

Your Saveboxes

You can examine one of your saveboxes in a read_mail command
line, giving the name of the savebox as the argument:

rdm picnic_info

This places you inside your picnic_info~sv~mbx savebox, ready to
read the messages you have stored here. The ".sv.mbx" suffix is
added automatically.

There is one exception to the above method of examining
saveboxes. If you type this line and you have a mailbox with the
same name (i.e., picnic info.mbx), you will be placed inside your
picnic_info.mbx mailbox: To avoid this kind of confusion, give
your saveboxes and mailboxes different names. However, if you
have a save box and a mailbox with the same name, you can enter
you savebox in the following way:

rdm picnic_info.sv.mbx

Another way to look at one of your saveboxes is to use the
-save <path> (-sv <path» control argument in a read mail command
line, giving the name of the desired savebox as the <path>:

rdm -save picnic info

Other People's Mailboxes

You also have access to read and delete any messages that you
have sent to other users' mailboxes. To do this, issue the
read mail command with an address on the command line. The
address can be a User id or the pathname of the mailbox you wish
to examine:

rdm Moch.Projdog OR rdm >udd>ProjDog>Moch>Moch.mbx

Sometimes an address can be ambiguous; if this is the case, you
can clarify the address by using one of two address control
arguments, -user <User id> or -mailbox <path> (-rnbx <path>) like
this:

prm -user Moch.BCD OR prm -mbx >udd>BCD>Moch>Moch.mbx

The ".mbx" suffix is assumed if you do not type it.

6-5 CH23-Ql

MAIL SEGMENTS

Although the mail system itself offers you an impressive
range of editing, storage, and distribution capabilities, you may
find it very useful to be able to treat groups of messages as
standard ASCII segments. You are then free to manipulate
messages as you do other segments, to order printed copies, and
to edit and add comments to any part of the message easily. When
you use one of the requests described below to' create a mail
segment, standard access rules apply; because they are standard
segments.

The append Reguest

When in read mail, place messages into a segment with the
append (app) request, appropriate message specifiers, and the
name of a segment:

append f:3 canine

Unless you have previously created it, this causes the segment
"canine.mail" to be created in your directory, after an inquiry
from read_mail to make sure this is what you had in mind. If the
segment already exists, these messages are added to the end of
the segment. In read mail you can use the -delete (-dl) request
control argument with append to delete the original message, as
you can with the other requests discussed above.

In send mail, simply type the request and pathname (the
".mail" suffIx is added automatically):

send mail: append canine

The send mail command also questions you about this segment if it
has not yet been created.

Using one of these segments is just like using any regular
segment -- but remember that pathnames of all mail segments end
with the ".mail" suffix. When outside the mail system, be
careful not to type "canine" when you mean "canine.mail".

The write Request

The write (w) request is identical to the append request,
with two additions. It has a -truncate (-tc) request control
argument, which enables you to empty an existing mail segment of
any previous contents before refilling it. There is also the
-extend request control argument that adds to the existing
segment, just as the append request does. This control argument
represents the default action of the request.

6-6 CH23-Ql

The preface Reguest

The preface (prf) request is very similar to the append
request, except that messages get added at the beginning of the
segment specified, rather than at the end of the segment. This
is useful for creating segments in which you want your newest
messages to appear first.

6-7 CH23-Ql

SECTION 7

ADVANCED MAIL FEATURES

Many of themail system components already discussed, such
as control arguments on the command line, message editing, and
powerful request language, also have additional features that
enable you to use the read_mail and send_mail commands to meet
more specialized requirements. These advanced techniques make
use of command level capabilities from within the mail system.

ABBREVIATIONS

Within read mail and send mail, you can create abbrevs for
request lines that you use frequently. These abbrevs can be
expanded at your discretion. On the read mail and send mail
command lines, the -abbrev (-ab) control argument turns on the
abbrev process. In the request loop of read~mail and send_mail,
the abbrev request acts in the same manner.

For example, you may forward mail frequently to
Merce.ProjDog. Create the following abbrev at command level:

.a fwm forward c Merce.ProjDog

In read mail, type the following to send the current message
to Merce.projDog:

read mail: abbrev

read mail: ! fwm
Mail-delivered to Merce.ProjDog

read mail:

7-1 CH23-Q1

You can create an abbrev profile specifically for use within
the mail system with the -profile (-pf) control argument. (A
profile is a special segment in your horne dir containing your
abbrevs.) This is helpful if, for example, you want to use the
same short name "quit" for two different abbrevs: one within the
mail subsystem, and one at command level. To specify the use of
the profile mail system.profile, type the following request line
while in read mall:

read mail: abbrev -profile [e hd]>mail_system

You will now use mail_system.profile until you either quit
read mail, turn off the abbrev processor, or change to another
profIle. You can change profiles as often as you wish within the
mail subsystem.

If you use a separate abbrev profile regularly, you may want
to add the profile to your read mail or send mail abbrev. To use
a special profile within read mail automatically, create an
abbrev similar to the following: -

.ab Rdm do "read mail -abbrev -profile [hd]>mail_system
&rf1"

You can turn off the abbrev processor with the control
argument -no abbrev (-nab). This control argument is the
default. With it, you can override a command level abbrev for
read mail or send_mail that automatically turns on abbrev
processing. For example, if you have the Rdm abbrev described
above, you can enter read_mail and turn abbrev processing off
like this:

Rdm -no abbrev

Whenever conflicting control arguments appear on a command
line; the mail system uses only the last one to appear. Thus the
above example turns off abbrev processing as you enter read_mail.

Another way to turn off abbrevs within the mail subsystem is
with the following request:

send mail: abbrev -off

7-2 CH23-Q1

When creating abbrevs within read mail and send mail, a
useful request is the do request. This request is id~ntic~l ~o
the do command; except that it executes a request line wlthln
read mail or send mail, rather than a Multics command line.
Similarly, the if and answer requests are like. the if and answer
commands, but they operate within the context of a mail
subsystem. The do and if commands are documented in the Intro to
Multics - Part II manual. All three of these requests are useful
in the creation of abbrevs within the mail system.

MORE ON CONTROL ARGUMENTS

Fourteen read mail and send mail command control arguments
have been described in earlier sections of this manual. There
remain approximately fifty others, nearly half of which represent
actions that the command performs by default. The purpose of
such an extensive set of controls is to let you create your own
desired read mail and send mail environments. To illustrate a
few simple possibilities, here are several example command lines,
using some control arguments that you know and some that have not
been discussed:

rdm -print -quit
rdm -list -no header

The first read_mail command line above merely prints any messages
that you have and quits, returning you directly to command level.
The second example prints a list of all messages in the mailbox
before giving the read_mail prompt: whenever you issue a print
request, the message is printed with the brief form of header,
just as if you had included the -no header print request control
argument each time. -

sdm Moch.ProjCat -acknowledge -save outgoing
sdm Moch.ProjCat -fm Willow.ProjCat -cmt "pil Willow" -to

In the first send_mQil example: the message you create is
acknowledged automatically when the recipient prints it, and a
copy of your message will be saved in your mailbox
"outgoing.sv.mbx". The second example places the comment pil
willow after the User_id Willow.ProjCat in the From field of the
message header; the -to control argument is added so that all
addresses typed afterward will be included in the To field.

7-3 CH23-Ql

Control Arguments and start up.ec Segments

Another method of setting up your own read mail environment
is to place a read mail command line, such as the one used in the
previous example, -at the end of your start_up exec_com segment.
In this case, when your start up.ec has completed, you will be
placed directly in read_mail. If you have no mail, you receive a
notice to that effect and are returned to command level. If you
do have mail, you receive a list of your messages and then a
read_mail prompt. Here is an illustration:

Multics MRS.O: Honeywell LISD Phoenix, System M
Load = 102 out of 125.0 units: users = 109 08/01/80
login Willow ProjCat
Password:

<login information>

You have four messages.

Subject:
picnic
and you?

Msg#
1*
2
3
4

Lines
(4)
(1)
(2)

(27)

Date
08/01/80
08/01/80
08/01/80
08/01/80

Time
09:14
10:26
13:02
16:47

From
Moch.ProjCat
Brie.ProjDog
Merce.ProjDog
Edgar.ProjDog

your talk
comments y<MORE>

read mail:

You can use your start_up.ec for other mail system functions,
also. For instance, you could have your messages printed offline
for you automatically each time you log in, by employing the
-request (-rq) command control argument, and an
enter output request command line. This control argument enables
you to give one or more read mail requests after it (the list of
requests must be quoted if there are any blanks); the specified
requests are performed automatically, without entering the
read_mail request loop. Place these two lines in your
start_up.ec:

rdm -rq "write all my; delete all; quit"
eor my.mail

You are not placed in read_mail as you would have been in the
previous example, because with this line you included the quit
request as part of the read mail command line.

7-4 CH23-01

ESCAPING TO COMMAND LEVEL

There are several ways to use the Multics command environment
while you remain inside the mail system. This ability can be
handy for a variety of purposes.

The Escape

To issue a Multics command
simply type two periods directly
the command line:

within read mail or send mail,
after the prompt, followed by

read mail: who OR send_mail: who

When the command has finished, you receive another read mail or
send_mail prompt.

You can use this escape to check on which mail segments and
mailboxes you have in your directory (•• list) and to attend to
other Multics activities when they occur to you
(•• sm Brie.ProjDog Let's eat.) without having to end your mail
session prematurely.

You are free to use any command language conventions and
facilities in the same way you do outside the mail system.
Active functions (discussed in the New Users' Intro - Part II)
are especially useful in providing the command language with
extra flexibility. Here are two examples:

read mail:
send-mail:

sm [last_message_sender] Sure, I'm hungry too
eor [home_dir]>canine.mail

Standard quoting and semicolon conventions also apply when using
the .• escape.

7-5 CH23-Ql

Re-entering the Mail System

A very convenient feature of the 8~ escape is that from
either read mail or send mail you can re-enter read mail to
examine another mailbox, using the methods illustrated in
"Examining Other Mailboxes" of Section 6~ For-example, you can
check the contents of your logbox while in your default mailbox:

rea d rna i 1 : ! .• r dm -log -1 i s t
There is one message in your logbox.

Msg#
1

Lines Date
(4) 08/01/80

read_mail (2):

Time
09:14

From
Moch.ProjCat

Subject
picnic

Notice that this read_mail prompt looks somewhat different from
the usual one. The number in parentheses indicates the recursion
level -- how many times you have entered read_mail within one
mail session.

If you can't remember which mailbox you're in, use the.
request. This request prints one line of information about that
mailbox, including the pathname, as well as the state of the
messages contained in the mailbox:

read mail 8.3 (level 2): Message #1 of 1.
>udd>ProjCat>Moch>Moch.mbx

If the mailbox is one of your default mailboxes, you receive a
note rather than an explicit pathname:

read mail 8.3 (level 2): Message #1 of 1.
Reading your logbox.

You can also re-enter send mail from either read mail or
send mail, to send a message to-one person while creating another
message for someone else. The resulting send_mail prompts look
like the read_mail prompt shown above:

sen d rna i 1 (2):

The. request is also available here:

send mail 6.0 3 lines (unprocessed): Subject: your talk

In send_mail the. request gives you information about the
message you are creating.

7-6 CH23-01

ACTIVE REQUESTS

Just as active functlons increase flexibility within Multics
command lines, active requests allow mail system request lines
more flexibility. The four most useful ones are:

in send mail:

subject (sj)
e~ecute (e)

in read mail:

mailbox (mbx)
execute (e)

Active requests are hereafter referred to by their short names in
this section, to distinguish them from requests.

The sj active request returns the current subject of the
message you are working on. Wherever you type [sj] on a request
line, the mail system replaces that with the current contents of
the Subject field. Two ways of using this active request are:

send mail: subject [sj] and lunch

to add the words " and lunch" to the existing Subject field (this
example also employs the subject request), and:

send mail: append [sj]

which places the created message in a mail segment with the
Subject field as its name. (This last is best done with a
one-word subject -- otherwise you will have embedded blanks in
the name, which would result in an invalid pathname.)

With the e active request, you can incorporate Multics active
functions into mail system request lines, thereby increasing your
options still more! The way to do this is to enclose the e
active request, a space, and then an active function inside
brackets. Below are a few simple examples:

read mail: save 3 [e home_dir]>feline

for saving mail when you are not working in your home directory;

send mail:

fer sending mail to the user who last sent you an interactive
message;

send mail: send [e contents people_at_work]

to send mail to each person whose User id is included in the
segment "people_at_work";

7-7 CH23-Ql

append all [e date]

to place all your messages in a mail segment with todayis date as
its name.

The e active request and the mbx acti~e request, which
returns the pathname of the mailbox you are currently reading,
are most commonly used with the execute request, described below.

MORE REQUESTS

The execute Request

The execute request (not to be confused with the e (execute)
active request!) performs a function very similar to that of the

escape, because it also passes the following line to command
level to be acted on. Before the command line reaches command
level, however, it passes through the request processor. This
means that all special request line syntax, such as the active
request brackets described above, gets processed first. The
results are placed in the command line, and then the line gets
processed as a command line. To illustrate with the mbx active
request, which returns the pathname of the mailbox you are
currently reading, you can type:

read mail: execute mbx_Iist_acl [mbx]

to see the access control list for that mailbox (for descriptions
of all mailbox access commands see Appendix B). After this
request line goes through the request processor, it looks like
the command line shown below, although you do not see this
intermediate step:

mbx_Iist_acl >udd>ProjCat>Willow>Willow.sv.mbx

and it is processed just like any other command line.

Remember that the mbx active request is not a Multics active
function. If you forget this, and try typing:

read mail:

you would receive the error message "Segment mbx not found".

You may also use the e active request within an execute
request line, of course. For example, if you have created a mail
segment like the one in the last example in the previous section,
you could get a printout of it in one of two ways, while in
read_mail:

read mail: eor [date].mail

7-8 CH23-01

or else:

read mail: execute eor [e date].mail

The apply Reguest

If you prefer another Multics
use the apply (ap) request to
send mail. Once in the send mail
~ne -name of the editor you-wish
Emacs (on a video terminal), type:

send mail: apply emacs

text editor to qedx, you may
edit your message while in
request loop, type apply and

to use. For example, to use

The screen will be cleared and replaced by the message within an
Emacs buffer. When you are finished with your editing, you must
write out the changes you have made, by typing AXAS. Then type
AXAC as usual, and the familiar send mail prompt will appear.
(See the New User's Intro - Part I or the Emacs Text Editor
Users' Guide (Order No. CH27) for information on Emacs.)

The apply request operates by appending the pathname of the
temporary segment (created to hold your message before you send
it) to the command line you provided - in the above case it was a
command that invokes a text editor. Therefore the apply request
also allows you to utilize your own exec corns, and any compatible
subsystems that may have been created at your Multics
installation.

The exec com Reguest

Within read mail and send mail, you can use the exec com
(ec) request to invoke an ec.- The ec request works like-the
exec_com command documented in New Users' Intro - Part II, except
that it makes use of read mail or send_mail requests, rather than
command level command sequences.

A read mail ec segment must have the suffix "rdmec", and a
send mail ec must have the suffix "sdmec". An ec ending with any
other suffix will not work in the mail system. These suffixes
are used to avoid confusion with Multics command level ecs.

When you invoke an ec request within the mail system, your
working directory is automatically searched, and then the
following directory:

>udd>Project_id>Person_id>Person_id.mlsys

7-9 CH23-Ql

If the ec is not found in either of these directories, you will
get an error message.

User
"mo.rdmec",
directory:

Willow.ProjCat
and put it in

&command line off
Is -fm Moch.ProjCat
&command line on
&quit -

named the following simple ec
the >udd>ProjCat>Willow>Willow.mlsys

In read_mail, user willow types the ec request and gets an
appropriate response:

read mail ec mo

Msg# Lines Date Time From Subject:
1* (4) 08/01/80 09:14 Moch:ProjCat picnic
5 (8) 08/03/80 11:23 Moch:ProjCat my plans
8 (14) 08/05/80 12:36 Moch:ProjCat meeting

7-10 CH23-01

APPENDIX A

MAIL SYSTEM COMMANDS

A-l CH23-Ql

print_mail (prm) print mail (prm)

print_mail (prm)

The print_mail command prints all the messages in a mailbox,
querying the user whether to delete each one.

SYNTAX AS A COMMAND

prm {mbx specification} {-cal

ARGUMENTS

mbx specification
-specifies the mailbox to be printed. If not specified, the

user's default mailbox (>udd>Project>Person>Person.mbx) is
assumed. The mailbox must be specified in one of the
following forms:

-log
specifies the user's logbox and is equivalent to:

-mailbox >udd>Project_id>Person_id>Person_id.sv.mbx

-mailbox PATH
-mbx PATH

specifies the pathname of a mailbox. The .mbx suffix is
assumed if it is not present.

-save PATH
-sv PATH

specifies the pathname of a savebox. The .sv.mbx suffix
is assumed.

-user Person id.Project id
specifies the given-user;s default mailbox. This control
argument is equivalent to:

5TR

-mailbox >udd>Project_id>Person_id>Person_id.sv.mbx

is any non-control argument. First it is interpreted as
-mailbox STR; if no mailbox is found, it is interpreted
as -save STR; if no savebox is found, it is interpreted
as -user 5TR.

A-2 CH23-01

print_mail (prm) print_mail (prm)

CONTROL ARGUMENTS

-acknowledge
-ack

acknowledges messages that request acknowledgement. This is
the default ..

-brief
-bf

shortens the print_mail notice of the number of messages in
the mailbox.

-header
-he

prints the complete message headers with the message text.
This is the default.

-interactive messages
-im -

operates on interactive messages from send message (when
accept_messages -hold is in ef fect) as well a-s-mai 1 messages
from send_mail. This is the default.

-list
-Is

prints a summary of the messages in the mailbox before
printing the first message.

-long
-lg

prints the long form of the print_mail message count notice.
This is the default.

-no acknowledge
-nack

does not acknowledge any messages.

-no header
-nhe

prints a shortened form of the message header for each
message.

-no_interactive_messages
-nim

operates on send mail messages only, not on interactive
messages sent by send_message .

...... -3 CH23-Ql

print_mail (prm) print_mail (prm)

-no list
-nls

does not prints a summary of the messages. This is the
default.

-no --nrv

-own

reverse

prints the messages in ascending numeric order. This is the
default.

prints only those messages that the user has sent to the
mailbox.

-reverse
-rv

prints messages in reverse order.

QUERY RESPONSES

?

yes
y

no
n

a list of the acceptable responses is printed, and the
question is asked again.

the message is deleted and the next one is printed.

the message is not deleted and the next one is printed.

reprint
print
pr
p

quit
q

the message just printed is printed again, and the question
is asked again.

the user is returned to command level after the specified
messages are deleted.

abort
the user is returned to command level and no messages are
deleted.

A-4 CH23-01

print mail (prm) print_mail (prm)

NOTES

A default
user issues
print_messages.

mailbox is created automatically the first time a
print mail, read mail, accept messages, or

The default mailbox is: -

>user_dir_dir>Project_id>Person_id>Person_id.mbx

To create additional mailboxes, and for more information on
mailbox access, see Appendix B, "Mailbox Commands".

The user can interrupt the printing of a message by pressing
the BREAK or INTERRUPT key, and then type the program_interrupt
(pi) command to proceed directly to the "Delete the message?"
query. In this way, he can delete or save the message without
having to print the entire message text at his terminal.

A-5 CH23-Ql

read mail (rdm) read mail (rdm)

read_mail (rdm)

The read mail command provides a facility for examlnlng and
manipulating-messages sent by the send_mail and mail commands.

SYNTAX AS ~ COMMAND

rdm {mbx_specification} {-cal

ARGUMENTS

mbx specification
-specifies the mailbox to

user's default mailbox
assumed. The mailbox
following forms:

-log

be examined. If not specified, the
(>udd>Project>Person>Person.mbx) is

must be specified in one of the

specifies the user's logbox and is equivalent to:

-mailbox >udd>Project_id>Person_id>Person_id.sv.mbx

-mailbox PATH
-mbx PATH

specifies the pathname of a mailbox. The .mbx suffix is
assumed if it is not present.

-save PATH
-sv PATH

specifies the pathname of a savebox. The .sv.mbx suffix
is assumed.

-user Person id.Project id
specifies the given-user's default mailbox. This control
argument is equivalent to:

STR

-mailbox >udd>Project_id>Person_id>Person_id.sv.mbx

is any non-control argument. First it is interpreted as
-mailbox STR: if no mailbox is found, it is interpreted
as -save STR; if no savebox is found, it is interpreted
as -user STR.

A-6 CH23-01

read mail (rdm) read mail (rdm)

CONTROL ARGUMENTS

-abbrev
-ab

enables abbreviation expansion of request lines.

-acknowledge
-ack

acknowledges messages that request acknowledgement. This is
the default.

-brief
-bf

shortens or omits many of the informative notices printed by
read mail.

-count
-ct

prints the total number of messages in the mailbox before
entering the request loop. This is the default=

-header
-he

causes the print (pr) request to print complete message
headers. This is the default.

-interactive messages
-im -

operates on interactive messages from send message (when
accept messages -hold is in effect) as well- as send mail
messages. If this control argument is not given, interactive
messages are ignored.

-list
-ls

prints a summary of the messages in the mailbox before
entering the request loop_

-long
=lg

prints the full text of read mail informative notices. This
is the default.

-no abbrev
-nab

does not enable abbreviation expansion of request lines.
This is the default.

A-7 CH23-Ql

read_mail (rdm) read mail (rdm)

-no acknowledge
-nack

does not acknowledge any messages.

-no count
-does not print the total number of messages in the mailbox

before entering the request loop.

-no header
-nhe

causes the print (pr) request to print an abbreviated form of
the message header.

-no interactive messages
-nim -

operates only on send_mail
messages sent by send_message.

messages, not on interactive
This is the default.

-no list
-nls

does not print a summary of messages before entering the
request loop. This is the default.

-no_print
-npr

does not print messages before entering the request loop.
This is the default.

-no prompt
-does not prompt for read mail requests when inside the

request loop. This control argument is equivalent to -prompt
"". The default prompt is "read mail(N):", where N is the
recursion level if greater than one.

-no_request_loop
-nrql

-own

does not enter the request loop if there are no messages in
the mailbox. This is the default.

operates only on the user's own messages instead of on all
the messages. This control argument can be useful when
examining another user's mailbox.

-print
-pr

prints the messages in the mailbox before entering the
request loop.

A-a CH23-01

read mail (rdm) read mail (rdm)

-profile path
-pf path

spec i f ies the pa thname of
expansion. The profile
flprofile" is added if
implies -abbrev.

the profile to use for abbreviation
must already exist. The suffix

necessary. This control argument

-prompt STR
changes the prompt for read mail request lines to STR. If
STR is "", the user is not prompted. STR can be an ioa
control string.

-quit
exits after performing any operations specified by control
arguments. The default is to enter the request loop.

-request STR
-rq STR

provides an initial request line, specified by STR, to be
executed by read mail before entering the request loop. STR
must be enclosed in quotation marks if it contains blanks.
Thus, the command line:

read mail -rq "print last:quit" -brief

prints the last message in the user~s mailbox and returns to
command level.

-request loop
-rql -

enters the read mail request loop even if there are no
messages in the mailbox.

-totals
-tt

prints the number of messages in the mailbox, and returns to
command level. This control argument is incompatible with
-list, -quit, -request, -request loop, and -print~

The -header and -no_header control arguments can be used to set
default values for the print request.

A-9 CH23-01

read mail (rdm) read mail (rdm)

The following control arguments can be used to set default values
for the reply request:

-fill, -fi
-include authors, -iat
=iriclude-original, -io
-include-recipients, -irc
-include-self, -is
-indent N, -in N

-line length N, -11 N
-no fIll, -nfi
-no-include authors, -niat
-no-include-original, -nio
-no-include-recipients, -nirc
-no:include:self, -nis

These control arguments are described with the reply request
below, with the exception of -fill, -no fill, and -line_length N,
which are described in the send mail description.

NOTES

Many of the read mail requests take the same arguments and
control arguments, in-the form of message specifiers (spec) and
message selection control arguments (-selca). These message
specifiers, and selection control arguments are completely
described in the next few pages: they are simply listed in the
subsequent read_mail request descriptions.

Message Specifiers

Most read mail requests are capable of processing several
messages in one invocation. The messages are identified by one
or more message specifiers.

selection contr Message specifiers normally refer only to the
messages in a mailbox that have not been marked for deletion.
Most read mail requests accept the following control arguments,
which modIfy the set of messages available for selection by the
message specifiers:

-include deleted
-idl -

includes all messages in the mailbox, whether or not they
have been deleted, when interpreting the message
specifiers to determine which messages to process.

-only deleted
-odl -

includes only those messages that have been deleted.

A-1Q CH23-Ql

read mail (rdm) read mail (rdm)

-only non deleted
-ondl- -

includes only those messages that have not been deleted.
This is the default.

If a message specifier identifies a range of messages (see
below), at least one message in that range must be of the
appropriate type, as determined by the above control arguments.

The simplest form of a message specifier is simply a message
number, such as 3. Message numbers are assigned by read_mail
when it first reads the mailbox. Even when messages are deleted,
message numbers do not change during the invocation. The
following keywords can be used to refer to an individual message
without specifying its message number:

first
f

last
1

next
n

identifies the first message of the appropriate type in
the mailboxe (The first message (#1) is identified if
-idl is given; the first deleted message is identified if
-odl is given; and the first non-deleted message is given
if -ondl or none of these control arguments is given.)

identifies the last message of the appropriate type in
the mailbox.

identifies the next message of the appropriate type in
the mailbox.

previous
p

identifies the previous message of the appropriate type
in the mailbox.

current
c

refers to the
initially the
requests set
processed by
the request:

current message. The current message is
first message in the mailbox. Most

the current message to the last message
the request. For example, after executing

A-Ii CH23-Ql

read_mail (rdm) read mail (rdm)

print 4 12

the current message is message #12.

Ranges of messages can be identified by two message numbers
or keywords separated by a colon (:). For example, the following
line:

3:1ast

identifies all messages of the appropriate type from message #3
through the last message of the appropriate type in the mailbox.
The keyword "all" is accepted as shorthand for "first:last": it
identifies all messages of the appropriate type in the mailbox.

"_"
Message numbers can be added and subtracted using "+" and

For example, if the current message is #20, the following
line:

current-5:current+10

identifies all messages of the appropriate type from message #15
through #30. As this example demonstrates, arithmetic operations
are performed after any message keywords are converted to
absolute numbers. -

Qedx regular expressions can be used to select all messages
of the appropriate type that contain a given string. The regular
expression must be enclosed in slashes (I): for an explanation of
the syntax of regular expressions, see the Qedx Text Editor's
User Guide, Order No. CG40. If the regular expression contains
spaces, horizontal tabs, quotes ("), parentheses, or brackets,
the entire expression must be enclosed in quotes to avoid
misinterpretation by the request line processor: any quotes
within the regular expression must be doubled. For example,

~/said, ~~I think/~

A-12 CH23-Q1

read mail (rdm) read mail (rdm)

matches any message that contains the string:

said, "I think

A regular expression can be preceeded by one of the keywords
listed above to select the first, last, etc. message containing
that string. Additionally, two or more regular expressions can
be combined by connectors to express logical AND (&) and logical
OR (I). For example, the following line:

last/artificial/&/intelligence/

specifies the last message of the appropriate type containing
both of the strings "artificial" and "intelligence".

Message Selection Control Arguments

The list, print, print header, delete, and retrieve requests
accept several control arguments that supply further criteria for
message selection. If no message specifiers are given, all
messages of the appropriate type in the mailbox are considered
for selection. For example, the request line:

list 23:30 -from Ellery.Proj

lists all non-deleted messages in the mailbox from message #23
through #30 that were sent by the user Ellery.Proj.

Selection control arguments are divided into four classes -­
subject selection, time selection, author selection, and
recipient selection. If several control arguments from one class
~re provided, a message must only satisfy one of the selections
1n that class to be considered by the request. If control
arguments from more than one class are provided, a message must
satisfy one of the selections in all of these classes provided to
be considered by the request. For example, the request line:

A-13 CH23-01

read mail (rdm) read mail (rdm)

list -from Ellery.Proj -from Green.Proj -after 1/1/82

lists all non-deleted messages in the mailbox that were: a) sent
by either Ellery.Proj or Green.Proj, and b) sent any time from
January 1982 to the present. A message sent by Ellery.Proj on 23
December 1981 would not be listed by this request.

Two control arguments allow the user to determine when to
ignore the distinction between upper and lower case characters
when examining header fields. All selection control arguments
are affected by the following two control arguments.

-case sensitive
-cs

causes subject selections and qedx regular expression
searches for author and recipient selections to make a
distinction between upper and lower case characters. This is
the default.

-non case sensitive
-ncs - -

causes subject selections and qedx regular expression
searches for author and recipient selections to ignore the
distinction between upper and lower case characters.

Thus, the following request line:

-sj book -non_case_sensitive

matches a Subject field if it contains any of the strings "hook",
"BOOK", "Book", etc.

Subject selection control arguments may use either qedx
regular expressions or literal matches. The string value (STR)
supplied to these control arguments is interpreted as a qedx
regular expression if it is surrounded by slashes (I); otherwise,
a literal occurrence of the string must appear in the header
field. If the string contains any spaces, horizontal tabs,
quotes, parentheses, or brackets, it must be enclosed in quotes
to avoid misinterpretation by the request line processor, and any
quotes in the string must be doubled. The following line selects
messages whose Subject fields start with the string "read_mail".

A-14 CH23-Ql

read mail (rdm) read mail (rdm)

-in reply to STR
-in-reply-to j5TRj
-irt STR -
-irt /STR/

selects any messages whose In-Reply-To field contains
STR.

-subject STR
-subject /STR/
-sj STR
-sj /STR/

selects any messages whose Subject field contains STR.

Time selection control arguments apply to the date/time that
the message was created, as indicated in the message's Date
header field. In the following descriptions, DT, DT1, and DT2
represent date/time strings. (For details of the acceptable
date/time string formats, see the Programmer's Reference manual.)
In the case of -between, -after, and -before, the date/times
specified are truncated to an appropriate midnight. For example:

-between 9/1/82 9/30/82

matches all messages created during the month of September 1982.

-after DT
-af DT

selects any messages that were created on or after the
date specified by DT.

-before DT
-be DT

selects any messages that were created before the date
specified by DT.

-between DT1 DT2
-bt DT1 DT2

selects any messages that were created between the dates
DT1 and DT2 inclusively.

A-15 CH23-01

read mail (rdm) read mail (rdm)

-date DT
-dt DT

selects any messages that were created on the date
specified by DT.

The following time selection control arguments do not
truncate the date/times specified to an appropriate midnight.
Therefore, they provide finer control on the messages selected by
time:

-after time DT
-aft DT

selects any messages that were created after the
date/time specified by DT.

-before time DT
-bet DT-

selects any messages that were created before the
date/time specified by DT.

-between time DTl DT2
-btt DTI-DT2

selects any messages that were created between the
date/times specified by DTl and DT2 inclusively.

Author and recipient selection control arguments either match
the individual addresses within the appropriate header field, or
match the entire content of the header field as a single string
using a qedx regular expression. (See the Programmer's Reference
manual for a description of appropriate address syntaxes.) If
the value supplied to these control arguments is surrounded by
slashes, it is interpreted as a qedx regular expression to match
against the entire content of the header field. Otherwise the
value, which may consist of several tokens, is interpreted as an
address that must exactly match one or more of the addresses in
the field.

If a qedx regular expression match is requested and the
string contains any spaces, horizontal tabs, quotes, parentheses,
or brackets, it must be enclosed in quotes to avoid
misinterpretation by the request line processor. Further, any
quotes in the string must be doubled. For example:

-from /Green.*Proj/

matches any message whose From field contains the two strings
"Green" and "Proj".

A-16 CH23-01

read mail (rdm) read mail (rdm)

The following line matcnes any message with a primary recipient
named "grb" on the foreign system "System-Q".

-to grb -at System-Q

-cc
-cc

address
/STR/
selects any messages whose cc field
specified address or matches the
expression.

-forwarded to address
-forwarded-to /STR/
-fwdt address
-fwdt /5TR/

either contains the
given qedx regular

selects any messages whose Redistributed-To field either
contains the specified address or matches the given qedx
regular expression.

-from address
-from /5TR/
-fm address
-fm /STR/

selects any messages whose From
specified address or matches
expression.

-recipient address
-recipient /5TR/
-rcp address
-rcp /STR/

field either contains the
the given qedx regular

selects any messages whose To, ce , or Redistributed-To
fields either contain the specified address or match the
given qedx regular expression.

-reply to address
=reply=to 15TR/
-rpt address
-rpt /STR/

selects any messages whose Reply-To field either contains
the specified address or matches the given qedx regular
expression.

A-17 CH23-Ql

read mail (rdm) read mail (rdm)

-to address
-to jSTR/

selects any
specified
expression.

messages whose To field
address or matches

either contains the
the given regular

REQUESTS

In the following read mail requests descriptions, "spec" means
"message_specifier", "-selca" means "-selection_args", and "-can
means "-control_args".

?
prints a multi-columnar list of the read mail requests.

prints a line identifying the current version of read_mail,
the current message number, the message count, the number of
deleted messages, and the pathname of the mailbox being read
as in:

read mail 8.3: Message #7 of 11, 3 deleted.
Reading your mailbox

If abbreviation expansion of request lines is enabled, the
string "(abbrev)" is included in parentheses:

read mail 8.3 (abbrev): Message #2 of 7.
Reading your mailbox.

If the recursion level is greater than one, it is included in
parentheses after the (abbrev) string, if any:

read mail 8.3 (abbrev) (level 2): Message #2 of 5.
>udd>X>Y>zz.sv.mbx

STR
passes a
standard

command line, specified by
command processor, without

A-18

STR, directly
processing

to the
by the

CH23-Ql

read mail (rdm) read mail (rdm)

read mail request processor. The " •• " string must be the
first two characters of this request line.

abbrev {-cal
ab {-cal

c6ntrols abbreviation processing within read mail. If
invoked with no arguments, this request enables abbrev
processing within read_mail using the profile that was last
used in this read mail invocation. If abbrev processing was
not previously enabled, the profile in use at Multics command
level is used: this profile is normally
[home dir]>Person_id.profile. (See the Commands manual for a
descrIption of abbreviation processing.)

The read mail subsystem also has command line control
arguments- (-abbrev, -no abbrev, and -profile) that specify
the initial state of abbreviation processing within
read mail. For instance, a Multics abbreviation could be
defined to invoke the read mail subsystem with a default
profile as follows: -

.ab rdm do "rdm -abbrev -profile [hd]>mail_system &rfl"

Control arguments may be chosen from the following:

-off

-on

specifies that abbreviations are not to be expanded.

specifies that abbreviations are expanded.
default.

This is the

-profile path

[abbrev]

specifies that the segment named by path is to be used as
the profile segment. The suffix ".profile" is added to
path if it is not present. The segment named by path
must exist prior to the use of this control argument.

returns "true" if abbreviation expansion of request lines is
currently enabled within read_mail, and "false" otherwise.

all {-cal
prints the message numbers for all messages of the specified
type. Control arguments for specifying the type of message
numb~rs may be one of the following:

A-19 CH23-01

read mail (rdm) read mail (rdm)

-include deleted
-idl -

prints the numbers of all messages in the mailbox,
including deleted ones.

-no reverse
-nrv

prints the message numbers in normal order (smaller
numbers first). This is the default.

-only_deleted
-odl

prints only the numbers of deleted messages.

-only non deleted
-ondl- -

prints only the numbers of messages that have not been
deleted. This is the default.

-reverse
rv

prints the message numbers in reverse order.

[all {-cal]
returns
messages
type, it
the same

the message numbers, separated by spaces, of all
of the given type. If there are no messages of that
returns a null string. This active request takes

control arguments as the all request.

answer STR {-cal request_line
provides preset answers to questions asked by another
request. It establishes an on unit for the condition
command question, and then executes the designated request
line. -If any request in the request line calls the
command query subroutine (described in the Subroutines
manual)-to ask a question, the on unit is invoked to supply
the answer. The on unit is reverted when the answer request
returns to read mail request level. See the Reference manual
for a discussion of the command question condition. If a
question is asked that requires a-yes or no answer, and the
preset answer is neither "yes" nor "no", the on unit is not
invoked.

The last answer specified is issued as many times as
necessary, unless followed by the -times N control argument.

The =match and =exclude control arguments are applied in the
order specified. Each -match causes a given question to be
answered if it matches STR; each -exclude causes it to be
passed on if it matches STR. A question that has been

A-20 CH23-01

read mail (rdm) read mail (rdm)

excluded by the -exclude control argument is reconsidered if
it matches a -match later in the request line.

The arguments are:

STR
is the desired answer to any question. If the answer is
more than one word, it must be enclosed in quotes. If
STR is -query, the question is passed on to the user.
The -query control argument is the only one that can be
used in place of STR.

request line
is any read mail request line. It can contain any number
of separate- arguments (i.e., have spaces within it) and
need not be enclosed in quotes.

Control arguments may be chosen from the following:

-brief
-bf

suppresses printing (on the user's terminal) of both the
question and the answer.

-call STR
evaluates the active string STR to obtain the next answer
in a sequence. The active string is constructed from
read mail active requests and Multics active strings
(using read mail's "execute" active request). The
outermost level of brackets must be omitted and the
entire string must be enclosed in quotes if it contains
request processor special characters. The return value
"true" is translated to "yes", and "false" to "no". All
other return values are passed as is.

-exclude STR
-ex STR

passes on, to the user or
text matches STR. If STR
It is inte~preted as
Otherwise, answer tests
contained in the text
occurrences of -exclude
entire request line.

-match STR

other handler, questions whose
is surrounded by slashes (I),
a qedx regular expression.

whether STR is literally
of the question. Multiple

are allowed; they apply to the

answers only questions whose text matches STR. If STR is
surrounded by slashes (I), it is interpreted as a qedx
regular expression. Otherwise, answer tests whether STR
is literally contained in the text of the question.

A-21 CH23-Ql

read mail (rdm) read mail (rdm)

Multiple occurrences of -match are allowed; they apply to
the entire request line.

-query
skips the next answer in a sequence, passing the question

. on to the user. The answer is read from the user_i/o I/O
switch.

-then STR
supplies the next answer in a sequence.

-times N
gives the previous answer (STR, -then STR, or -query) N
times only (where N is an integer).

append {spec} path {-cal
app {spec} path {-cal

appends the specified messages (with headers) to the ASCII
segment specified by path. The suffix .mail is added to path
if it is not present. If the specified segment does not
already exist, the user is asked whether to create it. This
request causes the specified messages to be acknowledged, if
requested by the senders (see send_mail -acknowledge). If
required, it adds Date and From fields to the ASCII
representations of the messages it places into the segment.
Control arguments are:

-delete
-dl

deletes the messages after appending them, if all the
append operations were successful.

-include deleted
-idl -

writes all specified messages, including deleted ones.

-no delete
-ndl

does not delete the messages after appending them. This
is the default.

-no reverse
-nrv

writes the messages in ascending numeric order. This is
the default.

_ , .. ~-,-~ ~
VU.Ll' U.C.LCI..CU

-odl -
writes only deleted messages.

A-22 CH23-01

read mail (rdm) read mail (rdm)

-only non deleted
-ondl- -

writes only those messages that have not been deleted.
This is the default.

-reverse
-rev

appends the messages in reverse order.

apply {spec} {-cal STR
ap {spec} {-cal STR

places the text of the selected message(s) into a temporary
segment in the process directory, then concatenates the
command line specified by STR with intervening spaces and
appends the pathname of the temporary segment. This command
line is passed to the Multics command processor. The command
line may not modify the contents of the temporary segment.
Each message is processed individually. For example, the
following read mail request line:

apply /Gomez/ "do ""copy &1 &!: eor &! -dl~""

issues a separate output request for each message containing
the string "Gomez".

The supplied command line need not be enclosed in quotes.
However, if (), [], or" are in the command line to be
processed by the Multics command processor, they should be
enclosed in quotes to prevent processing by read mail's
request processor. Control arguments are:

-delete
-dl

deletes the ~essages after processing them, if all
messages are successfully processed.

-header
-he

specifies that the header of each message is to be
included in the temporary segment. This is the default.

-include deleted
-idl -

processes all specified messages, including deleted ones.

A-23 CH23-01

read mail (rdm) read mail (rdm)

-no delete
-ndI

does not delete the messages after processing them. This
is the default.

-no header
-nhe

specifies that the header of each message is not to be
included in the temporary segment.

-no reverse
-nrv

processes the messages in ascending numeric order. This
is the default.

-no text
-specifies that the text of each message is not to be

included in the temporary segment.

-only deleted
-odl -

processes only deleted messages.

-only non deleted
-ondl- -

processes only those messages that have not been deleted.
This is the default.

-reverse
-rev

processes the messages in reverse order.

-text
specifies that the text of each message is included in
the temporary segment.

copy {spec} path {-cal
cp {spec] path {-cal

copies the specified messages into the mailbox designated by
path. The mailbox must already exist. The .mbx suffix is
added to path if it is not present. The messages are copied
exactly as they appear in the original mailbox: no header
fields are added, interactive messages are not converted to
normal messages, etc. This request does not send
acknowledgements for any of the messages that it processes.
If the original message requests an acknowledgement, the
copied message also requests an acknowledgement to the sender
of the original message. Control arguments are the same as
for the append request.

A-24 CH23-Ql

read mail (rdm)

current
c

prints the number of the current message.

[current]

read mail (rdm)

returns the number of the current message, or 0 if there is
no current message.

delete {spec} {-selca} {-cal
dl {spec} {-selca} {-cal
d {spec} {-selca} {-cal

deletes the specified messages. If no messages are
specified, the current one is deleted. Deleted messages can
be retrieved before exiting read mail by using.th~ retrieve
(rt) request. The user is queried for permlsslon if he
attempts to delete a message that has not been the subject of
one of the following requests: apply, copy, forward, list,
log, preface, print, print header, reply, save, write. Thus
the user is protected from accidentally deleting
newly-arrived messages without having first examined them.

Control arguments for the delete request may be one of the
following:

-force

deletes unprocessed messages without querying, and
ignores messages that can not be deleted due to
insufficient access.

-no force
-nfc

queries the user for permission to delete any unprocessed
messages. No message is deleted if either the user
answers "no" to a query, or the user lacks sufficient
access to delete one or more of the specified messages.

do STR {args}
or

do {-cal
expands a request line specified by STR by substituting the
supplied arguments into the line before execution. Arguments
are character string arguments that replace parameters in the
request line.

A-25 CH23-01

read mail (rdm) read mail (rdm)

The following control arguments set the mode of operation of
the do request:

-absentee
an any_other handler is established
conditions and aborts execution of
without aborting the process.

that
the

catches all
request line

-brief
-bf

-go

the expanded request line is
execution. This is the default.

not printed before

the expanded request line is passed on for execution.
This is the default.

-interactive
the any other handler is not established.
default.-

This is the

-long
-lg

the expanded request line is printed before execution.

-nogo
the expanded request line is not passed on for execution.

Any sequence beginning with & in the request line is expanded
by the do request using the arguments given on the request
line. Following is the list of parameters:

&1
is replaced by arg1. I must be a digit from 1 to 9.

&(1)
is also replaced by arg1. I can be any value, however.

&q1
is replaced by arg1 with any quotes in arg1 doubled. I
must be a digit from 1 to 9.

&q (I)

&r1

is also replaced by argI with any quotes doubled. I can
be any value.

is replaced by all the arguments starting with arg1.
Each argument is placed in quotes with contained quotes
doubled. I must be a digit from 1 to 9.

A-26 CH23-01

read mail (rdm) read mail (rdm)

&r{I)

&fI

is also replaced by a requoted argI. I can be any value.

is replaced by all the arguments starting with argI. I
must be a digit from 1 to 9.

&f(I)

&qf1

is also replaced by all the arguments starting with argI.
I can be any value.

is replaced by all the arguments starting with arg1 with
any quotes doubled. I must be a digit from 1 to 9.

&qf(I)
is also replaced by all the arguments starting with argI
with quotes doubled. I can be any value.

&rf(l)

&&

&!

&n

&f&n

is also replaced by all the arguments starting with arg1,
requoted. I can be any value.

is replaced by an ampersand.

is replaced by a 15 character unique string.
used is the same everywhere &! appears in
line.

The string
the request

is replaced by the actual number of arguments supplied.

is replaced by the last argument supplied.

[do STR {args}]
returns a request line specified by STR with argument
substitution.

exec_com path {args}
ec path {args}

executes a program written in the exec com language, where
path is the pathname of an exec com program. The suffix
"rdmec" is added to the pathname iT necessary. This program
is used to pass request lines to read_mail and to pass input
lines to requests that read input. Currently, any errors
detected during an 2C execution within read mail will abort
the :f~uest line in which the ec request wis invoked. The

A-27 CH23-Q1

read mail (rdm) read mail (rdm)

arguments are optional arguments to the exec_com program and
are substituted for parameter references in the program such
as &1.

If the pathname does not contain a "<" or">" character;
read mail searches for the exec com program using the
mail=system search list. The default content of this search
list is:

-working dir
>udd>[user project]>[user name]>[user name].mlsys

When evaluating a read mail exec com program, subsystem
active requests are used rather than Multics active functions
when evaluating the &[...] construct and the active string in
an &if statement. The read mail execute active request may
be used to evaluate MultTcs active strings within the
exec com.

[exec_com path {args}]
[ec path {args}]

executes a program written in the exec com language that
specifies a return value of the exec com request by use of
the &return statement. The arguments are the same as for the
exec com request.

execute STR
e STR

executes the supplied line as a Multics command line, where
STR is the Multics command line to be executed or the Multics
active string to be evaluated. It need not be enclosed in
quotes.

The recommended method to execute a Multics command line from
within read mail is the " .. " escape sequence. The execute
request is intended as a means of passing information from
read mail to the Multics command processor.

All (), [], and "'s in the given line are processed by the
read mail request processor, not the Multics command
processor. Thus, the values of subsystem active requests may
be passed to Multics commands when using the execute request.
For example, the following request line lists the ACL of the
....... _.: , 'L..._ \..._.: W'"II.'" __ ,::, 'k •• .&-1... __ _: ,...,.: "' "...,~ ,,_....::1 ~_.:,
UIO.l..LUUh .uC.lll':l L.COU U:J L..l1C I...UL.L.CllL.. ,LllVVI...OL..,LUIl U.L. L.cou. UICl.l..L.

A-28 CH23-Ql

read mail (rdm)

e mbla [mailbox]

[execute STR]
[e STR]

read mail (rdm)

evaluates a Multics active string from within read_mail. For
example, the following read mail request line:

write all [e strip_entry [mailbox]]

writes the ASCII representation of all messages in the
mailbox into a segment in the working directory whose entry
name is the same as that of the mailbox, with the "mbx"
suffix changed to "mail".

first {-cal
f {-ca}

prints the number of the first message of the specified type.
The control argument may be one of the following:

-idl
prints the number "1" (i.e., the number of the first
message, whether or not it has been deleted.)

-only deleted
-odl -

prints the message number of the first deleted message.

-only non deleted
-ondl- -

prints the message number of the first non-deleted
message. This is the default.

[first {-calJ
[f {-cal]

returns
type.
returns
control

the number of the first message of the specified
If there are no messages of the specified type, it
the value zero. This active request takes the same
arguments as the first request.

A-29 CH23-Ql

read mail {rdm}

forward {spec} addresses {-cal
fwd {spec} addresses {-cal
for {spec} addresses {-cal

read mail (rdm)

forwards the specified message to the addresses
Control arguments to the forward request are the
those for the append request.

given.
same as

Forwarding addresses may be given in
described under "Addresses" in the
description (later in this appendix).

any of the forms
send mail command

This request adds three fields to the message header:
Redistributed-Date, Redistributed-By, and Redistributed-To.
It adds the Date and From fields to the original message if
necessary before forwarding. The request also causes the
message to be acknowledged, if requested by the original
sender (see send_mail -acknowledge).

To forward a set of messages that can not be identified by a
single message specifier, request line iteration and the list
active request may be used to avoid retyping the recipients.
For example:

forward ([list 1 3 9 last-4:1ast]) Fry.ABC Lee.Proj -dl

help {5TR} {-cal
prints information about various read mail topics, including
detailed descriptions of read mail requests. If specified,
5TR is the name of a read_mall request or one of the other
available topics. If STR is not specified, the help request
lists the requests that provide information about read mail.

The help request accepts most of the control arguments
accepted by the Multics help command. Type " •• help help"
for a complete description of the help request. Following is
a description of some of the more useful control arguments
for the help request:

-brief
-bf

prints only a summary of a request or active request,
includi~g the Syntax section, list of arguments, control
arguments, etc.

A-30 CH23-01

read mail (rdm) read mail (rdm)

-search STRs
-srh STRs

begins printing with the paragraph containing
strings STRs. By default, printing starts
beginning of the information.

all the
at the

-section STRs
-scn STRs

begins printing at the section whose title contains all
the strings STRs. By default, printing starts at the
beginning of the information.

-title
prints section titles and
if the user wants to
information.

section line counts: then asks
see the first paragraph of

The most useful responses to questions asked by the help
request are:

?
prints the list of responses allowed to help queries.

prints "help"
onU;l"'",nmon+­
'-.II. ... eo ~ ""' .. "~ ... , '- •

to identify the current interactive

command line

no
n

quit
q

treats-the remainder of the response as a Multics command
line.

stops printing information for this topic and proceeds to
the next topic, if any.

stops printing information for this topic and returns to
the subsystem~s request level.

rest {-sen}
r {-sen}

prints remalnlng information for this topic without
intervening questions. If -section or -scn is given,
help prints only the rest of the current section without
questions and then asks if the user wants to see the next
section.

A-31 CH23-Ql

read mail (rdm) read_mail (rdm)

search {STRs} {-top}
srh {STRs} {-top}

skips to the next paragraph containing all the strings
STRs. If -~op or -~ is given, searching starts at the
top of the lnformatlon. If STRs are omitted, help uses
the STRs from the previous search response or the -search
control argument.

section {STRs} {-top}
scn {STRs} {-top}

skips to the next section whose title contains all the
strings STRs. If -top or -t is given, title searching
starts at the top of the information. If STRs are
omitted, help uses the STRs from the previous section
response or the -section control argument.

skip {-scn} {-seen}
s {-sen} {-seen}

skips to the next paragraph. If -section or -scn is
given, help skips all paragraphs of the current section.
If -seen is given, help sk~ps to the next paragraph that
the user has not seen. Only one control argument is
allowed in each skip response.

title {-top}

yes
y

lists titles and line counts of the sections that follow:
if -top or -t is given, help lists all section titles.
The previous question is repeated after titles are
printed.

prints the next paragraph of information on this topic.

if [EXPR] -then LINEl {-else LINE2}
conditionally executes one of two request lines depending on
the value of an active string. The arguments are:

EXPR
is the active string that must evaluate to either "true"
or "false". The active string is constructed from
read mail active requests and Multics active strings
(using read_mail's execute active request).

LINEl
is the read mail request line to execute if EXPR
evaluates to ~trueH. If the request llne contains any
request processor characters, it must be enclosed in
quotes.

A-32 CH23-Ql

read mail (rdm) read mail (rdm)

LINE2
is the read mail request line to execute if EXPR
evaluates to "false". If omitted and EXPR is "false", no
additional request line is executed. If the request line
contains any request processor characters, it must be
enclosed in quotes.

[if [EXPR] -then STRl {-else STR2}]
returns one of two character strings to the read_mail request
processor, depending on the value of an active string. The
arguments are:

EXPR

STRl

STR2

is the active string that must evaluate to either "true"
or "false". The active string is constructed from
read mail active requests and Multics active strings
(using read_mail's execute active request).

is returned as the value of the if active request if the
EXPR evaluates to "true".

is returned as the value of the if active request if the
EXPR evaluates to "false". If omitted and the EXPR is
"false"; a null string is returned~

last {-cal
1 {-cal

prints the number of the last message of the specified type.
The control argument may be one of the following:

-include deleted
-idl

prints the number of the last message, whether or not it
has been deleted.

-only deleted
-odl -

prints the number of the last deleted message.

-only non deleted
ondl - -

prints the message number of the last non-deleted
message. This is the default.

[last {-cal]
[1 {-cal

returns the number of the last message of the specified type.
If there is no message of the specified type, it returns the

A-33 CH23-01

read mail (rdm) read mail (rdm)

value zero. This active request takes the same control
arguments as the last request.

list {spec} {-selca} {-cal
Is { spec} { - s e 1 c a } { - c a }

prints a summary line for each of the specified messages, or
for all undeleted messages if no specifiers are given.
Control arguments may be chosen from the following:

-delete
-dl

deletes the messages after listing them.

-header
-he

prints a header line before the list of messages. This
is the default.

-include deleted
-idl -

prints the list of messages, including deleted ones.

-line length N
-11 N-

prints the list of messages, using the supplied line
length N to determine where and if to truncate the
message subject. (The default length is the terminal's
line length.)

-no delete
-ndT

does not delete the messages after listing them. This is
the default.

-no header
-nhe

omits the header line preceding the list of messages.

-no line length
-nIT -

does not truncate the message subject unless the subject
is more than one line long.

-no reverse
-nrv

lists the messages in ascending numeric order. This is
the default. -

A-34 CH23-01

read mail (rdm) read mail (rdm)

-only deleted
-odl -

lists only deleted messages.

-only_non_deleted
-ondl

lists only non-deleted messages. This is the default.

-reverse
-rev

prints the list of messages in reverse order.

The current message is marked (in the listing) by
the right of the message number. If -idl or
specified, deleted messages are marked by an "!"
right of the message number.

a "*" to
-odl is
to the

One or two lines are printed for each message. The format of
the first line is:

N (L) MM/DD/YY HH:MM AUTHOR SUBJECT

where N is the message number and L is the number of lines in
the body of the message (excluding the header). MM/DD/YY
HH:MM specifies the date/time when the message was originally
transmitted. AUTHOR specifies the original author(s) of the
message, and is normally as much of the From field of the
message as will fit in the provided space. SUBJECT is as
much of the Subject field, if present, as will fit on the
line. If the message is an interactive message, SUBJECT is
as much of the actual text of the message as will fit on the
line.

If the message has been forwarded, a second line is included
in the listing. This line has the format:

. I
I (*) Forwarded (Nth time) at MM/DD/YY HH:MM by STR
I

where N indicates the number of times that this message has
been forwarded. (N is omitted if the message has only been
forwarded once.) MM/DD/YY HH:MM specifies the date/time that
the message was last forwarded, and is derived from the most
recent Redistributed-Date field. STR specifies the person

A-35 CH23-Ql

read mail (rdm) read mail (rdm)

who last forwarded the message, and is the contents of the
most recent Redistributed-By field in the message.

[list {spec} {-selca} {-cal]
[Is {spec} {=selca} {-cal]

returns a list of the numbers of
separated by spaces. This active
selection arguments and control
request.

list_help {topics}
Ih {topics}

displays the name of all read mail
given topics. If no topics are
information segments are listed.

the specified messages
request takes the same

arguments as the list

information segments on
given, all read_mail

When matching topics with info segment names, an info segment
name is considered to match a topic only if that topic is at
the beginning or end of a word within the segment name.
Words in info segment names are bounded by the beginning and
end of the segment name and by the characters period (.),
hyphen (-), underscore (_), and dollar sign ($). The ".info"
suffix is not considered when matching topics.

list_requests {STR} {-cal
lr {STR} {-cal

prints a brief description of selected read_mail requests,
where STR specifies the request(s} to be described. Any
request with a name containing one of these strings is listed
unless -exact is used, in which case the request name must
exactly match one of these strings. When matching STRs with
request names, a request name is considered to match a STR
only if that STR is at the beginning or end of a word within
the request name. Words in request names are bounded by the
beginning and end of the request name and by the characters
period (.), hyphen (-j, underscore (_), and dollar sign ($).

Control arguments are:

-all
-a

includes undocumented and unimplemented requests in the
list of requests eligible for matching the STR arguments.

-exact
lists only those requests one of whose names exactly
match one of the 5TR arguments.

A-36 CH23-Ql

read mail (rdm) read mail (rdm)

log {spec} {-cal
saves the specified messages in the user's logbox. The
user's logbox has the pathname
>udd>Project_id>Person_id>Person_id.sv.mbx. It is created
automatically if it does not already exist, and the user is
informed of its creation. Date and From header fields are
added as required to logged messages. Any messages requiring
acknowledgement are acknowledged unless -no_acknowledge is
specified on the read_mail command line. Control arguments
for this request are the same as for the append request.

mailbox
mbx

prints the absolute pathname of the mailbox currently being
read.

[mailbox]
[mbx]

returns the absolute pathname of the mailbox currently being
read.

next {-cal
prints the number of the next message of the specified type.
The control argument may be one of the following:

-include deleted
-idl -

prints the number of the next message in the mailbox,
whether or not it has been deleted.

-only deleted
-odl -

prints the number of the next deleted message.

-only non deleted
-ondl- -

prints the number of the next non-deleted message. This
is the default.

[next {-cal]
returns the number of the next message number of the
specified type. If there are no messages of the specified
type, the value zero is returned. This active request takes
the same control arguments as the next request.

preface {spec} path {-cal
prf {spec} path {-cal

same as the append request,
beginning of the ASCII segment
at the end.

A-37

but inserts messages at the
specified by path, rather than

CH23-Ql

read mail (rdm) read mail (rdm)

previous {-cal
prints the number of the previous message of the specified
type. The control argument may be one of the following:

~include deleted
-idl -

prints the number of the previous message, whether or not
it has been deleted.

-only deleted
-odl -

prints the number of the previous deleted message.

-only non deleted
-ondl- -

prints the number of the previous non-deleted message.
This is the default.

[previous {-cal]
returns the number of the previous message of the specified
type. If there is no message of the specified type, the
value zero is returned. This active request takes the same
control arguments as the previous request.

print {spec} {-selca} {-cal
pr {spec} {-selca} {-cal
p {spec} {-selca} {-cal

prints the specified messages. This request causes the
specified messages to be acknowledged, if requested by the
sender, unless -no acknowledge is specified on the read mail
command line. -

If you use this request while in the video system (documented
in The Multics Menu System, Order No. CPSl), the reset_more
control order is issued after each message is printed. This
allows users of the video system to easily abort the printing
of a single message, when printing several messages.

Control arguments may be chosen from the following:

-delete
-dl

deletes the specified messages upon exiting read mail, if
all the specified messages are successfully printed.

-header
-he

prints complete message headers with the message text.
This is the default.

A-38 CH23-01

read mail (rdm) read mail (rdm)

-include deleted
-idl -

prints the messages, whether or not they have been
deleted.

no delete
-no1

does not
read mail.

-no header
-nhe

delete the specified
This is the default.

messages upon exiting

prints an abbreviated form of the message header.

-no reverse
-nrv

prints the messages in ascending numeric order. This is
the default.

-only deleted
-odl -

prints only the deleted messages.

-only non deleted
-ondl- -

prints This 1S

-reverse
-rev

prints messages in reverse order.

print_header {spec} {-selca} {-cal
prhe {spec} {-selca} {-cal

prints only the header of the specified message. This
request causes the specified messages to be acknowledged if
requested by the sender, unless -no_acknowledge is specified
on the read_mail command line. Control arguments are the
same as for the print request, except that the print header
request does not take the -header and -no header control
arguments.

quit {-cal
q {-cal

exits the read mail command; any
actually performed at this point.
chosen from the following:

A-39

requested deletions are
Control arguments may be

CH23-01

read mail (rdm) read mail (rdm)

-delete
-dl

deletes. the specified messages upon exiting read mail.
This is the default.

-force
-fc

does not check for newly
returning to command level.

arrived messages before

no delete
-ndl

does not delete the specified messages upon exiting
read mail.

-no force
-nfc

queries the user for permission to exit read mail if
there are newly arrived messages. This is the default.

ready
rdy

prints a Multics ready message. The Multics general ready
command may be used to change the format of the ready message
printed by this request, and also after execution of request
lines if the ready on request is used. The default ready
message gives the tIme of day, the amount of CPU time, and
page faults used since the last ready message was typed.

ready off
rdf -

does not generate a ready message after the execution of each
request line. This is the default.

ready on
rdn -

causes a ready message to be printed after the execution of
each request line.

reply {spec} {-cal {-to addresses} {-ca more_addresses}
rp {spec} {-cal {-to addresses} {-ca more_addresses}

allows the user to reply to the specified messages. By
default, the reply is sent only to the authors of the
original messages. The reply is created in send mail: the
user is returned to read mail after the message- is sent.
This request acknowledges any messages requiring
acknowledgement unless -no_acknowledge is specified on the
read mail command line.

Control arguments for the reply request are:

A-4Q CH23-Ql

read mail (rdm) read mail (rdm)

-cc addresses
sends a copy of the reply to the specified addresses.
The .given addresses become the only secondary recipients
of the reply unless the -include recipients control
argument is also included.

-delete
-dl

deletes the messages after replying to them.
you exit send mail without sending the
control argument is ignored.

However, if
reply, this

-include authors
-iat -

includes the authors of the original messages as primary
recipients of the new message. This is the default,
unless -to is also specified, in which case this argument
must be explicitly specified if the authors are to
receive the reply.

-include deleted
-idl

includes all messages in the mailbox, whether or not they
have been deleted, when processing the message specifiers
to determine which messages will be answered. -

-include_original
-io

includes the text and the Date, From, and Subject fields
of the messages being replied to in the reply. This text
is indented four spaces if no indentation is explicitly
specified.

-include recipients
-irc -

includes all recipients of the original message as
secondary recipients of the reply.

-include self

allows a copy of the reply to be sent to the writer of
the reply if it is determined that such a copy should be
sent from the use of the -include authors or
-include_recipients control arguments. -

-indent N
-ind N

indents the text of the original message by N spaces in
the reply. The default is 4 spaces.

A-41 CH23-Ql

read mail (rdm) read mail (rdm)

-no delete
-ndr

does not delete the messages. This is the default.

-no include authors
-niat -

does not include the authors of the message as primary
recipients.

-no include original
-nio -

does not include the original messages. This is the
default.

-no include recipients
-ni'rc -

does not include the recipients of the
secondary recipientse This is the default.

message as

-no include self
-nis

specifies that a copy of the reply is sent to the writer
of the reply ohly if this is explicitly requested by use
of the -to or -cc control arguments. This is the
default. This default allows the user to create a reply
abbreviation that automatically logs the reply without
receiving an extra copy whenever -include_recipients is
specified.

-no refill
-nrfi

does not reformat the original text.
default.

This is the

-only deleted
-odl -

includes only deleted messages when processing the
message_specifiers to determine which messages will be
answered.

-only non deleted
-ondl- -

includes only non-deleted messages when processing the
message specifiers to determine which messages will be
answered. This is the default.

-refill
-rfi

reformats the original text to fit within the line length
of the reply.

A-42 CH23-01

read mail (rdm) read mail (rdm)

-to addresses
sends a copy of the reply to the specified addresses.
The -to control argument overrides the -include authors
default, so the given addresses become the only-primary
recipients of the reply unless the -include_authors
control argument is also included.

The following send mail control arguments can a~so be used on
the reply request line:

-abbrev, -ab
-abort
-acknowledge, -ack
-brief, -bf
-fill, -fi
-from addresses
-input file path, -if path
-line length N, -11 N
-log -
-long, -19

-no fill, -nfi
-no-log
-no=message_id, -nmid
-no prompt
-no-request loop, -nrql
-no=subject~ -nsj
-profile_path, -pf path
-prompt STR
-reply to addr, -rpt addr
-request STR, =rq 5TH

-message id, -mid
-no abbrev, -nab
-no-abort
-no-acknowledge, -nack

-request loop, -rql
-save path, -sv path
-subject STR, -sj STR
-terminal_input, -ti

(For the -reply to control argument in the above list, "addr"
means "addresses".)

Notes on recipients:
By default, the reply is sent only to the authors of the
original messages or to those recipients specified by the
authors to receive replies in place of the authors. In the
following text, the term "authors of the original messages"
means either the authors or their designated agents.

The -to and -include authors control arguments specify the
primary recipients for the reply. If the -to control
argument is used and -include_authors does not appear on the
request line, only those addresses specified after -to are
uSed as the primarj recipients of the reply. If both -to and
-include_authors are used on the request line, the primary
recipients of the message are the authors of the original
messages and the addresses specified after the -to control
argument. Use of -include authors on the read mail command
line does not affect -this interaction of -to and
-include_authors on the reply request line.

The -cc and -include_recipients control arguments specify the
secondary recipients for the reply. If -include recipients
is specified either on the reply request line or the

A-43 CH23-01

read mail (rdm) read mail (rdm)

read mail command line, all recipients of the original
messages are included as secondary recipients of the reply.
If -cc is used on the request line, the addresses following
the -cc control argument are added to the list of secondary
recipients of the reply. For example, the command line:

read mail -include recipients - -

in conjunction with the request line

reply -to Smith.Proj -cc Riley.Proj

composes a reply for the ~urrent message that is
Smith.Proj as the sole prlmary recipient and to
recipients of the current message plus Riley.Proj
secondary recipients.

Notes:

sent to
all the

as the

of the -abbrev, -no abbrev, or
the send mail invocatIon created

same state of request line
uses the same profile as the

Unless overriden by use
-profile control arguments,
by this request has the
abbreviation expansion and
current read mail invocation.

Unless overriden by use of the -subject or -no_subject
control arguments, this request constructs a subject for the
reply message by combining the subjects of all the original
messages. Additionally, the subject is prefixed by the
string "Re: "

This request constructs an In-Reply-To field for the reply
message identifying the original messages being answered by
this reply.

retrieve {spec} {-selca}
rt {spec} {-selca}

causes the specified messages, if deleted, to be undeleted.
This action is allowed until the user quits and returns to
command level. When the user exits read mail, all messages
deleted by the delete (dl) request are actually deleted from
the mailbox and can no longer be retrieved.

A-44 CH23-01

read mail (rdm) read mail (rdm)

save {spec} path {-cal
sv {spec} path {-cal

saves the specified message~ in the mailbox designated by
path. The .sv.mbx suffix 1S added to path if it is not
present. If the save box does not exist, the user is asked
whether to create it. Date and From fields are automatically
added to any messages that do not have them. If no messages
are specified, the current one is saved. This request causes
the specified messages to be acknowledged if requested by the
senders, u~less -no_acknowledge is specified on the read_mail
command llne. Control arguments are the same as for the
append request.

subsystem name
prints the name of the current subsystem.

[subsystem_name]
returns the name of the current
request is useful as part of an
mUltiple subsystems.

subsystem.
abbrev that

subsystem version
prints the version of the current subsystem.

[subsystem_version]

This active
is shared by

returns the version of the current subsystem. This active
request may be used in an abbrev that is shared by multiple
subsystems.

write {spec} path {-cal
w {spec} path {-cal

appends the specified messages to the ASCII segment
designated by path. The .mail suffix is added to path if it
is not present. If no messages are specified, the current
one is written. Date and From fields are added to any
messages that do not have them. This request causes the
specified messages to be acknowledged if requested by the
senders unless -no acknowledge is specified on the read mail
command line. Control arguments may be chosen from the
following:

-delete
-dl

deletes the messages after writing them, if all the write
operations are successful.

-extend
writes the messages at the end of the segment. This is
+~e default.

A-45 CH23-Ql

read mail (rdm) read mail (rdm)

-include deleted
-idl -

writes the messages, whether or not they have been
deleted.

-no delete
-ndY

does not delete the messages after writing them. This is
the default.

-no reverse
-nrv

writes the messages in ascending numeric order. This is
the default.

-only deleted
-odl -

writes only the deleted messages.

-only non deleted
-ondl- -

writes the non-deleted messages. This is the default.

-reverse
-rev

writes the messages in reverse order.

-truncate
-tc

truncates the segment before writing the messages to it.

A-46 CH23-Ql

send mail (sdm) send mail (sdm)

send_mail (sdm)

The send mail command transmits a message to one or more
recipients. -The message is automatically prefixed by a header
whose standard fields give the author(s), the intended
recipients, and a brief summary of the contents.

SYNTAX AS A COMMAND

sdm {addresses} {-cal

ARGUMENTS

addresses
specifies the primary recipients of the message. By default,
the message has no primary recipients. Addresses may be
specified in one or more of the following forms:

-log
specifies the user's logbox and is equivalent to:

-mailbox >udd>Project_id>Person_id>Person_id.sv.mbx

-mailbox PATH
-mbx PATH .

specifies the pathname of a mailbox. The .mbx suffix is
assumed if it is not present.

-save PATH
-sv PATH

specifies ~ne pathname of a savebox. The .sv.mbx suffix
is assumed.

-user Person id.Project id
specifies the given-user's default mailbox. This control
argument is equivalent to:

STR

-mailbox >udd>Project id>Person id>Person id.sv.mbx - - -

is any non-control argument. If STR contains either "<"
or ">", it is interpreted as -mailbox STR. Otherwise, it
1S interpreted as -user STR.

STR -at System
!s valid only on systems connected to the ARPA network
and specifies an address on another computer system. STR

A-47 CH23-Ql

send mail (sdm) send mail (sdm)

identifies the user (or group of users) to receive the
message; it is not interpreted in any way by the local
system. System identifies a remote system defined in the
local system's host table; no distinction is made between
upper and lower case characters in the host name~

-comment STR
-com STR

must appear immediately following one of the above forms
of an address; it supplies additional descriptive
information about the address such as a user's full name.

CONTROL ARGUMENTS

Control arguments can be interspersed with the addresses and
can be chosen from the following:

-abbrev
-ab

enables abbreviation expansion of request lines.

-abort
does not send the message unless it
delivered to all specified recipients.

can be successfully
This is the default.

-acknowledge
-ack

requests that a message be sent to the user of send mail by
each recipient of the message after they have read the
message via read mail or print mail. The sender's name is
placed in the Acknowledge-TO header field.

-brief
-bf

suppresses printing of the
<address>" when mail is sent.

message "Mail delivered to

-cc addresses

-fi

adds subsequent addresses as secondary recipients of the
message. Mail is sent to these addresses when the send
request is issued with no arguments. These addresses are
placed in the cc header field. In the default case there are
no secondary recipients.

reformats the text of the message according to "fill-on" and
"align-left" modes of the compose command. The message is

A-48 CH23-Ql

send mail (sdm) send mail (sdm)

reformatted after initial input is completed, and after each
execution of the qedx and apply requests. This is the
default for terminal input.

-from addresses
adds subsequent addresses as authors of the message. These
addresses are placed in the From header field, overriding the
sender's name (placed there by default), and are used as
recipients of a reply request.

-header
-he

generates a message header. This is the default.

-in reply to STR
-irt STR -

places STR in the In-Reply-To field of the header. In the
default case this field is not present.

-input file path
-if path

sends the text of a segment. Use of this control arguments
implies -rql. If -input_file is not specified, the user is
prompted for the message text ("Message:").

-line length N
-11 N-

specifies a line length to be used when adjusting text. The
default line length is 72 characters.

-long
-lg

prints the "Mail delivered to <address>" message when mail is
sent. This is the default.

-message id
-mid -

adds a Message-ID field to the header, containing a unique
identifier for the message.

-no abbrev
-nab

does not enable abbreviation expansion of request lines.
This is the default.

-no abort
sends the message to as many recipients as possible, even if
it cannot be sent to all specified recipients.

A-49 CH23-01

send mail (sdm) send mail (sdm)

-no acknowledge
-nack

does not request that recipients of the message acknowledge
the message. This is the default.

-no fill
-nfT

sends the message as typed with no formatting adjustments,
unless the fill request or the -fill control argument of the
qedx and appy requests is used. This is the default for file
input.

-no header
-nhe

does not add the normal message header to the message. Only
the Subject and To header fields are added unless explicitly
requested by control arguments or requests.

-no log
-does not send a copy of the message to the user's logbox.

This is the default.

-no_message_id
-nmid

does not add a Message-ID field to the header. This is the
default.

-no prompt
-does not prompt for request lines when inside the request

loop. The default prompt is "send mail(N}:", where N is the
recursion level if greater than one:

-no request loop
-nrql -

sends the message
the request loop,
terminated by "\f"
input.

upon completion of input without entering
unless input is from a terminal and is

or "\q". This is the default for terminal

-no_subject
-nsj

does not add a Subject field to the header.

-profile path
-pf path

specifies the pathname of the profile to use for abbreviation
expansion. The suffix "profile" is added if necessary. This
control argument implies -abbrev.

A-50 CH23-01

send mail (sdm)

-prompt STR
sets the prompt for the
string STR. If STR is "",

-reply to addresses
-rpt addresses

send mail (sdm)

request loop to the ioa control
the user is not prompted.-

adds subsequent addresses to the Reply-To header field. In
the default case this field is not presente When present,
these addresses are used as recipients of a reply request,
rather than the addresses of the From field.

-request STR
-rq STR

executes a line of requests specified by STR, after reading
the message text from the appropriate source. If the quit
(q) request is not included in STR, the request loop is
entered after STR is executed.

-request loop
-rql -

enters send mail's request loop after reading the message
text. This is the default for file input.

-subject STR
-sj STR

places STR in the Subject field of the header. If STR lS "",
no Subject field is created. If this control argument is not
specified, the user is asked for a subject with the prompt
"Subject:". A blank response causes the Subject field to be
omitted.

-terminal input
-ti -

prompts the user for the message text ("Message:"). The user
then types the message text terminated by a line consisting
of a period ("."). This is the default.

-to addresses
adds subsequent addresses as primary recipients of the
message. These auuresses, along with the addresses at the
beginning of the command line (preceding any control
arguments), are placed in the To header field. Mail is sent
to these recipients when the send request is issued with no
arguments. There are no primary recipients by default.

A-51 CH23-Q1

send mail (sdm) send mail (sdm)

NOTES

If conflicting control arguments (for instance, -header and
-no_header) are specified, the last one takes effect.

Terminal Input

By default or if -terminal input is specified, send mail
issues the prompt "Message:" and -reads the message text from the
terminal.

If the user terminates the text with a line containing just a
P7riod (.), send_mail reformats the message unless -no_fill was
glven on the command line. It then sends the message to the
specified recipients, unless -request or -request loop was also
given on the command line. If any errors occur whiTe sending the
message, send mail enters its request loop to allow the user to
correct the problem.

If the user terminates the text with a line containing "\f"
anywhere on the line, send mail enters the qedx editor. Any
characters on the line afIer the "\fn are treated as qedx
requests.

If the user terminates the text with a line containing "\q"
anywhere on the line, send mail reformats the message (unless
-no fill is given on the command line), and enters the request
loop. Any characters on the line after the "\q" are ignored with
a warning message. Type "help qedx" within send mail for more
information on the qedx request.

Addresses

Any addresses appearing on the command line before the first
-ce, -from, -reply to, or -to control argument are considered
primary recipients -of the message. (See the description of the
-to control argument.)

The -cc, -from, -reply_to, and -to control arguments apply to
all subsequent addresses until the next of these control
arguments is given. Any other intervening control arguments do
not affect this interpretation.

For example, the sequence:

A-52 CH23-Ql

send mail (sdm) send mail (sdm)

addr1 -from addr2 addr3 -cc addr4 -to addr5

causes addr1 and addr5 to be processed by -to, addr2 and addr3 to
be processed by -from, and addr4 to be processed by -cc.

Headers

Each message in a mailbox includes a header containing
information about who sent the message, when the message was
sent, etc. The message header is composed of header fields.
Each field contains its name, a colon, and the contents of the
field. The header is separated from the actual text of the
message by one or more blank lines.

The following group of fields are used,by the Multics mail
system. Additional fields may be present 1n a message's header
for use by subsystems that use the mail system to store and
transfer information. Among the standard fields, only the Date
and From fields are always present in a message; all other fields
are optional. The fields are presented in the order that they
actually appear in a header.

Date:
specifies the date and time that the message was created. Its
format is:

Date: DOW, MM Month YYYY HH:MM zzz

where DOW is the day of the week (eg: Monday), "MM" is the day
of the month, "YYYY" is the year, "HH:MM" is the time, and "zzz"
is the time zone. For example:

Date: Thursday, 9 April 1982 19:43 est

From:
specifies the authors of the message. Its format is:

A-53 CH23-Q1

send mail (sdm) send mail (sdm)

From: address-list

where address-list is one or more addresses separated by commas.
Each address in the list identifies one of the authors of the
message.

Subject:
gives a brief description of the content of the message. Its
format is:

Subject: STR

where STR is the text of the subject of the message.

Sender:
identifies the user who sent the message. It is present if there
is more than one address in the From field, or if the single
address in the From field does not identify the user who actually
sent the message (e.g., a secretary sending mail on behalf of a
manager). Its format is:

Sender: address

Reply-To:
specifies the recipient{s) of any reply to this message.
field is not present, the reply is sent to the authors
message identified in the From fieldG Its format is:

Reply-To: address-list

To:

If this
of the

specifies the primary recipients of this message. Its format is:

To: address-list

A-54 CH23-01

send mail (sdm) send mail (sdm)

where each address in the list identifies one of the primary
recipients of the message.

ce:
specifies the secondary recipients of the message. Its format
is:

ec: address-list

where each address in the list identifies one of the secondary
recipients of the message.

bec:
identifies the tertiary recipients of the message (i.e., those
who receive a "blind" copy). Its format is:

bcc: address

where address identifies the tertiary recipient who received this
copy of the message. The copy of a message delivered to the
primary and secondary recipients never includes a bcc field.

Acknowledge-To:
identifies the user to whom acknowledgements of the receipt of
this message are to be sent. This field is only present in
copies of the message which have not yet been acknowledged. Its
format is:

Acknowledge-To: address

In-Reply-To:
identifies the message(s) to which this message is a reply. Its
format is:

In-Reply-To: STR1, STR2, •.• STRn

where e~ch STRi identifies one of the messages for which this
message is a reply. The format of STR looks like this:

A-55 CH23-Ql

send mail (sdm) send mail (sdm)

Message of 18 June 1982 12:23 est from Spry.Proj

where "Spry.Proj" identifies the author of the original message,
and the rest of the line identifies the date and time when the
original message was created.

Message-ID:
uniquely identifies this message. Its format is:

Message-ID: <YYMMDDHHMM5S.FFFFFF>

where "YYMMDDHHMM55.FFFFFF" is the request ID representing the
time when this message was first created. For a description of
request IDs, see the Reference manual.

There are two groups of header fields that appear optionally.
When present, the Forwardings and comments header fields appear
after the above standard fields and any non-standard fields in
the header. These groups may be present in the header more than
once; each occurrence of such a group identifies a single
forwarding or commenting of the message.

The group of fields containing forwarding information
indicates that this message was redistributed (forwarded) by one
of its recipients to one or more additional recipients. If
present, the Comment field contains any comments the recipient
added at the time they forwarded the message. The format of this
group is:

Redistributed-Date: DD Month YYYY HH:MM zzz
Redistributed-By: address
Redistributed-To: address-list
Comment: 5TR

where "DD Month YYYY HH:MM zzz" indicates the date and time when
the message was forwarded, address identifies the individual who
forwarded the message, and the addresses in the address-list
indicate to whom the message was forwarded~

The Comment fields indicates that a comment was added to this
message. The format of this group is:

A-56 CH23-01

send mail (sdm) send mail (sdm)

Comment-Date: DD Month YYYY HH:MM zzz
Comment-By: address
Comment: STR

where "DD Month YYYY HH:MM zzz" specifies the date and time that
the comment was added, address identifies the user who added the
comment, and STR is the actual text of the comment.

REQUESTS

In the following send mail request descriptions, "spec" means
"message_specifier", n=ca" means "-control args", and "-selca"
means "-selection args". See the read mail description for
information on message specifiers and selection arguments.

?
prints a multi-columnar list of the send mail requests.

prints a line identifying the current version of send mail
and the current state of the message being created:

send mail 6.0: 23 lines (modified) Subject: Zoots

The word "modified" indicates that the message has been
changed since the last use of the send request. The string
"send mail 6.0" gives the version number of send mail. If
the current recursion level is greater than one, it is
included in parentheses, for example:

send mail 6.0 (level 2): 5 lines:

If abbrev expansion is enabled, the word "abbrev" is included
in parentheses before the recursion level (if any):

~~nd mail 6.0 (abbrev) (level 2): 5 lines:

A-57 CH23-01

send mail (sdm) send mail (sdm)

STR
passes a command line, specified by STR, directly to the
command processor, without processing by the send_mail
request processor. The " •• " string must be the first two
characters of the request line.

abbrev {-cal
ab {-cal

controls abbreviation processing within send mail. If
invoked with no arguments, this request enables abbrev
processing within send_mail using the profile that was last
used in this send_mail invocation. If abbrev processing was
not previously enabled, the profile in use at Multics command
level is used; this profile is normally
[home dir]>Person.id.profile. (See the Commands manual for a
descrIption of abbreviation processing.) Control arguments
may be chosen from the following:

-off

-on

specifies that abbreviations are not to be expanded.

specifies that abbreviations are expanded.
default.

This is the

-profile path

[abbrev]

specifies that the segment named by path is to be used as
the profile segment. The suffix ".profile" is added to
path if it is not present. The segment named by path
must exist prior to the use of this control argument.

returns "true" if abbreviation expansion of request lines is
currently enabled within send_mail, and "false" otherwise.

answer 5TH {-cal request line
provides preset answers to
request. The arguments are:

questions asked by another

STR
is the desired answer to any question. If the answer is
more than one word, it must be enclosed in quotes. If
STR is -query, the question is passed on to the user.
The -query control argument is the only one that can be
used in place of STR.

request line
is any send mail request line. It can contain any number
of separate- arguments (i.e., have spaces within it) and
need not be enclosed in quotes.

A-58 CH23-01

send mail (sdm) send mail (sdm)

Control arguments may be chosen from the following:

-brief
-bf

suppresses printing (on the user's terminal) of both the
question and the answer.

-call 5TR
evaluates the active string 5TR to obtain the next answer
in a sequence. The active string is constructed from
send_mail active requests and Multics active strings
(using send mail's "execute" active request)e The
outermost level of brackets must be omitted and the
entire string must be enclosed in quotes if it contains
request processor special characters. The return value
"true" is translated to "yes", and "false" to "no". All
other return values are passed as is.

-exclude 5TR
-ex 5TR

passes on, to the user or other handler, questions whose
text matches 5TR. If 5TR is surrounded by slashes (I),
it is interpreted as a qedx regular expression.
Otherwise, answer tests whether 5TR is literally
contained in the text of the question. Multiple
occurrences of -ma~cn and -exclude are allowed (see
"Notes" below). They apply to the entire request line.

-match 5TR
answers only questions whose text matches STR. If 5TR is
surrounded by slashes (I), it is interpreted as a qedx
regular expression. Otherwise, answer tests whether 5TR
is literally contained in the text of the question~
Multiple occurrences of -match and -exclude are allowed
(see "Notes" below). They apply to the entire request
line.

-query
skips the next answer in a sequence, passing the question
on to the user. The answer is read from the user_i/o 1/0
switch.

-then 5TR
supplies the next answer in a sequence.

-times N
gives the previous answer (5TR, -then 5TR, or -query) N
times only (where N is an integer).

A-59 CH23-Ql

send mail (sdm) send mail (sdm)

Answer provides preset responses to questions by establishing
an on unit for the condition command question, and then
executing the designated request line. If any request in the
request line calls the command query subroutine (described
in the Subroutines manual) to ask a question, the on unit is
invoked to supply the answer. The on unit is reverted when
the answer request returns to send_mail request level. See
the Reference manual for a discussion of the command question
condition. -

If a question is asked that requires a yes or no answer, and
the preset answer is neither "yes" nor "no", the on unit is
not invoked.

The last answer specified is issued as many times as
necessary, unless followed by the -times N control argument.

The -match and -exclude control arguments are applied in the
order specified. Each -match causes a given question to be
answered if it matches STR; each -exclude causes it to be
passed on if it matches STR. A question that has been
excluded by the -exclude control argument is reconsidered if
it matches a -match later in the request line.

append path
app path

appends the message (with header) to the end of the ASCII
segment specified by path. The suffix .mail is added to path
if it is not present. If the specified segment does not
already exist, the user is asked whether to create it.

apply {-cal STR
ap {-cal STR

places the message in a temporary segment in the process
directory, then concatenates the command line specified by
STR with intervening spaces and appends the pathname of the
temporary segment. This concatenated command line is passed
to the Multics command processor. When the command line has
completed, the message in send mail is replaced with the
contents of the temporary segment. This request can be used
to edit the message with a text editor. Control arguments
are:

-fill
-fi

specifies that the message text is reformatted after the
command line has been executed.

A-60 CH23-01

send mail (sdm) send mail (sdm)

-header
-he

specifies that the message header is passed to the
command line in addition to the message text.

-line length N
-II N-

specifies the line length to use when reformatting the
message text. If this control argument is not given, the
line length specified on the send mail command line is
used. If no line length is specified on the send mail
command line, a line length of 72 is used.

-no fill
-nfT

specifies that the message text is not be reformatted.

-no header
-nhe

specifies that only the message text is passed to the
command line. This is the default.

The supplied command line for the apply request need not be
enclosed in quotes. However, if there are (), [], or "'5 in
the command line that should be processed by the Multics
command processor; they should be enclosed in quotes to
prevent processing by send_mail's request processor.

The message is passed to the Multics command line by placing
the message text and header (if requested) into a temporary
segment. The pathname of this segment is appended to the
command line, which is then executed. The contents of the
segment after execution replace the prior message text (and
header).

This request may be used to edit the message with an editor
other than qedx. For example, the following request invokes
the Emacs text editor on the message text:

apply emacs

The default for reformatting the message after execution of
the command line is dependent on the original source of the
message text. If terminal input was used, the default is to
reformat the message; if file input was used, the default is
to leave the message unformatted. This default may be
changed by use of the -fill and -no fill control arguments on
the send mail command line. AdditIonally, whatever default
is specified may be overriden for one invocation of the apply
requ(:~"t bj use of the control arguments described above.

A-61 CH23-01

send mail (sdm) send mail (sdm)

If the -header control argument is specified, both the
message header and text are placed in the temporary segment.

After apply execution is complete, send mail analyzes the new
message and then updates the message's subject, In-Reply-To
field, lists of primary/secondary recipients, authors, and
list of recipients for future replies.

cc {addresses}
adds any addresses specified to the list of secondary
recipients of the message. Mail is sent to these addresses
when a subsequent send request is issued with no arguments.
The addresses are added to the cc field, which is created if
necessary. If no addresses are specified, the secondary
recipients of the message are listed.

copy path
cp path

copies the message into the
mailbox must already exist.
if it is not present.

mailbox designated by path. The
The .mbx suffix is added to path

do STR {args}
or

do {-cal
expands a request line specified by STR by substituting the
supplied arguments into the line before execution. Arguments
are character string arguments that replace parameters in the
request line.

The following control arguments set the mode of operation of
the do request:

-absentee
an any other handler is established
conditions and aborts execution of
without aborting the process.

that catches all
the request line

-brief
-bf

-go

the expanded request line is
execution. This is the default.

not printed before

the expanded request line is passed on for execution.
This is the default.

-interactive
the any other handler is not established.
default.-

A-62

This is the

CH23-01

send mail (sdm) send mail (sdm)

-long
-lg

the expanded request line is printed before execution.

-nogo
the expanded request line is not passed on for execution.

Any sequence beginning with & in the request line is expanded
by the do request using the arguments given on the request
line. Following is the list of parameters:

&1

&(1)

&q1

is replaced by arg1. 1 must be a digit from 1 to 9.

is also replaced by arg1. 1 can be any value, however.

is replaced by arg1 with any quotes in arg1 doubled. 1
must be a digit from 1 to 9.

&q (1)

&r1

is also replaced by arg1 with any quotes doubled. 1 can
be any value.

is replaced by all the arguments starting with arg1.
Each argument is placed in quotes with contained quotes
doubled. 1 must be a digit from 1 to 9.

&r(1)

&f1

is also replaced by a requoted arg1. 1 can be any value.

is replaced by all the arguments starting with arg1. 1
must be a digit from 1 to 9.

&f(I)

&qfI

is also reolaced bv all the
I can be ~ny value:

arguments argI.

is replaced by all the arguments starting with argI with
any quotes doubled. I must be a digit from 1 to 9.

&qf(I)
is also replaced by all the arguments starting with argI
with quotes doubled. I can be any value.

A-63 CH23-Ql

send mail (sdm) send mail (sdm)

&rf{I)
is also replaced by all the arguments starting with argI,
requoted. I can be any value.

&&

&!

&n

is replaced by an ampersand.

is replaced by a 15 character unique string.
used is the same everywhere &! appears in
line.

The string
the request

is replaced by the actual number of arguments supplied.

&f&n
is replaced by the last argument supplied.

[do request_line {args}]
returns a request line with argument substitution.

exec com path {args}
ec path {args}

executes a program written in the exec_com language, where
path is the pathname of an exec com program. The suffix
"sdmec" is added to the pathname iT necessary_ This program
is used to pass request lines to send mail and to pass input
lines to requests which read input. The arguments are
optional arguments to the exec com program and are
substituted for parameter references-in the program such as
&1.

If the pathname does not contain a "<" or">" character,
send mail searches for the exec com program using the
mail-system search list. The default content of this search
list-is:

-working dir
>udd>[user project]>[user name]>[user name].mlsys

When evaluating a send mail exec corn program, subsystem
active requests are used rather than Multics active functions
when evaluating the &[...] construct and the active string in
an &if statement. The send mail execute active request may
be used. to evaluate MultTcs active strings within the
exec corn.

A-64 CH23-01

send mail (sdm) send mail (sdm)

Currently, any error detected during execution of an exec com
within send mail aborts the request line in which -the
exec_com request was invoked.

[exec_com path {args}]
[ec pa t h { a r g s }]

executes a program written in exec com language that
specifies a return value of the exec com request with the
&return statement. The arguments are the same as for the
exec com request.

execute STR
e STR

executes the supplied line as a Multics command line, where
STR is the Multics command line to be executed or the Multics
active string to be evaluated. It need not be enclosed in
quotes.

The recommended method to execute a Multics command line from
within send mail is the ".$" escape sequence. The execute
request is intended as a means of passing information from
send mail to the Multics command processor.

All (), [], and "'s in the given line are processed by the
send mail request processor, not the Multics command
processor. Thus, the values of subsystem active requests may
be passed to Multics commands when using the execute request.
For example, the send mail request line:

e sm Roe.NewProj I'm sending you mail about [subject].

warns user Roe.NewProj that she is about to receive a
message.

[execute STR]
[e STR]

the execute active request can be used with a Multics active
function to invoke the active function from within send mail.
For example, the following send mail request line:

write [e date]

writ~s the ASCII representation of the message being created
into a segment in the working directory. The entry name of

A-65 CH23-Ql

send mail (sdm) send mail (sdm)

this segment is the current date with a suffix of ".mail"
(e.g., 12/01/82.mail).

fill {-cal
fi {-cal

reformats the message text according to "fill-on" and
"align-left" modes of the compose command. If the -fill
control argument, which is the default for terminal input, is
specified on the send mail command line, the message is
reformatted after each use of the qedx and apply requests.
This automatic reformatting can be overridden by use of the
-no_fill control argument to these requests. The control
argument to the fill request is:

-line length N
-11 N-

specifies the maximum line length.
characters, or the value specified
-line_length control argument.

from {addresses}

The default is 72
with the send mail

adds addresses to the list of authors of the message if any
addresses are specified. The addresses are added to the From
field of the header. If no addresses are specified, the
authors of the message are listed. If no explicit authors
are specified, either via this request or via use of the
-from control argument on the send mail command line, the
user of send mail is listed as the sole author of the message
when it is-transmitted. If a message has more than one
author or the author is not the user using send mail, a
Sender field identifying the user of send mail is added to
the message when it is transmitted.

help {STR}
prints information about various send_mail topics, including
detailed descriptions of send mail requests. If specified,
STR is the name of a topic on which information is to be
printed. If STR is not specified, the help request lists the
requests that provide information about send_mail.

The help request accepts most of the control arguments
accepted by the Multics help command. Type " •• help help"
for a complete description of the help request. Following is
a description of some of the more useful control arguments
for the help request:

A-66 CH23-Ql

send mail (sdm) send mail (sdm)

-brief
-bf

print~ only a stimm~ry of a request or active request,
including the Syntax section, list of arguments, control
arguments, etc.

-search STRs
-srh STRs

begins printing with the paragraph containing
strings STRs. By default, printing starts
beginning of the information.

all the
at the

-section STRs
-sen STRs

begins printing at the section whose title contains all
the strings STRs. By default, printing starts at the
beginning of the information.

-title
prints section titles and
if the user wants to
information.

sec~lon line counts; ~nen asks
see the first paragraph of

The most useful responses to questions asked by the help
request are:

?
prints the list of responses allowed to help queries.

prints "help"
environment.

to identify the current interactive

command line

no
n

quit
q

treats-the remainder of the response as a Multics command
line.

stops printing information for this topic and proceeds to
the next topic, if any.

stops printing information for this topic and returns to
the subsystem's request level.

A-67 CH23-01

send mail (sdm) send mail (sdm)

rest {-sen}
r {-scn}

prints remalnlng information for this topic without
intervening questions. If -section or -scn is given,
help prints only the rest of the current section without
questions and then asks if the user wants to see the next
section.

search {STRS} {-top}
srh {STRs} {-top}

skips to the next paragraph containing all the strings
STRs. If -top or -t is given, searching starts at the
top of the information. If STRs are omitted, help uses
the STRs from the previous search response or the -search
control argument.

section {STRs} {-top}
scn {STRs} {-top}

skips to the next section whose title contains all the
strings STRs. If -top or -t is given, title searching
starts at the top of the information. If STRs are
omitted, help uses the STRs from the previous section
response or the -section control argument.

skip {-sen} {-seen}
s {-sen} {-seen}

skips to the next paragraph. If -section or -sen is
given, help skips all paragraphs of the current section.
If -seen is given, help skips to the next paragraph which
the user has not seen. Only one control argument is
allowed in each skip response.

title {-top}

yes
y

lists titles and line counts of the sections that follow:
if -top or -t is given, help lists all section titles.
The previous question is repeated after titles are
printed.

prints the next paragraph of information on this topic.

if [EXPR] -then LINEl {-else LINE2}
conditionally executes one of two request lines depending on
the value of an active string. The arguments are:

EXPR
is the active string which must evaluate to either "true"
or "false". Th~ active string is constructed from

A-68 CH23-01

send mail (sdm) send mail (sdm)

send mail active requests and Multics active strings
(using send_mail's execute active request).

LINEl
is the send mail request line to execute if EXPR
evaluates to-"true". If the request line contains any
request processor characters, it must be enclosed in
quotes.

LINE2
is the send mail request line to execute if EXPR
evaluates to "false". If omitted and EXPR is "false", no
additional request line is executed. If the request line
contains any request processor characters, it must be
enclosed in quotes.

[if [EXPR] -then 5TRl {-else 5TR2}]
returns one of two character strings to the send mail request
processor, depending on the value of an active-string. The
arguments are:

EXPR

STRl

STR2

is the active string that must evaluate to either "true"
or "false". The active string is constructed from
send mail active requests and Multics active strings
(using send mail's execute active reauest). - - .. ,

is returned as the value of the if active request if the
EXPR evaluates to "true".

is returned as the value of the if active request if the
EXPR evaluates to "false". If omitted and the EXPR is
"false", a null string is returned.

in_reply~to {STRs}
irt {STRs}

replaces the In-Reply-To field of the message (if any) with
the concatenation of the STRs with intervening spaces. If no
STRs are specified, it prints the contents of the In-Reply-To
field.

list_help {topics}
lh {topics}

displays the name of all send mail
given topics. If no topics are
information segments are listed.

A-69

information segments on
given, all send mail

CH23-Ql

send mail (sdm) send mail (sdm)

When matching topics with info segment names, an info segment
name is considered to match a topic only if that topic is at
the beginning or end of a word within the segment name.
Words in info segment names are bounded by the beginning and
end of the segment name and by the characters period (.),
hyphen (-), underscore (), and dollar sign ($). The ".info"
suffix is not considered-when matching topics.

list_original {spec} {-selca} {-cal
Iso {spec} {-selca} {-cal

provides a one-line summary of relevant information about the
message(s) being answered. This request is only available
within a send mail that was created by the read mail reply
request. It accepts read_mail message specifiers, so that
the user can examine other messages which might be relevant
to the reply. Control arguments are:

-header
-he

preceeds the message listing by
identifies the columns of the list.

a header line that
This is the default.

-include deleted
-idl -

includes all messages in the mailbox, whether or not they
have been deleted, when processing message specifiers and
selection args to determine which messages will be
listed. -

-line length N
-11 N-

uses the supplied line length when determining where and
if to truncate the message subject. The default length
is the terminal's line length. default.

-no header
-nhe

omits the header line from the listing.

-no line length
-nIT -

does not truncate the message subject unless the subject
is more than one line long.

-no reverse
-nrv

lists the messages in ascending numeric order. This is
the default.

A-7Q CH23-Ql

send mail (sdm) send mail (sdm)

-only_deleted
-odl

incl-udes-only those messages which have been deleted.

-only_non_deleted
-ondl

includes only those messages which have not been deleted.
This is the default.

-reverse
-rv

lists the messages in descending numeric order.

If this request was created
read mail, you can list any
invocation with this request.

[list_original {spec} {-selca} {-cal]
[Iso {s pe c} { - s e 1 c a } { - c a }]

by the
message

reply request in
in the read mail

returns the message numbers of the messages being answered by
send mailc This active request is only available within an
invocation of send mail that was created by the read mail
reply request. It-takes the same control arguments as the
list original request.

list_requests {STR} {-cal
lr {STR} {-cal

prints a brief description of selected send_mail requests,
where STR specifies the request(s) to be described. Any
request with a name containing one of these strings is listed
unless -exact is used, in which case the request name must
exactly match one of these strings. When matching STRs with
request names, a reauest name is considered to match a 5TR
only if that STR is at the beginning or end of a word within
the request name. words in request names are bounded by the
beginning and end of the request name and by the characters
period (.), hyphen (-), underscore (), and dollar sign ($).

Control arguments are:

-all
-a

includes undocumented and unimplemented requests in the
list of requests eligible for matching the STR arguments.

-exact
lists only those requests one of whose names exactly
match one of the STR arguments.

A-71 CH23-Ql

send mail (sdm) send mail (sdm)

log
saves a copy of the
(Person id.sv.mbx). This
does not already exist.

message in the
request creates the

user's logbox
logbox if one

log_original {spec} {-cal
logo {spec} {-cal

places a copy of the original message(s) into the user's
logbox. This request is only available within a send mail
that was created by the read_mail reply request. It accepts
read mail message specifiers, so that the user can log other
messages which might be relevant to the reply.

The user's logbox is the mailbox
>udd>Project_id>Person_id>Person_id.sv.mbx. This mailbox is
created automatically by the request if it does not already
exist. The user is informed when the logbox is created.
This request acknowledges any messages requlrlng
acknowledgement unless -no acknowledge is specified on the
read mail command line. -

Control arguments are:

-include deleted
-idl -

includes all messages in the mailbox, whether or not they
have been deleted, when processing the message specifiers
to determine which messages will be logged. -

-only deleted
-odl -

includes only those messages which have been deleted.

-only non deleted
-ondl- -

includes only those messages which have not been deleted.
This is the default.

-no reverse
-nrv

logs the messages in ascending numeric order. This is
the default.

-reverse
-rv

logs the messages in descending,numeric order.

A-72 CH23-01

send mail (sdm) send mail (sdm)

message id
mid -

prints the Message-ID field of this message, creating the
field if necessary.

preface path
prf path

same as the append request, but inserts the message at the
beginning of the ASCII segment specified by path.

print {-cal
pr {-cal
p {-cal

prints the message.
following:

-brief header
-bfhe

The control argument may be one of the

prints an abbreviated form of the message header,
including the Subject and To fields. If the message has
no subject, the Subject line is omitted. If there are no
primary recipients for the message, the To line contains
the string <no addresses>. If there is no secondary
recipient, the cc line is omitted. This is the default.

-header
-he

prints the complete message header with the message.

-no header
-nhe

does not include a message header with the message text.

print header {-cal
prhe {-cal

prints the header of the message.
be one of the following:

-brief
-bf

The control argument may

prints an abbreviated form of the message header,
including the Subject and To fields.

-long
-lg

prints the complete message header. This is the default.

A-73 CH23-01

send mail (sdm)

print_original {spec} {-selca} {-cal
pro {spec} {-selca} {-cal

send mail (sdm)

prints the original message(s). This request is only
available within a send mail that was created by the
read_mail reply request. It accepts read mail message
specifiers, so that the user can examine other messages which
might be relevant to the reply. This request acknowledges
any messages requiring acknowledgement unless -no_acknowledge
is specified on the read mail command line. It takes the
same control arguments as the log original request, and these
additional control arguments: -

-header
-he

prints the full header associated with each message.

-no header
-nhe

prints a summary of the header associated with each
message.

print_original_header {spec} {-selca} {-ctl_args}
prohe {spec} {-selca} {-ctl_args}

prints message header(s) of the original message(s). This
request is only available within a send mail that was created
by the read_mail reply request. It accepts read_mail message
specifiers, so that the user can examine other messages which
might be relevant to the reply. This request acknowledges
any messages requiring acknowledgement unless -no_acknowledge
is specified on the read mail command line. It takes the
same control arguments as the log original request.

qedx {-cal
qx {-cal

invokes the qedx editor to modify the message. The qedx w
(write) request is not necessary to reflect changes in the
message to send mail. The editor request line 1,$dr can be
used to restore the original text.

The default for reformatting the message after editing is
dependent on original source of the message text. If
terminal input was used, the default is to reformat the
message; if file input was used, the default is to leave the
message unformatted. This default may be changed by use of
the -fill and -no fill control arguments on the send mail
command line. AddItionally, whatever default is specIfied
may be overriden for one invocation of the qedx request by
use of the. control arguments described below.

A-74 CH23-Ql

send mail (sdm) send mail (sdm)

If the -header control argument is specified, both the
message header and text are be given to the editor~ After
editing is complete, send_mail analyzes the new message and
then updates the message's subject, In-Reply-To field, lists
of primary/secondary recipients, authors, and list of
recipients for future replies.

The control arguments are:

-fill
-fi

causes the message text to be reformatted after editing.

-header
-he

both header and text can be edited.

-line length N
-11 N-

specifies the line length of the reformatted text. If
this control argument is not given, the line length (if
any) specified on the send_mail command line is used:
otherwise, a line length of 72 characters is used.

-no fill
-nfl

specifies that the message text is not reformatted.

-no header
-nhe

only the message text can be edited.
default.

This is the

quit {-cal
q {-cal

exits the send mail command. The control argument can be one
of the followi~g:

-force
-fc

does not ask about a modified or incomplete message
before returning to command level.

-no force
-nfc

causes send_mail to query the user for permission to exit
if the message has been modified since it was last sent,
saved, or written. This is the default.

A-75 CH23-Ql

send mail (sdm) send mail (sdm)

ready
rdy

prints a Multics ready message. The Multics general_ready
command may be used to change the format of the ready message
printed by this request: and also after execution of request
lines if the ready on request is used. The default ready
message gives the tIme of day, the amount of CPU time, and
page faults used since the last ready message was typed.

ready off
rdf -

does not generate a ready message after the execution of each
request line. This is the default.

ready_on
rdn

prints a ready message after the execution of each request
line.

remove {addresses} {-cal
rm {addresses} {-cal

deletes specified addresses and/or specified header fields.
All occurrences of the addresses are removed from both the
list of primary recipients and the list of secondary
recipients. If no addresses are given, at least one of the
control arguments described below must be used. New
recipients, authors, etc. can be added to the message with
the ec, from, in_reply_to, message_id, reply_to, subject, and
to requests. Control arguments may be chosen from the
following:

-all
-a

removes all recipients from the message. This control
argument must appear before all other control arguments,
and may not be used if any addresses are specified.

-cc {addresses} {-cal
deletes specified addresses from the cc field, or deletes
the entire field if -all (-a) is given. Either an
address or -all must be supplied.

-from {addresses} {-cal
deletes specified addresses from the From field, or
deletes the entire field if -all (-a) is given. Either
an address or -all must be supplied.

-in reply to
-irt -

deletes the In_Reply_To field.

A-76 CH23-01

send mail (sdm) send mail (sdm)

-message id
-mid -

deletes the Message_ID field.

-reply_to {addresses} {-cal
deletes specified addresses from the Reply_To field, or
deletes the entire field if -all (-a) is given. Either
an address or -all must be supplied.

-subject
-sj

deletes the Subject field.

-to {addresses} {-cal
deletes specified addresses from the To field, or deletes
the entire field if -all (-a) is given. Either an
address or -all must be supplied.

reply_to {addresses}
rpt {addresses}

adds addresses of users who are to receive the reply to this
message. These addresses are also appended to the Reply-To
field of the header, which is created if necessary. If no
addresses are specified, read mail sends replies to this
message to the authors of the message.

save path
sv path

saves a copy of the message in the indicated savebox. The
suffix ".sv.mbx" is added to path if not already present. If
the savebox does not exist, the user is asked whether to
create it.

save_original {spec} path {-cal
svo {spec} path {-cal

saves the original message(s} into a savebox. If the savebox
identified by the path argument does not exist, the user is
queried for permission to create it. This request is only
available within a send mail that was created by the
read ma-il reply request; any message within the read_mail
invocation may be saved ~y this request. Any message
requ1r1ng acknowledgement 1S acknowledged by this request
unless -no acknowledge is specified on the read mail command
line. Control arguments for the save original request are
the same as for the log_original request:

send {addresses} {-cal
transmits the message to the primary and secondary recipients
if no addresses are specified. If any addresses are
specified, the message is transmitted only to these

A-77 CH23-Ql

send mail (sdm) send mail (sdm)

addresses, without adding them to the m~ssage he~der= It is
possible to send "blind" carbon copIes by IssuIng two
separate send requests; one without addresses to deliver the
message to the primary and secondary recipients, and a second
to deliver the message to the blind carbon recipients.

The following send request control arguments are identical to
the send mail command control arguments of the same name:

-abort -no abort
-acknowledge (-ack) -no-acknowledge (-nack)

-no-header (-nhe) -brief (-bf)
-header (-he)
-long (-19)

-no-message id (-nmid)
-save path (-sv path)

-message_id (-mid)

The above control arguments temporarily override the defaults
specified on the send mail command line.

subject {STRs}
sj {STRs}

replaces the Subject
concatenation of the
STRs are specified,
printed instead.

field of the message (if any) with the
STRs with intervening spaces. If no

the contents of the Subject field are

[subject]
[sj]

returns the contents of the Subject field as a single quoted
string.

subsystem name
prints the name of the current subsystem.

[subsystem name]
returns the name of the current subsystem.
request is useful as part of an abbrev which
multiple subsystems.

subsystem version
prints the version of the current subsystem.

This active
is shared by

[subsystem version]
returns the version of the current subsystem. This active
request may be used in an abbrev which is shared by multiple
subsystems.

to {addresses}
adds addresses to the
message or prints the

list of primary recipients
contents of the list.

A-78

of the
When a

CH23-Ql

send mail (sdm) send mail (sdm)

subsequent send request is issued with no arguments, mail is
sent to the addresses in the primary and secondary recipient
lists. The addresses are added to the To field of the
header, which is created if necessary. If no addresses are
specified, the primary recipients of the message are listed.

write path {-cal
appends the message (with header) to the ASCII segment
designated by path. The suffix .mail is added to path if it
is not present. The segment is created if necessary. The
control argument may be one of the following:

-extend
-ex

appends the message to the end of the segment. This is
the default.

-truncate
-tc

truncates the segment before writing the message to it.

write_original {spec} path {-cal
wo {spec} path {-cal

writes the original message(s) into an ASCII segment
specified by path. This request is only available within a
send_mail that was created by the read_mail reply request;
any message within the read_mail invocation may be written by
this request. Any message requiring acknowledgement is
acknowledged by this request unless -no acknowledge is
specified on the read mail command line. The write original
request takes the same control arguments as the log=original
request, and the following additional control arguments:

-extend
writes the messages at the end of the segment if there is
already data present in the segment. This is the
default.

-truncate
-tc

truncates the segment before writing the messages.

A-79 CH23-01

APPENDIX B

MAILBOX CO~ANDS

The mailbox access commands and the mbx create command are
documented in this appendix. Extended access- provides a way to
further your control over your mailboxes.

The extended access modes for mailboxes are:

add (a)

delete (d)

read (r)

own (0)

status (s)

wakeup (w)

add a message

delete any message

read any message

read or delete only your own messages;
that is, those sent by you

find out how many messages are in the
rna i lbox

can send a wakeup indicating that a
message was added to the mailbox

The extended access placed on a new mailbox is:

adrosw
aow
aow

user who created the mailbox
.SysDaemon.
..*

Users have full (adrosw) access to their personal mailbox
('Ppr~(')n io_mhx'_
, - - - - -- _ .. - - - - -- I ..

When assigning or removing access to your mailboxes for other
users, User ids are used. The matching strategy for access
control names is as follows:

1. A literal component name, including
component of the same name.

B-1

"*" matches only a

CH23-Q1

2. A missing component name not delimited ~y a period is
taken to be a literal "*" e.g., "*.Multics" IS treated as
"*.Multics.*"). Missing components on the left must be
delimited by periods.

3. A missing component name delimited by a period matches
any component name.

Some examples of access names and which ACL entries they match
are:

* * *
Multics

• Multics

""

matches only the ACL entry "*.*.*".

matches only the ACL entry "Multics.*.*".
absence of a leading period makes
Multics the first component •

matches every ACL entry with middle
component of Multics.

matches every ACL entry.

matches every ACL entry with a last
component of "*".

(null string) matches every entry ending in
" * *"

B-2 CH23-Ql

mbx create (mbcr) mbx create (mbcr)

mbx create (mbcr)

The mbx create command creates a mailbox with a specified
name in a specified directory.

SYNTAX AS A COMMAND

rnbx create paths

ARGUMENTS

paths
are the pathnames of mailboxes to be created. If pathi
does not have the .mbx suffix, one is assumed.

NOTES

The user must have modify and append permission on the
directory in which he is creating a mailbox.

If the creation of a mailbox introduces a duplication of
names within the directory, and if the old mailbox has only one
name, the user is asked for permission to delete the old mailbox.
If the answer is "no", no action is taken. If the old mailbox
has mUltiple names, the conflicting name is removed and a message
to that effect is issued to the user.

See also the mbx_set_acl command in this appendix.

EXAMPLES

The command line:

mber Green Hogan.horne >udd>Multics>Gillis>Gillis

creates the mailboxes Green.mbx and Hogan.home.mbx in the working
directory and creates the mailbox Gillis.mbx in the directory
>udd>Multics>Gillis.

B-3 CH23-01

mbx delete acl (mbda) mbx delete acl (mbda)

mbx_delete_acl (mbda)

The mbx delete acl command deletes entries from the access
control list-(ACL) of a given mailbox.

SYNTAX AS A COMMAND

mbx delete acl path {User_ids} {-control_args}

ARGUMENTS

path
is the pathname of a mailbox. The .mbx suffix is assumed
if not supplied. The star convention is allowed.

User ids
are access control
Person_id.Project_id.tag.
names are deleted. If no
own is assumed.

CONTROL ARGUMENTS

-all
-a

names of the form
All entries with matching

User ids are given, the user's

deletes all entries except for

-brief

* * * . . .
-bf

suppresses the messages "User name not on ACL" and "Empty
ACL".

-chase
chases links when using the star convention.

-no chase
-does not chase links when using the star convention."

This is the default.

NOTES

The user must have modify permission on the containing
directory.

See the beginning of this appendix for an explanation of
User id matching strategy.

B-4 CH23-01

mbx list acl (mbla) mbx list acl (mbla)

The mbx list acl command lists entries on the access control
lists of maIlboxes.

SYNTAX AS A COMMAND

ARGUMENTS

path
is the pathname of a mailbox. The .mbx suffix is assumed
if not supplied.

User ids
are access control names of the form
Person_id.Project_id.tag. All entries with matching
names are listed. If no User ids are given, the entire
ACL is listed.

CONTROL ARGUMENTS

-brief
-bf

suppresses the message "User name not on ACL".

-chase
chases links
chase a link
pathname.

matching a
only when

starname.
specified

The default is to
by a non-starred

-no chase
-does not chase links when using the star convention.

This is the default.

NOTES

Status permission is required on the parent directory.

The active function has the following syntax:

[mbla path {User_ids}]

B-5 CH23-Ql

It returns the modes and access names of matching entries
separated by spaces (e.g., "adrosw A.B.* ao C.D.a"). The -brief
control argument is assumed.

B-6 CH23-Ql

mbx set acl (mbsa)

The mbx set acl command manipulates the access control lists
of mailboxes. -

SYNTAX AS A- COMMAND

mbx_set_acl path model User idl ••• modeN {User_idN} {-ctl_args}

ARGUMENTS

path
is the pathname of a mailbox. The .mbx suffix is assumed
if not supplied. The star convention is allowed.

modeN
is an extended
the letters
access.

access mode, consisting of any
"adrosw" or "null", "n", or ""

or all of
for null

User idN
are access control names of the form
Person_id.Project_id.tag. All ACL entries with matching
names are assiqned modeN. If no match is found and all
three components are given, an entry for User idN is
added to the ACL. If the last User id is omitted, the
user's Person id and Project id are assumed.

CONTROL ARGUMENTS

-brief
-bf

suppresses the message "No match for User id" on ACL of
<path>, where User id omits components.

-chase
chases links matching a starname.
chased when path is not a starname.

-no chase

Links are always

-does not chase links when using the star convention.
This is the default.

-no sysdaemon
-nsd

suppresses the addition of an "aow *.SysDaemon.*" term
when using -replace.

B-7 CH23-Ql

mbx set acl (mbsa) mbx set acl (mbsa)

-replace
-rp

deletes all ACL terms (with the exception of the default
.SysDaemon. term unless -no sysdaemon is specified)
before adding the terms specifIed on the command line.
The default is to add to and modify the existing ACL.

-sysdaemon
-sd

NOTES

with -replace, adds an "aow *.SysDaemon.*" ACL term
before adding the terms specified on the command line.

The user must have modify permission on the containing
directory.

See the beginning of this appendix for an explanation of
User id matching strategy_

B-8 CH23-01

APPENDIX C

GLOSSARY

The following list of terms is a supplement to the glossary
provided in the New Users' Intro - Part I. Most of the terms
appear for the first time here, but several are repeated.

ADDRESS

HEADER

a form of name that directs mail system commands to
mailboxes. The name is usually an entryname (Ching.mbx);
a full pathname (>udd>ProjCat>Ching.mbx), or a User id
(Ching.ProjCat).

the group of lines preceding the text of a message, and
containing information about the creation and destination
of the message. Standard information included in the
header is the User id of the person who wrote the
message, the date and time it was sent, the subject of
the message, and who it was sent to.

HEADER FIELD

one specific kind of information contained in the header,
such as the message subject (the Subject field) or the
lists of recipients (the To and cc fields). Information
for standard header fields is usually supplied
automatically, but most header fields can be controlled
with send mail requests.

C-l CH23-Ql

*

LOG BOX

MAILBOX

MESSAGE

a mailbox in the home directory to which only the owner
has access. It is created with the log request or the
send mail -log control argument, and has the pathname
>udd>Project_id>Person_id>Person_id.sv.mbx. The logbox
is intended as a general mail storage container; see also
savebox.

a container for mail system messages, controlled by a set
of extended access modes. Typically, each person has a
mailbox named Person id.mbx under the home directory, to
which senders have -limited access (access to read and
delete the messages they send). Users may also create
other mailboxes, called logboxes and saveboxes.

in this manual, a "message" refers to a mail system
message created by a user with the send mail command.
Other types of message are referred to by-more specific
names, such as interactive messages and error messages.

MESSAGE SPECIFIER

a combination of message numbers, keywords, character
strings, and logical and arithmetic operators that are
used with various read mail requests to specify which
messages are to be manipulated.

REQUEST LINE

one complete instruction, within the request loop, to
send mail or read_mail. It includes the request name,
any arguments to the request (such as message specifiers
and request control arguments), and a newline. A request
line is parallel to a Multics command line, except that a
request line is issued at request level.

REQUEST LOOP

a repeating cycle within read mail and send mail that
prompts you for a request (e.g.~ read mail:},-reads the
request you type, performs the specifIed operation, and
finishes with a prompt to you for another request. The
request loop is parallel to Multics command level, except
that at command level no prompt is given.

C-2 CH23-01

SAVEBOX

a mailbox created by the save request or the send mail
-save control argument, in any directory to which the
owner has access. By default, users have access only to
their own saveboxes. Users can create as many saveboxes
as desired, to store mail by topic.

C-3 CH23-Ql

INDEX

MISCELLANEOUS

(exclamation point) 4-10

character 3-2

* (asterisk) 4-4

. request
read mail 7-6, A-18
send-mail 7-6, A-57

•. escape request 7-5
re-enterinq mail system 7-6
read mail -A-18
send-mail A-58

? request
read mail 4-12, A-1S
send-mail A-57

@ character 3-2

\f
send mail 3-5

\q
read mail 4-7
send mail 3-3

A

abbrev
active request

read mail A-19, A-58
request

profile 7-1
read mail 7-1, A-19
send-mail 7-1, A-58"

accept messages (am) command
1'=2, 1-6

i-1

access 1-2
to mail segments 6-5
to mailboxes B-1
to sent messages 6-5

acknowledgement 3-7, 3-14
Acknowledge-To field 3-7

active functions 7-5, 7-7

active requests 7-7

address 3-1, 5-3, 5-4, A-52
-comment 5-7
-user and ~mbx 6-5
deletion 5-5

all
active request

read mail A-2Q
keyword 4-4, 4-5
request

read mail A-19

CH23-Q1

answer request
read mail A-20
send-mail A-58

append request
read mail 6-6, A-22
send-mail 6-6

apply" request
read mail A-23
send mail 7-9, A-60

asterisk (*) 4-4

c

cc
field 5-5

and your User id -request
6-2,

send mail 5-4, A-62

command level 1-5
and request level 1-5
within mail system 7-5,

6-4

7-8

comments (to addresses) 5-8

control arguments 1-5, 7-3
addresses

-mbx 6-5
and requests 1-5
for addresses

-comment 5-7
-user 6-5

print mail
-list 2-3
complete list A-2

read mail 4-15
-lIst 4-16
-log 6-2
-no header 4-16
-request 7-4

send mail 3-12
-acknowledge 3-14
-input file 3-13
-log 6-2
-request loop 3-13
-save 6=3

start_up.ec 7-4

copy request
read mail A-24
send-mail A-62

current
active request

read mail A-25
keyword 4-4
message 4-5
request

read mail A-25

D

Date field 1-3

i-2

delete request
read_mail 4-3, 4-8, A-25

deletion

do

addresses 5-5
header fields 5-5
line 3-2
message 4-8
word 3-2

active request
read mail A-27
send-mail A-64

request
read mail A-25
send-mail A-62

dprint command 6-5

E

editor 3-4
other -edi tors 7-9
qedx 3-4

Emacs 7-9

enter output request command
7-8 -

erase (@) character 3-2

CH23-Ql

examining mail
l.ogoox 6-2
other mailboxes 6-5, 7-6
saveboxes 6-5

exclamation point (!) 4-10

execute
active request

read mail 7-7, 7-8, A-29
send-mail 7-7, 7-8, A-65

request
read mail 7-8, A-28
send-mail 7-8, A-65

exec com 1-6
active request

read mail A-28
send-mail A-65

and apply request 7-9
request

read mail 7-9, A-27
send-mail 7-9, A-64

start_up 7-4

extended access 1-2, B-1

F

fields
see header fields, 5-2

fill request
send mail 3-14, A-66

first
active request

read mail A-29
keyword 4-4
request

read mail A-29

forward request
read mail 4-8, A-29

from
field 1-3, 5-7
request

send mail 5-7, A-66

i-3

H

header 1-3, 4-7, 5-1, A-53
comments 5-8
fields 1-3

Acknowledge-To 3-7
cc 5-5, 6-2, 6-4
complete list A-53
Date 1=3
From 1-3, 5-7
In-Reply-To 4-8
Redistributed-By 4-8
Redistributed-nate 4-8
Redistributed-To 4-8
Sender 5-7
Subject 1-3, 5-6, 7-7
To 1-3, 5-2

modifications 5-5

help request
read mail 4-14, A-30
send-mail 3-11, A-66

I

if
active request

read mail A-33
send-mail A-69

request
read mail A-32
send-mail A-68

In-Reply-To field 4-8

interactive message 1-2, 1-6

in_reply_to request
send mail A-69

K

keywords 4-4

CH23-01

L

last
active request

read mail A-33
keyword 4-4
request

read mail A-33

link command 1-2

linking mailboxes 1-2

list
active request

read mail A-36
request

read mail 4-2, 4-3, 4-8,
-A-34

-idl 4-10

list help request
read mail A-36
send-mail A-69
read-mail 4-15
send-mail 3-12

list original
active request

send mail A-71
request

send mail A-70

list_requests request
read mail A-36
send-mail A-71
read-mail 4-13
send=:mail 3-10

log request
read mail
send-mail

logbox 6-1

6-2, A-37
6-2, A-72

examining mail 6-2
storing mail 6-1

log_original
request

send mail A-72

M

mail
commands

print mail 2-1, A-2
read mail 4-1, A-6
recursion 7-6
send mail 3-1, 5-1, A-47

mail segment 6-5
suffix (.mail) 6-6

mailbox 1-2
active request

read mail 7-7, 7-8, A-37
commands 1-2, B-1
linking mailboxes 1-2
logbox 6-1
request

read mail A-37
saveboxes 6-3

mbcr
see mbx create command

mbda
see mbx delete acl command -

mbla
see mbx list acl command -

mbsa
see mbx set acl command -

mbx_create (mbcr) command B-3

mbx delete acl (mbda) command
- B-4 -

mbx list acl (mbla) command
- B-S-

mbx set acl (mbsa) command
- B-7

mbx specification
print_mail A-2

message 1-3
commands

accept_messages 1-2, 1-6
print_messages 1-2

CH23-01

message (cont)
commands

send message l-b
interactive 1-2, 1-6
numbers 4-2, 4-8
specifiers 4-4

ranges 4-5

message specifiers

message id request
send mail A-72

N

next
active request

read mail A-37
keyword 4-4
request

read mail A-37

p

preface request 6-7
read mail A-37
send=mail A-73

previous
active request

read mail A-38
keyword 4-4
request

read mail A=38

print request

A-I0

read mail 4-2, 4-4, A-38
-idl 4-11

send_mail 3-3, A-73

print header request
read mail 4-7
send-mail 3-4, 5-2, A-73

print mail (prm) command 1-1,
2-1, A-2

control arguments
-list 2-3

print_mail (prm) command
(cont)

control arguments
complete list A-2

responses 2-2, A-4

print_messages (pm) command
1-2

print_original request
send mail A-73

print original header request
send mail A-=74

prm
see' print_mail command

Q

q request (editor) 3-5

qedx
editor 3-5
request

send mail 3-5, A-74

quit request
read mail
send-mail

4-3, 4-11, A-39
3-9, A-75

i-5

R

ranges 4-5

rdm
see read mail command

re-entering mail system 7-6

ready request
read mail A-40
send-mail A-76

ready off request
read mail A-40
send-mail A-76

CH23-01

ready on request
read mail A-4Q
send-mail A-76

read mail (rdm) command 1-1,
-4-1, A-6

control arguments 4-15
-abbrev 7-1
-list 4-16
-no header 4-16
-request 7-4
complete list A-7

recursion 7-6
requests

see requests

recursion 7-6

Redistributed-By field 4-8

Redistributed-Date field 4-8

Redistributed-To field 4-8

remove request
send mail 5-5, A-76

reolv reauest
read mail 4-7, A-40

reply to request
send mail A-77

request level
active requests 7-7

request loop 1-4
-request loop control

argument (sdm) 3-13
send_mail 3-2, 4-7

requests 1-4
active requests 7-7

read mail
abbrev A-19, A-58
all A-20
current A-25
do A-27
execute 7-7, A-29
exec com A-28
first A-29
if A-33

requests (cont)
active requests

i-6

read mail
last A-33
list A-36
mailbox 7-8, A-37
next A-37
previous A-38
subsystem name A-45
subsystem-version A-45

send mail -
do- A-64
execute 7-7, A-65
exec com A-65
if A-69
list original A-71
subject 7-7, A-78
subsystem name A-78
subsystem=version A-78

print mail responses 2-2,
A-4

read mail
• request 7-6, A-18
.. escape 7-5, A-18
? 4-12, A-18
abbrev A-19
all A-19
answer A-20
append 6-6, A-22
apply A-23
copy A-24
current A-25
delete 4-3, 4-8, A-25
do A-25
execute 7-8, A-28
exec com A-27
first A-29
forward 4-8, A-29
help 4-14, A-30
if A-32
last A-33
list 4-2, 4-3, 4-8, A-34

-idl 4-10
list help A-36
list=requests A-36
log 6-2, A-37
mailbox A-37
next A-37
preface 6-7, A-37
previous A-38
orint 4-2, 4-4, A-38
- -idl 4-i1

CH23-01

requests (cont)
read mail

quit 4=3, 4-11, A-39
ready A-4Q
ready off A-4Q
ready-on A-4Q
reply- 4-7, A-4Q
retrieve 4-10, A-44
save A-45
subsystem name A-45
subsystem-version A-45
write 6-6', A-45

request line 1-5
request loop 1-4, 3-2, 4-7
send mail

• request 7-6, A-57
•• escape 7-5, A-58
? 3-10, A-57
abbrev A-58
answer A-58
append 6-6
append path A-60
apply 7-9, A-60
cc 5-4, A-62
copy A-62
do A-62
execute 7-8, A-65
exec com A-64
fill- A-66
from 5-7, A-66
help 3-11, A-66
if A-68
in reply to A-69
list help A-69
list-original A-70
list-requests A-71
log -6-2, A-72
log_original A-72
message id A-72
preface- 6-7
preface path A-73
print 3-3, A-73
print header 3-4, 5-2,

A-73
print original A-73
print-original header

1\-74 -
qedx 3-5, A-74
quit 3-9, A-75
ready A-76
ready off A-76
ready:on A-76

i-7

requests (cont)
send mail

remove 0-0, A-i6
reply_to A-77
save 6-3
save path A-77
save original A-77
send- 3-7, 5-1, 5-3, 5-4,

A-77
-log and -save 6-4

subject 5-6, A-78
subsystem name A-78
subsystem-version A-78
to 5-1, 1\-78
write 6-6, A-79
write_original A-79

retrieve request
read_mail 4-10, A-44

save request
read mail
send-mail

S

A-45
6-3, A-77

savebox 6-3
examining 6-5
storing mail 6-3

save original request
send mail A-77

sdm
see send mail command

segments 6-5

selection control arguments
A-13

send request
logging and saving 6-4
send mail 3-7, 5-1, 5-3,

-5-4, A-77

Sender field 5-7

send mail (sdm) command 1-1,
-3-1, 5-1, A-47

CH23-Q1

send mail (sdm) command (cont)
control arguments 3-12

-abbrev 7-1
-acknowledge 3-14
-comment 5-7
-input file 3-13
-log 6-2
-request loop 3-13
-save 6=3
complete list A-48

recursion 7-6
requests

see requests

send_message (sm) command 1-6

start_up.ec 1-6, 7-4

storing mail 6-1
logbox 6-1
saveboxes 6-3

subject
active request

send mail 7-7, A-78
field -1-3, 5-6
of a message 3-1
request

send mail 5-6, A-iS

subsystem_name
active request

read mail A-45
send-mail A-78

request
read mail A-45
send-mail A-78

subsystem version
active request

read mail A-45
send-mail A-78

request
read mail A-45
send-mail A-78

suffix
.mail 6-6
,sv.mbx 6-1, 6-3

i-8

text editor
emacs 7-9
others 7-9
qedx 3-4

to
field i-3
request

T

send mail 5-1, A-78
send mail 5-2

w

write request
read mail 6-6, A-45
send-mail 6-6, A-79

write_original
request

send mail A-79

CH23-01

lJ..J
Z
....J

<.::l
Z
o
....J
«
~
:::>
u

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITle 1 I
I

MULTICS EXTENDED MAIL SYSTEM
USER'S GUiDE

ERRORS IN PUBLICATtON

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of aii forms wiii be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME --
TITLE __________________________ _

COMPANY --------

ADDRESS ______ _

ORDER No·1 CH23-01

DATED I FEBRUARY 1983

DATE _______ _

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

UJ
Z
..J

C)
Z
o
..J
« .­
:J
U

I
I
I
I
I
I ~
IJ

I <.J
I Z

'1C3
«
o
..J
a
u.

UJ
Z
..J

l?
Z

~g
«
o
..J
o
U.

Together. we can find the answers.

Honey'Well
Honeywell Information Systems

U.S.A.: 200 Smith St., MS 486, Waltham, MA 02154
Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7

U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano
Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. Japan: 2-2 Jinbou-Cho Kanda, Chiyoda-Ku Tokyo

Australia: 124 Walker St., North Sydney, N .S. W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K.

36094, 1282, Printed in U.S.A. CH23-01

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	A-53
	A-54
	A-55
	A-56
	A-57
	A-58
	A-59
	A-60
	A-61
	A-62
	A-63
	A-64
	A-65
	A-66
	A-67
	A-68
	A-69
	A-70
	A-71
	A-72
	A-73
	A-74
	A-75
	A-76
	A-77
	A-78
	A-79
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	i-1
	i-2
	i-3
	i-4
	i-5
	i-6
	i-7
	i-8
	replyA
	replyB
	xBack

