
SUBJECT

SERIES 60 (LEVEL 68)

MULTICS
TRANSACTION

PROCESSING
REFERENCE MANUAL

Description of the Multics Transaction Processing Subsystem for Performing
Data Base Related Operations

SPECIAL INSTRUCTIONS

This manual is a preliminary edition which describes a basic transaction proc
essing capability for use on a Multics system.

SOFT\V ARE SUPPORTED

Multics Software Release 7.0

ORDER NUMBER

CC96-01 June 1979

Honeywell

PREFACE

Transaction processing in the Multics system can be performed by the
subsystem described in this manual. By employing the transaction processing
(TP) subsystem, the individual user can process transactions against an
extensive database by invoking a set of commands defined by the site. This
manual describes the Multics TP subsystem, describes the administrative commands
and their usage, and furnishes the practical details of subsystem operation.

Although most TP users will not need to avail themselves of the many other
facilities of the Multics system, additional information regarding Multics
software concepts and organization as well as specific usage of Multics commands
and subroutines can be obtained from the volumes of the Multics Programmers'
Manual (MPM). These volumes are:

MPM Reference Guide, Order No. AG91

MPM Commands and Active Functions, Order No. AG92

MPM Subroutines, Order No. AG93

MPM Subsystem Writers' Guide, Order No. AK92

MPM Peripheral Input/Output, Order No. AX49

MPM Communications Input/Output, Order No. CC92

~ 1979, Honeywell Information Systems Inc. File No.: 1L13

CC96

Section 1

Section 2

Section 3

CONTENTS

Introduction•......
Multics Transaction Processing .
List of Features . . .
Overview of Structure.
Security
User Interaction . .

Running and Operation .
Setting Up a TP Subsystem. .

The TP Administrator ••
User ids for a TP Subsystem •
TP Process Names .•...
Set-Up Procedure
A Complete TP Subsystem . • •

Operating a TP Subsystem
Starting Transaction Processing.
Managing Transaction Processing .
Shutting Down Transaction Processing.
Input Queue Maintenance
Dial and Terminal Use
Use of the Dial Facility.
Use of Slave Channels

Running TP in Test Environments.
Establishing Test Processes .
Test Mode

TP Commands and Subroutines
Master Process Commands ..

tp cancel
tp-change deadline •..
tp-display current xcns, tpdcx
tp-get xcn-status,-tpgxs
tp-list pending requests, tplpr
tp -start.. -
tp-stop • • • .
tp-who ..•......••...

Worker Process Commands and Subroutines ...
tp rollback transaction • .
tp-verify transaction
tp-worker-init tcf .. -
tp-worker-start .

1/0 Process Commands .
signon, s
tp io cancel .. .
tp-io-enter test mOde
tp-io-exit test mode •.
tp-io-get xcn status ..
tp-io-list pending requests ..
tp-io-signoff .. : ..•.
tp-io-start . . • . • . .
tp-io-who . . • . . . • • . . .•.

Commands-Used Outside the TP Subsystem .
tp cvsct •.•.•.•.......•..
tp-display command table, tpdct ..
tp-display-input queue, tpdiq .
tp=display=master_table, tpdmt .•

iii

Page

1-1
1-1
1-1
1-2
1-4
1-4

2-1
2-2
2-2
2-2
2-2
2-3
2-7
2-7
2-7
2-7
2-8
2-8
2-9
2-9
2-9
2-9
2-9
2-10

3-1
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-17
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-31
3-32
3-33

CC96

Section 4

Section 5

Section 6

Figure 1-1
Figure 1-2

CONTENTS (cont)

tp display output queue, tpdoq ..
tp-meters :
tp-pre create.ec.
tp-reset xcn num. .
tp-shrink q : ...
tp:user .-.

vfile Transaction Interfaces .
-Transactions

Appearance . . • . .
Purpose.
Transaction Numbers.
Reference Lists ..

Files
Database
Transaction Control File .
Opening Constraints ...
Asynchronous Changes .

transaction call, trc
transaction-call

transactTon call $assign ..
transaction-call-$commit ..
transaction-call-$number ...
transaction-call-$rollback ..
transaction-call-$status ..
transaction-call-$transa~t.

Error Handling and Recovery
Crash Recovery
Transaction Error Handling .

Guidelines for Writing TPRs
Description of Operating Environment
Calling Conventions.
Immediate Commands .
Input/Output . . • .

Terminal Input ..
Terminal Output . .
File Input/Output
Peripheral Input/Output •
Using MRDS. .

TPR Languages. .
PL/I.
COBOL .
FORTRAN

Commitment and Rollback Features

ILLUSTRATIONS

Structure of the Multics TP Monitor .
How a Transaction is Processed ...

iv

Page

3-34
3-35
3-36
3-37
3-38
3-40

4-1
4-1
4-1
4-1
4-2
4-2
4-2
4-2
4-2
4-3
4-3
4-4
4-7
4-7
4-7
4-8
4-8
4-9
4-11

5-1
5-1
5-1

6-1
6-1
6-1
6-1
6-1
6-2
6-2
6-2
6-2
6-3
6-3
6-3
6-4
6-5
6-5

1-3
1-5

CC96

SECTION

INTRODUCTION

MULTICS TRANSACTION PROCESSING

The Multics transaction processing (TP) subsystem provides a specialized
environment for applications requIrIng much activity with a few centralized
databases. Within the subsystem only a limited, well-defined set of simple
commands are available. Most of these are application programs that interact
with a database. The TP user is isolated from the general Multics interactive
environment. In this manual, a user is a person who enters transactions from a
terminal. He is not expected to know about computers. People who write the
application programs are Multics users but not necessarily TP users. Many
aspects of the subsystem are table-driven or specified in modifiable modules, so
that features can easily be added, changed or deleted. Several independent TP
subsystems may run concurrently on a single Multics system.

This manual describes how the Multics TP subsystem is organized, how to run
it, how to meter it, and how to write application programs for it. However,
both administrators and application programmers may still need to consult
various volumes of the MPM, as well as other appropriate manuals for further
information concerning the Multics system and its use. Specific TP user
requests are site-dependent and therefore are not included.

LIST OF

Features available in the Multics TP subsystem include the following:

• locking of individual database records to allow concurrent database
access

• commitment and rollback
concurrency control and
interruption

facilities which allow
restoration after an

handling of both
error or other

• availability of most Multics languages for application programs

• modular construction to facilitate tailoring of the system

• separation of i~put!output
tuning

p~ocessing and

• a deadline mechanism for scheduling transactions

• easily established parallel
programs

environments for testing application

1-1 CC96

OVERVIEW OF STRUCTURE

For the purpose of discussion within this manual, a transaction is defined
as the processing of a single user command, from receipt of the input message by
the TP subsystem to execution completion. A transaction processing routine
(TPR) is an application program. It usually is one that references a large
database.

A transaction is a series of modifications to a database that appear to
occur atomically and simultaneously to other processes. To ensure that all
database changes will appear at the same time, the changes made by a TPR are not
visible to other processes until the transaction is finished. When a
transaction is finished, the TP subsystem automatically performs an operation
called a commitment. A commitment means that this transaction is finished, and
all changes to the database since the last commitment should be made visible to
other processes. This scheme ensures database consistency. Occasionally a
commitment by one process changes data that a transaction in another process
depends upon. This is called an asynchronous change. The second process may
then have an inconsistent view of the database. A commitment by the second
process under these circumstances will fail. When this happens, the TP
subsystem rolls back the transaction. This means that all changes made to the
database since the last commitment are erased. The transaction usually will be
retried.

The Multics TP subsystem is organized to make efficient use of resources by
taking advantage of the special characteristics of TP. Typically, many users
are all performing similar operations on a fixed set of databases, using a
closed environment of their own
environment.

rather than the standard Multics command

Allocating a process per user would entail much duplicated address space
overhead and would be difficult to schedule efficiently. Therefore, the TP
subsystem's processes are organized differently. They are divided according to
function into the following three types:

• Master process--coordinates and communicates with the other processes

• I/O process--manages input from and output to terminals

• Worker process--executes the application programs

A TP subsystem consists of one master process, one or more I/O processes, and
one or more worker processes.

The I/O and worker processes communicate with each other via the input and
output queues as well as through a shared table. The input queue contains
commands to be processed, and the output queue contains output from TPRs.
Figure 1-1 shows a simplified diagram of the relationships of the various
processes. These processes are described in more detail below.

1-2 CC96

TERMINAL TERMINAL TERMINAL TERMINAL

TPR

INPUT
QUEUE

TPR

OUTPUT
QUEUE

TPR

. DATABASE DATABASE

Figure 1-1. Structure of the Multics TP Monitor

1-3

TPR

CC96

The master process is used by the TP administrator to begin transaction
processing. First the master table is initialized. Then the master process
logs in all of the other processes. No explicit action is taken if the TP
subsystem is being restarted after an abnormal interruption. In that case, any
database modifications that were incomplete are automatically rolled back as
they are encountered in normal processing. The master process is responsible
for coordinating TP shutdown. This includes ensuring that all transactions in
progress are completed.

An I/O process handles input/output for a group of terminals. The lines
handled may be dedicated or attached to the I/O process by the dial facility.
This process also queues and schedules input messages. Transactions are
scheduled by deadlines. A deadline is a date-time associated with the
transaction. Of two transactions in the input queue at the same time, the one
with the earlier deadline will be started first. No attempt is made to execute
a transaction by the time indicated as its deadline. Some commands that require
little processing and do not involve database references may be executed by the
I/O process. These are called immediate commands.

A worker process executes one transaction at a time. Output messages to be
printed on the user's terminal are placed into the output queue. Databases are
accessed through the standard file I/O module, vfile , in a mode that allows
changes to reversed if a transaction is interrupted-because of an error or
system crash. Also, if a transaction fails because of a concurrent update to
the database by another process, the changes are rolled back and the transaction
is re-executed. All databases to be referenced are attached and opened at the
beginning of the process to reduce overhead for individual transactions.

SECURITY

I/O and worker processes may have different User ids so that Multics access
control may be used to restrict database access to worker processes. Individual
users, however, are not logged into Multics while using the TP subsystem; in
fact, they need not be registered Multics users at all. They only need to be
registered as TP users by the TP administrator. Signing on to the TP subsystem
is handled by the I/O processes and involves only the TP subsystem's person-name
table. Since the set of commands users can invoke is restricted (e.g., editors
or compilers are generally excluded), individual TP users are unable to perform
malicious acts.

USER INTERACTION

The TP user types input request lines, which cause TPRs to be run. The
TPR's output is printed on the terminal. The input line is read by an I/O
process and the TPR is executed in a worker process. Figure 1-2 shows
conceptually how a transaction is processed. The transaction input is read from
the terminal and placed into the input queue. Some worker process then finds
the transaction in the input queue and invokes the appropriate TPR. Any output
written by the TPR onto the user output I/O switch is placed into the output
queue. An I/O process then prints output from the output queue on the user's
terminal.

1-4 CC96

TERMINAL

I/O
PROCESS

INPUT
HANDLER

OUTPUT
HANDLER

INPUT
QUEUE

OUTPUT
QUEUE

Figure 1-2. How a Transaction is Processed

1-5

WORKER
PROCESS

WORKER
EXECUTIVE

TPR

,
USER_
OUTPUT

CC96

A user may wait for the complete output from a transaction to be printed
before typing the next transaction. However, the TP subsystem does not enforce
serial execution. If the user enters transactions without waiting for previous
ones to complete, the following things may happen. The output from an immediate
command usually appears before output from any other pending transaction. This
is because immediate commands are executed as soon as they are read rather than
queued for a worker process. The output from a regular transaction might not be
contiguous and might appear before the output from a transaction entered
earlier. Aside from deadline considerations, this may occur because the TP
subsystem can execute more than one transaction from a single user
simultaneously. Although execution of transactions is in deadline order, a
later transaction may finish before an earlier transaction. In addition, the
output messages are queued as soon as they are generated, not when the TPR
finishes.

Since output messages from one transaction may be interspersed with output
messages from other transactions, each output message is labeled with the
transaction number. The transaction number is printed when a transaction is
queued.

1-6 CC96

SECTION 2

RUNNING AND OPERATION

A Multics TP subsystem is defined by a directory and the control segments
contained in it. Following is a list and brief description of the control
segments.

Control Segment

tp.tcf

tp.tpinq

tp.tpoutq

Description

contains most of the dynamic information used by
the TP processes. This includes information about
each terminal, each process, and interprocess
communication information.

lists the valid command names for the TP subsystem
and their associated attributes. See the
description of the tp_cvsct command.

contains commands to open and initialize MRDS
databases. This segment is needed only if MRDS is
used.

contains the names of registered TP users and
their encrypted passwords. See the description of
the tp_user command.

starts transaction processing
I/O and worker processes
enter_abs_request commands.

and starts up the
via Multics

is the worker process absentee control segment
which initializes the non-MRDS databases to be
used by the worker and then turns the process into
a worker.

is the I/O process absentee control segment which
turns the process into an I/O process, passing it
slave channel names and/or a dial id.

is the transaction control file and contains
information indicating whether database operations
have been committed. See Section 4.

is the input queue and contains, for each queued
transaction, its input command line, meters,
information about its output destination, and its
current state.

is the output queue and contains the transaction
output messages to be displayed on terminals.

2-1 CC96

SETTING UP A TP SUBSYSTEM

The following discussion presents the considerations required to set up a
TP subsystem, and lists the necessary procedural steps. To illustrate each
step, an example of a typical transaction processing situation, called the
Sample TP project, is also included. In this discussion, reference is made to
access- control lists (ACLs) and setting of access to segments. See "Access
Control" in the MPM Reference Guide for a discussion of the various kinds of
access.

The TP Administrator

TP administrator is the term used in this manual for the person who
performs the following tasks:

• creating subsystem directories and tables

• starting, stopping, and monitoring transaction processing

• making sure databases are consistent after crashes

User ids for a TP Subsystem

All 1/0 processes should use one given User ide
processes should use some other User ide

Likewise~ all worker

The master, 1/0, and worker processes should all have User ids different
from each other for security reasons. The Sample_TP project has-the following
User ids:

Process

Master Process
1/0 Processes
Worker Processes
TP administrator

TP Process Names

User id

Master.Sample TP
IO.Sample TP -
Worker.Sample TP
PCJones.Sample_TP

Each 1/0 and worker process is given a unique name to identify it within
the TP subsystem. This name is independent of the User id of an 110 process or
a worker process. The process name is also the first component of the absentee
control segment for an 1/0 or worker process. In the Sample TP project, there
will be three 1/0 processes named 10 1, 10 2 and 10_3. There will be two worker
processes named Worker 1 and Worker 2.

2-2 CC96

Set-Up Procedure

Following is a list of the steps necessary to establish a TP subsystem:

1. Register the User ids for the TP administrator, master, 1/0 and worker
processes. The -1/0 and worker processes' User ids should have
max foreground set to the maximum number of concurrent 110 and worker
processes, respectively. If the dial facility is used, the 1/0
process User id should be given the dialok attribute. (See the
Multics AdmInistrators' Manual Project Administrator, Order
No. AK51, for InformatIon about regIsterIng User Ids.) For the
Sample IP p-r-oject., the following User ids -- are registered:
PCJones.Sample TP, Master.Sample_TP, IO.Sample_TP and
Worker.Sample_IP.

2. Arrange to have the master process be given execute (e) access to the
proxy ACS. This enables it to log in absentee processes for the other
processes. For the Sample TP project, the system administrator issues
the following command: -

sa >system_control l>proxy>absentee proxy.acs e Master.Sample_TP

3. Create the TP subsystem's directory. This is the directory in which
all the control segments reside. The master process and TP
administrator should have sma access to this directory. The 1/0 and
worker processes should not have modify access, but should have status
and append access to it. In the Sample TP project, the TP
administrator issues the following commands: -

create dir >udd>Sample TP>tp dir
change-wdir >udd>Sample TP>tp dir
set acT [wd] sma Master:Sample TP sa IO.Sample_TP

sa Worker.Sample_TP -

The following commands assume the working
>udd>Sample_TP>tp_dir.

directory is

4. Create a subdirectory for ~ne commands. rnlS must be named

5.

"commands". The 1/0 and worker processes should have s access to it.
The master process should have sma access. In the Sample_TP project,
the TP administrator issues:

create dir commands
set acT commands sma Master.Sample_TP s IO.Sample_TP

s-Worker.Sample_TP

Create the master table with appropriate access.
have rw access to it. The TP monitor will
Sample_TP project:

create tp master table

All processes should
enlarge it. For the

set acl tp master table rw Master.Sample_TP rw IO.Sample_TP rw
Worker.Sample_TP -

5. Create the transaction cOhtrol file (TeF) with appropriate access.
All processes should have rw access to it. The tp pre create exec com
makes sure the transaction control file is a multisegment file. -The
rCF should never be deleted.

ec >unb>tp pre create tp.tcf
set acl tp:tcf-rw Master.Sample TP rw IO.Sample_TP rw

Worker.Sample_TP -

2-3 CC96

7. Create the input queue with appropriate access. All processes should
have rw access to it. For the Sample_TP project:

ec)unb)tp pre create tp.tpinq
set acl tp~tpinq rw Master.Sample TP rw IO.Sample_TP rw

Worker.Sample_TP -

8. Create the output queue with appropriate access. All processes should
have rw access to it. For the Sample_TP project:

ec)unb)tp pre create tp.tpoutq
set acl tp:tpoutq rw Master.Sample TP rw IO.Sample TP rw

-Worker.Sample_TP -

9. Create the 1/0 process absentee control segment, io start up.absin, in
the TP directory. Each 1/0 process should have r-access to it. For
each 1/0 process name, 10 process name, io start up.absin should have
the additional name 10 process name.absin. The absentee segment
requires one argument, the pathname of the TP directory. The 1/0
process absentee control segment should be similar to the following
one for the Sample_TP project:

change wdir &1
& -
& To protect this process against being logged out due to
& inactivity, uncomment the next three lines.
& memo -pathname &ec name -on
& memo -delete -match nothing
& memo -time "20 minutes" -repeat "20 minutes" -alarm -call

nothing
&
&goto &ec name
& -
&label 10 1
tp io start &ec name [wd] channel1 channe12 channe13
&quit-
&
&label 10 2
tp io start &ec name [wd] -registered_dial Sample_TP_system
&quit-
&
&label 10 3
tp io start &ec_name [wd] channe14 channe15 -dial TP_system
&quit-

10. Create tp init database.ec. This segment is needed only if the
Multics Relational Data Store (MRDS) is used. Each worker process
must have r access to this segment. This exec com contains commands
to prepare a MRDS database for use. It is invoked when the run unit
in which TPRs execute is started. The following is the format of a
typical tp_init_database.ec.

& Prepare MRDS databases
mrds call open dsm paths
mrds-call set tcf switch [mrds get dbi (dsm paths)] tcf
mrds-call ready fIle [mrds get-dbi-dsm pathT]

file name1 rdy mode1- ..• file namei rdy modei
mrds call set collection-delay time [mrds get dbi-dsm path1]

file name1 delay_time~ - - --

mrds call set collection delay time [mrds_get_dbi dsm_path~]
file namei delay_time!

mrds call ready file [mrds get dbi dsm pathn]
file name1 rdy_mode~- ... file_namel rdy_model

2-4 CC96

mrds call set collection delay time [mrds_get_dbi dsm_path~]
file name1 delay_timel

mrds call set collection delay time [mrds_get_dbi dsm_path~]
file_namel delay_timel

&quit

To ensure repeatability if an asynchronous change occurs! only the
monitor retrieve or update ready modes should be used. The collection
delay tIme should be longer than the real time any transaction that
uses the file will require. The following is tp_init_database.ec for
the Sample_TP project~

& Prepare MRDS databases
mrds call open <databases>people db <databases>inventory
mrds~call set tcf switch [mrds get dbi «databases>people db

- <databases>inventory)] tCf -
mrds call ready file [mrds get dbi (databases>people db]

people monitor retrieve -
mrds call set collection-delay time [mrds get dbi <databases>

people db people 90]- --
mrds call ready Tile [mrds get dbi <databases>inventory]

inventory update- -
mrds call set collection delay time [mrds_get_dbi <databases>

inventory inventory JOO]
&quit

11. Create the worker process absentee control segment,
worker start up.absin, in the TP directory. Each worker process
should- have- r access to it. For each worker process name,
worker_process_name, worker start up.absin should have the additional
name worker process name.absin. The absentee control segment requires
one argumenI, the pathname of the TP directory. All segments in the
commands directory are explicitly initiated to reduce overhead. All
files accessed through language 1/0 facilities or through iox
directly should also be attached and opened with io call to eliminate
this overhead from TPRs. The worker process absentee control segment
should be similar to the one for the Sample_T? project:

change wdir &1
initiale commands>([segments commands>**] [links commands>**])

-all -force
tp worker init tcf [wd]
& - --

& Attach and open 1/0 switches
io call attachparts vfile <databases>parts -stationary

-transaction tcf- -share
10 call open parts keyed sequential update
io-call control parts set_wait_time--collection_delay_time 300
&
& To protect this process against being logged out due to
& Inactivity, uncomment the next three lines.
& memo -pathname &ec name -on
& memo -delete -match nothing
& memo -time "20 minutes" -repeat "20 mi~utes" =alarm =call

nothing
&
tp worker start &ec name [wd]
&quit

For a file that is attached above to be protected by the commitment
mechanism, the vfile attach description must include "-stationary
-transaction tcf -share". The collection delay time should be longer
than the real time any transaction that uses the file will require.

2-5 CC96

12. Create the TP subsystem's start up exec com, tp_start_up.ec. The
master process should have r access to it. The exec com requires one
argument, the pathname of the TP directory. The tp start up.ec
segment should be similar to the one for the Sample_TP project: -

&command line off
&if [nequal &n 1]
&then &goto start
&print Usage: ec tp start up tp_dir
&quit -
&
&label start
change wdir &1
answer-yes -brief do """rename &(1) [strip_entry &(1)].old.absout"""

([segments *.absout])
tp start [wd]
& -
ear 10 1 -foreground -proxy IO.Sample TP -arguments [wd]
ear 10-2 -foreground -proxy IO.Sample-TP -arguments [wd]
ear 10=3 -foreground -proxy IO.Sample=TP -arguments [wd]
&
ear Worker 1 -foreground -proxy Worker.Sample TP -arguments [wd]
ear Worker-2 -foreground -proxy Worker.Sample=TP -arguments [wd]
&quit

3. Create tp command table. See the description of the tp cvsct
command. Toe master, worker and 1/0 processes should have r access to
it. This segment lists all commands, including 1/0 process immediate
commands, that TP users may type.

4. Write the transaction processing routines (TPRs). See Section 6. Put
all TPRs, or links to them, in the "commands" directory contained in
the TP directory. 1/0 processes must have re access to commands that
they can execute. Worker processes must have re access to commands
that they execute.

5. Create tp person name table. The master process should have rw
access to It, the-worker and-I/O processes should have r access to it.
For the Sample_TP project:

create tp person name table
set acl tp person name table rw Master.Sample TP

r-IO.Sample_TP r Worker.Sample_TP.

5. Prepare and distribute TP user documentation.

7. Use the tp user command to enter TP users and their passwords into
tp_person_name_table_.

3. Create all databases needed by the worker processes. All keyed
sequential vfiles must be multisegment files before transaction
processing is started. The tp pre create exec com creates an empty
multisegment keyed sequential vfile. Worker -processes must have
access to the databases they will use. See the MRDS Reference Manual,
Order No. AW53, for information about initializing MRDS databases.

2-6 CC96

A Complete TP Subsystem

After setting up the TP subsystem for the Sample_TP project, a listing of
the TP directory is as follows:

Segments = 7, Lengths = 9.

r w
r w
r w
r w

r w
r w

3
2
1
1

tp person name table
tp-command table -
tp-start up.ec -
worker start-up.absin
Worker-1.absIn
Worker-2.absin
tp init database.ec
io-start up.absin
10-1 . absTn
IO-2.absin
IO-3.absin

r w a tp-master table

Multisegment-files = 3, Lengths = 21.

r w 7 tp.tpoutq
r w 7 tp.tpinq
r w 7 tp.tcf

Directories = 1.

sma commands

OPERATING A TP SUBSYSTEM

This section describes how to run a TP subsystem once it has been set up.
It also describes how to attach terminals to the TP subsystem.

Starting Transaction Processing

To start transaction processing, log in the master process and issue the
following command in the master process:

ec tp_start_up tp_dir

where tp dir is the pathname of the TP directory. For the Sample_TP project the
command would be:

In tp start up.ec, the tp start command turns the process into a master process.
The 170 and-worker procesies are then logged in.

Managing Transaction Processing

If another 1/0 process or worker process is required after transaction
processing has started, an enter abs_request command similar to the ones in
tp start up.ec can be issued in the master process. The 1/0 or worker process
name of the ne~ process must not be the same as an existing process's name.

2-7 CC96

If the master process should be destroyed while transaction processing is
running, invoke the tp start command with the -new master control argument to
establish another process as the master process.- Periodically a program
automatically runs in the master process and makes sure all the 1/0 and worker
processes still exist. If one has been destroyed, a message is printed and an
enter abs request command is automatically issued to restart it. If an 1/0
process is destroyed and restarted, all TP users that were connected to it must
sign on again. Check the 1/0 and worker process's absentee output segments for
error messages.

Shutting Down Transaction Processing

Transaction processing is shut down by issuing the tp stop command in the
master process; the rest is done automatically in two stages. In the first
stage, the 1/0 processes stop accepting input and the worker processes either
finish all pending transactions or, if the -immediate control argument was
specified, just finish their current transactions. The worker processes then
log out. In the second stage, the 1/0 processes finish processing all
accumulated output and log out. Thus, when a shutdown is complete all the
output from completed transactions has been processed. If the -immediate
control argument was specified, there may be some transactions left in the input
queue to be processed when transaction processing is resumed. A message is
printed by the master process when the shutdown has completed.

Input Queue Maintenance

The input queue may be placed
databases used by the TP subsystem.
contain a link to the input queue.

on a different
In this case,

logical
the TP

volume than the
directory should

As transactions are entered into the TP subsystem, they are placed into the
input queue where worker processes obtain transactions to execute. When a
transaction is finished, its entry is not deleted from the input queue.
Instead, the entry is changed to indicate that the transaction has completed.
The input queue therefore keeps getting larger. Several things can be done to
keep the input queue from growing indefinitely:

• The tp shrink q command may be used to delete records from the input
queue.- This may be done while the TP subsystem is running. Records
may be copied to any device. Records of successful transactions may
be separated from those of unsuccessful ones.

• The input queue may be renamed. This should only be done when the TP
subsystem is not running and there are no pending transactions. Using
this method, a different multisegment file may be used each day as the
input queue. The tp meters command may be used to obtain statistics
from a previous input- queue. The old input queues may be deleted or
copied to a backup device as needed. A new input queue must be
created before resuming transaction processing.

• The input queue may be deleted. This should only be done when the TP
subsystem is not running and there are no pending transactions. This
method naturally leaves no record of processed transactions. A new
input queue must be created before resuming transaction processing.

2-8 CC96

Dial and Terminal Use

In Multics TP, each 1/0 process
possible for a particular terminal
time. An 1/0 process handles all
including user signons. Terminals
through the dial facility or through
controls the terminals and therefore

manages a group of terminals. It is not
to be used by more than one process at a
the input and output for its terminals
are connected to an 1/0 process either
specified slave channels. !ne l/U process
controls the users' access to Multics and

to the TP subsystem. A TP user need not be a registered Multics user.

Use of the Dial Facility

The Multics dial facility allows several terminals to be attached to the
same process. A terminal is connected to an existing process by the dial access
request. (See MPM Commands, Section 4 for a description of the dial access
request.) In order for an 1/0 process to accept dials, the tp io start command
must be given the -dial or -registered dial control argument. See the
description of tp_io_start in Section 3 of this manual.

The dial facility should be used when there are login service type channels
that use the TP subsystem, i.e., when some channels need to be able to access
the TP subsystem at some times and to log in to Multics at other times.

Use of Slave Channels

An 1/0 process may manage channels that are specified when the command
tp io start is invoked. These channels must be of the slave service type. See
the Multics Administrators' Manual -- Communications Order No. CC75, for a
description of the channel definition table (CDT), the slave service type, and
for instructions on using the slave service type.

RUNNING TP IN TEST ENVIRONMENTS

Parallel TP subsystems
subsystem requires creating a
as for a real TP subsystem.
subsystem, the TP subsystem's
link in the test TP directory.

Establishing Test Processes

may be used for testing. Setting up a test
directory and the necessary control segments, just
If databases are used in common with another TP
transaction control file must also be used via a

Once a test environment has been created, test processes must be set up.
A~y process with access to the test T? directory a~d control segments ca~ be
used. One way is to use special test Person ids within the TP project. Once
tp start has been invoked in the test TP subsystem's master process, the 1/0 and
worker processes can be logged in. A process becomes an 1/0 or worker process
by invoking the tp io start or tp worker start commands, respectively. The test
processes can be -interactive or- foreground absentee processes. However, an
interactive worker process will require a terminal that it ignores.

One process may, with restrictions, serve more than one function within the
TP subsystem. If one process is serving as both the master process and an 1/0
process, and the terminal is connected to the TP subsystem, then the command
table must contain any desired master process commands as immediate commands.

2-9 CC96

Combining the master process and a worker process is not recommended because a
worker process ignores all input from the terminal. An interactive process may
serve as an 1/0 process and a worker process. In this case, the tp io start
command must precede the tp worker start command, and the terminal may not be
connected to the TP subsystem~ -

Test Mode

Any user may use a TP subsystem in test mode. Transactions are processed
and produce output in test mode but databases are not changed. To enter this
mode, use the tp io enter test mode immediate command. To return to normal TP
processing, use tne tp_io_exit_test_mode immediate command.

See Section 3 of this manual for descriptions of the transaction processing
commands mentioned in the preceding paragraphs.

2-10 CCg6

SECTION 3

TP COMMANDS AND SUBROUTINES

The commands and subroutines available to the user and TP administrator for
transaction processing are described in this section. They are presented in a
format consistent with that described in the Multics Programmers' Manual (MPM).

The TP commands and subroutines may be classified according to the context
in which they may be invoked. The contexts in which a TP command or subroutine
may be invoked are:

• in the master process

• in the worker process

• in the 1/0 process

• outside the TP subsystem or in the master process

The commands and subroutines are described in four subsections, according
to the context in which they are invoked. Within each subsection, the commands
and subroutines are presented alphabetically. The following is an alphabetical
list of all the commands and subroutines described in this section together with
designation of the context in which they may be invoked.

Command or Subroutine

tp cancel
tp-change deadline
tp-cvsct -
tp-display command table
tp-display-current-xcns
tp-display-input queue
tp-display-master table
tp-display-output-queue
tp-get xcn-status-
tp-io cancel
tp-io-enter test mode
tp-io-exit test mode
tp-io-get xcn status
tp-io-list pending requests
tp-io-sign~ff -
tp-io-start
tp-io-who
tp-list pending requests
tp-meters -
tp-pre create.ec
tp-reset xcn num
tp-rollback transaction
tp-shrink q- -
tp-start -
tp-stop
tp-user
tp=verify_transaction

Context

master process
master process
outside TP
outside TP
master process
outside TP
outside TP
outside TP
master process
1/0 process
1/0 process
1/0 process
1/0 process
1/0 process
1/0 precess
1/0 process
1/0 process
master process
outside TP
outside TP
outside TP
worker process
outside TP
master process
master process
outside TP
worker process

3-1 CC96

tp who
tp-worker init tcf
tp=worker=start

master process
worker process
worker process

3-2 CC96

MASTER PROCESS COMMANDS

This subsection contains descriptions of commands that may only be invoked
in the master process. The master process commands are presented in
alphabetical order within this subsection and include the following:

tp cancel
tp=change_deadline
tp display current xcns
tp-get xcn-status -
tp-list pending requests
tp-start -
tp-stop
tp=who

3-3 CC96

Name: tp_cancel

The tp cancel command removes one or more transactions from the input queue
to prevent -them from being processed. The transaction must not have started
executing.

tp_cancel transaction nums

where transaction nums are the numbers of the transactions to be canceled.

3-4 CC96

The tp change deadline command changes the deadline of the specified
transaction.- The transaction must not have started executing.

tp_change_deadline transaction num DT

where:

1. transaction num

2. DT

is the transaction number of the transaction whose deadline is to be
changed.

is the new deadline time of the transaction. It is a string
acceptable to the convert date to_binary_ subroutine described in
the MPM Subroutines.

3-5 CC96

The tp display current xcns command prints information about the
transactions currently executIng. The worker process name, transaction number,
TP command name and TP user id are printed.

3-6 CC96

The tp get xcn status command prints information about one or more
transactions~ IT the transaction has not yet been processed, the TP user id of
the TP user who submitted it, the TP command name, its deadline, its positIon in
the queue and the time it was sU,bmi t ted will be pr inted. I f the transact ion is
currently being processed, the above information and the time it was started are
printed. If the transaction has finished, except possibly for output, all the
above information, the time it finished, whether there were any errors, real and
cpu time used, page faults, and total real time, not including output processing
are printed.

tp_get xcn status transaction nums {-control_arg}

where:

1. transaction nums
are the transaction numbers of the desired transactions.

2. control arg
may be -brief or -bf to cause only the state of the transaction to
be printed.

3-1 CC96

The tp list pending_requests command lists the transactions that have not
been completed.

where control args may be chosen from the following list:

-total, -tt
prints only the total number of pending transactions for the TP
subsystem and for each TP user.

-long, -lg
prints the transaction number, deadline, time submitted, position in
the queue, and the user's TP user id of each pending transaction.
The default is to print the transaction number and the position in
the queue.

-before DT, -be DT
prints information about transactions with deadlines before the
specified time. DT is a string acceptable to the
convert_date_to_binary_ subroutine described in the MPM Subroutines.

-after DT, -af Dr
prints information about transactions with deadlines after the
specified time. DT is a string acceptable to the
convert_date_to_binary_ subroutine described in the MPM Subroutines.

-user STR
prints information only about transactions for the TP user whose
TP user id is specified by STR.

3-8 CC96

Name: tp_start

The tp start command starts transaction processing by initializing the TP
master table. The process it is used in becomes the master process.

tp_start path {-control arg}

where:

1 . path
is the pathname of the directory that contains the control segments
for the TP subsystem.

2. control arg
may be the following:

-new master
-to make the current process the master process of a runn\~ng TP

subsystem. This should be used if the original master proc~ss is
destroyed while the TP subsystem is running.

Notes

The subsystem databases, transaction
be consistent, both internally and with
command is used.

control file and input queue must all
respect to each other, before this

This command does not
be issued before other
commands.

start up the other TP processes. This command must
processes issue the tp_worker_start or tp_io_start

3-9 CC96

The tp stop
processes are told
to log out either
they have run out
has been printed.

command shuts down transaction processing. First the 1/0
to stop accepting input. Then the worker processes are told
when they have finished their current transactions, or when

of work. Finally, the 1/0 processes log out after all output

When the 1/0 processes stop accepting input, a message is printed on all
terminals that the TP subsystem is shutting down. All further input is ignored.
The tp stop command does not wait for the worker or 1/0 processes to finish, but
returns to command level. After the last 1/0 process has logged out, a message
is printed on the master process's terminal indicating that TP shutdown is
complete.

tp_stop {-control arg}

where control arg may be -immediate or -im to specify that the worker processes
should log out after finishing their current transactions. The default is for
the worker processes to log out when the input queue is empty.

3-10 CC96

The tp_who command prints the names of the current users of a TP subsystem.

where:

1 . TP user ids
are the TP user ids of TP users.

2. control args
may be chosen from the following list:

-long, -lg
prints the channel name and information about a user's terminal as
well as the TP user id and I/O process name. The default is just to
print the TP_user_id and I/O process name.

-io process STR
- prints information only about users connected to I/O process STR.

STR is the I/O process name as used within the TP subsystem.

3-11 CC96

WORKER PROCESS COMMANDS AND SUBROUTINES

This subsection contains descriptions of commands and subroutines that may
be invoked in a worker process. The commands are used in the worker process
absentee control segment and the subroutines may be used by TPRs. The worker
process commands and subroutines are presented in alphabetical order within this
subsection and include the following:

tp rollback transaction
tp-verify transaction
tp-worker-init tcf
tp=worker=start

3-12 CC96

The tp rollback transaction subroutine is called by a TPR to abort a
transaction and roll back all changes made during the transaction. It should be
called if acommitment-woul-d fail. This can be det-ermined- by calling either
transaction call$status with the verify refs switch on or
tp verify transaction. The TPR is automatically reinvoked if the TPR's retry
limit has not been -exceeded. This subroutine returns only if there is no
transaction in progress. See the appropriate TPR language section in Section 6
for information about closing files and other tasks that may have to be done
before this subroutine is called.

declare tp_rollback_transaction_ entry ();

call tp_rollback_transaction_;

3-13 CC96

The tp_verify_transaction subroutine may be called by a TPR to check if a
commitment would succeed. A- commitment may fail because of an asynchronous
change made by another transaction. If an asynchronous change is detected, the
TPR should call tp rollback transaction. Calling this subroutine has the same
effect as calling transaction call $status with the verify refs switch on. It
is not necessary for TPRs to -call-this subroutine. It may be called between
phases of a TPR to see if further processing would be worthwhile. A zero status
code from tp_verify_transaction_ does not guarantee that a commitment would
succeed.

declare tp_verify_transaction_ entry (fixed bin(35»;

call tp_verify_transaction_ (code);

where:

1 • code (Output)
is a standard status code. It may be:
error table $asynch change

If an asynchronous change was detected

3-14 CC96

Name: tp_worker init tcf

The tp worker init tcf command attaches and opens the TP subsystem's
transaction -control file (TCF) on the tcf 1/0 switch. This command must be
invoked in a wQrker process before tp worker start and before any databases are
opened because the TCF 1/0 switch, tcf, must be specified in the attach
description of any file that is to be protected by the commitment mechanism.

where path is the pathname of the directory containing the control segments for
the TP subsystem.

3-15 CC96

tp_worker start

Name: tp_worker start

The tp worker start command turns a
then starts- processing transactions.
tp_worker_init_tcf.

process into a TP
This command must

tp_worker start worker process name path

where:

1. worker process name

tp_worker start

worker process and
be invoked after

is the name of the worker process as used within the TP subsystem.

2. path
is the pathname of the directory containing the control segments for
the TP subsystem.

3-16 CC96

1/0 PROCESS COMMANDS

This subsection contains descriptions of commands that may be invoked in an
1/0 process. All of these commands except tp io start are TP user commands and
must be entered in the command table as immedIate commands. Links to them must
be placed in the commands directory. They should be invoked with the
tp call strings af call convention. The names used by TP users may be chosen
by-the TP adminIstrator.

The 1/0 process commands are presented in alphabetical order within this
subsection and include the following:

tp io cancel
tp-io-enter test mode
tp-io-exit test mode
tp-io-get xcn status
tp-io-list pending requests
tp-io-signoff -
tp-io-start
tp=io=who

Access to the TP Subsystem

This section describes how a TP user starts a transaction processing
session. The user must first connect a terminal to the 1/0 process. This is
done by using a terminal connected to a slave channel, or by using the dial
access request. The signon TP access request is then used to start a
transaction processing session.

Name: signon, s

The signon TP access request is
It is a request to the 1/0 process
transaction processing procedures.

used to gain access
to start the user

to the TP subsystem.
identification and

The signon request asks for a password from the user, and attempts to
ensure that the password does not appear at all on the user's terminal or that
it is thoroughly hidden in a string of cover-up characters. The password is a
string of one to eight letters and lor digits associated with a TP user ide

After the user responds with a password, the 1/0 process looks up the
TP user id and the password in the TP person-name table and verifies that the
given password matches the password registered for the user.

If the TP user is permitted to sign on, a transaction processing session is
started, and the user may enter transactions.

3-17 CC96

signon TP user id

where TP user id is the TP user's registered personal identifier.

3-18 CC96

Name: tp_io cancel

The tp io cancel command removes one or more transactions from the input
queue to prevent them from being processed. The transaction must not have
started executing .. Only the user's own transactions may be canceled.

tp_io cancel transaction nums

where transaction nums are the transaction numbers of the transactions to be
canceled.

3-19 CC96

The tp io enter test mode command causes the TP subsystem to execute and
then automatically roll oack all transactions entered by the user until the
tp io exit test mode command is given. This does not affect the output
generated by the transaction.

tp_io enter test mode

3-20 CC96

Name: tp_io exit test mode

The tp io exit test mode command
subsequent transactions are processed
rolled back).

tp_io exit test mode

removes a user from
normally (committed

3-21

test mode.
instead of

All
being

CC96

The tp io get xcn status command returns information about one or more
transactions- submitted- by the user. If a transaction has not yet been
processed, the TP command name, its deadline, its position in the queue, and the
time it was submitted will be printed. If a transaction is currently being
processed, the above information and the time it was started are printed. If a
transaction has finished, except possibly for output, all the above information,
the time it finished, whether there were any errors, real and cpu time used,
page faults, and total real time, not including output processing, are printed.

where:

1. transaction nums
are the transaction numbers of the desired transactions.

2. control arg
may be -brief or -bf to print only the state of the transaction.

3-22 CC96

The tp io L1SL penalng requests command lists the transactions submitted by
the user that nave not been-completed.

where control_args may be chosen from the following list:

-total, tt
prints only the total number of pending transactions for the TP
subsystem and for the user.

-long, -lg
prints the transaction number, deadline, and time submitted and the
position in the queue of each pending transaction. The default is
to print the transaction number and the position in the queue.

-before DT, -be DT
prints information about transactions with deadlines before the
specified time. The DT argument is a string acceptable to the
convert_date_to_binary_ subroutine described in the MPM Subroutines.

-after DT, -af DT
prints information about transactions with deadlines after the
specified time. The DT argument IS a string acceptable to the
convert_date_to_binary_ subroutine described in the MPM Subroutines.

3-23 CC96

The tp_io_signoff command terminates a TP user's transaction processing
session.

tp_io signoff {-control arg}

where control arg may be -hold or -hd to retain communication with the TP
subsystem. Another TP user may then immediately sign on. The default is to end
communication with the TP subsystem.

3-24 CC96

The tp io start command turns a process into a TP 1/0 process. It attaches
any specified channels and sets itself up as a dial server.

tp_io start io_process_name path {channels} {-control_args}

where:

1. io process name
- is the name of the 1/0 process as used within the TP subsystem.

2. path
is the pathname of the directory containing the control segments for
the TP subsystem.

3. channels
are the names of slave channels. The channel names must be of the
slave service type in the system channel definition table.

4. control args

Notes

may be chosen from the following list:

-dial dial id
establishes a dial line for dial ide This allows terminals to be
connected to the liD process via the dial access request.

-registered dial dial id
similar to -dial-but allows users to omit specifying the User id of
the 1/0 process when invoking the dial access request.

-switch terminal to tp
swItches the handling of terminal 1/0 from Multics command level to
the TP subsystem. This may be used for debugging. In an absentee
process, the tp input 1/0 switch is opened for stream input. Lines
read from this 1/0 switch are interpreted by the TP subsystem. The
tp input 1/0 switch must already be attached. This allows prepared
scripts of a TP session to be run.

The -dial and -registered dial control arguments are incompatible. Only
one -dial or -registered_dial control argument may be given.

If a slave channel or -registered dial is being used, the 1/0 process must
have access to the appropriate ACS. See the
Multics Administrator's Manual -- System Administrator, Order No. AK50, for more
information about access control segments.

3-25 CC96

The tp io who 1/0 process command has the same function as the tp who
master process command. See the description of the tp_who command in the master
process command subsection.

3-26 CC96

COMMANDS USED OUTSIDE THE TP SUBSYSTEM

This subsection contains descriptions of commands that are used outside the
TP subsystem or in the master process. The TP administrator is the typical user
of the commands in this subsection. The commands are presented in alphabetical
order within this subsection and include the following:

tp cvsct
tp-dis~lay command table
tp-display-input queue
tp-display-master table
tp-display-output-queue
tp-meters - -
tp-pre create.ec
tp-reset xcn num
tp-shrink q -
tp=user -

3-27 CC96

Name: tp_cvsct

The tp cvsct command is the TP source command table compiler. It converts
a source language command table to the binary form usable by the TP subsystem.

where:

1. path

Notes

is the pathname of the source command table.
table must have the tpsct suffix. This suffix
given.

The source command
is assumed if not

The binary command table is created in the working directory. Its
entryname is that of the source segment with the tpbct suffix. It can be
installed as tp_command_table_ in the TP directory only when the TP subsystem is
not running.

Description of the Command Table Source Language

The source language for the command table consists of a list of statements.
There may be a global section specifying default values that differ from the
system-provided defaults, and then a section for each command.

The syntax of a statement is:

<keyword>: <parameter>;

Comments are started with "1*" and ended with "*1".

GLOBAL SECTION

The global section consists of statements whose values are to be applied
to all commands as default values. It appears at the beginning of the command
table source segment and is terminated by the first name statement.

The statements in the global section may be any of the statements described
in the command section with the exception of the name and entry point name
statements. The values specified in the global section may be overridden by
statements in the command section.

3-28 CC96

The global section may specify a default call convention for only queued
commands or immediate commands. If an immediate statement is present in the
global section, this specifies to which type of command a g~oDal sec~lon ca~~
convention statement applies. If an immediate statement is not present in the
global section, a global section call convention statement applies to queued
commands.

COMMAND SECTION

There must be a section in the source command table for each command
available to the TP users. Each command section begins with a name statement
and must also contain an entry_point_name statement. The other statements are
optional.

The statements are as follows:

name: name1, name2, ••• namen;
The -parameter namei IS a name by which a TP user can invoke the
command.

entry point name: STR;
- STR Is the entry point name of the command. It may be of the form

entryname or entryname$entry point name. All commands or links to
them must be in a directory ~amed -"commands" in the TP subsystem's
directory.

call convention: STR;
- STR is the entry point name of a subroutine that is used to invoke

the command. It converts the input line into arguments for the TPR.
It may be of the form reference name or
reference name$entry point name. The search rules are used to find
reference-name. The-default is the tp call strings subroutine for
queued commands and the tp call strings-af subrouti~e for immediate
commands. See the "Standa~d Call Conve~ti~ns" section below.

cpu_time limit: N;
The parameter is a decimal integer specifying the maximum amount of
cpu time, in seconds, that the command is to use on a single
transaction. If the time limit expires, the transaction is aborted.
The default is zero (no time limit).

deadline interval: N;
The parameter is a decimal integer specifying the offset in seconds
from the time a transaction was queued to its deadline. Of two
transactions in the queue at the same time, the one with the earlier
deadline will be started first. No attempt is made to execute a
transaction by the time indicated as its deadline. The deadline is
only used to order the execution of transactions. The default is
60. It may be negative.

immediate: STR;
If STR is "yes", the command is executed in the 1/0 process. If STR
is "no", the command is queued as a transaction. This is the
default.

real time. limit: N;
- The parameter is a decimal integer specifying the maximum amount of

3-29 CC96

real time, in seconds, that the command is to use on a single
invocation. If the time limit expires, the transaction is aborted.
The default is zero (no time limit).

retry_limit: N;
The parameter is a decimal integer specifying the maximum number of
times a transaction is to be re-executed if commitment fails. After
N+1 tries, the transaction is aborted. The default is 3.

Standard Call Conventions

The following call convention
subsystem software:

subroutines are supplied with the TP

processes the input line and invokes the command like
the Multics command processor. Each argument, as
separated by white space, is passed as a character
string. No active function, quoting or iteration set
processing is done.

similar to tp call strings except
called as an active function:

the command is

Modifying the Source Command Table Compiler

This section describes the steps necessary to add new items to the command
table.

1. Add the new items to tp_command_table.incl.p11.

2. Change the source command table compiler. See the description of
reduction compiler in Multics System Programming Tools, Order
No. AZ03.-

3. Recompile all TP subsystem programs that use
tp command table.incl.p11, making appropriate changes to use the new
items.

3-30 ccg6

The tp display command table command prInts tne internal representation of
a TP binary-command-table in put data format. The user should be familiar with
the internal representation of a TP binary command table.

tp_display_command_table {path}

where path is the pathname of a binary command table.
tp_command_table_ in the working directory.

3-31

The default is

CC96

The tp display input queue command prints the internal representation of a
TP input queue in-put data format. The user should be familiar with the
internal structure of a TP input queue.

tp_display_input_queue {path}

where path is the pathname of a TP input queue. The tpinq suffix is assumed if
not given. The default is tp.tpinq in the working directory.

3-32 CC96

The tp display master table command prints the contents of a IP master
table in put data -format: The user should be familiar with the internal
representation of a TP master table.

where path is the pathname of a TP
tp_master_table_ in the working directory.

3-33

master table. The default is

CC96

Name: tp_display_output queue, tpdoq

The tp display output queue command prints the internal representation of a
TP output queue in put aata format. The user should be familiar with the
internal structure of a TP output queue.

tp_display_output_queue {path}

where path is the pathname of a TP output queue. The tpoutq suffix is assumed
if not given. The default is tp.tpoutq in the working directory.

3-34 CC96

Name: tp_meters

The tp meters command displays metering information derived from a IP input
queue. This includes:

• the total cpu -time and page faults for TPR execution

• the number of successful completions

• the number of errors

• the number of commitment failures

• the minimum, maximum, average and standard deviation of the number of
submissions per hour both total and per liD process (hours are
measured from beginning of time period)

• the mInImum, maximum, average and standard deviation of the time
between submission and processing

• the minimum, maximum, average and standard deviation of the time spent
in execution, both total and per worker

tp_meters path {-control_args}

where:

1. path
is the pathname of a TP input queue to be metered. The suffix tpinq
is assumed if not given.

2. control args
may be chosen from the following:

-from DT, -fm DT
specifies the beginning of the time period. DT must be a string
that is acceptable to the convert date to binary subroutine
described in the MPM Subroutines. The default is-the earliest
submission time of a transaction in the queue.

-to DT
specifies the end of the time period. DT must be a string that is
acceptable to the convert date to binary subroutine described in
the MPM Subroutines. The default is the current time.

3-35 CC96

tp_pre create.ec

The tp pre create exec com creates an empty indexed multisegment file. It
should be used before the first reference to an indexed file if the file does
not exist or has been truncated. In particular, this should be used to create
the TCF, the TP input queue and the TP output queue.

where path is the pathname of the file to be created.

3-36 CC96

The tp reset xcn num command changes the TP subsystem's current transaction
number to a-specified-value. The next transaction's transaction number will be
the current transaction number plus one. The current transaction number can be
decreased only when the input queue is completely empty. See the tp shrink q
command. This command should not be used when the TP subsystem is runnTng. -

tp_reset xcn num path {transaction num}

where:

1. path
is the pathname of the directory containing the control segments for
the TP subsystem.

2. transaction num
is the new current transaction number for the TP subsystem. The
default is zero.

3-37 CC96

The tp shrink_q command removes from a TP input queue
transactions that were processed before a specified time.
copied before they are deleted.

records concerning
The records may be

tp_shrink_q path {-control args}

where:

1. path
is the pathname of a TP input queue from which records are to be
removed. The suffix tpinq is assumed if not given.

2. control args
may be chosen from the following list:

-before DT, -be DT
removes records of only those transactions that completed before
time DT. DT must be a string that is acceptable to the
convert date to binary subroutine described in the MPM Subroutines.
The default Is the current time.

-delete, -dl
deletes records without copying them.

-output description STR, -ods STR
specifies that the records are to be copied before they are deleted.
STR is the attach description of the file to copy the records to.
It must be enclosed in quotes.

-all, -a
removes all eligible records. This is the default.

-successful
removes the records of transactions that completed successfully.

-errors
removes the records of transactions that aborted. These are
transactions that failed for any reason except exceeding their retry
limit.

-commitment failure
removes the records of transactions that could not be committed.
These transactions exceeded their retry limits.

3-38 CC96

Notes

The -delete and -output_description control arguments are incompatible.

The -output description co~trol argument may be used to specify a file in
the storage system or a tape by using appropriate attach descriptions.

This command can be executed while the TP subsystem is running. It can
also be used in several processes simultaneously to do such things as put
records of successful transactions on tape and records of commitment failure
transactions into a file.

3-39 CC96

The tp user command edits the TP person-name table. It registers TP users,
deregisters-TP users and changes their passwords. This command should not be
used while the TP subsystem is running. A TP user should not be deregistered if
he is signed on, has pending transactions in the input queue or has pending
output in the output queue.

tp_user {path} {-control arg}

where:

1. path
is the pathname of the TP subsystem's person-name table. The
default is tp_person_name table in the working directory.

2. control_arg
may be the following:

-input file path, -if path
specifies that the input is to
is path. The segment contains
would type if the command were
are any errors, write requests
will be questioned at the end.

come from the segment whose pathname
exactly the same input as the user

being used interactively. If there
will not be performed and the user

The tp user command keeps prompting the user for requests until the user is
finished. Requests that change the information in the TP person-name table are
called action requests. The action requests are the following:

add user, au
delete user dIu
change-password, cpw
verify=password, vpw

register a new TP user
deregister a TP user
change a TP user's password
verify what a TP user's password is

Typing a TP user id after an action request performs that action for a TP
user. As many TP user ids may be typed after an action request as desired. The
last action will-be performed on succeeding TP user ids until another action
request is typed. The prompt indicates what the-Iast-action request was. Each
action request is explained in more detail below.

TP user ids may contain uppercase characters, lowercase characters, numbers
or underscores. They must begin with an uppercase character. TP user ids are
from one to 32 characters long. TP user ids are not related- to -Multics
User ids.

Passwords may contain letters or digits. They are from one to eight
characters long. If a password is not typed ahead, the user will be prompted
for it. The tp user command attempts to ensure that the password does not
appear at all on the user's terminal or that it is thoroughly hidden in a string
of cover-up characters.

3-40 CC96

As much input may be typed ahead on a single line as desired. To type a
password ahead, enclose it in braces, e.g. {password} If a password is typed
ahead, it will not be hidden.

The action requests do the following:

add user, au
registers a IP user. The TP user's password is entered next.

delete user, dIu
-deregisters a TP user.

change password, cpw
-changes a TP user's password.

entered next.
The new password of the TP user is

verify password, vpw
-verifies a TP user's password.

user is informed if the typed
user.

A password is entered next and the
password is the password of the TP

In addition to the above action requests, the following requests are
also available:

previous, p
whenever a TP user id is typed, it is remembered. The previous
request uses the last TP user id with the current action request.

write, w

quit, q

help

?

Example

writes all changes into the TP person-name table. Action requests
change a copy of the TF person-name taDle. Changes are not made
permanent until a write request is done.

exits the tp user command. If the TP person-name table has been
changed since-the last write, the user is questioned.

prints information about what may be typed next.

prints a list of requests

The following example registers WSmith, CKent, and RDavis as TP users and
changes the password of MJones. Everything following an exclamation point on a
line is typed by the user.

tp user
Ty~e "help" for instructions.

Request: au WSmith CKent

Password for WSmith:
Password for WSmith again:

3-41 CC96

Password for CKent:
Password for CKent again:

Add user: RDavis

Password for RDavis:
Password for RDavis again:

Add user: cpw MJones

New password for MJones:
New password for MJones again:

Change password: write quit
r 1402 0.600 2.2330 102

3-42 CC96

SECTION 4

vfile TRANSACTION INTERFACES

This section contains descriptions of the transaction call command and the
transaction call subroutine. They are included in this -manual because their
interfaces are still preliminary. The transaction call subroutine is used by
the TP monitor and should not generally be used -by TPRs. The commands and
subroutines described in this section are independent of the TP subsystem
described in the rest of this manual. The commands and subroutines described in
this section may be used without the TP subsystem.

Note that "transaction" has a different meaning in this section than in the
rest of the manual. A vfile transaction is a unit of processing that has the
appearance of taking place as-an indivisible, atomic operation. The transaction
numbers used by vfile bear no relation to the transaction numbers seen by the
users of a TP subsystem.

Transactions

A transaction is a unit of processing that has the appearance of taking
place as an indivisible, atomic operation. Arbitrary procedures involving any
collection of vfile indexed files may be invoked as transactions via this
subroutine.

APPEARANCE

An incomplete transaction terminates either by a successful commitment or
by a rollback. That is to say, until a commitment is made, the database appears
unchanged, except within the current transaction. Any database modifications
that a transaction makes appear simultaneously outside the transaction when a
commitment is made.

PURPOSE

There are two major reasons fer encapsulating a proced~re as a transaction.
The first is to simplify the programmer's task of handling inconsistencies that
can arise from operations that are interrupted and not resumed. This may be
because of a system crash or an application program error. Second, in the event
that a database is shared among several processes, the entire burden of
synchronizing file access is removed from the programmer and automatically
managed by transaction call .

4-1 CC96

TCF I/O SWITCH

Each process that uses transaction call requires an I/O switch that
associates transactions with a particular database. This I/O switch is attached
by the user to a permanent transaction control file (TCF). This is used in
conjunction with the files that compose a single logical database.

TRANSACTION NUMBERS

Each transaction associated with a TCF has a transaction number.
Associated with each TCF I/O switch is a current transaction number. Initially
and after a commitment or rollback, the current transaction number is zero
indicating that no current transaction is defined for a TCF I/O switch. A
transaction number is assigned automatically when an indexed file attached with
the -transaction option of vfile is referenced and the current transaction
number is zero.

REFERENCE LISTS

A per-process reference list is automatically maintained with each TCF I/O
switch. It is implemented as an indexed file without records. The reference
list keeps track of passive references made during the course of each
transaction so asynchronous changes that might invalidate a transaction can be
detected. The reference list 8lso identifies all items modified during the
transaction in order to make the database consistent at commitment or rollback
time.

Files

DATABASE

Any collection of vfile indexed files may be a database upon which
transactions are applied. AIT that is required is that a common TCF always be
used in conjunction with references to any file in the database, and that the
individual database files be attached with the -transaction option of vfile
specifying a TCF I/O switch attached to the TCF of the database.

TRANSACTION CONTROL FILE

The TCF is a permanent indexed file containing index entries but no
records. The user is responsible for its creation, but the TCF is implicitly
manipulated by vfile and transaction call , so that no explicit user operations
on the TCF are required. --

TCF ENTRIES

Keys are added to the TCF when a transaction number is assigned for a new
transaction. Each key's descriptor is a flag indicating the logical completion
state of a single transaction. Thus the atomicity of a transaction is reduced
to changing the descriptor of its TCF entry.

4-2 CC96

OPENING CONSTRAINTS

In order to use transaction call, the user must first attach and open the
database's TCF. Then all database fIles to be referenced must be attached and
opened before starting any transactions. None of these files should be closed
within a transaction. If concurrent transactions are performed on a common
database, the -share option of vfile must be given in the TCF attach
description as well as in the attach descriptions of the shared database files.

ASYNCHRONOUS CHANGES

When a commitment is attempted or upon referencing a database item
previously read in the same transaction, it is possible that an error resulting
from an asynchronous change by another transaction may be detected. An
asynchronous change occurs when the current transaction reads an item, and then
another transaction makes a commitment which changes the item before the current
transaction commits or rolls back. This situation makes it impossible to
correctly complete the current transaction, and the transaction must be rolled
back. To determine whether an unexpected error was caused by an asynchronous
database change, use the transaction call $status entry with the verify_refs
switch on. - -

See the description of the vfile 1/0 module in the MPM Subroutines. See
the description of the transaction call command for a description of the command
level interfaces corresponding to the transaction call entries.

4-3 CC96

transaction call transaction call

Name: transaction_call, trc

The transaction call command performs, controls, or obtains status
information about atomIc database operations.

transaction call opname switchname {args}

where:

1 . opname
designates the operation to be performed.

2. swi tchname
is the name of the transaction control file (TCF) 1/0 switch.

3. args
are variable: depending on the particular operation to be performed.

The opnames permitted, followed by their alternate forms, are:

assign, a
commit, c
number, n
rollback, r
status, s
transact, t

Usage is
operation.
functionally.

explained below under a
The explanations are

Operation: assign, a

transaction call assign switchname

separate
arranged

heading for each designated
alphabetically rather than

This command reserves a unique transaction
transaction by creating a new entry in the TCF.

number for the current

Operation: commit, c

transaction call commit switchname

This command attempts to complete the current transaction. If successful,
the current transaction number is reset to zero.

4-4 CC96

transaction call transaction call

Operation: number, n

transaction call number switchname

This command prints the current transaction number.

Operation: rollback, r

transaction call rollback switchname

This command undoes all modifications made on behalf of the current
transaction and resets the current transaction number to zero.

Operation: status, s

transaction call status switchname {transaction_ no} {-control_args}

where:

1. transaction no
is the number of the transaction whose status is to be found. If
omitted or zero, the current transaction number is used.

2. control args
may be chosen from the following:

-brief, -bf
suppresses the counting and printing of the number of passive and
nonpassive references made by the transaction.

-verify, -vf
specifies that all passive references are checked for asynchronous
changes.

This command prints the status of any transaction associated with a TCF.

4-5 CC96

transaction call transaction call

Operation: transact, t

transaction call transact switchname {-control_args} command line

where:

1. control args
may be chosen from the following:

-retry N
specifies the maximum number of times the transaction is to be
retried if commitment fails. The default is zero.

-signal
specifies that if commitment fails and the retry count has been
exceeded, the transaction failure condition is signaled. This is
the default.

-no signal
specifies that the transaction failure condition should not be
signaled if commitment fails and the retry count has been exceeded.

2. command line
T<:' ,... M.,1i-.; C" u u 11\.A..1.V.J..'I...,.oa..,JI that ileed be enclosed in

__ • _L. __

YUVl..e;:;, •

This command executes a given command line as a transaction.

If the -signal control argument is specified, a handler for the
program_interrupt condition is established. This handler re-executes the
command line. The default action for the transaction failure condition prints a
message and returns to command level. The start command does not re-execute the
command line. The transaction is rolled back before the transaction failure
condition is signaled.

Notes

If no transaction number has been obtained via the assign operation, a
transaction number is automatically assigned upon the first reference to a
database item within a new transaction. The TCF I/O switch must be open for
update.

See the description of the transaction call
information.

4-6

subroutine for more detailed

CC96

transaction call transaction call

Name: transaction call

The transaction call subroutine manages
vfile_, including committing and rolling back.

Entry: transaction call_$assign

transaction mechanism of

This entry reserves and returns a unique transaction number for the current
transaction. The current transaction number must be zero, i.e., undefined,
before this entry is used. The current transaction number is changed to the
transaction number of the transaction. The TCF 1/0 switch must be opened for
update so that a new entry can be created.

declare transaction_call_$assign entry (ptr, fixed bin(35), fixed bin(35));

call transaction_call_$assign (tcf_iocb_ptr, transaction_no, code);

where:

1. tcf iocb ptr (Input)
- is a pointer to the iocb for the TCF 1/0 switch.

2. transaction no (Output)
is the new transaction number.

3. code (Output)
is a standard status code.

Notes

The user is not required to assign a transaction number at all, in which
case one is automatically assigned upon making the first reference to a database
item of the new transaction.

Entry: transaction call $commit

This entry attempts to complete the current transaction on a database
associated with a TCF 1/0 switch. The current transaction number becomes zero
if the commitment is successful.

4-7 CC96

transaction call transaction call

declare transaction_call_$commit entry (ptr, fixed bin(35), fixed bin(35);

call transaction_call_$commit (tcf_iocb_ptr, transaction_no, code);

where:

1. tcf iocb ptr (Input)
is a pointer to the iocb for the TCF I/O switch.

2. transaction no (Output)
is the transaction number of the transaction whose completion was
attempted.

3. code

Entry:

(Output)
is a standard status code. It may be:
error table $asynch change

If an asynchronous change was detected

This entry returns the current transaction number.

declare transaction call $number entry (ptr, fixed binary (35), fixed
binary (35»; - -

call transaction call $number (tcf_iocb_ptr, transaction_no, code);

where:

1. tcf iocb ptr (Input)
is a pointer to the iocb for the TCF I/O switch.

2. transaction no (Output)
is the current transaction number.

3. code (Output)
is a standard status code.

Entry: transaction_call_$rollback

This entry undoes all modifications that have been made by the current
transaction in a database.

4-8 CC96

transaction call transaction call

declare transaction_call_$rollback entry
bin(35»;

(ptr, fixed bin(35), fixed

call transaction_call_$rollback (tcf_iocb ptr, transaction_no, code);

where:

1 • tcf iocb ptr (Input)
- is a pointer to the iocb for the TCF I/O switch.

2. transaction no (Output)
is set to the transaction number of the aborted transaction.

3. code (Output)
is a standard status code.

Notes

The effect of a rollback is logically invisible outside the current
transaction. The transaction number for a rolled-back transaction is not
reused. After issuing a rollback, the current transaction number of the TCF I/O
switch becomes zero, i.e., undefined, and the database is restored to the state
following the last commitment.

Entry:

This entry returns the status of any transaction associated with a TCF. If
the verify refs switch is on, this entry checks items in the reference list of
the transaction for asynchronous changes caused by another transaction.

declare transaction call $status entry (ptr, fixed binary (35), bit (36)
aligned, ptr, fixed-binary, fixed binary (35»;

call transaction call $status (tcf iocb ptr, transaction no, trc_flags,
+-..,..,..,. C!'+-'!:lf-,,<=, -;::-1-"", 1="" ~-~....,.~;.-"'"' 'I:I~"":)'"""~- "" ,....J~,. -
"'" "",_....,,,,,,",,VUt.,JI_t-'Vl, .." QLJ.~C1.'-"..L.V1J_~"C1"U~, vVU'i;;J,

where:

1. tcf iocb ptr (Input)
- is a pointer to the iocb for the TCF I/O switch.

2. transaction no (Input)
is the transaction whose status is desired. Zero indicates the
current transaction.

4-9 CC96

transaction call transaction call

3. trc flags (Input)
indicates what operations to perform. See "Notes" below.

4. trc status ptr (Input)
is a pointer to a trc status structure in which information is
returned. If this pointer is null, the information contained in the
structure is not returned. See "Notes" below.

5. transaction status (Output)
is the status of the transaction. See the description of

6. code

Notes

transaction status in the trc status structure below.

(Output)
is a standard status code. It may be:
error table $asynch change

If an asynchronous change was detected

If an asynchronous change is detected, the reference counts will not be
correct.

The trc_flags argument is a bit string of the following structure:

declare 1 trc flags s
2 verIfy refs
2 pad -

aligned based (addr (trc_flags»,
bit(l) unaligned,
bit(35) unaligned;

where:

1. verify_refs (Input)

2. pad

indicates whether or not to check for asynchronous changes.
"O"b don't check for asynchronous changes
"l"b check for asynchronous changes

(Input)
is reserved for future use and must be zero.

This structure is declared in transaction_call.incl.pll.

The trc_status_ptr pointer points to the following structure:

declare 1 trc status
2 version
2 transaction no
2 transaction-status
2 passive refs
2 non_passive_refs

aligned based (trc status ptr),
fixed binary, - -
fixed binary (35),
fixed binary,
fixed binary (34),
fixed binary (34);

where:

1. version (Input)
is the version of the trc status structure. It must be 1.

4-10 CC96

transaction call transaction call

2. transaction no (Output)
is the transaction number of the transaction the status information
describes.

3. status (Output)

4.

is the status of the transaction. It may be:
trc INCOMPLETE (0) The transaction is in progress but has not

been committed or rolled back yet.
trc COMMITTED (1) The transaction has been committed.
trc-ROLLED BACk (2) The transaction has been rolled back.
trc-UNDEFINED (3) No TeF entry for this transaction exists.

passive refs (Output)
Is the number of items
transaction so far.

referenced but not modified in the

5. non passive refs (Output)
is the number of items modified in the transaction so far.

The structure and the named constants are declared in the include
file transaction_call.incl.pI1.

Entry: transaction_call_$transact

This entry executes a command line as an atomic transaction on a specified
database. If the commitment is unsuccessful, the transaction is'rolled back.

declare transaction call $transact entry (ptr, char(*), fixed bin (35),
fixed bin (35»); -

call transaction call $transact (tcf_iocb_ptr, command_line,
transaction=no, code);

where:

1. tcf iocb ptr (Input)
- is a pointer to the iocb for the TeF IIO switch.

2. command line (Input)
1S a Multics command line
transaction.

that is to be executed as a single

3. transaction no (Output)

4. code

is the transaction number of the transaction.

(Output)
is a standard status code. It may be:
error table $asynch change

if the transactIon was rolled back

4-11 CC96

SECTION 5

ERROR HANDLING AND RECOVERY

CRASH RECOVERY

A system crash usually does not result in the loss of data. However,
processes are destroyed and so transactions are interrupted. When transaction
processing starts again, new processes are created. All work associated with
incomplete transactions is discarded. The aborted transactions are
automatically rescheduled. When there is loss of data, most of the input queue
should be intact on disk. Records modified after the time corresponding to a
consistent database should be made consistent with the rest of the database.
Those transactions should then be rerun.

No facilities are provided with this release for journalizing the input
queue or for adjusting databases or queues in case of loss of data.

TRANSACTION ERROR HANDLING

The TP subsystem recovers from unexpected errors by TPRs. When a TPR
raises an unrecoverable condition, the worker process aborts the transaction and
sends the user a message to that effect. A message with the actual cause of the
error is written into the absentee output segment. Then the worker process
rolls back any changes made and goes on to the next transaction. Recoverable
conditions include command error and endpage. A TP administrator can insert his
own condition handler to detect what he considers to be recoverable conditions.

Sometimes a transaction cannot be committed because of asynchronous changes
caused by another transaction. When this happens, the changes made by the
transaction are rolled back and the transaction is retried. The maximum number
of retry attempts for a particular TPR is specified in the command table.

5-1 CC96

SECTION 6

GUIDELINES FOR WRITING TPRS

DESCRIPTION OF OPERATING ENVIRONMENT

All TPRs run in the worker process, except for immediate commands which run
in the I/O process. Therefore, Multics access control is performed with respect
to the worker or I/O process's access identifier, not the TP user who submitted
the transaction. A TPR should not alter the environment by changing such things
as the working directory or search rules. TPRs must be serially reusable.
Therefore, a TPR must explicitly initialize certain types of data rather than
use language initialization facilities. See the appropriate language section
below. TPRs may call other programs; however in the worker process, the other
programs should be explicitly initiated in the worker absentee control segment.
All TPRs in the worker process are run within a run unit. There is not
necessarily a new run unit for each transaction. TPRs may not start new run
units because run units are not recursive. TPRs may be installed whenever the
TP subsystem is not running.

CALLING CONVENTIONS

TPRs are called using a call convention specified in the command table. A
TP administrator may define TP subsystem specific call conventions. A call
convention specifies the relation between the command line a TP user enters and
how the arguments are passed to the TPR. The command table specifies an
external procedure which implements the call convention.

IMMEDIATE COMMANDS

Immediate commands are called as active functions. The active function
return string is printed on the TP user's terminal. Immediate commands should
not make database references or do any input/output with the terminal.

INPUT/OUTPUT

Input/Output in the TP subsystem may be of various kinds:

• Terminal Input

• Terminal Output

• File Input/Output

• Peripheral Input/Output

6-1 CC96

Their relation to the TP subsystem is explained in the following paragraphs, as
well as use of the Multics Relational Data Store (MRDS).

Terminal Input

In this release, TPRs may not ask for input from the TP user who submitted
the transaction. All input from the user must be specified on the command line.
TPRs should not try to read from the user_input I/O switch.

Terminal Output

In the worker process, the user_output I/O switch is attached to an I/O
module which puts output into the output queue. Therefore, anything written on
the user output I/O switch is ultimately printed on the terminal of the TP user
who submItted the transaction. A TPR may not send output to any other TP user.
A TPR should not make any assumptions about the physical characteristics of a TP
user's terminal. The terminal a TP user enters a transaction from may not be
the same one that he is using when the output is printed.

The error output I/O
absentee output-segment.
messages.

File Input/Output

switch is attached to
Therefore, error_output

the I/O or worker process's
may be used to log errors or

All I/O switches used by any TPR should be attached and opened via io call
in the worker process absentee control segment to reduce TPR execution overhead.
Refer to the specific language section to determine when a file opened with
language I/O facilities needs to be closed with language I/O facilities. In the
Multics I/O system, there is a distinction between directly invoking the I/O
system to open or attach an I/O switch and using language I/O facilities to open
a file. Language I/O facilities will leave the I/O switch in the state in which
they found it. See the MPM Reference Guide, "Programming Language Input/Output
Facilities", for more information. Only vfile indexed files may be protected
by the commitment mechanism.

Sometimes an asynchronous change causes a language I/O error. The TPR must
determine if language I/O errors are the result of an asynchronous change or
something fatal. If the language I/O error was caused by an asynchronous
change, the TPR should call tp rollback transaction. Each section on TPR
languages explains how to handle this problem. -

Peripheral Input/Output

TPRs may request that files be printed with the dprint subroutine
described in the MPM Subsystem Writer's Guide. Tapes may be used via the tape
I/O modules described in the MPM Perlpheral Input/Output manual. If a TPR
attaches a tape, it should also detach it and establish a cleanup handler to
detach the tape if the TPR is aborted.

6-2 CC96

Using MRDS

All databases used by any TPR should be opened in tp init database.ec to
reduce TPR execution overhead. All files of a database that-will-be used should
also be readied in tp in it database.ec. When a TPR is invoked, all its
databases should be open and all files that will be used should be ready. A TPR
may call dsl $get dbi to obtain the database index. TPRs should not finish a
file or close-any -databases. When a database is created, the -control control
argument of create mrds db should be used to specify the TP subsystem's TCF.

TPR LANGUAGES

PL/I

TPRs must initialize all static storage each time they are called. The
stop statement should not be used. Output written on the default sysprint file
is ultimately printed on the TP user's terminal. The default sysin file should
not be read from. The columnposition, linenumber and pagenumber of external
files are undefined when a TPR is started.

Before a TPR returns and before tp rollback transaction is called, the TPR
need only close stream files and record files for which locate statements are
being used. The TPR should also free any based or controlled storage that is
allocated. It is not necessary to have a cleanup handler that closes files or
frees based and controlled storage. A cleanup handler is needed to detach a
tape only if language 1/0 facilities were not used to attach the tape.

Only PL/I indexed sequential data sets may be protected by the commitment
mechanism. An asynchronous change may cause the transmit condition to be
raised. The following on unit should be included in each TPR to roll back the
transaction if an asynchronous change occurs. It should be established for each
file protected by the commitment mechanism. The identifier "keyed_file" below
is the file value for which on unit is established.

on transmit (keyed_file)
begin;

declare code fixed binary (35);
declare continue_to_signal entry (fixed binary (35));
declare transaction error -condition;
declare error table-$asynch change

- - fixed binary (35) external static;
declare error table $asynch deletion

- - fixed binary (35) external static;
declare error table $asynch insertion

- - fixed binary (35) external static;
declare error table $record busy

- - fixed binary (35) external static;
declare p11 io $error code entry (file) returns (fixed binary (35));
declare tp rollback transaction

- - entr~ ();

6-3 CC96

end;

COBOL

code = pl1 io $error code (keyed file);
if code = error table $asynch change

: code = error table $asynch deletion
: code = error-table-$asynch-insertion
: code = error-table-frecord-busy

then call tp_rollba~k_tra~saction=;

call continue to signal (code);
if code ~= 0 - -
then signal transaction_error;

COBOL TPRs run in implicitly started COBOL run-units. Therefore the STOP
or STOP RUN statements should not be used. The EXIT PROGRAM statement should be
used to finish a TPR. Input from the command line can be passed as a character
string or a structure to the COBOL TPR by a call convention routine written in
PL/I. See the Multics COBOL Users' Guide, Order No. AS43, for more information.
Since a program may be called many--tImes within a COBOL run-unit, all data
should be explicitly initialized when the TPR starts. The ACCEPT statement
should not be used. The DISPLAY statement with the UPON SYSOUT phrase may be
used to output information to the TP user who submitted the transaction. The
DISPLAY statement with the UPON CONSOLE phrase may be used to put messages into
the worker process' absentee output segment. The COBOL Message Control System
should not be used.

To reduce overhead as~uciaLed with upening and closing files, an external
switch should be used to indicate if files have been opened. The first thing
every COBOL TPR should do is call an initialization program to open files if the
external switch is off. The called intialization program should open all
external files that are used by any TPR. The initialization program should then
turn the external switch on to indicate that files have been opened. It is not
necessary to close external files.

Only COBOL files with relative organization or indexed organization may be
protected by the commitment mechanism. The FILE-CONTROL paragraph for each file
protected by the commitment mechanism should include the following FILE STATUS
clause:

FILE STATUS IS status-key-name-1, status-key-name-2

The status keys are described as follows:

WORKING-STORAGE SECTION.
01 status-keys.

02 status-key-name-1 PICTURE XX.
02 status-key-name-2 PICTURE 9999.
02 status-keY-3 REDEFINES status-key-name-2.

03 w PICTURE 9.
03 x PICTURE 9.
03 yz PICTURE 99.

6-4 CC96

The following USE procedure should be included
transaction if an asynchronous change occurs. It
file protected by the commitment mechanism. The
file for which the USE procedure is specified.

in each TPR to roll back the
should be specified for each

word "file-name" below is the

PROCEDURE DIVISION.
DECLARATIVES.
check-status SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON file-name.
check-for-asynch-change.

IF (status-key-name-1 = "3D!!) AND (w = 3 OR 4 OR 5 OR 6 OR 7)
AND (x = 4 OR 6 OR 7 OR 8) AND (yz = 30)
CALL "tp_ ~ollbacktraDsaction ".

CALL "print cobol error $switch" USING "error_output".
CALL "signaT " USTNG "tFansaction error".
EXIT PROGRAM~ .

END DECLARATIVES.

FORTRAN

FORTRAN TPRs should be written as FORTRAN subroutines. The stop statement
should not be used. The return statement should be used to finish a TPR. Input
from the command line can be passed as arguments to the FORTRAN TPR by a call
convention routine written in PL/I. Alternatively, the PL/I" call convention
routine can put the TPR's input into a FORTRAN common block. See the
Multics Fortran Users' Guide, Order No. CC70, for more information about how
PL/I and FORTRAN programs--communicate. TPRs should not use the read statement
with the default unit numbers (5 or 41) or the input statement. To produce
output that is ultimately displayed on the terminal of the TP user who submitted
the transaction, use the write statement with the default unit numbers (6 or 42)
or the print statement.

It is not necessary for FORTRAN TPRs to explicitly close files. However, a
TPR should explicitly close a tape file when it is finished with it.

Only FORTRAN direct access files may be protected by the commitment
mechanism. An asynchronous change may result in an error message in the
absentee output segment. This message can be ignored. A FORTRAN TPR need not
include error processing for asynchronous changes. If a FORTRAN TPR encounters
an asynchronous change, the transaction will be rolled back and retried.

COMMITMENT AND ROLLBACK FEATURES

The system provides a commitment facility which updates a file with all
changes made by the process since the last commitment. Any changes made before
the commitment are invisible to other users. At any time before the commitment,
all changes made since the last commitment may be rolled back.

In the TP subsystem, a commitment is automatically attempted at the end of
each transaction. It is recommended that TPRs not perform intermediate
commitments since this may affect the TP recovery mechanism.

6-5 CC96

However, if a TPR takes a long time to execute, there is an increased
probability that some of the records read would have since been changed by
another transaction. If this is likely, the TPR should be written to include a
call to transaction call $status with the verify refs switch on or to
tp verify transaction: Tnis will indicate whether a commitment would succeed
if-issued-at that time. If it wouldn't, there is no reason to continue further.
The TPR should call the tp rollback transaction subroutine which will roll back
the current work and reinvoke the TfR. -

6-6 CC96

A

aborting transactions
see tp rollback transaction

subroutine- -

access 1-4, 2-3, 2-4, 6-1
see access control list

access control lists (ACLs) 2-2

adding TP user
tp_user command

assign operation
see transaction call command

asynchronous changes 3-14, 4-3, 4-5,
4-10, 5-1, 6-2

atomic database operations 4-4

attaching slave channels
see slave channels

binary command table
see tp cvsct command
tp_display_command_table

C

call convention 3-29, 6-1, 6-5

canceling changes
see tp rollback transaction

subroutine-

canceling transactions
see tp cancel command
see tp=io_cancel command

changing TP user password
tp_user command

changing transaction number 3-37

channels 2-9, 3-11

INDEX

command table 2-6, 3-28, 6-1
compiler modification 3-30
see source language command table

commands used outside TP 3-27

commit operation
see transaction call command

commitment 2-4, 3-13, 3-14, 3-15,
3-35, 3-39, 5-1, 6-5

constraints
see file opening constraints

cpu time
see tp_meters command

creating an empty file 3-36

D

deadline 1-1, 1-4, 3-5, 3-22, 3-29
see tp_change_deadline command

deadline time 3-29

debugging tools
tp display command table
tp=display=input_queue
tp display master table
..... _-...1..: __ , _w.-_ _ -_ ... _ .. _
v~_u~~~~ay_vuv~uv_yu~u~

defining a TP subsystem 2-1

deleting records from input queue
3-38

deleting TP user
tp_user command

dial access request 2-9

dial facility 1-4, 2-3, 2-9

dialok 2-3
see dial facility

dial id 2-1, 3-25
COBOL see dial facility

see TPR languages

command context
I/O process 3-1
master process 3-1
outside TP 3-1
worker process 3-1

2-4

command directory 2-3, 2-6

command line
executed as a transaction 4-11
executed as transaction 4-6

command processing 3-30

directory of commands 2-3

E

ear
see enter_abs_request

enter_abs_request command 2-7

error handling 5-1

errors
see tp_meters command

i-1 CC96

F

file garbage collection
collection_delay_time

file input/output 6-1

file opening constraints 4-3

FORTRAN
see TPR languages

I

I/O process 1-2, 1-4, 2-2, 2-7, 2-9,
3-1

absin file 2-4

I/O process commands 3-17

immediate commands 1-4, 3-30, 6-1

initiating transaction processing
3-17

input queue 1-2, 1-4, 2-1, 2-4, 2-8,
3-4, 3-7, 3-19, 3-35, 3-36

maintenance 2-8
removing records

see tp shrink q command
tp_display_input_queue

input/output 6-1
file 6-1
peripheral 6-1
terminal 6-1

io start up.absin 2-4
see I/n process

L

language I/O facilities 6-2

languages 1-1
see TPR languages

M

managing transaction processing 2-7

master process 1-2, 1-4, 2-2, 2-3,
2-7, 2-8, 2-9, 3-1, 3-9

master process commands 3-3

master table 1-4, 2-3
tp display_roaster_table

metering information 3-7, 3-35

MRDS 2-1, 2-4

Multics Relational Data Store (MRDS)
6-3

Multics TP subsystem
see TP subsystem

N

nonpassive references 4-5

number operation
see transaction call command

o

operating a TP subsystem 2-7

order of execution 1-6

output queue 1-2, 1-4, 2-1, 2-4, 3-36
tp display_output_queue

P

page faults
see tp_meters command

parallel TP subsystems 2-9

passive references 4-5

pending requests
see tp io list pending requests

command -
see tp_list_pending_requests command

peripheral input/output 6-1

personal identifier
see TP user id

PL/I
see TPR languages

processing transactions
see tp_worker_start command

proxy 2-3, 2-6

R

reference list 4-2

registered personal identifier
see TP user id

removing records from input queue
3-38

removing transactions
see tp cancel command
see tp=io_cancel command

restart 1-4, 2-7

rollback 1-1, 1-4, 3-13, 3-20, 4-9,
6-5

i-2

rollback operation
see transaction call command

rolling back changes
see tp rollback transaction

subroutine- -

run unit 2-4, 6-1

S

security 1-4

setting up a TP subsystem 2-3

shutdown 1-4, 2-8
see tp_stop command

shutting down transaction processing
1-4

signon TP access request 3-17

CC96

slave channels 2-9, 3-25

source language command table
see tp_cvsct command

starting a TP subsystem
tp_start command

starting transaction processing 2-7
tp_start command

status of transactions
see tp get xcn status command
see tp=io_get_xcn_status command

status operation
see transaction call command

subroutine context
worker process 3-1

successful completions
see tp_meters command

system administrator 2-3

system crash 4-1, 5-1

T

TCF
see transaction control file

terminal input 6-1

terminal output 1-4, 6-1

terminating transaction processing
see tp_io_signoff command

test mode
see tp io enter test mode command
see tp=io=exit_test_mode command

test processes 2-9

testing

TP administrator 1-4, 2-2, 2-3, 3-1,
5-1, 6-1

TP process names 2-2, 2-4

TP session 3-9

TP subsystem 1-1, 1-2
attaching TCF

see to worker init tcf command
call conventions 6-1
command table 6-1
commands 3-1
commands used outside 3-27
defining a subsystem 2-1
deregister user

tp user command
directory 2-3, 2-7
error handling 5-1
ini&iating a TP session

see signon TP access request
input/output 6-1
opening TCF

see tp worker init tcf command
process names 2-2 -
register user

tp user command
see command context
set-up procedure 2-3
shutdown 2-8

see tp stop command
signed on users

see tp_who command

i-3

TP subsystem (cont)
source language

command table compiler
see tp cvsct command

specific user requests 1-1
startup

see tp start command
start up-exec com 2-6
subroutines 3-1
termination

see tp io signoff command
test mode 1-20, 3-21
testing 2-9
tranSaction control file (TeF) 2-4
users

see tp who command
User ids- 2-2

TP subsystem startup 2-7

TP user 1-1
tp_user command

TP user identifier
see TP user id

tp.tcf
see transaction control file

tp.tpinq
see input queue

tp.tpoutq
see output queue

TPR
see transaction processing routine

TPR languages 1-1
COBOL 6-4
FORTRAN 6-5
pur 6-4

tp_add_user command 2-6

tp_cancel command 3-4

tp_change_deadline command 3-5

tp command table
tp cvsct-command
tp=display_command table

tp_command_table_ 2-6

tp command table $
see command taole

tp_cvsct command 3-28

tp_display_command table - 3-31

tp_display_current xcns command 3-6 -
tp_display - input - queue 3-32

tp _display _ ma.ster table 3-33 -
tp_display. output queue 3-34

tp_get_xcn_status command 3-7

tp_init_database.ec 2-1, 2-4, 6-3

tp_io_cancel command 3-19

tp io enter test mode command 2-10,
- 1-20 - -

tp io exit test mode command 2-10,
- j-21 -

CC96

tp io list pending requests command
- 1-23 - -

tp_io_signoff command 3-24

tp_io_start command 2-9, 3-25

tp_io_who command 3-26

tp_list_pending_requests command 3-8

tp_master_table_ 2-1

tp master table $
see master taole

tp_meters command 2-8, 3-35

tp_meter_table_ 2-3

tp_person_name_table_ 2-1, 2-6

tp person name table $see person-name
- tabli - -

tp pre create exec com 2-3, 2-4, 2-6,
- 3=36

tp_reset_xcn_num command 3-37

tp rollback transaction subroutine
- 3-13, 0-6 -

tp_shrink - q command 2-8, 3-37, 3-38

tp_start command 2-7, 3-9

tp_ start command 2-7

tp_start up.ec 2-1 -
tp_stop command 2-8, 3-10

tp_user command 3-40

TP user id 3-11, 3-17, 3-18, 3-26

tp verify transaction subroutine
- 3-14~ 6-6 -

tp_who command 3-11

tp_worker_init_tcf command 3-15

tp_worker_start command 2-9, 3-16

transact operation
see transaction call command

transaction 1-1
aborting

see tp rollback transaction
subroutine-

not completed
see tp io list pending requests

command - -
see tp li~t pending requests

comma no -
removing

see tp cancel command
see tp-io cancel command

roll bacK -
see tp io enter test mode command

start worker prociss -
see tp worker start command

status - -
see tp get xcn command
see tp=io_get_xcn_status command

transaction control file (TCF) 2-1,
2-3, 2-9, 3-15, 4-2

attaching
see tp worker init tcf command

entries -4-2 - -
entry 4-4

transaction control file (TCF) (cont)
I/O switch 4-2, 4-4, 4-7
opening

see tp worker in it tcf command
transactIon status ~-5, 4-9

transaction failure condition 4-6

transaction number 1-6

transaction processing
see TP subsystem

transaction processing routine (TPR)
1-1, 1-4, 1-6, 2-6, 3-13, 3-14,
3-35, 4-1, 5-1, 6-5

input/output 6-2

i-4

writing 6-1

transaction processing subsystem
see TP subsystem

transactions currently displayed 3-6

transaction call command 4-4

transaction call subroutine 4-7

transaction_call_$assign entry 4-7

transaction_call_$commit entry 4-7

transaction_call_$number entry 4-8

transaction_call_$rollback entry 4-8

transaction_call_$transact entry 4-11

u

unprocessed transactions
see tp io list pending requests

command - -
see tp_list_pending requests command

unrecoverable condition 5-1

user transaction 1-4

User ids 1-4, 2-2, 2-3, 2-6

v

vfile
attaching files 6-5
transaction interfaces 4-1
transaction mechanism 4-7

vfile transaction
commitment 4-1, 4-4, 4-7
executing command line 4-6, 4-11
number 4-1, 4-2, 4-4, 4-8
number assignment 4-6
rollback 4-1
status l.!-9
termination 4-1

w

worker process 1-2, 1-4, 2-2, 2-7,
2-9, 3-1, 6-1

absin file 2-4
commands 3-12
see tp worker start command
subroutines 1-12

CC96

worker start up.absin (cont)
see worker-process

i-5 CC96

.:u
Z
::i
CJ
z
o
...J
«
I
:::J
u

I
I
I
I
I
I
I
I

.J

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE
SERIES 60 (LEVEL 68) MULTICS
TRANSACTION PROCESSING REFERENCE MANUAL

ERRORS IN PUBUCATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDERNO·_I~c~C=9~6~~~1~ ______ ~
ftA"'eft I
U I U I JUNE 1979

r\ Your comments will be promptly investigated by appropriate technical personnel and action will be taken D lI" as required. If you require a written reply. check here and furnish complete mailing address below.

FROM: NAME __ __ DATE ______________ _

TITLE __ _

COMPANY ______________________________________ ___

ADDRE~ ______________________________________ __

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I
I
I
I
I ("1

UJ
Z
--1

C)

Z
o
--1
«
f
~
U

I
I
I-
I ,.
I. ~
I '::J

I ~

--- 1-~

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

I 0

I <5
I LL

J
I
I
I
I
I

Business Reply Mail I
________________________________ :_:_:_:_:_~-,~-:-:-:-~N-:-~-:~--ry-if-M_a_il_ed_i_n_th_e_U_ni_te_d_St_at_e_s _______________________ 4(

ATTENTION: PUBLICATIONS, MS 486

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

UJ
Z
--1

C)
Z

---..--~--- ~S

Honeywell

I « ,.,g
1'2
I
I
I •
I
I
J
I
I
I
I
I
I

(,
I"
I
I
I
I
I
I

Honeyw~11
Honeywell Information Systems

In the U.S.A.: 200 Smith Street. MS 486, WaHham. Massachusetts 02154
In Canada: 2025 Sheppard Avenue East. Willowdale, Ontario M2J 1W5

In Mexico: Avenida Nuevo Leon 250. Mexico 11. D.F.

23998. 1679. Printed in U.S.A. CC96-01

	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	5-01
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	i-1
	i-2
	i-3
	i-4
	i-5
	replyA
	replyB
	xBack

