
HONEYWELL

I LEVEL 68 MULTICS
I PROGRAMMERS'
MANUAL-
COMMUNICATIONS
INPUT/OUTPUT

SOFTWARE

SERIES 60 (LEVEL 68)

MULTICS PROGRAMMERS' MANUAL -
COMMUNICATIONS INPUT/OUTPUT

SUBJECT

Communications Input/Output Reference Material, Including Command, I/O
Module, and Subroutine Descriptions

SPECIAL INSTRUCTIONS

This manual is one of six manuals that constitute the M.ultics Programmers'
Manual (MPM).

Reference Guide
Commands and Active Functions
Subroutines .
Subsystem Writer's Guide
Peripheral Input/Output
Communications Input/Output

Order No. AG91
Order No. AG92
Order No. AG93
Order No. AK92
Order No. AX49
Order No. CC92

This revision supersedes Revision 0 of the manual dated October 1978 and
Addendum A dated November 1979. Change bars indicate new and changed
information.

SOFTWARE SUPPORTED

Multics Software Release 9.0

ORDER NUMBER

CC92-01 August 1981

Honeywell

PREFACE

Primary reference for user and subsystem programming on the Multics system
is contained in six manuals. The manuals are collectively referred to as the
Multics Programmers' Manual (MPM). Throughout this manual, referen~es are
frequently made to the MPM. For references will be as follows:

Document

Reference Guide
(Order No. AG91)

Commands and Active Functions
(Order No-:--A"G92)

Subroutines
(Order No. AG93)

Referred To In Text As

MPM Refe~ence Guide

MPM Commands

MPM Subroutines

Subsystem Writers' Guide
(Order No. AK92)

MPM Subsystem Writers' Guide

Peripheral InEut/output
(Order No. AX 9)

Communications Input/Output
(Order No. CC 92)

MPM Peripheral I/O

MPM Communications I/O

The MPM Reference Guide contains general information about the Multics command
and programming environments. It also defines items used throughout the rest of
the MPM and, in addition, describes such subjects as the command language, the
storage system, and the input/output system.

The MPM Commands is organized into four sect ions.
list of the Mul tics command repertoire, arranged functionally.
t he act i ve functions. Sect ion III contains descript ions
commands, including the calling sequence and usage of each
describes the requests used to gain access to the system.

Section I contains a
Section II describes
of standard Mul tics
command. Section IV

The MPM Subroutines is organized into three sections. Section I contains a
1 ist of the sub rout ine repertoire, arranged functionally. Section II contains
descriptions of the standard Multics subroutines, including the declare statement,
the calling sequence, and usage of each. Section III contains descript ions of
the I/O modules.

The information and specifications in this document are
IlI1hio>cl. t.n r.hA,,_ withnut pnti",,_ ThiA tlnr.um.mt r.nntAinll
i~;~tion-~bo~t Ho~~yweli products or services that may
not be available outside the United State!!. Conl!Ult your
Honeywell Marketing Representative.

© Honeywell Information Systems Inc., 1981 File No.: lL13,lL63

The MPM Subsystem Writers' Guide is a reference of interest to compiler
writers and writers of sophisticated subsystems. It documents user-accessible
modules that allow the user to bypass standard Multics facilities. The interfaces
thus documented are a level deeper into the system than those required by the
majority of users.

The MPM Peripheral I/O manual contains descriptions of commands and subroutines
used to perform peripheral I/O. Included in this manual are commands and subroutines
that manipUlate tapes and disks as I/O devices.

The MPM Communications I/O manual contains information about the Mul tics
Communication System. Included are sections on the commands, subroutines, and
I/O modules used to manipulate communications I/O. Special purpose communications
I/O, such as binary synchronous communication, is also included.

Examples of specialized subsystems for which construction would require
reference to the MPM Subsystem Writers' Guide are:

• A subsystem that precisely imitates the command environment of some
system other than Multics.

• A subsystem intended to enforce restrictions on the services available
to a set of users (e.g., an APL-only subsystem for use in an academic
class) .

• A subsystem that protects some kind of information in a way not easily
expressible with ordinary access control lists (e.g., a proprietary
linear programming system, or an administrative data base system that
permits access only to program-defined, aggregated information such as
averages and correlations).

Several cross-reference facilities help locate information:

• Each manual has a table of contents that identifies the material (either
the name of the section and subsection or an alphabetically ordered
list of command and subroutine names) by page number.

• Each manual contains an index that lists items by name and page number.

Portions of this manual give information most useful for special applications
of the Multics Communication System. These sections are of limited interest to
general users, and incl ude: "Syntax of the TTF" in Section 3, the ttt info
subroutine described in Section 5, and the I/O modules, except tty, described
in Section 6. -

One additional manual referenced
Manual--Communications, Order No. CC75.
Communicatlons.

is the Multics Administrators'
It is referred to in the text as MAM

Changes to MPM Communications I/O contained in Addendum A include: new I
baud rate information in Section 3; a new command, the dial out command, in
Section 4; a number of changes and clarifications to the tty I/O module description
in Section 6, including the new control arguments -dial-id and -resource; and
changes to the printer modes described in Appendix B.

7/82 iii CC92-0 1A

Section 1

Section 2

Section 3

7/82

CONTENTS

Page

Overview of Multics Communication System 1-1
Terminals and Channels 1-1
Attachments 1-1
Data Transformation 1-2

Use of Terminals on Multics .
ASCII Character Set

Printing Graphic Characters
Control Characters
Nonstandard Control Character
Unused Characters .

Typing Conventions . .
Canonical Form
Canonicalization
Column Assignment
Overstrike Canonicalization
Overstrike Canonicalization Examples
Replacement Canonicalization•.
Replacement Canonicalization Examples ..
Erase and Kill Characters
Examples of Erase and Kill Processing
Escape Sequences • . .

Typing Convention Examples
Column Canonicalization Examples
Erase, Kill, and Escape Examples

Terminal Output
Carriage Motion
Del ays
Output Escape Sequences .
Continuation Lines
End-of-page Processing

Escape Conventions on Various Terminals
Selectric Devices
Upper Case Only Devices .
Execuport 300
CD I Mo del 1 0 30

Flow Control
Input Flow Control
Output Flow Control

Block Tr ansfer

Terminal Types
Terminal Type Concept

Terminal Type and Line Type
Terminal Type Table and Terminal Type File .

Setting Terminal Types
Changing Terminal Type Definitions
Terminal Type Table

Syntax of the TTF • . . .
Generalized Character Specifications
Terminal Type Entry
Video Table Definition
Global Statements
Conversion Table Entry
Translation Table Entry
Function Key Table Entry
Ex ample
Special Characters Table Entry

iv

2-1
2-1
2-i
2-3
2-4
2-4
2-4
2-4
2-6
2-6
2-7
2-7
2-8
2-9
2-9
2-11
2-11
2-12
2-12
2-13
2-15
2-16
2-17
2-17
2-17
2-18
2-18
2-18
2-19
2-19
2-19
2-20
2-20
2-20
2-20

3-1
3-1
3-1
3-1
3-2
3-2
3-3
3-4
3-4
3-5
3-10
3-14
3-15
3-15
3-15 ,
j-IO

3-16

CC92-01A

Section 4

Section 5

Section 6

Index

Table 2-1.

7/82

CONTENTS (cont)

De faul t Types . . •
Answerback Table
Preaccess Commands
Examples

Commands
cv ttf
d fal out . . .
dispTay ttt
16 ftf ~ • . .
prTnt terminal types, ptt
print-ttt path-.
set ttt path .
set=tty-; stty

Subroutines • .
ttt info

ttt-info $terminal data
ttt-info-$modes . ~ . . .
ttt-info-$preaccess type
ttt-info-$additionaT info .

ttt Tnfo $initial strTng .
ttt info $dialup-flags ..
ttt-info-$decode-answerback .
ttt-info-$encode-type
ttt-info-$decode-type
ttt-info-$video Tnfo
ttt=info=$functTon_key_data

Input/Output Modules
bisync
g115 -
hasp-host

SIGN ON-Processing .
hasp~workstation_

TABLES

ASCII Character Set on Multics

v

Page

3-18
3-18
3-19
3-20

4-1
4-2
4-2. 1
4-3
4-4
4-6
4-7
4-8
4-9

5-1
5-2
5-2
5-5
5-5
5-6
5-6
5-7
5-8
5-8
5-9
5-10
5-14

6-1
6-2
6-7
6-10
6-15
6-18

i-1

2-2

CC92-01A

SECTION 1

OVERVIEW OF MULTICS COMMUNICATION SYSTEM

The Multics Communication System CMCS) effects the transfer of data between
~ne Multics virtual memory and various remote devices (primarily terminals) over
communications channels. This manual is concerned with MCS as it appears to the
user of a terminal. For a description of the internal workings of MCS, see the
appropriate program logic mantial.

The bulk of MCS resides in the Multics supervisor and in a separate machine,
the Front-End Network Processor (FNP). The user-ring and supervisor portions of
MCS are principally concerned with terminal management, while the FNP's primary
responsibility is channel management. In general, the user need not be concerned
with channel management. Most user and system programs interface to MCS through
the input/output system by means of the iox subroutine, described in the MPM
Subroutines. For general information on the-use of the I/O system, see "Input
and Output Facilities" in the MPM Reference Guide.

TERMINALS AND CHANNELS

The term "channel" (or "communications channel"), as used in this manual,
refers to a physical connection between an FNP and a remote input/output device.
Such a connection may go through a telephone system or a private communications
network, or it may consist of one or more hardwired cables. For information on
the specification and management of all communications channels known to the
system, see the MAM Communications.

The word "terminal" is used to refer to the device itself; it may be an
ordinary interactive terminal on which a user types commands, or it may be a
computer controlling one or more peripheral devices.

ATTACHMENTS

An interactive terminal is normally connected to the system (attached) through
the tty I/O module described in Section 6. For the user's login terminal, this
attachment is performed automatically in the course of process creation. Additional
terminals connected to the user's process using the dial facility must be attached
explicitly. For more information on the dial facility, see the descriptions of
the dial command in MPM Commands and the dial manager subroutine in the MPM
Subsystem Writer's Guide. --

Other types of devices that use special communications protocols may have
to be attached through special-purpose I/O modules. Several such modules are
supplied with the system; they are described in Section 6. Users and sites may
also supply their own I/O modules that interface to one of the existing modules.
For information, see "Implementation of Input/Output Modules" in the MPM Subsystem
Writer's Guide.

1-1 CC92-01

DATA TRANSFORMATION

One of the most visible functions of MCS is the transformation of data read
from or written to the terminal. This may include rearrangement of white space,
replacement of one character by a sequence of characters, and, in some cases,
wholesale translation from one character code to another. The types of conversion
for input and output are described in Section 2. The specific details of any
particular conversion are determined by terminal type and, to a lesser extent,
by the modes associated with the attachment. Terminal types are explained in
Section 3, and the effects of the various modes are given in the description of
the tty 1/0 module. The set tty command, described in Section 4, can be used
to change the terminal type or to modify many of the parameters used in converting
input or output.

The special-purpose 1/0 modules (those other than tty) usually perform
their own data conversions independent of terminal type. They generally put the
terminal in rawi and rawo modes (i.e., "raw" input and output) to prevent the
rest of MCS from performing ~ny transformations on data to or from the terminal.

1-2 CC92-01

SECTION 2

USE OF TERMINALS ON MULTICS

ASCII CHARACTER SET

The Mul tics standard character set is the revised U. S. ASC II Standard
(refer to USA Standards Institute, "USA Standard X3. 4-1968") . The ASCII set
consists of 128 7-bit characters. These are stored internally, right-justified,
in four 9-bit fields per word. The two high-order bits in each field are expressly
reserved for expansion of the character set; no system program may use them.
Any hardware device that is unable to accept or create the full character set
should use established escape conventions for representing the set (see "Escape
Characters" below). There are no meaningful subsets of the revised ASCII character
set.

The ASCII character set includes 94 printing graphics, 33 control characters,
and the space. Multics conventions assign precise interpretations to all the
graphics, the space, and 10 of the control characters. The remaining 23 control
characters are presently reserved.

Printing Graphic Characters

The printing graphic characters are the uppercase alphabet, the lowercase
alphabet, digits, and a set of special characters. The special characters are
listed below.

exclamation point ; semicolon
" double quote < less than
1/ number sign = equals
$ dollar sign > greater than
% percent ? question mark
& ampersand @ commercial at
I acute accent [left bracket
(left parenthesis \ left slant
) right parenthesis] right bracket

* asterisk " circumflex
+ plus underline
, comma grave accent
- minus left brace

npY';()n vertical bar
~-----

/ right slant right brace
colon - tilde

Note: The solid vertical bar (I) and the broken vertical bar (I) are equivalent
representations of the graphic corresponding to ASCII code 174.

2-1 CC92-01

Table 2-1. ASCII Character Set on Multics

0 2 ~ 4 5 6 7
.) I

000 (NUL) BEL

010 BS HT NL VT NP CR RRS BRS

020

030

040 Space " II $ % &

050 * + /

060 0 2 3 4 5 6 7

070 8 9 < = > ?

100 @ A B C D E F G

110 H I J K L M N 0

120 P Q R S T U V w

130 X Y Z [\

140 a b c d e f g

150 h i j k 1 m n 0

160 P q r s t u v w

170 x y z PAD

2-2 CC92-01

Control Characters

The following conventions define the standard meanings of the ASCII control
characters that are given precise interpretations in Multics. These conventions
are followed by all standard 1/0 modules and by all system software inside the
110 system interface. Since some devices have different interpretations for
some characters, it is the responsibility of the appropriate 1/0 module to perform
the necessary translations.

The characters designated as unused are specifically reserved and can be
assigned definitions at any time. Until defined, unused control characters are
output using the octal escape convention in normal output and are not printed in
edited mode. Users wishing to assign interpretations for an unused character
must use a nonstandard 1/0 module.

If a device does not perform a function implied by a control character, its
standard 1/0 module provides' a reasonable interpretation for the character on
output. This might be substituting one or more characters for the character in
question, printing an octal escape, or ignoring it.

The Multics standard control characters are:

BEL Sound an audible alarm.

BS Backspace. Move the carriage back one space. The backspace character
implies overstrike rather than erase.

HT Horizontal tab. Move the carriage to the next horizontal tab stop.
Multics standard tab stops are at 11, 21, 31 ••. when the first column
is numbered 1.

NL Newline. Move the carriage to the left end of the next line. This
implies a carriage return plus a line feed. ASCII LF (octal 012) is
used for this character.

VT Vertical tab. Move the carriage to the next vertical tab stop and to
the left of the page. Standard tab stops' are at lines 11, 21, 31 •.•
when the first line is numbered 1. This character, by definition,
does not appear in a canonical string.

NP New page. Move the carriage to the top of the next page and to the
left of the line. ASCII FF (octal 014) is used for this character.

CR Carriage return. Move the carriage to the left of the current line.
This character, by definition, does not appear in a canonical string.

RRS Red ribbon shift. ASCII SO (octal 016) is used for this character.

BRS Black ribbon shift. ASCII SI (octal 017) is used for this character.

PAD Padding character. This is used to fill out words that contain fewer
than four characters and that are not accompanied by character counts.
This character cannot appear in a canonical character string. ASCII
DEL (octal 177) is used for this character.

2-3 CC92-01

Nonstandard Control Character

One control character, NUL, is recognized under certain conditions by all
device interface modules because of its wide use outside Multics. This character
is handled specially only when the 1/0 module is printing in edited mode, and
is, therefore, ignoring unavailable control functions. The null character is
ASCII character NUL (octal 000). In normal mode, this character is printed with
an octal escape sequence; in edited mode, it is treated exactly as PAD. This
character cannot appear in a canonical character string. Programmers are warned
against using NUL as ~ routine padding character and using edited mode on output
because all strings of zeros, including mistakenly uninitialized strings, are
discarded.

Unused Characters

These characters are reserved for future use:

SOH 001 ACK 006 Dc4 024 SUB 032
STX 002 DLE 020 NAK 025 ESC 033
ETX 003 DC 1 021 SYN 026 FS 034
EOT 004 DC2 022 ETB 027 GS 035
ENQ 005 DC3 023 CAN 030 RS 036

EM 031 US 037

TYPING CONVENTIONS

Three categories of typing conventions are dealt with in this discussion:
canonical form, erase and kill characters, and escape characters.

Canonical Form

A character stream is a representation of one or more printed lines. Since
the same printed line can be produced using different sets of keystrokes, there
are several possible character streams that represent the same line. For example,
the line:

start Ida alpha,4 get first result.

could have been typed with either spaces or horizontal tabs separating the fields;
one cannot tell by looking at the printed image.

A program should be able to compare two character streams easily to see if
they produce the same printed image. It follows that all character input to
Mul tics must be converted into a standard (canonical) form. Similarly, all
programs producing character output, including editors, must produce canonical
form output streams.

2-4 CC92-01

Of all possible ASCII character strings, only certain strings are ever
found within Multics. All strings that produce the equivalent printed effect on
a terminal are represented within Multics as one string, the canonical form for
the printed image. The user, however, is free to type a noncanonical character
stream. This stream is automatically converted to the canonical form before it
reaches his program. An exception to this automatic conversion is that tab
characters are preserved; a detailed description of the conversion process is
found later in this sect ion. If the user wants his program to receive raw or
partially processed input from his terminal, an escape mechanism is provided by
the modes operation of the tty 110 module. The 1/0 module is accessed via a
call to the iox subroutine (see the description of the iox subroutine in the
MPM Subroutines ~ The modes available that apply to canonicalization are:

can no canonicalization of overstrikes.

esc no canonicalization of escape characters.

Aerkl no erase and kill processing.

rawi read the specified data from the terminal without any conversion or
processing. This includes shift characters and undifferentiated
uppercase and lowercase characters.

Similarly, an 1/0 module is free to rework a canonical stream on output
into a different form if, for example, the different form happens to print more
rapidly or reliably on the device.

The current Multics canonical form is designed for the convenient typing of
aligned tabular information, which requires an ambiguous interpretation of the
tab character. The following three statements describe the current Multics canonical
form.

1. A text line is a sequence of character positions separated by horizontal
carriage motion and ending in a newline character.

2. Carriage motion consists of newline, tab, and space characters.

3. A character position consists of a single graphic or several overstruck
graphics. A graphic is a printable character. An overstruck character
position consists of two or more graphics separated by backspaces.
Regardless of the order in which the graphics are typed, they are
always stored in ascending ASCII order. Therefore, the symbol "I",
whether typed as: -

)B<B
or

<B)B
or

B<B)

is always stored internally as:

<B)B

where B is a backspace.

There are any number of ways to type two or more consecutive overstruck
character positions. The graphics in each position are grouped togetL-=r, so
that "II" is always stored as:

<B)B <B)B

2-5 CC92-01

I

The following paragraphs give a complete set of rules for transforming a
typed line into the form in which it is stored, followed by further examples
illustrating the rules. The transformation process is carried out in three
steps: canonicalization, erase/kill processing, and escape processing. If two
or more of the rules listed below are applicable to a given input string, they
are applied in the order in which they are presented here.

Canonicalization

Canonicalization is the process of converting an input string into canonical
form. Two methods of canonicalization are defined on Mul tics: a method for
printing terminals and a method for video (CRT) terminals. Both methods of
canonicalization attempt to ensure that what is visible on the terminal is the
canonical form of the input string. The method used is determined by the setting
of the "can type" mode, as explained in the description of the tty I/O module
elsewhere in this manual. -

Canonicalization for printing terminals (overstrike canonicalization) is
designed for terminals which are capable of overstriking multiple characters in
a single column. Any group of overstruck characters is converted to a single
representation regardless of the order in which the characters were entered into
the column.

Canonicalization for video terminals (replacement canonicalization) is
designed for terminals which are not capable of overstriking. When a character
is entered into a column, any characters previously present in that column are
no longer visible. Replacement canonicalization mimics this behavior of the
terminal by only placing the last character typed into any column into the
canonical representation of the string.

The canonicalization process consists of two
assignment, which is identical for both methods of
actual canonicalization process.

Column Assignment

distinct steps:
canonicalization,

column
and the

The following rules are used to determine which printing graphics, if any,
appear in each physical column position.

1. The leftmost position of the carriage is considered to be column 1.

2. Each printing graphic or space typed increases the column position by
1.

3. Each backspace typed decreases the column position by 1 unless the
column position is 1.

4. A carriage return sets the column position to 1.

5. A horizontal tab increases the column position to the next tab stop;
tab stops are defined to be at columns 11, 21, 31, etc.

6. A newline, formfeed, or vertical tab sets the column position to 1 and
advances the carriage vertically; thus no character typed after such a
character can share a column position with a character typed before
it.

2-6 CC92-01

7. If the terminal is not in ctl char mode, any ASCII control character
other than backspace, horizontal tab, newline, vertical tab, formfeed,
and carriage return is discarded. If the terminal is in ctl char
mode, such characters are treated as if they were printing graphics
(with the exception of the NUL character, which is always discarded).
The default is that ctl char mode is off.

Overstrike Canonicalization

The following rules determine the formation of the canonical string.

1. Characters on each line are sorted so that their associated column
positions are monotonically increasing.

2. No carriage return characters may appear in the canonical string.

3. A horizontal tab is 'preserved as typed unless a printing graphic appears
in one of the columns skipped by the tab, in which case the tab is
replaced by an appropriate number of spaces.

4. Backspaces appear in the canonical string only when two or more printing
graphics share a column position.

5. When two or more different printing graphics share a column position,
the characters are sorted as follows: graphic with lowest numeric
ASCII code, backspace, graphic with next lowest numeric ASCII code,
etc.

6. If the contents of a column position consist of two or more instances
of the same printing graphic, that column is reduced to a single instance
of the graphic.

7. A line-ending character (newline, formfeed, or vertical tab) immediately
follows the last printing graphic in the rightmost column position on
the line.

Overstrike Canonicalization Examples

Several illustrations of canonical form are shown below. Assume that the
typist's terminal has horizontal tab stops set at 11, 21, 31, etc.

Typist: this is ordinary text.N
Typed line: this is ordinary text.
Canonical form: this is ordinary text.N

where N is the newline character. In most cases, the canonical form is the same
as the original key strokes of the typist, as above.

Typist: here fullBBBB means thatN
Typed line: here full means that
Canonical form: here ~Bu Bl Bl means thatN

where B is a backspace and N is a newline character. This is the most common
type of canonical conversion, done to ensure that overstruck graphics are stored
in a standard pattern.

2-7 CC92-01

I

I

Typist: We see no probSBlemC N
Typed line: We see no problem --
Canonical form: WB Be see no problemN

where B is a backspace, N is a newline character, S is a space, and C is a
carriage return. The space between "prob" and "lem" was not overstruck; it and
the following backspace were simply removed. Note the difference in the storage
of the characters that were overstruck in this and the preceding example; tne
ASCII code value of theunderscore is between the values for uppercase and
lowercase letters.

Replacement Canonicalization

Replacement canonicalization is designed for use on a terminal wi th the
following characteristics:

• Overstriking a character with any other printing character or a space
causes the first character to be erased.

• Entering a tab character simply moves the cursor position to the next
tab stop (column 11, 21 , etc.) wi thout erasing any intervening characters.

The following rules determine the formation of the canonical string:

1. Characters on each line are sorted so that their associated column
positions are monotonically increasing.

2. No carriage return characters may appear in the canonical string.

3. A horizontal tab is preserved as typed unless a printing graphic appears
in one of the columns skipped by the tab, in which case the tab is
replaced by an appropriate number of spaces.

4. When two or more characters (including space and identical printing
graphics) share a column position, the last character entered by the
user in that column is kept and all other characters in that column
discarded.

5. A line-ending character (newline, formfeed, or vertical tab) immediately
follows the last printing graphic in the rightmost column position on
the line.

With replacement canonicalization, as seen above, it is not possible to
overstrike two characters, as the last one typed is always the only character in
that col umn. Thus it is not possi ble to use the featur e of over str iki ng a
character with the erase character, as described in the "Erase and Kill Characters"
section following, to delete a character typed in the middle of a line. Instead,
to delete such a character, you must reposition to the character in question and
retype the remainder of the line being input.

Therefore, you may want to disable the erase character when using replacement
canonicalization. This may be accomplished by the command line:

set_tty -edit \400

where \400 is a character which cannot normally be entered on the terminal.

2-8 CC92-01

Replacement Canonicalization Examples

Several illustrations of canonical form are shown below. Assume that the
typist's terminal has horizontal tab stops set at 11, 21, 31, etc.

Typist: this is ordinary text.N
Screen contents: this is ordinary text.
Canonical form: this is ordinary text.N

where N is the newline character. In most cases, the canonical form is the same
as the original key strokes of the typist, as above.

Typist: this is a msitake.BBBBBBBisN
Screen contents: this is a mistake.
Canonical form: this is a mistake.N

where B is a backspace and N is a newline character. This example illustrates
the correction of errors in the middle of a typed line. It is the most common
use of replacement canonicalization.

Typist: this si a strange BBBBBBBBBBBBBisHHBBexample.N
Screen contents: this is a strange example.
Canonical form: this is a strange example.N

where B is a backspace, H is a horizontal tab, and N is a newline character.
This example illustrates that the horizontal tab character does not erase intervening
characters (" a strange" in this example).

Typist: This is some text.BBBBBBBBBBBBsome text. N
Screen contents: This is some text.
Canonical form: This is some text.N

where B is a backspace and N is a newline character. This example illustrates
that in order to erase extra whitespace in a line, the typist must position to
the first extraneous character, retype the remainder of the line, and type sufficient
spaces at the end of the line to overstrike any extra undesired characters.

If, in the above example, the final spaces are not typed, the following
occurs:

Typist: This is some text.BBBBBBBBBBBBsome text.N
Screen contents: This is some text.t.
Canonical form: This is some text.t.N

Erase and Kill Characters -------

Two capabilities for minimally editing the line being typed are available.
They are:

• The ability to delete the latest character or characters (erase)

• The ability to delete all of the current line (kill)

By applying canonical form to these two editing functions, it is possible to
interpret unambiguously a typed line in which editing was required.

2-9 CC92-01

I

The first editing convention reserves one graphic as the erase character.
On Mul tics, the defaul t erase character is the number sign (fI). The user can
designate a different character by invoking the set tty command with the -edit
control argument. Al though the erase character is -a printed graphic, it does
not become part of the line. When it is the only graphic in a print position,
it erases itself and the contents of the previous print position. Several successive
erase characters erase an equal number of print positions. One erase character
typed immediately after ~white space" causes the entire white space to be erased
(any combination of tabs and spaces is called white space). The number sign can
be struck over another graphic. In this case it erases the print position on
which it appears. For example, typing:

t heSSneJlllJlnext
or

theSTllnext
or

theiAnext

where S is a space and T is a horizontal tab. produces:

thenext

Since processing of erase characters takes place after the transformation to
canonical form, there is no ambiguity as to which graphic character has been
erased. The printed image is always the guide.

The second editing convention reserves another graphic as the kill character.
On Multics, the default kill character is the commercial at sign (@). Again,
the user can redesignate this. When this character is the only graphic in a
print position, the contents of that line up to and including the kill character
are discarded. Again, since kill processing occurs after the conversion to
canonical form, there is no ambiguity about which characters have been discarded.

By convention, an overstruck erase character is processed before a kill
character, and a kill character is processed before a nonoverstruck erase character.
Therefore, the only way to erase a kill character is to overstrike it with an
erase character.

Because of their special meanings to Multics, these two graphics should be
avoided in software.

The following rules apply to erase and kill characters.

1. If the terminal is in esc mode, an erase or kill character alone in a
column immediately preceded by an escape character alone in a column
is not processed as an erase or kill character.

2. An erase character alone in a column position and preceded by more
than one blank column resul ts in the deletion of all immediately preceding
blank columns, as well as of the erase character.

3. An erase character alone in a column position results in the deletion
of itself and of the contents of the preceding column position.

4. An erase character sharing a column position with one or more printing
graphics results in the deletion of the contents of that column position.

5. A kill character results in the deletion of its own column position
and all column positions to its left, unless it shares a column position
with an erase character, in which case rule 4 applies (the kill character
is erased).

2-10 CC92-01

Notice that for rule number 1 to apply, the erase or kill character must
actually have been typed in the column immediately following the escape character.
The reason for this is that it facilitates the erasing of escape sequences,
e.g., \001/1/11111.

Examples of Erase and Kill Processing

Typist: abcx#deSBfzz##gN
Typed line: abcxlldefzzllllg
Canonical form: abcxlldefzzllllgN
Final input: abcdefgN

Typist: this@In the offBBB #lInB stateN
Typed line: this@In the offlilin state
Canonical form: In the Bo Bn-8tateN
Final input: In the on state

Escape Sequences

Some terminals cannot print all 128 ASCII characters. To maintain generality
and flexibility, standard software escape conventions are used for all terminals.
Each class of terminal has a particular character assigned to be the software
escape sequence character in the terminal type file. When this character occurs
in an input (or output) string to (or from) a terminal, the next character (or
characters) are interpreted according to the conventions described below. The
escape sequence character should not be confused with the ASCII ESC, which is
octal 033.

The standard escape sequence character in Mul tics is the Ie ft slant (\);
like the erase and kill characters, it should be avoided in Multics software.
The universal escape conventions are:

1. The string \d 1 d2d3 represents the octal code d 1 d2 d3 where di is a
digit from zero to seven. Any arbitrary character can be represented
this way. The string \d2d3 is equivalent to \d1d2d3 if d1 is zero.
The string \d3 is equivalent to \d1d2d3 if d1 and d2 are zero.

2. Local (i.e., concealed) use of the newline character that does not go
into the computer-stored string on input, and is not in the computer-stored
string on output, is effected by typing \<newline character>.

3. The characters \11 place an erase character into the input string.

4. The characters \@ place a kill character into the input string.

5. The characters \\ place a left slant character into the input string.

The escape conventions described in items 1 through 5 above apply only if none
of the characters involved are overstruck.

The following rules apply to escape sequences.

1. An escape sequence consists of an escape sequence character alone in
its column position followed by one or more printing graphics each of
which is alone in its column position. An escape sequence is replaced
by a single character in the canonical string.

2. An escape sequence consisting of two successive escape sequence characters
is replaced by an escape sequence character.

2-11 CC92-01

3. An escape sequence consisting of an escape sequence character followed
by an erase or kill character is replaced by an erase or kill character.

4. An escape sequence consisting of an escape sequence character followed
by one, two, or three octal digits is replaced by the character whose
ASCII value is represented by the sequence of octal digits.

5. An escape sequence character followed by a newline character results
in the deletion of both characters from the canonical string.

6. Other escape sequences may be defined on a per-terminal-type basis,
where such a sequence consists of an escape sequence character and one
character following.

7. If the character following an escape sequence character does not result
in an escape sequence as defined by the six rules above, the escape
sequence character and following characters are stored as they appear
on the line.

TYPING CONVENTION EXAMPLES

In the examples below, the following conventions are used:

N represents a newline

C represents a carriage return, assuming that the mode lfecho
is not set

B represents a backspace

T represents a horizontal tab

S represents a space

{nnn} represents a character whose ASCII value is nnn (octal)

\

@

is the escape sequence character

is the erase character

is the kill character

The examples in the first group illustrate how various typed sequences are
canonicalized in terms of column position; these are followed by examples of
erase, kill, and escape canonicalization. In the second group, lines are shown
as they appear physically, with no consideration given to the precise sequence
of keystrokes that might have produced them.

Column Canonicalization Examples

Typed: nothing special about this line.N

Appearance: nothing special about this line.

Result: nothing special about this line.N

2-12 CC92-01

Typed: extraneous white sSBpace is ignored.CSN

Appearance: extraneous white space is ignored.

Result: extraneous white space is ignored.N

Typed: Here are two ways (2B_) to overstrike.C ____ N

Appearance: Here are two ways (2) to overstrike.

Result: HB Be Br Be are two ways (2B_) to overstrike.N

Typed: tab + backspace isTBreduced to spaces.N

Appearance: tab + backspace is reduced to spaces.

Result: tab + backspace isSSSSreduced to spaces.N

NOTE: See rule 3 under "Formation of the Canonical String" above.

Erase, Kill, and Escape Examples

The first few examples illustrate erase and kill processing; the remalnlng
examples illustrate both escape processing and erase and kill processing. These
examples assume the terminal is in esc mode (mentioned in rule 1 under "Erase
and Kill Characters" and described in the tty 1/0 module) and that overstrike I
canonicalization is being used. -

Typed: abz/lcde

Appearance: abz#cde

Result: abcde

Typed: abSSS/lcde

Appearanc"e: ab #cde

Result: abcde

Typed: not@neverSobB#nSMonday.

Appearance: not@never oln Monday.

Result: never on Monday.

Typed: nox#wBBBBB ___ S_Sit'sSright.

Appearance: nox#~ it's right.

Result: now it's right.

2-13 CC92-01

Typed: noxBBB ____ B#wB_Sit'sSright.

Appearance: nox#w it's right.

Result: noxw it's right.

NOTE: Erase character is overstruck; see rule 4 under "Erase and
Kill Characters~ above.

Typed: dclSrrsScharS(1)SstaticSinit("\011#6");

Appearance: dcl rrs char (1) static initC"\01716");

Result: dcl rrs char (1) static init("{016}");

Typed: \023B_

Appearance: \021

Result: {002} 1

NOTE: Overstruck 3 is not part of escape sequence.

Typed: \B 112

Appearance: \112

Result: \ 112

NOTE: Overstruck \ is not an escape character.

Typed: a \II/Ib

Appearance: a\##b

Result: a\b

NOTE: According to rule 1 under "Erase and Kill Characters," the
first # is not an erase character; according to rule 3 under
"Erase and Kill Characters," the second # erases itself and
the preceding I.

Typed: a\@#b

Appearance: a\@#b

Result: a\b

NOTE: Same note as in immediately preceding example.

Typed: a\B#@b

Appearance: a~@b

Result: b

NOTE: The \ is erased by the overstruck #.

2-14 CC92-01

Typed: a\\/lb

Appearance: a\\/lb

Result:

Typed:

a\lIb

NOTE: According to rule 1 under "Erase and Kill Characters," erase
canonicalization does not recognize the /I; according to rule
2 under "Escape Sequences~" escape canonicalization recognizes
\\ and attaches no special meaning to the II.

a\\/I/lb

Appearance: a\\/I/lb

Result: a\b

Typed:

NOTE: According to rules 1 and 3 respectively under "Erase and Kill
Characters," the first II is not an erase character and the
second II erases itself and the preceding /I; according to rule
2 under "Escape Sequences," \\ reduces to \.

a\ \Ilflflb

Appearance: a\\lIlIlIb

Result: a\b

Typed:

NOTE: The first II is not an erase character; t he next two are,
erasing the second \ and the first /I.

a\\lIflflllb

Appearance: a\\flfI/I/lb

Result: ab

Typed:

NOTE: The first II is not an erase character, and must be erased
before the two \ characters. The previous examples illustrate
the difficulty of erasing a double \; the clearest method is

~ probably to overstrike (a •• b).

a~<lIb (typed on an IBM Model 2741-like terminal)

Appearance: a~</lb

Result: a\b

TERt-1INAL

NOTE: Only the < is erased; ~ is translated to \ (see "Escape Conventions
on Various Terminals" below).

1"\ TTrt" nTTI'T'
vu~ru~

Certain transformations are performed on output destined for a terminal to
ensure that it is displayed correctly. These transformations can be broken down
into the following categories: carriage motion, delays, escape sequences, I
continuation lines, and end-of-page processing.

2-15 CC92-01

Carriage Motion

Six entries in the terminal's special characters table specify the character
sequences to be output when any of the various carriage motion (space, formfeed,
vertical tab, horizontal tab, backspace, carriage return, and newline) characters
are encountered (for information on this table, see the description of the set special
order to the tty 1/0 module). The most usual (';d;::H:~ .L;:J that the sequence for
newline consists -of carriage return followed by newline (i.e., linefeed), and
each of the other sequences either consists of the source character itself or is
null to indicate that the specified function is not available.

In general, carriage motion is reduced to its simplest and most efficient
form. Any combination of consecutive carriage motion characters is output as
net right or left motion, e.g.:

SSBSS

is output as:

SSS

where S is a space and B is a backspace. If a newline immediately follows other
carriage motion characters, those carriage motion characters are omitted. In
addition, a combination of spaces and horizontal tabs that moves the carriage to
or over a tab stop is converted to tabs followed by the mlnlmum possible number
of spaces. Tab stops are assumed to be at columns 11, 21, 31, etc. Thus the
following sequence (starting at column 1):

abcdSSSSSSSSSef

is converted to:

abcdTSSSef

where S is a space and T is a horizontal tab. An exception arises if the
terminal is in tabs mode or if the special characters table specifies a zero-length
sequence for horizontal tabs. In either of these cases, all rightward carriage
motion is output as spaces; as many spaces are output as necessary to reach the
appropriate column position.

Net l~ft carriage motion is normally output as backspaces unless the final
column position is so near the left margin that it is more efficient to output a
carriage return followed by spaces. Thus:

abcdefgCSSSS __

is output as:

abcdefgBBB __

whereas:

abcdefghijkBBBBBBBBB_

is output as:

abcdefghijkCSS_

where C is a carriage return, S is a space, and B is a backspace.

2-16 CC92-01

If the terminal lacks the capability to perform a carriage return without a
linefeed, the carriage return sequence in the special characters table should be
null, in which case net left carriage motion is always output as backspaces.
Conversely, if the terminal lacks the backspace function, the backspace sequence
should be null, and all net left carriage motion is output as a carriage return
followed by spaces. If both sequences are null, net left carriage motion is
ignored.

Delays

Printing terminals frequently require more than one character time to move
the carriage in any way other than one position to the right. In order to allow
the terminal time to reach the column position in which it is next supposed to
print, MCS may output one or more ASCII NUL characters following a carriage
motion character. NUL characters used in this way are called delays.

The number of delays required in any given situation depends on the terminal
mechanism, the distance the carriage has to travel, and the speed at which
characters are sent to the terminal (baud rate). The delay table (described
under the set delay order to the tty 1/0 module) contains values, appropriate
to the particular terminal and baud rate, that determine the number of delays
required for any carriage motion character causing a number of columns to be
traversed. The terminal type file (TTF), described in Section 3, contains a
specification of delay tables to be used at various speeds for each terminal
type. To construct a new terminal type entry, it may be necessary to obtain
formulas from the terminal manufacturer from which the necessary delay table
values can be derived.

Output Escape Sequences

A character that a particular terminal is incapable of printing may be
represented by an escape sequence. The substitution of an escape sequence for a
particular character is dictated by that character's entry in the output conversion
table (described under the set output conversion order to the tty 1/0 module).
Two kinds of escape sequences are defined: octal escape sequences, and special
escape seqpences. An octal escape sequence, as explained earlier, consists of a
left slant character followed by three octal digits representing the ASCII value
of the character being replaced (e.g.,\012). A special escape sequence is one
specified in the special characters table, and consists of zero to three arbitrary

characters. Each special escape sequence has two forms, one used in edited mode
and one used in Aedited mode. See the descriptions of the set output conversion
order, the set special order, and edited mode for the tty ITo module for more
detailed information. -

Continuation Lines

When the length of an output line (i.e., the number of column positions
between two newline characters) exceeds the terminal's physical paper or screen
width, a newline sequence is inserted and the excess characters appear on the
following line, preceded by a continuation sequence consisting of the characters
\c A "line" of arbitrary length can be output using as many contlnuation
lines as necessary. The physical line length of the terminal is made available
to the software by means of the line length (11) mode of the tty_ 1/0 module.

2-17 CC92-01

I End-of-page Processing

I
The page length (pI) mode of the tty 1/0 module may be used to specify the

physical length in lines of a page. This feature is primarily of interest to
users of video display terminals as a means of preventing output from being
scrolled off the screen before it can be read. If page-length checking is
enabled, then the last line of a page contains a warning string consisting of
the end-of-page sequence specified in the output conversion table (described
under the set output conversion order to the tty 1/0 module); this sequence is
normally the characters "EOP". The output stops when the page is full, and
restarts when the user types a newline or formfeed character. If the end-of-page
sequence is a null string, output stops at the right margin of the last line of
the page, and no warning string is displayed. See the descriptions of pI and
scroll modes for further information.

ESCAPE CONVENTIONS ON VARIOUS TERMINALS

The following paragraphs list escape conventions for some of the terminals
that can be used to access the Multics system. In general, the conventions
described here apply to logging in and out as well as to all other typing. For
user convenience, terminals should support the full (128 characters) ASCII character
set on input and output. For terminals that do not have a full ASCII character
set, escape conventions have been provided. Any of these escape conventions,
however, can be respecified by the user.

I Selectric Devices

Each typeball used requires a different set of escape conventions.

With the EBCD typeball number 963, the following non-ASCII graphics are
considered to be stylized versions of ASCII characters:

"

(cent sign)
(apostrophe)
(negation)

for
for
for

\ (left slant, software escape)
(acute accent)
(circumflex)

The following escape conventions have been chosen to represent the remainder
of the ASCII graphics.

~,

~<
~>
¢(
¢)
cht

for
for
for
for
for
for

, (grave accent)
(left bracket)
(right bracket)
(left bra c e)
(right brace)

- (tilde)

With the correspondence typeball number 029, the following non-ASCII graphics
are considered to be stylized versions of ASCII characters.

(cent sign)
(apostrophe)

(plus-minus)

for
for

for

\ (left slant)
(acute accent)

(circumflex)

2-18 CC92-01

The following escape conventions have been chosen to represent the remainder
of the ASCII graphics.

for
for
for
for
for
for
for
for

<
>
[
]

(less then)
(greater than)
(left bracket)
(right bracket)
(exclamation point)
(tilde)
(grave accent)
(vertical bar)

NOTE: The left and right braces ({ and }) must be input using octal escapes
(€173 and €175) when using the correspondence typeball.

~ Case Only Devices

Because these models do not have both uppercase and lowercase characters,
the following typing conventions are necessary to enable users to input the full
ASCII character set:

1. The keys for letters A through Z input lowercase letters a through z,
unless preceded by the escape character \ (left slant). The left
slant is shift-L on the keyboard, although it does not show on all
keyboards. For example, to input "Smith.ABC", type "\SMITH.\A\B\C".

2. Numbers and punctuation marks map into themselves whenever possible.
The underscore () is represented by the back arrow (~-). The circumflex
(A) is represented by the up arrow (i). The acute accent (') is
represented by the apostrophe (').

3· The following other correspondences exist:

Character type in octal

backspace \- 010
grave accent (..) \ ' 140
left brace ({) \(173

/. vertical line (I) \ ! 174
right brace (}) \) 175
tilde (-) \= 176

Execuport 300

The following non-ASCII graphics are considered to be stylized versions of
ASCII characters:

back arrow (,-) for underscore ()

The following non-ASCII graphics are considered to be stylized versions of
the ASCII characters:

back arrow (4-) for underscore ()
up arrow (r) for circumflex (AT

2-19 CC92-01

I

FLOW CONTROL

Some asynchronous terminals implement a flow control protocol for input
and/or output. The following paragraphs describe briefly the mechanisms supported
by the Multics system.

Input Flow Control

For terminals that can be used to send high-speed input using a paper tape
or cassette tape reader, it is useful for the system to be able to instruct the
terminal to stop and start transmission so that the input does not arrive faster
than it can be processed. Such terminals (for example the Tektronix 4051) suspend
transmission on receipt of a particular character (called the input suspend
character), and resume it on receipt of another character (the input resume
character). In addition, such terminals sometimes suspend input at the-end of
each tape record or block,' possibly transmitting the input suspend character
before doing so. It is the responsibility of the system in this case to request
the resumption of input by sending the input resume character. The input suspend
and input resume characters may be specified in the description of the terminal
type as described in Section 3, or by means of the input flow control chars
order to the tty I/O module, described in Section 6. The- timeout optlon is
used to specify - that the terminal suspends input without transmitting an
input_suspend character, and that the system must send an input_resume character
when it detects that input has been suspended. Input flow control is enabled
and disabled by means of the iflow mode of the tty_ I/O module.

Output Flow Control

Output flow control is intended to manage terminals that buffer output,
since they print or display at less than channel speed. Two types of output
flow control protocols are supported by the Multics system. The first, called
suspend/resume, is used by various terminals including several made by Digital
Equipment Corporation. In this protocol, the terminal sends a particular character
(called the output suspend character) when its buffer is nearly full in order to
request that the system temporarily stop sending output. When it is ready to
accept more output it sends another character (the output resume character).
The other/.protocol, called block acknowledgement, is used by-various terminals,
including the Diablo 1620. In this protocol, the system is expected to subdivide
output into blocks no larger than the terminal's buffer, and end each block with
a specific character (the end of block character). When the terminal is ready
to accept more output, it transmIts an acknowledgement character. The type of
protocol and the specific characters to be used can be specified in the terminal
type description as described in Section 3, or by use of the output_flow_control_chars
order to the tty I/O module, described in Section 6. Output flow control is
enabled and disabled by means of the of low mode of the tty_ I/O module.

I BLOCK TRANSFER

I
Some asynchronous terminals are capable of operating in "block mode", i.e.,

they can be made to buffer a block of data and then transmit it at channel speed
in response to a single keystroke. The system may not handle such high-speed
input correctly unless it is informed that the terminal is capable of such
transmission. The blk xfer mode of the tty_ I/O module is used for this purpose.

2-20 CC92-01

A terminal is suitable for use in blk xfer mode if it delimits the block or
"frame" of data transferred by appending a specified character (the "frame_end"
character) to the block and optionally preceding the block with a "frame begin"
character (which need not be different from the frame end character). The particular
characters used will depend on the terminal. The characters used can be specified
by the framing chars statement in the terminal type definition as described in
section 3, or by means of the set_framing_chars order to the tty_ I/O module.

If the terminal is in blk xfer mode, and frame_begin and frame_end characters
have been specified, all characters starting with a frame begin character, up to
and including the next following frame end character, are treated as a frame.
If a frame end character has been specified, but no frame. begin character has
been specified, then all characters between one frame end character and the next
are treated as a frame. In general, none of the characters in a frame are
del i vered to the user's process until the end of the frame has been reached.
Calls to iox $get line still read input one line at a time, but the first line
in a frame is not available for reading until the entire frame has been received.

2-21 CC92-01

SECTION 3

TERMINAL TYPES

TERMINAL TYPE CONCEPT

A terminal type is a named set of parameters identifying the characteristics
and behavior of a terminal. The following attributes are components of a terminal
type:

• character set

• code set (e.g., EBCDIC, ASCII, etc.)

• behavior in response to carriage movement characters

• behavior in response to other control sequences

• time required for carriage movement functions (delays)

• software control of horizontal tabs

• line length and page length

These parameters are used by MCS to determine how to format output to, and
interpret input from, the terminal. The specification of these individual parameters
can be changed independently; the terminal type provides a mechanism for specifying
them all at once without having to know the details of their implementation.

Terminal Dype and Line Type

It is important to distinguish between terminal type and line type, both of
which terms are used in describing a terminal connection to Mul tics. A line
type defines the communications protocol used on a particular channel; it is a
characteristic of a channel rather than of a terminal. The terminal type may be
changed by the user in order to modify the system's treatment of the terminal;
the line type is determined by the system, and cannot be changed while the
channel is in use.

TERMINAL TYPE TABLE AND TERMINAL TYPE FILE -------- ---- ----- --- ---- ----

Terminal types are defined in a data base called the terminal type table
(TTT). There is a system-wide TTT that is used by default; each process, however,
can use its own TTT instead. The TTT being used by a process can be changed by
means of the set ttt path command. The various entries of the ttt info subroutine,
described in Section 5, can be used to extract information from the TTT. The
print terminal types command lists the names of all terminal types defined in
the TTT; the display ttt command displays the contents of the TTT in readable
format. These commands are all described in Section 4.

3-1 CC92-01

I

The TTT is derived from an ASCII segment, suitable for creation and modification
using a text editor, called the terminal type file (TTF). A TTT is generated
from a TTF by means of the cv ttf command, also described in Section 4. The
syntax of a TTF is described later in this section.

Setting Terminal Types

Every terminal connected to the Multics system has a terminal type associated
with it at all times. The terminal type associated with a particular terminal
may be set in any of the following ways:

1 • Wh e nth e t e r min aId i a 1 sup (i. e ., a con n e c t ion is est a b 1 ish e d), its
terminal type is set in accordance with its line type and baud rate as
specified in the default type table in the TTT (see "Syntax of the
TTF" below).

2. If the channel on which the terminal dialed up has ah initial termihal
type associated wi th it in the channel defini tion table (CDT), that
terminal type is assigned to the terminal. See the MAM Communications
for more information on the CDT.

3. If the terminal prov ides an answerback sequence that matches one of
the answerback specifications in the TTT (see "Syntax of the TTF"),
its terminal type is set according to the answerback.

4. If the user specifies the -terminal type control argument to the login
command or uses the terminal type preaccess request, the terminal type
is set accordingly. See tne description of the login command and
terminal_type pre-access request in the MPM Commands.

5. The user may, at any time, change his terminal type by invoking the
set_tty command with the -terminal_type control argument.

Changing Terminal Type Definitions

A user wishing to invent a new terminal type, or change the characteristics
of an existing terminal type, may edit a copy of the system-supplied TTF and
create a new TTT by using the cv ttf command. Whenever he wishes to use the new
or redefined terminal type(s), he switches to the new TTT by means of the set ttt path
command, and then uses the set tty command to change his own terminal type to
the desired one. This change affects only his current process; other users of
the same non-standard TTT are not affected until they use the set tty command to
set or change terminal type. -

Note: Various sequences of characters beginning wi th the ASCII "escape"
character (octal 033) are treated by some terminals, when sent as
output, as commands to the terminal. These commands may have unexpected
or undesirable effects on the behavior of the terminal if, for example,
they are embedded in a piece of online mail. For this reason, the
standard TTT distributed by Honeywell is designed to prevent the
escape character from being included in normal output for most terminal
types. Users or sites providing their own TTTs should be aware of
the hazards of allowing escape sequences to be sent to terminals as
a matter of course.

3-2 CC92-01

Terminal Type Table

The terminal type table (TTT), a data base that resides by default in the
segment:

>system_control 1>ttt

describes all the terminal types used by MCS. The initializer requires write
access to this segment; all other users require read access.

The TTT is a binary table containing numbers and pointers as well as character
strings; therefore, it cannot be examined or modified using the editors. The
display ttt command is used to print out all or part of the TTT; when the system
administrator wishes to add or delete terminal types, or change the information
about one or more terminal types, he compiles a TTF into a TTT using the cv ttf
command, and then uses the install command to signal the initializer to replace
the copy of the TTT in the system.

A TTT is supplied by Honeywell that includes, but is not limited to the
following terminal types:

Terminal Type

ASCII CAPS

ASCII CRT CAPS
ADM3A-
AJ630
AMBASSADOR
CONCEPT100
DIABL01640
HAZELTINE1510
HEATH19
IBM3271
INFOTON100
IRISCOPE200
L6FTF
LA120
LED120
NEC5520
NEC5525
SARA
SYSTEM75
TEK4023
TEK4025
TELERAY1061
TRANSLEX
TVI920
VIP7700_CLUSTER

VIP7705

VIP7714
VIP7760
VIP7705R

VIP7760 CONTROLLER
VIP7804-
VIP7804_CLUSTER

Description

Typical ASCII teleprinter terminal
(uppercase only)

Typical ASCII crt terminal (uppercase only)
Lear Siegler Model ADM-3A
Anderson-Jacobson Model 630
Ann Arbor Ambassador CRT
Human Designed Systems Concept 100
Diablo Systems Series 1640
Hazeltine Model 1510
Heath Model H19
Control unit for IBM3270 terminal cluster
Infoton 100 Display Terminal
Iriscope 200
Honeywell L6 File Tranmission Facility
Digital Eauioment LA120 DECwriter III
TrIformat1on" Systems braille terminal
Nippon Electric Model 5520 (Spinwriter)
Nippon Electric Model 5525 (Spinwriter)
Honeywell SARA 20
Selecterm System 75
Tektronix 4023
Tektronix 4025
Teleray 1061
ECD Translex Intelligent Terminal
TeleVideo Model TVI-912 and 920
Honeywell Multiple Interface Unit for Series

VIP7700 Polled VIP Terminal
Honeywell VIP7700 Polled VIP Display Terminal

(upper and lower case)
Honeywell VIP7714 read only printer
Honeywell VIP7760 Display Station
Honeywell VIP7700R Polled VIP Display Terminal

(upper and lower case)
Honeywell VIP7760 Controller
Honeywell VIP7804 Polled VIP Display Termi~al
Honeywell Multiple Interface Unit for Series

VIP7804 Polled VIP Terminals

3-3 CC92-01

I VISTAR
VT100

Infoton Vistar Satellite terminal
Digital Equipment Model VT-100

These terminal types can change at any time, so the user should invoke the
print_terminal_types command to verify the current types.

SYNTAX OF THE TTF

The TTF defines all terminal types known to the system. It is an ASCII
file which, when compiled into a binary table (the TTT), is installed by the
initializer at the system administrator's request.

The TTF consists of a series of entries describing terminal types, tables,
and answerback interpretations. Each entry consists of a series of statements
that begin wi th a keyword and end wi th a semicolon. Whi te space and comments
wr i tten in the same style as PL/I comments enclosed by 1* and * I may appear
between any tokens in the TTF. The last entry in the TTF must be the end
statement. Global statements specifying defaults may appear anywhere before the
end statement; the defaults they specify are in effect for all subsequent terminal
type entries, until they are overridden by subsequent global statements. Except
for the end statement, all statements consist of the statement keyword, a colon,
the variable field of the statement, and a semicolon.

Generalized Character Specifications

Many statements in the TTF take as arguments single characters, or lists of
single characters. Statements that accept such operands are shown wi th the
<tty_char> notation. A <tty_char> operand may be any of the following:

1 • A single unquoted character, such as X, A, p, $ or -. Thi s notation
is only allowed for "simple" characters. This notation may not be
used for control characters, whi te space, ASCII d igi t characters~ (" ,
")", "<If, If>", "*", If:", ",", If;", or the double quote character.

2. A single quoted character, such as "X", If;", "B", or "0". Any ASCII
~code can be entered this way. Note that digits should be specified as
"0", not O.

3. A 1 to 3 digit octal number, such as 177, 14 or 007. This enters the
character whose octal representation is as specified. Note that 0 is
interpreted as octal 000. If the ASCII digit "0" is desired, it must
be specified as "0" or 060.

4. The name of a control character, such as DEL. These may be either
upper or lower case~ All standard control characters are accepted,
including:

NUL SOH STX ETX EDT ENQ ACK BEL (000 - 007)
BS TAB LF VT FF CR SO SI (010 - 017)
DLE DC1 DC2 DC3 DC4 NAK SYN ETB (020 - 027)
CAN EM SUB ESC FS GS RS US (030 - 037)

In addition, SP (040), DEL (177) , NL (012) , and HT (011) are also
accepted.

3-1~ CC92-01

5. Control characters may also be entered in the form AA, which is read as
control-A, and is the character sent when the control-A funct ion is
used on an ASCII keyboard. A A is equivalent to SOH, or 001. The
letters A-Z (upper or lower case equivalent) preceded by a "A" may be
used for 001 through 032. Also accepted are A@ (000), A[(033), A\ (034),
A] (035), AA (036), and A (037),

Terminal ~ Entry

The entry for each terminal type consists of a terminal type statement
naming the terminal type, followed by various statements describing the attributes
of that terminal type. Attributes not specified for a terminal type are set
from the defaults established by global statements or supplied by the cv ttf
command.

A description of each -statement found in a terminal type entry is given
below.

terminal type: <type name> {like <type name>};
The-terminal type statement is required. It specifies the name of the
terminal type described by the statements following "it. The type name has
a maximum length of 32 characters. All lowercase letters in the type name
are translated to uppercase before being stored in the TTT. If the optional
like keyword is supplied, it indicates that the attributes of the current
terminal type are to be copied from the entry for the type whose name
follows the like keyword, except for those that are overridden by subsequent
statements in the current entry. The like keyword must refer to a previously
defined terminal type.

modes: <mode 1 >, <mode2>, ••• <modeN>;
The modes statement is required. It specifies the modes to be set when the
type of the terminal is assigned. A mode name may be preceded by a A
character to indicate that the specified mode is off for the terminal type.
The line-length specification (lIn) must be included in the modes statement.
For a list of the valid modes, see the description of the tty_ 1/0 module.

function keys: <table name>; I
The - function keys statement is optional. It specifies the name of a
function key table (defined by a function key table entry) to be used for
this/.terminal. If it is omitted, or the table name is a null string, the
terminal is assumed to have no function keys.

initial string: <string>; I
The initial string statement is optional. If present, it specifies a character
string to be sent to the terminal in rawo mode in order to initialize
certain physical characteristics of the terminal (e.g., to set its horizontal
tabs) • This string is sent either at dialup time, in response to a
"send initial string" order, or when set tty is invoked with the
-initIal string control argument. The string-is specified as one or more I
substrings. Each substring may be one of the following:

1. A quoted string; e.g., "sR". If a quoted string is to contain a quote
character, that quote must be doubled. (e.g., "s""R" is s"R).

3-5 CC92-01

I

I

2. <tty-char>

3. «decimal-integer» «substring> ... <substring»

where <decimal-integer> is a repetition factor enclosed in parentheses
and followed by one or more substrings enclosed in angle brackets «
and». For example:

(1 0) <040 ETX>

represents 10 repetitions of the two character sequence consisting of
a space and an ETX character (octal 003).

additional info: <string>;
The additional info statement is optional. If provided, it specifies
additional information which may be needed to run the terminal. This
information is not interpreted by the standard terminal software, and is
not passed to the supervisor; it may be used by a special I/O module used
to run terminals of the current type. The format and contents of the
string depend on the particular application; it may even be the pathname of
a segment containing additional information. The string is specified in
the same way as for the initial string statement (above).

bauds: <baud1> <baud2> ... <baudN>;
can also be written as:

bps: <baud 1 > <baud2> ... <baud N>;
The bauds statement is required if any delay statements (see below) are
provided, and it must precede all delay statements. It specifies the baud
rates to which the values supplied in the delay statements apply. A
specification of "other" in the bauds statement means that the corresponding
values in the delay statements apply to all baud rates not specified. If
"other" is not specified, then delay values of 0 are assumed for all baud
rates not specified in the bauds statement. The following is a list of the
baud rates that may be specified:

110
133
150

300
600

1200

1800
2400
4800

7200
9600

19200

cps: <cps1> <cps2> <cpsN>;

7/82

The cps statement may be used in place of the bauds statement (above) to
express terminal speeds in characters per second. The value stored in the
TTT is the corresponding baud rate. The cps values that may be specified,
and their corresponding baud rates, are listed below:

cps value
10
15
30
60

120
180
240
480
720
960

1920

baud rate
110
150
300
600

1200
1800
2400
4800
7200
9600

19200

Note that there is no way to express a baud rate of 133 in a cps statement.

3-6 CC92-01A

<delay keyword>: <value1> <value2> ... <valueN>;
In each delay statement, the same number of values must be supplied as baud
rates in the bauds, bps, or cps statement. Each value specifies the number
of delays to be used for the character described by the delay keyword at
the baud rate specified in the corresponding position in the bauds statement
(see example below). The possible delay keywords are:

vert nl delays
- ~he number of delays to be sent with a newline operation

(-127 ~ vert_nl_delays ~ 127).

horz nl delays
- the variable number of delays to be sent for each column position

traversed by a carriage return or a newline operation. This is a
floating point number (0 ~ horz_nl_delays < 1).

const tab delays
- the minimum number of delays to be sent with a horizontal tab

(0 ~ const_tab_delays ~ 127).

var tab delays
- the number of additional delays to be sent for each column position

traversed by a horizontal tab. This is a floating point number
(0 ~ var_tab_delays < 1).

backspace delays
the number of delays to
(-127 ~ backspace_delays ~ 127).

vt ff delays

be sent with a backspace

- the number of delays to be sent with a vertical tab or formfeed
(0 ~ vt_ff_delays ~ 511).

Negative values for vert nl delays and backspace delays have the same meanings
as tho'se described in the-description of the -set delay order to the tty
1/0 module. Values of zero are assumed at all baud rates for any delay
type not specified.

Example:

bauds:

/ vert_nl_delays:

horz_nl_delays:

const_tab_delays:

var_tab_delays:

backspace_delays:

110 150 300

236

.1 .12 .2

o

• 1

o

o

2

• 12 .2

o

o o

i200 other;

24 30;

.8 1 ;

7 10;

.8 1 • ,

3 6· ,

0 O· ,

The first column gives the complete set of delay values to be used at
110 baud; the second column gives the values to be used at 150 baud,
etc.

line types: <line_type name1>, <line_type name2>, ..• <line_type nameN>;
-The line types statement is optional. It specifies the names of the line

types on-which a terminal of the current type can be run. If it is omitted,
the current terminal type can run on any line type.

erase: <tty char>;
The erase statement is optional. It specifies the erase character for the
terminal type. If it is omitted, the # character is used.

3-7 CC92-01

I kill: <tty_char>;
The kill statement is optional. It specifies the kill character for the
terminal type. If it is omitted, the @ character is used.

line delimiter: <character>;
-Specifies the terminal's normal line delimi ter character. The character

must be specified as one to three octal digits in the terminal's input code
(untranslated). This character defaults to 012 unless the line type is
2741 or 1050, in which case it defaults to 055.

keyboard addressing: yes/no;
The-keyboard addressing statement is optional. It indicates whether or not
to do keyboard locking and unlocking for a terminal on a communications
channel whose line type is ASCII. If it is not provided, a value of no is
assumed. This attribute is ignored for channels of any other line type.

print preaccess message: yes/no;
The print preaccess message statement is optional. It indicates whether or
not the answering service should print a message advising the user to enter
a preaccess request if the user entered an unrecognized login word. It is
useful in cases where the character code of the terminal may be different
from what was expected. At present, only one possible preaccess message is
defined, suitable for use with EBCD and Correspondence-code IBM 2741 terminals.
If the print_preaccess_message statement is omitted, a value of no is assumed.

conditional printer off: yes/no;
The conditional printer off statement is optional. It indicates whether or
not the answerback iden£lfication of the terminal should be used to determine
whether the terminal is equipped with the printer-off feature. If yes is
specified, a terminal of this type is assumed not to have printer-off unless
it has an answerback ID beginning wi th a dig it (0 to 9); otherwi se, the
existence of the printer-off feature is deduced from the presence or absence
of a pr inter-off sequence in the special characters table (see below).
This attribute is primarily useful for IBM 2741 terminals. If the
conditional_printer_off statement is omitted, a value of no is assumed.

input conversion: <table name>;
The input conversion statement is optional. It specifies the name of a
conversiontable (defined by a conversion table entry) to be used in converting
input from the terminal. If it is omi tted, or the table name is a null
string, no input conversion table is used.

output conversion: <table name>;
The G1utput conversion statement is optional. It specifies the name of a
conversion table (defined by a conversion table entry) to be used in converting
output sent to the terminal. If it is omitted, or the table name is a null
string, no output conversion table is used.

special: <table name>;
The special statement is optional. It specifies the name of a table (defined
by a special table entry) to be used as a special characters table when
converting input and output (see "Special Characters Table Entry" below).
If it is omitted, or the table name is a null string, no special characters
table is used. If an output conversion table whose entries are not all 0
is specified, a special characters table must also be specified in order
for the terminal to function correctly.

input translation: <table name>;
The input translation statement is optional. It specifies the name of a
table (defined by a translation table entry) used to translate input from
the code of the terminal to ASCII. If it is omitted, or the table name is
a null string, input is not translated.

3-8 CC92-01

output translation: <table name>;
Tne output translation statement is optional. It specifies the name of a
table (defIned by a translation table entry) used to translate output from
ASCII to the code of the terminal. If it is omitted, or the table name is
a null string, output is not translated.

old type: <number>;
The old type statement is optional. It may be used for compatibility purposes
to specify the numeric value of the terminal type formerly predefined by
the Mul tics Communication System that most closely corresponds to the terminal
type described by this terminal type entry.

framing chars: <frame begin> <frame end>;
The framing chars statement is optional. If present, it specifies the framing
characters -generated by the terminal when sending frame input at channel
speed. The <frame begin> and <frame end> are <tty chars>'s as defined above. I
In the terminal's character code they represent the frame begin and frame end
characters respectiyely (i.e., without translation). <frame begin> can be
NUL or 000 to indicate. that there is no frame begin character; in this
case, all input in blk_xfer mode is treated as part of a frame.

The following statements define parameters for flow control to and from
asynchronous terminals. For more information, see the discussion of flow control
in Section 2.

input_suspend: <tty char>; I
The input suspend statement is optional. If pr esent, i to spec i fies a character
to be transmi tted to the terminal in iflow mode in order to temporarily
suspend input or, al ternati vely, a character that the terminal sends to
inform the system that it is suspending input. In ei ther case, input is
restarted when the input resume character (see below) is sent to the terminal.
This feature is approprlate for use on certain terminals which do input at
line speed. If the input suspend statement is present, the input resume
statement must also be present. -

input_resume: <tty char> {, timeout}; I
The input resume statement is optional, unless the input suspend statement
(above) ispresent. It specifies a character that, when sent to the terminal
by the system while in iflow mode, causes it to jesume temporarily suspended
input. Depending on the terminal, the input suspend character (above) may
not be required. The timeout keyword, if -supplied, indicates that the
termiftal may suspend input (as at the end of a tape record) without transmitting
an input suspend character, in which case it is the responsibility of the
system to detect this situation and send the input resume character after
input has been suspended. If the input resume statement is specified but
the input_suspend statement is not, the Input_resume statement must include
the timeout keyword.

output_suspend: <tty char>; I
The output suspend statement is optional. It may be used wi th terminals
that implement a suspend resume protocol for output flow control. If present,
it specifies a character that the terminal transmits to cause the system to
suspend output so that the terminal can empty its internal buffer.. The
character is only interpreted by the system in of low mode. Output is restarted
when the terminal sends the output resume character (see below). If the
output suspend statement is specified, the output resume statement must also
be specified, and none of the output end of bloCK, output acknowledge, and
buffer size statements may be specified. - - -

3-9 CC92-01

I output resume: <tty char>;
The output resume statement is optional, unless the output_suspend statement
is present. It specifies a character transmitted by the terminal to inform
the system that output that was suspended in response to an output suspend
character (see above) can be resumed. If the output resume statement is
present, the output suspend statement must also be specified, and none of
the output end of block, output acknowledge, and buffer size statements may
ho qnOn;T;~rl_ - - -............. y-_..£..&.. __ •

buffer size: <number>;
TKe buffer size statement is optional. It may be used with terminals that
implement a block acknowledgement protocol for output flow control. If
present, it specifies the size in characters of the terminal's output buffer,
and is used to determine the maximum number of characters to be sent to the
terminal at one time (in one transmission) in of low mode. Each block of up
to that number of characters is terminated by an output end of block character
(see below). The next block is not transmitted until the terminal sends an
output acknowledge character. If the buffer size statement is specified,
the out put end of block and output acknowledge statements must also be
specifie-d, -and -neIther the output suspend nor the output resume statement
may be specified. - -

I output end of block: <tty char>;
The oUtpUt end of bloCk statement is optional. If it is present, it specifies
a character to be appended to every output block, as described under the
buffer size statement above. If the output end of block statement is
specifIed, the output acknowledge and buffer size statements must also be
specified, and neither the output suspend nor the output resume statement
can be specified. - -

I output acknowledge: <tty char>;
Toe output acknowleage statement is optional. If present, it specifies a
character that is transmitted by the terminal when it is ready to receive
the next block of output, as described under the buffer size statement
(above). If the output acknowledge statement is specified, the buffer size
and output end of block statements must be specified, and neither- the
output_suspend nor-the output_resume statement may be specified.

Video Table Definition

..,.Each terminal type may have an optional video table defined. This
table contains control sequences for performing standard operations on video
terminals. The table starts with the keyword:

video info:

A global video table, which will be used for all terminal types that do not
have a video table specified, is started with the keyword:

Video info:

The absence of a video table may be specified by:

video info:

This may be used to negate the effects of a global Video info statement or
a video table inherited from a similar terminal type. -

3-10 CC92-01

The video info keyword is followed by 1 or more video info statements,
described below. The video table is terminated by the first statement not
in this list.

screen_height: <decimal-integer>;

specifies the usable number of lines on the screen.

screen_line_length: <decimal-integer>;

specifies the usable number of columns on the screen.

The following statements describe various video control sequences. Each
<video sequence> is a character string buil t by the concatenat ion of all
the operands given. The sequence may also be followed by an optional delay
or padding specification. Video sequences may be buil t out of any combination
of the following:

<tty char>
quoted string, such as "sR"
<addressinglrepeat specification>

The addressing or repeat specification is entered as follows:

({binaryldecimal {n}loctal {n}} {XlxIYlyINln} {+I- <tty_char>})

This specification takes the value to be sent to the terminal (X,Y,N),
encodes it in some way (binary, decimal, octal), and. adds or subtracts a
fixed offset (+1- <tty-char».

X represents the horizontal or column position on the screen (0 origin).
Y represents the vertical or row position on the screen (also 0 origin).
The upper left hand corner of the screen, usually called home, is location
X=O, Y=O. The X and Y notations are usually used in the absolute cursor
addressing sequence, although they may be wherever required, depending on
the terminal. N refers to a repeat count, which some terminals support for
some operations.

These values may be encoded in either binary, decimal, or octal. Binary
means byte eX), as in the PL/1 builtin. Decimal or octal causes the value
to be/.converted to a character string representation. If {n} is given, it
must be 1, 2, or 3, and refers to the length of the character string to be
sent, padded with leading zeroes if required. If {n} is 0, or not specified,
no leading zeroes will be sent. For example, if X is 35,

(decimal 3 X) -> "035"
(decimal X) -> "35"
(octal 3 X) -> "043"
(binary X) -> "fI"
(X) -> " II"

If an offset is required, it may be specified as +1-
value rank (tty-char) will be added to or subtracted from
sent before l~ is encoaea. A common example is (X + SPj.
X of 0 will yield a space (octal 40), an X of 1 will yield
etc.

3-11

<tty-char>. The
the number to be
In this case, an
"!" (octal 41),

CC92-01

Any video sequence may have an optional <padding> value, expressed as
follows:

, pad n {uslms}

If us (micro seconds), or ms (milliseconds) is specified, n is interpreted
as a time value. utnerwise, It is an abso.Lu"(,e number of pad character's
required, regardless of the baud rate. If a time is specified, the minimum
that can be specified is 100 microseconds. All values are rounded up to
the next multiple of 100 microseconds. The maximum value is 26.2 seconds.
Time values are converted to a pad count at execution time, depending on
the baud rate of the terminal.

The following statements all use the syntaxes just described. Each
statement also has a definition of exactly what effect the sequence has on
the terminal. If the terminal does not have the capability to perform the
function described, the .statement should be omitted =

abs_pos: <video-sequence> {<padding>} ;

defines the absolute cursor positioning sequence. This sequence moves the
cursor to a given (X, Y) . Other than the cursor, no characters on the
screen are affected.

clear screen: <video-sequence> {<padding>} ;

defines the screen clearing sequence. This sequence clears the entire screen
to spaces regardless of where the cursor is, and leaves the cursor at home.
This sequence does not clear tabs.

clear to eos: <video-sequence> {<padding>} ;

defines the clear to end of screen sequence. This clears the screen from
the current cursor position to the end of the screen. It does not move the
cursor or clear tabs.

home: <video-sequence> {<padding>}

defines the move cursor home sequence.
y=o.

The cursor moves to location X=O,

~lear_to_eol: <video-sequence> {<padding>} ;

defines the clear to end of line sequence. Starting at the current cursor
position, the rest of the current line clears to spaces. The cursor does
not move.

cursor_up: <video-sequence> {<padding>} ;

defines a sequence to move the cursor up one row. It does not have any
effect on the column. The effect of the sequence when the cursor is on the
top line of the screen is undefined.

cursor_right: <video-sequence> {<padding>}

defines a sequence to move the cursor one column to the right. It does not
have any effect on the row. The effect of the sequence when the cursor is
in the last column of the screen is undefined.

3-12 CC92-01

cursor_down: <video-sequence> {<padding>} ;

defines a sequence to move the cursor down one row. It does not have any
effect on the column. The effect of the sequence when the cursor is on the
bottom line of the screen is undefined.

cursor_left: <video-sequence> {<padding>}

defines a sequence to move the cursor one column to the left. It does not
have any effect on the row. The effect of the sequence when the cursor is
in the leftmost column of the screen is undefined.

insert_chars: <video-sequence> {<padding>}

defines a sequence for inserting characters on the current line. If
end insert chars (see next statement) is defined, insert chars should put
the - terminal in a mode in which each character sent to- the terminal is
placed on the screen at the cursor location; each character to the right of
the cursor is pushed on~ position to the right; and the cursor is moved one
position to the right. The effect of pushing characters off the righthand
edge of the screen is undefined. If end_insert_chars is not defined,
insert chars is defined as opening up N (or 1) spaces on the line, pushing
characters to the right of the cursor toward the right. The cursor does
not move in this case.

end insert chars: <video-sequence> {<padding>}

defines a sequence for taking the terminal out of insert chars mode. See
above.

delete_chars: <video_sequence> {<padding>} ;

defines a sequence for deleting characters from the current line. The
charfacter at the cursor is deleted, and all characters to the right are
moved one column to the left. A space is inserted in the last column of
the screen.

insert lines: <video_sequence> {<padding>} ;

defines a sequence for inserting lines on the screen at the current cursor
position. All lines starting at the current line are moved down one line.
The current line is filled with spaces. The effect of pushing lines off
the bottom of the screen is not defined. This sequence is only defined to
work when the cursor is at the leftmost margin. The position of the cursor
is not changed.

delete lines: <video_sequence> {<padding>} ;

defines a sequence for deleting lines from the srireen. The current line is
deleted by moving all lines below it up one line. The bottom line of the
screen is filled with spaces. This sequence is only defined to work when
the cursor is at the leftmost margin. The position of the cursor is not
changed.

Many terminals do not support all the functions described above, but
often they can be simulated by combinations of other functions. For example 7

the Honeywell VIP7801 does not support clear screen, as defined, because
the clear sequence to that terminal also clears the tabs. The effect of
this can be simulated, however, by the combination home (or abs pos to 0,0)
and clear to eos, which will clear the screen without affecting the tabs.
Thus a clear-screen sequence could be defined which is a concatenation of
the other two sequences. Similarly, if a terminal did not have a cursor up
sequence, but did support abs pos, it would be possible to specify a cursor up
sequence asa variant of the abs pos sequence (by changing the offset-by
1). In general, it is not recommended that this sort of optimization be
done in the TTF. Instead, the TTF should be viewed as describing the
physical characteristics of the terminal, and it is the job of software to

3-13 CC92-01

choose from among the capabilities of the terminal in order to provide the
desired effect.

For most applications, a certain minimal set of functions is required
to perform video functions. These are:

1. Some way of clearing the screen. Clear screen is best, but home and
clear_to_eos will work, as well as erase-to eol on each line.

2. Some way of absolute cursor addressing. Abs pos is best, but the
combination of home and the four cursor motion functions (up, down,
left, and right) will work also.

The video_info entry for the Honeywell VIP 7801 is:

video info:
screen line length:
screen-height ':
home: -
clear to eos:
cursor up:
cursor-right:
cursor-down:
cursor-left:
clear to eol:
insert chars:
end insert chars:
delete chars:
insert-lines:
delete-lines:
abs_pos:

Global Statements

80;
24;
ESC H;
ESC J, pad 1;
ESC A;
ESC C;
LF;
BS;
ESC K;
ESC n[I";
ESC "[J";
ESC "[ptI;
ESC tI[L";
ESC "[M";
ESC f (X + " ")(Y + " ");

A global statement specifies a default value for a terminal type attribute.
It has the same form as the statement describing the attribute in a terminal
type entry, except that the statement keyword begins with a capital letter.
Global statements may not appear within terminal type entries. Global statements
may be used for any of the stat'ements listed above for a terminal type entry,
except for terminal type, initial string, additional info, and the delay statements.
(A global Bauds, Bps, or Cps statement is allowed , although a global delay
statement is not.) A global video table definition may be given by using the
statement:

Video info:

followed by one or more video table entries. The statement:

may be used to specify that no default video table exists.

3-14 GC92-01

Conversion Table Entry

A conversion table entry consists of two statements: one specifying the
name of the table and one specifying its contents. The following is a description
of a conversion table entry.

conversion table: <table name>;
<valueO> <value1> .,. <value255>;

The table name is a string of up to 32 characters. The values are octal
numbers of one to three digits; each value is the indicator corresponding
to the character whose ASCII value is the index of the indicator in the
table. See the descriptions of the set input conversion and
set output conversion orders to the tty 1/0 module for a description of
conversion-tables and the indicators they-contain. If fewer than 256 values
are supplied, the unspecified values are assumed to be zero.

Translation Table Entry

A translation table entry consists of a statement specifying the name of
the table and a statement specifying its contents, as described below.

translation table: <table name>;
<valueO> <value1> .•. <value255>;

The table name is a string of up to 32 characters. The values are octal
numbers of one to three digits. Each value is the result of translation of
the character whose bit representation is the index into the table of that
value (i.e., <valueO> is the result of translating a character represented
as 000, <value8> corresponds to a character represented as 010, etc.). If
fewer than 256 values are supplied, the unspecified values are assumed to
be tero.

Function Key Table Entry

A function key table is begun and named by a function key table statement,
which is the only required statement. All the remaining statements define function
key sequences, and are optional. A function key is defined by giving the name
of the key, and the characters transmitted when the key is struck. The following
names are recognized: home, up, down, left, right, and key(i), where i must be
o or greater, and is the number of the function key. If the terminal has no
function key labelled 0, then the first key may be 1. No gaps are permitted,
but the keys may be defined in any order.

Up to four sequences may be defined for each key, giving the sequences
transmi t ted for the function key, the function key when shifted, the function
key when the control key is held down, and the function key with both shift and
control, in that order, separated by commas, and terminated by a semi-colon. If
less than four sequences are given, or a sequence is missing, the terminal is
assumed to not have a function key for that combination of key-strokes.

If the terminal always takes some local action (e.g. clearing the screen,
moving the cursor) (possibly in addition to transmitting the sequence) when a
key is struck, it is better to omit the sequence entirely, since most applications
will not want the side-effect to occur, and would most likely not even use the
key.

3-15 CC92-01

Example

function _key_ table: vip 7801 function keys; - - -home: ESC H· ,
left: ESC D· ,
right: ESC C;
up: ESC A;
down: ESC s· ,
key(O): ESC e, ESC " ESC c; ,
key (1) : ESC 0, ESC 1 ;
key (2) : ESC 2, ESC 5;
key (3) : ESC 6, ESC 7;
key (4) : ESC 8, ESC 9;
key (5) : ESC ESC " . " . . , , ,
key (6) : ESC <, ESC =;
key (7) : ESC >, ESC ? . ,
key (8) : ESC P, ESC Q;

I
key (9) : ~;:)\.- R, ESC S;
key (10) : ESC T, ESC V· ,
key (1 1) : ESC ~ , ESC] ;
key (12) : ESC ESC

Special Characters Table Entry

A special characters table entry consists of a special table statement and
a set of statements specifying the contents of a special characters table.
These statements are described below. Wherever the expression <sequence> appears,

I it means from zero to three <tty char>s, separated by white space, representing
a sequence of characters to be output to fulfill the specified function. If any
statemen~ specifying a sequence is omitted, a null sequence is assumed, unless
otherwise specified in the description of the statement. All sequences are in
ASCII code except for the printer on and printer off sequences. For those sequences
that are used when specific indicators are encountered in the output conversion
table, the relevant indicator is given in the description of the statement. See
the description of the various tables in the discussion of orders to the tty
1/0 module for more detailed information. -

special table: <table name>;
The special table statement specifies the name of the table. It is a string
of up to 32-characters.

new line: <sequence>;
The new line statement specifies 'the sequence to be output for a newline
character (output conversion indioator 1).

carriage return: <sequence>;
The- carriage return statement specifies the sequence to be output for a
carriage return character (output conversion indicator 2). If the sequence
is null, backspaces are used to move the carriage to the left margin.

3-16 CC92-01

backspace: <sequence>;
The backspace statement specifies the sequence to be output for a backspace
character (output conversion indicator 4). If the sequence is null, a carriage
return and spaces are used to reach the correct column. The carriage return
and backspace sequences should not both be null.

tab: <sequence>;
The tab statement specifies the sequence to be output for a horizontal tab
character. If the sequence is null, an appropriate number of spaces is
used to reach the next tab stop.

vertical tab: <sequence>;
The-vertical tab statement specifies the sequence to be output for a vertical
tab character (output conversion indicator 5) if the terminal is in vertsp
mode.

form feed: <sequence>;
-The form feed statement specifies the sequence to be output for a formfeed

character (output conversion indicator 6) if the terminal is in vertsp
mode.

printer on: <sequence>;
The printer on statement specifies the sequence to be output to fulfill a
"printer on~ order. The sequence is specified in the character code of the
terminal: If the sequence is null, the printer_on feature is not supported.

printer off: <sequence>;
The printer off statement specifies the sequence to be output to fulfill a
"printer off" order. The sequence is specified in "the character code of
the terrDlnal. If the sequence is null, the printer_off feature is not
supported.

red shift: <sequence>;
Thek red shift statement specifies the sequence to be output for a
red-ribbon-shift character (output conversion indicator 10 (octal)).

black shift: <sequence>;
The black shift statement specifies the sequence to be output for a
black-ribbon-shift character (output conversion indicator 11 (octal)).

end_of_page: <sequence>;
The end of page statement specifies the sequence to be output when output
is suspended because the page length of the terminal has been reached. If
it is omit ted, the character sequence "EOP" is assumed. A null string I
indicates that output is to stop at the right margin of the last line of a
page.

output escapes: <indicator1> <sequence1>,
<indicator2> <sequence2>, ••• <indicatorN> <sequenceN>;

The output escapes statement specifies the escape sequences to be output
for characters whose output conversion indicators are 21 (octal) or greater
when the terminal is in "edited mode. The indicators specified in the
statement are the same as the corresponding indicators in the output conversion
table.

edited output escapes: <indicator1> <sequence 1>,
<indicator2> <sequence2>, •.• <indicatorN> <sequenceN>;

The edited output escapes statement specifies sequences like those specified
by the output escapes statement, but they are used when the terminal is in
edited mode. -

3-17 CC92-01

input escapes: <value1) <result1),
<valu~2) <result2), .•. <valueN) <resultN);

The input escapes statement specifies those input characters that are to be
interpret~d as escape sequences when preceded by an escape character, and
the resulting characters that replace those sequences. (An escape character
in this context is a character defined by software to initiate an escape
sequence, i.e., one with an indicator of 2 in the input conversion table.)
Each "value" is an octal number representing the ASCII value of a character
that is used in an escape sequence; the corresponding "result" is an octal
number representing the single character that replaces the escape sequence
in the input stream.

Default Types

Exactly one defaul t types statement must appear in the TTF. It specifies
uerault terminal types o~tha basis of baud rate and line type. When a terminal
dials up, this information is used by the answering service to assign its type
if no default terminal type is specified in the CDT entry for the channel. The
default_types statement is described below.

default types: <baud1) <line type1) <terminal type1),
<baud2)-<line type2) <terminal type2), .•. -
<baudN) <line-typeN) <terminal-typeN);

Each baudi is a number representing a baud rate, or the word "any"; each
line typei is the name of a valid line type, or the word "any"; each
termTnal typei is the default terminal type for the specified combination
of baud rate and line type. The table thus constructed is searched in the
order in which the baud rate, line type, terminal type triplets are specified,
and the first entry that matches the particular channel is used to determine
the initial terminal type. The last entry in the table should specify
"any" for both baud rate and line type.

Answerback Table

The answerback table consists of entries specifying how to determine a
terminal type and identification on the basis of its answerback. The answerback
sent by the terminal is scanned under control of each answerback table entry,
starting with the first one specified in the answerback table. If the scan
succeeds (as described below), and the line type of the terminal is one that is
valid for the terminal type specified in the answerback table entry, the terminal
type and ID are derived from that entry; otherwise, the answerback is rescanned
using the next entry, and so on. An answerback table entry consists of two
statements: an answerback statement and a type statement.

answerback: <keyword1) <value1), <keyword2) <value2), ••• <keywordN) <valueN);
The answerback statement describes how the scan of the answerback is to be
performed. The" scan pointer," indicating the current character position
in the answerback of the scan, starts at the beginning of the answerback
string and is adjusted according to the controls specified by the answerback
statement. The possible keyword-value pairs are described below.

match <expression)
<expression) is either the word "digit," the word "letter," or a
string enclosed in quotes. If it is digit or letter, the scan fails
unless the character addressed by the scan pointer is a digit (0 to
9) or a letter (A to Z or a to z), respectively. If it is a quoted
string, the scan fails unless the scan pointer points to the beginning
of a matching string. If the match succeeds, the scan pointer is
advanced over the matching string or character, and the scan is
continued using the next keyword=value pair.

3-18 CC92-01

search <expression>

skip N

id N

id rest

works like match~ except that the scan succeeds if the matching
character or string is found anywhere to the right of the scan pointer.

causes the scan pointer to be moved N characters to the right. The
value N may be negative, in which case the pointer is actually moved
to the left. The scan fails if there are fewer than N characters
between the scan pointer and the end (or beginning if N is negative)
of the answerback string.

the N characters starting at the right of the scan pointer form the
ID of the terminal. The value N must be in the range 1 <= N <= 4.
If there are fewer than N characters to the right of the scan pointer,
the scan fails.

as many characte.rs (up to 4) as remain to the right of the scan
pointer constitute the ID of the terminal (not including control and
carriage-motion characters).

type: <type name>;
The type statement specifies the name of the terminal type to be assigned
to a terminal whose answerback satisfies the specification in the answerback
statement. The specified terminal type must be defined by a previous terminal
type entry. If the type statement is omitted, the answerback is to be used
to set the ID only, and the terminal type is not changed.

Preaccess Commands

The preaccess command entries are used to define the terminal types to be
set in response to preaccess commands at dialup time. Each preaccess command
entry consists of a preaccess command statement and a type statement. See the
MPM Commands for more information about preaccess commands.

preaccess_command: <command>;
Tne preaccess command statement specifies the name of a preaccess command.
The three commands currently supported are MAP, 963, and 029. If a preaccess
command statement is not present for anyone of these command statements,
the command statement has no effect when entered from the terminal.

type: <type name>;
The type statement specifies the terminal type to be assigned when the
corresponding command is entered. The specified type must be defined by a
previous terminal type entry.

3-19 CC92-01

Examples

1* Sample terminal type entries *1

Input conversion: standard_input_conv;

terminal type: 1050;
modes: -default,hndlquit,tabs,red,11130;
bauds: 133;
vert nl delays: 1 ;
horz-nl-delays: .11;
const tab delays: 1;
var tab delays .2;
input translation: ebcdic input trans;
output_translation: ebcdic output trans;
output conversion: ebcdic output conv;
special: ebcdic special; - -
line types: 1050;
old_type: 1;

terminal type: 2741 like 1050;
modes: -default,hndlquit,tabs,red,11125;
conditional printer off: yes;
print preaccess message: yes;
line types: 2741;
old_type: 2;

terminal type: TN300;
modes: -default,hndlquit,tabs,11118;
initial string: ESC "2" CR ESC "1" (11) < (10)
bauds: - 110 150 300 1200;
vert nl delays: 0 2 6 -38;
backspace delays: -2 -3 -6 -27;
vt ff delays: 19 29 59 230;
output conversion: aSCll output_conv;
special: tn300 special; -
line types: ASCII, 202ETX;
old_type: 4;

(SP) ESC "1";

1* sample default_types statement and answerback entries *1

default_types:
110 ASCII TTY33,
any ASCII ASCII,
any VIP ASCII,
133 1050 1050,
133 2741 2741,

1200 ARDS ARDS,
1200 202ETX TN300,
any any G 115;

3-20 CC92-01

1* the match below sets the terminal type to 1050 if the line type is 1050 *1

answerback: id 1 . ,
type: 1050;

answerback: search "0", id 3 ;
type: 2741;

answerback: search "0";
type: 2741;

answerback: search " Elf id 3 ; ,
type: TN300;

answerback: search " E";
type: TN300;

1* sample conversion, transla~ion, and special

conversion table: standard input conv;
03 00 00 00 00 00-00 DO-
DO 00 01 00 04 00 00 00
00 00 00 00 00 00 00 00
00 00 00 05 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 02 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 03;

translation table: ebcdic input trans;
OqO 055 100 046 070 161 171 150
064 155 165 144 000 000 000 000
062 153 163 142 060 000 000 000
066 157 167 146 000 010 000 000
061 152 057 141 071 162 172 151
065 156 166 145 000 012 000 011
063 154 164 143 043 044 054 056
067 160 170 147 000 000 000 000
040 137 134 053 052 121 131 110
072 115 125 104 000 000 000 000
074 113 123 102 051 000 000 000
047 117 127 106 000 010 000 000
075 112 077 101 050 122 132 111
045 116 126 105 000 012 000 011
073 114 124 103 042 041 174 136
076 120 130 107 000 000 000 000;

special_table: ebcdic soecial:
new line: 012; - -' ,
carriage return:
backspace: 10;
tab: 11;
vertical tab:
form feed:

3-21

tables *1

CC92-01

printer - on: 15 ;
printer - off: 16 ;

red shift: 033 141 ;
black shift: 033 142;
end of_page: 105 117 120; -

output escapes: -21 134 074, 1M esc < ([) MI
22 134 076; 1M esc > (]) MI
23 134 047, 1M esc (A) MI
24 134 050, 1M esc { ({) *1
25 134 051 f- 1M esc) (}) MI
26 134 164; 1M esc t (-) MI

edited output _escapes:
21 - 050 010 075, 1M (= ({) I
22 051 010 075, I~)~ (}) I
23 nh,.., 111& '-'\ I v"t I ; ,n . ")

24 050 010 055, 1M (- { {) I
25 051 010 055, 1*).:. (l) I
26 047 010 136; 1M - (-) I

Input escapes:
074 133, 1M esc < -> MI
076 135, 1M esc > -> MI
047 140, 1M esc -> - MI
050 173, 1M esc (-> MI
051 175, II esc) -> HI
164 176, 1M esc t -> - MI
124 176; 1M esc T -> - MI

end;

3-22 CC92-01

SECTION 4

COMMANDS

This section contains descriptions of commands used for communications I/O. I

The conventions shown in the usage lines of these commands are the same as
those used throughout the set of Multics manuals; briefly, arguments enclosed in
braces ({}) are optional, and all others are required (unless otherwise noted).
For a complete description of all the usage line conventions, refer to Section 3
of the MPM Commands.

1/82 4-1 CC92-01A

cv ttf cv ttf

Name: cv ttf

The cv ttf command compiles a terminal type file (TTF) into a terminal type
table (TTT); in preparation for installing it.

cv ttf path {-control_arg}

where:

1. path
is the pathname of the TTF to be compiled. The TTT that resul ts
from the compilation is placed in the user's working directory; its
entryname is the same as the entryname of the TTF with the suffix
ttt added.

2. control arg

Notes

may be either of the following:

-long, -lg
specifies that all error messages produced by cv ttf are to be printed
in long form.

-brief, -bf
specifies that all error messages produced by cv ttf are to be printed
in short form.

If neither -long nor -brief is specified, the first instance of a given
error produces a long message, and all subsequent instances of that error produce
short messages.

4-2 CC92-01

dial out dial out

Name: dial out

The dial out command enables a user to access a remote system by dialing a
specified des'"Eination over a dial-out channel (i.e., a channel that has been
configured with the autocall service type, as specified in the service statement
of the CMF).

dial out channel {destination} {-control_args}

where:

1 . channel
the name of the dial-out channel to be used. The star convention is
allowed, which means the answering serv ice selects a channel that
has a matching name and matching attributes (if specified).

2. destination
is the dial-out destination (e.g., phone number or network address)
to be used in making the connection. If this argument is omitted, a
channel is attached as described under dial manager $privileged attach
in the MPM Subsystem Writers' Guide. - - -

This argument can be up to 32 characters in length and can include
dial-tone-wait characters, which suspend dialing until the autocall
uni t receives a dial tone. The standard FNP rnul tiplexer recognizes
the excl amat ion point ("!") as the d ial-tone-wa it character and pauses
at each one encountered to await a dial tone.

3. control arg s

7/82

-raw

-echo

-line

may be chosen from the following:

suppresses Mul tics terminal management and makes the dial out interface
completely transparent. Characters are transmitted dTrectly to or
from the foreign system, without any conversion or processing.

causes characters entered by the user to be echoed locally.

causes the communications line to transmit line-at-a-time rather than
character-at-a-time. This permits the dialing of an FNP channel
that cannot be run at line speed in character mode.

-escape STR, -esc STR
sets the escape character to STR. The escape character enables the
user to enter dial out requests from within the dial out environment.
The default escape character is the exclamation point ("!").

-terminal type STR, -ttp STR
sets the terminal type of the remote connection to STR. This argument
is useful in those cases where the host has unusual communications
requirements.

4-2.1 CC92-01A

dial out dial out

Notes

-resource STR, rsc STR

-abbrev

specifies the desired characteristics of the dial-out channel. STR
(which can be null) consists of reservation attributes separated by
commas. The channel used by a dial out operation must have the
characteristics specified in the reservation string. Reservation
attributes consist of a keyword and optional argument. Attributes
allowed are:

baud rate=BAUD RATE
line=type=LINE=TYPE

where BAUD RATE is a decimal representation of the desired channel
~~ne spee~ ana LINE TYPE is a valla lIne type, chosen from
line_types.incl.p11 (see set_line_type, in Section 6).

enables the user to invoke abbrev processing of request lines.

-profile PATH
defines the pathname PATH 0 f the profile segment that contains abbrev s
used with the dial out command. The suffix .profile is assumed if
it is not present. -rhe default is the user's current profile segment.

-request STR
Causes the dial out command to execute the request STR after the
connection is established, but before entering the dial_out environment.

The user may enter dial out requests from within the dial out environment
by preceding requests with the escape character ("!" by defaul t). Typed entries
between one escape character and the next or the end of the line are interpreted
as the dial out request. The escape character itself may be sent by entering it
twice in succession.

Use of the dial out command requires the dialok attribute and rw access to
)sc1)rcp)NAME.acs.

List of Requests

7/82

escape STR, esc STR
sets the escape character to STR.

file output PATH, fo PATH
-copies output to a file identified by the pathname PATH.

interrupt, int, break, brk, ip
sends an interrupt signal (line break) to the foreign system.

modes {rawlAraw},{echolAecho}
allows the user to enable or disable the raw and echo modes (as described
under the -raw and -echo control arguments).

4-2.2 CC92-01A

dial out dial out

revert output, ro

send

reverts the effect of the previous file output request; i.e., causes
output to no longer be copied to the file-identified by the file_output
request.

causes arguments within the request to be sent to the foreign system
as if they were typed by the user.

send file PATH, sf PATH
causes the contents of pathname PATH to be sent to the foreign system.

swi tch name
returns the name of the 1/0 switch used by the dial out interface.

Examples

The dial out command

dial out b.h218 9-555-5622 -raw
Ready on tty_ b.h218 -destination 9-555-5622

at taches channel b.h 218 to the dial destinat ion 9-555-5622, wh il e suppressing
Mul tics terminal management. The ready message is printed by the system, verifying
the connection.

The dial out command

dial out b.hOOO.l.* 31060849

establishes a network connection over an apprOprla'Le channel (i.e., one that
meets the star convention requirements) at address 31060849.

7/82 4-2.3 CC92-01A

This page intentionally left blank.

7/82 CC92-01A

Name: display_ttt

The display ttt command prints all or part of a terminal type table (TTT)
on the user's terminal, or outputs it to a file. The format of the output is
such that it can be used as a terminal type file (TTF).

where control_args may be chosen from the following list:

Notes

-pathname patp, -pn path
specifies that the TTT whose pathname
If this control argument is omitted,
displayed.

-terminal type name, -ttp name

is path is to be displayed.
the process' current TTT is

specifies that only the terminal type entry for the terminal type
named name is to be displayed (see "Notes" below).

-table name, -tb name
specifies that only the conversion, translation, function keys, or I
special table named name is to be displayed (see "Notes" below).

-output file path, -of path
specifies that output is to be directed to the file whose pathname
is path. If this control argument is omitted, output is directed to
the terminal.

-header, -he
specifies that a header is to be printed (see "Notes" below).

-no header, -nhe
- specifies that no header is to be printed (see "Notes" below).

If neither -terminal type nor -table is specified, the entire contents of
the TTT are displayed; if -no header also is not specified, an introductory
comment is printed, giving the pathname of the TTT, the date, and the user id of
the author of the original TTT. If either -terminal type or -table is specified,
only the specified terminal type entry or table is displayed , without the introductory
comment unless -header is also specified.

4-3 CC92-01

16 ftf 16 ftf

Name: ., C f"'L ro
.lU 1\.,1

The 16 ftf command allows a process to handle file transfer requests from a
Level 6, using the L6 File Transfer Facility (FTF) protocol (referred to as
L6 TRAN; see Level 6/Level 6 File Transmission Facility User's Guide CB33). This
command continues to listen for and carry out Level 6 requests until the user
explicitly tells it to stop. Only sequential ASCII or sequential binary files
may be transferred to or from the Level 6. ASCII files on Multics are assumed
to be stream files when sending, and are stored as stream files when receiving.
Binary files on Multics have a special format (see Notes below).

16 ftf channel name {control_args}

where:

1. channel name
Is the name of a polled VIP subchannel over which the file transfers
will take place. It must have the "x" prefix. (See Notes below).

2. control arg

Notes

may be either of the following:

-long, -lg
prints a line describing each file transfer as it starts and as it
is completed. The default is not to print this information.

-target dir PATH, -td PATH
specifies that the pathnames of any files to be transferred are
relative to the target directory. The root may be specified as ">",
which allows absolute pathnames to be specified. The default is the
working directory.

This command continues to listen for and process file transfer requests
from the Level 6 on the specified channel until the Multics user types "q" or
"quit" or the channel disconnects. The quit request may be typed at any time,
but will only take effect before any file transfer has started or between two
file transfers.

The user must have rw access to the ACS of the specified channel name to
use the file transfer facility. The user must have the "dialok" attribute turned
on in the PDT. The polled VIP subchannel must have the slave attribute in the
CDT, and must be an "X" type subchannel (see the description of polled VIP
multiplexers in MAM Communications.)

4-4 CC92-01

16 ftf 16 ftf

Interrupting and releasing a file transfer in the middle of the transfer
may result in aborting the operation in an inconsistent state, and causing the
Level 6 task to hang.

The Polled VIP multiplexer must have a terminal type (in the TTF) which
sets the "additional info" parameter to
omit ff=yes". (See 1he description of

"max message len=1009 omit nl=yes
polled VIP -multiplexers in MAM

Communications).

Only sequential ASCII or sequential binary files may be transferred from or
created on the Level 6. On Mul tics, ASCII files are assumed to be or are
created as stream files. Notice that blank lines in a Level 6 file actually
have some character on them, usually a space or tab. These characters will end
up in the Multics file. The command sends blank lines from Multics files to the
Level 6 by sending a line containing a single space character.

On Multics, binary files are sequential vfiles. Each record is assumed to
have the following format:

dcl 1 binary record aligned based,
2 num-sextets fixed bin(35) aligned,
2 sextets (0 refer binary record.num sextets) fixed bin(6)

unsigned unaligned; - -

Each binary record is
currentsize(binary_record) * 4.

Examples

The following Level 6 command:

stored in a

TRAN ISO -L6 -N >SPO>PVE01 -ISA TEST -ASA FOO

vfile record of size

sends the Level 6 file TEST to the Multics segment FOO assuming the 16 ftf
command has specified the PVE subchannel name corresponding to >SPO>PVE01 on-the
Level 6. See CB33 for more information (this is a Level 6 manual).

4-5 CC92-01

I

Name: print_terminal_types, ptt

The print terminal types command prints the names of all terminal types
defined in the terminal type table (TTT) currently in use. If the TTT in use is
not the system default TTT, the command prints the current TTT's pathname at the
head of the list of terminal names.

where path specifies the pathname of the TTT.
used.

4-6

If omitted, the current TTT is

CC92-01

print_ttt_path

This command prints the name of the terminal type table (TTT) segment currently
in use. This is the pathname last set by a set_ttt_path command, or the pathname
of the default system TTT.

print_ttt_path

No arguments are required.

4-7 CC92-01

set_ttt_path

The set ttt path command changes the pathname of the terminal type table
(TTT) associated -with the user's process.

where:

1 . path
is the pathname of the TTT.
control_arg is required.

If no path argument is given, then

2. control arg

Notes

~an be -reset (-rs) to reset the TTT pathnameto its default value
of >system_control_,>ttt.

The use of path argument and the -reset control argument are mutually exclusi ve;
only one may be given in any invocation of the set_ttt_path command.

4-8 CC92-01

Name: set_tty, stty

The set tty command modifies the terminal type associated with the user's
terminal and/or various parameters associated with terminal I/O. The type as
specified by this command determines character conversion and delay timings; it
has no effect on communications line control.

set tty {-control_args}

where control_args may be chosen from the following control arguments:

-all, -a
is the equivalent of specifying the four control arguments -print,
-print_edit, -print frame, and -print delay.

-buffer size N, -bsize N
specifies the terminal's buffer size to be used for output block
acknowledgement (see the discussion of output flow control in Section
2). N is the terminal's buffer size in characters. If the end of block
and acknowledgement characters have not been specified (either as
part of the terminal type description or by means of the -output etb ack
control argument to set_tty), this control argument may not be spec if Ted •

-brief, -bf
may only be used with the -print control argument and causes only
those modes that are on plus those that are not on/off type modes
(e.g., 1179) to be printed.

-delay STR, -dly STR
sets the delay timings for the terminal according to STR, which is
either the word "default" or a string of six decimal values separated
by commas. If IIdefau1 t" is specified, the default values for the
current terminal type and baud rate are used. The values specify
vert n1, horz nl, const tab, var tab, backspace, and vt ff, in that
order. The meanings of-the values are as follows: -

vert nl
is the number of delay characters to be output for all newlines
to allow for the linefeed (-127 < vert nl < 127). If it is
negative, its absolute value is the-minimum number of characters
that must be transmitted between two linefeeds (for a device
such as a TermiNet 1200).

horz nl
is a number to be multiplied by the column position to obtain
the number of delays to be added for the carriage return portion
of a newline (0 < horz nl < 1). The formula for calculating
the number of delay characters to be output following a newline
is:

ndelays = vert nl + fixed (horz nl*column)

4-9 CC92-01

const r,ao
Is the constant portion of the number of delays associated with
any horizontal tab character (0 ~ const_tab ~ 127).

var tab
is the number of additional delays associated with a horizontal
tab for each column traversed (0 < var tab < 1). The formula
for calculating the number of delays to be output following a
horizontal tab is:

ndelays = const tab + fixed (var_tab*n_columns)

backspace

vt ff

is the number of delays to be output following a backspace
character (-127 < backspace < 127). If it is negative, its
absolute value is the number -of delays to be output with the
first backspace of a series only (or a single backspace). This
is for terminals such as the TermiNet 300 that need delays to
allow for hammer recovery in case of overstrikes, but do not
require delays for the carriage motion associated with the
backspace itself.

is the number of delays to be output following a vertical tab
or formfeed (0 < vt ff < 511). - - -

The horz nl and var tab values are floating-point numbers; all other
values are integers. If any of the six values is omitted, the
corresponding delay value is not changed; if values are omitted from
the end of the list, trailing commas are not required.

-edit edit_chars, -ed edit chars
changes the input editing characters to those specified by edit_chars.
The edit chars control argument is a 2-character string consisting
of the erase character and the kill character, in that order. If
the erase character is specified as a blank, the erase character is
not changed; if the kill character is omitted or specified as a
blank, the kill character is not changed.

-frame STR, -fr STR
changes the framing characters used in blk xfer mode to those specified
by STR, where STR is a 2-character string consisting of the frame-begin
and the frame-end character, respectively. These characters must be
specified in the character code of the terminal, and may be entered
as octal escapes, if necessary. The frame-begin character is specified
as a NUL character to indicate that there is no frame-begin character;
the same is true for a frame-end character. These characters have
no effect unless blk xfer mode is on. It is an error to set the
frame-end character to NUL if the frame-begin character is not also
set to NUL.

-initial string, -istr
transmits the initial string defined for the terminal type to the
terminal.

4-10 CC92-01

set_tty

7/82

-input flow control STH, -ifc STH
-sets-the input suspend and input resume characters to those specified

in STH, which is a string of one or two characters. (See the discussion
of input flow control in Section 2.) If STH contains two characters,
the first character is the input suspend character and the second
one is the input resume character. -If STH contains only one character,
it is the input_resume character and there is no input_suspend character.

-io switch STH, -is STH
specifies that the command be applied to the liD switch whose name
is STH. If this control argument is omitted, the user ilo switch is
assumed.

-modes STH, -md STH I
sets the modes for terminal liD according to STH, which is a string
of mode names, each separated by a single comma. Many modes can be
optionally preceded by" " to turn the specified mode off. For a
list of valid mode names, see the description of the tty IIO module.
Modes not specified in STH are left unchanged. See "Notes" below.

-output etb ack STH, -oea STH
sets- the output end of block and output acknowl edge characters to
those specified In STR;- which is a string of two characters. (See
the discussion of output flow control in Section 2.) The first
character of STH is the end of block character and the second one is
the acknowledge character. If- a buffer size has not been specified
(either as part of the terminal type description or by means of the
-buffer size control argument to set tty), this control argument may
not be specified. -

-output suspend resume STH, -osr STH
sets the output suspend and output resume characters to those specified
in STH, which IS a string of two characters. (See the discussion of
output flow control in Section 2.) The first character of STH is
the output suspend character and the second is the output resume
character. - -

-print, -pr
prints the terminal type and modes on the terminal. If any other
control arguments are specified, the type and modes printed reflect
the result of the command.

-print_delay, -pr dly
prints the-delay timings for the terminal.

-print edit, -pr ed
-prints the input-editing characters for the terminal.

-pr int fr arne, -pr fr
-prints the-framing characters for the terminal.

4-11 CC92-01A

Notes

-reset, -rs
sets the modes to the default modes string for the current terminal
type.

-terminal type STR, -ttp STR
sets the terminal type of the user to STR, where STR can be anyone
of the types defined in the terminal type table (TTT). The default
modes for the new terminal type are turned on and the initial string
for the terminal type, if any, is transmitted to the terminal.
Refer to the print terminal types command for information on obtaining
a list of terminal types currently in the TTT.

Invoking the set tty command causes the system to perform the following
steps in the specified-order:

1. If the -terminal type control argument is specified, set the specified
type, turn on the default modes for that type and send the initial
string for that type.

2. If the -reset control argument is specified, set the modes to the
default modes string for the current terminal type.

3. If the -modes control argument is specified, turn on or off those
modes explicitly specified.

4. If the -initial_string control argument is specified, transmit the
initial string to the terminal.

5.

6.

7.

8.

9.

10.

11-

12.

13.

If the -edit control argument is specified, set the editing characters.

If the -frame control argument is specified, set the framing characters.

If the -delay control argument is specified, set the delay values.

If the -input flow control control argument is specified, set the input
flow control characters.

If the -buffer size, -output etb ack, or -output suspend resume control
argument is specified, set the corresponding output flow control
parameters.

If the -print control argument is specified, print the type and modes
on the terminal.

If the -print_ edit control argument is specified, print the editing
characters on the terminal.

If the -print_ frame control argument is specified, print the framing
characters on the terminal.

If the -print_ delay control argument is specified, print the delay
values on the terminal.

4-12 CC92-01

Examples

The command line:

set_tty -delay 6,0,0,0,-6,59

sets all six delay values to those used by a TermiNet 300.

The command line:

set_tty -delay 5,0.6",2,63

sets the delay values so that 5 delays will be output with a newline, plus 3
more for every 5 columns of carriage return; 2 delays will be used for each
backspace, 63 for a vertical tab or formfeed, and whatever values were already
in force for horizontal tabs.

The command line:

set_tty -delay ,1.3".8

sets horz nl to 1.3 and var tab to 0.8, while leaving all other delay values as
they were-before.

The command line:

set_tty -frame \002\003

sets the frame-begin and frame-end characters to the. ASCII STX and ETX characters,
respectively.

4-13 CC92-01

SECTION 5

SUBROUTINES·

This section describes the ttt info subroutine, which extracts information
about a terminal type from the termInal type table.

The conventions shown in the usage lines of this subroutine are the same as
those used in the MPM Subroutines; briefly, the usage lines first show the
proper format to use when declaring the subroutine, and then show a sample call.
For a complete description of all the usage line conventions, refer to Section 2
of the MPM Subroutines.

5-1 CC92-01

ttt info ttt info

Name: ttt info

The ttt info subroutine extracts information from the terminal type table
(TTT) •

This entry point returns 'a collection of information that describes a specified
terminal type.

declare ttt info $terminal_data entry (char(*), fixed bin, fixed bin, ptr,
fixed bin (35)) ;

where:

1. tt name (Input)
is the terminal type name.

2. line_type (Input)

3.

4.

5.

Notes

baud

is a line type number against which the compatibility of the terminal
type is verified. If nonpositive, the line type number is ignored.
For further description, see the tty_ IIO module in Section 6.

(Input)
is a baud rate used to select the appropriate delay table.

ttd_ptr (Input)
(See

code

is a pointer to a structure in which information is returned.
"Notes" below.)

(Output)
is a standard stat us code. If the terminal type is incompatible
with the line type, a value of error_table_$incompatible_term_type
is returned.

I The ttd ptr argument
(terminal_type=data.incl.pI1):

should point to the following structure

dcl 1 terminal_type_data
2 version
2 old_type
2 name
2 tables,

aligned,
fixed bin,
fixed bin,
char(32) unaligned,

5-2 CC92-01

ttt info

where:

3 input tr ptr
3 output tr ptr
3 input cvptr
3 output cv ptr
3 special ptr
3 delay ptr

2 editing chars
3 erase char(1)
3 kill char(1)

2 framing chars
3 frame-begin
3 frame-end

2 flags, -
3 keyboard locking
3 input timeout
3 output block acknowledge
3 mbz - -

2 line delimiter
2 mbz
2 flow control chars

3 input suspend
3 input-resume
3 output suspend etb
3 output-resume ack

2 output_buffer_size

ptr,
ptr,
ptr,
ptr,
ptr,
ptr,

unaligned,
unaligned,
unaligned,
unaligned,
char(1) unaligned,
char(1) unaligned,
unaligned,
bit(1),
bit(1),
bit(1),
bit(15),
char(1) unaligned,
bit(9) unaligned,
unaligned,
char(1),
char(1),
char(1),
char(1),
fixed bin;

ttt info

1. version (Input)

2.

3.

is the version number of the above structure. It must be 1 or 2.

old_type (Output)

name

is the old terminal type number that corresponds to the terminal
type name. (The old terminal type number is provided only for
compatibility with the obsolete tty order requests set type and
info.) A value of -1 indicates that no corresponding old type exists.

(Output)
is the terminal type name.

4. input_tr_ptr (Output)
is a pointer to a structure containing the input translation table.
This structure is identical to the info structure for the
set_input_translation order of the tty_ 1/0 module.

5. output tr ptr (Output)
-is-a pointer to a structure containing the output translation table.

This structure is identical to the info structure for the
set_output_translation order of the tty_ 1/0 module.

6. input_cv_ptr (Output)
is a pointer to a structure containing the input conversion table.
This structure is identical to the info structure for the
set_input_conversion order of the tty_ 1/0 module.

5-3 CC92-01

I

ttt info ttt info

7. output_cv_ptr (Output)
is a pointer to a structure containing the output conversion table.
This structure is identical to the info structure for the
set_output_conversion order of the tty_ 1/0 module.

8. special ptr (Output)

9.

Is a pointer to a structure containing the special characters table.
This structure is identical to the info structure for the set_special
order of the tty_ 1/0 module.

delay_ptr (Output)
is a p01m:,er to a structure containing the delay "CaO.Le. 1"n1S structure
is identical to the info structure for the set_delay order of the
tty_ 1/0 module.

10. erase (Output)
is the erase character.

11. kill (Output)
is the kill character.

12. frame begin (Out put)
- is the frame-begin character.

13. frame end (Out put)
is the frame-end character.

14. keyboard_locking (Output)
indicates whether the terminal type requires keyboard locking and
unlocking.
"1"b yes
"O"b no

15. input timeout (Output)
is "1 "b if the timeout option was specified on an input_resume statement
in the TTF.

16. output block acknowledge (Output)

17. mbz

-is" 1ii"b if output end of block and output_acknowledge statements were
specified in the rTF;-

must be "O"b.

18. line delimiter (Output)
is the line delimiter character.

19. flow control chars
- identIfies the flow control characters. It is not present if version

(above) is 1.

20. input_suspend (Output)
is the character sent to the terminal to suspend input, or sent by
the terminal to indicate that it is suspending input.

21. input resume (Output)
is the character sent to the terminal to resume input.

22. output suspend etb (Output)
is the character sent by the
output block acknowledge is "O"b;
, _____ ~_..:I_-3 r-. ___ '- _ .. ~_ .. 4- \.0..' __ 1,.
ue dVVeuut:U l-U t:cl.L;1l UI",U,YUv U.l.VL;n..

5-4

terminal to suspend output if
otherwise it is the character to

CC92-01

ttt info ttt info

23. output resume ack (Output)

24.

is the character sent by the terminal to resume output if
output block acknowledge is "O"b; otherwise it is the character used
to acknowledge an output block.

output_buffer size (Output)
is the-size, in characters, of the terminal's buffer, for use with a
block acknowledgement protocol. It is 0 unless
output block acknowledge is "1"b. It is not present if version is
1. - -

This entry point returns the default modes for a specified terminal type.

declare ttt_info_$modes entry (char(*), char(*), fixed bin(35»;

call ttt_info_$modes (tt_name, modes, code);

where:

1. tt name (Input)
is the terminal type name.

2. modes (Output)
is the default modes string for the terminal type. If its length is
less than 256 characters, the entire modes string is not necessarily
returned.

3. code (Output)
is a standard status code.

This entry point returns the terminal type name associated with a specified
preaccess request.

5-5 CC92-01

ttt info ttt info

declare ttt_info_$preaccess_type entry (char(*), char(*), fixed bin(35»;

call ttt_info_$preaccess_type (request, tt_name, code»;

where:

1. request (Input)
is one of the following three preaccess requests: MAP, 963, or 029.

2. tt name (Output)

3. code

is the name of the associated terminal type. Its length should be
at least 32 characters.

(Output)
is a standard status code.

This entry pOint returns additional information for a specified terminal
type to be used by I/O modules other than tty_.

dcl ttt info $additional info entry (char(*), char(*) varying,
fixed bIn(35»; - .

call ttt info_$additional_info (tt_name, add_info, code);

where:

1. tt name (Input)
is the terminal type name.

2. add info (Output)

3. code

is the additional information string. If no additional information
is defined for the terminal type, a null string is returned. Maximum
length is 512 characters.

(Output)
is a standard status code.

This entry point returns a string that can be used to initialize terminals
of a specified terminal type. The string must be transmitted to the terminal in
raw output (rawo) mode. The initial string is most commonly used to set tabs on
terminals that support tabs set by software.

5-6 CC92-01

ttt info ttt info

declare ttt info $initial string entry (char(*), char(*) varying,
fixed ~in(3;»; -

where:

1. tt name (Input)
is the terminal ty'pe name.

2. istr info (Output)

code

is the initial string. If no initial string is defined for the
terminal type, a null str ing is returned. Maximum length is 512
characters.

(Output)
is a standard status code.

This entry point returns the values of two flags for a specified terminal
type.

declare ttt info $dialup flags entry (chare-), bit(1), bit(1),
fixed ~in(3;»; -

where:

1. tt name (Input)
is the terminal type name.

2. ppm_flag (Output)

3.

4.

indicates whether a preaccess message should be pr inted when an
unrecognizable login line is received from a terminal of the specified
type:
"1"b yes
"O"b no

cpo_flag (Output)

code

indicates whether "conditional printer off" is defined for the terminal
type, i.e., if the answerback indicates whether a terminal is e4~ipped
with the printer off feature:
"1"b yes
"O"b no

(Output)
is a standard status code.

5-7 CC92-01

ttt info ttt info

This entry point decodes a specified answerback string into a terminal type
name and terminal identifier.

declare ttt info $decode.answerback entry (char(*), fixed bin, char(~),
char(*J, fixed bin(j5»;

call ttt_info_$decode_answerback (ansb, line_type, tt_name, id, code);

where:

1. ansb (Input)
is the answerback string.

2. line_ty~e (Input)
1S a line type number with which the decoded terminal type must be
compatible. A nonpositive line type number is ignored. For further
description, see the tty_ 1/0 module.

3. tt name (Output)

4. id

5. code

is the terminal type name decoded from the answerback. Its length
should be at least 32 characters. If no terminal type is indicated,
a null string is returned.

(Output)
is the terminal identifier decoded from the answerback. Its length
should be at least four characters. If no id is indicated, a null
string is returned.

(Output)
is a standard status code.

This entry point obtains a code number that corresponds to a specified
terminal type name.

5-8 CC92-01

ttt info ttt info

declare ttt_info_$encode_type entry (char(*), fixed bin, fixed bin(35»;

call ttt_info_$encode_type (tt_name, type_code, code);

where:

1. tt name (Input)
is the terminal .type name.

2. type_code (Output)
is the corresponding terminal type code number.

3. code (Output)
is a standard status code.

This entry point obtains the terminal type name that corresponds to a specified
terminal type code number.

declare ttt info_$decode_type entry (fixed bin, char(*), fixed bin(35»;

call ttt_info_$decode_type (type_code, tt_name, code);

where:

1. type_code (Input)
is the terminal type code number.

2. tt name (Output)
is the corresponding terminal type name.

3. code (Output)
is a standard status code.

5-9 CC92-01

ttt info ttt info

This entry point is used to obtain a copy of the video sequences
table for a particular terminal type.

dcl ttt info $video info entry (char (*), fixed bin, ptr, ptr, fixed bin
(35)); - -

call ttt info $video info (terminal_type, baud_rate, areap, ttyvtblp,
rode); - -

where:

1. terminal type (Input)
is the name of the terminal type for which the video table is required.

2.

3.

baud rate (Input)

area

is the current baud rate of the terminal.
it is unknown, or uninteresting.

(Input)

This may be set to 0 if

is a pointer to an area where the video table may be allocated. If
null, the system free area is used.

4. ttyvtblp (Output)
is a pointer to the video table, if present.

5. code (Output)
is a standard system status code.

5-10 CC92-01

-.­
; '\

ttt info ttt info

The format of a video
tty_video_tables.incl.p11,

table is given in the include file

dcl

where:

1 tty video table
2 version -
2 screen height
2 screen-line length
2 scroll-count
2 flags

3 overstrike available
3 automatic crlf
3 simulate eol
3 pad -

2 video chars len
2 pad
2 nseq
2 sequences

2 video chars

aligned based (ttyvtblp),
fixed bin,
fixed bin,
fixed bin,
fixed bin,
unaligned,
bit (1) unal,
bit (1) unal,
bit (1) unal,
bit (33) unaligned,
fixed binary (21)
(2) bin (36)
fixed bin,
(N VIDEO SEQUENCES refer (tty video table.nseq)
lIke tty video seq aligned, - -

char (tty-video-table video chars len refer
(tty_video_table.video_chars_len) unal;

1. version
is the version of this structure. It must be
tty_video_tables_tables_version_1, also declared in this include file.

2. screen height
-is the number of lines on this terminal.

3. screen line length
-is the number of character positions (columns) in each line.

4. scroll count

5. flags

-is the number of lines scrolled upward when a scroll command is sent
to the terminal (if the terminal is capable of scrolling). For most
terminals this will be 1. A value of 0 indicates that one line is
scrolled.

describe characteristics of the terminal.

6. overstrike available
is w1"b if the terminal can overstrike (i.e., more than one character
can be seen in the same character position).

1. automatic crlf

8. pad

is-" 1"b if the terminal performs a carriage return and line feed
when a character is displayed in the last column.

has an undefined value, and is reserved for future expansion

5-11 CC92-01

ttt info ttt info

8. simulate eol
is reserved for future expansion.

9. pad1
is reserved for future expansion.

10. video chars len

11 • pad

12. nseq

specIfies the length of the string containing all video sequences.

is reserved for future expansion.

is the number of the highest video sequence defined for this terminal.
Not all sequences are defined for all terminals, so programs should
check this value before indexing the sequence array.

13. sequences
is an array of video sequences. Each element of the array specifies
the character sequence for a video control operation. The indices
for specific sequences are defined by constants also declared in
this include file. See below.

14. video chars
is a string holding concatenations of all video sequences.

The include file defines values for the indices into the array of sequences
for the video operations supported. The names of these values are: ABS pas,
CLEAR SCREEN, CLEAR TO EOS, HOME, CLEAR TO EOL, CURSOR UP, CURSOR RIGHT,
CURSOR DOWN, CURSOR LEFT, INSERT CHARS, - END INSERT CHARS, DELETE-CHARS,
INSERT-LINES, DELETE LINES. The incl ude file also defines N VIDEO SEQUENCES,
which Is the number of the highest index ever defined. --

A video sequence is defined by the structure tty video seq, defined in the
include file tty_video_tables.incl.pI1. --

dcl 1 tty video seq

where:

2 flags -
3 present
3 interpret
3 able to repeat
3 cpad-present
3 cpad-in chars
3 pad - -
3 general

2 cpad
2 pad
2 len
2 seq_index

1. present

based (ttyvseqp) aligned,
unaligned,
bit (1) unal,
bit (1) unal,
bit (1) unal,
bit (1) unal,
bit (1) unal,
bit (7) unaligned,
bit (6) unaligned,
fixed bin (18) unsigned unaligned,
bit (15) unal,
fixed bin (9) unsigned unaligned,
fixed bin (12) unsigned unaligned;

is "1"b i~ the operation is supported.

2. interpret
is "1"b if the sequence contains the encoding of the line, column,
or repeat count and must be inspected more closely.

5-12 CC92-01

ttt info ttt info

3. able to repeat
- Is "1 "b if the terminal can perform multiple sequences of this operation

by receiving a single character sequence containing the repeat count;
the repeat count is encoded in the sequence.

4. cpad_present
is "1"b if the terminal requires padding after the operation.

5~ cpad in chars

6. pad

- Is "1"b if the padding is in characters, or "O"b if the padding is
in tenths of milliseconds. If the baud rate is supplied to the
ttt info $video info subroutine, then padding will always be expressed
in characters. -

is reserved for future expansion.

7. general
is reserved for future expansion to define per-sequence information.

8. cpad
is the padding count in units defined by cpad_"in_chars.

9. pad
is reserved for future expansion.

10. len
is the length of the string of characters defining this sequence.

1 1 • s e q_ in d ex
is the index of the start of the string in tty_video_table.video_chars.

Many terminals allow a repetition count to be supplied with dU operation
(e.g., to delete multiple lines). Positioning operations require line and column
coordinates. These values must be expressed in some encoding. A variety of
encodings are supported. Parameters to be transmitted are specified by an encoding
character in the video sequence string. An encoding character is a nine bit
byte whose high order bi t is set and is defined by the structure tty numeric encoding
in the include file tty video tables.incl.pll. The encoding scheme is described
in the write up for the-video:info table of the Terminal Type file.

dcl 1 tty numeric encoding
2 flags, -

3 must be on
3 express in decimal
3 express-in-octal
3 offset is '0

2 I c or n- -
2 num-digits
2 pad-
2 offset

based unaligned,

bit (1) urlal,
bit (1) unal,
bit (1) unal,
bit (1) unal,
fixed bin (2) unsigned unaligned,
fixed bin (2) unsigned unaligned,
bit (1) unaligned
fixed bin (8) unaligned;

5-13 CC92-01

ttt info ttt info

where:

1 • must be on
Is "1"b for an encoding character.

2. express in decimal
Is w1"b if the value should be expressed as decimal digits.

3. express in octal
Is ~1"b if the value should be expressed in octal digits. If both
flags are off, the value should be sent as a single character.

4. offset is 0
if-"O"b, the following byte is a fixed bin(S) value to be added to
the value before encoding. If" 1"b, the offset is 0 and the next
byte has no special significance.

5. I c or n
-specifies the type of value to be encoded. Its value may be 0, 1,

or 2, and indicates that this encoding character specifies the line
number, column number, or repeat count respectively.

6. num digits

7. pad

- specifies the number of digits to be sent. A value of 0 causes all
significant digits to be sent, with leading zeroes suppressed.

is reserved for future expansion.

S. offset
is present only if offset is 0 is "O"b. It gives an offset to be
added to the value before expressing it in octal or decimal.

This entry point returns a collection of information describing the function
keys of a specified terminal type.

Usage:

del ttt_info_$function_key_data entry (char(*), ptr, ptr, fixed bin (35»;

call ttt info $function key data (tt_name, areap, function_key_data_ptr,
code); - --

where:

1. tt name (Input)
is the terminal type name.

2. areap (Input)
points to an area where the function key data info structure may be
allocated. If null, the system free- area is used. If the area is
not large enough, the area condition is signalled.

5-14 CC92-01

ttt info ttt info

3. function key data ptr (Output)

4. code

Notes

points to -the function key data structure allocated by this entry
point. The structure is described below.

(Output)
is a standard system status code.

The data structure allocated by this routine is declared in the include
file function_key_data.incl.p11.

dcl 1 function key data aligned based (function_key_data_ptr),
2 version fixed bin,
2 highest fixed bin,
2 sequence,

3 seq ptr pointer,
3 seq-len fixed bin (21),

2 cursor motion keys,
3 home-(0:3) like key info,
3 left (0:3) like key-info,
3 up (0:3) like key info,
3 right (0:3) like key info,
3 down (0:3) like key Info,

2 function keys (O:function key data highest refer
(functTon_key_data.highest)~ 0:31 like key_info;

dcl (KEY PLAIN init (0),
KEY-SHIFT init (1),
KEY-CTRL init (2),
KEY-CTRL AND SHIFT init (3)
) fIxed bin Tnternal static options (constant);

dcl key info unaligned based (key info ptr),
2 sequence index fixed bin (12) unsigned unaligned,
2 sequence=length fixed bin (6) unsigned unaligned;

where:

1 • version

3. highest

is the version of this structure.
function_key_data_version 1.

It should be set to

is the number of the highest function key defined.

I

3. sequence I
defines the character string holding the concatenation of all the
sequences. The sequence for a given key is defined as a sut~tring
of this string.

5-15 CC92-01

ttt info ttt info

4. seq_ptr
is the address of the string.

5. seq_len
is its length.

6. cursor motion keys
-defines some miscellaneous keys whose names connote motion of the

cursor. Note that the meaning of these keys is defined only by the
application, which mayor may not choose to take advantage of mnemonic
value of these key legends.

7. home
defines the sequences for the HOME key, used by itself, with SHIFT,
wi th CONTROL, and wi th SHIFT and CONTROL. An absent sequence will
have a sequence length of zero.

8. left
defines the left arrow key in the same way as HOME is defined.

9. up
defines the up arrow key.

10. right
defines the right arrow key.

11- down
defines the down arrow key.

12. function keys
defines the sequences for the function keys of the terminal. If the
terminal has no function key labelled "0", all sequences for 0 will
have zero length.

13. key_info
defines a given sequence.

14. sequence index
is the index of the beginning of the sequence in the string of all
sequences.

15. sequence length
is the length of the sequence. If the length is zero, the sequence
is not present.

Mnemonic values are defined for the subscripts for various key combinations:
KEY_PLAIN, KEY_SHIFT, KEY_CTRL, and KEY_CTRL_AND_SHIFT.

For example, the sequence for the LEFT arrow key with SHIFT would be:

substr (function key seqs,
function key data.left(KEY SHIFT).sequence offset,
function=key=data.leftCKEY=SHIFT).sequence=length)

5-16 CC92-01

SECTION 6

INPUTIOUTPUT MODULES

This section describes the tty 1/0 module, as well as the special purpose
communications IIO modules.. The conventions used in· giving the formats of the
attach descriptions are the same as those for the usage lines of commands.

6-1 CC92-01

bisync_ bisync_ .

Name: bisync_

The bisync I/O module performs stream I/O over a binary synchronous
communications channel.

Entry points in this module are not called directly by users; rather, the
module is accessed through the I/O system.

Attach Description

bisync_ device {-control_args}

where:

1. device
is the name of the communications channel to be used for communications
(see Appendix A for a discussion of channel names).

2. control args
can be chosen from the following:

-size N
sets to N the number of characters to be transmitted in each bisync
block. The default is 256 characters.

-ascii
uses the ASCII bisync protocol. This is the default.

-ebcdic
uses the EBCDIC bisync protocol.

-transparent
uses the transparent bisync protocol. This is the default.

-nontransparent
uses the nontransparent bisync protocol.

-bretb
causes the get chars operation to return any block of data ending
with an end of text block (ETB) character. The default is to return
only blocks ending with an end of text (ETX) control character or an
intermediate text block (ITB) control character (see the discussion
of the get_chars operation below).

-breot
causes the get chars operation to return any block of data ending
with an end of-transmission (EDT) character (see the discussion of
the get_chars operation below).

-hangup
causes an automatic hangup when the switch is detached.

-bid limit N
-sets to N the number of times a line bid is retried. The default is

30 times.

6-2 CC92-01

bisync_

-ttd time N
-sets to N the number of seconds

transmissions if output is delayed~

-ttd limit N

bisync_

of temporary text delay (TTD)
The default is 2 seconds.

-sets to N the maximum number of TTDs that are sent before sending an
EOT. The default is 30 TTDs.

-multi record {N}
s~ecifies that blocking of logical records is done by the I/O module.
If specified, N is the maximum number of records per block. If N is
not given, the number of records per block is as many as fit.

Open Operation

The bisync liD module supports the stream_input, stream_output, and
stream_input_outputopening modes.

Put Chars Operation

The put chars entry splits the data to be written into blocks according to
the -size control argument in the attach de·scription. The appropriate bisync
control characters are added to the beginning and end of each block. Each block
except the last is transmi tted wi th an ETB control character at the end. The
last block is transmitted with an ETX control character at the end.

Get Chars Operation

The get chars entry reads and decodes bisync blocks, removes the control
characters, and returns the message text to the caller's buffer.

Characters are returned up to the next logical bisync break character.
Normally this is ETX. If -bretb is specified in the attach description, ETB is
also considered to be a break character. If -mul ti record is specified, the
inter-record ITB characters are also considered to be break characters. In
addition, if -breot is specified, error_table_$end_of_info is returned when an
EOT is read.

Get Line Operation

The get line entry reads and decodes bisync blocks, removes the control
characters, and returns the message text to the caller's buffer. Characters are
returned until either a newline character is placed in the buffer, or the buffer
is filled. The get line entry does not distinguish between blocks ending in ETB
or ITB and blocks ending in ETX.

6-3 CC92-01

bisync_ bisync_

Control Operation

Several of the control operations supported by the bisync liD module are
identical to those supported by the tty_ liD module, and are dOcumented there.
They include:

abort
resetread
resetwrite
hangup
read status
write status
event-info

The following additional control operations are supported by this liD module.

set bid limit
where info ptr points to a fixed binary bid limit to replace the bid limi t
specified in the attach description.

get bid limit
- whire info ptr points to a fixed binary bid limit that is set ~ither

to the value specified at attach or in the last get_bid_Iimit order.

set bsc modes
whire info_ptr points to a structure of the following form:

dcl 1
2
2
2

bsc modes,
transparent bit(1) unal,
eb~dic bit(1) unal,
mbz bit (34) unal;

The setting of the transparent and ebcdic bits then replaces the values
specified in the attach description.

get_bsc modes
returns the structure described under set bsc modes.

runout
has meaning only in multi-record mode and writes the current partially
filled block.

set size
where info ptr pOints to a fixed binary buffer si ze. This new si ze
rep I ace s t n e s i z e spec i fie din the at ta.c h des c rip t to n • It may not be
larger than the size originally specified in the attach description.

get_size
where info ptr pOints to a fixed binary buffer size and returns the
current si ze.

6-4 CC92-01

bisync_ bisync_

set multi record mode
where info ptr points to a fixed binary record count. If the count is
1, the liD-module enters single record mode. Otherwise, multi-record
mode is entered and the count specifies the maximum number of records
per block. Zero (or a null info ptr) specifies no fixed limit; i.e.,
as many records as fit are blocked.

get multi record mode
- where info -ptr points to a fixed binary record count. This order

returns the ·mul tirecord record count. A 1 indicates single record
mode.

send nontransparent msg
-writes the data specified in nontransparent bisync mode, regardless of

the current transparency mode. This order is used to send short
nontransparent control sequences while in transparent mode. The info_ptr
points to a structure of the following form:

dcl 1
2
2

end write mode

order msg,
data Ten fixed bin,
data-char (order_msg.data_len);

causes the liD module to block until all outstanding output has been
written.

get_chars
performs a get chars operation and returns additional information about
the input. The info_ptr points to a structure of the following form:

dcl 1
2
2
2
2
2
2
2

where:

get chars info,
buf-ptr ptr,
buf-len fixed bin(21),
data len fixed bin(21),
hbuf-ptr ptr,
hbuf-len fixed bin(21),
header len fixed bin(21),
flags,-
3 etx bit(1) unal,
3 etb bit(1) unal,
3 soh bit(1) unal,
3 eot bit(1) unal,
3 pad bit(32) unal;

buf ptr, buf len (Input)
define an input buffer for the text of the message.

data len (Output)
is set to the number of characters of text read.

hbuf ptr, hbuf len (Input)
-define an-input buffer for the header of the message.

header len (Output)
is set to the header's length in characters.

etx (Output)
indicates that text is terminated with an etx character.

6-5 CC92-01

bisync_ bisync_

etb (Output)
indicates that text is terminated with an etb character.

soh (Output)
indicates that the data includes a header.

eot (Output)
indicates that an eot was received.

pad (Output)
is unused space in this structure.

hangup proc
sets up a specified event call channel to be signalled over, and a
procedure to be called, if the communications channel hangs up. The
hangup_proc input structure has the following form:

dcl 1 hangup proc
2 entry
2 datap
2 prior

aligned,
entry variable,
ptr,
fixed bin;

where:

entry

datap

p·r ior

Modes Operation

is the entry to call when a hangup is detected.

is a pointer to data for the hangup procedure.

is the ipc event call priority to be associated with hangup
notification.

This liD module does not support the modes operation.

6-6 CC92-0 1

Name: g 115_

The g115 I/O module performs stream I/O to a remote I/O terminal that has
the characterIstics of the Honeywell Level 6 remote batch facility (G115 type).
The hardware options currently supported are defined by the control arguments
described below.

Entry points in this module are not called directly by users; rather, the
module is accessed through the I/O system.

Attach Description

where control arguments may be chosen from the following and are optional with
the exception of -device, -tty, and -comm: I

-device STR
attaches the subdevice specified by STR. STR may be printer, punch,
reader, or teleprinter.

-auto call N
- specifies the phone number, N, to be called via the auto call unit

on the specified communications channel.

-tty STR
connects the remote I/O terminal to the communications channel named
STR.

-comm STR

-ascii

uses the communications I/O module specified by STR. Currently, the I
only permissible value for STR is "rci". This argument is required
for compatibility with all other I/O modules used by the I/O daemon.

use s the AS C I I c h a r act e r set. Th i sis the de fa u It. Th is a r gum en t
is accepted for compatibility with other terminal I/O modules.

-physical line length N, -pll N
specifies the physical line length, N, of the output device. This
argument is accepted for compatibility wi th other terminal I/O modules.

-terminal type STR, -ttp STR
STR specifies the terminal type whose conversion, translation, and
special tables defined in the user or system terminal type table
(TTT) are used to convert and translate input and output to and from
the device. If not specified, no conversion or translation is performed.
For more information about the allowable conversion values see "Notes"
below.

Open Operation

The g115 I/O module supports
stream_input_output opening modes.

stream_input, stream_output, and

7/82 6-7 CC92-01A

Put Chars Operation

The put chars entry blocks the data to be written into blocks of up to 324
characters and transmits them to the specified communications channel.

Get Chars Operation

The get chars entry reads blocks of up to 324 characters and returns the
number of characters requested up to the next record separator.

Control Operation

This I/O module supports all the control operations supported by the tty_
I/O module. In addition, it supports the following:

select device
selects the subdevice, either printer, punch, or teleprinter, to which
output is next directed. The input structure is of the form:

dcl device char(32);

runout
transmi ts any data stored in the output buffer.
structure.

There is no input

hangup proc

reset

sets up a specified event call channel to be signalled over, and a
procedure to be called, if the communications channel hangs up. The
hangup_proc structure has the following form:

dcl 1 hangup proc aligned,
2 entry entry variable,
2 datap ptr,
2 prior fixed bin;

where:

entry

datap

prior

is the entry to call when a hangup is detected.

is a pointer to data for the hangup procedure.

is the ipc event call pr ior i ty to be associated wi th hangup
notification.

sets the edited mode of output conversion.

end write mode
prevents the g115 module from returning until all outstanding output
has been written to the attached channel.

6-8 CC92-01

Modes Operation

This 1/0 module supports the rawi and rawo modes. It also supports the
nonedited and default modes, which set and reset the edited output conversion,
if it has been enabled by the -terminal_type control argument.

Notes

The only allowable values in the output conversion table are 00 and any
values greater than 16. All values defined in the description of the tty 1/0
module are allowed for input conversion. Input and output translation tables
may be up to 256 characters in length.

6-9 CC92-01

The hasp host I/O module simulates record oriented I/O to a single device
of a workstation whIle communicating wi th a host system using the HASP communications
protocol. See the "Notes" below for more detail.

Entry points in this module are not called directly by users; rather, the
module is accessed through the I/O system.

This I/O module must be attached to a subchannel of a communications channel
configured to use the HASP ring-O multiplexer. See the description of the HASP
multiplexer in MAM Communications.

This I/O module is designed primarily for use by the Multics I/O daemon.

Attach Description

where control arguments may be chosen from the following and are optional, with
the exception of -comm, -tty, and -device:

-comm hasp
is required for compatibility with other I/O modules used by the I/O
daemon.

-tty channel name
specifies the communications channel to be attached. The channel
must be a subchannel of a HASP multiplexed channel (e.g., a.h014.prt3).

-device STH
specifies the type of device for this attachment. STH must be one
of "teleprinter", "reader", "printer", or "punch". The type specified
by this control argument must match the type of device attached to
the channel name defined above.

-terminal type STH, -ttp STH
is- optional and is used to define the character set used by the
remote system. STH must be the name of a terminal type defined in
the si te' s Terminal Type Table (TTT). See the section "Character
Set Specification" below for more information, including the default
character set used if this control argument is omitted.

6-10 CC92-01

-physical line length N, -pll N
is-accepted for compatibility with other IIO modules used by the 1/0
daemon, but is ignored by this 1/0 module.

-ebcdic
is accepted for compatibility with other 1/0 modules used by the 1/0
daemon, but is ignored by this 1/0 module.

Open Operation

The hasp host 1/0 module supports the sequential_input t sequential_output,
and sequentiaI_input_output opening modes.

Write Record Operation

The write record entry converts the supplied data record from ASCII to the
remote sys tern's char acter set, per forms data (!lompression, and tr ansmi ts the record
to the HASP multiplexer.

The format of the record supplied to this liD module follows. This structure
and the referenced constants are contained in the terminal 10 record. incl. pl1
include file:

dcl 1 terminal io record aligned based,
2 version fixed binary,

where:

2 deVice_type fixed binary,
2 slew control,

3 slew type fixed binary (18) unaligned unsigned,
3 slew-count fixed binary (18) unaligned unsigned,

2 flags,-
3 binary bit (1) unaligned,
3 preslew bit (1) unaligned,
3 pad bit (34) unaligned,

2 element size fixed binary,
2 n elements fixed binary (24)i
2 data, -

3 bits (terminal io record n elements refer
(terminal io record.n elements»

bit (terminal io record element size refer
(terminal_io_record.element_size» unaligned;

version (Input)
is current the version of this structure. This version of the structure is
given by the value of the named constant terminal_io_record_version_1.

device type (Input)
is the type of device to which this record is to be written. The acceptable
values are TELEPRINTER DEVICE and READER DEVICE.

6-11 CC92-01

I slew control (Input)
is ignored by this lID module as the HASP communications protocol does not
define slew operations for either the teleprinter or card reader.

flags.binary
must be set to
transmission.)

(Input)
"O"b. (This liD module does not support binary data

flags.preslew (Input)
must be set to "O"b.

(Tnnllt) element size
must be set to 9. (Thi;t'I-/o' module only supports transmission of characters.)

n elements (Input)
is the number of characters in the record to be written.

data.bits (Input)
is the actual data. This lID module expects to be supplied ASCII characters.

Read Record Operation

The read record entry returns a single record from the device, basically
performing the inverse of the functions described for the write record operation.
Additionally, for line printer attachments, the carriage control information in
the record is converted into the appropriate slew information in the
terminal io record.

The format of the record which this lID module returns in the supplied
buffer is as follows. The structure and the referenced constants are contained
in the terminal io record include file:

dcl 1 terminal io record aligned based,
2 version fixed binary,

where:

2 device type fixed binary,
2 slew control,

3 slew type fixed binary (18) unaligned unsigned,
3 slew-count fixed binary (18) unaligned unsigned,

2 flags,-
3 binary bit (1) unaligned,
3 preslew bit (1) unaligned,
3 pad bit (34) unaligned,

2 element size fixed binary,
2 n elements fixed binary (24),
2 data,

3 bits (terminal io record n elements refer
(terminal io record.n elements»

bit (terminal io record element size refer
(terminal_io_record.element_size» unaligned;

version (Output)
is the current version of this structure. This version of the structure is
given by the value of the named constant terminal_io_record_version 1.

6-12 CC92-01

device type (Output)
is the type of device from which this record was be read. Its possible
values are TELEPRINTER_DEVICE, PRINTER_DEVICE, or PUNCH~DEVICE.

slew control (Output)
if the input device is a line printer, this sub-structure is filled in with
the interpretation of the HASP carriage control record present in each line
printer record; otherwise, it is always set to the value specified below.

slew type (Output)
-for aline pr inter, is set to the type of slew oper ation to be per formed

beforel after "pr inting" the data in the record and may be ei ther SLEW BY COUNT
or SLEW TO CHANNEL. For a teleprinter or punch it is set to SLEW BY COUNT.
(The data -returned is processed by the caller of this 1/0 module; this
processing is herein termed the "printing" ot the data.)

slew count (Output)
-for a line printer, is set to the value to be interpreted according to

slew control.slew type above. For a teleprinter or punch it is set to 1.
(Output) -

flags.binary (Output)
is always set to "O"b.

flags.preslew (Output)
for a line printer, is set to "1"b if the slew operation above is to be
performed before "printing" the data in the record or is set to "O"b if the
slew operation is to be performed after "printing". For other than the
line printer, it is always set to "O"b.

element size (Output)
is-always set to 9.

n elements (Output)
is set to the number of characters returned in the record.

data.bits (Output)
is the actual returned data. This 1/0 module will convert the dat~ input
from the remote host to ASCII.

Control Operation

This 1/0 module supports the following control operations:

runout
ensures that all data has been transmi tted to the HASP mul tiplexer
from where it is guaranteed to be transmitted to the terminal.

end write mode
ensures that all previously written data has been transmitted to the
HASP multiplexer and then writes an end-of-file record for the device.

6-13 CC92-01

read status
-determines whether or not there are any records waiting for a process

to read. The info ptr should point to the following structure, which
is filled in by the call:

dcl 1 info structure aligned,
2 ev-chan fixed bin (71),
2 input_available bit (1);

where:

ev chan (Output)
is the event channel used to signal the arrival of input.

input available (Output)

resetread

Indicates whether input is available:
"O"b no input
"l"b input

discards any pending input.

resetwrite
discards any as yet unprocessed output.

hangup proc
is used to specify a procedure to be invoked when this attachment's
channel is hung up. The info_ptr points to the following structure:

dcl 1 hangup proc info aligned,
2 procedure entry variable,
2 data ptr pOinter,
2 priority fixed binary;

where:

procedure (Input)
is the procedure to be invoked when the hangup occurs.

data_ptr (Input)
is a pointer to be supplied to the procedure.

priority (Input)
is the priority for the hangup event.

A detailed explanation of data ptr and priority may be found in the
description of ipc_ in the MPM Subsystem Writer's Guide.

select device, and
reset -

are ignored rather than rejected for compatibility with other 1/0 modules
used by the 1/0 daemon.

signon record
no signon record

- may only be issued on the operator's console subchannel of the mul tiplexer.
These are described in the "SIGNON Processing" section.

6-14 CC92-01

Modes Operation

This module accepts the "non edited" and "default" modes for compatibility
with other 1/0 modules used by th~I/O daemon, but ignores them.

Character Set Specification

This 1/0 module allows .the specification of the character set used by the
remote system through the -terminal_type attach option.

If -terminal type is given, the referenced terminal type must be defined in
the site's TTT wIth both an input and output translation table. This module
will use these translation tables to convert data from the remote system to
ASCII, and from ASCII to the remote system's character set.

If -terminal type is not given, the remote system is assumed to use EBCDIC
as its character ~et. In this case, the subroutine ascii to ebcdic is used to
convert data sent to the system; the subroutine ebcdic-to -ascii - is used to
convert data received from the remote system. (See MPM Subsystem Writers' Guide
for a description of these translations.)

SIGNON Processing

Before communicating wi th certain remote systems, Mul tics must send the
SIGNON record. This sPecially formatted record identifies Multics to the remote
system.

For these systems, the Multics multiplexer must be configured to use
"signon mode" (see MAM Communications)~ Before data transmission is permitted,
the signon record control order must be issued on an 1/0 switch attached to the
operator's-console subchannel of the multiplexer.

If the remote system does not expect a SIGNON record, the "no signon record"
control order may be used to validate that the multiplexer channel is properly
configured.

signon_record CONTROL ORDER

This control order supplies a SIGNON record for transmission to the remote
system. The info ptr must locate the following structure which is declared in
the include file hasp_signon_record_info.incl.p11:

del 1 signon record info aligned based,
2 version fixed-binary,
2 pad bit (36),
2 event channel fixed binary (71),
2 record character (80) unaligned;

6-15 CC92-01

where:

version

pad

is the current version of this structure. It must have the value of the
named constant SIGNON RECORD INFO VERSION 1. - - -

is reserved for future expansion and must be zero.

event channel
is an event-wait channel whose use is described below.

record
is the actual text of the SIGNON record in ASCII. This 1/0 module will
translate the text to uppercase and the remote system's character set.

If the status code returned by this control order is zero, the calling
program must block on the above event-wai t channel. When the wakeup arrives,
the event message will indicate the success or failure of the control order. It
will have one of the following values (found in the named include file):

HASP SIGNON OK
indicates that the remote system has accepted the SIGNON record.

HASP SIGNON REJECTED
indicates that the remote system has rejected the record; the caller
should try again with a different record.

HASP SIGNON HANGUP
indicates that the remote system has rejected the record and disconnected
the multiplexer.

If the status code returned by the control order is error table $invalid state,
the multiplexer is not configured to send a SIGNON record.- - -

no signon_record CONTROL ORDER

This control order validates that the multiplexer is not configured to send
a SIGNON record to the remote system. This order does not accept an info structure.

If the returned status code is error table $invalid state, the multiplexer
is configured to send a SIGNON record, and a "signon record" must be issue·d on
this subchannel. -

6-16 CC92-01

Notes

As stated above, this lID module is used to simulate the operation of a
single device of a HASP workstation.

If the simulated device is a card reader, the caller supplies records to
this module which are then formatted and transmitted to the remote host. In
other words, a card reader attachment through this swi tch is an output-only
attachment.

Similarly, this 1/0 module receives records from the remote host when the
simulated device is either a line printer or card punch. Thus, line printers
and card punches attached through this lID module are input-only devices.

Special 1/0 daemon software is provided to allow Mul tics to simulate the
operations of a workstation in order to submit jobs to remote systems and receive
those jobs' output print and punch files. This workstation simulator uses this
lID module for communications with the remote host.

6-17 CC92-01

I has~workstation_

Name: hasp_workstation_

The hasp workstation I/O module performs record oriented I/O to a single
device of a remote terminal that supports the HASP communications protocol.

Entry points in this module are not called directly by users; rather, the
module is accessed through the I/O system.

This module must be attached to a subchannel of a communications channel
configured to use the HASP ring-O multiplexer. (See the description of the HASP
multiplexer in MAM Communications.)

The module is designed primarily for use by the Multics I/O daemon. It
expects output for the operator's console and line printers to have been properly
formatted by the prt_conv_ module.

Attach Description

hasp_workstation_ -control args

where control arguments may be chosen from the following and are optional, with
the exception of -comm, -tty, and -device:

-comm hasp
is required for compatibility with other I/O modules used by the I/O
daemon.

-tty channel name
speci1ies the communications channel to be attached.
must be a subchannel of a HASP multiplexed channel (eg:

-device STR

The channel
a.h014.prt3).

specifies the type of device for this attachment. STR must be one
of "telepr inter", "reader", "printer", or "punch". The type specified
by this control argument must match the type of device attached to
the channel name defined above.

-terminal type STR, -ttp STR
is- optional and is used to define the character set used by the
remote terminal. STR must be the name of a terminal type defined in
the sit e 's T e r min a I Ty pe Tab 1 e (T T T) • See t he sec t ion " C h a r act e r
Set Specification" below for more information, including the default
character set used if this control argument is omitted.

-physical line length N, -pll N
is-accepted for compatibility with other I/O modules used by the I/O
daemon, but is ignored by this I/O module.

6-18 CC92-01

hasp_workstation

-ebcdic
is accepted for compatibility with other 1/0 modules used by the 1/0
daemon, but is ignored by this 1/0 module.

-top of page STR
- specifies the sequence of carriage control operations to be used to

move to the top of the next page. This control argument is only
permitted for a line printer. The format of STR is described in
"Carriage Control Specifications" below. (Default is "cl".)

-inside page STR
specifies the sequence of carriage control operations to be used to
move to the top of the next "inside" page. An "inside" page is the
page on which the 1/0 daemon will print head sheets. This control
argument is only permitted for a line printer. The format of STR is
descr i bed in "Carr iage Control Speci fications" below. (Defaul tis
"cl".)

-outside page STR
s~ecifies the sequence of carriage control operations to be used to
move to the top of the next "outside" page. An Uoutside" page is
the page on which the 1/0 daemon will print tail sheets. This control
argument is only permitted for a line printer. The format of STR is
described in "Carriage Control Specifications" below. (Default is
"c1".)

-forms STR
specifies the type of forms to
through this attachment. STR is
characters whose interpretation
argument is only permitted for a
string.)

Open Operation

be used to pr int output directed
an arbitrary string of, at most, 32
is site dependent. This control

line printer. (Default is the null

The hasp workstation 1/0 module supports the sequential_input,
sequential_output, and sequential_input_output opening modes.

Write Record Operation

The write record entry converts the supplied data record from ASCII to the
remote terminal's character set, converts the supplied slew control into the
proper carr iage control sequences for line pr inter attachments, performs data
compression, and transmits the record to the HASP multiplexer.

6-19 CC92-0l

•

I

and
The format of the record supplied to this I/O module follows. This structure
the referenced constants are contained in the terminal io record include

file:

dcl 1 terminal io record aligned based,
2 version fixed binary,
2 device type fixed binary,
2 slew control,

3 slew type fixed binary (18) unaligned unsigned,
3 slew-count fixed binary (18) unaligned unsigned,

2 flags,-
3 binary bit (1) unaligned,
3 preslew bit (1) unaligned,
3 pad bit (34) unaligned,

2 element size fixed binary,
2 n elements fixed binary (24),
2 data,

where:

3 bits (terminal io record n elements refer
(terminal io record.n elements))

bit (terminal io record element size refer
Cterminal_io_record.element_size)) unaligned;

version (Input)
is the current version of this structure. This version of the structure
is given by the value of the named constant terminal_io record_version 1.

device type (Input)
is the type of device to which this record it to be written. The
acceptable values are TELEPRINTER DEVICE, PRINTER_DEVICE, or
PUNCH DEVICE. -

slew control (Input)
need only be supplied by the caller if device type is PRINTER DEVICE
and specifies the slew operation to be performed after printIng the
data in the record.

slew type (Input)
-specifies the type of slew operation.

SLEW BY COUNT, SLEW TO TOP OF PAGE,
SLEW=:TO=:OUTSIDE_PAGE, or SLEW TO CHANNEL.

slew count (Input)

The possible values are
SLEW_TO_INSIDE_PAGE,

is interpreted according to the value of slew_control.slew_type.

flags.binary (Input)
must be set to "O"b. (This I/O module does not support binary data
transmission.)

flags.preslew (Input)
must be set to "O"b. (This I/O module does not support slew operations
before printing the record's data.)

element size
must be set to 9.
characters.)

(Input)
(This I/O module only supports transmission of

6-20 CC92-01

n elements (Input)
is the number of characters in the record to be written.

data.bits (Input)
is the actual data. This 1/0 module expects to be supplied ASCII
characters.

Read Record Operation

The read record entry returns a single record from the device, basically
performing th~inverse of the functions described for the write_record operation.

The format of the record this 1/0 module .returns in the supplied buffer
follows. This structure and the referenced constan ts are contained in the
terminal io record include file:

del 1 terminal io record aligned based,
2 version fixed binary,

where:

2 device type fixed binary,
2 slew control,

3 slew type fixed binary (18) unaligned unsigned,
3 slew-count fixed binary (18) unaligned unsigned,

2 flags,-
3 binary bit (1) unaligned,
3 preslew bit (1) unaligned,
3 pad bit (34) unaligned,

2 element size fixed binary,
2 n elements fixed binary (24),
2 data,

3 bits (terminal io record n elements refer
(terminal io record.n elements»

bit (terminal io record element size refer
(terminal_io_record.element_size» unaligned;

version (Output)
is the current version of this structure. This version of the structure is
given by the value of the named constant terminal io record version 1.

device_type (Output)
is the type of device from which this record was read. Its possible values
are TELEPRINTER DEVICE or READER DEVICE.

slew control.slew type (Output)
-is always set to SLEW_BY_COUNT.

slew control.slew count (Output)
is always set to 1.

flags.binary (Output)
is always set to "O"b.

flags.preslew (Output)
is always set to "O"b.

6-21 CC92-01

• element size
is-always set to 9.

(Output)

n elements (Output)
is set to the number of characters returned in the record.

data.bits (Output)
is the actual returned data. This 1/0 module will convert the data input
from the remote workstation to ASCII.

Control Operation

This 1/0 module supports the following control operations:

runout
ensures that all data has been transmi tted to the HASP mul tiplexer
from where it is guaranteed to be transmitted to the terminal.

end write mode
ensures that all previously written data has been transmitted to the
HASP multiplexer and then writes an end-of-file record for the device.

read status
-determines whether' Of' not there are any records waiting for a process

to read. The info ptr should point to the following structure, which
is filled in by the call:

dcl 1 info structure aligned,
2 ev chan fixed bin (71),
2 input_available bit (1);

where:

ev chan (Output)
is the event channel used to signal the arrival of input.

input_available (Output)

resetread

indicates whether input is available:
"O"b no input
"1"b input

flushes any pending input.

resetwrite
flushes any as yet unprocessed output.

hang up proc
is used to specify a procedure to be invoked when this attachment's
channel is hung up. The info_ptr points to the following structure:

del 1 hangup proc info aligned,
2 procedure entry variable,
2 data ptr pOinter,
2 priorit.y fixed binary;

6-22 CC92-01

where:

procedure (Input)
is the procedure to be invoked when the hangup occurs.

data_ptr (Input)
is a pointer to be supplied to the procedure.

priority (Input)
is the priority for the hangup event.

A detailed explanation of data ptr and priority may be found in the
description of ipc_ in the MPM Subsystem Writer's Guide.

select device, and
reset -

are ignored rather than rejected for compatibili ty wi th other I/O modules
used by the I/O daemon.

Modes Operation

This module accepts the "non edited" and "default" modes for compatibility
with other I/O modules used by the I/O daemon, but ignores them.

Character Set Specification

This I/O module allows the specification of the character set used by the
remote workstation through the -terminal_type attach option.

If -terminal type is given, the referenced terminal type must be defined in
the si te' s TTT wIth both an input and output translation table. This module
will use these translation tables to convert data from or to the remote workstation
from or to ASCII, respectively.

If -terminal type is not given, the remote system is assumed to use EBCDIC
as its character set. In this case, the subroutine ascii to ebcdic is used to
convert data sent to the workstation; the subroutine ebcdic to ascii- is used to
convert data received from the remote system. (See MPM Subsystem WrIters' Guide
for a description of these translations.)

6-23 CC92-01

• Carriage Control Specifications

Multics 1/0 daemon software uses three special slew operations -- skip to
top of the next page, skip to top of the next inside page, and skip to the top
of the next outside page. (An inside page is the type of page on which the 1/0
daemon would print a head sheet; an outside page is the type on which it would
print a tail sheet.)

By default, this 1/0 module assumes that all of these slew operations can
be simulated on the remote workstation ~ s line pi"inter by sKlpping to channel
one. However, through use of the -top of page, -inside page, and -outside page
control arguments, any sequence of carrIage motions may be specified to simulate
these slew operations.

The format of this carriage control specification is:

Tn: Tn: Tn: ••.

where "n" is a numeric value and "T" represents how to Interpret that numeric
value. "T" may be either "c" representing skip to channel "n", or "s" representing
slew "n" lines.

For example, the string:

c7:s5:c12

means skip to channel seven, space five lines, and finally skip to channel
twelve.

6-24 CC92-01

ibm2780 ibm2780

Name: ibm2780_

lne ibm2780 1/0 moaUle performs stream 1/0 to a remote 1/0 terminal that
has the characteristics of an IBM 2780 data transmission terminal. The hardware
options currently supported are defined by the control arguments described below.

Entry pOints in this module are not called directly by users; rather, the
module is accessed through the liD system.

This module in turn constructs an attach description for the module specified
in the -comm control argument, passing the attach information for ascii or ebcdic,
tty, transparent or nontransparent, and all other attach information specified
by the caller.

Attach Description

ibm2780_ -control args

where control arguments may be chosen from the following and are optional, with
the exception of -tty and -comm:

-ascii

-ebcdic

transmits control information and data in ASCII.

converts control information and data to its EBCDIC representation
before transmission. This is the default.

-mul ti recor"d
-transmits multiple records (up to 7) as a block, rather than separately.

The default is single record transmission.

-physical line length N, pll N
sets the maximum character width of the remote 110 terminal printer
to N characters. The default is 80 characters. This variable is
used to set tabs and pad records if the transparent option is specified.

-horizontal tab, -htab
supports tab control on the remote 1/0 terminal printer. Tabs are
set every 10 spaces. The default is no tab control.

-tty STR
connects the remote 1/0 station to the communications channel named
STR.

-comm STR
uses the communications liD module specified by STR.

-transparent
uses a transparent communication protocol.

-nontransparent
uses a nontransparent communication protocol. This is the default.

6-25 CC92-01

ibm2780_ ibm2780_

-device STH
spec i fies that thi s attachment is associated wi th the dev ice STR.
Currently, it is accepted only for compatibility with other 1/0 modules.

-carriage ctl STR
the eight-character string STR, taken two characters at a time, sets
the four carriage control characters that specify the advance of 0,
1, 2, and 3 lines. The default set of characters is ESCI, ESCI,
E·SCS, and ESCT, where the mnemonic ESC means the ASCII escap·e character.

-slew ctl STR
the six-character string STR, taken two characters at a time, sets
the slew control characters that specify top of form, inside page,
and outside page. The default set of characters is ESCA, ESCA, and
ESCA.

-printer select STR
the two-character string STR sets the printer select. The default
printer select string is ESC/.

-punch_select STR
the two-character str ing STR sets the punch· select. The defaul t
punch select string is ESC4.

-terminal type STR, -ttp STR
SiR specifies the terminal type whose conversion, translation, and
special tables defined in the user or system terminal type table
(TTT) are used to convert and translate input and output to and from
the device. If not specified, no conversion or translation is performed.
For more information about the allowable conversion values see "Notes"
below.

Open Operator

The ibm2780 1/0 module supports stream_input,
stream_input_output opening modes.

Put Chars Operation

stream_output, and

The put chars entry splits the data to be written into blocks of 80 or 400
characters, aepending on whether multirecord mode is enabled, and transmits the
number of characters specified to the specified communications 1/0 modul~. The
blocks are of fixed or variable length, depending on whether transparent mode is
enabled or not, respectively.

Get Chars Operation

The get chars entry reads characters up to 80 or 400 characters, depending
on whether mul tirecord is enabled, and returns the number requested, up to the
next record separator.

6-26 CC92-01

ibm2780 ibm2780

Control Operation

This 1/0 module supports all the control operations supported by the
communications 1/0 module specified in the attach description. In addition, it
supports the following:

set bsc modes
sets the character mode, either aSC11 or ebcdic and transparency. The
input structure is defined as follows:

dcl 1 set bac modes aligned,
2.char mode bit(1), unaligned,
2 transparent bit(1) unaligned;

where char mode = "1"b if ebcdic and "O"b if asc11, and transparent =
"1"b if transparency is enabled and "O"b if not.

select device
selects the subdevice (either printer, punch or teleprinter) to which
output is next directed. The input structure is of the form:

dcl device char(32) based;

set multi record mode
sets-the number of records per block. The input structure is of the
form:

dcl record number fixed bin based;

Modes Operation

This module supports the nonea 1 r,ed and aer aUl r, modes, which set and reset
the edited output conversion, if it has been enabled by the -terminal_type control
argument.

Notes

The only allowable values in the output conversion table are 00 and any
values greater than 16. All values defined in the description of the tty 1/0
module are allowed for input conversion. Input and output translation tables
may be up to 256 characters in length.

6-27 CC92-01

I

ibm3270

Name: ibm3270

The ibm3270 1/0 module performs stream 1/0 to and from an IBM 3270 Information
Display System (or any compatible device) over a binary synchronous communications
channel.

NOTE: Do not use this module to communicate with a 3270 device over a
multiplexed channel. Use the tty_ module in that case.

This module description assumes a knowledge of the IBM 3270 communications
protocol as described -in the IBM 3270 Information Display System Component
Description, Order No. GA27-2749=4.----

Entry points in this module are not called directly by the user; rather,
the module is accessed through the 1/0 system.

Attach Description

ibm3270_ device {-control_args}

where:

1. device
is the name of the communications channel to be used.

2. control args
can be chosen from the following:

-async
specifies that the 1/0 module is to return to its caller immediately
after performing a read order (described below under "Control
Operation") when input is not available, rather than blocking and
waiting for a response from the device.

-ebcdic
uses the EBCDIC bisync protocol and character code.
defaul t.

-ascii
uses the ASCII bisync protocol and character code.

Open Description

This is the

This 1/0 module supports only the stream input output opening mode. If the
-async control argument is specified in the attach-description (see above), the
open operation may return the status code error table $request pending; in this
case, the caller should perform an event info order(seeoelow, "Control Operation")
and block on the returned event channel; when the process receives a wakeup on
this channel, the open operation should be retried.

7/82 6-28 CC92-01A

ibm3270_

Put Chars Operation

This 1/0 module does not support the put chars operation. Output is sent
to the device by means of the write order (see~'Control Operation" below).

Get Chars Operation

This 1/0 module does not support the get chars operation. Input is read
from the device by means of the read order (see-"Control Operation" below).

Get Line Operation

This 1/0 module does not support the get_line operation.

Control Operation

This 1/0 module supports all the orders supported by the tty 1/0 module,
as well as those described below. All orders are supported when the 1/0 switch
is open, except for event_info, which is supported when the 1/0 switch is attached.

event info
returns the name of the event channel over which wakeups are sent when
input or status is received from the communications channel. The info ptr
must point to an aligned fixed binary (71) number, in which the value
of the event channel is returned. This order should be used if the
-async control argument appears in the attach description (see "Attach
Description" above).

general poll
causes a general poll operation to be initiated at the 3270 controller.
Once the 1/0 swi tch is open, ei ther a general poll order or a poll
order (see below) must be issued before any fnput can be received;
however, the general poll order does not have to be repeated, as polling
is automatically resumed when appropriate by the 1/0 module. The info ptr
is not used. -

stop general poll

poll

-causes automatic general polling to stop; polling is not resumed until
a general=poll order is issued. The info_ptr is not used.

causes a specific poll operation to be performed on a single device
connected to the controller. The info ptr must point to a fixed binary
number containing the identification number of the device to be polled.
To ensure that the device is polled as soon as possible, this order
usually should be preceded by a stop_general_poll order.

6-29 CC92-01

ibm3270_

read

I

ibm3270_

causes input or status information from a single device to be returned,
if any is available. If no status or input is available for any
device on the communications channel, then the process blocks if the
-async control argument was not specified in the attach description;
if it was specified, a status code of error table $request pending is
returned. - - -

The info ptr must point to a user-supplied structure of the following
form: -

del read ctl aligned,

where:

2 versTon fixed bin,
2 areap ptr,
2 read infop ptr,
2 max len fixed bin,
2 max-fields fixed bin;

version (Input)
is the version number of the structure. It must be 1.

areap (Output)
is a pointer to an area in which the read info structure (see
below) is allocated.

read infop (Output)
is a pointer to the read info structure (see below).

max len (Output)
is the largest number of characters that can be returned in a
single data field (see below).

max fields (Output)
is the largest number of data fields (see below) that can be
returned in the read info structure.

A read info structure is allocated by the 1/0 module at the address
specified by read ctl.read infop. This structure must be freed by the
calling program. -The read=info structure has the following form:

dcl 1 read info aligned based
2 versIon fixed bin;
2 next read infop ptr,
2 controller fixed bin,
2 device fixed bin,
2 reason,

3 key fixed bin,
3 sub key fixed bin,
3 code fixed bin(35),

2 status,
3 bits bit(12) unal,
3 fill bit(24) unal,

2 cursor position fixed bin,
2 max fields fixed bin,
2 max-len fixed bin,
2 mod-fields fixed bin,
2 dati (read ctl.max fields refer (read info.max fields)),

3 field position fTxed bin, - -
3 contents char (read ctl.max len

refer (read_info.max_len)) var;

6-30 CC92-01

ihm3270

where:

version
is the version number of this structure. The structure described
here is version 1.

next read infop
-is a pointer to the next read info structure used by the 1/0

module. (The calling program should not attempt to make use of
this item.)

controller
is the identi fication number of the 3270 controller from which
the data or status has been received.

device
is the identification number of the particular device (attached
to the specified controller) that produced the data or status
information.

reason

key

describes the event that caused the struct~re to be filled in.

identifies the nature of the event, which is either an error or
status condition or an action on the part of the 3270 operator.
It may have any of the following values:

1 -- an error was detected at the dev ice. A status code de.scr i bing
the error is returned in reason.code (see "code" below).

2 -- the device reported status. The particular status is described
by status.bits (see "status" below).

3 the operator pressed the ENTER key.

4 the operator pressed one of the program function (PF) keys.
The particular key is identified by reason.sub_key (see
"sub_key" below)*

5 -- the operator pressed one of the program attention (PA) keys.
The particular key is identified by reason.sub_key (see
"sub_key" below).

6 the operator pressed the CLEAR key.

7 the operator inserted a card in the identi fication card reader.

8 the operator used the selector pen on an "attention" field.

9 the operator pressed the TEST REQUEST key.

sub_key
is the number of the PF or PA key pressed if reason.key is 4 or
5, respectively.

code
is a status code describing an error at the device if reason.key
is 1.

status
contains the device status if reason.key is 2.

6-31 CC92-01

write

cursor position
is the current position of the cursor on the display screen.

max fields
is the number of elements in the data·array (below).

max len
is the length of the longest contents string (below).

mod fields

data

is the number of elements in the data array (below) that are
actually filled in in this instance of the structure.

describes the data fields containing the input. No data fields
are provided if reason.key is 1, 2, 5, or 6.

field position
Is the starting buffer address of the data field.

contents
is the contents of the data field. It is al~ays a null string if
reason.key is 8.

causes commands and data to be sent to the 3270. The info ptr must
point to a user-supplied structure of the following form: -

dcl 1 write info aligned,
2 version fixed bin,
2 controller fixed bin,
2 device fixed bin,
2 from device fixed bin,
2 command fixed bin,
2 write ctl char,

3 bits unal,
4 print format bit(2) unal,
4 start-printer bit(1) unal,
4 sound-alarm bit(1) unal,
4 keyboard restore bit(1) unal,
4 reset md! b1t(1) unal,

3 copy biIs bit(2) unal,
3 pad bit(28) unal,

2 max fields fixed bin,
2 max-len fixed bin,
2 mod-fields fixed bin,
2 data (max write fields

- refer (write info.max fields»,
3 orders unal, --

4 set buffer addr bit(1),
4 start field bit(1),
4 inser! cursor bit(1),
4 program tab bit(1),
4 repeat !o addr bit(1),
4 erase !o addr bit(1),

3 attributes-unal;,
4 protected bit(1),
4 numeric bit(1),
4 display_form bit(2),

6-32 CC92-01

ibm3270_ ibm3270

where:

version

4 reserved bit(1),
4 Mdt bit(1),

3 pad1 bit(12) unal,
3 field position fixed bin,
3 contents char (max write len

refer (write=info.maX_len» var;

is the version number of the structure. It must be 1.

controller
is the identification number of the 3270 controller to which the
data is to be sent.

device
is the identification number of the device on that controller to
which the data is to be sent.

from device
-is the identification number of the device to be used as the

"from" device for a copy command.

command
is the command to be sent to the device. It may have any of the
following values:

write

2 erase/wr i te

3 copy

4 erase all unprotected

5 read modified

6 read buffer

write ctl ch.ar
contains the low-order 6 bits of the write control character (Wee)
to be inserted in the data stream. If command (above) is 3 (copy),
this field contains the low-order 6 bi ts of the copy control
character (eee), except that the keyboard restore and reset mdt
bits are replaced by the copy_bits (below)~

copy hits
-contains the two low-order bits of the copy control character if

command (above) is 3 (copy). These are the bits that specify
what type of data is to be copied.

max fields
is the number of elements in the data array (below).

max len
is the maximum length of any contents string (below).

mod fields
is the number of elements of the data array actually filled in in
this instance of the structure.

6-33 ee92-01

ibm3 270_ ibm3270_

data
describes the individual data fields to be sent to the device.

orders
identify orders to be inserted in the output stream.

set buffer addr
indicates a set buffer address (SBA) order. The field_position
(below) contains the buffer address to be set.

start field
indicates a start field (SF) order. The attribute character for
the field is derived from attributes (below). If an SBA order is
also indicated, the field starting address is contained in
field posi tion (below); otherwise, the current device buffer address
is used. The contents string, if nonnull, is written starting
after the attribute character.

insert cursor
indicates an insert cursor (IC) order. If an SBA order is also
indicated, the cursor is posi tioned to the address specified in
field position (below); otherwise it is set to the current device
buffer address. If contents is nonnull, the data is written starting
at the new cursor position.

program tab
indicates a program tab (PT) order. If an SBA order is also
indicated, the tao is inserted at the address specified in
field position (below); otherwise it is inserted at the current
device buffer address. If contents is nonnull, the data is written
at the start of the field following the tab.

repeat to addr
indicates a repeat to address (RA) order. The starting address
is the current device buffer address; the ending address is specified
in field position (below). Neither an SBA order nor an EUA order
can be Indicated in the same field. The contents string must
consist of a single character, which is to be repeated up to the
address immediately preceding field_position.

erase to addr
IndIcates an erase unprotected to address (EUA) order. The starting
address is the current device buffer address; the ending address
is specified in field position (below). Neither an SBA order nor
an RA order can be ind icated in the same field. If contents is
nonnull, the data is written starting at the address specified in
field_position.

attributes
contains the low-order 6 bi ts of the attribute character to be
assigned to a field if start field (above) is "1"b.

field position
Is the device buffer address to be set if set buffer addr (above)
is "1"b, or the ending address if repeat_to_addr or erase to addr
(above) is "1"b.

contents
is the data to be written. It may be a null string.

6-34 CC92-01

ibm3270_ ibm3270

set input message size
- specIfies the length, in characters, of the largest input message that

is expected. The info ptr must point to a fixed binary number containing
the message size. A-size of 0 indicates. that there is no maximum
message size. Use of this order when a maximum message size is defined
greatly increases the efficiency of the channel.

get input message size
- is used to Obtain the maximum input message size. The info ptr must

point to a fixed binary variable in which the maximum messagi size is
returned as a result of the call. This size is the one most recently
specified by a set input message size order. If no
set input message size ordernas been done since the swi tch was attached,
a sIze of-O is returned.

Modes Operation

This 1/0 module does not support the modes operation.

6-35 CC92-01

ibm3780

Name: ibm3780

The ibm3780 1/0 module performs stream 1/0 to a remote 1/0 terminal that
has the characteristics of an IBM 3780 data transmission terminal. The hardware
options currently supported are defined by the control arguments described below.

Entry points in this module are not called directly by users; rather, the
module is accessed through the 1/0 system.

This module in turn constructs an attach description for the module specified
in the -comm control argument, passing the attach information for ascii or ebcdic,
tty, transparent or nontransparent, and all other attach information specified
by the caller.

Attach Description

ibm3780 -control_args

where control arguments may be chosen from the following and are optional, with
the exception of -tty and -comm:

-ascii

-ebcdic

transmits control information and data in ASCII.

converts control information and data to its EBCDIC .representation
before transmission. This is the default.

-multi record
-transmits mul tiple records, up to 6, as a block, rather than separately.

The default is single record transmission.

-physical line length N, -pll N
sets the maximum character width of the remote 1/0 terminal printer
to N characters. The default is 80 characters (120 if -device specifies
printer). This variable is used to set tabs and pad records if the
transparent option is specified.

-horizontal tab, -htab
supports tab control on the remote 1/0 terminal printer. Tabs are
set every 10 spaces. The default is no tab control.

-tty STH
connects the remote 1/0 station to the communications channel named
STH.

-comm STH
uses the communications 1/0 module specified by STH.

-transparent
uses a transparent communication protocol.

-nontransparent
uses a nontransparent communication protocol. This is the default.

6-36 CC92-01

ibm3780 ibm3780

-device STR
specifies that this attachment is associated with the device STR.

-carriage ctl STR
th~ eight-character string STR, taken two characters at a time, sets
the four carriage control characters which specify the advance of 0,
1, 2, and 3 lines. The defaul t set of characters is ESCM, ESCI,
ESCS, and ESCT where the mnemonic ESC means the ASCII escape character.

-slew ctl STR
the six-character string STR, taken two characters at a time, sets
the slew control characters which specify top of form, inside page,'
and out5ide page. The default set of characters is ESCA, ESCA, and
ESCA.

-printer select STR
the one-character string STR sets the printer select. The defaul t
printer select string is DC1.

-punch select STR
-the one-character string STR sets the punch select. The default

punch select string is DC2.

-terminal type STR, -ttp STR
ST~ specifies the terminal type whose conversion, translation, and
special tables defined in the user or system terminal type table
(TTT) are used to convert and translate input and output to and f~om
t he device. If not specified, no conversion or translation is performed.
For more in'formation about the allowable conversion values see "Notes"
below.

Open 'Operation

The ibm3780 IIO module supports stream_input,
stream_input_output opening modes.

stream_output, and

Put Chars Operation

The put chars entry splits the data to be written into blocks of 80 or 512
characters, ~epending on whether multirecord mode is enabled, and transmits the
number of characters specified to the specified communication IIO module. The
blocks are of fixed or variable length, depending on whether transparent mode is
enabled or not, respectively.

Get Chars Operation

The get chars entry reads characters up to 80 or 512 characters, depending
on whether multirecord mode is enabled, and returns the number requested, up to
the next record separator.

6-37 CC92-01

ibm3780 ibm3780

Control Operation

This 1/0 module supports all the control operations supported by the
communications 1/0 module specified in the attach description. In addition, it
supports the following:

set bsc modes
sefs the character mode, either aSCll or ebcdic and transparency. The
input structure is defined as follows:

dcl set bsc modes aligned,
2 char mode bit(1) unaligned,
2 transparent bit(1) unaligned;

where char mode = "1 lib if ebcdic and "O"b if ascii, and transparent = "1 "b
if transparency is enabled and "0 "b if not.

select device
selects the subdevice (either printer, punch, or teleprinter) to which
output is next directed. The input structure is of the form:

dcl device char(32) based;

set multi record mode
sets-the number of records per block. The input structure is of the
form:

dcl record number fixed bin based;

Modes Operation

This module supports the nonedited and default modes, which set and reset
the edited output conversion, if it has been enabled by the -terminal_type control
argument.

Notes

The only allowable values in the output conversion table are 00 and any
values greater than 16. All values defined in the description of the tty 1/0
module are allowed for input conversion. Input and output translation may be up
to 256 characters in length.

6-38 CC92-01

remote input

Name: remote_input

The remote input. 1/0 module performs record input from a terminal 1/0
module which is assumed to be connected to a remote 1/0 device, such as a
Honeywell Level 6 remote batch facility (G115 type), an IBM 2780, or an IBM 3780.
Except for hardware restrictions, this module performs some code conversion and
control in such a way that remote and local card reading are the same.

Entry points in this module are not called directly by users; rather, the
module is accessed through the 1/0 system.

This module in turn constructs an attach description·for the module specified
in the -terminal control argument, passing the other attach information specified
by the caller.

Attach Description

wh€re control_args may be chosen from the following:

-terminal STR
STR sp€cifies the terminal 1/0 module to be attached by this device
110 module. (required)

-device STR
STR defines the device type which this 1/0 module is attempting to
simulate. The acceptable values for STR are reader, printer in and
punch in. This control argument is optional. If not supplied, a
device type of reader is assumed.

-runout spacing N, -runsp N
This control argument is accepted and ignored for compatibility with
other device-level 1/0 modules. It is not passed on to the terminal
1/0 module.

-physical line length N, -pll N
ThIs control argument is accepted and ignored for compatibility with
other device-level 1/0 modules. It is not passed on to the terminal
1/0 module.

-record len N
defines the maximum record length (buffer size) for data from the
terminal 1/0 module in characters. The accepted ranges are 80 to
160 for the device type of reader, and 10 to 1024 otherwise. If
this control argument is not given, the maximum for the device type
is assumed.

All other at tach control arguments are assumed to belong to the terminal
1/0 module. These are passed on as part of its attach description. The -device
option passed on to the terminal 1/0 module will specify one of the following
devices: reader, printer, or punch. See the descript ion of the terminal 1/0 I
module for a full definition of required and optional control arguments.

6-39 CC92-01

remote input

Open Operation

The remote input 1/0 module supports the stream input opening mode. The
terminal 1/0 module switch is in turn opened with the record_input mode.

Get Chars Operation

The get chars entry reads one record from the terminal 1/0 module and returns
up to the number of specified characters. If the number of characters in the
record is greater than the requested number, error table $data loss is returned
along with the data. - - -

Control Operation

The remote input dev ice 110 module supports the following control operations:

reset
sets the current record count to 0 and passes the control operation on
to the terminal 1/0 module.

get count
returns the current record count. This is the count of records read
from the terminal 1/0 module since the last reset control operation.
This operation is not passed on to the terminal 1/0 module.

The info_pointer must point to the following structure. (This structure
is taken from the counts struct ure in prt order info. incl. pI 1 for
compatibility with procedures which use several deviCe 1/0 modules.)

dcl 1 counts aligned based,
2 prt data pad (4) fixed bin,
2 record count fixed bin (35),
2 prt_pad fixed bin;

The variable record count will contain the returned value. This
corresponds with the~ariable line count from the other structure.

All other control operations are passed on to the terminal 1/0 module.

Modes Operation

This 1/0 module supports the modes defined by the terminal 1/0 module specified
in the attach description.

6-40 CC92-01

remote_printer_ remote_printer_

Name: remote_printer_

The remote printer liD module presents a stream liD interface to the caller I
and performs record output to a printer, which is assumed to be part of a remote
110 device, such as a Honeywell Level 6 remote batch facility (G 115 type), an
IBM 2780, or an IBM 3780. Except for hardware restrictions, this module performs
all the necessary code conversion and control in such a way that remote and
local printing are the same.

Entry points in this module are not called directly by users; rather, the
module is accessed through the liD system.

This module in turn constructs an attach description for the module specified
in the -terminal control argument, passing the attach information for horizontal
tabbing, physical line length, and all other attach information specified by the
caller.

Attach Description

where control args are optional, with the exception of -terminal, and may be
chosen from the following:

-physical line length N, -pll N
printer-has a maximum line width of N characters. The default is
132 characters. I

-physical page length N, -ppl N
prInter-has a maximum line count per page of N. The default is 66
lines.

-horizontal tab, -htab
printer has a horizontal tab feature. The default is no tab control.

-terminal STR
uses the terminal liD module specified by STR. This control argument
is required.

Open Operation

The remote printer liD module supports the stream_output opening mode.

6-41 CC92-01

remote_printer_ remote_printer_

Put Chars Operation

The put chars entry converts a character string delimited by a newline
character to-an image suitable for printing and transmits this image to the
terminal 1/0 module. This operation is repeated until all the characters specified
by the caller have been transmitted.

Control Operation

This 1/0 module supports all the control operations supported by the terminal
1/0 module specified in the attach description. In addition, it supports all
the printer control operations supported by the printer 1/0 module prtdim (see
Appendix B). -

Modes Operation

This 1/0 module supports all the modes supported by the terminal 1/0 module
specified in the attach description. In addition, it supports all the modes
supported by the printer 1/0 module prtdim (see Appendix B). It supports the
two modes non edited and default, which enable and disable edited output conversion,
if output conversion has been enabled by the terminal 1/0 module.

Position Operation

This 110 module supports all the posi tion operations supported by the terminal
1/0 module specified in the attach description.

6-42 CC92-01

remote_punch

The remote punch 1/0 module presents a stream 1/0 interface to the caller I
and performs record output to a card punch, which is assumed to be part of a
remote 1/0 device, such as a Honeywell Level 6 remote batch facility (G115 type),
an IBM 2780, or an IBM 3780. Except for hardware restrictions, this module
performs all the necessary code conversion and control in such a way that remote
and local card punching are the same.

Entry points in this module are not called directly by users; rather, the
module is accessed through the 1/0 system.

This module in turn constructs an attach description for the module specified
in the -terminal control argument, passing the other attach information specified
by the caller.

Attach Description

where control_args may be chosen from the following:

-terminal STR I
STR specifies the terminal 1/0 module to be attached to this device
1/0 module. (Required)

-device STR
defines the type of device to be simulated by this 1/0 module and
may be either "punch" or "reader simulator". This specification is
passed to the terminal 1/0 module as "-device punch" or "-device
reader", respectively. (Default is "punch".)

-card 11 N
specifies the length of records (cards) supported by the terminal
110 module. (Defaul t is 80.)

-non edited
specifies that non-printing characters may be passed directly to the
terminal 1/0 module. (Defaul t is that these characters are not passed.)

-horizontal tab, -htab
specIfies that the device supports the horizontal tab character.
(Default is the use of the appropriate number of spaces.)

-runout spacing N, -rnsp N
-physical page length N, -ppl N

are accepted and ignored for compatibility with other device 1/0
modules.

All other attach arguments are passed directly to the terminal 1/0 module.

6-43 CC92-01

remote_punch_ remote_punch

Open Operation

The remote punch I/O module supports the stream_output opening mode.

Put Chars Operation

The put chars entry splits the data to be written into records of the size
given by -card 11 and transmits these recor""'ds to the terminal I/O module. This
operation is repeated until all the characters specified by the caller have been
transmitted.

Control Operation

The remote_punch device I/O module supports the following control operations:

reset
sets the current record count to zero, returns to punching in RMCC
(remote Multics card code), and passes the order to the terminal 1/0
module.

get count
returns the current record count which is the number of records written
to the terminal I/O module since the last reset control operation.
This operation is not passed on to the terminal I/O module. The info ptr
must point to the following PL/1 structure. (This structure is faken
from the counts structure in prt order info.incl.p11 for compatibility
with procedures which use several device I/O modules.)

dcl 1 counts aligned based,
2 prt data pad (4) fixed bin,
2 record count fixed bin (35),
2 prt_pad fixed bin;

The variable record count will contain the returned value. This
corresponds with the variable line count from the other structure.

binary punch
requests that all subsequent data be punched in binary (rather than
RMCC) if supported by the terminal I/O module. This control order is
then passed on to the terminal I/O module.

All other control operations are passed directly to the terminal I/O module
for processing.

6-44 CC92-01

Modes Operation

This 1/0 module supports the RMCC output card mode defined in Section V of
the MPM Reference Guide. It also supports the two modes non edited and default,
which enable and disable edited output conversion, if output-conversion has been
enabled by the ~erminal 1/0 module.

Position Operation

This 1/0 module supports all the position operations supported by the terminal
1/0 module specified in the attach description.

6-45 CC92-01

remote_teleprinter_

Name: remote_teleprinter_

I The remote teleprinter 1/0 module presents a stream 1/0 interface to the
caller and performs record 1/0 to a terminal or printer, which is assumed to be
part of a remote 1/0 device, such as a Honeywell Level 6 remote batch facility
(G115 type), an IBM 2780, or an IBM 3780 . ..

Entry points in this module are not called directly by users; rather, the
module is accessed through the 1/0 system.

This module in turn constructs an attach description for the module specified
in the -terminal control argument, passing the attach information for ASCII or
EBCDIC, horizontal tabbing, physical line length, and all other attach information
specified by the caller.

Attach Description

remote_teleprinter_ -control_args

where control args are optional, with the exception of -terminal, and may be
chosen from the following:

-physical line length N, -pll N
output device has a maximum line width of N characters. The default
is 80 characters.

-physical page length N, -ppl N
output device has a maximum line count per page of N. The default
is 66 lines.

-horizontal tab, -htab
output device has a horizontal tab feature. The defaul t is no tab
control.

-terminal STR
uses the terminal 1/0 module specified by STR. This control_arg is
required.

-runout spacing N, -runsp N
outputs N newline characters with each runout operation. This allows
the operator to see messages still under the printer mechanism for
terminals which have only a printer as an output device. The default
is o.

6-46 CC92-01

remote_teleprinter_ remote_teleprinter_

Open Operation

The remote_teleprinter_ 1/0 module supports the stream_input_output opening
mode.

Put Chars Operation

The put chars entry converts a character string ending in a newline character
to an image-suitable for printing and transmits this image to the terminal 1/0
module.

Get Chars Operation

The get chars entry reads the number of specified characters from the terminal
1/0 module. -

Get Line Operation

The get line entry reads one record from the terminal 1/0 module, appends a I
new line, and returns as many characters as requested by the caller, or the
whole record if it is shorter. If the record is longer than requested,
error_table_$data_loss is returned.

Control Operation

This 1/0 module supports all the control operations supported by the terminal
1/0 module specified in the attach description. In addition, it supports all
the printer control operations supported by the printer 1/0 module prtdim (see
Appendix B). -

Modes Operation

This 1/0 module supports all the modes supported by the terminal I/O module
specified in the attach description. In addition, it supports all the modes
supported by the printer 1/0 module prtdim (see Appendix B). It also supports
the two modes non edited and default, which enable and disable edited output
conversion if output conversion has been enabled by the terminal 1/0 modt'le.

Position Operation

This 1/0 module supports all the position operations supported by the terminal
1/0 module specified in the attach description.

6-47 CC92-01

Name: tty_

The tty I/O module supports I/O from/to devices that can be operated in a
typewriter-lTke manner, e.g., the user's terminal.

Entry points in the module are not called directly by users; rather the
module is accessed through the I/O system. See "Multics Input/Output System" in
Section 5 of the MPM Reference Guide for a general description of the I/O system.

Attach Description

tty_ {device} {-control args}

where device is the channel name of the device to be attached (channel names are
described in Appendix A). If a device is not given, the -login channel control

I argument must be given. The star convention is allowed. -

I

Control arguments may be chosen from the following:

-login channel
-specifies attachment to the user's primary login channel. If a device

is not specified then the user's login channel is used. This control
argument fl ag s this swi tch for reconnect ion by the process disconnection
facility. If the user's login device should hang up, this switch
will be automatically closed, detached, attached and opened on the
user's new login channel when the user reconnects, if permission to
use this facility is specified in the SAT and PDT for the user.

-destination DESTINATION
this control argument specifies that the attached device is to be
called using the address DESTINATION. In the case of telephone auto call
lines, DESTINATION is the telephone number to be dialed. Use of
this control argument requires the dialok attribute.

-dial id STR
specifies that dial connections are to be accepted on the dial id
STR. Use of this control argument requires the dialok attribute.
The dial command is then used to connect a terminal on the dial id
STR. If STR is not a reg istered dial id, then the Per son id. Proj ect - id
of the process being connected to must be suppl ied to the dial command.
For example:

I dial STR Person. Proj ect

I

7/82

To become a registered server, the process must have rw access to
)scq)rcp)dial.STR.acs.

6-48 CC92-01A

7/82

-no block
specifies that the device is to be managed asynchronously. tty
will not block to wait for input to be available or output space to
be available. (See "Buffering" below for more details.) This control
argument should not be used on the login channel, because it will
cause the command listener to loop calling get_line. I

-no hang up on detach
- prevents the detach entrypoint from hanging up the device. This is

not meaningful for the login channel.

-hang up on detach
causes the detach entrypoint to hang up the dev ice automatically.
This is not meaningful for the login channel.

-resource STR
specifies the desired characteristics of a channel. STR (which can
be null) consists of reservation attributes separated by commas.
The channel used by a dial-out operation must have the characteristics
specified in the reservation string. Reservation attributes consist
of a keyword and optional argument. Attributes allowed are:

baud rate:BAUD RATE
line=type:LINE=TYPE I

where BAUD RATE is a decimal representation of the desired channel I
line speea and LINE TYPE is a valid line type, chosen from
line_types.incl.p11 (see set_line_type, below).

6-48. 1 CC92-01A

This page intentionaliy left blank.

7/82 CC92-01A

Notes

The device specified must be available to the attaching process. The user's
login device is always available. Any devices acquired with the dial manager
subroutine are also available. If the device is in slave servic-e, and-the user
has appropriate access to its access control segment (rw to >sc1>rcp>NAME.acs), I
tty will attempt to make it available using the privileged attach mechanism of
diaT manager. If the -destination control argument is specified, the dial out
mechanism is-used (the user must have rw access to >sc1>rcp>NAt-lE.acs). If-the I
-d ial id control argument is speci fied, the allow dial s or reg istered server
mechanism is used. See the documentation of dial manager in the MPM SUDsystem
Writer's Guide for more details. -

Opening

The opening modes
stream_input_output.

Editing

supported are stream_input, stream_output, and

On both input and output, data is automatically edited as described in
"Typing Conventions" in Section 2. To control the ed i ting, use the modes operation.
Details on the various modes are given below.

Buffering

This I/O module will block to await either the availability of input characters
or the availability of output buffer space, unless the -no block control argument
is specified in the attach description. If the -no block attach description
control argument is specified, the behavior of the iox $put chars, iox $get chars
and iox $get line calls changes. If the put chars entrypoint cannot write all
the characters supplied, it will return a nonstandard status code consisting of
the negative of the number of characters actually written plus one (-(n chars written I
+1)). Any positive status code should be interpreted as a standaro-system status
code. The get chars and get line entrypoints will return zero status codes and
zero characters read if there is no input available.

Interrupted Operations

When an I/O operation (except detach) being performed on a switch attached
by this I/O module is interrupted by a signal, other operations may be performed
on the switch during the interruption. If the interrupted operation is get line,
get chars or put chars, and another get line, get chars or put chars operation
is performed durIng the interruption, tne "start,r control operation should be
issued before the interrupted operation is resumed.

7/82 6-49 CC92-01A

Get Chars Operation

The get chars operation reads as many characters as are available, up to,
but not exceeding, the number requested by the caller. No error code is returned
if the number of character s read is less than the number requested. At least
one character is always returned (unless the number requested is zero). The
characters read may comprise only a partial input line, or may comprise several
input lines; no assumptions can be made in this regard.

Get Line Operation

I The get line operation is supported. No error code is returned if the read
operation occurs with the input buffer length at zero. For further explanation,
see the iox $get_line entry in MPM Subroutines.

Put Chars Operation

The put chars operation is supported.
iox_$put_chars entry in MPM Subroutines.

For further expl anation, see the

Control Operation

The following orders are supported when the I/O swi tch is open. Except as
noted, the info ptr should be null. The orders are divided into categories.
Local orders perlorm a specific function one time only; global orders change the
way the system interfaces with the terminal; and other orders fit in neither

I category. Control orders are performed through the iox $control entry, as described
in MPM Subroutines. -

LOCAL

7/82

abort
flushes the input and output buffers.

interrupt
sends an out-of-band interrupt signal (quit signal) to the terminal.

resetread
flushes the input buffer.

resetwrite
flushes the output buffer.

hang up
disconnects the telephone line connection of the terminal, if possible.
This makes the terminal unavailable for further use.

6-50 CC92-01A

listen
sends a wakeup to the process once the line associated with this device
identifier is dialed up.

printer_off
causes the printer mechanism of the terminal to be temporarily disabled
if it is physically possible for the terminal to do so; if it is not,
the status code error table $action not performed is returned (see
"Notes" below). - - --

printer on

wru

causes the printer mechanism of the terminal to be reenabled (see
"No tes" below).

initiates the transmission of the answerback of the device, if it is
so equipped. This operation is allowed only for the process that
originally attached the device (generally the initializer process).
The answerback may subsequently be read by means of the get_chars
input/output operation.

start xmit hd
causes the channel to remain in a transmitting state at the completion
of the nex t block of output, rather than starting to accept input.
The line will then remain in a transmitting state until the stop xmit hd
control operation is issued. This operation is valid only for terminals
with line type LINE_ARDS. I

stop xmit hd
-causes the channel to resume accepting input

the completion of current output, if any).
valid for ARDS-like terminals and is used only
start xmit hd operation.

from the terminal (after
This operation is only

to counteract a preceding

GLOBAL

7/82

set line type
- sets the line type associated with the terminal to the value supplied.

The info ptr should point to a fixed binary variable containing the
new line-type. Line types can be any of the following named constants
defined in the include file line_types.incl.p11:

LINE ASCII
-device similar to 7-bit ASCII using Bell 103-type modern protocol

LINE 1050
-device similar to IBM Model 1050

6-51 CC92-01A

I

7/82

LINE 2741
-device similar to IBM Model 2741, with or without auto EOT inhibit

LINE ARDS
-device similar to Adage, Inc. Advanced Remote Display Station

(ARDS) protocol using Bell 202C6-type modem

LINE SYNC
-synchronous connections, no protocol

LINE G115
-ASCII synchronous connection, Model G-115 remote computer protocol

LINE BSC
-binary synchronous protocol

LINE ETX
-device similar to TermiNet 1200 protocol using Bell 202C5-type

modem

LINE VIP
-device similar to Honeywell Model 7700 Visual Information Projection

(VIP) standalone terminal

LINE ASYNC 1
LIN E-AS YN C 2
LINE-ASYNC 3

-site-supplied asynchronous protocols

LINE SYNC 1
LINE-SYNC2
LINE-SYNC3

-site-supplied synchronous protocols

LINE POLLED VIP
-device-similar to Honeywell Model 7700 Visual Projection System

(VIP) polled terminal concentrator subsystem.

LINE X25LAP
-X.25 network connection using the link access protocol (LAP)

LINE COLTS
-special software channel used for Communications Online Test and

Diagnostics System

This operation is not permitted while the terminal is in use.

refuse printer off
causes sUb sequent pr inter off and pr inter_on order s to be rej ected
except when in echoplex moce.

accept printer off
causes sUDsequent printer_off and printer_on orders to be accepted if
possible.

6-52 CC92-01A

set delay
- sets the number of delay characters associated with

carriage-motion characters. The info ptr points to
structure: (defined in tty_convert.incl~p11)

the
the

output of
following

dcl 1 delay - struc based aligned,
2 version fixed bin,
2 default fixed bin~
2 delay,

3 vert - nl fixed bin,
3 horz nl float bin,
3 const tab fixed bin,
3 var tab float bin,
3 backspace fixed bin,
3 vt ff fixed bin;

where:

version
is the version number of the structure. It must be 1.

default
indicates, if nonzero, that the default values for the current
terminal type and baud rate are to be used and that the remainder
of the structure is to be igno~ed.

vert nl
is the number of delay characters to be output for all newlines
to allow for the linefeed (-127 < vert nl < 127). If it is
negative, its absolute value is the minimum number of characters
that must be transmitted between two linefeeds (for a device such
as a TermiNet 1200).

harz nl
is a number to be multiplied by the column position to obtain the
number of delays to be added for the carriage return portion of a
newline (0 < horz nl < 1). The formula for calculating the number
of delay characters to be output following a newline is:

ndelays=vert_nl+fixed(horz_nl*column)

const tab
is the constant portion of the number of delays associated with
any horizontal tab character (0 < const_tab < 127).

val'" tab
is the number of additional delays associated with a horizontal
tab for each column traversed (0 < val'" tab < 1). The formula for
calculating the number of delays tobe output -followinga horizontal
tab is:

ndelays = const tab + fixed (var_tab*n_columns)

backspace
is the number of delays to be output following a backspace character
(-127 < backspace < 127). If it is negative, its absol~tc value
is the-number of delays to be output with the first backspace of
a series only (or a single backspace). This is for terminals
such as the TermiNet 300 which need delays to allow for hammer
recovery in case of overstrikes, but do not require delays for
the carriage motion associated with the backspace itself.

6-53 CC92-01

vt ff

get delay

is the number of delays to be
formfeed (0 < vt ff < 511).

following a vertical tab or

is used to find out what delay values are currently in effect. The
info ptr points to the structure described for set delay (above), which
is filled in as a resul t of the call (except for the version number,
which must be supplied by the caller).

set editing chars
- changes the characters used for editing input. The info_ptr points to

the following structure:

dcl 1 editing_chars
2 version
2 erase
2 kill

aligned,
fixed bin,
char(1) unaligned,
char(1) unaligned;

where:

version
is the version number of this structure. It must be 2.

erase
is the erase character.

kill
is the kill character.

The following rules apply to editing characters:

1. The two editing characters may not be the same.

2. No carriage-movement character (carriage return, newline, horizontal
tab, backspace, vertical tab, or formfeed) may be used for either
of the editing functions.

3. NUL and space may not be used for either editing function.

4. If either of the editing characters is an ASCII control character,
it will not have the desired effect unless ctl char mode is on
(see "Modes Operation" below).

get editing chars
- is used to find out what input editing characters are in effect. The

info ptr points to the structure described above for set editing chars,
which is filled in as a resul t of the call (except for the version
number, which must be supplied by the caller).

6-54 CC92-01

tty

set input translation
provIdes a table to be used for translation of terminal input to ASCII.
The info_ptr points to a structure of the following form: (defined in I
tty_convert.incl.p11)

dcl 1 cv trans struc
2 version
2 default
2 cv trans

3 value

where:

version

aligned,
fixed bin"
fixed bin,
aligned,
(0 : 255) char(1) unaligned;

is the version number of the structure. It must be 1.

default
indicates, if nonzero, that the default table for the current
terminal type is to be used, and the remainder of the structure
is _ignored.

values
are the elements of the table. This table is indexed by the
value of a typed input character, and the corresponding entry
contains the ASCII character resulting from the translation. If
the info_ptr is null, no translation is to be done.

NOTE: In the case of a terminal that inputs 6-bit characters and
case-shift characters, the first 64 characters of the table
correspond to characters in lower shift, and the next 64
correspond to characters in upper shift.

set output translation
provides a table to be used for translating ASCII characters to the
code to be sent to the terminal. rne lnro ptr pOln~s to a structure
1 ike t hat described for set input translation (above). The table is
indexed by the value of eaCh ASCII character, and the corresponding
entry contains the character to be output. If the info ptr is null,
no translation is to be done. -

NOTE: For a terminal that expects 6-bit characters and case-shift
characters, the 400(8) bit must be turned on in each entry in
the table for a character that requires upper shift and the
200(8) bit must be on in each entry for a character that requires
lower shift.

set input conversion
provIdes a table to be used in converting input to identify e$cape
sequences and certain special characters. The info ptr points to a
structure of the following form: (defined in tty_convert.incl.p11)

dcl 1 cv trans struc
2 version
2 default
2 cv trans

3 value

aligned,
fixed bin,
fixed bin,
aligned,
(0 : 255) fixed bin(8) unaligned;

6-55 CC92-01

I

I

I

I

tty

where version, default, and value are as described in the cv trans struc
structure used with the set input translation order above~ The-table
is indexed by the ASCII value-of each input character (after translation,
if any), and· the corresponding entry contains one of the following
values: (Mnemonic names for these values are defined in
tty_convert.incl.p11)

o ordinary character
1 break character
2 escape character
3 character to be thrown away
4 formfeed character (to be thrown away if page length is nonzero)
5 this character and immediately following character to be thrown

away

set output conversion
- provides a table to be used in formatting output to identify certain

kinds of special characters. The info ptr points to a structure like
that described for set input conversion-(above). The table is indexed
by each ASCII output character (before translation, if any), and the
corresponding entry contains one of the following values: (Mnemonic
names for these values are defined in tty_convert.incl.pI1)

o ordinary character
1 newline
2 carriage return
3 horizontal tab
4 backspace
5 vertical tab
6 formfeed
7 character requiring octal escape
8 red ribbon shift
9 black ribbon shift

10 character does not change the column position
11 this character together with the following one do not change the

column position (used for hardware escape sequences)
12 character is not to be sent to the terminal
17 or greater -- a character requiring a special escape sequence. The

indicator value is the index into the escape table of the sequence
to be used, plus 16. The escape table is part of the special
characters table; see the set_special order below.

get input translation
get-output translation
get-input conversion
get-output conversion

- These-orders are used to obtain the current contents of the specified
table. The info ptr points to a structure like the one described for
the corresponding "set" order above, which is filled in as a result of
the call (except for the version number, which must be supplied by the
caller). If the specified table does not exist (no translation or
conversion is required), the status code error_table_$no_table is
returned.

6-56 CC92-01

set special
- provides a table that specifies sequences to be substituted for certain

output characters, and characters that are to be interpreted as parts
of escape sequences on input. Output sequences are of the following
form: (defined in tty_convert_incl.p11)

dcl 1 c chars
2-count
2 chars(3)

based aligned,
fixed bin(8) unaligned,
ch~r(1) unaligned;

where:

count

chars

is the actual length of the sequence in characters (O~count~3).
If count is zero, there is no sequence.

are the characters that make up the sequence.

The info ptr points to a structure of the following form: (defined in
tty_convert_incl.p11)

dcl 1 special_chars_struc
2 version
2 default
2 special chars

3 nl seq
3 cr-seq
3 bs-seq
3 tab seq
3 vt seq
3 ff:seq
3 printer on
3 printer-off
3 red rib~on shift
3 black ribbon shift
3 end of page
3 escape-length
3 not_edited_escapes

3 edited_escapes

3 input escapes
4 len-
4 str

3 input results
4 pad-
4 str

6-57

aligned based,
fixed bin,
fixed bin,

aligned like c chars,
aligned like c-chars,
aligned like c:chars,
aligned like c chars,
aligned like c-chars,
aligned like c:chars,
aligned like c chars,
aligned like c-chars,
aligned like c:chars,
aligned like c chars,
aligned like c=chars,
fixed bin,
(sc escape len refer

(special-chars.escape length»)
like c chars, -

(sc escape len refer
(special-chars.escape length»
like c chars, -

aligned,-
fixed bin(8) unaligned,
char (sc input escape len refer

(speciil cha~s.inpur escapes.len»
unaligned, -

aligned,
bit(9) unaligned,

(speciil cha~s.input escapes.len»
char (sc input escape len refer I

unaligned; -

CC92-01

I

I

where:

version
is the version number of this structure. It must be 1.

default
is as above in set_input_translation.

nl_seq
is the output character sequence to be substituted for a newline
character. The nl_seq.count generally should be nonzero.

cr_seq
is the output character sequence to be substituted for a
carriage-return character. If count is zero, the appropriate number
of backspaces is substituted. Either cr seq.count or bs seq.count
(below), however, should be nonzero (T. e., both should not be
zero) .

bs_seq
is the output character sequence to be substituted for a backspace
character. If count is zero, a carriage return and the appropriate
number of spaces are substituted. Either bs seq.count or
cr seq.count (above), however, should be nonzero (i.e~, both should
not be zero).

tab_seq
is the output character sequence to be substituted for a horizontal
tab. If count is zero, the appropriate number of spaces is
substituted.

vt_seq
is the output character sequence to be substituted for a vertical
tab. If count is zero, no characters are substituted.

ff_seq
is the output character sequence to be substituted for a formfeed.
If count is zero, no characters are substituted.

printer on
is-the character sequence to be used to implement the printer on
control operation. If count is zero, the function is not performed.

printer off
is-the character sequence to be used to implement the printer off
control operation. If count is zero, the function is not performed.

red ribbon shift
is the character sequence to be substituted for a red ribbon-shift
character. If count is zero, no characters are substituted.

6-58 CC92-01

black ribbon shift
1s the character sequence to be substituted for a black ribbon-shift
character. If count is zero, no characters are substituted.

end of page
- i~ the character sequence to be printed to indicate that a page

of output is full. If count is zero, no additional characters
are printed and the cursor is left at the end of the last line.

escape length
i~ the number of output escape sequences in each of the two escape
arrays.

not edited escapes
- is an-array of escape sequences to be substituted for particular

characters if the terminal is in HAedited" mode. This array is
indexed according to the indicator found in the corresponding
output conversion table (see the description of the
set_output_conversion order above).

edited escapes
i~ an array of escape sequences to be used in edited mode. It is
indexed in the same fashion as not_edited_escapes.

input escapes
Is a string of characters each of which forms an escape sequence
when preceded by an escape character (see the discussion of escape
sequences in Section 2 for more detailed information).

input results
Is a string of characters each of which is to replace the escape
sequence consisting of an escape character and the character
occupying the corresponding position in input_escapes (above).

get special
- is used to obtain the contents of the special chars table currently in

use. The info ptr points to the following structure (defined in
tty_convert.incl.p11):

dcl 1 get special info struc
2 area ptr
2 table_ptr

where:

area ptr (Input)

aligned~
ptr,
ptr;

-points to an area in which a copy of the current special_chars
table is returned.

table ptr (Output)
Is set to the address of the returned copy of the table.

6-59 CC92-01

set term type
sets the terminal type associated with the channel to one of the types
defined in the terminal type table. The info_ptr should point to the
following structure:

dcl 1 set term type info
2 version
2 name
2 flags,

3 initial_string
3 modes
3 ignore line type
3 mbz - - --

aligned,
fixed bin,
char(32) unaligned,

bit(1) unaligned,
bit(1) unaligned,
bit(1) unaligned.
bit(33); - -

where:

version
is the version number of the above structure. It must be 1.

name
is the name of the terminal type to be set.

initial string

modes

is-" 1 "b if the initial string for the terminal type is to be
transmitted to the terminal; otherwise, it is "O"b.

is "1"b if the default modes for the terminal type are to be set;
otherwise it is "O"b.

ignore line type

mbz

is 111 'Ib if the terminal type to be set need not be compatible
with the line type; otherwise it is "O"b.

must be "O"b.

~et framing chars
specifIes the pair of characters that the terminal generates surrounding
input transmitted as a block or "frame". These characters must be
specified in the character code used by the terminal. This order must
be used for blk xfer mode (see below) to be effective. The info_ptr
must point to astructure with the following format:

dcl 1 framing chars aligned,
2 frame begin char(1) unaligned,
2 frame=end char(1) unaligned;

get framing chars
- causes-the framing characters currently in use to be returned (see the

set framing chars order, above). If no framing characters have been
supplied, NUL characters are returned. The info ptr must point to a
structure like the one described for the set framing chars order; this
structure is filled in as a result of the call.

6-60 CC92-01

set wakeup table
- specifies a wakeup table, i.e. a set of wakeup characters, that controls

the dispatching of input wakeups. The wakeup table operates in conjunction
with wake tbl mode. The wakeup table has no effect until wake tbl
mode is enabled. Once enabled, the standard method of generating input
wakeups (normally one wakeup for each line) is suspended. Thereafter,
wake ups are only generated when wakeup characters are received or when I
the buffer gets too full. The wakeup table cannot be changed while
wake tbl mode is enabled. The info ptr should point to the following
structure: -

dcl 1 set _wakeup table info aligned, - -2 version fixed bin,
2 new table,

3 new wake map (0: 127) bit (1) unal,
< mbz1 - bit(16) unal, oJ

2 old table,
3 old wake map (0: 127) bit (1) unal,
3 mbz2 - bit(16) unal;

where:

version (Input)
is the version number of this structure. It must be 1.

new wake map (Input)
- is an array having one entry for each character in the ASCII

character set. A value of "1"b defines a wakeup character. All
other entries must be "O"b. If all entries are "O"b, the current
wakeup table, if any, is deleted.

mbz1 (Input)
must be "O"b.

old_wake_map (Output)

mbz2

is set to the value of the current wakeup table that is being
replaced. If no current wakeup table exists, all entries are set
to "O"b.

(Output)
is set to "O"b.

The primary application for the wakeup table mechanism will be to
reduce overhead incurred by text editors, such as qedx, while in input
mode. While in input mode, a user process must wake up for each line
of input even though no processing is immediately required. In wake tbl
mode, a process will only be awoken when input mode is exited or a
large amount of input has been accumulated. However, since wake tbl
mode will cause more input to be buffered in ring 0 than before, a
quit signal is likely to discard more input than before. If a user
does not wish to lose input, he simply should avoid quitting while in
input mode.

If a user does quit out of input mode, he will not remain in wake tbl
mode (under normal circumstances). The default modes establJ.shed by
the standard quit handler include "'wake tbl. A start command will
restore wake tbl mode.

6-61 CC92-01

tty

input flow control chars
specifies the character(s) to be used for input flow control for terminals
with line speed input capability. The terminal must be in iflow mode
for the feature to take effect. (See the discussion of flow control
in Section 2.) The info_ptr must point to a structure with the following
format:

dcl

where:

suspend seq

input flow control info
2 suspend seq

3 count-
3 chars

2 resume seq
3 count
3 chars

2 timeout

aligned,
unaligned,
fixed bin(9) unsigned,
char(3),
unaligned,
fixed bin(9) unsigned,
char(3),
bit(l);

is-the character sequence that the system sends to tell the terminal
to stop sending input, or that the terminal sends to inform the
host that it is suspending input. count is an integer from 0 to
3 that specifies the number of characters in the sequence. chars
are the characters themselves. At present, only sequences of
length 0 or 1 are supported.

resume seq
is the character sequence to be sent by the system to the terminal
to tell it to resume transmission of input. count and chars are
as above.

timeout
is "1 "b if the resume character is to be sent to the terminal
after input has ceased for one second, whether or not a suspend
character has been received.

output flow control chars
enables either-of two output flow control protocols and specifies the
characters to be used for output flow control. The terminal must be
in oflow mode for the feature to take effect. (See the discussion of
flow control in Section 2.) The info_ptr must point to a structure
with the following format:

dcl

where:

output flow control info
2 flags -

3 suspend resume
3 block acknowledge
3 mbz -

2 buffer size
2 suspend or etb_seq

3 count- -
3 chars

2 resume or ack_seq
3 count
3 chars

aligned,
unaligned,
bit(1),
bit(l),
bit(16),
fixed bin(18) unsigned unaligned,
unaligned,
fixed bin(9) unsigned,
char(3),
unaligned,
fixed bin(9) unsigned,
char(3);

suspend_resume
is "l"b to specify a suspend/resume protocol.

6-62 CC92-01

block acknowledge
Is "1"b to specify a block acknowledgement protocol.

buffer size
is the number of characters in the terminal's buffer if
block_acknowledge is u1"b. Otherwise it is ignored.

suspend or etb seq
is-the character sequence sent by the terminal to tell the system
to suspend output if suspend resume is U1"b, or the end of block
character sequence if block acknowledge is "1"b. count and-chars
are as described for the input_flow_control_chars order above.

resume or ack seq
is tne cnaracter sequence sent by the terminal to indicate that
output may be resumed if suspend resume is "1"b, or the character
sequence sent by the terminal to -acknowledge completion of a block
if block_acknowledge is "1"b. count and chars are as above.

get ifc info
- causes the characters currently in use for input flow control to be

returned (see the input flow control chars order, above). The info ptr
must point to a s~ructure liKe the one described for -the
input flow control chars order, which will be filled in as a result of
the call. - If no characters are currently set, the count fields are
set to O.

get_ofc info
causes the character s and protocol currentl y in use for output flow
control to be returned (see the output flo~ control chars order, above).
The info ptr must point to a structure liKe the One described for the
output frow control chars order, which will be filled in as a resul t
of the-call~ If no-output flow control protocol is currently in use;
the count fields are set to a and both suspend_resume and block_acknowledge
are set to "O"b.

get_channel info I
returns the name of the attached channel and its hardcore device index.
The info ptr must point to the following structure (defined in I
tty_get_cnannel_info.incl.pI1):

dcl 1 tty_get_channel_info
2 version
2 devx
2 channel name

al ig ned based,
fixed bin,
fix ed bin,
char (32); I

where: I
1. version (Input)

2. devx

is the version of this structure.
tty_get_channel_info_version.

(Output)
is the hardcore device index for the channel.

3. channel name (Output)
Is the name of the channel.

7/82 6-63

It must be set to I
I
I

CC92-01A

I
I

OTHER

7/82

tty

read status
-tells whether or not there is any type-ahead input waiting for a process

to read. The info ptr should point to the following structure, (defined
in tty_read_statu~info.incl.p11) which is filled in by the call:

dcl 1 tty read status info aligned based,
2 event channel fIxed bin (71),

where:
2 input=pending bit (1);

ev chan
is the event channel used to signal the arrival of input.

input avail able
indicates whether input is available.
"O"b no input
"1"b input

write status
'fells whether or not there is any wr i te-behind output that has not
been sent to the terminal. The info ptr should point to the following
structure, which is filled in by the-call:

dcl 1 info structure
2 ev c11an
2 ou'fput_pending

where:

ev chan

al ig.ned ,
fixed bin(71),
bit(1);

is the event channel used to signal the completion of output.

output pending
indicates whether output is pending.
"O"b no output
"1"b output

quit enable
-causes quit signal processing to be enabled for this device. (Quit

signal processing is initially disabled.)

quit_disable
causes quit signal processing to be disabled for this device.

start
causes a wakeup to be signalled on the event channel associated with
this device. This request is used to restart processing on a device
whose wakeups may have been lost or discarded.

store id
stores the answerback identifier of the terminal for later use by the
process. The info ptr should point to a char(4) variable that contains
the new identifier~

6-64 CC92-01A

7/82

terminal info
returns information about the terminal. The info_ptr should pOint to
the following structure:

dcl 1 terminal info
2 version

where:

2 id
2 term type
2 1 ine-type
2 baud-rate
2 reserved (4)

version (Input)

aligned,
fix ed bin,
char(4) unaligned,
char(32) unaligned,
fix ed bin,
fixed bin,
fixed bin;

is the version number of the above structure. It must be 1.

id (Output)
is the terminal identifier derived from the answerback.

term type (Output)
-is the terminal type name.

line type (Output)
-is the line type number.

baud rate (Output)
-is the baud rate at which the terminal is running.

reserved
is reserved for future use.

send initial string *
-transmits an initialization string to the terminal in raw output (rawo)

mode. Due to the use of raw output mode, the string must comprise
character codes recognized by the terminal. If the info ptr is null,
the ini tial string defined for the terminal type is used-: Otherwi se,
the info_ptr should point to the following structure:

dcl 1 send initial string info
2 versIon -
2 initial string

where:

version

aligned,
fix ed bin,
char(512) varying;

is the version number of the above structure. It must be 1.

initial string
is-the initial string to be sent.

set default modes
- sets tne modes to the default modes for the terminal type.

set event channel
specTfies the ipc event channel that will receive wakeups for this
attachment. Wakeups are received for input available, output completed,
and state changes such as hang ups and qUits. The channel may be event
wait or event call. If it is event call, the -no block control argument
must be present in the attach description for correct operation.

6-65 CC92-01A

I

7/82

The info pointer should point to a fixed bin (71) aligned quantity
containing a valid ipc channel identifier. No check for the validity
of the channel is made~ If the channel is invalid, incorrect operation
will result.

If this control order is not given before the opening of the switch,
tty will attempt to allocate a fast event channel. Fast event channels
may-not be converted to call channels and receive no associated message.
If tty cannot allocate a fast channel, an ordinary event wait channel
will be created and used. This control order is accepted while the
swi tch is closed or open. If the swi tch is open, the new channel
replaces the old one.

get event channel
- returns the identifier of the ipc event channel associated with the

channel. The info pointer should-point to a fixed bin (71) aligned
quantity into whicn the channel identifier will be stored. If the
swi tch is not yet open and the set event channel order has not been
given, the result will be zero. - -

This control order, which replaces the event info control order, is
accepted wi th the swi tch open or closed. For more information on
event management, see the set_event_channel control order.

copy meters
-causes .the current cumulative meters associated with the channel to be

copied to unwired storage~ so that the statistics for the channel can
be determined both for the I ife of the system and for the current
dial up. This ord er can onl y be issued by the "own ing" process (normall y
the initializer). The info_ptr should be null.

get_meters
causes current values of meters associated with the channel to be
returned. The info ptr must point to a structure of the following
form, defined in the-include file get_comm_meters_info.incl.pI1:

dcl 1 get comm meters info aligned based,
2 version Iixed bTn,

where:

2 pad fix ed bin,
2 subchan ptr pointer,
2 logical-chan ptr pointer,
2 parent ptr pointer,
2 subchan type fixed bin,
2 parent_type fixed bin;

version (Input)
must be 1.

subchan ptr (Input)
is-a pointer to a structure in which multiplexer-specific meters
kept at the subchannel level are to be returned. The format of
this structure depends on the channel type as specified by
subchan type (see below). If no meters are kept for this channel
type, tlien subchan_ptr may be null.

6-66 CC92-01A

logical_chan_ptr (Input)
is a pointer to a structure in which logical channel meters (those
maintained for every logical channel) are to be ret urned. This
structure has the following form:

dcl 1 logical chan meters based aligned,
2 current-meters like lcte.meters,
2 saved meters like lcte.meters;

where:

curr'ent meters
contains the current values of the logical channel meters.
The format of lcte.meters is described by lct.iocl.p11.

saved meters
contains the values of logical channel meters the last time
a copy_meters order was issued.

parent_ptr (Input)
is a pointer to a structure in which multiplexer-specific meters
maintained by the channel's parent multiplexer are to be returned.
The format of this structure depends on the channel type as specified
by parent_type (see below).

subchan_type (Output)
is the channel type of the channel. It may have any of the
values described in multiplexer_types.incl.p11.

parent_type (Output)
is the channel type of the channel's parent multiplexer. It may
have any of the values described in multiplexer_types.incl.p11.

Modes Operation

The modes operation is supported when the 1/0 switch is open. The recognized
modes are listed below. Some modes have a complement indicated by the circumflex
character (A) that turns the mode off (e.g., "'erkl). For these modes the complement
is displayed with the mode. Normal defaults are indicated for those modes that
are generally independent of terminal type. The modes string is processed from
left to right. Thus, if two or more contradictory modes appear within the same
modes string, the rightmost mode prevails.

8bit, "'8bit
causes input characters to be received without removing the
(high-order) bit, which is normally interpreted as a parity bit.
mode is valid for HSLA channels only. (Default is off.)

blk xfer, "'blk xfer

8th I This

- specifies-that the user's terminal is capable of transmitting a block
or "frame" of input all at once in response to a single keystroke.
The system may not handle such input correctly unless blk xfei mode is
on and the set_framing_chars order has seen issued. (Default is off.)

6-67 CC92-01

I
I

breakall, "breakall
enables a mode in which all characters are assumed to be break characters,
making each character available to the user process as soon as it is
typed. This mode only affects get_chars operations. (Default is off.)

can, can
performs standard canonicalization on input. (Default is on.)

can type=overstrike, can type=replace
- specifies the method to be used to convert an input string to canonical

form. Canonicalization is only performed when the 1/0 switch is in
"can" mode. (Default is can_type=overstrike.)

capo, capo
outputs all lowercase letters in uppercase. If edited mode is on,
uppercase letters are printed normally; if edited mode is off and capo
mode is on, uppercase letters are preceded by an escape (\) character.
(Default is off.)

crecho, "crecho
echoes a carriage return when a line feed is typed. This mode can
only be used with terminals and line types capable of receiving and
transmitting simultaneously.

ctl char, "ctl char
- specifies-that ASCII control characters that do not cause carriage or

paper motion are to be accepted as input, except for the NUL character.
If the mode is off, all such characters are discarded. (Default is
off.)

default
is a shorthand way of specifying erkl, can, rawi, rawo, "wake_tbl,
and esc. The settings for other modes are not affected.

echoplex, "echoplex
echoes all characters typed on the terminal. The same restriction
applies as for crecho; it must also be possible to disable the terminal's
local copy function.

edited, "edited
suppresses printing of characters for which there is no defined Multics
equivalent on the device referenced. If edited mode is off, the 9-bit
octal representation of the character is printed. (Default is off.)

erkl, "erkl
performs "erase" and "kill" processing on input. (Default is on.)

esc, esc
enables escape processing (see "Typing Conventions" in Section 2) on
all input read from the device. (Default is on.)

6-68 CC92-01

force
specifies that if the modes string contains unrecognized or invalid
modes, they are to be ignored and any valid modes are to be set. If
force is not specified, invalid modes cause an error code to be returned,
and no modes are set.

fulldpx, Afulldpx
allows the terminal to receive and transmit simultaneously. This mode
should be explicitly enabled before enabling echoplex mode.

hndlquit, "hndlquit
echoes a newline character and performs a reset read of the associated
stream when a quit signal is detected. (Default is on.)

i flow, "iflow

init

specifies that input flow control characters are to be recognized and/or
sent to the terminal. The characters must be set before iflow mode
can be turned on.

sets all switch type modes off, sets line length to 50, and sets page
length to zero.

1 fecho, A lfecho
echoes and inserts a line
carriage return is typed.

1 I!!., "11

feed in the user I s input stream when a
The same restriction applies as for crecho.

specifies the length in character positions of a terminal line. If an
attempt is made to output a line longer than this length, the excess
characters are placed on the next line. If A 11 is specified, line

~~~~~~ ~~~~~ii~~siSi:i~~~~~~. byIna t~f~gf:s~~lif :0 lf~~ $~u~o~~a;~:n s~~~ II 
extra white space may appear on the terminal. --

no outp, Ano outp 
- causes output characters to be sent to the terminal without the addition 

of parity bits. If this mode and rawo mode are on, any 8-bit pattern 
can be sent to the terminal. This mode is valid for HSLA channels 
only. (Default is off.) 

oddp, "oddp 
causes any parity generation that is done to the channel to assume odd 
parity. Otherwise, even parity is assumed for line types other than 
2741 and 1 050. This mode is valid for HSLA channels only. (Defaul t 
is off.) 

of low, ""oflow 
specifies that output flow control characters are to be recognized 
when sent by the terminal. The characters and the protocol to be used 
must be set before of low mode can be turned on. 

6-69 CC92-01 



tty 

I 
I 

I 
I 

7/82 

pI.!!., "pI 
specifies tl-le leflgtrl .ir) litleS of a page. Wi-Ietl arl attempt is made to 
exceed this length, a warning message is printed. When the user types 
a formfeed or newline character (any break character) , the output continues 
with the next page. The warning message is normally the string "EOP" , 
but can be changed by means of the set special control order. The 
string is displayed on a new line after n-consecutive output lines are 
sent to the screen (including long lines-which are folded as more than 
one output line). To have the end-of-page string displayed on the 
screen wi thout scrolling lines off the top, n should be set to one 
less than the page length capability of the screen, unless the end-of-page 
string is a null string. In this case, output stops at the end of the 
last line of the page or screen. If "pI is specified, end-of-page 
checking is disabled. (See description of scroll mode be16w.) 

polite, "polite 
does not print output sent to the terminal while the user is typing 
input until the carriage is at the left margin, unless the user allows 
30 seconds to pass without typing a newline. (Default is off.) 

prefixnl, "prefixnl 
controls what happens when terminal output interrupts a partially complete 
input line. In prefixnl mode, a newline character is inserted in 
order to start the output at the left margin; in "prefixnl mode, the 
output starts in the current column position. (Default is on.) Polite 
mode control s when input may be interrupted by output; prefixnl control s 
what happens when such an interruption occurs. 

rawi, rawi 
reads the data specified from the device directly wi thout any conversion 
or processing. (Default is off.) 

r awo , rawo 
writes data to the device directly without any conversion or processing. 
(Default is off.) 

red, "red 
sends red and black shifts to the terminal. 

repl ay, "repl ay 
prints any partial input line that is interrupted by output at the 
conclusion of the output, and leaves the carriage in the same position 
as when the interruption occurred. (Default is off.) 

scroll, "scroll 
specifies that end-of-page checking is performed in a manner suited to 
scrolling video terminals. If the mode is on, the end-of-page condition 
occurs only when a full page of output is displayed without intervening 
input 1 ines. The mode is ignored whenever end-of -page checking is 
disabled. (Default is off.) 

tabecho, "tabecho 
echoes the appropriate number of spaces when a horizontal tab is typed. 
The same restriction applies as for crecho. 

tabs, "tabs 
inserts tabs in output in place of spaces when appropriate. If tabs 
mode is off, all tab characters are mapped into the appropriate number 
of spaces. 

6-70 CC92-01A 



Notes 

tty 

vertsp, .... vertsp 
performs the vertical tab and formfeed functions, and sends appropriate 
characters to the device. Otherwise, such characters are escaped. 
(Default is off.) 

wake tbl, .... wake tbl 
-causes input wakeups to occur only when specified wakeup characters 

are received. Wakeup characters are defined by the set wakeup table 
order. This mode cannot be set unless a wakeup table has been prevIously * 
defined. 

The status code error table $action not performed is returned by the printer on 
and printer off control operatIons if the special characters table currently-in 
effect indicates that this terminal cannot perform the printer on or printer off 
operation. The status code error table $no table is returned by -the 
get input translation, get output-translation, get input conversion, 
get-output conversion, and get special- control orders if the specified table 
does not exist. A code of zero-is returned otherwise. 

To assist the user in determining how to alter the tables described above, 
the following paragraphs provide a summary of the processing of input and output 
strings in ring O. 

INPUT PROCESSING 

1 . Tr ansI ation 
The characters are translated from the terminal's code to ASCII, using 
the input translation table. If there is no input_translation table, 
this step-is omitted. 

2. Canonicalization 
The input string is rearranged (if necessary) into canonical form as 
described in Section 2. 

3. Ed i ting 
Performs erase and kill processing as described in Section 2. 

4. Break and escape processing 
The characters in the input string are looked up in the input conversion 
table and treated accordingly. If a character is preceded by an escape 
character (as determined from the table) it is looked up in the 
input escapes array in the special chars table, and, if found, replaced 
by the corresponding character from the input_results array. 

OUTPUT PROCESSING 

7/82 

1. Capitalization 
Lowercase letters are replaced by uppercase for terminals in "capo" 
mode; uppercase letters are prefixed by escape characters if appropriate. 

6-71 CC92-01A 



2. 

3. 

Formatting 
The characters in the output string are looked up in the output conversion 
table described above. Carriage-movement characters are replaced by 
sequences found in the special chars table, followed by delay characters 
if so indicated by the delay table. Ribbon-shift characters are likewise 
replaced by appropriate sequences. Any character whose ind icator in 
the output conversion table is greater than 16 is replaced by the 
(indicator-16 )th sequence in either the not edited escapes or 
edited_escapes array in the special_chars table. -

Translation 
The result of step 2 is translated from ASCII to the terminal's code, 
using the output translation table. If there is no output_translation 
table, this step-is omitted. 

Control Operations from Command Level 

Some control operations may be performed from the io call command, as follows: 

io call control switch name order_arg where: 

1. switch name 
is the name of the 1/0 switch. 

2. order_arg 
can be any control order described above under "Control Operation" 
that can accept a null info ptr, as well as read status, write status, 
terminal_info, and the following (which must be specified as-shown): 

store id id 
where id is the new answerback string. 

set term type type {-control args} 
where type is the new terminal type and -control args may be 
any of -initial_string (-istr), -modes, and -ignore~line_type. 

set line type line type 
- where line_type is the new line type. 

line length N 
-where N is the new line length. 

The following control orders can be used as active functions: 

rio call control switch name read status] 
- returns true if input is avallable; otherwise, false. 

rio call control switch name write status] 
- returns true if output is pending; otherwise, false. 

6-72 CC92-01 



[io call control switch name terminal info terminal_type] 
- returns the current terminal typi. 

[io call control switch name terminal info baud] 
- returns the baud rate .. 

[io call control switch name terminal info id] 
- returns the terminal identifier Tanswerback). 

[io call control switch name terminal info line_type] 
- returns the current line type. 

6-73 CC92-01 



The tty printer 1/0 module performs stream 1/0 to a standard terminal 
(e.g., TN1200, ROSY, -Diablo, VIP7760, or IBM3270 printer) to make it operate as 
a remote printer. The hardware options currently supported are defined by the 
control arguments described below. 

The tty printer 1/0 module can also be used to direct its stream 1/0 
through the syn I/O-module to another 1/0 switch (e.g., user ilo or to a file 
switch through vfile_). 

Entry points in this module are not called directly by users; rather, the 
module is accessed through the 1/0 system. It is normally attached through the 
remote printer 1/0 module and all attach options are passed through remote printer 
to tty=printer=. - -

Attach Description 

where control arguments may be chosen from the following and are optional with 
the exception of -device, -tty, and -comm: 

-device STR 
attaches the switch as the device type specified by STR. 
normally printer or teleprinter. 

STR is 

-auto call N 
specifies the phone number, N, to be called via the automatic call 
unit on the specified communications channel. 

-tty STR 
defines the target communications channel to be STR, where STR is an 
1/0 switch name if the communications 1/0 module is syn_. 

-comm STR 
uses the communications 1/0 module specified by STR. Normally, STR 
is either tty_ or syn_. 

-physical line length N, -pll N 
specifies the physical line length, N, of the output device. 

-terminal_type STR, -ttp STR 
STR specifies the terminal type whose conversion, translation, and 
special tables defined in the user or system terminal type table 
(TTT) are used to convert and translate input and output to and from 
the device. If not specified, the default terminal type is used. 

-horizontal tab, -htab 
specIfies that horizontal tab characters are to be sent to the device. 

-vtab 
specifies that vertical tab characters are to be sent to the device. 

6-74 CC92-01 



Open Operation 

The tty printer 1/0 module supports stream_input, stream_output, and 
stream_input_output opening modes. 

Put Chars Operation 

The put chars entry passes the data directly to the communications 1/0 
module withoUt any conversion. 

Get CharslGet Line Operation 

The get chars and get line entries pass the operation directly to the 
communications 1/0 module. 

Control Operation 

This 1/0 module passes all undefined control operations to the communications 
I/O module. In addition, it supports the control operations listed below. 
Unless otherwise specified, there are no input control structures. 

select device 
selects the device characteristics for which output is next directed. 
The device is the one associated with the 1/0 switch by the =device 
option at attachment. The input structure is of the form: 

dcl device char(32); 

run out 
transmits any data stored in the output buffer. 

hangup proc 
sets up a specified event call channel to be signalled over, and a 
procedure to be called, if the communications channel hangs up. The 
hangup_proc input structure has the following form: 

dcl 1 hangup proc aligned, 
2 entry entry variable, 
2 datap ptr, 
2 prior fixed bin; 

6-75 CC92-01 



reset 

where: 

entry 

datap 

prior 

is the entry to call when a hangup is detected. 

is a pointer to data for the hangup procedure. 

is the ipc event call priority to be associated with hangup 
notification. 

sets the Aedited mode of output conversion and enables the tabs and 
vertsp modes if required by attachment options. 

get error count 
returns the current count of errors detected since attachment. The 
input structure is of the form: 

dcl error count fixed bin; 

hangup 
is used to hang up the device communications connection. This control 
operation is trapped if the communications 1/0 module is syn_, otherwise 
it is passed on. 

Modes Operation 

This 1/0 module passes all modes operations to the communications 1/0 module. 

Notes 

This 1/0 module is normally attached through a remote device 1/0 module 
(e.g. remote printer or remote teleprinter.) Attachment to tty printer is 
specified in the remote device attach description by "-terminal tty printer II 

along with any attach optlons listed above. The -device attach option is supplied 
by the remote device 1/0 module. 

6-76 CC92-01 



APPENDIX A 

NAMES OF COMMUNICATIONS CHANNELS 

The name of a communications channel is an encoding of the information 
describing the physical connection. Every such name is a string of 6 to 32 
characters. The name is divided into components separated by "." characters; 
each component represents a level of multiplexing. 

The first two components have a standard form, and describe a physical 
channel on an FNP. Multiplexed channels (i.e., subchannels of a concentrator 
whereby multiple terminals are supported on a single FNP channel) have additional 
components identifying the individual subchannels. The form of each component 
depends on the type of multiplexer involved. 

The general form of the name of a physical channel is: 

where: 

F 

A 

N 

SS 

F.ANSS 

is a top-level multiplexer name. If this is an FNP, the name must be I 
a, b, c, d, e, f, g, or h. Other system or user defined top-level 
multiplexers may have different naming conventions. 

is 1 for a channel of a low-speed line adapter (LSLA) or h for a 
channel of a high-speed line adapter (HSLA). 

is the number of the LSLA or HSLA on the specified FNP. It is in the 
range 0 to 5 for LSLAs or 0 to 2 for HSLAs. 

is a 2-digit decimal number identifying a subchannel of the specified 
LSLA or HSLA. 

T & D Channel I 

A channel called F.cOOO, where F is an FNP identifier. is a SDecial virtual I 
channel used by COLTS (Communications Online Test and Diagnostic~ System). It I 
does not correspond to an actual physical channel on the FNP. 

Examples 

a.1003 
a.h219 
c.1411 

FNP a, LSLA 0, sub channel 03 
FNP a, HSLA 2, sub channel 19 
FNP c, LSLA 4, sub channel 11 

A-1 CC92-01 



In the following examples, the physical channel b.h108 (i.e., FNP b, HSLA!1, 
subchannel 8) is assumed to be a concentrator whose subchannels are numbered 
sequentially from 0 to 15: 

b.h108.00 
b.h108.03 
b.h108.15 

sub channel 0 (first subchannel) 
sub channel 3 
sub channel 15 (last subchannel) 

A-2 CC92-01 



APPENDIX B 

PRINTER MODES AND CONTROL ORDERS 

The following are descriptions of the control operation and modes operation 
for the standard printer output module as supported by the remote_teleprinter 
and remote_printer_ I/O modules described in Section 6. 

MODES 

There are two mode types: binary and numerical. There is also a pseudo-mode, 
d efaul t, wh ich sets all modes to their defaul t val ue s . A modes string is a 
string of mode keys separated by commas. The current value of a mode is changed 
when its mode key appears in the mode string. It is unchanged if the mode key 
is omitted from the mode string. Mode keys may appear in any order and if a key 
appears more than once, the last value is used. 

Binary Modes 

Each binary mode has two possible values. The mode is set if the mode key 
appears in the mode string. It is reset if the mode key begins wi th the "",, 
character. The binary mode keys are defined as follows: 

7/82 

1pg, "'1pg 
causes the output module to return to the caller when the end of the 
current page is reached (i.e., at the formfeed position for the next 
logical page). If there are unprocessed characters at this point, the 
code error_table_$request_pending is returned. The default is "1pg. 

ctl char, "ctl char 
causes the output module to pass nonprinting characters to the device 
as is. Carriage movement characters (newline, formfeed, carriage return, 
backspace, and horizontal and vertical tab) are interpreted normally. 
The ASCII escape character (octal 033) is also transmitted directly, 
unless esc mode is enabled (see below). If ctl char mode is disabled, 
the treatment of nonprinting characters is determined by the setting 
of non edited mode. The default is "ctl char. 

esc, esc 
enables searching for esc ape sequences in the input string, wh ich enables 
slew to channel orders. The default is "esc. 

non edited, "non edited 
causes the -output module to print the applicable octal ASCII code 
preceded by a backslash (\) for nonprinting characters, and to use the 
nonedited output conversion table in the specified TTT for the remote 
device. The "non edited value causes any such characters to be omitted 
from the output. -The setting of this mode is ignored when ctl char is 
in effect. The default is "non edited. 

B-1 CC92-01A 



noskip, "'noskip 
suppresses the automatic insertion of blank lines at the end of a 
logical page (i.e., it allows the printer to print over the perforations) . 
It has the side effect of setting the logical page length to its 
default value. The default is "'noskip. 

print, "'print 
specifies that processed characters from the input string are to be 
printed. The nprint value allows a string to be processed for output, 
sets page and line counts, and honors the 1pg and stopN modes, but 
without actually printing the processed characters. The default is 
print. 

single, '" single 
specifies that any form feed or vertical tab characters from the input 
string are to be converted to newline characters (i.e., it suppresses 
runaway paper feeding). The default is "'single. 

truncate, "'truncate 
truncates the output if the line exceeds the line length. The "'truncate 
value allows the line to be wrapped onto the next line if it is too 
long. The default is "'truncate. 

Numerical Modes 

Numerical modes supply a value to be used during a put chars operation. If 
the numerical portion of the mode cannot be converted to a binary number, a 
conv er sion error is sig naIled. The defaul t val ue s for numer ical modes are set 
by the defaul t pseudo-mode or by the reset control operation (see below). The 
numerical modes are defined as follows: 

7/82 

pIN 

lIN 

inN 

sets the logical page length to N lines. At the end of a logical 
page, the printer skips to the next formfeed position (unless noskip 
mode is set). The val ue of N must be greater than one, and can be 
greater than a physical page. The defaul t value is physical page 
length minus lines per inch. 

sets the logical line length to N characters. The value of N must be 
greater than the indentation (see below) and must not be greater than 
the physical line length of the device. The defaul t value is the 
physical line length. 

sets the indentation to N characters. 
posi tive integer which is less than 
default value!is!O. 

The value of N must be 0 or a 
the logical line length. The 

stopN 
sets the output module to return to the caller every N pages even 
though the processing of the input string has not been completed. If 
there is unprocessed input remaining, a code of 
error table $request pending is returned. A value of 0 means do not 
return until all input is processed. The counter of how many pages to 
pro c e s s be for ere t urn in g is res e t wh en a new val u e i s g i v en. Th e 
default value is o. 

B-2 CC92-01A 



CONTROL ORDERS 

The control order s for the pr inter output module sometimes take an info 
pointer argument. Each of these is identified in the following descriptions. 
Each info pointer describes a structure which contains additional data or provides 
a pI ace for data to be wr i t ten. All struc tur es used for control order s are 
contained in the prt order info .incl.pI1 include file. The control orders are 
defined as follows: -

7/82 

channel stops 
sets the channel stop data used for slew to channel control sequences 
during a put chars operation. The info pointer defines the channel stops 
input array-as found in the prt order info include file. Array element 
N defines the stops for line -number N. Bit M of an array element 
defines a stop for channel M. The initial value is no stops defined. 
Once defined, the stops remain in effect until the next channel stops 
control operation. 

end of page 
- aavances the paper to the bottom of the current page, one line below 

the point where page labels are printed. If page labels are set the 
label is printed. The info pointer is not used and may be null. 

get~count 
returns accounting information. The info pointer defines the counts 
output structure as found in the prt order info include file. The 
page and line counts are reset by the reset control operation. 

get_error count 
returns the error count since the output module was attached. The 
info pointer defines the output variable ret error count as found in 
the prt_order_info include file. 

get _ po sit ion 
returns the position data defined by the POS1'LIOn data structure in 
the prt order info include file. The data resembles tEat of the get count 
control-operation, but the structure adds the total characters printed 
since the last reset to allow the caller to start the next put chars 
operation at the following character when the module returns Que to 
1pg or stopN mode. The data structure is also used for the set_position 
operation (see below). 

inside page 
aavances the paper to the formfeed posi tion of the next inside page. 
An inside page is a top page when the listing is folded correctly. 
Separator bars for the head sheet are printed over the perforations at 
the bottom of an inside page. The info pointer is not used and may be 
nUll. 

outside page 
advances the paper to the formfeed position of the next outside page. 
An outside page is a bottom page when the listing is folded correctly. 
The info pointer is not used and may be nUll. 

page_labels 
sets the top and bottom page labels to be printed for each logical 
page. The info pointer may be null to reset page labels to blank. 
Otherwise, the info pointer defines the page labels input structure as 
found in the prt~order_info include file. -

B-3 CC92-01A 



7/82 

paper info 
sets the physical characteristics of the paper in the printer. The 
info pointer defines the paper info input structure as found in the 
prt order info inc 1 ude file. Once set, the paper info remains in effect 
untTl the next paper info control operation. -If the pr inter has a 
software loadable VFC image, a new image is loaded and the printer 
pI aced out of synchronization for the operator to al ign the paper. 
Otherwise, the code error table $no operation is returned so the caller 
can request the operator-to load the appropriate VFU tape and set the 
required lines per inch switch to complete the operation. The defaults 
are~ page length, 66; line length, 136; lines per inch, 6. 

reset 
resets the output module to its default state: default modes, no page 
labels, line count = 0, page count = 1, and total chars = 0. The info 
pointer is not used and may be null. 

resetwrite 
cancels any data buffered for output. It is used to clear the output 
module after an error so the paper can be resynchroni zed. The info 
pointer is not used and may be null. 

runout 
causes all buffered data to be output before returning to the caller. 
It is used to synchroni ze the program wi th the actual dev ice. The 
info pointer is not used and may be null. 

set position 
- sets the internal counters in the output module. The info pointer 

defines the position data input structure as found in the prt order info 
include file. This rs the reverse of the get position control-operation. 
It is used to start the accounting data -at the correct point when 
restarting an I/O daemon request in the middle. 

B-4 CC92-01A 



MULTICS PROGRAMMERS' MANUAL 
COMMUNICATIONS INPUT/OUTPUT 

ADDENDUM A 

SUBJECT 

Additions and Changes to the Manual 

SPECIAL INSTRUCTIONS 

This manual is one of six manuals that constitute the M ultics Programmers' 
Manual (MPM). 

Order 
Number Title 
AG91 Reference Guide 
AG92 Commands and Active Functions 
AG93 Subroutines 
AK92 Subsystem Writer's Guide 
AX49 Peripheral Input/Output 
CC92 Communications Input/Output 

This is the first addendum to CC92, Rev. 1, dated August 198!. 

Insert the attached pages into the manual according to the collating instruc­
tions on the back of this cover. 

Throughout the manual, change bars in the margins indicate technical additions 
and changes; asterisks denote deletions. These changes will be incorporated into 
the next revision of this manual. 

Note: 
Insert this cover behind the manual cover to indicate that the manual 
has been updated with this Addendum. 

SOFrWARESUPPORTED 

Multics Software Release 10.0 

ORDER NUMBER 

CC92-01A 

34844 
1682 
Printed in U.S.A. 

July 1982 

Honeywell 



COLLATING INSTRUCTIONS 

To .update the manual, remove old pages and insert new pages as follows: 

Remove 

iii, iv 

v, blank 

3-5, 3-6 

4-1, 4-2 

4-11, 4-12 

6-7, 6-8 

6-27, 6-28 

6-47 through 6-52 

6-63 through 6-66 

6-69 through 6-72 

B-1 through B-4 

i-1 through i-4 

Honeywell disclabwi the impHed warrantie8 of merchantability _d fitn_ for a partic­
ular parpoee ~ makes DO expre118 warrantiea except _ may be atated m ita written 
agreement with and for ita cuatomer. 

ID DO event i8 Honeywell Hable to _yone for any indirect, 8pecia1 or COIl8eqUeDtiai 
damages. The information _d apeciftcation8 in thie document are 8ubject to change 
without notice. 

G Honeywell In formation Systems Inc., 

7/82 

Insert 

iii, iv 

v, blank 

3-5, 3-6 

4-1, 4-2 
4-2. 1, 4-2.2 
4-2·3, blank 

4-11, 4-12 

6-7, 6-8 

6-27, 6-28 

6-47, 6-48 
6-48.1, blank 
6-49 through 6-52 

6-63 through 6-66 

6-69 through 6-72 

B-1 through B-4 

i-1 through i-5, blank 

File No.: 1U63, 1L63 

CC92A 



0 

If 2-10 

@ 2-10 

\ 2-11 

A 

answerback 3-2 

answerback entry 
example of 3-21 

answerback table 3-18 

answerback table entry 
answerback statement 3-18 
type statement 3-19 

ASCII character set 2-1 
control characters 2-1, 2-3 
null 2-4 
printing graphics 2-1 

special characters 2-1 
reserved characters 2-4 

attachment 1-1 

autocall 
dial out command 

B 

baud rate 2-17, 3-2 

bisync 6-2 
abort order 6-4 
end write mode order 6-5 
event info order 6-4 
get bid limit order 6-4 
get-bsc-modes order 6-4 
get-chars order 6-5 
get-multi record mode order 6-5 
get-size order 0-4 
hangup order 6-4 
hangup proc order 6-6 
read status order 6-4 
resetread order 6-4 
resetwrite order 6-4 

INDEX 

bisync (cont) 
runout order 6-4 
send nontransparent msg order 6-5 
set bid limit order- 6-4 
set-bsc-modes order 6-4 
set-multi record mode order 6-5 
set-size order 0-4 
write status order 6-4 

block transfer 2-20 

C 

canonical form 2-4 
canonicalization 2-6, 2-12 

column assignment 2-6 
overstrikes 2-5, 2-7, 2-13 
repl acement 2-8 
tab 2-13 

carriage motion 2-5, 2-16 

Changing Terminal Type Definitions 
3-2 

channel 1-1, 3-1 

channel definition table 3-2 

character conversion 1-2 
set_tty 4-9 

communications channels 
binary synchronous 

bisync 6-2 
naming A-1 

continuation lines 2-17 

control orders B-1, B-3 

conversion table 3-15 
example of 3-21 
input 3-8 
output 3-8 

cv ttf command 3-2~ 3-3, 4-2 

D 

default types statement 
exampTe of 3-20 

CC92-01A 



delay table 2-17 

delays 2-17, 6-53 
set_tty 4-9 

dial facility 1-1 

dial out command 4-2.1 

display_ttt command 3-1, 3-3, 4-3 

E 

end-of-page processing 2-18 

erase character 
designation 2-10 

erase processing 2-6, ~-IU, 2-i3 
escape sequences 2-11, 2-15 
overstrikes 2-10, 2-14 

escape conventions 2-11, 2-18 

escape processing 2-6 

escape sequence 2-11, 2-17 

escape sequence character 2-11 

flow control 2-20 
input 2-20 
output 2-20 

FNP 

F 

see Front-End Network Processor 

framing characters 6-60 

Front-End Network Processor 1-1 

function key table 3-15 
example of 3-15 

G 

g115 6-7 
ena write mode order 6-8, 6-9 
hangup proc order 6-8 
reset order 6-8 
runout order 6-8 
select device order 6-8 

g115_ orders 
see tty_ orders 

H 

hasp host 6-10 
ena wri~e mode order 6-13 
hangup_proc order 6-14 

i-2 

hasp host (cont) 
no-signon record order 6-14 
read status order 6-14 
rese~ order 6-14 
resetread order 6-14 
resetwrite order 6-14 
runout order 6-13 
select device order 6-14 
SIGNON-processing 6-15 

no signon record order 6-16 
signon record order 6-15 

signon_record order 6-14 

hasp workstation 6-18 
carriage control specifications 

6-24 
character set specification 6-23 
end write mode order 6-22 
hangup proc order 6-22 
read s~atus order 6-22 
____ -r ___ ....J __ _ 

re~e~ oruer O-~j 

resetread order 6-22 
resetwrite order 6-22 
runout order 6-22 
select device order 6-23 

I 

1/0 modules 
bisync 6-2 
g115 -6-7 
hasp-host 6-10 
hasp-workstation 6-18 
ibm2780 6-25-
ibrn3270- 6-28 
ibmo3780- 6-36 
prtdim - B-1 
remote-input 6-39 
remote-printer 6-41 
remote-punch -6-43 
remote-teleprinter 6-46 
tty 0-48 -
tty=printer_ 6-74 

ibm2780 6-25 
select device order 6-27 
set bsc modes order 6-27 
set-mul~i record mode order 6-27 

ibm3270 6-28 
event-info order 6-29 
general poll order 6-29 
get input message size order 6-35 
polT order 6-29-
read order 6-30 
set input message size order 6-35 
stop general poll-order 6-29 
write order -6-30 

ibm3270 orders 
see tty_ orders 

ibm3780 6-36 
select device order 6-38 
set bsc modes order 6-38 
set-mul~i record mode order 6-38 

input conversion table 3-8 

CC92-01A 



kill character 
designation 2-10 

K 

kill processing 2-6, 2-10, 2-13 
overstrikes 2-10 

L 

16 ftf command 4-4 

line type 3-1, 3-2 

login command 
-terminal_type 3-2 

modes 
binary B-1 
numerical B-2 

M 

o 

output conversion table 2-17, 3-8 

p 

preaccess command entry 
preaccess command statement 3-19 
type statement 3-19 

printer modes B-1 

print terminal types (ptt) command 
1-1, 4-6-

print_ttt_path 4-7 

prtdim 
binary modes B-1 
channel stops order B-3 
end of page order B-3 
get-count order B-3 
get-error count order B-3 
get-position order B-3 
inside page order B-3 
numerical modes B-2 
outside page order B-3 
page laoels order B-3 
paper info order B-4 
reset-order B-4 
resetwrite order B-4 
runout order B-4 
set_position order B-4 

ptt 
see print_terminal_types command 

i-3 

raw mode 
input 1-2 
output 1-2 

remote input 6-39 

R 

get count order 6-40 
reset order 6-40 

remote_printer_ 6-41 

remote_punch_ 6-43 

remote_teleprinter_ 6-46 

s 

setting terminal types 3-2 

set_ttt_path command 3-1, 4-8 

set_tty (stty) command 3-2, 4-9 

special characters table 2-16, 3-8, 
3-16 

example of 3-21 
special_table statement 3-16 

special characters table entry 
backspace statement 3-17 
black shift statement 3-17 
carriage return statement 3-16 
edited output escapes statement 

3~17 -
end of page statement 3-17 
form feed statement 3-17 
input escapes statement 3-18 
new lTne statement 3~16 
output escapes statement 3-17 
printer off statement 3-17 
printer-on statement 3-17 
red shiTt statement 3-17 
tab-statement 3-17 
vertical tab statement 3-17 

stty 
see set_tty command 

tab 2-6 

terminal 1-1 

terminal type 3-1 
changing 3-2 

T 

preaccess commands 3-19 
setting 3-2 

terminal type entry 3-5 
additional info statement 3-6 
bauds statement 3-6 
bps statement 3-6 
buffer size statement 3-10 
cps statement 3-6 

CC92-01A 



terminal type entry (cont) 
delay statement 3-7 
erase statement 3-7 
examples of 3-20 
framing chars statement 3-9 
function keys statement 3-5 
global statement 3-14 
initial string statement 3-5 
input conversion statement 3-8 
input-resume statement 3-9 
input-suspend statement 3-9 
input-translation statement 3-9 
keyboard addressing statement 3-8 
kill statement 3-8 
line delimiter statement 3-8 
line-types statement 3-7 
modes statement 3-5 
output acknowledge statment 3-10 
output-end of block statement 3-10 
output-resume-statement 3-10 
output-suspend statement 3-9 
set input conversion order 3-15 
set-output conversion order 3-15 
special statement 3-8 
terminal type statement 3-5 
video taole 3-10 

terminal type file 2-17, 3-2, 3-4 
character specifications 3-4 
cv ttf 4-2 
deTault types statement ~-18 
display-ttt 4-3 
global statements 3-14 

terminal type table 3-1 
cv ttf 4-2 
deTault TTT3-3 
display ttt 4-3 
print terminal types 4-6 
set ttt path ij-8 
t t t-in fo 5-:2 

terminal types 
print terminal_types U-6 
set tty 4-9 

translation table 3-1, 3-9, 3-15 
example of 3-21 

ttt info 3-1, 5-2 
ttt inTo $additional info 5-6 
ttt-info-$decode answerback 5-8 
ttt-info-$decode-type 5-9 
ttt-info-$dialup-flags 5-7 
ttt-info-$encode-type 5-8 
ttt-info-$function key data 5-14 
ttt-info-$initial string 5-6 
ttt-info-$modes 5-5 
ttt-info-$preaccess type 5-5 
ttt-info-$terminal data 5-2 
ttt=info=$video_inTo 5-10 

tty 6-48 
aoort order 6-50 
accept printer off order 6-52 
answeroack -

terminal info order 6-65 
wru order 6-51 

break and escape processing 6-71 
buffering 6-49 
canonicalization 6-71 

i-4 

tty (cont) 
capitalization 6-72 
copy meters order 6-66 
editTng 6-49, 6-71 
formatting 6-72 
get delay order 6-54 
get-editing chars order 6-54 
get-event order 6-66 
get-framing chars order 6-60 
get-ifc info order 6-63 
get-input conversion order 6-56 
get-input-translation order 6-56 
get-meters order 6-66 
get-ofc info order 6-63 
get-output conversion order 6-56 
get-output-translation order 6-56 
get-speciaT order 6-59 
hangup order 6-50 
input flow control chars order 6-62 
interrupt order 6~50 
line type 

terminal info order 6-65 
line type 

set line type order 6-51 
listen order 6-51 
modes operation 6-67 
output delays 

get delay order 6-54 
set-delay order 6-53 

output flow control chars order 
6~62 - -

printer_off order 6-51 
printer on order 6-51 
quit disable order 6-64 
quit-enable order 6-64 
read-status order 6-64 
refuse printer off order 6-52 
resetread order 6-50 
resetwrite order 6-50 
send initial string order 6-65 
set default modes order 6-65 
set-delay order 6-53 
set-editing chars order 6-54 
set-event order 6-65 
set-framing chars order 6-60 
set-input conversion order 6-55 
set-input-translation order 6-55 
set-line type order 6-51 
set-output conversion order 6-56 
set-output-translation order 6-55 
set-speciaT order 6-57 
set-term type order 6-60 
set-wakeup table order 6-61 
start order 6-64 
start xmit hd order 6-51 
stop xmit nd order 6-51 
store id order 6-64 
terminal type 

terminal info order 6-65 
terminal info order 6-65 
translatTon 6-71, 6-72 
write status order 6-64 
wru order 6-51 

tty modes 6-67 
bTk xfer 

framing characters 4-10 
can 2-5 
ctl char 2-7 
edited 2-3, 2-17, 3-17 
erkl 2-5 

CC92-01A 



tty_ modes (cont) 
esc 2-5, 2-10 
rawi 1-2, 2-5 
rawo 1-2 
wake tbl 6-71 

tty_ orders 6-50 

tty printer 6-74 
orders -

get error count 6-76 
hangup 6=76 
hangup proc 6-75 
reset -6-76 
runout 6-75 
select device 6-75 

tty printer orders 
see tty_printer_ 

video table 3-10 

v 

control sequences 3-11 

video table 
function simulation 3-13 

video table 
global statement 3-14 
required functions 3-14 
statements 3-12 

w 

white space 2-10 

i-5 CC92-01A 



1 
1 HONEYWELL INFORMATION SYSTEMS 
1 Technical Publications Remarks Form 
1 

_I' 

w 
Z 
.....J 

19 
Z 
o 
.....J 
<{ 

I­
::J 
U 

MULTICS PROGRAMMERS' MANUAL 
TITLE COMMUNICATIONS INPUT /OUTPUT 

ADDENDUM A 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

Your comments will be investigated by appropriate technical personnel 
and action will be taken as required. Receipt of all forms will be 
acknowledged; however, if you require a detailed reply, check here. D 

FROM: NAME ---------------------------------------------
TITLE _________________________________ ___ 

COMPANY --------
ADDRESS ______________________________________ ___ 

ORDER No·1 CC92-01A 

DATED I JULY 1982 

DATE 



PLEASE FOLD Al\'D TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms 

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154 

POSTAGE WILL BE PAID BY ADDRESSEE 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM. MA 02154 

ATTN: PUBLICATIONS. MS486 

Honeywell 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

I 
I 
I 
I 
I 

! I 

I 
z 
..J 

C) 
Z 
o 
..J 
<i 
~ 
:::> 
u 

LU 
Z 

i oJ 

I C) 

I Z 
-..S 

<i 
o 
..J 
o 
u.. 

i:1

' 

I Ii 

I 
I 
I 
I 
I 
I 
I 
I LU 

I Z 
I oJ 

! ~ 
-cS 

« 
o 
..J 
o 
u.. 



Honeywell 
Honeywell Information Systems 

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154 
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1 W5 

In the U.K.: Great West Road, Brentford, Middlesex TW8 90H 
In Australia: 124 Walker Street, North Sydney, N.S.w. 2060 

In Mexico: Avenida Nuevo Leon 250, Mexico 11, O.F. 

32496, 5C981 , Printed in U.S.A. CC92-01 


	000
	001
	002
	003
	004
	005
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	4-01
	4-02.0
	4-02.1
	4-02.2
	4-02.3
	4-02.4
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48.0
	6-48.1
	6-48.2
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	6-71
	6-72
	6-73
	6-74
	6-75
	6-76
	A-1
	A-2
	B-1
	B-2
	B-3
	B-4
	_001
	_002
	i-1
	i-2
	i-3
	i-4
	i-5
	replyA
	replyB
	xBack

