
HONEYWELL

I MULTICS REPORT
I PROGRAM
GENERATOR
(MRPG}
REFERENCE
MANUAL

SOFTWARE

SUBJECT

SERIES 60 (LEVEL 68)

MULTICS REPORT PROGRAM
GENERATOR (MRPG)

REFERENCE MANUAL
PRELIMINARY EDITION

Detailed Description of the Multics Report Program Generator (MRPG)
Including Details of the Language Necessary to Prepare, Generate, and Execute
Programs

SPECIAL INSTRUCTIONS

This manual presupposes some basic knowledge of the Multics system? and does
not attempt to provide extensive information on a text editor needed to write
MRPG programs, on the PUI compiler, nor on the methods that may be used to
create and maintain the input files from which reports are produced.

This preliminary edition is based on the best information available at the time
of writing. Additional functional capabilities are expected to be provided in
future revisions.

SOFrW ARE SUPPORTED

. Multics Software Release 6.0

ORDER NUMBER

CC69, Rev. 0 March 1978

Honeywell

PREFACE

This reference manual contains a complete definition of the Multics Report
Program Generator (MRPG) language. Programmers can use this language to write
MRPG programs that produce simple or complex formatted reports. Numerous
examples illustrate every portion of the MRPG language. Some of the examples
clarify interactions between MRPG programs and other Multics procedures.

The reader is assumed to:

• Know how to log on

• Know how to use a text ed i tor

• Know how to invoke object segments as Mul tics commands

• Know how to prov ide arguments wi th commands

• Have a general knowledge of the virtual memory

• Have a general knowledge of 1/0 swi tc hes and attachments

Throughout this manual, references are frequently made to other Multics
manuals. For convenience, these references are as follows, where MPM stands for
Multics Programmers' Manual:

DOCUMENT

MPM Reference Guide
(Order No. AG9~

MPM Commands and Active Functions
(Order No, AG92)

MP M Subroutines
(Order No. AG93)

MPH Subsystem Writers' Guide
(Order No. AK92)

MPH Peripheral InputlOutput
(Order No. AX49)

Multics PL/I Reference Manual
(Ord er No:-AM83)

Multics PLII Language Specification
(Order No:-AG94)

}

© 1978, Honeywell Information Systems Inc.

REFERRED TO IN THE TEXT AS

MPH Reference Guide

MPM Command s

MPM Subroutines

MPM Subsystem Writers' Guide

MPM 1/0

Multics PLII Manuals

File No.: 1L23

CC69

Section 1

Section 2

Section 3

Section 4

Section 5

CONTENTS

Introduction •...•........
Summary of the MRPG Approach . . .
Command Processor vs. 1/0 Module ..
Multiple Use Of Input Data
Examples

A Complete Example.
The Input File . .
The Report
The Source Program . .
The Object Program
Producing The Report . . •..
Printing The Report ...

Language Concepts
Relationship to PLII
Character Set
Input File
Character Combinations
Elements of the Language ..

MRPG Reserved Words .
Keywords
Punctuation
Special-Character Words.

Comments
Separators
User-Defined Names
Quoted Strings
Integers and Numbers ..

Defaults
Define Before Reference.
Data Conversion •....
Numbering Conventions ...

Notation Definition and Explanation .
Symbols Used in General Formats ..

Words and Phrases .
All Uppercase
Initial Caps ..
All Lowercase

Brackets and Braces
Ellipses •...
Double Bars . .

Examples of Format Notation ..

Definition of the Language •...
Information in This Section ..
Mandatory Group Sequence ...
Suggested Reading Sequence ..
Rules Applicable to All Groups
Arith Expr Group
Char ~xpr Group ..
Char-Ref Group • .
Declare Input File Group
Declare-Parameters Group .
Declare-Variable Group . •

iii

Page

1-1
1-1
1-1
1-2
1-2

2-1
2-1
2-2
2-5
2-5
2-5
2-6

3-1
3-1
3-1
3-2
3-3
3-3
3-4
3-4
3-4
3-4
3-5
3-6
3-8
3-8
3-9
3-9
3-9
3-9
3-10

4-1
4-1
4-1
4-1
4-2
4-2
4-2
4-3
4-3
4-4

5-1
5-1
5-1
5-2
5-3
5-6
5-9
5-13
5-17
5-19
5-23

CC69

Section 6

Section 7

Section 8

CONTENTS (cont)

De fin e _ R e po r t Gr 0 up. .
Detail Group
Execute Phase Group.
Footing-Group
Full Expr Group
HeadTng Group
Input Field Def Group.
Line Group ~
Relationship Test Group.
Report Control Group .
Report-Field Def Group
The_MRPG_Program Group

Data Types
Types of Data

Decimal Data.
Integers
Numbers and Decimal Variables ..

Character Data.
Boolean Data
Picture Data

Conversion Between Data Types
Decimal to Character.
Character to Decimal •.....
Dec imal to Boolean. .
Boolean to Decimal ..
Character to Boolean .•.
Boolean to Character ...
Decimal to Picture ..
Character to Picture.

Expressions
Types of Expressions
Interactions Between Expression-Related
Groups. . . •

Operators. • • . . . •
Operator Classification
Operator Meanings
Operator Precedence • . .
Parentheses • . . • • . .

Combining Data Value Expressions

Program Preparation, Generation, and Execution.
Program Preparation

Initial Decisions••
Invocation Method. . . . •
Location of Input Data . . . • . .
Location of Output Reports
Output Printing Method •
Parameters • • • . . . • •
Validity Checking •.••.

Detailed Program Design . • .
Multiple Use of Input File
In put Fil e Str uc tur e . . .
Output Report Layout . • •

Typing in the Source Program.
Saving the Source Program •

Generating an Object Program •
Invoking the MRPG • . • • .

mrpg . • . .
Program Execution ••.

iv

Page

5-27
5-29
5-31
5-39
5-42
5-46
5-49
5-54
5-58
5-62
5-67
5-77

6-1
6-1
6-2
6-2
6-2
6-3
6-3
6-3
6-4
6-4
6-8
6-10
6-10
6-10
6-11
6-11
6-11

7-1
7-1

7-2
7-5
7-5
7-7
7-7
7-8
7-8

8-1
8-1
8-1
8-1
8-1
8-2
8-2
8-2
8-2
8-2
8-3
8-3
8-3
8-3
8-3
8-4
8-4
8-5
8-7

CC69

Section 9

Append ix A

Append ix B

Append ix C

Append ix D

Figure 2-1
Figure 2-2
Figure 2-3
Figure 4-1
Fig ure 5-1
Figure 5-2
Fig ure 7-1
Figure 9-1

Table 5-1
Table 6-1
Table 6-2

Table 7-1
Table 7-2
Table 7-3
Table 7-4

CONTENTS (cont)

Physically Printing A Report.
Potential Problem Areas ..

Logical Versus Physical
Page Height

Interaction Example.
Label Lines

The Reserved Keywords .

Additional Sample Programs.

Lines . .

two reports
hol~ and sort
begin_hold_assign.

The report 1/0 Module.
Introd uction
r epor t
Interaction with Other Procedures

Gross Structure of an MRPG-OS .
The Input Data Supplier Part.
The Report Production Part.
A Command Scenario
An 1/0 Appendage Scenario

General Format Diagrams

ILLUSTRATIONS

Page

9-1
9-1
9-2
9-3
9-3
9-5

A-1

B-1
B-2
B-4
B-5

C-l
C-1
C-2
C-4
C-4
C-4
C-4
C-5
C-6

D-1

A Sample MRPG Input File. 2-3
A Sample MRPG Report. 2-3
A Sample MRPG Source Program. . 2-4
Generalized MRPG Double Bar Notation. . . . •. 4-3
Mandatory Group Sequence In A Program 5-i
Skeleton for Section 5. 5-3
Expression-Related Groups Interdependence . 7-4
Physical Layout of a Long Logical Page. . . 9-4

TABLES

Automatic Lengthening of a Report Field • . . .
Examples of Decimal to Character Conversion ..
Examples of Character String to Decimal Value

Conversion . . • • . •
Operator Classification ..•...
Operator Precedence . • • . . • . .
Combining Arithmetic Expressions.
Combining Logical Expressions .•...•.

v

5-74
6-7

6-10
7-6
7-8
7-9
7-10

CC69

SECTION 1

INTRODUCTION

The Multics Report Program Generator (MRPG) is a language translator used
to generate a PL/I source program from anMRPG source program with the purpose
of generating formatted reports. A complete definition of the language is
presented in a COBOL-like notation (see Section 5).

SUMMARY OF THE MRPG APPROACH

The source program may be built with a text editor in a free-form format
using the MRPG language that is much higher in level than procedural languages
such as BASIC, FORTRAN, COBOL, or PL/I. A PL/I source program is generated from
the MRPG source program. The standard PL/I compiler then compiles the PL/I
source program into an MRPG object segment (MRPG-OS). An ASCII input file is
read by the object segment and one or more reports are produced. A report can
be printed on the user's terminal as it is being produced or it may be written
to a segment for later printing.

Once an object segment has been created, it can be used repeatedly with
input files that have the same structure.

Conditional tests may be used to decide whether to include or omit lines
and/or fields in reports. Control breaks on input fields can produce detail
summary lines. Report and page heading and footing capabilities are provided.

It is assumed that the person writing source programs is an experienced
programmer. However, the person triggering the running of an object program
need not be a programmer, whether such triggering is done from Multics command
level or by a Logical Inquiry and Update System (LINUS) report request.

COMMAND PROCESSOR VS. 1/0 MODULE

An MRPG-OS can be invoked from Multics command level in exactly the same
manner as system commands, for example:

When using this method, the input file must be in an existing segment
before the MRPG-OS is invoked.

Another method, the one used by LINUS, involves the report 1/0 module.
ASCII records built by another program are sent via report_ to the MRPG-OS.

1-1 CC69

MULTIPLE USE OF INPUT DATA

In the simple, straightforward case, the input records are processed as
they are received to produce the output report. An MRPG program can process the
input data more than once. For instance, produce a report from the input data
records in their original sequence, sort them into another sequence and produce
a different report. When such multiple passes over the input data occur, the
original input is read only once and is saved in a temporary file for later
reuse.

EXAMPLES

Section 2 presents a complete example that includes· examining the data
available in a file, writing the source program, executing the object segment,
and the printing of reports. Other sections contain fragments of programs,
where the fragments are chosen to illustrate specific points.

As an aid to the person becoming familiar with MRPG, the input file and the
source program described in Section 2 are also available on the system (if the
unbundled MRPG has been ordered and received). The reader can copy and modify
the source program, generate a new object program, and run it using the same
input file as is used in Section 2. A few more example programs are also
provided on the system with the MRPG package. See Appendix B for the details
concerning the content and location of the example input files and source
programs.

1-2 CC69

SECTION 2

A COMPLETE EXAMPLE

The example described in this section is intended to assist the reader in
becoming familiar with MRPG. This is an artificial example designed to
illustrate many MRPG features, and therefore, may appear to be moderately
complicated when it is read for the first time. Section 5 contains a large
number of examples of individual statements, each of which is treated in an
isolated manner. This section provides an integrated, complete example.

An input file, an output report, and the MRPG source program used to
produce the report are shown. Wi thin the source program, the ": :" symbol stand s
for the concatenation operation. The ":=" symbol specifies an assignment
operation.

The input file and the MRPG source program
system if the unbundled software is installed.
source program are in an archive:

are available on the user's
The MRPG input file and the

Archive: >system library unbundled>mrpg examples.archive
Input File: filing cabinet.mrpg.input -
Source Prog ram: filing=cabinet.mrpg

Appendix B explains how to obtain and run this example.

A discussion of the actions that are involved in building the input,
preparing the source program, converting the source program into an object
program, and producing the report are included with the example.

THE INPUT FILE

Figure 2-1 contains a nine record input file. The file is a segment
containing only ASCII characters. Each record ends with a newline character.
Neither the heading lines nor the left column (Record) are present in the input
file. They are included only for purposes of illustration and ease of
understanding. The four data columns and the remarks column comprise the file.
The remarks are ignored because the file is declared as a stream file and only
the first four fields are declared as being part of the file.

2-1 CC69

THE REPORT

Figure 2-2 is the report produced when the program in Figure 2-3 receives
the input file shown in Figure 2-1 and no arguments are supplied at the time
that the object program is invoked. The column of line numbers at the left of
the report are not part of the report, but are included to simplify discussing
specific lines in the report. If the -file argument was supplied when the
object program was invoked, then lines 1 to 3 of Figure 2-2 would not be
produced and a newpage character (014 octal) would follow the last line. The
report contains only ASCII characters.

2-2 CC69

Record
No.

1
2
3
4
5
6
'7
{

8
9

Line
No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

11/82

The Actual Input Data Records

u 2 10 30 The input data lines are sorted in the desired
u 4 34 50 order. Therefore, another sort phase is not required in
u 5 1 60 the program.
c 2 32 50 These comments are ignored by the procedures that read the
c 4 100 84 input (i. e. , read the 14 declared characters and skip until
c 5 40 100 the next newline character is passed over). Skipping
f 2 0 100 to a newline occurs because the input file declarations
f 4 8 250 include the "stream" keyword. Each record in this
f 5 3 300 ends with a newline character.

Figure 2-1. A Sample MRPG Input File

The Actual Output Lines

FILING CABINET INVENTORY AS OF 02/13/78

Grade: Commercial -- Purchased from: Cranston Office Furniture

No. of Drawers Quantity Unit Cost Extended Cost

----+----1----+----2----+----3----+----4----+----5----+----6

2
4
5

TOTALS: QUANTITY =

32
100

40

172

$ 50
$ 84
$ 100

$ 1,600
$ 8,400
$ 4,000

COST $ 14,000

Grade: Fireproof -- Purchased from: Firesafe Specialities

No. of Drawers Quantity Unit Cost Extended Cost

----+----1----+----2----+----3----+----4----+----5----+----6

2
4
5

TOTALS: QUANTITY =

a
8
3

11

$ 100
$ 250
$ 300

$ 0
$ 2,000
$ 900

COST $ 2,900

Grade: Utility -- Purchased from: Universal Metal Products

No. of Drawers Quantity Unit Cost Extended Cost

----+----1----+----2----+----3----+----4----+----5----+----6

2
4
5

TOTALS: QUANTITY =

GRAND TOTALS: QUANTITY =

10
34

1

45

228

$
$
$

30
50
60

COST

$ 300
$ 1,700
$ 60

COST $ 2,060

= $ 18,960

Figure 2-2. A Sample MRPG Report

2-3

file

CC69-00A

Line
No. The Actual Source Program Lines

1* A sample program to illustrate many of the MRPG features. This is
* filing_cabinet.mrpg in >unbundled>mrpg_examples.archive *1

declare 1 parameter, 2 where_to send output boolean key (Ii-file ll);

declare 1 input stream
file "filing cabinet.mrpg.input",
2 grade - char(1) position 1,
2 drawers dec(1) position 4,
2 quantity dec(3) position 7,
2 unit cost dec(3) position 12;

declare quantity total
declare cost total

dec;
dec;

declare quantity grand total
declare cost_grand_total

declare grade code to name table

dec;
dec;

("c" -> "CommercTafii "f" -> "Fireproof" "u" -> "Utility") varying;
declare grade code to supplier table

("c" -> "Cranston 'Office Furniture"
"f" -> "Firesafe Specialities"
"u" -> "Universal Metal Products") varying;

define 1 report filing cabinet inventory break (grade) page length 46
on (file "filing cabin~t.report" if (where to send output)

or switch "user output"), - - -
2 pagehead, 3 line 4, 4 "FILING CABINET INVENTORY AS OF" :: %mmddyy,

3 line +2,
2 detailhead grade,

3 line +3,
4 "Grade: ",
4 transform (grade, grade code to name) let (quantity_total := 0;),
4 "-- Purchased from: ",
4 transform (grade, grade_code_to_supplier) let (cost total := 0;),

3 line +2,
4 "No. of Drawers"
4 "Unit Cost"

column 11,
column 36,

4 "Quantity"
4 "Extended Cost"

column 26,
column 47,

3 line +2,
1* Next line provides column numbers for the reader's convenience. *1

4 ,,----+----1----+----2----+----3----+----4----+----5----+----6",
3 line,

2 detail the data line,
3 line, - -

4 drawers column 17 picture "9",
4 qua n tit Y col urn n 3 1 pic t u r e "z z 9 l! ,

4 unit cost column 37 picture "$z,zz9",
4 quantity * unit cost column 51 picture "$zz,zz9"

let (quantity total 0- quantity total + quantity;
cost total 0- cost total +-quantity * unit_cost;),

2 detailfoot grade,
3 line +2,
4" TOTALS: QUANTITY = "
4 quantity total
4 "COST" -
4 cost total
let (quantity grand total

cost grand total :=
2 pagefoot, - -

3 line 46,

column 30 picture "zzz9",
column 44,
column 50 picture "$zzz,zz9"

:= quantity grand total + quantity total;
cost_grand_total + cost_total;), -

4" GRAND TOTALS: QUANTITY = ",
4 quantity grand total column 29 picture "zzzz9",
4 "COST ~,,- column 40,
4 cost_grand_total column 49 picture "$zzzz,zz9";

I begin (quantity grand total 0- 0; cost_grand_total := 0;)
-print the_data_Iine; - end;

Figure 2-3. A Sample MRPG Source Program

11/82 2-4 CC69-00A

THE SOURCE PROGRAM

Figure 2-3 shows the MRPG source program. A text editor is used to build
the lines of the source program and to write the program into a segment with the
suffix mrpg as the last component of the segment's name. The program could have
been built with fewer characters and with fewer lines. It was deliberately
built as it is to clearly show the hierarchal structure of the input file and of
the report definition. The source program contains only ASCII characters.

THE OBJECT PROGRAM

The source program in Figure 2-3 is converted into a standard Multics
object segment as follows:

1. Change to a directory in which the user's process can create segments.

2. Extract an exec com from the archive by typing:

ac x >unb>mrpg_examples run_mrpg_examples.ec

3. Invoke the exec_com by typing:

4.

ec run_mrpg examples

A menu of sample programs is
one of the menu numbers.
filing_cabinet example.

displayed.
Type in

A request is made to type in
the menu number for the

5. The MRPG language translator types out MRPG, reads in and processes
the source program, and generates a FL/I source program that is
written into the user's working directory with the name:

6.

filing_cabinet.pI1

The MRPG then automatically invokes the PL/I compiler. It types out
PL/I and compiles the PL/I source program into an object program in
the user's working directory with the name:

filing_cabinet

The user is asked if any more examples are
control will return to the Multics command
are enabled, a ready message is typed.

to be run. Type "no" and
level. If ready messages

PRODUCING THE REPORT

A choice must be made, namely, where is the report to appear. If it is to
be typed out directly onto the terminal, then step below is applicable. If
the report is to be written into a segment for later use, then step 2 is
relevant.

1. Invoke the object program by typing:

filing_cabinet

The object program reads in the input file and types out the report on
the user's terminal after which control returns to command level.

2-5 CC69

2. Invoke the object program by typing:

filing_cabinet -file

The object program reads the input file and writes the report into a
segment named:

filing_cabinet.report

in the user's working directory after which control returns to command
level. The following paragraph discusses how to have the segment
printed.

PRINTING THE REPORT

A report that is in a segment in the user's working directory may be
displayed on a terminal by typing:

print filing_cabinet.report

or may be printed on the high-speed line printer by typing:

dprint filing_cabinet.report

2-6 CC69

SECTION 3

LANGUAGE CONCEPTS

The MRPG language is defined in Section 5 with some introductory material
and 18 sets of information. The term "group" is used to refer to one of these
18 sets. Each group contains a COBOL-like general format diagram, and (1)
examples, (2) syntax rules, and (3) general rules applicable to the group.

RELATIONSHIP TO PL/I

Because the MRPG language translator generates a PL/I source program that
is then compiled by the standard PL/I compiler, some MRPG language
characteristics are actually PL/I characteristics. An example is the current
limit of 256 characters for the length of a user-defined name. Another example
is the definition and treatment of pictures ("zzz,zz9v.99"). Should such
characteristics change in PL/I, then the new PL/I characteristic also becomes -
instantaneously -- the new MRPG characteristic.

For complicated characteristics, rather than duplicate substantial portions
of the PL/I manual in this manual, references are made to the PL/I manuals. In
some instances, the amount of text required to state the PL/I characteristic is
small. In these cases, the PL/I characteristic is restated in this manual.
Whether or not the PL/I characteristic is stated in this manual, or merely a
reference appears, this manual identifies such characteristics with the
following sentence:

This is a PL/I characteristic.

The significance of the above remark is that the authoritative, governing
documentation is found in the PL/I manuals.

CHARACTER SET

The entire 7-bit ASCII character set is available for use in an MRPG source
program and in the input file.

An MRPG source program can be thought of as containing three domains:

• Quoted strings ("A quoted string.")

• Comments (/* A comment. */)

• Everything else

3-1 CC69

The full ASCII character set can be used for quoted strings, comments, and
in the input file without causing problems.

Only the following characters are valid in the "everything else" domain.
When nonprinting characters that are not listed below are encountered between
language elements, such nonprinting characters are ignored (normal program
generation and compilation occur). Nonvalid printing characters encountered
between language elements cause an MRPG warning message to be sent to the user
and then these nonvalid printing characters are ignored (normal program
generation and compilation occur). Nonvalid characters within language elements
yield error messages and program generation does not occur.

Valid printing characters:

The 52 uppercase and lowercase letters.
The 10 digits.

Comma
Semicolon
Left parenthesis
Right parenthesis
Underline (Underscore)

+ Plus
Minus (Hyphen, Dash)

* Asterisk
/ Right slant (Slash)
< Less than
= Equals
> Greater than
& Ampersand
: Vertical line (Vertical bar)

Circumflex (Caret)
Period (Decimal point, Dot)

" Percent
Colon

" Double quote (Quotation mark, Quote)

Valid nonprinting characters (white space):

Space
Horizontal tab
Newline (Line feed)
Vertical tab
Newpage (Form feed)

Several of the printing characters are valid only at particular places in
an MRPG source program. Examples are the & (for a logical AND operation) and
the" (to call a builtin function). These cases are described in Section 5.

INPUT FILE

The input file is assumed to be a file of 9-bit ASCII characters. Any
ASCII character may reside in the lower seven bits of each 9-bit character. The
two high-order bits of each 9-bit character must be zeros.

The file must be a canonical file. See the MPH Reference Guide for the
definition of and a discussion about canonical files. The "canon" command,
described in the HPH Commands, may be used to convert a non-canonical file into
a canonical file.

3-2 CC69

CHARACTER COMBINATIONS

The ~ ~ character combinations are not part of the MRPG language. They are
used to form abbreviations in this section and include:

~SP~ space

~NL~ newl ine (1 ine feed)

~HT~ horizontal tab

~VT~ vertical tab

~NP~ newpage (form feed)

~BSP~ backspace

Conventional keywords are formed from printable characters. Special
meanings attached to certain printable character combinations are:

I I
I I

/*

*/

->

concatenate operator

assignment operator

start of a comment

end of a comment

translation operator (in tables; see the Declare_Variable group)

FI a keyword denoting the end of an IF statement in the Execute Phrase
group

conventional ellipsis

BSP a keyword specifying that backspace characters may be present in the
character expression (see the Report_Field_Def group).

ELEMENTS OF THE LANGUAGE

A source program contains the following types of elements:

• MRPG reserved words

• Comments

• Separators

• User-defined names

• Quoted strings

• Integers and numbers

3-3 CC69

MRPG Reserved Words

These words may be used in MRPG source programs, but must not appear in the
program as user-defined names. A complete list is given in Appendix A.

KEYWORDS

A keyword is an MRPG reserved word whose
format in which the word appears is used in a
keywords are:

DECLARE
PAGELENGTH
PRINT
VAR
VARYING

Unlike COBOL, MRPG has no optional words.

presence is required when the
source program. A few of the

Within each format, the keywords are shown in uppercase. However, when
they are used in a source program, they can be in lowercase, uppercase, or a
mixture. That is, declare, DECLARE, Declare, and dEcLaRe are equivalent.

In one sense, the digits 0, 1, 2, 3, and 4 are keywords, because they are
specifically called for in certain formats, for example:

DEFINE 1 REPORT ... ,
2 REPORTHEAD

but these digits are also available for use elsewhere in the source program.
Therefore, these digits are not reserved words.

PUNCTUATION

Only the comma and the semicolon are used as punctuation characters. Both
the comma and the semicolon are used to delimit major portions of the program.
In such usage, the comma is at a lower hierarchial level than the semicolon. In
addition, the comma may be used to separate items in a list. Section 5
specifies where commas and semicolons must be used.

SPECIAL-CHARACTER WORDS

• Arithmetic operators (e.g., + and -;)

• Relational operators (e.g., < and =)

• Logical operators (e.g., & and A)

may be thought of as reserved words, as is done in COBOL, because they have
special meanings within the MRPG language and because they are not available for
indiscriminate use by the programmer.

3-4 CC69

Comments

Comments can only exist outside of quoted strings and between language
elements.

A comment begins with a 1* (character pair) and ends with the next *1
(character pair). The beginning and ending 1* and *1 characters are considered
part of the comment.

The 1* *1 pairs and all intervening characters are ignored by the MRPG
language translator.

The following example illustrates several situations of interest. In each
case shown below, the English text between the 1* and the next *1 is a true
remark about the situation. Notice that one of these situations is not valid.

1* A comment can be at the beginning of the segment that contains the MRPG
source program. *1

declare parameter

decla/* This will result in an error. */re

declarel* Valid to have the starting I immediately after the end of a word
and also valid for the ending I to immediately precede a word
(i.e., it is not necessary for a space character to precede the
1* pair nor to follow the *1 pair). */1 input ...

1* This six-line comment includes four blank lines.

*1

declare average decimal; 1* Explanatory remarks. *1

define 1 report payroll

1* If the * I are separated, they do not end the comment. *1

pagewid th 132

1* Another 1* does not "nest" comments. Only one asterisk right slant is
needed to terminate a comment. *1

pagelength 66

1* The nex t two lines d iv ide the sum by a coun t. "* I
average 1 .- sum/* Confusing, but valid comment.*11 count_l;
average=2·- sumll* This is also valid. */count_2;

3-5 CC69

end;

/* A comment can be at the end of the segment that contains the MRPG source
program. */

Separators

Elements of an MRPG source program are separated by one or more separator
characters. The most commonly used separator characters are the white space
characters. Their name; octal value, and graphic representation in this section
are:

Space octal 040 ~SP~
Horizontal tab octal 011 ~HT~
Newline (Line feed) octal 012 ~NL~

Other white space characters are:

Vertical tab octal 013 ~VT~
Newpage (Form feed) octal 014 ~NP~

In a strict technical sense, the characters
paragraphs are not separators. However, they can
delimiting language elements.

discussed in the next few
perform the function of

When called for in a general format,
delimit language elements:

the following characters separate and

Comma
Semicolon
Colon followed by equals
Quote
Left parenthesis
Right parenthesis
Hyphen followed by greater than
Percent

"
(
)
->
%

In addition, the /* and */ (character pairs), which delimit the start and
end of comments, also separate and delimit language elements.

The nonalphabetic language elements:

+ * / < <= = >= > = & I I
I I

It ._ _>

also function as separators, and
separators, but their alphabetic
surrounded by separators.

therefore, do not need to be surrounded by
equivalents, such as LT and NOT, must be

In these examples, when there is a gap between characters, that gap
represents one or more white space characters.

3-6 CC69

1 . The 1 ine :

dcl ~SP~1~SP~input

is equivalent to:

dcl~HT~~HT~1~HT~~SP~~HT~input

2. The line:

dcl fives set (5, 10, 15) ;~NL~

is equivalent to:

dcl fives set(5,10,15);4NL~

which is equivalent to:

dcl~SP~fives~NL~

~NL~
~NL~

~NL~

set(5,~NL~
10, 15) ; 4NL~

3. The line:

dcl kind table (2 -> "Bicycle" 4 -> "Car") ;4NL~

is equivalent to:

dcl kind table (2->"Bicyele"4->"Car");4NL~

4. The 1 ine:

del sUbtotal dee ;4NL~

del total dee ;4NL~

is equivalent to:

del subtotal dee;del total dee;4NL~

5. However, the quoted string:

"United~SP~States"

is different than:

"United~HT~States"

and both differ from:

"United~NL~
States"

although all three forms are valid quoted strings.

3-1 CC69

User-Defined Names

A user-defined name is an MRPG word that the user specifies to satisfy the
format of a clause or statement. The characters that may be used are the 52
uppercase and lowercase letters, iO decimal digits (0-9), and the underscore
character (). All of the names defined by the user must be unique and must
begin with one of the 52 alphabetic characters. The maximum length of a
user-defined name is 256 characters. These are PL/I characteristics.

In all the groups, the lowercase character strings that have a name suffix
identify those places where the user must define a name. The complete list of
these names is:

parameter name
input field name
local-variable name
set variable name
table variable name
report name
detail-name

The PL/I source program that is generated and compiled based on the user's
MRPG source program uses several internal names. The internal names all begin
with a two-character sequence of one uppercase letter followed by one underscore
character. Therefore (to avoid conflict), no user-defined name can begin with
an uppercase letter followed by an underscore.

Unlike the situation with MRPG keywords where uppercase letters are not
distinguished from lowercase letters (e.g., declare and dEcLaRe are equivalent)
the distinction is made for user-defined names. Thus, Payroll and payroll are
two unique names.

Quoted Strings

The reader will encounter elements such as "string-1" at several places
throughout the group diagrams in Section 5. Any ASCII character can be placed
between the starting quote character and the ending quote character.

If the user intends to construct a printed string that contains a quote in
the output, two adjacent quotes for each quote desired in the output plus one
additional quote at both the beginning and end of the string must be supplied.

MRPG Source Program Printed Output

"The simple case." The simple case.

"""Normal quoting.""" "Normal quoting."

"""""Double quotes.""""" ""Double quotes.""

"Quote in "" middle." Quote in " middle.

The maximum length of a quoted string in the source program is 254
characters. This count is determined after:

1. Removing the string containing quotes (beginning and end)

2. Replacing all pairs of adjacent quote character with one quote
character

3-8 CC69

This is a PL/I characteristic.

Integers and Numbers

Integers can be
integers are kept in

formed from the ten decimal
fixed binary(35) format.

digits (0-9). Internally,

Numbers can be formed from the ten decimal digits (0-9) and the decimal
point. Internally, numbers are kept in float decimal(20) format. The maximum
quantity of significant digits that are retained to express the value of a
number is 20 digits. (Refer to "Table 6-2" for an example of a 20-digit
number.)

DEFAULTS

If certain phrases are omitted in a program, default actions are taken, or
default values are assumed. (Refer to Section 5 for specific default conditions
related to the individual group description.)

DEFINE BEFORE REFERENCE

A data item must be defined in a DECLARE OR DEFINE statement before a
reference can be made to that data item. The definition can occur in an earlier
portion of the statement in which the reference occurs. Some examples are:

declare 1 input, 1* this example is valid *1
2 length of name dec(4),
2 item name-char(length of name),
2 item=quantity dec(6);- -

declare 1 input, 1* but this example is in error, because the reference to
length of name in the parentheses occurs before the
declaration of the input field length of name is
encountered. Even though the declaration of length of name
occurs on the same line as its use as a reference inside
the parentheses, the program is in error. *1

2 item name char(length of name), 2 length of name dec(4),
2 item=quantity dec(6);- - - -

DATA CONVERSION

If a numeric value occurs in a context where a character string is needed,
the necessary conversion occurs automatically. The length of the converted
string is the same as the quantity of nonblank characters that appear if the
number is printed on a terminal. Similarly, if a character string occurs in a
context where a number is needed, the conversion occurs automatically provided
that the characters in the string are valid components of a number. (This topic
is covered in depth in Section 6.)

These examples illustrate the rules governing data conversion. The use of
» in the second example stands for a space character.

3-9 CC69

1. Number occurs where character string needed:

Internal Number

123
4.56
-.007

Character String

123
4.56

-0.007

String Length

3
4
6

It is not possible to have a plus sign, or, leading or trailing zeros
or blanks in the converted string.

2. Character string occurs where number needed.

Character String String Length Internal Number

987 3 987
654l-5~~ 6 654
kS32l-5 4 32
~~1.09~ 7 1. 09
kS~~~~~-.006 11 -.006
0034.5600 9 34.56
+4 2 4
abc 3 error
d5 2 error
6e 2 error
7.8.9 5 error
+3+456 6 error
789- 4 error

The only valid characters in the character string to be converted
are the decimal digits, a leading plus sign, a leading minus sign, and
not more than one decimal point. Leading and trailing zeros and
spaces are stripped off.

NUMBERING CONVENTIONS

In general, numbering of items begins with one, not zero:

Number of
First Item Item Description

Character positions within an input record.

Characer postions within a string.

Column positions within a report line.

Lines in a report page.

Sub-report numbers within a report.

Control break levels.

o Phase numbers in the comments in the generated PL/I
statements.

3-10 CC69

SECTION 4

NOTATION DEFINITION AND EXPLANATION

Several examples appear at the end of this section to assist the reader in
understanding the notation used in later sections of this manual.

SYMBOLS USED IN GENERAL FORMATS

In addition to keywords and punctuation, the general format diagrams also
contain brackets, braces, ellipses, and vertical double bars. Each of these
items is discussed below.

Words and Phrases

Three types of English-appearing words and phrases exist in the general
formats:

• WORDS IN ALL UPPERCASE LETTERS

• words in all lower case

Each of the uppercase and lowercase types identify a different kind of
language element. The terms in ALL UPPERCASE LETTERS are usually one word. If
the term involves more than one word, the words are separated by one or more
white space characters. ~ost terms with initial caps and with all lowercase
consist of more than one English word with the words connected by underline
characters. A few of the initial cap terms and the all lowercase terms consist
of one word.

ALL UPPERCASE

Text in all uppercase letters (e.g., DECLARE and PRINT) specifies keywords
of the language. These words must be spelled exactly as shown in this text.
Frequently, abbreviations exist for the English words. If the user chooses to
select the abbreviation, then it must also be spelled exactly as shown.

There are no optional words within an MRPG phrase. Therefore, this manual
does not distinguish keywords from optional words. Consequently, underlining of
keywords is not used as it is in COBOL manuals.

4-1 CC69

INITL4L CAPS

Terms such as Declare Input File and Char Fxpr are names of groups. These
names can be thought of as-abbreviations for groups.

The hyphen and digit at the end of an initial cap term (e.g., Char Expr-3)
is used to distinguish between different meanings of the information whose
syntax is defined by another group. In COBOL manuals, the trailing identifiers
in one general format have no relation to the trailing identifiers in another
general format (i.e., in COROL manuals, the numbering starts over at 1 again for
e a c h g r 0 up). Ti 0 W eve r, in t 11 ism a n u aI, th e n u m be r in G car r i e s (3 c r 0 s saIl g r 0 ups.
Lowercase terms with the same meaning have the same trailing identifier. Thus,
the meaning for the value represented by Full Expr-4 in the Footing Group is the
same as for the value represented by Full Exp~-4 in the Heading group.

ALL LOWERCASE

Terms such as "input field name" and "integer" identify places where the
user must supply a name or a value. Each term specifies what type of
information must be su ppl i ed. Thu s, Hhen II i npu t field name II is encountered, the
name written in the program at that point must be a name that is defined earlier
in the program as the name of an input field. The term "integer" means that an
integer must be supplied. Integers do not include decimal points. Therefore,
supplying a number such as 7.3 is invalid. The applicable syntax and general
rules clarify each situation.

The hyphen and digits at the end of the all lowercase term is the same as
for initial cap terms (e.g., integer-19) and is used to distinguish between
different meanings of the information that the user must supply. ThUS, the
meaning of "integer-13" in the Footing group is the same as "integer-13" in the
Heading group.

Brackets and Braces

Brackets and braces have the same meanings as in COBOL documents:

•

•

Brackets []

Braces ()

enclosing a portion of a general format indicate
that either all of the options within the brackets
may be omitted, or one but only one of the options
within the brackets must be selected.

enclosing a portion of a general format indicate
that one, but only one, of the options within the
braces must be selected.

In both cases, options are stacked vertically within the braces or
brackets. Occasionally, text is too long to fit onto
this nature continuation is indicated by indenting the
column positions.

one line in cases of
continuing lines a few

Braces and brackets always occur in balanced pairs. Further, the two
matching items are the same height. When nesting of hraces or brackets occurs,
a brace or bracket is always higher than the next inward brace or bracket.

4-2 CC69

Ellipses

As in the general formats of COBOL, an ellipsis C •••) represents the
position at which repetition may occur at the user's option. The portion of the
format that can be repeated is:

1. Select an ellipsis.

2. The brace or bracket that immediately precedes the ellipsis is the
closing brace or bracket for the portion of the general format that
can be repeated. Starting at this closing. brace or bracket, scan to
the left to locate the logically matching opening brace or bracket.

3. The ellipsis applies to that portion of the general format between
these opening and closing braces or brac~ets.

Double Bars

MRPG permits some options to be used in any order. Further, some options
may be used many times, but such multiple usage may be interlaced with the
multiple usage of other options (several examples are presented later in this
section). The MRPG notation is an extension of the notations:

• ~loPtion sl[}

• lIoptionsli

as defined in Section 1.3.1.6 (May 76/76010) of the
CODASYL Programming Language Committee COBOL Journal of
Development. The brace and bar notation means that a
selection of one or more of the options must be made,
but the same sequence of wpro,s (option) -m;u.s~-., not be
chosen more than once in that -entry or statement.',

as defined in Section 3.0.1 Df the May 1977 draft of
the CODASYL Data Description Language' Committee'DDL
(Data Description Language) Journal of . D€veI6p~~nt.
The double bar notation me,ans that at least~9n~.option
must occur 'and at most,' one of each opt'ion 'may occur.

An explanation of the MRPG notation is included after the figure. The
letters X, Y, and Z are present to facilitate this discussion.

Y The o
options

are

stacked

X here.

Figure 4-1. Generalized MRPG Double Bar Notation

The double bars mean that more than one of the options can be chosen.
Further, when more than one option is chosen, they can be chosen in any order.

4-3 CC69

The letter X indicates the physical placement for the character that
specifies the minimum quantity of options that must be selected from the set of
options within the double bars. The value of X is either the digit zero or the
digit one. If zero, all of the options can be omitted. If one, at least one of
the options must be chosen.

The letter Y indicates the physical placement for the character that
specifies the maximum quantity of times that each option can be selected. The
val u e 0 f Y is e i the r the dig ito n e 0 r the let t e r " nil. I f on e, any 0 p t ion t hat
is selected can be selected only once. If "n", each option can be selected as
many times as desired.

It should be noted that the X, which is associated with a mlnlmum value, is
placed physically lower in the figure than the letter Y, which is associated
\/ith a maximum value. Thus, the maximum-limit character is physically higher
than the minimum-limit character.

The letter Z indicates the physical placement for the character that
specifieS the delimiter which is required between multiple options. The circle
that the Z is wi thin is part of the double bar notation. IJsually, a space
character is the between-options delimiter (i.e., the circle appears to be
empty). Sometimes a comma is in the circle (i.e., a comma is required between
options that are selected from the set of options within the double bars). The
delimiting character is not a trailing character, but is a "between" character.
(That is, the delimiting character is not used in front of the first option
selected, nor is it used after the last option selected.)

Occasionally, the delimiting character is longer than one character. In
such situations, the circle becomes two semicircles with the delimiter
in-between the semicircles. See the Char_Expr general format diagram in Section
5.

EXAMPLES OF FORMAT NOTATION

These examples use words and options that are constructed for illustrative
purposes only and bear no relation to the actual MRPG language.

1 • Consider:

{cat} dog
pig

The set of all possible choices is:

B. cat
b. dog
c. pig

2. Consider:

[rat] hen
fox

The set of all possible choices is:

a. omit everyt.hing
b. rat
c. hen
d. fox

4-4 CC69

3. Consider:

{ three} r cats
seven t dogs J

The set of all possible choices is:

a. three cats
b. three dogs
c. seven cats
d. seven dogs

4. Consider:

5.

6.

There are an infinite number of possibilities.
possible choices are:

a. hen
b. pig
c. hen pig
d. pig hen
e. hen hen hen hen pig hen hen pig

Consider:

:llmllO
The set of all possible choices is:

a. cat
b. dog
c. fox
d. cat dog
e. cat fox
f. cat dog fox
g. cat fox dog
h. dog cat
i. dog fox
j. dog cat fox
k. dog fox cat
1. fox cat
m. fox dog
n. fox cat dog
o. fox dog cat

Consider:

: II ~~nIO

Several of the

The only difference from the previous example is that the lower left
digit is a zero, rather than a one. The set of all possible choices
is the same as for the previous example except that there is one more
choice, which is to omit everything.

4-5 CC69

7. Consider:

g II ~~~ II 0
There are an infinite number of possibilities, because there is an "n"
at the upper left. Several choices are:

a. omit everything
b. hen
c. pig
d. hen,pig
e. pig,hen
f. hen,hen,pig,pig,pig,pig,hen,hen,hen,hen,hen,pig

Observe that no spaces are present either before or after the comma in
the circle at the upper right of the double bars for this example.
Yowever, it is valid to have white space before, after, or both before
and after the comma, because of MRPG's treatment of white space (i.e.,
white space between language elements is ignor~d).

8. Consider:

{ ~ e:O::o::::S:ven longer Phrase} [, {:e:O::o::::S:ven longer Phrase}] ...
One of the possible choices is:

A long phrase, Yet another even longer phrase, Yet another even
longer phrase, A long phrase, A long phrase

Inclusion of the above in a general format diagram consumes
substantial horizontal space. The following double bar notation
specifies the same rule in much less space.

n II A long phrase II 0
1 Yet another even longer phrase

9. Consider:

{
A cat is a four-legged animal with hair. }
Hen, two legs, feathers.

Sometimes lengthy formats such as this, in combination with other
portions of a general format do not fit on one line, hence text must
be folded with indentation onto one or more continuation lines. The
next two diagrams are equivalent to the above diagram.

{

A cat is a four-legged
animal with hair.

Hen, two legs, feathers.

{

A catf~~r:legged}
animal
with hair.

Hen, two legs,
feathers.

4-6

}

CC69

SECiION 5

DEFINITION OF THE LANGUAGE

INFORMATION IN THIS SECTION

This section contains a complete, detailed definition of the language and
includes the rules governing the writing of source programs. The 18 groups of
information that specify the MRPG language are physically arranged in
alphabetical order. Users with moderate to complete familiarity with the MRPG
language can write most programs with the aid of Appendix D only. That appendix
contains all of the general format diagrams arranged in hierarchal order. When
a detailed explanation of a particular area is required, the alphabetical
arrangement of the groups in Section 5 facilitates speedy location of the
desired information.

This section is physically organized as: 1) a skeleton of the material
within each group, 2) a set of rules that apply to all groups, and 3) the 18
groups discussed in alphabetical order.

MANDATORY GROUP SEQUENCE

Several of the groups must appear in a specific sequence whenever these
groups are present in a program. Some of the groups may be repeated, but the
sequence shown below must be preserved. Indentation represents a subservient
group.

The MRPG Program
- Declare Parameters

Declare-Input File
Input Field Def

Declare Variable
Define Report

Report Control
Heading

Line

Detail
Line

Footing
Line

Execute Phase

Report_Field Def

Figure 5-1. Mandatory Group Sequence In A Program

5-1 CC69

SUGGESTED READING SEQUENCE

A semiboxed heading appears at the top of each page, gIvIng the name of the
group being discussed on that page. The first time that this manual is read,
the reader may find it desirable to read the 18 group discussions in the order:

The MRPG Program
- the-overall structure of a program

Declare Parameters
declare all parameters to be used including their attributes

Declare Input File
identify-the input file and its fields

Input Field Def
specify the attributes of one input field

Declare Variable
specify the name and attributes of one variable

Define Report
identify a report

Report Control
specify several major properties of a report

Head ing
specify controls for report, page, and detail heading lines

Detail
specify controls for a set of detail lines

Line
specify line controls for one line including fields in the line

Report Field Def
specify-the value and format for one field

Footing
specify controls for detail, page, and report footing lines

Execute Phase
specify the order in which sorts, lines, dnu reports are done

Full Expr }
Relationship Test
Char Ex pr -
Char-Ref
Arith_Expr

used to form expressions and make tests

5-2 CC6g

Group Name: The~Name_Of_The_Group

A few lines of text here summarize the general purpose of this
portion of the language.

General Format:

A diagram that
COBOL-like notation.

Examples:

specifies a portion of the MRPG language in a
Most diagrams reference other groups.

One or more examples illustrating specific pOints of the general
format.

Syntax Rules:

Several numbered paragraphs that define, clarify, or restrict the
exact manner in which this portion of a program must be written.

General Rules:

Several numbered paragraphs that define, clarify, or restrict the
meaning, content, and structure of the variable items shown in the
general format diagram.

Figure 5-2. Skeleton for Section 5

RULES APPLICABLE TO ALL GROUPS

The remainder of this section consists of the general formats and includes
related examples, syntax rules, and general rules. The following paragraphs
apply to every group. They are stated here so that they need not be repeated in
the discussion of each group.

1. A term formed from words with initial capitals connected by underline
characters (e.g., Declare Parameters) refers to a group. Think of a
group name as being an abbreviation for that group. The overall
effect is to perform a group explosion, analogous to a parts
explosion.

5-3 CC69

2. The dash and number (e.g., -5) at the end of a term serve to identify
terms with unique meanings. Terms ending in -0 identify the point at
which the all lower case term is "defined" (i.e., the point at which
the properties-and characteristics associated with the all lower case
term are established). Terms ending with other than -0 are places in
which the term is used.

3. Within the examples in this section, the following names and character
strings have these meanings:

your mrpg os
The name of the MRPG object segment. Thus, this is the
character string typed to invoke the MRPG-OS from Multics
command level. The MRPG-OS is assumed to be in the current
working directory.

your input

report

The name of the segment that contains the input file. It
also is assumed to be in the current working directory.

The name of a report.

your output
When the report is written into a segment, this is the name
of that segment. It too is assumed to be in the current
working directory.

4. Within the examples, unless stated otherwise, assume that the MRPG-OS
is invoked by the user typing on a terminal at command level and that
messages sent to us~r_output and to error_output are also typed on the
terminal.

5. Unless stated otherwise, the maximum length of a character string is
256 characters.

6. Unless stated otherwise, the characters used in a character string may
be chosen from the full (128) ASCII character set. However, the NUL
character, octal 000, and the PAD character, octal 177, cannot appear
in a canonical string. (Refer to Section 3 and Appendix A of the MPH
Reference Guide.)

7. An IF test examines the value of an expression and either succeeds or
fails. The type of data in the result of the expression being tested
can be numeric, character, or boolean.

If the expression result type is numeric, the IF test fails when the
result is zero; otherwise, the IF test succeeds.

If the expression result type is character, the IF test fails when the
character string is· the five characters FALSE; otherwise the IF test
succeeds. The FALSE string may be spelled with any mixture of
uppercase and lowercase letters (e.g., FALSE, false, FaLsE, fALSe,
etc.)

If the expression result type is boolean, the IF test succeeds when
the boolean value is true and fails when the value is false.

8. When referring in text to the keywords that identify an option, and
there are both a long form and a short form of the keyword, only the
long form is used in the text. It is understood that the remarks
apply to the short form also. Thus,

The CHARACTER option

is used instead of

The CHARACTER or CHAR option .•.

5-4 CC6g

9. When data is stored in a character string variable, the left-hand end
of the data string is positioned at the left-hand end of the
variable's storage area. If the data is too long to fit, the
right-hand portion of the data is truncated and discarded. If the
data is shorter than the variable's storage area, and the variable was
declared with the VARYING keyword, the length of the new value is set
to the actual length of the data. However, if the declaration does
not include the VARYING keyword, the data is padded on the right with
spaces. The length remains whatever length was declared for the
variable. For example, assign the data 12345678 in each case below.
The overstruck character ~ represents a space.

Variable Type Declared Length Result Value Result Length

Non-varying 6 123456 6
Non-varying 10 12345678111'> 10
Varying 6 123456 6
Varying 10 12345678 8

10. All names made up by the user must be unique. That is, the user
chooses character strings for these types of identifiers:

par ameter name
input field name
local-variable name
set variable name
table variable name
report name
detail-name

Think of the identifiers for all of these types of names as being in
one set. All members of that set must be unique.

5-5 CC69

Group Name: Arith_Expr

The Arith_Expr group and its Arith Ref subgroup provide arithmetic
operators and parentheses so that conventional arithmetic expressions may be
formed. In addition to the details discussed here, Section 7 contains a unified
treatment of the interactions between the rules stated in the Full Expr group
and its subsidiary groups. -

General Format:

[:] Arith Ref {~} [:] Arith Ref

where Arith Ref is

Examples:

number-4
input field-name-6
local-variable name-4
parameter_name=1

~PAGENUMBER ([report_name-l])

TRANSFORM (Full_Expr-12, table variable name-1

Fu 11_ Ex pr - 1 3

1. Simple arithmetic expressions.

5
+ 5.7
- 6.3

name of an input field + name of a local variable
shop-cost T (1 + overhead factor T -
unit=price * (1 + 3 * (burden_1 + burden_2)/factor_3)

2. Provide the current page number in the page heading line of a report.

define 1 report parts analysis ..•
2 pagehead, -

3 line,
4 "PARTS ANALYSIS" col 11,
4 ~mmddyy col 31,
4 "Page" col 51,
4 ~pagenumber (parts_analysis) col 56;

5-6 CC69

3. Use of a transform variable.

declare rank word char(20) varying;
declare rank-code to rank name table

(1 - > -" 1 e t t e r" 2 - "') " wo r d " 3 - > "s e n ten c e") ;

If r count = 2, rank word is
characters).

set to "word" (without the quote

4. Examples using prefix (unary) arithmetic + and - operators.

b. alpha ++ beta gamma *- delta +- epsilon

is equivalent to:

alpha + beta - (gamma * delta) - epsilon

5. The following numerical examples illustrate the meanings of the infix
(binary) arithmetic operators.

Expression

1.2
+3.4
-5.6

7 + 8
7 + 8 -3

(7 + 8 -
_(7 + Q -- \ I V

3) * -3
? , * ? I
J I -J I

1{\
-IV

Result

+ 1.2
+ 3.4

5.6
+ 15
+ 12
- 36

"') c .).u

Syntax Rules:

1. Parentheses may be nested to any depth.

2. If only one report
the Define Report
%PAGENUMBER-option.

is defined with the DEFINE
group, report_number-1 may

1 REPORT keywords from
be omitted from the

General Rules:

1. The %PAGENUMBER builtin function returns the integer, in a character
string varying form, of the current page number of the report
specified by report .name-1. If report name-1 is omitted, the current
page number of the one and only report that was defined is returned.

2. When the TRANSFORM option is specified, Full Expr-12 is evaluated.
The resulting value is searched for in the first members of the pairs
of values that were declared for the table variable specified by
table variable name-1. The value of Full_Expr-12 need not have an
integral value:

5-7 CC69

Arith_Expr Arith_Expr

3. The + and - operators that immediately precede the Arith Ref term in
the general format diagram are the conventional prefix (or unary)
arithmetic operators with these meanings:

4.

Operator

+

Neither

Meaning

Plus; use the value of Arith Ref as is.

Minus; use
Arith_Ref;
minus one.

Same as for +

the negative of
multiply the value

the value of
of Arith Ref by

The set of + - * / operators in the middle of the general format
binary) arithmetic operators, diagram are the conventional infix (or

with these meanings:

Operator

+

*
/

Meaning

Add
Subtract
Mul tiply
Divide, with
result.

5-8

any r emaind er inc 1 ud ed in the

CC69

Group Name: Char_Expr

The Char Expr group forms a character string from shorter character strings.
(Section 7 contains a unified treatment of the interactions between the rules
stated in the Full_Expr group and its subsidiary groups.)

General Format:

n111 Char Ref-2

IF (Full_Expr-11 Char_Ref-3

II ({ ~~NCATENATE })

Examples:

Assume that:

• Today is Wednesday, 1980 December 31

• The parameter color contains blue as its value

• The local variable shape contains triangle as its value

• The input field part_number contains PHX23B7 as its value

• The local variable alpha contains FIRST as its value

1. The expression:

"This is the " I I %day I I " report."

yields:

This is the Wednesday report.

2. The expression:

"part." \ \color\ \ "." \ Ishape

yields:

part.blue.triangle

which might be useful as a file name for a report.

11/82 5-9 CC69-00A

I

11/82

3. The expression:

%substr (part_number llcolor, 4, 7)

yields:

23B7blu

4. The expression:

if (color = "blue") alpha

yields:

FIRST

5. The expression:

"elephant " I I
if shap~ = "square") "cat" ::
if %day = "Saturday") "hen" : I "-COW-" I I
if ("red" = color) "duck" I I " HORSE"

yields:

elephant_-COW- HORSE

5-10 CC69-00A

Char _Expr Char_Ex pr

6. This example shows several ways of arriving at the name or value of a
field. Assume that:

• The current time is 2.3 seconds before the end of 1980

• The value of the parameter bogie is 43

• The value of the part_cost field in the current input record
is 410

The line:

"Today is " :: ~mmddyy :: " at " :: ~hhmmss

yields:

Today is 12/31/80 at 23:59:57

The line:

"Today is " :: ~month ::

yields:

Today is December 31

The line:

part_cost * 1.1 + bogie

yields:

" " :: ~substr(~mmddyy, 4,2)

494 1* 410 * 1.1 + 43 results in 494 *1

Syntax Rules:

1 • The semicircles, CONCATENATE, and l l
the general format diagram means that
may be strung together with the string
options.

construct at the upper right of
options within the double bars

CONCATENATE or :: between the

2. At least one Char Ref~2 must be supplied. An indefinite number of
additional Char_Re1-2 items may be supplied.

3. Every IF test must have an accompanying Char_Ref-3.

4. When IF (Full_Expr-11) phrases appear, an indefinite number of
Char Ref-2 andlor Char Ref-3 values may be concatenated together to
yield the final character string for the Char_Expr.

5-11 CC69

General Rules:

1. The values of Char Ref-2 and/or Char_Ref-3 are treated as character
strings.

2. If a Char Ref is an arithmetic value, it is converted into a character
string and then the concatenation occurs.

3. If a Char Ref is a boolean value, it is converted into a character
string and then the concatenation occurs. A boolean true value is
converted to the 4-character string "true" while a false value is
converted to the 5-character string "false".

4. When an IF clause appears, the value of Full Expr-11 is tested. The
character string result for this portion of the Char Expr is the value
of Char_Ref-3 should the test succeed and is null otherwise.

5-12 CC69

Char Ref Char Ref

Group Name: Char_Ref

The Char Ref group provides several ways to construct character strings and
provides builtin functions for obtaining information and manipulating character
strings. In addition to the details discussed here, Section 7 contains a
unified treatment of the interactions between the rules stated in the Full_Expr
group and its subsidiary groups.

General Format:

Arith_Expr-1

Examples:

"string-9"

%MMDDYY

%YYDDD

~MONTH

%DAY

%HHMMSS

%SUBSTR

%REPEAT

Assume that:

Char_Expr-9, Arith_Expr-2 [, Arith_Expr-3])

Char_Expr-l0, Arith_Expr-5

• Today is Wednesday, 1980 December 31

• The time is 2.3 seconds before midnight (i.e., 57.7 seconds of
the minute has passed)

• The local variable j_count has 5 as its value

1. Arithmetic expressions.

27
j count
J=count *3 + 6.9

yields 27
yields 5
yields 21.9

5-13 CC69

Char Ref Char Ref

2. Quoted strings. The quotes are not part of the value. The length of
the value is equal to the quantity of characters between (i.e.,
exclusive of) the quote characters. A quote can be included in a
string by doubling the quote. A ~ denotes a space character.

Appearance in source program

" apple"
"yellow~banana"
"spacet..attJendtJ"
"""orange"""
"""cat~""15dog"""
"cowlS""""15pig"
""

Length Value

5 apple
13 yellow~banana
13 space~at~endlS
8 "orange"

11 "catlS"15dog"
10 cowlS""15pig
o

The last line of the above table is a null string.

3. Builtin functions provide date and time information. The example
assumes that the time in history is New Year's Eve - 1980.

4.

$mmddyy yields 12/31/80
$yyddd yields 80366
$month yields December
$day yields Wednesday
$hhmmss yields 23:59:57

Portions 0 f a string may be
function.

$substr ("abcdef", 1, 2)
$substr ("abcdef", 4)
lsubstr ($month, 1, 3)

obtained with

%substr ($substr (%hhmmss, 3, 4),2,2)
$substr ("1234567890", j count,j count)

5. Repeat character string.

$repeat ("ab" , 3) yields
%repeat (j count, j count) yields
$repeat ($substr($yyddd,4,2),3) yields

Syntax Rules:

the substring

yields ab
yields def
yields Dec
yields 59
yields 56789

ababab
55555
656565

builtin

1. Arith Expr and Char Expr items may be complex statements.
speci1ic restriction on the degree of complexity or
parentheses.

There is no
nesting of

2. Builtin functions may be nested to any depth.

3. The maximum length of the resulting string is 256 characters, unless
the intended use imposes a smaller maximum.

5-14 CC69

Char Ref Char Ref

General Rules:

1. If the "string-9" option is chosen, the terminating quote character is
the first unpaired quote character occurring after the ini tial quote
character (see Example 1).

2. The date and time functions return values that are obtained during the
execution of MRPG-OS. The system calendar clock is interrogated (once)
shortly after MRPG-OS begins execution. Printing the time on more
than one occasion during the execution of MRPG-OS yields the same
value.

3. The %MMDDYY buil t-in function returns the date as an eight character
string.

11/82

Length

2

2

2

Example Description

12 Number of the month in the year.

/ A right slant (or slas) character.

31 Number of the day in the month.

/ A right slant.

80 Number of the year in the century,
starting with 00.

4. The %YYDDD built-in function returns the date as a five character
string.

Length Example Description

2 80 Number of' the year in +-J,.,~ century, ~uc

starting with 00.

3 366 Number of the day in the year, starting
with 1.

5. The %MONTH buil t-in function returns the unabbreviated name of the I
current month as a varying character string with the initial letter in
uppercase and the remaining letters in lowercase.

6. The %DAY built-in function returns the unabbreviated name of the day I
of the week as a varying character string with the initial letter in
uppercase and the remaining letters in lowercase.

5-15 CC69-00A

Char Ref Char Ref

11/82

1. The %HHMMSS buil t-in function returns the time of day as an eight
character string.

Length Example

2 23

2 59

2 51

Description

Number of the hour of the day, starting
with 00 after midnight.

A colon character.

Number of the minute of the hour

A colon character.

Number of the second of the minute. The
actual time in seconds is truncated to
yield an integer value.

8. The %SUBSTR built-in function is identical to the PL/I substring built-in
function. Char Expr-9 is the character string examined. Arith Expr-2
specifies the number of the first character of Char Expr-9 -as the
first character of the result. Arith Expr-3 specifies the quantity of
characters in Char Expr-9 that constitutes the substring. If Arith Expr-3
value is zero, the result is a null string. If Arith Expr-2 or Arith-Expr-3
is not an integer, the value is truncated to an integer. An error
occurs if Arith Expr-2 or Arith Expr-3 is negative, or if the sum of
the truncated values of Ar i th Expr-2 and Ar i th Expr-3 is larger than
the length of the Char Expr-9 string. If Arith-Expr-3 is omitted, the
substring ends at the -end of the Char Expr-9 string. This is a PL/I
oharacteristic. -

9. The %REPEAT built-in function returns a character string in which the
value of Char Expr-10 is repeated the number of times that is equal to
the value of-Arith Expr-5. If the value of Arith Expr-5 is not an
integer, the value - is truncated to an integer. An error condi tion
results if the truncated value is negative. If the truncated value is
zero, the result is a null string.

5-16 CC69-00A

Group Name: Declare_Input_File

The Declare Input File group, along wi th its subsidiary groups, provides
information concerning-the type, location, and structure of the input file.

General Format:

0

{
DECLARE}

DCL
INPUT

[fECORD}[integer-2]]
STREAM

[FILE Char_Expr-2] ATTACH Char_Expr-3

:11 '
2 input_field_name-O

2 FILL (integer-3)

0

Input_Field_Def

11

0

Examples:

These examples concentrate on the overall file characteristics. See
"Input_Field_Def" group for examples of individual fields.

11/82

1. The input file is a segment containing several records. Each record
ends with a newline character.

2.

dcl 1 input stream file "your_input!!,

Obtain the same file as in Example
illustrate the ATTACH phrase.

(using the ATTACH phrase) to

dcl 1 parameter,
2 file name char(*);

del 1 input stream attach "vfile "I I file name:

5-17 CC69-00A

I

I

Syntax Rules:

1. If RECORD or STREAM is not specified, the default is STREAM.

2. If the FILE or ATTACH option is not specified, the MRPG-OS cannot run
as a command. It can however run as an 110 appendage via the report
1/0 module. Usually, this is done in conjunction with LINUS. -

3. If MRPG-OS is run as an 1/0 appendage, all FILE and ATTACH phrases are
ignored.

General Rules:

1. If STREAM is chosen, each record in the input file is assumed to be
followed by a newline character. The newline character is not part of
the record. If integer-2 is omi tted, the maximum record length is
assumed to be 500.

2. RECORD indicates that every record is the same length. IF RECORD is
chosen, but integer-2 is omitted, the length of each input record is
assumed to be equal to the sum of the lengths of the individual fields.
Thus, the last character of record N is immediately followed by the
first character of record N+1.

3. If RECORD is chosen and integer-2 is suppl ied, the length of each
record is assumed to be equal to the value of integer-2. This allows
the user to omi t the declarations of fields not used and which are
located at the end of each record.

4. With STREAM, the opening mode for the input file is stream_input.
With RECORD, the opening mode is sequential_input.

5. Char Expr-2 must be a character string. It is used by the vfile 110
module as the relative or absolute pathname of a segment for the file.
The MRPG language does not impose any constraints on the characters in
the string. However, the intended use of this string does impose
constraints. Allowable characters and the length of the string are
restricted to what is allowed in relative pathnames of segments. (See
"Section 3" of the MPM Reference Guide.)

11182

6. Char Expr-3 is a character string used as an attach description for an
110 module, usually the vfile module. The ATTACH keyword must be
supplied to use an 110 module other than the vfile 110 module. (Refer
to the MPM Subroutines, MPM Subsystem Writers' Guide, or the MPM 110
manuals for details of the required attach description.)

7. The FILL declaration is used to skip over data characters in the input
record. The value of integer-3 specifies how many data characters to
skip. Any field length andlor field delimiter information in the record
is automatically skipped.

5-18 CC69-00A

Declare Parameters Declare_Parameters

Group Name: Declare_Parameters

The Declare_Parameters group provides the capability to:

• Specify that parameters may be supplied

• Describe their acceptable forms

General Format:

In the general format diagram, the term KEY is a keyword. Following KEY,
string-l specifies a key string that is to be supplied when the MRPG-OS is
invoked. At that time, a key value is supplied immediately after the key string
in the command line. The key=value then becomes the value of the parameter.

{
DECLARE}

DCL {
PARAMETER}

PARM

{
CHARACTER}

CHAR

, 2 parameter_name-O '11 KEY

{:nteger-, })
)11 0 "str ing-l" [, "str ing-l "]

II J J [, "string-lit] ••• l l
~I DEFAULT Char_Expr-1

{
BOOLEAN}

KEY ("string-lit
BaaL

Examples:

1. Declare and supply one parameter, without using a KEY phrase.

dcl 1 parm, 2 city char(.)

Typing the command line:

your_mrpg_os Phoenix

assigns the value Phoenix to the parameter named city.

5-19 CC69

Declare Parameters Declare Parameters

2. Declare and supply two parameters that must be supplied in a specific
sequence.

dcl 1 parm,

Typing:

2 city char(*),
2 state char(*);

your_mrpg_os Phoenix Arizona

assigns the value Phoenix to city and Arizona to state. However,
typing:

your_mrpg_os Texas Austin

assigns Texas to city and Austin to state.

3. Declare and supply two parameters using key phrases (provides input
sequence independence).

dcl 1 parm,
2 city char(*) key("-city"),
2 state char(*) key("-state");

Typing either:

your_mrpg_os -city Chicago -state Illinois

-OR-

your_mrpg_os -state Illinois -city Chicago

yields the same result.

4. Using default values.

dcl 1 parm,
2 input_file char(.) key ("-input") default "your_input";

Typing either:

-OR-

your _mrpg_os

gives the same result. However, typing:

your_mrpg_os -input my_input

assigns the value my_input to the input_file parameter.

5-20 CC69

Declare Parameters Declare Parameters

5. Control the length of a parameter's value.

dcl 1 parm, 2 color char(4);

Typing:

your_mrpg os blue
your_mrpg_os yellow
your_mrpg_os red

assigns the color value "blue"
assigns the color value "yell"
assigns the color value "red "

6. Make flexible the sequence in which arguments are typed.

dcl 1 parm,
2 animal char(*) key ("-a", "-animal"),
2 vegetable char(*),
2 mineral char(*),
2 gas char(*) key ("-g"),
2 liquid boolean key ("-water");

All of the following lines give the same result.

your_mrpg_os -a cat carrot granite -g helium -water
your_mrpg_os carrot granite -g helium -water -a cat
your_mrpg_os -g helium carrot -animal cat -water granite

Since nei ther the vegetable nor the miner al parameter decl ar ations
contain a key phrase, the first nonkeyed argument is associated with
vegetable and the second nonkeyed argument is associated with mineral.

Syntax Rules:

1. The KEY/DEFAULT phrases are a continuation of the CHARACTER clause.

2. The string-1 values for all of the parameters form
strings. There must be no duplicates in that set.

a set of

3. Parameter key strings and key values cannot contain semicolons,
parentheses, or brackets, unless-such characters are contained within
quoted strings. (These characters have special meaning to the command
processor.) The key strings and key values are encountered by the
command processor when the MRPG-OS is Invoked.

General Rules:

11/82

1. CHARACTER (*) means the length of the val ue associ ated wi th thi s parameter
is the length of the argument sent to the MRPG-OS.

2. CHARACTER (integer-1) means the value assigned to the parameter contains
the quanti ty of characters specified by the value of integer-1. If
more than integer-1 characters are supplied as an argument value, only
the fi rst integer-1 char acters are used as the parameter value. If
less than integer-1 characters are supplied, sufficient spaces are
appended to the suppl ied characters to yield a string containing integer-1
characters.

5-21 CC69-00A

I

I

Declare Parameters Declare Parameters

3. If the KEY phrase is included in the declaration of some CHARACTER
parameters, then the key strings and their key values may be supplied
in any sequence. Those CHARACTER parameters whose declarations do not
include a KEY phrase are assigned values from the set of nonkeyed
arguments. The first nonkeyed argument is assigned to the first parameter
in the set of parameter declarations whose declaration does not include
a key phrase, the next nonkeyed argument to the next nonkeyed parameter,
etc.

4. The first character of string-1 must be a dash (minus sign, hyphen, or
octal 055).

5. Multiple forms of a key string are specified by including multiple
string-1 items in a key phrase.

6.! The end result of evaluating Char Expr-1 must be a quoted string. If
no val ue is suppl ied for a par ameter whose declar ation includ es a
DEFAULT phrase, the value of Char_Expr-1 is assigned to that parameter.

7. A BOOLEAN parameter has the value TRUE if any of the string-1 keys
specified for that parameter are present in the arguments sent to the
MRPG-OS. If none of the string-1 keys are present in the argument
list, then the parameter has the value FALSE.

8. When MRPG-OS is invoked with arguments, each argument is examined to
determine whether or not it begins wi th a dash. If not (no dash),
then it is treated as a nonkeyed argument (see "General Rule 3").
However, if the first character of the argument is a dash, the argument
is treated as a key string. The MRPG-OS attempts to locate the key string
in the set of string-1 values specified in the KEY phrases. -

Note: A negative decimal value as an argument is invalid.

9. The value of a parameter cannot be changed by MRPG-OS.

10. When the MRPG-OS is invoked, all CHARACTER parameters which do not
have a DEFAULT must be supplied.

11/82 5-22 CC69-00A

Declare Variable Declare Variable

Group Name: Declare_Variable

The Declare Variable group is used to establish variables (not in the input
file) for use in-calculations, tests, and reports.

General Format:

{
DECLARE}

DCL

local variable name-O

DECIMAL
DEC

{
CHARACTER}

CHAR

BOOLEAN
BaaL

[
VARYING]

integer-7)
VAR

set variable name-O SET (
{

n urn b e r - 1 [, n urn be r - 1] ...}

11 str ing-5" [, II str ing-5'~ ...

r number-2

l t number-2
table_variable_name-O TABLE ("string-6"

" string-6"

-> number-3 1

:~ ~~~~!~~37" J ...) [vVAARRYING] J
-> ."string-7"

Examples:

1. Variables used in conventional arithmetic calculations are:

d c 1 co un t dec;
dcl grand total dec;
dcl average dec;

average 0- grand_total/count;

5-23 CC69

Declare Variable Declare Variable

2. Character string variables are:

del date yymmdd char (6);
1* e.g.,-770929 *1
dcl date year month day char (17) varying;
1* e.g.,-1977-September 29 *1

date yymmdd := %substr (%mmddyy,7,2)
: :%substr (%mmddyy, 1,2)
: : % sub s t r (% mmd d y Y , 4 , 2) ;

date_year_month_day.- "19": :%substr (%yyddd,1,2)
: :" ,,:: %month: :" ".
: : % sub s t r (% mm d d Y Y , 4 , 2)

3. Boolean variables used in a test could be:

dcl test_3 boolean;

let (test_3 := true;) ...

if (test_3) then ...

4. A data set can be established for later use in determining whether or
not a value is a member of the set.

dcl all the dec digits set (0,1,2,3,4,5,6,7,8,9);
dcl state name western set

("Cal iforn ia", "Or egon", "Wa shing ton", "Ha wa i i" ,
"Alaskan) ;

if deduction code not in all the dec digits

fi;
then error_message := "Invalid deduction code.";

if state name in state name western
then sales office-:= "San Francisco";

fi;

5-24 CC69

Declare Variable Declare Variable

5. Values may be encoded or decoded with the aid of a table variable.

Syntax Rules:

dcl part no to price table
(1111 ~> 27.50 2222 -> 49.98 3333 -> 67.23);

dcl rank code to rank name table
(1 ~> "l~ttir" 2--> "word" 3 -> "sentence" 4 ->
"paragraph") ;

dcl state code to number table
(AL"--> 1-"AK" -> 2 "AZ" -> 3 ..• "WY" -> 50);

dcl state name to code table
("Alabama" -> "AL" ... "Wyoming" -> "WY");

state number := transform
(transform (state name, state name to_code),

state_code_to_number);

1. The Declare Variable group is used once for each variable that is
neither a parameter nor a field in the input file.

2. Each occurrence of the Declare_Variable group ends with a semicolon.

3. When a TABLE variable is defined, one of the four possible options is
selected. Only that option form may be used for that variable (i.e.,
the option forms may not be mixed in the declaration of a TABLE
variable).

General Rules:

1. Local variables are not automatically initialized. One-time
initialization is covered in the discusssion of the BEGIN keyword in
the Execute Phase group. Once-per-control-break initialization can be
done in the-DETAILHEAD portion of the Heading group.

2. The DECIMAL option specifies a numeric variable.

3. The CHARACTER option specifies a character string variable.

4.

5.

If CHARACTER is
the quantity of
character string.

selected but VARYING is
the characters that

omitted, integer-1 specifies
are always occupied by the

If CHARACTER is selected along with
maximum length of the string. The
times.

VARYING, integer-7 specifies the
string's length may be less at

6. A variable declared with BOOLEAN can have either a true or a false
val ue.

5-25 CC69

Declare Variable Declare_Variable

7. The SET declaration is used to establish a set of numbers or a set of
character strings for use in later parts of the program. Tests may be
made later to determine whether or not a data item is in a data set
that was established with the SET option. A set of numbers may
contain any mixture of integers and non-integers. All numbers are
considered to be positive numbers. All ASCII characters are permitted
in string-5. The values for a SET variable cannot be changed during
the execution of the MRPG-OS.

8. The TABLE declaration provides a means of converting a value to some
other value via a table lookup. When used, the supplied value is
searched for in the first parts of each transform pair (i.e., examine
the number-2 and the string-6 values). If the value is found, the
second part of that pair is made available (i.e., the number-3 or the
string-7 value). If the VARYING or VAR option is selected, the length
associated with a string is the actual length of that string. If the
VARYING or VAR option is omitted, all strings have the same length.
The length is the length of the longest string supplied in the
declaration of this table variable. A number may be either an integer
or a non-integer. All numbers are considered to be positive numbers.
All ASCII characters are permitted in string-6 and string-7. The
values for a TABLE variable cannot be changed during the execution of
the MRPG-OS.

5-26 CC69

Define_Report De fin e _ R e po r t

Group Name: Define_Report

The Define Report group defines the overall structure of a report. This
group may occur-several times to define multiple reports.

General Format:

Ex ample ~

DEFINE 1 REPORT report_name-O

[Report_Control]

[Heading]

(Detail) •..

[Footing]

See Section 2 and Appendix B for complete examples that include the
Define_Report group.

Syntax Rules:

1. Note that only the Detail group is required.

2. A semicolon ends the Define_Report group. Other semicolons may exist
within the group.

3. Only the Detail group may occur more than once in the definition of a
report.

4. Whichever groups are used, they must be used in the order shown above.

General Rules:

1. The Report Control group is used to supply overall report control
information-when the default values and actions are other than what is
required.

2. The Heading group is used if report, page, and/or detail heading lines
are required.

3. The Detail group is used to supply the specific information about the
content of each detail line.

5-27 CC69

Define _ Re por t Define Report

4. The Footing group is used if detail, page, and/or report footing lines
are requi red.

5-28 CC69

Detail Detail

Group Name: Detail

The Detail group associates a name with a detail line and specifies tests
to determine whether or not the line is to be produced and whether or not it is
produced for the current page or the next page.

General Format:

IF (Full_Expr-4)

, 2 DETAIL detail name-O

{
MAXLINE }

o

Examples:

integer-13
MAXL

1. Unconditionally print the line.

define report name address list
on file "your_output",

2 detail name .••

print name;

o

2. Print the line only if some condition is satisfied.

2 detail name if (dept_code> 123) .••

Syntax Rules:

[Line-4] ... I

I

1. More than one line can be defined as part of a DETAIL group. If this
is done, the detail name-O refers to all of those lines. It is not I
necessary however, to define any lines.

11/82

2. Examination of the Define Report group shows that the Detail group may
be used several times in the defini ton of a report (each wi th a different .1
detail_name).

5-29 CC69-00A

I

Detail Detail

General Rules:

, , /82

1. The DETAIL group specifies a set of detail lines. When an IF test is
specified, Full Expr-4 is evaluated and the result is tested. Assuming
that the IF test succeeds, the set of lines becomes a candidate for
being produced. In the event that the IF test fails, the set of lines
i s om itt e d . Wh e n no 1Ft est iss p e c i fie d , the set 0 f 1 in e sis a
candidate for being produced. If the set of lines becomes a candidate
for being produced, then a similar IF test within each line definition
may be specified to determine whether or not each line is to be produced.
(See "Lines" group for details.)

2. Th i spar agraph and the next three gener al rules occur wi th almost
identical wording in the Heading and Footing groups. Small changes
are made because the group name changes.

3. A MAXLINE value, known as report maxline, is established for the report
as a whole in the Report Control group. If, in this Detail group, the
MAXLINE integer-13 phrase is supplied, the value of integer-13 must be
less than or equal to the value of report_maxline.

4. The line number of the highest-numbered line on which the first line
of the DETAIL set of lines may be printed is the minimum of report maxline
and integer-13, if the MAXLINE integer-13 phrase is supplied.- If the
MAXLINE integer-13 phrase is omi tted, then report maxline specifies
the line number of the highest-numbered line on which the first line
of this set is produced.

5. If more than one line is defined for the DETAIL set of lines, then the
value of integer-13 must not be larger than report maxline minus the
maximum quantity of lines that might be produced for the DETAIL set
being specified. As an example, suppose that the value of report maxline
is 45. Assume that the DETAIL set of lines has six lines specified,
but an IF test is specified for each line. Further assume that the
user knows that the IF tests and the data in the input file are such
that no more than four of the six lines are ever produced on the same
page. Then, a value of 41 can be supplied for integer-13.

5-30 CC69-00A

Execute Phase Execute Phase

Group Name: Execute Phase

The Execute Phase group is the executable portion of the program. This is
the only group that executes sorting and printing.

General Format:

Format 1: (Valid only for the first phase.)

BEGIN ([local_variable_name-2 : = Full_Expr-9] .•.

n INPUT o
[Loop_Statement] •.. HOLD input_field name-4

Format 2: (Valid for all phases after the first phase.)

BEGIN ([local_ var iable_name-2 : = Full_Expr-9 ;] •..)

r SORT n II f input_field_name-5 1
L 1 II L local_variable _name-4 J

P 1 ASCENDING r ~~~CENDIJ I r NO [DUPLICATE 11 ;
L DESC JilL LDUPL J J' J

{ Loop_Statement) ••. [HOLD ;]

where Loop_Statement is:

11/82

{
input field name-4 }._

Full_Expr-8
local_variable_name-2

PRINT
f report_name-1 1 ;
l detail_name-l J

lIF
Full_Expr-10 THEN (Loop_Statement)

[ELSE (Loop_Statement)

5-31

] FI J

CC69-00A

Execute Phase Execute Phase

Examples:

11/82

1. Specify an assignment that is executed once, at the beginning of a
phase.

begin (accumulated_dollars := 0;)

2. Call for the printing of a line for each input record.

begin)
print a detail_name_from_the_Detail_group;

3. Specify an assignment that is executed once per input record before
any output line processing is done for the input record.

begin (...
accumulated dollars .- accumulated dollars + unit_dollars;
print the_detail_Iine;

4. Execute one of two sets of assignment statements wi th the selection
dependent on the relationship between the value in an input field and
a parameter.

dcl 1 parameter, 2 desired color char(*);
dcl 1 input ...

2 un it color char (6), •••

begin (.••
if unit color = desired color

then-color match := color match + 1;
print-color line;

fi;

else mismatch :=-mismatch + 1;
print mismatch_line;

5 . Du r in g the fir s t pas s t h r 0 ugh the in put f i Ie, s a vet h e 0 rig ina lin put
data and the current values of two local variables for each input
record for use in a later phase.

begin (.•.
hold input, color_match, color_mismatch;

6. Sort held file.

begin (••.

hold input, unit cost;
begin (•••) -
sort unit cost descending;

5-32 CC69-00A

Execute Phase Execute Phase

11/82

7. As part of the third pass through the input information, save the
current values of the input fields and the same local variables whose
values were saved during the first phase.

begin (...
hold input, color_match, color_mismatch;

begin (...

begin (...

hold;

8. Illustrate the sequence in which statements are executed.

dcl count decimal;
define 1 report •..

2 detail parts_analysis,

4 part number char(6) col 1
let (count := count + 1;),

begin (count := 0;)
1* count = 0 *1

count := count + 1;
1* count = 1, 4, 7, *1

print parts analysis;
1* count = 2, 5, 8, *1

count := count + 1;
1* count = 3, 6, 9, *1

end;

9. See the "hold and sort" example in Appendix B for an example that
emphasizes the-HOLD and SORT statements and their interaction with the
PRINT statement.

5-33 CC69-00A

Execute Phase Execute Phase

10. Sorting example. Assume that the set of held records is as shown
below, one record per line, and the column headings are the names of
the input fields and/or local variables.

kind stock orders price

apple 1 3 8
banana 2 5 10
cherry 1 3 9
fig 1 6 10
grape 2 5 7
lemon 1 6 7
melon 2 4 8
orange 2 4 8

When sorted with the statement:

sort stock asc, orders desc, price asc;

the ordering of the records becomes:

kind stock orders price

lemon 1 6 7
fig 1 6 10
apple 1 3 8
cherry 1 3 9
grape 2 5 7
banana 2 5 10
orange 2 4 8
melon 2 4 8

Note that the melon and orange records are in a different order than
they were in the input (see General Rule 12).

Syntax Rules:

1. The Format 1 subgroup must be used once and only once. It must appear
immediately after the last Define_Report group.

2. The Format 2 subgroup may be omitted or may appear as many times as
desired. The first occurrence of the Format 2 subgroup must be
immediately after the only appearance of the Format 1 subgroup.

3. The last character of each occurrence of either of these subgroups is
a semicolon. There may be several additional semicolons between the
BEGIN keyword and the final semicolon.

5-34 CC69

Execute Phase Execute Phase

4. In Format 1, the notation states that INPUT, input field name-4, and
local variable name-3 can each occur an indefinite- number of times.
For example, the notation allows:

hold input, input, unit_cost, input, unit_cost;

to be supplied. MRPG accepts this statement. That is, the INPUT
keyword and/or the name of an input field, or the name of a local
variable can appear more than once. However, the redundant occurrences
are ignored. Only one value is held in a record for each field or
variable specified in the HOLD statement. The field and variable names
and the INPUT keyword can occur in any order. The overall effect is
independent of the order of occurrences.

5. If the BEGIN keyword occurs more than once in the program, more than
one phase exists and a HOLD statement must be supplied in the first
phase.

6. The PRINT!report name-1 option can be used only if the report being
called for defines exactly one DETAIL line.

7. The null form of a Loop Statement is the semicolon character. Thus,
the correct form of an IF statement that does nothing, should the test
succeed, requires a semicolon between the THEN and ELSE keywords. For
example:

if a = b then; else c 0- d; fi;

General Rules:

11/82

1. The BEGIN keyword consti tutes the beginning
phase processes the original input records.
process the held records.

of a
All

phase. The fi r st
succeeding phases

2. Assignment statements that exist within parentheses shown on the BEGIN
line of each format diagram are executed once and only once. Execution
is at the beginning of the phase (i.e., before the first record becomes
available).

3. The expression spec i fied for Full Expr-9 is evaluated and the resul t
is stored in the variable specified by local_variable name-2.

4. Loop Statements appearing after the closing parenthesis of the BEGIN
clause and before the next BEGIN keyword (or the END keyword if this
is the last phase) are executed once per record. The statements are
executed in the order in which they occur in the source program. This
set of statements constitutes the loop of statements that is executed
once for each input record. A SORT statement is executed only once,
near the beginning of a phase and before any statements in the
Loop_Statement subgroup.

5. A HOLD statement is executed once per record (i.e., a HOLD statement
is part of the loop). All held records have the same structure. The I
INPUT keyword in the HOLD statement keeps all input fields.

5-35 CC69-00A

Execute Phase Execute Phase

6. The HOLD statement in the first phase can cause none, any, or all of
the input fields to be saved for later usage. If that HOLD statement
includes any local variable name-3 entries, the current values of those
local variables are saved -as part of the held record. Thus, it is
possible to save a different value of a local variable in each of the
held records. See the "begin_hold_assign" example in Appendix B.

7. In the first phase, both of the following hold all of the input fields
and nothing else:

hold input;
hold;

Another way to hold all of the input and nothing else is to list the
name of every input field following the HOLD keyword.

8. The sequence in which HOLD items are listed is not significant. The
sequence in which the values are arranged in the held records is not
significant because that sequence is not visible to the MRPG-OS.

9. The Loop Statement subgroup can change the value associated wi th an
input field, by having input field name-4 appear on the left side of
an assignment statement. An assignment statement in the LET clause of
the Report Field Def group can also change an input value. Should
this happen, a subsequent HOLD statement that is executed in the same
phase holds the new value. See the "begin hold assign" example in
Appendix B. - -

10. The sequence in which actions occur is the sequence in which the statements
triggering those actions occur within a phase. An assignment statement
in a LET clause of the Report Field Def group is executed as part of a
PRINT statement (see Example 9). -

11. A SORT can be performed in the second and subsequent phases, but not
on the original input records. However, the effect of sorting the
original input records can be achieved by not modifying the values in
any of the input fields before executing the HOLD statement in the
first phase and saving the input fields in that HOLD statement.

12. The SORT keyword tr igger s the execution of a sort algor i thm that is
not guaranteed to preserve the input order of those records wi th identical
values in the sort key fields (see Example 10).

13. If none of the ASCENDING or DESCENDING sorting direction keywords are
supplied for a sort key name, the defaul t is ASCENDING. Thus these
are equivalent:

sort stock asc, orders desc, price asc;
sort stock, orders desc, price;

14. If a field or variable name is supplied more than once in the same
SORT statement, the sorting direction used is the sorting direction
associated with the last occurrence of the name.

15. Use of the NO DUPLICATE keyword results in discarding all but one of
the records that have identical values in the sort key fields. In
general, which one of the duplicate records is retained is unpredictable.

11/82 5-36 CC69-00A

Execute Phase Execute Phase

16. If a HOLD statement is used in the second and/or subsequent phases,
the input fields and local variables saved are the same input fields
and local variables that were saved by the HOLD in the first phase.
The values in those fields' variables may all have been changed by
assignment statements in the current and/or any intervening phases.
See the "begin_hold_assign" example in Appendix B.

17. If the first phase includes a HOLD statement, it is valid for the next
several phases to leave out the HOLD statement and for a later phase
to include a HOLD statement. In this case, the same input is
available to all those phases that lack a HOLD statement and to the
first succeeding phase that includes a HOLD statement.

18. After the expression specified for Full Expr-~ is evaluated, and if
the identifier on the lefthand side of the assignment statement is a
local variable name, then the Full Expr-8 result is stored in that
variable. If the identifier is an input field name, the Full Expr-8
result is stored in the specified field-in a -temporary copy-of the
input file (i.e., nothing is stored by the MRPG-OS into the actual
input file).

19. If exactly one DETAIL line was defined for a report and exactly one
Detail group was defined for that same report, then the name that
follows the PRINT keyword may be either the report name or the detail
name. This is the only situation in which the PRINT report_name-1
option is valid.

20. A PRINT statement produces one set of detail lines. Usually there is
only one line in the set. However, dependent upon conditional tests,
the arguments supplied to the MRPG-OS, and the input data, the set of
detail lines could yield no output, one line, or several printed
lines.

21. If the current output line position is near the bottom of a page, the
production of a set of detail lines can cause the production of page
footing lines and page heading lines before the detail lines are
written.

22. If the input record that trig~ered the new set of detail lines also
caused a control break, detail footing and detail heading lines may be
produced before the detail lines are written.

5-37 CC69

Execute Phase Execute Phase

23. In the event that an IF statement appears, the value of Full Expr-10
is tested and control is transferred within the IF statement as shown
below. Control always reaches the "FI;" that denotes the end of the
IF statement.

Test Statements ELSE Statements
Resul t Follow THEN Present Follow ELSE Resulting Ac tion

Succeed s Yes Execute statements
following THEN. Then
advance to the FI;

Succeed s No Advance to the FI;

Fails

Fails

Fails

24.

Yes Yes Execute statements
following ELSE. Then
advance to the FI;

Yes No Advance to the FI;

No Advance to the FI;

Nothing is actually done at the FI; point. In the above table, the
remark "Advance to the FI;" means that the IF statement's execution is
complete and control passes beyond the IF statement.

IF statements may be nested to a large,
limit is dependent on many characteristics
be described in detail for the general case.

indeterminate depth. The
of the program and cannot

25. A phase ends when the last statement in the loop is executed for the
last input or held record. Any specified detail footing lines are
produced. Control breaks occur at all defined levels and control
break processing occurs. If specified, page footing and report
footing lines are produced.

5-38 CC69

Footing Footing

Group Name: Footing

The Footing group, and its subsidiary groups, specify the layout and
content of detail footing lines, page footing lines, and report footing lines.

General Format:

, 2 DETAILFOOT break field ident-1

~II '
Ex amples:

IF (Full_Expr-4

{
MAXLINE 1

integer-13
MAXL oJ

2 PAGEFOOT (Line-6)

2 REPORTFOOT (Line-7)

{ Line-5) ...

1. Print two lines at the bottom of every page. On the last page, print
some text that applies to the report as a whole.

define 1 report payroll deduction analysis
on file-"your _output",

2 pagefoot,
3 line 49, 4 "Fiscal 1977",
3 line +1, 4 "Company Confidential",

2 report foot ,
3 line 10, 4 "References:",
3 line +2, 4 "1. Some text",
3 line +1, 4 "continued",
3 line +2, 4 "2. More tex t" ,
3 line +1, 4 "and still more.";

2. At execution time, select the detail footing line to print based on
the department code number in the old record when the department code
number changes between successive input records (i.e., a control break
occurs) .

2 detailfoot dept code if (dept code = "123"),
3 line, 4 "Totali for Welding ~epartment",

2 detail foot dept code if (dept code = "124"),
3 line, 4 "Totals for Grinding-Department",

2 detail foot dept code if (dept code = "125"),
3 line, 4 "Totals for Drilling-Department",

5-39 CC69

Footing Footing

Syntax Rules:

1. Either the PAGEFOOT or REPORTFOOT clause may be used first (i.e., if
both are used).

2. The break field ident names must be declared as input field names in
the Declare Input File group and be identified as control break fields
in the BREAK phrase of the Report_Control group.

General Rules:

1. If the PAGEFOOT clause is used, the lines that it defines are produced
at the bottom of every page.

2. If the REPORTFOOT clause is used, the lines that it defines are
produced once, at the end of the report.

3. If both a REPORTFOOT clause and a PAGEFOOT clause are in a report's
definition, the sequence of information on the last page is as
follows. This sequence is independent of the order of the REPORTFOOT
and PAGEFOOT clauses.

• Some detail lines

• The set of DETAIL lines for the last record

• If specified, the DETAILFOOT lines for the last record

• The REPORTFOOT lines

• The PAGEFOOT lines

• A newpage character

4. A DETAILFOOT clause defines a set of detail footing lines that may
precede a set of detail lines when a control break occurs. If a
DETAILFOOT clause is defined, and a control break occurs for the field
specified in that DETAILFOOT clause, then the set of lines that are
subservient to this DETAILFOOT clause is a candidate for being
produced. There may be only one line in the set. When an IF test is
specified, Full Expr-4 is evaluated and the result is tested.
Assuming that the IF test succeeds, the set of lines becomes a
candidate for being produced. In the event that the IF test fails,
the set of lines is omitted. Should no IF test be specified, the set
of lines is a candidate for being produced. If the set of lines
becomes a candidate for being produced, then a similar IF test within
each line's definition may be specified to determine whether or not
each line is to be produced. (See "Lines" group for details.)

5. This paragraph and the next three general rules
identical wording in the Heading and Detail groups.
made because the group name changes.

5-40

occur with almost
Small changes are

CC69

Footing

6.

7.

8.

Footing

A MAXLINE value, known as report_maxline, is established for the
report as a whole in the Report Control group. If, in this Footing
group, the MAXLINE integer-13 phrase is supplied, the value of
integer-13 must be less than or equal to the value of report_maxline.

The line number of the highest-numbered line on which the first line
of the DETAILFOOT set of lines may be printed is the minimum of
report maxline and integer-13, if the MAXLINE integer-13 phrase is
supplied. If the MAXLINE integer-13 phrase is omitted, then
report maxline specifies the line number of the highest-numbered line
on which the first line of this set is produced.

If more than one line is defined for the DETAILFOOT set of lines, then
the value of integer-13 must not be larger than report maxline minus
the maximum quantity of lines that might be produced for the
DETAILFOOT set being specified. As an example, suppose that the value
of report maxline is 45. Assume that the DETAILFOOT set of lines has
six lines specified, but an IF test is specified for each line.
Further assume that the user knows that the IF tests and the data in
the input file are such that no more than four of the six lines are
ever produced on the same page. Then, a value of 41 can be supplied
for integer-13. .

5-41 CC69

Group Name: Full_Expr

The Full Expr group and its subsidiary groups provide a comprehensive
arithmetic, character, and boolean expression capability. In addition to the
details discussed here, Section 7 contains a unified treatment of the
interactions between the rules stated in the Full_Expr group and its subsidiary
groups.

General Format:

where

Examples:

n {~R } o
Boolean Fact

Boolean Fact

0
{:ND} Boolean Fact

Boolean Fact is

Char_Expr-5

TRUE

FALSE

{

(integer-19)
ILEVEL (

break field ident-1

[
NOT] Char_Ex pr-6 IN set variable name-1

Relationship_Test

1. An example using the boolean operators OR, AND, NOT, and some
relationship operators is:

salary> 1000 or pay level> 9
name = Jones and married

5-42 CC69

2. Example relevant to control breaks.

declare' input .•.

define

2 part class
2 vendor name

report ...

char('O),
char(20) ,

break (part_class, vendor name)

2 detailfoot part class ...
2 detail foot vendor name

if ~level(2) then vendor count := vendor count + ';
if ~level(part_class) then print part_class_description;

3. Does the Pacific Ocean touch this state?

declare P 0 states set ("California", "Oregon",
"Vaihington" , "Alaska", "Hawaii");

if state in P 0 states then salesman := "JA (Salty) Waters, Sr.";

4. In this example, "BF" stands for a Boolean Fact (i.e., an expression
whose VdiU~ is either true or false).
equi val ent:

a. BF , or BF 2 and BF 3
BF-' or (BF-2 and BF=))

b. BF , and not BF 2 and not BF 3
BF-' and (not BF-2) and (not BF-3»
BF-' and not (BF-2 or BF=3)

c. BF , or BF 2 and BF 3 or BF 4 and
(BF-' or (BF-2 and BF=3» or (BF=4 and

The following sets are

BF 5
BF-5)

5. These examples illustrate the meanings of the boolean connectives.
Assume that the following variables have the indicated values.

Variable

we make it
coTor
size

Expression

Value

false
green
3

we make it and size = 3

Data Type

boolean
character
decimal

coTor =-"green" or size = 4
color = "red" or not (size = 4)
.... true
.... we make it
not-we make it

5-43

Result

false
true
true
false
true
true

CC69

Syntax Rules:

1. An indefinite number of terms may be strung together to form a "full
ex pression" .

2. The Full_Expr group and its subsidiary groups include a degree of
recursiveness. Full Expr references Char Expr which references
Arith Expr which references Full Expr, with the Full_Expr reference in
Arith=Expr being enclosed in parentheses.

3. Char Expr-5 and Char Expr-6 may reference any type of parameters,
input fields, built-in functions, and/or local variables.

4. The %LEVEL keyword may only appear inside the definition of a report,
within the Heading, Detail, Footing, Line, and Report_Field_Def
groups.

General Rules:

1. Boolean facts may be strung together with OR, AND, and NOT
connectives. OR, AND, and NOT have their normal, logical meanings of
union, intersection, and negation.

2. The order of expression evaluation is determined by the precedence of
operators and by parenthesization. See Section 7 for a discussion of
this topic for all operators.

3. The keywords TRUE
lowercase letters.

and FALSE may use any mixture of uppercase and
For example, TRUE = true = TruE = True = tRUE.

4. ~LEVEL is valid only when control breaks have been specified in the
Report_Control group.

5. In ~LEVEL (integer 19), the value of integer 19 is the number of the
control break level-of interest. The first fIeld listed in the BREAK
option of the Report Control group is for level 1 breaks. The second
field is for level 2-breaks, and so forth.

6. Assume that the current input record is record
27 did not cause a control break for level 3 or
will cause a level 3 control break, but
~LEVEL (3) is true from the time that record 28
time that record 29 is available.

number 27, that record
2 or 1, that record 28
record 29 will not.
is available until the

In addition, ~LEVEL (0) is true
Thus ~LEVEL (0) is false until
record.

during the end-of-phase processing.
processing is completed for the last

7. The name of the break field may be used instead of the level number.
For example, if a report definition contains:

break (part_class, vendor_name)

then the following are equivalent:

$level (2)
%level (vendor name)

5-44 CC69

8. The result of the IN clause is the value true or false.

9. The result of the Relationship_Test is the value true or false.

11/82 5-45 CC69-00A

I

I

Heading Heading

Group Name: Heading

The Heading group, and its subsidiary groups, specify the layout and content
of report heading lines, page heading lines, and detail heading lines.

General Format:

~II ' 2 REPORTHEAD { Line-1)

2 PAGEHEAD (Line-2)

, 2 DETAILHEAD break_field_ident-1

o

IF (Full_Expr-4)

{
MAXLINE }

integer-13
MAXL

o
(Line-3) ••.

Examples:

11/82

1. Print text on the cover page (e.g., a report heading). Then print two
lines at the top of all following pages.

define 1 report payroll deduction analysis
on file-"your output",

2 reporthead, -
3 line 10, 4 "PAYROLL DEDUCTION ANALYSIS",
3 line +2, 4 "1977 December 31",
3 line +2, 4 "A summary of the ---",
3 line +1, 4 "etc. etc. etc.",

2 pagehead,
3 line 1, 4 "PAYROLL DEDUCTIONS",
3 line +1, 4 "Fiscal 1977",

2. Do not have a cover page. Put the report heading information on the
same page as the first page of the body of the report.

2 pagehead, •..
2 reporthead, •••

5-46 CC69-00A

Heading

3.

Head ing

At execution time, select the detail heading line to print based on
the department code number in the new record when the department code
number changes between successive input records (i.e. a control break
occurs) .

2 detailhead dept code if (dept code = "123"),
3 line, 4 "Welding Department":

2 detailhead dept code if (dept code = "124"),
3 line, 4 "Grindlng DepartmentW,

2 detailhead dept code if (dept code = ~125"),
3 line, 4 "Drililng DepartmentW,

Syntax Rules:

1. Either the REPORTHEAD or the PAGEHEAD clause may be used first (i.e.,
if both are used).

2. The break field ident names must be declared as input field names in
the Declare Input File group and be identified as control break fields
in the BREAK phrase of the Report_Control group.

General Rules:

1. If the REPORTHEAD clause is used, the lines that it defines are
produced once, at the beginning of the report.

2. If the PAGEHEAD clause is used, the lines that it defines are produced
at the top of every page.

3. Assume that the REPORTHEAD clause and the PAGEHEAD clause are used in
that order. The sequence of information starting at the beginning of
the report is:

• The REPORTHEAD lines

• A newpage character

• The PAGEHEAD 1 ines (Pag e n umber is 1.)

• If specified, the DETAILHEAD lines for the first record

• The DETAIL lines for the first record

• More DETAIL lines

5-41 CC69

Heading

4.

He ad ing

Assume that the PAGEHEAD clause precedes the REPORTHEAD clause in the
source program. The sequence of information on the first page is:

• The PAGEHEAD lines

• The REPORTHEAD lines

• If specified, the DETAILHEAD lines for the first record

• The DETAIL lines for the first record

• More DETAIL lines

5. A DETAILHEAD clause defines a set of detail heading lines that may
precede a set of detail lines when a control break occurs. If a
DETAILHEAD clause is defined, and a control break occurs for the field
specified in that DETAILHEAD clause, then the set of lines that are
subservient to this DETAILHEAD clause is a candidate for being
produced. There may be only one line in the set. When an IF test is
specified, Full Expr-4 is evaluated and the result is tested.
Assuming that the IF test succeeds, the set of lines becomes a

6.

candidate for being produced. In the event that the IF test fails,
the set of lines are omitted. Provided that no IF test is specified,
the set of lines is a candidate for being produced. If the set of
lines becomes a candidate for being produced, then a similar IF test
within each line's definition may be specified to determine whether or
not each line is to be produced. (See "Lines" group for details.)

This paragraph and the next three general rules
identical wording in the Detail and Footing groups.
made because the group name changes.

occur with almost
Small changes are

7. A MAXLINE value, known as report maxline, is established for the
report as a whole in the Report Control group. If, in this Heading
group, the MAXLINE integer-13 -phrase is supplied, the value of
integer-i3 must be less than or equal to the value of report_maxline.

8. The line number of the highest-numbered line on which the first line
of the DETAILHEAD set of lines may be printed is the minimum of
report maxline and integer-13, if the MAXLINE integer-13 phrase is
supplied. If the MAXLINE integer-13 phrase is omitted, then
report maxline specifies the line number of the highest-numbered line
on which the first line of this set is produced.

9. If more than one line is defined for the DETAILHEAD set of lines, then
the value of integer-13 must not be larger than report maxline minus
the maximum quantity of lines that might be produced for the
DETAILHEAD set being specified. As an example, suppose that the value
of report maxline is 45. Assume that the DETAILHEAD set of lines has
six lines specified, but an IF test is specified for each line.
Further assume that the user knows that the IF tests and the data in
the input file are such that no more than four of the six lines are
ever produced on the same page. Then, a value no larger than 41 can
be supplied for integer-13.

5-48 CC69

In put _Fi eld _De f

Group Name: Input_Field_Def

The Input Field Def group provides the detailed specification of one field
in the input record.-

General Format:

{
CHARACTER}

CHAR

f (integer-4)

L (integer-5)
{

SPECIAL }

DELIMITED "string-2"
}

Ex amples:

{
DECIMAL}

DEC

[OPTIONAL]

{

(integer-4) }

SPECIAL

DELIMITED "string-2"

[POSITION integer-6]

These examples include a small part of the Declare Input File group in
order to make each field definition complete. The initial-"2", {he field name,
and the trailing comma or semicolon are all shown in the Declare_Input_File
group.

1. Define a record with no
record, 11111 represents
ann ua I sal a r y .

gaps between the fields.
the pay number and 2222222

Sample record: 111112222222Warren G. Wonka

Definition:

2 pay number
2 annual salary
2 full name

dec(5),
dec (7) ,
char(15);

In this sample
represents the

2. The same record as in Ex ample 1, but described using the POSITION
phrase.

2 full name
2 annual salary
2 pay_number

char(15) position 13,
dec(7) position 6,
dec(5) position 1;

5-49 CC69

Input_Field_Def

There is no need to supply the field definitions in the reverse order
shown, but it could be done this way.

3. Most people in the United States have three names (first, middle,
last). Some people have more than three parts to their full name.
Call these parts first, second, third, fourth, and last, to provide
for up to five parts. To accommodate most people, let the third and
fourth parts be optional. That is, the input records mayor may not
contain fields for the third and fourth names.

Assume that the structure of the input records is as follows.

Is The
Field Length
Fixed or Minimum Max imum

Field No. Field Name Variable? Field Length Field Length

1 pay number Fixed 4 4
2 annual salary Fixed 5 5 -
3 last name Variable 20
4 first name Variable 19
5 second name Variable 18

6 third name Variable 0 17
7 fourth name Variable 0 16

Fields 6 and 7 mayor may not be present. If a person has no middle
name or initial, field 5 contains the single character "9".

The last field (5, 6, or 7)
denoted by ~NL~ below. Fields
by commas.

is followed by a newline character,
3 through the last field are separated

Several examples of input records are shown. In these examples, the
pay number is represented by four odd-value digits (e.g., 1'1', 3333).
The annual salary is represented by five even-valued digits (e.g.,
22222, 44444).

l'1'22222Edgerton,Jonathan,Micheal~NL~
333344444Engels,Albert,Bertram,Charles,David~NL~
555566666Green,Marybelle,9~NL~
777788888Brown,Horace,Smedley,Eustice~NL~

A valid declaration for this file is:

dcl , input stream file
2 pay number
2 annual sal ary
2 last name
2 first name
2 second name
2 third name
2 fourth' name

"your input",
dec(4),
dec(5) ,
char(20) delimited
char(19) delimited
char(18) delimited
char(17) delimited
char(16) optional;

5-50

" " , ,
" " , ,
" " , ,
"," optional,

CC69

Syntax Rules:

1. The Input Field Def group is used once for each field that is declared
in the Declare Input File group except for those portions of the input
record that -are - declared with the FILL option in the
Declare_Input_File group.

2. All fields that include the OPTIONAL keyword in their declaration must
reside adjacent to each other in the input record and must be at the
end of the record.

General Rules:

1. The CHARACTER keyword causes the input field to be treated as a
character string.

a. If the CHARACTER (integer-4) combination is selected, exactly
integer-4 characters are taken from the input. The internal
version of the input field has a length of integer-4 characters.

b. If the CHARACTER (integer-5) combination is selected, the
quantity of characters taken from the input is determined by
either the SPECIAL or the DELIMITED mechanism, as discussed in
later rules. The internal version of the input field has a
maximum length of integer-5 characters, but it is valid for the
quantity of characters taken from the input field to be greater
than integer-5. If this occurs, only the first integer-5
characters are available to the program. However, the current
position in the input data advances further, to the point
specified by the SPECIAL or the DELIMITED mechanism.

2. The DECIMAL keyword causes the input field to be treated as a decimal
val ue.

a. The internal representation is float decimal(20). This float
decimal(20) representation continues to be used even if the input
field becomes a held field by means of the HOLD keyword in the
Execute_Phase group.

b. If the DECIMAL (integer-4) combination is
integer-4 characters are taken from the
character does not terminate an input field.

selected,
input. A

ex actl y
newline

c. If the DECIMAL SPECIAL combination or the DECIMAL DELIMITED
"string-2" combination is selected, the quantity of characters
taken from the input is determined by the SPECIAL or the
DELIMITED mechanism, as discussed in other rules.

d. The characters taken from the input (however selected) undergo a
normal character to decimal conversion, as described in Section
6. Leading and/or trailing space characters are ignored when the
string of input characters are converted to their internal
decimal value. This is a PL/I characteristic.

5-51 CC69

3. SPECIAL means that the actual, current length of the field is in the
input file along with the current value of the field. If the input
file is obtained from LINUS with a report request, then the SPECIAL
keyword must be part of the definition of every field.

The length and value of a SPECIAL field are arranged in the following
manner in the input records, where each small box represents one
character:

preceding field + N N N V V V V V V ... V V V V V next field

~~~--~I~--~· 
Length 
info The actual data 

where: 

NNN is the quantity of characters contained in the field's value. 

vv ... vv is the field's value. 

The length data always occupies four characters, the first of which is 
always a plus character. The data format is fixed decimal(3). 

For example: 

preceding field+016A SAMPLE STRING.next field ..• 
... preceding field+001Xnext field •.• 
... preceding field+OOOnext field .•. 

4. If SPECIAL is used for two fields in succession, and there is an 
inconsistency between the length value for the first field and the 
actual length of that field, it is highly probable that an Illegal 
Procedure condition will occur when the MRPG-OS attempts to use the 
second field's length value. Consider the example: 

some data+006EAGLE+005SCOUTmore data 

The +006 value should be +005 to match the length of the EAGLE string. 
With the +006, the characters EAGLE+ are used for the first field. 
The next four characters, "005S", are used as the length value for the 
next field. But when the 005S is interpreted as a fixed decimal(3) 
value by the hardware, an Illegal Procedure condition is detected and 
signalled. This happens because the hardware requires that the first 
character of a fixed decimal value must be either a + or a 
character. Since the hardware found a zero, which is illegal, the 
Illegal Procedure condition is detected. Whether or not the three 
characters that specify the length of the data are valid or invalid 
depends on the four low-order bits of each of the three characters in 
the length field. If the value of the four low-order bits is greater 
than nine, a hardware-detected fault occurs. 

Although the hardware allows the sign character to be either a + or -
for the length field, only the + character is acceptable to MRPG. 

CC69 



5. When DELIMITED is chosen, string-2 specifies the single character that 
immediately follows the field being defined. "If the input file is a 
stream file, then the string-2 character can be a newline character to 
signify the end of the last field in a record. 

6. The value of integer-6 in a POSITION phrase 
position of the first character of the 
Conventional numbering is used (i.e., the 
record is in character position 1). 

5-53 

specifies the character 
field being defined. 

first character of the 

CC69 



Line Line 

Group Name: Line 

The Line group enables the user to specify where the line is to be placed 
on the printed page, whether or not the line is to be produced, and whether or 
not the MRPG-OS should pause to allow a terminal operator to place a new, blank 
form in the terminal. 

General Format: 

, 3 LINE 

Examples: 

[ 
integer-14 ] [IF ( Full_Expr-5 )] [Report_Field_Def] ... 
+ integer-15 

{ O
PA US E} [ IF ( Fu 11 _ Ex pr - 6 

1. Specify a line that is to appear on line 6 of a page if a condition is 
satisfied. 

3 line 6 if (dept_code = 123) ... 

2. Specify a line that is to appear on the next line. 

3 line +1, 4 ... 

-OR-

3 line, 4 

3. Close out the current page and position to the end of the current 
page. 

3 line 0, 

4. Specify a line that enables the user to remove a completed form and 
insert a blank form in the terminal. 

3 line pause, 

5. Specify that a blank line is to be produced between two non-blank 
lines. 

3 1 ine , 
3 line +2, 

4 some field char (20), 
4 another field char (20), 

Another way: 

3 line, 4 some_field char (20), 
3 line, 
3 line, 4 another_field char (20), 

5-54 CC69 



Line Line 

Syntax Rules: 

1. Ex amination of the Head ing, Detail, and Footing groups shows the Li ne 
group may be used several times in a row to define a set of lines that 
are treated as a unit. 

2. The option grouped with the PAUSE option is the digit zero. 

3. The difference between the integer-14 and the in teger-15 choices is 
the plus sign and the subsequent interpretation. 

4. There are two possible major choices within the large braces. The 
first major choice is comprised of the three sets of brackets at the 
top of the general format. Since all three items are in brackets, and 
hence optional, it is possible and valid for one major choice to be 
nothing. The second major choice is comprised of the small braces 
containing PAUSE and 0 followed by the optional IF test. 

General Rules: 

11/82 

1. If the integer-14 choice is made, it specifies the absolute line number 
that the line is to be printed on. The minimum value of integer-14 is 
one. 

2. If the "+ integer-15" choice is made, it specifies where the line is 
to be printed relative to the previous line. The value +1 results in 
single spacing, +2 is double spacing (i.e, one blank line between 
p r in ted 1 in e s) • Th e val u e + 0 s h 0 u 1 d not be use d (i. e ., 0 v e r p r in tin g I 
cannot be handled). 

3. If the upper portion of the general format is chosen and nei ther integer-14 
nor integer-15 are specified, the default produces single spacing just 
as though +i is specified. 

4 • Wh e n an IF (Fu 11 Ex p r - 5 ) t est iss p e c i fie d , Fu 11 Ex p r - 5 i s e val u ate d 
and the result is-tested. In the event that the IF test succeeds, the 
line is produced, with a newline character as the last character of 
the line. Should the IF test fail, the line is not produced nor is a 
newline character produced. If the line becomes a candidate for being 
produced, then a similar IF test within each field's definition may be 
specified to determine whether or not each field is to be produced. 
(See ftReport Field Def ft group for details.) When the line is produced, 
a newl ine character is wr it ten at the end of the 1 ine, even if some 
fields are defined but none of them are produced, or even if no fields 
are defined. 

5. It is possible to define one or more fields and omit the IF (Full Expr-5) 
test. In this case, a newline character is written at the end of the 
line, whether or not anything is produced for any of the fields. 

5-55 CC69-00A 



Line 

I 

. 11/82 

6. 

Line 

It is possible to select as the major path in the Line group the upper 
portion of the general format, but to omi t all three i terns shown in 
brackets by using: 

3 line, 

If this is done, a line that consists of only a newline character is 
produced, giving a blank line in the output. 

7. When an IF (Full Expr-6) test is speci fied, Full Expr-6 is evaluated 
and the result is-tested. In the event that the IF test succeeds, the 
actions described below for the PAUSE keyword or 0 that preceded the 
IF test occur. Should the IF test fail, then the actions do not 
occur. 

8. If a zero digi t follows the LINE keyword and there is ei ther no accompanying 
IF test, or an accompanying IF test succeeds, the following occurs: 

• The page is closed out (i.e., any specified page footing 
lines are produced) 

• The output advances to an end of page position 

9. If the PAUSE keyword follows the LINE keyword and there is either no 
accompanying IF test, or an accompanying IF test succeeds, the following 
occur3: 

• The two steps described in General Rule 8 

• If the output is being sent to the user output I/O swi tch 
the MRPG-OS pauses until a newline character is read from 
the user_input I/O switch 

Usually, user input and user output are attached through the tty I/O 
module to the user's terminal. This enables the user to print a-page 
of the report on a high-pr int-qual i ty terminal and have the MRPG-OS 
pause so that the user can remove that page from the terminal, insert 
and posi tion a fresh sheet of paper, and then direct the MRPG-OS to 
continue producing the report by pressing the RETURN key. Wi th this 
technique, the user can produce a report with a carbon film ribbon on 
a· preprinted form. However, the actions listed above occur even if 
user output is not attached to a terminal (e. g., user output being 
sent-via vfile to a segment). But in this case, it is difficult for 
the user to know when the MRPG-OS pauses. Similarly, user input can 
be attached to a file rather than a terminal, but this complicates 
knowing when to provide the newline characters from user input. 
Therefore, it is recommended that user input and user output be attached 
to a terminal whenever the PAUSE feature is used. -

5-56 CC69-00A 



Line 

10. 

11. 

12. 

Line 

It is possible for one occurrence of the Line keyword to produce more 
than one output line. This can happen if either the FILL or the FOLD 
option of the Report Field Def group is specified. The quantity of 
output lines can vary-in the same report, depending on the input data 
or on other variables. (See "FILL" and "FOLD" examples in the 
Report_Field_Def group) . 

If the LINE integer-14 option is chosen more than once within the 
declaration of a report, the integer-14 values must increase as those 
values are encountered in progressing through the report's definition. 

There is one circumstance in which the quantity of extra blank lines 
is less than the quantity specified by integer~15. This occurs when 
the current line of the output report is near the bottom of a page and 
a "3 LINE +integer-15" phrase is encountered. Suppose that the LINE 
phrase of interest is part of a DETAIL set of lines. Further suppose 
that there is room for only three more detail lines on the current 
page, and a 10 was specified for integer-15. Three blank lines are 
appended to the report. If specified, page footing and page heading 
lines are also appended, but the remaining seven potential blank lines 
are om itt e d . 

A specific example can be seen in Section 2 (refer to Figure 2-3). 
Line 29 of the MRPG source program is "3 line +3," and is intended to 
cause two blank lines to precede the DETAILHEAD line. This occurs at 
lines 17-20 and 30-33 of the output report. However, although there 
are two blank lines for lines 5-6 of the report, they are not caused 
by 1 ine 29 of the source program. The +3 on 1 ine 29 iSlgnored, 
inasmuch as the report is initially at the top of a page. Rather, 
lines 5-6 of the report are blank because of the +2 on line 27 of the 
source program. Line 27 is part of the PAGEHEADING set of lines. 

The general rule is that no "extra" lines are produced at the top of a 
page. 

5-57 CC69 



Relationship_Test Relationship_Test 

Group Name: Relationship_Test 

The Relationship Test group is logically part of the Full Expr group, and 
is separated only because it is awkward putting both groups on the same page 
because of space requirements. In addition to the details discussed here, 
Section 7 contains a unified treatment of the interactions between the rules 
stated in the Full_Expr group and its subsidiary groups. 

General Format: 

LT 
< 
LE 
<= 
EQ 
= 
GE 
>= 
GT 
> 
NE 
= 

Char_Ex pr-7 

Ex amples: 

1. Numeric example. 

salary> 10000 
tax rate = 4.5 
tax-rate eq 4.5 
part_cost <= cost_target 

2. Character string example. 

job title A= "Manager" 
"Jo~es" = last name 

5-58 

Char_Ex pr-8 

CC69 



Relationship_Test Relationship_Test 

3. String matching example. Assume that four variables contain the 
following and that each white space area between the quotation marks 
contains one or more space characters. 

4. This 
done 

title 1 
title-2 
~itle-3 
title-4 

"fundamentals of geometry" 
"builtin functions" 
"only for fun" 
" fun can be fun " 

This expression has this 

title 1 beg ins "fun" true -title 1 beg ins "Fun" false -title 1 not begin "fun" false -title 1 contains n fun" true 

title 2 not begin " fun" true -title 2 ends " fun" false 
title-2 not end "fun" true 
title-2 contains " fun" true 

title 3 ends " fun" true -
title 4 beg ins "fun" false -title 4 contains "fun" true 
title-4 ends " fun" false 

ex ample is identical to the above except that 
on a word basis, rather than on a string basis. 

title 1 "fundamentals of geometry" 
ti tle-2 "buil tin functions" 
title-3 "only for fun" 
title-4 " fun can be fun II 

value 

the matching is 

This expression has this value 

title 1 begins word " fun" false 
title-1 begins word "Fun" false -title 1 not begin word "fun" true 
title-1 contains word "fun" false 

title 2 not begin word iifun ti true 
title-2 ends word " fun" false 
title-2 not end word "fun" true 
title-2 contains word "fun" false 

title 3 contains word " fun" true -
title 4 begins word "fun" true -title 4 ends word "fun" true 

5-59 CC69 



Relationship_Test Relationship_Test 

Syntax Rule: 

There are no constraints on the types of expressions whose relationship may 
be tested. Char Expr-7 and Char Expr-8 may be decimal, character, or 
boolean values. Thus, there are nTne data type matching and mismatching 
combinations. The general rules in this group specify which value is 
converted into a different type for the six mismatching combinations. 
Section 6 provides the detailed conversion rules for the possible 
conversions. 

General Rules: 

1. The alphabetical and mathematical notation 
mathematical operators are: 

less than 
less than or equals (not more than) 
equals 

used for the six 

LT < 
LE <= 
EQ = 
GE >= 
GT > 
NE = 

equal to or greater than (not less than) 
greater than 
not equal 

2. To perform a relationship test, both operands must be of the same data 
type. When necessary, MRPG generates the PL/I statements needed to 
convert. Char_Expr-7 or Char_Expr-8. 

3. If the relationship operator is one of the mathematical operators (see 
General Rule 1) and both of the operands are of the same type, then no 
conversion is needed. The comparison is made and the result is either 
true or false. If the data types of the operands differ, the 
following table specifies which data type is converted to a temporary 
val ue. 

Data Type Combinations 

boolean and decimal 
boolean and character 
decimal and character 

Data Type Conversion 

boolean to decimal 
boolean to character 
decimal to character 

4. The string operators are listed in this rule and explained in later 
rules. 

BEGINS 
NOT BEGIN 

CONTAINS 
NOT CONTAIN 

ENDS 
NOT END 

5. If the relationship operator is one of the string operators listed 
above, then Char Expr-7 and Char Expr-8 are both converted to 
character values if they are not already character values. 

6. When two character expressions of unequal length are compared, the 
shorter expression is assumed to have sufficient trailing spaces to 
make the lengths equal. 

7. The BEGINS, CONTAINS, and ENDS operators determine if Char Expr-8 
appears in the specified position within Char Expr-7. For the-BEGINS 
test to be satisfied (i.e., give a "true" result) the character string 
specified by Char Expr-8 must occur at the beginning of the string 
specified by Char_Expr-7. For the ENDS test to be satisfied, the 

5-60 CC69 



Relationship_Test Relationship_Test 

Char Expr-B string must occur at the end of the Char Expr-7 string. 
For the CONTAINS test to be satisfied, the Char_Expr-B string must 
occur somewhere in the Char Expr-7 string, including at the start or 
the end of the Char Expr-7 string. For the NOT versions of the tests 
to be true, the Char Expr-B string must not occur in the specified 
position. -

8. When the WORD keyword is omitted, searching is done on a strict 
character by character basis. Char Expr-B can contain white-space 
characters. If Char Expr-B has three adjacent spaces between 
non-space characters, -then in order for the result to be true, 
Char Expr-7 must have exactly three spaces between the surrounding, 
matching, non-space characters. (See Example 3.) Contrast this with 
the next rule. 

9. When the WORD keyword is specified, searching is done on an English 
word basis. Char Expr-7 can be thought of as being subdivided into 
substrings by the Char Expr-7 delimiters. The ends of Char Expr-7 are 
delimiter positions. - White-space characters within Char-Expr-7 are 
delimiters. One or more contiguous white-space characters are treated 
as one delimiter. If Char Expr-B contains any white-space characters, 
the result is false, independent of the value of the Char Expr-7 
string. (See Example 4.) -

5-61 CC69 



R e po r t _ Con t r 0 1 Re por t _ Control 

Group Name: Report_Control 

The Report Control group enables the user to specify several values and 
actions that apply to the report as a whole. 

General Format: 

o 

{ 
PAGEWIDTH } 

integer-8 
PGW 

{ 
PAGELENGTH } 

integer-9 
PGL 

{ 

MINLINE 

MINL 
} integer-l0 

} integer-l1 { 

MAXLINE 

MAXL 

nil input field name-1 II) 0 BREAK ( --

ON 

1 local_variable_name-1 

{
FILE Char Ex pr-2} 

SWITCH Char_Expr-3 

( [ {:~~:CH :::: =::::~: } 
IF ( Full_Expr-3 

{
FILE Char Expr-2 } 

SWITCH Char Expr-3 

5-62 

o 

CC69 



Report_Control Report_Control 

Examples: 

1 . S P e c i f y the am 0 u n t 0 f spa ceo nap age th a tis a va i I a b I e for the r e po r t . 

pagewidth 70 
pagelength 50 
minline 5 1* This is the range of *1 
maxline 45 1* lines for detail info. *1 

2. Identify input fields whose change of value triggers a control break. 

break (department_code, pay_class) 

3. Specify the segment into which the report is written. 

on file "your_output" 

Another way to send the report to the same segment is: 

on switch "vfile your_output" 

4. Specify that the segment into which the report is written depends on 
the value of a parameter that is received when the MRPG-OS is invoked. 

dcl parameter, 2 where char(*), 2 0 f char(*) 
Key ("-of") DEFAULT ""; 

define 1 report payroll analysis 
on (file "pay anal.exempt" if (where = "e") 

or file "pay anal.nonexempt" if (where = "n") 
or file "pay=:anal.hourly") 

define 1 report latent 
on (file "output" if (0 f A=,,") 

or switch "user_outp~t") ... 

Syntax Rules: 

11/82 

1. Notice in the general format that the digit "1" at the upper left of 
the left-hand double bars indicates the highest-level options can occur 
only once. 

2. A name should not appear more than once in the list for a BREAK option. 
The same name may be used in BREAK options in different reports. 
Repetition may occur within the ON option, as indicated by the ellipsis. 

5-63 CC69-00A 

I 

I 
I 



Report_Control Report_Control 

General Rules: 

11/82 

1. The value of integer-8 specifies the maximum quanti ty of horizontal 
printing positions (i.e., print columns). The default value is no 
limit. If the default is used and a report line does not fit on the 
output device, the normal Multics standards govern the handling of the 
excess char acter s, wh ich ar e usually con tinued onto the nex t 1 ine. 
The PAGEWIDTH value is the same for every line in the report. 

2. The value of integer-9 specifies the quantity of lines on the physical 
sheet of paper. There are some subtleties here concerning exactly how 
the report can be printed that are deferred to Section 9 of this 
manual. The default value is 66 if the report is being written to a 
segment. The PAGE LENGTH value is the same for every page of the report. 
If the report is being written on user output, the default value is no 
limit. -

3. The val ue of in teger-1 0 spec i fies the number of the lowe st-numbered 
line on which a detail heading, detail data, or detail footing line 
can appear. If the page andlor report heading lines occupy fewer than 
one less than integer-10 lines, enough empty lines are skipped so that 
the first detail type of line falls on the integer-10th line. 

4. If the MINLINE option is not specified, and no page heading lines are 
defined, the default value for MINLINE depends on where the report is 
to be written. (The FILE and SWITCH keywords may occur several times, 
but the conditional tests of Full Expr-3 result in either one SWITCH 
option or one FILE option being selected at execution time.) 

a. If a FILE option is selected, the default MINLINE value is 4. 

b. If a SWITCH option is selected, and the name of the 1/0 switch is 
user_output, the default value of MINLINE is 1. 

c. If a FILE or SWITCH option is not specified, the defaul t value 
for MINLINE is 1. 

5. If the MINLINE option is not specified, but page heading lines are 
defined, the default value for MINLINE is one more than the quantity 
of page heading lines that are defined (i.e., MINLINE is one more than 
the quantity of times that the LINES keyword occurs subservient to the 
PAGEHEAD keyword). This means that it is possible to define six page 
heading lines and also know that no more than four will ever appear on 
a page because of the condi tions chosen and the nature of the input 
data. If this is done, the default MINLINE value is 7, but it is 
valid to include MINLINE 5 in the report definition, which is the only 
way to utilize the two extra lines. 

6. However arrived at, some value is established at generation time for 
the MINLINE value for the report as a whole. For use in the discussion 
of other groups, call this MINLINE value report minline. This value 
is established even if the entire Report_Control group is omitted. 

7. The value of integer-11 specifies the number of the highest-numbered 
line on which a heading, detail, or footing line may appear. If line 
integer-11 is reached and another detail line becomes available for 
output, the old page's footing lines are written, an advance is made 
to the next page, the new page's heading lines are written, and then 
the detail line is written. 

5-64 CC69-00A 



Report_Control Report_Control 

8. If the MAXLINE option is not specified, but page footing lines are 
defined, the default value for MAXLINE is one less than the absolute 
line number of the first page footing line. (See "PAGEFOOT" in the 
Footing group and "integer-14" in the Line group.) 

9. If the MAXLINE option is omitted and page footing lines are undefined, 
the default value for MAXLINE is the number of the last line on the 
page. 

10. However arrived at, some value is established at generation time for 
the MAXLINE value for the report as a whole. For use in the discussion 
of other groups, call this MAXLINE value report maxline. (The value 
is established even if the entire Report_Control -group is omitted.) 

11. Names listed in a BREAK option specify input fields or local variables 
whose change in value from one record to the next triggers a control 
break. The names are used in DETAILHEAD options in the Heading group 
and in DETAILFOOT options in the Footing group. The first name in the 
list is associated with break level 1, the second with level 2, etc. 
These level numbers are used with the %LEVEL option in the Full Expr 
group. When a break occurs, that level and all higher-numbered levels 
also have a break. 

For example: 

break (dept_code, pay_class, job_title) 

When a new record is obtained, if the content of the pay class field 
c han g e s , the n ale vel 2 b rea k 0 c cur s • I n add i t ion, a 1 ev e 1 3 b rea k 
for job title also occurs, whether or not the content of the job title 
field Changed. The detail footing lines for level 3 are produced, 
followed by the detail footing lines for level 2, then the detail 
heading lines for level 2, followed by the detail heading lines for 
level 3, and finally, the detail lines associated with the input record 
that triggered the control break. 

The test that determines whether or not a control break occurs is made 
near the beginning of the execution of the PL/I statements that are 
generated for a PRINT statement. These statements are executed for 
each input record. If a control break occurs, the current value of 
the input field or local variable is saved for use in the test for a 
later record. Should the control break be at other than the 
highest-numbered level, the input fields and/or local variables for 
this level and for all higher-numbered levels are saved. 

Usually, input fields are used for control breaks. A local variable 
whose value is saved for each input record has the general appearance 
of an input field in subsequent phases. A HOLD statement is used to 
save the values that the input fields and local variables have for 
each input record. The local variable named in a BREAK option need 
not have had its values saved by a HOLD statement. However, unless 
the value of that local variable is changed by assignment statements 
in LET options of the Report Field Def group, no control breaks occur 
for this local variable. - -

The maximum quantity of break·levels is 998. 

12. The ON option specifies where the report is to be written. If the ON 
option is omitted, the report is sent to the user_output I/O switch. 

11)'82 5-65 CC69-00A 



I 

Report_Control Report_Control 

13. Char Expr-2 must be a character string. It is used by the vfile I/O 
module as the relative or absolute pathname of a segment for the file. 
The MRPG language does not impose any constraints on the characters in 
the string. However, the intended use of this string does impose 
constraints. Allowable characters and the length of the string are 
restricted to what is allowed in relative pathnames of segments. (See 
"Section 3" of the MPM Reference Guide.) 

14. Char Expr-3 is a character string that describes the destination. If 
the -str ing contains no blanks, it is assumed to be a swi tch name. 
Otherwise, it is used as an attach description for an I/O module, 
usually the vfile_ module. The ATTACH keyword must be supplied to use 
an I/O module other than the vfile I/O module. (Refer to the MPM 
Subroutines, MPM Subsystem Writers' Guide, or the MPM I/O manuals for 
details of the required attach description.) 

15. The IF test permits the report to be sent to different places, depending 
on the result of evaluating Full Expr-3. Keep in mind that the Char Expr-2 
or Char Expr-3 which is used belongs to the FILE or SWITCH option that 
precedes the IF test. The fi rst IF test that is sati sfied ends the 
output path selection process. Assuming that none of the IF tests are 
satisfied, the report is sent to the destination specified by the last 
FILE or SWITCH phrase (i. e., the FILE or SWITCH that immediately precedes 
the right parenthesis that ends the ON clause). 

11/82 5-66 CC69-00A 



Group Name: Report_Field_Def 

The Report Field Def group defines the content, format, and position within 
a line of one fIeld to be printed. 

General Format: 

4 Char_Expr-4 

LET ({ { input_field_name-4 }. _ Full_Expr-8 } ... ) 
local_variable_name-2 

{
COLUMN} integer-16 
COL 

BSP 

ALIGN "string-8" 

{
PICTURE} 

"string-3" 
PIC 

f CH __ A_ R_ACTERl 
_ ~ ( integer-17 ) 

01 L L CHAH J 

Examples: 

r LEFT 1 
CENTER 

l RIGHT J J 

o 

II 

Several examples include items from the Char Expr group to illustrate the 
interaction between certain character expressions and the keywords specified in 
this Report_Field_Def group. 

11/82 5-67 CC69-00A 



I 

11/82 

1. Define a line that produces the fourth through sixth lines shown below. 
The f1 r st 1 ine identi fies the field s. The second 1 ine contai ns the 
starting column posi tions of each field. The third line indicates 
where characters can fall in the field. 

pay_no dept salary last name degree 
1 8 13 24 38 
xxxxx xxx xxxxxxxxx xxxxxxxxxxxx xxxx 
1 1111 275 $2,567.00 Anderson MBA 
22222 349 $487.00 Lewis 
33333 583 $969.72 Bradford BS 

4 pay no char (5) , 
4 dept char (3 ) col 8, 
4 salary picture "$$,$$9v.99" col 13, 
4 degree char (4) right col 38, 
4 last name col 24 char ( 12) left, 

2. Define a field that is produced only if the department code is greater 
than a value supplied as a parameter. 

dcl 1 parameter, 2 dept_code_limit; 

4 if (dept_code> dept_code_limit) "Invalid dept code" col 70, 

3. LET example. Assume that the MRPG-OS finished processing the 27th 
input record and produced an output line. Further assume that: 

Then: 

The input field "cost" of record 28 contains 300 
The input field "cost" of record 29 contains 410 
The local variable "factor" contains 10. 

4 cost + factor let(cost := cost + 30; factor := factor + 5;) 

yields 
and 

345 for record 28 ((300 + 30) + (10 + 5) => 345) 
460 for record 29 ((410 + 30) + (15 + 5) => 460). 

After processing record 29, factor contains value 20. 

5-68 CC69-00A 



4. LET clause execution. Assume that: 

• Record 35 has just been processed 

• The input field "weight" of record 36 contains 151 

• The local variable "shrinkage" contains 23 

Now consider the following: 

4 if (weight < 150) weight - shrinkage 
let (weight := weight - 10; 

shrinkage := shrinkage + 1;), 

After the assignments in the LET statements are executed, weight 
contains 141. Then the IF test is made. Since 141 is less than 150, 
the IF test succeeds. The evaluation of this report field yields 123 
in the output line, which is calculated as (151 - 10) - (23 + 1). 
Weight now contains 147 and shrinkage now contains 24. 

5. An example using BSP (backspace). Assume the field title contains: 

PART COST 

The string is 25 characters long (it 
backspaces, and nine underscores). 
following field definition: 

4 title char (9) bsp, 

contains eight letters, eight 
It can be printed using the 

6. ALIGN example. Assume that the test data field in successive input 
records contains the following information. (The decimal points are 
actually present in the input fields.) 

Then: 

1.234~ 
51.9~~ 
389.12 
~81.~~ 
~~~~54 

4 test data col 21 align

yields:

1.234
51.9

389.12
81.
54

" " . ,

with the decimal points in column 21. The last line, not having a
decimal point in the input field, is positioned with the 4 in column
20, just as though a decimal point had been present in the input
immediately following the "4" character.

5-69 CC69

I

I

11/82

7. OVERLAYING of data. Assume the heat factor field in the next input
record contains 123.456 and that someof the fields for an output line
are defined as:

4 "abcde" col 21,
4 "+" col 26,
4 "fghij" col 27,

The output result is:

abcde+fghij

Replacing the second field to give:

4 "abcde" col 21,
4 heat factor col 26 align
4 "fghTj" col 27,

yields:

ab123.fghij

" " . ,

Interchanging the second and third fields to give:

4 "abcde" col 21,
4 "fghij" col 27,
4 heat factor col 26 align

yields:

ab123.456ij

II " . ,

8. The physical placement of characters in a printed line can be affected
by an IF test and the content of the previous field. The information
arrangement is:

line from MRPG program

content and length of field 2 yields printed result

a. A base case:

3 line, 4 "FIRST_" col

field 2 length

piggyback 9
piggy 5
pig 3

o

char(6), 4 field 2 char(5), 4 "-THIRD"

yields

FIRST piggy-THIRD
FIRST-piggy-THIRD
FIRST-pig~~-THIRD
FIRST-~~~~~-THIRD

In the last line, field 2 contains nothing (i.e., a null character
string).

5-70 CC69-00A

11/82

b. Omit the char(5) for field 2:

3 line, 4 "FIRST_" col

field 2 length

piggyback 9
piggy 5
pig 3

o

char(6), 4 field_2, 4 "-THIRD"

yields

FIRST piggyback-THIRD
FIRST-piggy-THIRD
FIRST-pig~~-THIRD
FIRST-~~~~~-THIRD

c. Specify an IF test that resul ts in field 2 being used. Assume
that test field has 5 as its current value~

4 if (test field = 5) field 2 ..• - -
gives the same results as in Examples a and b.

d. Specify an IF test that fails and do not specify a position for
the following field:

3 line,
4 "FIRST II col 1 char (6),
4 if (5 ~ 7) field 2 char (5),
4 "-THIRD", -

yields the result FIRST -THIRD which is independent of the length
and content of field 2 and independent of whether or not a COLUMN
or CHARACTER option Is specified for field_2.

e. Change "Example d" by specifying a column position for the field
that follows field 2:

3 line,
4 "FIRST" col 1 char (6),
4 if (5 ~ 7), field 2 char (5),
4 "-THIRD" col 12, -

yields the result FIRST ~~~~~-THIRD which is independent of the
length, content, and COLUMN or CHARACTER options of field_2.

9. PICTURE phrase example. Assume that the variable some data contains
the val u e 1 23 . 456 and t hat i tis p r in ted wit h s ever a I d iff ere n t
pictures. For example:

4 some data col 21 picture "+999v.999",

yields +123.456 in the output line, with the plus sign appearing
inc 0 I um n 2 1 .

Picture

s(3)9v.(3)9
(3)9v.(3)9cr
(3)9v.(3)9db
(5)zv.99
$$$$v.99
$$$,$$$v.99

Yields

+123.456
123.45616~
123.456~16
16~123.45
$123.45
16~~$123.45

5-71 CC69-00A

I

I

10. LEFT, CENTER, and RIGHT keywords illustration.

4 "pig" char (7) left, yields pig~~~~
4 "pig" char (7) center, yields ~~pig~~
4 "pig" char (7) right, yields ~~~~pig

Syntax Rule:

The LET keyword cannot be used more than once in defining a report field.
Multiple assignment statements may exist within parentheses.

General Rules:

11/82

1. The end result of evaluating Char Expr-4 is a character string. The
length of the string depends on the-details of the Char Expr evaluation.
The resul ting string is a value that is to be placed in the output
line.

2. If a LET clause is present, the program must specify one or more
assignment statements within the LET clause. The statements in a LET
clause are executed as part of executing a PRINT statement in the
Execute_Phase group.

3. If a LET clause is present, the items on the lefthand side of the LET
assignment statements may be referenced in Char Expr-4. The LET
assignment statements are executed before evaluating-Char Expr-4. (See
Examples 3 and 4 in this group discussion.) -

4. If the COLUMN integer-16 phrase is used, the value of integer-16 defines
the column position to use for the start of the field unless the ALIGN
keyword is also used. (See "General Rule 9" if ALIGN is used.)

5. A report field's length is automatically increased by one character in
certain si tuations. Usually, this appears to the user as though a
space character is appended to the right-hand end of the report field's
val u e • (See "G e n era 1 Ru 1 e 9" for a dis c u s s ion reI ate d to wh e nth e
character to the right of the report field might be something other
than a space.) The report field length is extended by one character
is to provide one space between adjacent columns of data without the
writer of the source program having to take specific action. The
general rules as to when the length extension occurs are stated below,
followed by several examples in Table 5-1.

a. A field is lengthened if its defini tion does not include the
CHARACTER keyword, unless the field value is a literal character
string. (A report field defined as a literal character string
and without the CHARACTER keyword occupies only the quantity of
column positions that the literal occupies.)

5-72 CC69-00A

11/82

b. A field is lengthened if its value is the result of an arithmetic
operation and the field definition includes the CHARACTER keyword
but does not include the LEFT, CENTER, or RIGHT keywords.

c. A field is lengthened if its defini tion includes the PICTURE keyword.

d. A field is not lengthened if its value is a non-literal character
string and the field definition includes the CHARACTER keyword.
The character string may be obtained from the value of an identifier
that is declared with either the CHARACTER or the BOOLEAN keyword.
The value may also be obtained by concatenating two or more items.
Those items may be anything, including decimal literals and decimal
identifiers.

The abbreviations used in Table 5-1 are:

dec id

char id

Decimal identifier, a user-selected name associated with a
local variable or an input field. Its declaration includes
the DECIMAL keyword.

Character identifier, a user-selected name associated with
a parameter, a local variable, or an input field. Its
declaration includes the CHARACTER keyword.

num char id

bool id

dec lit

ITke char_id, but the value is a number.

Boolean identifier, a user-selected name associated with a
par am e t e r 0 r a 10 cal va ria b 1 e • Its dec 1 a rat ion inc 1 u des
the BOOLEAN keyword.

A decimal, literal value (e.g., 1234).

char lit
A character, literal value (e.g., "TOTALS:").

bool lit

charCn)

ASMD

I I
I I

A boolean, literal value (eege, true).

The CHARACTER keyword is used in the declaration of the
report field and "n" stands for the value that is specified
for integer-17.

One of the add, subtract, mul tiply, or divide ari thmetic
operations.

The string CONCATENATE operation.

If the LEFT, CENTER, or RIGHT keyword appears in the report field
definition, the field is not lengthened.

For the purpose of explaining the examples in Table 5-1, assume that
the next few lines appear in the MRPG source program.

5-73 CC69-00A

I

dcl ddd decimal; dcl ccc character(3); dcl bbb boolean;
ddd := 23; ccc := "cow"; num_ccc := "35"; bbb := true;

The meaning of the third and fourth columns of the table is as follows.
Consider the fi rst line of the table as an ex ampl e. In the thi rd
column, the report field's definition is assumed to be:

while in the fourth column, the field's definition is assumed to be:

4 dec id char(2),

Table 5-1. Automatic Lengthening of a Report Field

Is Report Field
Lengthened?

Field Is Field Is
Defined Defined

Field Description Example As Shown With Char(n)

dec id ddd Yes Yes -dec lit 56.7 Yes No -
dec id I I dec id ddd I I ddd Yes No I I I I

dec - lit I I dec - lit 98 I I 76 Yes No I I I I - -dec lit ASMD dec lit 98 + 76 Yes Yes - -
dec id ASMD dec lit ddd - 76 Yes Yes
dec - id ASMD - char lit ddd * Yes Yes num num ccc
dec - id ASMD booT lit - ddd (true) Yes Yes + - -
dec id picture "picture string" ddd pic "99" Yes --- -
char id ccc Yes No -char lit "boy" No No
char - lit I I char lit "cow" I I "boy" Yes No I I I I - -
num char id num ccc Yes No - - -num char id ASMD num char id num ccc + num ccc Yes Yes - char - lit ASMD - char - lit ("456") * ("789") Yes Yes num num - - - -
bool id bbb Yes No
bool - lit (true) Yes No -
bool id I I bool lit bbb I I (false) Yes No I I I I

bool - id ASMD bool - lit bbb (false) Yes Yes + - -

11/82 5-74 CC69-00A

6. When a numeric literal whose absolute value is less than one is supplied
as part of a report field definition, a zero digit is supplied immediately
preceding the decimal point. Thus, -.56 is printed as -0.56 while I
4:: .32 becomes 40.32 with the 0 coming from converting the .32 into a
character string so that the concatenation may be done.

7 . The BSP option is prov ided to increase the efficiency of gener ating
and executing an MRPG program. The BSP option need not be used when
Char Expr-4 is ali ter aI, even though the 1 iter al con tains backspace
c h a r act e r s • Th i sis the cas eon 1 in e s 36 and 37 0 f the e x am pIe in
Section 2. Usually, input information or information created wi thin
the MRPG-OS does not contain any backspace characters. Therefore, the
usual generation-time and execution-time procedure is to ignore the
possibility of backspace characters being present. Use of the BSP
option results in additional coding that carries out the complicated
steps of properly handling a string that contains backspace characters.
If the field is defined using anything other than quoted strings and
the values being referenced may ever contain any backspace characters,
then the BSP option must be specified.

8. In the ALIGN phrase, string-8 is usually a single ASCII character.
That character should exist in the data strings that are to be processed
to yield the field being defined (see "General Rule 8"). If the single
ASCII character that is wanted for string-8 is the quote character,
then four, not three, quote characters must be supplied following the
ALIGN keyword. When several output lines that contain a field whose
specification includes the ALIGN keyword are produced, the characters
in those fields are posi tioned left or right as needed so that the
first occurrence of the string-8 character in those several fields
falls on the same column position. When the COLUMN and ALIGN keywords
are both specified for the same field, the value of integer-16 is the
column number that the string-8 character falls on.

9. This rule regarding ALIGN is independent of the use or omission of the
COLUMN phrase. Further, this rule is applicable to all fields whether
or not their definition included the ALIGN keyword, but is more likely
to come into play for ALIGNed fields because of the left or right
sliding that c?n occur with ALIGNed fields.

The column positions associated with a field may overlap some or all
of the column positions associated with one or more other fields. If
so, the earlier information is overlaid, thereby destroying the earlier
information.

No error or warning message is produced at program generation, compilation,
or execution time. Thus, the last field to place information into a
particular column position takes precedence. The time sequence in
which fields are placed into an output line corresponds with the physical
sequence in which the definitions of the fields occur in the source
program (see Example 7).

10. Consider a field whose defini tion includes an ALIGN phrase. If the
string=8 character does not occur in the character string that is to
be placed in an output line, the character string is aligned as though
the string-8 character immediately followed the character string.

11. Use of the PICTURE "string-3" option provides extensive flexibility
for converting numerical data into a modified representation in a report
field. Whatever is supplied as string-3 is checked for validity using
the PL/I compiler's standard picture verification subroutines. Assuming
that no errors are detected, string-3 is passed to the PL/I compiler
as part of the generated PL/I source program. Thus, the full PL/I
picture editing capability is available to an MRPG program. (This is
not the full PL/I picture capability. The PL/I picture encoding
cap a b iIi t y , use din P L I I pro gram s to con v e r t n um e ric aId a t a in to a

11/82 5-75 CC69-00A

Report_Field_Def

character representation that is placed in storage for further use, is
not accessible to the MRPG language.) Since the PL/I picture editing
capability is extensive and may change with time, describing it here
is beyond the scope of thi s manual. The reader should refer to the
Mul tics PL/I manuals for complete details. This is a PL/I characteristic.

12. When the CHARACTER option is chosen, integer-17 specifies the quantity
of column positions available to the field.

13. The LEFT, CENTER, and RIGHT options spec i fy that, when the out put
character string is shorter than the field width specified by integer-17,
the output string is to be left-justified, centered, or right-justified,
respectively, in the output field area. Spaces fill any unused column
positions. If the character string to be placed in the report field
is interpreted by the MRPG-OS as being a numerical value and the LEFT,
CENTER, or RIGHT keyword is not present, the default is RIGHT~ If the
character string is not a numerical value, the default is LEFT.

11/82 5-76 CC69-00A

Group Name: The_MRPG_Program

This page .shows the overall structure of a source program. The remainder
of this section expands the general format shown below into a complete, detailed
specification of the language.

General Format:

Examples:

[Declare_parameters]

Declare_Input_File

[Decl are _ Var iable]

(Define_Report)

(Execute_Phase)

END ;

1. See Section 2 for a complete example, including input data, source
program, and the report.

2. See Appendix B for additional examples.

Syntax Rules:

1. Note that the Declare Input File, Define_Report, and Execute Phase
groups are required. The other two groups are optional. An Ii end; Ii is
al so requi red.

2. The three ellipses mean that the Declare Variable, Define Report, and
Execute Phase groups may be repeated (i.e., their general-formats may
be used-over and over).

3. Whichever groups are used must be used in the order shown above.

General Rules:

1. The Declare Parameters group is used whenever the MRPG-OS needs to be
able to accept parameters.

2. The Declare Input File group is used to describe the structure of the
input file,-to identify those fields to be used by the MRPG-OS, and to
assign attributes to the fields.

5-77 CC69

3. The Declare Variable group
explicitly contained in the
for use at a later point in
of control breaks does
Declare_Variable group.

The MRPG_Program

is used whenever some information not
input file must be constructed and saved
executing the MRPG-OS. However, the use

not require the inclusion of the

4. The Define Report group is used to describe the layout of the reports,
control breaks, and where the MRPG-OS is to send the reports.

5. The Execute Phase group contains the statements that trigger the
actual printIng of the detail lines of the report(s). The printing of
headings and footings occurs automatically as detail lines are
created. Calculations that assign values to local variables can
reside in the Execute Phase group of a program.' Sorting may also be
specified in this group.

5-78 CC69

SECTION 6

DATA TYPES

This section contains general information about data types and conversion
between data types.

As in earlier sections, other forms of a keyword also apply when one of the
forms is used in this section. Thus, CHARACTER means both CqARACTER and CHAR,
AND means both AND and &, and LE (less than or equal to) means both LE and <=.

TYPES OF DATA

The set of keywords that identify data types and are pertinent to data
conversion are:

DECIMAL
CHARACTER
BOOLEAN
PICTURE

After a brief discussion of each of the above data types, the rules
governing the combining of and conversion between data of different types are
presented.

Usually, the implementation details of which PL/I attributes apply to the
variables in an MRPG source program is of no concern to the programmer.
However, if it becomes necessary to know the PL/I attributes, they can be
obtained from an examination of the PL/I source produced by the ~RPG. Or, if
the PL/I control arguments that were received by the MRPG and passed on to the
PL/I compiler caused a PL/I listing to be produced, the PL/I attributes may be
obtained from the listing. It is easier to obtain the attributes from the .list
segment than from the .p11 segment, but there is ordinarily no need to have the
PL/I compiler perform the extra work required to produce a listing.

In this section, the term "variable" is used in its general sense of
referring to a data item whose value may be different at different times. That
is, "variable" is not restricted to local variables.

6-1 CC69

Decimal Data

Integers, numbers, and variables declared with the keyword DECIMAL can all
be thought of as being kept and treated as decimal data when these items are
used in an arithmetic sense. The limits on the sizes and resolution of
integers, numbers f and decimal variables is determined by the HRPG
implementation.

INTEGERS

Integers are handled as fixed bin(35) data, which implies that the range of
integers is:

=2**35 = -34,359,738,368
to

2**35-1 = 34,359,738,367

where ** denotes exponentiation.

However, the limits on the sizes of integers are far smaller than indicated
here. These limits vary with the use of the integers and are fully discusserl in
Section 5.

NUMBERS AND DECIMAL VARIABLES

Numbers and decimal variables are handled as float decimal(20) data. This
is true even when the number or decimal variable has an integral value. This
float decimal(20) form is used even if the number or decimal variable does not
contain an explicit decimal point, that is, the value being assigned is equal to
an integer. With this representation, values up to 20 digits in length may be
used. Thus, the following are all valid aSSignment statements in an MRPG source
program:

amount · - .00000000000000000001;
amount · - +.12345678901234567899;
amount · - 5.98;
amount · - -1234567890.1234567899;
amount · - 99999999999999999999.;

The limit of 20 digits is just that, 20 digits, not 20 characters. That
is, a sign character and a decimal point may be present in addition to the 20
digits. Thus, up to 22 characters can be used to specify a decimal value and
all 20 digits of significance are retained.

It is true that the float decimal(20) form can accommodate much larger and
much smaller values than the values shown above. A 30-digit integral value
could be supplied, but only the most significant 20 digits are retained.
Rounding of the 20th digit may occur. If this value is placed in a report
field, the last 10 digits (least significant) are zeros.

6-2 CC69

Character Data

The keyword CHARACTER and the "string-n" construct appear throughout
Section 5. The associated data are strings of ASCII characters. The upper
limit on the length of a character string is the PL/I limit of 256 characters.
However, the rules in Section 5 restrict most character strings to much shorter
lengths.

As in PL/I, the appearance of the VARYI~G keyword with the CHARACTER
keyword indicates that the associated string's length may change. The current
length is carried along with the string. The decision whether to supply or omit
the VARYING keyword depends on how the variable is used. Consider the printing
of a line that has the following layout:

Inventory cost of <part name> is <part inventory cost>.

Assume that part name is declared char(11) (i.e., without the VARYING
keyword) and let xxx represent the value of the part_inventory cost variable.
The printed line for the values shown in part name are:

part name
value The Printed Line

screwdriver Inventory cost of screwdriver is xxx.
hammer Inventory cost of hammer is xxx.
saw Inventory cost of saw is xxx.

If, however, the VARYING keyword is included in
part_name, then the printed lines are:

the declaration of

part name
value

screwdriver
hammer
saw

Boolean Data

The Printed Line

Inventory cost of screwdriver is xxx.
Inventory cost of hammer is xxx.
Inventory cost of saw is xxx.

The MRPG programmer may think of the value of a boolean variable as being
either true or false. The actual implementation is done with a bit string that
is one bit long.

Picture Data

The PICTURE keyword is used only with report fields. The result of
performing the transformation specified by the picture string is a character
string. The length of the result is determined by the quantity of columns
represented by the picture, not necessarily the quantity of picture indicators
in the string that specifies the picture. (Refer to toe discussion of pictures
in the PL/I manuals for details.)

6-3 CC69

CONVERSION BETWEEN DATA TYPES

The following conversion discussions specify what happens when various
types of conversions are called for by an MRPG source program, either implicitly
or explicitly. If the final usage of a value is in a report field, the value
must be in the form of a character string, since only ASCII characters are
placed into report fields. Therefore, if a value is not a character type, but
is to be placed into a report field, conversion to a character string occurs.

A common conversion situation arises in an assignment statement such as:

target := source;

but other situations exist and are discussed in the next few paragraphs.

A report field definition of the form:

4 char item * bool item picture "<a picture string>",

requires three conversions. Suppose char item is a character variable and
bool item is a boolean variable. The values-of char item and bool item must be
converted to decimal so that the multiplication can be performed. The sum must
then be converted into a character string according to the picture indicators in
the picture string.

It may be possible to determine at generation time or at compilation time
that the conversion cannot succeed. If so, an error message is produced.
Usually, though, a conversion failure does not occur until execution time.
Then, the conversion condition is signalled. Refer to the PL/I manuals for
discussions of signalling and conditions. Usually, a conversion condition at
execution time results in control being returned to command level. The probe or
debug tools may be used to investigate.

There is no discussion of converting to or from an integer type of data
because there is no provision in the language for requesting such a conversion.

The conversion of a boolean value through a picture into a report field is
not supported, and therefore, is not discussed.

Decimal to Character

There are four possible types of targets into which a decimal value may be
converted:

• Local variable declared with CHARACTER keyword

• Input field declared with CHARACTER keyword. The input field must be
"held" by a HOLD statement. (See "Execute_Phase" group in Section 5.)

• A report field that is neither a PICTURE nor an EDIT field

• A PICTURE report field

PICTURE conversions are covered in the PLII manuals.
target types are covered here.

6-4

The first three

CC69

The rules that specify the fundamental conversion are the same in all three
cases. There is some variation in what happens should certain abnormal or error
conditions arise. The rules pertinent to justification within the target area
and any associated padding with spaces vary considerably, depending on the
target type. Several examples are given following the rules.

1. For purposes of explanation, assume that the decimal value is first
converted into a temporary character string. Next, justification and
space padding may occur as the temporary string is placed into the
target area.

2. If the decimal value is zero,
temporary string has zero length.

the conversion is complete.
Advance to rule 7.

The

3. If the decimal value is negative, the first character of the temporary

4.

string is a minus sign. If the decimal value is positive, no
character is placed in the temporary string at this point.

If the decimal value is equal to
that comprise the integral part
onto the temporary string.

or larger than 1, the decimal digits
of the decimal value are concatenated

5. If the decimal value is less than 1, a zero is concatenated onto the
temporary string.

6. If the decimal value has a fractional part, a decimal point and those
fractional decimal digits are concatenated onto the temporary string.
There are no zeros in the temporary string after the least significant
fractional non-zero digit.

7. The fundamental conversion is complete. Now justification and/or
space padding may occur. Advance to the rule indicated below:

Rule No.

8
8

12

Target Type

Local variable
Input field
Report field

8. The length of the temporary string is compared to the maximum
allowable length of the local variable or input field to determine
whether or not the temporary string can fit into the target string's
area.

9. If the temporary string can fit, then:

a. If the temporary string is shorter, and if the target string's
declaration included neither the VARYING nor the SPECIAL keyword,
then sufficient spaces are concatenated onto the temporary string
to make its length equal to the length of the target string.
Then the temporary string is placed into the target string.

b. If the temporary string is shorter, and if the target string's
declaration included either the VARYING or the SPECIAL keyword,
then the temporary string is placed in the target string. The
length of the target string is set to the length of the temporary
string.

10. If the temporary string is too long to fit into the target string, the
temporary string is .truncated to the length of the target string. No
warning or error message is produced. The truncated temporary string
is stored in the target area.

11. The total conversion for local variables and input fields is now
complete.

6-5 CC69

12. The final actions in converting a decimal value into characters in a
report line involve three major steps. First, the temporary string
that existed in step 7 is converted into a "report string", which is
the string of characters that are placed into the report line.
Second, the position of the report string in the report line is
determined. And third, the report string is actually stored into the
report line. Keep in mind that if any overstriking exists in the
report string, the quantity of characters in the report string are
larger than the quantity of columns that are to be occupied in the
report line. Let "report colu~ns" stand for the quantity of columns
that are to be occupied in-the report line.

13. Think of the report line as being filled with spaces before any report
fields are stored into the report line. As each field is stored into
the line, the previous contents of the column positions stored into
are destroyed.

14. If the report field definition included the CHARACTER keyword, then
integer-17 specifies the maximum value of report columns. Assuming
this to be the case, the length of the temporary string is compared to
report_columns.

a. If the quantity of columns represented by the temporary string is
less than or equal to report columns, then the report string's
content and length are the same as for the temporary string. It
is possible for the temporary string to be short enough so that
not all of the column positions implied by report_columns are
filled.

b. If the quantity of columns represented by the temporary string is
larger than report columns, every character in the report string
is set to the # character. There are integer-17 such characters.

15. If the report field definition omitted the CHARACTER keyword, then the
content and length of the report string are set to the content and
length of the temporary string.

16. At this point, the content and length of the report string are
established. The column positions that the report string is to occupy
depend on the presence or omission of several keywords in the report
field definition. The complete details are given in the
Report Field Def group in Section 5 and are not repeated here. In
rereadIng that material, notice that the decimal value to report
string conversion described in this section says nothing about the
starting column number or limits on the width of the report field into
which the report string is to be placed.

17. Sometimes, when a decimal value is converted into a character string
and placed into a report field, the report field is lengthened by one
character. Usually, this gives the appearance in the printed output
of an "extra~ space added to the end of the field. This topic is
covered in depth in the Report Field Def group in Section 5. Within
the following table, the report- field values shown do not include the
effect of this possible field extension.

CC69

Decimal
Value

456.89
456.89
456.89

.5678

.5678

.5678

o

-.567
-.567
-.567

-23.56
-23.56
-23.56

Decimal
Value

456.89
456.89
456.89

.5678

.5678

.5678

o

-.567
-.567
-.567

-23.56
-23.56
=23.56

Table 6-1. Examples of Decimal to Character Conversion

i i

Fixed Length
Local Variable
or Input Field

Description Result

char(7)
char(6)
char(5)

char(7)
char(6)
char(5)

char(5)

char(7)
char(6)
char(5)

char(7)
char(6)
char(5)

456.89l!S
456.89
456.8

0.5678l!S
0.5678
0.567

0~SJoH5l!S

-0.567l!S
-0.567
-0.56

-23.56l!S
-23.56
-23.5

Length

7
6
5

7
6
5

5

7
6
5

7
6
5

Report Field Without
the CHARACTER option

Result

456.89
456.89
456.89

0.5678
0.5678
0.5678

o

-0.567
-0.567
-0.567

-23.56
-23.56
-23.56

6-7

Length

6
6
6

6
6
6

6
6
6

6
6
6

Varying Length
Local Variable (varying)
or Input Field (special)

Description Result Length

char(7) var
char(6) var
char(5) var

char(7) var
char(6) var
char(5) var

456.89
456.89
)~56. 8

0.5678
0.5678
0.567

6
6
5

6
6
5

char(5) var 0

char(7) var
char(6) var
char(5) var

char(7) var
char(6) var
char(5) var

-0.567
-0.567
-0.56

-23.56
-23.56
-23.5

6
6
5

6
6
5

Report Field with
the CHARACTER Option,

All Starting In Same Column

Description

char(7)
char(6)
char(5)

char(7)
char(6)
char(5)

char(5)

char(7)
char(6)
char(5)

char(7)
char(6)
char(S)

Printed
Result Length

456.89iS 7
456.89 6
II/.IIIIII! 5

0.5678l!S 7
0.5678 6
II II If II If 5

0l!S~l!Sl!S

-0.567l!S
-0.567
IUIfIlUI

-23.56~
-23.56
INUIIIII

5

7
6
5

7
6
5

CC69

Character to Decimal

This discussion applies to those situations wherein the source is a
character string and the target is a decimal value.

The character string can be created in many ways, for example:

• A parameter

• Local variable declared with CHARACTER keyword

• Input field declared with CYARACTER keyword

• Conversion of the result of arithmetic operations to a character
string

• Output of a TRANSFORM table lookup

• Result of invoking certain builtin functions (e~g.,
%substr (%yyddd,3,3), which is the number of the day in the year)

There are several possibilities for the target, for example:

• Local variable declared with DECIMAL keyword

• Input field declared with DECIMAL keyword. The input field must
be "held" by a HOLD statement. (See "Execute Phase" group in
Section 5.)

• Input value to a SET or TRANSFORM table lookup

• An arithmetic operand in an expression

However it is created, the character string has a value and a length. It
may contain leading or trailing spaces, which are ignored. (This is an PL/I
characteristic.) If the character string to be converted contains letters, an
error occurs. However it is going to be used, the decimal value is a
float decimal(20) value. The following paragraphs specify the conversion rules,
including the determination of what constitutes a valid character string.

If any of the following rules are violated, the conversion fails. The
error may be detected by the MRPG or the PL/I compiler, in which case an error
message is displayed. If the error is detected during the execution of the
MRPG-OS, the conversion condition is signalled.

1. The only valid characters are the 10 decimal digits, the space, the
period (decimal point), the plus, and the minus.

2. No more than one period may be present.

3. No more than one arithmetic
present. If one is present, it
digit.

sign character (plus, minus) may be
must immediately precede the leftmost

4. The only non-digit character permitted between the leftmost digit and
the rightmost digit is the period.

5. The only non-digit character permitted between an arithmetic sign and
the leftmost digit is a period.

6. If a minus sign is present, it must be followed by at least one digit.

6-8 CC6g

The conversion is made in accordance with the following rules. Some
examples follow these rules.

1. A series of consecutive spaces at the beginning of the string is
ignored.

2. A series of consecutive spaces at the end of the string is ignored.

3. If a period is present and there is at least one non-zero digit to the
left of the period, a series of zeros preceding the leftmost non-zero
digit is ignored.

4. If a period is present and there are no non-zero digits to the left of
the period, a series of consecutive zeros to the left of the period is
ignored.

5. If a period is present and there is at least one non-zero digit to the
right of the period, a series of consecutive zeros to the right of the
rightmost non-zero digit is ignored.

6. If a period is present and there are no non-zero digits to the right
of the period, a series of consecutive zeros to the right of the
period is ignored.

7. If none of the digits through 9 are present, the target value is

8.

zero. There is nO distinction between a positive zero and a negative
zero. The positive representation is used.

If no period is present, the decimal
immediately follow the rightmost digit.

.point is considered to

9. If a minus character is present, the target value is negative. If no
minus character is present, the target value is positive.

10. If the quantity of significant (non-ignored)
20, only the most significant 20 are retained.

6-9

digits is greater than
Rounding occurs.

CC69

Table 6-2. Examples of Character String to Decimal Value Conversion

Source Target Value (as it is
Source String Length printed in a report field)

~~~ 123 . 56~HS~ 12 123.56 
0001.2345000 12 1.2345 
000.12300 9 0.123 

1234.0000 9 1234 
1234. 5 1234 
1234 4 1234 

-000.0000 9 0 
-0001.2 7 -1 .2 

~~~ 3 0 
~~-o~~ 6 0

-1234567890123456.7890987 25 -1234567890123456.7891
7890123456789012345678901 25 7890123456789012345700000

~~-tHS 5 error
5x6 3 error
5.6. 4 error
-5+6 4 error
000+5.6 7 error
5~6 3 error
-~5.6 5 error
12,345.67 9 error

Decimal to Boolean

If the decimal value is zero, the boolean value is set to false.
Otherwise, the boolean value is set to true.

Boolean to Decimal

If the boolean value is true, the decimal value is set to 1. If the
boolean value is false, the decimal value is set to o.

Character to Boolean

The boolean value is set to false unless all of the following constraints
are satisfied, in which case the boolean value is set to true.

1. The four-letter English word "true" appears in the character string.
The letters of the word "true" may be in any combination of uppercase
and lowercase characters. For example, "TRUE", "TruE", and "tRUe" are
all valid representations of the word "true".

2. The only other character that is in the string is the space character.
It is valid for spaces to precede, follow or both precede and follow
the "true" word.

6-10 CC69

3. The four letters of the word "true" must be contiguous.

Boolean to Character

If the boolean value is true, then the character value is set to the four
characters iitrue" and, if the length is variable, the current length is set to
four. If the boolean value is false, then the character value is set to the
five characters "false" and, if the length is variable, the current length is
set to five. In both the true and false cases, if the target string is
non-variable and is longer than the four or five characters needed to hold the
"true" or "false" characters, trailing spaces are supplied to fill out the
target string.

If the "true" or the "false" string is too long to fit into the target, the
!I true" or "fa lse" stri ng is truncated.

Decimal to Picture

The rules are described in the PL/I manuals.

Character to Picture

If the character string has a numerical value, the
converted to a decimal value which is then converted into
according to the rules described in the PL/I manuals.

source value is
the picture value

If the value of the character string is not a number, an error occurs.

6-11 CC69

SECTION 7

EXPRESSIONS

The main purpose of this· section is to integrate the five groups of
Section 5 that specify the HRPG's expression capability. These five groups are:

• Full Expr

• Relationship_ Test

• Char _Expr

• Char Ref -

• Arith_Expr

The next portion of this section identifies the types of expressions.
Then, the interactions between the above five groups is examined. Following
that, the individual operators that may be used to combine expressions are
discussed, along with their precedence rules. Finally, some rules governing the
allowable combinations of operators and expressions are described.

TYPES OF EXPRESSIONS

An expression is one of the following:

literal
variable reference
builtin function reference
operator expression

Each of the above consists of a few or several items. The grouping of the
items is listed below. The specifications for the items are in Section 5.

A literal may be an integer, a number, or a character string.

A variable reference may be a parameter name, an input field name, or a
local variable.

7-1 CC69

The set of builtin function reference possibilities is listed belou. Many
of these have arguments, which are not shown. Strictly speaking, the TRUE and
FALSE keywords are not functions, because the keyword itself is the value.
However, it is convenient to think of TRUE and FALSE as builtin functions. The
column headings indicate which type of data value is returned.

Arithmetic

%PAGENUMBER

Boolean

IN
TRUE
FALSE
%LEVEL

Character

TRANSFORM
%MMDDYY
%YYDDD
%MONTH
%DAY
%HHMMSS
%SUBSTR
%REPEAT

An operator expression performs some operation on its operand(s) and
delivers the result as the value of the operator expression. An operator
expression has one of the following forms:

• prefix_operator expression

• expression infix_operator expression

When used for arithmetic operations, prefix operators are also known as
unary arithmetic operators, and infix operators are also known as binary
arithmetic operators.

A few examples of operator expressions are:

Prefix Type

+5.3
-discount rate
Acolor match
-(gross_salary * charity_deduction)

INTERACTIONS BETWEEN EXPRESSION-RELATED GROUPS

Infix Ty~

count total + count
outpui file name:: ".report"
weight-<= 500
gross_salary * charity_deduction

The Full Expr groupis definition includes two other groups (Char Expr and
Relationship Test). Examination of all five groups shows that a -circular
definition path exists. Figure 7-1 summarizes how the five groups are related.

Each group definition includes options. In most groups, one or more of the
options includes a reference to another group. For example, the FILE
Char Expr-2 in the Declare Input File group signifies that the keyword FILE must
be followed by an expression thai satisfies the specifications of the Char Expr
group. Choosing such an option means that some option is to be selected-from
the indicated subsidiary group.

7-2 CC69

The majority of groups also includes options that do not reference other
groups, e.g., the STREAM option in the Declare Input File group. This type of
option is called a terminating option, and when selected, a chain such as the
following is terminated:

select an option that involves another group
and in it select an option that involves another group
and in it select an option that involves another group

7-3 CC69

II Terminating
• Full F:xpr II options in - . Full Expr --I -

••

Relationship Test -

~r ~r

- Char Expr
-

--I

••
Terminating

--- Char Ref 11 options in - . Char Ref -

~r

Terminating
Arith Expr II options in - • Arith Expr -

Figure 7-1. Expression-Related Groups Interdependence

The Relationship Test group should really be thought of as part of the
Full Expr group. The- Relationship Test group appears in a separate block in
Figure 7-1 and as a separate discussIon in Section 5 as a convenience in showing
the general format diagrams and to reduce the quantity of pages required to
specify one group.

The Full Expr, Char Expr, Char Ref, and Arith Expr groups must be kept as
separate groups. In addition to the-group interconnect~ons shown in Figure 7-1,
each of these groups appears in the definition of one or more of the other
groups that make up the full MRPG language specification.

Because of the circularity depicted in Figure 7-1, expressions may contain
other expressions. Such nesting may be made to any depth. Parentheses may be
required to write a complicated expression. The Arith Expr group's definition
formally provides the parentheses.

7-4 CC6g

OPERATORS

In the following text, the operators are grouped in classifications. The
reader is referred to the appropriate Group in Section 5 for the meaning of each
operator, the precedence among the operators is specified, and the result of
using parentheses is specified.

Operator Classification

Operators are used with expressions either to obtain new data values or to
make tests. Table 7-1 classifies all the operators.

The term data value refers to an arithmetic, character, or boolean value.
The value mayor may not change while an MRPG-OS is being executed. The value
may be in the input, the output, or be calculated by the program. Calculated
values may not be visible to the program because they are temporary values used
for further calculations or testing.

The Quantity column in Table 7-1 specifies how many operators appear on
each line of the table. Note that some rows of the table contain more than one
line. The Operators column contains the ASCII character or characters that
identify the operator. If the value in the Quantity column is greater than 1,
spaces separate the operators. The Position column specifies whether the
operators are to be thought of as prefix operators for one expression or infix
operators between two expressions. The Usage column states how the operators
are used.

7-5 CC69

Quantity

4

4

2

4

6
6

1
1
1
1
1
1
1
1
1

Table 7-1. Operator Classification

Operators

+ _ NOT A

+ - * /

CONCATENATE

OR : AND &

I I
I I

LT LE EQ GE GT HE
< <= = >= > =

BEGINS
CONTAINS
ENDS
NOT BEGIN
A BEGIN
NOT CONTAIN
A CONTAIN
NOT END
A END

BEGINS WORD
CONTAINS WORD
ENDS WORD
NOT BEGIN WORD
A BEGIN WORD
NOT CONTAIN WORD
,. CONTAIN WORD
NOT END WORD
A END WORD

IN
NOT IN
A IN

Position llsage

pre fi x data value

infix data value

infix data value

infix data value

infix test -- value comparison

infix test -- string matching

infix test -- word matching

infix test -- set membership

7-6 CC69

Operator Meanings

The meaning of all operators is specified in Section 5. Each operator has
a normal data type. Section 5 specifies the normal data type for each operator
and describes what happens when other data types are encountered. The groups in
which the operators are discussed in Section 5 are listed below.

Operator

+ - * /
CONCATENATE I I

I I

OR : AND & NOT A

All other

Operator Precedence

Arith Expr

Char Expr

Full Expr

Relationship_Test

Two operators are on the same expression level if they appear in the same
expression and only matched pairs of parentheses appear between the two
operators. When there is more than one operator at the same expression level,
the operator with highest priority is evaluated first. The priority ranking is
shown in Table 7-2. If there is more than one operator with the same priority,
they are evaluated either from left to right or right to left within the
expression, as specified in Table 7-2.

7-7 CC69

Table 7-2. Operator Precedence

Order Within
Priority Operators Priority

highest NOT " prefix + prefix - right to left

next * /

next infix + infix -

next CONCATENATE I I
I I

left to right

LT < LE <= EO = GE >= GT > NE " =

BEGINS CONTAINS ENDS
next NOT BEGIN NOT CONTAIN NOT END

BEGINS WORD CONTAINS WORD ENDS WOR!)
NOT BEGItl WORD tIOT CONTAIN WORD NOT END l-JORD

next AND &

lowest OR I
I

Parentheses

Any expression may be enclosed in parentheses. These parentheses are in
addition to any parentheses required by the general formats in Section 5.
Providing extra parentheses can put operators at different expression levels,
thereby changing the sequence in which the operators are evaluated.

COMBINING DATA VALUE EXPRESSIONS

Tables 7-3 and 7-4 summarize the ways in which expressions, operators, and
parentheses may be combined to form a more complicated expression. Within these
tables, the term "expr" denotes any expression that is to be combined with some
other expression to yield a new data value. That "expr" may contain operators
and parentheses. The character string +- refers to the prefix arithmetic
operators. The string +-*/ refers to the infix arithmetic operators. The NOT
refers to the negation operator of the Full Expr group. In the Location column,
"first" means that the element being coniidered is the first element in the
combined expression that is being written. The ter~ "inside" means that the
element is neither the first nor the last one. The term "last" means that the
element is the last element in the new, combined expression.

7-8 CC69

Table 7-3. Combining Arithmetic Expressions

Valid Elements Under Consideration Valid
Preceding Following
Elements Location The Elements Elements

expr +-*/

none first +- expr (

(+- expr (

+-*/ +- (inside expr +-*/)

expr) inside +-*/ +- expr (

+-*/ (inside +- expr (

+-*/ +- (inside (+- expr (

expr) inside) +-*/)

+-*/ +- last expr
none

expr) last

7-9 CC69

Table 7-4. Combining Logical Expressions

Valid Elements Under Consideration Valid
Preceding Following
Elements Location The Elements Elements

expr OR AND

none first NOT expr (

(expr (

OR AND NOT (inside expr OR AND)

expr) inside OR AND expr NOT (

OR AND (inside NOT expr (

OR AND NOT (inside (expr NOT (

expr) inside) OR ArlO (

OR AND NOT last expr
none

expr) last)

7-10 CC69

SECTION 8

PROGRAM PREPARATION, GENERATION, AND EXECUTION

PROGRAM PREPARATION

The program preparation portion of this section offers some thoughts on
functional requirements of the MRPG program, presents some suggestions on the
program's design, and briefly mentions how to enter the soyrce program and save
it for use by the MRPG.

Initial Decisions

Several decisions should be made before beginning the detailed design of
the program. The following topics may have significant impact on the general
approach used.

INVOCATION METHOD

If the object program is invoked from Multics command level, or via an
attachment to the report 1/0 module, or both ways at different times, then
portions of the program as well as documentation for users of the program are
affected.

When the MRPG-OS is invoked from command level, either the FILE or the
ATTACH option must be selected in the Declare Input File group. Users who
invoke the MRPG-OS must know the pathname of the MRPG-OS.

If the MRPG-OS is invoked via an attachment to the report I/O module. the
FILE and ATTACH options may be omitted. If one is present, it Is ignored. (One
of them may be present if the MRPG-OS is to be invoked as a command at some
other time.) The SPECIAL keyword must be included in the definition of every
input field. Users of the MRPG-OS mayor may not need to know where the MRPG-OS
is located in the virtual memory. The need to know the MRPG-OS pathname is
dependent on the program that invokes the MRPG-OS.

LOCATION OF INPUT DATA

If the input data is in a segment in the virtual memory, then the pathname
of that segment may need to be included in the program. However, it is possible
to obtain the input from different segments at different times by using the
value of one or more parameters in constructing the segment's pathname.

If the 1/0 attachment method ts used, it is possible that the input data
may never exist as a segment in the virtual memory.

8-1 CC69

LOCATION OF OUTPUT REPORTS

The program specifies where each report is sent. The output may be ~lritten
to a segment using the FILE and SWITCH options in the Report Control group. If
no FILE or SWITCH options are specified, or if none of those specified are
selected by an associated IF test, or if the selected SWITCH option specified
the user output switch, the report is sent to the user output 1/0 switch. In
this case, the lines of the report usually appear on the user's terminal as the
lines are produced, with no copy of the report available for reprinting at a
later time. Actions external to the MRPG-OS can divert user output traffic to a
segment, (e.g., the file_output command can do this).

OUTPUT PRINTING METHOD

If a hardcopy version of a report is wanted, several choices exist. Simple
printing on a terminal may be adequate, but if the lines in the report are
longer than the width of the available terminal, it may be necessary to use a
line printer of adequate width. The line printer may be located at the central
computer site or be remote with the data transmitted over a data communication
line. High quality printing may be obtained by using a special ribbon in a line
printer, a special ribbon in a terminal, or via COM (computer output on
microfilm). The particular printing method used may affect the page layout
information supplied in the Report Control group and possibly the PAUSE or 0
options in the Line group. Section-g provides additional details on printing
reports.

PARAMETERS

If the program is to utilize parameters, then a decision as to their
acceptable values, any constraints on their input sequence, and the use of
keywords must be made. These decisions are implemented with the source program
text in the Declare Parameters group and in whichever groups use the values that
are supplied at execution time for the parameters.

VALIDITY CHECKING

It is possible to provide extensive
input fields. The thoroughness desired
details of each individual check. In
inexpensive.

Detailed Program Design

validity checking on parameters and
must be decided on, as well as the
general, making a validity check is

The next few paragraphs offer some thoughts that should be considered at
the time that the program structure is being defined.

8-2 CC69

MULTIPLE USE OF INPUT FILE

If a file is used as input to several MRPG programs, then it is recommended
that a complete description of the file be worked out and saved in the virtual
memory. When a new program is written that uses this input file, the file's
description can be copied from the saved file into the proper place in the
source program.

INPUT FILE STRUCTURE

If a complete file description exists for the input file and is stored in
the system, that file description can be copied into the source program.
Otherwise, a new file description must be prepared. Unused fields need not be
described. They can be skipped over with the FILL option of the
Declare Input File group or the POSITION option of the Input Field Def group.
Or, an artificial padding field whose size equals the sum of-the sIzes of the
contiguous fields to be skipped may be specified. Characters at the end of
records in a stream file are skipped over if these character positions are
omitted from the file's declaration. (See Figure 2-1.)

OUTPUT REPORT LAYOUT

When specifying the positioning of data in an output line, it may be
helpful to think of a line as initially consisting of all spaces. Data placed
into the line merely overlays what was already there. If some data is specified
as occupying column positions also occupied by some other data, the final data
is the data that was specified last. That iS 1 a line is built up in the
sequence in which the specifications of the data items occur in the source
program. After all fields have been placed in the line, trailing spaces are
removed.

Typing in the Source Program

The source program is physically entered into the computer system with a
text editor. The mechanics of editing and correcting the characters that
comprise the source program are completely determined by the particular text
editor used.

Saving the Source Program

The source program must be placed in a segment in the virtual memory in
order for the MRPG to generate an object program. Therefore, after the source
program is built with the aid of a text editor, the source program must be
written into a segment.

The segment must be given a two-component name, the second of which is the
five-character .mrpg suffix. The first component must start with a letter.
Only the 52 letters, the 10 digits, and the underscore characters may be used to
form the first component. This is a PL/I characteristic.

The maximum length of the segment's name, including the .mrpg suffix, is 32
characters. This is a Multics characteristic.

8-3 CC69

GENERATING AN OBJECT PROGRAM

The actions involved in converting an MRPG source program into a standard
Multics executable object segment are described below.

Invoking the MRPG

The MRPG is invoked by issuing the mrpg command from Multics command level.
The mrpg text follows the command writeup format used in the MP~ Commands.

8-4 CC69

mrpg mrpg

Name: mrpg

The mrpg command invokes the MRPG to translate a segment containing MRPG
source statements into a segment containing PL/I source statements. Then the
PL/I compiler is automatically invoked to translate the segment containing PL/I
source statements into a standard Multics object segment. PL/I control
arguments may be supplied with the mrpg command. These PL/I control arguments
are passed on by the MRPG to the PL/I compiler. The results are placed in the
user's working directory. The mrpg command cannot be called recursively. For
information on PL/I, refer to the PL/I manuals.

mrpg path { PL/I control args

where:

1 . path
is the pathname of an MRPG source segment that is to be translated
by the MRPG. If path does not have a suffix of mrpg, then one is
assumed. However, the suffix mrpg must be the last component of the
name of the source segment.

2. PL/I control arguments (optional)

Notes

can be chosen from the list of control arguments for the pl1 command
in the MPM Commands.

No checking is done by the MRPG on the supplied PL/I control
arguments.

The PL/I source segment produced by the MRPG is placed in the user's
working directory. This segment's name is the same as the name of the segment
supplied as input to the MRPG except that the mrpg suffix is replaced with a pl1
suffix.

The PL/I source segment is not deleted by the MRPG.

The object segment produced by the PL/I compiler is placed in the user's
working directory. This segment's name is the same as the name of the original
source segment with the mrpg suffix omitted.

8-5 CC69

mrpg mrpg

Execution of the MRPG generation and the PL/I compilation may be
interrupted at any time by pressing the Quit/Interrupt/Break switch on the
terminal. Typing "start" will cause execution to resume at the interrupted
point. The program_interrupt feature is not supported.

E~ror Diagnostics

The HRPG diagnoses and issues error messages via the error_output I/O
switch using the three levels of severity:

Warning only. The term *WARN identifies this class of error messages.
The generation of PL/I source statements proceeds without ill effect.
The assumptions made by the MRPG are reported.

2 Correctable error. The term ERROR identifies this class of error
messages. The MRPG makes the best attempt that it can to rectify the
situation and continues. The correction made is reported. In many
cases, the correction made is the same change that the programmer
would make. In any event, generation of PL/I source statements
continues so that as many errors as possible can be reported during
each pass through the MRPG source.

3 Uncorrectable error. The term FATAL identifies this class of error
messages. The MRPG cannot determine what might be a reasonable
correction and skips forward in the source statements to a point at
which it may be possible to again generate meaningful PL/I source
statements. The resulting PL/I source program is not correct.

After the MRPG has completed processing its input, the maximum severity
level error detected is tested. If the maximum severity level is 3, control
returns to the Multics command processor. If the maximum severity level is
none, 1, or 2, the FL/I compiler is invoked.

Error messages may be produced by the PL/I compiler. Their severity levels
are discussed in the MPM Commands.

Because the MRPG allows numbers to be used as character strings and allows
a character string whose content is a number to be used in an arithmetic value,
some conversions between different PL/I data types occurs. Such conversions do
not result in any warning messages from the MRPG, but may result in warning
messages from the PL/I compiler. These PL/I warnings should be ignored. They
can be suppressed by supplying the control argument -severity1 when the MRPG is
invoked. That control argument is passed to the PL/I compiler and inhibits all
error messages whose severity level is 1. This is a PLtI characteristic.

8-6 CC69

mrpg mrpg

If PL/I error messages with severity 2 or higher persist after the source
program is changed to eliminate all MRPG error messages, contact the local
Honeywell representative for assistance.

The MRPG does not support the severity active function.

Listings

The MRPG does not produce a listing, but if desired, a PL/I listing can be
obtained. How to do this and how to interpret the PL/I listing are discussed in
the MPM Commands and the PL/I manuals.

PROGRAM EXECUTION

The MRPG-OS is invoked from command level by supplying a normal Multics
command line:

name of the_MRPG-OS {parameters needed by the MRPG-OS}

Each parameter delimited by white space or the end of the command (i.e.,
the last parameter may be followed by white space, a newline, or a semicolon).

If no parameters are required, the command line consists of just the name
of the MRPG-OS.

When the MRPG-OS completes execution, control is returned to the command
processor.

As with any Multics command, program execution may be interrupted by
pressing the Qui t/Interrupt/Break swi tch on the ter"minal. Typing "start" causes
execution of the MRPG-OS to be resumed at the point at which the interruption
took place. The program_interrupt feature is not supported.

If the PL/I -table control argument
probe debugging command may be useful
execution.

8-7

is supplied with the mrpg command, the
should errors occur during program

CC69

SECTION 9

PHYSICALLY PRINTING A REPORT

Triggering the printing of a report that has been written to a segment is
straightforward. However, there are a few potential complications in obtaining
the desired set of lines on a physical sheet of paper. Decisions must be made
when the MRPG source program is written, when the MRPG-OS is invoked, and when
the actual printout is triggered. These decisions interact, sometimes in
non-obvious ways. This section is intended to assist th~ user in making best
use of the available flexibility with a minimum number of MRPG/DPRINT
experiments.

POTENTIAL PROBLEM AREAS

The following terminology is helpful in explaining the problems and in
suggesting solutions.

Logical line
A set of fields associated with the LINE keyword of the Line group.

Physical line
A spatial area on the output media. For the line printers used at
the central site, this area is usually 1/6 of an inch high by 136
columns wide. Sometimes, it is 1/8 of an inch high.

Logical page
That collection of logical lines that the user wants to have printed
as a unit, with no page heading and/or page footing lines except at
the start and end of the unit.

Physical page
A piece of paper, a portion of a microfiche, or a display screen on
a terminal. For the line printers used at the central site, the
piece of paper is usually 1i inches high by 14-7/8 inches wide.
Other physical page sizes may also be used.

A logical page may be shorter, equal in length to, or longer than the
physical page. The programmer's challenge is to specify the source program
statements and dprint control arguments to produce a report whose layout is what
the report's readers want.

9-1 CC69

Logical Versus Physical Lines

Usually, one logical line maps
However, it is possible, and at times
occupy more than one physical line.

into one and only one physical line.
may be desirahle, for one logical line to

Suppose the output device is the central site line printer whose default
column width is 136 columns. Logical lines that require 137, 138, 139, ... , 272
columns occupy two physical lines. Note that it is the quantity of columns
required that is crucial. The character count may exceed 136 and still occupy
only one physical line if sufficient overstriking occurs. This might be done to
underline a heading. Each backspace and overstrike character consume zero
column positions. Using a carriage return (015 octal) or many backspaces and
the same text again to produce a darker line can yield a logical line that is
much longer than i36 characters but that occupies only one physical line.

The current central site line printers have 136 printing positions, and 136
is the default line length value for the dprint command. The effective line
length is shortened when the dprint -indent control argument is used. The
dprint -line length control argument can also change the effective line length.
Thus, using the -indent .and/or -line length control arguments could decrease the
effective physical length of a line-such that a logical line now consumes more
than one physical line. The "line overflow situation" is referred to in a later
paragraph titled "Interaction Example".

Assume that the top portion of a physical page consists of:

Physical
Line Numbers

1-3

4,5

6-8

9

Content

Three blank lines, for a top of page margin.

Two page heading lines.

Three blank lines for a separation between the
page heading and the text.

The first detail line.

If, as is usually the case, lines 1-3 are skipped because a newpage
character is sent to the printer and the Vertical Format Control (VFC)
information and initial paper positioning is set up to cause skipping to line 4,
then one could say that the first page heading line consumed four physical
lines.

Further assume that the skipping of physical lines 6-8 is accomplished by
specifying the MINLINE option with a value of 5 in the Report Control group. In
a sense, it can be said that the first detail logical line consumed four
physical lines.

The same kind of physical line skipping may be done by specifying
integer-14 or integer-15 in the Line group. These integers specify the absolute
or relative line number that the defined line falls on. If the value of
integer-14 is more than one higher than the line number for the previous line,
or if integer-15 is greater than one, the logical line consumes more than one
physical line.

9-2 CC6g

Page Height

The choice of control arguments for the dprint command can affect the
height of the page. The essence of these effects are discussed in the next few
paragraphs. However, the writeup of the dprint command in the MPM Commands is
the authoritative source of information and should be read to obtain the exact
details.

Assume the central site line printer is set to six lines per inch and the
paper is fan-folded every 11 inches. The number of lines that can be printed on
a physical page depends on the information that has been loaded into the
printer's VFC unit. If the standard system printer control values are not
modified by the site and a segment that contains no newpage characters is
printed with the dprint command but no control arguments, 60 lines are printed
on each sheet of paper. The first one-half inch and the last one-half inch of
paper are skipped because of the VFC data. However, printing that same segment
with the -no endpage control argument yields 63 lines on the first sheet and 66
lines on succeeding sheets.

The -page length dprint control argument can change the effective page size
from the VFC vIewpoint into almost any quantity of lines per page.

The PAGELENGTH option of the Report Control group can change the logical
page size from the MRPG-OS viewpoint. If-the PAGELENGTH value is set to 4, the
report is sent to a segment, and the report is dprinted without control
arguments, then only one line of the report is printed on each physical page.

INTERACTION EXAMPLE

To clarify the interrelationship between the MRPG Report Control values and
the dprint control arguments, consider the following example. Use the central
site line printer. Set it to six lines per inch. Use blank paper that is
fan-folded at eleven inch intervals. In order to save paper, since many copies
of the report are needed, the report is photoreduced to 60% of its printed size
before reproducing the report on eleven inch high paper. Thus, six lines per
inch from the line printer are ten lines per inch in the reproduced report.
With one inch top and bottom margins for the reproduced report, one eleven inch
reproduced sheet has 90 report lines and represents 110 physical lines. Assume
that two page heading lines and two page footing lines are wanted. Also assume
that the "line overflow situation" discussed earlier in this section does not
occur.

In the horizontal center of Figure 9-1, the numbers from 1 to 138 represent
the physical line numbers. The ~~~~~ lines in that column of numbers represent
the perforations in the paper.

9-3 CC69

VFC skips these lines

Blank lines

Unused lines -------------

VFC skips these lines

2
3
If
5
6
7
8
9

10
11
12

129
130
131
132

~nnn~x

133
134
135
136
137
138

T

T
I
I
1
1
I
1
1
1

T
I
I

First blank line reproduced.

Is the 11" high reproduced
report sheet. (The logical page.)

11 is the first PAGEHEADING line.
12 is the last PAGEHEADING line.

90 lines, for those report lines
that may contain ink marks.

99 is the first PAGEFOOT line.
100 is the last PAGEFOOT line.

Last blank line reproduced.

1----- Next logical page.
1
1

Figure 9-1. Physical Layout of a Long Logical Page

9-4 CC69

The crucial items for producing and printing a report with the vertical
layout shown in Figure 9-1 are~

• In the MRPG source program

define 1 .report your _report _name on "your_output"
pagelength 110
maxline 98 /* Last line number that detail lines can fallon. */

2 pagehead,
3 line 11 ... /* Define first page heading line. */
3 line /* Define last page heading line. */

2 pagefoot,
3 line 99 ••• /* Define first page footing line., */
3 line /* Define second (and last) page footing line. */

• In the dprint command line

dprint your_output -page_length 110 ...

LABEL LINES

Continue to use Figure 9-1 as an example. The dprint command has a few
control arguments that can cause "label lines" to be printed. If "-top label
string top" is specified with the dprint command, ~string top" is printed it the
beginnIng of line 2 while specifying "-bottom label -string bottom" prints
"string bottom" on line 109. Using "-label string both" prints "string both" on
lines 2-and 109. The printing of these label lines does not affect the-printing
or spacing of any other lines.

Figure 9-1 presumed that the segment being printed had an Access Isolation
Mechanism (AIM) access class name with a null value. This is the most common
situation. Unless specific AIM actions are taken, processes and segments are at
the AIM system low level. The system default value for the system low access
class name is ~ull. If the AIM is used to give a segment an access-class name
that is not null, e.g., COMPANY PROPRIETARY, then that access class name appears
on lines 2 and 109 if the dprint label-type control arguments specify printing
the access label.

9-5 CC69

APPENDIX A

THE RESERVED KEYWORDS

The table below shows every character strIng that is reserved as a keyword
within the MRPG language including keywords that have short forms where
applicable. In addition, all character strings for names that start with one
uppercase letter followed by one underscore character are reserved for use as
names in the generated PL/I source program.

KEYWORDS KEYWORDS KEYWORDS
------------------ ------------------ ------------------

Short Short ~hort

Long Form Form Long Form Form Long Form Form
----------- ----------- -----------
%DAY DESCENDING DESC ON
%HHMMSS DETAIL OPTIONAL
%LEVEL DETAILFOOT OR
%MMDDYY DETAILHEAD PAGEFOOT
%MONT!-I DUPLICATE DUPL PAGEHEAD
%PAGENUMBER ELSE PAGELENGTH PGL
%REPEAT END PAGEWIDTH PGW
%SUBSTR ENDS PARAMETER PARM
%YYDDD EQ = PAUSE
ALIGN F" r co T:" t1L..':>c. PICTURE PIC
AND & FI POSITION
ASCENDING ASC FILE PRINT
ATTACH GE => RECORD
BEGIN GT > REPORT
BEGINS HOLD REPORTFOOT
BOOLEAN BOOL IF REPORTHEAD
BREAK IN RIGHT
BSP INPUT SET
CENTER KEY SORT
CHARACTER CHAR LEFT SPECIAL
COLUMN COL LET STRFAM
Cor~CATENATE I I LE <= SWITCB I I

CONTAIN LINE TABLE
CONTAINS LT < THEN
DECIMAL DEC MAXLINE MAXL TRANSFORM
DECLARE DCL MINLINE MINL TRUE
DEFAULT NE A = VARYING VAR
DEFINE NO WORD
DELIMITED NOT

A-1 CC69

APPENDIX B

ADDITIONAL SAMPLE PROGRAMS

This appendix contains several examples of MRPG programs. These programs
illustrate specific points within the MRPG. In the real world, it would not be
appropriate to wri te such simple MRPG programs. However, these examples are
kept simple so that the primary feature in each example is not obscured.

Each example shows the input data used, the MRPG source program, and the
output report(s) produced. Some examples also include a discussion. The examples
include line numbers, to facilitate the discussion of specific points of interest.
These line numbers were added to the input, program, or reports after the object
programs executed. In those examples where the report(s) is written to a segment,
the last character in the report segment is a newpage character (octal 014)
which is printed in this appendix as the \014 string. There may also be newpage
characters before the last line of the report. If so, they are shown as \014
strings. In general, reports in the examples are written to segments in the
user's working directory. The pathname shown for the reports starts with [wd]
which represents the Multics active function that returns the pathname of the
working directory. Thus, [wd])abcd refers to the segment named abcd in the
working directory.

The outputs shown with examples are a copy of the actual reports produced
by these sample programs when run on Multics.

The input data files and the MRPG source programs are supplied to customers
as part of the MRPG software. Users may run these programs to verify that the
MRPG produces the reports shown here. To do so, the user's working directory
should be one in which the user can create and write segments. Type either of
the following two lines:

archive
ac xf

xf)unbundled)mrpg examples run mrpg examples.ec
)unb)mrpg_examples run_mrpg_examples.ec

The exec com is extracted from the archive and written into the working
directory. Then type either of the following two lines:

exec com run mrpg examples
ec run_mrpg_examples

A list of the examples contained in the archive is displayed, along with a
brief explanation of how to use the exec com. Respond to the questions. The
example selected is extracted from the archive, the PL/I program(s) is generated
and compiled, and then the newly-compiled object program(s) is executed.

All of the segments extracted from the archive are established in the working
directory, along with the generated PL/I segments, the compiled object segments,
and those reports that are wri tten into segments. The user is cautioned that
extracting segments from the archive and running the examples create segments in
the working directory. If there is any conflict with the names of already-existing
segments, the user can create a new subdirectory, change to that new directory,
and then extract the exec_com and run the examples.

11/82 B-1 CC69-00A

TWO REPORTS

The Input two_reports.mrpg.input in the archive)

Line
No. The Actual Input Lines

1 line 1 of two reports.mrpg.input
2 line 2 of two=reports.mrpg.input

The Source Program two_reports.mrpg in the archive)

This program produces the two reports printed after this program from the
input file shown above. This is a trivial example to show the essential steps

I required to produce more than one report. (Line 6 below, indicates "3 line 4".
The output file places the data on the first line since MRPG assumes a dprint of
the file where the data then appears on line 4.)

Line
No. The Actual Source Program Lines

1 1* Simple program to produce two trivial reports. *1
2 dcl 1 input stream file "two _reports.mrpg.input",
3 2 the data char(32);
4 define - 1 report report one pagelength 12
5 on file "two reports-:-file _one.report",
6 2 pagehead, 3-line 4, 4 "THIS REPORT PRODUCED ON " I I %mmddyy, 3 line, I I

7 2 detail detail _one,
8 3 line +2, 4 "Line A, report one. The input is " 4 the _data, ,
9 3 line, 4 "Line B, report one. The input is " 4 the _data; ,

10 define 1 report report two pagelength 12
11 on file "two reports-:-file two.report",
12 2 pagehead, 3-line 4, 4 "THIS REPORT PRODUCED ON " I I %mmddyy, 3 line, I I

13 2 detail detail _two,
14 3 line +2, 4 "Report two, line A. The input is " 4 the _data, ,
15 3 line, 4 "Report two, line B. The input is " 4 the_data; ,
16 begin() print report_one; print report _two;
17 end;

The Output

The report written into [wd]>two_reports.file_one.report is:

Line
No. The Actual Output Lines

1 THIS REPORT PRODUCED ON 02/17/78
2
3 Line A, report one. The input is line of two reports.mrpg.input
4 Line B, report The input is line of two - reports.mrpg.input one. -5
6 Line A, report one. The input is line 2 of two reports.mrpg~input
7 Line B, report one. The input is line 2 of two =reports.mrpg.input
8 \014

11/82 B-2 CC69-00A

The report written into [wd]>two_reports.file_two.report is:

Line
No. The Actual Output Lines

1 THIS REPORT PRODUCED ON 02/17/78
2
3 Report two, line A. The input is line of two reports.mrpg.input
4 Report two, line B. The
5

input is line of two=reports.mrpg.input

6 Report two, line A. The input is line 2 of two reports.mrpg.input
7 Report two, line B. The input is line 2 of two=reports.mrpg.input

\014

B-3 CC69

HOLD AND SORT

The Input hold_and_sort.mrpg.input in the archive)

Line
No. The Actual Input Lines

1 duck 1 4 1* kind, in stock, price *1 -2 finch 4 2
3 goose 1 3
4 pigeon 2 4
5 robin 2 10

The Source Program hold and sort.mrpg in the archive)

This MRPG program reads and holds the input file, sorts the held file, and
then uses the held "sorted file" to produce the report.

Line
No. The Actual Source Program Lines

1 1* Simple example illustrating hold and sort *1
2 dcl 1 input stream file "hold and sort.mrpg.input",
3 2 kind char(6), 2 in stock dec(3), 2 price dec(3);
4 dcl accum value dec; -
5 define 1 ~eport bird value pagelength 14 on file "hold and sort.report",
6 2 pagehead, 3 line 4, 4 "THIS REPORT PRODUCED ON II : :-%mmddyy, 3 line,
7 3 line, 4 "Kind In Stock Price Accum Value",
8 3 line, 4 "------ -------- -----------", 3 line,
9 2 detail the data, 3 line,

10 4 kind char(6) left, 4 in stock char(10) right,
11 4 price char(7) right, 4 accum value char(13) right
12 let (accum value := accum value + in_stock * price;);
13 begin () hold input;
14 begin (accum value := 0;) sort in stock desc, price asc;
15 print bird_value; end;

The Output

Line
No. The Actual Output Lines

1 THIS REPORT PRODUCED ON 02/16/78
2
3 Kind In Stock Price Accum Value
4 ------ -------- -----------
5
6 finch 4 2 8
7 pigeon 2 4 16
8 robin 2 10 36
9 goose 1 3 39

10 duck 1 4 43
11 \014

B-4 CC69

BEGIN HOLD ASSIGN

The Input begin_9_hold_assign.mrpg.input in the archive)

Line
No. The Actual Input Lines

1 11121314
2 21222324

The Source Program (begin_8_hold assign.mrpg in the archive)

This example illustrates the effects of placing assignment statements at
various places within the source program. In some cases, the value resulting
from the execution of an assignment statement is available during the current
phase and also during later phases. In some cases, the" result is available
during only the current phase. In other cases, the result is not available at
all. A discussion of specific cases follows the source program and the output
reports.

This example includes one input file, two MRPG source programs, and four
reports. The names of these seven segments are shown in the comments at the
beginning of the MRPG source program. For brevity, let B 1 HA denote the
begin 1 hold assign version and let B 8 HA denote the begIn 8 hold assign
version. Because the two source programs are almost identical, only-one of them
is included here. The major difference is that in B 8 HA a hold statement
occurs in all eight phases, while in B 1 HA a hold statement occurs in only the
first phase. The only other difference Is in the segment names for the output
reports, with "1" used for the B 1 HA reports and "8" used for the B_8_HA
reports.

Line
No. The Actual Source Program Lines

1
2
3
4
5
6
7
8
9

10
11
12
13
1lJ
15
16
17
18
19
20
21
22
23
2lJ
25
26
27
28

/*

*
*
*
*
*
*
*
it

begin_1_hold_assign.mrpg contains one hold statement, in phase one.
begin 8 hold assign.mrpg contains eight holds, one per phase.
These-two MRPG programs illustrate the interactions between:

hold statements
-- assignment statements inside begin parentheses
-- assignment statements in execute loop

For both programs, the input file is begin 9 hold assign.mrpg.input
"in" denotes input field; "Iv" denotes local varIable.
Report names for 1 version are begin 1 hold assign.(in Iv).report
Report names for =8= version are begin=8=hold=assign.(in Iv).report *

*/
dcl 1 input stream file "begin 9 hold assign.mrpg.input",

2 in 1 dec(2), 2 in 2 dec(2),-2-in 3-dec(2), 2 in lJ dec(2);
dcl Iv 1 dec; dcl Iv_2 dec; dcl Iv_3 dec; dcl Iv_lJ dec;
dcl phase dec; dcl input record number dec;
define 1 report in report-on fili "begin 8 hold assign.in.report",
2 detail in data lIne, 3 line, - - -

4 "Phase ~, 4 ~hase, lJ "- Record ", lJ input record number,
lJ" in 1 =", lJ in 1, lJ" in 2 =" ,-4 J n i-;
4" in -3 =", 4 in -3, 4" in -4 =", lJ in -lJ,

3 line if-(input record number = 2); /* Blank-line between phases. */
define 1 report Iv report on file "begin 8 hold assign.lv.report",
2 detail Iv data lIne, 3 line, - -

4 "Phase ~, 4 ~hase, 4 "- Record ", 4 input record number,
4" I v 1 =", 4 I v 1, lJ" 1 v 2 =" ,-4 Iv i-;
4" Iv-3 = It, 4 lv-3~ 4" Iv-4 =", 4 lv-4,

3 line if-(input_record_number = 2); /* Blank-line between phases. */

B-5 CC69

29
30 1* ----- PHASE 1 ----- *1
31 begin (phase := 1; input record number := 0;
32 Iv_1 := 85; Iv_2 := 86; IV_3 := 87; Iv 4 .- 88;)
33
34 input record number := input record number + 1;
35 print-in report; print Iv report; -
36 hold in_T, in_2, Iv_1, Iv_2; 1* Same in and 8 versions. *1
37
38
39 1* ----- PHASE 2 ----- *1
40 begin (phase := phase + 1; input_record_number := 0;)
41
42 input record number := input record number + 1;
43 print-in report; print Iv report; -
44 hold; IT This "hold;" st~fement is commented out in the
45 * 1 version of this program. *1
46
47
48 1* ----- PHASE 3 ----- *1
49 begin (phase : = phase + 1; input record number . - 0;'
50 in 1 .- in 1 + 1; in 3 :=-in 3 +-1;
51 Iv-1 := Iv:1 + 1; lv=) := Iv=3 + 1;)
52
53 input record number := input record number + 1;
54 print-in report; print Iv report; -
55 hold; IT This "hold;" stafement is commented out in the
56 * 1 version of this program. *1
57
58
59 1* ----- PHASE 4 ----- *1
60 begin (phase := phase + 1; input_record_number := 0;)
61
62 input record number := input record number + 1;
63 print-in report; print Iv report; -
64 hold; IT This "hold;" stafement is commented out in the
65 * 1 version of this program. *1
66
67
68 1* ----- PHASE 5 ----- *1
69 begin (phase := phase + 1; input_record_number := 0;)
70
71 input record number := input record number + 1;
72 in 2 := in 2-+ 1; in 4 := in-4 + 1;-
73 Iv-2:= Iv-2 + 1; Iv-4 := Iv-4 + 1;
74 prInt in report; prInt Iv report;
75 hold; IT This "hold;" stafement is commented out in the
76 * 1 version of this program. *1
77
78
79 1* ----- PHASE 6 ----- */
80 begin (phase := phase + 1; input_record_number := 0;)
81
82 input record number := input record number + 1;
83 print-in report; print Iv report; -
84 hold; IT This "hold;" stafement is commented out in the
85 * _1_ version of this program. */
86

B-6 CC69

87
88 1* ----- PHASE 7 ----- *1
89 begin (phase := phase + '; input record number .- 0;
90 in , .- in , + 1; in 3 :=-in 3 +-';
91 lv-' := Iv-1 + 1; Iv=3 := Iv=3 + 1;)
92
93 input record number := input record number + 1;
94 in':= in 1-+ '; in 3 := in-3 + 1;-
95 Iv-1:= lv-' + 1; Iv-3 := Iv-3 + 1;
96 prInt in report; prInt Iv report;
97 hold; IT This "hold;" stafement is commented out in the
98 * , version of this program. *1
99

100
101 1* ----- PHASE 8 ----- *1
102 begin (phase := phase + 1;input_record_number := 0;)
103
104 input record number := input record number + 1;
105 print-in report; print Iv report; -
106 hold; IT This "hold;" stafement is commented out in the
107 * 1 version of this program. *1
108 end;

The Output

The four reports are printed in this sequence:

begin 8 hold assign.in.report
begin-1-hold-assign.in.report
begin-8-hold-assign.lv.report
begin='=hold=assign.lv.report

B-7 CC69

Line
No. The Actual Output Lines For begin_8_hold_assign.in.report

--

2
3
4
5
6
1
8
9

10
1 1
12
13
14
15
16
11
18
19
20
21
22
23
24
25

Line

Phase
Phase

Record
- Record 2

Phase 2 - Record 1
Phase 2 - Record 2

Phase 3 - Record 1
Phase 3 - Record 2

Phase 4 - Record 1
Phase 4 - Record 2

Phase 5 - Record 1
Phase 5 - Record 2

Phase 6 - Record 1
Phase 6 - Record 2

Phase 1 - Record 1
Phase 1 - Record 2

Phase 8 - Record 1
Phase 8 - Record 2

\014

in 1
in-1

in 1
in-1

in 1
in-1

in 1
in-1

in 1
in-1

in 1
in-1

in 1
in-1

:: 11
= 21

= 11
= 21

= 11
= 21

= 11
= 21

= 11
= 21

= 11
= 21

= 12
= 22

= 12
= 22

in 2 = 12
in-2 = 22

in 2 = 12
in-2 = 22

in 2 = 12
in-2 = 22

in 2 = 12
in-2 = 22

in 2 = 13
in-2 = 23

in 2 = 13
in-2 = 23

in 2 = 13
in-2 = 23

in 2 = 13
in-2 = 23

in 3
in=)

in 3
in=)

in 3
in=)

in 3
in=3

in 3
in=3

in 3
in=3

in 3
in=3

in 3
in=3

= 13
= 23

= 23
= 23

= 24
= 24

= 24
= 24

= 24
= 24

= 24
= 24

= 26
= 21

= 27
= 21

No. The Actual Output Lines For begin_1_hold assign.in.report

= 14
= 24

= 24
= 24

= 24
= 24

= 24
= 24

= 25
= 26

= 26
= 26

= 26
= 26

= 26
= 26

--
1
2
3
4
5
6
1
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Phase
Phase

- Record 1
- Record 2

Phase 2 - Record 1
Phase 2 - Record 2

Phase 3 - Record 1
Phase 3 - Record 2

Phase 4 - Record 1
Phase 4 - Record 2

Phase 5 - Record 1
Phase 5 - Record 2

Phase 6 - Record 1
Phase 6 - Record 2

Phase 1 - Record 1
Phase 1 - Record 2

Phase 8 - Record 1
Phase 8 - Record 2

\014

in 1
in-1

in 1
in-1

in 1
in-1

in 1
in-1

in 1
in-1

in 1
in-'

in 1
in-1

in 1
in-1

= 11
= 21

= 11
= 21

= 11
= 21

= 11
= 21

= 11
= 21

= 11
= 2'
= 12
= 22

= 11
= 21

B-8

= 12
= 22

= 12
= 22

= 12
= 22

= 12
= 22

= 13
= 2~
= 12
::::: 22

= 12
= 22

= 12
= 22

in 3
in=3

in 3
in=3

in 3
in:::)

in 3
in=3

in 3
in=3

in 3
in=3

in 3
in=)

in 3
in=)

= 13
= 23

= 23
= 23

= 24
= 24

= 24
= 24

= 24
= 24

= 24
= 24

= 26
= 21

= 27
= 21

in 4
in 4

= 14
:: 24

= 24
= 24

= 24
= 24

= 24
= 24

= 25
= 26

= 26
= 26

= 26
= 26

= 26
= 26

CC69

Line
No. The Actual Output Lines For begin_8_hold assign.Iv.report·

1
2
3
4
5
6
7
8
9

10
11
12
'3
14
15
16
17
18
'9
20
21
22
23
24
25

Line

Phase 1 - Record 1
Phase 1 - Record 2

Phase 2 - Record 1
Phase 2 - Record 2

Phase 3 - Record 1
Phase 3 - Record 2

Phase 4 - Record 1
Phase 4 - Record 2

Phase 5 Record 1
Phase 5 - Record 2

Phase 6 - Record 1
Phase 6 - Record 2

Phase 7 - Record ,
Phase 7 - Record 2.

Phase 8 - Record 1
Phase 8 - Record 2

\014

Iv 1 = 85
Iv-' = 85

I v, = 85
Iv-' = 85

1 v 1 = 85
lv-' = 85

Iv 1 = 85
Iv-1 = 85

Iv" = 85
lv-' = 85

Iv 1 = 85
Iv-1 = 85

Iv' = 86
lv-' = 86

Iv 1 = 86
lv-' = 86

Iv 2 = 86
Iv-2 = 86

Iv 2 = 86
Iv-2 = 86

Iv 2 = 86
Iv-2 = 86

Iv 2 = 86
Iv-2 = 86

Iv 2 = 87
Iv-2 = 87

Iv 2 = 87
Iv-2 = 87

Iv 2 = 87
Iv-2 = 87

Iv 2 = 87
Iv-2 = 87

Iv 3 = 87
Iv=3 = 87

Iv 3 = 87
Iv=3 = 87

Iv 3 = 88
Iv=3 = S38

Iv 3 = 88
Iv-3 = 88

I v 3 = 88
Iv-3 = 88

Iv 3 = 88
Iv=3 = 88

Iv 3 = 90
Iv=3 = 9'

Iv 3 = 91
Iv=3 = 9'

No. The Actual Output Lines For begin' hold_assign.lv.report

,
2
3
4
5
6
7
8
9

10
'1
12
'3
14
15
16
17
18
19
20
21
22
23
24
25

Phase 1 - Record ,
Phase 1 - Record 2

Phase 2 - Record 1
Phase 2 - Record 2

Phase 3 - Record 1
Phase 3 - Record 2

Phase 4 - Record 1
Phase 4 - Record 2

Phase 5 - Record ,
Phase 5 - Record 2

Phase 6 - Record ,
Phase 6 - Record 2

Phase 7 - Record 1
Phase 7 - Record 2

Phase 8 Record
Phase 8 - Record 2

\014

1 v 1 = 85
Iv-1 = 85

I v 1 = 85
Iv-1 = 85

I v 1 = 85
lv-' = 85

Iv' = 85
Iv-1 = 85

Iv 1 = 85
lv-' = 85

I v 1 = 85
Iv-1 = 85

I v, = 86
lv-' = 86

1 v 1 = 85
lv-' = 85

B-9

Iv 2 = 86
Iv-2 = 86

Iv 2 = 86
Iv-2 = 86

Iv 2 = 86
Iv-2 = 86

Iv 2 = 86
Iv-2 = 86

Iv 2 = 87
Iv-2 = 87

Iv 2 = 86
Iv-2 = 86

Iv 2 = 86
Iv-2 = 86

lv 2 = 86
Iv-2 = 86

Iv 3 = 87
Iv=3 = 87

Iv 3 = 87
Iv-3 = 87

lv 3 = 88
Iv=3 = 88

Iv 3 = 88
Iv=3 = 88

Iv 3 = 88
Iv-3 = 88

Iv 3 = 88
Iv=3 = 88

Iv 3 = 90
Iv=3 = 9'

Iv 3 = 91
Iv=3 = 91

Iv 4 = 88
Iv-4 = 88

Iv 4 = 88
Iv-4 = 88

lv 4 = 88
Iv-4 = 88

Iv 4 = 88
Iv-4 = 88

Iv 4 - 89
Iv-4 = 90

Iv 4 = 90
Iv-4 = 90

Iv 4 = 90
Iv-4 = 90

lv 4 = 90
Iv-4 = 90

Iv 4 = 88
Iv-4 = 88

Iv 4 = 88
Iv-4 = 88

Iv 4 = 88
Iv-4 = 88

Iv 4 = 88
Iv-4 = 88

Iv 4 = 89
Iv-4 = 90

Iv 4 = 90
Iv-4 = 90

I v 4 = 90
Iv-4 = 90

1 v 4 - 90
Iv-4 = 90

CC69

Discussion

The results for in 3, in 4, Iv 3, and Iv 4 are identical for B_~~ and
B a HA in all eight phases because none of -these fields or variables are
included in the hold statement in phase 1 on program line 36.

In begin_a_hold_assign.in.report t~e value of in 3 remains as 23 on lines 4
and 5 because 23 is the value of in 3 In the second Input record. The value of
in 3 changes to 24 on report line 7-because of program line 50. Program line 90
changes the value from the 24 on report line 17 to 25 before the first input
record is made available. Program line 94 changes the value to 26 on report
line 19 when the first of the held input records is made available and to 27 on
report line 20 when the second record is made available.

Similar changes to the values for in 4, Iv_3, and Iv 4 occur because of
similar placements of assignment statements for those items. Most of the
results for in 1, in 2, Iv 1, and Iv 2 are also due to similar placements of
assignment statements-for these items. ~\

The values of in 1 in phase a differ between B 1 HA -and B a HA because of
the hold statement on program line 97. The hold in- B a HA causes the changed
value of in 1 to be retained for use in later phases: Since there is no
corresponding hold statement in B 1 HA, the results of the incrementing of in 1
disappear at the end of phase 7, and- the values for phase a are the values that
were held during phase 1. The same effect is observed for in 2 when going from
phase 4 to phase 5. However, in phases 6 through a of B a-HA, the values of
in 2 are those that were established in phase 5. These values are carried over
to-phases 6 through a because of the hold statement in phase 5 on program line
75.

The assignment statements for in 1 and Iv 1 on program lines 50 and 51 have
no effect on the reports because in 1-and Iv 1-are held items. The incrementing
is performed on some leftover values, but those leftover values are overwritten
when the first held input record becomes .available.

B-10 CC69

APPENDIX C

THE report_ 1/0 MODULE

INTRODUCTION

The report procedure is an IIO module, in the same sense that tty and
vfile are IIO ~odules. However, because the application of report is cl~sely
connected to MRPG, the writeup of report_ is found in this. manual, rather than
in the MPM Subroutines.

This appendix contains a description of the report IIO module, using the
same format as is used for the I/O module descriptions In the MPH Subroutines.
Following the report description is a discussion of how the report IIO module
interacts with other procedures in a Multics system.

C-1 CC69

report report

Name: report

This I/O module provides a mechanism for supplying input data to the report
generation portion of an MRPG-OS. The implementation almost completely isolates
the MRPG-OS from the details of I/O switches and modules. Should changes be
made in the future to the general I/O switch approach, and/or to the content of
I/O control blocks, the report I/O module can be changed and existing MRPG-OS
should be able to continue producing the same reports.

Entries in the module are not called directly by users; rather, the module
is accessed through the I/O system. (See "Multics Input/Output System" and
"File Input/Output" in Section 5 of the MPf-1 Reference Guide for a general
description of the I/O system and a discussion of files, respectively.)

Attach Description

The attach description has the following form:

report ref name {parameter list}

where:

1 • ref name
is the reference name used when the MRPG-OS is initiated.

2. parameter list
is a list of parameter values required by the MRPG-OS. The items in
the list are separated by spaces. The sequence of the items must
match the sequence required by the MRPG-OS.

Open Operation

The following opening modes are supported:

stream output
sequential_output

An existing file is truncated to zero.

Only write access is required on the file.

C-2 CC69

report

Writing Operations

These writing operations are supported for these opening modes:

stream output
sequential_output

supports
supports

put chars
write record

No other writing operations are supported.

Other Operations

These operations ar~ supported:

close
detach iocb

These operations are not supported:

all read-type operations
all key-type operations
delete record
position
modes
control

File Position Designators

The standard file position designators:

next byte
next record
current record
key for insertion

are not used by the report_ I/O module.

C-3

report_

CC69

INTERACTION WITH OTHER PROCEDURES

The remainder of this appendix provides a summary of how the report I/O
module interacts with the MRPG-OS and with an input data supplier such as LINUS.

Gross Structure of an MRPG-OS

An MRPG-OS can be thought of as consisting
supplier part and a report production part. For
referred to as MRPG-OS-input and MRPG-OS-report.

of two parts, an input data
brevity, these two parts are

When the MRPG-OS is invoked as a command j the MRPG-OS-input obtains the
input data.

When the MRPG-OS is used as an I/O appendage, the input data is obtained by
some ext~rnal procedure, such as LINUS.

In both cases, the input data is passed through report_ to MRPG-OS-report,
which produces the report or reports.

The Input Data Supplier Part

The Declare Input File group includes the FILE and ATTACH keywords. If
either is specifIed, it is possible for the MRPG-OS-input to be invoked as a
command and to obtain the input data. It is also possible for an external
procedure to obtain the input data. If the MRPG-OS is used as an I/O appendage,
the FILE or ATTACH information and associated PL/I statements are ignored.

If neither FILE nor
by an external procedure.
the MRPG-OS as a command.

ATTACH are specified, the input data must be obtained
It is impossible to produce the reports by invoking

The Report Production Part

This part of the MRPG-OS converts each input
more report lines/records in one or more reports.
of the origin of the input data.

data line/record into one or
These actions are independent

Every report is written to either a file or a switch. The MRPG-OS-report
calls on the iox subroutine to attach, open, write to, close, and detach the
report files and-switches.

The only external entry point used by MRPG-OS-input or an external
procedure (e.g., LINUS) is:

report_attach

C-4 CC69

A Command Scenario

In this scenario, the MRPG-OS is invoked as a command. The input file is
in a segment and the single output report is written to a segment. F.ach input
line produces one report line.

For purposes of referring to the following steps in the next scenario, call
this scenario A.

A1. The MRPG-OS is invoked from command level.

A2. MRPG-OS-input calls on iox , report, and MRPG-OS-report to set up a
report switch for delivering data to-MRPG-OS-report.

A3. MRPG-OS-input attaches and opens the input file.

A4. MRPG-OS-input obtains the next data line. When there is no more data,
go to step A11.

A5. MRPG-OS-input writes one data line via iox .

A6. Information as to the location, length, etc., of that data line
proceeds from iox_ through report_ to MRPG-OS-report.

A7. The first time control reaches here, MRPG-OS-report attaches and opens
the report file using the vfile_ 1/0 module.

A8. MRPG-OS-report manipulates its input data line to produce one report
line. In more complicated situations, report, page, detail heading
and footing lines, and multiple data lines are produced when
appropriate as part of this step for one or more reports. If needed
for second or subsequent phases, the input data and other data is held
during this step.

A9. MRPG-OS-report writes the report line.

AlD. MRPG=OS=report returns control through and iox to
MRPG-OS-input which loops back to step A4.

A11. MRPG-OS-input closes and detaches the input file.

A12. MRPG-OS-input closes the report switch set up in step A2.

A13. As part of accomplishing the previous step, control passes through
iox and report to MRPG-OS-report. If the MRPG-OS program contains
more than one phase, the second and all subsequent phases are executed
at this time. The report file set up in step A7 is closed and
detached. Control returns to MRPG-OS-input through report_ and iox .

A14. MRPG-OS-input detaches the report switch closed in step A12.

A15. MRPG-DS-input returns control to the command processor.

C-5 CC69

An 1/0 Appendage Scenario

In this scenario, the MRPG-OS is used as an 1/0 appendage by some external
procedure. For brevity, LINUS is assumed to be that external procedure.
Otherwise, this scenario is like scenario A.

1. LINUS is invoked from command level.

2. The desired data base is selected and made available. The desired
LILA requests are set up to produce the data lines of interest. A
request of this form is issued:

report <pathnam~ of the MRPG-OS>

3. Similar to A2. LINUS calls on iox , report, and MRPG-OS-report to
set up a report switch for delivering data to-MRPG-OS-report.

4. Same function as A4. LINUS builds its next data line. When there is
no more data, go to step 11.

5. Similar to A5. LINUS writes one data line via iox .

6. Identical to A6. Information as to the location, length, etc., of
that data line proceeds from iox_ through report_ to MRPG-OS-report.

7. Identical to A7. The first time control reaches here, MRPG-OS-report
attaches and opens the report file using the vfile_ 1/0 module.

8. Identical to AB. MRPG-OS-report manipulates its input data line to
produce one report line. In more complicated situations, report,
page, detail heading and footing lines, and multiple data lines are
produced when appropriate as part of this step for one or more
reports. If needed for second or subsequent phases, the input date
and other data is held during this step.

9. Identical to A9. MRPG-OS-report writes the report line.

10. Similar to A10. MRPG-OS-report returns control through report_ and
iox to LINUS which loops back to step 4.

11 . Similar to A12. Since the report request made in
carried out, LINUS closes the report switch set up in

step 2 has been
step 3.

12. Similar to A13. As part of accomplishing the previous step, control
passes through iox and report to MRPG-OS-report. If the MRPG-OS
program contains more than one -phase, the second and all subsequent
phases are executed at this time. The report file set up in step 7 is
closed and detached. Control returns through report and iox to the
MRPG-OS-input which ~eturns control to LINUS. - -

13. Similar to A14. LIMUS detaches the report switch closed in step 11.

14. Similar to A11. If the user of LINUS so requests, LINUS closes and
detaches the connections to the data base.

15. Similar to A15. Assuming the user is done and so requests, LINUS
returns control to the command processor.

C-6 CC69

APPENDIX D

GENERAL FORMAT DIAGRAMS

This section consists of the general format diagrams that appear in
Section 5. They are collected in this appendix so that the knowledgeable user
may easily refer to any of the diagrams without having to flip back and forth as
is required in Section 5 because the groups there are arranged in alphabetical
order. However, in this appendix, the groups are arranged in their hierarchial
order, which generally corresponds to the sequence in which the major groups
must occur in a program.

[Declare_parameters]

Declare_Input_File

[Declare_variable]

(Define_Report)

(Execute_Phase)

END ;

Declare Parameters I
{

DECLARE}

DCL {
P ARAMETE R }

PARM

, 2 parameter_name-O

l
{

CHARACTER}

CHAR { :nteger-1 })

"string-1" [, "string-1 ft
]

'11 KEY
0. DEFAULT Char_Expr~1

{
BOOLEAN} .

KEY ("string-'" [, "string-1"] ...)
BaaL

D-1 CC69

Oeclare_Input_File

{DECLARE} INPUT
DCL

[RECORD [integer-2]] 0
STREAM

[FILE Char_Expr-2] 0 ATTACH Char_Expr-3

:11
' 2 input_field_name-O Input_Field_Def

11
0

2 FILL (integer-3)

{
CHARACTER}

CHAR

(integer-4)

{
SPECIAL }

(integer-5)
DELIMITED "string-2"

f
(integer-4) }

SPECIAL

L DELIMITED "string-2"

[OPTIONAL] [POSITION integer-6]

D-2

J

CC69

{
DECLARE}

DCL

local variable name-O

DECIMAL
DEC

Declare Variable

{
CHARACTER} [VARYING]

(integer-7)
CHAR VAR

BOOLEAN
BOOL

set variable name-O SET (
{

number-1 [, number-1] ... }

"stri ng-5" [, "stri ng-5'~

table variable name-O TABLE ({

number-2
number-2
"string-6"
"string-6"

:~ ~~~~~~~~7"} ...) [VARYING] -> number-3
-> "string-7" VAR

D-3 CC69

DEFINE 1 REPORT report_name-O

[Report_ContrOl]

[Heading]

(Detail) .•.

[Footing]

Define_Report

D-4 CC69

a

Report_Control

{
P AGEWIDTH }

integer-8
PGW

{
PAGELENGTH }

integer-9
PGL

{ MINLINE } integer-10
NINL

{ MAXLINE } integer-11
MAXL

nil input field. name-1 II) 0 BREAK (--
1 local variable name-1 - -

ON

{
FILE Char_Ex pr-2}

SWITCH Char_Expr-3

[{

FILE Char Ex pr-2}

(SWITCH Char=Expr-3

IF (Full_Expr-3

{

FILE Char Expr-2 }

SWITCH Char_Expr-3

(OR") 1
t: J J

D-5

o

CC69

2 REPORTHEAD (Line-l)

2 PAGEHEAD (Line-2)

, 2 DETAILHEAD break_field_ident-l

IF (Full_Expr-4)

Heading

o
{

MAXLINE}
integer-13

(Line-3) ...

MAXL

Detail

IF (Full_Expr-4) o
{

MAXLINE }
integer-13

o MAXL

, 2 DETAIL detail name-O

Line

{ Line-4 } ...

[
integer-14] [IF (Full_Expr-5)] [Report_Field_Def] ...
+ integer-15

, 3 LINE

{ O
PAUSE} [IF (Full_Expr-6

D-6 CC69

4 Char_Expr-4

LET {{ input field name-4 }._

(local=varia~le_name-2 Full Expr-B

o

{
COLUMN}

integer-16
COL

BSP

ALIGN "string-B"

{
PICTURE}

"string-3"
PIC

{
CHARACTER}

(integer-17)
CHAR [

LEFT]
CENTER

RIGHT o

Footing

, 2 DETAILFOOT break field ident-1

IF (Full_Expr-4)

{MAXLINE} (Line-5) ...
integer-13

MAXL

~II
.... PAGEFOOT (Line-6)

11

0 , Co

, 2 REPORTFOOT (Line-7)

D-7 CC69

Execute Phase

Format 1: (Valid only for the first phase.)

BEGIN ([IOCal_ vari able_name-2 : = Full Expr-9 ;] ...)

n INPUT o
[Loop_Statement] ... HOLD input_field name-4

o local_variable_name-3

Format 2: (Valid for all phases after the first phase.)

BEGIN ([local_variable_name-2 := Full_Expr-9 ;] ...)

{
input field name-5 } [~D~E:SC :C:::::) F [NO [DDlU'PPLLICATE }];]

local_variable_name-4 J u
(Loop_Statement) ... [HOLD]

where Loop_Statement is:

r{ input field name-4 }._ Full_Expr-8

local_variable_name-2

{
report_name-1 }

PRINT ;
detail name-1

IF Full_Expr-10 THEN (Loop_Statement)

[ELSE (Loop_Statement)

D-8

] FI

CC69

where

Full_Expr

n
{ ~R } 0

Boolean Fact

Boolean Fact

{:ND} Boolean Fact
a

Boolean Fact is -

Char_Expr-5

TRUE

FALSE

%LEVEL {

«

[
NOT] Char_Expr-6 A

Relationship_Test

LT
<
LE
<=
EQ
=
GE
>=
GT
>
NE
A

=

integer-19)

break field ident-1

IN set variable name-1

Relationship_Test

Char_Expr-7 r BEGINS }
Char_Expr-8

t CONTAHIS

ENDS

[WORD]

D-9 CC69

Char_F.xpr

nlll Char _Ref-2
IF (Full_Expr-11 Char_Ref-3

II ({ ~~NCATENATE })

Char Ref

"string-9"

SMMDDYY

SYYDDD

SMONTH

SDAY

SHHMMSS

SSUBSTR

SREPEAT

Char _Expr-9, Ari th_Expr-2 [, Ari th_Expr-3])

Char_Expr-10, Arith_Expr-5

[:] Arith Ref

where Arith Ref is

number-4
input field-name-6
local-variable name-4
parameter_name::1

[:]

SPAGENUMBER ([report_name-1]

TRANSFORM (Full_Expr-12, table variable name-1

(Full_Expr-13)

D-10 CC69

MULTICS REPORT PROGRAM
GENERATOR (MRPG)

REFERENCE MANUAL
ADDENDUM A

SUBJECT

Additions and Changes to the Multics Report Program Generator Reference
Manual

SPECIAL INSTRUCTIONS

This is the first addendum to CC69, Revision 0 dated March 1978. Insert the
attached pages into the manual according to the collating instructions on the
back of this cover. Change bars in the margin indicate technical additions and
changes; asterisks denote deletions. There are no new or deleted commands
associated with this release. The majority of corrected items relate to Trouble
Reports (TRs) and User comments.

Note:
Insert this cover after the manual cover to indicate the updating of the
document with Addendum A.

SOFTWARE SUPPORTED

Multics Software Release 10.1

ORDER NUMBER

CC69-00A

35837
1182
Printed in U.S.A.

November 1982

Honeywell

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove

Front Cover
2-3, 2-4
5-9, 5-10
5-15 through 5-18
5-21, 5-22
5-29 through 5-36
5-45, 5-46
5-55, 5-56
5-63 through 5-76
B-1, B-2
Remarks Form (CC69-00)

The infonnation and specifications in this document are
subject to change without notice. This document contains
infonnation about Honeywell products or services that may
not be available outside the United States. Consult your
Honeywell Marketing Representative.

© Honeywell Information Systems Inc., 1982

11/82

Insert

Front Cover
2-3, 2-4
5-9, 5-10
5-15 through 5-18
5-21, 5-22
5-29 through 5-36
5-45, 5-46
5-55, 5-56
5-63 through 5-76
B-1, B-2
Remarks Form (CC69-00A)

File No.: 1L23

CC69-00A

I
I HONEYWELL INFORMATION SYSTEMS
I Technical Publications Remarks Form
I
I

" 1

w
Z
--l

t.:J
Z

TITLE
MULTICS REPORT PROGRAM GENERATOR
(MRPG) REFERENCE MANUAL

ADDENDUM A

o ERRORS IN PUBLICATION
--l
<!
I
~
U

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be D
acknowledged; however, if you require a detailed reply, check here.

FROM: NAME -----

TITLE ______________ _

COMPANY

ADDRESS ______________________________ ___

ORDER NO. CC69-00A

DATED I NOVEMBER 1983]

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I II II I

BUSINESS REPLY MAIL
HRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I
I
I
I .
I
I

(1
Z
-J

(,:)
Z
o
....J
ct:
I
J
U

I
I
I
I
I
I ~
IJ

I t:J
I Z S

«
o
-J
o
u..

UJ
Z
....J

t:J
Z

...... g

(!
I
I
I
I
I
I
I

«
o
-J
o
u..

Honeywell
Ho~1I Information Systems

In the U.S.A.: 200 Smith Street. MS 486. Waltham. Massachusetts 02154
In Canada: 2025 Sheppard Avenue East. Willowdale. Ontario M2J 1W5

In Mexico: Avenida Nuevo Leon 250. Mexico 11. D.F.

20646. 1478. Printed in U.S.A. CC69. Rev. 0

	000
	001
	002
	003
	004
	005
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-76
	5-77
	5-78
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	9-01
	9-02
	9-03
	9-04
	9-05
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	_001
	_002
	replyA
	replyB
	xBack

