
SUBJECT

SERIES 60 (LEVEL 68)

MULTICS SORT/MERGE

Detailed Description of the Generalized File Sorting and File Merging Capability,
Including Details of the Commands and Subroutines Involved

SOFTWARE SUPPORTED

Multics Software Release 4.0

ORDER NUMBER

AW32, Rev. 0 July 1976

Honeywell

PREFACE

This manual describes the generalized file sorting and file merging
capability on the Multics system. The Sort or Merge is specialized for
execution by user-supplied parameters, for example to specify key fields. The
Sort/Merge package is particularly designed to support files on any storage
medium and in any file organization and also to support large files.

The reader is assumed to be familiar with the Multics system
particular, to have access to the Multics Programmers' Manual (MPM).
consists of the following:

Reference ~ Order No. AG91

Commands and Active Functions Order No. AG92

~lb rou tines Order No. AG93

Subsystem Writers' Guide Order No. AK92

and, in
The MPM

AW32

(§) 1976, Honeywell Information Systems Inc. File No.: 1L53

Section I

Section II

Section III

Section IV

Section V

Sect:..on VI

CONTENTS

Functions
Input and Output
Key Fields • • . .
Exi ts
Work Requirements .

Sort Work Files .
Process Directory Work Files

Commands

Subroutines .

Sort/Merge Description
Source Form • . . . •

Syntax•
Keys Statement

Examples of Key Descriptions
Exits Statement ...•.

Internal Form . . .•
keys Structure
exits Structure .
io exits Structure . . . •
Entry Variables . .

Writing Exit Procedures .

Exit Procedures .•....
Input File Exit Procedure .
Output File Exit Procedure ...•....
Compare Exit Procedure
Input Record Exit Procedure
Output Record Exit Procedure . • ..
Notes On Exit Procedures

Record Areas and Pointers
Original Input Order (FIFO) .

sort $release •
sort:$return

Examples . •
Examples of Command Level .
Example of Subroutine Level .

iii

Page

1-1
1-2
1-2
1-3
1-3
1-3
1-4

2-1

3-1

4-1
4-1
4-2
4-2
4-5
4-5
4-6
4-7
4-9
4-9
4-10
4-10

5-1
5-2
5-3
5-4
5-5
5-8
5-13
5-13
5-13
5-14
5-15

6-1
6-1
6-3

AW32

TABLES

Page

Table 4-1. Datatype Encoding and Semantics of Size
(Sour'ce Form) . 4-4

Table 4-2. Datatype Encoding and Semantics of Size
(Internal Form) . . 4-8

iv

SECTION I

FUNCTIONS

The Sort/Merge package provides a generalized file sorting and merging
capability, which is specialized for execution by user supplied parameters. The
package contains two components, the Sort and the Merge.

The basic function of the Sort is to read one or more input files of
records which are not ordered, sort those records according to the values of one
or more key fields, and write a single output file of ordered (or "ranked")
records.

The basic function of the Merge is to read one or more input files of
records which are in order according to the values of one or more key fields,
merge (collate) those files, and write a single output file of ordered records.

Thus the primary difference between the Sort and the Merge is that the Sort
processes files which are not in order, while the Merge processes files which
are in order.

The Sort/Merge package has the following general capabilities:

Input and output files may be on any storage medium and in any file
organization;

Very large files, such as multisegment files, can be sorted or merged;

Multiple key fields and most PL/I string and numeric data types may be
specified;

Exits to user supplied subroutines are permitted at several points
during the sorting or merging process.

The Sort/Merge package can be invoked either as a command or as a
subroutine. The functions provided are almost identical in the two
modes.

See Section II, "Commands," for specifications of the sort and merge commands.
See Section III, "Subroutines," for specifications of the sort_ and merge_
subroutines.

1-1 AW32

In this manual, the term "30r'L/Mcr'~t~11 13 used to refer' to functions or
specifications which are the same for both the Sort and the Merge. The term
"Sort" is used to refer to functions or specifications which apply only to the
Sort component, but which are available either from command level or from
subroutine level. Similarly, the term "Merge" is used to refer to functions or
specifications which apply only to the Merge component, but which are available
ei ther from command level or' from subroutine level. For functions or'
specifications which apply only to a specific command or subroutine, the
specific command name (sort or merge) or the specific subroutine name (sort_ or
merge_) is used.

In addition to arguments to the command or subroutine, other information is
necessary to specialize the Sort/Merge for a pal'ticular' execution. This
information is called the Sort/Merge Description (described in detail in
Section IV of this manual).

TNPUT AND OUTPUT

The user can specify the input and output files. Input and output files
are specified in the arguments to the command or subroutine. In this
enviro~ment, the Sort/Merge reads the input files and writes the output file.
Each input or output file may be stored on any medium and in any file
organization supported by an I/O module through iox_. The I/O module may be one
of the Multics system 1/0 modules (such as tape_ansi_)t or one supplied by a
spec~fic installation, or one written by a user. An input or output file is
specified either by a pathname or by an attach description.

A:ternatively, for the Sort the user can supply either an input_file
procedure or an output_file procedure (or both). F0r the Merge, input_file and
output_file procedures are not permitted. An input_file procedure is
responsible for reading input and releasing records to the Sort. An output_file
procedure is responsible for retrieving records which have been ranked by the
~ort a~d writing output.

In all cases, recor'ds may be either fixed length "r var'iable length.

The maximum amount of input data (total size of all input files) which can
je accepted by the Sort is approximately one billion (10**9) bytes. There is
essentially no limit for the Merge.

KEY FIELDS

The user can specify the key fields to be used in ranking records. Refer
to "Keys Statement" or "keys Structure" in Section IV for more detail on key
descriptions. Up to 32 key fields may be specified. Any PL/I string or numeric
data type -- except varying string, complex, or pictured -- may be specified for
a given key field. Ranking may be ascending, descending, or mixed. For a
character string field, the collating sequence is that of the Multics standard
character set. For the Merge, the records of each input file must be in order
according to those key fields.

Alternatively, the user can specify a user supplied compare procedure,
which is then used to rank records. For the Merge, the records of each input
file must be in order according to the algorithm of that user supplied compare
procedurp.,

AW32

The original order of records with equal keys is preserved (FIFO order).
Original input order is defined as follows:

1. If two equal records come from different input files, then the record from
the file which is specified earlier (in the command or subroutine argument)
is first.

2. If two equal records come from the same input file, then the record which
is earlier in the file is first.

The Sort/Merge provides exits to user supplied procedures at specific
points during the sorting or merging process. Refer to "Exits Statement ll or to
"exits Structure" and "io_exits Structure" in Section IV for more detail on exit
procedures. The following exit points are provided:

To obtain input records and release them one by one to the
sorting process. For the Merge, the input_file exit is not
provided.

To retrieve ranked records
process and output them.
exit is not provided.

one by one from the sorting
For the Merge, the output_file

input_record To perform special processing for each input record, such as
deleting, inserting, or altering records to be input to the
Sort. For the Merge, the input_record exit is not provided.

output_record To perform speCial proceSSing for each output record, such
as deleting, inserting, or altering records to be output
from the Sort or Merge; or summarizing data by accumulating
it into a summary record.

compare

WORK REQUIREMENTS.

To compare two records; that is, to rank them for the
sorting or merging process.

The Sort/Merge requires that its work files be allocated in the Multics
storage system. Thus the user must have sufficient quota for the work files, in
addition to that required for the output file if it is to be in the storage
system.

There are two groups of work files required.

:sort Work Files

The Sort function requires a number of large segments, which are allocated
in the directory specified by the user. As a first approximation, the space
required by these segments is between 1.05 and 1.15 times the total size of all
the input file s.

1-3 AW32

A closer approximation to the size of the Sort work files is:

F + 64*sqrt(F)

where F is the total amount of data input to the Sort, in bytes.

The Merge function does not require these work files.

Process Directory Work Files

Both the Sort and the Merge functions require a small number of small
segments, which are always allocated in the user's process directory. As a
first approximation, the space required by these segments is from 3 to 6 storage
system (1024 word) records.

A closer approximation for the process directory work files is:

One buffer segment for each input file, each segment as large as the
largest record in that input file;

If the output_record exit is specified, two additional buffer segments,
both as large as the largest output record;

Jp to two segments of one storage system (1024 word) record each, for
processing th~ Sort/Merge Description.

AW32

SECTION II

COMMANDS

This seC~lon describes both the sort command and the merge command.
Additional information necessary for executing the sort or merge commands with
user supplied exit procedures is contained in Section V, "Exit Procedures," of
t his rna n u a 1 •

The conventions used below for describing arguments are the same as those
used in the Multics Programmers' Manual, Commands and Active Functions, Order
No. AG92.

sort input_specs output_spec -control_args-

merge input_specs output_spec -control_args-

where:

1. input_specs
The user is specifying the input files. Up to 10 input files may be
specified. Each input file specification (each input_spec) may be
supplied in one of the following forms:

-input_file pathname, -if pathname
If an input file is in the Multics storage system and its file
organization is either sequential or indexed, then it may be
specified by its pathname. The file may be either a single
segment or a multisegment file. The star convention can not be
used.

An input file specified by a pathname will be attached using
the attach description "vfile_ pathname".

-input_description "attach_desc", -ids "attach desc"
If an input file is not in the Multics storage system or its
file organization is neither sequential nor indexed, then it
must be specified bv an attach d~~0ription. The attach
description must be quoted. The target 1/0 module specified
via the attach description must support the sequential_input
opening mode and the iox_ entry point read_record.

Pathnames and attach descriptions can be intermixed in the
input_specs argument.

For the sort command, if the user is supplying an input_file exit
procedure then the input_specs argument m~st be omitted and the
input_file exit procedure must be named in the Exits statement of
the Sort Description. For the merge command, an input_file exit
procedure cannot be specified.

2-1 AW32

2. output_spec

:;
..J •

the user is specifying the output file. Only one output file can be
specified. The ~utput file specification (output_spec) may be
supplied in one of the following farms:

-output_file pathname, -of pathnarne
If the output file is in the Multics 3torage system and its
file organization is sequential, then it may be specified by
its pathname. The file may be either a single segment or a
multisegment file.

The equals cc~vention may be used. If it is, it is applied to
the pat h n am e 0 f the f iT S t j n put f i 1 e :1 n d t t e fir s tin put f i 1 e
must be spRcified by a pathname, not by an attach description.

An output file specified by a pathname will be attached using
the attacrl. description "vfiL~_. pathI'::Jmc". Thus if the file
does not exist, it will be created. If it does exist, it will
be over'wr'i t ten.

-output_file -replace, -of -rp
For the sort command, the output file is to replace the first
input file. That input file will be overwritten during the
merge phase of the Sort. If -replace is specified, the first
input fil~ must be specified by a pathname, not by an attach
description. For the merge command, the -replace option cannot
be spee: i fi.ed.

-cutput_description "attach_.des2", -\;d.::: "attach_descl!
If the output file is not in the Multics storage system or its
file organizat.ion is not sequentia], then it must be specified
by an attach description. The attach des~ription must be
quoted. The target 110 module specified via the attach
a esc rip t ion rll u s t sup po r t the seq u e n t i a 1_ 0 U t put 0 pen in g mod e and
the iox_ entry point write_record.

For the sort command, if the user is supplying an output_file exit
procedure then the output_spec 8rgument must be omitted and the
output_file exit pr'ocedure must be fiamed in the Exits statement. of'
the Sort Descripticn. For the merge command, an output_file exit
procedure cannot be specified.

control_args
must be chosen from the following:

-console_input, -ci
The SortlMerge Descrlption is read via the 1/0
user_input (whi_ch normally is the user" s terminal) .

..... sort_desc sffi_path, -3d sm_pa.tl-l, -~nct"g~ .. _lie3C 3m_,peltIl, -md S[Tl_ .. P~-itli

switch

The user is specifying the p?thname of the segment containing
the Sort/Merge Description.

Either the -console_input argument or
argument but not both must
Description Notes" below.

-te~p_dir td_path, -td td_path

the -sort_desc or -merge_desc
be s pee i fie d • See" So r t i' Mel' g e

For the sort command, specifies the pathname of the directory
which is to contain work fj.les for the sorting process. The
equals convention can not be used.

For the merge comc2nd, t~is argument is not required and must
not be specified.

If the -temp_di~ a~g m~Gt 3 o~itted, work files for ~ha Sort
wi~l e con 2i~ed n tt0 user's crocess directory.

This argument should be specified when the process directory
will not be large enough to contain the work files for the
Sort. The [wd] active function may be specified for td_path to
place these work files in the user's current working directory.

For both the Sort and the Merge, certain small work files are
always placed in the user's process directory.

For the sort command, specifies that
to be sorted is f millions of bytes.
be a decimal number.

the total amount of ~ ,'" +- ~ ...
Uc."'l c1

The argument [must

For the merge command, this argument is not required and must
be omitted.

If the -file_size argument is omitted, the default
for the Sort is approximately one million bytes ([=

assumpt iO!l

1 .0) .

This argument is intended for use when some or all of the input
files are not in the Multics storage system (that is, are not
specified by pathnames) or when an input_file exit procedure is
specified. In these cases the Sort cannot determine the amount
of input data. The -file_size argument may also be specified
when all of the input files are in the Multics storage system
but records are to be inserted or deleted through an
input_record exit procedure.

If all of the input files are in the Multics storage system and
the input_record exit is not specified, then the -file_size
argument is ignored and the Sort computes the total amount of
input data (using segment bit counts).

The -file_size argument is used for optimization of
performance; the actual amount of input data can be
considerably larger without preventing the Sort from
completing. The maximum amount of data which can be sorted is
(in bytes) approximately 60 million times the square root of
f·

Sort/Merge Description Notes

Refer to Section IV, "Sort/Merge Description," for complete specifications
for writing a Sort/Merge Description.

At the command level, only the source form of the Sort/Merge Description
can be supplied. It can be either supplied as a segment or read via the IIO
switch user_input (normally the user's terminal).

If the Sort/Merge Description is supplied in a segment, its pathname is
specified in the -sort_desc Or' -mp.r>gp,_dl'.:'~C' ~re;l]!!1e!!t. The segmeDt !'!'lust be "'"
ASCII segment; that is, an unstructured file in the Multics storage system.
The segment must contain only the Sort/Merge Description.

If the Sort/Merge Description is read via the user's terminal, the
-console_input argument is specified. The Sort/Merge prints "Input:" via the
I/O switch user_output and waits for input. The user then types the Sort/Merge
Description. To terminate the Sort/Merge Description, the user types a line
consisting of a period (".") followed by a line feed. (This line is not part of
the Sort/Merge Description.)

2-3 AW32

Arguments can appear in any order, but a pathname or attach description
must immediately follow its keyword.

The temporary directory pathname (td_path) is the name of a directory. The
Sort/Merge Description pathname (sm_path) is the name of a segment.

Any pathname may be relative (to the user's current working directory) or
absolute.

2-4 AW32

SECTION III

SUBROUTINES

This section describes both the sort subroutine and the merge_ subroutine.
Ine specifications for writing a Sort/Merge Descriptio~ are given in Section IV,
"Sort/Merge Description." Additional information necessary for executing the
sort_ or merge_ subroutines with user supplied exit procedures is contained in
Section V, "Exit Procedures," of this manual.

The conventions used below for describing arguments are the same as those
used in the Multics Programmers' Manual, Subroutines, Order No. AG93.

dcl sort_ entry«*)char(*), char(*), (*)ptr, char(*), char(*), float
bin(27), fixed bin(35»j

call sort_ (input_specs, output_spec, sm_desc, temp_dir,
file_size, code);

dcl merge_ entry«*)char(*), char(*), (*)ptr, char(*), fixed bin(35);

where:

1. input_specs
An array containing the specifications of the input files. Up to; J
input files may be specified. The array extent specifies the number
of input files. (Input)

Input file j is specified in the array element input_specs(j), in
one of the following forms:

-input_file pathname, -if pathname
If an input file is in the Hultics storage system and
organization is either sequential or indexed, then
specified by its pathname. The file may be either
segment or a multisegment file. The SLar convention
used.

its file
it may be
a single
cannot be

An input file specified by a pathname will be attached using
the attach description "vfile_ pathname".

-input_description attach_desc, -ids attach_desc
If an input file is not in the Hultics storage system or its
file organization is neither sequential nor indexed, then it
must be specified by an attach description. The target 1/0
module specified via the attach description must support the
sequential_input opening mode and the iox_ entry point
read_record.

3-1 AW32

2.

Pathnames and attach descriptions can be intermixed
input_specs array.

in the

For the sort_ subroutine, if the user is supplying an input_file
exit procedure, then input_specs(1), the first input file
specification, must be "" (the array extent should be 1) and the
input_file exit procedure must be named in the io_exits structure of
the Sort Description. For the merge_ subroutine, an input_file exit
procedure cannot be specified.

output_spec
Specification of the output file.
specified. (Input)

Only one output file may be

The output file may be specified in one of the following forms:

-output_file pathname, -of pathname
If the output file is in the Multics storage system and its
file organization is sequential, then it may be specified by
its pathname. The file may be either a single segment or a
multisegment file.

The equals convention can be used. If it is, it is applied to
the pathname of the first input file and the first input file
must be specified by a pathname, not by an attach description.

An output file specified by a pathname will be attached using
the attach description "vfile_ pathname". Thus if the file
does not exist, it will be created. If it does exist, it will
be overwritten.

-output_file -replace, -of -rp
For the sort_ subroutine, the output file is to replace the
first input file. That input file will be overwritten during
the merge phase of the Sort. If -replace is specified, the
first input file must be specified by a pathname, not by an
attach description. For the merge_ subroutine, the -replace
option cannot be specified.

-output_description attach_desc, -ods attach_desc
If the output file is not in the Multics storage system or its
file organization is not sequential, then it must be specified
by an attach description. The target 1/0 module specified via
the attach description must support the sequential_output
opening mode and the iox_ entry point write_record.

For the sort_ subroutine, if the user is supplying an output_file
exit procedure then the output_spec argument must be "" and the
output_file exit procedure must be named in the io_exits structure
of the Sort Description. For the merge_ subroutine, an output_file
exit procedure cannot be specified.

3. sm_desc
An array of pointers to the Sort/Merge Description. See "Sort/Merge
Description Notes" below. (Input)

4. temp_dir
For the sort subroutine, the pathname of the directory which is to
contain work files for the sorting process. The equals convention
cannot be used: (Input)

For the merge_ subroutine, this argument is not present.

If the temp_dir argument is '''', then work files for the Sort will be
contained in the user's process directory.

3-2 AW32

This argument should be specified when the process directory will
not be large enough to contain the work files for the Sort. The
get_wdir_ function may be used to obtain the name of the user's
current working directory.

For both the Sort and the Merge, certain small work files are always
placed in the user's process directory.

5. user_out_sw
destination of both the summary report and diagnostic messages for
errors detected in the subroutine arguments or in the Sort/Merge
Description. (Input)

This argument may have the following values:

""

"-bf"

= write the summary report and diagnostic messages vii;
the 1/0 switch user_output.

= do not write the summary
messages. If any errors are
will return with the
information about the number
is not available.

report and diagnostic
diagnosed, sort_ or merge_
status code bad_arg but
and nature of the errors

switchname = write the summary report and diagnostic messages via
the 1/0 switch named switchname. The switch must be
attached and open for stream output.

6. file_size

7 . code

For the sort subroutine, the total amount of data to be sorted, in
millions of bytes. (Input)

For the merge_ subroutine, this argument is not present.

If the file_size argument is zero, the default assumption for the
Sort is approximately one million bytes (file_size = 1.0).

This argument is intended for use when some or all of the input
files are not in the Multics storage system (that is, are not
specified by pathnames) or when an input_file exit procedure is
specified. In these cases the Sort cannot determine the amount of
input data. The file_size argument may also be specified when all
of the input files are in the Multics storage system but records are
to be inserted or deleted through an input_record exit procedure.

If all of the input files are in the Multics storage system and the
input_record exit is not specified, then the file_size argument i.s
igno~ed and the Sort computes the total amount of input data (using
segment bit counts).

The file_size argument is used for optimization of performance; th~
actual amount of data can be considerably larger without preventing
the Sort from completing. The maximum amount of data which can b€
sorted is (in bytes) approximately 60 million times the square root
of file_size.

Standard Multics status code returned by sort_ or merge_. Possible
values are listed below under "Status Codes." (Output)

3-3 AW3?

Status Codes

The following status codes may be returned by sort_ or merge_ (all codes
are in error_table_):

o Normal return (no errors).

One or more arguments specified to sort_ or merge_,
including those in the Sort/Merge Description, was invalid
or inconsistent. The Sort/Merge will have previously
written diagnostic messages as directed by the user out s~
argument. The sorting process itself has not been started.

The Sort/Merge has encountered a fatal error during the
sorting or merging process. The Sort/Merge will have
previously generated a specific error message and signalled
the sub_error_ condition via the sub_err_ subroutine.

The call to sort_ or merge_ is not in the sequence required
by the Sort/Merge; that is, sort_ or merge_ has been called
after an initiation of the Sort/Merge but before termination
of that invocation.

Sort/Merge Description Notes

Refer to Section IV, "Sort/Merge Description," for complete speciflcations
for writing a Sort/Merge Description.

At the subroutine level, either the source form or the internal form of the
Sort/Merge Description can be supplied.

If the source form is supplied, it must be supplied as a segment. The
sm_desc argument to sort_ or merge_ must have an array extent of 1 and the one
pointer must be a pointer to the segment. The segment must be an ASCII segment;
that is, an unstructured file in the Multics storage system. The segment must
contain only the Sort/Merge Description. The source form is advantageous when
the user writes the Sort/Merge Description and supplies it to the procedure
which calls sort_ or merge_,

The internal form of the Sort/Merge Description is a set of structures.
For sort_, the internal form is one, two, or three structures. The srn_desc
argument must have an array extent of exactly 3, and the three pointers are
pointers to the three structures. For merge_, the internal form is one or two
structures. The sm_desc argument must have an array extent of exactly 2, and
the two pointers are pointers to the two structures. Any of the structures can
be omitted; in that case the corresponding pointer must be null. The pointers
must be specified in the array in the following order:

addr(keys)
addr(exits)
addr(io_exits) for sort_ only

where the three structures (keys, exits, and io_exits) are defined in
Section IV, !'Sort/Merge Description." The internal form is advantageous when
the procedure calling sort_ or merge_ COflstructs the Sort/Merge Description.

AW32

The temporary directory pathname (temp_dir argument) is the name of a
directory.

Any pathname may be relative (to the user's current working directory) or
absolute.

3-5 AW32

SECTION IV

SORT/MERGE DESCRIPTION

The Sort/Merge Description contains additional
the Sort/Merge package for a particular execution.
be:

information to specialize
The information supplied may

Keys -

Exits -

Description of one or more key fields used for ranking records.

Specification of which exit points are to be used and the names
of the corresponding user supplied exit procedures.

A Sort/Merge Description is required. As a minimum, the user must specify
how records are to be ranked, either by describing key fields or by naming a
compare exit procedure. Other information in the Sort/Merge Description is
optional.

The Sort/Merge Description can be supplied in either of two formats, called
source form and internal form.

SOURCE FORM

The source form of the Sort/Merge Description can be used either at the
command level (sort or merge commands) or at the subroutine level (sort_ or
merge_ subroutines).

At the command level, the source form of the Sort/Merge Description can be
supplied as a segment or can be read via the I/O switch user_input (normally the
user's terminal). At the subroutine level~ the source form of the Sort/Merge
Description can be supplied only as a segment.

As a segment, the Sort/Merge Description must be an ASCII
is, an unstructured file in the Multics storage system.
contain only the Sort/Merge Description.

segment; that
The segment must

If the Sort/Merge Description is to be read via the user's terminal, the
Sort/Merge prints "Input:" via the I/O switch user_output and waits for input.
The user then types the Sort/Merge Description. To terminate the Sort/Merge
Description, the user types a line consisting of a period (".") followed by a
line feed. (This line is not part of the Sort/Merge Description.)

4-1 AW32

Syntax

The source form of a Sort/Merge Description consists of a set of
statements. Each statement must begin with a function keyword. The function
keyword is followed by the function keyword delimiter colon (":"). The
statement itself consists of one or more parameters, separated by parameter
delimiters. The parameter delimiters are spaces, commas (","), or (in certain
specific cases as specified below) parentheses ("(" and 11)11). Each statement
must end with the statement delimiter semicolon (";").

In the descriptions below, certain notational conventions are used. A word
. enclosed between the less than and greater than symbols ("<" and ">") is a
notational variable, which must be replaced by an actual word or phrase of the
Sort/Merge Description language. A word not enclosed between < and > is an
actual word of the Sort/Merge Description language. A phrase enclosed between
brackE~ts (11[11 and "J") is optional. A phrase enclosed between braces ("{" anli
" } n) and foIl owe d by an ell ips i s ("...") is r e qui red 1 and may be rep eat e don e 0 r'
morE: times.

Key:: statement

The Keys statement specifies key fields used to rank the records of the
input files. The format of the Keys statement is:

keys: {<key_d~scription>}

The Keys statement consists of a series of one or more <key_description>s.
The key descriptions are specified in order, the fir';3t describing t.he major key
and the last describing the most minor key. Up to 32 key descriptions may be
sl)pplied.

A key description is the specification of a single key field. The format
of a <key_description> ~s:

<datatype> «size» <position> [descending]

where:

1. <datatype>

2. <size>

is the data type of the key field. This element is required.
Table 4-1 below for the encoding of <datatype>.

See

is the size of the key field, expressed in a form which depends on
the data type. This element is required.

Fo r str lng data types, <s lze> is the 1 engt h (characters 0 r' bi ts) of
the field. The length is the exact amount of space occupied by the
field.

For arithmetic data types, <size> is the precision (~inary or
decimal digits) of the field. Scale factor, if any, must not be
written (it is not required by the Sort/Merge). The space occupied
is determined by the precision in combination with the data type and
the alignment.' (Alignment is specified via <position>.) For an
aligned bjnary field (fixed or floating), the space occupied is
~c;eased i~ nece3sa~y to an integral number o~ words.

AW32

<size> 'must be a decimal integer. The unit depends on the data
type. See Table 4-1 below for the semantics of <size>. (The ru10s
used are the same as those used by Multics PL/I.)

3. <position>

<w>

is the offset of the beginning of the key field, relative to the
beginning of the record. Consider the record as being aligned on a
word boundary, as will be the case for a Multics PL/I structure.
This element is required. There are two formats:

where <w> is the word offset. Words are numbered from 0 for
the first word of the record. This format specifies that the
key field is aligned on a word or (if <w> is even) on a double
word boundary.

<w> «b» where <w> is the word portion of the offset and is the bit.
portion of the offset; that is, the bit offset within the waro.
Bits are numbered from 0 to 35. This format implies that tile
key field is not aligned on a word boundary. If the key field
is aligned on a word boundary but the user specifies a bit
offset of 0 anyway, the Sort/Merge will operate correctly
although speed of execution may be affected.

<w> and must be expressed in decimal.

The formats for <position> and the
consistent with those shown in Multics
debug.

4. descending, dsc

values for <w> and
PL/I listings or used

are
by

specifies descending order for ranking using this key field. This
element may be omitted; the default is ascending order for this key
field.

4-3 AW32

Table 4-1. Datatype Encoding and Semantics of Size (Source Form)

Encoding I Semantics of <size> I

Data Type of I (where <size> :: n) I

<datatype>I Unit Range Space Occupied

Ch'aracter string char 9 bit 1 - 4095 n characters
(Multics ASCII) character

Bit string bit 1 bit 1 - 4095 n bits

Fixed binary bin 1 bit 1 - 71 Aligned:
1 < n S. 35: one word

36 ~ n S. 11 : two words
Unaligned: n + 1 bits

Floating binary float bin 1 bit 1 - 63 Aligned:
1 < n S. 21: one word

36 "(n < 63: two words
Unaligned: n + 9 bits

Fixed (lec imal dec 9 bit 1 - 59 n + 1 digits
(leading sign) digit

Floatir.g decimal float dec 9 bit 1 - 59 n + 2 digits
digit

In addition to the forms shown for (data type) in the table above, the
following variants are also permitted:

The following alternate spellings may be used:

chari character bini binary decicjecimal

The word "fixed" may be used (or omitted). For example:

fixed binI bin fixed dec:dec

The words may be written in any sequence. For example:

float bini bin float

AW32

F" ~"PLES OF KEY DESCRIPTIONS

char(10), o(18) Character string, Multics ASCII code, length ten characters;
starts at bit 18 of word O.

char(8), 1, descending

character(4), 2, dsc

bit(16), 0(2)

bin(17), 2

bin(17),2(18)

bin(1), 2(0)

bin(1),2

bin(36), 2

dec(6), 0(9)

Character string,
characters; starts
descending.

Character
characters;
descending.

Bit string,

string,
starts

length 16

Multics
at bit

Multics
at bit

bits;

ASCII code,
o of word 1;

ASCII
o of

starts at

code,
word 2;

bit 2 of

Fixed binary, preC1Slon 17 ; since no bit

length eight
ranking is

length four
ranking is

word O.

offset is
specified, is aligned and thus occupies one word (equivalent
to "b in (3 5) , 2") .

Fixed binary, precision 17; since a bit offset is specified,
is unaligned and occupies 18 bits; starts at bit 18 of word
2 (i.e., is in the low order half of word 2).

Fixed binary, precision 1 . , unaligned and thus occupies 2
bits; starts at bit 0 of word 2.

Fixed binary, precision 1 . , aligned and thus occupies one
word (equivalent to "bin(35) , 2") .

Fixed binary, preC1Slon 36; since no bit offset is
specified and precision is greater than 35 and word offset
is even, is aligned and occupies two words (equivalent to
"bin(71),2").

Fixed decimal, 9 bit digit, preC1Slon 6; starts at bit 9 of
word 0 and occupies 7 digits including sign (that is,
through the end of word 1).

float dec(9), 0(9) Floating decimal, 9 bit digit, precision 9; starts at bit 9
of word 0 and occupies 11 digits including exponent and sign
(that is, through the end of word 2).

Exits Statement

An Exits statement specifies the exit procedures to be used during
execution of the Sort/Merge. The format of an Exits statement is:

exits: {(exit_description>}

The Exits statement consists of a set of one or more (exit_description>s.
Exit descriptions may be specified in any order.

4-5 AW32

An exit description is the specification of one exit pOint and the user
supplied exit procedure to be called at that exit point. The format of an
<exit_description> is:

where:

1. <exit_name>

2.

is the keyword naming the exit point at which the user supplied exit
procedure is to be called. Exit names may be chosen from the
following list:

<user_name>

input_file
output_file
input_record
output_record
compare

for the Sort only
for the Sort only
for the Sort only

is the name of the entry point of the user-supplied procedure.
parameter has the same syntax and semantics as a command name.
is:

This
That

User_name can be either a segment name (e.g., segment) or a segment
name and an entry point name (e.g., segment$entry_point). In these
cases, the user's current search rules are applied to find the
procedure. (If some segment has already been initiated by the
specified reference name, that segment is used.)

User_name can also be a pathname; that is, can specify a directory
hierarchy location, either relative (to the user's current working
directory) or absolute. In this case, the search rules are not
applied and the pathname is used to find the procedure. (If some
other segment is already known by the specified reference name, that
segment is terminated first.)

INTERNAL FORM

The internal form of the Sort/Merge Description can be used only at the
subroutine level (sort_ or merge_ subroutines).

The internal form of the Sort/Merge Description is a set of structures.
For sort_, the internal form is one, two, or three structures. The sm_desc
argument must have an array extent of exactly 3, and the three pointers are
pointers to the three 3tructures. For merge_, the internal form is one or two
structures. The sm_desc argument must have an array extent of exactly 2, and
the two pointers are pOinters to the two structures. Any of the structures can
be omitted; in that case the corresponding pointer must be null. The pointers
must be specified in the array in the following order:

addr(keys)
addr(exits)
addr(io_exits) for sort_ only

where the three structures (keys, exits, and io_exits) are defined below.

!! r
04-0

keys Structure

The keys structJre is used when the caller describes key fields. The
standard key comparison routine of the Sort/Merge will then be used to rank
records. If the caller describes keys, then the compare exit must not be
specified.

If the caller does not describe keys, then the pointer to the keys
structure in the array sm_desc must be null and the compare exit must be
specified in the exits structure. The user supplied compare exit procedure will
then be used to rank records.

The keys structure is:

dell keys based,
2 version fixed bin init(1),
2 number fixed bin,
2 key_desc(user_keys_number refer(keys.number)),

3 datatype char(8),
3 size fixed bin(24),
3 word offset fixed bin(18),
3 bit_offset fixed bin(6),
3 desc char(3);

where:

1. version

2. number

is the version number of the structure (must be 1).

is tne number
user_keys_number.

of key fields, established by the
Up to 32 key fields can be specified.

value of

3. key_desc
is an array of key descriptions. Each key description is one
element of the array. The key descriptions must be specified in
order, the major key first and the most minor key last.

4. datatype

5. size

is the data type of the key field.
encoding of datatype. The value
datatype.

See Table 4-2 below for the
must be left justified within

is the size of the key field, in units which depend on the data
type.

For string data types, size is the exact length (characters or bits)
of the field.

Par 2rithmetic data tYPes, 8ize is Lne precIsIon (binary or decimal
digits) of the field. The space occupied is determined by precision
in combination with the data type. The space occupied is not
adjusted for an aligned field. For example, for an aligned fixed
binary field of one word, size must be specified as 35; for an
aligned floating binary field of two wordS, size must be specified
as 63. See Table 4-2 below for the semantics of size.

4-7 AW32

6. word_offset
is the wo r d po r t ion oft h e 0 f f s e L 0 f the tJ e gi n n i n g 0 f t h f~ key r i e 1 d ,
relative to the beginning of the record. Cunsider the record 33

being aligned on a word boundary, as will be the case 0)r a Multics
PLII structure. Words are numbered from 0 for the first word of the
record.

7. bit_offset
is the bit portion of the offset of the key field; that is, the bit
offset within the word in which the key field begins. Bits are
numbered from 0 to 35. (If the field is aligned on a word boundary,
then bit_offset is 0.)

8. desc
indicates whether ranking for this key field is to be ascending or
descending. Possible values are:

"" = use ascending ranking.

"dsc" = use descending ranking.

~~able 4-2. Datatype Encoding and Semantics of Size (Internal Form)

Encoding Semantics of size
Data Type of (where size .. n)

datatype Unit Range Space Occupied

Character string char 9 bit 1 - 4095 n characters
(Mult1cs ASCII) character

Bit string bit 1 bit 1 - 4095 n bits

Fixed binary bin 1 bit 1 - 71 n + 1 bits

Floating binary flbin 1 bit 1 - 63 n + 9 bits

Fixed dec imal dec 9 bit 1 - 59 n + 1 digits
(leading sign) digit

Floating decimal fldec 9 bit 1 - 59 n + 2 digits
digit

4-8

exits Structure

The exits structure is:

dcl 1 exits,
2 version fixed bin in it (1) ,
2 compare entry,
2 input_record entry,
2 output_record entry;

where:

1 • version
is the version number of the structure (must be 1).

2. compare
specifies the entry point of a user supplied compare exit procedure.
If the caller describes key fields (supplies a keys structure), then
this exit must not be specified.

3. input_record

4.

for the sort_ subroutine, specifies the entry point of a user
supplied input_record exit procedure. This exit can be specified
whether or not the input_file exit is specified. For the merge_
subroutine, an input_record exit cannot be specified.

output_record
specifies the entry point of
procedure. This exit can be
output_file exit is specified.

a user supplied output_record exit
specified whether or not the

10 exits Structure

The io_exits structure is:

dcl 1 io_exits,
2 version fixed bin init(l),

entry,

where:

2 input_file
2 output_file entry;

1 . version
is the version number of the structure (must be 1).

2. input_file
specifips the entry point VI a user supplied input_file exit
procedure. If the caller names input files, then this exit must not
be specified.

3. output_file
specifies the entry point of a user supplied output_file exit
procedure. If the caller names the output file, then this exit must
not be specified.

For the merge_ subroutine, the io_exits structure cannot be specified since
neither an input_file nor an output_file exit is provided.

4-9 AW32

Entry Variables

In the exits and io_exits structures, each exit point is specified via an
entry variable. The entry variable must be set (either initialized or assigned)
by a user procedure, normally the procedure which calls sort_ or merge_. The
entry variable can identify either an internal entry point (that is, an internal
procedure) or an external entry point of the procedure which sets the entry
variable; or it can identify an external entry point of another user procedure,

If none of the exits declared in either the exits or io exits structure is
to be used, then that structure can be omitted and the corresponding pOinter in
the array sm_desc must be null. (For the merge_ subroutine, there must not be a
pointer in sm_desc for the io_exits structure.) If the structur'e is included
but an exit specified in it is not to be used, then the corresponding entry
variable must be set either to sort_$noexit, which is declared:

dcl sort_$noexit entry external;

or to merge_$noexit, which is declared:

del merge_$noexit entry external;

An exit point may not be altered after the call to sort_ or ITJer'ge_, Any
change to the entry variable thereafter will have no effect, However, certain
entry points can be disabled, as specified in the descriptions of the individual
exit procedures.

WRITING EXIT PROCEDURES

The exit points to be used during an execution of the SOf't/Mer-ge and the
names of the corresponding user supplied exit procedures are specified in the
Exits statement or in the exits and io exits structures as described above. The
specifications for writing exit procedures (PL/I declare and call statements)
and the functional requirements imposed upon exit procedures are given in
Section V, "Exit Procedures."

AW32

SECTION V

EXIT PROCEDURES

A user supplied exit procedure is called by the Sort/Merge to perform a
specified function. The user exit procedure must perform that function, and
then must return to the Sort/Merge. The user exi~ procedure may perform
additional functions desired by the user.

Certain
Sort/Merge.
Sort/Merge.

exit procedures replace the correspondlng standard routine of the
Other exit procedures supplement the normal functions of the
This is specified for each individual exit procedure below.

The following exit points are provided:

input_ file for the Sort only
output_ file for the Sort only
compare
input_record for the Sort only
output_record

All exit points may be active during the same invocation of the Sort/Merge.

The entry point names of all user supplied exit procedures are defined by
the user. Specific names are shown below only for convenience in discussion.

5-1 AW32

INPUT FILE EXIT PROCEDURE

Function

An input_file exit procedure replaces the standard input reading function
of the Sort. The Sort calls the input_file exit procedure only once during an
execution of the Sort.

For the Merge, an input_file exit procedure cannot be specified.

An input_f il e exit procedur emus t per form the fa llowi ng funct i on: Fa r' each
record which is input by the user to the sorting process, the input_file exit
procedure must make one call to the entry sort_$release (described later in this
section). After the input_file exit procedure has released the last input
record to the Sort, it must return to the Sort.

input_file: proc(code);

del code fixed bin(35) parameter;

whe~e code is a standard Muitics status code (in error_table_) which must he
returned by the input_file exit procedure. If the value is not 0, then the Sort
normally prints the corresponding message and returns to its caller with the
status ~ode fatal_error. (Output)

5-2 AW32

OUTPUT FILE EXIT PROCEDURE

Function

An output_file exit procedure replaces the standard output writing function
of the Sort. The Sort calls the output_file exit procedure only once during an
execution of the Sort.

For the Merge, an output_file exit procedure cannot be specified.

An output_file exit procedure must perform the following functions: For
each record which is to be retrieved in ranked order from the Sort, the
output_file exit procedure must make one call to the entry point sort_$return
(described later in this section). If sort $return is called but there are no
more records to be retrieved from the sorting process, then sort_$return returns
with the status code end_of_info. The output_file exit procedure then must
return to the Sort. If the user desires, the output_file exit procedure may
terminate retrieval at any time prior to receiving the end_of_info status, but
it must still return to the Sort. (The entry sort_$return may return status
codes other than end_of_info in case of error.)

output_file: proc(code);

dcl code fixed bin(35) parameter;

where code is a standard Multics status code (in error_table_) which must be
returned by the output_file procedure. If the value is not 0, then the Sort
normally prints the corresponding message and returns to its caller with the
status code fatal_error. (Output)

5-3 AW32

COMPARE EXIT PROCEDURE

Function

A compare exit procedure replaces the standard key comparison procedure of
the Sort/Merge. The Sort/Merge calls the compare exit procedure each time the
sorting or merging process is ready to rank two records; that is, to determine
which of the two is first in the sorted order.

A compare exit procedure must perform the following function: The compare
exit procedure receives as arguments a pointer to each of the two records. The
compare exit procedure must determine which of the two records is first - or
that they are equal in rank - and must return the corresponding return value to
the Sort. The compare exit procedure is invoked as a function.

compare: proc(rec_ptr_', rec_ptr_2) returns(fixed bin(1»;

del (rec_ptr_1, rec_ptr_2) ptr parameter;
del result fixed bin(1);

return(result);
end compare;

where:

, . rec_ptr_'
is a pointer to a double word aligned buffer containing the first
record of the pair to be compared. This record is always the first
of the two according to the original input order. (Input)

2. rec_ptr_2
is a pointer to a double word aligned buffer containing the second
record of the pair to be compared. (Input)

3. resul t
is the result of the comparison. (Output) Possible values are:

o = the two records rank equal.

-1 = the record pointed to by rec_ptr_' ranks first.

+1 = the record pointed to by rec_ptr_2 ranks first.

If a compare exit procedure requires the length of either record, it is
available in the word preceding that record in the form:

dcl rec_len fixed bin(21) aligned;

A compare exit procedure cannot alter either the content or the length of
either record.

Aiti32

INPUT RECORD EXIT PROCEDURE

Function

An input_record exit procedure may be specified whether the Sort's standard
input_file procedure or a user supplied input_file exit procedure is used, and
supplements that input_file process.

For the Merge, an input_record exit pro~edure cannot be specified.

The Sort calls the input_record exit procedure:

1. Each time the input_file process releases a record to the Sort, and before
that record is entered into the sorting process (if there were no records
released to the Sort, this call is omitted);

2. Once more after the last input record has been released to the Sort (end of
input);

3. Additionally, each time the input_record exit procedure returns with an
action of insert.

The Sort gives the input_record exit procedure access to the current
record, the record about to be entered into the sorting process.

An input_record exit procedure need not perform any processing. If it does
no~, then the Sort will accept the current record into the sorting process.

An input_record exit procedure may perform the following functions, which
are accomplished via the values of arguments returned when the input_record exit
procedure returns to the Sort:

Accept the current record. This is accomplished by setting action = O.

Delete the current record. This is accomplished by setting action = 1.

Insert one or more records before the current record. (At the last call to
the input_record exit procedure, records may be inserted at the end of
input.) This is accomplished by setting rec_ptr to point to the record to
be inserted, setting rec_Ien appropriately, and setting,action = 3.

Alter the current record, before it is entered into the sorting process.
This is accomplished by altering the record pointed to by rec_ptr cr
setting rec_ptr to point to another record, setting rec_Ien appropriately~
and setting action = O.

Close the exit point so that the input_record exit procedure will not be
called again during this execution of the Sort. This is accomplished by
setting close_exit_sw = "1".

The input_record exit procedure must return to the Sort each time it is
called.

5-5 AW32

dcl (rec_ptr
rec_Ien
action
close_exit_sw

ptr,
fixed bin(21),
fixed bin,
bit(1)) parameter;

where:

1 • rec_ptr

3. action

points to a double word aligned buffer containing the current
record. The input_record exit procedure may alter the contents of
the record or may change the pointer to point to another record.
For the actions of accept and insert, the Sort will use the value of
rec_pt r ret urned t 0 it by the i np u t_record exi t pr'ocedur'e.
(Input/Output)

At the last call to the input_record exit procedure (either at end
of input or if there were no records released to the Sort), then
there is no current record and rec_ptr = null().

is the length of the current record in bytes. The input_record exit
procedure may change the length of the record. For the actions of
accept and insert, the Sort will use the value of rec_Ien returned
to it by the input_record exit procedure. (Input/Output)

indicates the action to be taken upon return to the Sort.
(Input/Output)

Arguments referred to below are the values returned to the Sort by
the input_record exit procedure.

Possible values of action are:

o = accept the current record. The record pointed to by rec_ptr,
whose length is given by rec_Ien, is entered into the sorting
process.

Each time the input_record exit procedure is called, the Sort
sets action to this value.

= delete the current record. The current record is not entered
into the sorting process.

3 = insert a record. The record pointed to by rec_ptr, whose length
is given by rec_len, is entered into the sorting process. The
Sort calls the input_record exit procedure again, so that the
~urrent record may be accepted or deleted or an additional
record may be inserted. At this next call to the input_record
exit procedure, the current record remains the same.

At the last call to the input_record exit procedure (end of input),
if the input_record exit procedure inserts records then they are
appended at the end of input. Any other value for action means do
not append any records, and the input_record exit will not be taken
aga.in.

AW32

4. close_exit_sw
indicates whether
(Input/Output)

the exit is to be

Possible values are:

"0" = keep this
procedure
value.

exit open.
is called,

Each time the
the Sort sets

closed hereafter.

input_record exit
close_exit_sw to this

"1" = close this exit. The Sort will not call the input_record exit
procedure again during this execution of the Sort (even if the
action is insert).

5-7 AW32

OUTPUT RECORD EXIT PROCEDURE

Function

An output_record exit procedure may be specified whether the standard
output_file procedure of the Sort/Merge or a user supplied output_file exit
procedure is used, and supplements that output_file process. The Sort/Merge
calls the output_record exit procedure:

1. Each time it has determined the next record in ranked order from the
merging process (if there were no records leaving the merging process, this
call is omitted);

2. Once more after the last record has been obtained from the merging process
(end of output);

3. Additionally, each time the output_record exit procedure returns with an
action of insert.

(The term "merging process" is used here to refer either to the merge phase
of the Sort or to the Merge function.)

The Sort/Merge gives the output_record exit procedure access to two
records:

1. The output record, about to be written to the output file. (If an
output_file exit procedure has been specified by the user, this is the
record about to be returned to that exit procedure.)

2. The next record, the record leaving the merging process.

An output_record exit procedure need not perform any processing.
does not, then the output record is accepted for the output file.

If it

An output_record exit procedure may perform the following functions, which
are accomplished via the values of arguments returned when the output_record
exit procedure returns to the Sort/Merge:

Accept the output record. This is accomplished by setting action = O.

Delete the output record. This is accomplished by setting action = 1.

Delete the record leaving the merging process. This is accomplished by
setting action = 2.

Insert one or more records after the output record. (At the first call to
the output_record exit procedure, records may be inserted at the beginning
of output. At the last call to the output_record exit procedure, records
may be inserted at the end of output.) This is accomplished by setting
rec_ptr_2 to point to the record to be inserted, setting rec_len_2
appropriately, and setting action = 3.

Alter the output record, before it is written to the output file. This is
accomplished by altering the record pointed to by rec_ptr_1 or setting
rec_ptr_l to point to another record, setting rec_len_l appropriately, and
setting action = 0 to accept (or action = 3 to insert).

Summarize data into the first record of a sequence of records with equal
keys, and delete the succeeding records of the sequence. This may be
accomplished as follows: At the first call to the output_record exit

5-8 AW32

procedure, set equal key checking on (equal_key_sw = 111"). At subsequent
calls to the output_record exit ~rocedure, if the output record and the
record leaving the merging process have equal keys (equal_key = 0), then
accumulate data into the output record and delete the record leavi~g th~
merging process (action = 2). If the two records have unequal key~
(equal_key to), then accept the output record (action = 0).

Summarize data into the last record of a sequence with e~ual keys, 8tlJ

delete the preceding records of the sequence. This may be accomplished as
follows: At the first call to the output_record exit pr-oceciure, set equal
key checking on. At subsequent calls, if the two records have equal keys
then accumulate data into a work area and delete the output record (action
= 1). If the two records have unequal keys, then alter the output record
using the accumulated data and accept that record (action = 0).

Sequence check the output file. This is accomplished by setting
seq_check_sw = "1". If the output reccrd will not collate properly with
the output file, or does not have its keys in tIle position 5pecified to the
Sort/Merge, then set seq_check_sw = 110".

Close the exit point so that the output_record exit procedure will not be
called again during this executioh of the Sort/Merge. This is accomplished
by setting close_exit_sw = "1".

The output_record exit procedure must return to the Sort/Merge each time it
is called.

output_record: proc(rec_ptr_l, rec_len_l, rec_ptr_2, rec_len_2,
action, equal_key, equal_key_sw,
seq_check_sw, close_exit_sw);

dcl (rec-ptr_l
rec..::;len_l
rec-ptr_2
rec_len_2

ptr,
fixed bin (21) ,
ptr,
fixed bin(21),
fixed bin,
fixed bin(1),
bit(1,),
bit(l),

where:

action
equal_key
equal_key_sw
seq_check_sw
close_exit_sw bi t (1)) parameter;

1. rec_ptr_l
points to a double word aligned buffer containing the output record.
The output_record exit procedure may alter the contents of this
record or may change the pointer to point to another record. The
Sort/Merge uses the value of rec_ptr_l returned to it by the
output_record exit procedure as specified below in the descripti0 n

of the actiun argument. (Input/Output)

At the first call to the output_record exit procedure (begir.ning of
out~ut) or if there were no records merged, then there is no output
record and rec_ptr_1 = null().

2. rec_len_1
is the length of the output record in bytes. The output_record exit
procedure may change the length of this record. The Sort/Merge uses
the value of rec_len_1 returned to it by the output_record exit
procedure as specified below in the description of the action
argument. (Input/Output)

5-9 AW32

"< oJ • rec_ptr_2
points to a double word aligned buffer containing the record leaving
the merging process. The output_record exit procedure may not alter
the contents of this record. For all actions except insert, the
Sort/Merge will ignore the value of rec_ptr_2 returned to it by the
output_record exit procedure. If the action is insert, then the
output_record exit procedure must change rec_ptr_2 to point to the
record to be inserted. (Input/Output)

At the last call to the output_record exit procedure (end of output)
or .if there were no records merged, then there is no record leaving
the merging process and rec_ptr_2 = null().

4. rec_len_2

5. antio!,

is the length of the record leaving the merging process. The
output_record exit procedure may not change the length of this
record. For all actions except insert, the Sort/Merge will ignore
the value of rec_len_2 returned to it by the output_record exit
procedure. If the action is in3ert, then the output_record exit
procedure must set rec_len_2 to the length of the record to be
inserted. (Input/Output)

indicates the action to be taken upon return to the Sort/Merge.
(Input/Output)

Possible values of action are:

0= accept the output record. The output t'ecord .is wr·jtten tu the
output file. The Sor't/Mer'gc uses t.he returned V~j .IlleS of
r e c_p t r _ 1 and r e c _1 e n_ 1 t 0 ide n t 1. f y t 11 e r' e cor d t \..) be w t' .i t ten.
At the next call to the output_record exit procedure. the record
leaving the merging process becomes the new output re~ord, and a
new record leaving the merging pr;o!.~t:..~~.:;s has beer! oL1La.l ned.

Each time the output_record pxit procedure is called, the
Sort/Merge sets action to this value.

= delete the output record. No r'ecord is written to the output
file. The Sort/Merge ignor'0s the retuI'ned values of r'ec __ ptr_1
and rec_len_l. At the next call to the output_record exit
procedure, the record leaving the merging process becomes the
new output record, and a new record leaving the merging process
has been obtained.

2 = delete the record leaving the merging process. (This action
should be used for summarization into the output record.) No
record is written to the output file. At the next call to the
output_record exit procedure, the output record remains the
same, and a new record leaving the merging process has been
obtained. The Sort/Merge uses the returned values of rec_ptr_l
and rec_len_1 to identify the output record for that next call
to the output_record exit procedure.

3 = insert a record after the output record. The output record is
written to the output file. The SOI't/Merge uses the retuI'l1ed
values of rec_ptr_l and rec_len_l to identify the record to be
written. The Sort/Merge calls the output_record exit procedure
again, so that the inserted record may be accepted or an
additional record may be inserted. At this next call to the
output_record exit procedure, the inserted f'ecord becomes the
new output record, and the record leaving the merging process
remains the same. The Sort/Merge uses the I'eturned values \-:,f
rec_ptr_2 and rec_len_2 to identify the inserted record.

5-10 AW32

At the last call to the output_record exit procedure (end of
output), if the output_record exit procedure inserts records then
they are appended at the end of output. Any other value for action
means do not append any records, and the output_record exit will not
be taken again.

6. equal_key
indicates whether the output record and the record leaving the
merging process have equal keys. (Input)

Possible values are:

o = the two records rank equal.

±1 = the two records do not rank equal. At the first and last calls
to the output_record exit procedure (beginning of input and end
of input), only one record is present and the Sort/Merge 8018

equal_key to this value.

If the user supplied key descriptions, then the value of equal_k~y
is determined only by those key fields; the original input order of
the two records is not used to resolve key equality. If the user'
supplied a compare exit procedure, then the Sort/Merge uses the
result of that compare exit procedure to set the value of equal_key.
(In either case, if the two records rank equal then rec_ptr_l pOints
to the record which is first according to the original input order
of the two records.)

7. equal_key_sw
indicates whether or not equal key checking is to be performed.
(Input/Output)

Possible values are:

"0" = do not check for equal keys. At the first
output_record exit procedure (beginning of
Sort/Merge sets equal_key_sw to this value.

call to
output),

"1" = check for equal keys before the next call to the output_record
exit procedure.

Since equal
equal_key_sw
summarization.

8. seq_check_sw

key
=

checking
"1" only

takes
when

time, the user should
required for actions such

set
as

indicates whether or not sequence checking is to be performed.
(Input/Output)

Possible values are:

"0" = do not sequence check.

"1" = sequence check. At the first call to the output_record exit
procedure (beginning of output), the Sort/Merge sets
seq_check_sw to this value.

Sequence checking means comparing the output record to the record
previously written to the output file. (If the user specified a~
output_file exit procedure, the output record is compared to the
record previously returned to that exit procedure.) Sequence
checking is performed after the output_record exit procedure returns
to the Sort/Merge, and only if a record is to be written to the
output file (that is, only if the action is accept or insert). If
the user supplied key descriptions, then the standard key comparison
routine of the Sort/Merge is used. If the user supplied a compare
exit procedure, then that exit procedure is called.

5-11 AW32

If the output record is out of sequence with the previous record,
then the status code fatal error is returned to the caller of sort_;
see the specifications of the sort_ and merge_ subroutines in
Section III, "Subroutines" above. (If the user specified an
output_file exit procedure, then the status code data_seq_error is
returned to that exit procedure; see the sort_$return entry below.)

All records written to the output file, including inserted records,
can be sequence checked.

9. close_exit sw
indicates whether
(Input/Output)

Possible values are:

the exit is to be closed hereafter.

"0" = keep this exit open. Each time the output_['ecord exit.,
procedure is called, the Sort/Merge sets close_exit_sw to this
value.

"1" = close this exit. The Sort/Merge will not call the
output_record exit procedure again during this 6xecutlon of
the Sort/Merge (even if the action is insert).

5-12

NOTES ON EXIT PROCEDURES

Record Areas and Pointers

Record areas used by an input_record or output_record exit procedure must
be declared as static, not automatic. Also, such areas cannot be shared with
input=file or output_file exit procedures.

Since the Sort/Merge aligns each record in a buffer on a double word
boundary, if an exit procedure applies a based declaration of the record to the
pointer(s) then correct alignment is ensured.

Original Input Order (FIFO)

For the compare and output_record exit procedures, rec_ptr_1 always pOints
to the record whose original input order was prior to the record pointed to by
rec-ptr_2. If a compare exit procedure returns with an equal ranking for the
two records, then this original input order is preserved. Original input order
has been defined above under "Key Fields" in Section I.

5-13 AW32

ENTRY: sort_$release

Function

The sort_$release entry is called each time the user releases a record to
the sorting process. Calls to sort_$release are made from a user supplied
input_file exit procedure. The caller specifies the location and length of the
record. The Sort accepts the record and stores it in its own work area.

The sort_$release entry does not apply to the Merge, since for the Merge an
input_file exit procedure cannot be specified.

d81 sort_$release entry(ptr, fixed bin(21), fixed bin(35));

call sort_$release (buff_ptr, rec_Ien, code);

where:

1 • bu ff_ptr

3. code

Status Codes

is a pointer to a byte aligned buffer containing the record.
(Input)

is the length of the record in bytes. (Input)

is a standard Multics status code returned by
values are listed below under "Status Codes."

the Sort.
(Output)

Possible

The following status codes may be returned by the sort_$release entry point
(all codes are in error_table_):

o Normal return (no error).

The call to sort $release is not in the sequence required by
the Sort; e.g.,-sort_$release has been called before sort.

The Sort has encountered a fatal error during the sorting
process. The Sort will have previously generated a specific
error message and signalled the sub_error_ condition via the
sub_err_ subroutine.

This input record is longer than the maximum supported. The
record is ignored by the Sort, and the caller may continue
to release records to the Sort.

This input record is shorter than the minimum required to
contain the key fields .. The record is ignored by the Sort,
and the caller may continue to release records to the Sort.

5-14 AW32

Function

The sort_$return entry is called each time the user retrieves an output
record, in ranked order, from the Sort. Calls to sort $return are made from- a
user supplied output_file exit procedure. Upon ret~~n from sort_$return, the
caller is given the location and length of the record.

If sort_$return is called but there are no more records to be retrieved,
then sort_$return returns tq the caller with the status code end_of_info.

The sort_$return entry does not apply to the Merge, since for' the mer'ge an
output_file exit procedure cannot be specified.

dql sort_$return entry(ptr, fixed bin(21), fixed bin(35»;

where:

1 • bu ff_ptr

2. rec_Ien

3. code

is a pointer to a double word aligned buffer containing the record.
(Output)

is the length of the record in bytes. (Output)

is a standard Multics status code returned by the Sort. Possible
values are listed below under "Status Codes." (Output)

The Sort aligns each record on a double word boundary in a work area.
if the caller applies a based declaration of the record to the pointer
correct alignment is ensured.

Thus
then

Status Codes

The following status codes may be returned by the sort_$return entry point
(all codes are in error_table_):

o Normal return (not end of information, no error).

There are no more records to be retrieved from the Sort.
This is the normal end of data indication. No record is
returned to the caller.

5-15 AW32

The call to sort_$return is not in the sequence required by
the Sort; e.g., sort_$return has been called before
sort_$release.

The Sort has encountered a fatal error during the sorting
process. The Sort will have previously generated a specific
error message and signalled the sub_error_ condition via the
sub_err_ subroutine.

End of data has been reached, but the number of records
previously returned is less than the number of records
released to the Sort. No record is returned to the caller.

The number of records returned (including this record) is
now larger than the number of records released to the Sort.
The current record is returned to the caller, and the caller
may continue to retrieve records from the Sort.

A ranking error has occurred in the records returned to the
caller; that is, the current record is out of order. The
current record is returned to the caller, and the caller may
continue to request records from the Sort.

5-16 AW32

SECTION VI

EXAMPLES

EXAMPLES OF COMMAND LEVEL

sort -input_file sort.in -output_file =.out -console_input
Input.
key: char(10), 0;

In this example, the arguments of the command state that there is one input
file, whose pathname is sort. in; the output file pathname is sort. out; the
Sort Description is input via the user's terminal; and by default the work
files are contained in the user's process directory.

The Sort Description states that there is one key, a character string of
length 10 characters, starting at word 0 bit 0 of the record. There are no
exits specified.

sort -temp_dir >udd>pool -sort_desc sd

In this example the arguments of the command state that the work files are
contained in the directory >udd>pool; and the Sort Description is contained in
the segment named sd.

Assume that the segment sd contains:

keys:
exits:

fixed bin(35) 0, char(8) 1;
input_file user$input,
output_file user$output;

The Sort Description states that there are two keys. The major key is an
aligned fixed binary field of precision 35, contained in word 0 of the record.
The minor key is a character string of length 8, contained in words 1 and 2 of
the record.

There are
procedure exit.
the output_file
must be specified
output file.

two exits, an input_file procedure exit and an output_file
The input_file exit procedure entry point is named user$input;

exit procedure entry point is named user$output. These exits
because the command did not specify either an input file or an

6-1 AW32

sort -if sort_in -of -replace -td [wdJ -sd sOI't_desc

In this example the arguments of the command state that the input file is
named sort_in; the output file is to replace the input file; work files are
contained in the user's current working directory; and the Sort Descriptjon is
contained in the segment sort_desc.

sort -input_description ntape_ansi_ vol_1 -name a" -if b \
-output_description "vfile_ c -extend" -ci

In this example there are two input files. The first input file is
specified by an attach description for the liD module tape_ansi_ with the attach
argument "vol_1 -name a". The second input file is specified by the pathname b,
and thus must be a sequential or indexed file in the storage system. The outPllt
file is specified by an attach description for the liD module vfile_ with the
attach argument "b -extend". For the liD module vfile_, this means that the
pathna~e is c and the file is to be extended; that is, output records from the
Sort will be written at the end of the file c (if it already exists).

(A \ followed by a line feed is used to continue the command arguments onto
the se~ond line.)

Tje Sort Description (not shown) will be read via the user's ter'minal.

merge -input_file in_ -if in_2 -of out 1 -merge_desc rnd

In this example, the arguments of the command state that the input files
are named in_1 and in_2; the output file is named out_oJ; and the Merge
Description is contained in the segment named md.

Assume that the segment md contains:

exits: compare user$compare,
output_record user$output;

There are two exits, a compare procedure exit and an output_record
procedure exit.

merge -ids "record_stream_ -target vfile_ a" \
-ids "syn_ user_switch name" -of c -console_input

In this example, assume that the first input file is an unstructured file
in the storage system, with the pathname a. This input file has been specified
by an attach description using the liD module record_stream_, which will
transform the record 1/0 operations requested by the Merge into the appropriate
stream liD operations for the target file a. The second input file is attached
using the liD module syn_ to the liD switch user_switchnarne, which must be
attached and closed.

6-2 AW32

EXAMPLE OF SUBROUTINE LEVEL

call sort_(input_specs, "-of =.out", sm_desc,
"", 2.5, code);

nit ,

dcl input_specs(2) char(16) init("-if a.in", !!-ids syn_ sw ii),

sm_desc(3) ptr init(addr(keys, addr(exits, null(»,
code fixed bin(35);

dcl keys,

dcl 1

2 version
2 number
2 key_desc(1),

3 datatype
3 size
3 word_offset
3 bit_offset
3 desc

exits,
2 version
2 compare
2 input_record
2 output_record

fixed bin init(1),
fixed bin init(1),

char(8) init(lfchar"),
fixed bin(24) init(7) ,
fixed bin(18) init(1),
fixed bin(6) init(O),
char(3) init("dsc n);

fixed bin init(1),
entry init(sort_$noexit),
entry init(sort_$noexit),
entry init(summarize_into_first);

In this example, there are two input files. The first has the pathname
a.in; the second is attached through the I/O module syn_ to the 1/0 switch sw,
which must be attached and closed. The output file will have the pathname
a.out.

The Sort Description is supplied in internal form. The keys and exits
structures are present; the io_exits structure is omitted.

The keys structure describes one key, a character string of length 7
characters starting at bit 0 in word 1 (the second word) of the record. Ranking
is descending.

The exits structure specifies only an output_record exit procedure, whose
entry point is summarize_into_first.

6-3 AW32

Assume the output_record exit procedure J" 0.

summarize_into_first: proc (rec_ptr _1, rec_len_1, r'ec_pt f'_2, r'pc_l en_2,
action, equal_key, equal_key_sw, seq_check_sw, close_exit_sw);

dcl (rec-ptr_1 ptr,
rec_Ien_1 fixed bin(21),
rec-ptr_2 ptr,
rec_Ien_2 fixed bin(21),
action fixed bin,
equal_key fixed bin(1),
equal_key_sw bit(1),
seq_check_sw bit(1),
close_exit_sw bit(1)) parameter;

dcl record based,
2 data fixed bin(35),
2 key char(7),
2 rest char(69);

if rec-ptr_1 = null() & rec_ptr_2 = null() then do;
1* no data in file *1
end;

else if rec_ptr_1 = null() then do;
1* beginning of file *1
equal_key_sw = "1"b; 1* check for duplicates *1
end;

_lse if rec-ptr_2 = null() then do;
1* end of file */
end;

else do;
if equal_key = 0 then do; 1* duplicate key *1

rec_ptr_1->data = rec_ptr_1->data + rec_ptr_2->data;
action = 2;
end;

end;
end summarize_into_first;

This output_record exit procedure retains only the first record from each
group of consecutive records with equal keys, accumulating into the retained
record the value of the field data from the deleted records.

6-4 AW32

w
Z
..J

CJ
Z
o
..J
<r:
I­
:J
U

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

I SERIES 60 (LEVEL 68)
MULTICS SORT/MERGE

TITlE I
~---~

ERRORS IN PUBLICATION

I
I

I
I

I

I

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

L __ _
r\
L(

Your comments wil! be Investigated by appropriate technical personnel

and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. 0

FROM: NAME - ____ _ ---- -----------------

TITLE ________________________________ _

COMPANY ------------------------------ -----

ADDRESS ____ _

DATED JULY 1976
I

I

l
I
I

DATE _________________ _

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSl Alil
NEC[SSAHY
IF MAILED

IN THE
1 UNIH:D S1 A1 E:S!

i

I

• Z
...J
. .,
z
o
...J
<I.
f­
:J
u

I
I
I
I
I
I ~;
I
I '­
I .,.. ~-;'
I l'
I ~
I U

I
I
I ,
I
I
I

~
I
i
I
I
I
I
I
I
I w
I Z
I ...J

I LJ
. Z

~S
I <l.

I 0

I ~
i '"'-
I
I
I
I
I
I
I
I
I

I
I
I

4
I

Honeywell
In the U.S.A.: 2OO~-:!t. ~~achu18118 02154
.1" Canada: 2025 Sheppard Avenue £aIt, WIIowdaIe, 0IDrI0 M2J 1 W5

In Mexico: Awnida NU8YO Leon 250, MexIco 11, D.F.

21484, 3C878. Printed In U.S.A. AW32. Rev. 0

	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	6-01
	6-02
	6-03
	6-04
	replyA
	replyB
	xBack

