
SUBJECT

SERIES 60 (LEVEL 68)

MULTICS FAST SUBSYSTEM

REFERENCE MANUAL

Reference Manual for the Multics FAST Subsystem Containing Information for
Users of the FAST Subsystem Within the Multics Storage System

SPECIAL INSTRUCTIONS

This manual completely supersedes Rev. 0 of the M ultics FAST Subsystem
Users' Guide dated March 1976.

Section 5 of this manual has been completely revised to reflect the current
version of all Multics commands presented. No change bars appear in Section 5;
however 7 all other sections of this. manual contain change bars to indicate
information changed since publication of the original document.

SOFTWARE SUPPORTED

Mwtics Software Release 8.0

ORDER NUMBER

AU25-01 September 1979

. Honeywell

PREFACE

This document describes the Multics FAST subsystem, a time-sharing facility
supporting BASIC and FORTRAN program development. The command language and
repertoire of this subsystem are based on that of the full Multics system.

The manual presupposes no knowledge of the Multics system however, the new
user may find the New Programmers' Introduction to Multics, Order No. AL40,
particularly helpful. BASIC programmers using this subsystem are referred to
the Multics BASIC manual (Order No. AM82). FORTRAN programmers are referred to
the Multics FORTRAN Reference Manual (Order No. AT58), and the Multics FORTRAN
Users' Guide (Order No. CC70).

This manual is intended to permit the programmer to use the Multics FAST
subsystem immediately. The introductory information in Section 1 and the sample
session in Section 2 provide enough information to begin using the system. An
overview of the storage system is given in Section 3. Section 4 describes
Access Control, and Section 5 contains the full command repertoire.

~ 1979, Honeywell Information Systems Inc. File No.: 1113

AU25-01

Section 1

Section 2

Section 3

Section 4

Section 5

CONTENTS

Introduction~ • • • . • . • •
Subsystem Features • • • • . • . • . .
Segment Naming Conventions

Multiple Names ••.••
Star Names •.••.•.•
Equal Names . • • • • • .

Command Language Conventions .
Typing Conventions . • . • . .
Quit Signal ••.•..•••
Error Handling . • • • • . •

Using the Multics Fast Subsystem .•.
Logging In • •

Creating and Leaving the FAST Subsystem .
Command Level ..
Logging Out •...•.
Sample Session • • • .

Multics Storage System ••
Ent_rynames . . . • •
Pathnames
Working Directory. . . • . • .
Links•

Access Control ••
Access Control List ..
Access Modes •
Setting Access .
Listing Access .
Deleting Access ...•..
Authorizations .

Commands ..•..••
Command Repertoire
Command Descriptions

add line numbers, aln
add-name~ an. • . .
basTc • . . .
change, c .
copy, cpo .
delete, dl.
delete acl,da.
delete-line numbers, dIn.
deJ.ete-name~ dn
delete-text, dt .
dprint~ dp ..
edm . . . • .
enter, e. .
enterp, ep.
fortran, ft
help.
how many users,
info. -
input
link, lk .•.
list, Is. .

iii

hmu .

Page

1-1
1-1
1-1
1-2
1-2
1-3
1-3
1-3
1-4
1-4

2-1
2-1
2-2
2-2
2-3
2-3

3-1
3-1
3-2
3-2
3-2

4-1
4-1
4-1
4-2
4-2
4-3
4-4

5-1
5-1
5-3
5-6
5-8
5-10
5-11
5-13
5-15
5-16
5-18
5-19
5-20
5-21
5-25
5-37
5-37
5-40
5-41
5-56
5-58
5-59
5-60
5-61

AU25-01

Section 6

Index

CONTENTS (cont)

list acl, lao
locate, 1 • •
login, 1.
logout ••
merge text, mgt •
move_text, mt ••
new • • • • • .
old . • • • • • •
print text, pt ••
ready-off, rdf ••
ready=on, rdn . •
rename, rna
resequence, rsq
run . • • •
save. • • • • • •
set acl, sa
set-tty, stty ••
truncate, tc ••
unlink, ul. • •

Multics edm Text Editor.
Requests • • • • • • • • • . .
Guidelines • • • • • •• •••..•..
Request Descriptions • .

Backup (-) Request. • ••..•..
Print Current Line Number (=) Request •.
Comment Mode (t) Request.
Mode Change (.) Request •••••.•..
Bottom (b) Request ••.•
Delete (d) Request.
Find (f) Request ..
Insert (i) Request.
Kill (k) Request .•
Locate (1) Request.
Next (n) Request •.
Print (p) Request . . • • .
Quit (q) Request. • • • • • . •..
Retype (r) Request •...
Substitute (s) Request.
Top (t) Request .•
Verbose (v) Request
Write (w) Request ••

Additional Requests ...•.
Execute (E) Request . • . • • • .
Merge (mer~e) Request • • • .
Move (move) Request • • . .
Quitforce (qt) Request ••..
Delete to Pointer (updelete) Request ...
Write to Pointer (upwrite) Request ..

iv

Page

5-72
5-74
5-75
5-80
5-81
5-83
5-85
5-87
5-88
5-90
5-91
5-92
5-94
5-95
5-99
5-100
5-103
5-105
5-106

6-1
6-1
6-2
6-2
6-3
6-3
6-3
6-4
6-4
6-4
6-5
6-5
6-6
6-6
6-6
6-6
6-7
6-7
6-7
6-8
6-8
6-8
6-9
6-9
6-9
6-9
6=10
6-10
6-11

i-1

AU25-01

SECTION 1

INTRODUCTION

The Multics FAST subsystem is an easy-to-use, time-sharing facility
designed primarily for creating and running BASIC and FORTRAN programs. A
simplified command language is used to create and edit text files and to compile
and run programs.

The segments and programs of this subsystem are part of the Multics system
environment. However, all the information required to use the subsystem is
contained in this manual; no prior knowledge of Multics is needed.

SUBSYSTEM FEATURES

BASIC is the same BASIC used in the full Multics system. It was based on
the Darthmouth BASIC. See the Multics BASIC manual, Order No. AM82 , for
information on programming in BASIC on MultiCS:--

FORTRAN is a superset of ANSI FORTRAN with extensions for compatability
with Multics. A number of time-sharing oriented features have been added and
the use of expressions in language constructs generally expanded. The FORTRAN
language used on the Multics FAST subsystem is described in the Multics FORTRAN I
Reference Manual, Order No. AT58. I

Command level text editing facilities on this subsystem support editing and
sorting of 'line-numbered input. Unnumbered text can be created and modified
with the edm command. File handling facilities support segment creation,
deletion, modification, and renaming. A user can access any segment in the
Multics system to which he has the appropriate access privileges. This means
that the user can use programs that belong to other users or that are from
system libraries.

A variety of online information is available to a user on request. This
includes brief descriptions of commands, information on the current state of
Multics, and segment-related information. (See the help command in Section 5
for more information.)

SEGMENT NAMING CONVENTIONS

A segment is the basic unit of information in the
(see Section 3, "Multics Storage System," for details).
attributes (described in Section 4, "Access Control"),
may contain data or programs.

1-1

Multics storage system
Each segment has access
at least one name, and

AU25-01

I

A segment name is called an entryname. A user must construct an entryname
for each segment he creates. An entryname must be from one to 32 characters
long. It can contain any uppercase or lowercase alphabetic character, any
number (0-9), and the characters hyphen (-), underscore (), and period (.). A
period has a special effect, dividing an entryname into separate components that
are interpreted by the Multics system. For example, the use of the period in:

test.fortran

produces a two-component entryname whose second component is a language suffix
indicating that the segment is a FORTRAN source program. All user-written
FORTRAN and BASIC source programs should follow this convention and end with the
appropriate suffix: basic for BASIC programs and fortran for FORTRAN programs.
When a source program is compiled, the segment name of the object code is the
same as the segment name of the source program minus the suffix. For example,
when the source programs named:

alpha_text. basic and alpha_text.old.basic

are compiled, object code segments named:

alpha_text and alpha_text.old

are created.

Multiple Names

A user can give a segment more than one entryname and can refer to the
segment by anyone of its names. The original name of a segment is considered
the primary name (the main n~e associated with the segment).

Star Names

Many commands that accept an entryname argument allow the entryname
argument to be a star name. A star name is an entryname that contains an
asterisk (*). According to the star convention (described in detail in
Section 3 of the Multics Programmers' Manual (MPM) Reference Guide, Order No.
AG91), a star name is matched with entrynames in a single directory to identify
a group of entries. Each asterisk in a star name component matches any
corresponding component of an entryname. For example:

*
* *

*.basic

beta.*.*

identifies all one-component entries.

identifies all two-component entries.

identifies all two~component entries that have basic as
their second component.

identifies all three-component entries whose first component
is beta.

A double asterisk (**) can be used to match any number of corresponding
components (including none) of an entryname. The double asterisk alone can be
used to indicate all entrynames in the directory. For example:

** identifies all entrynames regardless of the number of
components.

blue.** identifies all entrynames (regardless of the number of
components) whose first component is clue.

1-2 AJ25-01

one.**.two

Equal Names

identifies all entrynames (regardless of the
components) whose first component is one and
component is two.

number of
whose last

Many commands that require entryname arguments to be given in pairs allow
the first argument of the pair to be a star name and the second argument, an
equ~;I. name.-;r:f_ tl1~ __ fJ-rst __ entrynELDle _~rgumE3nt is a __ l:3tar name, the second
entryname argument must be an equal name. According to the equal convention
(described in detail in Section 3 of the MPM Reference Guide), an equal name
contains characters that represent one or more components of the entrynames
identified by a star name. Each equal sign (=) in an equal name represents the
corresponding component of an entryname identified by a star name. For example:

rename *.data base =.data

renames all two-component entrynames with data base as their second component so
these entrynames have, instead, a second component of data.

Each double equal sign (==) component of an equal name represents one or
more components of an entryname identified by a star name. For example:

add name **.basic ==.old.basic

adds a name to all entrynames with a last component of basic. The last two
components of these new entrynames are old.basic, and the first components are
the same as those of the entrynames ending in basic.

COMMAND LANGUAGE CONVENTIONS

Multics FAST subsystem commands are invoked when the user ~o at command
level ,1.e., ar~er he logs in or when a command completes, encounters an error,
or is stopped by issuing the quit signal). Command level is normally indicated
by a ready message (explained under "Logging In" in Section 2).

A command invocation consists of a command procedure name (command name)
plus any character-string arguments to be passed to the command procedure when
the command is invoked. A command line can begin at any horizontal position.
When arguments are supplied, at least one blank or tab must separate them from
the command name. Arguments are separated from each other by blanks or tabs and
the entire command line is terminated by a newline character.

TYPING CONVENTIONS

Typing errors can be corrected using the special characters # and @.
Although both characters are printed graphics, they do not become part of the
line. The number sign (#) erases itself and the contents of the previous print
position. Several successive number signs erase an equal number of graphics.
One erase character typed immediately after "white space" (any combination of
tabs and spaces) causes the entire white space to be erased. For example,
typing:

print_text nswf##### newfile

produces:

print_text newfile

1-3 AU25-01

The commercial at sign (0), erases the contents of the entire line up to and
including itself. For example, typing:

print_test n'print_text newfile

produces:

print_text newfile

If a programmer needs the number sign or at sign to appear in his segment,
he can type either one preceded by a backslash C\) or a cent sign (~) depending
on the terminal type. For example:

\# and \@

print as:

and @

QUIT SIGNAL

The user can interrupt the subsystem during command or program execution or
while editing by depressing the ATTN, INTERRUPT, BRK, or QUIT button on the
terminal. This action may be necessary because a program is in a loop or
because the user issued a print request by mistake while editing using the edm
editor. If the user interrupts while using the edm editor, the system queries,
"Do you want to continue editing?". If the user answers "yes", he is returned
to the editor. In all other cases, the FAST subsystem returns to command level
and issues a ready message.

ERROR HANDLING

When a user makes an error in a command line, the FAST subsystem issues a
descriptive error message of the form:

command_name: message

Several commands can invoke the same error message. For example, "unknown
argument" can be issued for most commands. When a subsystem error occurs, the
user is issued a new ready message and can reissue the command or input line
that caused it. If the user has a question about an error, he can obtain an
online description of the command that caused it using the help command
(described in Section 5).

1-4 AU25-01

SECTION 2

USING THE MULTICS FAST SUBSYSTEM

LOGGING IN

Before the user can log in, he must be registered under a project
associated with the Multics FAST subsystem. When he is registered, he is
assigned a unique identification (called a Person_id) and a password, both of
which must be entered precisely as assigned whenever he logs in. For example,
if the user's Person id is JBrown, he cannot log in as Jbrown or J Brown; if his
password is showboat, he cannot use Showboat or show boat. To ensure
confidentiality, and depending on the terminal type, the Multics system either
turns off the printing mechanism or prints a string of cover-up characters so
the user's password cannot be read by others.

After the user's Person id and password have been successfully entered, the
Mul tics initial message is typed and the subsystem issues a ready message of .the
form:

r 0920

where 0920 is the current time. This message is printed throughout the session
to inform the user that the subsystem has completed a specified task and is
again ready to accept user input.

A sample login, including the messages printed by the Multics system and
the FAST subsystem, is shown below. Prior to this interchange, the user must
dial the appropriate telephone number to establish a connection with the Multics
system. The exclamation point (!) is used here and throughout this document to
denote text typed by the user. The exclamation point is simply a notational
convention and should not actually be typed. Comments (not part of the session)
are to the right and preceded by the slash character (/).

Multics MRX.X: Multics
Load = 26.0 out of 100
login JBrown

Service, PCO, Phoenix, AZ.
units: users = 26

Password:
showboat /in an actual session, the password will either

/not print or will be obscured by cover-up characters

You are protected from preemption until 0829.
JBrown Demo logged in 09/19/79 0729.2 mst Wed from ASCII terminal "H17". I
Last login 09/18/79 1230.0 mst Tue from ASCII terminal "H16".
r 0730

2-1 AU25-01

I
Notice the three-line message printed by the Multics system after the user types
his ~assword. The second line states the Person id (JBrown) and Project id
(Demo) of the user, the date (09/19/79) and time (0729.2 mst) of log in, the day
of the week (Wed), and the terminal from which the user is log~ed in (ASCII
terminal "H17"). The third line states the date (09/18/79), time t1230.0 mst),
day (Tue), and terminal (ASCII terminal "H16") of the user's last login. Any
other important information that should be given to all users can be included at
this point, e.g., scheduled computer time over a holiday.

Creating and Leaving the FAST Subsystem

There are two methods the user may employ to enter the FAST subsystem. If
the user goes through the usual Multics login procedure described above, after
receiving the three-line message printed by the Multics system, the user is at
Multics command level. The user then types the Multics command:

fast

to enter the FAST susbystem.

Alternatively, instead of going through the entire Multics login procedure,
the user, when logging in, types:

login JBrown -po fst_process_overseer_

and he will be in the FAST subsystem.

In either event, when the user has finished working in the FAST subsystem,
to leave the subsystem the user types:

quit

This command returns the user to Multics command level. The user may then
invoke other Multics commands or proceed to log out by typing:

logout

as described in "Logging Out," below.

COMMAND LEVEL

Having successfully logged in, the user is at command level in his working
directory and can either invoke a subsystem command or input temporary text.
All text input at command level is called temporary text and must begin with a
line number. Line numbers can range from 1 to 99999. Lines can be entered in
any order. They are automatically sorted into ascending line number sequence.
If the user types in a line with a number that has been entered previously, the
new text replaces the old associated with that line number. If a user types in
a line number with no text, the existing line with that number is deleted.
Blanks or tabs preceding line numbers are ignored. All of the following lines
will be entered into temporary text:

100 if x <= y then 120
110 if x < z then let x = x + 1.2

5 data 12, 20, 35
7 end

Temporary text can be saved and complLeu and executed, or simply saved, and then
the contents of a new segment can become the temporary text.

2-2 AU25-01

The following commands are used in the sample session below. They are very
easy to learn and the only commands needed to begin programming on the Multics
FAST subsystem. The entire command repertoire is described in Section 5.

new deletes the temporary text and creates an entryname for the new
temporary text.

old replaces ~ne temporary text with the contents of a previously
saved segment.

print_text prints all or po-rtiofts of the temporary text.

run compiles and executes the
segment.

temporary text or a specified

save

basic

fortran

list

LOGGING OUT

saves the temporary text in the segment specified.

creates a BASIC object segment.

creates a FORTRAN object segment.

lists segments stored in a specified directory.

When a user has completed a session, he must log out. To log out and
disconnect the terminal, he must issue the logout command, wait for the logout
message, and disconnect the acoustic coupler.

SAMPLE SESSION

The following session shows the comnilation and execution of a BASIC
program and the compilation of a FORTRAN program. Full descriptions of the
commands used in the sample session are given in Section 5.

The user begins the session by dialing into the Multics system and receives
a response before logging in.

Multics MRX.X: Multics Service, PCO,Phoenix,AZ.
Load = 11.0 out of 80.0 units: users = 11
login Smith
Password:

You are protected from preemption until 1015.
Smith Design log~ed in 09/10779 0915.3 mst Mon from ASCII terminal "H17". I
Last login 09/09/79 1145.0 mst Sun from ASCII terminal "H16".
r 0916

After entering the FAST subsystem, to begin entering input the user issues
the subsystem command new, and supplies an entryname for the program being
created. Any name that adheres to the naming conventions specified in "Segment
Naming Conventions" in Section 1 can be assigned. This user wants to create a
BASIC program so the language suffix is basic.

new sum. basic
r 0917

2-3 AU25-01

Input of the source code begins now. This program adds two numbers and prints
the sum.

10 input x, y
20 It z = x + Y
30 print z
20 let z = x + y
print text
10 input x, y
20 let z = x + y
30 print z
r 0918

luser corrects line 20 by retyping it

The user compiles and executes the program using the run command. Notice that
the run command is invoked here without an argument. Therefore, the temporary
text is used.

run
No end statement as of 30
run: 1 error found. no execution.
r 0919

IBASIC error message
Isubsystem error message

The user adds the missing end statement and types run. This time the program
executes correctly. It is a feature of the BASIC language to prompt the user
for input with the question mark (?) character. In the example below, when the
user is prompted, he types in the numbers 12 and 78.

40 end
run
? 12
? 78
90
r 0920

The user decides to change the printout to include the expression "sum =". This
change is made by retyping the line.

30 print "sum =", z
run
? 12
? 78
sum =
r 0921

90

In the next portion, the user saves the source program that he has completed.

save Ithe program is saved with the name sum. basic
r 0922

2-4 AU25-01

The user compiles the source program so that the next time he wishes to run the
program, he will not pay the cost of compilation.

basic sum

r 0923

I this creates an object segment named sum
I in the working directory

To make sure the object segment works, he tests the program again. This time he
types the name of the program with the run command. When this is done, the run
command looks in the working directory for a segment named sum that contains
object code.

run sum

? 2
? 3
sum =
r 0924

/ this runs an object segment
/ that is in the working directory

5

The user lists the segments in his working directory. It currently contains
four segments: sum.basic contains the source code just entered, sum contains
object code, test.fortran and multiply.fortran are previously entered programs.

list

Segments = 3, Lengths 4.

re 1 sum
r w 1 sum. basic
r w 2 test.fortran
r w 1 multiply.fortran

r 0925

The user makes the previously created segment, multiply.fortran, the temporary
text.

old multiply.fortran
r 0926

He prints the segment of temporary text.

print_text

multiply.fortran 03/01/76

10 input 100, x,y
20 z = x*y
30 print 100,z
32 100 format (f5.0,f5.0)
40 end
r 0927

0926.3 mst Mon

The user compiles the source program so that the next time he wishes to run the
program, he will not pay the cost of compilation.

fortran multiply
r 0928

2-5 AU25-01

To end the session, the user logs out by issuing the logout command.

logout
Smith Design logged out 09/10/79 0929.2 mst Mon
CPU usage 5 sec, memory usage 16.5 units.

2-6 AU25-01

SECTION 3

MULTICS STORAGE SYSTEM

The basic unit of storage in the Multics storage system is a segment.
Segments are cataloged in directories and organized in a tree-structured
hierarchy to form the Multics storage system. Figure 3-1 shows a portion of
this structure in a very simplified form.

root

udd

Person id

ENTRYNAMES

Work

Jones

root directory

first directory
level inferior
to the root

second level
of inferior
directories

third level
of inferior
directories

segments in the
third-level
directories

Sample Storage System Hierarchy

Segments, directories, and links in the storage system are known as
entries. Each entry has an entryname that is constructed according to the rules
stated under "Segment Naming Conventions" in Section 1.

3-1 AU25-01

PATHNAMES

A pathname is a sequence of entrynames that specifies the position of an
entry in the directory hierarchy by tracing a series of directories from the
root to the desired entry. By convention, individual entrynames in a pathname
are separated by the greater-than character (» and the root directory need not
be specified. The following pathnames indicate the position of three segments
in the third-level directories of Figure 3-1:

)udd)Project_id)Person_id)beta

)udd)Project_id)Person_id)beta.basic

)udd)Work)Jones)beta.basic

Notice the directories Person id and Jones both contain segments named
beta. basic. Different directories can contain segments with the same entryname;
however, within a single directory, entrynames must be unique.

WORKING DIRECTORY

After successfully logging in to the Multics system, the user is in his
home directory. For users of the Multics FAST subsystem, the home directory is
also the working directory and is referred to as such throughout this manual.
Multics FAST subsystem users cannot change to another working directory.

A user can address any segment in his working directory simply by glvlng
its entryname as the path argument to a command. If a user wishes to address a
segment in a directory other than his working directory, he must supply the full
pathname of the segment as the path argument to the command. For example (using
Figure 3-1), if Jones wishes to print his program beta.basic, he types:

print_text beta.basic

If he wants to print beta.basic in the Person_id directory, he must type:

print_text)udd)Project_id)Person_id>beta.basic

LINKS

A link is an entry in a directory that points to a segment in some other
directory A link enables a user to access a segment as if it were in his
working d rectory. Given the proper access permission, a user may address the
segment 1 nke~ to by specifying the link name.

3-2 AU25-01

SECTION 4

ACCESS CONTROL

Each segment stored in the Multics storage system has a set of access
rights associated with it. The user has control of the access rights to all the
segments in his working directory and can specify both those users who has
access to a particular segment and the type of access. For example, a user may
specify that anyone has access to read his segment but that only he himself has
access to write in it. By default, other users can neither read nor write in
(change) the segments in a user's working directory. So, when a user creates a
new segment, no other user can have access to it unless he gives it to them.

ACCESS CONTROL LIST

The access rights for each segment .are described in its access control list
(ACL). An ACL contains the identification of users (User ids) permitted (or
specifically denied) access to the segment plus a description of the type of
access allowed.

The User id in the ACt consists of a three-component name: Person id,
Project id, and an instance tag, separated by periods. The Person id Is a
unique name aSSigned to each user -- usually some form of the user's name. The
Project id is the name assigned to the project under which the user is
registered on Multics. And, the instance tag is assigned by the Multics system
when the user logs in. Whenever anyone tries to access a segment on the Multics
system, his three-component name must match one of the entries on the ACL of
that particular segment; if not, he has no access to that segment.

ACCESS MODES

The type of access allowed is defined by access modes: four modes for
segments and four modes for directories.

Access modes for segments are:

read (r) data in the segment can be read.
write (w) data in the segment can be modified (written).
execute (e) an executing process can transfer to, ana execuLe

instructions in, this segment.
null (n) access to the segment is denied.

4-1 AU25-01

Access modes for directories are:

status

modify

append

null

(8)

(m)

(a)

(n)

the contents of the directory can be listed; the
attributes of segments and directories contained in the
directory can be obtained.
the segments in the directory can be deleted; the
attributes of existing segments and directories contained
in the directory can be changed or deleted.
new segments and directories can be created in the
directory.
access to the directory is denied.

As stated earlier, a user of the Multics FAST subsystem can assign other
users access only to segments in his working directory. Once specified, the
access to a segment is not permanent; the user can change it at will by
specifying different modes or User ids.

SETTING ACCESS

The command the user invokes to set the ACL, set acl, either adds an entry
to the ACL or modifies an existing entry. The set acl command, which can be
abbreviated sa, is described in detail in Section 5 and has the general format:

sa pathname mode(s) User_id

For example, Tom Smith has text in segment xsolve of his working directory
that Jane Doe wants to use. To give her access so she can read the segment, he
types:

sa xsolve r JDoe.*.*

where JDoe is Jane Doe's Person ide

If he instead decides that his segment should not be available to Jane and
wants to make sure she cannot read it, he types:

sa xsolve null JDoe.*.*

The asterisk following Jane's Person id in the above command lines tells
the Multics system that the requested access applies to Jane no matter what
project she may be on, no matter what instance tag may be associated with her
work. For example, the User id that Tom gave in both commands, JDoe.*.*,
matches:

JDoe.ProjB.*
JDoe.ProjA.*
JDoe.ANYTHING.*

When the user wants to denote any Person_id, he types an asterisk for the
first component; any Project id, an asterisk for the second component; and any
instance tag, an asterisk for the third component. (It is best to use an
asterisk for the third component since the user generally does not know the
instance tag.) Thus, a User id of * * * specifies any Multics user.

4-2 AU25-01

LISTING ACCESS

To check the ACL of a segment, the user invokes the command that lists the
ACL, list acl. The list acl command, which can be abbreviated la, is described
in detail-in Section 5 and has the general format:

la pathname

As explained earlier 7 any pathname that is simply an entryname indicates a
segment in the working directory. Thus, if Tom Smith wants to list the ACL of
xsolve, he types:

la xsolve

rw TSmith.ProjA.*
r JDoe.*.*
rw *.SysDaemon.*
r *.ProjA.*

The third entry in the example, *.SysDaemon.*, identifies various system
processes that control such things as printing and making copies of segments or
backup tapes. The system normally places appropriate ACL entries on every
segment the user creates so that system processes will have the necessary access
to perform the various backup, metering, and input/output functions.

DELETING ACCESS

A third access control command, delete acl, allows the user to delete ACL
entries. This command, which may be abbreviated da, is described in detail in
Section 5 and has the same general format and rules as the list acl command.

For example, if Tom Smith has changed segment beta, he might want to also
change its ACL. First, he lists the ACL entries to see who currently has access
to beta:

la beta
rw TSmith.ProjA.*
re Gary.Merlin.*
re Butler.Merlin.*
rw Jones.*.*
re JDoe.*.*
rw *.SysDaemon.*
r * * *

Tom decides that he no longer wants user Jones, an~one on the Merlin
project, or the entire user community (represented by *.*.*) to have access to
beta. Therefore, he invokes the delete acl command in the following manner:

da beta Jones * * * .Merlin

If Tom now again invokes list_acl, he will see that the requested change
has already taken place.

la beta
rw TSmith.ProjA.*
re JDoe.*.*
rw *.SysDaemon.*

4-3 AU25-01

On the Multics system, changes in access rights occur instantaneously. If
Jane has access to a segment of Tom's, and he changes the access while she is
using the segment, the Multics system prints out a message telling her that she
has incorrect access to the segment and returns her to command level.

AUTHORIZATIONS

Several authorization parameters are kept for users and projects in system
and project tables.

For each person registered on the system, a person maximum authorization
can be kept (by the system security administrator) in a system table. This
maximum authorization is composed of the highest sensitivity level and all the
categories of information this person may ever access, on any project. Each
installation has its own procedures for assigning and changing person maximum
authorizations.

Each person registered on the system also has a default login
authorization, kept in a system table, and changeable by the person himself (see
the login command description in Section 5). If a person does not specify an
authorization at log-in time, the default authorization is assumed.

For each project on the system, a project maximum authorization is kept (by
the system security administrator) in a system table. This maximum
authorization is composed of the highest sensitivity level and all the
categories of information that any user logged in on this project may ever
access. Again, each installation has its own procedures for aSSigning and
changing project maximum authorizations.

For each person on a project (i.e., for each user), a user maximum
authorization is kept (by the project administrator) in a project table. This
maximum authorization is composed of the highest sensitivity level and all the
categories of information this person may access when logged in on this project.

At the time the user logs in, a process is created and its authorization
and maximum authorization are established.

The process maximum authorization is the highest authorization the process
can attain. It is computed directly from the three maximum authorization
parameters:

person maximum authorization
project maximum authorization
user maximum authorization on the project

The maximum authorization has the same form as an authorization or an
access class. The sensitivity level of the process maximum authorization is the
smallest of the sensitivity levels of the three maximums. The category set of
the process maximum authorization is composed only of categories contained in
the category sets of all three maximums. Thus, the process maximum
authorization is the highest authorization that is less than or equal to each of
the three maximum authorization parameters.

4-4 AU25-01

The process
parameters:

authorization is

process maximum authorization
terminal access class

computed directly

-auth argument to login or new_proc (or default)

from the following

The sensitivity level of the process authorization is computed in the same
manner as that of the process ma~imum authorization -- it is the smallest of the
sensitivity levels of the three parameters and its category set is composed only
of categories contained in the category sets of the three parameters.
Therefore, the procesa a.u_thorization is the highest authorization that is less
than or equal to each of the three parameters. If the process authorization is
not less than or equal to the process maximum authorization, then the process is
not created, login or new_proc fails, and the system prints a message.

4-5 AU25-01

SECTION 5

COMMANDS

COMMAND REPERTOIRE

A complete list of commands available on the Multics FAST subsystem is
given below, organized in terms of general function. A detailed description of
each of these commands, in alphabetical order, is presented in this section.

Several subsystem commands are standard Multics commands. These commands
have the same capabilities on the FAST subsystem as they do on the full Multics
system.

Access to the System

enter
connects art anonymous User to the system.

login
connects a registered user to the system.

logout
terminates a user session and disconnects the terminal.

Edit and Print

new
deletes the temporary text and creates an entryname for the new
temporary text.

old
replaces the temporary text with the contents of a previously saved
segment.

print_text
prin~s all or portions of the temporary text.

save
saves the temporary text in the segment specified.

change
replaces a specified character string within a line.

delete line numbers
-removes the line number from each line of the temporary text.

delete text
-deletes lines from the temporary text.

5-1 AU25-01

locate
prints lines from the temporary text containing a specified string.

input
establishes a mode of input where the system supplies the line
number and the user completes the line.

merge text
- inserts the contents of a segment into the temporary text.

move text
- relocates one or more lines of the temporary text.

resequence
changes the line numbers in the temporary text.

add line numbers
- aads a line number to each line of the segment.

edm
invokes an editor more nowerful than the command level editor; used
to edit text without line numbers.

dprint
queues a segment for printing on the high-speed line printer.

Compile and Execute

run
compiles and executes the temporary text or a specified segment.

basic
creates a BASIC object segment.

fortran
creates a FORTRAN object segment.

Information

help
prints online description of specified topic.

info
prints the segment name of the temporary text, date, time, quota,
money spent, and total money allotted.

hmu
prints the number of users.

ready_off
suppresses the ready message.

ready on
- causes the ready message to be printed.

5-2 AU25-01

Storage System

copy
copies a segment.

list
prints information about segments and directories.

delete
deletes a segment.

add name
- adds a name to a segment.

delete name
-deletes a name from a segment.

rename
changes the name of a segment.

link
creates a link.

unlink
deletes a link.

Access Control

delete acl
removes an ACL entry.

list acl
prints an ACL entry.

set acl
adds or changes an ACL entry.

Terminal Control

set tty
- allows the user to change the default modes for the terminal.

COMMAND DESCRIPTIONS

The remainder of this section contains descriptions of the Multics FAST
subsystem commands, presented in alphabetical order. Each description contains
the name of the command (including the abbreviated form, if any), discusses the
purpose of the command, and shows the correct usage. Notes and examples are
included when deemed necessary for clarity. The discussion below briefly
describes the content of the various divisions of the command descriptions.

Name

The "Name" heading lists the full command name and its abbreviated form.
The name is usually followed by a discussion of the purpose and function of the
command and the expected results from the invocation.

5-3 AU25-01

This part of the command description first shows a single line that
demonstrates the proper format to use when invoking the command and then
explains each element in the line. The single line contains the full command
name followed by the valid arguments. Some commands have required arguments;
some commands have optional arguments. Most commands have both required and
optional arguments; in general, the required arguments precede the optional
arguments.

Any command argument preceded and followed by a brace ({I) is an optional
argument. Any other argument is a required argument. Anything specifically
identified as "control arg" in the usage line must be preceded by a minus sign
(-) in the actual invocation of the command. For example, the usage line:

commandname path !-control_arg} {xxx}

means that the command has one required argument and two optional arguments.
Therefore, any of the following command lines are valid:

commandname path
commandname path -control_arg
c ommand name path xxx
commandname path -control_arg xxx

If a command accepts more than one of a specific type of argument, an "s"
is added to the argument name. For example, the usage line:

commandname paths {-control_args}

means that the user must specify at least one pathname and may specify none,
one, or several control arguments.

If a command accepts multiple arguments that must be in a specific order,
the usage line is as follows:

commandname xxx1 yyy1 ... xxxQ YYYQ

to show that although several xxx and yyy arguments can be given, they must be
given in pairs.

Notes

Comments or clarifications that relate to the command as a whole are given
under the "Notes" heading. Also, where applicable, the required access modes,
default condition (invoking the command without any arguments), and any special
case information are included.

5-4 AU25-01

Examples

The examples show different valid invocations of the command. The results
of each example command line are either shown or explained. Where input is to
be typed in by the user, the line to be typed is preceded by an exclamation
point (!), which is not to be typed. This convention is followed in all
examples in this section:-

Other Readings

Additional headings are used in some descriptions, particularly the more
lengthy ones, to introduce specific subject matter. These additional headings
may appear in place of, or in addition to, the notes.

5-5 AU25-01

add line numbers add line numbers - -

The add line numbers command adds a new set of line numbers to a segment.

add line numbers path {new_number incrementl

where:

1. path
is the pathname of the segment to be modified.

2. new number
- is the first line number to be added. If this argument is not

specified, the default first line number is 100.

3. increment
is the increment used to derive subsequent line
default). This argument can only be specified
argument is given.

numbers (10 by
if the new number

Notes

The value of the new number argument is used for the first line and the
increment is added to derTve subsequent numbers. If the text already has line
numbers, these are retained but become part of the text on the line.

If the segment does not end with the newline character, the segment is
truncated to the previous newline character.

Example

data 1 01/12/76 1119 mst Mon

nonnumbered
data segment
input
r 1120

add line numbers data 1
I' 1T21

print text date 1 -nhe
100 nonnumbered-
110 data segment
120 input -
I' 1122

/default values are used

/-nhe suppresses the printing
lof the header line

5-6 AU25-01

add line numbers - -

add line numbers data 1 500 5
r i122 -

print text data 1 -nhe
500· ·100 nonnumb:e-red
505 110 data segment
510 120 input
r 1123

add line numbers

5-7 AU25-01

add name add name

Name: add_name, an

The add name command adds alternate name(s) to the· existing name(s) of a
segment, multiaegment file, ~irectory, or link. See also the descriptions of
the delete name and rename commands.

add name path names

where:

1. path
is the
link.

pathname of a segment, multisegment file, directory, or

2. names
are additional names to be added.

Notes

The user must have modify permission on the
entry receiving the additional name.

directory that contains the

The star and equal conventions can be used (see Section 1).

Two entries in a directory cannot have the same entryname; therefore,
special action is taken by this command if the added name already exists in the
directory that contains the path argument. If the added name is an alternate
name of another entry, the name is removed from this entry, added to the entry
specified by path, and the user is informed of this action. If the added name
is the only name of another entry, the user is asked if he wishes to delete the
other entry. If he answers "yes", the entry is deleted and the name is added to
the entry specified by path; if he answers "no", no action is taken.

Examples

The command line:

add name >my_dir>example.p11 sample.p11

adds the name sample.p11 to the segment example.p11 in the directory >my_dir.

5-8 AU25-01

add name add name

add_name)udd)**.private ==.public

adds to every entry having a name with private as the last component a similar -
name with public, rather than private, as the last component.

5-9 AU25-01

basic basic

Name: basic

The basic command invokes the BASIC compiler to translate a segment
containing BASIC source code. The object segment is saved in the user's working
directory. Users of BASIC should refer to the Multics BASIC Manual, Order No.
AM82.

basic path

where path is the pathname of the source program. The suffix of basic need not
be given as part of the path argument. However, the basic suffix must be the
last component of the name of the segment.

Examples

basic mpg.basic
r 1245

basic test
r 1246

/suffix of basic is assumed

5-10 AU25-01

change change

Name: change, c

The change command replaces a string of characters within a line with a new
string. The change request can apply to one line or a range of lines. It is
not possible to cha.-ng-e-t-hEf line Iltittiber at -the beginning of the line with this
command.

change /old_string/new_string/ first line {last_line}

where:

1 • /
is a delimiter that can be any character that is not found in
old_string or new_string except blank, tab, or digit.

2. old_string
is a string of characters to be replaced.

3. new string
- is a string of characters to be substituted for each occurrence of

the old_string argument.

4. first line

t::
.J.

Note

last

is the line number of the first line to be changed.

is the line number of the last line to be changed; if this argument
is not given, the change is made only to the line specified by the
first_line argument.

All lines between and including the first and last lines specified are
used. The line numbers specified by the first line and last line arguments do
not have to appear in the text, but the range specified by them must contain at
least one line.

Examples

130 for n = 1 to 5
140 let e 40
150 for m 1 to 3
160 let e = e + p(m)
change Ie/sf 150 170
r 1326

print_text -nhe
130 for n 1 to 5
140 let e = 40

/lines between and including line numbers 150
land 170 are used

5-11 AU25-01

change

150 for m = to 3
160 lat a = a + p(m)
r 1327

change /lat/let/ 160
r 1327

print_text 160
160 let s = s + p(m)
r 1328

change

/"e" in "let" was changed

5-12 AU25-01

copy copy

Name: copy, cp

The copy command causes copies of specified segments and multisegment files
to be created in the specified directories with the specified names. Access
control lists (ACLs) and multiple names are optionally copied.

copy path11 {path21 ..• path1~ path2~} {-control_args}

where:

1 . path1 i
is the pathname of a segment or multisegment file to be copied. If
path1 is the name of a link, the command copies the target of the
link.

2. path2i
is the pathname of a copy to be created from path1i. If the last
path2 argument is not given, the copy is placed -in the working
directory with the entryname of path1~.

3. control args
can be chosen from the following list of control arguments:

-name, -nm
copies multiple names.

-acl
copies the ACL.

-all, -a
copies multiple names and the ACL.

-brief, -bf
suppresses the warning messages "Bit count inconsistent with current
length ... " and "Current length is not the same as records used ... ".

The control arguments can appear once anywhere in the copy command line
after the command name and apply to the entire copy command line.

Notes

Read access is required for path1i. Status permission is required for the
directory containing path1i. Append-permission IS required for the directory
containing path2i. Modify- permission is required if the -name, -acl, or -all
control argument 1S used.

The star and equal conventions can be used (see Section 1).

5-13 AU25-01

copy copy

If the ACL of a segment or multisegment file is being copied, then the
initial ACL of the target directory has no effect on the ACL of the segment or
multisegment file after it has been copied into that directory. The ACL remains
exactly as it was in the original directory.

Since two entries in a directory cannot have the same entryname, special
action is taken by this command if the name of the segment or multisegment file
being copied (specified by path1i) already exists in the directory specified by
path2i. If the existing entry has an alternate name, the entryname that would
have resulted in a duplicate name is removed and the user is informed of this
action; the copying operation then takes place. If the existing entry has only
one entryname, the entry that already exists in the directory must be deleted to
remove the name. The user is asked if the deletion should be done; if the user
answers "no", the copying operation does not take place.

The copy command prints a warning message if the bit count of path1l is
less than its current length or if the current length is greater than the number
of records used. These warnings are suppressed by the use of the -brief control
argument.

Example

The command line:

copy >old_dir>fred.list george.=

copies segment or multisegment file named fred.list in the directory >old dir
into the working directory as george.list.

5-14 AU25-01

delete delete

Name: delete, dl

The delete command causes the specified segments and/or multisegment files
to be deleted.

delete paths {-control_args}

where:

1 . paths
are the pathnames of segments or multisegment files to be deleted.
The star convention can be used.

2. control args
can be chosen from the following:

Notes

-brief, -bf
inhibits the printing of an error message
multisegment file to be deleted is not found.

-force

if a segment or

deletes the specified entries whether or not they are protected,
without issuing a query.

In order to delete a segment or multisegment file with the delete command,
the entry must have both its safety switch and its copy switch off and the user
must have modify permission on the containing directory. If either switch is
on, the user is interrogated as to whether he wishes to delete the entry.

If anyone of the paths is a link, delete prints a message and does not
delete either the path in question or the link. (See the description of the
unlink command.) If anyone of the paths is a directory, delete prints a
message; it does not delete the directory.

5-15 AU25-01

delete acl delete acl

Name: delete_acl, da

The delete acl command removes entries from the access control lists (ACLs)
of segments, multisegment files, and directories. For a description of ACLs,
see Section 4.

delete acl {path} {User_ids} {-control_args}

where:

1 . path
is the pathname of a segment, multisegment file, or directory. If
it is -wd, -working dir, or omitted, the working directory is
assumed. If path is omitted, no User id can be specified. The star
convention can be used.

2. User ids
are access control names that must be of the form
Person id.Project id.tag. All ACL entries with matching names are
deleted. (For a description of the matching strategy, refer to the
set acl command.) If no User id is given, the user's Person id and
current Project_id are assumed.

3. control args
can be chosen from the following:

Notes

-all, -a
deletes the entire
.SysDaemon..

-directory, -dr

ACL with the

deletes ACLs for only directories.
multisegment files, and directories.

-segment, -sm

exception of an entry for

The default is segments,

deletes ACLs for only segments and multisegment files.

-brief, -bf
suppresses the message "User name not on ACL."

If the delete acl command is
entry for the user's Person id and
directory.

invoked with no arguments, it deletes the
current Project_id on the ACL of the working

5-16 AU25-01

delete acl delete acl

An ACL entry for *.SysDaemon.* can be deleted only by specifying all three
components. The user should be aware that in deleting access to the SysDaemon
project he prevents Backup.SysDaemon.* from saving the segment or directory
(including the hierarchy inferior to the directory) on tape, Dumper.SysDaemon.*
from reloading it, and Retriever.SysDaemon.* from retrieving it.

The user needs modify permission on the containing directory.

Examples

The command line:

delete acl news .Faculty. Jones

deletes from the ACL of news all entries with Project_id Faculty and the entry
for Jones.*.*.

The command line:

da beta.** ..

deletes from the ACL of every segment, multisegment file, and directory (in the
working directory) whose entryname has a first component of beta all entries
except the one for *.SysDaemon.*.

The command line:

da beta.** •. -sm

deletes from the ACL of only all segments and multisegment files (in the working
directory) whose entryname has a first component of beta all entries except the
one for *.SysDaemon.*.

5-17 AU25-01

delete line numbers - -

Name: delete_line_numbers, dln

The delete_line_numbers
following it from each line
number, it is left unchanged.

command removes the line number and one space
of a segment. If a line is found without a line

where path is the pathname of the segment to be modified.

Note

Unnumbered text can be created and modified only by using the edm command.
New line numbers can be added to unnumbered text with the add line numbers
command.

Example

print_text data

data 01/12/76 1543.1 mst Mon

10 ten
20 twenty
30 thirty
r 1543

delete line numbers data
r 1544-

print_text data

data 01/12/76 1544.7 ms~ Mon

ten
twenty
thirty
r 1545

518 AU25-01

delete name delete name

Name: delete_name, dn

The delete name command deletes specified names from segments. multisegment
files, links, or directories that have multiple names. See the descriptions of
the add name and rename commands for adding and changing names, respectively.

delete_name paths

where paths are the pathnames that are to be deleted.

Notes

In keeping with standard practice, each ~ath can be a relative pathname or
an absolute pathname; its final portion tthe storage system entryname in
question) is deleted from the segment or directory it specifies, provided that
doing so does not leave the segment or directory without a name. In this case,
the user is interrogated as to whether or not he wishes the segment or directory
in question to be deleted.

The user must have modify permission on the containing directory.

The star convention can be used.
see Section 1.

Example

The command line:

delete name alpha >my_dir>beta

For a description star

deletes the name alpha from the list of names for the appropriate entry in the
current working directory and also deletes the name beta from the list of names
for the appropriate entry in the directory >my dir. Neither alpha nor beta can
be the only name for their respective entries. -

5-19 AU25-01

delete text delete text

Name: delete_text, dt

The delete text command deletes one or more lines of the temporary text.

delete text first line {last_line}

where:

1 •

2.

Note

first line
is the line number of the first line to be deleted.

last line
is the line number of the last line to be deleted. If this number
is not given, only the line specified by the first line argument is
deleted.

All lines between and including the first and last lines specified are
deleted. The line numbers specified by the first line and last line arguments
need not appear in the text, but the range specified by them must contain at
least one line.

Example

print_text eval.basic

eval.basic 01/16/76 1023 mst Fri

100 input n
110 for i = 1 to n
120 input x
130 let t1 ~ t1 + x
140 let t2 = t2 + y
150 if t2 > 9000 then 500
160 next i
r 1024

delete text 140 155 /deletes all lines between and including lines
r 1025- /140 and 155

print text -nhe
100 input n
110 for i = 1 to n
120 input x
130 let t1 = t1 + x
160 next i
r i 025

5-20 AU25-01

dprint dprint

Name: dprint, dp

The dprint (daemon print) command queues specified segments and/or
multisegment files for printing on one of the Multics line printers. The output
is by default identified by the requestor's Person ide This command does not
work on standard object segme.nts.

dprint I-control_args} {paths}

where:

1 • control args
can be chosen from the following:

-access label, -albl
for each pathi specified, uses the access class of that segment as a
label at the top and bottom of every page (see "Notes" below).

-brief, -bf
suppresses the message "j requests signalled, k already queued.
(request type queue)." This control argument cannot be overruled
later in the command line. (See the -request_type and -queue
control arguments below.)

-bottom label STH, -blbl STH
uses the specified string as a label at the bottom of every page
(see "Notes" below).

-copy N, -cp N
prints N copies eN < 4) of specified paths. This control argument
can be overruled by-a subsequent -copy control argument. If pathi
is to be deleted after printing, all N copies are printed first. If
this control argument is not given, one copy is made.

-delete, -dl
deletes (after printing) specified paths.

-destination STH, -ds STH
labels subsequent output with the string STH, which is used to
determine where to deliver the output. If this control argument is
not given, the default is the requestor's Project ide This argument
can be overruled by a subsequent -destination control argument.

-header STH, -he STH
identifies subsequent
argument is not given,
This argument can be
argument.

-indent N, -in N

output by the string STH. If this control
the default is the requestor's Person ide

overruled by a subsequent -header control

prints so that the left margin is indented N columns. If this
control argument is not given, no indentation occurs.

5-21 AU25-01

dprint dprint

-label STH, -lbl STH
uses the specified string as a label at the top and bottom of every
page (see "Notes" below).

-line length N, -11 N
prints so that lines
following line, i.e.,
this control argument
is used.

longer than N characters are continued on the
no line of output extends past column N. If

is not given, a line length of 136 characters

-no endpage, -nep
- prints so that the printer skips to the top of a page only when a

form-feed character is encountered in the input path. This argument
causes the -page_length control argument, if present, to be ignored.

-no label, -nlbl
- does not place any labels on the printed output.

-non edited, -ned
-prints nonprintable control characters as octal escapes rather than

suppressing their printing.

-notify, -nt
sends a confirming message when the requested output is done,
showing the pathname and charge.

-page_length N, -pI N
prints so that no more than N lines are on a page. If this control
argument is not given, a page length of 60 lines is used.

-queue H, -q H
prints in priority queue N (N < 3). This control argument can be
overruled by a subsequent -queue- control argument. If this control
argument is not given, queue 3 is assumed. (See "Notes" below.)

-request type STH, -rqt STH
places dprint requests specified paths in the queue for re~uests
of the type identified by the string STR (see "Notes" below). If
this control argument is not given, the default request type is
"printer".

-single, -sg
prints so that any form-feed or vertical-tab character is printed as
a single newline character.

=top label 8TH, -tlbl 8TH
-uses the specified string as a label at the top of every page (see

"Notes" below).

-truncate, -tc

2. paths

prints so that any line exceeding.the line length is truncated
rather than "folded" onto subsequent lines.

are the pathnames of segments to be queued for printing.

5-22 AU25-01

dprint dprint

If the dprint command is invoked without any arguments, the system prints a
. iIie-ssage- gf'iing--the status·· of -queue- 3.

If control arguments are present, they affect only paths following them in
the command line. If control arguments are given without a following path
argument, they are ignored for this invocation of the command and a warning
message is returned.

The -queue 1 control argument places requests in the top priority queue,
-queue 2 places them in the second priority queue, -queue 3 (or not specifying a
queue) places them in the third priority queue, and -queue 4 places them in the
lowest priority queue. All requests in the first queue are processed before any
requests in the other queues, and so on. Higher priority queues usually have a
higher cost associated with them.

The -brief, -delete, -single, -truncate, and -no end page control arguments
cannot be reset in a given invocation of the command; e.g., once -delete appears
in a line, all subsequently specified paths are deleted after printing.

The -request type control argument is used to ensure that a request is
performed by a member of a particular group of printers, e.g., to distinguish
between onsite printers and remote printers at various locations, or between
printers being charged to different projects. Only request types of generic
type "printer" can be specified. Request types can be listed by the
print_request_types command.

If a requested output operation cannot be done, the daemon process sends a
message to the user of the form:

Request path reason.

The -label, -top label, -bottom label, and -access label control arguments
allow the user to place labels on each page of printed output. The default
labels are access labels, i.e. the -access label control argument is assumed.
These control arguments are read, in sequence, from left to right by the dprint
command. For example, if -access label is specified, it is printed at the top
and bottom of the page. If the next control argument is -top label 8TR, then
the top access label becomes 8TR but the bottom label remains-the same. Each
label control araument can override the nrecedina one. The label lines are
printed on the second line of the page and on the next to last line of the page.
Note that if the access class of pathi is system low and the access class name
defined for system low is null, then-the default access label is blank. The
default access label can be overridden by the -no label control argument if
labels are not wanted or by one of the other label-related control arguments.

5-23 AU25-01

dprint dprint

The top and bottom labels are treated independently. Thus, use of the
-top_label control argument alone leaves an access label as the default bottom
label. A page label that exceeds 136 characters is truncated to that length.
Only the first line of a page label is printed, i.e., a new line terminates the
page label. Form feeds and vertical tabs are not permitted. The various label
control arguments are incompatible with the -no endpage control argument and
they are ignored independent of the position Tn the command line of the
-no_endpage control argument.

Paths cannot be printed unless appropriate system processes have sufficient
access. The process that runs devices of the specified class (normally
IO.SysDaemon) must have read access to all paths to be printed and status
permission on the containing directory. Pathi cannot be deleted after printing
unless its safety switch is off and the system-process has at least sm access on
the containing directory. Also, pathi is not deleted if it has a
date-time-modified value later than the date-time-modified value at the time of
the dprint request.

The dprint command does not accept the star
warning message if a name containing asterisks is
processing its other arguments ..

Example

The command line:

convention. It prints a
encountered, and continues

dp -he Jones -cp 2 -dl test1 test7 -he Doe -ds BIN-5 text.runout

causes two copies of each of the segments named test1 and test7 in the current
working directory to be printed with the header "Jones" and then deleted. It
also causes two copies of the segment named text.runout in the current working
directory to be printed with the header "Doe" and destination "BIN-5" , then
deleted.

5-24 AU25-01

edm edm

Name: edm

The edm command invokes a simple Multics context editor. It is used for
creating and editing ASCII segments. This command cannot be called recursively.
See the Multics lJs-er' s -Gui-de (Order No. AL40) for an int:ro-du-c~i-on --to the use of
edm. ---

edm {path}

where path specifies the pathname of the segment to be created or edited.
The path argument can be either an absolute or a relative pathname. If path is
not given, edm begins in input mode (see "Notes" below), ready to accept
whatever is subsequently typed as input. If path is given, but the segment does
not yet exist, edm also begins in input mode. If path specifies a segment that
already exists, edm begins in edit mode.

Notes

This command operates in response to requests from the user. To issue a
request, the user must cause edm to be in edit mode. This mode is entered in
two ways: if the segment already exists, it is entered automatically when edm
is invoked; if dealing with a new segment (and edm has been in input mode), the
mode change character must be issued. The mode change character is the period
(.), issued as the only character on a line. The command announces its mode by
typing "Edit." or "Input." when the mode is entered. From edit mode, input
mode is also entered via the mode change character.

The edm requests are predicated on the assumption that the segment consists
of a series of lines to which there is a conceptual pointer that indicates the
current line. (The "top" and "bottom" lines of the segment are also
meaningful.) Various requests explicitly or implicitly cause the pointer to be
moved; other requests manipulate the line currently pointed to. Most requests
are indicated by a single character, generally the first letter of the name of
the request. For these requests only the single character (and not the full
request name) is accepted by the command. Certain_requests have been considered
sufficiently dangerous, or likely to confuse the unwary user, that their names
must be specified in full.

If the user issues a quit signal while in -edit mode and then invokes the
program interrupt command, the effect of the last request executed on the edited
copy is- nullified. (See the description of the program interrupt command in
this document.) In addition, any requests not yet executed are lost. If
program interrupt is typed after a quit in comment or input modes, then all
input sTnce last leaving edit mode is lost. If the user wishes to keep the
input, he must invoke the start command following the quit.

In the examples that follow, the pointer that indicates the current line is
represented by an arrow (-».

5-25 AU25-01

edm edm

Requests

The requests are as follows (detailed descriptions follow the list, in the
same order):

backup

= print current line number

comment mode

mode change

b bottom

c change

d delete

E execute

f find

i insert

k kill

1 locate

merge insert segment

move move lines within segment

n next

p print

q quit

qf quitforce

r retype

s substitute

t top

updelete delete to pointer

upwrite write to pointer (upper portion of segment)

v verbose

w write

5-26 AU25-01

edm

Backup (-)

Format:

Purpose:

Spacing:

Pointer:

Default:

Example:

..

edm

Move.poi-nte-r backwards (toward the top of t-he.segment) the number
of lines specified by the integer ~.

A space is optional between the request and the integer argument.

Set to the nth line specified before the current line.

If n is null, the pointer is moved up only one line.

Before: a: procedure;
x == y;
q == r;
s = t;

-> end a;

Request: -2

After: a: procedure;
x y;

-> q = r;
s = t;
end aj

Print Current Line Number (==)

Format: =

Purpose: Print current line number.

Pointer: Unchanged.

5-27 AU25-01

edm edm

Comment Mode (,)

Format:

Purpose: Establish a special inputting mode in which the lines, starting
with the current one, are successively treated as follows. The
line is printed without a carriage return and anything then typed
by the user (e.g., comment, newline, etc.) is appended to the
line. If the user types the mode change character (".") as his
comment, the last line typed is unchanged and edit mode is
reentered.

Pointer: Left pointing to the last line printed.

Mode Change (.)

Format:

Purpose:

Pointer:

Bottom (b)

Format:

Purpose:

Pointer:

Change (c)

Format:

Purpose:

Spacing:

Allow user to enter edit mode from input mode or vice versa.
This request is also used to terminate the comment mode request
and return edm to edit mode.

Left pointing to the last line input, edited, or printed.

b

Move pointer to the end of the segment and switch to input mode.

Set after the last line in the segment.

c ~ /string1/string2/

Replace every instance of string1 by string2 in the n consecutive
lines beginning with the current line, where n must be an
integer. If the user is in verbose mode, edm prints each line
that is changed (see the v request). If no line is changed, then
edm prints "edrn: Substitution failed."

A space before n and between n and the string1 delimiter is
optional.

5-28 AU25-01

edm

Pointer:

Delimiters:

Default:

Example:

Note:

Delete (d)

Format:

Purpose:

Spacing:

Pointer:

Default:

Note:

edm

Set to the last line scanned.

Any character not appearing in string1 or string2 can delimit the
strings (/ is used as the delimiter in the format line). A
delimit-e-r following string2 is optional.

If the integer n is absent, only the current line is treated. If
string1 is absent, string2 is inserted at the beginning of the
line.

Before:

Request:

Response:

After:

a: procedure;
-> x y.

q = r.
s = t;
end a· ,

c2/./;/

x = y;
q r;

a: procedure;
x y;

-> q = r;
s = t;
end a;

For compatibility with qedx, this request can also be given as s
(for substitute).

d !!

Cause n lines to be deleted where n is an integer. Deletion
begins-at the current line.

A space is optional between d and n.

Set to "no line" following the line
(insert) request or a change to input
before the next nondeleted line.

deleted. That is, an i
mode would take effect

If !! is null, only the current line is deleted.

The requests c, d, n, and p count "no line" when issued
immediately after a delete request.

5-29 AU25-01

edm

Execute (E)

Format:

Purpose:

Spacing:

Pointer:

Find (f)

Format:

Purpose:

Spacing:

Pointer:

Default:

Insert (i)

Format:

Purpose:

Spacing:

Pointer:

edm

E command line

Pass commandline to the command processor for execution as a
command line.

A single space following E is not significant.

Unchanged.

f string

Search segment for a line beginning with string. Search starts
at the line following the current line and continues around the
entire segment until the string is found or until the pointer
returns to the current line. The current line is not searched.
If the string is not found, the error message "edm: Search
failed." is printed. If the string is found and the user is in
verbose mode, the line containing the string is printed.

A single space ·following f is not significant. All other leading
and embedded spaces are used in searching.

Set to the line found, or remains at the current line if the line
is not found.

If the string is null, the string used by the last f ot 1
(locate) request is used.

i newtextline

Insert newtextline after the current line.

The first
leading and
newtextline.

space following i
embedded spaces

Set to the inserted line.

5-30

is not
become

significant.
part of the

All other
tex.t of the

AU25-0i

edm

Default:

Note:

Kill (k)

Format:

Purpose:

Pointer:

Note:

Locate (1)

Format:

Purpose:

Spacing:

Pointer:

Default:

edm

If newtextline is null, a "blf',nk line is inserted.

Immediately after a t (top) ~equ"9st, q,n i request causes the
newtextline to be inserted at the beginning of the segment.

k

To inhibit (kill) responses following a c, i, 1, n, or s request.

Unchanged.

See v (verbose) request for restoring responses.

I string

Search segment f0r a line containing string. Search starts at
the line following the current line and continues around the
entire segment until the string is found or until the pointer
returns to the current line. Tne current line is not searched.
If the string is not found, the error message "edm: Search
failed." is printed. If the string is found and the user is in
verbose mode, the line containing the string is printed.

A single space following I is not significant. All other leading
and embedded spaces are used in searching.

Set to the line found, or remains at the current line if the line
is not found.

If the string is null, the string used by the last I or f (find)
request is used.

5-31 AU25-01

edm

Example:

Merge (merge)

Format:

Purpose:

Spacing:

Pointer:

Default:

Move (move)

Format:

Purpose:

Spacing:

Pointer:

Before:

Request:

Response:

After:

merge path

a: procedure;
x = y;
q = r;

-> s = t;
end a;

I = Y

x = y;

a: procedure;
-> x = y;

q = r;
s = t;
end a;

edm

Insert the segment specified by the pathname path after the
current line. The pathname specified by path can be either an
absolute or a relative pathname.

A single space following merge is not significant.

Set to "no line" following the last line of the inserted segment.

If path is not given, the pathname given in the invocation of edm
is used. If a pathname is given neither in this request nor in
the invocation of edm, an error message is printed and edm looks
for another request.

move m n

Insert n lines beginning at line m after the current line and
delete them from their original location.

A space is optional before m.

Set to "no line" following the
request or change to input mode
following the moved text.

5-32

lines moved. That is, an i
would take effect immediately

AU25-01

edm

Default:

Note:

Next (n)

Format:

Purpose:

Spacing:

Pointer:

Default:

Note:

Print (p)

Format:

Purpose:

Spacing:

Pointer:

Default:

Note:

edm

If n is null, only the single line m is moved.

The requests c, d, n, and p count "no line" when issued
iInID:~d_i_a ~e_~y af~er a move r~_q:u:~_~t.

n n

Move pointer down the segment n lines. The line so located is
printed if the user is in verbose mode.

A space is optional between n and the integer ~.

Set to the ~th line specified after the current line.

If the integer n is null, the pointer is moved down only one
line.

The printed response to this request can be shut off using the k
(kill) request.

Print n lines beginning with the current line.

A space is optional between p and the integer n.

Left pointing to the last line printed.

If !l is 'I'l"ll _-- , lirrs is printsd. the

A print request in edm can be aborted by issuing a quit signal
and typing pi or program_interrupt. This puts edm in a state
where it is ready to accept another request. (See the
description of the program_interrupt command.)

5-33 AU25-01

edm

Quit (q)

Format:

Purpose:

Painter:

Quitforce (qf)

Format:

Purpose:

Retype (r)

Format:

Purpose:

Spacing:

Pointer:

Default:

Substitute (s)

Note:

edm

q

Exit edm and return to the caller, usually command level. If no
write request has been made since the last change to the edited
text, edm warns the user that the changes will be lost and asks
if he still wishes to quit.

If the user is queried and answers no, then the pointer is
unchanged.

qf

Exit from edm directly without either warning or querying the
user.

r newtextline

Replace current line with newtextline.

One space between r and newline is not significant. All other
leading and embedded spaces become part of the text of the
newtextline.

Unchanged~

If newtextline is null, a blank line replaces the current line.

This request is identical to the c (change) request.

5-34 AU25-01

edm

Top (t)

Format:

Purpose:

Pointer:

Note:

edm

Move pointer to the top OI the segment.

At "no line" immediately above the first line of text.

An i (insert) request immediately following a t request causes
insertion of a text line at the beginning of the segment.

Delete to Pointer (updelete)

Format: updelete

Purpose: Delete all lines above (but not including) the current line.

Pointer: Unchanged.

Write to Pointer (upwrite)

Format:

Purpose:

Spacing:

Pointer:

Default;

upwrite path

Save all the lines above the current line (but not including the
current line) in the segment whose name is specified by path.
The lines written out are deleted from the edit buffers and thus
are no longer available for editing. They will replace the
previous contents of path. The pathname specified by path can be
either an absolute or a relative pathname.

A single space following upwrite is not significant.

Unchanged.

If 'pc:.. th is (lot gi v ~U, uu~ pC:!. thuawE:: gi v ~I1 iIi. tIle ii!voc;c:.. ti Oi! of ed.Tii
is used. If a pathname is given neither in this request nor in
the invocation of edm, an error message is printed and edrn looks
for another request.

5-35 AU25-01

edm

Verbose (v)

Format:

Purpose:

Pointer:

Note:

Write (w)

Format:

Purpose:

Spacing:

Pointer:

Default:

Note:

edm

v

Cause edm to print responses following a c, f, 1, n, or s
request. This is the default mode.

Unchanged.

See k (kill) for inhibiting verbose mode.

w path

Write out (save) the edited copy in the
path. The pathname specified by path can
or a relative pathname.

segment specified by
be either an absolute

A space between wand path is not significant.

If the w request is successful, set to "no line" at the end of
the segment.

If path is not given, the pathname given in the invocation of edrn
is used. If a pathname is given neither in this request nor in
the invocation of edm, an error message ts printed and edrn looks
for another request.

To terminate editing without saving the edited copy, see the qf
(quitforce) request.

5-36 AU25-01

enter enter

Names: enter, e
enterp, ep

These prelogin requests are
Multics. Either one is actually a
process for the anonymous user.

used by anonymous users to gain access to
request to the answering service to create a

Anonymous users who are not to supply a password use the enter (e) request.
Anonymous users who are to supply a password use the enterp (ep) request.

enter {anonymous name} Project id {-control args}
enterp {anonymous_name} P~oject_id {-control_args}

where:

1 • anonymous name
is-an optional
passed to the
identifier. If
the same as the

identifier that is not checked by the system, but is
user's process overseer as if it were a person
anonymous name is not specified, it is assumed to be
project identifier.

2. Project id
Is the identification of the user's project.

3. control args
can be selected from the following:

-brief, -bf
suppress messages associated with a successful login. If the
standard process overseer is being used, then the message of the day
is not printed.

-force
log the user in if at all possible, provided the user has the
guaranteed login attribute. Only system users who perform emergency
repair functions have the necessary attribute.

5-37 AU25-01

enter enter

-home dir path, -hd path
set the user's home directory to the path specified, if the user's
project administrator allows him to specify his home directory.

-modes STH, -mode STH, -md STH
set the I/O modes associated with the user's terminal to STH, where
the string STH consists of modes acceptable to the tty I/O module.
The STH string is usually a list of modes separated by-commas; the
STH string must not contain blanks. (See "Examples" below.)

-no_preempt, -np
refuse to log the user in if he can only be logged in by preempting
some other user in his load control group.

-no print off, -npf
- cause the system to overtype a string of characters to provide a

black area for the user to type his password.

-no start up, -ns
- instruct the standard process overseer not to execute the user's

start up.ec segment, if he has one, and if the project administrator
allows him to avoid it.

-no warning, -nw
- suppress even urgent system warning and emergency messages from the

operator, both at login and during the user's session. Use of this
argument is recommended only for users who are using a remote
computer to simulate a terminal, or are typing out long memoranda,
when the process output should not be interrupted by even the most
serious messages.

-outer module p, -om p
attach the user's terminal via the outer module named p rather than
the user's registered outer module, if the user has the privilege of
specifying his outer module.

-print off, -pf
suppress overtyping for the password.

-process overseer path, -po path
set-the user's process overseer to the procedure given by the path
specified, if the user's project administrator allows him to specify
his process overseer. If path ends in the characters ",direct", the
specified procedure is called directly during process initialization
rather than by the in it admin procedure provided by the system.
This means that the program specified by path must perform the tasks
that would have been performed by the init admin procedure.

-ring N, -rg N
set the user's initial ring to be ring N, if this ring number is
greater than or equal to the user's registered initial ring and less
than his registered maximum ring.

-subsystem'path, -ss path
create the user's process using the prelinked subsystem in the
directory specified by path. The permission to specify a process
overseer, which may be given by the user's project administrator,
also governs the use of the -subsystem argument. To override a
default subsystem by the project administrator, type -ss ""

5-38 AU25-01

enter enter

Notes

-terminal type STH, -ttp STH
set the user's terminal type to STR, where 8TR is any terminal type
name defined in the standard terminal type table. (To obtain a list
of terminal tYPes, refer to the print terminal types command.)
This control argument overrides the default terminal type.

If neither the -print off nor -no print off control argument is specified
at log-in, the system attempts to choose the- option most appropriate for the
user's terminal type.

If the project administrator does not allow the user to specify the
-subsystem, -outer module, -home dir, -process overseer, or -ring control
arguments or if he does allow one or more of these control arguments and they
are incorrectly specified by the user, a message is printed and the login is
refused.

5-39 AU25-01

fortran fortran

Name: fortran, ft

The fortran command invokes the FORTRAN compiler to translate a segment
containing the text of a FORTRAN source program into an object segment. The
object segment is saved in the user's working directory. Users of FORTRAN
should refer to the Multics FORTRAN Reference Manual (Order No. AT58), and the
Multics FORTRAN Users' Guide (Order No. CC70).

fortran path {control_arg}

where:

1 • path
is the pathname of the source program. The suffix of fortran need
not be given as part of the path argument. However, the fortran
suffix must be the last component of the name of the segment.

2. control arg
Is -no line numbers (or -nln) to specify that the source segment
contains text without line numbers.

Examples

fortran mpg.fortran
r 1510

fortran test
r 1 511

/a suffix of fortran is assumed

5-40 AU25-01

help help

Name: help

The help command prints online information about a specific topic (an
info). Information is maintained online about FAST subsystem commands and some
general topics. A list of topics available is printed by issuing the command
with "topics" as its argument.

help {info_names}

where info names are names of specific topics, such as command names.

12/79 5-41 AU25-01A

help help

Pages 42 through 54 of this section have been deleted.

12/79 5-42/54 AU25-01A

help help

and gives a description of the -brief control argument of the mail
command. However, help reports an error for the command:

help mail -ca -brief -match -exclude

because -match and -exclude are treated as control arguments to the
help- command_~ ___ rather than as selection operands to -ca. Note that,
if the command:

help mail -ca -header -brief

is given, help does not report an error. The -brief causes help to
print a summary of the mail command. The -ca -header then prints a
description of mail's -header control argument. In this case,
-brief is accepted by help as a control argument, so no error is
reported.

-all, -a
prints the entire info or subroutine entry point description without
asking the user questions.

STARTING PARAGRAPH

Normally, help begins printing the first
control arguments below can select a particular
paragraph at which printing is to start.

-section STRs, -scn STRs

paragraph in the info. The
section and/or a particular

begins printing the section whose title contains the strings STRs.
The entire section title is not required. Instead, the first
section whose ~l~~e contains all of the strings STRs is selected.
The strings can appear in the section title in any order. The
strings can be typed in lowercase, since case is ignored during
matching operations. All arguments following the -section control
argument until the next control argument are treated as STRs.

-search STRs, -srh STRs
begins printing with the first paragraph containing strings STRs.
All of the strings must appear in the selected paragraph, but they
can appear in any order. The strings can be typed in lowercase,
since case i~ ignored when matching. All arguments following the
-search control argument are treated as STRs, so -search must be the
last control argument. The search usually begins with the first
paragraph, but when -section is also given it begins with the
matching section and continues to the last paragraph (i.e., without
wraparound).

Wnen -section or -search control arguments are given and no matching
paragraph is found in one of the infos selected by an info name or info
selection control argument, then that info is skipped without comment. Thus,
the starting paragraph control arguments serve as a secondary info selection
mechanism.

5-47 AU25-01

help help

The starting paragraph control arguments can be used with any of the
information selection control arguments listed above, but its effect differs
depending upon which of them are used. When -section or -search are used with
-header, only the heading lines for infos containing a matching paragraph are
listed. The matching paragraph itself is not printed. When they are used with
-brief or -control arg, help prints a heading line and then the information
selected by -brief or -control_argo The matching paragraph is not printed.

When -section or -search arguments are used with -no header, a brief
heading line is printed preceding the matching paragraph. - When used with
-title, help prints a heading line, then the list of section titles, and finally
the matching paragraph. When used with -all, the entire info is printed for
infos containing a matching paragraph.

PARAGRAPH GROUPING

The following control arguments determine how much information help prints
before asking the user if he wants to see more.

-minlines I
sets the minimum paragraph size to I lines. Paragraphs smaller than
this size are printed with preceding paragraphs. The default is 4.

-maxlines J
sets the maximum paragraph grouping size to J lines. When
paragraphs are grouped together, the number of grouped lines may not
exceed this size. The default is 15.

For example, consider an info divided into paragraphs as follows:

Paragraph 1 (8 lines)
(2 blank lines)

Paragraph 2 (3 lines)
(2 blank lines)

Paragraph 3 (4 lines)

With -minlines 4 and -maxlines 15, help treats paragraph 2 as a short paragraph
which is printed with paragraph 1 (total lines = 13). However, paragraph 3 is 4
lines long, and is treated as a distinct paragraph.

With -minlines 5 and -maxlines 10, help prints paragraph 1 separately,
since grouping short paragraph 2 with paragraph i would ~rint i3 lines,
exceeding -maxlines. Paragraphs 2 and 3 are grouped together (total lines = 9)
because paragraph 3 is shorter than 5 lines.

Paragraphs that have been seen are not grouped with unseen paragraphs.
Similarly, paragraphs at the end of one section of info are not grouped with
those beginning another section. Paragraphs are not grouped when -section or
-search control arguments are used to find a particular starting paragraph. If
the wrong paragraph is found by the search, grouping could compound the error by
printing more of the wrong information. For similar reasons, grouping is
suppressed when the section and search responses are used.

5-48 AU25-01

help help

Responses to Questions Asked by the help Command

The responses accepted when help questions the user are given in the list
below. Those responses that search the info or list section titles operate from
the current paragraph to the end of the info. No wraparound feature is
e-mployed. How-6ve-r'-,- --t-op O-r -t- -can be-- used- with these_ res.pous_e.s .to _cause
searching or listing from the top of the info, rather than from the current
paragraph.

The help command remembers which paragraphs the user has seen and which
have been skipped or not yet reached. It asks the user to "Review" paragraphs
seen before, but asks whether "More help" is needed for unseen paragraphs. It
stops printing if all paragraphs have been seen when the end of info is reached.
However, if any paragraphs were skipped, help asks whether the user wants to see
them. If the response is "yes", the first unseen paragraph is printed. The
user can then answer "skip -seen" to view subsequent unseen paragraphs.

The responses to all questions asked by the help command can be chosen from
the following:

brief, bf
prints a summary of a command, active function or subroutine info,
including Syntax section and a list of control arguments. The help
command then repeats the previous question.

control arg STRs, ca STRs
prInts descriptions of control (or other) arguments whose names
contain one of the strings STRs. The help command then repeats the
previous question.

entry point {EP NAME}, ep {EP NAME}
skips to the description of subroutine entry point EP NAME. The
EP NAME can be given as entry_point_name or
subroutine_$entry_point_name. For example:

ep rsnnl

when in the info segment describing the ioa subroutine, skips to
the description of the ioa $rsnnl entry point. If EP NAME is
omitted, help skips -to the description of the
subroutine_$subroutine_ entry point.

header, he

no, n

prints a long heading line to identify the current info. The line
includes: pathname of the info, info heading, and line count.

exits from the current info, and begins printing the next info
selected by info names given in the help command. Returns from the
help command if all selected infos have been printed.

quit, q
causes the help command to return without printing the remaining
infos selected by the info names.

5-49 AU25-01

help

rest

help

{-scn}, r I-scn}
prints the rest of the info without intervening questions. If
-section or -scn control arguments are given, then help prints only
the rest of the current section without questions. When the section
has been printed, help then asks the user if he wants to see the
next section.

search ISTRs} {-top}, srh {STRs} {-top}
skips to next paragraph containing all strings STRs. Paragraph
selection is performed as described above for the -search control
argument. If -top or -t is given, searching starts at the beginning
of the info. If STRs are omitted, help uses the strings from the
previous search response or -search control argument. If the search
fails, help prints the message:

No matching paragraph found.

and repeats the previous question.

section {STRs} {-top}, scn {STRs} {-top}
skips to the next section whose title contains all strings STRs.
Title matching is performed as described above for the -section
control argument. If -top or -t is given, title searching starts at
the beginning of the info. If STRs are omitted, help uses the
search strings from the previous section response or -section
control argument. If the search fails, help prints the message:

No matching section found.

and repeats the previous question.

:ki
p

t ::~~l I :~::~ I I ::::~ I t ::~ I '
skips the next paragraph and asks the user if he wants to see the
paragraph that follows it. If -section or -scn is given, help skips
all paragraphs of the current section. If -rest or -r, -entry point
or -ep are given, help skips the rest of this info or subroutine
entry point description, continuing with the next. If -seen is
given, help skips to the next paragraph that the user has not seen.
Only one of these control arguments can be used at a time.

title {-top}
lists titles
current info.
titles.

and
If

line counts of
-top or -t is

all sections remalnlng in the
given, help lists all section

top, t
skips to the beginning of the info, prints the heading line, and
asks the user if he wants to see the first section.

yes, y

?

prints the next paragraph of information, then asks the user if he
wants more help.

prints a list of available responses.

prints "help" to identify the current interactive environment.

5-50 AU25-01

help

command line
passes the remainder of the response to
processor as a command line.

help

the Multics command

Search List

The help command uses the "info segments" search list, which has synonyms
of "info_segs" and "info". For more information about search lists, see the
descriptions of the search facility commands and, in particular, the
add_search_paths command description in this manual. Type:

print_search_paths info

to see what the current "info" search list is. The default search list is:

Notes

>doc>iml info
>doc>info

When the star convention is used, the help command performs the following
steps:

1 . The info segments whose entryname matches any of the star names are
alphabetized within their directory and scanned in that order.

2. When -section and -search control arguments are given, help scans the
matching infos until the desired sections and/or paragraphs are found.
If a matching paragraph is found, help prints it. Then help asks the
user if he wants to see remaInIng paragraphs. Note that any section
and search responses given at this point scan only the current info.
If a matching paragraph is not found in one of the infos selected by
star name, then that info is skipped without comment. Thus, it is
possible to scan all info segments and print only those containing
certain section titles or certain words.

3. When -section and -Search control arguments are not given, help begins
printing the first paragraph of each info that matches any of the
starnames. Then help asks the user if he wants to see remaining
paragraphs.

4. The -title, -all, -brief and -control arg control arguments apply to
each info selected by the star names and -section/-search string
watching. Section titles, a brief sUmmary V~ p~rtic~lar ~a~trGl
argument descriptions are printed before the matching paragraph. When
-all is given with -section or -search, the entire info selected by
the string matching is printed without questions.

5. The yes, no, rest and skip responses operate on the next selected
paragraph. This paragraph may be the first paragraph of the next
selected info, or even the first paragraph that matches the -section
and -search criteria in the next selected info.

5-51 AU25-01

help help

6. If the user issues a quit signal, the program interrupt command can be
used to reenter the interactive help environment. The question asked
previously is repeated.

Info Naming Conventions

Infos for Multics commands, active functions and subroutines are given the
name of the particular system module with a suffix of info. For example, the
info describing the pl1 compiler command is called:

pl1.info

Information about changes made to a command or active function from one
release to the next are given the name of the particular system module with a
suffix of changes.info. For example, changes to the fortran compiler are
described in fortran.changes.~nfo.

General information describing features or use of the system is included in
infos whose names end with a suffix of gi.info (gi for general information).
For example, acl matching.gi.info describes how Access Control List entries are
matched with User_ids in access control commands such as set acl.

More than 500 infos are available. To find information about a particular
area of the system, use the -header control argument with an entryname
containing stars to list the names of available infos. For example, to list
info names related to the FORTRAN compiler, you could type:

help fortran*.** -he

To get a list of all general information segments, type:

help *.gi -he

Info Segment Format

Users can create info segments describing their own commands, exec coms and
application programs. Info segments must be formatted in a special way so that
the help comm~,d can parse them into paragraphs. For information about this
format, type:

help info_seg.gi

Examples

In the examples given below, the lines typed by the user are indicated by
an exclamation point at the beginning of the line or immediately preceding a
request. In the first example, the user wants to see list.info:

5-52 AU25-01

help

help list
(6 lines follow; 131 lines in info)
04/10/77 list, Is

Syntax: Is {entrynames} {-control_args}

Function: prints information about the entries in a single directory.

Arguments (9 lines). More help? yes

Arguments:
entrynames

help

are the names of entries to be listed. The star convention can be used.
If no entrynames are given, all entries in the directory (of the default
types or the types specified by control arguments) are listed. A
pathname can be given instead of an entryname, causing the entries
specified by its entryname portion to be listed, in the directory
specified by its directory portion. It is an error to specify more than
one directory to be listed in a single invocation of the list command.

Control arguments (5 lines). More help? ! no
r 1459 0.753 35.793 744

In the following example, the user knows what the "Syntax" and "Function"
sections are but wants to see the control arguments section for the list
command. Note that the argument for the -section control argument can be upper
or Imtfer case.

help list -scn Control
(7 lines follow; 131 lines in info)
04/10/77 list, Is

Control arguments: described below according to their functions.
DIRECTORY
-pathname path, -pn path

list entries in the
described above under

directory
Arguments.

15 more lines. More help? ! yes

ENTRY TYPE
-segment, -sm

list segments
-multisegment file, -msf

list multisegment files
-file, -f

named path.

list files (segments and multisegment files)
-directory. -dr

list directories
-branch, -br

Note the

list branches (segments, multisegment files, and directories)
-link, -lk

list links
-all, -a

list all four entry types

12 more lines. More help? no
r 1500 0.215 12.593 264

5-53

restriction

AU25-01

help help

In the following example, the user is searching for all the list commands
that have the word request anywhere in the info.

help list *.info -srh request
)doc)info)list_abs_requests.info (6 lines follow; 56 in info)

07/20/78 list abs requests, lar
list-daemon requests, ldr
list=retrieval_requests, lrr

Syntax: (lar ldr lrr) {reI_path} {-control_args}

Function & Arguments (9 lines). More help? ! yes

Function: these commands list requests in the absentee, I/O daemon, and
retrieval queues, respeatively.

Arguments:
reI path

Ts relative pathname of
starname. Default is to
-entry control argument.

request(s) to be listed. It
list requests of all pathnames.

can end in a
See also the

Control arguments (34 lines). More help? no

)doc)info)list carry requests. info (3 lines follow; 22 in info)
07/12/78 list=carry=requests, lcr

Syntax: lcr {-control_args}

Function & Control arguments (12 lines). More help? no
r 1732 2.585 40.663 647

If the user wishes to see the info for the help_ subroutine with all the
entry points described, he can do the following:

help help
)doc)info)help .info
(3 lines follow, 9 in introduction; 74 lines, 4 entry points in info)
12/11/78 help_

Function: This subroutine performs the basic work of the help command.

Entry points in help_ (4 lines).

Entry points in help :
12/11/78 help $init-
12/11/78 help= (entry point)

More help?

12/11/78
12/11/78

! yes

help $check info segs
help=$term - -

Entry: 12/11/78 help $init
(10 lines follow; 16 lines in entry point) More help? ! yes

Syntax:
declare help $init entry (char(*), char(*), char(*), fixed bin, ptr,

fixed bTn(35));

call help $init (caller, search list name, search list ref_dir.
requTred_version, Phelp_args, code);

5-54 AU25-01

help help

This page intentionally left blank.

12/79 5-55 AU25-01A

how_many_users how_many_users

The how many users command tells how many users are currently logged in on
the system. - In -addition, it prints the name of the system, the load on the
system, and the maximum load. If the absentee facility is running, the number
of absentee users and the maximum number of absentee users is printed also.

where:

1 . control args
can be chosen from the following control arguments:

-long, -lg
prints additional information including the name of the
installation, the time the system was brought up, the time of the
next shutdown, if it has been scheduled, and the time of the last
shutdown or crash. Load information on absentee users is also
printed.

-absentee, -as
prints load information on absentee users only, even if the absentee
facility is not running.

-brief, -bf
suppresses the printing of the headers. Only used in conjunction
with one of the optional_args.

2. optional args
specifies that only selected users are to be listed and can be one
of the following:

Person id
lIsts a count of logged in users with the name Person ide

.Project id
lists a count of logged in users with the project name Project_ide

Person_id.Project_id
lists a count of loggea In users with ~ne name and project of
Person id.Project ide The star convention is allowed in Person id
and Project_ide -

5-56 AU25-0'1

how_many_users how_many_users

Notes

If this command is invoked without any arguments, basic summary information
is printed (see the first example below).

Ab-sentee cou-nt-s-in asel-ect-iv-e--use - ofho-wm-anyusers -(i.e., when an
optional_arg is specified) are denoted by an asterisk (*j.

Up to 20 classes of selected users are permitted.

Examples

To print summary information, type:

Multics 2.0, load 5.0/50.0; 6 users

To print summary information on absentee users, type:

Absentee users 0/2

To print the additional information provided by the -long control argument,
type:

Multics 2.0: peo, Phoenix, Az.
Load = 13.0 out of 110.0 Units; users = 13
Absentee users = 0; Max absentee users = 45
System up since 06/25/74 0522.7
Last shutdown was at 06/25/74 0515.2

To print brief information about the SysDaemon project, type:

how_many_users -bf .SysDaemon

SysDaemon = 3 + 0*

To print brief information about the user whose Person id is Smith, type:

how_many_users -bf Smith

Smith = 1 + 1*

5-57 AU25-01

info info

Name: info

The info command prints the entryname of the segment of temporary text, the
date, time, day of the week, and the user's Person id and Project ide The
command also prints the amount of money spent by the user since the beginning of
the billing period, the spending limit imposed on the user for the billing
period, the number of records used in the working directory, and the quota limit
of the working directory in records. (A record is a unit of disk allocation
that contains 4096 characters.)

info

Example

new test. basic
r 1458

info
"text.basic" 02/19/76 1458.4 mst Thu BJones.Work
$133.49 spent/200 limit 49 records used/80 limit
r 1459

5-58 AU25-01

input input

Name: input

The input command provides a convenient way to enter line numbered text.
The svstem types the line number and one space. The user completes the line.
This input mode is terminated when the user types a newline character (ASCII
code 012) without having typed any other characters on the line.

If the number given with the input command or a number generated by the
input request already exists (or would cause the temporary text to be out of
sequence), an error message is printed and the user returns to command level.

input {new_number increment}

where:

1 . new number
is the number of the first new line. If this number is not given,
lines are entered at the end of the temporary text.

2. increment
is the increment to use to derive
default). This argument can only
argument is given.

Example

new test.basic
r 0935

input
00100 !let a
00110 !let x
00;20
r 0937

print_text

10.2
3.9

!newline

test.basic 01/22/76 0937.6 mst Fri

00100 let
00110 let x
r 0938

5-59

subsequent line numbers (10 by
be specified if the new number

AU25-01

link link

Name: link, lk

The link command causes a storage system link with a specified name to be
created in a specified directory pointing to a specified segment or directory.
For a discussion of links, see Section 3.

link path11 {path21 path1E. path2E.}

where~

1 . path1!

2. path2!

Notes

specifies the pathname of the segment to which path2! is to point.
The pathnames must be specified in pairs.

specifies the pathname of the link to be created. If the last
path2i is not specified, a link to path1i is created in the working
directory with the entryname portion of path1! as its "entryname.

The user must have append permission for the directory in which the link is
to be created.

Entrynames must be unique within the directory. If the creation of a
specified link would introduce a duplication of names within the directory, and
if the old entry has only one name, the user is interrogated as to whether he
wishes the entry bearing the old instance of the name to be deleted. If he
answers "no", the link is not created. If the old entry has multiple names, the
conflicting name is removed and a message to that effect is issued to the user.
In either case, since the directory in which the link is to be created is being
changed, the user must also have modify permission for that directory.

The star and equal conventions can be used.

Example

The command line:

link >my_dir>beta alpha >dictionary>grammar

creates two links in the working directory, named alpha and grammar; the first
points to the segment beta in the directory >my dir and the second points to the
segment grammar in the directory >dictionary. -

5-60 AU25-01

list list

Name: list, Is

The list command prints information about entries contained in a single
directory. A large selection of control arguments enabl_es the user to specify
the directory to be listed, which entries are to be listed, the amount and kind
of information to be printed for each entry, and the order in which the entries
are to be listed.

list {entrynames} {-control_args}

where:

1 . entrynames
are the names of entries to be listed. If entrynames are given,
only entries having at least one name matching an entryname argument
are listed. The star convention can be used. If no entryname
argument is given, all entries (of the types specified by control
arguments) in the directory are listed. A pathname can be given
instead of an entryname. In this case, entries matching the
entryname portion of the pathname, in the directory specified by the
directory portion of the pathname, are listed. See the description
of the -pathname control argument for restrictions on the use of
this feature.

2. control ar~s
can~be chosen from the arguments described in "Control Arguments for
the list Command" below.

Except where otherwise noted in the descriptions of the control arguments
("Control Arguments for the list Command" below), the entrynames and
control_args arguments can appear anywhere on the command line.

Basic Use of the list Command

If the list command is invoked without any arguments, it lists all segments
and multisegment files in the working directory, printing the name(s), access
mode, and length of each. Segments and multisegment files are listed separately
(segments first), each preceded by a line giving the total eut!' it:8 of that type
and the sum of their lengths. (This line _is referred to as the totals
information or the header.) Within each entry type, entries are listed in the
order in which they are found in the directory.

5-61 AU25-01

list list

The following example shows the result of invoking the list command without
any arguments (the line typed by the user is preceded by an exclamation mark):

list

Segments = 8, Lengths = 41.

r w 10 new code info.runout
rew 9 new-code-info. runoff
r w 3 work.p11-
r w 7 work. list
re 2 work
r w 1 print.ec
r w 1 output_file
r 8 data base

Multisegment-files = 1, Lengths 334.

r w 334 info_segs

Directories and links are not listed by default. Notice that the information
about the entries is arranged in columns without column headings. The set of
columns printed by the list command depends on the control arguments given by
the user and the type of entry being listed.

There are four entry types: segments, multisegment files, directories, and
links. Segments and multisegment files are referred to collectively as files;
segments, multisegment files, and directories are referred to collectively as
branches. The set of possible columns is different for branches and links. For
branches, the set of possible columns and their order (from left to right) is:
modification date, date and time used, access mode, size, names, and number of
names; for links: date and time entry modified, names, number of names, and link
pathname. The modification-date column contains either the date and time the
entry was modified or the date and time the contents were modified, and the size
column contains either records used or length (in records) computed from the bit
count, as specified by control arguments. Unless otherwise specified by control
arguments, the items printed for branches are: access modes, length, and names;
for links: names and link pathname.

The list command offers the user precise control over the command output.
The various control arguments specify exactly what is to be printed. Most users
will find that the following subset of list command control arguments allows
them to adequately define the desired information.

-file, -f
lists information about files. (This is the default.)

-directory, -dr
lists information about directories.

-link, -lk
lists information about links.

-name, -nm
prints the names column, giving primary a:nd any addi tional names of
each entry.

5-62 AU25-01

list list

-date time entry modified, -dtem
- ~-~~+" +~~ ~~+~ ~-~ +~-~ +~~ ~-+-~ ~~" ,~"+ -~~~~~~~ (~~ ~~ +~~

.tJJ..J..J.J.uo lJJ.J.C U.Cl.UC Cl.uu. lJ.LWC lJJ.J.C CJ.J.lJJ.,J WCl.O ..J..Cl.OlJ wvu..J...J...J..cu. \C.5., U,J lJUG

changing of attributes such as names, ACL, or bit count).

-pri
prints only the primary name (in the names column) of each entry.

-sort XX, -sr XX
sorts the entries, within each entry type, according to the column
name specified by XX. (The column names and their sorting order are
described under "Entry Order" below.)

-total, -tt
prints only the heading line
type specified; this line gives
sum of their sizes.

(totals information) for each entry
the total number of entries and the

Detailed information on each of the above control arguments is given in "Control
Arguments for the list Command" below.

Control Arguments for the list Command

The control arguments for the list command are described in detail on the
following pages. For convenience, these arguments have been arranged in
categories according to the function they perform. The categories and their
respective control arguments are listed below (detailed descriptions follow the
list, in the same order):

directory
-pathname path, -pn path

entry type
-segment, -sm
-multisegment file, -msf
-file, -f -
-directory, -dr
-branch, -br
-link, -lk
-all, -a

columns
-mode, -md
-length, -In
-record, -rec
-name, -nm
-date time used, -dtu
-date-time-entry modified, -dtem
-date-time-contents modified, -dtcm
-count, -ct -
-link_path, -lp

totals/header line
-total, -tt
-no_header, -nhe

5-63 AU25-01

list

multiple-name entries
-primary, -pri
-match

entry order
-sort XX, -sr XX
-reverse, -rv

entry exclusion
-exclude entryname, -ex entryname
-first N, -ft N
-from D, -fm D
-to D

output format
-brief, -bf
-short, -sh

DIRECTORY

list

If no directory is specified, the working directory is assumed. The list
command can list only one directory at a time, and it is an error to specify
more than one directory to be listed.

-pathname path, -pn path
causes entries in the directory specified by path to be listed.

The directory to be listed can also be specified by glvlng a pathname
instead of an entryname argument, as described earlier. The difference between
the two methods of specifying a directory is that the entire pathname after the
-pathname control argument is taken to be that of a directory whose entries are
to be listed, while a pathname not preceded by the -pathname control argument is
separated into its directory and entryname portions, and the former specifies
the directory while the latter specifies the entries within it that are to be
listed.

ENTRY TYPE

If no
argument is
given.

control argument from this category is
assumed. More than one of the following

-segment, -sm
lists information about segments.

-multisegment file, -msf
lists Information about multisegment files.

-file, -f

given, the -file control
control arguments can be

lists information about files (i.e., segments and multisegment files, in
+h.:.+ ,....,..ilo,..\
Ul..1.(,A,U V.L \.A.V.L J •

5-64 AU25-01

list list

-directory, -dr
lists information about directories.

-branch, -br
lists information about-branches (i. e. , segments, mul tisegment files, _and
directories, in that order).

-link, -lk
lists information about links.

-all, -a
lists information about all entry types in the following order:
segments, multisegment files, directories, and links.

COLUMNS

If no control argument from this category is given, the access-mode,
length, and names columns (in that order) are printed for branches and the names
and link-path columns (in that order) are printed for links. More than one of
the control arguments listed below can be given in a single invocation of the
list command. When the -brief, -mode, -record, -length, or -name control
arguments are given, only the names column plus those columns explicitly
selected by control arguments are printed.

The user is given a choice as to what can be printed in two of the columns
for branches (size and modification date). For size, the user can choose
between length computed from the bit count or a count of records used. For
modification date, the user can choose between the date and time the entry was
modified (e.g., by the changing of attributes such as names, ACL, or bit count)
or the date and time the contents of the segment or directory were modified.

If sorting by a size or modification date is specified, the above choices
also apply to sorting, and the specifications of what to sort on and what to
print must be consistent. For example, it is not possible to print length
computed from bit count while sorting on records used.

Because of the way the information is maintained by the storage system, the
records-used, date-time-contents-modified, and date-time-used values are more
expensive to obtain than the other items printed by the list command. It is
recommended that these values not be used for printing or sorting except when
absolutely necessary. Less expensive alternatives are provided that should be
suitable in most cases (e.g., length computed from bit count, and date and time
Lh~ ~ntry wa~ mudified).

The names column is printed in every invocation of the list command except
when the user explicitly requests only totals information (see "Totals/Header
Line" below).

-mode, -md
prints the access-mode column.

5-65 AU25-01

list list

-length, -In
prints current length computed from the bit count. This control argument
is inconsistent with the -record control argument; only one of the two
can be given. The -length argument, which is the less expensive of the
two, is the default.

-record, -rec
prints the records used. This argument is inconsistent with the -length
control argument; only one of the two can be given. The -record control
argument is the more expensive of the two.

-name, -nm
prints the names column, giving the primary name and any additional names
of each entry.

-date time used, -dtu
- prints the date and time the entry was last used.

-date time entry modified, -dtem
- prints the date and time the entry was last modified. (e.g., by the

changing of attributes such as names, ACL, or bit count). This argument
is inconsistent with the -date time contents modified control argument;
only one of the two can be given~ ThIs argument is the less expensive of
the two.

-date time contents modified, -dtcm
- prints the date and time the contents of the segment or directory were

last modified. This argument is inconsistent with the
-date time entry modified control argument; only one of the two can be
given~ ThIs argument is the more expensive of the two.

-count, -ct
prints the count column, which gives the total number of names for
entries that have more than one name.

-link path, -lp
- prints the link-path column.

TOTALS/HEADER LINE

If no control
detailed information

argument from
are printed.

this category is given, both totals and

-total, -tt
prints only the heading line (totals
specified; this line gives the total
their sizes.

-no header, -nhe
- omits all heading lines.

5-66

information) for each entry type
number of entries and the sum of

AU25-01

list list

MULTIPLE-NAME ENTRIES

The control arguments in this category are applicable only to entries that
have more than one· name. If no control argument from this category is given,
all 6£ the names of·-th-e- sp-eciffe-d- entrle-s-are- priiltedin the --riai:nes-colUmri~-

-primary, -pri

-match

prints, in the names column, only the primary name of each entry.
control argument does not suppress the printing of any other columns;
merely suppresses the printing of secondary names.

This
it

prints, in the names column, only those names that match one of the given
entrynames.

ENTRY ORDER

If no control argument from this category is given, entries are printed in
the order in which they are found in the directory.

-sort XX, -sr XX
sorts entries, within each entry type, according to the sort column XX
where XX can be one of the following:

name, nm

length, In

record, rec

mode, md

date time entry modified,
dtem- - -

sort entries by primary name, according to
the standard ASCII collating sequence.

sort entries by length
bit count, largest first.
inconsistent with the
argument.

computed from the
This argument is
-record control

sort entries by records used, largest
first. This argument is inconsistent with
the -length control argument. If this
argument is given, and the size column is
being printed, the value printed in that
column will be records used, rather than
length.

sort entries by access mode in the
follnwing order: null, r (or s), rw (or
S~)7 ~e7 ~ew (o~ s~~), (This o~de~ i~ the
result of . sorting by the internal
representation of the mode.)

sort entries by the date and time the entry
was last modified, most recent first. This
argument is inconsistent with the -dtcm
control argument. If the -dtem control
argument is given and no sort key follows
the -sort control argument, then this
argument is implied as the default sort
key.

5-67 AU25-01

list

date time contents modified,
dtcm- - -

count, ct

list

sort entries by the date and time the
contents of the entry were last modified,
most recent first. This argument is
inconsistent with the -dtem control
argument. If the -dtcm control argument is
given and no sort key follows the -sort
control argument, then this argument is
implied as the default sort key.

sort entries by the date and time used,
most recent first.

sort entries by number of names, most names
first.

It is not necessary for a column to be printed in order to sort on it.

If the sort column XX is omitted, the default sorting column is determined
as follows: if no date column is being printed, sort by primary name; if only
one of the date columns is being printed, sort by that date; if both the
modification-date and date-time-used columns are being printed, sort by the
modification-date column.

Links can only be sorted by the name, modification-date, or count columns.
If sorting by any other column is specified, links are printed in the order in
which they are found in the directory, while branches (if also being listed) are
sorted by the specified column. (See "Notes" below.)

-reverse, -rv
prints entries in the reverse of the order in which they are found in the
directory. If the -sort control argument is also given, the specified
sort is reversed.

ENTRY EXCLUSION

The following control arguments
excluding entries according to either
on the number of entries listed.

-exclude entryname, -ex entryname

limit the amount of output produced by
name or date or by setting an upper limit

do not list any entries that have a name that matches the specified
entryname. The star convention can be used.

If the user wishes to exclude more than one entryname, he must give an
-exclude control argument for each one of them. The entrynames given in all
-exclude control arguments and any names given in the entryname arguments
(explained on the first page of the list command description) operate together
to limit the entries that are listed. All entries that have at least one name
that matches anyone of the entrynames given in the -exclude control arguments
are excluded from the listing. From the entries that remain, those matching any
of the entryname arguments are listed; if no entryname arguments are given, all
the remaining entries are listed. (See "Examples" below.)

5-68 AU25-01

list list

-first N, -ft N
list only the first N entries (after sorting, if specified) of each entry
type being listed. Thehe-ading lines conta-in t-he totals figures- -for-- all
entries that would have been listed if the -first control argument had
not been given. This argument is useful to avoid tying up a terminal by
listing a large directory, when only the first few entries are of
interest.

The following two arguments exclude entries on the basis of date. The date
used in this comparison is the modification-date value in all cases except when
the only date column being printed or sorted on is the date-time-used column.
If no date column is being printed, the date-time-entry-modified value is used.

-from D, -fm D
do not list any entries that have a date value (selected as described
above) before the one specified by D.

-to D
do not list any entries that have a date value (selected as described
above) after the one specified by D.

The D value after the -from or -to control arguments must be a string
acceptable to the convert date to binary subroutine, described in the MPM
Subroutines. If the date=time- string contains spaces, the string must be
enclosed in quotation marks. The D value can specify both a date and a time; if
only a date is given, then the convert date to binary subroutine uses, as the
default time, the current time of day_ - - - -

If both the -from and -to control arguments are given, the -from D value
must be earlier than the -to D value.

OUTPUT FORMAT

If no control argument from this category is given, the output format of
the list command is not changed.

-brief, -bf
if just totals information is being printed, this argument causes the
totals information for all selected entry types to be abbreviated and
printed on a single line. Otherwise, it suppresses the printing of the
default columns when they are not explicitly named in control arguments.
For example, typing:

list -dtu -brief

causes the names and date-time-used columns, but not the access-mode and
length columns, to be printed.

-short, -sh
prints link pathnames starting two spaces after their entrynames, instead
of aligning them in column position 35.

5-69 AU25-01

list list

Notes -----

The obsolete name for a modification date (date time modified, dtm) is
accepted, in both the control argument and sort key form, as a synonym for the
date-time-entry-modified value.

Links do not have a date-time-contents-modified value. If links are being
listed and either modification-date value is specified for printing, sorting, or
entry exclusion (using the -from and -to control arguments), the
date-time-entry-modified value of links is used.

Examples

The command line:

list -primary -count

lists all files in the working directory (the default directory); the names
column contains only the primary names of all entries; the total number of names
(for those entries having more than one name) is printed after the primary name.
In addition to the names column, the access-mode and length columns are printed.

The command line:

list -exclude *.*

lists all the files in the working directory having other than two-component
names, printing the three default columns (access mode, length, and names).

The command line:

list -segment *.* -exclude *.pI1

lists all the segments in the working directory having two-component names whose
second component is notpl1, printing the three default columns.

The command line:

list -date_time_entry_modified -sort

lists all files in the working directory, sorted by the date-time-entry-modified
column (the default sort key since the user specifically requested that date
column). The date-time-entry-modified column is printed in addition to the
three default columns.

The command line:

list -name -sort date time modified

lists all files in the working directory, sorted by the date-time-entry-modified
value. Only the names column is printed. Note the use of date time modified as
a synonym for date_time_entry_modified.

5-70 AU25-01

list list

The command line:

list -segment -name -pritnary...;;no head-er

lists only the primary name of each segment in the working directo~y without
printing the heading line or any blank lines. This combination of arguments,
together with the file output command, is useful for generating a file that
contains the primary names of a selected set of entries.

The command line:

list -mode -primary

lists the access mode and primary name of each file in the working directory.

The command line:

list -total -to "7/1/75 0000.0" -dtu -rec

prints the totals (number of entries and total records used) for all files that
have not been used since the end of June 1975. l~otice that the -dtu control
argument is used to specify that the -to date refers to the date and time used.

5-71 AU25-01

list acl list acl

Name: list_acl, la

The list acl command lists the access control lists (ACLs) of segments,
multisegment files, and directories. For a description of ACLs, see Section 4.

list acl {path} {User_ids} {-control_args}

where:

1. path
is the pathname of a segment, multisegment file, or directory. If
it is -wd, -working dir, or omitted, the working directory is
assumed. If it is omItted, no User ids can be specified. The star
convention can be used.

2. User ids
are access control names that must be of the form
Person id.Project id.tag. All ACL entries with matching names are
listed~ (For a description of the matching strategy, refer to the
set_acl command.) If User id is omitted, the entire ACL is listed.

3. control args

Notes

can be chosen from the following control arguments:

-ring brackets, -rb
lists the ring brackets. This control
on the line and affects the whole line.
under "Intraprocess Access Control"
Reference Guide.

-brief, -bf

argument can appear anywhere
Ring brackets are discussed
in Section 6 of the MPM

suppresses the message "User name not on ACL of path."

-directory, -dr
lists the ACLs of
multisegment' files,

-segment, -sm

directories only. The default is segments,
and directories. (See "Notes" below.)

lists the ACLs of segments and multisegment files only.

The -directory and -segment control arguments are used to resolve an
ambiguous choice that may occur when path is a star name.

If the list acl command is invoked with no arguments, it lists the entire
ACL of the working directory.

5-72 AU25-01

list acl list acl

Active Function Usage

where the arguments are the same as above.

Example

The command line:

list acl notice.runoff .Faculty. Doe

lists, from the ACL of notice.runoff, all entries with Project_id Faculty and
the entry for Doe.*.*.

The command line:

list_acl *.pI1 -rb

lists the whole ACL and the ring brackets of every segment in the working
directory that has a two-component name with a second component of p11.

The command line:

la -wd -rb .Faculty. * * *

lists access modes and ring brackets for all entries on the working directory's
ACL whose middle component is Faculty and for the * * * entry.

5-73 . AU25-01

locate locate

Name: locate, 1

The locate command searches the temporary text for all occurrences of a
specified character string. Each line containing the string is printed. The
entire line, including the line number, is used in matching the string.

locate Istringl {first_line last_line}

where:

1 • I
is any delimiter not found in string, except blank, tab, or a digit.

2. string
is a string of characters to be found.

3. first line
is the line number of the first line to be searched. If this
argument is missing, the entire text is searched.

4. last line
is the line number of the last line to be searched; if this
argument is not given, the search is made from the first line
specified by the first _line argument to the end of the text. This
argument can only be given if the first line argument is given.

Note

All lines between and including the first and last lines specified are
located. The line numbers specified by the first line and last line arguments
do not have to appear in the text, but the range specified by them must contain
at least one line.

Example

130 for n 1 to 5
140 let e = 40
150 for m 1 to 3
160 let e e + p(m)
locate Iml
150 for m to 3
160 let e = e + p(m)
r 1246

locate lei 135 160
140 let e 40.
160 let e = e + p(m)
r 1247

lentire text is searched

5-74 AU25-01

login login

Name: login, I

The login request is used to gain access to the system. It is a request to
the answering s-e-rvice to start the- user identification and process creation
procedures .---

The login request asks for a password from the user (and attempts to ensure
either that the password does not appear at all on the user's terminal or that
it is thoroughly hidden in a string of cover-up characters). The password is a
string of one to eight letters and/or digits associated with the Person ide

After the user responds with the password, the answering service looks up
the Person id, the Project id, and the password in its tables and verifies that
the Person-id is valid, that the Project id is valid, that the user is a legal
user of the project, and that the password given matches the registered
password. If these tests succeed, the load control mechanism is consulted to
determine if allowing the user to log in would overload the system.

If the user is permitted to log in, a process is created for the user, and
the terminal is placed under control of that process.

Many control arguments are available for tailoring various attributes of
the new process to the user's needs.

login Person id {Project_id} {-control_args}

where:

1 . Person id
is the user's registered personal identifier. This argument must be
supplied. The uSer's personal identifier can be replaced by his
registered "login alias" if he has one. Aliases, like personal
identifiers, are registered by the system administration and are
unique at the installation. The login alias is translated into the
user's personal identifier during the login process, and there i$ no
difference between a user process created by supplying a personal
identifier and one created by supplying an alias.

2. Project id
Is the identification of the user's project. If this argument is
not supplied, the default project associated with the Person id is
used. See the -change default project control argument below for
changing the default project to the Project id specified by this
argument. -

5-75 AU25-01

login login

3. control args
can be selected from the following:

-authorization STH, -auth STH
set the authorization of the process to that specified by STR, where
STH is a character string composed of level and category names for
the desired authorization, separated by commas. The STR character
string may not contain any embedded blank or tab characters. (The
short names for each level and category are guaranteed to not
contain any blanks or tabs, and can be used whenever the
corresponding long names do contain blanks or tabs.) The STR
character string must represent an authorization that is less than
or equal to the maximum authorization of Person id on the project
Project ide If this control argument is omTtted, the user's
registered default login authorization is used. (See
"Authorizations" in Section 3 for more information about process
authorizations.)

-brief, -bf
suppress messages associated with a successful login. If the
standard process overseer is being used, then the message of the day
is not printed.

-change default auth, -cda
change the user's registered default login authorization to the
authorization specified by the -authorization control argument. If
the authorization given by the user is valid, the default
authorization is changed for subsequent logins, and the message
"default authorization changed" is printed at the terminal. If the
-cda control argument is given without the -auth argument, .an error
message is printed.

-change default project, -cdp
change the-user's default ~roject to be the Project_id specified in
this login request line (see the description of the Project id
argument above). The default Project id is changed for subsequent
logins, and the message "default project changed" is printed at the
user's terminal. If the -cdp control argument is given without a
Project_id argument, an error message is printed.

-change password, -cpw
change the user's password to a newly given password. The login
request asks for the old password before it requests the new one.
It requests the new one twice, to verify the spelling. If it is not
typed the same both times, the login and the password change are
refused. If the old password is correct, the new password replaces
the old for subsequent logins, and the message "password changed" is
printed at the user's terminal. The user should not type the new
password as part of the control argument.

-force
log the user in if at all possible, provided the user has the
guaranteed login attribute. Only system users who perform emergency
repair functions have the necessary attribute.

5-76 AU25-01

login login

-generate_password, -gpw
change the user's password to a new password, generated for the user
by the system. The login request asks for the old password first.
Then, a new password is generated and typed on the user's terminal.
The user is asked to retype the new password, to verify that he has

·-Seeh-Tt-~ --Tf-tlYe·liser .. types-----tlie---ryew-pi:HrSw()r-a-c6rt-ectly~-·it--replaces
the old password for subsequent logins, and the message "password
changed" is printed at the user's terminal. If the user mistypes
the new password, the login and password change are refused.

-home dir path, -hd path
set the user's home directory to the path specified, if the user's
project administrator allows him to specify his home directory.

-modes STR, -mode STR, -md STR
set the I/O modes associated with the user's terminal to STR, where
the string STR consists of modes acceptable to the tty I/O module.
(See the tty I/O module description in the MPM Subroutines, Order
No. AK93-02B~ for a complete explanation of possible modes.) The
STR string is usually a list of modes separated by commas; the STR
str ing must not contain blanks. (See "Examples" below.)

-no preempt, -np
- refuse to log the user in if he can only be logged in by preempting

some other user in his load control group.

-no~print_off, -npf
- cause the system to overtype a string of characters to provide a

black area for the user to type his password.

-no start up, -ns
- instruct the standard

start up.ec segment, if
allows him to avoid it.

process overseer not to execute the user's
he has one, and if the project administrator

-no warning, -nw
- suppress even urgent system warning and emergency messages from the

operator, both at login and during the user's session. Use of this
argument is recommended only for users who are using a remote
computer to simulate a terminal, or are typing out long memoranda,
when the process output should not be interrupted by even the most
serious messages.

-outer module p, -om p
attach the user's terminal via the outer module named p rather than
the user's registered outer module, if the user has the privilege of
specifying his outer module.

-nrint off. -uf
- suppress-overtyping for the password~

-process overseer path, -po path
set-the user's process overseer to the procedure given by the path
specified, if the user's project administrator allows him to specify
his process overseer. If path ends in the characters ",direct", the
specified procedure is called directly during process initialization
rather than by the standard procedure provided by the system. This
means that the program specified by path must perform the tasks that
would have been performed by the standard procedure.

5-77 AU25-01

login

Notes

login

-ring N, -rg N
set the user's initial ring to be ring N, if this ring number is
greater than or equal to the user's registered initial ring and less
than his registered maximum ring.

-subsystem path, -ss path
create the user's process using the prelinked subsystem in the
directory specified by path. The permission to specify a process
overseer, which can be given by the user's project administrator,
also governs the use of the -subsystem argument. To override a
default subsystem specified by the project administrator, type -ss
""

-terminal type STR, -ttp STR
set the user's terminal type to STR, where STR is any terminal
name defined in the standard terminal type table. (To obtain a
of terminal types, refer to the print terminal types command.)
control argument overrides the default terminal type.

type
list
This

If neither the -print off nor -no print off control argument is specified
at log-in, the system attempts to choose the option most appropriate for the
user terminal type.

Several parameters of the user's process, as noted above, can be controlled
by the user's project administrator. The project administrator can allow the
user to override some of these attributes by specifying control arguments in his
login line.

If the project administrator does not allow the user to specify the
-subsystem, -outer module, -home dir, -process overseer, or -ring control
arguments or if he does allow one or more of these control arguments and they
are incorrectly specified by the user, a message is printed and the login is
refused.

Examples

In the exam~les below, the lines typed by the user are preceded by an
exclamation mark (!) and the user's password is shown even though in most cases
the system either prints a string of cover-up characters to "hide" the password
or temporarily turns off the printing mechanism of the user's terminal.

Probably the most common form of the login request is to specify just the
Person_id and the Project_id (and then the password) as:

login Jones Demo
Password:
mypass

5-78 AU25-01

login

To set (or change) the default project to Demo, type:

login Jones Demo -cdp
Password:
mypass
Defaul-tproject -changed.---

login

To set the tabs and crecho I/O modes so the terminal uses tabs rather than
spaces where appropriate on output and echoes a carriage return when a line feed
is typed (assuming the user has a default project), type:

login Jones -modes tabs,crecho
Password:
mypass

To change the password from mypass to newpass (assuming the user has a
default project), type:

login Jones -cpw
Password:
mypass
New Password:
newpass
New Password Again:
newpass
Password changed.

5-79 AU25-01

logout logout

Name: logout

The logout command terminates a user session and ends communication with
the Multics system. It signals the finish condition for the process; and, after
the default on unit for the finish condition closes all open files and returns,
it destroys the process.

logout {-control_args}

where control_args can be chosen from the following:

Note

-hold, -hd
the user's session is
Multics system is not
without redialing.

-brief, -bf

terminated. However, communication with the
terminated, and a user can immediately log in

no logout message is printed, and if the -hold control argument has
been specified, no login message is printed either.

See Section 2, "How to Access the Multics System" in the Multics Users'
Guide, Order No. AL40.

5-80 AU25-01

merge_text merge_text

Name: merge_text, mgt

The merge text command inserts the contents of a segment into the temporary
text. To avoid line number duplication, the resulting segment is resequenced
starting at the first line of merged text.

Special editing is done for BASIC source text. Any references to the lines
that are renumbered are edited to reflect the new numbers. This editing is done
only if the entryname of the segment of temporary text ends with the basic
suffix.

merge_text path {line_number}

where:

1 . path
is the pathname of the segment to be inserted.
contain line numbered text.

2. line number

This segment must

specifies the line after which the segment is inserted. If no
line number argument is given, the segment is inserted at the end of
the temporary text.

Example

print_text check /segment to be inserted

check 01/17/76 111.2 mst Fri

100 if x > y then 150
120 let w = y
130 let y = x
140 let x = w
150 call "trans": x,y
r 1112

print text -nhe
10 input x,y,z
12 goto 10
r 1113

merge check 10
r 1113

!prints temporary text

5-81 AU25-01

merge_text

print text -nhe
10 input x,y,z
20 if x > y then 60

30 let w = y
40 let y = x
50 let x = w
60 call "trans": x,y
70 goto 10
r 1114

merge_text

/special editing by merge text of reference to
/reflect new line numbers-

/this number was changed to prevent
/overlap

5-82 AU25-01

move text move text

Name: move_text, mt

The move text command relocates one or more lines of the temporary text.
The lines that are moved are reseque~ced. :f the new line numbers cause
duplic-a-t-i-o-n-- o-f--ex-i-sti-n-g l-inenumb-er-s ,enough lifles ---of-the text frl'e--r-e-seq-u-eneed -
to ensure no overlap.

Special editing is done for BASIC source text. Any references to the lines
that are renumbered are edited to reflect the new numbers. This editing is done
only if the entryname of the segment of temporary text ends with the basic
suffix.

move text firstline {last_Iine},line_number

where:

1 • first line
is the line number of the first line to be moved.

2. last line

3.

Note

is the line number of the last line to be moved. If this argument
is not given, only the line specified by the first line argument is
moved.

line number
specifies
inserted.

the line number after which the moved lines are to be
The line number specified must be preceded by a comma.

All lines between and including the first and last lines specified are
relocated. The line numbers specified by the first line and last line arguments
do not have to appear in the text, but the range specified by them must contain
at least one line.

5-83 AU25-01

move text

Example

print_text

tmst.basic 01/17/76 1313 mst Fri

100 if x > m then 160
110 if x < 0 then 140
120 let t = t + x
130 goto 100
140 print "illegal x"
150 stop
160 gosub 300

r 1314

move text 140 155,600
r 1315

print text -nhe
100 if x > m then 160
110 if x < 0 then 610
120 let t = t + x
130 goto 100
160 gosub 300
610 print "illegal x"
620 stop
r 1316

/moves all lines between and including
/lines 140 and 155

/140 changed to 610 by move text

/location following line 600

5-84

move text

AU25-01

new new

Name: new

The new command deletes the temporary text and creates a pathname for the
new segment of temporary text.

new {path}

where path is the pathname of the newly created segment that will contain the
temporary text. If path is omitted, the name of the segment of temporary text
is set to null (""). (See "Segment Naming Conventions" in Section 1 for a
description of valid segment names.)

Note

The path argument given with the new command is used by default if the
save, print_text, and info commands are given without a path argument.

Examples

new
10 Jan
20 Susan
30 Betsy
40 Sarah
50 Lilli
print_text

"" 03/20/76

10 Jan
20 Susan
30 Betsy
40 Sarah
50 Lilli
r 1016

1016.2 mst Sat

5-85 AU25-01

new

new multiply.fortran
10 input 100, x,y
20 z = x*y
30 print 100,z
32 100 format (f5.0,f5.0)
40 end
print_text

multiply.fortran 03/20/76 1017.6 mst Sat

10 input 100, x,y
20 let z = x*y
30 print 100,z
32 100 format (f5.0,f5.0)
40 end
r 1017

5-86

new

AU25-01

old old

Name: old

The old command retrieves a segment that has previously been saved either
in the user's working directory or another directory to which the user has
access. The temporary text is replaced by the contents of the segment
specified.

old path

where path is the pathname of the segment to be retrieved.

Note

Segments retrieved from other directories can be saved in the user's
working directory by issuing the save command with a segment name as an argument
to the command.

Examples

oola eval.fortran
r 1534
save eval2.fortran
r 1534

I the segment named evaol. !-ortran in the working
/directory becomes the temporary text
/saves the temporary text in the working directory
/with the name eval2.fortran

old >udd>Design>Smith>summary.basic
r 1535

/the segment named summary. basic in
/the Smith directory becomes the
/temporary text

save summary. basic .
r 1535

/the temporary text is saved in the working
/directory with the name summary. basic

old >udd>Design>Jones>junk
r 1536
save
r 1536

/the temporary text is saved in the Jones
/directory with the name given with the old command

old >udd>student lib>sort.fortran
old: segment not found ">udd>student lib>sort.fortran"
r 1537

5-87 AU25-01

Name: print_text, pt

The print_text command prints one or more lines of a segment.

where:

1 • path
is the pathname of the segment to be printed. If path is not given,
the temporary text is assumed.

2. control_args
is one or more of the following:

-pathname path, -pn path
specifies the segment to print. This argument is only needed if the
segment name begins with a digit.

-no header, -nhe
- suppresses all heading lines.

3. first line
is the line number of the line at which to begin printing.

4. last line

Notes

is the line number of the line at which to stop printing. This
argument can only be given if the first line argument is given.

If print text is invoked without any arguments, all of the temporary text
is printed, preceded by heading lines (one line giving the name of the segment
and current date information and one blank line). These heading lines are
suppressed whenever the first_line argument is supplied.

If only the first_line argument is specified, only that line is printed.

All lines between and including the first and last lines specified are
printed. The line numbers specified by the first line and last line arguments
do not have to appear in the text but the range specified by them must contain
at least one line.

5-88 AU25-01

Examples

print_text

min.basic 11/07/76 1211 mst Fri

105 if x < y then 140
120 if x < z then 150
130 let z = x + y
140 print x, y, z
r 1212

print text 105
105 if x < y then 140
r 1213

print text 120 140
120 if x < z then 150
130 let z = x + y
140 print x, y, z
r 1216

5-89 AU25-01

ready_off

Name: ready_off, rdf

The ready off command suppresses the system ready message.
ready_on comman~.

ready_off

Examples

print text 10 20
10 print "totals", "average"
12 input x
14 if x < 0 then 35
r 1833

ready off
print-text 10 20
10 print "totals", "average"
12 input x
14 if x < 0 then 35
save
ready on
r 1834

5-90

See the

AU25-01

Name: ready_on, rdn

The ready on command restores the system ready message. Since ready
messages are prInted by default, the ready on command is only needed to "cancel"
a previously i"ssue-d ready_off command. -

Example

ready off
print-text -nhe
10 input x,y
20 let z = x+y
30 print z
40 end
ready on
r 1758

5-91 AU25-01

rename rename

Name: rename, rn

The rename command replaces a specified segment,
directory, or link name by a specified new name, without
names the entry might have.

multisegment file,
affecting any other

rename {-control_arg} pathl name1 { ... {-control_arg} path~ name~}

where:

1 • path!

2. namei

specifies the old name that is
or an entryname.

to be replaced; it can be a pathname

specifies the new name that replaces the storage system entryname
portion of path!.

3. control arg

Notes

can be -name or -nm to indicate that the path argument that follows
it is an entryname containing special command system symbols (e.g.,
< or *) that are not interpreted in the usual way by the command
processor. Thus, this control argument allows the user to rename
strangely named segments.

The star and equal conventions can be used; however, these conventions are
suppressed when the -name control argument is used.

The access mode of the user with respect to the directory specified by
pathl must contain the modify attribute.

Since two entries in a directory cannot have the same entryname, special
action is taken by this command if namei already exists in the directory
specified by pathi. If the entry having the entryname namei has an alternate
name, entryname namei is removed and the user is informed of-this action; the
renaming operation then takes place. If the en"try having the entryname namei
has only one name, the entry must be deleted in order to remove the name. The
user is asked if the deletion should be done; if the user answers "no", the
renaming operation does not take place.

5-92 AU25-01

rename rename

Example

The command line:

rename alpha beta >sample_dir>gamma delta

renames alpha, in the user's working directory, to beta and also renames gamma,
in the directory >sample_dir, to delta.

The command line:

rename -name *stuff junk

renames the segment *stuff, in the working directory, to junk.

5-93 AU25-01

resequence resequence

Name: resequence, rsq

The resequence command renumbers
beginning with a g1ven line number and
subsequent numbers.

specified lines
adding a given

of temporary text,
increment to derive

This command does special editing for BASIC source text. Any reference to
the lines that are renumbered are edited to reflect the new numbers. In all
other cases, only the line numbers at the beginning of the line are changed.
This editing is done only if the entryname of the segment of temporary text ends
with the basic suffix.

resequence {new_number increment}

where:

1 • new number
is the first new line number to be assigned (100 by default).

2. increment
is the increment used to derive subsequent line
default). This argument can only be specified
argument is given.

Example

old prog.basic
r 1617

print text -nhe
210 if m)n then 260
220 next i
230 if n()m then 260
240 print "ok"
250 stop
260 go to 400
resequence
r 1618

print text -nhe
100 if m)n then 150
110 next i
120 if n()m then 150
130 print "ok"
140 stop
150 go to 400
r 161 9

5:-94

numbers (10 by
if the new number

AU25-01

run run

Name: run

The run command executes a BASIC or FORTRAN program. After execution, it
closes all input/output files and frees common blocks.

run {path}

where path is the pathname of a segment. If path is not given, the run command
compiles the temporary text and executes it provided that the entryname of the
temporary text has a language suffix. If path is specified and the entryname
has a language suffix, the run command expects the segment to contain the source
program and compiles and executes it. If path is specified and the entryname
does not contain a language suffix, the run command expects the segment to
contain object code and exeuctes it.

Examples

12/79

old test. basic
r 1721

run
(program execution of text.basic)
r 1721

run std !object segment "std" in working directory
(program execution)
r 1722.3

run /temporary text is not changed by run
(program execution of test.basic)
r 1723

5-95 AU25-01A

run run

Pages 96 through 98 of this section have been deleted.

12/79 5-96/98

save save

Name: save

The save command causes the temporary text to be saved in the user's
working directory.

save {path}

where path is the pathname under which the temporary text is to be saved. If no
argument is supplied, the temporary text is saved usin~ the pathname given with
the last new, old, or save command (see "Note" below). If there has been no
preceding new, old, or save command, an error message is printed.

Note

The save command overwrites a previously saved segment of the same name.

Examples

save newprog.fortran
r 1417

old scores.basic
r 1418

10 data 87,93,78,40
save /the name from the old command is used
r 1419

5-99 AU25-01

set acl set acl

Name: set_acl, sa

The set acl command manipulates the access
segments, multisegment files, and directories. See
of ACLs.

control lists (ACLs) of
Section 4 for a discussion

set acl path mode1 {User_idl

where:

1 . path

2. modei

is the pathname of a segment, multisegment file, or directory. If
it is -wd or -working dir, the working directory is assumed. The
star convention can be used and applies to either segments and
multisegment files or directories, depending on the type of mode
specified in mode1 .

is a valid access mode. For segments or multisegment files, any or
all of the letters rew; for directories, any or all of the letters
sma with the requirement that if modify is present, status must also
be present. Use null, "n" or "" to specify null access.

3. User idi
1s an access control name that must be of the form
Person id.Project id.tag. All ACL entries with matching names
receive the mode modei. (For a description of the matching
strategy, see "Notes" he"low.) If no match is found and all three
components are present, an entry is added to the ACL. If the last
modei has no User id following it, the Person id of the user and
current Project_id-are assumed.

4. control args
can be either of the following control arguments:

-directory, -dr
specifies that only directories are affected.

-segment, -sm
specifies that only segments and multisegment files are affected.
This is the default.

Either control argument is used to resolve an ambiguous choice
between segments and directories that occurs only when modei is null
and the star convention is used in path.

5-100 AU25-01

set acl set acl

Notes

The arguments are processed from left to right. Therefore, the effect of a
particular pair of arguments can be changed by a later pair of arguments.

The user needs modify permission on the containing directory.

The strategy for matching an access control name argument is defined by
three rules:

1.· A literal component, including "*", matches only a component of the
same name.

2. A missing component not delimited by a period is treated the same as a
Ii teral "*" (e. g., "*. Mul tics" is trea-ted as "* .Mul tics. *"). Missing
components on the left must be delimited by periods.

3. A missing component delimited by a period matches any component.

Some examples of User ids and the ACL entries they match are:

* * * matches only the literal ACL entry "*.*.*".

Multics matches only the ACL entry "Multics.*.*". (The absence of a
leading period makes Multics the first component.)

JRSmith .. matches any ACL entry with a first component of JRSmith.

""

Examples

matches any ACL entry.

matches any ACL entry with a last component of *.

(null string) matches any ACL entry ending in " * *"

The command line:

set_acl *.p11 rew *

adds to the ACL of every segment in the working directory that has a
two-component name with a second component of p11 an entry with mode rew to
..* (everyone) if that entry does not exist; otherwise it changes the mode of
the *.*.* entry to rew.

The command line:

sa -wd sm Jones.Faculty

adds to the ACL of the working directory an entry with mode sm for
Jones.Faculty.* if that entry does not exist; otherwise it changes the mode of
the Jones.Faculty.* entry to sm.

5-101 AU25-01

set acl set acl

The command line:

sa alpha. basic rew .Faculty. r Jones.Faculty.

changes the mode of every entry on the ACL of alpha. basic with a middle
component of Faculty to rew, then changes the mode of every entry that starts
with Jones.Faculty to read.

5-102 AU25-01

Name: set_tty, stty

The set tty command specifies properties of the user's terminal. It is
needed only Tn those rare cases when the Multics system does not recognize the
terminal being used at login.

where control_args can be chosen from the following control arguments:

-terminal type XX,
-ttp XX -

-modes XX

-reset

-tabs

-print

causes the user's terminal type to be set to device
type XX, where XX can be anyone of the following:

TTY37, tty37 device similar to Teletype Model 37.
TTY33, tty33 device similar to Teletype Model 33 or

35.
TTY38, tty38 device similar to Teletype Model 38.
TN300, tn300 device similar to GE TermiNet 300 or

1200.

The default modes for the new terminal type are turned
on.

sets the modes for terminal I/O according to XX, which
is a string of mode names separated by commas, each one
optionally preceded by""" to turn the specified mode
off. Other modes are, however, supported. A full set
of modes is printed with the -print control argument.
Valid mode names are:

lIn

crecho,
"crecho
Ifecho,
"lfecho
tabecho,
"tabecho

where n is an integer (10<n<255) specifying
the length (in character--Positions) of a
terminal line.
crecho specifies that a carriage return is to
be echoed when the user types linefeed.
Ifecho specifies that a linefeed is to be
echoed when a carriage return is typed.
specifies that the appropriate number of
blanks are to be echoed when a tab is typed.

Modes not specified in XX are left unchanged. See
"Notes" below.

turns off all modes that are not set in the default
modes string for the current terminal type.

specifies that the device has software-settable tabs,
and that the tabs are to be set. This control argument
currently has effect only for GE TermiNet 300-1ike
devices.

causes the terminal type and modes to be printed on the
terminal. If any other control arguments are specified,
the type and modes printed reflect the result of the
command.

5-103 AU25-01

set_tty

Notes

Invoking the set_tty command causes the system to perform the following
steps in the specified order:

1 . If the -terminal type control argument is specified, set the specified
device type and turn on the default modes for that type.

2. If the -reset control argument is specified, turn off all modes that
are not set in the default modes string for the current terminal type.

3. If the -modes control argument is specified, turn on or off those
modes explicitly specified.

4. If the -tabs control argument is specified, and the terminal has
settable tabs, set the tabs.

5. If the -print control argument is specified, print the type and modes
on the terminal.

Examples

In the following example, a user of a TermniNet 300 with tabs establishes
his terminal type.

set_tty -terminal_type tn300 -tabs -reset

In the next example, the user wants to use the linefeed key on his terminal for
the newline character instead of the carriage return key. After the change, the
user will type linefeed and the terminal will echo with carriage return so the
carriage will be positioned for the next line.

set_tty -modes crecho

In the next example the user changes the line length to 60 characters. Lines
that are longer than 60 characters Wl~~ De continued on the following line.
Lines that are continued wll begin with ""

set_tty -modes 1160

5-104 AU25-01'

truncate truncate

Nam~: truncate, tc

The truncate command truncates a segment to a specified length and resets
the bit count ~ccotdihgly, settlhg thS bit cbunt author to be the USer who
invoked the command. The segment can be specified by pathname or segment
number.

truncate {-control_argJ seg_no length

where:

1 . control arg

2. seg_no

3. length

Notes

Tf present, must be -name or -nm, indicating that the following
seg_no is in fact a pathname, although it might look like a number.

is either a pathname or an octal segment
happens to be an octal number should be
argument -name or -nm.

number.
preceded

A pathname that
by the control

is an octal integer indicating the length of the segment in words
after truncation. If no length argument is provided, zero is
assumed.

The user must have write access on the segment to be truncated.

If the segment is already shorter than the specified length, its length is
unchanged, but the bit count is set to the specified length.

This command should not be used on segments that are (or are components of)
structured files.

Example

The command line:

truncate alpha 50

truncates segment alpha to 50 words; i.e., all words from word 50 (octal) on are
zero. The bit count of the segment is set to the truncated length.

5-105 AU25-01

unlink unlink

Name: unlink, ul

The unlink command deletes the specified link entry. For a discussion of
links see Section 3.

unlink paths {-control_args}

where:

1 • paths
specify storage system link entries to be deleted.
convention can be used.

The star

2. control args

Notes

can be chosen from the following:

-force
suppresses the query "Do you want to unlink ** in <dir_path>?" when
appropriate.

-brief, -bf
inhibits the printing of an error message if the segment or
multisegment to be deleted is not found.

The user must have modify permission on the directory containing the link.

The delete, delete force, and delete dir commands can be used to delete
segment and directory en~ries.

5-106 AU25-01

SECTION 6

MULTICS edm TEXT EDITOR

A simple Multics context editor, edm, is used for creating and editing
ASCII segments. To invoke edm, the user types:

edm pathname

where pathname identifies the segment to be either edited or created.

The edm editor operates in one of two principal modes: edit or input. If
pathname identifies a segment that is already in existence, edm begins in edit
mode. If pathname identifies a segment that does not exist, or if pathname is
not given, edm begins in input mode. The user can change from one mode to the
other by issuing the mode change character: a period (followed by a "carriage
return") when this is the only character on a line. For verification, edm
announces its mode by responding "Edit." or "Input." when the mode is entered.

The edm requests assume that the segment consists of a series of lines and
has a conceptual pointer to indicate the current line. (The "top" and "bottom"
lines of the segment are also meaningful.) Some requests explicitly or
implicitly cause the pointer to be moved; other requests manipulate the line
currently pointed to. Most requests are indicated by a single character,
generally the first letter of the name of the request; for these requests only
the single character is accepted by edm to initiate the corresponding action.

REQUESTS

Various edm requests and their indicators are listed below. Detailed
descriptions of these requests are given later in this section.

=

b

d

f

i

k

1

backup

print current line number

comment mode

mode change

bottom

delete

find

insert

kill

locate

6-1 AU25-01

n next

p print

q quit

r retype

s substitute

t top

v verbose

w write

GUIDELINES

The following list offers helpful suggestions about the use of edm for the
new user.

1. It is useful to remember that the editor makes all changes on a copy
of the segment, not on the original. Only when the user issues a w
(write) request does the editor overwrite the original segment with
the edited version. If the user types q (quit) without a preceding w
(write), the editor warns him that editing will be lost and the
original segment will be unchanged, and gives him the option of
aborting the request.

2. The user should not issue a quit signal (press ATTN, BRK, INTERRUPT,
etc.) while in the editor unless he is prepared to lose all of the
work he has done since the last w (write) request. However, if a quit
signal is issued, the user may return to edm request level without
losing his work by issuing the program_interrupt command.

3. If the user has a lot of typing or editing to do, it is wisest to
occasionally issue the w request to ensure that all the work up to
that time is permanently recorded. Then, if some problem should occur
(with the system, the telephone line, or the terminal), the user loses
only the work done since the last w request.

4. The user should be sure that he has switched from input mode to edit
mode before typing editing requests, including the wand q requests.
If he forgets, the editing requests are stored in the segment, instead
of being acted upon. The user then has to locate and delete them.

5. As the user becomes more familiar with the us~ of edm, he may conclude
that it provides verification responses more often than necessary,
thus slowing him down. He may use the k request to "kill" the
verification response. However, once the user feels confident enough
to use the k request, he is probably ready to begin using the more
sophisticated editor, qedx. The qedx editor provides the user with a
repertoire of more concise and powerful requests, permitting more
rapid work.

REQUEST DESCRIPTIONS

The following edm requests are the ones that the new user will find most
useful as he begins working on Multics. Examples are included ~c help the new
user see the practical use of the requests.

6-2 AU25-01

Backup (-) Request

The backup request moves the pointer backward (toward the top of the
segment) the number of lines specified by the user and prints the line to show
the location of the pointer. For example, if the pointer is currently at the
bottom line of the following:

get list (n1, n2);
sum = n1 + n2;
put skip;
put list ("The sum is:", sum);

and the user wants the pointer at the line beginning with the word "sum," he
types:

-2
sum n1 + n2;

If the user does not specify a number of lines with the backup request, the
pointer is moved up one line. (Typing a space between the backup request and
the integer is optional.)

Print Current Line Number (=) Request

The print current line number request tells the user the number of the line
the pointer is currently pointing to (all the lines in a segment are implicitly
numbered by the system--1, 2, 3, ... , n).

Whenever the user wants to check the implicit line number of the current
line, he issues this request and edm responds with a line number.

143

Comment Mode (,) Request

When the user invokes the comment mode request, edm starts printing at the
current line and continues printing all the lines in the segment in comment mode
until it reaches the end of the segment or until the user types the mode change
character (a period) as the only entry on a line.

To print the lines in comment mode means that edm prints the line without
the carriage return, switches to input mode, and waits for the user's comment
entry for that line. When the user gives his comment line and a carriage
return, edm repeats the process with the next line.

If the user has no comment for a particular line, he types only a carriage
return and edm prints the next line in comment mode. When the user wants to
leave comment mode and return to edit mode, he types--as his comment--the mode
change character (a period).

Programmers will find that the comment mode request gives them a fast and
easy way to put comments in their programs.

6-3 AU25-01

Mode Change (.) Request

The mode change request allows the user to go from input mode to edit mode
or vice versa simply by typing a period as the only character on a line. This
request is also the means by which the user leaves the comment mode request and
returns to edit mode.

For example, when a user finishes typing
must leave input mode and go to edit mode in
request and save the information.

information into a segment, he
order to issue the write (w)

last line of segment

Edit.
w

Bottom (b) Request

The bottom request moves the pointer to the end of the segment (actually
sets the pointer after the last line in the segment) and switches to input mode.
This request is particularly helpful when the user has a lot of information to
type in input mode; if he sees some mistakes in data previously typed, he can
switch to edit mode, correct the error, then issue the bottom request and
continue typing his information.

red
oramge
yellow
green

Edit.
-2
oramge
s/m/n/
orange
b
Input.
blue

Delete (d) Request

This request deletes the number of lines specified by the user. Deletion
begins at the current line and continues according to the user's request. For
example, to delete the current line plus the next five lines, the user types:

d6

If the user issues the delete request without specifying a number, only the
current line is deleted. (That is, the user may type either d or d1 to delete
the current line.)

After a deletion, the pointer is set to an imaginary
last deleted line but preceding the next nondeleted line.
input mode would take effect before the next nondeleted line.

6-4

line following the
Thus, a change to

AU25-01

Find (f) Request

The find request searches the segment for a line beginning with the
character string designated by the user. The search begins at the line
following the current line and continues, wrapping around the segment from
bottom to top, until the string is found or until the pointer returns to the
current line; however, the current line itself is not searched. If the string
is not founds edm responds with the following error message:

edm: Search failed.

If the string is found and the user is in verbose mode, edm responds by
printing the first line it finds that begins with the specified string.

f If
If the string is found and the user

When the user types the string, he must be careful with the spacing. A
single space following the find request is not significant; however, further
leading and embedded spaces are considered part of the specified string and are
used in the search.

In the find request, the pointer is either set to the line found in the
search or remains at the current line if the search fails. Also, if the user
issues the find request without specifying a character string, edm searches for
the string requested by the last find or locate (1) request.

Insert (i) Request

The insert request allows the user to place a new line of information after
the current line.

If the user invokes the insert request without specifying any new text, a
blank line is inserted after the current line. If the user types text after the
insert request, he must be careful with the spacing. One space following the
insert request is not significant, but all other leading and embedded spaces
become part of the text of the new line.

For example, if the pointer is at the top line of the following:

sum = n1 + n2;
put list (liThe sum is:", sum);

and the user issued the following insert request:

i put skip;

the result would be:

sum n1 + n2;
put skip;
put list (liThe sum is:",sum);

If the user wants to insert a new line at the beginning of the segment, he
first issues a top (t) request and then an insert request.

6-5 AU25-01

Kill (k) Request

The kill request suppresses the edm responses following the change (c),
find (f), locate (1), next (n), or substitute (s) requests. To restore
responses to these requests, the user issues the verbose (v) request.

It is recommended that the new user not use the kill request until he is
thoroughly familiar with edm. The responses given in verbose mode are helpful;
they offer an immediate check for the user by allowing him to see the results of
his request.

Locate (1) Request

The locate request searches the se~ent for a line containing a
user-specified string. The locate and find (f) requests are used in a similar
manner and follow the same conventions. (Refer to the find request description
for details.) With the find request, edm searches for a line beginning with a
specified string; with the locate request, edm searches for a line
containing--anywhere--the specified string.

Next (n) Request

The next request moves the pointer toward the bottom of the segment the
number of lines specified by the user. If the user invokes the next request
without specifying a number, the pointer is moved down one line. When the user
does specify the number of lines he wants the pointer to move, the pointer is
set to the specified line. For example, if the user types:

n4

the pointer is set to the fourth line after the current line. The edm editor
responds, when in verbose mode, by typing the user-specified line.

Print (p) Request

The print request prints the number of lines specified by the user,
beginning with the current line, and sets the pointer to the last printed line.
If the user does not specify a number of lines, only the current line is
printed.

If the user wants to see the current line and the next three lines, he
types:

p4
current line
first line after current line
second
third

In edm, every segment has two imaginary null lines, one before the first
text line and one after the last text line. When the user prints the entire
segment, these lines are identified as "No line" and !lEOF" respectively.

6-6 AU25-01

Quit (q) Request

The quit request is invoked by the user when he wants to exit from edm and
return to command level.

For the user's convenience and protection, edm prints a warning message if
the user does not issue a write (w) request to save his latest editing changes
before he issues the quit request. The message reminds the user that his
changes will be lost and asks if he still wishes to quit.

q
edm: Changes to text since last "w" request will be lost if you quit;
do you wish to quit?

If the user answers by typing no, he is still in edit mode and can then
issue a write request to save his work. If he instead answers by typing yes, he
exits from edm and returns to command level.

Retype (r) Request

The retype request replaces the current line with a different line typed by
the user.

One space between the retype request and the beginning of the new line is
not significant; any other leading and embedded spaces become part of the new
line. To replace the current line with a blank line, the user types the retype
request and a carriage return.

Substitute (s) Request

The substitute request allows the user to change every occurrence of a
particular character string with a new character string in the number of lines
he indicates. If the user is in verbose mode (in which edm prints responses to
certain requests), edm responds by printing each changed line. If the original
character string is not found in the lines the user asked edm to search, edm
responds:

edm: Substitution failed.

For example, if the pointer is at the top line of the following:

get list (n1, n2);
sum = n1 + n2;
put skip;
put list (;:The sum is:ii, sum);

and the user wants to search the next three lines and change the word "sum" to
"total," he types:

s4/sum/total/
total = n1 + n2;
put list ("The total is:", total);

6-7 AU25-01

The four lines searched by the editor are the current line plus the next
three. (The search always begins at the current line.) If the user does not
specify the number of lines he wants searched, edm only searches the current
line. If the user does not specify an original string, the new string is
inserted at the beginning of the specified line(s).

Notice in the example that a slash (/) was used to delimit the strings.
The user may designate as the delimiter any character that does not appear in
either the original or the new string.

Top (t) Request

The top request moves the pointer to an imaginary null line immediately
above the first text line in the segment. (See the print request description
concerning imaginary null lines in edm.)

An insert (i) request immediately following a top request allows the user
to put a new text line above the "original" first text line of the segment.

Verbose (v) Request

The verbose request causes edm to print responses to the change (c), find
(f), locate (1), next (n), or substitute (s) requests.

Actually, the user does not need to issue the verbose request to cause edm
to print the responses; when he invokes edm, the verbose request is in effect.
The only time the user needs to issue the verbose request is to cancel a
previously issued kill (k) request.

Write (w) Request

The write request saves the most recent copy of a segment in a pathname
specified by the user. (The pathname can be either absolute or relative.)

If the user does not specify a pathname, the segment is saved under the
name used in the invocation of edm. When saving an edited segment without
specifying a pathname, the original segment is overwritten (the previous
contents are discarded) and the edited segment is saved under the original name.

If the user does not specify a pathname and he did not use a pathname when
he invoked edm, an error message is printed ana-edm waits for another request.
If this happens, the user should reissue the write request, specifying a
pathname.

6-8 AU25-01

ADDITIONAL REQUESTS

In addition to those edm requests described above, some more extensive
requests are available to the user as familiarity with the editor increases and
more ability to manipulate text is needed. Such requests are listed below,
followed by a brief description of each request.

E
merge
move
qt
updelete
upwrite

execute a command line
insert a segment
move lines of text
force exit from the editor
delete all previous text lines
save all previous text lines

Execute (E) Request

The execute request is used to issue Multics (or FAST sUbsystem) commands
to the Multics command processor for execution. To invoke the execute request
the user types:

E command line

Merge (merge) Request

The merge request permits the user to insert text that has previously been
created into the segment presently being edited. In effect, the two segments
are merged together to create one segment that the user can then continue to
edit.

To invoke the merge request, the user locates the line of text after which
the previously created segment is to be inserted and types:

merge path

where path is the pathname (either relative or absolute) of the segment that is
to be merged into the segment being worked on. The segment named path is then
inserted after the current line and the pointer is set to "no line" following
the last line of the inserted segment.

If path is not specified by the user,
of edm is used. If a pathname is given
invocation of edm, an error message is
request.

Move (move) Request

the pathname given In the invocation
neither in this request nor in the

printed and edm looks for another

The move request is used to move lines of text from one location in the
segment being edited to another location in the same segment.

In order to use the move request, the user must determine:

1. The line number of the first line of text to be moved (with a find or
locate request, then a current line number request)

6-9 AU25-01

2. The number of lines of text to be moved.

3. The line number after which the text is to be inserted.

The format of the move request, as typed by the user is:

move m n

where m is the number of the line at which the move of text begins, and n is the
number-of lines to move (including line m). If no number is specified for ~,
only the single line, ~, is moved. -

If lines of text are to be inserted at line 491 then the user issues the
move request in the following form:

move 146 8

which specifies that eight lines of text, beginning at line 146, are to be
inserted after the current line (determined in step 3 above) and the lines of
text moved are to be deleted from their original location.

The pointer is set to "no line" following the lines moved. An insert (i)
request or a change to input mode could be issued by the user to take effect
immediately following the moved text.

Quitforce (qt) Request

The quitforce request to the edm text editor functions much the same as the
quit request in that it may be used to exit from edm and return to command
level.

If the quitforce request is invoked by the user, however, the exit from edm
is immediate and no warning or query is issued to the user. Thus, if the user
has forgotten to issue a write request after entering text or performing other
text manipulations, these operations will not be effected. Care should be
exercised, therefore, in using the quitforce request, as the user may find that
this shortcut has cost the loss of previously expended time.

Delete to Pointer (updelete) Request

The updelete request is used to delete all of the lines that precede (but
not including) the current line. Thus, if the user decided that the first 100
lines of the segment being worked on were not needed any longer, he would move
to line 101 and issue the request:

updelete

to delete the first 100 lines of the segment.

6-10 AU25-01

Write to Pointer (upwrite) Request

The upwrite request is used to save all the lines above (but not including)
the current line in the segment specified by the user. The lines written out
are deleted from the edit buffers and thus are no longer available for editing.
They will replace the previous contents of path. The pathname specified by path
can be ei ther an absolute or a relative pa.thname. To invoke the request the
user types:

upwrite path

If path is not specified, the pathname given in the invocation of edm is used by
default. If a pathname is given neither in this request nor in the invocation
of edm, an error message is printed and edm looks for another request.

6-11 AU25-01

absentee usage
status

A

how_many_users 5-56

access control
segment and directory ACLs

delete acl 5-16
list act 5-72
set acl 5-100

add_name (an) command 5-8

an
see add name command

anonymous users
login

enter 5-37
enterp 5-37

automatic logout
see logout

bulk I/O
offline

dprint 5-21

cleanup

B

C

program environment
run 5-95

storage system
truncate 5-105

copy (cp) command 5-15

INDEX

D

da
see delete acl command

daemon
offline I/O

dprint 5-21

delete (dl) command 5-15

delete_acl (da) command 5-16

delete_name (dn) command 5-19

deleting
ACL entries

delete acl 5-16
entries

delete 5-15
links

unlink 5-106
multiple names

delete name 5-19

directory
attributes

list 5-61
contents

list 5-61
entries

add name 5-8
delete name 5-19
list 5"-61
rename 5-92

hierarchy
copy 5-13
link 5-60
unlink 5-106

name manipulation
add name 5-8
delete name 5-19
rename 5-92

disconnections
cp see logout

see copy command
dl

see delete command

dn
see delete name command

i-1 AU25-01

dp
see dprint command

dprint (dp) command 5-21

languages
editing

edm 5-25

length of segment
printing

E list 5-61

e
see enter command

editing
edm 5-25, 6-1

editing requests
edm summary 6-1

edm command 5-25

edm requests
summary 6-1

edm text editor 6-1

enter (e) command 5-37

enterp (ep) command 5-37

entry
see link

ep
see enterp command

existence checking
list 5-61

hmu

H

see how_many_users

how_many_users (hmu)

I

I/O
offline (daemon)

dprint 5-21

information
system status

how_many_users

L

1
see login command

la

command

command

5-56

see list acl command

5-56

setting
truncate 5-105

link (lk) command 5-60

links
creating

link 5-60
deleting

unlink 5-106
listing

list 5-61

list (ls) command 5-61

listing
directory contents

list 5-61

i-2

list_acl (la) command 5-72

lk
see link command

logging in
enter 5-37
enterp 5-37
login 5-75

logging out
logout 5-80

login (1) command 5-75

logout command 5-80

Is
see list command

message of the day
login 5-75

multiple names
creating

add name 5-8
deletlng

M

delete name 5-19
listing

list 5-61

output
offline

dprint 5-21

o

AU25-01

p

passwords
see login

pathname
commands

list 5-61

printing
offline

dprint 5-21

process
see logout

process termination
logout 5-80

program environment separation
run 5-95

program execution
run 5-95

project name
listing

how many users 5-56
specifying-

enter 5-37
enterp 5-37
login 5-75

protection
access control list

delete acl 5-16
list act 5-72
set acl 5-100

queue
1/0 daemon

dprint 5-21

Q

R

rename (rn) command 5-92

segment
ASCII text

edm 5-25
attributes

delete acl 5-16
list 5-61
list acl 5-72
set acl 5-100

deletTng
delete 5-15

name operations
add name 5-8
delete name 5-19
rename 5-92

truncating
truncate 5-105

set_acl (sa) command 5-100

star convention
bypassing

rename 5-92

start up.ec
see-login

static storage
reinitializing

run 5-95

status
directory contents

list 5-61
system information

how_many_users 5-56

subsystems
editing

edm 5-25

system load
how_many_users 5-56

system status
how_many_users 5-56

T

tc
see truncate command

termination
rn login session

see rename command logout 5-80

run command 5-95

run unit
run 5-95

sa

s

see set acl command

i-3

truncate (tc) command 5-105

U

ul
see unlink command

unlink (ul) command 5-106

AU25-01

usage data
logout 5-80

user parameters
specifying

enter 5-37
login 5-75

users
anonymous

enter 5-37
enterp 5-37

listing
how_many_users 5-56

i-4 AU25-01

rl

z

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

I
TITLE I

I

SERIES 60 (LEVEL 68)
MULTICS FAST SUBSYSTEM
REFERENCE MANUAL
ADDENDUM A

o ERRORS IN PUBLICATION
...J
«
f-
::J
U

IL
I
I
I
I
I
I
I

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technicai personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME -----

TITLE _______ _

COMPANY

ADDRESS ________ _

ORDER NO.

I

DATED 1

DATE

AU25-01A l
I

DECEMBER 19791

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CL,\SS PERMIT NO. 39531 V'J';LTHM,1 r,1AC::'1~i4

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honey",ell

f\JO POST AG[
NECFSSi>.HY
IF '.'A II. E [)

UNllf!) ~;f,\ff.'

-

~

o
z
o
~

<1:
f
=:J
U

--c. .
I <:
I "
I --!

(

w
Z
--!

c:;
. Z
~:J

I d.
I 0

I ~
I u..

I
I
I
I
I
I
I
I
I
I
I
I
I

~'t
~!

I
I
I
I

Honeywell Information Systems
In the U.S.A.: 200 Smith Street, MS 486, Wanham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1 W5

In Australia: 124 Walker Street, North Sydney, N.S.w. 2060
In Mexico: Avenida Nuevo Leon 250, Mexico 11, OF

24928, 5C1079, Printed in U.S.A. AU25-01

	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	4-01
	4-02
	4-03
	4-04
	4-05
	5-001
	5-002
	5-003
	5-004
	5-005
	5-006
	5-007
	5-008
	5-009
	5-010
	5-011
	5-012
	5-013
	5-014
	5-015
	5-016
	5-017
	5-018
	5-019
	5-020
	5-021
	5-022
	5-023
	5-024
	5-025
	5-026
	5-027
	5-028
	5-029
	5-030
	5-031
	5-032
	5-033
	5-034
	5-035
	5-036
	5-037
	5-038
	5-039
	5-040
	5-041
	5-042
	5-047
	5-048
	5-049
	5-050
	5-051
	5-052
	5-053
	5-054
	5-055
	5-056
	5-057
	5-058
	5-059
	5-060
	5-061
	5-062
	5-063
	5-064
	5-065
	5-066
	5-067
	5-068
	5-069
	5-070
	5-071
	5-072
	5-073
	5-074
	5-075
	5-076
	5-077
	5-078
	5-079
	5-080
	5-081
	5-082
	5-083
	5-084
	5-085
	5-086
	5-087
	5-088
	5-089
	5-090
	5-091
	5-092
	5-093
	5-094
	5-095
	5-096
	5-099
	5-100
	5-101
	5-102
	5-103
	5-104
	5-105
	5-106
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	i-01
	i-02
	i-03
	i-04
	replyA
	replyB
	xBack

